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Abstract. Design of experiments, random search, initialization of
population-based methods, or sampling inside an epoch of an evolution-
ary algorithm uses a sample drawn according to some probability distri-
bution for approximating the location of an optimum. Recent papers have
shown that the optimal search distribution, used for the sampling, might
be more peaked around the center of the distribution than the prior
distribution modelling our uncertainty about the location of the opti-
mum.We confirm this statement, provide explicit values for this reshap-
ing of the search distribution depending on the population size λ and
the dimension d, and validate our results experimentally.

1 Introduction

We consider the setting in which one aims to locate an optimal solution x∗ ∈ R
d

for a given black-box problem f : Rd → R through a parallel evaluation of λ
solution candidates. A simple, yet effective strategy for this one-shot optimiza-
tion setting is to choose the λ candidates from a normal distribution N (μ, σ2),
typically centered around an a priori estimate μ of the optimum and using
a variance σ2 that is calibrated according to the uncertainty with respect to
the optimum. Random independent sampling is – despite its simplicity – still
a very commonly used and performing good technique in one-shot optimiza-
tion settings. There also exist more sophisticated sampling strategies like Latin
Hypercube Sampling (LHS [19]), or quasi-random constructions such as Sobol,
Halton, Hammersley sequences [7,18] – see [2,6] for examples. However, no gen-
eral superiority of these strategies over random sampling can be observed when
the benchmark set is sufficiently diverse [4]. It is therefore not surprising that in
several one-shot settings – for example, the design of experiments [1,13,19,21]
or the initialization (and sometimes also further iterations) of evolution strate-
gies – the solution candidates are frequently sampled from random independent
distributions (though sometimes improved by mirrored sampling [27]). A sur-
prising finding was recently communicated in [6], where the authors consider
the setting in which the optimum x∗ is known to be distributed according to
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d λ σ∗ σ = 1

20
100 0.73 0.88
500 0.63 0.72
1000 0.59 0.66

50
100 0.89 1.23
500 0.83 1.10
1000 0.81 1.05

100
100 0.94 1.44
500 0.91 1.33
1000 0.90 1.29

150
100 0.96 1.53
500 0.94 1.44
1000 0.93 1.41

500
100 0.99 1.74
500 0.98 1.68
1000 0.98 1.66

Fig. 1. Average regret, normalized by d, on the sphere function for various dimensions
and budgets in terms of rescaled standard deviation. Each mean has been estimated
from 100, 000 samples. Table on the right: Average regret for σ∗ =

√
log(λ)/d and

σ = 1.

a standard normal distribution N (0, Id), and the goal is to minimize the dis-
tance of the best of the λ samples to this optimum. In the context of evolution
strategies, one would formulate this problem as minimizing the sphere function
with a normally distributed optimum. Intuitively, one might guess that sampling
the λ candidates from the same prior distribution, N (0, Id), should be optimal.
This intuition, however, was disproved in [6], where it is shown that – unless the
sample size λ grows exponentially fast in the dimension d – the median quality
of sampling from N (0, Id) is worse than that of sampling a single point, namely
the center point 0. A similar observation was previously made in [22], without
mathematically proven guarantees.

Our Theoretical Result. It was left open in [6] how to optimally scale the vari-
ance σ2 when sampling the λ solution candidates from a normal distribution
N (0, σ2Id). While the result from [6] suggests to use σ = 0, we show in this
work that a more effective strategy exists. More precisely, we show that set-
ting σ2 = min{1, Θ(log(λ)/d)} is asymptotically optimal, as long as λ is sub-
exponential, but growing in d. Our variance scaling factor reduces the median
approximation error by a 1− ε factor, with ε = Θ(log(λ)/d). We also prove that
no constant variance nor any other variance scaling as ω(log(λ)/d) can achieve
such an approximation error. Note that several optimization algorithms operate
with rescaled sampling. Our theoretical results therefore set the mathematical
foundation for empirical rules of thumb such as, for example, used in e.g. [6,8–
10,17,22,28].

