
Network Representation Learning Based
on Topological Structure and Vertex

Attributes

Shengxiang Hu, Bofeng Zhang(B), Ying Lv, Furong Chang,
and Zhuocheng Zhou

School of Computer Engineering and Science, Shanghai University, Shanghai, China
{mathripper,bfzhang}@shu.edu.cn

Abstract. Network Representation Learning (NRL) is an essential task
in the field of network data analysis, which tries to learn the distributed
representation of each vertex in the network for downstream vector-
based data mining tasks. NRL is helpful in solving the computation-
ally expensive or intractable problems of large-scale network analysis.
Most related NRL methods only focus on encoding the network topol-
ogy information into vertex representation. However, vertices may con-
tain rich attributes that directly impact the network formation and mea-
sure the attribute-level similarity between vertices. Additionally, encod-
ing the vertex attributes information into the representation vector may
improve the performance of the representation. This paper proposes a
general NRL framework TAFNE that can effectively retain both net-
work topology and vertex attributes information. For complex types of
vertex attributes, we design two different information fusion methods
that take both training efficiency and generality into account. The pro-
posed TAFNE framework is extensively evaluated through various data
analysis tasks, including clustering, visualization and node classification,
and achieves superior performance compared with baseline methods.

Keywords: Network Representation Learning · Vertex attributes ·
Network topology · Information fusion

1 Introduction

Deep Learning has achieved great success in analyzing Euclidean data such as
natural languages, images, and audio. However, the non-Euclidean data is also
valuable in daily life, effectively analyzing such data to extract favorable infor-
mation seems to be a challenge. Many network-based data mining tasks, e.g.
node classification [21], link prediction [10], recommendation [27], and key user
discovery [7] are applied in various fields. For example, in the biological protein
network, link prediction task is applied to study the correlation between proteins.

Supported by National Key R&D Program of China grant (NO. 2017YFC0907505).

c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12269, pp. 484–497, 2020.
https://doi.org/10.1007/978-3-030-58112-1_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58112-1_33&domain=pdf
https://doi.org/10.1007/978-3-030-58112-1_33

Topology and Vertex Attributes Fusion Network Embedding 485

Many studies used a discrete matrix to represent network data and perform net-
work analysis tasks based on matrix spectral decomposition [12]. However, such
methods have at least a quadratic time complexity respect to the number of
vertices, which makes them difficult to generalize to large networks. Besides, it
is also a tedious task to design specific algorithms for different networks.

To solve such problems, NRL aims to learn low-dimensional potential repre-
sentations of network vertices that encode the network topology, vertex attribute,
and other related information. The learned representation vectors can be used in
subsequent vector-based machine learning tasks [29]. Most of the NRL methods
focus on how to preserve network topology, such as DeepWalk [17], LINE [23],
Node2Vec [5] and DNE [22] etc. These methods expect to keep vertices with
similar topological contexts adjacent to each other in the new low-dimensional
representation space to retain network topology information. However, the ver-
tices representations learned by these methods may loss some information about
the original network. For example, in a citation network, each vertex represents
a paper with the abstract as its attribute, edges refer to the citation relation-
ship among vertices. Two papers may study similar problems but are not directly
connected or have no common neighbors. Considering only topology information
cannot clearly explain the similarity between them, but their attributes can. So,
vertex attribute information should also be taken into account to augment the
network representation performance.

This paper proposes a Topology and Vertex Attributes Fusion Network
Embedding (TAFNE) which can effectively encode both network topology
and vertex attribute information into representations. Firstly, we train a
Transformer-decoder [25] to capture topology information from the random walk
vertex sequences. In this way, we can improve feature extraction capabilities
through the self-attention mechanism. Then we suggest two different information
fusion methods to preserve vertex attributes. Vertex attributes do not have to
be numerical or nominal, but can also be, for example, full-text descriptions. We
evaluate our approach on three data mining tasks: node classification, clustering,
and visualization on attributed and non-attributed networks. The experimental
results show that TAFNE outperforms state-of-the-art models.

The major contributions of this paper are summarized as follows.

– To preserve the topology information, we design an embedding model that
combines a network structure embedding layer with the Transformer-decoder
to take advantage of its strong feature extraction capabilities.

– To preserve vertex attribute information, we propose two information infusion
methods that make vertices with similar attributes adjacent to each other in
the low dimensional representation space.

