
Thomas Bäck · Mike Preuss ·
André Deutz · Hao Wang ·
Carola Doerr · Michael Emmerich ·
Heike Trautmann (Eds.)

LN
CS

 1
22

70

16th International Conference, PPSN 2020
Leiden, The Netherlands, September 5–9, 2020
Proceedings, Part II

Parallel Problem Solving
from Nature – PPSN XVI

Lecture Notes in Computer Science 12270

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Thomas Bäck • Mike Preuss •

André Deutz • Hao Wang •

Carola Doerr • Michael Emmerich •

Heike Trautmann (Eds.)

Parallel Problem Solving
from Nature – PPSN XVI
16th International Conference, PPSN 2020
Leiden, The Netherlands, September 5–9, 2020
Proceedings, Part II

123

Editors
Thomas Bäck
Leiden University
Leiden, The Netherlands

Mike Preuss
Leiden University
Leiden, The Netherlands

André Deutz
Leiden University
Leiden, The Netherlands

Hao Wang
Sorbonne University
Paris, France

Carola Doerr
Sorbonne University
Paris, France

Michael Emmerich
Leiden University
Leiden, The Netherlands

Heike Trautmann
University of Münster
Münster, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-58114-5 ISBN 978-3-030-58115-2 (eBook)
https://doi.org/10.1007/978-3-030-58115-2

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
Chapter “A Hybrid Evolutionary Algorithm for Reliable Facility Location Problem” is licensed under the
terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/). For further details see licence information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-6768-1478
https://orcid.org/0000-0003-4681-1346
https://orcid.org/0000-0002-9047-6533
https://orcid.org/0000-0002-4933-5181
https://orcid.org/0000-0002-4981-3227
https://orcid.org/0000-0002-7342-2090
https://orcid.org/0000-0002-9788-8282
https://doi.org/10.1007/978-3-030-58115-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Preface

Welcome to the two volumes of the proceedings of the Conference on Parallel Problem
Solving from Nature, PPSN XVI, September 5–9, 2020, Leiden, The Netherlands!
When we applied to host PPSN XVI in Leiden, we were not able to imagine anything
like the COVID-19 pandemic. Then the new reality hit us, and we were forced to make
decisions under uncertain, dynamically changing conditions and constraints, and cer-
tainly with multiple, conflicting objectives. Scientific expertise in evolutionary com-
putation was only partially helpful for this. At the time of writing this preface, June
2020, we believed that a hybrid conference format would be the best approach for
dealing with the situation: For those who were not able to travel to Leiden, we decided
to run PPSN on-site, with printed posters, workshops, tutorials, keynotes, food, and
drinks. For those who could not travel to Leiden, we offered it online, with keynote live
streams, poster and tutorial videos, and poster discussion rooms in which attendees
could discuss with the poster presenters. The virtual part of the conference also allowed
participants to meet other attendees online and start a conversation. The challenging
and exciting experiment combining the on-site and online world gave attendees the best
of both worlds and the flexibility needed in these difficult times – hopefully giving
attendees the best of both worlds and the flexibility needed in these difficult times. Not
every detail of our hybrid plan turned out as expected, but we are quite sure that some
of the changes to conference organization we have tried will remain, and with the help
of applied AI and the digitalization of communication, conference experiences in future
will not only change but also improve.

PPSN 2020 was also quite a special event since it was the 30th anniversary of the
PPSN conference! In particular for Hans-Paul Schwefel, the founder of PPSN, this is a
wonderful confirmation of a successful concept – so our congratulations go to you in
particular, Hans-Paul. For Thomas Bäck, who was a first-year PhD student of
Hans-Paul in 1990, at PPSN I, it is an honor to be involved in this as a general co-chair,
and both Mike Preuss and he share the great experience of having been supervised in
their PhD studies by Hans-Paul. Although, as Thomas admits, 1990 was easier since
the final conference responsibility was with Hans-Paul. We are particularly proud to
have Hans-Paul and Grzegorz Rozenberg, the founder and magician of Natural
Computing in Leiden, as our honorary chairs for PPSN 2020.

PPSN 2020 received a total of 268 paper submissions written by 690 authors from
44 different countries. Our Program Committee (PC) comprised 271 members from 39
countries. Together, and despite the individual challenges that the coronavirus crisis
imposed on each one of us, the PC members wrote 812 review reports in total, which
corresponds to an average 3 reviews per paper. Each review was read and evaluated by
one of the PC chairs. Where reviewers disagreed in their assessment, a discussion
among PC members was started. In some cases, authors were contacted to provide

additional clarification about a technical aspect of their work. In other cases, additional
reviews were solicited. The review process resulted in a total number of 99 accepted
papers, which corresponds to an acceptance rate of 36.9%. All accepted papers can be
found in these LNCS proceedings of PPSN. In addition to the main conference pro-
gram, an attractive selection of 14 tutorials, 6 workshops, and 3 competitions was
offered to participants.

The topics covered classical subjects such as Genetic and Evolutionary Algorithms,
Combinatorial Optimization, Multi-objective Optimization, and Real-World Applica-
tions of Nature-Inspired Optimization Heuristics. The conference also included quite a
number of papers dealing with broader aspects of Artificial Intelligence, reflecting the
fact that search and optimization algorithms indeed form an important pillar of modern
AI.

As always, PPSN is an interactive forum for inspiring discussions and exchanges,
stimulated by on-site and online poster presentations. Three distinguished invited
speakers give keynotes at the conference: Carme Torras on assistive and collaborative
robotics, Eric Postma on machine learning in image recognition and cognitive mod-
eling, and Christian Stöcker on the direction of AI in general and its effects on society.
We are grateful that they accepted our invitation to present their keynotes on-site.

The list of people who made this conference possible is very long, showing the
impressive collaborative effort and commitment both of the scientific community that is
behind PPSN and of the organizers. This includes all authors, who recognize and
acknowledge the scientific quality of this conference series by their submission, and all
Program Committee members, who are volunteering although everybody in the com-
munity is overloaded with reviewing requests. Our thanks go to the tutorial speakers,
workshop organizers, and attendees of the conference and its events.

We are also very grateful for the contributions of the workshop chair, Anna
Esparcia-Alcázar, competition chair, Vanessa Volz, and tutorial chair, Ofer Shir. The
keynote chair, Aske Plaat, and industrial liaison chair, Bernhard Sendhoff. Our
financial chair, Felix Wittleben, who had a difficult time due to the dynamically
changing situation. Our publicity chairs, Bas van Stein and Wenjian Luo, who made
sure the community heard about PPSN 2020. Our local organization team, Jayshri
Murli, Hestia Tamboer, and Roshny Kohabir, who took care of a million things and
made the impossible possible. And then, for the conference days, the PhD and master
students who helped manage the small but important details. Moreover, all of a sudden,
we needed an online conference chair team, for which Bas van Stein, Diederick
Vermetten, and Jiawen Kong volunteered to make the online part of the conference
happen, and Anna Kononova also joined the team to help with many aspects of the
organization. Finally, we would like to express our gratitude to the Leiden Institute of
Advanced Computer Science (LIACS), Leiden University for hosting this event, to
Leiden University, for its support, particularly to Springer Nature for financing the Best
Paper Award, and to the Confederation of Laboratories for Artificial Intelligence

vi Preface

Research in Europe (CLAIRE) and Honda Research Institute Europe GmbH for their
invaluable support in countless ways.

Thank you very much to all of you, for making PPSN 2020 possible! We are very
proud that we have managed this, under difficult conditions, as a team effort.

July 2020 Thomas Bäck
Mike Preuss

General Chairs

André Deutz
Hao Wang

Proceedings Chairs

Carola Doerr
Michael Emmerich
Heike Trautmann
Program Chairs

Preface vii

Organization

PPSN 2020 was organized and hosted by the Leiden Institute of Advanced Computer
Science, Leiden University, The Netherlands. Leiden University was founded in 1575
and is the oldest university of The Netherlands. Sixteen persons associated with Leiden
University (either as PhD student or (guest-) researcher) became Nobel prize winners
and it was the home of many illustrious individuals such as René Descartes, Rembrandt
van Rijn, Christiaan Huygens, Hugo Grotius, Baruch Spinoza, and Baron d’Holbach.

General Chairs

Thomas Bäck Leiden University, The Netherlands
Mike Preuss Leiden University, The Netherlands

Honorary Chairs

Hans-Paul Schwefel TU Dortmund, Germany
Grzegorz Rozenberg Leiden University, The Netherlands

Program Committee Chairs

Carola Doerr Sorbonne Université, France
Michael Emmerich Leiden University, The Netherlands
Heike Trautmann Westfälische Wilhelms-Universität Münster, Germany

Proceedings Chairs

André Deutz Leiden University, The Netherlands
Hao Wang Sorbonne Université, France

Keynote Chair

Aske Plaat Leiden University, The Netherlands

Workshop Chair

Anna I. Esparcia-Alcázar SPECIES, Europe

Tutorial Chair

Ofer M. Shir Tel-Hai College, Israel

Competition Chair

Vanessa Volz modl.ai, Denmark

Industrial Liaison Chair

Bernhard Sendhoff Honda Research Institute Europe GmbH, Germany

Financial Chair

Felix Wittleben Leiden University, The Netherlands

Online Conference Chairs

Bas van Stein Leiden University, The Netherlands
Diederick Vermetten Leiden University, The Netherlands
Jiawen Kong Leiden University, The Netherlands

Publicity Chairs

Bas van Stein Leiden University, The Netherlands
Wenjian Luo Harbin Institute of Technology, China

Local Chair

Anna V. Kononova Leiden University, The Netherlands

Local Organizing Committee

Jayshri Murli Leiden University, The Netherlands
Roshny Kohabir Leiden University, The Netherlands
Hestia Tamboer Leiden University, The Netherlands

Steering Committee

David W. Corne Heriot-Watt University, UK
Carlos Cotta Universidad de Málaga, Spain
Kenneth De Jong George Mason University, USA
Gusz E. Eiben Vrije Universiteit Amsterdam, The Netherlands
Bogdan Filipič Jožef Stefan Institute, Slovenia
Emma Hart Edinburgh Napier University, UK
Juan Julián Merelo Guervós Universida de Granada, Spain
Günter Rudolph TU Dortmund, Germany
Thomas P. Runarsson University of Iceland, Iceland
Robert Schaefer University of Krakow, Poland
Marc Schoenauer Inria, France
Xin Yao University of Birgmingham, UK

x Organization

Keynote Speakers

Carme Torras Institut de Robòtica i Informàtica Industrial, Spain
Eric Postma Tilburg University, The Netherlands
Christian Stöcker Hochschule für Angewandte Wissenschaften Hamburg,

Germany

Program Committee

Michael Affenzeller Upper Austria University of Applied Sciences, Austria
Hernán Aguirre Shinshu University, Japan
Youhei Akimoto University of Tsukuba, Japan
Brad Alexander The University of Adelaide, Australia
Richard Allmendinger The University of Manchester, UK
Lucas Almeida Universidade Federal de Goiás, Brazil
Marie Anastacio Leiden University, The Netherlands
Denis Antipov ITMO University, Russia
Dirk Arnold Dalhousie University, Canada
Dennis Assenmacher Westfälische Wilhelms-Universität Münster, Germany
Anne Auger Inria, France
Dogan Aydin Dumlupinar University, Turkey
Jaume Bacardit Newcastle University, UK
Samineh Bagheri TH Köln, Germany
Helio Barbosa Laboratório Nacional de Computação Científica, Brazil
Thomas Bartz-Beielstein TH Köln, Germany
Andreas Beham University of Applied Sciences Upper Austria, Austria
Heder Bernardino Universidade Federal de Juiz de Fora, Brazil
Hans-Georg Beyer Vorarlberg University of Applied Sciences, Austria
Mauro Birattari Université Libre de Bruxelles, Belgium
Aymeric Blot University College London, UK
Christian Blum Spanish National Research Council, Spain
Markus Borschbach FHDW Bergisch Gladbach, Germany
Peter Bosman Centrum Wiskunde & Informatica, The Netherlands
Jakob Bossek The University of Adelaide, Australia
Jürgen Branke University of Warwick, UK
Dimo Brockhoff Inria, France
Will Browne Victoria University of Wellington, New Zealand
Alexander Brownlee University of Stirling, UK
Larry Bull University of the West of England, UK
Maxim Buzdalov ITMO University, Russia
Arina Buzdalova ITMO University, Russia
Stefano Cagnoni University of Parma, Italy
Fabio Caraffini De Montfort University, UK
Matthias Carnein Westfälische Wilhelms-Universität Münster, Germany
Mauro Castelli Universidade NOVA de Lisboa, Portugal
Josu Ceberio University of the Basque Country, Spain

Organization xi

Ying-Ping Chen National Chiao Tung University, Taiwan
Francisco Chicano Universidad de Málaga, Spain
Miroslav Chlebik University of Sussex, UK
Sung-Bae Cho Yonsei University, South Korea
Tinkle Chugh University of Exeter, UK
Carlos Coello Coello CINVESTAV-IPN, Mexico
Dogan Corus The University of Sheffield, UK
Ernesto Costa University of Coimbra, Portugal
Carlos Cotta Universidad de Málaga, Spain
Agostinho Da Rosa ISR-IST, Portugal
Nguyen Dang St Andrews University, UK
Kenneth A. De Jong George Mason University, USA
Kalyanmoy Deb Michigan State University, USA
Antonio Della-Cioppa University of Salerno, Italy
Bilel Derbel University of Lille, France
André Deutz Leiden University, The Netherlands
Benjamin Doerr École Polytechnique, France
Carola Doerr Sorbonne Université, France
John Drake University of Leicester, UK
Rafal Drezewski AGH University of Science and Technology, Poland
Paul Dufossé Inria, France
Tome Eftimov Jožef Stefan Institute, Slovenia
Gusz E. Eiben Vrije Universiteit Amsterdam, The Netherlands
Mohamed El Yafrani Aalborg University, Denmark
Talbi El-Ghazali University of Lille, France
Michael Emmerich Leiden University, The Netherlands
Anton Eremeev Sobolev Institute of Mathematics, Russia
Richard Everson University of Exeter, UK
Pedro Ferreira Universidade de Lisboa, Portugal
Jonathan Fieldsend University of Exeter, UK
Bogdan Filipič Jožef Stefan Institute, Slovenia
Steffen Finck Vorarlberg University of Applied Sciences, Austria
Andreas Fischbach TH Köln, Germany
Peter Fleming The University of Sheffield, UK
Carlos M. Fonseca University of Coimbra, Portugal
Marcus Gallagher The University of Queensland, Australia
José García-Nieto Universidad de Málaga, Spain
António Gaspar-Cunha University of Minho, Portugal
Mario Giacobini University of Torino, Italy
Kyriakos Giannakoglou National Technical University of Athens, Greece
Tobias Glasmachers Ruhr-Universität Bochum, Germany
Christian Grimme Westfälische Wilhelms-Universität Münster, Germany
Roderich Gross The University of Sheffield, UK
Andreia Guerreiro University of Coimbra, Portugal
Alexander Hagg Bonn-Rhein-Sieg University of Applied Sciences,

Germany

xii Organization

Jussi Hakanen University of Jyväskylä, Finland
Julia Handl The University of Manchester, UK
Jin-Kao Hao University of Angers, France
Emma Hart Napier University, UK
Verena Heidrich-Meisner University of Kiel, Germany
Carlos Henggeler Antunes University of Coimbra, Portugal
Martin Holena Academy of Sciences of the Czech Republic,

Czech Republic
Christian Igel University of Copenhagen, Denmark
Dani Irawan TH Köln, Germany
Hisao Ishibuchi Osaka Prefecture University, Japan
Christian Jacob University of Calgary, Canada
Domagoj Jakobovic University of Zagreb, Croatia
Thomas Jansen Aberystwyth University, UK
Dreo Johann THALES Research & Technology, France
Laetitia Jourdan Inria, LIFL CNRS, France
Bryant Julstrom St. Cloud State University, USA
George Karakostas McMaster University, Canada
Edward Keedwell University of Exeter, UK
Pascal Kerschke Westfälische Wilhelms-Universität Münster, Germany
Marie-Eleonore Kessaci University of Lille, France
Ahmed Kheiri Lancaster University, UK
Wolfgang Konen TH Köln, Germany
Anna Kononova Leiden University, The Netherlands
Peter Korošec Jožef Stefan Institute, Slovenia
Lars Kotthoff University of Wyoming, USA
Oliver Kramer Universität Oldenburg, Germany
Oswin Krause University of Copenhagen, Denmark
Krzysztof Krawiec Poznan University of Technology, Poland
Martin S. Krejca Hasso-Plattner-Institut, Germany
Timo Kötzing Hasso-Plattner-Institut, Germany
William La Cava University of Pennsylvania, USA
Jörg Lässig University of Applied Sciences Zittau/Görlitz,

Germany
William B. Langdon University College London, UK
Algirdas Lančinskas Vilnius University, Lithuania
Frederic Lardeux LERIA, University of Angers, France
Per Kristian Lehre University of Birmingham, UK
Johannes Lengler ETH Zurich, Switzerland
Ke Li University of Exeter, UK
Arnaud Liefooghe University of Lille, France
Marius Lindauer Leibniz Universität Hannover, Germany
Giosuè Lo Bosco Università di Palermo, Italy
Fernando Lobo University of Algarve, Portugal
Daniele Loiacono Politecnico di Milano, Italy
Nuno Lourenço University of Coimbra, Portugal

Organization xiii

Jose A. Lozano University of the Basque Country, Spain
Rodica Ioana Lung Babeş-Bolyai University, Romania
Chuan Luo Peking University, China
Gabriel Luque Universidad de Málaga, Spain
Evelyne Lutton INRAE, France
Manuel López-Ibáñez The University of Manchester, UK
Penousal Machado University of Coimbra, Portugal
Luigi Malagò Romanian Institute of Science and Technology,

Romania
Katherine Malan University of South Africa, South Africa
Vittorio Maniezzo University Bologna, Italy
Elena Marchiori Radboud University, The Netherlands
Luis Marti Inria, Chile
Asep Maulana Tilburg University, The Netherlands
Giancarlo Mauri University of Milano-Bicocca, Italy
Jacek Mańdziuk Warsaw University of Technology, Poland
James McDermott National University of Ireland, Ireland
Jörn Mehnen University of Strathclyde, UK
Alexander Melkozerov Tomsk State University of Control Systems

and Radioelectronics, Russia
Juan J. Merelo University of Granada, Spain
Marjan Mernik University of Maribor, Slovenia
Silja Meyer-Nieberg Bundeswehr Universität München, Germany
Efrén Mezura-Montes University of Veracruz, Mexico
Krzysztof Michalak Wroclaw University of Economics, Poland
Kaisa Miettinen University of Jyväskylä, Finland
Julian Miller University of York, UK
Edmondo Minisci University of Strathclyde, UK
Gara Miranda University of La Laguna, Spain
Mustafa Misir Istinye University, Turkey
Marco A. Montes De Oca clypd, Inc., USA
Sanaz Mostaghim Otto von Guericke Universität Magdeburg, Germany
Mario Andrès Muñoz

Acosta
The University of Melbourne, Australia

Boris Naujoks TH Köln, Germany
Antonio J. Nebro Universidad de Málaga, Spain
Ferrante Neri University of Nottingham, UK
Aneta Neumann The University of Adelaide, Australia
Frank Neumann The University of Adelaide, Australia
Phan Trung Hai Nguyen University of Birmingham, UK
Miguel Nicolau University College Dublin, Ireland
Ellen Norgård-Hansen NORCE, Norway
Michael O’Neill University College Dublin, Ireland
Gabriela Ochoa University of Stirling, UK
Pietro S. Oliveto The University of Sheffield, UK
Unamay Oreilly MIT, USA

xiv Organization

José Carlos Ortiz-Bayliss Tecnológico de Monterrey, Mexico
Patryk Orzechowski University of Pennsylvania, USA
Ender Ozcan University of Nottingham, UK
Ben Paechter Napier University, UK
Gregor Papa Jožef Stefan Institute, Slovenia
Gisele Pappa UFMG, Brazil
Luis Paquete University of Coimbra, Portugal
Andrew J. Parkes University of Nottingham, UK
Mario Pavone University of Catania, Italy
David Pelta University of Granada, Spain
Leslie Perez-Caceres Pontificia Universidad Católica de Valparaíso, Chile
Stjepan Picek Delft University of Technology, The Netherlands
Martin Pilat Charles University, Czech Republic
Nelishia Pillay University of KwaZulu-Natal, South Africa
Petr Pošík Czech Technical University in Prague, Czech Republic
Raphael Prager Westfälische Wilhelms-Universität Münster, Germany
Mike Preuss Leiden University, The Netherlands
Chao Qian University of Science and Technology of China, China
Alma Rahat Swansea University, UK
Günther Raidl University of Vienna, Austria
William Rand North Carolina State University, USA
Khaled Rasheed University of Georgia, USA
Tapabrata Ray University of New South Wales, Australian Defence

Force Academy, Australia
Frederik Rehbach TH Köln, Germany
Eduardo Rodriguez-Tello CINVESTAV-Tamaulipas, Mexico
Andrea Roli University of Bologna, Italy
Jonathan Rowe University of Birmingham, UK
Günter Rudolph TU Dortmund, Germany
Thomas A. Runkler Siemens Corporate Technology, Germany
Conor Ryan University of Limerick, Ireland
Frédéric Saubion University of Angers, France
Robert Schaefer AGH University of Science and Technology, Poland
Andrea Schaerf University of Udine, Italy
David Schaffer Binghamton University, USA
Manuel Schmitt Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Marc Schoenauer Inria, France
Oliver Schütze CINVESTAV-IPN, Mexico
Michèle Sebag Université Paris-Sud, France
Eduardo Segredo Universidad de La Laguna, Spain
Moritz Seiler Westfälische Wilhelms-Universität Münster, Germany
Bernhard Sendhoff Honda Research Institute Europe GmbH, Germany
Marc Sevaux Université de Bretagne Sud, France
Jonathan Shapiro The University of Manchester, UK
Ofer M. Shir Tel-Hai College, Israel

Organization xv

Shinichi Shirakawa Yokohama National University, Japan
Moshe Sipper Ben-Gurion University of the Negev, Israel
Jim Smith University of the West of England, UK
Christine Solnon CITI Inria and INSA Lyon, France
Patrick Spettel Vorarlberg University of Applied Sciences, Germany
Giovanni Squillero Politecnico di Torino, Italy
Sebastian Urban Stich École Polytechnique Fédérale de Lausanne,

Switzerland
Catalin Stoean University of Craiova, Romania
Jörg Stork TH Köln, Germany
Thomas Stützle Université Libre de Bruxelles, Belgium
Mihai Suciu Babeş-Bolyai University, Romania
Dirk Sudholt The University of Sheffield, UK
Andrew Sutton University of Minnesota, USA
Jerry Swan University of York, UK
Ricardo H. C. Takahashi Universidade Federal de Minas Gerais, Brazil
Daniel Tauritz Auburn University, USA
Olivier Teytaud Inria, France
Dirk Thierens Utrecht University, The Netherlands
Sarah Thomson University of Stirling, UK
Kevin Tierney Universität Bielefeld, Germany
Renato Tinós University of São Paulo, Brazil
Julian Togelius New York University, USA
Marco Tomassini University of Lausanne, Switzerland
Alberto Tonda INRA, France
Cheikh Touré Inria, France
Heike Trautmann Westfälische Wilhelms-Universität Münster, Germany
Leonardo Trujillo Instituto Tecnológico de Tijuana, Mexico
Tea Tušar Jožef Stefan Institute, Slovenia
Ryan J. Urbanowicz University of Pennsylvania, USA
Koen van der Blom Leiden University, The Netherlands
Bas van Stein Leiden University, The Netherlands
Leonardo Vanneschi Universida de NOVA de Lisboa, Portugal
Sébastien Verel Université du Littoral Côte d’Opale, France
Diederick Vermetten Leiden University, The Netherlands
Marco Virgolin Centrum Wiskunde & Informatica, The Netherlands
Vanessa Volz modl.ai, Denmark
Markus Wagner The University of Adelaide, Australia
Stefan Wagner University of Applied Sciences Upper Austria, Austria
David Walker University of Plymouth, UK
Hao Wang Sorbonne Université, France
Hui Wang Leiden University, The Netherlands
Yali Wang Leiden University, The Netherlands
Elizabeth Wanner CEFET, Brazil
Thomas Weise University of Science and Technology of China, China
Dennis Wilson ISAE-Supaero, France

xvi Organization

Carsten Witt Technical University of Denmark, Denmark
Man Leung Wong Lingnan University, China
John Woodward Queen Mary University of London, UK
Ning Xiong Mälardalen University, Sweden
Bing Xue Victoria University of Wellington, New Zealand
Kaifeng Yang University of Applied Sciences Upper Austria, Austria
Shengxiang Yang De Montfort University, UK
Furong Ye Leiden University, The Netherlands
Martin Zaefferer TH Köln, Germany
Ales Zamuda University of Maribor, Slovenia
Christine Zarges Aberystwyth University, UK
Mengjie Zhang Victoria University of Wellington, New Zealand

Organization xvii

Contents – Part II

Genetic Programming

Generation of New Scalarizing Functions Using Genetic Programming 3
Amín V. Bernabé Rodríguez and Carlos A. Coello Coello

The Usability Argument for Refinement Typed Genetic Programming 18
Alcides Fonseca, Paulo Santos, and Sara Silva

Program Synthesis in a Continuous Space Using Grammars
and Variational Autoencoders . 33

David Lynch, James McDermott, and Michael O’Neill

Cooperative Co-Evolutionary Genetic Programming
for High Dimensional Problems . 48

Lino Rodriguez-Coayahuitl, Alicia Morales-Reyes, Hugo Jair Escalante,
and Carlos A. Coello Coello

Image Feature Learning with Genetic Programming. 63
Stefano Ruberto, Valerio Terragni, and Jason H. Moore

Learning a Formula of Interpretability to Learn Interpretable Formulas 79
Marco Virgolin, Andrea De Lorenzo, Eric Medvet,
and Francesca Randone

Landscape Analysis

On Stochastic Fitness Landscapes: Local Optimality and Fitness Landscape
Analysis for Stochastic Search Operators . 97

Brahim Aboutaib, Sébastien Verel, Cyril Fonlupt, Bilel Derbel,
Arnaud Liefooghe, and Belaïd Ahiod

Fitness Landscape Analysis of Dimensionally-Aware Genetic Programming
Featuring Feynman Equations . 111

Marko Durasevic, Domagoj Jakobovic,
Marcella Scoczynski Ribeiro Martins, Stjepan Picek,
and Markus Wagner

Global Landscape Structure and the Random MAX-SAT Phase Transition . . . 125
Gabriela Ochoa, Francisco Chicano, and Marco Tomassini

Exploratory Landscape Analysis is Strongly Sensitive
to the Sampling Strategy . 139

Quentin Renau, Carola Doerr, Johann Dreo, and Benjamin Doerr

One PLOT to Show Them All: Visualization of Efficient Sets
in Multi-objective Landscapes. 154

Lennart Schäpermeier, Christian Grimme, and Pascal Kerschke

Multi-objective Optimization

On Sharing Information Between Sub-populations in MOEA/S 171
Lucas de Almeida Ribeiro, Michael Emmerich,
Anderson da Silva Soares, and Telma Woerle de Lima

Multi-objective Optimization by Uncrowded Hypervolume
Gradient Ascent . 186

Timo M. Deist, Stefanus C. Maree, Tanja Alderliesten,
and Peter A. N. Bosman

An Ensemble Indicator-Based Density Estimator for Evolutionary
Multi-objective Optimization . 201

Jesús Guillermo Falcón-Cardona, Arnaud Liefooghe,
and Carlos A. Coello Coello

Ensuring Smoothly Navigable Approximation Sets by Bézier Curve
Parameterizations in Evolutionary Bi-objective Optimization. 215

Stefanus C. Maree, Tanja Alderliesten, and Peter A. N. Bosman

Many-Objective Test Database Generation for SQL. 229
Zhilei Ren, Shaozheng Dong, Xiaochen Li, Zongzheng Chi, and He Jiang

A New Paradigm in Interactive Evolutionary Multiobjective Optimization . . . 243
Bhupinder Singh Saini, Jussi Hakanen, and Kaisa Miettinen

Hypervolume Optimal l-Distributions on Line-Based Pareto Fronts
in Three Dimensions . 257

Ke Shang, Hisao Ishibuchi, Weiyu Chen, and Lukáš Adam

Adaptive Operator Selection Based on Dynamic Thompson Sampling
for MOEA/D . 271

Lei Sun and Ke Li

A Study of Swarm Topologies and Their Influence on the Performance
of Multi-Objective Particle Swarm Optimizers . 285

Diana Cristina Valencia-Rodríguez and Carlos A. Coello Coello

xx Contents – Part II

Visualising Evolution History in Multi- and Many-objective Optimisation . . . 299
Mathew J. Walter, David J. Walker, and Matthew J. Craven

Improving Many-Objective Evolutionary Algorithms
by Means of Edge-Rotated Cones . 313

Yali Wang, André Deutz, Thomas Bäck, and Michael Emmerich

Real-World Applications

Human-Like Summaries from Heterogeneous and Time-Windowed
Software Development Artefacts . 329

Mahfouth Alghamdi, Christoph Treude, and Markus Wagner

A Search for Additional Structure: The Case of Cryptographic S-boxes 343
Claude Carlet, Marko Djurasevic, Domagoj Jakobovic,
and Stjepan Picek

Evolutionary Multi-objective Design of SARS-CoV-2 Protease Inhibitor
Candidates . 357

Tim Cofala, Lars Elend, Philip Mirbach, Jonas Prellberg,
Thomas Teusch, and Oliver Kramer

Generic Relative Relations in Hierarchical Gene Expression Data
Classification . 372

Marcin Czajkowski, Krzysztof Jurczuk, and Marek Kretowski

A Variable Neighborhood Search for the Job Sequencing with One
Common and Multiple Secondary Resources Problem 385

Thomas Kaufmann, Matthias Horn, and Günther R. Raidl

Evolutionary Graph-Based V+E Optimization for Protection
Against Epidemics . 399

Krzysztof Michalak

Human-Derived Heuristic Enhancement of an Evolutionary Algorithm
for the 2D Bin-Packing Problem . 413

Nicholas Ross, Ed Keedwell, and Dragan Savic

Towards Novel Meta-heuristic Algorithms for Dynamic Capacitated Arc
Routing Problems . 428

Hao Tong, Leandro L. Minku, Stefan Menzel, Bernhard Sendhoff,
and Xin Yao

Robust Evolutionary Bi-objective Optimization for Prostate Cancer
Treatment with High-Dose-Rate Brachytherapy. 441

Marjolein C. van der Meer, Arjan Bel, Yury Niatsetski,
Tanja Alderliesten, Bradley R. Pieters, and Peter A. N. Bosman

Contents – Part II xxi

A Hybrid Evolutionary Algorithm for Reliable Facility Location Problem . . . 454
Han Zhang, Jialin Liu, and Xin Yao

Reinforcement Learning

Optimality-Based Analysis of XCSF Compaction in Discrete
Reinforcement Learning . 471

Jordan T. Bishop and Marcus Gallagher

Hybridizing the 1/5-th Success Rule with Q-Learning for Controlling
the Mutation Rate of an Evolutionary Algorithm. 485

Arina Buzdalova, Carola Doerr, and Anna Rodionova

Fitness Landscape Features and Reward Shaping in Reinforcement
Learning Policy Spaces . 500

Nathaniel du Preez-Wilkinson and Marcus Gallagher

ClipUp: A Simple and Powerful Optimizer for Distribution-Based Policy
Evolution . 515

Nihat Engin Toklu, Paweł Liskowski, and Rupesh Kumar Srivastava

Warm-Start AlphaZero Self-play Search Enhancements 528
Hui Wang, Mike Preuss, and Aske Plaat

Theoretical Aspects of Nature-Inspired Optimization

Runtime Analysis of a Heavy-Tailed ð1þ ðk; kÞÞ Genetic Algorithm
on Jump Functions . 545

Denis Antipov and Benjamin Doerr

First Steps Towards a Runtime Analysis When Starting
with a Good Solution . 560

Denis Antipov, Maxim Buzdalov, and Benjamin Doerr

Optimal Mutation Rates for the ð1þ kÞ EA on OneMax 574
Maxim Buzdalov and Carola Doerr

Maximizing Submodular or Monotone Functions Under Partition Matroid
Constraints by Multi-objective Evolutionary Algorithms. 588

Anh Viet Do and Frank Neumann

Lower Bounds for Non-elitist Evolutionary Algorithms
via Negative Multiplicative Drift . 604

Benjamin Doerr

xxii Contents – Part II

Exponential Upper Bounds for the Runtime of Randomized
Search Heuristics . 619

Benjamin Doerr

Analysis on the Efficiency of Multifactorial Evolutionary Algorithms 634
Zhengxin Huang, Zefeng Chen, and Yuren Zhou

Improved Fixed-Budget Results via Drift Analysis 648
Timo Kötzing and Carsten Witt

On Averaging the Best Samples in Evolutionary Computation 661
Laurent Meunier, Yann Chevaleyre, Jeremy Rapin, Clément W. Royer,
and Olivier Teytaud

Filter Sort Is XðN3Þ in the Worst Case . 675
Sumit Mishra and Maxim Buzdalov

Approximation Speed-Up by Quadratization on LeadingOnes 686
Andrew M. Sutton and Darrell Whitley

Benchmarking a ðlþ kÞ Genetic Algorithm with Configurable Crossover
Probability . 699

Furong Ye, Hao Wang, Carola Doerr, and Thomas Bäck

Author Index . 715

Contents – Part II xxiii

Contents – Part I

Automated Algorithm Selection and Configuration

Evolving Deep Forest with Automatic Feature Extraction for Image
Classification Using Genetic Programming . 3

Ying Bi, Bing Xue, and Mengjie Zhang

Fast Perturbative Algorithm Configurators . 19
George T. Hall, Pietro S. Oliveto, and Dirk Sudholt

Dominance, Indicator and Decomposition Based Search for Multi-objective
QAP: Landscape Analysis and Automated Algorithm Selection. 33

Arnaud Liefooghe, Sébastien Verel, Bilel Derbel, Hernan Aguirre,
and Kiyoshi Tanaka

Deep Learning as a Competitive Feature-Free Approach for Automated
Algorithm Selection on the Traveling Salesperson Problem 48

Moritz Seiler, Janina Pohl, Jakob Bossek, Pascal Kerschke,
and Heike Trautmann

Automatic Configuration of a Multi-objective Local Search for Imbalanced
Classification . 65

Sara Tari, Holger Hoos, Julie Jacques, Marie-Eléonore Kessaci,
and Laetitia Jourdan

Bayesian- and Surrogate-Assisted Optimization

Multi-fidelity Optimization Approach Under Prior and Posterior Constraints
and Its Application to Compliance Minimization . 81

Youhei Akimoto, Naoki Sakamoto, and Makoto Ohtani

Model-Based Algorithm Configuration with Default-Guided
Probabilistic Sampling . 95

Marie Anastacio and Holger Hoos

Evolving Sampling Strategies for One-Shot Optimization Tasks 111
Jakob Bossek, Carola Doerr, Pascal Kerschke, Aneta Neumann,
and Frank Neumann

A Surrogate-Assisted Evolutionary Algorithm with Random Feature
Selection for Large-Scale Expensive Problems . 125

Guoxia Fu, Chaoli Sun, Ying Tan, Guochen Zhang, and Yaochu Jin

Designing Air Flow with Surrogate-Assisted Phenotypic Niching 140
Alexander Hagg, Dominik Wilde, Alexander Asteroth, and Thomas Bäck

Variance Reduction for Better Sampling in Continuous Domains 154
Laurent Meunier, Carola Doerr, Jeremy Rapin, and Olivier Teytaud

High Dimensional Bayesian Optimization Assisted by Principal Component
Analysis. 169

Elena Raponi, Hao Wang, Mariusz Bujny, Simonetta Boria,
and Carola Doerr

Simple Surrogate Model Assisted Optimization with Covariance
Matrix Adaptation . 184

Lauchlan Toal and Dirk V. Arnold

Benchmarking and Performance Measures

Proposal of a Realistic Many-Objective Test Suite. 201
Weiyu Chen, Hisao Ishibuchi, and Ke Shang

Approximate Hypervolume Calculation with Guaranteed or Confidence
Bounds . 215

A. Jaszkiewicz, R. Susmaga, and P. Zielniewicz

Can Compact Optimisation Algorithms Be Structurally Biased? 229
Anna V. Kononova, Fabio Caraffini, Hao Wang, and Thomas Bäck

Parallelized Bayesian Optimization for Expensive Robot
Controller Evolution . 243

Margarita Rebolledo, Frederik Rehbach, A. E. Eiben,
and Thomas Bartz-Beielstein

Revisiting Population Models in Differential Evolution on a Limited
Budget of Evaluations . 257

Ryoji Tanabe

Continuous Optimization Benchmarks by Simulation 273
Martin Zaefferer and Frederik Rehbach

Comparative Run-Time Performance of Evolutionary Algorithms
on Multi-objective Interpolated Continuous Optimisation Problems 287

Alexandru-Ciprian Zăvoianu, Benjamin Lacroix, and John McCall

xxvi Contents – Part I

Combinatorial Optimization

On the Design of a Partition Crossover for the Quadratic Assignment
Problem . 303

Omar Abdelkafi, Bilel Derbel, Arnaud Liefooghe, and Darrell Whitley

A Permutational Boltzmann Machine with Parallel Tempering for Solving
Combinatorial Optimization Problems . 317

Mohammad Bagherbeik, Parastoo Ashtari, Seyed Farzad Mousavi,
Kouichi Kanda, Hirotaka Tamura, and Ali Sheikholeslami

Solution Repair by Inequality Network Propagation in LocalSolver 332
Léa Blaise, Christian Artigues, and Thierry Benoist

Optimising Tours for the Weighted Traveling Salesperson Problem
and the Traveling Thief Problem: A Structural Comparison of Solutions 346

Jakob Bossek, Aneta Neumann, and Frank Neumann

Decentralized Combinatorial Optimization . 360
Lee A. Christie

PbO-CCSAT: Boosting Local Search for Satisfiability Using Programming
by Optimisation . 373

Chuan Luo, Holger Hoos, and Shaowei Cai

Evaluation of a Permutation-Based Evolutionary Framework
for Lyndon Factorizations . 390

Lily Major, Amanda Clare, Jacqueline W. Daykin, Benjamin Mora,
Leonel Jose Peña Gamboa, and Christine Zarges

Optimising Monotone Chance-Constrained Submodular Functions Using
Evolutionary Multi-objective Algorithms . 404

Aneta Neumann and Frank Neumann

Parameter-Less Population Pyramid for Permutation-Based Problems. 418
Szymon Wozniak, Michal W. Przewozniczek, and Marcin M. Komarnicki

Connection Between Nature-Inspired Optimization
and Artificial Intelligence

Biologically Plausible Learning of Text Representation with Spiking
Neural Networks . 433

Marcin Białas, Marcin Michał Mirończuk, and Jacek Mańdziuk

Multi-Objective Counterfactual Explanations . 448
Susanne Dandl, Christoph Molnar, Martin Binder, and Bernd Bischl

Contents – Part I xxvii

Multi-objective Magnitude-Based Pruning for Latency-Aware Deep Neural
Network Compression . 470

Wenjing Hong, Peng Yang, Yiwen Wang, and Ke Tang

Network Representation Learning Based on Topological Structure
and Vertex Attributes. 484

Shengxiang Hu, Bofeng Zhang, Ying Lv, Furong Chang,
and Zhuocheng Zhou

A Committee of Convolutional Neural Networks for Image Classification
in the Concurrent Presence of Feature and Label Noise 498

Stanisław Kaźmierczak and Jacek Mańdziuk

Improving Imbalanced Classification by Anomaly Detection. 512
Jiawen Kong, Wojtek Kowalczyk, Stefan Menzel, and Thomas Bäck

BACS: A Thorough Study of Using Behavioral Sequences in ACS2 524
Romain Orhand, Anne Jeannin-Girardon, Pierre Parrend,
and Pierre Collet

Nash Equilibrium as a Solution in Supervised Classification. 539
Mihai-Alexandru Suciu and Rodica Ioana Lung

Analyzing the Components of Distributed Coevolutionary GAN Training. . . . 552
Jamal Toutouh, Erik Hemberg, and Una-May O’Reilly

Canonical Correlation Discriminative Learning for Domain Adaptation 567
Wenjing Wang, Yuwu Lu, and Zhihui Lai

Genetic and Evolutionary Algorithms

Improving Sampling in Evolution Strategies Through Mixture-Based
Distributions Built from Past Problem Instances . 583

Stephen Friess, Peter Tiňo, Stefan Menzel, Bernhard Sendhoff,
and Xin Yao

The Hessian Estimation Evolution Strategy . 597
Tobias Glasmachers and Oswin Krause

Large Population Sizes and Crossover Help in Dynamic Environments 610
Johannes Lengler and Jonas Meier

Neuromemetic Evolutionary Optimization . 623
Paweł Liskowski, Krzysztof Krawiec, and Nihat Engin Toklu

Evolved Gossip Contracts - A Framework for Designing
Multi-agent Systems . 637

Nicola Mc Donnell, Enda Howley, and Jim Duggan

xxviii Contents – Part I

A SHADE-Based Algorithm for Large Scale Global Optimization. 650
Oscar Pacheco-Del-Moral and Carlos A. Coello Coello

Evolutionary Algorithms with Self-adjusting Asymmetric Mutation 664
Amirhossein Rajabi and Carsten Witt

Behavior Optimization in Large Distributed Systems Modeled
by Cellular Automata . 678

Franciszek Seredyński and Jakub Gąsior

Learning Step-Size Adaptation in CMA-ES . 691
Gresa Shala, André Biedenkapp, Noor Awad, Steven Adriaensen,
Marius Lindauer, and Frank Hutter

Sparse Inverse Covariance Learning for CMA-ES with Graphical Lasso 707
Konstantinos Varelas, Anne Auger, and Nikolaus Hansen

Adaptive Stochastic Natural Gradient Method for Optimizing Functions
with Low Effective Dimensionality . 719

Teppei Yamaguchi, Kento Uchida, and Shinichi Shirakawa

Author Index . 733

Contents – Part I xxix

Genetic Programming

Generation of New Scalarizing Functions
Using Genetic Programming

Amı́n V. Bernabé Rodŕıguez(B) and Carlos A. Coello Coello

CINVESTAV-IPN (Evolutionary Computation Group),
Av. IPN 2508, 07360 Mexico City, San Pedro Zacatenco, Mexico

abernabe@computacion.cs.cinvestav.mx, ccoello@cs.cinvestav.mx

Abstract. In recent years, there has been a growing interest in multi-
objective evolutionary algorithms (MOEAs) with a selection mechanism
different from Pareto dominance. This interest has been mainly moti-
vated by the poor performance of Pareto-based selection mechanisms
when dealing with problems having more than three objectives (the so-
called many-objective optimization problems). Two viable alternatives
for solving many-objective optimization problems are decomposition-
based and indicator-based MOEAs. However, it is well-known that the
performance of decomposition-based MOEAs (and also of indicator-
based MOEAs designed around R2) heavily relies on the scalarizing
function adopted. In this paper, we propose an approach for generating
novel scalarizing functions using genetic programming. Using our pro-
posed approach, we were able to generate two new scalarizing functions
(called AGSF1 and AGSF2), which were validated using an indicator-
based MOEA designed around R2 (MOMBI-II). This validation was con-
ducted using a set of standard test problems and two performance indi-
cators (hypervolume and s-energy). Our results indicate that AGSF1
has a similar performance to that obtained when using the well-known
Achievement Scalarizing Function (ASF). However, AGSF2 provided a
better performance than ASF in most of the test problems adopted.
Nevertheless, our most remarkable finding is that genetic programming
can indeed generate novel (and possible more competitive) scalarizing
functions.

Keywords: Multi-objective optimization · Genetic programming ·
Scalarizing functions

1 Introduction

A great variety of real-world problems require the simultaneous optimization
of two or more (often conflicting) objective functions. These are known as

The first author acknowledges support from CONACyT and CINVESTAV-IPN to pur-
sue graduate studies in Computer Science. The second author gratefully acknowledges
support from CONACyT grant no. 2016-01-1920 (Investigación en Fronteras de la
Ciencia 2016) and from a SEP-Cinvestav grant (application no. 4).

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 3–17, 2020.
https://doi.org/10.1007/978-3-030-58115-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_1&domain=pdf
http://orcid.org/0000-0002-8435-680X
https://doi.org/10.1007/978-3-030-58115-2_1

4 A. V. Bernabé Rodŕıguez and C. A. Coello Coello

Multi-objective Optimization Problems (MOPs) and are mathematically defined
as follows:

min
x∈Ω

F (x) = (f1(x), f2(x), . . . , fm(x))T (1)

where x ∈ IRn is the vector of decision variables, Ω ⊂ IRn is the decision variable
space and F (x) is the vector of m objective functions, with m ≥ 2.

When solving an MOP, the goal is to find the set of points that yield the
best possible trade-offs among the objective functions. These points are known
as Pareto optimal solutions, and they form the Pareto Optimal Set (P∗) of the
problem. Its image in objective space is known as the Pareto Optimal Front
(PF∗).

The use of evolutionary algorithms for solving MOPs (the so-called Multi-
Objective Evolutionary Algorithms, or MOEAs) has become increasingly popu-
lar in recent years. MOEAs are population-based methods that allow obtaining
a set of different Pareto optimal solutions in a single run, in contrast with tradi-
tional mathematical programming techniques, which normally generate a single
element of the Pareto optimal set per run [3].

Many MOEAs have been proposed in the literature, but they can be broadly
classified into 3 categories: (1) Pareto-based, (2) indicator-based and (3) de-
composition-based MOEAs [13]. The work reported in this paper is particularly
relevant for decomposition-based MOEAs, but it is also applicable for some
indicator-based MOEAs that rely on scalarizing functions (e.g., those based on
the R2 indicator). Decomposition-based MOEAs decompose an MOP into sev-
eral single-objective optimization problems, which are simultaneously solved [14].
In order to perform this decomposition, a scalarizing function is adopted. A
scalarizing function (also known as utility function or aggregation function),
transforms the original MOP into a single-objective problem using a predefined
target direction or weights vector. There is empirical evidence that indicates that
the performance of MOEAs that rely on scalarizing functions strongly depends
on the particular scalarizing function adopted [12]. Consequently, it is relevant
to find new scalarizing functions which should have a comparable performance
or even better (at least in certain types of MOPs) than the scalarizing functions
that are currently being used.

This paper proposes a strategy to evolve scalarizing functions combining two
heuristics: genetic programming (GP) to create new functions and an MOEA to
evaluate their corresponding fitness. Using the proposed approach, we were able
to generate two new scalarizing functions and we compared their performance
with respect to that obtained using the well-known Achievement Scalarizing
Function (ASF). As will be seen later in this paper, our experimental results
show that the scalarizing functions generated by our proposed approach have a
similar performance, and that one of them outperforms ASF in more than half
of the test problems adopted.

The remainder of this paper is organized as follows. Section 2 describes our
approach for generating new scalarizing functions using genetic programming.
Section 3 presents the experimental results obtained when assessing performance

Generation of New Scalarizing Functions Using GP 5

of an MOEA using the new scalarizing functions generated by our proposed
approach. Section 4 provides our conclusions and some potential paths for future
work.

2 Our Proposed Approach

Genetic programming (GP) is a well-established evolutionary algorithm pro-
posed by Koza [10], in which individuals encode computer programs [1].
Although trees are the most traditional data structure adopted by GP, over
the years a variety of other data structures have been adopted as well (e.g.,
arrays, lists and graphs).

Algorithm 1: Main procedure of our proposed approach
Input : MOP, tmax;
Output: Final population P ;

1 t ← 1;
2 Randomly initialize the population P = {x1,x2, . . . ,xn};
3 foreach xi ∈ P do
4 sfi ←decode genotype from xi;
5 xi.fitness ← MOEAFitness(MOP,sfi);

6 end
7 while the stopping criterion is not met do
8 P ′ ← select and recombine parents from P ;
9 foreach xi ∈ P ′ do

10 sfi ←decode genotype from xi;
11 xi.fitness ← MOEAFitness(MOP, sfi);

12 end
13 P ← P ′;
14 t ← t + 1;

15 end
16 return P ;

Epigenetic Linear Genetic Programming (ELGP)1 is an implementation of
GP coupled with a local search mechanism that was proposed in [11]. ELGP was
originally used for the solution of symbolic regression problems. Individuals in
ELGP are stored using a linear representation, which is decoded using stacks.
Programs coded in the population are essentially mathematical functions, and
the user can specify their number of variables (known as terminals set), as well
as the operators used to manipulate them (known as the functions set). This is
the GP implementation that we adopted to automatically generate scalarizing
functions. However, we evidently had to modify the fitness function originally
provided in ELGP, since it was designed to perform symbolic regression.

1 Source code for ELGP is available at: https://github.com/lacava/ellen.

https://github.com/lacava/ellen

6 A. V. Bernabé Rodŕıguez and C. A. Coello Coello

Algorithm 1 shows the main procedure of our proposal, which follows the
essential steps of a generic GP algorithm. After the population of n individuals
has been initialized (lines 1-2), the genotype of each individual xi is decoded to
obtain a scalarizing function sfi, which is in turn used to calculate the fitness of
xi (lines 3-6). Then, the main loop is executed until one of the following stopping
criteria is met: either the best fitness found in P is under some threshold or the
maximum number of generations tmax has been reached. The steps in this loop
include the generation of a new population P ′ using recombination and mutation
(line 8), the evaluation of the new individuals (lines 9-12), as well as updating
the population P (line 13). Finally, the last population is returned as the output
of the algorithm.

The major modification made to ELGP was the way of evaluating the fitness
of the individuals. In order to measure the quality of the new scalarizing functions
generated by our GP-based approach, we use them to solve an MOP adopting an
MOEA and then we employ the hypervolume indicator [15] to assess the quality
of the PF s obtained. For this sake, we used the Many-Objective Metaheuristic
Based on the R2 Indicator-II (MOMBI-II)2, which is a metaheuristic that was
originally proposed in [7]. MOMBI-II was developed to solve many-objective
problems using scalarizing functions and it was able to outperform state-of-the-
art MOEAs such as NSGA-III and MOEA/D in both real-world problems and
benchmark problems [6]. This is, indeed, the reason why we selected MOMBI-II
as our baseline algorithm to validate the new scalarizing functions generated by
our proposed approach.

By default, MOMBI-II uses the Achievement Scalarizing Function (ASF)
which is defined as follows:

ASF (f ′,w) := max
i

(
f ′

i

wi

)
(2)

where f ′ := F (x) − z is the image of x in objective space modified by some
given reference point z ∈ IRm and w ∈ IRm is a weights vector.

Our modified version of the fitness evaluation is outlined in Algorithm 2.
The main loop calls MOMBI-II to solve the MOP given using the scalarizing
function sf to be evaluated (line 3). Then, the hypervolume of the PF obtained
is computed and stored (lines 4-5). This is repeated n times, in order to obtain
an average value of the hypervolumes generated using sf . Finally, fitness is
computed as HVmax minus the average hypervolume (lines 7-8). This adjustment
using HVmax is needed since ELGP minimizes fitness, while we aim to maximize
hypervolume values.

MOMBI-II uses the R2 indicator to guide its search process, which is a weakly
Pareto-compliant indicator with a low computational cost [2]. However, in spite
of this, our strategy is indeed very time-consuming since we use the hypervolume
to guide the search process of our approach. In order to improve this, we adopted

2 The source code of MOMBI-II is available at:
https://www.cs.cinvestav.mx/∼EVOCINV/software/MOMBI-II/MOMBI-II.html.

https://www.cs.cinvestav.mx/~{}EVOCINV/software/MOMBI-II/MOMBI-II.html

Generation of New Scalarizing Functions Using GP 7

Algorithm 2: Procedure MOEAFitness
Input : MOP, sf ;
Output: fitness;

1 fitness ← 0;
2 for i ∈ {1, 2, . . . , n} do
3 PFi ←MOMBI2(MOP, sf);
4 HV ← compute hypervolume value of PFi;
5 fitness ← fitness + HV ;

6 end
7 fitness ← HVmax − fitness/n;
8 return fitness;

the approach reported in [6] to compute the hypervolume, which is one of the
most computationally efficient algorithms currently available.

It is also worth emphasizing that we aim to generate scalarizing functions that
can be as general as possible, in the sense of being able to attain a reasonably
good performance over a wide range of test problems, rather than generating
highly specialized scalarizing functions that can provide an outstanding perfor-
mance in a single test problem. Thus, we argue that the high computational cost
of our proposed approach is, consequently, justified.

Both ELGP and MOMBI-II require several parameters to be executed. How-
ever, for the sake of simplicity, we don’t include them in the pseudocodes of
the algorithms here presented. Nonetheless, the final implementation3 of our
proposed strategy includes all of the configuration files we used.

Using our proposed strategy we were able to perform multiple experiments. In
this paper we present the results obtained in one of them. We used a population
size of 30 individuals and a maximum number of generations of 50. Functions
were initialized completely at random, considering two decision variables (f ′

and w) and basic arithmetic operators (addition, subtraction, multiplication,
and division). In the MOEAFitness procedure, we incorporated DTLZ4 with two
objectives as the MOP to be solved. MOMBI-II was set to use a population size
of 100 with a maximum number of objective function evaluations of 15,000. The
reference point used to calculate hypervolume values was (1, 1). Consequently,
HVmax was set to 1. The running time, using the setup previously described,
was nearly one week, using a personal computer with an Intel Core i5-5200U
processor and 8 GB of RAM.

At the end of the execution, the algorithm reports the last population as
well as each individual’s fitness (shown in Table 1). At this point, we performed
a second phase of the experiment, where we hand-picked the most promising
scalarizing functions obtained to analyze their performance. To do so, we used
each of the final 30 functions to solve 7 test problems (DTLZ1 through DTLZ7)
with 2 and 3 objectives. Also, we raised the limit of objective function evaluations

3 The source code of our approach is available at:
http://www.computacion.cs.cinvestav.mx/∼abernabe/scalarizing functions.

http://www.computacion.cs.cinvestav.mx/~{}abernabe/scalarizing_functions

8 A. V. Bernabé Rodŕıguez and C. A. Coello Coello

Table 1. Scalarizing functions stored in last population.

Individual Decodified scalarizing function Fitness

1 sf1(f
′,w) := maxi (((f ′

i − (wi − (f ′
i − wi))) + (((f ′

i ∗ wi) + f ′
i)/wi)) + f ′

i) 0.789438

2 sf2(f
′,w) := maxi (((((f ′

i/f
′
i) ∗ (((f ′

i + f ′
i)/wi) − f ′

i)) ∗ f ′
i) − wi) + f ′

i) 0.78944

3 sf3(f
′,w) := maxi (((((f ′

i/f
′
i) ∗ (((f ′

i + f ′
i)/wi) − f ′

i)) ∗ f ′
i) − wi) + f ′

i) 0.78944

4 sf4(f
′,w) := maxi (((((f ′

i/f
′
i) ∗ (((f ′

i + f ′
i)/wi) − f ′

i)) ∗ f ′
i) − wi) + f ′

i) 0.78944

5 sf5(f
′,w) := maxi ((((f ′

i ∗ f ′
i) − wi) + f ′

i) + (((wi − wi) + f ′
i)/wi)) 0.789522

6 sf6(f
′,w) := maxi ((((f ′

i ∗ ((f ′
i/f

′
i)/wi)) ∗ wi)/wi) + wi) 0.78953

7 sf7(f
′,w) := maxi (f ′

i + ((f ′
i + (wi ∗ (((f ′

i + f ′
i) − wi) − f ′

i))) + (f ′
i/wi))) 0.789554

8 sf8(f
′,w) := maxi ((((f ′

i/wi) + wi + f ′
i + 3)) + (f ′

i/(2wi))) 0.789556

9 sf9(f
′,w) := maxi ((f ′

i − (wi − (f ′
i − wi))) + (((f ′

i ∗ wi) + f ′
i)/wi)) 0.789559

10 sf10(f
′,w) := maxi (f ′

i ∗ (((((wi/(2/f
′
i)) ∗ f ′

i) + wi) − wi)/f
′
i)) 0.789568

11 sf11(f
′,w) := maxi ((((2f ′

i)/wi) ∗ f ′
i) + (((wi ∗ f ′

i) − (f ′
i + wi)) + f ′

i))) 0.789568

12 sf12(f
′,w) := maxi ((((wi + f ′

i)/f
′
i) ∗ f ′

i)/(2wi)) 0.789577

13 sf13(f
′,w) := maxi (f ′

i/((f
′
i − (3wi ∗ 2f ′

i + f ′
i))/(f

′
i + (wi ∗ f ′

i) − wi))) 0.789596

14 sf14(f
′,w) := maxi (((f ′

i ∗ f ′
i) + (f ′

i − wi))/(f
′
i + (wi/(wi + (f ′

i/f
′
i))))) 0.789617

15 sf15(f
′,w) := maxi (((f ′

i ∗ f ′
i) + (f ′

i − wi))/(f
′
i + (wi/(wi + (f ′

i/f
′
i))))) 0.789617

16 sf16(f
′,w) := maxi ((((f ′

i ∗ wi) ∗ f ′
i) − wi) + wi) 0.789637

17 sf17(f
′,w) := maxi ((((f ′

i ∗ (−wi)) ∗ f ′
i) − wi) + wi) 0.789647

18 sf18(f
′,w) := maxi (((((wi − f ′

i) − f ′
i) + f ′

i) − (f ′
i ∗ wi))/((wi ∗ wi) + f ′

i)) 0.789789

19 sf19(f
′,w) := maxi (((f ′

i ∗ f ′
i) + wi) + ((f ′

i − (f ′
i − wi))/wi)) 0.789846

20 sf20(f
′,w) := maxi ((f ′

i/(((wi + wi) − f ′
i) + (f ′

i ∗ ((f ′
i − f ′

i) + f ′
i)))) ∗ f ′

i) 0.790033

21 sf21(f
′,w) := maxi ((wi − (f ′

i/wi)) − f ′
i) 0.790152

22 sf22(f
′,w) := maxi ((f ′

i/wi) − ((((f ′
i ∗ (−wi)) ∗ f ′

i) − wi) ∗ (wi/f
′
i))) 0.790771

23 sf23(f
′,w) := maxi (wi + (f ′

i/(((wi ∗ wi) ∗ f ′
i) − wi))) 0.792996

24 sf24(f
′,w) := maxi ((f ′

i/f
′
i) − (((f ′

i ∗ ((f ′
i − f ′

i) − wi)) ∗ f ′
i) − wi)) 0.796269

25 sf25(f
′,w) := maxi ((f ′

i/(wi + wi)) + f ′
i) 0.797929

26 sf26(f
′,w) := maxi (f ′

i + (f ′
i/(wi + wi))) 0.797929

27 sf27(f
′,w) := maxi ((f ′

i/wi) + f ′
i) 0.797983

28 sf28(f
′,w) := maxi ((f ′

i/(f
′
i + (wi − f ′

i))) ∗ f ′
i) 0.798007

29 sf29(f
′,w) := maxi (((((f ′

i + wi) + f ′
i) + f ′

i) ∗ f ′
i)/(wi ∗ f ′

i)) 0.798761

30 sf30(f
′,w) := maxi (((f ′

i ∗ ((f ′
i − f ′

i) − wi)) ∗ f ′
i) − wi) 0.804673

up to 100,000. Then, we used the average hypervolume values obtained by each
function in these problems. The main motivation behind this was to identify the
best functions in terms of their generalization capabilities. Since DTLZ4 was
the MOP used in the search process, all of the new scalarizing functions found
are able to solve it relatively well, which can be seen from how similar their
fitness values are. However, we are interested in finding functions that are able
to solve a variety of MOPs, and not just one. Therefore, using this preliminary
validation, we were able to identify solutions coded in individuals 8 and 21 as
the most promising functions. We denoted these two newly found functions as
Artificially Generated Scalarizing Functions (called AGSF1 and AGSF2). They
are defined as:

AGSF1(f ′,w) := max
i

(
|f ′

i + wi +
f ′

i

wi
+

f ′
i

2wi
+ 3|

)
(3)

AGSF2(f ′,w) := max
i

(
|wi − f ′

i

wi
− f ′

i |
)

(4)

Generation of New Scalarizing Functions Using GP 9

3 Experimental Results

To evaluate the performance of AGSF1 and AGSF2, we used a total of 23 test
problems, including the Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite [4], the
Walking-Fish-Group (WFG) test suite [8], and the IDTLZ [9] test suite. The
latter consists of a modification of the DTLZ test problems in which the Pareto
Fronts are inverted in objective space.

In order to assess the scalability of the two generated scalarizing functions,
each of the aforementioned problems was solved with 2, 3, 4, 5, 6 and 10 objec-
tives, setting a limit of 150,000 objective function evaluations. Since we aimed
to measure the improvement generated exclusively by the scalarizing functions,
we used the same algorithm (MOMBI-II) in the solution of all problems, as well
as the same parameters, and we only varied the scalarizing function used.

In [7] a quick scalability test was performed comparing three scalarizing func-
tions commonly used in the area: ASF, the Weighted Tchebycheff Scalarizing
Function (WT) and Penalty-based Boundary Intersection (PBI). Our results
showed that when using more than tree objectives, ASF clearly outperformed
WT and PBI. For this same reason, we compared AGSF1 and AGSF2 with
respect to ASF, since scalability is an important desirable feature for a new
scalarizing function.

We performed 30 independent runs, with each of the three scalarizing func-
tions, on all the test problems mentioned. For assessing performance, we adopted
the hypervolume and the s-energy [5] indicators. The hypervolume is used to
assess convergence (larger values indicate a better performance), while s-energy
is used to measure how uniformly distributed the solutions generated are (smaller
values indicate a better performance). In both cases, the values obtained were
normalized within the range [0,1] to allow an easier comparison of results.

Tables 2 to 7 show the mean hypervolume values (along with their corre-
sponding standard deviations) obtained by AGSF1 and AGSF2 with respect
to ASF. Tables 8 to 13 show the corresponding s-energy values. The best values
obtained are represented using boldface. Values shown in grayscale indicate
that the best value is significantly better according to the Wilcoxon rank-sum
test with a significance level of 5%.

We say that a given scalarizing function outperforms another one when the
mean value is better and the differences are statistically significant. From the
results obtained using the hypervolume, AGSF1 outperformed ASF in 36.23%
of the problems, while ASF outperformed AGSF1 in 29.72% of the problems.
Regarding AGSF2, it outperformed ASF in 55.07% of the problems, while
ASF only outperformed AGSF2 in 7.25% of the problems. We can observe that
AGSF1 significantly improved performance in the DTLZ test problems with 2
objectives. However, with an increasing number of objectives, this improvement
begins to decay. A similar behavior can be seen in the WFG test problems. But,
as the number of objectives increases, both AGSF1 and ASF exhibit a similar
performance. Finally, AGSF1 clearly performs better than ASF in most of the
IDTLZ test problems (with the exception of the bi-objective instances). In con-
trast, AGSF2 improves the results obtained by ASF in most than half of the

10 A. V. Bernabé Rodŕıguez and C. A. Coello Coello

Table 2. Comparison of results in test problems with 2 objectives using the hypervol-
ume.

Problem ASF AGSF1 Problem ASF AGSF2

MED STD MED STD MED STD MED STD

DTLZ1 0.94021 5.39E-02 0.27743 6.65E-02 DTLZ1 0.94021 5.39E-02 0.95971 2.64E-02

DTLZ2 0.5726 1.09E-01 0.98881 4.13E-02 DTLZ2 0.5726 1.09E-01 0.74690 2.33E-03

DTLZ3 0.64588 1.18E-01 0.81145 1.93E-01 DTLZ3 0.64588 1.18E-01 0.62899 1.58E-01

DTLZ4 0.96411 1.79E-01 0.96656 1.79E-01 DTLZ4 0.96411 1.79E-01 0.99829 2.33E-05

DTLZ5 0.5726 1.09E-01 0.98881 4.13E-02 DTLZ5 0.5726 1.09E-01 0.74690 2.33E-03

DTLZ6 0.53421 2.04E-01 0.60970 1.86E-01 DTLZ6 0.53421 2.04E-01 0.50781 1.85E-01

DTLZ7 0.95753 3.06E-02 0.21037 7.59E-02 DTLZ7 0.95753 3.06E-02 0.97201 2.30E-02

WFG1 0.57355 2.12E-01 0.16113 9.55E-02 WFG1 0.57355 2.12E-01 0.51501 2.04E-01

WFG2 0.42430 1.12E-01 0.11345 5.32E-02 WFG2 0.4243 1.12E-01 0.43835 6.26E-02

WFG3 0.65929 1.65E-01 0.32225 1.76E-01 WFG3 0.65929 1.65E-01 0.68387 1.61E-01

WFG4 0.31754 1.47E-01 0.52158 2.61E-01 WFG4 0.31754 1.47E-01 0.56102 1.62E-01

WFG5 0.15006 1.17E-01 0.51551 1.69E-01 WFG5 0.15006 1.17E-01 0.49791 1.47E-01

WFG6 0.43905 1.82E-01 0.39697 1.46E-01 WFG6 0.43905 1.82E-01 0.40587 2.15E-01

WFG7 0.27839 1.41E-01 0.63681 2.03E-01 WFG7 0.27839 1.41E-01 0.59735 1.26E-01

WFG8 0.65718 1.18E-01 0.26518 1.34E-01 WFG8 0.65718 1.18E-01 0.67604 1.50E-01

WFG9 0.47164 4.71E-01 0.45408 4.49E-01 WFG9 0.47164 4.71E-01 0.51543 4.79E-01

IDTLZ1 0.93325 2.49E-01 0.93085 2.49E-01 IDTLZ1 0.93325 2.49E-01 0.93326 2.49E-01

IDTLZ2 0.89975 3.00E-01 0.89422 2.98E-01 IDTLZ2 0.89975 3.00E-01 0.89998 3.00E-01

IDTLZ3 0.95714 1.59E-03 0.02772 7.92E-03 IDTLZ3 0.95714 1.59E-03 0.99624 1.32E-03

IDTLZ4 0.93309 2.49E-01 0.92736 2.48E-01 IDTLZ4 0.93309 2.49E-01 0.93333 2.49E-01

IDTLZ5 0.89975 3.00E-01 0.89422 2.98E-01 IDTLZ5 0.89975 3.00E-01 0.89998 3.00E-01

IDTLZ6 0.96640 1.79E-01 0.96046 1.78E-01 IDTLZ6 0.9664 1.79E-01 0.96666 1.79E-01

IDTLZ7 0.96648 1.79E-01 0.96654 1.77E-01 IDTLZ7 0.96648 1.79E-01 0.97006 1.55E-01

Table 3. Comparison of results in test problems with 3 objectives using the hypervol-
ume.

Problem ASF AGSF1 Problem ASF AGSF2

MED STD MED STD MED STD MED STD

DTLZ1 0.78115 6.67E-02 0.20439 1.36E-01 DTLZ1 0.78115 6.67E-02 0.79505 6.61E-02

DTLZ2 0.36573 8.54E-02 0.51208 1.53E-01 DTLZ2 0.36573 8.54E-02 0.52165 1.57E-01

DTLZ3 0.45864 1.46E-01 0.57649 1.60E-01 DTLZ3 0.45864 1.46E-01 0.57568 1.69E-01

DTLZ4 0.94960 1.66E-01 0.92533 2.39E-01 DTLZ4 0.9496 1.66E-01 0.98814 3.01E-03

DTLZ5 0.10259 7.18E-02 0.82681 3.98E-02 DTLZ5 0.10259 7.18E-02 0.57040 1.24E-01

DTLZ6 0.49945 2.04E-01 0.50294 2.02E-01 DTLZ6 0.49945 2.04E-01 0.51185 2.48E-01

DTLZ7 0.51209 6.11E-02 0.16349 1.29E-01 DTLZ7 0.51209 6.11E-02 0.79868 8.35E-02

WFG1 0.72011 2.76E-01 0.61325 2.75E-01 WFG1 0.72011 2.76E-01 0.63706 2.96E-01

WFG2 0.66584 4.19E-01 0.71352 3.45E-01 WFG2 0.66584 4.19E-01 0.67507 4.22E-01

WFG3 0.60044 1.76E-01 0.3563 1.42E-01 WFG3 0.60044 1.76E-01 0.65851 2.11E-01

WFG4 0.31721 1.56E-01 0.45204 1.86E-01 WFG4 0.31721 1.56E-01 0.46655 1.62E-01

WFG5 0.48179 1.80E-01 0.46342 1.62E-01 WFG5 0.48179 1.80E-01 0.59633 1.84E-01

WFG6 0.46938 2.00E-01 0.46405 1.65E-01 WFG6 0.46938 2.00E-01 0.47637 1.91E-01

WFG7 0.37713 1.12E-01 0.42341 1.78E-01 WFG7 0.37713 1.12E-01 0.54767 1.36E-01

WFG8 0.50481 8.66E-02 0.64052 2.04E-01 WFG8 0.50481 8.66E-02 0.63066 1.08E-01

WFG9 0.40139 4.27E-01 0.54778 4.09E-01 WFG9 0.40139 4.27E-01 0.58829 4.23E-01

IDTLZ1 0.83644 2.24E-01 0.93314 2.49E-01 IDTLZ1 0.83644 2.24E-01 0.90195 2.41E-01

IDTLZ2 0.92708 2.48E-01 0.93223 2.49E-01 IDTLZ2 0.92708 2.48E-01 0.93242 2.49E-01

IDTLZ3 0.89394 2.98E-01 0.89884 3.00E-01 IDTLZ3 0.89394 2.98E-01 0.89892 3.00E-01

IDTLZ4 0.96078 1.78E-01 0.96613 1.79E-01 IDTLZ4 0.96078 1.78E-01 0.96635 1.79E-01

IDTLZ5 0.93026 2.48E-01 0.93283 2.49E-01 IDTLZ5 0.93026 2.48E-01 0.93365 2.47E-01

IDTLZ6 0.8629 3.38E-01 0.86650 3.40E-01 IDTLZ6 0.8629 3.38E-01 0.86641 3.40E-01

IDTLZ7 0.89981 3.00E-01 0.89971 3.00E-01 IDTLZ7 0.89981 3.00E-01 0.88463 2.95E-01

Generation of New Scalarizing Functions Using GP 11

Table 4. Comparison of results in test problems with 4 objectives using the hypervol-
ume.

Problem ASF AGSF1 Problem ASF AGSF2

MED STD MED STD MED STD MED STD

DTLZ1 0.79463 8.72E-02 0.42196 1.59E-01 DTLZ1 0.79463 8.72E-02 0.79315 8.68E-02

DTLZ2 0.40867 1.62E-01 0.71332 1.37E-01 DTLZ2 0.40867 1.62E-01 0.66507 1.28E-01

DTLZ3 0.82567 4.75E-02 0.44948 1.68E-01 DTLZ3 0.82567 4.75E-02 0.80508 6.61E-02

DTLZ4 0.27359 1.27E-01 0.75469 1.41E-01 DTLZ4 0.27359 1.27E-01 0.52208 1.16E-01

DTLZ5 0.49497 2.86E-02 0.89203 4.60E-02 DTLZ5 0.49497 2.86E-02 0.75741 2.70E-02

DTLZ6 0.60878 8.49E-02 0.25492 1.17E-01 DTLZ6 0.60878 8.49E-02 0.5973 9.86E-02

DTLZ7 0.36283 1.20E-01 0.18684 1.26E-01 DTLZ7 0.36283 1.20E-01 0.75108 1.04E-01

WFG1 0.41544 2.94E-01 0.41699 2.60E-01 WFG1 0.41544 2.94E-01 0.40384 2.41E-01

WFG2 0.85445 3.04E-01 0.69125 3.94E-01 WFG2 0.85445 3.04E-01 0.92206 2.25E-01

WFG3 0.61315 1.02E-01 0.44094 1.57E-01 WFG3 0.61315 1.02E-01 0.59961 1.15E-01

WFG4 0.50368 1.85E-01 0.50028 2.03E-01 WFG4 0.50368 1.85E-01 0.59369 1.83E-01

WFG5 0.50659 1.84E-01 0.59780 1.44E-01 WFG5 0.50659 1.84E-01 0.67177 1.57E-01

WFG6 0.49412 1.65E-01 0.54457 2.17E-01 WFG6 0.49412 1.65E-01 0.48852 2.21E-01

WFG7 0.33741 1.37E-01 0.33588 1.51E-01 WFG7 0.33741 1.37E-01 0.44829 1.63E-01

WFG8 0.37295 1.50E-01 0.66888 2.29E-01 WFG8 0.37295 1.50E-01 0.75818 1.69E-01

WFG9 0.11596 2.08E-01 0.39254 3.68E-01 WFG9 0.11596 2.08E-01 0.16571 2.26E-01

IDTLZ1 0.65308 1.22E-01 0.70751 1.58E-01 IDTLZ1 0.65308 1.22E-01 0.68065 1.33E-01

IDTLZ2 0.88085 1.64E-01 0.94438 1.76E-01 IDTLZ2 0.88085 1.64E-01 0.96325 1.09E-02

IDTLZ3 0.88272 1.64E-01 0.91043 2.43E-01 IDTLZ3 0.88272 1.64E-01 0.89657 2.40E-01

IDTLZ4 0.8524 2.28E-01 0.91060 2.43E-01 IDTLZ4 0.8524 2.28E-01 0.90002 2.41E-01

IDTLZ5 0.92851 1.72E-01 0.98888 4.59E-03 IDTLZ5 0.92851 1.72E-01 0.95289 1.77E-01

IDTLZ6 0.77558 3.47E-01 0.82205 3.68E-01 IDTLZ6 0.77558 3.47E-01 0.90936 2.43E-01

IDTLZ7 0.86633 3.40E-01 0.86660 3.40E-01 IDTLZ7 0.86633 3.40E-01 0.84093 3.30E-01

Table 5. Comparison of results in test problems with 5 objectives using the hypervol-
ume.

Problem ASF AGSF1 Problem ASF AGSF2

MED STD MED STD MED STD MED STD

DTLZ1 0.86779 5.45E-02 0.46538 1.78E-01 DTLZ1 0.86779 5.45E-02 0.84491 8.39E-02

DTLZ2 0.44663 1.55E-01 0.76285 1.49E-01 DTLZ2 0.44663 1.55E-01 0.76262 1.08E-01

DTLZ3 0.47940 1.18E-01 0.39361 1.76E-01 DTLZ3 0.4794 1.18E-01 0.54441 1.52E-01

DTLZ4 0.90638 1.29E-02 0.98160 1.30E-02 DTLZ4 0.90638 1.29E-02 0.90696 1.69E-01

DTLZ5 0.53888 3.07E-01 0.43925 3.32E-01 DTLZ5 0.53888 3.07E-01 0.78200 2.39E-01

DTLZ6 0.78701 1.06E-01 0.5533 2.12E-01 DTLZ6 0.78701 1.06E-01 0.81507 9.60E-02

DTLZ7 0.158 7.64E-02 0.40469 1.14E-01 DTLZ7 0.158 7.64E-02 0.85507 7.38E-02

WFG1 0.45271 1.74E-01 0.282 1.72E-01 WFG1 0.45271 1.74E-01 0.52692 2.05E-01

WFG2 0.94906 1.63E-01 0.81943 3.11E-01 WFG2 0.94906 1.63E-01 0.95750 1.65E-01

WFG3 0.46443 2.08E-01 0.4261 1.82E-01 WFG3 0.46443 2.08E-01 0.51382 2.04E-01

WFG4 0.73234 1.19E-01 0.4263 1.61E-01 WFG4 0.73234 1.19E-01 0.67221 1.31E-01

WFG5 0.55916 2.16E-01 0.60429 1.93E-01 WFG5 0.55916 2.16E-01 0.63777 1.68E-01

WFG6 0.50864 2.21E-01 0.51723 1.59E-01 WFG6 0.50864 2.21E-01 0.58072 1.74E-01

WFG7 0.39129 1.57E-01 0.21911 1.46E-01 WFG7 0.39129 1.57E-01 0.46373 1.68E-01

WFG8 0.48954 1.50E-01 0.43107 1.23E-01 WFG8 0.48954 1.50E-01 0.52675 1.55E-01

WFG9 0.46108 1.49E-01 0.84287 1.14E-01 WFG9 0.46108 1.49E-01 0.61813 1.43E-01

IDTLZ1 0.07390 1.77E-01 0.03128 3.32E-02 IDTLZ1 0.07390 1.77E-01 0.04525 4.84E-02

IDTLZ2 0.58141 1.94E-01 0.78339 3.92E-01 IDTLZ2 0.58141 1.94E-01 0.69048 3.81E-01

IDTLZ3 0.56714 2.23E-01 0.84305 3.31E-01 IDTLZ3 0.56714 2.23E-01 0.77850 3.05E-01

IDTLZ4 0.57595 1.92E-01 0.94902 1.76E-01 IDTLZ4 0.57595 1.92E-01 0.81559 2.72E-01

IDTLZ5 0.81135 2.17E-01 0.75983 4.19E-01 IDTLZ5 0.81135 2.17E-01 0.89972 2.40E-01

IDTLZ6 0.63062 2.47E-01 0.95735 1.78E-01 IDTLZ6 0.63062 2.47E-01 0.80709 3.17E-01

IDTLZ7 0.89739 2.99E-01 0.89966 3.00E-01 IDTLZ7 0.89739 2.99E-01 0.8315 3.24E-01

12 A. V. Bernabé Rodŕıguez and C. A. Coello Coello

Table 6. Comparison of results in test problems with 6 objectives using the hypervol-
ume.

Problem ASF AGSF1 Problem ASF AGSF2

MED STD MED STD MED STD MED STD

DTLZ1 0.77527 1.01E-01 0.22056 1.14E-01 DTLZ1 0.77527 1.01E-01 0.73828 1.05E-01

DTLZ2 0.34124 1.47E-01 0.75911 1.23E-01 DTLZ2 0.34124 1.47E-01 0.66103 1.09E-01

DTLZ3 0.69014 1.01E-01 0.33642 1.68E-01 DTLZ3 0.69014 1.01E-01 0.70567 8.26E-02

DTLZ4 0.29561 1.09E-01 0.89387 7.15E-02 DTLZ4 0.29561 1.09E-01 0.61672 9.31E-02

DTLZ5 0.38145 2.03E-01 0.2731 2.08E-01 DTLZ5 0.38145 2.03E-01 0.66591 1.83E-01

DTLZ6 0.70644 1.10E-01 0.67136 2.26E-01 DTLZ6 0.70644 1.10E-01 0.77577 1.03E-01

DTLZ7 0.63776 9.70E-02 0.26638 1.10E-01 DTLZ7 0.63776 9.70E-02 0.53999 9.49E-02

WFG1 0.52651 2.12E-01 0.47232 2.51E-01 WFG1 0.52651 2.12E-01 0.53469 2.15E-01

WFG2 0.92164 2.32E-01 0.85487 2.80E-01 WFG2 0.92164 2.32E-01 0.92320 2.30E-01

WFG3 0.48992 2.51E-01 0.49084 2.08E-01 WFG3 0.48992 2.51E-01 0.4749 2.54E-01

WFG4 0.67214 1.75E-01 0.52001 2.11E-01 WFG4 0.67214 1.75E-01 0.69414 2.12E-01

WFG5 0.42035 2.09E-01 0.50445 2.26E-01 WFG5 0.42035 2.09E-01 0.60843 1.65E-01

WFG6 0.47871 2.56E-01 0.51014 2.64E-01 WFG6 0.47871 2.56E-01 0.54992 2.18E-01

WFG7 0.77093 1.47E-01 0.61142 2.41E-01 WFG7 0.77093 1.47E-01 0.77884 1.65E-01

WFG8 0.42047 1.98E-01 0.65890 1.78E-01 WFG8 0.42047 1.98E-01 0.61073 1.89E-01

WFG9 0.44598 1.43E-01 0.70867 1.70E-01 WFG9 0.44598 1.43E-01 0.66831 1.33E-01

IDTLZ1 0.92238 1.72E-01 0.92276 1.72E-01 IDTLZ1 0.92238 1.72E-01 0.92356 1.72E-01

IDTLZ2 0.65039 1.75E-01 0.66423 1.79E-01 IDTLZ2 0.65039 1.75E-01 0.69323 1.41E-01

IDTLZ3 0.78181 2.12E-01 0.79616 2.18E-01 IDTLZ3 0.78181 2.12E-01 0.80746 2.18E-01

IDTLZ4 0.89270 1.68E-01 0.82396 2.75E-01 IDTLZ4 0.89270 1.68E-01 0.8922 1.67E-01

IDTLZ5 0.90936 2.43E-01 0.91405 2.44E-01 IDTLZ5 0.90936 2.43E-01 0.91376 2.44E-01

IDTLZ6 0.91392 1.70E-01 0.92086 1.70E-01 IDTLZ6 0.91392 1.70E-01 0.92140 1.69E-01

IDTLZ7 0.82823 3.70E-01 0.83264 3.72E-01 IDTLZ7 0.82823 3.70E-01 0.79901 3.55E-01

Table 7. Comparison of results in test problems with 10 objectives using the hyper-
volume.

Problem ASF AGSF1 Problem ASF AGSF2

MED STD MED STD MED STD MED STD

DTLZ1 0.81294 1.10E-01 0.58344 1.34E-01 DTLZ1 0.81294 1.10E-01 0.76191 1.63E-01

DTLZ2 0.65066 1.41E-01 0.65001 1.53E-01 DTLZ2 0.65066 1.41E-01 0.75830 1.02E-01

DTLZ3 0.66770 8.45E-02 0.43772 1.57E-01 DTLZ3 0.6677 8.45E-02 0.70229 1.37E-01

DTLZ4 0.65936 7.43E-02 0.84957 1.40E-01 DTLZ4 0.65936 7.43E-02 0.70648 2.05E-01

DTLZ5 0.30730 2.18E-01 0.25256 2.74E-01 DTLZ5 0.3073 2.18E-01 0.36810 2.60E-01

DTLZ6 0.44166 2.43E-01 0.57816 2.36E-01 DTLZ6 0.44166 2.43E-01 0.43486 2.15E-01

DTLZ7 0.56313 1.12E-01 0.29824 1.36E-01 DTLZ7 0.56313 1.12E-01 0.46371 1.65E-01

WFG1 0.54699 1.98E-01 0.52031 2.20E-01 WFG1 0.54699 1.98E-01 0.5019 1.85E-01

WFG2 0.93733 1.69E-01 0.92103 1.73E-01 WFG2 0.93733 1.69E-01 0.94825 1.72E-01

WFG3 0.91771 1.72E-01 0.95130 2.43E-02 WFG3 0.91771 1.72E-01 0.95036 1.77E-02

WFG4 0.59836 1.91E-01 0.61382 2.03E-01 WFG4 0.59836 1.91E-01 0.67055 1.68E-01

WFG5 0.59335 1.85E-01 0.56807 1.96E-01 WFG5 0.59335 1.85E-01 0.54048 1.85E-01

WFG6 0.59188 1.79E-01 0.51932 1.74E-01 WFG6 0.59188 1.79E-01 0.61110 2.19E-01

WFG7 0.56534 1.29E-01 0.55873 1.62E-01 WFG7 0.56534 1.29E-01 0.58656 1.14E-01

WFG8 0.71276 1.43E-01 0.73562 1.81E-01 WFG8 0.71276 1.43E-01 0.72063 2.06E-01

WFG9 0.46988 1.73E-01 0.62335 1.81E-01 WFG9 0.46988 1.73E-01 0.57258 1.58E-01

IDTLZ1 0.60202 2.27E-01 0.57452 2.12E-01 IDTLZ1 0.60202 2.27E-01 0.54422 2.37E-01

IDTLZ2 0.63038 2.07E-01 0.65898 2.07E-01 IDTLZ2 0.63038 2.07E-01 0.61508 2.04E-01

IDTLZ3 0.70399 1.86E-01 0.69497 1.77E-01 IDTLZ3 0.70399 1.86E-01 0.72820 1.87E-01

IDTLZ4 0.52129 2.71E-01 0.63378 2.38E-01 IDTLZ4 0.52129 2.71E-01 0.52129 2.71E-01

IDTLZ5 0.86257 2.32E-01 0.86257 2.32E-01 IDTLZ5 0.86257 2.32E-01 0.84874 2.29E-01

IDTLZ6 0.78459 2.17E-01 0.77397 2.16E-01 IDTLZ6 0.78459 2.17E-01 0.7841 2.19E-01

IDTLZ7 0.71568 4.32E-01 0.61684 4.69E-01 IDTLZ7 0.71568 4.32E-01 0.71295 4.30E-01

Generation of New Scalarizing Functions Using GP 13

Table 8. Comparison of results in test problems with 2 objectives using s-energy.

Problem ASF AGSF1 Problem ASF AGSF2

MED STD MED STD MED STD MED STD

DTLZ1 0.03396 5.34E-02 0.04773 6.30E-02 DTLZ1 0.03396 5.34E-02 0.02294 4.12E-02

DTLZ2 0.0425 1.80E-01 0.00436 4.57E-03 DTLZ2 0.0425 1.80E-01 0.02872 1.31E-01

DTLZ3 0.10072 2.22E-01 0.09638 1.77E-01 DTLZ3 0.10072 2.22E-01 0.04910 4.88E-02

DTLZ4 1.38E-05 5.83E-05 1.19E-05 5.78E-05 DTLZ4 1E-05 5.83E-05 2.45E-06 7.05E-06

DTLZ5 0.0425 1.80E-01 0.00436 4.57E-03 DTLZ5 0.0425 1.80E-01 0.02872 1.31E-01

DTLZ6 0.08795 1.86E-01 0.07449 1.55E-01 DTLZ6 0.08795 1.86E-01 0.06997 7.05E-02

DTLZ7 0.00444 6.50E-03 0.03115 3.50E-02 DTLZ7 0.00444 6.50E-03 0.02013 7.77E-02

WFG1 0.07402 1.16E-01 0.05840 5.61E-02 WFG1 0.07402 1.16E-01 0.06070 7.74E-02

WFG2 0.16328 1.88E-01 0.11361 1.66E-01 WFG2 0.16328 1.88E-01 0.13370 1.51E-01

WFG3 0.05228 5.60E-02 0.0613 5.80E-02 WFG3 0.05228 5.60E-02 0.08831 1.32E-01

WFG4 0.07741 1.53E-01 0.02509 4.12E-02 WFG4 0.07741 1.53E-01 0.10605 2.06E-01

WFG5 0.13371 1.13E-01 0.10734 1.12E-01 WFG5 0.13371 1.13E-01 0.18122 1.68E-01

WFG6 0.07397 1.51E-01 0.01898 1.80E-02 WFG6 0.07397 1.51E-01 0.02855 3.87E-02

WFG7 0.04333 6.10E-02 0.01828 1.86E-02 WFG7 0.04333 6.10E-02 0.02975 2.49E-02

WFG8 0.00512 1.48E-02 0.03646 1.79E-01 WFG8 0.00512 1.48E-02 0.00295 2.15E-03

WFG9 0.14668 1.50E-01 0.09273 5.06E-02 WFG9 0.14668 1.50E-01 0.15609 1.66E-01

IDTLZ1 0.0347 1.79E-01 0.00231 9.86E-03 IDTLZ1 0.0347 1.79E-01 0.01802 9.57E-02

IDTLZ2 0.00010 1.71E-04 0.05152 2.01E-01 IDTLZ2 0.00010 1.71E-04 0.01968 5.99E-02

IDTLZ3 0.00004 1.27E-04 5E-05 1.89E-04 IDTLZ3 0.00004 1.27E-04 0.0002 9.49E-04

IDTLZ4 0.00016 8.28E-05 0.00026 7.96E-05 IDTLZ4 0.00016 8.28E-05 0.03446 1.79E-01

IDTLZ5 0.00010 1.71E-04 0.05152 2.01E-01 IDTLZ5 0.00010 1.71E-04 0.01968 5.99E-02

IDTLZ6 0.00001 3.54E-05 0.03335 1.79E-01 IDTLZ6 0.00001 3.54E-05 0.00042 2.11E-03

IDTLZ7 0.02281 1.52E-02 0.09989 2.19E-01 IDTLZ7 0.02281 1.52E-02 0.03939 9.28E-02

Table 9. Comparison of results in test problems with 3 objectives using s-energy.

Problem ASF AGSF1 Problem ASF AGSF2

MED STD MED STD MED STD MED STD

DTLZ1 0.02023 1.09E-01 0.03334 1.79E-01 DTLZ1 0.02023 1.09E-01 1.96E-06 2.95E-06

DTLZ2 0.01456 2.15E-02 0.05342 1.82E-01 DTLZ2 0.01456 2.15E-02 8.00E-03 5.06E-03

DTLZ3 6.50E-07 2.04E-06 0.00174 9.37E-03 DTLZ3 6.50E-07 2.04E-06 1.51E-07 1.39E-07

DTLZ4 1.70E-02 9.12E-02 0.00198 7.25E-03 DTLZ4 0.01702 9.12E-02 0.00047 2.35E-03

DTLZ5 0.13761 1.82E-01 0.12105 1.74E-01 DTLZ5 0.13761 1.82E-01 0.24996 2.50E-01

DTLZ6 0.30194 2.65E-01 0.10278 1.58E-01 DTLZ6 0.30194 2.65E-01 0.10464 1.88E-01

DTLZ7 0.22586 3.13E-01 0.21113 2.96E-01 DTLZ7 0.22586 3.13E-01 0.26026 3.15E-01

WFG1 0.03947 1.55E-01 0.00124 3.93E-03 WFG1 0.03947 1.55E-01 0.02587 1.11E-01

WFG2 0.05319 2.01E-01 0.00678 1.50E-02 WFG2 0.05319 2.01E-01 0.00968 3.16E-02

WFG3 0.11941 2.48E-01 0.04173 1.33E-01 WFG3 0.11941 2.48E-01 0.05415 1.79E-01

WFG4 0.00771 4.31E-03 0.00630 9.99E-04 WFG4 0.00771 4.31E-03 0.00670 1.29E-03

WFG5 2.06E-06 3.44E-06 0.03333 1.79E-01 WFG5 2.06E-06 3.44E-06 1.66E-06 3.74E-06

WFG6 0.09337 1.69E-01 0.05733 1.39E-02 WFG6 0.09337 1.69E-01 0.05543 8.35E-03

WFG7 0.00103 2.49E-04 0.00137 1.81E-03 WFG7 0.00103 2.49E-04 0.0352 1.79E-01

WFG8 0.06543 2.05E-01 0.04181 1.80E-01 WFG8 0.06543 2.05E-01 0.00137 2.44E-03

WFG9 0.03334 1.79E-01 2.04E-06 5.73E-06 WFG9 0.03334 1.79E-01 1.31E-06 3.61E-06

IDTLZ1 0.23695 3.04E-01 0.05408 1.43E-01 IDTLZ1 0.23695 3.04E-01 0.00233 5.04E-03

IDTLZ2 0.04852 1.37E-01 0.02185 1.17E-01 IDTLZ2 0.04852 1.37E-01 0.00023 1.14E-03

IDTLZ3 0.1014 2.99E-01 0.00520 2.79E-02 IDTLZ3 0.1014 2.99E-01 0.00004 5.93E-05

IDTLZ4 0.07753 2.01E-01 0.07705 2.19E-01 IDTLZ4 0.07753 2.01E-01 0.011 5.71E-02

IDTLZ5 0.06258 1.97E-01 0.00042 2.24E-03 IDTLZ5 0.06258 1.97E-01 0.02224 5.09E-02

IDTLZ6 0.04757 1.60E-01 0.03524 1.51E-01 IDTLZ6 0.04757 1.60E-01 0.06766 2.14E-01

IDTLZ7 0.04302 1.80E-01 0.00234 2.76E-03 IDTLZ7 0.04302 1.80E-01 0.01335 5.57E-02

14 A. V. Bernabé Rodŕıguez and C. A. Coello Coello

Table 10. Comparison of results in test problems with 4 objectives using s-energy.

Problem ASF AGSF1 Problem ASF AGSF2

MED STD MED STD MED STD MED STD

DTLZ1 0.01848 4.51E-02 0.08178 2.25E-01 DTLZ1 0.01848 4.51E-02 0.02254 8.34E-02

DTLZ2 0.00002 6.24E-05 0.00031 1.02E-03 DTLZ2 0.00002 6.24E-05 7E-05 2.39E-04

DTLZ3 0.00901 4.84E-02 0.00155 8.12E-03 DTLZ3 0.00901 4.84E-02 0.03406 1.45E-01

DTLZ4 0.00289 9.64E-03 0.00679 3.53E-02 DTLZ4 0.00289 9.64E-03 0.00185 5.63E-03

DTLZ5 0.30118 2.32E-01 0.29328 2.34E-01 DTLZ5 0.30118 2.32E-01 0.24575 1.73E-01

DTLZ6 0.26745 1.39E-01 0.23423 1.51E-01 DTLZ6 0.26745 1.39E-01 0.25200 1.46E-01

DTLZ7 0.06111 7.91E-02 0.10539 1.24E-01 DTLZ7 0.06111 7.91E-02 0.06099 7.26E-02

WFG1 0.15004 2.32E-01 0.10807 2.24E-01 WFG1 0.15004 2.32E-01 0.17604 2.58E-01

WFG2 0.00208 8.78E-03 0.07611 2.45E-01 WFG2 0.00208 8.78E-03 0.00072 2.74E-03

WFG3 0.35852 1.94E-01 0.22826 1.74E-01 WFG3 0.35852 1.94E-01 0.35003 2.04E-01

WFG4 1.72E-06 5.49E-06 1.44E-07 3.37E-07 WFG4 1.72E-06 5.49E-06 1E-05 2.52E-05

WFG5 0.00145 7.81E-03 0.03484 1.79E-01 WFG5 0.00145 7.81E-03 1.52E-06 4.53E-06

WFG6 0.03196 7.74E-02 0.03058 7.08E-02 WFG6 0.03196 7.74E-02 0.05567 1.94E-01

WFG7 0.00061 1.36E-03 0.0035 1.16E-02 WFG7 0.00061 1.36E-03 0.03797 1.30E-01

WFG8 0.09748 2.05E-01 0.01868 5.73E-02 WFG8 0.09748 2.05E-01 0.02312 6.83E-02

WFG9 7.11E-06 3.71E-05 0.03355 1.79E-01 WFG9 7.11E-06 3.71E-05 1.25E-05 6.07E-05

IDTLZ1 0.20303 1.62E-01 0.20585 1.16E-01 IDTLZ1 0.20303 1.62E-01 0.19638 1.26E-01

IDTLZ2 0.22802 2.40E-01 0.20800 1.67E-01 IDTLZ2 0.22802 2.40E-01 0.16250 1.57E-01

IDTLZ3 0.20221 2.00E-01 0.21904 1.66E-01 IDTLZ3 0.20221 2.00E-01 0.21936 2.07E-01

IDTLZ4 0.04939 6.27E-02 0.04081 4.84E-02 IDTLZ4 0.04939 6.27E-02 0.04817 4.72E-02

IDTLZ5 0.03609 1.79E-01 0.00245 2.16E-03 IDTLZ5 0.03609 1.79E-01 0.00498 1.38E-02

IDTLZ6 0.06322 2.10E-01 0.05788 1.99E-01 IDTLZ6 0.06322 2.10E-01 0.01442 6.83E-02

IDTLZ7 0.00485 1.22E-02 0.03573 1.79E-01 IDTLZ7 0.00485 1.22E-02 0.00308 7.18E-03

Table 11. Comparison of results in test problems with 5 objectives using s-energy.

Problem ASF AGSF1 Problem ASF AGSF2

MED STD MED STD MED STD MED STD

DTLZ1 0.09211 9.95E-02 0.11242 1.52E-01 DTLZ1 0.09211 9.95E-02 0.09653 1.32E-01

DTLZ2 0.02271 4.83E-02 0.03855 1.39E-01 DTLZ2 0.02271 4.83E-02 0.02979 6.78E-02

DTLZ3 0.04598 1.79E-01 0.01271 2.40E-02 DTLZ3 0.04598 1.79E-01 0.06622 1.51E-01

DTLZ4 0.02071 8.48E-02 0.1125 2.81E-01 DTLZ4 0.02071 8.48E-02 0.05334 1.16E-01

DTLZ5 0.47548 1.11E-01 0.58109 1.64E-01 DTLZ5 0.47548 1.11E-01 0.48196 1.40E-01

DTLZ6 0.35530 2.14E-01 0.46193 1.94E-01 DTLZ6 0.35530 2.14E-01 0.39761 1.90E-01

DTLZ7 0.35466 1.95E-01 0.36159 2.07E-01 DTLZ7 0.35466 1.95E-01 0.22952 1.45E-01

WFG1 0.23667 1.87E-01 0.14168 1.15E-01 WFG1 0.23667 1.87E-01 0.21233 2.60E-01

WFG2 0.02767 6.89E-02 0.18631 2.19E-01 WFG2 0.02767 6.89E-02 0.01192 2.51E-02

WFG3 0.45411 2.05E-01 0.33911 1.54E-01 WFG3 0.45411 2.05E-01 0.46662 1.79E-01

WFG4 0.03362 1.79E-01 0.00001 3.28E-05 WFG4 0.03362 1.79E-01 0.00024 8.47E-04

WFG5 0.00493 1.97E-02 0.0105 5.57E-02 WFG5 0.00493 1.97E-02 0.04316 1.85E-01

WFG6 0.00718 3.01E-02 0.01238 6.40E-02 WFG6 0.00718 3.01E-02 0.00305 9.02E-03

WFG7 0.00969 3.69E-02 0.01125 5.81E-02 WFG7 0.00969 3.69E-02 0.04716 1.86E-01

WFG8 0.00264 1.21E-02 0.00435 1.54E-02 WFG8 0.00264 1.21E-02 0.02136 5.34E-02

WFG9 0.00004 7.81E-05 0.00044 2.04E-03 WFG9 0.00004 7.81E-05 0.03835 1.79E-01

IDTLZ1 0.42105 2.27E-01 0.36516 1.35E-01 IDTLZ1 0.42105 2.27E-01 0.37583 1.87E-01

IDTLZ2 0.42158 1.76E-01 0.39433 1.65E-01 IDTLZ2 0.42158 1.76E-01 0.44151 1.86E-01

IDTLZ3 0.0042 7.40E-03 0.00271 2.01E-03 IDTLZ3 0.0042 7.40E-03 0.00340 2.17E-03

IDTLZ4 0.39638 1.50E-01 0.41305 1.42E-01 IDTLZ4 0.39638 1.50E-01 0.42975 2.17E-01

IDTLZ5 0.00404 1.32E-03 0.08645 2.50E-01 IDTLZ5 0.00404 1.32E-03 0.00388 1.43E-03

IDTLZ6 0.00106 4.92E-04 0.03432 1.79E-01 IDTLZ6 0.00106 4.92E-04 0.00319 1.23E-02

IDTLZ7 0.00634 3.55E-03 0.00541 8.90E-03 IDTLZ7 0.00634 3.55E-03 0.06161 1.90E-01

Generation of New Scalarizing Functions Using GP 15

Table 12. Comparison of results in test problems with 6 objectives using s-energy.

Problem ASF AGSF1 Problem ASF AGSF2

MED STD MED STD MED STD MED STD

DTLZ1 0.21791 1.32E-01 0.18048 8.55E-02 DTLZ1 0.21791 1.32E-01 0.20438 1.19E-01

DTLZ2 0.23022 2.21E-01 0.20171 2.32E-01 DTLZ2 0.23022 2.21E-01 0.17225 1.85E-01

DTLZ3 0.14514 1.76E-01 0.15298 2.21E-01 DTLZ3 0.14514 1.76E-01 0.10612 1.93E-01

DTLZ4 0.08846 1.72E-01 0.06157 9.75E-02 DTLZ4 0.08846 1.72E-01 0.05743 1.30E-01

DTLZ5 0.32194 1.56E-01 0.25564 1.86E-01 DTLZ5 0.32194 1.56E-01 0.21800 9.58E-02

DTLZ6 0.39549 1.86E-01 0.49549 2.07E-01 DTLZ6 0.39549 1.86E-01 0.41407 1.42E-01

DTLZ7 0.24238 1.54E-01 0.29417 1.34E-01 DTLZ7 0.24238 1.54E-01 0.2849 2.07E-01

WFG1 0.23283 1.60E-01 0.30558 2.35E-01 WFG1 0.23283 1.60E-01 0.24275 1.47E-01

WFG2 0.06166 1.11E-01 0.26726 2.55E-01 WFG2 0.06166 1.11E-01 0.06107 8.89E-02

WFG3 0.40026 1.38E-01 0.46579 2.02E-01 WFG3 0.40026 1.38E-01 0.4131 1.36E-01

WFG4 0.03638 1.25E-01 0.00205 5.01E-03 WFG4 0.03638 1.25E-01 0.02977 9.42E-02

WFG5 0.00806 2.09E-02 0.03415 1.20E-01 WFG5 0.00806 2.09E-02 0.06099 1.90E-01

WFG6 0.05204 1.89E-01 0.00049 1.05E-03 WFG6 0.05204 1.89E-01 0.02432 1.28E-01

WFG7 0.06101 1.95E-01 0.07192 1.94E-01 WFG7 0.06101 1.95E-01 0.06444 1.98E-01

WFG8 0.4212 1.56E-01 0.30553 1.54E-01 WFG8 0.4212 1.56E-01 0.40457 1.96E-01

WFG9 0.05270 1.19E-01 0.0866 2.44E-01 WFG9 0.05270 1.19E-01 0.10652 2.08E-01

IDTLZ1 0.27139 1.24E-01 0.30806 1.41E-01 IDTLZ1 0.27139 1.24E-01 0.31907 1.91E-01

IDTLZ2 0.28669 1.59E-01 0.25054 7.92E-02 IDTLZ2 0.28669 1.59E-01 0.25578 1.16E-01

IDTLZ3 0.00005 1.98E-04 9E-05 3.34E-04 IDTLZ3 0.00005 1.98E-04 6E-05 2.13E-04

IDTLZ4 0.5303 1.89E-01 0.46159 1.41E-01 IDTLZ4 0.5303 1.89E-01 0.51955 2.37E-01

IDTLZ5 0.06674 1.14E-01 0.08063 1.72E-01 IDTLZ5 0.06674 1.14E-01 0.06600 9.65E-02

IDTLZ6 0.41202 1.81E-01 0.41163 1.63E-01 IDTLZ6 0.41202 1.81E-01 0.42941 2.05E-01

IDTLZ7 0.01611 5.50E-02 0.00762 2.75E-02 IDTLZ7 0.01611 5.50E-02 0.18035 2.40E-01

Table 13. Comparison of results in test problems with 10 objectives using s-energy.

Problem ASF AGSF1 Problem ASF AGSF2

MED STD MED STD MED STD MED STD

DTLZ1 0.33773 1.72E-01 0.53746 1.79E-01 DTLZ1 0.33773 1.72E-01 0.36237 1.56E-01

DTLZ2 0.44721 1.97E-01 0.35538 1.49E-01 DTLZ2 0.44721 1.97E-01 0.37708 1.83E-01

DTLZ3 0.39859 1.97E-01 0.34639 1.46E-01 DTLZ3 0.39859 1.97E-01 0.45988 2.24E-01

DTLZ4 0.16349 1.51E-01 0.19282 1.27E-01 DTLZ4 0.16349 1.51E-01 0.24254 2.50E-01

DTLZ5 0.18951 1.65E-01 0.22913 8.11E-02 DTLZ5 0.18951 1.65E-01 0.21848 1.01E-01

DTLZ6 0.23592 1.03E-01 0.2532 1.01E-01 DTLZ6 0.23592 1.03E-01 0.57038 2.38E-01

DTLZ7 0.11122 1.07E-01 0.18736 1.95E-01 DTLZ7 0.11122 1.07E-01 0.13158 1.28E-01

WFG1 0.05130 2.01E-02 0.05535 2.49E-02 WFG1 0.05130 2.01E-02 0.05754 3.70E-02

WFG2 0.26651 1.58E-01 0.39618 2.16E-01 WFG2 0.26651 1.58E-01 0.28387 1.53E-01

WFG3 0.18477 1.93E-01 0.20172 1.34E-01 WFG3 0.18477 1.93E-01 0.12599 5.67E-02

WFG4 0.10415 1.86E-01 0.08143 8.58E-02 WFG4 0.10415 1.86E-01 0.08544 9.81E-02

WFG5 0.10478 1.60E-01 0.08112 1.77E-01 WFG5 0.10478 1.60E-01 0.1169 2.17E-01

WFG6 0.21392 2.81E-01 0.08966 1.73E-01 WFG6 0.21392 2.81E-01 0.15141 2.29E-01

WFG7 0.14863 1.76E-01 0.14944 2.00E-01 WFG7 0.14863 1.76E-01 0.12281 2.07E-01

WFG8 0.31137 1.97E-01 0.23653 1.78E-01 WFG8 0.31137 1.97E-01 0.21146 2.22E-01

WFG9 0.21529 2.31E-01 0.12855 2.01E-01 WFG9 0.21529 2.31E-01 0.14267 1.42E-01

IDTLZ1 2.23E-07 1.20E-06 4.29E-10 2.30E-09 IDTLZ1 2.23E-07 1.20E-06 3.33E-07 1.29E-06

IDTLZ2 0.15901 1.52E-01 0.11532 1.32E-01 IDTLZ2 0.15901 1.52E-01 0.18295 2.08E-01

IDTLZ3 2.53E-23 1.36E-22 1.30E-16 6.98E-16 IDTLZ3 2.53E-23 1.36E-22 2.86E-17 1.54E-16

IDTLZ4 0.15096 2.51E-01 0.13664 2.10E-01 IDTLZ4 0.15096 2.51E-01 0.14840 2.43E-01

IDTLZ5 0.03375 1.79E-01 0.01551 5.64E-02 IDTLZ5 0.03375 1.79E-01 0.01226 6.28E-02

IDTLZ6 0.00493 2.60E-02 0.03346 1.79E-01 IDTLZ6 0.00493 2.60E-02 0.00011 2.04E-04

IDTLZ7 0.00088 4.21E-03 0.0517 2.01E-01 IDTLZ7 0.00088 4.21E-03 0.00364 1.36E-02

16 A. V. Bernabé Rodŕıguez and C. A. Coello Coello

test problems. And in the worst cases, it performs similarly to ASF. Again, the
improvement observed decreases as the number of objectives increases. Regard-
ing the s-energy indicator, AGSF1 outperformed ASF in 21.74% of the prob-
lems, while ASF outperformed AGSF1 in 12.32% of the problems. Regarding
AGSF2, it outperformed ASF in 18.84% of the problems, while ASF outper-
formed AGSF2 in only 4.35% of the problems.

From this data, we can observe that, on average, AGSF1 performs similarly
or marginally better than ASF. However, AGSF2 performs better than ASF
in more than half of the cases when comparing hypervolume values and gets a
similar performance when comparing s-energy values.

4 Conclusions and Future Work

We have proposed a strategy to generate new scalarizing functions using a combi-
nation of genetic programming and an MOEA. Using this strategy we were able
to develop several scalarizing functions, from which we chose two (AGSF1 and
AGSF2) to perform an experimental evaluation of their performance. We used
MOMBI-II to evaluate both of them against ASF, which is the scalarizing func-
tion used by default in MOMBI-II. Results obtained using a set of test problems
and two performance indicators (namely hypervolume and s-energy) showed that
AGSF1 has a similar performance to that of ASF, while AGSF2 outperforms
ASF in more than half of the test problems adopted. It is interesting to note
that the two new scalarizing functions were obtained trying to solve a specific
MOP (DTLZ4 with 2 objectives), in which both of them outperformed ASF.
However, these two new scalarizing functions were able to generalize their good
performance in problems with a completely different Pareto Front geometry, or
even with an increasing number of objectives.

There are several possible paths for future research. To the authors’ best
knowledge, this is the first proposal for the automatic generation of scalariz-
ing functions, but there are obviously many other modifications that are worth
exploring. For example, our proposed strategy can be run for a longer number of
generations, aiming to produce better scalarizing functions. In the experiments
reported in this paper, we adopted a maximum number of generations of 50 due
to the high computational cost of our proposed approach, but if more computa-
tional power is available, a more thorough exploration of the search space could
be conducted. Additionally, other operators can be considered in the functions
set (e.g., trigonometric functions). Furthermore, the fitness evaluation procedure
can be modified to either use another MOP (or even a combination of MOPs),
or to use another performance indicator different from the hypervolume (or in
addition to it). It is worth noting that the two scalarizing functions generated by
our system share the same term (f ′

i

wi
) found in ASF. This suggests that this term

could be a good starting seed for future executions of the algorithm. Finally, it
would also be interesting to modify our proposed approach so that it can be used,
for example, to generate performance indicators to be adopted in the selection
mechanism of an (indicator-based) MOEA.

Generation of New Scalarizing Functions Using GP 17

References

1. Banzhaf, W., Francone, F.D., Keller, R.E., Nordin, P.: Genetic Programming: An
Introduction on the Automatic Evolution of Computer Programs and Its Applica-
tions. Morgan Kaufmann Publishers, San Francisco (1998)

2. Brockhoff, D., Wagner, T., Trautmann, H.: On the properties of the R2 indicator.
In: 2012 Genetic and Evolutionary Computation Conference (GECCO2012), pp.
465–472. ACM Press (2012). ISBN: 978-1-4503-1177-9

3. Coello Coello, C.A.: A comprehensive survey of evolutionary-based multiobjective
optimization techniques. Knowl. Inf. Syst. 1(3), 269–308 (1999)

4. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolution-
ary multiobjective optimization.In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evo-
lutionary Multiobjective Optimization. Theoretical Advances and Applications,
pp. 105–145. Springer, USA (2005)

5. Hardin, D.P., Saff, E.B.: Minimal Riesz energy point configurations for rectifiable
d-dimensional manifolds. Adv. Math. 193(1), 174–204 (2005)

6. Hernández Gómez, R.: Parallel Hyper-Heuristics for Multi-Objective Optimization.
Ph.D. thesis, Department of Computer Science, CINVESTAV-IPN, Mexico City,
México (2018)

7. Hernández Gómez, R., Coello Coello, C.A.: Improved metaheuristic based on the
R2 indicator for many-objective optimization. In: 2015 Genetic and Evolutionary
Computation Conference (GECCO). pp. 679–686. ACM Press (2015), ISBN 978-
1-4503-3472-3

8. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5),
477–506 (2006)

9. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using
reference-point based nondominated sorting approach, part ii: handling constraints
and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–
622 (2014)

10. Koza, J.R.: Genetic programming as a means for programming computers by nat-
ural selection. Stat. Comput. 4(2), 87–112 (1994)

11. La Cava, W., Helmuth, T., Spector, L., Danai, K.: Genetic programming with epi-
genetic local search. In: 2015 Genetic and Evolutionary Computation Conference
(GECCO). pp. 1055–1062. ACM Press (2015), ISBN 978-1-4503-3472-3

12. Pescador-Rojas, M., Hernández Gómez, R., Montero, E., Rojas-Morales, N., Riff,
M.-C., Coello Coello, C.A.: An overview of weighted and unconstrained scalarizing
functions. In: Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp. 499–
513. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0 34

13. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multiobjective evo-
lutionary algorithms based on decomposition. IEEE Trans. Evol. Comput. 21(3),
440–462 (2017)

14. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective
evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput.
1(1), 32–49 (2011)

15. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on
the design of pareto-compliant indicators via weighted integration. In: Obayashi,
S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol.
4403, pp. 862–876. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-70928-2 64

https://doi.org/10.1007/978-3-319-54157-0_34
https://doi.org/10.1007/978-3-540-70928-2_64
https://doi.org/10.1007/978-3-540-70928-2_64

The Usability Argument for Refinement
Typed Genetic Programming

Alcides Fonseca(B) , Paulo Santos , and Sara Silva

LASIGE, Faculdade de Ciencias da Universidade de Lisboa, Lisbon, Portugal
{alcides,sara}@fc.ul.pt, psantos@lasige.di.fc.ul.pt

Abstract. The performance of Evolutionary Algorithms is frequently
hindered by arbitrarily large search spaces. In order to overcome this
challenge, domain-specific knowledge is often used to restrict the repre-
sentation or evaluation of candidate solutions to the problem at hand.
Due to the diversity of problems and the unpredictable performance
impact, the encoding of domain-specific knowledge is a frequent problem
in the implementation of evolutionary algorithms.

We propose the use of Refinement Typed Genetic Programming,
an enhanced hybrid of Strongly Typed Genetic Programming (STGP)
and Grammar-Guided Genetic Programming (GGGP) that features an
advanced type system with polymorphism and dependent and refined
types.

We argue that this approach is more usable for describing common
problems in machine learning, optimisation and program synthesis, due
to the familiarity of the language (when compared to GGGP) and the
use of a unifying language to express the representation, the phenotype
translation, the evaluation function and the context in which programs
are executed.

Keywords: Genetic Programming · Refined types · Search-based
software engineering

1 Introduction

Genetic Programming (GP) [28] has been successfully applied in different areas,
including bioinformatics [13], quantum computing [35], and supervised machine
learning [19]. One of the main challenges of applying GP to real-world prob-
lems, such as program synthesis, is the efficient exploration of the vast search
space. Frequently, domain knowledge can be used to restrict the search space,
making the exploration more efficient. Strongly Typed Genetic Programming
(STGP) [24] restricts the search space by ignoring candidates that do not type
check. To improve its expressive power, STGP has been extended with type

This work was supported by LASIGE (UIDB/00408/2020) and the CMU—Portugal
project CAMELOT (POCI-01-0247-FEDER-045915).

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 18–32, 2020.
https://doi.org/10.1007/978-3-030-58115-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_2&domain=pdf
http://orcid.org/0000-0002-0879-4015
http://orcid.org/0000-0002-0154-8989
http://orcid.org/0000-0001-8223-4799
https://doi.org/10.1007/978-3-030-58115-2_2

The Usability Argument for Refinement Typed Genetic Programming 19

inheritance [10], polymorphism [37] and a Hindley-Milner inspired type sys-
tem [22], the basis for those in Haskell, SML, OCaml or F�.

Grammar-Guided Genetic Programming (GGGP) [21] also restricts the
search space, sometimes enforcing the same rules as STGP, only allowing the gen-
eration of individuals that follow a given grammar. Grammar-based approaches
have also been developing towards restricting the search space. The initial pro-
posal [21] used context-free grammars (CFG) in the Backus Normal Form. The
GAUGE [31] system relies on attribute grammars to restrict the phenotype
translation from a sequence of integers. Christiansen grammars [6,33] can express
more restrictions than CFGs, but still have limitations, such as variable scoping,
polymorphism or recursive declarations.

We propose Refinement Typed Genetic Programming (RTGP) as a more
robust version of STGP through the use of a type system with refinements
and dependent types. Languages with these features have gained focus in the
Programming Languages (PL) research area: LiquidHaskell [36] is an extension
of Haskell that supports refinements; Agda [2] and Idris [3] are dependently-
typed languages that are frequently used as theorem provers. These languages
support the encoding of specifications within the type system. Previously, special
constructs were required to add specification verification within the source code.
This idea was introduced in Eiffel [23] and applied later to Java with the JML
specification language [18].

In particular, our major contributions are:

• A GP approach that relies on a simple grammar combined with a dependent
refined type system, with the argument that this approach is more expressive
than existing approaches;

• Concretisation of this approach in the Æon Programming Language.

These contributions advance GP through a new interface in which to define
representations and assess their success. One particular field where our approach
might have a direct impact is general program synthesis. We identify two dif-
ficulties in the literature [15]: a) the large search space that results from the
combination of language operators, grammar and available functions, and b) the
lack of a continuous fitness function. We address both aspects within the same
programming language.

In the remainder of the current paper we present: the Æon language for
expressing GP problems (Sect. 2); a method for extracting fitness functions from
Æon programs (Sect. 3); the Refined Typed Genetic Programming approach
(Sect. 4); examples of RTGP (Sect. 5); a comparison with other approaches,
from a usability point of view (Sect. 6); and concluding remarks (Sect. 7).

2 The Æon Programming Language

We introduce the Æon programming language as an example of a language
with polymorphism and non-liquid refinements. This language can be used as
the basis for RTGP due to its support of static verification of polymorphism and

20 A. Fonseca et al.

type Array<T> { size:Int } // size is a ghost variable

range : (mi:Int, ma:Int) → arr:Array<Int> where (ma > mi and arr.size == ma −
mi) = native;

append : (a:Array<T>, e:T) → n:Array<T> where (a.size + 1 == n.size) =
native;

listWith10Elements : (i:Int) → n:Array<Int> where (n.size == 10) {
append(range(0,i), 42) // Type error

}
fib : (n:Int) → f:Int where (n >= 0 and f >= n) {

if n < 2 then 1 else fib(n−1) + fib(n−2)
}
incomplete : (n:Int) → r:Int where (r > n && fib(r) % 100 == 0) {

�
}

Listing 1.1. An example of the Æon language

a subset of the refinements. However, RTGP is not restricted to this language
and could be applied to other languages that have similar type systems.

Listing 1.1 presents a simple example in Æon. To keep Æon a pure language,
several low-level details are implemented in a host language, which Æon can
interact with using the native construct. The range function is an example of a
function whose definition is done in the native language of the interpreter1.

What distinguishes Æon from strongly typed mainstream languages like C or
Java is that types can have refinements that express restrictions over the types.
For instance, the refinements on range specify that the second argument must be
greater than the first, and the output array has size equal to their different.

The range call in the listWith10Elements function throws a compile error
because i is an Integer, and there are integers that are not greater than 0 (the
first argument). The i argument should have been of type i:Int — i ¿ 0. How-
ever, there is another refinement being violated because if i = 1, the size of the
output will be 2 and not 10 as expected. The correct input type should have
been {i:Int where i==9} for the function to compile.

It should now be clear how a language like Æon can be used to express
domain-knowledge in GP problems. A traditional STGP solution would accept
any integer value as the argument for range and would result in a runtime-
error that would be penalized in the fitness function. Individual repair is not
trivial to implement without resorting to symbolic execution, which is more
computationally intensive than the static verification applied here.

The incomplete function, while very basic, is a simple example of the definition
of a search problem. The function receives any integer (as there are no restrictions)

1 We have developed a compiler from Æon to Java and an Æon interpreter in Python.
In each case, the range function would have to be defined in Java and Python.

The Usability Argument for Refinement Typed Genetic Programming 21

and returns an integer greater than the one received andwhoseFibonacci number is
divisible by 100. A placeholder hole (�) is left as the implementation of this func-
tion (inspired by Haskell’s and Agda’s ??name holes [8]). The placeholder allows
the program to parse, typecheck, but not execute2. Typechecking is required to
describe the search problem:Acceptable solutions are those that inhabit the type of
the hole, r:Int where r > n and fib(r)% 100 == 0 . This is an example of a depen-
dent refined type as the type of r depends on the value of n in the context. This
approach of allowing the user to define a structure and let the search fill in the
details has been used with success in sketch and SMT-based approaches [34].

While the Æon language does not make any distinction, there are two
classes of refinements for the purpose of RTGP: liquid and non-liquid refine-
ments. Liquid refinements are those whose satisfiability can be statically ver-
ified, usually through the means of an SMT solver. One such example is
x:Integer where x.size % 2 == 0 SMT solvers can solve this kind of linear arith-

metic problems. Another example is {x:Array<Integer> where x.size > 0} because
x.size is the same as size(x) where size is an uninterpreted function in SMT
solving.

Non-liquid refinements are those that SMT solvers are not able to reason
about. These are typically not allowed in languages like LiquidHaskell [36]. One
example is the second refinement of incomplete function, because
the verification of correctness requires the execution of the fib function, which
can only be called during runtime [7], typically for runtime verification. Another
example of a non-liquid refinement would be the use of any natively defined
function because the SMT cannot be sure of its behaviour other than the liquid
refinement expressed in its type. For instance, when considering a native function
that makes an HTTP request, an SMT solver cannot guess statically what kind
of reply the server would send.

3 Refinements in GP

Now that we have addressed the difference between liquid and non-liquid refined
types, we will see how both are used in the RTGP process. Figure 1 presents an
overview of the data flow of the evolutionary process, starting from the prob-
lem formulation in Æon and ending in the solution found, also in Æon. The
architecture identifies compiler components and the Æon code that is either
generated or manipulated by those components.

3.1 Liquid Refinements for Constraining the Search Space

Liquid Refinements, the ones supported by Liquid Types [30], are conjunctions
of statically verifiable logical predicates of data. We define all other refinements

2 Replacing the hole by a crash-inducing expression allows the program to compile or
be interpreted. While this is out of scope, the reader may find more in [25].

22 A. Fonseca et al.

with

Genetic Programming

Problem Formulation

Libraries

uses

Liquid Non-liquid

Population

Liquid Type
Synthesis

Selected
parents

Selection

Fitness Criteria

FitnessEvaluation

Random Input

O pring

Typesafe
Recombination

Typesafe
Mutation

uses

Fitness
Conversion

Found
Solution

Legend

on Code

Compiler
component

Candidate
solution

Fig. 1. Architecture of the proposed approach.

as non-liquid refinements. An example of a liquid type is {x:Int where x > 3 and

x < 7}, where x > 3 and x < 7 are liquid refinements.
In our approach, liquid refinements are used to constraint the generation of

candidate programs. Through the usage of a type-checker that supports Liquid
Types, we are preventing candidates that are known to be invalid from being
generated in the first place. However, the use of a type-checker is not ideal, as
several invalid candidates might be generated before one that meets the liquid
refinement is found. Synquid [29] is a first step in improving the performance
of liquid type synthesis. Synquid uses an enumerative approach and an SMT-
solver to synthesize programs from a Liquid Type. However, Synquid has several
limitations for this purpose: it is unable to synthesize simple refinements related
to numerical values (such as the previous example), it is deterministic since
it uses an enumerative approach, and while it is presented as complete with
regards to the semantic values (can generate all programs that can be expressed
in the subset of supported Liquid Types), it it not complete with regards to
the syntactic expression. As an example, Synquid is able to synthesize 2 as an
integer, but not 1+1, since the semantic values are equivalent. For the purposes
of GP, not being able to synthesize more complex representations of the same
program prevents recombination and mutation from exploring small alternatives.
We are in the process of formalizing an algorithm that is more complete than
Synquid for this purpose.

The RTGP algorithm (Sect. 4) uses the liquid type synthesis algorithm for:

• Generating random input arguments in fitness evaluation (Sect. 3.2);
• Generating a random individual in the initial population;

The Usability Argument for Refinement Typed Genetic Programming 23

Table 1. Conversion function f between boolean expressions and continuous values.

Boolean Continuous

true, false 0.0, 1.0

x = y norm(|x − y|)
x �= y 1 − f(x == y)

a ∧ b (f(a) + f(b))/2

a ∨ b min(f(a), f(b))

(continued)

a → b f(¬a ∨ b)

¬a 1 − f(a)

x ≤ y norm((x − y))

x < y norm((x − y + δ))

• Generating a subtree in the mutation operator;
• Generating a subtree in the recombination operator, when the other parent

does not have a compatible node.

3.2 Non-liquid Refinements to Express Fitness Functions

A good fitness function is ideally continuous and should be able to measure
how close to the real solution a potential solution is. However, fulfiling a given
specification is a boolean criterion: it either is fulfilled or not. While previous
work [15] has used the number of passed tests as the fitness function, we aim to
have a more fine-grained measurement of how far each test is from passing. In
particular, we consider the overall error as the fitness value, and the search as a
minimization problem.

We propose the use of non-liquid refinement types to synthesize a continuous
fitness criteria from the specification (depicted in Fig. 1) that, together with
randomly generated input values, is used to obtain the fitness function.

f : (n:{Int | n > 0 }, a:{Array<String> | a.size == 3}) → r:Int where (r > n &&
fib(r) % 100 == 0 and (n > 4 → serverCheck(r) == 3)) { � }

Listing 1.2. An example of a specification that corresponds to a bi-objective problem

Listing 1.2 shows an example with a liquid refinement (r > n) and two non-liquid
clauses in the refinement. Each of these two clauses is handled individually as in
a multi-objective problem. Each clause is first reduced to the conjunctive normal
form (CNF) and then converted from a predicate into a continuous function that,
given the input and expected output, returns a floating point number between
0.0 and 1.0, where the value represents the error. For instance, the example in
Listing 1.2 is converted to two functions:

Table 1 shows the conversion rules between boolean expressions and corre-
sponding continuous values. The function f , which is defined using these rules,
is applied recursively until a final continuous expression is generated. This app-
roach is an extension of that presented in [12].

24 A. Fonseca et al.

Since the output of f is an error, the value true is converted to 0.0, stat-
ing that condition holds, otherwise 1.0, this being the maximum value of not
complying with the condition. Variables and function calls are also converted to
0.0 and 1.0 on whether the condition holds or not. Equalities of numeric values
are converted into the normalized absolute difference between the arguments.
The normalization is required as it allows different clauses to have the same
importance on the given specification. Inequalities are converted to equalities
and its difference with 1, negating the fitness result from equality. Conjunc-
tions are converted to the average of the sum of the fitness extraction of both
operands. Disjunctions value is obtained by extracting the minimum fitness value
of both clauses. The minimum value indicates what clause is the closest to no
error. Conditional statements fitness is recursively extracted by using the mate-
rial implication rule. Similarly to inequalities, the negation of conditions denies
the value returned by the truth of the condition. Numeric value comparisons
represented a harder challenge as there are intervals where the condition holds.
We use the difference of values to represent the error. In the < and > rules, the δ
constant depends on the type of the numerical value, 1.0 for integers and 0.00001
for doubles, and is essential for the extra step required for the condition to hold
its truth value. A rectifier linear unit was used to ensure that if the condition
holds, it is set to the maximum between the negative number and 0, otherwise,
if the value is greater than 0, the positive fitness value is normalized.

The fitness function is the result of applying each fi for each non-liquid
refinement to a set of randomly generated (using the liquid synthesis algorithm
in Sect. 3.1) input values. The fitness of an individual is the combination of all
fi for all random input values.

4 The RTGP Algorithm

The proposed RTGP algorithm follows the classical STGP [24] in its structure
but differs in the details. Just like in all GP approaches, multiple variants can
be obtained by changing or swapping some of the components presented here.

4.1 Representation

RTGP can have either a bitstream representation (e.g., [31]) or a direct repre-
sentation (e.g., [24]). For the sake of simplicity, let us consider the direct repre-
sentation in the remainder of the paper.

4.2 Initialization Procedure

To generate random individuals, the algorithm mentioned in Sect. 3.1 is used
with the context and type of the � as arguments. This is repeated until the
population has the desired size. Koza proposed the combination of full and grow
as ramped-half-and-half [14], which is used in classical STGP. In RTGP, the full
method is not always possible, since no valid expression with that given depth

The Usability Argument for Refinement Typed Genetic Programming 25

may exist in the language. If, for instance, we want an expression of type X and
the only function that returns X is the constructor without any parameters. In
this case, it is impossible to have any expression of type X with d greater than
1. Unlike in the STGP full method, a tree is used in the initial population, even
if it does not have the predetermined depth.

4.3 Evaluation

The goal of the search problem is the minimization of the error between the
observed and the expressed specification. Non-liquid refinements are translated
to multi-objective criteria (following the approach explained in Sect. 3.2). The
input values are randomly generated at each generation to prevent overfitting [9].
A fitness of 0.0 for one clause represents that all sets of inputs have passed that
condition successfully. The overall objective of the candidate is to obtain a 0.0
fitness in all clauses.

4.4 Selection and Genetic Operators

Recent work has provided significant insights on parent selection in program
synthesis [11]. A variant of lexicase selection, dynamic ε-Lexicase [17] selection,
has been used to allow near-elite individuals to be chosen in continuous search
spaces.

The mutation operator chooses a random node from the candidate tree. A
replacement is randomly generated by providing the node type to the expression
synthesis algorithm along with the current node depth, fulfiling the maximum
tree depth requirement. The valid subtrees of the replaced node are provided as
genetic material to the synthesizer, allowing partial mutations on the candidate.

The crossover operator selects two random parents using the dynamic ε-
lexicase selection algorithm. A random node is chosen from the first parent, and
nodes with the same type from the second parent are selected for transplantation
into the first parent. If no compatible nodes are found, the expression synthesizer
is invoked using the second parent valid subtrees, and the remaining first parent
subtrees as genetic material. This is similar to how STGP operates, with the
distinction that subtyping in Liquid Types refers to the implication of semantic
properties. Thus, unsafe recombinations and mutations will never occur.

4.5 Stopping Criteria

The algorithm iterates over generations of the population until one or multiple
of the following criteria are met: a) there is an individual of fitness 0.0; b)
a predefined number of generations have been iterated; c) a predefined time
duration has passed.

26 A. Fonseca et al.

5 Examples of RTGP

This section introduces three examples from the literature implemented in Æon.

5.1 Santa Fe Ant Trail

The Santa Fe Ant Trail problem is frequently used as a benchmark for GP. In
[26], the authors propose a grammar-based approach to solve this problem. In
RTGP, if-then-else conditions and auxiliary functions (via lambda abstraction)
are embedded in the language, making this a very readable program.

type Map;
food present : (m:Map) → Int = native;
food ahead : (m:Map) → Boolean = native;
left : (m:Map) → Map = native;
right : (m:Map) → Map = native;
move : (m:Map) → Map = native;
program : (m:Map) → m2:Map where (food present(m2) == 0) { � }

Listing 1.3. Santa Fe Ant Trail

5.2 Super Mario Bros Level Design

The second example defines the search for an interesting design for a Super Mario
Bros level that maximizes the engagement, minimizes frustration and maximizes
challenge. These functions are defined according to a model that can easily be
implemented in Æon (Listing 1.4). We present this as a more usable alternative
to the one that uses GGGP [32].

type X as {x:Integer | 5 <= x && x <= 95 }
type Y as {x:Integer | 3 <= x && x <= 5 }
type Wg as {x:Integer | 2 <= x && x <= 5 }
type W as {x:Integer | 2 <= x && x <= 7 }
type Wb as {x:Integer | 2 <= x && x <= 6 }
type Wa as Wb
type Wc as W
type Level as Pair<List<Chunk>, {enemies:List<Enemy> | 2 <= enemies.size &&

enemies.size <= 10}>;
type BoxType;
block coin() → BoxType = native;
rock coin() → BoxType = native;
block powerup() → BoxType = native;
rock empty() → BoxType = native;
type Chunk;
gap(x:X, y:Y, wg:Wg, wb:Wb, wa:Wa) → Level = native;
platform(x:X, y:Y, w:W) → Level = native;
hill(x:X, y:Y, w:W) → Level = native;

The Usability Argument for Refinement Typed Genetic Programming 27

cannon hill(x:X, y:Y, wg:Wg, wb:Wb, wa:Wa) → Level = native;
tube hill(x:X, y:Y, wg:Wg, wb:Wb, wa:Wa) → Level = native;
coin(x:X, y:Y, w:Wc) → Level = native;
cannon(x:X, y:Y, wg:Wg, wb:Wb, wa:Wa) → Level = native;
tube(x:X, y:Y, wg:Wg, wb:Wb, wa:Wa) → Level = native;
boxes(t:BoxType, b:{List<Pair<X,Y〉| 2 <= b.size && b.size <= 6 }) → Level =

native;
type Enemy;
koopa(x:X) → Enemy = native;
goompa(x:X) → Enemy = native;

generateLevel() → l:Level where (@maximize(engagement(l)) and
@minimize(frustration(l)) and @maximize(challenge(l)) { � }

Listing 1.4. Super Mario Bros Level Design

Compared with the proposed grammar [32], the complexity is similar and
productions in either version are directly correspondent. The Æon version is
arguably more expressive because the combinations of repetitions of objects
with minimum and maximum number of repetitions can be bounded using types
(enemies and boxes).

5.3 Logical Gates

The third example is taken from [27], where the goal is to “given any logical
function, find a logically equivalent symbolic expression that uses only the oper-
ators in one of the three following complete sets: and, or, not, nand, nor”. The
authors propose a Christiansen grammar, which is context-sensitive, to express
this problem. Listing 1.5 presents a more simple implementation of the problem
using Æon. It can be argued that the implementation using refinements comes
more directly from the problem statement than the complex dynamic grammar
used in [27]. Furthermore, the implementation of the operations can be done
directly in the same language.

set(x:Boolean) → y:Boolean = uninterpreted;
andG(x:Boolean, y:Boolean) → z:Boolean where (set(x) == 1 and set(y) == 1

and set(z) == 1) = { x && y }
or(x:Boolean, y:Boolean) → z:Boolean where (set(x) == 1 and set(y) == 1 and

set(z) == 1) = { x || y }
not(x:Boolean) → z:Boolean where (set(x) == 1 and set(z) == 1) = { !x }
nand(x:Boolean, y:Boolean) → z:Boolean where (set(x) == 2 and set(y) == 2

and set(z) == 2) = { !(x && y) }
nor(x:Boolean, y:Boolean) → z:Boolean where (set(x) == 3 and set(y) == 3 and

set(z) == 3) = { !(x || y) }
target : (x:Boolean, ..., z:Boolean) → e:Boolean where (e == f(x,...z)) { � }

Listing 1.5. Equivalent Logical Gates to a given function f.

28 A. Fonseca et al.

6 Discussion

This section compares RTGP with GGGP and presents arguments why RTGP
could be used instead of GGGP. Because Dependent Types can encode gram-
mars [5], the performance of both approaches is equivalent.

6.1 A Direct Comparison with GGGP

A survey on GGGP [21] identified the advantages and disadvantages of GGGP.
We compare with RTGP on the advantages:

• Ability to declaratively restrict the search space—A type system is
used instead of a grammar to express the restriction.

• Problem Structure—Problem domains that already follow a grammar
structure can be easily encoded in RTGP. RTGP can more directly encode
several problems than a grammar. Two examples are General-purpose pro-
gramming and the Logical Gates problem (Sect. 5.3).

• Homologous Operators—Both GGGP and RTGP restrict the replacement
of one component by another of similar close values.

• Flexible Extension—Extensions to GP can be encoded both in grammars
and dependent types. Both approaches can be used as engines to test other
GP concepts.

And disadvantages:

• Feasibility Constraints—Both GGGP and RTGP make the design of new
operators a more significant challenge than in STGP, given that operators
should follow the constraints imposed by the system. All RTGP operators
are shared among any problem and rely solely on two algorithms: the type
checker and expression synthesis.

• Repair Mechanisms—Implementing repairing in GGGP often depends on
the grammar. RTGP relies on n expression synthesis algorithm (Sect. 3.1)
that generates individuals in a way that constraints are never violated. The
same has been done for the mutation and crossover operators. However, a
repair mechanism is straightforward: the type-checker identifies the malign
node, and expression synthesis generates a replacement.

• Limited Flexibility—GGGP is flexible when the program can be directly
encoded in a context-free grammar. Some GGGP approaches use context-
sensitive grammars (CSGP) [27], but readability can become a problem
(explained in Sect. 6.2).

• Turing Incompleteness—GGGP supports grammars with semantics that
allow the encoding of Turing-complete and incomplete problems. As such,
GGGP does not offer any additional support for computation paradigms such
as recursion and iteration, like other GP systems. RTGP supports both recur-
sion and iteration directly, unless otherwise specified.

The Usability Argument for Refinement Typed Genetic Programming 29

6.2 Usability

Instead, the main argument for RTGP over GGGP is one that concerns with
usability. First, RTGP provides an integrated environment for describing the
context, the problem, the search space and the solutions. Taking Æon as an
example of RTGP, the environment in which the final program will execute
can be defined, relying on native functions to use software written in other
programming languages. The problem is defined using refined types for the goal
of the system, and a hole marker (�) is left as a placeholder for the program
we are looking for. The search space is defined by the types used in the problem
definition. Finally, the solution is a program in the same language as everything
else, so it is ready to execute (and be evaluated).

On the other hand, if one were to use GGGP, one would have to create each
of these components individually. The lack of a de-facto standard framework
for GGGP helps this argument, in which interfacing with the context can be
more complicated than implementing GGGP itself. GGGP concerns only with
the description of the search space, while RTGP provides an integrated view of
using GP.

The strongest point for RTGP is that it does not require the user to define
a grammar. Just by placing holes in a program, users can use RTGP without
even knowing how to define a grammar. Instead, they need to know how to use a
familiar programming language (which to implement GGGP is already required)
and to know how to express desired properties in refined types. While refined
types have not yet become mainstream, several languages have feature subsets of
its features for a long time. Eiffel [23] supported pre- and post-conditions since
1986. Ada is another language that supports design by contract [4], and it is
very popular for critical embedded development, being used for large projects
in air traffic control [16] with more than 1 million lines of code. Advanced type
systems have become more popular to prevent bugs from existing in codebases.
Mozilla created Rust to avoid concurrency issues in the Firefox browser [20],
and Microsoft is using PL and SMT-based techniques to verify low-level critical
components of the kernel and drivers [1].

7 Conclusions and Future Work

We have presented Refinement Typed Genetic Programming (RTGP) as an app-
roach to describe search problems in an integrated programming language. We
have introduced a language, Æon, capable of expressing the environment, the
fitness function, the search space, and the solution. The language features an
advanced type system with liquid and non-liquid types. We have provided a
methodology to generate the fitness function from non-liquid refined types, and
we have introduced an algorithm that generates expressions from any inhabitable
type in this language.

In Sect. 6 we have compared RTGP against GGGP, concluding that they
are equivalent in expressiveness. However, we argue that RTGP provides better
usability for end-users than GGGP, in which all aspects of the evolution have

30 A. Fonseca et al.

to be implemented. Furthermore, expressing restrictions in types allows more
modular programs and better readability inside an integrated experience for
defining and using RTGP.

There are still some aspects to explore with regards to RTGP: identifying
the most efficient representation; improving the liquid type synthesis; finding the
best representation for non-functional properties of programs; how to integrate
this synthesis in an integrated editor; and to perform a exhaustive benchmark
performance analysis.

References

1. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and static driver verifier:
technology transfer of formal methods inside microsoft. In: Boiten, E.A., Derrick,
J., Smith, G. (eds.) IFM 2004. LNCS, vol. 2999, pp. 1–20. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24756-2 1

2. Bove, A., Dybjer, P., Norell, U.: A brief overview of agda – a functional language
with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03359-9 6

3. Brady, E.: Idris, a general-purpose dependently typed programming language:
design and implementation. J. Funct. Program. 23(05), 552–593 (2013)

4. Brink, K., van Katwijk, J., Toetenel, W.: Ada 95 as implementation vehicle for
formal specifications. In: Proceedings of 3rd International Workshop on Real-Time
Computing Systems and Applications, pp. 98–105. IEEE (1996)

5. Brink, K., Holdermans, S., Löh, A.: Dependently typed grammars. In: Bolduc, C.,
Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS, vol. 6120, pp. 58–79. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13321-3 6

6. Christiansen, H.: A survey of adaptable grammars. ACM SIGPLAN Notices
25(11), 35–44 (1990)

7. Elmas, T., Tasiran, S., Qadeer, S.: Vyrd: verifying concurrent programs by runtime
refinement-violation detection. ACM SIGPLAN Notices 40(6), 27–37 (2005)

8. Gissurarson, M.P.: Suggesting Valid Hole Fits for Typed-Holes in Haskell. Master’s
thesis (2018)

9. Gonçalves, I., Silva, S., Melo, J.B., Carreiras, J.M.B.: Random Sampling Technique
for Overfitting Control in Genetic Programming. In: Moraglio, A., Silva, S., Kraw-
iec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 218–229.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29139-5 19

10. Haynes, T.D., Schoenefeld, D.A., Wainwright, R.L.: Type inheritance in strongly
typed genetic programming. Adv. Genetic Program. 2(2), 359–376 (1996)

11. Helmuth, T., Mcphee, N., Spector, L.: Lexicase selection for program synthesis: a
diversity analysis, pp. 151–167 (2016)

12. Korel, B.: Automated software test data generation. IEEE Trans. Software Eng.
16(8), 870–879 (1990)

13. Kosakovsky Pond, S.L., Posada, D., Gravenor, M.B., Woelk, C.H., Frost, S.D.:
Gard: a genetic algorithm for recombination detection. Bioinformatics 22(24),
3096–3098 (2006)

14. Koza, J.R.: Genetic Programming: On The Programming of Computers by Means
Of Natural Selection, vol. 1. MIT press (1992)

https://doi.org/10.1007/978-3-540-24756-2_1
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-13321-3_6
https://doi.org/10.1007/978-3-642-29139-5_19

The Usability Argument for Refinement Typed Genetic Programming 31

15. Krawiec, K.: Program synthesis. Behavioral Program Synthesis with Genetic Pro-
gramming. SCI, vol. 618, pp. 1–19. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-27565-9 1

16. Kruchten, P., Thompson, C.J.: An object-oriented, distributed architecture for
large-scale ADA systems. In: Proceedings of the Conference on TRI-ADA 1994,
pp. 262–271 (1994)

17. La Cava, W., Helmuth, T., Spector, L., Moore, J.H.: A probabilistic and multi-
objective analysis of lexicase selection and e-lexicase selection. Evol. Comput.
27(3), 377–402 (2019). https://doi.org/10.1162/evco a 00224

18. Leavens, G.T., Baker, A.L., Ruby, C.: JML: a Java modeling language. In: Formal
Underpinnings of Java Workshop (at OOPSLA), pp. 404–420 (1998)

19. Loveard, T., Ciesielski, V.: Representing classification problems in genetic pro-
gramming. In: Evolutionary Computation, vol. 2, pp. 1070–1077. IEEE (2001)

20. Matsakis, N.D., Klock, F.S.: The rust language. ACM SIGAda Ada Letters 34(3),
103–104 (2014)

21. Mckay, R.I., Hoai, N.X., et al.: Grammar-based genetic programming: a survey.
Genetic Program. Evol. Mach. 11(3), 365–396 (2010)

22. McPhee, N.F., Hopper, N.J., Reierson, M.L.: Impact of types on essentially typeless
problems in GP. In: Genetic Programming, pp. 232–240 (1998)

23. Meyer, B.: Eiffel: programming for reusability and extendibility. ACM Sigplan
Notices 22(2), 85–94 (1987)

24. Montana, D.J.: Strongly typed genetic programming. Evol. Comput. 3(2), 199–230
(1995)

25. Omar, C., Voysey, I., Chugh, R., Hammer, M.A.: Live functional programming
with typed holes. Proc. ACM Program. Lang. 3(POPL), 1–32 (2019)

26. O’Neill, M., Ryan, C.: Grammar based function definition in grammatical evolu-
tion. In: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary
Computation, pp. 485–490 (2000)

27. Ortega, A., De La Cruz, M., Alfonseca, M.: Christiansen grammar evolution: gram-
matical evolution with semantics. IEEE Trans. Evol. Comput. 11(1), 77–90 (2007)

28. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming.
Published via http://lulu.com and freely available at http://www.gp-field-guide.
org.uk (2008), (With contributions by J. R. Koza)

29. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymor-
phic refinement types. In: Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 522–538. ACM (2016)

30. Rondon, P.M., Kawaguci, M., Jhala, R.: Liquid types. In: Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pp. 159–169 (2008)

31. Ryan, C., Nicolau, M., ONeill, M.: Genetic Algorithms Using Grammatical Evo-
lution. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A. (eds.)
EuroGP 2002. LNCS, vol. 2278, pp. 278–287. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45984-7 27

32. Shaker, N., Nicolau, M., Yannakakis, G.N., Togelius, J., O’neill, M.: Evolving levels
for super mario bros using grammatical evolution. In: 2012 IEEE Conference on
Computational Intelligence and Games (CIG). pp. 304–311. IEEE (2012)

33. Shutt, J.N.: Recursive adaptable grammars (1999)
34. Solar-Lezama, A.: Program synthesis by sketching. University of California, Berke-

ley (2008)

https://doi.org/10.1007/978-3-319-27565-9_1
https://doi.org/10.1007/978-3-319-27565-9_1
https://doi.org/10.1162/evco_a_00224
http://lulu.com
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
https://doi.org/10.1007/3-540-45984-7_27
https://doi.org/10.1007/3-540-45984-7_27

32 A. Fonseca et al.

35. Spector, L., Barnum, H., Bernstein, H.J., Swamy, N.: Finding a better-than-
classical quantum and/or algorithm using genetic programming. In: Evolutionary
Computation. vol. 3, pp. 2239–2246. IEEE (1999)

36. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Peyton-Jones, S.: Refinement
types for haskell. In: ACM SIGPLAN Notices. vol. 49, pp. 269–282. ACM (2014)

37. Yu, T.: Polymorphism and Genetic Programming. In: Miller, J., Tomassini, M.,
Lanzi, P.L., Ryan, C., Tettamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001.
LNCS, vol. 2038, pp. 218–233. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45355-5 17

https://doi.org/10.1007/3-540-45355-5_17
https://doi.org/10.1007/3-540-45355-5_17

Program Synthesis in a Continuous Space
Using Grammars and Variational

Autoencoders

David Lynch1(B), James McDermott2(B), and Michael O’Neill1(B)

1 Natural Computing Research and Applications Group, UCD, Dublin, Ireland
{david.lynch,m.oneill}@ucd.ie

2 School of Computer Science, National University of Ireland, Galway, Ireland
james.mcdermott@nuigalway.ie

Abstract. An important but elusive goal of computer scientists is the
automatic creation of computer programs given only input and output
examples. We present a novel approach to program synthesis based on
the combination of grammars, generative neural models, and evolutionary
algorithms. Programs are described by sequences of productions sampled
from a Backus-Naur form grammar. A sequence-to-sequence Variational
Autoencoder (VAE) is trained to embed randomly sampled programs in a
continuous space – the VAE’s encoder maps a sequence of productions (a
program) to a point z in the latent space, and the VAE’s decoder recon-
structs the program given z. After the VAE has converged, we can engage
the decoder as a generativemodel thatmaps locations in the latent space to
executable programs. Hence, an Evolutionary Algorithm can be employed
to search for a vector z (and its corresponding program) that solves the syn-
thesis task. Experiments on the program synthesis benchmark suite sug-
gest that the proposed approach is competitive with tree-based GP and
PushGP. Crucially, code can be synthesised in any programming language.

1 Introduction

The automatic generation of computer programs has been a goal of researchers
in the field of computer science since the origins of the discipline [34]. There
are reports of primitive program synthesis in the literature dating back to the
1950’s [11,12] with many examples since [13,30,36,37]. The arrival of Genetic
Programming and its variants in the late 1980’s renewed hopes that programs
could be automatically generated by computers. In recent years, researchers in
the wider machine learning community have also started to focus on program
synthesis [1,14,16,22]. This interest is driven by the expectation that real-world
applications of automated program synthesis will have enormous economic and
social impact, and will also have important implications for artificial general
intelligence [4].

The ability to automatically synthesise programs that solve challenging
real-world problems remains an elusive goal. Reasons include the discrete and
variable-length nature of computer programs, the non-local mapping between

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 33–47, 2020.
https://doi.org/10.1007/978-3-030-58115-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_3

34 D. Lynch et al.

syntax and semantics, the “all or nothing” aspect of program correctness, and
the vast search space.

Genetic Programming (GP) [2,25,35], and its grammar-based variants [29,
33], is a form of evolutionary computation [5,21] which can be used for program
synthesis. GP routinely achieves human-competitive performance [24] in diverse
domains including symbolic regression, architecture, and network optimisation.
However, GP has yet to realise its full potential as an engine for automatic
programming.

Recently, GP researchers have been calling for an increased focus on pro-
gram synthesis that embraces techniques drawn from the wider fields of analytics
and machine learning [32,34]. One promising research direction looks to combine
grammars with autoencoders [20,23]. For instance, Kusner et al. [28] used a com-
bination of grammars and a Variational Autoencoder (VAE) [23] to learn repre-
sentations for two domains: symbolic regression and drug discovery. The VAE dis-
covers a latent-space encoding of the neighbourhood of sentences in the language
expressed by the grammar. The learned representation has appealing properties:
it is continuous, approximately normally-distributed, and relatively syntactically
and semantically smooth. Thus, powerful numerical optimisation algorithms can
be employed to search for new arithmetic expressions or drug molecules.

In this study, we adopt a VAE with a sequence-to-sequence structure, in
conjunction with grammars that represent a subset of the Python programming
language. The VAE discovers a latent-space encoding of Python programs. An
Evolutionary Algorithm [5] is used to successfully search this representation for
novel programs. We examine a subset of problems with a range of difficulty
drawn from the program synthesis benchmark suite [18].

The remainder of this paper is organised as follows. The grammars, VAE,
and evolutionary algorithms are developed in Sect. 2. Our experimental set-up is
described in Sect. 3. The proposed approach is benchmarked against canonical
grammar-based GP and PushGP [39] in Sect. 4. Finally, we draw conclusions
and outline how the algorithms could be improved in Sect. 5.

2 Methods

The main components of our approach are described in this section. Grammars
that enable the creation of Python code to solve arbitrary program synthesis
tasks are outlined. Our goal is to learn a latent representation of programs using
a Variational Autoencoder (VAE). The VAE architecture is presented, and an
Evolutionary Algorithm (EA) is developed to search its latent space.

2.1 Grammar Design Pattern

Grammars have commonly been used to represent program spaces in GP [29,33].
However, bespoke grammars had to be written for different program synthesis
tasks. Forstenlechner et al. introduced a grammar design pattern to address this
inflexibility [9,10]. Their idea is to create a separate grammar for the Boolean,

Program Synthesis in a Continuous Space Using Grammars 35

float, integer, and string data types (see [8]). These sub-grammars are combined
depending on what data types are required to solve a problem. An additional
grammar constrains the control flow, such as the arrangement of conditionals
and loops. Grammars guarantee type safety and they ensure that all individuals
are syntactically correct. Runtime exceptions are further reduced via protected
methods. Crucially, code can be created in any programming language including
Python, Java, C, etc. We synthesise Python code in this paper.

2.2 Variational Autoencoder

VAEs are generative neural models consisting of an encoder and a decoder. In
this section, we present an encoder that embeds discrete programs as vectors z
in a continuous latent space. The decoder maps points in this latent space back
to programs. Our goal is to search for fit programs by performing numerical
optimisation in the latent space.

Fig. 1. A toy grammar is displayed in Plot (a). The derivation tree in Plot (b) is
realised by expanding production rules 0, 2, and 5. In Plot (c), the program is given by
a sequence of one-hot vectors (including an ‘EOS’ token). Finally, each one-hot vector
is associated with a learned embedding vector in Plot (d).

Initially, a grammar for the program synthesis task is formed as outlined in
Sect. 2.1. The VAE is trained on a corpus of programs sampled from this gram-
mar. For example, consider the toy grammar and the sampled program displayed
in Fig. 1. The production rules used to generate the program are represented by
a sequence of one-hot vectors õ = (o0, o2, o5, o8). The associated embeddings
ẽ = (e0, e2, e5, e8) are then passed as inputs to the encoder.

We adopt a bidirectional [38] gated recurrent unit network [3] (BiGRU) as
the encoder. A recurrent model lends itself naturally to modelling sequences of
production rules. Furthermore, the BiGRU can deal with input sequences of an
arbitrary length (that is, programs of different sizes). The flow of information
through the encoder is illustrated in Fig. 2. A sequence of embeddings1 ẽ is
provided as an input to the BiGRU. The function

−→
G(·) is a GRU cell [3] that

1 Only (e2, e5) are displayed for clarity, but in practice (e0, e2, e5, e8) would be used.

36 D. Lynch et al.

z

Fig. 2. The encoder maps embeddings ẽ of the production rules used to generate a
program to a latent representation z.

integrates the current embedding vector ẽt with the previous forward hidden
state

−→
h t−1 to give

−→
ht . Similarly,

←−
G(·) updates the previous backward hidden

state. The hidden states emerging from the BiGRU are concatenated to yield a
summary of the program h. Hence, the latent code z is given by:

z = (Whμh + bμ) + ε (Whσh + bσ) = μ + εσ, (1)

where the weight matrices W and bias vectors b are learned parameters of the
model. Variables μ and σ are interpreted as the mean and standard deviation of a
multivariate normal distribution N (μ, σ), and ε is sampled from the multivariate
standard normal distribution N (0, 1). The auxiliary variable ε allows gradients
to flow backwards through the network [23].

Fig. 3. The decoder reconstructs the sequence of one-hot vectors õ that encode a
program given its latent representation z.

The decoder in Fig. 3 reconstructs the program given z. We implement the
decoder as a forward GRU network. The outputs are one-hot vectors or, which
indicate the predicted production rule at a given timestep. Two inputs are

Program Synthesis in a Continuous Space Using Grammars 37

provided to the GRU cell
−→
G(·) at each timestep. The first input is the pre-

vious hidden state (initialised to
−→
h0 = z). The second input is the vector ẽt−1

concatenated with z, where ẽt−1 is the embedding of the production rule from
the previous timestep (initialised to ẽ0 = e0). Utilising an autoregressive input
helps the decoder keep track of previously selected production rules.

Recall that the program in Fig. 2b is described by one-hot vectors õ =
(o0, o2, o5, o8), mediating the expansion 〈start〉 → 〈code〉 → 〈int〉 → 3 plus a
final ‘EOS’ token. A sequence of reconstructed one-hot vectors or are computed
by the decoder as follows:

– t = 0: we can set or
0 = [1, 0, 0, 0, 0, 0, 0, 0, 0] since all derivation trees have

〈start〉 at their root node.
– t = 1: the non-terminal to be expanded at t = 1 is 〈code〉. In order to

select a production rule, the GRU cell emits a hidden state h1 from which
the logit l1 = softmax (mask(Whlh1 + bl)) is computed. The logit defines a
probability distribution over production rules – a mask is applied because
〈code〉 can only be expanded using rules 1 or 2 (see Fig. 2a). Since the max-
imum value of l1 occurs at index 2, it follows that rule 2 is selected and
or
1 = [0, 0, 1, 0, 0, 0, 0, 0, 0].

– t = 2: the 〈int〉 non-terminal can be expanded using rules 3, 4, or 5. Rule 5
is selected giving or

2 = [0, 0, 0, 0, 0, 1, 0, 0, 0].
– t = 3: finally the ‘EOS’ token is reached indicating that the decoding process

has terminated, and or
3 = [0, 0, 0, 0, 0, 0, 0, 0, 1].

At test time, we disregard the encoder and engage the decoder as a generative
model to search for fit programs. A program is constructed by passing a point z
in the latent space to the decoder. Non-terminals are expanded in a depth-first
manner using the one-hot vectors (that is, production rule choices) produced by
the decoder.

VAE Loss Function: In summary, a program is described by a sequence of
one-hot vectors (production rules) õ and their corresponding embeddings ẽ. We
propose to learn a continuous latent representation of programs using a VAE.
The encoder qφ(z|ẽ) maps ẽ to a latent code z. The decoder pθ(õ|z) is a generative
model that reconstructs õ given z. Parameters φ and θ are jointly optimised via
gradient descent on the loss function:

L
(
φ, θ; õ, l̃, z

)
= LAE

(
õ, l̃

)
+ LREG(z), (2)

where LAE

(
õ, l̃

)
denotes the reconstruction loss, and LREG(z) is a regularisation

loss encouraging latent codes to be normally distributed.
The reconstruction loss is defined as the cross entropy between õ and the

logits l̃ (see Fig. 3) emitted by the decoder:

LAE

(
õ, l̃

)
= − 1

|õ|
|õ|∑
t=1

õt · loge

(
l̃t

)
.

38 D. Lynch et al.

To shape the latent space, we adopt the maximum-mean discrepancy (MMD)
regularisation loss proposed by Zhao et al. [41]:

LREG(z) = MMD(z, z′),

where z ∼ qφ(z|õ) is the latent vector produced by the encoder, and z′ is sam-
pled from a multivariate standard normal distribution. The latent space realised
by minimising Eq. 2 should exhibit two properties that enable effective search.
Firstly, programs should be densely distributed near the origin. Secondly, nearby
points should decode to syntactically similar programs (high syntactic locality).

2.3 Evolutionary Algorithms

Evolutionary Algorithm: An Evolutionary Algorithm (EA) is implemented
to search the real-valued space discovered by the VAE. Programs are represented
by real vectors considered as locations in the learned representation. Initialisa-
tion, mutation, and crossover are defined on real vectors. An initial population
is obtained by sampling 1000 individuals z from a standard normal distribution.
This initial population is evolved over 300 generations as follows.

In every generation, individuals are assigned a fitness by decoding z to give a
derivation tree (program), which is then evaluated on the program synthesis task.
Fit programs are selected using tournament selection or lexicase selection [19].
Selected individuals undergo mutation and crossover. An individual z is mutated
by adding to it a vector Δz sampled from a standard normal. Crossover is applied
to every pair of selected individuals. Elements are marked for crossover with
probability 0.1. Hence, marked elements m in parents p1 and p2 are interpolated
to yield children c1 and c2 such that:

c1m = p1m + i1 × (p2m − p1m),

c2m = p2m + i2 × (p1m − p2m),

where i1 and i2 are drawn from a uniform distribution U(0, 1). Seven elites enter
the next generation without undergoing crossover or mutation.

Hill Climbing: The EA is benchmarked against a hill climbing algorithm in
order to assess the need for population-based search. Here, a single individual
zbest is initialised and evaluated. A new hypothesis zhyp is generated by adding
a sample from a standard normal Δz to zbest . Hypotheses are evaluated over
pop size × gens = 1000×300 iterations. After every iteration, zhyp replaces zbest
if the corresponding program attains a better fitness.

Genetic Programming: The EA and hill climbing algorithm perform search
in a continuous latent space. By contrast, Grammar-based Genetic Programming
(GP) [7,29] explores the discrete space of derivation trees directly. An initial pop-
ulation of 1000 randomly generated derivation trees is formed using the ramped

Program Synthesis in a Continuous Space Using Grammars 39

half-and-half method. In every generation, individuals which are selected using
tournament selection undergo subtree mutation and crossover. Subtree mutation
replaces a randomly selected subtree with a new randomly generated subtree.
Subtree crossover swaps randomly selected subtrees (with the same root node)
between two parents. Every individual undergoes mutation, and the crossover
probability is 0.9. We use generational replacement with elitism (the elite size is
7). Derivation trees are allowed to grow to a maximum depth of 16.

3 Experimental Setup

Within the GP community, a program synthesis benchmark suite has been pro-
posed [18], composed of 29 problems which might typically be assigned as exer-
cises to beginner programming students. The problems are all specified as word
problems, with recommendations for generating correct input/output pairs and
a train/test split. They require the use of multiple data types and control struc-
tures including loops. Recent work on program synthesis has made good progress
on this suite [9,10,17,19]. In this proof of concept study we examined six prob-
lems of varying difficulty drawn from the suite: grade, last index of zero,
median, negative to zero, smallest, and vectors summed.

For each problem, VAEs were trained using training and development sets
containing 49000 and 1000 programs respectively. Programs were sequences of
production rules (encoded as one-hot vectors) sampled from a grammar. The
grammars (one per problem) were assembled based on the data types required
to solve a problem (see Sect. 2.1 and in [8]). The best VAE from ten independent
runs was combined with the EA from Sect. 2.3 to enable program discovery. The
hyperparameters displayed in Table 1 were determined by trial-and-error.

Table 1. VAE hyperparameter settings.

Epochs 100

Initial learning rate 0.01

Learning rate decay rate (per epoch) 0.95

Batch size 128

Dimensionality of the latent space 50

Dimensionality of the hidden states 50

Dimensionality of the embeddings 50

Optimisation algorithm RMSprop

Gradient clipping Norm of gradients ≤ 0.00001

Model selection based on Development set loss

The evolutionary algorithms outlined in Sect. 2.3 were deployed on six prob-
lems drawn from the benchmark suite. For a given problem, 100 independent
runs of the EA-VAE and GP algorithms were carried out. Tournament selection
was adopted in one set of runs, and lexicase selection was used in another set.
Similarly, 100 runs of the hill climbing algorithm were executed for each problem.

40 D. Lynch et al.

4 Results and Discussion

We compare the proposed algorithms for automatically synthesising Python code
in this section. Success rates are reported on the training and test sets of six
problems drawn from the benchmark suite. We illustrate how transitions between
neighbouring points in the latent space map to smooth syntactic transitions
in program space. Finally, analysis of the fitness landscape reveals why some
problems are harder for the EA-VAE to solve than others.

4.1 Success Rates

The EA-VAE and GP success rates are displayed in Table 2. Both algorithms
solve more problems when lexicase selection is used to select parents; GP solves
all six problems, while the EA-VAE discovers solutions for every problem except
grade. Neither algorithm solves vectors summed under tournament selection,
but they both find solutions under lexicase selection.

Table 2. The reported results include: the success rates (out of 100 runs) on training
and test sets, median number of production rules consumed when generating programs,
and the median generation at which solutions were discovered. Results are given under
tournament selection and lexicase selection.

Problem EA-VAE GP

Train Test Rules Gen Train Test Rules Gen

grade 0 0 89 NA 10 4 404 204

median 97 97 22 50 77 27 329 102

last index of zero 5 5 28 155 16 14 299 104

negative to zero 83 83 18 33 50 47 314 13

smallest 100 100 22 18 100 86 149 12

vectors summed 0 0 23 NA 0 0 200 NA

(a) Tournament Selection.

Problem EA-VAE GP

Train Test Rules Gen Train Test Rules Gen

grade 0 0 141 NA 85 31 362 97

median 100 100 22 24 100 49 214 14

last index of zero 2 1 46 147 33 30 267 91

negative to zero 64 64 43 69 72 68 223 21

smallest 100 100 23 12 100 89 86 4

vectors summed 7 7 69 99 20 14 270 120

(b) Lexicase Selection.

Program Synthesis in a Continuous Space Using Grammars 41

Table 3. The proposed approach is benchmarked against hill climbing (HC-VAE), tree-
based GP, and PushGP. Success rates are reported on the test sets of each problem.
Lexicase selection was used in the EA-VAE, GP, and PushGP runs. The results for
PushGP are taken from [18].

Problem EA-VAE HC-VAE GP PushGP

grade 0 0 31 4

median 100 1 49 45

last index of zero 1 0 30 21

negative to zero 64 0 68 45

smallest 100 24 89 81

vectors summed 7 0 14 1

Programs evolved by the EA-VAE algorithm typically generalise perfectly
from train to test cases. The EA-VAE generalises well because it gives rise to
near minimal programs. Comparing the columns labelled “Rules” in Tables 2a
and 2b, we see that GP consumes many more production rules than the EA-
VAE. That is, GP is more susceptible to bloat. Introns may be beneficial to GP
during evolution [31], but their presence impacts generalisation to the test sets.

The success rates displayed in Table 3 confirm that the EA outperforms
greedy hill climbing. A fitness landscape analysis will reveal why the latent space
is not amenable to greedy search. The EA-VAE achieves the highest success rates
on two problems. However, GP is the most consistent algorithm overall, find-
ing multiple solutions to every problem. Unlike PushGP, the grammar-based
techniques generate interpretable Python programs, such as those in Fig. 4.

Fig. 4. We interpolate between a random point in the latent space zr, and one of the
solutions found the EA zEA. Programs are displayed for points zr + δ(zEA − zr), where
δ ∈ [0.0, 0.1, . . . , 1.0]. Note that the “\ n” symbols indicate line breaks.

42 D. Lynch et al.

The interpolations in Fig. 4 suggest that the VAE learns a relatively
smooth and coherent latent space. For example, consider the interpolations for
vectors summed. The concept of a for-loop appears, and is retained, as we move
closer to the solution zEA. Further refinements of the loop body yield a program
(red text) that achieves the desired semantics: it returns a vector ‘res0’, which
is the summation of input vectors ‘in0’ and ‘in1’. Evidence of gradual syntactic
transitions implies that the VAE packs programs densely around the origin. This
property of the latent space arises due the regularisation term in Eq. 2.

4.2 Landscape Analysis

The Cartesian space allows natural methods of landscape analysis. Figure 5
shows how fitness changes over interpolations between solutions (found by EA)
and random points (sampled from a standard normal in the VAE latent space).
The fitness landscape is characterised by neutrality and discrete steps in fitness.
Nonetheless, there is evidence of a positive fitness-distance correlation (FDC).

Fig. 5. Fitness over interpolations. We show 6 repeats, and the median over 30.

To expand on this evidence, we also present FDC results where points are
sampled rather than created by interpolation. In particular, for each trial we
randomly choose a solution z from among those found by the EA, and then
sample a random vector y from a standard normal. Because of the high dimension
(50), this gives a strong bias for Euclidean distance 5 ≤ d(z, y) ≤ 8. A solution
is to then scale y to a desired length, and we have chosen to scale y so that
d(z, y) is distributed uniformly on [0, 10]. The scatter plots in Fig. 6 allow us to
see the fitness-distance relationship over the whole space, and also focus on the
relationship for small distances.

Figure 6 indicates that several solutions exist in the region around a given
solution (where a ‘solution’ has fitness 0). Therefore, the EA is not confronted
with a needle-in-a-haystack fitness landscape. As expected, increasingly fewer
solutions are observed as we move further away from a known solution in the

Program Synthesis in a Continuous Space Using Grammars 43

Fig. 6. Fitness against distance. On the right hand side, we have plotted fitness +1 to
allow a log-plot, so 100 indicates a solution. A few outliers are excluded.

Table 4. FDC values, where R is Pearson’s correlation (excluding outliers), and τ is
Kendall’s. The grade problem is excluded because we found no solutions, and hence
cannot compute an FDC value.

Problem R τ

median 0.30 0.20

smallest 0.23 0.16

negative to zero 0.22 0.15

vectors summed 0.19 0.17

last index of zero 0.07 0.06

Fig. 7. Fitness over interpolation: as in Fig. 5, but showing the error on 3 repeats and
3 individual training cases as indexed on the right.

44 D. Lynch et al.

latent space (lower right). Table 4 shows that last index of zero, a hard prob-
lem for VAE-based search, has FDC near 0, while easier problems show increas-
ingly larger positive FDC values. Thus, FDC partly explains performance.

Because lexicase selection considers errors on individual training cases, it is
interesting to consider them separately as in Fig. 7. As expected we see some
evidence of correlation among cases.

5 Conclusions and Future Work

Variational Autoencoders (VAEs) are effective at learning a coherent continuous
representation of discrete programs. Solutions to non-trivial synthesis problems
are discovered by searching the VAE’s latent space using an Evolutionary Algo-
rithm (EA). The EA-VAE approach to program synthesis is competitive with
tree-based GP and PushGP on problems drawn from the benchmark suite. How-
ever, some problems present a neutral and discretised fitness landscape, resulting
in lower success rates for the EA-VAE versus the benchmarks.

The algorithm could be improved in a variety of ways. Firstly, it will be
interesting to explore techniques for better organising the latent space. One
possibility, inspired by Gómez-Bombarelli et al. [15], is to jointly train a multi-
layer perceptron (MLP) with the VAE. The MLP could be trained to predict
program semantics or the program’s fitness on test cases, given the VAE’s latent
layer z as input. This would encourage program semantics information to be
present, and well-structured, in the latent layer. Secondly, a more informative
fitness function could be used to guide the search algorithm. We used the raw
errors on input/output training pairs. However, program synthesis is not truly a
black-box problem. There is a wealth of additional information that can be made
available to the search algorithm, such as the program execution trace and the
semantics on individual inputs [26,27]. Finally, state of the art natural language
models, such as the transformer [40] or BERT [6], could be easily incorporated
into the VAE’s architecture. These ideas can be assessed on the full benchmark
suite, and on more recently proposed benchmarks such as the ARC problems [4].

Our approach to program synthesis combines the two dominant paradigms
in artificial intelligence: symbolic AI and connectionism. On the one hand, we
evolve symbolic programs that can express abstract concepts, generalise per-
fectly, and that can be interpreted by humans. On the other hand, programs
are embedded in the latent space using a neural network. This class of models
are adept at pattern recognition, data compression, and representation learning.
Discrete search in the space of symbolic programs will be a cornerstone of artifi-
cial intelligence research in the coming decades. We believe that hybridising the
symbolic and connectionist paradigms is a promising research direction.

Acknowledgements. This research is based upon works supported by the Science
Foundation Ireland under grant 13/IA/1850.

Program Synthesis in a Continuous Space Using Grammars 45

References

1. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: Deepcoder:
learning to write programs. In: Proceedings International Conference on Learning
Representations 2017. OpenReviews.net (2017)

2. Orzechowski, P., Magiera, F., Moore, J.H.: Benchmarking manifold learning meth-
ods on a large collection of datasets. In: Hu, T., Lourenço, N., Medvet, E., Divina,
F. (eds.) EuroGP 2020. LNCS, vol. 12101, pp. 135–150. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-44094-7 9

3. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

4. Chollet, F.: The measure of intelligence. arXiv preprint arXiv:1911.01547 (2019)
5. De Jong, K.A.: Evolutionary Computation: A Unified Approach. MIT Press, Cam-

bridge (2006)
6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirec-

tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

7. Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hemberg, E., O’Neill,
M.: PonyGE2: grammatical evolution in python. In: Proceedings of the Genetic
and Evolutionary Computation Conference Companion, pp. 1194–1201 (2017)

8. Forstenlechner, S.: Program Synthesis with Grammars and Semantics in Genetic
Programming. PhD Thesis pp. 162–175 (2019)

9. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: A Grammar Design Pattern
for Arbitrary Program Synthesis Problems in Genetic Programming. In: McDer-
mott, J., Castelli, M., Sekanina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.) EuroGP
2017. LNCS, vol. 10196, pp. 262–277. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-55696-3 17

10. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: Extending Program Syn-
thesis Grammars for Grammar-Guided Genetic Programming. In: Auger, A., Fon-
seca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018.
LNCS, vol. 11101, pp. 197–208. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99253-2 16

11. Friedberg, R.M.: A learning machine: part i. IBM J. Res. Dev. 2(1), 2–13 (1958)
12. Friedberg, R.M., Dunham, B., North, J.H.: A learning machine: part ii. IBM J.

Res. Dev. 3(3), 282–287 (1959)
13. Fujiki, C., Dickinson, J.: Using the genetic algorithm to generate LISP source

code to solve the prisoner’s dilemma. In: Proceedings of the 2nd International
Conference on Genetic Algorithms, Cambridge, MA, USA, July 1987. pp. 236–240
(1987)

14. Gaunt, A.L., et al.: TerpreT: A probabilistic programming language for program
induction. CoRR abs/1608.04428 (2016)

15. Gómez-Bombarelli, R.: Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science 4(2), 268–276 (2018)

16. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. SIGPLAN Notices 46(1), 317–330 (2011)

17. Helmuth, T., McPhee, N.F., Pantridge, E., Spector, L.: Improving generalization of
evolved programs through automatic simplification. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 937–944 (2017)

18. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceed-
ings of the 2015 Annual Conference on Genetic and Evolutionary Computation,
pp. 1039–1046 (2015)

https://doi.org/10.1007/978-3-030-44094-7_9
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1911.01547
http://arxiv.org/abs/1810.04805
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-99253-2_16
https://doi.org/10.1007/978-3-319-99253-2_16

46 D. Lynch et al.

19. Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with
lexicase selection. IEEE T. Evolut. Comput. 19(5), 630–643 (2014)

20. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786), 504–507 (2006)

21. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology. Control and Artificial Intelligence. MIT
Press, Cambridge (1975)

22. Katayama, S.: Recent Improvements of magichaskeller. In: Schmid, U., Kitzelmann,
E., Plasmeijer, R. (eds.) AAIP 2009. LNCS, vol. 5812, pp. 174–193. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11931-6 9

23. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

24. Koza, J.R.: Human-competitive results produced by genetic programming. Genet.
Program. Evol. Mach. 11(3–4), 251–284 (2010)

25. Koza, J.R., Koza, J.R.: Genetic Programming: On the Programming of Computers
by Means of Natural Selection, vol. 1. MIT press, Cambridge (1992)

26. Krawiec, K., O’Reilly, U.M.: Behavioral programming: a broader and more detailed
take on semantic GP. In: Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation, pp. 935–942 (2014)

27. Krawiec, K., Swan, J.: Pattern-guided genetic programming. In: Proceedings of the
15th Annual Conference On Genetic And Evolutionary Computation, pp. 949–956
(2013)

28. Kusner, M.J., Paige, B., Hernández-Lobato, J.M.: Grammar variational autoen-
coder. In: Proceedings of the 34th International Conference on Machine Learning-
Volume 70. pp. 1945–1954. JMLR. org (2017)

29. Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based
genetic programming: a survey. Genet. Program. Evol. Mach. 11(3–4), 365–396
(2010)

30. Muggleton, S.: Inductive logic programming: issues, results and the challenge of
learning language in logic. Artif. Intell. 114(1–2), 283–296 (1999)

31. Nordin, P., Francone, F., Banzhaf, W.: Explicitly defined introns and destructive
crossover in genetic programming. Adv. Genetic Program. 2, 111–134 (1995)

32. O’Neill, M., Fagan, D.: The Elephant in the Room: Towards the Application of
Genetic Programming to Automatic Programming. In: Banzhaf, W., Spector, L.,
Sheneman, L. (eds.) Genetic Programming Theory and Practice XVI. GEC, pp.
179–192. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04735-1 9

33. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in a Arbitrary Language (2003)

34. O’Neill, M., Spector, L.: Automatic programming: The open issue? Genetic Pro-
gramming and Evolvable Machines pp. 1–12 (2019)

35. Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A Field Guide to Genetic
Programming. Lulu.com (2008)

36. Rich, C., Waters, R.C.: Automatic programming: Myths and prospects. Computer
21(8), 40–51 (1988)

37. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM
J. Res. Dev. 3(3), 210–229 (1959)

38. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans.
Signal Process. 45(11), 2673–2681 (1997)

https://doi.org/10.1007/978-3-642-11931-6_9
http://arxiv.org/abs/1312.6114
https://doi.org/10.1007/978-3-030-04735-1_9

Program Synthesis in a Continuous Space Using Grammars 47

39. Spector, L., Klein, J., Keijzer, M.: The Push3 execution stack and the evolution of
control. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary
Computation, pp. 1689–1696 (2005)

40. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

41. Zhao, S., Song, J., Ermon, S.: InfoVAE: Information maximizing variational
autoencoders. arXiv preprint arXiv:1706.02262 (2017)

http://arxiv.org/abs/1706.02262

Cooperative Co-Evolutionary Genetic
Programming for High Dimensional

Problems

Lino Rodriguez-Coayahuitl1(B) , Alicia Morales-Reyes1 ,
Hugo Jair Escalante1,2 , and Carlos A. Coello Coello2

1 Instituto Nacional de Astrof́ısica, Óptica y Electrónica, 72840 Tonantzintla, Mexico
{linobi,a.morales,hugojair}@inaoep.mx

2 CINVESTAV-IPN, Departamento de Computación, Mexico City, Mexico
ccoello@cs.cinvestav.mx

Abstract. We propose a framework for Cooperative Co-Evolutionary
Genetic Programming (CCGP) that considers co-evolution at three dif-
ferent abstraction levels: genotype, feature and output level. A thorough
empirical evaluation is carried out on a real-world high dimensional ML
problem (image denoising). Results indicate that GP’s performance is
enhanced only when cooperation happens at an output level (ensemble-
alike). The proposed co-evolutionary ensemble approach is compared
against a canonical GP implementation and a GP customized for image
processing tasks. Preliminary results show that the proposed framework
obtains superior average performance in comparison to the other GP
models. Our most relevant finding is the empirical evidence showing that
the proposed CCGP model is a promising alternative to specialized GP
implementations that require knowledge of the problem’s domain.

Keywords: Genetic Programming · Evolutionary machine learning ·
Co-evolutionary algorithms · Ensemble methods · Image processing.

1 Introduction

High dimensional problems have been traditionally challenging for both Machine
Learning [2] (ML) methods and Evolutionary Algorithms [31] (EAs). This issue
is critical for Genetic Programming (GP), which in this case is the evolution-
ary learning algorithm, because of its complex structures and its need for large
populations to reach acceptable solutions. Therefore, large scale learning prob-
lems have been out of the scope of GP-based solutions, hindering its raise as a
competitive learning model.

In ML, several techniques have been devised to adapt learning algorithms to
high dimensional problems. A successful example are convolutional neural net-
works that process images at a pixel-level [13]. In contrast, a mechanism commonly

The last author gratefully acknowledges support from CONACyT grant no. 2016-01-
1920 (Investigación en Fronteras de la Ciencia 2016) and from a SEP-Cinvestav grant
(application no. 4).

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 48–62, 2020.
https://doi.org/10.1007/978-3-030-58115-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_4&domain=pdf
http://orcid.org/0000-0002-7541-4772
http://orcid.org/0000-0001-5052-7554
http://orcid.org/0000-0003-4603-3513
http://orcid.org/0000-0002-8435-680X
https://doi.org/10.1007/978-3-030-58115-2_4

Cooperative Co-Evolutionary Genetic Programming 49

adopted inGP todealwith high dimensional problems (e.g., image processing) uses
special (high-level) primitives capable of processing groups of features from the
input representation altogether. Thus, nodes in GP can represent sets of features or
functions to process them (e.g., a mean function over an input space region) [1,22].
This approach has resulted in satisfactory performance in some domains [7,16,26].
However, it usually requires a form of problem’s domain knowledge, which contra-
venes the spirit of automated ML systems.

From a pure evolutionary computation (EC) standpoint, an approach that
has been used for a long time to tackle large scale problems is Cooperative Co-
Evolutionary Algorithms [21] (CCA). Potter and De Jong [21] originally pro-
posed the CCA framework to tackle complex optimization problems through
Genetic Algorithms (GA) by splitting the search space into multiple, smaller,
sub-problems that are solved by semi-independent GA populations cooperat-
ing to solve the original (larger) problem. It is well documented that CCA has
enabled several EAs to operate on very high dimensional optimization prob-
lems [17,19,31]. This evidence motivated us to explore CCA’s suitability in a
GP context for high-dimensional learning problems.

We propose alternative mechanisms for implementing a Cooperative Co-
evolutionary GP (CCGP) and assess their performance in a high dimensional
learning problem composed by more than four hundred feature variables: image
denoising. Our working hypothesis is that a cooperative co-evolutionary app-
roach will allow GP to scale its performance in ML problems with hundreds of
input feature variables, without having to resort on high-level primitives. There-
fore, the main contributions of this work are threefold:

– We introduce cooperative co-evolution in GP as a way to tackle high-di-
mensional ML problems. The proposed GP formulation obtains competitive
performance in very high-dimensional and complex problems while directly
processing raw data (pixels).

– We propose three different approaches to perform cooperative co-evolution in
GP aiming at high dimensional problems. We experimentally compare their
performance in a real-world, high-dimensional ML problem (natural image
denoising).

– The best performing CCGP approach is evaluated extensively and compared
to highly competitive baseline algorithms. Our experimental results show the
superiority and competitiveness of our proposed approach.

Results indicate that CCGP is a viable alternative to the standard GP app-
roach for high dimensional problems. This is important because in the proposed
CCGP scheme, no special nodes are defined for the problem at hand, whereas in
the typical GP model for high dimensional problems, those special nodes repre-
sent the weakest link in the design process of a GP-based ML solution, mainly
because special nodes may require human expert knowledge of the problem’s
domain. In contrast, our proposed CCGP approaches are completely agnostic,
therefore posing GP a step towards automation, and closer to modern general
purpose ML frameworks, such as Deep Learning.

50 L. Rodriguez-Coayahuitl et al.

2 Related Work

According to [12], when approaching ML problems with GP, there are different
abstraction levels to perform CCGP: (1) genotypic, (2) subroutine or feature,
and (3) output or ensemble levels. In genotypic CCGP, co-evolving components
fusion takes place at the individual representation level, by merging trees directly
(in tree-based GP); for CCGP at feature level, co-evolving GP processes gener-
ate intermediate input data representations that can be fed into a ML model in
order to enhance its performance (i.e., feature extraction). Finally, in a CCGP
ensemble, multiple co-evolved species’ outputs vote or average in order to achieve
higher accuracy in classification or regression problems. In this paper we pro-
pose a novel framework to perform cooperative co-evolution at those abstraction
levels, and experimentally compare their performance.

CCGP has been mostly studied at ensemble and feature levels [10,11,20,
33]. It should be noted, however, that the originally proposed CCA framework
considers fusion at a genotypic level [21]. CCA research at a genotypic level in
GP is scarce; one of the few works that covers this subject is presented in [12].
Krawiec and Bhanu presented several works on feature-level CCGP [10,11], and
in [12] they proposed a genotype-level CCGP and compared it to their previous
approaches. However, it should be noted that [12] covers CCGP only for linear
GP [3], and not for the original tree-based GP. A possible reason for this lack
of interest could be the fact that performing genotype-level CCGP with the
standard tree individual representation is difficult, since there is no obvious way
to fuse genotypes for tree-based individuals other than standard GP-subtree
crossover, and this might not yield the desired effect in a CCA scheme. Moreover,
while in [10] and [11], cooperative co-evolution happens at feature level, the
prediction stage is relegated to a different, simple ML algorithm, instead of using
another GP process. In contrast, we propose to perform fusion at a feature level
through a co-evolving GP species, thus effectively implementing a multi-layer
GP system. This multi-layer GP is another relevant contribution of this paper.

On the other hand, GP-based ensembles have been proposed at least as early
as in [9]. Many GP-based ensembles found in the literature follow a standard
weighted averaging fusion technique [9,28,29]. In contrast, herein we propose to
generate ensembles through an explicit co-evolutionary framework. Co-evolution
generated GP ensembles have been thoroughly researched by Heywood et al.
[6,14,15,18]. However, their problem decomposition technique happens mainly
at sample subset level, whereas we propose a feature subset approach.

Regarding GP approaches to tackle high dimensional problems, two are the
most widely used: (a) using special primitives to process groups of features alto-
gether [1,22], and (b) using separate GP processes after applying clustering to
input variables [23,27]. The methods proposed here fall in the second category.
Both approaches have disadvantages. In the first, it is required to define special
nodes, and this might imply requiring some previous knowledge of the problem’s
domain, while in the second, division and execution of multiple GP processes
may involve an increase in the computational cost. A main contribution in this
paper is that, for the first time both GP approaches are directly compared.

Cooperative Co-Evolutionary Genetic Programming 51

3 Problem Statement

In supervised learning, ML algorithms search for a function f , mapping inputs
(x ∈ R

n) to outputs (y ∈ R) starting from a dataset of input-output pairs (D =
{(xi, yi)}i∈1,...,d). For a regression problem with inputs in an n−dimensional
space we have f : Rn → R. That is, f receives as input n feature variables in
order to make a scalar prediction. GP as a non-parametric ML method builds f
from scratch by using primitives and feature variables as building blocks.

In high-dimensional learning problems, n is large enough so that f can
become difficult to infer because GP needs to search among large tree structures
that accommodate enough n feature variables in order to perform satisfactorily.
Hence, this simple problem can be associated to an intractable search space.

We claim that it is less complex to search for multiple, simpler, functions
f̃i, such that by combining their outputs, they may outperform f . In our con-
text, by simpler we mean that they are represented by smaller GP trees, and
are restricted to a limited subset of features, and therefore can be more easily
discovered by GP. In formal terms, our hypothesis is that it is computationally
more efficient to search for p, lower dimensional, sub-functions f̃i : Rm → R,
such that m � n, that when combined can yield a f̃ function equivalent or even
with superior performance than f . Two questions arise: (1) how can the original
feature space be split?, and (2) how can we combine p sub-functions fi?

In this work, we hold that in order to get a highly automated and agnostic ML
design process, the feature space should be split in a random way. However, we
recognize that some previous knowledge of the problem’s domain can be used in
order to perform an advantageous partition of the initial input representation.
On the other hand, a correct method to merge partial solutions can be more
difficult to assert which is the main topic in this research. In the next section we
propose and discuss some possible approaches to address such task.

4 Cooperative Co-Evolutionary GP

In general terms, CCAs split the search task into multiple, smaller, optimization
processes. The main idea is to introduce modularity in EAs [21]. In combina-
torial and numerical optimization problems, CCAs achieve this by distributing
solutions’ segments among a number of sub-populations; individuals’ evaluation
in each sub-population is performed by importing those segments from other
sub-populations and assembling complete solutions for evaluation. Thus, indi-
viduals take turns to form part of such complete solutions and credit can be
assigned to each one of them.

In order to import such problem decomposition strategy into the context of
syntax tree-based GP (i.e., not LinearGP), we propose to introduce the con-
cept of main species, that represents a partial solution that acts as a holder to
which the rest of partial solutions attach to, in order to form a complete solu-
tion. Next, we detail three proposed approaches developed within the CCGP
framework herein introduced. Each method is a CCA with standard tree-based

52 L. Rodriguez-Coayahuitl et al.

GP representation at genotype, feature or output level of the ML pipeline. The
proposed methods adhere to the following procedure:

1. The input feature set is sampled, with replacement, to form p subsets with
m randomly picked features variables each;

2. p species are created; each subset limits valid terminals for each species; all
species are confined to one subpopulation (i.e., no inter-species breeding);

3. Additionally, there is a main species, that represents the type of individuals
to which all other species attach to form a complete candidate solution;

4. At each generation, a complete candidate solution is assembled by randomly
selecting one individual from each species and attaching them to one main
species individual (also selected at random);

5. This complete candidate solution is sent to all subpopulations; each individual
is evaluated by attaching it to the complete candidate solution (in order to
form a complete chain of execution), for fitness assignment; this also applies to
the main species individuals. Details of this procedure are given in Sect. 4.4;

6. The evolutionary process (evaluation, recombination, selection) occurs simul-
taneously in all subpopulations;

The differences among the proposed CCGP variants rely on the complete
solutions assembly process and on the form that the main species take. These
variants are described in detail next.

Fig. 1. Proposed CCGP models. From top to bottom: genotype-, feature- and
ensemble-level models.

Cooperative Co-Evolutionary Genetic Programming 53

4.1 Genotype Level

CCGP at genotype level occurs by fusing multiple sub-components while directly
mixing syntax trees that represent each co-evolving species. Since the straight-
forward method to perform such recombination is the standard subtree crossover
defined for GP, this is the method we propose to build complete solutions. Thus,
subtree crossover is performed sequentially between a main species candidate
and each additional co-evolving species. The idea here is that complete candi-
date solutions have useful subtrees that rely on a wide variety of input variables
(because each species is limited to a certain subset of input variables). This is
the most straightforward form that CCGP may take, and it is aligned to the
original CCA framework proposed by Potter & De Jong. Figure 1a shows the
complete solution assembly process under this approach.

4.2 Feature Level

We call fusion at feature level when species (other than the main one) represent
encapsulated sub-components, that is, complete GP trees that merge to form
a complete solution by connecting to leaf nodes of a main species individual.
This scheme removes inconsistencies of genotype-level/fusion by crossover, and
preserves integrity of both species and the main species individuals. Our aim is
that co-evolved sub-components may represent pseudo-subroutines that act as
a sort of feature extractor stages, while the main species act as the predictor
stage that operates over those pre-processor stages’ outputs, rather than having
to work with a raw and large scale input space (hence the name feature-level).

In formal terms, this approach fuses p sub-functions fi, by searching for a
function (also by means of co-evolution) g : Rp → R, that operates over auxiliary
sub-functions outputs such that f̃ = g(f1, f2, ..., fp). Figure 1b shows this model.

4.3 Ensemble Level

At an ensemble or output CCGP level, each species represents a complete pre-
dictor to the problem at hand, and species fusion occurs by only aggregating
the output generated by each predictor. Aggregation may take several forms.
In this work, we propose to combine each species output by means of a simple
sum. This approach bears some resemblance to ML ensemble methods [4] that
combine multiple predictors outputs by a weighted sum (hence the name, ensem-
ble-level). We proposed this model after observing an undesirable phenomenon
in the feature-level CCGP where main individuals’ function converged ignoring
all but one of the sub-component species, and the search process then happened
only in a single population, losing model’s co-evolutionary nature and becom-
ing a standard EA (this issue is detailed and discussed in Sect. 5.3). Therefore,
through this approach, it becomes more difficult for species to avoid contributing
to the global solution. Notice how this approach can be seen as a case where the
main function is fixed to a GP tree composed by sum nodes only, and the evo-
lutionary search for a main function is discarded. Figure 1c depicts this concept.
Thus, formally, this method proposes that f̃ = f1 + f2 + ... + fp.

54 L. Rodriguez-Coayahuitl et al.

4.4 Fitness Assignment

Fitness assignment in CCGP (step 5 in the general procedure) is carried out
in two different ways. At the Genotype level, attaching each individual to a
complete candidate solution that is sent to each species population, occurs by
performing crossover between that assessed individual and the complete solution.
In CCGP models at Feature and Ensemble level, attachment of individuals for
evaluation happens by replacing the corresponding individual of that species in
the complete candidate solution being used.

5 Experimental Results

This section describes the empirical methodology followed for evaluation of pro-
posed CCGP approaches. It also presents and discusses the obtained results.

5.1 Datasets

For validation, the proposed CCGP framework tackles image denoising as a high
dimensional problem, where a clean image x is extracted from a noisy observation
y such that, for an additive noise model, y = x+v, where v is a contamination
process. In this study, Additive White Gaussian Noise (AWN) is targeted, where
v follows a Gaussian distribution with some given σ.

We used the Berkeley Segmentation Dataset (BSDS) [24] for training and
testing purposes. We converted 200 images from BSDS to grayscale and ran-
domly extracted 14, 000 patches of 21×21 pixels in size. We contaminated images
(prior to patch extraction) with AWN noise level σ = 50. We set all GP vari-
ants to attack image denoising as a regression problem: the objective function is
the minimization of the average mean square error (MSE), from attempting to
predict the noise level in the central pixel from all patches in the training set.
In a real life scenario, a generated model with this approach can be slid through
a full image, in a convolutional fashion, in order to clean it. However, for this
set of experiments, we limited ourselves to test generated models in a testing
set comprised also by image patches. We used 12, 000 patches for training and
2000 for testing. BSDS had been used as testbed for different image denoising
methods [5,25,30], including deep learning approaches [32], to which we compare
later in Sect. 5.4. Figure 2 shows sample images from BSDS.

Fig. 2. Sample images from the Berkeley Segmentation Dataset.

Cooperative Co-Evolutionary Genetic Programming 55

5.2 Parameters Settings

Table 1 summarizes parameters configuration for all experimental samples. Max,
min and mean primitives are 2-arity functions that operate over two single
scalars, and division is protected such that any attempt at dividing by zero
returns 0. Both crossover and mutation are protected so that the maximum
allowable tree depth is never exceeded. Training datasets are split in non-
overlapping minibatches of 300 instances and at each generation, populations
are evaluated using one minibatch. Minibatch-based evolution (on-line learning)
in GP has been found to be successful for this type of ML problem [8,23].

Table 1. Parameters configuration for empirical testing.

Parameter Value

Pop size 400 (per species, inc. main)

Generations Variable (24 h.)

No. of species 8 + main

Max Tree Depth 6 (for all species, inc. main)

Crossover/Mutation rate 0.5 / 0.5

Pop dynamics Steady state

Primitives +, –, ×, ÷, x2, sin, cos,
√

, max, min, mean, ReLU

Terminals Individual pixels and constants within range [−1, 1]

Features per species 30 (from a total of 441)

In order to allow a fair comparison, all setups are run for the same limited
amount of time. Subsets of feature variables that are allowed for each species
are randomly assembled. However, since the target task predicts central pixel’s
noise level within image patches, it is set, as a requirement, that a central pixel
appears in at least two random subsets.

For the feature-level approach, another restriction is defined: the main
species’ individuals must use, at least, 6 out of 8 total sub-component species.
Main species’ trees are parsed and the number of different species used by an
individual are counted. If this constraint is not met, the fitness of such individual
is set to ∞. This restriction is set in order to prevent the main species’ individ-
uals from becoming a “wired” function that connects to a single sub-component
species, where the whole optimization process is confined to, while the rest of
the species do not contribute to the co-evolutionary search.

5.3 Analysis of Results

Table 2 shows results obtained for all approaches tested after performing 10
independent runs. Results are shown in decibels Peak Signal to Noise Ratio (dB
PSNR), such that higher is better. Figure 3a depicts the fitness evolution in a

56 L. Rodriguez-Coayahuitl et al.

feature-level run, in error terms; in this case, lower is better. This behavior is
representative of feature-level runs in general. This result shows that the feature-
level approach does converge, suggesting that this CCGP variant is capable of
evolving multi-layer GP structures with sequential dependencies. However, a
closer examination to the best solutions rendered by this approach revealed that
this is not the case (discussed below). Moreover, the feature-level approach is
no match for ensemble models, which converge faster, and to better solutions,
both in average and overall. Meanwhile, genotype-level is left further behind.
This result indicates that ensemble CCGP is the best overall method.

Low performance of genotype-level CCGP can be explained by the fusion
mechanism used in this approach: subtree crossover is a stochastic operation
that even when given the same two parents trees, may render different offspring
if performed multiple times. This means that even if a combination of different
species individuals that rendered a good complete solution in a previous gener-
ation, are chosen again to form a complete solution, this time their merge may
result in a bad complete solution; instability in this mechanism is very high for
this approach to converge to any acceptable solutions.

Table 2. Results in dB for tested setups with different time frames.

Ensemble Feature Genotype

Avg Best Avg Best Avg Best

4 h 18.90 ± 0.52 19.46 16.43 ± 1.64 18.73 14.80 ± 0.44 15.41

12 h 20.62 ± 0.36 21.16 17.67 ± 2.30 20.84 15.09 ± 0.25 15.41

24 h 20.96 ± 0.50 21.61 18.55 ± 2.27 21.35 15.09 ± 0.44 15.62

Considerable higher performance at ensemble-level with respect to feature-
level can be more arguable. Flexibility at feature-level, which also searches for an
optimal main function, could play on its favor against a more restricted ensem-
ble model with its predefined main function - given enough computational time.
However, this appears not to be the case. On the contrary, this disadvantage is
clearer in the first few generations of feature-level runs, when the evolutionary
search appears to stagnate (according to Fig. 3a) apparently searching for a min-
imally acceptable main function. Even once feature-level CCGP variant escapes
initial stagnation, it does not converge to solutions that reach performance of
ensemble-level models.

Some dominant solutions are closely examined during this early evolution-
ary process, and phenotypic diversity is measured in each sub-population. It is
observed that feature-level CCGP is surprisingly good at ignoring restriction
imposed to the main species’ individuals of using co-evolving sub-components:
this CCGP variant managed to generate main species’ individuals with subtrees
that referenced too many sub-components, while at the same time completely
ignored such subtrees. Figure 4 depicts an example of such type of individuals.

Cooperative Co-Evolutionary Genetic Programming 57

Fig. 3. Fitness and diversity from a feature-level CCGP run as generations elapse.
(a) Fitness error (lower is better). In blue (orange) we show the training (testing)
error. (b) and (c), phenotypic diversity in two sub-component populations, one (zero)
means all solutions yield a different (the same) prediction. (Colour figure online)

Fig. 4. Main species’ individual example that complies with referencing at least 6 sub-
components and not using them. Notice that root’s right subtree always returns 0;
thus, the whole tree also returns a constant.

Analyzing phenotypic diversity in species’ sub-populations confirmed this
behavior. Figure 3b shows diversity in a sub-population as generations elapse.
It can be observed that at early generations, diversity oscillates between some
actual value and zero. When phenotypic diversity abruptly decays to zero,
this implies that all individuals in the population generate the same predic-
tion/fitness. This happens because main function individuals are ignoring this
sub-component, i.e. regardless of the individual from this population which

58 L. Rodriguez-Coayahuitl et al.

connects to the main functions, they all render the same result. This oscillat-
ing behavior in the first few generations depicted in Fig. 3b means that the
main function individuals do not make a consistent use of this particular sub-
component. It is only after a certain number of generations that diversity recovers
and the approach begins to behave consistently, because now the main function
individuals are working cooperatively with individuals from these species.

Further investigation on diversity of all species in different runs, revealed
that by relying on mechanisms such as the one depicted in Fig. 4, the feature-
level main individual still converges to “wired” functions that simply connect to
one or two sub-component populations where optimization is happening, while
the rest of the species do not contribute to the co-evolutionary process. As an
example of this behavior, Fig. 3c shows diversity of a species’ population and
the moment it begins to be ignored by the main function individuals, which
roughly coincides with the time at which overall CCGP run begins to converge.
Meanwhile, ensemble-level models exhibited the exact opposite behavior, where
in general, only one or two of eight sub-populations decay to zero diversity, sug-
gesting that they may be acting as constant biasing factors in the sum structure,
while the rest of the species do alter global solution performance, contributing to
the co-evolutionary search. These results show that multi-layer GP architectures
remain as very challenging to evolve.

5.4 Other GP Approaches Comparison

In this section, ensemble CCGP performance (the best performing model) is
compared against two other GP models: a canonical GP representation, and a
modern GP variant that makes use of special nodes aimed at high dimensional
problems. The aim is twofold: (1) to collect evidence that supports our hypothesis
that cooperative co-evolution can boost GP performance in high dimensional
learning problems, as well as (2) to quantify how CCGP compares with respect
to GP models tailored for tackling high-dimensional problems.

Two GP models called Low-level GP (LowGP) and Mid-Level GP (MidGP)
are implemented. LowGP is a canonical GP that operates at individual pixel
level; while MidGP uses special nodes and terminals that allow to process fea-
tures groups. Table 3 summarizes the configurations used for these approaches.
LowGP can only make use of primitives and terminals (the same used by CCGP),
while MidGP can use special primitives, special terminals, and regular primitives
and terminals. Special primitives are functions that receive as inputs variable-
length vectors and whose output is a single scalar that can be processed by
regular primitives. For an in-depth analysis of these GP models refer to [22].

Notice in Table 3 that non co-evolutionary GPs are setup with the same
population size to that of a single CCGP species, but the max tree depth is
extended in this case, to account for main functions on top of sub-component
species, as well as with an increased number of subtrees (equivalent to sub-
component species). Thus, a fair comparison against the proposed CCGP model
is guaranteed: both LowGP and MidGP individuals can accommodate the same
maximum number of nodes to that of a CCGP complete solution.

Cooperative Co-Evolutionary Genetic Programming 59

Table 3. Specific tested parameters for non CCGP models

Parameter Value
Pop Size 400
Max Tree Depth 9
Primitives Same as in Table 1
Special Primitives mMean, mMax, mMin, mMed
Terminals Same as in Table 1

Special Terminals

Trimmers

Table 4 shows the results obtained for both standard GP variants. It is
observed that CCGP average performance is superior to both LowGP and
MidGP. The proposed approach also presents a lower variance, thus providing
evidence that ensemble CCGP is a viable method to step up GP’s performance
in high-dimensional learning problems, with the added benefit of not requiring a
specialized primitives set. It should be noted, however, that MidGP’s best solu-
tion outclasses CCGP’s best result by a considerable margin, indicating that
MidGP remains as the reference method to outperform within GP. For a more
general comparison, consider that a deep network with 17 hidden layers [32], can
score 27.20 dB PSNR given similar training and testing sets.

Table 4. Comparison to non-coevolutionary GPs. Expressed in dB; higher is better.

LowGP CCGP MidGP

Hrs Avg Best Avg Best Avg Best

4 17.81 ± 2.31 20.94 18.90 ± 0.52 19.46 20.21 ± 3.74 23.30

12 18.13 ± 2.55 21.68 20.62 ± 0.36 21.16 20.27 ± 3.74 23.35

24 18.23 ± 2.64 21.81 20.96 ± 0.50 21.61 20.41 ± 3.82 23.30

6 Conclusions

This paper proposed and contrasted three different approaches to perform coop-
erative co-evolution within the GP framework at different abstraction levels:
genotype, feature and ensemble. A thorough behavior and performance analy-
sis of CCGP at a feature-level showed that synthesizing multi-layer GP archi-
tectures is surprisingly difficult, because GP tends to confine all optimization
processes within a single sub-population, effectively losing properties of a true
co-evolutionary search. This is an important result that shreds light on some
future research guidelines.

For full empirical assessment, conventional GP variants were also compared.
We can conclude that CCGP’s performance sits in between a completely agnostic
canonical GP, that only processes feature variables at an individual level, and

60 L. Rodriguez-Coayahuitl et al.

higher-level GP variants that require problem domain knowledge to a lesser or
greater extent. This is a very promising result, because with further research,
CCGP could boost agnostic GP models to reach the best performances obtained
by higher-level GP variants, or maybe to help reducing the amount of designer
input knowledge necessary in higher-level GP models.

Acknowledgements. This work was partially supported by CONACyT under project
grant A1-S-26314, Integración de Visión y Lenguaje mediante Representaciones Multi-
modales Aprendidas para Clasificación y Recuperación de Imágenes y Videos.

References

1. Al-Sahaf, H., Song, A., Neshatian, K., Zhang, M.: Two-tier genetic programming:
Towards raw pixel-based image classification. Expert Syst. Appl. 39(16), 12291–
12301 (2012)

2. Alpaydin, E.: Introduction to Machine Learning. MIT press, Cambridge (2009)
3. Brameier, M., Banzhaf, W.: A comparison of linear genetic programming and neu-

ral networks in medical data mining. IEEE Trans. Evol. Comput. 5(1), 17–26
(2001)

4. Brown, G.: Ensemble learning. Encyclopedia Mach. Learn. 312 (2010)
5. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: A flexible framework

for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell.
39(6), 1256–1272 (2016)

6. Doucette, J.A., Mcintyre, A.R., Lichodzijewski, P., Heywood, M.I.: Symbiotic
coevolutionary genetic programming: a benchmarking study under large attribute
spaces. Genet. Program. Evol. Mach. 13(1), 71–101 (2012)

7. Esfahanipour, A., Mousavi, S.: A genetic programming model to generate risk-
adjusted technical trading rules in stock markets. Expert Syst. Appl. 38(7), 8438–
8445 (2011)

8. Gathercole, C., Ross, P.: Dynamic training subset selection for supervised learning
in genetic programming. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN
1994. LNCS, vol. 866, pp. 312–321. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-58484-6 275

9. Iba, H.: Bagging, boosting, and bloating in genetic programming. In: Banzhaf,
W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E.
(eds.) Genetic and Evolutionary Computing Conference (GECCO’99), vol. 2, pp.
1053–1060. Morgan Kaufmann Publishers, San Francisco, California (July (1999)

10. Krawiec, K., Bhanu, B.: Coevolution and Linear Genetic Programming for Visual
Learning. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L.D., Roy, R., O’Reilly,
U.-M., Beyer, H.-G., Standish, R., Kendall, G., Wilson, S., Harman, M., Wegener,
J., Dasgupta, D., Potter, M.A., Schultz, A.C., Dowsland, K.A., Jonoska, N., Miller,
J. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 332–343. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-45105-6 39

11. Krawiec, K., Bhanu, B.: Visual learning by coevolutionary feature synthesis. IEEE
Trans. Syst. Man. Cyber. 35(3), 409–425 (2005)

12. Krawiec, K., Bhanu, B.: Visual learning by evolutionary and coevolutionary feature
synthesis. IEEE T. Evol. Comput. 11(5), 635–650 (2007)

13. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time
series. The Handbook of Brain Theory and Neural Networks 3361(10), 1995 (1995)

https://doi.org/10.1007/3-540-58484-6_275
https://doi.org/10.1007/3-540-58484-6_275
https://doi.org/10.1007/3-540-45105-6_39

Cooperative Co-Evolutionary Genetic Programming 61

14. Lemczyk, M., Heywood, M.I.: Training Binary GP Classifiers Efficiently: A Pareto-
coevolutionary Approach. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi,
L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 229–240.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71605-1 21

15. Lichodzijewski, P., Heywood, M.I.: Coevolutionary bid-based genetic programming
for problem decomposition in classification. Genetic Program. Evol. Mach. 9(4),
331–365 (2008)

16. Liu, L., Shao, L., Li, X., Lu, K.: Learning spatio-temporal representations for action
recognition: A genetic programming approach. IEEE T. Cybernet. 46(1), 158–170
(2015)

17. Liu, Y., Yao, X., Zhao, Q., Higuchi, T.: Scaling up fast evolutionary programming
with cooperative coevolution. In: Proceedings of the 2001 Congress on Evolutionary
Computation (CEC’2001), vol. 2, pp. 1101–1108. IEEE (2001)

18. McIntyre, A.R., Heywood, M.I.: Cooperative Problem Decomposition in Pareto
Competitive Classifier Models of Coevolution. In: O’Neill, M., Vanneschi, L.,
Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E.
(eds.) EuroGP 2008. LNCS, vol. 4971, pp. 289–300. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78671-9 25

19. Miguel Antonio, L., Coello Coello, C.A.: Use of cooperative coevolution for solv-
ing large scale multiobjective optimization problems. In: 2013 IEEE Congress on
Evolutionary Computation (CEC 2013). pp. 2758–2765. IEEE Press (2013)

20. Park, J., Mei, Y., Nguyen, S., Chen, G., Johnston, M., Zhang, M.: Genetic pro-
gramming based hyper-heuristics for dynamic job shop scheduling: cooperative
coevolutionary approaches. In: Heywood, M.I., McDermott, J., Castelli, M., Costa,
E., Sim, K. (eds.) EuroGP 2016. LNCS, vol. 9594, pp. 115–132. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30668-1 8

21. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to func-
tion optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994.
LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58484-6 269

22. Rodriguez-Coayahuit, L., Morales-Reyes, A., H.J., E.: A comparison among dif-
ferent levels of abstraction in genetic programming. In: 2019 IEEE International
Autumn Meeting on Power, Electronics and Computing (ROPEC), IEEE (Nov
2019)

23. Rodriguez-Coayahuitl, L., Morales-Reyes, A., Escalante, H.J.: Structurally lay-
ered representation learning: towards deep learning through genetic programming.
In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., Garćıa-Sánchez, P. (eds.)
EuroGP 2018. LNCS, vol. 10781, pp. 271–288. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-77553-1 17

24. Roth, S., Black, M.J.: Fields of experts: A framework for learning image priors. In:
Null, pp. 860–867. IEEE (2005)

25. Schmidt, U., Roth, S.: Shrinkage fields for effective image restoration. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
2774–2781 (2014)

26. Shao, L., Liu, L., Li, X.: Feature learning for image classification via multiobjective
genetic programming. IEEE Trans. Neural Net. Learn. Syst. 25(7), 1359–1371
(2013)

27. Tran, B., Xue, B., Zhang, M.: Using feature clustering for gp-based feature con-
struction on high-dimensional data. In: McDermott, J., Castelli, M., Sekanina,
L., Haasdijk, E., Garćıa-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp.
210–226. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3 14

https://doi.org/10.1007/978-3-540-71605-1_21
https://doi.org/10.1007/978-3-540-78671-9_25
https://doi.org/10.1007/978-3-319-30668-1_8
https://doi.org/10.1007/3-540-58484-6_269
https://doi.org/10.1007/3-540-58484-6_269
https://doi.org/10.1007/978-3-319-77553-1_17
https://doi.org/10.1007/978-3-319-77553-1_17
https://doi.org/10.1007/978-3-319-55696-3_14

62 L. Rodriguez-Coayahuitl et al.

28. Veeramachaneni, K., Arnaldo, I., Derby, O., O’Reilly, U.M.: FlexGP. J. Grid Com-
put. 13(3), 391–407 (2015)

29. Veeramachaneni, K., Derby, O., Sherry, D., O’Reilly, U.M.: Learning regression
ensembles with genetic programming at scale. In: Proceedings of the 15th Annual
Conference on Genetic and Evolutionary Computation, pp. 1117–1124 (2013)

30. Yan, R., Shao, L., Liu, L., Liu, Y.: Natural image denoising using evolved local
adaptive filters. Sig. Process. 103, 36–44 (2014)

31. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using coopera-
tive coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

32. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser:
residual learning of deep cnn for image denoising. IEEE Trans. Image Proces.
26(7), 3142–3155 (2017)

33. Zou, X., Bhanu, B.: Human activity classification based on gait energy image and
coevolutionary genetic programming. In: 18th International Conference on Pattern
Recognition (ICPR 2006), vol. 3, pp. 556–559. IEEE (2006)

Image Feature Learning with Genetic
Programming

Stefano Ruberto1(B) , Valerio Terragni2 , and Jason H. Moore1

1 Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, USA
stefano.ruberto@pennmedicine.upenn.edu, jhmoore@upenn.edu

2 Faculty of Informatics, Università della Svizzera Italiana USI, Lugano, Switzerland
valerio.terragni@usi.ch

Abstract. Learning features from raw data is an important topic in
machine learning. This paper presents Genetic Program Feature Learner
(GPFL), a novel generative GP feature learner for 2D images. GPFL
executes multiple GP runs, each run generates a model that focuses on
a particular high-level feature of the training images. Then, it combines
the models generated by each run into a function that reconstructs the
observed images. As a sanity check, we evaluated GPFL on the popular
MNIST dataset of handwritten digits, and compared it with the convo-
lutional neural network LeNet5. Our evaluation results show that when
considering smaller training sets, GPFL achieves comparable/slightly-
better classification accuracy than LeNet5. However, GPFL drastically
outperforms LeNet5 when considering noisy images as test sets.

Keywords: Genetic programming · Semantic GP · Feature learning ·
Image classification

1 Introduction

Feature learning [49] is an important topic in machine learning, as it powers
many classification and knowledge discovery techniques. Such techniques need
numeric representations of raw data (i.e., features) that are computationally
convenient to process [49]. Feature learning becomes a key task when dealing
with raw high-dimensional data (e.g., 2D images, videos and sounds) [49], which
lack well-defined features [16,23,26]. Manually identifying features from high-
dimensional data is often infeasible because it requires expensive human-labor
and domain knowledge [1,36]. As such, automatic feature learning techniques
have gained much attention [30,49].

Most recent automatic feature learners are implemented as (multi-layer) neu-
ral networks [49]. However, in principle, an automatic feature learner based on
GP would entail two important advantages: (i) GP often does not need large
training sets to learn competitive models [33]; and (ii) GP is generally robust
to noisy data [27]. Recently, we have seen the first GP feature learners for 2D
images [9,25,38]. These approaches emulate the behavior of a neural-network
c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 63–78, 2020.
https://doi.org/10.1007/978-3-030-58115-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_5&domain=pdf
http://orcid.org/0000-0001-8666-2782
http://orcid.org/0000-0001-5885-9297
http://orcid.org/0000-0002-5015-1099
https://doi.org/10.1007/978-3-030-58115-2_5

64 S. Ruberto et al.

autoencoder [18], with multiple GP-evolved models that reconstruct (encode and
decode) the pixels of an image [38]. Evolving a dedicated model to reconstruct
a single pixel has two main issues: (i) it is computationally expensive, especially
with high-resolution images; and (ii) it ignores the (important) spatial relations
of pixels, as it evolves each model independently from the ones of adjacent pixels.

This paper presents a GP Feature Learner, called GPFL1, to learn high-
level features from 2D images. There are two main differences between GPFL
and the previous GP feature learners [9,25,38]. First, GPFL does not evolve
as many models as the pixels in the image, but one model for each high-level
feature of the image. Second, GPFL learns high-level features leveraging the
spatial relations of pixels, as it uses the pixel coordinates as inputs of the models.

In a nutshell, GPFL takes in input a training dataset of images and out-
puts a model represented as a function fgp that, given a 2D coordinate (c1, c2),
returns a pixel value p (i.e., fgp(c1, c2) = p). As such, GPFL is a generative
and unsupervised feature learner. Under the hood, GPFL follows the dynamic
target approach SGP-DT [41,42] that executes multiple GP runs (called exter-
nal iterations). Each external iteration evolves a population of models driven
by a dynamic “target” that changes at each iteration. Each target is defined as
the residual errors of the reconstructed images between the previous and cur-
rent iterations. As such, the next iteration will focus on the characteristics of the
images that the previous iteration did not approximated well. Each external iter-
ation outputs a model (called partial model) that focuses on a specific high-level
feature of the images. When all external iterations terminate, GPFL creates the
final model fgp by combining with linear scaling [17,43] all the partial models.

As a sanity check, we evaluated GPFL on the popular MNIST dataset of 2D
images representing handwritten digits [6]. We evaluated how well the models
trained by GPFL capture the relevant high-level features of the MNIST images.
Towards this goal, we implemented a classifier that uses the reconstruction error
of fgp to classify the MNIST digits. We compared the GPFL-based classifier
with LeNet5 [19,21], the well-known DNN specific for MNIST.

When trained with smaller training sets and evaluated with all 10,000 images
in the MNIST test set, GPFL-based classifier achieves a median classification
accuracy that is comparable or better than LeNet5. For example, when trained
with a dataset composed of ten images for each digit, the GPFL-based classifier
has a median classification accuracy of 82.81%, while LeNet5 of 80.67%.

We also evaluated the noise robustness of GPFL by corrupting the 10,000
images of the test set with five noise levels (of salt type). GPFL always out-
performs LeNet5 for all five levels (with a classification accuracy improvement
up to +40.85%). These are important results, considering that GPFL is one
of the first genetic programming attempts to learn high-level features from 2D
images.

The remainder of this paper is structured as follows. Section 2 discusses the
related work. Section 3 describes the GPFL approach. Section 4 presents our
experiments. Section 5 concludes the paper.

1 We presented a preliminary version of this work in a poster paper [40].

Image Feature Learning with Genetic Programming 65

2 Background and Related Work

GPFL aims to automatically learn high-level features from 2D images. Following
previous work, we use low-level features to refer to the pixel values, and high-level
features to refer to conglomerations of related low-level features.

Deep Neural Networks (DNNs) [20] are often used to learn high-level features
from high-dimensional data with great success [2,6]. Because developing DNNs
requires labor-intensive architecture engineering, researchers have investigated
GP approaches (e.g., NEAT techniques [3–5,8,10,11,34,35]) to automate the
architecture engineering activity of DNNs. These techniques show promising but
still limited results, as finding an optimized DNN architecture largely remains a
human activity. Instead of leveraging GP to explore the space of possible DNN
architectures, GPFL is a GP feature learner detached from DNNs.

Most GP feature learners for 2D images discover high-level features using
hand-crafted or domain-specific features as building blocks [1,16,23,26,36]. For
example, Speeded Up Robust Features (SURF) [7], Histogram of Oriented Gra-
dients (HoG) [31], Gist features [32] and Scale-Invariant Feature Transform
(SIFT) [50]. Differently, GPFL learns high-level features from low-level ones
(i.e., pixel values) without requiring human-crafted or domain-specific features.

At the best of our knowledge, there are only three attempts of GP fea-
ture learners for 2D images that discover high-level features directly from low-
level ones [25,29,38]. Such attempts, following the success of NN-based autoen-
coders [18,28,45], use GP to emulate the classical autoencoder architecture with
encoder→code→decoder. The encoder component learns a compact representa-
tion (called code) of the low-level features in input. The decoder component uses
the learned high-level features (i.e., the code) to reconstruct an approximation
of the input. We now discuss these three attempts.

Rodriguez-Coayahuitl et al. proposed Structured Layered GP (SLGP) [37,38],
which evolves two distinct populations. One population encodes the pixels in
input and outputs the code (i.e, latent space). The other population decodes the
code into the reconstructed image. SLGP generates as many encoding GP trees
as the size of code and as many decoding GP trees as the number of pixels.

McDermott proposed an autoencoder GP similar to SLGP [29]. Differently
from SLGP, it relies on two multi-value linear GP components [9], one for the
encoder and one for the decoder.

Lensen et al. proposed GPMaL [24], GP technique for manifold learning [46],
which relates to both SLGP and McDermott’s approach. Manifold learning aims
to reduce the dimensions of raw data. This is similar, in principle, to the encoder
component of most autoencoders, which transforms the input into a lower dimen-
sional code (latent space). GPMaL resembles the encoder of SLGP, as it also
uses as many GP trees as the number of dimensions of the latent space (the code
size in SLGP). A later version of GPMaL [25] relies on a Pareto front technique
to dynamically select the number of dimensions of the latent space.

Similarly to GPFL, these three techniques are generative approaches that
reconstruct 2D images. However, GPFL differs substantially. First, they sim-
ulate the classical NN autoencoder architecture with two distinct components:

66 S. Ruberto et al.

encoder and decoder. Conversely, GPFL does not follow the NN autoencoder
architecture, and thus it avoids altogether the issue of aligning the two compo-
nents. Second, previous GP feature learners evolve a GP model for each pixel,
which is computationally expensive when dealing with high-resolution images,
and does not directly consider the spatial relations among pixels. Notably, GPFL
is the first GP feature learner that directly relies on spatial information (pixel
coordinates). Third, they require that the number of high-level features (i.e.,
code size) is chosen in advance. Instead, one can run GPFL with an arbitrary
number of external iterations (i.e., number of high-level features) and stop at
the desired reconstructed error. Moreover, one can re-run GPFL to obtain addi-
tional high-level features without discarding the previously learned features.

Although the three previous attempts have been evaluated with MNIST,
GPFL is the only one known to classify all ten MNIST digits.

3 Genetic Programming Feature Learning (GPFL)

Most high-dimensional data found in nature exhibit correlations among low-level
features expressed by the extra dimensions. For 2D images, such correlations
are the spatial relations among pixels (being the space the extra dimension).
The spatial position of pixels can be extremely useful to express relevant high-
level features, as it characterizes the intrinsic properties of the image itself:
Two images with pixels of identical values but of different spatial positions can
represent two radically different concepts. Indeed, humans recognize patterns
and objects by relying heavily on spatial relations [22].

This paper presents GPFL, a GP feature learner for 2D images that relies
on both the pixels values and their spatial positions. GPFL outputs a function
fgp (a GP-evolved model) that, given a 2D coordinate (c1, c2), returns a pixel
value p (i.e., fgp(c1, c2) = p). As such, given all coordinates, fgp reconstructs an
image.

Each model (GP individual) is a mathematical (tree-like) expression, with

(i) non-terminal symbols: algebraic operations (+,−, ·, the protected division,
Min and Max) and trigonometric operations (sine and cosine).

(ii) terminal symbols: variables (the coordinates c1 and c2) and decimal con-
stants (ERC between −1 and 1).

This dictionary of symbols allows GPFL to evolve continuous functions with
the coordinates c1 and c2 as independent variables. As such, the produced models
can encode spatial relations among pixels. This is because the continuity prop-
erty entails relations on adjacent low-level features (i.e., pixels). Because the
protected division, Min and Max symbols introduce discontinuity, the models
can also encode spatial relations that are difficult to model in a single continu-
ous function. For instance, by combining multiple (continuous) functions.

The key challenge of using spatial information for feature learning is their
variability among images that represent the same concept. For example, when
classifying handwritten digits, “1” or “I” are two popular styles for writing the

Image Feature Learning with Genetic Programming 67

number one. These styles have different, albeit similar, spatial relations. A sin-
gle non-parametric function cannot output different pixel values for the same
coordinate, and thus cannot encode both styles. GPFL addresses the challenge
by parameterizing fgp, so that changing the parameter values reproduces the
observed variability. GPFL defines such parameters as the coefficients of a lin-
ear combination of multiple GP-evolved models (called partial models), each
focusing on a specific high-level feature of the images.

Algorithm 1: GPFL implements the dynamic-target framework (SGP-
DT [14]), �� marks the lines representing the novel aspects of GPFL

input : ŷ[c1][c2] ∈ Ŷ: training 2D images (H×W matrices of pixels)
number of external (Next) and internal (Nint) iterations

output : fgp : final regression model
1 Function GPFL
22** target ← Ŷ

3 partialModels ← [· · ·]
4 for ext-iter from 1 to Next do
5 P ← get-random-initial-population

6 for int-iter from 1 to Nint do
7 for each I ∈ P do
88** Ils ←compute-fitness-and-ls(target, I) // see Algorithm 2

9 P ′ ← ∅
10 add elite(P) to P ′
11 while P ′ is not full do
12 Ils ← tournament-selection(P)
13 add mutate(Ils) to P ′

14 P ← P ′

15 I�
ls ← get-best-individual(P) // partial model

16 add I�
ls to partialModels

/* the new target is computed as the residual errors of each image */
1717** for each i from 1 to size(target) do
1818** for each c1 from 1 to H do
1919** for each c2 from 1 to W do
2020** target[i][c1][c2] ← I�

ls(c1, c2) − target[i][c1][c2]

2121** return fgp ← ∑
I�
ls∈partialModels I�

ls // linear combination of partial models

Algorithm 1 describes GPFL’s approach. It has three inputs: (i) the training
images (Ŷ); (ii) the number of external iterations (Next) (i.e, the number of
partial models); and (iii) the number of internal iterations (Nint) (i.e, the number
of generations that GPFL uses to optimize each partial model). GPFL relies on
linear scaling [17] to construct fgp as a linear combination of the partial models.

To generate the partial models, GPFL implements the dynamic-target app-
roach SGP-DT [41] that evolves multiple models driven by a target that changes
at each external iteration. SGP-DT initializes the target with the training set
(line 2, Algorithm 1). At each external iteration (lines 4–20), SGP-DT evolves
a population of models (P) to identify one (partial model I�

ls line 15) that best
approximates the current target. SGP-DT evolves P using a variant of the clas-
sical GP algorithm (lines 6–13) that does not use any form of crossover [41].
Ruberto et al. have shown that such a variant is effective with the dynamic-
target approach [41]. At each new external iteration, SGP-DT computes the

68 S. Ruberto et al.

new target as the residuals errors of the current target and the best model I�
ls

(lines 17–20).
Ruberto et al. defined the dynamic-target framework SGP-DT for the

numerical symbolic regression domain [41]. We now describe how GPFL adapts
it for learning high-level features from 2D images. We mark with �� the lines of
Algorithm 1 that correspond to the novel aspects of GPFL. First and foremost,
GPFL proposes a novel fitness function, which is specific to our problem at
hand (Function compute-fitness-and-ls, lines 22–23, Algorithm 2). Second,
GPFL generates the new target by computing the error residuals by differenc-
ing images (lines 17–20, Algorithm 1). Third, GPFL constructs the final model
using a linear combination. Differently, SGP-DT uses a validation set, which
does not apply in our case. We now describe in details these three novel aspects
of GPFL.

Fitness Function. GPFL invokes Function compute-fitness-and-ls (Algo-
rithm 2) for each individual in the current population (line 8, Algorithm 1). The
function takes in input (i) the current target, which are the 2D residual images
at the current iteration; and (ii) the individual I. Line 33 of Algorithm 2 returns
Ils, the individual I with its fitness score and linear scaling coefficients (a and
b). Note that a and b are different for each image in target. Intuitively, the fitness
score captures how well an individual approximates the current target.

Algorithm 2: GPFL’s fitness function
input : target : set of 2D images and I: individual
output : Ils encoded with fitness score and linear scaling coefficients

22 Function compute-fitness-and-ls
23 scores ← [· · ·] // vector of score for each image in target
24 for each ŷ in target do
25 yp ← [· · ·][· · ·] // predicted image
26 for each c1 from 1 to H do
27 for each c2 from 1 to W do
28 yp[c1][c2] ← I(c1, c2)
29 〈a, b〉 ← compute-and-store-ls-coefficients(yp, ŷ)
30 Ils ← a+ b · I // linear scaling
31 scores[ŷ] ← compute-mean-squared-error(Ils, ŷ)

32 fitness-score(Ils) ←
∑

scores[i]
size(scores)

// arithmetic mean of the scores

33 return Ils

The function starts by initializing at empty the vector of scores (line 23 of
Algorithm 2), which will populate with the prediction errors of Ils, for each image
ŷ in target. Given an image ŷ, GPFL generates the predicted image yp by com-
puting the function fgp(c1, c2) prescribed by the individual I for all the H×W
coordinates c1 and c2 in the image ŷ. GPFL assigns the results of fgp(c1, c2)
(predicted value) to yp[c1, c2] (line 28, Algorithm 2). Given yp and ŷ, GPFL
computes the coefficient a and b with the linear scaling technique [17] (line 29,
Algorithm 2). Following Keijzer [17], we compute the linear scaling of an indi-
vidual I as follows (where ŷ is the arithmetic mean of ŷ)2

2 The cost of computing the linear scaling coefficients is O(| Ŷ | · | P |).

Image Feature Learning with Genetic Programming 69

Ils = a+ b · I (1)

where a = ŷ − b · yp and b =
∑n

i=1[(ŷi − ŷ) · (ypi − yp)]∑n
i=1[(ypi − yp)2]

(2)

Following classical GP approaches, we rely on the Mean Squared Error (MSE)
between yp and ŷ to compute the scores (line 31, Algorithm 2). Because yp and ŷ
are images, MSE measures the average squared difference between the predicted
value yp[c1, c2] and the actual value ŷ[c1, c2], for each coordinate (c1, c2). Being a
quadratic function, MSE gives more weight to the pixels with a greater difference.
As such, during the first external iterations, GPFL focuses on those elements of
the images that lead to greater errors.

After the function analyzes all residual images in target, it computes the
fitness score of Ils as the arithmetic mean of the scores (line 32, Algorithm 2).
The rationale of choosing the arithmetic mean is to consider equally important
all the images in target. The fitness score is a number from zero to infinite.
Because it represents an error, the lower the score the fitter the individual.

Constructing the New Target. To construct the new target, GPFL scans
all the pixel coordinates and computes the difference between the current pixel
value and the one predicted by the best model I�

ls (lines 17–20, Algorithm 1).
As such, the next iteration will focus on the characteristics of the images that
the previous iteration did not approximate well. Note that the linear scaling
coefficients are different for every image and were previously computed by the
Function compute-fitness-and-ls.

Constructing the Final Model. GPFL constructs the final model with a
linear combination of all the partial models (line 21, Algorithm 1). Intuitively,
by combining all partial models we are summing all the estimates of the residuals,
and thus obtaining a function fgp that well approximates the training images in
input. Notably, fgp is a parametric function with a and b as parameters.

