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Abstract. We investigate the properties of large-scale multi-objective
quadratic assignment problems (mQAP) and how they impact the per-
formance of multi-objective evolutionary algorithms. The landscape of a
diversified dataset of bi-, multi-, and many-objective mQAP instances is
characterized by means of previously-identified features. These features
measure complementary facets of problem difficulty based on a sample
of solutions collected along random and adaptive walks over the land-
scape. The strengths and weaknesses of a dominance-based, an indicator-
based, and a decomposition-based search algorithm are then highlighted
by relating their expected approximation quality in view of landscape
features. We also discriminate between algorithms by revealing the most
suitable one for subsets of instances. At last, we investigate the perfor-
mance of a feature-based automated algorithm selection approach. By
relying on low-cost features, we show that our recommendation system
performs best in more than 90% of the considered mQAP instances.

1 Introduction

The multi-objective quadratic assignment problem (mQAP) [12,13] appears to
be one of the most challenging problem from multi-objective combinatorial opti-
mization. This is probably due to its intrinsic difficulties and the variety of
mQAP instances from the literature, having different structures and properties
in terms of problem size and data distributions, but also with respect to the
number of objectives to be optimized, and their degree of conflict. Evolution-
ary multi-objective optimization (EMO) algorithms and other population-based
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lab, and was partially supported by the French national research agency under Project
ANR-16-CE23-0013-01.

c© Springer Nature Switzerland AG 2020
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multi-objective search heuristics are natural candidates to solve them. They
range from dominance-based approaches to indicator- and decomposition-based
refinements [6,28,29]. However, they have only been partially investigated for
the mQAP, and focused mainly on problems with few (mostly 2) objectives
[8,16,19]. There is obviously no single method that is more suitable for all prob-
lems, and multi-objective problems are no exception. As such, in the panorama
of EMO algorithms, it remains unclear if and how problem characteristics result
in differences in the performance of multi-objective selection strategies, and what
actually makes an algorithm efficient or not when solving a given problem.

Landscape analysis [17] has emerged as a valuable methodolgy for examin-
ing the properties of optimization problems and their effect on search perfor-
mance. Based on high-level landscape features, it becomes possible to improve
our understanding of problems and algorithms, and also to predict algorithm per-
formance, eventually leading to automated algorithm selection [11,22]. There is
a large body of literature on single-objective landscape analysis [23], including
for the quadratic assignment problem [4,17,21,25]. However, the literature on
multi-objective landscapes is more scarce. Interestingly, most papers deal with
the mQAP, being about properties from the Pareto set [12,20] or from the solu-
tion space [8,9]. However, previous studies were once again mostly devoted to
problems with few objectives (mostly 2, sometimes 3), and often require the
solution space or the Pareto set to be exhaustively enumerated, making them
impractical for prediction. At last, existing multi-objective features were not
always related to search performance, and never used for automated algorithm
selection.

In a recent paper [15], we revised landscape features for multi-objective com-
binatorial optimization by building upon those previous studies, and by deriving
additional low-cost landscape features that were revealed as highly impactful
for EMO algorithms. In this paper, we are interested in analyzing the impact
of mQAP instance characteristics on higher-level landscape features, such as
ruggedness and multimodality. We also aim at clarifying the impact of mQAP
landscape features on problem difficulty and search performance, and at exam-
ining if a difference in feature values implies any difference in the performance
of EMO algorithms. Our contributions can be summarized as follows:

(1) We characterize the landscape of large-scale mQAP instances with different
properties by means of local multi-objective features from [15];

(2) We relate mQAP landscape features with the performance of a dominance-,
an indicator-, and a decomposition-based EMO algorithm [6,28,29];

(3) We investigate the performance of feature-based automated algorithm selec-
tion by measuring its ability to discriminate between EMO algorithms, and
by carefully calibrating the budget allocated to features and search.

The paper is organized as follows. Section 2 gives the necessary background
on multi-objective optimization and EMO algorithms. Section 3 presents the
mQAP and the instance dataset considered in our analysis. Section 4 introduces
multi-objective landscape features, studies how they correlate with one another
and with algorithm performance, and highlights their importance to explain
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search difficulty. Section 5 investigates the prediction accuracy of a feature-based
automated algorithm selection system by paying a particular attention to the
cost of features. Section 6 concludes the paper and discusses further research.