Our Empirical Results. We complement our theoretical analyses by an empir-
ical investigation of the rescaled sampling strategy. Experiments on the sphere
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function confirm the results. We also show that our scaling factor for the vari-
ance yields excellent performance on two other benchmark problems, the Cigar
and the Rastrigin function. Finally, we demonstrate that these improvements
are not restricted to the one-shot setting by applying them to the initialization
of iterative optimization strategies. More precisely, we show a positive impact
on the initialization of Bayesian optimization algorithms [15] and on differential
evolution [25].

Related Work. While the most relevant works for our study have been mentioned
above, we briefly note that a similar surprising effect as observed here is the
“Stein phenomenon” [14,24]. Although an intuitive way to estimate the mean of
a standard gaussian distribution is to compute the empirical mean, Stein showed
that this strategy is sub-optimal w.r.t. mean squared error and that the empirical
mean needs to be rescaled by some factor to be optimal.

2 Problem Statement and Related Work

The context of our theoretical analysis is one-shot optimization. In one-shot
optimization, we are allowed to select λ points x1, . . . , xλ ∈ R

d. The quality f(xi)
of these points is evaluated, and we measure the performance of our samples in
terms of simple regret [5] mini=1,...,λ f(xi) − infx∈Rd f(x).1 That is, we aim to
minimize the distance – measured in quality space – of the best of our points to
the optimum. This formulation, however, also covers the case in which we aim
to minimize the distance to the optimum in the search space: we simply take as
f the root of the sphere function fx∗ : Rd → R, x �→ ‖x − x∗‖2, where here and
in the following ‖.‖ denotes the Euclidean norm.

Rescaled Random Sampling for Randomly Placed Optimum. In the setting stud-
ied in Sect. 3 we assume that the optimum x∗ is sampled from the standard
multivariate Gaussian distribution N (0, Id), and that we aim to minimize the
regret mini=1,...,λ‖xi − x∗‖2 through i.i.d. samples xi ∼ N (0, σ2Id). That is, in
contrast to the classical design of experiments (DoE) setting, we are only allowed
to choose the scaling factor σ, whereas in DoE more sophisticated (often quasi-
random and space-filling designs – which are typically not i.i.d. samples) are
admissible. Intuitively, one might be tempted to guess that σ = 1 should be a
good choice, as in this case the λ points are chosen from the same distribution as
the optimum x∗. This intuition, however, was refuted in [6, Theorem 1], where
is was shown that the middle point sampling strategy, which uses σ = 0 (i.e., all
λ points collapse to (0, . . . , 0)) yields smaller regret than sampling from N (0, Id)
unless λ grows exponentially in d. More precisely, it is shown in [6] that, for this
regime of λ and d, the median of ‖x∗‖2 is smaller than the median of ‖xi −x∗‖2
1 This requires knowledge of infx f(x), which may not be available in real-world appli-

cations. In this case, without loss of generality (this is just for the sake of plotting
regret values), the infimum can be replaced by an empirical minimum. In all appli-
cations considered in this work the value of infx f(x) is known.
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Fig. 2. Comparison of methods: without rescaling (σ = 1), middle point sampling

(σ = 0), and our rescaling method (σ =
√

log λ
d

). Each mean has been estimated from

105 samples. (On left) Average regret, normalized by d, on the sphere function for
diverse population sizes λ at fixed dimension d = 20. The gain of rescaling decreases as
λ increases. (On right) Distribution of the regret for the strategies on the 50d-sphere
function for λ = 1000.

for i.i.d. xi ∈ N (0, Id). This shows that sampling a single point can be better
than sampling λ points with the wrong scaling factor, unless the budget λ is
very large.

Our goal is to improve upon the middle point strategy, by deriving a scal-
ing factor σ such that the λ i.i.d. samples yield smaller regret with a decent
probability. More precisely, we aim at identifying σ such that

P

[
min

1≤i≤λ
‖xi − x∗‖2 ≤ (1 − ε)‖x∗‖2

]
≥ δ, (1)

for some δ ≥ 1/2 and ε > 0 as large as possible. Here, in line with [6], we have
switched to regret, for convenience of notation. [6] proposed, without proof, such
a scaling factor: our proposal is dramatically better in some regimes.