4 Experiments

This section describes a series of experiments to evaluate how well the models
trained by GPFL capture the most relevant high-level features of 2D images.
Because given enough external iterations GPFL can achieve an arbitrary lower
reconstruction error, we opted to evaluate GPFL with classification accuracy
instead. In fact, linear scaling guarantees that the reconstruction error (i.e.,
RMSE) monotonically decreases [17]. This happens because GPFL re-computes
the linear scaling coefficients when reconstructing each test image.

We built a naïve classifier that relies on GPFL for classifying MNIST digits
(Algorithm 3), and compared with the DNN LeNet5 [19,21]3. We experimented
3 When comparing the classification accuracy of GPFL and LeNet5, we computed

the p-values with the non-parametric pairwise Wilcoxon rank-sum test [15].

70 S. Ruberto et al.

with smaller MNIST training sets and with noisy MNIST test sets to evaluate
the generalizabilty and robustness of the models, respectively. This is a common
experimental setup [13] for the few-shot learning problem [12].

Dataset. The MNIST database of handwritten digits [48] comprises a training
set of 60,000 examples, and a test set of 10,000 examples. Each example is a
grayscale numerical bitmap image of 28 × 28 pixels representing a handwritten
digit from 0 to 9. MNIST is widely-used as a standard benchmark in the ML
community [6,47]. Even now, MNIST is often the first dataset that researchers
use to validate their algorithms [2–5,8,11]. From the MNIST training set of
60,000 images, we constructed three variants of smaller size, with five (MNIST−
5), ten (MNIST− 10), and one hundred (MNIST− 100) images for each digit.
Because there are ten digits (0 to 9), the three variants contain 50, 100 and 1,000
examples, respectively. We constructed such variants by randomly sampling the
MNIST training set. To avoid selection biases, we repeated the sampling process
30 times for each of the three variants, obtaining 90 datasets in total. We stored
them on disk to train GPFL and LeNet5 with exactly the same datasets.

Algorithm 3: GPFL-based MNIST naïve classifier
input : Ŷ MNIST training set, S ensembles size
output : ensembles for each digit

1 Function trainer
2 for each digit from 0 to 9 do
3 for each i from 1 to S do
4 ensembles[digit][i]←GPFL (Ŷ[digit], Next=100, Nint=50)

5 return ensembles

input : ensembles for each digit returned by the trainer, ŷ image to classify
output : predicted digit of ŷ

6 Function predictor
7 for each digit from 0 to 9 do
8 ŷrc ← [· · ·][· · ·] // reconstructed image initialiated at empty
9 for each i from 1 to S do

10 ensembles[digit][i]ls←compute-ls(ensembles[digit][i], ŷ)
11 ŷrc ← ŷrc+ reconstruction(ensembles[digit][i]ls)
12 average-image ← ŷrc/N // average of each pixel
13 error [digit] ←MSE(ŷ, average-image) // mean square error

14 return digit ← argmin
digit∈{0···9}

{error[digit] }

A GPFL-Based Classifier. To evaluate how well GPFL learns relevant high-
level features that characterize the images in input, we constructed a naïve classi-
fier (Algorithm 3) that classifies unseen MNSIT digits relying on the models that
GPFL produces. The classifier splits the training images Ŷ into ten partitions
(Ŷ[digit]) according to their digit label. Then, it uses GPFL to train multiple
models (called ensemble) for each of the partitions. We use the ensemble method
to mitigate the stochasticity of GP, which can lead to models of arbitrary perfor-
mance. Note that, although GPFL is unsupervised, the classifier is supervised
because it splits the training set according to the digit labels.

Image Feature Learning with Genetic Programming 71

The naïve classifier has two components: the trainer and the predictor
(see Algorithm 3). The predictor takes in input the test image to classify and
the list of ensembles precomputed by the trainer. To predict the digit of the
test image, the predictor reconstructs the image multiple times, one for each
ensemble. Internally, the predictor obtains each reconstructed image by averag-
ing the pixels outputted by the models. Then, it returns the digit correspond-
ing to the ensemble that yielded the lowest reconstruction error. When recon-
structing the test image ŷ, we recompute the linear scaling parameters that best
approximate ŷ.

We decided to rely on a naïve classifier (as opposed to more sophisticated
approaches, e.g., SVM and Random forest) to isolate our main contribution. So
that the effectiveness of the classification (Algorithm 3) can be mainly attributed
to the quality of the high-level features that GPFL identified.

GPFL Configuration. Following the dynamic target framework SGP-
DT [41], we configured GPFL as follows. Fifty internal iterations (Nint). One
hundred the population size. The ramped-half-and-half initialization generates
trees with a depth that ranges from 1 to 4 (line 5, Algorithm 1). The probability
of mutation is 100%, and the maximum depth of the subtrees generated by the
mutation operators is five. The probability of a sub-tree mutation happening at
the leaf level is 70%. We set no limits on the number of nodes and on the depth
of the trees. We set size of the tournament selection to two, and the elitism size
to one.

We ran GPFL with different combinations of Next (number of external iter-
ations) and S (the ensembles size) and choose the best ones. Table 1 gives the
median accuracy of GPFL on the 30 datasets of each variant, using the original
test set of 10,000 images. The different combinations of Next and S give similar
accuracy results, except for the combination Next = 40 and S = 1, which has
the lowest performance. This confirms the importance of an ensembles approach.
Table 1 marks in bold the highest median accuracy for each of the datasets. In
our experiments, we will use the corresponding values of Next and S.

Table 1. Classification accuracy of GPFL and LeNet5 on 10,000 test images

external
iter. (Next)

Ensembles
size (S)

GPFL median accuracy % Learning
rate

LeNet5 median accuracy %

MNIST-5 MNIST-10 MNIST-100 MNIST-5 MNIST-10 MNIST-100

20 50 73.78% 81.21% 90.16% 0.1 74.48% 80.67% 92.67%

30 50 74.18% 82.53% 91.26% 0.01 73.88% 80.58% 92.76%

40 50 74.49% 82.81% 91.66% 0.001 73.52% 79.92% 92.28%

60 50 73.82% 82.70% 91.84% 0.0001 73.90% 79.48% 91.49%

100 50 73.27% 82.19% 91.26%

40 1 68.36% 76.32% 85.07%

40 30 74.33% 82.63% 91.59%

LeNet5 Configuration. We compared GPFL with the Convolutional Neural
Network (CNN) LeNet5 [19,21], the most used baseline for MNIST [13,14].

72 S. Ruberto et al.

We implemented LeNet5 with the TensorFlow framework. To be sure that
our implementation was correct, we confirmed that when trained with all the
60,000 training images and validated with the 10,000 test images, our imple-
mentation achieves the advertised classification accuracy of 99% [19,21]. We
released our datasets, models and implementation and we welcome external val-
idation [39].

A key hyper-parameter of CNNs is the learning rate that controls how much
the weights are adjusted with respect to the loss gradient [20]. The lower the
value, the slower the training. The original LeNet5 uses 0.1 as learning rate,
which might be inadequate in our case since we have smaller training sets. Table 1
shows the median accuracy of LeNet5 on our datasets with different learning
rates (0.1, 0.01, 0.001, and 0.0001), using the original test set of 10,000 images.
Table 1 marks in bold the highest median accuracy for each of the three datasets.

Fig. 1. GPFL and LeNet5 classification accuracy (best configurations)

Classification Accuracy on 10,000 Test Images. Figure 1 shows the box-
plot of the classification accuracy distributions of GPFL and LeNet5 with their
best configurations (see Table 1). On MNIST − 5, GPFL and LeNet5 achieve
a similar median accuracy of ∼74.50%, but GPFL exhibits less variance. This
is the only non-statistically significant result (p-value 0.597). On MNIST −
10, GPFL outperforms LeNet5 (p-value 5.14·10−6) with a median accuracy
of 82.81% and 80.67%, respectively. On MNIST − 100, GPFL underperforms
LeNet5 (p-value 1.17·10−5) with a median accuracy of 91.84% and 92.76%,
respectively.

As expected, with the increasing of the training size, both techniques attain
better classification accuracy. Moreover, because smaller datasets might lack
representative training cases, the variance increases when the training size
decreases. Despite that the architecture of LeNet5 was specifically designed
for the MNIST dataset [19,21], GPFL’s results are comparable with LeNet5
on MNIST − 5, and better than LeNet5 on MNIST − 10. This demonstrates
that, given small training sets, GPFL learns the relevant high-level features of
MNIST images. This is an important result considering that GPFL’s architec-
ture is agnostic to MNIST.

Image Feature Learning with Genetic Programming 73

Classification Accuracy on 10,000 Noisy Test Images. We added random
noise to the MNIST test set of 10,000 images to compare the noise resilience
of GPFL and LeNet5. We considered five levels of salt noise L%: 5%, 10%,
20%, 30%, 40%. L specifies the percentage of randomly selected pixels in each
image whose values turn into 255 (white color). We decided to use salt noise
because (in our case) is more disruptive than the salt-and-pepper noise. In fact,
the majority of pixels in MNIST images are black (background color). The left
matrix in Fig. 3 exemplifies the five noise levels (Columns 5%, 10%, 20%, 30%,
40%).

Table 2 shows the median accuracy for each combination of training sets
(MNIST−5, MNIST−10 and MNIST−100) and noise levels (5%, 10%, 20%,
30%, 40%). GPFL always outperforms LeNet5 for every combination of train-
ing sets and noise levels. The comparison is always statistical significant (p-values
< 10−6), except when comparing GPFL and LeNet5 trained on MNIST − 5
and tested with noise level 5% (p-value 0.121). For noise level 5%, the difference
between the median accuracy of GPFL and LeNet5 ranges from +1.11% to
+2.84%. With the increasing of the noise level, the difference constantly grows.
For noise level 40%, the difference ranges from +30.51% to +40.85%.

Table 2. Median accuracy with 10,000 noisy test images

Salt noise level % MNIST-5 MNIST-10 MNIST-100
GPFL LeNet5 GPFL LeNet5 GPFL LeNet5

5 73.54% 72.43% 82.01% 79.18% 91.01% 89.75%
10 72.79% 68.95% 80.99% 75.56% 89.55% 80.49%
20 69.47% 56.78% 78.02% 63.45% 84.98% 57.37%
30 65.31% 41.10% 73.00% 49.26% 76.42% 37.72%
40 59.18% 28.67% 65.73% 35.99% 65.49% 24.64%

Figure 2 plots the median accuracy trend at the noise level increases. For all
the three MNIST variants, LeNet5 accuracy degrades much faster than the
one of GPFL. Interestingly, GPFL always outperforms LeNet5.

For the lowest noise level (5%), LeNet5 trained on MNIST−100 (denoted by
LeNet5100) outperforms LeNet55 and LeNet510. This is an expected result,
because (in principle) the larger the training set the highest the classification
accuracy. However, the performance of LeNet5100 drastically decreases when
the noise level increases. For noise level 30% and 40%, LeNet5100 performs
significantly worse than LeNet55 and LeNet510. This result can be due to
LeNet5100 has “overfitted the clean data”: MNIST − 100 has the largest size
and it requires more epochs to converge. As such, when the noise level increases,
the difference between the training and the test sets also increases. Intuitively,
the higher this difference, the lower the classification accuracy. Tsipras et al. had
similar conclusions when testing recent DNNs with noisy MNIST test sets [44].

74 S. Ruberto et al.

The classification accuracy of GPFL100 degrades at the increasing of the
noise, but at a much slower pace. Only at noise level 40%, GPFL100 achieves a
similar classification accuracy with GPFL10. Analogously to LeNet5, GPFL100

has “overfitted the clean data”: MNIST−100 has the largest size and the highest
number of external iterations (Next = 60 vs 40 see Table 1).

Reconstruction Results. The right matrix in Fig. 3 shows ten images from
the MNIST test set and their GPFL’s reconstructions at various numbers of
external iterations (i.e., partial models). These are the results of GPFL trained
on MNIST − 100 with ensembles size S = 50. Column Next shows the images
that GPFL reconstructs using the linear combination of the first Next partial
models, that is fgp(original) =

∑Next
i=1 partialModels[i]. With a low value of Next,

the reconstructed images focus on the macro characteristics of the images. For
instance, the images of Column Next = 2 show clouds of dust that resemble
the shape of the digits. When Next increases, the finer details gradually appear
because GPFL focuses on the residual errors of previous iterations. As Fig. 3
exemplifies, the process looks like a progressive cleansing of the images.

The left matrix of Fig. 3 shows ten images of the MNIST test set, their noisy
versions (L%) and their reconstructions (R) using GPFL100. The reconstructed
digits are recognizable even at noise level 40%. However, the reconstructions of
the digits two and zero show some artifacts originated by an uneven distribution
of the noise that GPFL interpreted as high-level features.

Size of the Final Solutions. The average size of fgp with Nint = 50 and Next =
40 is 4,587 (±4.6%), which is the number of nodes in the tree-like representation
of fgp. Recall that GPFL constructs fgp by assembling the partial models with
a linear combination. As such, after 50 internal iterations the resulting partial
models have an average size of 115 nodes (i.e., 4, 587/40 = 115).

Fig. 2. Median classification accuracy degradation at the increasing of noise level.

Image Feature Learning with Genetic Programming 75

Fig. 3. Examples of reconstructed images of GPFL (with noise on the left).

5 Conclusion

This paper presented GPFL, a GP technique to learn high-level features from
2D images. Differently from previous GP feature learner attempts, GPFL does
not simulate the behavior of Deep Neural Networks (DNNs) whatsoever. Our
novel GP approach can handle more complex classification tasks than previous
attempts. Our experiments with MNIST show that GPFL has a competitive
edge with LeNet5 when considering small training sets and noisy test sets.

Note that, we are not claiming that GPFL is a valid alternative to DNNs for
learning high-level features from 2D images. In fact, MNIST is the (simple) de-
facto standard benchmark for a first sanity check only. Moreover, we compared
GPFL with LeNet5 that (although being specific to MNIST) is not the most
recent DNN-based feature learner. However, GPFL demonstrates that a GP
feature learner can lead to interesting results that are worth investigating further.

References

1. Albukhanajer, W.A., Briffa, J.A., Jin, Y.: Evolutionary multiobjective image fea-
ture extraction in the presence of noise. IEEE Trans. Cybern. 45(9), 1757–1768
(2015). https://doi.org/10.1109/TCYB.2014.2360074

2. Alvear-Sandoval, R.F., Sancho-Gómez, J.L., Figueiras-Vidal, A.R.: On improving
CNNs performance: the case of MNIST. Inf. Fusion 52, 106–109 (2019)

3. Baldominos, A., Saez, Y., Isasi, P.: Evolutionary convolutional neural networks:
an application to handwriting recognition. Neurocomputing 283, 38–52 (2018).
https://doi.org/10.1016/j.neucom.2017.12.049

https://doi.org/10.1109/TCYB.2014.2360074
https://doi.org/10.1016/j.neucom.2017.12.049

76 S. Ruberto et al.

4. Baldominos, A., Saez, Y., Isasi, P.: Model selection in committees of evolved convo-
lutional neural networks using genetic algorithms. In: Intelligent Data Engineering
and Automated Learning, IDEAL 2018, pp. 364–373 (2018). https://doi.org/10.
1007/978-3-030-03493-1_39

5. Baldominos, A., Saez, Y., Isasi, P.: Hybridizing evolutionary computation and deep
neural networks: an approach to handwriting recognition using committees and
transfer learning. Complexity (2019). https://doi.org/10.1155/2019/2952304

6. Baldominos, A., Saez, Y., Isasi, P.: A survey of handwritten character recognition
with MNIST and EMNIST. Appl. Sci. 9(15), 3169 (2019)

7. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–
417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

8. Bochinski, E., Senst, T., Sikora, T.: Hyper-parameter optimization for convolu-
tional neural network committees based on evolutionary algorithms. In: Proceed-
ings International Conference on Image Processing, ICIP 2017, pp. 3924–3928
(2017). https://doi.org/10.1109/ICIP.2017.8297018

9. Brameier, M.F., Banzhaf, W.: Linear Genetic Programming. Springer, Boston
(2007). https://doi.org/10.1007/978-0-387-31030-5_1

10. Butterworth, J., Savani, R., Tuyls, K.: Evolving indoor navigational strategies
using gated recurrent units in NEAT. In: Proceedings of the Companion of Genetic
and Evolutionary Computation Conference, GECCO 2019, pp. 111–112 (2019).
https://doi.org/10.1145/3319619.3321995

11. Davison, J.: DEvol: automated deep neural network design via genetic program-
ming (2020). https://github.com/joeddav/devol

12. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE
Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006)

13. George, D., et al.: A generative vision model that trains with high data efficiency
and breaks text-based captchas. Science 358(6368), 2612 (2017)

14. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: Advances in Neural Information Processing Systems,
pp. 1135–1143 (2015)

15. Haynes, W.: Wilcoxon rank sum test. In: Encyclopedia of Systems Biology, pp.
2354–2355 (2013)

16. Impedovo, S., Mangini, F.: A novel technique for handwritten digit classification
using genetic clustering. In: Proceedings of International Conference on Frontiers
in Handwriting Recognition, ICFHR 2012, pp. 236–240 (2012). https://doi.org/10.
1109/ICFHR.2012.167

17. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scal-
ing. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.)
EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36599-0_7

18. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neu-
ral networks. AIChE J. 37(2), 233–243 (1991)

19. LeCun, Y.: Lenet-5, convolutional neural networks (2020). http://yann.lecun.com/
exdb/lenet

20. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

21. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition, vol. 86, pp. 2278–2324. IEEE (1998)

22. Legge, G.E., Foley, J.M.: Contrast masking in human vision. Josa 70(12), 1458–
1471 (1980)

https://doi.org/10.1007/978-3-030-03493-1_39
https://doi.org/10.1007/978-3-030-03493-1_39
https://doi.org/10.1155/2019/2952304
https://doi.org/10.1007/11744023_32
https://doi.org/10.1109/ICIP.2017.8297018
https://doi.org/10.1007/978-0-387-31030-5_1
https://doi.org/10.1145/3319619.3321995
https://github.com/joeddav/devol
https://doi.org/10.1109/ICFHR.2012.167
https://doi.org/10.1109/ICFHR.2012.167
https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1007/3-540-36599-0_7
http://yann.lecun.com/exdb/lenet
http://yann.lecun.com/exdb/lenet

Image Feature Learning with Genetic Programming 77

23. Lensen, A., Al-Sahaf, H., Zhang, M., Xue, B.: Genetic programming for region
detection, feature extraction, feature construction and classification in image data.
In: Heywood, M.I., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds.) EuroGP
2016. LNCS, vol. 9594, pp. 51–67. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-30668-1_4

24. Lensen, A., Xue, B., Zhang, M.: Can genetic programming do manifold learning
too? In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., García-Sánchez, P. (eds.)
EuroGP 2019. LNCS, vol. 11451, pp. 114–130. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-16670-0_8

25. Lensen, A., Zhang, M., Xue, B.: Multi-objective genetic programming for manifold
learning: balancing quality and dimensionality. Genet. Program Evolvable Mach.
21(3), 399–431 (2020). https://doi.org/10.1007/s10710-020-09375-4

26. Liu, L., Shao, L., Li, X.: Evolutionary compact embedding for large-scale image
classification. Inf. Sci. 316, 567–581 (2015). https://doi.org/10.1016/j.ins.2014.06.
030

27. López, U., Trujillo, L., Martinez, Y., Legrand, P., Naredo, E., Silva, S.: RANSAC-
GP: dealing with outliers in symbolic regression with genetic programming. In:
Proceedings of the European Conference on Genetic Programming, EuroGP 2017,
pp. 114–130 (2017)

28. Makhzani, A., Frey, B.J.: Winner-take-all autoencoders. In: Advances in Neural
Information Processing Systems, pp. 2791–2799 (2015)

29. McDermott, J.: Why is auto-encoding difficult for genetic programming? In: Sekan-
ina, L., Hu, T., Lourenço, N., Richter, H., García-Sánchez, P. (eds.) EuroGP 2019.
LNCS, vol. 11451, pp. 131–145. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-16670-0_9

30. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.: Reading digits in
natural images with unsupervised feature learning. Google technical report (2011)

31. Neumann, L., Matas, J.: Real-time scene text localization and recognition. In:
Proceedings of Conference on Computer Vision and Pattern Recognition, CVPR
2012, pp. 3538–3545 (2012)

32. Oliva, A., Torralba, A.: Building the gist of a scene: the role of global image features
in recognition. Prog. Brain Res. 155, 23–36 (2006)

33. Orzechowski, P., La Cava, W., Moore, J.H.: Where are we now?: a large bench-
mark study of recent symbolic regression methods. In: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2018, pp. 1183–1190 (2018).
https://doi.org/10.1145/3205455.3205539

34. Papavasileiou, E., Jansen, B.: An investigation of topological choices in FS-NEAT
and FD-NEAT on XOR-based problems of increased complexity. In: Proceedings
of the Companion of Genetic and Evolutionary Computation Conference, GECCO
2017, pp. 1431–1434 (2017). https://doi.org/10.1145/3067695.3082497

35. Peng, Y., Chen, G., Singh, H., Zhang, M.: NEAT for large-scale reinforcement
learning through evolutionary feature learning and policy gradient search. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018,
pp. 490–497 (2018). https://doi.org/10.1145/3205455.3205536

36. Perez, C.B., Olague, G.: Genetic programming as strategy for learning image
descriptor operators. Intell. Data Anal. 17(4), 561–583 (2013). https://doi.org/
10.3233/IDA-130594

https://doi.org/10.1007/978-3-319-30668-1_4
https://doi.org/10.1007/978-3-319-30668-1_4
https://doi.org/10.1007/978-3-030-16670-0_8
https://doi.org/10.1007/978-3-030-16670-0_8
https://doi.org/10.1007/s10710-020-09375-4
https://doi.org/10.1016/j.ins.2014.06.030
https://doi.org/10.1016/j.ins.2014.06.030
https://doi.org/10.1007/978-3-030-16670-0_9
https://doi.org/10.1007/978-3-030-16670-0_9
https://doi.org/10.1145/3205455.3205539
https://doi.org/10.1145/3067695.3082497
https://doi.org/10.1145/3205455.3205536
https://doi.org/10.3233/IDA-130594
https://doi.org/10.3233/IDA-130594

78 S. Ruberto et al.

37. Rodriguez-Coayahuitl, L., Morales-Reyes, A., Escalante, H.J.: Structurally lay-
ered representation learning: towards deep learning through genetic programming.
In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.)
EuroGP 2018. LNCS, vol. 10781, pp. 271–288. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-77553-1_17

38. Rodriguez-Coayahuitl, L., Morales-Reyes, A., Escalante, H.J.: Evolving autoen-
coding structures through genetic programming. Genet. Program Evolvable Mach.
20(3), 413–440 (2019). https://doi.org/10.1007/s10710-019-09354-4

39. Ruberto, S., Terragni, V., Moore, J.H.: GPFL replication package. experimental
data of GPFL and source code of Lenet5, April 2020. https://doi.org/10.5281/
zenodo.3899891

40. Ruberto, S., Terragni, V., Moore, J.H.: Image feature learning with a genetic pro-
gramming autoencoder. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference, GECCO 2020 (2020)

41. Ruberto, S., Terragni, V., Moore, J.H.: SGP-DT: semantic genetic programming
based on dynamic targets. In: Hu, T., Lourenço, N., Medvet, E., Divina, F. (eds.)
EuroGP 2020. LNCS, vol. 12101, pp. 167–183. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-44094-7_11

42. Ruberto, S., Terragni, V., Moore, J.H.: SGP-DT: towards effective symbolic regres-
sion with a semantic GP approach based on dynamic targets. In: Proceedings of
the Genetic and Evolutionary Computation Conference (Hot Off the Press track),
GECCO 2020 (2020)

43. Ruberto, S., Vanneschi, L., Castelli, M.: Genetic programming with semantic equiv-
alence classes. Swarm Evol. Comput. 44, 453–469 (2019). https://doi.org/10.1016/
j.swevo.2018.06.001

44. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may
be at odds with accuracy (2018)

45. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing
robust features with denoising autoencoders. In: Proceedings of the International
Conference on Machine Learning, ICML 2008, pp. 1096–1103 (2008)

46. Wang, J., Zhang, Z., Zha, H.: Adaptive manifold learning. In: Advances in Neural
Information Processing Systems, NIPS 2005 (2005)

47. Yadav, C., Bottou, L.: Cold case: the lost MNIST digits. In: Advances in Neural
Information Processing Systems, NIPS 2019, pp. 13443–13452 (2019)

48. Yann LeCun, C.C., Burges, C.: MNIST handwritten digit database (2020)
49. Zheng, A., Casari, A.: Feature Engineering for Machine Learning: Principles and

Techniques for Data Scientists. O’Reilly Media Inc., Sebastopol (2018)
50. Zhou, H., Yuan, Y., Shi, C.: Object tracking using sift features and mean shift.

Comput. Vis. Image Underst. 113(3), 345–352 (2009)

https://doi.org/10.1007/978-3-319-77553-1_17
https://doi.org/10.1007/978-3-319-77553-1_17
https://doi.org/10.1007/s10710-019-09354-4
https://doi.org/10.5281/zenodo.3899891
https://doi.org/10.5281/zenodo.3899891
https://doi.org/10.1007/978-3-030-44094-7_11
https://doi.org/10.1007/978-3-030-44094-7_11
https://doi.org/10.1016/j.swevo.2018.06.001
https://doi.org/10.1016/j.swevo.2018.06.001

Learning a Formula of Interpretability
to Learn Interpretable Formulas

Marco Virgolin1(B), Andrea De Lorenzo2, Eric Medvet2,
and Francesca Randone3

1 Centrum Wiskunde & Informatica, Amsterdam, Netherlands
marco.virgolin@cwi.nl

2 Department of Engineering and Architecture, University of Trieste, Trieste, Italy
3 IMT School for Advanced Studies Lucca, Lucca, Italy

Abstract. Many risk-sensitive applications require Machine Learning
(ML) models to be interpretable. Attempts to obtain interpretable mod-
els typically rely on tuning, by trial-and-error, hyper-parameters of model
complexity that are only loosely related to interpretability. We show that
it is instead possible to take a meta-learning approach: an ML model
of non-trivial Proxies of Human Interpretability (PHIs) can be learned
from human feedback, then this model can be incorporated within an ML
training process to directly optimize for interpretability. We show this for
evolutionary symbolic regression. We first design and distribute a survey
finalized at finding a link between features of mathematical formulas and
two established PHIs, simulatability and decomposability. Next, we use
the resulting dataset to learn an ML model of interpretability. Lastly, we
query this model to estimate the interpretability of evolving solutions
within bi-objective genetic programming. We perform experiments on
five synthetic and eight real-world symbolic regression problems, com-
paring to the traditional use of solution size minimization. The results
show that the use of our model leads to formulas that are, for a same
level of accuracy-interpretability trade-off, either significantly more or
equally accurate. Moreover, the formulas are also arguably more inter-
pretable. Given the very positive results, we believe that our approach
represents an important stepping stone for the design of next-generation
interpretable (evolutionary) ML algorithms.

Keywords: Explainable artificial intelligence · Interpretable machine
learning · Symbolic regression · Genetic programming · Multi-objective

1 Introduction

Artificial Intelligence (AI), especially when intended as Machine Learning (ML),
is increasingly pervading society. Although ML brings numerous advantages, it is
far from being fault-prone, hence its use comes with risks [1,16,24,36]. In many
cases, failures with serious consequences could have been foreseen and prevented,

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 79–93, 2020.
https://doi.org/10.1007/978-3-030-58115-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_6

80 M. Virgolin et al.

if the ML models had not been unintelligible, i.e., black-boxes. Nowadays, espe-
cially for high-stakes applications, practitioners, researchers, and policy makers
increasingly ask for ML to be used responsibly, fairly, and ethically [8,15]. There-
fore, decisions taken by ML models need to be explainable [1,2].

The field of eXplainable AI (XAI) studies techniques to provide explanations
for the decisions taken by black-box models (or, more generally, AI systems),
metrics that can be used as Proxies of Human Interpretability (PHIs), as well
as ML algorithms meant for the synthesis of models that are immediately inter-
pretable [1,36]. In this paper, we consider the latter case.

Several ML algorithms and techniques exist that are considered capable
of synthesizing interpretable models. Among these, fitting linear models (e.g.,
by ordinary least squares or elastic net [53]), building decision trees [4], and
evolutionary program synthesis [30] are often listed in surveys on XAI (see,
e.g., [1,16]). Unfortunately, in general, it cannot be guaranteed that the model
obtained by an ML algorithm will turn out to be interpretable. For example,
when a decision tree is built, the more the tree grows deep, the less the chances
of the tree being interpretable. Therefore, what is normally done is to repeat the
ML training process (decision tree construction) with different hyper-parameter
settings (tree depth) in a trial-and-error fashion, until a satisfactory model is
obtained. Trial-and-error, of course, comes with time costs. Next to this, another
important issue is the fact that hyper-parameters are mostly meant to control
the bias-variance interplay [3], and are but loosely related to interpretability.

Multi-Objective Genetic Programming (MOGP) is a very interesting app-
roach because, by its very nature, it mitigates the need for trial-and-error [30,52].
By evolving a population of solutions that encode ML models, MOGP can syn-
thesize, in a single run, a plethora of models with trade-offs between accuracy
and a chosen PHI. Obtaining multiple models at once enhances the chance that
a model with a satisfying trade-off between accuracy and interpretability will
be found quickly. Nonetheless, the problem of finding a suitable PHI remains.
So far, the PHI that have been used were quite simplistic. For example, a com-
mon approach is to simply minimize the total number of model components (see
Sect. 2 for more). In this paper, we propose a way to improve upon the use of
simplistic PHIs, and we focus on the case of MOGP for symbolic regression, i.e.,
where models are sought that can be written as mathematical formulas.

Our proposal is composed of three main parts. We begin by showing how
it is possible to learn a model of non-trivial PHIs. This can be seen as a con-
cretization of an idea that was sketched in [11]: a data-driven approach can be
taken to discover what features make ML models more or less interpretable. In
detail, (1) we design a survey about mathematical formulas, to gather human
feedback on formula interpretability according to two established PHIs: simulata-
bility and decomposability [24] (see Sect. 3.1); (2) we process the survey answers
and condense them into to a regression dataset that enables us to discover a non-
trivial model of interpretability; (3) we incorporate the so-found model within an
MOGP algorithm, to act as an estimator for the second objective (the first being

Learning a Formula of Interpretability to Learn Interpretable Formulas 81

the mean squared error): in particular, the model takes as input the features of
a formula, and outputs an estimate of interpretability.

All of our code, including the data obtained from the survey, is available at:
https://github.com/MaLeLabTs/GPFormulasInterpretability.

2 Related Work

In this paper, we focus on using ML to obtain interpretable ML models, partic-
ularly in the form of formulas and by means of (MO)GP. We do not delve into
XAI works where explanations are sought for the decisions made by a black-box
model (see, e.g., [34,48]), nor where the black-box model needs to be approxi-
mated by an interpretable surrogate (e.g., a recent GP-based work on this is [14]).
We refer to [1,16] as excellent surveys on various aspects of XAI. We describe
the PHIs we adopt, and briefly mention works adopting them, in Sect. 3.1.

Regarding GP for the synthesis of ML models, a large amount of literature
is focused on controlling complexity, but not primarily as a means to enable
interpretability. Rather, the focus is on overfitting prevention, oftentimes (but
not exclusively) by limiting bloat, i.e., the excessive growth of solution size [7,31,
33,37,38,42,51]. Among these works, [13,39,46] share with us the use MOGP,
but are different in that they use hand-crafted complexity metrics instead of
taking a data-driven approach (respectively solution size, order of non-linearity,
and a modification of solution size), and again these metrics are designed to
control bloat and overfitting instead of enable interpretability ([46] does however
discuss some effects on interpretability).

Among the works that use GP and focus on interpretability, [6] considers the
evolution of rule-based classifiers, and evaluates them using a PHI that consists
of dividing the number of conditions in the classifier by the number of classes.
In [18], GP is used to evolve reinforcement learning policies as symbolic expres-
sions, and complexity in interpretation is measured by accounting for variables,
constants, and operations, with different ad-hoc weights. The authors of [43]
study whether modern model-based GP can be useful when particularly com-
pact symbolic regression solutions are sought, to allow interpretability. A very
different take to enable or improve interpretability is taken in [22,41,45], where
interpretability is sought by means of feature construction and dimensionality
reduction. In [22] in particular, MOGP is used, with solution size as a simple
PHI. Importantly, none of these works takes attempts to learn a PHI from data.

Perhaps the most similar work to ours is [27]. Like we do, the authors train
an ML model (a deep residual network [17]) from pre-collected human-feedback
to drive an evolutionary process, but for a very different aim, i.e., automatic art
synthesis (the human-feedback is aesthetic rankings for images).

3 The Survey

We prepared an online survey (http://mathquiz.inginf.units.it) to assess the sim-
ulatability and decomposability of mathematical formulas (we referred to [5] for

https://github.com/MaLeLabTs/GPFormulasInterpretability
http://mathquiz.inginf.units.it

82 M. Virgolin et al.

Given the formula
5x1+1

cos(x2−3.14) and the

input value(s) [x1 = 8.0, x2 = 6.28], which

option is closest to the output?

(a) −410.0

(b) −41.0

(c) 410.0

(d) −20.5

Consider the formula 5 sin0.5(x − 3.14) .

Which option best describes the behavior

of the function as x varies in [−1.0, 1.0]?

(a) The function is bounded but not always defined

(b) The function is not bounded nor always defined

(c) The function is not bounded but always defined

(d) The function is bounded and always defined

Fig. 1. Examples of questions on simulatability (left) and decomposability (right).

survey-preparation guidelines). We begin by describing the two PHIs, and pro-
ceed with an overview of the content of the survey and the generation process.
We provide full details on online supplementary material at: https://github.com/
MaLeLabTs/GPFormulasInterpretability.

3.1 Simulatability and Decomposability

Simulatability and decomposability are two established PHIs, introduced in a
seminal work on XAI [24]. Simulatability represents a measurable proxy for the
capability of a person to contemplate an entire ML model, and is measured by
assessing whether a human, given some input data, can reproduce the model’s
output within a reasonable error margin and time [24]. No specific protocol exists
to perform the measurement. In [32], this PHI was measured as the absolute
deviation between the human estimate for the output of a (linear) model and
the actual output, given a set of inputs. With our survey, we measured the rate
of correct answers to multiple choices questions on the output of a formula.

Decomposability represents the possibility that a model can be interpreted by
parts: inputs, parameters, and (partial) calculations of a model need to admit an
intuitive explanation [24]. For example, the coefficients of a linear model can be
interpreted as the strengths of association between features and output. Decom-
posability is similar to the concept of intelligibility of [25]. As for simulatability,
there exists no prescription on how to measure decomposability. We considered
variables as important components to represent this PHI, and gathered answers
(correct/wrong) on properties of the behavior of a formula when one of its vari-
ables varies within an interval.

3.2 Overview on the Survey and Results

We implemented the survey as a webpage, consisting of an introductory section
to assess the respondents’ level of familiarity with formulas, followed by eight
questions, four about simulatability, and four about decomposability. The eight
questions are randomly selected when the webpage is loaded, from a pre-
generated database that contains 1000 simulatability and 1000 decomposability
questions, each linked to one of 1000 automatically generated formulas. Figure 1

https://github.com/MaLeLabTs/GPFormulasInterpretability
https://github.com/MaLeLabTs/GPFormulasInterpretability

Learning a Formula of Interpretability to Learn Interpretable Formulas 83

<weekly
weekly

daily

How frequently do you deal with mathematical
expressions in your work or study?

<month
<year

1–3 years
>3 years

How long have you been working and/or
studying ina math related field?

0.2 0.3 0.4 0.5

fairly complex
moderately complex

simple

What is the complexity of
the formulas you usually deal with?

0.1 0.2 0.3 0.4

bad w/ any
bad w/ complex

good w/ any
How well do you deal with complex formulas?

Fig. 2. Distribution of answers about user expertise.

shows examples of these questions. Each and every question presents four possi-
ble answers, out of which only one is correct. Alongside each question, the user
is asked to state how confident (s)he is about the answer, on a scale from 1 to 4.

The 1000 formulas were encoded with trees, and randomly generated with a
half-and-half initialization of GP [30] (max depth 4). The set of leaf nodes for
the trees included 4 different variables, and constants that were either integers
(from 0 to 10) or multiples of π (3.14 or 6.28). The possible operations were +,
−, ×, ÷, ∧,

√·, sin, and cos. We performed rejection sampling and automatic
simplifications to avoid presenting fundamentally uninteresting functions (e.g.,
constant ones), or functions with exploding output (e.g., due to ∧).

For simulatability questions, the user was either asked to pick the correct
2D graph representing the behavior of the (one variable) formula, or to choose
the best estimate of the output of the (multi-variable) formula, given values for
the variables. Decomposability questions asked whether the formula was (not)
bounded, (not) always defined, (not) null in some points, (not) negative in some
points, for one variable changing in a given interval and the others being fixed.

We distributed the survey by emailing research groups and departments
within the institutes of the authors, targeting both students and faculty mem-
bers. We further shared the survey on Reddit (subreddit CasualMath) and Twit-
ter. We obtained 334 responses in ≈35 days, corresponding to 2672 answers.
Figure 2 shows the distribution of answers to the introductory part of the sur-
vey.

4 Learning a Formula of Interpretability

We now describe how we condense the survey answers into a regression dataset,
and use this dataset to learn an ML model (as a formula) of interpretability.

We begin with replacing each question with a set of feature values that rep-
resents the formula contained in the question (explained in detail below). We
obtain multiple identical sets of feature values with different outcomes in terms
of correctness and confidence. We merge equal sets of feature values into a single
sample, taking the ratio of correct answers and the mean confidence. In doing so,
we do not distinguish between answers belonging to simulatability or decompos-
ability, assuming they are equally good PHIs. We also remark that we did not

84 M. Virgolin et al.

make expertise-based partitions because of the limited number of respondents
and the skew in expertise distribution (Fig. 2).

As label to regress, we take the product between correctness ratio and confi-
dence (the latter normalized to have values 0

3 , 1
3 , 2

3 , 3
3). We choose to weight by

confidence because, arguably, the less a user is confident about the answer, the
less (s)he feels (s)he interprets the formula correctly. Essentially, this is a new
PHI synthesized out of simulatability and decomposability, that takes confidence
into account. From now on, we refer to this PHI as φ.

The choice of what formula features are considered is of crucial importance
as it determines the way the answers are merged. We ultimately consider the
following features: the size � of the formula (counting variables, constants, and
operations), the number no of operations, the number nnao of non-arithmetic
operations, the number nnaoc of consecutive compositions of non-arithmetic oper-
ations. Note that the number of variables or constants is �−no, and the number
of arithmetic operations is no − nnao.

By merging answers sharing the same values for the aforementioned four
features, and excluding merged samples composed by less than 10 answers for
robustness, we obtain a small regression dataset with 73 samples.

4.1 Learning the Model

Figure 3a shows the distribution of φ. Since this distribution is not uniform,
similarly to what is done for classification with imbalanced class frequency, we
weight samples by the inverse frequency of the bin they belong to.

To obtain a readable ML model and due to the small number of sam-
ples, we choose to fit a elastic net linear model [53] of the four fea-
tures with stochastic gradient descent, and validate it with leave-one-out
cross-validation. We refer the reader interested in the details of this pro-
cess (which includes, e.g., hyper-parameter tuning) to https://github.com/
MaLeLabTs/GPFormulasInterpretability. The leave-one-out cross-validation
scores a (weighted) training R2 = 0.506, and (weighted) test R2 = 0.545 (mean
weighted absolute error of 26%). The distribution of the model coefficients opti-
mized across the folds is shown in Fig. 3b.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

%
of

sa
m

pl
es

(a) Histogram of φ values.

−6 −4 −2 0

�

no

nnao

nnaoc

(b) Boxplots of learned coefficients.

Fig. 3. Salient information about the learning data and the linear model.

https://github.com/MaLeLabTs/GPFormulasInterpretability
https://github.com/MaLeLabTs/GPFormulasInterpretability

Learning a Formula of Interpretability to Learn Interpretable Formulas 85

We take the average coefficients found during the cross-validation to obtain
the final model of φ (from now on, considered as a percentage):

Mφ(�, no, nnao, nnaoc) = 79.1 − 0.2� − 0.5no − 3.4nnao − 4.5nnaoc. (1)

By observing Mφ, it can be seen that each feature plays a role in lowering
interpretability, yet by different magnitudes; nnaoc is the most important factor.

5 Exploiting the Model of Interpretability in MOGP

The experimental setup adopted for the use of the model Mφ within an MOGP
algorithm for symbolic regression is presented next. We describe the algorithm
we use, its objectives, the datasets we consider, and the evaluation process.

MOGP by NSGA-II. We use a GP version of NSGA-II [9], the most popular
multi-objective evolutionary algorithm, and refer to it as NSGP (the same name
has been used in different works, e.g., [23,47,49]). We use traditional settings (all
described in [30]): tree-based encoding; ramped half-and-half initialization (min
and max depth of 1 and 6 respectively); and tournament selection (size 2, default
in NSGA-II). The crossover operator is subtree crossover (probability of 0.9,
default in NSGA-II). The mutation operator is one-point mutation (probability
of 1/� for each tree node, with � the number of nodes).

We set the population size to 1000 and perform 100 generations across all
experiments. The possible tree leaves are the problem variables and an ephemeral
random constant [30], with random values from U(−5,+5). The operations are
+, −, ×, ÷p, sin, cos, exp, and logp. Protection of division by zero is implemented
by ÷p(i1, i2) := sign(i2) i1

|i2|+ε . Similarly, the logarithm is protected by taking as
argument the absolute value of the input plus ε. We use ε = 10−6. Trees are not
allowed to grow past 100 nodes, as they would definitely be not interpretable.

Our (Python 3) implementation of NSGP (including an interface to scikit-
learn [29]) is available at: https://github.com/marcovirgolin/pyNSGP.

Objectives. We consider two competing objectives: error vs. interpretability.
For the first objective, we consider the Mean Squared Error (MSE) with linear
scaling [20,21], i.e., MSElin.scal.(y, ŷ) = 1

N

∑N
i=1 (yi − a − bŷi)

2. The use of the
optimal (on training data) affine transformation coefficients a, b corresponds to
computing an absolute correlation. From now on, we simply refer to this as MSE.

For the second objective, we consider two possibilities. The first one is realized
by using our model Mφ: we extract the features from the tree to be evaluated,
feed them to Mφ, and take the resulting estimate of φ. To conform with objective
minimization, we actually seek to minimize the opposite of this estimate (we also
ignore the intercept term of Eq. (1)). We call NSGPφ the version of NSGP using
this second objective.

https://github.com/marcovirgolin/pyNSGP

86 M. Virgolin et al.

The second possibility is to solely minimize the number of nodes �. This
approach, despite its simplicity, is very popular (see Sect. 2). Here we use it as
a baseline for comparison. We refer to NSGP using � minimization as NSGP�.

The objectives based on � and φ are in a comparable scale (considering φ as
a percentage). To bring the first objective to a similar scale (since scale impacts
the crowding distance [9]), during the evolution we multiply the MSE by 100

σ2(y)

(i.e., predicting the mean μ(y) achieves an error of 100).
NSGP measures the quality of solutions according to the same criteria of [9]

(domination ranking and crowding distance). We will report results relative to
the front of non-dominated solutions F obtained at the end of the run. Recall
that a solution is non-dominated if there exists no other solution that is better
in at least one objective and not worse in all others. In other words, F contains
the solutions with best trade-offs between the objectives.

Datasets and Evaluation. We consider 13 regression datasets in total, see
Table 1. The first 5 datasets are synthetic (S-) and are recommended in [50].
The other 8 regard real-world data (R-) and are (mostly) taken from the UCI
machine learning repository [12] and used in recent literature (e.g., [35,44]).

We treat all datasets the same. We apply standardization, i.e., all features are
set to have zero mean and unit standard deviation. Before each run, we partition
the dataset in exam at random, splitting it into 80% samples for training, 10%
for validation, and 10% for testing. The training set is used by NSGP to evolve
the solutions. The other sets are used to assess generalization, as is good practice
in ML [3]. In particular, using the final population, we re-compute the MSE of
the solutions w.r.t. the validation set, and compute the front of non-dominated
solutions F based on this. The MSE of the solutions in this front is finally
re-evaluated on the test set (test MSE).

Because dataset partitioning as well as NSGP are stochastic, we perform 50
runs per dataset. To evaluate whether differences in results between NSGPφ and
NSGP� are significant, we use the Wilcoxon signed-rank test [10] to the 95%
confidence level, including Holm-Bonferroni correction [19].

Table 1. Datasets used in this work. For the synthetic datasets, N is chosen by con-
sidering the largest between the training set and test set proposed in [50].

Dataset Abbr. N D μ(y) σ(y)

Keijzer 6 S-Ke6 121 1 4.38 0.98

Korns 12 S-K12 10000 5 2.00 1.06

Nguyen 7 S-Ng7 20 1 0.79 0.48

Pagie 1 S-Pa1 625 2 1.56 0.49

Vladislav. 4 S-Vl4 5000 5 0.49 0.19

Dataset Abbr. N D μ(y) σ(y)

Airfoil R-Air 1503 5 124.8 6.9

Boston housing R-Bos 506 13 22.5 9.2

Dow chemical R-Dow 1066 57 3.0 0.4

Diabetes R-Dia 442 10 152.1 77.0

Energy cooling R-EnC 768 8 24.6 9.5

Energy heating R-EnH 768 8 22.3 10.1

Tower R-Tow 4999 25 342.1 87.8

Yacht R-Yac 308 6 10.5 15.1

Learning a Formula of Interpretability to Learn Interpretable Formulas 87

6 Results

Fitting and Generalization Error. We begin by reporting quantitative
results of the models in terms of training and test MSE. Although the test
MSE is what ultimately matters in practical applications (i.e., a good formula
is one that generalizes to unseen data), we also show the training MSE because
it reflects the capability of an algorithm to optimize as much as possible. We
present results for different trade-off levels τ . Specifically, τ is the percentile
rank of the solutions in the non-dominated front F ordered by increasing MSE:
τ = 1 considers the solution with best MSE and worst PHI; τ = 100 considers
the solution with worst MSE and best PHI (see Fig. 4). Table 2 shows the MSE
obtained by NSGPφ and NSGP� at training and test times, alongside the values
of φ and �, for the MSE-specialized part of the fronts (τ = 5, 25, 50).

For a same τ , solutions found by NSGPφ have typically larger � than those
found by NSGP�. The vice versa also holds, as can be expected. Notable examples
appear for τ = 25 in S-Pa1 and R-EnC/H: NSGPφ achieves approximately
double � compared to the NSGP�, while the latter achieves approximately double
φ compared to the former.

Regarding the training MSE, the use of φ leads to the best optimization. This
is particularly evident for τ = 5 where all results are significantly better when
using NSGPφ, except for S-Vl4. Using φ instead of � has a smaller detrimental
impact on finding well-fitting formulas. A plausible explanation is that NSGPφ

explores the search space better than NSGP�. This hypothesis is also supported
by considering the sizes of the non-dominated fronts |F|: although the fronts are
generally small for both φ and � (reasonable because both depend on discrete
properties of the solutions [39]), they are consistently larger when φ is used.

Less differences between NSGPφ and NSGP� are significant when consider-
ing the test MSE (also due to Holm-Bonferroni correction). This is a normal
consequence of assessing generalization as gains in training errors are lost due to
(some) overfitting. What is important tough is that NSGPφ remains preferable.
For τ = 5 (τ = 25), this is the case for 9 (7) out of 13 datasets.

Qualitative Results. We delve deeper into the results to assess the behavior of
NSGP using φ and �, from a qualitative perspective. We consider three datasets:
S-Vl4 where no version of NSGP is superior to the other; R-Bos where NSGPφ is
only better at training time; and R-EnH, where NSGPφ is favorable also at test
time. Figure 4 shows all validation fronts obtained from the 50 runs, re-evaluated
in terms of test MSE for both versions of NSGP, and plotted w.r.t. φ (left plots)
and � (right plots). We also show, for τ ∈ {1, 50, 100}, the solutions obtained
by considering always the first run (seed 1 in the results on our online code
repository at https://github.com/MaLeLabTs/GPFormulasInterpretability).

The scatter plots show that, in general, NSGPφ obtains more points with
small test MSE. This is most evident for R-EnH, where the results are found to
be statistically significant. Note how, instead, this is not the case for τ = 100 in
S-Vl4, where in fact the use of φ is no better than the use of � (see Table 2).

https://github.com/MaLeLabTs/GPFormulasInterpretability

88 M. Virgolin et al.

Table 2. Median performance from 50 runs of the solutions found by NSGPφ and
NSGP� at different trade-off levels τ (τ = 1 for best MSE, τ = 100 for best PHI).
Median front sizes (|F|) are computed w.r.t. the validation set. MSE values in bold for
one version of NSGP are significantly lower than the corresponding ones for the other
version of NSGP at the 95% confidence level after Holm-Bonferroni correction.

Dataset τ NSGPφ NSGP� Train

p-value

Test

p-value

Train

MSE

Test

MSE

φ � |F| Train

MSE

Test

MSE

φ � |F|

S-Ke6 5 0.000 0.001 11.4 11 7 0.007 0.006 14.5 8 5 0.000 0.000

25 0.001 0.002 9.4 8 0.013 0.007 13.5 6 0.000 0.000

50 0.005 0.007 3.8 7 0.023 0.023 7.4 4 0.000 0.000

S-K12 5 0.997 0.998 2.9 7 3 0.998 0.997 7.4 4 2 0.000 0.924

25 0.998 0.998 2.9 7 0.998 0.997 7.4 4 0.000 0.941

50 0.998 0.997 2.0 5 0.998 0.997 7.4 3 0.000 0.454

S-Ng7 5 0.000 0.000 4.7 9 4 0.004 0.003 12.6 4 2 0.000 0.000

25 0.001 0.001 2.9 7 0.005 0.003 12.6 4 0.000 0.000

50 0.001 0.001 2.0 5 0.005 0.003 12.6 3 0.000 0.000

S-Pa1 5 0.174 0.190 15.9 16 10 0.216 0.221 22.8 7 6 0.000 0.001

25 0.221 0.231 14.1 12 0.257 0.269 19.7 6 0.038 0.004

50 0.396 0.392 10.5 8 0.338 0.387 13.5 5 0.029 0.950

S-Vl4 5 0.509 0.536 13.9 9 6 0.580 0.563 18.1 8 5 0.194 0.241

25 0.616 0.621 11.4 8 0.632 0.611 18.1 6 0.398 0.579

50 0.770 0.719 10.5 6 0.656 0.684 12.0 5 0.000 0.004

R-Air 5 0.501 0.519 5.5 13 6 0.566 0.586 2.3 5 3 0.000 0.000

25 0.534 0.538 4.7 10 0.566 0.586 2.3 5 0.000 0.000

50 0.565 0.586 2.0 5 0.596 0.624 1.3 3 0.000 0.000

R-Bos 5 0.245 0.287 4.7 9 5 0.281 0.338 7.4 4 3 0.000 0.057

25 0.254 0.290 3.8 9 0.282 0.338 7.4 4 0.000 0.021

50 0.283 0.332 2.0 5 0.347 0.355 1.3 3 0.000 0.054

R-Dia 5 0.510 0.546 2.9 7 4 0.531 0.578 1.3 3 2 0.000 0.051

25 0.515 0.546 2.9 7 0.533 0.577 1.3 3 0.000 0.046

50 0.525 0.551 2.0 5 0.538 0.571 1.3 3 0.000 0.482

R-Dow 5 0.336 0.357 3.8 9 4 0.449 0.445 2.3 3 2 0.000 0.000

25 0.369 0.372 3.8 9 0.449 0.451 2.3 3 0.000 0.000

50 0.395 0.418 2.0 5 0.469 0.466 1.3 3 0.000 0.000

R-EnC 5 0.099 0.108 7.3 15 6 0.149 0.145 14.5 7 4 0.000 0.000

25 0.104 0.113 5.5 12 0.157 0.155 13.8 7 0.000 0.000

50 0.117 0.127 3.8 9 0.175 0.176 13.5 5 0.000 0.000

R-EnH 5 0.082 0.085 6.0 13 5 0.130 0.132 14.5 8 5 0.000 0.000

25 0.085 0.087 4.7 11 0.142 0.141 13.5 7 0.000 0.000

50 0.089 0.098 2.9 7 0.164 0.162 8.4 5 0.000 0.000

R-Tow 5 0.290 0.288 3.8 9 4 0.373 0.381 8.4 6 4 0.000 0.000

25 0.298 0.302 2.9 7 0.379 0.389 3.3 5 0.000 0.000

50 0.371 0.370 2.0 5 0.449 0.457 7.4 4 0.000 0.000

R-Yac 5 0.011 0.014 11.4 13 9 0.013 0.017 7.4 4 2 0.000 0.000

25 0.012 0.016 5.5 11 0.013 0.017 7.4 4 0.000 0.037

50 0.015 0.024 3.8 9 0.013 0.018 7.4 4 0.006 0.000

Learning a Formula of Interpretability to Learn Interpretable Formulas 89

0.4

0.6

0.8

1

T
es

t
M

SE
(S

-V
l4

)
φ NSGPφ NSGP� �

0.2

0.4

0.6

0.8

T
es

t
M

SE
(R

-B
os

)

0 20 40

0.1

0.2

0.3

T
es

t
M

SE
(R

-E
nH

)

0 10 20 30

sin(x13)

x6 − x13

cos(x6) + x13

x13 − x6

x6 − x13

(cos(x6) + x13)

−(x6 − cos(x6))

sin(x5)

exp(exp(sin(x4))) − x7

exp(exp(sin(x5)))

−((sin(cos(x4)) + x1)

−x7)

0.017 ÷p x5

((−3.235 × x5) − x7) − x3

0.017 × ((x1 × x3) + ((x3 + x7)

+(1.89 ÷p (x5 ÷p 1.617))))

cos(x3)

cos(x1) + cos(x3)

(exp(logp(sin(x5)))

−(exp(cos(x2)) + cos(x1)))

− cos(x3)

x3 × x3

x3 × (−0.004 − x3)

logp(((x2 × (x3 × x4)) × x1))

Fig. 4. Scatter plots of validation fronts as re-evaluated on the test set for all 50 runs,
in terms of φ (left column) and � (right column). Formulas in the middle are picked
from the front of run 1, using τ = 1 (bottom), 50 (middle), 100 (top). Note that x13−x6

and x6 − x13 (R-Bos) are equivalent due to linear scaling.

By visually inspecting the formulas, we find results that are in line with what
found in Table 2. Formulas found by NSGPφ with small MSE (τ = 1, 50) can
often be (slightly) longer than their counterpart found by NSGP� (except for S-
Vl4), however, they typically contain less non-arithmetic operations, and less of
their compositions. Even for very small formulas, those found NSGP� rely more
on non-arithmetic operations, meaning these operations help achieving small
MSE, at least up to the validation stage. All in all, the most complex formulas
found by NSGPφ are either more easily or similarly interpretable than those
found by NSGP�.

7 Discussion

To realize our data-driven approach, we relied on a survey aimed at measur-
ing human-interpretability of mathematical formulas. While we did our best to
design a survey that could gather useful human feedback, a clear limitation of
our work is the relatively small number of survey respondents (334), which in

90 M. Virgolin et al.

turn led to obtaining a relatively small dataset (73 samples, 4 formula features).
Fitting of a high-bias (linear) model resulted in a decent test R2 of 0.5, while hav-
ing the model be interpretable itself. Still, the model need not be interpretable.
With more data available in the future, we will investigate the use of a larger
number of more sophisticated features [26], and the use of more complex (pos-
sibly even black-box) models. Moreover, our approach can also be investigated
for ML models other than formulas (e.g., decision trees).

In terms of results with NSGP, we found that φ allows the discovery of good
solutions w.r.t. the competing objective, i.e., the MSE, better than �. We also
found that using φ leads to the discovery of larger fronts. There is no reason
to expect this outcome beforehand, as φ was not designed to achieve this. We
believe these findings boil down to one fundamental reason: diversity preser-
vation. Because the estimation of φ relies on more features compared to the
measurement of �, more solutions can co-exist that do not dominate each other.
Hence, the use of φ fares better against premature convergence [40].

Regarding the examples of formulas we obtained, one may think that φ leads
to arguably more interpretable formulas than � simply because it accounts for
non-arithmetic operations (and their composition). In fact, we agree that � is
simplistic. However, we believe that minimizing � represents one of the first
baselines to compare against (and it was the only one we found being used
to specifically promote interpretability [22]), and that designing a competitive
baseline is non-trivial. We will investigate this further in future work.

What about formula simplification? We did not present results regarding
formulas after a simplification step. We attempted to use the sympy library [28]
to assess the effect of formula simplification during the evolution, but to no avail
as runtimes exploded. Moreover, we looked at what happens if we simplify (with
sympy) the formulas in the final front, and re-compute their φ and �. Results
were mixed. For example, regarding the three datasets of Fig. 4, re-measuring φ
and � after simplification led to a mean improvement ratio of 1.08 (1.17) and
1.00 (1.00) respectively, when all (only the most complex) formulas from the
fronts were considered. Hence, the use of φ seems more promising than � w.r.t.
simplification. Yet, as improvements were small (also in visual assessments),
further investigation will be needed.

8 Conclusion

We presented a data-driven approach to learn, from responses to a survey on
mathematical formulas we designed, a model of interpretability. This model is
itself an interpretable (linear) formula, with reasonable properties. We plugged-
in this model within multi-objective genetic programming to promote formula
interpretability in symbolic regression, and obtained significantly better results
when comparing with traditional formula size minimization. As such, our app-
roach represents an important step towards better interpretable machine learn-
ing, especially by means of multi-objective evolution. Furthermore, the model
we found can be used as a proxy of formula interpretability in future studies.

Learning a Formula of Interpretability to Learn Interpretable Formulas 91

Acknowledgments and Author Contributions. We thank the Maurits en Anna
de Kock Foundation for financing a high-performance computing system that was used
in this work. Author contributions, in order of importance, follow. Conceptualization:
M.V.; methodology: M.V., E.M.; software: M.V., A.D.L., F.R.; writing: M.V., E.M.,
A.D.L., F.R.

References

1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

2. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies,
opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York
(2006)

4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth, Belmont (1984)

5. Burgess, T.F.: Guide to the design of questionnaires. A general introduction to the
design of questionnaires for survey research. University of Leeds (2001)

6. Cano, A., Zafra, A., Ventura, S.: An interpretable classification rule mining algo-
rithm. Inf. Sci. 240, 1–20 (2013)

7. Chen, Q., Zhang, M., Xue, B.: Structural risk minimization-driven genetic pro-
gramming for enhancing generalization in symbolic regression. IEEE Trans. Evol.
Comput. 23(4), 703–717 (2018)

8. Chouldechova, A.: Fair prediction with disparate impact: a study of bias in recidi-
vism prediction instruments. Big Data 5(2), 153–163 (2017)

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

10. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7(Jan), 1–30 (2006)

11. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. arXiv preprint arXiv:1702.08608 (2017)

12. Dua, D., Graff, C.: UCI machine learning repository (2017). archive.ics.uci.edu/ml
13. Ekárt, A., Nemeth, S.Z.: Selection based on the Pareto nondomination criterion

for controlling code growth in genetic programming. Genet. Program Evolvable
Mach. 2(1), 61–73 (2001)

14. Evans, B.P., Xue, B., Zhang, M.: What’s inside the black-box? A genetic program-
ming method for interpreting complex machine learning models. In: Proceedings
of the Genetic and Evolutionary Computation Conference, pp. 1012–1020 (2019)

15. Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-
making and a “right to explanation”. AI Mag. 38(3), 50–57 (2017)

16. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. ACM Comput. Surv. 51(5),
93 (2018)

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

18. Hein, D., Udluft, S., Runkler, T.A.: Interpretable policies for reinforcement learning
by genetic programming. Eng. Appl. Artif. Intell. 76, 158–169 (2018)

19. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat.
6, 65–70 (1979)

http://arxiv.org/abs/1702.08608
http://archive.ics.uci.edu/ml/index.php

92 M. Virgolin et al.

20. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scal-
ing. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.)
EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36599-0 7

21. Keijzer, M.: Scaled symbolic regression. Genet. Program Evolvable Mach. 5(3),
259–269 (2004)

22. Lensen, A., Xue, B., Zhang, M.: Genetic programming for evolving a front of
interpretable models for data visualization. IEEE Trans. Cybern., 1–15 (2020).
https://ieeexplore.ieee.org/abstract/document/9007046

23. Liang, Y., Zhang, M., Browne, W.N.: Multi-objective genetic programming for
figure-ground image segmentation. In: Ray, T., Sarker, R., Li, X. (eds.) ACALCI
2016. LNCS (LNAI), vol. 9592, pp. 134–146. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-28270-1 12

24. Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 31–57 (2018)
25. Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regres-

sion. In: Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 150–158. ACM (2012)

26. Maruyama, M., Pallier, C., Jobert, A., Sigman, M., Dehaene, S.: The cortical
representation of simple mathematical expressions. Neuroimage 61(4), 1444–1460
(2012)

27. McCormack, J., Lomas, A.: Understanding aesthetic evaluation using deep learn-
ing. In: Romero, J., Ekárt, A., Martins, T., Correia, J. (eds.) EvoMUSART 2020.
LNCS, vol. 12103, pp. 118–133. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-43859-3 9

28. Meurer, A., et al.: SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3,
e103 (2017)

29. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

30. Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A Field Guide to Genetic
Programming. Lulu.com, Morrisville (2008)

31. Poli, R., McPhee, N.F.: Parsimony pressure made easy: solving the problem of
bloat in GP. In: Borenstein, Y., Moraglio, A. (eds.) Theory and Principled Methods
for the Design of Metaheuristics. NCS, pp. 181–204. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-33206-7 9

32. Poursabzi-Sangdeh, F., Goldstein, D.G., Hofman, J.M., Vaughan, J.W., Wal-
lach, H.: Manipulating and measuring model interpretability. arXiv preprint
arXiv:1802.07810 (2018)

33. Raymond, C., Chen, Q., Xue, B., Zhang, M.: Genetic programming with
Rademacher complexity for symbolic regression. In: IEEE Congress on Evolution-
ary Computation (CEC), pp. 2657–2664 (2019)

34. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

35. Ruberto, S., Terragni, V., Moore, J.H.: SGP-DT: semantic genetic programming
based on dynamic targets. In: Hu, T., Lourenço, N., Medvet, E., Divina, F. (eds.)
EuroGP 2020. LNCS, vol. 12101, pp. 167–183. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-44094-7 11

36. Rudin, C.: Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215
(2019)

https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1007/3-540-36599-0_7
https://ieeexplore.ieee.org/abstract/document/9007046
https://doi.org/10.1007/978-3-319-28270-1_12
https://doi.org/10.1007/978-3-319-28270-1_12
https://doi.org/10.1007/978-3-030-43859-3_9
https://doi.org/10.1007/978-3-030-43859-3_9
https://doi.org/10.1007/978-3-642-33206-7_9
http://arxiv.org/abs/1802.07810
https://doi.org/10.1007/978-3-030-44094-7_11
https://doi.org/10.1007/978-3-030-44094-7_11

Learning a Formula of Interpretability to Learn Interpretable Formulas 93

37. Sambo, A.S., Azad, R.M.A., Kovalchuk, Y., Indramohan, V.P., Shah, H.: Time
control or size control? Reducing complexity and improving accuracy of genetic
programming models. In: Hu, T., Lourenço, N., Medvet, E., Divina, F. (eds.)
EuroGP 2020. LNCS, vol. 12101, pp. 195–210. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-44094-7 13

38. Silva, S., Dignum, S., Vanneschi, L.: Operator equalisation for bloat free genetic
programming and a survey of bloat control methods. Genet. Program Evolvable
Mach. 13(2), 197–238 (2012)

39. Smits, G.F., Kotanchek, M.: Pareto-front exploitation in symbolic regression. In:
O’Reilly, U.M., Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming Theory
and Practice II. GPEM, vol. 8, pp. 283–299. Springer, Boston (2005). https://doi.
org/10.1007/0-387-23254-0 17

40. Squillero, G., Tonda, A.: Divergence of character and premature convergence: a
survey of methodologies for promoting diversity in evolutionary optimization. Inf.
Sci. 329, 782–799 (2016)

41. Tran, B., Xue, B., Zhang, M.: Genetic programming for multiple-feature construc-
tion on high-dimensional classification. Pattern Recogn. 93, 404–417 (2019)

42. Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional
complexity in genetic programming. In: Proceedings of the Genetic and Evolution-
ary Computation Conference, pp. 877–884 (2010)

43. Virgolin, M., Alderliesten, T., Witteveen, C., Bosman, P.A.N.: Improving model-
based genetic programming for symbolic regression of small expressions. Accepted
in Evolutionary Computation. ArXiv preprint arXiv:1904.02050 (2019)

44. Virgolin, M., Alderliesten, T., Bosman, P.A.N.: Linear scaling with and within
semantic backpropagation-based genetic programming for symbolic regression. In:
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2019, pp. 1084–1092. Association for Computing Machinery (2019)

45. Virgolin, M., Alderliesten, T., Bosman, P.A.N.: On explaining machine learning
models by evolving crucial and compact features. Swarm Evol. Comput. 53, 100640
(2020)

46. Vladislavleva, E.J., Smits, G.F., Den Hertog, D.: Order of nonlinearity as a com-
plexity measure for models generated by symbolic regression via Pareto genetic
programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2008)

47. Wang, P., Tang, K., Weise, T., Tsang, E., Yao, X.: Multiobjective genetic program-
ming for maximizing ROC performance. Neurocomputing 125, 102–118 (2014)

48. Wang, W., Shen, J.: Deep visual attention prediction. IEEE Trans. Image Process.
27(5), 2368–2378 (2017)

49. Watchareeruetai, U., Matsumoto, T., Takeuchi, Y., Kudo, H., Ohnishi, N.: Con-
struction of image feature extractors based on multi-objective genetic programming
with redundancy regulations. In: IEEE International Conference on Systems, Man
and Cybernetics, pp. 1328–1333. IEEE (2009)

50. White, D.R., et al.: Better GP benchmarks: community survey results and propos-
als. Genet. Program Evolvable Mach. 14(1), 3–29 (2013)

51. Zhang, B.T., Mühlenbein, H.: Balancing accuracy and parsimony in genetic pro-
gramming. Evol. Comput. 3(1), 17–38 (1995)

52. Zhao, H.: A multi-objective genetic programming approach to developing Pareto
optimal decision trees. Decis. Support Syst. 43(3), 809–826 (2007)

53. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J.
Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

https://doi.org/10.1007/978-3-030-44094-7_13
https://doi.org/10.1007/978-3-030-44094-7_13
https://doi.org/10.1007/0-387-23254-0_17
https://doi.org/10.1007/0-387-23254-0_17
http://arxiv.org/abs/1904.02050

Landscape Analysis

On Stochastic Fitness Landscapes: Local
Optimality and Fitness Landscape

Analysis for Stochastic Search Operators

Brahim Aboutaib1,2(B), Sébastien Verel1, Cyril Fonlupt1, Bilel Derbel3,
Arnaud Liefooghe4, and Beläıd Ahiod2

1 Université du Littoral Côte d’Opale, LISIC, 62100 Calais, France
brahim.aboutaib@univ-littoral.fr

2 Faculty of Science, LRIT, Mohammed V University in Rabat, Rabat, Morocco
3 Univ. Lille, CNRS, Centrale, Inria, UMR 9189 - CRIStAL, 59000 Lille, France

4 JFLI – CNRS IRL 3527, University of Tokyo, Tokyo 113-0033, Japan

Abstract. Fitness landscape analysis is a well-established tool for gain-
ing insights about optimization problems and informing about the behav-
ior of local and evolutionary search algorithms. In the conventional def-
inition of a fitness landscape, the neighborhood of a given solution is a
set containing nearby solutions whose distance is below a threshold, or
that are reachable using a deterministic local search operator. In this
paper, we generalize this definition in order to analyze the induced fit-
ness landscape for stochastic search operators, that is when neighboring
solutions are reachable under different probabilities. More particularly,
we give the definition of a stochastic local optimum under this setting, in
terms of a probability to reach strictly improving solutions. We illustrate
the relevance of stochastic fitness landscapes for enumerable combinato-
rial benchmark problems, and we empirically analyze their properties
for different stochastic operators, neighborhood sample sizes, and local
optimality thresholds. We also portray their differences through stochas-
tic local optima networks, intending to gather a better understanding of
fitness landscapes under stochastic search operators.

Keywords: Combinatorial optimization · Local optimality · Fitness
landscape · Stochastic search operators.

1 Introduction

Originally coming from evolutionary biology [23], the fitness landscape is one of
the most common abstractions used to depict and analyze dynamical systems.
In evolutionary computation and related stochastic optimization algorithms, a
fitness landscape is the association of a search space of potential solutions, a
fitness function to be optimized, and a neighborhood relation between solutions
on which the optimization process is expected to move during the search process.
The aim of fitness landscape analysis is twofold. The first one is to understand
c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 97–110, 2020.
https://doi.org/10.1007/978-3-030-58115-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_7

98 B. Aboutaib et al.

the relation between the geometry of the optimization problem and the search
dynamics, using the pictures of peaks, valleys, or plateaus. More recently, with
the renew of machine learning techniques, the second goal uses features com-
puted from the fitness landscape to predict algorithm performance or to select
relevant algorithm components according to the optimization problem [10]. From
the large number of features designed for evolutionary computation, one of the
most intuitive and most important one relates to local optimality. A local opti-
mum, which can be depicted as a peak of the landscape, is a solution with the
best fitness value locally, among its set of neighboring solutions. This definition
arises from the neighborhood relation of the fitness landscape. In combinatorial
optimization, the neighborhood is a finite set, most often defined by a natural
distance between solutions such as Hamming distance or Kendall distance.

However, most local search and evolutionary algorithms use stochastic local
search operators, which do not always directly match with a finite set of neighbor-
ing solutions. For example, the bit-flip mutation operator conventionally used in
genetic algorithms, which flips each bit independently with a given rate, does not
produce a finite set of neighboring solutions with an equal probability of being
reached. Similarly, hyperheuristics might combine several local search operators
with different probability distributions [16]. The explored solutions at each iter-
ation is not properly caught by any finite set. Even when the neighborhood is
defined as a finite set, its cardinality might be too large for being computationally
enumerated, as it is the case, for instance, in genetic programming or population-
based multi-objective search [20]. Therefore, a subpart of the neighborhood is
typically sampled at random or in a heuristic way, making the deterministic
definition of neighborhood and local optimum less relevant.

In this paper, we extend the definition of neighborhood to stochastic local
search operators, and we investigate stochastic local optimality in this context.
The principle is to define a stochastic local optimum when the probability to
strictly improve a solution by applying a stochastic operator is small, below a
given threshold. The threshold can be related to the inverse of the computational
budget available to find an improving solution. Intuitively, a stochastic local opti-
mum is a solution that is difficult to improve in a reasonable computational effort
using the stochastic operator, and therefore constitutes an attraction point for
evolutionary or local search. By extending the fitness landscape paradigm, and in
particular its neighborhood relation, to stochastic search operators, we expect
the definition of local optimality to reveal new insights into the search space
structure, and to allow for a better analysis of the design of algorithms based on
stochastic operators. In this work, the methodology is to support the relevance of
the new definition of stochastic local optimum with an experimental analysis on
enumerable combinatorial optimization problems with different properties, and
to show the potential additional benefit of this approach for fitness landscape
analysis.

Our contributions can be summarized as follows:

(1) We extend the definition of fitness landscape to stochastic operators, and
we propose a new definition of local optimum for stochastic local search.

On Stochastic Fitness Landscapes 99

(2) We empirically show the relevance of this definition on enumerable NK-land-
scapes.

(3) We show some potential interests of stochastic fitness landscapes for iterated
local search, and we reveal, for the first time, the structure of local optima
networks for stochastic operators.

Outline. The paper is organized as follows. In Sect. 2, we first recall necessary def-
initions and related works. In Sect. 3, we present the stochastic fitness landscape
and stochastic local optimality definitions. In Sect. 4, we detail the experimental
setup, and the results of the analysis. The discussion and conclusions close the
paper in Sect. 5.

2 Preliminaries

A fitness landscape [14] is defined as a triplet (X , f,N) such that X is the
search space of candidate solutions, f : X → IR is the fitness function, and N
is a neighborhood relation. In combinatorial optimization, the search space is
a finite set. The neighborhood relation N : X → 2X assigns a set of solutions,
called neighbors, to any solution from the search space. Although this definition
is quite general, the basic idea behind it is to define neighboring solutions in
the vicinity of a solution. Standard definitions are based on a distance measure
between elements from the search space, such as the Hamming distance: N (x) =
{x′ ∈ X | d(x, x′) � D}, where d is a distance function and D is the radius of
the neighborhood. Other standard definitions are based on a deterministic local
search operator that performs a move from one solution to another: N (x) =
{x′ ∈ X | ∃θ s.t. opθ(x) = x′}, where opθ is a parametric deterministic operator
such as swap or insertion. In both cases, the neighborhood relation allows one
to depict the fitness landscape with peaks, plateaus, and valleys, but also to
analyze the fitness landscape using tools from graph theory [14,21].

One of the main intuitive and fundamental feature of a fitness landscape deals
with local optimality, where local optima represent the peaks in the pictures
collection of the fitness landscape. For a maximization problem, a local optimum
is a solution x ∈ X such that:

∀x′ ∈ N (x), f(x′) � f(x) (1)

The number of local optima in the fitness landscape provides a first information
about the difficulty of a combinatorial optimization problem, and about the
performance of local and evolutionary search algorithms [8]. For large landscapes,
different methods allow one to estimate the number of local optima using uniform
random sampling, biased random sampling [1,7], or the length of an adaptive
walk before being trapped [11]. In addition to the number of local optima, the
size, the distribution and the structure of local optima’s basins of attraction is
one major feature related to algorithm performance [5,8], including for problems
from machine learning [3]. The basin of attraction of a local optimum x� is
defined as the set of solutions from which a hill-climbing algorithm h falls into:

100 B. Aboutaib et al.

B(x�) = {y ∈ X | h(y) = x�}. Depending on the pivot rule used by the hill-
climber, e.g., first or best improvement, the structure of the basins is different,
and so is its impact on search performance [2,15]. Besides local optima and their
basins of attraction, a complementary view of fitness landscapes is given by the
so-called local optima network (LON) [4,13]. In particular, the LON with escape
edges [19] is defined as a weighted directed graph (V,E), where vertices V are
local optima, and there is an edge (xi, xj) ∈ E between local optima xi and xj

if there is a solution y ∈ X such that the distance between xi and y is below a
given threshold, and y belongs to the basin of attraction of xj ; i.e. (xi, xj) ∈ E iff
∃y ∈ X such that d(xi, y) � D and y ∈ B(xj). The weight wij of an edge (xi, xj)
gives the ratio of such solutions y ∈ X that satisfies the definition above from the
set of solutions at distance D. Several metrics have been proposed to characterize
LONs, and have been related to problem difficulty or search performance for both
single-objective [18] and multi-objective optimization [6,11].

However, although many evolutionary and local search algorithms are based
on a stochastic operator, all definitions related to local optimality and fitness
landscape analysis are based on a deterministic neighborhood relation, consid-
ering a set of neighbors that is often finite. We argue that this only partially
reflects the properties of stochastic search operators, and we introduce the notion
of stochastic local optimality and fitness landscapes in the next section.

3 Stochastic Fitness Landscapes and Local Optimality

A local search algorithm is based on a local search operator op : X → X which
moves from one solution to another solution. A stochastic local search operator
defines a probability distribution over the search space. When the search space
is finite, as in discrete or combinatorial optimization, a stochastic operator can
be defined by the probabilities of moving from a solution x ∈ X to a solution
y ∈ X : P{op(x) = y} = px→y such that ∀x, y ∈ X , px→y � 0, and ∀x ∈ X ,∑

y∈X px→y = 1. When the search space is infinite, a stochastic operator can be
defined with probability density functions over the search space.

A typical example of a stochastic local search operator is the bit-flip mutation
operator used in standard genetic algorithms. It flips each bit from a given
bitstring of size n independently at random, with a rate p. In this case, px→y =
pk(1 − p)n−k, where k is the Hamming distance between x and y. Besides, a
stochastic operator can be derived from any neighborhood relation with finite
support. For a given neighborhood relation N such that, ∀x ∈ X , |N (x)| < ∞,
a stochastic operator opN can be defined using a uniform random distribution
over the set of neighbors: ∀y ∈ N (x),P{opN (x) = y} = 1

|N (x)| .
It is straightforward to extend the definition of a fitness landscape by replac-

ing the neighborhood relation with a stochastic search operator.

Definition 1. A stochastic fitness landscape (SFL) is a triplet (X , op, f) where
X is the search space, f : X → IR the fitness function, and op is the stochastic
local search operator.

On Stochastic Fitness Landscapes 101

However, this definition only makes sense if it is possible to define reasonable
basic features of such fitness landscapes. As pointed out in Sect. 2, one of the
main features is the concept of local optimality. According to Eq. (1), a local
optimum is a solution for which all neighbors have a lower or equal fitness value.
Roughly speaking, if we translate this definition in terms of probability, the
probability to reach a neighbor with a lower or equal fitness value from a local
optimum is very high. However, this probability cannot always be considered
as 1. Indeed, for an ergodic operator and a finite search space, there is a non-
zero probability to reach the global optimum from any solution from the search
space. As such, considering a probability of 1 would end up having the global
optimum as the single local optimum. We thus introduce a threshold ε > 0
to define a stochastic local optimum. The probability to reach a neighbor with
lower quality is higher than (1−ε): P{f(op(x)) � f(x)} � (1−ε), or equivalently
P{f(x) < f(op(x))} � ε.

Definition 2. Given a SFL (X , op, f), and a real number ε � 0, a solution
x ∈ X is a stochastic local optimum (SLO) at a local optimality threshold ε iff
P{f(x) < f(op(x))} � ε.

In other words, a solution is a stochastic local optimum at threshold ε when
the probability to reach a strictly improving solution by applying the stochastic
operator is below ε. Notice that the definition is still effective when the proba-
bility to obtain the same solution is not null, i.e. when P{op(x) = x} > 0.

Interestingly, the definitions of deterministic and stochastic local optimality
can be connected. Let us consider a neighborhood relation with finite support;
i.e. ∀x ∈ X , |N (x)| < ∞. A solution x ∈ X is a deterministic local optimum
under N iff x is a stochastic local optimum under opN at threshold ε < 1

/|N (x)|.
Indeed, the probability to strictly improve a solution x is equal to n+

/|N (x)|,
where n+ is the number of strictly improving neighbors. As a consequence, when
x is a deterministic local optimum for N , the probability to strictly improve x
with opN is zero. Conversely, when the probability to strictly improve x is strictly
below 1

/|N (x)|, no neighbor from N (x) has a higher fitness value.
In the definition of a stochastic local optimum, the threshold ε is critical, and

a relevant value has to be carefully chosen with respect to the considered land-
scape and search scenario. Intuitively, we can think of the ε-value as the inverse
of the expected computational budget (in terms of fitness evaluations) required
to escape from a local optimum with a stochastic operator. For instance, in one
scenario, if at a given step of the search process, the remaining computational
budget is neval, we could define ε = 1

neval
. Alternatively, in an iterated local

search scenario switching between a local search operator and a perturbation
operator, the threshold could be defined as the inverse of the budget dedicated
to each local search run: ε = 1

nls
. At last, in an evolutionary algorithm scenario

for which λ candidate solutions are computed at each iteration, as in a (μ + λ)–
evolution strategy, the ε-value can be set to ε = 1

λ . As such, the probability of
strictly improving the current population is below the computational budget of
one iteration of the algorithm. Furthermore, we argue that a fitness landscape

102 B. Aboutaib et al.

analysis could actually benefit from the use of a broader range of ε-values. Fit-
ness landscape metrics such as the number of local optima or the size of the
basins of attraction can be studied according to the ε-value in order to show the
metrics spectrum, and not only for a given accurate value of ε. We illustrate this
point and analyze the impact of ε empirically in the next section.

4 Experimental Analysis

4.1 Experimental Setup

Problem Testbed. We consider NK-landscapes as a problem-independent
model of combinatorial optimization problems defined on binary strings. NK-
landscapes were proposed in [9] for constructing multi-modal fitness landscapes
in a tunable way, by adjusting the epistatic (or non-linearity) degree K. Given
a binary string x ∈ {0, 1}N , its fitness f(x) ∈ [0, 1), is defined as follows:

f(x) := 1
N

N∑

i=1

fi(xi, xi1 , . . . , xiK), where fi : {0, 1}K+1 → [0, 1]: is the epistasis

level of the i-th bit, its value depend on the allele at the bit i but also on the other
alleles at the K other epistatic bits , and {i1, . . . , iK} ⊂ {1, . . . , i−1, i+1, . . . , N}.
For each variable xi, there exist two ways for selecting the K epistatic bits:
either randomly, or by choosing the K closest ones. Beside that NK-landscapes
belong to the family of NP-hard problems for K > 1 [22], it has the property
of modeling many interesting optimization problems [21]. Thus, it is not just a
serious testbed for randomized search heuristics, but also a proxy for other com-
binatorial optimization problems. We shall mention that the best algorithm to
tackle NK-landscapes is not our concern here. We do not consider this problem
for benchmarking purposes, but rather for illustration/concept-testing purposes,
given that the number of local optima is known to be closely related to the
epistatic degree K.

In order to analyze the impact of different parameters on the definition of
SLO, we consider enumerable instances from NK-landscapes with a bitstring
length N ∈ {10, 12, 16, 18}, and an epistatic degree K ∈ {0, 1, 2, 3}. These K-
values were chosen as they correspond to linear, quadratic, cubic, and quartic
versions, the most recurrent problem types encountered in combinatorial opti-
mization. We report the result over 20 different instances for each combination
of N and K, that we generate with adjacent epsitatic interactions.

Stochastic Operators. We investigate the bit-flip mutation operator as a
stochastic local search operator. It flips each bit independently at random, with
a rate p. We experiment different rates p =

c

N
, inversely proportional to the

bitstring length N , such that c ∈ {1, 2, 4, 8}. For comparison purposes, we also
consider the standard 1-bit flip neighborhood operator, which flips 1 bit precisely.
Thus, the neighborhood consists of all solutions located at Hamming distance 1,
and the neighborhood size is N .

On Stochastic Fitness Landscapes 103

Estimating Stochastic Local Optimality. Even for small enumerable prob-
lem instances, it is not computationally doable to enumerate all possible neigh-
bors for each solution to compute exactly all SLO from the search space. There-
fore, to estimate the improving probability given in Definition 2, we use the
classical estimator of the empirical mean: p̂+ = λ+

λ where λ+ is the number of
strictly improving solution over a random sample of λ solutions produced by the
stochastic operator. Thus, a solution is depicted as a SLO when this estimation
p̂+ is lower or equal to the threshold ε. The quality of the estimation depends
on local optimality threshold values, and the sample size λ. We study different
values, proportional to the bitstring length: ε ∈ {1/(j · N), | j ∈ {1, 2, 4, 8}},
and λ ∈ {2i N | i ∈ {0, . . . , 7}}.

4.2 Experimental Results

In this section, we illustrate the relevance of the SLO definition, and we show
preliminary scenarios for analyzing stochastic fitness landscapes.1

Number of Stochastic Local Optima. Figure 1 shows the number of SLO
over all instances according to the degree of non-linearity K, the problem dimen-
sion N , and different mutation rates p. The threshold is set to ε = 1/(4N)
(other values are reported below). In order to increase the estimation accuracy,
the sample size is set to the largest value λ = 128N . Except for a very large
mutation rate p = 8/N , and a small problem dimension N < 16, the expected
number of SLO seems to increase fast with the degree of non-linearity K. It also
increases with the problem size N . As expected, the trend follows the number
of local optima for the classical 1 bit-flip neighborhood. These first results show
that the proposed definition of SLO make sense w.r.t. the multimodality of NK-
landscapes. The number of SLO is also impacted by the mutation rate, and a
more precise analysis is detailed below.

Local Optimality Threshold. In Fig. 2, we report the number of SLO as a
function of the local optimality threshold ε. The sample size is set to the largest
value λ = 128N , and the bit-flip mutation rate is set to the typical setting
of p = 1/N . The number of SLO increases with ε for all problem instances.
Indeed, a small threshold allows fewer solutions to be a SLO. Let us remind
that the extreme setting of ε = 0 implies that a single solution is a SLO: the
global optimum. Notice that the number of SLO increases with the degree of
non-linearity K, and the problem dimension N for all investigated ε-values. For
large ε-values, the number of SLO is larger than for the standard 1 bit-flip
neighborhood. In this case, the inverse of the ε-value is larger than 1/N .

Impact of the Sample Size. We now investigate how the sample size impacts
the estimation of the number of SLO. From a statistical point of view, a large
1 Code, and data are available on https://gitlab.com/b.aboutaib/slo.

https://gitlab.com/b.aboutaib/slo

104 B. Aboutaib et al.

N: 10 N: 12 N: 16 N: 18

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
1

10

100

1000

K

Lo

ca
l O

pt
im

a

Op 1 1−bit flip 2 4 8

Fig. 1. Number (average value and confidence interval, computed over 20 considered
instances) of SLO with respect to the problem non-linearity K, for different problem
sizes N and stochastic operators op with a bit-flip mutation rate c/N .

N: 10 N: 12 N: 16 N: 18

1/8N 1/4N 1/2N 1/N 1/8N 1/4N 1/2N 1/N 1/8N 1/4N 1/2N 1/N 1/8N 1/4N 1/2N 1/N
1

10

100

1000

Epsilon

Lo

ca
l O

pt
im

a

K 0 1 2 3

Fig. 2. Number (average value and confidence interval) of SLO with respect to the
local optimality threshold ε, for different instances (size N and non-linearity K).

sample size gives a better estimation of the improving probability considered in
Definition 2. Therefore, a better estimation of the number of SLO is expected.
Figure 3 shows the estimated number of SLO as a function of the sample size for
different values of N , K, and ε. The estimated number decreases with the sample
size to converge toward the number of SLO. The empirical mean estimator of
improving probability tends to overestimate the number of SLO when the sample
size is too small with respect to the ε-value. At a first sight, a sample size of
about 2 or 3 times the inverse of ε seems to provide a fair estimation. However for
a given sample size, the estimated number of SLO increases with non-linearity
K, and problem dimension N . Further theoretical studies should allow us to
improve this first empirical finding.

Mutation Rate vs. Local Optimality Threshold. In Fig. 4, we report the
number of SLO as a function of the bit-flip mutation rate p, for different ε-values
and different degrees of non-linearity K. The problem dimension is set to N = 18,
and the largest sample size of λ = 128N is used. In order to better appreciate the
trend, additional rate values are experimented: p = c/N , with c ∈ {0.5, 1, . . . , 8}.
The local optimality threshold is set to ε ∈ {1/N, 1/(2N), 1/(4N), 1/(8N)}.

On Stochastic Fitness Landscapes 105

N: 10 N: 12 N: 16 N: 18

Eps: 1/N
Eps: 1/2N

Eps: 1/4N
Eps: 1/8N

2 0 2 2 2 4 2 6 2 0 2 2 2 4 2 6 2 0 2 2 2 4 2 6 2 0 2 2 2 4 2 6

100

1000

10000

10

100

1000

1

10

100

1000

1

10

100

1000

Sample Size

Lo

ca
l O

pt
im

a

K 0 1 2 3

Fig. 3. Number (average value and confidence interval) of SLO with respect to the
sample size, for different instances (size N and non-linearity K) and local optimality
threshold ε. The mutation rate is set to p = 1/N (i.e., c = 1).

All curves have a convex shape. As such, given a threshold value ε, there
is a bit-flip mutation rate that minimizes the expected number of SLO, which
does not map to the extreme bounds of the domain. In other words, the lowest
number of SLO is reached at a particular trade-off point between low and high
bit-flip mutation rates. For example, for K = 2 and ε = 1/(2N), the mutation
rate that minimizes the number of SLO is 1.5/N , but changing ε to 1/(8N)
shifts this mutation rate to 2.5/N . Interestingly, this observation suggests that
there exists an accurate mutation rate that reduces the multimodality of the
stochastic fitness landscape, and that does not correspond to the largest bit-flip
mutation rate. To the best of our knowledge, this is the first fitness landscape
analysis that brings an understanding of a relevant mutation rate for a stochastic
operator. A high mutation rate results in a landscape with many local optima.
Hence, a local search would be easily stuck, and would not benefit from potential
local improvements. A low mutation rate also induces a large number of local
optima. However, by contrast, it shall be understood as a lack of exploration
with respect to the local optimality threshold. Remember that a single feature

106 B. Aboutaib et al.

is not able to explain all facets of search difficulty, and other metrics from the
fitness landscape would be required to have a better global picture.

K: 0 K: 1 K: 2 K: 3

2−1 20 21 22 23 2−1 20 21 22 23 2−1 20 21 22 23 2−1 20 21 22 23

1

10

100

1000

10000

c

Lo

ca
l O

pt
im

a

Epsilon 1/N 1/2N 1/4N 1/8N

Fig. 4. Number (average value and confidence interval) of SLO with respect to the bit-
flip mutation rate c/N , for different instances (non-linearity K) and local optimality
threshold ε (see legend). The problem size is N = 18.

4.3 Stochastic Fitness Landscape Analysis

Iterated Local Search. In this section, we illustrate the potential useful-
ness of a stochastic fitness landscape analysis for the design of search algo-
rithms based on stochastic local search operators. We consider the Iterated Local
Search (ILS) framework [12] as a case study. ILS aims at escaping from poor
local optima based on a perturbation mechanism followed by a local search pro-
cedure. Whenever the local search falls into a local optimum, it is perturbed by
means of random modifications to obtain a new (inferior) solution from which
another local search round starts. This process is iterated until the computa-
tional budget is exhausted. In the following, we analyze the performances of
ILS on NK-landscapes. In particular, we perform 30 independent ILS execu-
tions on a randomly generated instance with N = 18 and K ∈ {1, 2, 3}. We
set the perturbation rate to 0.3; that is, each bit is flipped with a rate of 0.3.
The local search components considered within the ILS is a first-improvement
hill-climbing algorithm, where at most λ solutions are produced at each step by
means of a stochastic bit-flip mutation with a rate of c/N . If there is no strict
improvement, the current solution is considered as a stochastic local optimum,
and a perturbation is performed for further iterations. The maximum number
of fitness evaluations for the ILS is set to 104.

In Fig. 5, we report the relative deviation (to be minimized) from the best
know solution of the final fitness value obtained by the ILS for different mutation
rates, λ-values, and degrees of non-linearity. For any λ-value, there is a muta-
tion rate that maximizes the expected ILS performance. Interestingly, in most
of λ scenarios, this value corresponds, to the mutation rate that minimizes the

On Stochastic Fitness Landscapes 107

K: 1 K: 2 K: 3

1/N 2/N 4/N 8/N 1/N 2/N 4/N 8/N 1/N 2/N 4/N 8/N
0.00

0.05

0.10

Mutation Rate

D
ev

ia
tio

n
fro

m
 th

e
be

st

Lambda N 2N 4N 8N

Fig. 5. Deviation of solution quality, from the best known solution, (average value and
confidence interval) obtained by ILS with respect to the bit-flip mutation rate, for
different instances (non-linearity K) and sample sizes λ. The problem size is N = 18.

number of SLO, as disclosed above. This illustrates that analyzing the stochastic
fitness landscape of the target problem might actually provide insightful infor-
mation about the suitable configuration of stochastic local search algorithms.

Stochastic Local Optima Network. In order to complement our analysis
of stochastic fitness landscapes, we now naturally extend the concept of Local
Optima Network (LON) [4,13] to stochastic local optima. We define the Stochas-
tic LON (SLON) as a graph where nodes are stochastic local optima, and edges
represent the pairwise connections between stochastic local optima with respect
to another stochastic operator. More particularly, an edge (xi, xj) is defined and
weighted so as to render the probability of reaching SLO xj from SLO xi. In
this work, escape edges [19], as defined in Sect. 2, are computed according to a
bit-flip mutation operator.

We generate a SLON for an NK-landscape with N = 18 and K = 2. The
SLO is defined by the bit-flip stochastic operator with three different mutation
rates p ∈ {1/N, 2/N, 3/N}, and a stochastic operator for escape edges with
a mutation rate of 3/N . The sample size to estimate SLO and edges is set
to λ = 4N . Figure 6 shows the obtained SLON for the same NK-landscape.
The node colors indicate the fitness value: the redder, the better. The node
size is logarithmically proportional to the size of the corresponding basin of
attraction. The edge size is linearly proportional to its weight (self-loops are
omitted to improve readability). We cannot report the SLON and related metrics
for all instances due to space restriction. However, they are consistent with
the visual impression of Fig. 6. For the considered sample size λ, the main
observations are as follows: the number of SLO increases with the mutation
rate, the density of edges decreases with the mutation rate, and so does the
self-loop weights wii. The feature from standard (deterministic) LON that is the
most correlated with the performance of ILS is known to be the average distance
between local optima and the global optimum [13]. The distance between two

108 B. Aboutaib et al.

nodes i and j is defined as the inverse of the weight wij . Over all instances with
N = 18 and K = 2, the expected average distance to the global optimum is 8.48,
7.67, and 9.80, respectively, for mutation rates 1/N , 2/N , and 3/N . This metric
suggests that the stochastic fitness landscape corresponding to a mutation rate
of 2/N is ‘easier’ to search than the one corresponding to a mutation rate of
1/N or 3/N . This observation is in line with the performance of ILS reported in
Fig. 5. Indeed, the SLON for p = 1/N has a lower number of SLO, but nodes
with higher fitness values seem to be clustered, which corresponds to a funnel
structure [17]. By contrast, for p = 2/N , despite a larger number of SLO, paths
to the global optimum seem to be shorter, and then more likely to happen during
the search process of ILS. For p = 3/N , we infer that the huge number of SLO
decreases the probability of reaching the global optimum by following a path on
the network, thus inhibiting the performance of ILS.

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●●●

●

●
●

●

●
●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

Fig. 6. Stochastic local optima networks for an NK-landscape with N = 18 and K = 2.
From left to right, the mutation rate is: p = 1/N , 2/N , and 3/N , respectively.

5 Discussion and Further Considerations

In this paper, we defined and analyzed fitness landscapes based on stochastic
search operators. Based on this definition, we empirically investigated enumer-
able instances from NK-landscapes. More particularly, we studied the number of
stochastic local optima as a preliminary feature of such stochastic fitness land-
scapes, showing the relevance of stochastic local optima when measuring the
multimodality of stochastic fitness landscapes. We also studied the underlying
stochastic local optima networks. We found out that there is a critical region
in the stochastic operator setting (the mutation rate) in which stochastic local
optima are more scarce. A proper setting within this region would make the
computational effort to solve the problem much more effective and would result
in better solution quality.

Let us emphasize that the proposed definition of local optimality and fit-
ness landscape for stochastic operators is not entitled to any particular problem

On Stochastic Fitness Landscapes 109

class. Moreover, although we exhaustively enumerated the search space of NK-
landscapes in order to avoid any bias in our current analysis, this is obviously
not practical for large-scale optimization problems. As such, we plan to investi-
gate sampling procedures that will enable studying the stochastic fitness land-
scape of other academic and real-world optimization problems. We hope that
the proposed definition will enable analyzing better many recurrent problems
and optimization algorithms, such as population-based evolutionary, estimation
of distribution, or genetic programming algorithms.

Acknowledgements. We are very thankful to the CALCULCO center of Université
du Littoral Côte d’Opale for providing computational resources used in this paper.

References

1. Alyahya, K., Rowe, J.E.: Simple random sampling estimation of the number of
local optima. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G.,
Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 932–941. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45823-6 87

2. Basseur, M., Goëffon, A.: Climbing combinatorial fitness landscapes. Appl. Soft
Comput. 30, 688–704 (2015)

3. Bosman, A.S., Engelbrecht, A., Helbig, M.: Visualising basins of attraction for the
cross-entropy and the squared error neural network loss functions. Neurocomputing
(2020)

4. Chicano, F., Daolio, F., Ochoa, G., Vérel, S., Tomassini, M., Alba, E.: Local optima
networks, landscape autocorrelation and heuristic search performance. In: Coello,
C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN
2012. LNCS, vol. 7492, pp. 337–347. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32964-7 34

5. Elorza, A., Hernando, L., Mendiburu, A., Lozano, J.A.: Estimating attraction basin
sizes of combinatorial optimization problems. Progress in Artificial Intelligence
7(4), 369–384 (2018). https://doi.org/10.1007/s13748-018-0156-6

6. Fieldsend, J.E., Alyahya, K.: Visualising the landscape of multi-objective problems
using local optima networks. In: Proceedings of the Genetic and Evolutionary
Computation Conference Companion, pp. 1421–1429 (2019)

7. Hernando, L., Mendiburu, A., Lozano, J.A.: An evaluation of methods for esti-
mating the number of local optima in combinatorial optimization problems. Evol.
Comput. 21(4), 625–658 (2013)

8. Hernando, L., Mendiburu, A., Lozano, J.A.: Anatomy of the attraction basins:
breaking with the intuition. Evol. Comput. 27(3), 435–466 (2019)

9. Kauffman, S.A.: The origins of order: Self-organization and selection in evolution.
OUP USA (1993)

10. Liefooghe, A., Daolio, F., Verel, S., Derbel, B., Aguirre, H., Tanaka, K.: Landscape-
aware performance prediction for evolutionary multi-objective optimization. IEEE
Trans. Evol. Comput. (2019, accepted)

11. Liefooghe, A., Derbel, B., Verel, S., López-Ibáñez, M., Aguirre, H., Tanaka, K.: On
pareto local optimal solutions networks. In: Auger, A., Fonseca, C.M., Lourenço,
N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp.
232–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4 19

https://doi.org/10.1007/978-3-319-45823-6_87
https://doi.org/10.1007/978-3-642-32964-7_34
https://doi.org/10.1007/978-3-642-32964-7_34
https://doi.org/10.1007/s13748-018-0156-6
https://doi.org/10.1007/978-3-319-99259-4_19

110 B. Aboutaib et al.

12. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and
applications. Iterated local search: framework and Applications. In: Gendreau, M.,
Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations
Research & Management Science, vol. 146. Springer, Boston (2010). https://doi.
org/10.1007/978-1-4419-1665-5 12

13. Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: a new
model of combinatorial fitness landscapes. In: Richter, H., Engelbrecht, A. (eds.)
Recent Advances in the Theory and Application of Fitness Landscapes. ECC, vol.
6, pp. 233–262. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
41888-4 9

14. Stadler, P.F.: Fitness landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological
Evolution and Statistical Physics. Lecture Notes in Physics, vol. 585, pp. 187–207.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45692-9 10

15. Tari, S., Basseur, M., Goëffon, A.: Worst improvement Based iterated local search.
In: Liefooghe, A., López-Ibáñez, M. (eds.) EvoCOP 2018. LNCS, vol. 10782, pp.
50–66. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77449-7 4

16. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities.
In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Com-
putation, pp. 1539–1546 (2005)

17. Thomson, S.L., Daolio, F., Ochoa, G.: Comparing communities of optima with
funnels in combinatorial fitness landscapes. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 377–384 (2017)

18. Thomson, S.L., Ochoa, G., Verel, S., Veerapen, N.: Inferring future landscapes:
sampling the local optima level. In: Evolutionary Computation, pp. 1–22 (2020)

19. Vérel, S., Daolio, F., Ochoa, G., Tomassini, M.: Local optima networks with escape
edges. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoe-
nauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp. 49–60. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35533-2 5

20. Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with
neutrality. IEEE Trans. Evol. Comput. 15(6), 783–797 (2011)

21. Weinberger, E.D.: Local properties of kauffman’s n-k model: a tunably rugged
energy landscape. Phys. Rev. A 44(10), 6399 (1991)

22. Wright, A.H., Thompson, R.K., Zhang, J.: The computational complexity of NK
fitness functions. IEEE Trans. Evol. Comput. 4(4), 373–379 (2000)

23. Wright, S.: The roles of mutation, inbreeding, crossbreeding, and selection in evo-
lution. In: Proceedings of the Sixth International Congress of Genetics, vol. 1, pp.
356–366 (1932)

https://doi.org/10.1007/978-1-4419-1665-5_12
https://doi.org/10.1007/978-1-4419-1665-5_12
https://doi.org/10.1007/978-3-642-41888-4_9
https://doi.org/10.1007/978-3-642-41888-4_9
https://doi.org/10.1007/3-540-45692-9_10
https://doi.org/10.1007/978-3-319-77449-7_4
https://doi.org/10.1007/978-3-642-35533-2_5

Fitness Landscape Analysis
of Dimensionally-Aware Genetic
Programming Featuring Feynman

Equations

Marko Durasevic1, Domagoj Jakobovic1(B) ,
Marcella Scoczynski Ribeiro Martins2 , Stjepan Picek3,

and Markus Wagner4

1 Faculty of Electrical Engineering and Computing,
University of Zagreb, Zagreb, Croatia

{marko.durasevic,domagoj.jakobovic}@fer.hr
2 Federal University of Technology Paraná (UTFPR), Curitiba, Brazil

marcella@utfpr.edu.br
3 Delft University of Technology, Delft, The Netherlands

s.picek@tudelft.nl
4 Optimisation and Logistics Group, The University of Adelaide, Adelaide, Australia

markus.wagner@adelaide.edu.au

Abstract. Genetic programming is an often-used technique for sym-
bolic regression: finding symbolic expressions that match data from an
unknown function. To make the symbolic regression more efficient, one
can also use dimensionally-aware genetic programming that constrains
the physical units of the equation. Nevertheless, there is no formal analy-
sis of how much dimensionality awareness helps in the regression process.
In this paper, we conduct a fitness landscape analysis of dimensionally-
aware genetic programming search spaces on a subset of equations from
Richard Feynman’s well-known lectures. We define an initialisation pro-
cedure and an accompanying set of neighbourhood operators for conduct-
ing the local search within the physical unit constraints. Our experiments
show that the added information about the variable dimensionality can
efficiently guide the search algorithm. Still, further analysis of the differ-
ences between the dimensionally-aware and standard genetic program-
ming landscapes is needed to help in the design of efficient evolutionary
operators to be used in a dimensionally-aware regression.

Keywords: Genetic programming · Dimensionally-Aware GP · Fitness
landscape · Local optima network

1 Introduction

Symbolic regression is a unique and very general type of multivariate regres-
sion analysis. In this analysis the task is to find the mathematical expression
that links a number of variables in a domain with an unknown target function
c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 111–124, 2020.
https://doi.org/10.1007/978-3-030-58115-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_8&domain=pdf
http://orcid.org/0000-0002-9201-2994
http://orcid.org/0000-0002-5716-4968
http://orcid.org/0000-0002-3124-0061
https://doi.org/10.1007/978-3-030-58115-2_8

112 M. Durasevic et al.

that would fit a dataset S = {(x(i), y(i))}, i.e., a set of pairs of an unknown
multivariate target function f : Rn → R. With more than a quarter of a cen-
tury of research in the field, the results obtained attracted the interests of many
researchers to work in this area. A large number of applications of symbolic
regression is both impressive, and it is also constantly expanding. For instance,
symbolic regression has helped to extract physical laws using experimental data
of chaotic dynamical systems without any knowledge of Newtonian mechan-
ics [16]. Others have used it to design more efficient antennas [10] and to analyse
satellite data [6]. Symbolic regression via Genetic Programming (GP) implemen-
tations has been used to model mechanisms of drug response in cancer cell lines
using genomics and experimental data [4], to discover hidden relationships in
astronomical datasets [7], to predict wind farm output from weather data [20],
to generate computer game scenes [5], and for many other scenarios.

In some sense, Evolutionary Computation (EC) methods for symbolic regres-
sion (most commonly employing GP-based implementations) somewhat “com-
pete” with other strategies like support vector regression and artificial neural
networks. However, many researchers prefer to use symbolic regression since
they tend to produce models with a significantly smaller number of variables,
leading to solutions in a form amenable to downstream studies (e.g., uncertainty
propagation and sensitivity analysis) and more “explainable” outcomes.

Although symbolic regression methods – and in particular GP-based methods
– are popular, the research often does not use problem-domain information, and
even commercial products like Eureqa [16] do not make use of it. With this paper,
we propose to revisit the idea of Dimensionally-Aware Genetic Programming [9]
and to analyse the impact of design decisions using modern fitness landscape
analysis tools. To this end, we take a recent benchmark suite of symbolic regres-
sion problems [17], which also includes information about the dimensionality of
input variables and the resulting model outputs. Taking this information into
account, we devise and employ a deterministic local search algorithm which at all
times satisfies the imposed dimensionality constraints. Using the local search, a
complete network of local optima is built, considering given neighbourhood oper-
ators. After the local optima network (LON) is obtained, information from the
search is used to infer characteristics of the underlying fitness landscape. At the
same time, a comparison is made with the regular GP that does not restrict
the dimensionality of the variables, to estimate the problem difficulty and the
potential effectiveness of this approach.

2 Background

2.1 Feynman’s Equations

We will apply our methods to “rediscover” the fundamental physical laws. We
consider equations from Feynman Lectures on Physics [3], covering topics like
classical mechanics, electromagnetism, and quantum mechanics. Here, we follow
the equation selection from Udrescu and Tegmark [17]. The authors listed 100
equations that do not contain derivatives or integrals and have between one

FLA of DAGP Featuring Feynman Equations 113

Table 1. Feynman equations considered in this article; the units column shows the
number of different physical units of the corresponding variables.

ID Feynman eq. Equation Variables Units

1 I.8.14 d =
√

(x2 − x1)2 + (y2 − y1)2 4 1
2 I.12.1 F = μNn 2 3
3 I.12.2 F = q1q2

4πεr2 4 4
4 I.12.5 F = q2Ef 2 4
5 I.13.4 K = 1

2
m(v2 + u2 + w2) 4 3

6 I.14.3 U = mgz 3 3

7 I.14.4 U =
kspringx2

2
2 3

8 I.18.4 r = m1r1+m2r2
m1+m2

4 2
9 I.24.6 E = 1

4
m(ω2 + ω2

0)x
2 4 3

10 I.25.13 Ve = q
C

2 4
11 I.27.6 ff = 1

1
d1

+ n
d2

3 1

12 I.29.4 k = ω
c

2 2
13 I.32.5 P = q2a2

6πεc3
4 4

14 I.34.8 ω = qvB
p

4 4
15 I.39.1 En = 3

2
pV 2 3

16 I.39.22 PF = nkbT
V

4 4
17 I.43.16 v = μqVe

d
4 4

18 I.43.31 D = μekbT 3 4
19 II.2.42 P = κ(T2−T1)A

d
5 4

20 II.8.31 Eden =
εE2

f

2
2 4

21 II.11.3 x =
qEf

m(ω2
0−ω2)

5 4

22 II.15.4 E = −μMB cos(θ) 3 4
23 II.34.2 μM = qvr

2
3 4

24 II.34.29b E = gμMBJz
h

5 4
25 II.38.3 F = Y Ax

d
4 3

26 III.13.18 v = 2Ed2k
h

4 3
27 III.15.14 m = h2

2Ed2 3 3

and nine independent variables. The same authors also provide the Feynman
Symbolic Regression Database [18], where for each equation, there is a data
table whose rows are of the form x1, x2, . . . y, where y = f(x1, x2, . . .). Table 1
contains the 27 equations that we consider in the present paper. This subset was
selected to involve equations with a varying number of variables, different types
of operators, varying degrees of complexity, and a different number of physical
units. For the sake of readability, we will refer to these as the Feynman equations
from now on.

114 M. Durasevic et al.

2.2 Fitness Landscape Analysis

Fitness landscapes illustrate the correlation between the search and fitness
space [12,13,15], and are commonly used to describe or predict the performance
of a heuristic search. Fitness landscape analysis can help predict the performance
of heuristics by using search cost models. Local Optima Network (LON) is a fit-
ness landscape model proposed in [14] for combinatorial landscapes, considering
that the number and distribution of local optima in a search space represents an
important impact on the performance of heuristic search algorithms [2]. In this
network model, the nodes are the local optima of a given optimisation problem,
and the edges represent transitions among them using a neighbourhood operator
[19]. Therefore, the fitness landscape is represented as a graph of connected local
optima.

In general, a local search heuristic LS maps the solution space S to the
set of locally optimal solutions S∗. A solution i in the solution space S is a
local optimum given a neighbourhood operator N if F (i) ≥ F (s),∀s ∈ N (i).
Each local optima i has an associated basin of attraction corresponding to the
set composed of all the solutions that, after applying the local search heuristic
starting from each of them, the procedure returns i. Therefore, the basin of
attraction associated to a local optima i is the set Bi = {s ∈ S|LS(s) = i}
whose size is the cardinality of Bi. In this paper, a connection (undirected) edge
between two basins is created if at least one solution in one basin has a neighbour
solution in the other basin, given a neighbourhood operator. This approach was
also used in other works (e.g., [14,22]).

3 Technical Details

3.1 Dimensionally-Aware Genetic Programming

The Dimensionally-Aware GP, first introduced by Keijzer and Babovic [9], can
only be applied if there is information about the physical units of the model
variables. In [18], the authors provide the unit table that specifies the physical
units of the input and output variables for all Feynman equations. There are five
different physical units appearing in all the equations: length [m], time [s], mass
[kg], temperature [K], and potential [V]. For every equation and each variable,
the exact unit signature is given. For instance, a variable denoting the distance
is expressed in meters, and the corresponding signature would be [1, 0, 0, 0, 0];
a variable denoting acceleration is expressed in meters per second squared, and
its signature can be presented with [1,−2, 0, 0, 0]. Using the same notation, the
result of each equation will have a corresponding target signature. Following
the dimensionally-aware paradigm, the local search algorithm we employ will
always conform to the given target signature. In other words, at all times, we
only consider those candidate expressions that result in the desired signature.
Furthermore, when including the arithmetic operators in the expression, we fol-
low the simple rules illustrated in Table 2: multiplication and division operators
simply add or subtract the exponent values in the signature, while addition and

FLA of DAGP Featuring Feynman Equations 115

Table 2. Effect of operations.

Function Operations dimensionality

Addition [v, w, x, y, z], [v, w, x, y, z] → [v, w, x, y, z]

Subtraction [v, w, x, y, z], [v, w, x, y, z] → [v, w, x, y, z]

Multiplication [v, w, x, y, z], [v, w, x, y, z] → [v + v, w + w, x + x, y + y, z + z]

Division [v, w, x, y, z], [v, w, x, y, z] → [v − v, w − w, x − x, y − y, z − z]

subtraction can only be applied to expressions with the commensurate signature,
and the resulting signature remains unchanged.

3.2 Initialisation Procedure

The goal of the initialisation procedure is to generate expressions whose result
conforms to the target unit signature. This is achieved by using all of the available
variables and only multiplication and division operators. In such an expression
(e.g. x1y−2z0), each variable can be represented only by its exponent, which is
an integer value. In initialisation, we consider exponents in the range [−3, . . . , 3];
if r is the cardinality of the range and if an equation has p variables, this makes
rp combinations to test. In the end, all combinations that yield the correct sig-
nature define the set of all possible initial solutions. For instance, if the available
variables represent time t and distance d, and the target signature requires speed,
the correct initial expressions would be (t−1d1), (t−2d2), etc. Note, in the case
where the chosen exponent range is not expressive enough to generate a sin-
gle valid expression, the maximum exponent values can be increased and the
initialisation simply restarted (this was not needed in our experiments).

3.3 Neighbourhood Operators

For our variation operators, we consider custom operators designed to be
dimensionally-aware, i.e., their application does not change the signature of the
overall expression encoded as a tree.

– Replacement operator. Select a subtree t with a signature st =
[v, w, x, y, z] from the tree T and replace it with a subtree t̂ that has a com-
mensurate signature, i.e., st = st̂.

– Multiplication with integer. Select a subtree t with a signature st =
[v, w, x, y, z] from the tree T and replace it with a tree t̂ where the root is
multiplication, one child is t and the other one is integer (dimensionless) in the
range [−3, . . . , 3] (not dependent on the max exponent value). The signatures
of t and t̂ are the same.

– Divison with integer. Same as the previous one, except the two subtrees
are connected with the division operator.

116 M. Durasevic et al.

– Addition with a commensurate value. Select a subtree t with a signature
st = [v, w, x, y, z] from the tree T and replace it with a tree t̂ where the root
is addition, one child is t and the other one is q that has the same signature
as t, i.e., st = sq.

– Subtraction with a commensurate value. Same as the previous one,
except the two subtrees are connected with the subtraction operator.

In all of the above operators, the new subtree is generated by following
the same approach as in the initialisation procedure, enumerating all subtrees
with the appropriate signature where the variable exponents are in the range
[−3, . . . , 3]. This set of operators can produce expressions with only the four
basic arithmetic operations; while executing the operations, the signatures of
each subtree are updated according to the rules in Table 2. In the local search
procedure, we use all the neighbourhood operators to generate all possible neigh-
bours, and only the one with the best fitness measure is retained. This procedure
is deterministic since it considers all possible variations and is in this regard sim-
ilar to deterministic symbolic regression methods such as [11] and [21]. However,
these approaches do not consider the dimensionality constraints as employed in
the above operators. In the implementation, the maximum tree size is limited to
42 nodes, since with the repeated application of the same operator the expres-
sions can bloat, i.e. achieve slightly smaller error values while the number of
nodes becomes arbitrarily large.1

Since the Feynman equations also contain constants in multiplication or addi-
tion operations, we additionally employ the linear scaling technique [8]. With lin-
ear scaling, the original expression encoded as a tree T is evaluated as (a + b · T);
the coefficients a and b are determined by a simple linear regression where the
sum of squared errors between the desired output and (a + b · T) is minimised.

3.4 Local Search Procedure

The local search used in our study is described in Algorithm 1, where N (.) rep-
resents the neighbourhood of the given solution. The algorithm is deterministic;
if there are multiple solutions with the same fitness value within the neighbour-
hood, the algorithm will retain the first one that it encounters. The local search
is started using all initial solutions obtained with initialisation to generate a
LON for every considered equation.

As the local search fitness measure, we use the mean squared error (MSE)
of the expression; a strict improvement is required for a new solution to be
accepted. The described local search with operators conforming to the dimen-
sional constraints will be denoted as “DAGP” in the remainder of the text.

1 We have experimented with a range of more open-ended bloat-control mechanism,
e.g., lexicographic optimisation for fitness and size. However, we observed that even
in our rather discrete setting, optimising I.8.14 or I.27.6 would result in trees of a
size of over 256 nodes.

FLA of DAGP Featuring Feynman Equations 117

Algorithm 1. A greedy local search heuristic
1: s ← initial solution
2: while there is an improvement do
3: s∗ = s
4: for each s∗∗ in N (s) do
5: if F (s∗∗) > F (s∗) then
6: s∗ ← s∗∗

7: end if
8: end for
9: s = s∗

10: end while

3.5 Genetic Programming Regression

Apart from the DAGP, we also applied a regular form of GP symbolic regres-
sion to the chosen set of equations. The purpose of these GP experiments is to
estimate the problem difficulty regarding the number of variables and complex
dimensionality relations among the variables. The GP regression is not concerned
with physical units but is guided exclusively with the minimisation of MSE given
the training data. In our experiments, the GP – which is based on the GP pack-
age ECF [1] – uses the same parameters for all considered equations, which are
listed in Table 3. The selection scheme is simple: in each iteration k = 3 individ-
uals are selected at random, and the worst one is eliminated. The remaining two
are recombined to produce one offspring, which is then mutated with given indi-
vidual mutation probability and returned to the population; both the crossover
and the mutation type are chosen randomly in each invocation.

Table 3. Genetic programming parameters.

Parameter Value

Population size 500
Function set +, −, *, /, sin, cos
Individual mutation rate 0.5
Tree max depth 6
Crossover operators Subtree, one point, size fair, uniform, context preserved
Mutation operators Subtree, hoist, node replace, permutation, shrink
Termination criteria 105 evaluations
Number of runs 50

4 Results

In our experiments, we are considering the selected 27 Feynman’s equations and
apply the dimensionally-aware local search (DAGP) and a standard symbolic

118 M. Durasevic et al.

regression GP. The number of data points for each equation was equal to 100,
which were uniformly sampled from the available datasets [17]. The primary
goal of DAGP is the exploration of the dimensionally-aware fitness landscape by
building a corresponding LON for each equation. The second goal is an estimate
of the effort needed to successfully navigate such a landscape, in comparison
with the standard symbolic regression. In addition to the described DAGP con-
figuration, we experimented with the following modifications: (a) reducing the
integer constant range to [−2, . . . , 2] and [−1, . . . , 1]; and (b) different operator
ordering in local search (five permutations). Furthermore, both the GP and all
DAGP configurations were tested with and without the linear scaling.

4.1 Algorithm Efficiency

When considering the efficiency of the search, we define an acceptance criterion
with the MSE < 10−9, i.e., a solution is considered “correct” (a hit) if its MSE
falls below this limit.

Table 4 shows the number of evaluations needed to find a correct solution,
while a dash denotes no such solution was found. In the case of DAGP, these
values are non-volatile since the local search procedure is deterministic. In the
case of GP, the number of evaluations needed is just an estimate; GP is executed
50 times, which either terminate after 100 000 evaluations or when a correct
solution is found. In case a solution is found in at least one run, the estimate
is calculated as the total number of evaluations across all runs, divided by the
number of successful runs (e.g., if each run was successful, this is equivalent to
the average number of evaluations over all runs).

From the table, we can divide the equations into several groups; the first
group are trivial problems, in which the dimensionally-aware approach needed
very few evaluations to construct the correct solution. In most cases, this is
because the unit constraints result with only a single initial solution with the cor-
rect target signature. The second group are the equations which are not trivial,
but the DAGP can construct a correct solution using the local search operators
and linear scaling. For all these, the number of evaluations needed is considerably
smaller than the corresponding GP search.

Finally, the third group includes equations which were not reconstructed;
in some cases, this is because they include operators we have not considered,
such as square root (I.18.14) or trigonometric functions (II.15.4). The rest of
those equations (I.13.4, I.18.4) also presented a challenge to the GP, since it was
successful in a small number of runs requiring a large number of evaluations. For
both GP and DAGP, linear scaling was beneficial and provided improvement of
the model, regardless of the representation. It is also interesting to note that both
DAGP modifications (a) and (b) made no difference in the number of equations
whose solution was found, so we omit those results. As an illustration, we applied
the DAGP local search and GP with scaling to 39 additional equations from the
benchmark (the ones not including trigonometric functions); the DAGP was able
to find a solution for 28 equations, whereas GP succeeded in 29 cases.

FLA of DAGP Featuring Feynman Equations 119

Table 4. Number of evaluations needed to obtain the optimum. A value in brackets
denotes the number of successful GP runs, ‘–’ denotes unsuccessful run.

Eq. label DAGP local search GP
No scaling Scaling No scaling Scaling

I.8.14 – – – –
I.12.1 267 214 680 (50) 620 (50)
I.12.2 – 5 – 1 6750 (46)
I.12.5 1 1 580 (50) 580 (50)
I.13.4 – – – 2 464 750 (2)
I.14.3 1 1 2 060 (50) 2 000 (50)
I.14.4 – 1 908 400 (5) 1 740 (50)
I.18.4 – – 675 785 (7) 1 613 300 (3)
I.24.6 – 2 086 – 2 425 250 (2)
I.25.13 1 1 960 (50) 780 (50)
I.27.6 72 575 2 817 223 735 (17) 740 500 (6)
I.29.4 1 1 950 (50) 840 (50)
I.32.5 – 1 – 33 370 (43)
I.34.8 1 1 20 076 (46) 4 620 (50)
I.39.1 – 1 1 574 500 (3) 560 (50)
I.39.22 517 408 15 904 (47) 4 800 (50)
I.43.16 1 1 21 488 (45) 6 260 (50)
I.43.31 1 1 2 080 (50) 2 110 (50)
II.2.42 19 468 29 556 98 450 (30) 22 500 (48)
II.8.31 – 1 1 155 625 (4) 1 760 (50)
II.11.3 1 000 2 042 4 921 500 (1) 940 000 (5)
II.15.4 – – 43 397 (39) 3 750 (50)
II.34.2 – 1 1 161 875 (4) 1 820 (50)
II.34.29b – 4 355 – 8 400 (50)
II.38.3 120 120 11 030 (49) 4 100 (50)
III.13.18 – 45 – 6 400 (50)
III.15.14 – 1 – 10 950 (48)

4.2 LON Characteristics for DAGP

We expand the analysis extracting LONs from both DAGP landscapes, linear
and no-scaling strategies. The obtained networks can be analysed according
to some general graph metrics useful to understand the landscape behaviour.
Table 5 reports the considered metrics: nv and ne represent the number of
vertices (or nodes) and the number of edges of the generated LON, respec-
tively. C is the average clustering coefficient which measures cliquishness of a

120 M. Durasevic et al.

Table 5. Graph metrics for DAGP local search.

Equation No-scaling Linear-scaling
nv ne C Cr l π S nhits nv ne C Cr l π S nhits

I.8.14 220 1641 0.85 0.07 −1.00 0 17 0 223 1805 0.87 0.07 −1.00 0 6 0

I.12.1 5 4 0.47 0.00 −1.00 0 2 5 3 2 0.00 0.00 1.33 1 1 3

I.12.2 5 6 0.80 0.53 −1.00 0 2 0 5 6 0.80 0.53 −1.00 0 2 5

I.12.5 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

I.13.4 32 66 0.84 0.15 −1.00 0 6 0 33 67 0.80 0.18 −1.00 0 6 0

I.14.3 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

I.14.4 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

I.18.4 41 73 0.77 0.03 −1.00 0 11 0 42 72 0.80 0.06 −1.00 0 11 0

I.24.6 5 10 1.00 1.00 1.00 1 1 0 5 10 1.00 1.00 1.00 1 1 4

I.27.6 39 100 0.61 0.09 −1.00 0 6 3 41 100 0.58 0.10 −1.00 0 8 25

I.29.4 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

I.32.5 1 0 0.00 0.00 0.00 1 1 0 1 0 0.00 0.00 0.00 1 1 1

I.34.8 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

I.39.1 1 0 0.00 0.00 0.00 1 1 0 1 0 0.00 0.00 0.00 1 1 1

I.25.13 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

I.39.22 6 6 1.00 0.44 −1.00 0 2 6 7 9 1.00 0.21 −1.00 0 2 7

I.43.16 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

I.43.31 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

II.2.42 24 57 0.96 0.14 −1.00 0 4 3 23 49 0.92 0.14 −1.00 0 4 2

II.8.31 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

II.11.3 4 0 0.00 0.00 −1.00 0 4 4 5 1 0.00 0.00 −1.00 0 4 3

II.15.4 7 6 0.86 0.21 −1.00 0 3 0 5 3 0.60 0.00 −1.00 0 3 0

II.34.2 1 0 0.00 0.00 0.00 1 1 1 1 0 0.00 0.00 0.00 1 1 1

II.38.3 13 10 0.64 0.00 −1.00 0 6 12 14 11 0.60 0.00 −1.00 0 6 14

II.34.29b 46 250 0.76 0.24 −1.00 0 3 0 39 238 0.87 0.33 −1.00 0 5 36

III.13.18 6 15 1.00 1.00 1.00 1 1 0 3 3 1.00 1.00 1.00 1 1 3

III.15.14 1 0 0.00 0.00 0.00 1 1 0 1 0 0.00 0.00 0.00 1 1 1

Fig. 1. LON examples of fully-connected networks using no-scaling (left-blue) and
linear scaling (right-red) for I.24.6 and II.13.18. (Color figure online)

neighbourhood, and it characterises the degree to which nodes in a graph tend
to cluster together; Cr is the average clustering coefficient of corresponding ran-
dom graphs (i.e., random graphs with the same number of vertices and mean
degree). l is the average shortest path length between any two local optima. π is
the connectivity, which indicates if the LON is a connected graph with S being

FLA of DAGP Featuring Feynman Equations 121

Fig. 2. LON examples of dense local clusters using no-scaling (left-blue) and linear
scaling (right-red) for I.13.4 and I.18.4. (Color figure online)

Fig. 3. LON using no-scaling (top-blue) and linear scaling (bottom-red) for particular
equation examples with 2 (I.12.1), 3 (I.27.6), 4 (I.8.14) and 5 (II.34.29b) variables.
(Color figure online)

the number of connected components (sub-graphs). Finally, nhits is the number
of nodes which represent a hit; as before, we consider a solution to be a hit if its
mean square error is MSE < 10−9. Some landscapes (13 of the 27 reported in
Table 5) consist of only a single node. Within the non-scaling experiments, the
optimum appears in seven of these 13 cases; for linear scaling, the optimum is
found in all 13 landscapes with unique nodes.

Analysing the average shortest path lengths (l), some results show that the
network is weakly and sometimes not connected (l = −1). Few reported cases
present l ≥ 1, i.e., any pair of local optima can be connected by traversing at
least other local optima, such as in I.24.6 and III.13.18 l = 1. Besides, in these
examples, π = 1 and S = 1, meaning the network is connected in one entire
component (see Fig. 1 for examples).

We can also observe small-world properties by looking at the clustering coef-
ficients (C, Cr) for some equations. Some LONs show a significantly high degree
of local clustering compared with their corresponding random graphs, meaning
that the local optima are connected in two ways: dense local clusters and sparse
interconnections, which can be challenging to find and exploit (see examples in
Fig. 2 for I.13.4 and I.18.4).

122 M. Durasevic et al.

Fig. 4. Violin plots for each graph metric over all equations. The bar in the center
represents the mean while the extremes denote upper and lower bounds.

In Fig. 3, we highlight particular LON examples with two (I.12.1), three
(I.27.6), four (I.8.14), and five (II.34.29b) variables. Note that the C coefficient
is higher for linear scaling in II.34.29b in comparison with no-scaling. More-
over, I.12.1 and I.27.6 present nhits > 0; this also happens for II.34.29b but only
considering linear scaling nhits = 36.

Figure 4 summarises each metric considering all addressed equations for both
cases no-scaling and linear scaling. We note that with few exceptions (l and nhits),
the metrics present similar distributions for both strategies. Since the two DAGP
modifications (a) and (b) exhibit very similar behaviour, their graph metrics are
not included.

5 Conclusions and Future Work

In many regression problems, only the raw data, obtained with the help of some
measurements, is available to infer the governing model. It is not often the case
that the information about the physical units of the result and the variables are
documented; however, if this information is available, it can significantly improve
regression to the extent that some problems become trivial to solve with the right
approach.

Our experiments on a subset of equations of Richard Feynman’s have shown
that a very simple local search procedure, adhering to the dimensionally-aware
constraints, can efficiently navigate the corresponding landscape and arrive at
the correct solution. However, it must be noted that in real-world situations, a

FLA of DAGP Featuring Feynman Equations 123

certain amount of noise in the data can be expected, which was not present in
this study.

We also have extracted Local Optima Networks (LONs) providing a fit-
ness landscape analysis for the dimensionally-aware genetic programming search
space. The networks presented small-world properties for some equations mean-
ing that the local optima can be connected as dense local clusters but also in
sparse interconnections – and sparse interconnections might make the search
process harder even using strategies such as linear scaling.

We plan to extend the dimensionally-aware local search to cover additional
operators such as square root, exponential and trigonometric functions. Besides
local search, experiments can be performed by incorporating DA constraints
into the standard GP, with appropriate mutation and crossover operators, where
different fitness landscape models can be applied. At the same time, a transition
from the regular GP and DAGP could be achieved with the use of maximum
deviation to the target signature, which could be gradually decreased over the
course of the evolution.

Acknowledgements. We’d like to thank Prof. Pablo Moscato for introducing us
to [17]. We’d also like to acknowledge support by the Australian Research Council,
project DP200102364.

References

1. Evolutionary computation framework (2019). http://ecf.zemris.fer.hr/
2. Daolio, F., Verel, S., Ochoa, G., Tomassini, M.: Local optima networks and the

performance of iterated local search. In: Genetic and Evolutionary Computation
Conference (GECCO), pp. 369–376. ACM (2012)

3. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics,
New millennium edn. Basic Books, New York (2010). https://cds.cern.ch/record/
1494701. Originally published 1963–1965

4. Fitzsimmons, J., Moscato, P.: Symbolic regression modelling of drug responses. In:
First IEEE Conference on Artificial Intelligence for Industries (2018)

5. Frade, M., de Vega, F.F., Cotta, C.: Breeding terrains with genetic terrain pro-
gramming: the evolution of terrain generators. Comput. Games Technol. 2009,
125714:1–125714:13 (2009)

6. Graham, M.J., Djorgovski, S.G., Mahabal, A., Donalek, C., Drake, A., Longo,
G.: Data challenges of time domain astronomy. Distrib. Parallel Databases 30(5),
371–384 (2012)

7. Graham, M., Djorgovski, S., Mahabal, A., Donalek, C., Drake, A.: Machine-assisted
discovery of relationships in astronomy. Mon. Not. R. Astron. Soc. 431(3), 2371–
2384 (2013)

8. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scal-
ing. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.)
EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36599-0_7

9. Keijzer, M., Babovic, V.: Dimensionally aware genetic programming. In: 1st Annual
Conference on Genetic and Evolutionary Computation (GECCO), vol. 2, pp. 1069–
1076. Morgan Kaufmann Publishers Inc. (1999)

http://ecf.zemris.fer.hr/
https://cds.cern.ch/record/1494701
https://cds.cern.ch/record/1494701
https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1007/3-540-36599-0_7

124 M. Durasevic et al.

10. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

11. McConaghy, T.: FFX: fast, scalable, deterministic symbolic regression technology.
In: Riolo, R., Vladislavleva, E., Moore, J. (eds.) Genetic Programming Theory and
Practice IX. GEVO, pp. 235–260. Springer, New York (2011). https://doi.org/10.
1007/978-1-4614-1770-5_13

12. Moscato, P.: An introduction to population approaches for optimization and hier-
archical objective functions: a discussion on the role of tabu search. Ann. Oper.
Res. 41(2), 85–121 (1993)

13. Moscato, P., Fontanari, J.: Stochastic versus deterministic update in simulated
annealing. Phys. Lett. A 146(4), 204–208 (1990)

14. Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of NK landscapes’ basins
and local optima networks. In: Genetic and Evolutionary Computation Conference
(GECCO), pp. 555–562. ACM (2008)

15. Richter, H., Engelbrecht, A.: Recent Advances in the Theory and Application of
Fitness Landscapes. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-41888-4

16. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data.
Science 324(5923), 81–85 (2009)

17. Udrescu, S.M., Tegmark, M.: Ai Feynman: a physics-inspired method for symbolic
regression (2019)

18. Udrescu, S.M., Tegmark, M.: The Feynman database for symbolic regression
(2020). https://space.mit.edu/home/tegmark/aifeynman.html. Accessed 31 Jan
2020

19. Verel, S., Daolio, F., Ochoa, G., Tomassini, M.: Sampling local optima networks
of large combinatorial search spaces: the QAP case. In: Auger, A., Fonseca, C.M.,
Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS,
vol. 11102, pp. 257–268. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99259-4_21

20. Vladislavleva, E., Friedrich, T., Neumann, F., Wagner, M.: Predicting the energy
output of wind farms based on weather data: important variables and their corre-
lation. Renew. Energy 50, 236–243 (2013)

21. Worm, T., Chiu, K.: Prioritized grammar enumeration: symbolic regression
by dynamic programming, pp. 1021–1028, July 2013. https://doi.org/10.1145/
2463372.2463486

22. Yafrani, M.E., et al.: A fitness landscape analysis of the travelling thief problem.
In: Genetic and Evolutionary Computation Conference (GECCO), pp. 277–284
(2018)

https://doi.org/10.1007/978-1-4614-1770-5_13
https://doi.org/10.1007/978-1-4614-1770-5_13
https://doi.org/10.1007/978-3-642-41888-4
https://doi.org/10.1007/978-3-642-41888-4
https://space.mit.edu/home/tegmark/aifeynman.html
https://doi.org/10.1007/978-3-319-99259-4_21
https://doi.org/10.1007/978-3-319-99259-4_21
https://doi.org/10.1145/2463372.2463486
https://doi.org/10.1145/2463372.2463486

Global Landscape Structure and the
Random MAX-SAT Phase Transition

Gabriela Ochoa1, Francisco Chicano2(B), and Marco Tomassini3

1 Computing Science and Mathematics, University of Stirling, Stirling, Scotland, UK
2 ITIS Software, University of Malaga, Malaga, Spain

chicano@lcc.uma.es
3 Faculty of Business and Economics, Information Systems Department, University

of Lausanne, Lausanne, Switzerland

Abstract. We revisit the fitness landscape structure of random MAX-
SAT instances, and address the question: what structural features change
when we go from easy underconstrained instances to hard overconstrained
ones? Some standard techniques such as autocorrelation analysis fail to
explain what makes instances hard to solve for stochastic local search
algorithms, indicating that deeper landscape features are required to
explain the observed performance differences. We address this question
by means of local optima network (LON) analysis and visualisation. Our
results reveal that the number, size, and, most importantly, the connec-
tivity pattern of local and global optima change significantly over the
easy-hard transition. Our empirical results suggests that the landscape
of hard MAX-SAT instances may feature sub-optimal funnels, that is,
clusters of sub-optimal solutions where stochastic local search methods
can get trapped.

1 Introduction

Understanding when a specific class of problems go from being computation-
ally easy to hard, remains a fundamental question. It is well-known that ran-
dom instances of satisfiability problems exhibit a dramatic easy-to-hard phase
transition with respect to the problem constrainedness [1–3]. Some standard fit-
ness landscape analysis techniques such as the correlation structure fall short in
explaining the performance differences of local search algorithms when solving
easy and hard instances [4]. Studies of the configuration landscape of a set of
local optima show that there exist big-valley structures (also called clusters) in
the landscapes of 3-SAT and MAX-3SAT [5], and studies of the size and charac-
teristics of local optima and plateaus [6] do offer interesting insight and help to
explain performance differences. These studies, however, do not convey a view
of the connectivity structure of local optima in MAX-SAT, as seen by stochastic
local search algorithms.

Our motivating research question is: what fitness landscape features change
when we go from easy underconstrained instances to hard overconstrained ones?

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 125–138, 2020.
https://doi.org/10.1007/978-3-030-58115-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_9

126 G. Ochoa et al.

Another motivation for our study is the lack of tools for visualising high-
dimensional fitness landscapes, specially in the presence of high levels of neu-
trality as is known to be the case for MAX-SAT. Neutrality is present in a
landscape when neighbouring points have equal fitness values. A discrete land-
scape is regarded as neutral if a substantial fraction of adjacent pairs of solutions
are neutral [7].

We conduct a detailed experimental investigation of the phase transition from
underconstrained to overconstrained randomly generated instances of MAX-
3SAT problems. We explore this phenomenon by means of local optima net-
works (LONs) [8,9] analysis and visualisation. In particular, we use the com-
pressed LON model (CLON) [10], which allows us to deal with the high levels of
neutrality observed in MAX-SAT. Our contribution is to offer a new set of fit-
ness landscape features and visualisation tools reflecting the number, size, and,
most importantly, the connectivity pattern of optima, which capture and help to
explain why the computational effort of stochastic local search methods increases
dramatically in the phase transition region and beyond.

2 SAT, MAX-SAT and the Phase Transition

The propositional satisfiability problem (SAT) is a prominent combinatorial deci-
sion problem with a central role in several areas of computer science. Given a
Boolean formula, SAT checks if there is an assignment of variables to Boolean
values such that the formula is satisfiable. The Boolean formula is commonly
expressed as a conjunction of clauses (Conjunctive Normal Form). A clause is a
list of literals (a Boolean variable or its negation) that is satisfied if at least one
literal is true. The Boolean formula is satisfiable if all the clauses are true. MAX-
SAT is the optimisation version of SAT, where the goal is to find an assignment
that maximises the number of satisfied clauses.

It is well known [1–3] that random instances of the kSAT problem display
a computational phase transition for a certain critical value αc of the ratio
α = m/n between the number of clauses m and the number of variables n.
For fixed integers k and n, the probability that a randomly generated formula
is satisfiable is a decreasing function of α. For α → 0 the probability that the
formula is satisfiable goes to 1; it goes to 0 for α → ∞. Thus, a random formula
is satisfiable for α < αc and it is unsatisfiable for α > αc, with probability
approaching 1 as n → ∞. The crossover from high to low probability becomes
sharper as n increases and there is a transition at a finite value of αc which, for
3SAT, is αc ≈ 4.3. For a given n, at low α the problems are easy but in the phase
transition region they become hard and the computational effort has a peak at
the SAT/UNSAT boundary.

Zhang [11] investigated the relationship between the phase transitions of 3-
SAT and MAX-3SAT, and found a near linear correlation between these two
phase transitions. The computational cost of MAX-3SAT envelops the compu-
tational cost peaks of 3-SAT. It is worth noticing that in decision problems
there is an easy-hard-easy phase transition, while in optimisation problems the

Global Landscape Structure and the Random MAX-SAT Phase Transition 127

transition is easy-hard. That is, the computational cost remains high after the
transition.

3 Local Optima Networks

The local optima network (LON) model [8] is a tool to capture the global struc-
ture of fitness landscape as seen by stochastic local search algorithms. In this
paper, we use a coarse variant of LONs, the compressed LONs (CLONs) [10],
which helps us to model the structure of landscapes with high amounts of neu-
trality. We describe below the LON model, before introducing the compressed
model (CLON).

3.1 LON Model

A fitness landscape [12] is a triplet (S,N, f) where S is a set of potential solutions
i.e., a search space, N : S −→ 2S , is a neighbourhood structure, a function that
assigns a set of neighbours N(s) to every solution s ∈ S, and f : S −→ R is a
fitness function that can be pictured as the height of the corresponding solutions.

In our study, the search space is {0, 1}n, i.e., the space of binary strings of
length n, so its size is 2n. As neighbourhood, we consider the standard Ham-
ming distance 1 neighbourhood, that is, the set of all solutions at a maximum
Hamming distance of 1 from the current solution.

Local Optima. A local optimum, which in MAX-SAT is a maximum, is a
solution l such that ∀s ∈ N(l), f(l) ≥ f(s). Notice that the inequality is not
strict, in order to allow the treatment of neutrality (local optima of equal fitness),
which is known to widely occur on MAX-SAT. The set of local optima, which
corresponds to the set of nodes in the network model, is denoted by L.

Perturbation Edges. Edges are directed and based on the perturbation opera-
tor (p bit flips). There is an edge from local optimum l1 to local optimum l2, if l2
can be obtained after applying a random perturbation (p bit flips) to l1 followed
by hill climbing. Edges are weighted with estimated frequencies of transition. We
determined the edge weights in a sampling process. The weight is the number
of times a transition between two local optima occurred. The set of edges is
denoted by E.

LON. Is the directed and weighted graph LON = (L,E), where nodes are the
local optima L, and edges the perturbation edges E.

3.2 Compressed LON Model

When the number of local optima is high in a LON it is difficult to visualise
the structure of the landscape. A natural way of reducing the model size in
landscapes with high-levels of neutrality is to redefine the nodes of the model.
The compressed LON model joins the local optima that are connected and have
the same fitness value.

128 G. Ochoa et al.

Compressed Local Optima. A compressed local optimum is a set of connected
nodes (a connected component) in the LON with the same fitness value. This
set of compressed optima, denoted by CL, corresponds to the set of nodes in the
Compressed LON model.

Compressed Perturbation Edges. The set of perturbation edges is defined
as above for the LON model. However, after compression, there are no edges
between nodes with the same fitness, as connected components with the same
fitness become a single node. The set of edges among compressed nodes are also
aggregated and their weights summed. We call this set compressed edges, CE.

Compressed LON. Is the directed graph CLON = (CL,CE), where nodes are
the compressed local optima CL and edges the compressed perturbation edge
set CE.

4 Methodology

4.1 Benchmark Instances

For the computational experiments, we used unweighted MAX3-SAT instances
from the well-studied Uniform Random 3-SAT distribution [2]. Our instances
have a relatively low number n = 50 of variables to allow us to compute the
global optimum in all of them. Instances with n = 50 are not a challenge for
state-of-the-art MAX-SAT solvers. However, n = 50 is large enough to well cap-
ture the performance transition region [2,3], thus suitable for our study. Our
goal is to gain a deeper understanding of the fitness landscape structure. Since
we are interested in studying instances around the phase transition, we gener-
ated random instances with α ∈ [3.0, 5.0] in steps of 0.2. For each value of α
we generated 10 instances with different random seeds. The source code of the
instance generator and the instructions to replicate the experiments are available
at: https://github.com/jfrchicanog/EfficientHillClimbers.

Algorithm 1. Iterated Local Search
1: x ← generateRandomSolution();
2: x ← applyLocalSearch(x);
3: while not stopping condition do
4: y ← perturb (x);
5: y ← applyLocalSearch(y);
6: reportEdge(x,y);
7: if f(y) > f(x) then
8: x ← y;
9: end if

10: end while
11: return x;

https://github.com/jfrchicanog/EfficientHillClimbers

Global Landscape Structure and the Random MAX-SAT Phase Transition 129

4.2 Sampling and Construction of the Network Models

To construct the network models for a given instance, we aggregate the (unique)
local optima and transition edges obtained by 20 runs of a fast iterated local
search (ILS) algorithm [13] that incorporates Grey-Box optimisation techniques
[14]. An outline can be found in Algorithm 1. Iterated local search is a simple yet
powerful metaheuristic that combines two steps: one for reaching local optima
efficiently, and the other for escaping local optima (known as the perturbation
step). The stopping condition was set as a fixed running time (60 s). Weights are
added to edges indicating the number of times they appear in the sampling pro-
cess. In our ILS implementation, the perturbation step flips 10% of the variables
selected at random (which corresponds to 5 bit flips for n = 50). The local search
operator is a first improvement local search applied in the 1-flip neighbourhood.
That is, if a flip in one bit of the current solution increases the number of satis-
fied clauses, the current solution is replaced by the new one. The local search is
applied until a local optimum is reached (no neighbour can increase the number
of satisfied clauses). A new local optimum is only accepted in Line 7 if it improves
the incumbent solution. However, we report all the edges encountered between
local optima in Line 6, which includes neutral and worsening edges. All the local
optima (and edges) visited after finding the global optimum are removed from
the LON. The reason is that they would bias the metrics, since they generate
only worsening edges and they do no not provide additional information on the
difficulty of the search process.

4.3 Determining the Global Optimum

For all the instances, we computed the global optimum using exact methods.
Instead of using an exhaustive enumeration (which could take a long time) we
used minisat1 to prove that there is no better solution than the one provided
by ILS. The approach to prove optimality changes depending on the solution
provided by ILS:

– If ILS finds an assignment satisfying all the clauses, the formula is satisfiable
and the global optimum is found.

– If the optimal assignment found by ILS leaves one single clause unsatisfied,
we apply minisat to check if the formula is satisfiable. If it is unsatisfiable,
then the global optimum was found by ILS, otherwise (formula satisfiable)
ILS didn’t find a global optimum.

– If the optimal assignment found by ILS leaves u clauses unsatisfied, then
we generate all the MAX-3SAT instances derived from the original instance
where exactly u − 1 different clauses are removed and apply minisat to all
of them. If minisat finds all of them unsatisfiable, then ILS found the global
optimum. If minisat finds at least one of them satisfiable, then a better assign-
ment can be found with u − 1 unsatisfied clauses at most, which means that
ILS didn’t find the global optimum.

1 http://minisat.se.

http://minisat.se

130 G. Ochoa et al.

The previous procedure to figure out the global optimum can be costly when
the number of unsatisfied clauses in the optimal assignment is high. We expected
this to happen when α is high. However, in the range of values of α used in the
experiments the maximum number of unsatisfied clauses was 2, which made it
possible to apply minisat in the way described above to certify that the global
optimum was reached.

5 Results

5.1 Performance and Network Metrics

Our aim is to identify fitness landscape features that correlate with and help to
explain the search difficulty of stochastic search algorithms. In order to measure
search difficulty, we selected WalkSAT, a well-known local search algorithm for
SAT and MAX-SAT [15]. WalkSAT has a wide influence among modern local
search algorithms and is known to be very efficient in solving random 3-SAT and
MAX-3SAT instances. We ran WalkSAT 10 000 times per instance and counted
the number of bit flips (steps) it needs to find a global optimum. We have 10
instances per α value, thus a total of 100 000 measures per α. The distribution of
this metric is shown in Fig. 1 (steps) with log scale, indicating a large variability,
but a clear exponential increase in the search cost with increasing α.

Table 1. Description of metrics.

Performance metric

steps Number of bit flips (steps) by
WalkSAT before reaching the global
optimum

LON metrics

nodes Number of nodes (local and global
optima)

global Proportion of nodes that are global
optima

edgese Proportion of edges between nodes
with equal fitness

CLON metrics

cnodes Number of compressed nodes

subopt-size Size of the largest suboptimal
compressed node

path-length Average length of the shortest paths
from start nodes to the global optimum

cedgesw Proportion of edges to compressed
nodes with worse fitness

Global Landscape Structure and the Random MAX-SAT Phase Transition 131

For each of the 10 instances per α value, we extracted the LON and CLON
models and computed the measurements described in Table 1. Network metrics
are shown as the distribution of values over the 10 generated instances (Figs. 1
and 2); a large variability is observed across the 10 instances, meaning that
different instances will have different structure and performance, this is known
to be the case for randomly generated instances. Results are shown as box-plots
with instances grouped by the value of α in order to analyse the variation in the
metrics as the value of α changes.

Fig. 1. Distribution of the LON metrics and the performance metric, as described in
Table 1, for all values of alpha.

As Fig. 1 indicates, the number of nodes (unique local and global optima)
visited decreases exponentially with increasing α. For low values of α, over one
million nodes are visited. This number drops to a few thousands and even several
hundreds for high values of α. The proportion of global optima (global in Fig. 1)
reveals that for α < 4.0, the vast majority of nodes (above 75%) are global
optima, and this proportion drastically decreases for larger values of α. This
is a known result [1]; in the underconstrained region instances are satisfiable
and the density of solutions is high, thus making it relatively easy to find a
global optimum. For high values of α, instances are overconstrained, making it
unlikely to find a solution (when the formula is satisfiable), or an assignment

132 G. Ochoa et al.

with the maximum possible number of true clauses (for unsatisfiable formulas).
Our network analysis complements this finding by revealing that most of the
search transitions in the underconstrained region are among candidate solutions
with equal fitness (traversing plateaus). This is revealed by the high proportion
of equal edges (edgese in Fig. 1), which is almost 100% for α < 4.0. Our network
models capture search transitions that are either improving, deteriorating or
neutral. The proportion of deteriorating transitions also correlates with search
difficulty as is revealed by our analysis of the compressed LONs (Fig. 2).

Fig. 2. Distribution of the CLON metrics, as described in Table 1, for all values of
alpha.

Figure 2 shows the metrics distribution for the compressed LON models.
Compressed nodes aggregate connected local optima with the same fitness. The
number of compressed nodes (cnodes in Fig. 2) shows an opposite tendency
than the number of nodes (nodes in Fig. 1), that is, the number of compressed
nodes increases exponentially with increasing α. This is related to the propor-
tion of equal edges in the LON model (edgese in Fig. 1); if there are many equal
edges, there will be many local optima per compressed node, reducing their
number while increasing their size. This means that, for low α values, CLONs
will have a few nodes, indicating an easy to traverse fitness landscape. We can
expect in this case a big node in the CLON capturing all the global optima,

Global Landscape Structure and the Random MAX-SAT Phase Transition 133

this is what our network visualisations reveal (Figs. 3a, and b). The average
path lengths towards the global optimum are also correlated with search diffi-
culty (path-length in Fig. 2); shorter paths (of 1 to 4 hops) are observed in the
underconstrained region. The size of the largest sub-optimal compressed node
(subopt-size in Fig. 2) increases exponentially with increasing α, which helps
to explain the increased search cost in the overconstrained region, search pro-
cesses spend time traversing sub-optimal plateaus. The CLON models only have
improving and deteriorating edges, as the neutral edges are collapsed in the
compressed nodes. When looking at the proportion of worsening edges (edgesw
in Fig. 2), we can observe that it increases noticeably in the overconstrained
region; for α > 4.0, over 80% of the search transitions are deteriorating, indicat-
ing that search processes spend a long time finding exits from sub-optimal com-
pressed nodes. These observations are supported by our network visualisations
(Figs. 3c–f), where larger sub-optimal nodes, higher proportion of deteriorating
(blue) edges, and longer path lengths to the global optima can be observed.

5.2 Visualisation

The network visualisations in Fig. 3 capture the compressed local optima net-
works (CLONs) on representative instances with different values of α. Plots were
produced with the R statistics language and the igraph library [16]. Network plots
are decorated to reflect features relevant to search dynamic. Single optima are
visualised as circles of fixed size. When more than one local optimum is com-
pressed in a local optimum plateau, the node is represented as a rectangle with
length proportional to its size (ie. number of local optimum configurations). Red
nodes are global optima, green nodes indicate the start configuration of trajec-
tories in the sampling process; recall that our implementation combines 20 inde-
pendent ILS runs to construct the networks; thus up to 20 green starting nodes
can be visualised in the figures. Grey identifies the intermediate nodes, with
grey edges representing improving transitions. Blue edges indicate deteriorating
transitions, with blue nodes indicating the end of these transitions. The edges
width is proportional to the sampled frequency of transitions, thus thick edges
represent common search paths. In order to have manageable images, only 5%
of the worsening transitions are shown. That is, the networks are pruned before
visualisation by removing 95% of the deteriorating edges selected uniformly at
random. The CLON visualisations in Figure 3 support what the metrics indi-
cate. Instances get harder to search as α increases, because more intermediate
nodes appear and the trajectories get longer. The size of the global optimum
node decreases drastically with increasing α. For low values of α (plots Fig. 3a,
and b) a large “central” global optimum node is observed, which attracts all
the search trajectories. As α increases, (plots 3c–f), the size of the global opti-
mum decreases, and additional disconnected global optima may appear. Clearly,
with increasing α, large sub-optimal compressed nodes emerge, and the propor-
tion of deteriorating edges (visualised in blue) is larger. This indicates that the
search process gets trapped in large sub-optimal nodes, requiring several escape
attempts before finding an exit towards the global optimum. With increasing α,

134 G. Ochoa et al.

(a) m = 150, α = 3.0 (b) m = 170, α = 3.4

(c) m = 200, α = 4.0 (d) m = 210, α = 4.2

(e) m = 220, α = 4.4 (f) m = 230, α = 4.6

Fig. 3. CLONs for representative benchmark instances. The global optimum (optima)
are indicated in red, while the start nodes in green. Edge widths are proportional to
their weight. Blue dashed edges indicate deteriorating transitions. (Color figure online)

Global Landscape Structure and the Random MAX-SAT Phase Transition 135

the path lengths of the trajectories to the global optimum (optima), measured
as the number of edges they contain, tends to increase.

The term ‘funnel’ was introduced in the protein folding community to
describe “a region of configuration space that can be described in terms of a
set of downhill pathways that converge on a single low-energy structure or a
set of closely-related low-energy structures.” [17]. It has been suggested that
the energy landscape of proteins is characterised by a single deep funnel, a fea-
ture that underpins their ability to fold to their native state. In contrast, some
shorter polymer chains (polypeptides) that misfold, are expected to have other
funnels that can act as traps. We follow this loose definition here, by a funnel
we mean a grouping of local optima in a coarse-grained structure around a high
quality solution. According to this definition, most of the instances we analysed
across the different values of α reveal a single funnel. This is consistent with
the results reported in [5], showing that there exist big valley structures in the
landscapes of 3-SAT and MAX-3SAT. However, in some of the hardest overcon-
strained instances, our results reveal multiple funnel structures. An example is
visualised in Fig. 3f, where three funnels can be identified as separate connected
components. The two structures at the top converge to a global optimum (red
node), so we can consider them as global funnels, whereas the structure at the
bottom is a sub-optimal funnel. It is worth stressing that the global structures
here encountered are approximations, as our approach is based on sampling, and
on a particular value of the perturbation strength of the ILS sampling process.
We argue that this is still an interesting observation, as it suggests that multiple
funnels may exist in hard to solve MAX-SAT instances. When sub-optimal fun-
nels exist, search can get trapped and fail to reach the global optimum despite
a large computational effort.

6 Related Work

Some detailed analyses of random MAX-SAT fitness landscapes, using standard
techniques, concentrate on the over-constrained region [18,19]. More relevant
to this research is the work presented in [4,6,20], where the landscape struc-
ture at and around the phase transition of random MAX-3SAT is explicitly
examined. Frank et al. [6] identity several interesting features of plateaus (such
as their size and number of exits) that impact the performance of local search
algorithms. Sutton et al. [20] also studied the neutral regions by establishing
theoretical bounds on plateau sizes, and assessing their accuracy on sampled
problem instances. Sutton et al. [4] computed the exact correlation structure of
random MAX-3SAT instances, showing that the correlation structure is oblivious
to the phase transition, that is landscapes before and after the phase transition
show the same correlation structure. This last result indicates that alternative
techniques for studying the global structure of fitness landscapes, such as our
proposal in this article, are required to gain a deeper understanding of search
difficulty.

136 G. Ochoa et al.

7 Discussion and Conclusion

We revisited the global structure of random MAX-3SAT fitness landscapes across
the transition from underconstrained to overconstrained instances, using local
optima networks analysis and visualisation. Our results confirm some previous
findings, but also bring new structural metrics that correlate and help to explain
the increased search cost incurred by stochastic local search algorithms in the
phase transition region and beyond. The compressed LON model proved very
valuable as a tool to analyse and visualise the landscapes’ global structure. Before
the phase transition, a large global optimal node is observed that is easy to reach
(after a few hops) by local search algorithms. During the phase transition and
beyond, however, the size of the global optimum drastically decreases, while the
size of sub-optimal compressed nodes increases. The proportion of transitions to
deteriorating solutions greatly increases, as well as the length of the trajectories
towards the global optimum.

Under our empirical setting, most of the instances we studied revealed a sin-
gle ‘valley’ or ‘funnel’. A rigorous and well established definition of funnels is still
lacking in evolutionary computation. We take the term here to loosely refer to a
grouping of local optima, forming a coarse-level gradient towards a high quality
solution at the end. Some of the hardest instances we considered (for high val-
ues of α) showed several disconnected groups of local optima. We suggest that
these groupings may be related to the notion of sub-optimal funnels. Multiple
funnels have been empirically observed in other hard combinatorial landscapes
[10,21,22], contributing to our understanding of why some instances are harder
to solve than others. To the best of our knowledge, multiple funnels have not
been documented in the study of MAX-SAT fitness landscapes. This observation
deserves further investigation. The funnel structure, as studied by local optima
networks, depends on the amount of perturbation defining the transition edges
[22]. Moreover, when sampling is involved, the identification of any global struc-
ture is approximated. A more precise characterisation of these structures, as
well as the study of larger and different classes of MAX-SAT instances, is left as
future work.

Acknowledgements. This research has been partially funded by the Spanish Min-
istry of Economy and Competitiveness (MINECO) and the European Regional
Development Fund (FEDER) under contract TIN2017-88213-R (6city project), the
University of Málaga, Consejeŕıa de Economı́a y Conocimiento de la Junta de
Andalućıa and FEDER under contract UMA18-FEDERJA-003 (PRECOG project),
the Ministry of Science, Innovation and Universities and FEDER under contract
RTC-2017-6714-5 (ECOIoT project), and the University of Málaga under contract
PPIT.UMA.B1.2017/07 (EXHAURO Project).

References

1. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.
In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 331–337.
Morgan Kaufmann (1991)

Global Landscape Structure and the Random MAX-SAT Phase Transition 137

2. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of SAT prob-
lems. In: National Conference on Artificial intelligence (AAAI), pp. 459–465 (1992)

3. Kirkpatrick, S., Selman, B.: Critical behavior in the satisfiability of random
Boolean expressions. Science 264(5163), 1297–1301 (1994)

4. Sutton, A.M., Whitley, L.D., Howe, A.E.: A polynomial time computation of the
exact correlation structure of k-satisfiability landscapes. In: Genetic and Evolu-
tionary Computation Conference (GECCO), pp. 365–372. ACM (2009)

5. Zhang, W.: Configuration landscape analysis and backbone guided local search.
Part I: Satisfiability and maximum satisfiability. Artif. Intell. 158 1–26 (2004)

6. Frank, J., Cheeseman, P., Stutz, J.: When gravity fails: local search topology. J.
Artif. Intell. Res. 7, 249–281 (1997)

7. Reidys, C.M., Stadler, P.F.: Neutrality in fitness landscapes. Appl. Math. Comput.
117(2), 321–350 (2001)

8. Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of NK landscapes’ basins
and local optima networks. In: Genetic and Evolutionary Computation Conference
(GECCO), pp. 555–56. ACM (2008)

9. Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with
neutrality. IEEE Trans. Evol. Comput. 15(6), 783–797 (2011)

10. Ochoa, G., Veerapen, N., Daolio, F., Tomassini, M.: Understanding phase transi-
tions with local optima networks: number partitioning as a case study. In: Hu, B.,
López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol. 10197, pp. 233–248. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-55453-2 16

11. Vérel, S., Daolio, F., Ochoa, G., Tomassini, M.: Local optima networks with
escape edges. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E.,
Schoenauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp. 49–60. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-35533-2 5

12. Stadler, P.F.: Fitness landscapes. Appl. Math. Comput. 117, 187–207 (2002)
13. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Handbook of

Metaheuristics, pp. 320–353 (2003)
14. Chicano, F., Whitley, L.D., Ochoa, G., Tinos, R.: Optimizing one million variable

NK landscapes by hybridizing deterministic recombination and local search. In:
Genetic and Evolutionary Computation Conference, pp. 753–760. ACM (2017)

15. Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satisfiability testing.
In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pp. 521–532 (1996)

16. Csardi, G., Nepusz, T.: The igraph software package for complex network research.
Int. J. Complex Syst. 1695(5), 1–9 (2006)

17. Doye, J.P.K., Miller, M.A., Wales, D.J.: The double-funnel energy landscape of the
38-atom Lennard-Jones cluster. J. Chem. Phys. 110(14), 6896–6906 (1999)

18. Hoos, H.H., Smyth, K., Stützle, T.: Search space features underlying the perfor-
mance of stochastic local search algorithms for MAX-SAT. In: Yao, X., et al. (eds.)
PPSN 2004. LNCS, vol. 3242, pp. 51–60. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-30217-9 6

19. Prugel-Bennett, A., Tayarani-Najaran, M.H.: Maximum satisfiability: Anatomy of
the fitness landscape for a hard combinatorial optimization problem. IEEE Trans.
Evol. Comput. 16(3), 319–338 (2011)

20. Sutton, A.M., Howe, A.E., Whitley, L.D.: Estimating bounds on expected plateau
size in MAXSAT problems. In: Stützle, T., Birattari, M., Hoos, H.H. (eds.) SLS
2009. LNCS, vol. 5752, pp. 31–45. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03751-1 3

https://doi.org/10.1007/978-3-319-55453-2_16
https://doi.org/10.1007/978-3-642-35533-2_5
https://doi.org/10.1007/978-3-540-30217-9_6
https://doi.org/10.1007/978-3-540-30217-9_6
https://doi.org/10.1007/978-3-642-03751-1_3
https://doi.org/10.1007/978-3-642-03751-1_3

138 G. Ochoa et al.

21. Hains, D., Whitley, L.D., Howe, A.E.: Revisiting the big valley search space struc-
ture in the TSP. JORS 62(2), 305–312 (2011)

22. Ochoa, G., Herrmann, S.: Perturbation strength and the global structure of QAP
fitness Landscapes. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P.,
Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 245–256.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4 20

https://doi.org/10.1007/978-3-319-99259-4_20

Exploratory Landscape Analysis
is Strongly Sensitive to the Sampling

Strategy

Quentin Renau1,2, Carola Doerr3(B), Johann Dreo1, and Benjamin Doerr2

1 Thales Research and Technology, Palaiseau, France
{quentin.renau,johann.dreo}@thalesgroup.com

2 Laboratoire d’Informatique (LIX), CNRS, École Polytechnique,
Institut Polytechnique de Paris, Palaiseau, France
3 Sorbonne Université, CNRS, LIP6, Paris, France

carola.doerr@lip6.fr

Abstract. Exploratory landscape analysis (ELA) supports supervised
learning approaches for automated algorithm selection and configuration
by providing sets of features that quantify the most relevant character-
istics of the optimization problem at hand. In black-box optimization,
where an explicit problem representation is not available, the feature
values need to be approximated from a small number of sample points.
In practice, uniformly sampled random point sets and Latin hypercube
constructions are commonly used sampling strategies.

In this work, we analyze how the sampling method and the sample size
influence the quality of the feature value approximations and how this
quality impacts the accuracy of a standard classification task. While, not
unexpectedly, increasing the number of sample points gives more robust
estimates for the feature values, to our surprise we find that the feature
value approximations for different sampling strategies do not converge
to the same value. This implies that approximated feature values can-
not be interpreted independently of the underlying sampling strategy.
As our classification experiments show, this also implies that the feature
approximations used for training a classifier must stem from the same
sampling strategy as those used for the actual classification tasks.

As a side result we show that classifiers trained with feature val-
ues approximated by Sobol’ sequences achieve higher accuracy than any
of the standard sampling techniques. This may indicate improvement
potential for ELA-trained machine learning models.

Keywords: Exploratory landscape analysis · Automated algorithm
design · Black-box optimization · Feature extraction

1 Introduction

The impressive advances of machine learning (ML) techniques are currently shak-
ing up literally every single scientific discipline, often in the function to support
c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 139–153, 2020.
https://doi.org/10.1007/978-3-030-58115-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_10

140 Q. Renau et al.

decisions previously requiring substantial expert knowledge by recommendations
that are derived from automated data-processing techniques. Computer science
is no exception to this, and an important application of ML is the selection and
configuration of optimization heuristics [11,13,31], where automated techniques
have proven to yield tremendous efficiency gains in several classic optimization
tasks, including SAT solving [34] and AI planning [33].

In the context of numerical optimization, supervised learning approaches are
particularly common [3,16,24]. These methods often build on features developed
in the context of fitness landscape analysis [18,26], which aims at quantifying
the characteristics of an optimization problem through a set of features. More
precisely, a feature maps a function (the optimization problem) f : S ⊆ R

d → R

to a real number. Such a feature could measure, for example, the skewness of f ,
its multi-modality, or its similarity to a quadratic function.

In practice, many numerical optimization problems are black-box problems,
i.e., they are not explicitly modeled but can be accessed only through the evalu-
ation of samples x ∈ S. Hyper-parameter optimization is a classical example for
such an optimization task for which we lack an a priori functional description.
In these cases, i.e., when f is not explicitly given, the feature values need to be
approximated from a set of (x, f(x)) pairs. The approximation of feature values
through such samples is studied under the notion of exploratory landscape anal-
ysis (ELA [22]). ELA has been successfully applied, for example, in per-instance
hyperparameter optimization [3] and in algorithm selection [16]. When applying
ELA to a black-box optimization problem, the user needs to decide how many
samples to take and how to generate these.

When the functions are fast to evaluate, a typical recommendation is to
use around 50d samples [14]. For costly evaluations, in contrast, one has to
resort to much fewer samples [2]. It is well known that the quality of the feature
approximation depends on the sample size. Several works have investigated how
the dispersion of the feature approximation decreases with increasing sample
size, see [27,29] and references mentioned therein. The recommendation made
in [14] is meant as a compromise between a good accuracy of the feature value
and the computational effort required to approximate it.

Interestingly, the question which sampling strategy to use is much more
widely open. In the context of ELA, the by far most commonly used strategies
are uniform sampling (see, e.g. [3,23]) and Latin Hypercube Sampling (LHS,
see, e.g., [14,16]). These two strategies are also predominant in the broader ML
context, although a few works discussing alternative sampling techniques exist
(e.g., [30]). A completely different approach, which we do not further investigate
in this work, but which we mention for the sake of completeness, is to compute
feature values from the search trajectory of an optimization heuristic. Examples
for such approaches can be found in [5,12]. Note though, that such trajectory-
based feature value approximations are only applicable when the user has the
freedom to chose the samples from which the feature values are computed, a
prerequisite not always met in practice.

ELA is Strongly Sensitive to the Sampling Strategy 141

We share in this work the interesting observation that the feature value
approximations obtained from different sampling methods do not con-
verge to the same values. Put differently, the feature values are not absolute,
but strongly depend on the distribution from which the (x, f(x)) pairs have
been sampled. This finding is in sharp contrast to what seems to be common
belief in the community. For example, it is argued in Saleem et al. [29, page 81]
that “As N [the sample size] → ∞ the feature Φi approaches a true value”. We
show in this work that no such “true value” exist: the feature values cannot be
interpreted as stand-alone measures, but only in the context of the samples from
which they are approximated.

Our observation has the undesirable side effect that machine-trained models
achieve peak performance only when the sampling method applied to train the
models was identical to the method used to approximate the feature values for
the problem under consideration. Since the latter can often not be sampled
arbitrarily (e.g., because we are forced to use existing evaluations), this implies
that one might have to re-do a training ensemble from scratch. In application
where we are free to chose the samples (x, f(x)), we need to ensure to store and
share the points (or at least the distributions) that were used to approximate the
feature values for the training data. Also, when using feature values to compare
problems (see [7,8] for examples), one needs to pay particular attention that the
differences in feature values are indeed caused by the function properties, and
not by the sampling technique.

Given the sensitivity with respect to the sampling distribution, one may worry
that even the random number generator may have an impact on the feature value
approximations. On a more positive note than the results described above, we
show that this is not the case. More precisely, we show that uniform sampling
based on two very different random number generators, Mersenne Twister and
RANDU, respectively, give comparable results.

Another observation that we share with this paper is the fact that sampling
strategies different from uniform and LHS sampling seem worth further investi-
gation. More precisely, we show that classifiers trained with feature values that
are approximated from samples generated by Sobol’s low-discrepancy sequences
perform particularly well on our benchmark problems. This challenges the state-
of-the-art sampling routines used in ELA, and raises the question whether prop-
erties such as low discrepancy, good space-filling designs, or small stochastic
dispersion correlate favorably with good performance in supervised learning.

Reproducibility: The landscape data used for our analysis as well as several
plots visualizing it are available at [28].

2 The Impact of Low Feature Robustness
on Classification Accuracy

Instead of directly measuring and comparing the dispersion and the modes of
the feature value approximation, we consider their impact on the accuracy in
a simple classification task. We believe this approach offers a very concise way

142 Q. Renau et al.

to demonstrate the effects that the different sampling strategies can have in
the context of classical ML tasks. The classification task and its experimental
setup is described in Sect. 2.1. We then briefly comment on the distribution of
the feature values (Sect. 2.2), on the classifiers (Sect. 2.3), and on the sampling
strategies (Sect. 2.4). The impact of the low feature value robustness will then
be discussed in Sect. 2.5, whereas all discussions related to the impact of the
sampling strategy are deferred to Sect. 3.

2.1 Classification of BBOB Functions

We consider the 24 BBOB functions that form the set of noiseless problems
within the COCO (Comparing Continuous Optimisers) platform [9], a standard
benchmark environment for numerical black-box optimization. For each BBOB
problem we take the first instance of its 5-dimensional version. Each of these
instances is a real-valued function f : [−5, 5]5 → R. The choice of dimension and
instance are not further motivated, but are identical to those made in [27], for
better comparability.

For the feature approximation, we sample for each of the 24 functions f a
number n of random points x(1), . . . , x(n), and we evaluate their function val-
ues f(x(1)), . . . , f(x(n)). The pairs (x(i), f(x(i)))ni=1 are then fed to the flacco
package [15], which returns a vector of 46 features.1 We repeat this procedure
100 independent times, each time sampling from the same random distribution.
This leaves us with 100 feature vectors per each function. From this set we use
50 uniformly chosen feature vectors (per function) for training a classifier that,
given a previously unseen feature vector, shall output which of the 24 functions
it is faced with. We test the classifier with all 50 feature vectors that were not
chosen for the training, and we record the average classification accuracy, which
we measure as the fraction of correctly attributed function labels. We apply 50
independent runs of this uniform random sub-sampling validation, i.e., we repeat
the process of splitting the 24×100 feature vectors into 24×50 training instances
and 24 × 50 test instances 50 independent times.

To study the effects of the sample size, we conduct the above-described exper-
iment for three different values of n: n = 30, n = 300, and n = 55 = 3125.

The BBOB functions are designed to cover a broad spectrum of numerical
problems found in practice. They are therefore meant to be quite different in
nature. Visualizations of the functions provided in [10] support this motive. We
should therefore expect to see very good classification accuracy, even with non-
tuned off-the-shelf classifiers.

1 Note here that flacco covers 343 features in total, which are grouped into 17 feature
sets [13]. However, following the discussion in [27] we only use 6 of these sets: dis-
persion (disp), information content (ic), nearest better clustering (nbc), meta model
(ela meta), y-distribution (ela distr), and principal component analysis (pca).

ELA is Strongly Sensitive to the Sampling Strategy 143

2.2 Feature Value Distributions

Figure 1 shows the distribution of the feature value approximations for one par-
ticular feature, which measures the adjusted fit to a linear model (observe that
function 5 is correctly identified as a linear slope with an R2 value of 1). Results
are shown for n = 300 (blue) and n = 3125 (red) LHS samples.

We observe that the median values (black bars) of the single feature plotted
in Fig. 1 are already quite diverse, i.e. – taking a few exceptions aside – they
show fairly large pairwise distances. However, we also see that the dispersion of
the approximated feature values is large enough to require additional features for
proper classification. We also see that, in line with observations made in [27,29],
the dispersion of the approximations reduces with increasing sample size.

Fig. 1. Distribution of the approximations for the ela meta.lin simple.adj r2 feature
value, for 100 independently drawn LHS designs of n = 300 (blue) and n = 3125
(red) samples. Each row corresponds to one of the 24 BBOB functions. The black bars
indicate the median value of the n = 3125 data. (Color figure online)

2.3 Classifiers: Decision Trees and KNN

All the classification experiments are made using the Python package scikit
learn [25, version 0.21.3]. Since we are not interested in our work to compare
accuracy of different classifiers, but rather aim at understanding the sensitivity
of the classification result with respect to the random feature value approxima-
tions, and since more sophisticated classifiers (in particular ensemble learning
methods such as random forests) tend to require more computational overhead,
we do not undertake any effort in optimizing the performance of these classifiers,
and resort to default implementations of two common, but fairly different, classi-
fication techniques instead. Concretely, we use K Nearest Neighbors (KNN)
(we use K = 5) and decision trees. We decided to run the experiments with
two different classifiers to analyze whether the effects observed for one method
also occur with the other one. This should help us avoid reporting classifier-
specific effects. For some selected results, we have performed a cross-validation
with 5 independent runs of a random forest classifier, and found that – while

144 Q. Renau et al.

the overall classification results are better than for KNN and decision trees –
the structure of the main results (precisely, the results reported in Fig. 4) is very
similar to that of the two classifiers discussed below.

2.4 Sampling Designs

As mentioned previously, the two most commonly used sampling strategies in
feature extraction, and more precisely in exploratory landscape analysis, are
Latin Hypercube Sampling (LHS) and uniform random sampling. To analyze
whether the sensitivity of the random feature value approximations depend on
the strategy, we investigate a total number of five different sampling strategies,
which we briefly summarize in this section.

Uniform Sampling. We compare uniform random sampling based on two differ-
ent pseudo-random number generators:

– random: We report under the name random results for the Mersenne
Twister [20] random number generator. This generator is commonly used by
several programming languages, including Python, C++, and R. It is widely
considered to be a reliable generator.

– RANDU: we compare the results to those for the linear congruential number
generator RANDU. This generator is known to have several deficits such
as an inherent bias that results in the numbers falling into parallel hyper-
planes [17]. We add this generator to investigate whether the quality of the
random sampling has an influence on the feature value approximations and
to understand (in Sect. 3) whether apart from the sampling strategy also the
random number generator needs to be taken into account when transferring
ELA-trained ML-models to new applications.

Latin Hypercube Sampling (LHS). LHS [21] is a commonly used quasi-random
method to generate sample points for computer experiments. In LHS, new points
are sampled avoiding the coordinates of the previously sampled points. More
precisely, the range of each coordinate is split into n equally-sized intervals.
From the resulting n × . . . × n grid the points are chosen in a way that each
one-dimensional projection has exactly one point per interval.

– LHS: Our first LHS designs are those provided by the pyDOE Python pack-
age (version 0.3.8). We use the centered option, which takes the middle point
of each selected cube as sample.

– iLHS: The “improved” LHS (iLHS) designs available in flacco. This strategy
builds on work of Beachofski et Grandhi [1]. Essentially, it implements a
greedy heuristic to choose the next points added to the design. At each step,
it first samples a few random points, under the condition of not violating
the Latin Hypercube design. From these candidates the algorithm chooses
the one whose distance to its nearest neighbor is closest to the ideal distance
n/ d

√
n.

ELA is Strongly Sensitive to the Sampling Strategy 145

Fig. 2. Classification accuracy by sampling strategy, sample size, and classifier (left =
KNN, right = decision trees). Note the different scale of the y-axes.

Sobol’s Low-Discrepancy Sequence. We add to our investigation a third type of
sampling strategies, the sequences suggested by Sobol’ in [32]. Sobol’ sequences
are known to have small star discrepancy, a property that guarantees small
approximation errors in several important numerical integration tasks. The inter-
ested reader is referred to [6,19] for an introduction to these important families
of quasi-random sampling strategies.

For our experiments we generate the Sobol’ sequences from the Python pack-
age sobol seq (version 0.1.2), with randomly chosen initial seeds.

2.5 Classification Accuracy

Figure 2 reports the distribution of the classification accuracy achieved by each
of the five sampling strategies, when training and testing uses the same sam-
pling strategy. The results on the left are for KNN classifiers, the ones on the
right for decision trees. The absolute value of the medians can be inferred from
Fig. 4 (which we will discuss in Sect. 3). As expected, we see higher classification
accuracy with increasing sample size. We also observe that the KNN results are
slightly (but with statistical significance) worse than those of the decision trees.
Recall, however, that this is not a focus of our search, and no fine-tuning was
applied to the classification methods. Comparison between the two classifiers
should therefore only be taken with great care.

For KNN we nicely observe that the dispersion of the classification error
reduces with increasing sample size. This aligns with the reduced variance of
the feature value approximations discussed in Sect. 2.2. For the decision tree
classifier the dispersion of the classification accuracy reduces significantly from
30 to 300 samples, but then stagnates when increasing further to 3125 samples.

No substantial differences between the two random number generators can
be observed. For LHS, in contrast, the centered sampling method yields consid-
erably worse classification accuracy than iLHS.

146 Q. Renau et al.

Finally, we also observe that in each of the six reported (classifier, sample
size) combinations the median and also the average (not plotted) classification
accuracy of the Sobol’ sampling strategy is largest, with box plots that are well
separated from those of the other sampling strategies, in particular for n ≤ 300
samples. Kolmogorov-Smirnov tests confirm statistical significance in almost all
cases. We omit a detailed discussion, for reasons of space.

The good performance of Sobol’ sampling suggests to question the state of the
art in feature extraction, which considers uniform and LHS designs as default.
Interestingly, our literature research revealed that Sobol’ points were already
recommended in the book of Santner et al. [30]. It is stated there that Sobol’
sequences may enjoy less popularity in ML because of their slightly more involved
generation. Santner et al. therefore recommend LHS designs as fall-back option
for large sample sizes. Our data, however, does not support this suggestion, and
the (very small) advantages of the random sampling strategies over iLHS are
indeed statistically significant.

Fig. 3. Distribution of feature value approximations for the nbc.dist ratio.coeff var
feature (left) and ic.h max feature (right). Results are for 100 independent evaluations
of n = 3125 samples generated by LHS, random, and Sobol’ generators, respectively.

3 The Sampling Strategy Matters

Following the discussion above, it seems plausible to believe that the differences
in classification accuracy is mostly caused by the dispersion of the feature value
approximations. However, while this is true when we compare results for different
sample sizes, we will show in this section that dispersion is not the main driver
for differences between the tested sampling strategies.

Figure 3 plots the distribution of feature value approximations for two of our
46 features. It illustrates an effect which came as a big surprise to us. Whereas
features are typically considered to have an absolute value (see the examples
mentioned in the introduction), we observe here that the results very strongly

ELA is Strongly Sensitive to the Sampling Strategy 147

depend on the sampling strategy. For the feature values displayed on the left, not
only do the distributions have different medians and means, but they are even
non-overlapping. This behavior is consistent for the different sample sizes (not
plotted here). While this chart on the left certainly displays an extreme case,
the same effect of convergence against different feature values can be observed
for a large number of features (but not always for all functions or all different
sampling strategies), as we can observe in the right chart of Fig. 3. The latter
also squashes hopes for simple translation of feature values from one sampling
strategy to another one: looking at functions 10 and 12, for example, we see
that random and Sobol’ sampling yield similar feature values for both functions,
whereas those approximated by LHS sampling are much larger for f10 as for f12.
We thus observe that the interpretation of a feature value cannot be
carried out without knowledge of the sampling strategy.

Fig. 4. Heatmaps of median classification accuracy for KNN (top) and decision trees
(bottom), for feature values approximated by 30 search points (left), 300 search points
(middle), and 3125 search points (right), respectively. (Color figure online)

We investigate the impact of the strategy-dependent feature values by per-
forming the following classification task. We use the same feature values as gen-
erated for the results reported in Sect. 2, but we now train the classifiers with
the feature value approximations obtained from one sampling strategy, and we
track the classification accuracy when tested with feature value approximations
obtained by one of the other strategies. Apart from this twist, the experimental
routine is the same as the one described in Sect. 2.1.

148 Q. Renau et al.

The heatmaps in Fig. 4 display the median classification accuracy of the
25 possible combinations of training and testing sampling strategies. We show
results for all three sample sizes, n = 30 (left), n = 300 (middle), and n =
3125 (right). Rows correspond to the training strategy, the columns to the test
strategy; the diagonals therefore correspond to the data previously discussed in
Sect. 2.5. KNN data is shown in the top, those for decision trees on the bottom.

For sample size n = 300 and n = 3125 the best or close-to-best classifica-
tion accuracy is achieved when the sampling strategy for the testing instances
is identical to that of the training instances. This is independent of the clas-
sifier. Interestingly, this observation does not apply to the case with n = 30
samples, where, e.g., the KNN classifiers trained with LHS data achieve better
accuracy with iLHS feature approximations (86.5%) than with LHS approxi-
mations (85.1%). The same holds for the classifiers trained with data from the
random sampling strategy (for both random number generators). The differences
between the different training and test data combinations, however, are rather
small in these cases. In addition, the dispersion of the classification accuracies
are relatively large for n = 30 samples, with ranges that are very similar to those
plotted in Fig. 2. We also recall that the overall classification accuracy, in light
of the high diversity of the 24 BBOB functions, is not as good as it may seem
at the first glance.

We also observe that, for n = 30, the KNN classifiers (except for the Sobol’-
trained ones) perform best when tested with iLHS test samples, whereas for
decision trees we see better results with Sobol’ test data. This however, applies
only to the case n = 30, as we shall discuss in the following.

Moving on to the cases n ≥ 300, we observe that – in line with the observation
made in Fig. 2 – the average classification accuracy increases significantly, to
values well above 90%, with a few notable exceptions: The poor accuracy of
LHS both as test and as training instances stands out, but is consistent for both
classifiers, and both sample sizes n = 300 and n = 3125. Albeit not as bad, the
Sobol’-approximated feature values also lead to comparatively poor performance
on almost all classifiers not trained with Sobol’-approximations (an exception
are the iLHS-trained KNN classifiers using n = 300 samples). Consistent to this,
the Sobol’-trained classifiers have low classification accuracy when tested with
feature values from the other four strategies. While this effect is most noticeable
for the decision tree classifiers, it also applies to KNN. A closer inspection of the
feature value approximations reveals that those for iLHS, random sampling, and
Randu are much more alike to each other than to the LHS or Sobol’ features.
For 947 = 43% of all 24 × 46 (function, feature) pairs, the median of the LHS
feature values with n = 3125 samples is either smaller or larger than that of the
other strategies. For Sobol’ points, this value is 725 = 33%. Of course, this just
gives a first impression. Plots similar to Fig. 3 provide much more details; they
are available for all features at [28]. A thorough investigation into why these
differences exist forms an important next step for our research, cf. Sect. 5.

ELA is Strongly Sensitive to the Sampling Strategy 149

Given that we use the centered option for the LHS strategy (see Sect. 2.4), one
might be tempted to think that the LHS-approximations are more concentrated
than those of the other sampling strategies. This, however, cannot be confirmed
by our data: the dispersion of the LHS approximations is comparable to that of
the other strategies.

Finally, we observe that the two random strategies show high inter-strategy
classification accuracy. Their feature approximations work furthermore quite well
with classifiers trained on iLHS data. However, while all of the results reported
above also apply to average (instead of median) classification accuracy, the aver-
age classification error of the iLHS-trained KNN-classifiers is considerably worse
for (Mersenne-Twister) random feature value approximations than for those
obtained from Randu (91.4% vs. 94.0% accuracy for n = 300 and 91.7% vs.
98% for n = 3125 samples).

Fig. 5. Average classification result across 50 independently iLHS-trained KNN classi-
fiers, each tested with 50 Sobol’ feature value approximations using n = 30 evaluations.
Numbers are provided for >1% probabilities only.

4 Confusion Matrices

The results reported in the previous sections were all aggregated over the 24
functions from the BBOB benchmark set. In Fig. 5 we analyze which functions
are misclassified most frequently, and by which functions they are confused with.
The matrix shows results for the 50 KNN classifiers trained with iLHS feature
approximations and tested with Sobol’ data (50 tests per classifier), for n = 30
sample points. We recall from Fig. 4 that the median classification accuracy of
this combination is 84.2%. This is also the average accuracy.

150 Q. Renau et al.

Most functions are correctly classified with probability at least 80%. For
twelve functions we observe at least 95% accuracy. Only four functions (9–11,
18) are misclassified with probability ≥30%, and those are typically confused by
the same one or two other functions. Function 2, for example, is misclassified as
function 11 in 12% of the tests.

We do not show the confusion matrices for the other 3 × 25 cases, but note
that – overall – the patterns are quite consistent across all KNN classifiers. Nat-
urally, the concentration on the diagonal increases with larger sample sizes. We
also see a higher concentration for the mis-classifications as well. For example, in
the same iLHS-Sobol’ setting as above with n = 3125 samples 15 functions have
accuracy ≥95%, and only five function pairs with mis-classification rate ≥5%
are observed. Four of these occur with probability ≤8%. One mis-classification
stands out: function 9 is classified as function 20 in 93% of the cases.

For decision trees, the structure of the confusion matrices is similar to those of
KNN for n = 30 samples. For n = 3125 samples, however, the mis-classifications
are much more scattered across several function pairs.

Without going further into details, we note that these results can be used to
understand deficits of the benchmark sets (frequent confusion of two functions
could indicate some problems are quite alike), of the selected features (if they
do not capture major differences between two structurally different functions),
and the classifiers (e.g., the scattered confusion matrix of the decision trees for
n = 3125 samples).

5 Conclusions

We have analyzed the impact of the stochasticity inherent to feature value
approximations on the use of exploratory landscape analysis in classic ML tasks.
Our key findings are the following.

(1) ELA features are not absolute, but should be interpreted only
in the context of the sampling strategy. As an important consequence of
this observation, we derive the recommendation that the sampling strategy of
the training data should match the sampling strategy of the test data. Note
that this also implies more data needs to be shared to obtain reproducible
and/or high quality results.
(2) The good results achieved by the classifiers trained with Sobol’
samples suggests to revive a recommendation previously made by
Santner et al. [30], and to further investigate this sampling strategy
in the context of other feature extraction tasks, i.e., beyond appli-
cations in exploratory landscape analysis. In this context, it would
also be worthwhile to study other low-discrepancy constructions, which are
recently gaining interest in the broader ML context, e.g., in the context of
one-shot optimization (the task of optimizing a black-box problem through
the best of n parallel samples, see [4] and references therein). Whether good
performance in one-shot optimization correlates with a good approximation
of feature values forms another interesting avenue for future work.

ELA is Strongly Sensitive to the Sampling Strategy 151

While we have focused in this work on classification accuracy only, we are also
planning on a more detailed analysis of the feature approximations themselves.
In particular, we aim at understanding a functional relationship between the
sampling strategies and their feature value approximations. This shall help us
identify correction methods that translate values obtained from one sampling
strategy to another. This, ultimately, may help us by-pass the need for sample-
specific training.

We also believe that the confusion matrices such as the one in Fig. 5 should
be explored further, to understand which BBOB instances are more alike than
others. Such information can be useful for instance selection and generation.

Acknowledgments. This research benefited from the support of the FMJH Program
PGMO and from the support of EDF and Thales.

References

1. Beachkofski, B., Grandhi, R.: Improved distributed hypercube sampling. In: 43rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference. American Institute of Aeronautics and Astronautics (2002). https://
doi.org/10.2514/6.2002-1274

2. Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M.: Surrogate assisted feature com-
putation for continuous problems. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.)
LION 2016. LNCS, vol. 10079, pp. 17–31. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-50349-3 2

3. Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M.: Per instance algorithm config-
uration of CMA-ES with limited budget. In: Proceedings of Genetic and Evolu-
tionary Computation Conference (GECCO), pp. 681–688. ACM (2017). https://
doi.org/10.1145/3071178.3071343

4. Cauwet, M., et al.: Fully parallel hyperparameter search: reshaped space-filling.
CoRR abs/1910.08406 (2019). http://arxiv.org/abs/1910.08406

5. Derbel, B., Liefooghe, A., Vérel, S., Aguirre, H., Tanaka, K.: New features for
continuous exploratory landscape analysis based on the SOO tree. In: Proceedings
of Foundations of Genetic Algorithms (FOGA), pp. 72–86. ACM (2019). https://
doi.org/10.1145/3299904.3340308

6. Dick, J., Pillichshammer, F.: Digital Nets and Sequences. Cambridge University
Press, Cambridge (2010)

7. Doerr, C., Dréo, J., Kerschke, P.: Making a case for (hyper-)parameter tuning as
benchmark problems. In: Proceedings of Genetic and Evolutionary Computation
Conference (GECCO, Companion), pp. 1755–1764. AMC (2019). https://doi.org/
10.1145/3319619.3326857

8. Garden, R.W., Engelbrecht, A.P.: Analysis and classification of optimisation bench-
mark functions and benchmark suites. In: Proceedings of IEEE Congress on Evo-
lutionary Computation (CEC 2014), pp. 1641–1649. IEEE (2014). https://doi.org/
10.1109/CEC.2014.6900240

9. Hansen, N., Auger, A., Mersmann, O., Tusar, T., Brockhoff, D.: COCO: a platform
for comparing continuous optimizers in a black-box setting. CoRR abs/1603.08785
(2016). http://arxiv.org/abs/1603.08785

https://doi.org/10.2514/6.2002-1274
https://doi.org/10.2514/6.2002-1274
https://doi.org/10.1007/978-3-319-50349-3_2
https://doi.org/10.1007/978-3-319-50349-3_2
https://doi.org/10.1145/3071178.3071343
https://doi.org/10.1145/3071178.3071343
http://arxiv.org/abs/1910.08406
https://doi.org/10.1145/3299904.3340308
https://doi.org/10.1145/3299904.3340308
https://doi.org/10.1145/3319619.3326857
https://doi.org/10.1145/3319619.3326857
https://doi.org/10.1109/CEC.2014.6900240
https://doi.org/10.1109/CEC.2014.6900240
http://arxiv.org/abs/1603.08785

152 Q. Renau et al.

10. Hansen, N., Finck, A.A.S., Ros, R.: Real-Parameter Black-box Optimization
Benchmarking: Experimental Setup. RR-7215, INRIA (2010). https://hal.inria.fr/
inria-00462481

11. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning. TSS-
CML. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5

12. Jankovic, A., Doerr, C.: Adaptive landscape analysis. In: Proceedings of the
Genetic and Evolutionary Computation Conference Companion (GECCO 2019),
pp. 2032–2035. ACM (2019)

13. Kerschke, P., Hoos, H., Neumann, F., Trautmann, H.: Automated algorithm selec-
tion: survey and Perspectives. Evol. Comput. 27(1), 3–45 (2019)

14. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Low-budget exploratory
landscape analysis on multiple peaks models. In: Proceedings of Genetic and Evo-
lutionary Computation Conference (GECCO), pp. 229–236. ACM (2016). https://
doi.org/10.1145/2908812.2908845

15. Kerschke, P., Trautmann, H.: The R-package FLACCO for exploratory landscape
analysis with applications to multi-objective optimization problems. In: Proceed-
ings of CEC, pp. 5262–5269. IEEE (2016). flacco is available at http://kerschke.
github.io/flacco/

16. Kerschke, P., Trautmann, H.: Automated algorithm selection on continuous black-
box problems by combining exploratory landscape analysis and machine learning.
Evol. Comput. 27(1), 99–127 (2019). https://doi.org/10.1162/evco a 00236

17. Knuth, D.: The Art of Computer Programming: Seminumerical Algorithms.
Addison-Wesley, Boston (1998)

18. Malan, K., Engelbrecht, A.P.: A survey of techniques for characterising fitness
landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013). https://
doi.org/10.1016/j.ins.2013.04.015

19. Matoušek, J.: Geometric Discrepancy, 2nd edn. Springer, Heidelberg (2009)
20. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidis-

tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. 8(1), 3–30 (1998). https://doi.org/10.1145/272991.272995

21. McKay, M., Beckman, R., Conover, W.: A comparison of three methods for select-
ing values of input variables in the analysis of output from a computer code.
Technometrics 21, 239–245 (1979). http://www.jstor.org/stable/1268522

22. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.:
Exploratory landscape analysis. In: Proceedings of Genetic and Evolutionary Com-
putation Conference (GECCO), pp. 829–836. ACM (2011). https://doi.org/10.
1145/2001576.2001690

23. Morgan, R., Gallagher, M.: Sampling techniques and distance metrics in high
dimensional continuous landscape analysis: limitations and improvements. IEEE
Trans. Evol. Comput. 18(3), 456–461 (2014). https://doi.org/10.1109/TEVC.2013.
2281521

24. Muñoz, M.A., Sun, Y., Kirley, M., Halgamuge, S.K.: Algorithm selection for black-
box continuous optimization problems: a survey on methods and challenges. Inf.
Sci. 317, 224–245 (2015). https://doi.org/10.1016/j.ins.2015.05.010

25. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. JMLR 12, 2825–
2830 (2011)

26. Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis.
In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intel-
ligent Engineering Systems. Studies in Computational Intelligence, vol. 378, pp.
161–191. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23229-
9 8

https://hal.inria.fr/inria-00462481
https://hal.inria.fr/inria-00462481
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1145/2908812.2908845
https://doi.org/10.1145/2908812.2908845
http://kerschke.github.io/flacco/
http://kerschke.github.io/flacco/
https://doi.org/10.1162/evco_a_00236
https://doi.org/10.1016/j.ins.2013.04.015
https://doi.org/10.1016/j.ins.2013.04.015
https://doi.org/10.1145/272991.272995
http://www.jstor.org/stable/1268522
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1109/TEVC.2013.2281521
https://doi.org/10.1109/TEVC.2013.2281521
https://doi.org/10.1016/j.ins.2015.05.010
https://doi.org/10.1007/978-3-642-23229-9_8
https://doi.org/10.1007/978-3-642-23229-9_8

ELA is Strongly Sensitive to the Sampling Strategy 153

27. Renau, Q., Dreo, J., Doerr, C., Doerr, B.: Expressiveness and robustness of land-
scape features. In: Proceedings of Genetic and Evolutionary Computation Con-
ference (GECCO, Companion), pp. 2048–2051. ACM (2019). https://doi.org/10.
1145/3319619.3326913

28. Renau, Q., Doerr, C., Dreo, J., Doerr, B.: Experimental data set for the study
“exploratory landscape analysis is strongly sensitive to the sampling strategy”,
June 2020. https://doi.org/10.5281/zenodo.3886816

29. Saleem, S., Gallagher, M., Wood, I.: Direct feature evaluation in black-box opti-
mization using problem transformations. Evol. Comput. 27(1), 75–98 (2019)

30. Santner, T., Williams, B., Notz, W.: The Design and Analysis of Computer Exper-
iments. Springer Series in Statistics. Springer, New York (2003). https://doi.org/
10.1007/978-1-4757-3799-8

31. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Comput. Surv. 41(1) (2009). https://doi.org/10.1145/1456650.
1456656

32. Sobol’, I.: On the distribution of points in a cube and the approximate evaluation
of integrals. USSR Comput. Math. Math. Phys. 7(4), 86–112 (1967). https://doi.
org/10.1016/0041-5553(67)90144-9

33. Vallati, M., Hutter, F., Chrpa, L., McCluskey, T.: On the effective configuration
of planning domain models. In: Proceedings of IJCAI 2015. AAAI (2015)

34. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: portfolio-
based algorithm selection for sat. JAIR 32, 565–606 (2008).
http://dl.acm.org/citation.cfm?id=1622673.1622687

https://doi.org/10.1145/3319619.3326913
https://doi.org/10.1145/3319619.3326913
https://doi.org/10.5281/zenodo.3886816
https://doi.org/10.1007/978-1-4757-3799-8
https://doi.org/10.1007/978-1-4757-3799-8
https://doi.org/10.1145/1456650.1456656
https://doi.org/10.1145/1456650.1456656
https://doi.org/10.1016/0041-5553(67)90144-9
https://doi.org/10.1016/0041-5553(67)90144-9
http://dl.acm.org/citation.cfm?id=1622673.1622687

One PLOT to Show Them All:
Visualization of Efficient Sets in

Multi-objective Landscapes

Lennart Schäpermeier(B) , Christian Grimme , and Pascal Kerschke

Statistics and Optimization, University of Münster, Münster, Germany
{schaepermeier,christian.grimme,kerschke}@uni-muenster.de

Abstract. Visualization techniques for the decision space of continu-
ous multi-objective optimization problems (MOPs) are rather scarce in
research. For long, all techniques focused on global optimality and even
for the few available landscape visualizations, e.g., cost landscapes, glob-
ality is the main criterion. In contrast, the recently proposed gradient
field heatmaps (GFHs) emphasize the location and attraction basins of
local efficient sets, but ignore the relation of sets in terms of solution
quality.

In this paper, we propose a new and hybrid visualization technique,
which combines the advantages of both approaches in order to repre-
sent local and global optimality together within a single visualization.
Therefore, we build on the GFH approach but apply a new technique for
approximating the location of locally efficient points and using the diver-
gence of the multi-objective gradient vector field as a robust second-order
condition. Then, the relative dominance relationship of the determined
locally efficient points is used to visualize the complete landscape of the
MOP. Augmented by information on the basins of attraction, this Plot
of Landscapes with Optimal Trade-offs (PLOT) becomes one of the most
informative multi-objective landscape visualization techniques available.

Keywords: Multi-objective optimization · Continuous optimization ·
Visualization · Landscape analysis · Efficient sets

1 Introduction

Traditionally, the visualization of optimization problems in decision space is one
of the basic approaches to investigate challenges of so-called functional land-
scapes and to design basic algorithmic principles. Hence, low dimensional visu-
alization is used in text books [1,3] and algorithm research alike. For a sin-
gle objective, each point in a continuous two-dimensional search space can be
assigned with a function value which is interpreted as height. Overall, this leads
to very natural notions of mountains and valleys for local maxima and minima,
ridges for discontinuities, as well as plateaus for areas of equal height.

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 154–167, 2020.
https://doi.org/10.1007/978-3-030-58115-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_11&domain=pdf
http://orcid.org/0000-0003-3929-7465
http://orcid.org/0000-0002-8608-8773
http://orcid.org/0000-0003-2862-1418
https://doi.org/10.1007/978-3-030-58115-2_11

One PLOT to Show Them All 155

In evolutionary computation, many early theoretical results as well as later
algorithmic concepts were first developed (and only successively generalized)
by using low-dimensional visualizations of benchmark problems and their chal-
lenges. For continuous multi-objective optimization problems (MOPs), however,
such straight-forward visualization techniques are not available. This is mainly
rooted in the fact that MOPs comprise at least two contradicting objectives to be
optimized simultaneously. Consequently, not a single or few global optimal solu-
tions are sought but a set of optimal trade-off solutions – the so-called Pareto
set. These solutions have as many objective function values (and thus height
values) as objectives, which makes a standard landscape visualization infeasible.

For few (≤3) objectives, a classical visualization of the true or approximated
set of efficient solutions, usually the Pareto front – the Pareto set’s image in
objective space – is used. However, by focusing purely on the objective space,
one ignores all interaction effects from the MOP’s input variables in the decision
space. Compared to the single-objective case, this is like reducing the entire
landscape to the function values of its optimal solutions, and plotting them on
a one-dimensional scale. Almost no information on the structural properties of
the problem landscapes can be derived from this. Consequently, only little is
known on MOP landscape properties and almost no algorithmic design is based
on comparable insights like in the single-objective case.

Although a straightforward visualization of MO landscapes is not available,
there exist very few techniques for getting insights into these landscapes. The cost
landscapes proposed by Fonseca [5] use a dominance ranking approach to evalu-
ate each point in decision space w.r.t. the global optimal trade-offs. Although this
delivers a kind of landscape in relation to the global optimum, it does not cap-
ture local optimal sets and their basins of attraction. An alternative visualization
approach that explicitly addresses locality has been proposed by Kerschke and
Grimme [10,12]. It produces (multi-objective) gradient field heatmaps (GFHs)
using the Fritz-John (necessary) condition for identifying local optima [11,18].
The GFHs show local basins and locally efficient sets but have two drawbacks:
they do not provide a ranking of local sets w.r.t the global set and indicate
local efficiency only indirectly by the height. Within this work, we address the
weaknesses of both approaches and contribute the following:

1. We propose a robust approach to determine locally efficient points explicitly.
This includes a suitable second-order condition based on the divergence of
the multi-objective gradient to confirm or exclude points that are considered
to be locally optimal according to the first-order conditions.

2. Additionally, we combine and extend the two aforementioned state-of-the-art
visualization approaches, i.e., the cost landscapes [5] and the gradient field
heatmaps [12]. This leads to a far more informative visualization than any of
these approaches taken by themselves offered before. We name this method
Plot of Landscapes with Optimal Trade-offs (PLOT). Besides locality, global
relations of local optima and respective basins can now be captured in a single
PLOT. For two-dimensional problems, PLOT delivers a complete picture of
the problem landscape that can be interpreted almost as seamless as a single-
objective landscape, merely relating to the multi-objective gradient.

156 L. Schäpermeier et al.

The remainder of this work is organized as follows. Section 2 summarizes the
background by first providing fundamental notations and definitions that are
needed later, and afterwards discussing the status quo on the visualization of
MO landscapes. Section 3 describes the new methodology to determine locally
efficient points, while Sect. 4 describes the concept of merging the cost landscape
approach and the gradient field heatmaps into PLOT. Finally, Sect. 5 evaluates
our proposed PLOT approach by visualizing examples from current benchmark
problems before Sect. 6 concludes the paper.

2 Background

2.1 Preliminaries on Multi-objective Optimization

For this work, we consider continuous MOPs f : Rp → R
k with search space

parameter p, k objectives and feasible search space X := [l,u] ⊆ R
p:

f(x) = (f1(x), . . . , fk(x)) != min with li ≤ xi ≤ ui, i = 1, . . . , p. (1)

The solution of a MOP is the set X ∗ ⊆ X of Pareto-optimal trade-offs, i.e.,
all points x∗ ∈ X for which there exist no x′ ∈ X with fi(x′) ≤ fi(x∗) for all
i = 1, . . . , k and fi(x′) < fi(x∗) for at least one i (denoted as Pareto set). Thus,
the aim of multi-objective (MO) optimization is to find all points in X that are
not dominated by other points in the decision space. The image f(X ∗) is called
the Pareto front. Local efficiency of a point is defined in analogy to locality
in single-objective optimization: given a non-empty ε-neighborhood Bε(x) ⊆ X
around x, no point y ∈ Bε(x) dominates x [4]. Extending this definition to
a set of locally efficient points, a local efficient set is a set of points, which
is not dominated by other points in their ε-neighborhood [16]. In a somewhat
differentiated view, we can further discriminate different local sets, if we consider
connected subsets of points as separate local efficient sets like it is done in [13].

For the remainder of this paper, we will focus on two-dimensional bi-objective
problems (i.e., p = 2 and k = 2) to enable visual representations of the MOPs.
Although this may seem restrictive at first sight, it should be kept in mind that
two-dimensional visualizations have substantially contributed to improving our
understanding of the algorithmic search behavior in the single-objective case.
Also, we will adopt the notion of locally efficient sets from [13] within this work.

The Fritz-John conditions are well known first-order conditions for contin-
uous MOPs [18]. Given a MO function f defined as above, as well as inactive
constraints, a first-order critical point x∗ fulfills

∑k
i=1 λi∇fi(x∗) = 0 with λi ≥ 0

for all i = 1, ..., k and
∑k

i=1 λi = 1. Based on this, a MO gradient ∇f(x) can be
defined, which is zero if these conditions are satisfied, and which points towards
a common descent direction of the objectives otherwise (−∇f(x) for minimiza-
tion). For two objectives, a definition for the MO gradient is given by the sum
of the normalized single-objective gradients:

∇f(x) = ∇f1(x)/||∇f1(x)|| + ∇f2(x)/||∇f2(x)|| (2)

One PLOT to Show Them All 157

Following the MO gradient in a gradient-descent-like manner eventually leads
into a local efficient set [9], i.e., a (possibly connected) set of locally efficient
points. Note that, if for a point x the length of one of its single-objective gradients
is zero, i.e., ||∇f1(x)|| = 0 or ||∇f2(x)|| = 0, the point fulfills the necessary
condition for a local optimum in the single-objective as well as in the MO case.
We therefore define ∇f(x) := 0 for such points.

2.2 Visualization of Continuous MOPs

Benchmark problems are usually designed to test the capabilities and limitations
of a broad spectrum of (optimization) algorithms [23]. Aside from a pure perfor-
mance comparison, the insights gained thereof are helpful for designing better
algorithms. Here, ‘better’ depends on various aspects such as the application
or considered performance measure. Due to the different goals, a variety of test
suites have been proposed over the years – ranging from MOP [22], ZDT [25] and
DTLZ [7] (which aim at posing challenges for MO evolutionary algorithms), over
bi-objective BBOB [21] (which extends the gold-standard test suite from single-
objective optimization to the bi-objective case), up to more recent benchmark
suites like the CEC 2019 test suite [24] (which emphasizes multimodality).

Although most test suites were designed with certain properties in mind, it
remains questionable whether the contained MOPs actually meet them. So far,
MOPs are predominantly visualized by means of their Pareto sets and/or fronts
(see, e.g., [24,25]). Obviously, this is accompanied by an enormous loss of infor-
mation, since all non-optimal points, and thus the information contained therein,
are ignored. The tools described in [19,20] offer a slight improvement over the
very limited view at Pareto optimal points. However, the approaches described
therein, such as the prosection method, mainly focus on a dimensionality reduc-
tion of the objective space – and thus do not permit drawing conclusions about
the effects of the search space parameters on the objectives of the MOP.

To the best of our knowledge, there exist only two visualization techniques
which provide a joint view at decision and objective space (and thus are help-
ful for engineering better algorithms and benchmark problems): the cost land-
scapes by Fonseca [5] and the gradient field heatmaps (GFH) by Kerschke and
Grimme [12,14]. Both approaches have in common that they depict the decision
space of two-dimensional MOPs and scalarize the information of the MOP’s
multiple objectives in a single height value (per point from the decision space).
For both approaches, the decision space is discretized into a rectangular grid,
and the grid’s resolution naturally impacts the quality of the visualizations.

The height of a cost landscape is given by the so-called Pareto ranking, i.e.,
an integer value that gives the amount of points from the (discretized) decision
space dominating the current point. Due to the usage of the (global) Pareto
ranking, cost landscapes focus on global optimality and thus are only able to
reveal local structures, if the local fronts are close to parts of the Pareto front.

In contrast, the height of the GFHs is based on a MOP’s gradient vector
field. More precisely, for each point of the grid, the single-objective gradients
(pointing to the closest optimum of the respective objective) are approximated

158 L. Schäpermeier et al.

Fig. 1. Exemplary comparison of the cost landscape (left) and the gradient field
heatmap (middle) based on the bi-objective SGK function. The right image shows
the objective space for the GFH and thus helps identifying the superposition and rela-
tionships of the three attraction basins (incl. their associated efficient sets). The colors
indicate the respective heights and change gradually from red (max.) to blue (min.).
(Color figure online)

using Eq. 3, and afterwards combined into a MO gradient as defined in Eq. 2.
Then, for each grid point, the gradient-based path towards the closest local
efficient set is computed and the lengths of the MO gradients along the path are
cumulated, defining the height of the GFH [12]. Constructing the GFHs based on
the paths towards the closest local efficient set automatically provides insights
into the local structure of the given MOP, as it depicts the attraction basins, as
well as the local efficient sets contained therein. However, the focus on locality
comes with the drawback that global relationships are hardly visible.

Figure 1 provides an exemplary visual comparison of the cost landscape and
the GFH approach based on the bi-objective SGK function1, which combines a
unimodal and a trimodal sphere function. The single-objective local optima are
depicted by a grey triangle (for f1), as well as green, blue, and pink diamonds
(for f2), respectively. The left image shows the corresponding cost landscape, in
which the MOP’s Pareto set is clearly visible – in contrast to the local efficient
sets, whose location can only be guessed by the shading of colors. The GFH
approach, given in the second image, shows the three attraction basins formed
by the three competing optima of f2, along with the corresponding vector field of
MO gradients (white arrows). Moreover, all three (local) efficient sets are visible,
and one can also identify two of them being non-global as their sets – which start
in the blue and green diamonds, resp. – are abruptly cut by ridges between the
current and the superseding attraction basins. While such a global ranking of
the three efficient sets can be derived manually for this simple scenario, it is hard
to realize for more complex MOPs (e.g., see bottom row of Fig. 4).

1 f(x1, x2) with f1(x1, x2) = 1 − (
1 + 4 · ((x1 − 2/3)2 + (x2 − 1)2

))−1
and

f2(x1, x2) = 1 − max{g1, g2, g3}, whose subfunctions g1, g2 and g3 are defined as
gi(x1, x2, h, c1, c2) = h/

(
1 + 4 · ((x1 − c1)

2 + (x2 − c2)
2
))

with h = 1.5, c1 = 0.5,
c2 = 0 (for g1), h = 2, c1 = 0.25, c2 = 2/3 (for g2), and h = 3, c1 = 1 = c2 (for g3).

One PLOT to Show Them All 159

3 Identification of Locally Efficient Points

Locally efficient points are an important part of MOP landscapes as they indicate
where local Pareto fronts (or sets) are located, and thus, where local search
strategies might get stuck [6]. However, state-of-the-art visualization approaches
either do not feature them at all (e.g., the cost landscapes [5]), or only show
their locations indirectly (e.g., the gradient field heatmaps [12]). Only when the
location of the local efficient sets is known analytically for specific test problems
– like for DTLZ [7] or MMF [24] – they are represented in some visualizations.

Here, we present an approach based on the estimated gradients of the MOP
and the stability of the MO gradient vector field to locate all locally efficient
points for a continuous MOP. We begin by detailing our computational approach
for approximating the function and its derivatives, followed by a description of
first- and second-order optimality conditions for locally efficient points and how
they were implemented.

3.1 Computational Approach

As continuous functions can in principle be evaluated in infinitely many different
points, an approximation of the function based on a finite set of evaluated points
is required. For this purpose, we evaluate points on a rectangular grid of coor-
dinates (xj1

1 , xj2
2). Those coordinates are aligned equidistantly with a number of

steps n1, n2 ∈ N and step sizes si = (ui − li) · (ni − 1)−1 per dimension, i.e.,
xji

i = li +(ji − 1) · si, with i = 1, 2 and ji = 1, ..., ni where xji
i denotes the coor-

dinate of the ji-th grid point in the i-th dimension. Next, the rectangular grid of
points is created by taking the cross-product of the one-dimensional coordinates
xji

i . The function f is then evaluated for each of the points from the grid.
In each grid point, the respective derivative is approximated (per objective)

using the finite differences method based on the neighboring coordinates of the
point at hand. On the decision boundary, forward- and backward-differences are
taken respectively, while the interior points are evaluated using central differ-
ences. With the function values of f at grid point (xj1

1 , xj2
2) denoted as f(xj1

1 , xj2
2),

the partial derivative of f with regard to x1 is then estimated by:

∂

∂x1
f(xj1

1 , xj2
2) ≈

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2s1

·
(
f(xj1+1

1 , xj2
2) − f(xj1−1

1 , xj2
2)

)
, for 1 < j1 < ni

1
s1

·
(
f(xj1+1

1 , xj2
2) − f(xj1

1 , xj2
2)

)
, for j1 = 1

1
s1

·
(
f(xj1

1 , xj2
2) − f(xj1−1

1 , xj2
2)

)
, for j1 = n1

(3)

Derivatives for x2 are calculated analogously. Compared to approximations with
smaller step sizes, we did not observe noticeable changes in the visualization.

3.2 First-Order Conditions

Although the MO gradient is capable of capturing the local efficiency of a point
in the decision space, it is not sufficient on its own to capture all critical points

160 L. Schäpermeier et al.

Fig. 2. Left: Example of four triangular neighborhoods considered while evaluating for
critical points. The red nodes are an example for one particular neighborhood. Middle:
For such a triangular neighborhood of points, considering the MO gradients (black),
no critical points would be detected, as all of them point to the right as a common
descent direction. However, it would be reasonable to expect that due to the changes in
direction of the single-objective gradients (red and blue respectively, pointing towards
descent directions), there would be a local efficient set in between. Right: Our approach
jointly considering the combination of all single-objective gradients from all corner
points correctly reports the neighborhood to contain a locally efficient point. (Color
figure online)

while approximating them in the grid-based decision space. In particular, if one
of the single-objective gradients changes much faster than the other in the neigh-
borhood of a local efficient set, the MO gradient alone may misleadingly fail to
recognize some of the critical points (as shown schematically in Fig. 2).

Thus, we present an approach that improves the status quo in detecting all
critical points within the MOP’s grid. We consider triangular neighborhoods of
grid points and jointly consider the gradients of all constituent single-objective
functions. If the convex hull of the gradients encloses the origin (see right image
of Fig. 2), we presume a critical point somewhere in the interior of the triangle.

An illustration of the neighborhood, which is used for detecting the critical
points, is given in the left image of Fig. 2. For each grid point, four triangular
neighborhoods are evaluated. Each of those triangles consists of the point itself,
as well as one horizontal and one vertical neighbor of that point. If a critical point
is detected for a triangle, all of its corner points are considered being critical.

In addition, points along the decision boundary require special attention. So
far, in the gradient field heatmaps, all (boundary) points for which the MO gra-
dient points “out” of the feasible decision space were considered locally efficient.
However, even in that case, it might still be possible to follow a descent direc-
tion for all objectives when moving along the decision boundary. We resolve this
issue by considering boundary points, their adjacent boundary points and their
common descent directions along the decision boundary all together. If no com-
mon descent direction for all objectives is found, the respective pair of boundary
points is considered critical. Further, we rotate the MO gradient at these points
to point into the common descent direction along the boundary, which is helpful
for further visualizations with the gradient field heatmap (see Sect. 4).

One PLOT to Show Them All 161

Fig. 3. GFH visualization and location of all interior critical points for the Aspar
function f(x1, x2) = (x4

1 − 2x2
1 + 2x2

2 + 1, (x1 + 0.5)2 + (x2 − 2)2). Even in this very
simple problem, some critical points (gray) do not belong to the efficient sets (black)
but are part of the landscape’s ridges, emphasizing the need for a second-order criterion.

When only aiming at the identification of locally efficient points in the deci-
sion space, one needs to be aware that not all critical points are necessarily
locally efficient. An example of this is given in Fig. 3, which shows the GFH of
a simple MOP and all of its critical points. Note that some of the critical points
do not belong to a local efficient set, but are rather part of the ridges between
two adjacent basins of attractions. To reliably extract the locally efficient points
from the set of critical points, a second-order condition is required.

3.3 Second-Order Conditions

Analogously to single-objective functions satisfying first-order optimality condi-
tions, critical points in the multi-objective sense cannot just be local minima,
i.e., locally efficient points, but also local maxima, as well as saddle points.

This highlights the need for the consideration of a second-order condition to
distinguish identified critical points into locally efficient points and others. There
are second-order conditions for the continuous case [18], however, using the grid
approximation required for our approach, these proved to be too unstable for
efficient use to discern between the different types of critical points. Motivated
by the gradient field heatmaps, which indicate that the MO gradient captures
the local search behaviour well, we derive our second-order condition based on
properties of the MO gradient vector field.

The MO gradient defines a vector field over the decision space that can be
analyzed w.r.t. its stability at the critical points. A point is considered asymptot-
ically stable, if after a small perturbation, following the vector field to the closest
critical point, one stays within a small neighborhood of the original point. This
property is well studied in the field of autonomous differential equations and
can be analyzed by a linear approximation of the vector field at the critical

162 L. Schäpermeier et al.

point using its Jacobian [2].2 If the real part of all (potentially complex-valued)
eigenvalues of the Jacobian is negative, the point is considered stable.

In the MO gradient field, however, we generally deal with degenerated critical
points, for which (at least) one eigenvalue is zero, associated with the eigenvectors
pointing along the local efficient set. This can pose problems with the numeric
approximation that we require for our approach. Luckily, for the 2D case it is
sufficient to consider the trace of the Jacobian, also known as the divergence in
the context of vector fields, to determine asymptotic stability. Intuitively, the
divergence is a measure for the “ingoingness” or “outgoingness” of the vector
field at a given point, and it is numerically more stable and efficient to calculate
than computing all eigenvalues of the Jacobian. Thus, the divergence of a 2D
vector field V : R2 → R

2 with V(x) = (Vx1(x), Vx2(x)) is given by:

div(V(x)) =
∂

∂x1
Vx1(x) +

∂

∂x2
Vx2(x). (4)

In summary, for minimization as defined in Eq. 1, if an interior critical point x
fulfills div(−∇f(x)) < 0, it is a stable critical point in the MO gradient field,
and thus locally efficient. Note that in the degenerated case, where all points in
a given neighborhood are locally efficient, the divergence is zero.

Thus, to assess whether a critical point is locally efficient, we consider the
divergence of each set of points that were jointly considered critical w.r.t. the
first-order conditions (see Sect. 3.2). Only if all three evaluated points have non-
positive divergence, we regard them as locally efficient. The divergence for each
grid point is estimated using the grid-based finite differences method (see Eq. 3).

Again, the critical points along the decision boundary require special treat-
ment. Here, we do not use the divergence to distinguish different types of critical
points. Instead, only if the MO gradients of the considered boundary points are
pointing “outwards” or along the decision boundary, a set of critical points is
considered locally efficient.

4 Visualizing Local and Global Structures of MOPs

The previous section introduced a novel and reliable approach to approximate
the location of all locally efficient points within the MOP’s continuous decision
space (based on a rectangular grid of evaluated points). This explicit knowledge
of the location of the locally efficient points not only allows us to show them in
the decision space, but also to extract information about their relative dominance
relationship. This means, we utilize Pareto ranking, which also serves as the basis
for the cost landscapes [5], but limit ourselves to the locally efficient points –
resulting in an enormous speed-up compared to a ranking of all grid points.

Ultimately, this leads to a unique visualization that not only shows the loca-
tions of locally efficient solutions, but also provides information about their
2 This presumes that the MO gradient field can be approximated by a linear function

in the considered point. For differentiable MOPs this is a reasonable assumption,
but we observed that it works well for our approach in general.

One PLOT to Show Them All 163

−1

0

1

2

3

−2 −1 0 1 2

−1

0

1

2

3

−2 −1 0 1 2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0

−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0

Fig. 4. Comparison of the cost landscape, GFH and PLOT (left to right) on the two-
dimensional bi-objective Aspar, DTLZ1 and bi-objective BBOB (FID = 10, IID = 1)
functions (top to bottom). Due to the computational overhead involved in computing
the domination counts, the cost landscape is calculated with only 500 grid points per
dimensions, while the GFH and PLOT use a resolution of 1,000 points per dimension.

global optimality. In addition, we enhance our visualization with a gray-scaled
version of the corresponding GFH in the background, which preserves additional
information about the basins of attraction (e.g., their shapes and sizes). Along
the boundary points, we modify the MO gradient as described in Sect. 3.2. Also,
all locally efficient points determined by our more stable detection method (see
Sect. 3) can automatically be reused “for free” within the generation of the GFHs.
Both modifications further improved the visualization quality of the GFHs.

Figure 4 provides a visual comparison of the current state-of-the-art visual-
ization techniques – cost landscapes (left column) and GFHs (middle column)
– and our proposed PLOT approach (right column) based on three exemplary
MOPs: the simple Aspar function (top row) from Fig. 3, the well-established

164 L. Schäpermeier et al.

Fig. 5. Exemplary PLOTs for various continuous MOPs (left to right, top to bottom):
Kursawe [15], MMF3 and MMF14a from the CEC 2019 test suite [24], a MinDist
function with centers (−2,−1), (2, 1) and (−2, 1), (2,−1) [17], a bi-objective BBOB
(FID: 42, IID: 1) [21], and a bi-objective function generated using the MPM2 generator
(with parameters (3, 2, random, 4) and (3, 2, random, 8)) [13]. All plots were generated
using an equidistant grid in the decision space with a resolution of 1,000×1,000 points.

DTLZ 1 [7] (middle row), and the 10th function from the rather recent bi-
objective BBOB test suite [21]. Noticeably, for the latter two problems, GFH
has problems in identifying some critical points correctly and mistakenly shows
some points along the boundary as locally efficient. On the other hand, the cost
landscape approach has problems with local efficient sets and can at most iden-
tify the location of some of them – as long as their fronts are close to the global
Pareto front(s). PLOT combines the global view of the cost landscapes with
the local information of the GFH, and thus provides a much more informative
depiction of the locally efficient solutions.

Ultimately, this results in a single Plot of the Landscape with Optimal Trade-offs
(PLOT), which jointly illustrates three types of landscape characteristics: (1) local
efficient sets, (2) the global optimality of their respective solutions, and (3) the
basins of attraction associated with the respective efficient sets.

Our R-package moPLOT, which has been used to generate all visualizations
in this paper, is available on GitHub: https://github.com/kerschke/moPLOT.
Further resources and information can be found on our project’s website on
multimodal multi-objective optimization: https://mo-opt.github.io.

https://github.com/kerschke/moPLOT
https://mo-opt.github.io

One PLOT to Show Them All 165

5 Observations

We provide PLOT visualizations for a selection of further benchmark functions
in Fig. 5. Many MOPs that were designed with multimodality in mind reveal very
simple structures in the decision space. Notably, the PLOTs show peculiarities
in the definition of some functions that were designed with a focus on multiple
global Pareto sets. These can lead to unintended locally and globally efficient
solutions along the boundary (MMF14a) and glaring cuts in the landscape of the
local efficient sets (MMF3). Otherwise, many MOPs have even simpler landscape
structures only containing few local efficient sets in general (MinDist). Only
few of the MOPs show interactions between the objectives, which lead to a
disconnected global Pareto set (i.e., it is distributed over multiple local efficient
sets). This can, e.g., be seen in the bi-objective BBOB and MPM2 functions.

Further note that the location of locally efficient points along the decision
boundary implies that in general an unconstrained locally efficient set would be
found outside of the feasible decision space. This can be observed in the depicted
Kursawe, MMF and MPM2 functions.

The bi-objective BBOB function shows a very complex landscape with many
locally efficient solutions. In fact, its sets cover the majority of the decision
space and thereby reveal the limitations of PLOT. However, such extremely
multimodal MOPs are challenging for any visualization method. Also, even
for that very extreme problem, PLOT reliably visualized the MOP’s global
structure.

6 Conclusions

Visualizing an optimization problem’s landscape is very useful when studying its
properties, or the search behavior of the optimizers operating on it. In MO con-
tinuous optimization, however, there exist hardly any meaningful visualization
methods, with the consequence that MOPs are primarily treated as black-boxes.

We present a novel approach for the numerical approximation of locally effi-
cient points in the decision space of continuous MOPs. This new information was
then integrated into PLOT – our new method for the visualization of bi-objective
two-dimensional MOPs. Our approach can visualize local and global efficient
sets, as well as their basins of attraction. Thereby, it enables a visualization of
MOPs that encompasses information comparable to visualizations available for
single-objective functions. We successfully apply our approach to a wide variety
of benchmarking functions and often reveal very simple landscape properties. As
with previous MO visualization techniques, we hope to inspire further progress
in understanding the landscapes of existing benchmarking functions, the design
of new benchmarks, as well as the development of novel algorithmic ideas.

It should be noted that the definitions for the MO gradient can be extended
to an arbitrary number of dimensions and objectives [8]. Likewise, our approach
for identifying critical points as well as our second-order criterion, which is based
on the stability of the MO gradient field, can easily be adapted to cope well with

166 L. Schäpermeier et al.

higher-dimensional MOPs. Thus, our proposed approach provides the fundamen-
tals for an extension towards visualizing decision spaces of 3-dimensional MOPs.
To the best of our knowledge, this is not yet available beyond the visualization
of Pareto sets, or analytically known local efficient sets. An extension to 3D deci-
sion spaces would also enable more detailed investigations of the properties of
3-objective MOPs. This is currently not yet feasible, as their counterparts with
2D decision spaces in general contain degenerated critical points.

Further, it can be noted that our approach supports studying selected regions
of interest in the landscape. This can be effectively achieved by zooming into the
PLOT and supports the visualization of particularly complex MOPs. Another
possible extension that aims at improving the visualization quality of our PLOT
would be a dynamic resampling strategy around the identified critical points,
increasing the accuracy of the approximation of the locally efficient points.

References

1. Beyer, H.G.: The Theory of Evolution Strategies. Springer, Heidelberg (2001).
https://doi.org/10.1007/978-3-662-04378-3

2. Blanchard, P., Devaney, R., Hall, G.: Differential Equations. Cengage Learning,
Boston (2012)

3. Coello Coello, C.A., van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms
for Solving Multi-Objective Problems, 2nd edn. Springer, Boston (2007). https://
doi.org/10.1007/978-0-387-36797-2

4. Custódio, A.L., Madeira, J.F.A.: MultiGLODS: global and local multiobjective
optimization using direct search. J. Global Optim. 72(2), 323–345 (2018)

5. da Fonseca, C.M.M.: Multiobjective genetic algorithms with application to con-
trol engineering problems. Ph.D. Thesis, Department of Automatic Control and
Systems Engineering, University of Sheffield, September 1995

6. Deb, K.: Multi-objective genetic algorithms: problem difficulties and construction
of test problems. Evol. Comput. (ECJ) 7(3), 205–230 (1999)

7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolu-
tionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.)
Evolutionary Multiobjective Optimization. Advanced Information and Knowl-
edge Processing, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/
1-84628-137-7 6

8. Désidéri, J.A.: Multiple-gradient descent algorithm (MGDA) for multiobjective
optimization. Comptes Rendus Mathematique 350(5–6), 313–318 (2012)

9. Grimme, C., Kerschke, P., Emmerich, M.T.M., Preuss, M., Deutz, A.H., Traut-
mann, H.: Sliding to the global optimum: how to benefit from non-global optima
in multimodal multi-objective optimization. In: AIP Conference Proceedings, pp.
020052-1-020052-4. AIP Publishing (2019)

10. Grimme, C., Kerschke, P., Trautmann, H.: Multimodality in multi-objective opti-
mization – more boon than bane? In: Deb, K., et al. (eds.) EMO 2019. LNCS, vol.
11411, pp. 126–138. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
12598-1 11

11. John, F.: Extremum problems with inequalities as subsidiary conditions. In: Giorgi,
G., Kjeldsen, T.H. (eds.) Traces and Emergence of Nonlinear Programming, pp.
197–215. Springer, Basel (2014). https://doi.org/10.1007/978-3-0348-0439-4 9

https://doi.org/10.1007/978-3-662-04378-3
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/978-3-030-12598-1_11
https://doi.org/10.1007/978-3-030-12598-1_11
https://doi.org/10.1007/978-3-0348-0439-4_9

One PLOT to Show Them All 167

12. Kerschke, P., Grimme, C.: An expedition to multimodal multi-objective optimiza-
tion landscapes. In: Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp.
329–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0 23

13. Kerschke, P., et al.: Towards analyzing multimodality of continuous multiobjective
landscapes. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G.,
Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 962–972. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45823-6 90

14. Kerschke, P., et al.: Search dynamics on multimodal multi-objective problems.
Evol. Comput. (ECJ) 27, 577–609 (2019)

15. Kursawe, F.: A variant of evolution strategies for vector optimization. In: Schwe-
fel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 193–197. Springer,
Heidelberg (1991). https://doi.org/10.1007/BFb0029752

16. Liefooghe, A., López-Ibáñez, M., Paquete, L., Verel, S.: Dominance, epsilon, and
hypervolume local optimal sets in multi-objective optimization, and how to tell
the difference. In: Proceedings of the 20th Annual Conference on Genetic and
Evolutionary Computation (GECCO), vol. 18, pp. 324–331. ACM, Kyoto (2018)

17. Maree, S.C., Alderliesten, T., Bosman, P.A.N.: Real-valued evolutionary multi-
modal multi-objective optimization by hill-valley clustering. In: Proceedings of the
21st Annual Conference on Genetic and Evolutionary Computation (GECCO), pp.
568–576. ACM (2019). https://doi.org/10.1145/3321707.3321759

18. Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in
Operations Research & Management Science, vol. 12. Springer, Boston (1998)

19. Tušar, T.: Visualizing Solution Sets in Multiobjective Optimization. Ph.D. thesis,
Jožef Stefan International Postgrad. School (2014)

20. Tušar, T., Filipič, B.: Visualization of pareto front approximations in evolutionary
multiobjective optimization: a critical review and the prosection method. IEEE
Trans. Evol. Comput. (TEVC) 19(2), 225–245 (2015)

21. Tušar, T., Brockhoff, D., Hansen, N., Auger, A.: COCO: the bi-objective black box
optimization benchmarking (bbob-biobj) test suite. arXiv preprint abs/1604.00359
(2016)

22. van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: classifications, ana-
lyzes, and new innovations. Ph.D. thesis, Faculty of the Graduate School of Engi-
neering of the Air Force Institute of Technology, Air University, June 1999

23. Whitley, L.D., Mathias, K.E., Rana, S.B., Dzubera, J.: Building better test func-
tions. In: Proceedings of the 6th International Conference on Genetic Algorithms
(ICGA), pp. 239–247 (1995)

24. Yue, C., Qu, B., Yu, K., Liang, J., Li, X.: A Novel Scalable Test Problem Suite for
Multimodal Multiobjective Optimization. Swarm and Evolutionary Computation
(2019)

25. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol. Comput. (ECJ) 8(2), 173–195 (2000). https://doi.
org/10.1162/106365600568202

https://doi.org/10.1007/978-3-319-54157-0_23
https://doi.org/10.1007/978-3-319-45823-6_90
https://doi.org/10.1007/BFb0029752
https://doi.org/10.1145/3321707.3321759
https://doi.org/10.1162/106365600568202
https://doi.org/10.1162/106365600568202

Multi-objective Optimization

On Sharing Information Between
Sub-populations in MOEA/S

Lucas de Almeida Ribeiro1,2(B), Michael Emmerich3,
Anderson da Silva Soares1, and Telma Woerle de Lima1

1 Instituto de Informática, Universidade Federal de Goiás, Goiânia, Brazil
2 Instituto Federal de Goiás, Goiânia, Brazil

lucas.ribeiro@ifg.edu.br
3 Multiobjective Optimization and Decision Analysis Group, LIACS,
Leiden University, Niels Bohrweg 1, 2363CA Leiden, The Netherlands

Abstract. This work investigates the effect of information exchange
in decomposition methods that work with multi-membered populations
as sub-problems. As an algorithm framework, we use the Multi-objective
Evolutionary Algorithm based on Sub-populations (MOEA/S). This algo-
rithm uses parallel sub-populations that can exchange information via
migration and/or recombination. For this work, each sub-population
is constructed by a few weighted utility functions, grouped by dis-
tance between their weighting vectors. The question investigated in this
paper is: How is the distance between sub-populations and the mecha-
nism of information exchange influencing the performance of MOEA/S?
The study considers two ways of transferring information: (1) migra-
tion of individuals, (2) recombination using parents from two differ-
ent sub-populations. A matrix describing the linkage patterns between
sub-populations governs migration and recombination mechanisms. This
work conducts a systematic study using the multi-objective knapsack
problem (MOKP) and multi-objective traveling salesperson (MOTSP)
for two and three objectives test problems. The results motivated a
restriction policy for sharing information. We compare an algorithm
using this policy with other state-of-the-art MOEAs, including NSGA
III, MOEA/D, and the previous version of MOEA/S.