2 Multi-objective Optimization

2.1 Definitions

Let us consider an objective function vector f : X �→ Z to be minimized. Each
solution from the solution space x ∈ X maps to a vector in the objective space
z ∈ Z, with Z ⊆ IRm, such that z = f(x). In multi-objective combinatorial
optimization, the solution space X is a discrete set. Given two objective vectors
z, z′ ∈ Z, z is dominated by z′ iff for all i ∈ {1, . . . ,m} z′

i � zi, and there is
a j ∈ {1, . . . ,m} such that z′

j < zj . Similarly, given two solutions x, x′ ∈ X,
x is dominated by x′ iff f(x) is dominated by f(x′). An objective vector z� ∈ Z
is non-dominated if there does not exist any z ∈ Z such that z� is dominated
by z. A solution x� ∈ X is Pareto optimal (PO), or non-dominated, if f(x) is
non-dominated. The set of PO solutions is the Pareto set (PS); its mapping in
the objective space is the Pareto front (PF). One of the main challenges in multi-
objective optimization is to identify the PS, or a good approximation of it for
large-size and complex problems. A number of EMO and other multi-objective
heuristics have been designed to this end since the late eighties [3,5].

2.2 EMO Algorithms

We conduct our analysis on three EMO algorithms: NSGA-II, IBEA, MOEA/D.
They were selected as representatives of the state-of-the-art in the EMO field,
covering dominance-, indicator-, and decomposition-based approaches, respec-
tively. They differ in their selection mechanism, which is described below.

NSGA-II [5] is an elitist dominance-based EMO algorithm using Pareto domi-
nance for survival and parent selections. At a given iteration, the current popula-
tion Pt is merged with its offspring Qt, and is divided into non-dominated fronts
F = {F1, F2, . . .} based on the non-dominated sorting procedure [10]. The front
in which a given solution belongs to gives its rank within the population. Crowd-
ing distance is also calculated within each front. Selection is based on ranking,
and crowding distance is used as a tie breaker. Survival selection consists in
filling the new population Pt+1 with solutions having the best (smallest) ranks.
In case a front Fi overfills the population size, the required number of solutions
from Fi are chosen based on their crowding distance. Parent selection for repro-
duction consists of binary tournaments between random individuals, following
the lexicographic order induced by ranks first, and crowding distance next.
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IBEA [29] introduces a total order between solutions by means of a binary
quality indicator I. Its selection mechanisms is based on a pairwise compar-
ison of solutions from the current population Pt with respect to I. A fit-
ness value is assigned to each individual x ∈ Pt, measuring the “loss in
quality” if x was removed from the current population; i.e. Fitness(x) =∑

x′∈P\{x}(−e−I(x′,x)/κ), where κ > 0 is a user-defined scaling factor. The sur-
vival selection mechanism is based on an elitist strategy that combines the cur-
rent population Pt with its offspring Qt. It iteratively removes the worst solution
until the required population size is reached, and assigns the resulting population
into Pt+1. Each time a solution is deleted, the fitness values of the remaining
individuals are updated. Parent selection for reproduction consists of binary
tournaments between randomly chosen individuals. Different indicators can be
used within IBEA. We here consider the binary additive ε-indicator (Iε+), as
defined by the original authors [29]: Iε+(x, x′) = maxi∈{1,...,m}{fi(x) − fi(x′)}.
It gives the minimum value by which a solution x ∈ Pt has to, or can be, trans-
lated in the objective space in order to weakly dominate another solution x′ ∈ Pt.

MOEA/D [28] is a decomposition-based EMO algorithm that seek a high-
quality solution in multiple regions of the objective space by decomposing
the original (multi-objective) problem into a number of scalarizing (single-
objective) sub-problems. Let μ be the population size. A set (λ1, . . . , λi, . . . , λμ)
of uniformly-distributed weighting coefficient vectors defines the scalarizing sub-
problems, and a population P = (x1, . . . , xi, . . . , xμ) is maintained such that each
individual xi maps to the sub-problem defined by λi. Different scalarizing func-
tions can be used within MOEA/D. We here consider the weighted Chebyshev
scalarizing function: g(x, λ) = maxi∈{1,...,m} λi ·

∣
∣z�

i −fi(x)
∣
∣, such that x is a solu-

tion, λ is a weighting coefficient vector and z� is a reference point. In addition,
a neighboring relation is defined among sub-problems, based on the assumption
that a given sub-problem is likely to benefit from the solution maintained in
neighboring sub-problems. The neighborhood B(i) is defined by considering the
T closest weighting coefficient vectors for each sub-problem i. At each iteration,
the population evolves with respect to a given sub-problem. Two solutions are
selected at random from B(i) and an offspring is produced by means of variation
operators. Then, for each sub-problem j ∈ B(i), the offspring is used to replace
the current solution xj if there is an improvement in terms of the scalarizing
function. The algorithm iterates over sub-problems until a stopping condition is
satisfied.