3 Theoretical Results

We derive sufficient and necessary conditions on the scaling factor σ such that
Eq. (1) can be satisfied. More precisely, we prove that Eq. (1) holds with approx-
imation gain ε ≈ log(λ)/d when the variance σ2 is chosen proportionally to
log λ/d (and λ does not grow too rapidly in d). We then show that Eq. (1) can-
not be satisfied for σ2 = ω(log(λ)/d). Moreover, we prove that ε = O(log(λ)/d),
which, together with the first result, shows that our scaling factor is asymptoti-
cally optimal. The precise statements are summarized in Theorems 1, 2, and 3,
respectively. Proof sketches are available in Sect. 3. Proofs are left in the full
version available on the ArXiv version [20].

Theorem 1 (Sufficient condition on rescaling). Let δ ∈ [12 , 1). Let λ = λd,
satisfying

λd → ∞ as d → ∞ and log(λd) ∈ o(d). (2)
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Then there exist two positive constants c1, c2, and d0, such that for all d ≥ d0
it holds that

P
[
mini=1,...,λ‖x∗ − xi‖2 ≤ (1 − ε) ‖x∗‖2] ≥ δ (3)

when x∗ is sampled from the standard Gaussian distribution N (0, Id), x1, . . . , xλ

are independently sampled from N (0, σ2Id) with σ2 = σ2
d = c2 log(λ)/d and

ε = εd = c1 log(λ)/d.

Fig. 3. Comparison of various one-shot optimization methods from the point of view
of the simple regret. Reading guide in Sect. 4.2. Results are averaged over objective
functions Cigar, Rastrigin, Sphere in dimension 20, 200, 2000, and budget 30, 100,
3000, 10000, 30000, 100000. MetaTuneRecentering performs best overall. Only the 30
best performing methods are displayed as columns, and the 6 best as rows. Red means
superior performance of row vs col. Rows and cols ranked by performance. (Color figure
online)

Theorem 1 shows that i.i.d. Gaussian sampling can outperform the middle point
strategy derived in [6] (i.e., the strategy using σ2 = 0) if the scaling factor
σ is chosen appropriately. Our next theorem summarizes our findings for the
conditions that are necessary for the scaling factor σ2 to outperform this middle
point strategy. This result, in particular, illustrates why neither the natural
choice σ = 1, nor any other constant scaling factor can be optimal.

Theorem 2 (Necessary condition on rescaling). Consider λ = λd satisfying
assumptions (2). There exists an absolute constant C > 0 such that for all
δ ∈ [12 , 1), there exists d0 > 0 such that, for all d > d0 and for all σ the property

∃ε > 0,P
[
mini=1,...,λ‖x∗ − xi‖2 ≤ (1 − ε) ‖x∗‖2] ≥ δ (4)

for x∗ ∼ N (0, Id) and x1, . . . , xλ independently sampled from N (0, σ2Id), implies
that σ2 ≤ C log(λ)/d.
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While Theorem 2 induces a necessary condition on the scaling factor σ to improve
over the middle point strategy, it does not bound the gain that one can achieve
through a proper scaling. Our next theorem shows that the factor derived in
Theorem 1 is asymptotically optimal.

Theorem 3 (Upper bound for the approximation factor). Consider λ = λd sat-
isfying assumptions (2). There exists an absolute constant C ′ > 0 such that for
all δ ∈ [ 12 , 1), there exists d0 > 0 such that, for all d > d0 and for all ε, σ > 0,
it holds that if P

[
mini=1,...,λ‖x∗ − xi‖2 ≤ (1 − ε) ‖x∗‖2] ≥ δ for x∗ ∼ N (0, Id)

and x1, . . . , xλ independently sampled from N (0, σ2Id), then ε ≤ C ′ log(λ)/d.

