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Abstract. The Traveling Salesperson Problem (TSP) is one of the best-
known combinatorial optimisation problems. However, many real-world
problems are composed of several interacting components. The Travel-
ing Thief Problem (TTP) addresses such interactions by combining two
combinatorial optimisation problems, namely the TSP and the Knapsack
Problem (KP). Recently, a new problem called the node weight depen-
dent Traveling Salesperson Problem (W-TSP) has been introduced where
nodes have weights that influence the cost of the tour. In this paper, we
compare W-TSP and TTP. We investigate the structure of the optimised
tours for W-TSP and TTP and the impact of using each others fitness
function. Our experimental results suggest (1) that the W-TSP often can
be solved better using the TTP fitness function and (2) final W-TSP and
TTP solutions show different distributions when compared with optimal
TSP or weighted greedy solutions.

Keywords: Evolutionary algorithms · Traveling Thief Problem · Node
weight dependent TSP

1 Introduction

The Traveling Salesperson Problem (TSP) is one of the most prominent combi-
natorial optimisation problems and has been widely studied in the literature. It
also serves as a basis for many more complex vehicle routing problems. Often
real-world optimisation problems involve multiple interacting components that
have to be optimised simultaneously. Moreover, due to the interactions the dif-
ferent silo problems can not be optimised separately in order to come up with
an overall good solution [4].

The Traveling Thief Problem introduced in [3] is a multi-component problem
that has recently gained significant attention in the evolutionary computation
literature [6,7,9,15–19]. It combines the TSP and the classical Knapsack Prob-
lem by assigning items with profits and weights to the cities. The goal is to
maximise the difference of profits of the collected items and the costs of a tour
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where the weights of items collected while visiting the cities increase the cost
of moving from one city to the next one. More precisely, the weights of the
items collected so far reduce the speed of the vehicle in a linear fashion and
the cost of moving from city i to city j is determined by the current speed and
the distance d(i, j) of i and j. A wider range of benchmark instances have been
introduced [11] and various competitions have been carried out at evolutionary
computation conferences.

Understanding the interactions within the TTP is difficult. If the given tour is
fixed and only the remaining (still NP-hard) packing problem has to be solved,
then this can be done by dynamic programming and also approximation algo-
rithms are available [10]. However, optimising the tour for the TTP when the
packing part is fixed seems to be significantly more difficult. In order to gain
a better understanding on how node weights that influence the cost of a tour
impact the optimisation, the node weight dependent Traveling Salesperson Prob-
lem (W-TSP) has been introduced recently [5]. Here each node has a weight and
the cost of going from city i to city j is their distance d(i, j) times the weight of
the nodes visited so far. For special cases approximation algorithms have been
designed in [5] that establish a relation to the minimum latency problem [2].
Furthermore, experimental investigations have been carried out to examine the
impact of the node weights on the optimised salesperson tour.

With this paper, we continue this line of research and further bridge the gap
in understanding the impact of node weights on salesperson tours. We examine
and compare TTP and W-TSP in a systematic study. We consider a variant to
TTP where the packing plan – and in consequence the total profit – is fixed and
the goal is to minimise the cost of the weighted TTP tour length. We call this
problem W-TTP. In our experimental investigations, we investigate instances
where each item of a given TTP benchmark is present with probability p. Our
study suggests, that with increasing p, i.e. increasing average number of nodes
with strictly positive node weight, for the simple randomised search heuristic
considered in this paper, it is advantageous to use the W-TTP objective as a
driver for the search process instead of the W-TSP objective in order to find
good solutions for the W-TSP. Furthermore, we consider the difference in terms
of the structure of solutions obtained using the different problem formulation.
In terms of structural similarity of W-TTP and W-TSP solutions produced by
our simple heuristic, good W-TSP on average show higher similarity with the
solutions obtained by a naive weighted greedy approach (WGR) then this is the
case for W-TTP solutions with respect to a similarity measure based on the
inversion number. In contrast, good W-TTP solutions on average share more
edges with optimal TSP solutions. We hope that in future such findings can be
leveraged to develop more sophisticated heuristic search algorithms for both the
W-TSP and the Traveling Thief Problem.

The paper is structured as follows. We introduce the problems examined
in this paper in Sect. 2, and we carry out our experimental investigations in
Sect. 3. Afterwards, in Sect. 4, we investigate the relation of solutions among
the two problems in terms of objective value ratios. In Sect. 5 we perform a
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structural similarity analysis of solutions with optimal TSP tours and weighted
greedy solutions. We finish with some concluding remarks and avenues for future
research.

