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Preface

This volume contains the Proceedings of the 6th International Workshop on
Compound-Nuclear Reactions and Related Topics (CNR*18), held at the Lawrence
Berkeley National Laboratory, in Berkeley, California, on September 24–28, 2018.

The CNR* series began in 2007 with a meeting near Yosemite National Park.
It has since been held in Bordeaux (2009), Prague (2011), Sao Paulo (2013), and
Tokyo (2015). The workshop series focuses on improving our understanding of
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vi Preface

reactions that involve compound nuclei. Even though the concept of the compound
nucleus dates back to the 1930s, interest in compound-nuclear reactions, which
exhibit a rich set of phenomena, remains strong. Statistical, semi-classical, and
quantum mechanical approaches are employed to describe the static properties of
the many-body systems and the dynamics of their collisions and decays. Traditional
stable-beam and state-of-the-art radioactive-beam experiments, innovative indirect
methods, and decay experiments are utilized to shed light on the reaction dynamics
and relevant structural properties. Compound-nuclear reactions play a crucial role
for applications in various areas, such as nuclear astrophysics, medicine, nuclear
energy, and national security. An overarching goal of the series is to establish a
comprehensive, quantitative picture of the processes involved in the formation and
decay of a compound nucleus, informed and tested by appropriate experiments, and
to formulate accurate predictions for the associated cross sections.

The CNR*18 workshop brought together experts in nuclear theory, experi-
ment, and data evaluation. A broad range of topics was discussed: A number
of presentations were dedicated to nuclear structure properties needed for the
description of compound-nuclear reactions, such as level densities and gamma-
ray strength functions. Other presentations addressed the reaction mechanisms
associated with the formation and decay of compound nuclei, including pre-
equilibrium processes, fluctuation effects, and possible deviations from standard
statistical descriptions. Widely used codes for the description of compound-nuclear
reactions were compared. Current efforts in improving optical models, R-matrix
descriptions, and ab initio reaction theory were presented. Recent progress in
developing indirect approaches for determining compound-nuclear cross sections,
including the surrogate reactions method and the Oslo method, was reviewed.
Theoretical approaches to fission, as well as experimental fission studies, were
covered. Several presentations focused on nuclear astrophysics and on isotope
production for medical applications. Overviews of existing and planned facilities
for experimental studies of compound-nuclear reactions were presented. These
Proceedings, edited by the CNR*18 organizing committee, contain summaries of
the individual contributions presented at the workshop.

CNR*18 was organized by Jutta Escher and Walid Younes (Lawrence Livermore
National Laboratory, LLNL), Yoram Alhassid (Yale University), Lee A. Bernstein
(Lawrence Berkeley National Laboratory, LBNL), David Brown (Brookhaven
National Laboratory, BNL), Carla Fröhlich (North Carolina State University), and
Patrick Talou (Los Alamos National Laboratory, LANL). We thank Tom Gallant
(LBNL) for his dedication and outstanding administrative assistance before, during,
and after the workshop. We acknowledge support for the organization of the
workshop and the publication of these Proceedings, provided by LLNL, LANL,
BNL, LBNL, and the Nuclear Science and Security Consortium (NSSC). We
would like to express our appreciation to the members of the international advisory
committee for valuable suggestions regarding the program and to the session chairs
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and panel members for providing a framework for inspiring discussions. We thank
the participants for their positive response to the workshop, their extensive work and
excellent presentations during the meeting, and their contributions to this volume.
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Part I
Modeling Compound-Nuclear Reactions



Towards More Predictive Nuclear
Reaction Modelling

S. Hilaire and S. Goriely

1 Introduction

Nuclear reaction models, beyond the fundamental quest for understanding processes
taking place when a nuclear reaction occurs, are necessary to produce nuclear
data for various applications. Depending on the targeted goal, the accuracy of the
predictions as well as the type of data predicted might be very different. For nuclear
reactors, for instance, the accuracy is clearly a key issue for specific nuclei and
specific types of data. At the other extreme, one finds nuclear astrophysics for which
the accuracy is less crucial than the ability of the model to produce data for all
possible interacting systems. Even for the most important nuclei, for which many
measurements have been performed, the need for better nuclear reaction models
is still relevant since one still have to deal with processes for which data are not
available or not precise enough. Within this context, nuclear reaction models have
to be as robust and predictive as possible. This is why during the last 40 years at
least, many nuclear reaction codes have been developed and used to answer the
question: “what happens when a projectile hits a target nucleus?”

It is clear that the answer to this question depends on the nature of the projectile,
on the target and on the projectile energy. In what follows, we restrict ourselves to
the case where light projectiles (gamma, neutron, protons . . . up to 4He) interact
with a target nucleus heavy enough (typically with a mass A > 10) with an incident
energy between 1 keV and 200 MeV, a framework enabling the implementations
of the so-called statistical models. Within this framework, several models come
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4 S. Hilaire and S. Goriely

into play. We will first describe in Sect. 2, general features observed when a
nuclear reaction occurs at energies below 200 MeV, features that have motivated
the introduction of several models that will be discussed in Sect. 3. In Sect. 4, we
will discuss current developments on specific ingredients required by the reaction
models as those related to fission, for instance. Finally, Sect. 5 will draw conclusions
and prospects.

2 General Features About Nuclear Reactions

For incident projectiles with energy between a few keV and 200 MeV impinging
on a target nucleus, the typical outgoing particle spectrum displays three main
domains as illustrated in Fig. 1. Two extreme regimes can be distinguished. For high
outgoing energies, and forward angles, discrete peaks are observed and dominate
the outgoing spectrum. Such processes correspond to fast interactions, also called
“direct interactions”, which take place in a timescale comparable to the time the
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Fig. 1 Outgoing proton spectrum for a 62 MeV incident proton on a 56Fe target. Colours are used
to distinguish the three regions corresponding to the direct reactions described by the optical model
(blue), the pre-equilibrium model (green) and the compound nucleus model (red)
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projectile takes to cross the nucleus. For low outgoing energies, a typical evaporation
spectrum is observed. In this case, it is usually assumed that the projectile has been
absorbed in the target with which it has shared all its energy to form a compound
system. This process, described by the so-called compound nucleus (CN) model,
assumes to the first order of approximation, that the formation and decay of the CN
are independent processes. This assumption explains that the emission spectrum
looks very similar whatever the angle of emission is: the compound nucleus has lost
memory of the way it has been created! This feature is characterized by angular
distribution of emitted particle symmetric around 90◦. Between these two extreme
situations, one finds, if the projectile energy is high enough, an intermediate process
whose frontiers are less well defined: the so-called pre-equilibrium process. This
last process has been historically less studied than the two others (mainly because
contrary to the two previous ones, it can be neglected for low incident energies) and,
therefore, the formalism which is employed to describe it is still subject to important
debates and still offers room for significant improvements. To these three types of
processes, correspond in practice three types of models which are linked together,
as illustrated in Fig. 2, in order to produce many different types of nuclear data: the
“optical model (OM)”, the “pre-equilibrium model (PE)” and the “CN model”. All
these models need to be implemented in a nuclear reaction code aiming at producing
useful information. As can be observed, the optical and pre-equilibrium models both
yield an output (elastic, fission or inelastic data) and also provide the CN model with
an input data (σReaction, Tlj or σNC).

Fig. 2 Sequence of nuclear models required to describe a nuclear reaction



6 S. Hilaire and S. Goriely

3 Nuclear Models for Nuclear Reactions

The three nuclear reaction models whose qualitative features have been discussed
above rely on various input data. The latter can either be directly measured or have
to be deduced from other models. Two types of approaches can be distinguished.
The first one, traditionally employed, is generally based on empirical expressions
which can be easily fine-tuned to reproduce data. The more recently developed ones
have benefited from the increase in computing power which enables today to provide
microscopic models able to compete with the traditional approaches.

3.1 Basic Nuclear Structure Information

The most fundamental data required for a nuclear reaction is the mass of the
various nuclei that can appear during a decay process. This knowledge is necessary
to determine reaction thresholds and to compute the kinematic relations enabling
laboratory to centre of mass frame transformations. Other quantities such as
nucleus levels’ excitation energies, spins and parities are also welcome and govern
features such as angular distribution or decay selection rules. Another feature also
interesting though not mandatory is the deformed or spherical nature of the target.
This information is particularly useful to adopt the proper treatment of the OM.
Experimental nuclear masses are available today for nearly 2500 nuclei [1]. This
set constitutes the reference data that nuclear mass models try to reproduce at best.
Many different mass models have been developed during the last decades and the
most advanced ones are able today to reach a root mean square (rms) deviation
from experiment close to 500 keV [2], a remarkable level of accuracy with respect
to the mass of a nucleus of the order of a GeV. Generally speaking, the more the
nuclear mass models are based on first principle physics, the higher the predictive
power should be. This has been recently demonstrated by analysing the predictive
power of various mass models adjusted on the 2003 atomic mass evaluation [3]
with respect to the update of 2012 [4] and 2016 [1]. One of the big advantages of
the microscopic models is that on top of the nuclear masses, they can also provide
spectroscopic data, as well as all detailed input which can be used in other models,
thus improving the coherence in an attempt to predict microscopically a nuclear
reaction.

3.2 The Optical Model

The OM is very important since it determines the reaction cross section that the PE
and CN models are then going to spread in the different outgoing open channels. It
also provides the direct elastic, total and inelastic cross sections as well as various
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angular distributions. Historically, the OM has been first determined postulating
functional forms whose parameters have to be adjusted until a good agreement with
data is obtained. This type of approach is still currently used [5] in particular because
of its ability to allow very accurate description of experimental data (less than 1%
accuracy on total cross sections). However, it depends very much on experimental
data availability. An alternative to the pure phenomenological approach is the
microscopic approach. Such approaches enable to determine the OM without any a
priori knowledge of any related experimental data. Therefore, it enables predictions
even for nuclei far from the valley of stability. The disadvantage of such microscopic
approaches is of course a lower accuracy. One of the most employed one is the so-
called JLM approach [6] which is based on nuclear matter data obtained from mean
field or beyond mean field nuclear structure descriptions. Such structure methods
generally provide a nuclear structure description which is hoped to be precise
enough to guaranty that predictions far from the valley of stability should not be
too far from the reality.

The choice between phenomenology and microscopy is guided by the goal one
has in mind. Within the framework of nuclear data evaluation where accuracy is one
of the key issues, availability of experimental data will make it preferable to use
the first option because of its fitting power. For more fundamental research or when
there is a lack of data, the microscopic option is preferred.

3.3 The Pre-equilibrium Model

Once the OM has treated the various direct processes, the remaining cross section,
corresponding to all processes which have not been explicitly accounted for, is
“feeding” the second model of Fig. 2, the PE model. This reaction cross section
reflects the probability that the projectile be captured in the continuum of the
target to form a “composite” system. At this stage, the system still remembers the
way it was formed and is going to de-excite either by re-emitting a particle or
by distributing step by step the incident projectile energy between one or several
nucleons of the target. In the latter case, several particles and holes are going
to be created sequentially, holding on towards more complex configurations, to
reach, after sufficient time, a situation corresponding to the CN approximation,
where the projectile energy has been shared among all the constituents of the
composite system. At each step of this process, the probability to emit a particle
has to be accounted for. Again, one has the choice between more or less refined
models. The most employed one is the so-called exciton model, introduced in
the seventies, which has been successively improved to account for more and
more physical features either because the appearance of new experimental data
evidenced a lack of predictive power or simply because initially missing, though
important, features were introduced [7]. Quantum mechanical approaches have also
been developed but they are clearly more complex and less flexible and do not
provide results of better quality as those obtained with the exciton model. However,
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recent experimental measurements seem to show that such quantum mechanical
approaches are unavoidable if one aim at improving the predictive power [8].

3.4 The Compound Nucleus Model

Beyond the fact that optical and pre-equilibrium models contribute to the emission
of particles, they are also those which determine the initial conditions of the last
model of the chain of Fig. 2: the CN model. Starting from such initial conditions,
the CN model then uses the statistical hypothesis stating that the decay in a given
outgoing channel depends on the ratio of the probability to decay in this specific
channel with respect to all possible decay probabilities. This approximation, which
consists in considering that the decay of the CN does not keep track of the CN
formation (the Bohr hypothesis), is formally translated into the so-called Hauser–
Feshbach equation,

σab =
∑

J,π

σNCa (E∗, J, π) 〈�b (E∗, J, π)〉∑
c

〈�c (E∗, J, π)〉

In this equation, σ ab, corresponding to the cross section for the decay in
channel b (particle type, energy, outgoing angular momentum) from the compound
nucleus formed in the entrance channel a, is given by the product of the CN
formation cross section σ a

NC at a given energy, spin and parity (E*, J, π ) by the
probability to decay in channel b given all open channels c. The question, therefore,
consists in estimating all possible average decay widths �c. The Hauser–Feshbach
approximation enables to write, to the first-order approximation, that

〈�b (E∗, J, π)〉∑
c

〈�c (E∗, J, π)〉 =
〈
T Jπb (E∗)〉

∑
c

〈
T Jπc (E∗)〉 ,

where the transmission coefficients <Tc>, which will be further discussed in Sect. 4,
correspond to the decay probability in outgoing channel c (note that this expression
becomes much more complicated when spin and parity conservation rules are
explicitly written). Soon, it was realized that this first-order approximation had
to be corrected at low energy, or, more precisely when the number of competing
channel is relatively low. In such situations, indeed, interferences, either constructive
or destructive, occur between entrance and exit channels. These interferences are
accounted for introducing a width fluctuation correction factor, which, generally
enhances the elastic channel and accordingly decreases the other competing chan-
nels [9], but can also, in very particular situation, enhance the first inelastic channel
[10].
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4 Nuclear Reaction Model Ingredients

The models described in the previous section require specific ingredients depending
on the outgoing channel under consideration. To be more precise, the OM only
provides transmission coefficient for outgoing particle decay to a well-defined level
of the residual nucleus. However, it does not enable to deal with the particle decay in
the residual nucleus levels’ continuum, with photon emission, and does not provide
either any fission decay probability. These three situations require supplementary
particular approximations that we now discuss.

4.1 Particle Decay in the Continuum

When the projectile energy is large enough, the compound nucleus can decay by
emitting a particle in the residual levels’ continuum. This continuum has to be
accounted for because it is well known that beyond a given excitation energy it
is impossible to describe nuclear excited levels individually. In such cases, a nuclear
level density (NLD) has to be introduced and the transmission coefficients entering
the Hauser–Feshbach expression are given by the integral

〈
T Jπc (Ec)

〉
=
Ec+�∫

Ec−�
ρ (ε) T Jπc (Ec) dε

in which Ec is the excitation energy of the residual nucleus once a particle has
been emitted in a channel c, ρ(ε) the residual nucleus level density in which
we have omitted, for simplicity, the spin and parity labels which are implicitly
included in the definition of the channel c and � is the width of the excitation
energy bin into which the emission occurs. An extensive literature exists on nuclear
level densities, where both analytical and microscopic approaches are considered.
Analytical approaches, because of the free parameters they contain allow one to fit
both low energy levels and experimental s-wave mean spacings rather well [11].
Concerning the microscopic alternatives, one has to find a compromise between
accuracy and completeness. The most advanced approaches [12] are usually limited
to local mass regions, and, so far only few approaches have been used to provide
complete sets of data for all nuclei [13, 14]. The main advantage of the microscopic
approaches is that they usually go beyond the assumed statistical hypothesis used in
analytical expressions, a feature that can have a significant impact when comparing
theoretical and experimental cross sections [15].

As illustrated in Fig. 3, for instance, the combinatorial level density approach
predicts much more high spin levels than the statistical approach (right panel), and
such differences strongly modify the isomer production by photo-neutron reaction
on 181Ta (left panel).
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Fig. 3 (Left) 181Ta(γ,n) and 181Tam(γ,n) cross sections. (Right) Level density ratio for specific
spins. In the left panel, the use of the combinatorial level density predictions (full line) improves
the description of the isomer production with respect to the results obtained using the statistical
(dotted line). See Ref. [15] for more details

4.2 Photon Emission

Whatever the projectile energy, γ emission is always an open decay channel for
which the residual nucleus turns out to be the compound system with a lower
excitation energy, the difference being the energy of the emitted photon. To
determine a γ transmission coefficient, one assumes that photo-absorption and
photoemission cross sections associated with a given decay type X (X = E or M
for electric or magnetic transition) and a given multipolarity are related one with the
other, thanks to the same so-called photon strength function (PSF). Experimentally,
the PSF follows a Lorentzian shape, whose parameterization can be more or less
complicated [16]. A specific feature of the capture process is due to the fact that
the γ decay occurs from the continuum of the CN to a very large number of
levels, therefore requiring, the use of a NLD to be modelled, and, on top of that,
the PSF concerns low-energy photons in the tail of the Lorentzian which cannot
be constrained by photo data. One has then two sources of uncertainty which
are combined to produce a total γ-ray transmission coefficient. For this reason,
the theoretical γ-ray width is often quite different from the measured one, and
a renormalization factor is introduced in the PSF to improve the agreement with
either the measured γ-ray width or the experimental capture cross section data.
Microscopic alternatives have been developed [17, 18] and have shown significant
deviations from the Lorentzian shape as far as the PSF is concerned, in particular
for nuclei far from the valley of stability [17]. Quite recently, attempts to solve the
normalization problem have also been undertaken [19, 20]. The current situation
reached within the Gogny-QRPA framework is illustrated in Fig. 4. As can be
observed, the agreement with experimental radiative widths is much better with the
microscopic approach provided a phenomenological correction is used to describe
the de-excitation PSF at low γ-emission energies [20]. It is worth adding that on
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Fig. 4 Average radiative widths as function of the mass number. Comparison between theoretical
predictions and experiment. The (a) and (b) panels correspond to the traditional analytical
expression SLO and GLO [16], while panels (c) and (d) display the HFB-Gogny QRPA predictions
with two options for the low energy M1 phenomenological correction [20]

top of its ability to reproduce experimental radiative width, the HFB-Gogny QRPA
model has also been tested successfully with respect to other experimental data [21,
22].

4.3 Fission

Despite its fundamental role in nuclear applications as a source of energy, as well
as the fact that it has been discovered many decades ago and intensively studied
since, fission remains probably the least well-understood process in nuclear reaction
modelling. Qualitatively speaking, fission is modelled by a gradual transition of the
nucleus from an initial compact shape to such an elongated shape that the nucleus
breaks into fragments. This evolution is governed by a potential energy landscape
corresponding to nuclear shapes more or less probable depending on the excitation
energy required to reach them. This landscape exhibits features such as valleys and
peaks which help in understanding the major characteristics of the fission process,
and, in particular the fission fragments distributions observed experimentally. For
cross section calculation, one reduces the multidimensional landscape to an effective
one-dimensional (1D) approach. This 1D landscape suggests the concept of fission
barriers through which quantum tunnelling probabilities are computed to determine
fission transmission coefficients.
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Given an initial compound nucleus state, fission occurs by tunnelling through all
accessible fission barriers. Therefore, for a single barrier, the fission transmission
coefficient is given by

Tf (E, J, π) =
∑

d(J,π)

Thw (E − εd)+
E+Bn∫

Ec

ρ (ε, J, π) Thw (E − ε) dε

in which ε corresponds to the transition states’ energies. These transition states are
discrete up to a given arbitrary threshold Ec, and, as for the compound nucleus at
normal deformation, are then described by a NLD, ρ(ε, J, π ), beyond Ec.

The potential energy surface often displays several barriers and the fission trans-
mission coefficient used in the Hauser–Feshbach model takes more complicated
forms [23–25]. For multiple humped fission barriers, one also accounts for the fact
that there exist potential wells between the barriers in which quantum states can be
located, usually called class-II or class-III states depending upon whether they are
located between the first and second barrier or between the second and the third. If
these class-II/III states have a spin and parity corresponding to that of the compound
nucleus from which fission occurs, they induced a resonance effect in the fission
transmission coefficient for which more or less refined treatments are possible [23–
25].

When one uses traditional (i.e. based on analytical expressions) methods to
compute fission cross section, a large number of parameters have to be adjusted
to reproduce at best experimental data. One can adjust the fission barrier heights
and widths, the transition states and their corresponding NLD parameters as well
as the eventual class-II/III states. With increasing kinetic energy of the projectile,
several residual nuclei come into play. For a 10 MeV neutron incident on 238U, for
instance, both 239U (first-chance fission) and 238U (second-chance fission) fission
barrier parameters have to be simultaneously fine-tuned and the higher the incident
energy, the larger the number of fissioning nuclei. If this makes the fine-tuning more
complicated, it also provides a way to get more constraints than the single 238U
neutron-induced fission cross section, provided one wants to coherently model the
several fission chances.

To be more precise, the fact that the fourth chance of 238U fission is governed
by the fission barriers of 236U implies that the latter should also provide a good
description of the first chance of 235U since in both cases the nucleus which
undergoes fission is the same. Another constraint can also be obtained by noticing
that the fission barriers parameters enabling a proper description of photo-induced
fission on 238U should also provide a good second-chance fission of neutron-induced
fission of 238U. Therefore, a coherent modelling of fission means that the same set
of input parameters should provide simultaneously the various fission chances of the
various fissioning systems encountered within a given isotopic chain. An illustration
of the results obtained within such a modelling framework is given in Fig. 5. If the
price to pay by considering all these constraints is an important amount of work,
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the reward is a simultaneous description of a whole isotopic chain. In the case of
238U neutron-induced fission indeed, fitting experimental fission cross section data
up to 40 MeV requires to adjust the fission parameters for all Uranium isotopes
between 239U (first-chance fission) and 235U (fifth chance) as well as other fission
chances due to the opening of proton emission and 4He emission (see Fig. 5). Semi-
microscopic alternatives to such a modelling framework have been studied and have
shown promising results [26, 27]. Even though the accuracy reached is not at the
level required for practical applications, this is a direction to follow in particular if
one aims at studying fission for nuclei far from experimentally accessible regions.

Fig. 5 Illustrations of the coherent modelling of fission cross sections. (a) Neutron-induced fission
cross section on 238U. (b) Neutron-induced fission cross section on 237U. (c) Neutron-induced
fission cross section on 236U. (d) Neutron-induced fission cross section on 235U. In panel (a), the
vertical lines indicate for which incident neutron energy new fissioning nuclei have to be accounted
for (see text for more explanations). These fissioning systems are indicated in red as well as the
emission process they are involved in
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5 Conclusions

The modelling of a nuclear reaction is a complicated task, sometimes challenging.
Several models and nuclear ingredients have to be linked together to be able
to predict the outcome of a nuclear reaction. Although significant improvements
have been made during the last decades, there are still many challenges to face.
Pre-equilibrium and fission modelling are certainly among these. In the case of
pre-equilibrium, the main reason is that the flexibility of semi-classical approaches
makes it possible to obtain at small computational price results which satisfy the
quality required for applications. It is only recently that the need for better models
has become timely, in particular while studying “subtle” processes such as (n,xnγ)
transitions in actinides [8]. For fission, the problem is more complicated. The
models used are far too simple compared to the most fundamental approaches
which evidence a need to account for multidimensional energy landscapes. If future
developments consist, without any doubt, in adding more and more microscopic
approaches in the nuclear reaction models, this will be a very long-term project.
For now, such microscopic approaches can only provide guidelines for nuclear data
evaluations but offer the only alternative to empirical expressions whose predictive
power far from the valley of stability cannot be trusted given the number of
phenomenological parameters they rely on.
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Modeling Compound Nuclear Reactions
with EMPIRE

M. Herman, R. Capote, B. V. Carlson, M. Sin, and A. Trkov

1 Introduction

The description of low-energy nucleon-induced reactions in the continuum region
requires, at the very least, calculations of elastic scattering within the optical model
and of statistical emission of photons and light particles from the compound nucleus
formed from the fusion of the projectile and target. If actinide targets are to be
described, a reasonably sophisticated model of fission should also be included in the
statistical emission calculation. At very low energies, width fluctuation corrections
must be included, while at energies above about 10 MeV, pre-equilibrium effects
should be taken into account.

The EMPIRE code, [36] first released in 1980, calculated both elastic scattering
and the cross sections and spectra of statistical equilibrium and pre-equilibrium
decay processes. It was later extended to include width fluctuation corrections to
low-energy cross sections. A version for heavy-ion induced reactions was also
introduced.

In its second release, EMPIRE-2, the code was entirely rewritten using a modular
structure, as well as taking advantage of more relaxed memory limitations, to obtain
an increase in execution speed of about a factor of 20. The new code was projected
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to be general and flexible. Each module was designed to perform a well-defined task
and to communicate with other modules through a set of global COMMON blocks.
This assured access to all the resources throughout the code and facilitated the
addition of new features and mechanisms. The third release of the code, EMPIRE-3,
maintains and extends this structure.

The current version, EMPIRE-3.2, is named Malta, after Napoleon’s capture of
the island on the way to Egypt. Although a minor release, it features a number
of significant improvements such as: (1) prompt fission neutron spectra, including
automatic adjustment to experimental data, (2) anisotropic angular distributions
for compound elastic and inelastic excitations, (3) simulation of the Engelbrecht-
Weidenmüller transformation, and (4) new IO subroutines for the manipulation of
ENDF-6 formatted files.

2 Basic Objectives and Scope

The basic objectives of the EMPIRE code are:

• to provide the state-of-the-art modeling of nuclear reactions for basic science and
data evaluation;

• to ensure reasonably comprehensive coverage of incident particles, targets,
incident energies, and observables;

• To unify (1) reaction models, (2) model parameters, (3) nuclear structure data,
and (4) experimental results;

• to provide a full set of tools for evaluators to enable efficient production of high
quality nuclear data files;

• to be as general, flexible, and easy to use as possible.

The present scope of the code includes:

• A broad range of incident energies (up to 150 MeV) and projectiles (n, p, d, t,
3He, 4He, photons, and heavy ions);

• The low-energy range for neutron reactions covered by an interface to the Atlas
of Neutron Resonances [1];

• Default input parameters for targets of mass number A ≥ 20 [2];
• Direct, pre-equilibrium, and statistical model reaction mechanisms—with width

fluctuations and a full gamma cascade;
• Observables: cross sections, angular distributions, spectra (including prompt

fission neutron spectra), energy-angular distributions;
• Outgoing channels: multi-particle emission, γ -emission (including discrete

lines), discrete levels (including isomers), fission, several exclusive channels.

To a large extent, the present scope of the EMPIRE code permits it to fulfill its
objectives. However, it should also be clear that the objectives are an evolving target
that will never be completely met.
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3 Reaction Modeling

A low-to-intermediate-energy nuclear reaction can be approximately divided into
an initial stage, during which direct reactions occur or the projectile (or a part
of it) fuses with the target, and a subsequent stage, during which the compound
nucleus fissions or de-excites by particle and gamma-ray emission. Pre-equilibrium
emission, which consists predominantly of multistep direct reactions, tends to blur
the distinction between the two stages, but is traditionally considered as part of
the emission rather than the formation stage of the reaction. We discuss below the
models and codes used in EMPIRE to describe each of the stages.

3.1 Fusion and Direct Reactions

EMPIRE uses the optical model to calculate transmission coefficients and absorp-
tion cross sections for light particles. Spherical optical model calculations are
performed using ECIS-2006 [3, 4], while deformed optical model calculations are
performed using ECIS-2006 or OPTMAN [5–7]. For heavy-ion induced reactions,
the simplified coupled channels code CCFUS [8] or a distributed barrier model can
be used. The photoabsorption cross section is used to initiate a gamma-induced
reaction. If desired, absorption cross sections or transmission coefficients can also
be input directly.

Direct reaction cross sections can be calculated using coupled channels with the
codes ECIS-2006 or OPTMAN or the distorted wave Born approximation (DWBA)
using ECIS-2006. The two methods can be mixed when ECIS-2006 is used. That is,
strongly coupled channels can be calculated using coupled channels, while weaker
channels can be calculated using the DWBA.

Deuteron breakup and its incomplete fusion have recently been included in
EMPIRE [9]. The breakup is calculated in the DWBA approximation and the
formation and decay of the compound nuclei involving the remaining deuterons
and the breakup protons and neutrons are taken into account consistently.

3.2 Compound Nucleus and Pre-equilibrium Emission

The basic compound nucleus decay model in EMPIRE is a multi-emission Hauser-
Feshbach decay model [10] with a full γ -cascade and dynamical deformation
effects. Width fluctuations can be included using the HRTW [11, 12] or Moldauer
[13] formalisms. Direct channel coupling can be included in the statistical emission
through the Engelbrecht-Weidenmüller transformation [14]. Both cross sections
and angular distributions can be calculated for elastic and resolved inelastic states.
Cross sections, spectra, angular distributions, and double differential energy-angular
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distributions can be calculated for emissions in the continuum region. Exclusive
quantities can also be calculated for simple emission channels (xn, xp, np).

Level densities can be described by three phenomenological models—the
Gilbert–Cameron model [15], the generalized superfluid model [16], or the
enhanced generalized superfluid model [17]—or by a model based on Hartree–
Fock–Bogoliubov levels [18]. The level densities are parametrized or normalized
to reproduce the average parameters of the neutron resonances and the data on the
cumulative number of low-lying nuclear levels.

Several options exist for the gamma-ray strength functions in the statistical
decay. These include the enhanced generalized Lorentzian [19], several modi-
fied Lorentzians [20, 21], the generalized Fermi-liquid model [22], the standard
Lorentzian [23], and single-particle Weisskopf estimates. These are normalized
internally to experimental gamma-ray strength functions, when available.

At higher incident energies, pre-equilibrium emission becomes important. Mod-
els available in EMPIRE for the description of these reactions are:

• the Tamura-Udagawa-Lenske multistep direct reaction model, as implemented in
ORION + TRISTAN [24, 25];

• the Nishioka-Verbaarschot-Weidenmüller-Yoshida multistep compound model
with γ -emission [26];

• the standard single-emission exciton model, as implemented in PCROSS;
• the Iwamoto-Harada model for complex particle emission [27, 28], also imple-

mented in PCROSS; and
• the hybrid Monte Carlo simulation model, which permits multiple pre-

equilibrium emissions, as implemented in the code DDHMS [29–31].

These models need not be executed exclusively. Thus, for example, it is possible to
calculate pre-equilibrium neutron emission using ORION + TRISTAN and the pre-
equilibrium emission of light charged particle using PCROSS, among other possible
combinations.

3.3 Fission

EMPIRE contains both simple and sophisticated models of fission.

• The Sierk model can be used for light particle or heavy-ion induced fission [32].
• For incident light particles or photons, one can use an optical model for

transmission through multi-humped fission barriers parametrized analytically or
defined numerically, as well as multi-modal fission [33].

• Finally, prompt fission neutron spectra can be calculated using either the
Madland–Nix [34] or the Kornilov [35] model.
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4 Cross Section Calculations Using EMPIRE-3.2

In the following, we compare EMPIRE calculations with experimental data for
several different reactions. We begin with the cross sections for neutron-induced
reactions on 56Fe and 238U, shown in Figs. 1 and 2. The cross sections for the
various emission channels of each target were calculated simultaneously and display
very good agreement with the experimental data. The elastic, inelastic, capture, and
2n cross sections make important contributions to the total cross section in both
cases. Proton emission is also an important channel for the iron target but is strongly
suppressed in uranium. In the latter, the fission channel plays an important role.

EMPIRE-3.2 can also describe photon-induced reactions. The photabsorption
cross section is modeled as a sum of giant dipole resonance and quasi-deuteron
terms, leading to initial one-particle one-hole and two-particle two-hole config-
urations, respectively. The particle emission is calculated as a pre-equilibrium +
equilibrium statistical decay process. Cross sections for photoabsorption on 181Ta
and its multiple neutron emission channels are shown in Fig. 3.

The 124Te(d,2n)124I reaction, shown in Fig. 4, provides a good example of
the importance of breakup in a deuteron-induced reaction. All optical model
calculations all overestimate the cross section due to the fact that they do not
discount the large (d,p) contribution from the breakup. The direct breakup model

Fig. 1 Experimental data and cross sections calculated with EMPIRE-3.2 for several neutron-
induced reactions on 56Fe as a function of the incident energy
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Fig. 2 Experimental data and cross sections calculated with EMPIRE-3.2 for several neutron-
induced reactions on 238U as a function of the incident energy

Fig. 3 Experimental data and cross sections calculated with EMPIRE-3.2 for photoabsorption and
neutron emission channels of the photon-induced reaction on 181Ta as a function of the incident
energy

calculation of EMPIRE-3.2, shown as the red triangles in the figure, is also high
compared to the experimental data, but will decrease when the calculation of
stripping to bound states is improved.
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Fig. 4 Experimental data and several cross section calculations for the reaction 124Te(d,2n)124I.
The calculation taking into account deuteron breakup (red triangles) was performed with
EMPIRE-3.2.

5 Summary

In closing, we want to point out a few of the highlights of the EMPIRE code, not all
of which were mentioned above. In our opinion, among these are:

• inclusion of most important nuclear reaction mechanisms;
• a large choice of models and parametrizations;
• use of the Reference Input Parameter Library, RIPL-3 [2];
• automatic retrieval of experimental data from EXFOR;
• interactive plots of calculated and experimental results;
• highly automated fits of optical model parameters;
• automatic adjustment of all model parameters;
• determination of covariances (Monte Carlo, KALMAN);
• a resonance module with a link to the Atlas of Neutron Resonances [1];
• ENDF-6 formatting and verification;
• NJOY support.

In short, EMPIRE provides a complete path from experiment to evaluation to
validation.

Versions of EMPIRE for Windows, Linux, and Mac OSX are available on the
EMPIRE webpage at www-nds.iaea.org/empire/. More details of the code can
be found in Ref. [36] and the EMPIRE manual, available at www-nds.iaea.org/
publications/indc/indc-nds-0603/.

www-nds.iaea.org/empire/
www-nds.iaea.org/publications/indc/indc-nds-0603/
www-nds.iaea.org/publications/indc/indc-nds-0603/
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CoH3: The Coupled-Channels and
Hauser-Feshbach Code

Toshihiko Kawano

1 Introduction

The statistical Hauser-Feshbach (HF) codes with width fluctuation correction are the
main tool for calculating compound nuclear reactions when an individual resonance
structure no longer persists. Typically this situation is satisfied when a nucleon or
a light charged particle having more than a few hundred keV energy interacts with
a medium to heavy (A > 20) target. These codes provide complete information of
nuclear reactions, not only the reaction cross sections but also the energy and angular
distributions of secondary particles, γ -ray production cross sections, isomeric state
productions, and so on.

In the 1990s, the Los Alamos HF code, GNASH [1], was widely utilized to
calculate nuclear reaction cross sections, together with an optical model code such
as ECIS or ELIESE-3 [2] for generating the particle transmission coefficients.
Although GNASH is a powerful code to study nuclear reaction mechanisms,
the mainframe-age technology makes upgrading and maintaining the source code
extremely difficult. Under such the circumstances, development of a new optical
and HF code, CoH, began at Kyushu University. Originally it was written in C, and
later whole the source code was rewritten in C++. The most recent version, CoH3,
possesses more functionality than GNASH, and it is fully capable for calculating
various nuclear reactions.
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2 CoH3 Code

2.1 Quick Glance

Each version of CoH3 has a unique nickname taken from the moons of Uranus.
The current version of 3.5 Miranda consists of about 140 C++ source codes and 60
header files. The total line number is about 45,000. The code is written in a semi-
OOP (Object-Oriented Programming) style, and there are about 80 classes defined.
Unlike the other HF codes currently available in the market, such as EMPIRE [3] or
TALYS [4], CoH3 includes its own optical model solver to generate the transmission
coefficients internally. This feature is the same as in the CCONE code [5].

Another noticeable difference is that CoH3 runs both in the deterministic and
stochastic (Monte Carlo) modes [6]. In the Monte Carlo mode, the compound
nucleus decay is tracked by a random sampling technique in order to preserve
all correlated information. Albeit this feature is not yet widely used in practical
calculations for now, an accurate estimate of the exclusive particle emission spectra
can be examined.

CoH3 is designed to calculate nuclear reactions at relatively low energies.
Although it is capable of calculating a 100-MeV nucleon induced reaction, it is
not so efficient. We will revisit this issue later.

2.2 Models and Modules

Spherical and Deformed Optical Models In the deformed nucleus case, a
rotational or vibrational model is employed for the coupled-channels (CC) calcu-
lation. These models yield a channel transmission coefficient Ta , which defines
the probability of forming a compound nucleus from a channel a. The optical
model scattering wavefunction is also used in the DWBA (Distorted Wave Born
Approximation) method for the direct inelastic scattering process.

Compound Reaction Properties of excited states in a compound nucleus are deter-
mined by reading the nuclear structure database [7]. At higher excitation energies,
we use the Gilbert–Cameron level density formula [8] with updated parameters [9].
CoH3 allows to overlap the discrete level and continuum regions, and some of the
levels can be embedded in the continuum. This is particularly important when some
γ transitions from highly excited states are observed experimentally. This often
impacts the isomeric state production.

The width fluctuation correction is calculated by applying the method of
Moldauer [10] with LANL updated parameters [11], which gives very similar
correction factors to the GOE (Gaussian Orthogonal Ensemble) results [12]. When
strongly coupled channels exist, the inelastic scattering process is calculated with
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the CC method, and the Engelbrecht-Weidenmüller transformation is invoked to
diagonalize the S-matrix [13].

Pre-equilibrium Reaction The two-component exciton model [14, 15] is used to
calculate the pre-equilibrium process. The quantum mechanical pre-equilibrium
models, such as FKK (Feshbach-Kerman-Koonin) [16, 17] or NWY (Nishioka-
Weidenmüller-Yoshida) [18, 19], are also available, yet provided as external codes.
See Ref. [20], for example.

Prompt Fission Neutron Spectrum For fissioning nuclei, the prompt fission
neutron spectrum is calculated with the Madland–Nix model [21] including pre-
fission neutron emissions.

Direct/Semidirect (DSD) Neutron Capture The direct/semidirect (DSD) neutron
capture process is calculated with the DSD model [22–26]. A standard option
is to use the spherical Woods–Saxon potential for calculating the single-particle
wavefunctions. In the deformed nucleus case, two mean-field models can be
used [27]; FRDM (Finite-Range Droplet Model) [28, 29] and HF-BCS (Hartree-
Fock BCS) [30].

3 Transmission Coefficients for the Excited States

CoH3 is designed to combine tightly the CC optical model and the statistical HF
theory, in which the generalized transmission coefficients for the excited states are
calculated from the CC S-matrix [31]. This is especially important for calculating
nuclear reaction process on a deformed nucleus, such as actinides. The transmission
coefficient for the n-th excited state with orbital angular momentum l and spin j is
calculated as

T
(n)
lj =

∑

J	

∑

c

gJc

(
1 −

∑

c′
|SJ	cc′ |2

)

c∈n
, (1)

where c labels the channel, and gJc is the spin factor. Here the flux going into the
directly coupled channels is eliminated from the total absorption probability, such
that the sum of T (n)ij gives a correct compound formation cross section from the n-th

level. In contrast to this, other HF codes often replace T (n)lj by the one for the ground

state T (0)lj , and shift the energy by the level excitation energy E(n)x ,

T
(n)
lj (E) 	 T (0)lj

(
E − E(n)x

)
. (2)

This approximation has never been validated. The calculated neutron transmission
coefficients of Eqs. (1) and (2) are compared in Fig. 1. These are for the first excited
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Fig. 1 Calculated transmission coefficients for the neutron induced reaction on 238U. The solid
curves are the correct transmission coefficients for the excited states, while the dashed curves are
approximations using results for the ground state. (a) s-wave. (b) p-wave

state of 238U. The CC calculation was performed by coupling the first five levels
in the ground state rotational band with the optical potential of Soukhovitskii et
al. [32]. The right side panel for the s-wave well supports the approximation of the
replacement, while an obvious difference is seen for the p-wave case. Since the
impact is not so significant, the calculated cross section might not be so discrepant.
However, we should keep this in our mind that the uncertainty in the model
calculation adds up due to the actual implementation of the HF formula. A code
comparison performed among EMPIRE, TALYS, CCONE, and CoH3 showed the
inelastic scattering cross section by CoH3 tends to be slightly higher than from the
other codes [33].

When the Engelbrecht-Weidenmüller transformation is applied to the width
fluctuation correction, the CC S-matrix is converted into Satchler’s penetration
matrix [34] and diagonalized to eliminate the off-diagonal elements. This is an exact
calculation of the combined CC and HF models, although the computation will
take a few times longer than the approximated calculation. Details are explained
elsewhere [13].

4 Multiparticle Emission and Exclusive Cross Section

A compound nucleus at a given excited state decays to another nucleus by emitting
several particles when the excitation energy is high enough, and different reaction
chains sometimes end up with the same residual nucleus. For example, the residual
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Fig. 2 Schemes of compound nucleus decay. The left hand side shows an inclusive algorithm
employed by GNASH, where all information having the same Z,A enters into the same memory
space. CoH3 adopts an exclusive algorithm, in which different reaction paths are explicitly tracked

nucleus of (n, n+p) reaction is the same as that of (n, d). When a common memory
space is allocated to these residual nuclei, it is difficult to separate cross sections
into the (n, n + p) and (n, d) reactions. This happens to the regular HF codes
like GNASH, which is schematically shown in the left panel of Fig. 2. In order
to distinguish these reaction paths, in other words, to seek an exclusive reaction
cross section, CoH3 allocates independent objects for different reaction channels,
as shown in the right panel of Fig. 2. For example, information of the (n, n + p)
reaction is stored in an object, while that of (n, d) is elsewhere.

Indeed this technique allows us to split a residual nucleus production cross
section into the exclusive reaction channels, the extra cost incurred is in the compu-
tational resources. When the excitation energy of a compound nucleus increases, the
number of objects necessary to keep all the information increases rapidly, and the
computational time becomes very long. For high energy applications, one might
need to stay on the traditional inclusive algorithm. Anyway, with the exclusive
algorithm adopted by CoH3, the compound nuclear reaction cross section and its
energy spectrum are easily divided into individual reaction channels.

5 Satellite Tools

CoH3 includes some subsidiary codes to expand its capability and to explore a wider
area of nuclear reaction physics. In the stable branch of the package, a subset of
CoH3, called BeoH, is included. The BeoH code just calculates the statistical decay
of a given compound state. Application of this code includes the emission of neutron
and γ -ray in both β-decay [35, 36] and the fission process [37]. In the fission case,
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we follow the decay of two excited fragments formed by a fission process by using
the HF theory, called HF3D (Hauser-Feshbach Fission Fragment Decay) [37]. Such
calculation produces the fission product yields and the prompt fission observables
(neutron and γ -ray spectra and multiplicities) in a consistent manner. An example of
a calculated prompt fission neutron spectrum for the thermal neutron induced fission
on 235U is shown in Fig. 3. The HF3D spectrum is distinct from the Madland–Nix
model calculation in the two energy domains; the spectrum tends to be higher than
the Madland–Nix prediction at low energies, while it drops quickly above 6 MeV.
We are still investigating why the HF3D spectrum is softer than the evaluated data.

Two more modules are provided in the development branch; the microscopic
level density [19] based on the random matrix theory, and the FRLDM (Finite-
Range Liquid Drop Model) [38]. Despite these experimental modules have not
been fully merged yet with the main reaction calculation stream, they offer a better
connection between the nuclear structure and reaction models [39].

6 Conclusion

As demonstrated the CoH3 code is designed mainly to predict reliable nuclear
reaction cross sections at low energies, where many nuclear applications exist such
as the fission energy systems and the nuclear astrophysics. We outlined that CoH3
includes careful modeling of the coupled-channels optical model and the Hauser-
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Feshbach theory with the width fluctuation correction. It should be emphasized
that CoH3 is the first code that fully implements the Engelbrecht-Weidenmüller
transformation of the coupled-channels S-matrix, which is particularly important
for calculating neutron inelastic scattering off very deformed nuclei.
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Part II
Beyond Statistical Descriptions



Recent Advances in R-matrix Data
Analysis

Ian J. Thompson

1 R-matrix Theory

R-matrix theory is designed to describe individual resonances in two-body scat-
tering even when overlapping, and the non-resonant background between them. It
describes all the asymptotic properties of the relative wave function outside some
fixed radius a in terms of pole energies ep and reduced width amplitudes γpα for
each partial-wave channel α and pole p. The γpα can be calculated from some
structure theory, or fitted to data.

R-matrix theory is the starting point for compound-nucleus models. It is the basis
for making statistical approximations, such as the Reich–Moore approximation, and
Hauser-Feshbach models. It can be used to check the accuracy of those approximate
models, as well as models for the width-fluctuation corrections.