3 Multi-objective Quadratic Assignment Problem

3.1 Problem Definition

Let us assume a given set of n facilities with eij being the flow between facilities i
and j, and a given set of n locations with dij being the distance between loca-
tions i and j. The Quadratic Assignment Problem (QAP) [24] aims at assigning
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facilities to locations such that the sum of the products between flows and dis-
tances is minimal, and such that each facility is assigned to exactly one location,
which is NP-hard [24]. The multi-objective QAP (mQAP) [12,13] considers m
flow matrices under the same distance matrix, and can be stated as follows:

min
x∈X

n∑

i=1

n∑

j=1

dxixj
ek
ij k ∈ {1, . . . , m} (1)

where xi gives the location of facility i in the current solution x ∈ X, and the
solution space X is the set of all possible permutations {1, . . . , n} (such that
|X| = n !). By increasing the number flow matrices m, we can define bi-objective
(m = 2), multi-objective (m = 3) and many-objective (m � 4) mQAP instances.

3.2 Instance Dataset

Knowles and Corne [13] provide an instance generator that can produce mQAP
instances with different characteristics in terms of the number of variables (n),
the number of objectives (m), the correlation among flow matrices (ρ), and the
structure of flow matrices (type): uniformly random (uni) or real-like (rl) flow
values. Assuming that the dynamics and performance of EMO algorithms are
impacted by these parameters, we consider a dataset covering a wide range of
problems. In particular, we generate 1 000 mQAP instances following a design of
experiments based on random latin hypercube sampling [2]. We consider a prob-
lem size in the range n ∈ {30, . . . , 100}, a number of objectives m ∈ {2, . . . , 5},
an objective correlation ρ ∈ [−1, 1], and two instance types (uni and rl). We
notice that, although the problem size and number of objectives are given, the
type and the objective correlation are unknown in practice for unseen instances.

3.3 Algorithms Setting and Search Performance

We rely on an out-of-the-box implementation of the considered EMO algorithms
with default parameters, as provided in the jMetal 4.5 framework [7]. In terms
of parameters, NSGA-II, IBEA and MOEA/D all use a population of size of 100,
an exchange mutation with a rate of 0.2, and a partially-mapped crossover [10]
with a rate of 0.95. Preliminary experiments revealed that using the partially-
mapped crossover allows the search process to reach better quality in more than
90% of the cases, compared against the 2-point crossover used in a previous
setting [15]. All the algorithms stop after 1 000 000 evaluations. We measure
algorithm performance in terms of hypervolume (hv) [30], and more particu-
larly in terms of hypervolume relative deviation: hvrd = (hv� − hv)/hv�, where
hv� is the best-known hypervolume for the instance under consideration. The
hypervolume measures the multi-dimensional area of the objective space cov-
ered by an approximation set, and is the only known strictly Pareto-compliant
indicator [31]. The hypervolume reference point is set to the upper bound of
objective values. For a given instance, each algorithm is executed 20 times, and
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Table 1. Considered multi-objective landscape features from [15].

Description Random walk Adaptive walk

Correlation among objectives f cor rws –

average length of walks – length aws

Average Autocorrelation Average

Prop. dominated neighbors #inf avg rws #inf r1 rws #inf avg aws

Prop. dominating neighbors #sup avg rws #sup r1 rws #sup avg aws

Prop. incomparable neighbors #inc avg rws #inc r1 rws #inc avg aws

Prop. locally non-dominated neighbors #lnd avg rws #lnd r1 rws #lnd avg aws

Prop. supported locally non-dom. neighbors #lsupp avg rws #lsupp r1 rws #lsupp avg aws

Solution’s hypervolume hv avg rws hv r1 rws hv avg aws

Solution’s hypervolume difference hvd avg rws hvd r1 rws hvd avg aws

Neighborhood’s hypervolume nhv avg rws nhv r1 rws nhv avg aws

the obtained hvrd values are averaged to estimate its expected performance. Sig-
nificant difference between algorithms is also investigated in terms of statistical
test.