Proof Sketches. We first notice that as x∗ is sampled from a standard normal
distribution N (0, Id), its norm satisfies ‖x∗‖2 = d+o(d) as d → ∞. We then use
that, conditionally to x∗, it holds that

P
[
mini∈[λ]‖x∗ − xi‖2 ≤ (1 − ε) ‖x∗‖2∣∣x∗] = 1 − (

1 − P
[‖x − x∗‖2 ≤ (1 − ε) ‖x∗‖2∣∣x∗])λ

We therefore investigate when the condition

P
[‖x − x∗‖2 ≤ (1 − ε) ‖x∗‖2∣∣x∗] > 1 − (1 − δ)

1
λ (5)

is satisfied. To this end, we make use of the fact that the squared distance ‖x∗‖2
of x∗ to the middle point 0 follows the central χ2(d) distribution, whereas, for a
given point x∗ ∈ R

d, the distribution of the squared distance ‖x − x∗‖2/σ2 for
x ∼ N (0, σ2Id) follows the non-central χ2(d, μ) distribution with non-centrality
parameter μ := ‖x∗‖2/σ2. Using the concentration inequalities provided in [29,
Theorem 7] for non-central χ2 distributions, we then derive sufficient and neces-
sary conditions for condition (5) to hold. With this, and using assumptions (2),
we are able to derive the results from Theorems 1, 2, and 3.

4 Experimental Performance Comparisons

The theoretical results presented above are in asymptotic terms, and do not
specify the constants. We therefore complement our mathematical investigation
with an empirical analysis of the rescaling factor. Whereas results for the set-
ting studied in Sect. 3 are presented in Sect. 4.1, we show in Sect. 4.2 that the
advantage of our rescaling factor is not limited to minimizing the distance in
search space. More precisely, we show that the rescaled sampling achieves good
results also in a classical DoE task, in which we aim for minimizing the regret
for the Cigar and for the Rastrigin functions. Finally, we investigate in Sect. 4.3
the impact of initializing two common optimization heuristics, Bayesian Opti-
mization (BO) and differential evolution (DE), by a population sampled from
the Gaussian distribution N (0, σ2Id) using our rescaling factor σ =

√
log(λ)/d.
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4.1 Validation of Our Theoretical Results on the Sphere Function

Figure 1 displays the normalized average regret 1
dE

[
mini=1,...,λ‖x∗ − xi‖2

]
in

terms of σ/
√

log(λ)/d for different dimensions and budgets. We observe that
the best parametrization of σ is around

√
log(λ)/d in all displayed cases. More-

over, we also see that – as expected – the gain of the rescaled sampling over the
middle point sampling (σ = 0) goes to 0 as d → ∞ (i.e. we get a result closer to
the case σ = 0 as dimension goes to infinity). We also see that, for the regimes
plotted in Fig. 1, the advantage of the rescaled variance grows with the budget λ.
Figure 2 (on left) displays the average regret (average over multiple samplings
and multiple positions of the optimum) as a function of increasing values of λ
for the different rescaling methods (σ ∈ {0,

√
log λ/d, 1}). We remark, unsur-

prisingly, that the gain of rescaling is diminishing as λ → ∞. Finally, Fig. 2 (on
right) shows the distribution of regrets for the different rescaling methods. The
improvement of the expected regret is not at the expense of a higher dispersion
of the regret.

Sphere function Cigar function Rastrigin function

Fig. 4. Same experiment as Fig. 3, but separately over each objective function. Results
are still averaged over 6 distinct budgets (30, 100, 3000, 10000, 30000, 100000) and 3
distinct dimensionalities (20, 200, 2000). MetaTuneRecentering performs well in each
case, and is not limited to the sphere function for which it was derived. Variants of LHS
are sometimes excellent and sometimes not visible at all (only the 30 best performing
methods are shown).

4.2 Comparison with the DoEs Available in Nevergrad

Motivated by the significant improvements presented above, we now investigate
whether the advantage of our rescaling factor translates to other optimization
tasks. To this end, we first analyze a DoE setting, in which an underlying (and
typically not explicitly given) function f is to be minimized through a parallel
evaluation of λ solution candidates x1, . . . , xλ, and regret is measured in terms
of mini f(xi) − infx f(x). In the broader machine learning literature, and in
particular in the context of hyper-parameter optimization, this setting is often
referred to as one-shot optimization [2,6].
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Budget λ tegduB03= λ = 100

Budget λ tegduB0003= λ = 10000

Budget λ tegduB00003= λ = 100000

Fig. 5. Methods ranked by performance on the sphere function, per budget. Results
averaged over dimension 20, 200, 2000. MetaTuneRecentering performs among the best
in all cases. LHS is excellent on this very simple setting, namely the sphere function.