The foundation of R-matrix theory is summarized in the landmark paper of
Lane and Thomas [1]. In that paper is the foundational “R-matrix Theorem”: For
HermitianH = T +V + B̂ with Bloch operator B̂ = δ(r−a)( d

dr
− B
r
), with V 
= 0

only for r ∈ [0, a] andE-independent, then the exact scattering solutionHψ = Eψ
can be represented by a R-matrix at r = a with a set of pole energies ep and reduced
width amplitudes γpα as

Rαα′(E) =
∞∑

p=1

γpαγpα′

ep − E . (1)
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2 Phenomenological R-matrix

The “phenomenological R-matrix method” that is followed in the remainder of this
paper does not start from a Hamiltonian and does not have an infinite series of poles.
Rather it uses a finite number P of R-matrix pole energies ep, with reduced width
amplitudes γpα as parameters in the familiar finite sum

Rαα′(E) =
P∑

p=1

γpαγpα′

ep − E , (2)

to be adjusted to fit experimental scattering data. Positive-energy poles are again
aligned with scattering resonances. Other poles are “background poles” at higher
positive energies to attempt to represent the effects of all the remaining terms
missing in comparison with expression (1).

Both the exact and phenomenological R-matrix expressions yield (a) unitary
S-matrix at each energy, and (b) orthogonal scattering wave functions at different
energies. When we come to the approximations often used in R-matrix theory, they
should only be accepted if at least they still yield those features. Both conditions
derive from having a Hermitian and energy-independent Hamiltonian.

The Reich–Moore approximation [2], by contrast, has imaginary damping widths
for missing channels, so condition (a) is not satisfied. It is perhaps satisfactory if a
specific meaning is given to the missing flux, e.g., capture or fusion.

Another convenient approximation changes the boundary conditions in the Bloch
operator, so B is not constant but is set equal to the shift function at each energy:
B = S(E). But now condition (b) is not satisfied since H = T + V + B̂ is energy-
dependent.

The “alternative parametrization” of Brune [3] is much better than using B =
S(E) for making R-matrix pole energies close the energies of cross-section peaks
and resonances, since the Brune basis is transformable to and from the Lane and
Thomas formalism.

3 Verification of R-matrix Codes

An inter-comparison of the capabilities of the R-matrix codes AMUR [4], AZURE2
[5], EDA (LANL), FRESCOX [6], GECCCOS (TU Vienna), SAMMY [7], and
CONRAD [8] was performed [9] following a series of IAEA consultants meetings
since 2015 [10–13]. As the codes were developed initially for the solution of
different problems, each one has its particular features, strengths, and weaknesses,
an inter-comparison is particularly valuable.
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I have written a python program FERDINAND.PY, to translate between most of
the input and output formats of these codes, using GNDS [14] as the intermediate
structure. It is also able to make ENDF output sections in the MT= 151 format
for evaluations. This kind of interchangeability makes it much easier to track down
discrepant details, and to verify and build on each other’s work.

4 Example in A = 7 Scattering

As an example of R-matrix fits, Fig. 1 shows the FRESCOX results for 4He+3He
elastic scattering, with the p+6Li channel also included. A code-to-code comparison
for this data “based on fixed R-matrix parameters” is shown by ratios in Fig. 2.
Agreement is almost all better than 0.5%, the level of accuracy needed for R-
matrix standard cross-sections. The original fit was done with B = −L boundary
conditions, but we can easily and reversibly transform to the Brune basis.
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Fig. 1 Fitted cross-sections 3He(α, α)3He reaction to the data of [15]. The separate curves are
for each scattering laboratory angle, with preferred data shifts shown by the listed keV values.
Tombrello quoted a systematic uncertainty of 5%. Taking this as a 1σ value, the overall fit preferred
a systematic increase of the data by 8%
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Fig. 2 Comparison of calculations to AZURE2 results for the 3He(α, α)3He reaction using the
energies and angles of the [15] data

5 An “Optical” R-matrix Model

At higher incident energies, there are more and more inelastic or transfer two-body
channels. Numbers of partial waves increase, but this is still manageable using
standard R-matrix theory. But when breakup channels begin to open, these are more
difficult to model as they need three-body dynamics. Sometimes these can be well
approximated by cascaded two-body channels [16], or by using hyper-spherical
harmonics to model the three-body kinematics in full detail. In the meantime, we
could perhaps settle for using damping widths Γα to describe loss of flux to outside
the two-body model space in generalization of the Reich–Moore approximation.

Such damping widths Γα describe loss of flux to outside the model space like an
optical model, generalizing Reich–Moore for missing particle channels, as in

Rαα′(E) =
P∑

p=1

γpαγpα′

ep − E + iΓα/2 . (3)

This could be allowed, as mentioned earlier, if there are specific physical channels
missing from the model (never for bound states). Then the missing flux (from the



Advances in R-matrix Data Analysis 41

unitarity defect) could (for example) be fed into a Hauser-Feshbach decay model
built only on the missing physics channels.

But if the total width of a damped resonance is large, then the flux will be missing
at lower energies, even below the known threshold for the excluded channels! In that
case, absorption would still be present below the threshold of the missing channels,
and that would be unphysical.

I therefore consider energy-dependent damping widths, which allows me to
describe the energy dependence of flux going to an excluded channel with known
threshold E0. This makes the damping width energy-dependent, Γα(E). Ideally,
we would like the energy dependence to mimic a set of missing level widths, each
behaving as the formal R-matrix widths Γ = 2γ 2PL(E−E0). So I used, for each R-
matrix level p above threshold, a formula which cuts off the width below threshold:

Γα(E) = Γ̃α PL(E − E0)

PL(ep − E0)
, (4)

for penetrability functions PL(E −E0). This cuts off the damping for E < E0, and
gives Γα(ep) = Γ̃α as a parameter to be fitted. Making this work depends on having
good experimental data for angular distributions above the E0 threshold. We may
also need to choose the ep energy in the Brune basis in order to keep it at the right
energy above the threshold.

If we know the physics of missing channels we can estimate L and Coulomb
barriers in the penetrability functions. This would even allow many-body exit
channels, in particular three-body (M = 3) channels such as (p, pn). If these are
described by hyper-spherical harmonics, then there is a new quantum numberK ≥ 0
that describes the ratios of the new three-body coordinates for given moment of
inertia ρ. For each value of K there is a centrifugal barrier L(L + 1)/ρ2 where
L = K + (3M − 6)/2. For 3-body breakup channels this gives L = K + 3/2. If
a particular K dominates in an exit channel, then the corresponding L-value should
be used in Eq. (4).

As an example fit with energy-dependent damping, I refitted 4He+3He data from
Tombrello [15] with only the elastic channel, and no explicit p+6Li channel which
should open above 10 MeV. The effect of the missing channel is to be represented by
the new fitted damping parameters. I fitted the ep energy in the Brune basis, keeping
L = 0. The result is shown in Fig. 3, with a fit quality of χ2/df= 4.25 compared with
2.63 in the full R-matrix fit.

This first attempt at least gives (blue line on the right) transfer cross-sections that
are close to the average of the more complete model (black line). It has no absorption
below 10 MeV, unlike what we would get from fixed damping widths (red line).

This kind of treatment is reminiscent of optical models for elastic scattering,
where energy-dependent imaginary terms are added even though the total Hamil-
tonian is no longer Hermitian or even energy-dependent. It is available as a resort
above the energy range of a strict Lane and Thomas model, by generalizing the
Reich–Moore approximation to particle channels.
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p+6Li channel, but with energy-dependent damping. (Right) Absorption cross-sections from the
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The Transition from Isolated Resonances
to the Continuum

Carl R. Brune

1 Introduction

Many nuclear reactions of astrophysical importance are modeled by Hauser-
Feshbach (HF) calculations, the well-established approach for computing average
cross sections when many resonant levels are involved. For this approach to be
successful it is necessary that the parameters of the model (optical potentials, level
densities, etc.) be reasonably well understood and that number of resonant states
involved be sufficiently large. The latter point is one of the questions we would like
to address. A rule of thumb of at least 10 levels in the energy window of interest
has been given but many caveats apply [1]. In principle a HF reaction rate should
have a temperature-dependent theoretical statistical uncertainty associated with the
finite number of contributing levels. A quantitative understanding of this statistical
uncertainty can in turn be used to quantify the applicability of the model and to
asses the uncertainty in the derived reaction rate. These considerations also have
important implication for the planning and interpretation of experiments. Because
measurements are performed with a finite energy resolution due to target thickness
and other factors, energy average is also present in experimental data.
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2 Astrophysical Scenarios

The transition from isolated resonances to the continuum will be important when
the level density is modest. This situation is most easily realized in lighter nuclei,
in the range 20 � A � 50. In nuclear astrophysics, this leads us to consider
proton- and α-induced reactions in the rapid proton capture process (rp-process)
and in type-II supernovae. The rp-process primarily consists of a sequence of
(p, γ ) reactions, (α, p) reactions, and β+ decays which occur on the surface of
an accreting neutron star, with a relevant temperature range of 0.5–2.0 GK. In the
type-II (core-collapse) supernova scenario, these reactions may occur during the
oxygen and silicon burning phase before the explosion, or in the α-rich freeze-out
immediately afterword. Here, the relevant temperature range is 1.5–5 GK.

We focus here on the 34Ar(α, p)37K reaction which is thought to be an important
reaction for regulating flow to higher masses in the rp-process [2, 3]. The time-
reversed reaction has recently been measured at the ATLAS facility at Argonne
National Laboratory [4]. An indirect study of the compound-nuclear levels in
38Ca has been performed using the 40Ca(p, t)38Ca reaction at iThemba [5]. The
properties of 38Ca levels have also been studied using the elastic scattering of
protons from 37K [6]. Finally, measurements of the 34Ar(α, p)37K reaction have
been performed for Ec.m = 5.7 and 6.1 MeV with the ReA3 facility at the
National Superconducting Cyclotron Laboratory (K. Schmidt, K. Chipps, private
communication). The reaction rate in the rp process is determined by the cross
section for 1 � Ec.m. � 4 MeV, considering the aforementioned temperature range.
It should be noted that none of the direct measurements to date have been performed
in the astrophysically relevant energy range.

3 Overview of Our Approach

The Breit–Wigner formula for the cross section connecting channels c and c′ is
given by

σcc′ = π

k2
ωJ

�c�c′

(E − ER)2 + �2/4
, (1)

where k is the incoming wavenumber, E is the incoming energy, ωJ is a statistical
factor, �c are the partial widths, ER is the resonance energy, and � = ∑c �c is the
total width. The channel label c represents the particle pair type, the total angular
momentum J , the orbital angular momentum, and channel spin. The corresponding
HF (energy-averaged) result is [7]

σcc′ = π

k2
ωJ
TcTc′∑
c Tc

, (2)
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where Tc is the transmission coefficient. Here, we have neglected the width
fluctuation correction, which is unimportant for the case we consider below.

The Monte Carlo simulations of the reaction cross section of interest are based on
discrete levels sampled from distributions consistent with the HF parametrization.
This approach builds on the ideas Mohr et al. [8] who have estimated the
18Ne(α, p)21Na reaction rate using experimental data for level positions and some
spectroscopic properties, while using Monte Carlo for the unknown spins, parities,
and partial widths. Although not performed for reaction rate calculations, there have
been several previous Monte Carlo studies of compound-nuclear reactions; see, e.g.,
Moldauer [9] and the recent work of Kawano et al. [10].

The transmission coefficient Tc for channel c in the HF formula is related to the
mean partial width 〈�c〉 and level density ρ via [11, 12]

Tc = 1 − exp(−2π〈�c〉ρ) , (3)

which reduces to Tc = 2π〈�c〉ρ when Tc � 1. If the Tc and ρ are assumed to be
known, the level positions, spins, and parities can be sampled from the level density
allowing for the Wigner distribution of level spacings [10]. Likewise, the reduced
level widths can be sampled from the Porter-Thomas distribution [8, 10]. Finally, the
reaction rate can be calculated by taking the usual Maxwell–Boltzmann average. By
repeating the Monte Carlo process, the statistical uncertainty in the reaction rate can
be determined.

4 Details of the Calculation

We limit our consideration to Ec.m. < 5 MeV, where �α � �p and in the HF
approach only the α transmission factor is important. Since 34Ar and the α particle
both have Jπ = 0+, the entrance channel label may be identified by c = J and the
statistical factor is ωJ = 2J + 1. Since the total with is dominated by the outgoing
proton widths, the cross section for 34Ar(α, p)37K resulting from Eq. (2) is

σ = π

k2

∞∑

J=0

(2J + 1)TJ , (4)

where in practice only the few lowest J values contribute appreciably. Follow-
ing previous work [13–15], we utilize the McFadden and Satchler α optical
potential [16]. Our result for the 34Ar(α, p)37K cross section, presented as an
astrophysical S factor, is shown in Fig. 1. We find that the cross section at low
energies is sensitive to the tail of the Woods Saxon potential out to a distance of
about 18 fm. We note that this part of the potential is certainly not constrained by any
of the higher-energy elastic scattering data considered in Ref. [16]. Also shown in
Fig. 1 is a calculation using the Non-Smoker code [13–15] using the same α optical
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Fig. 1 Astrophysical S factor for the 34Ar(α, p)37K reaction. The solid black curve shows the
present calculation and the dashed red curve shows the Non-Smoker result

potential. It is seen to be somewhat lower than the present result for low energies.
However, a more recent calculation using the SMARAGD code (the successor to
Non-Smoker) is in excellent agreement with the present calculation (T. Rauscher,
private communication).

Our Monte Carlo approach also requires knowledge of the level density in
the compound nucleus 38Ca. Note that the threshold for α+34Ar is located at an
excitation energy of 6.1 MeV, which implies the astrophysically important excitation
energies are between 7 and 10 MeV. We have taken the level density from the
mirror nucleus 38Ar, where two studies are available. In Fig. 2 we show the
result of Beckerman [17] and the constant temperature result of von Egidy and
Bucurescu [18]. The two curves are seen to be in reasonably good agreement; we
have adopted the latter for the calculations described below. It is parametrized as

ρ(U, J, π) = 1

2
ρ(U)f (J ) , with (5)

f (J ) = exp
(
−J 2/2σ 2

)
− exp

[
−(J + 1)2/2σ 2

]
and (6)

ρ(U) = 1

T
exp[(U − E0)/T ] , (7)

where U is the excitation energy, J is the level spin, π is the level parity, and σ
is the spin-cutoff parameter, T is the temperature, and E0 is the backshift. For our
case, we have σ = 0.98A0.29, T = 1.51 MeV, E0 = 1.30 MeV, and A = 38.
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Fig. 2 The level density for the nucleus 38Ar, as a function of excitation energy. The solid black
curve is from Beckerman [17] and the red dashed curve is the constant temperature result from
von Egidy and Bucurescu [18]

The Monte Carlo sampling of the energy levels assumes the distribution of level
spacings for a given Jπ is given by the Wigner distribution

PW(s) = π

2
s exp

(
−πs

2

4

)
, (8)

where 0 ≤ s < ∞ and s is the ratio of the actual spacing to the average spacing
defined by the level density. The widths were sampled from the Porter-Thomas
distribution

PPT (t) = 1√
2π

exp

(
− t

2

2

)
, (9)

where −∞ < t <∞ and �c = t2〈�c〉. The average partial width 〈�c〉 is determined
from the transmission coefficient and level density using Eq. (3).

The two-body thermonuclear reaction rate is in general given by

〈σv〉 =
(

8π

μ

)1/2

(kT )−3/2
∫ ∞

0
E σ(E) exp

(
− E

kT

)
dE , (10)

where μ is the reduced mass of the reactants and kT is the temperature in units of
energy. This formula may be used together with the HF cross section to determine
the HF reaction rate. Alternatively, the cross section may be represented by narrow
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Fig. 3 The variance in the
calculated reaction rate as a
function of temperature. The
results are normalized by the
HF reaction rate. The
cross-hatched light blue
region contains 68% of the
simulations. This region
together with the
single-hatched red region
contains 95% of the
simulations
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resonances. For the case of 34Ar(α, p)37K, where �α � �p, the reaction rate due
to a single narrow resonance described by Eq. (1) is given by

〈σv〉 = c(h̄c)2
(

2π

μc2kT

)3/2

(2J + 1)�α exp

(
−ER
kT

)
, (11)

where �α is the entrance channel width of the level, c is the speed of light, and h̄ is
Planck’s constant.

For each iteration of the Monte Carlo simulation, a set of levels and partial
widths is generated. The reaction rate as a function of temperature is then calculated
using the narrow resonance formula, Eq. (11), for each resonance. We repeated
the cross section simulation 5 × 105 times using this procedure. For a grid of
temperatures between 0.5 and 5 GK, we accumulated histograms of the reaction
rate. The average reaction rate was observed to be very close the HF rate for all
temperatures, which provides a cross-check on our methodology. Information about
the variance of the reaction rate is presented in Fig. 3. It is seen that the 68%
confidence region is reasonably well constrained to be within about 25% of the HF
rate for astrophysically relevant temperatures. However, the 95% region does exceed
a factor of two deviation from the HF rate at low temperatures. These results suggest
that an accurate determination of the 34Ar(α, p)37K reaction rate will require that
the energies and α widths of individual resonances be determined.

5 Future Directions and Conclusions

In the future, we will look at the effects of energy averaging on experiments. The
fact that the cross section is composed of narrow resonances will also give rise to a
variance here which will need to be considered. We can also include experimental
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information on specific resonances, if it becomes available, using the methods of
Ref. [8].

We plan to implement a full R-matrix description of the cross section, which will
take interference between resonances into account. Using the approach described
in Ref. [19], this is straightforward, as level shift effects are removed. Including
interference effects will allow additional phenomena, such as Ericson fluctuations,
to be revealed. This extension will require that the reaction rate be calculated by the
numerical integration of Eq. (10), which will be more computationally intensive.
It should be noted that these type of interference effects are not expected to be
significant for the case of 34Ar(α, p)37K.

In conclusion, the variance in the 34Ar(α, p)37K reaction rate due to the finite
number of contributing resonances has been calculated. It is found to be a non-
trivial consideration. We also note that the α+ 34Ar optical potential, which is used
in this and other works to predict the 34Ar(α, p)37K cross section, is poorly known
at astrophysically relevant energies.
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Cross Section Correlation Functions and
Deviations from the Porter-Thomas
Distribution

Edward D. Davis

Given the importance of the Porter-Thomas distribution [1] to statistical models of
the compound nucleus, the identification [2] of resonance data sets that are almost
certainly statistically inconsistent with the PTD has prompted several attempts to
account for these findings within standard models of CN processes (for recent
overviews, see [3, 4]). The only issue on which theorists seem to concur at present
is that more data is needed to guide their considerations.

With a few exceptions (viz., Ref. [5]), autocorrelation function studies of nuclear
reactions have previously been confined to the regime of strongly overlapping
resonances, but, in this short contribution, I want to advocate that the autocorrelation
function involving the total cross section

Rtot(ε) =
〈
σtot

(
E + 1

2ε
)
σtot

(
E − 1

2ε
)〉

〈σtot〉2 − 1, (1)

be investigated in the unresolved but not strongly overlapping resonance regime.1

Via the optical theorem, Rtot(ε) is a linear superposition of (two-point) measures

Cab(ε) =
〈
Sfl∗
aa (E + 1

2ε)S
fl
bb(E − 1

2ε)
〉

of fluctuations in elastic elements of the S-

matrix (Sfl ≡ S − 〈S〉). The relation between Rtot(ε) and the Cab(ε)’s has two
desirable consequences. First, for neutron-induced reactions, there are contributions
to Rtot(ε) sensitive to a key statistic of neutron partial width amplitudes, namely the

1In (1), the angle brackets denote an average over the scattering energy E.
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kurtosis. Second, the integral representation of Cab(ε) derived by Verbaarschot et
al. [6] permits, in principle, the exact evaluation of Rtot(ε) within the stochastic CN
model introduced by these authors (the VWZ model).

It is the VWZ model which is the starting point for the majority of the
investigations into the origin of deviations from the PTD. De facto, it is the
capacity of the VWZ model to describe CN phenomena which is under scrutiny.
A comparison of its predictions for Rtot(ε) with data in the unresolved (but weakly
overlapping) resonance regime would constitute another test, and any discrepancies
found could not be attributed to the method of evaluation of Rtot(ε).

Is there any reason to expect that data on Rtot(ε) for unresolved but weakly
overlapping resonances may display sensitivity to non-generic dynamics? Previous
investigations [7, 8], in which results deduced from the VWZ model have been
compared with microwave resonator and CN data in the regime of weakly over-
lapping resonances, do not address this point. To this end, it is helpful to consider
the approximation of Cab(ε) in the statistical Breit–Wigner (SBW) model, using the
scheme of calculation laid out in [9].

In the SBW model, guided by the empirical characterization of data on partial
widths [10], it can be assumed that partial widths are drawn from a χ2 distribution
of ν degrees of freedom. In the weakly overlapping resonance regime, the dominant
contribution to Cab(0) is then

C
(d)
ab (0) =

(
1 + 2

ν
δab

)
TaTb I

(ν)
ab , (2)

where the transmission coefficients Tc = 1 − |〈Scc〉|2, and

I
(ν)
ab =

∞∫

0

∏
c

(
1 + 2

ν
Tcτ
)−ν/2

(
1 + 2

ν
Taτ
) (

1 + 2
ν
Tbτ
)dτ. (3)

(The product in the integrand above is over all open channels c.)
The ν dependence in (2) is encouraging. Figure 1 displays the relative change

δ ≡ C
(d)
aa (0)

/
C
(d)
aa (0) [ν = 1] − 1 in the dominant contribution to Caa(0) as ν

ranges from its value in the Porter-Thomas limit (ν = 1) through values implied
by the analysis of Pt neutron width data (ν ≈ 1

2 ). [In δ, the value of the dominant
contribution toCaa(0) for arbitrary ν is divided by its value for ν = 1.] In generating
Fig. 1, all transmission coefficients have, for simplicity, been taken to be equal in all
� open channels, meaning that δ is a function of only ν and �.

For values of ν comparable to those found in the statistical analysis of reduced
neutron widths in [10], Fig. 1 suggests that Rtot(0) could deviate from its value
in the VWZ model by more than 20%. This should be a large enough signal to
warrant determination ofRtot(0)with high quality total cross section data for weakly
overlapping resonances in the unresolved resonance regime.
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Fig. 1 The relative change δ of the dominant contribution to Caa(0) in the SBW model versus ν
for different choices of the number� of open channels:� = 5 (dotted line),� = 10 (dashed line),
� = 20 (dot-dashed line), and � = ∞ (solid line)

In summary, a test of the VWZ model involving fluctuations in neutron-induced
CN reactions has been identified. For weakly overlapping resonances, Rtot(0) is
sensitive to fluctuations in reduced neutron widths but insensitive to correlations
between levels (beyond level repulsion) [5]. These properties make the study of
Rtot(0) for weakly overlapping resonances in the unresolved resonance regime a
test, in effect, of the Porter-Thomas distribution.
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Moldauer’s Sum Rule Implies
Superradiance in Compound Nuclear
Reactions

David Brown, Mike Herman, and Gustavo Nobre

1 Background

For neutron-induced reactions, the unresolved resonance region (URR) interpolates
between the fast neutron range and the resolved resonance region (RRR). The
fluctuations in the neutron cross sections in the URR are not fully resolvable yet the
URR in a typical nucleus is in the 100 keV–2 MeV window, where fission spectra
peak, therefore introducing substantial uncertainty in practical applications. As the
cross section fluctuates strongly in the URR, at best we can describe the probability
distribution of the cross section in terms of the average resonance spacing D, the
average channel widths Γ c, and the number of degrees of freedom νc for each
channel c. Here “channel” denotes the two incoming/outgoing particles and all the
quantum numbers needed to specify their state (for our purposes only the orbital
angular momentum L and total angular momentum J ).

We focus on the energy average cross sections in the URR as a first step toward
determining the full probability distribution. The Gaussian Orthogonal Ensemble
(GOE) triple integral result of Verbaarschot, Weidenmüller, and Zirnbauer [1] is
believed to provide an exact solution for the energy averaged cross section, but it is
both difficult to interpret physically and numerically expensive to use in practice.
Given this, we consider the Hauser-Feshbach equation with Moldauer’s Width
Fluctuation Correction [2] as it is both easier to use and simpler to interpret. The
Hauser-Feshbach equation is
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σ cn
ab = σ abs

a

Γ b∑
c Γ c

Wab(�) with σ abs
a = π gaΓ a

Dk2
a

. (1)

Here the absorption cross section for channel a is σ abs
a and Wab(Γ ) is the Width

Fluctuation Correction (WFC). The WFC is a function of the average widths of all
relevant channels written as the vector �.

The WFC was originally derived under the assumption that D � Γ̄ so
resonances are widely spaced and interference between them can be ignored. The
cross sections then simplify to the single level Breit–Wigner approximation [3].
Under these conditions, one assumes that the resonance widths Γc follow a χ2

distribution with νc degrees of freedom, giving

Wab(�) =
(

1 + δab 2

νa

)∫ ∞

0
dx
∏

c

(
1 + 2Γ c

νc
∑
i Γ i

x

)−δac−δbc−νc/2
. (2)

Improvements to this, such as Moldauer’s approach [2], are based on phenomeno-
logical fits of transmission coefficient dependent νc(Tc).

The Hauser-Feshbach equation given in most textbooks [4] is written in terms of
the transmission coefficient Tc = 1 − |〈Scc〉|2 that can, for example, be computed
using the optical model. Noting that in the weak coupling limit Tc ≈ 2πΓ c/D, one
usually replaces

Γ b∑
c Γ c

→ Tb∑
c Tc

. (3)

In the Sect. 3, we argue that this conventional form is incomplete and must be mod-
ified, giving rise to a form that predicts superradiance. Even so, a prescription that
can connect the average resonance widths Γ̄c and level spacings D to transmission
coefficients Tc and extends beyond the weak coupling limit would allow for a unified
framework that connects the average cross sections in the RRR, URR, and fast
regions.

2 Transmission Coefficients

Moving beyond the weak coupling limit requires us to understand the connection
between the transmission coefficients Tc used in the fast region and the D,Γ c, and
νc used in the URR. The authors of this contribution investigated three parameter-
izations of Tc in Ref. [5]: the SPRT method [6], Moldauer’s “optical model” form
which (we call the Moldauer–Simonius form) [7], and the result that is implied
by Moldauer’s “sum rule for resonance reactions” [8]. These parameterizations are
summarized in Table 1.
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Table 1 Summary of transmission coefficients Tc under consideration in this contribution

Parameterization Equation Derivation

SPRT [6]
T SPRT
c = 2xc

(1 + xc/2)2 + (PcR∞
c )

2

Replace R-matrix with energy

average R

Sum rule [8] T SR
c = 2xc

[√
x2
c + 1 − xc

]
Compute energy average S

using Moldauer’s sum rule of
the S-matrix

Moldauer–
Simonius [7]

TMS
c = 1 − exp(−2xc) Phenomenological

Weak coupling limit T weak
c = 2xc(1 − xc) The other three parameteriza-

tions reduce to this in limit
xc � 1

Here xc = πΓ c/D = 2πPcsc

To better visualize the different parameterizations, we turn to 90Zr, recently re-
evaluated by S.F. Mughabghab [9]. Using the URR parameters of 90Zr we computed
the neutron transmission coefficients using the prescriptions in Table 1. We also
computed the transmission coefficients using the coupled-channel code ECIS [10]
and a Lane consistent dispersive soft rotor coupled-channel optical model potential
(RIPL OMP #612) [11]. In Fig. 1 we show these transmission coefficients. For s−,
p−, and d− wave neutrons impinging on the 0+ ground state of 90Zr, only the given
J shown in Fig. 1 are possible.

In Fig. 1, all of the transmission coefficient parameterizations are consistent at
low energies but the two weak coupling approximations diverge from the rest above
500 keV. The other three parameterizations (SPRT, Moldauer–Simonius (MS), and
sum rule (SR)) agree over the entire range of the URR and with the RRR at low
energy. The transmission coefficients computed by ECIS are roughly consistent
with the resolved and unresolved resonances, but disagree in detail. The spin orbit
coupling in the optical model potential generates a J dependence which is clearly
visible in the plots, especially in the p-wave (L = 1) channels. We note that the
neutrons in Fig. 1 approach the strong coupling limit already at 1 MeV in the p-wave
channels. A coupled-channel calculation with a realistic optical model potential
should not allow T = 1 as this would violate unitarity when combined with the
other channels in the problem.

Above 1 MeV, the optical model potential predicts a turnover in Tc. Were we
to extend the URR parameters to higher energies, we would see this behavior
in the SPRT parameterization (see the SPRT equation in Table 1), but not in
the sum rule or Moldauer-Simonius parameterizations. We speculate that this is a
result of an implicit neglect of interference effects in the sum rule and Moldauer–
Simonius parameterizations. We note that Ref. [12] describes a numerical study
using stochastically generated scattering matrices which strongly supports the SPRT
parameterization over either the sum rule or Moldauer–Simonius parameterizations.
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Fig. 1 Neutron transmission coefficients of 90Zr, computed using ECIS and RIPL optical model
potential #612 [11] and computed directly from the resolved and unresolved resonance parameters
in the ENDF/B-VIII.0 file. Figure from Ref. [5]

3 Superradiance

The WFC in Eq. (2) was derived in the weak coupling limit (xc = πΓ c/D � 1) but
it is regularly applied outside its region of validity. Both Eqs. (1) and the WFC (2)
contain factors Γ b/

∑
c Γ c which, by substituting the sum rule parameterization in

Table 1, give

Γ b∑
c Γ c

∣∣∣∣∣
SR

= Tb/
√

1 − Tb∑
c Tc/

√
1 − Tc . (4)

There is an additional factor of Γ a in σ abs
a which we will return to. If instead one

used the Moldauer–Simonius parameterization, we find a similar expression. Both
of these substitutions reduce to the one shown in Eq. (3) in the weak coupling
limit. The SPRT parameterization does not provide a unique mapping between
xc = πΓ c/D and Tc due to its behavior at large xc, so we do not know how to
make an equivalent substitution for it.

Both Eq. (4) and the equivalent Moldauer–Simonius parameterization have
potentially dramatic implications. When we reach the strong coupling limit in only
one channel (so Tc → 1), that channel dominates the cross section, an effect
known as superradiance [13]. This might happen if there are many close resonances
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Fig. 2 Plots of 90Zr cross sections, computed with and without the superradiance-modified
Hauser-Feshbach equation. Cross sections computed with the sum rule and Modauer-Simonius
parameterizations are labeled “SR” and “MS,” respectively. Experimental data from the EXFOR
library are also shown [16]. Figure from Ref. [5]

(causing D → 0) or a few very strong resonances (causing Γ c → ∞) acting
incoherently [14]. The superradiant effect has been seen in many other mesoscopic
systems [13, 14] and because compound nuclear reactions are only treated in the
weak coupling limit, the effect is neglected.

The peaks in the p-wave transmission coefficients suggest that we might see
superradiance in 90Zr cross sections. We calculated the 90Zr cross sections using
the EMPIRE [15] reaction code, modified with the substitution in Eq. (4). The
results are shown in Fig. 2 for the capture and total inelastic cross sections. The
effects of superradiance are not obvious either at low energy (where we are in the
weak coupling limit) or at high energy (where there are a large number of open
channels and the effects of pre-equilibrium emission become evident). In the region
around 2–4 MeV, we see noticeable differences between the cross sections computed
with and without superradiance. While the most dramatic changes are in the total
inelastic and capture cross sections, the elastic cross section shows an effect as
well. Superradiance appears to cause an interesting modification to the shape of the
inelastic cross section just above threshold. A measurement of 90Zr(n, n′γ ) between
2 and 4 MeV would be very helpful by providing experimental evidence for (or lack
of) superradiance.

4 Conclusion and Outlook

In Ref. [5], we investigated the consequences of different formulations of the
neutron transmission coefficient, enabling a rigorous connection between the RRR,
URR, and fast neutron regions. This work suggests that predictions of the mean
level spacing coupled with an optical model potential can allow one to predict the
average neutron widths even in the strong coupling regime. This provides a tool for
predicting neutron widths far off stability.
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Our work also shows how and where superradiance may impact nuclear reac-
tions. The effects of superradiance in the compound nuclear cross section appear to
be small in most cases and are only evident in systems with a small number of open
channels with large transmission coefficients. In practice, there are many effects that
could mask superradiance: (a) direct reactions will lower the effective transmission
coefficient because of the Englebrecht-Weidenmueller transform, (b) strong level
repulsion prevents small D, (c) Γ c → ∞ is unphysical, and (d) odd cross section
behavior may be washed out by the cross section fluctuations. However, the right
optical model potential could lead to Tc ≈ 1 as in Fig. 1.

The effects of superradiance might be easier to see in the incoming channel
because it is easier to control this channel experimentally. Blindly substituting
the sum rule transmission coefficient into the absorption cross section we have

σ abs
a → 2π2ga

k2
a

Ta√
1−Ta , which clearly is singular when Ta → 1. The Moldauer–

Simonius transmission coefficient is also singular as Ta → 1. As the results of Ref.
[12] strongly disfavor both and favor the SPRT parameterization, we think a possible
resolution requires a detailed re-examination of how the WFC must be modified to
account for level repulsion. Such a study might also help us understand the variance
of the cross section in the URR.
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Multi-step Direct Reaction Models
Including Collectivity in Nucleon Induced
Reactions

E. V. Chimanski, R. Capote, B. V. Carlson, and A. J. Koning

1 Introduction

Pre-equilibrium nuclear reaction is known as a particle emission process that takes
place after the first projectile–target interaction but long before the equilibrium
of the compound system is reached. Griffin in 1966, pioneered the description of
such events with the so-called Exciton Model [1]. Since then, many improvements
and extensions as well as new models were developed to describe pre-equilibrium
phenomena [2–6]. These models, although being very sophisticated, are limited by
their semi-classical nature, i.e., they do not take into account the interference effects,
which are quantum-based features. Quantum mechanical models were developed
during the late 1970s to the late of 1980s in the framework of a multi-step formalism
by Agassi [7], Tamura [8], Feshbach [9], and Nishioka [10, 11].

In the quantum mechanical approach, the pre-equilibrium space is divided into
two components: events involving continuum components belong to the P space
and are called Multi-Step Direct (MSD) reactions, while those dealing with bound-
states Q are named Multi-Step Compound (MSC) reactions. The MSD describes a
highly energetic projectile (leading particle) that stays in the continuum and creates
new particle–hole pairs on its way through the target nucleus. This process usually
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ends after a few interactions, or steps, with the number small enough so that the
incident particle will retain some memory of its initial energy and direction.

Particle–hole excitations of the target states in the MSD theory can be taken in the
so-called independent particle model [12], with no interaction between the excited
modes involved, or in a slightly mixing p-h energies approach [13, 14]. Under
certain statistical assumptions, the excitations can be represented by a response or
strength function with a well-defined distribution. At low excitation energies, the
collective nature of these states imposes obstacles to the statistical approach and the
distributions become non-trivial functions of the energy.

In this work we analyze the particle–hole strength function for a collective
excited state of the target nucleus. Different distributions are adjusted to it and a
general fit is proposed. In addition, we also present a simplified particle–hole model
we intend to employ for the transition matrix element calculations in the future.
This work is organized as follows: In the next section the theoretical formalism for
the one-step process is given. The two subsections are devoted for the descriptions
of the methods employed. Results and Conclusions are presented in the last two
sections.

2 One-Step Processes

The cross-section formulas for MSD reactions can be obtained from a Born-like
expansion of the transition matrix elements [11, 14]. The number of steps is directly
related to the number of terms in the expansion. At sufficiently high excitation
energy, the one-step excitation can be obtained by an incoherent sum of particle–
hole transition matrix elements weighted by a distribution—the response function
ρ:

d2σ

d�dEf
= m2

(
2πh̄2

)2
kf

ki

∑

ph

ρ(Ex)

∣∣∣〈ψ(+)kf
|〈ph|V|0〉|ψ(−)ki

〉
∣∣∣
2
, (1)

where m is the projectile mass and 〈ph|V|0〉 represent the particle–hole matrix
elements assuming the target to be initially in its ground state. The incoming ψ(−)ki

and outgoing ψ(+)kf
distorted wave functions are obtained from the projectile-target

optical potential.
The distribution ρ can be obtained from the strength function of the Random

Phase Approximation (RPA) states

ρ(Ex)→
∣∣∣axph

∣∣∣
2

axph = Xxph + Yxph,

whereXxph and Yxph are the RPA eigenvector components. In general, the sum of RPA
amplitudes should be performed before squaring the matrix elements, however, as
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we have already shown in Ref. [15], the sum becomes incoherent at energies above
those of the underlying collective states. Here, we focus the study on the amplitudes
of p-h excitations for the lower energy part of the RPA spectra. The full cross-section
calculation will be addressed in future works.

2.1 Strength Function

We employ the self-consistent RPA code by Colò and collaborators [16] to obtain the
necessary excited states and amplitudes. Single particle states are obtained solving
the Hartree–Fock equations (we have used the Skyrme interaction SLy5 [17]) and
the excited states are calculated for a given angular momentum and parity Jπ . The
RPA equations are [18]

(
A B

−B −A
)(
Xx

Yx

)
= Ex

(
Xx

Yx

)

with the matrix elements given by

Ami,nj = (Em − Ei)δmnδij + (mj |V |in)
Bmi,nj = (mn|V |ij)

∑

nj

Ami,njX
x
nj +

∑

nj

Bmi,njY
x
nj = ExXxmi,

where the indices m, n are reserved for states above (particles) while i, j for states
below (holes) the Fermi level.

The strength function ρ is defined as the contribution of each p-h mode over the
entire RPA energy spectrum. In this way, we define a histogram summing up all
contributions within an energy bin of size 1.5 MeV. The histogram is compared to
three different distributions, a Gaussian

G(E) = g0√
2πσ 2

exp

[
− (E − E0)

2

2σ 2

]
, (2)

a Breit–Wigner,

BW(E) = w0

π

γ

(E − E0)2 + ( γ2
)2 , (3)

and an exponential
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Exp(E) = e0 exp

[
(E − E0)

β

]
. (4)

The widths σ, γ , and β of the distributions are taken to represent the p-h mixing
caused by the residual interaction. Their mean energy values E0 are close to the
energy of the mode that most contributes to the state.

2.2 Simplified Particle–Hole Basis

The calculation of the p-h transition matrix elements using the single particle states
from the Hartree–Fock (HF) solutions can be very time consuming due to the slow
convergence of the mean field. As a first approximation we use a simplified model
based on quantum harmonic oscillator (QHO) functions. Our work is reduced to
building and diagonalizing the following matrix [19]:

Hν′ν =
∫ ∞

0
r2drgν′l (r)gνl(r)

[
h̄2

2mn

(
4ν + 2l + 3

b2 − r2

b4

)

+vWS(r)+ vC(r)+ 1

2

[
j (j + 1)− l(l + 1)− 3

4

]
vLS(r)

]
(5)

where ν′, ν are the principal QHO quantum numbers, with l the orbital and j the
total angular momentum, respectively. The interactions and their parameters are the
following: the central Wood–Saxon

vWS(r) = −V0

1 + exp[(r − R0)/a0] ,

where

R0 = r0A1/3 fm, r0 = 1.27 fm, a0 = 0.67 fm, V0 = 51 ± 33(N − Z)
A

MeV,

with + for proton and − for neutron states; the spin–orbit interaction

vLS(r) = v0
LSr

2
0

1

r

[
d

dr

1

1 + exp[(r − R0)/a]
]
, v0

LS = 0.44V0 MeV;

and the Coulomb repulsion

Ze2

2R0

[
3 −

(
r

R0

)2
]

for r ≤ R0 and Ze2/r for r > R0.
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The Blomqvist–Molinari formula [20] is used for the harmonic oscillator parameter

b = 197.33√
940 × h̄ω fm, h̄ω =

(
45A−1/3 − 25A−2/3

)
MeV.

3 Results

We take the 3− excited states of the double-magic target Ni56 (A= 56, and
Z= 28) for the particle–hole response function analysis. We show in Fig. 1 the
contribution of a low-energy p-h component along the excitation energy spectrum.
We immediately notice that this mode dominates the lower (left side) energy part
and has a long tail toward more energetic states. A Gaussian function fit to it
gives g0 = 0.67, σ = 2.5 MeV, and E0 = 12.12 MeV, while the Breit–Wigner
provides w0 = 0.44, γ = 0.82 MeV, and E0 = 13.12 MeV. The former furnishes a
better description of the large contributions but ignores the important contributions
from the high energy part of the spectrum. One may notice that the peaked BW
distribution has its mean value shift to the right compared to the non-interacting
energy component. In addition, we also attempt to adjust the exponential function
of Eq. (4) to the tail of the distribution with e0 = 5.0 × 10−5, β = 20.0 MeV,
and E0 = 25.0 MeV. This part of the histogram seems to be well described by
both the BW and the exponential distributions. As a more general representation for
the strength function, we propose a linear combination of the Gaussian function,
accounting for the lower energy part of the spectra, plus either the BW or the
exponential distributions for a better approximation of the higher energy tail of the
histogram. With the BW tail we have

F(E) = G(E)+ BW(E), (6)

where the best fit is given by g0 = 0.92, w0 = 0.04, σ = γ = 2.5 MeV with a
mean value for both functions E0 = 12.12 MeV. If an exponential approximation is
used with

K(E) = G(E)+ Exp(E), (7)

we obtain g0 = 1 and e0 = 5.5 × 10−5 with the other parameters held constant.
Figure 2 presents a comparison of the two cases and the histogram data. The very
final part of the tail of the distribution is better reproduced by the BW curve (K)
while the exponential (F) fits nicely in the middle part of the spectra.

Before closing, we present in Fig. 3 the particle–hole spectrum of proton states
obtained with the simplified model described in Sect. 2.2. The components are
formed by all quasi-bound p-h pairs with particle energies lying below the sum of
the Coulomb plus centrifugal barrier. This model permits a very large basis, which
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Fig. 1 Strength function for
a collective (low energy)
excited 3− state of 56Ni. The
histogram represents the
contribution of a particular
p-h mode, shown as the solid
vertical line Eph = 12.0 MeV,
along the RPA energy states.
The parameters of the curves
are given in the text
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serves to calculate the particle–hole transition matrix elements for the cross-section
formula over a wide range of excitation energies and angular momenta.

4 Conclusions

The RPA strength function was studied for the 3− collective states of 56Ni. In this
case, its width accounts for the particle–hole configuration mixing present in the
state. The strength function for low-energy p-h components can be a complicated
function of excitation energy. The presence of a very long tail toward high energetic
states reflects the importance of those components in the description of decay transi-
tions. We found that the combination of a Gaussian distribution with a Breit–Wigner
or an exponential produces good agreement with the histogram data. Collective
states present properties that are difficult to be taken into account statistically,
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Fig. 3 Proton particle–hole state basis for 56Ni target obtained with the simplified Hamiltonian (5)

the transition matrix elements are coherent in phase, making the cross-section
calculation difficult to be performed. For the formulas shown here, the phases of
different p-h components are hidden in the squared value of the amplitude, and the
many modes present in collective states could be represented by a distribution with
a large spreading energy width. The combined function seems to represent better
the whole spectrum for low-energy modes that contribute to collective states. The
best reproduction of such distribution was shown to be a complicated combination
of different functions due to all non-trivial coupling matrix elements of the RPA
model.