Keywords: Decomposition-based multi-objective optimization ·
Cellular genetic algorithm · Sub-population based MOEAs · Migration
operator · MOEA/S

1 Introduction

Multi-objective optimization is the task of finding solutions in a search space
with the best quality concerning multiple objective functions. Decomposition-
based multi-objective evolutionary optimization deals with these problems by
defining a collective, population-based, search. The main idea of decomposition-
based methods is to decompose the problem into sub-problems targeting

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 171–185, 2020.
https://doi.org/10.1007/978-3-030-58115-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_12

172 L. de Almeida Ribeiro et al.

different regions on the Pareto front. The search is done simultaneously and while
continuously exchanging information between the sub-populations [7,10,16].

One crucial matter in decomposition-based methods for multi-objective prob-
lems is how to exchange information among sub-populations to speed up the con-
vergence to the Pareto front based on shared search and to improve Pareto front
coverage. The mechanism used for this purpose covers mating individuals from
different sub-populations and migrating individuals among sub-populations.

Zhang et al. propose a straightforward and commonly used implementa-
tion of decomposition-based methods. [29], called the Multi-Objective Evolu-
tionary Algorithm based on Decomposition (MOEA/D). MOEA/D explicitly
decomposes the multi-objective optimization problem into N (size of the pop-
ulation) scalar optimization sub-problems. Then, MOEA/D optimizes the N
sub-problems simultaneously. Each sub-problem is optimized by only using infor-
mation from its neighboring sub-problems, where the neighborhood is defined
a priori based on the neighborhood of reference directions. MOEA/D uses the
same aggregation function for all sub-problems; a unique combination of weight-
ing vectors defines each sub-problem. Thus, the neighborhood of a sub-problem
is assumed as the neighborhood of its weighting vector.

Another family of decomposition-based methods, used in the literature, splits
the population into several sub-populations where each one of them can use a
distinct multi-objective strategy [2–5,9,11,22–25]. In this work, we formulate
this approach as MOEA/S (Multi-objective Evolutionary Algorithm based on
Sub-populations). Although this method has obtained good results, only a very
general rule is defined for exchanging information among sub-populations. In
contrast to MOEA/D, which uses a neighborhood definition, the simple rule
is that every sub-population is exchanging information with every other sub-
population at the same rate.

A commonly applied decomposition-based algorithm is the new version of
the Non-dominated Sorting Genetic Algorithm (NSGA-III) [7], which places ref-
erence points on a simplex the size of which is adapted according to the current
best information on the boundaries of the true Pareto front. NSGA-III does not
take into account neighborhood among sub-populations in exchanging informa-
tion, although it uses a niching method for selection.

Murata et al. [17] studies the behavior of restricting mating and replacement
based on the neighborhood in a cellular version of Multi-Objective Genetic Algo-
rithm (MOGA). Using different neighborhood sizes, they conclude that neither
the closest neighbor nor the farthest sub-population is the best option in sharing
information (using mating and replacement). Whether such strategies are better
than not sharing information remains open in their analysis.

Ishibuchi et al. [12] studies the use of different size of neighborhoods (T s)
for mating and replacement selection in many-objective problems in MOEA/D.
They obtain as a result that an appropriate specification of the two neighbor-
hoods is problem-dependent. But in all the cases, a small neighborhood for
replacement might lead to a well-distributed Pareto front, in many-objective
problems. Wang et al. [28] suggest new replacement strategies where the solution
is compared in all weight vectors and replace the solutions in the neighborhood
of its best suitable weight vector.

On Sharing Information Between Sub-populations in MOEA/S 173

These previous works have shown good results in exploring the relation
between neighborhood size and performance. Thus, the exploitation of infor-
mation obtained in similar sub-problems is useful to improve the speed of con-
vergence to the Pareto front. Nevertheless, these results are not extended for
non-cellular approaches, since the neighborhood of one sub-population with mul-
tiple individuals is not as easy to define as the neighborhood of a singleton
sub-population as it is used in MOEA/D and c-MOGA.

Our work will investigate the effectiveness of exchanging information between
sub-populations based on their distance using the non-cellular decomposition
method, MOEA/S. MOEA/S decomposes a problem into N scalar optimization
sub-problems. Each sub-problem is solved simultaneously using a population-
based multi-objective evolutionary algorithms (MOEA) - in accordance with
previous research, the N populations used by these MOEAs will be called sub-
populations. In contrast to MOEA/D, each sub-population can consist, in gen-
eral, of more than one individual. In order to exchange information, a connection
between sub-populations must be established. The connection definition is based
on the distance between the centroids of the sub-populations. Different operators
for information exchange will be compared for MOEA/S in this paper.

This paper is organized as follows: Sect. 2 introduces MOEA/S and explains
the main conceptual ideas of the method. Section 3 shows experimental setup;
Sect. 4 explores the results on test problems and in Sect. 5 the paper is concluded
with a summary of our main findings1.

2 Methods

2.1 MOEA/S Algorithm

The Multi-objective Evolutionary Algorithm based on Sub-populations
(MOEA/S) is a decomposition-based MOEA which supports non-singleton sub-
population based MOEAs to solve, simultaneously, the sub-problems of a prob-
lem decomposition. In principle, each sub-problem can be solved by a different
MOEA, in terms of the selection processes. A global ‘master algorithm’ con-
trols the interplay and information exchange between the MOEAs that address
sub-problems.

MOEA/S splits the (global) population into a constant number of μ sub-
populations, which are managed by different selection processes. One can design
a process using Pareto based strategies, indicator-based methods, scalarization
based algorithms, and so on. To be eligible as a MOEA, for solving a sub-
problem in MOEA/S, the selection operator must obey a particular framework.
The framework interface requires: limited population size of at most N i

limit or
N i(i = 1 . . . μ) individuals; moreover, it must define a method for mating selec-
tion; and a method for environmental (or truncation) selection.

In MOEA/S, it is an essential principle that sub-problems are not solved
independently, but in general, it is possible to exchange information between

1 Additional data is made available in the web-repository http://moda.liacs.nl.

http://moda.liacs.nl

174 L. de Almeida Ribeiro et al.

sub-populations. The idea is, roughly speaking, to exploit synergies between
different sub-problem solution processes.

Sub-populations can exchange information in two stages: the first stage, the
mating stage, is using the mating operator. Via a mating matrix, a coupling
between the sub-populations is established. The rows (index i ∈ {1, . . . , μ})
indicate the populations in the mating pool (deme) of the i-th sub-population
Pi. Secondly, in the migration stage, a migration matrix (destination matrix) is
set up to decide to which other populations, individuals of sub-population Pi

can migrate (for each i = 1, ..., μ).
In summary, MOEA/S contains a list of sub-populations, (P1, . . . , Pμ), each

of which containing a limited number Ni, i = 1, ..., μ of individuals, a method
for selecting parents (mating selection), and a method for discarding or selecting
individuals; a population (P =

⋃μ
i=1 Pi); a structure which stores the connections

between sub-populations for mating (deme - M ∈ B
μ×μ); and for destination

sub-populations (destination matrix - D ∈ B
μ×μ) used in the environmental

selection; environmental selection maintains an adjacency matrix to associate
each individual with its sub-populations (adjacency matrix - A ∈ B

ξ×μ, where
ξ = |P |); a method for creating new individuals; and a method for initialization.

The MOEA/S procedure starts with the initialization of the sub-population
structure. This phase distributes all individuals from the initial population into
the sub-populations. The evolutionary loop consists of: (1) selection of the par-
ents (or mating pool), (2) creating new individuals by mutation and crossover
operators, (3) environmental selection, (4) migration. In more detail:

(1) select p1 as the first sub-population. Then, the first parent (sp1) is selected
from a designated sub-population (Pp1) and the second one (sp2) is selected
from a population Pp2. Index p2 is chosen according to the mating pool of
Pp1 defined by the mating matrix.

(2) generate new individuals (snew1 and snew2) by crossover and mutation oper-
ators from sp1 and sp2

(3) evaluates the new individuals in the sub-populations of their parents.
(4) migrate the new individuals to the destination sub-populations of their par-

ents’ sub-populations, according to the migration matrix.

An individual snew is accepted in the sub-population Pi if the size of Pi

satisfies |Pi| < Ni or in case |Pi| = Ni it can be chosen by the selection of the
destination sub-population, for instance, a tournament selection. In the latter
case, an individual of the destination sub-population snew replaces sold in Pi.

2.2 MOEA/S Instance

Next, we will discuss the specific instance of MOEA/S used in this paper, which
targets different regions on the Pareto front by different sub-populations:

First, N (size of the population) scalar optimization functions are defined
differed by their weighting vector, as in MOEA/D. Each one of these functions is
associated with one sub-problem (Ri, 1, ..., N). Then, sub-problems are clustered

On Sharing Information Between Sub-populations in MOEA/S 175

into sub-populations, further called Region sub-populations (Ri, 1, ..., μ), using
their weighting vectors. Thus, each individual in the population is associated
with one sub-problem, and its fitness is assessed by one utility function.

Figure 1 exemplifies how weighting vectors distributions for two and three-
objective spaces are spatially located. Figure 1(a) presents the regions on 3-
objective spaces with 120 points and 5 Regions. Figure 1(b) presents the regions
on 2-objective spaces, with 20 points and 3 regions. The clustering method is k
-means clustering [1] which groups each sample around a centroid, where here
the number of clusters corresponds to the number of regions.

(a) Regions on 3-objectives

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
w1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w
2

(b) Regions on 2-objectives

Fig. 1. Distribution of solution targets based on their weighting vectors.

As weighting or utility function Chebychev scalarization is used: Given a
solution s, an lower bound point slb (where slb

i = min(fi(X ′)), being X ′ the
explored search space so far)), and a weight vector (w1

1, . . . , w
1
k) associated to

a problem with k objective functions (f1, . . . , fk), then the Chebychev utility
function reads uCheb = maxk

i=1 wi(fi(s) − slb
i).

The mating selection in a Region Sub-population selects one individual based
on binary tournament selection. This selection method picks two individuals
randomly and chooses the one with the best fitness, where the fitness of a solution
is its fitness-value regarding the sub-problem which it is associated.

The environmental selection in a Region Sub-population (Ri) for a new solu-
tion (snew) is accomplished by evaluating snew in each one of the sub-problems
from this region. This process goes until all sub-problems (rj ∈ Ri) have been
visited, or snew is accepted by some sub-problem in Ri.

For each Region Sub-population (say i) a list of all other regions (say j, j �= i)
is created and the list is sorted by the distance to the centroid of Ri. This way
we establish nearest neighboring region, second neighboring regions of different
radius. This collection of lists will be treated as a matrix L ∈ B

μ×μ where the
L(i, j) equals to the ranking distance between i and J . This structure is used to
construct matrices D and M .

176 L. de Almeida Ribeiro et al.

2.3 Sharing Information by Migration

Locality is a fundamental resource when using guided search methods, assuming
that the structure of the fitness landscape leads search algorithms to high qual-
ity solutions [19]. Where low locality degenerate the performance of the search
algorithm in a random search [21]. This principle provides two results: small
changes in solutions cause small changes in fitness values; solutions with high
fitness values are spatially localized.

The creation of a new offspring consists of the subsequent application of the
recombination operator and the mutation operator:

– Recombination operators perform search exchanging information among solu-
tions. In this operator, the information content of multiple individuals (nor-
mally two) are combined in order to generate a new individual with mutual
information from its parents. Recombination operators generate offspring,
where the distances between offspring and parents are usually equal to or
smaller than the distance between parents.

– A mutation operator generates a solution snew from sold by a small random
change in sold. Mutation operators do not use the neighborhood lists.

Together, a search step combining recombination and subsequent mutation
produces an offspring in a neighbourhood, which encloses the parents. A search
step is useful if it generates a solution in an area of interest regarding a sub-
population. Once two sub-populations can overlap a common area of interest,
sharing offspring solutions can be beneficial. The process of sharing offspring
between sub-populations is known as migration.

This migration operator demands a topology defining links between source
and target sub-populations. Sprave [26] presents a formal model of population
structures in evolutionary algorithms based on hypergraphs. This model allows
using an individual hypergraph matrix as migration topology or mating selection
topology. Here, we use this idea defining the migration topology by means of
destination matrix (D) where dij = 1 if i is a source sub-population and j is a
target sub-population, and dij = 0 otherwise. In this work only newly created
individuals are submitted for migration.

2.4 Sharing Information by Recombination

Next to migration, MOEA/S also allows sharing information by mating parents
from different sub-populations. An essential step in recombination methods is
selecting the right combination of mates in order to generate useful descendants.
This step is called mating selection. The problem in mating selection can be
stated as: given a first parent solution sp1 from Pp1, which other sub-population
Pp2 should be selected in order to find a good matching (sp2) for the first parent?

Multi-objective problems deal with highly conflicting objectives, and hence
the search in each sub-population leads to different specialized region. Therefore,
combining solutions from sub-populations located on extremely different parts of
the Pareto front becomes unreasonable as they evolve. In contrast, solutions in

On Sharing Information Between Sub-populations in MOEA/S 177

similar sub-problems have similar information content; combining these solutions
leads to exploiting small regions, degrading the search in the first generations.

3 Experiments

The multi-objective 0-1 knapsack problem based on [31] is defined for 2 and
3 objectives with 500 items, we call it MOKP-2 or MOKP-3 according to the
number of objectives. The second problem is a multi-objective formulation of
traveling salesperson problem (MOTSP) [6] defined for 2 and 3 objectives with 30
cities, we call it MOTSP-2 or MOTSP-3 according to the number of objectives.
These problems were chosen because in these problems the similarity of solutions
reflects to some extend the similarity of the obtained results. As opposed to
many problems in continuous multi-objective optimization, such as ZDT [30]
and DTLZ [8], spread and convergence are both influenced by all variables.
In other words, there is no separation of variables that influence only spread
or only convergence. Moreover, the problems have practical relevance and are
structurally similar to real world problems.

The hypervolume indicator and R2-indicator were used to assess the per-
formance of the population. The hypervolume indicator has been the most
used quality indicator in the performance assessment of Pareto front approx-
imations [18,20]. The hypervolume indicator measures the size of the region
dominated by an approximation set [31], and bound from above by a reference
point. R2-indicator is defined as an integral over a weight space for a family of
distance to a reference point utility function (typically weighted Chebychev dis-
tance to the ideal point). Thus, R2-indicator is very suitable for decomposition
problems (which uses also utility functions).

In this paper we also propose two metrics: number of useful migrations (α)
and number of useful mating (β). α results from: given distance rank2, denoted
with (ρ ∈ 1, . . . , μ), αρ counts how many useful migrations occurs between sub-
populations in distance ρ; thus, for instance, α1 counts how many individu-
als from Ri are accepted by Rj , with Rj being the nearest neighboring sub-
population from Ri. Second metric, β states: given a distance rank ρ (∈ 1, . . . , μ),
βρ counts useful offspring resulted from mating between sub-populations in
this distance; thus, β1 counts how many individuals are accepted (in any sub-
population) from matches between Ri and Rj , once Rj is the nearest neighboring
sub-population from Ri; β0 counts how many individuals are accepted (in any
sub-population) from a mating of parents from the same sub-population.

3.1 Experiment Settings

The MOEA/S setting in the research study on the benefits of sharing informa-
tion (Experiments 1 and 2) is given by: μ - number of sub-populations equals

2 Note, as a detail, that in the case of ties, that is two sub-populations share the same
distance, the distance rank will be randomly assigned.

178 L. de Almeida Ribeiro et al.

to 6; N - number of individuals set as 36; set of problems defined as MOKP-2,
MOKP-3, MOTSP-2, MOTSP-3; and number of generations is (120000/N)-2.

For MOKP problems, we used binary representation, one-point crossover
as in [31], and 2/500 bit-flip mutation rate. For MOTSP problems, we used
permutation representation with order crossover and swap mutation. Crossover
and mutation rates of 1. The presented results are average performance metrics
obtained by the populations at a given time; this average considers 20 runs of
the algorithm (generation vs. quality measure). Thus, we can study the sharing
process between the sub-populations according to the time (generation number).

Experiment 1: Sharing Information by Migration Between Indepen-
dent Sub-populations. First experiment explores the relationship between
neighborhood of a sub-population and the effectiveness of sharing its descen-
dants by migration. Destination Matrix: D(i, j) = 1, for all i and j. The mating
matrix now reads M(i, j) = 1 if i = j; 0, otherwise. We compare the different α
over the generations. That is, we assess the success that is attributed to migra-
tion of different radius. For statistical smoothing purposes, we report cumulative
values of α over ranges of distance ranks.

Experiment 2: Sharing Information by Recombination. In the second
experiment there is no restriction on mating or migration selection process.
The destination matrix is set to D(i, j) = 1, for all i and j. Thus, the mat-
ing matrix reads M(i, j) = 1, for all i and j. The other parameters are set as
in Sect. 3.1. This experiment aims at understanding how the distance between
sub-populations of parents is related with producing successful offspring. We
used a scheme selection that guarantees all β range are assessed. For statistical
smoothing purposes, we report cumulative values of β over ranges of distance
ranks.

Experiment 3: Using Local vs. Global Sharing in MOEA/S. Last experi-
ment compares three MOEA/S designs (MOEAScan, MOEAS0 and MOEAS1)
with MOEA/D [29] and NSGA-III [7] implementations found in PlatEMO [27].
Here we compare approaches with global and local sharing policies. All algo-
rithms in this experiment use the same maximum size of population and search
operators. Here: N = 120 is the (maximum) population size. As specific param-
eters MOEA/D uses neighborhood size T = N/10; NSGA-III uses N accumula-
tion points; and MOEA/S implementations work with μ = 10 sub-populations.

The MOEA/S implementations are detailed as follows:

– Global Sharing MOEAScan (‘can’ stands for canonical) defines no restric-
tion over mating parents from different sub-populations. A new solution can
migrate to all sub-populations. M and D are set as Experiment 2.

– No Sharing MOEAS0 each sub-population works independently and there
is no sharing, i.e. the sub-populations work in parallel without migration; M
is as in Experiment 1 (no mating across sub-populations) and D = M .

On Sharing Information Between Sub-populations in MOEA/S 179

– Local Sharing In MOEAS1 the distance between two sources of parents
is restricted to 1 and solutions can migrate only for the three closest neigh-
borhoods; thus, M(i, j) = 1 if L(i, j) ≤ 1, 0 otherwise; and D(i, j) = 1 if
L(i, j) ≤ 3, 0 otherwise. Here L is the sorting matrix defined in Sect. 2.2.

The reference points for Hypervolume-indicator was set as (26098, 28367)
and (27576, 27483, 27367) for MOKP-2 and MOKP-3 test problem, respectively;
for MOTSP-2 and MOTSP-3 problems it was set as (296.88, 295.32) and (288.8,
288.54, 284.15), respectively. R2 was implemented using Chebychev scalarization
based utility function with the N (maximun size of the population) number of
points. As Hypervolume-based and R2 indicators have obtained similar results
(same ranking position when comparing the algorithms), therefore, we just show
Hypervolume-indicator.

4 Results and Discussion

4.1 Sharing Information by Migration Between Sub-populations

Figure 2 illustrates the success rate of sharing information, by migration opera-
tor, between sub-populations based on their distance.

0 500 1000 1500 2000 2500 3000
Generations

0

200

400

600

800

1000

1200

1400

av
er
ag

e(
-v
al
ue

s)

1

2

3

4

5

(a) MOKP-2

0 500 1000 1500 2000 2500 3000
Generations

0

200

400

600

800

1000

av
er
ag

e(
-v
al
ue

s)

1

2

3

4

5

(b) MOKP-3

0 500 1000 1500 2000 2500 3000
Generations

0

200

400

600

800

1000

1200

1400

1600

av
er
ag

e(
-v
al
ue

s)

1

2

3

4

5

(c) MOTSP-2

0 500 1000 1500 2000 2500 3000
Generations

0

100

200

300

400

500

600

700

av
er
ag

e(
-v
al
ue

s)

1

2

3

4

5

(d) MOTSP-3

Fig. 2. Migration rate success grouped by distance between source and destination.
Average α is the cumulative counting of accepted offsprings in a given distance.

Migrating information with the first neighbour is the best option for 3-
objective problems, and it is the second best option for 2-objective problems

180 L. de Almeida Ribeiro et al.

(the best option is in the 40% closest neighboring sub-populations). In all cases,
sharing information with the furthest sub-population is unlikely to be successful,
in particular in later stages of the search when it becomes specialized. Although
the success rate is low, migration does not affect the generation, i.e., a bad migra-
tion try is not a waste in execution count. Thus, without taking care the effort
of validating a solution, sharing with all sub-populations is the best option.

4.2 Sharing Information by Recombination Between
Sub-populations

The second study (Fig. 3) analyzes the behavior of the population quality dur-
ing the evolutionary process when applying both of the operators, recombination
and migration. This results reinforce the idea from Ishibuchi and Shibata [13–
15] about using similarity indicators in mating selection. Crossing individuals
between sub-populations can be as useful as crossing neighboring individuals.
However, as the search progresses, the probability of generating good offspring by
crossbreeding sub-populations decreases. Crossbreeding with the nearest neigh-
bouring sub-populations remains successful also in the later stage of search.

0 500 1000 1500 2000 2500 3000
Generations

0

50

100

150

200

av
er
ag

e(
-v
al
ue

s)

0

1

2

3

4

5

(a) MOKP-2

0 500 1000 1500 2000 2500 3000
Generations

0

50

100

150

200

av
er
ag

e(
-v
al
ue

s)

0

1

2

3

4

5

(b) MOKP-3

0 500 1000 1500 2000 2500 3000
Generations

0

100

200

300

400

500

av
er
ag

e(
-v
al
ue

s)

0

1

2

3

4

5

(c) MOTSP-2

0 500 1000 1500 2000 2500 3000
Generations

0

50

100

150

200

250

300

350

av
er
ag

e(
-v
al
ue

s)

0

1

2

3

4

5

(d) MOTSP-3

Fig. 3. Mating rate effectiveness grouped by distance between source sub-population
of parent 1 and source of parent 2. Average β is a cumulative value during the search.

As result from Fig. 3, the highest probability of generating useful offspring
is obtained by crossing individuals from the same region. This result is shown

On Sharing Information Between Sub-populations in MOEA/S 181

in both problems. The only exception is Fig. 3(a) where the recombination with
the first neighboring region has similar (to better) behavior. As the search pro-
gresses the probability of finding useful individuals from apart sub-populations
decreases. The best mating selection (between sub-populations) scenario occurs
in the first neighborhood. Only β1 and β2 continue increasing over time in all
test cases.

4.3 Using Local vs. Global Sharing in MOEA/S

From previous results (Sects. 4.1 and 4.2), most of information needed for
improving search performance in a sub-population comes from the nearest sub-
populations. Thus, the last experiment studies the behavior of the evolutionary
process when defining mating and migration rules, by comparing global shar-
ing (MOEAScan), no sharing or independent sub-populations (MOEAS0), and
local sharing (MOEAS1) versions of MOEA/S. We also compare its behavior
with MOEA/D and NSGA III implementations. Figure 4 presents the search
behavior of these algorithms regarding Hypervolume indicator.

0 200 400 600 800 1000
Generations

0.6

0.65

0.7

0.75

H
yp

er
vo

lu
m
e-
in
di
ca

to
r

NSGA

MOEAD
MOEAS0

MOEAScan
MOEAS1

(a) MOKP-2

0 200 400 600 800 1000
Generations

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

H
yp

er
vo

lu
m
e-
in
di
ca

to
r

NSGA

MOEAD
MOEAS0

MOEAScan
MOEAS1

(b) MOKP-3

0 200 400 600 800 1000
Generations

0.965

0.97

0.975

0.98

0.985

0.99

H
yp

er
vo

lu
m
e-
in
di
ca

to
r

NSGA

MOEAD
MOEAS0

MOEAScan
MOEAS1

(c) MOTSP-2

0 200 400 600 800 1000
Generations

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

H
yp

er
vo

lu
m
e-
in
di
ca

to
r

NSGA

MOEAD
MOEAS0

MOEAScan
MOEAS1

(d) MOTSP-3

Fig. 4. Performance of MOEA/S using mating and migration restriction compared
with other MOEAs implementations including NSGA III and MOEA/D.

As result, from Fig. 4, sharing information has been demonstrated as the
right choice for improving the convergence rate on MOEA/S. Sharing informa-
tion with all sub-populations is one of the best options in the beginning of the

182 L. de Almeida Ribeiro et al.

search, where MOEAScan is the best option for MOKP test problems (Fig. 4(a)
and 4(b)) until ca. generation 100. However, as the search progresses MOEAS0

and MOEAS1 continue improving search performance, while MOEA/D and
MOEAScan prematurely converge. Only in Fig. 4(c) MOEA/D has a similar
performance when compared to MOEAS1 even after generation 500 (no signif-
icant difference by Wilcoxon rank sum test, p = 0.05).

Once MOTSP-3 takes advantage on neighboring recombination (as shown in
experiments Sects. 4.1 and 4.2), Fig. 4(d), MOEAS0 shows its best ranking per-
formance. NSGA-III performs better with two-objective problems as compared
to three-objective test problems. Thus, sharing information can be considered
beneficial for mating and migration selection.

5 Conclusion and Outlook

Our study has investigated sharing in multi-objective optimization across sub-
populations that explore different regions of the Pareto front. Both, sharing by
migration and by mating has found to be useful tool for improvement of combi-
natorial multi-objective optimization. Diversity is achieved by exchanging infor-
mation between dissimilar sub-populations, which influences the performance of
the firsts generations. On the other hand, focusing on similar sub-populations
can improve exploitation in the search. Consequently, mating neighboring par-
ents leads to better final results. Another important finding is, that the radius
of sharing and the type of sharing has a crucial influence on its beneficial effect.
Moreover, long radii have found to more benefit early stages of search, whereas
in later stages short, but non-zero, radii for sharing are more beneficial.

The study points out and confirms some interesting phenomena regarding
sharing and paves the way to future work taking these novel findings into
account: Adaptive selection schemes could be considered once the effectiveness
of distance-based migration, and mating selection depends on the stage of the
search. In the final stages, there is no need to migrate solutions or mating solu-
tions between sub-populations. The selection scheme proposed by Ishibuchi [15]
can be the right choice if we consider the panmictic population. However, this
selection scheme is not extensible for parallel populations.

Since our study suggests that mating selection is highly related with neighbor-
hood of solutions, future work on designing MOEA/S should take neighborhood
adaptation measures for mating into account. Moreover, there is room for discus-
sion on neighborhood/deme representations using hypergraphs (see Sprave [26]).
In particular, such considerations might be of relevance for theoretical analysis
using Markov chain techniques.

Acknowledgments. This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001. We
thank LIACS for hosting and promoting the collaboration, which resulted in this paper.
Particularly, we thank NACO and MODA groups at LIACS and Laboratory of Modern
Heuristics at INF/UFG by the discussions and background.

On Sharing Information Between Sub-populations in MOEA/S 183

References

1. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In:
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(2007)

2. Brasil, C.R.S., Delbem, A.C.B., da Silva, F.L.B.: Multiobjective evolutionary algo-
rithm with many tables for purely ab initio protein structure prediction. J. Comput.
Chem. 34(20), 1719–1734 (2013)

3. Camillo, M.H.M., et al.: Combining exhaustive search and multi-objective evolu-
tionary algorithm for service restoration in large-scale distribution systems. Electric
Power Syst. Res. 134, 1–8 (2016)

4. Camillo, M.H.M., et al.: Validation of a methodology for service restoration on a
real Brazilian distribution system. In: 2014 IEEE PES Transmission & Distribution
Conference and Exposition-Latin America (PES T&D-LA), pp. 1–6. IEEE (2014)

5. Camillo, M.H.M., et al.: A multi-objective evolutionary algorithm with efficient
data structure and heuristic initialization for fault service restoration. Procedia
Comput. Sci. 80, 2367–2371 (2016)

6. Corne, D.W., Knowles, J.D.: Techniques for highly multiobjective optimisation:
some nondominated points are better than others. In: Proceedings of the 9th
Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp.
773–780. Association for Computing Machinery, New York (2007)

7. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

8. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolu-
tionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.)
Evolutionary Multiobjective Optimization, pp. 105–145. Springer, London (2005).
https://doi.org/10.1007/1-84628-137-7 6

9. Delbem, A.C.B., de Carvalho, A.C.P.D.L.F., Bretas, N.G.: Main chain represen-
tation for evolutionary algorithms applied to distribution system reconfiguration.
IEEE Trans. Power Syst. 20(1), 425–436 (2005)

10. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization:
formulation: discussion and generalization. In: Proceedings of the 5th International
Conference on Genetic Algorithms, San Francisco, CA, USA, pp. 416–423. Morgan
Kaufmann Publishers Inc. (1993)

11. Gois, M.M., Sanches, D.S., Martins, J., Junior, J.B.A.L., Delbem, A.C.B.: Multi-
objective evolutionary algorithm with node-depth encoding and strength pareto
for service restoration in large-scale distribution systems. In: Purshouse, R.C.,
Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol.
7811, pp. 771–786. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37140-0 57

12. Ishibuchi, H., Akedo, N., Nojima, Y.: Relation between neighborhood size and
MOEA/D performance on many-objective problems. In: Purshouse, R.C., Fleming,
P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp.
459–474. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37140-
0 35

13. Ishibuchi, H., Shibata, Y.: An empirical study on the effect of mating restriction
on the search ability of EMO algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler,
E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 433–447. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8 31

https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/978-3-642-37140-0_57
https://doi.org/10.1007/978-3-642-37140-0_57
https://doi.org/10.1007/978-3-642-37140-0_35
https://doi.org/10.1007/978-3-642-37140-0_35
https://doi.org/10.1007/3-540-36970-8_31

184 L. de Almeida Ribeiro et al.

14. Ishibuchi, H., Shibata, Y.: A similarity-based mating scheme for evolutionary mul-
tiobjective optimization. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol.
2723, pp. 1065–1076. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
45105-6 116

15. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Choosing extreme parents for diver-
sity improvement in evolutionary multiobjective optimization algorithms. In: 2007
IEEE International Conference on Systems, Man and Cybernetics, ISIC, pp. 1946–
1951. IEEE (2007)

16. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using
reference-point based nondominated sorting approach, part ii: handling constraints
and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–
622 (2014)

17. Murata, T., Ishibuchi, H., Gen, M.: Specification of genetic search directions in
cellular multi-objective genetic algorithms. In: Zitzler, E., Thiele, L., Deb, K.,
Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 82–95.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9 6

18. Okabe, T., Jin, Y., Sendhoff, B.: A critical survey of performance indices for multi-
objective optimisation. In: The 2003 Congress on Evolutionary Computation, CEC
2003, vol. 2, pp. 878–885. IEEE (2003)

19. Raidl, G.R., Gottlieb, J.R.: Empirical analysis of locality, heritability and heuristic
bias in evolutionary algorithms: a case study for the multidimensional knapsack
problem. Evol. Comput. 13(4), 441–475 (2005)

20. Riquelme, N., Von Lücken, C., Baran, B.: Performance metrics in multi-objective
optimization. In: 2015 Latin American Computing Conference (CLEI), pp. 1–11.
IEEE (2015)

21. Rothlauf, F.: Design of Modern Heuristics: Principles and Application. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-540-72962-4

22. Sanches, D.S., Mazucato, S.C., Castoldi, M.F., Delbem, A., London Jr., J.B.:
Combining subpopulation tables, non-dominated solutions and strength pareto of
MOEAs to treat service restoration problem in large-scale distribution systems. In:
IECON 2013–39th Annual Conference of the IEEE Industrial Electronics Society,
pp. 1986–1991, November 2013

23. Sanches, D.S., et al.: Multiobjective evolutionary algorithm with a discrete differ-
ential mutation operator developed for service restoration in distribution systems.
Int. J. Electr. Power Energy Syst. 62, 700–711 (2014)

24. Sanches, D.S., Mansour, M., London Jr., J.B., Delbem, A., Santos, A.C.: Inte-
grating relevant aspects of MOEAs to solve loss reduction problem in large-scale
distribution systems. In: 2011 IEEE PES Trondheim PowerTech: The Power of
Technology for a Sustainable Society, POWERTECH 2011, June 2011

25. Santos, A., Delbem, A., London, J.B., Bretas, N.: Node-depth encoding and multi-
objective evolutionary algorithm applied to large-scale distribution system recon-
figuration. IEEE Trans. Power Syst. 25(3), 1254–1265 (2010)

26. Sprave, J.: A unified model of non-panmictic population structures in evolutionary
algorithms. In: Proceedings of the 1999 Congress on Evolutionary Computation-
CEC99 (Cat. No. 99TH8406), vol. 2, pp. 1384–1391 (1999)

27. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: Platemo: a matlab platform for evolution-
ary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag.
12(4), 73–87 (2017)

28. Wang, Z., Zhang, Q., Zhou, A., Gong, M., Jiao, L.: Adaptive replacement strategies
for MOEA/D. IEEE Trans. Cybern. 46(2), 474–486 (2016)

https://doi.org/10.1007/3-540-45105-6_116
https://doi.org/10.1007/3-540-45105-6_116
https://doi.org/10.1007/3-540-44719-9_6
https://doi.org/10.1007/978-3-540-72962-4

On Sharing Information Between Sub-populations in MOEA/S 185

29. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

30. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

31. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

Multi-objective Optimization
by Uncrowded Hypervolume

Gradient Ascent

Timo M. Deist1(B) , Stefanus C. Maree1, Tanja Alderliesten2,
and Peter A. N. Bosman1

1 Centrum Wiskunde and Informatica, Life Sciences and Health Research Group,
Amsterdam, The Netherlands

{timo.deist,maree,peter.bosman}@cwi.nl
2 Department of Radiation Oncology, Leiden University Medical Center, Leiden,

The Netherlands
t.alderliesten@lumc.nl

Abstract. Evolutionary algorithms (EAs) are the preferred method for
solving black-box multi-objective optimization problems, but when gra-
dients of the objective functions are available, it is not straightforward to
exploit these efficiently. By contrast, gradient-based optimization is well-
established for single-objective optimization. A single-objective reformu-
lation of the multi-objective problem could therefore offer a solution.
Of particular interest to this end is the recently introduced uncrowded
hypervolume (UHV) indicator, which is Pareto compliant and also takes
into account dominated solutions. In this work, we show that the gradi-
ent of the UHV can often be computed, which allows for a direct appli-
cation of gradient ascent algorithms. We compare this new approach
with two EAs for UHV optimization as well as with one gradient-based
algorithm for optimizing the well-established hypervolume. On several
bi-objective benchmarks, we find that gradient-based algorithms out-
perform the tested EAs by obtaining a better hypervolume with fewer
evaluations whenever exact gradients of the multiple objective functions
are available and in case of small evaluation budgets. For larger budgets,
however, EAs perform similarly or better. We further find that, when
finite differences are used to approximate the gradients of the multiple
objectives, our new gradient-based algorithm is still competitive with
EAs in most considered benchmarks. Implementations are available at
https://github.com/scmaree/uncrowded-hypervolume.

Keywords: Multi-objective optimization · Uncrowded hypervolume ·
Gradient search

1 Introduction

Evolutionary algorithms (EAs) are the preferred method for solving black-box
multi-objective (MO) optimization problems, when assuming the underlying

T. M. Deist and S. C. Maree—These authors contributed equally.

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 186–200, 2020.
https://doi.org/10.1007/978-3-030-58115-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_13&domain=pdf
http://orcid.org/0000-0003-0057-1535
https://github.com/scmaree/uncrowded-hypervolume
https://doi.org/10.1007/978-3-030-58115-2_13

Multi-objective Optimization by Uncrowded Hypervolume Gradient Ascent 187

details of the problem are unknown [5]. However, when gradient information
of the objective functions is available, it is not straightforward to exploit this
information efficiently in the optimization process. This can be mainly attributed
to the two-sided goal of multi-objective optimization, which is to obtain a set of
solutions, known as an approximation set, on the one hand containing solutions
that are (near) Pareto optimal, and on the other hand representing a diverse set
of trade-offs between the objectives [3].

When considering a to-be-minimized bi-objective function f : R
n → R

2,
the Karush-Kuhn-Tucker (KKT) [17,20] conditions can be used to identify a
descent direction d(x) for a solution x ∈ R

n for which all objectives are non-
worsening, by taking a weighted convex combination of the gradients of the
individual objectives ∇f0 and ∇f1,

d(x) = w0 · ∇f0(x) + w1 · ∇f1(x), (1)

with w0, w1 ≥ 0. In general, there exist infinitely many search directions d(x) for
which all objectives are non-worsening, and different methods have been developed
in which a single descent direction is computed [6,10,21]. While this provides an
approach to converge to Pareto optimal solutions, it does not tell us directly how to
take solution diversity into account, which has shown to be non-trivial [4,23]. We
therefore consider a different avenue to handle gradients for MO optimization in
this work, which is to cast the MO problem as a single-objective (SO) optimization
problem, in which a quality indicator is used to quantify the quality of an approxi-
mation set [7,18]. One popular quality indicator is the hypervolume indicator [30],
which measures the volume in objective space that is dominated by an approxima-
tion set. The hypervolume indicator is currently the only known indicator that is
Pareto-compliant, meaning that solutions in a set with maximal hypervolume are
Pareto optimal [9], and it furthermore takes diversity intrinsically into account [1].
Additionally, the hypervolume indicator is differentiable with respect to a prob-
lem’s objective functions in strictly non-dominated points which allows determin-
ing gradient weights via the chain rule [8].

A limitation of the hypervolume indicator however is that it ignores domi-
nated solutions. This prevents the use of the hypervolume indicator directly in
indicator-based MO optimization, as it cannot be used to steer dominated solu-
tions to a non-dominated area in the search space [24]. SMS-EMOA [2] overcomes
this limitation by using non-dominated sorting to create subsets of solutions such
that solutions within a subset are non-dominated. Consequently, each solution’s
hypervolume contribution with respect to its subset can be computed and used
to steer the solution towards the Pareto front. The hypervolume indicator gra-
dient ascent multi-objective optimization (HIGA-MO) algorithm [26] computes
hypervolume gradients for solutions in subsets created by non-dominated sort-
ing and thus achieves gradient-based steering for dominated solutions. An app-
roach to incorporate dominated solutions into a hypervolume-based indicator
is the uncrowded hypervolume improvement [24] which was combined with the
newly presented Sofomore framework to perform optimization by interleaving

188 T. M. Deist et al.

single-objective optimizers. In [19], this quality indicator for single solutions was
recently converted into a quality measure for solution sets, called the uncrowded
hypervolume (UHV), which is directly suitable for indicator-based MO optimiza-
tion. The resulting UHV problem was then efficiently solved with the gene-pool
optimal mixing evolutionary algorithm by exploiting UHV-specific properties
(UHV-GOMEA).

In this work, we formulate gradient expressions for the UHV, such that it
can be used directly in SO gradient ascent schemes. (Note that the UHV needs
to be maximized, independent of whether the underlying MO problem is a min-
imization or maximization problem.) To demonstrate this, we solve it with the
same scheme as used by HIGA-MO, and with Adam, a preeminent method for
efficient stochastic optimization [16]. We further compare UHV gradient ascent
to HIGA-MO, and the EAs UHV-GOMEA and Sofomore-GOMEA [19]. For
the experimental comparison, we employ simple quadratic benchmark functions
similar to benchmarks used in [19] and also the Walking Fish Group (WFG)
benchmark set [14]. Additionally, for a fair comparison to EAs, we study the
performance of the gradient-based methods in a black-box setting, where gradi-
ent information of the MO problem is not available, by using a finite difference
gradient approximation. The remainder of this paper is organized as follows.
In Sect. 2, we introduce preliminaries of the (uncrowded) hypervolume indica-
tor. In Sect. 3, we introduce our UHV gradient ascent algorithm. Experimental
comparisons are described in Sect. 4, followed by a discussion in Sect. 5.

2 Uncrowded Hypervolume Optimization

We consider MO problems given by a to-be-minimized m-dimensional objective
function f : X → R

m, where X ⊆ R
n is the n-dimensional (box) constrained

decision space. We focus on the bi-objective case m = 2 in this work. Let x ∈
X ⊆ R

n be a solution of the MO problem, which we from now on refer to as an
MO-solution. The goal of MO optimization is to obtain a set of (near-)Pareto-
optimal MO-solutions S ⊂ X of manageable size. To evaluate the quality of S,
we use the uncrowded hypervolume (UHV) indicator [19], which measures the
area in objective space enclosed by the non-dominated MO-solutions in S and
a reference point r = (r0, r1) (as the hypervolume indicator [30]), and uses the
uncrowded distance [24] (explained below) to steer dominated MO-solutions. As
S can contain dominated MO-solutions, let A be the approximation set of S,
i.e., the largest subset of S that contains only non-dominated MO-solutions.

In order to search the space of solution sets, ℘(X), a parameterization of
solution sets is required [2,19,26]. For this, we consider sets Sp of a fixed size of p
MO-solutions, and simply concatenate the decision variables of all MO-solutions
into a single vector X ∈ R

np, i.e., X = [x0 · · · xp−1], similar to notation used in
[8]. Additionally, let Y ∈ R

p×m be the matrix of concatenated objectives values
corresponding to X, i.e., Yi,0:m−1 = yi = f(xi). Finally, let F : Rnp → R

m×p be
the operator that evaluates the entire solution set given by X, i.e., Y = F (X).
This implies that an evaluation of F consists of p evaluations of the MO problem

Multi-objective Optimization by Uncrowded Hypervolume Gradient Ascent 189

(MO-evaluations). The resulting SO UHV-based optimization problem can then
be formulated as,

maximize g(X) = UHV(F (X)) = HV(F (X)) − UD(F (X)),

with f : X ⊆ R
n → R

m, F : Rnp → R
m×p, X ∈ R

np,
(2)

where HV : Rm×p → R≥0 is the hypervolume indicator [30] and UD : Rm×p →
R≥0 is the mean of the uncrowded distances ud(y, Y) [24], which measure the
shortest distance of a point y towards the domination boundary of Y in objective
space. It is called the uncrowded distance as the nearest point on the boundary
of Y is generally away from points in Y . The UD is then given by,

UD(Y) =
1
p

p−1∑

i=0

ud(yi, Y)m. (3)

We refrain from repeating a mathematical definition here, but provide an illus-
tration in Fig. 1. Note that, in contrast to [19], we only consider the interior
boundary of Y here, which was found to improve performance in preliminary
experiments, as the extreme points of Y are often already well-positioned close to
the extremes of the approximation front (i.e. the approximation set in objective
space), and steering additional points into the same location causes undesired
computational overhead. Finally, note that the UHV is equivalent to the hyper-
volume indicator when all MO-solutions in S are non-dominated, which implies
that the UHV is still Pareto-compliant on the space of approximation sets.

Fig. 1. Illustration of UHV gradient ascent on a bi-objective problem. The MO-gradient
direction in decision space (left subfigure) is a weighted linear combination of the SO
gradients, where the weights are determined based on the UHV gradient direction in
objective space (right subfigure).

3 UHV Gradient Ascent

We apply a gradient ascent scheme to g(X) = UHV(F (X)) in Eq. (2). For this,
we use the gradient of the hypervolume indicator as was derived in [8]. We

190 T. M. Deist et al.

briefly describe the concept here, but refer the reader to [8] for a rigorous math-
ematical derivation and analysis. The gradient ∇g(X) = ∇UHV(F (X)) can be
split up into subvectors corresponding to different MO-solutions by using that
X = [x0 · · · xp−1] ∈ R

np,

∇g(X) =
∂UHV(F (X))

∂X
=

[
∂UHV(F (X))

∂x0
· · · ∂UHV(F (X))

∂xp−1

]
. (4)

We now apply the chain rule to each of the subvectors i by using yi = f(xi),

∂UHV(F (X))
∂xi

=
∂UHV(F (X))

∂F (X)
· ∂F (X)

∂xi
=

p−1∑

j=0

∂UHV(F (X))
∂yj

· ∂yj

∂xi
, (5)

where we can now use that ∂yj

∂xi
= 0 for j �= i, as the fitness values of yj = f(xj)

do not depend on xi. For j = i, we have ∂yi

∂xi
= [∇f0(xi) ∇f1(xi)], which are

simply the gradients of the MO problem. This gives,

∂UHV(F (X))
∂xi

=
∂UHV(F (X))

∂f0(xi)
· ∇f0(xi) +

∂UHV(F (X))
∂f1(xi)

· ∇f1(xi). (6)

Note the correspondence of this expression with the weighted search direction
in Eq. (1). Directly using the objective space gradients to determine the search
direction would cause MO-solutions that contribute more to the UHV to make
big steps, and MO-solutions that contribute little to slowly creep, which was
noted earlier [12,26]. To overcome this, we normalize the objective gradients by
setting W =

∥∥∥
[

∂UHV
∂f0(xi)

∂UHV
∂f1(xi)

]∥∥∥, which gives us the desired search direction,

1
W

∂UHV(F (X))
∂xi

=
1
W

∂UHV(F (X))
∂f0(xi)

· ∇f0(xi) +
1
W

∂UHV(F (X))
∂f1(xi)

· ∇f1(xi).

(7)
It now remains to find an expression for the objective space gradients. We now
use that UHV = HV − UD. For both objectives k = {0, 1}, this gives,

∂UHV(F (X))
∂fk(xi)

=
∂HV(F (X))

∂fk(xi)
− ∂UD(F (X))

∂fk(xi)
.

Whenever xi is a dominated MO-solution, it has no contribution to the hyper-
volume, and the first term is therefore equal to zero. For the second term, let
s(f(xi)) ∈ R

m be the point towards which the uncrowded distance is com-
puted, i.e., the nearest point to f(xi) on the approximation boundary given, as
illustrated in Fig. 1. Using the definition of UD in Eq. (3), we obtain the final
expression for objective-space derivative for dominated MO-solutions,

∂UD(F (X))
∂fk(xi)

=
1
p

∂

∂fk(xi)
‖f(xi) − s(f(xi))‖m.

Whenever xi is a non-dominated MO-solution, the objective-space hyper-
volume gradient can be computed by the approach described in [8]. Concep-
tually, the computation can be reduced to the objective-space gradient of the

Multi-objective Optimization by Uncrowded Hypervolume Gradient Ascent 191

Table 1. UHV gradient ascent schemes for maximizing g(X).

Adam [16] GA-MO [25]

Initial values: γ0 = ‖Xinit‖ · 10−2,
b0 = 0.9, b1 = 0.999, b2 = 0.99,
ε = 10−16, m−1 = v−1 = 0.

Initial values: c = 0.1, α = 0.7, β = 0.7,
and for i = 0, . . . , (p − 1):
γ−1

i = ‖Xinit‖ · 10−2, n−1
i = 0, m−1

i = 0.

For t = 0, 1, . . . ,
mt = b0m

t−1 + (1 − b0)∇g(Xt),

vt = b1v
t−1 + (1 − b1)∇g2(Xt),

Xt+1 = Xt + γt mt/(1 − (b0)t+1)
√

vt/(1 − (b1)t+1) + ε
,

γt+1 =

{
b2γt, if g(Xt+1) ≤ g(Xt),

γt, else.

For t = 0, 1, . . . ,
d

−
= min

l,k∈{0,...,(p−1)},l �=k
‖xt

l − x
t
k‖,

d
+

= max
l,k∈{0,...,(p−1)},l �=k

‖xt
l − x

t
k‖,

γ
UB

= β(d
+

+ d
−
)/2

For i = 0, . . . , (p − 1),

nt
i = ∇g(xt

i)/‖∇g(xt
i)‖,

mt
i = (1 − c)mt−1

i + c〈nt−1
i ,nt

i〉,
γt

i = min{γUB, γt−1
i eαmt

i},

xt+1
i = xt

i + γt
in

t
i.

hypervolume contribution of that MO-solution, which is easily computed when
the neighbouring MO-solutions on the approximation front are known (Fig. 1).
Additionally, whenever xi is a non-dominated MO-solution, it determines the
approximation boundary, which is used in the computation of the UD for other
MO-solutions. Therefore, ∂UD(F (X))

∂fk(xi)
is potentially non-zero. In that case, the UD

can be improved at the cost of worsening non-dominated MO-solutions, as this
reduces the uncrowded distance of dominated MO-solutions. This is undesirable,
and we therefore explicitly set ∂UD(F (X))

∂fk(xi)
= 0 for non-dominated xi, although

preliminary experiments showed that performance is largely unaffected by this.
Finally, we consider the case in which xi is weakly dominated, which occurs
for pairs of MO-solutions with at least one coinciding objective value. In this
case, the objective-space gradient of the UHV is undefined [8, Proposition 3]. To
prevent such case, we consider these points to be strongly dominated, and (tem-
porarily) worsen the objective value(s) that are shared with other MO-solutions
by a small value ε, which allows us to compute the uncrowded distance as before.
Since objective space gradients are normalized, the actual choice of ε is irrelevant
as long as it is small enough so that the weakly dominated MO-solution does
not get dominated by other MO-solutions.

3.1 Gradient Ascent Schemes

We use two gradient ascent schemes for UHV gradient ascent, as listed in
Table 1. The first scheme we consider is Adam [16] (UHV-Adam), which is a
popular method for stochastic gradient descent. Adam uses a variance-corrected
weighted average of current and previous gradients. In contrast to the origi-
nal formulation, we set ε to machine precision, and we add a very simple step
size shrinking scheme in which the step size is reduced if no improvement was
found. The second scheme is the GA-MO scheme (UHV-GA-MO) used in the

192 T. M. Deist et al.

Python implementation of HIGA-MO [25]. GA-MO updates the step size for
each MO-solution separately using a weighted average of search directions’ inner
products as input for an exponential cooling scheme. We adapted the weight
used for averaging inner products c = 0.1 (from c = 0.2) as both HIGA-MO
and UHV-GA-MO showed stagnation in preliminary experiments with c = 0.2.
Additionally, we changed the upper bound on the step size γUB to be also based
on d+, the maximum distance between two MO-solutions in decision space, as
for the UHV objective function, two dominated MO-solutions could be steered
to the same point on the front, and only basing it on the minimum distance d−

could shrink γ prematurely. For both schemes, we use projected gradients (i.e.,
boundary repair) to handle box-constrained search spaces. Initial MO-solutions
are initialized uniformly random in a box Xinit ⊆ X , and the initial step size is
based on the maximum initialization range in any dimension, which we denote
by ‖Xinit‖. Implementations of UHV-Adam and UHV-GA-MO are available at
https://github.com/scmaree/uncrowded-hypervolume.

3.2 Finite Difference Gradient Approximation

To assess the performance of gradient-based algorithms in a black-box sce-
nario, where exact gradients are not known, finite forward difference gradient
approximations (FD) are used. The FD step size is set to h = 10−6 · γ̄t, where
γ̄ =

∑p−1
i=0 γt

i for UHV-GA-MO, and γ̄ = γt for UHV-Adam. In this way, h is
always smaller than the mean step size. If the FD step violates the search space’s
box-constraints, backward differences are used. Estimating both objectives’ gra-
dients in one MO-solution requires n additional MO-evaluations, the number of
MO-evaluations thus increases from p to (1 + n) · p per iteration. When using
FD, we refer to our methods as UHV-Adam-FD and UHV-GA-MO-FD.

4 Experiments

Experiments are conducted on several bi-objective problems: four bi-objective
problems with known gradients as defined in Table 2 and nine box-constrained
problems from the WFG benchmark suite [13,14,28]. For each algorithm, the
best approximation set obtained so far is recorded over the run of that algo-
rithm, where quality is measured by the algorithm itself, i.e., based on the HV
or UHV. Performance is measured by the number of MO function evaluations
(MO-evaluations), where we define one MO-evaluation as the computation of
f0, f1,∇f0, and ∇f1 at once. Note that the evaluation of X, which models a
solution set Sp of size p, therefore costs p MO-evaluations. All problems are run
with a fixed hypervolume reference point r = (11, 11), which is rather far away
from the Pareto front, as this puts additional importance towards obtaining the
end points of the front [1]. However, even with this choice of reference point,
the endpoints are not always included in the approximation set with optimal
hypervolume, depending on the shape of the front [1].

We compare the two UHV gradient ascent schemes, UHV-Adam and UHV-
GA-MO, to the EAs UHV-GOMEA-Lt and Sofomore-GOMEA from [19]. We

https://github.com/scmaree/uncrowded-hypervolume

Multi-objective Optimization by Uncrowded Hypervolume Gradient Ascent 193

furthermore consider the gradient-based HIGA-MO. UHV-GOMEA-Lt uses a
linkage tree in which at most a few MO-solutions are updated simultaneously. A
full description of UHV-GOMEA-Lt and Sofomore-GOMEA can be found here
[19]. We used the Python implementation of HIGA-MO [25], but extended it with
a dynamic reference point so that hypervolume gradients can also be computed
for solution sets with f+

0 > r0 or f+
1 > r1 (which is not an issue for the UHV-

based algorithms), where f+
i is the worst value for the ith objective in the set.

The dynamic reference point is set to r̂ = (max{1.1f+
0 , r0}, max{1.1f+

1 , r1}).
Algorithmic performance is always evaluated with respect to r.

As performance indicators, we consider the difference with the optimal hyper-
volume (for p MO-solutions) ΔHV(Ap) = HV(A�

p)−HV(Ap), where Ap = A(Sp)
is the approximation set given by Sp, and A�

p is the approximation set with opti-
mal hypervolume. The second measure we consider is the generational distance
(GD) [29]. The GD for problems 0 and 2 is computed analytically from their
known Pareto set [19]. For problems 1 and 3, the GD is computed based on a
sample of 5000 MO-solutions from a reference set. The GD is not Pareto com-
pliant, but it is a useful tool to measure proximity to the Pareto set. Finally,
we consider |Ap|, i.e., the number of non-dominated MO-solutions in Sp, which
we use to measure how well different mechanisms for handling dominated MO-
solutions perform. Unless mentioned otherwise, all experiments are repeated 10
times, and medians and inter-quartile ranges (IQR) are shown.

Table 2. Quadratic bi-objective benchmark problems. R applies a 45◦ rotation along
all axes. All MO-solutions are initialized in [−2, 2]n×p for problems 0–2 and [0, 2]n×p

for Problem 3.

Problem f0 f1 Properties

0 Convex f(x) =
∑n−1

i=0 (xi)
2 f(x − c), with c = [1 0 . . . 0] Decomposable

Bi-sphere

1 Sphere & 1
n

f(x) (
√

WRx − √
Wc)ᵀ(

√
WRx − √

Wc), Wi,i = 10
−6i
n−1 Non-

Rotated decomposable,

ellipsoid Ill-conditioned

2 Concave f(x)
1
4 f(x − c)

1
4 Decomposable,

Bi-sphere Concave front

3 Sphere & f(x) 1
(n−1)

∑(n−2)
i=0 100

(
x(i+1) − x2

i

)2
+ (1 − xi)

2 Bimodal,

Rosenbrock Chained

dependencies

4.1 Convergence in Hypervolume on the Quadratic Functions

For the first experiment, we consider the quadratic bi-objective functions from
Table 2, with problem dimensionality n = 10. We consider solution sets Sp

of size p = 9. As we do not know HV(A�
p) analytically, the target HV is set

to maximal HVs obtained from lower dimensional instances. For UHV-Adam,
UHV-GA-MO, and HIGA-MO, the initial step size γ0 is set to one percent of the
mean initialization range. As in [19], UHV-GOMEA-Lt and Sofomore-GOMEA

194 T. M. Deist et al.

are run with population size N = 31 for the decomposable problems 0 and 2,
and N = 200 otherwise. All optimizers are run for 106 MO-evaluations or until
convergence criteria are met. Results are shown in Fig. 2. All gradient-based
algorithms reach the target hypervolume in all problems except for HIGA-MO
on Problem 3 which converges close to the target HV. HIGA-MO’s performance
is more volatile across runs which is especially visible in problems 1 and 3.
Both EAs, UHV-GOMEA-Lt and Sofomore-GOMEA, always obtain the tar-
get hypervolume, but require substantially more MO-evaluations. The IQRs of
gradient-based and EA-based algorithms only rarely intersect, indicating that
the faster convergence of gradient-based algorithms is robust to random ini-
tialization. These differences in performance are also reflected in GD(Ap). All
gradient-based algorithms obtain |Ap| = 9 non-dominated MO-solutions faster
than EAs. UHV-GA-MO and HIGA-MO reach |Ap| = 9 sooner than UHV-Adam
which indicates that the gradient ascent scheme (i.e., GA-MO vs. Adam) has
a larger effect on quickly finding non-dominated MO-solutions than the strat-
egy for handling dominated MO-solutions (i.e., UD vs. non-dominated sorting
of MO-solutions into multiple fronts in HIGA-MO).

Fig. 2. Results for the different algorithms with p = 9 on the benchmark problems
in Table 2 with n = 10. Lines indicate median values and shaded areas represent
the IQR. Dashed lines correspond to gradient-based algorithms with finite difference
gradient approximations. MO-evals: MO-evaluations.

Finite Difference Gradient Approximation. In practice it may well hap-
pen that analytic gradients are not available. In Fig. 2, it can be seen that the

Multi-objective Optimization by Uncrowded Hypervolume Gradient Ascent 195

gradient-based algorithms lose much of their advantage over EA-based algo-
rithms when relying on finite difference gradient approximations. Their conver-
gence is only slightly faster (Problem 0), similar (Problem 3), or EAs now clearly
outperform them (Problem 2). In Problem 2, HIGA-MO-FD converges prema-
turely. Only in Problem 1, there is still evidence of advantages for gradient-based
algorithms: UHV-GA-MO-FD still convergences more than 10 times faster than
EA-based algorithms. This problem is highly dependent and ill-conditioned, and
a large population is required for the EAs to solve this problem, while gradient-
based algorithms directly capture these dependencies. These results also show
that finite difference gradient approximations not only increase the computa-
tional cost per iteration, but could also worsen convergence rates or even cause
stagnation. This is especially true for the GA-MO scheme. UHV-Adam-FD does
however not show a deterioration in the rate of convergence (besides the expected
shift of a factor 1+n). Adam was developed for stochastic gradient descent, and
uses a weighted average of current and past gradients instead of the gradient
itself, enabling it to handle the imprecise gradient approximations.

4.2 Effect of the Number of MO-Solutions p

When p is increased, the size of the to-be-optimized approximation set Ap is also
increased. This makes the resulting UHV optimization problem more difficult,
and dependency modelling becomes essential in order to obtain the optimal
distribution of MO-solutions along the front with UHV-GOMEA-Lt [19]. To
investigate the dependence of convergence speed on the number of MO-solutions
p, all gradient-based optimizers are applied on problems 0–2 with p = 2j + 1 for
j = 1, . . . , 7 and n = 10. Problem 3 is excluded as premature convergence to its
local optimum would obfuscate the comparison. All optimizers are run for 107

MO-evaluations or until convergence criteria are met. The target HV is set to
the maximal HV found across all algorithms. Parameter settings (N for UHV-
GOMEA-Lt, γ0 otherwise) were tuned experimentally across all p = 2j + 1: γ0

is set to 4 · 10−2 for UHV-Adam, 4 · 10−4 for UHV-GA-MO, and to 4 · 10−3

for HIGA-MO. UHV-GOMEA-Lt’s population sizes are scaled in p as the larger
parameter spaces require larger populations: N(p) =
0.76p

1
4 Nbase�, where
·�

is the rounding operator. Nbase = 31 for problems 0 and 2 and Nbase = 200
for Problem 1 as in Sect. 4.1. Sofomore-GOMEA interleaves optimizations of
individual MO-solutions, therefore N does not need to be scaled in p and N is
set to Nbase. The median ΔHV(Ap) in problems 0–2 with varying p is shown in
Fig. 3. All algorithms always reach the target HV with 10−10 accuracy for p ≤
17. As p increases, the ΔHV(Ap) of UHV-GOMEA-Lt and Sofomore-GOMEA
increases across problems. All gradient-based algorithms obtain lower ΔHV(Ap)
values than both EAs as p increases with the exception of Problem 2, in which
UHV-GOMEA-Lt and Sofomore-GOMEA scale better in p.

196 T. M. Deist et al.

Fig. 3. The median distance to the target HV after 107 MO-evaluations of all algo-
rithms for problems 0–2 with varying p and n = 10 over 10 repetitions.

4.3 WFG Benchmark

The WFG test suite [14] consists of 9 benchmark functions with different prop-
erties. WFG1 is decomposable, but has a flat region in the decision space, which
could cause stagnation. WFG2, WFG4, and WFG9 have one or more multimodal
objectives, which are expected to be difficult for gradient-based algorithms. Prob-
lems WFG4–9 have concave fronts, WFG1 has a convex front, WFG2 has a
disconnected convex front, and WFG3 has a linear front. We use finite dif-
ference approximations for the gradient-based algorithms. We again consider
bi-objective problems, and use kWFG = 4 position variables and lWFG = 20
distance variables, resulting in a total of n = 24 decision variables as originally
chosen in [15]. We solve these benchmarks with approximation sets of size p = 9
and a limited computational budget of 105 MO-evaluations. All experiments are
repeated 30 times. Differences are tested for statistical significance (up to 4 deci-
mals) by a Wilcoxon rank sum test with α = 0.05, pairwise to the best. Ranks (in
brackets) are computed based on the mean hypervolume. All statistics are com-
puted per table. For the gradient-based algorithms, we set γ0 = ‖Xinit‖ · 10−2,
and a population size of N = 200 was used for the population-based algorithms.
Results on the WFG benchmark are shown in Table 3. UHV-Adam-FD performs
best overall, while UHV-GA-MO-FD has worse performance on most problems.
As expected, the gradient-based algorithms perform worse on the multi-modal
problems WFG4 and WFG9. WFG2 has only one multimodal objective which
does not seem to be a problem for UHV-Adam-FD. All algorithms have difficul-
ties with the flat region in WFG1, and the worst overall hypervolume values are
obtained for this problem. The only algorithm that has an explicit mechanism
for handling flatness is HIGA-MO-FD, which consequently performs best for
WFG1. HIGA-MO-FD re-initializes MO-solutions if the gradient is zero, which
does not help traversing the plateau, but increases diversity. Note that we did not
add any mechanism to handle flatness in the other algorithms. Especially with
gradient-based algorithms, flatness is easily detected and a mechanism could
be added to improve performance. On the WFG problems with concave fronts,
UHV-Adam-FD performs well, in contrast to the previous results on the concave
bi-sphere, showing that it does not have difficulties with concavity in general.

Multi-objective Optimization by Uncrowded Hypervolume Gradient Ascent 197

Table 3. Results on the WFG Benchmark. Hypervolume values are shown (mean,
± standard deviation (rank)). Finite differences (FD) are used for the gradient-based
algorithms. Bold are best scores per problem, or those not statistically different from it.

Problem Sofomore-GOMEA UHV-GOMEA-Lt UHV-ADAM-FD UHV-GA-MO-FD HIGA-MO-FD

WFG1 86.82 ± 0.68(4) 85.50 ± 0.24(5) 96.83 ± 0.24(3) 97.12 ± 0.22(2) 97.91 ± 0.56(1)

WFG2 109.60 ± 0.26(2) 109.38 ± 0.18(3) 114.13 ± 3.76(1) 108.79 ± 7.79(4) 100.13 ± 3.64(5)

WFG3 115.50 ± 0.27(2) 115.48 ± 0.17(3) 116.42 ± 0.01(1) 114.77 ± 0.34(4) 112.88 ± 0.67(5)

WFG4 110.95 ± 0.26(1) 109.17 ± 0.48(2) 105.99 ± 1.66(5) 107.09 ± 0.74(3) 106.07 ± 1.84(4)

WFG5 108.42 ± 0.99(3) 103.45 ± 1.21(5) 110.33 ± 0.97(1) 109.65 ± 1.29(2) 105.73 ± 1.55(4)

WFG6 113.15 ± 0.25(2) 109.64 ± 0.73(3) 114.28 ± 0.04(1) 109.58 ± 2.00(4) 109.49 ± 2.93(5)

WFG7 112.93 ± 0.48(4) 113.06 ± 0.36(3) 114.33 ± 0.03(1) 113.19 ± 0.59(2) 112.41 ± 0.51(5)

WFG8 109.72 ± 0.29(2) 109.27 ± 0.26(3) 111.22 ± 0.22(1) 109.17 ± 1.29(4) 105.98 ± 2.27(5)

WFG9 110.70 ± 1.71(1) 108.58 ± 0.57(3) 109.27 ± 0.66(2) 106.95 ± 2.02(4) 101.46 ± 2.87(5)

Rank 2.33 (2) 3.33 (4) 1.78 (1) 3.22 (3) 4.33 (5)

5 Discussion

We performed gradient-based multi-objective (MO) optimization by formulat-
ing the problem as a high-dimensional single-objective optimization problem
based on the uncrowded hypervolume (UHV). We presented how the gradient
of the UHV can be computed from the gradients of the MO function using the
chain rule. We further showed that UHV gradient optimization can be solved
with existing gradient ascent schemes, obtaining results competitive to or bet-
ter than EAs and another gradient-based algorithm that performs hypervolume
optimization. Future studies should additionally compare the presented UHV
gradient-based algorithms to popular dominance-based EAs for HV optimiza-
tion and investigate scalability also in n, the dimensionality of the underlying
MO problem.

We have shown that the UHV is an effective and efficient approach for obtain-
ing a set of non-dominated MO-solutions, that requires little to no extra care
during the optimization process. In [27], different techniques for steering domi-
nated points are compared, and the uncrowded distance (UD) we use here is rem-
iniscent of dominated point handling techniques such as secant slope weighting
or gap-filling. However, a diversity loss is noted there as a possible disadvantage
of gap-filling over the domination ranking technique employed in HIGA-MO, but
we did not observe this in our results (Fig. 2).

UHV gradient ascent is not very sensitive to the initial step size, scales better
when p is large (Fig. 3), and achieves a better hypervolume than EA-based UHV-
optimization while requiring significantly fewer function evaluations (Fig. 3).
When gradient information of the MO problem is missing, finite difference gra-
dient approximation can be used, requiring n + 1 MO-evaluations. Even with
such approximations, UHV gradient ascent is competitive or even outperforms
EAs on smaller computational budgets (Table 3), although ultimately EAs often
outperform the gradient-based algorithms. The effect of approximation errors in
the finite difference approximation in UHV gradient ascent is negligible when

198 T. M. Deist et al.

using the Adam gradient scheme [16], as it was developed for stochastic gradient
descent in which exact gradients are unavailable (or too expensive to compute).

Any algorithm based on the hypervolume is limited by the hypervolume’s
computational complexity increasing in the number of objectives m > 2, e.g.,
O(pm−2 log(p)) [11]. However, the approximation sets we consider are rather
small (e.g., p = 9), and UHV gradient ascent shows good scalability in p, which
encourages investigating cases with m > 2 objectives.

Finally, as any gradient-based algorithm, UHV gradient ascent suffers from
the risk of ending up in local optima. A future research direction therefore is to
hybridize UHV gradient ascent and EAs. Hybridization is however not trivial [4,
22] as both EAs and gradient-based algorithms rely on information of preceding
iterations, and interleaving different algorithms might disrupt these mechanisms.

Acknowledgments. This work was supported by the Dutch Research Council
(NWO) through Gravitation Programme Networks 024.002.003 and is part of the
research programme Open Technology Programme with project number 15586, which
is financed by NWO, Elekta, and Xomnia. Further, this project is co-funded by the
public-private partnership allowance for top consortia for knowledge and innovation
(TKIs) from the Ministry of Economic Affairs.

References

1. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indica-
tor: Optimal µ-distributions and the choice of the reference point. In: Proceedings
of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms -
FOGA 2009, pp. 87–102. ACM Press, New York (2009)

2. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

3. Bosman, P.A.N., Thierens, D.: The balance between proximity and diversity in
multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 7(2), 174–188
(2003)

4. Bosman, P.A.N.: On gradients and hybrid evolutionary algorithms for real-valued
multiobjective optimization. IEEE Trans. Evol. Comput. 16(1), 51–69 (2011)

5. Deb, K.: Multi-Objective Optimization. Wiley, Chichester (2001)
6. Désidéri, J.A.: Multiple-gradient descent algorithm (MGDA) for multiobjective

optimization. C.R. Math. 350(5–6), 313–318 (2012)
7. Emmerich, M.T.M., Deutz, A.H.: A tutorial on multiobjective optimization: funda-

mentals and evolutionary methods. Nat. Comput. 17(3), 585–609 (2018). https://
doi.org/10.1007/s11047-018-9685-y

8. Emmerich, M., Deutz, A.: Time complexity and zeros of the hypervolume indicator
gradient field. In: Schuetze, O., et al. (eds.) EVOLVE-A Bridge between Proba-
bility, Set Oriented Numerics, and Evolutionary Computation III, pp. 169–193.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-01460-9 8

9. Fleischer, M.: The measure of pareto optima applications to multi-objective eta-
heuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.)
EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36970-8 37

https://doi.org/10.1007/s11047-018-9685-y
https://doi.org/10.1007/s11047-018-9685-y
https://doi.org/10.1007/978-3-319-01460-9_8
https://doi.org/10.1007/3-540-36970-8_37
https://doi.org/10.1007/3-540-36970-8_37

Multi-objective Optimization by Uncrowded Hypervolume Gradient Ascent 199

10. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization.
Math. Methods Oper. Res. 51(3), 479–494 (2000)

11. Fonseca, C.M., Paquete, L., López-Ibánez, M.: An improved dimension-sweep algo-
rithm for the hypervolume indicator. In: 2006 IEEE International Conference on
Evolutionary Computation, pp. 1157–1163. IEEE (2006)

12. Sosa Hernández, V.A., Schütze, O., Emmerich, M.: Hypervolume maximization via
set based Newton’s method. In: Tantar, A.A., et al. (eds.) EVOLVE - A Bridge
between Probability, Set Oriented Numerics, and Evolutionary Computation V.
AISC, vol. 288, pp. 15–28. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-07494-8 2

13. Huband, S., Barone, L., While, L., Hingston, P.: Walking fish group toolkit: C++
source code. http://www.wfg.csse.uwa.edu.au/toolkit/. Accessed 06 Apr 2020

14. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test
problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.)
EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31880-4 20

15. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5),
477–506 (2006)

16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

17. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of the 2nd
Berkeley Symposium on Mathematical and Statistical Probability, pp. 481–492.
University of California Press (1951)

18. Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation:
a survey. ACM Comput. Surv. (CSUR) 52(2), 1–38 (2019)

19. Maree, S.C., Alderliesten, T., Bosman, P.A.N.: Uncrowded hypervolume-based
multi-objective optimization with gene-pool optimal mixing. arXiv preprint
arXiv:2004.05068 (2020)

20. Peitz, S., Dellnitz, M.: Gradient-based multiobjective optimization with uncertain-
ties. arXiv preprint arXiv:1612.03815v2 (2017)

21. Schäffler, S., Schultz, R., Weinzierl, K.: Stochastic method for the solution of uncon-
strained vector optimization problems. J. Optim. Theory Appl. 114(1), 209–222
(2002)

22. Schütze, O., Hernández, V.A.S., Trautmann, H., Rudolph, G.: The hypervolume
based directed search method for multi-objective optimization problems. J. Heuris-
tics 22(3), 273–300 (2016). https://doi.org/10.1007/s10732-016-9310-0

23. Schütze, O., Mart́ın, A., Lara, A., Alvarado, S., Salinas, E., Coello, C.A.C.: The
directed search method for multi-objective memetic algorithms. Comput. Optim.
Appl. 63(2), 305–332 (2015). https://doi.org/10.1007/s10589-015-9774-0

24. Touré, C., Hansen, N., Auger, A., Brockhoff, D.: Uncrowded hypervolume improve-
ment: COMO-CMA-ES and the sofomore framework. In: Proceedings of the
Genetic and Evolutionary Computation Conference, New York, NY, USA, pp.
638–646 (2019)

25. Wang, H.: Hypervolume indicator gradient ascent multi-objective optimization.
https://github.com/wangronin/HIGA-MO. Accessed 11 April 2020

26. Wang, H., Deutz, A., Bäck, T., Emmerich, M.: Hypervolume indicator gradient
ascent multi-objective optimization. In: Trautmann, H., et al. (eds.) EMO 2017.
LNCS, vol. 10173, pp. 654–669. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-54157-0 44

https://doi.org/10.1007/978-3-319-07494-8_2
https://doi.org/10.1007/978-3-319-07494-8_2
http://www.wfg.csse.uwa.edu.au/toolkit/
https://doi.org/10.1007/978-3-540-31880-4_20
https://doi.org/10.1007/978-3-540-31880-4_20
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2004.05068
http://arxiv.org/abs/1612.03815v2
https://doi.org/10.1007/s10732-016-9310-0
https://doi.org/10.1007/s10589-015-9774-0
https://github.com/wangronin/HIGA-MO
https://doi.org/10.1007/978-3-319-54157-0_44
https://doi.org/10.1007/978-3-319-54157-0_44

200 T. M. Deist et al.

27. Wang, H., Ren, Y., Deutz, A., Emmerich, M.: On steering dominated points in
hypervolume indicator gradient ascent for bi-objective optimization. In: Schütze,
O., Trujillo, L., Legrand, P., Maldonado, Y. (eds.) NEO 2015. SCI, vol. 663, pp.
175–203. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44003-3 8

28. Wessing, S.: Optproblems: Infrastructure to define optimization problems and some
test problems for black-box optimization. Python package version 1.2 (2018)

29. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., Da Fonseca, V.: Performance
assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol.
Comput. 7(2), 117–132 (2003)

30. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms
— a case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.P. (eds.)
Parallel Problem Solving from Nature – PPSN V. PPSN 1998. Lecture Notes in
Computer Science, vol. 1498, pp. 292–301. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0056872

https://doi.org/10.1007/978-3-319-44003-3_8
https://doi.org/10.1007/BFb0056872
https://doi.org/10.1007/BFb0056872

An Ensemble Indicator-Based Density
Estimator for Evolutionary

Multi-objective Optimization

Jesús Guillermo Falcón-Cardona1(B), Arnaud Liefooghe2,
and Carlos A. Coello Coello1

1 Computer Science Department, CINVESTAV-IPN, 07300 Mexico City, Mexico
jfalcon@computacion.cs.cinvestav.mx, ccoello@cs.cinvestav.mx

2 JFLI – CNRS IRL 3527, University of Tokyo, Tokyo 113-0033, Japan
arnaud.liefooghe@univ-lille.fr

Abstract. Ensemble learning is one of the most employed methods in
machine learning. Its main ground is the construction of stronger mech-
anisms based on the combination of elementary ones. In this paper,
we employ AdaBoost, which is one of the most well-known ensemble
methods, to generate an ensemble indicator-based density estimator for
multi-objective optimization. It combines the search properties of five
density estimators, based on the hypervolume, R2, IGD+, ε+, and Δp

quality indicators. Through the multi-objective evolutionary search pro-
cess, the proposed ensemble mechanism adapts itself using a learning
process that takes the preferences of the underlying quality indicators
into account. The proposed method gives rise to the ensemble indicator-
based multi-objective evolutionary algorithm (EIB-MOEA) that shows
a robust performance on different multi-objective optimization problems
when compared with respect to several existing indicator-based multi-
objective evolutionary algorithms.

Keywords: Multi-objective optimization · Quality indicators ·
Ensemble learning · AdaBoost

1 Introduction

In many scientific and industrial fields arise the so-called multi-objective opti-
mization problems (MOPs), that involve the simultaneous optimization of two
or more conflicting objective functions. Mathematically, an MOP is defined as
follows:

min
x∈Ω

{F (x) = (f1(x), . . . , fm(x))} , (1)

The first author acknowledges support from CONACyT and CINVESTAV-IPN to pur-
sue graduate studies in Computer Science. The third author gratefully acknowledges
support from CONACyT grant no. 2016-01-1920 (Investigación en Fronteras de la
Ciencia 2016) and from a SEP-Cinvestav grant (application no. 4).

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 201–214, 2020.
https://doi.org/10.1007/978-3-030-58115-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_14&domain=pdf
http://orcid.org/0000-0002-8435-680X
https://doi.org/10.1007/978-3-030-58115-2_14

202 J. G. Falcón-Cardona et al.

where x is the vector of decision variables, Ω ⊆ R
n is the decision space and

F (x) is the vector of m ≥ 2 objective functions such that fi : R
n → R for

i ∈ {1, 2, . . . ,m}. Unlike single-objective optimization problems which have a
single global optimal solution, the solution of an MOP is a set of solutions
that represents the best possible trade-offs among the objective functions. Given
x,y ∈ Ω and F : Rn → R

m, we say that x dominates y, denoted as F (x) ≺
F (y), if and only if ∀i ∈ {1, . . . ,m}, fi(x) ≤ fi(y) and there exists at least an
index j ∈ {1, . . . , m} such that fj(x) < fj(y). The particular set that yields the
optimum values, according to the Pareto dominance relation, is the Pareto set;
its image is known as the Pareto front.

Multi-objective evolutionary algorithms (MOEAs) constitute a popular
choice to tackle complex MOPs [1]. MOEAs are stochastic black-box optimizers
based on the principles of Darwin’s natural selection. MOEAs are population-
based metaheuristics that can generate a Pareto front approximation (or approx-
imation set) in a single execution. Ideally, an MOEA should produce solutions
as close as possible to the Pareto front, covering it all and with good diversity.
There exist four main design methodologies for MOEAs [1]: (1) MOEAs using
the Pareto dominance relation or any of its relaxed forms, (2) decomposition-
based MOEAs, (3) reference set-based MOEAs, and (4) indicator-based MOEAs
(IB-MOEAs). In the last fifteen years, IB-MOEAs have attracted considerable
attention due to their ability to solve MOPs having more than three objec-
tive functions (i.e., the so-called many-objective optimization problems) [2]. The
underlying idea of IB-MOEAs is the use of a quality indicator (QI) [3], which
is a set function that evaluates the quality of an approximation set based on
specific preferences, in order to guide the evolutionary search process by focus-
ing on the selection mechanisms. Currently, there exist several QIs, such as the
hypervolume indicator (HV) [4], R2 [5], the inverted generational distance plus
(IGD+) [6], the additive epsilon indicator (ε+) [7], and the averaged Hausdorff
distance (Δp) [8], being these ones the most popular within the currently avail-
able IB-MOEAs [2].

An IB-MOEA produces a Pareto front approximation exhibiting the prefer-
ences of its underlying QI [9]. As such, different IB-MOEAs yield different results
in terms of the distribution of solutions in the approximation set, due to the
underlying properties of the QI they employ. Moreover, there are MOPs where a
specific IB-MOEA performs well, but there are others on which it does not. As a
consequence, it is not clear which QI to consider beforehand, and an open ques-
tion is whether a set of existing indicator-based selection mechanisms can create
a single operator that reaches a consensus that outperforms the existing ones. In
2011, Phan and Suzuki were the first to investigate this question by boosting a set
of indicator-based mating selection operators [10]. The boosted indicator-based
mating selection operator uses 15 quality indicators from which it ensembles
the best suited ones using the AdaBoost algorithm [11] with an offline training.
The proposed mechanism was embedded into the non-dominated sorting genetic
algorithm II (NSGA-II) [12], giving rise to the boosted indicator-based evolu-
tionary algorithm (BIBEA). According to the reported results, BIBEA was able

An Ensemble Indicator-Based Density Estimator for EMO 203

to outperform NSGA-II, exhibiting robustness in MOPs with different charac-
teristics. Later on, Phan et al. [13] proposed BIBEA-P which allows BIBEA to
use an additional ensemble indicator-based mechanism for environmental selec-
tion. Moreover, BIBEA-P uses Pdi-Boosting instead of AdaBoost. Similarly to
BIBEA, the ensemble operators of BIBEA-P needs to be trained using a given
MOP in an offline fashion. The experimental results showed that BIBEA-P is
better than BIBEA, NSGA-II, and SMS-EMOA (which is a HV-based MOEA)
[14] when using MOPs with different Pareto front shapes.

In this paper, we propose an ensemble indicator-based density estimator using
the HV, R2, IGD+, ε+, and Δp indicators. Unlike BIBEA and BIBEA-P, our
mechanism adapts the combination of the indicator-based density estimators
(IB-DEs) in an online fashion. The underlying reason to use an online ensemble
mechanism is to allow our approach to produce high-quality results for problems
with different characteristics, and to reach a robust performance with respect
to the multiple indicators being considered. This approach allows our proposed
ensemble indicator-based MOEA (EIB-MOEA) to tackle problems with differ-
ent Pareto front geometries from the test suites DTLZ, DTLZ−1, WFG, and
WFG−1. Furthermore, the proposed approach consistently obtains competitive
results with respect to other IB-MOEAs.

The remainder of this paper is organized as follows. Section 2 provides the
mathematical definitions of the QIs that we consider in our analysis. Section 3
describes the algorithmic design of EIB-MOEA. Section 4 shows our experimen-
tal results and Sect. 5 provides our final conclusions and some possible paths for
future work.

2 Background

In this section, we describe a selection of five QIs, corresponding to those which
are most frequently used in the specialized literature. They will be considered
as constituent QIs in our proposed ensemble indicator-based density estimator.
In the following, A denotes an approximation set.

Definition 1 (Hypervolume indicator [4]). Given an anti-optimal reference
point r ∈ R

m, the hypervolume is defined as follows:

HV (A, r) = L
(⋃

a∈A
{b | a ≺ b ≺ r}

)
, (2)

where L(·) denotes the Lebesgue measure in R
m.

Definition 2 (Unary R2 indicator [5]). The unary R2 indicator is defined as
follows:

R2(A,W) = − 1
|W |

∑
w∈W

max
a∈A

{uw (a)}, (3)

where W is a set of weight vectors and uw : Rm → R is a scalarizing function
defined by w ∈ W that assigns a real value to each m-dimensional vector.

204 J. G. Falcón-Cardona et al.

Definition 3 (IGD+ indicator [6]). The IGD+, for minimization, is defined
as follows:

IGD+(A, Z) =
1

|Z|
∑
z∈Z

min
a∈A

d+(a,z), (4)

where d+(a,z) =
√∑m

k=1 (max{ak − zk, 0})2.

Definition 4 (Unary ε+ indicator [7]). The unary ε+-indicator gives the min-
imum distance by which a Pareto front approximation needs to or can be trans-
lated in each dimension in the objective space such that a reference set is weakly
dominated. Mathematically, it is defined as follows:

ε+(A,Z) = max
z∈Z

min
a∈A

max
1≤i≤m

{ai − zi}. (5)

Definition 5 (Δp indicator [8]). For a given p > 0, the Δp is defined as
follows:

Δp(A, Z) = max {GDp(A, Z), IGDp(A, Z)}. (6)

Δp is defined on the basis of two indicators: GDp and IGDp which are slight
modifications of the indicators Generational Distance (GD) and Inverted Gen-
erational Distance (IGD) [3], respectively. These are defined in the following.

Definition 6 (GDp indicator [8])

GDp(A,Z) =

(
1

|A|
∑
a∈A

d(a,Z)p

)1/p

, (7)

where d(a,Z) = minz∈Z
√∑m

i=1(ai − zi)2.

Definition 7 (IGDp indicator [8]). It is defined as follows: IGDp(A,Z) =
GDp(Z,A).

Definition 8 (Indicator contribution). Let I be any indicator in the set
{HV,R2, IGD+, ε+,Δp}. The individual contribution C of a solution a ∈ A to
the indicator value is given as follows:

CI(a,A) = |I(A) − I(A \ {a})|. (8)

Interestingly, the QIs presented above have different properties, and express
different preferences in terms of set approximation quality [7]. Moreover, they
do not always agree with each other [15], so that good-quality approximation
sets for a given QI typically contain different solutions than for other QIs. This
motivates the ensemble indicator-based approach introduced below.

3 The Proposed EIB-MOEA Approach

In this section, we first give the general description of EIB-MOEA, then we detail
the learning model and the adaptive strategy considered to update the relative
importance given to each QI at different iterations.

An Ensemble Indicator-Based Density Estimator for EMO 205

Algorithm 1. EIB-MOEA’s general framework
Require: Set of indicators {I1, . . . , Ik}; time window size Tw

Ensure: Pareto front approximation
1: Randomly initialize population A
2: wi = 1/k, i ∈ {1, . . . , k}
3: Initialize performance matrix P ∈ R

k×Tw

4: Initialize learning matrix Ψ ∈ {0, 1}k×Tw

5: g = 0
6: while stopping criterion is not fulfilled do
7: Create an offspring solution q based on A
8: Q = A ∪ {q}
9: {R1, . . . , R�} = NondominatedSorting(Q)
10: if |R�| > 1 then

11: zmin
i = mina ∈A fi(a), i ∈ {1, . . . , m}

12: zmax
i = maxa ∈A fi(a), i ∈ {1, . . . , m}

13: Normalize {R1, . . . , R�} using z min and z max

14: for j = 1 to k do
15: CIj

(r , R�) = |Ij(R�) − Ij(R� \ {F (r)})|, ∀r ∈ R�

16: Sort CIj
in ascending order

17: ∀z ∈ R�, compute rankIj
(F (r)), using the sorted CIj

18: end for

19: aworst = arg minr ∈R�

{
H (z = F (r)) =

∑k
j=1 wjrankIj

(z)
}

20: Learning(Q, R�, {I1, . . . , Ik}, g, aworst, P, Ψ)
21: g = g + 1
22: else
23: Let aworst be the sole solution in R�

24: end if
25: A = Q \ {aworst}
26: if g = Tw then
27: UpdateWeights(w , P, Ψ, Tw, k)
28: g = 0
29: end if
30: end while
31: return A

3.1 General Description

The proposed EIB-MOEA is a steady-state MOEA based on SMS-EMOA [14].
Its general framework is outlined in Algorithm 1. EIB-MOEA requires a set of
k indicators {I1, . . . Ik} and a time window frame Tw as input parameters. In
Line 2, all the components of the weight vector w are set to 1/k. This weight
vector is employed in the ensemble indicator-based density estimator (EIB-DE),
and contains the relative importance given to each indicator at the current iter-
ation. Lines 6 to 30 describe the main loop of EIB-MOEA. At each iteration,
a single offspring solution q is created using variation operators. This newly
created solution is added to the population A to create the temporary popula-
tion Q. The non-dominated sorting algorithm [12] processes Q to create a set
of layers {R1, . . . , R�}. If R� contains more than one solution, EIB-DE is exe-
cuted. First, the population is normalized in Line 13. Then, for each indicator
Ij , j ∈ {1, . . . , k}, the individual indicator contributions of all solutions in R�

are computed and stored in the vector CIj
. By sorting this vector in ascending

order, for each r ∈ R� we obtain rankIj
(F (r)) ∈ {1, 2, . . . , |Rl|} that returns

the ranking of the solution in the sorted CIj
, where rank 1 corresponds to the

worst-contributing solution to Ij . In Line 19, the worst-contributing solution,

206 J. G. Falcón-Cardona et al.

Algorithm 2. Learning
Require: Population A; worst set R; set of indicators {I1, . . . , Ik}; index t; selected solution aworst;

performance matrix P ; learning matrix Ψ
Ensure: Updated Ψ
1: for j = 1 to k do

2: aj
worst = arg minr ∈R |Ij(R) − Ij(R \ {F (r)})|

3: Aj = A \ {aj
worst}

4: Pjt = Ij(Aj)

5: if Pjt > Pj,t−1 mod Tw ∧ aj
worst = aworst then

6: Ψjt = 0
7: else
8: Ψjt = 1
9: end if
10: end for
11: return Ψ

using EIB-DE, is obtained. The learning process (see Algorithm 2), which is a
fundamental part to update the weight vector w, is performed in Line 20, and
then, the counter g is incremented by one. In Line 25, aworst is eliminated from
Q to shape the population for the next generation. In case g is equal to Tw, w
is updated following Algorithm3 and g is set to zero. Finally, once the stopping
condition is satisfied, A is returned as the Pareto front approximation.

3.2 Learning Process

The learning process, described in Algorithm 2, is based on analyzing the behav-
ior of the population using all indicators. For each indicator Ij , j ∈ {1, . . . , k},
we obtain its worst-contributing solution aj

worst, where R represents the last
layer of solutions with respect to non-dominated sorting. In Line 3, we simulate
the elimination of aj

worst from the population A to generate the set Aj that is
assessed by Ij . This indicator value is stored in the performance matrix at posi-
tion (j, t), i.e., Pjt = Ij(Aj). It is worth noting that each row of P , represented
as Pj , works as a circular array of size Tw. If Pjt is greater than the previous
sample in Pj (which implies an increase in quality) and aj

worst is the same as
the worst-contributing solution to EIB-DE, the selection is marked as successful
and a zero value is stored in the learning matrix Ψ in the same position (j, t).
Otherwise, we set Ψjt = 1.

3.3 Updating the Relative Importance of QIs

After executing EIB-DE and the learning algorithm a total of Tw times, the
weight vector has to be updated. Algorithm3 sketches the update process which
is based on the AdaBoost algorithm [11], whose aim is to minimize the exponen-
tial loss. For each indicator Ij , j ∈ {1, . . . , k}, the selection error ej is calculated
using the jth row of the learning matrix Ψ , taking into account that ej should
be in the open interval (0, 1) to avoid numerical problems in the calculation of
the factor αj . Using the indicator values in Pj , a linear model is constructed
to obtain its angle θ. In Line 7, we set the weight wj = wj e−αj if θ is strictly

An Ensemble Indicator-Based Density Estimator for EMO 207

Algorithm 3. UpdateWeights
Require: Weight vector w ; performance matrix P ; learning matrix Ψ ; time window size Tw; number

of indicators k
Ensure: Updated w
1: for j = 1 to k do

2: ej =
wj
Tw

∑Tw
i=1 Ψji

3: Validate that ej ∈ (0, 1)

4: αj = 1
2 ln

(1−ej
ej

)

5: Build linear performance model based on Pj

6: Get the angle θj of the linear model

7: wj =

{
wje−αj , θ > 0

wjeαj , otherwise

8: Validate that wj > 0
9: end for
10: wj =

wj∑k
i=1 wi

, j ∈ {1, . . . , k}
11: return w

positive, which implies an increasing quality of the population due to the use
of the density estimator based on Ij . Otherwise, we set wj = wj eαj . To avoid
having EIB-DE composed of a single indicator, we do not allow the existence
of zero weights. At last, all weights are normalized in Line 10 and the updated
weight vector is returned.

4 Experimental Analysis

In this section, we analyze the performance of the proposed approach1. First,
we compare EIB-MOEA with its average ranking version, i.e, an EIB-MOEA
where the weights for the ensemble are the same for all indicators (denoted as
avgEIB-MOEA) to show that the adaptive mechanism produces better quality
results. Then, we perform an exhaustive analysis where we compare EIB-MOEA
with SMS-EMOA, R2-EMOA, IGD+-MaOEA, ε+-MaOEA, and Δp-MaOEA,
which are all steady-state MOEAs using density estimators based on the HV,
R2, IGD+, ε+, and Δp indicators, respectively. In all test instances, each MOEA
is independently executed 30 times.

4.1 Parameters Settings

We employ the benchmark functions DTLZ1, DTLZ2, DTLZ5, DTLZ7, WFG1,
WFG2, WFG3, and WFG4, together with their corresponding minus versions
proposed in [16] for two and three objective functions. We adopted these prob-
lems because they all have different search difficulties and Pareto front shapes.
The number n of decision variables was set as follows. For DTLZ instances and
their minus versions, n = m + K − 1, where m is the number of objective func-
tions and K = 5 for DTLZ1, K = 10 for both DTLZ2 and DTLZ5, and K = 20

1 The source code of EIB-MOEA is available at http://computacion.cs.cinvestav.mx/
∼jfalcon/Ensemble/EIB-MOEA.html.

http://computacion.cs.cinvestav.mx/~jfalcon/Ensemble/EIB-MOEA.html
http://computacion.cs.cinvestav.mx/~jfalcon/Ensemble/EIB-MOEA.html

208 J. G. Falcón-Cardona et al.

for DTLZ7. Regarding the WFG and WFG−1 test problems, n was set to 24
and 26, for two- and three-objective instances and in both cases the number of
position-related parameters was set to 2. For a fair comparison, all the MOEAs
employ the same population size μ = 120, and the same variation operators:
simulated binary crossover (SBX) and polynomial-based mutation (PBM) [12]
for all test instances. The crossover probability is set to 0.9, the mutation proba-
bility is 1/n (where n is the number of decision variables), and both the crossover
and mutation distribution indexes are set to 20. We considered 50,000 function
evaluations as the stopping criterion for all MOPs. We employ the achievement
scalarizing function for the R2-based density estimator. In every generation, we
employ the currently population’s non-dominated solutions as the reference set
required by IGD+, ε+, and Δp. Regarding EIB-MOEA and avgEIB-MOEA, we
set Tw = μ.

4.2 Experimental Results

For the performance assessment of EIB-MOEA, avgEIB-MOEA and the other
IB-MOEAs, we used eight quality indicators: HV, HV relative deviation
(HVRD), R2, IGD+, ε+, Δp, and, for diversity, we employed Riesz s-energy
[17] and the Solow-Polasky Diversity indicator [18]. The indicator values for
two- and three-objective instances of the DTLZ and DTLZ−1 test problems are
shown with boxplots in Figs. 1 and 2, respectively. The boxplots for the WFG
and WFG−1 instances with two and three objective functions correspond to
Figs. 3 and 4, respectively. Figure 5 shows the statistical ranks obtained by each
algorithm over all benchmark functions with respect to each considered indi-
cator. For a given benchmark function, the rank corresponds to the number of
algorithms that significantly outperform the algorithm under consideration with
respect to a Mann-Whitney non-parametric statistical test with a p-value of 0.05
and a Bonferroni correction (a lower value is better). The complete numerical
results related to Fig. 5 are available at http://computacion.cs.cinvestav.mx/
∼jfalcon/Ensemble/EIB-MOEA.html due to space limitations.

Regarding the comparison of EIB-MOEA with avgEIB-MOEA, Fig. 5 shows
that the former gets better statistical ranks for all the considered indicators
except for Δp. From these QIs, the increase in quality is more evident for the
hypervolume indicator. This means that the online ensemble allows EIB-MOEA
to produce approximation sets closer to the Pareto front. This is supported by
the other convergence indicators. However, producing better convergent approx-
imation sets is not strictly related to producing higher diversity, as shown by
the Riesz s-energy and SPD values, where EIB-MOEA is hardly better than
avgEIB-MOEA. Overall, these results support that EIB-MOEA performs bet-
ter than avgEIB-MOEA. On the other hand, for the comparison of EIB-MOEA

http://computacion.cs.cinvestav.mx/~jfalcon/Ensemble/EIB-MOEA.html
http://computacion.cs.cinvestav.mx/~jfalcon/Ensemble/EIB-MOEA.html

An Ensemble Indicator-Based Density Estimator for EMO 209

Fig. 1. Indicator values for two-objective DTLZ benchmark functions.

against the steady-state IB-MOEAs, Fig. 5 shows that our proposed approach
maintains a robust performance over all the considered QIs. Figures 1, 2, 3 and
4 illustrate that EIB-MOEA and SMS-EMOA obtained the best HV values.
Overall, SMS-EMOA performs better on the original benchmark problems, but
the quality of its approximate Pareto fronts is just slightly better than those
produced by EIB-MOEA. In contrast, for the DTLZ−1 and WFG−1 test suites,
EIB-MOEA significantly outperforms SMS-EMOA. This is because EIB-MOEA
is able to produce Pareto front approximations with better distribution and cov-
erage, due to the influence of all the indicators, for these modified problems,
which increases the HV value. Moreover, for the original problems, EIB-MOEA
still produces good approximations but with other type of distribution that does

210 J. G. Falcón-Cardona et al.

Fig. 2. Indicator values for three-objective DTLZ benchmark functions.

not maximize the hypervolume value as SMS-EMOA does. In consequence, EIB-
EMOA performs more robustly than SMS-EMOA. Additionally, for IGD+ and
ε+ which are QIs whose preferences are highly correlated to those of HV, Fig. 5
shows a similar behavior as in the case of HV. This is also supported by the
detailed boxplots reported for the different test problems. Regarding the R2
indicator, R2-EMOA presents the best results for MOPs whose Pareto front
maps to the simplex shape; e.g., DTLZ1, DTLZ2, and WFG4. This behavior
is expected since R2-EMOA uses a set of convex weight vectors [16]. However,
for the DTLZ−1 and WFG−1 test suites, R2-EMOA does not perform well and
EIB-MOEA presents the best overall results. This indicates that the ensemble
mechanism of EIB-MOEA allows to circumvent the weaknesses of the individual
indicator-based density estimators, in this case the one based on R2. Finally,

An Ensemble Indicator-Based Density Estimator for EMO 211

Fig. 3. Indicator values for two-objective WFG benchmark functions.

in terms of diversity, Figs. 1, 2, 3 and 4 show that EIB-MOEA generates well-
diversified approximation sets when dealing with MOPs whose Pareto front is
irregular; i.e., different from the simplex shape. This is the case, for example, of
WFG1, WFG1−1, DTLZ1−1, and DTLZ−1. Nevertheless, EIB-MOEA is able to
produce competitive results with respect to Riesz s-energy and SPD, while SMS-
EMOA is the best-ranked algorithm for the former indicator and Δp-MaOEA
is the best for the latter. As such, although EIB-MOEA is able to obtain very
good HV values, there is still room for improvement in terms of diversity, e.g. by
adding diversity-related indicators into the ensemble controlled by EIB-MOEA.

212 J. G. Falcón-Cardona et al.

Fig. 4. Indicator values for three-objective WFG benchmark functions.

Fig. 5. Statistical ranks obtained by each algorithm over all benchmark functions with
respect to each considered indicator.

An Ensemble Indicator-Based Density Estimator for EMO 213

5 Conclusions and Future Work

In this paper, we explored the effectiveness of an ensemble indicator-based den-
sity estimator, using the AdaBoost algorithm. The proposed mechanism adapts
the ensemble in an online fashion depending on the performance of the under-
lying density estimators based on the indicators HV, R2, IGD+, ε+, and Δp.
The adaptive ensemble mechanism was embedded into a steady-state MOEA,
giving rise to the EIB-MOEA. First, we showed that EIB-MOEA outperforms
an average ranking EIB-MOEA that sets all the weights to the same value for
the ensemble. Then, we compared EIB-MOEA with respect to SMS-EMOA, R2-
EMOA, IGD+-MaOEA, ε+-MaOEA, and Δp-MaOEA. The experimental results
showed that EIB-MOEA is able to maintain a robust performance with respect
to multiple quality indicators. As part of our future work, we aim at studying
the performance of a generational EIB-MOEA and at improving the learning
mechanism for the ensemble. We would also like to assess the performance of
our proposed EIB-MOEA in many-objective optimization problems.

References

1. Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey.
ACM Comput. Surv. 48(1), 1–35 (2015)

2. Falcón-Cardona, J.G., Coello, C.A.C.: Indicator-based multi-objective evolution-
ary algorithms: a comprehensive survey. ACM Comput. Surv. 53(2), 1–35 (2020)

3. Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation:
a survey. ACM Comput. Surv. 52(2), 26:1–26:38 (2019)

4. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—
a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-
P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0056872

5. Brockhoff, D., Wagner, T., Trautmann, H.: On the properties of the R2 indica-
tor. In: 2012 Genetic and Evolutionary Computation Conference (GECCO 2012),
Philadelphia, USA, July 2012, pp. 465–472. ACM Press (2012). (ISBN 978-1-4503-
1177-9)

6. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation
in generational distance and inverted generational distance. In: Gaspar-Cunha,
A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp.
110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1 8

7. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003)

8. Schütze, O., Esquivel, X., Lara, A., Coello, C.A.C.: Using the averaged Hausdorff
distance as a performance measure in evolutionary multiobjective optimization.
IEEE Trans. Evol. Comput. 16(4), 504–522 (2012)

9. Falcón-Cardona, J.G., Coello, C.A.C.: Convergence and diversity analysis of
indicator-based multi-objective evolutionary algorithms. In: 2019 Genetic and Evo-
lutionary Computation Conference (GECCO 2019), Prague, Czech Republic, pp.
524–531. ACM Press (2019)

https://doi.org/10.1007/BFb0056872
https://doi.org/10.1007/978-3-319-15892-1_8

214 J. G. Falcón-Cardona et al.

10. Phan, D.H., Suzuki, J.: Boosting indicator-based selection operators for evolu-
tionary multiobjective optimization algorithms. In: 2011 IEEE 23rd International
Conference on Tools with Artificial Intelligence, pp. 276–281. IEEE Press (2011)

11. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

13. Phan, D.H., Suzuki, J., Hayashi, I.: Leveraging indicator-based ensemble selection
in evolutionary multiobjective optimization algorithms. In: 2012 Genetic and Evo-
lutionary Computation Conference (GECCO 2012), Philadelphia, USA, July 2012,
pp. 497–504. ACM Press (2012). (ISBN 978-1-4503-1177-9)

14. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

15. Liefooghe, A., Derbel, B.: A correlation analysis of set quality indicator values
in multiobjective optimization. In: 2016 Genetic and Evolutionary Computation
Conference (GECCO 2016), Denver, Colorado, USA, 20–24 July 2016, pp. 581–588.
ACM Press (2016). (ISBN 978-1-4503-4206-3)

16. Ishibuchi, H., Setoguchi, Y., Masuda, H., Nojima, Y.: Performance of
decomposition-based many-objective algorithms strongly depends on Pareto front
shapes. IEEE Trans. Evol. Comput. 21(2), 169–190 (2017)

17. Hardin, D.P., Saff, E.B.: Discretizing manifolds via minimum energy points. Not.
AMS 51(10), 1186–1194 (2004)

18. Emmerich, M.T.M., Deutz, A.H., Kruisselbrink, J.W.: On quality indicators for
black-box level set approximation. In: Tantar, E., et al. (eds.) EVOLVE - A Bridge
Between Probability, Set Oriented Numerics and Evolutionary Computation. SCI,
vol. 447, pp. 157–185. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-32726-1 4. (978-3-642-32725-4, Chapter 4)

https://doi.org/10.1007/978-3-642-32726-1_4
https://doi.org/10.1007/978-3-642-32726-1_4

Ensuring Smoothly Navigable
Approximation Sets by Bézier Curve
Parameterizations in Evolutionary

Bi-objective Optimization

Stefanus C. Maree1(B), Tanja Alderliesten2, and Peter A. N. Bosman1

1 Life Sciences and Health Research Group, Centrum Wiskunde and Informatica,
Amsterdam, The Netherlands

{maree,peter.bosman}@cwi.nl
2 Department of Radiation Oncology, Leiden University Medical Center,

Leiden, The Netherlands
t.alderliesten@lumc.nl

Abstract. The aim of bi-objective optimization is to obtain an approx-
imation set of (near) Pareto optimal solutions. A decision maker then
navigates this set to select a final desired solution, often using a visu-
alization of the approximation front. The front provides a navigational
ordering of solutions to traverse, but this ordering does not necessar-
ily map to a smooth trajectory through decision space. This forces the
decision maker to inspect the decision variables of each solution indi-
vidually, potentially making navigation of the approximation set unin-
tuitive. In this work, we aim to improve approximation set navigabil-
ity by enforcing a form of smoothness or continuity between solutions
in terms of their decision variables. Imposing smoothness as a restric-
tion upon common domination-based multi-objective evolutionary algo-
rithms is not straightforward. Therefore, we use the recently introduced
uncrowded hypervolume (UHV) to reformulate the multi-objective opti-
mization problem as a single-objective problem in which parameterized
approximation sets are directly optimized. We study here the case of
parameterizing approximation sets as smooth Bézier curves in decision
space. We approach the resulting single-objective problem with the gene-
pool optimal mixing evolutionary algorithm (GOMEA), and we call the
resulting algorithm BezEA. We analyze the behavior of BezEA and
compare it to optimization of the UHV with GOMEA as well as the
domination-based multi-objective GOMEA. We show that high-quality
approximation sets can be obtained with BezEA, sometimes even outper-
forming the domination- and UHV-based algorithms, while smoothness
of the navigation trajectory through decision space is guaranteed.

Keywords: Evolutionary algorithm · Multi-objective optimization ·
Hypervolume · Bézier curve estimation · Approximation set navigation

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 215–228, 2020.
https://doi.org/10.1007/978-3-030-58115-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_15

216 S. C. Maree et al.

1 Introduction

The aim of multi-objective optimization is to obtain a set of solutions that is
as close as possible to the set of Pareto-optimal solutions, with different trade-
offs between the objective functions. A decision maker can then navigate the
obtained set, called the approximation set, to select a desired solution. The deci-
sion maker often incorporates external factors in the selection process that are
not taken into account in the optimization objectives. An inspection of the deci-
sion variables of individual solutions is therefore required to determine their
desirability. To guide the selection in bi-objective optimization, a visualization
of the approximation front (i.e., the approximation set mapped to objective
space) or trade-off curve can be used. The approximation front then intuitively
implies a navigational order of solutions by traversing the front from one end to
the other. However, solutions with similar objective values could still have com-
pletely different decision values. The decision values of all solutions then need to
be inspected individually and carefully because they may not change predictably
when the approximation front is traversed. This could make navigation of the
approximation set unintuitive and uninsightful.

Population-based multi-objective evolutionary algorithms (MOEAs) have
successfully been applied to real-world black-box optimization problems, for
which the internal structure is unknown, or too complex to exploit efficiently by
direct problem-specific design [6,8,22]. However, imposing a form of smoothness
or continuity in terms of decision variables between solutions in the approxi-
mation set as a restriction upon the population of MOEAs is not straightfor-
ward. An underlying requirement to do so is that control over approximation
sets as a whole is needed. However, typical dominance-based EAs use single-
solution-based mechanics. Alternatively, multi-objective optimization problems
can be formulated as a higher-dimensional single-objective optimization prob-
lem by using a quality indicator that assigns a fitness value to approximation
sets. An interesting quality indicator is the hypervolume measure [23], as it is
currently the only known Pareto-compliant indicator, meaning that an approx-
imation set of given size with optimal hypervolume is a subset of the Pareto set
[9,13,24]. However, the hypervolume measure has large drawbacks when used as
quality indicator in indicator-based optimization, as it does not take dominated
solutions into account. The uncrowded distance has been recently introduced to
overcome this [20], which then resulted in the uncrowded hypervolume (UHV)
measure [18]. The UHV can be used directly as a quality indicator for indicator-
based multi-objective optimization. To be able to optimize approximation sets in
this approach, fixed-size approximation sets are parameterized by concatenating
the decision variables of a fixed number of solutions [2,18,21]. A single-objective
optimizer can then be used to directly optimize approximation sets. The result-
ing single-objective optimization problem is however rather high-dimensional.
To efficiently solve it, the UHV gene-pool optimal mixing evolutionary algo-
rithm (UHV-GOMEA) [18], exploits grey-box properties of the UHV problem
by only updating a subset of the decision variables corresponding to one (or a
few) multi-objective solutions.

Smoothly Navigable Approximation Sets in Bi-objective Optimization 217

In this work, we go beyond an unrestricted concatenation of the decision
variables of solutions and we propose to model approximation sets as sets of
points that lie on a Bézier curve [10] in decision space. Optimizing only the con-
trol points of the Bézier curve, that define its curvature, enforces the decision
variables of solutions in the approximation set to vary in a smooth, continuous
fashion, thereby likely improving intuitive navigability of the approximation set.
Previous work on parameterizations of the approximation set has been applied
mainly in a post-processing step after optimization, or was performed in the
objective space [3,15,19], but this does not aid in the navigability of the approxi-
mation set in decision space. Moreover, fitting a smooth curve through an already
optimized set of solutions might result in a bad fit, resulting in a lower-quality
approximation set. Additionally, we will show that specifying solutions as points
on a Bézier curve directly enforces a form of diversity within the approximation
set, which can actually aid in the optimization process, and furthermore reduces
the problem dimensionality of the single-objective problem.

The remainder of this paper is organized as follows. In Sect. 2, we intro-
duce preliminaries on UHV-based multi-objective optimization. In Sect. 3, we
define a measure for navigational smoothness of approximation sets. In Sect. 4,
we introduce Bézier curves and the corresponding optimization problem formu-
lation. Empirical benchmarking on a set of benchmark problems is performed in
Sect. 5. Finally, we discuss the results and conclude in Sect. 6.

2 UHV-Based Multi-objective Optimization

Let f : X → R
m be a to-be-minimized m-dimensional vector function and X ⊆

R
n be the n-dimensional (box-constrained) decision space. When the objectives

in f are conflicting, no single optimal solution exists, but the optimum of f can
be defined in terms of Pareto optimality [14]. A solution x ∈ X is said to weakly
dominate another solution y ∈ X , written as x � y, if and only if fi(x) ≤ fi(y)
for all i. When the latter relation is furthermore strict (i.e., fi(x) < fi(y)) for
at least one i, we say that x dominates y, written as x ≺ y. A solution that is
not dominated by any other solution in X is called Pareto optimal. The Pareto
set A� is the set of all Pareto optimal solutions, i.e., A� = {x ∈ X : �y ∈
X : y ≺ x} ⊂ X . The image of the Pareto set under f is called the Pareto

Fig. 1. Illustration of the uncrowded hypervolume (UHV) [18] (left) for a bi-objective
minimization problem, and the Bézier parameterization (right).

218 S. C. Maree et al.

front, i.e., {f(x) : x ∈ A�} ⊂ R
m. The aim of multi-objective optimization is

to approximate the Pareto set with a set of non-dominated solutions called an
approximation set A. Let S ⊆ X be a solution set, that can contain dominated
solutions and let A : ℘(X) → ℘(X) be the approximation set given by S, i.e.,
A(S) = {x ∈ S : �y ∈ S : y ≺ x}, where ℘(X) is the powerset of X .

The hypervolume measure HV : ℘(X) → R [1,24] measures the area or
volume dominated by all solutions in the approximation set, bounded by a user-
defined reference point r ∈ R

m, as shown in Fig. 1. As the hypervolume ignores
dominated solutions, we use the uncrowded distance to assign a quality value
to dominated solutions [20]. The uncrowded distance udf (x,A) measures the
shortest Euclidean distance between x and the approximation boundary ∂f(A),
when x is dominated by any solution in A or outside the region defined by r, and
is defined udf (x,A) = 0 else (Fig. 1). It is called the uncrowded distance as the
shortest distance to ∂f(A) is obtained for a point on the boundary that is not
in A itself. Combining the uncrowded distance with the hypervolume measure
results in the uncrowded hypervolume (UHV) [18],

UHVf (S) = HVf (S) − 1
|S|

∑

x∈S
udf (x, A(S))m. (1)

We use the subscript f to denote that its value is computed with respect to the
multi-objective problem f . To be able to optimize the UHV of a solution set, a
parameterization of solution sets is required. Let φ ∈ R

l be such a parameteriza-
tion consisting of l decision variables, and let S(φ) = {x1,x2, . . .} be an operator
that transforms φ into its corresponding solution set. The resulting UHV-based
optimization problem is then given by,

maximize UHVf ,S(φ) = HVf (S(φ)) − 1
|S(φ)|

∑

x∈S(φ)

udf (x, A(S(φ)))m,

with f : X ⊆ R
n → R

m, S : R
l → ℘(X), φ ∈ R

l.

(2)

In a parameterization that is commonly used, solution sets Sp of fixed size p
are considered, and the decision variables of the solutions in Sp are simply con-
catenated, i.e., φ = [x1 · · ·xp] ∈ R

p·n [2,18,21]. Using this parameterization, the
resulting single-objective optimization problem is l = p · n dimensional. In [18],
GOMEA [5] was used to efficiently solve this problem by exploiting the grey-
box (gb) property that not all solutions xi have to be recomputed when only
some decision variables change. The resulting algorithm, which we call UHVEA-
gb here (and was called UHV-GOMEA-Lm in [18]), greatly outperformed the
mostly similar algorithm UHVEA-bb (called UHV-GOMEA-Lf in [18]) but in
which the UHV was considered to be a black box (bb). This problem parame-
terization however does not guarantee any degree of navigational smoothness of
the approximation set, which is the key goal in this paper.

Smoothly Navigable Approximation Sets in Bi-objective Optimization 219

Fig. 2. Illustration of Bézier curves (red) in decision space with different control points
(black). Blue points correspond to p = 10 evenly spread values of t, and the smoothness
(Sm) of these p points is given, computed based on obez. (Color figure online)

3 A Measure for Navigational Smoothness

We introduce a measure for the navigational smoothness of an approximation
set. Let Sp = {x1,x2, . . . ,xp} be an approximation set of size p. Furthermore,
let the navigation order o be a permutation of (a subset of) I = {1, 2, . . . , p},
representing the indices of the solutions in Sp that the decision maker assesses in
the order the solutions are inspected. The (navigational) smoothness Sm(Sp,o)
is then defined as,

Sm(Sp,o) =
1

p − 2

p−1∑

i=2

‖xoi−1 − xoi+1‖
‖xoi−1 − xoi

‖ + ‖xoi
− xoi+1‖

. (3)

This smoothness measure measures the detour length, i.e., the extra distance
traveled (in decision space) when going to another solution via an intermediate
solution, compared to directly going there.

Throughout this work, we will consider a navigational order o for approx-
imation sets A such that f1(xoi

) < f1(xoj
) holds whenever i < j holds, i.e.,

from left to right in the objective space plot Fig. 1. We therefore simply write
Sm(A,o) = Sm(A) from now on. Note that Sm(A) ∈ [0, 1], and only if all solu-
tions are colinear in decision space, Sm(A) = 1 holds. This we consider the
ideal scenario, where the decision variables of solutions change perfectly pre-
dictably. This also implies that any other (continuous) non-linear curve is not
considered to be perfectly smooth. Although one could argue for different defi-
nitions of smoothness, we will see later that this measure serves our purpose for
distinguishing smoothly from non-smoothly navigable approximation sets.

4 Bézier Curve Parameterizations of Approximation Sets

A Bézier curve B(t; Cq) is a parametric curve that is commonly used in computer
graphics and animations to model smooth curves and trajectories [10]. An n-
dimensional Bézier curve is fully specified by an ordered set of q ≥ 2 control
points Cq = {c1, . . . , cq} with cj ∈ R

n, and given by,

B(t; Cq) =
q∑

j=1

bj−1,q−1(t)cj , with bj,q(t) :=
(

q

j

)
(1 − t)q−jtj , (4)

220 S. C. Maree et al.

for 0 ≤ t ≤ 1, where
(
q
j

)
are the binomial coefficients. Examples of Bézier curves

are shown in Fig. 2. The first and last control points are always the end points
of the Bézier curve, while intermediate control points do not generally lie on the
curve. We parameterize a solution set Sp = {x1, . . . ,xp} of fixed size p using
an n-dimensional Bézier curve B(t; Cq) with q control points. On this curve, p
points xi = B ((i − 1)/(p − 1); Cq) are selected, evenly spread in the domain of
t. The resulting solution set Sp,q(φ) = {x1,x2, . . . ,xp} is then given by,

Sp,q(φ) =
{
B

(
0

p − 1
; Cq

)
,B

(
1

p − 1
; Cq

)
, . . . ,B

(
p − 1
p − 1

; Cq

)}
,

with φ = [c1 · · · cq] ∈ R
q·n. Note that inverting the order of control points does

not affect the Bézier curve. To avoid this symmetry in the parameterization, we
standardize the curve direction throughout optimization. After a change of the
curve, we check if f1(c1) < f1(cq) holds. If not, the order of the control points
is simply inverted.

Algorithm 1: Navigational order for Bézier parameterizations
function: [Ap,q,onb , (onb)] = Anb(Sp,q,o

bez)

input : Bézier solution set Sp,q = {x1, . . . ,xp} with intrinsic ordering obez

output : Approximation (sub)set Ap,q,onb , (navigational order onb),

η = arg mini∈{1,...,p} f1(xobez
i

);

onb = [obez
η] and Ap,q,onb = {xobez

η
};

for j = η, . . . , p do
if xobez

j
∈ A(Sp,q) and f2(xobez

j
) < f2(xonb

end
) then

onb = [onb ; obez
j] and Ap,q,onb = Ap,q,onb ∪ {xobez

j
}; // here

onb
end = obez

j

4.1 A Navigational Order for Bézier Parameterizations

Solution sets Sp,q = Sp,q(φ) parameterized by a Bézier curve introduce an intrin-
sic order obez of solutions by following the curve from t = 0 to t = 1. Even
though the solutions in Sp,q now lie on a smooth curve in decision space, it
might very well be that some of these solutions dominate others. We define a
navigational-Bézier (nb) order onb for a solution set Sp,q that follows the order
of solutions obez along the Bézier curve, but also aligns with the left-to-right
ordering described in Sect. 3. Pseudo code for onb is given in Algorithm 1, and
an example is given in Fig. 1. The navigational order onb starts from the solu-
tion with best f1-value and continues to follow the Bézier curve (i.e., in the order
obez) until the solution with best f2-value is reached, only improving in f2 (and
thereby worsening in f1) along the way, and skipping solutions that violate this

Smoothly Navigable Approximation Sets in Bi-objective Optimization 221

property. Let Ap,q,onb = Anb(Sp,q,obez) be the resulting subset of Sp,q pertain-
ing to exactly the solution indices as specified in onb, and note that this is an
approximation set.

4.2 Unfolding the Bézier Curve (in Objective Space)

Smoothly navigable approximation sets can now be obtained by maximizing
the hypervolume of Ap,q,onb . To maximize the number of navigable solutions
|Ap,q,onb | = |onb|, we need to unfold the Bézier curve in objective space. For
this, we introduce a constraint violation function C(Sp,q,onb) ≥ 0, as given in
Algorithm 2 and illustrated in Fig. 1. It is composed of two parts. The first part
is similar to the uncrowded distance term in Eq. (1), but the approximation
boundary is now given by Ap,q,onb . The second part aims to pull solutions that
are not in Sp,q,onb towards neighboring solutions on the Bézier curve.

Algorithm 2: Bézier constraint violation function
function: C(Sp,q,o

bez) ≥ 0
input : Bézier solution set Sp,q = {x1, . . . ,xp} with intrinsic ordering obez

output : Constraint value C ≥ 0

[A,onb] = Anb(Sp,q,o
bez); // See Algorithm 1

C = 1
|Sp,q|

∑
x∈Sp,q

udf (x, Am); // Uncrowded distance (ud), see (1)

for j = 1, . . . , |Sp,q| − 1 do

if obez
j /∈ onb or obez

j+1 /∈ onb then
C = C + ‖f(xobez

j
) − f(xobez

j+1
)‖; // Euclidean distance in R

m

4.3 Bézier Parameterization + GOMEA = BezEA

The resulting Bézier curve optimization problem is given by,

maximize HVf ,Sp,q
(φ) = HVf (Anb(Sp,q(φ))),

with C(Sp,q(φ),onb(φ)) = 0,

f : X ⊆ R
n → R

m, Sp,q : R
q·n → ℘(X), φ ∈ R

q·n.

(5)

We use constraint domination to handle constraint violations [7]. With constraint
domination, the fitness of a solution is computed regardless of its feasibility.
When comparing two solutions, if both are infeasible (i.e., C > 0), the solution
with the smallest amount of constraint violation is preferred. If only one solution
is infeasible, the solution that is feasible is preferred. Finally, if both solutions
are feasible (i.e., C = 0), the original ranking based on fitness is used.

Bézier curves have no local control property, meaning that a change of a
control point affects all solutions on the curve. Partial evaluations can therefore

222 S. C. Maree et al.

no longer be exploited with this parameterization, and we thus solve this problem
with the black-box version of GOMEA. Analogous to the UHV naming, we brand
the resulting algorithm Bézier-GOMEA-bb, which we abbreviate to BezEA. A
detailed description of GOMEA can be found in [5], and a description of UHV-
GOMEA in [18].

5 Numerical Experiments

We compare BezEA with UHVEA-gb and UHVEA-bb. These methods use a dif-
ferent hypervolume-based representation of the multi-objective problem, but use
very similar variation and selection mechanisms, making the comparison between
these methods most fair. We use the guideline setting for the population size N of
GOMEA with full linkage models in a black-box setting [4], which for separable
problems yields N = �10

√
l and for non-separable problems N = 17 + �3l1.5.

BezEA solves a single-objective problem of l = qn decision variables. UHVEA-bb
solves a single objective problem of l = pn decision variables. UHVEA-gb solves
the same problem by not considering all pn decision variables simultaneously,
but by updating only subsets of l = n decision variables, on which we base the
population size guideline for UHVEA-gb.

We furthermore include the domination-based MO-GOMEA [6]. In MO-
GOMEA, a population of solutions is aimed to approximate the Pareto front
by implicitly balancing diversity and proximity. From a population of Nmo solu-
tions, truncation selection is performed based on domination rank. The resulting
selection is clustered into Kmo overlapping clusters that model different parts
of the approximation front. For each cluster, a Gaussian distribution is esti-
mated to sample new solutions from, which uses very similar update rules as
the single-objective GOMEA, and therefore allows for a most fair comparison to
BezEA and UHVEA. MO-GOMEA obtains an elitist archive, aimed to contain
1000 solutions. For a fair comparison to the hypervolume-based methods that
obtain an approximation set of at most p solutions, we reduce the obtained elitist
archive of MO-GOMEA to p solutions using greedy hypervolume subset selec-
tion (gHSS) [11], which we denote by MO-GOMEA*. As described in [18], to
align MO-GOMEA with the other algorithms, we set Nmo = p ·N and Kmo = 2p
such that the overall number of solutions in the populations is the same, and all
sample distributions are estimated from the same number of solutions.

As performance measure, we define ΔHVp = HV�
p − HV(Ap) as the dis-

tance to the optimal hypervolume HV�
p obtainable with p solutions, empirically

determined with UHVEA.

5.1 Increasing q

We illustrate how increasing the number of control points q of the Bézier curve
improves achievable accuracy of BezEA (with q = {2, . . . , 10} and p = 10) in
case the Pareto set is non-linear. For this, we construct a simple two-dimensional
problem curvePS, with objective functions f curvePS

1 (x) = (x1 − 1)2 + 0.01x2
2 and

Smoothly Navigable Approximation Sets in Bi-objective Optimization 223

Fig. 3. Bézier curve approximations of the Pareto set of the curvePS problem (left),
obtained with BezEA. Contour lines show domination ranks, the corresponding approx-
imation fronts (middle), and ΔHV10 together with smoothness (right).

f curvePS
2 (x) = x2

1 + (x2 − 1)2. A large computational budget was used to show
maximally achievable hypervolume, and standard deviations are therefore too
small to be visible.

Results are shown in Fig. 3. A larger q results in a better approximation of
the leftmost endpoint of the Pareto front (second subfigure), thereby improving
ΔHVp (third subfigure), but slightly lowering smoothness (fourth subfigure), as
the Bézier curve deviates from a straight line. MO-GOMEA*, UHVEA-gb, and
BezEA for large q all obtain a very similar smoothness. As MO-GOMEA* does
not explicitly optimize the hypervolume of its approximation set, it obtains a
slightly different distribution of solutions, which results in a lower hypervolume.
Additionally, MO-GOMEA* does not converge to the Pareto set due to the finite
population size and inifitely large Pareto set, as described in more detail in [18].
Even though this is a fundamental limitation of domination-based MOEAs, this
level of accuracy is often acceptable in practice.

5.2 Comparison with UHV Optimization

Next, we demonstrate the behavior of BezEA compared to UHVEA on the simple
bi-sphere problem, which is composed of two single-objective sphere problems,
fsphere(x) =

∑n
i=1 x2

i , of which one is translated, fbi-sphere
1 (x) = fsphere(x), and

fbi-sphere
2 = fsphere(x − e1), where ei is the ith unit vector. We set n = 10, and

initialize all algorithms in [−5, 5]n. This is a separable problem and we therefore
use the univariate population size guideline (i.e., N =

√
l). We consider the

cases p = {10, 100}. The computational budget is set to 2p · 104 evaluations of
the multi-objective problem given by f (MO-fevals). When the desired number
of solutions p along the front is large, neighboring solutions are nearby each
other on the approximation front. This introduces a dependency between these
solutions, which needs to be taken into account in the optimization process to
be able to effectively solve the problem [18].

Results are shown in Fig. 4. This problem is unimodal with a linear Pareto set,
and the smoothness of (a subset) of the Pareto set is therefore 1.0. As UHVEA-
gb converges to a subset of the Pareto set (see [18]), it ultimately obtains a
smoothness of 1.0, even though its smoothness is initially lower. MO-GOMEA*

224 S. C. Maree et al.

Fig. 4. Comparison of UHVEA with BezEA and MO-GOMEA* on the bi-sphere prob-
lem with n = 10 and p = 10 (top row) and p = 100 (bottom row). Left two subfigures
show mean scores, and the shaded areas represent min/max scores, obtained over 10
runs. Objective and decision space subfigures show results of a single run. Solutions in
the decision space projection are sorted based on their f0-value, from best to worst.

does not converge to the Pareto set, and its smoothness stagnates close to 1.0
when p = 10, but stagnates around 0.7 when p = 100. BezEA with q = 2
has per construction a perfect smoothness of 1.0, and for q = 3 and q = 4,
the obtained smoothness is close to 1. With q = 5 control points, BezEA does
not converge within the given budget, resulting in a lower smoothness within the
computational budget. UHVEA-gb furthermore shows a better convergence rate,
which could be because UHVEA-gb can exploit partial evaluations, while this
is not possible with BezEA. However, UHVEA-bb, which also does not perform
partial evaluations, is unable to solve the problem for p = 100. This difference
between BezEA and UHVEA-bb could be attributed to the lower degree of
freedom that BezEA has due to the rather fixed distribution of solutions. This
distribution does however not exactly correspond to the distribution of HV�

p.
This is why a stagnation in terms of hypervolume convergence can be observed
for small values of q. The solutions of BezEA are equidistantly distributed along
the curve in terms of t. By doing so, intermediate control points can be used to
adapt the distribution of solutions (when q > 2). This is why BezEA with q = 4
can obtain a better ΔHVp than BezEA with q = 2, even though the Pareto
set is linear. For p = 100, BezEA obtains a better ΔHVp than UHVEA-gb,
which can be explained by the increased problem complexity when the desired
number of solutions along the front is large. Increasing the population size N
of UHVEA-gb would (at least partially) overcome this, but we aimed here to
show that BezEA does not suffer from this increased complexity as its problem
dimensionality depends on q, not p.

5.3 WFG Benchmark

We benchmark BezEA, UHVEA, and MO-GOMEA on the nine commonly used
WFG functions [12]. We consider bi-objective WFG problems with n = 24 deci-
sion variables of which kWFG = 4 are WFG-position variables. We furthermore

Smoothly Navigable Approximation Sets in Bi-objective Optimization 225

Table 1. Obtained hypervolume HVp (mean ± standard deviation (rank)) and mean
navigational smoothness (Sm) for the 9 WFG problems with p = 9 solutions. Bold are
best scores per problems, or those not statistically different from it.

MO-GOMEA* UHVEA-gb BezEA (q = 2) BezEA (q = 3)

HV9 Sm HV9 Sm HV9 Sm HV9 Sm

1 97.60 ± 0.7 (1) 0.76 93.62 ± 1.7 (2) 0.67 90.35 ± 1.1 (4) 1.00 90.37 ± 1.2 (3) 0.99

2 110.09 ± 0.0 (2) 0.86 110.38 ± 1.0 (1) 0.66 97.74 ± 0.0 (4) 1.00 97.85 ± 0.0 (3) 0.98

3 116.11 ± 0.1 (4) 0.93 116.42 ± 0.1 (3) 0.71 116.50 ± 0.0 (1) 1.00 116.50 ± 0.0 (2) 1.00

4 111.88 ± 0.8 (3) 0.75 112.37 ± 0.7 (1) 0.69 111.59 ± 1.3 (4) 1.00 112.19 ± 1.3 (2) 0.98

5 112.03 ± 0.1 (3) 0.66 111.86 ± 0.3 (4) 0.63 112.17 ± 0.0 (2) 1.00 112.19 ± 0.0 (1) 1.00

6 113.86 ± 0.3 (3) 0.88 114.23 ± 0.2 (2) 0.72 114.34 ± 0.1 (1) 1.00 113.02 ± 0.3 (4) 0.99

7 114.06 ± 0.1 (4) 0.94 114.32 ± 0.1 (3) 0.66 114.37 ± 0.0 (2) 1.00 114.38 ± 0.0 (1) 1.00

8 110.70 ± 0.2 (4) 0.79 111.24 ± 0.3 (1) 0.67 111.07 ± 0.1 (3) 1.00 111.14 ± 0.0 (2) 1.00

9 111.70 ± 0.5 (1) 0.68 111.46 ± 0.1 (2) 0.68 110.19 ± 0.7 (3) 1.00 109.36 ± 2.9 (4) 0.98

set p = 9 and a computational budget of 107 MO-fevals. A population size of
N = 200 was shown to work well for UHVEA [18], which we use here also
for BezEA. We perform 30 runs, and a pair-wise Wilcoxon rank-sum test with
α = 0.05 is used to test whether differences with the best obtained result are
statistically significant (up to 4 decimals). Ranks (in brackets) are computed
based on the mean hypervolume values.

Results are given in Table 1. WFG1 is problematic, as none of the algorithms
have an explicit mechanism to deal with its flat region. WFG2 has a discon-
nected Pareto front. MO-GOMEA* and UHVEA-gb both obtain solutions in
multiple subsets, while BezEA obtains all solutions in a single connected sub-
set, and spreads out well there. The linear front of WFG3 corresponds to the
equidistant distribution of solutions along the Bézier curve, and BezEA outper-
forms the other methods there. Increasing q generally increases performance of
BezEA, except for WFG6 and WFG9. Both these problems are non-separable,
and require a larger population size than the currently used N = 200 to be
properly solved. However, the guideline for non-separable problems results in a
population size that is too large to be of practical relevance here. In terms of
smoothness, BezEA with q = 3 is able to obtain a smoothness close to 1, while
simultaneously obtaining the best HV9 for 4/9 problems. MO-GOMEA* obtains
a mean smoothness of 0.81 while UHVEA-gb obtains the worst mean smooth-
ness (0.68). To illustrate the obtained smoothness a parallel coordinate plot for
WFG7 is given in Fig. 5. This figure shows a clear pattern in decision variable
values along the front (in the order o) for BezEA. This pattern is not obvious
for the other two methods, while they achieve only a slightly lower hypervolume,
and a lower smoothness.

6 Discussion and Outlook

In this work, we parameterized approximation sets as smooth Bézier curves
in decision space, thereby explicitly enforcing a form of smoothness between

226 S. C. Maree et al.

decision variables of neighboring solutions when the approximation front is tra-
versed, aimed to improve its navigability. We used an UHV-based MO problem
formulation that directly allows for the optimization of parameterized approx-
imation sets. Solving this Bézier problem formulation with GOMEA (BezEA),
was shown to be competitive to UHV-based optimization and domination-based
MOEAs, while smoothness is guaranteed. We showed that approximation sets
obtained with BezEA show a more clear pattern in terms of decision variables
when traversing the approximation front on a set of benchmark problems, which
suggests that this approach will lead to a more intuitive and smooth approxi-
mation set navigability for real-world optimization problems.

Fig. 5. Parallel coordinate plots shows of decision variables xi for WFG7. In color the
kWFG = 4 position-type decision variables, in grey the remaining decision variables.

We chose to fix the solution set size p for BezEA during and after optimiza-
tion, but since a parametric expression of the approximation set is available, it is
straightforward to construct a large approximation set after optimization. This
could be exploited to increase performance of BezEA, as it currently show com-
putational overhead on the simple bi-sphere problem in terms of multi-objective
function evaluations compared to UHVEA. In contrast to MOEAs, UHVEA and
BezEA have the ability to converge to the Pareto set. When the problem is mul-
timodal, UHVEA will spread its search over multiple modes. In that case, even
an a posteriori fitting of a smooth curve through the obtained approximation set
will result in low-quality solutions. BezEA on the other hand aims to obtain solu-
tions in a single mode, thereby guaranteeing smoothness, even in a multimodal
landscape. This form of regularization that is enforced upon approximation sets
shows that BezEA can outperform MO-GOMEA* and UHVEA-gb on multiple
problems in the WFG benchmark.

The smoothness measure introduced in this work is a measure for entire
solution sets Sp, and not for individual solutions x. It can therefore not be
added directly as an additional objective to the original multi-objective prob-
lem f(x). We chose in this work to introduce a parameterization of approxi-
mation sets that directly enforces smoothness. Alternatively, smoothness could
also be added as a second objective to the UHV-based problem formulation.
This then results in the pn-dimensional bi-objective optimization problem, given
by h(Sp) = [UHVf (Sp) ; Sm(Sp)]. This problem can then be solved with a
domination-based MOEA, or even by again formulating it as a (much) higher-
dimensional UHV-based single-objective problem. Whether this approach can be

Smoothly Navigable Approximation Sets in Bi-objective Optimization 227

efficient, even when grey-box properties such as partial evaluations are exploited,
remains however future work.

The problems in this work were limited to problems involving two objec-
tives. The presented results show that it is an interesting research avenue to
extend this work to problems with more objectives. The Pareto front of non-
degenerate problems with m objectives is an m−1-dimensional manifold. Instead
of a one-dimensional Bézier curve, the Pareto set can then be modeled by an
(m−1)-dimensional Bézier simplex [15]. For the navigation of higher-dimensional
manifolds, a one-dimensional path through all obtained solutions could still be
used. However, navigation would be performed might be problem specific and
should be discussed with end-users. BezEA is applied to treatment planning of
brachytherapy for prostate cancer, and results can be found in the supplementary
of this work (online [17]).

Source code for the algorithms in this work is made available at [16].

Acknowledgments. This work was supported by the Dutch Research Coun-
cil (NWO) through Gravitation Programme Networks 024.002.003. We further-
more acknowledge financial support of the Nijbakker-Morra Foundation for a high-
performance computing system.

References

1. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing popu-
lation size. In: Proceedings of the IEEE Congress on Evolutionary Computation -
CEC 2005, pp. 1769–1776. IEEE Press (2005)

2. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

3. Bhardwaj, P., Dasgupta, B., Deb, K.: Modelling the Pareto-optimal set using B-
spline basis functions for continuous multi-objective optimization problems. Eng.
Optim. 46(7), 912–938 (2014)

4. Bosman, P.A.N., Grahl, J., Thierens, D.: Benchmarking parameter-free AMaLGaM
on functions with and without noise. Evol. Comput. 21(3), 445–469 (2013)

5. Bouter, A., Alderliesten, T., Witteveen, C., Bosman, P.A.N.: Exploiting linkage
information in real-valued optimization with the real-valued gene-pool optimal
mixing evolutionary algorithm. In: Proceedings of the Genetic and Evolutionary
Computation Conference - GECCO 2017, pp. 705–712. ACM Press, New York
(2017)

6. Bouter, A., Luong, N.H., Alderliesten, T., Witteveen, C., Bosman, P.A.N.: The
multi-objective real-valued gene-pool optimal mixing evolutionary algorithm. In:
Proceedings of the Genetic and Evolutionary Computation Conference - GECCO
2017, pp. 537–544. ACM Press, New York (2017)

7. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput.
Methods Appl. Mech. Eng. 186(2), 311–338 (2000)

8. Deb, K.: Multi-objective Optimization. Wiley, Chichester (2001)
9. Fleischer, M.: The measure of Pareto optima applications to multi-objective meta-

heuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.)
EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36970-8 37

https://doi.org/10.1007/3-540-36970-8_37
https://doi.org/10.1007/3-540-36970-8_37

228 S. C. Maree et al.

10. Gallier, J.: Curves and Surfaces in Geometric Modeling: Theory and Algorithms.
Morgan Kaufmann Publishers Inc., San Francisco (1999)

11. Guerreiro, A., Fonseca, C., Paquete, L.: Greedy hypervolume subset selection in
low dimensions. Evol. Comput. 24(3), 521–544 (2016)

12. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test
problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.)
EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31880-4 20

13. Knowles, J.: Local-search and hybrid evolutionary algorithms for Pareto optimiza-
tion. Technical report, Ph.D. thesis, University of Reading (2002)

14. Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of
stochastic multiobjective optimization. Technical report, Computer Engineering
and Networks Laboratory (TIK), ETH Zurich - TIK report 214 (2006)

15. Kobayashi, K., Hamada, N., Sannai, A., Tanaka, A., Bannai, K., Sugiyama, M.:
Bezier simplex fitting: describing Pareto fronts of simplicial problems with small
samples in multi-objective optimization. Preprint arXiv:1812.05222 (2018)

16. Maree, S.C.: Uncrowded-hypervolume multi-objective optimization C++ source
code on Github (2019). https://github.com/scmaree/uncrowded-hypervolume

17. Maree, S.C., Alderliesten, T., Bosman, P.A.N.: Ensuring smoothly navigable
approximation sets by Bézier curve parameterizations in evolutionary bi-objective
optimization - applied to brachytherapy treatment planning for prostate cancer.
Preprint arXiv:2006.06449 (2020)

18. Maree, S.C., Alderliesten, T., Bosman, P.A.N.: Uncrowded hypervolume-
based multi-objective optimization with gene-pool optimal mixing. Preprint
arXiv:2004.05068 (2020)

19. Mehta, V.K., Dasgupta, B.: Parametric approximation of the Pareto set in multi-
objective optimization problems. J. Multi-Crit. Decis. Anal. 21, 335–362 (2014)

20. Touré, C., Hansen, N., Auger, A., Brockhoff, D.: Uncrowded hypervolume improve-
ment: COMO-CMA-ES and the sofomore framework. In: Proceedings of the
Genetic and Evolutionary Computation Conference - GECCO 2019, pp. 638–646.
ACM Press, New York (2019)

21. Wang, H., Deutz, A., Bäck, T., Emmerich, M.: Hypervolume indicator gradient
ascent multi-objective optimization. In: Trautmann, H., et al. (eds.) EMO 2017.
LNCS, vol. 10173, pp. 654–669. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-54157-0 44

22. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto
evolutionary algorithm for multiobjective optimization. In: Evolutionary Meth-
ods for Design, Optimisation and Control with Application to Industrial Problems
- EUROGEN 2001, pp. 95–100. International Center for Numerical Methods in
Engineering (CIMNE) (2001)

23. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

24. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Per-
formance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003)

https://doi.org/10.1007/978-3-540-31880-4_20
https://doi.org/10.1007/978-3-540-31880-4_20
http://arxiv.org/abs/1812.05222
https://github.com/scmaree/uncrowded-hypervolume
http://arxiv.org/abs/2006.06449
http://arxiv.org/abs/2004.05068
https://doi.org/10.1007/978-3-319-54157-0_44
https://doi.org/10.1007/978-3-319-54157-0_44

Many-Objective Test Database Generation
for SQL

Zhilei Ren1(B), Shaozheng Dong1, Xiaochen Li2, Zongzheng Chi1, and He Jiang1

1 School of Software, Dalian University of Technology, Dalian, China
{zren,jianghe}@dlut.edu.cn, dsz201493078@mail.dlut.edu.cn,

czz.dut@163.com
2 University of Luxembourg, Luxembourg City, Luxembourg

xiaochen.li@uni.lu

Abstract. Generating test database for SQL queries is an important but challeng-
ing task in software engineering. Existing approaches have modeled the task as a
single-objective optimization problem. However, due to the improper handling of
the relationship between different targets, the existing approaches face strong lim-
itations, which we summarize as the inter-objective barrier and the test database
bloating barrier. In this study, we propose a two-stage approach MoeSQL, which
features the combination of many-objective evolutionary algorithm and decom-
position based test database reduction. The effectiveness of MoeSQL lie in the
ability to handle multiple targets simultaneously, and a local search to avoid the
test database from bloating. Experiments over 1888 SQL queries demonstrate
that,MoeSQL is able to achieve high coverage comparable to the state-of-the-art
algorithm EvoSQL, and obtain more compact solutions, only 59.47% of those
obtained by EvoSQL, measured by the overall number of data rows.

Keywords: Test database generation · Search based software engineering ·
Many-objective optimization

1 Introduction

Recent years have witnessed the emergence and the rapid development of evolutionary
computation based test case generation research [1, 2]. Especially, due to the importance
in database-centric applications, test database generation for SQL queries has gained
great research interest [3, 4]. The idea is to construct test databases, in pursuit of certain
coverage criteria, such as to exercise all branches (also known as targets, see Sect. 2
for details) that can be executed in the SQL query. Due to the intrinsic complexity of
SQL features, e.g., JOINs, predicates, and subqueries, test database generation for SQL
queries can be difficult and time-consuming.

In the existing studies, this problem has been modeled as an optimization problem.
Various approaches such as constraint solving and genetic algorithmhave been employed
to solve the problem [3–5]. Among these approaches, EvoSQL [3], a search-based
algorithm, achieves the state-of-the-art results. EvoSQL features the support for the
SQL standard, and has been evaluated over a set of real-world SQL queries.

© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 229–242, 2020.
https://doi.org/10.1007/978-3-030-58115-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_16

230 Z. Ren et al.

However, despite the promising results accomplished, we could observe signifi-
cant limitations in the existing studies. For example, EvoSQL models the test database
generation problem as a single-objective problem, by designing an objective function
that aggregates the coverage over all the branches. Consequently, such problem solving
mechanism may face great challenges, which are summarized as follows.

(1) Inter-objective relationship barrier: takingEvoSQL as an example, to achieve satis-
factory coverage, the underlying genetic algorithm has to be executed for multiple
times, to cover each branch in a sequential way. Hence, a solution from one pass of
evolution could not take all the branches into account. Also, the solutionswithin one
evolutionprocess couldnot help improve theother independent runsof evolution [6].

(2) Testdatabasebloatingbarrier:EvoSQLachieves thebranchcoveragebymerging the
test databases obtained by themultiple executions of the genetic algorithm. The final
test database may suffer from scalability issues [7], due to the improper handling of
the relationship between different targets. Although EvoSQL adopts a post-process
for reduction, chances are that the reduced test databases are still of large size.

To overcome these challenges, we propose a two-stage algorithm MoeSQL (Many-
objective evolutionary algorithm for SQL) in search of better test data.More specifically,
to tackle the inter-objective relationship barrier, in the first stage, we adopt a many-
objective evolutionary algorithm to avoid redundant computation. The many-objective
algorithm features a corner solution based sorting mechanism, with which we are able
to cover multiple targets in a single evolution process.

To tackle the test database bloating barrier, we further leverage the solutions obtained
from the first stage. We decompose the original problem into a series of sub-problems,
and employ a local search operator to achieve better solutions. Due to the reduction of
the search space, it is easier to obtain more compact test database.

By combining the two stages, we develop an integrated framework MoeSQL. To
evaluate MoeSQL, we consider real-world datasets for experiments, with 1888 SQL
queries [3]. Extensive experiments demonstrate that with the many-objective evolu-
tionary algorithm, MoeSQL is able to obtain high target coverage of 99.80%, which
is comparable to the state-of-the-art approach EvoSQL. Meanwhile, with the reduc-
tion stage, MoeSQL obtains much more compact test databases, only 59.47% of those
provided byEvoSQL, measured by the overall number of data rows for all the instances.

The main contributions of this paper are as follows:

(1) A many-objective search method is proposed for test database generation of SQL
queries. To the best of our knowledge, this is the first study that solves this problem
with a many-objective approach.

(2) We propose a novel decomposition based local search algorithm to address the test
database bloating issue in SQL test database generation.

(3) We implement a prototype of MoeSQL. The prototype system and the experiment
data are available at https://github.com/TheSecondLoop/MoeSQL.

(4) We conduct extensive experiments to demonstrate the effectiveness of MoeSQL
compared with the state-of-the-art algorithm.

The rest of the paper is organized as follows. Section 2 describes the background of
test database generation for SQLquerieswith amotivating example. Section 3 introduces

https://github.com/TheSecondLoop/MoeSQL

Many-Objective Test Database Generation for SQL 231

theproposed approach.The empirical study is presented inSect. 4. Finally, the conclusion
and future work are given in Sect. 5.

2 Background and Motivating Example

2.1 Coverage Criteria

For the test database generation task, we intend to populate a set of databases based on
certain coverage criteria. Considering the following SQL query S as an example:

SELECT * FROM
Ta JOIN Tb ON Ta.p = Tb.q -- step 1
WHERE (Ta.a = 1) OR (Ta.b = 2); -- step 2

In the query S, both columns a and b are non-nullable. To thoroughly test S, we adopt
the SQL full predicate coverage criteria [8], which is inspired by the modified condition
decision coverage [9] in software testing studies. The underlying idea is that given a
SQL query, all the possible conditions which contribute to the query should be tested.
For example, if we combine the modified conditions of the predicates in the WHERE
clause of S with two predicates, we obtain six queries, generated by the SQL analysis
tool SQLFpc [8]. More specifically, the predicates “Ta.a= 1” and “Ta.b= 2” correspond
to targets 1–3 and 4–6, respectively:

(1) SELECT * FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE (Ta.a = 0) AND NOT (Tb.b = 2);
(2) SELECT * FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE (Ta.a = 1) AND NOT (Ta.b = 2);
(3) SELECT * FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE (Ta.a = 2) AND NOT (Ta.b = 2);
(4) SELECT * FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE NOT (Ta.a = 1) AND (Ta.b = 1);
(5) SELECT * FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE NOT (Ta.a = 1) AND (Ta.b = 2);
(6) SELECT * FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE NOT (Ta.a = 1) AND (Ta.b = 3);

With these targets, the next goal is to construct a set of test databases, so that each
of the six queries, when applied on the test databases, retrieves non-empty result. If
such goal is accomplished, it is claimed that the test databases have achieved complete
coverage on the SQL query under test.

2.2 Test Database Generation

In this study, we focus on search-based test database generation. In these approaches, a
common technique is to encode the test databases as candidate solutions, and model the
objective function based on certain coverage criteria. For example, EvoSQL uses the
concept of physical query plan [10] to divide each target into several execution steps.
The objective function of the test database is determined according to its performance
on each execution step. More specifically, the search problem is defined as follows:

Problem 2.1 (single-objective model). Let R = {r1, . . . , rk} be the set of coverage
targets of the SQL query under test. Find a set of test databasesD = {t1, . . . , tk} to cover
all the coverage targets in R, i.e., one that minimizes the following objective function:

min F(D,R) =
∑k

i=1
step_level(ti, ri) + step_distance(ti,L), (1)

232 Z. Ren et al.

where step_level(ti, ri) denotes the number of steps that are not executed, and
step_distance(ti,L) is the distance of ti in satisfying the first unsatisfied step L.

To explain the objective function, consider the distance of target 2 (SELECT *
FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE (Ta.a = 1) AND NOT (Ta.b = 2)) and
db 1 in Fig. 1(a). In the physical query plan of S, target 2 can be divided into two steps:
the first step considers the predicate in the FROM clause, and then the predicate in the
WHERE clause (see the comments in S). The predicate in the FROM clause could be
satisfied by db 1. In db 1, an empty result is returned when the predicate in theWHERE
clause is examined. Hence, there are no unexecuted steps, i.e., step_level(ti, ri) = 0.
Meanwhile, in db 1, the predicate “Ta.a = 1” in the WHERE clause is not satisfied.
According to the predicate, we choose the closest value 0 in column a of db 1. Then,
the step distance is calculated as step_distance(ti,L) = |0 − 1| = 1 [11]. In this way,
we can calculate the distance between the test database and the coverage target. Further
details about the objective function evaluation could be found in reference [3].

(a) Test databases obtained by EvoSQL (b) A more compact test database

Fig. 1. Example of solutions for query S

Obviously, the objective function is essentially an aggregate formof amulti-objective
problem. Typically, existing approaches such as EvoSQL optimize each term of the
summation in Eq. 1 with respect to each target, in a sequential way. The number of test
databases equals to the number of coverage targets. For example, for query S, EvoSQL
executes the underlying genetic algorithm six times, and generates six test databases,
each with one row for Ta and Tb, respectively. However, the single-objective model
may face obvious challenges:

(1) Inter-objective relationship barrier: In the SQL query S, targets 1–3 share the same
predicate “Ta.b = 2”. During the evolution towards target 1, the solutions obtained
during the search procedure may also partially satisfy some predicates of targets
2–3. Although EvoSQL uses the population of the previous pass of evolution as the
initial population for the next pass, the performance of this approach may depend
on the invocation sequence of the underlying genetic algorithm. Consequently,
single-objective approach cannot deal with the inter-objective relationship properly.

(2) Test database bloating barrier: In Fig. 1(b), we present a more compact solution (db
7with five data rows) that satisfies all the targets of the query S. Compared with the
results of EvoSQL, db 7 has the same coverage but less data rows. Interestingly,
although EvoSQL is equipped with a reduction operator, the results in Fig. 1(a)
could not be further simplified.

Many-Objective Test Database Generation for SQL 233

3 Our Approach

In order to tackle the two challenges of the existing algorithms, we propose our two-stage
algorithm MoeSQL. In the first stage, the algorithm takes the coverage target generated
by SQLFpc as the input, and obtains multiple databases to cover different targets. These
databases serve as an intermediate solution to the problem. In the second stage, we use
these solutions to divide the problem into sub-problems, and solve the induced problems
to achieve a more compact solution.

3.1 Many-Objective Test Database Generation

To generate test database with many-objective algorithms, we first modify the problem
definition in Sect. 2 as follows.

Problem 3.1 (many-objective model). Let R = {r1, . . . , rk} be the set of coverage
targets of the SQL query under test. Find a test database t to cover as many coverage
targets in R as possible, and keep the test database compact, i.e., minimize the following
k + 1 objectives:

min F ′(t,R) = (d(t, r1), d(t, r2), . . . , d(t, rk), size(t))
T , (2)

where d(t, ri) = step_level(t, ri) + step_distance(t,L) denotes the distance between
the test database t and the coverage targets ri as in Eq. 1. The extra objective size(t)
represents the number of data rows in the test database t. The superscript T represents
transpose of vector.

The pseudo code of TestDatabaseGen is presented in Algorithm 1. The workflow is
similar withmost existingmany-objective algorithms. In Lines 1–3, a set of solutions are
initialized. More specifically, each solution is encoded as a set of tables, each of which
corresponds to a schema involved in the targets. We extract the constant values in the
targets, and assign the constant values to the fields in initial solutions with probability
ps. Otherwise, the value for the field is initialized by a random value with probability
(1 − ps) [12].

Then, in the main loop (Lines 4–15), the evolution process consists of the evaluation,
sorting, selection, and reproduction procedures. For the evaluation procedure, we apply
Eq. 2 over each solution, to calculate the objective values. In particular, we adopt a
dynamic objective strategy [13], i.e., if there exists any new target that can be covered
by a solution, we keep the solution and remove the target from the objective evaluation.
With this strategy, we are able to deal with a relatively large number of objectives.
For the sorting and the selection procedures, we consider the many-objective sorting
mechanismused inMOSA [6, 14], awell-knownmany-objective algorithm in the search-
based software engineering community. The sorting mechanism features the multi-level
prioritization of the solutions.Within the sorting procedure, the population is categorized
the into levels. For the first level, we consider the best solutions (corner solutions) with
respect to each objective. Then, the next level comprises the non-dominated solutions
for the rest solutions. This process continues, until all the solutions are iterated. With
this mechanism, the search could be guided towards covering more targets. During the

234 Z. Ren et al.

selection, the elitism strategy is considered, i.e., only when one level is selected, we
consider the solutions in the next level. In the same level, the tournament selection [15]
is applied, so that both intensification and diversification are considered.

As for the reproduction operators, we directly adopt the crossover and the mutation
operators of EvoSQL for simplicity, and no special modifications regarding many-
objective algorithms are made in these operators. However, in our preliminary exper-
iment, we find these operators are effective in general. When the stopping criterion is
met, the evolution terminates. Finally, the archived solutions are regarded as the set of
test databases.

To summarize, we compare TestDatabaseGen with the genetic algorithm used in
EvoSQL. The approach proposed in this study features the following characteristics:

(1) Many-objectivemodel: unlike the existing approaches in which test database gener-
ation is modeled as a single-objective problem, TestDatabaseGen adopts a many-
objective sorting mechanism, so that the solutions in the population could take
all the targets into consideration during the selection. Furthermore, in contrast to
EvoSQL in which the objective values have to be calculated for all the targets sepa-
rately, TestDatabaseGen could handle all the targets in a single evaluation. Hence,
redundant computation could be prevented to some extents.

(2) Dynamic objective strategy: instead of applying static objective function along the
evolution process, TestDatabaseGen dynamically removes targets that have been
covered. With this strategy, the number of targets decreases along the evolution
process, and the search could be focused on the uncovered targets. Consequently,
the algorithm scales up well to a relatively large number of targets.

Many-Objective Test Database Generation for SQL 235

3.2 Sub-problem Decomposition Based Reduction

In the second stage, we focus on the test database bloating barrier. To reduce the size
of the test database obtained by TestDatabaseGen, we develop a decomposition based
local search strategy.

The idea is intuitive, i.e., when a candidate database covers one or more targets, it
means that there are a series of data rows in the database that can satisfy the predicates
in the SQL queries. However, it is possible that not all the data rows are contributive to
the coverage. In other words, only a part of the data rows leads to the satisfaction of the
predicates. Hence, we need to filter out the values with no contribution, and generate
more compact test databases. To realize the reduction effect, we consider the following
problem:

Problem 3.2: Let D = {t1, . . . , tm} be a set of test databases. For each database ti,
f (ti) = {ri1, . . . , rin} ⊆ R represents the targets covered by ti. Find a subset of databases
T ′ = {

t′1, . . . , t′c
}
that minimizes the following function:

min
∑c

i=1
size

(
t′i
)
, (3)

s.t.
⋃c

i=1
f
(
t′i
) =

⋃m

i=1
f (ti),

where size
(
t′i
)
indicates the number of data rows in the test database t′i .

Unfortunately,with the increase of the targets, the number of data rows in the database
T will increase accordingly, which leads to the search space explosion problem [16].
Therefore, we propose a decomposition strategy to transform the original problem into
a set of sub-problems. Given two databases t1 and t2, we can construct a sub-problem, in
search of a database with more compact size in a small neighborhood. More specifically,
the sub-problem is defined as follows.

Problem 3.3: Let D = {t1, t2} be a set of two test databases. For each database ti,
f (ti) = {ri1, . . . , rin} ⊆ R represents the targets covered by ti. Find a new database t′
that minimizes the following function:

min size
(
t′
)

(4)

s.t. f
(
t′
) = f (t1) ∪ f (t2)

In this way, we can find the solution of the original problem by solving the sub-
problem for each pair of test databases.

The main workflow of the second stage is presented in the pseudo code of Algorithm
2TestDatabaseReduction. In the main loop, we set all the solutions in the population as
unreached, to indicate whether the solution should be involved in the generation of the
next sub-problem. In Lines 3–4, we select two individuals in the population to construct
the sub-problem. Then, the LocalSearch operator is applied, to obtain a solution to the
induced sub-problem. In Lines 6–9, we verify the solution obtained by the local search

236 Z. Ren et al.

operator. If a more compact solution is achieved, the two individuals under examination
will be replaced with the reduced solution returned by LocalSearch. Otherwise, we
continue investigating other pairs of individuals that have not been investigated, until all
the individuals have been reached.

In particular, our method adopts a local search operator to solve the induced sub-
problem. As presented in Algorithm 3, a hill climbing approach is considered.

In Algorithm 3, a first-improvement local search is realized. More specifically, we
construct an incumbent database by merging the two input databases (Line 1). Then, we
iteratively examine each data row of the incumbent database (Lines 2–15). If we observe
that, the deletion of a data row does not deteriorate the coverage metric, we simply

Many-Objective Test Database Generation for SQL 237

delete this data row to generate a new database (Line 5–7). Otherwise, we recover
the deletion, and make a perturbation accordingly (Lines 9–14). Then, we restart the
investigation from the perturbed database. The traversal continues, until all the data
rows have been iterated. By embedding the local search operator in Algorithm 2, we are
able to accomplish the reduction of the test databases.

As a brief summary, in this section, we present the TestDatabaseReduction stage.
The reduction algorithm features a hill climbing based local search operator to explore
the possibility of minimizing the test databases obtained by the first stage. In the next
section, we would conduct extensive experiments to evaluate the proposed approach.

4 Experimental Results

4.1 Research Questions

In this section, we investigate the performance of MoeSQL. Our experiment focuses on
the following three Research Questions (RQs).

RQ1: How does MoeSQL perform in terms of coverage metrics?
RQ2: How does MoeSQL perform in terms of the runtime and the size metrics?
RQ3: How does MoeSQL performs over different instances?

In these RQs, RQ1 is used to verify the feasibility of MoeSQL. RQ2 is adopted to
examine whether our algorithm tackles the existing challenges properly. RQ3 intends
to investigate the trade-off between runtime and size metrics achieved by MoeSQL.

To evaluate MoeSQL, we adopt EvoSQL, the state-of-the-art algorithm as the
baseline of our experiments. Besides, we also propose a variant algorithm (denoted
asMoeSQLv) as a comparative approach. In this variant,MoeSQL will terminate after
the first stage, without further consideration of the scalability issue. In this way, we can
investigate the contribution of both stages.

In the experiments, the parameter settings follow those of EvoSQL. More specif-
ically, we set the population size pop_num to 50. Seeding probability ps is set to 0.5.
Crossover probability pc is set to 0.75.Due to the various operations inmutation operator,
the mutation probability pm is a set of numbers. The mutation probability for inserting,
deleting, and duplicating operation is set to 1/3, the row change mutation probability is
set to 1, and the NULL mutation probability is set to 0.1. Our experiments run under a
PCwith an Intel Core i5 2.3 GHz CPU, 16 GBmemory, andWindows 10. All algorithms
are implemented in Java 1.8. Our experiments use three datasets provided by EvoSQL.
Over the instances, we execute each algorithm five times. There are 1888 SQL queries
and 10338 coverage targets in total. The statistics of these SQL queries are shown in
Table 1. Because SQLFpc may generate some targets that cannot be covered theoreti-
cally, we manually examine and delete these targets to ensure that the rest targets could
be covered, given sufficient runtime.

238 Z. Ren et al.

Table 1. Statistics of the benchmark instances

Feature #Targets

0 1–2 3–4 5–6 7–8 9–10 11–15 16–20 21+

Predicates 57 1278 424 54 27 10 14 21 3

JOINs 1831 41 3 1 11 1 – – –

Subqueries 1851 37 – – – – – – –

Functions 1735 149 2 2 – – – – –

Columns 59 1271 413 85 16 13 14 7 10

Targets – 645 337 370 310 95 55 27 49

4.2 Experimental Results

Investigation of RQ1. We first present the coverage statistics of the comparative
approaches in Table 2. In the table, the first column indicates the number of targets.
Columns 2–3 represent the instance coverage (number of fully covered instances).
Columns 4–5 are the target coverage (number of covered targets). The coverage of
MoeSQLv is the same as MoeSQL, because the second stage of MoeSQL does not
alter the coverage metric. From the table, the following phenomena could be observed:

(1) MoeSQL achieves high coverage over all the instances. Similar as EvoSQL,
MoeSQL can cover all targets over instances with less than 10 coverage targets.
With the increase of the number of targets, the performance of both algorithms
decreases.

(2) In terms of the target coverage, MoeSQL performs slightly better than EvoSQL.
Over all the instances,MoeSQL is able to cover 99.80% of targets. Meanwhile, the
target coverage by EvoSQL is 99.52%.

(3) In terms of instance coverage, the results of EvoSQL andMoeSQL are very close.
However, the performance of the two algorithms is not the same.EvoSQL performs
better over instances with more than 16 but less than 20 coverage targets. Mean-
while, MoeSQL has a higher coverage in instances with more than 20 coverage
targets.

Answer to RQ1: MoeSQL can completely cover 99.63% of all instance, which is
comparable to the state-of-the-art approach.

Investigation of RQ2. In this RQ, we are interested in the efficiency of MoeSQL. We
calculate the runtime and the size of test database (measured by the number of data rows
in the test databases). The statistics are presented in Table 3. The table is organized as
follows. Thefirst column indicates the number of targets of the queries. Columns 2–4 rep-
resent the median runtime statistics in seconds, for EvoSQL,MoeSQLv, andMoeSQL,
respectively. Similarly, columns 5–7 are associated with the size statistics, measured by
the average number of data rows in the test database, for the three approaches. From the
table, we observe that:

Many-Objective Test Database Generation for SQL 239

Table 2. The instance coverage and the target coverage of each algorithm

#Targets Instance Coverage Target Coverage

EvoSQL MoeSQL/MoeSQLv EvoSQL MoeSQL/MoeSQLv

1–2 645/645 645/645 1232/1232 1232/1232

3–4 337/337 337/337 1095/1095 1095/1095

5–6 370/370 370/370 1970/1970 1970/1970

7–8 310/310 310/310 2314/2314 2314/2314

9–10 95/95 95/95 892/892 892/892

11–15 53/55 53/55 679/699 686/699

16–20 26/27 25/27 473/485 481/485

20+ 42/49 46/49 1633/1651 1647/1651

(1) MoeSQLv achieves the minimum runtime over all instances. The time of
MoeSQLv is almost half that of EvoSQL in instances with less than 15 targets.
And over other instances, the runtime of MoeSQLv is also significantly less than
EvoSQL.

(2) MoeSQL performs the best over instances with less than 10 targets. Due to the
second stage, the runtime of the whole algorithm is longer than MoeSQLv. With
the increase of the number of targets, the gap between the twovariants also increases.

(3) When considering all the instances, without the second stage,MoeSQLv is able to
outperform EvoSQL by 22.62%, in terms of the size metric of the test database.
Moreover, with the reductionmechanism,MoeSQL is able to further reduce the test
database size by 17.91%. For the instances with more than 20 coverage targets, the
overall number of data rows is reduced by up to 68.59%, compared with EvoSQL.

Table 3. The runtime and the test database size statistics of each algorithm

#Targets Runtime (s) Size (#data rows)

EvoSQL MoeSQLv MoeSQL EvoSQL MoeSQLv MoeSQL

1–2 0.03 0.02 0.02 2.00 2.00 2.00

3–4 0.04 0.02 0.02 3.00 3.00 3.00

5–6 0.07 0.02 0.04 5.00 5.00 5.00

7–8 0.25 0.13 0.20 8.00 7.00 7.00

9–10 0.62 0.32 0.61 11.00 10.00 9.00

11–15 2.13 1.11 3.87 16.00 13.40 11.00

16–20 10.15 7.76 116.30 40.40 33.40 14.40

20+ 130.32 108.36 1483.15 54.00 40.00 26.00

240 Z. Ren et al.

Answer to RQ2: the advantage of MoeSQL in runtime ismore reflected over instances
with small number of coverage targets. At the same time, MoeSQL can significantly
reduce the size of the test database, especially for complex instances. Although the
second stage of MoeSQL costs extra runtime, the local search operator reduces the size
of the database. For most instances, the time consumption is acceptable.

Investigation of RQ3. To answer RQ3, we classify all instances according to the per-
formance of each algorithm. According to the two performance indicators, i.e., runtime
and size, we categorize all the instances into the following four types:

Type A: MoeSQL outperforms EvoSQL in terms of both indicators.
Type B:MoeSQL outperforms better than EvoSQL in terms of runtime, and the size of
MoeSQL is the same as EvoSQL.
TypeC: The size ofMoeSQL is better thanEvoSQL, but the runtimemetric ofMoeSQL
is inferior to that of EvoSQL.
Type D: MoeSQL fails to outperform EvoSQL in terms of either indicator.

We summarize the number of instances of each type. The statistics of these type are
shown in Fig. 2(a). According to the figure, we observe that:

(1) MoeSQL is more time efficient than EvoSQL over the majority (types A and B,
1523/1888) of instances. Over these instances,MoeSQL can find test databases of
same or more compact size than EvoSQL. In particular, over (370/1888) 19.60%
of instances, MoeSQL outperforms EvoSQL for both performance indicators.

(2) Over (201/1888) 10.65% of instances, MoeSQL consumes more time than
EvoSQL, but is able to achieve more compact solutions. Only over (164/1888)
8.69% of instances, MoeSQL is dominated by EvoSQL.

(a) Statistics of instance types (b) Runtime-size comparison

370

1153

201 164

0

200

400

600

800

1000

1200

1400

type A type B type C type D

1E+0

1E+1

1E+2

1E+3

1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 1E+3 1E+4

Si
ze

 (#
da

ta
 ro

w
s)

Runtime (s)

EvoSQL MoeSQL

Fig. 2. Comparison between EvoSQL and MoeSQL

Many-Objective Test Database Generation for SQL 241

To gain more insights, we plot the runtime and the size metrics obtained byEvoSQL
and MoeSQL over all the instances in Fig. 2(b). From the figure, we observe that the
points for MoeSQL are concentrated in the area closer to the origin, which to some
extents demonstrates the ability of MoeSQL to balance the runtime and the size.

Answer to RQ3: MoeSQL performs better than EvoSQL over most instances, and is
able to achieve moderate trade-off between the runtime and the size metrics.

5 Conclusion and Future Work

In this paper, we present a novel two-stage algorithmMoeSQL to solve the test database
generation for SQL queries. The proposed approach features the combination of a many-
objective evolutionary algorithm and a local search based reductionmechanism, to tackle
the inter-objective barrier and the test database bloating barrier. Experimental results over
real-world datasets demonstrate the effectiveness of MoeSQL.

Despite the promising results, there is still room for improvement. For example, the
local search based reduction is time consuming. Tomitigate the limitation, an interesting
direction is to consider very large neighborhood search [17] or surrogate based acceler-
ation mechanisms [18]. If feasible, the efficient reduction mechanisms may enable more
advanced algorithms, such as reduction during evolution.

Acknowledgement. This work is supported in part by the National Key Research and Devel-
opment Program of China under grant no. 2018YFB1003900, and the National Natural Science
Foundation of China under grant no. 61772107, 61722202.

References

1. Fraser, G., Arcuri, A., McMinn, P.: Test suite generation with memetic algorithms. In:
Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation,
pp. 1437–1444. ACM, New York (2013)

2. Arcuri, A.: RESTful API automated test case generationwith Evo-Master. ACMTrans. Softw.
Eng. Methodol. 28(1), 1–37 (2019)

3. Castelein, J., Aniche, M., Soltani, M., Panichella, A., van Deursen, A.: Search-based test data
generation for SQL queries. In: Proceedings of the 40th International Conference on Software
Engineering, pp. 1220–1230. ACM, Gothenburg (2018)

4. Suárez-Cabal, M.J., de la Riva, C., Tuya, J., Blanco, R.: Incremental test data generation
for database queries. Autom. Softw. Eng. 24(4), 719–755 (2017). https://doi.org/10.1007/s10
515-017-0212-7

5. Shah, S., Sudarshan, S., Kajbaje, S., Patidar, S., Gupta, B., Vira, D.: Generating test data
for killing SQL mutants: a constraint-based approach. In: 2011 IEEE 27th International
Conference on Data Engineering, pp. 1175–1186. IEEE, Hannover (2011)

6. Panichella, A., Kifetew, F., Tonella, P.: Automated test case generation as a many-objective
optimisation problem with dynamic selection of the targets. IEEE Trans. Softw. Eng. 44(2),
122–158 (2018)

https://doi.org/10.1007/s10515-017-0212-7

242 Z. Ren et al.

7. Tuya, J., de laRiva, C., Suárez-Cabal,M., Blanco, R.: Coverage-aware test database reduction.
IEEE Trans. Softw. Eng. 42(10), 941–959 (2016)

8. Tuya, J., Suárez-Cabal, M., de la Riva, C.: Full predicate coverage for testing SQL database
queries. Softw. Test. Verif. Reliab. 20(3), 237–288 (2010)

9. Chilenski, J., Miller, S.: Applicability of modified condition/decision coverage to software
testing. Softw. Eng. J. 9(5), 193–200 (1994)

10. Garcia-Molina, H., Ullman, J.D.,Widom, J.: Database System Implementation. Prentice Hall,
Upper Saddle River (2000)

11. Korel, B.: Automated software test data generation. IEEE Trans. Softw. Eng. 16(8), 870–879
(1990)

12. Rojas, J., Fraser, G., Arcuri, A.: Seeding strategies in search-based unit test generation. Softw.
Test. Verif. Reliab. 26(5), 366–401 (2016)

13. Rojas, J., Vivanti, M., Arcuri, A., Fraser, G.: A detailed investigation of the effectiveness of
whole test suite generation. Empir. Softw. Eng. 22(2), 852–893 (2017). https://doi.org/10.
1007/s10664-015-9424-2

14. Panichella, A., Kifetew, F., Tonella, P.: Reformulating branch coverage as a many-objective
optimization problem. In: 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST), pp. 1–10. IEEE, Graz (2015)

15. Goldberg, D., Deb, K.: A comparative analysis of selection schemes used in genetic algo-
rithms. In: Proceedings of the First Workshop on Foundations of Genetic Algorithms,
pp. 69–93. Elsevier, Indiana (1991)

16. Ramírez,A., Romero, J.,Ventura, S.:A survey ofmany-objective optimisation in search-based
software engineering. J. Syst. Softw. 149, 382–395 (2019)

17. Ghoniem, A., Flamand, T., Haouari, M.: Optimization-based very large-scale neighbor-
hood search for generalized assignment problems with location/allocation considerations.
INFORMS J. Comput. 28(3), 575–588 (2016)

18. Pan, L., He, C., Tian, Y., Wang, H., Zhang, X., Jin, Y.: A classification-based surrogate-
assisted evolutionary algorithm for expensivemany-objective optimization. IEEETrans. Evol.
Comput. 23(1), 74–88 (2018)

https://doi.org/10.1007/s10664-015-9424-2

A New Paradigm in Interactive
Evolutionary Multiobjective Optimization

Bhupinder Singh Saini(B) , Jussi Hakanen , and Kaisa Miettinen

Faculty of Information Technology, University of Jyvaskyla, P.O. Box 35 (Agora),
40014 Jyväskylä, Finland

{bhupinder.s.saini,jussi.hakanen,kaisa.miettinen}@jyu.fi

Abstract. Over the years, scalarization functions have been used to
solve multiobjective optimization problems by converting them to one
or more single objective optimization problem(s). This study proposes a
novel idea of solving multiobjective optimization problems in an inter-
active manner by using multiple scalarization functions to map vectors
in the objective space to a new, so-called preference incorporated space
(PIS). In this way, the original problem is converted into a new mul-
tiobjective optimization problem with typically fewer objectives in the
PIS. This mapping enables a modular incorporation of decision maker’s
preferences to convert any evolutionary algorithm to an interactive one,
where preference information is directing the solution process. Advan-
tages of optimizing in this new space are discussed and the idea is demon-
strated with two interactive evolutionary algorithms: IOPIS/RVEA and
IOPIS/NSGA-III. According to the experiments conducted, the new
algorithms provide solutions that are better in quality as compared to
those of state-of-the-art evolutionary algorithms and their variants where
preference information is incorporated in the original objective space.
Furthermore, the promising results require fewer function evaluations.

Keywords: Interactive methods · Achievement scalarizing functions ·
Evolutionary algorithms · Preference information · Decision maker

1 Introduction

Many multiobjective optimization problems (MOPs) are encountered in real life
applications. Due to the conflicting nature of objectives in these problems, often
there does not exist a single optimal solution. Instead, there exists a set of Pareto
optimal solutions which represent trade-offs among the various objectives.

One family of methods, known as a posteriori methods, solve MOPs by find-
ing a set of solutions which adequately represents the entire set of Pareto optimal
solutions [18]. Evolutionary algorithms (EAs) have been employed for this with
a varying degree of success. An example of such methods is NSGA-II [6], which
works well for solving problems with a low number of objectives, but the per-
formance degrades as the number of objectives increases [9]. Recent a posteriori
EAs have tackled this problem in various ways [14].
c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 243–256, 2020.
https://doi.org/10.1007/978-3-030-58115-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_17&domain=pdf
http://orcid.org/0000-0003-2455-3008
http://orcid.org/0000-0001-9579-8657
http://orcid.org/0000-0003-1013-4689
https://doi.org/10.1007/978-3-030-58115-2_17

244 B. S. Saini et al.

However, increasing the number of objectives brings forth new challenges.
As the number of objectives increases, the number of solutions required to ade-
quately represent the set of Pareto optimal solutions (which may have an infinite
number of solutions) increases exponentially [9,14]. Regardless of the number of
objectives, only one or few of these solutions are useful to a decision maker (DM)
who wants to find and implement the desirable solution. Hence, when using a
posteriori methods, computational resources are wasted on finding solutions that
are not relevant. If objective function evaluations require time-consuming simu-
lations or physical experiments, this problem is compounded and may lead to a
waste of monetary resources as well. Moreover, these algorithms leave the task
of choosing the final solution to the DM. As each solution is a vector in a high-
dimensional objective space, comparing potentially thousands of solutions is a
difficult task. This process can set a high cognitive load on the DM.

As DMs are experts in their domain, they usually have opinions or preferences
regarding which solutions are desirable or undesirable to them. The preference
information may be elucidated in the form of desirable objective function values,
ranking of importances of objectives, pair-wise comparison of solutions and many
other techniques [16]. Recent advances in EAs try to incorporate this information
to limit the scope of search of the EA. As the DM may learn new information
about the problem during the solution process, allowing them to change their
preferences during the solution process is desirable [11]. Methods which allow
such change are known as interactive methods [17–19,30]. Ideally, this leads
to less waste of resources as only solutions that are preferable to the DM are
focused upon. Moreover, as only a small subset of the Pareto optimal solutions
is to be represented at a time, the number of solutions to be shown to the DM is
smaller, hence reducing the cognitive load. However, many interactive EAs have
problems ranging from addition of hyperparameters to lack of diversity in the
population, which can impair the optimization process [1,10].

The concept of utilizing the preferences of a DM in the solution process of an
MOP is very popular in the field of multiple criteria decision making [18,19]. One
of the methods adopted is to use scalarization functions [18,20]. These functions
utilize the preferences of the DM to map the objective function values of solu-
tions to scalar values, hence converting the MOP to one or more single objective
optimization problems. Different scalarization functions interpret the same pref-
erence information differently, and may lead to different results [20]. Different
solutions can hence be obtained by solving multiple scalarization functions with
the same preference information, as done in synchronous NIMBUS [21], or by
slightly modifying the preference information multiple times and optimizing the
same scalarization function, as done in the reference point algorithm [28].

In this paper, we explore the concept of using multiple scalarization func-
tions to create a new space: Preference Incorporated Space (PIS). First, we study
the mathematical properties of this new space. More specifically, we study the
effect of optimizing in the PIS, introducing a new paradigm in preference based
optimization: Interactive Optimization using Preference Incorporated Space
(IOPIS) algorithm. The IOPIS algorithm enables us to make use of preference

A New Paradigm in Interactive Evolutionary Multiobjective Optimization 245

information with any a posteriori EA in an interactive way, as the preference
information is encoded directly in the optimization problem in the PIS. It also
enables us to control the dimension of the space in which dominance is judged,
equal to the number of chosen scalarization functions. We then introduce the
IOPIS algorithm, a modular algorithm that takes a given number of specified
scalarization functions, and uses a DM’s preferences to convert a generic MOP to
an MOP in the preference incorporated space. This can then be solved interac-
tively with any appropriate non-interactive EA together with DM’s preferences.
As examples, we implement two versions of the new algorithm: IOPIS/RVEA
and IOPIS/NSGA-III, where the new problem in the PIS is optimized using
decomposition based EAs RVEA [4] and NSGA-III [5], respectively.

The rest of the paper is organized as follows. Section 2 discusses the
background of multiobjective optimization, EAs, and scalarization functions.
Section 3 discusses the mathematical properties of the PIS and introduces the
IOPIS algorithm with a visual explanation. In Sect. 4, we conduct an experimen-
tal study to compare the performances of the two implementations of the IOPIS
algorithm with state of the art a posteriori EAs and their interactive variants
and discuss the results. Finally, we draw conclusions in Sect. 5. All implementa-
tions and experimental data presented in this paper are open source and publicly
available at https://desdeo.it.jyu.fi as a part of the DESDEO framework.

2 Background

2.1 Multiobjective Optimization

An MOP can be defined as:

minimize {f1(x), . . . , fk(x)}
subject to x ∈ S,

(1)

where x = (x1, . . . , xn)T are vectors of decision variables belonging to the feasible
set S ⊂ R

n. The k (≥ 2) objective functions fi map vectors of S to R. The
objective function values f(x) = (f1(x), . . . , fk(x)) form objective vectors in the
objective space R

k. A solution x1 ∈ S of problem (1) is said to dominate another
solution x2 ∈ S (written as f(x1) � f(x2)) if fi(x1) ≤ fi(x2) for all i = 1, . . . , k
and fj(x1) < fj(x2) for at least one j = 1, . . . , k. Pareto optimal solutions are
solutions of the MOP which are not dominated by any other solution in S. For
this reason, they are also referred to as non-dominated solutions. Sometimes, it is
desirable for DMs to consider a subset of Pareto optimal solutions with bounded
trade-offs [18]. Such solutions are called properly Pareto optimal solutions.

We can define the set of solutions of problem (1), known as a Pareto set, as:

PSOS = {x ∈ S | �x∗∈S f(x∗) � f(x)}, (2)

where the subscript OS refers to the fact that the set was obtained by considering
the objective vectors in the objective space. We can now define an ideal point

https://desdeo.it.jyu.fi

246 B. S. Saini et al.

and a nadir point of problem (1). These points represent the lower and upper
bounds of the ranges of the objective function values among the Pareto optimal
solutions, respectively. The ideal point z∗ = (z∗

1 , . . . , z∗
k) can be calculated as

z∗
i = minx∈S fi(x). The nadir point znad = (znad1 , . . . , znadk) can be calculated

as znadi = maxx∈PSOS
fi(x). It should be noted that calculating the nadir point

requires the calculation of the PSOS . Hence, the calculation of the nadir point
is tricky in problems with more than two objectives and needs to be estimated
[8,18]. Any objective vector z is defined to be achievable if z belongs to the set:

T = {z ∈ R
k | ∃x∈S f(x) � z or f(x) = z}. (3)

By definition, the nadir point is an achievable point, while the ideal point is not.

2.2 Evolutionary Algorithms

Decomposition-based methods such as NSGA-III [5], RVEA [4], and many vari-
ants of MOEA/D [31] have become popular in the evolutionary multiobjective
optimization community. These methods decompose the objective space into
sections using directional vectors called reference vectors, reference points, or
weights. For simplicity, in what follows, we will be using the term reference
vectors (RVs). These RVs, usually spread uniformly in the objective space, rep-
resent individual single-objective optimization problems. The RVs are typically
generated using a simplex lattice design, and the number of RVs is equal to(
l+k−1
k−1

)
, where l is a parameter controlling the density of the RVs. Subsets of

the population which lie in the decomposed region associated with an RV (in
the objective space) evolve in the direction of that RV based on scalar fitness
values calculated using the RV and their objective function values.

As mentioned in the introduction, EAs which approximate the entire Pareto
front exhibit many downsides. Methods have been proposed to get around those
downsides by incorporating the preferences of the DM in an interactive fash-
ion, see, e.g. [23,26,30]. One of the ways to incorporate a DM’s preferences in
decomposition-based EAs is to manipulate the spread of the RVs to account
for the preferences [4,15]. In many such methods, the DM is required to provide
their preferences in the form of a reference point in the objective space [12,26,27].
The components of a reference point are desirable values of each objective func-
tion, which may or may not be achievable. Then, uniformly spread RVs are
translated towards this point. This translation introduces a new scalar hyperpa-
rameter which controls the final spread of the RVs around the reference point.
This method introduces a few new problems, though. Firstly, the effect of chang-
ing the value of the newly introduced hyperparameter may be difficult for a DM
to understand. But an appropriate value for this hyperparameter is important
as it has been observed that a small spread of RVs may lead to a degradation in
population diversity, which prohibits the convergence of the EA [1,10].

2.3 Achievement Scalarizing Functions

As mentioned, scalarization functions are functions that map a vector to a real-
valued scalar. The weighted sum function and the Chebyshev function used by

A New Paradigm in Interactive Evolutionary Multiobjective Optimization 247

MOEA/D and the angle-penalized distance function used by RVEA are examples
of scalarization functions [4,31]. To be regarded as a good scalarization function,
it must have some desirable properties [25]. Firstly, the solutions obtained by
optimizing the scalarization function should be Pareto optimal. Secondly, these
solutions should be satisfactory according to the preferences of a DM, if the pref-
erences are feasible. Finally, any Pareto optimal solution should be discoverable
by changing the preferences provided by the DM.

Unfortunately, no single scalarization function satisfies the three conditions
concurrently [25]. However, if we relax the conditions to only account for properly
Pareto optimal solutions, rather than all Pareto optimal solutions, then all three
conditions can be satisfied by some scalarization functions. In this paper, we
focus on a subclass of scalarization functions, known as achievement scalarizing
functions (shortened to achievement function) [29]. An achievement function is
a continuous function s : R

k → R. Achievement functions are characterized
by either being strictly increasing and order-representing, or strongly increasing
and order-approximating [29]. We will focus on the latter kind as they satisfy
all three relaxed desirable properties.

Theorem 1 [29]. Let us consider z1, z2 ∈ R
k such that z1 � z2. Then for any

order-approximating achievement function s : R
k → R, we have

s(z1) < s(z2). (4)

From Theorem 1, it can be concluded that solving the following problem:

minimize s(f(x))
subject to x ∈ S

(5)

will lead to a Pareto optimal solution of problem (1) [28,29].
A general formulation of an (order-approximating) achievement function is:

s(f(x), z̄) = max
i=1,...,k

[
fi(x) − z̄i

μi

]
+ ρ

k∑

i=1

(
fi(x) − z̄i

μi

)
, (6)

where ρ is a small positive scalar and μi are positive scalars and z̄ ∈ R
k is a

reference point provided by the DM [24]. Minimizing s(f(x), z̄) has the effect of
optimizing problem (1) by sliding a cone along the line z̄ + λµ, where λ ∈ R,
so that a minimum (>0) number of solutions lie in the cone [20]. Bounds of the
trade-offs in the solutions obtained by (5) can be controlled by changing ρ [28].

The general formulation (6) represents achievement functions that can take
preferences in other forms, not just reference points [24]. Different achievement
functions differ in how µ is set, which means they are optimizing along different
directions, albeit starting from the same reference point z̄. Hence, they may
lead to different solutions even if the same reference point is provided to them.
For the implementation of the IOPIS algorithm, we focus on the GUESS [2]
and STOM [22] scalarization functions (based on e.g., [3,20]). For the GUESS
function, μi = znadi −z̄i and for the STOM function, μi = z̄i−z∗

i . As μi > 0 for all

248 B. S. Saini et al.

i = 1, . . . , k, it follows that for these two achievement functions, z∗
i < z̄i < znadi

for all i = 1, . . . , k. Another achievement function of note is the achievement
scalarizing function (ASF) used in the reference point method [28], which is
used in the experimental study section. For ASF, μi = znadi − z∗

i .

3 Optimization in Preference Incorporated Space

3.1 Properties of Preference Incorporated Space

Let there be a set of achievement functions s = {s1, . . . , sq} with q ≥ 2. Then
we can define a PIS as the set {s(f(x), z̄) ∈ R

q}, and a new MOP in the PIS as:

minimize s(f(x), z̄) = {s1(f(x), z̄), . . . , sq(f(x), z̄)}
subject to x ∈ S.

(7)

Two solutions x1 and x2 can now be compared in two spaces. As stated in
Sect. 2.1, a solution x1 is said to dominate another solution x2 in the objective
space if f(x1) � f(x2). A solution x1 is said to dominate x2 in the PIS if
s(f(x1), z̄) � s(f(x2), z̄). Similar to (2), we can define the solutions to problem
(7), i.e., the Pareto set obtained by optimizing in the PIS as:

PSPIS = {x ∈ S | �x∗∈S s(f(x∗), z̄) � s(f(x), z̄)}. (8)

We modify the desirable properties of scalarization functions as stated in [25]
to reflect properties related to the PIS as:

1. Pareto optimal solutions in the PIS remain Pareto optimal in the objective
space.

2. Pareto optimal solutions in the PIS follow the preference given by the DM in
the objective space.

3. Any properly Pareto optimal solution of problem (1) can be discovered by
changing the reference point of problem (7).

It can be shown that the first condition is true regardless of the choice or
number of the achievement functions.

Theorem 2. Let PSPIS be the set of Pareto optimal solutions of problem (7).
Let PSOS be the set of Pareto optimal solutions of problem (1). Then,

PSPIS ⊂ PSOS . (9)

Proof. Suppose x ∈ PSPIS but x 	∈ PSOS . Therefore, there exists some x∗ such
that f(x∗) � f(x). Thus, according to Theorem1, siz̄(f(x

∗)) < siz̄(f(x)) for all
i ∈ {1, . . . , q}. Hence, sz̄(f(x∗)) � sz̄(f(x)), which contradicts x ∈ PSPIS .
�

The set PSPIS represents the trade-offs between the values of the various
achievement functions in problem (7). As the different achievement functions
are different interpretations of the same preference information obtained from a

A New Paradigm in Interactive Evolutionary Multiobjective Optimization 249

DM, the solutions in the set PSPIS represent the trade-offs between those inter-
pretations. Hence, it can be said that solutions obtained by solving problem (7)
follow the preferences given by the DM. Moreover, as PSPIS includes solutions
which minimize individual achievement functions present in PIS, and as any
properly Pareto optimal solution in the objective space can be found using the
achievement functions by changing the reference points, it follows that the third
condition also holds. Note that these results are valid for all order-approximating
scalarization functions, and not just STOM and GUESS functions.

Solving the MOP in the PIS has a few benefits compared to solving the MOP
in the objective space. Firstly, we can control the dimension of the PIS, which
is equal to the number of achievement functions chosen. This means that, given
some number (≥2) of achievement functions, we can use any multiobjective EA
(or biobjective EA, as PIS can be a two dimensional space) to solve problem
(7), regardless of the number of objectives in the original problem. Secondly,
controlling the dimension of the optimization problem also gives us an indirect
control over the number of function evaluations needed by the EA during the
optimization process. This is because the number of solutions required to ade-
quately represent the set of Pareto optimal solutions increases with increasing
the dimension of the objective space (for problem (1)) or PIS (for problem (7)).
Hence, choosing fewer achievement functions than k is an easy way to reduce
the number of function evaluations needed by an EA to solve an optimization
problem. Thirdly, by incorporating the preference information in the PIS, we
gain the ability to use any non-interactive EA in an interactive fashion. This
modularity enables easy use of well-tested EAs without needing to change them
to enable interaction with a DM.

3.2 The IOPIS Algorithm

The IOPIS algorithm takes a formulation of the optimization problem of the form
(1) as input. The algorithm also takes as its input a set of achievement functions
s. The ideal point z∗ and the nadir point znad of the problem are also taken as
inputs. As the calculation of the nadir point can be tricky in problems with more
than two objectives, approximate values of the nadir point (and ideal point) can
also be used. The solutions are generated between these two points. Hence, the
DM can use their expertise to give the approximate values of the points within
which to search. The interactive solution process begins when these points are
shown to the DM. The following four steps are repeated iteratively until the DM
has received a satisfactory solution:

1. Preference elicitation: The DM is asked to give their preferences as a reference
point based on the information currently available to them.

2. Problem creation: Using the original objectives, the known estimates of the
ideal and nadir points, the reference point, and the set of achievement func-
tions, a new optimization problem is created in the PIS, as shown in (7).

3. Problem solution: Solve the problem created in the previous step with an
EA. If this is the first iteration of the algorithm, start the EA with a new

250 B. S. Saini et al.

population, generated in a manner specific to the selected EA. In subsequent
iterations, the population from the previous iteration is used as the starting
population.

4. Display solutions: Display the solutions obtained in step 3 to the DM. The
DM can indicate the maximum number of solutions to be shown at a time in
step 4. If the number of solutions generated in step 3 exceeds the limit, e.g.,
clustering can be applied before displaying solutions.

3.3 Visual Interpretation

Even though the IOPIS algorithm is designed for optimization problems with
more than two objectives, a biobjective problem is easily visualizable to demon-
strate the algorithm. Here we use the ZDT1 problem [32] to study the effect of the
choice of the reference point on the solutions returned by one implementation of
the IOPIS algorithm. In this implementation, STOM and GUESS scalarization
functions are used with NSGA-III to solve the resulting MOP in the PIS.

(a) Reference point is not achievable (b) Reference point is on line connecting
the ideal and nadir points

(c) Reference point is achievable (d) Reference point is close to the front

Fig. 1. Solutions obtained for various reference points for the ZDT1 problem. (Color
figure online)

Four different reference points are given to the algorithm. Each subfigure in
Fig. 1 shows the corresponding objective vectors returned by the IOPIS algo-
rithm. In each subfigure, the blue dashed curve represents the true Pareto front
of the problem and the red point is the reference point. The green line represents
the direction along which the STOM function optimizes, whereas the red line
represents the direction along which the GUESS function optimizes.

A New Paradigm in Interactive Evolutionary Multiobjective Optimization 251

1. The reference point is not achievable (Fig. 1a): There is no solution that
achieves values close to the reference point. Minimizing each achievement
function individually returns the solution corresponding to the point of inter-
section of the line representing that achievement function and the Pareto
front. As can be seen, the solutions returned by the algorithm include those
solutions, and nondominated solutions in between.

2. Reference point is on the line joining the ideal and nadir point (Fig. 1b): Due
to the nature of the chosen achievement functions, only a single solution is
returned by the algorithm. This is because if the reference point is on the line
connecting the ideal and nadir, both achievement functions optimize along
the same line. This behaviour can be changed by choosing a different set
of achievement functions to form the PIS, or by shifting the reference point
slightly to increase the diversity of the solutions.

3. The reference point is achievable and dominated (Fig. 1c): The algorithm
returns a set of solutions that satisfy the given reference point. As in the first
case, optimal solutions of the individual achievement functions are included.

4. The reference point is close to the front (Fig. 1d): Bringing the reference
point closer to the front has the effect of reducing the spread of the solutions
returned by the algorithm, hence solutions are returned in a narrower region.

The spread of the solutions is controlled by the position of the reference
point. A DM who does not know very well what is realistic may provide a
reference point far from the front. In such cases, the algorithm will return a
diverse set of solutions (with an exception and possible resolutions discussed in
point 2. above). After being provided with such solutions, the DM will have more
knowledge about the trade-offs involved among the solutions, and may want to
fine-tune their search in a narrow region. This is easily accomplished by providing
a reference point closer to the now known region of the front. This methodology
of control is similar to the one proposed in the reference point method [28].

4 Numerical Results

4.1 Experimental Setup

In this study, two versions of the interactive IOPIS algorithm were implemented.
IOPIS/NSGA-III uses NSGA-III to solve the problem in the PIS, while IOPIS/
RVEA uses RVEA. In both implementations, the STOM and GUESS functions
are used as achievement functions to form the PIS. These algorithms were com-
pared against a posteriori RVEA [4] and NSGA-III [5]. Interactive versions of the
two a posteriori algorithms (iRVEA and iNSGA-III) were also implemented and
included in this study. The details of iRVEA can be found in [12] and iNSGA-III
was implemented in a similar manner. RVEA and NSGA-III were chosen for
this study as they have been shown to work well in problems with k > 2 [4,5].
Even though the problem in the PIS here is biobjective, the implementations of
the IOPIS algorithm use RVEA and NSGA-III to ensure that only the effect of
optimizing in the PIS is reflected in the results, and not the choice of the EA.

252 B. S. Saini et al.

The algorithms were compared using the DTLZ{2–4} [7] and WFG{1–9}[13]
problems, with 3–9 objectives each. The number of variables was kept as 10+k−
1, as recommended in [7]. For the IOPIS EAs, each component of the nadir point
was randomly generated from a halfnormal distribution with the underlying
normal distribution centered around 1 and having a scale of 0.15, then being
scaled up by a factor equal to the true nadir point components (1 for the DTLZ
problems, varying values for the WFG problems). This led to the generation
of nadir points with components up to 50% worse than the true nadir point.
This was done to test the performance of the IOPIS EAs in cases where only
approximate values of the nadir point are available. The true ideal point was
provided to the IOPIS EAs, as the calculation of it is relatively simpler.

Each EA was run for four iterations. For each EA, an iteration consisted
of a constant number of generations: One of {100, 150, 200, 250} for the DTLZ
problems, 100 for the WFG problems (The reason for using only 100 generations
per iteration for WFG problems will be discussed in the next subsection.). All
other hyperparameters, such as the number of solutions or algorithm specific
hyperparameters, were set to values recommended in their respective papers. In
each iteration, all interactive EAs received a common reference point randomly
generated in a hyperbox with the ideal and nadir points as opposing vertices.
The non-interactive EAs were ran through the iterations uninterrupted. Hence
336 tests with the DTLZ problems1 and 252 tests with the WFG problems2

were conducted for each of the six EAs. The algorithms were compared based
on the optimality and the preferability of the solutions returned at the end of
each iteration, and the number of function evaluations conducted.

4.2 Experimental Results

The Pareto optimal solutions of the DTLZ2-4 problems form a hypersphere in
the objective space, centered around the ideal point, which is the origin, and a
radius of one. Hence, calculating the Euclidean norm of the objective vectors of
the solutions returned by the EAs is a measure of optimality, with lower values
of the norm being closer to the Pareto front. However, these values cannot be
compared between problems, nor can they be compared for the same problem
but with a different number of objectives. Instead, the median of the norm of the
solutions returned at the end of each test was calculated for each of the six EAs.
These values were then used to rank each EA from 1 to 6 for every test, lower
ranks being given to better (lower) median norm values. A similar procedure
was followed for comparing methods based on the preferability of the solutions
returned by the EAs. The achievement function used in the reference point
method (ASF) [28] was chosen as the metric of preferability. The median ASF
values of the solutions were then used to rank the different EAs. The true nadir
point was used in the calculation of the ASF values. For the tests involving the
WFG 1–9 problems, ranks were only calculated based on median ASF values.

1 = 3 (problems) * 7 (objectives) * 4 (generations per iteration) * 4 (iterations).
2 = 9 (problems) * 7 (objectives) * 4 (iterations).

A New Paradigm in Interactive Evolutionary Multiobjective Optimization 253

(a) Ranks based on median ASF values (b) Ranks based on median norm values

Fig. 2. Heatmaps of ranks of algorithms based on the median ASF value or median
norm value of the solutions obtained. (Color figure online)

The Pareto fronts for these problems are not spherical, hence ranks based on
median norm values are not relevant.

Heatmaps of the ranks based on ASF and norm are shown in Figs. 2a and 2b,
respectively. A paired colormap was used in the creation of the heatmaps which
gave ranks 1 and 2 a blue hue, ranks 3 and 4 a green hue, and ranks 5 and 6
a red hue. This choice brings forward a clear clustering in the rankings of the 6
EAs. As seen in Fig. 2a, iRVEA and iNSGA-III tend to return more preferable
solutions than their non-interactive counterparts. This behaviour is expected
as RVEA and NSGA-III focus on the entire Pareto front, whereas iRVEA and
iNSGA-III focus on a limited region. However, as seen in Fig. 2b, the solutions
returned by iRVEA were farther away from the Pareto front compared to RVEA.
This is because as iRVEA has a much lower diversity of solutions compared to
RVEA, which hampers the optimization process.

In both heatmaps, the PIS based EAs get ranks 1 or 2 in most tests, i.e.,
these algorithms returned solutions that were more preferable, and closer to
the Pareto front than the other four algorithms. It should also be noted that
IOPIS/NSGA-III performed better than IOPIS/RVEA in most cases. Further
investigation of the PIS is required on this. The results obtained on the DTLZ3
problem are also interesting. RVEA returned solutions which were closer to the
Pareto front, compared to the other methods. While the IOPIS EAs still outper-
formed RVEA based on the preferability of the solutions, RVEA outperformed
an interactive method iNSGA-III. This is happening as iNSGA-III failed to con-
verge to the Pareto front because of the lack of diversity of the solutions, and
got stuck on one of the local fronts of the problem. While there was a correla-
tion between the problem type and the performance of the methods (IOPIS EAs
got ranks one or two more often in the WFG problems compared to the DTLZ

254 B. S. Saini et al.

problems), there was no correlation between the performance of the method and
the number of objectives. In the case of the DTLZ problems, the performance
was also not dependent on the number of generations per iteration, i.e., there
was no improvement in the results after a hundred generations (per iteration).
This is why the number of generations per iterations was fixed to 100 for the
tests involving the WFG problems.

The final metric of comparison is the number of function evaluations con-
ducted. Given a constant number of generations, the number of function evalua-
tions is linearly correlated with the population size, which is equal to the number
of RVs in the EAs considered in this paper. For RVEA, NSGA-III, iRVEA and
iNSGA-III, the RVs (and hence the number of function evaluations) increase
exponentially with an increasing number of objectives. As the IOPIS algorithms
operate in the low-dimensional PIS, the number of reference vectors, and hence
the number of function evaluations, is independent of the number of objectives,
and significantly lower than that for the other algorithms considered in the study.
It should also be noted that for all of the tests, only an approximate nadir point
was provided to the IOPIS EAs, and yet the IOPIS EAs obtain better results
than the current state of the art algorithms.

5 Conclusions

A new space PIS, where preferences are incorporated, was proposed as a new
paradigm of solving MOPs interactively. This new space makes the creation of
interactive EAs very modular, as the algorithm only needs to modify the problem
to enable interactivity, rather than the EA itself. As examples, this enabled easy
creation of the IOPIS/NSGA-III and IOPIS/RVEA implementations.

The results obtained in the numerical experiments were very promising. The
new interactive EAs outperformed standalone NSGA-III and RVEA, as well as
their interactive versions. The solutions obtained by the IOPIS EAs were closer
to the Pareto optimal front, more preferable based on the reference point and
spent less computational resources in the form of function evaluations. Further
study of the landscape of the PIS is needed. The effect of choosing different
achievement functions, their implications on the interaction mechanism by a
DM and the solutions returned by the algorithm also needs to be studied.

Acknowledgements. This research was supported by the Academy of Finland (grant
numbers 322221 and 311877). The research is related to the thematic research area
DEMO (Decision Analytics utilizing Causal Models and Multiobjective Optimization,
jyu.fi/demo) of the University of Jyväskylä.

References

1. Bechikh, S., Kessentini, M., Said, L.B., Ghédira, K.: Preference incorporation in
evolutionary multiobjective optimization: a survey of the state-of-the-art. In: Hur-
son, A.R. (ed.) Advances in Computers, vol. 98, pp. 141–207. Elsevier (2015).
(Chapter four)

A New Paradigm in Interactive Evolutionary Multiobjective Optimization 255

2. Buchanan, J.T.: A näıve approach for solving MCDM problems: the GUESS
method. J. Oper. Res. Soc. 48(2), 202–206 (1997)

3. Buchanan, J., Gardiner, L.: A comparison of two reference point methods in multi-
ple objective mathematical programming. Eur. J. Oper. Res. 149(1), 17–34 (2003)

4. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolution-
ary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5),
773–791 (2016)

5. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimiza-
tion test problems. In: Proceedings of the 2002 IEEE Congress on Evolutionary
Computation (CEC 2002), pp. 825–830. IEEE (2002)

8. Deb, K., Miettinen, K.: Nadir point estimation using evolutionary approaches:
better accuracy and computational speed through focused search. In: Ehrgott, M.,
Naujoks, B., Stewart, T.J., Wallenius, J. (eds.) Multiple Criteria Decision Making
for Sustainable Energy and Transportation Systems. LNE, vol. 634, pp. 339–354.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-04045-0 29

9. Deb, K., Saxena, D.: Searching for Pareto-optimal solutions through dimensionality
reduction for certain large-dimensional multi-objective optimization problems. In:
Proceedings of the World Congress on Computational Intelligence (WCCI 2006),
pp. 3352–3360 (2006)

10. Deb, K., Sundar, J.: Reference point based multi-objective optimization using evo-
lutionary algorithms. In: GECCO 2006: Proceedings of the 8th Annual Conference
on Genetic and Evolutionary Computation, pp. 635–642. ACM, New York (2006)

11. Eskelinen, P., Miettinen, K., Klamroth, K., Hakanen, J.: Pareto navigator for inter-
active nonlinear multiobjective optimization. OR Spectrum 32(1), 211–227 (2010).
https://doi.org/10.1007/s00291-008-0151-6

12. Hakanen, J., Chugh, T., Sindhya, K., Jin, Y., Miettinen, K.: Connections of ref-
erence vectors and different types of preference information in interactive multi-
objective evolutionary algorithms. In: Proceeding of the 2016 IEEE Symposium
Series on Computational Intelligence (SSCI), pp. 1–8 (2016)

13. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test
problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.)
EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31880-4 20

14. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimiza-
tion: a short review. In: Proceedings of the 2008 IEEE Congress on Evolutionary
Computation (IEEE World Congress on Computational Intelligence), pp. 2419–
2426 (2008)

15. Li, K., Chen, R., Min, G., Yao, X.: Integration of preferences in decomposition
multiobjective optimization. IEEE Trans. Cybern. 48(12), 3359–3370 (2018)

16. Luque, M., Ruiz, F., Miettinen, K.: Global formulation for interactive multiob-
jective optimization. OR Spectrum 33(1), 27–48 (2011). https://doi.org/10.1007/
s00291-008-0154-3

17. Meignan, D., Knust, S., Frayret, J.M., Pesant, G., Gaud, N.: A review and tax-
onomy of interactive optimization methods in operations research. ACM Trans.
Interact. Intell. Syst. 5(3), 1–43 (2015)

https://doi.org/10.1007/978-3-642-04045-0_29
https://doi.org/10.1007/s00291-008-0151-6
https://doi.org/10.1007/978-3-540-31880-4_20
https://doi.org/10.1007/978-3-540-31880-4_20
https://doi.org/10.1007/s00291-008-0154-3
https://doi.org/10.1007/s00291-008-0154-3

256 B. S. Saini et al.

18. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publish-
ers, Boston (1999). https://doi.org/10.1007/978-1-4615-5563-6

19. Miettinen, K., Hakanen, J., Podkopaev, D.: Interactive nonlinear multiobjective
optimization methods. In: Greco, S., Ehrgott, M., Figueira, J.R. (eds.) Multiple
Criteria Decision Analysis. ISORMS, vol. 233, pp. 927–976. Springer, New York
(2016). https://doi.org/10.1007/978-1-4939-3094-4 22

20. Miettinen, K., Mäkelä, M.M.: On scalarizing functions in multiobjective optimiza-
tion. OR Spectrum 24(2), 193–213 (2002). https://doi.org/10.1007/s00291-001-
0092-9

21. Miettinen, K., Mäkelä, M.M.: Synchronous approach in interactive multiobjective
optimization. Eur. J. Oper. Res. 170(3), 909–922 (2006)

22. Nakayama, H., Sawaragi, Y.: Satisficing trade-off method for multiobjective pro-
gramming. In: Grauer, M., Wierzbicki, A.P. (eds.) Interactive Decision Analysis.
LNE, vol. 229, pp. 113–122. Springer, Heidelberg (1984). https://doi.org/10.1007/
978-3-662-00184-4 13

23. Ruiz, A.B., Luque, M., Miettinen, K., Saborido, R.: An interactive evolutionary
multiobjective optimization method: interactive WASF-GA. In: Gaspar-Cunha,
A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp.
249–263. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1 17

24. Ruiz, F., Luque, M., Miettinen, K.: Improving the computational efficiency in
a global formulation (GLIDE) for interactive multiobjective optimization. Ann.
Oper. Res. 197(1), 47–70 (2012). https://doi.org/10.1007/s10479-010-0831-x

25. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization.
Elsevier, Amsterdam (1985)

26. Thiele, L., Miettinen, K., Korhonen, P.J., Molina, J.: A preference-based evolu-
tionary algorithm for multi-objective optimization. Evol. Comput. 17(3), 411–436
(2009)

27. Vesikar, Y., Deb, K., Blank, J.: Reference point based NSGA-III for preferred
solutions. In: Proceedings of the 2018 IEEE Symposium Series on Computational
Intelligence (SSCI), pp. 1587–1594 (2018)

28. Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization.
In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Appli-
cation. LNE, vol. 177, pp. 468–486. Springer, Heidelberg (1980). https://doi.org/
10.1007/978-3-642-48782-8 32

29. Wierzbicki, A.P.: A mathematical basis for satisficing decision making. Math.
Model. 3(5), 391–405 (1982)

30. Xin, B., Chen, L., Chen, J., Ishibuchi, H., Hirota, K., Liu, B.: Interactive multiob-
jective optimization: a review of the state-of-the-art. IEEE Access 6, 41256–41279
(2018)

31. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

32. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

https://doi.org/10.1007/978-1-4615-5563-6
https://doi.org/10.1007/978-1-4939-3094-4_22
https://doi.org/10.1007/s00291-001-0092-9
https://doi.org/10.1007/s00291-001-0092-9
https://doi.org/10.1007/978-3-662-00184-4_13
https://doi.org/10.1007/978-3-662-00184-4_13
https://doi.org/10.1007/978-3-319-15892-1_17
https://doi.org/10.1007/s10479-010-0831-x
https://doi.org/10.1007/978-3-642-48782-8_32
https://doi.org/10.1007/978-3-642-48782-8_32

Hypervolume Optimal µ-Distributions
on Line-Based Pareto Fronts in Three

Dimensions

Ke Shang, Hisao Ishibuchi(B), Weiyu Chen, and Lukáš Adam

Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,
Department of Computer Science and Engineering,

Southern University of Science and Technology, Shenzhen 518055, China
kshang@foxmail.com, hisao@sustech.edu.cn,

11711904@mail.sustech.edu.cn, adam@utia.cas.cz

Abstract. Hypervolume optimal µ-distribution is a fundamental
research topic which investigates the distribution of µ solutions on the
Pareto front for hypervolume maximization. It has been theoretically
shown that the optimal distribution of µ solutions on a linear Pareto
front in two dimensions is the one with µ equispaced solutions. However,
the equispaced property of an optimal distribution does not always hold
for a single-line Pareto front in three dimensions. It only holds for the
single-line Pareto front where one objective of the Pareto front is con-
stant. In this paper, we further theoretically investigate the hypervolume
optimal µ-distribution on line-based Pareto fronts in three dimensions.
In addition to a single-line Pareto front, we consider Pareto fronts con-
structed with two lines and three lines, where each line is a Pareto front
with one constant objective. We show that even the equispaced property
holds for each single-line Pareto front, it does not always hold for the
Pareto fronts combined with them. Specifically, whether this property
holds or not depends on how the lines are combined.

Keywords: Hypervolume indicator · Evolutionary multi-objective
optimization · Optimal µ-distribution

1 Introduction

The hypervolume indicator is a widely-used performance indicator in the evolu-
tionary multi-objective optimization (EMO) field. It is well recognized that the
hypervolume indicator can evaluate the convergence and diversity of a solution set
simultaneously. The most important property is that it is the only Pareto com-
pliant indicator [22]. Due to this unique property, it is guaranteed that the solu-
tions which maximize the hypervolume indicator for a given problem are all Pareto
optimal [10]. Therefore, the hypervolume indicator can be used in EMO algorithms
(EMOAs) to push the population towards the Pareto front. These kinds of EMOAs
are usually called hypervolume-based EMOAs. Their representatives are SMS-
EMOA [5,8], FV-MOEA [18], HypE [4], and R2HCA-EMOA [19].
c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 257–270, 2020.
https://doi.org/10.1007/978-3-030-58115-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_18

258 K. Shang et al.

The goal of the hypervolume-based EMOAs is to obtain a well-converged and
widely-distributed solution set for hypervolume maximization. Thus, it is impor-
tant to understand whether a widely-distributed solution set can be obtained by
maximizing the hypervolume indicator. This research issue is called the hyper-
volume optimal μ-distribution, which investigates the distribution of μ solutions
on the Pareto front for hypervolume maximization.

It has been theoretically proved that the hypervolume optimal μ-distribution
on a linear Pareto front in two dimensions is the one with μ equispaced solu-
tions [2,9]. This is the only known theoretical description of how μ solutions are
distributed on the Pareto front for hypervolume maximization in two dimen-
sions. Even though Auger et al. [2] derived the optimal density of solutions on
a continuous and differentiable nonlinear Pareto front in two dimensions for an
infinitely large number of solutions, it is difficult (presumably impossible) to
precisely determine the hypervolume optimal μ-distribution on nonlinear Pareto
fronts. In three dimensions, Shukla et al. [20] theoretically derived the hypervol-
ume optimal μ-distribution on a single-line Pareto front, which shows that the
equispaced property of an optimal distribution for a line in two dimensions does
not always hold in higher dimensions. This property only holds for the single-line
Pareto front where one objective is constant. Auger et al. [1] also theoretically
investigated the hypervolume optimal μ-distribution in three dimensions. How-
ever, things become complicated in three dimensions and the exact hypervolume
optimal μ-distribution is not obtained in [1]. Thus, the hypervolume optimal μ-
distribution in three dimensions is mainly investigated empirically [12,14–16,21],
i.e., the hypervolume optimal μ-distribution is approximated.

In this paper, we follow the path in [20] and push forward the theoreti-
cal research on the hypervolume optimal μ-distribution in three dimensions. In
particular, we focus on the line-based Pareto fronts constructed with two and
three lines where each line has a constant objective. Counter-intuitively, even the
equispaced property holds for each single-line Pareto front, it does not always
hold for the Pareto fronts combined with them. Specifically, the validity of this
property depends on how the lines are combined.

The rest of the paper is organized as follows. The preliminaries of the paper
is provided in Sect. 2. In Sect. 3, two-line Pareto fronts are investigated. In
Sect. 4, three-line Pareto fronts are investigated. Finally, the paper is concluded
in Sect. 5.

2 Preliminaries

2.1 Hypervolume Indicator and Its Optimal µ-Distribution

Formally, the hypervolume indicator is defined as follows. Given a solution set
A ⊂ R

m and a reference point r ∈ R
m, the hypervolume of the solution set A is

defined as

HV(A, r) = L
(⋃

a∈A

{b|a � b � r}
)

, (1)

Hypervolume Optimal µ-Distributions in Three Dimensions 259

where L(·) denotes the Lebesgue measure of a set, and a � b means that a
Pareto dominates b (i.e., ai ≥ bi for all i = 1, ...,m and aj > bj for at least one
j = 1, ...,m in the maximization case).

The hypervolume optimal μ-distribution is defined as follows [3]. Given a
reference point r ∈ R

m and a Pareto front F ⊂ R
m, the hypervolume optimal

μ-distribution is a set of μ ∈ N points on the Pareto front where the hypervolume
of the μ points is maximized. The set A containing the optimal μ points satisfies

A = arg max
|A′|=µ,A′⊂F

HV(A′, r). (2)

2.2 Hypervolume Optimal µ-Distribution in Two Dimensions

As theoretically proved in [2,9], the optimal μ-distribution for hypervolume max-
imization is the one with μ equispaced solutions on a linear Pareto front in
two dimensions. Let us consider the simplest linear Pareto front f1 + f2 = 1
and f1, f2 ≥ 0. In order to include the two extreme points (0, 1) and (1, 0) of
the Pareto front in the hypervolume optimal μ-distribution, the reference point
r = (r, r) should satisfy r ≤ − 1

µ−1 as proved by Brockhoff [6]1.
Figure 1 illustrates the hypervolume optimal μ-distribution in two dimen-

sions, where the reference point is specified as r = − 1
µ−1 . In this case, the two

extreme solutions are included and all solutions have the same hypervolume
contribution (i.e., the colored square) as shown in Fig. 1.

Fig. 1. An illustration of the hypervolume optimal µ-distribution on a linear Pareto
front in two dimensions. In this example, µ = 4 and r = (−1/3,−1/3). In the hyper-
volume optimal µ-distribution, the four solutions (red points) are equispaced on the
Pareto front. (Color figure online)

1 In this paper, maximization of each objective is assumed in multi-objective opti-
mization problems. In the case of minimization, this condition is rewritten as
r ≥ 1 + 1/(µ − 1).

260 K. Shang et al.

2.3 Hypervolume Optimal µ-Distribution in Three Dimensions

Throughout of this paper, we consider Pareto fronts in the normalized objective
space [0, 1]3 and the reference point r = (r, r, r) (i.e., each element is the same).

In [20], the hypervolume optimal μ-distribution on a single-line Pareto front
in three dimensions is theoretically investigated. In three dimensions, single-line
Pareto fronts can be categorized into the following two types:

1. Type I: Two objectives are conflicting with each other, and the other objec-
tive is constant. For example, f1 and f3 are conflicting with each other, and
f2 has a constant value (see Fig. 2(a)).

2. Type II: Two objectives are consistent with each other, and the other objec-
tive is conflicting with the two objectives. For example, f1 and f2 are consis-
tent, and f3 is conflicting with f1 and f2 (see Fig. 2(b)).

Fig. 2. Single-line Pareto fronts in three dimensions.

As proved in [20], the hypervolume optimal μ-distribution is only equispaced
on Type I Pareto front, whereas it is not equispaced on Type II Pareto front.
This indicates that the optimal distribution theory on the linear Pareto front
in two dimensions cannot be generalized to three dimensions. As illustrated in
Fig. 2(a), for Type I Pareto front f1 + f3 = 1, f1, f3 ≥ 0, f2 = 0 and r =
(r, r, r) where r = − 1

µ−1 , the equispaced solutions have the same hypervolume
contribution. We can see that the hypervolume of the three solutions equals to
the two-dimensional hypervolume of the three solutions in f1-f3 space times |r|.
Thus, in this situation, hypervolume maximization in three dimensions can be
treated as hypervolume maximization in two dimensions. However, for Type II
Pareto front f1 + f3 = 1, f1, f3 ≥ 0, f1 = f2 and r = (r, r, r) where r = − 1

µ−1

in Fig. 2(b), the equispaced solutions have different hypervolume contributions.
The lower solution (with the smaller value of f3) has a larger hypervolume
contribution than the upper solution. The whole hypervolume can be increased
by slightly moving the middle solution towards the lower solution, which means
that the equispaced solutions are not optimal for hypervolume maximization of
μ solutions.

Hypervolume Optimal µ-Distributions in Three Dimensions 261

In the rest of this paper, we focus on Type I Pareto front and extend it
to Pareto fronts which consist of two and three joint Type I Pareto fronts.
We investigate whether the equispaced property of the hypervolume optimal
μ-distribution still holds or not on these extended Pareto fronts.

3 Two-Line Pareto Fronts

In this section, we extend the Type I Pareto front, and investigate the hypervol-
ume optimal μ-distribution on a Pareto front which consists of two joint Type I
Pareto fronts.

For such a two-line Pareto front, there are two different types as follows:

1. Type III: The two lines lie on a triangular front. For example, the first line is
f1+f2 = 1, f1, f2 ≥ 0 and f3 = 0, and the second line is f1+f3 = 1, f1, f3 ≥ 0
and f2 = 0, both lying on the triangular front f1 + f2 + f3 = 1, f1, f2, f3 ≥ 0
(see Fig. 3(a)).

2. Type IV: The two lines lie on an inverted triangular front. For example,
the first line is f1 + f2 = 1, f1, f2 ≥ 0 and f3 = 1, and the second line is
f1 + f3 = 1, f1, f3 ≥ 0 and f2 = 1, both lying on the inverted triangular front
f1 + f2 + f3 = 2, 0 ≤ f1, f2, f3 ≤ 1 (see Fig. 3(b)).

Fig. 3. Two-line Pareto fronts in three dimensions.

Next, we investigate the hypervolume optimal μ-distribution on each of these
two types of Pareto fronts.

3.1 Type III Pareto Front

Let us consider the Pareto front with two lines where the first line is f1 + f3 =
1, f1, f3 ≥ 0 and f2 = 0, and the second line is f1 +f2 = 1, f1, f2 ≥ 0 and f3 = 0.
We will investigate whether the uniformly distributed solutions on the Type III
Pareto front are optimal or not for hypervolume maximization of μ solutions.
Here, the uniformity means that the same number of solutions are uniformly

262 K. Shang et al.

distributed on each line. We assume that the three extreme solutions (1,0,0),
(0,1,0) and (0,0,1) are included in the optimal μ-distribution (i.e., all extreme
points of the two lines are included in the optimal μ-distribution). Figure 3(a)
gives an illustration of the uniform solution set on the Type III Pareto front.

Given the reference point r = (r, r, r), the following theorem tells us that
Fig. 3(a) is indeed optimal for hypervolume maximization of μ solutions.

Theorem 1. For μ > 3 and μ is odd, if r ≤ − 2
µ−1 , the hypervolume optimal μ-

distribution on the Type III Pareto front is the one with µ+1
2 solutions uniformly

distributed on each of the two lines, where the three extreme points (i.e., (1,0,0),
(0,1,0), (0,0,1)) are included in the optimal μ-distribution.

Proof. Suppose there are μ1 solutions on the first line and μ2 solutions on the
second line where μ1 + μ2 = μ + 1 (since (1, 0, 0) belongs to both lines). We
can divide the whole hypervolume into two parts as illustrated in Fig. 4. The
first part (denoted as HV1) is the hypervolume determined by the solutions on
the first line with the reference point r1 = (r, r, r). The second part (denoted as
HV2) is the hypervolume determined by the solutions on the second line with
the reference point r2 = (r, 0, r).

Fig. 4. An illustration of the decomposition of the hypervolume into two parts.

After the division, the hypervolume can be calculated as HV = HV1 + HV2.
Thus, maximizing HV is equivalent to maximizing HV1 + HV2. We can see
that HV1 is the two-dimensional hypervolume in the f1-f3 space (denoted as
HV f1-f3

1) times |r|, and HV2 is the two-dimensional hypervolume in the f1-f2
space (denoted as HV f1-f2

2) times |r|. Therefore, maximizing HV1 + HV2 is
equivalent to maximizing HV f1-f3

1 + HV f1-f2
2 .

Based on the theory for the hypervolume optimal μ-distribution in two
dimensions [2], we can conclude that the μ1 solutions are equally spaced on
the first line and the μ2 solutions are equally spaced on the second line in order
to maximize HV f1-f3

1 and HV f1-f2
2 , respectively.

Now the question is the relation between μ1 and μ2 when there are μ solutions
in total. Given μ1 uniform points on the first line and μ2 uniform points on the
second line where μ1 + μ2 = μ + 1 (since (1, 0, 0) is on both lines), HV f1-f3

1 and

Hypervolume Optimal µ-Distributions in Three Dimensions 263

HV f1-f2
2 can be calculated as follows:

HV f1-f3
1 =

1
2

− 1
2(μ1 − 1)

− r(2 − r),

HV f1-f2
2 =

1
2

− 1
2(μ2 − 1)

− r.

(3)

Then we need to solve the following optimization problem:

maximize: HV f1-f3
1 + HV f1-f2

2

= 1 − 1
2(μ1 − 1)

− 1
2(μ2 − 1)

− r(3 − r),

subject to: μ1 + μ2 = μ + 1 and μ1, μ2 ∈ Z+.

(4)

It is not difficult to solve the above optimization problem by relaxing μ1 and
μ2 to real values. The optimal values of μ1 and μ2 are as follows:

μ1 = μ2 =
μ + 1

2
. (5)

Since μ is assumed to be odd, Eq. (5) is the optimal solution of (4). Finally,
from the analysis about the reference point specification in two dimensions, it
is easy to obtain that the reference point should satisfy r ≤ − 2

µ−1 in order to
include the three extreme solutions in the optimal μ-distribution. �

If the reference point is specified as r = − 2
µ−1 , then all the uniformly dis-

tributed solutions have the same hypervolume contribution as shown in Fig. 3(a).
Here we need to note that Theorem 1 only holds when r = (r, r, r), i.e., each ele-
ment of r is the same. For example, when r = (r, r′, r) where r′ � r, Theorem 1
will not hold since the solutions on the first line will have much larger hyper-
volume contribution than the solutions on the second line. We can expect that
more solutions will distribute on the first line in this situation. Since we only
consider r = (r, r, r) as stated in Sect. 2.3, we do not discuss this issue much in
this paper.

3.2 Type IV Pareto Front

Let us consider the Pareto front with two lines where the first line is f1 +
f2 = 1, f1, f2 ≥ 0 and f3 = 1, and the second line is f1 + f3 = 1, f1, f3 ≥ 0
and f2 = 1. Similar to the previous subsection, we investigate whether the
uniformly distributed solutions on the Type IV Pareto front are optimal or
not for hypervolume maximization of μ solutions. We assume that the same
number of solutions are uniformly distributed on each line, and the three extreme
solutions (1,0,1), (0,1,1) and (1,1,0) are included in the optimal μ-distributions.
Figure 3(b) gives an illustration of the uniform solution set on the Type IV
Pareto front.

Given the reference point r = (r, r, r), the following theorem tells us that
Fig. 3(b) is not optimal for hypervolume maximization of μ solutions.

264 K. Shang et al.

Theorem 2. For μ > 3 and μ is odd, the uniformly distributed solutions
(including the three extreme solutions) on the Type IV Pareto front are not
optimal for hypervolume maximization of μ solutions.

Proof. Suppose there are μ′ solutions uniformly distributed on each of the two
lines, then μ′ = µ+1

2 . Let a1,a2, ...,aµ′ denote the solutions on the line from
(0, 1, 1) to (1, 1, 0) where a1 = (0, 1, 1) and aµ′ = (1, 1, 0) are the two extreme
solutions of this line. We assume that a1, a2, ..., aµ′ are on the line in this order.
Figure 3(b) illustrates the hypervolume of the uniformly distributed solutions
on the Type IV Pareto front. We can observe that different solutions have dif-
ferent hypervolume contributions. The hypervolume contribution of ai can be
calculated as follows based on the observation in Fig. 3(b):

HV C(ai) = (i − 1)
(

1
μ′ − 1

)3

, i = 2, ..., μ′ − 1. (6)

Fig. 5. An illustration of moving a solution.

Now if we move ai towards ai+1 for any i ∈ {2, ..., μ′ − 1} (i.e., only one
solution is moved and all the others are fixed as illustrated in Fig. 5) to obtain a
new solution a′

i = ai+α(ai+1−ai) where α ∈ [0, 1], the hypervolume contribution
of a′

i is

HV C(a′
i) = [(i − 1)(1 − α)(1 + α) + α(1 − α)]

(
1

μ′ − 1

)3

. (7)

The difference between HV C(a′
i) and HV C(ai) is

HV C(a′
i) − HV C(ai) = (−iα2 + α)

(
1

μ′ − 1

)3

. (8)

It is easy to obtain that if 0 < α < 1
i , HV C(a′

i)−HV C(ai) > 0, which means
that the hypervolume contribution of a′

i is larger than that of ai. Thus, the
overall hypervolume can be improved by moving ai to a′

i. We can conclude that
the original uniformly distributed solution set is not optimal for hypervolume
maximization of μ solutions. �

Hypervolume Optimal µ-Distributions in Three Dimensions 265

In Theorem 2, we only proved that the uniform solution set on the Type
IV Pareto front is not optimal for hypervolume maximization of μ solutions.
We leave it as an open question to exactly describe the hypervolume optimal
μ-distribution on the Type IV Pareto front. Also, we explicitly assume that
the three extreme solutions are included whereas this depends on the reference
point specification. It seems from our empirical investigation that all the extreme
points are included in the optimal μ-distribution if the reference point is suffi-
ciently far away from the Pareto front.