– To evaluate the proposed TAFNE framework, we have widely conducted node
classification, clustering, and visualization tasks on different types of datasets
and achieved excellent performance.

The rest of this paper is organized as follows: In Sect. 2, we summarize the
related works. In Sect. 3, we explain the research question and some essential
concepts. In Sect. 4, we introduce the TAFNE framework in detail. In Sect. 5, we

486 S. Hu et al.

evaluate the TAFNE framework through various data mining tasks and present
the experimental results. Section 6, we summarize the work in this paper.

2 Related Work

According to the different implementations of the algorithms, we divide the
existing NRL methods into two categories: matrix factorization based methods
and neural network based methods.

The matrix factorization based methods use different types of matrices to
preserve the network information, such as adjacency matrix, k-step transition
probability matrix, and context matrix [28], then leverage matrix factorization
to obtain the network representations. Spectrum Embedding [2] is a method for
calculating non-linear embeddings, which uses a Laplacian spectral decomposi-
tion to find low-dimensional representations for the input network data. Max-
imize Modularity [24] performs a decomposition of modularity matrix to learn
community-oriented vertex representation [15]; TADW [28] executes inductive
matrix decomposition [14] on the vertex context matrix to retain both network
structure and vertex text feature in the representation vector. However, due
to the fact that matrix factorization demands a lot of memory and computing
resources, these matrix factorization based methods are difficult to extend to
large networks. It is no longer suitable for the current Internet environment.
What is more, the design of relational matrices will directly affect the matrix
factorization performance, which brings additional contingency.

The neural network based methods have been proposed in order to extract
sophisticated structural features and learn highly non-linear vertex representa-
tion recently. Such methods can usually be well extended to large networks.
DeepWalk [17] performs truncated random walk on the network to generate ver-
tex sequence sets. The frequency of the occurrence of vertex context pairs reflects
their relevance. It learns from the experience of word representation learning
and introduces the word embedding algorithm (Skip-Gram) [13] to learn the
vertex representation over the vertex sequences. In the Struc2vec [19] method,
vertex structural role proximity is encoded into a multilayer graph, and then
DeepWalk is performed on the multilayer graph to learn vertex representations.
SDNE [26] uses first and second-order similarity to preserve the network struc-
ture and designs a deeply embedding model for capturing highly non-linear net-
work structures while retaining global and local structure information. DNE [22]
utilizes LSTM [4] to keep the transfer possibilities among the nodes and designs
a Laplacian-supervised embedding space optimization to preserve network local
structure information. Compared with the matrix factorization based methods,
the neural network based methods are easy to generalize and more robust because
they are not affected by artificially designed relation matrices. However, most of
the above works consider only network topology information. In this paper, we
aim to propose a general NRL framework that encodes both network topology
and the rich types of vertex attributes into the representation.

Topology and Vertex Attributes Fusion Network Embedding 487

3 Problem Definition

In this section, we define the research problem and some important concepts.

Definition 1 (Network). The network is defined as G = {V,E,A}, where
V = {v1, . . . , vn} is the vertex set of network G and n is the number of vertices.
E = {eij}ni,j=1 is the edge set of network G, eij denotes the edge from vertex vi
to vj, which is attached with a weight wij ∈ R, wij = 1 in unweighted network
or wij = 0 if vertex vi, vj are not linked directly. A = {a1, . . . ,an} denotes the
attributes set of the vertices, ai means the attributes of vertex vi.

Definition 2 (Topology and Vertex Attributes Fusion Network
Embedding). Given a network G = {V,E,A}, the Topology and Vertex
Attributes Fusion Network Embedding task aims to learn a representation matrix
R ∈ R

|V |×d, where d � |V | and the i th row of R(Ri) is the low-dimensional rep-
resentation vector of vertex vi. Meanwhile the representation vector Ri preserves
both the context structural information and vertex attributes, which means the
vertices with similar attributes or similar context structure in the source network
are also adjacent to each other in the embedding space.

4 Topology and Vertex Attributes Fusion Network
Embedding

In this section, we present details of the proposed NRL framework TAFNE
as shown in Fig. 1. The TAFNE framework consists of three parts: (a) A ran-
dom walk process guided by second-order biased proximity, (b) A multi-layer

Fig. 1. The proposed Topology and Vertex Attributes Fusion Network Embedding
(TAFNE) framework.

