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Abstract. During the last decade, large-scale global optimization has
been a very active research area not only because of its many challenges
but also because of its high applicability. It is indeed crucial to develop
more effective search strategies to explore large search spaces consider-
ing limited computational resources. In this paper, we propose a new
hybrid algorithm called Global and Local search using Success-History
Based Parameter Adaptation for Differential Evolution (GL-SHADE)
which was specifically designed for large-scale global optimization. Our
proposed approach uses two populations that evolve differently allow-
ing them to complement each other during the search process. One is in
charge of exploring the search space while the other is in charge of exploit-
ing it. Our proposed method is evaluated using the CEC’2013 large-scale
global optimization (LSGO) test suite with 1000 decision variables. Our
experimental results show that the new proposal outperforms one of the
best hybrid algorithms available in the state of the art (SHADEILS) in
the majority of the test problems adopted while being competitive with
respect to several other state-of-the-art algorithms when using the LSGO
competition criteria adopted at CEC’2019.

Keywords: Differential Evolution · SHADE · Large scale · Global
optimization · Hybrid algorithms

1 Introduction

The general (single-objective) global optimization problem is defined as follows1:

Minimize f(x)
Subject to lbj ≤ xj ≤ ubj , j = 1, 2, ...,D

(1)

1 Without loss of generality, we will assume minimization.
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where lb,ub ∈ IRD are the lower bound and the upper bound of the decision
variables x, respectively. f : IRD → IR is the objective function. The feasible solu-
tion space is defined as: Ω = {x ∈ IRD|lbj ≤ xj ≤ ubj ,∀j ∈ {1, 2, 3, ......,D}}.
When D ≥ 1000, this is called large scale global optimization (LSGO) [11] and
because of the limitations of mathematical programming techniques (particularly
when dealing with highly nonlinear objective functions [2,17]), the use of meta-
heuristics (particularly evolutionary algorithms) has become relatively popular
[5]. Differential Evolution (DE) [1,14] is a metaheuristic designed for continu-
ous search spaces that has been very successful in solving a variety of complex
optimization problems. However, as happens with other meta-heuristics, the per-
formance of DE quickly deteriorates as we increase the number of decision vari-
ables of the problem (the so-called “curse of dimensionality”) [3]. Additionally,
the properties and conditions of the fitness landscape may change (e.g., going
from unimodal to multimodal) [2,3].

Many current approaches for large-scale global optimization are based on
cooperative coevolution (CC), but several non-CC have also been proposed in
recent years [2,4,5,11,12,17]. CC consists in decomposing the original large scale
problem into a set of smaller subproblems which are easier to solve (i.e., it
is a divide-and-conquer approach) [2,12,17]. On the other hand, the non-CC
approaches try to solve the large scale problem as a whole. Most of these non-
CC approaches are hybrid schemes that combine several metaheuristics that
complement each other in order to overcome their limitations. In fact, several
researchers [2,5,11] have combined DE with non-population-based local search
methods to boost its overall performance.

In this paper, we propose a new non-CC approach which is based on the
so-called Success-History Based Parameter Adaptation for Differential Evolu-
tion (SHADE) algorithm [15]. Our proposed algorithm consists of three stages:
(1) initialization, (2) global search and (3) local search. During the initializa-
tion stage a gradient-free non-population-based local search method is applied
to one of the best individuals generated in order to make an early enhancement.
Afterwards, the global and local search stages are iteratively repeated one after
another. Our proposed approach consists of two populations that collaborate
with each other since the first population presents a search scheme specialized
in exploration (thus carrying out the global search stage) and the second one
presents a search engine specialized in exploitation (carrying out the local search
stage). The first population evolves according to SHADE’s algorithm and the
second one according to a new developed SHADE’s variant which we’ve named
eSHADEls. The communication between these two populations is done via a
simple migration protocol (happening when switching from the global to the
local search stage or vice versa). Our proposal is considered a hybrid and non-
CC algorithm since it combines an evolutionary algorithm with a local search
method (used just once during the initialization stage) and solves the problem
as a whole (decomposition never happens). The performance of our proposed
algorithm, referred to as Global and Local search using SHADE (GL-SHADE),
is evaluated on the CEC’2013 large-scale global optimization (LSGO) test suite.
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The remainder of this paper is organized as follows. In Sect. 2, we provide
the background required to understand the rest of the paper. Section 3 describes
in detail our proposal. Our experimental design and our results are provided
in Sect. 4. Finally, our conclusions and some paths for future research work are
provided in Sect. 5.