4 Three-Line Pareto Fronts

In the previous section, we investigated the Pareto fronts with two joint lines
and showed that the hypervolume optimal μ-distribution is uniform on the Type
III Pareto front and nonuniform on the Type IV Pareto front. In this section,
we examine Pareto fronts with three Type I lines. Two types of Pareto fronts
with three Type I lines are considered as follows:

1. Type V: The three lines lie on the triangular front. For example, the three
lines are the three edges of the triangular front f1 + f2 + f3 = 1, f1, f2, f3 ≥ 0
(see Fig. 6(a)).

2. Type VI: The three lines lie on the inverted triangular front. For example,
the three lines are the three edges of the inverted triangular front f1+f2+f3 =
2, 0 ≤ f1, f2, f3 ≤ 1 (see Fig. 6(b)).

Fig. 6. Three-line Pareto fronts in three dimensions.

Next, the hypervolume optimal μ-distributions on these two types of Pareto
fronts are investigated.

4.1 Type V Pareto Front

Let us consider the three-line Pareto front with a triangular shape specified by
f1 +f2 +f3 = 1, f1, f2, f3 ≥ 0. We investigate whether the uniformly distributed

266 K. Shang et al.

solutions on the Type V Pareto front are optimal or not for hypervolume max-
imization of μ solutions. Here, the uniformity means that the same number of
solutions are uniformly distributed on each line, and the three extreme solu-
tions (i.e., (1,0,0), (0,1,0), (0,0,1)) are included in the optimal μ-distribution.
Figure 6(a) gives an illustration of the uniformly distributed solution set on the
Type V Pareto front.

Given the reference point r = (r, r, r), the following theorem tells us that
Fig. 6(a) is optimal for hypervolume maximization of μ solutions.

Theorem 3. For μ > 3 and μ is a multiple of three, if r ≤ − 3
µ , the hypervolume

optimal μ-distribution on the Type V Pareto front is that µ+3
3 solutions are

uniformly distributed on each of the three lines, where the three extreme points
(i.e., (1,0,0), (0,1,0), (0,0,1)) are included.

Proof. The proof is similar to that of Theorem1. We divide the hypervolume into
three parts (HV1, HV2, and HV3) as illustrated in Fig. 7. Then the hypervolume
can be calculated as HV = HV1 + HV2 + HV3. Similarly, maximizing HV1 +
HV2 + HV3 is equivalent to maximizing HV f1-f3

1 + HV f1-f2
2 + HV f2-f3

3 .

Fig. 7. An illustration of the decomposition of the hypervolume into three parts.

Given μ1, μ2 and μ3 solutions on each of the three lines where μ1+μ2+μ3 =
μ + 3 (since each extreme solution belongs to two lines), HV f1-f3

1 , HV f1-f2
2 and

HV f2-f3
3 can be calculated as follows:

HV f1-f3
1 =

1
2

− 1
2(μ1 − 1)

− r(2 − r),

HV f1-f2
2 =

1
2

− 1
2(μ2 − 1)

− r,

HV f2-f3
3 =

1
2

− 1
2(μ3 − 1)

.

(9)

Hypervolume Optimal µ-Distributions in Three Dimensions 267

Then we need to solve the following optimization problem:

maximize: HV f1-f3
1 + HV f1-f2

2 + HV f2-f3
3

=
3
2

− 1
2(μ1 − 1)

− 1
2(μ2 − 1)

− 1
2(μ3 − 1)

− r(3 − r),

subject to: μ1 + μ2 + μ3 = μ + 3 and μ1, μ2, μ3 ∈ Z+.

(10)

By relaxing μ1, μ2 and μ3 to real values, we can obtain the optimal values
of μ1, μ2 and μ3 as follows:

μ1 = μ2 = μ3 =
μ + 3

3
. (11)

Since μ is a multiple of three, Eq. (11) is the optimal solution of (10). Finally,
from the analysis about the reference point specification in two dimensions, it is
easy to show that the reference point should satisfy r ≤ − 3

µ in order to include
the three extreme solutions in the optimal distribution. �

If the reference point is specified as r = − 3
µ , each of the uniformly distributed

solutions has the same hypervolume contribution as illustrated in Fig. 6(a). The-
orem 3 is also restricted to the case where each element of r is the same, so that
each line has equal importance to the overall hypervolume.

4.2 Type VI Pareto Front

Let us consider the three-line Pareto front with an inverted triangular shape
specified by f1 + f2 + f3 = 2, 0 ≤ f1, f2, f3 ≤ 1. We investigate whether the
uniformly distributed solutions on the Type VI Pareto front are optimal or not
for hypervolume maximization of μ solutions. We assume that the same number
of solutions are distributed on each line, and the three extreme solutions (i.e.,
(1,0,1), (0,1,1), (1,1,0)) are included in the optimal distribution. Figure 6(b)
illustrates the uniformly distributed solution set on the Type VI Pareto front.

Given the reference point r = (r, r, r), the following theorem tells that
Fig. 6(b) is not optimal for hypervolume maximization of μ solutions.

Theorem 4. Given μ > 6 and μ is a multiple of three, the uniformly distributed
solutions (including the three extreme solutions) on the Type VI Pareto front are
not optimal for hypervolume maximization of μ solutions.

Proof. The proof is similar to that of Theorem2. Suppose there are μ′ solutions
uniformly distributed on each of the three lines, then μ′ = µ+3

3 . Let a1,a2, ...,aµ′

denote the uniformly distributed solutions in this order on the line from (0, 1, 1)
to (1, 1, 0) where a1 = (0, 1, 1) and aµ′ = (1, 1, 0) are the two extreme solutions
of this line. Figure 6(b) illustrates the hypervolume of the uniformly distributed
solutions on the Type VI Pareto front. Then the hypervolume contribution of ai

268 K. Shang et al.

can be calculated as follows2:

HV C(ai) = HV C(aµ′+1−i) = (i − 1)
(

1
μ′ − 1

)3

, i = 2, ...,

⌊
μ′

2

⌋
+ 1. (12)

If we move ai towards ai+1 for any i ∈ {2, ..., �µ′

2 	} (i.e., only one solution
is moved and all the others are fixed, which is similar to the case in Fig. 5) to
obtain a new solution a′

i = ai + α(ai+1 − ai) where α ∈ [0, 1], we can improve
the overall hypervolume if 0 < α < 1

i . We can conclude that the original uni-
formly distributed solution set is not optimal for hypervolume maximization of
μ solutions. �

In Theorem 4, we only show that the uniformly distributed solution set on the
Type VI Pareto front is not optimal for hypervolume maximization of μ solutions.
We leave it as an open question to exactly describe the hypervolume optimal
μ-distribution on the Type VI Pareto front. We also explicitly assume that the
three extreme solutions are included in the optimal distribution. A sufficiently
far away reference point guarantees this based on our empirical investigation.

We also need to emphasize that Theorem 4 only holds for μ > 6. If μ ≤ 6,
which means that at most three solutions lie on each line, we cannot use the
method in Theorem 4 to perturb one solution to get a better overall hypervolume.

5 Conclusions

In this paper, we investigated the hypervolume optimal μ-distributions theoret-
ically on the line-based Pareto fronts in three dimensions. In addition to the
single-line Pareto front, we considered two-line and three-line Pareto fronts. We
demonstrated that the optimal distribution theory on the linear Pareto front in
two dimensions cannot always be generalized to three dimensions. The hypervol-
ume optimal μ-distributions are only uniform on the Types I, III and V Pareto
fronts, whereas they are nonuniform on the Types II, IV, and VI Pareto fronts.
Our results can help EMO researchers to understand the hypervolume indicator
more deeply. Uniformity cannot always be guaranteed by maximizing the hyper-
volume indicator, which suggests us to carefully use the hypervolume indicator
in more than two dimensions.

In the future, the following research topics can be addressed based on our
current work. 1) We did not prove the exact hypervolume optimal μ-distributions
on the Types IV and VI Pareto fronts. It will be interesting and challenging to
derive the exact hypervolume optimal μ-distribution for each of these Pareto
fronts. The hypervolume Newton method [13] is promising for addressing this
issue. 2) The Pareto fronts considered in this paper are very simple and not
realistic. We will consider more realistic Pareto fronts (e.g., the Pareto fronts of

2 Due to the page limitation, the derivation of Eq. (12) is omitted here. Equation (12)
can be obtained by visually examining figures like Fig. 6(b) with a different number
of solutions (e.g., five or six solutions on each line).

Hypervolume Optimal µ-Distributions in Three Dimensions 269

DTLZ1 [7] and minus-DTLZ1 [17] problems) in our future study. In fact, the
Pareto fronts considered in this paper can be seen as the Pareto fronts of the
subproblems of DTLZ1 and minus-DTLZ1 [11].

Acknowledgments. This work was supported by National Natural Science Founda-
tion of China (Grant No. 61876075), Guangdong Provincial Key Laboratory (Grant
No. 2020B121201001), the Program for Guangdong Introducing Innovative and Enter-
preneurial Teams (Grant No. 2017ZT07X386), Shenzhen Science and Technology Pro-
gram (Grant No. KQTD2016112514355531), the Program for University Key Labora-
tory of Guangdong Province (Grant No. 2017KSYS008).

References

1. Auger, A., Bader, J., Brockhoff, D.: Theoretically investigating optimal µ-
distributions for the hypervolume indicator: first results for three objectives. In:
Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol.
6238, pp. 586–596. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15844-5 59

2. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indica-
tor: optimal µ-distributions and the choice of the reference point. In: Proceedings
of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, pp.
87–102. ACM (2009)

3. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based multiobjective
optimization: theoretical foundations and practical implications. Theor. Comput.
Sci. 425, 75–103 (2012)

4. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-
objective optimization. Evol. Comput. 19(1), 45–76 (2011)

5. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

6. Brockhoff, D.: Optimal µ-distributions for the hypervolume indicator for problems
with linear bi-objective fronts: exact and exhaustive results. In: Deb, K., et al. (eds.)
SEAL 2010. LNCS, vol. 6457, pp. 24–34. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-17298-4 2

7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolu-
tionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.)
Evolutionary Multiobjective Optimization. Advanced Information and Knowl-
edge Processing, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/
1-84628-137-7 6

8. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume
measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A.,
Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31880-4 5

9. Emmerich, M., Deutz, A., Beume, N.: Gradient-based/evolutionary relay hybrid
for computing Pareto front approximations maximizing the S-metric. In: Bartz-
Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G.,
Sampels, M. (eds.) HM 2007. LNCS, vol. 4771, pp. 140–156. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-75514-2 11

https://doi.org/10.1007/978-3-642-15844-5_59
https://doi.org/10.1007/978-3-642-15844-5_59
https://doi.org/10.1007/978-3-642-17298-4_2
https://doi.org/10.1007/978-3-642-17298-4_2
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/978-3-540-31880-4_5
https://doi.org/10.1007/978-3-540-75514-2_11

270 K. Shang et al.

10. Fleischer, M.: The measure of Pareto optima applications to multi-objective meta-
heuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.)
EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36970-8 37

11. Gebken, B., Peitz, S., Dellnitz, M.: On the hierarchical structure of pareto critical
sets. J. Glob. Optim. 73(4), 891–913 (2019). https://doi.org/10.1007/s10898-019-
00737-6

12. Glasmachers, T.: Optimized approximation sets for low-dimensional benchmark
Pareto fronts. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.)
PPSN 2014. LNCS, vol. 8672, pp. 569–578. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10762-2 56

13. Hernández, V.A.S., Schütze, O., Wang, H., Deutz, A., Emmerich, M.: The set-
based hypervolume Newton method for bi-objective optimization. IEEE Trans.
Cybern. 50(5), 2186–2196 (2018)

14. Ishibuchi, H., Imada, R., Masuyama, N., Nojima, Y.: Comparison of hypervolume,
IGD and IGD+ from the viewpoint of optimal distributions of solutions. In: Deb,
K., et al. (eds.) EMO 2019. LNCS, vol. 11411, pp. 332–345. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-12598-1 27

15. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Hypervolume subset selection
for triangular and inverted triangular pareto fronts of three-objective problems.
In: Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic
Algorithms, pp. 95–110. ACM (2017)

16. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Reference point specification in
hypervolume calculation for fair comparison and efficient search. In: Proceedings of
the Genetic and Evolutionary Computation Conference, pp. 585–592. ACM (2017)

17. Ishibuchi, H., Setoguchi, Y., Masuda, H., Nojima, Y.: Performance of
decomposition-based many-objective algorithms strongly depends on Pareto front
shapes. IEEE Trans. Evol. Comput. 21(2), 169–190 (2017)

18. Jiang, S., Zhang, J., Ong, Y.S., Zhang, A.N., Tan, P.S.: A simple and fast hypervol-
ume indicator-based multiobjective evolutionary algorithm. IEEE Trans. Cybern.
45(10), 2202–2213 (2015)

19. Shang, K., Ishibuchi, H.: A new hypervolume-based evolutionary algorithm for
many-objective optimization. IEEE Trans. Evol. Comput. (Early Access) (2020)

20. Shukla, P.K., Doll, N., Schmeck, H.: A theoretical analysis of volume based Pareto
front approximations. In: Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation, pp. 1415–1422 (2014)

21. Tanabe, R., Ishibuchi, H.: An analysis of quality indicators using approximated
optimal distributions in a three-dimensional objective space. IEEE Trans. Evol.
Comput. (Early Access) (2020)

22. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on
the design of Pareto-compliant indicators via weighted integration. In: Obayashi,
S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol.
4403, pp. 862–876. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-70928-2 64

https://doi.org/10.1007/3-540-36970-8_37
https://doi.org/10.1007/3-540-36970-8_37
https://doi.org/10.1007/s10898-019-00737-6
https://doi.org/10.1007/s10898-019-00737-6
https://doi.org/10.1007/978-3-319-10762-2_56
https://doi.org/10.1007/978-3-319-10762-2_56
https://doi.org/10.1007/978-3-030-12598-1_27
https://doi.org/10.1007/978-3-540-70928-2_64
https://doi.org/10.1007/978-3-540-70928-2_64

Adaptive Operator Selection Based
on Dynamic Thompson Sampling

for MOEA/D

Lei Sun1 and Ke Li2(B)

1 College of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu, China

2 Department of Computer Science, University of Exeter, Exeter EX4 5DS, UK
k.li@exeter.ac.uk

Abstract. In evolutionary computation, different reproduction oper-
ators have various search dynamics. To strike a well balance between
exploration and exploitation, it is attractive to have an adaptive oper-
ator selection (AOS) mechanism that automatically chooses the most
appropriate operator on the fly according to the current status. This
paper proposes a new AOS mechanism for multi-objective evolutionary
algorithm based on decomposition (MOEA/D). More specifically, the
AOS is formulated as a multi-armed bandit problem where the dynamic
Thompson sampling (DYTS) is applied to adapt the bandit learning
model, originally proposed with an assumption of a fixed award distri-
bution, to a non-stationary setup. In particular, each arm of our bandit
learning model represents a reproduction operator and is assigned with a
prior reward distribution. The parameters of these reward distributions
will be progressively updated according to the performance of its per-
formance collected from the evolutionary process. When generating an
offspring, an operator is chosen by sampling from those reward distri-
bution according to the DYTS. Experimental results fully demonstrate
the effectiveness and competitiveness of our proposed AOS mechanism
compared with other four state-of-the-art MOEA/D variants.

Keywords: Dynamic Thompson sampling · Adaptive operator
selection · Evolutionary computation · MOEA/D

1 Introduction

Multi-objective optimisation problems (MOPs) are ubiquitous in various scien-
tific [3] and engineering domains [11]. Due to the conflicting nature of different
objectives, there does not exist a global optimum that optimises all objectives

K. Li was supported by UKRI Future Leaders Fellowship (Grant No. MR/S017062/1)
and Royal Society (Grant No. IEC/NSFC/170243).

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 271–284, 2020.
https://doi.org/10.1007/978-3-030-58115-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_19&domain=pdf
http://orcid.org/0000-0001-7200-4244
https://doi.org/10.1007/978-3-030-58115-2_19

272 L. Sun and K. Li

simultaneously. Instead, multi-objective optimisation aims to find a set of trade-
off alternatives, an improvement at one objective of which can lead to a degrada-
tion of at least one other objective, that approximate the Pareto-optimal front
(PF).

Due to the population-based characteristics, evolutionary algorithm (EA) has
been recognised as the major approach for multi-objective optimisation. Over
the past three decades and beyond, a significant amount of efforts have been
devoted to the development of evolutionary multi-objective optimisation (EMO)
algorithms, e.g., fast non-dominated sorting genetic algorithm II (NSGA-II) [5],
indicator-based EA (IBEA) [17] and multi-objective EA based on decomposition
(MOEA/D) [13]. It is widely appreciated that the search behaviour of an EA
largely depends on its reproduction operator(s). In particular, some operators
are exploration-oriented and are good at exploring unknown regions in the search
space; whilst the others are exploitation-oriented and mainly focus on exploiting
the current superior regions. How to strike a balance between exploration and
exploitation is a long standing topic in order to achieve an efficient and effective
evolutionary search process.

Adaptive operator selection (AOS) is an emerging paradigm that aims to
autonomously select the most appropriate reproduction operator according to
the latest search dynamics. Generally speaking, an AOS paradigm consists of two
major steps. One is credit assignment that gives an operator a reward accord-
ing to its up to date performance; the other is decision-making that selects the
‘appropriate’ operator for the next stage according to the accumulated awards.
A fundamental issue behind the AOS is an exploration versus exploitation (EvE)
dilemma. One hopes to give more chances to operators with decent track records
(exploitation), but also wants to explore poor operators in the future search
(exploration), since an operator might perform significantly differently at dif-
ferent search stages. It is worth noting that credit assignment under a multi-
objective setting is even more challenging due to the conflicting characteris-
tics of different objectives. To address the EvE dilemma, Li et al. [9] initially
transformed the AOS problem into a multi-armed bandits (MAB) problem and
applied the classic upper confidence bound (UCB) algorithm [1] to implement
an AOS paradigm in EMO. As for the difficulty of credit assignment in multi-
objective optimisation, MOEA/D is used as the baseline given that it decomposes
the original MOP into several single objective subproblems which facilitate the
fitness evaluation.

However, one of the major concerns of using bandit learning for AOS is its
stationary environment assumption used in the traditional MAB model. In other
words, the probability distribution of the reward for pulling an arm is fixed a
priori whereas the evolutionary search process is highly non-stationary. Bearing
this consideration in mind, this paper proposes to use the dynamic Thompson
sampling strategy [6] to address the EvE dilemma under a non-stationary envi-
ronment. More specifically, in our AOS paradigm, each reproduction operator is
regarded as an arm in a bandit game and is assigned with a prior reward dis-
tribution. During the evolutionary search process, the credit of each operator is

Adaptive Operator Selection Based on Dynamic Thompson Sampling 273

updated according to the fitness improvement achieved by using the correspond-
ing operator along with the parameters associated with its reward distribution.
During the decision-making step, a reproduction operator is selected by sam-
pling from those reward distributions. To facilitate the fitness evaluation under
a multi-objective setting, we carry on with the MOEA/D as the baseline and
the end algorithm is denoted as MOEA/D-DYTS. From our experiments, we
have witnessed the superior performance of MOEA/D-DYTS over other four
state-of-the-art MOEA/D variants on 19 benchmark test problems.

The remainder of this paper is organised as follows. Section 2 provides some
preliminary knowledge. Section 3 delineates the technical details of our proposed
MOEA/D-DYTS step by step. The performance of MOEA/D-DYTS is validated
in Sect. 4. At the end, Sect. 5 concludes this paper and shed some lights on future
directions.

2 Preliminaries

In this section, we provide the preliminary knowledge, including some definitions
related to multi-objective optimisation and the baseline algorithm, required in
this paper.

2.1 Multiobejctive Optimization Problems

Without loss of generality, the MOP considered in this paper is defined as:

minimize F(x) = (f1(x), · · · , fm(x))
subject to x ∈ Ω

, (1)

where x = (x1, · · · , xn) ∈ Ω is a decision variable vector, Ω = Πn
i=1[li, ui] ∈ R

n

is the decision space where li and ui are the lower and upper bounds of the i-th
dimension. F : Ω → R

m consists of m conflicting objective functions. Given two
decision vectors x1 and x2 ∈ Ω, x1 is said to dominate x2, denoted as x1 � x2,
if and only if fi(x1) ≤ fi(x2) for all i ∈ {1, · · · ,m} and F(x1) �= F(x2). A
solution x∗ ∈ Ω is said to be Pareto-optimal when no other solution x ∈ Ω can
dominate x∗. The set of all Pareto-optimal solutions is called Pareto-optimal set
(PS) whilst its image in the objective space is called the PF.

2.2 Baseline Algorithm

In this paper, we use the MOEA/D as the baseline EMO framework. The basic
idea of MOEA/D is to decompose the original MOP into several subproblems,
each of which is either as an aggregated scalarising function or simplified MOP.
Thereafter, MOEA/D uses a population-based meta-heuristic to solve these sub-
problems in a collaborative manner. In particular, the widely used Tchebychff
function is used to form the subproblem in this paper and it is defined as:

min
x∈Ω

gtch (x|w, z∗) = max
1≤i≤m

{|fi(x) − z∗
i | /wi} , (2)

274 L. Sun and K. Li

where w = (w1, · · · , wm) is a weight vector, evenly sampled from a canonical
simplex, with wi ≥ 0, i ∈ {1, · · · ,m}, and

∑m
i=1 wi = 1. z∗ = (z1, · · · , zm) is

the ideal objective where zi = minx∈PS fi(x), i ∈ {1, · · · ,m}. From the above
description, we can see that the quality of a solution x ∈ Ω can be evaluated
by a subproblem gtch (x|w, z∗) which facilitates the credit assignment under a
multi-objective setting.

Note that instead of using the vanilla MOEA/D, here we use its variant
with a dynamic resource allocation scheme, dubbed as MOEA/D-DRA [14], as
the baseline algorithm given its outstanding performance in CEC 2009 MOEA
competition. Different from the vanilla MOEA/D where all subproblems are
allocated with the same amount of the computational resources, MOEA/D-DRA
dynamically selects some most promising subproblems to evolve according to
their utilities defined as:

πi =

{
1 if Δi > 0.001(
0.95 + 0.05 × Δi

0.001

)
× πi otherwise , (3)

where Δi is the fitness improvement rates (FIR) of the objective function value
in subproblem i, which is defined as:

Δi =
gtch (xi

t−Δt|wi, z∗) − gtch
(
xi

t|wi, z∗)

gtch
(
xi

t−Δt|wi, z∗) , (4)

where t is the current generation, and Δt is the updating period. Interested
readers are referred to [14] for more details of MOEA/D-DRA.

3 Proposed Algorithm

In this section, we delineate the implementation our proposed MOEA/D-DYTS.
Specifically, we will start with the classical Bernoulli MAB problem and the
vanilla Thompson sampling. Thereafter, we develop the definition of the dynamic
Thompson sampling strategy which is the main crux of our AOS paradigm. At
the end, we give the algorithmic implementation of MOEA/D-DYTS.

3.1 Thompson Sampling

In probability theory and machine learning, the MAB problem considers opti-
mally allocating a fixed set of limited resources among competing actions
A = {a1, · · · , ak} that finally maximises the expected return (or gain). In
this paper, we consider a traditional Bernoulli MAB problem where the reward
of conducting an action ai is ri ∈ {0, 1}, i ∈ {1, · · · , k}. At the time step t,
the probability of obtaining a reward of one by conducting the action ai is
P(ri = 1|ai, θ) = θi. On the other hand, P(ri = 0|ai, θ) = 1 − θi when obtain-
ing a reward of none. In particular, θi is defined as the mean reward of action
ai, i ∈ {1, · · · , k}. Under the MAB setting, the mean rewards for all actions

Adaptive Operator Selection Based on Dynamic Thompson Sampling 275

θ = (θ1, · · · , θk) are fixed over time but are unknown beforehand. The ultimate
goal of this Bernoulli MAB problem is to maximise the cumulative rewards over
a period of T time steps.

Thompson sampling [12] is an efficient algorithm for solving the Bernoulli
MAB problem. It takes advantage of Bayesian estimation for online decision
problems where actions are applied in a sequential manner. In Thompson sam-
pling, each arm is assigned with an independent prior reward distribution of
θi, i ∈ {1, · · · , k}. In particular, we use the Beta distribution with parameters
α = (α1, . . . , αk) and β = (β1, . . . , βk) to represent this prior distribution:

PBeta (θi) =
Γ (αi + βi)
Γ (αi) Γ (βi)

θαi−1
i (1 − θi)

βi−1
, (5)

where αi and βi are the parameters associated with the i-th arm, i ∈ {1, · · · , k}
and Γ (·) is the gamma function. The parameters of this distribution are updated
according to the Bayes’ rule after receiving the up to date rewards. Due to the
conjugate properties between Beta distribution and Bernoulli distribution, the
posterior distribution of each action is still a Beta distribution. For a given action
ai, i ∈ {1, · · · , k}, if the reward of its application is ri = 1, then αi and βi are
updated as:

αi = αi + 1, βi = βi. (6)

Otherwise, if ri = 0 then we have:

αi = αi, βi = βi + 1, (7)

whilst the other parameters are kept unchanged. In the decision-making stage,
the arm having the largest sampling value from the distribution is chosen for
the next step. This is the underlying mechanism of Thompson sampling for
balancing exploration and exploitation. In practice, each component of α and
β is initialised to be 1 whilst PBeta(θi) is set to be a uniform distribution over
[0, 1]. The Beta distribution has a mean αi/(αi +βi) and its distribution become
more concentrated at its mean as αi +βi grows. For example, as shown in Fig. 1,
the probability density function of (α2, β2) = (200, 100) is the most concentrated
one whilst that of (α1, β1) = (1, 1) is a flat line.

In order to apply Thompson sampling for AOS in an EA, we consider each
reproduction operator as a bandit arm with a Bernoulli distribution. In partic-
ular, an operator receives a reward of one in case its application improves the
evolutionary population towards optimum, otherwise its reward is none.

3.2 Dynamic Thompson Sampling

Since the reward distribution used in the aforementioned vanilla Thompson sam-
pling is fixed a priori, it does not fit the non-stationary nature of EAs. In other
words, the reward distribution of a reproduction operator is highly likely to
change with the progress of the evolution. To address this issue, this paper con-
siders using a dynamic Thompson sampling [6] strategy (DYTS) to serve as the

276 L. Sun and K. Li

0 0.2 0.4 0.6 0.8 10

5

10

15

mean reward

pr
ob

ab
ili
ty

de
ns
it
y

(α1,β1) = (1, 1)
(α2,β2) = (10, 20)
(α1,β1) = (200, 100)

Fig. 1. Illustration of Beta distribution with different (α, β) settings.

Algorithm 1: ParameterUpdate(αi, βi, r, C): parameter update rule of the
DYTS strategy

Input: Parameters of the i-th operator αi, βi, its up to date reward reward and threshold C
Output: Updated (αi, βi)

1 if αi + βi < C then
2 αi = αi + r;
3 βi = βi + 1 − r;

4 else
5 αi = (αi + r) C

C+1 ;

6 βi = (βi + 1 − r) C
C+1 ;

7 return (αi, βi);

foundation of our AOS paradigm. In particular, DYTS mainly uses a threshold C
to control the two different parameter update rules. If αi + βi < C, the param-
eters of the Beta distribution are updated as the vanilla Thompson sampling
introduced in Sect. 3.1. On the other hand, if αi + βi ≥ C, the corresponding
update rule aims to tweak the parameters so that we have αi + βi = C after
this update. The pseudocode of the parameter update strategy of DYTS is given
in Algorithm 1.

There are two characteristics of this parameter update rule.

– It ensures that αi + βi ≤ C. More specifically, if αi + βi = C, we have

α′
i + β′

i = (αi + βi + 1)
C

C + 1

= (C + 1)
C

C + 1
= C

, (8)

where α′
i and β′

i represent the updated αi and βi. In this case, we are able to
avoid concentration of samples coming out of the DYTS strategy. Henceforth,
it enables the DYTS a certain level of exploration ability.

Adaptive Operator Selection Based on Dynamic Thompson Sampling 277

– It gives larger weights to those recent awards thus help track the up to date
reward distribution. More specifically, let us denote the reward received by
the i-th reproduction operator at the t-th update as rt

i , the corresponding
parameter αt

i can be derived as:

αt
i = (αt−1

i + rt
i)

C

C + 1

= ((αt−2
i + rt−1

i)
C

C + 1
+ rt

i)
C

C + 1

= αt−2
i (

C

C + 1
)2 + rt−1

i (
C

C + 1
)2 + rt

i(
C

C + 1
).

(9)

Analogously, we can have the same derivation of βt
i . According to this deriva-

tion, we can see that the latest reward is assigned with the largest decay
ratio. By this means, the DYTS strategy enables the Thompson sampling to
a non-stationary environment.

3.3 Operator Pool

From our preliminary experiments, this paper considers using the following five
reproduction operator to constitute our operator pool. In particular, four of
them are differential evolution (DE) variants directly derived from our previous
paper [9] whilst the other one is the uniform mutation (UM) [4].

– DE/rand/1: xc = xi + F ∗ (xr1 − xr2),
– DE/rand/2: xc = xi + F ∗ (xr1 − xr2) + F ∗ (xr3 − xr4),
– DE/current-to-rand/1: xc = xi + K ∗ (

xi − xr1
)

+ F ∗ (xr2 − xr3),
– DE/current-to-rand/2: xc = xi + K ∗ (

xi − xr1
)

+ F ∗ (xr2 − xr3) + F ∗
(xr4 − xr5),

– UM: xc = xi + uniform(0, 1) ∗ (u − l),

where uniform(0,1) represents a uniform distribution within the range [0, 1],
u = (u1, · · · , un) and l = (l1, · · · , ln) indicate the upper and lower bounds of
decision space.

3.4 Credit Assignment

It is worth noting that the reward considered in the Bernoulli distribution is a
binary value thus is not directly applicable in an EA. To address this issue, this
paper uses the fitness improvement (FI) as the measure to evaluate the credit
of an application of the reproduction operator chosen by the AOS. Formally, FI
is defined as:

FI = max
xi∈P

{gtch (xi|wi, z∗) − gtch
(
xc|wi, z∗)}, (10)

where wi is the weight vector associated with the subproblem of a solution xi ∈
P, i ∈ {1, · · · , N} and xc is the offspring solution generated by using the selected
operator. If FI > 0, it indicates that the application of the selected operator is
successful thus the corresponding reward is one. Otherwise, the reward is set to
be none instead.

278 L. Sun and K. Li

Algorithm 2: AOS(α, β): adaptive operator selection based on DYTS
Input: Parameters of the Beta distributions α = (α1, · · · , αk) and β = (β1, · · · , βk)
Output: Index of the selected reproduction operator

1 for i ← 1 to k do

2 Sample the estimated mean reward θ̂i from Beta distribution PBeta(αi, βi).

3 a = argmaxi∈{1,··· ,k}θ̂i;

4 return a;

3.5 AOS Based on DYTS Strategy

The idea of our proposed AOS paradigm based on the DYTS strategy is simple
and intuitive. As shown in Algorithm 2, the operator having the largest sampling
value from the up to date Beta distribution is chosen as the target operator for
the next iteration.

3.6 Framework of MOEA/D-DYTS

Our proposed AOS based on DYTS can be applied to MOEA/D-DRA (dubbed
MOEA/D-DYTS) in a plug-in manner without any significant modification. In
particular, we only need to maintain an operator pool and keep a record of the
FI achieved by the application of an operator. As the pseudocode of MOEA/D-
DYTS given in Algorithm 3, we can see that most parts are the same as the
original MOEA/D-DRA. The only difference lies in the offspring reproduction
where the AOS based on DYTS strategy is applied to select the most appropriate
operator in practice (line 8 of Algorithm 3). In addition, after the generation of
an offspring, the corresponding FI is calculated followed by an update of the
reward (lines 17 to 22 of Algorithm 3). Thereafter, the collected reward is used
to update the parameters of the Beta distribution (line 23 of Algorithm 3).

4 Experimental Studies

In this section, we will use a set of experiments to validate the effectiveness of
our proposed MOEA/D-DYTS. The experimental settings used in this paper are
briefly overviewed in Sect. 4.1 including the benchmark test problems, parameter
settings and the peer algorithms used in our experiments.

4.1 Experimental Settings

In our experimental studies, 19 unconstrained test problems are used to consti-
tute the benchmark suite including UF1 to UF10 from the CEC 2009 MOEA
competition [15] and WFG1 to WFG9 chosen from the Walking Fish Group test
problem set [7]. In particular, the number of decision variables of UF problem
is 30 whilst it is set to 38 (18 are position related and 20 are distance related)
for the WFG problems. Four state-of-the-art MOEA/D variants i.e., MOEA/D-
FRRMAB [9], MOEA/D-GRA [16], MOEA/D-IRA [10] and MOEA/D-DE [8]

Adaptive Operator Selection Based on Dynamic Thompson Sampling 279

Algorithm 3: MOEA/D-DYTS
Input: Algorithm parameters
Output: Approximated solution set P

1 Initialise the population P = {x1, · · · ,xN}, the weight vectors {w1, · · · ,wN}, parameters
of the Beta distribution α, β and the ideal point z∗;

2 gen ← 0, neval ← 0;
3 for i ← 1 to N do
4 B(i) ← {i1, · · · , iT } where wi1 , · · · ,wiT are the T closest weight vectors to wi and set

πi ← 1;

5 while neval < maxEvaluations do
6 Let all the indices of the subproblems whose objectives are MOP individual objectives

fi form the initial I. By using 10-tournament selection based on πi, select other
�N/5	 − m indices and add them to I;

7 for each i ∈ I do
8 op ← AOS(α, β);
9 if uniform(0, 1) < δ then

10 P ← B(i);
11 else
12 P ← the entire population ;

13 Randomly select a required number of parent solutions from P ;
14 Generate an offspring xc by the op-th operator over the selected solutions;
15 Use polynomial mutation to further mutate xc;
16 Update the ideal point z∗ according to xc;

17 FI ← maxxi∈P {gtch (xi|wi, z∗) − gtch (
xc|wi, z∗)};

18 if FI > 0 then
19 reward ← 1;

20 Replace the xi associated with FI by xc;

21 else
22 reward ← 0;

23 (αop, βop) ← ParameterUpdate(αop, βop, reward, C);
24 neval ← neval + 1;

25 gen ← gen + 1;
26 if modulo(gen, 50) == 0 then
27 Update the utility πi of each subproblem i, i ∈ {1, · · · , N};

28 return P ;

are used as the peer algorithms in comparison. The parameters associated with
these peer algorithms are set the same as recommended in their original paper.
Those of our proposed MOEA/D-DYTS are set as follows:

– The population size N is set to 300 for the two-objective UF instances and 600
for the three-objective UF instances. As for WFG instances, we set N = 100.

– Each algorithm is run 31 times on each test problem instance. The maximum
number of function evaluations is set to 300, 000 for the UF instances and
25, 000 for the WFG instances.

– The neighbourhood size is fixed to 20. Probability δ with regard to selecting
P is set to 0.8 as suggested in [10].

– The update threshold of our DYTS strategy is set as C = 100.

To evaluate the performance of different algorithms, two widely used perfor-
mance metrics, i.e., inverted generational distance (IGD) [2] and Hypervolume
(HV) [18], are used in our experiments. Both of them are able to evaluate the
convergence and diversity simultaneously. In order to calculate the IGD, 10,000

280 L. Sun and K. Li

Table 1. Comparative results of all the algorithms on the UF and WFG test problems
regarding IGD.

MOEA/D-DE MOEA/D-FRRMAB MOEA/D-GRA MOEA/D-IRA MOEA/D-DYTS

UF1 1.97E-31.56E−4
− 2.50E-32.19E−4

− 1.90E-38.3E−5
∼ 1.92E-38.9E−5

∼ 1.89E-37.1E-5

UF2 7.12E-31.58E−3
− 5.64E-35.21E−4

− 3.92E-35.01E-4
∼ 4.16E-35.92E−4

∼ 4.09E-39.86E−4

UF3 1.20E-21.33E−2
− 6.97E-34.81E−3

− 4.24E-32.31E−3
∼ 5.27E-32.69E−3

− 4.04E-32.07E-3

UF4 6.27E-24.09E−3
− 5.26E-23.88E−3

− 5.48E-23.41E−3
− 5.36E-22.85E−3

− 3.04E-21.28E-3

UF5 3.12E-11.15E−1
− 2.90E-16.89E−2

− 2.41E-12.74E−2
− 2.35E-12.83E−2

− 1.26E-12.37E-2

UF6 1.85E-11.72E−1
− 2.07E-11.84E−2

− 7.43E-22.97E-2
+ 8.17E-25.06E−2

+ 1.23E-16.38E−2

UF7 4.07E-34.24E−3
− 2.64E-33.37E−4

− 2.05E-31.02E−4
− 2.04E-31.03E−4

− 1.91E-38.90E-5

UF8 7.82E-21.27E−2
− 6.96E-21.29E−2

∼ 8.11E-21.43E−2
− 8.12E-21.20E−2

− 6.86E-21.85E-2

UF9 8.82E-24.96E−2
− 7.97E-24.55E−2

− 3.82E-23.40E−2
+ 3.49E-22.79E-2

+ 4.24E-22.55E−2

UF10 5.14E-16.85E−2
− 7.56E-11.19E−1

− 1.32E+002.39E−1
−1.53E+003.24E−1

− 4.06E-1 5.87E-2

WFG11.28E+008.03E−3
− 1.28E+004.06E−3

− 1.26E+008.36E−3
−1.26E+006.45E−3

−1.20E+006.08E-3

WFG2 4.06E-12.20E−1
− 2.54E-11.37E−1

∼ 2.91E-11.63E−1
− 2.59E-11.37E−1

− 2.33E-11.22E-1

WFG3 1.55E-24.42E−3
− 1.40E-22.74E−3

− 1.39E-22.43E−3
− 1.39E-22.57E−3

− 1.32E-21.00E-6

WFG4 2.89E-25.91E−3
− 2.81E-24.34E−3

− 1.87E-23.96E−3
− 2.07E-26.60E−3

− 1.72E-21.89E-3

WFG5 4.23E-21.19E−2
− 3.88E-21.14E−2

− 3.02E-26.50E−3
− 3.06E-26.72E−3

− 2.12E-21.78E-3

WFG6 5.97E-22.89E−2
− 3.80E-22.30E−2

− 3.30E-29.99E−3
− 3.78E-21.00E−2

− 2.44E-29.90E-3

WFG7 1.45E-24.89E−3
− 1.41E-23.76E−3

− 1.43E-24.41E−3
− 1.44E-24.36E−3

− 1.31E-22.00E-6

WFG8 1.60E-26.14E−3
− 1.42E-24.10E−3

− 1.36E-22.63E−3
∼ 1.37E-23.30E−3

∼ 1.31E-22.00E-6

WFG9 3.83E-25.54E−3
− 3.64E-25.11E−3

− 3.81E-27.61E−3
− 3.70E-24.96E−3

− 2.63E-22.85E-3

-/∼/+ 19/0/0 17/2/0 13/4/2 14/3/2

points were uniformly sampled from the true PF to constitute the reference set.
The lower the IGD is, the better the solution set for approximating the PF. As
for the HV calculation, we set the reference point as (2.0, 2.0) for two-objective
UF instances and (2.0, 2.0, 2.0) for three-objective UF instances. For the WFG
instances, it is set as (3.0, 5.0). In contrast to the IGD, the larger the HV is, the
better quality of the solution set for approximating the PF.

4.2 Experimental Results

In this section, we have compared MOEA/D-DYTS with four state-of-the-art
MOEA/D variants, namely, MOEA/D-DE, MOEA/D-FRRMAB, MOEA/D-
GRA and MOEA/D-IRA on UF instances and WFG instances. Tables 1 and
2 present the result of the IGD and HV metric values obtained from 31 inde-
pendent runs. The best mean result for each problem is highlighted in boldface
with grey background. Wilcoxon’s rank sum test with a 5% significance level
was also conducted to provide a statistically conclusion. Where “−”, “+” and
“∼” denote that the results obtained by corresponding algorithm are worse than,
better than or similar to those of MOEA/D-DYTS.

From Tables 1 and 2 we clearly see that MOEA/D-DYTS is the best algo-
rithm. With respect to the IGD values, MOEA/D-DYTS performs best on UF1,
UF3 to UF5, UF7, UF8, UF10 and all WFG test instances. Considering the HV
values, Table 2 gives the similar result to Table 1. In total, it has obtained better
results in 16 out of 19 performance comparisons for IGD and 18 out of 19 for HV.
In the following paragraphs, we will give a gentle discussion over these results.

Adaptive Operator Selection Based on Dynamic Thompson Sampling 281

Table 2. Comparative results of all the algorithms on the UF and WFG test problems
regarding HV.

MOEA/D-DE MOEA/D-FRRMAB MOEA/D-GRA MOEA/D-IRA MOEA/D-DYTS

UF1 3.658741.54E−3
− 3.656731.85E−3

− 3.659921.13E−3
− 3.659731.08E−3

− 3.66314 3.08E-4

UF2 3.639091.59E−2
− 3.648647.83E−3

− 3.651078.39E−3
− 3.652918.85E−3

∼ 3.65313 1.10E-2

UF3 3.626016.92E−2
− 3.647531.74E−2

− 3.657655.71E−3
∼ 3.651621.51E−2

− 3.65836 5.60E-3

UF4 3.147651.59E−2
− 3.181291.19E−2

− 3.175971.03E−2
− 3.177251.27E−2

− 3.26432 4.40E-3

UF5 2.565532.35E−1
− 2.711022.07E−1

− 2.906469.60E−2
− 2.920761.01E−1

− 3.07248 1.62E-1

UF6 2.908573.27E−1
− 2.849994.43E−1

− 3.17650 6.75E-2
+ 3.141631.53E−1

+ 3.022912.11E−1

UF7 3.469334.88E−2
− 3.490452.29E−3

− 3.492742.55E−3
− 3.492322.01E−3

− 3.49626 2.46E-4

UF8 7.188892.24E−2
− 7.176813.06E−2

− 7.195192.28E−2
− 7.193032.26E−2

− 7.27682 3.68E-2

UF9 7.066344.78E−1
− 7.280913.52E−1

− 7.558891.51E−1
− 7.538022.51E−1

− 7.59815 1.15E-1

UF10 3.499813.94E−1
− 2.429764.40E−1

− 0.896705.48E−1
− 0.562215.53E−1

− 4.49922 5.35E-1

WFG1 5.093201.42E−1
− 5.164286.33E−2

− 5.190939.00E−2
− 5.177299.63E−2

− 5.58013 2.70E-2

WFG2 10.020396.70E−1
− 10.508754.29E−1

− 10.375594.91E−1
− 10.462724.22E−1

− 10.58567 3.96E-1

WFG3 10.892201.19E−1
− 10.923978.95E−2

− 10.930988.32E−2
∼ 10.930778.34E−2

∼ 10.95286 2.00E-6

WFG4 8.406205.17E−2
− 8.411613.88E−2

− 8.513774.25E−2
− 8.493856.52E−2

− 8.53702 2.97E-2

WFG5 8.062331.18E−1
− 8.096961.20E−1

− 8.191638.07E−2
− 8.186018.67E−2

− 8.35099 4.20E-2

WFG6 8.221101.52E−1
− 8.399152.09E−1

− 8.377011.10E−1
− 8.347671.01E−1

− 8.49870 1.45E-1

WFG7 8.637001.25E−1
− 8.652839.48E−2

− 8.641901.24E−1
∼ 8.638661.25E−1

∼ 8.67611 3.00E-6

WFG8 8.592881.77E−1
− 8.644521.20E−1

− 8.661647.84E−2
∼ 8.659359.16E−2

∼ 8.67610 9.00E-6

WFG9 8.178685.21E−2
− 8.197784.88E−2

− 8.182577.02E−2
− 8.190774.86E−2

− 8.30853 3.39E-2

-/∼/+ 19/0/0 19/0/0 14/4/1 14/4/1

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

f1

f 2

PF
MOEA/D-DYTS

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

f1

f 2

PF
MOEA/D-DE

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

f1

f 2

PF
MOEA/D-FRRMAB

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

f1

f 2

PF
MOEA/D-GRA

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

f1

f 2

PF
MOEA/D-IRA

Fig. 2. Non-dominated solutions obtained by five algorithms on UF4 with the best
IGD value.

UF1 to UF3 and UF7 are relatively simple test problems among UF bench-
mark problems, on which all the algorithms do not have too much difficulty to
converge to the global PFs as shown in Figs. 1, 2, 3 and Fig. 7 in the supple-
mentary document1. However, it is interesting to observe that MOEA/D-GRA
achieves better convergency on the tail of the PF of UF2 on which our proposed
algorithm takes a fall. On UF4 only MOEA/D-DYTS can find some solutions on
the PF whereas the solutions found by other four algorithms are away from the
PF. The PF of UF5 consists of 21 points which is challenging for EAs to con-
verge. As shown in Fig. 3, the solutions obtained by MOEA/D-DYTS are much
closer to the PF than the other algorithms on UF5. The similar results can also
be observed on UF10. For other two three-objective UF test problems, all the
algorithms can find most of the solutions of PF on UF8. Note that MOEA/D-
DYTS is beaten by MOEA/D-GRA and MOEA/D-IRA on UF9 test problem

1 https://cola-laboratory.github.io/supplementary/dyts-supp.pdf.

https://cola-laboratory.github.io/supplementary/dyts-supp.pdf

282 L. Sun and K. Li

0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.5

1

1.5

f1

f 2

PF
MOEA/D-DYTS

0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.2

0.4

0.6

0.8

1

1.2

f1

f 2

PF
MOEA/D-DE

0 0.2 0.4 0.6 0.8 1 1.20

1

2

3

f1

f 2

PF
MOEA/D-FRRMAB

0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.2

0.4

0.6

0.8

1

f1

f 2

PF
MOEA/D-GRA

0 0.5 1 1.5 20

0.5

1

1.5

f1

f 2

PF
MOEA/D-IRA

Fig. 3. Non-dominated solutions obtained by five algorithms on UF5 with the best
IGD value.

0 0.5 1 1.5 20

1

2

3

4

f1

f 2

PF
MOEA/D-DYTS

0 0.5 1 1.5 20

1

2

3

4

f1

f 2

PF
MOEA/D-DE

0 0.5 1 1.5 20

1

2

3

4

f1

f 2

PF
MOEA/D-FRRMAB

0 0.5 1 1.5 20

1

2

3

4

f1

f 2

PF
MOEA/D-GRA

0 0.5 1 1.5 20

1

2

3

4

f1

f 2

PF
MOEA/D-IRA

Fig. 4. Non-dominated solutions obtained by five algorithms on WFG2 with the best
IGD value.

which has two disconnected parts of PS. This may imply that MOEA/D-DYTS
do not have enough search ability in decision space.

For WFG test problems, MOEA/D-DYTS has completely won all the 9 test
instances. As observed from Tables 1 and 2, MOEA/D-DYTS perform signifi-
cantly better than other four algorithms on WFG1. Regarding WFG2, it is a
discontinuous problem whose PF is five disconnected segments. As shown in
Fig. 4, no algorithm can find solutions on the last segment on WFG2 except for
MOEA/D-DYTS. For WFG3 to WFG9, all the compared algorithms can con-
verge to the true PFs. The Wilcoxon rank sum test shows that MOEA/D-DYTS
is similar to MOEA/D-GRA and MOEA/D-IRA on WFG3, WFG7 and WFG8
according to the results of HV values. It is worth noting that our proposed algo-
rithm MOEA/D-DYTS has best mean values on WFG3, WFG7 and WFG8 from
31 independent runs. This implies that MOEA/D-DYTS can achieve better sta-
bility than other algorithms in optimisation process. As shown in Figs. 14 to 16
and 19 in the supplementary document, the better diversity of solutions found
by MOEA/D-DYTS on the head or the tail of the PF can be observed on WFG4
to WFG6 and WFG9. These results indicate that our proposed algorithm can
be favourable among other four state-of-the-art MOEA/D variants.

5 Conclusion

This paper proposes a new AOS paradigm for MOEA/D that is able to
autonomously select the appropriate reproduction operator for the next step.
Specifically, the dynamic Thompson sampling is served as the foundation for
AOS. Different from the vanilla Thompson sampling and bandit learning model,
the dynamic Thompson sampling is able to track the search dynamics under a
non-stationary environment. From our empirical results, we have witnessed the

Adaptive Operator Selection Based on Dynamic Thompson Sampling 283

superiority of our proposed MOEA/D-DYTS over four state-of-the-art MOEA/D
variants on 19 test problems.

AOS is an attractive paradigm to equip EAs with intelligence to
autonomously adapt their search behaviour according to the current search land-
scapes. In addition to the bandit model considered in this paper, it is also inter-
esting to look into methods from reinforcement learning or automatic control
domain for new decision-making paradigm. Furthermore, the credit assignment
of an application of an operator is important to gear the AOS. More sophisticated
methods are worthwhile being considered in future.

References

1. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach.
Learn. Res. 3, 397–422 (2002)

2. Bosman, P.A.N., Thierens, D.: The balance between proximity and diversity in
multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 7(2), 174–188
(2003)

3. Clark, D.E., Westhead, D.R.: Evolutionary algorithms in computer-aided molecular
design. J. Comput. Aided Mol. Des. 10(4), 337–358 (1996)

4. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley-
Interscience Series in Systems and Optimization. Wiley, Hoboken (2001)

5. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

6. Gupta, N., Granmo, O., Agrawala, A.K.: Thompson sampling for dynamic multi-
armed bandits. In: Chen, X., Dillon, T.S., Ishibuchi, H., Pei, J., Wang, H., Wani,
M.A. (eds.) ICMLA 2011: Proceedings of the 2011 10th International Conference on
Machine Learning and Applications, pp. 484–489. IEEE Computer Society (2011)

7. Huband, S., Hingston, P., Barone, L., While, R.L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5),
477–506 (2006)

8. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto
sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

9. Li, K., Fialho, Á., Kwong, S., Zhang, Q.: Adaptive operator selection with bandits
for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans.
Evol. Comput. 18(1), 114–130 (2014)

10. Lin, Q., et al.: A diversity-enhanced resource allocation strategy for decomposition-
based multiobjective evolutionary algorithm. IEEE Trans. Cybern. 48(8), 2388–
2401 (2018)

11. di Pierro, F., Khu, S., Savic, D.A., Berardi, L.: Efficient multi-objective optimal
design of water distribution networks on a budget of simulations using hybrid
algorithms. Environ. Model Softw. 24(2), 202–213 (2009)

12. Thompson, W.R.: On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika 25(3/4), 285–294 (1933)

13. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

14. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on
CEC09 unconstrained MOP test instances. In: CEC 2009: Proceedings of the 2009
IEEE Congress on Evolutionary Computation, pp. 203–208. IEEE (2009)

284 L. Sun and K. Li

15. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P., Liu, W., Tiwari, S.: Multiobjective
optimization test instances for the CEC 2009 special session and competition.
Mech. Eng. (2008)

16. Zhou, A., Zhang, Q.: Are all the subproblems equally important? Resource alloca-
tion in decomposition-based multiobjective evolutionary algorithms. IEEE Trans.
Evol. Comput. 20(1), 52–64 (2016)

17. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30217-9 84

18. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

https://doi.org/10.1007/978-3-540-30217-9_84

A Study of Swarm Topologies and Their
Influence on the Performance of
Multi-Objective Particle Swarm

Optimizers

Diana Cristina Valencia-Rodŕıguez(B) and Carlos A. Coello Coello

CINVESTAV-IPN (Evolutionary Computation Group),
Av. IPN 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
dvalencia@computacion.cs.cinvestav.mx, ccoello@cs.cinvestav.mx

Abstract. It has been shown that swarm topologies influence the behav-
ior of Particle Swarm Optimization (PSO). A large number of connec-
tions stimulates exploitation, while a low number of connections stim-
ulates exploration. Furthermore, a topology with four links per particle
is known to improve PSO’s performance. In spite of this, there are few
studies about the influence of swarm topologies in Multi-Objective Par-
ticle Swarm Optimizers (MOPSOs). We analyze the influence of star,
tree, lattice, ring and wheel topologies in the performance of the Speed-
constrained Multi-objective Particle Swarm Optimizer (SMPSO) when
adopting a variety of multi-objective problems, including the well-known
ZDT, DTLZ and WFG test suites. Our results indicate that the selection
of the proper topology does indeed improve the performance in SMPSO.

Keywords: Swarm topology · Particle Swarm Optimization ·
Multi-Objective Particle Swarm Optimization · Multi-objective
optimization

1 Introduction

Particle Swarm Optimization (PSO) is a metaheuristic proposed in the mid-
1990s by Kennedy and Eberhart [7] that mimics the social behavior of bird
flocks and schools of fish. PSO searches a solution to an optimization problem
using particles that move through the search space employing their best previous
position and the best position of the particles to which that particle is connected.
The graph that represents these connections is called swarm topology. It has
been empirically shown that the topology influences the behavior of a single-
objective PSO [6,8]. A topology with many connections improves the exploitative

The first author acknowledges support from CONACyT and CINVESTAV-IPN to pur-
sue graduate studies in Computer Science. The second author gratefully acknowledges
support from CONACyT grant no. 2016-01-1920 (Investigación en Fronteras de la
Ciencia 2016) and from a SEP-Cinvestav grant (application no. 4).

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 285–298, 2020.
https://doi.org/10.1007/978-3-030-58115-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_20&domain=pdf
http://orcid.org/0000-0002-8435-680X
https://doi.org/10.1007/978-3-030-58115-2_20

286 D. C. Valencia-Rodŕıguez and C. A. Coello Coello

behavior of PSO, while a topology with few connections improves its explorative
behavior [6].

A wide variety of Multi-Objective Particle Swarm Optimizers (MOPSOs)
have been developed [10] over the years. However, unlike the case for single-
objective PSO, studies on the influence of a swarm topology in the performance of
a MOPSO are very scarce. Yamamoto et al. [12] studied the influence of a swarm
topology for the bi-objective problems ZDT1, ZDT3, and ZDT4. They found that
increasing the topology connections improves the convergence towards the true
Pareto Front, and that decreasing such connections promotes diversity. On the
other hand, Taormina and Chau [11] examined the effect of a swarm topology
for a bi-objective problem of neural networks training. They noticed that a
topology with four connections (a lattice topology) improves the performance
of a MOPSO. Both studies offer relevant information about the influence of a
swarm topology. However, the results of these two studies are limited to bi-
objective problems having similar features. In contrast, the study presented in
this paper covers a wide variety of problems with two and three objectives, taken
from the Zitzler-Deb-Thiele (ZDT), the Deb-Thiele-Laumanns-Zitzler (DTLZ)
and Walking-Fish-Group (WFG) test suites.

The remainder of this paper is organized as follows. In Sect. 2, we provide
some basic concepts related to multi-objective optimization and PSO, including
swarm topologies. Then, in Sect. 3, we describe the operation of the Speed-
constrained Multi-objective Particle Swarm Optimizer (SMPSO) which is our
baseline algorithm. Section 4 presents a discussion on the use of topologies in
MOPSOs. Section 5 presents two schemes for handling swarm topologies in
MOPSOs, as a framework for conducting the study presented herein. Our experi-
mental results are provided in Sect. 6. Finally, our conclusions and some potential
paths for future research are provided in Sect. 7.

2 Background

2.1 Multi-objective Optimization

We are interested in solving a continuous unconstrained multi-objective opti-
mization problem that is defined as follows:

minimize
x∈Ω

F (x) = (f1(x), f2(x), · · · , fm(x))T (1)

where x = [x1, x2, · · · , xn]T belongs to the decision variable space defined by Ω.
And F (x) : Ω → IRm consist of m objective functions fi(x) : IRn → IR that are
usually in conflict. In a multi-objective problem, we aim to find the best trade-off
solutions that can be defined in terms of the notion of Pareto Optimality. We
provide the following definitions to describe this concept.

Definition 1. Let u, v ∈ IRm, u is said to dominates v (denoted by u � v),
if and only if ui ≤ vi for all i = 1, ...,m and ui < vi for at least one index
j ∈ {1, · · · ,m}.

A Study of Swarm Topologies and Their Influence on MOPSOs 287

Definition 2. A solution x ∈ Ω is Pareto Optimal if it does not exist another
solution y ∈ Ω such that F (y) � F (x).

Definition 3. Given a multi-objective optimization problem (F (x), Ω), the
Pareto Optimal Set (PS) is defined by:

PS = {x ∈ Ω | x is a Pareto Optimal solution},

and its image PF = {F (y) | y ∈ PS} is called Pareto Front.

2.2 Particle Swarm Optimization

PSO is a bio-inspired metaheuristic that works with a set of particles (called
swarm) that represents potential solutions to the optimization problem. Each
particle xi ∈ IRn at generation t updates its position using the following expres-
sion:

xi(t) = xi(t − 1) + vi(t). (2)

The factor vi(t) is called velocity and is defined by

vi(t) = wvi(t − 1) + C1r1(xpi
− xi(t − 1)) + C2r2(xli − xi(t − 1)) (3)

where w is a positive constant known as inertia weight; C1 and C2 are positive
constants known as cognitive and social factors, respectively; r1 and r2 are two
random numbers with a uniform distribution in the range [0, 1]; xpi

is the best
personal position found by the ith particle, and xli is the best particle to which
it is connected (called leader). In order to define the connections that allow us
to select the leader, we need to determine the topology of the swarm.

2.3 Swarm Topology

A swarm topology (or, simply, a topology) is a graph where each vertex repre-
sents a particle, and there is an edge between two particles if they influence each
other [8]. The set of particles that affect a given particle is called neighborhood.
In the experiments reported below, we use five topologies that have been studied
before in PSO:

– Fully connected (star or gbest). All the particles in this topology influ-
ence each other [6]. See Fig. 1a. Therefore, the information between particles
expands quickly.

– Ring (lbest). In this topology, each particle is influenced by its two immedi-
ate neighbors [6]. See Fig. 1b. For this reason, the information transmission
between particles is slow.

– Wheel. It consists of one central particle that influences and is influenced
by the remainder particles in the swarm [6]. See Fig. 1c. The central particle
acts as a filter that delays the information.

– Lattice. In this topology, each particle is influenced by one particle above,
one below and two on each side [6]. See Fig. 1d.

– Tree. The swarm in this topology is organized as a binary tree where each
node represents a particle. See Fig. 1e.

288 D. C. Valencia-Rodŕıguez and C. A. Coello Coello

(a) Star (b) Ring (c) Wheel (d) Lattice (e) Tree

Fig. 1. Swarm topologies

3 SMPSO

In contrast to single-objective PSO, a MOPSO’s particle could have more than
one leader due to the nature of multi-objective problems. Therefore, a large
number of MOPSOs usually store their leaders in an external archive, which
retains the non-dominated solutions found so far [10]. For this reason, we assume
in this paper that a MOPSO works with an external archive and selects the
leaders from it. Accordingly, we selected for the experimental analysis a stan-
dard Pareto-based MOPSO that works in this manner: the Speed-constrained
Multi-objective Particle Swarm Optimizer (SMPSO) [9]. The core idea behind
SMPSO is to control the particles’ velocity employing a constriction coefficient χ
defined by:

χ = 2/(2 − ϕ −
√

ϕ2 − 4ϕ) (4)

where ϕ = 1 if C1 + C2 is less or equal than four. Otherwise, ϕ = C1 + C2.
Besides the constriction coefficient, SMPSO bounds the jth velocity component
of each ith particle, denoted by vi,j(t), using the equation:

vi,j(t) =

⎧
⎪⎨

⎪⎩

δj if vi,j(t) > δj

−δj if vi,j(t) ≤ −δj

vi,j(t) otherwise
(5)

where δj = (upper limitj − lower limitj)/2, and the upper and lower limits of
the jth decision variable are upper limitj and lower limitj respectively.

In summary, for computing the velocity, SMPSO selects the leader by ran-
domly taking two solutions from the external archive and chooses the one with
the largest crowding distance, which measures how isolated a particle is from
the others. After that, the velocity is estimated with the selected leader using
Eq. (3). Then, the result is multiplied by the constriction factor defined in Eq. (4)
and bounded using the rule defined in Eq. (5).

SMPSO works in the following way. First, the swarm is randomly initialized,
and the external archive is constructed with the non-dominated solutions cur-
rently available. During a certain (pre-defined) number of iterations, the velocity
and position of each particle is computed. Then, polynomial-based mutation [1]
is applied to the resulting individual, using a mutation rate pm, and the new par-
ticle is evaluated. Finally, the particles’ personal best and the external archive

A Study of Swarm Topologies and Their Influence on MOPSOs 289

Algorithm 1. Pseudocode of SMPSO
1: Initialize the swarm with random values
2: Initialize the external archive with the non-dominated solutions of the swarm
3: while the maximum number of iterations is not reached do
4: for each particle pi in the swarm do
5: Randomly take two solutions from the external archive and select the one

with the largest crowding distance as the leader xli

6: Compute the velocity using equation (3) and multiply it by equation (4)
7: Constrain the velocity using equation (5)
8: Compute the particle’s position with equation (2)
9: Apply polynomial-based mutation

10: Evaluate the new particle
11: end for
12: Update the particle’s memory and the external archive
13: if the size of the external archive exceeds its limit then
14: Remove from the external archive the particle with the lowest crowding

distance
15: end if
16: end while

are updated. If the archive exceeds a pre-defined limit, the solution with the
lowest crowding distance is removed. The pseudocode of SMPSO is shown in
Algorithm 1.

4 Handling Topologies in Multi-Objective Particle
Swarm Optimizers

In PSO, each particle updates its best personal position by comparing both the
current and the previous positions and selecting the best one. Furthermore, the
leader of each particle is selected by examining the best personal position of
the particles to which it is connected. In multi-objective problems, however, we
cannot select just one solution as the best. Therefore many MOPSOs store the
best position found by particles in an external archive and select the leaders
from it. This leader selection scheme does not allow MOPSOs to use distinct
topologies because the neighborhood of a particle is not examined to select its
leader. Moreover, many MOPSOs use a fully connected topology because each
particle takes into consideration the positions found by the whole swarm. For
this reason, it is necessary to design a leader selection scheme to handle swarm
topologies in MOPSOs.

Yamamoto et al. [12] introduced a topology handling scheme where each
particle had a sub-archive that was updated by the particle and its neighbors.
Accordingly, each particle selected its leader from its sub-archive and the sub-
archives of its neighbors. One advantage of this scheme is that it promotes diver-
sity because a solution from a sub-archive could dominate a solution from another
one. Furthermore, this scheme allows us to manipulate directly the best position

290 D. C. Valencia-Rodŕıguez and C. A. Coello Coello

found by the particles. On the other hand, one disadvantage of this scheme is
that the space and time complexity of the MOPSO increase due to the use of
sub-archives, and they get worse when the population size is increased.

Taormina and Chau [11] proposed another topology handling scheme where
the leaders are added to the swarm. Each leader will influence four particles,
but the particles will not influence the leaders, so they will not move. Taormina
and Chau mentioned that these leaders are instances of non-dominated solutions
found by the particles, but they do not provide any further information.

Due to the disadvantages of these two previously described schemes, we pro-
pose here two topology handling schemes which are described next.

5 The Proposed Topology Handling Schemes

In order to analyze the influence of the topology in MOPSOs, we propose two
topology handling schemes and implement them in SMPSO. Both schemes differ
only in the place from which the leader is taken: either the particle’s memory or
the external archive:

5.1 Scheme 1

The idea of scheme 1 is to emulate the leader selection scheme from a single-
objective PSO. Therefore, it selects the leader of each particle by examining
the personal best positions of the particles in the neighborhood and selecting
the best from them. In order to implement scheme one in SMPSO (we called
this algorithm SMPSO-E1), we modified line 5 of Algorithm1. Thus, SMPSO-
E1 obtains the particle’s neighborhood and saves it in Ni. Next, it selects as a
leader, the particle whose personal best position dominates most of the others
in Ni. After that, the particle’s position and its velocity are computed as in the
original SMPSO.

5.2 Scheme 2

Under scheme 2, we associate each element of the external archive to each particle
in the swarm, i.e., the ith element of the external archive is associated with the
ith particle in the swarm. If the archive size is smaller than the swarm size, the
archive elements are assigned again. Furthermore, the swarm size is restricted to
be larger or equal to the archive size. Afterwards, a particle will select its leader
by exploring the external archive components that are assigned to the particle’s
neighbors. The idea of scheme 2 is to use each external archive element as an
alternative memory, in order to operate with the global best positions as leaders.
In order to implement scheme 2 in SMPSO (we named this algorithm SMPSO-
E2), we modified Algorithm1. First, before computing the new positions of the
particles, we assign the external archive elements to each particle. Then, for each
particle, we randomly take two elements in the neighborhood and select as leader
the one with the largest crowding distance. After that, we compute the particle’s
distance as in the original SMPSO.

A Study of Swarm Topologies and Their Influence on MOPSOs 291

6 Experiments and Analysis

(a) Hypervolume

(b) IGD+

(c) S-energy

Fig. 2. Distribution of ranks of
SMPSO-E1 for each topology
where rank 1 is the best and
rank 5 is the worst.

In this work, we compare five state-of-the-art
topologies: star, ring, lattice, wheel, and tree.
The influence of each topology is evaluated both
using SMPSO-E1 and SMPSO-E2. We also con-
trast the performance of SMPSO-E1, SMPSO-
E2, and the original version of SMPSO. In
order to analyze the impact of a particular
topology in the performance of a MOPSO, we
adopted several test problems: the Zitzler-Deb-
Thiele (ZDT) [14], the Deb-Thiele-Laumanns-
Zitzler (DTLZ) [2], and the Walking Fish Group
(WFG) [4] test suites. From the ZDT test suite,
we excluded ZDT5 due to its discrete nature.
We use 3-objective instances of DTLZ and WFG
problems. The number of variables is 30 for
ZDT1 to ZDT3, and 10 for ZDT4 and ZDT6.
In the case of the DTLZ problems, the num-
ber of variables is n = 3 + k − 1, where k = 5
for DTLZ1, k = 10 for DTLZ2 to DTLZ6, and
k = 20 for DTLZ7. Finally, we use 24 variables
for the WFG problems.

For assessing performance, we selected
three performance indicators: the hypervolume
(HV) [13], the Modified Inverted Generational
Distance (IGD+) [5], and the s-energy [3]. The
two first indicators assess both the convergence
and the spread of the approximation set, while
the third indicator measures only the diversity of
the approximation set. The reference points used
for the hypervolume, per problem, are the worst values found of the objective
functions multiplied by 1.1.

To ensure a fair comparison, we defined the same set of parameters for each
MOPSO. We set the swarm and archive size to 100 for the ZDT problems and
to 91 for the WFG and DTLZ test problems. The mutation probability was set
to pm = 1/n, and the inertia weight was set to w = 0.1. Moreover, the MOPSOs
stop after performing 2500 iterations.

292 D. C. Valencia-Rodŕıguez and C. A. Coello Coello

6.1 Methodology

We performed 30 independent runs of each MOPSO and normalized the result-
ing Pareto Front approximations. Then, we computed the indicators, normalized
their values, and computed the corresponding means and standard deviations.
Since we are dealing with stochastic algorithms, we also applied the Wilcoxon
signed-rank test with a significance level of 5% to validate the statistical con-
fidence of our results. We used the mannwhitneyu function from the SciPy
Python library for this purpose.

6.2 Experimental Results

Fig. 3. Distribution of ranks of
SMPSO-E2 for each topology
where rank 1 is the best and
rank 5 is the worst.

Here, we present the comparison of SMPSO,
SMPSO-E1, and SMPSO-E2 for each of the 5
topologies considered. Tables 1, 2, and 3 sum-
marize the results for each indicator where the
best values have a gray background, and the “*”
symbol means that this result is statistically sig-
nificant. Figures 2 and 3 show the rank distri-
bution among the topologies of SMPSO-E1 and
SMPSO-E2, respectively. In this case, rank 1 is
better than rank 5. In Fig. 2, the SMPSO-E1
with lattice, star, and tree topologies rank more
frequently in the first places regarding the hyper-
volume and IGD+ indicators. In contrast, the
ring and wheel topologies rank more regularly in
the last positions. This indicates that topologies
with more connections promote the convergence
of SMPSO-E1. Regarding the s-energy indica-
tor, the lattice topology ranks more frequently
in the best places, while the ring topology com-
monly ranks in the worst. Therefore, the lattice
topology offers the best trade-off between con-
vergence and diversity for SMPSO-E1.

In the case of SMPSO-E2, we can see in Fig. 3
that the wheel topology ranks more frequently
in the best places with respect to the hypervol-
ume and IGD+, followed by the tree topology,
followed by the ring and lattice topologies, and
finally, by the star topology. It is worth noting
that topologies with fewer connections have bet-
ter values in the convergence indicators. Regarding the s-energy indicator, the
star topology ranks more frequently in the first places, followed by the ring topol-
ogy, and then the tree and the lattice topologies. Ultimately, the wheel topology
ranks more often in the worst places. In this case, we cannot define a topol-
ogy that provides the best possible trade-off between convergence and diversity.

A Study of Swarm Topologies and Their Influence on MOPSOs 293

(a) Hypervolume (b) IGD+

(c) S-energy

Fig. 4. Indicator values of SMPSO, SMPSO-E1, and SMPSO-E2 for each problem.
Lower values are preferred for s-energy and IGD+, while higher values are preferred
for the hypervolume. (Color figure online)

Figure 4 compares the performance of the MOPSOs in each problem. The blue
and red connected lines denote the behavior of SMPSO-E1 and SMPSO-E2,
respectively, for each topology. Furthermore, the green line represents the orig-
inal SMPSO. We can see that in Figs. 4b and 4c, most of the blue lines are
above the green and red lines. Conversely, in Fig. 4a, all the lines are below the
green and red lines. Therefore, it is clear that SMPSO-E1 performs worse than
SMPSO-E2 and SMPSO.

Finally, in Tables 1 and 2, we can see that SMPSO-E2 with a wheel topology
has the best performance with respect to IGD+ and the hypervolume. Besides,
in Table 3, SMPSO-E2 with a star topology performs better with respect to
s-energy, but the difference is not statistically significant.

294 D. C. Valencia-Rodŕıguez and C. A. Coello Coello

Table 1. Mean and standard deviation of the HV indicator for SMPSO, SMPSO-E1,
and SMPSO-E2. The best values are highlighted in gray, and “*” indicates that the
results are statistically significant

SMPSO SMPSO-E1 SMPSO-E2

Lattice Ring Star Tree Wheel Lattice Ring Star Tree Wheel

DTLZ1 0.99999
(0.000)

0.99697
(0.003)

0.69748
(0.303)

0.99966
(0.001)

0.99967
(0.001)

0.99633
(0.014)

0.99999
(0.000)

0.99999
(0.000)

0.99999
(0.000)

0.99999
(0.000)

1.00000
(0.000)*

DTLZ2 0.81405
(0.038)

0.79588
(0.053)

0.30091
(0.135)

0.86375
(0.093)

0.85269
(0.069)

0.78544
(0.086)

0.81054
(0.041)

0.80032
(0.051)

0.80880
(0.037)

0.81901
(0.037)

0.88217
(0.064)

DTLZ3 1.00000
(0.000)

1.00000
(0.000)

0.80084
(0.254)

0.99999
(0.000)

1.00000
(0.000)

0.99999
(0.000)

1.00000
(0.000)

1.00000
(0.000)

1.00000
(0.000)

1.00000
(0.000)

1.00000
(0.000)

DTLZ4 0.94139
(0.019)

0.56177
(0.095)

0.30938
(0.150)

0.75153
(0.117)

0.71058
(0.119)

0.69577
(0.100)

0.93544
(0.016)

0.92248
(0.019)

0.93991
(0.017)

0.92746
(0.015)

0.96688
(0.015)*

DTLZ5 0.99326
(0.002)

0.95838
(0.006)

0.23308
(0.104)

0.92515
(0.024)

0.91583
(0.014)

0.91969
(0.020)

0.99601
(0.002)

0.99702
(0.001)

0.99270
(0.003)

0.99633
(0.001)

0.99760
(0.001)*

DTLZ6 0.99997
(0.000)

0.99993
(0.000)

0.68536
(0.277)

0.99955
(0.001)

0.99971
(0.000)

0.99920
(0.001)

0.99997
(0.000)

0.99997
(0.000)

0.99997
(0.000)

0.99997
(0.000)

0.99997
(0.000)

DTLZ7 0.95036
(0.027)

0.96958
(0.021)*

0.21446
(0.132)

0.83502
(0.055)

0.84259
(0.052)

0.83981
(0.065)

0.93912
(0.019)

0.95026
(0.027)

0.94900
(0.027)

0.94681
(0.018)

0.94085
(0.026)

WFG1 0.97934
(0.005)

0.43578
(0.217)

0.75196
(0.070)

0.94859
(0.015)

0.90301
(0.038)

0.47389
(0.217)

0.99078
(0.003)

0.99114
(0.002)

0.98043
(0.003)

0.99183
(0.002)

0.99495
(0.004)*

WFG2 0.96900
(0.010)

0.93333
(0.018)

0.39314
(0.170)

0.94195
(0.026)

0.90560
(0.027)

0.85999
(0.052)

0.96614
(0.010)

0.96408
(0.012)

0.96622
(0.012)

0.96427
(0.010)

0.97596
(0.014)*

WFG3 0.97586
(0.009)

0.94573
(0.036)

0.48072
(0.155)

0.87778
(0.048)

0.90471
(0.031)

0.76816
(0.144)

0.97749
(0.011)

0.97382
(0.012)

0.97226
(0.012)

0.97692
(0.009)

0.98341
(0.011)*

WFG4 0.91697
(0.020)

0.43842
(0.111)

0.25039
(0.110)

0.68273
(0.097)

0.64494
(0.065)

0.40172
(0.168)

0.92541
(0.016)

0.92125
(0.018)

0.92499
(0.020)

0.92351
(0.016)

0.96908
(0.020)*

WFG5 0.91891
(0.018)

0.40458
(0.127)

0.22354
(0.100)

0.66482
(0.070)

0.63603
(0.072)

0.35667
(0.153)

0.91564
(0.017)

0.91365
(0.019)

0.91434
(0.015)

0.91843
(0.016)

0.96516
(0.020)*

WFG6 0.95530
(0.059)

0.54999
(0.083)

0.19753
(0.085)

0.50558
(0.107)

0.72334
(0.067)

0.52365
(0.089)

0.96534
(0.017)

0.94079
(0.073)

0.94778
(0.060)

0.96042
(0.018)

0.89054
(0.100)

WFG7 0.92619
(0.017)

0.50668
(0.103)

0.23671
(0.101)

0.70426
(0.092)

0.67143
(0.059)

0.46856
(0.130)

0.91768
(0.015)

0.91782
(0.021)

0.92472
(0.018)

0.92754
(0.012)

0.97322
(0.015)*

WFG8 0.92835
(0.017)

0.49882
(0.101)

0.31892
(0.109)

0.72133
(0.082)

0.68940
(0.059)

0.46319
(0.111)

0.91636
(0.020)

0.92307
(0.015)

0.92857
(0.013)

0.92391
(0.017)

0.97240
(0.016)*

WFG9 0.94363
(0.057)

0.51928
(0.074)

0.12279
(0.063)

0.42907
(0.118)

0.66481
(0.086)

0.50926
(0.113)

0.94353
(0.054)

0.91859
(0.089)

0.95324
(0.016)

0.93372
(0.067)

0.83133
(0.114)

ZDT1 0.99974
(0.000)

0.98460
(0.006)

0.54580
(0.190)

0.89412
(0.037)

0.97277
(0.011)

0.95933
(0.035)

0.99980
(0.000)

0.99983
(0.000)

0.99972
(0.000)

0.99981
(0.000)

0.99989
(0.000)*

ZDT2 0.99977
(0.000)

0.99640
(0.001)

0.50140
(0.189)

0.83360
(0.072)

0.98613
(0.006)

0.98471
(0.010)

0.99982
(0.000)

0.99983
(0.000)

0.99976
(0.000)

0.99981
(0.000)

0.99982
(0.000)

ZDT3 0.99973
(0.000)

0.96979
(0.012)

0.44926
(0.190)

0.80671
(0.083)

0.96309
(0.016)

0.94488
(0.039)

0.99980
(0.000)

0.99982
(0.000)

0.99973
(0.000)

0.99982
(0.000)

0.99988
(0.000)*

ZDT4 0.99946
(0.000)

0.61466
(0.213)

0.16460
(0.109)

0.22890
(0.148)

0.67996
(0.198)

0.31222
(0.140)

0.99964
(0.000)

0.99970
(0.000)

0.99946
(0.000)

0.99970
(0.000)

0.99982
(0.000)*

ZDT6 0.99984
(0.000)

0.99970
(0.000)

0.56279
(0.222)

0.93559
(0.192)

0.99724
(0.003)

0.95678
(0.048)

0.99988
(0.000)

0.99992
(0.000)

0.99983
(0.000)

0.99990
(0.000)

0.99983
(0.000)

A Study of Swarm Topologies and Their Influence on MOPSOs 295

Table 2. Mean and standard deviation of the IGD+ indicator for SMPSO, SMPSO-E1,
and SMPSO-E2. The best values are highlighted in gray, and “*” represents that the
results are statistically significant

SMPSO SMPSO-E1 SMPSO-E2

Lattice Ring Star Tree Wheel Lattice Ring Star Tree Wheel

DTLZ1 0.03301
(0.008)

0.10113
(0.034)

0.64555
(0.235)

0.03768
(0.019)

0.07282
(0.028)

0.06023
(0.034)

0.02695
(0.006)

0.02469
(0.007)

0.03161
(0.008)

0.02813
(0.008)

0.00964
(0.007)*

DTLZ2 0.21076
(0.034)

0.25408
(0.063)

0.81479
(0.101)

0.21706
(0.094)

0.23453
(0.069)

0.29559
(0.088)

0.21078
(0.041)

0.21764
(0.049)

0.20805
(0.038)

0.20568
(0.043)

0.11160
(0.053)*

DTLZ3 0.00010
(0.000)

0.00025
(0.000)

0.27655
(0.272)

0.00039
(0.000)

0.00063
(0.000)

0.00050
(0.000)

0.00009
(0.000)

0.00009
(0.000)

0.00011
(0.000)

0.00008
(0.000)

0.00006
(0.000)*

DTLZ4 0.36628
(0.058)

0.41288
(0.122)

0.67536
(0.157)

0.14286
(0.101)*

0.25582
(0.117)

0.28146
(0.098)

0.36892
(0.036)

0.37913
(0.045)

0.36749
(0.050)

0.37046
(0.032)

0.32834
(0.045)

DTLZ5 0.01056
(0.004)

0.04157
(0.007)

0.78828
(0.116)

0.07523
(0.029)

0.08581
(0.017)

0.08063
(0.019)

0.00810
(0.003)

0.00711
(0.002)

0.01042
(0.003)

0.00645
(0.003)

0.00549
(0.003)

DTLZ6 0.00011
(0.000)

0.00015
(0.000)

0.32484
(0.307)

0.00056
(0.001)

0.00041
(0.000)

0.00092
(0.001)

0.00011
(0.000)

0.00011
(0.000)

0.00011
(0.000)

0.00011
(0.000)

0.00011
(0.000)

DTLZ7 0.05341
(0.028)

0.02154
(0.011)*

0.72537
(0.168)

0.09052
(0.048)

0.08785
(0.041)

0.09626
(0.056)

0.06084
(0.017)

0.04887
(0.027)

0.05003
(0.020)

0.05035
(0.017)

0.07792
(0.025)

WFG1 0.04042
(0.009)

0.64259
(0.198)

0.30569
(0.067)

0.09692
(0.035)

0.16581
(0.056)

0.57108
(0.219)

0.02178
(0.008)

0.02101
(0.008)

0.04016
(0.007)

0.01833
(0.006)

0.01592
(0.011)

WFG2 0.38268
(0.110)

0.32075
(0.065)

0.50751
(0.148)

0.21807
(0.115)*

0.35269
(0.098)

0.48516
(0.206)

0.43306
(0.115)

0.42087
(0.129)

0.40543
(0.135)

0.42631
(0.117)

0.33968
(0.138)

WFG3 0.05400
(0.023)

0.09340
(0.072)

0.13147
(0.059)

0.10034
(0.095)

0.11614
(0.070)

0.27577
(0.196)

0.04774
(0.020)

0.04590
(0.022)

0.05720
(0.025)

0.04256
(0.023)

0.03254
(0.018)*

WFG4 0.11260
(0.030)

0.54752
(0.124)

0.48730
(0.102)

0.30173
(0.091)

0.33005
(0.071)

0.57747
(0.220)

0.10234
(0.030)

0.10968
(0.029)

0.10192
(0.029)

0.10363
(0.030)

0.04687
(0.034)*

WFG5 0.11549
(0.020)

0.64706
(0.138)

0.57343
(0.070)

0.34744
(0.072)

0.40533
(0.069)

0.70434
(0.165)

0.12136
(0.023)

0.12583
(0.023)

0.12115
(0.019)

0.11680
(0.023)

0.04322
(0.025)*

WFG6 0.03305
(0.063)

0.37975
(0.076)

0.80127
(0.107)

0.48182
(0.105)

0.22680
(0.067)

0.38804
(0.081)

0.02238
(0.008)

0.05078
(0.087)

0.03640
(0.062)

0.02242
(0.010)

0.11099
(0.120)

WFG7 0.10877
(0.023)

0.58401
(0.128)

0.67342
(0.125)

0.32610
(0.106)

0.39782
(0.067)

0.63484
(0.167)

0.11558
(0.021)

0.11913
(0.029)

0.10563
(0.020)

0.10341
(0.019)

0.02883
(0.019)*

WFG8 0.10817
(0.025)

0.60173
(0.119)

0.63615
(0.108)

0.32510
(0.092)

0.38945
(0.065)

0.63409
(0.133)

0.12590
(0.027)

0.12015
(0.022)

0.11112
(0.018)

0.11776
(0.025)

0.03815
(0.019)*

WFG9 0.02673
(0.049)

0.35521
(0.050)

0.73704
(0.082)

0.47878
(0.084)

0.22603
(0.086)

0.37548
(0.080)

0.02877
(0.054)

0.05392
(0.095)

0.01700
(0.007)

0.03652
(0.069)

0.15095
(0.121)

ZDT1 0.00039
(0.000)

0.01323
(0.005)

0.39003
(0.203)

0.09011
(0.030)

0.02464
(0.010)

0.03646
(0.032)

0.00035
(0.000)

0.00033
(0.000)

0.00041
(0.000)

0.00031
(0.000)

0.00025
(0.000)

ZDT2 0.00021
(0.000)

0.00251
(0.001)

0.42733
(0.213)

0.10997
(0.046)

0.00930
(0.004)

0.01021
(0.007)

0.00018
(0.000)

0.00015
(0.000)

0.00021
(0.000)

0.00018
(0.000)

0.00009
(0.000)*

ZDT3 0.00103
(0.000)

0.02096
(0.007)

0.46837
(0.214)

0.13350
(0.057)

0.02279
(0.008)

0.03485
(0.026)

0.00093
(0.000)

0.00085
(0.000)

0.00106
(0.000)

0.00098
(0.000)

0.00078
(0.000)

ZDT4 0.00063
(0.000)

0.37585
(0.234)

0.85215
(0.130)

0.79590
(0.174)

0.31050
(0.215)

0.72769
(0.158)

0.00052
(0.000)

0.00048
(0.000)

0.00063
(0.000)

0.00047
(0.000)

0.00043
(0.000)

ZDT6 0.00019
(0.000)

0.00035
(0.000)

0.41284
(0.224)

0.06345
(0.192)

0.00269
(0.003)

0.04083
(0.044)

0.00014
(0.000)

0.00010
(0.000)

0.00017
(0.000)

0.00012
(0.000)

0.00020
(0.000)

296 D. C. Valencia-Rodŕıguez and C. A. Coello Coello

Table 3. Mean and standard deviation of the s-energy indicator for SMPSO, SMPSO-
E1, and SMPSO-E2. The best values are highlighted in gray, and “*” represents that
the results are statistically significant

SMPSO SMPSO-E1 SMPSO-E2

Lattice Ring Star Tree Wheel Lattice Ring Star Tree Wheel

DTLZ1 1.141e-13
(0.000)

3.506e-03
(0.018)

7.015e-02
(0.239)

3.376e-03
(0.018)

5.690e-04
(0.002)

1.401e-05
(0.000)

3.346e-13
(0.000)

6.078e-13
(0.000)

4.183e-13
(0.000)

1.031e-13
(0.000)

6.109e-11
(0.000)

DTLZ2 9.007e-04
(0.005)

9.139e-07
(0.000)

2.869e-08
(0.000)

1.957e-08
(0.000)

3.223e-11
(0.000)

3.337e-02
(0.179)

1.391e-05
(0.000)

6.640e-03
(0.011)

2.229e-06
(0.000)

1.896e-03
(0.007)

6.427e-03
(0.011)

DTLZ3 1.355e-10
(0.000)

3.907e-02
(0.180)

1.544e-03
(0.008)

4.636e-02
(0.162)

7.300e-02
(0.110)

3.635e-02
(0.122)

1.965e-07
(0.000)

1.093e-06
(0.000)

2.665e-10
(0.000)

9.056e-07
(0.000)

7.648e-07
(0.000)

DTLZ4 4.563e-06
(0.000)

1.350e-02
(0.037)

2.343e-02
(0.053)

5.861e-02
(0.162)

5.994e-02
(0.192)

8.029e-02
(0.203)

9.265e-06
(0.000)

1.679e-05
(0.000)

6.177e-08
(0.000)

5.557e-06
(0.000)

5.653e-07
(0.000)

DTLZ5 2.277e-12
(0.000)

2.626e-12
(0.000)

4.879e-02
(0.188)

6.785e-06
(0.000)

4.160e-12
(0.000)

1.408e-10
(0.000)

2.918e-12
(0.000)

1.302e-12
(0.000)

3.706e-12
(0.000)

1.162e-12
(0.000)

1.657e-12
(0.000)

DTLZ6 2.565e-10
(0.000)

1.483e-05
(0.000)

1.115e-01
(0.290)

1.209e-07
(0.000)

6.510e-05
(0.000)

2.566e-08
(0.000)

6.661e-10
(0.000)

4.564e-11
(0.000)

1.127e-10
(0.000)

2.188e-11
(0.000)

3.971e-11
(0.000)

DTLZ7 6.239e-12
(0.000)

2.101e-10
(0.000)

5.481e-02
(0.205)

4.958e-09
(0.000)

3.105e-08
(0.000)

7.612e-11
(0.000)

1.291e-11
(0.000)

1.447e-11
(0.000)

1.245e-11
(0.000)

2.506e-11
(0.000)

1.847e-05
(0.000)

WFG1 6.707e-06
(0.000)

1.523e-07
(0.000)

9.602e-05
(0.000)

6.198e-09
(0.000)

3.914e-04
(0.002)

1.454e-07
(0.000)

2.714e-09
(0.000)

4.275e-04
(0.002)

1.621e-09
(0.000)

3.333e-02
(0.180)

6.297e-08
(0.000)*

WFG2 3.857e-12
(0.000)

7.653e-12
(0.000)

3.792e-02
(0.179)

1.370e-10
(0.000)

3.513e-10
(0.000)

2.660e-07
(0.000)

1.913e-12
(0.000)

6.343e-13
(0.000)

9.577e-13
(0.000)

3.085e-11
(0.000)

7.659e-13
(0.000)

WFG3 2.375e-08
(0.000)

3.806e-07
(0.000)

6.042e-02
(0.212)

1.434e-07
(0.000)

3.310e-06
(0.000)

1.295e-07
(0.000)

3.176e-07
(0.000)

2.546e-08
(0.000)

2.581e-08
(0.000)

2.816e-08
(0.000)

1.365e-07
(0.000)

WFG4 5.093e-08
(0.000)

9.281e-03
(0.050)

3.680e-02
(0.180)

8.530e-08
(0.000)

1.686e-03
(0.009)

3.754e-06
(0.000)

4.755e-08
(0.000)

4.844e-08
(0.000)

6.139e-08
(0.000)

4.854e-08
(0.000)

8.009e-08
(0.000)

WFG5 3.552e-10
(0.000)

7.542e-04
(0.004)

1.361e-04
(0.001)

5.059e-10
(0.000)

3.333e-02
(0.180)

7.000e-10
(0.000)

9.346e-08
(0.000)

3.491e-10
(0.000)

2.681e-10
(0.000)

5.375e-10
(0.000)

5.671e-10
(0.000)

WFG6 3.291e-06
(0.000)

1.376e-03
(0.007)

3.336e-02
(0.180)

7.085e-06
(0.000)

8.563e-04
(0.004)

3.146e-04
(0.002)

3.014e-06
(0.000)

2.469e-06
(0.000)

2.242e-06
(0.000)

2.407e-06
(0.000)

4.877e-06
(0.000)

WFG7 1.089e-11
(0.000)

4.965e-10
(0.000)

1.204e-06
(0.000)

2.080e-11
(0.000)

1.406e-02
(0.076)

3.333e-02
(0.180)

1.054e-11
(0.000)

8.564e-12
(0.000)

1.898e-08
(0.000)

1.033e-11
(0.000)

4.042e-11
(0.000)

WFG8 2.987e-07
(0.000)

8.504e-07
(0.000)

7.951e-05
(0.000)

8.527e-07
(0.000)

3.385e-04
(0.002)

3.336e-02
(0.180)

2.860e-07
(0.000)

2.381e-07
(0.000)

5.952e-05
(0.000)

2.796e-07
(0.000)

3.430e-07
(0.000)

WFG9 1.001e-12
(0.000)

4.561e-10
(0.000)

3.333e-02
(0.180)

1.009e-12
(0.000)

2.981e-03
(0.016)

4.756e-04
(0.003)

7.260e-13
(0.000)

7.276e-13
(0.000)

9.823e-13
(0.000)

7.737e-13
(0.000)

2.156e-12
(0.000)

ZDT1 1.222e-10
(0.000)

1.104e-09
(0.000)

9.597e-02
(0.208)

5.123e-08
(0.000)

2.253e-09
(0.000)

1.240e-08
(0.000)

1.165e-10
(0.000)

1.175e-10
(0.000)

1.130e-10
(0.000)

1.215e-10
(0.000)

1.374e-10
(0.000)

ZDT2 9.719e-09
(0.000)

7.584e-08
(0.000)

1.170e-01
(0.293)

6.223e-05
(0.000)

7.512e-07
(0.000)

1.764e-06
(0.000)

1.144e-08
(0.000)

9.838e-09
(0.000)

8.591e-09
(0.000)

9.851e-09
(0.000)

1.269e-08
(0.000)

ZDT3 5.414e-09
(0.000)

6.296e-07
(0.000)

1.171e-01
(0.221)

1.945e-06
(0.000)

5.979e-07
(0.000)

4.632e-07
(0.000)

4.847e-09
(0.000)

4.776e-09
(0.000)

4.701e-09
(0.000)

4.816e-09
(0.000)

9.529e-09
(0.000)

ZDT4 2.786e-11
(0.000)

9.603e-03
(0.027)

2.743e-01
(0.179)

4.082e-01
(0.249)

1.501e-02
(0.079)

3.949e-02
(0.108)

2.426e-11
(0.000)

2.049e-11
(0.000)

2.770e-11
(0.000)

2.624e-11
(0.000)

2.999e-11
(0.000)

ZDT6 4.016e-09
(0.000)

3.719e-09
(0.000)

2.354e-01
(0.291)

3.585e-03
(0.015)

2.762e-06
(0.000)

1.615e-02
(0.087)

4.053e-09
(0.000)

3.969e-09
(0.000)

3.975e-09
(0.000)

9.804e-09
(0.000)

1.334e-05
(0.000)

7 Conclusions and Future Work

In this work, we proposed two topology handling schemes that differ in the place
from which the leader is taken, and we implemented them in SMPSO. Moreover,
using the resulting MOPSOs (SMPSO-E1 and SMPSO-E2), we performed an
experimental analysis of the influence of the topology in the performance of a
MOPSO.

The experiments show that a scheme that uses information from the external
archive perform better than a scheme that uses information from the swarm.
Furthermore, the same topology will influence the performance of a MOPSO

A Study of Swarm Topologies and Their Influence on MOPSOs 297

in a different manner if the topology handling scheme is changed. On the other
hand, our experiments also indicate that the fewer topology connections SMPSO-
E2 has, the better its convergence is. This effect could be because the particles
in a topology with many connections could try to go in multiple directions due
to the existence of multiple optimal solutions, causing the MOPSO to converge.
Conversely, if the topology has few connections, the information flows slowly and
the particles move to specific optimal solutions. Furthermore, the wheel topology
in SMPSO-E2 performs better than SMPSO and SMPSO-E1.

Therefore, the right selection of a topology can indeed improve the perfor-
mance of a MOPSO. In SMPSO-E1 and SMPSO-E2, the swarm topology had
little influence in the distribution of solutions. Thus, a topology handling scheme
that focuses on this topic could be worth developing.

References

1. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space.
Complex Syst. 9, 115–148 (1995)

2. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evo-
lutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R.
(eds.) Evolutionary Multiobjective Optimization: Theoretical Advances and Appli-
cations. Advanced Information and Knowledge Processing, pp. 105–145. Springer,
London (2005). https://doi.org/10.1007/1-84628-137-7 6

3. Hardin, D., Saff, E.: Discretizing manifolds via minimum energy points. Not. Am.
Math. Soc. 51(10), 1186–1194 (2004)

4. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test
problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.)
EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31880-4 20

5. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Difficulties in specifying ref-
erence points to calculate the inverted generational distance for many-objective
optimization problems. In: 2014 IEEE Symposium on Computational Intelligence
in Multi-criteria Decision-Making (MCDM 2014), pp. 170–177, December 2014

6. Kennedy, J.: Small worlds and mega-minds: effects of neighborhood topology on
particle swarm performance. In: Proceedings of the 1999 Congress on Evolutionary
Computation (CEC 1999), vol. 3, pp. 1931–1938, July 1999

7. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
1995 IEEE International Conference on Neural Networks (ICNN 1995), vol. 4, pp.
1942–1948 (1995)

8. Mendes, R.: Population topologies and their influence in particle swarm perfor-
mance. Ph.D. thesis, Departamento de Informática, Escola de Engenharia, Univer-
sidade do Minho, April 2004

9. Nebro, A.J., Durillo, J.J., Garćıa-Nieto, J., Coello, C.A.C., Luna, F., Alba, E.:
SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In: 2009
IEEE Symposium on Computational Intelligence in Multi-criteria Decision-Making
(MCDM 2009), pp. 66–73, March 2009

10. Parsopoulos, K.E., Vrahatis, M.N.: Multi-objective particles swarm optimization
approaches. In: Multi-objective Optimization in Computational Intelligence: The-
ory and Practice, pp. 20–42. IGI Global (2008)

https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/978-3-540-31880-4_20
https://doi.org/10.1007/978-3-540-31880-4_20

298 D. C. Valencia-Rodŕıguez and C. A. Coello Coello

11. Taormina, R., Chau, K.: Neural network river forecasting with multi-objective fully
informed particle swarm optimization. J. Hydroinform. 17(1), 99–113 (2014)

12. Yamamoto, M., Uchitane, T., Hatanaka, T.: An experimental study for multi-
objective optimization by particle swarm with graph based archive. In: Proceedings
of SICE Annual Conference (SICE 2012), pp. 89–94, August 2012

13. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and
applications. Ph.D. thesis, Swiss Federal Institute of Technology (ETH), Zurich,
Suiza, November 1999

14. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

Visualising Evolution History in Multi-
and Many-objective Optimisation

Mathew J. Walter, David J. Walker, and Matthew J. Craven(B)

School of Engineering, Computing and Mathematics, University of Plymouth,
Plymouth PL4 8AA, UK

{mathew.walter,david.walker,matthew.craven}@plymouth.ac.uk

Abstract. Evolutionary algorithms are widely used to solve optimisa-
tion problems. However, challenges of transparency arise in both visu-
alising the processes of an optimiser operating through a problem and
understanding the problem features produced from many-objective prob-
lems, where comprehending four or more spatial dimensions is difficult.
This work considers the visualisation of a population as an optimisation
process executes. We have adapted an existing visualisation technique
to multi- and many-objective problem data, enabling a user to visu-
alise the EA processes and identify specific problem characteristics and
thus providing a greater understanding of the problem landscape. This
is particularly valuable if the problem landscape is unknown, contains
unknown features or is a many-objective problem. We have shown how
using this framework is effective on a suite of multi- and many-objective
benchmark test problems, optimising them with NSGA-II and NSGA-III.

Keywords: Visualisation · Evolutionary computation ·
Multi-objective optimisation

1 Introduction

Optimisation problems abound in science and industry, and in recent decades a
plethora of approaches have arisen to solve them. A prominent example are evo-
lutionary algorithms (EAs). An EA takes an initial population and uses nature-
inspired operators to perturb the solutions towards optimal solution (or solu-
tions). As well as solving an optimisation problem, it is important that the pro-
cesses with which they are generated are understandable by non-expert problem
owners, and often this is not the case: therein lies a challenge of transparency.
Visualisation is a natural approach to addressing this issue, exposing the solu-
tions, and the mechanisms used to generate them, to the end user.

This paper expands upon [4], which compared the extent to which dimen-
sion reduction techniques preserved population movements and the exploration-
exploitation trade-off. It also proposes two compact visualisations, one of which
we extend to visualise the search history of an EA optimising a multi- and many-
objective problem. We use this to identify specific characteristics of problems as
c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 299–312, 2020.
https://doi.org/10.1007/978-3-030-58115-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_21

300 M. J. Walter et al.

well as identifying the population dynamic through the evolution process. This
paper offers the following novel contributions:

1. The method is applied to a suite of multi- and many-objective test problems
containing a wider set of problem features that can be visualised than the
single-objective problems used in [4].

2. Specific problem features that can be identified through the proposed visual-
isation are identified and examples are shown.

3. The method is applied in both the search space and objective space. Specific
problem characteristics and population movements can be more prominent
in a low-dimensional embedding of a particular space (i.e. discontinuities in
the search space may only be able to be identified in the objective space
embedding visualisation for a particular problem).

The remainder of this paper is structured as follows: In Sect. 2, rele-
vant formal definitions are introduced. We review existing work on visualis-
ing many/multi-objective optimisation from the literature, and we acknowledge
the paper this work extends. Section 3 contains details of the dimension reduc-
tion techniques, the test problem suite, problem features and a summary of the
methodology implemented for visualisation. The experimental setup, contain-
ing details of the parameters used in this experiment are highlighted in Sect. 4.
Section 5 hosts the results and analysis and provides a discussion of the many-
objective problems. We conclude and discuss future work in Sect. 6.

2 Background

A multi-objective optimisation problem comprises M competing objectives, such
that a solution x is quantified by an objective vector y with M elements:

y = (f1(x), . . . , fM (x))
such that x ∈ Ω, y ∈ Λ

(1)

where Ω is the search space and Λ is the objective space. Many-objective optimi-
sation problem comprises four or more competing objectives (and thus M ≥ 4 for
such problems). The task of a multi-objective evolutionary algorithm (MOEA)
and many-objective evolutionary algorithm (MaOEA) is to optimise a problem
comprising a set of M conflicting objectives to which there can be no solution
that simultaneously optimises all M objectives. Solutions are compared using the
dominance relation, whereby solution yi dominates solution yj if it is no worse
than yj on any objective and better on at least one. More formally, assuming a
minimisation problem without loss of generality:

yi ≺ yj ⇐⇒ ∀m(yim ≤ yjm) ∧ ∃m(yim<yjm). (2)

If neither yi dominates yj , nor yj dominates yi, then the solutions are mutually
non-dominating. A solution with no dominating solutions is non-dominated. The
goal of a MaOEA/MOEA is to identify the Pareto set, the set of feasible solutions
that cannot be dominated. The objective space image is called the Pareto front.

Visualising Evolution History in Multi- and Many-objective Optimisation 301

2.1 Previous Visualising Search History Literature

Rather than visualising the Pareto set and/or Pareto front, visualising the search
population can generate more useful information to the decision-maker (DM).
The DM will often be interested not only in the non-dominated solutions but also
the mechanism from which they are generated. The existing literature concerning
visualising population movements in evolutionary multi-objective optimisation
(EMO) is minimal. One study that does consider population movement presents
a visual method for benchmarking the performance of EAs. The method is used
to illustrate a range of good and bad performance characteristics [14,15]. Other
examples of visual methods for examining algorithm parameters are [2,11]. Exist-
ing work from [1] visualises search history in EMO.

Other papers are concerned with visualising the non-dominated solutions
[13,16]. However, these do not address a significant issue: the DM’s comprehen-
sion of the algorithm’s population movements. Further work that visualises the
whole population is that of [9], which maps individuals from a high-dimensional
objective space into a 2-D polar coordinate plot while preserving the Pareto dom-
inance relationship. Like the studies referenced above, that work is concerned
with configuring MaOEAs rather than characterising the problem landscape.

There are many choices of content to be visualised. For example, one could
visualise the search space, the objective space or search process. This work con-
siders visualising all three with multi/many-objective problems. As shown in
Sect. 5, often more information can be captured when visualising both spaces
simultaneously than by visualising a single space. Further, this work chooses to
visualise the whole population rather than a subset (such as the Pareto front)
to capture the maximum amount of population movement information from the
visualisation. This paper pays particular attention to visualising the population
as the population evolves through the algorithm.

3 Visualising Search History

One of the difficulties that arise from visualising many-objective optimisation
data is being able to comprehend four or more spatial dimensions visually. In
order to make a visualisation tool applicable to the class of multi/many-objective
EAs, a dimension reduction technique needs to be applied to the population. The
mapping Π is a dimension reduction mapping if Π : Rm → R

n, where n<m. In
this work, Multi-Dimensional Scaling (MDS) [12] is the chosen technique for
dimension reduction; this is due to its effectiveness at maintaining population
structure [4]. MDS is used to translate pairwise distances of the population
individuals into a lower-dimension Cartesian space.

As discussed in Sect. 2, this work chooses to visualise the search space and
the objective space. Through visualising the population evolving through the
space, one is able to identify specific problem features. There are many choices
of problem features that can be considered. In this work, we consider four:

– Local optimum - A local optimum is a solution that is optimal within a
neighbouring set of candidate solutions.

302 M. J. Walter et al.

– Modality - For the problems considered, the objective functions can be uni-
modal or multimodal. An objective function is unimodal if it has a single
optimum, or multimodal if it has multiple local optima.

– Bias - A problem is biased if there’s significant density variation of solutions
in the objective space, given an even spread of solutions in parameter space.

– Disconnected Pareto optimum set/front - In this case, a problem has a Pareto
set/front in disconnected regions.

In order to detect these problem features, the experiment requires a diverse
choice of test problems to allow various properties of the individual problems to
be identified in the visualisations; for this work the DTLZ test suite [7] is used.
The problems contain many features which can be used to support the exposure
of population movements. The application of the DTLZ test suite allows one to
identify specific problem features from the population MDS - however, the DTLZ
test suite is far from comprehensive. It is noted in [10] that the DTLZ test suite
has several limitations such as: none of its problems feature fitness landscapes
with flat regions, none of its problems are deceptive, none of its problems are
(practically) nonseparable and the number of position parameters is always fixed
relative to the number of objectives.

3.1 Visualising Search History Methodology

The visualisation method used herein is based on that defined by [4], visualising
the search history of an optimiser once the optimisation process has completed.
The optimiser results in a sequence of populations in which Pi is the population
from the i-th generation, ranked according to its members’ fitness values, where
i ∈ {1, . . . , ngen}, where ngen is the total number of generations. This sequence of
populations is concatenated into a single multiset, the dimensionality of which
is reduced using multidimensional scaling (MDS) from M to 2. In all cases
herein, M > 2. The resulting embedding is then used for visualisation, with the
two embedded coordinates forming the x and y coordinates, and the generation
number providing the value for the z-axis.

Within the visualisation, colour is used to illustrate the trade-off between
search and exploitation, showing which mode of optimisation the algorithm is
currently operating in. The work of [3,4] is employed to determine to what level
the set of all solutions at a particular generation is being explored or exploited.
Exploration is inversely proportional to exploitation. This metric is applied to
the visualisation in [4].

The exploration and exploitation metric is calculated for each generation.
At each generation, the Euclidean distance between each pairwise individual in
the population is calculated, and the minimum distance is saved from which
the median minimum pairwise distance is calculated. At each generation, the
minimum distance for each pairwise individual is compared against the overall
median. Thus the individuals with lower distance are considered to be exploiting.

Visualising Evolution History in Multi- and Many-objective Optimisation 303

4 Experimental Setup

The experiment comprises of running EAs on five continuous problems from the
DTLZ test suite [7], namely, DTLZ1-4 and DTLZ7. These five problems have
real-valued decision variables lying in the region [0, 1]. The suggested number
of decision variables is D = k + M − 1, where k = 5 for DTLZ1, k = 20 for
DTLZ7, and k = 10 for the remaining problems. The problems are scalable in
the number of objectives; in this experiment, three and five objective problems
are utilised. The 3-objective problems are optimised with NSGA-II [6] and the
5-objective problems with NSGA-III [5]. The crossover probability is 0.8, and
the mutation probability is set to 0.1. The distribution index, controlling the
size of the perturbation, in both cases is fixed (15 for SBX, 7 for polynomial
mutation). The algorithm’s runtime is 100,000 function evaluations for M = 3
and 200,000 for M = 5. The visualisations are then produced as in Sect. 3.1.

Having generated data by optimising one of the problems with either NSGA-
II or NSGA-III, the search and objective spaces are visualised. The MDS plots
of both whole populations in the objective and search spaces are generated. The
points in the visualisations are coloured according to the exploration-exploitation
metric, except, however, the final generation in each visualisation which is plotted
as a white cross. An analysis is then performed of the plots, with the intention of
both identifying characteristics of the test problems and identifying the dynamics
of the population as it evolves through the problem.

5 Results

5.1 Multi-objective Problems

Figure 1 illustrates results for optimising DTLZ1 in three objectives. The top
panel visualises the search space, and the lower panel shows the corresponding
objective space results. DTLZ1 is multimodal, and the effect of this on the search
process can be seen in the result. As the population approaches optima, the pop-
ulation movements should decrease; by definition, this decreases the exploration
measure. The MDS mapping would translate a decrease in population move-
ments to an MDS population confined together and converged around (0, 0)
in the (y1, y2) plane. From this perspective, the population distances can be
observed to converge to approximately (0, 0) when finally reaching the global
optima (this occurs in the final 250 generations in the objective space). How-
ever, before the objective space population converges to the global optimum, a
subset of the population (identified as the ‘rings’ in Fig. 1) are exploring after
diverging from a local optimum, whilst the remaining population are converg-
ing to the global optimum. This can be observed at approximately generations
250, 500 and 750. Furthermore, the population is coloured according to the
exploration-exploitation metric. At the identified local optima, the population
posses lighter colours such as yellow and green, suggesting the points are explor-
ing in an attempt to escape from the local optima.

304 M. J. Walter et al.

Fig. 1. DTLZ1, with the top illustrations showing the MDS reduced search space. The
bottom illustrations show the MDS reduced objective space. The solutions are coloured
according to their exploration-exploitation metric. (Colour figure online)

The final generation presents some structure from the final generation in
the objective space (a triangular plane). This corresponds to earlier work using
MDS to visualise many-objective populations, wherein it was shown to preserve
the structure and, to an extent, geometry of a mutually non-dominating set
[16]. As in both spaces, the exploration/exploitation seems to indicate that as
the generations increase, exploration increases and hence exploitation decreases;
this matches intuition.

DTLZ3 is also a multimodal problem, and similar results can be observed
in Fig. 2 to that of DTLZ1. In the MDS reduced search space the population
appears to converge, with the population distances reducing as the optimiser
evolves. At around generation 400, it can be seen to diverge and converge again
as the population encounters a local minimum. On the MDS reduced search space
the final generation preserves some of the structure from the final generation in
the objective space (the positive orthant of the unit sphere).

DTLZ2 and DTLZ4 are illustrated in Figs. 3 and 4 respectively. Both prob-
lems are unimodal, and there is usually much less to see as the problems are
less challenging. For DTLZ2, both spaces appear to be cylindrical shapes with
very little character; this is because the problems contain a simple search space
and there is little to prevent an optimiser converging to the global optimum very

Visualising Evolution History in Multi- and Many-objective Optimisation 305

Fig. 2. DTLZ3, the top illustrations showing the MDS reduced search space. The
bottom illustrations show the MDS reduced objective space.

quickly. This is reflected in the spaces. The final generation in the MDS space
has preserved much of the final generation structure in the objective and search
space. The objective space of DTLZ2 is similar to that of DTLZ3 and DTLZ4,
and hence the final generations are all similar in structure. The transition from
population exploration to exploitation is more gradual than the exploration-
exploitation transition in the multimodal problems; this appears intuitive.

In the visualisations illustrated so far, it seems most of the information is
contained within the MDS reduced objective space. In the case of DTLZ4 there
appear to be more interesting characteristics of the plot in the MDS reduced
search space, this can be seen in Fig. 4. In the decision space MDS the population
appears to form circular ‘shockwaves’. This is because the search space contains
a dense area of solutions next to the fM/f1 plane. DTLZ4 is a biased problem,
which increases the difficulty of a problem by making it harder to converge to
and fully cover the Pareto front.

DTLZ7 (Fig. 5) is a mixed modality problem. Objectives f1:M−1 are uni-
modal and objective fM is multimodal. This problem has disconnected Pareto-
optimal regions in the search space. There appears to be more similarity with the
unimodal objective problems. The disconnected regions of the Pareto front are
shown in Fig. 6, and can be seen as they evolve through the search space. Note,

306 M. J. Walter et al.

Fig. 3. DTLZ2, the top illustrations showing the MDS reduced search space. The
bottom illustrations show the MDS reduced objective space.

the regions are clearly visible in the MDS reduced search space embedding of the
final generation. This structure is not visible in the objective space visualisation,
and this problem is an example of a case in which considering both spaces can
yield useful information (in this case the objective space visualisation yields no
new information, and is omitted due to lack of space).

Figure 7 illustrates the use of the hypervolume indicator [8] in parallel with
the MDS visualisation in order to understand population movements. The hyper-
volume is a measure of performance widely used to assess the progress of a
MOEA in terms of both convergence and diversity – in order to achieve the max-
imum possible hypervolume score the Pareto front approximation must converge
to the Pareto front and cover it completely. In this case, the population appears
to converge, in approximately the first 30 generations. Then up to around 400
generations, the population distances are small; subsequently, the population
seems to converge to the optima. These changes in optimiser progress correspond
to the changes that are visible in the objective space visualisation, indicating that
they are highlighting the same artefact in the optimisation history.

Visualising Evolution History in Multi- and Many-objective Optimisation 307

Fig. 4. DTLZ4, showing the MDS reduced search space.

Fig. 5. DTLZ7, showing the MDS reduced search space.

(a) Search space (b) Search space search
history

(c) Final generation

Fig. 6. Clustering coloured MDS reduced search space. For (a), axes x, y, z correspond
to the three objectives. In (b) and (c), axes yi correspond to the reduced MDS data
axes.

308 M. J. Walter et al.

Fig. 7. The hypervolume of a three objective DTLZ4 problem, followed by the corre-
sponding MDS reduced objective space plot.

5.2 Many-objective Problems

The framework is demonstrated on five objective problems, for which a larger
number of function evaluations, and hence generations, are required. In this
experiment, 200,000 function evaluations are run.

In Fig. 8, the DTLZ1 test problem appears to converge around an optimum
at approximately generation 100. In the final generations the population diverges
again after encountering another optimum; this is because some population dis-
tances have increased. We can see the population has not converged as quickly
as in the three objective problem; this is intuitive, as the five objective problem
is more difficult. DTLZ2 (Fig. 9) and DTLZ4 (Fig. 10) have a final generation
which shows a very distinctive pentagon in the MDS reduced objective space,
which demonstrates the final generation in the MDS visualisation maintains a
similar structure to the final generation in the objective space. It should be noted:
the pentagon is formed due to the five objective problem nature. For a problem
comprising M objectives, one would expect to find a M -sided shape from the
final generation MDS reduced objective space. DTLZ4 contains a ring around
the MDS reduced search space. The population appears to form circular ‘shock-
waves’. This is because the search space contains a dense area of solutions next
to the fM/f1 plane. In the MDS reduced search space of DTLZ7 (Fig. 11), the
clusters of points become more difficult to observe than with the same problem
in three objectives. The MDS reduced objective space, however, appears to show
stacked ‘lines’, and shows how the NSGA-III algorithm operates on the popula-
tion movements. NSGA-III uses a set of reference directions to maintain diversity
among solutions, and the population appears to converge along these reference
points. We therefore state, the problem characterisations that can be inferred
from the visualisations are highly dependent on the employed algorithm. That
is, the visualisations show the search behavior from which the problem char-
acterisations can be seen only indirectly, leading to some visualisation features
being an artifact of the algorithm.

Visualising Evolution History in Multi- and Many-objective Optimisation 309

Fig. 8. DTLZ1 with five objectives, top illustrations showing the MDS reduced search
space. The bottom illustrations show the MDS reduced objective space.

Fig. 9. DTLZ2 with five objectives, showing the MDS reduced objective space.

310 M. J. Walter et al.

Fig. 10. DTLZ4 with five objectives, showing the MDS reduced search space.

Fig. 11. DTLZ7 with five objectives, showing the MDS reduced objective space.

6 Conclusion

By extending the visualisation proposed in [4], we have identified specific prob-
lem characteristics through population movements that could be of value to the
DM. This provides a better understanding of the problem landscape, and how
the algorithm is performing, allowing the DM to make decisions based on how
the optimisers are evolving solutions to the problem. We have shown how this
framework can be used to locate some of the characteristics of a problem. For
example, the framework has identified clusters caused by discontinuities in the
Pareto front, can identify local optima, and allows one to see where the popula-
tion approximately converges to the Pareto front. Ultimately, the visualisation
illustrates how the population moves through the search space.

The approach can be used to identify important characteristics of a problem;
this is particularly useful if the problem landscape is unknown, and contains
unknown features. It is well known that visualising many-objective solutions
is a challenge, and this work has shown how using this framework is effective
for both multi- and many-objective problems. Work on the proposed method

Visualising Evolution History in Multi- and Many-objective Optimisation 311

is ongoing, and we are currently examining techniques for further highlighting
problem features within the visualisation. This is in addition to considering a
wider range of problem features, and other types of problems (e.g., discrete
problems and real-world problems).

It is clear how different information is preserved in the search and objec-
tive spaces, and that the both spaces should be used in parallel to maximise
the information obtained about the population movements. We are currently
exploring interactive visualisations that are based on a linear combination plot
of the two, as well as allowing a user to manipulate the combination in an inter-
active visualisation, allowing them to run through the populations in both the
objective/search space and the MDS space simultaneously. Ultimately, the aim
of this ongoing work is to help the DM and researchers identify the popula-
tion movements within their problems and provide a better comprehension of
the algorithms and problems. Enabling this kind of transparency within genetic
algorithms will make the use of genetic algorithms more accessible to DMs.

References

1. Brockhoff, D., Auger, A., Hansen, N., Tušar, T.: Quantitative performance assess-
ment of multiobjective optimizers: the average runtime attainment function. In:
Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp. 103–119. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-54157-0 8

2. Craven, M.J., Jimbo, H.C.: EA stability visualization: perturbations, metrics and
performance. In: Proceedings of the Companion Publication of GECCO 2014, pp.
1083–1090 (2014)

3. Črepinšek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evolutionary
algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 1–33 (2013)

4. De Lorenzo, A., Medvet, E., Tušar, T., Bartoli, A.: An analysis of dimensionality
reduction techniques for visualizing evolution. In: Proceedings of GECCO 2019,
pp. 1864–1872 (2019)

5. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimiza-
tion test problems. In: Proceedings of the 2002 Congress on Evolutionary Compu-
tation (CEC 2002) (Cat. No. 02TH8600), vol. 1, pp. 825–830. IEEE (2002)

8. Fleischer, M.: The measure of Pareto optima applications to multi-objective meta-
heuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.)
EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36970-8 37

9. He, Z., Yen, G.G.: Visualization and performance metric in many-objective opti-
mization. IEEE Trans. Evol. Comput. 20(3), 386–402 (2015)

10. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5),
477–506 (2006)

https://doi.org/10.1007/978-3-319-54157-0_8
https://doi.org/10.1007/3-540-36970-8_37
https://doi.org/10.1007/3-540-36970-8_37

312 M. J. Walter et al.

11. Kobayashi, Y., Okamoto, T., Koakutsu, S.: A Pareto optimal solution visualiza-
tion method using SOM-NG with learning parameter optimization. In: 2016 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), pp. 004525–
004531 (2016)

12. Torgerson, W.S.: Multidimensional scaling: I. theory and method. Psychometrika
17(4), 401–419 (1952). https://doi.org/10.1007/BF02288916

13. Tušar, T., Filipič, B.: Visualization of Pareto front approximations in evolutionary
multiobjective optimization: a critical review and the prosection method. IEEE
Trans. Evol. Comput. 19(2), 225–245 (2015)

14. Walker, D.J., Craven, M.J.: Toward the online visualisation of algorithm perfor-
mance for parameter selection. In: Sim, K., Kaufmann, P. (eds.) EvoApplications
2018. LNCS, vol. 10784, pp. 547–560. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-77538-8 38

15. Walkerm, D.J., Craven, M.J.: Identifying good algorithm parameters in evolution-
ary multi-and many-objective optimisation: a visualisation approach. Appl. Soft
Comput. 88, 105902 (2020)

16. Walker, D.J., Everson, R.M., Fieldsend, J.E.: Visualizing mutually nondominating
solution sets in many-objective optimization. IEEE Trans. Evol. Comput. 17(2),
165–184 (2012)

https://doi.org/10.1007/BF02288916
https://doi.org/10.1007/978-3-319-77538-8_38
https://doi.org/10.1007/978-3-319-77538-8_38

Improving Many-Objective Evolutionary
Algorithms by Means of Edge-Rotated

Cones

Yali Wang(B), André Deutz, Thomas Bäck, and Michael Emmerich

Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1,
2333CA Leiden, The Netherlands
y.wang@liacs.leidenuniv.nl

Abstract. Given a point in m-dimensional objective space, any ε-ball
of a point can be partitioned into the incomparable, the dominated and
dominating region. The ratio between the size of the incomparable region,
and the dominated (and dominating) region decreases proportionally to
1/2m−1, i.e., the volume of the Pareto dominating orthant as compared
to all other volumes. Due to this reason, it gets increasingly unlikely that
dominating points can be found by random, isotropic mutations. As a
remedy to stagnation of search in many objective optimization, in this
paper, we suggest to enhance the Pareto dominance order by involving
an obtuse convex dominance cone in the convergence phase of an evolu-
tionary optimization algorithm. We propose edge-rotated cones as gener-
alizations of Pareto dominance cones for which the opening angle can be
controlled by a single parameter only. The approach is integrated in sev-
eral state-of-the-art multi-objective evolutionary algorithms (MOEAs)
and tested on benchmark problems with four, five, six and eight objec-
tives. Computational experiments demonstrate the ability of these edge-
rotated cones to improve the performance of MOEAs on many-objective
optimization problems.

Keywords: Cone order · Pareto dominance · Many-objective
evolutionary algorithm

1 Introduction

Multi-objective evolutionary algorithms (MOEAs) have been successfully used
in the application area of multi-objective optimization due to their ability to
approximate the entire Pareto front in a single run. The Pareto dominance rela-
tion, as the most commonly adopted ranking method, plays an essential role in
many MOEAs because Pareto dominance is used to compare solutions even when
different selection mechanisms are employed in different categories of MOEAs.

This work is part of the research programme Smart Industry SI2016 with project name
CIMPLO and project number 15465, which is (partly) financed by the Netherlands
Organisation for Scientific Research (NWO).

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 313–326, 2020.
https://doi.org/10.1007/978-3-030-58115-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_22

314 Y. Wang et al.

The well-known NSGA-II [1] is a Pareto dominance-based MOEA, using Pareto
non-dominated sorting as the first ranking criterion and crowding distance to
promote diversity in the population. DI-MOEA [2] is an indicator-based MOEA,
it employs the non-dominated sorting as the first ranking criterion and a diver-
sity indicator as the second criterion, which is the Euclidean distance based
geometric mean gap indicator. It has been shown to be invariant to the shape
of the Pareto front and can achieve evenly spread Pareto front approximations.
The NSGA-III [3] is an extension of NSGA-II and it is a decomposition-based
MOEA. It employs the Pareto non-dominated sorting to partition the popula-
tion into a number of fronts, but replaces the crowding distance operator with
a clustering operator based on a set of reference points.

Although the Pareto dominance relation usually works well on multi-
objective problems with two or three objectives, its ability is often severely
degraded when handling many-objective problems (MaOPs) where more than
three objectives need to be optimized simultaneously. One major reason of its
performance deterioration in many-objective optimization is that individuals are
not likely to be dominated by others. Given a point in m-dimensional objective
space, any ε-ball of a point can be partitioned into the incomparable, the dom-
inated and dominating region. The ratio between the size of the incomparable
region, and the dominated (and dominating) region decreases proportionally to
1/2m−1, i.e., the volume of the Pareto dominating orthant as compared to all
other volumes. Due to this reason, it gets increasingly unlikely that dominating
points can be found by random, isotropic mutations and classical algorithms do
not converge to the Pareto front. The straightforward attempt to overcome the
weakness is to use a large population. However, the use of a large population
causes other issues. Firstly, the computing time of MOEAs drastically increases
because of the increase of the population size. Secondly, the use of a large popu-
lation size severely degrades the search ability of some MOEAs, (e.g., NSGA-II)
[4]. Instead, we propose to extend the Pareto dominance order during the con-
vergence phase by involving the cone order from a convex obtuse dominance
cone. The new cone is implemented by rotating the edges of the standard Pareto
cone by means of a single parameter. In this way, an individual can dominate
larger space, thus, a gradient towards dominating solutions can be followed using
relatively small population sizes.

The structure of this paper is as follows. After discussing related work
(Sect. 2), Sect. 3 describes the edge-rotated cone dominance approach. Section 4
presents a comparative analysis. Finally, Sect. 5 concludes the paper.

2 Related Work

The Pareto dominance relationship is the most commonly adopted ranking
method in multi-objective optimization. However, with the increase of the num-
ber of objectives, the convergence ability of MOEAs based on Pareto dominance
degrades significantly [5]. Recently, some researchers have proposed the use of
relaxed forms of Pareto dominance as a way of regulating convergence of MOEAs.

Improving Many-Objective EAs by Means of Edge-Rotated Cones 315

Under these relaxed definitions, a solution has a higher chance to be dominated
by other solutions and the selection pressure toward the Pareto front is increased.

Definition 1 (Pareto dominance). An objective vector y(1) ∈ R
m is said to

dominate another objective vector y(2) ∈ R
m (denoted by y(1) ≺pareto y(2)) if

and only if: y
(1)
i ≤ y

(2)
i ∀i = 1, . . . ,m and ∃i ∈ {1, . . . , m} : y

(1)
i < y

(2)
i .

Ikeda et al. proposed α-dominance [6] to deal with dominance resistant solu-
tions (DRSs), which are solutions far from the Pareto front but are hardly dom-
inated. In α-dominance, the upper and lower bounds of trade-off rates between
two objectives fi and fj , i.e., αij and αji, are pre-defined. Before judging the
dominance relations between two individuals y and y′ in the population, the
following definition is considered: gi(y, y′) := fi(y) − fi(y′) +

∑M
j �=i αij(fj(y) −

fj(y′)). Solution y dominates solution y′ if and only if ∀i ∈ {1, ...,m} : gi(y, y′) ≤
0 and ∃i ∈ {1, ...,m} : gi(y, y′) < 0. Using α-dominance allows a solution to dom-
inate another if it is slightly inferior to the other in one objective, but largely
superior in other objectives by setting lower and upper bounds of trade-off rates
between objectives.

Laumanns et al. proposed the concept of ε-dominance [7]. Given two solutions
y, y′ ∈ R

m, and ε > 0, y is said to ε-dominant y′ if and only if ∀i ∈ {1, ...,m}:
yi − ε ≤ y

′
i. Cone ε-dominance [8] has been proposed by Batista et al. to improve

ε-dominance which may eliminate viable solutions. It introduces a parameter
k (k ∈ [0, 1)) to control the shape of the dominance area of a solution using
cones. Cone-dominance is also prominently used in multi-criteria decision making
(MCDM), in order to formulate user preferences [9].

Sato et al. proposed an approach to control the dominance area of solutions
(CDAS) [10]. In CDAS, the objective values are modified and the i-th objective
value of x after modification is defined as: f̂i(x) = r·sin (wi+Si·π)

sin (Si·π) , where r is
the norm of f(x), wi is the declination angle between f(x) and the coordinate
axis. The degree of expansion or contraction can be controlled by the parameter
Si ∈ [0.25, 0.25]. CDAS controls the aperture of the cone of dominance so that
the influence of each point could be increased.

Yang et al. proposed a grid dominance relation [11] in the grid-based evo-
lutionary algorithm (GrEA). The grid dominance adds the selection pressure
by adopting an adaptive grid construction. It uses grid-based convergence and
diversity measurements to compare non-dominated solutions.

Recently, an angle dominance criterion was proposed in [12]. It designs a
parameter k which works together with the worst point of the current population
to control the dominance area of a solution. The angle of a solution (e.g., solution
y) on one objective (e.g., the ith objective), αy

i , is determined by two lines: the
ith axis; and the line connecting the solution and the farthest point on the ith
axis in the dominance area. Solution y angle dominates solution y′ if and only
if ∀i ∈ {1, ...,m} : αy

i ≤ αy′
i and ∃i ∈ {1, ...,m} : αy

i < αy′
i .

Other than these, the (1 − k)-based criterion [13] has been considered when
addressing MaOPs. After comparing a solution to another and counting the
number of objectives where it is better than, the same as, or worse than the

316 Y. Wang et al.

other, this criterion uses these numbers to distinguish the relations of domina-
tion between solutions. The k-optimality [14] is a relation based on the number
of improved objectives between two solutions. The l-optimality [15] not only
takes into account the number of improved objective values but also considers
the values of improved objective functions, if all objectives have the same impor-
tance. The concept of volume dominance was proposed by Le and Landa-Silva
[16]. This form of dominance is based on the volume of the objective space that
a solution dominates.

In this paper, we propose the approach of using the edge-rotated cone to
enhance the traditional Pareto dominance. The edge-rotated cone can lead to
the same dominance relation as α-dominance. However, it is interpreted in a
more intuitive and geometric way and compared to angle-based method does
not require the knowledge of the ideal point or the nadir point.

3 Proposed Algorithm

3.1 Proposed Dominance Relation

The Pareto dominance relation or Pareto order (≺pareto) is a special case of cone
orders, which are orders defined on vector spaces. The left image of Fig. 1 shows
an example of applying the Pareto order cone to illustrate the Pareto dominance
relation, i.e., y dominates the points in y ⊕ R

2
�o and y′ dominates the points in

y′ ⊕ R
2
�o. Here, R2

�o is the Pareto order cone and ⊕ is the Minkowski sum.

Definition 2 (Cone). A set C is a cone if λw ∈ C for any w ∈ C and ∀λ > 0.

Definition 3 (Minkowski Sum). The Minkowski sum (aka algebraic sum) of two
sets A ∈ R

m and B ∈ R
m is defined as A ⊕ B := {a + b | a ∈ A ∧ b ∈ B}.

Fig. 1. Pareto and edge-rotated cone dominance. Fig. 2. Trade-off on PF.

Improving Many-Objective EAs by Means of Edge-Rotated Cones 317

In an MOEA, if a solution can dominate more area based on the adopted
dominance relation, the algorithm is capable of exploring more solutions and
hence accelerating convergence. To this end, we widen the angle of the Pareto
order cone and generate the cone which can dominate a larger area. Given a
linearly independent vector set {w1, w2, . . . , wm}, a cone can be generated in
m-dimensional space.

Definition 4 (Generated m-dimensional cone). The cone generated by the
vectors w1, w2, . . . , wm is the set C = {z : z = λ1w1 + λ2w2 + · · · +
λmwm,∀λ1, λ2, . . . , λm ≥ 0, λ
= 0}; w1, . . . , wm are linearly independent.

To be specific, the Pareto order cone is widened by rotating the edges of the
standard Pareto order cone around the origin towards the outside. For example,
in two-dimensional space, the Pareto order cone is the cone generated by two
axes which support an angle of 90◦. By rotating two axes towards the opposite
direction around the origin, the two axes can reach into the second and fourth
quadrants respectively and an edge-rotated cone with an angle larger than 90◦ is
generated. The right image of Fig. 1 shows how the dominance relation has been
changed when the edge-rotated cone order is applied. In the left image of Fig. 1,
y and y′ are mutually non-dominated by each other because neither of them is
in the dominating space of the other point. However, when an edge-rotated cone
is adopted in the right image, the point y′ is dominated by y. We can see that
the edge-rotated cones provide a stricter order compared to the Pareto order.
They can guide the search towards the Pareto front better as they establish an
ordering among the incomparable solutions (with respect to the Pareto order)
in the sense that better incomparable solutions are preferred.

When using the edge-rotated cone order in MOEAs, since the concave cones
do not give rise to a strict partial order and the non-dominated points in the
order generated by acute-angle cones can be dominated in the Pareto order, we
restrict ourselves to convex obtuse cones obtained by rotating each edge of the
standard Pareto cone towards the outside with an angle of less than 45◦.

Definition 5 (Convex Cone). A cone C is convex if and only if ∀c1 ∈ C, c2 ∈
C,∀α (0 ≤ α ≤ 1) : αc1 + (1 − α)c2 ∈ C.

The approach of widening the standard Pareto cone in m-dimensional space
(m > 2) is the same. Each edge of the standard Pareto order cone is rotated
by an angle less than 45◦ in the opposite direction of the identity line in the
positive orthant. The rotation takes place in the plane determined by the edge
and the identity line. In m-dimensional space, the identity line in the positive
orthant is the line passing through the origin and the point (1, ..., 1). The new
cone composed of the rotated edges can give rise to a new dominance relation.

318 Y. Wang et al.

3.2 Implementation and Integration in MOEAs

In a multi-objective optimization algorithm, solutions that are dominating under
the Pareto order are also dominating under the edge-rotated cone order. In this
way, it is guaranteed that a minimal element of the edge-rotated cone order is also
a minimal element of the Pareto order, and thus algorithms that converge to glob-
ally efficient points under the edge-rotated cone order will also converge to glob-
ally Pareto efficient points. By using the edge-rotated cone, a solution, especially
the solution which is not in the knee region, has a higher chance to be dominated
by other solutions. The knee region is the region where the maximum trade-off of
objective functions takes place. For the Pareto front in Fig. 2, the knee region is
where the Pareto surface bulges the most, i.e., the region near solution a. When
comparing the knee point a with another solution c, solution c has a better (i.e.,
lower) f2 value as compared to solution a. However, this small improvement leads
to a large deterioration in the other objective f1. Due to the reason that in the
absence of explicitly provided preferences, all objectives are considered equally
important, solution a, thus, is more preferable than solution c. It has been argued
in the literature that knee points are the most interesting solutions and preferred
solutions [17–20]. Therefore, although not all globally efficient points might be
obtained by the edge-rotated cone orders, the edge-rotated cone orders naturally
filter out non-preferred solutions. In Fig. 2, when applying the edge-rotated cone,
solutions in the knee region can survive, while solutions like b and c are on the flat
Pareto surface and are more easily to be dominated.

Algorithm 1. Applying a proper cone order in each iteration.
1: m ← the number of objectives;
2: Degree[m]; // the rotation angle for each edge of the standard Pareto order;
3: n rank ← Pareto rank number of current population;
4: if n rank = 0 then
5: for each i ∈ {1, . . . , m} do
6: Degree[i] ← PI/6; // rotation angle is 30◦

7: end for
8: else
9: for each i ∈ {1, . . . , m} do

10: Degree[i] ← 0; // standard Pareto cone
11: end for
12: end if

The feature of the edge-rotated cone to eliminate solutions can be appre-
ciated as an advantage especially in the realm of many-objective optimization
considering the exponential increase in the number of non-dominated solutions
necessary for approximating the entire Pareto front. With the edge-rotated cone,
part of the solutions, especially non-preferred solutions, can be excluded. How-
ever, this could degrade the diversity of the solution set. Therefore, we propose
Algorithm 1 to choose a proper cone order in each iteration of MOEAs in order

Improving Many-Objective EAs by Means of Edge-Rotated Cones 319

to promote diversity in addition to convergence. When running an MOEA, the
current population is ranked based on the current cone order at the beginning of
each iteration; the edge-rotated cone will be adopted only under the condition
that all solutions in the current population are mutually non-dominated by each
other. In the case that the current population consists of multiple layers, the
standard Pareto cone is used (i.e., the rotation angle is 0◦). The underlying idea
is when all the solutions are non-dominated with each other, the edge-rotated
cone is adopted to enhance the selection pressure, otherwise, the Pareto order
cone is used to maintain the diversity of the population.

Fig. 3. The dynamics of the number of layers.

When Algorithm 1 is applied in NSGA-II on the DTLZ1 eight objective prob-
lem, Fig. 3 compares the changes of the number of layers between running NSGA-
II using only the Pareto dominance and involving the edge-rotated cone order
with a rotation angle of 20◦ within the first 400 iterations (Population size is
100.). When running the original NSGA-II, except that one point lies at level
2 (i.e., the number of fronts is two) at the very beginning, the number of lay-
ers always remains one, meaning that all solutions in the current population
are non-dominated with each other. As a result, the Pareto dominance relation
has no effect on parent selection. That is, an individual with a larger crowding
distance is always chosen as a parent in the binary tournament selection since
all solutions have the same rank. In this manner, the selection pressure toward
the Pareto front is severely weakened. However, when the edge-rotated cone is
involved, the layering of the population is very noticeable. In this case, an order-
ing among the incomparable solutions is established and it can guide the search
towards the Pareto front better.

Next we derive a criterion by which one can determine whether a point
y′ ∈ R

2 is dominated by a point y ∈ R
2 with respect to the edge-rotated cone

320 Y. Wang et al.

order. Let e1 :=
[
1
0

]

and e2 :=
[
0
1

]

be the edges of the two-dimensional standard

Pareto cone. Then the edges of the edge-rotated cone by a rotation angle α

(0 ≤ α < π
4) are Ae1 and Ae2, where A =

[
cos(−α) sin(−α)√

2−1
sin(−α)√

2−1
cos(−α)

]

.

A point y′ lies in the edge-rotated cone region of y if and only if for some λ,
y′ = y + λ1Ae1 + λ2Ae2 such that λ1, λ2 ≥ 0, λ
= 0. This is equivalent to: for
some λ, A−1(y′ − y) = λ1e1 + λe2 such that λ1, λ2 ≥ 0, λ
= 0. In short, y domi-
nates y′ with respect to the edge-rotated cone order if and only if the components
of A−1(y′ − y) are non-negative and at least one of them is strictly positive.

Thus, once the inverse matrix of A is computed (A−1 = c ·
[
cos(α) sin(α)
sin(α) cos(α)

]

,

c := 1
(cos(α))2−(sin(α))2), it can readily be determined whether y′ is in the dom-

inating region of y. Moreover, in case the components are non-zero and have
opposite signs, then the points are incomparable. In case the components are
non-positive and at least one them negative, then y′ dominates y.

The approach can easily be applied to three or many objective problems.
When the number of objectives is m(m > 2) and the rotation angle for each edge
of the cone is α, the (m × m) matrix (1) gives the coordinates of the unit point
on rotated edges: for each unit point on the edge of the standard Pareto cone,
each column of the matrix gives its new coordinates after rotation. For example,
in three-dimensional space, (1, 0, 0) is the unit point on one edge of the standard
Pareto cone, then (cos (−α), sin (−α)√

2
, sin (−α)√

2
) are its new coordinates after the

edge is rotated by an angle of α (0 ≤ α < π
4).

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cos (−α) sin (−α)√
m−1

· · · sin (−α)√
m−1

sin (−α)√
m−1

cos (−α) · · · sin (−α)√
m−1

...
...

. . .
...

sin (−α)√
m−1

sin (−α)√
m−1

· · · cos (−α)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(1)

When integrating the edge-rotated cone in MOEAs, the inverse matrix needs
to be calculated only once. Therefore, almost no extra computing time is involved
by Algorithm 1. For a similar cone construction, see [21].

4 Experimental Results and Discussion

4.1 Experimental Design

The proposed edge-rotated cone order can be integrated in all MOEAs using
the Pareto order to select solutions. In this section, Algorithm 1 is combined
in NSGA-II, DI-MOEA and NSGA-III to investigate the performance of the
proposed approach when different rotation angles (i.e., from 3◦ to 30◦) have been
applied. Four, six and eight objective DTLZ1, DTLZ2, DTLZ2 convex problems
have been chosen in the experiments. The optimal Pareto front of DTLZ1 lies

Improving Many-Objective EAs by Means of Edge-Rotated Cones 321

on a linear hyperplane and the optimal Pareto front of DTLZ2 is concave. At
the same time, to measure the performance on a convex problem, we transform
DTLZ2 problem to DTLZ2 convex problem with a convex Pareto front by simply
decreasing all objective values by 3.5. The other two benchmark problems include
UF11 and UF13 [22]. UF11 is a rotated instance of the 5D DTLZ2 test problem,
and UF13 is the 5D WFG1 test problem.

The population size is 100 for all problems. We have taken 15 independent
runs (with a different seed for each run but the same seed for each of the algo-
rithms) of each algorithm on each problem. For each problem, the number of
evaluations (NE) is the computing budget for running the algorithm and it is
determined by max{100000, 10000 × D}, where D is the number of decision
variables. Two widely-used quality metrics, hypervolume (HV) [23] and inverted
generational distance (IGD) [24], have been adopted to compare the performance
of the algorithms. All experiments are implemented based on the MOEA Frame-
work 2.12 (http://www.moeaframework.org/), which is a Java-based framework
for multi-objective optimization. When calculating HV, the objective values of
the reference point are 0.6 on DTLZ1, 1.1 on DTLZ2, 5 on DTLZ2 convex, 2.2
on UF11 and 11 on UF13. The origin is used as the ideal point. When calculating
the IGD value, the merged non-dominated solution sets from all runs are used
as the reference sets of the DTLZ2 convex problems and the reference sets of
other problems are from the MOEA framework.

4.2 Experimental Results

Tables 1 and 2 show the mean hypervolume and IGD from 15 runs of DTLZ2 and
UF problems when different edge-rotated cone orders are integrated in NSGA-
II, DI-MOEA and NSGA-III. Due to the page limit, tables for DTLZ1 and
DTLZ2 convex problems are in [25]. The “ P cone” column provides the results
obtained by the original MOEAs. The “π

6 (= 30◦)” column gives the results
when each edge of the standard Pareto order cone has been rotated by 30◦ in
the algorithm, similar remark for the other columns. The mean hypervolume
and IGD values obtained by the original NSGA-II, DI-MOEA and NSGA-III
have been used as the reference values to be compared with the results achieved
by the algorithms involving the edge-rotated cone orders. For the algorithms
combining the edge-rotated cone, the mean hypervolume and IGD values better
than the values obtained by the original MOEAs have been highlighted in bold
(i.e., a larger hypervolume value and lower IGD value); the largest respectively
lowest value for each algorithm among them is printed in red and underlined.
At the same time, the standard deviation of each algorithm is also given under
each mean hypervolume and IGD. Tables for the DTLZ benchmark problems
consist of four parts, namely four objective, six objective, eight objective with
full budget, and eight objective with half budget. The behaviours of UF11 and
UF13 with full budget and half budget are given in Table 2. Furthermore, the
ranking of these algorithms has been calculated based on the mean hypervolume
and shown in [25].

We can draw the following conclusions from the data in these tables.

http://www.moeaframework.org/

322 Y. Wang et al.

Table 1. The mean Hypervolume (HV) and IGD on DTLZ2 (concave).

Four objective (NE = 130000)

Algorithms Metrics P cone π
6 (=30◦) π

9 (=20◦) π
12 (=15◦) π

18 (=10◦) π
30 (=6◦) π

60 (=3◦)

NSGA-II Mean HV 0.5953 0.1971 0.5458 0.6760 0.6525 0.6388 0.6333

std 0.0089 0.1182 0.0535 0.0041 0.0048 0.0080 0.0077

DI-MOEA Mean HV 0.6471 0.0913 0.5639 0.6944 0.6897 0.6755 0.6688

std 0.0094 0.0012 0.0406 0.0038 0.0026 0.0066 0.0039

NSGA-III Mean HV 0.6597 0.2508 0.5749 0.6863 0.6821 0.6652 0.6592

std 0.0054 0.1265 0.0362 0.0017 0.0040 0.0031 0.0066

NSGA-II Mean IGD 0.1634 0.8352 0.4037 0.1867 0.1492 0.1536 0.1542

std 0.0045 0.2290 0.0794 0.0056 0.0040 0.0055 0.0041

DI-MOEA Mean IGD 0.1363 1.0405 0.3810 0.1731 0.1264 0.1295 0.1279

std 0.0045 0.0183 0.0661 0.0049 0.0022 0.0061 0.0028

NSGA-III Mean IGD 0.1501 0.7553 0.3510 0.1749 0.1361 0.1477 0.1490

std 0.0046 0.2196 0.0705 0.0039 0.0034 0.0054 0.0026

Six objective (NE = 150000)

NSGA-II Mean HV 0.1224 0.0000 0.4304 0.8156 0.7608 0.7284 0.6490

std 0.0701 0.0000 0.0254 0.0036 0.0067 0.0119 0.0221

DI-MOEA Mean HV 0.0000 0.0000 0.4488 0.8397 0.8016 0.7479 0.6543

std 0.0000 0.0000 0.0126 0.0055 0.0055 0.0117 0.0347

NSGA-III Mean HV 0.8052 0.0000 0.4411 0.8446 0.8185 0.8127 0.8111

std 0.0076 0.0000 0.0130 0.0048 0.0038 0.0056 0.0041

NSGA-II Mean IGD 0.7278 2.5612 0.7003 0.3447 0.2856 0.2887 0.3137

std 0.0758 0.0090 0.0380 0.0119 0.0051 0.0046 0.0091

DI-MOEA Mean IGD 1.9390 2.5824 0.6961 0.2913 0.2774 0.2898 0.3335

std 0.3246 0.0059 0.0285 0.0074 0.0026 0.0058 0.0172

NSGA-III Mean IGD 0.3125 2.5596 0.7260 0.3073 0.3061 0.3092 0.3095

std 0.0105 0.0154 0.0283 0.0145 0.0071 0.0065 0.0080

Eight objective (NE = 170000)

NSGA-II Mean HV 0.0168 0.0000 0.4947 0.8850 0.8193 0.7068 0.4062

std 0.0355 0.0000 0.0576 0.0068 0.0068 0.0487 0.0754

DI-MOEA Mean HV 0.0000 0.0000 0.4250 0.9002 0.8011 0.4619 0.0138

std 0.0000 0.0000 0.1260 0.0033 0.0196 0.1500 0.0516

NSGA-III Mean HV 0.8543 0.0000 0.3151 0.9079 0.8727 0.8632 0.8522

std 0.0121 0.0000 0.0643 0.0044 0.0074 0.0078 0.0138

NSGA-II Mean IGD 1.2941 2.4798 0.7887 0.5247 0.3955 0.4332 0.6433

std 0.1867 0.0422 0.0507 0.0210 0.0068 0.0201 0.0687

DI-MOEA Mean IGD 2.4722 2.5704 0.8728 0.4483 0.4425 0.6013 2.3017

std 0.0430 0.0129 0.1118 0.0054 0.0088 0.0682 0.4257

NSGA-III Mean IGD 0.4594 1.9278 0.9662 0.4936 0.4659 0.4638 0.4680

std 0.0105 0.1043 0.0491 0.0130 0.0099 0.0093 0.0175

Eight objective - Half budget (NE = 85000)

NSGA-II Mean HV 0.0001 0.0000 0.4674 0.8859 0.8161 0.7145 0.4251

std 0.0003 0.0000 0.0847 0.0047 0.0083 0.0334 0.0851

DI-MOEA Mean HV 0.0000 0.0000 0.4196 0.9000 0.8061 0.5432 0.0213

std 0.0000 0.0000 0.1254 0.0050 0.0207 0.0931 0.0606

NSGA-III Mean HV 0.8526 0.0000 0.3223 0.9063 0.8728 0.8616 0.8548

std 0.0084 0.0000 0.0553 0.0048 0.0054 0.0085 0.0116

NSGA-II Mean IGD 1.6856 2.4963 0.8125 0.5167 0.3939 0.4295 0.6116

std 0.1949 0.0202 0.0763 0.0091 0.0060 0.0126 0.0869

DI-MOEA Mean IGD 2.4858 2.5688 0.8765 0.4520 0.4391 0.5633 2.0740

std 0.0272 0.0276 0.1149 0.0073 0.0072 0.0403 0.5132

NSGA-III Mean IGD 0.4611 1.9307 0.9590 0.4923 0.4691 0.4630 0.4597

std 0.0178 0.1646 0.0433 0.0127 0.0115 0.0101 0.0152

Improving Many-Objective EAs by Means of Edge-Rotated Cones 323

Table 2. The mean Hypervolume (HV) and IGD on UF11 & UF13.

UF11 Five objective (NE = 300000)

Algorithms Metrics P cone π
6 (=30◦) π

9 (=20◦) π
12 (=15◦) π

18 (=10◦) π
30 (=6◦) π

60 (=3◦)

NSGA-II Mean HV 0.0000 0.0000 0.0211 0.0291 0.0306 0.0218 0.0104

std 0.0000 0.0000 0.0024 0.0058 0.0012 0.0011 0.0014

DI-MOEA Mean HV 0.0029 0.0000 0.0191 0.0336 0.0256 0.0188 0.0138

std 0.0018 0.0000 0.0035 0.0008 0.0012 0.0015 0.0024

NSGA-III Mean HV 0.0147 0.0000 0.0266 0.0350 0.0278 0.0201 0.0171

std 0.0016 0.0000 0.0034 0.0017 0.0016 0.0014 0.0015

NSGA-II Mean IGD 1.5208 14.6626 0.3890 0.2990 0.2685 0.3119 0.4531

std 0.2173 0.2878 0.0368 0.0374 0.0171 0.0241 0.0289

DI-MOEA Mean IGD 0.7304 15.1690 0.6152 0.2807 0.3339 0.3946 0.4621

std 0.0944 0.2054 0.1997 0.0210 0.0228 0.0352 0.0545

NSGA-III Mean IGD 0.4517 15.0785 0.4190 0.2795 0.3188 0.3848 0.4166

std 0.0388 0.2105 0.0697 0.0247 0.0235 0.0324 0.0183

UF11 Five objective - Half budget (NE = 150000)

NSGA-II Mean HV 0.0000 0.0000 0.0205 0.0269 0.0288 0.0201 0.0082

std 0.0000 0.0000 0.0025 0.0055 0.0014 0.0016 0.0017

DI-MOEA Mean HV 0.0012 0.0000 0.0237 0.0316 0.0244 0.0185 0.0126

std 0.0011 0.0000 0.0030 0.0020 0.0010 0.0014 0.0017

NSGA-III Mean HV 0.0148 0.0000 0.0268 0.0342 0.0270 0.0199 0.0170

std 0.0020 0.0000 0.0029 0.0013 0.0018 0.0016 0.0010

NSGA-II Mean IGD 1.7202 14.7243 0.3951 0.3031 0.2731 0.3208 0.4846

std 0.2541 0.1769 0.0392 0.0343 0.0164 0.0289 0.0312

DI-MOEA Mean IGD 0.8730 15.1172 0.4910 0.2939 0.3418 0.4061 0.4831

std 0.1485 0.2099 0.0619 0.0269 0.0244 0.0329 0.0439

NSGA-III Mean IGD 0.4606 15.0148 0.3897 0.2752 0.3204 0.4009 0.4314

std 0.0433 0.1881 0.0615 0.0186 0.0265 0.0393 0.0335

UF13 Five objective (NE = 300000)

NSGA-II Mean HV 0.6937 0.5041 0.7410 0.7424 0.7177 0.7065 0.6994

std 0.0079 0.1742 0.0096 0.0070 0.0091 0.0084 0.0084

DI-MOEA Mean HV 0.6611 0.4625 0.7343 0.7152 0.6590 0.6567 0.6589

std 0.0063 0.1580 0.0064 0.0119 0.0073 0.0067 0.0071

NSGA-III Mean HV 0.6498 0.4523 0.7164 0.7226 0.7023 0.6703 0.6532

std 0.0130 0.1017 0.0048 0.0108 0.0085 0.0106 0.0077

NSGA-II Mean IGD 1.4761 1.3108 1.4316 1.3805 1.4656 1.4391 1.4181

std 0.1315 0.2267 0.0565 0.0857 0.0664 0.1572 0.1029

DI-MOEA Mean IGD 1.5448 1.5031 1.5151 1.5481 1.7512 1.6351 1.5934

std 0.0473 0.4180 0.0533 0.0646 0.0384 0.0667 0.0399

NSGA-III Mean IGD 1.8698 1.6030 1.6324 1.5813 1.6675 1.7950 1.8527

std 0.1842 0.1835 0.0285 0.0658 0.0969 0.1457 0.1245

UF13 Five objective - Half budget (NE = 150000)

NSGA-II Mean HV 0.6687 0.5016 0.7259 0.7170 0.6915 0.6831 0.6738

std 0.0041 0.1749 0.0092 0.0058 0.0042 0.0047 0.0057

DI-MOEA Mean HV 0.6457 0.3427 0.7254 0.7002 0.6513 0.6481 0.6497

std 0.0045 0.2041 0.0044 0.0133 0.0056 0.0053 0.0057

NSGA-III Mean HV 0.6432 0.4702 0.7073 0.7045 0.6770 0.6579 0.6417

std 0.0086 0.0996 0.0074 0.0076 0.0103 0.0071 0.0056

NSGA-II Mean IGD 1.5720 1.3736 1.5455 1.5074 1.5968 1.5746 1.5262

std 0.0946 0.1703 0.0638 0.0649 0.0786 0.1135 0.0860

DI-MOEA Mean IGD 1.6609 1.5321 1.5939 1.6311 1.8048 1.7286 1.6403

std 0.0557 0.3781 0.0268 0.0781 0.0509 0.0794 0.0613

NSGA-III Mean IGD 1.8931 1.7553 1.6824 1.6832 1.8163 1.8976 1.9725

std 0.1238 0.2361 0.0456 0.0376 0.0924 0.1200 0.0562

324 Y. Wang et al.

1. The algorithms do not work well when a large rotation angle is adopted (e.g.,
30◦); only the mean rank of the algorithm involving the cone with a 30◦

rotation angle is worse than the mean rank of the original MOEA.
2. The algorithms show similar performance to the original MOEAs when the

rotation angle is very small (e.g., 3◦).
3. When an intermediate rotation angle is adopted, the performance of the algo-

rithms (both hypervolume and IGD values) shows a significant improvement
except for a few cases which display values close to the original MOEAs.

4. Although it differs depending on the specific problems, the best performance
is usually obtained when the rotation angle is 15◦. Also, the mean rank of
the algorithm involving the cone with a 15◦ rotation angle is the best and a
10◦ rotation angle is the second best.

5. It can be seen that the edge-rotated cone can improve the performance of
all three adopted MOEAs (i.e., NSGA-II, DI-MOEA and NSGA-III) in most
cases when an intermediate rotation angle is used. Even though NSGA-III
is assumed to be powerful enough to handle these benchmark problems, its
performance can still be improved by the edge-rotated cone approach.

6. The edge-rotated cone can benefit MOEAs even more with the increase of the
number of objectives. For example, when a 15◦ rotation angle is applied on
the DTLZ2 (concave) four objective problem, the hypervolume of NSGA-II is
improved from 0.5953 to 0.6760; for the six objective problem, the hypervol-
ume is improved from 0.1224 to 0.8156; and for the eight objective problem,
the hypervolume is improved from 0.0168 to 0.8850.

7. The edge-rotated cone can benefit the algorithm with a small computing
budget more than the algorithm with a large budget. For example, when
using half of the computing budget on UF13 five objective problem and the
rotation angle is set to 20◦, the hypervolume values of the Pareto fronts
from NSGA-II, DI-MOEA and NSGA-III can be improved to 0.7259, 0.7254,
0.7073, which are already larger than the hypervolume values obtained by the
original MOEAs with full budget, namely 0.6937, 0.6611 and 0.6497.

8. Even though we did not show the median values of the hypervolume and IGD
values in the tables, they show similar values as the mean values. At the same
time, the standard deviations show a stable behavior of the edge-rotated cone
order when it is integrated in MOEAs.

5 Conclusions and Further Work

In this paper, we enhance the standard Pareto dominance relationship from the
geometric perspective. By rotating the edges of the standard Pareto order cone,
the incomparable solutions can be ranked into different layers, hence, the selec-
tion pressure toward the Pareto front can be strengthened and the convergence
of the algorithm can be accelerated. To avoid neglecting the diversity, the edge-
rotated cone order is designed to work together with the standard Pareto order
in our algorithm. After testing various angles on different many-objective opti-
mization problems, we show the ability of improving the performance of original

Improving Many-Objective EAs by Means of Edge-Rotated Cones 325

MOEAs by the edge-rotated cone and suggest that the rotation angle of 15◦ can
be adopted in the absence of specific experiments or knowledge of the application
domain. Our method of implementing the integration of the edge-rotated cone
barely needs more computing time compared to the original MOEAs, moreover,
with a small computing budget, it can promote the performance of the algorithm
to the effect of using a large budget without using the edge-rotated cone orders.

Our implementation of enhancing the Pareto dominance is straightforward
and effective, we think it is a good direction to improve any MOEA using the
Pareto dominance to select solutions. In future, the mechanism that relates the
properties of the problem with the rotation angle should be researched. Another
interesting direction of future work could be to investigate and compare different
schemes of alternating between the cone orders in order to promote diversity and
convergence. For instance, it could be investigated whether using acute cones can
be of benefit to promote diversity even more, or to use again the Pareto cone in
the final stage of the evolution to make sure that no solutions are excluded from
the Pareto front which might happen when using the edge-rotated cone.

References

1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197
(2002)

2. Wang, Y., Emmerich, M., Deutz, A., Bäck, T.: Diversity-indicator based multi-
objective evolutionary algorithm: DI-MOEA. In: Deb, K., et al. (eds.) EMO 2019.
LNCS, vol. 11411, pp. 346–358. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-12598-1 28

3. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

4. Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective
optimization by NSGA-II and MOEA/D with large populations. In: 2009 IEEE
International Conference on Systems, Man and Cybernetics, pp. 1758–1763. IEEE,
October 2009

5. Khare, V., Yao, X., Deb, K.: Performance scaling of multi-objective evolutionary
algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.)
EMO 2003. LNCS, vol. 2632, pp. 376–390. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36970-8 27

6. Ikeda, K., Kita, H., Kobayashi, S.: Failure of Pareto-based MOEAs: does non-
dominated really mean near to optimal? In: Proceedings of the 2001 Congress on
Evolutionary Computation (IEEE Cat. No. 01TH8546), vol. 2, pp. 957–962. IEEE,
May 2001

7. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diver-
sity in evolutionary multiobjective optimization. Evol. Comput. 10(3), 263–282
(2002)

8. Batista, L.S., Campelo, F., Guimarães, F.G., Ramı́rez, J.A.: Pareto cone epsilon-
dominance: improving convergence and diversity in multiobjective evolutionary
algorithms. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO
2011. LNCS, vol. 6576, pp. 76–90. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19893-9 6

https://doi.org/10.1007/978-3-030-12598-1_28
https://doi.org/10.1007/978-3-030-12598-1_28
https://doi.org/10.1007/3-540-36970-8_27
https://doi.org/10.1007/3-540-36970-8_27
https://doi.org/10.1007/978-3-642-19893-9_6
https://doi.org/10.1007/978-3-642-19893-9_6

326 Y. Wang et al.

9. Wiecek, M.M.: Advances in cone-based preference modeling for decision making
with multiple criteria. Decis. Mak. Manuf. Serv. 1(1/2), 153–173 (2007)

10. Sato, H., Aguirre, H., Tanaka, K.: Controlling dominance area of solutions in multi-
objective evolutionary algorithms and performance analysis on multiobjective 0/1
knapsack problems. IPSJ Digital Courier 3, 703–718 (2007)

11. Yang, S., Li, M., Liu, X., Zheng, J.: A grid-based evolutionary algorithm for many-
objective optimization. IEEE Trans. Evol. Comput. 17(5), 721–736 (2013)

12. Liu, Y., Zhu, N., Li, K., Li, M., Zheng, J., Li, K.: An angle dominance criterion
for evolutionary many-objective optimization. Inf. Sci. 509, 376–399 (2020)

13. Farina, M., Amato, P.: On the optimal solution definition for many-criteria opti-
mization problems. In: 2002 Annual Meeting of the North American Fuzzy Informa-
tion Processing Society Proceedings (NAFIPS-FLINT 2002) (Cat. No. 02TH8622),
pp. 233–238. IEEE, June 2002

14. Farina, M., Amato, P.: A fuzzy definition of “optimality” for many-criteria opti-
mization problems. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 34(3),
315–326 (2004)

15. Zou, X., Chen, Y., Liu, M., Kang, L.: A new evolutionary algorithm for solving
many-objective optimization problems. IEEE Trans. Syst. Man Cybern. Part B
(Cybern.) 38(5), 1402–1412 (2008)

16. Le, K., Landa-Silva, D.: Obtaining better non-dominated sets using volume dom-
inance. In: 2007 IEEE Congress on Evolutionary Computation, pp. 3119–3126.
IEEE, September 2007

17. Das, I.: On characterizing the “knee” of the Pareto curve based on normal-
boundary intersection. Struct. Optim. 18(2–3), 107–115 (1999). https://doi.org/
10.1007/BF01195985

18. Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective
optimization. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 722–731.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9 73

19. Deb, K., Gupta, S.: Towards a link between knee solutions and preferred solu-
tion methodologies. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Dash, S.S.
(eds.) SEMCCO 2010. LNCS, vol. 6466, pp. 182–189. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17563-3 22

20. Braun, M.A., Shukla, P.K., Schmeck, H.: Preference ranking schemes in multi-
objective evolutionary algorithms. In: Takahashi, R.H.C., Deb, K., Wanner, E.F.,
Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 226–240. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19893-9 16

21. Emmerich, M., Deutz, A., Kruisselbrink, J., Shukla, P.K.: Cone-based hypervolume
indicators: construction, properties, and efficient computation. In: Purshouse, R.C.,
Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol.
7811, pp. 111–127. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37140-0 12

22. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S.: Multiobjective
optimization test instances for the CEC 2009 special session and competition (2008)

23. While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating
hypervolume. IEEE Trans. Evol. Comput. 10(1), 29–38 (2006)

24. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Per-
formance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003)

25. Wang, Y., Deutz, A., Bäck, T., Emmerich, M.: Improving many-objective
evolutionary algorithms by means of edge-rotated cones. arXiv preprint
arXiv:2004.06941 (2020)

https://doi.org/10.1007/BF01195985
https://doi.org/10.1007/BF01195985
https://doi.org/10.1007/978-3-540-30217-9_73
https://doi.org/10.1007/978-3-642-17563-3_22
https://doi.org/10.1007/978-3-642-19893-9_16
https://doi.org/10.1007/978-3-642-37140-0_12
https://doi.org/10.1007/978-3-642-37140-0_12
http://arxiv.org/abs/2004.06941

Real-World Applications

Human-Like Summaries
from Heterogeneous and Time-Windowed

Software Development Artefacts

Mahfouth Alghamdi(B), Christoph Treude(B), and Markus Wagner(B)

School of Computer Science, University of Adelaide, Adelaide, Australia
{mahfouth.a.alghamdi,christoph.treude,markus.wagner}@adelaide.edu.au

Abstract. Automatic text summarisation has drawn considerable inter-
est in the area of software engineering. It is challenging to summarise the
activities related to a software project, (1) because of the volume and
heterogeneity of involved software artefacts, and (2) because it is unclear
what information a developer seeks in such a multi-document summary.
We present the first framework for summarising multi-document software
artefacts containing heterogeneous data within a given time frame. To
produce human-like summaries, we employ a range of iterative heuris-
tics to minimise the cosine-similarity between texts and high-dimensional
feature vectors. A first study shows that users find the automatically gen-
erated summaries the most useful when they are generated using word
similarity and based on the eight most relevant software artefacts.

Keywords: Extractive summarisation · Heuristic optimisation ·
Software development

1 Introduction and Motivation

Modern-day rapid software development produces large amounts of data, e.g.,
GitHub [4] now hosts more than 100 million repositories, with over 87 million
pull requests merged in the last year, making it the largest source code hosting
service in the world. The corresponding software development involves a lot of
communication: developers create many types of software artefacts – such as
pull requests, commits, and issues – and the amount can be overwhelming. For
example, the Node1 project contains more than 11k issues, more than 20k pull
requests, and over 29k commits. It also contains other software artefacts, such
as wiki entries and readme files created by the developers during the project
development life-cycle. In addition, these artefacts are frequently updated. For
instance, in the week from January 1 to January 7, 2020, developers created 17
new issues, closed 12 issues and submitted 82 commits. Let us now consider two
scenarios: (1) a developer has been on holidays during this period and would
like to be updated, and (2) a new developer joins the team after this period and
1 https://github.com/nodejs/node, accessed on February 2, 2020.

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 329–342, 2020.
https://doi.org/10.1007/978-3-030-58115-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_23&domain=pdf
https://github.com/nodejs/node
https://doi.org/10.1007/978-3-030-58115-2_23

330 M. Alghamdi et al.

Fig. 1. An example of an anonymised student summary (left) linked to the content of
related software artefacts (right).

would like to know what has happened recently. In both cases, going through the
artefacts and collecting the most useful information from them can be tedious
and time-consuming. It is scenarios like these that we are targeting in our study,
as solutions to these can ultimately increase the productivity of software develop-
ers and reduce information overload [16]. To make these scenarios more tangible,
Fig. 1 shows a summary written by a student software developer, as well as the
various artefacts that contain parts of the information conveyed in this manually
written summary.

To offer solutions in such cases, we employ a combination of methods
from Data-Driven Search-Based Software Engineering (DSE) [8]. DSE combines
insights from Mining Software Repositories (MSR) and Search-based Software
Engineering (SBSE). While MSR formulates software engineering problems as
data mining problems, SBSE reformulates SE problems as optimisation prob-
lems and use meta-heuristic algorithms to solve them. Both MSR and SBSE
share the common goal of providing insights to improve software engineering. In
this present paper, we suggest to improve software engineering – in particular
the creation of software development activities – by mining the created artefacts
for summaries.

In recent years, several approaches have been developed to summarise soft-
ware artefacts. Rastkar et al. [12] summarised bug reports using a supervised
machine learning method. Rigby et al. [13] summarised code elements from Stack
Overflow using four classifiers based on context, location, text type, tf-idf, and
element type. Furthermore, Nazar et al. [9] and Ying et al. [18] utilised naive
Bayes and support vector machine classifiers to generate summaries of code frag-
ments taken from the official Eclipse FAQ. Interestingly, these techniques have

Human-Like Summaries from Software Development Artefacts 331

mostly focused on summarising a single type of artefact, and they have not taken
into consideration the production of summaries of content in a given time frame.
To address these issues, we present a first framework to create multi-document
summaries from heterogeneous software artefacts within a given time frame. In
particular, we aim at an extractive approach, which generates a new summary
from the relevant documents without creating new sentences [10,17].

The remainder of this paper is structured as follows. First, we describe the
creation of the necessary gold-standard based on 503 human-written summaries
in Sect. 2. In Sect. 3, we define the problem of summary-generation as an opti-
misation problem based on cosine-similarity and on 26 text-based metrics. In
Sects. 4 and 5, we report on the results of our computational study and expert
annotation of the results. We then discuss threats to validity in Sect. 6 and out-
line future work in Sect. 7.

2 Human-Written Summaries – Creation of a Gold
Standard

To better understand what human-written summaries of time-windowed software
development artefacts look like, it has been necessary to create our own gold
standard. The basis of our gold standard is formed by a total of 503 summaries
that were produced (mostly) on a weekly basis by 50 students over 14 weeks
and for 14 (university-internal) GitHub projects. The students were working in
teams of three or four on their capstone projects with clients from local industry
toward a Bachelor degree (43 students in total) or with clients from academia
toward their Masters degree (7 students in total). To ensure the usefulness of
the students’ summaries, each of the students’ summaries was assessed as part
of the student assessments during the particular semester. The summaries were
anonymised before conducting this work to ensure confidentiality and anonymity
of the students.

We make use of these summaries to understand the general properties of
human-written summaries, such as the summaries’ typical length and the amount
of information these summaries may contain. Additionally, the students’ sum-
maries can provide us with an understanding of the common types of artefacts
related to development activities mentioned in the students’ summaries and to
help us identify which sentences from which artefacts should be selected for our
extractive summarisation approach.

To automatically collect the summaries, we used a Slack bot that asked the
students to write summaries on a weekly basis about their projects development
activity (see again Fig. 1). The written summaries were automatically recorded
and collected in response to the question: If a team member had been away, what
would they need to know about what happened this week in your project?

We show an example in Fig. 1: the question and the student’s summary are
on the left, and the relevant artefacts on the right. Note that the students only
provide the summary, i.e., they do not provide a list of the relevant artefacts.

332 M. Alghamdi et al.

Table 1. Number of artefacts contained in the 14 GitHub projects, resulting in 56,152
sentences.

Type Number Sentences

Issue titles (IT) 1,885 1,885

Issue bodies (IB) 1,885 5,650

Issue body comments (IBC) 3,280 8,754

Pull requests titles (PRT) 1,103 1,103

Pull requests bodies (PRB) 1,103 5,176

Pull requests body comments (PRBC) 897 1,811

Pull requests reviews (PRRv) 2,019 2,762

Pull requests reviews’ comments (PRRvC) 1,286 1,737

Commit messages (CM) 4,562 7,856

Commit comments (CMC) 30 55

Milestone titles (MT) 103 103

Milestone description (MD) 103 142

Readme files (RMe) 14 2,678

Wiki files (Wiki) 492 16,436

Releases (Rel) 1 4

We considered the following 15 types of textual artefacts in the GitHub
repositories: issues (titles, bodies, and comments), pull requests (titles, bodies,
comments, reviews, and reviews’ comments), commits (messages and comments),
milestones (titles and descriptions), releases, wiki entries, and readme files. It is
worth noting that, after manually inspecting the students’ summaries, there was
no evidence that any of these summaries contained a reference to a particular
source code file.

The documents to be summarised as well as the summaries needed to first
undergo various pre-processing steps – including sentence splitting, stop-word
removal, tokenisation, and stemming – to reduce noise in the data. Also, we
remove source code blocks from the software artefacts due to lack of evidence of
student summaries citing code from actual files. Table 1 lists the total amount of
artefacts per type in our gold standard, as well as the total number of extracted
sentences for each type.

3 Methodology

In our approach, we intend to extract text from a set of heterogeneous software
artefacts so that the resulting summaries are similar in style to those found in
gold-standard summaries. In the following, we introduce two ways of measuring
similarity, we revisit the definition of cosine similarity, and we define the iterative
search heuristics used later on.

Human-Like Summaries from Software Development Artefacts 333

3.1 Generating Summaries Based on Word-Similarity and Feature
Vector Similarity

Historically, the selection of important sentences for inclusion in a summary is
based on various features represented in the sentences such as sentence posi-
tion [2], sentence length and title similarity [5], sentence centrality [3], and
word frequency [6]. Determining these features in the selection of important
sentences is not simple and depends largely on the type of documents to be
summarised [15].

We consider two ways of characterising sentences: (1) based on the similarity
of words, and (2) based on the similarity of feature vectors. In both cases, the
goal is to select sentences from the collection of software artefacts so that the
characteristics of the resulting summary are close to the characteristics of a
target.

First, word similarity between two texts is defined by the number of times
a term occurs in both texts, after the aforementioned stemming and removal of
stop words. To achieve this, we use a vector-based representation, where each
element denotes the number of times a particular word has occurred in the
sentence.

Table 2. Features used to represent each of the sentences.

No. Feature

F1. Word count

F2. Chars count including spaces

F3. Chars without spaces

F4. No. of syllables in a word

F5. Sentence length

F6. Unique words

F7. Avg. word length (chars)

F8. Avg. sentence Length (words)

F9. No. of monosyllabic words

F10. No. of polysyllabic words

F11. Syllables per word

F12. Difficult words

F13. No. of short words (≤3 chars)

No. Feature

F14. No. of long words (>= 7 chars)

F15. Longest sentence (chars)

F16. Longest words (chars)

F17. Longest words by number of syllables

F18. Estimated reading time

F19. Estimated speaking time

F20. Dale-Chall readability index

F21. Automated readability index

F22. Coleman-Liau index

F23. Flesch reading ease score

F24. Flesch-Kincaid grade level

F25. Gunning fog index

F26. Shannon entropy

Second, as an alternative to the word-similarity and for situations where
a reference text is unavailable, we consider a total of 26 text-based features
of sentences, which aim at capturing different aspects of readability metrics,
information-theoretic entropy and other lexical features (see Table 2). Each sen-
tence is represented as a 26-dimensional vector of the feature values. For an
initial characterisation of this high-dimensional dataset, we refer the interested
reader to [1].

334 M. Alghamdi et al.

3.2 Cosine Similarity

The most popular similarity measure used in the field of text summarisation
is cosine similarity [7] as it has advantageous properties for high dimensional
data [14].

To measure the cosine similarity between two sentences x and y – respectively
their representation as a vector of word counts or the 26-dimensional represen-
tation – we first normalise the respective feature values (each independently)
based on the observed minimum and maximum values, and then calculate the
cosine similarity:

cos(x,y) =
xy

‖x‖‖y‖ =
∑n

i=1 xiyi
√∑n

i=1 (xi)2
√∑n

i=1 (yi)2
(1)

We employ the cosine similarity in our optimisation algorithms as the fitness
function to guide the search toward summaries that are close to a target vector.

3.3 Algorithmic Approaches

Extractive multi-document summarisation can be seen as an optimisation prob-
lem where the source documents form a collection of sentences, and the task is
to select an optimal subset of the sentences under a length constraint [11]. In
this study, we aim to generate summaries with up to five sentences as this is
approximately the length of the summaries that the students have written.

We now present our optimisation algorithms to automatically produce sum-
maries from heterogeneous artefacts for a given time frame. We utilise five algo-
rithms, and we also create summaries at random to estimate a lower performance
bound. We use the aforementioned cosine similarity as the scoring function,
which computes either the word-similarity or the feature-similarity with respect
to a given target. In our case, the targets are the summaries in the gold stan-
dard. By doing so, we aim at capturing the developers’ activities found in the
software artefacts that were created or updated in the given time frame and that
are cited in the gold-standard summaries to generate human-like summaries.

Our first approach is a brute force algorithm, which exhaustively evaluates all
subsets of up to a given target size. We will use this as a performance reference,
because we do not know a-priori what good cosine-similarity values are.

The second algorithm is a greedy approach (Algorithm 1). It iteratively builds
up a summary sentence-by-sentence: in each iteration, it determines the best-
suited additional sentence and then adds it – unless the addition of even the
best-suited sentence would result in a worsening of the cosine similarity.

In addition, we use three variations of random local search (RLS) algorithms.
First, RLS-unrestricted (see Algorithms 2) can create summaries without being
restricted by a target length. Second, RLS-restricted is like RLS-unrestricted,
but it can only generate summaries of at most a given target length. Third,
RLS-unrestricted-subset runs RLS-unrestricted first, but it then runs the brute
force approach to find the best summary of at most a given target length. These

Human-Like Summaries from Software Development Artefacts 335

Algorithm 1: Greedy algorithm
Input: AS - artefacts’ sentences, SS - student summary, and TLGS - targeted

length of the generated summary.
Output: GS generated summary

GS ←Ø
while (len(GS) ≤ TLGS) do

K ←Ø{K: unused sentences in AS}
Kbest ←Ø{best single sentence to add in this iteration}
for all (Ki ∈ K) do

if cosSimilarity(GS + Ki, SS) ≥ cosSimilarity(GS + Kbest, SS) then
Kbest ← Ki

if cosSimilarity(GS + Kbest, SS) < cosSimilarity(GS, SS) then
return GS {do not add Kbest if it worsens the similarity}

return GS

Algorithm 2: Random Local Search with unrestricted summary length
(RLS-unrestricted)
Input: AS - artefacts’ sentences and SS - student summary
Output: GS generated summary

GS ←Ø
while (running time < 10 seconds) do

GStemp ← GS
select a sentence ASr from AS u.a.r. and flip its inclusion status in GStemp

if cosSimilarity(GStemp, SS) ≥ cosSimilarity(GS, SS) then
GS ← GStemp

return GS

algorithms share common characteristics, such as the execution time limit and
the ability to explore the search space by including and excluding sentences. One
notable characteristic of RLS-unrestricted is that it can produce summaries that
exceed the target length. We have done this to provide an indication of whether
five sentences were enough to create close summaries.

As the sixth approach, we use a random search as a naive approach to provide
a lower performance bound: it iteratively creates summaries of five sentences,
and it returns (when the time is up) the best randomly created five-sentence
summary.

Note that the student summary (SS) that we provide as an input to all
approaches can either be an actual summary (i.e., the words) in which case the
co-occurrence is calculated, or it can be a summary represented as a feature
vector in the high-dimensional feature space.

Lastly, to investigate the impact of the individual artefacts on the summaries,
we consider three scenarios as input source to generate summaries by each of the
algorithms at a given time window: 1) each of the artefacts listed in Table 1 is
considered individually as a source, 2) combining all the 15 artefacts in a single

336 M. Alghamdi et al.

source, and 3) assuming we know a developer’s preferences for particular types
of artefacts, we only consider sentences coming from these types.

Implementation Note. We remove a-posteriori all the cases when we encoun-
tered at least one empty summary for two reasons: (1) the word similarity
between a generated summary and the student’s summary can be zero, and (2)
we encountered co-linear vectors even in the 26-dimensional space. Generating
summaries from all artefacts as an input source, we detected 670 and 1065 empty
summaries generated from all algorithms using the word similarly and feature
similarity, respectively. On the other hand, we found 845 and 980 empty sum-
maries generated by all algorithms using word similarity and feature similarity,
respectively, when the most relevant artefacts considered as an input source.

4 Computational Study and Discussion

In our experiments, we consider the 503 summaries written by students, 6 algo-
rithms, and three scenarios (i.e., the sentences’ sources).

For both similarity measures, we use the gold standard as the target, i.e.,
the students’ original summaries either as bags of words or as high-dimensional
feature vectors. An alternative for the feature similarity is to use, e.g., the average
vector across all students to aim at the “average style”, however, then it would
not be clear anymore if it can be approximated. As this is the first such study,
and in order to study the problem and the behaviour of the algorithms in this
extractive setting under laboratory conditions, we aim for the solutions defined
in the gold standard.

A Comparison with Brute Force. To better understand what quality we can
expect from our five randomised approaches, we compare these approaches with
our brute force approach to extractive summarisation. The artefact type for
this first investigation is “issue title”. The maximum number of sentences here
per project and summary combination was 35. For our brute force approach,
this resulted in a manageable number of 324, 632 + 52, 360 + 6, 545 + 595 +
35 = 384, 167 subsets of up to five sentences for that particular week. The
computational budget that we give each RLS variant is 10 s.

Comparing the results obtained by these algorithms (see Fig. 2a), we can
observe that the Greedy algorithm has the ability to generate summaries whose
overall distribution is close to the distribution of summaries generated by brute
force.2 Similarly, the two RLS-unrestricted approaches also produce comparable
summaries. RLS-restricted performs worse, but still better than the Random
Selection.3 From this first comparison, we conclude that Greedy is a very good
approach, as it achieves a performance comparable to that of brute force (which
is our upper performance bound), while it requires only 0.49 s on average to form

2 Based on a two-sided Mann-Whitney U test, there is no statistically significant
difference at p = 0.05 between Greedy and Brute Force.

3 Let us recall let Random Selection does not generate only one summary at random,
but many until the time limit is reached, and it then returns the best.

Human-Like Summaries from Software Development Artefacts 337

a summary compared to other algorithms.4 We can moreover conclude that a
maximum summary length of five is acceptable, as the RLS-unrestricted subset
does not perform differently from the others that were restricted.

Fig. 2. Results of the computational study. (a): Cosine similarity based on word co-
occurrence of the generated summaries. (b): Average contribution of artefacts to sum-
maries, aggregated across the two similarity measures. (c): Average contribution of
artefacts to summaries, aggregated across all algorithms. (d): Similarities: when all
artefacts are used (blue, overall average 0.266) and when only the relevant eight are
used (red, overall average 0.258). (Color figure online)

To explain Greedy’s performance, and to explain that the performances of
Greedy and of some of the RLS variants is very comparable, we conjecture that
the problem of maximising the cosine-similarity w.r.t. a target vector given a set
of vectors is largely equivalent to a submodular pseudo-Boolean function without
many local optima. A formal proof of this, however, remains future work.

Used Types of Artefacts. Next, use each algorithm to create a weekly summary
for the cases where we have student summaries. In particular, we investigate from
which artefact types the sentences are taken from in these generated summaries.

4 The average running time per algorithm (in seconds) to generate a summary is, from
left: 151.92, 0.49, 10.0, 10.0, 10.20, 6.67 s.

338 M. Alghamdi et al.

In total, there are 22,313 (39.73% of the total) sentences found in the source input
linked to the students’ summaries. Note that while this number appears to be
very large, it includes the very large summaries produced by RLS-unrestricted
(average length 29.6), and we are nevertheless aiming at hundreds of different
target summaries for one-week time-windows, which thus appear to require very
different sentences from the artefacts.

In Fig. 2b, we can see that the generated summaries by each of the algorithms
are composed of sentences from almost all of the artefact types. In particular,
we can note that sentences from wiki pages are most commonly used. Possible
reasons for this include that (1) wiki pages make up the largest fraction of the
source sentences, and (2) developers might have best described their activities
on the wiki pages.

In Fig. 2c, we can see that content from wiki artefacts contributed around
27% to the summaries generated by all algorithms. Also, sentences found in
issue bodies (IB), issue body comments (IBC), and commit messages (CM) con-
tributed 13%–17%. On the other hand, artefacts such as pull requests reviews
(PRRv), pull requests title (PRT) and milestone titles (MT) have among the
lowest contributions, which indicates that the students did not commonly use
these artefacts – or at least mention them and related content – during their
project’s development life cycle.

Generating Summaries Based on the Most Relevant Artefacts. By generating
summaries based on the most relevant artefacts found in the students’ origi-
nal summaries, we aim at generating more human-like summaries that better
reflect the developers’ preferences for certain artefact types. To achieve this, we
consider the generated summaries as a starting point, as each of them was gen-
erated to be similar to a particular student summary, and hence it can indirectly
reflect a student’s preference. Then, we identify the most relevant ones by using
the median as the cut-off (i.e., based on Fig. 2c). As a result of this selection,
the eight most commonly referred to artefacts are (from most common to least
common): wiki, issue title, issue bodies, issue body comments, commit messages,
pull request bodies, readme files, and pull requests reviews. In total, this reduces
the number of candidate sentences by 10.5% to 50,246.

We now investigate the performance of the subset of artefacts in terms
of being able to generate good summaries. Fig. 2d shows the cosine word co-
occurrence similarity and feature similarity achieved by each of the algorithms.
Blue violin plots show the distributions of similarities achieved when all 15 arte-
facts were considered, and the red violin pots show the same for the eight most
relevant artefacts. As we can see, focusing on only eight artefact types appears
to have little to no negative impact.

5 Expert Annotation

To evaluate the extent to which the summaries that the different approaches
generate matched the summaries written by the students in the perception of

Human-Like Summaries from Software Development Artefacts 339

Table 3. Average rating from each annotator for output produced by the different
approaches.

Approach Annotator 1 Annotator 2

Word (all) 3.7 3.3

Word (subset) 3.8 3.5

Feature (all) 3.7 2.0

Feature (subset) 3.7 2.0

Random (all) 3.5 1.8

Random (subset) 3.0 1.8

software developers, we asked two expert annotators to evaluate the results –
both were in their first year of study of a Computer Science PhD, and both not
affiliated with this study. Both annotators indicated that developing software is
part of their job, and they have 4–6 years of software development experience.
Annotator 1 stated that they had 1–2 years of experience using GitHub for
project development, Annotator 2 answered the same question with 2–4 years.

The selection of algorithms to be used for expert annotation is based on
the highest median value of the cosine similarities between the gold standard
summaries and the generated summaries from each of the algorithms. Therefore,
summaries generated by the Greedy algorithm were chosen for the annotation.

For the study, we randomly selected ten out of the total of fourteen weeks,
and for each week, we randomly selected one project. For each of these ten, we
then produced six different summaries in relation to the gold standard (i.e., the
summaries written by the students):

1. the best summary based on word similarity between sentences contained in all
artefacts in the input data (issues, pull requests, etc.) and the gold standard
student summary,

2. same as (1), but only using the eight most relevant artefacts as input data,
3. the best summary based on feature similarity between sentences contained in

all artefacts in the input data and the gold standard student summary,
4. same as (3), but only using the eight most relevant artefacts as input data,
5. a random baseline by randomly selecting five sentences from all artefacts,
6. same as (5), but only using the eight most relevant artefacts as input data.

We created a questionnaire, which asked the annotators first to produce a
summary for the ten selected weeks after inspecting the corresponding GitHub
repositories (to ensure that annotators were familiar with the projects), and
then to rate each summary on a Likert-scale from 1 (strongly disagree) to 5
(strongly agree) in response to the question “Please indicate your agreement with
the following statement: The summary mentions all important project activities
present in the gold standard summary”.

Table 3 shows the results, separately per annotator. While it is apparent
from the data that Annotator 1 generally gave out higher scores than Annota-

340 M. Alghamdi et al.

tor 2, both annotators perfectly agreed on the (partial) order of the different
approaches: Word (subset) ≥ Word (all) ≥ Feature (subset) ≥ Feature (all) ≥
Random (all) ≥ Random (subset).

In summary, approaches based on text similarity achieve the best result in
terms of human perception, followed by approaches based on feature similarity,
and the random baselines.

6 Threats to Validity

Our study, like many other studies, has a number of threats that may affect the
validity of our results.

First, our research subjects involved summaries written by graduate and
undergraduate students. Although it is possible that Master students are more
knowledgeable about interacting with the GitHub platform than the Bachelor
students, the difference in the experiences of both subjects should not affect the
results. This is because the students require an intermediate level of skills to
work with the GitHub platform.

Our result, illustrated in Table 3, shows that the eight most relevant artefacts
are found to be sufficient when generating summaries containing developers’
activities. These types – such as issues, pull requests, and commits – are essential
elements of a GitHub repository. However, as these are essential elements of
probably any software repository, we expect this finding to be transferable to
other repositories.

Also, evaluating the automatically generated summaries relies on human
experts. Subjectivity and bias are likely to be issues when the number of human
experts involved to assess the generated summaries is small. Hence, we plan, for
future work, to include more experts to mitigate these issues.

7 Conclusion and Future Work

Software engineering projects produce many artefacts over time, ranging from
wiki pages, to pull request and issue comments. Summarising these can be helpful
to a developer, for example, when they return from a holiday, or when they try
to get an overview of the project’s background in order to move forward with
their team.

In this article, we have presented the first framework to summarise the het-
erogeneous artefacts produced during a given time window. We have defined
our own gold standard and ways of measuring similarity on a text-based level.
Then, we proceeded to compare various optimisation heuristics using diffident
input scenarios, and have found that a greedy algorithm can generate summaries
that are close to the human-written summaries in less running time compared
to other algorithms. A study then has found that experts preferred the combi-
nation that used word similarity to generate summaries based on the eight most
relevant artefacts.

Human-Like Summaries from Software Development Artefacts 341

Interestingly, the generated summaries have been found useful even though
the optimisation approaches have not yet considered temporal connections
between the sentences and also not yet the actual meaning. In the next steps,
we will focus on these two to further improve the quality of the summaries. An
additional, larger study with GitHub users will aim at the use of averaged and
personalised target vectors.

Acknowledgements. Mahfouth has been sponsored by the Institute of Public
Administration (IPA), Saudi Arabia. Christoph’s and Markus’ work has been sup-
ported by the Australian Research Council projects DE180100153 and DE160100850,
and by the 2019 Google Faculty Research Award “Rewriting software documentation
for non-native speakers”.

References

1. Alghamdi, M., Treude, C., Wagner, M.: Toward human-like summaries generated
from heterogeneous software artefacts. In: Genetic and Evolutionary Computation
Conference Companion, Prague, Czech Republic, pp. 1701–1702. ACM (2019).
ISBN 9781450367486

2. Baxendale, P.B.: Machine-made index for technical literature—an experiment. IBM
J. Res. Dev. 2(4), 354–361 (1958)

3. Erkan, G., Radev, D.R.: LexRank: graph-based lexical centrality as salience in text
summarization. J. Artif. Intell. Res. 22, 457–479 (2004)

4. GitHub. The State of the octoverse, February 2020. https://octoverse.github.com/
5. Kupiec, J., Pedersen, J., Chen, F.: A trainable document summarizer. In: 18th

Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pp. 68–73 (1995)

6. Luhn, H.P.: The automatic creation of literature abstracts. IBM J. Res. Dev. 2(2),
159–165 (1958)

7. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

8. Nair, V., et al.: Data-driven search-based software engineering. In: 15th Interna-
tional Conference on Mining Software Repositories (MSR), Gothenburg, Sweden,
pp. 341–352. ACM (2018). ISBN 9781450357166

9. Nazar, N., et al.: Source code fragment summarization with small scale crowd-
sourcing based features. Front. Comput. Sci. 10(3), 504–517 (2016)

10. Nenkova, A., McKeown, K.: Automatic summarization. Found. Trends Info. Retr.
5(2–3), 103–233 (2011)

11. Peyrard, M., Eckle-Kohler, J.: A general optimization framework for multi-
document summarization using genetic algorithms and swarm intelligence. In:
26th International Conference on Computational Linguistics: Technical Papers
(COLIN), pp. 247–257 (2016)

12. Rastkar, S., Murphy, G.C., Murray, G.: Automatic summarization of bug reports.
IEEE Trans. Softw. Eng. 40(4), 366–380 (2014)

13. Rigby, P.C., Robillard, M.P.: Discovering essential code elements in informal docu-
mentation. In: 35th International Conference on Software Engineering (ICSE), pp.
832–841. IEEE (2013)

14. Sohangir, S., Wang, D.: Improved sqrt-cosine similarity measurement. J. Big Data
41, 25 (2017)

https://octoverse.github.com/

342 M. Alghamdi et al.

15. Torres-Moreno, J.-M.: Automatic Text Summarization. Wiley, Boca Raton (2014)
16. Treude, C., Filho, F.F., Kulesza, U.: Summarizing and measuring development

activity. In: 10th Joint Meeting on Foundations of Software Engineering (FSE),
pp. 625–636 (2015)

17. Verma, P., Om, H.: Extraction based text summarization methods on user’s review
data: a comparative study. In: Unal, A., Nayak, M., Mishra, D.K., Singh, D., Joshi,
A. (eds.) SmartCom 2016. CCIS, vol. 628, pp. 346–354. Springer, Singapore (2016).
https://doi.org/10.1007/978-981-10-3433-6 42

18. Ying, A.T.T., Robillard, M.P.: Code fragment summarization. In: 9th Joint Meet-
ing on Foundations of Software Engineering (FSE), pp. 655–658 (2013)

https://doi.org/10.1007/978-981-10-3433-6_42

A Search for Additional Structure: The
Case of Cryptographic S-boxes

Claude Carlet1,2, Marko Djurasevic3, Domagoj Jakobovic3,
and Stjepan Picek4(B)

1 Department of Informatics, University of Bergen, Bergen, Norway
claude.carlet@gmail.com

2 Department of Mathematics, Universities of Paris VIII and XIII, Paris, France
3 Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3,

Zagreb, Croatia
{marko.durasevic,domagoj.jakobovic}@fer.hr

4 Cyber Security Research Group, Delft University of Technology, Mekelweg 2,
Delft, The Netherlands
s.picek@tudelft.nl

Abstract. We investigate whether it is possible to evolve cryptograph-
ically strong S-boxes that have additional constraints on their structure.
We investigate two scenarios: where S-boxes additionally have a specific
sum of values in rows, columns, or diagonals and the scenario where we
check that the difference between the Hamming weights of inputs and
outputs is minimal. The first case represents an interesting benchmark
problem, while the second one has practical ramifications as such S-boxes
could offer better resilience against side-channel attacks.

We explore three solution representations by using the permutation,
integer, and cellular automata-based encoding. Our results show that it
is possible to find S-boxes with excellent cryptographic properties (even
optimal ones) and reach the required sums when representing S-box as a
square matrix. On the other hand, for the most promising S-box represen-
tation based on trees and cellular automata rules, we did not succeed in
finding S-boxes with small differences in the Hamming weights between
the inputs and outputs, which opens an interesting future research direc-
tion. Our results for this scenario and different encodings inspired a
mathematical proof that the values reached by evolutionary algorithms
are the best possible ones.

1 Introduction

S-boxes are functions with an important role in cryptography as they are the only
source of nonlinearity for many cryptographic algorithms. Without S-boxes with
good cryptographic properties, many designs would be easy to break by running
cryptanalyses [1,2]. A common option to obtain cryptographically strong S-boxes
is to use algebraic constructions [3]. Still, there are alternatives to algebraic
constructions. If the construction constraints are not too difficult, the random

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 343–356, 2020.
https://doi.org/10.1007/978-3-030-58115-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_24&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_24

344 C. Carlet et al.

search can work well. Besides algebraic constructions and random search, various
heuristic techniques showed their potential [4]. Heuristics play an important role,
especially in the cases where one requires S-boxes with cryptographic properties
that are not obtainable by the known algebraic constructions (note, that there
are not too many known algebraic constructions [3]). We explore whether we can
design cryptographically strong S-boxes (with good cryptographic properties)
that have additional properties of structure. We consider two settings: obtaining
cryptographic S-boxes that have an arrangement of elements that result in 1)
the same sum for every row, column, or diagonal, or 2) the minimal difference
between the Hamming weights of the inputs and outputs.

Finding additional structure in S-boxes while keeping very good mandatory
cryptographic features is not an easy task. We do not know if there exists such
structure, or even if it does, whether it occurs for various S-box sizes. Next, if
we assume there is additional structure, there is no prior knowledge about how
difficult it is to reach it with heuristics. What is more, we may not be able to
find such solutions depending on the selection of solution encoding or fitness
functions. Finally, it is not known if there are trade-offs between cryptographic
properties and the properties denoting additional structure.

Exploring the S-boxes depicted as square matrices with sums of rows,
columns, or diagonals equal to a specific value does not have practical cryp-
tographic applications to the best of our knowledge. This is because what we
search for is not affine invariant, contrary to many notions in cryptography [3].
Still, we consider it an interesting benchmark problem as now, for smaller S-
box sizes, we can easily obtain optimal cryptographic properties with heuristics,
while for larger S-boxes, heuristics cannot give results close to algebraic con-
structions. We consider this additional constraint an interesting bridging option
to allow more fine-grained evaluation of heuristics for S-box construction. By
imposing additional constraints, we enable heuristics to reduce the search space
size. Note that this structure constraint requires that an S-box is also a magic
square [5].

The second constraint ensuring that the Hamming weights of S-box inputs (x)
and outputs (F (x)) are as close as possible, has more practical ramifications. S-
boxes are common targets for side-channel attacks [6]. In such attacks, one needs
to consider an appropriate leakage model that the cryptographic device follows.
A common model is the Hamming weight model, where the power consumption
is proportional to the Hamming weight of a processed value. Minimizing the dif-
ference in the Hamming weights could potentially make the S-box more resilient
against side-channel attacks, as explained in more detail in Sect. 2.

To the best of our knowledge, there are no previous works that consider
evolving cryptographically strong S-boxes with additional constraints on the
arrangement of elements to result in a specific sum, or to minimize the differences
in the Hamming weights. In the rest of this paper, whenever talking about S-
boxes, we consider those that are cryptographically strong (details are given in
Sect. 2). While there is not much previous work on exploring additional structure
in S-boxes, there are works that use evolutionary algorithms to evolve S-boxes.

A Search for Additional Structure: The Case of Cryptographic S-boxes 345

For example, Clark et al. used the principles from the evolutionary design of
Boolean functions to evolve S-boxes for sizes up to 8×8 [7]. Picek et al. developed
an improved fitness function that enables evolutionary algorithms to find higher
nonlinearity values for several S-box sizes [8]. Mariot et al. investigated the
genetic programming approach to evolve cellular automata rules that are then
used to generate S-boxes [9]. The results obtained with GP used to evolve CA
rules outperform any other metaheuristics for sizes 5 × 5 up to 7 × 7. Jakobovic
et al. presented a fitness landscape analysis for S-boxes of various sizes [10].
Finally, Picek et al. used evolutionary algorithms to find S-boxes that have good
cryptographic properties but also good side-channel resilience [11].

In this paper, we explore how evolutionary algorithms can be used to con-
struct S-boxes with additional structure. Toward that goal, we first define sev-
eral S-box sizes we investigate with both single-objective and multi-objective
approaches. Our results indicate that it is possible to construct S-boxes with
sums of rows and columns equal to a specific value. We find a more difficult con-
dition when adding the constraint on the sum of diagonals. We could not find
any such S-box with optimal cryptographic properties but also having the sum
of all rows, columns, and diagonals equal to a specific value (thus, producing
S-box that is also a magic square).

Our experiments show it is possible to obtain an S-box with optimal crypto-
graphic properties and a small difference between the Hamming weights of inputs
and outputs. Then, our experimental results inspire mathematical research prov-
ing that the nonlinearity must be equal or smaller than the sum of differences
of the Hamming weights. Finally, our results show that the solution encoding
(tree-based) that works the best for cryptographic properties performs the worst
for these additional, structure-based properties.

2 Background

Let n,m be positive integers. Fn
2 is the n-dimensional vector space over F2 and

by F2n the finite field with 2n elements. The set of all n-tuples of elements in the
field F2 is denoted by F

n
2 , where F2 is the finite field with two elements. For any

set S, we denote S\{0} by S∗. The addition of elements of the finite field F2n is
represented with “+” while the inner product of a and b equals a1x1+. . .+anxn.

2.1 S-boxes – Representations and Properties

An S-box (Substitution box) is a mapping F from n bits into m bits (thus,
S-box is an (n,m) function). An (n,m)-function F can be defined as a vector
F = (f1, . . . , fm), where the Boolean functions fi : Fn

2 → F2 for i ∈ {1, . . . , m}
are called the coordinate functions of F. The component functions of an (n,m)-
function F are all the linear combinations of the coordinate functions with non
all-zero coefficients. For every n, there exists a field F2n of order 2n, so we
can endow the vector space F

n
2 with the structure of that field when convenient.

346 C. Carlet et al.

In Table 1, we give the best known/possible results for two relevant cryptographic
properties and S-box dimensions we consider.

An (n,m)-function F is balanced if it takes every value of F
m
2 the same

number 2n−m of times. If a function F is balanced, then it is a permutation (the
function is bijective, i.e., n = m).

The Walsh-Hadamard transform of an (n,m)-function F is (see, e.g., [3]):

WF (a, v) =
∑

x∈F
m
2

(−1)v·F (x)+a·x, a, v ∈ F
m
2 . (1)

The nonlinearity nlF of an (n,m)-function F equals the minimum nonlinear-
ity of all its component functions v · F , where v ∈ F

m∗
2 [3,12]:

nlF = 2n−1 − 1
2

max
a∈F

n
2

v∈F
m∗
2

|WF (a, v)|. (2)

Let F be a function from F
n
2 into F

m
2 with a ∈ F

n
2 and b ∈ F

m
2 . We write:

DF (a, b) = {x ∈ F
n
2 : F (x) + F (x + a) = b} . (3)

The entry at the position (a, b) corresponds to the cardinality of the delta dif-
ference table DF (a, b) and we write it as δF (a, b). The differential uniformity δF

is then defined as [13]:
δF = max

a�=0,b
δF (a, b). (4)

Table 1. Best known values for bijective S-boxes. For 8 × 8, we give the best known
results while for smaller sizes, we give the optimal values. For bijective S-boxes (and in
F2), both nonlinearity and differential uniformity can be even values only. The worst
possible values are 0 for nonlinearity (i.e., the S-box is linear), and 2n for differential
uniformity.

Property 3 × 3 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8

nlF 2 4 12 24 56 112

δF 2 4 2 2 2 4

2.2 Side-Channel Attacks

Besides various cryptanalysis techniques, another category of attacks on crypto-
graphic targets is side-channel attacks (SCAs). In such attacks, one does not aim
at the weakness of the algorithm, but on the weaknesses of implementation [6].
For instance, one could observe the power consumption of a device while run-
ning the cryptographic algorithm, and compare it with hypotheses for every
possible key (or, more precisely, subkey). When a particular statistic technique

A Search for Additional Structure: The Case of Cryptographic S-boxes 347

(for instance, Pearson correlation) shows the best absolute value of correlation,
we assume that the key hypothesis is correct, and we use it to break the target.
For this to work, we need to assume the leakage model in which a device leaks,
where one of the standard models is the Hamming weight model. If the input and
output of the S-box have the same Hamming weights, this will result in several
equally likely key hypotheses (they will have the same correlation). As such, the
side-channel attack in this leakage model would become somewhat more difficult
to succeed.

2.3 Magic Squares

A magic square is a d × d square grid that consists of distinct positive integer
values in the range [1, d2]. The sum of values in every row, column, and diagonal
is equal. That sum value is called the magic constant of the magic square. There
is no strict requirement on the value of the magic constant. Usually, the sum is
determined as the sum of all elements occurring in the magic square and divided
by the number of cells on each side (d), i.e., d(d2 + 1)/2.

3 Experiments

We consider S-boxes of sizes n × n only. As a consequence, our S-boxes can
be bijective, but there is no constraint on this for all encodings. The smallest
S-box size we work with is 3 × 3, while the largest is 8 × 8 (the smallest and
largest practically used S-box sizes). The set of experiments is divided into two
groups. The first group of experiments deals with the evolution of S-boxes with a
constraint that is imposed on the sums of its rows, columns, and diagonals. More
precisely, we can depict an S-box as a square matrix. Then, each row, column,
or diagonal in that matrix must sum up to the same value (i.e., an S-box is
magic square). As an example, let us consider an S-box of size 4 × 4 that has
16 elements. We can depict them in a matrix of size 4 × 4 where we fill it with
S-box values column by column. Finally, we can easily check the sum of each
row, column, or diagonal in such a matrix. To ensure that it is possible to obtain
such S-boxes, we place the following constraints in our experiments:

1. We consider S-boxes of even dimensions only, and more precisely, dimensions
4, 6, and 8. Recall from Sect. 2 that S-boxes are defined as elements of finite
fields where the underlying field is the finite field with two elements, i.e., F2.
As such, the number of elements in an S-box equals 2n, where n is the size
of an S-box. Simultaneously, the number of elements in a magic square is
equal to d2, where d is the size of the magic square. For every odd dimension,
the number of elements in a magic square with size d is not the same as the
number of elements in a finite field of size 2n, regardless of the fact if d = n.

2. Commonly, the elements in a magic square are denoted from 1 to d2 while the
elements in an S-box with elements from 0 to 2n − 1. This does not represent
a problem as in the finite field; all elements are calculated modulo 2n, which
means that 0 and 2n (d2) represent the same values.

348 C. Carlet et al.

The second group of experiments will focus on evolving S-boxes where the
difference in the Hamming weights for every pair of S-box input and output is
minimal. Unlike the previous scenario, where the experiments were constrained
to only even-sized S-boxes, now, there is no such constraint. Consequently, for
this set of experiments, we test S-boxes from 3 × 3 up to 8 × 8 size.

3.1 Experimental Setup

The first set of experiments consider the case in which the additional constraints
are placed on the sum of elements in rows, columns, and diagonals. The second
round of experiments, in addition to cryptographic properties, also places the
constraint on the difference in Hamming weights between the inputs and outputs
of the S-box. The experiments evaluate both the bijective and non-bijective S-
boxes. For that purpose, three solution representations are applied, out of which
the first two are used with a genetic algorithm (GA) and the third with genetic
programming (GP):

1. The integer genotype, consisting of a vector of integer values of size 2n and
values in the range [0, 2n − 1].

2. The permutation genotype of size 2n, where each value in [0, 2n − 1] occurs
only once.

3. The tree genotype, which represents the transition function of cellular
automata (CA).

In our experiments, the integer genotype is used to evolve non-bijective S-
boxes, while the permutation and tree genotype are used to evolve bijective
S-boxes. The integer representation is a super-set of the permutation represen-
tation, and it is possible, although very unlikely, to obtain bijective S-boxes with
integer genotype. The integer genotype mutation selects a random position in
the vector and assigns it a new value in the defined range. The crossover opera-
tors for integer vector include a simple one-point and two-point recombination,
as well as an averaging crossover which defines all the elements of the child vec-
tor as an arithmetic mean of the corresponding values in the parent vectors. For
the permutation genotype, we use three mutation operators and five crossover
operators where we chose among the most common ones in practice. The muta-
tion operators are insert mutation, inversion mutation, and swap mutation [14].
We used partially mapped crossover (PMX), position based crossover (PBX),
order crossover (OX), uniform like crossover (ULX), and cyclic crossover [15].
For each new individual, an operator is selected uniformly at random between
all operators within a class (both mutation and crossover).

Finally, we use the tree representation, where GP is used to evolve a suitable
cellular automata function in the form of a tree. The input bits of the S-box
are used as terminal nodes of the tree, where their number is equal to n. The
function set consists of Boolean primitives with 1) two inputs: NOT, which
inverts its argument, XOR, AND, OR, NAND, and XNOR, and 2) three inputs:
IF (it takes three arguments and returns the second one if the first evaluates to

A Search for Additional Structure: The Case of Cryptographic S-boxes 349

true, and the third one otherwise). The evolved function is used as a transition
that, based on the input bits of the current state, calculates the output bits
which act as the next state. For details about the cellular automata approach
for S-box evolution, we refer readers to [9]. The recombination operators for this
representation are simple tree crossover, uniform crossover, size fair, one-point,
and context preserving crossover [16] (selected at random) and subtree mutation.

Both GA and GP use a steady-state tournament algorithm with tournament
size k = 3 (select three individuals and remove the worst one, from the remaining
two make an offspring and mutate it), and with individual mutation probability
of 30%. All parameters were selected after a tuning phase, where the selected
combinations showed good performance. The experiments for each considered
configuration were executed 30 times (independent runs). The algorithms opti-
mize a single-objective function, which is defined as a linear combination of indi-
vidual criteria, as defined in the next section. In addition to the single-objective
case, the multi-objective case using the well known NSGA-II algorithm [17] was
also tested. Since the results achieved in the multi-objective case were equally
good or worse than in the single-objective case, these results are not further
discussed in the paper.

3.2 Fitness Functions

In addition to the cryptographic properties, the fitness function has to include
an additional term to ensure that the algorithm can evolve S-boxes of the desired
structure. When considering structures that have the sums on row, column, and
diagonal elements equal to some predefined value, we use:

msq =
n∑

i

∣∣∣∣∣∣
mc −

n∑

j

sq[i][j]

∣∣∣∣∣∣
+

n∑

i

∣∣∣∣∣∣
mc −

n∑

j

sq[i][j]

∣∣∣∣∣∣

+

∣∣∣∣∣mc −
n∑

i

sq[i][i]

∣∣∣∣∣ +

∣∣∣∣∣mc −
n∑

i

sq[i][n − i]

∣∣∣∣∣ .

(5)

Here, mc represents the magic constant, i.e., the number to which the elements
in rows, columns, and diagonals need to be equal to when summed up, while
sq represents a square consisting of elements of the S-box. The msq property
calculates the distance for all relevant elements (rows, columns, diagonals) from
the predefined constant. The previous equation is the most general version, which
considers the sums on all the relevant elements of the square. Depending on the
experiment, some elements in that expression will not be calculated when not
all relevant elements need to adhere to the specified sum constraint. Although
the constant to which the rows, columns, and diagonals need to be equal to can
be freely specified, we use values to which the elements sum up in magic squares
of the corresponding sizes [18]. For these constants, we know it is possible to
construct a square with the requested structure, whereas choosing a random
value could mean it would not be possible to obtain a square of numbers where

350 C. Carlet et al.

the sum of elements equals the selected number. For the 4×4 S-box, the constant
is 34. For the 6 × 6 S-box, it equals 260, and for the 8 × 8 S-box, it equals 2 056.

The fitness function to be minimized is defined as:

f = msq − α
nlF

nlbest
− β

(δworst − δF)
δworst

, (6)

where nlbest represents the best-known values for nonlinearity as defined in
Table 1, δworst is the worst possible value for differential uniformity equal to
2n with n representing the number of inputs in the S-box, while α and β rep-
resent scaling factors for the cryptographic properties. In the experiments, the
emphasis is put on the sq property in a way that the other two properties are
normalized and scaled with additional factors. This is because we want to see
whether there are S-boxes that adhere to the additional structures, but still have
good cryptographic properties.

Based on preliminary experiments, the values for both α and β were set to
the value of 0.5, which results in the msq property being treated as a primary
objective, while the cryptographic properties are the secondary. In this way, the
algorithm will always prefer a solution with a better structure, while the other
two properties will then force the algorithm to search for those solutions that
have better cryptographic properties.

The second set of experiments places a constraint on the difference in the
Hamming weights of the inputs and outputs of the S-box. This property is cal-
culated as:

HWD = |wH(x) − wH(F (x))|, (7)
where x represents an input value to the S-box, F (x) is the S-box function that
transforms the input, and wH is the function returning the number of ones in
the argument. HWD is simply defined as the absolute difference between the
Hamming weights of the inputs in the S-box and outputs from the S-box. In this
case, the fitness function which has to be minimized is:

f = HWD − α
nlF

nlbest
− β

(δbest − δF)
δbest

. (8)

If the HWD property would be optimized primarily by giving a smaller weight
to the cryptographic properties, then the algorithms would always obtain the
optimal solution for this property. This would lead to poor results for cryp-
tographic properties, and as such, the evolved S-box would not have much use.
When focusing on S-boxes that have such a structure, the primary focus is placed
on evolving S-boxes with good cryptographic properties and then adjusting the
solutions to conform to the desired structure. After executing some preliminary
tests with different weight values, the α and β coefficients are set to 10, which
we evaluated to be enough for the algorithm to focus primarily on cryptographic
properties, and only then on the difference of the Hamming weights.

3.3 Results

Table 2 shows the results obtained for the experiments in which additional con-
straints are placed on the sum of elements in rows, columns, and diagonals.

A Search for Additional Structure: The Case of Cryptographic S-boxes 351

For each configuration, the S-box with the best fitness was selected, and the
individual properties that constitute the fitness function are denoted. The con-
strained elements column denotes for which elements of the S-box the sum was
calculated to be of the specified constant. For the size of 4 × 4, the algorithm
obtained S-boxes that mostly have good cryptographic properties. For S-boxes in
which the sum in rows or columns had to be equal to a certain sum, it was almost
trivial for the algorithm to find the square with the optimal cryptographic prop-
erties. Still, when it is enforced that the sum on more elements (e.g., rows and
columns) has to be equal to the desired constant, we found optimal solutions for
the permutation encoding only. Interestingly, although the tree representation
obtained S-boxes with optimal cryptographic properties, it was unable to obtain
S-boxes that adhered to any of the additionally placed constraints.

For S-boxes of size 6×6, the algorithm demonstrated an interesting behavior.
When the permutation and integer genotypes were applied, the algorithm had no
problem with optimizing the additional constraints, since it evolved S-boxes that
satisfied these constraints in all cases. On the other hand, in any of the experi-
ments, were we able to obtain an S-box with optimal cryptographic properties.
It is not surprising that the algorithm could not reach optimal cryptographic
properties since this is a difficult task for EA when using this type of encoding.
Additionally, the integer genotype achieved inferior results compared to the per-
mutation genotype. The cellular automata rules evolved by GP demonstrated
the opposite behavior since there, we found S-boxes with optimal cryptographic
properties, but which did not satisfy the additional constraints.

For the 8 × 8 S-boxes, the algorithm exhibited difficulties in obtaining S-
boxes with an additional structure. For the permutation genotype, the algorithm
evolved S-boxes that satisfy only the most simple constraint in which either the
row or column sums are equal to the desired constant. For the integer genotype,
the algorithm had fewer problems and obtained the desired structure for each
constraint, which is expected since, in that case, it is much easier to construct
an S-box with the desired structure. The S-boxes constructed by the permuta-
tion genotype have better cryptographic properties than those constructed by
the integer genotype. The obtained objects have relatively good cryptographic
properties, which are in line with the results for EA and S-boxes of that size [8].
The results obtained by the GP evolved CA are quite poor since this representa-
tion was neither able to evolve S-boxes with good cryptographic properties, nor
which satisfied the constraints that were additionally placed upon the S-boxes
for its structure.

It is not always easy to discern what are strong cryptographic properties as
that depends on the whole cipher and not only the S-box part. For all tested
sizes, it is possible to find S-boxes whose structure adheres to certain constraints.
For the S-box size of 4×4, GA obtained S-boxes both with the desired structure
and optimal cryptographic properties. This was not possible in GP’s case since
it was not possible to find an optimal S-box even for the least restrictive struc-
ture constraint. The cryptographic properties are further away from the optimal
values for larger sizes, but they are still relatively good. For 6 × 6 and 8 × 8

352 C. Carlet et al.

and permutation encoding, cryptographic properties are the same for the most
restrictive structure in which the elements in rows, columns, and diagonals have
to sum up to a certain value, and in the structure where this is not required for
the diagonal elements.

Table 3 presents the results obtained when, in addition to optimizing the
cryptographic properties, the difference in the Hamming weights is used as an
additional constraint. For the S-box size of 3×3, the algorithm obtained the same
value for the integer and permutation genotypes. By additionally using exhaus-
tive search, it was also proven that this is the optimal solution that can be
obtained for this size. On the other hand, the algorithm did not obtain the opti-
mal value by using the tree representation. This further shows that the evolved
CA, although very powerful with dealing with only cryptographic properties,
exhibits difficulties when S-boxes of certain structures are being evolved. For
all other S-box sizes, the permutation and integer genotypes achieve a similar
performance, which seems to demonstrate that both can be used for the consid-
ered problem. The only significant difference happens for 8× 8 S-box, where the
integer genotype obtained a slightly better result for the nonlinearity property,
but it also obtained a much worse value for the difference in Hamming weights.

In many cases, the obtained difference in Hamming weights between inputs
and outputs is equal to the obtained nonlinearity value. This inspires us to
ask a question of whether we found a lower bound on the sum of the differ-
ence of the Hamming weights. More precisely, whether for bijective S-boxes,∑

x∈Fn
2

|wH(F (x)) − wH(x)| ≥ minu,v∈Fn
2 ,ε∈F2,v �=0dH(v · F, u · x + ε)? It turns

out this is true and can be mathematically proven. We have
∑

x∈Fn
2

|wH(F (x))−
wH(x)| ≥ dH(v · F (x), u · x + ε) when u = v equals the all-1 vector and
ε = 0, where dH denotes the Hamming distance. Indeed, for each x such that
v · F (x) �= u · x, we have wH(F (x)) �= wH(x). Observe this is true as the non-
linearity of an S-box is the minimal nonlinearity of all its components. Then,∑

x∈Fn
2

|wH(F (x))−wH(x)| is at least the distance between the component func-
tion v ·F (x) and the linear function u ·x. A fortiori it is at least the nonlinearity.
To the best of our knowledge, the characterization between the maximal nonlin-
earity and the differences between the Hamming weights of input/output pairs
is new. As such, we see that EAs not only managed to reach the optimal results
for several S-box sizes, but they also inspired the new characterization of the
differences of the Hamming weights concerning nonlinearity.

The CA evolved by GP once again demonstrates its superiority when consid-
ering only cryptographic properties. Nevertheless, the results obtained for the
difference in Hamming weights are poor compared to the results for the other
two genotypes. Thus, CA again does not seem to be fit to handle the evolution of
S-boxes with additional structure. Although it could be said that this represen-
tation achieves poor results because for the S-boxes with better cryptographic
properties it is not even possible to obtain good values for the difference in Ham-
ming weights, the results obtained for the S-box of size 8×8 disprove this, since,
for that size, GP obtained poor results for both the cryptographic properties and
the difference in Hamming weights. It simply seems that the restricted search

A Search for Additional Structure: The Case of Cryptographic S-boxes 353

Table 2. Best results obtained with additional constraints imposed on the sums of
rows, columns, and diagonals, single-objective optimization.

S-box size Genotype Constrained elements msq nlF δF

4 × 4 Integer Rows 0 4 2

4 × 4 Integer Columns 0 4 4

4 × 4 Integer Rows and columns 0 3 4

4 × 4 Integer Rows, columns, and diagonals 0 2 6

4 × 4 Permutation Rows 0 4 4

4 × 4 Permutation Columns 0 4 4

4 × 4 Permutation Rows and columns 0 4 4

4 × 4 Permutation Rows, columns, and diagonals 0 2 8

4 × 4 Tree Rows 6 4 4

4 × 4 Tree Columns 6 4 4

4 × 4 Tree Rows and columns 26 4 4

4 × 4 Tree Rows, columns, and diagonals 49 4 4

6 × 6 Integer Rows 0 20 8

6 × 6 Integer Columns 0 19 8

6 × 6 Integer Rows and columns 0 7 8

6 × 6 Integer Rows, columns, and diagonals 0 7 10

6 × 6 Permutation Rows 0 20 6

6 × 6 Permutation Columns 0 20 6

6 × 6 Permutation Rows and columns 0 18 8

6 × 6 Permutation Rows, columns, and diagonals 0 18 8

6 × 6 Tree Rows 88 24 4

6 × 6 Tree Columns 88 24 4

6 × 6 Tree Rows and columns 220 24 4

6 × 6 Tree Rows, columns, and diagonals 422 24 4

8 × 8 Integer Rows 0 33 12

8 × 8 Integer Columns 0 29 12

8 × 8 Integer Rows and columns 0 18 12

8 × 8 Integer Rows, columns, and diagonals 0 11 12

8 × 8 Permutation Rows 0 100 8

8 × 8 Permutation Columns 0 100 10

8 × 8 Permutation Rows and columns 2 96 10

8 × 8 Permutation Rows, columns, and diagonals 4 96 10

8 × 8 Tree Rows 476 86 28

8 × 8 Tree Columns 5 760 84 36

8 × 8 Tree Rows and columns 8 440 80 32

8 × 8 Tree Rows, columns, and diagonals 10 169 82 26

354 C. Carlet et al.

space of CA is quite suitable for evolving S-boxes of good cryptographic prop-
erties (up to the size of 8 × 8), but it exhibits problems when the S-boxes have
to include an additional structure in them.

Table 3. Best results obtained by optimizing the difference in Hamming weights simul-
taneously with cryptographic properties.

S-box size Genotype HWD nlF δF

3 × 3 Integer 2 2 2

4 × 4 Integer 6 4 2

5 × 5 Integer 10 10 4

6 × 6 Integer 22 22 6

7 × 7 Integer 46 46 8

8 × 8 Integer 156 102 10

3 × 3 Permutation 2 2 2

4 × 4 Permutation 4 4 4

5 × 5 Permutation 10 10 4

6 × 6 Permutation 20 20 6

7 × 7 Permutation 46 46 8

8 × 8 Permutation 102 100 8

3 × 3 Tree 6 2 2

4 × 4 Tree 8 4 4

5 × 5 Tree 20 12 2

6 × 6 Tree 60 24 4

7 × 7 Tree 84 48 8

8 × 8 Tree 224 84 30

4 Conclusions and Future Work

The results we obtain suggest that the problem of evolving S-boxes with addi-
tional structure can be rather difficult. This should not come as a surprise as
we know that S-boxes’ design is a difficult task for evolutionary algorithms. The
choice of genotype significantly influences the algorithm’s ability to obtain S-
boxes with additional structure. We managed to find cryptographically optimal
S-boxes with sums of rows and columns equal to a specified constant. We also
managed to obtain cryptographically optimal S-boxes with a small difference in
the Hamming weights between inputs and outputs. We mathematically prove
that the smallest sum of differences cannot be smaller than the nonlinearity
value, which is a previously unknown result, inspired by evolutionary algorithms
experiments and observations. In Fig. 1, we give examples of two evolved 4 × 4

A Search for Additional Structure: The Case of Cryptographic S-boxes 355

S-boxes for scenarios 1 and 2, respectively. In future work, we plan to explore
whether we can obtain magic S-boxes if we consider some other patterns, e.g.,
looking at broken rows/columns/diagonals. Besides the difference in Hamming
weights, we also plan to consider the Hamming distance metric.

7 6 10 11
1 15 2 16
14 8 9 3
12 5 13 4

(a) S-box with optimal cryptographic
properties where the elements in rows
and columns sum up to the value 34.

0 8 2 4
10 6 5 13
1 3 12 9
14 7 11 15

(b) S-box with optimal cryptographic
properties where the difference of
Hamming weights equals 4

Fig. 1. Examples of 4 × 4 S-boxes with additional structure.

References

1. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL
cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-47555-9 7

2. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 1

3. Carlet, C.: Boolean Functions for Cryptography and Coding Theory. Cambridge
University Press, Cambridge (2020)

4. Picek, S., Mariot, L., Yang, B., Jakobovic, D., Mentens, N.: Design of S-boxes
defined with cellular automata rules. In: Proceedings of the Computing Frontiers
Conference, CF 2017, New York, NY, USA, pp. 409–414. ACM (2017)

5. Chabert, J.L.: Magic Squares, pp. 49–81. Springer, Heidelberg (1999). https://doi.
org/10.1007/978-3-030-17993-9

6. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Boston, MA (2007). https://doi.org/10.1007/978-0-387-
38162-6

7. Clark, J.A., Jacob, J.L., Stepney, S.: The design of S-boxes by simulated annealing.
New Gener. Comput. 23(3), 219–231 (2005)

8. Picek, S., Cupic, M., Rotim, L.: A new cost function for evolution of s-boxes. Evol.
Comput. 24(4), 695–718 (2016). PMID: 27482748

9. Mariot, L., Picek, S., Leporati, A., Jakobovic, D.: Cellular automata based s-boxes.
Cryptogr. Commun. 11(1), 41–62 (2019)

10. Jakobovic, D., Picek, S., Martins, M.S.R., Wagner, M.: A characterisation of s-box
fitness landscapes in cryptography. In: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2019, New York, NY, USA, pp. 285–293. ACM
(2019)

https://doi.org/10.1007/3-540-47555-9_7
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/978-3-030-17993-9
https://doi.org/10.1007/978-3-030-17993-9
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6

356 C. Carlet et al.

11. Picek, S., Ege, B., Batina, L., Jakobovic, D., Chmielewski, L., Golub, M.: On using
genetic algorithms for intrinsic side-channel resistance: the case of AES s-box. In:
Proceedings of the First Workshop on Cryptography and Security in Computing
Systems, CS2 2014, New York, NY, USA, pp. 13–18. ACM (2014)

12. Nyberg, K.: On the construction of highly nonlinear permutations. In: Rueppel,
R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 92–98. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-47555-9 8

13. Nyberg, K.: Perfect nonlinear S-boxes. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 378–386. Springer, Heidelberg (1991). https://doi.org/10.1007/
3-540-46416-6 32

14. Eiben, A.E., Smith, J.E., et al.: Introduction to Evolutionary Computing, vol. 53.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05094-1

15. Kellegöz, T., Toklu, B., Wilson, J.: Comparing efficiencies of genetic crossover
operators for one machine total weighted tardiness problem. Appl. Math. Comput.
199(2), 590–598 (2008)

16. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.
Published via http://lulu.com and freely available at http://www.gp-field-guide.
org.uk (2008) (With contributions by J. R. Koza)

17. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. Trans. Evol. Comput. 6(2), 182–197 (2002)

18. Abbott, S.: Most-perfect pandiagonal magic squares: their construction and enu-
meration, by kathleen ollerenshaw and david brée, p. 172. £19.50 (1998). ISBN 0
905091 06 x. (Institute of mathematics and its applications, 16 nelson st, southend-
on-sea, ss1 1ef). The Mathematical Gazette 82(495), 535–536(1998)

https://doi.org/10.1007/3-540-47555-9_8
https://doi.org/10.1007/3-540-46416-6_32
https://doi.org/10.1007/3-540-46416-6_32
https://doi.org/10.1007/978-3-662-05094-1
http://lulu.com
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk

Evolutionary Multi-objective Design
of SARS-CoV-2 Protease Inhibitor

Candidates

Tim Cofala1, Lars Elend1, Philip Mirbach1, Jonas Prellberg1, Thomas Teusch2,
and Oliver Kramer1(B)

1 Computational Intelligence Lab, Department of Computer Science,
University of Oldenburg, Oldenburg, Germany

{tim.cofala,lars.elend,philip.mirbach,jonas.prellberg,
oliver.kramer}@uni-oldenburg.de

2 Theoretical Chemistry Group, Department of Chemistry, University of Oldenburg,
Oldenburg, Germany

thomas.teusch@uni-oldenburg.de

Abstract. Computational drug design based on artificial intelligence is
an emerging research area. At the time of writing this paper, the world
suffers from an outbreak of the coronavirus SARS-CoV-2. A promising
way to stop the virus replication is via protease inhibition. We propose an
evolutionary multi-objective algorithm (EMOA) to design potential pro-
tease inhibitors for SARS-CoV-2’s main protease. Based on the SELFIES
representation the EMOA maximizes the binding of candidate ligands to
the protein using the docking tool QuickVina 2, while at the same time
taking into account further objectives like drug-likeness or the fulfillment
of filter constraints. The experimental part analyzes the evolutionary pro-
cess and discusses the inhibitor candidates.

Keywords: Evolutionary multi-objective optimization ·
Computational drug design · SARS-CoV-2

1 Introduction

At the time of writing this paper, researchers around the globe are search-
ing for a vaccine or an effective treatment against the 2019 novel coronavirus
(SARS-CoV-2). One strategy to limit virus replication is protease inhibition. A
biomolecule called ligand binds to a virus protease enzyme and inhibits its func-
tional properties. For SARS-CoV-2 the crystal structure of its main protease Mpro

has been solved, e.g.. by Jin et al. [16]. The search for a valid protease inhibitor
can be expressed as optimization problem. As not only the binding of the lig-
and is an important objective, but also further properties like drug-likeness or
filter properties, we comprise the molecule search problem as multi-objective
optimization problem, which we aim to solve with evolutionary algorithms.

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 357–371, 2020.
https://doi.org/10.1007/978-3-030-58115-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_25&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_25

358 T. Cofala et al.

This paper is structured as follows. In Sect. 2 we shortly repeat the basics
of protease inhibition and the connection to the novel coronavirus. Section 3
gives an overview of related work on evolutionary molecule design. In Sect. 4 we
introduce molecule metrics, which we aim to optimize with the EMOA that is
presented in Sect. 5. The experimental part in Sect. 6 presents our experimental
results and discusses the evolved molecules. Conclusions are drawn in Sect. 7,
where also prospective future research directions are presented.

2 Virus Protease Inhibition

As of late 2019, a novel respiratory disease named COVID-19 spread worldwide.
COVID-19 is caused by SARS-CoV-2, which belongs to the coronavirus family
like the well-known severe acute respiratory syndrome coronavirus (SARS-CoV).
As RNA virus SARS-CoV-2’s replication mechanism hijacks the cell mechanisms
for replication. An essential part of the virus replication process is a cleavage
process, in which the virus protease enzyme cuts long precursor polyproteins into
mature non-structural proteins, see Fig. 1. If a ligand biomolecule binds to the
protease it can prevent and inhibit this cleavage process. A ligand binds to the
target protein in a so-called pocket based on various non-covalent interactions
like hydrophobic interactions, hydrogen bonding, π-stacking, salt bridges, and
amide stacking [14]. With the proper ligand, the protease cleavage process is
inhibited, in practice measured by the half maximal inhibitory concentration
IC50 corresponding to the inhibitory substance quantity needed to inhibit 50%
of the protease process. The protease inhibitor is the target of the drug design
process, which we aim to find with evolutionary search.

Computational modeling of protein-ligand binding is a complex process
depending on protein-ligand geometry, chemical interactions as well as various
constraints and properties like hydration and quantum effects. Complex molecu-
lar dynamics computations are often too expensive in computational drug design.
Instead, docking tools like AutoDock [26], see Sect. 4, are supposed to be suffi-
cient for a coarse binding affinity estimation based on a simplification of the
physical reality.

Fig. 1. Illustration of (left) protease enzyme with uncut precursor polyproteins, (mid-
dle) the cleavage progress, and (right) protease inhibition preventing the cleavage.

For SARS-CoV-2 the crystal structure of its main protease Mpro is known,
e.g.. [7,16,38]. Various attempts to design inhibitors have been made recently,

Evolutionary Multi-objective Design of SARS-CoV-2 359

e.g.., based on known protease inhibitors for other viruses [6,18], based on virtual
screening [13], and computational drug design [25]. It has to be noted, that
potential inhibitors discovered by the latter require extensive testing, as they
are often completely new molecules. However, computational drug design can
form an important starting point in the search of optimal drug candidates.