To avoid the use of HF single particle states, we have presented a simplified
model for calculating the single particle states to generate the p-h components. The
distribution of the modes obtained provide a very large basis, allowing calculation
of cross sections for reactions from small to high excitation energies in a beyond
mean-field approximation.
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New Symmetry-Adapted ab initio
Approach to Nuclear Reactions for
Intermediate-mass Nuclei

Alexis Mercenne, Kristina D. Launey, Jutta E. Escher, Tomas Dytrych,
and Jerry P. Draayer

1 Introduction

Ab initio descriptions of reactions of nuclei heavier than 16O remain a challenge in
nuclear physics. Their theoretical and experimental study is of utmost importance to
identify various quantum mechanisms that can explain the complexity of nuclei. In
addition, many simulations of astrophysical phenomena are very sensitive to nuclear
reaction cross sections. For example, simulations of X-ray burst nucleosynthesis
have been found to be sensitive to several nuclear reaction rates for intermediate-
and medium-mass nuclei [1], pointing to the need for accurate cross sections. For
theoretical predictions, this level of accuracy can be achieved through an ab initio
description of nuclear reactions. Recent progresses in ab initio nuclear theory using
QCD-inspired realistic interactions along with the continuous improvement of high
performance computing have given the necessary tools to theoretical approaches
such as the no-core shell model (NCSM) to provide an ab initio description of the
structure of light nuclei [2, 3]. Its recent implementation within the RGM [4], the
NCSM/RGM, has allowed a microscopic study of nuclear reactions [5–7], pursuing
the long-standing goal of unifying nuclear structure and reactions. Recently, it has
been demonstrated that the SA-NCSM [8, 9], which employs a physically relevant
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basis, can use drastically reduced configuration spaces with practically the same
accuracy of results, and has been successfully applied up to medium-mass nuclei
[10, 11]. Motivated by the need for calculated nuclear cross sections in experimental
research and astrophysical studies, and following the success of the NCSM/RGM
for light nuclei, we combine the SA-NCSM with the RGM. As a first step, we focus
on reactions of two clusters, in which the projectile is a nucleon.

2 Ab initio Symmetry-Adapted Framework for Nuclear
Reactions

In the RGM framework, the nucleons are organized within different groups, or
clusters, “resonating” through the inter-cluster exchange of nucleons. This antisym-
metrization between the different clusters guarantees the Pauli exclusion principle,
which, along with the consideration of the cluster internal structure, is one of the
most important features of the approach. In the case of two clusters, the wave
function is written as (in notations of Ref. [6]):

|Ψ JπT 〉 =
∑

ν

∫

r

drr2 g
JπT
ν (r)

r
Â |ΦJπTνr 〉 , (1)

where the index ν represents all quantum numbers that define channels and
partitions: ν = {(A− a)α1I1T1; aα2I2T2; �s}, and the cluster states are defined as

|ΦJπTνr 〉 = [(|(A− a)α1I1T1〉 ⊗ |aα2I2T2〉)(sT )× Y�(r̂A−a,a)
](J πT ) δ(r−rA−a,a)

rrA−a,a . The

amplitudes gJ
πT
ν (r) describe the relative motion between the target and the projec-

tile for all channels ν, and the cross section can be extracted from their asymptotic
behavior. The gJ

πT
ν (r) functions are the solutions to the Schrödinger equation:

∑

ν

∫
drr2

[
HJ

πT
ν′ν

(
r, r ′
)− ENJπTν′ν

(
r ′, r

)] gJπTν (r)

r
= 0 . (2)

Here, the Hamiltonian HJ
πT

ν′ν (r
′, r) and norm NJ

πT
ν′ν (r

′, r) kernels are expressed

as 〈ΦJπT
ν′r ′ | ÂÔÂ |ΦJπTνr 〉 with Ô being the identity and the Hamiltonian operator,

respectively, and where Â is the antisymmetrizer ensuring the Pauli exclusion
principle. The kernels are computed using the wave functions of the clusters. Eq. (2)
can then be solved using an R-matrix approach [12, 13].

An ab initio application of this approach is the NCSM/RGM [6], which uses
NCSM wave functions and realistic interactions. However, the method becomes
numerically challenging for heavier systems due to the size and complexity of the
configuration space. We address the limitation of the NCSM/RGM by combining the
SA-NCSM with the RGM formalism, where the former allows for the calculation
of the intermediate mass wave functions required by the RGM.
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In the SA-NCSM, the microscopic many-body basis is based on the spherical
harmonic oscillator single-particle basis, and labeled by irreducible representations
according to the group chain:

SU(3)(λμ) ⊃
κ

SO(3)L ⊃ SO(2)ML. (3)

Consequently, for any given total spin J and its projection M , the wave function
of a nucleus will be described within a basis {|αi(λiμi)κi(LiSi)JM〉} with each
component weighted by a coefficient Ci . Here αi represents additional quantum
numbers needed to enumerate the complete shell-model space.

In the SA-RGM, the channels are defined by coupling each component of the
SA-NCSM wave functions between the projectile and the target. Consequently, the
channels with good SU(3) spin and isospin quantum numbers are given in the case
of one nucleon projectile as

|Φρ(λμ)κ(LS)JMTMTγn 〉 =
{
|α1(λ1μ1)S1T1〉 ⊗ |(n0)

1

2

1

2
〉
}ρ(λμ)κ(LS)JMTMT

,

(4)
where the index γ ≡ {α1(λ1μ1)S1T1; (n0) 1

2
1
2 } labels the channel basis, with (n0)

representing the SU(3) labels of the projectile with spin 1
2 and isospin 1

2 . Note that
there is no dependence on the orbital momentum of the target and the projectile.

In this basis, the exchange matrix, which ensures the antisymmetrization in the
kernels, has the following form (in conventional notations [14]):

〈Φρ′(λ′μ′)κ ′(L′S′)JMTMT
γ ′n′ | P̂A,A−1 |Φρ(λμ)κ(LS)JMTMTγn 〉

= 1

A− 1
δρρ′δ(λμ)(λ′μ′)δκκ ′δLL′δSS′

∑

τρo(λoμo)
Soρ̄

	τSoS′
1T

′
1
(−1)n+n′−(λo+μo)

× (−1)T1+ 1
2 +T ′

(−1)S1+ 1
2 +S′

{
S1 So S′

1
1
2 S 1

2

}{
T1 τ T

′
1

1
2 T

1
2

}

×
√

dim(λoμo)

dim(n0)
U
[
(λ1μ1)(λoμo)(λ

′μ′)(n′0); (λ′
1μ

′
1)ρ̄ρ

′(n0)ρoρ
′′]

× 〈α′
1(λ

′
1μ

′
1)S

′
1T

′
1| ||
{
a

†
(n0) 1

2
1
2

⊗ ã
( ˜0n′) 1

2
1
2

}ρo(λoμo)Soτ
|||α1(λ1μ1)S1T1〉ρ̄ .

(5)

Clearly, the presence of the delta Kronecker functions in Eq. (5) makes the exchange
matrix diagonal within this SU(3) basis, allowing for several numerical simplifica-
tions [15]. Furthermore, matrix calculations avoid complications of dealing with the
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orbital momentum, which is introduced at the very last step of the calculation, for
input to the R-matrix approach. Namely, we can retrieve the partial-wave expansion

|ΦJMTMTνn 〉 =
∑

i

Ci
∑

jρ(λμ)
κLS

	I1LSj 〈(λi1μi1)κi1Li1; (n0)0�| |(λμ)KL〉ρ

× (−1)I1+J+j	sj
{
I1

1
2 s

� J j

}⎧⎨

⎩

Li1 S
i
1 I1

� 1
2 j

L S J

⎫
⎬

⎭ |Φρ(λμ)κ(LS)JMTMTγin
〉

(6)

and calculate the norm NJ
πT
ν′ν (r

′, r) using the formula of Ref. [6]. Note that the
summation over i represents the expansion of the target wave function in terms of
the SU(3) basis states, where i is given by {αi1(λi1μi1)κi1Li1Si1}. The Hamiltonian
kernel is calculated straightforwardly using the same procedure, but the details are
more complicated and are omitted for brevity here.

3 Results

To demonstrate the efficacy of the approach, we present results for norm and
Hamiltonian kernels for light and intermediate-mass nuclei.

SA-NCSM and SA-RGM computations are performed in laboratory coordinates.
The center-of-mass (CM) spuriosity is removed for the target wave function. To
simplify the calculations the present results are reported for a projectile–target
system with the CM included (the removal of the CM is work in progress and
is based on an efficient group-theoretical algorithm to be reported in another
publication). Nonetheless, this CM effect is expected to be negligible for reactions
for one nucleon plus an A � 16 target, such as 16O and 20Ne.

First, we have performed a benchmark calculation for p-4He, where we compare
the exchange part of the norm in laboratory coordinates for the NCSM/RGM
approach, according to Eqs. (37) and (50) of Ref. [6], and the SA-RGM approach
using Eqs. (5) and (6) (Fig. 1). The SA-RGM result has been obtained using a
4He wave function truncated to only several SU(3) basis states, and is in excellent
agreement with the NCSM/RGM calculation. It is important to mention that the SA-
RGM approach with the complete SU(3) wave function provides exactly the same
results as in the NCSM/RGM.

The first results for the kernels for reactions of intermediate-mass nuclei using
various realistic nucleon–nucleon (NN) interactions are now available. In these
calculations, we use SA-selected model spaces for the target wave functions, as
complete SU(3) (equivalent to NCSM) model spaces for a sufficiently large number
of shells are prohibitive. As an illustrative example, we show the norm kernel
for p-16O with the NNLOsat [16] interaction and p-20 Ne with the NNLOopt [17]
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Fig. 1 Exchange part of the
norm kernel (� = 0) for
p-4He. The NCSM/RGM
calculation was performed
using the formalism of Ref.
[6] and the complete 4He
wave function. The SA-RGM
calculation was performed
using Eq. (5) and a truncated
4He wave function, where
only SU(3) components with
a probability greater than 1%
are selected. Calculations are
performed in 4 shells and for
h̄� = 15 MeV

Fig. 2 Exchange part of the norm kernel (� = 0). The target wave function is calculated using the
chiral NNLOsat NN in 10 shells (h̄� = 16 MeV) for 16O, and the chiral NNLOopt NN in 13 shells
(h̄� = 15 MeV) for 20Ne, with selected SU(3) configurations that have a contribution greater than
2%

interaction (Fig. 2). As expected, the norm kernel vanishes at large distances, which
is consistent with the Pauli principle. Results are shown for a model space for the
projectile that yields convergence. Indeed, we find that the norm kernel converges
comparatively quickly for the NNLOsat interaction and, e.g., including up to 4 shells
has already yielded a converged norm kernel for p-16O (Fig. 3).

The Hamiltonian kernel provides information on the non-local effective interac-
tion between the projectile and the target for a given channel, and can be studied for
intermediate-mass targets in the SA-RGM framework. For example, we find that the
direct part of the Hamiltonian kernel for the p+20 Ne shows a different behavior as
compared to doubly-magic systems (Fig. 4, left panel). The positive peaks occurring
around r = 3 fm might be related to the intricate structure of 20Ne that exhibits
clustering substructures and enhanced deformation, as shown in the density profile
(Fig. 4, right panel). Further investigations of these effective interactions in this
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Fig. 3 Convergence of the
exchange part of the norm
(� = 0) with the allowed
number of shells nmax for the
projectile using SA-RGM.
Calculations are described in
the caption of Fig. 2
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Fig. 4 Left panel: Direct part of the Hamiltonian kernel (� = 0) using the same wave function
as in Fig. 2. Right panel: Corresponding one-body density profile of 20Ne from the SA-NCSM
calculation

region and the role of non-locality are needed, especially in relation to obtaining
first-principle optical potentials.

To summarize, the use of a physically relevant basis in the SA-RGM provides
a pathway to ab initio descriptions of nuclear reactions in the intermediate-mass
region. The use of this basis allows several numerical procedures inherent to RGM
to be simplified. The present outcome shows the applicability of the method,
including benchmark calculations, convergence properties, and a discussion of non-
local inter-cluster effective interactions.

We acknowledge useful discussions with P. Navrátil and S. Quaglioni. This work
was supported by the U.S. National Science Foundation (OIA-1738287, ACI -
1713690), the Czech Science Foundation (16-16772S), and under the auspices of
the U.S. Department of Energy by Lawrence Livermore National Laboratory under



New Symmetry-Adapted ab initio Approach to Nuclear Reactions 79

Contract DE-AC52- 07NA27344, with support from LDRD project 19-ERD-017. In
addition, this work benefitted from computing resources provided by LSU (www.
hpc.lsu.edu), Blue Waters, and NERSC.

References

1. R.H. Cyburt et al., Astrophys. J. 830, 2 (2016)
2. P. Navrátil, J.P. Vary, B.R. Barrett, Phys. Rev. Lett. 84, 5728 (2000)
3. B.R. Barrett, P. Navrátil, J.P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013)
4. Y.C. Tang, M. LeMere, D.R. Thompson, Phys. Rep. 47, 167 (1978)
5. S. Quaglioni, P. Navrátil, Phys. Rev. Lett. 101, 092501 (2008)
6. S. Quaglioni, P. Navrátil, Phys. Rev. C 79, 044606 (2009)
7. S. Baroni, P. Navrátil, S. Quaglioni, Phys. Rev. Lett. 110, 022505 (2013)
8. T. Dytrych et al., Phys. Rev. Lett. 111, 252501 (2013)
9. K.D. Launey, T. Dytrych, J.P. Draayer, Prog. Part. Nucl. Phys. 89, 101 (2016)

10. K.D. Launey et al., AIP Conf. Proc. 2038, 020004 (2018)
11. J.P. Draayer, T. Dytrych, K.D. Launey, in Emergent Phenomena in Atomic Nuclei from Large-

scale Modeling: A Symmetry-guided Perspective (World Scientific, New York, 2017)
12. P. Descouvemont, D. Baye, Rep. Prog. Phys. 73, 3 (2010)
13. P. Descouvemont, Comput. Phys. Commun. 200, 199 (2016)
14. J.P. Draayer, Y. Akiyama, J. Math. Phys. 14, 12 (1973)
15. K.T. Hecht, Nucl. Phys. A 283, 223 (1977)
16. A. Ekström et al., Phys. Rev. C 91, 051301 (2015)
17. A. Ekström et al., Phys. Rev. Lett. 110, 192502 (2013)

www.hpc.lsu.edu
www.hpc.lsu.edu


Part III
Optical Models



Linking Nuclear Reactions and Nuclear
Structure to Study Exotic Nuclei Using
the Dispersive Optical Model

W. H. Dickhoff

1 Introduction

How do the properties of protons and neutrons in the nucleus change from the valley
of stability to the respective drip lines? The answer can be developed by studying
the propagation of a nucleon through the nucleus at positive energy, generating
experimentally accessible elastic scattering cross sections, as well as the motion
of nucleons in the ground state at negative energy. The latter information sheds
light on the density distribution of both protons and neutrons relevant for clarifying
properties of neutron stars. Detailed knowledge of this propagation process allows
for an improved description of other hadronic reactions, including those that purport
to extract structure information, like transfer or knockout reactions. Structure
information associated with the removal of nucleons from the target nucleus is
therefore subject of these studies and must be supplemented by the appropriate
description of the hadronic reaction utilized to extract it. Consequently, establishing
a much tighter link between reaction and structure studies than is common practice
is an important goal of this research.

In our group we apply the Green’s functions method [1, 2] to the nuclear
many-body problem to address this issue with special emphasis on reaching the
limits of stability. The method can be utilized to correlate huge amounts of
experimental data, like elastic nucleon cross sections, analyzing powers, etc., as
well as structure information like removal energies, density distributions, and other
spectral properties. This is achieved by relating these data to the nucleon self-energy
employing its causal properties in the form of a subtracted dispersion relation. The
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current implementation and corresponding details can be found in [3]. The method
is known as the dispersive optical model (DOM) and has proceeded way beyond
its original form [4]. A more general review of the optical model is available
in [5]. We discuss some recent developments of the DOM with applications to
transfer reactions in Sect. 2, the analysis of the (e, e′p) reaction solely with DOM
ingredients in Sect. 3, predictions of neutron distributions in Sect. 4, and finally offer
some conclusions in Sect. 5.

2 Transfer Reactions and the DOM

Transfer reactions are under intense study in order to develop a reliable method to
generate accurate results given certain ingredients like overlap functions and optical
potentials. A remaining source of uncertainty in the calculation of transfer reaction
observables is the optical potential for the relevant nucleons and the deuteron. Our
group has made several contributions to this effort documented in Refs. [6, 7] mostly
involving exploratory efforts.

Deuteron-induced reactions have played an important role in elucidating prop-
erties of neutrons that are either added to or removed from the target nucleus. This
role will be even more prominent when such transfer reactions are studied in inverse
kinematics at radioactive beam facilities like FRIB [8, 9]. While scientifically
compelling in its own right, the (d, p) reaction also yields indirect access [10] to
the study of neutron capture and therefore provides essential information for the
(n, γ ) reaction which is critical for the study of the understanding of the r-process.

The present state of the reaction description can be summarized by noting that the
distorted-wave Born approximation and coupled-channel approaches have mostly
studied discrete final states. The treatment of the continuum was proposed in the
late 1970s but efforts ended in the 1990s, with an unresolved controversy. Only
recently, three different groups [11–13] have revived this subject and during a recent
workshop at MSU/FRIB [14] have concluded that the relevant issues have now been
resolved.

The main ingredients of the present state of the (d, p) reaction description allows
a simultaneous treatment of transfer, elastic breakup, and the formation of the
compound nucleus. Critical ingredients for the relevant calculations are provided
by the deuteron optical potential, the description of the propagation of the added
neutron, and the final proton optical potential. Phenomenological optical potentials
suffer from being non-dispersive, local, and are not constrained by negative energy
data. A proper description of the reaction therefore requires dispersive, non-local
potentials that are also constrained by negative energy data. Such potentials are
provided by the latest implementation of the DOM [3] for the neutron and proton
propagation. An initial assessment of the DOM ingredients has been implemented
by employing the local version [15] for Ca isotopes including an extrapolation
to 60Ca. These results together with an overview of the current theory relevant
for elastic and non-elastic breakup have been published in [16]. Already at this
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Fig. 1 Comparison of KD phenomenological optical potential and the DOM [16]: elastic breakup
(EB) and non-elastic breakup (NEB) proton spectra for the reactions 40Ca(d, p), 48Ca(d, p), and
60Ca(d, p) at Ed = 20 MeV and Ed = 40 MeV

early stage, a clear preference of DOM-generated potentials emerges over a more
traditional global optical potential like the one of [17] labeled KD, as illustrated in
Fig. 1.

As the DOM potentials are constructed to smoothly connect the positive and
negative energy domain, they accurately describe the peaks that occur when a
neutron is added in a bound state, whereas phenomenological potentials do not
provide a suitable extrapolation to negative energy. Available data are well described
with these potentials [16]. Further developments are necessary to raise the standard
for the description of the deuteron and employ non-local dispersive potentials for
nucleons in order to analyze data from this reaction employing rare isotopes in
inverse kinematics. The main missing ingredient is an appropriate description of
the deuteron for which only local, non-dispersive potentials are available [18–20].
We are presently developing tools to describe the deuteron by a non-local, dispersive
potential that is constrained by corresponding elastic scattering data. The proposed
approach depends on recognizing that elastic deuteron scattering can be interpreted
as the propagation of an interacting proton–neutron pair in the medium provided by
the target nucleus [21].
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3 40Ca(e, e′p)39K Reaction and Spectroscopic Factors

Several papers have appeared in the past questioning the relevance of spectroscopic
factors [22, 23] and the possibility of measuring momentum distributions or
occupation numbers [24]. It is useful to point out that Fermi liquid theory developed
by Landau [25–27] relies on the notion of a quasiparticle with a corresponding
strength (spectroscopic factor) near the Fermi surface that can be experimentally
probed through specific heat measurements [28]. For finite systems like atoms
and molecules the corresponding information is accessed by analyzing the (e, 2e)
reaction [2, 29, 30]. Similar efforts in nuclear physics have attempted to extract
spectroscopic factors from the (e, e′p) reaction [31] for valence hole states in mostly
double-closed-shell nuclei (see also Refs. [2, 32]).

Experimental results of the (e, e′p) reaction have been included in the local
DOM in the past by employing the extracted spectroscopic factors [33, 34] in fits
with local potentials to the 40Ca and 48Ca nuclei [35, 36] and to data in other
domains of the chart of nuclides [15]. A better approach has now been implemented
based on the non-local DOM developments [3, 37, 38] that also allows an assessment
of the quality of the distorted-wave impulse approximation (DWIA) that is utilized
to describe the reaction. We note that the conventional analysis of the reaction
employed standard local non-dispersive optical potentials to describe the proton
distorted waves [39]. We have thus arrived at a stage with the DOM that all
ingredients for the DWIA description can be supplied from one self-energy that
generates the proton distorted waves at the desired outgoing energies, as well as the
overlap function with its normalization. Important to note is that these ingredients
are not adjusted in any way to (e, e′p) data.

The non-local DOM description of 40Ca data was presented in [37]. In the mean
time, additional experimental higher-energy proton reaction cross sections [40]
have been incorporated which caused some adjustments of the DOM parameters
compared to [37]. Adjusting the parameters from the previous values [37] to
describe these additional experimental results leads to an equivalent description for
all data except these reaction cross sections. The required additional absorption at
higher energies leads to a loss of strength below the Fermi energy, reducing the
spectroscopic factors by about 0.05 compared to the results reported in [37], thereby
also documenting the importance of reaction cross section data for protons at higher
energy.

Using a recent version of the code DWEEPY [41], our DOM ingredients have
been utilized to describe the knockout of a proton from the 0d 3

2 and 1s 1
2 orbitals

in 40Ca with fixed normalizations of 0.71 and 0.60, respectively [42]. The DOM
at present generates only one main peak for 1s 1

2 orbit so the employed value of
0.60 for the spectroscopic factor takes into account the experimentally observed
low-energy fragmentation. Experimental data were obtained at Nikhef in parallel
kinematics for three outgoing proton energies: 100, 70, and 135 MeV. Data for
the latter two energies were never published before. The resulting description of
the (e, e′p) cross sections is at least as good as the Nikhef analysis which yielded
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Fig. 2 Comparison of the
spectral distribution measured
at Nikhef for outgoing proton
energies of 100 MeV to
DWIA calculations using the
proton distorted waves,
overlap function, and its
normalization from a
non-local DOM
parameterization. Results are
shown for the knockout of a
0d3/2 proton from 40Ca to the
ground state of 39 K

spectroscopic factors of 0.65±0.06 and 0.51±0.05 for these orbits at 100 MeV [33],
as illustrated in Fig. 2. Our results demonstrate that the DWIA reaction model is
still satisfactory at 70 MeV and 135 MeV outgoing proton energies. By applying the
bootstrap method used for the neutron skin calculation of [38], we have generated
errors for the spectroscopic factors for these orbits with values 0.71±0.04 and
0.60±0.03, for the 0d 3

2 and 1s 1
2 orbitals in 40Ca, respectively. The results further

suggest that the chosen window around 100 MeV proton energy provides the best
and cleanest method to employ the DWIA for the analysis of this reaction.

We therefore make a strong case that the canonical suppression of the spectro-
scopic factors as pioneered by the Nikhef group [31] continues to generate values of
around 0.7 although there are qualitative differences in the construction of the cross
sections on account of the non-local potentials that determine the distorted proton
waves. Further insight into the claim that the (e, e′p) reaction can yield absolute
spectroscopic factors for low-lying discrete states in the final nucleus [32, 43, 44]
has therefore been provided, while demonstrating that a consistent description of
the reaction ingredients as provided by the non-local DOM is essential.

4 Neutron Distributions and the DOM

The efficacy of the DOM has recently been documented when its fully non-local
implementation was extended to 48Ca. Available ground-state properties of 48Ca
appropriate for a study of the properties in this system, apart from the important
particle numbers of Z = 20 and N = 28, include the charge density in addition
to level structure. These properties on top of the standard elastic scattering data
available at positive energy have been employed to construct the N−Z dependence
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of the DOM potential leaving all ingredients of the fit to 40Ca fixed except for
radius parameters. Excellent agreement with the experimental charge density has
been obtained [38] just as earlier for 40Ca [37].

Recently acquired elastic neutron scattering data and total cross sections for 48Ca
were published earlier in our large DOM paper [15] but it was at that time not
possible to generate an accurate fit to the differential cross sections at low energy
employing the local implementation of the DOM. Our current non-local DOM
potentials provide increased flexibility that allows for the present excellent fit to
these data. Most of the properties of the first 20 neutrons in this nucleus are already
well-constrained by the fit to the properties of 40Ca. The additional influence of the
extra 8 neutrons in this nucleus is then further constrained by these elastic scattering
data and total neutron cross sections [15] as well as level structure. The neutron
properties of 48Ca are of extreme interest to the community since the neutron radius
can be experimentally probed without ambiguity employing parity-violating elastic
electron scattering experiments at Jefferson Lab [45].

To produce a theoretical error for our result for the neutron skin we have
employed a method that was explored in the determination of the Chapel-Hill global
optical potential [46]. These results have now been published in [38] with our
neutron skin prediction of 0.249±0.023 fm which is much larger than the prediction
of the ab initio coupled-cluster calculation reported in [47] and most mean-field
calculations [48]. We note that this work fulfills the earlier promise of the DOM,
in that it can be employed to make sensible predictions of important quantities
constrained by other experimental data. When envisaged earlier [35], it was thought
that these predictions would involve only rare isotopes but important quantities for
stable nuclei also fall under its scope. We show in Fig. 3 results for the neutron
skin of 48Ca plotted versus the one of 208Pb as presented in [48], while adding
horizontal bars for the DOM result [38] and the coupled-cluster result of [47]. Our
current efforts for 208Pb are also generating a large neutron skin as indicated by the
large square in Fig. 3. The dashed box includes the central value of [49] but with
the expected error of the PREX-II experiment. The expected error for the CREX
experiment [45] is indicated by the vertical width of the box while its central value
is arbitrarily chosen.

5 Conclusions

As illustrated in this paper, the DOM provides ingredients for transfer reactions,
the (e, e′p) reaction, and predictions for the neutron skin of 48Ca and 208Pb,
demonstrating the relevance of this approach to simultaneously answer the questions
how nucleons propagate through the nucleus at positive energy and where they are
localized in the ground state. Extensions to other knockout reactions like (p, pN)
and the improved description of the deuteron will likely contribute to a robust
extension of the DOM to rare isotopes.
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Fig. 3 Figure adapted from [48] with the results from Refs. [47] and [38] indicated by horizontal
bars relevant for 48Ca and the rectangle including the preliminary DOM result for 208Pb. Smaller
squares and circles refer to relativistic and nonrelativistic mean-field calculations cited in Ref. [48]
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Microscopic Optical Potential from
Chiral Effective Field Theory

T. R. Whitehead, Y. Lim, and J. W. Holt

1 Chiral Nuclear Optical Model Potentials

Optical model potentials are widely used to predict nucleon–nucleus scattering
cross sections and reaction observables by replacing the complicated many-body
system of nucleons interacting through two- and three-body forces with an average
complex and energy-dependent single-particle potential. Phenomenological models
[1] fitted to experimental data are very successful at describing scattering processes
for nuclei near stability, but high-quality microscopic optical potentials may be
more reliable for reactions involving exotic isotopes for which experimental data
are scarce. Recently, microscopic optical potentials in homogeneous nuclear matter
have been constructed [2, 3] based on realistic chiral two- and three-body forces.
The aim of the present work is to extend this description to the case of finite nuclei,
with a special focus on proton elastic scattering off calcium isotopes.

In quantum many-body theory, the nuclear optical potential is identified with
the nucleon self-energy. We begin by computing the nucleon self-energy in infinite
homogeneous nuclear matter at a given density and isospin asymmetry starting from
a realistic chiral nuclear interaction [4] with momentum-space cutoff� = 450 MeV.
The real and imaginary central terms of the optical potential arise naturally when
the nucleon self-energy is computed to second order in many-body perturbation
theory. The real spin–orbit term cannot be extracted from nuclear matter calculations
and in the present work is instead calculated from the Negele–Vautherin density
matrix expansion [5] using the same chiral potential. The density-dependent optical
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potential is then folded with the relevant nuclear density distribution for the isotope
under investigation, calculated using a Skyrme effective interaction fitted to the
nuclear equation of state derived from the same chiral potential. The result is an
energy-dependent nucleon–nucleus optical potential in position space. This local
density approximation (LDA) [6] is known to give a poor description of the optical
potential surface diffuseness, and therefore in the present work we employ an
improved local density approximation (ILDA) that accounts for the non-zero range
of the nuclear force:

U(E, r)ILDA = 1

(t
√
π)3

∫
U(E, r ′)e

−|r−r′ |2
t2 d3r ′, (1)

where t is a distance scale associated with the average range of the nucleon–nucleon
interaction. In the present study we vary t within the range 1.15 fm < t < 1.25 fm.

2 Results

We have implemented the nuclear optical potentials described above in the TALYS
reaction code [7]. In the top two rows of Fig. 1 we plot the proton–nucleus differ-
ential elastic scattering cross sections at the two energies E = 25, 45 MeV for the
isotopes 40Ca, 44Ca, and 48Ca. Experimental data are shown as the red points, while
the results from the microscopic optical potentials are shown with the blue band.
The uncertainties giving rise to the theoretical error band are obtained by varying
the ILDA range parameters for both the central and spin–orbit components. In the
future we plan to estimate also the uncertainties arising from the choice of chiral
potential by varying the momentum-space cutoff, the order in the chiral expansion,
and the regulating function. We also show in the top two rows of Fig. 1 the results
(green curves) from the Koning–Delaroche phenomenological optical potential as
it is implemented in the TALYS reaction code. We see that the microscopic optical
potentials from chiral effective field theory give an overall reasonable description
of the elastic scattering cross section within the chosen energy regime. However, at
higher energies and larger scattering angles, the description starts to deteriorate.

Comparing the real and imaginary components of the microscopic optical
potential to those from phenomenology, we find excellent agreement in the real
part but the microscopic imaginary optical potential is too strongly absorptive.
This feature is ubiquitous in nuclear matter optical potential calculations and is
the reason why semi-microscopic optical potentials used today implement energy-
dependent strength factors [8]. To test this, we show in the bottom two rows of
Fig. 1, the results from our microscopic optical potentials for which the imaginary
part has been replaced by that from the KD optical potential. We see that this
replacement dramatically improves the differential elastic scattering cross sections
across all energies and target isotopes. In the future we plan to investigate higher-
order perturbative contributions to the self-energy and their effect on the imaginary
part of the optical potential.
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Fig. 1 Differential elastic scattering cross sections for proton–nucleus scattering at incident
energies E = 25, 45 MeV. We show results from microscopic chiral nuclear forces (blue),
the phenomenological Koning–Delaroche (KD) optical potential (green), and experimental data
(red). In the bottom two rows, we have replaced the microscopic imaginary part with the
phenomenological imaginary part of the KD optical potential
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Part IV
Level Densities



Nuclear Level Densities: From Empirical
Models to Microscopic Methods

Y. Alhassid

1 Introduction

The nuclear level density is among the most important statistical nuclear properties.
It appears in Fermi’s golden rule for transition rates. Along with gamma strength
functions, it is a required input to the Hauser–Feshbach theory [1] of compound
nuclear reactions. The excited compound nucleus can decay into various channels,
and its decay rate in any given channel is proportional to the available phase
space, i.e., the corresponding level density of the residual nucleus. The level density
has many applications in diverse areas such as stellar nucleosynthesis and nuclear
reactor technology.

The state density at total energy E is defined as the number of states per unit
energy

ρ(E) = Tr δ(E − Ĥ ), (1)

where Ĥ is the system’s Hamiltonian. For a system with discrete energy levels Ei ,
the state density ρ(E) = ∑

i δ(E − Ei) is singular. Usually we are interested in a
smoothed version of this density, i.e., the average state density.

While qualitative features of level densities can be understood by simple models,
a quantitative understanding presents a major challenge, in particular in the presence
of correlations beyond the mean-field approximation.
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The outline of this brief review is as follows. In Sect. 2 we discuss the thermo-
dynamics approach for calculating level densities, which is based on calculation
of the nuclear partition function at finite temperature. In Sect. 3 we discuss the
level density of non-interacting fermions, known as the Fermi gas level density,
and simple models for the spin and parity distributions. In Sect. 4 we summarize
experimental methods used to measure level densities. In Sect. 5 we review the main
empirical models for level densities, namely, the back-shifted Fermi gas model, the
constant-temperature formula and the composite (Gilbert–Cameron) formula. We
then describe the major microscopic approaches for calculating level densities. In
Sect. 6 we discuss the mean-field approximation and the combinatorial method.
Methods based on the configuration-interaction (CI) shell model that take into
account correlations beyond the mean field are discussed in Sects. 7.1 and 7.2. In
Sect. 7.1 we discuss spectral averaging theory, which is based on the calculation
of moments of the Hamiltonian. In Sect. 7.2 we review the auxiliary-field quantum
Monte Carlo (AFMC) method for calculating level densities and its applications.

2 Thermodynamics Approach

2.1 Canonical Ensemble

We assume the nucleus to be in contact with a heat reservoir at temperature T ,
in which case its equilibrium configuration is described by the canonical Gibbs

ensemble e−βĤ , where β = 1/T is the inverse temperature and Ĥ is the
Hamiltonian.

The partition function Z(β) = Tr e−βĤ is the Laplace transform of the state
density ρ(E), i.e., Z(β) = ∫∞

0 dEe−βEρ(E). The level density is then the inverse
Laplace transform of the partition function

ρ(E) = 1

2πi

∫ i∞

−i∞
dβ eβEZ(β). (2)

The inverse Laplace transform is numerically ill-defined. It can be evaluated in the
saddle-point approximation and provides the average level density [2]

ρ(E) ≈
(

2πT 2C
)−1/2

eS(E), (3)

where S(E) is the canonical entropy and C is the canonical heat capacity given by

S = lnZ + βE ; C = dE

dT
. (4)
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The value of β used in Eqs. (3) and (4) is determined as a function of E by the
saddle-point condition

E = −∂ lnZ

∂β
= E(β). (5)

2.2 Grand-Canonical Ensemble

A similar thermodynamic approach can be followed in the grand-canonical ensem-
ble, for which the number of particles fluctuates and only its average value is
fixed. The state density at energy E and particle number A are now given by a
double inverse Laplace transform of the grand-canonical partition Zgc(β, α) =
Tr e−βH+αÂ (the parameter α is related to the chemical potential μ by α = βμ). In
the saddle-point approximation we find [2, 3]

ρ(E,A) ≈ 1

2π
√− detD

eS(E,A), (6)

where S = lnZgc + βE − αA is the entropy, and D is the 2 × 2 matrix of second
partial derivatives of lnZgc with respect to β and α. The values of β and α are
determined as a function of E and A from the saddle-point equations

− ∂ lnZgc

∂β
= E , ∂ lnZgc

∂α
= A. (7)

3 Non-interacting (Fermi Gas) Models

For non-interacting fermions, it is easier to use the grand-canonical formalism of
Sect. 2.2.

We first consider one type of nucleons. The logarithm of the many-particle grand-
canonical partition function for non-interacting fermions is

lnZgc =
∫ ∞

0
dεg(ε) ln

[
1 + e−β(ε−μ)

]
, (8)

where g(ε) is the single-particle density of states.
The thermal energy can be calculated as a function of temperature using the low-

temperature expansion of Sommerfeld [4] for temperature T � TF (where TF is
the Fermi temperature). To second order in T

E = E0 + aT 2, (9)
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where E0 is the ground-state energy and a = π2

6 g(εF ) (εF is the Fermi energy, i.e.,
the energy of highest occupied single-particle level).

The corresponding heat capacity is C = dE/dT = 2aT . Using C = T dS/dT ,
we determine the entropy to be S = 2aT = 2

√
aEx , where Ex = E − E0 is the

excitation energy. The saddle-point approximation (6) then leads to Bethe’s formula
for one type of nucleons [5]

ρ(Ex) = 1√
48Ex

e2
√
aEx . (10)

A similar derivation for both protons and neutrons with Z ≈ N gives [2]

ρ(Ex) =
√
π

12
a−1/4E

−5/4
x e2

√
aEx , (11)

where a = π2

6 [gp(ε(p)F ) + gn(ε(n)F )]. For Z 
= N , the state density is given by an
equation similar to Eq. (11) but contains an additional factor of g/(2

√
gp gn) on its

r.h.s. (which is of order unity).

In the free Fermi gas model, assuming A nucleons in a box, a = π2A
4 εF

≈
A/15 MeV−1. A more realistic estimate is obtained for an isotropic harmonic
oscillator potential, for which a ≈ A/10 MeV−1. Using a Woods–Saxon potential,
it was found that a ≈ A/10.7 MeV−1 in medium-mass nuclei [6].

3.1 Spin-Cutoff Model

The spin-cutoff model assumes random coupling of single-particle spins [3, 7]. In
this model, the distribution of the spin projectionM =∑i mi is Gaussian

ρM

ρ
= 1√

2πσ
e−M2/2σ 2

, (12)

where σ is the spin-cutoff parameter. Using the equipartition theorem at temperature
T , we find

σ 2 = IT

h̄2
, (13)

with I being the thermal moment of inertia. At higher excitation energies, I
approaches its rigid-body value [2], but it decreases at low excitation energies
because of pairing correlations.



Nuclear Level Densities 101

The spin distribution is calculated from

ρJ = ρM=J − ρM=J+1 ≈ −dρM
dM

∣∣∣
M=J+1/2

. (14)

Using Eq. (12), we find for the spin-cutoff model

ρJ

ρ
= 2J + 1

2
√

2πσ 3
e−J (J+1)/2σ 2

. (15)

3.2 Parity Distribution

A simple model for the parity distribution of level densities is obtained by assuming
the particles occupy the single-particle states independently and randomly [3]. We
divide the single-particle levels into two groups of positive and negative parities,
and denote by π the parity of the group with the smaller occupation probability pπ .
The probability to have n particles in this group is then a binomial distribution

P(n) =
(
A

n

)
pnπ(1 − pπ)A−n, (16)

where A is the total number of excited particles. For an even-particle system,
a negative (positive) parity many-particle state corresponds to odd (even) values
of n, and the total probability to have a negative (positive) parity is obtained by
summing P(n) over all odd (even) values of n. For small pπ and large A, we can
approximate (16) by a Poisson distribution fπ = f n

n! e
−fπ , which depends on a

single parameter f = Apπ , the total occupation of the π -parity orbitals. For an
even-particle system, the ratio of negative- to positive-parity partition functions at a
given temperature is then given by Alhassid et al. [8]

Z−
Z+

=
∑

n odd

P(n)/
∑

n even

P(n) = tanh f. (17)

Equation (17) holds more generally for an even–even nucleus with f = fp + fn
being the total average occupation of the π -parity orbitals for both protons and
neutrons. For an even–even nucleus, the positive-parity states dominate at low
excitations, but equilibration of both parities is achieved above a certain excitation
energy. In practical applications, it is often assumed that the parity distribution is
already equilibrated at the neutron resonance energy.
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4 Experimental Methods

The measurement of level densities is a challenging task. There are several methods
but all have systematic uncertainties and are limited to certain energy regimes:

• Level counting at low excitation energies. This requires the knowledge of a
complete set of measured energy levels [9].

• Neutron and proton resonance data [10] provide an estimate of the level density
at the neutron or proton threshold energy. The measured resonance level spacing
(usually s wave and sometimes also p wave) provides the level density at certain
values of the spin/parity determined by the selection rules. The conversion to
total densities requires a model for the spin distribution, and often a spin-cutoff
model with rigid-body moment of inertia is used.

• Particle evaporation spectra [11], which depend on the level density through the
Hauser–Feshbach formalism [1]. This method requires the knowledge of particle
transmission coefficients, which can be calculated from optical potential models.

• The “Oslo method” which uses the measured particle and γ -ray coincidence
matrix [12]. The extraction of level densities in this method requires the
knowledge of level counting data at low energies and neutron resonance data.

Progress has often been achieved by combining several of these methods.

5 Empirical Models

Several phenomenological models have been introduced to describe level densities
in the presence of correlations.

5.1 Back-Shifted Fermi Gas Formula

Pairing correlations and shell effects are empirically taken into account in Bethe’s
formula by shifting the ground-state energy by a back-shift parameter �

ρ(Ex) =
√
π

12
a−1/4(Ex −�)−5/4e2

√
a(Ex−�). (18)

This back-shifted Bethe formula for the state density includes two parameters a and
� that can be treated as adjustable parameters. They can for example be determined
from level counting data at low excitation energies and neutron resonance data [13,
14].
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In the state density, each level with spin J is counted 2J + 1 times (i.e., the
magnetic degeneracy is included). The level density is defined by counting only
once each level with spin J . Assuming a spin-cutoff model (15), the level density ρ̃
is related to the state density ρ by

ρ̃(Ex) =
∑

J

ρ(Ex, J ) = ρ(Ex)√
2πσ

. (19)

Global fits using an energy-dependent parameter a that includes shell effects were
carried out in Ref. [15].

5.2 Constant-Temperature Formula

At low excitation energies it is found empirically that the level density ρ̃ is well
described by an exponential function

ρ̃(Ex) = 1

T1
e(Ex−E1)/T1 (20)

where E1 and T1 are parameters. T1 can be interpreted as an effective temperature

T −1
1 = d ln ρ̃(Ex)/dEx. (21)

5.3 Composite (Gilbert–Cameron) Formula

The composite formula for the level density, also known as Gilbert–Cameron
formula [16], is a constant-temperature formula (20) at low energies and a back-
shifted Fermi gas formula (19) and (18) at higher excitations. Both the level density
and its first derivative are matched at a certain excitation energy EM , so overall the
composite formula has only two adjustable parameters.

6 Mean-Field and Combinatorial Methods

6.1 Mean-Field Methods

Hartree–Fock (HF) mean-field theory using Skyrme interactions plus finite-
temperature BCS has been applied in Ref. [17] to the large number of nuclei
that are involved in nucleosynthesis.



104 Y. Alhassid

A mean-field theory provides the intrinsic level density ρint(Ex). It has to be
augmented by collective enhancement factors (vibrational and rotational)

ρ(Ex) = Kvib(Ex)Krot(Ex)ρint(Ex), (22)

where the factors Kvib(Ex) and Krot(Ex) describe the enhancement of the density
due to vibrational and rotational collective states. The energy dependence of these
factors, and in particular, their decay with excitation energy Ex , is one of the least
understood issues in studies of level densities, and are usually parameterized by
phenomenological expressions [18].

6.2 Combinatorial Methods

The combinatorial models are based on counting the number of ways to distribute
the nucleons among single-particle levels at a given total excitation energy [19–
22]. They are often combined with a mean-field theory such as the Hartree–
Fock–Bogoliubov (HFB) approximation. Examples of cumulative level densities
calculated in the mean-field plus combinatorial approach are shown in Fig. 1.

Fig. 1 Cumulative level densities calculated in the combinatorial approach (solid histograms) are
compared with cumulative number of observed levels (dotted histograms) at low excitation energy
U . Adapted from Ref. [19]
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7 Configuration-Interaction Shell Model Methods

The CI shell model includes shell effects and correlations beyond the mean-field
approximation, and thus can in principle provide the most precise microscopic cal-
culation of level densities. However, the combinatorial growth of the dimensionality
of the many-particle model space with the number of valence nucleons and/or the
number of valence orbitals has hindered its application in mid-mass and heavy
nuclei.

7.1 Spectral Averaging Theory (Moment Method)

The spectral averaging theory, also known as the moment method, describes the
density as a superposition of Gaussian densities for various partitions of the single-
particle orbitals with centroids and widths that are determined by the first two
moments of the Hamiltonian [23–26].

The method requires a reliable calculation of the ground-state energy, which is
required for determining the excitation energy. The calculation of second moments
is time consuming in large model spaces, and so far the method has been applied
to light and mid-mass nuclei, where it provides good agreement with experimental
data and with exact CI shell model calculations (in sd-shell nuclei) [27]. For more
details of the method and its applications see Refs. [28, 29].

7.2 Auxiliary-Field Quantum Monte Carlo Method

The auxiliary-field quantum Monte Carlo (AFMC) method, also known in nuclear
physics as the shell model Monte Carlo (SMMC) [30–34], is based on the Hubbard–

Stratonovich (HS) transformation [35], in which Gibbs ensemble e−βĤ is written as
a superposition of ensembles Ûσ describing non-interacting nucleons moving in
external auxiliary fields σ(τ)

e−βĤ =
∫

D[σ ]Gσ Ûσ , (23)

where Gσ is a Gaussian weight. The calculation of the integrand for a given
configuration of the auxiliary fields σ reduces to matrix algebra in the single-particle
space of typical dimension ∼50−100. The integration over the large number of
auxiliary fields is carried out using Monte Carlo methods.

The AFMC state density is calculated using the thermodynamic approach of
Sect. 2.1 [36–38]. The canonical thermal energy E(β) is calculated as a function
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Fig. 2 Level densities of 59−64Ni isotopes versus excitation energy Ex . The AFMC level densities
(blue circles) are compared with level densities determined by proton evaporation experiments
(green symbols) [45], neutron resonance data when available (red triangles), and level counting
data at low excitation energies (blue histograms). Taken from Ref. [43]

of β and Eq. (5) is integrated to find the partition function Z(β). The entropy and
heat capacity are calculated from Eqs. (4), and the average state density is then given
by Eq. (3).