488 S. Hu et al.

Transformer-decoder [25] for capturing network topology information preserved
in the vertex sequences, (c) A information fusion model for preserving the vertex
attributes.

4.1 Second-Order Biased Random Walk

In real networks, edge usually represents the similarity or some kinds of inter-
actions between two vertices. Some related works, e.g., LINE [23], leverage the
first-order similarity to guide the random walk process. The shortcoming is that,
in unweighted networks, the degree of pairwise proximity and the social relation-
ship information are left out. As shown in Fig. 2, since vertex i and j share more
neighbors, i is closer with j than k in terms of social relationship. Here we uti-
lize the second-order biased proximity to characterize the vertex similarity and
guide the random walk process. For each pair of directly connected vertices, the
similarity sij and the walk probability P are calculated as follows.

sij = wij

∣
∣Nvi

⋂
Nvj

∣
∣ + 1

max(di, dj)

P (vi → vj) =
esij

∑di

k=0 esik

(1)

where wij is the weight of edge eij , di is the degree of vertex vi, Nvi
is the set

of one-hop neighbors of vertex vi.

4.2 Topology Information Preservation

The sequences generated by the random walk can be treated as sentences in nat-
ural language. The context information of the tokens in the sentences reflects the
network’s topology. The pairwise co-occur frequency of the vertices reflects the
correlation between them. Following the idea of DeepWalk, we assume that the
vertices with similar contexts (neighbors) are also similar, and are close to each
other in the target embedding space. With such a hypothesis, we expect to max-
imize the likelihood of the central vertex when given contextual vertices. Given

Fig. 2. A toy example of networks. First-order similarity and second-order biased sim-
ilarity is quite different among vertices i, j and k.

Topology and Vertex Attributes Fusion Network Embedding 489

a random walk sequence S = {v1, . . . , vn}, the likelihood function is defined as
follows.

D(S) =
∑

i

P (vi | v1, ..., vi−1;W) (2)

where W means the model parameters.
In related researches, DNE [22] chose LSTM as its prediction model, but

LSTM cannot train in parallel and lack the ability to resolve long-distance
dependencies. Since Transformer [25] proposed in 2017, Transformer and its
variants [9,18] have achieved encouraging results on various natural language
processing tasks. The self-attention mechanism can not only capture longer dis-
tance language structures but also train in parallel to speed up the training
process. Therefore, we employ a multi-layer Transformer-decoder [25] as our pre-
diction model to take advantage of its powerful feature extraction capabilities.
The Transformer-decoder applies a masked multi-head self-attention operation,
followed by a position-wise feedforward layer, over the input context vertices
to produce an output distribution over target vertex. This process and the loss
function Llm can be formulated as follows:

h0 = TSRe + Rp

hl = transformer decoder(hl−1) ∀l ∈ [1, n]
ŷ = softmax(hn)

Llm(ŷ, y) = −
∑

y ∗ log(
1
ŷ
)

(3)

where TS ∈ R
|V |×|V | is the tokenized matrix of vertex sequence S, Ti is the

one-hot vector for vertex vi, Re ∈ R
|V |×de is the vertex embedding matrix,

Rp ∈ R
|V |×de is the position embedding matrix, n is the number of layers,

y is the target predicted vertex. We only want to get the vertex embedding
feature through the prediction process, so the output of the embedding layer
Re ∈ R

|V |×de is what we expect.

4.3 Information Fusion

In this subsection, we present the details of the information fusion model, as
shown in the lower part of Fig. 1, which is designed to encode vertex attributes
information into vertex representation. We expect vertices with similar attributes
to be adjacent to each other in the low-dimensional target embedding space as
well. Because of the rich types of vertex attributes, we propose two ways to
incorporate the features extracted from the attributes of network vertices into
the embedding process, which guarantees that the proposed NRL framework can
not only train more efficiently but also be applied to various kinds of networks.