Dimension 20 Dimension 200 Dimension 2000

Fig. 6. Results on the sphere function, per dimensionality. Results are averaged over 6
values of the budget: 30, 100, 3000, 10000, 30000, 100000. Our method becomes better
and better as the dimension increases.

Experimental Setup. All our experiments are implemented and freely available in
the Nevergrad platform [23]. Results are presented as shown in Fig. 3. Typically,
the six best methods are displayed as rows. The 30 best performing methods
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are presented as columns. The order for rows and for columns is the same:
algorithms are ranked by their average winning frequency, measured against
all other algorithms in the portfolio. The heatmaps show the fraction of runs
in which algorithm x (row) outperformed algorithm y (column), averaged over
all settings and all replicas (i.e. random repetitions). The settings are typically
sweepings over various budgets, dimensions, and objective functions.2 For each
tested (algorithm, problem) pair, 20 independent runs are performed: a case with
N settings is thus based on a total number of 20 × N runs. The number N of
distinct problems is at least 6 and often high in the dozens, hence the minimum
number of independent runs is at least 120.

Algorithm Portfolio. Several rescaling methods are already available on Never-
grad. A large fraction of these have been implemented by the authors of [6]; in
particular:

• The replacement of one sample by the center. These methods are named
“midpointX” or “XPlusMiddlePoint”, where X is the original method that
has been modified that way.

• The rescaling factor MetaRecentering derived in [6]: σ = 1+log(λ)
4 log(d) .

• The quasi-opposite methods suggested in [22], with prefix “QO”: when x is
sampled, then another sample c − rx is added, with r uniformly drawn in
[0, 1] and c the center of the distribution.

We also include in our comparison a different type of one-shot optimization
techniques, independent of the present work, currently available in the platform:
they use the information obtained from the sampled points to recommend a
point x that is not necessarily one of the λ evaluated ones. These “one-shot+1”
strategies have the prefix “Avg”. We keep all these and all other sampling
strategies available in Nevergrad for our experiments. We add to this existing
Nevergrad portfolio our own rescaling strategy, which uses the scaling factor
derived in Sect. 3; i.e., σ =

√
log(λ)/d. We refer to this sampling strategy as

MetaTuneRecentering, defined below. Both scaling factors MetaRecentering [6]
and MetaTuneRecentering (our equations) are applied to quasirandom sampling
(more precisely, scrambled Hammersley [1,13]) rather than random sampling. We
provide detailed specifications of these methods and the most important ones
below, whereas we skip the dozens of other methods: they are open sourced in
Nevergrad [23].

From [0, 1]d to Gaussian Quasi-random, Random or LHS Sampling: Random
sampling, quasi-random sampling, Latin Hypercube Sampling (or others) have
a well known definition in [0, 1]d (for quasi-random, see Halton [12] or Ham-
mersley [13], possibly boosted by scrambling [1]; for LHS, see [19]). To extend
to multidimensional Gaussian sampling, we use that if U is a uniform random
variable on [0, 1] and Φ the standard Gaussian CDF, then Φ−1(U) simulates
2 Detailed results for individual settings are available at http://dl.fbaipublicfiles.com/

nevergrad/allxps/list.html.

http://dl.fbaipublicfiles.com/nevergrad/allxps/list.html
http://dl.fbaipublicfiles.com/nevergrad/allxps/list.html


Variance Reduction for Better Sampling in Continuous Domains 163

a N (0, 1) distribution. We do so on each dimension: this provides a Gaussian
quasi-random, random or LHS sampling.

Then, one can rescale the Gaussian quasi-random sampling with the
corresponding factor σ for MetaRecentering (σ = 1+log(λ)

4 log(d) [6]) and

MetaTuneRecentering (σ =
√

log(λ)/d): for i ≤ λ and j ≤ d, xi,j = σφ−1(hi,j)
where hi,j is the jth coordinate of a ith Scrambled-Hammersley point.