7.2.1 Mid-mass Nuclei

AFMC methods were applied to mid-mass nuclei using the complete fpg9/2
shell [36, 39–41]. The single-particle levels and orbitals are taken from a Woods–
Saxon potential with spin–orbit interaction. The two-body interaction includes the
dominating components [42] of effective nuclear interactions: monopole pairing
and multipole–multipole interactions with quadrupole, octupole, and hexadecapole
components.

AFMC level densities of nickel isotopes 59−64Ni are shown by the blue circles in
Fig. 2 [43]. These densities do not include the magnetic degeneracy 2J + 1 of each
level with spin J and are obtained by projection onM = 0 for even-mass nuclei and
M = 1/2 for odd-mass nuclei [44]. The AFMC densities are in excellent agreement
with experimental data without any adjustable parameters.

7.2.2 Heavy Nuclei: The Lanthanides

The AFMC approach was extended to the proton–neutron formalism, in which
protons and neutrons can occupy different shells [46]. This formulation was used
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to study chains of samarium and neodymium isotopes which exhibit a crossover
from vibrational to rotational collectivity as a function of the number of neutrons.
The corresponding CI shell model space includes the complete 50–82 shell plus
1f7/2 orbital for protons, and the complete 82–126 shell plus the 0h11/2 and 1g9/2
orbitals for neutrons.

Figure 3 shows AFMC state densities (open circles) for chains of samarium and
neodymium isotopes [47, 48]. Good agreement is seen with experimental data.

7.2.3 Rotational Enhancement in Deformed Nuclei

Finite-temperature mean-field approximations to level densities were benchmarked
in Ref. [49] against exact AFMC results. The mean-field approximation is formu-
lated in the grand-canonical ensemble, and it is necessary to project on fixed number
of protons and neutrons to compare with the canonical AFMC results. Particle-
number projection was carried out using various approximations (including the
saddle-point approximation) and by exact projection after variation [50].

In Fig. 4, the mean-field HF level density of a deformed nucleus 162Dy is
compared with the AFMC density. The HF describes the intrinsic states, and thus
the enhancement of the exact AFMC density (compared with HF density) is due to
rotational bands that are built on top of the intrinsic bandheads. The corresponding
rotational enhancement factor decays to 1 in the vicinity of the mean-field shape
transition (Ex ∼ 30 MeV) from a deformed to a spherical shape.
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7.2.4 Spin and Parity Distributions

Exact spin projection was implemented in AFMC and used to calculate the spin
distributions in mid-mass nuclei [40]. It was found that the spin-cutoff model works
well except at low excitation energies in even–even nuclei for which a staggering
effect in spin was observed.

Figure 5 shows spin distributions ρJ /ρ as a function of spin J for the odd–even
nucleus 55Fe, the even–even nucleus 56Fe, and the odd–odd nucleus 60Co. AFMC
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results are compared with empirical distributions determined from the analysis of
complete sets of experimentally known nuclear energy levels [51, 52]. A staggering
effect in spin can be seen in 56Fe.

The spin-cutoff parameter can be related to the thermal moment of inertia through
Eq. (13). For even–even nuclei, the moment of inertia is found to be suppressed
below the pairing transition [40, 44].

Exact parity projection was also implemented in AFMC [8, 36]. The resulting
parity distributions in mid-mass nuclei were found to be well described by Eq. (17)
when, below the pairing transition temperature, f is taken to be the average
occupation of the quasi-particle states with parity π .

7.2.5 The Deformation Dependence of Level Densities

Modeling of shape dynamics, e.g., fission, requires knowledge of the level density
as a function of intrinsic deformation. The theory of deformation has mostly relied
on mean-field approximation that breaks rotational invariance.

In Ref. [53] a model-independent method was developed to calculate distribu-
tions of intrinsic deformation within the rotationally invariant framework of the
CI shell model without invoking a mean-field approximation. The method uses a
projection on the axial quadrupole operator in the laboratory frame [54, 55], and
is based on a Landau-like expansion of the logarithm of the quadrupole shape
distribution in quadrupole invariants [56, 57] up to fourth order. We note that this
expansion is similar to the Landau expansion of the free energy used to describe
shape transitions in nuclei with the quadrupole deformation playing the role of the
order parameter [58, 59].

The method of Ref. [53] enables the calculation of shape-dependent state
densities ρ(Ex, β, γ ) as a function of excitation energy Ex and intrinsic quadrupole
deformation parameters β, γ . To facilitate the presentation of the shape-dependent
densities, the β−γ plane is divided into three regions: spherical, prolate, and oblate
as shown in Fig. 6, and ρ(Ex, β, γ ) is integrated over each one of these regions
using the metric 4π2β4| sin 3γ | dβ dγ to obtain ρshape(Ex). In Fig. 7, the fraction
ρshape(Ex)/ρ(Ex) of the state density in each of these three regions is shown as
a function of excitation energy for spherical (148Sm), transitional (150Sm), and
deformed (152Sm,154Sm) nuclei.

As is seen in Fig. 7, the spherical region dominates the state density in 148Sm.
In the deformed 152Sm and 154Sm nuclei, the prolate region dominates the state
density at lower excitation energies but the spherical density becomes comparable
and exceeds the prolate density at higher excitations where a shape transition occurs
in the mean-field approximation.
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8 Conclusion

Phenomenological models of level densities are often based on empirical modifica-
tions of the Fermi gas model and on the constant-temperature formula.

Mean-field and combinatorial models are the most common microscopic
approaches to level densities and have been applied across the table of nuclei.
However, they must be supplemented by empirical collective enhancement factors.

The moment method and the auxiliary-field Monte Carlo (AFMC) method
include correlations beyond the mean-field approximation within the framework of
the CI shell model. The moment method has been applied to light and mid-mass
nuclei, while AFMC has been applied to nuclei as heavy as the lanthanides.
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Problem of Level Densities in Compound
Nuclear Reactions

Alexander Voinov

1 The Problem Overview

The purpose of this contribution is to give a brief overview of experimental basis for
level density models currently used in modern nuclear reaction codes such as Empire
[1] and Talys [2]. The goal is to understand the source of uncertainties associated
with those models which result in uncertainties in cross section calculations. The
discussion of the possible ways of their improvements will follow.

Modern reaction codes including those mentioned above are used in variety of
applications including astrophysics calculations and evaluation of reaction cross
sections for the ENDF data base [3]. Therefore, the robustness of model inputs in
general and level density models in particular is crucial for accuracy of calculations.
Each code has an option to input different level density models. This is certainly
helpful when codes are used for analysis of available experimental data but it results
in ambiguities and uncertainties when they are used for predictions of unknown
cross sections either in energy or nuclear chart regions where experimental data are
not available. It is appropriate to mention here specific studies on uncertainties of
Hauser-Feshbach (HF) calculations which reveal a factor of up to 3 uncertainty for
stable nuclei and much greater for nuclei off the stability line. These uncertainties
are mainly due to the difference in HF inputs and specifically due to different level
density models [4].

From physics point of view, the reaction cross section is generally due to
different reaction mechanisms, however, the compound mechanism [5] constitutes
a substantial fraction or even dominates at low energies (<∼5 MeV/A) which are
relevant to most of applications. The theory of this model was developed in Ref. [6]
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which is referred to as the Hauser-Feshbach theory of nuclear reactions. This
theory is phenomenological in the sense that it uses input parameters to calculate
reaction cross sections. Input parameters are based on nuclear structure quantities
which determine probability of creation and decay of a compound nucleus. These
are particle and γ transmission coefficients, and the nuclear level density. These
quantities are largely based on models and are source of uncertainties in cross
section calculations. For review of the present status of these quantities we refer
to Ref. [7].

HF theory is used as a main tool to calculate reaction cross sections in different
areas of basic and applied physics (examples are astrophysics and data evaluations).
Therefore the problem of the uncertainties of the input parameters is considered to
be important. This calls for specific studies of input parameters both experimentally
and theoretically. For the present, the level density and γ -strength functions are
considered to be the most uncertain inputs since particle transmission coefficients
are derived from the optical model and are based on much broader experimental
data sets compared to the level density and γ -strength. Here we will focus on level
density problems.

2 Understanding the Source of Level Density Model
Uncertainties

The reason for uncertainties in level density models is basically the same as
the reason of uncertainties of any other theoretical model in nuclear physics,
namely the lack of experimental data which are used to constrain these models.
Majority of nuclear physics models use parameters which are adjusted to fit
experimental data. Such models are usually referred to as phenomenological or
semi-phenomenological models depending on fraction of the microscopic approach
used in these models. Even some models which appear to be based on microscopic
approach usually have adjustable parameters which require experimental data to fit.

Most of all, the following types of level density models are currently used in
reaction codes for practical calculations: the first one is phenomenological models
which are based on analytical formulas and the second type of models is based
on microscopic calculations. Phenomenological models mainly use two types of
analytical formulas: the first one is based on Fermi-gas model (FGM) of Ref.[8] and
the other uses a combination of Fermi-gas at higher excitation energies, typically
above the neutron separation energy, and the constant temperature formula at low
excitation energies. The latter model is referred to as a Gilbert and Cameron model
(GCM) [9]. FGM and GCM have different excitation energy dependence because of
inclusion of the constant temperature model formula in GCM. This has a physical
implication of whether a nucleus undergoes a first-order phase transition when it is
excited. In macro-physics the first-order phase transition is observed in the process
of melting ice when the heat is received but the temperature remains constant.
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Variations arising from employing of different (FGM or GCM) level density models
represent the first source of uncertainties. Both FGM and GCM model prescriptions
have parameters which are traditionally determined based on comprehensive data on
neutron resonances [10] (discussed in the next section). For details about specific
formulas and their parameterizations recommended for practical applications one
can refer to the Refs.[1, 7].

Microscopic level density calculations used as input in Talys and Empire are
those from Refs.[11, 12]. Calculations are available in table form for all nuclei.
These level density model calculations might be consistent, depending on a specific
nucleus, with either FGM or GCM models or might exhibit completely different
excitation energy dependence. So, again, the difference in an excitation energy
dependence in different models is a key factor which determines level density
uncertainties.

Parameters for all level density models including microscopic ones from Refs.
[11, 12] (which also use renormalization parameters) are determined based on
comprehensive, but a single data set only which is data set on neutron resonance
spacings. Data on neutron resonances are available for all stable plus one neutron
nuclei, however, they are very limited in terms of spin, parity, and excitation energy
ranges. Thus, the limitation of experimental data set on which models (model
parameterizations) are based is the main source of level density model uncertainties.
More specific discussion on limitation of neutron resonance and other experimental
data is presented in the next section.

3 Review of Available Experimental Data Sets and Their
Limitations

3.1 Neutron Resonance Spacings

As already mentioned in the previous section the data on neutron resonance spacings
is the only data set the current level density models use for their parameteriza-
tions. Therefore, understanding of limitations of these data and their influence on
uncertainties of level density models is important. The neutron resonances represent
individual nuclear levels excited in low-energy neutron induced reactions. The
energy of neutrons is in eV range for heavy nuclei and in keV range for middle
mass and light ones. Therefore, the excitation energy range for neutron resonances
is very limited and is just above the neutron separation energy. Reactions with low-
energy neutrons are dominated by reactions with zero orbital momentum, so the
spins of the neuron resonances (the so called s-resonances) are in a very narrow
range of (It ± 1/2), where It is the spin of a target nucleus. All s-wave resonances
have one parity only equal to the parity of the ground state target nucleus. For middle
mass and light nuclei, contribution of p-wave resonances (for neutrons with orbital
momentum equal one) becomes apparent which creates difficulties of distinguishing
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between s and p-wave resonances. P-wave resonances are in the range (It ± 3/2)
and have opposite parity from the parity of the target nucleus. The fact that neutron
resonances are known in very limited energy and spin intervals indicates that level
density models are only constrained in these intervals. Both excitation energy and
spin dependences at lower and higher energies require model assumptions.

Along with neutron resonance data, data from discrete level scheme are used
to constrain model level density functions at the low excitation energy region.
Discrete level scheme is well known up to a certain excitation energy, typically,
up to 2–4 MeV depending on the mass range. However, model function in the
low-energy region might not perform well causing further uncertainties in model
parameterizations. The transition region from discrete states to continuum might be
prone to the structure effects, such as pairing and/or shell ones resulting in deviation
of model functions from smooth behavior.

The other potential issue comes from often non-trivial analysis of neutron
resonances. Missing resonances due to experimental threshold as well as misidenti-
fication of resonance spins and parities (due to difficulties in distinguishing between
s-wave and p-wave resonances) might lead to incorrect estimates of resonance
spacings. There are two major data sources on parameters of neutron resonances,
these are in Refs. [7] and [10]. The fact that for some nuclei resonance parameters
are different indicates the existence of the problem of neutron resonance evaluations.

3.2 The Oslo Method

The experimental method known as the “Oslo method” allows studying the nuclear
level density extracted from the particle-γ coincidence matrix P(Eex,Eγ ), where
Eex and Eγ are excitation energy and γ -ray energy, respectively [13]. Reactions
(3He,3 He′γ ), (3He, αγ ), (d, pγ ), or similar are used. As it is shown in Ref. [13],
such a technique allows extracting the level density function ρ(E∗)oslo which
is related to the “true” level density function ρ(E∗)true through the following
transformation:

ρ(E∗)true = ρ(E∗)osloA exp(BE∗). (1)

Coefficients A and B need to be determined from auxiliary information, usually, the
density of levels in the discrete energy region (the first anchor point) and the density
of neutron resonances (the second anchor point) are used. Density of discrete levels
are well known up to a certain excitation energy from a level scheme [7]. The density
of neutron resonances known only in a very limited spin interval (see Sect. 3.1)
has to be converted to the total level density, integrated over all spins populated
in Oslo type experiments. This conversion relies on models because of lack of
experimental information on spin distribution in the region of neutron resonances,
as was mentioned in the previous Sect. 3.1 and will be discussed in Sect. 3.4.
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Although, the original ρ(E∗)oslo is not able to provide model independent
absolute level density values, it delivers very unique information about the excitation
energy dependence of the level density function. As it is seen from Eq. 1, ρ(E∗)oslo
is able to show deviations from the exponential form of the excitation energy
dependence A exp(BE∗) or from the constant temperature level density formula
if we express A = 1/(t exp(x0/t)) and B = 1/t . Indeed, if we assume that
the “true” level density has the constant temperature energy dependence, we
will get ρ(E∗)oslo = 1 when A and B are adjusted to minimize the ratio
ρ(E∗)true/(A exp(BE)). Any deviations from one would show the deviations from
the constant temperature energy dependence. Such an analysis has been performed
in Ref. [14] which showed the preference of the constant temperature model over
FGM for the range of nuclei studied with Oslo technique.

Also, the Oslo method delivers very unique information about the level density
behavior between discrete and continuum excitation energy regions. This region
can still be affected by nuclear structure properties resulting in the level density
functions being not as smooth as phenomenological models (FGM or GCM)
suggest.

3.3 The Particle Evaporation

The method is based on measurements of particle evaporation spectra from com-
pound nuclear reactions [15]. Spectra are interpreted in framework of the Hauser-
Feshbach theory of nuclear reactions [6] according to which the differential cross
section of an outgoing particle in respect to its energy is proportional to the product
of particle transmission coefficients T and the level density ρ of a residual nucleus
populated by this particle. Schematically, it can be written as σ ∝ T · ρ, but a
more complete and accurate formula is presented in Ref. [6]. Since the accuracy
of transmission coefficients calculated from optical models usually exceeds the
accuracy of level density models, the latter can be benchmarked using experimental
differential cross sections σ (or spectra) of outgoing particles. Moreover, the
level density excitation energy function can be obtained by direct unfolding of
experimental cross sections [15].

The advantage of this method is that it, firstly, allows obtaining the level density
in a wide spin and excitation energy intervals compared to the method based on
the neutron resonance counting. Secondly, the method is capable of determining
the absolute values of level densities. This feature distinguishes it from the Oslo
method which requires data on neutron resonance spacings and model dependent
spin distribution function.

The systematic uncertainties of the method can potentially be caused by pos-
sible contribution of pre-equilibrium processes which distort the shape of particle
evaporation spectra, especially their high energy parts that might lead to incorrect
determination of the level density or its parameters. This is considered to be
the main drawback of the method. Also, the uncertainties arising from unknown
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spin distributions of populated nuclei can also take place for some of reactions.
To minimize these uncertainties, the careful selection of beam species and their
energies is needed to ensure the compound mechanism is dominant and effect of the
spin dependence is minimized. Spectra measured at backward angles are used for
these purposes.

Existing experimental information on the level density from particle evaporation
is scarce. There were few groups involved in these kinds of experiments in 60s–80s
using reactions such as (α, p), (p, α) [16, 17], (p, n), (α, n) [18], and (n, α) [19] on
nuclei from 50–70 mass range. Unfortunately, available data do not allow making
some general conclusions on level density regularities. The quality of data points in
some of these works is poor (small number of points, large binning interval, point-
to-point fluctuations). The analysis of these data was made with different techniques
and assumptions. Some experiments were analyzed with the simple Weisskopf
model [20] which does not account for angular momentum values of compound and
residual nuclei. Many experimental spectra have not been measured in the region
of discrete known levels populated by evaporated particles or population of discrete
levels was not included in statistical model calculations at that time.

Experiments conducted by our group suggested improvements and showed
capability of this technique to extract level densities for individual nuclei and to
benchmark existing level density models [21–24].

3.4 Spin Distribution

The spin distribution of the nuclear level density ρ(J) is an important and most
uncertain parameter in level density calculations. Model level densities use the
Gaussian form of the spin distribution with the spin cutoff parameter σ determining
the widths of this distribution:

ρ(J ) = 1√
2πσ

(J + 1/2)

σ 2 exp

(
− (J + 1/2)2

2σ 2

)
. (2)

The spin cutoff parameter is coupled with level density parameters, namely
the parameter a and δ (see Ref. [7] for details). The spin distribution and its
parameterization are based on FGM [8] and currently have a little support from
experimental data. Different model formulas for the spin cutoff parameters can be
found in Refs.[1, 7, 25, 26]. Although there is a general consensus that the spin cutoff
estimates based on the rigid body model of inertia [7, 25] work at the excitation
energy near the neutron binding energy range and higher, there are indications that
they overestimate the spin cutoff values at low excitation energies. For example, it
overestimates spin cutoff values derived from low-energy discrete levels with known
spins [7]. Therefore reaction codes such as Empire and Talys, for some of their
models, use linear interpolation for the spin cutoff parameter between the region
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of discrete levels and the neutron binding energy. However, such an approach still
needs experimental support. Theoretical studies based on Monte-Carlo Shell model
calculations [27] support decreasing of the spin cutoff parameter at low energies in
the region of iron isotopes.

It has been shown in Ref. [28] that the anisotropy of the angular distribution
of outgoing particles in compound nuclear reactions is determined by the orbital
momentums of incoming and outgoing particles and by the spin distribution of
the levels populated in residual nucleus. It creates possibility of studying the
spin cutoff parameter experimentally from studying particle angular distributions
from compound nuclear reactions. There are few experimental studies available in
literature [18, 29, 30]. In some of them there are indications of deviations of the
spin cutoff parameter from the form of the Eq. 2. However, there are no established
conclusions achieved so far, which suggests that more experiments are needed.

There is an experimental technique to study the level density for specific spin
states and parities using high resolution (p, p′) experiments [31]. Level density is
extracted from fluctuations of high resolution spectra of outgoing protons. Such
a technique with combination of other techniques, for example, with particle
evaporation spectra would allow us to study the spin cutoff parameter as well.

Further experimental studies of the spin cutoff parameter are considered to be
extremely important for constraining level density models.

4 Possible Projects on Constraining Level Density Models

It appears that widely used level density models based only on data from neutron
resonances reached the limit of their accuracy. It suggests that the best strategy to
constrain model uncertainties is to conduct analysis of experimental information
delivered by all experimental techniques and methods including, but not limited
to, neutron resonances, the Oslo and particle evaporation methods, inelastic proton
scattering. This type of analysis has not been performed so far and all level density
models used in modern reaction codes continue using parameterizations based on
neutron resonances only. The following possible projects to address this problem
appear to be important

• Study of systematics deviations of the level density excitation energy dependence
from the constant temperature model using experimental data obtained with Oslo
and particle evaporation techniques. It would help constraining the excitation
energy dependence of model functions, including problem of distinguishing
between FGM and GCM.

• Study of level densities with the analysis of particle evaporation spectra from
compound nuclear reactions. It would be possible to obtain absolute values
of level densities. By comparing the absolute values with data from neutron
resonance spacings, the spin distribution and the spin cutoff parameter can be
estimated.
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• Experimental study of the spin cutoff parameter from angular distribution
of particles evaporated from compound nuclear reactions and by analysis of
combined data from neutron resonances, evaporation spectra and from (p, p′)
experiments of Ref.[31].
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Nuclear Shell Model and Level Density

Vladimir Zelevinsky and Sofia Karampagia

1 Introduction

The knowledge of the nuclear level density as a function of excitation energy and
nuclear spin is necessary for many practical problems of nuclear physics and its
applications. There are several approaches to this task. Frequently the empirical
expressions are used based on the traditional Fermi-gas picture, with or without
the backshift parameter reflecting the existence of the pairing gap, and with the
adjusted main parameter. [1–3]. The combinations of the mean-field combinatorics,
pairing and some collective effects were used in the most broad attempts for
the general description of the level density [4, 5]. The shell-model Monte Carlo
method accounts for more parts of the interparticle interactions [6–8]. The general
introduction to the problem and some historical comments can be found in the recent
review article [9].

It seems natural to use the full solution of the nuclear shell model without making
approximations in the choice of the parts of the interaction taken into account.
Certainly, there are obvious deficiencies in using the shell model for the extraction of
the level density. The shell-model interactions are presented typically by the matrix
elements of the two-body processes. The dozens and hundreds matrix elements
should be carefully selected based on the original nucleon-nucleon interaction,
theoretical arguments, and detailed fit of well-known experimental quantities. This
selection has to be done before applications to the level density and checked by the
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spectroscopic output in the form of level energies, expectation values of observables,
and transition probabilities. Currently such work that took many years of adjustment
can be considered reliable for the nuclei of sd and pf shells and a little beyond.
The possibility of the exact diagonalization is obviously limited by the size of the
huge Hamiltonian matrix, in spite of the fast computational progress. Therefore the
Hilbert space has to be truncated with the appropriate renormalization of the matrix
elements. This truncation limits the trustworthy predictions because, starting from
some excitation energy, the truncated parts of the Hilbert space enter the game with
the new particle configurations and new levels. Finally, the standard versions of
the shell model are based on the harmonic oscillator scheme and do not feel the
continuum thresholds and finite life time of the levels beyond that. (This, however,
is a common feature of current approaches to the level density problem).

With all deficiencies of the shell model, it still gives the most reliable description
of nuclear spectroscopy. In practice, even being limited by the space truncation
and increasing widths of the continuum states, the shell-model predictions of the
level density, at least up to A ≈ 60 − 70, agree with the available information
below excitation energy 12–15 MeV, and probably even beyond. It turns out to
be an important advantage of the shell model that it accounts for all (allowed by
conservation laws) interaction matrix elements. In many theoretical approaches,
only the mean field and collective interactions are accounted for. The shell model
adds here all possible incoherent collision-like processes which turn out to influence
the level density in an important way making it a smooth function of excitation
energy. There is an obvious objection based on the deficit of information from
low-lying spectroscopy about such processes that makes these matrix elements ill
defined. However, one can argue that their exact values are of less importance; there
are many of them and their action is statistically averaged.

Here we come to the role of what is called quantum chaos and thermalization in a
small mesoscopic system of interacting constituents. The equilibration here comes
without an external heat bath, just due to the interaction that becomes effectively
strong along with the growing level density, simply because of combinatorics.
Starting from some excitation energy above the pairing gap, the neighboring wave
functions within the same symmetry class become more and more mixed and similar
by their main properties as was understood long ago [10]. The excitation energy
is distributed over the growing number of degrees of freedom as in the classical
compound nucleus picture. Statistical characteristics of stationary states, such as the
level spacing distribution, informational entropy, number of principal components,
correlational measures, etc., are smoothly changing along the spectrum as functions
of energy, similarly to thermodynamic equilibrium [11–13]. Those properties are
analogous to the predictions of the extreme limit of the Gaussian Orthogonal
Ensemble (GOE) in spite of the fact that two-body interactions are not at all random
(any two-body matrix element is repeated many times in the Hamiltonian matrix for
different background of spectators). In this way, the dense set of mixed stationary
states creates chaotic properties which in turn self-consistently lead to the generic
behavior of the level density.
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This was qualitatively understood long ago, see, for example, [14–16]. In the
book [17] it was suggested to describe the nuclear level density in the restricted
orbital space by the sequence of statistical moments corresponding to Gaussian
distributions of the observables. Later it became possible to formulate a practical
“moments method,” see [9] and the references therein, which works very well
reproducing exact shell-model results and avoiding the diagonalization of huge
matrices. The computational aspects of the moments method are formulated in [18].
Another possible way to avoid the full diagonalization is currently under way [19]
based on the Lanczos algorithm.

2 Moments Method

In the moments method we start from the shell-model Hamiltonian in a truncated
space using the mean-field basis of many-body states. The basis states are divided
into partitions p by distributing the particles over the mean-field levels. The first
moment is just the mean-field energy for a given partition p with the dimension
Dαp and a given set of exact quantum numbers α,

Eαp = 〈Hαp〉 ≡ 1

Dαp
Tr(αp)(H). (1)

This trace includes the matrix elements of the interactions diagonal with respect to
the occupancies of the given partition. The second moment,

〈H 2
αp〉 ≡ 1

Dαp
Tr(αp)(H 2), (2)

includes the bilinear combinations of mean-field energies and interaction matrix
elements forming the two-step processes based on the partition p with the inclusion
of transitions to the configurations outside this partition and back. These moments
can be read just from the Hamiltonian matrix.

The first two moments allow one to construct the effective GaussianGαp(E)with
the centroid (1) and the width defined as its variance by the second moment (2). This
determines the effective contribution of a partition p to the level density of the class
of states α,

ρα(E) =
∑

p

DαpGαp(E). (3)

There are important technical details (renormalization of the unphysical tails of the
Gaussians, the fit of the ground state energy, removal of spurious center-of-mass
excitations, and so on) which can be found in [18] and other publications. As a
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Fig. 1 Nuclear level densities for 24Mg, positive pairing and various spins, for the sd-shell and
USDB two-body interaction (taken from [20]); full shell-model diagonalization (solid curves) vs
moments method (dashed curves)

result, there comes a reliable computational method that leads to the shell-model
level density avoiding the full diagonalization. Figure 1 shows the agreement of the
level density found by this method [20] with the result of the shell-model solution.

A useful feature of the method is that it is easy to study the role of individual
components of the residual interaction in formation of the total level density. As
stressed earlier, the level density as a function of energy is a smooth function
without sharp peaks visible in calculations that account for the collective parts
of the interaction Hamiltonian only. Figure 2 demonstrates the evolution of the
level density in this direction as we include more incoherent interactions in the
Hamiltonian [20]. Here amplitudes k1 and k2 refer, correspondingly, to the strengths
of pairing and non-pairing matrix elements in the Hamiltonian; they are equal to 1
in the realistic Hamiltonian.

The quality of description from the main viewpoint of the experiment is illus-
trated by Fig. 3. Here it is just a quality check for the used shell-model Hamiltonian.
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Fig. 2 Level density for 28Si in sd-model space. Different curves correspond to different scale
factors, k = k1 = k2 = 0.1, 0.2, 0.3, 0.5, 1.0 when the pairing and non-pairing parts of the
interaction scale similarly. The left graph corresponds to the total density with all J included,
while the right graph describes the evolution of the J = 0 density. Source: Taken from [20]

Fig. 3 Comparison of
experimental nuclear level
density for positive parity
states (green stair line) with
the analogous level density
calculated with the USDB
shell model (blue dashed stair
line) and the moments
method (solid red line) for
24Mg
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3 Exponential Model (“Constant Temperature”)

The calculations for all nuclei of the sd-shell were performed [21] for various
sectors of the Hilbert space. Here we come to the practically important problem. It
would be very useful to be able to suggest experimentalists a simple parametrization
for the level density as a function of excitation energy in a given class of states
with very few parameters which can be determined from the data and carry a clear
physical meaning. There is a tradition to use the back-shifted Fermi-gas formula
that gives a reasonable description of the data. However, the main parameter in this
description that is supposed to be determined by the density of single-particle levels
at the Fermi surface, in empirical fits typically has to be taken significantly larger.
Such a description also has to include the evolution of the level density as a function
of the occupancy of the orbitals as well as effects of deformation and collective
modes. During last years the competing phenomenological description in terms of
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Fig. 4 Effective temperature parameter T for the isotopes of magnesium, aluminum, and silicon.
The level density is calculated with the USDB version of the shell model. Source: Adapted from
Ref. [9]

the so-called “constant temperature model” [1, 22] became more popular. The main
feature of this model is a pure exponential growth of the level density,

ρ(E) = ρ0 e
E/T , (4)

with a normalization constant ρ0 that is often parameterized as (1/T ) exp(−E0/T ).
Indeed, this function fits quite well the shell model results and available data. Such
a fit was done in Ref. [21] for all sd-nuclei and all classes of states. The global
prescription of the parameter T for some isotopes is shown in Fig. 4.

We call the parameter T in Eq. (3) the effective temperature. Probably more
appropriate would be to give a special name to the inverse quantity 1/T which
characterize the rate of the growth of ρ(E). It is obvious that the exponential
increase (4) cannot continue too long as the statistical quantities will diverge. But we
know from the full shell-model solution that the total level density has, apart from
the edges, the Gaussian form. At some excitation energy, the curve (3) will smoothly
join the global Gaussian. The numerical estimate of the parameters [23] agrees
with this scenario. The smooth growth of the level density (3) demonstrates the
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continuous process of chaotization of dynamics (partly, indeed, due to the relaxation
of pairing correlations) and establishing of properties similar to the GOE.

The parameter T changes in a regular way from nucleus to nucleus, Fig. 4. The
minimum value, and therefore the fastest rate of chaotization of dynamics, belongs
to the even-even isotope 28

14Si14 where all interactions with various isospin values
of pairs are present. Similarly, for the odd-A nuclei, the minimum T belongs to the
closest nucleus, N = Z ± 1 [24]. Excluding the spin-orbit coupling, one can also
noticeably decrease the parameter T as all perturbative interactions become stronger
for degenerate orbitals leading to faster onset of chaos.

Interesting physics is related to the collective motion. Long ago the collective
enhancement of low-energy level density was predicted due to the excess of soft
phonons and rotational bands [25]. Varying the shell-model Hamiltonian one can
induce the onset of the deformation [26]. For the quadrupole deformation, the main
microscopic role is played by the two-body collisions when one of the particles has
a change �� = ±2 of its orbital momentum. This can be easily model in the shell
model. Then we see the corresponding increase of the low-lying level density [27]
in agreement with the idea of the collective enhancement. In such a way, the relative
easiness of calculations allows one to study the roles of individual components of
interaction (Fig. 5).

Apart from specific applications, including astrophysical reactions, there are still
many unsolved but practically important theoretical problems: to understand the
partial values of the parameter T for the classes of states with different total spin
J and its dependence on the nuclear deformation (the physics of random coupling

2.5

3

3.5

4

4.5

T
 (

M
eV

)

N = 10
N = 11
N = 12
N = 13
N = 14
N = 15
N = 16
N = 17
N = 18

0 0.2 0.4 0.6 0.8 1 1.2
k

1

3

3.5

4

4.5

T
 (

M
eV

)

Magnesium

Aluminum

Fig. 5 Evolution of the effective temperature parameter T under variation of the pairing strength
k1 for the isotopes of magnesium and aluminum



130 V. Zelevinsky and S. Karampagia

of individual spins); to establish the limits of applicability of the shell model from
the viewpoint of level density for various groups of nuclei and along the energy
scale; to move to heavier nuclei, maybe with random interactions instead of exact
matrix elements of incoherent two-body collisions; to study the continuum effects
and corresponding reformulation of the level density problem; to compare in detail
the Fermi-liquid and constant temperature phenomenology. A special interest is
in comparison of microscopic calculations with phenomenological models almost
always used by practitioners. Here we have a chance to establish the detailed
relation between shell-model interactions and standard parameters of temperature,
entropy, spin cut-off, etc. and try to predict microscopically the degree of validity
of such a description and global evolution of the parameters. This is important for
understanding the process of thermalization in a closed mesoscopic system without
any heat bath. Here the interactions play the role of the thermalizing agent and the
ideas of statistical physics can be applied to small systems of strongly interacting
constituents.
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Constraining Level Densities Using
Spectral Data

G. P. A. Nobre, D. A. Brown, and M. W. Herman

1 Introduction

As the nuclear excitation energy grows, due to the exponential increase of the
number of levels, one must deal with the level densities (LD) rather than with
individual levels. Several phenomenological models exist to describe the general
behavior of (LD), such as the Gilbert-Cameron (GC) [1] and others, which assume
simplified functional forms of the LD and are constrained by the often limited
availability of experimental data. It is known that there are only a few ways to
experimentally constrain LD, such as through the D0 (LD at neutron separation
energy of the compound nucleus) or the matching at the excitation energy region
transitioning from discrete levels to LD.

More fundamental and predictive LD models like the microscopic Hartree-Fock-
Bogoliubov (HFB) [2] incorporated to the RIPL-3 parameter library [3] provide
more global and consistent LD, based on the intrinsic structure properties of nuclei
and observed distribution of discrete levels. This brings reliability to the LD in the
whole range of excitation energy, not only near the discrete-level cut-off or at D0.
Additionally, the HFB model provides more realistic spin and parity distributions
which emerge naturally from the model, while a phenomenological model such
as GC simplistically assumes equal distributions for parities and a Gaussian-like
distribution for spins.
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In nuclear reaction evaluations, however, predictive models are seldom employed
since the greater flexibility of parameter fitting of phenomenological models may
lead to better cross-section agreements [4]. In this work we aim to circumvent this
apparent deficiency of the HFB LD model by using experimental data from neutron
double-differential spectra cross sections on 56Fe to impose direct constraints on
the HFB total LD for 56Fe and 56Mn. We show that we can obtain a more realistic
LD and at least equally good cross sections compared to a fitted Gilbert-Cameron
model, in particular for the 56Fe(n,p) reaction which is of dosimetry interest. This
way we can combine the predictive power of a microscopic model with good
description of observed data, as required by a variety of applications. We also
investigate the consequences of this approach in the prediction of inelastic gamma
cross sections as compared to measured data.

2 Description of LD Models

LD models are crucial for Hauser-Feshbach and pre-equilibrium reaction mecha-
nisms. Phenomenological models tend to better reproduce average behaviors while
missing detailed structure components. We will discuss the phenomenological GC
and the microscopic HFB models, as implemented in EMPIRE [5].

2.1 Gilbert-Cameron Model

Most phenomenological LD models are based in some form on the analytical
expression derived from the Fermi Gas Model [1]. We assume that the density of
intrinsic levels with spin J , parity π , and excitation energy Ex can be factored in
terms of its state density and spin and parity dependence. The Gilbert-Cameron
model [1] splits the excitation energy range into two parts, with different functional
forms applied to each of them. Below a chosen matching energy Ux a constant-
temperature state density is employed while above Ux the back-shifted Fermi Gas
state density is adopted, with pairing energy given by � = n 12√

A
, where A is the

nucleus mass number and n is 0, 1, or 2 for odd-odd, odd-even, and even-even
nuclei, respectively. Some model parameters are internally determined by imposing
that the total LD and its derivative are continuous at the matching point Ux .

2.2 HFB Model

EMPIRE has implemented within its options the microscopic combinatorial
approach [2] developed for RIPL-3 [3]. It consists of using single-particle level
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schemes obtained from constrained axially symmetric Hartree-Fock-Bogoliubov
method (HFBM) based on the BSk14 Skyrme force to construct incoherent particle-
hole state densities as functions of the excitation energy Ex , the spin projection
M (on the intrinsic symmetry axis of the nucleus), and the parity π . Collective
effects are incorporated through a boson partition function providing vibrational
state densities dependent on multipolar phonon energies.

3 Implementing Constraints from Neutron Differential
Spectra Data

We adopted the n+ 56Fe reaction as our test case to identify the impact of details
of LD in the cross sections, using the same parametrization employed in the fast-
region evaluation of 56Fe present in the ENDF/B-VIII.0 evaluation [6, 7] as part
of the CIELO project [8], ensuring that all calculated cross sections are mutually
consistent and in good agreement with experimental data. We performed reaction
calculations using five different approaches for the LD: (a) assuming the GC model
for all nuclei, as done in the 56Fe evaluation [6, 7] (green curves in Figs. 1, 2, 3, and
4); (b) assuming HFB LD as available from RIPL, with no modifications to it (red
curves in Figs. 1, 2, and 3); (c) same as (b) but fitting two parameters of 56Mn LD
to (n,p) data (blue curves in Figs. 2, 3, and 4); (d) same as (c) but with the 56Fe LD
structures smoothed out in order to improve agreement with experimental data of
neutron double-differential spectra (magenta curves in Figs. 1, 3, and 4); (e) same
as (d) but with 56Mn smoothed and refitted to (n,p) cross sections (cyan curves in
Figs. 2 and 3).
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Fig. 1 Level densities and cumulative number of levels of 56Fe for the different LD approaches
explained in Sect. 3. Red curves made dashed to facilitate visualization
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Fig. 3 56Fe(n,p)56Mn cross
section obtained from the
adoption of the different LD
approaches explained in
Sect. 3. Experimental data
from EXFOR [9]
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4 Discussion

By comparing the green and red curves in Fig. 1 we see that while the GC LD
is smooth (as it comes from constant-temperature analytical forms), the HFB LD
present fluctuations, or structures, in the range 5 � Ex � 9 MeV. Both GC and
HFB (from RIPL) models approximately reproduce reasonably well the number
of levels at around 4.5 MeV which is around where one would normally impose
the transition from the discrete levels to LD. This transition point, or excitation
energy cut-off, can however be rather arbitrary. One can clearly see from Fig. 1 that
the HFB predicted cumulative number of levels yields a much better agreement
with the overall behavior of observed discrete levels, which makes it much more
independent from the choice of excitation energy at which the transition to LD is
made. Even though these two apparently similarly reasonable (from the perspective
of discrete-level matching) LD models, they lead to dramatically different (n,p)
cross sections (Fig. 3). Even after fitting 56Mn LD parameters (blue curve), the
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Fig. 4 Example of double-differential spectra for at 150 degrees and neutron incident energies of
14.1 MeV (left panel) and 8.17 MeV (right panel) for the different LD approaches explained in
Sect. 3. Data from EXFOR [9]

agreement with (n,p) data is still not optimal. Therefore, additional constraints for
the LD are needed. By noticing direct correlations between the 56Fe LD for a given
Ex region and the DD cross section at certain neutron-outgoing energies, we were
able to use the experimental knowledge of DD spectra to impose constraints on
LD. For this we smoothed the structures of the HFB LD by rescaling the tabulated
values of HFB LD to the point that effects of these structures would not appear in
calculated DD spectra and that the agreement with DD experimental data would be
satisfactory (Fig. 4). The result of this is shown as the magenta curves. Even though
this produced a considerably better agreement with (n,p) data, this is still not as good
as the GC one. This can be remediated by smoothing and refitting the 56Mn LD to
minimize χ2 relative to (n,p) experimental data. This resulted in the cyan curves. In
addition to obtaining better (n,p) cross sections, this also leads to a more realistic
56Mn LD relative to the observed discrete levels (Fig. 2).

5 Impact on Inelastic Gammas

Another application of using experimental DD spectra to constrain HFB level
densities is in the description of inelastic gamma cross-section data. Recently, cross-
section measurements of gamma emissions corresponding to transitions between
excited levels have provided new information which is very useful to complement
neutron and reaction cross sections in usual neutron evaluations. From a theoretical
standpoint, predicting and consistently fitting gamma cross sections can be a
challenge due to the variety of mechanisms involved. Therefore, a more predictive
and fundamental LD model would provide better reliability for calculated gamma
cross sections. We have done the comparison between GC and modified HFB
models for all transitions measured in the work of Negret et al. [10], and also other
transitions that were not measured. We have found that in some cases there are very
little differences. However, for some transitions there are noticeable differences in
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calculated cross sections, with the HFB one generally aligning better with observed
data. Much greater discrepancy was observed in transitions involving states of
opposite parity of that of the ground state, which gives more significance to a more
predictive and internally consistent set of LD, especially when experimental data
are not available.

6 Summary and Conclusions

Even though it is known that cross sections strongly depend on level densities
(LD) there are normally very little direct experimental input in the determination
of their details. In this work we explored this feature by imposing constraints in
extended regions of LD by observing their impact on the agreement of neutron
double-differential spectra with experimental data. This allowed us to extract
experiment-based information about LD that is useful for the structure theory
community which develop microscopic LD models, as well as to increase the
internal self-consistency of models used reaction calculations leading to evaluation-
level quality of cross sections. Additionally, this proved to be a method to obtain
more reliable inelastic gamma cross sections, in particular for those transitions
without measured data or those involving levels with parity opposite of that of the
ground state. One might expect that these effects are more pronounced for the nuclei
close to the shell closures.
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Rotational Enhancement Factor for
Nuclear Level Density

S. M. Grimes

1 Introduction

Bethe was the first to examine the nuclear level density problem. He showed [1] that
the density of nuclear states per MeV was given by

ρT (E) =
√
π

12

exp(2
√
aE)

a1/4E5/4 . (1)

In this equation, E is the energy of excitation in MeV and a is the constant called the
level density parameter which is normally found to be approximately A/8 MeV−1,
where A is the mass number. By making the assumption that a nucleus is spherical,
Bethe was able to show that

ρ(E, J ) = ρT (E)(J + 1/2)√
2πσ 3

exp(− (J + 1/2)2

2σ 2 ) = ρL(E)S(J ). (2)

In this equation, ρL(E, J ) (=ρT (E)/
√

2πσ ) is the total number of levels per MeV
and σ is the spin cutoff parameter (expectation of < J 2

z >
1/2). S(J ) is the fraction

of the levels which have spin J:

S(J ) = (J + 1/2)

σ 2 exp

(
− (J + 1/2)2

2σ 2

)
. (3)

If the nucleus is spherical,

S. M. Grimes (�)
Department of Physics and Astronomy, Ohio University, Athens, OH, USA
e-mail: grimes@ohio.edu

© This is a U.S. government work and not under copyright protection
in the U.S.; foreign copyright protection may apply 2021
J. Escher et al. (eds.), Compound-Nuclear Reactions, Springer Proceedings in
Physics 254, https://doi.org/10.1007/978-3-030-58082-7_16

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58082-7_16&domain=pdf
mailto:grimes@ohio.edu
https://doi.org/10.1007/978-3-030-58082-7_16


140 S. M. Grimes

∑

J

(2J + 1)ρ(E, J ) = ρT (E)S(J ) (4)

since each level consists of (2J + 1) degenerate states with spin projections (−J <
Jz < J ), where Jz is the spin projection on the z-axis.

Bohr and Mottelson [2] discussed in some details the effect of nuclear deforma-
tion. In most cases nuclear deformation results in an axially symmetric ellipsoidal
form. This results in two spin cutoff factors. σ‖ is the cutoff factor for rotations
about the symmetry axes (z-axis), while σ⊥ is the factor for rotations about an
axis perpendicular to a symmetry axis. Bohr and Mottelson conclude that level
density for deformed nucleus will be a factor of σ 2⊥ larger than would the case for
a corresponding spherical nucleus. A similar result has been obtained by Junghans
[3]. More recently, an analysis of the situation for level densities in deformed nuclei
[4] has concluded that the rotational enhancement factor is not only dependent on
E (σ 2⊥ varies approximately as E1/2) but includes a significant change with J. It is
proposed that

R(E, J,K) = (J + 1)2 −K2

2J + 1
exp

[
−K2 ·

(
1

2σ 2‖
− 1

2σ 2⊥

)]
. (5)

In this expression, K is the projection of the angular momentum J on a symmetry
axis. K is found to be a good quantum number for E ≤ 3 MeV, but as the level
density increases at higher energies, K values become mixed. Thus, it is more
reasonable to define an enhancement factor which depends only on J and E

R1(E, J ) =
∑J
K=0 R(E, J,K)ρ(E, J,K)∑

K=0,1/2 ρ(E, J,K)
. (6)

The lower limit on the sum will be zero for even-A and 1/2 for add-A.
This factor varies rapidly with J. Note that for J = 0 or 1/2 the factor is 1

(no enhancement). An enhancement comes from two effects. First, the deformation
splits a level of spin J in to (J + 1/2) (odd-A) or J + 1 (even-A) levels of spin J
but differing K as a result of deformation. In addition, the adding of rotational bands
increases level density for all J values larger than the J of the band head. This will
not enhance the density of the lowest value of J. Thus, although this function grows
approximately as J 2, it is only one for the J = 0 or J = 1/2 levels.