Naive Combination. For textual attributes or numerical attributes with suf-
ficient dimensions, we utilize a pre-designed feature extractor to obtain the
attributes feature Ra ∈ R

|V |×da and directly combine it with the embedding

490 S. Hu et al.

feature Re as a final vertex representation. So the dimension of vertex attributes
must be greater than da to avoid introducing noise in the process of feature
extraction. In this paper, we utilize the BOW (bag of words) model to obtain
text vectors. According to the types of vertex attributes, users can flexibly design
feature extractor. In our experiments, we take the hidden layer output of an
autoencoder [16] as the attribute feature. The feature extractor and Transformer-
decoder can be trained in parallel without affecting each other, which can greatly
speed up the training process. The above process can be formulated as follows:

Ra = feature extractor(A)
R = [Re|Ra]

(4)

where R ∈ R
|V |×d is the vertex representation matrix, Re ∈ R

|V |×de is the vertex
embedding feature matrix, Ra ∈ R

|V |×da is the attribute feature matrix, [Re|Ra]
represents the operation of horizontally concatenating Re and Ra. We assume
that vertex attributes and network structure contribute equally to the vertex
representation and set da = de = d

2 , d is the dimension of vertex representation
vector.

Attribute-Driven Laplacian Representation Optimization. In real-world
networks, vertex attributes may have complex types, which do not apply to the
Navie Combination described above. Some related works [1,22] use Laplacian
Eigenmaps to enhance the ability of NRL models to retain network structure.
Inspired by above works, we propose an Attributes-driven Laplacian Representa-
tion Optimization (Attr-LapRO) to make the proposed framework more general.
We define the loss function of the Attr-LapRO as follows.

Llap =
∑

ij

(ri − rj)2Iij = 2 ∗ Tr(RTLR) (5)

Where R ∈ R
|V |×d is the vertex representation matrix, I ∈ R

|V |×|V | is the vertex
attribute similarity matrix, Iij ∈ [0, 1] represents the attribute cosine similarity
score of vertex vi and vj , L = D − I is Laplacian eigenmap, D ∈ R

n×n is
a diagonal matrix, Dii =

∑

j Iij . In this way, Attr-LapRO and Transformer-
decoder share one output, so R = Re, de = d.

We alternately and iteratively optimize the loss functions Llm and Llap, which
is mainly for two reasons. One is that the parameters of the Transformer-decoder
become challenging to update with two loss functions. The other reason is that
the training of each stage can speed up the other’s convergence process since
vertices representation vectors are shared between the two stages.

Based on the two information fusion methods introduced above, we propose
two types of TAFNE models: TAFNEvanilla and TAFNElap. TAFNEvanilla uses
Naive Combination as the information fusion method, TAFNElap utilizes Attr-
LapRO to incorporate vertex attributes into the embedding process.

Topology and Vertex Attributes Fusion Network Embedding 491

5 Evaluation

In this section, we first introduce the datasets used in this work and then validate
the performance of our model compared to various state-of-the-art NRL algo-
rithms through three downstream data mining tasks (i.e., clustering visualiza-
tion, and node classification) on five datasets. Finally, we analyze the sensitivity
of parameters.

5.1 Datasets

In order to fully evaluate the proposed method, we conduct experiments on three
citation networks and two social networks with different sizes. Table 1 presents
detailed information of the five datasets.

– Facebook [20] is a page-page graph of verified Facebook sites. Vertices rep-
resent official Facebook pages while the links are mutual likes between sites.
Vertex attributes are extracted from the site descriptions that the page own-
ers created to summarize the purpose of the site. All the vertices are divided
into four categories, which are defined by Facebook.

– BlogCatalog [24] is a social network. Vertices represent bloggers, and cate-
gories of blogs written by bloggers are used as vertex labels. Each vertex has
one or more labels. Edges represent friendship relationships between bloggers.

– Cora, CiteSeer, and PubMed [21] are citation networks, where each vertex rep-
resents a scientific publication, and the edge represents the citation relation-
ship between vertices. Vertices are divided into different categories according
to their research field, and each vertex has an abstract as its attribute.

5.2 Baseline Methods

We compare our method with several baseline methods, including DeepWalk [17],
SDNE [26], Struc2Vec [19], DNE [22], TADW [28] and Attributes. In the
Attributes method, the vertex attribute feature is treated as the vertex represen-
tation. Although there are other NRL methods, we can not list all of them. The
methods mentioned above all have great innovations and conduct various verifi-
cation experiments compared with other methods in the corresponding papers.