Results for the Full DoE Testbed in Nevergrad. Figure 3 displays aggre-
gated results for the Sphere, the Cigar, and the Rastrigin functions, for
three different dimensions and six different budgets. We observe that our
MetaTuneRecentering strategy performs best, with a winning frequency of 80%.
It positively compares against all other strategies from the portfolio, with the
notable exception of AvgLHS, which, in fact, compares favorably against every
single other strategy, but with a lower average winning frequency of 73.6%. Note
here that AvgLHS is one of the “oneshot+1” strategies, i.e., it has not only one
more sample, but it is also allowed to sample its recommendation adaptively, in
contrast to our fully parallel MetaTuneRecentering strategy. It performs poorly
in some cases (Rastrigin) and does not make sense as an initialization (Sect. 4.3).

002noisnemiD02noisnemiD

00002noisnemiD0002noisnemiD

Fig. 7. Same context as Fig. 6, with x-axis = budget and y-axis = average simple
regret. We see the failure of MetaRecentering in the worsening performance as budget
goes to infinity: the budget has an impact on σ which becomes worse, hence worse
overall performance. We note that quasi-opposite sampling can perform decently in a
wide range of values. Opposite Sampling is not much better than random search in
high-dimension. Our MetaTuneRecentering shows decent performance: in particular,
simple regret decreases as λ → ∞.
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Selected DoE Tasks. Figure 4 breaks down the aggregated results from Fig. 3 to
the three different functions. We see that MetaTuneRecentering scores second on
sphere (where AvgLHS is winning), third on Cigar (after AvgLHS and QORandom),
and first on Rastrigin. This fine performance is remarkable, given that the port-
folio contains quite sophisticated and highly tuned methods. In addition, the
AvgLHS methods, sometimes performing better on the sphere, besides using more
capabilities than we do (as it is a “oneshot+1” method), had poor results for
Rastrigin (not even in the 30 best methods). On sphere, the difference to the
third and following strategies is significant (87.3% winning rate against 77.5%
for the next runner-up). On Cigar, the differences between the first four strate-
gies are greater than 4% points each, whereas on Rastrigin the average winning
frequencies of the first five strategies is comparable, but significantly larger than
that of the sixth one (which scores 78.8% against >94.2% for the first five DoEs).
Figure 5 zooms into the results for the sphere function, and breaks them further
down by available budget λ (note that the results are still averaged over the
three tested dimensions). MetaTuneRecentering scores second in all six cases.
A breakdown of the results for sphere by dimension (and aggregated over the six
available budgets) is provided in Fig. 6 and Fig. 7. For dimension 20, we see that
MetaTuneRecentering ranks third, but, interestingly, the two first methods are
“oneshot+1” style (Avg prefix). In dimension 200, MetaTuneRecentering ranks
second, with considerable advantage over the third-ranked strategy (88.0% vs.
80.8%). Finally, for the largest tested dimension, d = 2000, our method ranks
first, with an average winning frequency of 90.5%.

Fig. 8. Performance comparison of different strategies to initialize Bayesian Opti-
mization (BO, left) and Differential Evolution (DE, right). A detailed description is
given in Sect. 4.3. MetaTuneRecentering performs best as an initialization method.
In the case of DE, methods different from the traditional DE remain the best on this
testcase: when we compare DE with a given initialization and DE initialized with
MetaTuneRecentering, MetaTuneRecentering performs best in almost all cases.