4 Feature-Based Landscape Analysis

We start our analysis by characterizing mQAP instances with relevant features
from the literature. We rely on the multi-objective landscape features introduced
in [15], and particularly on local features, based on sampling, that do not require
any prior knowledge about the solution space enumeration and/or the Pareto
set. We start by recalling their definition. Then, we measure how they relate with
each other, and how they individually relate with search performance. At last,
we assess their joint effect on performance in an attempt to highlight the main
difficulties encountered by EMO algorithms when solving a mQAP instance.

4.1 Multi-objective Landscape Features

The considered multi-objective landscape features are listed in Table 1. When
adding the mQAP benchmark parameters (i.e., type, n, m, and ρ), this sums to a
total of 30 features. We define the multi-objective landscape for a given mQAP
instance as a triplet (X, f,N ), such that X is the solution space (i.e., the set of
all possible permutations {1, . . . , n}), f : X �→ Z is the objective function vector
defined in Eq. (1), and N : X �→ 2X is a neighborhood relation based on the
exchange operator, that consists in exchanging the locations of two facilities.
The considered features are based on different measures computed on a sample
of solutions extracted from a walk over the multi-objective landscape [15]. A walk
is an ordered sequence of solutions (x0, x1, . . . , x�) such that x0 ∈ X, and xt ∈
N (xt−1) for all t ∈ {1, . . . , �}. During a random walk [27], there is no particular
criterion to pick the neighboring solution at each step, a random neighbor is
selected. The length of the walk �rws is a parameter: the longer the length,
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the better the features estimation. By contrast, during an adaptive walk [26], a
dominating neighbor is selected at each step. The length �aws corresponds the
number of steps performed until no further improvement is possible, and the
walk falls into a Pareto local optimal solution (PLO) [18]. Multiple adaptive
walks are typically performed to improve the features estimation.

Given an ordered sequence of solutions collected along a walk, we consider
the following measures. For each solution, we sample its neighborhood, and we
measure the proportion of dominated (#inf), dominating (#sup), and incom-
parable (#inc) neighbors. We also consider the proportion of non-dominated
neighbors (#lnd), as well as the proportion of supported solutions therein
(#lsupp). In addition, we compute the average hypervolume covered by each
neighbor (hv), the average difference with the hypervolume covered by the cur-
rent solution (hvd), and the hypervolume covered by all neighbors (nhv). For
samples collected by means of a random walk, we compute both an average over
all solutions from the walk and the first autocorrelation coefficient of the mea-
sures reported above. We also use solutions from the random walk to estimate
the degree of correlation among the objectives (f cor rws). For adaptive walks,
we simply compute average values for each measure, as well as the walk length
�aws (length aws), which is known to be a good estimator for the number of
PLO [26].

Given ηrws random walks of length �rws, and a neighborhood sample size ηneig,
the computational complexity for random walk features in terms of calls to the
objective function is: ηrws

(
1 + (1 + �rws) · ηneig

)
. Similarly, the computational

complexity for adaptive walk features is: ηaws
(
(1+ �aws) ·ηneig +eaws

)
, where ηaws

is the number of adaptive walks, �aws is the number of steps before the adaptive
walk falls into a PLO, and eaws is the total number of evaluations performed for
the walk to progress. However, we remark that length aws alone is cheaper to
compute, as it does not require any neighborhood exploration. Its complexity is
just: ηaws · eaws. Similarly, the complexity of f cor rws alone is: ηrws (1 + �rws).
We also remark that ηrws, �rws, ηaws and ηneig must be defined by the user for
feature estimation. By contrast, the expected value for �aws and eaws, observed
in average over instances from our dataset is 45 and 10 845, respectively.

4.2 Correlation Among Landscape Features

In this section, we consider an expensive budget of ηrws = 1 random walk of
length �rws = 1000, and of ηaws = 100 independent adaptive walks, both using a
neighborhood sample of ηneig = 400. Figure 1 reports the correlation matrix of
all features, as measured on the instance dataset. The correlation is measured in
terms of the non-parametric Spearman rank correlation coefficient. The matrix
highlights the similarities between features from mQAP, and their association
with benchmark parameters. Interestingly, we remark that the number of vari-
ables and the instance type are only slightly correlated with landscape features,
apart from autocorrelation measures, and the length of adaptive walks for n:
the larger the search space, the longer the length. By contrast, the number of
objectives and their degree of conflict are correlated with average dominance
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measures, and m is also highly positively correlated with average hypervolume
measures. Unsurprisingly, there is a high association among average dominance
measures, and among average hypervolume measures. This suggests that per-
forming both random and adaptive walks is redundant for those features, and
that considering a single walk type might allow us to save computations. At
last, we remark in the last column that the correlation between the length of
adaptive walks and other features is quite high overall, and we already infer that
length aws will be informative for characterizing problem difficulty.
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Fig. 1. Pairwise correlation among landscape features.
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4.3 Correlation of Landscape Features with Search Performance