5.3 Parameter Settings

For all datasets, we set the dimension of the learned representation vector to
d = 128. For the baseline methods, we follow the best parameter settings recom-
mended in the original paper. In DeepWalk method, window size is w = 10, walk
length is l = 40, and walks per vertex γ = 40. In Struc2Vec method, window size
is w = 10, walk length is l = 80, walks per vertex is γ = 10. In SDNE method,
the number of model layers is 3, and the hyperparameter α = 0.1, β = 10. In
DNE method, walk length is l = 100, walks per vertex is γ = 100, and the LSTM
learning rate is 0.001. In TADW method, we set the parameters to the same as

492 S. Hu et al.

given in the corresponding paper. In Attributes method, the dimension of the
vertex attribute feature is reduced to 128 via SVD [6]. In TAFNE method, we set
the walk length to l = 100, walks per vertex γ = 100. Transformer-decoder has
8 layers and 4 masked self-attention heads per layer. At the stage of optimizing
the loss function Llm, we take advantage of Adam optimization scheme [8] with
a max learning rate lrlmmax

= 1e− 4. The learning rate was raised linearly from
zero over the first 5000 updates and annealed to 1e − 5 using an exponential
scheduler.

Table 1. Statistics of the datasets

Dataset Nodes Edges Categories

Facebook 22470 171002 4

BlogCatalog 10312 333983 39

Cora 2707 5429 7

Citeseer 3311 4732 6

PubMed 19717 44338 3

Table 2. Clustering performance
(NMI)

Methods 3-Cora Cora

DeepWalk 0.045 0.012

SDNE 0.027 0.027

Struc2Vec 0.001 0.005

DNE 0.387 0.309

Attributes 0.451 0.286

TADW 0.613 0.411

TAFNEvanilla 0.655 0.468

TAFNElap 0.648 0.447

5.4 Experiments Results

Clustering. In the real world, most data is unlabeled, and annotating data
manually costs a lot, so learning the representation of a network is very important
for unsupervised learning tasks. We perform clustering tasks on the 3-Cora and
Cora datasets. 3-Cora is separated from Cora with 3 different categories.

In the clustering task, we use each baseline method to generate the vertices
representation vectors that are used as features for clustering. The vertices are
divided into several categories using the K-Means algorithm, and we evaluate
the performance with NMI (Normalized Mutual Information)[3] score. Table 2
records the result of clustering. This result shows that TAFNE is significantly
better than other methods. TADW achieves the best performance among base-
line methods because of the consideration of both network topology and vertex
attributes, but TAFNE still outperforms it. TAFNEvanilla is absolutely 0.042
and 0.057 better than TADW on the 3-Cora dataset and Cora dataset, respec-
tively. Benefit from the combination with Transformer-decoder and information
fusion model, TAFNE can retain network information more comprehensively.
Therefore TAFNE is more robust in the clustering task.

Visualization. In the visualization task, we expect to reveal the network by
visualizing the learned representations intuitively. We apply our method and

Topology and Vertex Attributes Fusion Network Embedding 493

baseline methods to the 3-Cora dataset, which has nearly 1300 vertices, and each
vertex belongs to one of the three categories: Neural Network, Rule Learning,
and Reinforcement Learning. We exploit t-SNE [11] to map the vertex repre-
sentation learned by different methods to 2-dimension space. Figure 3 shows the
visualization on the 3-Cora dataset, each point represents a scientific publica-
tion, and the different color represents a different category. The visualization of
DeepWalk, SDNE, and Struc2Vec are not meaningful because the points of the
same class are not clustered together. Although DNE and TADW can cluster
most points of the same label together, the boundaries are not visible enough.
The performance of TAFNE is much better than the baseline methods. Our
method can not only cluster the points of the same category together, but also
the clusters can be clearly separated from each other. This experiment indicates
that TAFNE can learn more robust and informative representations.

Classification. In the node classification task, we perform multi-label and
multi-class classification tasks on two types of datasets: one without vertex
attributes (i.e., BlogCatalog) and one with vertex attributes (i.e., Facebook,
Citeseer and PubMed). We treat the representations learned by various meth-
ods as the vertices feature vectors. For each dataset, a portion (L V) of the
labeled vertices are randomly sampled as the training data to train an MLP
(Multilayer Perceptron) as the classifier, the rest of the vertices are the test
data. We repeat this process 10 times and record the average performance in
terms of classification accuracy and F1-score.