2 Background

2.1 Differential Evolution

Differential Evolution (DE) was originally proposed by Storn and Price in 1995
[14,18]. DE is a stochastic population-based evolutionary algorithm (EA) that
has shown to perform well in a variety of complex (including some real-world)
optimization problems [1,14]. DE has three control parameters: NP (population
size), F (mutation scale factor) and Cr (crossover rate) [3]. It is well known that
the performance of DE is very sensitive to these parameters [1]. Like other EAs,
an initialization phase is its first task [18]. After that, DE adopts three main
operators: mutation, recombination, and selection.

Algorithm 1: Standard Differential Evolution variant DE/rand/1/bin [14].
Data: maxFEs , NP , Cr , F
Result: x ∈ P such that f(x) ≤ f(y),∀y ∈ P \ {x}

1 Create a population P randomly and uniformly distributed over Ω ;
2 currentFEs = 0 + NP ;
3 while currentFEs < maxFEs do // stopping criterion

4 for i = 0 to i < NP do // for every individual in the population

5 Take r1, r2, r3 ∈ [0, NP − 1] randomly ; // r1 �= r2 �= r3 �= i, rn ∈ IN

6 vi = xr1 + F ∗ (xr2 − xr3) ; // mutation: F ∈ [0.0, 2.0] and xrn ∈ P

7 jrand = randInt(0,D − 1) ; // jrand ∈ IN

8 for j = 0 to j < D do // starting binomial crossover

9 if flip(Cr) || j == jrand then // Cr ∈ [0.0, 1.0]

10 ui,j = vi,j ;
11 If ui,j out of boundary then get it back to the feasible region;
12 else
13 ui,j = xi,j ;
14 Pnext

i ← fittest between ui and xi ; // selection: take ui if f(ui ) ≤ f(xi ), xi otherwise

15 currentFEs + +;
16 P ← Pnext ; // advance generation and repeat

17 return (x ∈ P such that f(x) ≤ f(y),∀y ∈ P \ {x}) ; // fittest

The initialization phase (see Algorithm1, line 1) consists in randomly scat-
tering NP guesses (points) over the search space as follows: xi,j = lbj + (ubj −
lbj) ∗ rnd(0, 1), where xi,j represents the jth gene of the ith individual [18].

The mutation and recombination operators are applied to generate a new
trial vector (ui). During mutation, DE creates a new obtained candidate solution
called a donor solution (vi). The sort of mutation and recombination operator
to be adopted is defined based on the DE version that we use. The notation
DE/α/β/γ is adopted to indicate the particular DE variant to be adopted [1]: α
specifies the base vector, β is the number of difference vectors used, and γ denotes
the type of recombination to be used [3]. Algorithm 1 presents the classical DE
variant, called DE/rand/1/bin. In this scheme, for the mutation operator, three
mutually exclusive individuals (xr1, xr2 and xr3) are randomly selected where
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xr1 is perturbed using the scaled difference between xr2 and xr3 in order to
obtain vi (lines 5–6). For the recombination operator, genes are inherited from
vi and from the target vector (xi) and a binomial (bin) distribution is adopted
in order to obtain ui (lines 7–13) where at least one gene must be inherited from
vi (see line 9). The last step is the selection operator (line 14) where the fittest
between ui and xi is chosen to represent the next generation’s xi .

Several DE variants exist (see [1,14]) and the selection of any of them will
influence the search behavior of DE in different ways. Since there are only two
types of recombination (exponential (exp) and binomial (bin)) the mutation
strategy is really the one that better identifies the behavior of a particular DE
scheme [1].