3 Related Work

Methods for de novo drug design can be categorized in different ways [4,9].
Some works construct molecules directly from atoms [10,29], while others use
chemical fragments as their smallest building block [30]. The goal also varies
among publications. Sometimes you want to find drugs that bind to a specific
protein binding site like in our work or [30,37]. Other times the goal is to generate
any drug-like molecules as in [10,31].

ADAPT [30] is a fragment-based method that optimizes for molecules that
bind to a specific binding site using a genetic algorithm on an acyclic graph-
representation consisting of chemical fragments. The fitness of a resulting com-
pound is evaluated through a docking simulation with a target protein binding
site and common drug-likeness indicators. Peptide ligands can be successfully
optimized with single-target EAs [20,32]. The fitness of the individuals was deter-
mined experimentally in-vitro. On the other hand, Douguet et al. [10] use the
SMILES representation and as such work on the level of atoms instead of frag-
ments. In contrast to our work their genetic algorithm optimizes for drug-likeness
only instead of binding to a specific ligand. Furthermore, the algorithm is single-
objective and simply weighs the different properties in a fitness function using
constant coefficients. Similarly, Nigam et al. [29] present a genetic algorithm on
the SMILES representation for general molecule design. The method increases
diversity by using a deep neural network as an adaptive fitness function to penal-
ize long-surviving molecules. In contrast to methods like ours that try to stay
inside the distribution of drug-like molecules, the genetic algorithm is free to
explore the chemical space in its entirety.

Finally, LigBuilder [37] is a software tool for drug design that is based on a
genetic algorithm. It allows optimizing for the interesting quality of binding to
multiple targets, which enables tackling more complex diseases with a single drug
without the risk of drug-drug interactions that comes with combination drugs
(treatment with multiple compounds). Lameijer et al. have developed a program
called Molecule Evoluator [22]. This program uses an atomic-based evolutionary
approach, where the fitness function is an evaluation of the user. A selection of
molecules was further investigated experimentally.

Brown et al. [5] have utilized an approach for multi-objective optimization
of molecules applying a graph-based representation of molecules. The multi-
objective evolutionary algorithm applies a Pareto ranking scheme for the opti-
mization process. Wagner et al. [35] have developed a tool which identifies poten-
tial CNS drugs by means of a multi-objective optimization. The molecules have
been optimized for six physical properties. In contrast to the approach presented

360 T. Cofala et al.

here, this tool is not based on evolutionary algorithms but on medical knowledge.
A multi-objective evolutionary algorithm for the design of adenosine receptor lig-
ands was developed by van der Horst et al. based on a pharmacophore model
and three support vector machines [34]. The results have also been verified exper-
imentally. Nicolaou and Brown [28] present a short review, which focuses on the
multi-objective optimization of drugs. In this context, different problem defini-
tions and various Multi-objective optimization methods are summarized.

4 Molecule Design Metrics

In computational drug design, molecule metrics define the optimization objec-
tives. This section introduces the five metrics our optimization approach is based
on. Table 1 shows the value ranges and the optima of the five used metrics. For
our experiments we unify these values to a range of [0, 1], where 0 is the optimum,
as we will describe in Sect. 5.2.

Table 1. Value ranges and optimum for used metrics

Docking score [kcal/mol] SA QED NP Filters

Value range R [1, 10] [0, 1] [−5, 5] {0, 1}
Optimum −∞ 1 1 5 1

Binding Affinity Scores. The major objective in protease inhibitor search
is the protein-ligand binding affinity. A widespread tool for this metric is the
automated docking tool AutoDock [26], which will also be used by the OpenPan-
damics1 activities to fight COVID-19. AutoDock performs very fast calculations
of the binding energy by using grid-based look-up tables. For this purpose, the
protein is embedded in a grid. The binding energy of all individual atoms of the
ligand is calculated at all positions of the grid using semi-empirical force field
methods. Using a Lamarckian genetic algorithm, the best binding position and
binding energy of the complete ligand can be determined with the help of the
look-up tables.

Through various improvements, the accuracy and especially the performance
of AutoDock has been significantly improved. In AutoDock Vina [33] a hybrid
scoring function based on empirical and knowledge-based data is used instead of
the force field method. QuickVina [33] and QuickVina 2 [1] mainly improve the
search algorithm by performing the most complex part of the optimization only
for very promising ligand positions. We use QuickVina 2 for the calculation of
the binding energies of our proposed ligands, as it provides very good results at
high performance. For the sake of simplicity, we will use binding affinity score
and docking score synonymously.

1 https://www.ibm.org/OpenPandemics.

https://www.ibm.org/OpenPandemics

Evolutionary Multi-objective Design of SARS-CoV-2 361

The informative value of QuickVina 2 binding scores may be limited due
to a simplification of various physical properties, such as the neglect of water
molecules and the changing electrical properties of ligand and protein when
they interact with each other. However, it has been shown by Gaillard [15] that
AutoDock Vina binding scores outperform various computational docking meth-
ods and Quickvina 2 achieves very comparable results with Autodock Vina [1].

Synthetic Accessibility (SA). For drug design it is not only important to
find a molecule with the desired properties, but also a synthesizable one. Ertl
and Schuffenhauer [12] created a method to estimate the synthetic accessibility
of drug-like molecules on a continuous scale and achieve a high agreement with
manual estimations by experts. Such a method can easily be incorporated into
a search process and we use it as one of our optimization goals, too.

Quantitative Estimate of Drug-Likeness (QED). To estimate whether a
molecule can be used as a drug, its similarity to other existing drugs can be
considered. This is based on the fact that many important physiochemical prop-
erties of drugs follow a certain distribution. Lipinski’s rule of five [23] which
specifies ranges of values for different molecular properties such as size, is fre-
quently used. A major disadvantage, however, is that this rule is only a rule
of thumb and only checks whether its criteria are met or not. Among modern
drugs there are molecules that violate more than one of Lipinski’s rules. A mod-
ern approach by Bickerton et al. [3] is based on multi-criteria optimization and
the principle of desirability. Instead of a fixed value range, all relevant molecular
properties are evaluated by an individual desirability function. A single score
(QED) is then determined by geometrically averaging all desirability functions.
In this work we use this continuous QED score to estimate drug-likeness.

Natural Product-Likeness (NP). In addition to the similarity to known
drugs, the similarity to naturally occurring biomolecules (natural products) is
also an important metric. Natural products have numerous bioactive structures
that were created and validated by nature in an evolutionary process. Ertl
et al. [11] have studied the key differentiating features of natural and synthetic
molecules and developed a measure of similarity to natural products. This score
is based on structural characteristics of the molecules, such as the number of
aromatic rings and the distribution of nitrogen and oxygen atoms.

Medical Chemical Filters. Medical chemical filters can be used to exclude
molecules that are toxic due to their structural nature. Potentially unstable
molecules whose metabolites may be toxic are also not suitable as drugs. We
use the MCFs and PAINS filters described by Polykovskiy [31] as a Boolean
indicator metric.

362 T. Cofala et al.

5 Evolutionary Molecule Search

This section presents the evolutionary approach for the protease inhibitor design.
For searching in the design space of biomolecules we use evolutionary algorithms
(EAs), which are biologically inspired population-based search heuristics. We
employ the evolution strategy oriented (μ + λ) population model [2].

A solution is defined by a string based on the self-referencing embedded
strings (SELFIES) representation [21], which is an advancement of the simplified
molecular-input line-entry system (SMILES) [36] representation. Figure 2 pic-
tures an exemplary molecule with its structural formula and the corresponding
SMILES and SELFIES representations. Each string consist of symbols, encoding
the occurring atoms, bindings, branches and ring sizes. SELFIES implements
a formal grammar, and the interpretation of a symbol depends on derivation
rules and state of derivation. In contrast to SMILES, SELFIES strings are always
syntactically correct and therefore always yield valid molecules [21].

Fig. 2. Molecular structure formula, SMILES, and SELFIES of 2-fluorophenol.

The EA’s initial population consists of individuals with randomly generated
strings representation of a fixed length. Since multiple SELFIES strings can be
translated to the same SMILES string, the resulting SMILES string is compared
to a global list of all previously generated individuals. Individuals with a repre-
sentation that already occurred are discarded and a new individual is generated.
This process is repeated until the population consist of unique individuals and
also applies for the generation of offspring individuals.

5.1 Mutation

Since every SELFIES string corresponds to a valid molecule and every molecule
can be expressed in SELFIES representation, the design space can be explored by
applying random mutations to the strings – more precisely the SELFIES symbols
of which the string is composed. Offspring solutions are created by choosing a
random individual from the parental population. Each child is mutated with the
following mutation operations with defined probabilities:

Replacement is applied independently for every symbol with a probability of
pr. The symbol is replaced by a random SELFIES symbol.

Insertion is applied with probability pi. A random symbol is inserted at a
random position in the individual’s representation.

Deletion is applied with probability pd and deletes a randomly chosen symbol
of the individual’s representation.

Evolutionary Multi-objective Design of SARS-CoV-2 363

The new symbols are drawn from a set of symbols inspired by [21]. This set has
been extended with benzene as a separate, composed symbol, to increase the
likelihood of its occurrence and ease the generation of complex molecules. Addi-
tionally, each symbol is assigned a weighting parameter to adjust the probability
with which it is randomly selected. This weighting can be used to increase the
likelihood of more common symbols (e.g.. [C]) in contrast to more complex ones
(e.g.. branches and ring structures).

5.2 Fitness Evaluation

For the selection operator the fitness f(x) of each solution candidate is evaluated
based on the molecule metrics binding affinity score, QED, filters, NP, and SA
introduced in Sect. 4. To increase the comparability, each metric is scaled to
the range between 0 (best possible score) and 1 (worst possible score). The
binding affinities are scaled with regard to the experimentally chosen minimum
of −15 kcal/mol and maximum of 1 kcal/mol and clipped to the range between
0 and 1 with soft clipping [19].

For the single-objective baseline experiments each individual is assigned a
single composed fitness value. We use a weighted sum fitness of the n introduced
metrics:

f(x) =
n∑

i=1

wifi(x) (1)

with weights w = (0.4, 0.15, 0.15, 0.15, 0.15) with i corresponding to 1: docking,
2: SA, 3: QED, 4: NP, and 5: filters. The choice of weights is based on preliminary
experiment with the objective of putting the highest attention on the docking
score, while at the same time considering the other properties.

The evaluation of individuals of one generation is executed concurrently. Dur-
ing evaluation SELFIES are converted to the SMILES representation. MOSES [31]
is then used for the calculation of QED, NP, and SA as well as for the appli-
cation of the PAINS and MCF filters. The docking score for each compound is
determined by QuickVina 2. Therefore, RDKit2 and MGLTools3 are used to
generate PDB and PDBQT files for the respective SMILES representation. The
binding energy is calculated in regards to the COVID-19 Mpro (PDB ID: 6LU7
[24])4 with the search grid being centered around the native ligand position and
sized to 22 × 24 × 22 Å3. The exhaustiveness is maintained at its default value
of 8, resulting in a execution time of just a few minutes per molecule.

5.3 NSGA-II

The objectives presented in Sect. 4 may be contradictory. For example, in pre-
liminary experiments, we discovered that molecules with high AutoDock binding

2 https://www.rdkit.org.
3 http://mgltools.scripps.edu.
4 PDB: protein data base, https://www.rcsb.org.

https://www.rdkit.org
http://mgltools.scripps.edu
https://www.rcsb.org

364 T. Cofala et al.

scores suffer from low QED scores. As the choice of predefined weights for objec-
tives is difficult in advance, a multi-objective approach may be preferable in
practice. In our multi-objective optimization setting in molecule space M with
fitness functions f1, . . . , fn to minimize we seek for a Pareto set {x∗ | �x ∈ M :
x ≺ x∗} of non-dominated solutions, where x ≺ x∗ means x dominates x∗, i.e.,
∀i ∈ {1, . . . , n} : fi(x) ≤ fi(x∗), while ∃i ∈ {1, . . . , n} : fi(x) < fi(x∗). NSGA-II
[8] is known to be able of approximating a Pareto set with a broad distribution of
solutions in objective space, i.e., of the Pareto front. After non-dominated sorting,
μ non-dominated solutions maximizing the crowding distance. For comparison
of different multi-objective runs we also employ the hypervolume indicator (S-
metric) measuring the dominated hypervolume in objective space with regards
to a dominated reference point [39].

The five metrics described in Sect. 4 form the dimensions of the objective
space. Although the fulfilment of Medical Chemical Filters is a binary criterion,
it is included as an objective. Since all objectives are computationally determined,
they are just an approximation of the real molecule properties. Molecules per-
forming poorly in one of the objectives may still turn out to be potent drug
candidates or can potentially lead the algorithm into new areas of the search
space.

6 Experiments

In this section we experimentally analyze the single-objective and the NSGA-
II approaches for the protease inhibitor candidate search. For the experimental
analyses, the following settings are applied. A (10+100)-EA is used for the single-
objective run i.e., in each generation from 10 parents 100 offspring candidate
molecules are generated with the mutation operators introduced in Sect. 5.1 with
mutation probabilities pr = 0.05, pi = 0.1, and pd = 0.1 applying plus selection.
For multi-objective runs the number of parents is increased to 20 to achieve
a broader distribution of solutions in objective space. No crossover is applied.
Individuals are limited to a length of 80 SELFIES tokens oriented to the setting
by Krenn et al. [21]. All runs are terminated after 200 generations and are
repeated 20 times.

6.1 Metric Development

Figure 3 shows the development of the previously explained normalized metrics
in single- and multi-objective runs. For the single-objective runs, the best indi-
viduals according to fitness are chosen in each generation and their metrics are
averaged over all runs. The optimization process concentrates on improving dock-
ing score, QED, and NP. As expected, an improvement of one metric may result
in a deterioration of another, e.g.., as of generation 140, when QED and NP
deteriorate in favor of SA and docking score.

For multi-objective runs, the best individuals for each metric are chosen in
each generation and then averaged over all runs. A steady improvement with

Evolutionary Multi-objective Design of SARS-CoV-2 365

Fig. 3. Development of all metrics during (left) single-objective and (right) multi-
objective NSGA-II optimization runs.

Fig. 4. Visualization of typical Pareto fronts evolved with NSGA-II: (a) docking score
vs. QED, (b) docking score vs. NP, and (c) docking score vs. SA.

regard to all objectives is achieved here, but has to be paid with regard to
deteriorations in other objectives that are not shown here.

Figure 4 shows three different two-dimensional slices of the Pareto front that
compare docking score to QED, NP, and SA. A Pareto front is shown for every
10th generation and their colors start at light blue for the first generation and
end at dark blue for the final generation. The plots illustrate NSGA-II’s ability
to generate solutions with different degrees of balance between docking score and
the plotted metric. In the course of the optimization process the front of non-
dominated solutions has the expected tendency to move towards the lower left.
This is also reflected by the hypervolume indicator, which, in average over all
runs improves from 0.10±0.03 in the first to 0.20±0.05 in the last generation. In
the slice plots deteriorations are possible due to improvements in the remaining
three objectives.

A comparison of final experimental results of the single-objective and NSGA-
II runs is presented in Table 2. For NSGA-II the best achieved values for each
objective are shown corresponding to the corner points of the Pareto front
approximation. For comparison, corresponding metric values are shown for N3
proposed as ligand in the PDB database as well as for Lopinavir, the HIV
main protease inhibitor [17]. Docking scores achieved by the single objective

366 T. Cofala et al.

Table 2. Experimental results of weighted-sum single-objective approach, the best
values per objective for NSGA-II, the N3 ligand (from PDB 6LU7), and Lopinavir (a
prominent drug candidate). Statistical evaluation for the NSGA-II method is calculated
based on the best 20 individuals per objective. � marks a minimization objective, while
� marks a maximization objective.

Objective Single-objective NSGA-II N3 Lopinavir

Best Avg ± std Best Avg ± std Value Value

Fitness � 0.30 0.32 ± 0.01 0.31 0.39 ± 0.06 0.43 0.41

Docking score � −9.30 −7.68 ± 0.90 −13.30 −10.63 ± 1.18 −8.40 −8.40

SA � 3.04 2.63 ± 0.59 1.00 1.00 ± 0.00 4.29 3.90

QED � 0.66 0.76 ± 0.10 0.94 0.92 ± 0.01 0.12 0.20

NP � 0.33 0.20 ± 0.54 4.27 3.82 ± 0.24 −0.18 −0.04

Filters � 1.00 1.00 ± 0.00 1.00 1.00 ± 0.00 1.00 1.00

Fig. 5. Comparison of population of the last generation of exemplary single-objective
(10 molecules) and NGSA-II (20 molecules) runs. Each line represents a molecule can-
didate.

optimization process show that the best values even overcome the scores of
N3 and Lopinavir. Lopinavir and N3 bind similarly strong to Mpro. NSGA-II
achieves promising values for all metrics. The broad coverage of objective func-
tion values offers the practitioner a huge variety of interesting candidates. How-
ever, some of the extreme metric values may sometimes be unpractical, e.g..,
the outstanding docking score of the best NSGA-II molecule (docking score
−13.3 kcal/mol) has been achieved by a chemically unrealistic candidate.

From our observations we conclude that the SELFIES representation with our
mutation operators are able to robustly achieve molecules of a certain quality.
However, we expect the quality of the results to improve with mechanisms that
allow the development of larger molecules to overcome fitness plateaus and local
optima. Figure 5 compares the populations of the last generation of a typical
single-objective and NSGA-II run. The solutions in the single-objective popula-
tion are similar to each other, while the solutions in the last NSGA-II population
maintain a higher diversity of molecule properties.

Evolutionary Multi-objective Design of SARS-CoV-2 367

Fig. 6. Exemplary protease inhibitors with properties presented as radar plot, struc-
tural formula, and chemical name, a-c: single-objective, d-f: NSGA-II results.

6.2 Candidate Comparison

In the following we present interesting protein inhibitor candidates evolved with
the single- and multi-objective approaches. In our experiments we made three
main observations. The molecules generated have a strong tendency to contain
aromatic ring structures. Candidates with good drug-likeness are comparatively
short. Candidates with high docking scores often have unrealistic geometries.

In Fig. 6 we present a list of six promising protease inhibitors (PI) candidates
with properties as radar plots, structural formulas, and chemical names. PI-I
(a) to PI-III (c) are results from single-objective runs, while PI-IV (c) to PI-
VI (f) show candidates generated by NSGA-II. Points near the border of the
radar plot represent better values, e.g.., a zero value lies at the corner of a
plot. All candidates fulfill the filter condition. PI-1 achieves a high SA value

368 T. Cofala et al.

with a reasonable docking score. PI-II achieves an excellent docking score with
−9.7 kcal/mol. PI-III, PI-IV, and PI-VI achieve excellent drug-likeness QED with
good docking results around −7.0 kcal/mol. An interesting candidate balancing
all objectives is PI-V with docking score −7.7 kcal/mol and QED value of 0.75.
Last, we visualize how the ligand candidates are located in the Mpro protein
pocket optimized by QuickVina 2. Figure 7 shows candidates (a) PI-I and (b)
PI-V in their Mpro pockets.

Fig. 7. Visualization of PI-I and PI-V docked to the pocket of SARS-CoV-2’s Mpro

using NGLview [27].

7 Conclusion

In this paper we introduced an evolutionary multi-objective approach to evolve
protein inhibitor candidates for the Mpro of SARS-CoV-2, which could be a start-
ing point for drug design attempts, aiming at optimizing the QuickVina 2-based
protein-ligand binding scores and further important objectives like QED and fil-
ter properties. In the experimental part we have shown that the evolutionary pro-
cesses are able to evolve interesting inhibitor candidates. Many of them achieve
promising metrics with ordinary structures, but also unconventional candidates
have been evolved that may be worth for a deeper analysis. As the informative
value of QuickVina 2 binding scores and also the further metrics may be limited
in practice, we understand our approach as AI-assisted virtual screening of the
chemical biomolecule space.

Future research will focus on the improvement of protein-ligand models for
more detailed and more efficient binding affinity models. Further, we see poten-
tial to improve the SELFIES representation in terms of bloated strings that repre-
sent comparatively small molecules and mechanisms to guarantee their validity.
Moreover, we want to use further multi objective evolutionary algorithms.

Acknowledgements. We thank Ahmad Reza Mehdipour, Max Planck Institute of
Biophysics, Frankfurt, Germany, for useful comments improving this manuscript. Fur-
thermore, we thank the German Research Foundation (DFG) for supporting our work
within the Research Training Group SCARE (GRK 1765/2).

Evolutionary Multi-objective Design of SARS-CoV-2 369

References

1. Alhossary, A., Handoko, S.D., Mu, Y., Kwoh, C.K.: Fast, accurate, and reliable
molecular docking with QuickVina 2. Bioinformatics 31(13), 2214–2216 (2015).
https://doi.org/10.1093/bioinformatics/btv082

2. Beyer, H.G., Schwefel, H.P.: Evolution strategies – a comprehensive introduction.
Nat. Comput. 1(1), 3–52 (2002). https://doi.org/10.1023/A:1015059928466

3. Bickerton, G.R., Paolini, G.V., Besnard, J., Muresan, S., Hopkins, A.L.: Quantify-
ing the chemical beauty of drugs. Nat. Chem. 4(2), 90–98 (2012). https://doi.org/
10.1038/nchem.1243

4. Brown, N., Fiscato, M., Segler, M.H., Vaucher, A.C.: GuacaMol: benchmarking
models for de novo molecular design. J. Chem. Inf. Model. 59(3), 1096–1108 (2019).
https://doi.org/10.1021/acs.jcim.8b00839

5. Brown, N., McKay, B., Gilardoni, F., Gasteiger, J.: A graph-based genetic algo-
rithm and its application to the multiobjective evolution of median molecules.
J. Chem. Inf. Comput. Sci. 44(3), 1079–1087 (2004). https://doi.org/10.1021/
ci034290p

6. Caly, L., Druce, J.D., Catton, M.G., Jans, D.A., Wagstaff, K.M.: The FDA-
approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivi-
ral Res. 104787 (2020). https://doi.org/10.1016/j.antiviral.2020.104787

7. Dai, W., et al.: Structure-based design of antiviral drug candidates targeting
the SARS-CoV-2 main protease. Science (2020). https://doi.org/10.1126/science.
abb4489

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
https://doi.org/10.1109/4235.996017

9. Devi, R.V., Sathya, S.S., Coumar, M.S.: Evolutionary algorithms for de novo drug
design – a survey. Appl. Soft Comput. 27, 543–552 (2015). https://doi.org/10.1016/
j.asoc.2014.09.042

10. Douguet, D., Thoreau, E., Grassy, G.: A genetic algorithm for the automated
generation of small organic molecules: drug design using an evolutionary algorithm.
J. Comput. Aided Mol. Des. 14(5), 449–466 (2000). https://doi.org/10.1023/A:
1008108423895

11. Ertl, P., Roggo, S., Schuffenhauer, A.: Natural product-likeness score and its appli-
cation for prioritization of compound libraries. J. Chem. Inf. Model. 48(1), 68–74
(2008). https://doi.org/10.1021/ci700286x

12. Ertl, P., Schuffenhauer, A.: Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. J. Chemin-
form. 1(1), 8 (2009). https://doi.org/10.1186/1758-2946-1-8

13. Fischer, A., Sellner, M., Neranjan, S., Lill, M.A., Smieško, M.: Inhibitors for Novel
Coronavirus Protease Identified by Virtual Screening of 687 Million Compounds
(2020). https://doi.org/10.26434/chemrxiv.11923239.v1

14. de Freitas, R.F., Schapira, M.: A systematic analysis of atomic protein–ligand
interactions in the PDB. Med. Chem. Commun. 8(10), 1970–1981 (2017). https://
doi.org/10.1039/C7MD00381A

15. Gaillard, T.: Evaluation of AutoDock and AutoDock Vina on the CASF-2013
Benchmark. J. Chem. Inf. Model. 58(8), 1697–1706 (2018). https://doi.org/10.
1021/acs.jcim.8b00312

16. Jin, Z., et al.: Structure of M pro from COVID-19 virus and discovery of its
inhibitors. Nature 1–9 (2020). https://doi.org/10.1038/s41586-020-2223-y

https://doi.org/10.1093/bioinformatics/btv082
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1038/nchem.1243
https://doi.org/10.1038/nchem.1243
https://doi.org/10.1021/acs.jcim.8b00839
https://doi.org/10.1021/ci034290p
https://doi.org/10.1021/ci034290p
https://doi.org/10.1016/j.antiviral.2020.104787
https://doi.org/10.1126/science.abb4489
https://doi.org/10.1126/science.abb4489
https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/j.asoc.2014.09.042
https://doi.org/10.1016/j.asoc.2014.09.042
https://doi.org/10.1023/A:1008108423895
https://doi.org/10.1023/A:1008108423895
https://doi.org/10.1021/ci700286x
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.26434/chemrxiv.11923239.v1
https://doi.org/10.1039/C7MD00381A
https://doi.org/10.1039/C7MD00381A
https://doi.org/10.1021/acs.jcim.8b00312
https://doi.org/10.1021/acs.jcim.8b00312
https://doi.org/10.1038/s41586-020-2223-y

370 T. Cofala et al.

17. Kaplan, S.S., Hicks, C.B.: Safety and antiviral activity of lopinavir/ritonavir-based
therapy in human immunodeficiency virus type 1 (HIV-1) infection. J. Antimicrob.
Chemother. 56(2), 273–276 (2005). https://doi.org/10.1093/jac/dki209

18. Khaerunnisa, S., Kurniawan, H., Awaluddin, R., Suhartati, S., Soetjipto, S.:
Potential Inhibitor of COVID-19 Main Protease (Mpro) From Several Medicinal
Plant Compounds by Molecular Docking Study (2020). https://doi.org/10.20944/
preprints202003.0226.v1

19. Klimek, M.D., Perelstein, M.: Neural network-based approach to phase space inte-
gration. arXiv:1810.11509 [hep-ex, physics:hep-ph, physics:physics, stat] (2018)

20. Krause, T., et al.: Breeding cell penetrating peptides: optimization of cellular
uptake by a function-driven evolutionary process. Bioconjugate Chem. 29(12),
4020–4029 (2018). https://doi.org/10.1021/acs.bioconjchem.8b00583

21. Krenn, M., Häse, F., Nigam, A., Friederich, P., Aspuru-Guzik, A.: Self-referencing
embedded strings (SELFIES): a 100% robust molecular string representation.
arXiv:1905.13741 [physics, physics:quant-ph, stat] (2020)

22. Lameijer, E.W., Kok, J.N., Bäck, T., IJzerman, A.P.: The molecule evoluator. an
interactive evolutionary algorithm for the design of drug-like molecules. J. Chem.
Inf. Model. 46(2), 545–552 (2006). https://doi.org/10.1021/ci050369d

23. Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J.: Experimental and com-
putational approaches to estimate solubility and permeability in drug discovery
and development settings. Adv. Drug Deliv. Rev. 23(1), 3–25 (1997). https://doi.
org/10.1016/S0169-409X(96)00423-1

24. Liu, X., Zhang, B., Jin, Z., Yang, H., Rao, Z.: 6LU7: The crystal structure of
COVID-19 main protease in complex with an inhibitor N3 (2020). https://www.
rcsb.org/structure/6lu7

25. Macchiagodena, M., Pagliai, M., Procacci, P.: Inhibition of the Main Protease
3CL-pro of the Coronavirus Disease 19 via Structure-Based Ligand Design and
Molecular Modeling. arXiv:2002.09937 [q-bio] (2020)

26. Morris, G.M., et al.: AutoDock4 and AutoDockTools4: automated docking with
selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009). https://
doi.org/10.1002/jcc.21256

27. Nguyen, H., Case, D.A., Rose, A.S.: NGLview–interactive molecular graphics for
Jupyter notebooks. Bioinformatics 34(7), 1241–1242 (2018). https://doi.org/10.
1093/bioinformatics/btx789

28. Nicolaou, C.A., Brown, N.: Multi-objective optimization methods in drug design.
Drug Discov. Today Technol. 10(3), e427–e435 (2013). https://doi.org/10.1016/j.
ddtec.2013.02.001

29. Nigam, A., Friederich, P., Krenn, M., Aspuru-Guzik, A.: Augmenting genetic
algorithms with deep neural networks for exploring the chemical space.
arXiv:1909.11655 [physics] (2020)

30. Pegg, S.C.H., Haresco, J.J., Kuntz, I.D.: A genetic algorithm for structure-based
de novo design. J. Comput. Aided Mol. Des. 15(10), 911–933 (2001). https://doi.
org/10.1023/A:1014389729000

31. Polykovskiy, D., et al.: Molecular sets (MOSES): a benchmarking platform for
molecular generation models. arXiv:1811.12823 [cs, stat] (2019)

32. Röckendorf, N., Borschbach, M., Frey, A.: molecular evolution of peptide ligands
with custom-tailored characteristics for targeting of glycostructures. PLOS Com-
put. Biol. 8(12), e1002,800 (2012). https://doi.org/10.1371/journal.pcbi.1002800

33. Trott, O., Olson, A.J.: AutoDock vina: improving the speed and accuracy of dock-
ing with a new scoring function, efficient optimization, and multithreading. J. Com-
put. Chem. 31(2), 455–461 (2010). https://doi.org/10.1002/jcc.21334

https://doi.org/10.1093/jac/dki209
https://doi.org/10.20944/preprints202003.0226.v1
https://doi.org/10.20944/preprints202003.0226.v1
http://arxiv.org/abs/1810.11509
https://doi.org/10.1021/acs.bioconjchem.8b00583
http://arxiv.org/abs/1905.13741
https://doi.org/10.1021/ci050369d
https://doi.org/10.1016/S0169-409X(96)00423-1
https://doi.org/10.1016/S0169-409X(96)00423-1
https://www.rcsb.org/structure/6lu7
https://www.rcsb.org/structure/6lu7
http://arxiv.org/abs/2002.09937
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1093/bioinformatics/btx789
https://doi.org/10.1093/bioinformatics/btx789
https://doi.org/10.1016/j.ddtec.2013.02.001
https://doi.org/10.1016/j.ddtec.2013.02.001
http://arxiv.org/abs/1909.11655
https://doi.org/10.1023/A:1014389729000
https://doi.org/10.1023/A:1014389729000
http://arxiv.org/abs/1811.12823
https://doi.org/10.1371/journal.pcbi.1002800
https://doi.org/10.1002/jcc.21334

Evolutionary Multi-objective Design of SARS-CoV-2 371

34. van der Horst, E., et al.: Multi-objective evolutionary design of adenosine receptor
ligands. J. Chem. Inf. Model. 52(7), 1713–1721 (2012). https://doi.org/10.1021/
ci2005115

35. Wager, T.T., Hou, X., Verhoest, P.R., Villalobos, A.: central nervous system mul-
tiparameter optimization desirability: application in drug discovery. ACS Chem.
Neurosci. 7(6), 767–775 (2016). https://doi.org/10.1021/acschemneuro.6b00029

36. Weininger, D.: SMILES, a chemical language and information system. I. Introduc-
tion to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36
(1988). https://doi.org/10.1021/ci00057a005

37. Yuan, Y., Pei, J., Lai, L.: LigBuilder V3: a multi-target de novo drug design app-
roach. Front. Chem. 8 (2020). https://doi.org/10.3389/fchem.2020.00142

38. Zhang, L., et al.: Crystal structure of SARS-CoV-2 main protease provides a basis
for design of improved α-ketoamide inhibitors. Science 368(6489), 409–412 (2020).
https://doi.org/10.1126/science.abb3405

39. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms
— a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0056872

https://doi.org/10.1021/ci2005115
https://doi.org/10.1021/ci2005115
https://doi.org/10.1021/acschemneuro.6b00029
https://doi.org/10.1021/ci00057a005
https://doi.org/10.3389/fchem.2020.00142
https://doi.org/10.1126/science.abb3405
https://doi.org/10.1007/BFb0056872

Generic Relative Relations in Hierarchical
Gene Expression Data Classification

Marcin Czajkowski(B), Krzysztof Jurczuk, and Marek Kretowski

Faculty of Computer Science, Bialystok University of Technology,
Wiejska 45a, 15-351 Bialystok, Poland

{m.czajkowski,k.jurczuk,m.kretowski}@pb.edu.pl

Abstract. Relative Expression Analysis (RXA) plays an important role
in biomarker discovery and disease prediction from gene expression pro-
files. It deliberately ignores raw data values and investigates only the
relative ordering relationships between a small group of genes. The clas-
sifiers constituted on that concept are therefore robust to small data per-
turbations and normalization procedures, but above all, they are easy to
interpret and analyze.

In this paper, we propose a novel globally induced decision tree in
which node splits are based on the RXA methodology. We have extended
a simple ordering with a more generic concept that also explores frac-
tional relative relations between the genes. To face up to the newly
arisen computational complexity, we have replaced the typical brute
force approach with an evolutionary algorithm. As this was not enough,
we boosted our solution with the OpenMP parallelization, local search
components calculated on the GPU and embedded ranking of genes to
improve the evolutionary convergence. This way we managed to explore
in a reasonable time a much larger solution space and search for more
complex but still comprehensible gene-gene interactions. An empirical
investigation carried out on 8 cancer-related datasets shows the potential
of the proposed algorithm not only in the context of accuracy improve-
ment but also in finding biologically meaningful patterns.

Keywords: Evolutionary data mining · Relative Expression Analysis ·
Decision trees · Gene Expression Data

1 Introduction

Data mining is an umbrella term covering a broad range of tools and tech-
niques for extracting hidden knowledge from large quantities of data. Biomedical
data can be very challenging due to the enormous dimensionality, biological and
experimental noise as well as other perturbations. Unfortunately, many tradi-
tional machine learning algorithm use complex predictive models, which impede
biological understanding and are an obstacle for mature applications [1]. Most
of the research effort tends to focus almost exclusively on the prediction accu-
racy of core data mining tasks (e.g., classification and regression), and far less
c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 372–384, 2020.
https://doi.org/10.1007/978-3-030-58115-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_26&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_26

Generic Relative Relations in Hierarchical Gene Expression Classification 373

effort has gone into understand and interpret the discovered knowledge. It is not
enough to simply produce good outcomes but to provide logical reasoning just
as clinicians do for medical treatments.

There is a strong need for ‘white box’ computational methods to effectively
and efficiently carry out the predictions using biomedical data. One of the exam-
ple approaches which may actually help in understanding and identifying rela-
tionships between specific features and improve biomarker discovery is the Rel-
ative Expression Analysis (RXA) [9]. It is a powerful collection of easily inter-
pretable algorithms that plays an important role in genomic data classification
[11]. RXA’s key novelty is the use of interactions between a small collection of
genes by examining the relative order of their expressions rather than their raw
values. The influence of RXA solutions could be even greater, however, the sim-
plicity of model decisions which is based only on the plain ordering comparisons
strongly limits the search for other gene-gene relations. Additionally, a typical
exhaustive search performed by most of RXA solutions limits the number of
genes that can be analyzed [16] due to computational complexity.

In this paper, we introduce a new approach for RXA called Evolutionary
Relative Expression Decision Tree (Evo-REDT). We have extended the simple
ordering relations between the genes proposed in RXA with a new more generic
concept. It explores relative fraction comparison in the gene pairs, therefore,
it can identify percent changes in their relations between different expression
profiles. To include also the hierarchical relations between the gene pairs, we have
adapted an evolutionary induced decision tree system called Global Decision
Tree (GDT) [15]. It allows performing a simultaneous search for the tests in the
internal nodes as well as the overall tree structure. In each splitting node of a
tree, we use a test consisting of two genes and a fraction which represents the
ratio (weight) of their relations. Originally, the selection of a top pair in RXA
performs an exhaustive search for all possible order relations between two genes.
Using brute force within the proposed approach is computationally infeasible,
on the other hand, relying only on the evolutionary search may result in a very
slow algorithm convergence. Therefore, we have proposed several improvements
in order to boost our solution, mainly:

– several specialized variants of mutation and crossover operators;
– local search components calculated on the GPU;
– embedded ranking of genes in order to consider the relations based on top

genes more often;
– parallel processing of the individuals of the population using shared memory

(OpenMP) paradigm.

Our main objective is to find in a reasonable time more advanced relations
in comparison to RXA that are more accurate and still easy to understand and
interpret.

374 M. Czajkowski et al.

2 Background

Genomic data is still challenging for computational tools and mathematical mod-
eling due to the high ratio of features to observations as well as enormous gene
redundancy and ubiquitous noise. Nearly all off-the-shelf techniques applied
to genomics data [1], such as neural networks, random forests and SVMs are
‘black box’ solutions which often involve nonlinear functions of hundreds or
thousands of genes and complex prediction models. Currently, deep learning
approaches have been getting attention as they can better recognize complex
features through representation learning with multiple layers. However, we know
very little about how such results are derived internally. In this section, we focus
on two concepts which are the main elements of the proposed approach.

2.1 RXA Classification Algorithms

Relative Expression Analysis focuses on finding interactions among a small group
of genes and studies the relative ordering of their expression values. In the pioneer
research [10], authors used ranks of genes instead of their raw values and intro-
duced the Top Scoring Pair (TSP) classifier. It is a straightforward prediction
rule that makes a pairwise comparison of gene expression values and searches
for a single pair of genes with the highest rank. Let xi and xj (0 ≤ i, j < N)
be the expression values of two different genes from available set of genes and
there are only two classes: normal and cancer. First, the algorithm calculates
the probability of the relation xi < xj between those two genes in the objects
from the same class:

Pij(normal) = Prob(xi < xj |Y = normal) (1)

and
Pij(cancer) = Prob(xi < xj |Y = cancer), (2)

where Y denotes the class of the objects. Next, the score for this pair of genes
(xi, xj) is calculated:

Δij = |Pij(normal) − Pij(cancer)|. (3)

This procedure is repeated for all distinct pairs of genes and the pair with the
highest score becomes the top-scoring pair. In the case of a draw, a secondary
ranking that relies on gene expression differences is used [19]. Finally, for a new
test sample, the relation between expression values of the top pair of genes is
checked. If the relation holds, then the TSP predictor votes for the class that has
higher probability Pij in the training set, otherwise it votes for the class with
smaller probability.

There are many extensions of the TSP classifier. The main ones focused on
increasing the number of gene pairs in the predictive model (k-TSP [19]) or
analyzing the order of relationships for more than two genes (TSN [16]). Those
methods were also combined with a typical decision tree algorithm (TSPDT [3])

Generic Relative Relations in Hierarchical Gene Expression Classification 375

in which each non-terminal node of the tree divides instances according to a
splitting rule that is based on TSP or k-TSP accuracy. As one of the main draw-
backs of the aforementioned solutions was the enormous computational complex-
ity resulting from the exhaustive search, various optimization techniques were
proposed. Some of them were based on parallel computing using GPGPU [16],
others used the heuristic approach involving evolutionary algorithms (EA) like
EvoTSP [4]. Finally, there are many variations of ranking and grouping the gene
pairs [9,13] but all the systems inherited the standard RXA methodology based
on the ordering relations.

2.2 Decision Trees

Decision trees have a knowledge representation structure made up of nodes and
branches, where: each internal node is associated with a test on one or more
attributes; each branch represents the test outcome, and each leaf (terminal
node) is designed by a class label. Induction of optimal DT for a given dataset is
a known NP-complete problem. As a consequence, practical DT learning algo-
rithms must be heuristically enhanced. The most popular type of tree induction
is based on a top-down greedy search [14]. It starts from the root node, where the
locally optimal split (test) is searched according to the given optimality measure.
Next, the training instances are redirected to the newly created nodes, and this
process is repeated for each node until a stopping condition is met. Inducing the
DT through a greedy strategy is fast and generally efficient in many practical
problems, but it usually produces overgrown solutions.

Evolutionary induction of decision trees is an alternative to greedy top-down
approaches as it mitigates some of the negative effects of locally optimal deci-
sions [15]. The strength of such an approach lies in a global search for the tree
structure and the tests in the internal nodes. This global induction is much
more computationally complex; however, it can reveal hidden regularities that
are often undetectable by greedy methods. Unfortunately, there are not so many
new solutions in the literature that focus on the classification of genomic data
with comprehensive DT models. In the liteature, there is far more interest in
trees as sub-learners of an ensemble learning approach, such as Random Forests.
These solutions alleviate the problem of low accuracy by averaging or adaptive
merging of multiple trees. However, when modeling is aimed at understanding
basic processes, such methods are not so useful due to the complexity of the
generated rules.

2.3 Motivation

RXA solutions deliberately replace the raw expression data values with sim-
ple ordering relationships between the features. However, in a nutshell, limit-
ing knowledge to the information that expression of one gene xi is larger than
another x2 which has a form of a pair: (xi > xj) may result in a large loss
of potentially important data. We propose an additional fractional component

376 M. Czajkowski et al.

called relational weight w, which is the ratio of the genes relation in a pair:
(xi > w ∗ xj).

Let us hypothetically assume that the two genes x1 and x2 have constant
expression values among the instances from the same classes. Figure 1 shows
three simple scenarios (a), (b), (c) of possible relations between genes x1 and
x2 in a normal and cancer class. The RXA algorithms will detect only the pairs
(x1, x2) from the (a) and (b) scenario as “top pairs” because only there the rela-
tion between genes changes between classes. However, the pair from the scenario
(b) should not be considered as a biological switch due to small change of the
genes expression level between classes. Unfortunately, the undoubtedly relevant
pair from the scenario (c) will not be considered by any currently available RXA-
family algorithms despite significant variations in the expression values of genes
in normal and cancer classes. It might choose them together with other genes,
by making multiple top pairs, but besides potential interpretability problems,
lower accuracy issues may also arise. Evo-REDT solution is capable not only of
selecting relevant pairs (scenario (a) and (c)) but also ignoring the ones with
small weight perturbations.

Fig. 1. Possible relations between two genes X1 and X2 in normal and cancer sample
together with biological importance of the pair constituted from that genes

Additionally, RXA enormous computational complexity strongly limits the
number of features and inter-relations that can be analyzed [13]. For regular
RXA exhaustive search, it equals O(T ∗ M ∗ N2), where T is the number of
splitting nodes of DT, M is the number of instances and N is the number of
analyzed genes. Evo-REDT has much higher complexity due to additional search
for the relations weight. For this newly arisen level of complexity, even a standard
evolutionary approach might be not sufficient.

3 Evolutionary Relative Expression Decision Tree

The proposed solution has been integrated into a system called the Global
Decision Tree (GDT). Its overall structure is based on a typical evolutionary

Generic Relative Relations in Hierarchical Gene Expression Classification 377

algorithm (EA) schema [17] with an unstructured population and generational
selection. The GDT framework [15] can be used to induce various types of trees
and its applications also cover biomedical data [6]. We have proposed several
changes in the original GDT solutions, involving the node representation and
overall evolutionary search. The general flowchart of the Evo-REDT solution is
illustrated in Fig. 2.

Fig. 2. General flowchart of the Evo-REDT solution

3.1 Representation, Initialization, Selection

Decision trees are quite complicated structures, in which a number of nodes,
type of the tests and even number of test outcomes are not known in advance.
The GDT system uses a tree-encoding schema in which individuals are repre-
sented in their actual form as potential tree-solutions. A new type of tests in the
splitting nodes is applied. It is constituted from a single pair of genes together
with the weight and has the form (xi > w ∗ xj). Additionally, each node stores
information about training instances related to the node. This allows the algo-
rithm to perform more effectively local modifications of the structure and tests
during the application of genetic operators. Finally, we have embedded infor-
mation about the discriminative power of genes calculated by the external tool
(algorithm Relief-F was used [18]) in a form of ranked list. It is submitted as an

378 M. Czajkowski et al.

additional input to Evo-REDT and can be manually modified, for example, to
focus on biomarker genes for a given disease.

In the GDT system, to maintain a balance between exploration and exploita-
tion, initial individuals are created by using a simple top-down algorithm with
randomly selected sub-samples of original training data. Before initialization, the
dataset is first copied from the CPU main memory to the GPU device memory
so each thread block can access it (see Fig. 2). It is performed only once before
starting the tree induction as later only the indexes of the instances that are
located in a calculated node are sent.

The selection mechanism is based on a ranking linear selection [17] with
the elitist strategy, which copies the best individual founded so far to the next
population. Evolution terminates when the fitness of the best individual in the
population does not improve during a fixed number of generations (default: 100)
or a maximum number of generations is reached (default: 1000).

3.2 Genetic Operators

To preserve genetic diversity, the GDT system applies two specialized genetic
meta-operators corresponding to the classical mutation and crossover. Both oper-
ators may have a two-level influence on the individuals as either decision tree
structure or a test in the splitting node can be modified. Depending on the
position in the tree, different aspects are taken into account to determine the
crossover or mutation point. If the change considers the overall structure, the
level of the tree is taken into account. The modification of the top levels is per-
formed less frequently than the bottom parts as the change would have a much
bigger, global impact. The probability of selection is proportional to the rank in
a linear manner. Examples of such variants are adding/deleting a node in the
case of mutation and tree-branch crossover.

If the change considers the tests in the splitting nodes their quality is taken
into account like the ones with the higher error, per instance, are more likely
to be changed. In the case of mutation, it can be replacing a pair of genes with
a new one or changing a single gene in a test. The first two variants require
updating the weight between two genes that constitute a test. Additionally, in
both variants, we use the gene ranking that determines which new genes will
appear in the test. This way top genes from the dataset are considered more
often in the population. Crossover variants allow whole tests to exchange as well
as randomly selected genes from the pairs between the individuals.

3.3 Fitness Function

DTs are at some extent prone to overfitting [14]. In typical top-down induction,
this problem is partially mitigated by performing a stop condition and applying
post-pruning. In the case of evolutionary induced DT, this problem may be
controlled by a multi-objective fitness function in order to maximize the accuracy
and minimize the complexity of the output tree. In this work, we decided to use

Generic Relative Relations in Hierarchical Gene Expression Classification 379

a simple weight formula, but measure the tree complexity in a different way. The
Evo-REDT system maximizes the following fitness function:

Fitness(T) = Q(T) − α ∗ Rank(T), (4)

where: Q(T) is the accuracy calculated on the training set, Rank(T) is the sum
of the ranks of attributes constituting tests and α is the relative importance
of the complexity term (default value is 0.05) and a user supplied parameter.
As we can see, instead of using the number of leaves or nodes, we measure the
sum of the ranks of the attributes that constitute the tests in the internal nodes
provided by the external Relief-F algorithm. This way the attributes with the
higher rank are more likely to be used in the prediction model.

3.4 Parallelization

The GDT system supports various parallelization techniques [5,15]. However,
in the context of biomedical data mining where the number of instances is low,
using only the data-parallel decomposition strategy will not be effective [12]. We
propose a hybrid approach with shared address space (OpenMP) paradigm and
graphics processing units (GPU)-based parallelization. The individuals from the
population are spread over the CPU cores using OpenMP threads. Each OpenMP
thread is reponsible for subsequent algorithm blocks (genetic operator, evalution,
etc.) for the assigned pool of individuals. This way, the individual are processed
in parallel on the CPU.

The GPU parallelization is applied in a different way. When the mutation
operator updates or calculates a new test in a splitting note, a local search for
the top gene pair is performed. Each thread on the device is assigned an equal
amount of relations (called offset) to compute so it ‘knows’ which relations of
genes it should analyze and where it should store the result. However, finding a
relation xi > w ∗xj for a given set of instances that reached a particular node is
still computationally demanding. That is why the first attribute is selected by
the CPU which together with offset and indexes to the instances are sent to the
GPU. Each thread in each block calculates the primary ranking which involves
the number of times the relation holds in one of the classes and not in another
one. The secondary ranking is a draw breaker, which is based on the differences
in the weight relations in each class and object. The weight w of the top pair
equals to xi/xj of the instance in which relation simultaneously distinguishes
the instances from different classes and is the lowest among the instances from
the same class. The weight can also be smoothed to e.g. a single precision value
or even rounded to an integer in order to improve comprehensibility and at some
extent the overall generalization (default: 0.5). After all block threads finished,
the results are copied from the GPU device memory back to the CPU main
memory and sorted according to the rank. Simplified ranking linear selection is
used to select the pair of genes that will constitute the test in the splitting node.

380 M. Czajkowski et al.

4 Experimental Validation

Experimental analysis to evaluate the relative performance of the proposed app-
roach is performed using several cancer-related gene expression datasets. We
confront the Evo-REDT with popular RXA extensions as well as outline other
algorithm characteristics.

4.1 Inducers, Datasets and Settings

To make a proper comparison with the RXA algorithms, we use the same 8
cancer-related benchmark datasets that were tested with the EvoTSP solution
[4]. Datasets are deposited in NCBI’s Gene Expression Omnibus and summa-
rized in Table 1. A typical 10-fold cross-validation is applied and following RXA
algorithms are confronted:

– TSP, TST, and k-TSP were calculated with the AUERA software [8];
– EvoTSP results were taken from the publication [4];
– original TSPDT and Evo-REDT implementations are used.

Table 1. Details of gene expression datasets: abbreviation with name, number of genes
and number of instances.

Datasets Genes Instances Datasets Genes Instances

(a) GDS2771 22215 192 (e) GSE10072 22284 107

(b) GSE17920 54676 130 (f) GSE19804 54613 120

(c) GSE25837 18631 93 (g) GSE27272 24526 183

(d) GSE3365 22284 127 (h) GSE6613 22284 105

In all experiments, a default set of parameters for all algorithms is used in all
tested datasets and the presented results correspond to averages of several runs.
Evo-REDT uses recommended GDT settings that were experimentally evaluated
and given in details in GDT framework description [15], e.g.: population size:
50, mutation rate 80%, crossover rate 20%.

Due to the performance reasons concerning other approaches, the Relief-F
feature selection was applied and the number of selected genes was arbitrarily
limited to the top 1000. Experiments run on the workstation equipped with Intel
Core i5-8400 CPU, 32 GB RAM, and NVIDIA GeForce GTX 1080 GPU card
(8 GB memory, 2 560 CUDA cores). The sequential algorithm was implemented
in C++ and the GPU-based parallelization part was implemented in CUDA-C
(compiled by nvcc CUDA 10; single-precision arithmetic was applied).

Generic Relative Relations in Hierarchical Gene Expression Classification 381

Table 2. Inducers accuracy and size comparison, best for each dataset is bolded

Dataset TSP TST k-TSP EvoTSP TSPDT Evo-REDT

Acc. Acc. Acc. Size Acc. Size Acc. Size Acc. Size

(a) 57.2 61.9 62.9 10 65.6 4.0 60.1 15.4 72.9 ± 8.0 8.2 ± 1.1

(b) 88.7 89.4 90.1 6.0 96.5 2.1 98.2 1.0 98.2 ± 5.7 2.2 ± 0.4

(c) 64.9 63.7 67.2 10 78.1 2.8 72.3 5.8 76.2 ± 9.9 7.3 ± 1.4

(d) 93.5 92.8 94.1 10 96.2 2.1 88.3 2.0 94.2 ± 8.8 2.8 ± 0.9

(e) 56.0 60.5 58.4 14 66.9 3.1 68.1 4.7 73.0 ± 10.9 6.0 ± 0.8

(f) 47.3 50.1 56.2 18 66.2 2.7 67.2 10.9 74.3 ± 6.2 7.9 ± 1.0

(g) 81.9 84.2 87.2 14 86.1 4.1 88.6 3.3 91.5 ± 8.5 3.9 ± 0.7

(h) 49.5 51.7 55.8 10 53.6 6.1 59.6 7.0 70.5 ± 16.9 8.4 ± 1.0

Average 67.4 69.3 71.5 11.5 76.2 2.7 75.3 6.2 81.3 ± 9.4 5.8 ± 0.9

4.2 Accuracy Comparison of Evo-REDT to Popular RXA
Counterparts

Table 2 summarizes classification performance for the proposed solution and its
competitors. The model size of TSP and TST is not shown as it is fixed and
equals correspondingly 2 and 3. Both, the evolutionary TSP approach called
EvoTSP, as well as a top-down induced RXA decision tree TSPDT, are out-
performed by the proposed Evo-REDT solution. The statistical analysis of the
obtained results using the Friedman test and the corresponding Dunn’s multi-
ple comparison test (significance level/p-value equals 0.05), as recommended by
Demsar [7] showed that the differences in accuracy are significant. We have also
performed an additional comparison between the datasets with the corrected
paired t-test with the significance level equals 0.05 and 9 degrees of freedom
(n-1 degrees of freedom where n = 10 folds). It showed that Evo-REDT signifi-
cantly outperforms all algorithms on more than half datasets. What is important,
the trees induced by the Evo-REDT are not only accurate but also relatively
small and simple. This indicates that the model managed to find more deep
interaction and sub-interaction between the genes.

4.3 Evo-REDT Characteristics

To improve the overall generalization of Evo-REDT as well as the model com-
prehensibility, we have checked how rounding the weight relation between the
genes impacts the results. Experimental results showed that there were no sta-
tistical differences between algorithms with 0.1, 0.5 respectively, and without
rounding weights. Therefore, in Evo-REDT we used a default 0.5 rounding for
the weight relation. An example of tree induced for the first dataset (GDS2771)
is illustrated in Fig. 3. We can observe, that Evo-REDT found splitting pairs
with various weights and the induced tree is small and easily interpretable.

In this section, we would also like to share some of the preliminary results
to verify if the trees induced by the Evo-REDT are somehow useful. By using

382 M. Czajkowski et al.

Fig. 3. An example decision tree induced by Evo-REDT with rounded to 0.5 weights
for lung cancer data (GDS2771)

the GDS2771 dataset description available on GenBank NCBI [2] we performed
a brief examination of our predictor (see Fig. 3). To check if genes found in
the splitting nodes have some biological meaning we have decoded gene names
from GDS2771 with GPL96 platform provided by NCBI (in the Figure genes are
encoded as Affymetrix Probe Set ID). We found out that 2 out of 9 genes are
directly related to lung cancer, another 2 were discussed in several papers while
the remaining 5 were also visible in the medical literature. This is only an exam-
ple of a fraction of knowledge discovered by Evo-REDT but even the presented
model is at some point supported by biological evidence in the literature.

Much effort in this paper was put into improving the speed of the proposed
solution. Table 3 shows the average calculation time for a single dataset with-
out any parallel calculations and with OpenMP and/or GPU enabled. We also
include the approximate induction time of other algorithms (if provided) for illus-
tration purposes only. We cannot compare the results as the machines, software,
etc. may be significantly different. However, with additional embedded feature
ranking we managed to improve the EA convergence and reduce the number of
required iterations which equals 1000 whereas for EvoTSP it is 10 times higher.

As expected, the sequential version of the algorithm is much slower than
the rest of the Evo-REDT variants from Table 3. It should be noted that GPU-
accelerated Evo-REDT may be applied to much larger gene expression datasets
without any feature selection. The potential of the GPU parallelization was
not fully utilized within performed experiments due to the limited number of
features.

Table 3. Average time in seconds for the algorithm to train a model

Algorithm Evo-REDT TSP TST TSPDT EvoTSP

Seq. OpenMP OpenMP+GPU

Time 637 171 110 2.1 712 152 2700

Generic Relative Relations in Hierarchical Gene Expression Classification 383

5 Conclusions

Finding simple decision rules with relatively high prediction power is still a major
problem in biomedical data mining. Our new approach called Evo-REDT tackles
this problem with a more generic approach of finding fractional relative rela-
tions between the genes. The proposed solution is composed of evolutionary DT
inducer and extended concept of RXA. Our implementation covers multiple opti-
mizations including OpenMP and GPU parallelizations as well as incorporates
knowledge about the discriminative power of genes into the evolutionary search.
Performed experiments show that the knowledge discovered by Evo-REDT is
accurate, comprehensible and the model training time is relatively short.

We see many promising directions for future research. In particular, we are
currently working with biologists and bioinformaticians to better understand
the gene relations generated by Evo-REDT. Next, there is still a lot of ways to
extend the tree representation e.g. by using more than one pair of genes in the
splitting nodes. Optimization of the approach can also be improved e.g. load-
balancing of tasks based on the number of instances in each node, simultaneous
analysis of two branches, better GPU hierarchical memory exploitation. Finally,
we want to validate our approach using proteomic and metabolomic data as well
as integrated multi-omics datasets.

Acknowledgments. This project was funded by the Polish National Science Center
and allocated on the basis of decision 2019/33/B/ST6/02386 (first author). The second
and third author were supported by the grant WZ/WI-IIT/3/2020 from BUT founded
by Polish Ministry of Science and Higher Education.

References

1. Bacardit, J., et al.: Hard data analytics problems make for better data analysis
algorithms: bioinformatics as an example. Big Data 2(3), 164–176 (2014)

2. Benson, D.A., et al.: GenBank. Nucleic Acids Res. 46(D1), D41–D47 (2018)
3. Czajkowski, M., Kretowski, M.: Top scoring pair decision tree for gene expression

data analysis. Adv. Exp. Med. Biol. 696, 27–35 (2011)
4. Czajkowski, M., Kretowski, M.: Evolutionary approach for relative gene expression

algorithms. Sci. World J. 593503 (2014). Hindawi
5. Czajkowski, M., Jurczuk, K., Kretowski, M.: A parallel approach for evolution-

ary induced decision trees. MPI+OpenMP implementation. In: Rutkowski, L.,
Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 340–349. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19324-3 31

6. Czajkowski, M., Kretowski, M.: Decision tree underfitting in mining of gene expres-
sion data. An evolutionary multi-test tree approach. Expert Syst. Appl. 137, 392–
404 (2019)

7. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

8. Earls, J.C., et al.: AUREA: an open-source software system for accurate and user-
friendly identification of relative expression molecular signatures. BMC Bioinform.
14, 78 (2013)

https://doi.org/10.1007/978-3-319-19324-3_31

384 M. Czajkowski et al.

9. Eddy, J.A., Sung, J., Geman, D., Price, N.D.: Relative expression analysis for
molecular cancer diagnosis and prognosis. Technol. Cancer Res. Treat. 9(2), 149–
159 (2010)

10. Geman, D., et al.: Classifying gene expression profiles from pairwise mRNA com-
parisons. Stat. Appl. Genet. Mol. Biol. 3(19) (2004)

11. Huang, X., et al.: Analyzing omics data by pair-wise feature evaluation with hori-
zontal and vertical comparisons. J. Pharm. Biomed. Anal. 157, 20–26 (2018)

12. Jurczuk, K., Czajkowski, M., Kretowski, M.: Evolutionary induction of a decision
tree for large scale data. A GPU-based approach. Soft Comput. 21, 7363–7379
(2017)

13. Kagaris, D., Khamesipour, A.: AUCTSP: an improved biomarker gene pair class
predictor. BMC Bioinform. 19(244) (2018)

14. Kotsiantis, S.B.: Decision trees: a recent overview. Artif. Intell. Rev. 39(4), 261–283
(2013)

15. Kretowski, M.: Evolutionary Decision Trees in Large-Scale Data Mining. Studies
in Big Data, vol. 59. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-
030-21851-5

16. Magis, A.T., Price, N.D.: The top-scoring ‘N’ algorithm: a generalized relative
expression classification method from small numbers of biomolecules. BMC Bioin-
form. 13(1), 227 (2012)

17. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
3rd edn. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-662-03315-9

18. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF
and RReliefF. Mach. Learn. 53(1–2), 23–69 (2003)

19. Tan, A.C., Naiman, D.Q.: Simple decision rules for classifying human cancers from
gene expression profiles. Bioinformatics 21, 3896–3904 (2005)

https://doi.org/10.1007/978-3-030-21851-5
https://doi.org/10.1007/978-3-030-21851-5
https://doi.org/10.1007/978-3-662-03315-9

A Variable Neighborhood Search for the
Job Sequencing with One Common and
Multiple Secondary Resources Problem

Thomas Kaufmann, Matthias Horn(B), and Günther R. Raidl

Institute of Logic and Computation, TU Wien, Vienna, Austria
thomas@tkaufmann.at, {horn,raidl}@ac.tuwien.ac.at

Abstract. In this work we consider a scheduling problem where a set
of non-preemptive jobs needs to be scheduled such that the makespan
is minimized. Each job requires two resources: (1) a common resource,
shared by all jobs and (2) a secondary resource, shared with only a sub-
set of the other jobs. The secondary resource is required during the job’s
entire processing time whereas the common resource is only required
during a part of a job’s execution. The problem models, for instance,
the scheduling of patients during one day in a particle therapy facil-
ity for cancer treatment. We heuristically tackle the problem by a gen-
eral variable neighborhood search (GVNS) based on move and exchange
neighborhoods and an efficient evaluation scheme to scan the neighbor-
hoods of the current incumbent solution. An experimental evaluation on
two benchmark instance sets, including instances with up to 2000 jobs,
shows the effectiveness of the GVNS. In particular for larger instances
our GVNS outperforms an anytime A∗ algorithm that was the so far
leading method in heuristic terms as well as a constrained programming
model solved by ILOG CP optimizer.

Keywords: Sequencing · Scheduling · Variable neighborhood search ·
Particle therapy patient scheduling

1 Introduction

In this work we apply a general variable neighborhood search (GVNS) app-
roach to the job sequencing with one common and multiple secondary resources
(JSOCMSR) problem. The JSOCMSR has been introduced in [8] and considers
a scenario where a finite set of jobs must be scheduled without preemption. Each
job requires two resources: (1) a common resource, which is shared by all jobs
and (2) a secondary resource which is shared by only a subset of the jobs. The
secondary resource is required for the entire processing time of a job whereas

We gratefully acknowledge the financial support of the Doctoral Program “Vienna
Graduate School on Computational Optimization” funded by Austrian Science Foun-
dation under Project No W1260-N35.

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 385–398, 2020.
https://doi.org/10.1007/978-3-030-58115-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_27&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_27

386 T. Kaufmann et al.

the common resource is needed only after some pre-processing time for a part of
the job’s whole processing time. The objective is to minimize the makespan.

The JSOCMSR problem has applications, for example, in the context of the
production of certain goods where on a single machine (the common resource, for
example an oven used for heat treatment) some fixtures or molds (the secondary
resource) filled with some raw material are sequentially processed. Before the
fixtures/molds can be processed on the machine there is a setup time during
which the secondary resource is already needed (e.g., preparations within the
mold) as well as a post-processing time also still requiring the secondary resource
(e.g., cooling before the product can be removed from the mold).

Another more specific application is the scheduling of treatments for can-
cer patients who are to receive a particle therapy [1,9,13]. In this rather novel
treatment technique, carbon or proton particles are accelerated in an particle
accelerator to almost the speed of light, and this particle beam is directed into
one of a few treatment rooms where a patient gets radiated. There are typically
two to four treatment rooms that are differently equipped for specific kinds of
radiations. In this scenario the JSOCMSR appears as a simplified daily subprob-
lem where the treatment rooms correspond to the secondary resources and the
single particle beam, which can only be directed into one of these rooms at a
time, corresponds to the common resource. The treatment room for each patient
is known in advance and depends on the patients specific needs. Each patient
treatment requires a specific preparation time (positioning, fixation, sedation,
etc.) in the room before the radiation can be performed and occupies the room
after the treatment for some further medical examinations until the patient can
eventually leave the room. The JSOCMSR we consider here only represents the
“hard core” of the real practical scheduling problem, in which several different
objectives, further resources, time windows, and other soft- and hard-constraints
need to be taken care of. Maschler et al. [13] tackled this real-world problem with
a greedy construction method, which is extended to an iterative greedy meta-
heuristic and a greedy randomized adaptive search (GRASP).

For the JSOCMSR, Horn et al. [5] proposed an exact anytime A∗ search. For
instances, where the workload over all secondary resources is rather balanced
this A∗ search works extremely well by solving even large instances with up to
2000 jobs to proven optimality. However, on instances where the workload over
the secondary resources is skewed, i.e., one resource is more frequently required
than the others, the A∗ algorithm’s performance degrades and it is in many cases
only able to provide heuristic solutions.

Contribution of This Work. For such hard-to-solve JSOCMSR instances we pro-
pose a GVNS heuristic with range-limited neighborhood structures. First, we dis-
cuss the related work in Sect. 2 and give a formal problem definition in Sect. 3.
The GVNS is described in Sect. 4, where we also introduce the so-called synchro-
nization mechanism that allows us to quickly determine the changed makespan
of the incumbent solution when a neighborhood move is applied. In this way
our GVNS algorithm is able to quickly scan through the used neighborhoods.
In Sect. 5 experimental results are provided, which indicate that this mechanism

A VNS for the JSOCMSR Problem 387

is rather independent of the number of jobs and therefore also applicable for
larger problem instances. Ultimately, the proposed GVNS is able to provide new
state-of-the-art results for many hard-to-solve instance classes of the JSOCMSR.

2 Related Work

As mentioned the JSOCMSR was already approached by Horn et al. [5,8], who
also proved the NP-hardness of the problem. The authors suggested methods
for calculating lower bounds for the makespan, given a partial solution with still
open jobs. Those lower bounds are then utilized in both a heuristic construction
algorithm as well as a novel exact anytime A∗ search. The latter performs after
a certain number of classical A∗ node expansions a beam search, starting from
the currently selected node. In this way the A∗ search is able to provide besides
a proven optimal solution at the end also promising intermediate heuristic solu-
tions. The latter are especially valuable for hard instances where runtimes would
be too excessive and the search must be terminated prematurely. This A∗ search
was compared, among others, to a compact position based mixed integer linear
programming (MIP) model solved with CPLEX as well as a constraint program-
ming (CP) model solved with ILOG CP Optimizer. The experimental evaluation
shows that the A∗ search clearly dominates the considered competitors.

A problem strongly related to the JSOCMSR is considered by Veen et al. [16]
with the important difference that post-processing times are negligible compared
to the total processing times of the jobs. This property allows to treat the prob-
lem as a traveling salesman problem with a special cost structure, which can be
solved efficiently in time O(n log n), where n is the number of jobs. For other
related problems we refer to [5].

A prize-collecting variant of the JSOCMSR (PC-JSOCMSR) is considered
by Horn et al. [7] as well as by Maschler and Raidl [12]. In both works, each
job is further equipped with a prize and a set of time windows such that the
job can only be scheduled within one of it’s time windows. The objective is to
find a subset of jobs together with a feasible schedule such that the overall prize
of the scheduled jobs is maximized. In Horn et al. [7] an exact A∗ algorithm is
proposed for the PC-JSOCMSR, where corresponding upper bound calculations
are based on Lagrangian and linear programming relaxations. The A∗ algorithm
is able to solve small instances with up to 30 jobs to optimality; see [6] for
an extended version of the original conference paper. Experiments showed that
A∗ search outperforms a compact MIP model solved by CPLEX as well as a
MiniZinc CP model solved by different back-end solvers. Maschler and Raidl [12]
investigated different heuristic methods to solve larger instances with up to 300
jobs. These methods are based on multivalued decision diagrams (MDDs) and
general variable neighborhood search. Both works, [7,12], where then extended
by Horn et al. [4] by utilizing a novel construction algorithm for relaxed MDDs.
On the basis of these, new state-of-the-art results could be obtained for PC-
JSOCMSR instances with up to 500 jobs.

388 T. Kaufmann et al.

3 Problem Formalization

The JSOCMSR consists of a finite set J = {1, . . . , n} of n jobs, the common
resource 0, and a set R = {1, . . . , m} of m secondary resources. Let R0 = {0} ∪ R
be the set of all resources. Each job j ∈ J requires one specific secondary resource
qj ∈ R for its whole processing time pj > 0. Let Jr = {j ∈ J | qj = r} be the
subset of jobs requiring resource r ∈ R as secondary resource. Moreover, each
job j needs after some pre-processing time pprej ≥ 0, counted from the job’s start
time, also the common resource 0 for a time 0 < p0j ≤ pj − pprej . For convenience
we define the post-processing time, where the secondary resource is still needed
but not the common resource anymore, by ppostj = pj − pprej − p0j . A solution to
the problem is described by the jobs’ starting times s = (sj)j∈J with sj ≥ 0.
A solution s is feasible if no two jobs require the same resource at the same
time. The objective is to find a feasible solution s that minimizes the makespan
MS(s) = max{sj + pj | j ∈ J}, i.e., the time the last job finishes its execution.

Since jobs acquire the common resource 0 excursively, a solution implies a
total ordering of the jobs. Vice versa, any permutation π = (πi)i=1,...,n of jobs in
J can be decoded into a feasible solution in a greedy way by scheduling each job
in the given order at the earliest feasible time. We refer to a schedule obtained
in this way as a normalized schedule. By the notation MS(π) we refer to the
makespan of a normalized schedule induced by the job permutation π. Since any
optimal solution is either a normalized schedule or there exists a corresponding
normalized schedule with the same objective value, we can restrict our search to
job permutations and their corresponding normalized schedules. Job permuta-
tions are therefore the primary solution representation in the suggested GVNS.

4 Variable Neighborhood Search

The well known variable neighborhood search (VNS) metaheuristic, introduced
by Mladenović and Hansen [14], has been successfully applied on many combina-
torial optimization problems; for a comprehensive review see [2]. To heuristically
solve the JSOCMSR we use a GVNS, where two different sets of neighborhood
structures N I

i=1...kmax
and NS

i=1...lmax
are alternatingly applied in intensification

and diversification phases. In the intensification phase, a deterministic variable
neighborhood descent (VND) uses a set of kmax = 4 intensification neighbor-
hood structures, which are searched, depending on their computational cost, in
either a first-improvement or best-improvement manner. In the diversification
phase a set of lmax = 23 increasingly perturbative shaking neighborhood struc-
tures are used to perform random moves in order to reach parts of the search
space that are farther away from the incumbent solution. Algorithm 1 illustrates
this procedure. The initial solution—represented by permutation π—is created
uniformly at random. The GVNS terminates if a certain time-limit is exceeded
or the incumbent solution’s objective value corresponds to the strongest lower
bound MSLB obtained from [5]. In the latter case a proven optimal solution has
been found.

A VNS for the JSOCMSR Problem 389

Algorithm 1. General Variable Neighborhood Search
1: Input: initial solution π, NI

i=1,...,kmax , NS
j=1,...,lmax

2: πbest ← π; l ← 1
3: repeat
4: π′ ← Shake(NS

l , πbest) � diversification
5: π′′ ← VND(NI , π′) � intensification
6: l ← l + 1
7: if MS(π′) < MS(πbest) then � new incumbent solution found
8: πbest ← π′; l ← 1
9: else if l > lmax then � continue with next shaking neighborhood structure

10: l ← 1
11: end if
12: until MSLB = MS(πbest) ∨ time-limit reached
13: return πbest

4.1 Solution Representation and Evaluation

As mentioned in Sect. 3, our VNS interprets solutions to the JSOCMSR as linear
permutations that state the order in which the jobs acquire the common resource
0. To obtain the makespan MS(π) of such a permutation π, the exact starting
time sj for each job j ∈ J must be determined. This is done by a linear time
decoder that greedily schedules each job as soon as its resources become available.
As it becomes quite inefficient to naively apply this decoder during neighborhood
evaluation, we propose an incremental evaluation scheme in which it is not always
necessary to (re-)determine the starting time for each job to obtain its makespan.

However, due to the incremental nature of the decoding mechanism and a
solution’s consequential characteristic, that even small structural changes—like
the removal of a job from its current position–potentially propagate to distant
sections in the solution, a strictly constant-time incremental evaluation schema
is not possible. Instead, we concentrated on an alternative approach, where a
certain subsection of a neighboring solution is evaluated until a point of synchro-
nization with respect to the incumbent solution is identified. After this point, no
structural differences besides a fixed time offset occur. This point of synchroniza-
tion in the permutation resides at the end of a so-called synchronization border,
consisting of a minimal set of jobs on different secondary resources which are
aligned w.r.t. their starting times in the incumbent solution and the respective
neighboring solution in the same way. In the following we define this formally.

Definition 1 (Synchronization Border). Given two solutions π, π′ and the
respective normalized starting times s and s′, where π′ is a neighbor of π w.r.t.
some neighborhood structure N . Assume further that the underlying permutation
of jobs has only changed up to position i, 0 ≤ i < n. The synchronization point
is then the smallest position i′ with i < i′ ≤ n, where a set of jobs B ⊆ {πk |
k = i + 1, . . . , i′}, denoted as the synchronization border, satisfies the following
conditions:

390 T. Kaufmann et al.

1. The set contains exactly one job for each secondary resource that is still claimed
by a job in the permutation at or after the synchronization point i′.

2. The jobs are aligned with respect to their starting times in the same way in s
and s′, i.e., ∃c ∈ Z ∀j ∈ B : sj − s′

j = c.

In order to evaluate the makespan of a neighbor π′ of the incumbent solution
π, our approach starts at the first position in the permutation subject to the
structural change induced by the move in the neighborhood and scans through
the permutation to identify the synchronization border. As soon as the synchro-
nization border is established we are able to determine the alignment offset c,
i.e., the time difference between the solutions concerning the border, and, conse-
quently, can immediately derive the makespan MS(π′) of the neighbor solution
π′. Figure 1 illustrates this approach, where a neighboring solution π′ on the
bottom is derived from π by removing job 4 from position 9 and reinserting it
at its new position 4. In this example, the synchronization border B = {5, 7, 6}
can be determined already after three steps, allowing to derive the makespan of
π′ already at position 8.

Fig. 1. Illustration of an incumbent solution (top) and a neighboring solution obtained
after moving job 4 (bottom) and their synchronization border {5, 7, 6}.

As identifying the synchronization border in a naive iterative way requires
time O(nm) in the worst case, we use additional auxiliary data structures for
each incumbent solution that frequently allow to skip certain parts of the scan
through the permutation. In this way the synchronization border can typically
be identified much quicker and as a consequence the exploration of the neighbor-
hoods is more efficient. Besides simple lookup tables to detect, for instance, the
last job on a particular resource, most importantly, our approach relies on a data
structure α(π) = (αi,r(π))i=1,...,n, r∈R0 indicating for each position i in permuta-
tion π the time from which on each resource r is available for scheduling a job at
this position i. Thus, αi,r(π) can be used to quickly determine the starting time
of a job which should be inserted in π at position i. As all our neighborhood
structures are essentially defined by removing and re-inserting jobs in the permu-
tation representation in certain ways, this data structure allows to immediately

A VNS for the JSOCMSR Problem 391

determine the starting time of an inserted job at any position, subsequently
requiring only the identification of the synchronization border to determine the
implied change in the makespan. Although the preparation of these data struc-
tures comes with an additional computational cost of O(nm) per incumbent
solution for which the VND is started, our experiments in Sect. 5 indicate that
in practice the whole approach requires only constant amortized runtime with
respect to the number of jobs for identifying the synchronization border and
thus the makespan of a neighboring solution.

4.2 Intensification

The VND, which is responsible for intensification within the GVNS, makes use
of a set of neighborhood structures for linear permutations, as formally defined
by Schiavinotto and Stützle [15].

The insertion neighborhood NI(π) of an incumbent solution π consists of any
solution π′ obtained by removing any job j from its current position in π and
reinserting it at any other position. We efficiently evaluate the whole neighbor-
hood by considering the removal of each job j ∈ J in an outer loop, yielding
a partial solution π 	 j for which the corresponding auxiliary data structure
α(π 	 j) is derived and the partial neighborhood N ′

I(π 	 j, j) corresponding to
the re-insertion of j at any position except the original one is evaluated in an
inner loop. Algorithm 2 shows in more detail how the neighbor solution in which
job j is re-inserted at a position i in the partial solution π 	 j is evaluated by
determining the synchronization border and the respective alignment offset.

Based on this evaluation scheme, it turned out to be advantageous in the
implementation to further divide the insertion neighborhood NI(π) into forward
and backward insertion neighborhoods such that jobs are only allowed to move
forward or backward in the permutation, respectively. This allows to reuse some
part of the auxiliary data structures for the entire neighborhood evaluation.

Algorithm 2. Evaluation of the neighbor in which job j is reinserted at position i

1: Input: partial solution π�j, insertion position i, resource availability times α(π�j)
2: tr ← αi,r(π � j), ∀r ∈ R0

3: synchronization border B = ∅, aligned offset c ← 0
4: for k = i, . . . , |π � j| do � evaluate π � j from insert position onwards
5: j′ ← (π � j)k

6: sj′ ← max{t0 − ppre
j′ , tqj′ } � evaluate new starting time for j′

7: t0 ← sj′ + ppre
j′ + p0

j′ ; tqj′ ← sj′ + ppre
j′

8: update B with job j′

9: if B satisfies conditions from Definition 1 then
10: c ← derive alignment offset from B and π
11: break
12: end if
13: end for
14: return MS(π � j) + c

392 T. Kaufmann et al.

The exchange neighborhood NX(π), contains any solution derived from the
incumbent π by exchanging any pair of jobs in the permutation. Again, the
neighborhood evaluation is based on determining synchronization borders, but
instead of using intermediate partial solutions, a dual synchronization approach
has been devised, where the neighborhood operation is essentially reduced to
two insertion operations, where both the offset between the respective exchanged
jobs as well as the offset of the latter job to the makespan are obtained with the
synchronization technique.

In addition to efficient evaluation schemes for the considered neighborhood
structures, we further studied different approaches to reduce neighborhood sizes
in order to avoid the evaluation of unpromising neighbors at all. Besides neigh-
borhood reduction based on critical jobs as proposed already by Horn et al. [5],
we also considered heuristic approaches like avoiding to schedule two jobs of
the same secondary resource consecutively or reducing the size of neighborhoods
by limiting the maximum distance of move operations. While these pruning
techniques bring the danger of quickly approaching local optima of rather poor
quality, concentrating on critical jobs is particularly advantageous in the very
beginning of the search. Limiting the maximum distance of move operations par-
ticularly showed its effectiveness for exchange neighborhoods, where instead of
the dual synchronization evaluation scheme, it becomes more the better option
to partially evaluate the entire range between the positions of the two exchanged
jobs and perform a single synchronization step at the end of this range. Exper-
imentally, we determined a move distance limitation of k = 50 to provide a
good trade-off between the size of the neighborhood and its evaluation’s effi-
ciency in the context of our benchmark instances. Nevertheless note that these
restricted neighborhoods are primarily used in early VND phases, while more
comprehensive neighborhoods become important in latter phases to compensate
the limitations. More details on the pruning techniques and their impacts can
be found in the first author’s master thesis [10]. Here, we will only look more
closely on the limitation of move distances.

We used findings of a landscape analysis, where the average quality and depth
of local optima were studied to prepare a meaningful parameter tuning configu-
ration, and then applied irace [11] to select concrete neighborhood structures
and parameters like the step function by which the neighborhoods are searched
in the VND. For details regarding the parameter tuning setup we refer to [10].
Finally, we investigated the temporal behavior of our algorithm in a set of exper-
iments to decide the neighborhood change function in the VND [3]. Again, more
details on this preliminary investigations can be found in [10].

The finally resulting VND configuration uses four neighborhood structures,
subject to a piped neighborhood change function [3]. First, an exchange neigh-
borhood structure with a move distance limitation of 50 is used in conjunc-
tion with a first-improvement step function to quickly identify local optima of
already relatively high quality. This is followed by the backward insertion neigh-
borhood structure searched in a best improvement manner. Next, the uncon-
strained exchange neighborhood structure is used and finally the unconstrained

A VNS for the JSOCMSR Problem 393

insertion neighborhood structure, again searched in first and best improvement
manners, respectively.

4.3 Diversification

For diversification, the GVNS applies moves from a total of lmax = 23 shaking
neighborhood structures to the incumbent solution, where each shaking neigh-
borhood NS

i is parametrized by κi describing the number of subsequent applica-
tions of the underlying neighborhood move. In order to enable our shaking pro-
cedure to introduce fine-grained structural changes into the incumbent solution,
we use the exponentially growing function κi=
exp(i·log(n)

κmax−1)�, with a maximum
number of applied moves per shaking neighborhood of κmax = 32, to generate
two sets of 10 insertion and exchange shaking neighborhood structures respec-
tively. Starting with insertions, those sets are then interleaved and at positions
four, ten and twenty extended by a subsequence inversion shaking neighborhood
applying one, two and four inversions of five jobs respectively.

This configuration was mainly hand-crafted based on characteristics of the
ruggedness of the respective neighborhood structures and the general structure
of the search space. We used the autocorrelation function on random walks of
length 106 to estimate the ruggedness of neighborhood structures and analyzed a
large set of globally optimal solutions obtained from 3.75×106 runs on a diverse
set of 300 instances with n = 30 jobs, to gain insight on the distribution of glob-
ally optimal solutions in the search space. We found that the studied instances
contain a relatively high number of distinct globally or at least nearly optimal
solutions, being widely distributed in the search space. A primary reason for this
is likely the dependency structure inherent to the problem and the induced sym-
metries, caused by resource imbalance or utilization gaps on secondary resources,
frequently allowing to exchange of jobs on secondary resources without affecting
the makespan. For more details, see [10].

5 Computational Results

In our computational study we analyzed the practical applicability and impact
of the proposed incremental evaluation technique and compared the GVNS to
the baselines provided by Horn et al. [5]. These are the anytime A∗ algorithm
and a CP model. The experiments were conducted on two sets of instances with
different characteristics with respect to the workload distribution among the
available resources [5]. Balanced instances in set B have the workload uniformly
distributed among the secondary resources and obtained durations pprej and ppostj

for the pre-processing and post-processing of jobs by sampling the discrete uni-
form distribution U{0, 1000} and durations p0j of the main processing phases by
sampling U{1, 1000}. Instances in set S, on the other hand, show a skewed work-
load distribution, both with respect to the assignment to secondary resources
and the utilization of the common resource 0. In skewed instances, a job is
assigned to the secondary resource 1 with probability 0.5, while the probability

394 T. Kaufmann et al.

for the remaining secondary resources m > 1 is 1/(2m − 2). Both sets consist
of instances with n ∈ {50, 100, 200, 500, 1000, 2000} jobs and m ∈ {2, 3, 5} sec-
ondary resources with 50 randomly sampled instances for each (n,m) pair. The
instance sets are available at https://www.ac.tuwien.ac.at/research/problem-
instances/. The proposed GVNS was implemented in C++ using G++ 7.4.0
with -Ofast optimization level. The experiments were conducted on a comput-
ing cluster of 16 machines, each with two Intel Xeon E5-2640 v4 CPUs with
2.40 GHz in single threaded mode and 15 GB RAM. All considered approaches
where executed with a maximum CPU time limit of 900s. The baseline CP model
was solved with ILOG CP Optimizer 12.7.1.

In order to study the practical efficiency of our incremental evaluation app-
roach, an experiment was conducted where 104 randomly selected neighborhood
moves in exchange and insertion neighborhoods where applied and the distance
from the structural change to the last job in the synchronization border—that
is the number of steps until the synchronization border could be determined—
was traced. Figure 2 shows the synchronization distance of balanced and skewed
instances of different sizes. For the considered instances, it can be observed that
our approach exhibits an average amortized runtime behavior that is constant
in the number of jobs, but increases with the number of secondary resources
due to the nature of the synchronization border. Moreover, Fig. 2 illustrates
the sensitivity of the approach to significant resource imbalance, indicated by a
higher number of outliers observed in the skewed instance set, likely due to large
sections in the schedules where secondary resources are not utilized.

Fig. 2. Synchronization distance: number of steps required to identify the synchroniza-
tion border in balanced and skewed instances, starting from the position of structural
change due to a neighborhood move.

Finally, Table 1 compares average results of our GVNS on different instance
classes to the baselines of Horn et al. [5]. Columns %-gap state the final opti-
mality gaps in percent, which is calculated by 100% · (MS(π) − MSLB)/MSLB,
whereas columns %-opt lists the percentage of proven optimal solutions. Both
columns use the best lower bound MSLB obtained from Horn et al. [5].

https://www.ac.tuwien.ac.at/research/problem-instances/
https://www.ac.tuwien.ac.at/research/problem-instances/

A VNS for the JSOCMSR Problem 395

Columns σ%-gap show the standard deviations of the corresponding average opti-
mality gaps. Column t provides the median time the GVNS required to obtain
its best solution in a run. To obtain statistically more stable results, we executed
the GVNS ten times for each of the 50 instances per instance class. For the any-
time A∗ algorithm and for the CP solver, column t shows the median time when
the algorithms terminated either because the optimal solution has been found
or the time- or memory limit was exceeded.

Generally, Table 1 shows that the GVNS manages to obtain heuristic solu-
tions comparable to those of the A∗ search, while both approaches show their
specific advantages on particular subsets of instances. For balanced instances,
on the one hand, A∗ search already showed its effectiveness, where even large
instances up to 2000 jobs could be solved to proven optimality. For instances
with m = 2 and m = 5, the GVNS obtains similar results with respect to
solution quality, although the temporal performance decreases with increasing
instance size in comparison. For instances with m = 3 the GVNS’s solutions are
clearly worse than those of the A∗ search, although the average optimality-gap
of ≤0.288% is still small and much better than the one of the CP approach.
In Kaufmann [10] we show that providing an initial solution obtained with the
least lower-bound construction heuristic of Horn et al. [5] can further improve
the solution quality for this particular instance set, however, A∗ is still superior
both with respect to quality as well as temporal behavior.

For the harder skewed instances, on the other hand, our GVNS shows a
significant improvement compared to both baseline methods with an average
optimality gap below 0.214%. Instances with two secondary resources tend to
be among the more difficult ones, where even for small instances with 50 jobs,
optimality could be proven with the lower bound only in 42% of the runs. This,
however, could as well be an indicator for the lower bounds being off the opti-
mum. Interestingly, the GVNS still shows an improvement with respect to the
number of obtained proven optimal solutions, where particularly for small to
moderately large instances up to 88% could be solved to proven optimality,
despite the inherent incompleteness of the GVNS.

6 Conclusions

In this work, we presented a GVNS to heuristically tackle the JSOCMSR, a
combinatorial optimization problem encountered for example in novel cancer
treatment facilities. We devised a generally applicable approach to efficiently
evaluate solutions in the course of a neighborhood search in incremental ways
and applied it to variants of insertion and exchange neighborhood structures.
Insertion and exchange moves where utilized in the intensification phase, a piped
VND, as well as in the diversification phase as for randomized shaking.

Our experimental analysis first dealt with the practical efficiency of the incre-
mental evaluation scheme, which still has a linear runtime in the number of jobs
in the worst-case but exhibits a essentially a constant average runtime on all
our benchmark instances. When comparing the GVNS to the state-of-the-art A∗

396 T. Kaufmann et al.

Table 1. Average results of GVNS, A∗ search, and the CP approach.

Type n m GVNS Anytime A∗ CP/ILOG

%-gap σ%-gap %-opt t[s] %-gap σ%-gap %-opt t[s] %-gap σ%-gap %-opt t[s]

B 50 2 0.000 0.00 100.0 <0.1 0.000 0.00 100.0 1.1 0.000 0.00 100.0 <0.1

B 100 2 0.000 0.00 100.0 <0.1 0.000 0.00 100.0 2.0 0.000 0.00 100.0 <0.1

B 200 2 0.000 0.00 100.0 0.2 0.000 0.00 100.0 5.4 0.000 0.00 100.0 <0.1

B 500 2 0.000 0.00 100.0 2.4 0.000 0.00 100.0 35.3 0.000 0.00 100.0 1.3

B 1000 2 0.000 0.00 100.0 13.0 0.000 0.00 100.0 8.9 0.000 0.00 100.0 9.2

B 2000 2 0.000 0.00 100.0 83.5 0.000 0.00 100.0 46.3 <0.001 0.01 98.0 63.5

B 50 3 0.050 0.22 91.2 <0.1 0.017 0.08 96.0 1.1 0.068 0.30 92.0 <0.1

B 100 3 0.112 0.29 79.6 0.1 0.021 0.09 92.0 2.0 0.226 0.55 78.0 4.2

B 200 3 0.176 0.45 74.0 2.1 0.016 0.06 92.0 5.9 0.556 1.12 56.0 319.4

B 500 3 0.260 0.42 47.0 422.3 <0.001 <0.01 98.0 35.9 2.212 1.83 20.0 900.0

B 1000 3 0.216 0.33 31.0 385.0 0.001 <0.01 98.0 6.1 3.094 1.46 2.0 899.9

B 2000 3 0.288 0.34 15.0 843.2 0.005 0.04 98.0 23.8 4.220 1.20 0.0 900.0

B 50 5 <0.001 <0.01 99.4 0.1 0.000 0.00 100.0 1.2 0.000 0.00 100.0 0.7

B 100 5 0.000 0.00 100.0 0.4 0.000 0.00 100.0 2.2 0.000 0.00 100.0 9.5

B 200 5 0.000 0.00 100.0 2.3 <0.001 0.00 98.0 6.5 0.000 0.00 100.0 91.3

B 500 5 0.000 0.00 100.0 14.3 0.000 0.00 100.0 42.3 <0.001 <0.01 86.0 499.7

B 1000 5 <0.001 <0.01 96.0 49.2 0.000 0.00 100.0 7.9 0.359 0.12 0.0 900.0

B 2000 5 <0.001 <0.01 86.6 128.8 0.000 0.00 100.0 30.4 0.478 0.14 0.0 900.0

S 50 2 0.163 0.23 42.0 4.8 0.268 0.38 40.0 11.4 0.210 0.28 42.0 899.9

S 100 2 0.172 0.32 33.8 115.5 0.367 0.49 26.0 44.8 0.323 0.47 12.0 900.0

S 200 2 0.111 0.18 14.8 606.0 0.440 0.33 2.0 65.2 0.642 0.51 0.0 900.0

S 500 2 0.095 0.08 0.0 831.7 0.532 0.18 0.0 88.7 2.736 0.51 0.0 900.0

S 1000 2 0.105 0.06 0.0 813.3 0.725 0.20 0.0 176.8 4.636 0.43 0.0 900.0

S 2000 2 0.214 0.11 0.0 892.6 0.786 0.18 0.0 252.7 4.784 0.39 0.0 900.0

S 50 3 0.035 0.15 82.0 0.2 0.053 0.21 82.0 1.3 0.035 0.15 80.0 27.7

S 100 3 0.030 0.10 82.8 3.5 0.153 0.37 50.0 16.5 0.060 0.15 52.0 899.7

S 200 3 0.025 0.11 78.8 21.5 0.117 0.26 34.0 26.4 0.135 0.21 36.0 899.8

S 500 3 0.006 0.02 42.4 370.5 0.177 0.24 14.0 121.6 1.360 0.76 4.0 900.0

S 1000 3 0.009 0.02 19.2 584.5 0.621 0.47 2.0 48.0 2.872 0.93 0.0 900.0

S 2000 3 0.041 0.05 5.8 863.3 0.701 0.41 0.0 80.2 4.296 0.98 0.0 900.0

S 50 5 0.046 0.14 83.7 <0.1 0.077 0.19 80.0 1.4 0.045 0.14 84.0 15.0

S 100 5 0.006 0.02 88.4 1.2 0.064 0.18 66.0 6.1 0.019 0.04 70.0 899.6

S 200 5 0.034 0.14 77.2 18.3 0.281 0.49 34.0 38.8 0.161 0.25 28.0 900.0

S 500 5 0.009 0.02 46.8 351.7 0.347 0.34 16.0 188.6 1.229 0.95 8.0 899.9

S 1000 5 0.012 0.02 22.2 625.3 0.702 0.50 0.0 387.3 2.478 1.11 0.0 900.0

S 2000 5 0.105 0.10 2.0 893.6 0.915 0.54 0.0 789.3 4.229 1.22 0.0 900.0

search and the CP model, we observed the GVNS’s ability to obtain high-quality
solutions for a diverse set of large instances with an average optimality-gap of
≤0.288%. Although for balanced instances, the anytime A∗ algorithm of Horn
et al. [5] was out of reach for particularly hard instances, our approach showed
its effectiveness on harder instances with skewed workloads, where the state of
the art could be improved significantly. In future work it would be interesting
to investigate the runtime of the incremental evaluation scheme also from a the-
oretical point-of-view, in the hope that the constant amortized time observed
here in practice can even be proven for a larger class of instances. Moreover,
it appears promising to apply the underlying ideas of the proposed incremental

A VNS for the JSOCMSR Problem 397

evaluation scheme also in the context of related scheduling/sequencing problems
and local search based metaheuristics.

References

1. Conforti, D., Guerriero, F., Guido, R.: Optimization models for radiotherapy
patient scheduling. 4OR 6(3), 263–278 (2008)

2. Hansen, P., Mladenović, N., Pérez, J.A.M.: Variable neighbourhood search: meth-
ods and applications. Ann. Oper. Res. 175(1), 367–407 (2010)

3. Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S.: Variable neighborhood
search: basics and variants. EURO J. Comput. Optim. 5(3), 423–454 (2016).
https://doi.org/10.1007/s13675-016-0075-x

4. Horn, M., Maschler, J., Raidl, G., Rönnberg, E.: A*-based construction of decision
diagrams for a prize-collecting scheduling problem. Technical report AC-TR-18-
011, Algorithms and Complexity Group, TU Wien (2018)

5. Horn, M., Raidl, G., Blum, C.: Job sequencing with one common and multiple
secondary resources: an A*/Beam Search based anytime algorithm. Artif. Intell.
277(103173) (2019)

6. Horn, M., Raidl, G., Rönnberg, E.: A* search for prize-collecting job sequencing
with one common and multiple secondary resources. Ann. Oper. Res. (2020)

7. Horn, M., Raidl, G.R., Rönnberg, E.: An A∗ algorithm for solving a prize-collecting
sequencing problem with one common and multiple secondary resources and time
windows. In: Proceedings of the 12th International Conference of the Practice and
Theory of Automated Timetabling, PATAT 2018, pp. 235–256 (2018)

8. Horn, M., Raidl, G., Blum, C.: Job sequencing with one common and multiple sec-
ondary resources: a problem motivated from particle therapy for cancer treatment.
In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R. (eds.) MOD 2017. LNCS,
vol. 10710, pp. 506–518. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-72926-8 42

9. Kapamara, T., Sheibani, K., Haas, O., Petrovic, D., Reeves, C.: A review of schedul-
ing problems in radiotherapy. In: Proceedings of the International Control Systems
Engineering Conference, pp. 207–211. Coventry University Publishing (2006)

10. Kaufmann, T.: A variable neighborhood search for the job sequencing with one
common and multiple secondary resources problem. Master’s thesis, TU Wien,
Vienna, Austria (2019)

11. López-Ibáńez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

12. Maschler, J., Raidl, G.R.: Multivalued decision diagrams for a prize-collecting
sequencing problem. In: Proceedings of the 12th International Conference of the
Practice and Theory of Automated Timetabling, PATAT 2018, pp. 375–397 (2018)

13. Maschler, J., Riedler, M., Stock, M., Raidl, G.R.: Particle therapy patient schedul-
ing: first heuristic approaches. In: Proceedings of the 11th International Conference
of the Practice and Theory of Automated Timetabling, PATAT 2016, pp. 223–244
(2016)

14. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097–1100 (1997)

https://doi.org/10.1007/s13675-016-0075-x
https://doi.org/10.1007/978-3-319-72926-8_42
https://doi.org/10.1007/978-3-319-72926-8_42

398 T. Kaufmann et al.

15. Schiavinotto, T., Stützle, T.: A review of metrics on permutations for search land-
scape analysis. Comput. Oper. Res. 34(10), 3143–3153 (2007). https://doi.org/10.
1016/j.cor.2005.11.022

16. Van der Veen, J.A.A., Wöginger, G.J., Zhang, S.: Sequencing jobs that require
common resources on a single machine: a solvable case of the TSP. Math. Program.
82(1–2), 235–254 (1998)

https://doi.org/10.1016/j.cor.2005.11.022
https://doi.org/10.1016/j.cor.2005.11.022

Evolutionary Graph-Based V+E
Optimization for Protection

Against Epidemics

Krzysztof Michalak(B)

Department of Information Technologies, Faculty of Management,
Wroc�law University of Economics, Wroc�law, Poland

krzysztof.michalak@ue.wroc.pl

Abstract. Protection against spreading threats in networks gives rise
to a variety of interesting optimization problems. Among others, ver-
tex protection problems such as the Firefighter Problem and vaccination
optimization problem can be tackled. Interestingly, in some cases a net-
worked system can be made more resilient to threats, by changing its
connectivity, which motivates the study of another type of optimization
problems focused on adapting graph connectivity.

In this paper the above-mentioned approaches are combined, that is
both vertex and edge protection is applied in order to stop the threat
from spreading. Solutions to the proposed problem are evaluated using
different cost functions for protected vertices and edges, motivated by
real-life observations regarding the costs of epidemics control.

Instead of making decisions for each of the vertices and edges a deci-
sion model is used (based on rules or a neural network) with parameters
optimized using an evolutionary algorithm. In the experiments the model
using rules was found to perform better than the one based on a neural
network.

Keywords: Disease prevention · Epidemics control · DPEC ·
Combinatorial optimization · Graph-based problems

1 Introduction

A wide variety of phenomena can be described as a spreading of a threat in
a certain network. Epidemics, wildfires, floods and even bankruptcies behave in
a similar way: a number of entities are affected by a threat which subsequently
spreads to other entities in the system. Numerous approaches have been proposed
to analyse epidemic processes in complex networks. A review of recent advance-
ments in this area is presented in [26]. When there is a dangerous phenomenon
spreading a question naturally arises how to stop this threat in a possibly effec-
tive way. This question gives rise to a number of optimization problems in which
the goal is to utilize the available countermeasures to stop the threat, taking
into account the costs and possible constraints.
c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 399–412, 2020.
https://doi.org/10.1007/978-3-030-58115-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_28&domain=pdf
http://orcid.org/0000-0003-4994-9930
https://doi.org/10.1007/978-3-030-58115-2_28

400 K. Michalak

1.1 Vertex Protection

One of the abstractions that is often studied in the field of research on optimiza-
tion methods is the Firefighter Problem (FFP) [14] in which spreading of fire is
simulated on a graph in discrete time steps. Vertices of the graph can be in one of
the states ‘B’, ‘D’, ‘U’ which are interpreted, respectively, as the vertex being on
fire, being defended by firefighters or being in an untouched state (neither burn-
ing nor defended). In the initial state some vertices are on fire (in the ‘B’ state)
and the remaining ones are most often left untouched (in the ‘U’ state). Sub-
sequently, the fire spreads from burning vertices to the untouched ones along
the edges of the graph, which determine which vertices are adjacent and can
therefore catch on fire. The need for optimization in the Firefighter Problem is
motivated by the limitation of resources, which is represented by a constraint
stating that in any given time step at most Nf vertices can become protected
against fire (i.e. be set to the ‘D’ state).

A very similar problem formulation can be used for tackling epidemics,
bankruptcies, etc. In each of these applications neighbourhood of the vertices
can be described in a different way. In the FFP and many other problems the
ways through which the threat spreads are represented by edges of a graph,
but other representations are also possible, for example based on geographical
locations and distances such as in the Foot-and-Mouth Disease (FMD) spread-
ing model used in the paper [2]. Also, the contagion dynamics can be different
in different problems. In the classical version of the FFP the spreading of fire
is deterministic: an untouched vertex is guaranteed to catch on fire in a given
time step if one of its neighbours is burning. A version of the FFP with non-
deterministic spreading of fire has also been studied [25]. Epidemics are often
modelled using compartmental models, such as SIR (Susceptible → Infected →
Recovered), SIS (Susceptible → Infected → Susceptible) or SIRV model, which,
apart from the susceptible, infected and recovered states, allows the entities to
be vaccinated [18]. Epidemiological models are most often probabilistic, that is
the transitions from one state to another happen with certain probabilities as
opposed to deterministic changes in the classical version of the FFP. Yet another
threat spreading mechanism was proposed by Burkholz [5] for an economic set-
ting in which companies on the market may go bankrupt, and because of unpaid
dues incur stresses on other companies. In this model failures spread determinis-
tically, but in order for a company to fail the total load incurred by its bankrupt
cooperators has to exceed a certain threshold.

In each of the above-mentioned scenarios certain actions can be taken in
order to prevent the threat from spreading. In the case of the Firefighter Prob-
lem Nf vertices can become protected against fire in each time step and the
protection is 100% effective (protected vertices remain in the ‘D’ state until
the end of simulation and fire cannot get to them). Because the order in which
vertices are protected is essential in the FFP, the most common solution repre-
sentation uses permutations to represent the order in which vertices should be
protected. In the case of epidemiological models the most common protection
mechanism is vaccination. If the individuals are vaccinated before the pathogen

Evolutionary Graph-Based V+E Optimization 401

starts spreading (and so the time of vaccinations does not have to be taken
into account) the decisions to vaccinate or not can be represented as a binary
vector. Imposing a constraint on the total number of vaccinated vertices the
K-Node Immunization Problem is formulated and solved using, among others,
heuristic [7] and evolutionary methods [20]. For the Burkholz economic model an
optimization problem was formulated [23] in which solutions are vectors of real
numbers representing thresholds which can be adjusted by allowing companies
to store reserves.

1.2 Edge Protection and Network Connectivity

Another approach to network protection is to consider edges instead of vertices
[8]. This approach is particularly important in computer network protection
[6]. The notion of edge-failure resilience is an actively researched topic in the
literature focused on networks protection [19].

It is worth noticing that, as opposed to the computer network protection
problem where it is profitable to increase network connectivity, there are opti-
mization problems where the optimum does not coincide with the highest net-
work connectivity. Notably, financial systems can show different level of resilience
to shocks of varying magnitude [16] depending on connectivity, a phenomenon
that also affects optimization problems for this kind of systems [24]. In the case
of counter-epidemic optimization a lower connectivity can be expected to pro-
duce better outcomes. This effect is the basis of epidemic control strategies based
on social distancing [13].

1.3 Overview of This Paper

In this paper a combination of the network protection approaches discussed
above is studied in a scenario which concerns stopping an epidemic from spread-
ing on a graph. The optimization problem studied here is the problem of optimiz-
ing a decision model that determines which action should be taken: protecting
a vertex (vaccination) or limiting the number of contacts it makes in the network
(isolation). The costs of infections and vaccinations are calculated taking into
account the number of affected vertices. The costs of isolation are calculated as
the product of the number of the removed edges and the number of time steps
the isolation has lasted for. This is motivated by the fact, that contacts in the
network represent vital activities undertaken by entities in the system and their
removal may, for example, cause income to be lost for businesses with the loss
dependent on the time the isolation lasts for.

In the following sections the optimization problem is defined (Sect. 2), the
experiments (Sect. 3) and results (Sect. 4) are discussed. Section 5 concludes the
paper.

2 Optimization Problem

The optimization problem tackled in this paper is a problem of finding a counter-
epidemic strategy minimizing several criteria. The epidemic is simulated on

402 K. Michalak

a graph G = 〈V,E〉 in which the vertices represent entities that may become
infected and the edges represent contacts. The states of the vertices and the
transitions between them are based on the SIVR model [27]. There are four
states: ‘S’ - susceptible, a vertex that is not infected, but may become so; ‘I’ -
infected; ‘V’ - vaccinated, and thus immune to the disease; and ‘R’ - a vertex
recovered from the disease, which in the SIVR model cannot be infected again.

Changes in the graph occur in discrete time steps t = 0, . . . and we will
denote the state of the graph at time t by St ∈ { ‘S’, ‘I’, ‘V’, ‘R’ }|V | and the
state of an individual vertex in the graph v ∈ V at time t by St[v] ∈ { ‘S’, ‘I’, ‘V’,
‘R’ }. The initial state is S0 in which a fraction αinf of the vertices is infected,
so αinf |V | randomly selected vertices are in the state ‘I’ and the remaining ones
are in the state ‘S’. A susceptible vertex may become infected if it is adjacent to
at least one infected vertex, with the probability of transmitting the disease from
each infected neighbour equal to β per a time step. Recovery occurs with the
probability γ per a time step. In each time step protective actions can be taken
for each susceptible vertex. If the protective action P(vacc)(v) is applied, the
vertex v is vaccinated and changes its state to ‘V’ in which it remains until the
end of the simulation. If the protective action P(isol)

q (v) is applied, the isolation
level of the vertex v is changed, by activating or deactivating edges adjacent
to v so that a fraction q of the edges adjacent to v is inactive. The number of
deactivated edges for the vertex v is calculated as Round(q · k(v)), where k(v) is
the degree of the vertex v and the Round() function rounds the number to the
nearest integer. When more, or fewer, edges need to be activated the edges that
change the state are selected at random with uniform probability. An activation
state of the edge e is denoted by A[e] with the value of true representing an active
edge and the value of false representing an inactive edge. The disease can only
spread along active edges. Therefore, applying the protective action P(isol)

q (v)
with q > 0 represents a situation when contacts are broken by the vertex v in
order to reduce the risk of being infected. In each time step protective actions
are applied before the spreading of the disease takes place (cf. Algorithm 1).

Instead of deciding which protective action to apply for each vertex sepa-
rately, the optimizer adjusts parameters of a decision model Ψ which takes the
information about nearby cases of the disease as inputs and returns the deci-
sion which action to perform (if any) in a given time step t for the vertex v.
A solution to the optimization problem is the vector of parameters x ∈ R

k of
the decision model Ψ , where the length k of the vector of parameters x depends
on the type of the decision model used. The vector of inputs φ(v) ∈ R

h rep-
resenting the information about nearby cases of the disease contains fractions
of infected vertices separated from v by 1, . . . , h edges, where h is the horizon
around the vertex v within which infected vertices are detected. The vector φ(v)
is obtained by performing the Breadth-First Search (BFS) [15] around the vertex
v. For example in the situation shown in Fig. 1 the result is φ(v) = [13 , 2

3 , 1
2]. At

the distance d = 1 there are three vertices in the states ‘S’, ‘I’, ‘V’, of which only
one is infected, hence φ(v)[1] = 1

3 . The fourth vertex (marked (1) in the figure)
is connected through an inactive edge e, so it is not counted. At the distance

Evolutionary Graph-Based V+E Optimization 403

d = 2 there is one vertex in the state ‘S’ and two vertices in the state ‘I’, hence
φ(v)[2] = 2

3 . The two vertices marked (2) in the figure are separated from v by
a vaccinated vertex, so they are not counted. At the distance d = 3 the two
pairs of vertices marked (3) and (4) are separated from v by infected vertices, so
they are not counted. Therefore, only two vertices are taken into account, one
susceptible and one infected, and φ(v)[3] = 1

2 .
Algorithm 1 presents the simulation of the epidemic with selection of protec-

tive actions performed using the decision model Ψ . Inputs and outputs of this
algorithm are listed in Table 1. Using this simulation procedure three objectives
are calculated: Ninf - the number of vertices infected during the simulation,
Nvacc - the number of vertices vaccinated during the simulation, and Nisol - the
number of edges cut because of isolation, multiplied by the number of time steps
in which the isolation was applied. Because the spreading of the epidemic is non-
deterministic, the simulations are repeated Nsim times, each time starting from
a different set of infected vertices, and the results are averaged. In this paper the
number of simulations was set to Nsim = 5. Therefore, the optimization problem
tackled in this paper can be formalized as follows:

minimize (Ninf (x), Nvacc(x), Nisol(x)) = F (x) ∈ R
3

subject to x ∈ R
k,

(1)

where:
k - the number of parameters of the decision model Ψ .

Table 1. Inputs and outputs of Algorithm 1.

Inputs:

G = 〈V, E〉 - the graph on which the epidemic is simulated

Ψ - the decision model used for selecting protective actions

h - the radius of the horizon in which to count infected vertices

αinf - the fraction of initially infected vertices

x - a solution to evaluate (a vector of parameters for the decision

model Ψ), x ∈ R
k

Output:

F (x) - the vector of objectives F (x) = (Ninf , Nvacc, Nisol)

3 Experiments

In the experiments evolutionary multiobjective optimization was carried out on
instances of the optimization problem described in Sect. 2. The parameters for
the spread of the epidemic were: the infected fraction αinf = 0.01, the transmis-
sion probability β = 0.5 and the recovery probability γ = 0.1. A small fraction

404 K. Michalak

Algorithm 1: Evaluation of a solution to the optimization problem by
simulating the epidemic (inputs and outputs: see Table 1).
// Initialize the simulation
S := RandomlyInfected(αinf |V |)
for e ∈ E do

A[e] := true

// Main simulation loop
finished := false
while finished = false do

// Isolation costs
for e ∈ E do

if A[e] = false then
Nisol := Nisol + 1

// Protective actions
S′ := S
for v ∈ V s.t. S[v] = ’S’ do

φ(v) = BFS(G, S, v, h)
P := Ψ(φ(v), x)

// Vaccination

if P is P(vacc) then
S′[v] := ’V’
Nvacc := Nvacc + 1

// Isolation

if P is P(isol)
q then

SetIsolationLevel(q)

// Spreading of the epidemic
finished := true
S := S′

for v ∈ V s.t. S[v] = ’I’ do
for w ∈ V s.t. 〈v, w〉 ∈ E and A[〈v, w〉] = true do

finished := false
if Random(U [0, 1])< β then

S′[w] := ’I’

// Recovery
for v ∈ V s.t. S[v] = ’I’ do

if Random(U [0, 1])< γ then
S′[w] := ’R’

S := S′

for v ∈ V s.t. S[v] = ’I’ or S[v] = ’R’ do
Ninf := Ninf + 1;

Evolutionary Graph-Based V+E Optimization 405

Fig. 1. An example of the calculation of φ(v) for h = 3. See the description in the text.

of initially infected vertices (1%) was chosen in order to simulate a typical sce-
nario in which an epidemic starts from a small group of infected individuals. The
transmission probability β = 0.5 is a value based on the literature [4]. From the
properties of the geometric distribution [12] (which gives the probability that
the first occurrence of a success requires tinf independent trials, each with suc-
cess probability γ) it follows that γ = 0.1 translates to the expected duration of
the infection of tinf = 10 time steps. Thus, the value γ = 0.1 ensures, that an
infected individual remains infected long enough to spread the disease.

3.1 REDS Graphs

Each optimization problem instance is based on a graph, so it is necessary to
decide what type of graphs to use, and select the number of vertices. In this
paper REDS graphs were used [1]. In REDS graphs the vertices are placed on
the unit square [0, 1] × [0, 1] and the generation of edges is controlled by three
parameters: R, E, and S. The radius R determines the maximum distance at
which the addition of a new edge is possible. Social energy E imposes a limit on
how many connections a vertex can make (each edge costs D which is equal to
this edge’s length). The cost of an edge between vertices vi and vj is discounted
by the factor of 1

1+Skij
, where k is the number of common neighbours the vertices

vi and vj have. Because common neighbours cause the cost of creating new
edges to be discounted, REDS graphs show a structure similar to a real-life
social network with tightly connected groups separated by less crowded spaces.
Because of varying density of edges, in REDS graphs communities are formed,
even if the vertices are uniformly placed on the unit square. The instances used in
the experiments described in this paper were generated using graph parameters
shown in Table 2. The last column shows the average vertex degree k which is
not adjustable and was calculated from the graphs that were generated using
the remaining parameters.

406 K. Michalak

Table 2. Parameters of graphs on which test instances were based.

Nv R E S k

1000 0.1000 0.15 0.5000 7.35

1250 0.0890 0.15 0.4470 7.97

1500 0.0820 0.15 0.4080 8.11

1750 0.0760 0.15 0.3780 8.57

2000 0.0700 0.15 0.3500 9.16

2250 0.0670 0.15 0.3330 9.43

2500 0.0630 0.15 0.3160 10.09

3.2 Decision Models

As described in Sect. 2 the optimization algorithm searches for Pareto-optimal
vectors of parameters x ∈ R

k which are subsequently used by a decision
model Ψ to make decisions about which protective action to apply. In this
paper two different models were tested: a rule-based model and a neural model.
Both models take as input the vector φ(v) ∈ R

h which contains fractions of
infected vertices around a vertex v, thereby representing the information about
nearby cases of the disease. The set of protective actions used in this paper is
P = {P(none),P(vacc),P(isol)

0.25 ,P(isol)
0.50 ,P(isol)

0.75 ,P(isol)
1.00 }. Therefore, the model can

decide to take no action, vaccinate the vertex v, or to apply one of four levels of
isolation, ranging from breaking 1

4 of contacts, up to a total isolation. From the
machine learning perspective, the model Ψ is a classifier Ψ : Rk → P.

Rule-based model
The rule-based model consists of five rules, one for each of the actions P(vacc),
P(isol)
0.25 , P(isol)

0.50 , P(isol)
0.75 , P(isol)

1.00 }. The conditional part of the r-th rule (r =
1, . . . , 5) is:

wr,1φ(v)[1] + wr,2φ(v)[2] + . . . + wr,hφ(v)[h] > Θr , (2)

where:
r - the number of the rule,
wr,d, for d = 1, . . . , h - the weight assigned to the value of φ(v)[d], which

contains the fraction of infected vertices at the distance of d edges from the
vertex v,

h - the maximum distance (horizon radius) from v at which the fraction of
infected vertices is calculated,

Θr - the threshold at which the rule activates.

For the rule-based model the number of parameters for one rule is h + 1
(h weights and one threshold) and for all the rules it is k = 5(h + 1). In the
experiments the horizon was set to h = 3 which resulted in the number of
parameters for the rule-based model equal to k = 20. The rule-based model is

Evolutionary Graph-Based V+E Optimization 407

applied by calculating the left-hand sides of the rules (LHS) and comparing to
the thresholds on the right-hand sides (RHS). The selected protective action is
the first one for which LHS > RHS in the order of precedence: P(vacc), P(isol)

1.00 ,
P(isol)
0.75 , P(isol)

0.50 , P(isol)
0.25 . If no rule activates the P(none) action is selected.

Neural model
The neural model is a three-layer neural network [3]. The number of input
neurons is Nin = h, the number of hidden neurons Nhid determines the size
of the network, and the number of output neurons Nout has to be equal to
the number of protective actions. The number of parameters is equal to the
number of elements in weight matrices and bias vectors of the neural network
k = Nin · Nhid + Nhid + Nhid · Nout + Nout. In the experiments the number of
hidden neurons was set to Nhid = 5, so the number of parameters for the neural
model was k = 3 · 5 + 5 + 5 · 6 + 6 = 56.

3.3 Evolutionary Algorithm

For optimization of parameters of the models the MOEA/D algorithm [17] with
the Tchebycheff decomposition was used in which the objectives were normalized
by dividing the value of the i-th objective by the difference between the worst
and the best value of this objective in the population. The population consisted
of real vectors in R

k with k = 20 for the rule-based model and k = 56 for
the neural model. The algorithm used four crossover operators: uniform, single-
point, two-point and Simulated Binary Crossover (SBX) [9], and seven mutation
operators: uniform, displacement, insertion, inversion, scramble, transpose and
polynomial mutation [10]. The distribution index for the SBX and for the poly-
nomial mutation was set to η = 20. For deciding which operator to use a mech-
anism for autoadaptation of operator probability based on success rates of the
operators [22] was used. This approach was chosen following previous works on
the Firefighter Problem [21,22], which is also a graph-based problem in which
vertices have to protected from a spreading threat. The population size (which
has to be a triangular number for the MOEA/D working on a three-objective
problem) was set to Npop = 300 and the stopping criterion was the number
of solutions evaluations maxFE = 10000. The neighbourhood size T and the
probabilities of applying the operators Pcross and Pmut were tuned using the
grid-search approach separately for rule-based and neural decision models, with
the candidate values T ∈ { 20, 30, 40, 50 }, Pcross ∈ { 0.2, 0.4, 0.6, 0.8, 1.0 },
and Pmut ∈ { 0.02, 0.04, 0.06, 0.08, 0.10 }. For the rule-based model the values
T = 40, Pcross = 1.0, and Pmut = 0.06 were selected, and for the neural model
the values T = 30, Pcross = 0.6, and Pmut = 0.02 were selected. The parame-
ters were tuned on 30 optimization problem instances with |V | = 1000 vertices,
which were separate from the ones used in the rest of the experiments to avoid
overfitting.

408 K. Michalak

4 Results

In the experiments 30 runs of the evolutionary algorithm with each of the decision
models described in Sect. 3.2 were performed for each graph size |V | ranging from
1000 to 2500. For each Pareto front produced by the optimization algorithm the
value of the hypervolume indicator [28] was calculated. The hypervolume is often
used in the literature to evaluate Pareto fronts, because, as shown by Fleischer
[11], maximizing the hypervolume is equivalent to achieving Pareto optimality.
From the 30 runs for each algorithm and each graph size |V | the median value
was calculated. These median results are presented in Table 3.

Table 3. Median hypervolume for the Pareto fronts produced by the tested methods
obtained for maxFE = 10000. Better (larger) of the two values for a given |V | is
underlined.

|V | HV: MLP HV: Rules p-value

1000 6.861·1010 6.865·1010 6.32·10−5

1250 1.447·1011 1.448·1011 4.86·10−5

1500 2.482·1011 2.485·1011 5.79·10−5

1750 4.689·1011 4.693·1011 7.51·10−5

2000 7.279·1011 7.296·1011 7.69·10−6

2250 1.113·1012 1.115·1012 6.34·10−6

2500 1.652·1012 1.655·1012 8.92·10−5

For each value of |V | a Wilcoxon statistical test was performed in order to ver-
ify statistical significance of the results. The null hypothesis of the Wilcoxon test
states the equality of medians and thus low p-values (here, all below 10−4) signify
that the median hypervolume values are significantly different. The Family-Wise
Error Rate (FWER) calculated as 1 − ∏7

1(1 − pi) for the tests performed for all
the graph sizes |V | from the p-values shown in Table 3 is FWER = 0.00034798.
Presented results show that the rule-based model outperformed the neural model
for all the tested graph sizes |V |.

Another comparison was performed by plotting the median hypervolume
calculated from the 30 runs with respect to the number of solution evaluations.
Values obtained for |V | = 1000 are presented in Fig. 2 and for |V | = 2500 in
Fig. 3. Plots presented in Figs. 2 and 3 show that the rule-based model performs
better than the neural model even for small number of solution evaluations.

Below, an example of the rules is given, which produced the best results with
respect to the Ninf criterion (minimizing the number of infected vertices) for
|V | = 1000.

Evolutionary Graph-Based V+E Optimization 409

6.6e+10

6.65e+10

6.7e+10

6.75e+10

6.8e+10

6.85e+10

6.9e+10

Function Evaluations

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

H
yp

er
vo

lu
m

e

mlp
rules

Fig. 2. The median hypervolume calculated from the 30 runs with respect to the
number of solution evaluations for |V | = 1000.

1.5e+12

1.55e+12

1.6e+12

1.65e+12

1.7e+12

Function Evaluations

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

H
yp

er
vo

lu
m

e

mlp
rules

Fig. 3. The median hypervolume calculated from the 30 runs with respect to the
number of solution evaluations for |V | = 2500.

if 0.966φ(v)[1] + 0.252φ(v)[2] + 0.242φ(v)[3] > 0.045 then P(vacc)(v)
if 0.489φ(v)[1] + 0.829φ(v)[2] + 0.046φ(v)[3] > 0.202 then P(isol)

0.25 (v)
if 0.180φ(v)[1] + 0.969φ(v)[2] + 0.317φ(v)[3] > 0.603 then P(isol)

0.50 (v)
if 0.671φ(v)[1] + 0.148φ(v)[2] + 0.313φ(v)[3] > 0.804 then P(isol)

0.75 (v)
if 0.987φ(v)[1] + 0.150φ(v)[2] + 0.136φ(v)[3] > 0.044 then P(isol)

1.00 (v)

It can be observed that for decisions concerning vaccination of vertex v the
most important is the number of infected vertices adjacent to v (d = 1). This
can be explained by the fact, that in the studied epidemic model vaccinations
are immediately effective. Similarly, the closest contacts are the most important
when decisions concern the introduction of the quarantine (protective action
P(isol)
1.00 (v) which cuts off all the edges adjacent to v).

410 K. Michalak

5 Conclusion

In this paper evolutionary optimization of counter-epidemic strategies was stud-
ied. The optimization problem tackled in this paper involves vaccinating ver-
tices and/or inactivating edges in the graph, thereby putting vertices in isola-
tion. Instead of directly working on a set (V+E) of both vertices and edges and
making individual decisions the counter-epidemic strategy is based on a deci-
sion model that selects protective actions. The evolutionary algorithm optimizes
the parameters of this decision model which is subsequently used for deciding
whether to vaccinate a vertex or to use isolation instead (and if so, what frac-
tion of the edges adjacent to this vertex to inactivate). In the paper two decision
models were tested: a rule-based one and a neural one. The rule-based model
outperformed the neural one in tests on optimization problem instances based
on REDS graphs with the number of vertices |V | ranging from 1000 to 2500.

The optimization of decision models was studied with the models optimized
for each particular problem instance. The models used in the paper are machine
learning models and can be expected to show the generalization ability, that is to
solve new problem instances when trained on other problem instances. Therefore,
further work can be directed towards utilizing this generalization ability, for
example by training the models on some problem instances and reusing them on
other, possibly larger, problem instances. Another possibility could be to study
the influence of the graph parameters (the R, E, and S parameters for the REDS
graphs) on the quality of the results attained by the models.

Acknowledgment. This work was supported by the Polish National Science Cen-
tre under grant no. 2015/19/D/HS4/02574. Calculations have been carried out using
resources provided by Wroclaw Centre for Networking and Supercomputing (http://
wcss.pl), grant No. 407.

References

1. Antonioni, A., Bullock, S., Tomassini, M.: REDS: an energy-constrained spatial
social network model. In: Lipson, H., Sayama, H., Rieffel, J., Risi, S., Doursat, R.
(eds.) ALIFE 14: The Fourteenth International Conference on the Synthesis and
Simulation of Living Systems. MIT Press (2014)

2. Backer, J., Hagenaars, T., Nodelijk, G., van Roermund, H.: Vaccination against
foot-and-mouth disease I: epidemiological consequences. Prev. Vet. Med. 107(1),
27–40 (2012)

3. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1995)

4. Britton, T., Janson, S., Martin-Löf, A.: Graphs with specified degree distributions,
simple epidemics, and local vaccination strategies. Adv. Appl. Probab. 39(4), 922–
948 (2007)

5. Burkholz, R., Leduc, M., Garas, A., Schweitzer, F.: Systemic risk in multiplex
networks with asymmetric coupling and threshold feedback. Physica D 323–324,
64–72 (2016)

http://wcss.pl
http://wcss.pl

Evolutionary Graph-Based V+E Optimization 411

6. Chekuri, C., Gupta, A., Kumar, A., Naor, J., Raz, D.: Building edge-failure resilient
networks. Algorithmica 43(1), 17–41 (2005)

7. Chen, C., et al.: Node immunization on large graphs: theory and algorithms. IEEE
Trans. Knowl. Data Eng. 28(1), 113–126 (2016)

8. Chen, R.L.Y., Phillips, C.A.: k-edge failure resilient network design. Electron.
Notes Discrete Math. 41, 375–382 (2013)

9. Deb, K., Agarwal, R.: Simulated binary crossover for continuous search space.
Complex Syst. 9(2), 115–148 (1995)

10. Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering
design. Comput. Sci. Inf. 26, 30–45 (1996)

11. Fleischer, M.: The measure of pareto optima. Applications to multi-objective meta-
heuristics. In: Second International Conference on Evolutionary Multi-Criterion
Optimization, EMO 2003, pp. 519–533. Springer, Heidelberg (2003)

12. Forbes, C., Evans, M., Hastings, N., Peacock, B.: Geometric distribution. In: Sta-
tistical Distributions, Chap. 23, pp. 114–116. Wiley (2010)

13. Glass, R.J., Glass, L.M., Beyeler, W.E., Min, H.J.: Targeted social distancing
design for pandemic influenza. Emerg. Infect. Dis. 12(11), 1671–1681 (2006)

14. Hartnell, B.: Firefighter! An application of domination. In: 20th Conference on
Numerical Mathematics and Computing (1995)

15. Kozen, D.C.: Depth-first and breadth-first search. In: The Design and Analysis of
Algorithms, pp. 19–24. Springer, New York (1992)

16. Ladley, D.: Contagion and risk-sharing on the inter-bank market. J. Econ. Dyn.
Control 37(7), 1384–1400 (2013)

17. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto
sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

18. Martcheva, M.: Introduction to epidemic modeling. In: An Introduction to Math-
ematical Epidemiology, Texts in Applied Mathematics, vol. 61, pp. 9–31. Springer
Science+Business Media, New York (2015)

19. Matthews, L.R., Gounaris, C.E., Kevrekidis, I.G.: Designing networks with
resiliency to edge failures using two-stage robust optimization. Eur. J. Oper. Res.
279(3), 704–720 (2019)

20. Maulana, A., Kefalas, M., Emmerich, M.T.M.: Immunization of networks using
genetic algorithms and multiobjective metaheuristics. In: 2017 IEEE Symposium
Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2017)

21. Michalak, K.: Auto-adaptation of genetic operators for multi-objective optimiza-
tion in the firefighter problem. In: Corchado, E., Lozano, J.A., Quintián, H., Yin,
H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 484–491. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10840-7 58

22. Michalak, K.: The Sim-EA algorithm with operator autoadaptation for the mul-
tiobjective firefighter problem. In: Ochoa, G., Chicano, F. (eds.) EvoCOP 2015.
LNCS, vol. 9026, pp. 184–196. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16468-7 16

23. Michalak, K.: Reducing systemic risk in multiplex networks using evolutionary
optimization. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion, GECCO 2017, pp. 289–290. ACM, New York (2017)

24. Michalak, K.: Surrogate-based optimization for reduction of contagion susceptibil-
ity in financial systems. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference, GECCO 2019, pp. 1266–1274. ACM, New York (2019)

https://doi.org/10.1007/978-3-319-10840-7_58
https://doi.org/10.1007/978-3-319-16468-7_16
https://doi.org/10.1007/978-3-319-16468-7_16

412 K. Michalak

25. Michalak, K., Knowles, J.D.: Simheuristics for the multiobjective nondetermin-
istic firefighter problem in a time-constrained setting. In: Squillero, G., Burelli,
P. (eds.) EvoApplications 2016. LNCS, vol. 9598, pp. 248–265. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-31153-1 17

26. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic
processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015)

27. Tornatore, E., Vetro, P., Buccellato, S.M.: SIVR epidemic model with stochastic
perturbation. Neural Comput. Appl. 24(2), 309–315 (2012). https://doi.org/10.
1007/s00521-012-1225-6

28. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7, 117–132 (2002)

https://doi.org/10.1007/978-3-319-31153-1_17
https://doi.org/10.1007/s00521-012-1225-6
https://doi.org/10.1007/s00521-012-1225-6

Human-Derived Heuristic Enhancement
of an Evolutionary Algorithm for the 2D

Bin-Packing Problem

Nicholas Ross1(B) , Ed Keedwell1 , and Dragan Savic1,2

1 University of Exeter, Exeter EX4 4QF, UK
nr339@exeter.ac.uk

2 KWR, Nieuwegein, Netherlands

Abstract. The 2D Bin-Packing Problem (2DBPP) is an NP-Hard combinatorial
optimisation problem with many real-world analogues. Fully deterministic meth-
ods such as the well-known Best Fit and First Fit heuristics, stochastic methods
such as Evolutionary Algorithms (EAs), and hybrid EAs that combine the deter-
ministic and stochastic approaches have all been applied to the problem. Combin-
ing derived human expertise with a hybrid EA offers another potential approach.
In this work, the moves of humans playing a gamified version of the 2DBPP were
recorded and four different Human-Derived Heuristics (HDHs) were created by
learning the underlying heuristics employed by those players. Each HDH used a
decision tree in place of themutation operator in the EA. To test their effectiveness,
these were compared against hybrid EAs utilising Best Fit or First Fit heuristics
as well as a standard EA using a random swap mutation modified with a Next Fit
heuristic if the mutation was infeasible. The HDHs were shown to outperform the
standard EA and were faster to converge than – but ultimately outperformed by
– the First Fit and Best Fit heuristics. This shows that humans can create compet-
itive heuristics through gameplay and helps to understand the role that heuristics
can play in stochastic search.

Keywords: Genetic Algorithms · Heuristics · Hybridization

1 Introduction

1.1 Background

There are many real-world cutting and packing problems that have been translated into
operational research problems in order to find better solutions. One such problem is the
two-dimensional finite bin-packing problem (2DBPP) [1]. This problem requires that a
selection of boxes of assorted size are fit into the least number of identically finite-sized
bins. Boxes and bins are sized in two dimensions, the boxesmay not be cut or overlapped,
and the bin’s fixed capacity may not be exceeded. Most versions of the problem start
with empty bins and the ability to add additional bins as needed. The simplest solution
(but least efficient) would be to place every box in a new bin. More effective heuristics

© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 413–427, 2020.
https://doi.org/10.1007/978-3-030-58115-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_29&domain=pdf
http://orcid.org/0000-0003-2970-8312
http://orcid.org/0000-0003-3650-6487
http://orcid.org/0000-0001-9567-9041
https://doi.org/10.1007/978-3-030-58115-2_29

414 N. Ross et al.

have been developed from other deterministic approaches, such as First Fit, Next Fit,
and Best Fit amongst many others [2].

First Fit is perhaps the simplest of these heuristics, in which the selected box is
simply placed into the first bin in which it fits. Both First Fit and First Fit Decreasing (in
which the boxes are sorted by size before placement) have been found to be competitive
approaches to solving the problem [3]. Next Fit functions the same way as First Fit,
except that the heuristic starts where the previous iteration finished i.e. if the heuristic
places a box in the sixth bin, then the heuristic would start by looking in the seventh bin
for a place to put the next box.

TheBest Fit heuristic is another competitive approach to the problem [4]. This heuris-
tic searches through all bins to place the box in the bin where the space remaining most
closely matches the dimensions of the selected box without violating the bin capacity
in either dimension. Other competitive heuristics have been developed by researchers
such as the adaptive sequence-based heuristic of Oliveira & Gamboa [5] and the two-
dimensional version of the Djang and Finch heuristic developed by López-Camacho
et al. [6].

Stochastic methods such as Genetic Algorithms (GAs) have also been applied to
the 2DBPP and other bin-packing problems. However, as general-purpose algorithms
they struggle to be as competitive as the simpler deterministic heuristic techniques
[7, 8]. Grouping Genetic Algorithms [9] applied to the simpler one-dimensional bin-
packing problem outperformed the regular GA, while other researchers have usedMulti-
Objective techniques in a generalised framework to more easily compare against other
heuristics and allow the possibility of combining techniques [10].

Combining the deterministic and stochastic approaches into a hybrid EA, hyper-
heuristic, or other hybrid heuristic has proven to be a very effective approach. The many
different hybrid approaches taken to tackle the 2DBPP include combining the GRASP
and VND algorithms [11], combining iterative simulated annealing with binary search
[12], combining an improved heuristic with the Variable Neighbourhood Search algo-
rithm [13], combining chaos search with a firefly algorithm [14], and using adversarial
self-play for reinforcement learning making use of neural nets and Markov Decision
Processes [15].

Hyper-heuristics offer another way of easily combining search-based methods,
heuristics, algorithms, and metaheuristics [16]. The work of López-Camacho et al. [17]
directly combines a selection of deterministic methods such as Best Fit and First Fit with
a GA, while other researchers make use of multi-objective EAs [18] or use an automated
approach to design hybrid metaheuristics with a GA [19].

A hybrid EA was formed in Blum & Schmid [20] by combining an EA with a
randomised one-pass heuristic, while hybrid GAs have been created by combining a
GA with the Best Fit Decreasing heuristic [21], multiple local search heuristics [22], the
Crow Search Algorithm [23], or Human-Derived Heuristics (HDHs) [24, 25], all with
promising results.

In Ross et al. [25], participants played a gamified version of the 2DBPP and their
moveswere recorded.Machine learningwas then applied to this dataset to obtain decision
tree regressor models which provided the HDH. While heuristics are normally either
“rules of thumb” employed by those with domain-specific experience or algorithms

Human-Derived Heuristic Enhancement 415

built from theory-backed research, HDH are created by learning from how a human
interacts with a problem.

1.2 Proposed Approach

Several different HDHswere derived from experimental data and each of them combined
in turn to form a hybrid GA. These would be compared with a standard GA and hybrid
GAs making use of either the Best Fit or First Fit heuristics. Each HDH would take
the form of a decision tree obtained by machine learning on subsets of the data. Four
different subsets of data were selected based on the moves made by the humans solving
the problem during bin-packing gameplay.

The first and most obvious move set to learn from consisted of All Moves in the data
set (HDHALL). This heuristic learns from moves that improved, worsened, or left the
solution unchanged, and it could reasonably be expected to help find good solutions but
might take more iterations to do so.

Taking a greedy approach, the second move set to learn from consists of only moves
that improved the solution. The Improving Moves heuristic (HDHIMP) should converge
faster than the HDHALL heuristic, though there is a greater danger of getting stuck in a
local optimum.

To test the hypothesis that the selection of learning moves has an influence on the
performance of the different hybrid GAs, the third set of moves that were learned from
consists of only moves that make the solution worse. The Deteriorating Moves heuristic
(HDHDET) is expected to be outperformed by the other HDHs, and possibly by the
standard GA as well.

The last approach is based on Composite Moves (HDHCOM), which are moves that
make the solution worse followed by moves that improve the solution. This heuristic
should perform similarly to the HDHIMP heuristic, but with a reduced chance of getting
stuck in a local optimum. Each of these heuristics will take the place of the mutation
operator in the hybrid GA.

These will be compared against hybrid GAs making use of First Fit heuristics or
Best Fit heuristics in place of their mutation operators, and a standard GA that uses a
feasible-only random swapmutation based on Next Fit. This latter mutation is necessary
to give the standard GA a fair chance when competing with the other heuristics, as all the
others will only create feasible mutations. This mutation operates by initially attempting
a random swap mutation, but if that would make the solution infeasible then it will try
to fit the box into the next bin and repeat until it succeeds.

In Ross et al. [25] it was found that better results were obtained by combining the
standard mutation with the HDH mutation in the same algorithm. For this experiment
several different proportions of the standard mutation are tested with the HDH, First
Fit, and Best Fit heuristics. Each hybrid GA will be tested with proportions of 100%,
99%, 40%, 10%, and 1% heuristic mutation with the balance made up of the standard
mutation.

416 N. Ross et al.

2 Experimental and Computational Details

2.1 Gamification

The 2DBPP problem used in this paper has a fixed number of finite bins and begins with
the boxes already randomly distributed between them. The problem contains 10 bins and
20 boxes. The 20 boxes were created by splitting 5 bins, meaning the global optimum
is reached by fitting all 20 boxes into just 5 bins. No new bins can be added, and empty
bins are not removed.

To achieve afiner detail of scoring than counting the number of used bins, the problem
was instead scored by giving a maximum score for each completely empty or exactly
full bin, and adding a score for each other bin based on its closeness to being full or
empty. The score for each bin was calculated as follows:

If Bin = Empty or Bin = Full, Score = Dim1Max + Dim2Max

Else, Score =
∣
∣
∣
∣

Dim1Max

2
− BinDim1

∣
∣
∣
∣
+

∣
∣
∣
∣

Dim2Max

2
− BinDim2

∣
∣
∣
∣

(1)

Where Dim1Max and Dim2Max are the maximum size respectively of the first and
second dimensions of the bins, and BinDim1 and BinDim2 represent the current filled
proportion of the bin in the first and second dimensions respectively. In the problem
used both Dim1Max and Dim2Max were set to the same value of 500, meaning that
each empty or full bin scored 1000 and the maximum score was equal to the number of
bins in the problem multiplied by 1000. With 10 bins this gives a global optimum score
of 10,000. Infeasible solutions were not scored, but their total capacity violation was
recorded for the sake of the fitness function.

The data used in this study was obtained through the gamification of a bin-packing
problem. Gamification is the process of turning something into a game or making use of
game-like features such as scoring and victory conditions. It has been successfully used
to keep player attention and focus on mundane or repetitive tasks [26–28].

In this case a game was created from a 2DBPP which participants played while
their moves were recorded. The game is described in more detail in [25], but essentially
consisted of a simple problem with 4 bins and 8 boxes (Fig. 1).

The players were told the objective and shown how the game worked and were then
encouraged to compete against each other in solving the problem in the least number of
moves. Each move would see the player select a single box in the problem and move it
to whichever bin they chose, after which their score would be updated.

Data was gathered from every player that finished the game and solved the problem,
regardless of individual performance or the number of moves taken to do so. A total of
10 players completed the simple 4-bin problem. This game data was passed through a
method that selected moves for each data set for the machine learning, based on which
heuristic was being implemented. This created a data set for each of the four HDHs.

2.2 Deriving Human Heuristics

Every move that a human player made could be split into two parts; the selection of
the box to move and the selection of the bin to place it in. As the First Fit and Best Fit

Human-Derived Heuristic Enhancement 417

Fig. 1. The bin-packing game being played

heuristics have no set box selection method but do have a deterministic bin selection,
the fairest comparison was to leave the box selection as random for all heuristics and
just investigate the moves with regards to target bin selection. This fixed the machine
learning output as a quality of the target bin, which was best represented by the amount
of space remaining in that bin.

A key step in the process is the determination of the input variables for use in the
machine learning approach.The size of the selected boxwas anobvious variable, and then
a number of more general inputs that described the problem space could be included.
These would allow the heuristics to be somewhat generalisable across different bin-
packing and related problems. The preliminary experimentation, a total of four inputs
were selected, each as a sum of the two dimensions.

The first input was the size of the box that the player had selected (X[0]). The second
input was the maximum available space remaining in any non-empty bin (X[1]). The
third input was the minimum available space in any non-full bin (X[2]), and the last
input was the mean space remaining across all partially full bins (X[3]). The output was
the available space remaining in the target bin (Table 1).

Table 1. Inputs and output for the machine learning. The colour of each input and output matches
the colours of their respective nodes in the decision trees.

Inputs Output
X[0]: Size
of Selected
Box

X[1]: Maximum
Remaining Bin
Space

X[2]: Minimum
Remaining Bin
Space

X[3]: Mean
Remaining Bin
Space

Target
Remaining
Bin Space

418 N. Ross et al.

Machine learning was carried out in Python using Scikit-learn [29]. Decision trees
were chosen as they give a human-readable insight into the workings of the heuristic.
For each HDH a data set with the selected moves was loaded in and an sklearn decision
tree regressor was trained. To aid readability, each tree was constrained to a minimum
leaf node size of 5, a maximum of 12 leaf nodes, and a maximum depth of 6.

The resultant decision trees are shown in Fig. 2. The HDHALL decision tree that
learned from all the moves in the data set is unique in not using the box size (X[0]) input
in any of its calculations. The HDHIMP decision tree makes less use of the mean space
remaining input (X[3]) than HDHALL, while the HDHDET decision tree doesn’t use it at
all. The HDHDET tree is also the only tree that will seek out completely empty bins.

Fig. 2. The decision trees generated for the four different Human-Derived Heuristics. The box
colours correspond to the inputs in Table 1.

The last tree generated was that for the HDHCOM heuristic, which makes more use
of the box size input (X[0]) and less use of the minimum bin space remaining input
(X[2]) than the others. All four decision trees were exported into a program to be used
as mutation operators in a GA.

2.3 Experimental Setup

The GA used for this experiment was a steady-state GA. The problem was represented
using k-ary encoding with a k of 10 and a length equal to 20, the number of boxes in the
problem. Each integer value in the encoding represented which bin the box at that index
position was in.

Human-Derived Heuristic Enhancement 419

The parameters and crossover typewere tuned for the standardGA,without using the
heuristics. From this initial testing a population size of 100 and a tournament selection
method with a tournament size of 2 was chosen. Uniform crossover performed the best,
so it was selected, along with a mutation rate of 0.1. As the GA was steady-state, two
children would be created and added to the population each generation, and the two least
fit members of the population would then be removed.

The fitness function scored both feasible solutions and infeasible solutions. This
worked by first checking if the selected solution exceeded bin capacity and was therefore
infeasible; if it was infeasible it would be scored 0 for fitness and then each infeasible
bin would be scored based on how much it exceeded the bin capacity limit and added
to a violation score. If the solution was feasible it would be scored as mentioned in the
introduction in Eq. 1 (with an optimum score of 10,000).

The mutation selected boxes from the child problems of the crossover with a prob-
ability of 0.1. For the standard GA the mutation moved the selected box to a bin at
random, but if that made that bin infeasible it would then attempt to place the box in
the next bin along instead. This would be repeated as needed, looping back round to
the start of the bins until the mutation found an appropriately sized bin. This approach
was adopted to provide a fairer benchmark for standard mutation. The human players
were not permitted to make moves that resulted in infeasible solutions and this mutation
operator performs the same function for the standard GA.

For the HDH mutation the decision tree determines the bin into which the randomly
selected box should be placed, based on the closest match to the determined space
remaining. For First Fit and Best Fit mutations their respective heuristics were applied,
with First Fit searching from the start until it found the first bin that could fit the selected
box, and Best Fit searched the entire problem space for the bin that had the closest space
remaining to match the box size. The hybrid GAmutation had a chance of implementing
either the heuristic mutation or the standard mutation.

The GA for each condition was run for 200,000 iterations on 30 different instances
of the 10-bin problem, with each different problem instance being repeated 30 times for
a total of 900 runs per condition.

3 Results and Discussion

The fittest result in the population at each iteration of the GA was recorded and then
averaged across all 900 runs. These mean fittest values were then plotted for each HDH
against the values from the standard GA (Fig. 3).

3.1 Human-Derived Heuristics vs Standard GA

3.1.1 HDHALL

100% HDHALL converged early to a local optimum and failed to progress further, being
quickly overtaken by the other percentages and the standardGA. 99%HDHALL achieved
the highest fitness by the end of the run and showed faster convergence than the stan-
dard GA, with 40% HDHALL following a similar pattern. 10% HDHALL was slower
to converge but ended close behind 40% HDHALL and still ahead of the standard GA.

420 N. Ross et al.

Fig. 3. Mean fittest solution per generation for each condition.

1% HDHALL outperformed the standard GA and ended at a similar level of fitness as
the other percentages, though it converged slower.

3.1.2 HDHIMP

The 100% HDHIMP condition quickly converged to a suboptimal solution and was
outperformed by the other conditions including the standard GAwhile the 99%HDHIMP
and 40%HDHIMP conditions converged fastest and ended with the fittest solutions. 10%
HDHIMP and 1% HDHIMP performed similarly, though 10% HDHIMP converged the
faster of the two. All HDHIMP heuristics except for 100% HDHIMP outperformed the
standard GA.

3.1.3 HDHDET

Though the 100% HDHDET converged quickly it was still outperformed by the stan-
dard GA. All other HDHDET conditions managed to outperform the standard GA, with
the 99% HDHDET heuristic performing best with 40% HDHDET a close second. The
10% HDHDET and 1% HDHDET conditions performed at an intermediate level between
the standard GA and the 40% and 99% HDHDET heuristics, with the 10% condition
performing slightly better.

Human-Derived Heuristic Enhancement 421

3.1.4 HDHCOM

The 100% HDHCOM heuristic also converged very early to a local optimum and then
failed to progress further. The 99% HDHCOM, 40% HDHCOM, and 10% HDHCOM per-
formed almost identically, except that the 40% HDHCOM heuristic converged faster
and the 10% HDHCOM heuristic converged slightly slower. The 1% HDHCOM heuris-
tic lagged slightly behind the others, but all HDHCOM percentages except for 100%
outperformed the standard GA.

The final fittest score results for all 900 runs of each HDH condition were then
compared statistically against the standard GA. For every HDH percentage condition an
F-Test was performed comparing the variance with the standard GA results, followed
by a two-factor t-Test. These results can be found in Table 2.

Table 2. Mean andmaximum fittest scores attained over the 900 runs. Themean values that differ
significantly from the standard GA are denoted by asterisks (*) and the highest value for mean
and maximum fittest score are highlighted in bold and underlined.

Mean fittest score Statistical comparison vs
Standard GA

Maximum fittest score

Standard GA 5683 N/A 7374

HDHALL 100% 5102* t(1762) = 24.0 p < .001 6516

99% 5920* t(1774) = −11.2 p < .001 7362

40% 5886* t(1789) = −9.4 p < .001 7718

10% 5860* t(1788) = −8.2 p < .001 7724

1% 5827* t(1792) = −6.6 p < .001 7310

HDHIMP 100% 5129* t(1774) = 23.2 p < .001 6640

99% 5901* t(1792) = −10.0 p < .001 7574

40% 5882* t(1788) = −9.2 p < .001 7392

10% 5822* t(1792) = −6.4 p < .001 7186

1% 5807* t(1798) = −5.7 p < .001 7124

HDHCOM 100% 5130* t(1778) = 23.3 p < .001 6572

99% 5876* t(1798) = −8.8 p < .001 8208

40% 5875* t(1788) = −8.9 p < .001 7824

10% 5859* t(1785) = −8.2 p < .001 7238

1% 5824* t(1798) = −6.5 p < .001 7504

HDHDET 100% 5060* t(1775) = 26.2 p < .001 6690

99% 5876* t(1780) = −9.0 p < .001 7706

40% 5864* t(1787) = −8.4 p < .001 7626

10% 5788* t(1798) = −4.8 p < .001 7734

1% 5786* t(1798) = −4.6 p < .001 7042

422 N. Ross et al.

Every condition differed significantly from the standard GA, with the 100%
HDHALL, 100% HDHIMP, 100% HDHDET, and 100% HDHCOM all performing sig-
nificantly worse, and all other HDH percentages performing significantly better. 99%
HDHALL achieved the highest mean fittest score and 99% HDHCOM found the highest
maximum fittest score across all runs. Within each HDH condition the 99% heuristic
reached the highest mean fittest score while the 100% heuristic performed the worst.

The 99% HDHALL result did not perform significantly better than 40% HDHALL
(t(1798) = −1.6, p = .10), but did perform significantly better than 10% HDHALL
(t(1798) = −3.0, p = .003) and 1% HDHALL (t(1792) = −4.5, p < .001).

The 99% HDHIMP heuristic saw no significant difference compared against 40%
HDHIMP (t(1798) = −0.9, p = .38), but significantly outperformed the 10% HDHIMP
(t(1798) = −3.7, p < .001) and 1% HDHIMP heuristics (t(1798) = −4.4, p < .001).

The 99% HDHDET heuristic saw no significant difference in performance against
40% HDHDET (t(1798) = −0.6, p = .55) but performed significantly better than 10%
HDHDET (t(1791) = −4.2, p < .001) and 1% HDHDET (t(1785) = −4.2, p < .001).

The 99% HDHCOM heuristic did not significantly outperform either the 40%
HDHCOM (t(1798) = 0.04, p = .96) or 10% HDHCOM (t(1798) = 0.83, p = 0.41),
but performed significantly better than 1% HDHCOM (t(1798) = 2.45 p = .01).

Comparing the mean highest scoring heuristics from each condition against each
other found the 99% HDHALL to perform significantly better than the 99% HDHDET
(t(1798) = −2.2, p = 0.03) and 99% HDHCOM (t(1787) = −2.1, p = 0.04) heuristics
but not the 99% HDHIMP (t(1792) = −0.9, p = .35) heuristic.

3.2 Human-Derived Heuristics vs First Fit

The results for the First Fit heuristic can be seen in Fig. 3, plotted against the standard
GA and 99%HDHALL heuristic. All percentage conditions of First Fit performed signif-
icantly better than the standard GA (see Table 3), though the 100% First Fit heuristic did
not perform as well as the others and was outperformed by 99% HDHALL. The First Fit
heuristic converged slower than 99% HDHALL, but all except 100% First Fit eventually
reached a higher fitness. 100% First Fit scored significantly less than 99% HDHALL, but
the others all scored significantly higher than 99% HDHALL (Table 3).

3.3 Human-Derived Heuristics vs Best Fit

The results for the Best Fit heuristic can be seen in Fig. 3, with the standard GA and
99% HDHALL heuristic for comparison. 100% Best Fit was the worst performing of
them, though the Best Fit heuristics were faster to converge than the First Fit heuristics,
and highest scoring of all the heuristics tested. Every Best Fit heuristic significantly
outperformed both the standard GA and the 99%HDHAll condition as well (see Table 3),
though the Human-Derived Heuristic was faster to converge than the others.

3.4 Discussion

Although therewereminor differences in performance between them, eachHDH, regard-
less of the dataset source appeared to perform in a similar manner. In terms of application

Human-Derived Heuristic Enhancement 423

Table 3. Mean andmaximum fittest scores attained over the 900 runs. Themean values that differ
significantly from the standard GA (*) and 99%HDHALL (†) are marked. Highest values for mean
and maximum fittest score are highlighted in bold and underlined.

Mean fittest score Statistical comparison Maximum fittest
scorevs Standard GA vs HDHALL

Standard GA 5683 N/A 7374

HDHALL 99% 5920* t(1774) = −11.2 p
< .001

N/A 7362

First fit 100% 5754*† t(1760) = −2.9 p
= .003

t(1684) = −7.1, p <
.001

8456

99% 6011*† t(1729) = −16.1 p
< .001

t(1785) = 4.8, p <
.001

7718

40% 6022*† t(1782) = −15.8 p
< .001

t(1798) = 5.1, p <
.001

8678

10% 6004*† t(1784) = −15.0 p
< .001

t(1798) = 4.2, p <
.001

8214

1% 5961*† t(1789) = −12.8 p
< .001

t(1798) = 2.0, p =
.04

7644

Best fit 100% 6165*† t(1798) = −22.1 p
< .001

t(1791) = 11.9, p <
.001

10000

99% 6268*† t(1701) = −29.1 p
< .001

t(1770) = 18.5, p <
.001

8218

40% 6256*† t(1685) = −28.7 p
< .001

t(1760) = 18.1, p <
.001

8208

10% 6271*† t(1744) = −28.5 p
< .001

t(1792) = 18.1, p <
.001

10000

1% 6281*† t(1733) = −29.1 p
< .001

t(1787) = 18.8, p <
.001

10000

level, 100%HDH rapidly converged to a local optimum and was overtaken by the others
as expected, with the 99% and 40% conditions performing the best followed by the 10%
condition and finally the 1% condition.

The 99% condition showed that employing even a small amount of randommutation
was enough to prevent the HDH getting stuck in a local optimum. Conversely, and sur-
prisingly, the 1% condition showed that employing only a small amount of deterministic
mutation was enough to significantly improve the standard GA.

The Deteriorating Moves (HDHDET) heuristic performed better than expected but
still achieved the lowest mean fittest scores of the four HDHs. It is likely that amongst the
moves that the decision tree learnedwere usefulmoves thatmade the solution temporarily
worse but created an opening for better moves.

424 N. Ross et al.

The Composite Moves (HDHCOM) heuristic was the fastest to converge, but both the
HDHALL and the HDHIMP heuristics achieved better results (although the Composite
Moves heuristic achieved the highest maximum score from any of the HDHs). The
Composite Moves heuristic used in this paper was a single decision tree, but a true
Composite Moves heuristic might be better represented by two trees; one tree to make
the moves that make the solution temporarily worse and a second to improve it.

The ImprovingMoves heuristic performed almost as well as the AllMoves heuristic,
with very little difference between them except that the All Moves heuristic reaching a
higher mean fittest fitness score by the end of the run.

When compared to the First Fit heuristic the HDHs performed competitively at the
start of the run but were eventually outperformed by all but 100% First Fit. The 100%
First Fit heuristic performedonly a little better than the standardGA, and itwas surprising
to see the other First Fit percentages performing significantly better than it.

The Best Fit heuristics performed very well against the HDHs, though again the
100% Best Fit condition performed poorest. The Best Fit heuristics were the only ones
to reach the global optimum, though on isolated runs and not for all conditions.

The 1% Best Fit heuristic had both the highest mean fittest score of any of the
heuristics and found the global optimum. This result shows that just a small amount of
a competitive deterministic heuristic can have a strong effect on a GA.

The only advantage enjoyed by the HDHs when compared to the Best Fit heuristic is
a slightly faster convergence rate. This fast convergence could be useful if the HDH was
combined with another heuristic or was incorporated into a hyper-heuristic that could
take advantage of the different capabilities at its disposal.

Although HDHs were outperformed by the established heuristics, an area where
HDHs would be useful is on problems that don’t have existing established heuristics
such as Best Fit. Learning a heuristic from human interactions with a previously unseen
problem is easier than attempting to create new rules of thumb. Furthermore, many real-
world problems will not have accompanying heuristics and so the HDH methodology
might be used to create them.

Future work could see these heuristics tested on other problems, and other heuristics
developed from similar problems compared against these. Combining several Human-
Derived Heuristics and more traditional heuristics into a hyper-heuristic might yield
even more promising results.

4 Conclusions

In this studymachine learning was used on four different data sets to create four different
Human-Derived Heuristics (HDHs). Each of them was developed from human players
solving a gamified version of a small 2D bin-packing problem.

The four HDHs were then in turn combined with a hybrid GA as the mutation
operator, with the GA utilising the HDH either 100%, 99%, 40%, 10%, or 1% of the
time during the run and the remainder of the time using a random swapmutationmodified
with a Next Fit heuristic. The First Fit and Best Fit heuristics were then executed in the
same process and the results compared.

Human-Derived Heuristic Enhancement 425

For the HDHs the 100% heuristics performed poorly, but the other conditions all
performed significantly better than the standard GA. Several of the HDHs also outper-
formed the 100% First Fit heuristic, but the other First Fit and all the Best Fit conditions
were able to outperform the HDHs.

Surprisingly, using either 1% of a stochastic mutation or 1% of a deterministic
mutation with 99% of the other resulted in better results than 100% of either alone.

Acknowledgments. This work was supported by Skipworth Engelhardt Asset Management
Strategists Limited (SEAMS) and the Human-Computer Optimisation for Water Systems Plan-
ning andManagement (HOWS) project funded by theEngineering and Physical SciencesResearch
Council (EPSRC) – grant EP/P009441/1.

References

1. Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and packing
problems. Eur. J. Oper. Res. 183(3), 1109–1130 (2007)

2. Berkey, J.O., Wang, P.Y.: Two-dimensional finite bin-packing algorithms. J. Oper. Res. Soc.
38(5), 423–429 (1987). https://doi.org/10.1057/jors.1987.70

3. Dósa, G., Sgall, J.: First fit bin packing: a tight analysis. In: 30th International Symposium
on Theoretical Aspects of Computer Science (STACS 2013), Dagstuhl, Germany, 2013, vol.
20, pp. 538–549. https://doi.org/10.4230/LIPIcs.STACS.2013.538

4. Dósa, G., Sgall, J.: Optimal analysis of best fit bin packing. In: Esparza, J., Fraigniaud, P.,
Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 429–441. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7_36

5. Oliveira, Ó., Gamboa, D.: Adaptive sequence-based heuristic for the two-dimensional non-
guillotine bin packing problem. In: Madureira, A.M., Abraham, A., Gandhi, N., Varela, M.L.
(eds.) HIS 2018. AISC, vol. 923, pp. 370–375. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-14347-3_36

6. López-Camacho, E., Ochoa, G., Terashima-Marín, H., Burke, E.K.: An effective heuristic for
the two-dimensional irregular bin packing problem. Ann. Oper. Res. 206(1), 241–264 (2013).
https://doi.org/10.1007/s10479-013-1341-4

7. Falkenauer, E., Delchambre, A.: A genetic algorithm for bin packing and line balancing. In:
Proceedings of 1992 IEEE International Conference on Robotics and Automation, 1992, vol.
2, pp. 1186–1192. https://doi.org/10.1109/robot.1992.220088

8. Lam, G.T., Ho, V.A., Logofatu, D., Badica, C.: Considerations on using genetic algorithms
for the 2D bin packing problem: a general model and detected difficulties. In: 2017 21st
International Conference on System Theory, Control and Computing (ICSTCC), pp. 303–308
(2017). https://doi.org/10.1109/icstcc.2017.8107051

9. Kucukyilmaz, T., Kiziloz, H.E.: Cooperative parallel grouping genetic algorithm for the one-
dimensional bin packing problem. Comput. Ind. Eng. 125, 157–170 (2018). https://doi.org/
10.1016/j.cie.2018.08.021

10. Luo, F., Scherson, I.D., Fuentes, J.: A novel genetic algorithm for bin packing problem in
jMetal. In: 2017 IEEE International Conference on Cognitive Computing (ICCC), pp. 17–23
(2017). https://doi.org/10.1109/ieee.iccc.2017.10

11. Parreño, F., Alvarez-Valdes, R., Oliveira, J.F., Tamarit, J.M.: A hybrid GRASP/VND algo-
rithm for two- and three-dimensional bin packing. Ann. Oper. Res. 179(1), 203–220 (2010).
https://doi.org/10.1007/s10479-008-0449-4

https://doi.org/10.1057/jors.1987.70
https://doi.org/10.4230/LIPIcs.STACS.2013.538
https://doi.org/10.1007/978-3-662-43948-7_36
https://doi.org/10.1007/978-3-030-14347-3_36
https://doi.org/10.1007/s10479-013-1341-4
https://doi.org/10.1109/robot.1992.220088
https://doi.org/10.1109/icstcc.2017.8107051
https://doi.org/10.1016/j.cie.2018.08.021
https://doi.org/10.1109/ieee.iccc.2017.10
https://doi.org/10.1007/s10479-008-0449-4

426 N. Ross et al.

12. Hong, S., Zhang, D., Lau, H.C., Zeng, X., Si, Y.-W.: A hybrid heuristic algorithm for the 2D
variable-sized bin packing problem. Eur. J. Oper. Res. 238(1), 95–103 (2014). https://doi.org/
10.1016/j.ejor.2014.03.049

13. Zhang, D., Che, Y., Ye, F., Si, Y.-W., Leung, S.C.H.: A hybrid algorithm based on variable
neighbourhood for the strip packing problem. J. Comb. Optim. 32(2), 513–530 (2016). https://
doi.org/10.1007/s10878-016-0036-6

14. Zhao, C., Jiang, L., Teo, K.L.: A hybrid chaos firefly algorithm for three-dimensional irregular
packing problem. J. Ind. Manag. Optim. 16(1), 409 (2020). https://doi.org/10.3934/jimo.201
8160

15. Laterre, A., Fu, Y., Jabri, M.K., Cohen, A.-S., Kas, D., Hajjar, K.: Ranked reward: enabling
self-play reinforcement learning for bin packing, p. 10 (2019)

16. Pillay, N., Qu, R.: Packing Problems. In: Hyper-Heuristics: Theory and Applications, pp. 67–
73. Springer International Publishing, Cham (2018)

17. López-Camacho, E., Terashima-Marín, H., Ross, P.: A hyper-heuristic for solving one and
two-dimensional bin packing problems. In: Proceedings of the 13th Annual Conference Com-
panion on Genetic and Evolutionary Computation, Dublin, Ireland, pp. 257–258 (2011).
https://doi.org/10.1145/2001858.2002003

18. Gomez, J.C., Terashima-Marín, H.: Evolutionary hyper-heuristics for tackling bi-objective
2D bin packing problems. Genet. Program. Evolvable Mach. 19(1), 151–181 (2018). https://
doi.org/10.1007/s10710-017-9301-4

19. Hassan, A., Pillay, N.: Hybrid metaheuristics: an automated approach. Expert Syst. Appl.
130, 132–144 (2019). https://doi.org/10.1016/j.eswa.2019.04.027

20. Blum, C., Schmid, V.: Solving the 2D bin packing problem bymeans of a hybrid evolutionary
algorithm. Procedia Comput. Sci. 18, 899–908 (2013). https://doi.org/10.1016/j.procs.2013.
05.255

21. Kaaouache, M.A., Bouamama, S.: Solving bin packing problem with a hybrid genetic algo-
rithm for VM placement in cloud. Procedia Comput. Sci. 60, 1061–1069 (2015). https://doi.
org/10.1016/j.procs.2015.08.151

22. Beyaz, M., Dokeroglu, T., Cosar, A.: Hybrid heuristic algorithms for the multiobjective load
balancing of 2D bin packing problems. In: Abdelrahman, O.H., Gelenbe, E., Gorbil, G., Lent,
R. (eds.) Information Sciences and Systems 2015. LNEE, vol. 363, pp. 209–220. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-22635-4_19

23. Laabadi, S., Naimi, M., El Amri, H., Achchab, B.: A crow search-based genetic algorithm
for solving two-dimensional bin packing problem. In: Benzmüller, C., Stuckenschmidt, H.
(eds.) KI 2019. LNCS (LNAI), vol. 11793, pp. 203–215. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-30179-8_17

24. Johns, M.B., Mahmoud, H.A., Walker, D.J., Ross, N.D.F., Keedwell, E.C., Savic, D.A.: Aug-
mented evolutionary intelligence: combining human and evolutionary design for water dis-
tribution network optimisation. In: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, Prague, Czech Republic, pp. 1214–1222 (2019). https://doi.org/10.1145/
3321707.3321814

25. Ross,N.D.F., Johns,M.B.,Keedwell, E.C., Savic,D.A.:Human-evolutionary problem solving
through gamification of a bin-packing problem. In: Proceedings of the Genetic and Evolution-
ary Computation Conference Companion, Prague, Czech Republic, pp. 1465–1473 (2019).
https://doi.org/10.1145/3319619.3326871

26. Darejeh, A., Salim, S.S.: Gamification solutions to enhance software user engagement—a
systematic review. Int. J. Hum.-Comput. Interact. 32(8), 613–642 (2016). https://doi.org/10.
1080/10447318.2016.1183330

27. Morschheuser, B., Hamari, J., Koivisto, J.: Gamification in crowdsourcing: a review. In: 2016
49th Hawaii International Conference on System Sciences (HICSS), pp. 4375–4384 (2016).
https://doi.org/10.1109/hicss.2016.543

https://doi.org/10.1016/j.ejor.2014.03.049
https://doi.org/10.1007/s10878-016-0036-6
https://doi.org/10.3934/jimo.2018160
https://doi.org/10.1145/2001858.2002003
https://doi.org/10.1007/s10710-017-9301-4
https://doi.org/10.1016/j.eswa.2019.04.027
https://doi.org/10.1016/j.procs.2013.05.255
https://doi.org/10.1016/j.procs.2015.08.151
https://doi.org/10.1007/978-3-319-22635-4_19
https://doi.org/10.1007/978-3-030-30179-8_17
https://doi.org/10.1145/3321707.3321814
https://doi.org/10.1145/3319619.3326871
https://doi.org/10.1080/10447318.2016.1183330
https://doi.org/10.1109/hicss.2016.543

Human-Derived Heuristic Enhancement 427

28. Suh, A., Wagner, C., Liu, L.: Enhancing user engagement through gamification. J. Comput.
Inf. Syst. 58(3), 204–213 (2018). https://doi.org/10.1080/08874417.2016.1229143

29. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12,
2825–2830 (2011)

https://doi.org/10.1080/08874417.2016.1229143

Towards Novel Meta-heuristic Algorithms
for Dynamic Capacitated
Arc Routing Problems

Hao Tong1(B), Leandro L. Minku1, Stefan Menzel2, Bernhard Sendhoff2,
and Xin Yao1(B)

1 School of Computer Science, University of Birmingham, Edgbaston,
Birmingham B15 2TT, UK

{hxt922,L.L.Minku,x.yao}@cs.bham.ac.uk
2 Honda Research Institute Europe GmbH, 63073 Offenbach, Germany

{stefan.menzel,bs}@honda-ri.de

Abstract. The Capacitated Arc Routing Problem (CARP) is an abstrac-
tion for typical real world applications, like waste collection, winter grit-
ting and mail delivery, to allow the development of efficient optimization
algorithms. Most research work focuses on the static CARP, where all
information in the problem remains unchanged over time. However, in the
real world, dynamic changes may happen when the vehicles are in service,
requiring routes to be rescheduled. In this paper, we mainly focus on this
kind of Dynamic CARP (DCARP). Some meta-heuristics solve (D)CARP
by generating individuals that are sequences of tasks to be served as the
individual representation. The split of this sequence into sub-sequences to
be servedbydifferent vehicles needs tobedecided to generate an executable
solution, which is necessary for calculating individual’s fitness. However,
the existing split schemes for static CARP and DCARP are not capable of
getting high quality feasible solutions for DCARP. Therefore, we propose
two different split schemes in this paper – an optimal and a greedy split
scheme. The optimal split scheme, assisted by A-star algorithm, can obtain
the best vehicle routes from an ordered list. The greedy split scheme is not
guaranteed to obtain optimal splits, but it is much more efficient. More
importantly, it can keep the rank information between different individu-
als. Our experiments show that the greedy split scheme has good relative
accuracy with respect to the optimal split scheme and that the two pro-
posed split schemes are better than the existing DCARP split scheme in
terms of the obtained solutions’ quality.

Keywords: Dynamic CARP · Split scheme · A-star algorithm ·
Greedy search

1 Introduction

The Capacitated Arc Routing Problem (CARP) is a classical and important
combinatorial optimization problem, dealing with a set of edges in a graph served
by a number of vehicles with limited capacity [4]. Consider a pre-defined graph
c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 428–440, 2020.
https://doi.org/10.1007/978-3-030-58115-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_30&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_30

Towards Novel Meta-heuristic Algorithms for Dynamic CARP 429

containing a set of vertices and edges, where every edge has a travel cost and
some edges, called tasks, have demands required to be served once by vehicles.
CARP’s aim is to find an optimal routing schedule that assigns vehicles to serve
all tasks once and only once, minimizing the total travel cost. There is a wide
range of real world applications related to CARP, such as waste collection [7],
winter gritting [6], mail delivery [2] and others.

Plenty of approaches have been proposed to handle the various CARP appli-
cations, including constructive heuristic methods [3,18], efficient algorithms for
different kinds of CARP [1,7,16], algorithms for large scale CARPs [11,17], and
algorithms for uncertain CARPs [12,16]. Most existing work focuses on static
scenarios, in which the condition of a CARP does not change once it is given.
However, in the real world, CARP is likely to dynamically change during the
service process of vehicles. For example, new tasks may be added or some edges
may not be available any more. This is referred to as Dynamic CARP (DCARP),
and was, to the best of our knowledge, firstly investigated by [5,15]. Liu et al. [10]
proposed a memetic algorithm with a new split scheme to solve DCARP, which
included six factors, i.e. vehicle availability, road accessibility, added/cancelled
tasks, road congestion and change in tasks’ demands. After Liu et al., to the
best of our knowledge, only one work related to DCARP was published [13], in
which failure of vehicles is the only dynamics considered.

Many algorithms for CARP usually produce a sequence of tasks, i.e. the
individual represented in the meta-heuristic and evolutionary algorithms is a
sequence of tasks [7,16]. A split scheme is applied to obtain the executable
sub-routes (i.e., sub-sequences of tasks) to be served by different vehicles. Such
executable sub-routes are necessary for evaluating the fitness of the individu-
als. Fitness evaluation, and in particular the split scheme used during fitness
evaluation, is thus a key point when using sequence of tasks as the individual
representation in meta-heuristics to solve DCARP. However, split schemes for
static CARP are unsuitable for DCARP, because DCARP has to assign outside
vehicles to serve the remaining tasks and return to the depot, instead of using
only vehicles that are in the depot. The only existing split scheme proposed for
DCARP uses a random-based operator. Among other problems, it (1) makes
the fitness evaluation noisy and (2) leads to fitness values that are unlikely to
correspond to the actual fitness of the solution to be adopted in practice.

In this paper, we propose two new split schemes toward meta-heuristic algo-
rithms for DCARP: (1) an optimal split scheme whose time and space complexity
are high, and (2) a greedy split scheme which is not optimal, but has lower time
and space complexity, being more suitable for real world applications. We per-
form experiments showing that the greedy split scheme maintains the rank of
individuals of the population much better than the exiting split scheme, and also
showing that the greedy split scheme is much more efficient than the proposed
optimal split scheme.

The remainder of this paper is organized as follows. Section 2 discusses related
work on split schemes for (D)CARP. Section 3 presents the main procedures of

430 H. Tong et al.

our two proposed split schemes. Section 4 presents experiments to evaluate the
proposed and existing DCARP split schemes. Section 5 concludes the paper.

2 Related Work

As explained in Sect. 1, the representation of individuals for solving CARP by
meta-heuristic algorithms is a sequence of tasks. To form a feasible CARP solu-
tion whose fitness can be computed, this sequence needs to be split into different
sections, each of them to be served by a different vehicle. Given this work’s focus
on DCARP split schemes, this section concentrates on split schemes.

2.1 Split Scheme for Static CARP

For static CARP, the Ulusoy’s scheme [18] is used, which can obtain an optimal
split from an individual by building an auxiliary graph. Assume an individual
{t1, t2, ..., tNt

} for CARP, Ulusoy’s split builds an auxiliary graph, G∗, to find
the optimal split. G∗ contains Nt + 1 nodes, in which the first node represents
the depot. Each edge (i, j) in the auxiliary graph represents a feasible sub-route,
rsub, of the CARP, and its cost is the weight, wi,j , of the corresponding edge.
For example, consider that edge (i, j) represents the route rsub = {depot →
ti+1 → ti+2 → ... → tj → depot}, and wij = costrsub

. Then, Ulusoy’s split uses
Dijkstra’s algorithm to find the shortest path from first node to the last node in
G∗, which indicates the optimal split for the assigned individual. Ulusoy’s split
cannot be used for DCARP, because different vehicles in DCARP start from
different stop points in the intermediate states, whilst all targets are the depot.

Some studies extended Ulusoy’s split to multi-depot CARP [19]. However,
each edge in the auxiliary graph represents a route that must start and end at
the same depot. Therefore, these split schemes are also not suitable for DCARP,
where vehicles start from different stop points in the intermediate states.

2.2 Split Schemes for DCARP

Liu et al. [10] proposed the first split scheme for DCARP, called Distance Based
Split Scheme (DSS). Consider a given individual {t1, t2, ..., tNt

}. DSS randomly
splits it into NK sub-routes, where NK is the number of vehicles used in service
and is defined by the solution of the initial CARP instance. For each sub-route
Sk, DSS calculates the sum of cost Cpvj of each vehicle j from its current position
to each task’s start node and end node:

Cpvj =
Sk∑

ti

cost(vj , startti) + cost(vj , endti) (1)

where vj denotes the location of vehicle j. The vehicle with minimal Cpvj will
be assigned to serve the Sk. After all vehicles are assigned to all tasks, the total

Towards Novel Meta-heuristic Algorithms for Dynamic CARP 431

cost can be calculated for the whole schedule. Finally, DSS repeats the above
process three times and selects the schedule with minimal total cost.

DSS has some significant weaknesses. Firstly, it makes the fitness evaluation
noisy, as the fitness is not deterministic anymore and highly depend on the qual-
ity of the best among three random splits. Secondly, the fitness value obtained
based on DSS is unlikely to correspond to the actual fitness of the solution to be
adopted in practice. Thirdly, if the demand of a sub-route exceeds the remain-
ing capacity of an assigned vehicle, DSS uses a path repair operator, where the
vehicle returns back to the depot to get refilled and then goes back to continue
serving the next task. This is inefficient to some extent, because other vehicles
may still have big remaining capacities and could potentially be assigned to
serve the remaining tasks that exceeded the original vehicle’s capacity. Further-
more, DSS never considers new sub-routes starting from the depot, resulting in
an inflexible schedule. In some cases, vehicles may not have enough capacity to
serve the distant tasks after serving the near tasks so that they have to apply the
repair operator to serve the distant tasks separately with a high cost. However,
if it was allowed to create a new route for near tasks, vehicles would have enough
capacity to serve all distant tasks simultaneously, avoiding to serve the distant
tasks independently with a very high cost, and thus the total cost is reduced.
Finally, DSS cannot guarantee an optimal split.

To overcome DSS’ shortcomings, we propose two deterministic split schemes
for DCARP. Both of them can handle the situation where vehicles start from
different stop points, and they also consider that new vehicles can be assigned to
serve tasks. One of them focuses on optimality and the other one on efficiency.

3 Proposed Split Schemes for DCARP Fitness Evaluation

For static CARP, Ulusoy’s split finds the optimal split by building an auxiliary
graph, in which the shortest path represents the optimal split. Inspired by this
idea, our two proposed DCARP split schemes also mainly contain two steps: aux-
iliary graph construction and path finding. The two split schemes apply different
path-finding strategies based on the same auxiliary graph.

3.1 Auxiliary Graph Construction

In the auxiliary graph for static CARP, the edge between any two nodes rep-
resents a sub-route, serving a set of tasks. For instance, edge eij represents a
sub-route serving the task’s set {ti+1, ti+2, ..., tj}. Similarly, we also use an edge
in the auxiliary graph to represent a sub-route for DCARP. Hence, for an ordered
list of tasks, i.e., t1, t2, ..., tNt

, there are Nt+1 nodes in the auxiliary graph. How-
ever, different from the static CARP, we already have some vehicles outside of
the depot, which can be assigned to serve the remaining tasks. They stopped in
different positions when the change happened, and they have to start from these
positions to serve the remaining tasks. Therefore, an edge (i, j) between two
nodes represents different routes for different vehicles in the auxiliary graph.

432 H. Tong et al.

As a result, we construct several edges between two nodes in the auxiliary
graph to represent sub-routes for all outside vehicles. Besides, considering that
new sub-routes starting from the depot can also be created1, we add an addi-
tional edge between two nodes to represent the route starting from the depot.
Algorithm 1 presents the procedure for building an auxiliary graph for DCARP.

Algorithm 1: Build auxiliary graph for DCARP
Input: Individual : I = {t1, t2, ..., tN}

Stop points for outside vehicles: V = {v1, v2, ..., vK}
Remaining capacity for outside vehicles: CP = {cp1, cp2, ..., cpK}

1 Generate N + 1 Nodes (Index from 0 to N) for the auxiliary graph G∗;
2 v0 = depot, cp0 = original capacity;
3 V = {v0, v1, v2, ..., vK}, CP = {cp0, cp1, cp2, ..., cpK};
4 for each vehicle k in V do
5 for each node pair: (Nodei, Nodej) do
6 Use vehicle k to serve {ti+1, ti+2, ..., tj};
7 Sub-route: rijk = {vk → ti+1 → ti+2,→ ...,→ tj → depot};
8 Calculate the total demand dijk of rijk;
9 if dijk > cpk then

10 continue;

11 else
12 Calculate the cost of rijk: cijk;
13 Assign an edge eijk with weight cijk between Nodei and Nodej ;

Output: An auxiliary graph G∗

Assume that K vehicles are currently outside the depot. The stop points
and remaining capacities for vehicles are V = {v1, v2, ..., vK} and CP =
{cp1, cp2, ..., cpK}. For the additional edge for new vehicles, we add a stop point
v0 = depot into V and cp0, equal to the original capacity, into CP , in Line 2–3. For
each pair of nodes (Nodei, Nodej), we build an edge eijk for each vehicle k, which
represents the sub-route rijk = {vk → ti+1 → ti+2 → ... → tj → depot}, in Lines
6–7. However, if the total demand of rijk exceeds the vehicle’s remaining capacity,
edge eijk will be removed due to the capacity constrain, in Lines 8–10. Otherwise,
the weight of eijk is assigned with the cost of rijk, cijk in Lines 12–13.

3.2 A-Star Based Optimal Split Scheme

Path Finding: For static CARP, the Dijkstra algorithm is used directly to
find the shortest path in the auxiliary graph. However, the number of edges in
DCARP is much larger, as explained in Sect. 3.1, because there is a different edge
1 New routes could potentially be served by a new vehicle (if we extra vehicles are

available), or by an outside vehicle (after it finishes serving its currently assigned
tasks and returns to the depot).

Towards Novel Meta-heuristic Algorithms for Dynamic CARP 433

(i, j, k) for each vehicle k between the pair of nodes (i, j). To increase efficiency,
we adopt the A-star algorithm to find the optimal path, instead of Dijkstra.

There are also two important constraints which have to be considered in
DCARP and which did not exist in static CARP. First, any two edges in the
whole path cannot belong to the same outside vehicle. Otherwise, the outside
vehicle would have to serve two sub-routes, starting from the same outside stop
point. However, when the vehicle finishes one sub-route, it stops at the depot.
Therefore, it is impossible for this vehicle to serve another sub-route starting
from an outside stop point. Secondly, all outside vehicles have to return to the
depot even if they are not assigned to serve tasks in the new schedule. This
means that, if no edge is assigned to a given outside vehicle in the whole path,
the cost of this vehicle returning to the depot still needs to be considered in the
total final split cost.

To use A-star, we need to determine a suitable admissible heuristic function
h(n). A heuristic is admissible if the cost it retrieves is smaller than or equal
to the actual minimal cost to reach the target node in the tree from n [14]. In
our problem, we use the minimal cost from the current node to the final node in
the auxiliary graph without considering the constraints as the heuristic function.
The cost function g(n) is calculated according to the actual path to reach n. In
our split scheme, when different paths arrive at the same node in the auxiliary
graph, the path with better cost will not replace the worse one because the
choice of vehicles before influences the cost from the current node to the target.
Therefore, the tree-based A-star search [14] is used in our split scheme. The
procedure of the A-star-based optimal split scheme is presented in Algorithm 2.

The split scheme builds an auxiliary graph in Line 1 for shortest path find-
ing. From the first node in the auxiliary graph, A-star expands each selected
node with minimal f(n) and finds its successors, in Lines 8–9 and Line 20. The
estimated costs f(n) for all successors are calculated in Lines 13–14. During the
procedure of expanding the current node, the A-star-based split scheme applies
two strategies to handle the two constraints for DCARP. Firstly, in order to
avoid the repetition of edges belonging to the same vehicle, it removes all edges
belonging to the vehicles which have already been selected in the current part
of the path and then explores the rest of path, in Line 12. For the second con-
straint, when A-star reaches the final node, we repair the cost of the final path
if some outside vehicles are never selected, adding the returning cost for these
non-selected outside vehicles in Lines 15–16.

Complexity Analysis: A-star guarantees the optimality of the path found.
However, it has a high space and time complexity since there are N tasks in total.
For static CARP, the number of edges is #ES = N(N−1)

2 , and the number of all
possible paths is #PS = 2N+1 in the auxiliary graph. In the auxiliary graph for
DCARP, if there are K outside vehicles, the number of edges is

#ED =
(K + 1) · N(N − 1)

2

434 H. Tong et al.

Algorithm 2: A* based optimal split scheme
Input: Individual : I = {t1, t2, ..., tN}

1 Build an auxiliary graph G∗ for DCARP;
2 expandNode = Node0; openNodeSet = {}; pathSet = {};
3 while True do
4 if expandNode == target then
5 Shortest path P : path correspond to expandNode;
6 Minimal cost C: fexpandNode correspond to expandNode;
7 break;

8 Select rootPath (i.e. path from Node0 to expandNode) from pathSet;
9 Find all feasible successors for expandNode in the graph;

10 for each successor of expandNode do
11 newPath = rootPath + expandNode → successor;
12 Remove all edges belong to vehicles used in newPath for successor;
13 Calculate the hsucc and gsucc;
14 Set fsucc = hsucc + gsucc;
15 if successor == target then
16 Repair fsucc;

17 Add the successor into openNodeSet;
18 Add the newPath into pathSet;

19 Remove expandNode, rootPath from openNodeSet and pathSet;
20 Select the node in openNodeSet with minimal f as expandNode;

21 The shortest path from Node0 to target in G∗: P = {p1, p2, ..., pM};
22 Each pm represents an edge eijk, which denotes a sub-route rijk;
23 Obtain the solution S by splitting the I by P .

Output: Solution S = {r1, r2, ..., rM}, Minimal cost: C

and the number of all possible paths, i.e. from the first node to the target in the
auxiliary graph, is

#PD =
N∑

n=1

Cn−1
N−1

min(n,K)∑

i=0

Cn−i
n · Pi

K

Therefore, the number of routes in the auxiliary graph for DCARP is much
larger than in the static case. The A-star algorithm has to save all expanded
nodes during the search process. In the worst case, it will visit and save all
#PD possible paths. Even though heuristics can frequently avoid the worst case
scenario, the computational time still depends on #PD and is often still unac-
ceptably high, as will be demonstrated by our experiments in Sect. 4.3.

3.3 Greedy Split Scheme

Path Finding: As discussed above, the A-star based optimal split scheme is
computationally expensive when using A-star search to find the optimal path in

Towards Novel Meta-heuristic Algorithms for Dynamic CARP 435

the auxiliary graph. Therefore, we propose a greedy strategy to find a path with
a good quality in the auxiliary graph.

In the auxiliary graph, each edge eijk represents a route rijk, serving a list
of tasks and having a cost cijk. So, we can obtain an efficiency parameter for
each route, which is the average cost for each demand of this route. Generally,
when there are several possible routes to be selected, we will choose the route
with the lowest average cost for each demand, from a greedy perspective. The
greedy procedure is presented in Algorithm 3.

Algorithm 3: Greedy split scheme
Input: Individual : I = {t1, t2, ..., tN}

1 Build an auxiliary graph G∗ for DCARP;
2 for each edge eijk in G∗ do
3 Calculate the ACD: ACDijk;

4 expandNode = Node0; newPath = Node0
5 while True do
6 if expandNode == target then
7 Greedy path: newPath, P = {p1, p2, ..., pM};
8 Calculate the greedy cost of greedy path: C;
9 break;

10 rootPath ← newPath;
11 Find all edges linking to successors for expandNode;
12 Select the edge with the minimal ACD;
13 NodeX ← successor that the selected edge belongs to;
14 newPath = rootPath + expandNode → NodeX ;
15 Remove all edges corresponding to vehicles being used in newPath;
16 expandNode ← NodeX ;

17 Each pm represents an edge eijk, which denotes a sub-route rijk;
18 Obtain the solution S by splitting the I by P .

Output: Solution S = {r1, r2, ..., rm}, Greedy cost: C

Assuming the ordered tasks {t1, t2, ..., tNt
}, we build an auxiliary graph

according to Algorithm 1 (Line 1). Then, we calculate the average cost for each
demand (ACD), for each edge eijk, as ACDijk, in Lines 2–3. In each step, the
greedy split scheme will select the edge with the minimal ACD from all edges
linking to the current node, in Lines 11–12. Similarly, in order to satisfy the con-
straints, when an edge belonging to one outside vehicle is selected in each step,
it will remove all edges corresponding to this vehicle in the later path-finding
process, in Line 15. Finally, the process terminates when the target is found, and
then the actual cost for the greedy path is calculated, considering the return cost
of any unused outside vehicles, in Lines 7–8.

Complexity Analysis: The greedy split scheme is much more efficient than
A-star-based optimal split scheme. Without considering the auxiliary graph con-
struction, its time complexity is only O(Nt).

436 H. Tong et al.

4 Experiments

The greedy split scheme has much lower time complexity than the optimal split
scheme, but may lead to splits of lower quality. Given that the split scheme will
be used as part of the fitness evaluation of individuals within a meta-heuristic
algorithm, it is desirable that better individuals according to the optimal split
scheme are still considered as better individuals according to the greedy split
scheme. In particular, if the ranking (relative accuracy) of individuals does not
change when adopting the greedy instead of the optimal split scheme, the lower
quality of the splits obtained by the greedy split scheme will not negatively affect
the meta-heuristic algorithm, depending on the selection mechanisms being used.
Therefore, in this section, we compare the relative accuracy of the greedy split
scheme (GSS) with that of the existing split scheme, the distance-based split
scheme (DSS) [9]. In addition, we also compare the fitness and computational
time for different split schemes.

4.1 Comparison on Relative Accuracy

At first, we test three difference split schemes in a series of problem instances
to show the relative accuracy of GSS and DSS, relative to optimal split schemes
(OSS). Two benchmark sets, referred as gdb set [3] and egl set [8], for static
CARP are used as basis map for DCARP in our experiments. Each benchmark
generates one scenario for simulating the situation of changes happening, where
the changes include broken down vehicles, closed roads, roads congestion, added
tasks and increased demands. After the changes, gdb and egl instances have
on average 174 and 37 tasks, representing a high and a low dimensional set of
instances, respectively. For each scenario after the changes, Np = 40 individuals
are randomly generated and evaluated by different split schemes.

In order to compare the relative accuracy, we use the Kendall rank correlation
coefficient (τ) as the measurement. Assuming that the fitnesses of individual i
are fOSS , fGSS and fDSS , τ can be calculated as

τ =
2

Np(Np − 1)

∑

i<j

sgn(fOSSi
− fOSSj

)sgn(fSSi
− fSSj

) (2)

where fSSi
denotes fGSSi

or fDSSi
, and Np is the size of population. τ ∈ [−1, 1]

and a large τ indicates the relative accuracy of one split schemes is highly agreed
with the optimal split scheme.

The results on relative accuracy are presented in Fig. 1. The left part belongs
to the egl set of benchmarks, whose dimension, i.e. the number of tasks, is
larger than that of the gdb set in the right part. From the result, GSS is better
than DSS with respect to the relative accuracy, especially in high dimension. It
is mainly because DSS splits the individuals by random selection. The fitness
obtained highly depends on the random seed, which influences the relative accu-
racy deeply. For example, for two individuals, the OSS can provide the relative
fitness, but the better individual may be splitted into a low quality solution

Towards Novel Meta-heuristic Algorithms for Dynamic CARP 437

due to a ill-chosen random seed. By contrast, the GSS split an individual on a
deterministic way and there is no randomness in the split procedure, so that its
relative accuracy is higher than DSS.

e1
-A

e1
-B

e1
-C

e2
-A

e2
-B

e2
-C

e3
-A

e3
-B

e3
-C

e4
-A

e4
-B

e4
-C

s1
-A

s1
-B

s1
-C

s2
-A

s2
-B

s2
-C

s3
-A

s3
-B

s3
-C

s4
-A

s4
-B

s4
-C g1 g2 g3 g4 g5 g6 g7 g8 g9g1
0

g1
1

g1
2

g1
3

g1
4

g1
5

g1
6

g1
7

g1
8

g1
9

g2
0

g2
1

g2
2

g2
3

Instances

-0.2

0

0.2

0.4

0.6

0.8

1

K
en

da
ll

ra
nk

 c
or

re
la

tio
n egl (High Dimension) gdb (Low Dimension)

Greedy Split
Distance-based Split

Fig. 1. Relative accuracy achieved by GSS and DSS.

However, when the problem is of low dimension, the difference in relative
accuracy is small, because the search space for split becomes small. The result
of one random split is close to another random split, so that the influence of
randomness decreases.

4.2 Comparison on Obtained Fitness

For the same individual, GSS and DSS obtain different solutions, with differ-
ent fitness values, i.e. total cost. Therefore, in this subsection, we compare the
performance of GSS and DSS, with respect to the fitness values. For each pop-
ulation with Np individuals, as shown in the previous subsection, we compare
every fitness obtained by GDD and DSS. Wilcoxon Sign Rank tests with a 0.05
significance level were carried out to compare the fitness values of the individuals
and the ratio of individuals where GSS was better than DSS in the population is
shown in Fig. 2, where the blue(red) solid stems represent that GSS (DSS) per-
forms significantly better than DSS (GSS) and the dash stems represents that
both split schemes have no significant difference. In conclusion, GSS performs
better than DSS significantly in most DCARP cases.

We can see that in all high dimensional cases, the fitness values obtained
by GSS are almost all better than those of DSS in each population. However,
GSS’s performance decreases compared with that of DSS in low dimensional
cases. There are two main reasons to explain the results. First, as discussed
in the previous subsection, the solution obtained by DSS highly depends on the
random seed. When the problem dimension is very low, the random split is likely
to obtain a very good solution thanks to its diversity and the small search space.
However, it cannot help a lot in the high dimensional cases. Second, when a

438 H. Tong et al.

egl (High dimension) | gdb (Low dimension)
Instances

0

50%

100%
P

er
fo

rm
an

ce
 R

at
io

Fig. 2. Ratio of individuals where GSS is better than DSS in the population. Solid
stems represent DSS and GSS have significant difference and dash stems represent
they have no significant difference.

given vehicle’s capacity is exceeded due to a change, DSS uses a repair operator
to make the vehicle return to the depot first and then continue to serve the
remaining tasks from the depot. This typically results in higher costs than if
new sub-routes starting from the depot could be created during the split process
as done by our approaches, given that new sub-routes not only directly help to
satisfy the capacity constraints, but also are optimized together with the sub-
routes starting from outside, which makes our split more flexible and efficient.

4.3 Comparison on Computational Time

Finally, in this subsection, we will compare the computational time for three
split schemes. We select 8 maps for each dataset as test scenario. As discussed in
Sect. 3, OSS might require much time to obtain the solution. Therefore, in the
previous experiments, the scenarios we generated were suitable for OSS to obtain
the result within 300 seconds, to have enough results for the comparisons. In this
section, we randomly generate the test scenarios. If OSS is unable to find the
optimal solution within 300 seconds, the experiment is considered as a failure
and the computational time is not considered. The computational results are
presented in Table 1 , in which the time for GSS and OSS contains the time for
auxiliary graph construction.

GSS is the most efficient method among the three split schemes, and OSS
is the most computationally expensive in all test scenarios. GSS starts from
the first node in the auxiliary graph, and selects the edge with minimal ACD.
DSS splits the individuals randomly. Although the random split is very efficient,
the repair operator is required to obtain the total cost, which is a relatively
computationally expensive process. OSS has a very large search space, and the
A-star algorithm will save all explored nodes, which causes its computational
time to be very large in some cases. From the results, we can also observe that
the number of tasks and outside vehicles have a big impact on the computational

Towards Novel Meta-heuristic Algorithms for Dynamic CARP 439

Table 1. The computational time (in seconds) for OSS, GSS, DSS. For OSS, the
success rate is shown in brackets. Nt is the number of tasks (dimension) and K is the
number of outside vehicles.

Instances Nt K tGSS tDSS tOSS

egl-e1-A 35 2 0.03 0.70 0.22 (40/40)

egl-e2-A 39 3 0.03 0.66 0.77 (40/40)

egl-e3-A 29 4 0.03 0.42 9.91 (2/40)

egl-e4-A 38 6 0.04 0.64 27.3 (8/40)

egl-s1-A 70 7 0.07 1.38 N/A (0/40)

egl-s2-A 86 13 0.11 1.49 N/A (0/40)

egl-s3-A 66 9 0.08 1.08 N/A (0/40)

egl-s4-A 64 4 0.04 0.88 6.78 (1/40)

Instances Nt K tGSS tDSS tOSS

gdb2 3 3 0.04 0.08 0.13 (6/6)

gdb5 2 3 0.02 0.06 0.03 (2/2)

gdb8 20 7 0.03 0.29 11.4 (6/40)

gdb9 16 5 0.02 0.29 0.86 (39/40)

gdb16 7 1 0.02 0.15 0.05 (40/40)

gdb18 14 3 0.02 0.27 0.07 (40/40)

gdb22 15 5 0.02 0.28 4.58 (38/40)

gdb23 21 4 0.02 0.36 26.5 (36/40)

time for OSS. When there are many outside vehicles, the search space becomes
very large, so that it is very hard to find the optimal split results for OSS. This
is because the tasks and outside vehicles directly determine the search space as
shown in Eq. (23).

5 Conclusion

The split scheme is essential for fitness evaluation in DCARP. However, the
existing split scheme for static CARP is unsuitable for DCARP, and the existing
DCARP splitting scheme highly depends on the random seed, being unable to
provide stable results. Therefore, in this paper, we propose two new split schemes.
The first split scheme is an optimal split scheme based on the A-star search. It is
capable to provide an optimal solution for an ordered list of tasks. However, it is
computationally expensive in many scenarios due to the huge search space. The
second is a greedy split scheme, which is much more efficient than the optimal
split scheme and even than the existing random split scheme. Our experiments
show that the greedy split scheme is capable of leading to similar individual
rankings to the optimal split scheme, and its fitness is much better than that
of the existing random split scheme for DCARP, especially in high dimensional
test cases.

Future work includes the testing of proposed split schemes in more real
instances and the design of meta-heuristic methods to solve DCARP using the
proposed split schemes.

Acknowledgements. Hao Tong gratefully acknowledges the financial support from
Honda Research Institute Europe (HRI-EU).

440 H. Tong et al.

References

1. Brandão, J., Eglese, R.: A deterministic tabu search algorithm for the capacitated
arc routing problem. Comput. Oper. Res. 35(4), 1112–1126 (2008)

2. Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, part ii: the rural
postman problem. Oper. Res. 43(3), 399–414 (1995)

3. Golden, B.L., DeArmon, J.S., Baker, E.K.: Computational experiments with algo-
rithms for a class of routing problems. Comput. Oper. Res. 10(1), 47–59 (1983)

4. Golden, B.L., Wong, R.T.: Capacitated arc routing problems. Networks 11(3),
305–315 (1981)

5. Handa, H., Chapman, L., Yao, X.: Dynamic salting route optimisation using evolu-
tionary computation. In: 2005 IEEE Congress on Evolutionary Computation, vol.
1, pp. 158–165. IEEE (2005)

6. Handa, H., Chapman, L., Yao, X.: Robust route optimization for gritting/salting
trucks: a CERCIA experience. IEEE Comput. Intell. Mag. 1(1), 6–9 (2006)

7. Lacomme, P., Prins, C., Ramdane-Chérif, W.: Evolutionary algorithms for periodic
arc routing problems. Eur. J. Oper. Res. 165(2), 535–553 (2005)

8. Li, L.Y., Eglese, R.W.: An interactive algorithm for vehicle routeing for winter–
gritting. J. Oper. Res. Soc. 47(2), 217–228 (1996)

9. Liu, M., Singh, H.K., Ray, T.: A benchmark generator for dynamic capacitated arc
routing problems. In: 2014 IEEE Congress on Evolutionary Computation (CEC),
pp. 579–586. IEEE (2014)

10. Liu, M., Singh, H.K., Ray, T.: A memetic algorithm with a new split scheme for
solving dynamic capacitated arc routing problems. In: 2014 IEEE Congress on
Evolutionary Computation (CEC), pp. 595–602. IEEE (2014)

11. Mei, Y., Li, X., Yao, X.: Cooperative coevolution with route distance grouping for
large-scale capacitated arc routing problems. IEEE Trans. Evol. Comput. 18(3),
435–449 (2013)

12. Mei, Y., Tang, K., Yao, X.: A global repair operator for capacitated arc routing
problem. IEEE Trans. Syst. Man Cybern. B Cybern. 39(3), 723–734 (2009)

13. Monroy-Licht, M., Amaya, C.A., Langevin, A., Rousseau, L.M.: The rescheduling
arc routing problem. Int. Trans. Oper. Res. 24(6), 1325–1346 (2017)

14. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pren-
tice Hall, Upper Saddle River (2010)

15. Tagmouti, M., Gendreau, M., Potvin, J.Y.: A dynamic capacitated arc routing
problem with time-dependent service costs. Transp. Res. Part C Emerg. Technol.
19(1), 20–28 (2011)

16. Tang, K., Mei, Y., Yao, X.: Memetic algorithm with extended neighborhood search
for capacitated arc routing problems. IEEE Trans. Evol. Comput. 13(5), 1151–1166
(2009)

17. Tang, K., Wang, J., Li, X., Yao, X.: A scalable approach to capacitated arc routing
problems based on hierarchical decomposition. IEEE Trans. Cybern. 47(11), 3928–
3940 (2016)

18. Ulusoy, G., et al.: The fleet size and mix problem for capacitated arc routing. Eur.
J. Oper. Res. 22(3), 329–337 (1985)

19. Xing, L., Rohlfshagen, P., Chen, Y., Yao, X.: An evolutionary approach to the
multidepot capacitated arc routing problem. IEEE Trans. Evol. Comput. 14(3),
356–374 (2009)

Robust Evolutionary Bi-objective
Optimization for Prostate Cancer
Treatment with High-Dose-Rate

Brachytherapy

Marjolein C. van der Meer1(B), Arjan Bel1, Yury Niatsetski2,
Tanja Alderliesten3, Bradley R. Pieters1, and Peter A. N. Bosman4

1 Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam,
Amsterdam, The Netherlands

marjolein.vandermeer@amsterdamumc.nl
2 Physics and Advanced Development, Elekta, Veenendaal, The Netherlands

3 Department of Radiation Oncology, Leiden University Medical Center,
Leiden, The Netherlands

4 Life Sciences and Health Research Group, Centrum Wiskunde & Informatica,
Amsterdam, The Netherlands

Abstract. We address the real-world problem of automating the design
of high-quality prostate cancer treatment plans in case of high-dose-
rate brachytherapy, a form of internal radiotherapy. For this, recently
a bi-objective real-valued problem formulation was introduced. With a
GPU parallelization of the Multi-Objective Real-Valued Gene-pool Opti-
mal Mixing Evolutionary Algorithm (MO-RV-GOMEA), good treatment
plans were found in clinically acceptable running times. However, opti-
mizing a treatment plan and delivering it to the patient in practice is a
two-stage decision process and involves a number of uncertainties. Firstly,
there is uncertainty in the identified organ boundaries due to the limited
resolution of the medical images. Secondly, the treatment involves plac-
ing catheters inside the patient, which always end up (slightly) different
from what was optimized. An important factor is therefore the robustness
of the final treatment plan to these uncertainties. In this work, we show
how we can extend the evolutionary optimization approach to find robust
plans using multiple scenarios without linearly increasing the amount of
required computation effort, as well as how to deal with these uncertain-
ties efficiently when taking into account the sequential decision-making
moments. The performance is tested on three real-world patient cases.
We find that MO-RV-GOMEA is equally well capable of solving the
more complex robust problem formulation, resulting in a more realistic
reflection of the treatment plan qualities.

Keywords: Evolutionary Algorithms · Robust optimization ·
Multi-objective optimization · Empirical study · Radiation oncology

Supported by Elekta, Sweden.

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 441–453, 2020.
https://doi.org/10.1007/978-3-030-58115-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_31&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_31

442 M. C. van der Meer et al.

1 Introduction

Brachytherapy is a form of internal radiotherapy that can be used for treating
prostate cancer. The treatment involves intraoperative placement of a number
of very thin needles, called catheters, inside the patient, for a radioactive source
to be moved through. The entire procedure is a two-stage sequential decision-
making process. The first part is determining how to place the catheters, after
which the catheters are actually placed. The second part is determining how
to move the radioactive source through the catheters, which is performed after
catheter placement. Each catheter has a fixed set of positions, called dwell posi-
tions, where the radioactive source can pause for certain amounts of time, called
dwell times. The workflow is illustrated in Fig. 1.

Fig. 1. The simulation workflow used to study robust optimization. Purple blocks
indicate decision-making stages. (Color figure online)

Key quality indicators can be formulated for treatment plans, enabling opti-
mization to support decision making. For the first part, both catheter position
variables and dwell time variables play a role. For the second part, only the
dwell time variables still play a role. On the one hand, enough catheters should
be placed to ensure a good treatment. On the other hand, a larger number
of catheters increases the risk of complications for the patient. The number of
catheters is therefore an important part of the catheter position optimization.
Since catheter placement is performed in the operating room, no changes to the
catheters can be made afterwards. The result of catheter position optimization
(that includes dwell times) should therefore be representative of what can be
achieved in the dwell time optimization.

Optimizing brachytherapy is difficult, for multiple reasons. Firstly, the prob-
lem is inherently multi-objective, due to the trade-off between radiation dose to
the tumor (which you want to maximize) and to the surrounding tissue (which
you want to minimize). Secondly, the objective functions comprising the multi-
objective problem are such that there is no gradient information. Thirdly, there
are time constraints on the optimization due to the patient waiting for treat-
ment. For solving difficult multi-objective problems, Evolutionary Algorithms
(EAs) are the state-of-the-art [3]. Previous work on bi-objective optimization
for both dwell times [2] and catheter positions [11] has shown promising results.

Since all problem variables in the second stage are already part of the first
stage, arguably there is no need for a two-stage optimization process. After a
single optimization, both decisions can be made and executed. However, in prac-
tice such a one-shot approach is not sufficient, because brachytherapy involves

Robust Evolutionary Bi-objective Optimization 443

a number of uncertainties. Firstly, there is uncertainty in the identified organ
boundaries due to the limited resolution of the medical images used for treatment
planning. Secondly, catheters always end up (slightly) different in the patient
from what was planned. Therefore, to ensure the best possible plans, the dwell
times should be re-optimized after actual catheter placement has taken place.
To avoid overly optimistic catheter position optimization fronts, that may lead
to the wrong conclusion about how many catheters are needed for a particu-
lar patient in the first decision phase, these uncertainties should be taken into
account in the optimization problem. Since the most time consuming part of the
optimization is the calculation of the objective functions of a treatment plan,
straightforwardly applying robust optimization would result in clinically infea-
sible run times.

In this work, we will introduce robust optimization to the full workflow for
high-dose-rate prostate brachytherapy, while still keeping the run times low. The
aim is for the optimization fronts to be representative of what can be achieved
in clinical practice. Specifically, the catheter position optimization fronts should
be representative of what can be achieved later in the dwell time optimization.
We will evaluate the run time of the optimization, as well as the robustness of
the resulting treatment plans.

2 Background

2.1 Insightful Decision Support via Bi-objective Optimization

The ultimate goal is to obtain the highest quality treatment plan to be used for
the dose delivery. There are several key evaluation criteria that can be mathe-
matically formulated, enabling the use of optimization methods. For an in-depth
explanation of all details involved, we refer the interested reader to related lit-
erature [11]. Here, we briefly summarize the most important concepts.

In clinical practice, the evaluation of a treatment plan is based on a clinical
protocol, which describes how much radiation the prostate and seminal vesicles
should receive as part of the treatment, as well as how much dose is maximally
allowed to the surrounding healthy organs to avoid complications. This radiation
dose that is prescribed for the prostate is called the planning-aim dose. The
clinical protocol of the Amsterdam UMC is formulated in terms of so-called
dose-volume indices. There are two types of dose-volume indices; volume indices
and dose indices. A volume index V o

x is the volume of organ o that receives at
least x% of the planning-aim dose. A dose index Do

x is the lowest dose to the
most irradiated xcm3 of organ o.

Single-objective optimization approaches are often based on a simplified ver-
sion of the clinical protocol [7,8]. All objectives following from the simplified
protocol are combined into a single optimization function by the weighted-sum
approach. As a result, optimized treatment plans often require manual improve-
ments by the medical planners [4], which is a time-consuming and little insight-
ful process. Alternatively, optimizing for all these indices would entail solving a

444 M. C. van der Meer et al.

many-objective optimization problem, for which the results are not straightfor-
ward to interpret, visualize, and use for decision making.

For this reason, two grouped objectives were defined that have proven effec-
tive and insightful for clinical practice [9]. The resulting bi-objective optimiza-
tion model is based directly on the clinical protocol. Dose-volume index criteria
related to the dose coverage of the prostate and the seminal vesicles are combined
into the Least Coverage Index (LCI). Criteria related to the sparing of organs at
risk, namely rectum, bladder, and urethra, are combined into the Least Sparing
Index (LSI). Upper bounds to the amount of radiation the prostate can receive
also fall under the LSI. Since it is unknown a priori how to weight the differ-
ent dose-volume index criteria, the objectives are constructed by combining the
criteria in a worst-case manner, which was observed to be much related to how
plans are manually improved in clinical practice. This results in the following
optimization objectives:

LCI = min
{
V prostate
100% − 95, V vesicles

80% − 95
}
,

LSI = min
{
86 − Dbladder

1cm3 , 74 − Dbladder
2cm3 , 78 − Drectum

1cm3 , 74 − Drectum
2cm3 ,

110 − Durethra
0.1cm3 , 50 − V prostate

150% , 20 − V prostate
200%

}
.

(1)

For catheter position optimization, an additional constraint on the healthy tissue
immediately surrounding the prostate is necessary [11]. This constraint is based
on the number of catheters N :

C =

{
V healthy tissue
200% − 0.125N, for LSI ≥ −25

V healthy tissue
200% − 0.125N

(
1 + −25−LSI

100

)
, for LSI < −25

}

≤ 0. (2)

The result of solving this problem is a trade-off curve of treatment plans that,
when satisfying LCI > 0 and LSI > 0 (and C ≤ 0) adhere to the clinical protocol.
Visualizing this makes the most important trade-offs immediately insightful, as
well as whether the clinical protocol can be achieved.

2.2 Problem Variables

As mentioned in the introduction, there are two decision phases. In the first
phase, the catheter positions need to be optimized. To use the model of Sect. 2.1,
we also need to set the dwell times per catheter. Hence, in the first phase, all
catheter positions are optimized at the same time as the dwell times pertaining
to these catheters. In the second phase, the catheter positions are fixed, and only
the dwell times are to be optimized.

For catheter position optimization, the number of catheters is given as input.
Moreover, constraints are added to the optimization model describing which
catheter positions are feasible. Catheters have to be inside either the prostate
(with a −1 mm margin) or the seminal vesicles. Catheters are not allowed to
intersect with either rectum or urethra (both with a 1 mm margin). Finally, the
distance between the surfaces of each pair of catheters has to be at least 1 mm.
For an in-depth explanation of all details involved, we refer the interested reader
to related literature [11].

Robust Evolutionary Bi-objective Optimization 445

2.3 Evolutionary Optimization

In a comparison between different EAs, the best performing EA for the problem
at hand was the Multi-Objective Real-Valued Gene-pool Optimal Mixing Evolu-
tionary Algorithm (MO-RV-GOMEA) [9]. A key reason is that MO-RV-GOMEA
is capable of exploiting gray-box settings where problem-specific enhancements
can be readily applied. Specifically, MO-RV-GOMEA makes use of so-called par-
tial evaluations. Instead of changing all variables of a potential solution and then
performing an evaluation, the variables are changed in multiple steps, and after
each step an evaluation is performed. If the solution was improved, the change is
kept; if not, the change is reverted. For brachytherapy, these many evaluations
can be done efficiently, because the impact of changes to certain dwell times can
be computed by considering radiation originating from the corresponding dwell
positions only [9]. A similar argument holds for catheter positions [11].

A second reason for its enhanced performance is that MO-RV-GOMEA mod-
els the dependencies between variables by using a so-called Linkage Tree (LT).
At the bottom of this tree, each of the variables is in a singleton set. Higher
up, sets are merged together based on the strength of the dependencies between
their variables. At the top of the LT, all sets have been merged, resulting in a
single set containing all variables. Combining all sets in the LT results in the
so-called Family Of Subsets (FOS). During optimization, all FOS elements are
considered. For every FOS element, a joint Gaussian distribution is estimated,
based on a selection of best solutions. Such a Gaussian distribution is known to
work well when there is no gradient information and the fitness landscape may
not be smooth everywhere, e.g., it is adopted by the state-of-the-art real-valued
EA known as CMA-ES [6]. The variables that are in one FOS element are then
resampled together based on this distribution. This way, dependencies between
variables are taken into account. When applied to brachytherapy, the dependen-
cies between variables are modelled based on the distances between the dwell
positions [9,11].

3 Accounting for Uncertainties via Robust Optimization

3.1 Organ Reconstructions: A Problem-Specific Solution

While the dose-volume indices of a treatment plan are theoretically uniquely
defined, computing values for these indices in practice is not. A key reason is
that dose-volume indices are computed from 3D (organ) volumes. However, med-
ical scans are usually sets of 2D images. An algorithm is then used to reconstruct
the 3D organ shapes from delineations, performed on the 2D images. Due to the
limited resolution of the medical images, such a reconstruction is not uniquely
defined and differs from one clinical system to another. A solution is to perform
robust optimization over different organ reconstructions, to avoid overfitting on
one particular reconstruction. Three organ reconstruction settings have previ-
ously been studied, for details, see [10]. Combinations of these settings yield 8
possible 3D organ reconstructions per patient. Hence, there are 8 combinations

446 M. C. van der Meer et al.

of (LCI,LSI,C) values per plan. Taking again a worst-case scenario approach
to combining objective values (in this case defined for different reconstruction
settings), the robust optimization model is defined as

LCI = min
i=1,...,8

{LCIi} , LSI = min
i=1,...,8

{LSIi} , C = max
i=1,...,8

{Ci} . (3)

This model is identical for both dwell time optimization and catheter posi-
tion optimization. A straightforward implementation would be to compute the
LCI, LSI, and C 8 times. This would lead to approximately 8 times more com-
putational effort, as calculating the objective values associated with a treatment
plan is the most time-consuming component in the EA. With runtime being
important for clinical usability, reducing this additional runtime is important.
To do so, advantage is taken of the large volume overlap between different organ
reconstructions (i.e., it is at the borders that organ reconstructions differ, not
at the interiors). When evaluating the quality of a treatment plan, the dose in
each overlapping part of the patient in all scenarios is calculated only once. The
parts that do not overlap are small, and evaluated separately, for each recon-
struction. After this, the dose-volume indices are calculated 8 times. As a result,
performing a fixed number of evaluations is only approximately twice as slow as
the original optimization.

3.2 Catheter Displacements: An EA Generic Solution

When catheters are placed inside the patient, they always end up (slightly)
different from what was planned. Accounting for this uncertainty requires taking
into account the fact that the complete workflow is a sequential decision-making
process. Between catheter position optimization and dwell time optimization,
there is the catheter placement which causes the uncertainty. We will simulate
actual catheter placement by randomly displacing all catheters by 1 mm, where
the 1 mm is based on discussions with a clinical expert. After the displacements,
dwell times are re-optimized, but catheter positions are fixed.

If these displacements are not taken into account, catheter position optimiza-
tion fronts will be overly optimistic compared to the dwell time optimization
fronts, because optimization will overfit on the one scenario in which catheters
are not displaced at all. Hence, a lower number of catheters will appear to be
sufficient than is really the case. As a result, optimization will be an ineffective
decision support tool because likely not enough catheters would be placed in the
patient to ensure a good treatment.

To avoid this, the random catheter displacements should thus be taken into
account in the optimization. The most straightforward approach to do so cor-
rectly would be to consider many catheter displacements (in the order of 100)
each time a set of catheter positions is evaluated. For each catheter displacement,
dwell times would be separately optimized, to take into account that dwell time
optimization is performed again after the catheters are displaced. Unfortunately,
this would be prohibitively computationally expensive, because one full dwell-
time optimization takes about 30 s [2] and we have only a few minutes to decide
catheter positions in clinical practice.

Robust Evolutionary Bi-objective Optimization 447

Alternatively, when a set of catheter positions is evaluated, dwell times could
be kept fixed when displacing catheters. This is a conservative lower bound on the
real evaluation, since this disregards the dwell time optimization performed after
catheter placement. This would therefore result in overly pessimistic catheter
position optimization fronts, which is also undesirable from the perspective of a
clinical decision support tool. As a result, too many catheters would be placed
in the patient, which would increase the risk of complications. Moreover, due to
the many scenarios, this approach would still be too computationally expensive.

We therefore propose a third approach that is generic to multi-objective EAs
in sequential decision-making processes under uncertainty where the uncertainty
between stages involves variable realization (i.e., realizing the actual optimized
catheter positions in the clinic). When evaluating a treatment plan for multiple
catheter displacements, dwell times are still kept fixed when displacing catheters.
However, such evaluations are only used to frequently filter the solutions in the
elitist archive. Specifically, every generation, Algorithm 1 is used; outside of the
elitist archive, no robust evaluations over catheter displacements are performed.
This way, some robustness of the treatment plans to catheter displacements
is taken into account, without resulting in too optimistic/pessimistic fronts or
clinically infeasible running times. It should be said that in MO-RV-GOMEA,
the elitist archive plays a role in providing parent solutions, so the impact of
only filtering the elitist archive for robustness this way is potentially larger than
for other EAs that employ elitist archives.

Algorithm 1: Filtering of the elitist archive
1 Let (X, Y) be the representation of a catheter position.
2 Make a backup of the catheter positions in the elitist archive.
3 for m=1,. . . ,100 do
4 for all catheters i do
5 Sample θ uniformly in [0, 2π].
6 for all solutions j in the elitist archive do
7 X(j) += 1mm · cos(θ).
8 Y (j) += 1mm · sin(θ).
9 Apply boundary repair if necessary.

10 end

11 end
12 Evaluate the elitist archive.
13 Restore the backup of the catheter positions in the elitist archive.

14 end
15 for all solutions j in the elitist archive do
16 Determine the Nadir point of j of the 100 evaluations.
17 end
18 Filter the elitist archive based on the Nadir points: solutions for which its Nadir

point is dominated by the Nadir point of another solution, are removed from
the elitist archive.

448 M. C. van der Meer et al.

4 Experiments

In our experiments, we simulate the workflow of clinical practice, including
the sequential decision-making steps. The goal is to see whether with our new
approach, good plans can still be obtained and, possibly more importantly,
whether the predicted quality of plans in the first stage is a realistic represen-
tation of plans obtained in the second stage. If so, a properly informed decision
can be made about the number of catheters to use for a particular patient.

A simulation of the workflow starts with catheter position optimization. The
running time is limited to 15 min. After catheter position optimization, a single
treatment plan is selected from the front, with the highest quality in terms of
min{LCI,LSI}. This quality is defined as L:

L := max
plans j in front

{min {LCIj ,LSIj}} . (4)

Subsequently, dwell time optimization is performed again separately. The run-
ning time is limited to 6 min for the original dwell time optimization, and 15 min
for the robust dwell time optimization. We use larger runtimes here than strictly
needed in clinical practice because we want to observe also the convergence prop-
erties of the EA. Each simulated workflow is applied to the data of 3 patient
cases for 16, 10, and 4 catheters. Due to the randomness in the EA and the
catheter displacements, 10 runs are performed of each simulated workflow.

Three approaches are compared. Catheter position optimization is always fol-
lowed by catheter displacements and robust dwell time optimization over organ
reconstructions. The first approach uses the original catheter position optimiza-
tion, where no uncertainties are considered at all. The second approach uses
the robust catheter position optimization over only organ reconstructions. The
third approach uses the robust catheter position optimization over both organ
reconstructions and catheter displacements, using elitist archive filtering as in
Algorithm 1.

The difference between the results of catheter position optimization and dwell
time optimization is tested with a paired samples t-test on L for each of the
patients, numbers of catheters, and versions of catheter position optimization
separately, whereby the difference was considered to be statistically significant if
p < 0.00185. This includes a Bonferroni correction for 27 test, i.e., p < 0.05/27.

To study the convergence of MO-RV-GOMEA, we use the well-known hyper-
volume metric [12], i.e., the area in the bi-objective space that is covered by
the front and a so-called reference point. Here, we choose the reference point
(−30,−30) and only consider solutions in the front dominating this point.

For all code, a GPU-acceleration was implemented in CUDA (NVIDIA Cor-
poration, Toolkit v8.0.61), based on previous work [2]. Optimization was per-
formed on an NVIDIA Titan Xp, which contained 12 GB of memory.

5 Results

The results of the original catheter position optimization are shown in Fig. 2.
The part of the objective space where all aims in the clinical protocol are

Robust Evolutionary Bi-objective Optimization 449

satisfied, i.e. LCI > 0 and LSI > 0, is highlighted. The influence magnitude of
the uncertainties depends on the patient and the number of catheters. Except for
patient 2 with 16 catheters, there is a statistically significant difference between
the catheter position and dwell time fronts. This means that the catheter posi-
tion fronts are not realistic, as they are higher than what is obtained when taking
into account the uncertainties. This shows the need for robust optimization.

The results of robust catheter position optimization over only organ recon-
struction settings are shown in Fig. 3. For 16 catheters, for all patients, there
is no statistically significant difference between the catheter position and dwell
time fronts. Hence, in these cases, only robust optimization over organ recon-
struction settings is needed. It should be noted that the catheter position fronts
have dropped towards the dwell time fronts, but the dwell time fronts them-
selves did not improve. Hence, taking into account organ reconstruction settings
during catheter position optimization results in more realistic fronts, but not
necessarily in better catheter positions.

For patient 1 with 4 catheters, and for patient 2 with 10 and 4 catheters, there
is still a statistically significant difference between the catheter position and dwell
time fronts. Hence, in these cases, taking into account only organ reconstruction
settings is not sufficient to also obtain robustness to catheter displacements. This
shows the need for robust optimization over both uncertainties.

The results of robust catheter position optimization over both organ recon-
struction settings and catheter displacements are shown in Fig. 4. For all patients
and numbers of catheters, there is no statistically significant difference between
the catheter position and dwell time fronts. Hence, the catheter position fronts
are now realistic. It can be seen that with 16 catheters, for all patients, plans exist
that satisfy all constraints in the clinical protocol (i.e., LCI > 0 and LSI > 0).
This is sometimes the case for 10 catheters, and never for 4 catheters.

Finally, the hypervolume values of the fronts of the three types of catheter
position optimization over time are shown in Fig. 5. For these patients, even
with robust optimization, convergence is still achieved quickly, indicating that
in clinical practice we may very well use only 5 min instead of 15, which is
clinically acceptable.

6 Discussion

In this paper, we introduced preclinical work on robust optimization for high-
dose-rate prostate brachytherapy. By performing robust optimization over both
organ reconstruction settings and catheter displacements, the catheter position
and dwell time fronts obtained in the first and second stages of the sequen-
tial decision-making process become virtually the same. Hence, decisions based
on the catheter position fronts are now more representative of the resulting
dwell time fronts. The larger part of this robustness appears to be due to the
robust optimization over organ reconstructions, rather than over catheter dis-
placements. It should still be studied whether this also holds for different patients
and numbers of catheters.

450 M. C. van der Meer et al.

-15 -10 -5 0 5
-20
-10

0
10

16
 c

at
he

te
rs

LS
I (

%
)

Patient 1

-15 -10 -5 0 5
-20
-10

0
10

Patient 2

-15 -10 -5 0 5
-20
-10

0
10

Patient 3

-15 -10 -5 0 5
-20
-10

0
10

10
 c

at
he

te
rs

LS
I (

%
)

-15 -10 -5 0 5
-20
-10

0
10

-15 -10 -5 0 5
-20
-10

0
10

-15 -10 -5 0 5
LCI (%)

-20
-10

0
10

4
ca

th
et

er
s

LS
I (

%
)

-15 -10 -5 0 5
LCI (%)

-20
-10

0
10

-15 -10 -5 0 5
LCI (%)

-20
-10

0
10

Original catheter position optimization
Selected plans from the catheter position optimization
Robust dwell time optimization over reconstructions after displacements

Fig. 2. The original (non-robust) catheter position optimization (blue), for selected
plans (white circles) followed by catheter displacements and robust dwell time opti-
mization over organ reconstruction settings (orange). Ten runs are shown. (Color figure
online)

-15 -10 -5 0 5
-20
-10

0
10

16
 c

at
he

te
rs

LS
I (

%
)

Patient 1

-15 -10 -5 0 5
-20
-10

0
10

Patient 2

-15 -10 -5 0 5
-20
-10

0
10

Patient 3

-15 -10 -5 0 5
-20
-10

0
10

10
 c

at
he

te
rs

LS
I (

%
)

-15 -10 -5 0 5
-20
-10

0
10

-15 -10 -5 0 5
-20
-10

0
10

-15 -10 -5 0 5
LCI (%)

-20
-10

0
10

4
ca

th
et

er
s

LS
I (

%
)

-15 -10 -5 0 5
LCI (%)

-20
-10

0
10

-15 -10 -5 0 5
LCI (%)

-20
-10

0
10

Robust catheter position optimization over reconstructions
Selected plans from the catheter position optimization
Robust dwell time optimization over reconstructions after displacements

Fig. 3. The robust catheter position optimization over organ reconstruction settings
(blue), for selected plans (white circles) followed by catheter displacements and robust
dwell time optimization over organ reconstruction settings (orange). Ten runs are
shown. (Color figure online)

Robust Evolutionary Bi-objective Optimization 451

-15 -10 -5 0 5
-20
-10

0
10

16
 c

at
he

te
rs

LS
I (

%
)

Patient 1

-15 -10 -5 0 5
-20
-10

0
10

Patient 2

-15 -10 -5 0 5
-20
-10

0
10

Patient 3

-15 -10 -5 0 5
-20
-10

0
10

10
 c

at
he

te
rs

LS
I (

%
)

-15 -10 -5 0 5
-20
-10

0
10

-15 -10 -5 0 5
-20
-10

0
10

-15 -10 -5 0 5
LCI (%)

-20
-10

0
10

4
ca

th
et

er
s

LS
I (

%
)

-15 -10 -5 0 5
LCI (%)

-20
-10

0
10

-15 -10 -5 0 5
LCI (%)

-20
-10

0
10

Robust catheter position optimization over reconstructions and displacements
Selected plans from the catheter position optimization
Robust dwell time optimization over reconstructions after displacements

Fig. 4. The robust catheter position optimization over organ reconstruction settings
and catheter displacements (blue), for selected plans (white circles) followed by catheter
displacements and robust dwell time optimization over organ reconstruction settings
(orange). Ten runs are shown. (Color figure online)

0 200 400 600
Time (s)

0

0.5

1

1.5

2

H
yp

er
vo

lu
m

e
(x

1,
00

0)

Patient 1

0 200 400 600
Time (s)

0

0.5

1

1.5

2
Patient 2

0 200 400 600
Time (s)

0

0.5

1

1.5

2
Patient 3

Original catheter position optimization (N = 16,10,4)
Robust catheter position optimization over reconstructions (N = 16,10,4)
Robust catheter position optimization over reconstructions and displacements (N = 16,10,4)

Fig. 5. The hypervolume values of the fronts of the three types of catheter position
optimization (colors) over time. For all patients and numbers of catheters (16 is solid,
10 is dotted, 4 is dashed), the average over ten runs is shown. (Color figure online)

452 M. C. van der Meer et al.

In the simulated workflow, only a single set of catheter positions was selected
from each catheter position front. After random catheter displacements, dwell
time optimization was sufficient to obtain a front of equally good plans again.
Combined with the fact that different catheter position configurations are indeed
obtained along the front of the first-stage optimization, this suggests that the
problem of robust catheter position optimization itself is highly redundant,
e.g. due to many (almost) equally good local optima. Arguably, positioning
itself could be considered to be single-objective: the objective of maximizing
min{LCI,LSI} would have been sufficient. However, a more in-depth analysis
with physicians is needed of the different catheter position configurations that
are obtained to see if there are any other reasons to deviate from this.

The proposed techniques for robust optimization are more general than this
optimization method (MO-RV-GOMEA) or these uncertainties (organ recon-
struction settings and catheter displacements). Besides the generality of the
elitist archive filtering for sequential multi-objective decision making under
uncertainty, it is for instance likely that the technique for re-using intersec-
tions of organs will also work for different uncertainties related to organ shape
and catheter positions (such as uncertainties in delineations [1] and catheter
angles [5]). This could be explored in future work.

7 Conclusion

We showed how a recently introduced state-of-the-art evolutionary bi-objective
optimization approach for high-dose-rate prostate brachytherapy can be
extended to include robust optimization, without requiring a prohibitively large
running time when optimized with MO-RV-GOMEA. Two types of uncertainty
were considered: one with a fixed set of scenario’s, and one with a stochastic
component. Using a different approach for each type of uncertainty, both were
included directly in the optimization. The results show that more realistic fronts
of catheter position optimization can now be obtained. This way, the optimiza-
tion can be used more reliably in clinical practice as a basis for making such
important clinical decisions as how many catheters to use for a particular patient
and where to place them. Moreover, additional insights into the optimization can
now be obtained. Specifically, we have learned that a promising approach that
may well improve run time further may be to robustly optimize catheter posi-
tions single-objectively, by optimizing the minimum of the two objectives in the
original optimization model.

Acknowledgements. This work is part of the research program IPPSI-TA, which has
project number 628.006.003 and is financially supported by the Netherlands Research
Council (NWO) and Elekta AB (Stockholm, Sweden). The authors gratefully acknowl-
edge the support of the NVIDIA Corporation with the donation of the Titan Xp GPU
used for this research.

Robust Evolutionary Bi-objective Optimization 453

References

1. Balvert, M., den Hertog, D., Hoffmann, A.L.: Robust optimization of dose-volume
metrics for prostate HDR-brachytherapy incorporating target and OAR volume
delineation uncertainties. INFORMS J. Comput. 31(1), 100–114 (2019)

2. Bouter, A., Alderliesten, T., Pieters, B.R., Bel, A., Niatsetski, Y., Bosman,
P.A.N.: GPU-accelerated bi-objective treatment planning for prostate high-dose-
rate brachytherapy. Med. Phys. 46(9), 3776–3787 (2019)

3. Deb, K.: Multi-objective optimisation using evolutionary algorithms: an introduc-
tion. In: Wang, L., Ng, A., Deb, K. (eds.) Multi-objective Evolutionary Optimisa-
tion for Product Design and Manufacturing, pp. 3–34. Springer, London (2011).
https://doi.org/10.1007/978-0-85729-652-8 1

4. Dinkla, A.M., et al.: A comparison of inverse optimization algorithms for
HDR/PDR prostate brachytherapy treatment planning. Brachytherapy 14(2),
279–288 (2015)

5. Gorissen, B.L.: Practical robust optimization techniques and improved inverse
planning of HDR brachytherapy. Tilburg University, School of Economics and Man-
agement, Tech. rep. (2014)

6. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evol. Comput. 11(1), 1–18 (2003)

7. Karabis, A., Belotti, P., Baltas, D.: Optimization of catheter position and dwell
time in prostate HDR brachytherapy using HIPO and linear programming. In:
Dössel, O., Schlegel, W.C. (eds.) World Congress on Medical Physics and Biomed-
ical Engineering, pp. 612–615. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03474-9

8. Lessard, E., Pouliot, J.: Inverse planning anatomy-based dose optimization for
HDR-brachytherapy of the prostate using fast simulated annealing algorithm and
dedicated objective function. Med. Phys. 28(5), 773–779 (2001)

9. Luong, N.H., Alderliesten, T., Bel, A., Niatsetski, Y., Bosman, P.A.N.: Application
and benchmarking of multi-objective evolutionary algorithms on high-dose-rate
brachytherapy planning for prostate cancer treatment. Swarm Evol. Comput. 40,
37–52 (2018)

10. van der Meer, M.C., et al.: Sensitivity of dose-volume indices to computation set-
tings in high-dose-rate prostate brachytherapy treatment plan evaluation. J. Appl.
Clin. Med. Phys. 20(4), 66–74 (2019)

11. van der Meer, M.C., Pieters, B.R., Niatsetski, Y., Alderliesten, T., Bel, A., Bosman,
P.A.N.: Better and faster catheter position optimization in HDR brachytherapy for
prostate cancer using multi-objective real-valued GOMEA. In: Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 1387–1394 (2018)

12. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—
a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0056872

https://doi.org/10.1007/978-0-85729-652-8_1
https://doi.org/10.1007/978-3-642-03474-9
https://doi.org/10.1007/978-3-642-03474-9
https://doi.org/10.1007/BFb0056872

A Hybrid Evolutionary Algorithm
for Reliable Facility Location Problem

Han Zhang , Jialin Liu , and Xin Yao(B)

Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,
Department of Computer Science and Engineering, Southern University of Science

and Technology, Shenzhen 518055, China
11849181@mail.sustech.edu.cn, {liujl,xiny}@sustech.edu.cn

Abstract. The reliable facility location problem (RFLP) is an impor-
tant research topic of operational research and plays a vital role in the
decision-making and management of modern supply chain and logistics.
Through solving RFLP, the decision-maker can obtain reliable location
decisions under the risk of facilities’ disruptions or failures. In this paper,
we propose a novel model for the RFLP. Instead of assuming allocating
a fixed number of facilities to each customer as in the existing works,
we set the number of allocated facilities as an independent variable in
our proposed model, which makes our model more close to the scenarios
in real life but more difficult to be solved by traditional methods. To
handle it, we propose EAMLS, a hybrid evolutionary algorithm, which
combines a memorable local search (MLS) method and an evolutionary
algorithm (EA). Additionally, a novel metric called l3-value is proposed
to assist the analysis of the algorithm’s convergence speed and exam the
process of evolution. The experimental results show the effectiveness and
superior performance of our EAMLS, compared to a CPLEX solver and
a Genetic Algorithm (GA), on large-scale problems.