On the BlogCatalog dataset, we only focus on learning network topology
feature to verify the effectiveness of the Transformer-decoder in capturing the

(a) DeepWalk (b) SDNE (c) Struc2Vec (d) DNE

(e) Attributes (f) TADW (g) TAFNEvanilla (h) TAFNElap

Fig. 3. Visualization of the 3-Cora dataset. Each point represents one scientific pub-
lication. Different colors correspond to different categories, i.e., Red: Nerual Network,
Blue: Rule Learning, Green: Reinforcement Learning (Color figure online)

494 S. Hu et al.

Table 3. Multi-label classification performance (Micro-F1/Macro-F1)

L V 10% 20% 30%

DeepWalk 33.17/17.40 35.84/20.39 37.28/21.96

SDNE 31.25/11.54 32.27/14.33 32.24/16.31

Struc2Vec 11.16/5.24 11.20/5.57 12.86/4.83

DNE 34.13/17.38 37.25/21.41 37.56/23.06

TAFNE 38.43/19.04 42.05/23.28 42.27/25.66

Table 4. Multi-class classification performance (accuracy) on three datasets

Dataset Facebook CiteSeer PubMed

L V 10% 20% 30% 10% 20% 30% 10% 20% 30%

DeepWalk 72.09 74.83 76.14 50.94 51.54 53.28 69.94 71.37 72.51

SDNE 53.44 54.81 55.81 30.41 32.12 32.75 39.04 39.37 39.83

Struc2Vec 35.58 35.13 35.82 25.01 26.76 27.75 47.08 48.15 49.32

DNE 68.06 70.62 73.06 50.56 52.97 54.04 73.11 73.04 74.72

TADW 79.48 80.50 83.08 60.89 62.32 64.78 80.63 81.76 84.32

Attributes 74.27 76.62 78.41 57.31 59.20 61.09 75.45 77.52 78.79

TAFNEvanilla 82.23 82.96 85.28 63.20 65.75 67.01 83.19 84.67 86.94

TAFNElap 80.14 81.45 83.23 62.18 64.13 65.61 81.83 84.27 85.23

network structure information without vertex attributes. Since TADW performs
DeepWalk to preserve the network structure, so we exclude TADW. Then we per-
form a multi-label classification task on the vertices representations and report
the performance with Micro-F1 and Macro-F1 scores of the classification results.
From Table 3, one can see that TAFNE is 4.71% (Micro-F1) and 2.6% (Macro-
F1) with 30% labeled vertices better than the best baseline DNE. The self-
attention mechanism takes into account more contextual information, by which
the model can better retain network global and local structure information.

Furthermore, we conduct multi-class classification tasks on the three
attributed networks and evaluate the representations with classification accu-
racy. Table 4 documents the classification results. As we can see, TAFNE con-
sistently outperforms other baseline methods. Compared to the best baseline
TADW, TAFNEvanilla absolutely improves the accuracy by 2.20% on Facebook,
2.27% on CiteSeer, and 2.62% on PubMed. The classification results demon-
strate the effectiveness of TAFNE to consider the network topology and vertex
attribute information comprehensively, and the quality of the learned represen-
tation vectors are greatly improved.

Topology and Vertex Attributes Fusion Network Embedding 495

(a) dimension (b) walk per vertex/walk
length

Fig. 4. Parameters sensitivity analysis of TAFNE on CiteSeer with train ratio as 50%

5.5 Paramter Sensitivity

In this section, we investigate the sensitivity of the method to the choice of
parameter values. TAFNE has three main parameters: the dimension of the
learned representation vector d, walk per vertex γ and walk length l. We test
the classification accuracy with different parameters above CiteSeer dataset, and
randomly sample 50% vertices as the trainset and the rest as the testset. We fix
other parameters when inspecting each parameter.

Figure 4(a) shows the effect of different d on classification results. As the rep-
resentation vector dimension d increases, the accuracy increases first and then
decreases. The classification accuracy is highest when d = 128. For convenience
we set γ = l. Figure 4(b) shows that with the increase of γ and l, the classifica-
tion accuracy also improves, because γ and l correspond to the richness of the
corpus. The bigger γ and l are, the richer the corpus is. Since the self-attention
mechanism can solve the problem of long-distance dependency well, the increase
in walk length not only does not have a negative impact but also better captures
the global structure of the network.