2 Level Densities from Low-Energy Resonance Counting

At low energies, neutrons can only interact with nuclei in l = 0 states. Thus, for
even-even targets, neutrons excite only compound nuclear levels of spin 1/2 and
positive parity. An odd-A target or an even-A target with spin J0 
= 0 will allow
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the excitation of levels with spin J = J0 ± 1/2. To obtain the total level density,
one must correct the inferred level density for levels of other J values. It is usually
assumed that the spin distribution proposed by Bethe is valid, in which a correction
factor would be

ρT (E) = ρ(E, 1/2)

S(1/2)

∑

J

S(J ) (7)

for even-A targets or

ρT (E) = ρ(E, J0 − 1/2)+ ρ(E, J0 + 1/2)

S(J0 − 1/2)+ S(J0 + 1/2)

∑

J

S(J ) (8)

for non-zero spin targets. An additional factor of two is applied to the right hand side
of Eqs. 7 and 8 to correct for levels of the other parity. It is obvious from Ref. [4]
that the correction formula will be different for deformed nuclei. The corresponding
formulas based on Eq. 6 will be

ρT (E) = ρ(E, 1/2)
∑
J S(J )R1(E, J )

S(1/2)R1(E, 1/2)
(9)

and

ρT (E) = ρ(E, J0 − 1/2)+ ρ(E, J0 + 1/2)

S(J0 − 1/2)R1(E, J0 − 1/2)+ S(J0 + 1/2)R1(E, J0 + 1/2)

×
∑

J

S(J )R1(E, J ) (10)

for J0 = 0 and J0 
= 0, respectively. In each case, the right hand side also must be
multiplied by a factor of two to correct for levels of the missing parity.

Two compilations of level density parameters from low-energy resonances have
been published in Refs. [5, 6]. In the compilation by Rohr [5], there is a specific
statement that the results did not show an enhanced level density for deformed
nuclei. The conclusion of Ref.[6] is more confusing. The authors derived level
density parameters using the conventional Bethe formulas. They find that the a
values for deformed nuclei are close to those for nearby spherical nuclei. They then
divide the level density by the factor predicted in Ref. [2, 3]. They then calculated
the revised a which they refer to as intrinsic. Despite this second step, it is still true
that the authors of Ref. [6] do not find higher level densities for deformed nuclei.
An important point is that both Refs. [5, 6] used the Bethe spin distribution for
both deformed and spherical nuclei. Bethe [1] specifically states that he assumes
spherical symmetry in deriving his spin formula.

In table 1 the results of Iljinov et al. [6] are summarized for some deformed
nuclei. For each of the nuclei listed, the neutron binding energy, the observed spins,
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and the measured level spacing (eV) are provided. The values indicated by a1 show
the level density parameters inferred by the authors by calculating the level density
correction using Eqs. 7 and 8. This level density is then divided by the rotational
enhancement factor proposed in Refs. [2] and [3]. A new a (labeled a2) is deduced
from the reduced level density. a1 values are similar to the a values proposed by the
authors for neighboring spherical nuclei.

The same input data were then re-analyzed using Eq. 9 or 10 as appropriate.
A very substantial increase in level density was observed. This yielded the level
density parameters a3. Finally, the rotational enhancement factor was inferred by
calculating the level density by utilizing the Bethe spin distribution. This then results
in parameters a4. a4 values are intrinsic level density parameters (those which would
be observed if a nucleus was not deformed) and are consistent with neighboring
spherical nuclei. To use Eqs. 9 and 10 values for σ⊥ are needed. Values for σ ‖
were obtained from the results of calculations in Ref. [7]. It may be shown that the
relationship between σ⊥ and σ ‖ is

σ 2⊥
σ 2‖

= 1 + 1
2β + 16

7 β
2 + β3

1 − β + 10
7 β

2 − 2
7β

3
. (11)

In this expression the β is the nuclear deformation and β > 0 is the prolate shape,
β = 0 is a spherical shape, and β < 0 is an oblate shape. Terms in β4 and β5 are
also present in the exact form of Eq. 11, but they have less than 1% effect.

Note that the values for the rotational enhancement factor in Table 1 range from
a value of about 8 for A ≈ 25 to a of about 60 for A ≈ 240. These are reasonably
consistent with theoretical predictions in Refs. [2] and [3].

Table 1 Level densities for deformed nuclei inferred with spherical and deformed spin distri-
butions

Nucleus Spin Sn D a1 a2 a3 a4 R

24Na 1,2 6.96 9.5·104 3.49 1.75 4.35 2.76 8.3
25Mg 1/2 7.33 4.7·105 3.67 1.92 6.33 4.14 7.6
26Mg 2,3 11.073 5.5·104 4.16 2.37 4.48 2.85 8.75
159Dy 1/2 6.83 30 20.81 13.05 30.0 22.1 47.8
161Dy 1/2 6.45 27.3 22.12 14.06 32.3 23.7 42.9
162Dy 2,3 8.197 2 21.34 13.58 26.8 18.4 45.3
163Dy 1/2 6.27 69 21.08 13.01 31 22.4 42.5
164Dy 2,3 7.63 5 21.2 13.24 26.9 19.2 46.1
165Dy 1/2 5.71 170 21.05 12.67 31.7 22.8 44
235U 1/2 5.298 10.6 30.26 19.23 44.8 32.8 63
238U 0,1 6.15 3.5 30.55 19.58 45.1 32.8 67
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3 Summary

There has been a long-standing inconsistency between theoretical predictions for the
rotational enhancement factor and values obtained from resonance measurements.
A resolution of these inconsistencies comes from realization that this factor does
not only depend on energy but also has a rapid dependence on J as well. When
this dependence is introduced, the experimental results brought into agreement with
theory.
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Role of Fluctuations on the Pairing
Properties of Nuclei in the Random
Spacing Model

M. A. A. Mamun, C. Constantinou, and M. Prakash

1 Pairing in Systems of Large and Small Numbers of
Particles

The Bardeen-Cooper- Schrieffer (BCS) theory of superconductivity [1, 2] predicts
a sharp discontinuity in the constant-volume specific heat CV at a certain critical
temperature Tc for which the pairing gap Δ of fermions determined from the gap
and number equations [3, 4]

G ≡
∑

k

1

Ek
tanh

(
Ek

2T

)
− 2

G
(1)

N =
∑

k

[
1 − εk − λ

Ek
tanh

(
Ek

2T

)]
+ Δ

T

∂Δ

∂α
G (2)

vanishes. Above, G is the strength of the pairing interaction, T is the temperature,
λ is the chemical potential, α = λ/T , Ek = √

(εk − λ)2 +Δ2 is the quasiparticle
energy, and εk are the single particle (sp) energies. The corresponding energy E and
entropy S are obtained from
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E =
∑

k

εk

[
1 − εk − λ

Ek
tanh

(
Ek

2T

)]
− Δ2

G
−
(
Δ2 −ΔT ∂Δ

∂T

)
G (3)

S = 2
∑

k

{
ln

[
1 + exp

(
−Ek
T

)]
+ Ek/T

1 + exp(Ek/T )

}

− Δ

T

(
λ

T

∂Δ

∂α
− T ∂Δ

∂T

)
G . (4)

These relations enable the evaluation of CV = dE/dT |V,N = T (∂S/∂T )|V,N .
The grand potential � of the system is

�(T ,Δ) =
∑

k

(εk − λ− Ek)− 2T
∑

k

ln

[
1 + exp

(
−Ek
T

)]
+ Δ2

G
. (5)

In a mean field description of the BCS theory, (∂�/∂Δ)|T = 0 = G which
leads to the most probable gap Δmp. For systems with large numbers of particles,
fluctuations in the order parameter Δ are very small as the probability distribution

P(Δ) ∝ exp[−�(T ,Δ)/T ] (6)

where the grand potential� is very sharply peaked atΔmp. In this case, Eqs. (2)–(4)
revert back to the standard mean field BCS equations. For Δ 
= Δmp, G 
= 0, and
Eqs. (2)–(4) and hence CV receive additional contributions.

In systems with small numbers of particles, fluctuations in Δ are not small. As
first noted by Anderson in his paper “Theory of Dirty Superconductors” [5], the
pairing phenomenon is suppressed due to large fluctuations in Δ which in turn
leads to a “shoulder-like” or “S-shaped” smooth curve for CV vs T . That a similar
suppression would occur in nuclei also was first noted by Moretto in Ref. [3]. The
absence of a sharp second order phase transition due to pairing in nanoparticles
and nuclei is shown in Fig. 1, which contains results of Auxiliary Field Monte Carlo
(AFMC) calculations for CV vs T including fluctuations by Alhassid et al. [6]. Such
“S-shaped” heat capacities in nuclei have been observed in experiments by the Oslo
group [7].

2 Fluctuations in the Order Parameter �

Fluctuations can arise from many sources. When T is too low orΔ varies too rapidly
with time, a thermodynamic treatment becomes inadequate and a fully quantum
approach that accounts for correlations beyond mean field theory, pairing vibrations
and suppression of pairing due to rotational motion, etc., becomes necessary [8–
18]. A semiclassical treatment of thermal fluctuations based on Eq. (6) and G 
= 0 in



Random Spacing Model 147

Fig. 1 Specific heat in nanoparticles (left) and iron isotopes (right) demonstrating the disappear-
ance of a second order phase transition present in the mean field BCS formalism. Figure adapted
from Alhassid [6]

Eqs. (1)–(4) is afforded when Δ is strongly coupled to all other intrinsic degrees
of freedom, that is when Δ >> δ, where δ = 1/g is the mean level spacing
of the sp energy levels near the Fermi sea [3, 8]. For infinite systems (e.g., bulk
nuclear matter) P(Δ) approaches a delta function, δ << Δ, whence fluctuations
are negligible and mean field BCS with G = 0 is a reasonable description. In
contrast, for small systems such as nanoparticles or light-to-medium heavy nuclei,
δ ∼ Δ or δ ≥ Δ particularly at T 
= 0, fluctuations in Δ are large and suppress
superconductivity and superfluidity. In this case, the mean field BCS approach is no
longer applicable as it neglects the influence of fluctuations.

Figure 2 illustrates the role of fluctuations in the constant spacing (CS) model
with g = 5 MeV−1 for doubly degenerate sp energy levels forN = 144 andΔ(0) =
1 MeV at T = 0. For this choice, G = 0.0581 MeV, h̄ω 	 41N−1/3 = 7.78 MeV,
with levels uniformly distributed between ±2h̄ω around λmp(0) = −1.3471 MeV
at T = 0. The probability P(Δ) is normalized such that P(Δmp) = 1 for all T .
For all curves shown, λ(T ) vs T is calculated for each Δ 
= Δmp using Eq. (2) thus
ensuring number conservation. The results in this figure are similar to those of Ref.
[3] where g = 7 MeV−1 was used.

The salient features in the left panel of Fig. 2 are (1) for low T such that
T/Δ(0) << 1, P(Δ) is symmetrical around Δmp, (2) with increasing T , P(Δ)
becomes increasingly asymmetrical, and (3) for T ≥ Tc 	 0.57 MeV, P(Δ) is
peaked at Δ = 0. For all T 
= 0, the term involving the nonzero G in Eq. (2)
gives significant contributions. As P(Δ) is very broad for T → Tc and beyond,
use of average thermodynamic quantities < Õ >= ∑

ÕP (Δ)/
∑
P(Δ) is more

appropriate than those with Δmp. The right panel of Fig. 2 provides contrasts
between Δmp and Δav as well as for gaps differing by ±1σ from Δav. The latter
gaps are nonzero for T > Tc, unlike Δmp, indicating that pairing correlations
persist beyond Tc. The excitation energies Ex = E(T ) − E(0) and CV with the
gaps shown in Fig. 2 are shown in Fig. 3. As noted in Refs. [3], and confirmed
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Fig. 2 Probability distribution of the pairing gap (left) and the gap as a function of temperature
(right) in the constant spacing (CS) model. Figure adapted from [19]

Fig. 3 Excitation energies (a) and specific heats at constant volume (b) with the gaps shown in
Fig. 2. Figure adapted from [19]

here, the second order phase transition present for Δmp is considerably altered by
fluctuations. Notably, the CV vs T curve is devoid of a discontinuity at Tc with
smoothly varying gaps.

3 The Random Spacing Model

Recently, the random spacing (RS) model in which the sp energy levels are
randomly distributed around the Fermi energy to mimic those of nuclei obtained
via the use of different energy density functionals (EDF’s) was introduced [19]. In
a set consisting of a very large number of randomly generated sp levels for a given
nucleus, some are likely to represent the true situation especially considering the
variation that exists when different EDF’s and pairing schemes are used.

Figure 4 presents an illustration of the similarity between the sp energy levels
of nuclei from Hartree-Fock-Bogoliubov calculations using a Skyrme EDF (SkO′)
[20–22] and those of the RS model. One advantage of this model is that using
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Fig. 4 (Left) Single particle energy levels of nuclei from HFB calculations using a Skyrme EDF
(SkO′) [20–22]. (Right) Results of HFB calculations for N = 76 and three realizations from the
RS model. Dotted lines represent the Fermi surface. Figure adapted from [19]

easily generated sp levels, statistically based bounds can be placed on the pairing
properties of each nucleus.

Including fluctuations using Δav as outlined in Sect. 2, the specific heat CV as a
function of temperature is shown in Fig. 5 using a large number of the RS model
sp energy levels. The levels were randomly distributed within a window of 2h̄ω
around the Fermi level for N = 144. Each level was endowed with the degeneracy
d = 2j + 1 characteristic of shell model sp energy levels with angular momentum
j . Increasing the number of random realizations in the ensemble makes the band
denser, but the borders remain more or less the same. This feature indicates that
results obtained using realistic EDF’s would lie within the band shown. This feature
is particularly useful for performing sensitivity tests in astrophysical settings that
harbor exotic nuclei. Note also the absence of a second order phase transition as
evidenced by the shoulder-like or S-shaped structure of CV around Tc of the mean
field BCS model.

Results of CV using Δmp, Δav, and Δav ± σ for two realizations among
hundreds of individual random realizations of sp energy levels are shown in the
right panel of Fig. 5. Although the overall features in this figure are similar to those
of the CS Model, quantitative differences exist owing to the different bunching and
degeneracy of the individual sp energy levels of the RS model.

4 Outlook

Calculations of level densities and the spin distributions of nuclei including fluctua-
tions in the RS model are in progress and will be reported elsewhere. A semiclassical
treatment of fluctuations is strictly valid only when the mean sp level spacing
around the Fermi surface is smaller or nearly equal to the zero temperature pairing
gap and a fully quantum treatment of fluctuations becomes necessary otherwise to
overcome the limitations of the mean field BCS formalism [8–18]. Contrasting the
semiclassical and quantum treatments of fluctuations in the canonical and grand
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Fig. 5 Specific heat obtained using the RS model with the inclusion of fluctuations (A). Two
independent realizations of the RS model with use of the most probable and average gaps including
1-σ deviations (B). Figure adapted from [19]

canonical approaches [12, 18] as well as investigations of fluctuations in highly
neutron-rich isotopes with more advanced techniques in the context of the RS model
are other investigations under study.
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Part V
Gamma-Ray Strength Functions



Gamma Strength Functions and the
Brink-Axel Hypothesis

Peter von Neumann-Cosel

1 Gamma Strength Function

The GSF describes the average γ decay behavior of a nucleus. It depends on the
level densities at the initial and final energies. In general all multipoles allowed
for electromagnetic processes contribute but in practice E1 dominates. Thus, the
isovector giant dipole resonance (IVGDR) dominates the GSF at higher excitation
energies as indicated on the r.h.s. of Fig. 1. At lower energies M1 contributes to the
total GSF (although a few % only under most conditions).

As indicated in the scheme of decay and absorption in Fig. 1, for the special case
of γ decay to the g.s. the GSF can be related to the photoabsorption cross section
by the principle of detailed balance

f E1(Eγ , J ) = 2J0 + 1

2J + 1

1

(πh̄c)2E3
γ

〈σabs〉 (1)

where J, J0 are the spins of excited and ground state, respectively, and for simplicity
the relation is written for theE1 component only. The brackets 〈〉 indicate averaging
over an energy interval.

P. von Neumann-Cosel (�)
Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
e-mail: vnc@ikp.tu-darmstadt.de

© This is a U.S. government work and not under copyright protection
in the U.S.; foreign copyright protection may apply 2021
J. Escher et al. (eds.), Compound-Nuclear Reactions, Springer Proceedings in
Physics 254, https://doi.org/10.1007/978-3-030-58082-7_18

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58082-7_18&domain=pdf
mailto:vnc@ikp.tu-darmstadt.de
https://doi.org/10.1007/978-3-030-58082-7_18


156 P. von Neumann-Cosel

Fig. 1 Relation between γ
decay and absorption (l.h.s.)
and expected energy
dependence of the GSF
(r.h.s.)

2 Experimental Tests of the Brink-Axel Hypothesis

Knowledge of the GSF is required for calculations of statistical nuclear reaction in
astrophysics [1], reactor design [2], and waste transmutation [3]. Most applications
imply an environment of finite temperature, notably in stellar scenarios [4], and
thus reactions on excited states (e.g. in a (n,γ ) reaction) become relevant. Their
contributions to the reaction rates are usually estimated applying the generalized
Brink-Axel (BA) hypothesis [5, 6], which states that the GSF is independent of
the properties of the initial and final states (and thus should be the same in γ
emission and absorption experiments). Although historically formulated for the
IVGDR, where it seems to hold approximately for not too high temperatures [7],
this is nowadays a commonly used assumption to calculate the low-energy E1
and M1 strength functions. Recent theoretical studies [8, 9] put that into question
demonstrating that the strength functions of collective modes built on excited
states do show an energy dependence. However, numerical results for E1 strength
functions showed an approximate constancy consistent with the BA hypothesis [8].

The so-called Oslo method, where primary spectra of γ decay following
compound nuclear reactions are extracted, is a major source of data on the GSF
below the particle thresholds. Since the γ transmission probability is proportional
to the product of the GSF and the final-state LD, assumption of the generalized BA
hypothesis is a prerequisite of the analysis [10]. Recent Oslo-type experiments have
indeed demonstrated independence of the GSF from excitation energies and spins
of initial and final states in a given nucleus in accordance with the BA hypothesis
[11, 12]. However, there are a number of results which clearly indicate violations
in the low-energy region when comparing γ emission and absorption experiments.
For example, the GSF in heavy deformed nuclei at excitation energies of 2−3 MeV
is dominated by the orbital M1 scissors mode [13] and potentially large differences
in B(M1) strengths are observed between γ between upward [14] and downward
[15, 16] GSFs. Furthermore, at very low energies (<2 MeV) an increase of GSFs is
observed in Oslo-type experiments [12, 17], which for even–even nuclei cannot have
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a counterpart in ground-state absorption experiments on even–even nuclei because
of the pairing gap.

For the low-energy E1 strength in the region of the PDR, the validity of the
BA hypothesis is far from clear when comparing results from the Oslo method with
photoabsorption data. Below particle thresholds most information on the GSF stems
from nuclear resonance fluorescence (NRF) experiments, which suffers from the
problem of unobserved branching ratios to excited states. These can be corrected
in principle by Hauser–Feshbach calculations assuming statistical decay [18]. The
resulting correction factors are sizable and show a strong dependence on the neutron
threshold energy and the g.s. deformation. On the other hand, there are clear
indications of non-statistical decay behavior of the PDR from recent measurements
[19–21]. Violation of the BA hypothesis was also claimed in a simultaneous study
of the (γ, γ ′) reaction and average ground-state branching ratios [22] in 142Nd (see,
however, Ref. [23]). Clearly, information on the GSF in the PDR energy region from
independent experiments is called for.

3 Gamma Strength Function and Level Density from (p,p′)
Scattering

A new method for the measurement of complete E1 strength distributions in nuclei
from about 5 to 25 MeV has been developed using relativistic Coulomb excitation
in inelastic proton scattering at beam energies of a few hundred MeV and scattering
angles close to 0◦ [24–29]. The experiments also permit extraction of the M1 part
of the GSF due to spinflip excitations [30], which energetically overlaps with the
PDR strength. Furthermore, when performed with good energy resolution, the level
density (LD) can be extracted independently of the GSF in the excitation region of
the IVGDR from the giant resonance fine structure [31]. This allows an important
test of the model-dependent decomposition of LD and GSF in the Oslo method [10].

The case of 208Pb is used as an example to illustrate the methods [24, 25] and
the comparison to the Oslo data [32]. Details on the experimental techniques can
be found in Ref. [33]. The top part of Fig. 2 shows a spectrum of the 208Pb(p,p′)
reaction in the excitation region Ex = 4 − 25 MeV measured with the magnetic
spectrometer placed at 0◦. One observes prominent transitions at low excitation
energies, which can be shown to have E1 character, and a resonance-like structure
around 7 MeV, which contains E1 and M1 parts due to the energetic overlap of the
PDR and the spinflip-M1 resonance. The prominent structure peaking at 13 MeV
represents the IVGDR.

A separation of E1/M1 cross sections and contributions from other multi-
poles is possible with a multipole decomposition analysis (MDA) of the angular
distributions [25, 26, 29]. The measurement of spin transfer observables with a
polarized beam provides a separation of spinflip and non-spinflip cross sections
[24, 27, 29], which can be related to E1 and M1 components by the different reaction
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Fig. 2 Top: Experimental spectrum of the 208Pb(p,p′) reaction at Ep = 295 MeV and �lab = 0◦.
Bottom: Comparison of the B(E1) strength distribution deduced from the (p,p′) experiment below
Sn and the photoabsorption cross section above Sn with results from other experiments. Data from
Ref. [24]

mechanisms. Good agreement is found between these completely independent
methods.

The E1 cross sections can be converted to B(E1) strengths, respectively pho-
toabsorption cross sections, with the virtual photon method [34]. The bottom part
of Fig. 2 shows a comparison of the deduced B(E1) strength distribution in 208Pb
with data from (γ, γ ′) and (n,γ ) reactions [35–37] (l.h.s.) and photoabsorption
experiments [38, 39] in the giant resonance region (r.h.s.). Excellent agreement is
obtained [24].

The M1 cross sections can be converted to spin-M1 matrix elements with the
“unit cross section method” originally developed to extract the analog GT strength
from charge-exchange reactions [40]. Assuming that orbital contributions to the
total M1 strength are negligible [14] one can extract electromagnetic B(M1) strength
distributions from the proton scattering data [30, 41]. In the case of 208Pb the
M1 contribution to the GSF is small, not exceeding 10% at the maximum of the
resonance.

Figure 3 presents the GSF deduced from the 208Pb(p,p′) data [32] in comparison
to results from an Oslo experiment [42]. The inlet shows an extension of the low-
energy region, where both experiments overlap. The comparison of the present GSF
derived from ground-state absorption with the Oslo results shows larger values in
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Fig. 3 GSF deduced from the 208Pb(p,p′) data (blue diamonds) [24, 25] in comparison with results
from an Oslo-type experiment (red squares) [42]. From Ref. [32]

the PDR energy region, where both data sets overlap. However, the fluctuations of
the GSF are very strong due to the anomalously small level densities in the closed-
shell nucleus 208Pb, which prevents conclusions on a possible violation of the BA
hypothesis in the PDR energy region.

Fluctuations of the cross sections in the energy region of the IVGDR are observed
in the high-resolution (p,p′) experiments (cf. Fig. 2). They can be related to the
density of Jπ = 1− states. The LD is extracted with a fluctuation analysis described
e.g. in Refs. [31, 43–45]. A prerequisite of the method is a separation of the cross
sections populating the IVGDR from other contributions. In the present case this is
achieved by using the MDA results.

A quantitative description of the fluctuations is given by the autocorrelation
function

C (ε) = 〈d (Ex) · d (Ex + ε)〉
〈d (Ex)〉 · 〈d (Ex + ε)〉 . (2)

The quantity d(Ex) is called stationary spectrum and quantifies the fluctuations
around the mean at a given energy Ex . The value C(ε = 0) − 1 is nothing but
the variance of d(Ex)

C (ε = 0)− 1 =
〈
d2 (Ex)

〉− 〈d (Ex)〉2

〈d (Ex)〉2
. (3)

According to Ref. [46], this experimental autocorrelation function can be approxi-
mated by the expression

C(ε)− 1 = α · 〈D〉
2ΔE

√
π

× f (σ, σ>), (4)
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where the function f depends on the chosen parameters (folding widths σ, σ>) only.
α is the sum of the normalized variances of the assumed spacing and transition width
distributions. If only transitions with the same quantum numbers (Jπ = 1− in the
present case) contribute to the spectrum, it can be directly determined as the sum of
the variances of the Wigner and Porter–Thomas distribution, respectively, and the
mean level spacing 〈D〉 and LD ρ(E) = 1/〈D〉 can be extracted from Eq. (3).

In order to compare with the results from the Oslo experiment, the 1− LD needs
to be converted to a total LD. The spin distribution is calculated with the aid
of systematic backshifted Fermi-gas model (BSFGM) parameterizations and their
variation is taken as a measure of the systematic uncertainty of the procedure (for
details see Ref. [32]). Figure 4 displays the resulting LD in the region 9.5–12.5 MeV
(blue diamonds) together with results of the Oslo experiment at lower energies (red
squares) [42] and the data point at neutron threshold from neutron capture [47].
Several BSFGM results are shown as solid, dashed, and dotted lines, respectively.
The RIPL-3 parameterization [47] provides a very satisfactory description of all
experimental data indicating that the decomposition into GSF and LD in the Oslo
method is essentially correct.

Another study of this type was performed for 96Mo [29], a considerably
deformed nucleus with LDs high enough to permit a comparison with the GSF from
a decay experiment averaging over appropriate energy intervals. The choice of 96Mo
was motivated by the large discrepancies of GSFs derived from Oslo [48, 49] and
NRF [18] experiments. The l.h.s. of Fig. 5 summarizes the available GSF data. The
energy region below neutron threshold is expanded on the r.h.s. showing the results
from the Oslo (open circles), the NRF (black circles), and the (p,p′) experiment (red
circles). For γ energies between 6 an 8 MeV covered by all experiments, the GSF
deduced from Coulomb excitation lies between the two other results but overall
agrees better with the Oslo result (for details see Ref. [29]).
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Fig. 5 GSF of 96Mo from the (p,p′) data (red circles) compared with (3He,3 He′γ ) [48, 49] (open
circles) and (γ, γ ′) data including a statistical model correction for unobserved branching ratios
[18] (black circles). From Ref. [29]

Fig. 6 GSF of 120Sn in the
energy region from 5 to
9 MeV from the (p,p′) data
(blue diamonds) [26, 27] in
comparison with Oslo-type
results for 116Sn (orange
upward triangles) [50], 118Sn
(sideward green triangles)
[51], and 122Sn (downward
red triangles) [51]. The
arrows indicate
resonance-like structures in
the (p,p′) results

Finally, we have extracted the GSF of 120Sn from the data described in
Refs. [26, 27], again including the M1 part due to the spinflip resonance. In the
GDR region fair agreement with previous experiments is obtained [27]. The energy
region below neutron threshold is displayed in Fig. 6 and exhibits two pronounced
resonance-like structures around 6.5 and 8 MeV indicated by arrows. Data from an
Oslo-type experiment are not available for 120Sn; however, the neighboring even–
even Sn isotopes 116 [50] and 118,122 [51] have been studied. Since the low-energy
structure is known to change little across the stable even–even Sn isotopes one can
also expect that changes of the GSF are limited (although the PDR is expected to
have some dependence on neutron excess [52]).

For γ energies from 5 to about 7.5 MeV covered by both types of experiments
one finds reasonable agreement at the lower and upper end of the interval. In
contrast, the Oslo data show a smooth energy dependence and no resonance-like
structure around 6.5 MeV pointing to a violation of the BA hypothesis. It should
be noted that this bump is systematically seen in 0◦ (p,p′) cross sections for all
stable even–even Sn isotopes [53] and has also been observed in 124Sn with isoscalar
probes [54, 55].
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4 Concluding Remarks

The generalized BA hypothesis is a crucial assumption for the application of
statistical nuclear reaction theory with photons in the entrance or exit channel. Of
particular importance is the question whether data from g.s. absorption experiments
represent the GSF in the (quasi)continuum region. While its validity is fairly well
established above neutron threshold in medium-mass and heavy nuclei, the situation
is less clear at lower γ energies when comparing decay and absorption experiments.
There are clear violations like the low-energy enhancement [17] and the larger
scissors mode strength [15] in the decay. For the (PDR + spinflip M1) energy region
there are conflicting results.

The present contribution discusses a new approach to extract the GSF (including
the spin-M1 part) from (p,p′) scattering at energies of a few hundred MeV and at
very forward angles. This method directly measures the g.s. decay width and avoids
the problems of NRF data, where one needs to correct for unknown branching
ratios to excited states. When performed with high energy resolution, such data
not only provide the GSF but also the LD, thus permitting an important test of the
assumptions made in Oslo-type experiments for their decomposition. So far, three
cases have been analyzed. The study of 208Pb remains inconclusive because the
anomalously low LD leads to large intensity fluctuations [32]. For 96Mo consistency
within the experimental uncertainties is found [29]. The results in 120Sn point to a
violation of the BA hypothesis [53]. Clearly, a more systematic study is needed—
e.g. on the role of deformation—and emphasis should be put to establish more cases,
where GSF and LD from Oslo-type and (p,p′) experiments (as well as the LD from
neutron capture) can be compared.
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1 IAEA-CRP F41032

The Coordinated Research Project (CRP) with the code F41032 was launched by
the International Atomic Energy Agency (IAEA) in 2016 [1]. The goal of the CRP
is to update the photonuclear data library (IAEA-TECDOC-1178) and generate
a reference database for photon strength functions. We have been running the
PHOENIX Collaboration to acquire new photonuclear data for the IAEA-CRP at
the NewSUBARU synchrotron radiation facility in Japan. The collaboration was
carried out with the University of Oslo, Extreme Light Infrastructure—Nuclear
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Physics (ELI-NP), “Horia Hulubei” National Institute for Physics and Nuclear
Engineering (IFIN-HH), Skobeltsyn Institute of Nuclear Physics of Lomonosov
Moscow State University (SINP-MSU), and Shanghai Institute of Applied Physics
(SINAP). The new data acquired are classified into two groups, (γ,xn) cross section
data with x = 1–4 for 11 nuclei with 100% natural abundances at γ-ray energies
from 1n threshold up to 40 MeV and (γ, n) cross section data for 21 enriched
isotopes at energies below 2n thresholds. The construction of γSFs was carried out
in collaboration with the Université Libre de Bruxelles (ULB).

2 Key Technical Factors

2.1 Laser Compton-Scattering γ -Ray Beam

Quasi-monochromatic pencil-like γ-ray beams are produced in the head-on collision
of laser photons from relativistic electrons circulating in the NewSUBARU storage
ring. Both INAZUMA (1064 nm) and Talon (532 nm) Q-switch lasers are used
to produce quasi-monochromatic pulsed γ-ray beams that are energy-tunable from
4.5 to 76 MeV in collision with electrons from 0.5 to 1.5 GeV. The electron
beam is energy-calibrated with the accuracy on the order of 10−5 [2]. The electron
beam energy is precisely reproduced by the automated control of the beam optics
parameters. The γ-ray energy is determined by the calibrated electron beam energy.

The energy profile of the γ-ray beam is determined by reproducing the response
function of a 3.5” x 4.0” LaBr3(Ce) detector to the laser Compton-scattering
(LCS) γ-rays with the GEANT4 code which incorporates the kinematics of the
LCS process and interactions between the γ-rays and the LaBr3(Ce) detector. The
LCS γ-ray beam is accompanied by a low-energy tail unique to the electron beam
emittance and the collimator size. The energy spread for the standard emittance and
a collimator of 2 mm aperture located at 18.5 m from the most efficient collision
point is typically a few % in the full width at half maximum. The beam size on
target approximately follows the geometrical aperture of the collimator with respect
to the collision point.

The γ-ray flux is accurately determined from the pile-up/multi-photon spectrum
with the Poisson-fitting method [3, 4] based on the fact that the number of photons
involved in a γ-pulse follows the Poisson distribution.

2.2 Direct Neutron-Multiplicity Sorting

The Talon laser is operated at 1 kHz to produce a pulsed γ-ray beam that offers 1 ms
pulse intervals during which one can identify multi-neutron coincidence events with
a moderator-based slow neutron detector. We have developed a neutron detector
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consisting of three concentric rings of 4, 9, and 18 3He counters embedded in a
polyethylene moderator at 5.5, 13.0, and 16.0 cm from the γ-ray beam axis [5]. The
detector is designed to be of flat response to neutron kinetic energies by tuning
the distance and the number of 3He counters for individual rings by GEANT4
simulation. The total detection efficiency is 36.5% with 1.6% uncertainty in one
standard deviation over an energy range from 10 keV to 5.0 MeV.

The partial photoneutron cross section with the neutron multiplicity x is deter-
mined from the number of reactions (γ, xn) that took place, Nx (x = 1, 2, 3,..),
in an experiment. However, the number of reactions is not a direct experimental
observable. Instead, the number of neutron coincidence events is the experimental
observable. In general, a moderator-based neutron detector has a strong dependence
of the detection efficiency on neutron kinetic energy. In this case, the ring-ratio
technique which was originally developed by the Lawrence Livermore National
Laboratory [6] cannot determine the average neutron kinetic energy for the individ-
ual (γ, xn) reactions. In view of the fact that the neutron kinetic energy is different in
(γ, xn) reactions with a different x and in the emission order of neutrons in the same
(γ, xn) reactions, one encounters a difficulty in neutron-multiplicity sorting with the
ring-ratio technique.

The best way for overcoming the difficulty is to utilize a flat-efficiency detector
to determine the number of reactions Nx by solving a set of equations for the
experimental observables, the number of neutron coincidence events. One can refer
to Ref. [5] for details of the direct neutron-multiplicity sorting with a flat-efficiency
detector.

3 Data Acquisition, Evaluation, and Compilation

We have successfully acquired all the data as originally time-scheduled as follows.
The institute which is responsible for the data reduction of (γ, xn) cross sections is
shown in the parentheses. The data reduction of (γ, n) cross sections is undertaken
by the University of Oslo.

I. (γ, xn) data on 11 nuclei
2015: 9Be(Konan), 208Bi(ELI-NP/IFIN-HH)
2016: 89Y(SINP-MSU), 169Tm(ELI-NP/IFIN-HH), 197Au(Konan)
2017: 59Co(SINP-MSU), 165Ho(ELI-NP/IFIN-HH), 181Ta(Konan)
2018: 103Rh(SINP-MSU), 139La(Konan), 159Tb(ELI-NP/IFIN-HH)

II. (γ. n) data on 21 nuclei
2015: 89Y, 203Tl, 205Tl
2016: 13C, 58Ni, 60Ni, 61Ni, 64Ni, 137Ba, 138Ba, 185Re, 192Os
2017: 64Zn, 66Zn, 68Zn, 182W, 183W, 184W
2018: 156Gd, 157Gd, 158Gd, 160Gd
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The data newly acquired in the PHOENIX Collaboration are evaluated by the
Japan Atomic Energy Agency (JAEA), the Chinese Nuclear Data Center (CNDC),
and Korean Atomic Energy Research Institute (KAERI) and compiled in the IAEA
updated photonuclear data library. The data are also used to supplement the (γ, γ’)
and the Oslo method data to construct the photon strength function and compiled in
the IAEA reference database for photon strength functions.

4 γ-Ray Strength Function

Figure 1 shows the γ-ray strength function (γSF) for Ni isotopes constructed with
the γSF method [7] which has been devised to investigate systematically (γ, n) and
(n, γ) cross sections over an isotopic chain. The present (γ, n) data are used as
experimental constraints on the model E1 and M1 γSFs from the Hartree–Fock–
Bogolyubov plus quasi-particle random phase approximation based on the Gogny
D1M interaction. The recent systematics of the γSF [8] has been taken into account;
the γSF in de-excitation mode differs from that in excitation mode in the zero-
limit behavior of both E1 and M1 strengths, the latter of which is referred to as
M1 upbend. In the figure, the M1 γSF is shown for two different zero-limit values,
3 × 10−8 and 10−7 MeV−3.

The mean field plus QRPA calculations need some phenomenological correc-
tions, which include a broadening of the QRPA strength to take the neglected
damping of collective motions into account as well as a shift of the strength to
lower energies due to the contribution beyond the one-particle–one-hole excitations
and the interaction between the single particle and low-lying collective phonon
degrees of freedom. As such phenomenological corrections [8], we have introduced
an E1 damping width of 4.5 MeV which is smaller than the systematics of
�E1 = 7 − A/45 MeV [8] due to the closed proton shell in Ni isotope and M1
damping width of 2 MeV. As a consequence, a factor of 2/3 on the overall E1
strength is required to reproduce the present peak photoneutron cross section in
the GDR region. More details can be found in Ref. [7].

5 GDR Cross Section

5.1 209Bi

Previously we published GDR cross sections for 209Bi [12]. We found it necessary
to take into account the effect of the electromagnetic interaction (pair production,
Compton scattering, and photoelectric absorption) of high-energy γ-ray beams in
the thick (7 mm or 10 mm) 209Bi target material on the (γ, xn) cross sections [13].
The interaction produces the secondary gamma rays which can induce the giant
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Fig. 1 (a)–(e) γSF for the 59,60,61,64,65Ni isotopes. The red triangles correspond to the upper and
lower limits of the γSF extracted from the Oslo data and the red open squares to the NewSUBARU
photoneutron data. The dashed blue curve represents the D1M + QRPA E1 strength and the
black dotted (blue full) line the D1M + QRPA +0lim E1 + M1 dipole strength obtained with
C = 3 × 10−8 MeV−3 (C = 10−7 MeV−3). The γSF of 64,65Ni is taken from Refs. [9, 10] (red
triangles). The γSF extracted from the 60Ni(γ,n) data of Fultz et al. [11] (black diamonds) is also
shown in panel (b)

dipole resonance most effectively in the peak region around 13 MeV governed by
the (γ, n) channel. Thus, the secondary gamma rays produce extra neutrons which
we previously assigned to reaction neutrons of the (γ, n) channel associated with the
primary gamma rays. We have corrected the (γ, xn) cross section for the effect. As a
result, the (γ, n) cross section is significantly reduced above 30 MeV, while the (γ,
xn) cross section with x = 2–4 remains the same.
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Fig. 2 (Color online)
Comparison of the revised
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predictions for two values of
the Levinger parameter
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Here, we show the total photoneutron cross section in Fig. 2, leaving details
on partial photoneutron cross sections in Ref. [13]. The asymptotic value of the
total cross section is reproduced by the default pre-equilibrium calculation with
an ordinary value (L = 6.5) of the Levinger parameter for the quasi-deuteron
contribution. Previously we discussed the large cross section at the high energies
in terms of an increase of the L value and the surface effect. With the corrected
cross sections, however, there is no need to require a large value L = 20 nor to
invoke the surface effect anymore.

5.2 159Tb

Figure 3 shows partial photoneutron cross sections (γ, xn) with x = 1 and 2 for
159Tb. The 159Tb is one of 19 nuclei for which the Livermore and Saclay data of
partial photoneutron cross sections show serious discrepancies [14]. One can see
that the present (γ, n) cross section is rather consistent with the Saclay data, while
the (γ, 2n) cross section agrees with the Livermore data.
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Fig. 3 Partial cross sections (γ, xn) with x = 1 and 2 for 159Tb in comparison with the Livermore
[15] and Saclay [16] data

6 Summary

We have made an intensive effort of measuring (γ, n) and GDR cross sections within
the framework of the international PHOENIX Collaboration for the IAEA-CRP
F41032 on creating compilations of photonuclear reactions and photon strength
functions. The two compilations have been published in 2019 [17] and 2020 [18],
respectively, followed by publications of the individual photonuclear data in the
context of nuclear reaction and structure in nuclear physics and nucleosynthesis of
heavy elements in nuclear astrophysics.
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1 Introduction

Neutron capture cross sections in the continuum region have been difficult to
calculate accurately [1], and measured cross sections are favored when accurate
results are needed. Calculations usually use the Hauser–Feshbach approach (Eq. 1),
where kn is the neutron wave number, gc is a statistical spin factor, Tn is the neutron
transmission coefficient, Tγ is the γ -ray transmission coefficient, and Wnγ is the
width fluctuation factor. Good agreement with measurements is often obtained if
Tγ is normalized to the measured s-wave resonance spacing D0 and average s-wave
radiation width 〈�γ 〉, Tγ = 2π〈�γ 〉/D0.
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σcapt (En) = π

k2
n

∑

J	

gc
TnTγ

Tn + Tγ Wnγ . (1)

The gamma-ray transmission coefficient is defined as

Tγ =
∑

jπXL

∫ E′

0
2πE(2L+1)

γ fXL(Eγ )ρ(Ex, j
π ) dEx, (2)

where fXL(Eγ ) is the photon strength function and ρ(Ex, jπ ) is the nuclear level
density.

There has been a great deal of recent progress in understanding capture calcula-
tions, including the study of low-energy behavior of the E1 strength function, the
Oslo method for determining strength functions and level densities, the recognition
of the need for additional components in the strength function in addition to the E1
GDR, and extensive QRPA calculations by Goriely, Hilaire, and co-workers [2].

In addition to the capture cross section, the shape of the gamma-ray cascade
spectrum can be measured and compared to calculations, providing an additional
constraint on the strength function and level density. Our plan is to measure the γ -
ray spectra from discrete neutron capture resonances using DANCE and compare to
calculations made using the DICEBOX code [3] propagated through a GEANT-
4 model of DANCE [4]. We will then vary the strength-function models and
parameters to achieve a “good” description of the measured spectra. The “best”
parameters will then be used to calculate the capture cross section at En ≥ 2 keV
using the CoH3 Hauser–Feshbach code [5].

2 DANCE

The Detector for Advanced Neutron Capture Experiments (DANCE) is a nearly 4π
BaF2 array consisting of 160 crystals of 4 different shapes, each with a volume
of 734 cm3. It is highly efficient so that resonance-region measurements can be
made with less than 1 mg/cm2 of material, but good results for neutron energies
greater than 1 keV require somewhat thicker samples. The detector is located on FP-
14 at the Los Alamos Neutron Science Center, 20.25 m from the upper-tier water
moderator. DANCE is a calorimetric detector capable of detecting and summing
the complete gamma cascade following capture. If all of the cascade gammas are
detected, the summed energy is the Q value of the capture reaction, and can be used
to identify capture events.
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3 Results for Even Uranium Isotopes

The gamma-ray spectra from neutron capture on 234,236,238U were studied using
targets from 1 to 3 mg/cm2 thick. For these isotopes, the continuum fission cross
section is negligible below about 0.5 MeV. DICEBOX calculations of the spectra
were made using the prescription of Kopecky and Uhl [6] for the photon strength
function: a generalized Lorentzian form (GLO) for the E1 giant dipole, and standard
Lorentzians (SLO) for the M1 “spin-flip” resonance and E2 contribution. The
parameters for the giant dipole were taken from the Empire compilation [7],
and for the spin-flip and E2 contributions from RIPL-3. In addition, a low-lying
(about 2–3 MeV) M1 component, consistent with the scissors-mode resonance, was
also included. The scissors mode was represented by 2 standard Lorentzians, at
2.15 and 2.90 MeV. The energy and width of the Lorentzians were taken from
an Oslo-method analysis [8], while the strengths were varied to provide the best
representation of the spectra. The same parameters were used for all three isotopes.
It was shown in ref. [9] that the gamma-ray spectra could not be reproduced by
the Kopecky and Uhl prescription, but additional strength at low energies, most
likely M1, was required. That analysis was updated and extended to 234,236U in ref.
[10], with results shown below in Fig. 1. Figure 1 shows gamma-ray spectra for
several 1/2+ resonances in each isotope and for several gamma-ray multiplicities.
The calculations labeled CoH3 were made using the generalized Lorentzian (GLO)
form for the giant dipole with parameters from ref [7]. The calculations labeled
MGLO were made using the modified generalized Lorentzian form [11] for the
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Fig. 1 Measured γ -ray spectra for several 1/2+ resonances in 234,236,238U(n,γ ) compared to
calculations made with photon strength-function and nuclear level-density parameters obtained
from systematics used in the CoH3 code and using the MGLO and GLO models for the E1 strength.
The GLO calculations are labeled “CoH3” in the figure, see text for more details. The resonance
energies are indicated in each panel. The y-axis counts are arbitrarily normalized
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Fig. 2 Uranium capture cross sections compared to calculations

giant dipole with parameters from ref. [12]. The level densities were the Gilbert–
Cameron form with updated parameters [13].