Keywords: Reliable facility location problem · Integer programming ·
Hybrid algorithm · Evolutionary algorithm · Local search

1 Introduction

The facility location problem aims at finding the optimal locations for facilities
from a set of candidate location nodes in order to minimize the cost such as the
fixed facility cost and the transposition cost, or to maximize the total revenue.
In general, there are also some constraints to be considered, such as satisfying
all customers’ demands, etc. It is an NP-hard optimization problem [1–3] and

This work was supported by the National Key R&D Program of China (Grant
No. 2017YFC0804003), the National Natural Science Foundation of China (Grant
No. 61976111, 61906083), the Guangdong Provincial Key Laboratory (Grant No.
2020B121201001), the Program for Guangdong Introducing Innovative and Enter-
preneurial Teams (Grant No. 2017ZT07X386), the Science and Technology Innova-
tion Committee Foundation of Shenzhen (Grant No. JCYJ20190809121403553), the
Shenzhen Science and Technology Program (Grant No. KQTD2016112514355531)
and the Program for University Key Laboratory of Guangdong Province (Grant No.
2017KSYS008).

c© The Author(s) 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 454–467, 2020.
https://doi.org/10.1007/978-3-030-58115-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_32&domain=pdf
http://orcid.org/0000-0001-8243-1135
http://orcid.org/0000-0001-7047-8454
http://orcid.org/0000-0001-8837-4442
https://doi.org/10.1007/978-3-030-58115-2_32

A Hybrid Evolutionary Algorithm for Reliable Facility Location Problem 455

has attracted much attention from researchers in both the scientific community
and engineering field due to its wide application in real world. The facilities
could be hospitals, restaurants, post stations, bus stations, industrial plants,
banks, warehouses, and distribution centers, etc. The facility location decision
has high precedence in the whole logistics decisions and has a great influence
on subsequent operation level decisions [4]. Daskin et al. [1] regards the location
decisions as “the most critical and most difficult of the decisions needed to realize
an efficient supply chain”.

In RFLP, the facility is not always available all the time [1]. One or more of
them may not work from time to time because of disruptions, examples include
natural disasters, inclement weather, destruction of facilities by fire or flood,
expiration of the contract, and any other force majeure factors. In such a sit-
uation, these are facility “failures”. The failures of the facilities will result in
excessive transportation costs because the customers that were considered to
be served by them must be served by other, usually more distant, facilities [1].
Therefore, by solving RFLP, we can get a location decision which can ensure a
certain level of reliability to guarantee customers can get service when facilities’
failures occur.

Many models have been proposed for RFLP, in which all kinds of factors were
taken into account and many of them are formulated for specific applications in
real life. In addition, large-scale RFLP problems have rarely been considered.
The algorithms studied in literature were mainly tested on problems of small
size.

This paper focuses on two aspects: the problem formulation and the algo-
rithm. Based on the work of [5,6], we propose a new reliable facility location-
allocation problem (RFLP) formulation, which does not fix the number of allo-
cated facilities to each customer as a constant and is more close to reality. The
resulted model is a nonlinear 0–1 integer programming model which is more
complicated for traditional methods. In this paper, a hybrid evolutionary algo-
rithm called EAMLS is proposed to solve it. EAMLS combines a memorable
local search method with an evolutionary algorithm, which has a good perfor-
mance on both small-scale and large-scale problems considered in this paper. It
is worth mentioning that the instances used in our experiments are much larger
than the ones used in previous work. Furthermore, a convergence metric l3-value
is proposed for analyzing the algorithm and observing the evolutionary process.

The rest of this paper is organized as follows. Section 2 briefly reviews the
related work of RFLP. In Sect. 3, our new RFLP formulation is introduced. We
proposed a hybrid evolutionary algorithm EAMLS in Sect. 4. Section 5 presents
computational studies, and Sect. 6 concludes.

2 Related Work

By solving a specific RFLP, decision-makers expect to get a robust location deci-
sion which is still economical when some facilities fail under various disruptions.
The research can be divided into two categories according to the method used
to handle facility failure or ensure reliability.

456 H. Zhang et al.

Some works [7–9] use a disruptive scenarios approach to describe facility fail-
ure. In this approach, scenarios contain facility failure information, e.g., simul-
taneously disrupted facility sites, modified customer demands, and facility costs,
etc. The disruptive scenarios approach can describe the facility failure informa-
tion well, but it usually requires plenty of scenarios to cover different disrup-
tive situations, which implies large computational cost, especially for large-scale
problems.

Another approach to ensure reliability is to allocate two or more facilities to
serve each customer [5,6,10,11]. In this approach, the method for reliability is
intuitive and easy to understand. Both a location decision (which contains how
many facilities needed to build and where to build them) and an allocation deci-
sion (which shows how to allocate facilities to serve customers) are determined
before the occurrences of facilities’ disruptions/failures.

Some RFLP models have been proposed, e.g., models proposed by Li et al.
[5] and Snyder and Darskin [6]. Table 1 summarizes the notations used in the
models.

Table 1. Description of notations.

Notations Description Notations Description

I the set of customers, index
by i;

m # of facilities allocated for
each customer;

J the set of candidate location
sites, index by j;

p the facility failure
probability;

NF the set of candidate location
sites that will not fail;

fi the fix cost of j;

F the set of candidate location
sites that may fail;

α weighted parameter;

cij the cost of per unit demand
shipped from j to i;

hi the demands of customer i;

Besides, there are two sets of decision variables: location decision variables
(X) and allocation decision variables (Y):

Xj =
{

1, if candidate location site j is selected;
0, otherwise. (1)

Yijr =
{

1, if j is allocated as the level-r facility to serve i;
0, otherwise. (2)

In Eq. (2), the “level-r” facility j for customer i means the facility j will provide
service only when the front r allocated facilities (from level-0 to level-(r-1)) fail.

A classical RFLP model in [6] is as follows.

Min αw1 + (1 − α)w2 (3)

A Hybrid Evolutionary Algorithm for Reliable Facility Location Problem 457

Subject to:
w1 =

∑
j∈J

fjXj +
∑
i∈I

∑
j∈J

hicijYij0 (4)

w2 =
∑
i∈I

hi

⎡
⎣ ∑
j∈NF

m−1∑
r=0

cijp
rYijr +

∑
j∈F

m−1∑
r=0

cijp
r(1 − p)Yijr

⎤
⎦ (5)

∑
j∈J

Yijr +
∑

j∈NF

r−1∑
t=0

Yijt = 1 ∀i ∈ I, r = 0, . . . ,m − 1 (6)

Yijr ≤ Xj ∀i ∈ I, j ∈ J, r = 0, . . . , m − 1 (7)

m−1∑
r=0

Yijr ≤ 1 ∀i ∈ I,∀j ∈ J (8)

m = |J | (9)

Xu = 1 (10)

Xj ∈ {0, 1} ∀j ∈ J (11)

Yijr ∈ {0, 1} ∀i ∈ I;∀j ∈ J ; r = 0, . . . ,m − 1 (12)

In this model, there are two objectives in the objective function, w1 is the oper-
ating cost and w2 is the expected failure cost. The objective of the model is to
minimize the weighted sum of the two objectives. Besides, there is an emergency
facility u which will always be selected and not fail, and all customers can get
service from it.

Several shortcomings are observed in the literature:
(1) The number of facilities allocated to each customer (i.e., m in Eq. (9))

is fixed in models of most literature, e.g., m = 2 (i.e., Yij0 and Yij1) in [5] and
m = |J | in [6]. One issue of this allocation setting is the determination of an
appropriate value of m. If m is bigger than the number of selected candidate
location sites, i.e.,

∑
j∈J Xj , it is not in line with the actual situation because

we cannot allocate nonexistent facilities to customers. If we set the value of m
smaller than

∑
j∈J Xj , the value of

∑
j∈J Xj is changed during the exploration

in solution space, therefore it is hard for us to set a suitable m value. If we set
m = 2 directly, which means allocate just one primary facility and one backup
facility to serve each customer, the reliability is a bit weak intuitively.

(2) To our best knowledge, there is a lack of research on the large-scale
problem. The largest problem instance in the related research is 150-node and
the optimization solver such as CPLEX can find near-optimal or even optimal
solutions for the problem.

(3) There is a lack of research on the algorithm which can solve the large-scale
problems efficiently as well.

Correspondingly, this paper:
(1) constructs a new formulation in which a non-fixed allocation setting, i.e.,

m =
∑

j∈J Xj , is used;

458 H. Zhang et al.

(2) proposes a hybrid evolutionary algorithm EAMLS which combines a local
search method with an evolutionary algorithm and performs well on both small-
scale and large-scale problems;

(3) performs experimental studies on large-scale problems whose scale is much
larger than any related literature;

(4) proposes a convergence metric l3-value to help observe the evolutionary
process, adjust parameters and further improve the algorithm.

3 Problem Formulation

We propose a new RFLP formulation in which we set the number of allocated
facilities to each customer as an variable instead of a fixed constant.

The mathematical formulation of our model is as follows, formulated based
on [5,6]. The decision variables are defined by Eqs. (1) and (2).

Min
∑
j∈J

fjXj + α
∑
i∈I

∑
j∈J

m−1∑
r=0

hicijp
r(1 − p)Yijr (13)

Subject to:
m =

∑
j∈J

Xj (14)

m ≥ 2 (15)∑
j∈J

Yijr = 1 ∀i ∈ I; r = 0, . . . ,m − 1 (16)

m−1∑
r=0

Yijr ≤ Xj ∀i ∈ I,∀j ∈ J (17)

Xj ∈ {0, 1} ∀j ∈ J (18)

Yijr ∈ {0, 1} ∀i ∈ I;∀j ∈ J ; r = 0, . . . , m − 1 (19)

The objective function of the model is to minimize the total cost associate with
facilities construction (i.e., the term

∑
j∈J fjXj) and transportation between

the facilities and customers (i.e., the term
∑

i∈I

∑
j∈J

∑m−1
r=0 hicijp

r(1−p)Yijr).
Constraint (14) makes the number of facilities allocated to each customer

(i.e., m) a variable and its value is related to location decision variables (i.e.,
X). Constraint (15) represents at lease two facilities are constructed to ensure
reliability. Constraint (16) assures only one facility can be the level-r supplier
of customer i. Constraint (17) means candidate location site j can be allocated
to customer as a supplier only when it is selected. Constraint (18) and (19) are
standard integrality constraints.

Compared with classical models shown in Sect. 2, the significant difference
in our model is the new non-fixed facility allocation setting, i.e., constraint (14).
In our model, the value of m is not fixed but varies with decision variables X,
therefore it is more realistic, ensures reliability, but makes our model much more
complex and difficult to solve by traditional methods as well.

A Hybrid Evolutionary Algorithm for Reliable Facility Location Problem 459

4 A Hybrid Evolutionary Algorithm: EAMLS

This paper develops a new hybrid evolutionary algorithm EAMLS (Evolutionary
Algorithm with Memorable Local Search) which combines a memorable local
search method and an EA, and a convergence metric l3-value is proposed. In this
section, the structure of EAMLS is explained first, then the design of operators
of the Genetic Algorithm (GA) and EAMLS is introduced. Finally, the details
of l3-value are described.

4.1 EAMLS

Algorithm 1 is the pseudo-code of EAMLS. Compared with the GA, the main
characters of EAMLS contain: (1) no crossover operation; (2) population size
self-adaptation; (3) the combination of a memorable local search (MLS) and
EA; and (4) the adoption of convergence metric l3-value.

In Algorithm 1, variable allNeighborInds stores all non-repeating neighbor-
hood individuals generated by MLS before current generation and is updated at
the end of every generation (Algorithm 1, Line 2 and Line 13). In the evolutionary
process, a new population is generated from the current population after muta-
tion, MLS, and survival selection (Algorithm 1, Lines 5–8), and convergence met-
ric l3-value is calculated (Algorithm 1, Line 9). If l3-value is bigger than a pre-set
threshold β, population size is increased by a pre-set step size p (Algorithm 1, Lines
10–12). The description of the l3-value will be shown in Sect. 4.3.

Algorithm 2 is the pseudo-code of the memorable local search (MLS). First,
we will introduce the definition of the neighborhood. The neighborhood of an
individual is the set of individuals whose Hamming distance is 1 from that

Algorithm 1. Evolutionary Algorithm with Memorable Local Search.
Input: G: number of generations; μ: population size; l: individual length; m: mutation

rate; β: threshold of l3-value; p: step size of population self-adaptation;
Output: bestSol: the best individual in the final population;
1: initPop ← initializePop(μ, l);
2: allNeighborInds ← an empty set;
3: pop ← evaluatePop(initPop);
4: for g = 1 to G do
5: popAfterMutation ← mutation(pop, m);
6: offspring ← evaluatePop(popAfterMuation);
7: offspringLS ← memorableLocalSearch(pop, offspring);
8: pop ← survival(pop, offspring, offspringLS , μ);
9: l3-value ← getl3V alue(pop, allNeighborInds);

10: if l3-value> β then
11: μ ← μ + p;
12: end if
13: add offspringLS to allNeighborInds;
14: end for
15: bestSol ← selectBestIndividual(pop)
16: Return bestSol

460 H. Zhang et al.

Algorithm 2. Memorable Local Search.
Input: pop: the parent population; offspring: the child population generated after

mutation; n: # of individuals which need to check whether to do local search;
indLSed:the set of individuals which have already down local search before this
generation;

Output: offspringLS : the population generated by local search;
1: offspringLS ← an empty set;
2: parentPop ← combine pop and offspring;
3: sortedParentPop ← sort parentPop by fitness increasing order;
4: i ← 0;
5: for j ← 1 to len(sortedParentPop) do
6: if sortedParentPop[j] not in indLSed then
7: neighborInds ← generateNeighbor(sortedParentPop[j]);
8: add neighborInds to offspringLS ;
9: i ← i + 1;

10: if i > n then
11: break;
12: end if
13: end if
14: end for
15: Return offspringLS

individual. In MLS, sort (μ + λ) population (variable sortedParentPop in
Algorithm 2) in decreasing order, i.e., good individuals are in the front. Then
check individuals one by one in sorted (μ + λ) population whether it has been
local-searched before this generation, and do local-search for those have not been
local-searched (Lines 5–7 in Algorithm 2. It looks like that the algorithm remem-
bers all local-searched individuals and that’s why we name it Memorable Local
Search). Exit the loop until the number of new individuals which have been
local-searched in this generation reaches n (Lines 9–12 in Algorithm 2).

4.2 Operator Design of GA and EAMLS

In Sect. 5, we use a GA for comparison. Here some operators’ design for GA and
EAMLS is as follows1:

Representation. This paper uses binary representation. Every bit represents
a location decision variable Xj , j ∈ J .

Population Initialization. Stochastic initialization is used in GA and EAMLS.
Every gene of an individual takes 0 or 1 with equal probability.

Fitness Function. In general, the bigger the fitness value is, the better the indi-
vidual will be. Therefore, the reciprocal of the objective value of the individual
is used as the fitness function.

1 If there is no special statement, that operator is adopted in both GA and EAMLS.

A Hybrid Evolutionary Algorithm for Reliable Facility Location Problem 461

Selection Operator. In GA, roulette wheel selection is used to select parents
to do crossover operation.

Crossover Operator. In GA, a one-point crossover operator is used. For two
parent individuals selected by the selection operator, do crossover operation
according to a pre-set crossover rate.

Mutation Operator. The bit-flipping mutation is used in GA and EAMLS.
During mutation, every gene/bit of one individual mutates with a pre-set muta-
tion rate.

Survival Selection Strategy. We adopt (μ + λ) strategy to select next gen-
eration population from (μ + λ) population, i.e., the mixed population of the
current generation population and the offspring.

Repair Strategy. Repair strategy is working when there are individuals which
do not satisfy the constraint (15). For an individual needed repair, check every
gene in ascending order of fixed cost and change the gene with 0-value to 1 until
the individual satisfies the constraint (15).

How to DetermineY. For one customer, the selected candidate locations (i.e.,
locations whose Xj = 1) are allocated to it in ascending order of distance, which
has been proved the optimal allocation pattern under a certain solution X [6]
and can satisfy the constraints (12), (13), and (15).

4.3 Convergence Metric l3-Value

In order to observe the evolutionary process, a convergence metric l3-value is
proposed.

Algorithm 3 is the pseudo-code of the calculation method of l3-value. The
new population generated after survival selection is checked, and the number of
individuals which also belong to the set allNeighborInds is counted (Lines 2–6
in Algorithm 3). Then we calculate the proportion of these individuals in the
population as l3-value (Line 7 in Algorithm 3). l3-value can be used to measure
the convergence during the evolutionary process. The bigger the l3-value is, the
stronger the evolution converges.

Algorithm 3. Function getl3V alue().
Input: pop: the new population after survival selection; allNeighborInds: the set of

all individuals generated by memorable local search before this generation;
Output: l3-value;
1: num ← 0;
2: for ind ∈ pop do
3: if ind ∈ allNeighborInds then
4: num ← num + 1;
5: end if
6: end for
7: l3-value ← num/len(pop);
8: Return l3-value

462 H. Zhang et al.

5 Computational Studies

Because this paper proposes a new problem, and there are not any algorithms like
EAMLS can be used to compare directly, we compare EAMLS with a GA and
CPLEX (a commercial optimization solver of IBM) on two models: m = 2 and
m =

∑
j∈JXj models. The difference between the two models is the allocation

setting. In the m = 2 model, the number of facilities allocated to each customer,
i.e. m, is fixed to 2, which is adopted in much literature. The m =

∑
j∈JXj

model is proposed by us in this paper and m varies with decision variables X
during the search process. Section 5.1 shows the experimental design, including
instances generation, parameters setting, and experimental environment. The
experiments and results of the m = 2 and m =

∑
j∈JXj models are presented in

Sect. 5.2. Analyses and discussions are given in Sect. 5.3.

5.1 Experimental Design

Instance Generation. This paper generates problem instances uniformly at
random on different scales. The parameters used to generate instances are shown
in Table 2. There are eight 10-node instances, eight 50-node instances, eight 100-
node instances, and four 600-node instances.

Table 2. Parameters used in instances generation

Parameters Ranges

Candidate location coordinate [0,1]

Customer demands {0,1,...,1000}
Fixed cost of facility {500,501,...,1500}
Facility failure probability 0.05

Parameter Setting of Algorithms. Some parameters’ values of GA and
EAMLS are shown in Table 3. Table 4 presents the generation number and pop-
ulation size of GA and EAMLS, which associate with the scale of problem
instances. The values of parameters in Tables 3 and 4 are chosen arbitrarily
on the basis of meeting the following conditions: (1) EAMLS converges at the
end of evolution; (2) the number of fitness evaluations (FEs) of GA is not lower
than EAMLS. Besides, the default parameters of CPLEX are used.

Experimental Environment. The algorithms are implemented in Python 3.7
and run on Dell R370 server which has 2x Intel(R) Xeon(R) CPU E5-2650 v4 @
2.20 GHz CPU, 128G RAM, and CentOS 7.6 operating system.

Statistical Test. We use the Wilcoxon sign rank test to determine whether
the results between EAMLS and other methods have statistically significant
differences. The Wilcoxon sign rank test is a non-parameter test which is suitable
for two related or matched samples and compares data in pair, hence it is suitable
to use here.

A Hybrid Evolutionary Algorithm for Reliable Facility Location Problem 463

Table 3. Some parameters of GA and EAMLS

Parameters Value

Crossover rate for GA, c 0.9

Mutation rate, m 0.1

Local search individual, n 10

l3-value threshold, β 0.8

Step size of population self-adaption, p 100

Table 4. Parameters associate with instance size

Instance scale (# nodes) GA EAMLS

Generation Population size # Generation Population size

10 60 30 10 20

50 200 200 20 20

100 400 200 50 100

600 4600 200 250 200

5.2 Experiments on the m=2 and m=
∑

j∈JXj Models

For the m = 2 model, We compare EAMLS with the GA and CPLEX on small-
scale (10-node), mid-scale (100-node), and large-scale (600-node) instances.
There are 30 runs on small and mid-scale instances and 10 runs on large-scale
instances because of time. The computational results are shown in Table 5.

For the m =
∑

j∈JXj model, we compare EAMLS with the GA and CPLEX
on 50 and 100-node instances, and there are 30 runs on each instance. Table 6 is
the computational results.

5.3 Analyses and Discussions

We compare GA, CPLEX, and EAMLS on different scale (10, 100, and 600-
node) problem instances for m = 2 model whose allocation setting is often used
in literature, and the experimental results are shown in Table 5. Experimental
results on 50 and 100-node instances of the new complicated m =

∑
j∈JXj model

are presented in Table 6.
For m = 2 model, from Table 5, we can see that CPLEX performs the best

on both solution quality and time for small and mid-scale (10 and 100-node)
instances. EAMLS can find solutions as good as CPLEX but need more time.
Although CPLEX can solve small and mid-scale instances fast, it needs more
RAM space as the problem scale increases. For large-scale problem (600-node)
instances, EAMLS can find better solutions in less time compared with GA,
while the CPLEX cannot find a solution.

The new m =
∑

j∈JXj model is more complicated to solve, especially for
CPLEX. Table 6 demonstrates that the performance of EAMLS is better than
GA and CPLEX on both solution quality and time.

464 H. Zhang et al.

T
a
b
le

5
.
C

o
m

p
u
ta

ti
o
n
a
l
re

su
lt

s
o
n

m
=

2
m

o
d
el

1
0

(3
0

ru
n
s)

,1
0
0

(3
0

ru
n
s)

,
a
n
d

6
0
0

(1
0

ru
n
s)

-n
o
d
e

in
st

a
n
ce

s.
A

O
V

is
A

v
er

a
g
e

O
b
je

ct
iv

e
V

a
lu

e.
O

R
is

th
e

O
p
ti

m
a
l

R
a
te

a
n
d

ca
lc

u
la

te
d

b
y

(#
ru

n
s

w
h
ic

h
fi
n
d
in

g
th

e
o
p
ti

m
a
l

so
lu

ti
o
n
)/

(#
a
ll

ru
n
s)

.
G

a
p

is
ca

lc
u
la

te
d

b
y

(A
O

V
(o

th
er

m
et

h
o
d
)-

A
O

V
(E

A
M

L
S
))

/
A

O
V

(E
A

M
L
S
).

W
h
en

G
a
p

is
p
o
si

ti
v
e,

th
e

p
er

fo
rm

a
n
ce

o
f
o
th

er
m

et
h
o
d
s

is
w

o
rs

e
th

a
n

E
A

M
L
S
,

o
th

er
w

is
e

b
et

te
r.

T
h
e

sy
m

b
o
l
“
*
”

in
A

O
V

re
p
re

se
n
ts

th
e

re
su

lt
s
b
et

w
ee

n
E

A
M

L
S

a
n
d

th
a
t
m

et
h
o
d

h
av

e
st

a
ti

st
ic

a
ll
y

si
g
n
ifi

ca
n
t
d
iff

er
en

ce
s.

T
h
e

sy
m

b
o
l
“
-”

re
p
re

se
n
ts

C
P

L
E

X
ca

n
n
o
t

so
lv

e
th

e
in

st
a
n
ce

o
r

th
e

o
p
ti

m
a
l
so

lu
ti

o
n

is
u
n
k
n
ow

n
so

n
o

re
su

lt
s

ca
n

b
e

g
iv

en
.

In
st
a
n
ce

N
o
.
G
A

C
P
L
E
X

E
A
M
L
S

A
O
V

G
a
p
(%

)
O
R

T
im

e
A
O
V

G
a
p
(%

)
O
R

T
im

e
A
O
V

G
a
p
(%

)
O
R

T
im

e

1
0
-1

2
4
6
3
.1
9

0
.0
0

1
.0
0

1
.5
2

2
4
6
3
.1
9

0
.0
0

1
.0
0

0
.4
6

2
4
6
3
.1
9

0
.0
0

1
.0
0

6
.1
4

1
0
-2

2
8
7
4
.0
3

0
.0
0

1
.0
0

1
.5
1

2
8
7
4
.0
3

0
.0
0

1
.0
0

0
.4
1

2
8
7
4
.0
3

0
.0
0

1
.0
0

5
.4
6

1
0
-3

2
6
2
3
.3
5

0
.0
0

1
.0
0

1
.7
4

2
6
2
3
.3
5

0
.0
0

1
.0
0

0
.6
6

2
6
2
3
.3
5

0
.0
0

1
.0
0

5
.4
1

1
0
-4

2
3
2
3
.9
2

0
.0
0

1
.0
0

1
.9
3

2
3
2
3
.9
2

0
.0
0

1
.0
0

0
.4
8

2
3
2
3
.9
2

0
.0
0

1
.0
0

5
.8
6

1
0
-5

2
9
1
7
.8
7

0
.0
0

1
.0
0

2
.4
8

2
9
1
7
.8
7

0
.0
0

1
.0
0

0
.5
0

2
9
1
7
.8
7

0
.0
0

1
.0
0

5
.7
1

1
0
-6

3
1
4
9
.3
1

0
.0
0

1
.0
0

2
.7
2

3
1
4
9
.3
1

0
.0
0

1
.0
0

0
.4
1

3
1
4
9
.3
1

0
.0
0

1
.0
0

5
.5
9

1
0
-7

3
3
2
4
.9
8

0
.0
0

1
.0
0

2
.3
9

3
3
2
4
.9
8

0
.0
0

1
.0
0

0
.5
8

3
3
2
4
.9
8

0
.0
0

1
.0
0

5
.6
4

1
0
-8

3
1
6
5
.8
7

0
.0
0

1
.0
0

2
.1
0

3
1
6
5
.8
7

0
.0
0

1
.0
0

0
.5
2

3
1
6
5
.8
7

0
.0
0

1
.0
0

4
.5
8

1
0
0
-1

1
3
0
2
9
.8
3
*

2
2
.2
8

0
.0
0

2
3
7
4
.8
6

1
0
6
4
5
.8
9

–
0
.1
0

1
.0
0

1
4
.3
0

1
0
6
5
6
.1
1

0
.0
0

0
.8
7

1
4
3
1
.1
7

1
0
0
-2

1
3
1
6
6
.4
4
*

2
0
.9
5

0
.0
0

2
3
7
5
.7
1

1
0
8
8
5
.4
3

0
.0
0

1
.0
0

1
4
.3
1

1
0
8
8
5
.4
3

0
.0
0

1
.0
0

1
3
8
7
.0
1

1
0
0
-3

1
2
9
8
2
.3
7
*

1
6
.9
0

0
.0
0

2
3
9
6
.4
2

1
1
1
0
5
.2
1

0
.0
0

1
.0
0

1
4
.7
6

1
1
1
0
5
.3
9

0
.0
0

0
.9
3

1
5
1
4
.1
2

1
0
0
-4

1
3
3
7
9
.4
1
*

1
6
.6
6

0
.0
0

2
3
8
8
.6
7

1
1
4
6
8
.6
4

0
.0
0

1
.0
0

1
4
.4
2

1
1
4
6
8
.6
4

0
.0
0

1
.0
0

1
3
8
2
.9
1

1
0
0
-5

1
4
5
6
3
.4
6
*

1
6
.3
9

0
.0
0

2
3
9
8
.3
4

1
2
5
0
5
.5
1

–
0
.0
5

1
.0
0

1
4
.8
0

1
2
5
1
2
.2
9

0
.0
0

0
.9
0

1
4
1
5
.6
3

1
0
0
-6

1
3
1
8
9
.7
4
*

1
7
.2
9

0
.0
0

2
4
0
2
.4
4

1
1
2
4
5
.5
5

0
.0
0

1
.0
0

1
4
.0
0

1
1
2
4
5
.5
5

0
.0
0

1
.0
0

1
4
4
7
.1
1

1
0
0
-7

1
2
8
4
1
.3
7
*

1
6
.1
1

0
.0
0

1
6
9
6
.8
5

1
1
0
4
3
.7
0

–
0
.1
5

1
.0
0

1
5
.4
9

1
1
0
5
9
.8
9

0
.0
0

0
.9
0

1
3
2
6
.4
1

1
0
0
-8

1
3
8
8
6
.7
8
*

1
8
.3
0

0
.0
0

1
2
4
2
.2
5

1
1
7
3
2
.4
6

–
0
.0
5

1
.0
0

1
4
.9
4

1
1
7
3
8
.8
3

0
.0
0

0
.8
7

1
1
8
0
.9
1

6
0
0
-1

1
4
4
8
9
6
.9
1
*

2
8
1
.0
4

–
6
5
5
4
2
0
.6
7

–
–

–
–

3
8
0
2
6
.6
5

0
.0
0

–
5
6
4
4
3
2
.0
0

6
0
0
-2

1
4
5
5
0
8
.2
3
*

2
9
3
.1
2

–
6
5
6
8
3
2
.5
0

–
–

–
–

3
7
0
1
3
.7
1

0
.0
0

–
5
7
2
5
6
8
.3
4

6
0
0
-3

1
4
1
4
8
6
.2
8
*

2
8
3
.4
1

–
6
5
4
6
3
2
.0
1

–
–

–
–

3
6
9
0
2
.3
6

0
.0
0

–
5
6
8
8
2
4
.9
6

6
0
0
-4

1
4
1
2
5
6
.3
5
*

2
8
2
.8
0

–
6
5
6
6
5
6
.2
1

–
–

–
–

3
6
9
0
0
.5
2

0
.0
0

–
5
6
8
5
4
6
.9
6

A Hybrid Evolutionary Algorithm for Reliable Facility Location Problem 465

T
a
b
le

6
.

C
o
m

p
u
ta

ti
o
n
a
l
re

su
lt

s
o
n

m
=

∑
j
∈J

X
j

m
o
d
el

5
0

a
n
d

1
0
0
-n

o
d
e

in
st

a
n
ce

s,
3
0

ru
n
s.

A
O

V
is

A
v
er

a
g
e

O
b
je

ct
iv

e
V

a
lu

e.
G

a
p

is
ca

lc
u
la

te
d

b
y

((
A

O
V

(o
th

er
m

et
h
o
d
)-

A
O

V
(E

A
M

L
S
))

/
A

O
V

(E
A

M
L
S
).

W
h
en

G
a
p

is
p
o
si

ti
v
e,

th
e

p
er

fo
rm

a
n
ce

o
f
o
th

er
m

et
h
o
d
s

is
w

o
rs

e
th

a
n

E
A

M
L
S
,

o
th

er
w

is
e

b
et

te
r.

T
h
e

sy
m

b
o
l

“
*
”

in
A

O
V

re
p
re

se
n
ts

th
e

re
su

lt
s

b
et

w
ee

n
E

A
M

L
S

a
n
d

th
a
t

m
et

h
o
d

h
av

e
st

a
ti

st
ic

a
ll
y

si
g
n
ifi

ca
n
t

d
iff

er
en

ce
s.

In
st

a
n
ce

N
o
.

G
A

C
P

L
E

X
E

A
M

L
S

A
O

V
G

a
p

(%
)

T
im

e
A

O
V

G
a
p

(%
)

T
im

e
A

O
V

G
a
p

(%
)

T
im

e

5
0
-1

7
0
5
3
.7

1
*

0
.6

8
7
1
9
.7

6
1
2
5
8
9
.4

1
*

7
9
.6

9
4
7
1
5
.5

6
7
0
0
6
.2
3

0
.0

0
9
1
.5
2

5
0
-2

7
1
5
4
.9

3
–
0
.1

3
7
2
0
.4

9
1
5
7
3
4
.8

0
*

1
1
9
.6

3
4
4
8
8
.2

6
7
1
6
4
.2
0

0
.0

0
9
0
.7
5

5
0
-3

6
8
9
0
.5

4
*

0
.7

5
7
1
3
.2

5
1
2
6
5
6
.1

3
*

8
5
.0

6
5
2
1
9
.3

3
6
8
3
8
.9
5

0
.0

0
9
1
.1
0

5
0
-4

7
1
6
6
.6

3
0
.0

4
6
9
8
.4

5
1
2
1
4
7
.9

2
*

6
9
.5

8
4
7
0
2
.0

1
7
1
6
3
.4
2

0
.0

0
9
0
.0
4

5
0
-5

6
9
2
9
.2

9
0
.0

3
7
1
4
.8

6
1
1
9
4
6
.3

5
*

7
2
.4

6
5
2
8
1
.2

7
6
9
2
6
.9
5

0
.0

0
8
7
.4
2

5
0
-6

6
5
7
5
.0

9
0
.2

9
6
9
6
.8

0
1
3
2
8
4
.6

9
*

1
0
2
.6

4
4
8
3
6
.4

5
6
5
5
5
.8
7

0
.0

0
9
0
.5
9

5
0
-7

7
1
6
2
.8

3
0
.0

7
6
8
5
.0

4
1
2
4
4
1
.0

0
*

7
3
.8

1
4
4
9
5
.4

1
7
1
5
7
.7
6

0
.0

0
8
1
.1
9

5
0
-8

7
1
7
5
.8

9
*

0
.2

6
6
2
9
.1

9
1
4
4
3
3
.4

1
*

1
0
1
.6

7
4
5
2
2
.3

5
7
1
5
6
.9
9

0
.0

0
7
0
.0
7

1
0
0
-1

1
2
8
9
5
.1

0
*

2
0
.4

7
3
9
7
6
.9

7
1
1
3
7
8
1
.4

5
*

9
6
3
.0

0
1
9
4
5
1
.6

2
1
0
7
0
3
.7
8

0
.0

0
2
2
6
6
.5
0

1
0
0
-2

1
3
0
9
3
.8

0
*

1
9
.7

7
3
8
2
0
.1

1
1
1
0
4
4
1
.8

9
*

9
1
0
.1

8
1
7
1
5
9
.5

7
1
0
9
3
2
.8
9

0
.0

0
2
1
6
8
.5
4

1
0
0
-3

1
3
0
8
2
.3

8
*

1
7
.2

1
2
7
1
9
.6

8
1
1
4
5
7
6
.2

1
*

9
2
6
.5

2
3
5
8
3
6
.9

1
1
1
1
6
1
.5
9

0
.0

0
2
3
3
7
.3
5

1
0
0
-4

1
3
4
8
4
.6

9
*

1
7
.0

4
2
5
5
1
.5

5
9
9
4
8
4
.6

5
*

7
6
3
.5

0
3
5
1
2
9
.7

4
1
1
5
2
1
.1
1

0
.0

0
2
2
1
7
.0
0

1
0
0
-5

1
4
4
8
4
.7

0
*

1
5
.2

2
2
5
7
9
.1

2
1
1
1
3
3
8
.1

5
*

7
8
5
.6

8
1
7
2
4
9
.1

0
1
2
5
7
0
.8
6

0
.0

0
2
2
7
9
.3
5

1
0
0
-6

1
3
3
6
0
.4

1
*

1
8
.2

0
2
6
2
6
.9

7
9
9
3
9
7
.4

6
*

7
7
9
.3

9
1
9
4
3
3
.8

7
1
1
3
0
2
.9
6

0
.0

0
2
2
8
8
.8
2

1
0
0
-7

1
2
8
1
0
.6

0
*

1
5
.2

0
2
5
5
3
.8

3
1
0
5
4
6
0
.2

2
*

8
4
8
.3

2
1
7
2
7
1
.9

5
1
1
1
2
0
.7
8

0
.0

0
2
0
3
6
.5
8

1
0
0
-8

1
3
8
0
9
.1

2
*

1
7
.0

5
2
5
4
8
.3

2
1
1
2
1
7
0
.7

6
*

8
5
0
.8

2
1
8
6
6
7
.8

8
1
1
7
9
7
.2
5

0
.0

0
1
7
9
2
.0
8

466 H. Zhang et al.

According to the observation of computational results, we can get three fea-
tures of EAMLS: (1) For small- and mid-scale problems, the solutions found
by EAMLS are comparable to those found by other methods; (2) For large-
scale problems, EAMLS significantly outperforms other methods; (3) EAMLS
especially performs well on (a) the new complicated model and (b) large-scale
problems. So why is EAMLS effective? Through combining MLS with EA and
using l3-value to guide the population size to grow gradually, EAMLS performs
a full local search while performing a global search, maintains good population
diversity, as well as speeds up the convergence.

Our algorithm EAMLS performs well on large-scale problem instances of both
m = 2 and m =

∑
j∈JXj models, and its advantage will become more apparent

as the problem scale increases. However, the larger the problem, the greater the
number of FEs needed for EAMLS to converge.

6 Conclusion

This paper proposes a new RFLP formulation in which the number of facilities
allocated to each customer (i.e., m) is not fixed but varies with decision variables
X. This non-fixed allocation setting makes the model more close to scenarios in
real life.

A hybrid evolutionary algorithm EAMLS (which can also be viewed as a
memetic algorithm) is proposed to solve the model. Combining a memorable
local search method and EA, EAMLS performs well on the new complicated
model and large-scale problems considered in this paper, and its advantage will
become more obvious as the problem scale increases. Besides, a convergence
metric l3-value is proposed to analyze the algorithm’s convergence speed and
exam the evolutionary process.

Finally, we explore the large-scale problems of the two models. Under what
conditions is a problem a large-scale problem? It is related to the model and
whether the problem can be solved by the exact algorithm efficiently. For the
m = 2 model which allocates a fixed number of facilities to each customer as in the
existing research, we solve large-scale problem instances (600-node) whose scale
is much larger than other literature. For the new complicated m =

∑
j∈J Xj

model, 100-node instances can be treated as large-scale problems because the
exact algorithm or optimization solver cannot solve them effectively. And our
algorithm EAMLS has good performance on large-scale problems considered in
this paper.

In the future, the model which integrates various factors should be stud-
ied, and more complicated FLPs, such as dynamic FLP and FLP under uncer-
tain environments, should be focused. Furthermore, effective meta-heuristic algo-
rithms for large-scale problems should be studied as well.

A Hybrid Evolutionary Algorithm for Reliable Facility Location Problem 467

References

1. Daskin, M.S., Snyder, L.V., Berger, R.T.: Facility location in supply chain design.
In: Langevin, A., Riopel, D. (eds.) Logistics Systems: Design and Optimization,
pp. 39–65. Springer, Boston (2005). https://doi.org/10.1007/0-387-24977-X 2

2. Farahani, R.Z., Hekmatfar, M.: Facility Location: Concepts, Models, Algorithms
and Case Studies. Springer, New York (2009). https://doi.org/10.1007/978-3-7908-
2151-2

3. Owen, S.H., Daskin, M.S.: Strategic facility location: a review. Eur. J. Oper. Res.
111(3), 423–447 (1998)

4. Riopel, D., Langevin, A., Campbell, J.F.: The network of logistics decisions. In:
Langevin, A., Riopel, D. (eds.) Logistics Systems: Design and Optimization, pp.
1–38. Springer, Boston (2005). https://doi.org/10.1007/0-387-24977-X 1

5. Li, Q., Zeng, B., Savachkin, A.: Reliable facility location design under disruptions.
Comput. Oper. Res. 40(4), 901–909 (2013)

6. Snyder, L.V., Daskin, M.S.: Reliability models for facility location: the expected
failure cost case. Transp. Sci. 39(3), 400–416 (2005)

7. Peng, P., Snyder, L.V., Lim, A., Liu, Z.: Reliable logistics networks design with
facility disruptions. Transp. Res. Part B Methodological 45(8), 1190–1211 (2011)

8. Jabbarzadeh, A., Jalali Naini, S.G., Davoudpour, H., Azad, N.: Designing a supply
chain network under the risk of disruptions. Math. Prob. Eng. 2012, 23 pages
(2012). https://doi.org/10.1155/2012/234324. Article ID 234324

9. Du, B., Zhou, H., Leus, R.: A two-stage robust model for a reliable p-center facility
location problem. Appl. Math. Model. 77, 99–114 (2020)

10. Li, Q., Savachkin, A.: A fast tabu search algorithm for the reliable P-median prob-
lem. In: Gao, D., Ruan, N., Xing, W. (eds.) Advances in Global Optimization,
vol. 95, pp. 417–424. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
08377-3 41

11. Afify, B., Ray, S., Soeanu, A., Awasthi, A., Debbabi, M., Allouche, M.: Evolution-
ary learning algorithm for reliable facility location under disruption. Expert Syst.
Appl. 115, 223–244 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/0-387-24977-X_2
https://doi.org/10.1007/978-3-7908-2151-2
https://doi.org/10.1007/978-3-7908-2151-2
https://doi.org/10.1007/0-387-24977-X_1
https://doi.org/10.1155/2012/234324
https://doi.org/10.1007/978-3-319-08377-3_41
https://doi.org/10.1007/978-3-319-08377-3_41
http://creativecommons.org/licenses/by/4.0/

Reinforcement Learning

Optimality-Based Analysis of XCSF
Compaction in Discrete
Reinforcement Learning

Jordan T. Bishop(B) and Marcus Gallagher

School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, QLD 4072, Australia

{j.bishop,marcusg}@uq.edu.au

Abstract. Learning classifier systems (LCSs) are population-based pre-
dictive systems that were originally envisioned as agents to act in rein-
forcement learning (RL) environments. These systems can suffer from
population bloat and so are amenable to compaction techniques that try
to strike a balance between population size and performance. A well-
studied LCS architecture is XCSF, which in the RL setting acts as a Q-
function approximator. We apply XCSF to a deterministic and stochastic
variant of the FrozenLake8x8 environment from OpenAI Gym, with its
performance compared in terms of function approximation error and pol-
icy accuracy to the optimal Q-functions and policies produced by solv-
ing the environments via dynamic programming. We then introduce a
novel compaction algorithm (Greedy Niche Mass Compaction—GNMC)
and study its operation on XCSF’s trained populations. Results show
that given a suitable parametrisation, GNMC preserves or even slightly
improves function approximation error while yielding a significant reduc-
tion in population size. Reasonable preservation of policy accuracy also
occurs, and we link this metric to the commonly used steps-to-goal metric
in maze-like environments, illustrating how the metrics are complemen-
tary rather than competitive.

Keywords: Reinforcement learning · Learning classifier system ·
XSCF · Compaction

1 Introduction

Reinforcement learning (RL) is characterised by an agent learning a behavioural
policy in an environment by means of maximising a reward signal. Learning
Classifier Systems (LCSs) are a paradigm of cognitive systems that originated
via representing agents in this framework, although due to flexibility in imple-
mentation have also been widely adapted to other kinds of machine learning
(ML) tasks such as classification and clustering [16]. The most widely-studied
LCS architecture to date, Wilson’s XCS [18], is at its heart a reinforcement

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 471–484, 2020.
https://doi.org/10.1007/978-3-030-58115-2_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_33&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_33

472 J. T. Bishop and M. Gallagher

learner. More recently, an extension of XCS to allow for function approxima-
tion, dubbed XCSF [19], has been successfully used in the RL setting for value
function approximation [12,13].

LCSs utilise a combination of evolutionary computation and ML techniques
to create population-based solutions to prediction problems. The most common
style of LCSs are Michigan-style LCSs, where each individual (classifier) in the
population represents a partial solution, and classifiers co-operate in a potentially
overlapping piecewise ensemble to define an overall solution [16]. A general issue
with Michigan-style LCSs is that of population bloat and/or redundancy. Since
these systems learn in an online fashion and regularly refine their population via
a genetic algorithm (GA), after learning is complete there are often members
of the population that have not had time to properly adapt to the environment
and form accurate predictions.

A common way to deal with this issue is to perform a post-processing com-
paction procedure after the system is trained in order to remove low-quality
classifiers from the population [16]. Compaction seeks to shrink the population
size as much as possible while simultaneously minimising degradation of predic-
tive performance. This is often done as part of an analysis pipeline where the
system is being used to “mine” knowledge from the problem via interpretation of
the compacted population [17]. Wilson originally described a compaction algo-
rithm for a variant of XCS trained on a classification problem in [20], and other
algorithms such as those detailed in [7,8,15] extended this line of work. These
algorithms all incorporate some kind of greedy heuristic to preferentially retain
some classifiers over others, and mainly use metrics related to classification per-
formance. Since compaction is related to knowledge discovery, other works have
focused more on this latter task [4,9,17]. What all these works have in common
is that they study compaction in the context of supervised learning.

In this work we apply XCSF to discrete maze-like RL environments and per-
form compaction on the trained populations. We are interested in measuring the
performance of XCSF with respect to the optimal solutions to the environments,
and investigating how performance is impacted when performing compaction. As
part of our analysis we introduce a novel compaction algorithm called Greedy
Niche Mass Compaction (GNMC) as a generalisation of previous work. We also
attempt to connect our optimality metrics to the steps-to-goal metric used by
other work applying LCSs to maze-like environments.

2 Background

2.1 Reinforcement Learning

RL environments can be modelled as a Markov Decision Process (MDP), defined
by components (S,A, T,R, γ) where S is the state space, A is the action space,
T is the transition function, R is the reward function and γ ∈ [0, 1] is the reward
discount factor [14]. We consider the case where the agent interacting with the
environment seeks to learn a deterministic behavioural policy π : S → A. From
the agent’s perspective, T and R are unknown and so learning becomes an act

Optimality-Based Analysis of XCSF Compaction in Discrete RL 473

of balancing exploration with exploitation to sample from T and R in order to
construct π. If the full definition of the MDP is known, dynamic programming
methods such as value iteration can be used to exhaustively obtain an optimal
solution to the problem.

Value iteration yields an optimal Q-function Q∗ : S × A → R, which maps
each state-action pair (s, a) ∈ S × A to a real number representing the utility
of the pair: the expected amount of cumulative discounted reward that can be
obtained from performing action a in state s, and acting optimally thereafter. An
optimal policy π∗ can then be constructed by acting greedily with respect to Q∗.
One of the main approaches to RL is to have the agent build an approximation Q̂
to Q∗ from its environmental experience using e.g. temporal difference learning
techniques such as Q-learning [14]. The agent’s approximation π̂ to π∗ can then
be constructed by acting greedily with respect to Q̂.

2.2 XCSF

XCSF is an LCS architecture designed to perform function approximation. It
differs from XCS in that classifiers compute their predictions as a function of
their inputs, instead of predicting a scalar value. The system operates by adap-
tively partitioning the input space into subspaces with classifiers (evolutionary
component), in tandem with forming approximations to the target function in
the subspaces (ML component) [3].

Classifiers take the form of IF condition THEN action rules. Partitioning
is accomplished by specifying the rule representation to be used by conditions.
Common choices include hyperrectangles [12,19] and hyperellipsoids [5]. In the
simplest case, linear functions can be used as a prediction scheme but extensions
to the non-linear case have been investigated [11]. Additionally, classifiers have a
number of parameters, denoted as cl.param, that store or calculate information
related to them; the following parameters being important in this work: fitness—
the predictive accuracy of a classifier relative to other classifiers in the action
set(s) (defined below) that it participates in, numerosity—the number of copies
of a classifier present in the population (necessary because the GA may pro-
duce classifiers with duplicate rules), generality—a quantity in the range (0, 1]
representing the fraction of the input space covered by the classifier’s condition.
Numerosity yields the concept of macroclassifiers and microclassifiers, defined
as the classifiers in the population with unique rule structures (possibly having
numerosity > 1) and individual copies of these unique classifiers, respectively.

Applied as a RL method, XCSF uses a Q-learning style reinforcement com-
ponent to form classifier predictions. The overall system output Q̂ is computed
for each (s, a) ∈ S × A according to:

Q̂(s, a) =

∑
cl∈[A] cl.prediction(s) · cl.fitness

∑
cl∈[A] cl.fitness

(1)

[A] is termed an action set and contains classifiers in the population whose
conditions match s and who advocate action a, i.e. XCSF’s current knowledge
about a particular niche of the environment.

474 J. T. Bishop and M. Gallagher

3 Environments

We consider two variations of the FrozenLake environment with grid size 8
(FrozenLake8x8) from OpenAI Gym1. FrozenLake is an episodic, fully observ-
able grid navigation environment. In this environment, the agent must navigate
across frozen cells to reach a goal, without falling into any holes. If the agent
falls into a hole the episode terminates. The state representation used is an
(x, y) co-ordinate representing the location of the agent in the grid, as shown in
Fig. 1a. We use S to indicate the set of non-terminal states (frozen cells), and
ST to represent the set of terminal states (holes and the goal). The action space
A = {Left, Down, Right, Up}, constant over all s ∈ S.

A parameter pslip controls the level of stochasticity in the environmen-
tal transition dynamics. Figure 1b gives examples of transition dynamics with
pslip = 0.1. Transition stochasticity is global over all s ∈ S. By default pslip = 2

3 ,
which is quite high. For our variants, we consider the cases where pslip = 0 and
pslip = 0.1, the latter because we wish to preserve the spirit of the default case
while making the problem substantially easier through lowering the amount of
noise incurred in transitions and therefore the reward signal. The reward func-
tion operates as follows: +1 if the agent transitions into G, 0 otherwise. We set
γ = 0.95 to ensure that there is time pressure to reach the goal. Note that a time
step is counted even if the agent does not move to a new state after performing
an action (as occurs with 90% probability in the leftmost example of Fig. 1b).

Figure 2 shows the optimal policies for our two variants. In the deterministic
case reaching the goal is a shortest path problem, hence in some states there are
multiple optimal actions. In the stochastic case the optimal policy is more strict
as there is only a single optimal action in every state.

Fig. 1. FrozenLake8x8 (a) structure and (b) example transition dynamics.

1 https://gym.openai.com/envs/FrozenLake8x8-v0/.

https://gym.openai.com/envs/FrozenLake8x8-v0/

Optimality-Based Analysis of XCSF Compaction in Discrete RL 475

Fig. 2. Optimal policies for FrozenLake8x8, γ = 0.95.

4 XCSF Configuration

We use our own implementation of XCSF written in Python2, faithful to the
base description of XCS given in [2]. We use the same linear prediction scheme
as in [19], where each classifier has an associated weight vector and its prediction
is computed as a dot product between its weight vector and the input vector,
and classifier weight vectors are updated via a normalised least mean squares
procedure with the prediction target calculated via the system’s reinforcement
component. Also incorporated is the extension to XCS from [10], termed XCSμ,
which is used to estimate uncertainty introduced by stochasticity in the environ-
ment. This involves adding a parameter μ to each classifier which tracks min-
imum prediction error in the action sets the classifier participates in, adjusted
by a separate learning rate βε.

The rule representation used is an interval-based representation, specifically
an integer-valued variant of min-percentage representation [6]. Interval minimum
alleles are retained but percentage-to-maximum alleles are replaced by “span-
to-maximum” alleles; interval maximums calculated as: max = min + span. The
covering and mutation operators from [6] are adopted and modified to work with
integer values, resembling those in [21]. Subsumption and calculation of condition
generality are the same as in [21]. GA selection is done via tournament selection
and uniform crossover is applied on allele sequences.

The chosen rule representation and prediction scheme yield a system that
learns linear predictions of value over rectangular regions of the input space. This
is suitable for both FrozenLake8x8 environments because it exploits the fact that
Q-values decay smoothly (due to discounting) when moving away from the goal.
In areas of the state space where there are no holes, accurate generalisation over
large areas is possible (refer to e.g. top two rows in Fig. 1a) so only a few classi-
fiers are required to cover such an area. The opposite is true for areas near holes.
Compared to other Q-function approximators used in RL (e.g. neural networks),
2 https://github.com/jtbish/piecewise, see also https://github.com/jtbish/ppsn2020

for experimental code that uses this.

https://github.com/jtbish/piecewise
https://github.com/jtbish/ppsn2020

476 J. T. Bishop and M. Gallagher

XCSF has the advantage of presenting its knowledge in a piecewise, easily inter-
pretable format that can reduced to a compact set of classifiers (as is the theme
of this work).

5 Training Experiments

5.1 Setup

We train our implementation of XCSF described in Sect. 4 on the two environ-
ments detailed in Sect. 3. For the first environment (pslip = 0), the training
budget is 400,000 time steps (environmental transitions) and for the second
environment (pslip = 0.1) the budget is doubled to 800,000 time steps. Hyper-
parameters for both cases are: N=5000, β=0.1, βε = 0.05, α = 0.1, ε0 = 0.01,
ν = 5, γ = 0.95, θGA = 50, τ = 0.5, χ = 1.0, υ = 0.5, μ = 0.05, θdel = 50,
δ = 0.1, θsub = 50, εI = 10−3, fI = 10−3, θmna = 4, doGASubsumption = True,
doActionSetSubsumption = False, r0 = 4, m0 = 4, x0 = 10, η = 0.1. Hyperpa-
rameter meanings correspond to those given in [2,3,10,19,21], except for υ which
is our addition and controls the probability of an allele being crossed over dur-
ing uniform crossover. The two most critical hyperparameters are N (maximum
population size in number of microclassifiers) and ε0 (target absolute approxi-
mation error). We tuned their values manually, along with the training budget.
For other hyperparameters, we followed guidance from [2,12,16].

By default, the agent starts each episode in state (0, 0), which puts a heavy
emphasis on exploration to reach the goal, making learning relatively difficult. To
make learning easier, we allow the agent to start a training episode in any s ∈ S,
selected uniformly at random. We can therefore safely adopt the alternating
explore-exploit action selection strategy used elsewhere in the literature, i.e. ε-
greedy with a fixed value of ε = 0.5.

5.2 Metrics

Before training, we use value iteration to compute Q∗ and consequently π∗

for each environment. XCSF’s Q̂ mean absolute error (MAE) can then be
calculated as:

1
|S||A|

∑

s∈S

∑

a∈A

|Q∗(s, a) − Q̂(s, a)| (2)

MAE is used because we wish to directly compare with ε0. To allow for compar-
ison between π∗ and π̂, policies are encoded as a series of binary action advocacy
vectors, one for each s ∈ S, whereby if policy π advocates action ai in state s,
bit i of π(s) is set to 1, 0 otherwise. For example, following Fig. 2a the optimal
actions in state (0, 0) are {Down, Right}. Assuming the ordering of actions is
{Left, Down, Right, Up}, then the encoding π∗((0, 0)

)
= [0, 1, 1, 0]. XCSF’s

π̂ accuracy can then be calculated as:

1
|S|

∑

s∈S

C
(
π∗(s), π̂(s)

)
(3)

Optimality-Based Analysis of XCSF Compaction in Discrete RL 477

where C is a Boolean function that accepts two binary action advocacy vectors,
a∗ and â, and determines if at least one of the actions advocated in a∗ is also
advocated in â , i.e. determines if â is “correct”:

C
(
a∗, â

)
=

{
1 count ones

(
a∗ AND â

)
> 0

0 otherwise
(4)

Reusing the previous example, if s = (0, 0), π∗(s) = [0, 1, 1, 0] and also π̂(s) =
[0, 0, 1, 0] then C returns 1 because π̂ advocates one of the optimal actions, Right.

5.3 Results

Fig. 3. XCSF training performance curves on FrozenLake8x8 environments. Solid lines
are the mean of 30 trials, shaded regions are one standard deviation.

Figure 3 shows XCSF training performance curves for both environments, mea-
sured over time are Q̂ MAE and π̂ accuracy. In the deterministic case, XCSF
converges to a small MAE that is slightly larger than the target error threshold
ε0, with π̂ accuracy very close to the maximum value of 1. In the stochastic case,
MAE is still quite small but noticeably larger than in the deterministic case,
also with larger variance. π̂ accuracy is significantly lower and with much larger
variance. We now investigate this reduction of π̂ accuracy in the stochastic case
in more detail. Figure 4 shows the frequency of optimal action predictions for
each s ∈ S over the 30 trained instances. From this we can see that XCSF is
quite often predicting the optimal action in a majority of states. However, there
are a few states that are degrading policy accuracy more than others. Table 1
shows the distributions of actions predicted in the four states with lowest optimal
action prediction frequencies, and indicates that for these states if the predicted
action is not optimal (Up or Down) it is at least sensible (Right). Thus the
situation is not as poor as it first seems.

478 J. T. Bishop and M. Gallagher

Fig. 4. XCSF optimal action
prediction frequency for Frozen-
Lake8x8 pslip = 0.1, calculated
over 30 instances.

Table 1. Distribution of action predictions for
the four lowest frequency states in Fig. 4. Optimal
actions for each state are set in bold.

Action

L D R U
Optimal

Freq.

S
ta

te

(0, 2) 0 0 24 6 6/30=0.2

(1, 2) 0 0 19 11 11/30=0.37

(6, 0) 0 5 25 0 5/30=0.17

(6, 1) 0 9 21 0 9/30=0.3

6 Compaction

We now turn to the main consideration of this work: compaction of trained XCSF
populations. Algorithm1 presents Greedy Niche Mass Compaction (GNMC), a
novel compaction algorithm designed for use on LCS populations applied to RL
environments with discrete state-action spaces. GNMC considers all environ-
mental action sets (niches) and greedily keeps some number of the best quality
classifiers in each. The notion of “best quality” is defined by the parameter λ,
which is a function that assigns each classifier a mass (quality weighting) in the
action set. ρ acts as a compression factor and controls the number of classifiers
kept in each action set; higher values result in more classifiers being discarded.

Algorithm 1: Greedy Niche Mass Compaction (GNMC)
Input: Classifier mass function λ, mass removal factor ρ ∈ [0, 1);

1 toKeep = ∅;
2 for (s, a) ∈ S × A do
3 Create action set [A] for (s, a);
4 Create set [A]′ by sorting [A] in descending order according to λ;
5 totalMass =

∑
cl∈[A]′ λ(cl);

6 targetMass = (1 − ρ) · totalMass;
7 currentMass = 0;
8 while currentMass < targetMass do
9 cl = next classifier in [A]′;

10 toKeep = toKeep ∪ {cl};
11 currentMass += λ(cl);

12 end

13 end
14 Remove classifiers not in toKeep from the population [P];

Optimality-Based Analysis of XCSF Compaction in Discrete RL 479

GNMC exhibits a number of desirable properties:

1. The exact number of classifiers discarded in each action set is dependent on
the distribution of classifier mass; ρ is sensitive to this distribution.

2. ρ can be adjusted in a smooth manner without needing prior information
about the size of action sets.

3. It is guaranteed that no “gaps” in the predictive mapping are introduced, due
to all action sets being considered and at least a single classifier being kept
in each action set (because ρ cannot equal 1).

4. Any classifiers that only match a state s ∈ ST (and so have zero experience
and do not contribute to overall predictions) are implicitly removed from the
population because they are never added into the toKeep set; the for loop on
line 2 operates only over S. This occurs even when ρ = 0.

Notably, simple compaction strategies such as removing all classifiers with expe-
rience less than some threshold do not uphold point 3 listed above. This property
is crucial for function approximation in RL where a complete mapping of the
state-action space is necessary.

GNMC can be viewed as a generalisation of previous work in the literature.
In particular, we consider the work of Tan et al. in [15], where the authors define
a compaction algorithm in the context of a classification task, called Parameter
Driven Rule Compaction (PDRC). PDRC operates by forming a correct set [C]
for each environmental input (each training set data point) then keeping the
classifier in [C] with the largest product of accuracy, numerosity, and generality.
All other classifiers in [C] are discarded. Translating between classification and
RL, [C] is analogous to [A] and classifier accuracy is analogous to fitness because
Tan et al. employ a UCS (sUpervised Classifier System [1]) variant where accu-
racy is equivalent to fitness. GNMC is therefore equivalent to PDRC when the
mass function λ(cl) = cl.fitness × cl.numerosity × cl.generality and the mass
removal factor ρ is sufficiently high so as to keep only a single classifier from
each action set.

We apply GNMC to our trained XCSF populations, considering three dif-
ferent mass functions, named with subscripts. The first is λfit = cl.fitness,
motivated by the manner in which XCSF calculates its overall predictions: see
Eq. 1. Classifiers with higher fitness have more weight in the overall prediction,
so using fitness as a mass function makes sense. The second mass function is
λtan = cl.fitness × cl.numerosity × cl.generality. The final mass function is
an antagonistic variant of the first mass function that is designed to see what
happens when GNMC is operating with “bad information”: λinv fit = 1

cl.fitness .
Figure 5 shows results of applying GNMC with these three mass functions to
the XCSF instances trained on both environments, measured are the effect on
performance (Q̂ MAE and π̂ accuracy) and population size (number of macro
and microclassifiers).

In the deterministic case, GNMC retains performance when either λfit or
λtan is used, for any value of ρ. Q̂ MAE improves very slightly as ρ increases,
and π̂ accuracy is unchanged. Using λinv fit gives smooth degradation in both

480 J. T. Bishop and M. Gallagher

metrics. Looking at the population sizes, both λfit and λtan exhibit a moderate
reduction in the number of microclassifiers and a significant reduction in the
number of macroclassifiers as ρ increases. However λinv fit is different, yielding
similar number of macroclassifiers in the extreme, but drastically smaller number
of microclassifiers. This conforms to our expectations of its operation; classifiers
that are kept by λinv fit have low fitness values, and since low fitness classifiers
tend to have low numerosity, the ratio of microclassifiers to macroclassifiers is
low. For λfit and λtan the ratio is much higher. In the stochastic case, the
situation is similar overall with a slight difference when considering the effect on
performance: namely that π̂ accuracy for both λfit and λtan is degraded slightly
instead of remaining constant as ρ increases.

Fig. 5. Results of applying GNMC with three different mass functions to both Frozen-
Lake8x8 environments. All curves are the mean over 30 instances. Values of ρ used are
from 0 to 0.99 in increments of 0.01.

7 Rollout Analysis

We now investigate the relationship between policy accuracy and the com-
monly used black-box performance metric, steps-to-goal (STG), from other

Optimality-Based Analysis of XCSF Compaction in Discrete RL 481

works applying LCSs to maze-like RL environments, e.g. [10,12]. Note that
in such environments, minimising STG is equivalent to maximising cumulative
discounted reward. For our analysis we consider only the stochastic variant of
FrozenLake8x8, as it showed the most interesting variations in π̂ accuracy when
GNMC was applied to it in Sect. 6.

Table 2. Results of STG testing procedure on FrozenLake8x8 pslip = 0.1 for three
different groups of XCSF instances. Asterisks for mean and max STG indicate incom-
plete data. Set in bold are the “worst” values for each column (π̂ acc. minimum, others
maximum).

No compaction
(Group A)

GNMC λfit ρ = 0.99
(Group B)

GNMC λinv fit ρ = 0.99
(Group C)

Instance
num.

Mean
STG

Max
STG

Num.
roll

π̂
acc.

Mean
STG

Max
STG

Num.
roll

π̂
acc.

Mean
STG

Max
STG

Num.
roll

π̂
acc.

1 15.42 20 114 0.89 15.31 20 117 0.91 15.44 21 114 0.79
2 15.39 20 116 0.87 15.43 20 117 0.79 15.45 20 115 0.68
3 32.36 110 123 0.75 * * 150 0.72 * * 150 0.55
4 15.37 20 127 0.83 15.46 21 127 0.83 18.74 89 131 0.55
5 15.38 20 116 0.83 15.38 20 116 0.85 15.38 20 116 0.70
6 15.38 20 116 0.85 16.13 25 126 0.79 33.11 148 115 0.66
7 15.38 20 116 0.87 15.38 20 116 0.85 15.38 20 116 0.74
8 15.38 20 116 0.87 15.38 20 116 0.85 37.46 98 142 0.60
9 15.43 20 115 0.83 33.25 93 118 0.81 15.39 20 116 0.75
10 15.31 20 117 0.85 15.31 20 117 0.91 15.70 23 117 0.68
11 15.38 20 116 0.87 15.45 20 115 0.89 * * 150 0.55
12 15.66 20 113 0.77 15.39 20 116 0.77 * * 150 0.64
13 37.61 119 130 0.75 37.43 119 128 0.75 * * 150 0.57
14 15.38 20 116 0.83 15.33 20 117 0.79 47.94 143 119 0.64
15 15.45 20 115 0.85 15.43 20 117 0.83 15.44 21 114 0.68
16 15.38 20 116 0.91 15.42 20 114 0.92 37.22 112 120 0.55
17 15.43 21 122 0.83 15.32 21 116 0.83 15.48 21 129 0.64
18 15.38 20 116 0.89 15.37 20 119 0.89 * * 150 0.72
19 15.38 20 116 0.85 15.38 20 116 0.81 15.27 19 121 0.72
20 15.92 21 118 0.79 16.06 25 128 0.75 * * 150 0.58
21 67.29 193 110 0.79 68.61 193 117 0.75 53.88 110 121 0.57
22 15.38 20 116 0.85 32.79 110 123 0.79 62.20 200 124 0.70
23 15.38 20 116 0.85 15.33 20 117 0.79 53.57 153 115 0.53
24 32.91 100 112 0.79 15.33 20 117 0.75 * * 150 0.60
25 15.38 20 116 0.89 15.38 20 116 0.87 28.51 86 119 0.62
26 17.21 82 119 0.81 15.85 25 138 0.87 * * 150 0.38
27 15.74 21 142 0.74 15.96 40 133 0.72 * * 150 0.47
28 36.96 139 126 0.79 * * 150 0.70 * * 150 0.47
29 15.38 20 116 0.83 15.37 19 119 0.77 82.36 197 114 0.62
30 15.38 20 116 0.83 15.38 20 116 0.81 * * 150 0.55

A testing procedure to measure STG is devised as follows: allow each XCSF
instance a budget of 150 rollouts (episodes) and in these 150 rollouts, attempt
to record STG (successfully reach the goal) 100 times. If 100 successes are not
achieved, STG data is incomplete. In each rollout, the agent’s initial state is
(0, 0) and the random seed of the environment is set to a unique number. Note
this is different from training where the agent’s initial state was any s ∈ S,
selected uniformly at random. This testing procedure is applied to all 30 trained
XCSF instances in three groups, representing different levels of GNMC com-
paction: no compaction, compaction with λfit ρ = 0.99, and compaction with

482 J. T. Bishop and M. Gallagher

λinv fit ρ = 0.99. Table 2 shows the collected results: included are mean and max
STG, number of rollouts performed, and π̂ accuracy (for reference). Note that
minimum STG in the environment is 14.

Group A in general achieves admirable mean STG; only 5 out of 30 instances
could be considered as outliers. Number of rollouts for all instances is gener-
ally not much higher than 110. This indicates that in most instances XCSF is
quickly navigating towards the goal, with a low failure rate due to environmental
stochasticity. Comparing Group B to Group A, there are two instances in Group
B that have failed to collect complete STG data, also having the two lowest pol-
icy accuracies. In general, all four measures degrade only slightly between the
two groups, which indicates that the compaction applied to Group B is not hav-
ing a detrimental effect on performance. Transitioning from Group A to Group
C however produces noticeable performance loss. 11 out of 30 instances fail to
record complete STG data, and generally those that do show degradation in all
four measures.

It is difficult to determine the exact relationship between STG and policy
accuracy. Some instances (e.g. instance 1) exhibit minimal degradation in both
measures between groups, but some exhibit larger degradation (e.g. instance
22). In cases where degradation in policy accuracy is small but degradation
in STG is large, the cause is often a minority of states along the edge of the
grid that are advocating actions where the only possible way to advance further
towards the goal is to slip, e.g. advocating Right in any of the states in the
rightmost column (where x = 7). It is therefore clear that the two metrics are
complementary rather than competitive. Policy accuracy is measured globally
and is always defined, and STG is measured on a specific task (starting state),
possibly being undefined/incomplete. The starting state is an arbitrary choice
and if altered results in differing STG but unchanged policy accuracy.

8 Conclusion

We trained XCSF on a deterministic and stochastic variant of FrozenLake8x8,
measuring its performance with respect to the optimal solutions produced via
dynamic programming. Results show that in both cases XCSF achieved low Q-
function approximation error, and in the deterministic case XCSF converged to
maximum policy accuracy. In the stochastic case policy accuracy was notice-
ably degraded both because of increased problem difficulty and increased strict-
ness of the optimal policy. Next we introduced Greedy Niche Mass Compaction
(GNMC), a compaction algorithm designed for LCSs applied to discrete RL envi-
ronments. We showed GNMC is a generalisation of previous work and applied it
to our trained XCSF instances. Given a suitable mass function, GNMC can yield
a significant reduction in population size without increasing function approxi-
mation error and only slightly decreasing policy accuracy. Finally we linked
our policy accuracy metric to the steps-to-goal metric used in previous work
across multiple groups of compacted XCSF instances. This highlighted how the
two metrics are complementary rather than competitive. Suggested future work

Optimality-Based Analysis of XCSF Compaction in Discrete RL 483

includes applying GNMC to environments where populations are larger/more
complex and the mass removal factor has more impact on performance. GNMC’s
concept could also be extended to continuous state and/or action spaces.

References

1. Bernadó-Mansilla, E., Garrell-Guiu, J.M.: Accuracy-based learning classifier sys-
tems: models, analysis and applications to classification tasks. Evol. Comput.
11(3), 209–238 (2003)

2. Butz, M.V., Wilson, S.W.: An algorithmic description of XCS. Soft Comput. -
Fusio Found. Methodol. Appl. 6(3–4), 144–153 (2002). https://doi.org/10.1007/
s005000100111

3. Butz, M.V.: Learning classifier systems. In: Kacprzyk, J., Pedrycz, W. (eds.)
Springer Handbook of Computational Intelligence, pp. 961–981. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-43505-2 47

4. Butz, M.V., Lanzi, P.L., Llorà, X., Goldberg, D.E.: Knowledge extraction and
problem structure identification in XCS. In: Yao, X., et al. (eds.) PPSN 2004.
LNCS, vol. 3242, pp. 1051–1060. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-30217-9 106

5. Butz, M.V., Lanzi, P.L., Wilson, S.W.: Function approximation with XCS: hyper-
ellipsoidal conditions, recursive least squares, and compaction. IEEE Trans. Evol.
Comput. 12(3), 355–376 (2008)

6. Dam, H.H., Abbass, H.A., Lokan, C.: Be real! XCS with continuous-valued inputs.
In: Proceedings of the 2005 Workshops on Genetic and Evolutionary Computation
- GECCO 2005, p. 85. ACM Press, Washington, D.C. (2005)

7. Dixon, P.W., Corne, D.W., Oates, M.J.: A ruleset reduction algorithm for the XCS
learning classifier system. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.)
IWLCS 2002. LNCS (LNAI), vol. 2661, pp. 20–29. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40029-5 2

8. Fu, C., Davis, L.: A modified classifier system compaction algorithm. In: GECCO
2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp.
920–925. Morgan Kaufmann (2002)

9. Kharbat, F., Odeh, M., Bull, L.: New approach for extracting knowledge from the
XCS learning classifier system. Int. J. Hybrid Intell. Syst. 4, 49–62 (2007)

10. Lanzi, P.L., Colombetti, M.: An extension to the XCS classifier system for stochas-
tic environments. In: Proceedings of the 1st Annual Conference on Genetic and
Evolutionary Computation, GECCO 1999, vol. 1, pp. 353–360. Morgan Kaufmann
Publishers Inc., Orlando, July 1999

11. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: Extending XCSF beyond
linear approximation. In: GECCO 2005: Genetic and Evolutionary Computation
Conference: Volume, pp. 1827–1834. ACM Press (2005)

12. Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: XCS with computed pre-
diction in multistep environments. In: Proceedings of the 7th Annual Conference
on Genetic and Evolutionary Computation, GECCO 2005, pp. 1859–1866. Associ-
ation for Computing Machinery, Washington DC, June 2005

13. Lanzi, P., Loiacono, D., Wilson, S., Goldberg, D.: XCS with computed prediction
in continuous multistep environments. In: 2005 IEEE Congress on Evolutionary
Computation, vol. 3, pp. 2032–2039, September 2005

https://doi.org/10.1007/s005000100111
https://doi.org/10.1007/s005000100111
https://doi.org/10.1007/978-3-662-43505-2_47
https://doi.org/10.1007/978-3-540-30217-9_106
https://doi.org/10.1007/978-3-540-30217-9_106
https://doi.org/10.1007/978-3-540-40029-5_2

484 J. T. Bishop and M. Gallagher

14. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. Adaptive
Computation and Machine Learning Series, 2nd edn. The MIT Press, Cambridge
(2018)

15. Tan, J., Moore, J., Urbanowicz, R.: Rapid rule compaction strategies for global
knowledge discovery in a supervised learning classifier system. In: Advances in
Artificial Life, ECAL 2013, pp. 110–117. MIT Press, September 2013

16. Urbanowicz, R.J., Browne, W.N.: Introduction to Learning Classifier Systems.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55007-6

17. Urbanowicz, R.J., Granizo-Mackenzie, A., Moore, J.H.: An analysis pipeline with
statistical and visualization-guided knowledge discovery for Michigan-style learning
classifier systems. IEEE Comput. Intell. Mag. 7(4), 35–45 (2012)

18. Wilson, S.W.: Classifier fitness based on accuracy. Evol. Comput. 3(2), 149–175
(1995)

19. Wilson, S.W.: Classifiers that approximate functions. Nat. Comput. 1, 1–2 (2001)
20. Wilson, S.W.: Compact rulesets from XCSI. In: Lanzi, P.L., Stolzmann, W., Wil-

son, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 197–208. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-48104-4 12

21. Wilson, S.W.: Mining oblique data with XCS. In: Luca Lanzi, P., Stolzmann, W.,
Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 158–174. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44640-0 11

https://doi.org/10.1007/978-3-662-55007-6
https://doi.org/10.1007/3-540-48104-4_12
https://doi.org/10.1007/3-540-44640-0_11

Hybridizing the 1/5-th Success Rule with
Q-Learning for Controlling the Mutation

Rate of an Evolutionary Algorithm

Arina Buzdalova1, Carola Doerr2(B), and Anna Rodionova1

1 ITMO University, 49 Kronverkskiy Avenue, 197101 Saint Petersburg, Russia
abuzdalova@gmail.com

2 Sorbonne Université, CNRS, LIP6, Paris, France
Carola.Doerr@lip6.fr

Abstract. It is well known that evolutionary algorithms (EAs) achieve
peak performance only when their parameters are suitably tuned to the
given problem. Even more, it is known that the best parameter values
can change during the optimization process. Parameter control mecha-
nisms are techniques developed to identify and to track these values.

Recently, a series of rigorous theoretical works confirmed the superi-
ority of several parameter control techniques over EAs with best possible
static parameters. Among these results are examples for controlling the
mutation rate of the (1 + λ) EA when optimizing the OneMax problem.
However, it was shown in [Rodionova et al., GECCO’19] that the quality
of these techniques strongly depends on the offspring population size λ.

We introduce in this work a new hybrid parameter control technique,
which combines the well-known one-fifth success rule with Q-learning.
We demonstrate that our HQL mechanism achieves equal or superior
performance to all techniques tested in [Rodionova et al., GECCO’19]
and this – in contrast to previous parameter control methods – simul-
taneously for all offspring population sizes λ. We also show that the
promising performance of HQL is not restricted to OneMax, but extends
to several other benchmark problems.

Keywords: Parameter control · Q-learning · Offspring population size

1 Introduction

The problem of selecting suitable parameter configurations for an evolutionary
algorithm is frequently considered to be one of the most essential drawbacks of
evolutionary computation methods, and possibly a major obstacle towards wider
application of these optimization techniques in practice [31].

Automated configuration techniques such as SPOT [3], irace [32], SMAC [24],
hyperband [30], MIP-EGO [42], BOHB [22], and many others have been devel-
oped to assist the user in the decisive task of selecting suitable parameter con-
figurations. These parameter tuning methods, however, require to test different
c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 485–499, 2020.
https://doi.org/10.1007/978-3-030-58115-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_34&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_34

486 A. Buzdalova et al.

parameter combinations before presenting a recommendation. They are there-
fore rather time-consuming, and are not applicable when the possibility for such
training is not given, e.g., when the problem is truly black-box, with no/only
little information about its fitness landscape structure.

An orthogonal approach to solve the algorithm configuration problem is
parameter control, which does not require a priori training, and aims at identi-
fying suitable parameter combinations on the fly, i.e., while executing the opti-
mization [21,27,31]. Apart from being more generally applicable than parame-
ter tuning, parameter control also bears the advantage of being able to adjust
the search behavior of the evolutionary algorithm to the different stages of the
optimization process. Most state of the art evolutionary algorithms therefore
make use of parameter control, in particular in the continuous domain, where
a decreasing search radius is needed to eventually converge towards an optimal
point. However, one should not forget that parameter control mechanisms, too,
introduce their own hyperparameters, which need to be adequately set by the
user prior to running the algorithm. Here again one can apply parameter tuning
(e.g., via so-called per-instance algorithm configuration [4]), but the general hope
is that the setting of the hyperparameters is less critical to achieve reasonable
performance.

However, while parameter control is routinely used in numerical optimiza-
tion, its potential remains far from being well exploited in the optimization of
problems with discrete decision variables, where it has only recently re-gained
momentum as a now very active area of research. In particular in the sub-domain
of runtime analysis, parameter control has enjoyed rising attention in the last
years, as summarized in [10].

A particularly well-researched topic in the theory literature for parameter
control in discrete optimization heuristics is the (1 + λ) Evolutionary Algo-
rithm (EA) with dynamic mutation rates and fixed offspring population size λ
optimizing the OneMax problem (the problem of controlling λ has also been
addressed, e.g., in [29], but has received much less attention so far). Not only
was this problem one of the first ones for which dynamic mutation schemes were
approximated [2], and not only is it frequently used as a test case for empirical
works [7], but it is also one of the few problems for which we have a very solid
theoretical understanding.

Extending the previous work from [18], we have presented at GECCO’19
a comparative empirical study of several mechanisms suggested in the theory
literature [37]. Among other findings, we demonstrated that the efficiency of all
benchmarked techniques depends to a large extent on the offspring population
size λ. For example, we observed that the 2-rate (1+λ) EA suggested in [15] is the
best among the tested algorithms when λ is smaller than 50. For larger offspring
population sizes, however, this algorithm is outperformed by a (1+λ) EA which
uses the one-fifth success rule to control the mutation rate. We also observed
in [37] that the ranking of the algorithms was identical for all tested dimensions
n ∈ [104..105].

Hybridizing the 1/5-th Success Rule with Q-Learning 487

Our Results. The results presented in [37] raise the question if one can achieve
stable performance across all offspring population sizes λ. We address this
problem by introducing a new parameter control scheme, which hybridizes the
one-fifth success rule with Q-learning. More precisely, we first introduce the
(1 + λ) QEA, which uses Q-learning only to control the mutation rate. The
(1 + λ) QEA learns for each optimization state whether it should increase or
decrease the current mutation rate (we use constant factor changes). We show
that the (1+λ) QEA performs efficiently on OneMax for all observed values of λ
when an appropriate lower bound pmin for the mutation rate is used. In absence
of a well-tuned lower bound, however, the performance of the (1+λ) QEA drops
significantly. We show that this dependence on the value of pmin can be mitigated
by a hybridization of the (1 + λ) QEA with the one-fifth success rule. More pre-
cisely, the hybrid Q-learning EA (the (1 + λ) HQEA) extends the (1 + λ) QEA
by using the one-fifth success rule in states that have not been visited before
and for those for which the (1 + λ) QEA is ambiguous with respect to the two
available actions.

We show that, on OneMax, the (1 + λ) HQEA outperforms or at least
performs on par with all algorithms tested in [37], and this simultaneously for
all tested values of λ ∈ [1..212] and also for both considered lower bounds for
the mutation rate, pmin = 1/n and pmin = 1/n2, respectively. It therefore solves
the issue of the other control mechanisms previously suggested in the theory
literature. Note here that we do not have a theoretical convergence analysis of
the (1+λ) HQEA. Given its complexity, it may be beyond the current state of the
art in runtime analysis, as it requires to keep track of multiple states, which are
highly dependent. We are nevertheless confident that the robust performance of
the (1+λ) HQEA encourages further work on learning-based parameter control,
and their hybridization with other classical control methods.

In the last parts of this paper we also show that the promising performance
of the (1 + λ) HQEA is not restricted to OneMax. More precisely, we show
that it performs well also on the LeadingOnes function, as well as on several
benchmark functions suggested in [17].

Related Work. We are not the first to use reinforcement learning (RL) as a
parameter control technique. An exhaustive survey of RL-based parameter con-
trol approaches can be found in [27]. Particularly, there are parameter control
approaches based on techniques for the Multi-Armed Bandit Problem (MAB),
see [23] (and references mentioned therein) and [13] for a theoretical investigation
of MAB-based parameter control.

In many of the known approaches, RL algorithms are used to select the
parameter values directly. For numerical parameters, however, most common
techniques require to either discretize the value space [25] or to make use of quite
sophisticated techniques [1,20,38], which are rather difficult to grasp without
expert knowledge.

In contrast to such a direct selection of the parameter values, we use in this
work an indirect approach which uses as actions the possibility to increase the
current parameter value by some fixed multiplier, or decrease it. As we shall

488 A. Buzdalova et al.

see below, this yields a simple, yet efficient, control mechanism. Like most com-
mon parameter control techniques, including those studied in this work, this
indirect approach has the advantage of a smoother transition of the mutation
rates between consecutive iterations. This behavior is beneficial if the optimal
parameter values do not change abruptly, which is the case in many problems
analyzed in theoretical works [11,14], but also the case in many applications of
evolutionary algorithms to machine learning problems, including hyperparame-
ter optimization itself [35]. Exceptions to this rule exist, of course, and the jump
functions [19] are a classical example for a problem requiring such an abrupt
change. In such cases it may take the parameter control mechanisms some time
to adjust the mutation rate to the appropriate scale.

We note that a similar indirect control approach has been described in [34],
where an indirect control of the step size of the (1+1) evolution strategy (ES) is
described. In contrast to our work, however, this approach (which uses SARSA
– another common reinforcement learning algorithm – instead of Q-learning) did
not manage to outperform the (1 + 1) ES with suitably tuned static step sizes.

2 Previous (1 + λ) EAs with Dynamic Mutation Rates

We briefly review the algorithms studied in [37] and summarize their main find-
ings. We assume in our presentation that the algorithms operate on a problem
f : {0, 1}n → R, with the objective to maximize this function.

The (1 + λ) EA. The standard (1 + λ) EA is an elitist algorithm, which always
keeps a current best solution x in its memory. The (1 + λ) EA is initialized
with a point chosen from the search space {0, 1}n uniformly at random. In each
iteration, λ offspring are sampled by applying standard bit mutation to the
parent x, i.e., the algorithm creates λ offspring y(1), . . . , y(λ) by creating λ copies
of x and flipping each bit in these copies with some probability 0 < p < 1. The
variable p is commonly referred to as the mutation rate. We set it to p = 1/n
in our experiments, which is a standard recommendation and often a fall-back
value if no indication is given that larger values could be beneficial. The best
of the λ offspring (ties broken uniformly at random) replaces the parent if it is
at least as good. The (1 + λ) EA continues until some user-defined termination
criterion is met (see “implementation details” below for our setting).

The (1+λ) EA(A, b). The (1+λ) EA(A, b) extends the (1+λ) EA by an adaptive
choice of the mutation rate p. Its (1 + 1) variant was suggested in [16], and we
use a straightforward extension to the (1+λ) EA by updating the mutation rate
p by Ap if the best of the λ offspring is at least as good as the parent and by
decreasing the mutation rate to bp otherwise. It is ensured that the mutation
rate does not fall below some minimal mutation rate pmin > 0 and that it does
not exceed pmax = 1/2, by capping the value of p appropriately where required.
As argued in [12], this update rule is essentially a one-fifth success rule, even
if this term was not mentioned in [16]. The one-fifth success rule was originally
suggested in [9,36,39] and its interpretation for the discrete optimization is due

Hybridizing the 1/5-th Success Rule with Q-Learning 489

to [28]. More precisely, the idea is that the mutation rate should remain constant
if a certain ratio of iterations is successful (i.e., produces a solution of better
than previous-best quality). In our work, this success ratio is 1/2, whereas the
traditional rule suggests a success ratio of 1/5.

The (1 + λ) EA(A, b) has three hyperparameters, A, b, and pmin. In our
experiments, we set A = 2, b = 1/2, and consider pmin ∈ {1/n, 1/n2}. We
initialize p by 1/n. Note that these values are not specifically tuned, but we
chose them to be consistent with previous works, and in particular with [37]. The
reader interested in the sensitivity of the performance of the (1 + λ) EA(A, b)
with respect to these parameters is referred to [16] and [12] for an empirical and
a theoretical investigation, respectively.

The 2-rate (1 + λ) EAr/2,2r. The (1 + λ) EAr/2,2r suggested in [15] uses two
different mutation rates in each iteration: half the offspring are created with
mutation rate p/2 and the other λ/2 offspring are sampled with mutation rate
2p. The mutation rate is parametrized as p = r/n in the (1 + λ) EAr/2,2r. The
value of r is updated after each iteration by a random decision which gives
preference to the rate by which the best offspring has been created. The latter is
selected with probability 3/4, whereas the other one of the two tested mutation
rates is chosen with probability 1/4. As in the (1 + λ) EA(A, b), the mutation
rate is capped at pmin ∈ {1/n2, 1/n} and pmax = 1/2, respectively.

Implementation Details. We briefly summarize a few common assumptions made
in all our algorithms.

Shift Mutation Strategy. All algorithms described above use standard bit
mutation as variation operator. To avoid sampling offspring that are identical to
the parent (these offspring would not bring any new information to our optimiza-
tion process, and are therefore useless), we use the “shift” operation suggested
in [6]. If an offspring equals its parent, this strategy simply flips a randomly
chosen bit. We write y ← mutate(x, p) if y is sampled by applying the shift
mutation operator with mutation rate p to x.

Termination Criterion and Runtime Measure. We focus in this work on
the runtime (also known as optimization time), which we measure in terms
of generations that are needed until an optimal solution is evaluated for the
first time. Since we only study algorithms with static offspring population size
λ, the classical runtime in terms of function evaluations is easily obtained by
multiplication with λ. As common in the academic benchmarking of EAs, our
termination criterion is thus the state f(x) = max{f(y) | y ∈ {0, 1}n}.

Strict vs. Non-strict Update Rules. We have presented in the previ-
ous section the algorithms as originally suggested in the literature. However,
in our initial experiments we have made an interesting observation that the
(1 + λ) EA(A, b) can substantially benefit from a slightly different parameter
update rule, which replaces p by Ap only if the best offspring y is strictly better
than the parent, i.e., if it satisfies f(y) > f(x). We perform all experiments for
the strict and the classical (non-strict) update rules, which – together with the

490 A. Buzdalova et al.

two lower bounds pmin = 1/n2 and pmin = 1/n – yields four different settings for
each benchmark problem. For reasons of space we can only comment on a few
selected cases below. The detailed results are available at [5]. We mostly focus
on the case of the strict update rule, if not stated otherwise.

3 Hybridizing Q-Learning and the 1/5-th Success Rule

The main contribution of our work is an algorithm that avoids the drawbacks
of the above-mentioned (1 + λ) EA variants observed on OneMax, and shows
stable performance for all values of λ. We will achieve this by hybridizing the
(1 + λ) EA(A, b) with Q-learning.

Q-learning is a method that falls into the broader category of reinforce-
ment learning (RL). Q-learning aims at learning, from the data that it observes,
a policy that tells an agent which action to apply in a given situation. For this,
it maintains a state-action matrix, in which it records its guess for what the
expected reward of each action in each of the states is. For a given state s, the
action a maximizing this expected reward is chosen and executed. The environ-
ment returns a numerical reward and a representation of its state. The reward
is used to update the state-action matrix, according to some rules that we shall
discuss in the next paragraphs. The Q-learning process repeats until some ter-
mination criterion is met. The goal of the agent is to maximize the total reward.
A smooth introduction to RL can be found in [40].

The (1 + λ) QEA. We apply Q-learning to control the mutation rate of the
(1+λ) EA with fixed offspring population size λ. We first present in Algorithm 1
the basic (1 + λ) QEA. Its hybridization with the 1/5-th success rule will be
explained further below. The (1 + λ) QEA considers only two actions: whether
to multiply the current mutation rate p by the factor A > 1 (action amult) or
whether to multiply it by the factor b < 1 (action adivide). As mentioned in the
introduction, the advantage of this action space is a smooth transition of the
mutation rates between consecutive iterations, compared to a possibly abrupt
change when operating directly on the parameter values.

We use as reward the relative fitness gain, i.e., (max f(y(i)) − f(x))/f(x)
(where we use the same notation as in the description of the (1 + λ) EA, i.e.,
x denotes the parent individual and y(1), . . . , y(λ) its λ offspring). This reward
is computed in line 12. Note here that several other reward definitions would
have been possible. We tried different suggestions made in [26] and found this
variant to be the most efficient. The new state s′ is computed as the number
of offspring y(i) that are strictly better than the parent (lines 13–16). With the
reward and the new state at hand, the efficiency estimation Q(s, a) is updated
in line 18, through a standard Q-learning update rule. Note here that action a is
the one that was selected in the previous iteration (lines 20–23), and it resulted
in moving from the previous state s to the current state s′.

After this update, the (1 + λ) QEA selects the action to be used in the next
iteration, through simple greedy selection if possible, and through an unbiased

Hybridizing the 1/5-th Success Rule with Q-Learning 491

Algorithm 1: The (1 + λ) QEA, Q-learning highlighted in blue font
1 Input: population size λ, learning rate α, learning factor γ;
2 Initialization:
3 x ← random string from {0, 1}n;
4 p ← 1/n;
5 for all states si ∈ [0 . . . λ] and all actions ai ∈ {amult, adivide} do

Q(si, ai) ← 0;
6 s, a ← undefined;
7 Optimization: while termination criterion not met do

8 for i = 1, . . . , λ do y(i) ← mutate(x, p);

9 x∗ ← arg maxy(i) f(y(i));

10 xold ← x;
11 if f(x∗) ≥ f(x) then x ← x∗;

12 r ← f(x∗)
f(xold)

− 1 ; // reward calculation

13 s′ ← 0;
14 for i = 1, . . . , λ do

15 if f(y(i)) > f(xold) then
16 s′ ← s′ + 1 ; // state calculation

17 if s �= undefined and a �= undefined then
18 Q(s, a) ← Q(s, a) + α (r + γ maxa′ Q(s′, a′) − Q(s, a));

19 s ← s′;
20 if Q(s′, amult) = Q(s′, adivide) then
21 a ← select amult or adivide equiprobably;
22 else
23 a ← arg maxa′ Q(s′, a′);

24 p ← ap ; // update mutation rate

25 p ← min(max(pmin, p), pmax) ; // capping mutation rate

random choice otherwise; see lines 20–23. The mutation rate p is then updated
by this action (line 24) and capped to remain within the interval [pmin, pmax] if
needed (line 25).

Hyperparameters. The (1+λ) QEA has six hyperparameters, the constant factors
of the actions amult and adivide, the upper and lower bounds for the mutation
rate pmin and pmax, and two hyperparameters originating from the Q-learning
methodology itself (line 18), the learning rate α and the discount factor γ. In our
experiments, we use amult = 2, adivide = 1/2, pmax = 1/2, α = 0.8, and γ = 0.2.
These values were chosen in a preliminary tuning step, details of which we have
to leave for the full report due to space restrictions. For pmin we show results for
two different values, 1/n2 and 1/n, just as we do for the other parameter control
mechanisms.

The (1 + λ) HQEA, the Hybrid Q-Learning EA. In the hybridized
(1 + λ) QEA, the (1 + λ) HQEA, we reconsider the situation when the Q(s, a)

492 A. Buzdalova et al.

estimations are equal. This situation arises in two cases: when the state s is vis-
ited for the first time or when the same estimation was learned for both actions
amult and adivide. In these cases, the learning mechanism cannot decide which
action is better, and an action is selected uniformly randomly. The (1+λ) HQEA,
in contrast, borrows in this case the update rule from the (1+λ) EA(A, b) algo-
rithm, i.e., action amult is selected if the best offspring is strictly better than the
parent, otherwise adivide is chosen. Formally, we obtain the (1 + λ) HQEA by
replacing in Algorithm 1 line 18 by the following text:

if f(x∗) > f(xold) then a ← amult else a ← adivide. (1)

Strict vs. Non-strict Update Rules. As mentioned at the end of Sect. 2, we
experiment both with a strict and a non-strict update rule. Motivated by the
better performance of the strict update rule, the description of the (1 +λ) QEA
and the (1+λ) HQEA use this rule. The non-strict update rules can be obtained
from Algorithm 1 by replacing the strict inequality in line 15 by the non-strict
one. Similarly, for the (1 + λ) HQEA, we also replace “iff(x∗) > f(xold)” in (1)
by “iff(x∗) ≥ f(xold)”.

4 Empirical Comparison of Parameter Control
Algorithms

We now demonstrate that, despite the seemingly minor change, the (1+λ) HQEA
outperforms both its origins, the (1+λ) QEA and the (1+λ) EA(A, b), on several
benchmark problems. We recall that the starting point of our investigations were
the results presented in [37], which showed that the performance of the (1+λ) EA
variants discussed in Sect. 2 on OneMax strongly depends on (1) the offspring
population size λ, and on (2) the bound pmin at which we cap the mutation
rate. The (1 + λ) HQEA, in contrast, is shown to yield stable performance for
all tested values of λ and for both tested values of pmin.

Experimental Setup. All results shown below are simulated from 100 indepen-
dent runs of each algorithm. We report statistics for the optimization time, i.e.,
for the random variable counting the number of steps needed until an optimal
solution is queried for the first time. Since the value of λ is static, we report the
optimization times as number of generations; classical running time in terms of
function evaluations can be obtained from these values by multiplying with λ.
For OneMax, we report average optimization times, for consistency with the
results in [37] and with theoretical results. However, for some of the other bench-
mark problems, the dispersion of the running times can be quite large, so that
we report median values and interquartile ranges instead. Please also note that
we use logarithmic scales in all runtime plots.

In the cases of large dispersion, we also performed the rank-sum Wilcoxon
test to question statistical significance [8]. More precisely, we compared the (1+
λ) HQEA to each of the other algorithms. As the input data for the test, the

Hybridizing the 1/5-th Success Rule with Q-Learning 493

21 25 29

104

105

Population size λ

A
ve
ra
ge

ru
nt
im

e

(a) pmin = 1/n2

(1 + λ) EA 2-rate (A, b) QEA HQEA

21 25 29

104

105

Population size λ

(b) pmin = 1/n

Fig. 1. Average number of generations and its standard deviation needed to locate the
optimum of the OneMax problem

runtimes of all 100 runs of each of the two compared algorithms were used. The
significance level was set to p0 = 0.01.

The value of λ is parameterized as 2t, with t taking all integer values ranging
from 0 to 12 for OneMax and from 0 to 9 for all other problems. The problem
dimension, in contrast, is chosen in a case-by-case basis. We recall that it was
shown in [37] that the dimension did not have any influence on the ranking of the
algorithms on OneMax. This behavior can be confirmed for the here-considered
algorithm portfolio (results not shown due to space limitations).

4.1 Stable Performance on OneMax

Figure 1 summarizes our empirical results for the 104-dimensional OneMax
problem, the problem of maximizing the function Om : {0, 1}n → [0..n], x �→∑n

i=1 xi. For pmin = 1/n2, our key findings can be summarized as follows. (i) For
small λ up to 24, all the parameter control algorithms perform similarly and all
of them seem to be significantly better than the (1+λ) EA with static mutation
rates. (ii) Starting from λ > 25 for the (1 + λ) EA(A, b) and from λ > 26 for
the (1+λ) QEA and the (1+λ) EAr/2,2r, these algorithms are outperformed by
the (1+λ) EA. (iii) The (1+λ) HQEA is the only parameter control algorithm
that substantially improves the performance of the (1+λ) EA for all considered
values of λ. The advantage varies from 21% for λ = 212 to 38% for λ = 1.

For the less generous pmin = 1/n lower bound, we observe the following.
(i) Overall, the performance is worsened compared to the 1/n2 lower bound. In
particular, for small values of λ, most of the algorithms are indistinguishable
from the (1+λ) EA, except for the (1+λ) EAr/2,2r, which is even substantially
worse. (ii) However, for λ ≥ 29, the (1 + λ) EAr/2,2r starts to outperform the
(1+λ) EA, in strong contrast to the situation for the 1/n2 lower bound. (iii) Our
(1+λ) HQEA is the only method which is never worse than the (1+λ) EA and
still outperforms it for λ > 26. With the growth of λ, the advantage grows as

494 A. Buzdalova et al.

21 25 29
102

103

λ

M
ed

ia
n
ru
nt
im

e

(a) pmin = 1/n2

(1 + λ) EA 2-rate (A, b) QEA HQEA

21 25 29
102

103

λ

(b) pmin = 1/n

21 25 29
102

103

λ

(c) pmin = 1/n2, ≥ rule

21 25 29
102

103

λ

(c) pmin = 1/n, ≥ rule

Fig. 2. Median number of generations and the corresponding interquartile ranges
needed to locate the optimum of the Neutrality problem

well: while the (1 + λ) EA with λ = 212 needs 1738 generations, on average, the
(1 + λ) HQEA only requires 1379 generations, an advantage of more than 20%.
(iv) It is worth noting that the (1 + λ) QEA in this case performs on par with
the (1 + λ) HQEA.

Overall, we thus see that the (1+λ) HQEA is the only considered parameter
control algorithm, which stably performs on par or better than the (1 + λ) EA
and all of the other algorithms for all values of λ and for both values pmin ∈
{1/n2, 1/n}.

4.2 Stable Performance on Other Benchmark Problems

LeadingOnes. The LeadingOnes problem asks to maximize functions of the
type Loz,σ : {0, 1}n → R, x �→ max{i ∈ [n] | ∀j ≤ i : xσ(i) = zσ(i)}, where σ
is simply a permutation of the indices 1, . . . , n (the classic Lo function uses the
identity). We study the n = 103-dimensional variant of this problem.

For pmin = 1/n2 all the methods – including the (1 + λ) EA– show very
similar performance, with the difference between the best and the worst of the
five algorithms varying from 3% to 6% for each offspring population size λ,
which is of the same order as the corresponding standard deviations. For the 1/n
lower bound, the situation is similar, except that the (1 + λ) EAr/2,2r performs
substantially worse than the (1 + λ) EA for all considered values of λ, and the
difference varies from 45% to 93%.

As a result, the (1+λ) HQEA generally performs on par with the (1+λ) EA
for all considered values of λ and both considered lower bounds on the mutation
rate. Particularly, for pmin = 1/n2 it is strictly better in 6 of the 10 cases, and
in the other cases the disadvantages are 0.3%, 0.3%, 0.7%, and 1.1%.

Neutrality. The Neutrality function is a W-model transformation [43] that
we apply to OneMax. It is calculated the following way: a bit string x is split
into blocks of length k each, and each block contributes 0 or 1 to the fitness value

Hybridizing the 1/5-th Success Rule with Q-Learning 495

according to the majority of values within the block. In line with [43] and [17]
we considered k = 3. We study the n = 103-dimensional version of this problem.
The results are summarized in Fig. 2.

For pmin = 1/n2 we obtain the following observations. Most of the parameter
control methods perform poorly, i.e. worse than the (1 + λ) EA. The exception
is (1+λ) EA(A, b), which performs better than the (1+λ) EA for several values
of λ (in particular, λ = 26, 27).

The lower bound pmin = 1/n turns out to be preferable for all the algorithms:
for large offspring population sizes λ, they all perform better than the standard
(1+λ) EA. Our (1+λ) HQEA is usually one of the best algorithms, but however,
for λ = 27 and λ = 28 it seems to be worse than the (1 + λ) EA(A, b). The
Wilcoxon test results did not confirm the significance of this difference though
(the p-values are greater than 0.04 in both cases).

For this problem we also observe that switching from the strict update rule
to the non-strict version is beneficial for the (1 + λ) HQEA, the (1 + λ) QEA,
and the (1 + λ) EA(A, b), regardless of the value of pmin. It is worth noting that
with these values of hyper-parameters the (1 + λ) HQEA performs significantly
better on high values of the population size (λ ≥ 25) than all the other considered
methods (the p-values are between 1.6 · 10−9 and 3.9 · 10−18).

Plateaus. Plateau is an extension of the W-model suggested in [17]. This
transformation operates on the function values, by setting Plateau(f(x)) :=
	f(x)/k
 + 1, for a parameter k that determines the size of the plateau. We
superpose this transformation to OneMax, and study performances for dimen-
sion n = 1000.

Small Plateaus, k = 2. For k = 2, pmin = 1/n2, and 2 ≤ λ ≤ 26, all considered
parameter control algorithms improve the performance of the (1 + λ) EA. For
large values of λ (starting from λ = 27), however, the runtimes of the (1 +
λ) EA and the parameter control algorithms are hardly distinguishable. The
only exception for large λ is the proposed (1 + λ) HQEA, which performs a bit
better than the (1 + λ) EA. The Wilcoxon test suggests that the difference is
significant with the p-values less than 3.9 · 10−18.

The results obtained when using pmin = 1/n are less successful, as most of
the parameter control methods just perform on par with the (1 + λ) EA in this
case. The (1 + λ) HQEA shows nevertheless a stable and comparatively good
performance for all offspring population sizes λ. The (1 + λ) EAr/2,2r performs
worse than the (1 + λ) EA in this case.

Plateaus with k = 3. We also considered a harder version of the problem with a
larger size of the plateau, for which we use k = 3. As the total running time for
this problem is much larger than for k = 2, we had to restrict our experiments
to a smaller problem size n = 100.

For pmin = 1/n2 we cannot see any clear improvement of parameter control
over the (1 + λ) EA any more. Moreover, for λ ≥ 27, the (1 + λ) EA seems to
be the best performing algorithm.

Interestingly, for the 1/n lower bound the situation is pretty similar to the k =
2 case. All the parameter control algorithms perform on par with the (1+λ) EA

496 A. Buzdalova et al.

(with only slight differences at λ = 24, 26), except for the (1+λ) EAr/2,2r, which
performs worse. It seems that as the problem gets harder, a larger lower bound is
preferable, which seems to be natural, as with a bigger plateau, a higher mutation
rate is needed to leave it. Let us also mention that the (1 + λ) HQEA performs
stably well for all considered values of λ in this preferable configuration.

Ruggedness. We also considered the W-Model extension F9 from [17], which
adds local optima to the fitness landscape by mapping the fitness values to
r2(f(x)) := f(x) + 1 if f(x) ≡ n mod 2 and f(x) < n, r2(f(x)) := max{f(x) −
1, 0} for f(x) ≡ n+1 mod 2 and f(x) < n, and r2(n) := n. This transformation
is superposed on OneMax of size n = 100.

For pmin = 1/n2, all the considered parameter control algorithms significantly
worsen the performance of the (1 + λ) EA. Even the (1 + λ) EAr/2,2r, which,
untypically, performs the best among all these algorithms, is still significantly
worse than the (1 + λ) EA.

The situation improves for pmin = 1/n and the parameter control algorithms
show similar performance as the (1 + λ) EA. The only exception is again (1 +
λ) EAr/2,2r, whose performance did not change much compared to the case
pmin = 1/n2.

5 Conclusions and Future Work

To address the issue of unstable performance of several parameter control algo-
rithms on different values of population size reported in [37], we proposed the Q-
learning based parameter control algorithm, the (1+λ) QEA, and its hybridiza-
tion with the (1+λ) EA(A, b), the (1+λ) HQEA. The algorithms were compared
empirically on OneMax and five more benchmark problems with different char-
acteristics, such as neutrality, plateaus and presence of local optima. Our main
findings may be summarized as follows.

On simple problems, i.e. OneMax, LeadingOnes, and Plateau with k = 2
the (1+λ) HQEA is the only algorithm which always performs on par or better
than the other tested algorithms for all the considered values of λ and both
mutation rate lower bounds.

On the harder problems, i.e., Neutrality, Plateau with k = 3, and
Ruggedness, the (1 + λ) HQEA performance depends on the lower bound
(the same is true for the other algorithms). For pmin = 1/n, the (1 + λ) HQEA
still performs on par with or better than the other algorithms for all values of λ
in almost all cases.

The (1 + λ) QEA is usually worse than the (1 + λ) HQEA. There are a
number of examples where (1 + λ) EA(A, b) is significantly worse as well. The
hybridization of these two algorithms seems to be essential for the observed good
performance of the (1 + λ) HQEA.

As next steps, we plan on investigating more possible actions for the Q-
learning part. For example, one may use several different multiplicative update
rules, to allow for a faster adaptation when the current rate is far from optimal.
This might in particular be relevant in dynamic environments, in which the

Hybridizing the 1/5-th Success Rule with Q-Learning 497

fitness functions (and with it the optimal parameter values) change over time.
We also plan on identifying ways to automatically select the configuration of
the Q-learning algorithms, with respect to its hyper-parameters, but also with
respect to whether to use the strict or the non-strict update rule. In this context,
we are investigating exploratory landscape analysis [33,41].

Acknowledgments. The reported study was funded by RFBR and CNRS, project
number 20-51-15009, by the Paris Ile-de-France Region, and by a public grant as part of
the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH.

References

1. Aleti, A., Moser, I.: Entropy-based adaptive range parameter control for evolution-
ary algorithms. In: Proceedings of Genetic and Evolutionary Computation Con-
ference (GECCO 2013), pp. 1501–1508 (2013)

2. Bäck, T.: The interaction of mutation rate, selection, and self-adaptation within a
genetic algorithm. In: Proceedings of Parallel Problem Solving from Nature (PPSN
1992), pp. 87–96. Elsevier (1992)

3. Bartz-Beielstein, T., Flasch, O., Koch, P., Konen, W.: SPOT: a toolbox for inter-
active and automatic tuning in the R environment. In: Proceedings of the 20th
Workshop on Computational Intelligence, pp. 264–273. Universitätsverlag Karl-
sruhe (2010)

4. Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M.: Per instance algorithm configu-
ration of CMA-ES with limited budget. In: Proceedings of Genetic and Evolution-
ary Conference (GECCO 2017), pp. 681–688. ACM (2017)

5. Buzdalova, A., Doerr, C., Rodionova, A.: Hybridizing the 1/5-th success rule with
Q-learning for controlling the mutation rate of an evolutionary algorithm (2020).
http://arxiv.org/abs/2006.11026

6. Carvalho Pinto, E., Doerr, C.: Towards a more practice-aware runtime analysis of
evolutionary algorithms (2018). https://arxiv.org/abs/1812.00493

7. Costa, L.D., Fialho, Á., Schoenauer, M., Sebag, M.: Adaptive operator selection
with dynamic multi-armed bandits. In: Proceedings of Genetic and Evolutionary
Computation Conference (GECCO 2008), pp. 913–920. ACM (2008)

8. Derrac, J., Garcia, S., Molina, D., Herrera, F.: A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

9. Devroye, L.: The compound random search. Ph.D. dissertation, Purdue University,
West Lafayette, IN (1972)

10. Doerr, B., Doerr, C.: Theory of parameter control for discrete black-box
optimization: provable performance gains through dynamic parameter choices.
Theory of Evolutionary Computation. NCS, pp. 271–321. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-29414-4 6. Also available online at
https://arxiv.org/abs/1804.05650

11. Doerr, B.: Analyzing randomized search heuristics via stochastic domination.
Theor. Comput. Sci. 773, 115–137 (2019)

12. Doerr, B., Doerr, C., Lengler, J.: Self-adjusting mutation rates with provably opti-
mal success rules. In: Proceedings of Genetic and Evolutionary Computation Con-
ference (GECCO 2019). ACM (2019)

http://arxiv.org/abs/2006.11026
https://arxiv.org/abs/1812.00493
https://doi.org/10.1007/978-3-030-29414-4_6
https://arxiv.org/abs/1804.05650

498 A. Buzdalova et al.

13. Doerr, B., Doerr, C., Yang, J.: k -bit mutation with self-adjusting k outperforms
standard bit mutation. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M.,
Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 824–834. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45823-6 77

14. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box
analysis. In: Proceedings of Genetic and Evolutionary Computation Conference
(GECCO 2016), pp. 1123–1130. ACM (2016)

15. Doerr, B., Gießen, C., Witt, C., Yang, J.: The (1+ λ) evolutionary algorithm with
self-adjusting mutation rate. Algorithmica 81, 593–631 (2019). https://doi.org/10.
1007/s00453-018-0502-x

16. Doerr, C., Wagner, M.: On the effectiveness of simple success-based parameter
selection mechanisms for two classical discrete black-box optimization benchmark
problems. In: Proceedings of Genetic and Evolutionary Computation Conference
(GECCO 2018), pp. 943–950. ACM (2018)

17. Doerr, C., Ye, F., Horesh, N., Wang, H., Shir, O.M., Bäck, T.: Benchmarking
discrete optimization heuristics with IOHprofiler. Appl. Soft Comput. 88, 106027
(2020)

18. Doerr, C., Ye, F., van Rijn, S., Wang, H., Bäck, T.: Towards a theory-guided bench-
marking suite for discrete black-box optimization heuristics: profiling (1 + λ) EA
variants on onemax and leadingones. In: Proceedings of Genetic and Evolutionary
Computation Conference (GECCO 2018), pp. 951–958. ACM (2018)

19. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theor. Comput. Sci. 276, 51–81 (2002)

20. Eiben, A.E., Horvath, M., Kowalczyk, W., Schut, M.C.: Reinforcement learning for
online control of evolutionary algorithms. In: Proceedings of the 4th International
Conference on Engineering Self-Organising Systems, pp. 151–160 (2006)

21. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Trans. Evol. Comput. 3, 124–141 (1999)

22. Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter opti-
mization at scale. In: Proceedings of International Conference on Machine Learning
(ICML 2018), pp. 1436–1445 (2018)

23. Fialho, Á., Costa, L.D., Schoenauer, M., Sebag, M.: Analyzing bandit-based adap-
tive operator selection mechanisms. Ann. Math. Artif. Intell. 60, 25–64 (2010)

24. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

25. Karafotias, G., Eiben, Á.E., Hoogendoorn, M.: Generic parameter control with
reinforcement learning. In: Proceedings of Genetic and Evolutionary Computation
Conference (GECCO 2014), pp. 1319–1326 (2014)

26. Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Evaluating reward definitions for
parameter control. In: Mora, A.M., Squillero, G. (eds.) EvoApplications 2015.
LNCS, vol. 9028, pp. 667–680. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16549-3 54

27. Karafotias, G., Hoogendoorn, M., Eiben, A.: Parameter control in evolutionary
algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19, 167–187 (2015)

28. Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.:
Learning probability distributions in continuous evolutionary algorithms - a com-
parative review. Nat. Comput. 3, 77–112 (2004)

https://doi.org/10.1007/978-3-319-45823-6_77
https://doi.org/10.1007/s00453-018-0502-x
https://doi.org/10.1007/s00453-018-0502-x
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-319-16549-3_54
https://doi.org/10.1007/978-3-319-16549-3_54

Hybridizing the 1/5-th Success Rule with Q-Learning 499

29. Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and
parallel evolutionary algorithms. In: Proceedings of Foundations of Genetic Algo-
rithms (FOGA 2011), pp. 181–192. ACM (2011)

30. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband:
a novel bandit-based approach to hyperparameter optimization. arXiv preprint
arXiv:1603.06560 (2016)

31. Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary
Algorithms. Studies in Computational Intelligence, vol. 54. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-69432-8

32. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Stützle, T., Birattari, M.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

33. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.:
Exploratory landscape analysis. In: Proceedings of Genetic and Evolutionary Con-
ference (GECCO 2011), pp. 829–836. ACM (2011)

34. Müller, S.D., Schraudolph, N.N., Koumoutsakos, P.D.: Step size adaptation in evo-
lution strategies using reinforcement learning. In: Proceedings of the 2002 Congress
on Evolutionary Computation (CEC 2002), pp. 151–156 (2002)

35. Pushak, Y., Hoos, H.: Algorithm configuration landscapes: more benign than
expected? In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L.,
Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 271–283. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99259-4 22

36. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Fromman-Holzboorg Verlag, Stuttgart
(1973)

37. Rodionova, A., Antonov, K., Buzdalova, A., Doerr, C.: Offspring population
size matters when comparing evolutionary algorithms with self-adjusting muta-
tion rates. In: Proceedings of Genetic and Evolutionary Computation Conference
(GECCO 2019), pp. 855–863. ACM (2019)

38. Rost, A., Petrova, I., Buzdalova, A.: Adaptive parameter selection in evolution-
ary algorithms by reinforcement learning with dynamic discretization of parame-
ter range. In: Proceedings of Genetic and Evolutionary Computation Conference
Companion (GECCO 2016), pp. 141–142 (2016)

39. Schumer, M.A., Steiglitz, K.: Adaptive step size random search. IEEE Trans.
Autom. Control 13, 270–276 (1968)

40. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

41. Vérel, S.: Apport à l’analyse des paysages de fitness pour l’optimisation mono-
objective et multiobjective: Science des systèmes complexes pour l’optimisation par
méthodes stochastiques. (Contributions to fitness landscapes analysis for single-
and multi-objective optimization: Science of complex systems for optimization with
stochastic methods) (2016). https://tel.archives-ouvertes.fr/tel-01425127

42. Wang, H., Emmerich, M., Bäck, T.: Cooling strategies for the moment-generating
function in Bayesian global optimization. In: Proceedings of Congress on Evolu-
tionary Computation (CEC 2018), pp. 1–8 (2018)

43. Weise, T., Wu, Z.: Difficult features of combinatorial optimization problems and
the tunable w-model benchmark problem for simulating them. In: Proceeding of
Genetic and Evolutionary Computation Conference Companion (GECCO 2018),
pp. 1769–1776 (2018)

http://arxiv.org/abs/1603.06560
https://doi.org/10.1007/978-3-540-69432-8
https://doi.org/10.1007/978-3-319-99259-4_22
https://tel.archives-ouvertes.fr/tel-01425127

Fitness Landscape Features and Reward
Shaping in Reinforcement Learning

Policy Spaces

Nathaniel du Preez-Wilkinson(B) and Marcus Gallagher

School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, QLD 4072, Australia

{uqndupre,marcusg}@uq.edu.au

Abstract. Reinforcement learning (RL) algorithms have received a lot
of attention in recent years. However, relatively little work has been ded-
icated to analysing RL problems; which are thought to contain unique
challenges, such as sparsity of the reward signal. Reward shaping is one
approach that may help alleviate the sparse reward problem.

In this paper we use fitness landscape features to study how reward
shaping affects the underlying optimisation landscape of RL problems.
Our results indicate that features such as deception, ruggedness, search-
ability, and symmetry can all be greatly affected by reward shaping;
while neutrality, dispersion, and the number of local optima remain rel-
atively invariant. This may provide some guidance as to the potential
effectiveness of reward shaping for different algorithms, depending on
what features they are sensitive to. Additionally, all of the reward func-
tions we studied produced policy landscapes that contain a single local
optimum and very high neutrality. This suggests that algorithms that
explore spaces globally, rather than locally, may perform well on RL
problems; and may help explain the success of evolutionary methods on
RL problems. Furthermore, we suspect that the high neutrality of these
landscapes is connected to the issue of reward sparsity in RL.

Keywords: Fitness landscapes · Global features · Reinforcement
learning · Reward shaping

1 Introduction

Reinforcement learning (RL) is an optimisation problem. The goal is to find an
optimal policy, π, that maximises the return, R(π). Unlike supervised learning,
a meaningful training signal is not available for every input-output pair: reward
functions are sparse. One technique for dealing with this is reward shaping.

Reward shaping is the act of replacing the reward function for a problem with
a surrogate that is intended to be easier to learn, while resulting in the same
optimal behaviour. We investigate how changing the reward function for an RL
problem affects the underlying optimisation landscape, using features from the
fitness landscape literature.
c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 500–514, 2020.
https://doi.org/10.1007/978-3-030-58115-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_35&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_35

Fitness Landscape Features and Reward Shaping 501

The main contributions of this paper are two-fold: 1) we extend the work
presented in [21] to analyse more features of RL problems; and 2) we examine
the effects of reward shaping on RL optimisation landscapes.

2 Related Work

Evolutionary algorithms (EAs) have been applied to RL for over 20 years [13],
and have demonstrated performance on par with modern deep RL algorithms
[3,18,26]. Fitness landscapes are a concept that is used to analyse optimisation
problems, usually from the EA literature [12]. Despite the connection between
EAs and RL, there has been almost no work that studies RL problems using
fitness landscape analysis.

Recently, local optima networks [14] were used to analyse the structure,
modality, fitness distribution, and neutrality of RL problems [21]. Two key find-
ings from this work are: 1) RL problems appear to have high levels of neutral-
ity; and 2) the problems studied contained only one local optimum. We extend
this work by analysing the additional features of deception [7], dispersion [10],
ruggedness [11], symmetry [23], and searchability [9]. We also investigate the
effects of reward shaping on fitness landscape features.

Work has been done in recent years analysing RL parameter spaces. Ilyas
et al. [6] visualise the parameter landscape of the Humanoid-v2 MuJoCo task
locally1 using 1) steps in the algorithm (PPO [20]) direction, and 2) steps in
a random direction as two axes over which the fitness varies. Ahmed et al. [1]
investigate the effects of stochastic policies by sampling from a hypersphere
around a point in parameter space, and by interpolating between two points
in the space. Very recently, Oller et al. [15] studied the fitness distributions of
several neural network parameter spaces using random weight guessing [19]. Our
work differs from this recent work in the following ways: 1) we analyse the model-
independent policy space of problems; 2) we calculate features from the fitness
landscape literature; and 3) we investigate the effects of reward shaping on the
landscape.

3 Background

3.1 Fitness Landscapes

A discrete fitness landscape consists of a set of solutions, x ∈ X, a neighbourhood
function, N(x), and a fitness function, f(x) : X → R. The set of solutions
contains all possible solutions for a problem, good and bad. The neighbourhood
function takes a candidate solution, x, and returns the set of neighbours of x.
The fitness function takes a solution and scores it, returning a real number that
represents how “good” the solution is.

We describe some global features of fitness landscapes in Sect. 4.

1 Relative to a point in the parameter space.

502 N. du Preez-Wilkinson and M. Gallagher

3.2 Reinforcement Learning

In an RL problem, an agent interacts with an environment; and, through trial
and error, learns the best way to do so [22]. The environment can take on one of
a finite number of states, s ∈ S, and the agent interacts with the environment
through actions, a ∈ A, that transition the environment from the current state,
st, to a new state, st+1. After an agent’s action changes the state of the envi-
ronment, the agent receives feedback in the form of a reward, rt = r(st, at, st+1),
that indicates how desirable the choice of that action was while in that state.
The goal of RL is to develop an optimal policy, π : S → A, a mapping from
states to actions, for a given problem. An optimal policy is one which maximises
the total cumulative reward2, R:

R =
T∑

t=0

r(st, at, st+1)

where T is the total time the agent interacts with the environment.
All of the RL problems studied in this work abide by the following assump-

tions: 1) discrete state space; 2) discrete action space; 3) discrete time; 4) finite
time limit; and 5) deterministic environment.

Reinforcement Learning Fitness Landscapes. There are currently two
high-level choices for how to define an RL fitness landscape: over parameter
space, or over policy space. In both cases, the set of solutions is the set of possi-
ble policies, π ∈ Π, and the fitness function is the return, R(π). The two differ in
the encoding of the policies, and the definition of the neighbourhood function.

In parameter space, we consider the return of a parameterised policy, R(πθ),
as the return of the parameters, R(θ), and we define a neighbourhood function on
them. This results in landscapes that are dependent on the choice of agent model.

In policy space, we represent a policy as a direct lookup table from states to
actions. This can be equivalently represented as a string of actions, with each
state specifying a unique index. For the neighbourhood function, we follow the
example of [21] and define two policies as neighbours if the Hamming Distance
between them is equal to one.

We use policy space rather than parameter space in order to analyse RL
problems independently from the choice of algorithm and agent model.

Reward Shaping. Reward shaping [25] is the act of replacing the reward
function of a problem, r(s, a, s′), with a surrogate reward function, r′(s, a, s′),
that is intended to be easier to learn, while resulting in the same optimal policy.
However, it is not uncommon to encounter “reward shaping surprises” where the
shaped reward function accidentally results in a different optimal policy. We are
interested in how reward shaping affects underlying optimisation landscapes.
2 Note that we are using the total reward ([22] Eqn 3.1) instead of the more commonly

used discounted reward ([22] Eqn 3.2). We are able to do this because we guarantee
that all our problems terminate in finite time. This eliminates the hyper-parameter
γ, and is consistent with previous work on RL landscape features [21].

Fitness Landscape Features and Reward Shaping 503

4 Fitness Landscape Features

In this section we describe the features that we have used, and how we have
calculated them for RL problems. See [12] for a more thorough treatment of
fitness landscape features, and the various ways to quantify them.

4.1 Modality

The modality of a landscape refers to the number of local optima. A landscape
is unimodal if it contains only one local optimum3, and multimodal if it contains
multiple local optima. We use the definition of local optimum presented in [5],
which counts connected regions of equal fitness as a single optimum. We quantify
modality by counting the number of local maxima and minima in a landscape.

4.2 Fitness Distribution

The fitness distribution of a landscape measures the frequency of occurrence of
different fitness values. To calculate this, we enumerate the search space and
calculate the fraction of solutions with each fitness value.

4.3 Searchability

We quantify searchability using Accumulated Escape Probability [9]. In [9] a sam-
ple of points is collected using Metropolis-Hastings sampling. For each solution
in the sample, the fraction of neighbours with higher fitness is calculated. The
Accumulated Escape Probability is calculated as the mean of these fractions. We
do the same, but over the entire search space instead of a sample. The search-
ability value that we calculate can be interpreted as the fraction of neighbours
with higher fitness for the “average” solution in the search space.

4.4 Neutrality

A fitness landscape is said to have high neutrality if it contains a large number of
connected solutions with the same fitness. Such a landscape looks very “flat”, and
often contains plateaus with steep discontinuous jumps in fitness. We measure
neutrality using an extension of the average neutrality ratio presented in [24].

The neutrality ratio, nr, of a solution, x, is the fraction of neighbours of x
that share the same fitness.

nr(x) =

∑
x′∈N(x) δf(x)f(x′)

|N(x)|
The average neutrality ratio in [24] is calculated as the mean of the neutrality
ratios within a given neutral network. We introduce the “Accumulated Neutrality
Ratio” (na

r) as the mean neutrality ratio over the entire search space.
3 Which is also the global optimum.

504 N. du Preez-Wilkinson and M. Gallagher

na
r(X) =

1
|X|

∑

x∈X

nr(x)

The value of na
r can be interpreted as the fraction of neighbours with equal

fitness for the “average” solution in the search space.

4.5 Ruggedness

Ruggedness is related to how smooth a landscape is. A landscape that is very
rugged will have a lot of local “bumps” up and down in fitness value [11]. We
quantify ruggedness using the entropy measure provided in [11].

A random walk of length L+1 is conducted on the landscape, and the fitness
values are recorded in a string, F = f0f1...fL. Each pair of adjacent values is
assigned an encoding, Ψi, depending on the difference between them:

Ψi(ε) =

⎧
⎪⎨

⎪⎩

1̄ if fi − fi−1 < −ε

0 if |fi − fi−1| ≤ ε

1 if fi − fi−1 > ε

Each pair of adjacent encodings, (Ψi−1,Ψi), is then classified as neutral (00),
smooth (1̄1̄,11), or rugged (01,01̄,10,11̄,1̄0,1̄1). An entropic measure is defined:

H(ε) = −
∑

p=1̄,0,1

∑

q=1̄,0,1

n[pq]

L
log6

n[pq]

L
| p �= q

where n[pq] is the number of pq pairs. The ruggedness measure, Rf , is [11]:

Rf = max∀ε∈[0,ε∗]{H(ε)}
where ε∗ is the minimum value for ε that makes the landscape appear completely
flat. Large values of Rf indicate more ruggedness, and small values indicate less.
We take ε∗ to be the difference between the maximum and minimum fitness
values for a problem. We average Rf over 100 random walks of length 1000.

4.6 Deception

Deception is an indication of how a landscape may lead search algorithms to
explore away from global optima. We use the fitness distance correlation measure
from [7] to quantify deception.

For every solution, x, in the space, the fitness, f(x), and distance, d(x, x′),
to the nearest global optimum are calculated as a pair. The correlation between
these pairs is then calculated using the Pearson correlation coefficient. Results
are in the range [−1, 1]. Values closer to −1 indicate less deception, and values
closer to +1 indicate more deception4.

4 For a maximisation problem.

Fitness Landscape Features and Reward Shaping 505

4.7 Dispersion

The dispersion metric [10] measures how spread out high fitness solutions are. We
start by calculating the mean pairwise distance, d̄1, between a uniform sample
of n solutions, x1...xn (we calculate d̄1 from the best n of n solutions). We then
collect a second sample of size m > n, and calculate the mean pairwise distance,
d̄2, between the solutions with the top n fitness values (we calculate d̄2 from the
best n of m solutions). We calculate the dispersion metric as:

Dispersion =
d̄2 − d̄1

|S|
We divide by the number of RL states in order to normalise5,6 the result into
[−1, 1]. In our experiments n = 100 and m = |X|. Values closer to +1 indicate
that high fitness solutions are spread out. Values closer to −1 indicate that high
fitness solutions lie closer together.

4.8 Symmetry

Symmetry refers to transformations of a landscape under which the fitness func-
tion is invariant. We use the extension of spin-flip symmetry to alphabets with
more than two characters that is proposed in [23].

We consider an alphabet as an ordered list of characters. A solution is a string
that maps position i in the string to the character at index j in the alphabet. We
consider a symmetric transformation as a permutation on the order of characters
in the alphabet, while keeping the solution mappings the same. e.g. The string
“aaab” with alphabet (‘a’, ‘b’, ‘c’) becomes “bbba” under alphabet (‘b’, ‘a’, ‘c’).

We can think of a transformation on the alphabet as defining a “symmetry
neighbourhood”. We quantify symmetry as the Accumulated Neutrality Ratio
over the space using this neighbourhood. These symmetry values can be inter-
preted as the fraction of transformations under which the fitness of the “average”
solution remains invariant.

We calculate three different types of symmetry: “Symmetry G” - symmetry
calculated over the entire, Global, space; “Symmetry GM ” - symmetry over
the subspace containing solutions with fitness Greater than the Minimum; and
“Symmetry O” - symmetry over the subspace containing only Optimal solutions.

5 Environments

Reinforcement learning policy spaces grow exponentially as |A||S|, and the num-
ber of neighbours for each solution grows as7 (|A| − 1)|S|. We seek to calcu-
late features exactly (where possible) by enumerating entire policy spaces. This
restricts the size of problems that we are able to analyse.
5 The original metric from [10] is not normalised.
6 The maximum Hamming distance between two strings is equal to their length, and

our solutions are strings of length |S|.
7 With the neighbourhood function that we are using.

506 N. du Preez-Wilkinson and M. Gallagher

(a)

(b) (c)

Fig. 1. Visualisations of the four environments used in our experiments: (a) the 1D
Chain; (b) the Vacuum World from [17]; and (c) the layout for the two mazes. The black
squares in the 2D maze represent either walls or hazards, depending on the context.

5.1 1D Chain

The first environment we study is a one dimensional chain with eleven states.
The agent starts in the middle of the chain, and can move left or right. This
yields a policy space with |X| = |A||S| = 211 = 2048 possible solutions. Each
solution in the space has 11 neighbours. The goal is to get to the right-most state,
within a time limit of T = 5 time steps. We are interested in this problem as a
first look into the effects of reward shaping. This problem is simple enough that
we should be able to easily understand the effects of different reward functions
– there should be no “reward shaping surprises”, as described in Sect. 3.2. The
problem is visualised in Fig. 1a.

For the 1D chain problem, we use nine reward functions (r1D
0 , r1D

1 , ..., r1D
8):

r1D
i (s, a, s′) =

{
1 a = RIGHT ∧ s′ ∈ SG(i)
0 otherwise

where SG(i) is defined such that

sj ∈ SG(i) ⇐⇒ j ≥ n − i

where i ∈ [0, 8] and n = 11. This set of reward functions is designed to spread
the information that “going right is good” from s11 to s3

8.

5.2 Vacuum World

In the classic Vacuum World problem [17] (Fig. 1b), a robot needs to suck up
dirt from two rooms. The robot can move to the left, move to the right, or suck
up the dirt in the current room. We follow the example of [21] and give the agent
a time limit of T = 10 time steps. The size of the policy space for Vacuum World
is |X| = 38 = 6561. Each solution in the space has 16 neighbours.
8 Note that it is impossible to enter s2 from the left due to the time limit.

Fitness Landscape Features and Reward Shaping 507

We study five different reward functions for Vacuum World. The action
penalty and goal based reward functions are standard RL functions [8]. The
goal based function gives the agent a reward of +1 for reaching the goal state,
and 0 otherwise. The action penalty function penalises an agent for every time
step, resulting in lower penalties for reaching the goal faster. We use these two
reward functions on all remaining environments in this paper.

The other reward functions attempt to give information about progress
towards the goal. The suck dirt function rewards the agent for sucking up a
piece of dirt. The leave clean room function rewards the agent for leaving a
room that has no dirt. The suck dirt and action penalty function is designed to
add incentive to finish quickly to the suck dirt function (Table 1).

Table 1. The different reward functions that we use for Vacuum World.

Name Definition

Action penalty rvwap (s, a, s′) = −1

Goal based rvwgb (s, a, s′) =

{
1 both rooms clean

0 otherwise

Suck Dirt rvwsd (s, a, s′) =

{
1 dirt sucked

0 otherwise

Leave clean room rvwlc (s, a, s′) =

{
1 left clean room

0 otherwise

Suck dirt and action penalty rvwsdap(s, a, s′) = rvwsd (s, a, s′) + rvwap (s, a, s′)

5.3 Wall Maze

Two dimensional mazes are common in RL [22], and have previously been used
for feature analysis [21]. We study the maze in Fig. 1c. The agent starts in the
bottom-left corner (state 1), and must reach the goal within a time limit of T = 7
time steps. The agent can move: up, down, left, and right. Attempts to move
out of bounds, or into walls, cause the agent to remain in place. The size of the
policy space is |X| = 48 = 65536. Each solution in the space has 24 neighbours.

Table 2. The different reward functions that we use for the Wall Maze.

Name Definition

Action penalty rwm
ap (s, a, s′) = −1

Goal based rwm
gb (s, a, s′) =

{
1 s′ = sG

0 otherwise

Manhattan distance rwm
md (s, a, s′) = 7 − (|s′.x − sG.x| + |s′.y − sG.y|)

Manhattan distance 2 rwm
md2(s, a, s′) = rwm

md (s, a, s′) + 100 × rwm
gb (s, a, s′)

508 N. du Preez-Wilkinson and M. Gallagher

In addition to the goal based and action-penalty reward functions, we study
two reward functions based on distance to the goal. The Manhattan distance
function rewards the agent more for being closer to the goal. The value of 7 is
the maximum possible distance from the goal, and keeps the output positive.
The Manhattan distance 2 function adds incentive for reaching the goal over
staying in the maze accumulating rewards.

5.4 Hazard Maze

Hazard mazes provide obstacles that penalise the agent and terminate the
episode when they are touched. We study a hazard maze with the same lay-
out and time limit as the wall maze in Sect. 5.3 by replacing the wall tiles with
hazard tiles.

Most of the reward functions for the Hazard Maze are the same as for the
Wall Maze, but with a penalty added for entering a hazard. For notational
convenience, we represent this using the Hazard reward function. The Action
Penalty 2 function penalises entering hazards more than other actions (Table 3).

Table 3. The different reward functions that we use for the Hazard Maze. The reward
functions defined in this table reference those defined in Table 2.

Name Definition

Hazard rhmh (s, a, s′) =

{
−1 s′is a hazard

0 otherwise

Action penalty rhmap (s, a, s′) = rwm
ap (s, a, s′) + rhmh (s, a, s′)

Goal based rhmgb (s, a, s′) = rwm
gb (s, a, s′) + rhmh (s, a, s′)

Manhattan distance rhmmd(s, a, s′) = rwm
md (s, a, s′) + rhmh (s, a, s′)

Manhattan distance 2 rhmmd2(s, a, s′) = rwm
md2(s, a, s′) + rhmh (s, a, s′)

Action penalty 2 rhmap2(s, a, s′) = rwm
ap (s, a, s′) + 100 × rhmh (s, a, s′)

6 Results

Tables 4, 5 and 6 show the scalar feature values for the different RL problems. As
we are interested in the effects of reward shaping on features, F , we also report
the maximum relative difference (as a percentage) over the reward functions for
each feature9: Δ(F) = 100 × max(abs(F))−min(abs(F))

min(abs(F)) . Figure 2 shows the fitness
distributions.

9 Some relative difference values cannot be calculated, due to a division by zero.

Fitness Landscape Features and Reward Shaping 509

Table 4. Scalar feature results for reward shaping on the 1D Chain problem.

Feature r1D
0 r1D

1 r1D
2 r1D

3 r1D
4 r1D

5 r1D
6 r1D

7 r1D
8 Δ

#Local maxima 1 1 1 1 1 1 1 1 1 0

#Local minima 1 1 1 1 1 1 1 1 1 0

Searchability 0.02 0.03 0.04 0.07 0.08 0.11 0.11 0.11 0.11 450

Neutrality 0.97 0.94 0.91 0.86 0.84 0.79 0.79 0.78 0.78 24

Ruggedness 0.13 0.20 0.29 0.39 0.45 0.53 0.53 0.55 0.54 323

Deception −0.40 −0.47 −0.53 −0.58 −0.53 −0.48 −0.49 −0.51 −0.53 45

Dispersion −0.15 −0.15 −0.15 −0.15 −0.16 −0.15 −0.15 −0.15 −0.15 7

Symmetry G 0.94 0.88 0.75 0.50 0.00 0.00 0.00 0.00 0.00 –

Symmetry GM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 –

Symmetry O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 –

Table 5. Scalar feature results for reward shaping on Vacuum World.

Feature rvwap rvwgb rvwsd rvwlc rvwsdap Δ

#Local maxima 1 1 1 1 1 0

#Local minima 1 1 1 1 1 0

Searchability 0.02 0.02 0.07 0.05 0.07 250

Neutrality 0.96 0.96 0.86 0.91 0.86 12

Ruggedness 0.16 0.17 0.41 0.31 0.42 163

Deception −0.41 −0.52 −0.62 −0.49 −0.49 51

Dispersion −0.30 −0.27 −0.28 −0.29 −0.30 11

Symmetry G 0.90 0.90 0.39 0.72 0.39 131

Symmetry GM 0.00 0.00 0.28 0.03 0.27 –

Symmetry O 0.00 0.00 0.02 0.00 0.00 –

Table 6. Scalar feature results for reward shaping on the Wall and Hazard Mazes.

Feature rwm
ap rwm

gb rwm
md rwm

md2 Δ rhm
ap rhm

gb rhm
md rhm

md2 rhm
ap2 Δ

#Local maxima 1 1 1 1 0 1 1 1 1 1 0

#Local minima 1 1 1 1 0 1 1 1 1 1 0

Searchability 0.0002 0.0002 0.05 0.05 34900 0.05 0.05 0.07 0.07 0.05 40

Neutrality 0.9996 0.9996 0.90 0.90 11 0.90 0.91 0.85 0.85 0.90 7

Ruggedness 0.0044 0.0017 0.31 0.32 18724 0.32 0.32 0.42 0.42 0.33 31

Deception −0.0663 −0.0663 −0.88 +0.35 1227 −0.90 −0.02 −0.80 +0.02 −0.02 4350

Dispersion −0.3145 −0.3153 −0.40 −0.30 27 −0.41 −0.31 −0.40 −0.30 −0.31 32

Symmetry G 0.9995 0.9995 0.58 0.58 72 0.50 0.54 0.31 0.31 0.50 74

Symmetry GM 0.0000 0.0000 0.58 0.58 – 0.18 0.66 0.33 0.33 0.50 267

Symmetry O 0.0000 0.0000 0.74 0.00 – 0.22 0.00 0.48 0.00 0.00 –

510 N. du Preez-Wilkinson and M. Gallagher

7 Discussion

7.1 Reward Shaping

We can see that fitness distributions, ruggedness, searchability, and symmetry
all vary greatly as reward functions are changed. Deception varies greatly only
in the Wall Maze and Hazard Maze environments. Neutrality, dispersion, and
the number of local optima remain relatively invariant to changes in the reward
function. This suggests that reward shaping could be beneficial if an algorithm is
sensitive to ruggedness, searchability, symmetry, or deception. Reward shaping
may provide little benefit if an algorithm is sensitive to neutrality or dispersion.

The consistently high neutrality is surprising, as some reward functions (e.g.
for the 1D Chain) were designed to spread information and create a rich, easy
to solve landscape. Similarly, the Manhattan distance reward functions (rwm

md ,
rwm
md2, rhm

md, rhm
md2) for the mazes were intended to create additional local optima

where the optimal policy is for the agent to remain at the start. However, the
Manhattan distance functions shifted the global optimum to the start because
there was no incentive to finish the maze; and the Manhattan distance 2 functions
shifted it back to the goal-seeking policy. At no point did two local optima exist.

(a) (b)

(c) (d)

Fig. 2. Fitness distributions for: (a) the 1D chain; (b) vacuum world; (c) the wall maze;
and (d) the hazard maze. Reward functions are plotted in different colours. Separate
colours show when reward functions have overlapping values.

Fitness Landscape Features and Reward Shaping 511

The disconnect between reward function intuition and optimisation landscape
reality may explain why it is difficult to design a good reward function; both for
reward shaping, and in general.

Due to the lack of a time penalty, the goal based and suck dirt reward func-
tions for vacuum world have multiple optimal policies. However, they still encour-
age the general behaviour of cleaning both rooms within the time limit. On the
other hand, the leave clean room reward function is a reward shaping accident
resulting in undesired behaviour. The optimal policy for this reward function is
to clean one room, and then move back and forth forever.

Finally, caution is required when using the action penalty reward function in
an environment with multiple termination conditions. The action penalty reward
function for the hazard maze encourages the agent to jump into the nearest
hazard as quickly as possible.

7.2 General Observations

By combining the information from a few features, we can get a picture of
the overall structure of these landscapes. A single local maximum means that
there is only one hill to climb. High neutrality indicates that this hill is made
up of a series of large plateaus and steep cliffs. A single local minimum tells
us that these plateaus are completely flat - they are not pocketed with lots of
little “pits”. The fitness distributions tell us that the size of a plateau is usually
inversely proportional to its fitness, with the least optimal plateaus occupying
the most space. Results for other features can be explained using this picture of
the landscapes.

Searchability, while greatly affected by reward shaping in relative terms, is
consistently low across the problems we studied. Intuitively, improving the fitness
of a solution by local search is directly affected by the amount of neutrality.

Except for the rwm
md2 function, all problems we studied had low deception10

and dispersion11; which is expected in problems with one local optimum.
Many of the problems we studied have high levels of symmetry for poor

performing policies (Symmetry G), and little to no symmetry for good (Symme-
try GM) or optimal policies (Symmetry O). The sub-optimal policies appear to
occupy large flat sections of the search space, such that a symmetric operation
on them would result in a policy from the same flat region. Meanwhile, optimal
policies are rare; and symmetric operations cause them to “fall off the mountain”
onto the lower fitness plateaus.

Ruggedness seems to vary by a large degree across both environments and
reward functions. However, there is little we can say about ruggedness, as there
does not seem to be a noticeable pattern to the variation.

The results of high neutrality and a single local optimum are consistent with
previous work on RL landscapes [21]. The high neutrality is worth emphasising.

10 A measure of how local search can navigate away from global optima.
11 A measure of how spread out high fitness solutions are.

512 N. du Preez-Wilkinson and M. Gallagher

The lowest na
r value we observed was 0.78. In the problem with the least neu-

trality, 78% of the neighbours of the “average” solution were neutral neighbours.
We suspect a connection between the concepts of neutrality in optimisation

landscapes and sparsity in RL. The problem of sparse rewards has gained a lot of
attention in recent years [2,4,16]. Sparsity in RL refers to reward functions that
provide very little useful information for training. This is similar to the concept
of neutrality: very flat regions of equal fitness with no information about where
to go. Additionally, while sparsity is regarded as one of the dominating factors of
RL problems, it seems that neutrality is the dominating factor of RL landscapes.

8 Conclusion

We have studied how reward shaping can affect underlying RL optimisation
landscapes using fitness landscape features. We found that fitness distributions,
deception, ruggedness, searchability, and symmetry can all be affected greatly
by reward shaping. If an algorithm is most sensitive to one of those features,
then reward shaping may be helpful; meanwhile, if an algorithm is sensitive to
neutrality or dispersion, then reward shaping may provide little benefit.

More generally, it seems that very high neutrality is the dominating feature
of the problems we studied. This suggests that algorithms that explore spaces
globally, rather than locally, may perform well on RL problems. This might help
explain the success of evolutionary methods on RL problems [3,18,26]. We also
suspect that the high neutrality of these landscapes is connected to the well
known problem of reward sparsity in RL.

References

1. Ahmed, Z., Le Roux, N., Norouzi, M., Schuurmans, D.: Understanding the impact
of entropy on policy optimization. In: Proceedings of the 36th International Con-
ference on Machine Learning (2019)

2. Chentanez, N., Barto, A.G., Singh, S.P.: Intrinsically motivated reinforcement
learning. In: Advances in Neural Information Processing Systems 17, pp. 1281–
1288. MIT Press (2005)

3. Chrabaszcz, P., Loshchilov, I., Hutter, F.: Back to basics: benchmarking canonical
evolution strategies for playing atari. In: Proceedings of the 27th International
Joint Conference on Artificial Intelligence, pp. 1419–1426. AAAI Press (2018)

4. Dosovitskiy, A., Koltun, V.: Learning to act by predicting the future. arXiv preprint
arXiv:1611.01779 (2016)

5. Horn, J., Goldberg, D.E.: Genetic algorithm difficulty and the modality of fitness
landscapes. Found. Genetic Algorithms 3, 243–269 (1995)

6. Ilyas, A., et al.: Are deep policy gradient algorithms truly policy gradient algo-
rithms? arXiv preprint arXiv:1811.02553 (2018)

7. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty
for genetic algorithms. In: Proceedings of the 6th International Conference on
Genetic Algorithms (1995)

http://arxiv.org/abs/1611.01779
http://arxiv.org/abs/1811.02553

Fitness Landscape Features and Reward Shaping 513

8. Koenig, S., Simmons, R.G.: The effect of representation and knowledge on goal-
directed exploration with reinforcement-learning algorithms. Mach. Learn. 22(1–
3), 227–250 (1996)

9. Lu, G., Li, J., Yao, X.: Fitness-probability cloud and a measure of problem hardness
for evolutionary algorithms. In: Merz, P., Hao, J.-K. (eds.) EvoCOP 2011. LNCS,
vol. 6622, pp. 108–117. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20364-0 10

10. Lunacek, M., Whitley, D.: The dispersion metric and the CMA evolution strategy.
In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Com-
putation, GECCO 2006, pp. 477–484. Association for Computing Machinery, New
York (2006)

11. Malan, K.M., Engelbrecht, A.P.: Quantifying ruggedness of continuous landscapes
using entropy. In: 2009 IEEE Congress on Evolutionary Computation, pp. 1440–
1447 (2009)

12. Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness
landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013)

13. Moriarty, D.E., Schultz, A.C., Grefenstette, J.J.: Evolutionary algorithms for rein-
forcement learning. J. Artif. Intell. Res. 11, 241–276 (1999)

14. Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of NK landscapes’ basins
and local optima networks. In: Proceedings of the 10th Annual Conference on
Genetic and Evolutionary Computation, GECCO 2008, pp. 555–562. Association
for Computing Machinery, New York (2008)

15. Oller, D., Glasmachers, T., Cuccu, G.: Analyzing reinforcement learning bench-
marks with random weight guessing. arXiv preprint arXiv:2004.07707 (2020)

16. Pathak, D., Agrawal, P., Efros, A.A., Darrell, T.: Curiosity-driven exploration by
self-supervised prediction. In: Proceedings of the 34th International Conference on
Machine Learning (2017)

17. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Edu-
cation Limited, London (2013)

18. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as
a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864
(2017)

19. Schmidhuber, J., Hochreiter, S., Bengio, Y.: Evaluating benchmark problems by
random guessing. In: Kolen, J., Cremer, S. (eds.) A Field Guide to Dynamical
Recurrent Networks, pp. 231–235 (2001)

20. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

21. Stapelberg, B., Malan, K.M.: Global structure of policy search spaces for rein-
forcement learning. In: Proceedings of the Genetic and Evolutionary Computation
Conference Companion, GECCO 2019, pp. 1773–1781. Association for Computing
Machinery, New York (2019)

22. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, vol. 1. MIT
Press, Cambridge (1998)

23. Van Hoyweghen, C., Naudts, B.: Symmetry in the search space. In: Proceedings of
the 2000 Congress on Evolutionary Computation, CEC00 (Cat. No. 00TH8512),
vol. 2, pp. 1072–1078 (2000)

24. Vanneschi, L., Pirola, Y., Collard, P., Tomassini, M., Verel, S., Mauri, G.: A quan-
titative study of neutrality in GP Boolean landscapes. In: Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation, GECCO 2006, pp.
895–902. Association for Computing Machinery, New York (2006)

https://doi.org/10.1007/978-3-642-20364-0_10
https://doi.org/10.1007/978-3-642-20364-0_10
http://arxiv.org/abs/2004.07707
http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1707.06347

514 N. du Preez-Wilkinson and M. Gallagher

25. Wiewiora, E.: Reward shaping. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of
Machine Learning, pp. 863–865. Springer, Boston (2010). https://doi.org/10.1007/
978-0-387-30164-8 731

26. Wilson, D.G., Cussat-Blanc, S., Luga, H., Miller, J.F.: Evolving simple programs
for playing atari games. In: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, GECCO 2018, pp. 229–236. Association for Computing Machin-
ery, New York (2018)

https://doi.org/10.1007/978-0-387-30164-8_731
https://doi.org/10.1007/978-0-387-30164-8_731

ClipUp: A Simple and Powerful Optimizer
for Distribution-Based Policy Evolution

Nihat Engin Toklu1,2(B), Pawe�l Liskowski1,2 ,
and Rupesh Kumar Srivastava1,2

1 NNAISENSE, Lugano, Switzerland
2 NNAISENSE, Austin, USA

{engin,pawel,rupesh}@nnaisense.com

Abstract. Distribution-based search algorithms are a powerful approach
for evolutionary reinforcement learning of neural network controllers. In
these algorithms, gradients of the reward function with respect to the pol-
icy parameters are estimated using a population of solutions drawn from
a search distribution, and then used for policy optimization with stochas-
tic gradient ascent. A common choice is to use the Adam optimization
algorithm for obtaining an adaptive behavior during gradient ascent, due
to its success in a variety of supervised learning settings. As an alterna-
tive to Adam, we propose to enhance classical momentum-based gradient
ascent with two simple-yet-effective techniques: gradient normalization
and update clipping. We argue that the resulting optimizer called ClipUp
(short for clipped updates) is a better choice for distribution-based policy
evolution because its working principles are simple and easy to understand
and its hyperparameters can be tuned more intuitively in practice. More-
over, it avoids the need to re-tune hyperparameters if the reward scale
changes. Experiments show that ClipUp is competitive with Adam despite
its simplicity and is effective at some of the most challenging continuous
control benchmarks, including the Humanoid control task based on the
Bullet physics simulator.

1 Introduction

We propose a simple and competitive optimizer (an adaptive gradient fol-
lowing mechanism) for use within distribution-based evolutionary search algo-
rithms for training reinforcement learning (RL) agents. Distribution-based search
[9,10,14,18–21,24] is a simple but powerful category of evolutionary algorithms.
The common principles of distribution-based search algorithms can be summa-
rized as follows:

0: Initialize the current solution.
1: Sample neighbor solutions from a search distribution centered at the cur-
rent solution.
2: Evaluate each neighbor solution, estimate a gradient which is in the direc-
tion of the weighted average (in terms of solution fitnesses) of the neighbor
solutions.

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 515–527, 2020.
https://doi.org/10.1007/978-3-030-58115-2_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_36&domain=pdf
http://orcid.org/0000-0002-8165-748X
http://orcid.org/0000-0002-4032-4267
https://doi.org/10.1007/978-3-030-58115-2_36

516 N. E. Toklu et al.

3: Update the current solution using the gradient.
4: Go to 1.

In step 3, it is possible to use any stochastic gradient ascent algorithm to
potentially speed up policy optimization through the use of adaptive updates e.g.
momentum [16] or Adam [12]. These adaptive optimizers are commonly used in
the supervised deep learning community since they take into account not just the
current gradient, but often its previous values as well to compute a more informed
update. Following its success in supervised learning, the Adam optimizer in par-
ticular has been commonly use in recent work on neuroevolutionary RL [6,8,18].

Using adaptive optimizers instead of plain gradient ascent can potentially
speed up training, but confronts the practitioner with new challenges. A basic
question to consider is whether optimizers designed to work in the supervised
learning setting (where gradients are obtained through differentiation) address
the issues that arise when training RL agents with distribution-based search.
Secondly, these optimizers often introduce several additional hyperparameters,
all of which must be tuned in order to capitalize on their abilities even for
supervised learning, as demonstrated recently by [2]. But many hyperparameters
are non-intuitive to tune in our setting, and most practitioners instead tune one
or two primary hyperparameters using a few trials while keeping the rest at their
default values. This potentially leaves performance gains on the table.

We contribute a potential solution to these issues with a new general-purpose
adaptive optimizer that is especially suitable for embedding into the framework of
distribution-based search. It combines a few simple techniques: stochastic gradi-
ent ascent with heavy ball momentum, gradient normalization, and update clip-
ping. We refer to it as ClipUp, short for “clipped updates”, and argue that it is
a valuable tool for RL practitioners because its hyperparameters are very easy to
understand, providing valuable intuitions for tuning them for a given problem. In
a series of experiments using a representative distribution-based search algorithm,
we compare it to Adam and show that (i) ClipUp is insensitive to reward function
rescaling while Adam needs to be returned for each scale; and (ii) ClipUp performs
on par with Adam on Walker2d-v2 and Humanoid-v2 robot control benchmarks
based on the Mujoco simulator. Finally, we demonstrate that ClipUp can also solve
the PyBullet [4] humanoid control task, a challenging RL environment which has
been reported to be “much harder” [3] than its MuJoCo counterpart.

2 Background

2.1 Policy Gradients with Parameter-Based Exploration

All experiments in this study use policy gradients with parameter-based explo-
ration (PGPE; [21]) as a representative distribution-based search algorithm. A
variant of PGPE was also used in [7,8], demonstrating that it can be successful on
recent RL benchmarks. Although PGPE draws inspiration from an RL-focused
study [25], it is a general-purpose derivative-free optimization algorithm, and can
be considered to be a variant of evolutionary gradient search algorithms [19,20].

ClipUp: A Simple and Powerful Optimizer 517

The PGPE algorithm is described in Algorithm 1. Each iteration of PGPE
works as follows. First (line 2), a new population is built by sampling neighbor
solutions around the current solution xk. These neighbors are sampled from a
Gaussian distribution whose shape is expressed by the standard deviation vector
σk. Like in [20], solutions are sampled symmetrically: when a new neighbor
solution xk + δ is added to the population, its mirror counterpart xk − δ is
added as well. We denote our population of directions sampled at iteration k as
Dk. The next step (line 3) of the algorithm is to find the gradient for updating
the current solution, which is computed by the weighted average of all the fitness
gains along the directions. The algorithm then (line 4) computes the gradient
for updating the standard deviation vector. Finally these gradients are used for
computing the new current solution and the new standard deviation (line 5).

Algorithm 1 The PGPE algorithm [21]
Hyperparameters: Population size λ

Initial solution x1 (in our study, set as near zero)
Initial standard deviation vector σ1

Standard deviation learning rate Ω
AdaptiveOptimizer ∈ {Adam, ClipUp}

1: for iteration k = 1, 2, ... do
2: Build a population of directions

Dk ← {
(d+

i , d−
i)

∣∣ d+
i = xk + δ+i ,

d−
i = xk − δ−

i ,
δi ∼ (N (0, I) · σk

)
,

i ∈ {1, 2, ..., λ/2} }

3: Estimate the gradient for updating the current solution x

∇xk ←
∑

(d+,d−)∈Dk

[
(d+ − xk) · (f(d+) − f(d−))

2 · |Dk|
]

4: Estimate the gradient for updating the standard deviation vector σ

∇σk ←
∑

(d+,d−)∈Dk

(
f(d+) + f(d−)

2
− b

)
·
(

(d+ − xk)2 − (σk)2

σk

)
· 1

|Dk|

where b is the average fitness of all the solutions in Dk

5: Perform the updates

xk+1 ← xk + AdaptiveOptimizer(∇xk)
σk+1 ← σk + Ω · ∇σk

6: end for

Division between two vectors, and squaring of a vector are elementwise operations.

518 N. E. Toklu et al.

In [7,8], the authors enhanced PGPE in three ways: (i) solutions were fitness-
ranked (from worst to best, the ranks range linearly from −0.5 to 0.5) and their
ranks were used for gradient computations instead of their raw fitnesses; (ii) the
Adam optimizer was used for following the gradients in an adaptive manner; (iii)
to make sure that the standard deviation updates remain stable, the updates for
the standard deviation were clipped in each dimension to 20% of their original
values. (i) and (ii) were also previously shown to be successful in the evolution
strategy variant studied in [18]. We adopt these enhancements in this study and
incorporate two further RL-specific enhancements listed below.

Adaptive Population Size [18]. When considering locomotion problems where
the agent bodies are unstable, wrong actions cause the agents to fall, breaking
constraints and ending the trajectories abruptly. In the beginning, most of the
agents fall immediately. Therefore, to find reliable gradients at the beginning of
the search, very large populations are required so that they can explore vari-
ous behaviors. However, such huge populations might be unnecessary once the
search finds a reliable path to follow. Therefore, in addition to the population
size λ, we introduce a hyperparameter T , which is the total number of environ-
ment timesteps (i.e. number of interactions done with the simulator) that must
be completed within an iteration. If, after evaluating all the solutions within
the population, the total number of timesteps is below T , the trajectories are
considered to be too short (most agents fell down) and the current population
size is increased (by λ more solutions in our implementation) until the total
number of environment timesteps reaches T , or the extended population size
reaches an upper bound λmax. This mechanism results in an automatic decay of
the population size during the evolution process.

Observation Normalization [14,18]. We normalize observations using the
running statistics over all the observations received by all the agents until the
current iteration.

In the remainder of this paper, we use the notation PGPE+ClipUp to refer
to PGPE combined with ClipUp as the adaptive gradient following algorithm.
Similarly, we use the notation PGPE+Adam for when Adam is used instead of
ClipUp.

2.2 Heavy Ball Momentum

Proposed by [16], the heavy ball method is a very early momentum-based opti-
mizer for speeding up the convergence. Considering the current solution as a ball
moving in the solution space, each gradient contributes to the velocity of this
ball. This means that the directions consistently pointed to by the recent gra-
dients are followed more confidently (because the velocity accumulates towards
those directions), and similarly, directions rarely pointed to are followed more
cautiously (or they are not followed at all, instead, they just contribute nega-
tively to the current velocity up to some extent).

ClipUp: A Simple and Powerful Optimizer 519

When using distribution-based evolutionary search algorithms, the gradients
can be very noisy because (i) they are estimated stochastically using a sampled
population; and (ii) the objective function is a simulator which itself might be
stochastic (e.g. because the simulator is a physics engine relying on stochas-
tic heuristics, or it deliberately injects uncertainty to encourage more robust
policies). The concept of momentum can be useful when dealing with noisy gra-
dients, because, the velocity will accumulate towards the historically consistent
components of the noisy gradients, and misleading inconsistent components of
the gradients will cancel out.

Note that the Adam optimizer inherits the concept of momentum as well.
Evolution strategy with covariance matrix adaptation (CMA-ES; [9,10]) also
implements a variant of the momentum mechanism called “evolution path”.

2.3 Gradient Normalization

Used in [19] in the context of evolutionary search, gradient normalization has
the useful effect of decoupling the direction of a gradient and its magnitude. The
magnitude of the gradient can then be re-adjusted or overwritten by another
mechanism, or simply by a constant.

When there is no gradient normalization, the magnitude of a gradient would
be computed as a result of the weighted average performed over the fitness values
of the population. The most important problem with unnormalized gradients is
that one has to tune the step size according to the scales of the fitness values,
which vary from problem to problem, or even from region to region within the
solution space of the same RL problem. To counter the varying fitness scale issue,
one can employ fitness ranking as done in prior work e.g. [8,10,18,24]. However,
even then, the step size must be tuned according to the scale imposed by the
chosen fitness ranking method.

On the other hand, let us now consider the simple mechanism of normalizing
the gradient as α · (g / ||g||), where α is the step size, and g is the unnormalized
gradient. With this mechanism, the step size α becomes a hyperparameter for
tuning the Euclidean distance expressed by the normalized gradient, independent
of the scale of the fitness values or ranks. In addition to the advantage of being
scale independent, we argue that with this mechanism, it is easy to come up
with sensible step size values for updating a policy.

2.4 Gradient Clipping

In the supervised learning community, gradient clipping [15,26] is a common prac-
tice for avoiding instabilities due to exploding gradients [11]. The technique used in
this paper is related but slightly different. We clip the updated velocity of the heavy
ball (just before updating the current solution), which is why we call it update
clipping. It works as follows: if the Euclidean norm of the velocity is larger than
a maximum speed threshold, then the velocity is clipped such that its magnitude
is reduced to the threshold, but its direction remains unchanged. The intuition
behind clipping the velocity of the heavy ball method is to prevent it from gaining
very large velocities that can overshoot the (local) optimum point.

520 N. E. Toklu et al.

3 Formal Definition of the ClipUp Optimizer

We now explain the ClipUp optimizer, which can be seen as the combination
of the heavy ball momentum, gradient normalization, and update clipping tech-
niques discussed in Sect. 2.

Let us consider an optimization problem with the goal of maximizing f(x),
where x is a solution vector. We denote the gradient of f(x) as ∇f(x). In the
context of evolutionary RL, it is usually the case that f(x) is not differentiable,
therefore, it is estimated by using the fitness-weighted (or rank-weighted) average
of the population of neighboring solutions.

In a setting without any adaptive optimizer, at iteration k with step size α,
the following simple update rule would be followed:

xk+1 ← xk + α · ∇f(x).

With ClipUp, the update rule becomes:

xk+1 ← xk + ClipUp
(∇f(x)

)

where ClipUp is defined in Algorithm 2. First (line 1), the algorithm normalizes
the gradient, multiplies it by the step size α (fixing the gradient’s magnitude
to α), and then computes a new velocity by adding the α-sized gradient to
the decayed velocity of the previous iteration (where decaying means that the
previous velocity is multiplied by the momentum factor m, usually set as 0.9).
The next step of the algorithm (lines 2 to 6) is to clip this newly computed
velocity if its magnitude exceeds the threshold imposed by the hyperparameter
||v||max. When clipped, the velocity’s magnitude is reduced to ||v||max, its direc-
tion remaining unchanged. Finally, the procedure ends by returning the clipped
velocity (line 7).

With the normalization and the clipping operations employed by ClipUp, the
two hyperparameters α and ||v||max gain intuitive meanings and become tunable
directly in the scale of mutation one would like to apply on the current solution.
The step size α is now the fixed Euclidean norm of the vector that updates the
velocity, and the maximum speed ||v||max now expresses the maximum norm of
the update to be done on the current solution. Moreover, they are completely
independent of the fitness scale of the problem, or the fitness-based ranking
employed on the population of solutions.

Like Adam, ClipUp does not make any assumptions about the search algo-
rithm employing it. Therefore, although we use PGPE as our search algorithm,
in theory it is possible to use ClipUp with other similar evolutionary algorithms
as well, such as the evolution strategy variant used in [18].

4 Tuning Heuristics for PGPE+ClipUp

Having the step size α and the maximum speed ||v||max in the same scale allows
us to come up with simple-yet-effective hyperparameter tuning rules. We have

ClipUp: A Simple and Powerful Optimizer 521

observed that the simple rule α = ||v||max/2 is transferable across the RL tasks
we considered. We can also select the initial standard deviation vector σ1 once
||v||max is known, by considering the radius of the initial spherical search distri-
bution (see Fig. 1). When considering an initial radius r, σ1 becomes a vector
filled with:

√
(r2)/n, where n is the dimensionality of the solution vector. We

have observed that the setting r ≈ 15 · ||v||max is transferable across several RL
tasks. Depending on the hyperparameter tuning budget available, we suggest
tuning this multiplier in the range [10, 20]. For this study, we used the multi-
plier 18 for our Humanoid-v2 experiments, and 15 for all our other experiments.
Although it is difficult to claim that a certain set of hyperparameters is the best
for all RL tasks in general, it is advantageous to have sensible default values,
as they reduce the grid sizes to consider during initial hyperparameter tuning
procedures in practice. The default settings above are visualized in Fig. 1.

Algorithm 2 The ClipUp optimizer
Initialization: Velocity v1 = 0

Hyperparameters: Step size α
Maximum speed ||v||max

Momentum m
Input: Estimated gradient ∇f(xk)

1: v′
k+1 ← m · vk + α · ∇f(xk) / ||∇f(xk)||

)

2: if ||v′
k+1|| > ||v||max then

3: vk+1 ← ||v||max · v′
k+1 / ||v′

k+1||
)

4: else
5: vk+1 ← v′

k+1

6: end if
7: return vk+1

5 Experiments

In this section, we present the results we obtained with PGPE+ClipUp, and also
the comparisons made against PGPE+Adam. For ClipUp, we apply the tuning
heuristics we proposed in Sect. 4: α = ||v||max/2, r = 15 · ||v||max (18 instead
of 15 in the case of Humanoid-v2). The momentum coefficient m was fixed at
0.9. For Adam, the following hyperparameter values from the original paper [12]
were adopted: β1 = 0.9, β2 = 0.999, and ε = 1e−8 (the same default values were
used by [18]). A single episode of interaction with the environment was used to
compute f during training. For testing the current solution at any point, the
average return over 16 episodes was recorded for reporting in tables and plots.
When a comparison is made between PGPE+ClipUp and PGPE+Adam, we
use our best known search distribution radius for both, and tune the step size
of Adam for each RL environment.

522 N. E. Toklu et al.

Fig. 1. Visualization of the default hyperparameters for ClipUp.

5.1 Fitness Scale (in)sensitivity

We argued that the most important factor contributing to the intuitiveness of
ClipUp is that its step size is configured directly in terms of the mutation mag-
nitude. The normalization operator employed within ClipUp ensures that this
step size configuration is not affected by the fitness scale. To support this argu-
ment, we now compare the behaviors of PGPE+ClipUp and PGPE+Adam on
the RL environment LunarLanderContinuous-v2 using multiple fitness scales.
The environment has 8-dimensional observations and 2-dimensional actions in
the range [−1, 1]. We compare four setups, leading to four different fitness scales
for the same task: (i) 0-centered fitness ranking; (ii) raw (original) reward values;
(iii) raw reward values multiplied by 1000; and (iv) raw reward values divided
by 1000.

PGPE was executed for 50 iterations with a fixed population size of 200. The
standard deviation learning rate was set as Ω = 0.1. A linear policy was used,
and the radius of the search distribution in the parameter space was set to 4.5.
Following the tuning heuristics in Sect. 4, this means that the maximum speed for
ClipUp is 0.3. For Adam, we tuned the step size in {0.1, 0.125, 0.15, 0.175, 0.2}.
For step sizes 0.1 and 0.125, Adam’s performance dropped overall. The remaining
step sizes did not clearly dominate each other, and therefore are discussed here.

For each reward scale, each algorithm, and each step size for Adam, we ran
10 experiment runs. The overall score of each group of 10 runs was recorded as
the average of their final testing scores. These results are shown in Table 1.

It can be seen from the table that ClipUp is not affected at all by vari-
ous reward scales. The small amount of deviation observed for ClipUp can be
attributed to random noise. With Adam, different step size settings seemed to

ClipUp: A Simple and Powerful Optimizer 523

Table 1. Behavior of PGPE+ClipUp and PGPE+Adam across four reward scales on
LunarLanderContinuous-v2. The numbers outside the parentheses represent the final
score, averaged across 10 runs. The numbers inside parentheses represent how much
(as percentage) the score deviates from the same method’s result with fitness ranking.

ClipUp stepsize = 0.15 Adam stepsize = 0.15

Fitness ranking 269.95 (100.00%) 255.32 (100.00%)

Raw rewards 270.15 (100.07%) 197.93 (77.52%)

Rewards × 1000 262.98 (97.42%) 139.61 (54.68%)

Rewards/1000 263.06 (97.44%) 200.34 (78.46%)

Adam stepsize = 0.175 Adam stepsize = 0.2

Fitness ranking 241.94 (100.00%) 263.73 (100.00%)

Raw rewards 235.72 (97.43%) 199.25 (75.55%)

Rewards × 1000 211.84 (87.56%) 245.67 (93.15%)

Rewards/1000 187.25 (77.39%) 111.76 (42.38%)

introduce different sensitivities to the reward scale. The most stable setting for
step size was 0.175. With step size 0.15, its performance dropped significantly
when the rewards were multiplied by 1000. On the other hand, with step size
0.2, the performance dropped when the rewards were divided by 1000. Overall,
we conclude that the performance of ClipUp was consistent across fitness scales
while that of Adam was not.

5.2 MuJoCo Continuous Control Tasks

Next we consider the continuous control tasks Walker2d-v2 and Humanoid-v2
defined in the Gym [1] library, simulated using the MuJoCo [23] physics engine.
The goal in these tasks is to make a robot walk forward. In Walker2d-v2, the
robot has a two-legged simplistic skeleton based on [5]. In Humanoid-v2, origi-
nally from [22], the robot has a much more complex humanoid skeleton.

Previous studies [14,17] have demonstrated that a linear policy is sufficient
to solve these tasks, and therefore we also adopt this approach. The policy has
the form action = observation · M + b, where M is a matrix, and b is a bias
vector which has the same length with the action vector. In total, this results
in 108 optimization variables for Walker2d-v2, and 6409 optimization variables
for Humanoid-v2.

In these RL environments, by default the agents are rewarded a certain
amount of “alive bonus” at each simulator timestep for not falling. Mania
et al. [14] reported that this alive bonus causes the optimization to be driven
towards agents that stand still to collect the bonus and do not learning to walk.
We experienced the same issue in our experiments, and therefore, following [14],
removed these alive bonuses.

524 N. E. Toklu et al.

Both tasks were solved using both PGPE+Adam and PGPE+ClipUp, each
with 30 runs. For ClipUp, we set the maximum speed as 1.5e−2 for both tasks.
When using Adam, we used the same radius values we used with ClipUp, and
then searched for suitable Adam step sizes. With Walker2d-v2, we considered
the step size set {4e−4 , 5e−4, ..., 9e−4 , 1.2e−3, 1.3e−3, ..., 1.8e−3,2e−3, 3e−3,
..., 6e−3}, ran PGPE+Adam 10 times for each, and then found 4e−3 to perform
the best. With Humanoid-v2, we considered the step size set {4e−4, 5e−4, ...,
9e−4}, ran PGPE+Adam 10 times for each, and then found 6e − 4 to perform
the best. This basic tuning setup reflects a few tuning trials a programmer may
typically use in practice to ascertain the performance of an algorithm on an RL
task.

Among the shared PGPE hyperparameters for Walker2d-v2, we set λ =
100, λmax = 800, and also declared that a population must complete T = 75000
interactions with the simulator. The value 75 000 comes from 100 · 1000 · (3/4),
that is, more or less the 3/4 of the solutions in a population must complete their
1000-step episodes to the end, otherwise the size of that population is increased.
For Humanoid-v2, we set λ = 200, λmax = 3200, and T = 150000 (150 000 being
200 · 1000 · (3/4)). The standard deviation learning rate Ω was fixed to 0.1.

Results obtained with ClipUp and Adam are compared in Fig. 2. In both
cases, the eventual performance of the two algorithms was very similar, but,
according to the reported medians, ClipUp jumped to high cumulative rewards
earlier for Humanoid-v2. Both algorithms scored over 6000 on Humanoid-v2,
clearing the official solving threshold.

Fig. 2. Performances of PGPE+ClipUp and PGPE+Adam on Walker2d-v2 and
Humanoid-v2. Both PGPE+ClipUp and PGPE+Adam were run 30 times on each
task. Each run’s reported cumulative reward at a time is the result of 16 re-evaluations
averaged. The x-axis represents the number of interactions made with the simulator (i.e.
the number of simulator timesteps). Dark lines mark the median cumulative reward
values. The shaded regions are bounded by the mean ± standard deviations of the
cumulative rewards.

ClipUp: A Simple and Powerful Optimizer 525

5.3 PyBullet Humanoid

As a final stress test of ClipUp’s utility, we attempted to use ClipUp and our
proposed hyperparameter tuning scheme for reliably solving the challenging RL
task labeled HumanoidBulletEnv-v0, defined in and simulated by the PyBullet
[4] library. This task also involves teaching a humanoid skeleton to walk forward.
However, as noted by the author of PyBullet [3], this version of the task is
much harder than its MuJoCo counterpart. Perhaps because of this mentioned
difficulty, successful results for it are rarely reported.

As in MuJoCo experiments, the default alive bonus for this task was removed.
In addition, trajectory length upper bound was decreased from 1000 timesteps
to 200 timesteps, since the hardest part of the task is starting a forward gait
(the terrain is flat and there are no randomized traps). A neural network policy
was used with a single hidden layer of 64 neurons, resulting in 3985 optimization
variables.

For PGPE+ClipUp, we set λ = 10000, λmax = 80000, T = 1500000 (com-
puted as 10000 · 200 · (3/4)), Ω = 0.1, and ||v||max = 0.15. Each run was
on an Amazon EC2 m4.16xlarge instance (64 vCPUs). The performance of
PGPE+ClipUp vs number of environment interactions is shown in Fig. 3. It
can be seen that the median curve stayed mostly above 3500 (which is the solv-
ing threshold defined in [13]) after about 0.75e9 steps (about 15 h of training),
and then mostly above 4000 after 1e9 steps (about 24 h). This result confirms
that despite its simplicity, ClipUp is effective at solving hard control problems.

Fig. 3. Performance of PGPE+ClipUp on HumanoidBulletEnv-v0 over 10 runs. Each
run’s reported cumulative reward is the result of 16 re-evaluations averaged. The dark
line marks the median cumulative reward values. The shaded region is bounded by the
minimum and the maximum cumulative rewards.

526 N. E. Toklu et al.

6 Conclusions

Targeting the field of distribution-based evolutionary RL, we proposed ClipUp,
a simple yet powerful optimizer that combines clipping and normalization tech-
niques for stabilizing gradient-based search. We have argued that tuning ClipUp
is intuitive, mainly thanks to the following:

– the step size and the maximum speed of ClipUp (which are the two main
hyperparameters affecting the step size) are configured directly in the scale
of the magnitude (norm) of mutation one would like to apply on the current
solution;

– the step size configuration of ClipUp is not affected by the fitness scale of the
optimization problem at hand;

– one can only tune the maximum speed of ClipUp, and decide on the step size
and the initial search distribution’s radius by following simple heuristic rules
(e.g. step size as half the maximum speed, and radius about 15 to 18 times
the maximum speed).

These properties can save practitioners valuable time and effort when applying
distribution-based search to RL problems. Moreover, it was found to be compet-
itive against the well-known Adam optimizer on the MuJoCo continuous con-
trol tasks Walker2d-v2 and Humanoid-v2. Finally, we showed that PGPE with
ClipUp can successfully solve the HumanoidBulletEnv-v0 benchmark, demon-
strating its applicability to highly challenging control tasks.

Although we used PGPE in our experiments, ClipUp can take the optimizer
role in any evolution strategy variant where the solution update is in the form
of gradient estimation (e.g. [18]). With this broad applicability, we hope ClipUp
to be a valuable tool for neuroevolutionary RL.

References

1. Brockman, G., et al.: OpenAI Gym. arXiv preprint arXiv:1606.01540 (2016)
2. Choi, D., Shallue, C.J., Nado, Z., Lee, J., Maddison, C.J., Dahl, G.E.: On empir-

ical comparisons of optimizers for deep learning. arXiv preprint arXiv:1910.05446
(2019)

3. Coumans, E.: Pybullet repository - issues. https://github.com/bulletphysics/
bullet3/issues/1718#issuecomment-393198883 (2018)

4. Coumans, E., Bai, Y.: Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org (2016-2019)

5. Erez, T., Tassa, Y., Todorov, E.: Infinite-horizon model predictive control for peri-
odic tasks with contacts. In: Durrant-Whyte, H.F., Roy, N., Abbeel, P. (eds.)
Robotics: Science and Systems VII, University of Southern California, Los Ange-
les, CA, USA, 27–30 June 2011 (2011). https://doi.org/10.15607/RSS.2011.VII.
010. http://www.roboticsproceedings.org/rss07/p10.html

6. Freeman, D., Ha, D., Metz, L.: Learning to predict without looking ahead: World
models without forward prediction. In: Advances in Neural Information Processing
Systems, pp. 5380–5391 (2019)

http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1910.05446
https://github.com/bulletphysics/bullet3/issues/1718#issuecomment-393198883
https://github.com/bulletphysics/bullet3/issues/1718#issuecomment-393198883
http://pybullet.org
https://doi.org/10.15607/RSS.2011.VII.010
https://doi.org/10.15607/RSS.2011.VII.010
http://www.roboticsproceedings.org/rss07/p10.html

ClipUp: A Simple and Powerful Optimizer 527

7. Ha, D.: A visual guide to evolution strategies. blog.otoro.net (2017). http://blog.
otoro.net/2017/10/29/visual-evolution-strategies/

8. Ha, D.: Reinforcement learning for improving agent design. Artificial Life 25(4),
352–365 (2019). https://doi.org/10.1162/artl a 00301. pMID: 31697584

9. Hansen, N., Ostermeier, A.: Convergence properties of evolution strategies with
the derandomized covariance matrix adaptation: The (μ/μI ,λ)-cma-es. Eufit 97,
650–654 (1997)

10. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

11. Hochreiter, S.: Untersuchungen zu dynamischen neuronalen Netzen. Masters thesis,
Technische Universität München, München (1991)

12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings
of 3rd International Conference on Learning Representations (2015)

13. Klimov, O., Schulman, J.: Roboschool. OpenAI blog (2017). https://openai.com/
blog/roboschool/

14. Mania, H., Guy, A., Recht, B.: Simple random search of static linear policies is com-
petitive for reinforcement learning. In: Advances in Neural Information Processing
Systems, pp. 1800–1809 (2018)

15. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural
networks. In: International conference on machine learning, pp. 1310–1318 (2013)

16. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods.
USSR Comput. Math. Math. Phys. 4(5), 1–17 (1964)

17. Rajeswaran, A., Lowrey, K., Todorov, E.V., Kakade, S.M.: Towards generalization
and simplicity in continuous control. In: Advances in Neural Information Process-
ing Systems, pp. 6550–6561 (2017)

18. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as
a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864
(2017)

19. Salomon, R.: Evolutionary algorithms and gradient search: similarities and differ-
ences. IEEE Trans. Evol. Comput. 2(2), 45–55 (1998)

20. Salomon, R.: Inverse mutations: making the evolutionary-gradient-search proce-
dure noise robust. In: Proceedings of the IASTED International Conference on
Artificial Intelligence and Applications, pp. 322–327 (2005)

21. Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Peters, J., Schmidhuber, J.:
Parameter-exploring policy gradients. Neural Netw. 23(4), 551–559 (2010)

22. Tassa, Y., Erez, T., Todorov, E.: Synthesis and stabilization of complex behaviors
through online trajectory optimization. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 4906–4913. IEEE (2012)

23. Todorov, E., Erez, T., Tassa, Y.: MuJoCo: A physics engine for model-based con-
trol. In: IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 5026–5033. IEEE (2012)

24. Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., Schmidhuber, J.:
Natural evolution strategies. J. Mach. Learn. Res. 15(1), 949–980 (2014)

25. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992). https://doi.org/10.
1007/BF00992696

26. Zhang, J., He, T., Sra, S., Jadbabaie, A.: Why gradient clipping accelerates train-
ing: a theoretical justification for adaptivity. In: International Conference on Learn-
ing Representations (2020)

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/
http://blog.otoro.net/2017/10/29/visual-evolution-strategies/
https://doi.org/10.1162/artl_a_00301
https://openai.com/blog/roboschool/
https://openai.com/blog/roboschool/
http://arxiv.org/abs/1703.03864
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696

Warm-Start AlphaZero Self-play
Search Enhancements

Hui Wang(B), Mike Preuss, and Aske Plaat

Leiden Institute of Advanced Computer Science, Leiden University,
Leiden, The Netherlands

h.wang.13@liacs.leidenuniv.nl

http://www.cs.leiden.edu

Abstract. Recently, AlphaZero has achieved landmark results in deep
reinforcement learning, by providing a single self-play architecture that
learned three different games at super human level. AlphaZero is a large
and complicated system with many parameters, and success requires
much compute power and fine-tuning. Reproducing results in other
games is a challenge, and many researchers are looking for ways to
improve results while reducing computational demands. AlphaZero’s
design is purely based on self-play and makes no use of labeled expert
data or domain specific enhancements; it is designed to learn from
scratch. We propose a novel approach to deal with this cold-start prob-
lem by employing simple search enhancements at the beginning phase of
self-play training, namely Rollout, Rapid Action Value Estimate (RAVE)
and dynamically weighted combinations of these with the neural network,
and Rolling Horizon Evolutionary Algorithms (RHEA). Our experiments
indicate that most of these enhancements improve the performance of
their baseline player in three different (small) board games, with espe-
cially RAVE based variants playing strongly.

Keywords: Reinforcement learning · MCTS · Warm-start
enhancements · RHEA · AlphaZero-like self-play

1 Introduction

The AlphaGo series of programs [1–3] achieve impressive super human level
performance in board games. Subsequently, there is much interest among deep
reinforcement learning researchers in self-play, and self-play is applied to many
applications [4,5]. In self-play, Monte Carlo Tree Search (MCTS) [6] is used to
train a deep neural network, that is then employed in tree searches, in which
MCTS uses the network that it helped train in previous iterations.

On the one hand, self-play is utilized to generate game playing records and
assign game rewards for each training example automatically. Thereafter, these
examples are fed to the neural network for improving the model. No database
of labeled examples is used. Self-play learns tabula rasa, from scratch. However,
self-play suffers from a cold-start problem, and may also easily suffer from bias
c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 528–542, 2020.
https://doi.org/10.1007/978-3-030-58115-2_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_37&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_37

Warm-Start AlphaZero Self-play Search Enhancements 529

since only a very small part of the search space is used for training, and training
samples in reinforcement learning are heavily correlated [2,7].

On the other hand, the MCTS search enhances performance of the trained
model by providing improved training examples. There has been much research
into enhancements to improve MCTS [6,8], but to the best of our knowledge, few
of these are used in Alphazero-like self-play, which we find surprising, given the
large computational demands of self-play and the cold-start and bias problems.

This may be because AlphaZero-like self-play is still young. Another rea-
son could be that the original AlphaGo paper [1] remarks about AMAF and
RAVE [9], two of the best known MCTS enhancements, that “AlphaGo does not
employ the all-moves-as-first (AMAF) or rapid action value estimation (RAVE)
heuristics used in the majority of Monte Carlo Go programs; when using policy
networks as prior knowledge, these biased heuristics do not appear to give any
additional benefit”. Our experiments indicate otherwise, and we believe there is
merit in exploring warm-start MCTS in an AlphaZero-like self-play setting.

We agree that when the policy network is well trained, then heuristics may
not provide significant added benefit. However, when this policy network has
not been well trained, especially at the beginning of the training, the neural net-
work provides approximately random values for MCTS, which can lead to bad
performance or biased training. The MCTS enhancements or specialized evolu-
tionary algorithms such as Rolling Horizon Evolutionary Algorithms (RHEA)
may benefit the searcher by compensating the weakness of the early neural net-
work, providing better training examples at the start of iterative training for
self-play, and quicker learning. Therefore, in this work, we first test the possibil-
ity of MCTS enhancements and RHEA for improving self-play, and then choose
MCTS enhancements to do full scale experiments, the results show that MCTS
with warm-start enhancements in the start period of AlphaZero-like self-play
improve iterative training with tests on 3 different regular board games, using
an AlphaZero re-implementation [10].

Our main contributions can be summarized as follows:

1. We test MCTS enhancements and RHEA, and then choose warm-start
enhancements (Rollout, RAVE and their combinations) to improve MCTS
in the start phase of iterative training to enhance AlphaZero-like self-play.
Experimental results show that in all 3 tested games, the enhancements can
achieve significantly higher Elo ratings, indicating that warm-start enhance-
ments can improve AlphaZero-like self-play.

2. In our experiments, a weighted combination of Rollout and RAVE with a
value from the neural network always achieves better performance, suggesting
also for how many iterations to enable the warm-start enhancement.

The paper is structured as follows. After giving an overview of the most
relevant literature in Sect. 2, we describe the test games in Sect. 3. Thereafter,
we describe the AlphaZero-like self-play algorithm in Sect. 4. Before the full
length experiments in Sect. 6, an orientation experiment is performed in Sect. 5.
Finally, we conclude our paper and discuss future work.

530 H. Wang et al.

2 Related Work

Since MCTS was created [11], many variants have been studied [6,12], especially
in games [13]. In addition, enhancements such as RAVE and AMAF have been
created to improve MCTS [9,14]. Specifically, [14] can be regarded as one of
the early prologues of the AlphaGo series, in the sense that it combines online
search (MCTS with enhancements like RAVE) and offline knowledge (table based
model) in playing small board Go.

In self-play, the large number of parameters in the deep network as well
as the large number of hyper-parameters (see Table 2) are a black-box that
precludes understanding. The high decision accuracy of deep learning, however,
is undeniable [15], as the results in Go (and many other applications) have
shown [16]. After AlphaGo Zero [2], which uses an MCTS searcher for training
a neural network model in a self-play loop, the role of self-play has become more
and more important. The neural network has two heads: a policy head and a
value head, aimed at learning the best next move, and the assessment of the
current board state, respectively.

Earlier works on self-play in reinforcement learning are [17–21]. An overview
is provided in [8]. For instance, [17,19] compared self-play and using an expert
to play backgammon with temporal difference learning. [21] studied co-evolution
versus self-play temporal difference learning for acquiring position evaluation in
small board Go. All these works suggest promising results for self-play.

More recently, [22] assessed the potential of classical Q-learning by introduc-
ing Monte Carlo Search enhancement to improve training examples efficiency.
[23] uses domain-specific features and optimizations, but still starts from ran-
dom initialization and makes no use of outside strategic knowledge or preexisting
data, that can accelerate the AlphaZero-like self-play.

However, to the best of our knowledge there is no further study on applying
MCTS enhancements in AlphaZero-like self-play despite the existence of many
practical and powerful enhancements.

3 Tested Games

In our experiments, we use the games Othello [24], Connect Four [25] and Gob-
ang [26] with 6× 6 board size. All of these are two-player games. In Othello,
any opponent’s color pieces that are in a straight line and bounded by the piece
just placed and another piece of the current player’s are flipped to the current
player’s color. While there is no legal move (the board is full), the player who
has less pieces loses the game. Figure 1(a) shows the initial state of Othello. For
Connect Four, players take turns dropping their own pieces from the top into a
vertically suspended grid. The pieces fall down straightly and occupy the lowest
position within the column. The player who first connects a line of four pieces
horizontally, vertically, or diagonally wins the game. Figure 1(b) is a game termi-
nation example for 6× 6 Connect Four where the red player wins the game. As
another connection game, Gobang is traditionally played on a Go board. Players

Warm-Start AlphaZero Self-play Search Enhancements 531

Fig. 1. Starting position for Othello, example positions for Connect Four and Gobang

also alternate turns, placing a stone of their own color on an empty position. The
winner is the first player to connect an unbroken horizontal, vertical, or diagonal
chain of 4 stones. Figure 1(c) is a termination example for 6 × 6 Gobang where
the black player wins the game with 4 stones in a line.

A lot of methods on implementing game-playing programs to play these three
games were studied. For instance, Buro used logistic regression to create Logis-
tello [27] to play Othello. In addition, Chong et al. described the evolution of
neural networks to play Othello with learning [28]. Thill et al. employed tempo-
ral difference learning to play Connect Four [29]. Zhang et al. studied evaluation
functions for Gobang [30]. Moreover, Banerjee et al. tested transfer learning in
General Game Playing on small games including 4× 4 Othello [31]. Wang et
al. assessed the potential of classical Q-learning based on small games including
4 × 4 Connect Four [32]. Varying the board size allows us to reduce or increase the
computational complexity of these games. In our experiments, we use AlphaZero-
like learning [33].

4 AlphaZero-Like Self-play Algorithms

4.1 The Algorithm Framework

According to [3,33], the basic structure of AlphaZero-like self-play is an iterative
process over three different stages (see Algorithm 1).

The first stage is a self-play tournament. The player plays several games
against itself to generate game playing records as training examples. In each step
of a game episode, the player runs MCTS (or one of the MCTS enhancements
before I’ iteration) to obtain, for each move, an enhanced policy π based on
the probability p provided by the policy network fθ. The hyper-parameters,
and the abbreviation that we use in this paper is given in Table 2. In MCTS,
hyper-parameter Cp is used to balance exploration and exploitation of the tree
search, and we abbreviate it to c. Hyper-parameter m is the number of times
to search down from the root for building the game tree, where the value (v)
of the states is provided by fθ. In (self-)play game episode, from T’ steps on,

532 H. Wang et al.

Algorithm 1. AlphaZero-like Self-play Algorithm
1: function AlphaZeroGeneralwithEnhancements
2: Initialize fθ with random weights; Initialize retrain buffer D with capacity N
3: for iteration=1, . . . ,I ′, . . . , I do � play curriculum of I tournaments
4: for episode=1,. . . , E do � stage 1, play tournament of E games
5: for t=1, . . . , T ′, . . . , T do � play game of T moves
6: πt ← MCTS Enhancement before I ′ or MCTS after I ′ iteration
7: at =randomly select on πt before T ′ or arg maxa(πt) after T ′ step
8: executeAction(st, at)

9: Store every (st, πt, zt) with game outcome zt (t ∈ [1, T]) in D

10: Randomly sample minibatch of examples (sj , πj , zj) from D � stage 2
11: Train fθ′ ← fθ

12: fθ = fθ′ if fθ′ is better than fθ using MCTS mini-tournament � stage 3

13: return fθ;

the player always chooses the best action based on π. Before that, the player
always chooses a random move according to the probability distribution of π to
obtain more diverse training examples. After game ends, the new examples are
normalized as a form of (st, πt, zt) and stored in D.

The second stage consists of neural network training, using data from
stage 1. Several epochs are usually employed for the training. In each epoch (ep),
training examples are randomly selected as several small batches [34] based on
the specific batch size (bs). The neural network is trained with a learning rate (lr)
and dropout (d) by minimizing [35] the value of the loss function which is the
sum of the mean-squared error between predicted outcome and real outcome and
the cross-entropy losses between p and π. Dropout is a probability to randomly
ignore some nodes of the hidden layer to avoid overfitting [36].

The last stage is the arena comparison, where a competition between
the newly trained neural network model (f ′

θ) and the previous neural network
model (fθ) is run. The winner is adopted for the next iteration. In order to
achieve this, the competition runs n rounds of the game. If fθ′ wins more than
a fraction of u games, it is accepted to replace the previous best fθ. Otherwise,
fθ′ is rejected and fθ is kept as current best model. Compared with AlphaGo
Zero, AlphaZero does not employ this stage anymore. However, we keep it to
make sure that we can safely recognize improvements.

4.2 MCTS

In self-play, MCTS is used to generate high quality examples for training the
neural network. A recursive MCTS pseudo code is given in Algorithm 2. For
each search, the value from the value head of the neural network is returned (or
the game termination reward, if the game terminates). During the search, for
each visit of a non-leaf node, the action with the highest P-UCT value is selected
to investigate next [2,37]. After the search, the average win rate value Q(s, a)
and visit count N(s, a) in the followed trajectory are updated correspondingly.

Warm-Start AlphaZero Self-play Search Enhancements 533

Algorithm 2. Neural Network Based MCTS
1: function MCTS(s, fθ)
2: Search(s)
3: πs ←normalize(Q(s, ·))
4: return πs

5: function Search(s)
6: Return game end result if s is a terminal state
7: if s is not in the Tree then
8: Add s to the Tree, initialize Q(s, ·) and N(s, ·) to 0
9: Get P (s, ·) and v(s) by looking up fθ(s)

10: return v(s)
11: else
12: Select an action a with highest UCT value
13: s′ ←getNextState(s, a)
14: v ←Search(s′)
15: Q(s, a) ← N(s,a)∗Q(s,a)+v

N(s,a)+1

16: N(s, a) ← N(s, a) + 1

17: return v;

The P-UCT formula that is used is as follows (with c as constant weight that
balances exploitation and exploration):

U(s, a) = Q(s, a) + c ∗ P (s, a)

√
N(s, ·)

N(s, a) + 1
(1)

In the whole training iterations (including the first I’ iterations), the Base-
line player always runs neural network based MCTS (i.e line 6 in Algorithm 1
is simply replaced by πt ← MCTS).

4.3 MCTS Enhancements

In this paper, we introduce 2 individual enhancements and 3 combinations to
improve neural network training based on MCTS (Algorithm 2).

Rollout. Algorithm 2 uses the value from the value network as return value at
leaf nodes. However, if the neural network is not yet well trained, the values are
not accurate, and even random at the start phase, which can lead to biased and
slow training. Therefore, as warm-start enhancement we perform a classic MCTS
random rollout to get a value that provides more meaningful information. We
thus simply add a random rollout function which returns a terminal value after
line 9 in Algorithm 2, written as Get result v(s) by performing random rollout
until the game ends.1

RAVE is a well-studied enhancement for improving the cold-start of MCTS in
games like Go (for details see [9]). The same idea can be applied to other domains
1 In contrast to AlphaGo [1], where random rollouts were mixed in with all value-

lookups, in our scheme they replace the network lookup at the start of the training.

534 H. Wang et al.

where the playout-sequence can be transposed. Standard MCTS only updates
the (s, a)-pair that has been visited. The RAVE enhancement extends this rule
to any action a that appears in the sub-sequence, thereby rapidly collecting
more statistics in an off-policy fashion. The idea to perform RAVE at startup
is adapted from AMAF in the game of Go [9]. The main pseudo code of RAVE
is similar to Algorithm 2, the differences are in line 3, line 12 and line 16. For
RAVE, in line 3, policy πs is normalized based on Qrave(s, ·). In line 12, the
action a with highest UCTrave value, which is computed based on Eq. 2, is
selected. After line 16, the idea of AMAF is applied to update Nrave and Qrave,
which are written as: Nrave(st1 , at2) ← Nrave(st1 , at2) + 1, Qrave(st1 , at2) ←
Nrave(st1 ,at2)∗Qrave(st1 ,at2)+v

Nrave(st1 ,at2)+1 , where st1 ∈ V isitedPath, and at2 ∈ A(st1), and
for ∀t < t2, at �= at2 . More specifically, under state st, in the visited path, a state
st1 , all legal actions at2 of st1 that appear in its sub-sequence (t ≤ t1 < t2) are
considered as a (st1 , at2) tuple to update their Qrave and Nrave.

UCTrave(s, a) = (1 − β) ∗ U(s, a) + β ∗ Urave(s, a) (2)

where

Urave(s, a) = Qrave(s, a) + c ∗ P (s, a)

√
Nrave(s, ·)

Nrave(s, a) + 1
, (3)

and

β =

√
equivalence

3 ∗ N(s, ·) + equivalence
(4)

Usually, the value of equivalence is set to the number of MCTS simulations (i.e
m), as is also the case in our following experiments.

RoRa. Based on Rollout and Rave enhancement, the first combination is to
simply add the random rollout to enhance RAVE.

WRo. As the neural network model is getting better, we introduce a weighted
sum of rollout value and the value network as the return value. In our experi-
ments, v(s) is computed as follows:

v(s) = (1 − weight) ∗ vnetwork + weight ∗ vrollout (5)

WRoRa. In addition, we also employ a weighted sum to combine the value a
neural network and the value of RoRa. In our experiments, weight weight is
related to the current iteration number i, i ∈ [0, I ′]. v(s) is computed as follows:

v(s) = (1 − weight) ∗ vnetwork + weight ∗ vrora (6)

where
weight = 1 − i

I ′ (7)

Warm-Start AlphaZero Self-play Search Enhancements 535

5 Orientation Experiment: MCTS(RAVE) vs. RHEA

Before running full scale experiments on warm-start self-play that take days to
weeks, we consider other possibilities for methods that could be used instead
of MCTS variants. Justesen et al. [38] have recently shown that depending on
the type of game that is played, RHEA can actually outperform MCTS variants
also on adversarial games. Especially for long games, RHEA seems to be strong
because MCTS is not able to reach a good tree/opening sequence coverage.

The general idea of RHEA has been conceived by Perez et al. [39] and is sim-
ple: they directly optimize an action sequence for the next actions and apply the
first action of the best found sequence for every move. Originally, this has been
applied to one-player settings only, but recently different approaches have been
tried also for adversarial games, as the co-evolutionary variant of Liu et al. [40]
that shows to be competitive in 2 player competitions [41]. The current state of
RHEA is documented in [42], where a large number of variants, operators and
parameter settings is listed. No one-beats-all variant is known at this moment.

Generally, the horizon (number of actions in the planned sequence) is often
much too short to reach the end of the game. In this case, either a value function
is used to assess the last reached state, or a rollout is added. For adversarial
games, opponent moves are either co-evolved, or also played randomly. We do
the latter, with a horizon size of 10. In preliminary experiments, we found that
a number of 100 rollouts is already working well for MCTS on our problems,
thus we also applied this for the RHEA. In order to use these 100 rollouts well,
we employ a population of only 10 individuals, using only cloning + mutation
(no crossover) and a (10 + 1) truncation selection (the worst individual from
10 parents and 1 offspring is removed). The mutation rate is set to 0.2 per
action in the sequence. However, parameters are not sensitive, except rollouts.
RHEA already works with 50 rollouts, albeit worse than with 100. As our rollouts
always reach the end of the game, we usually get back Qi(as) = {1,−1} for the
i-th rollout for the action sequence as, meaning we win or lose. Counting the
number of steps until this happens h, we compute the fitness of an individual to
Q(as) =

∑n
i=1 Qi(as)/h

n over multiple rollouts, thereby rewarding quick wins and
slow losses. We choose n = 2 (rollouts per individual) as it seems to perform a
bit more stable than n = 1. We thus evaluate 50 individuals per run.

In our comparison experiment, we pit a random player, MCTS, RAVE (both
without neural network support but a standard random rollout), and RHEA
against each other with 500 repetitions over all three games, with 100 rollouts
per run for all methods. The results are shown in Table 1.

The results indicate that in nearly all cases, RAVE is better than MCTS
is better than RHEA is better than random, according to a binomial test at a
significance level of 5%. Only for Othello, RHEA does not convincingly beat the
random player. We can conclude from these results that RHEA is no suitable
alternative in our case. The reason for this may be that the games are rather
short so that we always reach the end, providing good conditions for MCTS and
even more so for RAVE that more aggressively summarizes rollout information.

536 H. Wang et al.

Table 1. Comparison of random player, MCTS, Rave, and RHEA on the three games,
win rates in percent (column vs. row), 500 repetitions each.

adv Gobang Connect Four Othello

rand mcts rave rhea rand mcts rave rhea rand mcts rave rhea

random 97.0 100.0 90.0 99.6 100.0 80.0 98.50 98.0 48.0

mcts 3.0 89.4 34.0 0.4 73.0 3.0 1.4 46.0 1.0

rave 0.0 10.6 17.0 0.0 27.0 4.0 2.0 54.0 5.0

rhea 10.0 66.0 83.0 20.0 97.0 96.0 52.0 99.0 95.0

Besides, start sequence planning is certainly harder for Othello where a single
move can change large parts of the board.

6 Full Length Experiment

Taking into account the results of the comparison of standard MCTS/RAVE and
RHEA at small scale, we now focus on the previously defined neural network
based MCTS and its enhancements and run them over the full scale training.

6.1 Experiment Setup

For all 3 tested games and all experimental training runs based on Algorithm 1,
we set parameters values in Table 2. Since tuning I’ requires enormous com-
putation resources, we set the value to 5 based on an initial experiment test,
which means that for each self-play training, only the first 5 iterations will use
one of the warm-start enhancements, after that, there will be only the MCTS in
Algorithm 2. Other parameter values are set based on [43,44].

Our experiments are run on a GPU-machine with 2x Xeon Gold 6128 CPU at
2.6 GHz, 12 core, 384 GB RAM and 4x NVIDIA PNY GeForce RTX 2080TI. We
use small versions of games (6 × 6) in order to perform a sufficiently high number
of computationally demanding experiments. Shown are graphs with errorbars of
8 runs, of 100 iterations of self-play. Each single run takes 1 to 2 days.

Table 2. Default parameter setting

Para Description Value Para Description Value

I Number of iteration 100 rs Number of retrain iteration 20

I’ Iteration threshold 5 ep Number of epoch 10

E Number of episode 50 bs Batch size 64

T’ Step threshold 15 lr Learning rate 0.005

m MCTS simulation times 100 d Dropout probability 0.3

c Weight in UCT 1.0 n Number of comparison games 40

u Update threshold 0.6

Warm-Start AlphaZero Self-play Search Enhancements 537

6.2 Results

After training, we collect 8 repetitions for all 6 categories players. Therefore we
obtain 49 players in total (a Random player is included for comparison). In a
full round robin tournament, every 2 of these 49 players are set to pit against
each other for 20 matches on 3 different board games (Gobang, Connect Four
and Othello). The Elo ratings are calculated based on the competition results
using the same Bayesian Elo computation [45] as AlphaGo papers.

Baseline Rollout Rave RoRa WRo WRoRa−300

−250

−200

−150

−100

−50

0

50

100

150

200

250

El
o
ra
tin

g

(a) 6×6 Gobang

Baseline Rollout Rave RoRa WRo WRoRa−100

−80

−60

−40

−20

0

20

40

60

80

El
o
ra
tin

g

(b) 6×6 Connect Four

Fig. 2. Tournament results for 6 × 6 Gobang and 6 × 6 Connect Four among Baseline,
Rollout, Rave, RoRa, WRo and WRoRa. Training with enhancements tends to be better
than baseline MCTS.

Figure 2(a) displays results for training to play the 6× 6 Gobang game. We
can clearly see that all players with the enhancement achieve higher Elo rat-
ings than the Baseline player. For the Baseline player, the average Elo rating
is about −100. For enhancement players, the average Elo ratings are about 50,
except for Rave, whose variance is larger. Rollout players and its combinations
are better than the single Rave enhancement players in terms of the average
Elo. In addition, the combination of Rollout and RAVE does not achieve signifi-
cant improvement of Rollout, but is better than RAVE. This indicates than the
contribution of the Rollout enhancement is larger than RAVE in Gobang game.

Figure 2(b) shows that all players with warm-start enhancement achieve
higher Elo ratings in training to play the 6× 6 Connect Four game. In addi-
tion, we find that comparing Rollout with WRo, a weighted sum of rollout value
and neural network value achieves higher performance. Comparing Rave and
WRoRa, we see the same. We conclude that in 5 iterations, for Connect Four,
enhancements that combine the value derived from the neural network contribute
more than the pure enhancement value. Interestingly, in Connect Four, the com-
bination of Rollout and RAVE shows improvement, in contrast to Othello (next
figure) where we do not see significant improvement. However, this does not
apply to WRoRa, the weighted case.

538 H. Wang et al.

In Fig 3 we see that in Othello, except for Rollout which holds the similar
Elo rating as Baseline setting, all other investigated enhancements are better
than the Baseline. Interestingly, the enhancement with weighted sum of RoRa
and neural network value achieves significant highest Elo rating. The reason that
Rollout does not show much improvement could be that the rollout number is not
large enough for the game length (6 × 6 Othello needs 32 steps for every episode
to reach the game end, other 2 games above may end up with vacant positions).
In addition, Othello does not have many transposes as Gobang and Connect Four
which means that RAVE can not contribute to a significant improvement. We can
definitively state that the improvements of these enhancements are sensitive to
the different games. In addition, for all 3 tested games, at least WRoRa achieves
the best performance according to a binomial test at a significance level of 5%.

Baseline Rollout Rave RoRa WRo WRoRa−150

−125

−100

−75

−50

−25

0

25

50

75

100

125

El
o
ra
tin

g

Fig. 3. Tournament results for 6 × 6 Othello among Baseline, Rollout, Rave, RoRa,
WRo and WRoRa. Training with enhancements is mostly better than the baseline
setting.

7 Discussion and Conclusion

Self-play has achieved much interest due to the AlphaGo Zero results. How-
ever, self-play is currently computationally very demanding, which hinders repro-
ducibility and experimenting for further improvements. In order to improve per-
formance and speed up training, in this paper, we investigate the possibility of
utilizing MCTS enhancements to improve AlphaZero-like self-play. We embed
Rollout, RAVE and their possible combinations as enhancements at the start
period of iterative self-play training. The hypothesis is, that self-play suffers
from a cold-start problem, as the neural network and the MCTS statistics are
initialized to random weights and zero, and that this can be cured by prepending
it with running MCTS enhancements or similar methods alone in order to train
the neural network before “switching it on” for playing.

We introduce Rollout, RAVE, and combinations with network values, in order
to quickly improve MCTS tree statistics before we switch to Baseline-like self-
play training, and test these enhancements on 6× 6 versions of Gobang, Connect
Four, and Othello. We find that, after 100 self-play iterations, we still see the

Warm-Start AlphaZero Self-play Search Enhancements 539

effects of the warm-start enhancements as playing strength has improved in
many cases. For different games, different methods work best; there is at least
one combination that performs better. It is hardly possible to explain the per-
formance coming from the warm-start enhancements and especially to predict
for which games they perform well, but there seems to be a pattern: Games
that enable good static opening plans probably benefit more. For human play-
ers, it is a common strategy in Connect Four to play a middle column first as
this enables many good follow-up moves. In Gobang, the situation is similar,
only in 2D. It is thus harder to counter a good plan because there are so many
possibilities. This could be the reason why the warm-start enhancements work
so well here. For Othello, the situation is different, static openings are hardly
possible, and are thus seemingly not detected. One could hypothesize that the
warm-start enhancements recover human expert knowledge in a generic way.
Recently, we have seen that human knowledge is essential for mastering complex
games as StarCraft [46], whereas others as Go [2] can be learned from scratch.
Re-generating human knowledge may still be an advantage, even in the latter
case.

We also find that often, a single enhancement may not lead to significant
improvement. There is a tendency for the enhancements that work in combina-
tion with the value of the neural network to be stronger, but that also depends on
the game. Concluding, we can state that we find moderate performance improve-
ments when applying warm-start enhancements and that we expect there is
untapped potential for more performance gains here.

8 Outlook

We are not aware of other studies on warm-start enhancements of AlphaZero-like
self-play. Thus, a number of interesting problems remain to be investigated.

– Which enhancements will work best on which games? Does the above hypoth-
esis hold that games with more consistent opening plans benefit more from
the warm-start?

– When (parameter I ′) and how do we lead over from the start methods to
the full AlphaZero scheme including MCTS and neural networks? If we use a
weighting, how shall the weight be changed when we lead over? Linearly?

– There are more parameters that are critical and that could not really be
explored yet due to computational cost, but this exploration may reveal
important performance gains.

– Other warm-start enhancements, e.g. built on variants of RHEA’s or hybrids
of it, shall be explored.

– All our current test cases are relatively small games. How does this transfer
to larger games or completely different applications?

In consequence, we would like to encourage other researchers to help exploring
this approach and enable using its potential in future investigations.

540 H. Wang et al.

Acknowledgments. Hui Wang acknowledges financial support from the China Schol-
arship Council (CSC), CSC No.201706990015.

References

1. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484 (2016)

2. Silver, D., et al.: Mastering the game of go without human knowledge. Nature
550(7676), 354 (2017)

3. Silver, D., et al.: A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)

4. Tao, J., Lin, W., Xiaofeng, H.: Principle analysis on AlphaGo and perspective in
military application of artificial intelligence. J. Command Control 2(2), 114–120
(2016)

5. Zhang, Z.: When doctors meet with AlphaGo: potential application of machine
learning to clinical medicine. Ann. Transl. Med. 4(6) (2016)

6. Browne, C., et al.: A survey of Monte Carlo tree search methods. IEEE Trans.
Comput. Intell. AI Games 4(1), 1–43 (2012)

7. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

8. Plaat, A.: Learning to play–reinforcement learning and games (2020)
9. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Pro-

ceedings of the 24th International Conference on Machine Learning, pp. 273–280
(2007)

10. Nair, S.: AlphaZero general. https://github.com/suragnair/alpha-zero-general
(2018). Accessed May 2018

11. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search.
In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS,
vol. 4630, pp. 72–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-75538-8 7

12. Ruijl, B., Vermaseren, J., Plaat, A., van den Herik, J.: Combining simulated anneal-
ing and Monte Carlo tree search for expression simplification. In: Proceedings of
the 6th International Conference on Agents and Artificial Intelligence-Volume 1,
pp. 724–731. SCITEPRESS-Science and Technology Publications, Lda (2014)

13. Chaslot, G., Bakkes, S., Szita, I., Spronck, P.: Monte-Carlo tree search: a new
framework for game AI. In: AIIDE (2008)

14. Gelly, S., Silver, D.: Monte-Carlo tree search and rapid action value estimation in
computer go. Artif. Intell. 175(11), 1856–1875 (2011)

15. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85–117 (2015)

16. Clark, C., Storkey, A.: Training deep convolutional neural networks to play go. In:
International Conference on Machine Learning, pp. 1766–1774 (2015)

17. Tesauro, G.: Temporal difference learning and TD-Gammon. Commun. ACM
38(3), 58–68 (1995)

18. Heinz, E.A.: New self-play results in computer chess. In: Marsland, T., Frank,
I. (eds.) CG 2000. LNCS, vol. 2063, pp. 262–276. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45579-5 18

19. Wiering, M.A., et al.: Self-play and using an expert to learn to play backgammon
with temporal difference learning. J. Intell. Learn. Syst. Appl. 2(02), 57 (2010)

https://github.com/suragnair/alpha-zero-general
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/3-540-45579-5_18

Warm-Start AlphaZero Self-play Search Enhancements 541

20. Van Der Ree, M., Wiering, M.: Reinforcement learning in the game of Othello:
learning against a fixed opponent and learning from self-play. In: IEEE Symposium
on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL), pp.
108–115. IEEE (2013)

21. Runarsson, T.P., Lucas, S.M.: Coevolution versus self-play temporal difference
learning for acquiring position evaluation in small-board go. IEEE Trans. Evol.
Comput. 9(6), 628–640 (2005)

22. Wang, H., Emmerich, M., Plaat, A.: Monte Carlo Q-learning for general game
playing. arXiv preprint arXiv:1802.05944 (2018)

23. Wu, D.J.: Accelerating self-play learning in go. arXiv preprint arXiv:1902.10565
(2019)

24. Iwata, S., Kasai, T.: The Othello game on an n * n board is PSPACE-complete.
Theor. Comput. Sci. 123(2), 329–340 (1994)

25. Allis, L.V.: A knowledge-based approach of connect-four. ICGA J. 11(4), 165
(1988)

26. Reisch, S.: Gobang ist pspace-vollständig. Acta Informatica 13(1), 59–66 (1980)
27. Buro, M.: The Othello match of the year: Takeshi Murakami vs. Logistello. ICGA

J. 20(3), 189–193 (1997)
28. Chong, S.Y., Tan, M.K., White, J.D.: Observing the evolution of neural networks

learning to play the game of Othello. IEEE Trans. Evol. Comput. 9(3), 240–251
(2005)

29. Thill, M., Bagheri, S., Koch, P., Konen, W.: Temporal difference learning with
eligibility traces for the game connect four. In: IEEE Conference on Computational
Intelligence and Games, pp. 1–8. IEEE (2014)

30. Zhang, M.L., Wu, J., Li, F.Z.: Design of evaluation-function for computer gobang
game system. J. Comput. Appl. 7, 051 (2012)

31. Banerjee, B., Stone, P.: General game learning using knowledge transfer. In: IJCAI,
pp. 672–677 (2007)

32. Wang, H., Emmerich, M., Plaat, A.: Assessing the potential of classical Q-learning
in general game playing. In: Atzmueller, M., Duivesteijn, W. (eds.) BNAIC 2018.
CCIS, vol. 1021, pp. 138–150. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-31978-6 11

33. Wang, H., Emmerich, M., Preuss, M., Plaat, A.: Alternative loss functions in
alphazero-like self-play. In: IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 155–162. IEEE (2019)

34. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

35. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

36. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

37. Rosin, C.D.: Multi-armed bandits with episode context. Ann. Mathe. Artif. Intell.
61(3), 203–230 (2011). https://doi.org/10.1007/s10472-011-9258-6

38. Justesen, N., Mahlmann, T., Risi, S., Togelius, J.: Playing multi-action adversar-
ial games: online evolutionary planning versus tree search. IEEE Trans. Comput.
Intell. AI Games 10, 281–291 (2017)

39. Perez, D., Samothrakis, S., Lucas, S., Rohlfshagen, P.: Rolling horizon evolution
versus tree search for navigation in single-player real-time games. In: Proceedings of
the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO
2013, pp. 351–358. New York (2013). Association for Computing Machinery

http://arxiv.org/abs/1802.05944
http://arxiv.org/abs/1902.10565
https://doi.org/10.1007/978-3-030-31978-6_11
https://doi.org/10.1007/978-3-030-31978-6_11
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/s10472-011-9258-6

542 H. Wang et al.

40. Liu, J., Liebana, D.P., Lucas, S.M.: Rolling horizon coevolutionary planning for
two-player video games. In: 8th Computer Science and Electronic Engineering Con-
ference, CEEC 2016, Colchester, UK, 28–30 September 2016, pp. 174–179. IEEE
(2016)

41. Gaina, R.D., et al.: The 2016 two-player GVGAI competition. IEEE Trans. Games
10(2), 209–220 (2018)

42. Gaina, R.D., Devlin, S., Lucas, S.M., Perez-Liebana, D.: Rolling horizon evolution-
ary algorithms for general video game playing (2020)

43. Wang, H., Emmerich, M., Preuss, M., Plaat, A.: Hyper-parameter sweep on Alp-
haZero general. arXiv preprint arXiv:1903.08129 (2019)

44. Wang, H., Emmerich, M., Preuss, M., Plaat, A.: Analysis of hyper-parameters for
small games: iterations or epochs in self-play? arXiv preprint arXiv:2003.05988
(2020)

45. Coulom, R.: Whole-history rating: a Bayesian rating system for players of time-
varying strength. In: van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.)
CG 2008. LNCS, vol. 5131, pp. 113–124. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-87608-3 11

46. Vinyals, O., et al.: Grandmaster level in StarCraft ii using multi-agent reinforce-
ment learning. Nature 575(7782), 350–354 (2019)

http://arxiv.org/abs/1903.08129
http://arxiv.org/abs/2003.05988
https://doi.org/10.1007/978-3-540-87608-3_11
https://doi.org/10.1007/978-3-540-87608-3_11

Theoretical Aspects of Nature-Inspired
Optimization

Runtime Analysis of a Heavy-Tailed
(1 + (λ, λ)) Genetic Algorithm on Jump

Functions

Denis Antipov1,2(B) and Benjamin Doerr2

1 ITMO University, St. Petersburg, Russia
antipovden@yandex.ru

2 Laboratoire d’Informatique (LIX), CNRS, École Polytechnique,
Institut Polytechnique de Paris, Palaiseau, France

Abstract. It was recently observed that the (1 + (λ, λ)) genetic
algorithm can comparably easily escape the local optimum of the
jump functions benchmark. Consequently, this algorithm can opti-
mize the jump function with jump size k in an expected runtime of
only n(k+1)/2k−k/2eO(k) fitness evaluations (Antipov, Doerr, Karavaev
(GECCO 2020)). This performance, however, was obtained with non-
standard parameter setting depending on the jump size k.

To overcome this difficulty, we propose to choose two parameters of
the (1 + (λ, λ)) genetic algorithm randomly from a power-law distribu-
tion. Via a mathematical runtime analysis, we show that this algorithm
with natural instance-independent choices of the power-law parameters
on all jump functions with jump size at most n/4 has a performance
close to what the best instance-specific parameters in the previous work
obtained. This price for instance-independence can be made as small
as an O(n log(n)) factor. Given the difficulty of the jump problem and
the runtime losses from using mildly suboptimal fixed parameters (also
discussed in this work), this appears to be a fair price.

Keywords: Theory · Runtime analysis · Crossover · Fast mutation

1 Introduction

The (1 + (λ, λ)) genetic algorithm ((1 + (λ, λ)) GA) is a still fairly simple
evolutionary algorithm proposed at GECCO 2013 [14] (journal version [15]).
Through a combination of mutation with a high mutation rate and crossover
with the parent as repair mechanism, it tries to increase the speed of exploration
without compromising in terms of exploitation. The mathematical analyses on
OneMax [12,15] and easy random satisfiability instances [6] showed that the
new algorithm has a moderate advantage over classic evolutionary algorithms
(EAs). Some experimental results [26,31] also suggested that this algorithm is
promising.

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 545–559, 2020.
https://doi.org/10.1007/978-3-030-58115-2_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_38&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_38

546 D. Antipov and B. Doerr

More recently, a mathematical analysis on jump functions showed that here
the (1 + (λ, λ)) GA with the right parameter setting outperforms the classic algo-
rithms by a much wider margin than on the simpler problems regarded before [5].
One drawback of this result is that the choice of the parameters is non-trivial.
In particular, (i) one needed to deviate from the previous recommendation to
connect the mutation rate p and the crossover bias c to the population size λ
via p = λ

n and c = 1
λ , and (ii) the optimal parameters depended heavily on the

difficulty parameter k of the jump functions class. While also many sub-optimal
parameter values gave an improvement over classic algorithms, the non-trivial
influence of the parameters on the algorithm performance still raises the ques-
tion if one can (at least partially) relieve the algorithm designer from the task
of choosing the parameters.

In this work, we make a big step forward in this direction. We deduce from
previous works that taking mutation an equal rate p and crossover bias c can
be a good idea when progress is difficult. This relation was found suitable in the
last stages of the OneMax optimization process and to cross the fitness valley
of jump functions. Parameterizing p = c =

√
s/n, we obtain that an offspring

after mutation and crossover has an expected Hamming distance of s from the
parent. Hence the parameter s, in a similar manner as the mutation rate in
a traditional mutation-based algorithm, quantifies the typical search radius of
the (1 + (λ, λ)) GA. With this (heuristic) reduction of the parameter space, it
remains to choose suitable values for the search radius s and for the offspring
population size λ. Also with this reduction, this remains a non-trivial task—the
optimal parameters determined in [5] are λ =

√
n
k

k
and s = k.

One way to circumvent the parameter choice problem is letting the EA opti-
mize its parameters itself. The last years have seen a decent number of self-
adjusting or self-adapting parameter choices (e.g., [9,16–18,20,29,30], see also
the survey [13]), including a self-adjusting choice of λ for the (1 + (λ, λ)) GA
optimizing OneMax [12,15] and easy random SAT instance [6]. In all these
successful applications of dynamic parameter settings, the characteristic of the
optimization process changed only slowly over time. This enabled the algorithm
to adjust to the changing environment. We are therefore sceptical that such ideas
work well on problems like jump functions, which show a sudden change from
an easy OneMax-style landscape to a difficult-to-cross fitness valley.

For this reason, we preferred another recently successful approach, namely
a random choice of the parameters. Such a random choice (from a heavy-tailed
distribution, independently in each iteration) of the mutation rate was shown to
give good results for the (1 + 1) EA optimizing jump functions [19] (see [1,2,22,
23,25,31,35,36] for other successful uses of this idea). Hence trying this idea for
our parameter s is very natural. There is less a-priori evidence that a random
choice of the value for λ is a good idea, but we have tried this nevertheless. We
note that the recent work [1] showed that the (1 + (λ, λ)) GA with a heavy-
tailed choice of λ and the previous recommendation p = λ

n and c = 1
λ has a

good performance on OneMax, but it is not clear why this should indicate also

A Heavy-Tailed (1 + (λ, λ)) Genetic Algorithm 547

a good performance on jump functions, in particular, with our different choice
of p and c.

We conduct a mathematical runtime analysis of the (1 + (λ, λ)) GA with
heavy-tailed choices of s and λ, the heavy-tailed (1 + (λ, λ)) GA for short, from
a broad range of power-law distributions. It shows that a power-law exponent
βs > 1 for the choice of s and a power-law exponent βλ equal to or slightly
above two for the choice of λ gives a very good performance. The resulting
runtimes are slightly higher than those stemming from the best instance-specific
static parameters, but are still much below the runtimes of classic evolutionary
algorithms.

While undoubtedly we have obtained parameters that work uniformly well
over all jump functions, we also feel that our choices of the power-law exponent
are quite natural, so that the name parameterless (1 + (λ, λ)) GA might be
justified. There is not much to say on the choice of s, where apparently all power-
laws (with exponent greater than one, which is a very natural assumption for any
use of a power-law) give good results. For the choice of λ, we note that the cost of
one iteration of the (1 + (λ, λ)) GA is 2λ fitness evaluations. Hence 2E[λ] is the
cost of an iteration with a random choice of λ. Now it is exactly the power-law
exponents βλ > 2 that give a constant value for E[λ]. The larger βλ is, the more
the power-law distribution is concentrated on constant values. For constant λ,
however, the (1 + (λ, λ)) GA cannot profit a lot from the intermediate selection
step, and thus shows a behavior similar to classic mutation-based algorithms. For
this reason, choosing a power-law exponent close to two appears to be a natural
choice. Based both on this informal argument and our mathematical results, for
a practical application of our algorithm we recommend to use βs slightly above
one, say 1.1, and βλ slightly above two, say 2.1.

The asymptotically best choice of βλ (in the sense that the worst-case price
for being instance-independent is lowest) is obtained from taking βλ = 2. Since
this alone would give an infinite value for E[λ], one needs to restrict the range of
values this distribution is defined on. To obtain an O(nkβs−1) price of instance-
independence, already a generous upper bound of 2n is sufficient. To obtain our
best price of instance-independence of O(n log n), a similar trick is necessary for
the choice of s, namely taking βs = 1 and capping the range at the (trivial)
upper bound s ≤ n. While we think that these considerations are interesting
from the theoretical perspective as they explore the limits of our approach,
we do not expect these hyperparameter choices to be useful in many practical
applications. We note the runtime of the (1 + 1) EA with heavy-tailed mutation
rate was shown [19] to exceed the instance-specific best runtime of the (1+1) EA
by a factor of Θ(nβ−0.5). Hence a power-law exponent β as low as possible (but
larger than one) looks best from the theoretical perspective. In contrast, in the
experiments in [19], no improvement was seen from lowering β below 1.5.

The remainder of this paper is structured as follows. In the following pre-
liminaries section, we introduce the jump functions benchmark and the heavy-
tailed (1 + (λ, λ)) GA along with some relevant previous works. Section 3 con-
tains the heart of this work, a mathematical runtime analysis of the heavy-tailed

548 D. Antipov and B. Doerr

(1 + (λ, λ)) GA on jump functions. In Sect. 4, we show via an elementary compu-
tational analysis that the (1 + (λ, λ)) GA with fixed parameters is very sensitive
to missing the optimal parameter values. This suggests that the small polynomial
price of our one-size-fits-all solution is well invested compared to the performance
losses stemming from missing the optimal static parameter values.

2 Preliminaries

In this section we collect all necessary definitions and tools, which we use in the
paper. We only use standard notation such as the following. By N we denote
the set of positive integers. We use notations [a..b] for integer intervals and [a, b]
for real-valued intervals. For a, b ∈ R the notion [a..b] means [�a�..�b�]. For any
probability distribution L and random variable X, we write X ∼ L to indicate
that X follows the law L. We denote the binomial law with parameters n ∈ N

and p ∈ [0, 1] by Bin (n, p).

2.1 Jump Functions

The family of jump functions is a class of model functions based on the classic
OneMax benchmark function. OneMax is a pseudo-Boolean function defined
on the space of bit-strings of length n, which returns the number of one-bits in
its argument. More formally,

OneMax(x) = OM(x) =
n∑

i=1

xi.

The Jumpk function with jump size k is then defined as follows.

Jumpk(x) =

{
OM(x) + k, if OM(x) ∈ [0..n − k] ∪ {n},

n − OM(x), if OM(x) ∈ [n − k + 1..n − 1].

A plot of Jumpk is shown in Fig. 1. Different from OneMax, this function
has a fitness valley which is hard to cross for the many EAs. For example, the
(μ + λ) EA and (μ, λ) EA for all values of μ and λ need an expected time of
Ω(nk) to optimize Jumpk [11,21]. With a heavy-tailed mutation operator, the
runtime of the (1 + 1) EA can be lowered by a kΘ(k) factor, so it remains Θ(nk)
for k constant. Better runtimes have been shown for algorithms using crossover
and other mechanisms [7,8,24,28,32,34] and for estimation-of-distribution algo-
rithms [10,27], though in our view only the O(nk−1) runtime in [8] stems from
a classic algorithm with natural parameters.

A Heavy-Tailed (1 + (λ, λ)) Genetic Algorithm 549

OneMax(x)n
0

n − k

k

n

n + k

Jumpk(x)

Fig. 1. Plot of the Jumpk function. As a function of unitation, the function value of a
search point x depends only on the number OneMax(x) of one-bits in x.

2.2 Power-Law Distributions

We say that a random variable X ∈ N follows a power-law distribution with
parameters β and u if

Pr[X = i] =

{
Cβ,ui−β , if i ∈ [1..u],
0, else,

where Cβ,u = (
∑u

j=1 j−β)−1 is the normalization coefficient. We write X ∼
pow(β, u) and call u the upper limit and β the power-law exponent. We note
that if β > 1, then Pr[X = i] = Θ(1) for any integer i = Θ(1). At the same
time the distribution is heavy-tailed, which means that we have a decent (only
inverse polynomial instead of negative-exponential) probability that X = i for
any super-constant i ≤ u. If β > 2, then we also have E[X] = Θ(1). These
properties are easily seen from the following estimates of the partial sums of the
generalized harmonic series, which we will frequently need in this work.

Lemma 1. For all positive integers a and b such that b ≥ a and for all β > 0,
the sum

∑b
i=a i−β is

– Θ((b + 1)1−β − a1−β), if β ∈ [0, 1),
– Θ(log(b+1

a)), if β = 1, and
– Θ(a1−β − (b + 1)1−β), if β > 1,

where Θ notation is used for a and b tending to +∞.

This lemma is easily shown by approximating the sums via integrals. It gives
the following estimates for the normalization coefficient Cβ,u of the power-law
distribution and for the expected value of X ∼ pow(β, u).

Lemma 2. The normalization coefficient Cβ,u = (
∑u

j=1 i−β)−1 of the power-
law distribution with parameters β and u is

550 D. Antipov and B. Doerr

– Θ(uβ−1), if β ∈ [0, 1),
– Θ(1/ log(u + 1)), if β = 1, and
– Θ(1), if β > 1.

Lemma 3. The expected value of X ∼ pow(β, u) is

– Θ(u), if β ≤ 1,
– Θ(u2−β), if β ∈ (1, 2),
– Θ(log(u + 1)), if β = 2, and
– Θ(1), if β > 2.

In both Lemmas we use Θ notation for u → +∞.

2.3 The Heavy-Tailed (1 + (λ, λ)) GA

We now define a variant of the (1 + (λ, λ)) GA, which we call heavy-tailed
(1 + (λ, λ)) GA. The main difference from the standard (1 + (λ, λ)) GA is that
at the start of each iteration the mutation rate p, the crossover bias c, and the
population sizes λm and λc for the mutation and crossover phases are randomly
chosen as follows. We sample s ∼ pow(βs, us) and take p = c = (s

n)1/2. The pop-
ulation sizes are chosen via λm = λc = λ ∼ pow(βλ, uλ). Here the upper limits
uλ and us can be any positive integers and the power-law exponents βλ and βs

can be any non-negative real numbers. We call these parameters of the power-
law distribution the hyperparameters of the heavy-tailed (1 + (λ, λ)) GA and we
give recommendations on how to choose them in Sect. 3.1. The pseudocode of
this algorithm is shown in Algorithm 1. We note that it is not necessary to store
the whole offspring populations, since only the best individual has a chance to
be selected as mutation or crossover winner. Hence also large values for λ are
algorithmically feasible.