2.2 An Enhanced Differential Evolution Algorithm Based
on Multiple Mutation Strategies

The Enhanced Differential Evolution Algorithm Based on Multiple Mutation
Strategies (abbreviated as EDE by its authors) [18] was proposed as an enhance-
ment of the DE/best/1/bin scheme, aiming to overcome the tendency of this
scheme to present premature convergence. The core idea of EDE is to take
advantage of the direction guidance information of the best individual pro-
duced by the DE/best/1/bin scheme, while avoiding being trapped into a local
optimum. In the EDE algorithm, an opposition-based learning initialization
scheme is combined with a mutation strategy composed of two DE variants
(DE/current/1/bin and DE/pbest/bin/1) aiming to speed up convergence and
to prevent DE from clustering around the global best individual. EDE also
incorporates a perturbation scheme for further avoiding premature convergence.
Algorithm 2 shows the way in which EDE works.

Algorithm 2: An Enhanced Differential Evolution Algorithm Based on Multiple Mutation Strategies [18].
Data: maxFEs , NP , Cr , F , M , rmax, rmin, wmax, wmin

Result: x ∈ P such that f(x) ≤ f(y),∀y ∈ P \ {x}
1 Create a population P using an opposition-based learning initialization technique;
2 Update currentFEs accordingly;
3 while currentFEs < maxFEs do // stopping criterion

// Execute one generation of DE based on multiple mutation strategies

4 for i = 0 to i < NP do // for every individual in the population

5 Sort P from best to worst and set pbest = randInt(0,M − 1);
6 Take r2, r3 ∈ [0, NP − 1] randomly ; // r2 �= r3 �= i, rn ∈ IN

7 r1 = rmax − currentFEs

maxFEs
∗ (rmax − rmin) ; // r1 ∈ IR

8 if flip(r1) then
9 vi = xi + F ∗ (xr2 − xr3);

10 else
11 vi = xpbest + F ∗ (xr2 − xr3);
12 Apply binomial recombination ; // see Algorithm 1, lines 7-13

13 Pnext
i ← fittest between ui and xi ; // selection: take ui if f(ui ) ≤ f(xi ), xi otherwise

14 currentFEs + +;
15 P ← Pnext ; // advance generation and repeat

// Perturb the best (fittest) individual in the population, dimension by dimension

16 for j = 0 to j < D do
17 µ = xbest ; // Copy the best chromosome so far to µ, xbest

18 k = rnd(0, NP − 1) such that k 	= best ; // k ∈ IN

19 n = rnd(0,D − 1) such that n 	= j ; // n ∈ IN

20 r2 = wmin + currentFEs

maxFEs
∗ (wmax − wmin) ; // r2 ∈ IR

21 if flip(r2) then
22 µj = xbest,n + (2 ∗ rndreal(0, 1) − 1) ∗ (xbest,n − xk,n ) ; // xk ∈ P

23 else
24 µj = xbest,j + (2 ∗ rndreal(0, 1) − 1) ∗ (xbest,n − xk,n );
25 If µj out of boundary then get it back to the feasible region ;
26 Evaluate the new chromosome µ using f and increment currentFEs;
27 Take the fittest, between {µ,xbest} to represent xbest ;
28 return (x ∈ P such that f(x) ≤ f(y),∀y ∈ P \ {x}) ; // fittest
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A remarkable feature of EDE is that it first uses a very explorative evolu-
tionary strategy, but as the number of function evaluations increases, it changes
to a much less explorative scheme (EDE sets rmin = 0.1 and rmax = 1). Another
remarkable feature of EDE is the coupled perturbation method that it adopts
between generations. Actually, if no mutation strategy switching is incorporated
and we decide to use only line 11 (i.e., the mutation operation where M = 1),
the procedure is transformed into a pure population-based local search method.