Figure 2 shows the cross sections calculated with CoH3 compared to measure-
ments. The calculations used the GLO form of the E1 photon strength function
with parameters described above. The MGLO form was not available in CoH3. M1
scissors mode, M1 “spin-flip,” and E2 contributions were included, with parameters
as described above. The data for 238U is from ref. [9], and was normalized to low-
lying resonances. The data for 236U is from ref. [14] and was normalized with
experimentally determined efficiencies. There is no data for 234U in the EXFOR
database, and the 234U calculation is compared to the ENDF/B-VII.1 evaluation.
A recent measurement of 234U(n, γ )made at DANCE is being analyzed. Note the
calculations are absolute and not renormalized to the data; very good agreement in
magnitude and shape was obtained.



Actinide Capture 177

Egamma (MeV)
0 1 2 3 4 5 6 7 8

0

100

200

300

400

500

600

700
10.93 eV 1+
17.66 eV 1+
22.26 eV 1+
11.90 eV 1+
GLO No SM J1
GLO 1 pk SM  J1
GLO 2 pk SM  J1

=2
cl

E gamma M

Fig. 3 Measured γ -ray spectra for several 1+ resonances in 239Pu(n,γ ) compared to calculations
made with photon strength-function and nuclear level-density parameters described in the text, and
using the GLO models for the E1 GDR strength. The y-axis counts are arbitrarily normalized

4 Results for 239Pu

Measurements of neutron capture on 239Pu are complicated by the large fission cross
section for 239Pu, and fission tagging is crucial. The gamma-ray spectrum following
capture was measured with a 2.43 mg/cm2 239Pu target mounted in a parallel-plate
avalanche counter inserted at the target location of DANCE [15]. A preliminary
analysis of the multiplicity-two spectrum from several resonances is shown in Fig. 3.
DICEBOX calculations of the cascade were made using the GLO form for the giant
dipole, with parameters taken as for the U isotopes. However, a two-Lorentzian
scissors mode did not provide satisfactory results, and a one-Lorentzian scissors
mode with parameters from the global systematics of Ref. [1] was used.

Cross-section calculations for 239Pu(n, γ ) were made using the CoH3 code with
parameters similar to those used in the gamma spectrum calculation. Very good
agreement with the data from an accurate measurement of 239Pu(n, γ ) recently
reported by Mosby et al.[16] was obtained, without renormalization.

5 Summary

We have shown that gamma-cascade spectra provide another test and constraint on
the strength function and level densities used in capture cross-section calculations.
The standard Kopecky–Uhl prescription, consisting of a GLO giant-dipole form
plus a standard Lorentzian “M1 spin-flip” and E2 contribution is not sufficient



178 J. L. Ullmann et al.

to calculate the shape of gamma-ray spectra observed in 234,236,238U(n, γ ) and
239Pu(n, γ ) reactions, and that additional strength at low energies (2 to 3 MeV),
most likely an M1 scissors-mode resonance, is required. Accurate calculations of
the capture cross section can be made by including the scissors mode in the photon
strength function, with proper choice of models for the level density and E1 portion
of the strength function. We note that the calculations are sensitive to the input
parameters, and precise data and theory are needed to fix the models and their
parameters.
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Deconvolution of the Photon Strength
Function

Richard B. Firestone

There is ongoing interest in comparing photonuclear PSF data with reaction PSF
data measured at the Oslo cyclotron and elsewhere. Significant differences in these
measurements occur due to large variations in the spin distributions and level
densities populated by each reaction. It is important to recognize that the PSF is
different from the nuclear structure GSF which is based on reduced matrix elements
defined as B(σL) values. This is because the PSF is defined as the product of LDF
and GSF functions. In addition, photonuclear reactions excite higher levels from the
ground state while reactions populate γ -rays that deexcite these higher levels. The
GSF depends on the γ -ray direction due to differences in the population of magnetic
substates in the initial and final states. Thus a γ -ray populating an excited state may
have a different strength than the same energy γ -ray deexciting that state.

Photonuclear reactions measure the cross section for predominantly E1 excitation
of levels above the neutron separation energy, Sn. These transitions populate only a
narrow range of excited state spins, JXS , with respect to the ground state spin, JGS ,
where JXS = JGS, JGS±1, and a single parity, πXS = −πGS . For even–even nuclei
only JπXS = 1− states are populated. In order to extract the photonuclear GSF a Jπ

dependent LDF is required. Conversely, Oslo charged particle reactions populate
levels below the neutron separation energy, Sn, that deexcite by γ -rays of all
multipolarities. These data are analyzed by the Oslo method [1] which determines
both an absolute LDF and a relative PSF. Attempts to renormalize the Oslo PSF
data for comparison with the photonuclear PSF and other PSF data is problematic
because the level densities and spin distributions populated in these experiments
vary widely.
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Blatt and Weisskopf [2] derived the standard GSF analysis which consists
of single particle reduced matrix elements, B(σL), for γ -ray transitions with
multipolarity σL that is given by

B(EL) ↓= �γ (EL) · L[(2L+ 1)!!]2

8π(L+ 1)e2bL

( h̄c
Eγ

)2L+1

B(ML) ↓= �γ (ML) · L[(2L+ 1)!!]2

8π(L+ 1)μ2
Nb

L

( h̄c
Eγ

)2L+1
(1)

where �γ (σL) is the transition width, h̄c = 1.9733 × 10−11 MeV·cm,
e2 = 1.43998 × 10−13 MeV·cm, and μ2

N = 1.59234 × 10−41 MeV·cm3. The
photoexcitation,B(σL) ↑, and deexcitation, B(σL) ↓, matrix elements are related
by the spin dependent term

B(σL) ↑= 2Jf + 1

2Ji + 1
B(σL) ↓, (2)

where Ji is the spin of the initial state and Jf is the spin of the final state for
photoexcitation.

Photonuclear experiments measure the photoexcitation cross section, σγ (mb/MeV),

populating states above Sn. The predominantly E1 average PSF, F (γ,n)E1 ↑, is related
to the cross section by detailed balance and was defined by Uhl and Kopecky [3] as

F
(γ,n)

E1 ↑ = σγ (Ex,E1)

3π2h̄2c2Eγ
= �

(γ,n)

E1

D · E2L+1
γ

= ρ(Ex, J π ) · 2Jf + 1

2Ji + 1

B(E1) ↓
C(E1)

= ρ(Ex, J π ) · f (γ,n)E1 ↑,

(3)

where D = 1/ρ(Ex, J π ) is the average level spacing or inverse of the level density
and the dimensionless constant C(E1) = 9560 from Eq. 1. Notably the PSF is the

product of the GSF and the level density. The average photonuclear GSF, f (γ,n)E1 ↑, is
uniquely associated with the GDR and distinct from other possible E1 GSF modes.
The average photonuclear reduced matrix element is simply B(E1) ↑= 9560 ×
f
(n,γ )

E1 ↑.
The photonuclear cross section for photon absorption is described by a

Lorentzian shape whose strength is determined by the dipole sum rule. The PSF
was elegantly described by the Brink-Axel (BA) formulation [4, 5] as

F
(γ,n)

E1 ↑= FBAE1 ↑= 1

3(πh̄c)2

i=2∑

i=1

σGiEγ �
2
Gi

(E2
γ − E2

Gi
)2 + E2

γ �
2
Gi

, (4)
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Fig. 1 Deconvolution of 98Mo PSF into GSF and LDF components assuming the HFB LDF
formulation of Goriely et al. [7]

where EGi , �Gi , and σGi are the energy, width, and cross section for the GDR,
respectively. Although the BA formulation is experimentally verified by photonu-
clear reactions down to Ex ≈ Sn, it is valid down to the GS although at low
excitations, where the level density is low, experimental agreement may be worse
due to Porter–Thomas [6] fluctuations. From Eq. 3 average photonuclear GSF can
be written as

f BAE1 ↓= 2Ji + 1

2Jf + 1

FBAE1 ↑ (Eγ )
ρ(Ex, J π )

(5)

where for even–even nuclei Jπf = 1− and 2Ji+1
2Jf+1 = 1

3 . The photonuclear GSF
can be deconvoluted from the PSF using the Hartree–Fock–Bogoliubov (HFB) LDF
calculated by Goriely et al. [7]. The separated LDF and GSF functions are shown
for 98Mo photonuclear data in Fig. 1. Remarkably the GSF is a nearly continuous
function showing little trace of the GDR. The slight variation in the GSF near the
GDR is an artifact of the assumption that the LDF is continuous, so the origin of the
GDR peak remains a mystery.

Considerable charged particle-γ γ coincidence data has been measured at the
Oslo University cyclotron with the CACTUS NaI detector array [8]. Through
a sophisticated unfolding process [1] they have accurately determined absolute
experimental LDFs and the relative PSFs. Normalization of the photon strength data
to an absolute scale remains problematic. Often this is done by normalizing the Oslo
PSF to the photonuclear PSF near Sn. However, as is shown by Eq. 3, this method is
insufficient. Normalization at a single energy fails to account for large differences



182 R. B. Firestone

Fig. 2 Comparison of renormalized Oslo GSFs for 92−98Mo [9, 10] (red curves) with pho-
tonuclear GSFs (black curves). The Oslo GSFs are normalized so that no points fall below the
photonuclear GSFs
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in the photonuclear and Oslo LDFs at all energies. Oslo experiments also populate
a much larger range of level spins and parities that may deexcite by M1, E2, and
nuclear structure related E1 transitions.

The Oslo GSF, fOslo ↓ (Eγ ) can be deconvoluted from the Oslo PSF by dividing
out their experimental level densities, ρOslo(Ex, J π ) as shown in Eq. 6

fOslo ↓ (Eγ ) ∝ FOslo ↓ (Eγ )
ρOslo(Ex, J π )

. (6)

No exact normalization is possible for these data; however, the relative GSF trends
can be inferred. Also, no B(σL) matrix elements can be inferred because fOslo ↓
(Eγ ) represents a composite strength for all multipolarities. Indeed there is no
evidence that a constant, energy dependent, GSF is even appropriate for M1, E2,
and some E1 transitions.

Renormalized Oslo reaction GSFs for 92−98Mo [9, 10] are compared with the
corresponding photonuclear GSFs in Fig. 2. The photonuclear GSFs are calculated
with the BA formulation using RIPL-3 [11] GDR parameters. Here the Oslo GSF
data are normalized so that no values fall below the BA values. In all cases the
Oslo GSFs show significant enhancement at both low and high γ -ray energies. The
low-energy enhancement is consistent with earlier shell model calculations [12] for
56,57Fe and can be ascribed to M1 transitions between levels of the same seniority.
The high-energy enhancement is consistent with bremsstrahlung measurements on
the same isotopes and has been ascribed [13] to pygmy resonances.

I have demonstrated that PSFs can be deconvoluted into the product of a LDF and
a GSF. The photonuclear GSF is a nearly continuous function that decreases rapidly
with increasing transition energy, as would be expected if the nuclear structures of
widely separated levels are very different. A new method is described for extracting
the Oslo GSF from their PSF data. The Oslo GSF for the isotopes 92−98Mo has been
analyzed and reveals both low- and high-energy upbends in all cases.
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Attempting to Close the Loop on the Oslo
Technique at 198Au: Constraining
the Nuclear Spin Distribution

Paul Koehler , John Ullmann , Aaron Couture , and Shea Mosby

1 Introduction

Average s-wave neutron resonance spacings D0 and total radiation widths 〈�γ 0〉
are routinely used to calibrate nuclear level densities (NLDs) and photon strength
functions (PSFs) obtained with the Oslo technique [1]. However, there is more
information beyond D0 and 〈�γ 0〉, so it is possible to use additional pieces
of the neutron resonance data to test other calibrations as well as assumptions
inherent in the extraction of NLDs and PSFs from the Oslo data. For example
[2], the distribution of total radiation widths can be calculated, in the framework
of the nuclear statistical model (NSM), using the same NLD and PSF which were
calibrated using D0 and 〈�γ 0〉 from the same neutron resonance data set. Recently
published NLDs [3] and PSFs [4] for 198Au, together with new �γ data from our
new R-matrix analysis of new neutron total cross section data and previous neutron
total [5] and capture [6] data make possible such a test for 198Au as described herein.

2 New 197Au + n Total Cross Section Data and R-Matrix
Analysis

At the Los Alamos Neutron Science Center (LANSCE), we have been developing
[7] the Device for Indirect Neutron Capture Experiments on Radionuclides (DICER)
to tightly constrain (n, γ ) cross sections on short-lived radionuclides by measure-
ment and analysis of resonance neutron total cross sections on the same nuclides.
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As DICER is being developed, we are making test measurements with smaller
and smaller samples. One of the first tests used a 197Au sample which was 0.00169
at/b thick. A collimator 6 mm in diameter defined the neutron beam at the sample,
30 m from the neutron-production target. Neutrons were detected with a 6Li-glass
scintillator 64.4 m from the neutron-production target. Separate measurements with
no sample and with thick Bi, Cu, and Tm samples were made with the same
apparatus to be able to calculate the total cross section and to measure and subtract
small backgrounds.

Initial comparison of our new DICER data to the latest ENDF evaluation [8]
revealed several differences. Therefore, a new R-matrix analysis of our data as well
as the most recent neutron total [5] and capture [6] data was undertaken.

The R-matrix program SAMMY [9] was used to perform a simultaneous analysis
of the three data sets. Resonances spins (1+ or 2+) were taken from Ref. [10]. In
total, 281 resonances were fitted between 4.9 eV and 5 keV. Good fits were obtained
to all three data sets. In contrast, the ENDF parameters provide a poor description
of the data in many instances. Example data and fits are shown in Fig. 1.

Reliable �γ values for testing the Oslo data could be obtained only for the subset
of resonances for which the spins were known and for which the neutron widths
were large enough for �γ to be determined with sufficient accuracy. In the present

Fig. 1 Example 197Au(n, γ ) data from n_TOF [6] (upper panel with scale on the right), new
197Au + n total cross section data (shown as transmission in lower panel with scale on the left)
from DICER, and SAMMY R-matrix descriptions of the data using the latest ENDF parameters
(dashed red curves) and from this work (solid black curves). There are no GELINA transmission
data in this energy range
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Fig. 2 Measured (blue circles and red X’s) and NSM-calculated cumulative total radiation-width
distributions for 197Au J = 1 and 2 neutron resonances. The calculations were performed using
the published Oslo NLD and PSF (short-dashed light blue and long-dashed light red curves) and
modified NLD and PSF calibrated using alternative spin distribution A4 shown in Fig. 3 (dot-
dashed dark blue and solid dark red curves)

case, there were 33 Jπ = 1+ and 44 Jπ = 2+ resonances satisfying these conditions.
Cumulative �γ distributions for these two subsets of resonances are shown in Fig. 2.

3 Statistical Model Calculation and Results

Given a PSF and NLD, it is straightforward [2] to calculate �γ distributions
in the framework of the NSM. The total radiation width �γ is the sum of all
partial radiation widths �λγ f (XL) between resonance λ and final level f which
can be reached by a transition of type X (electric or magnetic) and multipolarity
L, �γ = ∑

f

∑
XL �λγf (XL). The NSM assumes the partial radiation widths

follow a Porter–Thomas distribution (PTD) [11] around their expectation value,
〈
�λγf (XL)

〉 = fXL(Eγ )E3
γ

ρ(Eλ,Jλ,πλ)
, where Eγ = Bn − Ef is the γ-ray energy, ρ(Eλ, Jλ,πλ)

is the NLD of resonances with spin Jλ and parity πλ at energy Eλ, and fXL(Eγ ) is
the PSF for XL transitions.

Calculating a �γ distribution then involves the following steps. A complete
level scheme above a critical excitation energy Ec is generated according to
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the NLD. Below Ec = 0.626 MeV, values of Ef , Jf , and π f determined from
experiments are used. Spin and parity selection rules are properly taken into account
for individual transitions. Partial radiation widths are then calculated by random
sampling from PTDs characterized by the corresponding expectation values. To
obtain a distribution of �γ values, this process is repeated numerous times using
the same level scheme but new PTD sampling each time.

Results of calculating �γ distributions for 1+ and 2+ resonances in 198Au using
published NLDs [3] and PSFs [4] measured with the Oslo technique are compared
to our new data in Fig. 2. From this figure, it can be seen that the calculated
distributions are significantly narrower and closer together than the data. Below,
we describe how the Oslo NLD and PSF can be adjusted, within the confines of the
technique, to obtain agreement between calculation and data.

The width of the �γ distribution is a consequence of sampling from the PTD
but the magnitude of the width depends on details of the NLD and PSF. Transitions
to levels near the ground state tend to have the greatest influence on the width of
the distribution because they have the largest partial widths. The spin distribution
of the NLD can affect the width of the �γ distributions in several ways. For
example, increasing the number of levels of a given spin (to which resonance
transitions can occur) near the ground state can make the distribution narrower
because the fluctuations will be damped by averaging over more contributions. The
spin distribution also affects the slope of the PSF, which affects the widths of the
�γ distributions. For example, a PSF with steeper energy dependence (due to a
broader spin distribution at higher excitations) can lead to a wider �γ distribution,
by increasing the relative sizes of the largest partial widths.

The spin distribution of the NLD also affects the separation between the �γ dis-
tributions for the two s-wave-resonance spins in at least two ways. First, the expec-
tation value is inversely proportional to the average level density, ρ(Eλ, Jλ,πλ), for
resonances of a given spin. Because there are more J = 2 than J = 1 resonances, the
expectation value is smaller for the larger spin and hence the cumulative distribution
for J = 2 is, on average, to the left of the J = 1 distribution in Fig. 2. In the present
work, this component is fixed because the relative number of resonances of the two
spins is obtained from our R-matrix analysis.

The second way the spin distribution affects the separation between the �γ
distributions for the two spins is through the relative number of J = 0 to J = 3
final states. This is because, assuming dipole transition dominate, only J = 1
(J = 2) resonances can decay to J = 0 (J = 3) levels. Therefore, increasing the
number of J = 0 relative to J = 3 levels, especially near the ground state where
the corresponding partial widths are larger, will increase the separation between the
two �γ distributions. On the other hand, too many low-spin levels near the ground
state can lead to a narrowing of the distributions as explained above. So, the spin
distribution is constrained in opposite directions by the widths and relative spacing
between the �γ distributions for the two s-wave-resonance spins.
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Fig. 3 Various values of the spin-cutoff parameter, as a function of excitation energy, used in the
NSM calculations of the �γ distributions. See text for details

The spin distribution typically is parameterized in terms of the spin-cutoff

parameter σ, ρJ = 2J+1
2σ 2 e

− J (J+1)
2σ2 ρ, where σ is a function of excitation energy. In

this framework, we found that decreasing spin cutoff at low excitation σ(0) (from
the Oslo value of 3.56 to 2.37) together with increasing the spin cutoff near the
neutron separation energy σ (Sn) (from 5.08 to 8.43), and using the steeper energy
dependence of σ suggested in Ref. [12] rather than that of Ref. [13] (which was
used in the Oslo analysis) results in much better agreement with the �γ -distribution
data, as shown in Fig. 2. As far as we know, these changes are all within what is
allowed by the available data. In fact, we arrived at σ (0) = 2.37 by fitting the known
levels below Ec.

Various choices of σ we have explored are illustrated in Fig. 3. Only the A2
and A4 versions yielded quantitative agreement (within two standard deviations for
all parameters) with a maximum-likelihood (ML) analysis of the data (assuming
a Gaussian distribution as in Ref. [14], see Table 1), but σ (0) for A2 seems to be
larger than allowed by the known levels below Ec. Only A4 assumes the energy
dependence of Ref. [12]. The others follow Ref. [13].
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Table 1 Gaussian �γ distribution parameters from ML analysis of the data (row 3) and NSM
calculations (rows 4–8). σG is the standard deviation of the assumed Gaussian distribution

Case 〈�γ 〉J = 1 − 〈�γ 〉J = 2 (meV) σG (meV)
J = 1 J = 2

Data 21.8 ± 4.9 24.1 ± 3.1 16.3 ± 1.8
Oslo 7.7 14.8 12.5
A1 11.4 13.3 10.4
A2 13.4 22.2 14.7
A3 14.8 18.8 12.8
A4 13.5 23.7 16.6

4 Conclusions

Distributions of total radiation widths for 197Au neutron resonances were obtained
from simultaneous R-matrix analysis of new data from DICER as well as previous
data from n_TOF and GELINA. These data were compared to calculated distri-
butions in the framework of the NSM using published NLDs and PSFs measured
using the Oslo technique. There were significant differences between the measured
and calculated distributions. We obtained agreement with the data by adjusting the
spin distribution of the NLD. As far as we know, the spin distribution is otherwise
poorly constrained, except at very low excitation in 198Au. The technique we used is
applicable to other nuclides for which there are high-quality neutron resonance data
and could be used to obtain much better constraints on the nuclear spin distribution
as a function of excitation energy. As the spin distribution affects the shapes of
the NLD and PSF extracted using the Oslo technique, this work could have broad
implications.
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Impact of Restricted Spin-Ranges in the
Oslo Method: The Example of (d,p)240Pu
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T. Renstrøm, E. Sahin, T. Tornyi, A. Voinov, and M. Wiedeking

1 Introduction

Proper knowledge of neutron-induced cross sections from thermal energies to
several MeV is important for many physical applications. However, the lack of
a mono-energetic neutron source in the full energy range hampers direct cross-
section measurements. The short half-lives of many isotopes of astrophysical
interest make it impossible to create targets for direct measurements using neutron
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beams. In these cases, calculations within the statistical framework can provide
an alternative approach to obtain (n,x) cross-sections. These rely essentially on
precise measurements of nuclear level densities (NLD) and γ -ray strength functions
(γSF) [1].

The Oslo Method [2, 3] can be used to analyze particle-γ coincidence spectra
from transfer reactions to simultaneously extract NLDs and γSFs. In a campaign
to study actinides the method has been applied to the compound nuclei 231−233Th,
232,233Pa, 237−239U, 238Np [4–7], and 243Pu [8] using different light-ion reactions.
The extracted γSFs show a significant enhancement between about 2 and 4 MeV,
which is consistent with the location [9] of a low energy orbital M1 scissors
resonance (SR).

Larsen et al. [3] have shown that the population of a limited spin range may lead
to distortions of the γSF. This has been observed in some of the previous studies
on actinides [4–8] due to the low-spin transfer using the (d,p) reaction mechanism,
where an ad hoc procedure for the correction was adopted. In this proceeding, we
focus on the first systematic analysis of the impact on the Oslo Method results for a
realistic spin-parity population for the (d,p)240Pu reaction.

2 Experimental Setup and Data Analysis

The (d, p)240Pu experiment was conducted using a 12 MeV deuteron beam at the
Oslo Cyclotron Laboratory (OCL). The 0.4 mg/cm2 thick 239Pu target was purified
using an anion-exchange resin column procedure [10] prior to electroplating on a
1.9 mg/cm2 beryllium backing.

The outgoing charged particles were detected with the SiRi particle tele-
scope [11]. SiRi consists of 64 silicon particle telescopes with a thickness of 130 μm
for the front (�E) and 1550 μm for the back (E) detectors, and was placed at
backwards angles (126◦ to 140◦). The CACTUS array [12] measured coincident
γ rays and was composed of 26 lead collimated 5′′ × 5′′ NaI(Tl) crystals with a
total efficiency of 14.1(2)% at Eγ = 1.33 MeV. Additionally, four Parallel Plate
Avalanche Counters (PPAC) [13] were used to detect fission events.

The reaction kinematics allowed for selection of (d,p) events and conversion
of the detected proton energy to the excitation energy Ex of the compound
nucleus 240Pu. Prompt γ rays were selected from a ±14 ns wide time-window
with background correction applied. The γ -ray spectra were unfolded following
the procedure of [14], using response functions [15] that were updated in 2012.

Next, an iterative subtraction technique [16] was applied to obtain the primary
γ rays P(Ex, Eγ ) (also called first-generation γ rays) for each Ex bin from the
initial spectra, which include all γ rays of the decay cascades. Here we relied on the
assumption that the (d,p)-reaction will populate a similar spin-parity distribution
for the levels in an Ex bin i as would be populated from γ -decay from a higher
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excitation energy bin j . Consequently, by subtracting the γ -ray spectra from bins
with lower excitation energy, only the primary γ rays remain.

3 Extraction of NLD and γSF

For γ rays emitted in the statistical regime (i.e., high level density) we can
determine the NLD at the excitation energy of the final state, ρ(Ex,f), and the γ -
ray transmission coefficient, T (Eγ ) [2]:

P(Ex,i, Eγ ) ∝ ρ(Ex,f)T (Eγ ), (1)

up to a transformation with the parameters A, B, and α,

ρ̃(Ei − Eγ ) = A exp[α (Ei − Eγ )] ρ(Ei − Eγ ), (2)

T̃ (Eγ ) = B exp[α Eγ ] T (Eγ ). (3)

To select the γ decay channel, only excitation energies Ex below the neutron
separation energy (Sn = 6.534 MeV [17]) must be considered. In this experiment,
we applied more stringent constrains due to the onset of sub-barrier fission events
at about 4.5 MeV [18, 19]. A more detailed analysis of the prompt fission γ
rays can be found in [20]. The final extraction regions were Emin

γ = 1.2 MeV,

Emin
x = 2.4 MeV, Emax

x = 4.0 MeV. It remained then to find the transformation
parameters corresponding to the correct physical solution.

The level density at low Ex was normalized to the discrete level scheme [21]
was normalized to the discrete level scheme [21] up to an excitation energy Ec ≈
1 MeV. Above this energy we expect that the low-lying level scheme is now known
completely anymore. At the neutron separation energy Sn, we obtain ρ(Sn) from the
average neutron resonance spacing for s-waves,D0 = 2.20(9) eV, taken from RIPL-
3 [22] following [2]. The latter conversion depends on the spin-parity distribution;
we assumed equal parities and used the spin distribution g(Ex, I ) proposed by
Ericson [23, Eq. (3.29)] together with the rigid-body moment of inertia approach
for the spin cut-off parameter σ by von Egidy and Bucurescu [24]. Additionally, we
extrapolated from the highest Ex data points up to Sn. In accordance with findings
for other actinides [5], this was performed assuming a constant temperature level
density formula [25]. The resulting level density ρ is displayed in Fig. 1a.

The remaining parameter B for the normalization of the transmission coef-
ficient T can be determined [29, 30] from the average total radiative width
〈�γ 〉(Sn) = 43(4)meV [22]. The γ -ray strength function f (Eγ ) was obtained from
the transmission coefficient T assuming dominance of dipole strength, f (Eγ ) =
T (Eγ )/(2πE3

γ ), and is shown in Fig. 1b.
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Fig. 1 Initially extracted total level density (a) and γSF (b) for 240Pu (a). We used a constant
temperature interpolation with TCT = 0.415(10). The γSF is displayed together with data from [26–
28] (b). The presented error bars include contributions from both statistical and systematic errors
of the unfolding and first generation method [2]

4 Impact of the Spin Distribution

In order to analyze the possible impact of a mismatch between the NLD populated
in the (d,p) reaction, ρpop, and the intrinsic NLD, ρint, we will follow a 4-step
procedure: (1) identify the correct spin distributions gpop and gint, (2) generate
synthetic decay data with known NLD and γSF, and the identified spin distributions,
(3) analyze the results with the Oslo Method, and (4) compare the extracted NLD
and γSF to the input function to infer any systematic deviation.

The (d,p) reaction with the beam energy used in this experiment can be modeled
as breakup of a deuteron with emission of a proton, followed by the formation
of a compound nucleus with the remaining neutron and the target. The spin-
parity distribution, gpop(Ex, J, π), has been calculated in this framework, using the
distorted-wave Born approximation (DWBA) in prior form [31, 32]. Here we have
taken into account detection angles for the protons and modeled the neutron–nucleus
interactions by the dispersive optical model potential of [33] implemented through
potential nr. 2408 listed in [22].

To study the effect on the Oslo Method, we first generated a synthetic coincidence
dataset with the statistical nuclear decay code RAINIER [34] resembling the
(d,p)240Pu experiment. Following the experimental analysis above, we combined
the spin cut-off parameter, σ , of von Egidy and Bucurescu (labeled EB05) [24]
with the distribution of Ericson [23] to obtain the intrinsic spin-distribution, gint. As
shown in Fig. 2, the distribution calculated with DWBA of populated levels (further
labeled as gpop 
= gint) are centered at much lower spins compared to the assumed
intrinsic distribution.

The generated spectra were analyzed with the Oslo Method including folding,
unfolding, and the first generation method. The upper panel of Fig. 3a shows the
extracted and normalized NLD together with the NLD used as input to RAINIER.
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Fig. 2 Calculated spin-parity distribution at Ex = Sn of the populated levels gpop compared to the
estimated intrinsic spin distribution gint at Sn with the (Ref. [24]) spin-cut parameter. For the latter
equiparity is assumed and we also display the distribution at 2 MeV. More information in the text

(a) (b)

Fig. 3 Upper panels: NLD (a) and γSF (b) extracted with the Oslo Method (with an optional
correction r) from synthetic dataset. The populated spin distribution gpop was either chosen equal
to the intrinsic distribution gint, or narrower, according to the calculations for the (d,p) reaction. The
dashed lines for the γSF denote the extrapolations assumed for the Oslo method. Lower panels:
Ratio to the known input
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The lower panel displays the derived ratio to the input NLD. As expected, it was
observed that the NLD in the quasi-continuum (i.e., above the discrete levels)
was well reproduced when gpop = gint; the assumptions of the first-generation
method are fulfilled. However, when populating the nucleus by the more realistic,
but narrower distribution gpop 
= gint, we underestimated the derived NLD in the
quasi-continuum by up to approximately 40% at 2 MeV.

This deviation may be qualitatively explained by the smaller fraction of levels
populated when decaying with a distribution gpop much narrower than gint (see also
Fig. 2). At higher excitation energies, the ratio is forced to converge to unity due
to the normalization at Sn. Note that for the normalization of the γSF specified in
the next paragraphs, we also display the NLD with gpop 
= gint where the upper
normalization point ρtot(Sn) obtained from Eq. (28) in [2] was reduced by

ρred(Sn) = rρtot(Sn), r ≤ 1. (4)

We now turn to the extraction of the γSF. For gpop = gint, we observed about
�10% difference between the absolute values of the extracted strength and the
input function. This difference is mainly attributed to a small mismatch of the true
and best-fit temperature for the NLD, which propagates to the γSF absolute values
through the normalization.

For the more realistic spin distribution gpop 
= gint, we first naively extracted
the γSF assuming that we had populated all intrinsic levels. Here the shape of the
NLD curve is off since it is forced to match the calibration point at Sn. Figure 3b
compares the results to the input γSF and although the general shape is preserved,
both the slope and absolute value are considerably off as compared to the input.

Next, we applied a correction inspired by [4], which is based on the assumption
that the transmission coefficient T is spin independent. The first generation matrix,
P , should then be fit by P ∝ ρredT to extract the correct T , where ρred is obtained
from Eq. (4) and indicates that we can decay only to a fraction of all intrinsic levels.
This will affect the common transformation parameter α, see Eq. ((2), (3)), which
determines the slope of the γSF: The smaller r , the smaller α, which translates to a
flatter slope.

The determination of the remaining scaling parameter B depends on T as
extracted with ρred. However, the level density available for γ decay following
neutron capture is not affected by this reduction, thus we used ρtot in the 〈�γ 〉
normalization integral.

We varied the correction factor r of Eq. (4) and found that for r = 0.3 we
obtained the best match between the (slope of) input and analyzed γSF. There
remained a constant off-set of about 5–10%, which could be attributed to deviations
in the NLD, which propagated to the γSF via the normalization procedure. Besides,
the larger deviation towards lower γ -ray energies was traced back to a failure of the
first-generation method.
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5 Summary and Conclusions

We have presented the first systematic analysis of the effect of a realistic, very
narrow spin distribution on the Oslo Method for the (d,p) reaction using the example
of the heavy nucleus 240Pu. We have shown that if the assumptions of the Oslo
Method were fulfilled, i.e., if the reaction populated all levels proportionally to
the intrinsic spin(-parity) distribution, we regain the correct level density and γ -ray
strength. However, for such a heavy nucleus and a beam energy below the Coulomb
barrier, the calculations show a rather small overlap between the populated spins and
the intrinsic distribution. This leads to significant distortions in the extracted nuclear
level density and γ -ray strength. We now investigate how the presented approach
can be used to correct for the deviations. Finally, the impact on lower mass nuclei
needs to be studied, although a significantly greater overlap of the populated and
intrinsic distribution and therefore smaller impact is expected.
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Systematics of γ-Ray Strength Functions
Within the Shell Model

J. E. Midtbø, A. C. Larsen, T. Renstrøm, F. L. Bello Garrote, and E. Lima

The γ -ray strength function f (Eγ ) plays an important role in many areas of
nuclear physics. Notably, it finds widespread use in reaction rate calculations for
nucleosynthesis networks [1]. In recent years, a topic of much debate has been
the behavior of the γ -ray strength function at the very lowest Eγ energies, below
∼2 MeV. It has been observed experimentally for a large number of nuclei that
the strength function increases as Eγ approaches zero (a complete list is given in
Ref. [2]). The presence of such a low-energy enhancement (LEE) can have a large
impact on neutron-capture rates [3].

In this contribution, we present our findings from a large-scale survey on the LEE
within the framework of the full-configuration shell model [2]. We have calculated
M1 strength functions for nuclei in two mass regions, comprising all nuclei in the
sd shell and isotopes of Ni, Cu, Ga, Ge, As, and Se atop a 56Ni core. We use the
massively parallel shell-model code KSHELL [4] and calculate hundreds of energy
levels of many spins and (when available) both parities for each nucleus, as well as
all allowed M1 transitions between the levels. We then compile a level density and
extract theM1 γ -ray strength function.

A plot of the calculated relative steepness for each nuclide is shown in Fig. 1.
The calculations reveal systematic trends:

1. The LEE is steeper near shell closures.
2. It is generally steeper in the fpg shell than the sd shell, and seems to steepen

with mass number. This can also be interpreted as an increase as a function of
the availability of high-� orbitals, as suggested in Ref. [5].

3. For both calculated regions, the low-energy enhancement is steeper on the
neutron-rich side than on the proton-rich side. We interpret this as a preference
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Fig. 1 Steepness of the
calculated LEE for each
nuclide. The steepness is
measured by the relative
amount of integrated strength
below 2 MeV
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of the LEE to the so-called shears-band regions, where proton particles couple
to neutron holes to generate a large, transverse magnetic moment [6, 7].

4. Across our 283 calculations, the low-energy M1 strength never disappears
completely, but merely turns flat. A disappearance is what would be expected
from standard models of strength functions [8].

In Fig. 2, we have marked off all nuclei that have been studied with the Oslo
method, and indicate whether or not the experiment revealed an LEE. Green stars
are cases where there is an LEE; orange circles are cases where no LEE was
seen; and pink diamonds are cases that are unclear. This figure reveals another
systematic trend: The LEE has, with few exceptions, only been seen in nuclei of
relatively low mass. This seems at odds with our prediction that the low-energy
enhancement increases as function of mass number. However, there is a caveat.
The Oslo method has trouble resolving the γ -ray strength function below a certain
energy threshold, usually about 1.5 MeV, mainly due to uncertainties in the detector
response unfolding. In the few cases where the LEE has been seen in higher-mass
nuclei, in 151,153Sm, a different detector with a lower energy threshold was used
[9]. If the LEE steepens with mass number, it could be out of reach of present
experiments above a certain mass threshold. The idea is sketched in Fig. 3.

It therefore seems likely that the LEE is present throughout the nuclear chart, but
that it is “hiding” below the experimental threshold in measurements of high-mass
nuclei. Hopefully, new experiments with improved low-energy sensitivity can reveal
new insight into this phenomenon.
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Fig. 2 Chart showing where an LEE has been seen in experiments with the Oslo method. Green
stars indicate that an LEE was observed, orange circles indicate that no LEE was observed. Pink
diamonds indicate cases that are unclear with respect to the LEE

Fig. 3 A sketch of how we
picture the LEE’s evolution as
a function of mass. The
yellow curve is an LEE at low
mass, the red curve at high
mass. Eγ,min indicates the
experimental threshold for
extracting the LEE
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Part VII
Surrogate Nuclear Reactions



Future Perspectives for
Surrogate-Reaction Studies at Storage
Rings

A. Henriques, B. Jurado, D. Denis-Petit, T. Chiron, L. Gaudefroy, J. Glorius,
M. Grieser, C. Langer, Y. A. Litvinov, L. Mathieu, V. Méot, R. Pérez-Sánchez,
J. Pibernat, R. Reifarth, O. Roig, B. Thomas, B. A. Thomas, J. C. Thomas,
and I. Tsekhanovich

1 Introduction

Neutron cross sections of radioactive nuclei are important to understand the
synthesis of elements from iron to uranium, for industrial purposes, e.g. for more
sustainable and efficient energy production and in the search for new therapeutic
radionuclides for medical diagnostic and treatment.
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Direct measurements of neutron capture or neutron-induced fission on unstable
isotopes are very difficult and often impossible. One of the main reasons is the pro-
duction and manipulation of radioactive targets. This can be overcome by inverting
the reaction kinematics with radioactive beams. However, the unavailability of free-
neutron targets makes the direct measurement in inverse kinematics impossible.

The most promising approach to overcome the difficulties associated with the
measurement of neutron cross sections of radioactive nuclei is to use surrogate
reactions [1, 2].

2 Surrogate Reactions

The surrogate reaction produces the compound nucleus of interest by a different
reaction than the neutron capture reaction (Fig. 1) and the decay probabilities (e.g.
for γ-emission and fission) are measured. The measured decay probabilities of the
compound nucleus are used to precisely tune model parameters that will lead to
much more accurate predictions of the desired neutron cross sections. Surrogate
reactions of interest are inelastic scattering or transfer reactions with light projectile
nuclei. Indeed, the power of surrogate reactions has been proven very successfully
at high excitation energies for neutron-induced fission in direct kinematics with p,
d, 3He and 4He beams [1, 3], and recently also for neutron radiative capture [2].

Since 2000, the CENBG together with other laboratories has been performing
experiments to study the surrogate-reaction method [3–7]. In the past years,
the experimental set-up was improved to simultaneously measure fission and γ-
emission probabilities [8].

Our studies on even–odd and odd–odd fissioning nuclei, e.g. [3, 5] show evidence
of a good agreement in the fission probabilities measured by surrogate and neutron-
induced reactions. Thus, in many cases, fission probabilities induced by surrogate
reactions can be used to provide neutron-induced fission cross sections of short-lived
nuclei rather directly through the surrogate method. However, our recent results on
240Pu show that the surrogate method is not directly applicable to this even–even

Fig. 1 The surrogate
reaction aims to produce the
same compound nucleus as
the neutron-induced reaction.
The study of the different
decay channels (fission, γ-
and particle-emission) of the
compound nucleus can be
used to constrain model
parameters used to predict
neutron cross sections
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nucleus [9]. The situation is very different for γ-emission probabilities. For all the
cases we have investigated the γ-probabilities induced by surrogate reactions are
much higher than neutron-induced ones. This discrepancy has been attributed to the
spin-parity mismatch, i.e. the difference between the angular momentum and parity
of the compound nucleus populated by the neutron induced and by the surrogate
reaction. Nevertheless, the γ-emission and fission probabilities are very useful to
fix the parameters of some of the key ingredients of the statistical model like level
densities, γ-ray strength functions and fission barriers. To establish how surrogate
reactions can be used to infer neutron cross sections in regions where no neutron-
induced data exist, it is necessary to build the systematics of decay probabilities
involving nuclei with different structural properties located in various mass regions
and different surrogate reactions.

From a technical point of view, the measurement of surrogate reactions in
direct kinematics faces the following limitations: (1) Unavailability of targets from
short-lived nuclei. (2) High background from competing reactions with the target
contaminants and backing. (3) The heavy products of the decay of the compound
nucleus are stopped in the sample and cannot be detected with particle detectors.
The limitations (1) and (3) can be addressed using radioactive beams in inverse
kinematics. Nevertheless, radioactive beams have rather low energy and position
resolution which translates into a low excitation energy resolution. In addition, for
surrogate reactions the most promising isotopes are gases (H and He), but high
areal densities of such molecules are difficult to reach and the target container
may introduce some background and loss of energy resolution due to angular and
energy straggling in the target window and the thick target. Such difficulties can be
overcome if the surrogate experiments are performed at storage rings.

Storage rings present unique opportunities for surrogate-reaction experiments. A
heavy-ion storage ring is an ensemble of beam pipes and electro-magnetic devices
arranged in a closed geometry where the heavy ions turn with high frequencies,
about 1 MHz at 10 MeV/u. The storage of heavy ions requires to minimize the
number of atomic reactions between the stored beam and the residual gas inside
the ring. Therefore, heavy-ion storage rings are operated at ultra-high vacuum
(UHV) conditions (10−11 to 10−12 mbar), which poses severe constraints to in-
ring detection. For this reason, nuclear reactions have started to be measured only
very recently at the Experimental Storage Ring (ESR) of the GSI/FAIR facility in
Darmstadt, Germany [10, 11].

The most important capability of storage rings is beam cooling, which allows
the reduction of the energy and position spread of the stored radioactive ions. Beam
cooling takes typically a few seconds, which sets the lower limit on the half-live of
the radioactive ions available. The combination of the electron cooler and the dipole
magnets ensures the quality of the stored beam in terms of emittance and purity.
The electron cooler can compensate the angular and energy straggling, and energy
loss of the beam in the gas target. Hence, the beam passes the target always with
a very low energy and position spread at the same energy. Moreover, the frequent
passing of the reaction zone allows ultra-thin gas targets (1013 atoms/cm2) to be used
and therefore no windows are necessary. This is of great advantage for surrogate
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reactions since the beam will only interact with the desired material and in a well-
defined interaction zone with a very well-defined energy, allowing a very precise
measurement of the excitation energy of the decaying nucleus.

3 A Future Set-up for Surrogate Reactions at Ion Storage
Rings

The promising advantages of performing surrogate-reaction experiments in inverse
kinematics using storage rings led to the start of a project [3], which aims to carry
out such studies in particular at the ESR and the CRYRING [12] storage rings of
GSI/FAIR.

The set-up required for surrogate-reaction measurements is presented in Fig. 2,
where the CRYRING is shown as an example of a storage ring. This unique set-up
aims at simultaneous measurements of fission, γ- and particle-emission probabilities
and consists of three main detection systems.

Close to the target, particle detectors are foreseen to identify and measure the
kinetic energies and angles of the light nuclei (“target-like”) ejected during the
surrogate reaction. Downstream the target, a fission detection system made of
solar cells will cover angles in forward direction to detect fission fragments in
coincidence with the target-like detectors. The heavy ions that proceed further down
the ring will be deflected according to their magnetic rigidity by dipole systems

Fig. 2 Schematic view of a set-up example to be used in inverse kinematics
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allowing to separate the different heavy “beam-like” products formed after γ-ray or
particle-emission by the compound nucleus and detect them in coincidence with the
target-like residues. Thanks to inverse kinematics, fission fragments and beam-like
products are emitted in forward direction, which results in detection efficiencies
that are close to 100%, much larger than in the traditional direct kinematics
measurements.

4 Developments Towards a New Set-up

The vast experience of CENBG with solar cells [5, 13] as fission and/or heavy-
ion detectors has triggered the investigation of solar cells as heavy-ion detectors
at high energies. Indeed, the common solar cells found at the rooftops have been
used to detect heavy ions at low energies about 1 MeV/u for several decades [14–
16]. They are considered a good and cost-efficient alternative to Si detectors, due to
their radiation resistance properties [16], making solar cells an attractive detection
system. However, solar cells response to heavy ions of about 10 MeV/u and their
compatibility to UHV must be investigated.