The few existing results for the (1 + (λ, λ)) GA with static parameters show
the following: With optimal static parameters, the algorithm optimizes OneMax

in time roughly Θ(n
√

log(n) log log log(n)
log log(n)) [12]. With a suitable fitness dependent

parameter choice or a self-adjusting parameter choice building on the one-fifth
rule, this runtime can be lowered to Θ(n). Due to the weaker fitness-distance
correlation, slightly inferior results have been shown in [6] for sufficiently dense
random satisfiability instances in the planted solution model (and the experi-
ments in [6] suggest that indeed the algorithm suffers from the weaker fitness-
distance correlation). A runtime analysis [4] on LeadingOnes gave no better
runtimes than the classic Θ(n2) bound, but at least it showed that also in the
absence of a good fitness-distance correlation the (1 + (λ, λ)) GA can be efficient
by falling back to the optimization behavior of the (1 + 1) EA.

We use the following language (also for the standard (1 + (λ, λ)) GA with
fixed values for p, c, λm, λc). We denote by TI and TF the number of iterations
and the number of fitness evaluations performed until some event holds (which
is always specified in the text). If the algorithm has already reached the local
optimum, then we call the mutation phase successful if all the k zero-bits of

A Heavy-Tailed (1 + (λ, λ)) Genetic Algorithm 551

Algorithm 1: The heavy-tailed (1 + (λ, λ)) GA maximizing a pseudo-
Boolean function f .
1 x ← random bit string of length n;
2 while not terminated do
3 Choose s ∼ pow(βs, us);

4 p ← (s
n
)1/2;

5 c ← (s
n
)1/2;

6 Choose λ ∼ pow(βλ, uλ);
7 Mutation phase:
8 Choose � ∼ Bin (n, p);
9 for i ∈ [1..λ] do

10 x(i) ← a copy of x;

11 Flip � bits in x(i) chosen uniformly at random;

12 end
13 x′ ← arg maxz∈{x(1),...,x(λ)} f(z);

14 Crossover phase:
15 for i ∈ [1..λ] do

16 Create y(i) by taking each bit from x′ with probability c and from x
with probability (1 − c);

17 end
18 y ← arg maxz∈{y(1),...,y(λ)} f(z);

19 if f(y) ≥ f(x) then
20 x ← y;
21 end

22 end

x are flipped to ones in the mutation winner x′. We also call an offspring of
the mutation phase good if it has all k zero-bits flipped. If the algorithm has
not reached the local optimum, then we call the mutation phase successful if
x′ contains a one-bit not present in x. In this case we call an offspring good if
it has at least one zero-bit flipped to one and does not lie in the fitness valley
of Jumpk. We call the crossover phase successful if the crossover winner has a
greater fitness than x. The good offspring in the crossover phase are those which
have a better fitness than x.

To estimate the probability of a true progress in one iteration we use the
following lemma, which can easily be deduced from Lemmas 3.1 and 3.2 in [5].

Lemma 4. Let λm = λc = λ and p = c = (s
n)1/2 with s ∈ [k..2k]. If the current

individual x of the (1 + (λ, λ)) GA is in the local optimum of Jumpk, then the
probability that the algorithm finds the global optimum in one iteration is at least
e−Θ(k) min{1, (k

n)kλ2}.

552 D. Antipov and B. Doerr

2.4 Wald’s Equation

Since not only the number of iterations until the optimum is found is a random
variable, but also the number of fitness evaluations in each iteration, we shall use
the following version of Wald’s equation [33] to estimate the number of fitness
evaluations until the optimum is found.

Lemma 5. Let (Xt)t∈N be a sequence of non-negative real-valued random vari-
ables with identical finite expectation. Let T be a positive integer random vari-
able with finite expectation. If for all i ∈ N the event {T ≥ i} is independent of
(Xt)+∞

t=i , then

E

[
T∑

t=1

Xt

]

= E[T]E[X1].

3 Heavy-Tailed Parameters

In this section we conduct a rigorous runtime analysis of the heavy-tailed
(1 + (λ, λ)) GA optimizing jump functions with jump size k ∈ [2..n

4]. We cover
the full spectrum of the algorithm’s hyperparameters βs, us, βλ, uλ. For large
ranges of the hyperparameters, in particular, for natural values like βs = βλ =
2+ε and us = uλ = ∞, we observe a performance that is only a little worse than
the one with the best instance-specific static parameters. This price of instance-
independence can be brought down to an O(n log(n)) factor. Taking into account
the detrimental effect of missing the optimal fixed parameters shown in Sect. 4,
this is a fair price for a one-size-fits-all algorithm.

Since a typical optimization process on jump functions consists of two very
different regimes, we analyze separately the difficult regime of going from the
local optimum to the global one (Sect. 3.1) and the easy OneMax-style regime
encountered before that (Sect. 3.2).

3.1 Escaping the Local Optimum

The time to leave the local optimum (necessarily to the global one) is described
in the following theorem and Table 1. We will see later that unless βλ < 2, and
this is not among our recommended choices, or k = 2, the time to reach the local
optimum is not larger than the time to go from the local to the global optimum.
Hence for βλ ≥ 2 and for k ≥ 3, the table also gives valid runtime estimates for
the complete runtime.

Theorem 6. Let k ∈ [2..n
4]. Assume that we use the heavy-tailed

(1 + (λ, λ)) GA (Algorithm 1) to optimize Jumpk, starting already in the local
optimum. Then the expected number of the fitness evaluations until the optimum
is found is shown in Table 1, where ps denotes the probability that s ∈ [k..2k]. If
us ≥ 2k, then ps is

A Heavy-Tailed (1 + (λ, λ)) Genetic Algorithm 553

– Θ((k
us

)1−βs), if βs ∈ [0, 1),
– Θ(1

ln(us)
), if βs = 1, and

– Θ(kβs−1), if βs > 1,

where Θ notation is used for n → +∞.

Table 1. Influence of the four hyperparameters βs, us, βλ, uλ on the expected num-
ber E[TF] of fitness evaluations the heavy-tailed (1 + (λ, λ)) GA starting in the
local optimum takes to optimize Jumpk. Since all runtime bounds are of type
E[TF] = F (βλ, uλ)/ps, where ps = Pr[s ∈ [k..2k]], to ease reading we only state
F (βλ, uλ) = E[TF]ps. By taking βs = 2 + ε or βs = 2 ∧ us = n, one obtains ps = kε

or ps = O(log n). Using βλ = 2 and an exponential uλ gives the lowest price of an
O(n log n) factor for being independent of the instance parameter k. We also advertise
the slightly inferior combination βλ = 2 + ε and uλ = +∞ as for βλ > 2 each iteration
has a constant expected cost and uλ has no influence on the runtime (if chosen large
enough). If βλ ≥ 2 and k ≥ 3, then the times stated are also the complete runtimes
starting from a random initial solution.

βλ E[TF]ps if uλ <
(

n
k

)k/2
E[TF]ps if uλ ≥ (

n
k

)k/2

[0, 1)

eΘ(k) 1
uλ

(
n
k

)k

uλeΘ(k)

= 1 uλeΘ(k)/
(
1 + ln

(
uλ

(
n
k

)k/2
))

(1, 2) eΘ(k)u2−β
λ

(
n
k

)k/2(β−1)

= 2 eΘ(k) ln(uλ+1)
uλ

(
n
k

)k
eΘ(k) ln(uλ)

(
n
k

)k/2

(2, 3) eΘ(k) 1

u
3−β
λ

(
n
k

)k
eΘ(k)

(
n
k

)k/2(β−1)

= 3 eΘ(k) 1
ln(uλ+1)

(
n
k

)k
eΘ(k)

(
n
k

)k
/ ln

((
n
k

)k
)

> 3 eΘ(k)
(

n
k

)k

From Theorem 6, we distill the following how to set the parameters of the
power-law distributions.

Distribution of λ: When guessing uλ right (depending on k), and only then,
then good runtimes can be obtained for βλ < 2. Since we aim at a (mostly)
parameterless approach, this is not very interesting. When βλ > 3, we observe
a slow runtime behavior similar to the one of the (1 + 1) EA with heavy-tailed
mutation rate [19]. This is not surprising since with this distribution of λ typ-
ically only small values of λ are sampled. We profit most from the strength of
the heavy-tailed (1 + (λ, λ)) GA when βλ is close to two. If βλ is larger than
two, then each iteration has an expected constant cost, so we can conveniently
choose uλ = ∞ without that this has a negative effect on the runtime. This is a
hyperparameter setting we would recommend as a first, low-risk attempt to use
this algorithm. Slightly better results are obtained from using βλ = 2. Now a
finite value for uλ is necessary, but the logarithmic influence of uλ on the runtime
allows to be generous, e.g., taking uλ exponential in n. Smaller values lead to

554 D. Antipov and B. Doerr

minimally better runtimes as long as one stays above the boundary (n
k)k/2, so

optimizing here is risky.

Distribution of s: The distribution of s is less critical as long as us ≥ 2k. Aiming
at an algorithm free from critical parameter choices, we therefore recommend
to take us = n unless there is a clear indication that only short moves in the
search space are necessary. Once we decided on us = n, a βs value below one
is not interesting (apart from very particular situations). Depending on what
jump sizes we expect to encounter, taking βs = 1 leading to an O(log n)-factor
contribution of s to the runtime or taking βs = 1 + ε, ε > 0 but small, leading
to an O(kε)-factor contribution to the runtime are both reasonable choices.

For reasons of space we only sketch the proof of Theorem 6.1 We first estimate
the probability P to make a jump into the global optimum in one iteration via
Lemma 4. Then we estimate E[TI] = P−1 and use Wald’s equation (Lemma 5)
to show that the expected number of fitness evaluations is E[TF] = E[TI]E[2λ].
Finally, we estimate E[λ] via Lemma 3.

3.2 Reaching the Local Optimum

In this section we show that the heavy-tailed choice of the parameters lets the
(1 + (λ, λ)) GA reach the local optimum relatively fast. Without proof, we note
that if βλ ≥ 2 and k ≥ 3, then the time to reach the local optimum is not
larger than the time to go from the local to the global optimum. For a set of
hyperparameters giving the best price for instance-independence, we now show
an O(n2 log2(n)) time bound for reaching the local optimum.

Theorem 7. Let uλ = 2Θ(n), βλ = 2, us = Θ(n), and βs = 1. Then the
expected runtime until the heavy-tailed (1 + (λ, λ)) GA reaches the local opti-
mum of Jumpk starting in a random string is at most O(n2 log2(n)) fitness
evaluations. For larger βλ and any uλ this runtime is at most O(n log2(n)). In
both cases with βs > 1 and any us ∈ N the runtime is reduced by a Θ(log(n))
factor.

For reasons of space we only sketch the proof for the hyperparameters βλ = 2
and βs = 1 (for other hyperparameters the arguments are similar). Via Lemma 2
we show that the probability to choose λ = s = 1 is Θ(1/ log(n)). In this case
the (1 + (λ, λ)) GA behaves as the (1 + 1) EA and finds the local optimum
in O(n log(n)) iterations with this parameter choice. Taking into account the
expected cost of one iteration, which is Θ(n) by Lemma 3, we obtain a total
runtime of Θ(n2 log2(n)).

4 Static Parameters

In [5] it was shown that the (1 + (λ, λ)) GA can solve Jumpk in (n
k)k/2eO(k)

fitness evaluations when it starts in the local optimum. This is, if we ignore eO(k)

1 The omitted proofs can be found in the preprint [3].

A Heavy-Tailed (1 + (λ, λ)) Genetic Algorithm 555

factors, the square root of the runtime of the best mutation-based algorithms [19].
However, such an upper bound was obtained only by setting the parameters of
the algorithm to values which depend on the jump size k. In this section we
show that a deviation from these instance-specific optimal parameter settings
significantly increases the runtime. The consequence is that when the parameter
k is unknown, we are not likely to choose a good static parameter setting.

To analyze the negative effect of a wrong parameter choice we use the precise
expression of the probability P to go from the local to the global optimum in
one iteration, which is

P =
n∑

�=0

p�pm(�)pc(�), (1)

where p� is the probability to choose � bits to flip, pm(�) is the probability of a
successful mutation phase conditional on the chosen �, and pc(�) is the probability
of a successful crossover phase conditional on the chosen � and on the mutation
being successful.

Since � ∼ Bin(n, p), we have p� =
(
n
�

)
p�(1 − p)n−�. The probability of a

successful mutation depends on the chosen �. If � < k, then it is impossible to
flip all k zero-bits, hence pm(�) = 0. For larger � the probability to create a good
offspring in a single application of the mutation operator is qm(�) =

(
n−k
�−k

)
/
(
n
�

)
.

If � ∈ [k + 1..2k − 1] then any good offspring occurs in the fitness valley and
has a worse fitness than any other offspring that is not good. Hence, in order to
have a successful mutation we need all λm offspring to be good. Therefore, the
probability of a successful mutation is (qm(�))λm . For � = k and � ≥ 2k we are
guaranteed to choose a good offspring as the winner of the mutation phase if
there is at least one. Therefore, the mutation phase is successful with probability
pm(�) = 1 − (1 − qm(�))λm .

In the crossover phase we can create a good offspring only if � ≥ k, and
then we need to take all k bits which are zero in x from x′ and take all � − k
one-bits which were flipped from x. The probability to do so in one offspring
is qc(�) = ck(1 − c)�−k. Since we create λc offspring and at least one of them
must be superior to x, the probability of a successful crossover phase is pc(�) =
1 − (1 − ck(1 − c)�−k)λc .

Putting these probabilities into (1) we obtain

P =
(

n

k

)
pk(1 − p)n−k

⎛

⎝1 −
(

1 −
(

n

k

)−1
)λm

⎞

⎠ (
1 − (1 − ck)λc

)

+
2k−1∑

�=k+1

(
n

�

)
p�(1 − p)n−�

((
n−k
�−k

)

(
n
�

)

)λm (
1 − (1 − ck(1 − c)�−k)λc

)

+
n∑

�=2k

(
n

�

)
p�(1 − p)n−�

⎛

⎝1 −
(

1 −
(
n−k
�−k

)

(
n
�

)

)λm
⎞

⎠
(
1 − (1 − ck(1 − c)�−k)λc

)
.

556 D. Antipov and B. Doerr

Via this expression for P we compute the expected runtime in terms of iterations
as E[TI] = P−1 and the expected runtime in terms of fitness evaluations as
E[TF] = (λm + λc)P−1. It is hard estimate precisely the probability P and thus
the expected runtime. Therefore, to show the critical influence of the parameters
on the runtime, we compute E[TF] precisely for n = 220 and k ∈ {22, 24, 26} using

different parameter values. We fix λm = λc =
√

n
k

k
and take p = 2δ

√
k
n and

c = 2−δ
√

k
n for all δ ∈ [− log2(

√
n
k).. log2(

√
n
k)]; this range for δ guarantees that

both p and c do not exceed 1. Note that we preserve the invariant pcn = k, since
otherwise the expected Hamming distance between x and any crossover offspring
(the search radius) is not k, which would make it even harder to find the global
optimum. For δ = 0 these values were suggested in [5] (based on an asymptotic
analysis, so constant factors were ignored). The results of this computation are
shown in Fig. 2.

As one can see, there is a relatively small interval around δ = 0 in which the
runtime is close to the one for δ = 0 (for δ = −1 the runtime is even slightly
better), but generally the runtime increases by a Θ(2|δ|k) factor. Therefore, in
order to solve Jumpk effectively with the (1 + (λ, λ)) GA, one has to guess the
value of k relatively precisely to obtain a good performance from the static
parameters suggested in [5]. In practice when we optimize a problem with local
optima we usually cannot tell in advance the size of jump needed to escape
the local optima. Therefore, the heavy-tailed parameter choice suggested in this
work is likely to give better results than a static parameter choice.

−10 −5 0 5 102−42

2124

2290

2456

δ

E
[T

]/
E
[T

o
p
t
]

k = 4
k = 16
k = 64

−2 −1 0 12−1

22

25

28

δ

E
[T

]/
E
[T

o
p
t
]

k = 4
k = 16
k = 64

Fig. 2. The ratio of the runtime with disturbed parameters to the runtime with the
parameters suggested in [5]. The left plot shows the full picture for all considered values
of δ. The right plot shows in more detail a smaller interval around the best values.

A Heavy-Tailed (1 + (λ, λ)) Genetic Algorithm 557

5 Conclusion

In this work, we proposed a variant of the (1 + (λ, λ)) GA with a heavy-tailed
choice of both the population size λ and the search radius s. To the best of
our knowledge, this is the first time that two parameters of an EA are chosen
in this manner. Our mathematical runtime analysis showed that this algorithm
with suitable, but natural choices of the distribution parameters can optimize
all jump functions in a time that is only mildly higher than the runtime of the
(1 + (λ, λ)) GA with the best known instance-specific parameter values.

We are optimistic that the insights gained on the jump functions bench-
mark extend, at least to some degree, also to other non-unimodal problems.
Clearly, supporting this hope with rigorous results is an interesting direction
for future research. From a broader perspective, this work suggests to try to
use heavy-tailed parameter choices for more than one parameter simultaneously.
Our rigorous results indicate that the prices for ignorant (heavy-tailed) choices
of parameters simply multiply. For a small number of parameters with critical
influence on the performance, this might be a good deal.

Acknowledgements. This study was funded by RFBR and CNRS, project number
20-51-15009.

References

1. Antipov, D., Buzdalov, M., Doerr, B.: Fast mutation in crossover-based algorithms.
In: Genetic and Evolutionary Computation Conference, GECCO 2020, pp. 1268–
1276. ACM (2020)

2. Antipov, D., Buzdalov, M., Doerr, B.: First steps towards a runtime analysis when
starting with a good solution. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol.
12270, pp. 560–573. Springer, Switzerland (2020). https://doi.org/10.1007/978-3-
030-58115-2 39

3. Antipov, D., Doerr, B.: Runtime analysis of a heavy-tailed (1+(λ, λ)) genetic
algorithm on jump functions. CoRR abs/2006.03523 (2020). https://arxiv.org/abs/
2006.03523

4. Antipov, D., Doerr, B., Karavaev, V.: A tight runtime analysis for the (1 + (λ, λ))
GA on LeadingOnes. In: Foundations of Genetic Algorithms, FOGA 2019, pp.
169–182. ACM (2019)

5. Antipov, D., Doerr, B., Karavaev, V.: The (1 + (λ, λ)) GA is even faster on multi-
modal problems. In: Genetic and Evolutionary Computation Conference, GECCO
2020, pp. 1259–1267. ACM (2020)

6. Buzdalov, M., Doerr, B.: Runtime analysis of the (1 + (λ, λ)) genetic algorithm on
random satisfiable 3-CNF formulas. In: Genetic and Evolutionary Computation
Conference, GECCO 2017, pp. 1343–1350. ACM (2017)

7. Dang, D.-C., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S.,
Sudholt, D., Sutton, A.M.: Escaping local optima with diversity mechanisms and
crossover. In: Genetic and Evolutionary Computation Conference, GECCO 2016,
pp. 645–652. ACM (2016)

https://doi.org/10.1007/978-3-030-58115-2_39
https://doi.org/10.1007/978-3-030-58115-2_39
https://arxiv.org/abs/2006.03523
https://arxiv.org/abs/2006.03523

558 D. Antipov and B. Doerr

8. Dang, D.-C., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S.,
Sudholt, D., Sutton, A.M.: Escaping local optima using crossover with emergent
diversity. IEEE Trans. Evol. Comput. 22, 484–497 (2018)

9. Dang, D.-C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist popula-
tions. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter,
B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 803–813. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45823-6 75

10. Doerr, B.: A tight runtime analysis for the cGA on jump functions: EDAs can
cross fitness valleys at no extra cost. In: Genetic and Evolutionary Computation
Conference, GECCO 2019, pp. 1488–1496. ACM (2019)

11. Doerr, B.: Does comma selection help to cope with local optima? In: Genetic and
Evolutionary Computation Conference, GECCO 2020, pp. 1304–1313. ACM (2020)

12. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the
(1 + (λ, λ)) genetic algorithm. Algorithmica 80, 1658–1709 (2018)

13. Doerr, B., Doerr, C.: Theory of parameter control for discrete black-box opti-
mization: Provable performance gains through dynamic parameter choices. In:
Doerr, B., Neumann, F. (eds.) Theory of Evolutionary Computation. NCS, pp.
271–321. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4 6.
https://arxiv.org/abs/1804.05650

14. Doerr, B., Doerr, C., Ebel, F.: Lessons from the black-box: fast crossover-
based genetic algorithms. In: Genetic and Evolutionary Computation Conference,
GECCO 2013, pp. 781–788. ACM (2013)

15. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theoret. Comput. Sci. 567, 87–104 (2015)

16. Doerr, B., Doerr, C., Kötzing, T.: Static and self-adjusting mutation strengths for
multi-valued decision variables. Algorithmica 80, 1732–1768 (2018)

17. Doerr, B., Doerr, C., Yang, J.: k -bit mutation with self-adjusting k outperforms
standard bit mutation. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M.,
Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 824–834. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45823-6 77

18. Doerr, B., Gießen, C., Witt, C., Yang, J.: The (1 + λ) evolutionary algorithm with
self-adjusting mutation rate. Algorithmica 81, 593–631 (2019)

19. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 777–784.
ACM (2017)

20. Doerr, B., Witt, C., Yang, J.: Runtime analysis for self-adaptive mutation rates. In:
Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 1475–1482.
ACM (2018)

21. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoret. Comput. Sci. 276, 51–81 (2002)

22. Friedrich, T., Göbel, A., Quinzan, F., Wagner, M.: Evolutionary algorithms and
submodular functions: benefits of heavy-tailed mutations. CoRR abs/1805.10902
(2018)

23. Friedrich, T., Göbel, A., Quinzan, F., Wagner, M.: Heavy-tailed mutation opera-
tors in single-objective combinatorial optimization. In: Auger, A., Fonseca, C.M.,
Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS,
vol. 11101, pp. 134–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99253-2 11

24. Friedrich, T., Kötzing, T., Krejca, M.S., Nallaperuma, S., Neumann, F., Schir-
neck, M.: Fast building block assembly by majority vote crossover. In: Genetic and
Evolutionary Computation Conference, GECCO 2016, pp. 661–668. ACM (2016)

https://doi.org/10.1007/978-3-319-45823-6_75
https://doi.org/10.1007/978-3-030-29414-4_6
https://arxiv.org/abs/1804.05650
https://doi.org/10.1007/978-3-319-45823-6_77
https://doi.org/10.1007/978-3-319-99253-2_11
https://doi.org/10.1007/978-3-319-99253-2_11

A Heavy-Tailed (1 + (λ, λ)) Genetic Algorithm 559

25. Friedrich, T., Quinzan, F., Wagner, M.: Escaping large deceptive basins of attrac-
tion with heavy-tailed mutation operators. In: Genetic and Evolutionary Compu-
tation Conference, GECCO 2018, pp. 293–300. ACM (2018)

26. Goldman, B.W., Punch, W.F.: Parameter-less population pyramid. In: Genetic and
Evolutionary Computation Conference, GECCO 2014, pp. 785–792. ACM (2014)

27. Hasenöhrl, V., Sutton, A.M.: On the runtime dynamics of the compact genetic
algorithm on jump functions. In: Genetic and Evolutionary Computation Confer-
ence, GECCO 2018, pp. 967–974. ACM (2018)

28. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms - a proof that
crossover really can help. Algorithmica 34, 47–66 (2002)

29. Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and
parallel evolutionary algorithms. In: Foundations of Genetic Algorithms, FOGA
2011, pp. 181–192. ACM (2011)

30. Mambrini, A., Sudholt, D.: Design and analysis of schemes for adapting migration
intervals in parallel evolutionary algorithms. Evol. Comput. 23, 559–582 (2015)

31. Mironovich, V., Buzdalov, M.: Evaluation of heavy-tailed mutation operator on
maximum flow test generation problem. In: Genetic and Evolutionary Computation
Conference, GECCO 2017. Companion Material, pp. 1423–1426. ACM (2017)

32. Rowe, J.E., Aishwaryaprajna: the benefits and limitations of voting mechanisms
in evolutionary optimisation. In: Foundations of Genetic Algorithms, FOGA 2019,
pp. 34–42. ACM (2019)

33. Wald, A.: Some generalizations of the theory of cumulative sums of random vari-
ables. Ann. Math. Stat. 16, 287–293 (1945)

34. Whitley, D., Varadarajan, S., Hirsch, R., Mukhopadhyay, A.: Exploration and
exploitation without mutation: solving the jump function in Θ(n) time. In: Auger,
A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.)
PPSN 2018. LNCS, vol. 11102, pp. 55–66. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99259-4 5

35. Wu, M., Qian, C., Tang, K.: Dynamic mutation based pareto optimization for
subset selection. In: Huang, D.-S., Gromiha, M.M., Han, K., Hussain, A. (eds.)
ICIC 2018. LNCS (LNAI), vol. 10956, pp. 25–35. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-95957-3 4

36. Ye, F., Wang, H., Doerr, C., Bäck, T.: Benchmarking a (μ + λ) genetic algorithm
with configurable crossover probability. CoRR abs/2006.05889 (2020)

https://doi.org/10.1007/978-3-319-99259-4_5
https://doi.org/10.1007/978-3-319-99259-4_5
https://doi.org/10.1007/978-3-319-95957-3_4
https://doi.org/10.1007/978-3-319-95957-3_4

First Steps Towards a Runtime Analysis
When Starting with a Good Solution

Denis Antipov1,2(B), Maxim Buzdalov1, and Benjamin Doerr2

1 ITMO University, St. Petersburg, Russia
antipovden@yandex.ru

2 Laboratoire d’Informatique (LIX), CNRS, École Polytechnique,
Institut Polytechnique de Paris, Palaiseau, France

Abstract. The mathematical runtime analysis of evolutionary algo-
rithms traditionally regards the time an algorithm needs to find a solu-
tion of a certain quality when initialized with a random population. In
practical applications it may be possible to guess solutions that are bet-
ter than random ones. We start a mathematical runtime analysis for such
situations. We observe that different algorithms profit to a very differ-
ent degree from a better initialization. We also show that the optimal
parameterization of the algorithm can depend strongly on the quality of
the initial solutions. To overcome this difficulty, self-adjusting and ran-
domized heavy-tailed parameter choices can be profitable. Finally, we
observe a larger gap between the performance of the best evolutionary
algorithm we found and the corresponding black-box complexity. This
could suggest that evolutionary algorithms better exploiting good initial
solutions are still to be found. These first findings stem from analyzing
the performance of the (1 + 1) evolutionary algorithm and the static,
self-adjusting, and heavy-tailed (1 + (λ, λ)) GA on the OneMax bench-
mark, but we are optimistic that the question how to profit from good
initial solutions is interesting beyond these first examples.

Keywords: Theory · Runtime analysis · Initialization of evolutionary
algorithms · Crossover · Fast mutation

1 Introduction

The mathematical runtime analysis (see, e.g,. [4,15,20,28]) has contributed to
our understanding of evolutionary algorithms (EAs) via rigorous analyses how
long an EA takes to optimize a particular problem. The overwhelming majority of
these results considers a random or worst-case initialization of the algorithm. In
this work, we argue that it also makes sense to analyze the runtime of algorithms
starting already with good solutions. This is justified because such situations
arise in practice and because, as we observe in this work, different algorithms
show a different runtime behavior when started with such good solutions. In
particular, we observe that the (1 + (λ, λ)) genetic algorithm ((1 + (λ, λ)) GA)

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 560–573, 2020.
https://doi.org/10.1007/978-3-030-58115-2_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_39&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_39

Towards a Runtime Analysis When Starting with a Good Solution 561

profits from good initial solutions by much more than, e.g., the (1+1) EA. From
a broader perspective, this work suggests that the recently proposed fine-grained
runtime notions like fixed budget analysis [22] and fixed target analysis [6], which
consider optimization up to a certain solution quality, should be extended to also
take into account different initial solution qualities.

1.1 Starting with Good Solutions

As just said, the vast majority of the runtime analyses assume a random ini-
tialization of the algorithm or they prove performance guarantees that hold for
all initializations (worst-case view). This is justified for two reasons. (i) When
optimizing a novel problem for which little problem-specific understanding is
available, starting with random initial solutions is a recommended approach.
This avoids that a wrong understanding of the problem leads to an unfavor-
able initialization. Also, with independent runs of the algorithm automatically
reasonably diverse initializations are employed. (ii) For many optimizations pro-
cesses analyzed with mathematical means it turned out that there is not much
advantage of starting with a good solution. For this reason, such results are not
stated explicitly, but can often be derived from the proofs. For example, when
optimizing the simple OneMax benchmark via the equally simple (1 + 1) EA,
then results like [10,11,16,26] show a very limited advantage from a good ini-
tialization. When starting with a solution having already 99% of the maximal
fitness, the expected runtime has the same en ln(n) ± O(n) order of magnitude.
Hence the gain from starting with the good solution is bounded by an O(n)
lower order term. Even when starting with a solution of fitness n − √

n, that
is, with fitness distance

√
n to the optimum of fitness n, then only a runtime

reduction by asymptotically a factor of a half results. Clearly, a factor-two run-
time improvement is interesting in practice, but the assumption that an initial
solution can be found that differs from the optimum in only

√
n of the n bit

positions, is very optimistic.
Besides this justification for random initializations, we see a number of sit-

uations in which better-than-random solutions are available (and this is the
motivation of this work). The obvious one is that a problem is to be solved
for which some, at least intuitive, understanding is available. This is a realistic
assumption in scenarios where similar problems are to be solved over a longer
time period or where problems are solved by combining a human understand-
ing of the problem with randomized heuristics. A second situation in which we
expect to start with a good solution is reoptimization. Reoptimization [30,34]
means that we had already solved a problem, then a mild change of the prob-
lem data arises (due to a change in the environment, a customer being unhappy
with a particular aspect of the solution, etc.), and we react to this change not by
optimizing the new problem from scratch, but by initializing the EA with solu-
tions that were good in the original problem. While there is a decent amount of
runtime analysis literature on how EAs cope with dynamic optimization prob-
lems, see [27], almost all of them regard the situation that a dynamic change of
the instance happens frequently and the question is how well the EA adjusts to

562 D. Antipov et al.

these changes. The only mathematical runtime analysis of a true reoptimization
problem we are aware of is [9]. The focus there, however, is to modify an existing
algorithm so that it better copes with the situation that the algorithm is started
with a solution that is structurally close to the optimum, but has a low fitness
obscuring to the algorithm that the current solution is already structurally good.

We note that using a known good solution to initialize a randomized search
heuristic is again a heuristic approach. It is intuitive that an iterative optimiza-
tion heuristic can profit from such an initialization, but there is no guarantee
and, clearly, there are also situations where using such initializations is detrimen-
tal. As one example, assume that we obtain good initial solutions from running a
simple hill-climber. Then these initial solutions could be local optima which are
very hard to leave. An evolutionary algorithm initialized with random solutions
might find it easier to generate a sufficient diversity that allows to reach the
basin of attraction of the optimum. So obviously some care is necessary when
initializing a search heuristic with good solutions. Several practical applications
of evolutionary algorithms have shown advantages of initializations with good
solutions, e.g., [24] on the open shop scheduling problem.

While there are no explicit mathematical runtime analyses for EAs starting
with a good solution, it is clear that many of the classic results in their proofs
reveal much information also on runtimes starting from a good solution. This is
immediately clear for the fitness level method [32], but also for drift arguments
like [12,19,23,25] when as potential function the fitness or a similar function is
used, and for many other results. By not making these results explicit, however,
it is hard to see the full picture and to draw the right conclusions.

1.2 The (1 + (λ, λ)) GA Starting with Good Solutions

In this work, we make explicit how the (1 + (λ, λ)) GA optimizes OneMax
when starting from a solution with fitness distance D from the optimum. We
observe that the (1 + (λ, λ)) GA profits in a much stronger way from such a
good initialization than other known algorithms. For example, when starting in
fitness distance D =

√
n, the expected time to find the optimum is only Õ(n3/4)

when using optimal parameters. We recall that this algorithm has a runtime of
roughly n

√
log n when starting with a random solution [7,8]. We recall further

that the (1+1) EA has an expected runtime of (1±o(1))12en ln(n) when starting
in fitness distance

√
n and an expected runtime of (1±o(1))en ln n when starting

with a random solution. So clearly, the (1 + (λ, λ)) GA profit to a much higher
degree from a good initialization than the (1 + 1) EA. We made this precise for
the (1+1) EA, but it is clear from other works such as [3,13,21,33] that similar
statements hold as well for many other (μ + λ) EAs optimizing OneMax, at
least for some ranges of the parameters.

The runtime stated above for the (1 + (λ, λ)) GA assumes that the algorithm
is used with the optimal parameter setting, more precisely, with the optimal
setting for starting with a solution of fitness-distance D. Besides that we usually
do not expect the algorithm user to guess the optimal parameter values, it is also
not very realistic to assume that the user has a clear picture on how far the initial

Towards a Runtime Analysis When Starting with a Good Solution 563

solution is from the optimum. For that reason, we also regard two parameter-
less variants of the (1 + (λ, λ)) GA (where parameterless means that parameters
with a crucial influence on the performance are replaced by hyperparameters for
which the influence is less critical or for which we can give reasonable general
rules of thumb).

Already in [8], a self-adjusting choice based on the one-fifth success rule of the
parameters of the (1 + (λ, λ)) GA was proposed. This was shown to give a linear
runtime on OneMax in [7]. We note that this is, essentially, a parameterless
algorithm since the target success rate (the “one-fifth”) and the update factor
had only a small influence on the result provided that they were chosen not
too large (where the algorithm badly fails). See [7, Sect. 6.4] for more details.
For this algorithm, we show that it optimizes OneMax in time O(

√
nD) when

starting in distance D. Again, this is a parameterless approach (when taking the
previous recommendations on how to set the hyperparameters).

A second parameterless approach for the (1 + (λ, λ)) GA was recently ana-
lyzed in [1], namely to choose the parameter λ randomly from a power-law distri-
bution. Such a heavy-tailed parameter choice was shown to give a performance
only slightly below the one obtainable from the best instance-specific values for
the (1 + 1) EA optimizing jump functions [14]. Surprisingly, the (1 + (λ, λ)) GA
with heavy-tailed parameter choice could not only overcome the need to specify
parameter values, it even outperformed any static parameter choice and had
the same O(n) runtime that the self-adjusting (1 + (λ, λ)) GA had [1]. When
starting with a solution in fitness distance D, this algorithm with any power-law
exponent equal to or slightly above two gives a performance which is only by a
small factor slower than O(

√
nD).

1.3 Experimental Results

We support our theoretical findings with an experimental validation, which
shows that both the self-adjusting and the heavy-tailed version of the
(1 + (λ, λ)) GA indeed show the desired asymptotic behavior and this with only
moderate implicit constants. In particular, the one-fifth self-adjusting version
can be seen as a very confident winner in all cases, and the heavy-tailed versions
with different power-law exponents follow it with the accordingly distributed
runtimes. Interestingly enough, the logarithmically-capped self-adjusting ver-
sion, which has been shown to be beneficial for certain problems other than
OneMax [5] and just a tiny bit worse than the basic one-fifth version on
OneMax, starts losing ground to the heavy-tailed versions at distances just
slightly smaller than

√
n.

1.4 Black-Box Complexity and Lower Bounds

The results above show that some algorithms can profit considerably from good
initial solutions (but many do not). This raises the question of how far we can
go in this direction, or formulated inversely, what lower bounds on this runtime
problem we can provide. We shall not go much into detail on this question, but

564 D. Antipov et al.

note here that one can define a black-box complexity notion for this problem.
Informally speaking, the input to this problem is an objective function from a
given class of functions and a search point in Hamming distance D from the opti-
mum. The unrestricted black-box complexity is the smallest expected number of
fitness evaluations that an otherwise unrestricted black-box algorithm performs
to find the optimum (of a worst-case input).

If the class of functions consists of all OneMax-type functions, that is,
OneMax and all functions with an isomorphic fitness landscape, then the classic
argument via randomized search trees and Yao’s minimax principle from [17]1

shows that the black-box complexity is at least Ω(D log(n/D)
log n). A matching upper

bound follows from evaluating random search points until all evaluation results
leave only one solution (out of the originally

(
n
D

)
ones) fitting to the evaluations

results (this is the classic random guessing strategy of [18]). For small D, this
black-box complexity of order Θ(D log(n/D)

log n) is considerably lower than our upper
bounds. Also, this shows a much larger gap between black-box complexity and
EA performance than in the case of random initialization, where the black-box
complexity is Θ(n

log n) and simple EAs have an O(n log n) performance.

1.5 Synopsis and Structure of the Paper

Overall, our results show that the question of how EAs work when started with
a good initial solution is far from trivial. Some algorithms profit more from this
than others, the question of how to set the parameters might be influenced by the
starting level D and this may make parameterless approaches more important,
and the larger gap to the black-box complexity could suggest that there is room
for further improvements.

The rest of the paper is organized as follows. In Sect. 2 we formally define the
considered algorithms and the problem and collect some useful analysis tools. In
Sect. 3 we prove the upper bounds on the runtime of the algorithms and deliver
general recommendations on how to use each algorithm. In Sect. 4 we check how
our recommendations work in experiments.

2 Preliminaries

2.1 The (1 + (λ, λ)) GA and Its Modifiactions

We consider the (1 + (λ, λ)) GA, which is a genetic algorithm for the optimiza-
tion of n-dimensional pseudo-Boolean functions, first proposed in [8]. This algo-
rithm has three parameters, which are the mutation rate p, the crossover bias c,
and the population size λ.

1 This argument can be seen as a formalization of the intuitive argument that there are(
n
D

)
different solution candidates, each fitness evaluation has up to n + 1 different

answers, hence if the runtime is less than logn+1

(
n
D

)
then there are two solution

candidates that receive the same sequence of answers and hence are indistinguishable.

Towards a Runtime Analysis When Starting with a Good Solution 565

The (1 + (λ, λ)) GA stores the current individual x, which is initialized with
a random bit string. Each iteration of the algorithm consists of a mutation phase
and a crossover phase. In the mutation phase we first choose a number � from the
binomial distribution with parameters n and p. Then we create λ offsprings by
flipping � random bits in x, independently for each offspring. An offspring with
the best fitness is chosen as the mutation winner x′ (all ties are broken uniformly
at random). Note that x′ can and often will have a worse fitness than x.

In the crossover phase we create λ offspring by applying a biased crossover
to x and x′ (independently for each offspring). This biased crossover takes each
bit from x with probability (1 − c) and from x′ with probability c. A crossover
offspring with best fitness is selected as the crossover winner y (all ties are broken
uniformly at random). If y is not worse than x, it replaces the current individual.
The pseudocode of the (1 + (λ, λ)) GA is shown in Algorithm 1.

Algorithm 1: The (1 + (λ, λ)) GA maximizing a pseudo-Boolean func-
tion f .
1 x ← random bit string of length n;
2 while not terminated do
3 Mutation phase:
4 Choose � ∼ Bin (n, p);
5 for i ∈ [1..λ] do

6 x(i) ← a copy of x;

7 Flip � bits in x(i) chosen uniformly at random;

8 end
9 x′ ← arg maxz∈{x(1),...,x(λ)} f(z);

10 Crossover phase:
11 for i ∈ [1..λ] do

12 Create y(i) by taking each bit from x′ with probability c and from x
with probability (1 − c);

13 end
14 y ← arg maxz∈{y(1),...,y(λ)} f(z);

15 if f(y) ≥ f(x) then
16 x ← y;
17 end

18 end

Based on intuitive considerations and rigorous runtime analyses, a standard
parameter settings was proposed in which the mutation rate and crossover bias
are defined via the population size, namely, p = λ

n and c = 1
λ .

It was shown in [8] that with a suitable static parameter value for λ, this
algorithm can solve the OneMax function in O(n

√
log(n)) fitness evaluations

(this bound was minimally reduced and complemented with a matching lower
bound in [7]). The authors of [8] noticed that with the fitness-dependent
parameter λ =

√
n
d the algorithm solves OneMax in only Θ(n) iterations.

566 D. Antipov et al.

The fitness-depending parameter setting was not satisfying, since it is too
problem-specific and most probably does not work on practical problems. For
this reason, also a self-adjusting parameter choice for λ was proposed
in [8] and analyzed rigorously in [7]. It uses a simple one-fifth rule, multiply-
ing the parameter λ by some constant A > 1 at the end of the iteration when
f(y) ≤ f(x), and dividing λ by A4 otherwise (the forth power ensures the desired
property that the parameter does not change in the long run when in average
one fifth of the iterations are successful). This simple rule was shown to keep the
parameter λ close to the optimal fitness-dependent value during the whole opti-
mization process, leading to a Θ(n) runtime on OneMax. However, this method
of parameter control was not efficient on the MAX-3SAT problem, which has
a lower fitness-distance correlation than OneMax [5]. Therefore, capping the
maximal value of λ at 2 ln(n + 1) was needed to obtain a good performance on
this problem.

Inspired by [14], the recent paper [1] proposed use a heavy-tailed random λ,
which gave a birth to the fast (1 + (λ, λ)) GA. In this algorithm the parameter λ
is chosen from the power-law distribution with exponent β and with upper limit
u. Here for all i ∈ N we have

Pr[λ = i] =

{
Cβ,ui−β , if i ∈ [1..u],
0, otherwise,

where Cβ,u = (
∑u

j=1 j−β)−1 is the normalization coefficient. It was proven that
the fast (1 + (λ, λ)) GA finds the optimum of OneMax in Θ(n) fitness evalua-
tions if β ∈ (2, 3) and u is large enough. Also it was empirically shown that this
algorithm without further capping of λ is quite efficient on MAX-3SAT.

When talking about the runtime of the (1 + (λ, λ)) GA, we denote the num-
ber of iterations until the optimum is found by TI and the number of fitness
evaluations until the optimum is found by TF . We denote the distance of the
current individual to the optimum by d.

2.2 Problem Statement

The main object of this paper is the runtime of the algorithms discussed in
Sect. 2.1 when they start in distance D from the optimum, where D should be
smaller than the distance of a random solution. For this purpose we consider the
classic OneMax function, which is defined on the space of bit strings of length
n by

OneMax(x) = OM(x) =
n∑

i=1

xi.

2.3 Probability for Progress

To prove our upper bounds on the runtimes we use the following estimate for
the probability that the (1 + (λ, λ)) GA finds a better solution in one iteration.

Towards a Runtime Analysis When Starting with a Good Solution 567

Lemma 1. The probability that OM(y) > OM(x) is Ω(min{1, dλ2

n }).

To prove this lemma we use the following auxiliary result from [1], a slight
adaptation of [29, Lemma 8].

Lemma 2 (Lemma 2.2 in [1]). For all p ∈ [0, 1] and all λ > 0 we have

1 − (1 − p)λ ≥ λp

1 + λp
.

Proof (of Lemma 1). By Lemma 7 in [8] the probability to have a true progress
in one iteration is Ω(1 − (n−d

n)
λ2
2). By Lemma 2 this is at least Ω(min{1, dλ2

n }).

3 Runtime Analysis

In this section we conduct a rigorous runtime analysis for the different variants
of the (1 + (λ, λ)) GA and prove upper bounds on their runtime when they start
in distance D from the optimum. We start with the standard algorithm with
static parameters.

Theorem 3. The expected runtime of the (1 + (λ, λ)) GA with static parameter λ
(and mutation rate p = λ

n and crossover bias c = 1
λ as recommended in [8]) on

OneMax with initialization in distance D from the optimum is

E[TF] = O
(n

λ
ln

(n

λ2

)
+ Dλ

)

fitness evaluations. This is minimized by λ =
√

n ln(D)
D , which gives a runtime

guarantee of E[TF] = O(
√

nD ln(D)).

We omit the proof for reasons of space2. We move on to the (1 + (λ, λ)) GA
with optimal fitness-dependent parameters.

Theorem 4. The expected runtime of the (1 + (λ, λ)) GA with fitness-dependent
λ = λ(d) =

√
n
d on OneMax with initialization in distance D from the optimum

is E[TF] = O(
√

nD).

We omit the proof for reasons of space and since it trivially follows from
Lemma 1.

The one-fifth rule was shown to be to keep the value of λ close to its optimal
fitness-dependent value, when starting in the random bit string. The algorithm
is initialized with λ = 2, which is close-to-optimal when starting in a random bit
string. In the following theorem we show that even when we start in a smaller
distance D, the one-fifth rule is capable to quickly increase λ to its optimal value
and keep it there.

2 All the omitted proofs can be found in preprint [2].

568 D. Antipov et al.

Theorem 5. The expected runtime of the (1 + (λ, λ)) GA with self-adjusting λ
(according to the one-fifth rule) on OneMax with initialization in distance D
from the optimum is E[TF] = O(

√
nD).

We only sketch the proof for reasons of space. We first show that there is some
distance d ≤ D at which the algorithm reaches the optimal fitness-dependent
value of λ for the first time. This happens in a relatively short time after the
start of the algorithm. In a similar manner as in [7] we show that from that
moment on the value of λ always stays close to the optimal fitness-dependent
one, yielding asymptotically the same runtime.

For the fast (1 + (λ, λ)) GA with different parameters of the power-law dis-
tribution, we show the following runtimes.

Theorem 6. The expected runtime of the fast (1 + (λ, λ)) GA on OneMax
with initialization in distance D from the optimum is as shown in Table 1. The
runtimes for β > 2 hold also for all u ≥ √

n.

We omit the proof for reasons of space, but sketch the main arguments. We
deliver the upper bounds for the fast (1 + (λ, λ)) GA in two steps. First we find
an upper bound on the expected number of iterations E[TI] of the algorithm in
the same way as in Theorem 3.1 in [1]. Then we use Lemma 3.5 in the same paper
to find the expected cost of one iteration, which is 2E[λ]. Finally, by the Wald’s
equation [31] we compute the expected number of iterations E[TF] = 2E[λ]E[TI].

Table 1. Runtime of the heavy-tailed (1 + (λ, λ)) GA for different ranges of β and for
two variants of choosing u. The best possible fitness dependent choice of u =

√
n
d

is
given rather for reasons of comparison. The best fitness-independent choice is u =

√
n,

but larger values of u are not harmful when β > 2 (for β = 2, the log n is actually a
log u, so the influence of u is small). Our recommendation when D is not known is to
use β = 2 and u =

√
n.

β E[TF] with u =
√

n
d

E[TF] with u =
√

n

(0, 1) O(
√

nD
√

n
D

1−β
) O(

√
nD

√
Dβn1−β)

= 1 O(
√

nD log(n
D

)) O(
√

nD log(n))

(1, 2) O(
√

nD) O(
√

nD
√

D
2−β

)

= 2 O(
√

nD log(n
D

)) O(
√

nD log(n))

(2, 3) O(
√

nD
√

n
D

β−2
)

= 3 O(n log(D)
log(n)

)

> 3 O(n log(D))

From Table 1 we see that choosing β = 2 and u =
√

n is the most universal
option. The empirical results in [14] let us assume that different values of β, but

Towards a Runtime Analysis When Starting with a Good Solution 569

close to two might also be effective in practice. The results of our experiments
provided in the Sect. 4 confirm this and show that using β < 2 with u =

√
n can

be beneficial when starting from a small distance.

4 Experiments

To highlight that the theoretically proven behavior of the algorithms is not
strongly affected by the constants hidden in the asymptotic notation, we con-
ducted experiments with the following settings:

– fast (1 + (λ, λ)) GA with β ∈ {2.1, 2.3, 2.5, 2.7, 2.9} and the upper limit u =
n/2;

– self-adjusting (1 + (λ, λ)) GA, both in its original uncapped form and with λ
capped from above by 2 log(n + 1) as proposed in [5];

– the mutation-only algorithms (1 + 1) EA and RLS.

In all our experiments, the runtimes are averaged over 100 runs, unless said
otherwise.

In Fig. 1 we show the mean running times of these algorithms when they
start in Hamming distance roughly

√
n from the optimum. For this experiment,

to avoid possible strange effects from particular numbers, we used a different
initialization for all algorithms, namely that in the initial individual every bit
was set to 0 with probability 1√

n
and it was set to 1 otherwise. As the figure

shows, all algorithms with a heavy-tailed choice of λ outperformed the mutation-
based algorithms, which struggled from the coupon-collector effect.

We can also see that the logarithmically capped self-adjusting version,
although initially looking well, starts to lose ground when the problem size grows.
For n = 222 it has roughly the same running time as the (1 + (λ, λ)) GA with
β ≤ 2.3. To see whether this effect is stronger when the algorithm starts closer
to the optimum, we also conducted the series of experiments when the initial
distance to the optimum being only logarithmic. The results are presented in
Fig. 2. The logarithmically capped version loses already to β = 2.5 this time,
indicating that the fast (1 + (λ, λ)) GA is faster close to the optimum than that.

In order to understand better how different choices for β behave in practice
when the starting point also varies, we conducted additional experiments with
problem size n = 222, but with expected initial distances D equal to 2i for
i ∈ [0..21]. We also normalize all the expected running times by

√
nD, but this

time we vary D. The results are presented in Fig. 3, where the results are averaged
over 10 runs for distances between 29 and 220 due to the lack of computational
budget. At distances smaller than 212 the smaller β > 2 perform noticeably
better, as specified in Table 1, however for larger distances the constant factors
start to influence the picture: for instance, β = 2.1 is outperformed by β = 2.3
at distances greater than 213.

We also included in this figure a few algorithms with β < 2, namely β ∈
{1.5, 1.7, 1.9}, which have a distribution upper bound of

√
n, for which running

times are averaged over 100 runs. From Fig. 3 we can see that the running time of

570 D. Antipov et al.

24 26 28 210 212 214 216 218 220 222

101

102

103

Problem size n

E
va
lu
at
io
ns

/
√ n

D
λ ∈ [1..2 ln(n + 1)] λ ∈ [1..n]

λ ∼ pow(2.1) λ ∼ pow(2.3)

λ ∼ pow(2.5) λ ∼ pow(2.7)

λ ∼ pow(2.9) (1+1) EA

RLS

Fig. 1. Mean runtimes and their standard deviation of different algorithms on OneMax
with initial Hamming distance D from the optimum equal to

√
n in expectation. By λ ∈

[1..u] we denote the self-adjusting parameter choice via the one-fifth rule in the interval
[1..u]. The indicated confidence interval for each value X is [E[X]−σ(X), E[x]+σ(X)],
where σ(X) is the standard deviation of X. The runtime is normalized by

√
nD, so

that the plot of the self-adjusting (1 + (λ, λ)) GA is a horizontal line.

24 26 28 210 212 214 216 218 220 222
100

101

102

103

104

Problem size n

E
v a

lu
at
io
ns

/
√ n

D

λ ∈ [1..2 ln(n + 1)] λ ∈ [1..n]

λ ∼ pow(2.1) λ ∼ pow(2.3)

λ ∼ pow(2.5) λ ∼ pow(2.7)

λ ∼ pow(2.9) (1+1) EA

RLS

Fig. 2. Mean runtimes and their standard deviation of different algorithms on OneMax
with initial Hamming distance D from the optimum equal to log(n+1) in expectation.

Towards a Runtime Analysis When Starting with a Good Solution 571

these algorithms increases with decreasing β just as in Table 1 for comparatively
large distances (212 and up), however for smaller distances their order is reversed,
which shows that constant factors still play a significant role.

2−2 23 28 213 218 223

101

102

103

104

Distance to optimum D

E
va
lu
at
io
ns

/
√ n

D

λ ∈ [1..2 ln(n + 1)]

λ ∈ [1..n]

λ ∼ pow(2.1)

λ ∼ pow(2.3)

λ ∼ pow(2.5)

λ ∼ pow(2.7)

λ ∼ pow(2.9)

(1+1) EA

RLS

λ ∼ pow(1.5)∗
λ ∼ pow(1.7)∗
λ ∼ pow(1.9)∗

Fig. 3. Mean runtimes and their standard deviation of different algorithms on OneMax
with problem size n = 222 and with initial Hamming distances of the form D = 2i for
0 ≤ i ≤ 21. The starred versions of the fast (1 + (λ, λ)) GA have a distribution upper
bound of

√
n.

5 Conclusion

In this paper we proposed a new notion of the fixed-start runtime analysis, which
in some sense complements the fixed-target notion. Among the first results in
this direction we observed that different algorithms profit differently from having
an access to a solution close to the optimum.

The performance of all observed algorithms, however, is far from the theo-
retical lower bound. Hence, we are still either to find the EAs which can benefit
from good initial solutions or to prove a stronger lower bounds for unary and
binary algorithms.

Acknowledgements. This work was supported by the Government of Russian Feder-
ation, grant number 08-08, and by a public grant as part of the Investissement d’avenir
project, reference ANR-11-LABX-0056-LMH, LabEx LMH, in a joint call with Gas-
pard Monge Program for optimization, operations research and their interactions with
data sciences.

572 D. Antipov et al.

References

1. Antipov, D., Buzdalov, M., Doerr, B.: Fast mutation in crossover-based algorithms.
In: Genetic and Evolutionary Computation Conference, GECCO 2020, pp. 1268–
1276. ACM (2020)

2. Antipov, D., Buzdalov, M., Doerr, B.: First steps towards a runtime analysis when
starting with a good solution. CoRR abs/2006.12161 (2020)

3. Antipov, D., Doerr, B., Fang, J., Hetet, T.: Runtime analysis for the (μ + λ)
EA optimizing OneMax. In: Genetic and Evolutionary Computation Conference,
GECCO 2018, pp. 1459–1466. ACM (2018)

4. Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics. World Sci-
entific Publishing, Singapore (2011)

5. Buzdalov, M., Doerr, B.: Runtime analysis of the (1 + (λ, λ)) genetic algorithm
on random satisfiable 3-CNF formulas. In: Genetic and Evolutionary Computa-
tion Conference, GECCO 2017, pp. 1343–1350. ACM (2017). http://arxiv.org/
abs/1704.04366

6. Buzdalov, M., Doerr, B., Doerr, C., Vinokurov, D.: Fixed-target runtime analysis.
In: Genetic and Evolutionary Computation Conference, GECCO 2020, pp. 1295–
1303. ACM (2020)

7. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the
(1 + (λ, λ)) genetic algorithm. Algorithmica 80, 1658–1709 (2018)

8. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theoret. Comput. Sci. 567, 87–104 (2015)

9. Doerr, B., Doerr, C., Neumann, F.: Fast re-optimization via structural diversity. In:
Genetic and Evolutionary Computation Conference, GECCO 2019, pp. 233–241.
ACM (2019)

10. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box
analysis. Theoret. Comput. Sci. 801, 1–34 (2020)

11. Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating functions
and variable drift. In: Genetic and Evolutionary Computation Conference, GECCO
2011, pp. 2083–2090. ACM (2011)

12. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica
64, 673–697 (2012)

13. Doerr, B., Künnemann, M.: Optimizing linear functions with the (1 + λ) evolu-
tionary algorithm–Different asymptotic runtimes for different instances. Theoret.
Comput. Sci. 561, 3–23 (2015)

14. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 777–784.
ACM (2017)

15. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation-Recent Devel-
opments in Discrete Optimization. Springer, Heidelberg (2020). https://doi.org/
10.1007/978-3-030-29414-4

16. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoret. Comput. Sci. 276, 51–81 (2002)

17. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search
heuristics in black-box optimization. Theory Comput. Syst. 39, 525–544 (2006)

18. Erdős, P., Rényi, A.: On two problems of information theory. Magyar Tudományos
Akad. Mat. Kutató Intézet Közleményei 8, 229–243 (1963)

19. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Artif. Intell. 127, 51–81 (2001)

http://arxiv.org/abs/1704.04366
http://arxiv.org/abs/1704.04366
https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1007/978-3-030-29414-4

Towards a Runtime Analysis When Starting with a Good Solution 573

20. Jansen, T.: Analyzing Evolutionary Algorithms - The Computer Science Perspec-
tive. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-17339-4

21. Jansen, T., Jong, K.A.D., Wegener, I.: On the choice of the offspring population
size in evolutionary algorithms. Evol. Comput. 13, 413–440 (2005)

22. Jansen, T., Zarges, C.: Performance analysis of randomised search heuristics oper-
ating with a fixed budget. Theoret. Comput. Sci. 545, 39–58 (2014)

23. Johannsen, D.: Random combinatorial structures and randomized search heuris-
tics. Ph.D. thesis, Universität des Saarlandes (2010)

24. Liaw, C.: A hybrid genetic algorithm for the open shop scheduling problem. Eur.
J. Oper. Res. 124, 28–42 (2000)

25. Mitavskiy, B., Rowe, J.E., Cannings, C.: Theoretical analysis of local search strate-
gies to optimize network communication subject to preserving the total number of
links. Int. J. Intell. Comput. Cybern. 2, 243–284 (2009)

26. Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing.
In: Parallel Problem Solving from Nature, PPSN 1992, pp. 15–26. Elsevier (1992)

27. Neumann, F., Pourhassan, M., Roostapour, V.: Analysis of evolutionary algorithms
in dynamic and stochastic environments. In: Doerr, B., Neumann, F. (eds.) Theory
of Evolutionary Computation. NCS, pp. 323–357. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-29414-4 7

28. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization
- Algorithms and Their Computational Complexity. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16544-3

29. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, λ)
evolutionary algorithm. Theoret. Comput. Sci. 545, 20–38 (2014)

30. Schieber, B., Shachnai, H., Tamir, G., Tamir, T.: A theory and algorithms for
combinatorial reoptimization. Algorithmica 80, 576–607 (2018)

31. Wald, A.: Some generalizations of the theory of cumulative sums of random vari-
ables. Ann. Math. Stat. 16, 287–293 (1945)

32. Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Orejas, F., Spirakis,
P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 64–78. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5 6

33. Witt, C.: Runtime analysis of the (μ + 1) EA on simple pseudo-Boolean functions.
Evol. Comput. 14, 65–86 (2006)

34. Zych-Pawlewicz, A.: Reoptimization of NP-hard problems. In: Böckenhauer, H.-
J., Komm, D., Unger, W. (eds.) Adventures Between Lower Bounds and Higher
Altitudes. LNCS, vol. 11011, pp. 477–494. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-98355-4 28

https://doi.org/10.1007/978-3-642-17339-4
https://doi.org/10.1007/978-3-030-29414-4_7
https://doi.org/10.1007/978-3-030-29414-4_7
https://doi.org/10.1007/978-3-642-16544-3
https://doi.org/10.1007/3-540-48224-5_6
https://doi.org/10.1007/978-3-319-98355-4_28
https://doi.org/10.1007/978-3-319-98355-4_28

Optimal Mutation Rates for the (1 + λ)
EA on OneMax

Maxim Buzdalov1(B) and Carola Doerr2

1 ITMO University, Saint Petersburg, Russia
mbuzdalov@gmail.com

2 Sorbonne Université, CNRS, LIP6, Paris, France
Carola.Doerr@lip6.fr

Abstract. The OneMax problem, alternatively known as the Hamming
distance problem, is often referred to as the “drosophila of evolution-
ary computation (EC)”, because of its high relevance in theoretical and
empirical analyses of EC approaches. It is therefore surprising that even
for the simplest of all mutation-based algorithms, Randomized Local
Search and the (1 + 1) EA, the optimal mutation rates were determined
only very recently, in a GECCO 2019 poster.

In this work, we extend the analysis of optimal mutation rates to two
variants of the (1 + λ) EA and to the (1 + λ) RLS. To do this, we use
dynamic programming and, for the (1 + λ) EA, numeric optimization,
both requiring Θ(n3) time for problem dimension n. With this in hand,
we compute for all population sizes λ ∈ {2i | 0 ≤ i ≤ 18} and for prob-
lem dimension n ∈ {1000, 2000, 5000} which mutation rates minimize the
expected running time and which ones maximize the expected progress.
Our results do not only provide a lower bound against which we can
measure common evolutionary approaches, but we also obtain insight
into the structure of these optimal parameter choices. For example, we
show that, for large population sizes, the best number of bits to flip is
not monotone in the distance to the optimum. We also observe that the
expected remaining running times are not necessarily unimodal for the
(1 + λ) EA0→1 with shifted mutation.

Keywords: Parameter control · Optimal mutation rates ·
Population-based algorithms · OneMax

1 Introduction

Evolutionary algorithms (EAs) are particularly useful for the optimization of
problems for which algorithms with proven performance guarantee are not
known; e.g., due to a lack of knowledge, time, computational power, or access to
problem data. It is therefore not surprising that we observe a considerable gap
between the problems on which EAs are applied, and those for which rigorously
proven analyses are available [12].

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 574–587, 2020.
https://doi.org/10.1007/978-3-030-58115-2_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_40&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_40

Optimal Mutation Rates for the (1 + λ) EA on OneMax 575

If there is a single problem that stands out in the EA theory literature, this is
the OneMax problem, which is considered to be “the drosophila of evolutionary
computation” [15]. The OneMax problem asks to maximize the simple linear
function that counts the number of ones in a bit string, i.e., OM(x) =

∑n
i=1 xi.

This function is, of course, easily optimized by sampling the unique optimum
(1, . . . , 1). However, most EAs show identical performance on OneMax as on
any problem asking to minimize the Hamming distance H(z, ·) to an unknown
string z, i.e., fz(x) = n−H(z, x), which is a classical problem studied in various
fields of Computer Science, starting in the early 60s [14]. In the analysis of
EAs, OneMax typically plays the role of a benchmark problem that is easy
to understand, and on which one can easily test the hill-climbing capabilities
of the considered algorithm; very similar to the role of the sphere function in
derivative-free numerical optimization [1,17].

Despite its popularity, and numerous deep results on the OneMax problem
(see [12] for examples), there are still a number of open questions, and this
even for the simplest settings in which the problem is static and noise-free, and
the algorithms under consideration can be described in a few lines of pseudo-
code. One of these questions concerns the optimal mutation rates of the (1 +
λ) EA, i.e., the algorithm which always keeps in memory a best-so-far solution
x, and which samples in each iteration λ “offspring” by applying standard bit
mutation to x. By optimal mutation rates we refer to the values that minimize
the expected optimization time, i.e., the average number of function evaluations
needed until the algorithm evaluates for the first time an optimal solution. It is
not very difficult to see that the optimal mutation rate of this algorithm as well
as of its Randomized Local Search (RLS) analog (i.e., the algorithm applying a
deterministic mutation strength rather than a randomly sampled one) depend
only on the function value OM(x) of the current incumbent [2,3,8]. However,
even for λ = 1 the optimal mutation rates were numerically computed only in the
recent work [4]. Prior to [4], only the rates that maximize the expected progress
and those that yield asymptotically optimal running times (in terms of big-Oh
notation) were known, see discussion below. It was shown in [4] that the optimal
mutation rates are not identical to those maximizing the expected progress, and
that the differences can be significant when the current Hamming distance to
the optimum is large. In terms of running time, however, the drift-maximizing
mutation rates are known to yield almost optimal performance, which is another
result that was proven only recently [8] (more precisely, it was proven there
for Randomized Local Search (RLS), but the result is likely to extend to the
(1+1) EA and its (1 + λ) variants).

Our Contribution. We extend in this work the results from [4] to the case
λ ∈ {2i | i ∈ [0..18]}. As in [4] we do not only focus on the standard (1 + λ) EA,
but we also consider the (1+λ) equivalent of RLS and we consider the (1+λ) EA
with the “shift” mutation operator suggested in [22]. The shift mutation operator
0 → 1 flips exactly one randomly chosen bit when the sampled mutation strength
of the standard bit mutation operator equals zero.

576 M. Buzdalov and C. Doerr

Differently from [4] we do not only store the optimal and the drift-maximizing
parameter settings for the three different algorithms, but we also store the
expected remaining running time of the algorithm that always applies the same
fixed mutation rate as long as the incumbent has distance d to the optimum and
that applies the optimal mutation rate at all distances d′ < d. With these values
at hand, we can compute the regret of each mutation rate, and summing these
regrets for a given (1+λ)-type algorithm gives the exact expected running time,
as well as the cumulative regret, which is the expected performance loss of the
considered algorithm against the optimal strategy.

Our results extend the main observation shared in [4], which states that, for
the (1 + 1) EA, the drift-maximizing mutation rates are not always also optimal,
to the (1 + λ) RLS and to both considered (1 + λ) EAs. We also show that the
drift-maximizing and the optimal mutation rates are almost identical across
different dimensions, when compared against the normalized distance d/n.

We also show that, for large population sizes, the optimal number of bits
to flip is not monotone in the distance to the optimum. Moreover, we observe
that the expected remaining running time is not necessarily unimodal for the
(1+λ) EA0→1 with shifted mutation. Another interesting finding is that some of
the drift-maximizing mutation strengths of the (1+λ) RLS with λ > 1 are even,
whereas it was proven in [8] that for the (1 + 1) EA the drift-maximizing muta-
tion strength must always be uneven. The distance d at which we observe even
drift-maximizing mutation strengths decreases with λ, whereas its frequency
increases with λ.

Applications of Our Results in the Analysis of Parameter Control
Mechanisms. Apart from providing several data-driven conjectures about the
formal relationship between the optimal and the drift-maximizing parameter
settings of the investigated (1+λ) algorithms, our results have immediate impact
on the analysis of parameter control techniques. Not only do we provide an
accurate lower bound against which we can measure the performance of other
algorithms, but we can also very easily identify where potential performance
losses originate from. We demonstrate such an example in Sect. 6, and recall
here only that, despite its discussed simplicity, OneMax is a very commonly
used test case for all types of parameter control mechanisms – not only for
theoretical studies [9], but also in purely empirical works [21,25].

OneMax Does Not Require Offspring Population. It is well known that,
for the optimization of OneMax, the (1+1) EA is the most efficient among the
(1 + λ) EAs [20] when measuring performance by fitness evaluations. In prac-
tice, however, the λ offspring can be evaluated in parallel, so that – apart from
mathematical curiosity – the influence of the population size, the problem size,
and the distance to the optimum on the optimal (and on the drift-maximizing)
mutation rates also has practical relevance.

Related Work. Tight running time bounds for the (1 + λ) EA with static
mutation rate p = c/n are proven in [18]. For constant λ, these bounds were

Optimal Mutation Rates for the (1 + λ) EA on OneMax 577

Algorithm 1: Blueprint of an elitist (1+λ) unbiased black-box algorithm
maximizing a function f : {0, 1}n → R.
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 for i = 1, . . . , λ do
4 Sample k(i) ∼ D(n, f(x));

5 y(i) ← flipk(i)(x);

6 evaluate f(y(i));

7 y ← select
(
arg max{f(y(i)) | i ∈ [λ]}

)
;

8 if f(y) ≥ f(x) then x ← y;

further refined in [19]. The latter also presents optimal static mutation rates for
selected combinations of population size λ and problem size n.

For the here-considered dynamic mutation rates, the following works are most
relevant to ours. Bäck [2] studied, by numerical means, the drift-maximizing
mutation rates of the classic (1+λ) EA with standard bit mutation, for problem
size n = 100 and for λ ∈ {1, 5, 10, 20}. Mutation rates which minimize the
expected optimization time in big-Oh terms were derived in [3, Theorem 4]. More
precisely, it was shown there that the (1+λ) EA using mutation rate p(λ, n, d) =
max{1/n, ln(λ)/(n ln(en/d))} needs O

(
n

lnλ + n log n
λ

)
function evaluations, on

average, to find an optimal solution. This is asymptotically optimal among all
λ-parallel mutation-only black-box algorithms [3, Theorem 3]. Self-adjusting and
self-adaptive (1 + λ) EAs achieving this running time were presented in [10]
and [11], respectively.

2 OneMax and (1 + λ) Mutation-Only Algorithms

As mentioned, the classical OneMax function OM simply counts the number
of ones in the string, i.e., OM : {0, 1}n → R, x �→ ∑n

i=1 xi. For all algorithms
discussed in this work, the behavior on OM is identical to that on any of the
problems OMz : {0, 1}n → R, x �→ n − H(z, x) := |{i ∈ [n] | xi �= zi}|. We study
the maximization of these problems.

Algorithm 1 summarizes the structure of the algorithms studied in this work.
All algorithms start by sampling a uniformly chosen point x. In each iteration,
λ offspring y(1), . . . , y(λ) are sampled from x, independently of each other. Each
y(i) is created from the incumbent x by flipping some k(i) bits, which are pair-
wise different, independently and uniformly chosen (this is the operator flip
in line 4). The best of these λ offspring replaces the incumbent if it is at least
as good as it (line 8). When arg max{f(y(i)) | i ∈ [λ]} contains more than one
point, the selection operator select chooses one of them, e.g., uniformly at ran-
dom or via some other rule. As a consequence of the symmetry of OneMax, all
results shown in this work apply regardless of the chosen tie-breaking rule.

578 M. Buzdalov and C. Doerr

What is left to be specified is the distribution D(n, f(x)) from which the
mutation strengths k(i) are chosen in line 3. This is the only difference between
the algorithms studied in this work.

Deterministic vs. Random Sampling: The Randomized Local Search vari-
ants (RLS) use a deterministic mutation strength k(i), i.e., the distributions
D(n, f(x)) are one-point Dirac distributions. We distinguish two EA variants:
the one using standard bit mutation, denoted (1 + λ) EAsbm, and the one using
the shift mutation suggested in [22], which we refer to as (1+λ) EA0→1. Standard
bit mutation uses the binomial distribution Bin(n, p) with n trials and success
probability p. The shift mutation operator uses Bin0→1(n, p), which differs from
Bin(n, p) only in that all probability mass for k = 0 is moved to k = 1. That is,
with shift mutation we are guaranteed to flip at least one bit, and the probability
to flip exactly one bit equals (1 − p)n + np(1 − p)n−1. In both cases we refer to
p as the mutation rate.

Optimal vs. Drift-maximizing Rates: Our main interest is in the optimal
mutation rates, which minimize the expected time needed to optimize OneMax.
Much easier to compute than the optimal mutation rates are the drift-maximizing
ones, i.e., the values which maximize the expected gain E[f(y) − f(x) | y ←
flipk(x), k ∼ D(n, f(x))], see Sect. 3.

Notational Convention. We omit the explicit mention of (1 + λ) when the
value of λ is clear from the context. Also, formally, we should distinguish between
the mutation rate (used by the EAs, see above) and the mutation strengths (i.e.,
the number of bits that are flipped). However, to ease presentation, we will just
speak of mutation rates even when referring to the parameter setting for RLS.

3 Computation of Optimal Parameter Configurations

We compute the optimal parameters using the similar flavor of dynamic program-
ming that has already been exploited in [4]. Namely, we compute the optimal
parameters and the corresponding remaining time expectations for Hamming
distance d to the optimum after we have computed them for all smaller dis-
tances d′ < d. We denote by T ∗

D,O(n, λ, d) the minimal expected remaining time
of a (1 + λ) algorithm with mutation rate distribution D ∈ {RLS, sbm, 0 → 1},
optimality criterion O ∈ {opt,drift}, and population size λ on a problem size
n ∈ N when at distance d ∈ [0..n]. We also denote the distribution parameter
(mutation strength or rate) by ρ, and the optimal distribution parameter for the
current context as ρ∗

D,O(n, λ, d).
Let Pn,D(d, d′, ρ) be the probability of sampling an offspring at distance d′

to the optimum, provided the parent is at distance d, the problem size is n, the
distribution function is D, and the distribution parameter is ρ. The expected
remaining time TD,O(n, λ, d, ρ), which assumes that at distance d the algorithm
consistently uses parameter ρ and at all smaller distances it uses the optimal
(time-minimizing or drift-maximizing, respectively) parameter for that distance,
is then computed as follows:

Optimal Mutation Rates for the (1 + λ) EA on OneMax 579

TD,O(n, λ, d, ρ) =
1

(Pn,D(d, d, ρ))λ
+

∑d−1

d′=1
T ∗

D,O(n, λ, d′) · Pλ
n,D(d, d′, ρ), (1)

where Pλ
n,D(d, d′, ρ) =

(∑d
t=d′ Pn,D(d, t, ρ)

)λ

−
(∑d

t=d′+1 Pn,D(d, t, ρ)
)λ

.

To compute T ∗
D,O(n, λ, d), Eq. (1) is used, where direct minimization of ρ

is performed when O = opt, and the following drift-maximizing value of ρ is
substituted when O = drift: ρn,D(d) = arg maxρ

∑d−1
d′=0(d − d′) · Pλ

n,D(d, d′, ρ).
Another difference to the work of [4] is in that we do not only compute the

expected remaining running times T ∗
D,O(n, λ, d) when using the optimal mutation

rates ρ∗
D,O(n, λ, d), but we also compute and store TD,O(n, λ, d, ρ) for suboptimal

values of ρ. For RLS we do that for all possible values of ρ, which are integers
not exceeding n, while for the (1 + λ) EA we consider ρ = 2i/5−10/n for all
i ∈ [0; 150]. We do this not only because it gives us additional insight into the
sensitivity of TD,O(n, λ, d, ρ) with respect to ρ, but it also offers a convenient way
to detect deficits of parameter control mechanism; see Sect. 6 for an illustrated
example. Since our data base is hence much more detailed than that of [4], we
also re-consider the case λ = 1.

Our code has the Θ(n3) runtime and Θ(n2) memory complexity. The code is
available on GitHub [6], whereas the generated data is available on Zenodo [5].

4 Optimal Mutation Rates and Optimal Running Times

Figure 1 plots the optimal parameter settings ρ∗
RLS,opt(n, λ, d) for fixed dimension

n = 103 and for different values of λ, in dependence of the Hamming distance
d to the optimum. We observe that the mutation strengths ρ∗

RLS,opt(n, λ, d) are
nearly monotonically increasing in λ, as a result of having more trials to generate
an offspring with large fitness gain. We also see that, for some values of λ, the
curves are not monotonically decreasing in d, but show small “bumps”. Simi-
lar non-monotonic behavior can also be observed for drift-maximizing mutation
strengths ρ∗

RLS,drift(n, λ, d), as can be seen in Fig. 2.

Table 1. Drifts for n = 30, λ = 512, d = 7, 8, ρ ∈ [1..10].

d ρ = 1 2 3 4 5 6 7 8 9 10

7 0.5000 2.0000 2.9762 2.9604 3.0434 2.7009 2.5766 2.2292 1.7457 1.3854

8 0.5000 2.0000 2.9984 3.4601 3.3583 3.3737 3.2292 2.9124 2.7323 2.3445

We show now that these “bumps” are not just numeric precision artifacts,
but rather a (quite surprising) feature of the parameter landscape. For a small
example that can be computed by a human we consider n = 30 and λ = 512.
For d = 7 and 8, we compute the drifts for mutation strengths in [1..10].

580 M. Buzdalov and C. Doerr

Fig. 1. Optimal parameters ρ∗
RLS,opt(n, λ, d) for different values of λ and n = 1000 as

a function of d, the distance to the optimum

Fig. 2. Non-monotonicity in optimal (left) and drift-optimal (right) mutation strengths
for n = 1000 and selected λ

These values are summarized in Table 1. Here we see that the drift-maximizing
mutation for d = 7 is 5, whereas for d = 8 it is 4. This example, in fact, serves
two purposes: first, it shows that even the drift-maximizing strengths can be
non-monotone, and second, that the drift-maximizing strengths can be even for
non-trivial problem sizes, which – as mentioned in the introduction – cannot be
the case when λ = 1 [8].

In the left chart of Fig. 3 we show that at least small ρ∗
RLS,opt(n, λ, d) are quite

robust with respect to the problem dimension n ∈ {1, 2} · 103, if the Hamming
distance d to the optimum is appropriately scaled as d/n. The chart plots the
curves for λ ∈ {2, 64} only, but the observation applies to all tested values of λ.
In accordance to our previous notes, we also see that for λ = 64 there is a regime

Optimal Mutation Rates for the (1 + λ) EA on OneMax 581

Fig. 3. Left: ρ∗
RLS,opt(n, λ, d) for λ ∈ {2, 64} and n ∈ {1k, 2k}, in dependence of d/n.

Right: normalized maximal distance d/n at which flipping k ∈ [1..7] bits is optimal for
RLS, for n = 103 and λ ∈ {2i | 0 ≤ i ≤ 18}.

for which flipping two bits is optimal. For small population sizes λ, we also obtain
even numbers for certain regimes, but only for much larger distances.

The maximal distances at which flipping k bits is optimal are summarized in
the chart on the right of Fig. 3. Note here that the curves are less smooth than
one might have expected. For instance, for n = 103, flipping three bits is never
optimal for λ = 64, and flipping seven bits is never optimal for λ = 29 and 210.

Fig. 4. Left: expected mutation strengths of the time-minimizing parameter settings
for the (1+λ) RLS and two (1+λ) EAs, λ ∈ {2, 16, 2048}, using standard bit mutation
(SBM) and shift mutation (SHF), respectively. Values are for n = 1000 and plotted
against the Hamming distance to the optimal solution. Right: same for λ ∈ {16, 2048}
with an emphasis on small distances.

In Fig. 4 we compare the optimal (i.e., time-minimizing) parameter settings of
the (1+λ) variants of RLS, the EA0→1, and the EAsbm. To obtain a proper com-
parison, we compare the mutation strength ρ∗

RLS,opt(n, λ, d) with the expected

582 M. Buzdalov and C. Doerr

number of bits that flip in the two EA variants, i.e., nρ∗
sbm,opt(n, λ, d) for the

EA using standard bit mutation and nρ∗
sbm,opt(n, λ, d) + (1 − ρ∗

sbm,opt(n, λ, d))n

for the EA using the shift mutation operator. We show here only values for
λ ∈ {2, 16, 1024}, but the picture is similar for all evaluated λ.

We observe that, for each λ, the curves are close together. While for λ = 1
the curves for standard bit mutation were always below that of RLS, we see
here that this picture changes with increasing λ. We also see a sudden decrease
in the expected mutation strength of the shift operator when λ is small. In
fact, it is surprising to see that, for λ = 2, the value drops from around 5.9
at distance 373 to 1 at distance 372. This is particularly interesting in light of
a common tendency in state-of-the-art parameter control mechanisms to allow
only for small parameter updates between two consecutive iterations. This is the
case, for example, in the well-known one-fifth success rule [7,23,24]. Parameter
control techniques building on the family of reinforcement learning algorithms
(see [16] for examples) might catch such drastic changes more efficiently.

Non-surprisingly, the expected mutation strengths of the optimal standard
bit mutation rate and the optimal shift mutation rate converge as the distance
to the optimum increases.

5 Sensitivity of the Optimization Time w.r.t the
Parameter Settings

In this section, we present our findings on the sensitivity of the considered (1+λ)
algorithms to their mutation parameters. To do this, we use not only the expected
remaining times T ∗

D,O(n, λ, d) that correspond to optimal parameter values, but
also TD,O(n, λ, d, ρ) for various parameter values ρ, which correspond to the
situation when an algorithm uses the parameter ρ while it remains at distance d,
and switches to using the optimal parameter values (time-minimizing for O = opt
and drift-maximizing for O = drift, respectively) once the distance is improved.
For reasons of space we focus on O = opt.

We use distance-versus-parameter heatmaps as a means to show which
parameter values are efficient. As the non-optimality regret δD,O(n, λ, d, ρ) =
TD,O(n, λ, d, ρ) − T ∗

D,O(n, λ, d) is asymptotically smaller than the remaining
time, we derive the color from the value τ(ρ) = exp(−δD,O(n, λ, d, ρ)). Note
that τ(ρ) ∈ (0; 1], and the values close to one represent parameters that are
almost optimal by their effect. The parameters where τ(ρ) ≈ 0.5, on the other
hand, correspond to a regret of roughly 0.7, that is, if the parameters satisfy
τ(ρ) ≥ 0.5 throughout the entire optimization, the total expected running time
is greater by at most 0.7n/2 than the optimal time for this type of algorithms.

Figure 5 depicts these regrets for RLSopt on n = 103 and λ ∈ {1, 512}. The
stripes on the fine-grained plot for λ = 1 expectedly indicate, as in [4], that
flipping an even number of bits is generally non-optimal when the distance to
the optimum is small, which is the most pronounced for ρ = 2. This also indicates
that the parameter landscape of RLS is multimodal, posing another difficulty to

Optimal Mutation Rates for the (1 + λ) EA on OneMax 583

200 400

200

400
ρ

200 400

200

400

0

0.2

0.4

0.6

0.8

1

200 400

20

40

Distance to optimum

ρ

200 400

20

40

Distance to optimum

0
0.2
0.4
0.6
0.8
1

Fig. 5. Relative expected remaining optimization times for the (1 + λ) RLSopt with
parameters n = 103, λ = 1 (left) and λ = 512 (right). The first row displays the general
picture, the second row focuses on small mutation strengths

200 40010−3

10−1

101

p
·n

200 40010−3

10−1

101

0

0.2

0.4

0.6

0.8

1

200 40010−3

10−1

101

Distance to optimum

p
·n

200 40010−3

10−1

101

Distance to optimum

0

0.2

0.4

0.6

0.8

1

Fig. 6. Relative expected remaining optimization times for the (1+λ) EAsbm,opt (top)
and the (1 + λ) EA0→1,opt (bottom) with λ = 1 (left) and λ = 512 (right)

parameter control methods. The parameter-time landscape remains multimodal
for λ = 512, but the picture is now much smoother around the optimal parameter
values.

584 M. Buzdalov and C. Doerr

10−6 10−5 10−4 10−3 10−2

0

0.2

0.4

ρ

T
im

e
d = 370, T − 6492
d = 376, T − 6508

Fig. 7. Expected remaining optimization time of the (1 + λ) EA0→1,opt as a function
of the mutation probability ρ

Figure 6 plots the regret for the (1 + λ) EAsbm (top) and the (1 + λ) EA0→1

(bottom) with λ = 1 (left) and λ = 512 (right). The pictures for standard
and shift mutations are very similar until the distance is so small that one-bit
flips become nearly optimal. We also see that bigger population sizes result in a
lower sensitivity of the expected remaining optimization time with respect to the
mutation rate. In fact, we see that, even for standard bit mutation, parameter
settings that are much smaller than the typically recommended mutation rates
(e.g., ρ = 1/(10n)) are also good enough when the distance is Ω(n), as the
probability to flip at least one bit at least once is still quite large.

The plot for the (1+1) EA0→1 deserves separate attention. Unlike other plots
in Fig. 6, it shows a bimodal behavior with respect to the mutation probability
ρ even for quite large distances d < n/2. We zoom into this effect by displaying
in Fig. 7 the expected remaining optimization times for d ∈ {370, 376}.

Drift-Maximization vs. Time-Minimization. We note, without diving into
the details, that the observation that the optimal mutation parameters are not
identical to the drift maximizing ones, made in [4] for (1+1) algorithms, extends
to (1 + λ)-type algorithms with λ > 1. More precisely, it applies to all tested
dimensions and population sizes λ. We note, though, that the disadvantage
T ∗
RLS,drift(n, λ, d)−T ∗

RLS,opt(n, λ, d) decreases with increasing λ. Since the differ-
ence is already quite small for the case λ = 1 (e.g., for n = 1000, it is 0.242), we
conclude that this difference, albeit interesting from a mathematical perspective,
has very limited relevance in empirical evaluations. This is good news for auto-
mated algorithm configuration techniques, as it implies that simple regret (e.g.,
in the terms of one-step progress) is sufficient to derive reasonable parameter
values – as opposed to requiring cumulative regret, which, as Sect. 3 shows, is
much more difficult to track.

6 Applications in Parameter Control

Figure 8 displays the experimentally measured mean optimization times, aver-
aged over 100 runs, of (1) the standard (1 + λ) EA with static mutation rate
ρ = 1/n, (2) RLSopt, (3) the (1 + λ) EA0→1,opt, and of (4–5) the “two-
rate” parameter control mechanism suggested in [10], superposed here to the

Optimal Mutation Rates for the (1 + λ) EA on OneMax 585

(1 + λ) EA0→1 with two different lower bounds ρmin at which the mutation rate
is capped.

2−1 22 25 28 211 214 217

102

103

104

Distance to optimum

It
er
at
io
ns

(1 + λ) EA
Two-rate, p ≥ 1

n

Two-rate, p ≥ 1
n2

Optimal (1 + λ)RLS
Optimal (1 + λ)EA0→1

Fig. 8. Mean number of iterations of different (1 + λ) EAs vs. the expected number of
iterations of RLSopt and EAopt,0→1 for n = 103, as a function of the population size λ

200 40010−3

10−1

101

Distance to optimum

p
·n

200 40010−3

10−1

101

Distance to optimum

0

0.2

0.4

0.6

0.8

1

Fig. 9. Parameter control plots of the two-rate method atop parameter efficiency
heatmaps, n = 103, λ = 64 (left) and λ = 2048 (right). Red traces are for the mutation
rate lower bound of ρmin = 1/n, black traces are for the lower bound of ρmin = 1/n2

(Color figure online)

With such pictures, we can infer how far a certain algorithm is from an opti-
mally tuned algorithm with the same structure, which can highlight its strengths
and weaknesses. However, it is difficult to derive insights from just expected
times. To get more information, one can record the parameter values produced
by the investigated parameter control method and draw them atop the heatmaps
produced as in Sect. 5. An example of this is shown in Fig. 9. An insight from
this figure, that may be relevant to the analysis of strengths and weaknesses of
this method, would be that the version using ρmin = 1/n cannot use very small
probabilities and is thus suboptimal at distances close to the optimum, whereas
the version using ρmin = 1/n2 falls down from the optimal parameter region too
frequently and too deep.

586 M. Buzdalov and C. Doerr

7 Conclusions

Extending the work [4], we have presented in this work optimal and drift-
maximizing mutation rates for two different (1+λ) EAs and for the (1+λ) RLS.
We have demonstrated how our data can be used to detect weak spots of param-
eter control mechanisms. We have also described two unexpected effects of the
dependency of the expected remaining optimization time on the mutation rates:
non-monotonicity in d (Sect. 4) and non-unimodality (Sect. 5). We plan on
exploring these effects in more detail, and with mathematical rigor. Likewise,
we plan on analyzing the formal relationship of the optimal mutation rates with
the normalized distance d/n. As a first step towards this goal, we will use the
numerical data presented above to derive close-form expressions for the expected
remaining optimization times TD,O(n, λ, d, ρ) as well as for the optimal configu-
rations ρ∗

D,O(n, λ, d). Finally, we also plan on applying similar analyses to more
sophisticated benchmark problems.

The extended version of the paper is available on arXiv [13].

Acknowledgments. The work was supported by RFBR and CNRS, project no. 20-
51-15009, by the Paris Ile-de-France Region, and by ANR-11-LABX-0056-LMH.

References

1. Auger, A., Hansen, N.: Theory of evolution strategies: a new perspective. In: The-
ory of Randomized Search Heuristics: Foundations and Recent Developments, pp.
289–325. World Scientific (2011). https://doi.org/10.1142/9789814282673 0010

2. Bäck, T.: The interaction of mutation rate, selection, and self-adaptation within a
genetic algorithm. In: Proceedings of Parallel Problem Solving from Nature (PPSN
II), pp. 87–96. Elsevier (1992)

3. Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of paral-
lel search. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN
2014. LNCS, vol. 8672, pp. 892–901. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10762-2 88

4. Buskulic, N., Doerr, C.: Maximizing drift is not optimal for solving OneMax.
In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO
2019), Companion Material, pp. 425–426. ACM (2019). https://doi.org/10.1145/
3319619.3321952. https://arxiv.org/abs/1904.07818

5. Buzdalov, M.: Data for “Optimal mutation rates for the (1 + λ) EA on OneMax”
(2020). https://doi.org/10.5281/zenodo.3897351

6. Buzdalov, M.: Repository with the code to compute the optimal rates and the
expected remaining optimization times (2020). https://github.com/mbuzdalov/
one-plus-lambda-on-onemax/releases/tag/v1.0

7. Devroye, L.: The compound random search. Ph.D. dissertation, Purdue Univ.,
West Lafayette, IN (1972)

8. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box
analysis. Theor. Comput. Sci. 801, 1–34 (2020). https://doi.org/10.1016/j.tcs.
2019.06.014

https://doi.org/10.1142/9789814282673_0010
https://doi.org/10.1007/978-3-319-10762-2_88
https://doi.org/10.1007/978-3-319-10762-2_88
https://doi.org/10.1145/3319619.3321952
https://doi.org/10.1145/3319619.3321952
https://arxiv.org/abs/1904.07818
https://doi.org/10.5281/zenodo.3897351
https://github.com/mbuzdalov/one-plus-lambda-on-onemax/releases/tag/v1.0
https://github.com/mbuzdalov/one-plus-lambda-on-onemax/releases/tag/v1.0
https://doi.org/10.1016/j.tcs.2019.06.014
https://doi.org/10.1016/j.tcs.2019.06.014

Optimal Mutation Rates for the (1 + λ) EA on OneMax 587

9. Doerr, B., Doerr, C.: Theory of parameter control for discrete black-box optimiza-
tion: provable performance gains through dynamic parameter choices. In: Theory
of Evolutionary Computation: Recent Developments in Discrete Optimization, pp.
271–321. Springer, Cham (2020). https://arxiv.org/abs/1804.05650v2

10. Doerr, B., Gießen, C., Witt, C., Yang, J.: The (1+ λ) evolutionary algorithm with
self-adjusting mutation rate. Algorithmica 81(2), 593–631 (2019)

11. Doerr, B., Witt, C., Yang, J.: Runtime analysis for self-adaptive mutation rates.
In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO
2018), pp. 1475–1482. ACM (2018). https://doi.org/10.1145/3205455.3205569

12. Doerr, B. and Neumann, F. (eds.) Theory of Evolutionary Computation—Recent
Developments in Discrete Optimization, Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-29414-4

13. Doerr, C., Buzdalov, M.: Optimal mutation rates for the (1 + λ) EA on OneMax
(2020). https://arxiv.org/abs/2006.11457

14. Erdős, P., Rényi, A.: On two problems of information theory. Magyar Tudományos
Akadémia Matematikai Kutató Intézet Közleményei 8, 229–243 (1963)

15. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Dynamic multi-armed ban-
dits and extreme value-based rewards for adaptive operator selection in evolution-
ary algorithms. In: Stützle, T. (ed.) LION 2009. LNCS, vol. 5851, pp. 176–190.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11169-3 13

16. Fialho, Á., Costa, L.D., Schoenauer, M., Sebag, M.: Analyzing bandit-based adap-
tive operator selection mechanisms. Ann. Math. Artif. Intell. 60(1–2), 25–64
(2010). https://doi.org/10.1007/s10472-010-9213-y

17. Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimization
benchmarking 2010: presentation of the noiseless functions (2010). http://coco.
gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf

18. Gießen, C., Witt, C.: The interplay of population size and mutation probability in
the (1 + λ) EA on OneMax. Algorithmica 78(2), 587–609 (2016). https://doi.org/
10.1007/s00453-016-0214-z

19. Gießen, C., Witt, C.: Optimal mutation rates for the (1+λ) EA on OneMax through
asymptotically tight drift analysis. Algorithmica 80(5), 1710–1731 (2017). https://
doi.org/10.1007/s00453-017-0360-y

20. Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring population
size in evolutionary algorithms. Evol. Comput. 13(4), 413–440 (2005)

21. Karafotias, G., Hoogendoorn, M., Eiben, A.: Parameter control in evolutionary
algorithms: trends and challenges. IEEE Trans. Evol. Comput. 18(2), 167–187
(2014)

22. Pinto, E.C., Doerr, C.: Towards a more practice-aware runtime analysis of evolu-
tionary algorithms. arxiv.org/abs/1812.00493 (2018)

23. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Fromman-Holzboorg Verlag, Stuttgart
(1973)

24. Schumer, M.A., Steiglitz, K.: Adaptive step size random search. IEEE Trans.
Autom. Control 13, 270–276 (1968)

25. Thierens, D.: On benchmark properties for adaptive operator selection. In:
Proceedings of Genetic and Evolutionary Computation Conference (GECCO
2009), Companion Material, pp. 2217–2218. ACM (2009). https://doi.org/10.1145/
1570256.1570306

https://arxiv.org/abs/1804.05650v2
https://doi.org/10.1145/3205455.3205569
https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1007/978-3-030-29414-4
https://arxiv.org/abs/2006.11457
https://doi.org/10.1007/978-3-642-11169-3_13
https://doi.org/10.1007/s10472-010-9213-y
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf
https://doi.org/10.1007/s00453-016-0214-z
https://doi.org/10.1007/s00453-016-0214-z
https://doi.org/10.1007/s00453-017-0360-y
https://doi.org/10.1007/s00453-017-0360-y
http://arxiv.org/abs/org/abs/1812.00493
https://doi.org/10.1145/1570256.1570306
https://doi.org/10.1145/1570256.1570306

Maximizing Submodular or Monotone
Functions Under Partition Matroid

Constraints by Multi-objective
Evolutionary Algorithms

Anh Viet Do and Frank Neumann(B)

The University of Adelaide, Adelaide, Australia
{vietanh.do,frank.neumann}@adelaide.edu.au

Abstract. Many important problems can be regarded as maximizing
submodular functions under some constraints. A simple multi-objective
evolutionary algorithm called GSEMO has been shown to achieve good
approximation for submodular functions efficiently. While there have
been many studies on the subject, most of existing run-time analyses for
GSEMO assume a single cardinality constraint. In this work, we extend
the theoretical results to partition matroid constraints which generalize
cardinality constraints, and show that GSEMO can generally guarantee
good approximation performance within polynomial expected run time.
Furthermore, we conducted experimental comparison against a baseline
GREEDY algorithm in maximizing undirected graph cuts on random
graphs, under various partition matroid constraints. The results show
GSEMO tends to outperform GREEDY in quadratic run time.

Keywords: Evolutionary algorithms · Multi-objective evolutionary
algorithms · Run-time analysis

1 Introduction

The area of runtime analysis has made significant contributions to the theory
of evolutionary algorithms over the last 25 years [1,20]. Important results have
been obtained for a wide range of benchmark functions as well as for important
combinatorial optimization problems [33]. This includes a wide range of evo-
lutionary computing methods in a wide range of deterministic, stochastic and
dynamic settings. We refer the reader to [12] for a presentation of important
recent research results.

Many important real-world problems can be stated in terms of optimizing
a submodular function and the analysis of evolutionary algorithms using multi-
objective formulations has shown that they obtain in many cases the best pos-
sible performance guarantee (unless P = NP). Important recent results on the
use of evolutionary algorithms for submodular optimization are summarized

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 588–603, 2020.
https://doi.org/10.1007/978-3-030-58115-2_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_41&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_41

Submodular Functions Under Partition Matroid Constraints by MOEAs 589

in [42]. The goal of this paper is to expand the investigations of evolution-
ary multi-objective optimization for submodular optimization. While previous
investigations mainly concentrated on monotone submodular functions with a
single constraint, we consider non-monotone submodular functions with a set of
constraints.

1.1 Related Work

Submodular functions are considered the discrete counterparts of convex func-
tions [31]. Submodularity captures the notion of diminishing marginal return,
and is present in many important problems. While minimizing submodular func-
tions can be done using a polynomial time combinatorial algorithm [19], sub-
modular maximization encompasses many NP-hard combinatorial problems such
as maximum coverage, maximum cut [18], maximum influence [22], and sen-
sor placement problem [23,24]. It is also applied in many problems in machine
learning domain [28–30,38,41]. Considering the role of evolutionary algorithms
in difficult optimization problems, we focus on submodular maximization.

Realistic optimization problems often impose constraints on the solutions.
In applications of submodular maximization, Matroid and Knapsack constraints
are among the most common [26]. In this work, we consider submodular maxi-
mization under partition matroid constraints, which are a generalization of car-
dinality constraints. This type of constraint has been considered in a variety of
applications [6,14,21].

A greedy algorithm has been shown to achieve 1/2-approximation ratio in
maximizing monotone submodular functions under partition matroid constraints
[9]. It was later proven that (1−1/e) is the best approximation ratio a polynomial
time algorithm can guarantee. A more recent study [10] proposed a randomized
algorithm that achieves this ratio. Another study [5] analyzes derandomizing
search heuristics, leading to a deterministic 0.5008-approximation ratio.

Additionally, more nuanced results have been reached when limiting objective
functions to those with finite rate of marginal change, quantified by curvature α
as defined in [15]. The results in [7,40] indicate that 1

α (1 − e−α)-approximation
ratio is achievable by the continuous greedy algorithm in maximizing mono-
tone submodular functions under a matroid constraint. A more recent study
[4] proved 1

α (1 − e−γα)-approximation ratio for the deterministic greedy algo-
rithm in maximizing functions with submodularity ratio γ, under a cardinality
constraint.

These results rely on the assumption of monotonicity of the objective functions,
f(S) ≤ f(T) for all S ⊆ T , which do not hold in many applications of submod-
ular maximization. A study [17] derives approximation guarantees for GSEMO
algorithm in maximizing monotone and symmetric submodular function under a
matroid constraint, which suggest that non-monotone functions are harder tomax-
imize.This is supported by another result [15] for a greedy algorithm inmaximizing
general submodular function under partition matroid constraints. A recent study
[36] extends the results for a GSEMO variant to the problems of maximizing gen-
eral submodular functions, but under a cardinality constraint.

590 A. V. Do and F. Neumann

1.2 Our Contribution

In this work, we contribute to the theoretical analysis of GSEMO by generalizing
previous results to partition matroid constraints. Firstly, we provide an approx-
imation guarantee for GSEMO in maximizing general submodular functions
under partition matroid constraints (Theorem 1). Secondly, we derive another
result for monotone and not necessarily submodular functions, under the same
constraints (Theorem 2), to account for other important types of function like
subadditive functions. Subadditivity encompasses submodularity, and is defined
by the property where the whole is no greater than the sum of parts. Subaddi-
tive functions are commonly used to model items evaluations and social welfare
in combinatorial auctions [2,3,15,39]. Our results extend the existing ones [36]
with more refined bounds.

We investigate GSEMO’s performance against GREEDY’s [15] in maximiz-
ing undirected cuts in random graphs under varying cardinality constraints and
partition matroid constraints. Graph cut functions with respect to vertices sets
are known to be submodular and non-monotone [13]. In particular, they are also
symmetric for undirected graphs [37]. Our results suggest that GSEMO typically
requires more evaluations to reach GREEDY’s outputs quality. Nonetheless,
GSEMO surpasses GREEDY shortly after the latter stops improving, indicat-
ing the former’s capacity for exploring the search spaces. Predictably, GSEMO
outperforms GREEDY more reliably in larger search spaces.

The paper is structured as follows. We formally define the problems and the
algorithms in Sect. 2. In Sect. 3, we analyze GSEMO with respect to its approx-
imation behaviour and runtime and report on our experimental investigations
in Sect. 4. Finally, we finish with some conclusions.

2 Preliminaries

In this section, we provide a formal definition of the problem and some of its
parameters relevant to our analyses. We also describe the simple GREEDY algo-
rithm and the GSEMO algorithm considered in this work.

2.1 Problem Definition

We consider the following problem. Let f : 2V → R
+ be a non-negative function

over a set V of size n, B = {Bi}i=1,...,k be a partition of V for some k ≤ n,
D = {di}i=1,...,k be integers such that di ∈ [1, |Bi|] for all i, the problem is
finding X ⊆ V maximizing f(X), subject to

|X ∪ Bi| ≤ di, ∀i = 1, . . . , k.

These constraints are referred to as partition matroid constraints, which are
equivalent to a cardinality constraint if k = 1. The objective function f of
interest is submodular, meaning it satisfies the property as defined in [32]

Submodular Functions Under Partition Matroid Constraints by MOEAs 591

Definition 1. A function f : 2V → R
+ is submodular if

f(X ∪ {v}) − f(X) ≥ f(Y ∪ {v}) − f(Y), ∀X ⊆ Y ⊆ V, v ∈ V \ Y.

We can assume that f is not non-increasing, and for monotone f , we can assume
f(∅) = 0. To perform analysis, we define the function’s monotonicity approxi-
mation term similar to [24], but only for subsets of a certain size.

Definition 2. For a function f : 2V → R
+, its monotonicity approximation

term with respect to a parameter j is

εj = max
X,v:|X|<j

{f(X \ {v}) − f(X)},

for j > 0 and ε0 = 0.

It is clear that εj is non-negative, non-decreasing with increasing j, and f is
monotone iff εn = 0. Additionally, for monotone non-submodular f , we use sub-
modularity ratio which quantifies how close f is to being modular. In particular,
we simplify the definition [11] which measures the severity of the diminishing
return effect.

Definition 3. For a monotone function f : 2V → R
+, its submodularity ratio

with respect to two parameters i, j ≥ 1 is

γi,j = min
|X|<i,|L|≤j,X∩L=∅

∑
v∈L[f(X ∪ {v}) − f(X)]

f(X ∪ L) − f(X)
,

for i > 0 and γ0,j = γ1,j.

It can be seen that γi,j is non-negative, non-increasing with increasing i and j,
and f is submodular iff γi,j ≥ 1 for all (i, j).

For the purpose of analysis, we denote d =
∑

i di, d̄ = mini{di}, and OPT
the optimal solution; we have d̄ ≤ d/k and |OPT | ≤ d. We evaluate the algo-
rithm’s performance via f(X∗)/f(OPT) where X∗ is the algorithm’s output.
Furthermore, we use the black-box oracle model to evaluate run time, hence our
results are based on numbers of oracle calls.

2.2 Algorithms Descriptions

A popular baseline method to solve hard problems is greedy heuristics. A sim-
ple deterministic GREEDY variant has been studied for this problem [15]. It
starts with the empty solution, and in each iteration adds the feasible remain-
ing element in V that increases f value the most. It terminates when there is
no remaining feasible elements that yield positive gains. This algorithm extends
the GREEDY algorithms in [32] to partition matroids constraints. Note that at
iteration k, GREEDY calls the oracle n − k + 1 times, so its run time is O(dn).
According to [15], it achieves (1−e−αd̄/d)/α approximation ratio when f is sub-
modular, and (1−e−α(1−α)d̄/d)/α approximation ratio when f is non-decreasing
subadditive, with α being the curvature of f .

592 A. V. Do and F. Neumann

Algorithm 1. GSEMO algorithm
Input: a problem instance: (f, B, D)
Parameter: the number of iterations T ≥ 0
Output: a feasible solution x ∈ {0, 1}n

x ← 0, P ← {x}
while t < T do

Randomly sample a solution y from P
Generate y′ by flipping each bit of y independently with probability 1/n
if �x ∈ P, x � y′ then

P ← (P \ {x ∈ P, y′ � x}) ∪ {y′}
end if

end while
return argmaxx∈P f1(x)

On the other hand, GSEMO [16,17,25], also known as POMC [34], is a well-
known simple Pareto optimization approach for constrained single-objective opti-
mization problems. It has been shown to outperform the generalized greedy algo-
rithm in overcoming local optima [34]. To use GSEMO with partition matroid
constraints, the problem is reformulated as a bi-objective problem

maximizeX⊆V (f1(X), f2(X)) ,

where

f1(X) =
{−∞, ∃i, |Bi ∩ X| > di

f(X), otherwise , f2(X) = −|X|.

GSEMO optimizes two objectives simultaneously, using the dominance rela-
tion between solutions, which is common in Pareto optimization approaches.
By definition, solution X1 dominates X2 (X1 X2) iff f1(X1) ≥ f1(X2) and
f2(X1) ≥ f2(X2). The dominance relation is strict (X1 � X2) iff f1(X1) >
f1(X2) or f2(X1) > f2(X2). Intuitively, dominance relation formalizes the notion
of “better” solution in multi-objective contexts. Solutions that don’t dominate
any other present a trade-off between objectives to be optimized.

The second objective in GSEMO is typically formulated to promote solu-
tions that are “further” from being infeasible. The intuition is that for those
solutions, there is more room for feasible modification, thus having more poten-
tial of becoming very good solutions. For the problem of interest, one way of
measuring “distance to infeasibility” for some solution X is counting the num-
ber of elements in V \X that can be added to X before it is infeasible. The value
then would be d − |X|, which is the same as f2(X) in practice. Another way is
counting the minimum number of elements in V \X that need to be added to X
before it is infeasible. The value would then be mini{di − |Bi ∩ X|}. The former
approach is chosen for simplicity and viability under weaker assumption about
the oracle.

Submodular Functions Under Partition Matroid Constraints by MOEAs 593

On the other hand, the first objective aims to present the canonical evolu-
tionary pressure based on objective values. Additionally, f1 also discourages all
infeasible solutions, which is different from the formulation in [34] that allows
some degree of infeasibility. This is because for k > 1, there can be some infea-
sible solution Y where |Y | ≤ d. If f1(Y) is very high, it can dominate many
good feasible solutions, and may prevent acceptance of global optimal solutions
into the population. Furthermore, restricting to only feasible solutions decreases
the maximum population size, which can improve convergence performance. It is
clear the population size is at most d+1. These formulations of the two objective
functions are identical to the ones in [17] when k = 1.

In practice, set solutions are represented in GSEMO as binary sequences,
where with V = {v1, . . . , vn} the following bijective mapping is implicitly
assumed

g : 2V → {0, 1}n, g(X)i =

{
0, vi /∈ X,
1, vi ∈ X

.

This representation of set is useful in evolutionary algorithms since genetic bit
operators are compatible. GSEMO operates on the bit sequences, and the fit-
ness function is effectively a pseudo-Boolean function f ◦ g−1. It starts with
initial population of a single empty solution. In each iteration, a new solution
is generated by random parent selection and bit flip mutation. Then the elitist
survival selection mechanism removes dominated solutions from the population,
effectively maintaining a set of known Pareto-optimal solutions. The algorithm
terminates when the number of iteration reaches some predetermined limit. The
procedure is described in Algorithm 1. We choose empty set as the initial solu-
tion, similar to [34] and different from [17], to simplify the analysis and stabilize
theoretical performance. Note that GSEMO calls the oracle once per iteration to
evaluate a new solution, so its run time is identical to the number of iterations.

3 Approximation Guarantees

We derive an approximation guarantee for GSEMO on maximizing a general sub-
modular function under partition matroid constraints. According to the analysis
for GREEDY [15], we can assume there are d “dummy” elements with zero
marginal contribution. For all feasible solutions X ⊆ V where |X| < d̄, let v∗

X =
argmaxv∈V \X f1(X∪{v}) be the feasible greedy addition to X, we can derive the
following result from Lemma 2 in [36], using f(OPT ∪X) ≥ f(OPT)− jεd+j+1.

Lemma 1 ([36]). Let f be a submodular function and εd be defined in Defini-
tion 2, for all feasible solutions X ⊆ V such that |X| = j < d̄

f(X ∪ {v∗
X}) − f(X) ≥ 1

d
[f(OPT) − f(X) − jεd+j+1].

594 A. V. Do and F. Neumann

With this lemma, we can prove the following result where Pt denotes the popu-
lation at iteration t.

Theorem 1. For the problem of maximizing a submodular function f under
partition matroid constraints, GSEMO generates in expected run time O(d2n/k)
a solution X ⊆ V such that

f(X) ≥
(
1 − e−d̄/d

) [
f(OPT) − (d̄ − 1)εd+d̄

]
.

Proof. Let S(X, j) be a statement |X| ≤ j ∧ f(X) ≥
[
1 − (

1 − 1
d

)j
]
[f(OPT) −

(j − 1)εd+j], and Jt = max{i ∈ [0, d̄]|∃X ∈ Pt, S(X, i)}, it is clear that S(∅, 0)
holds, so J0 = 0 and Jt is well-defined for all t ≥ 0 since the empty solution is
never dominated.

Assuming Jt = i at some t, let X̄ ∈ Pt such that S(X̄, i) holds. If X̄ is not
dominated and removed from Pt+1, then Jt+1 ≥ Jt. Otherwise, there must be
some Y ∈ Pt+1 such that |Y | ≤ |X̄| and f(Y) ≥ f(X̄). This implies S(Y, i), so
Jt+1 ≥ Jt. Therefore, Jt is never decreased as t progresses. Let X ′ = X̄ ∪ {v∗̄

X
},

Lemma 1 implies

f(X ′) ≥ 1
d
f(OPT) +

(

1 − 1
d

) [

1 −
(

1 − 1
d

)i
]

[f(OPT) − (i − 1)εd+i]

− i

d
εd+i+1

≥
[

1 −
(

1 − 1
d

)i+1
]

[f(OPT) − iεd+i+1].

The second inequality uses 0 ≤ εd+i ≤ εd+i+1. The probability that GSEMO
selects X̄ is at least 1

d+1 , and the probability of generating X ′ by mutating X̄

is at least 1
n

(
1 − 1

n

)n−1 ≥ 1
en . Furthermore, S(X ′, i + 1) holds as shown, so

Jt+1 ≥ i + 1 if X ′ ∈ Pt+1. Since i ≤ d̄ − 1 and t ≥ 0 are chosen arbitrarily, this
means

E[Jt+1 − Jt|Jt ∈ [0, d̄ − 1]] ≥ 1
en(d + 1)

, ∀t ≥ 0.

Therefore, the Additive Drift Theorem [27] implies the expected number of iter-
ations for Jt to reach d̄ from 0 is at most ed̄n(d + 1). When Jt = d̄, Pt must
contain a feasible solution Z such that

f(Z) ≥
(
1 − e−d̄/d

)
[f(OPT) − (d̄ − 1)εd+d̄].

Therefore, GSEMO generates such a solution in expected run time at most
ed̄n(d + 1) = O(d2n/k). �

In case of a single cardinality constraint (d̄ = d), this approximation guarantee is
at least as tight as the one for GSEMO-C in [36]. If monotonicity of f is further
assumed, the result is equivalent to the one for GSEMO in [17]. Additionally,

Submodular Functions Under Partition Matroid Constraints by MOEAs 595

the presence of εd suggests that the non-monotonicity of f does not necessarily
worsen the approximation guarantee when negative marginal gains are absent
from all GSEMO’s possible solutions (i.e. cannot decrease objective values by
adding an element).

As an extension beyond submodularity instead of monotonicity, we provide
another proof of the approximation guarantee for GSEMO on the problems of
maximizing monotone functions under the same constraints. Without loss of
generality, we can assume that f is normalized, meaning f(∅) = 0. We make use
of the following inequality, derived from Lemma 1 in [35].

Lemma 2. Let f be a monotone function and γi,j be defined in Definition 3,
for all feasible solutions X ⊆ V such that |X| = j < d̄

f(X ∪ {v∗
X}) − f(X) ≥ γj+1,d

d
[f(OPT) − f(X)].

Using this lemma, we similarly prove the following result.

Theorem 2. For the problem of maximizing a monotone function under parti-
tion matroid constraints, GSEMO with expected run time O(d2n/k) generates a
solution X ⊆ V such that

f(X) ≥
(
1 − e−γd̄,dd̄/d

)
f(OPT).

Proof. Let S(X, j) be a statement |X| ≤ j∧f(X) ≥
[

1 −
(
1 − γj,dd̄

d

)j
]

f(OPT),

and Jt = max{i ∈ [0, d̄]|∃X ∈ Pt, S(X, i)}, it is clear that S(∅, 0) holds, so J0 = 0
and Jt is well-defined for all t ≥ 0 since the empty solution is never dominated.

Assuming Jt = i at some t, there must be X̄ ∈ Pt such that S(X̄, i) holds.
If X̄ is not dominated and removed from Pt+1, then Jt+1 ≥ Jt. Otherwise,
there must be some Y ∈ Pt+1 such that |Y | ≤ |X̄| and f(Y) ≥ f(X̄). This
implies S(Y, i), so Jt+1 ≥ Jt. Therefore, Jt is never decreased as t progresses.
Let X ′ = X̄ ∪ {v∗̄

X
}, Lemma 2 implies

f(X ′) ≥ γi+1,d

d
f(OPT) +

(
1 − γi+1,d

d

) [

1 −
(
1 − γi,d

d

)i
]

f(OPT)

≥
[

1 −
(
1 − γi+1,d

d

)i+1
]

f(OPT).

The second inequality uses γi,d ≥ γi+1,d.The probability that GSEMO selects X̄
is at least 1

d+1 , and the probability of generating X ′ by mutating X̄ is at least
1
n

(
1 − 1

n

)n−1 ≥ 1
en . Furthermore, S(X ′, i + 1) holds as shown, so Jt+1 ≥ i + 1.

Since i ≤ d̄ − 1 and t ≥ 0 are chosen arbitrarily, this means

E[Jt+1 − Jt|Jt ∈ [0, d̄ − 1]] ≥ 1
en(d + 1)

, ∀t ≥ 0.

596 A. V. Do and F. Neumann

Therefore, according to the Additive Drift Theorem [27], the expected number
of iterations for Jt to reach d̄ from 0 is at most ed̄n(d + 1). When Jt = d̄, Pt

must contain a feasible solution Z such that

f(Z) ≥
[

1 −
(
1 − γd̄,d

d

)d̄
]

f(OPT) ≥
(
1 − e−γd̄,dd̄/d

)
f(OPT).

Therefore, GSEMO generates such a solution in expected run time at most
ed̄n(d + 1) = O(d2n/k). �

Compared to the results in [34], it is reasonable to assume that restricting
GSEMO’s population to only allow feasible solutions improves worst-case guar-
antees. However, it also eliminates the possibility of efficient improvement by
modifying infeasible solutions that are very close to very good feasible ones.
This might reduce its capacity to overcome local optima.

4 Experimental Investigations

We compare GSEMO and GREEDY on the symmetric submodular Cut maxi-
mization problems with randomly generated graphs under varying settings. The
experiments are separated into two groups: cardinality constraints (k = 1) and
general partition matroid constraints (k > 1).

4.1 Max Cut Problems Setup

Weighted graphs are generated for the experiments based on two parameters:
number of vertices (which is n) and density. There are 3 values for n: 50, 100, 200.
There are 5 density values: 0.01, 0.02, 0.05, 0.1, 0.2. For each n-density pair, 30
different weighted graphs – each denoted as G = (V,E, c) – are generated with
the following procedure:

1. Randomly sample E from V ×V without replacement, until |E| = �density×
n2�.

2. Assign to c(a, b) a uniformly random value in [0, 1] for each (a, b) ∈ E.
3. Assign c(a, b) = 0 for all (a, b) /∈ E.

Each graph is then paired with different sets of constraints, and each pairing
constitutes a problem instance. This enables observations of changes in out-
puts on the same graphs under varying constraints. For cardinality constraints,
d1 = {n

4 , n
2 , 3n

4 }, rounded to the nearest integer. Thus, there are 30 problem
instances per n-density-d1 triplet. For partition matroid constraints, the num-
bers of partitions are k = {2, 5, 10}. The partitions are of the same size, and
each element is randomly assigned to a partition. The thresholds di are all set to
� n
2k � since the objective functions are symmetric. Likewise, there are 30 problem

instances per n-density-k triplet.
GSEMO is run on each instance 30 times, and the minimum, mean and max-

imum results are denoted by GSEMO−, GSEMO∗ and GSEMO+, respectively.

Submodular Functions Under Partition Matroid Constraints by MOEAs 597

The GREEDY algorithm is run until satisfying its stopping condition, while
GSEMO is run for T = 4n2 iterations. Their final achieved objective values are
then recorded and analyzed. Note that the run time budget for GSEMO in every
setting is smaller than the theoretical bound on average run time in Theorem 1,
except for (n, k) = (50, 10) where it is only slightly larger.

4.2 Cut Maximization Under a Cardinality Constraint

The experimental results for cardinality constraint cases are shown in Table 1.
Signed-rank U-tests [8] are applied to the outputs, with pairing based on
instances. Furthermore, we count the numbers of instances where GSEMO out-
performs, ties with, and is outperformed by GREEDY via separate U-tests on
individual instances.

Overall, GSEMO on average outperforms GREEDY with statistical signifi-
cance in most cases. The significance seems to increase, with some noises, with
increasing n, density, and d1. This indicates that GSEMO more reliably pro-
duces better solutions than GREEDY as the graph’s size and density increase.
Moreover, in few cases with large n, GSEMO− is higher than GREEDY’s with
statistical significance.

Additionally, it is indicated that GSEMO∗ tend to be closer to GSEMO+

than GSEMO−. This suggests skewed distribution of outputs in each instance
toward high values. The implication is that GSEMO is more likely to produce
outputs greater than average, than otherwise. It might be an indication that
these results are close to the global optima for these instances.

Per instance analyses show high number of ties between GSEMO and
GREEDY for small n, density, and to a lesser extent d1. As these increase,
the number of GSEMO’s wins increases and ends up dominating at n = 200.
This trend coincides with earlier observations, and suggests the difficulty of mak-
ing improvements in sparse graphs faced by GSEMO where GREEDY heuristic
seems more suited. On the other hand, large graph sizes seem to favour GSEMO
over GREEDY despite high sparsity, likely due to more local optima present in
larger search spaces.

4.3 Cut Maximization Under Partition Matroid Constraints

The experimental results for partition matroid constraints cases are shown in
Table 2. Notations and statistical test procedure are the same as in Table 1.

Overall, the main trend in cardinality constraint cases is present: GSEMO on
average outperforms GREEDY, with increased reliability at larger n and den-
sity. This can be observed in both the average performances and the frequency
at which GSEMO beats GREEDY. It seems the effect of this phenomenon is
less influenced by variations in k than it is by variations in d1 in cardinality
constraint cases. Note that the analysis in Theorem 1 only considers bottom-up
improvements up to |X| = d̄. Experimental results likely suggest GSEMO can
make similar improvements beyond that point up to |X| = d.

598 A. V. Do and F. Neumann

Table 1. Experimental results for cardinality constraints cases. Ranges of final objec-
tive values across 30 graphs are shown for each setting. The signed-rank U-tests are
used to compare GREEDY’s with GSEMO−, GSEMO∗, GSEMO+ for each setting,
pairing by instances, with 95% confidence level. ‘+’ denotes values being significantly
greater than GREEDY’s, ‘−’ denotes less, and ‘*’ denotes no significant difference.
Additionally, numbers of losses, wins and ties (L-W-T) GSEMO has over GREEDY
are shown, which are determined by separate U-tests on individual instances.

n Density d1 GREEDY GSEMO− GSEMO∗ GSEMO+ L–W–T

Min Max Min Max Stat Min Max Stat Min Max Stat

50 0.01 13 6.638 12.71 6.625 12.59 − 6.635 12.7 − 6.638 12.71 * 3–3–24

25 6.638 13.27 6.625 13.13 − 6.65 13.25 * 6.706 13.27 + 2–7–21

38 6.638 13.27 6.625 13.13 − 6.647 13.24 * 6.706 13.27 + 2–6–22

0.02 13 12.16 18.08 12.1 18.08 − 12.15 18.08 * 12.17 18.08 + 6–5–19

25 13.5 20.27 13.43 20.17 − 13.47 20.29 + 13.5 20.33 + 8–16–6

38 13.5 20.27 13.39 20.23 − 13.47 20.3 + 13.5 20.33 + 7–17–6

0.05 13 22.09 29.38 21.69 29.28 − 22.03 29.49 + 22.09 29.51 + 2–17–11

25 26.52 37.14 27.18 36.28 − 27.75 36.95 + 28.1 37.14 + 4–20–6

38 26.52 37.14 27.39 36.43 − 27.89 37.02 + 28.2 37.14 + 5–21–4

0.1 13 38.64 47.14 38.19 46.82 − 38.59 47.12 * 38.69 47.14 + 5–11–14

25 46.61 57.93 45.36 57.38 − 46.85 57.85 + 47.28 58.03 + 11–16–3

38 46.61 58.08 45.03 57.58 − 46.77 57.95 + 47.28 58.1 + 10–17–3

0.2 13 63.13 77.38 63.09 77.01 * 63.26 77.43 + 63.46 77.64 + 2–16–12

25 78.89 92.57 79.37 91.68 − 80.61 92.25 + 80.82 92.66 + 5–21–4

38 78.89 92.57 79.82 91.78 − 80.62 92.31 + 80.82 92.66 + 5–21–4

100 0.01 25 24.93 31.88 24.9 31.86 − 25.11 31.89 * 25.36 31.89 + 7–9–14

50 27.87 37.79 27.56 37.87 − 28.11 38.07 * 28.67 38.26 + 12–13–5

75 27.87 37.79 27.24 37.71 − 28.07 38 + 28.67 38.26 + 11–13–6

0.02 25 42.95 53.66 42.95 53.56 − 43.38 53.64 * 43.4 53.66 + 7–10–13

50 51.93 66 51.95 65.27 − 52.62 66.14 + 52.78 66.4 + 9–15–6

75 51.93 66 51.69 64.31 − 52.6 66.08 + 52.8 66.4 + 9–17–4

0.05 25 78.13 94.98 78.09 95.3 − 78.38 95.45 + 78.78 95.49 + 8–17–5

50 100.6 120.7 100 119 − 100.9 120.3 + 101.7 120.7 + 7–18–5

75 100.7 120.7 99.23 118.9 − 100.8 120.4 + 101.9 120.7 + 7–17–6

0.1 25 138.9 155.3 138.5 155 − 139.1 156 + 139.6 156.2 + 2–20–8

50 178.4 197.8 177 198.3 * 178 199.9 + 179.6 200.6 + 7–17–6

75 178.4 197.8 176.6 198.6 * 178 199.9 + 179.4 200.6 + 6–17–7

0.2 25 224.1 249.2 222.8 249.4 * 224 250 + 225.6 250.2 + 4–22–4

50 297.6 325.1 297.8 323.9 * 300.9 325.8 + 302.7 326.4 + 6–20–4

75 297.6 325.1 298 323.9 − 300.4 325.8 + 303.2 326.4 + 6–19–5

200 0.01 50 85.54 96.11 84.98 96.05 * 85.58 96.3 + 85.84 96.52 + 7–20–3

100 103.1 118.4 103.5 118.5 − 104.6 120.1 + 104.9 121.4 + 4–23–3

150 103.1 118.4 103.6 118.6 − 104.7 120 + 105.1 121.4 + 4–21–5

0.02 50 139.1 159.3 140.6 158.8 * 141.8 159.2 + 142.2 159.3 + 8–19–3

100 173.3 198.2 175.6 197.5 * 177.3 198.5 + 179.4 199.3 + 2–25–3

150 173.3 198.2 174.8 197.2 * 177 198.4 + 178.9 199.5 + 2–23–5

0.05 50 275.9 311.8 277.8 311.4 + 278.8 312.3 + 280 313 + 0–28–2

100 357 400.6 364.4 402.6 * 367.1 405 + 369.7 406.7 + 1–28–1

150 357 400.6 364.2 402.7 * 366.8 405.2 + 369.9 407.1 + 0–27–3

0.1 50 489.8 534 490.6 533.7 * 492.6 534 + 493.4 534 + 6–22–2

100 647.8 680.5 643.7 679.3 − 649.5 683.7 + 653 686.4 + 2–24–4

150 648 680.5 642.3 680.9 * 649.6 683.8 + 652.2 687 + 2–22–6

0.2 50 866.9 921.8 867.9 920.6 * 871.5 921.6 + 873.4 921.8 + 1–26–3

100 1120 1182 1120 1181 + 1125 1188 + 1128 1192 + 0–29–1

150 1120 1182 1122 1181 + 1125 1189 + 1129 1193 + 0–30–0

Submodular Functions Under Partition Matroid Constraints by MOEAs 599

Table 2. Experimental results for partition matroid constraints cases. Ranges of final
objective values across 30 graphs are shown for each setting. The signed-rank U-tests
are used to compare GREEDY’s with GSEMO−, GSEMO∗, GSEMO+ for each setting,
pairing by instances, with 95% confidence level. ‘+’ denotes values being significantly
greater than GREEDY’s, ‘−’ denotes less, and ‘*’ denotes no significant difference.
Additionally, numbers of losses, wins and ties (L-W-T) GSEMO has over GREEDY
are shown, which are determined by separate U-tests on individual instances.

n Density k GREEDY GSEMO− GSEMO∗ GSEMO+ L–W–T

Min Max Min Max Stat Min Max Stat Min Max Stat

50 0.01 2 6.638 13.27 6.625 13.15 − 6.65 13.26 * 6.706 13.27 + 1–7–22

5 6.638 13.27 6.625 13.13 − 6.654 13.25 * 6.706 13.27 + 3–7–20

10 6.638 13.27 6.625 13.15 − 6.65 13.25 * 6.706 13.27 + 1–7–22

0.02 2 13.5 20.27 13.32 20.24 − 13.47 20.28 + 13.5 20.33 + 7–16–7

5 13.5 19.69 13.14 19.53 − 13.4 19.65 + 13.5 19.69 + 7–13–10

10 13.11 20.27 12.94 20.07 − 13.09 20.28 + 13.11 20.33 + 7–14–9

0.05 2 25.8 37.14 26.63 36.82 − 27.07 37.07 + 27.42 37.14 + 5–18–7

5 25.78 36.75 26.49 35.86 − 27.04 36.58 + 27.66 36.88 + 8–18–4

10 25.9 36.83 25.73 35.28 − 27.38 36.17 + 28.09 36.83 + 6–20–4

0.1 2 46.61 57.93 44.87 56.97 − 46.72 57.7 + 47.28 58.05 + 9–18–3

5 45.91 56.69 45.3 55.85 − 46.23 56.4 + 46.81 56.94 + 8–18–4

10 46.59 56.46 44.13 55.73 − 46.41 56.6 + 47.08 57.13 + 6–18–6

0.2 2 78.89 92.5 79.16 91.53 − 80.54 92.18 + 80.82 92.66 + 6–19–5

5 74.37 91.89 74.96 90.83 − 76.44 91.61 + 77.39 91.89 + 6–22–2

10 75.85 92.57 75.62 90.86 − 76.7 92.08 + 77.97 92.51 + 4–21–5

100 0.01 2 27.87 37.79 27.69 37.7 − 28.15 37.99 + 28.67 38.26 + 10–14–6

5 27.87 37.79 27.78 37.65 − 28.1 38 + 28.67 38.26 + 10–14–6

10 27.87 36.81 27.59 36.51 − 27.88 36.91 * 28.31 37.14 + 11–12–7

0.02 2 51.92 66 51.64 65.44 − 52.55 66.17 + 52.79 66.4 + 10–15–5

5 51.62 65.82 51.57 65.48 − 52.41 66.04 * 52.71 66.22 + 8–12–10

10 51.69 63.41 51.38 62.63 − 51.9 63.29 * 52.19 63.75 + 8–13–9

0.05 2 100.1 120.7 99.68 119.3 − 100.9 120.2 + 101.7 120.7 + 8–17–5

5 99.61 119.5 98.19 117.4 − 99.86 119 + 100.6 119.7 + 7–17–6

10 97 116.6 95.82 116 − 98.14 117.6 + 99.37 118.3 + 5–18–7

0.1 2 177.6 197.8 176.8 198.6 * 177.6 199.9 + 178.4 200.7 + 6–19–5

5 173.5 196.6 172.6 197.6 − 174.3 199.1 + 175.8 200.2 + 2–21–7

10 173.3 192.9 171.7 193.9 − 173.6 195.9 * 175.3 198.2 + 12–12–6

0.2 2 294.2 325.1 294.8 324.8 * 297.4 325.9 + 301.6 326.4 + 6–22–2

5 292.7 320.5 293.2 318.5 * 297.3 321.8 + 299.5 323.7 + 3–23–4

10 288.3 322.7 288.2 317.3 − 292.3 321.6 + 296.3 323.8 + 5–22–3

200 0.01 2 103.1 118.4 103.6 118.9 * 104.6 120.2 + 105.1 121.6 + 4–22–4

5 103.1 118.4 103.4 118.5 − 104.2 119.9 + 104.7 121.4 + 3–20–7

10 102.7 117.4 102.6 117.2 − 104 118.1 + 104.7 119.3 + 4–21–5

0.02 2 173.3 198.2 174.8 197.2 * 176.5 198.5 + 178.6 199.5 + 3–22–5

5 172.8 196.7 173.7 195.7 − 176.4 197.6 + 179.1 198.6 + 2–20–8

10 172.5 193.3 173.7 193.9 * 176.1 195.6 + 177.9 196.8 + 1–23–6

0.05 2 356.4 400.6 362.7 401.6 * 366.2 404.8 + 369.1 406.1 + 2–28–0

5 353.7 399.4 359.6 400.5 * 363.5 403 + 365.5 404.7 + 1–28–1

10 352.9 394.3 355.1 396.7 * 360.1 399.4 + 363.2 401.5 + 1–26–3

0.1 2 645.2 680.5 642.8 679 * 647.4 682.9 + 650.7 685.5 + 3–25–2

5 641.7 678.7 637.4 676.2 − 643.3 680.6 + 647.4 685.2 + 4–20–6

10 637.2 669.8 632.3 667.4 − 641.5 672.7 + 645.1 677.3 + 2–24–4

0.2 2 1119 1182 1118 1183 + 1123 1187 + 1128 1193 + 0–30–0

5 1117 1178 1116 1173 * 1121 1179 + 1125 1184 + 0–29–1

10 1105 1170 1111 1175 * 1117 1181 + 1122 1188 + 2–28–0

600 A. V. Do and F. Neumann

Additionally, the outputs of both algorithms are generally decreased with
increased k, due to restricted feasible solution spaces. There are few exceptions
which could be attributed to noises from random partitioning since they occur
in both GREEDY’s and GSEMO’s simultaneously. Furthermore, the variation
in k seems to slightly affect the gaps between GSEMO’s and GREEDY’s, which
are somewhat smaller at higher k. It seems to support the notion that GREEDY
performs well in small search spaces while GSEMO excels in large search spaces.
This coincides with the observations in the cardinality constraint cases, and
explains the main trend.

5 Conclusion

In this work, we consider the problem of maximizing a set function under par-
tition matroid constraints, and analyze GSEMO’s approximation performance
on such problems. Theoretical performance guarantees are derived for GSEMO
in cases of submodular objective functions, and monotone objective functions.
We show that GSEMO guarantees good approximation quality within polyno-
mial expected run time in both cases. Additionally, experiments with Max Cut
instances generated from varying settings have been conducted to gain insight on
its empirical performance, based on comparison against simple GREEDY’s. The
results show that GSEMO generally outperforms GREEDY within quadratic
run time, particularly when the feasible solution space is large.

Acknowledgements. The experiments were run using the HPC service provided by
the University of Adelaide.

References

1. Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics: Foundations
and Recent Developments. World Scientific Publishing Co., Inc., Singapore (2011)

2. Balcan, M.F., Blum, A., Mansour, Y.: Item pricing for revenue maximization. In:
Proceedings of the 9th ACM Conference on Electronic Commerce, EC 2008, pp.
50–59. ACM, New York (2008). https://doi.org/10.1145/1386790.1386802

3. Bhawalkar, K., Roughgarden, T.: Welfare guarantees for combinatorial auctions
with item bidding. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2011, pp. 700–709. Society for Industrial and Applied
Mathematics, Philadelphia (2011). https://doi.org/10.1137/1.9781611973082.55

4. Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy
maximization of non-submodular functions with applications. In: Proceedings of
the 34th International Conference on Machine Learning, ICML 2017, vol. 70, pp.
498–507. JMLR.org (2017)

5. Buchbinder, N., Feldman, M., Garg, M.: Deterministic (1/2 + ε)-approximation
for submodular maximization over a matroid. In: Proceedings of the 30th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pp. 241–254. Society
for Industrial and Applied Mathematics, Philadelphia (2019)

https://doi.org/10.1145/1386790.1386802
https://doi.org/10.1137/1.9781611973082.55

Submodular Functions Under Partition Matroid Constraints by MOEAs 601

6. Chekuri, C., Kumar, A.: Maximum coverage problem with group budget con-
straints and applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D.
(eds.) APPROX/RANDOM -2004. LNCS, vol. 3122, pp. 72–83. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-27821-4 7

7. Conforti, M., Cornuéjols, G.: Submodular set functions, matroids and the greedy
algorithm: Tight worst-case bounds and some generalizations of the rado-edmonds
theorem. Discret. Appl. Math. 7(3), 251–274 (1984). https://doi.org/10.1016/
0166-218X(84)90003-9

8. Corder, G.W., Foreman, D.I.: Nonparametric Statistics for Non-Statisticians: A
Step-by-Step Approach. Wiley, Hoboken (2009)

9. Cornuejols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank accounts to opti-
mize float: an analytic study of exact and approximate algorithms. Manag. Sci.
23(8), 789–810 (1977). https://doi.org/10.1287/mnsc.23.8.789

10. Călinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submod-
ular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766
(2011). https://doi.org/10.1137/080733991

11. Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset
selection, sparse approximation and dictionary selection. In: Proceedings of the
28th International Conference on International Conference on Machine Learning,
ICML 2011, Omnipress, Madison, WI, USA, pp. 1057–1064 (2011)

12. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation - Recent
Developments in Discrete Optimization. Natural Computing Series. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-29414-4

13. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular
functions. SIAM J. Comput. 40(4), 1133–1153 (2011). https://doi.org/10.1137/
090779346

14. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approximation
algorithms for maximum general assignment problems. In: Proceedings of the 17th
Annual ACM-SIAM Symposium on Discrete Algorithm, SODA 2006, pp. 611–620.
Society for Industrial and Applied Mathematics, Philadelphia (2006). https://doi.
org/10.1145/1109557.1109624

15. Friedrich, T., Göbel, A., Neumann, F., Quinzan, F., Rothenberger, R.: Greedy
maximization of functions with bounded curvature under partition matroid con-
straints. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
pp. 2272–2279 (2019). https://doi.org/10.1609/aaai.v33i01.33012272

16. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating
covering problems by randomized search heuristics using multi-objective models*.
Evol. Comput. 18(4), 617–633 (2010). https://doi.org/10.1162/EVCO a 00003

17. Friedrich, T., Neumann, F.: Maximizing submodular functions under matroid con-
straints by evolutionary algorithms. Evol. Comput. 23(4), 543–558 (2015). https://
doi.org/10.1162/EVCO a 00159

18. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM
42(6), 1115–1145 (1995). https://doi.org/10.1145/227683.227684

19. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algo-
rithm for minimizing submodular functions. J. ACM 48(4), 761–777 (2001).
https://doi.org/10.1145/502090.502096

20. Jansen, T.: Analyzing Evolutionary Algorithms - The Computer Science Perspec-
tive. Natural Computing Series. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-17339-4

https://doi.org/10.1007/978-3-540-27821-4_7
https://doi.org/10.1016/0166-218X(84)90003-9
https://doi.org/10.1016/0166-218X(84)90003-9
https://doi.org/10.1287/mnsc.23.8.789
https://doi.org/10.1137/080733991
https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1137/090779346
https://doi.org/10.1137/090779346
https://doi.org/10.1145/1109557.1109624
https://doi.org/10.1145/1109557.1109624
https://doi.org/10.1609/aaai.v33i01.33012272
https://doi.org/10.1162/EVCO_a_00003
https://doi.org/10.1162/EVCO_a_00159
https://doi.org/10.1162/EVCO_a_00159
https://doi.org/10.1145/227683.227684
https://doi.org/10.1145/502090.502096
https://doi.org/10.1007/978-3-642-17339-4
https://doi.org/10.1007/978-3-642-17339-4

602 A. V. Do and F. Neumann

21. Jegelka, S., Bilmes, J.: Submodularity beyond submodular energies: coupling edges
in graph cuts. In: CVPR 2011, pp. 1897–1904 (2011). https://doi.org/10.1109/
CVPR.2011.5995589

22. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a
social network. In: Proceedings of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 2003, pp. 137–146. ACM, New
York (2003). https://doi.org/10.1145/956750.956769

23. Krause, A., Guestrin, C.: Submodularity and its applications in optimized informa-
tion gathering. ACM Trans. Intell. Syst. Technol. 2(4), 32:1–32:20 (2011). https://
doi.org/10.1145/1989734.1989736

24. Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in Gaussian
processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res.
9, 235–284 (2008). https://doi.org/10.1145/1390681.1390689

25. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective
evolutionary algorithms on pseudo-boolean functidons. IEEE Trans. Evol. Comput.
8(2), 170–182 (2004). https://doi.org/10.1109/TEVC.2004.823470

26. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular
maximization under matroid and knapsack constraints. In: Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 323–332.
ACM, New York (2009). https://doi.org/10.1145/1536414.1536459

27. Lengler, J.: Drift analysis. CoRR abs/1712.00964 (2017). http://arxiv.org/abs/
1712.00964

28. Lin, H., Bilmes, J.: Multi-document summarization via budgeted maximization
of submodular functions. In: Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics, HLT 2010, pp. 912–920. Association for Computational Linguistics,
Cambridge (2010)

29. Lin, H., Bilmes, J.: A class of submodular functions for document summarization.
In: Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, HLT 2011, pp. 510–520. Association
for Computational Linguistics, Portland (2011)

30. Liu, Y., Wei, K., Kirchhoff, K., Song, Y., Bilmes, J.: Submodular feature selection
for high-dimensional acoustic score spaces. In: 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 7184–7188 (2013). https://doi.org/
10.1109/ICASSP.2013.6639057

31. Lovász, L.: Submodular functions and convexity. In: Bachem, A., Korte, B.,
Grotschel, M. (eds.) Mathematical Programming the State of the Art, pp. 235–257.
Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-642-68874-4 10

32. Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum
of a submodular set function. Math. Oper. Res. 3(3), 177–188 (1978). https://doi.
org/10.1287/moor.3.3.177

33. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization.
Natural Computing Series. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-16544-3

34. Qian, C., Shi, J.C., Yu, Y., Tang, K.: On subset selection with general cost con-
straints. In: Proceedings of the 26th International Joint Conference on Artificial
Intelligence, IJCAI 2017, pp. 2613–2619 (2017). https://doi.org/10.24963/ijcai.
2017/364

35. Qian, C., Shi, J.C., Yu, Y., Tang, K., Zhou, Z.H.: Parallel pareto optimization for
subset selection. In: Proceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2016, pp. 1939–1945. AAAI Press (2016)

https://doi.org/10.1109/CVPR.2011.5995589
https://doi.org/10.1109/CVPR.2011.5995589
https://doi.org/10.1145/956750.956769
https://doi.org/10.1145/1989734.1989736
https://doi.org/10.1145/1989734.1989736
https://doi.org/10.1145/1390681.1390689
https://doi.org/10.1109/TEVC.2004.823470
https://doi.org/10.1145/1536414.1536459
http://arxiv.org/abs/1712.00964
http://arxiv.org/abs/1712.00964
https://doi.org/10.1109/ICASSP.2013.6639057
https://doi.org/10.1109/ICASSP.2013.6639057
https://doi.org/10.1007/978-3-642-68874-4_10
https://doi.org/10.1287/moor.3.3.177
https://doi.org/10.1287/moor.3.3.177
https://doi.org/10.1007/978-3-642-16544-3
https://doi.org/10.1007/978-3-642-16544-3
https://doi.org/10.24963/ijcai.2017/364
https://doi.org/10.24963/ijcai.2017/364

Submodular Functions Under Partition Matroid Constraints by MOEAs 603

36. Qian, C., Yu, Y., Tang, K., Yao, X., Zhou, Z.H.: Maximizing submodular or mono-
tone approximately submodular functions by multi-objective evolutionary algo-
rithms. Artif. Intell. 275, 279–294 (2019). https://doi.org/10.1016/j.artint.2019.
06.005

37. Queyranne, M.: A combinatorial algorithm for minimizing symmetric submodular
functions. In: Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 1995, pp. 98–101. Society for Industrial and Applied Mathe-
matics, Philadelphia (1995)

38. Stobbe, P., Krause, A.: Efficient minimization of decomposable submodular func-
tions. In: Proceedings of the 23rd International Conference on Neural Information
Processing Systems, NIPS 2010, vol. 2, pp. 2208–2216. Curran Associates Inc.,
New York (2010)

39. Syrgkanis, V., Tardos, É.: Composable and efficient mechanisms. In: Proceedings
of the 45th Annual ACM Symposium on Theory of Computing, STOC 2013, pp.
211–220. ACM, New York (2013). https://doi.org/10.1145/2488608.2488635

40. Vondrák, J.: Submodularity and curvature: the optimal algorithm. RIMS
Kôkyûroku Bessatsu B23, pp. 253–266 (2010)

41. Wei, K., Iyer, R., Bilmes, J.: Submodularity in data subset selection and active
learning. In: Proceedings of the 32nd International Conference on International
Conference on Machine Learning, ICML 2015, vol. 37, pp. 1954–1963. JMLR.org
(2015)

42. Zhou, Z., Yu, Y., Qian, C.: Evolutionary Learning: Advances in Theories and Algo-
rithms. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-5956-9

https://doi.org/10.1016/j.artint.2019.06.005
https://doi.org/10.1016/j.artint.2019.06.005
https://doi.org/10.1145/2488608.2488635
https://doi.org/10.1007/978-981-13-5956-9

Lower Bounds for Non-elitist
Evolutionary Algorithms via Negative

Multiplicative Drift

Benjamin Doerr(B)

Laboratoire d’Informatique (LIX), CNRS, École Polytechnique,
Institut Polytechnique de Paris, Palaiseau, France

doerr@lix.polytechnique.fr

Abstract. A decent number of lower bounds for non-elitist population-
based evolutionary algorithms has been shown by now. Most of them are
technically demanding due to the (hard to avoid) use of negative drift
theorems – general results which translate an expected progress away
from the target into a high hitting time.

We propose a simple negative drift theorem for multiplicative drift sce-
narios and show that it can simplify existing analyses. We discuss in more
detail Lehre’s (PPSN 2010) negative drift in populations method, one
of the most general tools to prove lower bounds on the runtime of non-
elitist mutation-based evolutionary algorithms for discrete search spaces.
Together with other arguments, we obtain an alternative and simpler
proof, which also strengthens and simplifies this method. In particular,
now only three of the five technical conditions of the previous result have
to be verified. The lower bounds we obtain are explicit instead of only
asymptotic. This allows to compute concrete lower bounds for concrete
algorithms, but also enables us to show that super-polynomial runtimes
appear already when the reproduction rate is only a (1−ω(n−1/2)) factor
below the threshold. As one particular result, we apply this method and
a novel domination argument to show an exponential lower bound for
the runtime of the mutation-only simple GA on OneMax for arbitrary
population size.

Keywords: Runtime analysis · Drift analysis · Lower bounds ·
Population-based algorithms · Theory · Discrete optimization

1 Introduction

Lower bounds for the runtimes of evolutionary algorithms are important as they
can warn the algorithm user that certain algorithms or certain parameter settings
will not lead to good solutions in acceptable time. Unfortunately, the existing
results in this direction, for non-elitist algorithms in particular, are very tech-
nical. In the case of Lehre’s powerful negative drift in populations method [24],
this also renders the method difficult to use.
c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 604–618, 2020.
https://doi.org/10.1007/978-3-030-58115-2_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_42&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_42

Lower Bounds via Multiplicative Drift 605

One reason for this high complexity is the use of drift analysis, which seems
hard to circumvent. Drift analysis [26] is a set of tools that all try to derive
useful information on a hitting time (e.g., the first time a solution of a certain
quality is found) from information on the expected progress in one iteration.
The hope is that the progress in a single iteration can be analyzed with only
moderate difficulty and then the drift theorem does the remaining work. While
more direct analysis methods exist and have been successfully used for simple
algorithms, for population-based algorithms and in particular non-elitist ones, it
is hard to imagine that the complicated population dynamics can be captured
in proofs not using more advanced tools such as drift analysis.

Drift analysis has been used with great success to prove upper bounds on
runtimes of evolutionary algorithms. Tools such as the additive [19], multiplica-
tive [13], and variable drift theorem [22,28] all allow to easily obtain an upper
bound on a hitting time solely from the expected progress in one iteration.
Unfortunately, proving matching lower bounds is much harder since here the
drift theorems also require additional technical assumptions on the distribution
of the progress in one iteration. This is even more true in the case of so-called
negative drift, where the drift is away from the target and we aim at proving a
high lower bound on the hitting time.

In this work, we propose a very simple negative drift theorem for the case
of multiplicative drift (Lemma 1). We briefly show that this result can simplify
two classic lower bound analyses (Sect. 2).

In more detail, we use the new drift theorem (and some more arguments)
to rework Lehre’s negative drift in populations method [24]. This highly general
analysis method allows to show exponential lower bounds on the runtime of
a large class of evolutionary algorithms solely by comparing the reproduction
rate of individuals in the population with a threshold that depends only on the
mutation rate.

The downside of Lehre’s method is that both the result and its proof is very
technical. To apply the general result (and not the specialization to algorithms
using standard bit mutation), five technical conditions need to be verified, which
requires the user to choose suitable values for six different constants; these have
an influence on the lower bound one obtains. This renders the method of Lehre
hard to use. Among the 54 citations to [24] (according to Google scholar on June
9, 2020), only the two works [6,25] apply this method. To hopefully ease future
analyses of negative drift in populations, we revisit this method and obtain the
following improvements.

A Simpler Result: We manage to show essentially the same lower bounds by
only verifying three of the five conditions Lehre was using (Theorem 2 and 3).
This also reduces the number of constants one needs to choose from six to four.

A Non-asymptotic Result: Our general tool proves explicit lower bounds, that
is, free from asymptotic notation or unspecified constants. Consequently, our
specialization to algorithms using standard bit mutation (Theorem 4) also gives
explicit bounds. This allows one to prove concrete bounds for specific situations

606 B. Doerr

(e.g., that the (μ, λ) EA with λ = 2µ needs more than 13 million fitness eval-
uations to find a unique optimum of problem defined over bit strings of length
n = 500, see the example following Theorem 4) and gives more fine-grained
theoretical results (by choosing Lehre’s constant δ as suitable function of the
problems size, we show that a super-polynomial runtime behavior is observed
already when the reproduction rate is only a (1 − ω(n1/2)) factor below the
threshold, see Corollary 5).

A Simple Proof: Besides the important aspect that a proof guarantees the result
to be mathematically correct, an understandable proof can also tell us why a
result is correct and give further insights into working principles of algorithms.
While every reader will have a different view on how the ideal proof looks like, we
felt that Lehre’s proof, combining several deep and abstract tools such as multi-
type branching processes, eigenvalue arguments, and Hajek’s drift theorem [17],
does not easily give a broader understanding of the proof mechanics and the
working principles of the algorithms analyzed. Our proof, based on a simple
potential function argument together with our negative drift theorem, hopefully
is more accessible.

Finally, we analyze an algorithm using fitness proportionate selection. The
negative drift in populations method is not immediately applicable to such algo-
rithms since it is hard to provide a general unconditional upper bound on the
reproduction rate. We show that at all times all search points are at least as
good (in the stochastic domination sense) as random search points. This gives a
simple proof of an exponential lower bound for the mutation-only simple genetic
algorithm with arbitrary population size optimizing the simple OneMax bench-
mark, improving over the mildly sub-exponential lower bound in [29] and the
exponential lower bound only for large population sizes in [25].

1.1 Related Works

A number of different drift theorems dealing with negative drift have been proven
so far, among other, in [18,23,27,31,32,34,35,39]. They all require some addi-
tional assumptions on the distribution of the one-step progress, which makes
them non-trivial to use. We refer to [26, Section 2.4.3] for more details. Another
approach to negative drift was used in [2,8,9]. There the original process was
transformed suitably (via an exponential function), but in a way that the drift
of the new process still is negative or at most very slowly approaches the target.
To this transformed process the lower bound version of the additive drift theo-
rem [19] was applied, which gave large lower bounds since the target, due to the
exponential rescaling, now was far from the starting point of the process.

In terms of lower bounds for non-elitist algorithms, besides Lehre’s general
result [24], the following results for particular algorithms exist (always, n is the
problem size, ε can be any positive constant, and e ≈ 2.718 is the base of the
natural logarithm). Jägersküpper and Storch [21, Theorem 1] showed that the
(1, λ) EA with λ ≤ 1

14 ln(n) is inefficient on any pseudo-Boolean function with
a unique optimum. The asymptotically tight condition λ ≤ (1 − ε) log e

e−1
n to

Lower Bounds via Multiplicative Drift 607

yield a super-polynomial runtime was given by Rowe and Sudholt [35]. Happ,
Johannsen, Klein, and Neumann [18] showed that two simple (1+1)-type hill-
climbers with fitness proportionate selection cannot optimize efficiently any lin-
ear function with positive weights. Neumann, Oliveto, and Witt [29] showed that
a mutation-only variant of the simple genetic algorithm (simple GA) with fitness
proportionate selection is inefficient on the OneMax function when the popu-
lation size μ is at most polynomial, and it is inefficient on any pseudo-Boolean
function with unique global optimum when μ ≤ 1

4 ln(n). The mildly subexpo-
nential lower bound for OneMax was improved to an exponential lower bound
by Lehre [25], but only for μ ≥ n3. In a series of remarkable works up to [34],
Oliveto and Witt showed that the true simple GA using crossover cannot opti-
mize OneMax efficiently when μ ≤ n

1
4−ε. None of these results gives an explicit

lower bound or specifies the base of the exponential function. In [2], an explicit
lower bound for the runtime of the (μ, λ) EA is proven (but stated only in the
proof of Theorem 3.1 in [2]). Section 3 of [2] bears some similarity with ours, in
fact, one can argue that our work extends [2, Section 3] from a particular algo-
rithm to the general class of population-based processes regarded by Lehre [24]
(where, naturally, [2] did not have the negative multiplicative drift result and
therefore did not obtain bounds that hold with high probability).

2 Negative Multiplicative Drift

The following elementary result allows to prove lower bounds on the time to
reach a target in the presence of multiplicative drift away from the target. While
looking innocent, it has the potential to replace more the complicated lower
bound arguments previously used in analyses of non-elitist algorithms such as
simplfied drift theorems ([29, Theorem 1], [33, Theorem 22], [34, Theorem 2]).
We discuss this briefly at the end of this section.

Lemma 1 (Negative multiplicative drift theorem). Let X0,X1, . . . be a
random process in a finite subset of R≥0. Assume that there are Δ, δ > 0 such
that for each t ≥ 0, the following multiplicative drift condition with additive
disturbance holds:

E[Xt+1] ≤ (1 − δ)E[Xt] + Δ. (1)

Assume further that E[X0] ≤ Δ
δ . Then the following two assertions hold.

– For all t ≥ 0, E[Xt] ≤ Δ
δ .

– Let M > Δ
δ and T = min{t ≥ 0 | Xt ≥ M}. Then for all integers L ≥ 0,

Pr[T ≥ L] ≥ 1 − L
Δ

δM
,

and E[T] ≥ δM
2Δ − 1

2 .

608 B. Doerr

The proof is an easy computation of expectations and an application of
Markov’s inequality similar to the direct proof of the multiplicative drift the-
orem in [12]. We do not see a reason why the result should not also hold for
processes taking more than a finite number of values, but since we are only
interested in the finite setting, we spare us the more complicated world of con-
tinuous probability spaces.

Proof (of Lemma 1). If E[Xt] ≤ Δ
δ , then E[Xt+1] ≤ (1 − δ)E[Xt] + Δ ≤

(1 − δ)Δ
δ = Δ

δ by (1). Hence the first claim follows by induction. To prove
the second claim, we compute

Pr[T < L] ≤ Pr[X0 + · · · + XL−1 ≥ M] ≤ E[X0 + · · · + XL−1]
M

≤ LΔ

δM
,

where the middle inequality follows from Markov’s inequality and the fact that
the Xt by assumption are all non-negative. From this estimate, using the short-
hand s = � δM

Δ �, we compute E[T] =
∑∞

t=1 Pr[T ≥ t] ≥ ∑s
t=1(1 − tΔ

δM) =
s− 1

2s(s+1) Δ
δM ≥ δM

2Δ − 1
2 , where the first equality is a standard way to express

the expectation of a random variable taking non-negative integral values and the
last inequality is an elementary computation omitted here. ��

We note that in the typical application of this result (as in the proof of
Theorem 2 below), we expect to see the condition that for all t ≥ 0,

E[Xt+1 | Xt] ≤ (1 − δ)Xt + Δ. (2)

Clearly, this condition implies (1) by the law of total expectation.
We now argue that our negative multiplicative drift theorem is likely to find

applications beyond ours to the negative drift in populations method in the
following section. To this aim, we regard two classic lower bound analyses of
non-elitist algorithms and point out where our drift theorem would have eased
the analysis.

In [29], Neumann, Oliveto, and Witt show that the variant of the simple
genetic algorithm (simple GA) not using crossover needs time 2n1−O(1/ log log n)

to optimize the simple OneMax benchmark. The key argument in [29] is as
follows. The potential Xt of the population P (t) in iteration t is defined as
Xt =

∑
x∈P (t) 8OneMax(x). For this potential, it is shown [29, Lemma 7] that if

Xt ≥ 80.996n, then E[Xt+1] ≤ (1 − δ)Xt for some constant δ > 0. By bluntly
estimating E[Xt+1] in the case that Xt < 80.996n, this bound could easily be
extended to E[Xt+1|Xt] ≤ (1 − δ)Xt + Δ for some number Δ. This suffices to
employ our negative drift theorem and obtain the desired lower bound. Without
our drift theorem at hand, in [29] the potential Yt = log8(Xt) was considered, it
was argued that it displays an additive drift away from the target and that Yt

satisfies certain concentration statements necessary for the subsequent use of a
negative drift theorem for additive drift.

A second example using similar techniques, and thus most likely profiting
from our drift theorem, is the work of Oliveto and Witt [33,34] analyzing the

Lower Bounds via Multiplicative Drift 609

simple GA with crossover optimizing OneMax. Due to the use of crossover,
this work is much more involved, so without much detail we point the reader
interested in the details to the location where we feel that our drift theorem
would have eased the analysis. In Lemma 19 of [34], again a multiplicative drift
statement (away from the target) is proven. To use a negative drift theorem for
additive drift (Theorem 2 in [34]), in the proof of Lemma 20 the logarithm of
the original process is regarded. So here again, we feel that a direct application
of our drift theorem would have eased the analysis.

3 Negative Drift in Populations Revisited

In this section, we use our negative multiplicative drift result and some more
arguments to rework Lehre’s negative drift in populations method [24] and obtain
Theorem 2 further below. This method allows to analyze a broad class of evolu-
tionary algorithms, namely all that give rise to the following population selection-
mutation (PSM) process (identical to the one defined in [24] even though we use
a slightly more algorithmic language). Let Ω be a finite set. We call Ω the search
space and its elements solution candidates or individuals. Let λ ∈ N be called
the population size of the process. An ordered multi-set of cardinality λ, in other
words, a λ-tuple, over the search space Ω is called a population. Let P = Ωλ be
the set of all populations. For P ∈ P, we write P1, . . . , Pλ to denote the elements
of P . We also write x ∈ P to denote that there is an i ∈ [1..λ] such that x = Pi.

A PSM process starts with some, possibly random, population P (0). In each
iteration t = 1, 2, . . . , a new population P (t) is sampled from the previous one
P (t−1) as follows. Via a (possibly) randomized selection operator sel(·), a λ-tuple
of individuals is selected and then each of them creates an offspring through the
application of a randomized mutation operator mut(·).

The selection operator can be arbitrary except that it only selects individuals
from P (t−1). In particular, we do not assume that the selected individuals are
independent. Formally speaking, the outcome of the selection process is a ran-
dom λ-tuple Q = sel(P) ∈ [1..λ]λ such that P

(t−1)
Q1

, . . . , P
(t−1)
Qλ

are the selected
parents.

From each selected parent P
(t−1)
Qi

, a single offspring P
(t)
i is generated

via a randomized mutation operator P
(t)
i = mut(P (t−1)

Qi
). Formally speaking,

for each x ∈ Ω, mut(x) is a probability distribution on Ω and we write
y = mut(x) to indicate that y is sampled from this distribution. We assume
that each sample, that is, each call of a mutation operator, uses indepen-
dent randomness. With this notation, we can write the new population as
P (t) =

(
mut(P (t−1)

sel(P)1
), . . . ,mut(P (t−1)

sel(P)λ
)
)
. From the definition it is clear that

a PSM process is a Markov process with state space P.
The following characteristic of the selection operator was found to be crucial

for the analysis of PSM processes in [24]. Let P ∈ P and i ∈ [1..λ]. Then the
random variable R(i, P) = |{j ∈ [1..λ] | sel(P)j = Pi}|, called reproduction
number of the i-th individual in P , denotes the number of times Pi was selected
from P as parent. Its expectation E[R(i, P)] is called reproduction rate.

610 B. Doerr

Our version of the negative drift in populations method now is the following.

Theorem 2. Consider a PSM process (P (t))t≥0 as described above. Let g : Ω →
Z≥0, called potential function, and a, b ∈ Z≥0 with a ≤ b. Assume that for all
x ∈ P (0) we have g(x) ≥ b. Let T = min{t ≥ 0 | ∃i ∈ [1..λ] : g(P (t)

i) ≤ a}
the first time we have a search point with potential a or less in the population.
Assume that the following three conditions are satisfied.

(i) There is an α ≥ 1 such that for all populations P ∈ P with min{g(Pi) | i ∈
[1..λ]} > a and all i ∈ [1..λ] with g(Pi) < b, we have E[R(i, P)] ≤ α.

(ii) There is a κ > 0 and a 0 < δ < 1 such that for all x ∈ Ω with a < g(x) < b
we have

E[exp(−κg(mut(x)))] ≤ 1
α

(1 − δ) exp(−κg(x)).

(iii) There is a D ≥ δ such for all x ∈ Ω with g(x) ≥ b, we have

E[exp(−κg(mut(x)))] ≤ D exp(−κb).

Then

– E[T] ≥ δ
2Dλ exp(κ(b − a)) − 1

2 , and
– for all L ≥ 1, we have Pr[T < L] ≤ LλD

δ exp(−κ(b − a)).

Before proceeding with the proof, we compare our result with Theorem 1
of [24]. We first note that, apart from a technicality which we discuss toward the
end of this comparison, the assumptions of our result are weaker than the ones
on [24] since we do not need the technical fourth and fifth assumption of [24],
which in our notation would read as follows.

– There is a δ2 > 0 such that for all i ∈ [a..b] and all k,
 ∈ Z with 1 ≤ k +

and all x, y ∈ Ω with g(x) = i and g(y) = i −
 we have

Pr[g(mut(x)) = i −
 ∧ g(mut(y)) = i −
 − k]
≤ exp(κ(1 − δ2)(b − a)) Pr[g(mut(x)) = i − k −
].

– There is a δ3 > 0 such that for all i, j, k,
 ∈ Z with a ≤ i ≤ b and 1 ≤ k+
 ≤ j
and all x, y ∈ Ω with g(x) = i and g(y) = i − k we have

Pr[g(mut(x)) = i − j] ≤ δ3 Pr[g(mut(y)) = i − k −
].

The assertion of our result is of the same type as in [24], but stronger in terms
of numbers. For the probability Pr[T < L] to find a potential of at most a in
time less than L, a bound of

O(λL2D (b − a) exp(−κδ2(b − a)))

is shown in [24]. Hence our result is smaller by a factor of Ω(L(b − a)
exp(−κ(1 − δ2)(b − a)). In addition, our result is non-asymptotic, that is, the
lower bound contains no asymptotic notation or unspecified constants.

Lower Bounds via Multiplicative Drift 611

The one point where Lehre’s [24] result potentially is stronger is that it needs
assumptions only on the average drift, whereas we require the same assertion
on the point-wise drift. More concretely, Lehre uses the notation (Xt)t≥0 to
denote the Markov process on Ω associated with the mutation operator (it is
not said in [24] what is X0, that is, how this process is started). Then Δt(i) =
(g(Xt+1 − g(Xt) | g(Xt) = i) defines the potential gain in step t when the
current state has potential i. With this notation, instead of our second and third
condition, Lehre [24] requires only the weaker conditions (here again translated
into our notation).

(ii’) For all t ≥ 0 and all a < i < b, E[exp(−κΔt(i))] < 1
α (1 − δ).

(iii’) For all t ≥ 0, E[exp(−κ(g(Xt+1) − b)) | g(Xt) ≥ b] < D.

So Lehre only requires that the random individual at time t, conditional
on having a certain potential, gives rise to a certain drift, whereas we require
that each particular individual with this potential gives rise to this drift. On
the formal level, Lehre’s condition is much weaker than ours (assuming that the
unclear point of what is X0 can be fixed). That said, to exploit such weaker
conditions, one would need to be able to compute such average drifts and they
would need to be smaller than the worst-case point-wise drift. We are not aware
of many examples where average drift was successfully used in drift analysis
(one is Jägersküpper’s remarkable analysis of the linear functions problem [20])
despite the fact that many classic drift theorems only require conditions on the
average drift to hold.

We now prove Theorem 2. Before stating the formal proof, we describe on a
high level its main ingredients and how it differs from Lehre’s proof.

The main challenge when using drift analysis is designing a potential function
that suitablymeasures theprogress. For simple hillclimbers andoptimizationprob-
lems, the fitness of the current solution may suffice, but already the analysis of the
(1 + 1) EA on linear functions resisted such easy approaches [13,16,19,38]. For
population-based algorithms, the additional challenge is to capture the quality of
the whole population in a single number. We note at this point that the notion of
“negative drift in populations” was used in Lehre to informally describe the charac-
teristic of the population processes regarded, but drift analysis as a mathematical
tool was employed only on the level of single individuals and the resulting findings
were lifted to the whole population via advanced tools like branching processes and
eigenvalue arguments.

To prove upper bounds, in [1,3–5,14,25,37], implicitly or explicitly poten-
tial functions were used that build on the fitness of the best individual in the
population and the number of individuals having this fitness. Regarding only
the current-best individuals, these potential functions might not be suitable for
lower bound proofs.

The lower bound proofs in [2,29,33,34] all define a natural potential for
single individuals, namely the Hamming distance to the optimum, and then lift
this potential to populations by summing over all individuals an exponential
transformation of their base potential (this ingenious definition was, to the best
of our knowledge, not known in the theory of evolutionary algorithms before

612 B. Doerr

the work of Neumann, Oliveto, and Witt [29]). This is the type of potential we
shall use as well, and given the assumptions of Theorem 2, it is not surprising
that

∑
x∈P exp(−κg(x)) is a good choice. For this potential, we shall then show

with only mild effort that it satisfies the assumptions of our drift theorem, which
yields the desired lower bounds on the runtime (using that a single good solution
in the population already requires a very high potential due to the exponential
scaling). We now give the details of this proof idea.

Proof (of Theorem 2). We consider the process (Xt) defined by Xt =
∑λ

i=1 exp(−κg(P (t)
i)). To apply drift arguments, we first analyze the expected

state after one iteration, that is, E[Xt | Xt−1]. To this end, let us consider a
fixed parent population P = P (t−1) in iteration t. Let Q = sel(P) be the indices
of the individuals selected for generating offspring.

We first condition on Q (and as always on P), that is, we regard only the
probability space defined via the mutation operator, and compute

E[Xt | Q] = E

⎡

⎣
λ∑

j=1

exp(−κg(mut(PQj
)))

⎤

⎦

=
λ∑

i=1

(R(i, P) | Q)E[exp(−κg(mut(Pi)))].

Using that
∑λ

i=1 R(i, P) = λ and not anymore conditioning on Q, by the law of
total expectation, we have

E[Xt] = EQ[E[Xt | Q]]

=
λ∑

i=1

E[R(i, P)]E[exp(−κg(mut(Pi)))]

=
∑

Pi:g(Pi)<b

αE[exp(−κg(mut(Pi)))] +
∑

Pi:g(Pi)≥b

E[R(i, P)]D exp(−κb)

≤
∑

Pi:g(Pi)<b

α · 1
α

(1 − δ) exp(−κg(Pi)) + λ · D exp(−κb)

≤ (1 − δ)Xt−1 + λD exp(−κb)

and recall that this is conditional on P (t−1), hence also on Xt−1.
Let Δ = λD exp(−κb). Since P (0) contains no individual with potential

below b, we have X0 ≤ λ exp(−κb) = Δ
D ≤ Δ

δ . Hence also the assumption
E[X0] ≤ Δ

δ of Lemma 1 is fulfilled.
Let M = exp(−κa) and T ′ := min{t ≥ 0 | Xt ≥ M}. Note that T , the

first time to have an individual with potential at least a in the population,
is at least T ′. Now the negative multiplicative drift theorem (Lemma 1) gives
Pr[T < L] ≤ Pr[T ′ < L] ≤ LΔ

Mδ = LλD exp(−κ(b−a))
δ and E[T] ≥ E[T ′] ≥

δM
2Δ − 1

2 = δ
2Dλ exp(κ(b − a)) − 1

2 . ��

Lower Bounds via Multiplicative Drift 613

We note that the proof above actually shows the following slightly stronger
statement, which might be useful when working with random initial populations.

Theorem 3. Theorem 2 remains valid when the assumption that all ini-
tial individuals have potential at least b is replaced by the assumption
∑λ

i=1 E[exp(−κg(P (0)
i))] ≤ λD exp(−κb)

δ .

4 Processes Using Standard Bit Mutation

Since many EAs use standard bit mutation, as in [24] we now simplify our main
result for processes using standard bit mutation and for g being the Hamming
distance to a target solution. Hence in this section, we have Ω = {0, 1}n and
y = mut(x) is obtained from x by flipping each bit of x independently with
probability p. Since our results are non-asymptotic, we can work with any p ≤ 1

2 .

Theorem 4. Consider a PSM process with search space Ω = {0, 1}n, using
standard bit mutation with mutation rate p ∈ [0, 1

2] as mutation operator, and
such that P

(0)
i is uniformly distributed in Ω for each i ∈ [1..λ]. Let x∗ ∈ Ω be the

target of the process. For all x ∈ Ω, let g(x) := H(x, x∗) denote the Hamming
distance from the target.

Let α > 1 and 0 < δ < 1 such that ln(α
1−δ) < pn, that is, such that 1 −

1
pn ln(α

1−δ) =: ε > 0. Let B = 2
ε . Let a, b be integers such that 0 ≤ a < b and

b ≤ b̃ := n 1
B2−1 .

Selection condition: Assume that for all populations P ∈ P with min{g(Pi) |
i ∈ [1..λ]} > a and all i ∈ [1..λ] with g(Pi) < b, we have E[R(i, P)] ≤ α.

Then the first time T := min{t ≥ 0 | ∃i ∈ [1..λ] : g(P (t)
i) ≤ a} that the

population contains an individual in distance a or less from x∗ satisfies

E[T] ≥ 1
2λ

min
{

δα

(1 − δ)
, 1

}

exp

(

ln

(
2

1 − 1
pn ln(α

1−δ)

)

(b − a)

)

− 1
2
,

Pr[T < L] ≤ Lλ max
{

(1 − δ)
δα

, 1
}

exp

(

− ln

(
2

1 − 1
pn ln(α

1−δ)

)

(b − a)

)

.

We have to defer the elementary proof, a reduction to Theorem 2, to the
extended version [10] for reasons of space. To show that the second and third
condition of Theorem 2 are satisfied, one has to estimate E[exp(−κ(g(mut(x))−
g(x))], which is not difficult since g(mut(x)) − g(x) can be written as sum of
independent random variables. With a similar computation, we show that the
weaker starting condition of Theorem 3 is satisfied.

As a simple example for an application of this result, let us consider the
classic (μ, λ) EA (with uniform selection for variation, truncation selection for
inclusion into the next generation, and mutation rate p = 1

n) with λ = 2μ
optimizing some function f : {0, 1}n → R, n = 500, with unique global optimum.
For simplicity, let us take as performance measure λT , that is, the number of

614 B. Doerr

fitness evaluations in all iterations up to the one in which the optimum was
found. Since λ = 2μ, we have α = 2. By taking δ = 0.01, we obtain a concrete
lower bound of more than 13 million fitness evaluations until the optimum is
found (regardless of μ and f).

Since the result above is slightly technical, we now formulate the follow-
ing corollary, which removes the variable δ without significantly weakening the
result. We note that the proof of this result applies Theorem 4 with a non-
constant δ, so we do not see how such a result could have been proven from
Lehre’s result [24].

Corollary 5. Consider a PSM process as in Theorem 4. Let x∗ ∈ Ω be the
target of the process. For all x ∈ Ω, let g(x) := H(x, x∗) denote the Hamming
distance from the target. Assume that there is an α > 1 such that

– ln(α) ≤ p(n − 1), which is equivalent to γ := 1 − lnα
pn ≥ 1

n ;
– there is an a ≤ b := �(1− 4

n)n 1
4

γ2 −1
� such that for all populations P ∈ P with

min{g(Pi) | i ∈ [1..λ]} > a and for all i ∈ [1..λ], we have E[R(i, P)] ≤ α.

Then the first time T := min{t ≥ 0 | ∃i ∈ [1..λ] : g(P (t)
i) ≤ a} that the

population contains an individual in distance a or less from x∗ satisfies

E[T] ≥ pα

4λn
min

{

1,
2n

pα

}

exp
(

ln
(

2
γ

)

(b − a)
)

− 1
2
,

Pr[T < L] ≤ 2Lλn

pα
max

{
1,

pα

2n

}
exp

(

− ln
(

2
γ

)

(b − a)
)

.

In particular, if a ≤ (1−ε)b for some constant ε > 0, then T is super-polynomial
in n (in expectation and with high probability) when γ = ω(n−1/2) and exponen-
tial when γ = Ω(1).

We omit the proof for reasons of space. It can be found in [10]. The main
argument is employing Theorem 4 with the δ = p

2n and computing that this
small δ has no significant influence on the exponential term of the bounds.

5 Fitness Proportionate Selection

In this section, we apply our method to a mutation-only version of the simple
genetic algorithm (simple GA). This algorithm starts with a population of μ
random bit strings of length n. In each iteration, it computes a new population
by μ times independently selecting an individual from the existing population
via fitness proportionate selection and mutating it via standard bit mutation
with mutation rate p = 1

n .
The first work [29, Theorem 8] analyzing this algorithm showed that with μ ≤

poly(n) it needs with high probability more than 2n1−O(1/ log log n)
iterations to find

the optimum of the OneMax function or any search point in Hamming distance
at most 0.003n from it. Hence this is only a subexponential lower bound. In [25,

Lower Bounds via Multiplicative Drift 615

Corollary 13], building on the lower bound method from [24], a truly exponential
lower bound is shown for the task of finding a search point in Hamming distance
at most 0.029n from the optimum, but only for a relatively large population size
of μ ≥ n3 (and again μ ≤ poly(n)).

We now extend this result to arbitrary μ, that is, we remove the conditions
μ ≥ n3 and μ ≤ poly(n). To obtain the constant 0.029, we have to compromise
with the constants in the runtime, which consequently are only of a theoretical
interest. We therefore do not specify the base of the exponential function or
the leading constant. We note that this would have been easily possible since we
only use a simple additive Chernoff bound and Corollary 5. We further note that
Lehre [25] also shows lower bounds for a scaled version of fitness proportionate
selection and a general Θ(1/n) mutation rate. This would also be possible with
our approach and would again remove the conditions on λ, but we do not see
that the additional effort is justified here.

Theorem 6. There is a T = exp(Ω(n)) such that the mutation-only simple GA
optimizing OneMax with any population size μ with probability 1−exp(−Ω(n))
does not find any solution x with OneMax(x) ≥ 0.971n within T fitness
evaluations.

The main difficulty for proving lower bounds for algorithms using fitness
proportionate selection (and maybe the reason why [24] does not show such
bounds) is that the reproduction number is non-trivial to estimate. If all but
one individual have a fitness of zero, then this individual is selected μ times.
Hence μ is the only general upper bound for the reproduction number. The
previous works and ours overcome this difficulty by arguing that the average
fitness in the population cannot significantly drop below the initial value of n/2,
which immediately yields that an individual with fitness k has a reproduction
number of roughly at most k

n/2 .
While it is natural that the typical fitness of an individual should not drop

far below n/2, informally arguing that the individuals should be at least as
good as random individuals, making this argument precise is not completely
trivial. In [29, Lemma 6], it is informally argued that the situation with fitness
proportionate selection cannot be worse than with uniform selection and for the
latter situation a union bound over all lineages of individuals is employed and
a negative-drift analysis from [30, Section 3] is used for a single lineage. The
analysis in [25, Lemma 9] builds on the (positive) drift stemming from standard
bit mutation when the fitness is below n/2 (this argument needs a mutation rate
of at least Ω(1/n)) and the independence of the offspring (here the lower bound
λ ≥ n3 is needed to allow the desired Chernoff bound estimates).

Our proof relies on a natural domination argument that shows that at all
times all individuals are at least as good as random individuals in the sense
of stochastic domination (see, e.g., [7]) of their fitness. This allows to use a
simple Chernoff bound to argue that with high probability, for a long time all
individuals have a fitness of at least (12 − ε)n. The remainder of the proof is an
application of Corollary 5. Clearly, Lehre’s lower bound [24, Theorem 4] would

616 B. Doerr

have been applicable as well with the main difference being that one has to deal
with the constant δ, which does not exist in Corollary 5. The full proof can again
be found in [10].

6 Conclusion and Outlook

In this work, we have proven two technical tools which might ease future lower
bound proofs in discrete evolutionary optimization. The negative multiplicative
drift theorem has the potential to replace the more technical negative drift theo-
rems used so far in different contexts. Our strengthening and simplification of the
negative drift in populations method should help increasing our not very devel-
oped understanding of population-based algorithms in the future. Clearly, it is
restricted to mutation-based algorithms – providing such a tool for crossover-
based algorithms and extending our understanding how to prove lower bounds
for these beyond the few results [11,15,34,36] would be a great progress.

References

1. Antipov, D., Doerr, B., Fang, J., Hetet, T.: Runtime analysis for the (μ + λ)
EA optimizing OneMax. In: Genetic and Evolutionary Computation Conference,
GECCO 2018, pp. 1459–1466. ACM (2018)

2. Antipov, D., Doerr, B., Yang, Q.: The efficiency threshold for the offspring popula-
tion size of the (μ, λ) EA. In: Genetic and Evolutionary Computation Conference,
GECCO 2019, pp. 1461–1469. ACM (2019)

3. Chen, T., He, J., Sun, G., Chen, G., Yao, X.: A new approach for analyzing average
time complexity of population-based evolutionary algorithms on unimodal prob-
lems. IEEE Trans. Syst. Man Cybern. Part B 39, 1092–1106 (2009)

4. Corus, D., Dang, D., Eremeev, A.V., Lehre, P.K.: Level-based analysis of genetic
algorithms and other search processes. IEEE Trans. Evol. Comput. 22, 707–719
(2018)

5. Dang, D., Lehre, P.K.: Runtime analysis of non-elitist populations: from classical
optimisation to partial information. Algorithmica 75, 428–461 (2016)

6. Dang, D.-C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist popula-
tions. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter,
B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 803–813. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45823-6 75

7. Doerr, B.: Analyzing randomized search heuristics via stochastic domination. The-
oret. Comput. Sci. 773, 115–137 (2019)

8. Doerr, B.: An exponential lower bound for the runtime of the compact genetic
algorithm on jump functions. In: Foundations of Genetic Algorithms, FOGA 2019,
pp. 25–33. ACM (2019)

9. Doerr, B.: Does comma selection help to cope with local optima? In: Genetic and
Evolutionary Computation Conference, GECCO 2020. ACM (2020, to appear)

10. Doerr, B.: Lower bounds for non-elitist evolutionary algorithms via negative mul-
tiplicative drift. CoRR abs/2004.01274 (2020)

11. Doerr, B.: Runtime analysis of evolutionary algorithms via symmetry arguments.
CoRR abs/2006.04663 (2020)

https://doi.org/10.1007/978-3-319-45823-6_75

Lower Bounds via Multiplicative Drift 617

12. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65, 224–250
(2013)

13. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica
64, 673–697 (2012)

14. Doerr, B., Kötzing, T.: Multiplicative up-drift. In: Genetic and Evolutionary Com-
putation Conference, GECCO 2019, pp. 1470–1478. ACM (2019)

15. Doerr, B., Theile, M.: Improved analysis methods for crossover-based algorithms.
In: Genetic and Evolutionary Computation Conference, GECCO 2009, pp. 247–
254. ACM (2009)

16. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoret. Comput. Sci. 276, 51–81 (2002)

17. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with
applications. Adv. Appl. Probab. 13, 502–525 (1982)

18. Happ, E., Johannsen, D., Klein, C., Neumann, F.: Rigorous analyses of fitness-
proportional selection for optimizing linear functions. In: Genetic and Evolutionary
Computation Conference, GECCO 2008, pp. 953–960. ACM (2008)

19. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Artif. Intell. 127, 51–81 (2001)

20. Jägersküpper, J.: A blend of Markov-chain and drift analysis. In: Rudolph, G.,
Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp.
41–51. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4 5

21. Jägersküpper, J., Storch, T.: When the plus strategy outperforms the comma strat-
egy and when not. In: Foundations of Computational Intelligence, FOCI 2007, pp.
25–32. IEEE (2007)

22. Johannsen, D.: Random combinatorial structures and randomized search heuris-
tics. Ph.D. thesis, Universität des Saarlandes (2010)

23. Kötzing, T.: Concentration of first hitting times under additive drift. Algorithmica
75, 490–506 (2016)

24. Lehre, P.K.: Negative drift in populations. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 244–253. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15844-5 25

25. Lehre, P.K.: Fitness-levels for non-elitist populations. In: Genetic and Evolutionary
Computation Conference, GECCO 2011, pp. 2075–2082. ACM (2011)

26. Lengler, J.: Drift analysis. In: Doerr, B., Neumann, F. (eds.) Theory of Evolu-
tionary Computation: Recent Developments in Discrete Optimization, pp. 89–131.
Springer, Cham (2020). https://arxiv.org/abs/1712.00964

27. Lengler, J., Steger, A.: Drift analysis and evolutionary algorithms revisited. Comb.
Probab. Comput. 27, 643–666 (2018)

28. Mitavskiy, B., Rowe, J.E., Cannings, C.: Theoretical analysis of local search strate-
gies to optimize network communication subject to preserving the total number of
links. Int. J. Intell. Comput. Cybern. 2, 243–284 (2009)

29. Neumann, F., Oliveto, P.S., Witt, C.: Theoretical analysis of fitness-proportional
selection: landscapes and efficiency. In: Genetic and Evolutionary Computation
Conference, GECCO 2009, pp. 835–842. ACM (2009)

30. Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evo-
lutionary computation. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni,
C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 82–91. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87700-4 9

31. Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evo-
lutionary computation. Algorithmica 59, 369–386 (2011)

https://doi.org/10.1007/978-3-540-87700-4_5
https://doi.org/10.1007/978-3-642-15844-5_25
https://arxiv.org/abs/1712.00964
https://doi.org/10.1007/978-3-540-87700-4_9

618 B. Doerr

32. Oliveto, P.S., Witt, C.: Erratum: simplified drift analysis for proving lower bounds
in evolutionary computation. CoRR abs/1211.7184 (2012)

33. Oliveto, P.S., Witt, C.: On the runtime analysis of the simple genetic algorithm.
Theoret. Comput. Sci. 545, 2–19 (2014)

34. Oliveto, P.S., Witt, C.: Improved time complexity analysis of the simple genetic
algorithm. Theoret. Comput. Sci. 605, 21–41 (2015)

35. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, λ)
evolutionary algorithm. Theoret. Comput. Sci. 545, 20–38 (2014)

36. Sutton, A.M., Witt, C.: Lower bounds on the runtime of crossover-based algorithms
via decoupling and family graphs. In: Genetic and Evolutionary Computation Con-
ference, GECCO 2019, pp. 1515–1522. ACM (2019)

37. Witt, C.: Runtime analysis of the (μ + 1) EA on simple pseudo-Boolean functions.
Evol. Comput. 14, 65–86 (2006)

38. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Comb. Probab. Comput. 22, 294–318 (2013)

39. Witt, C.: Upper bounds on the running time of the univariate marginal distribution
algorithm on OneMax. Algorithmica 81, 632–667 (2019)

Exponential Upper Bounds for the
Runtime of Randomized Search Heuristics

Benjamin Doerr(B)

Laboratoire d’Informatique (LIX), CNRS, École Polytechnique,
Institut Polytechnique de Paris, Palaiseau, France

doerr@lix.polytechnique.fr

Abstract. We argue that proven exponential upper bounds on run-
times, an established area in classic algorithms, are interesting also in
evolutionary computation and we prove several such results. We show
that any of the algorithms randomized local search, Metropolis algo-
rithm, simulated annealing, and (1+1) evolutionary algorithm can opti-
mize any pseudo-Boolean weakly monotonic function under a large set of
noise assumptions in a runtime that is at most exponential in the prob-
lem dimension n. This drastically extends a previous such result, limited
to the (1+1) EA, the LeadingOnes function, and one-bit or bit-wise prior
noise with noise probability at most 1/2, and at the same time simplifies
its proof. With the same general argument, among others, we also derive
a sub-exponential upper bound for the runtime of the (1, λ) evolutionary
algorithm on the OneMax problem when the offspring population size λ
is logarithmic, but below the efficiency threshold.

Keywords: Runtime analysis · Noisy optimization · Theory

1 Introduction

The mathematical analysis of runtimes of randomized search heuristics is an
established field of the general area of heuristic search [3,15,29,38]. The vast
majority of the results in this area show that a certain algorithm can solve
(or approximately solve) a certain problem within some polynomial runtime
(polynomial upper bound on the runtime) or show that this is not possible by
giving a super-polynomial, often exponential, lower bound on the runtime.

As a rare exception to this rule, in his extensive analysis of how the (1 + 1)
evolutionary algorithm ((1 + 1) EA)1 optimizes the LeadingOnes benchmark
in the presence of prior noise, Sudholt [45, Theorem 6] showed that for one-bit or
bit-wise noise with noise probability at most 1

2 , the (1+1) EA finds the optimum
of LeadingOnes in time at most 2O(n). While clearly a very natural result –
everyone would agree that also with such noise the unimodal LeadingOnes

1 See Section 2 for details on all technical terms used in this introduction.

For reasons of space, some technical details have been omitted from this extended
abstract. The interested reader can find them in the extended version [10].

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 619–633, 2020.
https://doi.org/10.1007/978-3-030-58115-2_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_43&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_43

620 B. Doerr

problem should not become harder than the needle-in-the-haystack problem –
the technical, long, and problem-specific proof of this result, despite following
the intuitive argument just laid out, suggests that such analyses can be harder
than one would expect.

In this work, we will argue that such exponential upper bounds are interesting
beyond completing a runtime picture of a given problem. We then show that with
a different analysis method such uncommon runtime questions can be analyzed
relatively easily. As one out of several results, we drastically extend the result
in [45] and show that an exponential runtime guarantee holds for

– any of the algorithms randomized local search, Metropolis algorithm, simu-
lated annealing, and (1 + 1) EA,

– when optimizing any weakly monotonic objective function, e.g., OneMax,
linear functions, monotone polynomials, LeadingOnes, plateau functions,
and the needle problem,

– in the presence of all common forms of prior and posterior noise with a noise
probability of at most 1 − ε, ε > 0 a constant.

1.1 Exponential Runtime Analysis

The area of mathematical runtime analysis, established as a recognized sub-
field of the theory of evolutionary algorithms by Ingo Wegener and his research
group around twenty years ago, seeks to understand the working principles of
evolutionary computation via rigorously proven results on the performance of
evolutionary algorithms and other search heuristics in a similar spirit as done in
classic algorithms analysis for much longer time.

Adopting the view of classic algorithmics that runtimes polynomial in the
problems size are efficient and larger runtimes are inefficient, the vast majority of
the results in this field prove polynomial upper bounds or super-polynomial lower
bounds. For two reasons, we feel that also super-polynomial and even exponential
runtime guarantees are desirable in the theory of evolutionary algorithms.

Our first set of arguments is identical to the arguments made in the clas-
sic algorithms field, which led to a shift in paradigms and established the
field of exact exponential algorithms [20,21]. These arguments are that (i) for
many important problems nothing better than exponential time algorithms are
known, so one cannot just ignore these problems in algorithms research, (ii) with
the increase of computational power, also exponential time algorithms can be
used for problems of moderate (and interesting) size, and (iii) that the exist-
ing research on exponential-time algorithms has produced many algorithms
that, while still exponential time, are much faster than classic exponential-time
approaches like exhaustive search.

Our second line of argument is that exponential time algorithms are of addi-
tional interest in evolutionary computation for the following reasons.

(i) To increase our understanding of the working principles of evolutionary
algorithms. There is a large number of exponential lower bounds in our field,
but for essentially none of them an upper bound better than the trivial nO(n)

Exponential Upper Bounds 621

bound exists. It is clear that matching upper and lower bounds tell us most, not
only about the runtimes, but also about the working principles of EAs. Tight
bounds naturally have to grasp the true way the EA progresses better than
loose bounds. For example, the general nO(n) upper bound for all algorithms
using standard bit mutation is based on the simple argument that the optimum
can be generated from any search point with probability at least n−n. Besides
being very pessimistic, this argument does not tell us a lot on how really the EA
optimizes the problem at hand (except for the very particular case that the EA
is stuck in a local optimum in Hamming distance n to the global optimum). In
contrast, as a positive example, the matching (1 ± o(1))en ln n upper [35] and
lower [24] bound for the runtime of the (1 + 1) EA on OneMax together with
their proofs shows that for this optimization process, the effect of mutations
flipping more than one bit has no influence on the runtime apart from lower
order terms. In a broader sense, this insight suggests that flipping larger number
of bits is mainly useful to leave local optima, but not to make fast progress along
easy slopes of the fitness landscape.

(ii) Because understanding runtimes in the exponential and super-exponential
regime is important for the application of EAs. Many classic evolutionary algo-
rithms can easily have a super-exponential runtime. For example, Witt [48] has
shown that the simple (1 + 1) EA has an expected runtime2 of nΘ(n) on the
minimum makespan scheduling problem. Hence knowing that an evolutionary
algorithm “only” has an exponential runtime can be interesting.

We note that for problems with exponential-size search spaces (such as the
search space {0, 1}n regarded exclusively in this work) blind random search and
exhaustive search are exponential-time alternatives. For that reason, in addition
to knowing that an EA has an exponential runtime guarantee (that is, a run-
time of at most Cn for some constant C > 1), it would be very desirable to also
have a good estimate for the base of the exponential function, that is, the con-
stant C. Unfortunately, at this moment where we just start reducing the trivial
nO(n) upper bound to exponential upper bounds, we are not yet in the position to
optimize the constants in the exponent. We are optimistic though (and give some
indication for this in Sect. 6) that our methods can be fine-tuned to give inter-
esting values for the base of the exponential function as well. We recall that such
an incremental progress is not untypical for the mathematical runtime analysis
of EAs – in the regime of polynomial bounds, subject to intensive research since
the 1990s, the leading constants for elementary problems such as LeadingOnes
and linear functions were only determined from 2010 on [6,44,49].

With this motivation in mind and spurred by the observation that exponen-
tial upper bounds are not trivial to obtain, we start in this work a first general
attack on the problem of proving exponential upper bounds.

2 As common both in classic algorithms and in our field, by runtime we mean the
worst-case runtime taken over all input instances.

622 B. Doerr

1.2 State of the Art

We are not aware of many previous works on exponential or super-exponential
upper bounds on runtimes of EAs. In the maybe first work proving an expo-
nential upper bound, Droste, Jansen, and Wegener [18, Theorem 9] show that
the (1 + 1) EA optimizes the Needle function (called peak function there) in
expected time at most (2π)−1n1/2 exp(2n). Only a year later, Garnier, Kallel,
and Schoenauer [24, Proposition 3.1] in a remarkably precise analysis showed
that the expected runtime of the (1 + 1) EA on the Needle function is
(1 ± o(1))(1 − 1

e)−12n.
A general upper bound of nn for the expected runtime of the (1+1) EA on any

pseudo-Boolean functions was given in [19, Theorem 6]. Analogous arguments
showed an upper bound of 4n log2 n for the (1 + 1) EA using the 2i/n mutation
rates in a cyclic fashion [30, Theorem 3] and an upper bound of O(nβ2n) for the
fast (1 + 1) EA with (constant) power-law exponent β > 1 [14, Theorem 5.3].

The general nO(n) upper bound of [19] is tight as witnessed, among others, by
the trap function [19, Theorem 8] and the minimum makespan scheduling prob-
lem [48]. There are a few analyses for parameterized problems showing bounds
that can become exponential or worse when the problem parameter is chosen in
an extreme manner. Here the Θ(nk) runtime bound for the (1+1) EA optimizing
jump functions with jump size k ≥ 2 [19, Theorem 25] is the best known exam-
ple. More interesting results have been derived in the context of parameterized
complexity [37], but again these results have been derived with small parameter
values in mind and thus are most interesting for this case.

In contrast to these sporadic upper bounds, there is a large number of expo-
nential lower bounds, e.g., for a broad class of non-elitist algorithms with too
low selection pressure [32], for some algorithms using fitness-proportionate selec-
tion [26], for the simple genetic algorithm with an only moderately large popu-
lation size [39], and for various problems in noisy optimization [25,41,45].

Apart from a single exception, for none of these lower bounds it is known
whether the runtime is really exponential or is higher, say nΘ(n). The excep-
tional exponential upper bound shown in [45, Theorem 6] reads as follows. Con-
sider optimizing the LeadingOnes benchmark function defined on bit strings of
length n via the (1+1) EA. Assume that in each iteration, the fitness evaluation
of both parent and offspring is subject to stochastically independent prior noise
of one of the following two types. (i) With probability p ≤ 1

2 , not the true fitness
is returned, but the fitness of a random Hamming neighbor. (ii) With probability
p′ ∈ [0, 1], the search point to be evaluated is disturbed by flipping each bit inde-
pendently with some probability q ≤ 1

2 and the fitness of this disturbed search
point is returned, with probability 1 − p′, the fitness of the original search point
is returned; here we assume that p′ min{1, qn} ≤ 1

2 . Then the expected opti-
mization time, that is, the number of iterations until the optimum is sampled,
is at most exponential in n.

With a noise probability of at most 1
2 and a weakly monotonic, that is, weakly

preferring 1-bits over 0-bits, fitness function one would think that this optimiza-
tion process in some suitable sense is at least as good as the corresponding process

Exponential Upper Bounds 623

on theNeedle function, where absolutely no fitness signal guides the search. This
is indeed true, as the proof in [45] shows. Surprisingly, as this proof also shows, it is
highly non-trivial to make this intuitive argument mathematically rigorous. The
proof in [45] is around four pages long (including the one of the preliminary lemma)
and builds on a technical estimate of the mixing time, which heavily exploits char-
acteristics of the LeadingOnes objective function. Consequently, this proof does
not easily generalize to other easy benchmark functions such asOneMax or linear
functions.

1.3 Our Results

Observing that the natural approach taken in [45] is unexpectedly difficult, we
develop an alternative approach to proving exponential upper bounds. It builds
on the following elementary observation. In the, slightly extremal, situation
that we aim at an exponential upper bound, we can wait for an exponentially
unlikely “lucky” way to generate the optimum. Being at most exponentially
unlikely, that is, having a probability of p = 2−O(n), it takes 2O(n) attempts
until we succeed. Hence if each attempt takes at most exponential time T0 (all
our attempts will only take polynomial time), we obtain an exponential upper
bound on the expected runtime, and moreover, the distributional bound that the
runtime is stochastically dominated by T0 times a geometric distribution with
success rate p. This general argument (without the elementary rephrasing in the
stochastic domination language) was already used in the proof of the poly(n)e2n

upper bound on the expected runtime of the (1 + 1) EA on the Needle func-
tion by Droste, Jansen, and Wegener [18] more than twenty years ago. It is
apparently not very well known in the community, most likely due to the fact
that only one year later, Garnier, Kallel, and Schoenauer [24] presented a much
tighter analysis of this runtime via different methods. We are not aware of any
other use of this argument, which might explain why it was overlooked in [45]
(and we give in that we also learned it only very recently).

How powerful this simple approach is, naturally, depends on how easy it
is to exhibit lucky ways to find the optimum fast. As we demonstrate, this
is in fact often easy. For example (see Theorem 3 for the details), it suffices
that in each iteration the probability to move to a Hamming neighbor one step
closer to the optimum is Ω(n−1). From this, we can show that from any starting
point, the probability to reach the optimum in at most n iterations is at least
2−O(n). As argued in the preceding paragraph, this yields an expected runtime
of n2O(n) = 2O(n). This argument, without noise and used for the (1 + 1) EA
only, was also used in the Needle analysis in [18].

Together with some elementary computations, this approach suffices to show
that a large number of (1 + 1)-type algorithms in the presence of a large variety
of types of noise with noise probability at most 1− ε, ε > 0 a constant, optimize
any weakly monotonic function (including, e.g., OneMax, LeadingOnes, and
the needle function) in at most exponential time (Theorem 4).

With a few additional arguments, we apply our general approach to a variety
of other problems and show exponential upper bounds (i) for the (1 + 1) EA

624 B. Doerr

optimizing jump functions with jump size at most n
lnn (Theorem 5), (ii) for any

of the above-described algorithms optimizing OneMax in the presence of prior
noise flipping each bit independently with probability at most 1−ε, where ε > 0
can be any constant (Theorem 6), and (iii) for the (1 + 1) EA with fitness-
proportionate selection optimizing any linear function (Theorem 7). Finally, as
an example that our approach can also yield sub-exponential upper bounds,
we show that the (1, λ) EA with λ ≥ (1 − ε) log e

e−1
(n), and thus potentially

below the threshold for polynomial time, optimizes OneMax in time exp(O(nε))
(Theorem 8).

2 Preliminaries

In this section, we briefly describe the algorithms, the noise models, and the
benchmark problems considered in this work. We only consider optimization
problems defined on the search space {0, 1}n of bit strings of length n; we thus
also formulate all algorithms only for this setting. We have not doubt, though,
that our methods can also be applied to other discrete optimization problems.

We write [a..b] := {z ∈ Z | a ≤ z ≤ b} and denote by H(x, y) := |{i ∈ [1..n] |
xi = yi}| the Hamming distance of two bit strings x, y ∈ {0, 1}n. We denote
by Geom(p) the geometric distribution with success rate p ∈ (0, 1]. Hence if
a random variable X is geometrically distributed with parameter p, we write
X ∼ Geom(p) to denote this, then Pr[X = k] = (1 − p)k−1p for all k ∈ Z≥1.
For two random variables X,Y we write X � Y to denote that Y stochastically
dominates X, that is, that Pr[X ≥ λ] ≤ Pr[Y ≥ λ] for all λ ∈ R.

Algorithms. We call a randomized search heuristic single-trajectory search algo-
rithm if it is an iterative heuristic which starts with a single solution x(0) and
in each iteration t = 1, 2, . . . updates this solution to a solution x(t). We do not
make any assumption on how this update is computed. In particular, the next
solution may be computed from more than one solution candidate sampled in
this iteration. We do, in principle, allow that information other than the search
point x(t−1) is taken into iteration t. However, in our main technical result we
require that the key condition can be checked only from the search point x(t−1).
Formally speaking, this means that for any possibly history of the search process
up to this point, when conditioning on this history, the key condition is true. To
ease the language, we shall write “regardless of what happened in the first t − 1
iterations” to express this conditioning.

Examples for single-trajectory algorithms are (randomized) local search, the
Metropolis algorithm, simulated annealing, and evolutionary algorithms working
with a parent population of size one, such as the (1 + 1) EA, the fast (1 +
1) EA [14], (1+λ) EA, (1, λ) EA, (1+(λ, λ)) GA [11], and SSWM algorithm [40].
We call a single-trajectory algorithm (1+1)-type algorithm if in each iteration t
it generates one solution y and takes as next parent individual x(t) either y
or x(t−1). Among the above examples, exactly (randomized) local search, the

Exponential Upper Bounds 625

Metropolis algorithm, simulated annealing, and the (fast) (1+1) EA are (1+1)-
type algorithms.

We spare further details on these algorithms and refer the reader to the
classic literature for the standard algorithms and to the references given above
for the more recent algorithms. For evolutionary algorithms using standard bit
mutation, we shall assume that the standard mutation rate p = 1

n is used. For
our purposes, we mostly need the following property, which in simple words says
that the algorithms move to any Hamming neighbor that is not worse than the
parent with probability Ω(1

n).

Proposition 1. For any (1+1)-type algorithm A named above (and any choice
of the parameters not fixed yet), there is a constant cA > 0 such that the following
holds.

For any iteration t and any z with H(z, x(t−1)) = 1, and regardless of what
happened in the previous iterations, the offspring y generated by A in iteration t
satisfies Pr[y = z] ≥ cA

n . If f(y) ≥ f(x(t−1)), then also Pr[x(t) = z] ≥ cA

n .

Noise Models. Optimization in the presence of noise, that is, stochastically dis-
turbed access to the problem instance, is an important topic in the optimization
of real-world problems. The most common form are noisy objective functions,
that is, that the optimization algorithm does not always learn the correct quality
(fitness) of a search point. Randomized search heuristics are generally believed
to be reasonably robust to noise, see, e.g., [5,31], which differs from problem-
specific deterministic algorithms, which often cannot cope with any noise. Some
theoretical work exists on how randomized search heuristics cope with noise,
started by the seminal paper of Droste [17] and, quite some time later, contin-
ued with, among others, [1,4,8,9,16,22,23,25,41,42,45,46]. We refer to the later
papers or the survey [36] for a detailed discussion of the state of the art.

In theoretical studies on how randomized search heuristics cope with noise,
the usual assumption is that all fitness evaluations are subject to independently
sampled noise. Also, it is usually assumed that whenever the fitness of a search
point is used, say in a selection step, then it is evaluated anew. In prior noise
models, the search point x to be evaluated is subject to a stochastic modifica-
tion and the algorithm learns the fitness f of the disturbed search point (but not
the disturbed search point itself). In one-bit noise with probability p, with
probability p the fitness of a random Hamming neighbor of x is returned, other-
wise the correct fitness f(x) is returned. In independent bit-flip noise with
rate q, from x a search point y is obtained by flipping each bit independently
with probability q; then f(y) is returned. In (p, q)-noise, with probability p a
search point y is obtained from x by flipping each bit independently with prob-
ability q and f(y) is returned; otherwise, f(x) is returned.

In the posterior noise model, the search point x is first correctly evaluated,
but then the obtained fitness f(x) is disturbed. The most common posterior noise
is additive noise, that is, the returned fitness is f(x)+X, where X is a random
variable sampled from some given distribution, which does not depend on x (that
is, for all search points the difference between the true and the noisy fitness is

626 B. Doerr

identically distributed). The most common setting is that X follows a Gaussian
distribution. We note that regardless of X, independent additive posterior noise
gives a correct comparison of two search points of different quality with probability
at least 1

2 .
Since our aim is showing that also in the presence of extreme noise we still

have at most exponential runtimes, we also consider the following unrestricted
adversarial noise with probability p. In this model, with probability 1 − p
the true fitness is returned. With probability p, however, an all-powerful adver-
sary decides the returned fitness value. This adversary knows the algorithm, the
optimization problem, and the full history of the optimization process. He does
not know, though, the outcome of future random events (both concerning the
algorithm and the noise).

Complementing the corresponding statement for posterior noise, the follow-
ing basic observation estimates the probability that a noisy fitness comparison
gives the right result.

Proposition 2. Let ε > 0. Let f : {0, 1}n → R. Let x, y ∈ {0, 1}n such that
f(x) ≤ f(y). Consider any noise model described above except the one of additive
posterior noise. Assume that p ≤ 1−ε in the case of one-bit noise or unrestricted
adversarial noise, (1 − q)n ≥ ε in the case of bit-wise noise, 1 − p(1 − (1 −
q)n) ≥ ε in the case of (p, q)-noise. Denote by f̃ the noisy version of f with our
convention that each noise evaluation of f uses fresh independent randomness.
Then Pr[f̃(x) ≤ f̃(y)] ≥ ε2.

Proof. Under the conditions named above, with probability at least ε the noisy
fitness returns the true fitness value. Consequently, with probability at least ε2

this happens for both x and y and we have thus f̃(x) ≤ f̃(y).

Benchmark Problems. We now briefly describe those benchmark problems
for which the particular structure is important in the remainder. For further
details on these and on all other problems only mentioned in this work, we refer
to the literature [3,15,29,38].

As said earlier, we only regard problems defined on bit-strings of length n,
hence all functions are {0, 1}n → R. The easiest in many respects benchmark
problem is the function OneMax defined by OneMax(x) = ‖x‖1 =

∑n
i=1 xi

for all x = (x1, . . . , xn) ∈ {0, 1}n. Still unimodal, but not anymore strictly
monotonic is the classic LeadingOnes function, which counts the number of
ones up to the first zero. Formally, LeadingOnes(x) := max{i ∈ [0..n] | ∀j ∈
[1..i] : xj = 1}. A classic multimodal benchmark is the class of jump functions.
The jump function with jump parameter (jump size) k ∈ [1..n] is defined by

Jumpnk(x) =

{
‖x‖1 + k if ‖x‖1 ∈ [0..n − k] ∪ {n},
n − ‖x‖1 if ‖x‖1 ∈ [n − k + 1 .. n − 1].

Hence for k = 1, we have a fitness landscape isomorphic to the one of OneMax,
but for larger values of k there is a fitness valley (“gap”) Gnk := {x ∈ {0, 1}n |
n−k < ‖x‖1 < n}, which is impossible or hard to cross for most iterative search
heuristics.

Exponential Upper Bounds 627

3 Proving Exponential Upper Bounds

We now state our general technical result which in many situations allows one to
prove exponential upper bounds without greater difficulties. We formulate our
result for single-trajectory algorithms since this is notationally convenient and
covers all our applications (which, in fact, all even concern only (1 + 1)-type
algorithms), but we are optimistic that it extends to more general settings. The
result is formulated for hitting a general search point x∗ as this might turn out
to be useful in some applications, but the natural application will be for x∗ being
the optimum solution.

We remind the reader that the key argument of the proof, running from an
arbitrary search point to the target in time O(n) with probability e−O(n), has
already appeared in the conference paper [18], but to the best of our knowledge
has not been used again since then.

Theorem 3. Let A be a single-trajectory search algorithm for the optimization
of pseudo-Boolean functions. Let f : {0, 1}n → R and let x∗ ∈ {0, 1}n. Assume
that we use A to optimize f , possible in the presence of noise. Assume that this
optimization process satisfies the following property.

(A) There is a number 0 < c ≤ 1 such that the following is true. Let t ≥ 1 and
x, z ∈ {0, 1}n such that x �= x∗, H(x, z) = 1, and H(x, x∗) = H(z, x∗) + 1.
Regardless of what happened in the first t−1 iterations of optimization process,
if x(t−1) = x, then Pr[x(t) = z] ≥ c

n .

Let T = min{t ≥ 0 | x(t) = x∗}. Then T is stochastically dominated by
nGeom((c

e)n). In particular, E[T] ≤ n(e
c)n.

4 Noisy Optimization of Weakly Monotonic Functions

We now prove that all (1 + 1)-type algorithms discussed in Sect. 2 optimize any
weakly monotonic function in at most exponential time even in the presence of
any noise discussed in Sect. 2 as long as the noise probability is at most 1 − ε,
ε > 0 a constant, in the cases of prior or adversarial noise. We recall that the
only previous result in this direction [45] shows this claim in the particular case
of the (1 + 1) EA optimizing the LeadingOnes function subject to one-bit or
(p, q) prior noise with noise probability at most 1

2 .
We say that a function f : {0, 1}n → R is weakly monotonic (or weakly mono-

tonically increasing) if for all x, y ∈ {0, 1}n the condition x ≤ y (component-
wise) implies f(x) ≤ f(y). The class of weakly monotonic functions includes,
obviously, all strictly monotonic functions [7,13,28,33] and thus in particular
the classic benchmarks OneMax and linear functions with non-negative coeffi-
cients [12,19,49]. However, this class also contains more difficult functions like
LeadingOnes, monotonic polynomials [47], plateau functions [2], and the nee-
dle function.

628 B. Doerr

Theorem 4. Let ε > 0 be a constant. Let A be one of the randomized search
heuristics RLS, the Metropolis algorithm, simulated annealing, or the (1+1) EA
using standard bit mutation with mutation rate 1

n or using the fast mutation
operator with β > 1. Let f : {0, 1}n → R be any weakly monotonic function.
Assume that A optimizes f under one of the following noise assumptions: one-
bit noise or unrestricted adversarial noise with p ≤ 1 − ε, bit-wise noise with
(1 − q)n ≥ ε, (p, q)-noise with 1 − p(1 − (1 − q)n) ≥ ε, or posterior noise with
an arbitrary noise distribution.

Then there is a constant C > 1, depending only on ε and the choice of A,
such that the time T to sample the optimum (1, . . . , 1) of f is stochastically
dominated by nGeom(C−n). In particular, the expected optimization time is at
most E[T] ≤ nCn.

Proof. By Theorem 3, it suffices to show that condition (A) is satisfied for x∗ =
(1, . . . , 1). To this aim, let x, z ∈ {0, 1}n such that H(x, z) = 1 and H(x, x∗) =
H(z, x∗) + 1. Assume that for some iteration t the parent individual satisfies
x(t−1) = x. By Proposition 1, there is a constant cA such that the offspring
y generated by A in this iteration is equal to z with probability at least cA

n .
By the weak monotonicity of f , we have f(z) ≥ f(x). By Proposition 2 or
the corresponding statement for additive posterior noise, there is a constant
cN = min{ 1

2 , ε2} depending on the noise model such that the noisy evaluations
of both x(t−1) and y = z in iteration t return an at least as good fitness value
for z as for x. In this case, A accepts z with probability one, that is, we have
x(t) = z. In summary, we have shown Pr[x(t) = z] ≥ cAcN

n as desired. Now
Theorem 3 immediately gives the claim with C = e

cAcN
.

5 Other Applications of Our Method

To show the versatility of our general approach, we continue with a number of
results of varying flavor.

Noisy Optimization of Jump Functions. We first show that the (1+1) EA
can optimize noisy jump functions with jump size at most n

lnn in exponential
time. The main argument is that as lucky event we can regard the event that the
algorithm progresses towards the optimum by one Hamming step per iteration
until the local optimum is reached and then the optimum is reached in one step.
The probability of this event is different from the one regarded before and the
number of ways to approach the optimum is smaller by a factor of k! (which
counts against us), but with the assumption k ≤ n

lnn we obtain the desired
exponential runtime.

Theorem 5. The result of Theorem 4 holds also for the (1 + 1) EA optimizing
Jumpnk when k ≤ n

lnn .

Optimization of OneMax Under Extreme Bit-Wise Noise. The following
result shows that our general method can also exploit particular noise models.

Exponential Upper Bounds 629

Here, for example, we show that OneMax can be optimized in exponential time
even in the presence of bit-wise noise with constant rate q < 1. Recall that this
means that the search point to be evaluated is disturbed in an expected number
of qn bits! To prove this result, we cannot simply invoke Proposition 2, since
with probability 1 − o(1) the noisy fitness differs from the true fitness. Instead,
we show that despite the noise, with probability at least 1

2 (1 − q)2 the better
offspring is accepted.

Theorem 6. Let ε > 0 be a constant. Let A be one of the randomized search
heuristics RLS, the Metropolis algorithm, simulated annealing, or the (1+1) EA
using standard bit mutation with mutation rate 1

n or using the fast mutation
operator with β > 1. Consider optimizing the OneMax benchmark function via
A in the presence of bit-wise noise with rate q ≤ 1 − ε. Then the expected time
to find the optimum is at most nKn, where K is a constant depending on ε and
the algorithm used.

Fitness Proportionate Selection. We now prove an upper bound matching
an exponential lower bound proven in [26], namely that the (1 + 1) EA needs at
least exponential time to optimize any linear function with positive coefficients
when the usual elitist selection is replaced by fitness-proportionate selection.
Here an offspring y of the parent x is accepted with probability f(y)

f(x)+f(y) (and
with probability 1

2 when f(x)+f(y) = 0). We now show that this result is tight,
that is, that an exponential number of iterations suffices to optimize any linear
function with this algorithm. This follows easily from Theorem 3 by noting that
in the selection step a Hamming neighbor with better fitness is accepted with
probability at least 1

2 .

Theorem 7. Let A be the (1 + 1) EA with fitness-proportionate selection. Let
f be any linear function with positive coefficients. Then the first iteration T in
which the optimum of f is generated satisfies E[T] ≤ (2e2)n.

Subexponential Upper Bounds. Finally, we show that our method is not
restricted to showing runtime bounds that are exponential in the problem dimen-
sion. We recall that the (1, λ) EA is a simple non-elitist algorithm working with a
parent population of size one, initialized with a random individual. In each iter-
ation, the algorithm creates independently λ offspring via standard bit mutation
(here: with mutation rate 1

n) and takes a random best offspring as new parent.
In their very precise determination of the efficiency threshold of the (1, λ) EA on
OneMax, Rowe and Sudholt [43] showed that the (1, λ) EA has a runtime of at
least exp(Ω(nε/2)) when λ ≤ (1 − ε) log e

e−1
(n), ε > 0 a constant. We now show

an upper bound of exp(O(nε)) for this runtime. We do not know what is the
right asymptotic order of the exponent. From the fact that there is a consider-
able negative drift when the fitness distance is below nε

2λ , we would rather suspect
that also a lower bound of exp(Ω(nε

λ)) iterations, and hence λ exp(Ω(nε

λ)) fitness
evaluations, comes true. Since this is not the main topic of this work, we leave
this an open problem.

630 B. Doerr

Theorem 8. Let 0 < ε < 1 be a constant. Then there is a constant Cε such that
for all λ ≥ (1 − ε) log e

e−1
(n) the expected runtime of the (1, λ) EA on OneMax

is at most exp(Cεn
ε).

The main proof idea is to first exploit additive drift [27,34] to reach in a short
polynomial time of O(n2−ε) a search point in Hamming distance d0 = 2e2nε

λ .
We then use an argument analogous to Theorem 3 to show that from such a
search point, with probability at least exp(−O(nε)) the optimum is reached in
d0 iterations. This then easily yields the claim.

6 Conclusion and Outlook

In this work, we argued for proving exponential runtime guarantees for evolution-
ary algorithms. With Theorem 3, we provided a simple and general approach to
such problems. It easily gave exponential upper bounds for various algorithmic
settings.

In this first work on exponential-time evolutionary algorithms, we have surely
not developed the full potential of this perspective in evolutionary computation.
The clearly most important question for future work is what can be said about
the constant C in the poly(n)Cn runtime guarantee. A C less than 2 shows
that the algorithm is superior to random or exhaustive search. Taking again the
field of classic algorithms as example, another interesting question is if there are
EAs with “nice” exponential runtimes such as, e.g., the 1.0836n runtime of the
algorithm of Xiao and Nagamochi [50] for finding maximum independent sets in
graphs with maximum degree 3.

Concerning the constant C, we note that the proof of [45], which also is
not optimized for giving good constants, shows an upper bound that is at least
exp(3en) ≥ (3480)n. Under the noise assumptions taken in [45], we have a prob-
ability of at least cN ≥ 1

4 that parent and offspring are not subject to noise.
Regarding the (1 + 1) EA, the probability that a particular Hamming neighbor
of the parent is generated as offspring is at least cA ≥ 1

en . This gives a runtime
bound of at most n(e

cAcN
)n = n(4e2)n ≤ n(30)n. We are optimistic that with

more problem-specific arguments, the constant can be lowered further, possibly
below the 2n barrier. For example, (i) when optimizing any weakly monotonic
function subject to 1-bit noise, we accept an offspring strictly dominating the
parent (as in the proof of Theorem 3) unless the noise flips a zero-bit of the
parent or a one-bit of the offspring. This undesired event happens with prob-
ability at most cN = 1

2 (instead of cN = 1
4), (ii) when optimizing OneMax

subject to 1-bit noise, then a better offspring is discarded only if both a one-
bit of the offspring and a zero-bit of the parent is flipped. This allows to take
cN = (1 − O(1

n))1516 , (iii) when using the (1 + 1) EA, instead of waiting for the
lucky event that in each iteration we approach the target by one Hamming step,
we do so with two steps; this reduces the number of different ways to go from
a starting point to the optimum by a factor of 2n/2, but also saves n

2 times the
factor of 1

e for flipping exactly one bit, giving an improvement by a factor of

Exponential Upper Bounds 631

(2/e)n/2. These and further ideas give us some optimism that the constant C
can be lowered, possibly to less than 2 (which would prove the algorithm superior
to random search).

References

1. Akimoto, Y., Morales, S.A., Teytaud, O.: Analysis of runtime of optimization algo-
rithms for noisy functions over discrete codomains. Theor. Comput. Sci. 605, 42–50
(2015)

2. Antipov, D., Doerr, B.: Precise runtime analysis for plateaus. In: Auger, A., Fon-
seca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018.
LNCS, vol. 11102, pp. 117–128. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99259-4 10

3. Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics. World Sci-
entific Publishing (2011)

4. Bian, C., Qian, C., Tang, K.: Towards a running time analysis of the (1 + 1)-
EA for OneMax and LeadingOnes under general bit-wise noise. In: Auger, A.,
Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN
2018. LNCS, vol. 11102, pp. 165–177. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99259-4 14

5. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on meta-
heuristics for stochastic combinatorial optimization. Nat. Comput. 8, 239–287
(2009). https://doi.org/10.1007/s11047-008-9098-4

6. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates
for the LeadingOnes problem. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 1–10. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15844-5 1

7. Colin, S., Doerr, B., Férey, G.: Monotonic functions in EC: anything but monotone!
In: Genetic and Evolutionary Computation Conference, GECCO 2014, pp. 753–
760. ACM (2014)

8. Dang, D., Lehre, P.K.: Simplified runtime analysis of estimation of distribution
algorithms. In: Genetic and Evolutionary Computation Conference, GECCO 2015,
pp. 513–518. ACM (2015)

9. Dang-Nhu, R., Dardinier, T., Doerr, B., Izacard, G., Nogneng, D.: A new analysis
method for evolutionary optimization of dynamic and noisy objective functions. In:
Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 1467–1474.
ACM (2018)

10. Doerr, B.: Exponential upper bounds for the runtime of randomized search heuris-
tics. CoRR abs/2004.05733 (2020)

11. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theor. Comput. Sci. 567, 87–104 (2015)

12. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65, 224–250
(2013). https://doi.org/10.1007/s00453-011-9585-3

13. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters
even when optimizing monotone functions. Evol. Comput. 21, 1–21 (2013)

14. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 777–784.
ACM (2017)

https://doi.org/10.1007/978-3-319-99259-4_10
https://doi.org/10.1007/978-3-319-99259-4_10
https://doi.org/10.1007/978-3-319-99259-4_14
https://doi.org/10.1007/978-3-319-99259-4_14
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1007/978-3-642-15844-5_1
https://doi.org/10.1007/s00453-011-9585-3

632 B. Doerr

15. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation-Recent Devel-
opments in Discrete Optimization. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-29414-4

16. Doerr, B., Sutton, A.M.: When resampling to cope with noise, use median, not
mean. In: Genetic and Evolutionary Computation Conference, GECCO 2019, pp.
242–248. ACM (2019)

17. Droste, S.: Analysis of the (1 + 1) EA for a noisy OneMax. In: Deb, K. (ed.)
GECCO 2004. LNCS, vol. 3102, pp. 1088–1099. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24854-5 107

18. Droste, S., Jansen, T., Wegener, I.: On the optimization of unimodal functions
with the (1+1) evolutionary algorithm. In: Eiben, A.E., Bäck, T., Schoenauer, M.,
Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 13–22. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0056845

19. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theor. Comput. Sci. 276, 51–81 (2002)

20. Fomin, F.V., Kaski, P.: Exact exponential algorithms. Commun. ACM 56, 80–88
(2013)

21. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. TTCSAES. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

22. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: Robustness of ant colony
optimization to noise. In: Genetic and Evolutionary Computation Conference,
GECCO 2015, pp. 17–24. ACM (2015)

23. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: The compact genetic algo-
rithm is efficient under extreme Gaussian noise. IEEE Trans. Evol. Comput. 21,
477–490 (2017)

24. Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary mutations.
Evol. Comput. 7, 173–203 (1999)

25. Gießen, C., Kötzing, T.: Robustness of populations in stochastic environments.
Algorithmica 75, 462–489 (2016). https://doi.org/10.1007/s00453-015-0072-0

26. Happ, E., Johannsen, D., Klein, C., Neumann, F.: Rigorous analyses of fitness-
proportional selection for optimizing linear functions. In: Genetic and Evolutionary
Computation Conference, GECCO 2008, pp. 953–960. ACM (2008)

27. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Artif. Intell. 127, 51–81 (2001)

28. Jansen, T.: On the brittleness of evolutionary algorithms. In: Stephens, C.R., Tou-
ssaint, M., Whitley, D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp.
54–69. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73482-6 4

29. Jansen, T.: Analyzing Evolutionary Algorithms. The Computer Science Perspec-
tive. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-17339-4

30. Jansen, T., Wegener, I.: On the analysis of a dynamic evolutionary algorithm. J.
Discrete Algorithms 4, 181–199 (2006)

31. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey.
IEEE Trans. Evol. Comput. 9, 303–317 (2005)

32. Lehre, P.K.: Negative drift in populations. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 244–253. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15844-5 25

33. Lengler, J.: A general dichotomy of evolutionary algorithms on monotone functions.
In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D.
(eds.) PPSN 2018. LNCS, vol. 11102, pp. 3–15. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99259-4 1

https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1007/978-3-540-24854-5_107
https://doi.org/10.1007/BFb0056845
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/s00453-015-0072-0
https://doi.org/10.1007/978-3-540-73482-6_4
https://doi.org/10.1007/978-3-642-17339-4
https://doi.org/10.1007/978-3-642-15844-5_25
https://doi.org/10.1007/978-3-319-99259-4_1
https://doi.org/10.1007/978-3-319-99259-4_1

Exponential Upper Bounds 633

34. Lengler, J.: Drift analysis. Theory of Evolutionary Computation. NCS, pp. 89–131.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4 2

35. Mühlenbein, H.: How genetic algorithms really work: mutation and hill climbing.
In: Parallel problem solving from nature, PPSN 1992, pp. 15–26. Elsevier (1992)

36. Neumann, F., Pourhassan, M., Roostapour, V.: Analysis of evolutionary algo-
rithms in dynamic and stochastic environments. Theory of Evolutionary Compu-
tation. NCS, pp. 323–357. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-29414-4 7

37. Neumann, F., Sutton, A.M.: Parameterized complexity analysis of random-
ized search heuristics. Theory of Evolutionary Computation. NCS, pp. 213–248.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4 4

38. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization
-Algorithms and Their Computational Complexity. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16544-3

39. Oliveto, P.S., Witt, C.: Improved time complexity analysis of the simple genetic
algorithm. Theoret. Comput. Sci. 605, 21–41 (2015)

40. Paixão, T., Heredia, J.P., Sudholt, D., Trubenová, B.: Towards a runtime compar-
ison of natural and artificial evolution. Algorithmica 78, 681–713 (2017)

41. Qian, C., Bian, C., Jiang, W., Tang, K.: Running time analysis of the (1 + 1)-
EA for OneMax and LeadingOnes under bit-wise noise. Algorithmica 81, 749–795
(2019)

42. Qian, C., Yu, Y., Zhou, Z.: Analyzing evolutionary optimization in noisy environ-
ments. Evol. Comput. 26, 1–41 (2018)

43. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, λ)
evolutionary algorithm. Theoret. Comput. Sci. 545, 20–38 (2014)

44. Sudholt, D.: A new method for lower bounds on the running time of evolutionary
algorithms. IEEE Trans. Evol. Comput. 17, 418–435 (2013)

45. Sudholt, D.: Analysing the robustness of evolutionary algorithms to noise:refined
runtime bounds and an example where noise is beneficial. Algorithmica (2020, to
appear). https://doi.org/10.1007/s00453-020-00671-0

46. Sudholt, D., Thyssen, C.: A simple ant colony optimizer for stochastic shortest
path problems. Algorithmica 64, 643–672 (2012). https://doi.org/10.1007/s00453-
011-9606-2

47. Wegener, I., Witt, C.: On the optimization of monotone polynomials by simple
randomized search heuristics. Comb. Probab. Comput. 14, 225–247 (2005)

48. Witt, C.: Worst-case and average-case approximations by simple randomized search
heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp.
44–56. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31856-9 4

49. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Comb. Probab. Comput. 22, 294–318 (2013)

50. Xiao, M., Nagamochi, H.: Confining sets and avoiding bottleneck cases: a simple
maximum independent set algorithm in degree-3 graphs. Theoret. Comput. Sci.
469, 92–104 (2013)

https://doi.org/10.1007/978-3-030-29414-4_2
https://doi.org/10.1007/978-3-030-29414-4_7
https://doi.org/10.1007/978-3-030-29414-4_7
https://doi.org/10.1007/978-3-030-29414-4_4
https://doi.org/10.1007/978-3-642-16544-3
https://doi.org/10.1007/s00453-020-00671-0
https://doi.org/10.1007/s00453-011-9606-2
https://doi.org/10.1007/s00453-011-9606-2
https://doi.org/10.1007/978-3-540-31856-9_4

Analysis on the Efficiency
of Multifactorial Evolutionary Algorithms

Zhengxin Huang1,3, Zefeng Chen2, and Yuren Zhou1(B)

1 School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006,
China

huangzhx26@mail2.sysu.edu.cn, zhouyuren@mail.sysu.edu.cn
2 School of Computer Science and Engineering, Nanyang Technological University,

Singapore, Singapore
zefeng.chen@ntu.edu.sg

3 Department of Computer Science and Information Technology, Youjiang Medical
University for Nationalities, Baise 533000, China

Abstract. Many experimental studies have demonstrated the superior-
ity of multifactorial evolutionary algorithms (MFEAs) over traditional
methods of solving each task independently. In this paper, we investigate
this topic from theoretical analysis aspect. We present a runtime anal-
ysis of a (4+2) MFEA on several benchmark pseudo-Boolean functions,
which include problems with similar tasks and problems with dissimilar
tasks. Our analysis results show that, by properly setting the parameter
rmp (i.e., the random mating probability), for the group of problems
with similar tasks, the upper bound of expected runtime of the (4+2)
MFEA on the harder task can be improved to be the same as on the eas-
ier one. As for the group of problems with dissimilar tasks, the expected
upper bound of (4+2) MFEA on each task are the same as that of solving
them independently. This study theoretically explains why some existing
MFEAs perform better than traditional methods in experimental studies
and provides insights into the parameter setting of MFEAs.

Keywords: Evolutionary multitasking · Multifactorial evolutionary
algorithm · Running time analysis

1 Introduction

Evolutionary algorithms (EAs) are randomized search heuristics that are
inspired from the process of natural evolution [1,23]. EAs have been successfully
applied to solve lots of real-world complex optimization problems in the past
decades [8]. Recently, the notion of evolutionary multitasking [13] has emerged in
the field of optimization and evolutionary computation, which aims to accelerate

Y. Zhou—This work was supported by the National Natural Science Foundation of
China (61773410, 61673403).

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 634–647, 2020.
https://doi.org/10.1007/978-3-030-58115-2_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_44&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_44

Analysis on the Efficiency of Multifactorial Evolutionary Algorithms 635

convergence and enhance global search capabilities across simultaneously opti-
mizing multiple problems (tasks) by sharing genetic information and transfer-
ring knowledge. For this purpose, multifactorial optimization (MFO) problems,
which contain multiple distinct optimization tasks to be solved simultaneously,
are formalized and a multifactorial evolutionary algorithm (MFEA) is proposed
to tackle them in [13]. The key feature of MFEAs is that they are able to transfer
genetic information and knowledge between different tasks during the evolution-
ary process. MFEAs have been shown to be effective in accelerating convergence
and enhancing global search capabilities, with the help of positive knowledge
transferring among tasks [20].

Although multiobjective optimization (MOO) and MFO are both problems
that involve optimizing a set of objective functions (tasks) simultaneously, there
are two main differences between them. First, tasks in MFEA can be independent
while the objective functions in MOO are always conflicting to some extend.
Second, tasks in MFO may have their own search spaces while all objectives in
MOO have the same search spaces. In the optimization process, MFEAs aim to
exploit latent genetic complementarity between multiple tasks using the implicit
paradigm of population-based search, while multiobjective EAs (MOEAs) try to
trade off several conflicting objectives of a problem efficiently [13].

MFEAs have received lots of research attentions in the field of evolutionary
computation in the past years since the first MFEA [13] was proposed. Many
search strategies and mechanisms have been employed to improve the perfor-
mance of MFEAs, e.g., [2,12,17,19,20,23]. Tang et al. [23] proposed a group-
based MFEA (GMFEA), which groups tasks of similar types and selectively
transfers the genetic information only within the groups. Feng et al. [12] pro-
posed an improved MFEA with explicit genetic transfer across tasks, allowing the
incorporation of multiple search mechanisms with different biases in the evolu-
tionary multitasking paradigm. Experiments have demonstrated the advantages
of their improved algorithms. MFEAs have been successfully applied to solve
many real-word problems, e.g., cloud computing service composition (CCSC)
problem [3], vehicle routing problem [11,24], sparse reconstruction problem [18],
modular training [4] or knowledge representation [5] in neural networks.

These previous studies investigate the superiorities of MFEAs from compu-
tational experiments. As far as we know, there are no research on investigating
this topic from theoretical analysis aspect. Runtime (or running time) analysis
is a powerful and essential theory tool to understand the performance and work-
ing principles of EAs [7,9,22]. In this paper, we present a runtime analysis of a
simple (4+2) MFEA and (2+2) GA on optimizing several benchmark pseudo-
Boolean functions, which include problems with similar tasks and problems with
dissimilar tasks. Our analysis results show that, by properly setting the param-
eter rmp, for the group of problems with similar tasks, the upper bound of
expected runtime of the (4+2) MFEA on the harder task can be improved to
be the same as on the easier one. As for the group of problems with dissimilar
tasks, the expected upper bound of (4+2) MFEA on each task are the same as
that of solving them independently by the (2+2) GA. Furthermore, a simple

636 Z. Huang et al.

generalized result on the (4+2) MFEA is proved. This study theoretically
explains why some existing MFEAs perform better than traditional methods
in computational experiments and provides some insights into the working prin-
ciple of MFEAs.

2 Preliminaries

2.1 Analyzed Algorithms

In MFEA, multiple tasks are simultaneously optimized by a population P , in
which all individuals are encoded in a unified search space. Individuals in P can
be decoded into a task-specific solution for every task with respect to its search
space. The factorial rank of an individual on a given task is defined as the index
of sorting the fitness values (in descending order for maximize problem) of all
individuals on that task. The scalar fitness of an individual xi is the reciprocal of
the best factorial rank on all tasks. The skill factor of xi represents its cultural
bias, denoted as the index of the most effective task, on which the scalar fitness
of the individual is obtained. Individuals with the same skill factor are devoted
to the optimization the corresponding task. In some sense, this is equivalent to
assigning a subpopulation of P for each task. MFEA is desired to accelerate the
optimizations by exchanging knowledge between different subpopulations.