2.3 Success-History Based Parameter Adaptation for Differential
Evolution

The Success-History Based Parameter Adaptation for Differential Evolution
(SHADE) [15] is a self-adaptive version of the DE variant called DE/current-
to-pbest/1/bin. The self-adaptive mechanism is applied to both F and Cr.
Therefore, NP is its only control parameter (for further information about
the self-adaptive mechanism of SHADE, interested readers are referred to [15]).
SHADE also incorporates an external archive (A) built from the defeated parents
throughout generations, since such individuals are used during the application
of the mutation operator in order to promote a greater diversity. The adopted
mutation strategy is the following:

vi = xi + Fi ∗ (xpbest − xi) + Fi ∗ (xr2 − xr3) (2)

where F is regenerated for every x ∈ P (the regeneration procedure can be
consulted in [15]). xr2 and xr3 are randomly chosen vectors from P and P ∪ A,
respectively, and xpbest is taken randomly from the p% fittest individuals in the
population. The parameter p is regenerated for every x ∈ P as follows:

pi = rand(
2

NP
, pmax) (3)

where pmax = 0.2. The mutation strategy described in Eq. (2) is explorative
as the base vector is practically the target vector. Another important feature
is that information about the fittest individuals are taken into account. Finally,
binomial recombination is used, but Cr is regenerated in a way analogous to the
F regeneration procedure.

3 Our Proposal

Our proposed approach is called Global and Local Search using SHADE (GL-
SHADE), and its main procedure is illustrated in Algorithm 4. GL-SHADE con-
sists of three main components (lines 1–3):

– MTS-LS1 (stands for Multiple Trajectory Search - Local Search 1) is a
gradient-free non-population-based local search method (for a detailed expla-
nation of this method, interested readers should refer to [16]). This method is
used at the beginning of the search (line 9) and just once in all the procedure
(the idea is to boost the search at the beginning).
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– SHADE is used for population 1 (line 1). It integrates a global search scheme
which takes into account information about the top individuals in the popula-
tion (this property is remarkable since all enhancements done by other meth-
ods to the fittest individual can be used to guide the search) and presents
a robust self-adaptive mechanism. Due to the aforementioned features, this
scheme is adopted to handle the global search of our proposed approach.

– eSHADEls is used for population 2 (line 2). This is the variant called
SHADE/pbest/1/exp coupled with the EDE perturbation method (see Algo-
rithm2, lines 16–27). This variant uses the following mutation strategy:

vi = xpbest + Fi ∗ (xr2 − xr3) (4)

where pmax is set to 0.1 (see Eq. (3)). The strategy described in Eq. (4) is
one of the mutation operators that EDE incorporates for scattering new trial
vectors close to several top individuals and not just near the fittest one. As
can be seen, this strategy is very different to that of Eq. (2), and our proposed
approach allows them to complement each other. Additionally, exponential
recombination is adopted instead of binomial recombination. The main proce-
dure of eSHADEls, which was designed to handle the local search, is described
in Algorithm 3.

Algorithm 3: eSHADE-ls
Data: LFEs , NP2 , wmin, wmax

1 Initialize population and all required parameters ; // initialization

2 counterFEs = 0 ;
3 while counterFEs < LFEs do // start evolution

4 Execute one generation of SHADE/pbest/1/exp;
5 Apply the EDE perturbation method to the fittest individual in the population;
6 Update counterFEs accordingly;
7 return (fittest individual so far) ; // end evolution

The first task in Algorithm 4 is an initialization stage (lines 1–9). During this
stage, the GL-SHADE’s components are defined (lines 1–3), the corresponding
populations are generated (line 5), the fittest individual from population 1 is
set as the best solution so far (line 7) and a local search procedure is applied
to the best solution recorded so far (line 9); in this case, the MTS-LS1 method
is used. When defining the components, it is necessary to provide the stopping
criterion (maximum number of evaluations maxFEs) since in some cases, it is
required to stop the overall search process even when the maximum compo-
nent’s requested number of evaluations hadn’t been reached (GFEs or LFEs).
For example, MTS-LS1’s execution (line 9) stops when counterFEs ≥ LFEs

or currentFEs ≥ maxFEs. In fact, counterFEs and currentFEs are updated
accordingly as the component’s execution goes by.

The second task is to perform a global and local search stage (lines 10–
16). During this stage, population 1 receives (line 11) the new best individual
(which must be placed at the position where the old best individual is) and then
the global search scheme is executed (line 12) while counterFEs ≤ GFEs and
currentFEs ≤ maxFEs. After finishing, population 1 migrates (lines 13–14) its
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best individual to population 2 (the entry individual is randomly placed) and
then the local search scheme is executed (line 15) while counterFEs ≤ LFEs and
currentFEs ≤ maxFEs. Finally, population 2 migrates (lines 16–11) its best
individual to population 1 and the procedure is repeated until the maximum
number of function evaluations (maxFEs) is reached.