We now report in Fig. 2 the Spearman correlation of each feature with the
expected performance of the three considered EMO algorithms, measured in
terms of hypervolume relative deviation (hvrd). The corresponding scatter-
plots (with locally estimated scatterplot smoothing) for a selected subset of
features are shown in Fig. 3 (others are not reported due to space restriction).
Firstly, the effect of features on search difficulty has a similar trend for NSGA-II
and IBEA, while being quite different for MOEA/D. In particular, the abso-
lute correlation of each feature with the performance of MOEA/D is always
below 0.5.

NSGA-II and IBEA are highly impacted by the number of objectives: their
relative performance severely decreases with m, whereas MOEA/D performs
almost constantly. Similarly, they perform better when average hypervolume
measures are small, given that these are correlated with m, as pointed our ear-
lier. IBEA is also impacted by average dominance measures: it performs best
when there is not too few (nor too much) locally dominating points. Once again,
it does not seem necessary to run both random and adaptive walks to mea-
sure average dominance and hypervolume values, given the similar impact of
the corresponding features on search difficulty. By contrast, MOEA/D seems
more impacted by autocorrelation measures, which quantify the ruggedness of
the multi-objective landscape [15]: the rugger the landscape the less efficient
MOEA/D. However, we argue that autocorrelation measures alter other algo-
rithms as well; see, e.g., Fig. 3 (middle-left). Unfortunately, this effect is not cap-
tured by the correlation coefficients due to the particular trend of features against
performance.
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Fig. 2. Correlation between landscape features and algorithm performance.
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Fig. 3. Selected landscape features vs. algorithm performance.

4.4 Importance of Landscape Features for Search Performance

In order to measure the combined effect of landscape features on search perfor-
mance, we rely on a regression model. More precisely, we predict the expected
hypervolume relative deviation (hvrd) based on input landscape features, sep-
arately for each algorithm. Given the non-linearity observed in the dataset, we
employ a random forest model [1] from the randomForest R package [14] with
default parameters. Due to the stochastic nature of random forests, we perform
100 independent trainings and report average values. The coefficient of deter-
mination of the models on training data is 0.96, 0.98, and 0.78 respectively, for
NSGA-II, IBEA, and MOEA/D. This means than more than 75% of the variance
in search performance between instances is explained by landscape features.

Beyond prediction accuracy, random forest models have the ability to render
the relative importance of each feature for making accurate predictions. In par-
ticular, we consider the mean decrease of prediction accuracy after each split on
a given predictor [1]: the larger the decrease, the more important the predictor.
The importance scores are depicted in Fig. 4. For readability, only the 12 most
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Fig. 4. Importance of landscape features for performance prediction of each algorithm.

important features are depicted for each algorithm, sorted in decreasing order of
importance, from top to bottom. As conjectured in Sect. 4.2, length aws turns
out to be the most important feature for each algorithm. It relates to the multi-
modality of the landscape [15,26]: the longer the walk, the fewer the number of
Pareto local optima, and the better search performance; see also Fig. 3 (bottom–
left). For NSGA-II, the number of objectives m is the most important benchmark
parameter, whereas it is the number of variables n for IBEA and MOEA/D. Some
autocorrelation measures also appear for all algorithms, together with the degree
of conflict among the objectives (whether ρ or f cor rws). Interestingly, the pro-
portion of supported non-dominated neighbors is particularly influential for the
scalarization-based MOEA/D.

5 Feature-Based Automated Algorithm Selection

5.1 Prediction Accuracy with Expensive Features

Let us examine the ability of landscape features to discriminate between the
three algorithms. To do so, we now train a random forest classification model to
predict whether NSGA-II, IBEA, or MOEA/D performs better, on average, for a
given instance. The classification accuracy is reported in Table 2 for models based
on different subset of features, corresponding to different costs. A feature-based
classification model can predict the algorithm with the best average performance
in about 90% of the cases, and an algorithm which is not statistically outper-
formed by any other in more than 99% of the cases. This is significantly more
accurate than a random classifier, a dummy classifier that always predicts the
most-frequent best algorithm (here, MOEA/D), and a classifier based on bench-
mark parameters only. Interestingly, we did not find any significant difference
in terms of prediction accuracy between a model using all features and a model
using solely features based on random walk plus only the length of adaptive
walks. This might actually reduce the computational cost of algorithm selection.