2 Problem Formulation

The classical Traveling Salesperson problem is one of the most studied NP-hard
combinatorial optimisation problems. Given a set of n cities V = {1, . . . , n}
and distances d(i, j) between them, the goal is to find a permutation π which
minimizes the tour length given by

TSP(π) = d(πn, π1) +
n−1∑

i=1

d(πi, πi+1).

Motivated by the TTP, we study variants of this problem where node weights
influence the cost of a tour.

2.1 The Traveling Thief Problem

The Travelling Thief Problem (TTP) was first introduced in [3]. Given is a set
of n cities V = {1, . . . , n} with pairwise distances d(i, j) between them and a
set Ei = {ei1, . . . , eimi

} of mi = |Ei| items at city i, 1 ≤ i ≤ n. We denote
by E = ∪Ei the overall set of items. There is a profit p : E → R+ and weight
function w : E → R+ on the items and knapsack capacity C which limits the
total weight of a selection of items.

The goal in the TTP is to find a tour π = (π1, . . . , πn) and a packing plan
x = (x11, . . . , xnmn

) such that their combination π and x maximises the sum
of the profits minus the travel cost associated with π and x. Note that in the
classical TTP, there is usually no item available at city 1.

We indicate by a bitstring x = (x11, . . . , xnmn
)) ∈ {0, 1}m, where m =∑n

i=1 mi, the items present in a problem instance. Item eij is present iff xij = 1
holds.

We denote by

w(πi, x) =
mπi∑

k=1

w(eπik)xπik

the weight of the items taken in city πi with packing plan x. The number of
present items at city πi is

η(πi) =
mπi∑

k=1

xπik.

In our experiments, we consider the case where all cities have the same number
of items and use the notion IPN for items per node.

Let ω(i) =
∑i

j=1 w(πj , x) be the sum of the weights of the cities in permuta-
tion π up to the ith city. The cost of a tour is given by the time the vehicle takes
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to complete the tour. Here the weight of the items present when going from city
i to city j depends on the distance d(i, j) and the speed υ ∈ [υmin, υmax], where
υmin is the minimum speed and υmax is the maximum speed of the vehicle. The
tour has to start and city 1 and therefore π1 = 1 is required.

The goal in the standard formulation of TTP is to maximize

TTP(π, x) =
∑

e∈E

p(e)xe − R

(
d(πn, π1)

υmax − νω(n)
+

n−1∑

i=1

d(πi, πi+1)
υmax − νω(i)

)

where
∑

e∈E p(e) is the sum over all packed items’ profits, ν = (υmax − υmin) /C
is a constant value defined by the input and R is a constant called the renting
rate.

We assume that the packing plan is fixed x for a given instance. If x is fixed
then the profits and the weights at the cities are completely determined. We
ignore the profit part and the renting rate as both are constant and do not have
any impact on the order of solutions with respect to the fitness function TTP.
In our study, we investigate the following cost function which depends on the
weights of the items determined by x and the chosen permutation π:

W-TTP(π, x) =

(
d(πn, π1)

υmax − νω(n)
+

n−1∑

i=1

d(πi, πi+1)
υmax − νω(i)

)

We call the problem of finding a tour which minimizes this goal function the
weighted TTP-problem (W-TTP).

2.2 The Node Weight Dependent TSP

We also consider the node weight dependent TSP problem (W-TSP) recently
introduced in [5]. In addition to the input of the TSP, we have a set of possible
items Ei available at each city i. Following the notation for W-TTP, we indicate
by a bitstring x ∈ {0, 1}m whether an item eij is present.

Given a set of n cities V = {1, . . . , n} with distances d(i, j) between the
cities and a weight function w : E → R+ on the set of items, the goal is to find
a permutation π that minimizes the weighted TSP cost. The tour has to start
and city 1 and therefore π1 = 1 is required. We denote by

w(πi, x) =
mπi∑

k=1

w(eπik)xπik

the weight of the items presents at city πi. The fitness of a given tour π and a
given set of present items indicated by x is given as

W-TSP(π, x) = d(πn, π1)

⎛

⎝
n∑

j=1

w(πj , x)

⎞

⎠ +
n−1∑

i=1

d(πi, πi+1)

⎛

⎝
i∑

j=1

w(πj , x)

⎞

⎠ .
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Note, that the standard TSP is the special case where w(π1) = 1 and w(πi) =
0, 2 ≤ i ≤ n.