It is worth noting that after applying the mutation or perturbation proce-
dures, a variable may fall outside its allowable boundaries. If this happens, we
apply the same normalization procedure adopted in [15].

4 Experimental Results

In order to assess the performance of our proposed GL-SHADE, we adopted the
test suite used at the large-scale global optimization competition held at the 2013
IEEE Congress on Evolutionary Computation (CEC’2013) [6], but adopting the
experimental conditions and guidelines of the LSGO competition held at the
2019 IEEE Congress on Evolutionary Computation (CEC’2019) [7].

The previously indicated benchmark consists of 15 test problems, all with
1000 decision variables except for f13 and f14 which are overlapping functions,
where D = 905 [2,11]. In general, these test problems can be categorized as
shown in Table 1.

For each test problem, 25 independent executions were carried out. Each run
is stopped when reaching a pre-defined maximum number of objective function
evaluations (maxFEs = 3×106). Additionally, we also report the results obtained
after performing 120,000 and 600,000 objective function evaluations. The param-
eter values adopted in our experiments are shown in Table 2 and our results are
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summarized in Table 3 (we report the best, worst, median, mean, and standard
deviations calculated over the 25 runs performed for each test problem).

Table 1. Features of the test
problems from the CEC’2013
benchmark

Category Functions

Fully separable f1–f3

Partially separable f4–f11

Overlapping f12–f14

Fully non-separable f15

Table 2. Parameter values used in our experi-
ments

Parameter Value Usage

NP1 100 Size of Population 1

NP2 100 Size of Population 2

GFEs 25000 Max evaluations requested
for global search per iteration

LFEs 25000 Max evaluations requested
for local search per iteration

wmin 0.0 eSHADEls algorithm

wmax 0.2 eSHADEls algorithm

Finally, we also provide the convergence curves for f2, f7, f11, f12, f13
and f14 (see Fig. 1). In order to reduce its running time, GL-SHADE and the
benchmark set were implemented2 using C++ and CUDA. All experiments were
performed using the Intel(R) Core(TM) i7-3930K CPU @ 3.20 GHz with 8 GB
RAM (using the Ubuntu 18.04 operating system), and the GeForce GTX 680
GPU with the CUDA 10.2 version.

4.1 Comparison with Its Components

In order to investigate if GL-SHADE is able to outperform its individual com-
ponents, we adopted the Wilcoxon signed-rank test. Here, we take N = 25 and
α = 0.05, meaning that we use a sample size of 25 executions and a significance
level of 5%. Results are summarized in Table 4. There, we can see the mean
as well as its statistical significance next to it. The notation “b/e/w” shown in
the last row means that a component is significantly better in “b” test prob-
lems, that there was no statistically significant difference in “e” test problems
and that it was significantly worse in “w” test problems, with respect to GL-
SHADE. These results indicate that our proposed approach presents a better
overall performance than any of its components considered separately. This is
particularly true for the overlapping and partially separate test problems with
a separable subcomponent (i.e., f4 to f7).

2 Our source code can be obtained from: https://github.com/delmoral313/gl-shade.

https://github.com/delmoral313/gl-shade
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Table 3. Summary of the results obtained by GL-SHADE in the CEC’2013 test
problems

1000D f1 f2 f3 f4 f5 f6 f7 f8
Best 1.0922E+05 6.0793E+02 2.0003E+01 2.6578E+10 3.2918E+06 1.0475E+06 4.5536E+08 1.1335E+14

Median 1.6125E+05 6.8597E+02 2.0003E+01 5.4221E+10 4.5740E+06 1.0547E+06 1.3964E+09 4.4679E+14
Worst 4.6460E+05 7.8329E+02 2.0004E+01 9.4616E+10 5.6865E+06 1.0597E+06 3.0432E+09 8.5885E+14
Mean 1.7899E+05 6.8888E+02 2.0003E+01 5.4236E+10 4.5864E+06 1.0546E+06 1.4949E+09 4.4115E+14