4.3 Application to Iterative Optimization Heuristics

We now move from the one-shot settings considered thus far to iterative opti-
mization, and show that our scaling factor can also be beneficial in this context.
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More precisely, we analyze the impact of initializing efficient global optimization
(EGO [15], a special case of Bayesian optimization) and differential evolution
(DE [25]) by a population that is sampled from a distribution that uses our
variance scaling scheme. It is well known that a proper initialization can be
very critical for the performance of these solvers; see [3,11,16,22,26] for discus-
sions. Figure 8 summarizes the results of our experiments. As in the previous
setups, we compare against existing methods from the Nevergrad platform, to
which we have just added our rescaling factor termed MetaTuneRecentering.
For each initialization scheme, four different initial population sizes are consid-
ered: denoting by d the dimension, by w the parallelism (i.e., the number of
workers), and by b the total budget that the algorithms can spend on optimiz-
ing the given optimization task, the initial population λ is set as λ =

√
b for

Sqrt, as λ = d for Dim, λ = w for no suffix, and as λ = 30 when the suffix
is 30. As in Sect. 4.2 we superpose our scaling scheme on top of the quasi-
random Scrambled Hammersley sequence suggested in [6], but we also consider
random initialization rather than quasi-random (indicated by the suffix “R”)
and Latin Hypercube Sampling [19] (suffix “LHS”). The left chart in Fig. 8 is for
the Bayesian optimization case. It aggregates results for 48 settings, which stem
from Nevergrad’s “parahdbo4d” suite. It comprises the four benchmark prob-
lems Sphere, Cigar, Ellipsoid and Hm. Results are averaged over the total bud-
gets b ∈ {25, 31, 37, 43, 50, 60}, dimension d ∈ {20, 2000}, and parallelism w =
max(d, 
b/6�). We observe that a BO version using our MetaTuneRecentering
performs best, and that several other variants using this scaling appear among
the top-performing configurations. The chart on the right of Fig. 8 summarizes
results for Differential Evolution. Since DE can handle larger budgets, we con-
sider here a total number of 100 settings, which correspond to the testcase
named “paraalldes” in Nevergrad. In this suite, results are averaged over bud-
gets b ∈ {10, 100, 1000, 10000, 100000}, dimensions d ∈ {5, 20, 100, 500, 2500},
parallelism w = max(d, 
b/6�), and again the objective functions Sphere, Cigar,
Ellipsoid, and Hm. Specialized versions of DE perform best for this testcase, but
we see that DE initialized with our MetaTuneRecentering strategy ranks fifth
(outperformed only by ad hoc variants of DE), with an overall winning frequency
that is not much smaller than that of the top-ranked NoisyDE strategy (76.3% for
ChainDEwithMetaTuneRecentering vs. 81.7% for NoisyDE) - and almost always
outperforms the rescaling used in the original Nevergrad.

5 Conclusions and Future Work

We have investigated the scaling of the variance of random sampling in order to
minimize the expected regret. While previous work [6] had already shown that,
in the context of the sphere function, the optimal scaling factor is not identical
to that of the prior distribution from which the optimum is sampled (unless
the sample size is exponentially large in the dimension), it did not answer the
question how to scale the variance optimally. We have proven that a standard
deviation scaled as σ =

√
log(λ)/d gives, with probability at least 1/2, a sample
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that is significantly closer to the optimum than the previous known strategies. We
have also proven that the gain achieved by our scaling strategy is asymptotically
optimal and that any decent scaling factor is asymptotically at most as large as
our suggestion.

The empirical assessment of our rescaled sampling strategy confirmed decent
performance not only on the sphere function, but also on other classical bench-
mark problems. We have furthermore given indications that the sampling might
help improve state-of-the-art numerical heuristics based on differential evolu-
tion or using Bayesian surrogate models. Our proposed one-shot method per-
forms best in many cases, sometimes outperformed by e.g. AvgLHS, but is stable
on a wide range of problems and meaningful also as an initialization method
(as opposed to AvgLHS). Whereas our theoretical results can be extended to
quadratic forms (by conservation of barycenters through linear transformations),
an extension to wider families of functions (e.g., families of functions with order
2 Taylor expansion) is not straightforward. Apart from extending our results to
broader function classes, another direction for future work comprises extensions
to the multi-epoch case. Our empirical results on DE and BO gives a first indica-
tion that a properly scaled variance can also be beneficial in iterative sampling.
Note, however, that in the latter case, we only adjusted the initialization, not
the later sampling steps. This forms another promising direction for future work.

Acknowledgements. This work was initiated at Dagstuhl seminar 19431 on Theory
of Randomized Optimization Heuristics.
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