The main steps in the framework of MFEA presented in [13] are as follows:
1: Generate an initial population P .
2: Evaluate the fitness value of every individual in P with respect to every

optimization task in the multitasking environment.
3: Compute the skill factor (τi) of each individual xi ∈ P .
4: Apply genetic operators on P to generate an offspring population C, where

each offspring only inherits the skill factor from their parents.
5: Compute the fitness values of every individual xj in C for selected optimiza-

tion tasks only, and set its fitness values on all other task to −∞.
6: Update the scalar fitness and skill factor of every individual in P ∪ C.
7: Select the fittest individuals from P ∪ C to form the next population P . If

stop condition is satisfied, output P . Otherwise go to Step 4.
Based on this framework, we propose a simple (4+2) MFEA, described in Algo-
rithm 1, for MFO problems. In the initialization, the algorithm first generates 4
individuals in the unified search space uniformly at random and evaluates their
fitness values for every task. Then it computes the skill factor (τi) for each indi-
vidual xi in P and selects the 2 fittest individuals with respect to task j in P
to form P0. In some sense, this is equivalent to assigning a subpopulation in P
for each task. To simplify the analysis and expression, we assume that the skill
factors of the 2 fittest individuals with respect to task j are j. We claim that this
assumption is reasonable, because if an individual xi with τi �= j is one of the 2
fittest individuals for task j, we can think that it is an additional individual in
Pt and its fitness value on the other task are artificially set to −∞. Note that
this operation will not increase the expected number of fitness evaluations, i.e,
the expected runtime of Algorithm 1.

Analysis on the Efficiency of Multifactorial Evolutionary Algorithms 637

Algorithm 1. A (4+2) MFEA for two-task optimization
Input: K = 2 optimization tasks, stopping criterion and parameter rmp.
Output: The best individual in the population for each task.

1: Generate population P with 4 individuals in {0, 1}n uniformly at random.
2: Evaluate the fitness values of every individual in P with respect to every task.
3: Set t := 0. Compute the skill factor (τi) of every individual xi in P , and select

the 2 fittest individuals with respect to each task j to form population P0 :=
{x1, x2, x3, x4}.

4: while stopping criterion is unsatisfied do
5: Set C := ∅. Select 2 parent individuals from Pt, denoted as pa and pb, uniformly

at random.
6: if τa �= τb and rand ≥ rmp then
7: Create 2 offspring ca and cb by respectively applying standard bit mutation

to pa and pb, and inherit the skill factor of its unique parent (τa or τb).
8: else
9: Create 2 offspring ca and cb by applying one-point crossover on pa and pb,

and inherit the skill factors of their parents (τa and τb).
10: end if
11: Set C := {ca, cb}.
12: Compute the fitness value of every individual in C on the task related to the

skill factor, and set its fitness values on all other tasks to −∞.
13: Update the scalar fitness and skill factor of every individual in the population

Pt ∪ C.
14: Select the 2 fittest individuals for each task j from Pt ∪ C to form Pt+1. Set

t := t + 1.
15: end while

Mutation and crossover are both employed as variation operators in Algo-
rithm 1. For crossover operator (line 9 in Algorithm 1), it follows the rule that
the two parent individuals (pa and pb) possessing the same skill factor (τa = τb),
i.e., selected from the same subpopulation, can crossover freely. In some sense,
this is similar to the fact that people tend to marry with ones belonging to the
same cultural background [13]. Moreover, as argued in [13], if the two parent
individuals have different skill factors, crossover operator will be also applied in
some random rounds, which are controlled by parameter rmp. Otherwise, muta-
tion operator is executed (line 7 in Algorithm 1). Note that rmp is an important
parameter in Algorithm 1 since it determines the chance of exchanging genetic
information between distinct tasks. For specific variation operators, we consider
the typical one-point crossover and standard bit mutation [15] (flipping each bit
in the solution (bit-string) with independent probability pm = 1

n , where n is the
length of the bit-string), respectively.

After offspring individuals are created, inheritance strategy in the view of
biological culture where offspring is directly affected by the phenotype of its
parents [6,10] is applied Algorithm 1. If the offspring is created by crossover,
it inherits the two skill factors of its parents (line 9), and the offspring only
inherits a skill factor from its unique parent if it is created by mutation (line 7).

638 Z. Huang et al.

Algorithm 2. (2+2) GA
Input: An optimization task, stopping criterion and crossover probability pc.
Output: The best individual in the population.

1: Set t := 0. Generate population P0 := {x1, x2} in search space {0, 1}n uniformly
at random.

2: while stopping criterion is unsatisfied do
3: Set C := ∅.
4: if rand ≥ pc then
5: Create two offspring c1 and c2 by using standard bit mutation operator to x1

and x2, respectively.
6: else
7: Create two offspring c1 and c2 by using one-point crossover operator to x1

and x2.
8: end if
9: Set C := {c1, c2}.

10: Select the 2 fittest individuals from Pt ∪ C to form Pt+1. Set t := t + 1.
11: end while

As argument in [13], to reduce the total number of consumed fitness evaluations,
the fitness values of offspring individuals on all unevaluated tasks are artificially
set to −∞ (line 12). In the environment selection (line 14), elitist strategy, only
accepting not worse solutions, is applied. Specifically, the algorithm selects the
2 fittest individuals for each task j from Pt ∪ C to form a new population Pt+1.

To compare and illustrate the optimization ability of the MFEA, we also
analyze the expected runtime of a (2+2) GA, which is the single task optimiza-
tion version of Algorithm 1, optimizing all considered problems independently.
The (2+2) GA is shown in Algorithm 2.

2.2 Problems

For a given bit-string (solution) x, we let x[i] denote the value of the i-th bit in
it. The analyzed pseudo-Boolean functions in this paper are described as follows.
They have been widely used in the field of runtime analysis for EAs [15].

Definition 1 (OneMax). For any x ∈ {0, 1}n, the pseudo-Boolean function
OneMax : {0, 1}n→ N is defined as

OneMax(x) =
n∑

i=1

x[i].

As shown Definition 1, the function value of OneMax becomes better when
increasing the number of 1-bits in solution x.

Definition 2 (LeadingOnes). For any x ∈ {0, 1}n, the pseudo-Boolean func-
tion LeadingOnes : {0, 1}n → N is defined as

LeadingOnes(x) =
n∑

i=1

i∏

j=1

x[j].

Analysis on the Efficiency of Multifactorial Evolutionary Algorithms 639

For LeadingOnes, the function value increases when increasing the number
of leading 1-bits in solution x.

Definition 3 (TrailingZeros). For any x ∈ {0, 1}n, the pseudo-Boolean func-
tion TrailingZeros : {0, 1}n→ N is defined as

TrailingZeros(x) =
n∑

i=1

n∏

j=i

(1 − x[j]).

For TrailingZeros, the function value increases when increasing the num-
ber of trailing 0-bits in solution x.

In this analysis, OneMax and LeadingOnes are set as the first group of
problems while OneMax and TrailingZeros are set as the second group of
problems. Note that when increasing the number of 1-bits in a solution, the
function values of OneMax and LeadingOnes will never become worse, while
the function value of TrailingZeros will never become better. Thus, the two
groups of problems can serve as the multitasking optimization problems with
similar tasks and the one with dissimilar tasks for MFEAs, respectively.

3 Runtime Analysis

3.1 Analysis on (2+2) GA

In this subsection, we analyze the expected runtime of the (2+2) GA to optimize
OneMax, LeadingOnes and TrailingZeros problems. Note that the (2+2)
GA optimizes the three problems independently. For ease of express, we assume
that the fitness value of x1 is not smaller than that of x2 for any Pt = {x1, x2}
in the (2+2) GA.

Theorem 1. For any constant crossover probability pc < 1, Algorithm 2 finds
the optimal solution for OneMax in expected runtime O(n log n).

Proof. We use the fitness-based partition method [15,21] to prove this theorem.
We partition the search space into n + 1 disjoint layers according their fitness
values, i.e., Li = {x ∈ {0, 1}n|OneMax(x) = i} for i = 0, 1, ..., n. Thus, the
numbers of 1-bits and 0-bits in any solution in Li are i and n − i, respectively.
It is not difficult to see that the optimal solution 1n lies in the n-th layer. In the
following, we show that for any population Pt, if x1 lies in Li for i < n, then in
that generation Algorithm 2 creates an offspring in Lj for j > i, namely better
than x1, with probability at least (1−pc)(n−i)

en .
Recall that in a generation, the probability of Algorithm 2 executing the

crossover and mutation operator are pc and 1 − pc, respectively. In a muta-
tion step, the two offspring are created by respectively using the standard bit
mutation operator to x1 and x2, that is, flipping any bit in x1 and x2 with inde-
pendent probability 1

n . If the mutation flips one of 0-bits in x1 into 1-bit (denoted
as E1) and keeps all other bits unchanged (denoted as E2), then an offspring

640 Z. Huang et al.

in Li+1 is created. The probability of this event is sm = Pr(E1) · Pr(E2) =(
n−i
1

) · 1
n · (1 − 1

n)n−1 ≥ n−i
en . In a crossover step, for the selected crossover point

j ∈ [1, n] if
∑j

i=1 x1[i] <
∑j

i=1 x2[i] or
∑n

i=j+1 x1[i] <
∑n

i=j+1 x2[i], then an off-
spring with 1-bits more than x1, i.e., lie in layer higher than x1, is created. Let
sc denote the probability of this event. The exact value of sc is hard to estimate
since it depends on the distribution of 1-bits in x1 and x2. But it is obvious
that sc ≥ 0. Thus, in a generation, the probability of Algorithm 2 creating an
offspring in layer higher than i is at least

si ≥ (1 − pc) · sm + pc · sc ≥ (1 − pc)(n − i)
en

.

Therefore, the expected runtime of Algorithm 2 optimizing OneMax is upper
bounded by

2
n−1∑

i=0

1
si

≤ en

1 − pc

n−1∑

i=0

1
n − i

= O(n log n).

Note that Algorithm 2 spends two fitness evaluations in any generation and
pc < 1 is a constant. �

Theorem 2. For any constant crossover probability pc < 1, Algorithm 2 finds
the optimal solution for LeadingOnes and TrailingZeros in expected run-
time Θ(n2).

In the following, we only give the detailed proof of expected runtime Θ(n2) for
LeadingOnes since the proof for TrailingZeros is similar. The only difference
is that for LeadingOnes the algorithm accepts offspring with increasing number
of leading 1-bits while it accepts offspring with increasing number of trailing 0-
bits for TrailingZeros.

Proof. We first use the fitness-based partition method to prove the expected
upper bound of O(n2). We partition the search space into n + 1 layers, where
Li = {x ∈ {0, 1}n|LeadingOnes(x) = i} for i = 0, 1, ..., n. We show that for
any Pt = {x1, x2}, in that generation Algorithm 2 creates an offspring in higher
layer with probability at least 1−pc

en if x1 lies in Li for i < n.
Before computing a lower bound of progress in a generation for the expected

upper bound, we first claim that for any Pt, all bits next to the leftmost 0-bit
in x1 and x2 are distributed uniformly at random. Intuitively, these bits are
initialized uniformly, and in later iterations the algorithm selects individuals for
reproduction according to their fitness values and these bits have never con-
tributed to the fitness. Formally, from the proof of Theorem 5.16 in [15], we
know that the claim holds for any mutation step. For a crossover step, it cre-
ates two offspring by recombining two parents where all bits after the leftmost
0-bit are uniform distributed. So the bits that after the leftmost 0-bit in the two
fittest individuals in Pt ∪ C are uniform distributed. Recall that the two fittest
individuals are survived in any generation. Thus, the claim also holds for any
crossover step.

Analysis on the Efficiency of Multifactorial Evolutionary Algorithms 641

In a mutation step, if the leftmost 0-bit in x1 is flipped and all leading 1-bits
are kept unchanged, then an offspring in Li+1 is created. The probability of this
event is sm = 1

n · (1 − 1
n)i ≥ 1

en . Note that if x1 and x2 are in the same layer,
the probability that an offspring in Li+1 is created by applying the mutation
operator to x2 is also at least sm. For a crossover step, if x1 and x2 are in Li, the
algorithm creates an offspring in layer higher than i with probability 0, because
of x1[i+1] = x2[i+1] = 0. If x2 lies in layer lower than x1, the algorithm creates
an offspring in Li+1 with probability at least 1

2n , since it happens if the crossover
position is i and the value of the (i + 1)-th bit in x2 is 1. The probability of the
first and second event are 1

n and 1
2 , respectively.

Thus, in the t-th generation Algorithm 2 creates an offspring in layer higher
than i with probability at least

si ≥ min{(1 − pc)[1 − (1 − sm)2], (1 − pc)sm +
pc
2n

} ≥ (1 − pc)sm ≥ 1 − pc
en

.

Therefore, the expected runtime of Algorithm 2 finding the optimal solution for
LeadingOnes is upper bounded by

2
n−1∑

i=0

1
si

≤ 2en

1 − pc

n−1∑

i=0

1 = O(n2).

We now prove the lower bound Ω(n2) by using the drift analysis method
[14,16]. We define the following random process Xt := n − LeadingOnes(x1)
for each Pt = {x1, x2}. Recall that x1 denotes the better individual in Pt. It is
not difficult to see that 0 ≤ Xt ≤ n for any t ∈ N and Xt = 0 if and only if
the optimal solution is contained in Pt. Since individuals in P0 are generated in
{0, 1}n uniformly at random, there are exact i < n (i = n) leading 1-bits in x1

with probability 2−(i+1) (2−n). Thus, we have

E(X0) = n − n

2n
−

n−1∑

i=0

i · 2−(i+1) = n − 1 +
1
2n

≥ n − 1.

For a mutation step, the necessary condition of Xt − Xt+1 = j > 0 is that
the leftmost 0-bit in x1 and the h 0-bits in the (j − 1) bits next to it are flipped
simultaneously. The probabilities of the first and the second event are 1

n and
(1
n)h ·2−(j−1)+h, respectively. Note that the values of all bits next to the leftmost

0-bit in x1 and x2 are distributed uniformly at random. Thus, in a mutation step
we have E(Xt−Xt+1) ≤ ∑n

j=1 j· 1n ·(∑j−1
h=0

1
nh ·2−(j−1)+h) ≤ ∑n

j=1 j· 1n · 3
2j−1 ≤ 12

n .
For a crossover step, if x1 and x2 have the same fitness value, then E(Xt −

Xt+1) = 0. Otherwise, we first consider the case that the crossover point is the
leftmost 0-bit in x1 (denoted as l0). If and only if there are j 1-bits next to l0 in
x2, then Xt − Xt+1 = j ≥ 1 holds. The probabilities of the first and the second
event are 1

n and 2−j , respectively. Thus, in this case we have E(Xt − Xt+1) =∑n
j=1 j · 1

n · 1
2j ≤ 2

n . For the case that the crossover point is the (l0 − 1)-th bit,
if and only if there are (j + 1) 1-bits next to the (l0 − 1)-th bit in x2, then

642 Z. Huang et al.

Xt −Xt+1 = j also holds. The probabilities of the two events are 1
n and 2−(j+1),

respectively. So we have E(Xt − Xt+1) =
∑n

j=1 j · 1
n · 1

2j+1 ≤ 2
n · 1

2 . By analogy,
we have that E(Xt − Xt+1) ≤ 2

n · 1
2i for the case that the crossover point is the

(l0−i)-th bit. Thus, in a crossover step we have E(Xt−Xt+1) =
∑l0

i=1
2
n · 1

2l0−i ≤∑n
i=1

2
n · 1

2n−i ≤ 4
n .

In summary, in the t-th generation we have

E(Xt − Xt+1) ≤ (1 − pc) · 12
n

+ pc · 4
n

≤ 12
n

= δ.

Hence, the expected runtime of Algorithm 2 optimizing LeadingOnes is lower
bounded by

E(T |X0) =
E(X0)

δ
≥ 2(n − 1) · n

12
= Ω(n2).

Therefore, combined with the upper bound of O(n2), the expected runtime of
Θ(n2) is proved. �

3.2 Analysis on (4+2) MFEA

Different from the (2+2) GA, where one task is optimized by the whole popu-
lation, the (4+2) MFEA simultaneously optimizes two tasks with a population
of 4 individuals, which is divided into two subpopulations with size of 2 each.
Since the population in Algorithm 1 are divided into two subpopulations for
optimizing the two tasks, for any Pt = {x1, x2, x3, x4}, in following analyses we
assume that subpopulations Pt,1 = {x1, x2} and Pt,2 = {x3, x4} are assigned to
optimize task 1 and task 2, respectively. And the better individuals in Pt,1 and
Pt,2 are respectively x1 and x3.

Lemma 1. For Algorithm 1, the probabilities of executing the mutation and
crossover operators in a generation are 2(1−rmp)

3 and 1+2rmp
3 , respectively.

Note that in a generation, Algorithm 1 executes crossover operator in the
following two cases: (1) τa = τb, that is, pa and pb are selected from the same
subpopulation, the probability is 2 · (

4
2

)−1
= 1

3 ; (2) τa �= τb and rand < rmp,
the probability is (1 − 1

3) · rmp = 2rmp
3 . So the probabilities of Algorithm 1

executing the crossover and mutation operators in a generation are 1+2rmp
3 and

2(1−rmp)
3 , respectively. Thus, in a generation Algorithm 1 consumes 2 · (1 −

2rmp
3) + 4 · 2rmp

3 = 6+4rmp
3 fitness evaluations on expectation. In the following,

we analyze the expected runtime of Algorithm 1 to simultaneously optimize the
group problems with dissimilar tasks.

Theorem 3. To optimize TrailingZeros and OneMax problems simul-
taneously, Algorithm 1 finds their optimal solutions in expected runtime
O

((6+4rmp)n2

1−rmp

)
and O

((6+4rmp)n logn
1−rmp

)
, respectively.

Analysis on the Efficiency of Multifactorial Evolutionary Algorithms 643

Proof. For OneMax problem (denoted as task 1), similar to the proof of Theo-
rem 1, we partition the search space into n + 1 disjoint layers according to their
fitness values, that is, Li = {x ∈ {0, 1}n|OneMax(x) = i} for i = 0, 1, ..., n.
Assume that in the current population Pt, x1 lies in Li for i < n. We show that
Algorithm 1 creates an offspring in Li+1 with probability at least (1−rmp)(n−i)

3en .
In a mutation step, the parent individuals are selected from different subpop-

ulations, namely one from Pt,1 and the other from Pt,2. If the mutation operator
flips one of the (n−i) 0-bits in x1 and keeps all other bits unchanged, then an off-
spring in Li+1 is created. The probability of this event is 1

2 ·n−i
n ·(1− 1

n)n−1 ≥ n−i
2en .

Note that individual x1 is selected from Pt,1 to be a parent with probability 1
2 .

For a crossover step, the two parent individuals can be x1 and x2 or one from Pt,1

and the other from Pt,2. As discussed in the proof of Theorem 1, for OneMax the
probability of Algorithm 1 creating an offspring in Li+1 is hard to estimate since
it depends on the distribution of 1-bits in the two parent individuals. However
the trivial lower bound of 0 holds. Thus, if x1 ∈ Pt lies in Li for i < n, Algorithm
1 creates an offspring in Lj for j > i in the generation with probability at least
2(1−rmp)

3 · n−i
2en ≥ (1−rmp)(n−i)

3en .
Therefore, the upper bound of expected runtime of Algorithm 1 optimizing

OneMax is

n−1∑

i=0

(6 + 4rmp)3en

3(1 − rmp)(n − i)
= O

((6 + 4rmp)n log n

1 − rmp

)
. (1)

For TrailingZeros problem (task 2), we partition the search space into
n + 1 disjoint layers according to their fitness values, that is, Li = {x ∈
{0, 1}n|TrailingZeros(x) = i} for i = 0, 1, ..., n. Thus there are exact i trailing
0-bits in any solution in Li.

Assume that individual x3 in Pt lies in Li for i < n. For a mutation step, if the
algorithm flips the leftmost 1-bit in x3 and keeps all i trailing 0-bits unchanged,
an offspring in Li+1 is created. Thus, in the t-th generation Algorithm 1 creates
an offspring in Li+1 with probability at least 2(1−rmp)

3 · 1
2 · 1

n · (1 − 1
n)n−i ≥

1−rmp
3en . Recall that in a generation Algorithm 1 executes the mutation operator

with probability 2(1−rmp)
3 and a crossover step creates an offspring in Li+1 with

probability at least 0. Therefore, the expected runtime of Algorithm 1 optimizing
TrailingZeros is upper bounded by

n−1∑

i=0

(6 + 4rmp)3en

3(1 − rmp)
= O

((6 + 4rmp)n2

1 − rmp

)
. (2)

Furthermore, if parameter rmp is set to a constant in (0, 1), by Eqs. (1) and
(2), we know that Algorithm 1 finds the optimal solutions for OneMax and
TrailingZeros in expected runtime O(n log n) and O(n2), respectively. �

Different from Algorithm 2, the lower bound of progress probability 1
2n in

a crossover step (see the proof of Theorem 2) is not ensured for Algorithm

644 Z. Huang et al.

1, because applying crossover to individuals selected from Pt,2 and Pt,1 means
that these bits before the rightmost 1-bit are not uniformly distributed dur-
ing the whole evolutionary process. Thus, applying crossover to individuals
with distinct skill factors in Algorithm 1 cannot accelerate the optimization
of TrailingZeros. Instead, it may lose the progress probability 1

2n , compared
with Algorithm 2, in a crossover step. We next show that to optimize OneMin
and LeadingOnes simultaneously, such a mechanism can apparently reduce the
optimizing time of LeadingOnes. This indicates that the knowledge transfer
between different tasks in MFEA can really help optimizing in some cases.

Theorem 4. To optimize OneMax and LeadingOnes problems simultane-
ously, Algorithm 1 finds their optimal solutions in expected runtime O((6 +
4rmp) · (n logn

rmp + n log n
1−rmp)). Furthermore, the expected runtime is O(n log n) if

parameter rmp is set to a constant in (0, 1).

Proof. Let task 1 and task 2 denote the OneMax and LeadingOnes func-
tions, respectively. From the proof of Theorem 3, we have that the optimal
solution 1n of OneMax is obtained by subpopulation Pt,1 in expected runtime
O((6+4rmp)n log n

1−rmp). Afterward, solution 1n will be kept in Pt,1 forever since Algo-
rithm 1 is elitist.

We now consider these solutions created by crossover operator in the case that
τa �= τb and rand < rmp after solution 1n has been added into Pt,1. Note that
any offspring created by such a crossover step will be evaluated on the two tasks
since they inherit the skill factors of their parents (see line 8 in Algorithm 1).
In the following, we show that in generation t Algorithm 1 creates an improved
solution for LeadingOnes with probability at least rmp(n−j)

3n , where j denotes
the number of leading 1-bits in x3 ∈ Pt,2.

First, by Lemma 1, such a crossover step happens in a generation with prob-
ability 2rmp

3 . Second, in such a crossover step, if the individual x1 = 1n in Pt,1

is selected to be a parent (with probability at least 1
2) and the crossover point is

larger than j, then an offspring with leading 1-bits larger than j (an improved an
improved solution for LeadingOnes) is created. Thus, an improved solution for
LeadingOnes is created with probability at least 2rmp

3 · 12 ·(n−j
1

) · 1
n = rmp(n−j)

3n .
Note that any bit is selected to be the crossover point with probability 1

n . Hence,
after solution 1n has been added into Pt,1, the expected runtime of Algorithm 1
finding the optimal solution for LeadingOnes is upper bounded by

6 + 4rmp

3

n−1∑

j=0

3n

rmp(n − j)
= O(

(6 + 4rmp)n log n

rmp
).

Therefore, Algorithm 1 finds the optimal solution for LeadingOnes in
expected runtime

O(
(6 + 4rmp)n log n

1 − rmp
) + O(

(6 + 4rmp)n log n

rmp
) = O((6 + 4rmp) · (n log n

rmp
+

n log n

1 − rmp
)).

(3)

Analysis on the Efficiency of Multifactorial Evolutionary Algorithms 645

From Eq. (3), we have that expected runtime is O(n log n) if parameter rmp is
a constant in (0, 1). �

Theorem 4 shows that by properly setting the value of parameter rmp, the
upper bound of expected runtime of Algorithm 1 on LeadingOnes can be
improved to O(n log n), which is the same as that of the (2+2) GA on OneMax.
What we are more interested in is whether similar results also hold when opti-
mizing other functions. We have the following simple theorem for this question.

Theorem 5. Given any two pseudo-Boolean functions f1 and f2 that the Ham-
ming distance between their optimal solutions in the unified search space is 0. Let
E(T1) and E(T2) be the upper bound of expected runtime of Algorithm 1 optimiz-
ing f1 and f2, respectively. Then we have E(T2) ≤ E(T1) + O(n) if parameter
rmp is set to a constant in (0, 1) and E(T1) ≤ E(T2).

Proof. We let task 1 and task 2 denote functions f1 and f2, respectively. Let x∗

be the optimal solution in the unified search space for f1. By the assumption,
we have that x∗ is created for f1 by Algorithm 1 in E(T1) expected fitness
evaluations and is kept in Pt,1. Similar to the proof of Theorem 4, we consider
these solutions created by crossover operator in the case that τa �= τb and rand <
rmp (with probability 2rmp

3). Observe that if the individual x∗ in Pt,1 is selected
to be a parent (with probability at least 1

2) and the crossover point is the n-th
bit (with probability 1

n), an offspring encoded as x∗ will be created and evaluate
on f2. The above event happens with probability at least 2rmp

3 · 1
2 · 1

n = rmp
3n

and the expected waiting time is (6+4rmp)
3 · 3n

rmp = (6+4rmp)n
rmp . Therefore, we have

E(T2) ≤ E(T1) + O(n) if parameter rmp is set to a constant in (0, 1). �
This theorem implies that how to map the solutions of distinct tasks into

a new search space such that their optima are located in the same position
in the evolutionary process is significant for MFEA. We noted that a decision
variable translation strategy has been designed to handle this topic in [8]. Their
experiments have showed the effectiveness of the proposed strategy. This analysis
can enhance the effectiveness of the proposed strategy from theoretical aspect.

4 Conclusion

This paper investigates the superiority of MFEAs over traditional methods of
solving each task independently from theoretical analysis aspect. We present
runtime analysis of a baseline (4+2) MFEA and (2+2) GA on several bench-
mark pseudo-Boolean functions, which include problems with similar tasks and
dissimilar tasks. The results show that by properly setting the parameter rmp,
for the group of problems with similar tasks, the upper bound of expected run-
time of the (4+2) MFEA on the harder task can be improved to be the same
as on the easier one, while the expected upper bound on the group of problems
with dissimilar tasks are the same as that of solving them independently by the
(2+2) GA. This paper theoretically explains why some existing MFEAs work
better than traditional methods of solving each task independently in numerical
experiments and provides some insights into the working principles of MFEAs.

646 Z. Huang et al.

References

1. Back, T., Hammel, U., Schwefel, H.P.: Evolutionary computation: comments on
the history and current state. IEEE Trans. Evol. Comput. 1(1), 3–17 (1997)

2. Bali, K.K., Ong, Y.S., Gupta, A., Tan, P.S.: Multifactorial evolutionary algorithm
with online transfer parameter estimation: MFEA-II. IEEE Trans. Evol. Comput.
24(1), 69–83 (2020)

3. Bao, L., et al.: An evolutionary multitasking algorithm for cloud computing service
composition. In: Yang, A., et al. (eds.) SERVICES 2018. LNCS, vol. 10975, pp.
130–144. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94472-2 10

4. Chandra, R., Gupta, A., Ong, Y.-S., Goh, C.-K.: Evolutionary multi-task learning
for modular training of feedforward neural networks. In: Hirose, A., Ozawa, S.,
Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9948, pp.
37–46. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46672-9 5

5. Chandra, R., Gupta, A., Ong, Y.S., Goh, C.K.: Evolutionary multi-task learning
for modular knowledge representation in neural networks. Neural Process. Lett.
47(3), 993–1009 (2018). https://doi.org/10.1007/s11063-017-9718-z

6. Cloninger, C.R., Rice, J., Reich, T.: Multifactorial inheritance with cultural trans-
mission and assortative mating. ii. a general model of combined polygenic and
cultural inheritance. Am. J. Hum. Genet. 31(2), 176 (1979)

7. Dang, D.C., et al.: Escaping local optima using crossover with emergent diversity.
IEEE Trans. Evol. Comput. 22(3), 484–497 (2018)

8. Ding, J., Yang, C., Jin, Y., Chai, T.: Generalized multitasking for evolutionary opti-
mization of expensive problems. IEEE Trans. Evol. Comput. 23(1), 44–58 (2019)

9. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theor. Comput. Sci. 567, 87–104 (2015)

10. Feldman, M.W., Laland, K.N.: Gene-culture coevolutionary theory. Trends Ecol.
Evol. 11(11), 453–457 (1996)

11. Feng, L., et al.: Solving generalized vehicle routing problem with occasional drivers
via evolutionary multitasking. IEEE Trans. Cybern. (2020, in press)

12. Feng, L., et al.: Evolutionary multitasking via explicit autoencoding. IEEE Trans.
Cybern. 49(9), 3457–3470 (2018)

13. Gupta, A., Ong, Y.S., Feng, L.: Multifactorial evolution: toward evolutionary mul-
titasking. IEEE Trans. Evol. Comput. 20(3), 343–357 (2016)

14. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Artif. Intell. 127(1), 57–85 (2001)

15. Jansen, T.: Analyzing evolutionary algorithms: the computer science perspective.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-17339-4

16. Kötzing, T., Krejca, M.S.: First-hitting times under additive drift. In: Auger, A.,
Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN
2018. LNCS, vol. 11102, pp. 92–104. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99259-4 8

17. Li, G., Lin, Q., Gao, W.: Multifactorial optimization via explicit multipopulation
evolutionary framework. Inf. Sci. 512, 1555–1570 (2020)

18. Li, H., Ong, Y., Gong, M., Wang, Z.: Evolutionary multitasking sparse reconstruc-
tion: framework and case study. IEEE Trans. Evol. Comput. 23(5), 733–747 (2019)

19. Liaw, R.T., Ting, C.K.: Evolutionary many tasking optimization based on symbio-
sis in biocoenosis. In: The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI, pp. 4295–4303 (2019)

https://doi.org/10.1007/978-3-319-94472-2_10
https://doi.org/10.1007/978-3-319-46672-9_5
https://doi.org/10.1007/s11063-017-9718-z
https://doi.org/10.1007/978-3-642-17339-4
https://doi.org/10.1007/978-3-319-99259-4_8
https://doi.org/10.1007/978-3-319-99259-4_8

Analysis on the Efficiency of Multifactorial Evolutionary Algorithms 647

20. Lin, J., Liu, H.L., Xue, B., Zhang, M., Gu, F.: Multi-objective multi-tasking opti-
mization based on incremental learning. IEEE Trans. Evol. Comput. (2020, in
press)

21. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization
- Algorithms and Their Computational Complexity. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16544-3

22. Qian, C., Yu, Y., Tang, K., Yao, X., Zhou, Z.H.: Maximizing submodular or mono-
tone approximately submodular functions by multi-objective evolutionary algo-
rithms. Artif. Intell. 275, 279–294 (2019)

23. Tang, J., Chen, Y., Deng, Z., Xiang, Y., Joy, C.P.: A group-based approach to
improve multifactorial evolutionary algorithm. In: International Joint Conference
on Artificial Intelligence, IJCAI, pp. 3870–3876 (2018)

24. Zhou, L., Feng, L., Zhong, J., Ong, Y.S., Zhu, Z., Sha, E.: Evolutionary multi-
tasking in combinatorial search spaces: a case study in capacitated vehicle routing
problem. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp.
1–8. IEEE (2016)

https://doi.org/10.1007/978-3-642-16544-3

Improved Fixed-Budget Results via Drift
Analysis

Timo Kötzing1(B) and Carsten Witt2

1 Hasso Plattner Institute, Potsdam, Germany
timo.koetzing@hpi.de

2 Technical University of Denmark, Kgs. Lyngby, Denmark
cawi@dtu.dk

Abstract. Fixed-budget theory is concerned with computing or bound-
ing the fitness value achievable by randomized search heuristics within
a given budget of fitness function evaluations. Despite recent progress in
fixed-budget theory, there is a lack of general tools to derive such results.
We transfer drift theory, the key tool to derive expected optimization
times, to the fixed-budged perspective. A first and easy-to-use state-
ment concerned with iterating drift in so-called greed-admitting scenar-
ios immediately translates into bounds on the expected function value.
Afterwards, we consider a more general tool based on the well-known
variable drift theorem. Applications of this technique to the Leadin-
gOnes benchmark function yield statements that are more precise than
the previous state of the art.

1 Introduction

Randomized search heuristics are a class of optimization algorithms which use
probabilistic choices with the aim of maximizing or minimizing a given objective
function. Typical examples of such algorithms use inspiration from nature in
order to determine the method of search, most prominently evolutionary algo-
rithms, which use the concepts of mutation (slightly altering a solution) and
selection (giving preference to solutions with better objective value).

The theory of randomized search heuristics aims at understanding such
heuristics by explaining their optimization behavior. Recent results are typically
phrased as run time results, for example by giving upper (and lower) bounds on
the expected time until a solution of a certain quality (typically the best possi-
ble quality) is found. This is called the (expected) optimization time. A different
approach, called fixed-budget analysis, bounds the quality of the current solution
of the heuristic after a given amount of time. In order to ease the analysis and by
convention, in this theoretical framework time is approximated as the number
of evaluations of the objective function (called fitness evaluations).

In this paper we are concerned with the approach of giving a fixed-budget
analysis. This approach was introduced to the analysis of randomized search
heuristics by Jansen and Zarges [7], who derived fixed-budget results for the clas-
sical example functions OneMax and LeadingOnes by bounding the expected
c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 648–660, 2020.
https://doi.org/10.1007/978-3-030-58115-2_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_45&domain=pdf
http://orcid.org/0000-0002-6105-7700
https://doi.org/10.1007/978-3-030-58115-2_45

Improved Fixed-Budget Results via Drift Analysis 649

progress in each iteration. A different perspective was proposed by Doerr, Jansen,
Witt and Zarges [1], who showed that fixed-budget statements can be derived
from bounds on optimization times if these exhibit strong concentration. Lengler
and Spooner [13] proposed a variant of multiplicative drift for fixed-budget
results and the use of differential equations in the context of OneMax and
general linear functions. Nallaperuma, Neumann and Sudholt [15] applied fixed-
budget theory to the analysis of evolutionary algorithms on the traveling sales-
man problem and Jansen and Zarges [8] to artificial immune systems. The quality
gains of optimal black-box algorithms on OneMax in a fixed-budget perspective
were analyzed by Doerr, Doerr and Yang [2]. In a recent technical report, He,
Jansen and Zarges [5] consider so-called unlimited budgets to estimate fitness
values in particular for points of time larger than the expected optimization
time. A recent survey by Jansen [6] summarizes the state of the art in the area
of fixed-budget analysis.

There are general methods easing the analysis of randomized search heuris-
tics. Most importantly, in order to derive bounds on the optimization time, we
can make use of drift theory. Drift theory is a general term for a collection of the-
orems that consider random processes and bound the expected time it takes the
process to reach a certain value—the first-hitting time. The beauty and appeal
of these theorems lie in them usually having few restrictions but yielding strong
results. Intuitively speaking, in order to use a drift theorem, one only needs to
estimate the expected change of a random process—the drift—at any given point
in time. Hence, a drift theorem turns expected local changes of a process into
expected first-hitting times. In other words, local information of the process is
transformed into global information. See [12] for an extensive discussion of drift
theory.

In contrast to the numerous drift theorems available for bounding the opti-
mization time, there is no corresponding theorem for making a fixed-budget
analysis apart from one for the multiplicative case given in [13]. With this paper
we aim to provide several such drift theorems, applicable in different settings
and with a different angle of conclusions. In each our main goal is to provide an
upper bound on the distance to the optimum after t iterations, for t less than the
expected optimization time. Upper bounds alone do not allow for a fair compar-
ison of algorithms, since a bad upper bound does not exclude the possibility of a
good performance of an algorithm; for this, we require lower bounds. However,
one of our techniques also allows us to derive lower bounds. Furthermore, when
upper and lower bounds are close together we can conclude that the derived
bounds are correspondingly tight, highlighting the quality of our methods.

We start, in Sect. 3, by giving a theorem which iteratively applies local drift
estimates to derive a global drift estimate after t iterations. Crucial for this
theorem is that the drift condition is unlimited time, by which we mean that
the drift condition has to hold for all times t, not just (which is the typical
case in the literature for drift theorems) those before the optimum is hit. This
theorem is applicable in the case where there is no optimum (and optimization
progresses indefinitely) and in the case that, in the optimum, the drift is 0.

650 T. Kötzing and C. Witt

In order to bypass these limitations we also give a variant in Sect. 3 which
allows for limited time drift, where the drift condition only needs to hold before
the optimum is hit; however, in this case we pick up an additional error term in
the result, derived from the possibility of hitting the optimum within the allowed
time budget of t. Thus, in order to apply this theorem, one will typically need
concentrations bounds for the time to hit the optimum.

For both these theorems, the drift function (bounding the drift) has to be
convex and greed-admitting, which intuitively says that being closer to the goal
is always better in terms of the expected state after an additional iteration,
while search points closer to the goal are required to have weaker drift. These
conditions are fulfilled in many sample applications; as examples we give analy-
ses of the (1+1) EA on LeadingOnes and OneMax. Note that these analyses
seem to be rather tight, but we do not offer any lower bounds, since our tech-
niques crucially only apply in one direction (owing to an application of Jensen’s
Inequality to convex drift functions).

In Sect. 4 we use a potential-based approach and give a variable drift the-
orem for fixed-budget analysis. As a special case, where the drift function is
constant, we give an additive drift theorem for fixed-budget analysis and derive
a result for (1+1) EA on LeadingOnes. In general, the approach bounds the
expected value of the potential but not of the fitness. Therefore, we also study
how to derive a bound on the fitness itself, both from above and from below, by
inverting the potential function and using tail bounds on its value. The approach
uses a generalized theorem showing tail bounds for martingale differences, which
overcomes a weakness of existing martingale difference theorems in our specific
application. This generalization may be of independent interest.

Our results allow for giving strong fixed-budget results which were not obtain-
able before. For the (1+1) EA on LeadingOnes with a budget of t = o(n2)
iterations, the original paper [7] gives a lower bound of 2t/n − o(t/n) for the
expected fitness after t iterations, which we recover with a simple proof in
Theorem 8. Our theorem also allows budgets closer to the expected optimization
time, where we get a lower bound of n ln(1 + 2t/n2) − O(1).

For the (1+1) EA on OneMax, no concrete formula for a bound on the fitness
value after t iterations was known: The original work [7] could only handle RLS
on OneMax, not the (1+1) EA. The multiplicative drift theorem of [13] allows
for deriving a lower bound of n/2 + t/(2e) for t = o(n) using a multiplicative
drift constant of (1 − 1/n)n/n. Since our drift theorem allows for variable drift,
we can give a bound of n/2+ t/(2

√
e)−o(t) for the (1+1) EA on OneMax with

t = o(n) (see Theorem 7). Note that [13] also gives bounds for values of t closer
to the expected optimization time.

Furthermore, we are not only concerned with expected values but also give
strong concentration bounds. We consider the (1+1) EA on LeadingOnes and
show that the fitness after t steps is strongly concentrated around its expectation
(see Theorem 12). The error term obtained is asymptotically smaller than in the
previous work [1] and the statement is also less complex.

Improved Fixed-Budget Results via Drift Analysis 651

Fixed-budget results that hold with high probability are crucial for the anal-
ysis of algorithm configurators [4]. These configurators test different algorithms
for fixed budgets in order to make statements about their appropriateness in
a given setting. Thus, we believe that this work also contributes to the better
understanding of the strengths and weaknesses of algorithm configurators.

The remainder of the paper is structured as follows. Next we give mathemat-
ical preliminaries, covering problem and algorithm definitions as well as some
well-known results from the literature which we require later. In Sect. 3 we give
our direct fixed-budget drift theorems, as well as its applications to the (1+1) EA
on OneMax and LeadingOnes. In Sect. 4 we give a variable fixed-budget drift
theorem and its corollary for additive drift. We show how to apply this variable
fixed-budget drift theorem to obtain very strong bounds in Sect. 5. We conclude
in Sect. 6. Due to space limitations, all proofs have been removed from this
article. A full technical report is available at [11].

2 Preliminaries

The concrete objective functions we are concerned with in this paper are One-
Max and LeadingOnes, studied in a large number of papers. These two func-
tions are defined as follows. For a fixed natural number n, the functions map bit
strings x ∈ {0, 1}n of length n to natural numbers such that

OneMax(x) =
n∑

i=1

xi

is the number of 1 s in the bit string x and

LeadingOnes(x) =
n∑

i=1

i∏

j=1

xj

is the number of leading 1s in x before the first 0 (if any, n otherwise).
We consider for application only one algorithm, the well-known (1+1) EA

given in Algorithm 1 below.
For any function f and i ≥ 0, we let f i denote the i-times self-composition

of f (with f0 being the identity).

Algorithm 1: The (1+1) EA for maximizing function f

1 choose x from {0, 1}n uniformly at random;
2 while optimum not reached do
3 y ← x;
4 for i = 1 to n do
5 with probability 1/n: yi ← 1 − yi;

6 if f(y) ≥ f(x) then x ← y;

652 T. Kötzing and C. Witt

2.1 Known Results for the (1+1) EA on LeadingOnes

We will use the following concentration result from [1], bounding the optimiza-
tion time of the (1+1) EA on LeadingOnes.

Theorem 1 ([1, Theorem 7]). For all d ≤ 2n2, the probability that the opti-
mization time of the (1+1) EA on LeadingOnes deviates from its expectation
of (1/2)(n2−n)((1+1/(n−1))n−1) by at least d, is at most 4 exp(−d2/(20e2n3)).

The following lemma collects some important and well-known results for the
optimization process of the (1+1) EA on LeadingOnes.

Lemma 2. Consider the (1+1) EA on LeadingOnes, let xt denote its search
point at time t and Xt = n − LeadingOnes(xt) the fitness distance. Then

1. E(Xt − Xt+1 | Xt) = (2 − 21−Xt)(1 − 1/n)n−Xt/n
2. Pr(Xt+1 �= Xt | Xt;T > t) = (1 − 1/n)n−Xt 1

n

3. For j ≥ 1, Pr(Xt+1 = Xt − j) ≤ 1
n

(
1
2

)j−1

4. Gt := Xt−Xt+1 is a random variable with support 0, . . . , Xt and the following
conditional distribution on Gt ≥ 1:
– Pr(Gt = i) = (1/2)i for i < Xt

– Pr(Gt = Xt) = (1/2)Xt−1

For the moment-generating function of this Gt (conditional on Gt ≥ 1) it
holds that

E(eηGt | Xt) =
(eη/2)Xt(1 − eη) + (eη/2)

1 − eη/2
.

5. The expected optimization time equals n2−n
2

((
1 + 1

n−1

)n

− 1
)
, which is

e−1
2 n2 ± O(n).

3 Direct Fixed-Budged Drift Theorems

In this section we give a drift theorem which gives a fixed-budget result with-
out the detour via first hitting times. The idea is to focus on drift which gets
monotonically weaker as we approach the optimum, but where being closer to
the optimum is still better in terms of drift. To this end, we make the following
definition.

Definition 3. We say that a drift function h : S → R>0 is greed-admitting if
id − h (the function x �→ x − h(x)) is monotone non-decreasing.

Intuitively, this formalizes the idea that being closer to the goal is always better
(i.e. greed is good). Greed could be bad, if from one part of the search space,
the drift is much higher than when being a bit closer, so that being a bit closer
does not balance out the loss in drift. Note that any given differentiable h is
greed-admitting if and only if h′ ≤ 1.

Typical drift functions are greed-admitting. For example, if we drift on inte-
gers, in many situations drift is less than 1, while being closer means being at

Improved Fixed-Budget Results via Drift Analysis 653

least one step closer, so being closer is always better in this sense. An example
monotone process on {0, 1, 2} which has a drift which is not greed-admitting is
the following: X0 is 2 and the process moves to any of the states 0, 1, 2 uniformly.
State 0 is the target state, from state 1 there is only a very small probability to
progress to 0 (say 0.1). Then it is better to stay in state 2 than be trapped in
state 1, if the goal is to progress to state 0.

We now give two different versions of the direct fixed-budget drift theorem.
The first considers unlimited time, that is, the situation where drift carries on for
an arbitrary time (and does not stop once a certain threshold value is reached).
This is applicable in situations where there is no end to the process (for example
for random walks on the line) or when the drift eventually goes all the way down
to 0 so that the drift condition holds vacuously even when no progress is possibly
any more (this is for example the case for multiplicative drift, where the drift is δ
times the current value, which is naturally 0 once 0 has been reached). Note that
this is a very strong requirement of the theorem, leading to a strong conclusion.

A special case of the following theorem is given in [13], where drift is neces-
sarily multiplicative.

Theorem 4 (Direct Fixed-Budget Drift, unlimited time). Let Xt, t ≥ 0,
be a stochastic process on S ⊆ R, adapted to a filtration Ft. Let h : S → R≥0 be
a convex and greed-admitting function such that we have the drift condition

(D-ut) E(Xt − Xt+1 | Ft) ≥ h(Xt).

Define h̃(x) = x − h(x). Thus, the drift condition is equivalent to

(D-ut’) E(Xt+1 | Ft) ≤ h̃(Xt).

We have that, for all t ≥ 0,1

E(Xt | F0) ≤ h̃t(X0)

and, in particular,
E(Xt) ≤ h̃t(E(X0)).

Now we get to the second version of the theorem, considering the more fre-
quent case where no guarantee on the drift can be given once the optimum has
been found. This weaker requirement leads to a weaker conclusion.

Theorem 5 (Direct Fixed-Budget Drift, limited time). Let Xt, t ≥ 0,
be a stochastic process on S ⊆ R, 0 = min S, adapted to a filtration Ft. Let
T := min{t ≥ 0 | Xt = 0} and h : S → R≥0 be a differentiable, convex
and greed-admitting function such that h̃′(0) ∈]0, 1] and we have the drift
condition

(D-lt) E(Xt − Xt+1 | Ft; t < T) ≥ h(Xt).

Define h̃(x) = x − h(x). Thus, the drift condition is equivalent to

1 Recall from the preliminaries that f i is the i-times self-composition of a function f .

654 T. Kötzing and C. Witt

(D-lt’) E(Xt+1 | Ft; t < T) ≤ h̃(Xt).

We have that, for all t ≥ 0,

E(Xt | F0) ≤ h̃t(X0) +
h̃(0)
h̃′(0)

and, in particular,

E(Xt) ≤ h̃t(E(X0)) − h̃(0)
h̃′(0)

· Pr(t ≥ T | F0).

With the following theorem we give a general way of iterating a greed-
admitting function, as necessary for the application of the previous two the-
orems. From this we can see the similarity of this approach to the method of
variable drift theory where the inverse of h is integrated over, see Theorem 9
and the discussion about drift theory in general in [12].

Theorem 6. Let h be greed-admitting and let h̃ = id − h. Then we have, for all
starting points n and all target points m < n and all time budgets t,

if t ≥
n−1∑

i=m

1
h(i)

then h̃t(n) ≤ m.

3.1 Application to OneMax

In this section we show how we can apply Theorem 4 by using the optimization of
the (1+1) EA on OneMax as an example (where we have multiplicative drift).

Theorem 7. Let Vt be the number of 1s which the (1+1) EA on OneMax has
found after t iterations of the algorithm. Then we have, for all t,

E(Vt) ≥
{

n
2 + t

2
√

e
− O(1), if t = O(

√
n);

n
2 + t

2
√

e
(1 − o(1)), if t = o(n).

Furthermore, for all t, we have E(Vt) ≥ n(1 − exp(−t/(en))/2).

3.2 Application to LeadingOnes

In this section we want to use Theorem 5 to the progress of the (1+1) EA on
LeadingOnes. The result is summarized in the following theorem.

Theorem 8. Let Vt be the number of leading 1s which the (1+1) EA on Leadin-
gOnes has found after t iterations of the algorithm. We have, for all t,

E(Vt) ≥

⎧
⎪⎨

⎪⎩

2t
n − O(1), if t = O(n3/2);
2t
n · (1 − o(1)), if t = o(n2);
n ln(1 + 2t

n2) − O(1), if t ≤ e−1
2 n2 − n3/2.

Improved Fixed-Budget Results via Drift Analysis 655

4 Variable Drift Theorem for Fixed Budget

We now turn to an alternative approach to derive fixed-budget results via drift
analysis. Our method is based on variable drift analysis that was introduced to
the analysis of randomized search heuristics by Johannsen [9]. Crucially, variable
drift analysis applies a specific transformation, the so-called potential function g,
to the state space. Along with bounds on the hitting times, we obtain the fol-
lowing theorem estimating the expected value of the potential function after t
steps. Subsequently, we will discuss how this information can be used to analyze
the untransformed state.

Theorem 9. Let Xt, t ≥ 0, be a stochastic process, adapted to a filtration Ft,
on S := {0} ∪ R≥xmin for some xmin > 0. Let T := min{t ≥ 0 | Xt = 0} and
h : S → R>0 be a non-decreasing function such that E(Xt − Xt+1 | Ft; t < T) ≥
h(Xt). Define g : S → R by

g(x) :=

{
xmin

h(xmin)
+

∫ x

xmin

1
h(z) dz if x ≥ xmin

0 otherwise
.

Then it holds that

E(g(Xt) | F0) ≤ g(X0) −
t−1∑

s=0

Pr(s < T).

4.1 Additive Drift as Special Case

A special case of variable drift is additive drift, when the drift function h is
constant.

Theorem 10. Let Xt, t ≥ 0, be a stochastic process, adapted to a filtration
Ft, on S := R≥0. Let T := min{t ≥ 0 | Xt = 0} and δ ∈ R>0 be such that
E(Xt − Xt+1 | Ft; t < T) ≥ δ. Then we have

E(Xt | F0) ≤ X0 − δ

t−1∑

s=0

Pr(s < T).

The theorem is a corollary to Theorem 9 by using xmin = δ, the smallest value
for which the condition of a drift of at least δ can still be obtained, and thus the
smallest value (other than 0) that the process can attain.

As a sample application, we can now derive an estimate of the best value
found by the (1+1) EA on LeadingOnes within t steps, using the concentration
result from [1] given in Theorem 1.

Theorem 11. Let Vt be the number of leading 1s which the (1+1) EA on
LeadingOnes has found after t iterations of the algorithm. Then, for all
t ≤ e−1

2 n2 − n3/2 log(n), we have

E(Vt) ≥ 2t

en
− O(1).

656 T. Kötzing and C. Witt

Note that the result was proven very easily with a direct application of the
additive version of the fixed-budget drift theorem in combination with a strong
result on concentration. The price paid for this simplicity is that the lead con-
stant in this time bound is not tight, as can be seen by comparing with the
results given in Theorem 8.

5 Variable Drift and Concentration Inequalities

The expected g(Xt)-value derived in Theorem 9 is not very useful unless it
allows us to make conclusions on the underlying Xt-value. The previous appli-
cation in Sect. 4.1 only gives tight bounds in case that the drift is more or less
constant throughout the search space. This is not the case for OneMax and
LeadingOnes where the drift increases with the distance to the optimum (e. g.,
for OneMax the drift is Θ(1/n) at distance 1 and Θ(1) as distance n/2; for
LeadingOnes the drift can vary by a term of roughly e). Hence, looking back
into Theorem 9, we now are interested in characterizing g(Xt) more precisely
than just in terms of expected value. If we manage to establish concentration of
g(Xt) then we can (after inverting g) derive a maximum of the Xt-value that
holds with sufficient probability. Our main result achieved along this path is the
following one.

Theorem 12. Let Vt be the number of leading 1s which the (1+1) EA on
LeadingOnes has found after t iterations. Then for t = ω(n log n) and t ≤
(e − 1)n2/2 − cn3/2

√
log n, where c is a sufficiently large constant the following

statements hold. (a) With probability at least 1 − 1/n3,

−n ln
(
1 − 2t/n2 + O(

√
t log n/n3/2)

)
≤ Vt

−n ln
(
1 − 2t/n2 − O(

√
t log n/n3/2)

)
≥ Vt.

(b) E(Vt) = −n ln(1 − 2t/n2 + O(
√

t log n/n3/2)).

To compare with previous work, we note that the additive error turns out as
O(

√
t log n/n1/2). This is asymptotically smaller than the additive error term of

order Ω(n3/2+ε) that appears in the fixed-budget statements of [1] and moreover,
it depends on t. Also, we think that the formulation of our statement is less
complex than in that paper.

The proof of Theorem 12 overcomes several technical challenges. The first
idea is to apply established concentration inequalities for stochastic processes.
Since (after a reformulation discussed below) the process of g-values describes
a (super)martingale, it is natural to take the method of bounded martingale
differences. However, since there is no ready-to-use theorem for all our specific
martingales, we present a generalization of martingale concentration inequalities
in the following subsection Sect. 5.1. The concrete application is then given in
Sects. 5.2 onwards.

Improved Fixed-Budget Results via Drift Analysis 657

5.1 Tail Bounds for Martingale Differences

The classical method of bounded martingale differences [14] considers a
(super)martingale Yt, t ≥ 0, and its corresponding martingale differences
Dt = Yt+1−Yt. Given certain boundedness conditions for Dt (e. g., that |Dt| ≤ c
for a constant c almost surely), it is shown that the sum of martingale differences∑t−1

i=0 Di = Yt − Y0 does not deviate much from its expectation Y0 (resp. is not
much bigger in the case of supermartingales). This statement remains essentially
true if Dt is allowed to have unbounded support but exhibits a strong concen-
tration around its expected value. Usually, this concentration is formulated in
terms of a so-called subgaussian (or, similarly, subexponential) property [3,10].
Roughly speaking, this property requires that the moment-generating function
(mgf.) of the differences can be bounded as E(eλDt | Ft) ≤ eλ2ν2

t /2 for a certain
parameter νt and all λ < 1/bt, where bt is another parameter. In particular, the
bound has to remain true when λ becomes arbitrarily small.

In one of our concrete applications of the martingale difference technique,
the inequality E(eλDt | Ft) ≤ eλ2ν2

t /2 is true for certain values of λ below a
threshold 1/b∗, but does not hold if λ is much smaller than 1/b∗. We therefore
show that the concentration of the sums of martingale differences to some extent
remains true if the inequality only holds for λ ∈ [1/a∗, 1/b∗] where a∗ > b∗ is
another parameter. The approach uses well-known arguments for the proof of
concentration inequalities. Here, we were inspired by the notes [16], which require
the classical subexponential property, though.

Theorem 13. Let Yt, t ≥ 0, be a supermartingale, adapted to a filtration Ft,
and let Dt = Yt+1 −Yt be the corresponding martingale differences. Assume that
there are 0 < b2 < b1 ≤ ∞ and a sequence νt, t ≥ 0, such that for λ ∈ [1/b1, 1/b2]
it holds that E(eλDt | Ft) ≤ eλ2ν2

t /2. Then for all t ≥ 0 it holds that

Pr(Yt − Y0 ≥ d) ≤
{

e−d/(2b2) if d ≥
∑t−1

i=0 ν2
i

b2

e−d2/(2
∑t−1

i=0 ν2
i) if

∑t−1
i=0 ν2

i

b1
≤ d <

∑t−1
i=0 ν2

i

b2

The theorem holds analogously for submartingales with respect to the tail bound
Pr(Yt − Y0 ≤ −d).

5.2 Preparing an Upper Tail Bound via the Martingale Difference
Method

We now return to Theorem 9 and would like to show concentration of g(Xt)
in order to show a bound for Xt that holds with sufficiently high probability.
Note that by the statement of the theorem, we immediately have that Yt :=
g(Xt) +

∑t−1
s=0 Pr(T > s) is a supermartingale. By bounding the probability of

Yt ≥ d for arbitrary t ≥ 0 and d ≥ 0, i. e., establishing concentration of the
supermartingale Yt via Theorem 13, and inverting g, we will obtain a bound on
the probability of the event g(Xt) ≥ E(g(Xt)).

658 T. Kötzing and C. Witt

As we want to prove Theorem 12, the application is again the (1+1) EA
on the LeadingOnes function, so Xt = n − LeadingOnes(xt) is the fitness
distance of the LeadingOnes-value at time t from the target.

Defining h(Xt) := E(Xt − Xt+1 | Xt) according to Lemma 2 and g(Xt) =
1/h(1) +

∫ Xt

1
1/h(z) dz according to Lemma 9, we will establish the following

bound on the moment-generating function (mgf.) of the drift of our concrete g.

Lemma 14. Let T denote the optimization time of the (1+1) EA on Leadin-

gOnes. If λ ≤ 1/(2en) then E(eλ(g(Xt+1)−g(Xt)+Pr(T>t)) | Xt) = eO(λ2n).

Looking into Theorem 13 the required subexponential property of the mar-
tingale difference Dt has been proven with ν = O(

√
n) and λ ≤ 1/(2en) = 1/b∗.

Before we formally apply this lemma, we also establish concentration in the other
direction.

5.3 Preparing a Lower Tail Bound

We will now complement the upper tail bound for g that we prepared in the pre-
vious subsection with a lower tail bound. The aim is again to apply Theorem 13,
this time with respect to the sequence Yt = g(Xt) +

∑t−1
s=0 Pr(T > s) + r(t, n),

where Xt = n − LeadingOnes(xt) is still the fitness distance of the Leadin-
gOnes-value at time t from the target and r(t, n) is an “error term” that we will
prove to be O(1/n) if g(Xt) > log n. Moreover, r(t, n) = 0 if g(Xt) = 0. The first
step is to prove that Yt is a submartingale, i. e., E(Yt+1 | Yt) ≥ Yt. Afterwards,
we bound the mgf. of Dt = Yt − Yt−1 = g(Xt+1) − g(Xt) + Pr(T > t) + r(t, n).

Lemma 15. The sequence Yt = g(Xt) +
∑t−1

s=0 Pr(T > s) + r(t, n) is a sub-
martingale with r(t, n) = O(1/n) for Xt > log n.

Recall that the aim is to apply Theorem 13 with respect to the submartingale
sequence Yt = g(Xt)+

∑t−1
s=0 Pr(T > s)+r(t, n). To this end, we shall bound the

mgf. of Dt = Yt − Yt−1 = g(Xt+1) − g(Xt) + Pr(T > t) + r(t, n) in the following
way.

Lemma 16. The mgf. of Dt = Yt−Yt−1 = g(Xt+1)−g(Xt)+Pr(T > t)+r(t, n)
satisfies E(eλDt | Xt) = eO(λ2n) for all λ ∈ [1/n2, 1/(2en)].

Hence, we can satisfy the assumptions of Theorem 13 with b2 = 2en and
b1 = n2. We will apply this theorem in the following subsection, where we put
everything together.

5.4 Main Concentration Result – Putting Everything Together

In the previous subsections we have derived (w. r. t. LeadingOnes) that the
sequence Δ

(�)
t = g(Xt) − g(Xt+1) +

∑t−1
s=0 Pr(T > s) is a supermartingale and

the sequence Δ
(h)
t = g(Xt)−g(Xt+1)+

∑t−1
s=0 Pr(T > s)+r(t, n), where r(t, n) =

O(1/n), is a submartingale. We also know from Theorem 9 that E(g(Xt) | F0) ≤

Improved Fixed-Budget Results via Drift Analysis 659

g(X0) − ∑T−1
s=0 Pr(T > s). Hence, using Theorem 13 with respect to the Δ

(�)
t -

sequence, choosing b1 = ∞ and b2 = 2en according to our analysis of the mgf., we
obtain (since ν2 = O(n)) the first statement of the following theorem. Its second
statement follows by applying Theorem 13 with respect to the Δ

(h)
t -sequence,

choosing b2 = 2en and b1 = n2.

Theorem 17.

Pr
(
g(Xt) ≥ E(g(Xt)) + d

) ≤
{

e−d/(4en), if d ≥ Ct;
e−Ω(d2/(tn)), otherwise,

where C = ν2/(4en) = O(1). Moreover,

Pr
(
g(Xt) ≤ E(g(Xt)) − d − tr(t, n)

) ≤
{

e−d/(4en), if d ≥ Ct;
e−Ω(d2/(tn)), if C′t

n ≤ d < Ct;

where C = ν2/(4en) = Θ(1) and C ′ = ν2/n = Θ(1).

As mentioned above, Theorem 9 gives us an upper bound on E(g(Xt)) but we
would like to know an upper bound on E(Xt). Unfortunately, since g is concave,
it does not hold that E(Xt) ≤ g−1(E(g(Xt))). However, using the concentration
inequalities above, we can show that E(Xt) is not much bigger than the right-
hand side of this wrong estimate. Given t > 0, we choose a d∗ > 0 for the tail
bound such that Pr(g(Xt) > E(g(Xt)) + d∗) ≤ 1/n3. If g(Xt) ≤ E(g(Xt)) + d∗,
the concavity of g implies that the E(Xt)-value is maximized if g(Xt) takes
the value E(g(Xt)) + d∗ with probability E(g(Xt))

E(g(Xt))+d∗ and is 0 otherwise. Since
g(Xt) = O(n2), we altogether have

E(Xt) ≤ 1
n3

O(n2) + g−1(E(g(Xt)) + d∗)
E(g(Xt))

E(g(Xt)) + d∗

= g−1(E(g(Xt)) + d∗)
E(g(Xt))

E(g(Xt)) + d∗ + o(1).

The omitted proof of Theorem 12 makes this idea concrete.

6 Conclusions

We have described two general approaches that derive fixed-budget results via
drift analysis. The first approach is concerned with iterating drifts either in an
unbounded time scenario, or, using bounds on hitting times, in the scenario that
the underlying process stops at some target state. Applying this approach to the
OneMax or LeadingOnes functions, we obtain strong lower bounds on the
expected fitness value after a given number of iterations. The second approach
is based on variable drift analysis and tail bounds for martingale differences.
Exemplified for the LeadingOnes function, this technique allows us to derive
statements that are more precise than the previous state of the art. We think
that our drift theorems can be useful for future fixed-budget analyses.

660 T. Kötzing and C. Witt

References

1. Doerr, B., Jansen, T., Witt, C., Zarges, C.: A method to derive fixed budget results
from expected optimisation times. In: Proceedings of GECCO 2013, pp. 1581–1588.
ACM Press (2013)

2. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box
analysis. Theor. Comput. Sci. 801, 1–34 (2020)

3. Fan, X., Grama, I., Liu, Q.: Exponential inequalities for martingales with applica-
tions. Electron. J. Probab. 20, 22 (2015)

4. Hall, G.T., Oliveto, P.S., Sudholt, D.: On the impact of the cutoff time on the
performance of algorithm configurators. In: Proceedings of GECCO 2019, pp. 907–
915. ACM Press (2019)

5. He, J., Jansen, T., Zarges, C.: Unlimited budget analysis of randomised search
heuristics. CoRR, abs/1909.03342 (2019). http://arxiv.org/abs/1909.03342

6. Jansen, T.: Analysing stochastic search heuristics operating on a fixed budget.
Theory of Evolutionary Computation. NCS, pp. 249–270. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-29414-4 5

7. Jansen, T., Zarges, C.: Fixed budget computations: a different perspective on run
time analysis. In: Proceedings of GECCO 2012, pp. 1325–1332. ACM Press (2012)

8. Jansen, T., Zarges, C.: Reevaluating immune-inspired hypermutations using the
fixed budget perspective. IEEE Trans. Evol. Comput. 18(5), 674–688 (2014)

9. Johannsen, D.: Random combinatorial structures and randomized search heuris-
tics. Ph.D. thesis, Universität des Saarlandes, Saarbrücken, Germany and the Max-
Planck-Institut für Informatik (2010)

10. Kötzing, T.: Concentration of first hitting times under additive drift. Algorithmica
75, 490–506 (2016)

11. Kötzing, T., Witt, C.: Improved fixed-budget results via drift analysis (2020).
http://arxiv.org/abs/2006.07019

12. Lengler, J.: Drift analysis. Theory of Evolutionary Computation. NCS, pp. 89–131.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4 2

13. Lengler, J., Spooner, N.: Fixed budget performance of the (1+1) EA on linear
functions. In: Proceedings of FOGA 2015, pp. 52–61. ACM Press (2015)

14. McDiarmid, C.: Concentration. In: Habib, M., McDiarmid, C., Ramirez-Alfonsin,
J., Reed, B. (eds.) Probabilistic Methods for Algorithmic Discrete Mathematics.
Algorithms and Combinatorics, vol. 16, pp. 195–247. Springer, Heidelberg (1998).
https://doi.org/10.1007/978-3-662-12788-9 6

15. Nallaperuma, S., Neumann, F., Sudholt, D.: Expected fitness gains of randomized
search heuristics for the traveling salesperson problem. Evol. Comput. 25(4), 673–
705 (2017)

16. Wainwright, M.: Basic tail and concentration bounds. Technical report (2015).
Lecture Notes, University of Berkeley. https://www.stat.berkeley.edu/∼mjwain/
stat210b/Chap2 TailBounds Jan22 2015.pdf

http://arxiv.org/abs/1909.03342
https://doi.org/10.1007/978-3-030-29414-4_5
http://arxiv.org/abs/2006.07019
https://doi.org/10.1007/978-3-030-29414-4_2
https://doi.org/10.1007/978-3-662-12788-9_6
https://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf
https://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf

On Averaging the Best Samples
in Evolutionary Computation

Laurent Meunier1,2(B), Yann Chevaleyre2, Jeremy Rapin1,
Clément W. Royer2, and Olivier Teytaud1

1 Facebook Artificial Intelligence Research (FAIR), Paris, France
laurentmeunier@fb.com

2 LAMSADE, CNRS, Université Paris-Dauphine, Université PSL, Paris, France

Abstract. Choosing the right selection rate is a long standing issue
in evolutionary computation. In the continuous unconstrained case,
we prove mathematically that a single parent μ = 1 leads to a sub-
optimal simple regret in the case of the sphere function. We provide a
theoretically-based selection rate μ/λ that leads to better progress rates.
With our choice of selection rate, we get a provable regret of order O(λ−1)
which has to be compared with O(λ−2/d) in the case where μ = 1. We
complete our study with experiments to confirm our theoretical claims.

1 Introduction

In evolutionary computation, the selected population size often depends linearly
on the total population size, with a ratio between 1/4 and 1/2: 0.270 is proposed
in [4,5,10] suggest 1/4 and 1/2. However, some sources [8] recommend a lower
value 1/7. Experimental results in [16] and theory in [9] together suggest a ratio
min(d, λ/4) with d the dimension, i.e. keep a population size at most the dimen-
sion. [12] suggests to keep increasing μ besides that limit, but slowly enough so
that rule μ = min(d, λ/4) would be still nearly optimal. Weighted recombination
is common [1], but not with a clear gap when compared to truncation ratios [11],
except in the case of large population size [17]. There is, overall, limited theory
around the optimal choice of μ for optimization in the continuous setting. In the
present paper, we focus on a simple case (sphere function and single epoch), but
prove exact theorems. We point out that the single epoch case is important by
itself - this is fully parallel optimization [2,6,13,14]. Experimental results with
a publicly available platform support the approach.

2 Theory

We consider the case of a single batch of evaluated points. We generate λ points
according to some probability distribution. We then select the μ best and aver-
age them. The result is our approximation of the optimum. This is therefore an
extreme case of evolutionary algorithm, with a single population; this is com-
monly used for e.g. hyperparameter search in machine learning [3,6], though in
most cases with the simplest case μ = 1.
c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 661–674, 2020.
https://doi.org/10.1007/978-3-030-58115-2_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_46&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_46

662 L. Meunier et al.

2.1 Outline

We consider the optimization of the simple function x �→ ‖x−y‖2 for an unknown
y ∈ B(0, r). In Sect. 2.2 we introduce notations. In Sect. 2.3 we analyze the case
of random search uniformly in a ball of radius h centered on y. We can, therefore,
exploit the knowledge of the optimum’s position and assume that y = 0. We then
extend the results to random search in a ball of radius r centered on 0, provided
that r >‖y‖ and show that results are essentially the same up to an exponentially
decreasing term (Sect. 2.4).

2.2 Notations

We are interested in minimizing the function f : x ∈ R
d �→ ‖x − y‖2 for a fixed

unknown y in parallel one-shot black box optimization, i.e. we sample λ points
X1, ...,Xλ from some distribution D and we search for x� = arg minx f(x). In
what follows we will study the sampling from B(0, r), the uniform distribution
on the �2-ball of radius r; w.l.o.g. B(y, r) will also denote the �2-ball centered in
y and of radius r.
We are interested in comparing the strategy “μ-best” vs “1-best”. We denote
X(1), ...,X(λ), the sorted values of Xi i.e. (1),. . . ,(λ) are such that f(X(1)) ≤ ... ≤
f(X(λ)). The “μ-best” strategy is to return X̄(μ) = 1

μ

∑μ
i=1 X(i) as an estimate

of the optimum and the “1-best” is to return X(1). We will hence compare :
E

[
f

(
X̄(μ)

)]
and E

[
f

(
X(1)

)]
. We recall the definition of the gamma function

Γ : ∀z > 0, Γ (z) =
∫ ∞
0

tz−1e−tdt, as well as the property Γ (z + 1) = zΓ (z).

2.3 When the Center of the Distribution is also the Optimum

In this section we assume that y = 0 (i.e. f(x) = ‖x‖2) and consider sampling in
B(0, r) ⊂ R

d. In this simple case, we show that keeping the best μ > 1 sampled
points is asymptotically a better strategy than selecting a single best point. The
choice of μ will be discussed in Sect. 2.4.

Theorem 1. For all λ > μ ≥ 2 and d ≥ 2, r > 0, for f(x) = ‖x‖2,
EX1,...,Xλ∼B(0,r)

[
f

(
X̄(μ)

)]
< EX1,...,Xλ∼B(0,r)

[
f

(
X(1)

)]
.

To prove this result, we will compute the value of E
[
f

(
X̄(μ)

)]
for all λ and

μ. The following lemma gives a simple way of computing the expectation of a
function depending only on the norm of its argument.

Lemma 2. Let d ∈ N
∗. Let X be drawn uniformly in B(0, r) the d-dimensional

ball of radius r. Then for any measurable function g : R → R, we have

EX∼B(0,r) [g (‖X‖)] =
d

rd

∫ r

0

g (α) αd−1dα.

In particular, we have EX∼B(0,r)

[
‖X‖2

]
= d

d+2 × r2.

On Averaging the Best Samples in Evolutionary Computation 663

Proof. Let V (r, d) be the volume of a ball of radius r in R
d and S(r, d) be the

surface of a sphere of radius r in R
d. Then ∀r > 0, V (r, d) = πd/2

Γ(d
2+1)rd and

S(r, d − 1) = 2πd/2

Γ(d
2)

rd−1. Let g : R → R be a continuous function. Then:

EX∼B(0,r) [g (‖X‖)] =
1

V (r, d)

∫

x:‖x‖≤r

g(‖x‖)dx

=
1

V (r, d)

∫ r

α=0

∫

θ:‖θ‖=α

g(α)dθdα

=
1

V (r, d)

∫ r

α=0

g(α)S(α, d − 1)dα

=
S(1, d − 1)

V (r, d)

∫ r

α=0

g(α)αd−1dα =
d

rd

∫ r

α=0

g(α)αd−1dα.

So, EX∼B(r)

[
‖X‖2

]
=

d

rd

∫ r

α=0

α2αd−1dα

=
d

rd

[
αd+2

d + 2

]r

0

=
d

d + 2
r2.

�
We now use the previous lemma to compute the expected regret [7] of the average
of the μ best points conditionally to the value of f(X(μ+1)). The trick of the proof
is that, conditionally to f(X(μ+1)), the order of X(1), ...,X(μ) has no influence
over the average. Computing the expected regret conditionally to f(X(μ+1)) thus
becomes straightforward.

Lemma 3. For all d > 0, r2 > h > 0 and λ > μ ≥ 1, for f(x) = ‖x‖2,

EX1,...,Xλ∼B(y,r)

[
f

(
X̄(μ)

) | f(X(μ+1)) = h
]

=
h

μ
× d

d + 2
.

Proof. Let us first compute E
[
f

(
X̄(μ)

) | f(X(μ+1)) = h
]
. Note that for any func-

tion g : Rd → R and distribution D, we have

EX1...Xλ∼D
[
g(X̄(μ)) | f(X(μ+1)) = h

]

= EX1...Xμ∼D

[

g

(
1
μ

μ∑

i=1

Xi

)

| X1 . . . Xμ ∈ {x : f(x) ≤ h}
]

= EX1...Xμ∼Dh

[

g

(
1
μ

μ∑

i=1

Xi

)]

,

664 L. Meunier et al.

where Dh is the restriction of D to the level set {x : f(x) ≤ h}. In our setting,
we have D = B(0, r) and Dh = B(0,

√
h). Therefore,

EX1,...,Xλ∼B(0,r)

[
f

(
X̄(μ)

) | f(X(μ+1)) = h
]

= EX1,...,Xλ∼B(0,r)

[‖X̄(μ)‖2 | f(X(μ+1)) = h
]

= EX1...Xμ∼B(0,
√

h)

[

‖ 1
μ

μ∑

i=1

Xi‖2
]

=
1
μ2

EX1...Xμ∼B(0,
√

h)

⎡

⎣
μ∑

i,j=1

XT
i Xj

⎤

⎦

=
1
μ2

μ∑

i,j=1,i 	=j

EXi...Xj∼B(0,
√

h)

[
XT

i Xj

]

+
1
μ2

μ∑

i=1

EXi∼B(0,
√

h)

[‖Xi‖2
]

=
1
μ
EX∼B(0,

√
h)

[‖X‖2] .

By Lemma 2, we have: EX∼B(0,
√

h)

[‖X‖2] = d
d+2h. Hence

EX1,...,Xλ∼B(0,r)

[
f

(
X̄(μ)

) | f(X(μ+1)) = h
]

= d
d+2

h
μ .
�

The result of Lemma 3 shows that E
[
f

(
X̄(μ)

) | f(X(μ+1)) = h
]

depends linearly
on h. We now establish a similar dependency for E

[
f

(
X(1)

) | f(X(μ+1)) = h
]
.

Lemma 4. For d > 0, h > 0, λ > μ ≥ 1, and f(x) = ‖x‖2,

EX1,...,Xλ∼B(0,r)

[
f

(
X(1)

) | f(X(μ+1)) = h
]

= h
Γ (d+2

d)Γ (μ + 1)
Γ (μ + 1 + 2/d)

.

Proof. First note that using the same argument as in Lemma 3, ∀β ∈ (0, h]:

PX1...Xλ∼B(0,
√

h)

[
f

(
X(1)

)
> β | f(X(μ+1)) = h

]

= PX1...Xμ∼B(0,
√

h) [f (X1) > β, . . . , f (Xμ) > β]

= PX∼B(0,
√

h) [f (X) > β]μ .

Recall that the volume of a d-dimensional ball of radius r is proportional to rd.
Thus, we get:

PX∼B(0,
√

h) [f (X) < β] =
√

β
d

√
h

d
=

(
β

h

) d
2

.

On Averaging the Best Samples in Evolutionary Computation 665

It is known that for every positive random variable X, E(X) =
∫ ∞
0

P(X > β)dβ.
Therefore:

ES

[
f

(
X(1)

) | f(X(μ+1)) = h
]

=
∫ h

0

P
[
f

(
X(1)

)
> β | f(X(μ+1)) = h

]
dβ

=
∫ h

0

(

1 −
(

β

h

) d
2
)μ

dβ

= h

∫ 1

0

(
1 − u

d
2

)μ

du

= h
2
d

∫ 1

0

(1 − t)μ
t2/d−1dt = h

Γ (d+2
d)Γ (μ + 1)

Γ (μ + 1 + 2/d)
.

To obtain the last equality, we identify the integral with the beta function of
parameters μ + 1 and 2

d .
�
We now directly compute EX1,...,Xλ∼B(0,r)

[
f(X(1))

]
.

Lemma 5. For all d > 0, λ > 0 and r > 0:

EX1,...,Xλ∼B(0,r)

[
f(X(1))

]
= r2

Γ (d+2
d)Γ (λ + 1)

Γ (λ + 1 + 2/d)
.

Proof. As in Lemma 4, we have for any β ∈ (0, r2]:

PX1...Xλ∼B(0,r)

[
f

(
X(1)

)
> β

]
= PX1...Xλ∼B(0,r) [f (X1) > β, ..., f (Xλ) > β]

= PX∼B(0,r) [f (X) > β]λ

=
(√

β

r

)d

.

The result then follows by reasoning as in the proof of Lemma 4.
�
By combining the results above, we obtain the exact formula for E

[
f(X̄(μ))

]
.

Theorem 6. For all d > 0, r > 0 and λ > μ ≥ 1:

EX1...Xλ∼B(0,r)

[
f(X̄(μ))

]
=

r2d × Γ (λ + 1)Γ (μ + 1 + 2/d)
μ(d + 2)Γ (μ + 1)Γ (λ + 1 + 2/d)

.

666 L. Meunier et al.

Proof. The proof follows by applying our various lemmas and integrating over
all possible values for h. We have:

EX1...Xλ∼B(0,r)

[
f(X̄(μ))

]

= E
[
E

[
f(X̄(μ)) | f

(
X(μ+1)

)]]

=
1
μ

d

d + 2
E

[
f

(
X(μ+1)

)]
by Lemma 3

=
1
μ

d

d + 2
Γ (μ + 1 + 2/d)
Γ (μ + 1)Γ (d+2

d)
E

[
E

[
f(X(1)) | f

(
X(μ+1)

)]]
by Lemma 4

=
1
μ

d

d + 2
Γ (μ + 1 + 2/d)
Γ (μ + 1)Γ (d+2

d)
E

[
f(X(1))

]

=
r2d × Γ (λ + 1)Γ (μ + 1 + 2/d)

μ(d + 2)Γ (μ + 1)Γ (λ + 1 + 2/d)
by Lemma 5.

�
We have checked experimentally the result of Theorem 9 (see Fig. 1): the

result of Theorem 1 follows from Theorem 9 since for d ≥ 2, λ and r fixed,
E

[
f(X̄(μ))

]
is strictly decreasing in μ. In addition, we can obtain asymptotic

progress rates:

Corollary 7. Consider d > 0. When λ → ∞, we have

EX1...Xλ∼B(0,r)

[
f(X̄(μ))

] ∼ λ− 2
d
r2d × Γ (μ + 1 + 2/d)

μ(d + 2)Γ (μ + 1)
,

while if λ → ∞ and μ(λ) → ∞, EX1...Xλ∼B(0,r)

[
f(X̄(μ(λ)))

] ∼ r2
d

d + 2
μ(λ)

2
d −1

λ
2
d

.

As a result, ∀c ∈ (0, 1), E
(
f(X̄(
cλ�))

) ∈ Θ
(
1
λ

)
and E

(
f(X(1))

) ∈ Θ
(

1
λ2/d

)
.

Proof. We recall the Stirling equivalent formula for the gamma function: when
z → ∞,

Γ (z) =

√
2π

z

(z

e

)z
(

1 + O

(
1
z

))

.

Using this approximation, we get the expected results.
�
This result shows that by keeping a single parent, we lose more than a constant
factor: the progress rate is significantly impacted. Therefore it is preferable to
use more than one parent.

2.4 Convergence When the Sampling is not Centered on the
Optimum

So far we treated the case where the center of the distribution and the optimum
are the same. We now assume that we sample from the distribution B(0, r) and
that the function f is f(x) = ‖x − y‖2 with ‖y‖ ≤ r. We define ε = ‖y‖

r .

On Averaging the Best Samples in Evolutionary Computation 667

Lemma 8. Let r > 0, d > 0, λ > μ ≥ 1, we have:

PX1...Xλ∼B(0,r)(f(X(μ+1)) > (1 − ε)2r2) = PU∼B(λ,(1−ε)d) (U ≤ μ) ,

where B(λ, p) is a binomial law of parameters λ and p.

Proof. We have f(X(μ+1)) > (1 − ε)r ⇐⇒ ∑λ
i=1 1{f(Xi)≤(1−ε)2r2} ≤ μ since

1{f(Xi)≤(1−ε)2r2} are independent Bernoulli variables of parameter (1−ε)d, hence
the result.
�
Using Lemma 8, we now get lower and upper bounds on E

[
f

(
X(μ+1)

)]
:

Theorem 9. Consider d > 0, r > 0, λ > μ ≥ 1. The expected value of f(X̄(μ))
satisfies both

EX1...Xλ∼B(0,r)

[
f(X̄(μ))

] ≤4r2PU∼B(λ,(1−ε)d) (U ≤ μ)

+
r2d × Γ (λ + 1)Γ (μ + 1 + 2/d)

μ(d + 2)Γ (μ + 1)Γ (λ + 1 + 2/d)

and EX1...Xλ∼B(0,r)

[
f(X̄(μ))

] ≥ r2d × Γ (λ + 1)Γ (μ + 1 + 2/d)
μ(d + 2)Γ (μ + 1)Γ (λ + 1 + 2/d)

.

Proof.

E
[
f(X̄(μ))

]
= E

(
f(X̄(μ))|f(X(μ+1)) ≥ (1 − ε)2r2

)
P

(
f(X(μ+1)) ≥ (1 − ε)2r2

)

+ E
(
f(X̄(μ))|f(X(μ+1)) < (1 − ε)2r2

)
P

(
f(X(μ+1)) < (1 − ε)2r2

)
.

In this Bayes decomposition, we can bound the various terms as follows:

E
(
f(X̄(μ))|f(X(μ+1)) ≥ (1 − ε)2r2

) ≤ 4r2,

P
(
f(X(μ+1)) ≥ (1 − ε)2r2

) ≤ 1,

E
[
f(X̄(μ))|f(X(μ+1)) < (1 − ε)2r2

] ≤ r2d × Γ (λ + 1)Γ (μ + 1 + 2/d)
μ(d + 2)Γ (μ + 1)Γ (λ + 1 + 2/d)

.

Combining these equations yields the first (upper) bound. The second (lower)
bound is deduced from the centered case (i.e. when the distribution is centered
on the optimum) as in the previous section.
�
Figure 2 gives an illustration of the bounds. Until μ � (1 − ε)dλ, the centered
and non centered case coincide when λ → ∞: in this case, we can have a more
precise asymptotic result for the choice of μ.

Theorem 10. Consider d > 0, r > 0 and y ∈ R
d. Let ε = ‖y‖

r ∈ [0, 1) and
f(x) = ‖x − y‖2. When using μ = �cλ� with 0 < c < (1 − ε)d, we get as λ → ∞,
for a fixed d,

EX1...Xλ∼B(0,r)

[
f(X̄(μ))

]
=

dr2c2/d−1

(d + 2)λ
+ o

(
1
λ

)

.

668 L. Meunier et al.

Proof. Let μλ = �cλ� with 0 < c < (1 − ε)d. We immediately have from Hoeffd-
ing’s concentration inequality:

PU∼B(λ,(1−ε)d) (U ≤ μλ) ∈ o(
1
λ

)

when λ → ∞. From Corollary 7, we also get:

r2d × Γ (λ + 1)Γ (μλ + 1 + 2/d)
μλ(d + 2)Γ (μλ + 1)Γ (λ + 1 + 2/d)

∼ d r2c2/d−1

(d + 2)λ
.

Using the inequalities of Theorem 9, we obtain the desired result.
�
The result of Theorem 10 shows that a convergence rate O(λ−1) can be attained
for the μ-best approach with μ > 1. The rate for μ = 1 is Θ(λ−2/d), proving that
the μ-best approach leads asymptotically to a better estimation of the optimum.
If we consider the problem minμ maxy:‖y‖≤εr E

[
fy(X̄(μ))

]
with fy the objective

function x �→ ‖x−y‖2, then μ = �cλ� with 0 < c < (1−ε)d achieves the O
(
λ−1

)

progress rate.
All the results we proved in this section are easily extendable to strongly

convex quadratic functions. For larger class of functions, it is less immediate,
and left as future work.

Fig. 1. Centered case: validation of the theoretical formula for EX1...Xλ∼B(0,r)

[
f(X̄(μ))

]

when y = 0 from Theorem 6 for d = 5, λ = 1000 and R = 1. 1000 samples have been
drawn to estimate the expectation. The two curves overlap, showing agreement between
theory and practice.

2.5 Using Quasi-convexity

The method above was designed for the sphere function, yet its adaptation to
other quadratic convex functions is straightforward. On the other hand, our
reasoning might break down when applied to multimodal functions. We thus
consider an adaptive strategy to define μ. A desirable property to a μ-best app-
roach is that the level-sets of the functions are convex. A simple workaround is
to choose μ maximal such that there is a quasi-convex function which is identical

On Averaging the Best Samples in Evolutionary Computation 669

to f on {X(1), . . . , X(μ)}. If the objective function is quasi-convex on the convex
hull of {X(1), . . . , X(μ̃)} with μ̃ ≤ λ, then: for any i ≤ μ̃, X(i) is on the frontier
(denoted ∂) of the convex hull of {X(1), . . . , X(i)} and the value

h = max
{
i ∈ [1, λ],∀j ≤ i,X(j) ∈ ∂

[
ConvexHull(X(1), . . . , X(j))

]}

verifies h ≥ μ̃ so that μ = min(h, μ̃) is actually equal to μ̃. As a result:

– in the case of the sphere function, or any quasi-convex function, if we set μ̃ =
�λ(1−ε)d�, using μ = min(h, μ̃) leads to the same value of μ = μ̃ = �λ(1−ε)d�.
In particular, we preserve the theoretical guarantees of the previous sections
for the sphere function x �→ ‖x − y‖2.

– if the objective function is not quasi-convex, we can still compute the quantity
h defined above, but we might get a μ smaller than μ̃. However, this strategy
remains meaningful at it prevents from keeping too many points when the
function is “highly” non-quasi-convex.

3 Experiments

Fig. 2. Non centered case: validation of the theoretical bounds for
EX1...Xλ∼B(0,r)

[
f(X̄(μ))

]
when ‖y‖ = R

3
(i.e. ε = 1

3
) from Theorem 9 for d = 5

and R = 1. We implemented λ = 100 and λ = 10000. 10000 samples have been drawn
to estimate the expectation. We see that such a value for μ is a good approximation of
the minimum of the empirical values: we can thus recommend μ = �λ(1 − ε)d� when
λ → ∞. We also added some classical choices of values for μ from literature: when
λ → ∞, our method performs the best.

To validate our theoretical findings, we first compare the formulas obtained in
Theorems 6 and 9 with their empirical estimates. We then perform larger scale
experiments in a one-shot optimization setting.

3.1 Experimental Validation of Theoretical Formulas

Figure 1 compares the theoretical formula from Theorem 6 and its empirical
estimation: we note that the results coincide and validate our formula. Moreover,

670 L. Meunier et al.

the plot confirms that taking the μ-best points leads to a lower regret than the
1-best approach.

We also compare in Fig. 2 the theoretical bounds from Theorem 9 with their
empirical estimates. We remark that for μ ≤ (1−ε)dλ the convergence of the two
bounds to E(f(X̄(μ))) is fast. There exists a transition phase around μ � (1−ε)dλ
on which the regret is reaching a minimum: thus, one needs to choose μ both
small enough to reduce bias and large enough to reduce variance. We compared
to other empirically estimated values for μ from [4,5,10]. It turns out that if
the population is large, our formula for μ leads to a smaller regret. Note that
our strategy assumes that ε is known, which is not the case in practice. It is
interesting to note that if the center of the distribution and the optimum are
close (i.e. ε is small), one can choose a larger μ to get a lower variance on the
estimator of the optimum.

3.2 One-Shot Optimization in Nevergrad

In this section we test different formulas and variants for the choice of μ for a
larger scale of experiments in the one-shot setting. Equations 1–6 present the
different formulas for μ used in our comparison.

Fig. 3. Experimental curves comparing various methods for choosing μ as a function of
λ in dimension 3. Standard deviations are shown by lighter lines (close to the average
lines). Each x-axis value is computed independently. Our proposed formulas HCHAvg

and THCHAvg perform well overall. See Fig. 4 for results in dimension 25.

On Averaging the Best Samples in Evolutionary Computation 671

Fig. 4. Experimental curves comparing various methods for choosing μ as a function
of λ in dimension 25 (Fig. 3, continued for dimension 25; see Fig. 5 for dimension
200). Our proposals lead to good results but we notice that they are outperformed by
TEAvg and EAvg for Rastrigin: it is better to not take into account non-quasi-convexity
because the overall shape is more meaningful that local ruggedness. This phenomenon
does not happen for the more rugged HM (Highly Multimodal) function. It also does
not happen in dimension 3 or dimension 200 (previous and next figures): in those
cases, THCH performed best. Confidence intervals shown in lighter color (they are
quite small, and therefore they are difficult to notice).

μ = 1 No prefix (1)

μ = clip

(
1, d,

λ

4

)
Prefix: Avg (averaging) (2)

μ = clip

(
1, ∞,

λ

1.1d

)
Prefix: EAvg (Exp. Averaging) (3)

μ = clip

(
1, min

(
h,

λ

4

)
, d +

λ

1.1d

)
Prefix: HCHAvg (h from Convex Hull) (4)

μ = clip

(
1, ∞,

λ

1.01d

)
Prefix: TEAvg (Tuned Exp. Avg) (5)

μ = clip

(
1, min

(
h,

λ

4

)
, d +

λ

1.01d

)
Prefix: THCHAvg (Tuned HCH Avg) (6)

where clip(a, b, c) = max(a,min(b, c)) is the projection of c in [a, b] and h is the
maximum i such that, for all j ≤ i, X(j) is on the frontier of the convex hull
of {X(1), . . . , X(j)} (Sect. 2.5). Equation 1 is the naive recommendation “pick
up the best so far”. Equation 2 existed before the present work: it was, until
now, the best rule [16] , overall, in the Nevergrad platform. Equations 3 and 5
are the proposals we deduced from Theorem 10: asymptotically on the sphere,
they should have a better rate than Eq. 1. Equations 4 and 6 are counterparts
of Eqs. 3 and 5 that combine the latter formulas with ideas from [16]. Theorem

672 L. Meunier et al.

10 remains true if we add to μ some constant depending on d so we fine tune
our theoretical equation (Eq. 3) with the one provided by [16], so that μ is close
to the value in Eq. 2 for moderate values of λ. We perform experiments in the
open source platform Nevergrad [15].

While previous experiments (Figs. 1 and 2) were performed in a controlled
ad hoc environment, we work here with more realistic conditions: the sampling
is Gaussian (i.e. not uniform in a ball), the objective functions are not all sphere-
like, and budgets vary but are not asymptotic. Figures 3, 4, 5 present our results
in dimension 3, 25 and 200 respectively. The objective functions are randomly
translated using N (0, 0.2Id). The objective functions are defined as fSphere(x) =
‖x‖2, fCigar(x) = 106

∑d
i=2 x2

i + x2
1, fHM (x) =

∑d
i=1 x2

i × (1.1 + cos(1/xi)),
fRastrigin(x) = 10d+fsphere(x)−10

∑
i cos(2πxi). Our proposed equations TEAvg

and EAvg are unstable: they sometimes perform excellently (e.g. everything in
dimension 25, Fig. 4), but they can also fail dramatically (e.g. dimension 3,
Fig. 3). Our combinations THCHAvg and HCHAvg perform well: in most settings,
THCHAvg performs best. But the gap with the previously proposed Avg is not that
big. The use of quasi-convexity as described in Sect. 2.5 was usually beneficial:
however, in dimension 25 for the Rastrigin function, it prevented the averaging
from benefiting from the overall “approximate” convexity of Rastrigin. This
phenomenon did not happen for the “more” multimodal function HM, or in
other dimensions for the Rastrigin function.

Fig. 5. Experimental curves comparing various methods for choosing μ as a function
of λ in dimension 200 (Fig. 3 and 4, continued for dimension 200). Confidence intervals
shown in lighter color (they are quite small, and therefore they are difficult to notice).
Our proposed methods THCHAvg and HCHAvg perform well overall.

On Averaging the Best Samples in Evolutionary Computation 673

4 Conclusion

We have proved formally that the average of the μ best is better than the
single best in the case of the sphere function (simple regret O(1/λ) instead
of O(1/λ2/d)) with uniform sampling. We suggested a value μ = �cλ� with
0 < c < (1 − ε)d. Even better results can be obtained in practice using quasi-
convexity, without losing the theoretical guarantees of the convex case on the
sphere function. Our results have been successfully implemented in [15]. The
improvement compared to the state of the art, albeit moderate, is obtained with-
out any computational overhead in our method, and supported by a theoretical
result.
Further Work. Our theorem is limited to a single iteration, i.e. fully paral-
lel optimization, and to the sphere function. Experiments are positive in the
convex case, encouraging more theoretical developments in this setting. We did
not explore approaches based on surrogate models. Our experimental methods
include an automatic choice of μ in the multimodal case using quasi-convexity,
for which the theoretical analysis has yet to be fully developed - we show that
this is not detrimental in the convex setting, but not that it performs better
in a non-convex setting. We need an upper bound on the distance between the
center of the sampling and the optimum for our results to be applicable (see
parameter ε): removing this need is an worthy consideration, as such a bound is
rarely available in real life.

References

1. Arnold, D.V.: Optimal weighted recombination. In: Wright, A.H., Vose, M.D.,
De Jong, K.A., Schmitt, L.M. (eds.) FOGA 2005. LNCS, vol. 3469, pp. 215–237.
Springer, Heidelberg (2005). https://doi.org/10.1007/11513575 12

2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. JMLR
13, 281–305 (2012)

3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

4. Beyer, H.G., Schwefel, H.P.: Evolution strategies -a comprehensive introduc-
tion. Natural Comput. Int. J. 1(1), 3–52 (2002). https://doi.org/10.1023/A:
1015059928466

5. Beyer, H.-G., Sendhoff, B.: Covariance matrix adaptation revisited – the CMSA
evolution strategy –. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni,
C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 123–132. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87700-4 13

6. Bousquet, O., Gelly, S., Karol, K., Teytaud, O., Vincent, D.: Critical hyper-
parameters: No random, no cry (2017, preprint). https://arxiv.org/pdf/1706.
03200.pdf

7. Bubeck, S., Munos, R., Stoltz, G.: Pure exploration in multi-armed bandits prob-
lems. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS
(LNAI), vol. 5809, pp. 23–37. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04414-4 7

8. Escalante, H., Reyes, A.M.: Evolution strategies. CCC-INAOE tutorial (2013)

https://doi.org/10.1007/11513575_12
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1007/978-3-540-87700-4_13
https://arxiv.org/pdf/1706.03200.pdf
https://arxiv.org/pdf/1706.03200.pdf
https://doi.org/10.1007/978-3-642-04414-4_7
https://doi.org/10.1007/978-3-642-04414-4_7

674 L. Meunier et al.

9. Fournier, H., Teytaud, O.: Lower bounds for comparison based evolution strategies
using VC-dimension and sign patterns. Algorithmica (2010)

10. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 11(1), 159–195 (2003)

11. Hansen, N., Arnold, D.V., Auger, A.: Evolution strategies. In: Kacprzyk, J.,
Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 871–
898. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2 44

12. Jebalia, M., Auger, A.: Log-linear convergence of the scale-invariant (μ/μwλ)-ES
and optimal μ for intermediate recombination for large population sizes. In: Schae-
fer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238,
pp. 52–62. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-
5 6

13. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics 21(2), 239–245 (1979)

14. Niederreiter, H.: Random Number Generation and quasi-Monte Carlo Methods.
Society for Industrial and Applied Mathematics, Philadelphia (1992)

15. Rapin, J., Teytaud, O.: Nevergrad - A gradient-free optimization platform. https://
GitHub.com/FacebookResearch/Nevergrad (2018)

16. Teytaud, F.: A new selection ratio for large population sizes. In: Di Chio, C., et al.
(eds.) EvoApplications 2010. LNCS, vol. 6024, pp. 452–460. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12239-2 47

17. Teytaud, F., Teytaud, O.: Why one must use reweighting in estimation of distribu-
tion algorithms. In: Genetic and Evolutionary Computation Conference, GECCO
2009, Proceedings, Montreal, Québec, Canada, 8–12 July 2009, pp. 453–460 (2009)

https://doi.org/10.1007/978-3-662-43505-2_44
https://doi.org/10.1007/978-3-642-15844-5_6
https://doi.org/10.1007/978-3-642-15844-5_6
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad
https://doi.org/10.1007/978-3-642-12239-2_47

Filter Sort Is Ω(N3) in the Worst Case

Sumit Mishra1 and Maxim Buzdalov2(B)

1 IIIT Guwahati, Guwahati, India
sumit@iiitg.ac.in

2 ITMO University, Saint Petersburg, Russia
mbuzdalov@gmail.com

Abstract. Non-dominated sorting is a crucial operation used in many
popular evolutionary multiobjective algorithms. The problem of non-
dominated sorting, although solvable in polynomial time, is surprisingly
difficult, and no algorithm is yet known which solves any instance on N
points and M objectives in time asymptotically smaller than MN2.

For this reason, many algorithm designers concentrate on reducing the
leading constant and on (implicitly) tailoring their algorithms to inputs
typical to evolutionary computation. While doing that, they sometimes
forget to ensure that the worst-case running time of their algorithm is
still O(MN2). This is undesirable, especially if the inputs which make
the algorithm work too slow can occur spontaneously. However, even if
a counterexample is hard to find, the fact that it exists is still a weak
point, as this can be exploited and lead to denial of service and other
kinds of misbehaving.

In this paper we prove that a recent algorithm for non-dominated
sorting, called Filter Sort, has the worst-case complexity of Ω(N3).
In particular, we present a scenario which requires Filter Sort to per-
form Θ(N3) dominance comparisons, where each comparison, however,
needs only O(1) elementary operations. Our scenario contains Θ(N) non-
domination layers, which is a necessary, but by no means a sufficient
condition for being difficult for Filter Sort.

Keywords: Non-dominated sorting · Filter sort · Time complexity

1 Introduction

Optimizers that rank solutions based on the Pareto dominance relation arguably
prevail in evolutionary multiobjective optimization for already more than two
decades, and only relatively recently they started to partially lose many-objective
ground to decomposition-based methods. In turn, among the ranking methods
that employ the Pareto dominance relation, non-dominated sorting is probably
one of the most frequently used. With a relatively small computation cost and a
possibility of writing a relatively easy implementation, it is now used not only in
the algorithm NSGA-II [9] that popularized it, but in a wide range of algorithms

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 675–685, 2020.
https://doi.org/10.1007/978-3-030-58115-2_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_47&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_47

676 S. Mishra and M. Buzdalov

belonging to different paradigms, such as Strength Pareto Evolutionary Algo-
rithm (SPEA), Pareto Envelope-Based Selection Algorithm (PESA) [6], Pareto
Archived Evolution Strategy (PAES) [14], M-Pareto Archived Evolution Strat-
egy (M-PAES) [13], Micro-GA [5], KnEA [38], NSGA-III [8] and many others.

Assume that there are M objectives and, without loss of generality, that
we are required to minimize all objectives. A solution p is said to dominate,
in Pareto sense, another solution q, which is written as p ≺ q, if the following
conditions are satisfied:

1. ∀i ∈ [1..M] it holds that pi ≤ qi;
2. ∃j ∈ [1..M] such that pj < qj ;

where the notation is as follows: [a..b] is the set of integers {a, a+1, . . . , b−1, b}.
Non-dominated sorting can then be defined as follows. Let P = {P1, . . . ,PN}

be a population of N evaluated solutions. The problem is to divide P into several
fronts F = {F1,F2, . . .}, such that the following conditions are satisfied:

1. The fronts constitute a partition, that is:
–

⋃
i Fi = P;

– if i �= j, then Fi ∩ Fj = ∅;
2. For any two solutions s, t ∈ Fi, neither of them dominates another one;
3. For i > 1, for any s ∈ Fi there exists some t ∈ Fi−1 such that t ≺ s.

We shall explicitly state here that, for the soundness of the definition above, a
solution does not dominate itself (as well as it does not dominate any other solu-
tion with identical objective values), as otherwise the ordering of the solutions
would affect the results of the procedure in an implementation-dependent way.
However, it is often desirable, that, whenever there are three solutions p1, p2, q
such that p1 = p2 and p1 ≺ q, the solution q gets a worse rank than it would
have without p2. The reader is welcome to an extended discussion about possi-
ble sound extensions of this version of non-dominated sorting, as well as other
similar problems, in a recent paper [2].

Outside evolutionary computation, non-dominated sorting is often known
under other names (such as layers of maxima or longest chains) and has appli-
cations in various domains like data clustering [11], graph theory [17], computer
vision, economics and game theory [16], database [1] and others [7,28,29].

Since in this paper we are interested in algorithms for non-dominated sorting,
and do not investigate its applications, we do not differentiate between solutions
and their objective vectors, treat them as points in an M -dimensional space and
use “points” and “solutions” interchangeably.

The apparent simplicity of the non-dominated sorting problem makes it sur-
prising that, despite a huge effort, no algorithms are still known that solve this
problem in time o(MN2) for any input of N points and M objectives. Below,
we give a quick summary of the basic ideas of these algorithms.

There are plenty of algorithms that run in Θ(MN2) time in the worst case,
beginning with the algorithm called “fast non-dominated sorting” that accompa-
nied NSGA-II [9], as well as more advanced approaches [10,23–27,30,31,33,36,37]

Filter Sort Is Ω(N3) in the Worst Case 677

and some others. All these algorithms focus on the running time on inputs with
rather small values ofN , andon those that are distributed similar to typical popula-
tions in evolutionary multiobjective optimization. The basic desire driving most of
these designs is to somehow “reduce the number of unnecessary comparisons” with
certain heuristics that work reasonably well under uniform or other similar distri-
butions. Most of these algorithms cannot cope with N = 105 points, however, there
are notable exceptions, such as the kd-tree-based algorithm called ENS-NDT [10]
and, to some extent, the flavours of Best Order Sort [23,25,30,31].

The algorithms belonging to a different group apply the divide-and-conquer
paradigm in a particular manner that allows an asymptotically better upper
bound of O(N(log N)M−1) to be proven. This expression holds when M is con-
stant with regards to N , and all these algorithms also satisfy the O(MN2) upper
bound, which they quickly reach with large enough M . The divide-and-conquer
flavour in question is suggested long time ago in [15], and it was applied for the
first time to non-dominated sorting in [12]. Subsequent development involved
modifications to reliably work on every input [4] and various practical runtime
improvements typically involving hybridization with other algorithms [18,19],
and word-RAM data structures [3].

However, some algorithms have even worse running time guarantees. The
original NSGA algorithm [32] featured a particularly naive algorithm that works
in O(MN3) time, where one of the N factors is the number of fronts in the out-
put. Unfortunately, some of the algorithms are also that slow. On some occasions
it is trivial to show, as it was the case with the DDA sorting [22,39], however,
sometimes the original paper features a wrong optimistic bound, such which
can be non-obvious to prove, and even more difficult to persuade the scientific
community that it is true [20,21].

In this paper, we focus on a fairly recent algorithm called Filter Sort [34].
Although this algorithm bears a large resemblance with Best Order Sort, which is
O(MN2), it loses this worst-case bound in an attempt to speed-up. We present
the test scenario which requires this algorithm to perform Ω(N3) dominance
comparisons between the points; however, because of a particular property of
this algorithm, we cannot guarantee that even a constant fraction of these com-
parisons will take Ω(M) time, so our running time lower bound is as well Ω(N3).

The rest of the paper is structured as follows. Section 2 explains Filter Sort
in necessary detail. Then we present our test scenario in Sect. 3 and show that
Filter Sort runs in Ω(N3) on this scenario. Finally, we conclude the paper and
discuss the consequences of our results in Sect. 4.

2 Filter Sort

In this section, we shortly discuss Filter Sort, which is outlined in Algorithm 1.
This algorithm is based on an idea that a solution that minimizes any linear
combination of objectives, or even of functions that grow monotonically with an
index of an objective, cannot be dominated. Furthermore, if such a function is
chosen to be noticeably different from each objective, one can efficiently filter

678 S. Mishra and M. Buzdalov

(hence the name) the solutions that can be non-dominated assuming there is a
pre-sorted list of solutions for each objective. In Filter Sort, the sum of ranks of

Algorithm 1. Filter Sort
Require: P = {P1,P2, . . . ,PN}: point in M -dimensional space
Ensure: F = {F1,F2, . . .}: points from P split into fronts
1: for j ∈ [1..M] do � Phase 1: Pre-sorting
2: Oj ← P sorted by objective j, compared lexicographically if equal
3: for i ∈ [1..N] do
4: Iij ← index of Pi in Oj

5: end for
6: end for
7: for i ∈ [1..N] do � Phase 2: Finding objective statistics
8: BPi ← arg minj Iij � Find the best objective of Pi according to its index
9: WPi ← arg maxj Iij � Find the worst objective of Pi according to its index

10: SPi ← ∑
j Iij � Find the sum of objective indices

11: end for
12: T ← P sorted by S � Phase 3: Creating filters
13: for r ∈ {1, 2, . . .} do � Phase 4: Actual sorting
14: if |T| = 0 then
15: break � No more solutions left
16: end if
17: t ← T1 � Choose filter solution with the smallest index sum
18: C ← ∅ � Candidate solutions, initially empty
19: for j ∈ [1..M] do
20: k ← 1
21: while Ojk �= t do � Add all solutions from Oj preceding t to candidates
22: C ← C ∪ {Ojk}, k ← k + 1
23: end while
24: end for
25: Fr ← Fr ∪ {t}, remove t from T and Oj , j ∈ [1..M] � Rank and remove t
26: for c ∈ C do � Try each candidate for being non-dominated
27: isDominated ← False, k ← 1, b ← Bc, w ← Wc

28: L ← Ob � Compare c with the shortest list of maybe-dominating points
29: while Lk �= cb do � When c is hit, the rest cannot dominate
30: if (Lk)w ≤ cw and Lk ≺ c then � Check the worst objective first
31: isDominated ← True, break
32: end if
33: k ← k + 1
34: end while
35: if isDominated then
36: C ← C \ {c} � Remove c if it was dominated
37: end if
38: end for
39: for c ∈ C do
40: Fr ← Fr ∪ {c}, remove c from T and
41: end for
42: end for

Filter Sort Is Ω(N3) in the Worst Case 679

solution’s objectives is chosen as such a linear combination, which is arguably a
choice that requires as few assumptions as possible.

The first three phases are rather straightforward. Phase 1 (lines 1–6 in
Algorithm 1) performs sorting of the population by each of the objectives,
using lexicographical sorting in the case of ties. This phase can be done in
O(MN log N) using a quicksort-like O(MN + N log N) algorithm for lexico-
graphical sorting, that also sorts the points by the first objective, and M − 1
runs of any efficient sorting algorithm in O(N log N). The points sorted by the
j-th objective are stored in Oj . During this phase, the indices of each point i
in the sorted order along each objective j are stored in Iij , which can easily be
done from within the sorting algorithms.

Phase 2 (lines 7–11) computes, using the indices Iij from the previous stage,
the best objective of each solution (that is, the objective, for which this point
comes earlier in the corresponding list Oj), the worst objective, and the sum of
objective indices. This phase is done in O(MN). Next, Phase 3 (line 12) sorts
the population according to the sum of objective indices, again in O(N log N),
and stores the result in a list T.

Note that the lists Oj and T subsequently require fast removal of elements
from arbitrary locations. One of the possible choices is to create them as doubly
linked lists, or to convert them to such lists soon after creation, for which the
most efficient implementation would probably be to store the next/previous
pointers in the point itself. An alternative solution would be to use auxiliary
Boolean arrays that store whether a solution was deleted, and to compact the
arrays and the (non-linked) lists when enough solutions are removed.

Finally, the actual non-dominated sorting happens in Phase 4 (lines 13–42).
If there are any remaining solutions, the filter solution t is first chosen as the
first solution in the list T. As no other solutions have a smaller sum of objective
ranks, t is guaranteed to be non-dominated. Then, in lines 18–24, the algorithm
collects the solutions which precede t in at least one objective by joining the
corresponding prefixes of all Oj for each objective j, effectively filtering out all
the solutions that are dominated by t. Next, the filter solution t is removed from
all the lists and is added to the currently populated front Fr. Finally, each of
the candidates c is tested for non-dominance. For that, c is compared with all
the solutions that come before c in the objective list Ob, where b = Bc is the
best objective of c (populated in line 8 in Algorithm 1). To further speed-up
the comparison, first the comparison in the worst objective of c is performed, as
if c is not dominated in this objective, then it is not dominated at all. All the
candidate points that passed the non-dominance checks are also added to Fr,
after which this front is declared complete.

3 Worst-Case Running Time Analysis

Now we turn to the worst-case running time analysis of Filter Sort. Our analysis
consists of a nearly-trivial upper bound and a much more involved lower bound,
which we state as two separate lemmas.

680 S. Mishra and M. Buzdalov

Lemma 1. The worst-case running time of Filter Sort is O(MN3).

Proof. This follows from the simple static analysis of Algorithm 1. Indeed,
Phases 1–3 require O(MN log N) time in common. The number of iterations
of the main loop (lines 13–41) in Phase 4 coincides with the number of reported
fronts, which is O(N). In each iteration, the time spent in lines 14–25, as well as
39–41, cannot exceed O(MN). The size of the candidate set C is at most N −1,
the number of iterations of the while-loop in lines 29–33 is at most N − 1 since
Ob cannot contain more than N points, and the dominance comparison in line
30 cannot take more than O(M) time.

In total, each loop in lines 29–34 is at most O(MN), each iteration in lines
26–38 is at most O(MN2), and the whole algorithm cannot take more than
O(MN3) time.
�

We proceed with the lower bound. We first present the analysis for M = 2
and then we produce a hard input for any M > 1 based on this analysis.

Lemma 2. There exists an input P with N two-dimensional points which
requires Filter Sort to run for Ω(N3) time.

Proof. In the proof, we use the notation (x, y) to denote a two-dimensional point
with objective values x and y. We assume N3 = �N−1

3 and use the test consisting
of three sets of points as below, depicted on Fig. 1:

– left points: (i, 2N3 + i) for i = 1, . . . , N − 2N3;
– middle points: (N − 2N3 + i,N3 + i) for i = 1, . . . , N3.
– right points: (N − N3 + i, i) for i = 1, . . . , N3;

We chose N3 this way so that N − N3 > 2N3, that is, the number of left points
is always greater than the number of middle points and of right points, which is
crucial in our analysis.

Note that this test example has exactly N − 2N3 fronts, however, only the
first N3 of them are the complete fronts that consist of three points each. What
is more, as long as N ≥ 4, when we compute and remove the first front, the
remaining test would be essentially the same test for N ′ = N − 3 points and
larger gaps between the point groups, which does not influence the way Filter
Sort works. This consideration makes our analysis much simpler.

The three points that compete for being a filter element are the first left point
(1, 2N3 +1), the first middle point (N −2N3 +1, N3 +1) and the first right point
(N − N3 + 1, 1), which are highlighted in Fig. 1. With our choice of objective
values, the sum of ranks is the same as the sum of objectives themselves, hence
the best middle and right points have these sums equal to N − N3 + 2 and the
best left point has the sum equal to 2N3 +2. As, per our choice, N −N3 > 2N3,
the best left point is unambiguously chosen as the filter point t.

Next, Filter Sort constructs the set of candidate solutions. By our construc-
tion, every middle and every right point has the smaller second objective than
t, so these points constitute the candidate set C.

Filter Sort Is Ω(N3) in the Worst Case 681

First objective

Se
co
nd

ob
je
ct
iv
e

Fig. 1. Test example for N = 17, M = 2. Points from the same front are connected
with blue lines (Color figure online)

To prove that the loop at lines 26–38 requires Θ(N2) point comparisons,
we note that the best objective of every middle point is the second objective,
since the offset in the second objective is N3 and in the first objective it is
N − 2N3, which is greater. For this reason, every middle point would necessary
be compared with every right point, which yields N2

3 = Θ(N2) comparisons.
Note that each such comparison terminates early and costs O(1), because the
worst objective of each middle point is the first objective, and in this objective
every middle point is better than every right point.

As a result, sorting of the entire input of this sort would require at least

�N−1
3 �∑

i=1

i2 =
�N−1

3 (�N−1
3 + 1)(2�N−1

3 + 1)
6

=
N3

81
+ O(N2)

point comparisons and running time.
�
Lemma 3. There exists an input P with N points of dimension M which
requires Filter Sort to run for Ω(N3) time.

Proof. We first construct an auxiliary set of N two-dimensional points Q using
the method provided in Lemma 2. Next, we define each point Pi as follows:

– for 1 ≤ j ≤ M − 1, Pij ← Qi1;
– for j = M , Pij ← Qi2.

In this case, Filter Sort will still select the filter element from the equivalent of
left points, since the objective index sum would be the smallest for such a point.

682 S. Mishra and M. Buzdalov

For every equivalent of a middle point, the best objective would be the last one,
and the worst objective would be any objective except the last one. As a result,
Filter Sort would make exactly the same choices for P as it would do for Q,
hence it will also make Ω(N3) point comparisons for the input P.
�

Now we can formulate and prove the main theorem of the paper.

Theorem 1. The worst-case running time of Filter Sort is Ω(N3) and
O(MN3).

Proof. The upper bound is proven in Lemma 1 and the lower bound is proven
in Lemma 3.
�

4 Conclusion and Discussion

We have proven that Filter Sort, despite the reports on its wall-clock time effi-
ciency compared to some other algorithms, can be forced to perform Ω(N3)
dominance comparisons, which is much worse than O(MN2) ensured by many
other algorithms.

As a result, we suggest that the authors of evolutionary multiobjective soft-
ware use Filter Sort with caution (if at all) even if they like its typical per-
formance. One recipe would be to track the number of dominance comparisons
and switch to any algorithm that is less efficient in average, but has asymptot-
ically better worst-case running time, for example, from the ENS family [35].
The availability of the non-modified algorithm that can be forced to work much
slower than expected is, in fact, a security breach that can exposes a DoS-attack
in the case the evolutionary multiobjective software is accessible as a service.

Concerning the possible improvements of Filter Sort, we do not currently
have much to propose. One of the important weaknesses is that the list L of the
points which may dominate the current candidate c, as in line 28 of Algorithm 1,
may contain former candidate solutions that have already been dominated by
some other candidate solution. One can get rid of that by making deep copies
of all the lists Oj before line 26, using these copies in line 28 instead of the
originals, and removing the former candidate solutions from these copies in line
36 together with the removal from the set of candidate solutions. However, just
making these copies, although taking at most O(MN2) total time, may introduce
a huge overhead in typical scenarios, essentially destroying the “average” benefits
of Filter Sort.

It is currently an open question whether Ω(N3) is the best lower bound
we can prove (e.g. there is a matching O(N3 + MN2) bound), or our principle
of constructing hard test cases is not the best one, and a strictly better lower
bound holds. It appears now that tracking the worst objective and using it first
to compare points is a crucial component of Filter Sort that makes it harder to
propose Ω(MN3) tests. However, we find it difficult now to prove or disprove
that the O(N3 + MN2) bound actually holds.

Acknowledgment. This research is financially supported by The Russian Science
Foundation, Agreement No. 17-71-30029 with co-financing of Bank Saint Petersburg.

Filter Sort Is Ω(N3) in the Worst Case 683

References

1. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of
17th International Conference on Data Engineering, pp. 421–430. IEEE (2001)

2. Buzdalov, M.: Generalized offline orthant search: one code for many problems in
multiobjective optimization. In: Proceedings of Genetic and Evolutionary Compu-
tation Conference, pp. 593–600. ACM (2018)

3. Buzdalov, M.: Make evolutionary multiobjective algorithms scale better with
advanced data structures: van emde boas tree for non-dominated sorting. In: Deb,
K., et al. (eds.) EMO 2019. LNCS, vol. 11411, pp. 66–77. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-12598-1 6

4. Buzdalov, M., Shalyto, A.: A provably asymptotically fast version of the generalized
Jensen algorithm for non-dominated sorting. In: Bartz-Beielstein, T., Branke, J.,
Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 528–537. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10762-2 52

5. Coello Coello Coello, C.A., Toscano Pulido, G.: A micro-genetic algorithm for
multiobjective optimization. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A.,
Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 126–140. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44719-9 9

6. Corne, D.W., Knowles, J.D., Oates, M.J.: The pareto envelope-based selection
algorithm for multiobjective optimization. In: Schoenauer, M., et al. (eds.) PPSN
2000. LNCS, vol. 1917, pp. 839–848. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-45356-3 82

7. Deb, K., Hussein, R., Roy, P., Toscano, G.: Classifying metamodeling methods for
evolutionary multi-objective optimization: first results. In: Trautmann, H., et al.
(eds.) EMO 2017. LNCS, vol. 10173, pp. 160–175. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-54157-0 12

8. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

10. Gustavsson, P., Syberfeldt, A.: A new algorithm using the non-dominated tree to
improve non-dominated sorting. Evol. Comput. 26(1), 89–116 (2018)

11. Handl, J., Knowles, J.: Exploiting the trade-off — the benefits of multiple objec-
tives in data clustering. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler,
E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 547–560. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31880-4 38

12. Jensen, M.T.: Reducing the run-time complexity of multiobjective EAs: the NSGA-
II and other algorithms. IEEE Trans. Evol. Comput. 7(5), 503–515 (2003)

13. Knowles, J., Corne, D.: M-PAES: a memetic algorithm for multiobjective opti-
mization. In: Proceedings of IEEE Congress on Evolutionary Computation, vol. 1,
pp. 325–332. IEEE (2000)

14. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the
Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

15. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
J. ACM 22(4), 469–476 (1975)

16. Leyton-Brown, K., Shoham, Y.: Essentials of game theory: a concise multidisci-
plinary introduction. Synthesis Lect. Artif. Intell. Mach. Learn. 2(1), 1–88 (2008)

https://doi.org/10.1007/978-3-030-12598-1_6
https://doi.org/10.1007/978-3-319-10762-2_52
https://doi.org/10.1007/3-540-44719-9_9
https://doi.org/10.1007/3-540-45356-3_82
https://doi.org/10.1007/3-540-45356-3_82
https://doi.org/10.1007/978-3-319-54157-0_12
https://doi.org/10.1007/978-3-319-54157-0_12
https://doi.org/10.1007/978-3-540-31880-4_38

684 S. Mishra and M. Buzdalov

17. Lou, R.D., Sarrafzadeh, M.: An optimal algorithm for the maximum three-chain
problem. SIAM J. Comput. 22(5), 976–993 (1993)

18. Markina, M., Buzdalov, M.: Hybridizing non-dominated sorting algorithms: divide-
and-conquer meets best order sort. In: Proceedings of the Genetic and Evolutionary
Computation Conference Companion, pp. 153–154. ACM (2017)

19. Markina, M., Buzdalov, M.: Towards large-scale multiobjective optimisation with
a hybrid algorithm for non-dominated sorting. In: Auger, A., Fonseca, C.M.,
Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS,
vol. 11101, pp. 347–358. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99253-2 28

20. McClymont, K., Keedwell, E.: Deductive sort and climbing sort: new methods for
non-dominated sorting. Evol. Comput. 20(1), 1–26 (2012)

21. Mishra, S., Buzdalov, M.: If unsure, shuffle: deductive sort is Θ(MN3), but
O(MN2) in expectation over input permutations. In: Proceedings of Genetic
and Evolutionary Computation Conference. ACM (2020). https://doi.org/10.1145/
3377930.3390246. Accepted for publication

22. Mishra, S., Buzdalov, M., Senwar, R.: Time complexity analysis of the dominance
degree approach for non-dominated sorting. In: Proceedings of Genetic and Evo-
lutionary Computation Conference Companion. ACM (2020). https://doi.org/10.
1145/3377929.3389900. Accepted for publication

23. Mishra, S., Mondal, S., Saha, S., Coello Coello, C.A.: GBOS: generalized best
order sort algorithm for non-dominated sorting. Swarm Evol. Comput. 43, 244–
264 (2018)

24. Mishra, S., Saha, S., Mondal, S.: Divide and conquer based non-dominated sort-
ing for parallel environment. In: Proceedings of IEEE Congress on Evolutionary
Computation, pp. 4297–4304. IEEE (2016)

25. Mishra, S., Saha, S., Mondal, S.: MBOS: modified best order sort algorithm for
performing non-dominated sorting. In: Proceedings of IEEE Congress on Evolu-
tionary Computation, pp. 725–732. IEEE (2018)

26. Mishra, S., Saha, S., Mondal, S., Coello Coello, C.A.: A divide-and-conquer based
efficient non-dominated sorting approach. Swarm Evol. Comput. 44, 748–773
(2019)

27. Moreno, J., Rodriguez, D., Nebro, A.J., Lozano, J.A.: Merge nondominated sorting
algorithm for many-objective optimization. IEEE Trans. Cybern. (2020). https://
doi.org/10.1109/TCYB.2020.2968301. Accepted for publication

28. Roy, P., Hussein, R., Deb, K.: Metamodeling for multimodal selection functions in
evolutionary multi-objective optimization. In: Proceedings of Genetic and Evolu-
tionary Computation Conference, pp. 625–632. ACM (2017)

29. Roy, P.C., Deb, K.: High dimensional model representation for solving expensive
multi-objective optimization problems. In: Proceedings of IEEE Congress on Evo-
lutionary Computation, pp. 2490–2497. IEEE (2016)

30. Roy, P.C., Deb, K., Islam, M.M.: An efficient nondominated sorting algorithm for
large number of fronts. IEEE Trans. Cybern. 49(3), 859–869 (2019)

31. Roy, P.C., Islam, M.M., Deb, K.: Best order sort: a new algorithm to non-
dominated sorting for evolutionary multi-objective optimization. In: Proceedings
of Genetic and Evolutionary Computation Conference Companion, pp. 1113–1120.
ACM (2016)

32. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in
genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

https://doi.org/10.1007/978-3-319-99253-2_28
https://doi.org/10.1007/978-3-319-99253-2_28
https://doi.org/10.1145/3377930.3390246
https://doi.org/10.1145/3377930.3390246
https://doi.org/10.1145/3377929.3389900
https://doi.org/10.1145/3377929.3389900
https://doi.org/10.1109/TCYB.2020.2968301
https://doi.org/10.1109/TCYB.2020.2968301

Filter Sort Is Ω(N3) in the Worst Case 685

33. Tang, S., Cai, Z., Zheng, J.: A fast method of constructing the non-dominated set:
arena’s principle. In: 4th International Conference on Natural Computation, pp.
391–395. IEEE (2008)

34. Wang, J., Li, C., Diao, Y., Zeng, S., Wang, H.: An efficient nondominated sorting
algorithm. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion, pp. 203–204. ACM (2018)

35. Zhang, X., Tian, Y., Cheng, R., Jin, Y.: An efficient approach to nondominated
sorting for evolutionary multiobjective optimization. IEEE Trans. Evol. Comput.
19(2), 201–213 (2015)

36. Zhang, X., Tian, Y., Cheng, R., Jin, Y.: A decision variable clustering-based evolu-
tionary algorithm for large-scale many-objective optimization. IEEE Trans. Evol.
Comput. 22(1), 97–112 (2018)

37. Zhang, X., Tian, Y., Cheng, R., Yaochu, J.: An efficient approach to nondominated
sorting for evolutionary multiobjective optimization. IEEE Trans. Evol. Comput.
19(2), 201–213 (2015)

38. Zhang, X., Tian, Y., Jin, Y.: A knee point-driven evolutionary algorithm for many-
objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2015)

39. Zhou, Y., Chen, Z., Zhang, J.: Ranking vectors by means of the dominance degree
matrix. IEEE Trans. Evol. Comput. 21(1), 34–51 (2017)

Approximation Speed-Up by
Quadratization on LeadingOnes

Andrew M. Sutton1(B) and Darrell Whitley2

1 Department of Computer Science, University of Minnesota Duluth, Duluth, USA
amsutton@umn.edu

2 Department of Computer Science, Colorado State University, Fort Collins, USA
whitley@cs.colostate.edu

Abstract. We investigate the quadratization of LeadingOnes in the
context of the landscape for local search. We prove that a standard
quadratization (i.e., its expression as a degree-2 multilinear polynomial)
of LeadingOnes transforms the search space for local search in such a
way that faster progress can be made. In particular, we prove there is a
Ω(n/ log n) speed-up for constant-factor approximations by RLS when
using the quadratized version of the function. This suggests that well-
known transformations for classical pseudo-Boolean optimization might
have an interesting impact on search heuristics. We derive and present
numerical results that investigate the difference in correlation structure
between the untransformed landscape and its quadratization. Finally, we
report experiments that provide a detailed glimpse into the convergence
properties on the quadratized function.

1 Introduction

The transformation of higher order pseudo-Boolean functions into quadratic
functions has been studied in the context of classical mathematical optimiza-
tion [2]. Such transformations are useful because they allow for faster exact
maximization techniques. However, in the context of evolutionary optimization
and local search, it is not immediately clear that such transformations could be
beneficial. Indeed, it seems likely that an arbitrary transformation of a pseudo-
Boolean function could be detrimental to local search methods by introducing
auxiliary variables with uncontrolled dependencies and obscuring the “fitness”
signal within the search landscape. This raises a question as to whether quadratic
transformations could actually be beneficial to local search. This paper answers
that question in the affirmative. In particular, we show that a standard transfor-
mation of the LeadingOnes function to a quadratic form yields a Ω(n/ log n)
speed-up for constant factor approximations by RLS. Moreover, we show that
instead of obscuring the fitness signal, the transform supplies a more favorable
correlation structure to the search landscape.

Let f : {0, 1}n → R be a pseudo-Boolean function. Then f has a unique
multilinear form

f(x) =
∑

S⊆[n]

cS

∏

j∈S

xj ,

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 686–698, 2020.
https://doi.org/10.1007/978-3-030-58115-2_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_48&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_48

Approximation Speed-Up by Quadratization on LeadingOnes 687

where cS is a real coefficient. We refer to cS

∏
j∈S xj as the monomial corre-

sponding to S. The degree of f is the maximum cardinality of S such that the
coefficient cS of the monomial corresponding to S is nonzero. In particular,

deg(f) = max
S⊆[n]

{|S| : cS �= 0}

For an arbitrary pseudo-Boolean function f : {0, 1}n → R, a quadratiza-
tion [1] of f is a quadratic function g(x, y) where x ∈ {0, 1}n and y ∈ {0, 1}m

for some m = poly(n) such that

f(x) = max
y∈{0,1}m

{g(x, y)}.

Here we refer to the m additional yi-variables as auxiliary variables. Writing f
as a maximum over auxiliary variables is useful in the context of maximization.
In particular, if we seek to maximize f , we have the correspondence

max
x∈{0,1}n

f(x) = max{g(x; y) : x ∈ {0, 1}n, y ∈ {0, 1}n}.

In order to construct g, we compute a quadratization for each monomial in f
with degree at least three by using the following observations.

A positive monomial (i.e., cS > 0) can be written as

cS

∏

j∈S

xj = cS max
y∈{0,1}

⎧
⎨

⎩y

⎛

⎝
∑

j∈S

xj − (|S| − 1)

⎞

⎠

⎫
⎬

⎭ , (1)

where y is a new auxiliary variable [6].

1.1 LeadingOnes

The well-known LeadingOnes [4,8] function counts the number of one bits
appearing as a prefix in a bit string before the first zero. LeadingOnes is
defined as follows.

f(x) =
n∑

i=1

i∏

j=1

xj = x1 + x1x2 +
n∑

i=3

i∏

j=1

xj

Hence there are exactly n positive monomials with unit coefficients. Applying (1)
to each positive monomial of degree greater than two, we arrive at the quadra-
tization of LeadingOnes f(x) = max{g(x, y) : y ∈ {0, 1}n−2} where

g(x, y) = x1 + x1x2 +
n∑

i=3

i∑

j=1

xjyi−2 −
n∑

i=3

(i − 1)yi−2. (2)

The maximum of g is g(1n, 1n−2) = n. The minimum of g lies at g(0n, 1n−2)
= −(n2 − n − 2)/2.

688 A. M. Sutton and D. Whitley

2 Quadratization Can Improve Approximation Speed

It is known that the quadratization of general pseudo-Boolean functions can
render them easier to solve by classical computational approaches [2]. In this
section, we will show that in the case of LeadingOnes, the quadratization
can also improve the search space for local search algorithms. In particular, the
quadratization changes the landscape to permit “shortcuts” that speed up the
time to reach higher quality solutions.

One of the simplest forms of local search is so-called random local search
(RLS) in which we iteratively hillclimb in the space of bitstrings to try to locate
an optimal solution. The traditional RLS algorithm is listed in Algorithm 1.

Algorithm 1: Classical Random Local Search to maximize f

input : A function f : {0, 1}n → R

output: A proposed maximum to f
1 Choose x ∈ {0, 1}n uniformly at random;
2 while termination criteria not met do
3 Create x′ by flipping exactly one of the n bits of x, chosen u.a.r.;
4 if f(x′) ≥ f(x) then x ← x′

5 return x;

We adapt local search on the quadratization of LeadingOnes as follows. We
employ the foregoing quadratization transformation g(x, y) as the evaluation
function for local search over (x, y) ∈ {0, 1}n × {0, 1}n−2, where g is to be
maximized. After iteratively hillclimbing on g for a prescribed number of steps,
we obtain a proposed solution. We then interpret the first argument of g as the
proposed solution for f . The general algorithm for RLS using a quadratization
as a surrogate is listed in Algorithm 2.

Algorithm 2: Random Local Search to maximize f using a quadratization
g

input : A function f : {0, 1}n → R and its quadratization
g : {0, 1}n × {0, 1}m → R

output: A proposed maximum to f
1 Choose x ∈ {0, 1}n, y ∈ {0, 1}m uniformly at random;
2 while termination criteria not met do
3 Create (x′, y′) by flipping exactly one of the n + m bits in (x, y), chosen

u.a.r.;
4 if g(x′, y′) ≥ g(x, y) then (x, y) ← (x′, y′)

5 return x;

We begin by stating the claim that RLS requires Ω(n2) steps to find any
constant factor approximation for LeadingOnes with high probability.

Approximation Speed-Up by Quadratization on LeadingOnes 689

Theorem 1. Let 0 < ρ < 1 be an arbitrary constant. With probability 1 − o(1),
Random Local Search (Algorithm 1) requires Ω(n2) iterations until it generates
a solution x with at least ρn leading ones.

The proof of Theorem 1 follows easily from the fact that the time to find a string
in {0, 1}n with at least ρn leading ones (for any constant 0 < ρ < 1) is no faster
than the time to solve LeadingOnes on {0, 1}�ρn�. The tail bound follows by
adapting the argument in [5, Theorem 17].

Our main result is that the transformed search space allows for the following
probabilistic performance guarantee.

Theorem 2. Let 0 < ρ < 1 be an arbitrary constant. With probability Ω(1),
Random Local Search (Algorithm 2) using the quadratization g of LeadingOnes
requires Θ(n log n) iterations until it generates a solution x with at least ρn
leading ones.

Before proving Theorem 2, it will be useful to prove the following two tech-
nical lemmas that shed light on the properties of the transformed search space.

Lemma 1. Let x ∈ {0, 1}n and y ∈ {0, 1}n−2. For arbitrary k ≤ 2 + max{i :
yi = 1}, let x′ be the Hamming neighbor of x produced by flipping the k-th bit
of x. Then g(x, y) < g(x′, y) ⇐⇒ xk < x′

k, where g is the quadratization of
LeadingOnes.

Proof. By Eq. (2), g(x, y) − g(x′, y) = (xk − x′
k)

∑n
i=k yi−2 . Since we assume

k ≤ 2 + max{i : yi = 1}, it holds that

n∑

i=k

yi−2 > 0,

and thus the claim holds. �	
Lemma 2. Let x ∈ {0, 1}n and y ∈ {0, 1}n−2. For arbitrary k ∈ {1, . . . , n − 2},
let y′ be the Hamming neighbor of y produced by flipping the k-th bit of y. Then
the following properties hold.

1. If LeadingOnes(x) ≥ k + 2, then g(x, y) < g(x, y′) ⇐⇒ yk < y′
k.

2. If LeadingOnes(x) = k + 1, or more generally, there is at most one index
1 ≤ i ≤ k + 2 such that xi = 0, then g(x, y) = g(x, y′).

3. Otherwise, g(x, y) < g(x, y′) ⇐⇒ yk > y′
k.

Proof. By Eq. (2), we have

g(x, y) − g(x, y′) =
k+2∑

j=1

xj(yk − y′
k) − (yk − y′

k)(k + 1). (3)

Suppose first that LeadingOnes(x) ≥ k + 2. Then property 1. must hold,
since Eq. (3) yields g(x, y) − g(x, y′) = (yk − y′

k)(k + 2 − (k + 1)) = (yk − y′
k).

690 A. M. Sutton and D. Whitley

Similarly, when there is only a single zero in x between indexes 1 and k+2, then∑k+2
j=1 xj = k + 1 and Eq. (3) is zero, yielding property 2 Otherwise, g(x, y) −

g(x, y′) = (yk − y′
k)(a − (k + 1)) for some a ≤ k, providing property 3. �	

An interesting effect of the quadratization is that at time t, the substring
x1, . . . , x�(t) where �(t) is two plus the maximum index of y set to one at time t,
essentially “looks like” a positive linear function to RLS. Thus, as long as high
bits of y remain set to one, a large prefix of x can be quickly optimized. We then
rely on Lemmas 1 and 2 to show that the correct combination of x and y bits
set to one ensure that a constant fraction of leading ones in x are protected from
switching to zero for the remainder of the process.

Proof (of Theorem 2). Fix a constant 0 < ρ < 1. We are interested in the number
of iterations of Algorithm 2 until LeadingOnes(x) ≥ ρn.

We begin by proving the upper bound of O(n log n). Let ρ′ = (1/2 + ρ/2).
We define the random variable T to be the first iteration in which max{i : yi =
1} < ρ′n. Since we choose the initial string at random, by Chernoff bounds, with
probability exponentially close to one,

z :=
n−2∑

i=ρ′n

yi >
(1 − ρ′)n

4
.

By Lemma 2, as long as LeadingOnes(x) < ρ′n, any such yi changing from
1 to 0 is accepted, while any yi changing from 0 to 1 may be rejected, as the
resulting fitness is either smaller or equal. Either of these flips happen with
probability 1

2(n−1) . By pessimistically assuming that no zeros are changed to
one before max{i : yi = 1} < ρ′n (which could only slow the process down),
T is probabilistically bounded below by the hitting time of a coupon-collector
process from which we can derive the following tail bound via the Chebyshev
inequality

Pr(T ≥ 2(n − 1)Hz − 2(n − 1) ln 3) > 1 − 1
ln2 3

.

where Hz denotes the z-th Harmonic number. For the remainder of the proof
we condition on the event that T ≥ 2(n − 1)Hz − 2(n − 1) ln 3.

By Lemma 1, for all t < T , changing an xi from 0 to 1 with i ≤ ρ′n is always
accepted. Similarly, changing an xi from 1 to 0 with i ≤ ρ′n is always rejected.
Consider a contiguous block of size z/10 in x. Let S be the waiting time until
the block is solved. As long as the block is solved before T steps, S is again the
hitting time of a coupon-collector process with E[S] = 2(n − 1)Hz/10. We thus
have,

Pr(S > 2(n − 1)Hz/10 + 2(n − 1) ln 3) <
1

ln2 3
.

The probability that r independent contiguous blocks of size z/10 are all
solved before 2(n − 1)Hz/10 + 2(n − 1) ln 3 is at least (1 − 1

ln2 3
)r. Setting

Approximation Speed-Up by Quadratization on LeadingOnes 691

r = 10ρ′n/z < 40ρ′/(1 − ρ′), we see that the first r blocks would contribute
ρ′n to the LeadingOnes value of x. Note that, by assumption,

T − (
2(n − 1)Hz/10 + 2(n − 1) ln 3

) ≥ 2(n − 1)(Hz − Hz/10 − 2 ln 3)

= 2(n − 1)
(

ln
10
9

− O(1/z)
)

is positive for sufficiently large z. Hence with probability Ω(1), there is a point
in time before T iterations when LeadingOnes(x) ≥ ρ′n

We now condition on this occurrence and assume the process has generated
at least ρ′n leading ones in x at some time T ′ ≤ T . We claim that in iteration
T ′ +1, with at least constant probability, there is an index k ∈ [ρn, ρ′n−2] such
that yk = 1. If there is no such bit yk = 1 in iteration T ′, then one of the bits of
y in the index range [ρn, ρ′n − 2] flips from zero to one with probability

ρ′n − ρn − 2
2(n − 1)

= (1 − ρ)/4 − O(1/n) = Ω(1).

Conditioning on this event, by Lemma 1, as long as yk = 1, we have 2 + max{i :
yi = 1} > k+2, and so none of the one bits in x with index at most k will be lost
in the next step. Furthermore, by Lemma 2, since LeadingOnes(x) ≥ k + 2,
any change of yi with i ≤ k from one to zero is not accepted, and any change of
yi with i ≤ k from zero to one is accepted.

As long as these two constant-probability events have occurred, then at time
T ′ + 1 there at least k ≥ ρn leading ones in x, and by induction, this condition
is maintained in every step beyond T ′, and so the k ≥ ρn leading ones of x are
never lost for the remainder of the search process.

To prove the lower bound, note that we must collect ρn leading ones in
x. With high probability, at least ρn/4 bits of x are zero at initialization. Set
t = (2n − 3) ln n, and note that the probability that after t steps, a particular
one of these zero bits has not been flipped is at least

(
1 − 1

2(n − 1)

)t

=
(

1 − 1
2(n − 1)

)(2n−3) lnn

≥ 1/n.

The probability that at time t there is still a zero bit in the first ρn bits of x is
thus at least 1 − (1 − 1/n)ρn/4 = Ω(1). Thus with at least constant probability,
Algorithm 2 needs at least Ω(n log n) steps to reach a ρ-approximation for x. �	

The proof of Theorem 2 relies on the fact that enough leading bits of x
become fixed to one before too many bits in y are changed to zero. We can also
translate this to an exact result on a somewhat more ad-hoc function. Define
HalfOneMax(x) := x → ∑n

i=�n/2� xi. We can adapt the proof of Theorem 2
to prove the following.

Theorem 3. Algorithm 2 solves LeadingOnes(x)+HalfOneMax(x) to opti-
mality in Θ(n log n) with constant probability.

692 A. M. Sutton and D. Whitley

Proof. The quadratization of LeadingOnes+HalfOneMax is

g′(x, y) :=
n∑

i=�n/2�
xi + g(x, y),

where g is the quadratization of LeadingOnes. In this case, for every k ≥ n/2,
flipping xk from a zero to a one is always improving, since the flip is counted
at least once in the quadratization g′. For the same reason, any such xk = 1 is
never switched to zero. Therefore, for any positive constant ε, the solution to
HalfOneMax is found in at most 2(n−1) ln n+ε2(n−1) steps with probability
at least 1 − e−ε [3, Theorem 1.9.2]. Favoring the rightmost �n/2� bits of x does
not slow the process for optimizing g(x, y), and we apply Theorem 2 to show
that a 1/2-approximation of LeadingOnes is attained in Θ(n log n) steps with
constant probability. Since this approximation covers the leftmost n/2� bits of
x, the proof is complete. �	

On the other hand, an adaptation of the proof of Theorem 1 establishes that
using the standard non quadratized version of this function would require Ω(n2)
steps, as it must also solve the LeadingOnes component of size n/2�.

3 Experiments

We perform an empirical supplement to the above results to (1) understand
numerically the difference in correlation structure between the two search land-
scapes, and (2) investigate the difference in convergence on a generalization of
LeadingOnes.

3.1 Random Walk Autocorrelation

A common measure of the “smoothness” of a search space is the random walk
autocorrelation for the fitness landscape. This together with the correlation
length of the fitness landscape characterizes how well fitness values are cor-
related in the local neighborhood of local search algorithms and evolutionary
mutation operators [9]. In this section we derive a method to compute numeri-
cally the exact random walk autocorrelation function and correlation length for
LeadingOnes and its quadratization introduced in Sect. 2. The random walk
autocorrelation function r(s) is the statistical autocorrelation along a random
walk of length s, whereas the correlation length measures how far along a ran-
dom walk in the search neighborhood fitnesses tend to be correlated. A larger
correlation length corresponds to a search space that is “smoother” on average,
as fitnesses tend to be correlated at longer distances. Stadler and Schnabl have
even conjectured [10] that the correlation length is intimately related to the
number of local optima in the landscape.

Approximation Speed-Up by Quadratization on LeadingOnes 693

On pseudo-Boolean functions, exact statistical quantities describing the land-
scape can often be extracted using the well-known Walsh transform. Let the
function Sn : {0, 1, . . . , n} → 2{0,1,...,n} be defined as

Sn(i) :=
{

b :
⌊

i

2b

⌋
≡ 1 (mod 2)

}

that determines which bits are set in the length-n binary representation of i.
When n is clear from context, we omit the subscript for simplicity. Every pseudo-
Boolean function f : {0, 1}n → R can be represented in the Walsh polynomial
basis

f(x) =
2k−1∑

i=0

wiψi(x), where ψi(x) =
∏

j∈S(i)

(−1)xj ,

and wi is a real-valued Walsh coefficient. We define |S(i)| to be the order of the
coefficient. The coefficients wi are recovered by the Walsh transform [7],

wi =
∑

x∈{0,1}n

f(x)ψi(x). (4)

The random walk autocorrelation r(s) and correlation length � on a landscape
can be computed as linear combinations of the ratio of squared Walsh coefficients
of each order [11].

r(s) :=
∑

p�=0

W (p)

(
1 − 2p

n

)s

, (5)

and

� := n
∑

p�=0

W (p)

2p
, (6)

where W (p) :=
(∑

i:|S(i)|=p w2
i

)
/
(∑

j �=0 w2
j

)
are the normalized order-p ampli-

tudes of the decomposition.
The Walsh transform of a degree-k monomial is

k∏

j=1

xj =
2k−1∑

i=0

w
(k)
i ψi(x),

where, by Eq. (4),

w
(k)
i =

⎧
⎪⎨

⎪⎩

2n − 1 if i = 0,

ψi(i)2n−k if S(i) ⊇ {1, . . . , k},

0 otherwise.

The transform is linear, and hence the transform of LeadingOnes is computed
over the monomials wi =

∑n
k=1 w

(k)
i . Collecting the squared Walsh coefficients

of order p, we have

694 A. M. Sutton and D. Whitley

∑

i:|S(i)|=p

w2
i =

(
k − 1
p − 1

)
(2n−k+1 − 1)2,

and we derive the normalized order-p amplitudes for LeadingOnes as follows.

W (p) =

∑n
k=p w2

i:|S(i)|=p∑
j �=0 w2

j

=
1
s

n∑

k=p

(
k − 1
p − 1

)
(2n−k+1 − 1)2, (7)

and s =
∑

j �=0 w2
j . Note that each W (p) can be computed as a sum over n−p+1

terms.
We can also compute the exact correlation for the quadratization in (2). For

LeadingOnes on n bits, we consider the quadratization g as a function on
N = 2n − 2 bits. Again, the Walsh transform is linear, so we can compute the
coefficients separately for each term in g. In particular, let

h1(z) =
n∑

i=3

i∑

j=1

zjzn−i−2, and h2 =
n∑

i=3

(i − 1)zn+i−2.

The function h2 is a simple linear function, and the Walsh coefficients are

wh2
i =

⎧
⎪⎨

⎪⎩

2n−3 (n+1)(n−2)
2 if i = 0,

−(k + 1)22n−3 if S(i) = {n + k}, k > 0,

0 otherwise.

The function h1 is quadratic, but the Walsh coefficients are straightforward to
extract.

wh1
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

22n−4(n − 2)(n + 3)/2 if i = 0,

22n−4 if S(i) = {b1, b2} where 3 < b1 ≤ n < b2,

−(b − n + 2)22n−4 if S(i) = {b} and b > n

−(n − b + 1)22n−4 if S(i) = {b} and 3 < b ≤ n

−(n − 2)22n−4 if S(i) = {b} and b ≤ 3
0 otherwise.

Combining the above with the Walsh transform for monomials x1 and x1x2,
we compute the set of Walsh coefficients for g as wg

i = w
(1)
i + w

(2)
i + wh1

i − wh2
i .

Approximation Speed-Up by Quadratization on LeadingOnes 695

The squared linear coefficients simplify considerably:
∑

i:|S(i)|=1

w2
i =

(−22n−4 − (n − 2)22n−4
)2

+
(−3 · 22n−4 − (n − 2)22n−4

)2

+
(
(n − 2)22n−4

)2
+

n∑

b=4

(−(n − b + 1)22n−4
)2

+
2n−2∑

b=n+1

(−(i − n + 2)22n−4 + (i − n + 1)22n−3
)2

=
n

(
2n2 − 3n + 13

)
24n−8

3
.

The squared quadratic coefficients can be computed as

∑

i:|S(i)|=2

w2
i =

(
(n − 1)(n + 2)

2
− 1

)
24n−8.

Since g is quadratic, wi = 0 for all i with |S(i)| > 2. Thus we have

W (1) =
2n

(
2n2 − 3n + 13

)

4n3 − 3n2 + 29n − 12
, and W (2) =

3
(
n2 + n − 4

)

4n3 − 3n2 + 29n − 12
.

(8)
Substituting the order-p amplitudes derived in Eq. (7) for LeadingOnes and
Eq. (8) for the quadratization into the formulas for random walk autocorrelation
and correlation length (Eqs. (5) and (6)), it is possible to derive numerically these
exact quantities, even for large values of n. Note that in general, one would
either require exhaustive enumeration of the search space to obtain the exact
correlation structure, or would resort to sampling. We compare the smoothness
of LeadingOnes to its quadratization in Fig. 1.

0 200 400

0

200

400

n

�

LeadingOnes
quadratization

10 100

0.316

1

n

r(
1)

LeadingOnes
quadratization

Fig. 1. Exact correlation length � (left) and exact 1-step correlation r(1) as a function
of n on LeadingOnes and its quadratization.

696 A. M. Sutton and D. Whitley

3.2 Leading Ones and Sparse Permutation Problems

A generalization of the LeadingOnes problem is the HiddenPermutation
problem. Here we have some permutation π : {1, . . . , n} → {1, . . . , n}, and we
want to optimize the function

f(x) =
n∑

i=1

ci

i∏

j=1

xπ(j). (9)

Thus the LeadingOnes function is a special case of HiddenPermutation
when π is the identity permutation, and ci = 1 for all i ∈ {1, . . . , n}.

To investigate the tightness of the bounds proved in Sect. 2, and observe the
details of the convergence speed for RLS, we perform a number of runs of local
search on LeadingOnes and measure the number of steps necessary until a par-
ticular approximation factor ρ is reached. For each n ∈ {100, 150, . . . , 450, 500}
we ran RLS both with LeadingOnes as the evaluation function, and with the
quadratization as the surrogate evaluation function. The search was terminated
as soon as the true LeadingOnes value reached the target approximation ratio
ρ ∈ {0.5, 0.6, 0.7, 0.9}. For each (n, ρ) pair, we conducted 100 trials of each search
variant. The median number of steps along with interquartile ranges are plotted
in Fig. 2. The results suggest the bounds in Sect. 2 are in fact tight.

200 400
0

0.5

1

·105

n

st
ep

s

using f(x)
using g(x, y)
ρ = 0.5

200 400
0

0.5

1

1.5

·105

n

st
ep

s

using f(x)
using g(x, y)
ρ = 0.6

200 400
0

0.5

1

1.5

·105

n

st
ep

s

using f(x)
using g(x, y)
ρ = 0.7

200 400
0

1

2

·105

n

st
ep

s

using f(x)
using g(x, y)
ρ = 0.8

Fig. 2. For each ρ = {0.5, 0.6, 0.7, 0.8}, the plot reports the median number of steps
required as a function of n by RLS until at least ρn leading ones are found in x using
either f (LeadingOnes) directly as an evaluation function, or its quadratization g.
Shaded area denotes interquartile range.

Approximation Speed-Up by Quadratization on LeadingOnes 697

To examine the convergence behavior, and to investigate the generality of our
results, we performed a number of experiments in which we generate several ran-
dom HiddenPermutation problem instances and sampled the fitness during
the search. A problem instance is generated as follows. A permutation π is first
drawn uniformly at random, and then the sequence of coefficients (c1, c2, . . . , cn)
is chosen from ci ∈ {0, 1}. We parameterize each set of instances with the sparsity
parameter s, and choose ci = 1 with probability s, and ci = 0 with probability
1− s. For n = 100, 200, 300 and s = 0.3, 0.9, we generated 100 problems for each
parameter combination. For each problem instance, we ran RLS for 10000 steps
and sampled the fitness in each step by evaluating the polynomial in Eq. (9). We
also ran RLS using the quadratization of the polynomial as a surrogate evalua-
tion function, but sampled the true fitness in each step again by evaluating the
polynomial in Eq. (9). The results from these experiments (excluding n = 200)
are plotted in Fig. 3. On each set, we can observe is a distinct advantage by
using the quadratization.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

n = 100, s = 0.3

steps ·104

fit
ne

ss

0 0.2 0.4 0.6 0.8 1
0

50

100

n = 100, s = 0.9

steps ·104

fit
ne

ss

0 0.2 0.4 0.6 0.8 1
0

20

40

60

n = 300, s = 0.3

steps ·104

fit
ne

ss

0 0.2 0.4 0.6 0.8 1
0

100

200

n = 300, s = 0.9

steps ·104

fit
ne

ss

Fig. 3. Median true fitness (Eq. (9)) as a function of local search steps for sparse
hidden permutation problems. Search with unmodified function represented by the red
line. Search with quadratization as surrogate evaluation represented by the blue line.
Shaded area represents interquartile range.

4 Conclusion

We investigated the quadratization of LeadingOnes in the context of local
search behavior. We proved that the quadratization transforms the search space

698 A. M. Sutton and D. Whitley

in such a way that speeds up local search to find any constant factor approxi-
mation. We also derived exact expressions for the random walk autocorrelation
on both LeadingOnes and its quadratization, suggesting that the transforma-
tion improves the amenability of the landscape to local search algorithms. We
conducted experiments to observe the details of the speed-up on both Leadin-
gOnes and the more general class of sparse HiddenPermutation problems.

References

1. Boros, E., Gruber, A.: On quadratization of pseudo-Boolean functions. In: Inter-
national Symposium on Artificial Intelligence and Mathematics (2012)

2. Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Appl. Math.
123(1–3), 155–225 (2002)

3. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics.
Theory of Evolutionary Computation. NCS, pp. 1–87. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-29414-4 1

4. Droste, S., Jansen, T., Wegener, I.: On the optimization of unimodal functions
with the (1+1) evolutionary algorithm. In: Eiben, A.E., Bäck, T., Schoenauer, M.,
Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 13–22. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0056845

5. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

6. Freedman, D., Drineas, P.: Energy minimization via graph cuts: settling what
is possible. In: Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 939–946. IEEE Computer Society (2005)

7. Rana, S., Heckendorn, R.B., Whitley, D.: A tractable Walsh analysis of SAT and
its implications for genetic algorithms. In: Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI 98), pp. 392–397 (1998)

8. Rudolph, G.: Convergence properties of evolutionary algorithms. Kovac (1997)
9. Stadler, P.F.: Landscapes and their correlation functions. J. Math. Chem. 20(1),

1–45 (1996). https://doi.org/10.1007/BF01165154
10. Stadler, P.F., Schnabl, W.: The landscape of the traveling salesman problem. Phys.

Lett. A 161(4), 337–344 (1992)
11. Sutton, A.M., Darrell Whitley, L., Howe, A.E.: A polynomial time computation of

the exact correlation structure of k-satisfiability landscapes. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2009), pp. 365–372.
ACM (2009)

https://doi.org/10.1007/978-3-030-29414-4_1
https://doi.org/10.1007/BFb0056845
https://doi.org/10.1007/BF01165154

Benchmarking a (μ + λ) Genetic
Algorithm with Configurable

Crossover Probability

Furong Ye1(B), Hao Wang2, Carola Doerr2, and Thomas Bäck1

1 LIACS, Leiden University, Leiden, The Netherlands
{f.ye,t.h.w.baeck}@liacs.leidenuniv.nl

2 Sorbonne Université, CNRS, LIP6, Paris, France
{hao.wang,carola.doerr}@lip6.fr

Abstract. We investigate a family of (μ + λ) Genetic Algorithms (GAs)
which creates offspring either from mutation or by recombining two ran-
domly chosen parents. By scaling the crossover probability, we can thus
interpolate from a fully mutation-only algorithm towards a fully crossover-
based GA. We analyze, by empirical means, how the performance depends
on the interplay of population size and the crossover probability.

Our comparison on 25 pseudo-Boolean optimization problems reveals
an advantage of crossover-based configurations on several easy optimiza-
tion tasks, whereas the picture for more complex optimization problems
is rather mixed. Moreover, we observe that the “fast” mutation scheme
with its are power-law distributed mutation strengths outperforms stan-
dard bit mutation on complex optimization tasks when it is combined
with crossover, but performs worse in the absence of crossover.

We then take a closer look at the surprisingly good performance of the
crossover-based (μ+λ) GAs on the well-known LeadingOnes benchmark
problem. We observe that the optimal crossover probability increases
with increasing population size μ. At the same time, it decreases with
increasing problem dimension, indicating that the advantages of the
crossover are not visible in the asymptotic view classically applied in
runtime analysis. We therefore argue that a mathematical investigation
for fixed dimensions might help us observe effects which are not visible
when focusing exclusively on asymptotic performance bounds.

Keywords: Genetic algorithms · Crossover · Fast mutation

1 Introduction

Classic evolutionary computation methods build on two main variation opera-
tors: mutation and crossover. While the former can be mathematically defined
as unary operators (i.e., families of probability distributions that depend on a
single argument), crossover operators sample from distributions of higher arity,
with the goal to “recombine” information from two or more arguments.

There is a long debate in evolutionary computation about the (dis-)advantages
of these operators, and about how they interplay with each other [32,36].
c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 699–713, 2020.
https://doi.org/10.1007/978-3-030-58115-2_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_49&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_49

700 F. Ye et al.

In lack of generally accepted recommendations, the use of these operators still
remains a rather subjective decision, which in practice is mostly driven by users’
experience. Little guidance is available on which operator(s) to use for which situ-
ation, and how to most efficiently interleave them. The question how crossover can
be useful can therefore be seen as far from being solved.

Of course, significant research efforts are spent to shed light on this question,
which is one of the most fundamental ones that evolutionary computation has
to offer. While in the early years of evolutionary computation (see, for exam-
ple, the classic works [2,11,22]) crossover seems to have been widely accepted as
an integral part of an evolutionary algorithm, we observe today two diverging
trends. Local search algorithms such as GSAT [35] for solving Boolean satisfiabil-
ity problems, or such as the general-purpose Simulated Annealing [27] heuristic,
are clearly very popular optimization methods in practice – both in academic
and in industrial applications. These purely mutation-based heuristics are nowa-
days more commonly studied under the term stochastic local search, which forms
a very active area of research. Opposed to this is a trend to reduce the use of
mutation operators, and to fully base the iterative optimization procedure on
recombination operators; see [40] and references therein. However, despite the
different recommendations, these opposing positions find their roots in the same
problem: we hardly know how to successfully dovetail mutation and crossover.

In addition to large bodies of empirical works aiming to identify useful com-
binations of crossover and mutation [11,21,23,33],

The question how (or whether) crossover can be beneficial has also always
been one of the most prominent problems in runtime analysis, the research
stream aiming at studying evolutionary algorithms by mathematical means
[7,8,10,13–15,25,26,28,30,34,37,39,41,43] , most of these results focus on very
particular algorithms or problems, and are not (or at least not easily) generaliz-
able to more complex optimization tasks.

Our Results. In this work, we study a simple variant of the (μ + λ) GA which
allows us to conveniently scale the relevance of crossover and mutation, respec-
tively, via a single parameter. More precisely, our algorithm is parameterized by
a crossover probability pc, which is the probability that we generate in the repro-
duction step an offspring by means of crossover. The offspring is generated by
mutation otherwise, so that pc = 0 corresponds to the mutation-only (μ+λ) EA,
whereas for pc = 1 the algorithm is entirely based on crossover. Note here that
we either use crossover or mutation, so as to better separate the influence of the
two operators.

We first study the performance of different configurations of the (μ + λ) GA
on 25 pseudo-Boolean problems (the 23 functions suggested in [19], a concate-
nated trap problem, and random NK landscape instances). We observe that the
algorithms using crossover perform significantly better on some simple functions
as OneMax (F1) and LeadingOnes (F2), but also on some problems that are
considered hard, e.g., the 1-D Ising model (F19).

We then look more closely into the performance of the algorithm on a
benchmark problem intensively studied in runtime analysis: LeadingOnes,

Benchmarking a (μ + λ) GA with Configurable Crossover Probability 701

the problem of maximizing the function f : {0, 1}n → [0..n], x �→ max{i ∈
[0..n] | ∀j ≤ i : xj = 1}. We observe some very interesting effects, that we
believe may motivate the theory community to look at the question of useful-
ness of crossover from a different angle. More precisely, we find that, against
our intuition that uniform crossover cannot be beneficial on LeadingOnes, the
performance of the (μ+λ) GA on LeadingOnes improves when pc takes values
greater than 0 (and smaller than 1), see Fig. 3. The performances are quite con-
sistent, and we can observe clear patterns, such as a tendency for the optimal
value of pc (displayed in Table 2) to increase with increasing μ, and to decrease
with increasing problem dimension. The latter effect may explain why it is so
difficult to observe benefits of crossover in theoretical work: they disappear with
the asymptotic view that is generally adopted in runtime analysis.

We have also performed similar experiments on OneMax (see our project
data [44]), but the good performance of the (μ + λ) GA configurations using
crossover is less surprising for this problem, since this benefit has previously
been observed for genetic algorithms that are very similar to the (μ + λ) GA;
see [7,8,39] for examples and further references. In contrast to a large body of
literature on the benefit of crossover for solving OneMax, we are not aware of
the existence of such results for LeadingOnes, apart from the highly problem-
specific algorithms developed and analyzed in [1,17].

We hope to promote with this work (1) runtime analysis for fixed dimensions,
(2) an investigation of the advantages of crossover on LeadingOnes, and (3)
the (μ + λ) GA as a simplified model to study the interplay between problem
dimension, population sizes, crossover probability, and mutation rates.

2 Algorithms and Benchmarks

We describe in this section our (μ+λ) GA framework (Sect. 2.1) and the bench-
mark problems (Sect. 2.2). Since in this paper we can only provide a glimpse
on our rich data sets, we also summarize in Sect. 2.3 which data the interested
reader can find in our repository [44].

2.1 A Family of (μ + λ) Genetic Algorithms

Our main objective is to study the usefulness of crossover for different kinds
of problems. To this end, we investigate a meta-model, which allows us to eas-
ily transition from a mutation-only to a crossover-only algorithm. Algorithm 1
presents this framework, which, for ease of notation, we refer to as the family of
the (μ + λ) GA in the following.

The (μ + λ) GA initializes its population uniformly at random (u.a.r., lines
1–2). In each iteration, it creates λ offspring (lines 6–16). For each offspring,
we first decide whether to apply crossover (with probability pc, lines 8–11) or
whether to apply mutation (otherwise, lines 12–15). Offspring that differ from
their parents are evaluated, whereas offspring identical to one of their parents
inherit this fitness value without function evaluation (see [5] for a discussion).

702 F. Ye et al.

Algorithm 1: A Family of (μ + λ) Genetic Algorithms
1 Input: Population sizes μ, λ, crossover probability pc, mutation rate p;

2 Initialization: for i = 1, . . . , μ do sample x(i) ∈ {0, 1}n uniformly at random

(u.a.r.), and evaluate f(x(i));

3 Set P = {x(1), x(2), ..., x(µ)} ;
4 Optimization: for t = 1, 2, 3, . . . do
5 P ′ ← ∅;
6 for i = 1, . . . , λ do
7 Sample r ∈ [0, 1] u.a.r. ;
8 if r ≤ pc then
9 select two individuals x, y from P u.a.r. (w/ replacement);

10 z(i) ← Crossover(x, y);

11 if z(i) /∈ {x, y} then evaluate f(z(i)) else infer f(z(i)) from parent;

12 else
13 select an individual x from P u.a.r.;

14 z(i) ← Mutation(x);

15 if z(i) �= x then evaluate f(z(i)) else infer f(z(i)) from parent;

16 P ′ ← P ′ ∪ {z(i)};

17 P is updated by the best μ points in P ∪ P ′ (ties broken u.a.r.);

The best μ of parent and offspring individuals form the new parent population
of the next generation (line 17).

Note the unconventional use of either crossover or mutation. As mentioned,
we consider this variant to allow for a better attribution of the effects to each
of the operators. Moreover, note that in Alg. 1 we decide for each offspring
individually which operator to apply. We call this scheme the (μ + λ) GA with
offspring-based variator choice. We also study the performance of the (μ+λ)
GA with population-based variator choice, which is the algorithm that we
obtain from Alg. 1 by swapping lines 7 and 6.

We study three different crossover operators, one-point crossover, two-point
crossover, and uniform crossover, and two different mutation operators, standard
bit mutation and the fast mutation scheme suggested in [16]. These variation
operators are briefly described as follows.

– One-point crossover : a crossover point is chosen from [1..n] u.a.r. and an
offspring is created by copying the bits from one parent until the crossover
point and then copying from the other parent for the remaining positions.

– Two-point crossover : similarly, two different crossover points are chosen u.a.r.
and the copy process alternates between two parents at each crossover point.

– Uniform crossover creates an offspring by copying for each position from the
first or from the second parent, chosen independently and u.a.r.

– Standard bit mutation: a mutation strength � is sampled from the conditional
binomial distribution Bin>0(n, pm), which assigns to each k a probability of(
n
k

)
pk(1 − p)n−k/(1 − (1 − p)n) [5]. Thereafter, � distinct positions are chosen

Benchmarking a (μ + λ) GA with Configurable Crossover Probability 703

u.a.r. and the offspring is created by first copying the parent and then flipping
the bits in these �positions. In thiswork,we restrict our experiments to the stan-
dard mutation rate p = 1/n. Note, though, that this choice is not necessarily
optimal, as in particular the results in [3,39] and follow-up works demonstrate.

– Fast mutation [16]: operates similarly to standard bit mutation except that
the mutation strength � is drawn from a power-law distribution: Pr[L = �] =
(Cβ

n/2)
−1�−β with β = 1.5 and Cβ

n/2 =
∑n/2

i=1 i−β .

2.2 The IOHprofiler Problem Set

To test different configurations of the (μ + λ) GA, we first perform an exten-
sive benchmarking on the problems suggested in [19], which are available in the
IOHprofiler benchmarking environment [18]. This set contains 23 real-valued
pseudo-Boolean test problems: F1 and F4-F10: OneMax (F1) and W-model
extensions (F4–10), F2 and F11-F17: LeadingOnes (F2) and W-model exten-
sions (F11–17), F3: Linear function f(x) =

∑n
i=1 ixi, F18: Low Autocorrelation

Binary Sequences (LABS), F19–21: Ising Models, F22: Maximum Independent
Vertex Set (MIVS), and F23: N-Queens (NQP).

We recall that the W-model, originally suggested in [42] and extended in [19],
is a collection of perturbations that can be applied to a base problem in order
to calibrate its features, such as its neutrality, its epistasis, and its ruggedness.
We add to the list of [19] the following two problems:

F24: Concatenated Trap (CT) is defined by partitioning a bit-string into seg-
ments of length k and concatenating m = n/k trap functions that takes each
segment as input. The trap function is defined as follows: f trap

k (u) = 1 if the
number u of ones satisfies u = k and f trap

k (u) = k−1−u
k otherwise. We use k = 5

in our experiments.

F25: Random NK landscapes (NKL). The function values are defined as the
average of n sub-functions Fi : [0..2k+1 − 1] → R, i ∈ [1..n], where each compo-
nent Fi only takes as input a set of k ∈ [0..n − 1] bits that are specified by a
neighborhood matrix. In this paper, k is set to 1 and entries of the neighbour-
hood matrix are drawn u.a.r. in [1..n]. The function values of Fi’s are sampled
independently from a uniform distribution on (0, 1).

Note that the IOHprofiler problem set provides for each problem several
problem instances, which all have isomorphic fitness landscapes, but different
problem representations. In our experiments we only use the first instance of
each problem (seed 1). For the mutation-based algorithms and the ones using
uniform crossover, the obtained results generalize to all other problem instances.
For algorithms involving one- or two-point crossover, however, this is not the
case, as these algorithms are not unbiased (in the sense of Lehre and Witt [29]).

2.3 Data Availability

Detailed results for the different configurations of the (μ+λ) GA are available in
our data repository at [44]. In particular, we host there data for the IOHprofiler

704 F. Ye et al.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

µ=10 µ=50 µ=100
offspring−based

population−based

F1 F2 F3 F4 F5 F6 F7 F8 F9 F1
0

F1
1

F1
2

F1
3

F1
4

F1
5

F1
6

F1
7

F1
8

F1
9

F2
0

F2
1

F2
2

F2
3

F2
4

F2
5

F1 F2 F3 F4 F5 F6 F7 F8 F9 F1
0

F1
1

F1
2

F1
3

F1
4

F1
5

F1
6

F1
7

F1
8

F1
9

F2
0

F2
1

F2
2

F2
3

F2
4

F2
5

F1 F2 F3 F4 F5 F6 F7 F8 F9 F1
0

F1
1

F1
2

F1
3

F1
4

F1
5

F1
6

F1
7

F1
8

F1
9

F2
0

F2
1

F2
2

F2
3

F2
4

F2
5

(mu+mu)−mutation_only

(mu+mu)−uniform

(mu+mu)−two−point

(mu+mu)−one−point

(mu+mu/2)−mutation_only

(mu+mu/2)−uniform

(mu+mu/2)−two−point

(mu+mu/2)−one−point

(mu+1)−mutation_only

(mu+1)−uniform

(mu+1)−two−point

(mu+1)−one−point

(mu+mu)−mutation_only

(mu+mu)−uniform

(mu+mu)−two−point

(mu+mu)−one−point

(mu+mu/2)−mutation_only

(mu+mu/2)−uniform

(mu+mu/2)−two−point

(mu+mu/2)−one−point

0.0 0.4 0.8 1.2 1.6
log(normalized ERT)

Fig. 1. Heat map of normalized ERT values of the (μ + λ) GA with offspring-based
(top part) and population-based (bottom part) variator choice for the 100-dimensional
benchmark problems, computed based on the target values specified in Table 1. The
crossover probability pc is set to 0.5 for all algorithms except the mutation-only ones
(which use pc = 0). The displayed values are the the quotient of the ERT and ERTbest,
the ERT achieved by the best of all displayed algorithms. These quotients are capped
at 40 to increase interpretability of the color gradient in the most interesting region.
The three algorithm groups – the (μ + 1), the (μ + �μ/2), and the (μ + μ) GAs – are
separated by dashed lines. A dot indicates the best algorithm of each group of four.
A grey tile indicates that the (μ + λ) GA configuration failed, in all runs, to find the
target value within the given budget. (Color figure online)

experiments (36 algorithms, 25 functions, 5 dimensions ≤250, 100 independent
runs) and for the (μ + λ) GA on OneMax and on LeadingOnes for all of the
following 5544 parameter combinations: n ∈ {64, 100, 150, 200, 250, 500} (6 val-
ues), μ ∈ {2, 3, 5, 8, 10, 20, 30, ..., 100} (14 values), λ ∈ {1, �μ/2�, μ} (3 values),
pc ∈ {0.1k | k ∈ [0..9]} ∪ {0.95} (11 values), two mutation operators (stan-
dard bit mutation and fast mutation). In these experiments on OneMax and
LeadingOnes, the crossover operator is fixed to uniform crossover.

A detailed analysis of these results, for example using IOHprofiler or using
HiPlot [9] may give additional insights into the dependence of the overall per-
formance on the parameter setting.

3 Results for the IOHprofiler Problems

In order to probe into the empirical performance of the (μ + λ) GA, we test it
on the 25 problems mentioned in Sect. 2.2, with a total budget of 100n2 func-
tion evaluations. We perform 100 independent runs of each algorithm on each

Benchmarking a (μ + λ) GA with Configurable Crossover Probability 705

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

µ=10 µ=50 µ=100

offspring−based
population−based

F1 F2 F3 F4 F5 F6 F7 F8 F9 F1
0

F1
1

F1
2

F1
3

F1
4

F1
5

F1
6

F1
7

F1
8

F1
9

F2
0

F2
1

F2
2

F2
3

F2
4

F2
5

F1 F2 F3 F4 F5 F6 F7 F8 F9 F1
0

F1
1

F1
2

F1
3

F1
4

F1
5

F1
6

F1
7

F1
8

F1
9

F2
0

F2
1

F2
2

F2
3

F2
4

F2
5

F1 F2 F3 F4 F5 F6 F7 F8 F9 F1
0

F1
1

F1
2

F1
3

F1
4

F1
5

F1
6

F1
7

F1
8

F1
9

F2
0

F2
1

F2
2

F2
3

F2
4

F2
5

(mu+mu)−mutation_only

(mu+mu)−uniform

(mu+mu)−two−point

(mu+mu)−one−point

(mu+mu/2)−mutation_only

(mu+mu/2)−uniform

(mu+mu/2)−two−point

(mu+mu/2)−one−point

(mu+1)−mutation_only

(mu+1)−uniform

(mu+1)−two−point

(mu+1)−one−point

(mu+mu)−mutation_only

(mu+mu)−uniform

(mu+mu)−two−point

(mu+mu)−one−point

(mu+mu/2)−mutation_only

(mu+mu/2)−uniform

(mu+mu/2)−two−point

(mu+mu/2)−one−point

−1.0 −0.5 0.0 0.5 1.0ERT relative difference:

Fig. 2. Heat map comparing standard bit mutation (sbm) with fast mutation on the
25 problems from Sect. 2.2 in dimensions n = 100. Plotted values are (ERTfast −
ERTsbm)/ERTsbm, for ERTs computed wrt the target values specified in Table 1. pc is
set to 0.5 for all crossover-based algorithms. Values are bounded in [−1, 1] to increase
visibility of the color gradient in the most interesting region. A black dot indicates that
the (μ + λ) GA with fast mutation failed in all runs to find the target with the given
budget; the black triangle signals failure of standard bit mutation, and a gray tile is
chosen for settings in which the (μ + λ) GA failed for both mutation operators. (Color
figure online)

Table 1. Target values used for computing the ERT value in Fig. 1.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14
100 100 5050 50 90 33 100 51 100 100 50 90 33 7

F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25
51 100 100 4.215852 98 180 260 42 9 17.196 -0.2965711

problem. A variety of parameter settings are investigated: (1) all three crossover
operators described in Sect. 2 (we use pc = 0.5 for all crossover-based config-
urations), (2) both mutation variator choices, (3) μ ∈ {10, 50, 100}, and (4)
λ ∈ {1, �μ/2�, μ}.

In Fig. 1, we highlight a few basic results of this experimentation for n =
100, where the mutation operator is fixed to the standard bit mutation. More
precisely, we plot in this figure the normalized expected running time (ERT),
where the normalization is with respect to the best ERT achieved by any of the
algorithms for the same problem. Table 1 provides the target values for which
we computed the ERT values. For each problem and each algorithm, we first

706 F. Ye et al.

calculated the 2% percentile of the best function values. We then selected the
largest of these percentiles (over all algorithms) as target value.

On the OneMax-based problems F1, F4, and F5, the (μ+λ) GA outperforms
the mutation-only GA, regardless of the variator choice scheme, the crossover
operator, and the setting of λ. When looking at problem F6, we find out that
when μ = 10 the mutation-only GA surpasses most of (μ + λ) GA variants
except the population-based (μ + μ) GA with one-point crossover. On F8–10,
the (μ + λ) GA takes the lead in general, whereas it cannot rival the mutation-
only GA on F7. Also, only the configuration with uniform crossover can hit the
optimum of F10 within the given budget.

On the linear function F3 we observe a similar behavior as on OneMax. On
LeadingOnes (F2), the (μ + λ) GA outperforms the mutation-only GA again
for μ ∈ {50, 100} while for μ = 10 the mutation-only GA becomes superior
with one-point and uniform crossovers. On F11–13 and F15–16 (the W-model
extensions of LeadingOnes), the mutation-only GA shows a better performance
than the (μ + λ) GA with one-point and uniform crossovers and this advantage
becomes more significant when μ = 10. On problem F14, that is created from
LeadingOnes using the same transformation as in F7, the mutation-only GA
is inferior to the (μ + λ) GA with uniform crossover.

On problems F18 and F23, the mutation-only GA outperforms the (μ+λ) GA
for most parameter settings. On F21, the (μ + λ) GA with two-point crossover
yields a better result when the population size is larger (i.e., μ = 100) while the
mutation-only GA takes the lead for μ = 10. On problems F19 and F20, the
(μ + μ) GA with the population-based variator choice significantly outperforms
all other algorithms, whereas it is substantially worse for the other parameter
settings. On problem F24, the (μ + μ/2) GA with two-point crossover achieves
the best ERT value when μ = 100. None of the tested algorithms manages
to solve F24 with the given budget. The target value used in Fig. 1 is 17.196,
which is below the optimum 20. On problem F25, the mutation-only GA and the
(μ + λ) GA are fairly comparable when μ ∈ {10, 50}. Also, we observe that the
population-based (μ+μ) GA outperforms the mutation-only GA when μ = 100.

In general, we have made the following observations: (1) on problems F1–6,
F8–9, and F11–13, all algorithms obtain better ERT values with μ = 10. On
problems F7, F14, and F21–25, the (μ + λ) GA benefits from larger population
sizes, i.e., μ = 100; (2) The (μ+μ) GA with uniform crossover and the mutation-
only GA outperform the (μ+�μ/2�) GA across all three settings of μ on most of
the problems, except F10, F14, F18, and F22. For the population-based variator
choice scheme, increasing λ from one to μ improves the performance remarkably
on problems F17–24. Such an improvement becomes negligible for the offspring-
based scheme; (3) Among all three crossover operators, the uniform crossover
often surpasses the other two on OneMax, LeadingOnes, and the W-model
extensions thereof.

To investigate the impact of mutation operators on GA, we plot in Fig. 2
the relative ERT difference between the (μ + λ) GA configurations using fast
and standard bit mutation, respectively. As expected, fast mutation performs

Benchmarking a (μ + λ) GA with Configurable Crossover Probability 707

slightly worse on F1–6, F8, and F11–13. On problems F7, F9, and F15–17, how-
ever, fast mutation becomes detrimental to the ERT value for most parameter
settings. On problems F10, F14, F18, and F21–25, fast mutation outperforms
standard bit mutation, suggesting a potential benefit of pairing the fast mutation
with crossover operators to solve more difficult problems. Interestingly, with an
increasing μ, the relative ERT of the (μ + λ) GA quickly shrinks to zero, most
notably on F1–6, F8, F9, F11–13.

Interestingly, in [31], an empirical study has shown that on a randomly gen-
erated maximum flow test generation problem, fast mutation is significantly
outperformed by standard bit mutation when combined with uniform crossover.
Such an observation seems contrary to our findings on F10, F14, F18, and F21–
25. However, it is made on a standard (100 + 70) GA in which both crossover
and mutation are applied to the parent in order to generate offspring. We are
planning to investigate the effects of this inter-chaining in future work, but this
topic is beyond the focus of this study.

4 Case-Study: LeadingOnes

The surprisingly good performance of the (μ+λ) GA with pc = 0.5 on Leadin-
gOnes motivates us to investigate this setting in more detail. Before we go
into the details of the experimental setup and our results, we recall that for the
optimization of LeadingOnes, the fitness values only depend on the first bits,
whereas the tail is randomly distributed and has no influence on the selection.
More precisely, a search point x with LeadingOnes-value f(x) has the follow-
ing structure: the first f(x) bits are all 1, the f(x) + 1st bit equals 0, and the
entries in the tail (i.e., in positions [f(x) + 2..n]) did not have any influence on
the optimization process so far. For many algorithms, it can be shown that these
tail bits are uniformly distributed, see [12] for an extended discussion.

Experimental Setup. We fix in this section the variator choice to the offspring-
based setting. We do so because its performance was seen to be slightly better
on LeadingOnes than the population-based choice. We experiment with the
parameter settings specified in Sect. 2.3. For each of the settings listed there, we
perform 100 independent runs, with a maximal budget of 5n2 each.

Overall Running Time. We first investigate the impact of the crossover prob-
ability on the average running time, i.e., on the average number of function
evaluations that the algorithm performs until it evaluates the optimal solution
for the first time. The results for the (μ + 1) and the (μ + μ) GA using uni-
form crossover and standard bit mutation are summarized in Fig. 3. Since not
all algorithms managed to find the optimum within the given time budget, we
plot as red bars the ERT values for such algorithms with success ratio strictly
smaller than 1, whereas the black bars are reserved for algorithms with 100 suc-
cessful runs. All values are normalized by n2, to allow for a better comparison.
All patterns described below also apply to the (μ+ �μ/2�) GA, whose results we
do not display for reasons of space. They are also very similar when we replace
the mutation operator by the fast mutation scheme suggested in [16].

708 F. Ye et al.

Fig. 3. By n2 normalized ERT values for the (μ + λ) GA using standard bit mutation
and uniform crossover on LeadingOnes, for different values of μ and for λ = 1 (top)
and for λ = μ (bottom). Results are grouped by the value of μ (main columns), by
the crossover probability pc (minor columns), and by the dimension (rows). The ERTs
are computed from 100 independent runs for each setting, with a maximal budget of
5n2 fitness evaluations. ERTs for algorithms which successfully find the optimum in all
100 runs are depicted as black bars, whereas ERTs for algorithms with success rates
in (0, 1) are depicted as red bars. All bars are capped at 5. (Color figure online)

As a first observation, we note that the pattern of the results are quite reg-
ular. As can be expected, the dispersion of the running times is rather small.
For reasons of space, we do not describe this dispersion in detail, but to give
an impression for the concentration of the running times, we report that the
standard deviation of the (50 + 1) GA on the 100-dimensional LeadingOnes
function is approximately 14% of the average running time across all values of
pc. As can be expected for a genetic algorithm on LeadingOnes, the average
running increases with increasing population size μ, see [38] for a proof of this
statement when pc = 0.

Next, we compare the sub-plots in each row, i.e., fixing the dimension. We
see that the (μ+λ) GA suffers drastically from large pc values when μ is smaller,
suggesting that the crossover operator hinders performance. But as μ gets larger,
the average running time at moderate crossover probabilities (pc around 0.5) is
significantly smaller than that in two extreme cases, pc = 0 (mutation-only GAs),
and pc = 0.95. This observation holds for all dimensions and for both algorithm
families, the (μ + 1) and the (μ + μ) GA.

Benchmarking a (μ + λ) GA with Configurable Crossover Probability 709

Looking at the sub-plots in each column (i.e., fixing the population size), we
identify another trend: for those values of μ for which an advantage of pc > 0 is
visible for the smallest tested dimension, n = 64, the relative advantage of this
rate decreases and eventually disappears as the dimension increases.

Finally, we compare the results of the (μ+1) GA with those of the (μ+μ) GA.
Following [24], it is not surprising that for pc = 0, the results of the (μ + 1) GA
are better than those of the (μ+μ) GA (very few exceptions to this rule exist in
our data, but in all these cases the differences in average runtime are negligibly
small), and following our own theoretical analysis [20, Theorem 1], it is not
surprising that the differences between these two algorithmic families are rather
small: the typical disadvantage of the (μ + �μ/2�) GA over the (μ + 1) GA is
around 5% and it is around 10% for the (μ + μ) GA, but these relative values
differ between the different configurations and dimensions.

Optimal Crossover Probabilities. To make our observations on the crossover
probability clearer, we present in Table 2 a heatmap of the values p∗

c for which
we observed the best average running time (with respect to all tested pc values).
We see the same trends here as mentioned above: as μ increases, the value of p∗

c

increases, while, for fixed μ its value decreases with increasing problem dimension
n. Here again we omit details for the (μ + �μ/2�) GA and for the fast mutation
scheme, but the patterns are identical, with very similar absolute values.

Table 2. On LeadingOnes, the optimal value of pc for the (μ + 1) and the (μ + μ) GA
with uniform crossover and standard bit mutation, for various combinations of dimension
n (rows) and μ (columns). Values are approximated from 100 independent runs each,
probing pc ∈ {0.1k | k ∈ [0..9]} ∪ {0.95}.

n
µ 2 3 5 8 10 20 30 40 50 60 70 80 90 100

(µ
+

1)

64 0.0 0.1 0.1 0.1 0.2 0.3 0.5 0.4 0.5 0.5 0.6 0.7 0.6 0.7
100 0.0 0.1 0.1 0.1 0.1 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.4 0.6
150 0.0 0.1 0.1 0.1 0.1 0.2 0.3 0.3 0.4 0.4 0.5 0.4 0.4 0.5
200 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4
250 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.3 0.4
500 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3

(µ
+

µ
)

64 0.0 0.2 0.1 0.1 0.2 0.2 0.4 0.4 0.6 0.5 0.5 0.7 0.5 0.7
100 0.0 0.0 0.1 0.1 0.2 0.3 0.3 0.3 0.5 0.4 0.5 0.5 0.6 0.5
150 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.5 0.4 0.5 0.5 0.5 0.5
200 0.0 0.0 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.4 0.5 0.4 0.5
250 0.0 0.0 0.1 0.1 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4
500 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3

Fixed-Target Running Times. We now study where the advantage of the
crossover-based algorithms stems from. We demonstrate this using the example
of the (50 + 50) GA in 200 dimensions. We recall from Table 2 that the optimal
crossover probability for this setting is p∗

c = 0.3. The left plot in Fig. 4 is a fixed-
target plot, in which we display for each tested crossover probability pc (different
lines) and each fitness value i ∈ [0..200] (x-axis) the average time needed until
the respective algorithm evaluates for the first time a search point of fitness at

710 F. Ye et al.

0

25000

50000

75000

100000

0 50 100 150 200
target

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.95

0

1000

2000

3000

0 50 100 150 200
target

0
0.1
0.3
0.8

Fig. 4. Left: Average fixed-target running times of the (50 + 50) GA with uniform
crossover and standard bit mutation on LeadingOnes in 200 dimensions, for differ-
ent crossover probabilities pc. Results are averages of 100 independent runs. Right:
Gradient of selected fixed-target curves.

least i. The mutation-only configuration (pc = 0) performs on par with the best
configurations for the first part of the optimization process, but then loses in
performance as the optimization progresses. The plot on the right shows the
gradients of the fixed-target curves. The gradient can be used to analyze which
configuration performs best at a given target value. We observe an interesting
behavior here, namely that the gradient of the configuration pc = 0.8, which has
a very bad fixed-target performance on all targets (left plot), is among the best
in the final parts of the optimization. The plot on the right therefore suggests
that an adaptive choice of pc should be investigated further.

5 Conclusions

In this paper, we have analyzed the performance of a family of (μ + λ) GAs,
in which offspring are either generated by crossover (with probability pc) or
by mutation (probability 1 − pc). On the IOHprofiler problem set, it has been
shown that this random choice mechanism reduces the expecting running time
on OneMax, LeadingOnes, and many W-model extensions of those two prob-
lems. By varying the value of the crossover probability pc, we discovered on
LeadingOnes that its optimal value p∗

c (with respect to the average running
time) increases with the population size μ, whereas for fixed μ it decreases with
increasing dimension n.

Our results raise the interesting question of whether a non-asymptotic run-
time analysis (i.e., bounds that hold for a fixed dimension rather than in big-Oh
notation) could shed new light on our understanding of evolutionary algorithms.
We note that a few examples of such analyses can already be found in the liter-
ature, e.g., in [4,6]. The regular patterns observed in Fig. 3 suggest the presence
of trends that could be turned into formal knowledge.

Benchmarking a (μ + λ) GA with Configurable Crossover Probability 711

It would certainly also be interesting to extend our study to a (μ + λ) GA
variant using dynamic values for the relevant parameters μ, λ, crossover proba-
bility pc, and mutation rate p. We are also planning to extend the study to more
conventional (μ + λ) GA, which apply mutation right after crossover.

Acknowledgments. Our work was supported by the Chinese scholarship council
(CSC No. 201706310143), by the Paris Ile-de-France Region, by ANR-11-LABX-0056-
LMH (LabEx LMH), and by COST Action CA15140.

References

1. Afshani, P., Agrawal, M., Doerr, B., Doerr, C., Larsen, K.G., Mehlhorn, K.: The
query complexity of finding a hidden permutation. In: Brodnik, A., López-Ortiz,
A., Raman, V., Viola, A. (eds.) Space-Efficient Data Structures, Streams, and
Algorithms. LNCS, vol. 8066, pp. 1–11. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40273-9 1

2. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strate-
gies, Evolutionary Programming, Genetic Algorithms. Oxford University Press Inc,
Oxford (1996)

3. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates
for the leadingones problem. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 1–10. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15844-5 1

4. Buskulic, N., Doerr, C.: Maximizing drift is not optimal for solving OneMax.
In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO
2019), pp. 425–426. ACM (2019). http://arxiv.org/abs/1904.07818

5. Pinto, E.C., Doerr, C.: A simple proof for the usefulness of crossover in black-box
optimization. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete,
L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 29–41. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99259-4 3

6. Chicano, F., Sutton, A.M., Whitley, L.D., Alba, E.: Fitness probability distribution
of bit-flip mutation. Evol. Comput. 23(2), 217–248 (2015)

7. Corus, D., Oliveto, P.S.: Standard steady state genetic algorithms can hillclimb
faster than mutation-only evolutionary algorithms. IEEE Trans. Evol. Comput.
22(5), 720–732 (2018)

8. Corus, D., Oliveto, P.S.: On the benefits of populations for the exploitation speed
of standard steady-state genetic algorithms. Algorithmica 1–31 (2020). https://
doi.org/10.1007/s00453-020-00743-1

9. Haziza, D., Rapin, J.: HiPlot - high dimensional interactive plotting (2020).
https://github.com/facebookresearch/hiplot

10. Dang, D.C., et al.: Escaping local optima using crossover with emergent diversity.
IEEE Trans. Evol. Comput. 22(3), 484–497 (2017)

11. De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems.
Ph.D. thesis, University of Michigan, Ann Arbor, MI, USA (1975)

12. Doerr, B.: Analyzing randomized search heuristics via stochastic domination. The-
oret. Comput. Sci. 773, 115–137 (2019)

13. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theoret. Comput. Sci. 567, 87–104 (2015)

https://doi.org/10.1007/978-3-642-40273-9_1
https://doi.org/10.1007/978-3-642-40273-9_1
https://doi.org/10.1007/978-3-642-15844-5_1
http://arxiv.org/abs/1904.07818
https://doi.org/10.1007/978-3-319-99259-4_3
https://doi.org/10.1007/s00453-020-00743-1
https://doi.org/10.1007/s00453-020-00743-1
https://github.com/facebookresearch/hiplot

712 F. Ye et al.

14. Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolutionary
computation. Theoret. Comput. Sci. 425, 17–33 (2012)

15. Doerr, B., Johannsen, D., Kötzing, T., Neumann, F., Theile, M.: More effective
crossover operators for the all-pairs shortest path problem. Theoret. Comput. Sci.
471, 12–26 (2013)

16. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Pro-
ceedings of Genetic and Evolutionary Computation Conference (GECCO 2017),
pp. 777–784. ACM (2017)

17. Doerr, B., Winzen, C.: Black-box complexity: breaking the O(n logn) barrier of
leadingOnes. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E.,
Schoenauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp. 205–216. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-35533-2 18

18. Doerr, C., Wang, H., Ye, F., van Rijn, S., Bäck, T.: IOHprofiler: a benchmarking
and profiling tool for iterative optimization heuristics. arXiv e-prints:1810.05281,
October 2018. https://arxiv.org/abs/1810.05281

19. Doerr, C., Ye, F., Horesh, N., Wang, H., Shir, O.M., Bäck, T.: Benchmarking
discrete optimization heuristics with IOHprofiler. Appl. Soft Comput. 88, 106027
(2019)

20. Doerr, C., Ye, F., van Rijn, S., Wang, H., Bäck, T.: Towards a theory-guided bench-
marking suite for discrete black-box optimization heuristics: profiling (1 + λ) EA
variants on onemax and leadingones. In: Proceedings of Genetic and Evolutionary
Computation Conference (GECCO 2018), pp. 951–958. ACM (2018)

21. Elsayed, S.M., Sarker, R.A., Essam, D.L.: Multi-operator based evolutionary algo-
rithms for solving constrained optimization problems. Comput. Oper. Res. 38(12),
1877–1896 (2011)

22. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, 1st edn. Addison-Wesley Longman Publishing Co. Inc, Boston (1989)

23. Yoon, H.S., Moon, B.R.: An empirical study on the synergy of multiple crossover
operators. IEEE Trans. Evol. Comput. 6(2), 212–223 (2002)

24. Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring population
size in evolutionary algorithms. Evol. Comput. 13, 413–440 (2005)

25. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms–a proof that
crossover really can help. Algorithmica 34, 47–66 (2002). https://doi.org/10.1007/
s00453-002-0940-2

26. Jansen, T., Wegener, I.: Real royal road functions-where crossover provably is
essential. Discrete Appl. Math. 149(1–3), 111–125 (2005)

27. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 671–680 (1983)

28. Kötzing, T., Sudholt, D., Theile, M.: How crossover helps in pseudo-Boolean opti-
mization. In: Proceedings of Genetic and Evolutionary Computation Conference
(GECCO 2011), pp. 989–996. ACM (2011)

29. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64,
623–642 (2012). https://doi.org/10.1007/s00453-012-9616-8

30. Lehre, P.K., Yao, X.: Crossover can be constructive when computing unique input-
output sequences. Soft. Comput. 15(9), 1675–1687 (2011). https://doi.org/10.
1007/s00500-010-0610-2

31. Mironovich, V., Buzdalov, M.: Evaluation of heavy-tailed mutation operator on
maximum flow test generation problem. In: Proceedings of Genetic and Evolution-
ary Computation Conference (GECCO 2017), Companion Material, pp. 1423–1426.
ACM (2017)

https://doi.org/10.1007/978-3-642-35533-2_18
https://arxiv.org/abs/1810.05281
https://doi.org/10.1007/s00453-002-0940-2
https://doi.org/10.1007/s00453-002-0940-2
https://doi.org/10.1007/s00453-012-9616-8
https://doi.org/10.1007/s00500-010-0610-2
https://doi.org/10.1007/s00500-010-0610-2

Benchmarking a (μ + λ) GA with Configurable Crossover Probability 713

32. Mitchell, M., Holland, J.H., Forrest, S.: When will a genetic algorithm outperform
hill climbing? In: Proceedings of Neural Information Processing Systems Confer-
ence (NIPS 1993). Advances in Neural Information Processing Systems, vol. 6, pp.
51–58. Morgan Kaufmann (1993)

33. Murata, T., Ishibuchi, H.: Positive and negative combination effects of crossover
and mutation operators in sequencing problems. In: Proceedings of Conference on
Evolutionary Computation, pp. 170–175, May 1996

34. Neumann, F., Oliveto, P.S., Rudolph, G., Sudholt, D.: On the effectiveness of
crossover for migration in parallel evolutionary algorithms. In: Proceedings of
Genetic and Evolutionary Computation Conference (GECCO 2011), pp. 1587–
1594. ACM (2011)

35. Selman, B., Levesque, H.J., Mitchell, D.G.: A new method for solving hard satisfi-
ability problems. In: Proceedings of National Conference on Artificial Intelligence,
pp. 440–446. AAAI (1992)

36. Spears, W.M.: Crossover or mutation? In: Banzhaf, W. (ed.) Foundations of
Genetic Algorithms, vol. 2, pp. 221–237. Elsevier, Amsterdam (1993)

37. Sudholt, D.: Crossover is provably essential for the Ising model on trees. In: Pro-
ceedings of Genetic and Evolutionary Computation Conference (GECCO 2005),
pp. 1161–1167. ACM Press (2005)

38. Sudholt, D.: A new method for lower bounds on the running time of evolutionary
algorithms. IEEE Trans. Evol. Comput. 17, 418–435 (2013)

39. Sudholt, D.: How crossover speeds up building block assembly in genetic algo-
rithms. Evol. Comput. 25(2), 237–274 (2017)

40. Varadarajan, S., Whitley, D.: The massively parallel mixing genetic algorithm for
the traveling salesman problem. In: Proceedings of Genetic and Evolutionary Com-
putation Conference (GECCO 2019), pp. 872–879. ACM (2019)

41. Watson, R.A., Jansen, T.: A building-block royal road where crossover is provably
essential. In: Proceedings of Genetic and Evolutionary Computation Conference
(GECCO 2007), pp. 1452–1459. ACM (2007)

42. Weise, T., Wu, Z.: Difficult features of combinatorial optimization problems and
the tunable w-model benchmark problem for simulating them. In: Proceedings of
Genetic and Evolutionary Computation Conference (GECCO 2018, Companion
Material), pp. 1769–1776. ACM (2018)

43. Whitley, D., Varadarajan, S., Hirsch, R., Mukhopadhyay, A.: Exploration and
exploitation without mutation: solving the Jump function in θ(n) time. In: Auger,
A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.)
PPSN 2018. LNCS, vol. 11102, pp. 55–66. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99259-4 5

44. Ye, F., Wang, H., Doerr, C., Bäck, T.: Experimental data sets for the study bench-
marking a (μ + λ) genetic algorithm with configurable crossover probability, April
2020. https://doi.org/10.5281/zenodo.3753086

https://doi.org/10.1007/978-3-319-99259-4_5
https://doi.org/10.1007/978-3-319-99259-4_5
https://doi.org/10.5281/zenodo.3753086

Author Index

Abdelkafi, Omar I-303
Aboutaib, Brahim II-97
Adam, Lukáš II-257
Adriaensen, Steven I-691
Aguirre, Hernan I-33
Ahiod, Belaïd II-97
Akimoto, Youhei I-81
Alderliesten, Tanja II-186, II-215, II-441
Alghamdi, Mahfouth II-329
Anastacio, Marie I-95
Antipov, Denis II-545, II-560
Arnold, Dirk V. I-184
Artigues, Christian I-332
Ashtari, Parastoo I-317
Asteroth, Alexander I-140
Auger, Anne I-707
Awad, Noor I-691

Bäck, Thomas I-140, I-229, I-512, II-313,
II-699

Bagherbeik, Mohammad I-317
Bartz-Beielstein, Thomas I-243
Bel, Arjan II-441
Benoist, Thierry I-332
Bernabé Rodríguez, Amín V. II-3
Bi, Ying I-3
Białas, Marcin I-433
Biedenkapp, André I-691
Binder, Martin I-448
Bischl, Bernd I-448
Bishop, Jordan T. II-471
Blaise, Léa I-332
Boria, Simonetta I-169
Bosman, Peter A. N. II-186, II-215, II-441
Bossek, Jakob I-48, I-111, I-346
Bujny, Mariusz I-169
Buzdalov, Maxim II-560, II-574, II-675
Buzdalova, Arina II-485

Cai, Shaowei I-373
Caraffini, Fabio I-229
Carlet, Claude II-343
Chang, Furong I-484
Chen, Weiyu I-201, II-257

Chen, Zefeng II-634
Chevaleyre, Yann II-661
Chi, Zongzheng II-229
Chicano, Francisco II-125
Christie, Lee A. I-360
Clare, Amanda I-390
Coello Coello, Carlos A. I-650, II-3, II-48,

II-201, II-285
Cofala, Tim II-357
Collet, Pierre I-524
Craven, Matthew J. II-299
Czajkowski, Marcin II-372

da Silva Soares, Anderson II-171
Dandl, Susanne I-448
Daykin, Jacqueline W. I-390
de Almeida Ribeiro, Lucas II-171
de Lima, Telma Woerle II-171
De Lorenzo, Andrea II-79
Deist, Timo M. II-186
Derbel, Bilel I-33, I-303, II-97
Deutz, André II-313
Djurasevic, Marko II-343
Do, Anh Viet II-588
Doerr, Benjamin II-139, II-545, II-560,

II-604, II-619
Doerr, Carola I-111, I-154, I-169, II-139,

II-485, II-574, II-699
Dong, Shaozheng II-229
Dreo, Johann II-139
du Preez-Wilkinson, Nathaniel II-500
Duggan, Jim I-637
Durasevic, Marko II-111

Eiben, A. E. I-243
Elend, Lars II-357
Emmerich, Michael II-171, II-313
Escalante, Hugo Jair II-48

Falcón-Cardona, Jesús Guillermo II-201
Fonlupt, Cyril II-97
Fonseca, Alcides II-18
Friess, Stephen I-583
Fu, Guoxia I-125

Gallagher, Marcus II-471, II-500
Gąsior, Jakub I-678
Glasmachers, Tobias I-597
Grimme, Christian II-154

Hagg, Alexander I-140
Hakanen, Jussi II-243
Hall, George T. I-19
Hansen, Nikolaus I-707
Hemberg, Erik I-552
Hong, Wenjing I-470
Hoos, Holger I-65, I-95, I-373
Horn, Matthias II-385
Howley, Enda I-637
Hu, Shengxiang I-484
Huang, Zhengxin II-634
Hutter, Frank I-691

Ishibuchi, Hisao I-201, II-257

Jacques, Julie I-65
Jakobovic, Domagoj II-111, II-343
Jaszkiewicz, A. I-215
Jeannin-Girardon, Anne I-524
Jiang, He II-229
Jin, Yaochu I-125
Jourdan, Laetitia I-65
Jurczuk, Krzysztof II-372

Kanda, Kouichi I-317
Kaufmann, Thomas II-385
Kaźmierczak, Stanisław I-498
Keedwell, Ed II-413
Kerschke, Pascal I-48, I-111, II-154
Kessaci, Marie-Eléonore I-65
Komarnicki, Marcin M. I-418
Kong, Jiawen I-512
Kononova, Anna V. I-229
Kötzing, Timo II-648
Kowalczyk, Wojtek I-512
Kramer, Oliver II-357
Krause, Oswin I-597
Krawiec, Krzysztof I-623
Kretowski, Marek II-372

Lacroix, Benjamin I-287
Lai, Zhihui I-567
Lengler, Johannes I-610

Li, Ke II-271
Li, Xiaochen II-229
Liefooghe, Arnaud I-33, I-303, II-97, II-201
Lindauer, Marius I-691
Liskowski, Paweł I-623, II-515
Liu, Jialin II-454
Lu, Yuwu I-567
Lung, Rodica Ioana I-539
Luo, Chuan I-373
Lv, Ying I-484
Lynch, David II-33

Major, Lily I-390
Mańdziuk, Jacek I-433, I-498
Maree, Stefanus C. II-186, II-215
Mc Donnell, Nicola I-637
McCall, John I-287
McDermott, James II-33
Medvet, Eric II-79
Meier, Jonas I-610
Menzel, Stefan I-512, I-583, II-428
Meunier, Laurent I-154, II-661
Michalak, Krzysztof II-399
Miettinen, Kaisa II-243
Minku, Leandro L. II-428
Mirbach, Philip II-357
Mirończuk, Marcin Michał I-433
Mishra, Sumit II-675
Molnar, Christoph I-448
Moore, Jason H. II-63
Mora, Benjamin I-390
Morales-Reyes, Alicia II-48
Mousavi, Seyed Farzad I-317

Neumann, Aneta I-111, I-346, I-404
Neumann, Frank I-111, I-346, I-404, II-588
Niatsetski, Yury II-441

O’Neill, Michael II-33
O’Reilly, Una-May I-552
Ochoa, Gabriela II-125
Ohtani, Makoto I-81
Oliveto, Pietro S. I-19
Orhand, Romain I-524

Pacheco-Del-Moral, Oscar I-650
Parrend, Pierre I-524
Peña Gamboa, Leonel Jose I-390
Picek, Stjepan II-111, II-343

716 Author Index

Pieters, Bradley R. II-441
Plaat, Aske II-528
Pohl, Janina I-48
Prellberg, Jonas II-357
Preuss, Mike II-528
Przewozniczek, Michal W. I-418

Raidl, Günther R. II-385
Rajabi, Amirhossein I-664
Randone, Francesca II-79
Rapin, Jeremy I-154, II-661
Raponi, Elena I-169
Rebolledo, Margarita I-243
Rehbach, Frederik I-243, I-273
Ren, Zhilei II-229
Renau, Quentin II-139
Rodionova, Anna II-485
Rodriguez-Coayahuitl, Lino II-48
Ross, Nicholas II-413
Royer, Clément W. II-661
Ruberto, Stefano II-63

Saini, Bhupinder Singh II-243
Sakamoto, Naoki I-81
Santos, Paulo II-18
Savic, Dragan II-413
Schäpermeier, Lennart II-154
Scoczynski Ribeiro Martins, Marcella II-111
Seiler, Moritz I-48
Sendhoff, Bernhard I-583, II-428
Seredyński, Franciszek I-678
Shala, Gresa I-691
Shang, Ke I-201, II-257
Sheikholeslami, Ali I-317
Shirakawa, Shinichi I-719
Silva, Sara II-18
Srivastava, Rupesh Kumar II-515
Suciu, Mihai-Alexandru I-539
Sudholt, Dirk I-19
Sun, Chaoli I-125
Sun, Lei II-271
Susmaga, R. I-215
Sutton, Andrew M. II-686

Tamura, Hirotaka I-317
Tan, Ying I-125
Tanabe, Ryoji I-257
Tanaka, Kiyoshi I-33
Tang, Ke I-470
Tari, Sara I-65

Terragni, Valerio II-63
Teusch, Thomas II-357
Teytaud, Olivier I-154, II-661
Tiňo, Peter I-583
Toal, Lauchlan I-184
Toklu, Nihat Engin I-623, II-515
Tomassini, Marco II-125
Tong, Hao II-428
Toutouh, Jamal I-552
Trautmann, Heike I-48
Treude, Christoph II-329

Uchida, Kento I-719

Valencia-Rodríguez, Diana Cristina II-285
van der Meer, Marjolein C. II-441
Varelas, Konstantinos I-707
Verel, Sébastien I-33, II-97
Virgolin, Marco II-79

Wagner, Markus II-111, II-329
Walker, David J. II-299
Walter, Mathew J. II-299
Wang, Hao I-169, I-229, II-699
Wang, Hui II-528
Wang, Wenjing I-567
Wang, Yali II-313
Wang, Yiwen I-470
Whitley, Darrell I-303, II-686
Wilde, Dominik I-140
Witt, Carsten I-664, II-648
Wozniak, Szymon I-418

Xue, Bing I-3

Yamaguchi, Teppei I-719
Yang, Peng I-470
Yao, Xin I-583, II-428, II-454
Ye, Furong II-699

Zaefferer, Martin I-273
Zarges, Christine I-390
Zăvoianu, Alexandru-Ciprian I-287
Zhang, Bofeng I-484
Zhang, Guochen I-125
Zhang, Han II-454
Zhang, Mengjie I-3
Zhou, Yuren II-634
Zhou, Zhuocheng I-484
Zielniewicz, P. I-215

Author Index 717

	Preface
	Organization
	Contents – Part II
	Contents – Part I
	Genetic Programming
	Generation of New Scalarizing Functions Using Genetic Programming
	1 Introduction
	2 Our Proposed Approach
	3 Experimental Results
	4 Conclusions and Future Work
	References

	The Usability Argument for Refinement Typed Genetic Programming
	1 Introduction
	2 The Æon Programming Language
	3 Refinements in GP
	3.1 Liquid Refinements for Constraining the Search Space
	3.2 Non-liquid Refinements to Express Fitness Functions

	4 The RTGP Algorithm
	4.1 Representation
	4.2 Initialization Procedure
	4.3 Evaluation
	4.4 Selection and Genetic Operators
	4.5 Stopping Criteria

	5 Examples of RTGP
	5.1 Santa Fe Ant Trail
	5.2 Super Mario Bros Level Design
	5.3 Logical Gates

	6 Discussion
	6.1 A Direct Comparison with GGGP
	6.2 Usability

	7 Conclusions and Future Work
	References

	Program Synthesis in a Continuous Space Using Grammars and Variational Autoencoders
	1 Introduction
	2 Methods
	2.1 Grammar Design Pattern
	2.2 Variational Autoencoder
	2.3 Evolutionary Algorithms

	3 Experimental Setup
	4 Results and Discussion
	4.1 Success Rates
	4.2 Landscape Analysis

	5 Conclusions and Future Work
	References

	Cooperative Co-Evolutionary Genetic Programming for High Dimensional Problems
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Cooperative Co-Evolutionary GP
	4.1 Genotype Level
	4.2 Feature Level
	4.3 Ensemble Level
	4.4 Fitness Assignment

	5 Experimental Results
	5.1 Datasets
	5.2 Parameters Settings
	5.3 Analysis of Results
	5.4 Other GP Approaches Comparison

	6 Conclusions
	References

	Image Feature Learning with Genetic Programming
	1 Introduction
	2 Background and Related Work
	3 Genetic Programming Feature Learning (GPFL)
	4 Experiments
	5 Conclusion
	References

	Learning a Formula of Interpretability to Learn Interpretable Formulas
	1 Introduction
	2 Related Work
	3 The Survey
	3.1 Simulatability and Decomposability
	3.2 Overview on the Survey and Results

	4 Learning a Formula of Interpretability
	4.1 Learning the Model

	5 Exploiting the Model of Interpretability in MOGP
	6 Results
	7 Discussion
	8 Conclusion
	References

	Landscape Analysis
	On Stochastic Fitness Landscapes: Local Optimality and Fitness Landscape Analysis for Stochastic Search Operators
	1 Introduction
	2 Preliminaries
	3 Stochastic Fitness Landscapes and Local Optimality
	4 Experimental Analysis
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Stochastic Fitness Landscape Analysis

	5 Discussion and Further Considerations
	References

	Fitness Landscape Analysis of Dimensionally-Aware Genetic Programming Featuring Feynman Equations
	1 Introduction
	2 Background
	2.1 Feynman's Equations
	2.2 Fitness Landscape Analysis

	3 Technical Details
	3.1 Dimensionally-Aware Genetic Programming
	3.2 Initialisation Procedure
	3.3 Neighbourhood Operators
	3.4 Local Search Procedure
	3.5 Genetic Programming Regression

	4 Results
	4.1 Algorithm Efficiency
	4.2 LON Characteristics for DAGP

	5 Conclusions and Future Work
	References

	Global Landscape Structure and the Random MAX-SAT Phase Transition
	1 Introduction
	2 SAT, MAX-SAT and the Phase Transition
	3 Local Optima Networks
	3.1 LON Model
	3.2 Compressed LON Model

	4 Methodology
	4.1 Benchmark Instances
	4.2 Sampling and Construction of the Network Models
	4.3 Determining the Global Optimum

	5 Results
	5.1 Performance and Network Metrics
	5.2 Visualisation

	6 Related Work
	7 Discussion and Conclusion
	References

	Exploratory Landscape Analysis is Strongly Sensitive to the Sampling Strategy
	1 Introduction
	2 The Impact of Low Feature Robustness on Classification Accuracy
	2.1 Classification of BBOB Functions
	2.2 Feature Value Distributions
	2.3 Classifiers: Decision Trees and KNN
	2.4 Sampling Designs
	2.5 Classification Accuracy

	3 The Sampling Strategy Matters
	4 Confusion Matrices
	5 Conclusions
	References

	One PLOT to Show Them All: Visualization of Efficient Sets in Multi-objective Landscapes
	1 Introduction
	2 Background
	2.1 Preliminaries on Multi-objective Optimization
	2.2 Visualization of Continuous MOPs

	3 Identification of Locally Efficient Points
	3.1 Computational Approach
	3.2 First-Order Conditions
	3.3 Second-Order Conditions

	4 Visualizing Local and Global Structures of MOPs
	5 Observations
	6 Conclusions
	References

	Multi-objective Optimization
	On Sharing Information Between Sub-populations in MOEA/S
	1 Introduction
	2 Methods
	2.1 MOEA/S Algorithm
	2.2 MOEA/S Instance
	2.3 Sharing Information by Migration
	2.4 Sharing Information by Recombination

	3 Experiments
	3.1 Experiment Settings

	4 Results and Discussion
	4.1 Sharing Information by Migration Between Sub-populations
	4.2 Sharing Information by Recombination Between Sub-populations
	4.3 Using Local vs. Global Sharing in MOEA/S

	5 Conclusion and Outlook
	References

	Multi-objective Optimization by Uncrowded Hypervolume Gradient Ascent
	1 Introduction
	2 Uncrowded Hypervolume Optimization
	3 UHV Gradient Ascent
	3.1 Gradient Ascent Schemes
	3.2 Finite Difference Gradient Approximation

	4 Experiments
	4.1 Convergence in Hypervolume on the Quadratic Functions
	4.2 Effect of the Number of MO-Solutions p
	4.3 WFG Benchmark

	5 Discussion
	References

	An Ensemble Indicator-Based Density Estimator for Evolutionary Multi-objective Optimization
	1 Introduction
	2 Background
	3 The Proposed EIB-MOEA Approach
	3.1 General Description
	3.2 Learning Process
	3.3 Updating the Relative Importance of QIs

	4 Experimental Analysis
	4.1 Parameters Settings
	4.2 Experimental Results

	5 Conclusions and Future Work
	References

	Ensuring Smoothly Navigable Approximation Sets by Bézier Curve Parameterizations in Evolutionary Bi-objective Optimization
	1 Introduction
	2 UHV-Based Multi-objective Optimization
	3 A Measure for Navigational Smoothness
	4 Bézier Curve Parameterizations of Approximation Sets
	4.1 A Navigational Order for Bézier Parameterizations
	4.2 Unfolding the Bézier Curve (in Objective Space)
	4.3 Bézier Parameterization + GOMEA = BezEA

	5 Numerical Experiments
	5.1 Increasing q
	5.2 Comparison with UHV Optimization
	5.3 WFG Benchmark

	6 Discussion and Outlook
	References

	Many-Objective Test Database Generation for SQL
	1 Introduction
	2 Background and Motivating Example
	2.1 Coverage Criteria
	2.2 Test Database Generation

	3 Our Approach
	3.1 Many-Objective Test Database Generation
	3.2 Sub-problem Decomposition Based Reduction

	4 Experimental Results
	4.1 Research Questions
	4.2 Experimental Results

	5 Conclusion and Future Work
	References

	A New Paradigm in Interactive Evolutionary Multiobjective Optimization
	1 Introduction
	2 Background
	2.1 Multiobjective Optimization
	2.2 Evolutionary Algorithms
	2.3 Achievement Scalarizing Functions

	3 Optimization in Preference Incorporated Space
	3.1 Properties of Preference Incorporated Space
	3.2 The IOPIS Algorithm
	3.3 Visual Interpretation

	4 Numerical Results
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusions
	References

	Hypervolume Optimal -Distributions on Line-Based Pareto Fronts in Three Dimensions
	1 Introduction
	2 Preliminaries
	2.1 Hypervolume Indicator and Its Optimal -Distribution
	2.2 Hypervolume Optimal -Distribution in Two Dimensions
	2.3 Hypervolume Optimal -Distribution in Three Dimensions

	3 Two-Line Pareto Fronts
	3.1 Type III Pareto Front
	3.2 Type IV Pareto Front

	4 Three-Line Pareto Fronts
	4.1 Type V Pareto Front
	4.2 Type VI Pareto Front

	5 Conclusions
	References

	Adaptive Operator Selection Based on Dynamic Thompson Sampling for MOEA/D
	1 Introduction
	2 Preliminaries
	2.1 Multiobejctive Optimization Problems
	2.2 Baseline Algorithm

	3 Proposed Algorithm
	3.1 Thompson Sampling
	3.2 Dynamic Thompson Sampling
	3.3 Operator Pool
	3.4 Credit Assignment
	3.5 AOS Based on DYTS Strategy
	3.6 Framework of MOEA/D-DYTS

	4 Experimental Studies
	4.1 Experimental Settings
	4.2 Experimental Results

	5 Conclusion
	References

	A Study of Swarm Topologies and Their Influence on the Performance of Multi-Objective Particle Swarm Optimizers
	1 Introduction
	2 Background
	2.1 Multi-objective Optimization
	2.2 Particle Swarm Optimization
	2.3 Swarm Topology

	3 SMPSO
	4 Handling Topologies in Multi-Objective Particle Swarm Optimizers
	5 The Proposed Topology Handling Schemes
	5.1 Scheme 1
	5.2 Scheme 2

	6 Experiments and Analysis
	6.1 Methodology
	6.2 Experimental Results

	7 Conclusions and Future Work
	References

	Visualising Evolution History in Multi- and Many-objective Optimisation
	1 Introduction
	2 Background
	2.1 Previous Visualising Search History Literature

	3 Visualising Search History
	3.1 Visualising Search History Methodology

	4 Experimental Setup
	5 Results
	5.1 Multi-objective Problems
	5.2 Many-objective Problems

	6 Conclusion
	References

	Improving Many-Objective Evolutionary Algorithms by Means of Edge-Rotated Cones
	1 Introduction
	2 Related Work
	3 Proposed Algorithm
	3.1 Proposed Dominance Relation
	3.2 Implementation and Integration in MOEAs

	4 Experimental Results and Discussion
	4.1 Experimental Design
	4.2 Experimental Results

	5 Conclusions and Further Work
	References

	Real-World Applications
	Human-Like Summaries from Heterogeneous and Time-Windowed Software Development Artefacts
	1 Introduction and Motivation
	2 Human-Written Summaries – Creation of a Gold Standard
	3 Methodology
	3.1 Generating Summaries Based on Word-Similarity and Feature Vector Similarity
	3.2 Cosine Similarity
	3.3 Algorithmic Approaches

	4 Computational Study and Discussion
	5 Expert Annotation
	6 Threats to Validity
	7 Conclusion and Future Work
	References

	A Search for Additional Structure: The Case of Cryptographic S-boxes
	1 Introduction
	2 Background
	2.1 S-boxes – Representations and Properties
	2.2 Side-Channel Attacks
	2.3 Magic Squares

	3 Experiments
	3.1 Experimental Setup
	3.2 Fitness Functions
	3.3 Results

	4 Conclusions and Future Work
	References

	Evolutionary Multi-objective Design of SARS-CoV-2 Protease Inhibitor Candidates
	1 Introduction
	2 Virus Protease Inhibition
	3 Related Work
	4 Molecule Design Metrics
	5 Evolutionary Molecule Search
	5.1 Mutation
	5.2 Fitness Evaluation
	5.3 NSGA-II

	6 Experiments
	6.1 Metric Development
	6.2 Candidate Comparison

	7 Conclusion
	References

	Generic Relative Relations in Hierarchical Gene Expression Data Classification
	1 Introduction
	2 Background
	2.1 RXA Classification Algorithms
	2.2 Decision Trees
	2.3 Motivation

	3 Evolutionary Relative Expression Decision Tree
	3.1 Representation, Initialization, Selection
	3.2 Genetic Operators
	3.3 Fitness Function
	3.4 Parallelization

	4 Experimental Validation
	4.1 Inducers, Datasets and Settings
	4.2 Accuracy Comparison of Evo-REDT to Popular RXA Counterparts
	4.3 Evo-REDT Characteristics

	5 Conclusions
	References

	A Variable Neighborhood Search for the Job Sequencing with One Common and Multiple Secondary Resources Problem
	1 Introduction
	2 Related Work
	3 Problem Formalization
	4 Variable Neighborhood Search
	4.1 Solution Representation and Evaluation
	4.2 Intensification
	4.3 Diversification

	5 Computational Results
	6 Conclusions
	References

	Evolutionary Graph-Based V+E Optimization for Protection Against Epidemics
	1 Introduction
	1.1 Vertex Protection
	1.2 Edge Protection and Network Connectivity
	1.3 Overview of This Paper

	2 Optimization Problem
	3 Experiments
	3.1 REDS Graphs
	3.2 Decision Models
	3.3 Evolutionary Algorithm

	4 Results
	5 Conclusion
	References

	Human-Derived Heuristic Enhancement of an Evolutionary Algorithm for the 2D Bin-Packing Problem
	1 Introduction
	1.1 Background
	1.2 Proposed Approach

	2 Experimental and Computational Details
	2.1 Gamification
	2.2 Deriving Human Heuristics
	2.3 Experimental Setup

	3 Results and Discussion
	3.1 Human-Derived Heuristics vs Standard GA
	3.2 Human-Derived Heuristics vs First Fit
	3.3 Human-Derived Heuristics vs Best Fit
	3.4 Discussion

	4 Conclusions
	References

	Towards Novel Meta-heuristic Algorithms for Dynamic Capacitated Arc Routing Problems
	1 Introduction
	2 Related Work
	2.1 Split Scheme for Static CARP
	2.2 Split Schemes for DCARP

	3 Proposed Split Schemes for DCARP Fitness Evaluation
	3.1 Auxiliary Graph Construction
	3.2 A-Star Based Optimal Split Scheme
	3.3 Greedy Split Scheme

	4 Experiments
	4.1 Comparison on Relative Accuracy
	4.2 Comparison on Obtained Fitness
	4.3 Comparison on Computational Time

	5 Conclusion
	References

	Robust Evolutionary Bi-objective Optimization for Prostate Cancer Treatment with High-Dose-Rate Brachytherapy
	1 Introduction
	2 Background
	2.1 Insightful Decision Support via Bi-objective Optimization
	2.2 Problem Variables
	2.3 Evolutionary Optimization

	3 Accounting for Uncertainties via Robust Optimization
	3.1 Organ Reconstructions: A Problem-Specific Solution
	3.2 Catheter Displacements: An EA Generic Solution

	4 Experiments
	5 Results
	6 Discussion
	7 Conclusion
	References

	A Hybrid Evolutionary Algorithm for Reliable Facility Location Problem
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 A Hybrid Evolutionary Algorithm: EAMLS
	4.1 EAMLS
	4.2 Operator Design of GA and EAMLS
	4.3 Convergence Metric l3-Value

	5 Computational Studies
	5.1 Experimental Design
	5.2 Experiments on the m=2 and m=jJXj Models
	5.3 Analyses and Discussions

	6 Conclusion
	References

	Reinforcement Learning
	Optimality-Based Analysis of XCSF Compaction in Discrete Reinforcement Learning
	1 Introduction
	2 Background
	2.1 Reinforcement Learning
	2.2 XCSF

	3 Environments
	4 XCSF Configuration
	5 Training Experiments
	5.1 Setup
	5.2 Metrics
	5.3 Results

	6 Compaction
	7 Rollout Analysis
	8 Conclusion
	References

	Hybridizing the 1/5-th Success Rule with Q-Learning for Controlling the Mutation Rate of an Evolutionary Algorithm
	1 Introduction
	2 Previous (1+) EAs with Dynamic Mutation Rates
	3 Hybridizing Q-Learning and the 1/5-th Success Rule
	4 Empirical Comparison of Parameter Control Algorithms
	4.1 Stable Performance on OneMax
	4.2 Stable Performance on Other Benchmark Problems

	5 Conclusions and Future Work
	References

	Fitness Landscape Features and Reward Shaping in Reinforcement Learning Policy Spaces
	1 Introduction
	2 Related Work
	3 Background
	3.1 Fitness Landscapes
	3.2 Reinforcement Learning

	4 Fitness Landscape Features
	4.1 Modality
	4.2 Fitness Distribution
	4.3 Searchability
	4.4 Neutrality
	4.5 Ruggedness
	4.6 Deception
	4.7 Dispersion
	4.8 Symmetry

	5 Environments
	5.1 1D Chain
	5.2 Vacuum World
	5.3 Wall Maze
	5.4 Hazard Maze

	6 Results
	7 Discussion
	7.1 Reward Shaping
	7.2 General Observations

	8 Conclusion
	References

	ClipUp: A Simple and Powerful Optimizer for Distribution-Based Policy Evolution
	1 Introduction
	2 Background
	2.1 Policy Gradients with Parameter-Based Exploration
	2.2 Heavy Ball Momentum
	2.3 Gradient Normalization
	2.4 Gradient Clipping

	3 Formal Definition of the ClipUp Optimizer
	4 Tuning Heuristics for PGPE+ClipUp
	5 Experiments
	5.1 Fitness Scale (in)sensitivity
	5.2 MuJoCo Continuous Control Tasks
	5.3 PyBullet Humanoid

	6 Conclusions
	References

	Warm-Start AlphaZero Self-play Search Enhancements
	1 Introduction
	2 Related Work
	3 Tested Games
	4 AlphaZero-Like Self-play Algorithms
	4.1 The Algorithm Framework
	4.2 MCTS
	4.3 MCTS Enhancements

	5 Orientation Experiment: MCTS(RAVE) vs. RHEA
	6 Full Length Experiment
	6.1 Experiment Setup
	6.2 Results

	7 Discussion and Conclusion
	8 Outlook
	References

	Theoretical Aspects of Nature-Inspired Optimization
	Runtime Analysis of a Heavy-Tailed (1+(,)) Genetic Algorithm on Jump Functions
	1 Introduction
	2 Preliminaries
	2.1 Jump Functions
	2.2 Power-Law Distributions
	2.3 The Heavy-Tailed (1 + (,)) GA
	2.4 Wald's Equation

	3 Heavy-Tailed Parameters
	3.1 Escaping the Local Optimum
	3.2 Reaching the Local Optimum

	4 Static Parameters
	5 Conclusion
	References

	First Steps Towards a Runtime Analysis When Starting with a Good Solution
	1 Introduction
	1.1 Starting with Good Solutions
	1.2 The (1 + (,)) GA Starting with Good Solutions
	1.3 Experimental Results
	1.4 Black-Box Complexity and Lower Bounds
	1.5 Synopsis and Structure of the Paper

	2 Preliminaries
	2.1 The (1 + (,)) GA and Its Modifiactions
	2.2 Problem Statement
	2.3 Probability for Progress

	3 Runtime Analysis
	4 Experiments
	5 Conclusion
	References

	Optimal Mutation Rates for the (1+) EA on OneMax
	1 Introduction
	2 OneMax and (1+) Mutation-Only Algorithms
	3 Computation of Optimal Parameter Configurations
	4 Optimal Mutation Rates and Optimal Running Times
	5 Sensitivity of the Optimization Time w.r.t the Parameter Settings
	6 Applications in Parameter Control
	7 Conclusions
	References

	Maximizing Submodular or Monotone Functions Under Partition Matroid Constraints by Multi-objective Evolutionary Algorithms
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Problem Definition
	2.2 Algorithms Descriptions

	3 Approximation Guarantees
	4 Experimental Investigations
	4.1 Max Cut Problems Setup
	4.2 Cut Maximization Under a Cardinality Constraint
	4.3 Cut Maximization Under Partition Matroid Constraints

	5 Conclusion
	References

	Lower Bounds for Non-elitist Evolutionary Algorithms via Negative Multiplicative Drift
	1 Introduction
	1.1 Related Works

	2 Negative Multiplicative Drift
	3 Negative Drift in Populations Revisited
	4 Processes Using Standard Bit Mutation
	5 Fitness Proportionate Selection
	6 Conclusion and Outlook
	References

	Exponential Upper Bounds for the Runtime of Randomized Search Heuristics
	1 Introduction
	1.1 Exponential Runtime Analysis
	1.2 State of the Art
	1.3 Our Results

	2 Preliminaries
	3 Proving Exponential Upper Bounds
	4 Noisy Optimization of Weakly Monotonic Functions
	5 Other Applications of Our Method
	6 Conclusion and Outlook
	References

	Analysis on the Efficiency of Multifactorial Evolutionary Algorithms
	1 Introduction
	2 Preliminaries
	2.1 Analyzed Algorithms
	2.2 Problems

	3 Runtime Analysis
	3.1 Analysis on (2+2) GA
	3.2 Analysis on (4+2) MFEA

	4 Conclusion
	References

	Improved Fixed-Budget Results via Drift Analysis
	1 Introduction
	2 Preliminaries
	2.1 Known Results for the (1+1) EA on LeadingOnes

	3 Direct Fixed-Budged Drift Theorems
	3.1 Application to OneMax
	3.2 Application to LeadingOnes

	4 Variable Drift Theorem for Fixed Budget
	4.1 Additive Drift as Special Case

	5 Variable Drift and Concentration Inequalities
	5.1 Tail Bounds for Martingale Differences
	5.2 Preparing an Upper Tail Bound via the Martingale Difference Method
	5.3 Preparing a Lower Tail Bound
	5.4 Main Concentration Result – Putting Everything Together

	6 Conclusions
	References

	On Averaging the Best Samples in Evolutionary Computation
	1 Introduction
	2 Theory
	2.1 Outline
	2.2 Notations
	2.3 When the Center of the Distribution is also the Optimum
	2.4 Convergence When the Sampling is not Centered on the Optimum
	2.5 Using Quasi-convexity

	3 Experiments
	3.1 Experimental Validation of Theoretical Formulas
	3.2 One-Shot Optimization in Nevergrad

	4 Conclusion
	References

	Filter Sort Is (N3) in the Worst Case
	1 Introduction
	2 Filter Sort
	3 Worst-Case Running Time Analysis
	4 Conclusion and Discussion
	References

	Approximation Speed-Up by Quadratization on LeadingOnes
	1 Introduction
	1.1 LeadingOnes

	2 Quadratization Can Improve Approximation Speed
	3 Experiments
	3.1 Random Walk Autocorrelation
	3.2 Leading Ones and Sparse Permutation Problems

	4 Conclusion
	References

	Benchmarking a (+) Genetic Algorithm with Configurable Crossover Probability
	1 Introduction
	2 Algorithms and Benchmarks
	2.1 A Family of (+) Genetic Algorithms
	2.2 The IOHprofiler Problem Set
	2.3 Data Availability

	3 Results for the IOHprofiler Problems
	4 Case-Study: LeadingOnes
	5 Conclusions
	References

	Author Index