Our fitness function definitions for W-TTP and W-TSP work with a set of
present items which can also be defined in terms of the input items without using
the bitstring x. We use the notation of present items indicated by x as we will
use TTP benchmarks where different subsets of items of a given TTP instance
have to be collected in the computed tour.

2.3 Problem Comparison

The TSP, W-TTP, and W-TSP place different emphasize on the weight of nodes.
The TSP can be considered as the special case of W-TSP where only the first
node receives a weight of 1. Furthermore, TSP is a special case of the tour optimi-
sation variant of TTP where no item is collected, and the vehicle always travels
at maximum speed vmax. W-TSP allows for a very drastic and high weightening
of distance costs as the weights are collected during the route and each distance
is multiplied with the weight of the cities visited. TTP in more limited in terms
of the impact of the weightening as the weight of the items reduces the speed
from vmax to vmin in a linear fashion. Using the interval [vmin, vmax] for the speed
also ensures that the weighted distance for going from city i to j is always in the
interval [d(i, j)/vmax, d(i, j)/vmin] where as in the case of W-TSP this can be in
the range [0,W · d(i, j)] where W is the total weight amount all cities.

3 Experimental Setup

The focus of this paper is on understanding interactions between solutions for
the W-TTP and the recently introduced W-TSP. To study these effects, we con-
sider a subset of instances from the TTP 2017 CEC Competition1 for our exper-
iments [11]. We choose all instances which are based on the following classical
TSPlib [12] instances: a280, berlin52, ch130, ch150, eil101, eil51, eil76, kroA100,
kroC100, kroD100, lin105, pcb442, pr1002, pr2392, pr76, rd100, st70. Therein,
all three weight/profit classes are covered: bounded strongly correlated (bsc),
uniform similar weights (usw) and uncorrelated (u). Furthermore, the number
of items per node (IPN) is either one or five. In total our benchmark set con-
tains 102 instances. The subset is a cross-section of the TTP benchmark set with
instances of few nodes up to instances with several thousand nodes. In addition,
optimal tours for the classical TSP are known for these instances. This will be of
essential for structural similarity analysis in Sect. 5. Recall that in our setup the
packing plan is initially fixed and so are the weights at the nodes; no changes to
the packing are made in the course of optimisation. To account for the stochas-
ticity in the packing and the influence of the fraction of active items, for each
instance and each p ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0} we generated 31
random packings from a Bin(m, p)-distribution where m is the number of items

1 https://cs.adelaide.edu.au/∼optlog/TTP2017Comp/.

https://cs.adelaide.edu.au/~optlog/TTP2017Comp/
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of the TTP instance at hand, i.e. each items is packed with probability p and not
packed with inverse probability (1 − p). In order to make all generated packings
feasible, we set the knapsack capacity C to the sum of all item weights (not just
the packed ones).2 Note that this choice for the knapsack capacity allows us to
explore different degrees of filling of the vehicle. In consequence a transition from
the classical TSP (p close to zero) and the TTP with a fully loaded vehicle (p
close to one) is possible.

We consider the classical (1 + 1)-EA with inversion mutation on permuta-
tions. Preliminary benchmarking with swap and insertion mutation showed its
superiority; this confirms the experimental results in [5] on the W-TSP. We
urge the reader to carefully read the following sentences as they convey a crucial
aspect of our study: we run (1+1)-EA with either the W-TTP or the W-TSP for
driving the evolutionary search process (EA driver). In addition, the best so far
solution in every iteration and in particular the final best solution is evaluated
with both W-TTP and W-TSP resulting in four different relevant combinations.

(1 + 1)-EA is applied each one time on each instance and each of the 31
associated packings plans. Note, that we do not perform additional indepen-
dent runs for each fixed packing plan. Instead, the 31 runs already account for
the stochasticity. Our implementation and data is available in a public GitHub
repository.3