The energy, time and radiation resistance response of solar cells to more energetic
heavy-ion beams were studied in three experiments carried out at the GANIL
facility in Caen, France. The beam isotopes of choice (84Kr and 129Xe) represented
examples of fission fragments and the energy of the beams ranged from 2 to
15 MeV/u, as expected in inverse kinematics. The studies considered several types
(common rooftop and for space applications) of cells of different sizes (from 5 × 5
mm2 to 30 × 30 mm2). The size of the cell has implications in the cell capacitance
influencing the electrical circuit that will follow, i.e. the impedance matching with
the pre-amplifier. The solar cells were placed in a rotating stainless-steel support
that could hold up to nine cells. The set-up containing the cells was placed just after
the GANIL cyclotron CIME. A gas profiler allowed us to evaluate the beam spot
size, typically of 5 mm and 7 mm in x and y directions, respectively. Each cell at its
turn was placed perpendicular to the beam.

The characterization of the solar cells included investigating energy and time
resolution and radiation resistance. The time resolution was measured by recording
the time difference between the frequency of CIME and the cell signal with a
Time to Digital Converter (TDC). Our preliminary results indicate that smaller cells
exhibit a better time and energy resolution. For example, a 5 × 5 mm2 cell exposed
to 129Xe beam of 10 MeV/u revealed an energy resolution �E/E of 1.4% (RMS)
and a time resolution of 4.0 ns (FWHM) (Fig. 3). While the energy resolution is
lower when compared to a Si detector, the time resolution is indeed comparable.

One of the most interesting features of solar cells is their radiation hardness.
Several cells were irradiated at different rates from 1.5 kHz to 1.4 MHz and their
response with the number of events, as shown in Fig. 4. This figure shows the effect
of irradiating a 10 × 10 mm2 cell with 703 k particles per second during 1 h with
an 84Kr beam at 15 MeV/u. In the energy response, there is a decrease in amplitude



214 A. Henriques et al.

Fig. 3 Energy (left) and time (right) spectra of a 5 × 5 mm2 cell irradiated with a 129Xe beam at
10 MeV/u. On both spectra the x-axis is given in channels. The time spectrum was obtained from
the time difference between the cell signal (START) and the cyclotron frequency signal (STOP).
The Gaussian fits drawn provided the FWHM for the energy and time resolution

Fig. 4 Variation of the signal amplitude (left) and time difference between the cell and time signal
from CIME (right) as a function of the number of recorded events during irradiation of a 10 × 10
mm2 solar cell with a 84Kr beam at 15 MeV/u at a 703 k pps intensity for 1 h

affecting the energy resolution by 4%, while the time spectra remains essentially
unchanged during the irradiation time. In total, after such irradiation more than
2500 M ions had impinged on the cell. Its radiation damage resistance can only
be appreciated considering that a Si detector is reported to only withstand 250 M
ions of 1 A MeV at a rate of 1000 pps.
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5 Conclusions

Surrogate reactions are one of the most promising indirect methods to determine
neutron-induced cross sections. These reactions aim to produce the same compound
nucleus as the neutron-induced reaction of interest and study its decay (fission,
particle- or γ-emission) probabilities. The previous fission and γ-emission proba-
bility measurements have opened many questions on how the surrogate method can
be used; therefore, systematic studies are required to establish how the method can
be used.

Looking forward to improve the quality of surrogate-reaction data, we aim to
perform future measurements in inverse kinematics at storage rings, simultaneously
measuring all the decay probabilities with good excitation energy resolution. The
future set-up considers using solar cells as heavy-ion detectors. Given their cost and
radiation hardness, these detection systems are not only advantageous for storage
rings but possibly in beam diagnostics. We have studied the response of solar cells to
heavy ions at energies up to 15 MeV/u. These studies show promising preliminary
results regarding energy and time resolution, as well as radiation damage. Other
exposures are foreseen in the near future to further explore the potential of solar
cells as heavy-ion detectors.
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Prospects for Surrogate Neutron Capture
Measurements with Radioactive Ion
Beams and GODDESS

Jolie A. Cizewski, Andrew Ratkiewicz, Alexandre Lepailleur, Steven D. Pain,
Heather Garland, Harrison Sims, and David Walter

1 Introduction

The neutron capture (n,γ) reaction is responsible for the synthesis of almost all of
the elements heavier than iron. The slow s-process proceeds close to the line of
nuclear stability. In contrast, waiting points for the rapid neutron capture r-process
are very neutron-rich isotopes far from stability. Reproducing the observed r-process
abundance pattern is a sensitive measure of the astrophysical r-process site(s) and
requires knowledge of the properties of and (n,γ) reaction rates on isotopes near the
waiting points, nuclei far from stability and with very short half-lives [1].

Understanding (n,γ) rates near the r-process path is especially challeng-
ing because this reaction cannot be measured directly, because short-lived
(t1/2 < <100 days) targets cannot be manufactured and the lack of a pure neutron
target for studies with radioactive ion beams. Near the N = 82 shell closure at
132Sn, neutron capture is dominated by direct-semi-direct (DSD) capture that
depends sensitively on the excitation energies and spectroscopic factors of the 3p1/2
and 3p3/2 neutron configurations. These properties have been measured [2–4] in
(d,p) reactions with radioactive ion beams of 132,130,128,126Sn and the DSD capture
cross sections as a function of neutron energy have been deduced [3, 4]. While the
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132Sn(n,γ) cross section is expected to be dominated by DSD capture, for N < 82
isotopes the contribution from statistical capture, modeled in a Hauser–Feshbach
formalism, is expected to dominate over DSD processes [5]. Therefore a validated
surrogate for neutron capture is required to deduce the (n,γ) rate.

The neutron-transfer (d,pγ) reaction has recently been demonstrated to be a
valid surrogate for neutron capture [6]. The (d,p) reaction can also inform DSD
capture. To deduce the (n,γ) cross section, the γ-decay probabilities as a function
of excitation energy of several discrete gamma-ray transitions are measured. The
measured decay probabilities are fit with level density and gamma-ray strength
function models [7] with (d,p)-induced compound nucleus formation and spin-parity
weights calculated from non-elastic breakup of the deuteron [8]. Surrogate (d,pγ)
measurements require a radioactive ion beam of intensity >104 pps, a large solid
angle, segmented array of charged particle detectors, and a high-efficiency gamma-
ray detector array.

2 GODDESS and 135Xe

Gammasphere ORRUBA: Dual Detectors for Experimental Structure Studies
(GODDESS) [9] was commissioned in 2015 at Argonne National Laboratory.
Gamma radiation was measured with the 110-detector Gammasphere array
of Compton-suppressed HPGe detectors coupled to the Oak Ridge Rutgers
University Barrel Array (ORRUBA) of position-sensitive silicon-strip detectors
[10]. Accelerated beams of 134Xe and 95Mo from the ATLAS accelerator interacted
with CD2 targets. Both charged particle singles and particle-gamma coincidence
events were recorded. The rectangular position-sensitive silicon-strip SX3 detectors
of the ORRUBA barrel were supplemented with pie-shaped, highly-segmented
QQQ5 detectors that formed annular arrays mounted at angles upstream and
downstream of the ORRUBA barrel. At forward angles both the QQQ5 and
many of the SX3 detectors were mounted in a �E-E telescope to enable particle
identification.

Preliminary particle energy as a function of laboratory angle data with the 134Xe
beam is displayed in Fig. 1. At the largest laboratory angles (that correspond to
the most forward center of mass (c.m.) angles for the (d,p) reaction), only (d,p)-
reaction protons are expected to be observed. Forward of 90◦ in the laboratory, the
spectrum is dominated by elastic scattering on the CD2 target. Angular distributions
of reaction protons at smaller lab (larger c.m.) angles can be deduced from proton
particle identification with �E-E telescopes. The red dotted lines are kinematic
curves expected for ground and new Ex > 2.0 MeV states. The gap in counts between
the ground and Ex > 2.0 MeV states in 135Xe corresponds to the gap in excitations
below and above the N = 82 shell closure.

A preliminary, partial level scheme of 135Xe is displayed in Fig. 1. The states at
2.04 and 2.40 MeV are likely 7/2− and 3/2− states with significant 2f7/2 and 3p3/2
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Fig. 1 (Left) Histogram of particle energy vs lab angle for the 134Xe + CD2 measurement.
Kinematic curves (red dotted) for the ground and ≈2 MeV states in 135Xe (angles >80◦) and
deuteron and proton elastic scattering (angles <90◦) are indicated. (Right) Preliminary partial
level scheme for 135Xe with transitions measured with Gammasphere and deduced from particle-
gamma coincidences. Only the 3/2+ ground and 1/2+ 288-keV states and t1/2 15-min 11/2−
527-keV isomer were known. The states at 2040 and 2406 keV are likely (7/2−) and (3/2−) states,
respectively, based on the preliminary analysis. The states at 2836 and 3114 keV are assigned
highly tentative (1/2−) and (5/2−) Jπ values, respectively, based on systematics and the decay
pattern. Additional analysis is required before more definite spin-parity values can be assigned

strength, respectively. These assignments are consistent with their decay patterns,
preliminary angular distributions of the proton data, and systematics of the N = 81
isotone 131Sn. The states at 2.83 and 3.11 MeV have highly tentative 1/2− and 5/2−
assignments based on systematics and the decay pattern. Gamma rays in 134Xe, the
surrogate (n,n’γ) nucleus, are observed for proton gates above the neutron separation
energy.

Analysis of the 134Xe(d,pγ) reaction is ongoing and will include proton angular
distribution analysis to support the tentative Jπ assignments. It is unlikely that
there will be sufficient statistics in this commissioning experiment to deduce a
surrogate (n,γ) cross section. We anticipate that there will be sufficient statistics
in the subsequent measurement with 95Mo beams for a surrogate (n,γ) analysis, as
well as an extension of the 96Mo level scheme.

3 Summary and Future Prospects

Techniques to measure the (d,pγ) reaction with radioactive ion beams have been
developed with GODDESS: the coupling of ORRUBA to a high-efficiency gamma-
ray detector array. Preliminary results from the commissioning experiment with
134Xe beams identify for the first time excitations in 135Xe above the N = 82
shell gap. The analysis of the 95Mo(d,pγ) reaction is proceeding. We are approved
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to measure the (d,pγ) reaction as a surrogate for (n,γ) with ORRUBA coupled to
the GRETINA [11] gamma-ray detector array. Fission fragment 143Ba and 80Ge
beams would be deployed, the latter to inform neutron capture for (weak) r-process
nucleosynthesis.
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Surrogate Reaction Method for Neutron
Capture and Other Reactions on
Unstable Isotopes

J. E. Escher, J. T. Burke, R. O. Hughes, N. D. Scielzo, and R. J. Casperson

1 Introduction

Cross sections for compound-nuclear reactions (a + A → B∗ → c + C) are
important for many applications, but are often not known. Statistical cross section
calculations can be quite uncertain due to the nuclear structure models describing
the decay of the compound nucleus (CN), B∗ → c+C. Reaction measurements are
difficult to impossible when the target nucleus is too short-lived or radioactive to be
made into a stationary target. While inverse-kinematics experiments are a promising
development for measuring charged-particle induced reactions directly, the lack of
a neutron target renders this approach out of reach for neutron-induced reactions, at
least for the foreseeable future.

The surrogate method [1] overcomes the challenge of an unstable target by
producing the CN of interest indirectly via a light-ion (inelastic scattering or
transfer) reaction δ (d + D → B∗ + b) involving a projectile-target combination
more amenable to a measurement. The decay of the CN into the channel of interest,
χ = c + C, is observed in coincidence with the outgoing particle (b) from the
light-ion reaction and the resulting coincidence probability Pδχ (Eex) is measured
as a function of the excitation energy Eex of the CN. This decay probability is then
used, in conjunction with a calculation of the desired fusion process (a +A→ B∗)
to determine the cross section of interest.

In principle, the surrogate method can employ a variety of light-ion reactions
δ to determine reactions with various decay channels (χ = γ , n, p, α, 2n, . . .).
The primary focus of past applications has been on (n,f) and (n,γ ) reactions. Here,
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we summarize recent progress in determining capture cross sections and discuss
potential applications to other reaction mechanisms.

2 Applications to Neutron Capture

Early applications of the surrogate approach simply used the measured coincidence
probability Pδχ (Eex) to describe the decay of the CN in the desired (neutron-
induced) reaction, without regard to the fact that the manner in which the CN is
produced affects the spins and parities of the CN and hence its decay. While this
(Weisskopf-Ewing) approximation worked reasonably well for (n,f) reactions [1, 2],
it did not produce the correct neutron capture cross sections, due to the dependence
of the decay on the CN spin distribution [3]. Typically, the surrogate reaction
populates spins in the CN that are much higher than those relevant to low-energy
neutron capture. When the first few states of the target nucleus have low spins,
this results in neutron emission being suppressed and gamma emission being
enhanced, and therefore the estimated capture cross section is too high. This was
explained in a number of theoretical studies of the method [4–6] and also observed
experimentally [7, 8]. Employing ratio approaches did not resolve the problem [5, 9].

The key to overcoming this challenge is to treat the surrogate reaction data as a
constraint for the nuclear structure models that enter the CN reaction calculation.
Concretely, we write the surrogate coincidence probability as

Pδχ (Eex) =
∑

J,π

Fδ(Eex, J, π) ·GCNχ (Eex, J, π), (1)

where Fδ(Eex, J, π) is the (excitation energy-dependent) spin-parity population
produced in the surrogate reaction δ, and Gχ(Eex, J, π) contains nuclear structure
models needed to describe the decay of the CN. The decay models that enter
Gχ(Eex, J, π), in particular level densities and γ -ray strength functions, are
expressed as phenomenological functions, with parameters that can be constrained
by fitting the calculated Pδχ (Eex) to the measured coincidence probabilities.
The Gχ(Eex, J, π) obtained in this procedure can then be used to calculate the
desired cross section: σa+A,χ (En) = ∑

J,π σ
CN
a+A(Eex, J, π) · GCNχ (Eex, J, π) ·

Wa+A,χ (Eex, J, π), where σCNa+A is the cross section for forming the CN in the
desired reaction, which can be calculated using a suitable projectile-target optical
potential. The width fluctuation correction factor Wa+A,χ (Eex, J, π) accounts for
correlations between the incident and exit channels in the desired reaction and is
well approximated using Moldauer’s approach [10]. Its primary effect on neutron-
induced reactions is to increase the elastic scattering cross section and to reduce the
cross sections for other channels, e.g., for the capture channel. Correlations between
the incident charged-particle transfer or inelastic scattering channel and the decay
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channel of interest in current surrogate experiments are expected to be negligible,
so no correction factor is included in Eq. 1.

This idea was discussed in Refs. [1, 11] and recently used to determine the
neutron capture cross sections for 87Y and 90Zr from surrogate (p,dγ ) data [12]
and 95Mo from surrogate (d,pγ ) data [13]. The 87Y(n,γ ) result represents the first
application of this method to an unstable isotope (87Y has a half-life of 79.8 h and
prior cross section calculations had to rely on regional systematics). The 90Zr(n,γ )
and 95Mo(n,γ ) results, on the other hand, serve as benchmarks of the approach.

This approach presupposes that the spin-parity distributions Fδ(Eex, J, π) can
be calculated for the surrogate reaction selected. This is non-trivial, as the CN
excitation energies relevant to capture are typically on the order of 5–10 MeV, where
standard direct-reaction descriptions, such as DWBA, are no longer valid. Here, we
discuss the theory developments required to determine the capture cross sections.

2.1 Capture Cross Sections from (p,d) Pickup Reactions

In Ref. [12], the (p,d) reaction was used to produce the compound nuclei 88Y∗ and
91Zr∗, which are relevant to determining the 87Y(n,γ ) and 90Zr(n,γ ) cross sections,
respectively. Natural 89Y and enriched 92Zr targets were bombarded by a 28.5-
MeV proton beam, produced by the K150 Cyclotron at Texas A&M University. The
energy and angular distributions of the outgoing deuterons were measured using the
Silicon Telescope Array for Reaction Studies (STARS) [14]. The coincident γ rays
were detected with five HPGe clover detectors in the Livermore-Texas-Richmond
(LiTeR) array [7, 14]. The Surrogate coincidence probability Pδγ (Eex)was obtained
by measuring Nδ , the total number of detected deuterons, and Nδγ , the number
of coincidences between a deuteron and the γ -ray that identifies the relevant exit
channel: P expδγ (Eex, θd) = Nδγ (Eex, θd)/Nδ(Eex, θd)ε(Eγ ), where ε(Eγ ) denotes
the efficiency for detecting the exit channel γ -ray [15–17] (Fig. 1).

To calculate the surrogate spin-parity distribution FCNδ (Eex, J, π) for the com-
pound nucleus, the one-neutron removal reaction (p,d) has to be described. This
requires a reaction formulation as well as nuclear structure information. In the
90Zr(n,γ ) example considered here, the surrogate reaction produces 91Zr∗ by
removing neutrons from inner shells of the 92Zr nucleus: deep hole states are
involved in the production of 91Zr∗ near Sn. Their location and fragmentation
as a function of Eex was obtained using the dispersive optical model approach
of Mahaux and Sartor [18]. At the high excitation energies involved, one-step
(p,d) pickup processes have to be complemented by contributions from two-step
processes such as (p,p’)(p’,d) and (p,d’)(d’,d), in which the initial 92Zr or the final
91Zr are inelastically excited. Due to the large number of states in the energy band
populated, the different contributions can be assumed to add incoherently. Angle-
integrated (p,d) cross sections can be calculated and compared to measured (p,d)
cross sections as a cross-check for the calculations. While (p,d) reactions that
populate low-energy states with dominant single-particle character result in cross
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Fig. 1 Left panel: Schematic representation of the surrogate reaction approach for the benchmark
reaction 90Zr(n,γ )91Zr. The basic idea of the method is to replace the first step of the desired
reaction, n+90Zr, by an alternative reaction, p+92Zr → d+91Zr∗, that populates the same
compound nucleus, 91Zr∗. The subsequent decay of the compound nucleus into the relevant
channel, 91Zr+γ , can then be measured and used to extract the desired cross section. Specifically,
characteristic γ -ray transitions in 91Zr are measured in coincidence with the outgoing deuteron.
Right panel: Coincidence probability for the decay of 91Zr. The measured probability of observing
the 1466 keV transition in coincidence with the outgoing deuteron (black data points with error
bars) is given as function of Eex . The shaded region shows the result from fitting the decay model
parameters. The fit produces a posterior parameter distribution which can be sampled to calculate
the desired 90Zr (n,γ ) cross section [12]

sections with characteristic angular distributions, the measured angular behavior in
the surrogate measurement exhibits little structure. This was discussed in Ref. [19].

With FCNδ (Eex, J, π) obtained in this manner, one can derive constraints for the
decay models, using the measured coincidence probabilities P expδγ (Eex) and Eq. 1.

To do this, theGCNγ (Eex, J, π) are expressed in terms of well-established functional
forms for level densities and transmission coefficients [20, 21], with parameters
that are to be determined. The neutron transmission coefficients are known quite
accurately for the nuclei considered [22] and are not varied. For isotopes far from
stability, where transmission coefficients are less well known, such variations should
be carried out. Each parameter set leads to predicted coincidence probabilities
according to Eq. 1. A comparison with the measured probabilities then leads to the
sought-after parameter constraints. In practice, this comparison is carried out using
a Bayesian Monte-Carlo approach [23], which allows us to simultaneously account
for uncertainties in the data, the structure information utilized, and shortcomings
in the theoretical description. The procedure yields the desired (n,γ ) cross section,
along with its uncertainty, and is found to be in agreement with directly measured
results [12].
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Fig. 2 Surrogate coincidence probabilities relevant to the neutron emission channel 91Zr →90Zr +
n. Shown are measurement (black data points) for five transitions in 90Zr, observed in coincidence
with the outgoing deuteron, as function of the 91Zr excitation energy. The blue curves represent the
transitions calculated with the parameters determined from the earlier fit to the γ -decay channel.
The excellent agreement between the calculated and measured coincidence probabilities provides
increased confidence in the approach

In addition to yielding the capture reaction, the surrogate experiment contains
information on the competing neutron emission channel. Neutron emission leads to
the population of excited states in 90Zr which subsequently de-excite via γ emission.
Selected γ -ray transitions between discrete states of 90Zr were also measured in the
experiment [12]. In principle, the associated coincidence probabilities Pδχ (Eex),
where χ now refers to a particular γ transition in 90Zr, can be used to constrain
the calculation of the 90Zr(n,n′) cross section. Here, however, we will use the
observed coincidence probabilities as a cross-check for the procedure. In Fig. 2,
we compare the calculated average probabilities, obtained from the parameter
fitting procedure outlined above, to the measured coincidence probabilities. The
five transitions involve initial states with excitation energies between 3.6 and
4.5 MeV, but various angular momenta, between 3h̄ and 8h̄. The onset of each
transition, which depends on the angular momenta of the states involved, is correctly
reproduced. Overall, we observe excellent agreement for the shapes of all five
transitions (the normalization was adjusted), which provides increased confidence
in the calculated FCNδ (Eex, J, π) and therefore the overall method.

2.2 Capture Cross Sections from (d,p) Stripping Reactions

The (d,p) reaction is expected to play a central role in inverse-kinematics experi-
ments that aim to measure structural properties of unstable nuclei at radioactive-
beam facilities. The reaction can also be used to produce a compound nucleus
near and above the neutron separation energy, thus making it a candidate for
surrogate applications. The reaction mechanism is complex, with multiple pro-
cesses contributing to the measured surrogate coincidence probabilities: elastic
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and inelastic breakup, breakup followed by partial fusion (of either the neutron
or proton), and complete fusion followed by evaporation are known contribute to
inclusive (d,p) measurements. Inclusive (d,p) reactions were already discussed in the
1970s, but disagreements about the proper theoretical formalism persisted [24–26].
Recently, several groups revisited the problem [27–29] and developed a consistent
formalism [30]. The numerical implementation of Ref. [27] was subsequently used
to calculate the spin-parity distribution relevant to a recent 95Mo(d,pγ ) surrogate
measurement. Modeling the decay of 96Mo∗ made it then possible to indirectly
determine the 95Mo(n,γ ) cross section, which was found to be in excellent agree-
ment with the known capture cross section, thus providing a valuable benchmark
for future (d,p) surrogate reaction applications [13].

2.3 Capture Cross Sections from Inelastic Scattering Reactions

Inelastic scattering is potentially a very valuable surrogate reaction mechanism [7,
16] that can also be used in inverse-kinematics experiments at radioactive-beam
facilities. In the past, inelastic scattering with charged particles has been used
extensively to study giant resonances. These studies demonstrate that inelastic
scattering produces compound nuclei up to very high excitation energy (10s
of MeV). Thus, it becomes possible to observe γ emission, neutron emission,
and two consecutive neutron emission events in one experiment. This makes it,
in principle, possible to determine (n,γ ), (n,n’), and (n,2n) cross sections from
surrogate inelastic scattering experiments. A proper theoretical description of such
experiments requires the integration of nuclear structure and reaction descriptions,
along the lines of the developments carried out in Refs. [31–35].

3 Outlook

Indirect methods are critical for determining cross sections for reactions on unstable
isotopes. The approach outlined here is, in principle, applicable to other decay chan-
nels (and to other entrance channels). When considering other entrance channels, the
projectile-target fusion calculation has to be modified accordingly. For example, to
determine a (p,γ ) cross section, a proton-nucleus optical model potential has to be
employed to calculate the compound nucleus formation in the desired reaction. The
decay models can be constrained analogously to the (n,γ ) case. When other exit
channels are of interest, different coincidence probabilities have to be measured.
For fission, one can detect fission fragments in coincidence with the outgoing
particle from the surrogate reaction [1]. For neutron or charged-particle channels,
it is possible to detect the emitted particle of interest or—in analogy to the case
discussed in Sect. 2—a γ transition that is characteristic of the channel of interest.
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In summary, the framework discussed here establishes a general procedure for
obtaining cross sections for short-lived nuclei from light-ion surrogate reactions.
Combined with the ability to carry out experiments at radioactive-beam facilities,
it becomes a powerful tool for addressing important questions for a variety of
applications.
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Neutron Capture Cross Sections from
Surrogate Reaction Data and Theory:
Connecting the Pieces with a
Markov-Chain Monte Carlo Approach

Oliver Gorton and Jutta E. Escher

Neutron capture cross sections can be measured by bombarding a sample of target
nuclei with neutrons and detecting decay products. Such measurements cannot be
completed in the laboratory when the target isotopes have half-lives that are short
compared to timescales relevant to the experiment. This leaves critical gaps in
nuclear data libraries. To predict the missing data, nuclear cross section calculations
can, in principle, be carried out using statistical Hauser-Feshbach (HF) models [1].
In compound nuclear reactions, a compound nucleus (CN) is formed, which then
decays through the available decay channels. These channels and the probability of
each being taken depend on the nuclear level densities and γ -ray strength function of
the CN. The general lack of nuclear structure information for medium to heavy mass
nuclei leads to the need for indirect constraints on the corresponding HF parameters.
The surrogate method [2] obtains these constraints using measurements of the same
CN decay observed in alternative reactions.

Specifically, in Ref. [3] the decay of the CN 91Zr was modeled using
parametrized (phenomenological) forms for the level density and γ -ray strength
function. The parameters were fitted to measured 92Zr(p, dγ ) data from a surrogate
experiment and subsequently used to calculate the desired 90Zr(n, γ ) cross section.
A Bayesian Monte Carlo approach was employed, which provided an average (n, γ )
cross section, along with a variance, yielding an uncertainty band that is symmetric
around the mean. Here, we improve the parameter estimation by introducing a
Markov-Chain Monte Carlo (MCMC) approach for sampling the HF parameter
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space, generating a joint probability distribution for the parameters without visiting
every combination of parameters.

The nuclear level density model we employ is the composite Gilbert-Cameron
level density [4] with the Ignatyuk treatment of the energy dependence of the level
density parameter [5]. We varied five parameters within this prescription, which are,
following the notation of reference [1]: the asymptotic level density parameter ã,
the shell correction energy δW , the level density damping parameter γ , the pairing
energy shift �, and the effective moment of inertia that enters the expression for
the spin-cutoff factor. The γ -ray strength function description employed was the
enhanced generalized Lorentzian (EGLO) model for the E1 transitions, and the
standard Lorentzian (SLO) for the M1 transitions. These models are parameterized
by their peak energy, width, and strength [1]. We varied nine strength function
parameters, three for each peak, with the EGLO function having two peaks, and
the SLO having a single peak. A total of 14 parameters were varied simultaneously.

We employ a Metropolis-Hastings MCMC algorithm [6, 7], and explore con-
vergence of the sampling process. The prior distributions for each parameter were
finite and flat, and centered around recommended parameter values from RIPL-3 [1].
The posterior parameter distribution we obtain is sampled, yielding the 90Zr(n, γ )

cross section shown in Fig. 1. This method propagates all constraints encoded in
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Fig. 1 Preliminary 90Zr(n, γ ) cross section obtained indirectly from 92Zr(p, dγ ) data using the
newly developed MCMC approach. The solid (blue) curve is the median value and the solid (blue)
band indicates the 68% confidence interval. For comparison, the Talys Evaluated Nuclear Data
Library (TENDL) [8] and the Evaluated Nuclear Data File (ENDF) library results are shown a
well [9]
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the joint probability distribution of parameters, including correlations between the
parameters. The result is seen to be in agreement with the TENDL 2015 and
ENDF/B-VII.1 evaluations, both of which are based on directly measured data.
In future work we will investigate correlations between the model parameters and
between the cross sections at different energies.
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Describing Neutron Transfer Reactions
for Deformed Nuclei with a Sturmian
Basis

V. G. Gueorguiev, J. E. Escher, F. S. Dietrich, and P. D. Kunz

We investigate the spin–parity distribution P(Jπ ,E) of those 156Gd states above the
neutron separation energy Sn = 8.536 MeV [1] that are expected to be populated
via the neutron pickup reaction 157Gd(3He,4He)156Gd. Investigating such one-
nucleon transfer reactions is important for applications of the surrogate reaction
method, an indirect approach for determining hard-to-measure compound cross
sections [2]. In a surrogate reaction experiment, a charged-particle transfer or
inelastic scattering reaction is employed to produce a compound nucleus, observe
its decay, and use the decay observations to constrain Hauser-Feshbach calculations
of a reaction that proceeds through the same compound nucleus but cannot be
measured directly, e.g., neutron capture on a short-lived isotope [3, 4]. Unlike the
compound-nuclear reaction of interest, the surrogate reaction is a direct reaction that
produces a doorway state, which subsequently damps into the relevant compound
nucleus. To fully utilize the surrogate approach, it is necessary to calculate the
probabilities P(Jπ ,E) for producing states with specific spin and parity, Jπ , at
high excitation energies E, typically around the neutron separation energy [5].
Here, we investigate the spin–parity distribution P(Jπ ,E) of 156Gd produced via the
neutron pickup reaction 157Gd(3He,4He)156Gd. In our initial treatment, we restrict
our considerations to a one-step reaction mechanism and focus on the effect of
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deformation. Contributions from higher-order reaction mechanisms may need to be
considered [6] in the future.

In analogy with the rotor-plus-particle model [7], we view excited states in
156Gd as rotational states built on intrinsic states consisting of a neutron hole in
the 157Gd core; that is, a neutron removal from a deformed Woods–Saxon-type
single-particle state [8] in 157Gd. To understand the impact of the deformation
and what should be considered as a small deformation, calculations of Woods–
Saxon-type single-particle states were performed using several codes [9–15]. For
small non-zero deformation, we used the codes from Ref. [10–13], while for large
deformation we selected only the code by Cwiok et al. [10]. The pairing effects
within the core are accounted for through the BCS pairing model [16, 17], while
the particle–core interaction usually dominated by a Coriolis coupling is accounted
for via first-order perturbation theory to the particle–core Coriolis coupling [17].
The spectroscopic factor associated with each state is the expansion coefficient of
the deformed neutron state in a spherical Sturmian basis along with the spherical
form factors [17]. The cross section for one-neutron transfers to each excited state
in 156Gd is calculated as coherent contribution using a standard reaction code [15]
based on spherical basis states. The Sturmian basis is a collection of states that are
solutions to an equation that is almost the same as the Schödinger equation under
consideration, for fixed eigenenergy, but for a potential depth that is varied until
the boundary conditions are satisfied [18, 19]. Using such basis states comes at
the expense of a more complicated expansion but guarantees completeness and the
correct asymptotic tail of the wave function and often results in fast convergence
and small model spaces.

The resulting model calculations result in discrete energy states (see, e.g., Fig. 5
in Ref. [17]), and cross sections with sharp peaks (Fig. 9 in Ref. [17]), which
cannot be directly compared to experiments. The current description does not
include an explicit treatment of the couplings between the doorway states and
more complicated configurations, which result in the damping of these states into
the compound nucleus. We account for this damping by introducing a Lorentzian
distribution function, which smoothes out the cross section in energy [17].

Our calculations predict that, within the assumptions discussed here, the reaction
3He+157Gd → 4He+156Gd� produces a well-behaved formation probability P(Jπ ,E)
within the energy range relevant to the desired reaction 155Gd+n → 156Gd�. It is
observed that the centroid and shape of the Gaussian distributions of the positive and
negative parity states of the compound system can be significantly different from
each other (see Fig. 1). Thus, one has to carefully verify whether it is appropriate
to use the same Gaussian distribution for positive and negative parity states as has
been done in some surrogate reaction models [20].
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Fig. 1 P(Jπ ;E) distributions for energies near the neutron separation energy in 156Gd. Left graph
for E = 8.5 MeV and right E = 9.5 MeV (using � = 0.01 + 0.01E for the smearing function).
The sign of the horizontal coordinate corresponds to the parity π , and its magnitude gives J
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PCN Calculations for Z = 111 to Z = 118

W. Loveland and Liangyu Yao

1 Introduction

The cross section for producing a heavy evaporation residue in a complete fusion
reaction can be written as a non-separable product of three factors, which express
the capture cross section, the fusion probability and the survival probability.

σEVR = πh2

2μE

∑

�=0

(2�+ 1) T (E, �) PCNWsur (E, �) (1)

Each of these factors is dependent on the spin, but the survival probability, Wsur,
is zero or very small for higher spin values, effectively limiting the capture and
fusion terms. Many partial waves contribute to the capture cross sections, but the
higher partial waves result in non-surviving events. In this work, we examine the
impact of restrictions on spin placed by the survival probabilities for compound
nuclear reactions resulting in the synthesis of superheavy nuclei with ZCN = 111–
118. In doing so, we extend the previous work [1, 2] to treat the synthesis of the
heaviest nuclei with ZCN = 111–118.
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2 Methodology

As explained in [1], the formalism for calculating the survival, against fission,
of a highly excited nucleus is relatively well-understood [3]. One starts with a
single particle model [4] of the level density in which one allows the level density
parameter to be a function of the excitation energy. Masses and shell corrections
are taken from [5]. The deformation dependent collective enhancement of the level
density is taken from [6]. The decay widths for decay by neutron, charged particle
and γ-emission are calculated with standard formulas. Corrections for Kramers
effects [7] are made to the fission widths. The fission barrier heights are calculated
using liquid drop barriers and excitation energy dependent shell corrections.

We begin with the compilation of Duellmann of evaluated evaporation residue
cross sections for reactions that produce nuclei with ZCN = 111–118 [8]. For each
reaction (projectile, target and beam energy), we calculated the spin dependent
evaporation residue cross section assuming PCN = 1 using the “Empirical Model”
of [3]. In [1], we presented evidence that this procedure results in a reasonable
agreement between the calculated and measured spin dependence of the evaporation
residue formation cross sections for the test case of 176Yb(48Ca,4n) 220Th reaction
and for the 48Ca + 208Pb reaction. Loveland [9] has made a detailed examination of
the strengths and weaknesses of models such as [3] and placed limits on how well
these models work.

3 Results

There are 28 cases we have examined. A summary of the measured and calculated
evaporation residue cross sections is given in Table 1. The fusion probability, PCN,
is taken as the ratios of the calculated to the measured evaporation residue cross
sections since we have assumed PCN = 1 in our calculations. As expected, the PCN
values for the “cold fusion” reactions (1n out) are orders of magnitude smaller than
those for the hot fusion (2n–4n out) reactions. The deduced values of PCN generally
get smaller as the product of the atomic numbers of the colliding nuclei, Z1Z2,
increases.

In Fig. 1, we show the PCN values, sorted by exit channel for the hot fusion
reactions, as a function of the simple scaling variable, Z1Z2, the product of the
atomic numbers of the reacting nuclei.

The use of other scaling variables such as xCN , xeff and xm does not significantly
improve the description of the data. xCN is defined as

xCN = Z2
CN/ACN

50.883

(
1 − 1.7826

(
ACN−2ZCN

ACN

)2
) (2)
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Table 1 Measured and calculated evaporation residue cross sections for ZCN = 111–118

Beam Target Channel σmeas (pb) σcalc (pb) PCN Reference
64Ni 209Bi 1n 3.5+1.9

–1.3 6910 0.000507 [10]
65Cu 208Pb 1n 1.7+3.9

–1.4 20,500 8.3e−05 [11]
48Ca 238U 3n 2.5+1.8

–1.1 60 0.0417 [12]
48Ca 238U 4n 0.7+0.6

–0.3 425 0.00165 [13]
48Ca 238U 4n 0.6+1.6

–0.5 7 0.0857 [12]
70Zn 208Pb 1n 0.5+1.1

–0.4 5e+06 1e−07 [14]
48Ca 237Np 3n 0.9 5 0.18 [15]
70Zn 209Bi 1n 0.022 940,000 2.34e−08 [16]
48Ca 239Pu 3n 0.23 16 0.0144 [17]
48Ca 240Pu 3n 2.5+2.9

–1.4 62 0.0403 [17]
48Ca 242Pu 2n 0.5 244 0.00205
48Ca 242Pu 3n 3.6+3.4

–1.7 78 0.0463 [12]
48Ca 242Pu 4n 4.5+3.6

–1.9 129 0.0349 [12]
48Ca 242Pu 5n 0.6+0.9

–0.5 11.6 0.0517 [18]
48Ca 244Pu 3n 8+7.4

–4.5 180 0.0444 [19]
48Ca 244Pu 4n 9.8+3.9

–3.1 220 0.0445 [19]
48Ca 244Pu 5n 1.1+2.6

–0.9 9.2 0.120 [20]
48Ca 243Am 2n 2.5+2.7

–1.5 15.4 0.162 [21]
48Ca 243Am 3n 8.5+6.4

–3.7 660 0.0129 [22]
48Ca 243Am 4n 0.9+3.2

–0.8 169 0.00533 [23]
48Ca 245Cm 2n 0.9 6.89 0.131 [20]
48Ca 245Cm 3n 3.7+3.6

–1.8 229 0.0162 [24]
48Ca 245Cm 4n 0.8 95 0.00842 [24]
48Ca 248Cm 3n 1.2 166 0.00723 [12]
48Ca 248Cm 4n 3.4 652 0.00522 [25]
48Ca 249Bk 3n 1.1+1.2

–0.6 1660 0.000663 [26]
48Ca 249Bk 4n 2.4+3.3

–1.4 333 0.00721 [26]
48Ca 249Cf 2n 0.9 50.9 0.0177 [24]

xeff is defined as

xeff =

4ZPZT

A
1
3
p A

1
3
T

(
A

1
3
P +A

1
3
T

)

50.883

(
1 − 1.7826

( (
ACN−2ZCN

ACN

)2
))

xm is defined as

xm = 0.25xCN + 0.75xeff
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Fig. 1 The calculated values of PCN for various exit channels as a function of the scaling variable
Z1Z2

All of these scaling variables seek to relate PCN to the balance of attractive
and repulsive forces in the reaction entrance channel. Clearly there is a certain
amount of “spatter” in the plots of PCN vs. Z1Z2. In part, this “spatter” is due to the
uncertainties in the measured evaporation residue cross sections which are typically
uncertain to the measured value (Loveland [9] has shown that these uncertainties in
PCN can lead to order of magnitude uncertainties in estimations of the production
cross sections for elements 119 and 120, challenging experimentalists dealing with
fb production cross sections).

If we use the simple Z1Z2 scaling factor for the 3n and 4n reactions, then we can
write a simple formula for the 3n channel as

log10 (PCN (3n)) = −0.019Z1Z2 + 35.0

and for the 4n channel

log10 (PCN (4n)) = −0.013Z1Z2 + 23.2
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Fig. 2 Comparison of the
measurements of PCN in this
work with that of [27]

Fig. 3 Comparison of our
measured values of PCN with
the predictions of [28]

We can ask how well these new values of PCN agree with previous measurements
and theoretical predictions. Kozulin et al. [27] have reported measurements of
PCN based upon mass–energy distributions of fission-like fragments from a variety
of reactions. In Fig. 2, we compare our values of PCN with the Kozulin et al.
measurements. Given the intrinsic large uncertainties in our deduced PCN values,
the agreement between the measurements seems satisfactory.

How do our measured values of PCN compare with various theoretical predictions
of PCN? Given our methodology, there is no surprise that our deduced values of PCN
agree well with the predictions of Zagrebaev [29]. How about other predictions?
In Fig. 3, we compare our deduced values of PCN with predictions of Nasirov et
al. [28]. For the hot fusion reactions (Z1Z2 = 1800–2000), the agreement seems
reasonable but there is a stark disagreement for the cold fusion cases.
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4 Conclusions

What have we learned from this study? We have extended the systematics of PCN
to cases involving the synthesis of elements 111–118. We have parameterized the
new values of PCN with a simple linear fit that might be useful in predictions of
cross sections for the synthesis of elements 119 and 120. We have compared our
measurements with previous measurements and theoretical predictions.
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On the Role of the Curvature Corrections
in the Surface Tension Coefficient upon
the Orientation Effects in the Fusion
Reactions

K. Cherevko, L. Bulavin, L. Jenkovszky, and V. Sysoev

Nowadays the orientation effects in fusion reactions are intensively studied. Among
the possible mechanisms responsible for the changes of the barrier height and
reaction cross section are the Coulomb interaction [1] and changes in the nuclear
interaction potential due to curvature of the interfaces [2]. It can be seen from the
literature that Coulomb effects are well understood and can explain the qualitative
picture observed in the experiment. At the same time, the role of the nuclear
potential is not that well determined.

The present study addresses the possible influence of the difference in between
the surface tension coefficient of the semi-infinite nuclear matter σ∞ and that for

the curved interface σcurv = σ∞
(

1 − 2δ
R

)
[3] on the fusion of the deformed nuclei.

The equation of state of nuclear matter is calculated with a Skyrme interaction.
To solve the task the earlier developed theoretical model allowing to link the

surface and bulk properties of the nuclear matter [4] is used. Within that approach
the Tolman δ-correction [3] for the nuclear matter on the coexistence curve can be
found from the equation of state:
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δ = 2

3

1

ρ0
2

× −33t0 − 160Wρ0
−1/3 + t3(1 + α)ρ0

α 1
12

(
7(3α + 6)− 3(3α + 6)2

)
(

15t0 + 1
12 t3(1 + α) ((3α + 6)− (3α + 6)2

))2 σ∞

(1)

where W is the parameter related to the effective masses, see Eq. (9) in Ref.[4], ρ0
is the saturation density and α the power of the density dependence of the Skyrme
interaction. To evaluate the barrier heights and positions different nuclear potentials
based on the proximity concept [2] are used. Within that approach the nuclear part
VN of the total interaction potential VT = VN + VC is defined as:

VN(r) = 4πσbR 

(
r − C1 − C2

b

)
(2)

with  (ζ) being the universal function. In the current work we attempt to account
for the curvature correction in the surface tension coefficient by changing σ in
Eq. (2) for σcurv with δ defined from Eq. (1). In calculating the shape of the nuclei
and the shortest distance we follow the approach of [5] and for the Coulomb part
VC in case of the deformed nuclei the formalism from [1] is used. SV-min Skyrme
force is used [6].

Within the suggested approach the nuclear interaction potential is calculated for
the case of two deformed 40Ca nuclei (Fig. 1) The barrier heights and positions
for that case are given in Table 1. It can be easily seen that inclusion of curvature
correction changes the barrier height and position. The observed effect increases
with the increased deformation of the nuclei.

r,fm

Ve
M,n

V

SV-min

with curvature
correction

Ve
M,n

V

with curvature
correction

SV-min

r,fm

Fig. 1 Nuclear interaction potential VN dependence on distance. 40Ca + 40Ca system
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Table 1 Fusion barriers heights and positions for the deformed 40Ca + 40Ca System

No correction Correction included Experiment [7]
a
b

θ1, deg θ2, deg VB , MeV RB , fm VB , MeV RB , fm VB , MeV RB , fm

1 – – 54.78 9.70 54.74 9.69 50.60 ± 2.8 9.50 ± 0.5

1.2 60 60 41.72 13.01 41.24 13.05

1.5 60 60 39.20 13.9 39.07 13.94

From our studies it can be seen that in case of the deformed nuclei suggested
correction gives a non-negligible contribution to the fusion barriers heights and
positions depending on the mutual orientation of the nuclei. The obtained results
suggest that accounting for the curvature correction to the surface energy is essential
when studying the interaction of the deformed nuclei.
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Excitation Function Measurements
of Alpha-Induced Reaction on Natural
Copper and Titanium Up To 46 MeV

Hiroshi Yashima, Masayuki Hagiwara, Toshiya Sanami, and Shunsuke Yonai

1 Introduction

The activation cross section data are required for isotope production, activation
detector, residual activity assessment and so on, although experimental data are very
scarce for heavy ions. We, therefore, irradiated 46.4 MeV alpha beam onto a target
to obtain experimental data of residual radioactivities for low energy heavy ions.