6 Conclusion

To solve the problems of analyzing large-scale networks with computational over-
head or intractability, and generate higher-quality vertices representations, this
paper proposes an NRL framework TAFNE that can simultaneously incorporate
network topology and vertex attribute information into the embedding process.
The advantages of TAFNE can be summarized as follows:

(1) By utilizing the Transformer-decoder with masked self-attention mechanism,
TAFNE can take more contextual information into account than previ-
ous models when extracting structural features from random walk vertex
sequences. Thus TAFNE preserves global and local structural information
better;

496 S. Hu et al.

(2) For the networks where vertex contains textual attributes or numerical
attributes of sufficient dimensions, TAFNE encodes the vertex attributes by
an autoencoder and treats the attributes feature as part of the vertex repre-
sentation. In this way, attributes feature directly measures the attribute-level
similarity among vertices.

(3) For the networks where vertex contains attributes of complex types, TAFNE
constructs an attribute similarity matrix to constrain the vertex representa-
tion. Such an approach makes TAFNE more generic.

Experimental results on the clustering, visualization, and node classification
tasks over five datasets demonstrate the effectiveness of TAFNE.

References

1. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. In: Advances in Neural Information Processing Systems, pp. 585–
591 (2002)

2. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Comput. 15(6), 1373–1396 (2003)

3. Estévez, P.A., Tesmer, M., Perez, C.A., Zurada, J.M.: Normalized mutual infor-
mation feature selection. IEEE Trans. Neural Netw. 20(2), 189–201 (2009)

4. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850 (2013)

5. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855–864 (2016)

6. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness:
probabilistic algorithms for constructing approximate matrix decompositions.
SIAM Rev. 53(2), 217–288 (2011)

7. Henderson, K., et al.: RolX: structural role extraction & mining in large graphs. In:
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1231–1239 (2012)

8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

9. Krause, B., Kahembwe, E., Murray, I., Renals, S.: Dynamic evaluation of trans-
former language models. arXiv preprint arXiv:1904.08378 (2019)

10. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks.
J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)

11. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9(Nov), 2579–2605 (2008)

12. Malliaros, F.D., Vazirgiannis, M.: Clustering and community detection in directed
networks: a survey. Phys. Rep. 533(4), 95–142 (2013)

13. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

14. Natarajan, N., Dhillon, I.S.: Inductive matrix completion for predicting gene-
disease associations. Bioinformatics 30(12), i60–i68 (2014)

15. Newman, M.E.: Finding community structure in networks using the eigenvectors
of matrices. Phys. Rev. E 74(3), 036104 (2006)

http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1904.08378

Topology and Vertex Attributes Fusion Network Embedding 497

16. Ng, A., et al.: Sparse autoencoder. CS294A Lecture notes 72(2011), 1–19 (2011)
17. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-

tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710 (2014)

18. Rae, J.W., Potapenko, A., Jayakumar, S.M., Lillicrap, T.P.: Compressive trans-
formers for long-range sequence modelling. arXiv preprint arXiv:1911.05507 (2019)

19. Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: struc2vec: learning node repre-
sentations from structural identity. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 385–394
(2017)

20. Rozemberczki, B., Allen, C., Sarkar, R.: Multi-scale attributed node embedding
(2019)

21. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collec-
tive classification in network data. AI Mag. 29(3), 93–93 (2008)

22. Sun, X., Song, Z., Dong, J., Yu, Y., Plant, C., Böhm, C.: Network structure and
transfer behaviors embedding via deep prediction model. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, pp. 5041–5048 (2019)

23. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale infor-
mation network embedding. In: Proceedings of the 24th International Conference
on World Wide Web, pp. 1067–1077 (2015)

24. Tang, L., Liu, H.: Relational learning via latent social dimensions. In: Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 817–826 (2009)

25. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

26. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1225–1234 (2016)

27. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative
filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 165–174 (2019)

28. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.: Network representation learning
with rich text information. In: Twenty-Fourth International Joint Conference on
Artificial Intelligence (2015)

29. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: a survey.
IEEE Trans. Big Data 6(1), 3–28 (2018)

http://arxiv.org/abs/1911.05507

	Network Representation Learning Based on Topological Structure and Vertex Attributes
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Topology and Vertex Attributes Fusion Network Embedding
	4.1 Second-Order Biased Random Walk
	4.2 Topology Information Preservation
	4.3 Information Fusion

	5 Evaluation
	5.1 Datasets
	5.2 Baseline Methods
	5.3 Parameter Settings
	5.4 Experiments Results
	5.5 Paramter Sensitivity

	6 Conclusion
	References