4 Comparison in Terms of Solution Quality

We first approach the following research question: is it beneficial to use each
others fitness function for optimisation purposes? More precisely, if we aim to
optimise the W-TTP (W-TSP), should we use the actual objective function as
EA driver or is it of benefit to use the W-TSP (W-TTP) objective function
instead? One might argue that it certainly makes no sense to use another fitness
function as a surrogate. However, our results prove this assumption wrong in
many cases. Figure 1 show the distribution of objective value ratios across all
runs on all considered instances separated by the instance property IPN and
the packing probability p. The ratios are to be interpreted as follows: when the
objective is W-TSP we divide the W-TSP objective value of the final solution
determined with the W-TSP-driver by the W-TSP objective value of the final
solution obtained by optimising with the W-TTP-driver and vice versa. Since
both objectives are to be minimised a ratio below 1.0 indicates that it is advan-
tageous to use the actual objective function to guide the EA; the result one
would expect. Returning to Fig. 1 we actually see that this assumption does not
always hold true; at least in one direction. The data shows that it is consis-
tently advisable to use the W-TTP objective function to optimise the W-TTP.
However, a closer look shows that the W-TTP-related box-plots show a char-
acteristic U-shape with peaks in the area of p ≈ 0.5. In contrast, with W-TSP
2 Note that this step is relevant for the W-TTP only; the W-TSP objective function

does not cope with a knapsack limit.
3 GitHub repository: http://github.com/jakobbossek/ttp.

http://github.com/jakobbossek/ttp


352 J. Bossek et al.

Better to optimise with actual fitness function

Better to optimise with alternative fitness function

Better to optimise with actual fitness function

Better to optimise with alternative fitness function

IPN: 1 IPN: 5

0.0
1

0.0
5 0.1 0.2 0.3 0.4 0.6 0.8 1

0.0
1

0.0
5 0.1 0.2 0.3 0.4 0.6 0.8 1

0.0

0.5

1.0

1.5

2.0

2.5

Probability p of items being packed

R
at

io

Objective W−TSP W−TTP

Fig. 1. Distribution of objective value ratios of final tours. Ratios are calculated by
the following rule: if W-TSP is to be minimised we divided the W-TSP tour-length
obtained by optimising with the actual W-TSP driver with the W-TSP tour-length
of the solution calculated when the algorithm is run with the W-TTP driver instead.
Ratios for W-TTP optimisation are calculated analogously. Ratios below zero indicate
a benefit for the actual objective function.

being in the focus of optimisation we observe a very different pattern. Here, with
p → 1, the median ratio increases. The median surpasses 1.0 for the first time
at a level of p = 0.4 with one item per node and p = 0.1 for IPN = 5. Our
assumption is that for IPN = 1 and given p ∈ [0, 1] in expectation np nodes have
a strictly positive weight. In contrast, if there are multiple items per node, due
to independence of the item activation in the packing plan generation, in each
node mip are expected to be active. Hence, in expectation, there will be more
nodes with strictly positive weight assigned in this setting. Either case it seems
as with increasing p oftentimes the W-TTP-driver leads to better W-TSP tours.
The results suggest that using the W-TSP objective produces large basins of
attraction for qualitatively bad local optima. Figure 2 shows a less aggregated
view. Here, the ratios are shown for three representative instances from the
benchmark set (still aggregated across weight/profit types bsc, usw and u since
the type does not reveal any different patterns). Here, in particular the largest
pr2392-based instances with n = 2392 nodes stands out from the crowd: here
the aforementioned U-shape observed for the W-TTP is inverse for the W-TSP
at least for IPN = 5. For this particular instance the difference between median
ratios is highest and using the W-TTP EA-driver for moderate p leads to median
quality gains of ≥ 1.5 which is massive.

Figure 3 visualises the trajectories/development of incumbent solutions for
two representative instances. In particular for p = 0.3 (second column) we see
that for these particular runs in fact the final W-TSP objective is better when
the EA driver is W-TTP. Moreover, occasional decrease in fitness values can be
observed even though the general optimisation goal is still purchased.

In order to make sense out the data we trained a simple decision tree to decide
which EA-driver to use in order to solve the W-TSP. Since the W-TTP is best
solved by adopting the W-TTP driver (beside few outliers) we did not perform
this step for the other direction. Our goal was a simple binary classification task.
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Fig. 2. More fine-grained objective ratios for three representative instances (rows) and
different item counts (columns).

I.e. the target is to decide which EA-driver is preferable while predictor variables
are the instance size n, the IPN value and the probability p. We used 10-fold
cross-validation and the R-package rpart [13] interfaced by package mlr [1] to
train the model and access its performance. The cross-validation results report
a mean miss-classification test error of 18.5% and thus an accuracy of 81.5%
in predicting the best EA-driver. This is not overwhelming, though admittedly
higher than tossing a coin. The final decision tree is depicted in Fig. 4. The splits
used by the model, i.e. decisions made when we follow the nodes from the root
down to leaf level, very much reflect our previous observations where the W-TTP
driver is advantageous for larger p and IPN > 1.