1.2E+05

StDev 7.1896E+04 4.1088E+01 3.5612E-04 1.7031E+10 5.8026E+05 3.6927E+03 6.2989E+08 1.9130E+14
Best 7.2085E-04 1.4647E+01 2.0000E+01 1.0450E+09 1.9819E+06 1.0474E+06 1.2055E+07 1.6256E+12

Median 3.9288E+01 2.0938E+01 2.0000E+01 2.5779E+09 2.7543E+06 1.0544E+06 2.2112E+07 9.0666E+12
Worst 1.4477E+02 3.8803E+01 2.0000E+01 5.2019E+09 3.6524E+06 1.0596E+06 8.1126E+07 4.9873E+13
Mean 4.5649E+01 2.1808E+01 2.0000E+01 2.6494E+09 2.6890E+06 1.0541E+06 2.9485E+07 1.2236E+13

6.0E+05

StDev 4.1617E+01 6.1271E+00 2.4000E-05 1.0419E+09 4.2647E+05 3.5944E+03 1.6787E+07 1.1786E+13
Best 2.5836E-26 9.9496E-01 2.0000E+01 9.3076E+06 1.3728E+06 1.0107E+06 4.5790E-02 3.9375E+09

Median 9.4995E-26 4.9748E+00 2.0000E+01 2.4488E+07 2.1891E+06 1.0348E+06 1.0654E+00 3.3649E+10
Worst 8.7787E-23 2.7859E+01 2.0000E+01 7.8810E+07 2.8653E+06 1.0534E+06 1.0269E+01 3.2976E+11
Mean 1.0930E-23 6.6067E+00 2.0000E+01 2.7387E+07 2.2180E+06 1.0342E+06 2.1701E+00 8.9404E+10

3.0E+06

StDev 2.3448E-23 6.9108E+00 0.0000E+00 1.5706E+07 3.6639E+05 1.0878E+04 2.5127E+00 1.1417E+11
1000D f9 f10 f11 f12 f13 f14 f15

Best 1.2351E+09 9.2531E+07 9.2224E+11 1.9287E+04 1.5994E+10 9.3400E+10 9.0004E+07
Median 2.3031E+09 9.4008E+07 9.3948E+11 2.3414E+04 2.6080E+10 3.4485E+11 1.1240E+08
Worst 5.7137E+09 9.4342E+07 1.0020E+12 3.0089E+04 4.8688E+10 7.6595E+11 1.4611E+08
Mean 2.3688E+09 9.3877E+07 9.4278E+11 2.3987E+04 2.6841E+10 3.7238E+11 1.1368E+08

1.2E+05

StDev 9.3671E+08 4.4457E+05 1.7790E+10 3.4976E+03 7.3622E+09 1.7564E+11 1.4759E+07
Best 1.6273E+09 9.2088E+07 9.1590E+11 1.7099E+02 1.2233E+09 5.3650E+08 9.2158E+06

Median 2.1679E+09 9.2980E+07 9.2092E+11 8.9949E+02 2.9356E+09 8.8536E+09 3.2383E+07
Worst 4.7715E+09 9.4153E+07 9.4439E+11 1.8122E+03 3.9737E+09 3.0699E+10 6.9700E+07
Mean 2.3619E+09 9.3006E+07 9.2554E+11 9.2076E+02 2.7333E+09 1.0825E+10 3.1321E+07

6.0E+05

StDev 7.3543E+08 4.6799E+05 1.0055E+10 4.3518E+02 8.1207E+08 8.8037E+09 1.7574E+07
Best 1.3860E+09 9.0964E+07 9.1543E+11 1.2587E-23 1.3388E+04 4.3995E+06 1.2041E+05

Median 2.1147E+09 9.1681E+07 9.2276E+11 2.0667E-23 2.9806E+04 4.7472E+06 1.1409E+06
Worst 3.6649E+09 9.2675E+07 9.4943E+11 3.9866E+00 1.2446E+05 5.3146E+06 3.0018E+06
Mean 2.1871E+09 9.1750E+07 9.2729E+11 7.9732E-01 3.9831E+04 4.7868E+06 1.2919E+06