Features importance for algorithm selection is depicted in Fig. 5. The length
of adaptive walks is, once again, the most important feature. The subsequent
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Table 2. Classification error for different subset of features, measured on random sub-
sampling cross-validation (100 repetitions, 80/20% split). Two values are reported: the
error rate in predicting the algorithm with the best performance on average, and the
error rate in predicting an algorithm that is not statistically outperformed by any
other, according to a Mann-Whitney test at a significance level of 0.05 with Bonferroni
correction. The dummy classifier always returns the most frequent algorithm.

Subset of features Classification error Error predicting statistical best

{n, m} .1962 .0332

{type, n, m, ρ} .1197 .0072

{� rws, n, m} .1114 .0062

{� aws, n, m} .1125 .0065

{� rws, length aws, n, m} .1089 .0056

{� rws, � aws, n, m} .1077 .0063

{� rws, � aws, type, n, m, ρ} .1078 .0063

Random classifier .6667 .3810

Dummy classifier (MOEA/D) .4200 .1040

features have a very similar score, and cover complementary landscape character-
istics, ranging from autocorrelation coefficients, to average dominance and hyper-
volume measures and benchmark parameters. Most notably, important adaptive
walk features almost always have their random walk counterpart, whether it is
for dominance or hypervolume measures.

5.2 Low-Cost Features Subtracted from Search Budget

We conclude our analysis by investigating the performance of a feature-based
automated EMO algorithm selection method (AUTO-EMOA for short), while
taking the budget allocated to the feature computation into account. Given the
results presented above, we focus on a classification model based on features from
random walk sampling (rws), together with length aws and problem parameters
that are given in practical scenarios (dimensions n and m). In contrast to the
previous setting, we now consider a low-cost budget for features computation:
ηrws = 1 random walk of length �rws = 200 using a sample of ηneig = 100
neighbors at each step, and ηaws = 1 adaptive walk for estimating length aws
only. By measuring the one-to-one correlation between expensive and low-cost
features (not reported), we remark that it is always larger than 0.85, apart from
locally supported and hypervolume autocorrelation features (between 0.58 and
0.75), that were not detected as important previously.

The total computation of the considered low-cost features sums up to 30 946
evaluations, in average, per instance. Consequently, we deduce 50 000 (>30 946)
evaluations from the search process allocated to AUTO-EMOA. In other words,
we compare AUTO-EMOA with a search budget of 950 000 evaluations against
NSGA-II, IBEA, and MOEA/D with a search budget of 1 000 000 evaluations.
Results from 100 repetitions of random sub-sampling cross-validation with a
80/20% split are presented in Fig. 6. The statistical rank of AUTO-EMOA is
0.09 on average, more than three times lower than the best standalone approach
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Fig. 6. Performance of AUTO-EMOA compared
against other algorithms.

(MOEA/D, with 0.29). Among all instances seen during cross-validation, AUTO-
EMOA was not significantly outperformed by any other approaches on 92% of
the cases (82% for MOEA/D). As such, deducing a small part of the budget
allocated to the search process for feature computation appears to be beneficial
in order to gain knowledge about the tackled problem, and make better-informed
decision on the appropriate multi-objective search strategy to apply for solving it.

6 Conclusions

In this paper, we analyzed the landscape of large-scale bi-, multi- and many-
objective mQAP instances, and highlighted the relationship between landscape
features and the performance of a dominance-, indicator-, and decomposition-
based EMO algorithm. Our study highlights that algorithms are not only
impacted by the number of objectives, but that the ruggedness and multi-
modality of the multi-objective landscape are also crucially important to prop-
erly explain search performance. An automated algorithm selection model also
revealed the ability of multi-objective landscape features to discriminate between
EMO algorithms. By simply allocating less than 5% of the budget to analyze
the landscape of a given instance, our recommendation system was shown to
perform best on more than 90% of instances under the scenario considered for
validation.

Further research includes the investigation of other landscapes, including
multi-objective continuous functions that require particular walks for sampling
the solution space when computing the features. Additionally, we plan to con-
sider additional EMO algorithms, and in particular highly-configurable frame-
works for which we infer that feature-based algorithm configuration is essential.
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