5 Structural Similarity Analysis of Solutions

In the following we conduct a similarity analysis of solutions. To be more concise
we investigate the similarity of final W-TTP and W-TSP solutions calculated
in our study with two types of permutations: (1) optimal TSP solutions for the
underlying TSP instance and (2) tours calculated by a greedy algorithm which
favors visiting “heavy” nodes, i.e. nodes of high weight, later in the tour. In a
nutshell the algorithm termed weighted greedy (WGR) works as follows. In a first
step nodes are sorted in ascending order of their node weight. The second step
is about tour construction. Here, nodes are visited in ascending order of node
weight. In case of ties, i.e. several nodes with the same node weight, these nodes



354 J. Bossek et al.

W-TTP

W-TSP

0 1000 2000 3000 4000 5000

10000

15000

20000

25000

30000

20000

30000

40000

50000

60000

Iteration

O
bj

ec
tiv

e 
va

lu
e

EA driver W-TSP W-TTP

Problem: berlin52-bsc, Packing: Bin(m, p=0.01)

W-TTP

W-TSP

0 1000 2000 3000 4000 5000

2.5e+08

5.0e+08

7.5e+08

1.0e+09

20000

30000

40000

50000

60000

70000

Iteration

O
bj

ec
tiv

e 
va

lu
e

EA driver W-TSP W-TTP

Problem: berlin52-bsc, Packing: Bin(m, p=0.30)

W-TTP

W-TSP

0 1000 2000 3000 4000 5000

5.0e+08

1.0e+09

1.5e+09

2.0e+09

2.5e+09

40000

60000

80000

Iteration

O
bj

ec
tiv

e 
va

lu
e

EA driver W-TSP W-TTP

Problem: berlin52-bsc, Packing: Bin(m, p=0.60)

W-TTP

W-TSP

0 4000 8000 12000

0e+00

2e+06

4e+06

6e+06

2e+04

4e+04

6e+04

8e+04

1e+05

Iteration

O
bj

ec
tiv

e 
va

lu
e

Problem: eil101-usw, Packing: Bin(m, p=0.01)

W-TTP

W-TSP

0 4000 8000 12000

1e+08

2e+08

3e+08

4e+04

6e+04

8e+04

1e+05

Iteration

O
bj

ec
tiv

e 
va

lu
e

Problem: eil101-usw, Packing: Bin(m, p=0.30)

W-TTP

W-TSP

0 4000 8000 12000

1e+08

2e+08

3e+08

4e+08

5e+08

25000

50000

75000

100000

125000

Iteration

O
bj

ec
tiv

e 
va

lu
e

Problem: eil101-usw, Packing: Bin(m, p=0.60)

Fig. 3. Exemplary trajectories for instance berlin52 (two top rows) and eil101 (two
bottom rows) with bounded strongly correlated weights and 5 items per node. The EA
was run with both W-TSP and W-TTP as driver (indicated by color and line type).
Likewise, incumbent solutions were evaluated with both objective functions (W-TSP
in top and W-TTP in bottom row). (Color figure online)

are visited following the nearest neighbor heuristic [8]. This construction method
can be seen as a naive approach to solve the W-TTP or W-TSP respectively
where one might assume that nodes with a high weight loading should be visited
later on even if this requires to take some long distance edges beforehand. Note
that the optimal TSP tours and WGR tours pose two extremes: the TSP tour
is focused on the distances only neglecting node weights completely. In contrast,
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Fig. 4. Decision tree for the machine learning task of determining which objective
function should be used in order to optimise the W-TSP. Within the splits p is the
probability of items being active, n is the number of nodes and IPN is the number of
items per node. Values within the nodes indicate the majority decision (top), the frac-
tion of data processed by the left/right branch respectively (center) and the percentage
of overall data points processed at that node.

WGRs’ focus, though not able to guarantee optimality, is mainly on late heavy
node placement in the tour.

For the purpose of measuring similarity we use two metrics for the comparison
of two tours (permutations) π1 and π2. The first is termed common edges (CE)
and is defined as the proportion of edges shared by both tours. The second
metric is based on the mathematical term of inversion which – in the classical
sense – is a measure of the sortedness of a sequence: for a permutation π, if
1 ≤ i < j ≤ n and πi > πj the pair (i, j) is called an inversion [14]. The total
count of inversions IN(π1, π2) is termed the inversion number which is at most
n(n − 1)/2 with higher values indicating stronger dissimilarity with respect to
sortedness. In our setting though we are given two permutations π1, π2 and we
call (i, j) an inversion, if node i is visited before (after) node j in π1 and after
(before) j in π2. In order to obtain a normalised similarity version we define our
second measure as follows:

INV(π1, π2) := 1 −
(

2 · IN(π1, π2)
n(n − 1)

)
∈ [0, 1].