3.0E+06

StDev 6.3160E+08 4.7189E+05 1.0580E+10 1.6275E+00 2.9868E+04 2.1478E+05 1.1058E+06

4.2 Comparison Between GL-SHADE and SHADEILS

SHADE with iterative local search (SHADEILS) [11] is one of the best hybrid
algorithms currently available for large-scale global optimization, according to
[9,10]. SHADEILS uses SHADE to handle the global search and it incorporates
MTS-LS1 and a gradient-based method to undertake the local search. Addi-
tionally, it integrates a re-start mechanism which is launched when stagnation
is detected. In order to compare SHADEILS with respect to our proposal, we
adopted again the test suite used at the large-scale global optimization competi-
tion held at the 2013 IEEE Congress on Evolutionary Computation (CEC’2013)
[6]. We also applied the Wilcoxon signed-rank test with N = 25 and α = 0.05.
Our comparison of results is summarized in Table 5. The results that are better in
a statistically significant way are shown in boldface. Additionally, we show the
convergence curves for both SHADEILS and GL-SHADE in Fig. 1. SHADEILS
is significantly better than our proposed approach in 4 out of 15 test problems,
while GL-SHADE is significantly better than SHADEILS in 9 out of 15 test
problems. Our proposed approach is particularly better than SHADEILS in the
overlapping test problems.
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Fig. 1. Convergence curves with logarithmic scale for some CEC’2013 benchmark
problems

4.3 Comparison with Respect to State-of-the-art Algorithms

Our proposed approach was also compared with respect to three state-of-the-art
algorithms (besides SHADEILS), namely:

– CC-RDG3 [12]: is a CC-based algorithm. It was the winner of the 2019
LSGO competition [10,13].

– MOS [5]: is a hybrid algorithm that was considered as one of the best meta-
heuristics for LSGO during several years (from 2013 to 2018) [11,13].

– LSHADE-SPA [2]: is a hybrid-CC method. This approach together with
SHADEILS were the first to outperform MOS [9].

For comparing our results, we adopted the 2019 LSGO competition crite-
ria [10]. Thus, each algorithm is assigned a score (per test problem) using the
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Table 4. Statistical validation (GL-SHADE is the control algorithm).

GL-SHADE vs. its components

Function GL-SHADE MTS-LS1 SHADE eSHADE-ls

f1 1.0930e−23 3.0182E−25 ≈ 2.1845E+06 − 1.8548E−16 −
f2 6.6067e+00 4.0137E+03 − 1.5379E+04 − 3.3829E+00 †
f3 2.0000e+01 2.0007E+01 − 2.0060E+01 − 2.0000E+01 ≈
f4 2.7387e+07 1.0573E+12 − 1.1522E+09 − 2.3669E+08 −
f5 2.2180e+06 5.9109E+07 − 2.3572E+06 ≈ 1.1502E+07 −
f6 1.0342e+06 1.0506E+06 − 1.0564E+06 − 1.0389E+06 ≈
f7 2.1701e+00 7.9165E+09 − 3.1042E+06 − 3.1663E+02 −
f8 8.9404e+10 5.5029E+16 − 8.9442E+11 − 5.4067E+13 −
f9 2.1871e+09 4.3869E+10 − 1.3792E+09 † 2.3750E+09 ≈
f10 9.1750e+07 9.4198E+07 − 9.2711E+07 − 9.2001E+07 ≈
f11 9.2729e+11 1.1674E+12 − 9.3339E+11 ≈ 9.3258E+11 ≈
f12 7.9732e−01 2.1449E+03 − 8.2921E+06 − 3.6372E+02 −
f13 3.9831e+04 4.0259E+10 − 5.7585E+07 − 2.9525E+05 −
f14 4.7868e+06 1.1431E+12 − 1.2944E+08 − 4.9800E+06 ≈
f15 1.2919e+06 2.9521E+08 − 1.4229E+06 ≈ 5.8184E+05 †
b/e/w 0/1/14 1/3/11 2/6/7

Table 5. Statistical comparison of results: SHADEILS vs GL-SHADE using the
CEC’2013 benchmark problems (SHADEILS is the control algorithm), performing
3,000,000 objective function evaluations

Mean ±Std. Dev.

Function SHADEILS GL-SHADE Sig.

f1 2.5558E−28 ± 5.3619E−28 1.0930E−23± 2.3448E−23 −
f2 1.0415E+03± 1.0341E+02 6.6067E+00 ± 6.9108E+00 †
f3 2.0068E+01± 4.7610E-02 2.0000E+01 ± 0.0000E+00 †
f4 3.0128E+08± 1.0458E+08 2.7387E+07 ± 1.5706E+07 †
f5 1.3310E+06 ± 2.2657E+05 2.2180E+06 ± 3.6639E+05 −
f6 1.0316E+06± 9.8658E+03 1.0342E+06 ± 1.0878E+04 ≈
f7 2.2356E+02± 2.5286E+02 2.1701E+00 ± 2.5127E+00 †
f8 5.9937E+11± 5.4287E+11 8.9404E+10 ± 1.1417E+11 †
f9 1.5780E+08 ± 1.4888E+07 2.1871E+09 ± 6.3160E+08 −
f10 9.2556E+07± 4.5100E+05 9.1750E+07 ± 4.7189E+05 †
f11 5.3888E+05 ± 2.2303E+05 9.2729E+11 ± 1.0580E+10 −
f12 6.4886E+01± 2.2987E+02 7.9732E-01 ± 1.6275E+00 †
f13 1.0706E+06± 8.6269E+05 3.9831E+04 ± 2.9868E+04 †
f14 7.6280E+06± 1.2756E+06 4.7868E+06 ± 2.1478E+05 †
f15 8.6832E+05± 6.3444E+05 1.2919E+06 ± 1.1058E+06 ≈
b/e/w 4/2/9 9/2/4

Formula One Score (FOS) which is based on its position (1st/25pts, 2nd/18pts,
3rd/15pts, 4th/12pts and 5th/10pts). The comparison of results (performing
3,000,000 objective function evaluations) of our proposed GL-SHADE with
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respect to other state-of-the-art algorithms is shown in Fig. 2. The results from
the other algorithms were extracted from the LSGO competition database
[7,8,13]. Based on the results summarized in Fig. 2, we obtained the ranking
shown in Table 6.

Fig. 2. GL-SHADE vs state-of-the-art algorithms using the CEC’2013 benchmark
problems adopting the FOS criterion

Table 6. Ranking according to the FOS criterion

# Algorithm Type FOS

1 GL-SHADE Hybrid 256

2 CC-RDG3 CC 253

3 SHADE-ILS Hybrid 243

4 MLSHADE-SPA CC-Hybrid 236

5 MOS Hybrid 212

5 Conclusions and Future Work

In this paper, we proposed a new DE-based algorithm (GL-SHADE) specifically
designed to solve LSGO problems. Our proposed approach incorporates a global
search engine combined with a local search mechanism. For the global search
engine, our proposed approach adopts SHADE. For our local search mechanism,
we adopted a population-based self-adaptive algorithm (eSHADE-ls) which is
indeed the main difference of our proposal with respect to other state-of-the-art
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algorithms adopted for LSGO. SHADE and eSHADE-ls collaborate with each
other during the evolutionary process. Since our proposed approach adopts very
different and complementary mutation strategies, SHADE’s strategy scatters a
mutated vector around the target vector, while eSHADE-ls’ strategy scatters it
close to one of the top individuals in the population. Our proposed approach was
able to outperform its components (when considered independently), as well as
SHADEILS in most of the test problems adopted (we adopted the CEC’2013
LSGO test problems). Additionally, it was found to be very competitive with
respect to four state-of-the-art algorithms and obtained the best rank (based on
the FOS criterion). As part of our future work, we are interested in experimenting
with different hybrid schemes. For example, one possibility would be to have
an automatic resource allocation mechanism that can determine the maximum
number of evaluations that each component of our approach should be executed,
with the aim of improving its performance. We are also interested in trying other
(more elaborate) local search schemes that can also improve the performance of
our proposed approach.
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