We want to stress that with a simple heuristic like the (1 + 1)-EA it is
unlikely to get optimal solutions to our problems. In consequence, the following
observations are based on sub-optimal approximations to the W-TTP and W-
TSP respectively. Nevertheless, we believe that our insights are valuable first
steps towards a better understanding of tour composition.

Figure 5 shows the distribution of the similarity of W-TSP and W-TTP solu-
tions with optimal TSP tours and WGR tours by means of the two measures CE
and INV throughout the whole benchmark set. For ease of reference, we denote
the similarity with CE[TSP], CE[WGR], INV[TSP] and INV[WGR]. Regarding
CE[TSP]-similarity we observe a U-shape with increasing probability p for W-
TSP. The box-plots for W-TTP however show a clear downward trend, i.e. the
more items have to be collected by the thief, the less similar the tour gets to the
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Fig. 5. Distribution of similarity of all final W-TSP and W-TTP solutions calculated in
our experimental study. We calculate the similarity to the optimal tour for the classical
TSP and the weighted greedy tours (WGR) respectively.

TSP. Nevertheless, for both W-TTP and W-TSP the median similarity is larger
than 25% for all values of p and even above 50% for the W-TTP. Compared with
this for both considered optimisation problems the CE[WGR]-similarity strongly
decreases with increasing p. Here, median values close to 0% with low variance
are reached if on average at least 60% of the items are active. The CE-measure is
plain simple and kind of binary in the sense that an edge is either shared or not.
However, even if the number of shared edges approaches zero the INV-similarity
can show different patterns as it measures the number of swaps needed to trans-
form one tour into another. In fact, median INV[WGR]-values are > 50% for
all considered settings and both W-TSP and W-TTP. Moreover, with increas-
ing p there is trend towards a narrowed outlier distribution, i.e. outliers are less
frequent indicating a lower total range of similarity values. In addition, for the
W-TSP we observe an inverted U-shape with its median peak at about p = 0.2.
This suggests that for the W-TSP and a relatively low number of active items
it is in fact advisable to place these heavy nodes in the end of the permutation.
All observations made so far are valid for all considered instances and IPN val-
ues (see Fig. 6 for a less aggregated view for three representative instances). We
clearly observe the same patterns even though the actual similarity values can
differ substantially (cf. the CE[TSP]-similarity in Fig. 6). In particular pr2392-
based instances stand out. This is partly explained by its size (2 392 nodes) which
is much bigger than the majority of our benchmark instances and the fact that
we use a very simple heuristic. Therefore, our W-TSP and W-TTP solutions for
those instances are likely far away from optimal.

Coming back to the actual measures: the only measure which shows strong
variance throughout the instance set is INV[TSP]. This observation can be visu-
ally derived from Fig. 5 where we see many partly extreme outliers and is backed
up by the representative more fine-grained plots in Fig. 6. The strong variance
is even more pronounced for the W-TTP solutions. To be honest, at this point
we have no clear explanation to this phenomenon.
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Fig. 6. Distribution of similarity of all W-TSP and TTP solutions calculated for
instances of type berlin52 (top row), pr2392 (middle row) and pr75 (bottom row)
to the respective optimal TSP tours and weighted greedy tours (WGR).

6 Conclusion

Multi-component problems appear frequently in real-world applications and the
TTP (combining the TSP and KP) has been introduced as a benchmark problem
to study such problem in greater depth. Understanding the interaction of the
two components is still a challenging task and we focused in this paper on the
weighted TSP part of the problem. We have carried out a structural comparison
of TSP variants called W-TTP and W-TSP where the weight on nodes deter-
mined by a collection of items plays a crucial role in determining an optimal tour
when the to be collected set of items is fixed. Our results show that W-TTP is
closer to the TSP than the W-TSP and that using the fitness function of W-TTP
can surprisingly lead to better results when the goal is to optimise W-TSP.

Future work will investigate the similarity of high quality solutions of W-
TTP and W-TSP. Furthermore, evolving instances that show a significant per-
formance difference for optimised tours of W-TTP and W-TSP and their char-
acterization in terms of problem features would help to push forward the under-
standing of the these problems.
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