2 Experiment and Analysis

The Irradiation experiment was performed at cyclotron facility (NIRS-930),
National Institutes for Quantum and Radiological Science and Technology. A
schematic view of the experimental set-up is shown in Fig. 1. The target was
composed of a stack of 15 mm × 15 mm × 0.01 mm natural Cu and Ti foils,
and total thickness of target was thicker than the range of projectile alpha beams.
The beam current on the target was recorded with a current integrator, connected
to a multichannel scaler to monitor the fluctuations of the alpha beam. The two
target irradiations were performed for a shorter irradiation time and a longer
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46.4MeV He

10μm Ti × 10μm Cu × 33

·····

8 sets

Fig. 1 A Schematic view of the experimental set-up

irradiation time, considering the half-lives of produced nuclei. The average alpha
beam intensity and irradiation time were 300 nA and 10 min for short irradiation,
250 nA and 4 h for long irradiation, respectively. After irradiation, we measured the
gamma-ray spectra from Cu and Ti samples with a HPGe detector. The activation
cross sections σ were deduced by the following equation:

σ = λCIf

εγNdtIe−λtc
(
1 − e−λtm) (1 − e−λti ) , (1)

where λ is the decay constant (s−1), C is the total counts of gamma-ray peak area,
ε is the peak efficiency, γ is the branching ratio of gamma-rays, Nd is the atomic
density of sample (atom/cm3), t is the thickness of sample (cm), tc is the cooling
time (s), tm is the measurement time (s), ti is the irradiation time (s), I is the
average beam intensity (alpha per second) and If is the correction factor for beam
current fluctuation. The corresponding energy for the cross section was determined
by taking into account the projectile energy degradation in the target by using the
SRIM-2013 code [1].

3 Results

As an example, the excitation functions obtained for natTi(α, X)51Cr and natCu(α,
X)66Ga reactions are shown in Fig. 2 with other experimental data [2–9], IAEA
recommended data [10] and TENDL-2017 data [11].

The present data are consistent with other experimental data and IAEA rec-
ommended data. There were some differences between experimental data and
TENDL-2017 data. In Fig. 2, the peak value and peak energy of the excitation
function of TENDL-2017 data showed lower than these of experimental data.

4 Conclusion

The excitation function of alpha-induced reaction in Cu and Ti were measured up to
46 MeV. The present results agree well with other experimental results and IAEA
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(a)natTi(a,X)51Cr (b)natCu(a,X)66Ga

Fig. 2 Measured excitation function with other experimental data, IAEA recommended data and
TENDL-2017 data

recommended data. The present results will be useful as benchmark data to evaluate
nuclear data and investigate the accuracy of calculation codes.

Acknowledgement The authors express their gratitude to the accelerator staff of NIRS-930 for
generous support during this experiment. This work was supported by JSPS KAKENHI Grant
Number JP17K07010.
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Measurement of the Excitation Function
of 96Zr(α,x)99Mo Reaction up to 32 MeV

Masayuki Hagiwara, Hiroshi Yashima, Toshiya Sanami, and Shunsuke Yonai

1 Introduction

Technetium 99m and its parent isotope: molybdenum 99 is one of the most
important radioisotopes used in nuclear medicine for common diagnostic imaging
technologies such as single photon emission computed tomography (SPECT).
After the well-recognized worldwide shortage of 99mTc/99Mo due to the long
shutdowns of major nuclear research reactors in 2009–2010, some alternate sources
of 99mTc/99Mo using accelerators have been investigated for their stable supply [1].
We have focused on the production route of 99Mo via the 96Zr(α,n)99Mo reaction
using a low energy accelerator. In order to estimate the production yield of 99Mo and
its byproducts, we irradiated 46.4 MeV alpha particles onto stacked natZr targets at
a cyclotron facility (NIRS-930), National Institutes for Quantum and Radiological
Science and Technology, Japan.
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2 Experimental

The stack target was composed of natural zirconium foils, natural copper foils,
and natural titanium foils with their thickness of 5 μm. The zirconium foils were
sandwiched between copper and titanium foils that were acted as beam monitors,
energy degraders, and recoil catcher foils. The total target thickness was thicker
than the range of 46.4 MeV α particles to measure the beam current on the
targets. After 1-hour irradiation with beam current of 300 nA, γ-rays from each
foil were measured with a HPGe detector. The excitation function was deduced
from the activity measured and the projectile energies on each foil, which were
calculated by using the SRIM-2013 code [2]. The projectile energies and beam
fluxes were confirmed by comparing the measured excitation function and the
IAEA recommendation data for the natTi(α, X)51Cr reaction [3]. The uncertainties
of the target thicknesses (5%), number of incident particles (3%), and efficiency
determination (4%) were considered in addition to the statistical error.

3 Results

The measured excitation functions of 96Zr(α,x)99Mo reaction are shown in Fig. 1
with the other experimental data [4–6] and TENDL-2017 data [7]. The present data
well-traced a fitting line of our previous experimental data measured using 24 MeV
α particles in HIMAC [4]. However, there were some differences between the other
experimental data and TENDL-2017 data, especially for the peak values and peak
energies in their excitation function. According to the present data, the production
rate of 99Mo using α particles could be enhanced 50% higher than ones estimated
from the other data [6].

Fig. 1 Measured excitation
function of the 96Zr(α,x)99Mo
reaction compared with
TENDL-2017 and other
experimental data. A dash
line indicates a fitting curve
of the previous experimental
data reported in [4]
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Part IX
Fission



A Grand Tour of Nuclear Fission Physics

W. Younes

1 Introduction

In a practical sense, modern nuclear physics began in 1932 with the discovery of the
neutron by James Chadwick [1]. Shortly thereafter, Enrico Fermi working in Rome
set out to form elements beyond uranium, the heaviest known element at the time,
by bombarding a uranium target with neutrons. Fermi surmised that the composite
system produced by the neutron-induced reaction would form higher-Z elements
through a series of beta decays. These experiments lasted from 1934 to 1935, and
although they observed beta activity, Fermi and his collaborators were never able
to account for the large number of separate activities they measured [2, 3]. Despite
this setback, other groups led by Irène Joliot-Curie in Paris and Lise Meitner in
Berlin took up the search for transuranic elements from 1935 to 1938, using Fermi’s
approach [4]. All these attempts were doomed from the start because low-energy
neutron-induced reactions on uranium targets paradoxically lead to fission products
much lighter than the target, rather than to transuranic elements. The concept of
nuclear fission, and the possibility that it might account for Fermi’s results, was
first formulated by Ida Noddack in 1934 [5]. Unfortunately, her prescient critique
of Fermi’s work was largely ignored. The uranium irradiation puzzle was finally
solved in 1938 by the Berlin group with the identification of barium as one of the
products formed in the reaction [2, 6]. In 1939, three seminal papers on fission were
published. The first, by Hahn and Strassmann [7], marked the official discovery of
fission. The second, by Meitner and Frisch [8], gave a model of fission using an
analogy with a drop of liquid. The third paper, by Bohr and Wheeler [9], applied
the liquid-drop model to interpret and predict an impressive number of fission
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observables. The Bohr and Wheeler paper directly addressed the questions: how
much energy is released in fission? How much energy has to be supplied, and is
spontaneous fission possible? What is the cross section for induced fission? Which
isotope in natural uranium is primarily responsible for the observed fission cross
section? What is the origin of delayed neutrons? What is the mass distribution of
the fragments? These and other questions will be further explored in the remainder
of this lecture.

2 General Features of Fission

Various characteristic features of fission have emerged from over 80 years of study.
These features are important in formulating a coherent understanding of the fission
process. That being said, it is important to keep in mind that, despite overall
systematic trends, observed fission properties can differ significantly between
neighboring nuclei.

Nuclear fission is an extreme example of large-amplitude collective motion
[10] that results in the division of a parent nucleus into two or more fragment
nuclei. Binary fission (fission into two fragments) is far more common than ternary
fission, which typically occurs in fewer than about one in a thousand events in
thermal fission [11]. The third fragment in ternary fission is most often an α
particle that tends to be emitted in a direction roughly perpendicular to the axis
connecting the other two fragments [11]. The collective character of the fission
process distinguishes it from other processes that break up the nucleus, such as
spallation [12]. In a spallation reaction, a high-energy incident nucleon (e.g., an
800-MeV proton [13]) interacts with individual protons and neutrons in the nucleus
causing the emission of secondary particles via an intranuclear cascade mechanism
[12]. Once the nucleus loses enough energy through this process, particle (mostly
neutron) emission continues via statistical evaporation. The different mechanisms
underlying fission and spallation lead to differences in their observable properties:
spallation tends to produce fragments that are close to the target in mass, whereas
(low-energy) fission more often results in a pair of fragments significantly lighter
than the target nucleus. In another example, the quasi-fission process where the
reacting system re-separates before fission can begin differs from fission and in fact
can compete with it in the formation of superheavy nuclei [14, 15].

The fission process can occur spontaneously, or it can be induced by an incident
particle. Historically, induced fission was discovered first and spontaneous fission
(SF) was observed in uranium nuclei sometime later [16, 17]. The SF process in
actinides typically competes with α decay and is often dwarfed by the α branch but
not always, as in the case of 250Cm where SF dominates α decay. When viewed
as a barrier penetration mechanism, the SF half-life can be calculated using the
semi-classical Wentzel-Kramers-Brillouin (WKB) approximation [18] in terms of
the action integral for the system [11, 19, 20]. The SF half-lives, when plotted as
a function of the Z2/A ratio of the parent nucleus, display two important features:
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the SF half-life tends to decrease with increasing Z2/A, and nuclei with an odd
number of either protons or neutrons have systematically larger half-lives than the
neighboring even-even nuclei [11].

In induced fission, an incident particle fuses with a target to form a compound
system.1 If the excitation energy of the compound system is sufficiently large, the
parent nucleus will likely emit neutrons, and may undergo multiple-chance fission
(fission without prior neutron emission is called “first-chance” fission, if one neutron
is emitted the process is referred to as “second-chance” fission, etc.). Once there
is no longer enough excitation energy left to emit additional neutrons, the parent
nucleus can continue to de-excite through gamma emission or proceed toward
scission (the breaking point of the nucleus). Various models predict a transition
time to scission (also known as the saddle-to-scission time) of 10−20 − 10−19 s for
low-energy fission [22–24]. This is a relatively long transition time compared to
the orbital time of 10−22 s of a nucleon in the nucleus, as expected for a collective
process involving the coherent motion of many or all nucleons. There are various
experimental techniques that attempt to measure the time scale of the fission process.
Some of these techniques probe the time scale of the entire fission process from
compound-nucleus formation to scission. For example, one such approach takes
advantage of the rearrangement of the electronic structure that occurs when the
fragments formed, and the corresponding change in the x-rays produced [25].
Another approach, the crystal blocking technique, relies on the ordered structure
of a crystal to gauge how far the parent nucleus has recoiled before the fragments
are produced and fly apart, and to deduce the time delay since compound-nucleus
formation [26]. Other experimental methods, looking at the properties of neutrons
and gammas emitted before scission, can give a better sense of the saddle-to-scission
time scale [27, 28].

The fragments produced at scission are called “primary fragments” until they
emit prompt neutrons and become “secondary fragments.” These secondary frag-
ments can then beta decay into stable nuclei, which are then referred to as “fission
products” [29]. The gamma rays emitted by the fragments can be prompt, or “late
prompt” [30] if they are issued from an isomeric state, and can help identify the
fragments thanks to their precisely known energies. The total number of fragments
with a given mass (A), charge (Z), and isomeric state (I ), produced in each fission
event after prompt neutron emission but before any delayed decays, is called the
“independent yield” Y (A,Z, I) and is normalized to 2 (or 200%) when summed
over all values of A, Z, and I [29]. The total number of nuclei produced by each
fission over all time is called the “cumulative yield” Ycu (A,Z, I), and is also
normalized to 2 (or 200%) [29]. The sum yield Y (A) is the sum of independent
yields over all Z and I for a given massA. The chain yield Ych (A) is the cumulative
yield of the last (i.e., stable) member of a decay chain of given mass A.

1Direct reaction mechanisms can also lead to fission, but without initially going through
compound-nucleus formation [21].
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The mass and charge distributions of fission products have been measured for
many actinides and for both SF and induced fission at various energies. Some
characteristic features can be gleaned from these studies. For thermal fission, the
distributions as a function of A tend to be bimodal, with one peak near the doubly
magic 132Sn due to quantum shell effects, and another corresponding to the lighter
complementary nuclei. The two peaks are fairly broad and are separated by a dip
near symmetric fission for thermal and low-energy fission [31, 32]. As the energy
of the incident neutron is increased, the central dip at symmetric fission tends to
fill in, and the mass peaks broaden somewhat [33]. Another feature of the fission
products is that the ratio Z/A of a product tends to have a value close to the Z/A
ratio of the parent. This is known as the unchanged charge distribution (UCD)
rule [34]. The distribution of products as a function of Z sometimes displays an
even-odd staggering pattern for low-energy fission that has been used to estimate
the energy dissipated by the parent nucleus into non-collective modes of excitation
before scission (see, e.g., chapter 8 in [35]).

The total energy released in a fission event is defined as the difference in rest-
mass energy between the parent nucleus and the final products. This energy can also
be written as the sum of the total kinetic energy (TKE) and the total excitation
energy (TXE) of the primary fragments, minus any energy contributed by the
incident particle in the case of induced fission (i.e., its kinetic energy plus any
excitation energy gained in the formation of the compound nucleus). The TKE of
the fragments can be estimated as the Coulomb repulsion energy between centers
of charge of the fragments at their separation distance at scission, however, this
estimate ignores any pre-scission energy acquired during the transition from saddle
to scission. Precisely how the initial energy of the parent nucleus is partitioned
between TKE and TXE of the fragments, and how the TXE is divided among the
fragments remain open questions [36, 37].

In addition to the information that can be gathered from the fragments and
products (e.g., mass distributions and TKE), the neutrons and gammas that they
emit can also provide useful data that shed light on the fission process. In principle,
the excitation energy and initial angular momentum imparted to the fragments
could be reconstructed by measuring the neutrons and gammas they emit. The
average number of prompt neutrons (multiplicity, ν̄) emitted as a function of primary
fragment mass (A), typically follows a characteristic “sawtooth” shape and can
be used to estimate the average fragment excitation energy, removed by neutron
emission [38]. The energy spectrum of the neutrons emitted by the fragments is
expected to have a Maxwellian shape in the center of mass frame of the fragment
which, when transformed to the laboratory frame, takes on a Watt functional form
[39]. In addition to the prompt neutrons emitted by the fragments, and multi-
chance neutrons emitted by the parent nucleus, there are two additional sources
of neutrons produced by fission: scission neutrons and delayed neutrons. Scission
neutrons are thought to be emitted by the parent nucleus as it breaks apart, and the
frequency with which they occur remains a source of debate [40, 41]. Their angular
distribution is expected to be isotropic in the laboratory frame because they are
emitted by the slowly recoiling parent nucleus, in contrast to the neutrons emitted
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by the fragments which tend to be peaked in the recoil direction of those fragments.
Scission neutrons were first identified by their angular distributions [42], but the
neutron energy spectrum may also be affected by their presence [43]. However, a
great deal of work has since shown that some scission neutrons could be reabsorbed
by the moving fragments, resulting in an anisotropic distribution not so different
from that of the neutrons emitted by the fragments themselves [44], thus a word of
caution is warranted so that scission neutrons are not automatically equated with
an additional isotropic source of neutrons in the data (see also [45]). Finally, when
the secondary fragment undergoes beta decay, the resulting nucleus may on rare
occasions be left with sufficient excitation energy to emit a neutron. Because they
are delayed by the relatively slow beta-decay process, these are known as delayed
neutrons [46].

The gamma-ray energies and multiplicities have been recently measured for
several fissioning systems [47–49]. The measured properties of these gamma rays
can be used to estimate the energy they remove from the excitation energies of the
fragments. By adding the energies removed by both neutrons and gammas, the initial
excitation energies of the fragments can be reconstructed. Because they also carry
away angular momentum, the prompt gammas can be used to deduce the initial
angular momentum of the fragments [50].

3 Fission Theory and Modeling

The liquid-drop model (LDM) was the first approach used to describe the fission
process [8, 9]. The LDM has since evolved into the macroscopic-microscopic model
that is widely used today [51, 52]. The remarkable success of the LDM can be
attributed to the fact that it gives a good description of the bulk behavior of the
nucleus (i.e., the properties that vary smoothly with the number of nucleons),
and any deviations from this bulk behavior are due primarily to the contribution
from nucleons in the thin surface region of the nucleus [53]. The macroscopic-
microscopic model starts from a family of curves that describe the surface of the
nucleus as a geometrical object. The total energy of the nucleus is then obtained as
the sum of a macroscopic energy, a shell correction, and a pairing correction. The
macroscopic contribution often consists primarily of a surface energy, proportional
to the surface integral of the nuclear shape, and a Coulomb energy calculated as
the volume integral of the inverse-distance potential inside the nucleus, assuming a
uniform charge distribution [53, 54]. There are additional terms that can be added
to improve the accuracy of the macroscopic-energy term, and various liquid-drop
prescriptions have been developed depending on which terms are included, such
as the standard LDM [55], the generalized liquid-drop model [56, 57], the Lublin-
Strasbourg liquid drop [58], and the finite-range liquid-drop model [51, 52]. The
shell correction term was introduced by Strutinsky [59, 60] to account for quantum
effects. In order to calculate this correction, it is necessary to construct a potential
function that can be used in the Schrödinger equation to calculate a set of single-
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particle states. From there, the “shell energy” can be calculated as the sum of
single-particle energies over the occupied states. The difference between this shell
energy and one calculated using a continuous smoothed density of states gives the
shell correction energy [54, 61]. A similar approach gives the pairing correction as
the difference in pairing correlation energy (the difference in ground-state energies
of the nucleus with and without pairing) using the actual single-particle states and a
smooth density of states [54, 61]. There are several methods to generate the potential
function needed for the shell and pairing corrections, but the method of folded
potentials [53, 54] is especially well adapted to the wide range of shapes encountered
in fission.

The macroscopic-microscopic model gives the energy of the nucleus as a
function of its shape, and this can be used to generate a potential energy surface
(PES) as a function of shape parameters. The PES can then be used to locate fission
barriers [62] and extract their properties, which in turn can provide estimates of
fission rates [56, 57]. More importantly, the PES is a fundamental ingredient in
dynamical (i.e., time-dependent) calculations of the fission process. One way to
model fission dynamics is by performing a random walk across the PES. Ward et al.
[63] adopted this approach, using a Metropolis algorithm with transition rates across
the PES determined by level densities obtained with a combinatorial technique.

Another approach is to solve the classical Langevin equation for the system
[64]. The Langevin approach essentially models the evolution of the system as
that of a Brownian particle coupled to a heat bath. The Langevin approach has
been coupled to statistical particle emission models at each time step to predict
properties of particles emitted before scission [65], and has been successfully used
to calculate fission-fragment mass, charge, and angular distributions, as well as
fission probabilities and cross sections [66–68]. A special case of the Langevin
method in the strong-damping limit, where inertia can be ignored, has also been
successfully applied to the calculation of fragment mass distributions for a wide
range of parent nuclei [69].

Scission-point models are another type of approach to fission developed starting
in the 1950s [70, 71] to predict fission-fragment properties, and have continued
to evolve through the present day [72, 73]. These models use purely statistical
arguments at scission, without invoking the dynamical evolution of the parent
nucleus up to that point. Scission-point models rely on two critical assumptions: (1)
the fission-fragment properties can be determined entirely from an analysis of the
system at scission, and (2) a thermodynamic equilibrium exists at scission between
the fragments. A probability distribution for the configuration at scission can then
be constructed based on the energy of the system in this configuration. Using this
probability distribution, average properties of the fragments can be obtained. For
example, in recent work by Lemaître et al. [73], charge yields were calculated for a
wide range of actinides using this approach.

Microscopic descriptions of the fission process start from protons, neutrons,
and an effective (i.e., in-medium) interaction between them [74, 75]. The Hartree-
Fock [76, 77] and Hartree-Fock-Bogoliubov (HFB) approximation can be used
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to construct self-consistent configurations of the parent nucleus that are relevant
to fission, under the assumption of a solution consisting of independent quasi-
particles, by constraining collective parameters of the nucleus (e.g., quadrupole and
octupole moments) [61, 78]. This type of approach falls under the larger category
of density functional theory (DFT) [79]. There are various ways to extract fission
observables using the microscopic method. For example, the set of HFB energies
as a function of collective parameters can be used within a scission-point model
[73], or to construct a PES as the basic framework for the methods discussed
above. Alternately, the time evolution of the system to scission can be treated
within the same microscopic framework. The time-dependent Hartree-Fock (TDHF)
method is a powerful approach that can describe the evolution of the nucleus to
scission [22, 80]. The TDHF approach is limited to the assumption of a single Slater
determinant solution at all times, however, it does not require collective-parameter
constraints and elementary single-particle degrees of freedom are automatically
included [61]. The TDHF approach was applied to the fission problem early on [22],
and later extend to include pairing [80, 81]. Recently, Bulgac et al. have developed
the time-dependent superfluid local density approximation (TDSLDA) [24, 82, 83],
a fully microscopic extension of DFT that includes pairing. In the TDSLDA, all
degrees of freedom are treated on an equal footing and all symmetries are correctly
implemented. This approach was recently applied to the study of fission dynamics
in 240Pu [24].

Other approaches have attempted to go beyond the inherent restriction of the
TDHF method to a single determinant through configuration mixing [84]. The
mixing can be between microscopic states labeled by continuous parameters, as in
the generator coordinate method (GCM) [85, 86], or between microscopic states
in a discrete basis (e.g., configuration interaction in the shell model [87]). In
the GCM, the wave function of the nucleus is written as a linear superposition
of HFB solutions labeled by the relevant collective parameters (see, e.g., section
9.5 in [78]). Because the collective parameters can take on a continuous set of
values, the linear superposition takes the form of an integral over these parameters
and the unknown weights of the linear expansion are determined by a variational
principle [61, 78]. The application of the variational principle with the GCM wave
function leads to the so-called Hill-Wheeler equation [85], which is an integro-
differential non-local non-linear equation that is very difficult to solve for more
than one collective parameter [88]. A more tractable approach is to expand the
Hill-Wheeler equation to second order in the non-locality (i.e., the difference in
value between the collective parameters). This approximation is often accompanied
by the assumption of a Gaussian shape for the overlap between GCM states,
known as the Gaussian overlap approximation (GOA). With these simplifications,
the Hill-Wheeler equation reduces to a Schrödinger-like equation in the collective
coordinates, where the collective inertia tensor and potential are constructed from
the underlying single-particle degrees of freedom. The GCM is readily extended to
include a time dependence and, as in the static case, can be approximated by a time-
dependent collective Schrödinger equation. This time-dependent equation can then
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be solved using standard techniques and used to predict fission-fragment properties
such as mass distributions, TKE, TXE, etc. [89–92]. The GCM can also be extended
to include single-particle degrees of freedom [93] while also eliminating the need
for a GOA [94]. The standing challenge for these GCM approaches is to include
all relevant collective and single-particle degrees of freedom in a computationally
tractable way [94, 95]. Another difficulty in this approach is that the GCM states
for different values of the collective parameters are not guaranteed to be orthogonal,
which complicates the interpretation of the results [88].

The discrete-basis approach to fission provides an alternative to the GCM by
mixing states that are orthogonal from the start, and where single-particle degrees
of freedom can be built in explicitly [96–98]. In this method, a set of configurations
must first be identified that can be used as a discrete basis to adequately model
fission dynamics near scission. Next, the continuum wave functions of post-scission
states have to be described, and their coupling to pre-scission states has to be
calculated. In this way, the discrete-basis method will be able to describe the latter
stages of the fission process, which are especially challenging to model within the
GCM framework, because of non-adiabatic behavior [94].

In [96, 97] the construction of a discrete basis for the description of fission
dynamics is illustrated by a toy model for the fictitious fission of 32S into two 16O
fragments. The ground state of 32S can be constructed simply by filling the lowest
shell-model orbitals for the protons and neutrons: 0s1/2, 0p3/2, 0p1/2, 0d5/2, and
1s1/2. Identifying the magnetic substate quantum numbers with K , the projection
of the angular momentum on the symmetry axis of the nucleus, we define a Kπ

partition as the number of pairs of nucleons of a given type occupying states with
given K quantum number and parity π . For the 16O + 16O system the Kπ partition
corresponds to the ground state of a single 16O nucleus and its parity partner, so
that their ± combination has good parity. By comparing Kπ partitions of the initial
32S and final 16O + 16O configurations, the “fission” process can be seen to proceed
through a set of intermediate 2p-2h states.

The same principles can be applied to more realistic Hartree-Fock calculations
of heavy nuclei [98]. Configurations with a given K partition (here parity is no
longer necessarily a good quantum number) can be followed as a function of the
quadrupole constraint (Q20) to scission. In some cases, these configurations will
display a minimum in energy as a function of Q20 just before scission and are
labeled as “cliff” states, while others will have no minimum to hold the nucleus
back from separating into fragments and are labeled “glider” states. When following
the lowest-energy configurations along the fission path for 236U [98], the transitions
between different K partitions before scission involve single or double pair jumps,
while the transition between glider states at scission can involve significantly more
pairs. The major rearrangement of the K partition at scission is not easily described
in approaches that rely on shape parameters alone (e.g., the GCM without single-
particle extensions), and is more naturally described in a discrete-basis approach
[99].
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4 Data Evaluation

Fission theory and experiment are brought together in data evaluations. Evaluations
are used to fill gaps where data are missing and resolve discrepancies between
data sets, with the help of theory and modeling. We will focus on models used
in evaluations of: (1) fission cross sections, and (2) properties of fission fragments
and of the neutrons and gamma rays they emit. Cross-section evaluations typically
rely on Hauser-Feshbach theory [100] and transition-state theory, first introduced
by Eyring to describe chemical reaction rates [101] and later adapted to nuclear
reactions by Wigner [102]. In the transition-state model, passage over a barrier is
mediated by a set of states on top of the barrier. The probability of transmission
through these states was formulated by Hill and Wheeler in 1953 [85]. States in
the first well of the potential energy surface are called “class-I” states. States in
the well separating the two fission barriers are called “class-II” states. Both class-
I and class-II states can enter into calculations of the fission cross-section [103].
This basic model has been improved by using barrier properties and level densities
calculated within a consistent microscopic framework [104], and through the use of
R-matrix theory with Monte-Carlo simulations of class-I and class-II state properties
and of their coupling matrix elements [105]. Various models of fission-fragment
properties have been incorporated into event-by-event codes such as GEF [106],
FIFRELIN [107], CGMF [108], and FREYA [109, 110]. These codes can be used
to evaluate fragment yields, TKE, and the spectra and multiplicities of the neutrons
and gamma rays they emit. The FREYA code, for example, provides an event-by-
event simulation of post-scission physics with full kinematic information for the
products and emitted particles [109, 111]. Additional information on event-by-event
simulation codes for the evaluation of fission data can be found in the recent review
papers by Capote et al. [112] and Talou et al. [113].

5 Conclusion

Nuclear fission remains an active area of study more than 80 years after its discovery.
The field has made tremendous strides since the first papers on fission were
published in 1939, yet we still lack a predictive theory of this complex phenomenon
that follows the fissioning system from its formation to the last decay of the final
products, within a single consistent framework. Fission provides a rich choice
of measurable quantities to test and refine models with, and very sophisticated
descriptions of fission have been developed. Yet, there remain many fundamental
questions for experimentalists and theorists, such as: what happens at scission?
How do we describe the transition from one to two nuclei within a microscopic
framework? what are the appropriate degrees of freedom throughout the fission
process? How is the initial energy of the parent nucleus distributed among the
final products? These questions can be addressed by theory as its predictive power
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improves, but experiments must guide and constrain the theory developments.
In particular, theory will greatly benefit from multi-parameter experiments where
many fission observables are measured simultaneously on an event-by-event basis.
This type of comprehensive measurements can be used to reconstruct the state
of the parent nucleus at scission, which is where many theoretical calculations of
fission have to stop. Experiments that directly probe pre-scission dynamics are also
extremely useful in constraining theory. These types of experiments include the
measurement of pre-scission particles, fission time scales, and of exotic processes
such as muon-induced fission [114].
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Microscopic Calculation of Fission
Fragment Mass Distributions at
Increasing Excitation Energies

Nicolas Schunck, Zachary Matheson, and David Regnier

1 Introduction

In spite of numerous practical applications, e.g., for energy production, a compre-
hensive understanding of nuclear fission based on our best knowledge of nuclear
forces and quantum many-body methods remains elusive. In recent years, increases
in computational power have triggered a renaissance of microscopic fission theory
[1]. A lot of emphasis has been put on the calculation of spontaneous fission
half-lives, which are key to predicting the stability of superheavy elements [2–6].
Several groups have also developed tools to compute primary charge and mass
distributions (before the prompt neutron emission from the fragments) [7–12]. With
the recent exception of [13], most of these applications have been restricted to the
low-energy regime where the fissioning nucleus is assumed to be well-described by
a zero-temperature formalism. Recent precision measurements, however, point to
a subtle and non-trivial dependence of the fission product yields on the excitation
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energy [14]. In this contribution, we discuss briefly some of the challenges for a
microscopic description of such a phenomenon.

2 Energy Density Functional Theory

The energy density functional (EDF) approach to nuclear structure is based on
mapping the original many-body problem of A interacting particles into an effective
one-body problem that is computationally tractable [15]. In practice, it implies
defining a reference state, or vacuum, |Φ〉 which has a well-defined mathematical
form. For example, in applications of the EDF approach in electronic structure
theory, |Φ〉 is a Slater determinant of single particle wave functions. In nuclear
physics, |Φ〉 is most often taken as a Bogoliubov vacuum of the kind

|Φ(g)〉 =
∏

μ

β(g)μ |−〉 , (1)

where |−〉 is the particle vacuum and the βμ are quasiparticle annihilation operators.
The latter are related to the particle operators via the Bogoliubov transformation

β(g)μ =
∑

i

U
(g)∗
iμ ci +

∑

i

V
(g)∗
iμ c

†
i (2a)

β(g)†μ =
∑

i

V
(g)
iμ ci +

∑

i

U
(g)
iμ c

†
i . (2b)

In the single-reference version of the EDF approach, the energy is taken as a
functional E ≡ E

[
ρ(g), κ(g), κ(g)∗

]
of the one-body density matrix ρ(g) and

anomalous density κ(g), which are given by

ρ
g
ij ≡ 〈Φ(g)|c†

j ci |Φ(g)〉
〈Φ(g)|Φ(g)〉 κ

g
ij ≡ 〈Φ(g)|cj ci |Φ(g)〉

〈Φ(g)|Φ(g)〉 κ
g∗
ij ≡ 〈Φ(g)|c†

i c
†
j |Φ(g)〉

〈Φ(g)|Φ(g)〉 .

(3)
The coefficients U(g) and V (g) of the Bogoliubov transformations are variational
parameters. The minimization of the energy with respect to them gives rise to
the Hartree-Fock-Bogoliubov (HFB) equation. Solving it determines the actual
densities ρ(g) and κ(g) of the system.

In all these expressions, the label g ≡ |g|eiϕg refers to the fact that densities
are allowed to spontaneously break the symmetries of the nuclear Hamiltonian.
Examples of such symmetry breaking are the particle number, which explains
pairing correlations, and rotational invariance, which implies that the nucleus can
be deformed (in the intrinsic frame of reference).

The mathematical form of the energy functional E is dictated by physics
arguments. It is customary to break the energy functional into a part that only
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depends on ρ(g) (the particle-hole channel) and another one that also depends on
κ(g) (the particle-particle channel). Standard examples of functionals in the p.h.
channel are the Skyrme and Gogny functionals; in the pairing channel, energy
functionals are often derived from simple density-dependent, zero-range two-body
potentials.

The nuclear EDF approach can be extended to describe systems at finite
temperature. At T > 0, a quantum-mechanical system is not described by some

ket |Φ〉 but by a density operator D̂ = eβĤ /Z where Ĥ is the exact Hamiltonian

of the system, Z = Tre−βĤ the partition function and β = 1/kT . Determining the
density operator is a formidable task; in practice, the HFB approximation consists
in replacing it with a specific, quadratic form of creation and annihilation operators,
Ĥ → K̂ . Using the statistical Wick theorem, it is then possible to show that there
is a one-to-one correspondence between the generalized density of the HFB theory
and the operator K̂; we refer to [15, 16] for details about the formalism. In practice,
solving the finite-temperature HFB equation only requires modifying the expression
for the one-body density matrix and anomalous density according to

ρkl =
(
V ∗(1 − f )V T

)

kl
+
(
UfU†

)

kl
(4a)

κkl =
(
V ∗(1 − f )UT

)

kl
+
(
UfV †

)

kl
, (4b)

where fμ = 1/(1 + eβEμ) is the Fermi-Dirac statistical occupation of the
quasiparticle with energy Eμ.

3 Large-Amplitude Collective Motion

The description of nuclear fission within the nuclear EDF approach often begins
with the introduction of collective variables qμ that are supposed to drive the
fission process.1Following the intuition of Meitner, Bohr, etc., we view fission as an
extreme deformation process: the collective variables are thus the parameters
that characterize the nuclear shape. In the EDF picture, these are typically the
expectation value on the reference state (1) of suitable operators such as, e.g., the
mass multipole moments. By solving the HFB equation under constraints on the
expectation value of such operators, one can construct a potential energy surface
(PES) which shows how the energy of the nucleus changes as a function of the
collective variables q. An example of such a PES for 236U is shown in Fig. 1.

1This is in fact not necessary in the time-dependent DFT approach to fission, where all degrees
of freedom encapsulated in the (now time-dependent) generalized density are treated on the same
footing [17–19].
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Fig. 1 Potential energy surface of 236U for the SkM* Skyrme functional as a function of the axial
quadrupole and octupole moments. Technical details of the calculations are identical to those in
[20]

The PES encodes a lot of information about the fission process. In particular, it is
possible to identify regions of the PES at large elongation that correspond to nuclear
configurations where the two fragments have split.2 It is often possible, although not
always easy, to partition the collective space in two regions separated by a scission
line (in 2D collective spaces) or hypersurface (in N-D spaces). Along the scission
line, the nucleus is extremely deformed and it is possible to identify prefragments
separated by a thin neck. The actual shape of the nucleus, hence the characteristics of
the prefragments (charge and mass in particular), is different at each point along the
scission line. Therefore, a PES encodes a large number of possible fragmentations
and could, in principle, allow the determination of fission fragment properties.
However, it says nothing of the probability to populate any particular configuration.

The time-dependent generator coordinate method (TDGCM) provides a rigorous
method to compute such a probability [7, 8, 10, 23, 24]. Given a set of coordinate
variables and a set of generator states (typically HFB solutions) |Φ(q)〉, we assume
that the many-body wave function of the fissioning nucleus reads

|#〉 (t) =
∫
dNqf (q, t) |Φ(q)〉 , (5)

where f (q, t) are unknown, time-dependent weight functions. Inserting this ansatz
into the time-dependent, many-body Schrödinger equation yields the famous Hill-

2The very concept of scission configuration is in fact one of the major limitations of the static EDF
treatment of fission as discussed extensively in [1, 20–22].
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Wheeler (HW) equation. The HW equation is an integral equation that is not
solvable analytically. The Gaussian overlap approximation (GOA) allows convert-
ing it into a collective, Schrödinger-like equation for a function g(q, t) that plays
the role of the probability amplitude,

ih̄
∂g(q, t)

∂t
=
⎡

⎣− h̄
2

2

∑

ij

∂

∂qi
Bij (q)

∂

∂qj
+ V (q)

⎤

⎦ g(q, t), (6)

where B ≡ Bij (q) is the collective inertia tensor, and V (q) the collective potential.
The latter contains zero-point energy corrections [12]. We refer to [1] for additional
discussion about the calculation of the collective inertia. From the solution of (6), we
can extract the flux of probability through the scission line, which allows to compute
charge or mass distributions [9]. An example of such a calculation for the primary
fragment mass distribution of 236U is shown in Fig. 2. Quantitatively, calculations
based on non-relativistic [9, 11] or covariant energy density functionals [13] can
reproduce the main features of the fragment charge and mass distributions to within
25% at best. However, subtle qualitative effects such as the very rapid structural
change of the mass distributions in Fermium isotopes can also be predicted rather
well [25].

Solving (6) requires setting an initial energy E0 for the collective wave packet.
This energy is conserved throughout the time evolution and can be related to the
energy of the compound nucleus in neutron-induced fission. By varying E0, one
can in principle calculate the evolution of fission fragment mass distributions as a
function of excitation energy [26]. However, doing so does not incorporate the effect
of the excitation energy on the potential energy.

Fig. 2 Primary fission
fragment mass distributions
for 235U(n, f ) for thermal
fission. Calculations were
performed with the code
FELIX [12] based on a set of
two potential energy surfaces,
one with the Skyrme SkM*
parametrization, the other
with the D1S parametrization
of the Gogny force; see [10]
for additional technical
details
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4 Open Problems

It is straightforward to solve the finite-temperature HFB equation and compute a
PES at finite temperature. This provides an appealing template to describe fission
at increasing excitation energies. However, several problems appear in such an
approach. First, the connection between the experimental value of the excitation
energy and the actual value of the temperature T that one must set to solve the
finite-temperature HFB equation is ill-defined. This problem was first discussed
qualitatively in [20]. Following several studies [27, 28] that showed that fission
is an example of over-damped collective motion, it has been argued in [28] that
the collective motion is entropy-driven and that the effective potential energy
surface should be F(q) = Eint(q, T ) − T (q)S(q) with the deformation-dependent
temperature adjusted so that the intrinsic energy matches the experimental value.
The resulting potential energy curve is shown on the right-hand side of Fig. 3 and
compared with the “traditional” free energy curve at constant temperature in the
left-hand side. The fact that, in the entropy-driven scenario, the fission barriers
tend to increase as the excitation energy increases does not seem to be consistent
with experimental evidence that fission fragment distributions become symmetric
as excitation energy increases.

Another problem of the finite-temperature approach is the fact that the ansatz (5)
breaks down at T > 0. This is simply a consequence of the fact that a quantum
many-body system at T > 0 is not described by a single ket |#〉, but by a density
operator associated with a given statistical ensemble. Extending the framework of
the generator coordinate method (GCM) (or TDGCM) to such statistical ensembles
has been attempted in [29] and leads to coupled equations of motion. To the best of
our knowledge, the conclusions of this isolated work have never been tested in an
actual implementation.
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Fig. 3 Left: Free energy as a function of the axial quadrupole moment for different values of the
nuclear temperature T for 239Pu(n,f); see [20] for technical details. Right: Entropy-driven potential
energy surface for the same nucleus; see text for details
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One may adopt a pragmatic approach and assume that one could simply retain the
TDGCM collective equation (6) and simply adapt its two main ingredients, the col-
lective inertia and potential.3 In this case, one could choose the collective potential
to be the free energy F(q; T ). The calculation of the collective inertia is a little more
problematic. It is possible to extract a formula by following the reasoning employed
in the adiabatic time-dependent HFB theory—only by starting the derivations not
from the time-dependent HFB equation but from the Liouville equation for the
density operator. In this case, one can show that the collective mass tensor M ≡ B−1

becomes

M = 2h̄2[M(1)]−1M(3)[M(1)]−1

with the energy moments M(K) given by

M
(K)
ab =

∑

μ<ν

(
F 11∗
a,μν

fν − fμ
(Eν − Eμ)K F

11
b,μν + F 12∗

a,μν

1 − fμ − fν
(Eμ + Eν)K F

12
b,μν

+F 21∗
a,μν

1 − fμ − fν
(Eμ + Eν)K F

21
b,μν + F 22∗

a,μν

fν − fμ
(Eν − Eμ)K F

22
b,μν

)
,

where fμ = 1/(1 + expβEμ) is the Fermi-Dirac occupation of the quasiparticle μ.
To avoid singularities at quasiparticle crossings, we add a regulator

1

xK
→ RK(x) =

{
1

xKn

(
1 − e−( x� )Kn

)} 1
n

which, by construction, converges to 1/�K for x → 0 and to 1/xK for x → +∞.
For n = 2 and� = 0.2, the cut-off region is such that |Eμ−Eν | ≤ 0.16 MeV for the
moment of orderK = 3. Figure 4 shows the impact of different ranges� (n = 2) for
the collective mass along the least-energy path in 240Pu. While the regulator fulfills
its role of filtering out non-physical values of the inertia, we emphasize that it is
merely a patch that reflects the breakdown of the theory at quasiparticle crossings.
Such a trick was employed in [30, 31].

5 Conclusions

We have briefly reviewed the state of the art in predicting fission fragment
distributions with a quantum theory of large-amplitude collective motion coupled
with nuclear density functional theory. Currently, existing methods seem to be

3An illustration of such a pragmatic approach is solving (6) with the ATDHFB inertia tensor instead
of the GCM one.
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Fig. 4 Collective inertia tensor B(q20) along the least-energy fission pathway of 240Pu at T = 0.5
MeV for different values of the regulator; see text for details

capable of reproducing fission fragment distributions to within about 20–30% (in the
best cases). Ongoing work on building more predictive energy functionals, see, e.g.,
[32, 33] for two recent examples; progress in removing some of the approximations
in computing the collective inertia [34]; and constant increase in computing power,
which could allow performing calculations in N > 2 collective spaces, all of this
suggest that this accuracy may be substantially improved in the near future.

However, being able to predict the evolution of fission fragment distributions
at higher excitation energies will most likely require work of a more fundamental
nature. Because of the very high level density of states at excitation energies of
10–20 MeV, an approach based on formulating a theory of collective motion with
quasiparticle excitations such as in [35] seems unpractical. In this respect, a finite-
temperature approach may be more promising, but it is currently plagued by a
number of uncertainties related to the definition of said temperature, the calculation
of collective inertia at non-zero temperature and, more generally, the fact that all
information about the system is now encoded in a density operator.
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Microscopic Description of Fission
for the r-Process in Neutron Star Mergers

J.-F. Lemaître, S. Goriely, S. Hilaire, and N. Dubray

1 Introduction

The fission process represents a key physical quantity of interest in fundamental
nuclear physics as well as in many nuclear applications. In particular, it plays a key
role in nucleosynthesis applications and more specifically in our understanding of
the rapid neutron-capture process, or r-process, called for to explain the origin of
about half of the elements heavier than iron in the Universe [1].

In the now well-documented r-process scenario of neutron star mergers, the
number of free neutrons per seed nuclei can reach a few hundred [1–3]. With such a
neutron richness, heavy fissioning nuclei can be produced. In this case, fission plays
a fundamental role, more particularly by (1) recycling the matter during the neutron
irradiation, (2) shaping the r-abundance distribution in the 110 ≤ A ≤ 170 mass
region at the end of the neutron irradiation, (3) defining the residual production
of some specific heavy stable nuclei, more specifically Pb and Bi, but also the
long-lived cosmochronometers Th and U, and (4) heating the environment through
the energy released and consequently impacting the observed light curve of the
astronomical event [2, 3]. For a review on the role of fission during the r-process
nucleosynthesis in neutron star mergers, see Ref. [4].

More specifically, fission probabilities and fission yields are two key quantities
to predict r-abundance distributions. Fission probabilities and yields for a few thou-
sands nuclei, especially heavy exotic neutron-rich nuclei that cannot be produced
in the laboratory, are needed to determine which nuclei are produced or recycled
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by fission during the neutron irradiation. Phenomenological models are not suited
to determine such quantities due to the exotic nature of the nuclei involved and the
low reliability of such models far away from the experimentally known region. The
importance of reliable predictions is discussed in Refs. [5, 6].

Detailed fission paths, from which fission probability can be deduced, can be
determined on the basis of the Hartree–Fock–Bogoliubov (HFB) model which has
proven its capacity to estimate the potential energy surface (PES), hence the static
fission barrier heights and widths, with a relatively high degree of accuracy [4]. In
this case, the static aspect of fission is treated via the least-energy path (LEP) where
from the fission barrier is deduced, while the dynamical approach can be described
through the least-action path (LAP) taking into account the inertia tensor.

Fission yields of the heavy neutron-rich elements are also fundamental ingredi-
ents in r-process calculations. Microscopic approaches, like the Scission Point Yield
(SPY) model [7], may predict eventually new fission modes such as the doubly
asymmetric fission of the nuclei in the region of 278Cf which impacts the final
abundances of rare-earth elements [2]. In addition, the SPY model provides the
mean number of evaporated neutrons per fissioning nucleus which may also affect
the neutron flux, especially during the late neutron irradiation.

Our latest effort to improve the prediction of fission paths, spontaneous fission
half-lives, and fission yields are described in the next sections.

2 Potential Energy Surface and Fission Path

The PES is explored in the deformation space by imposing constraints to the
standard HFB variational procedure with respect to the axial quadrupole deforma-
tion Q20 related to nucleus elongation and the octupole deformation Q30 related
to the mass (or left-right) asymmetry. All calculations in the present study are
performed with the Gogny D1M interaction. The final PES in the (Q20,Q30) plane
is constructed by correcting the mean-field energy EHFB for the triaxiality degree
of freedom at small deformations and for the collective correlation effects beyond
mean field. All details concerning the HFB calculations with the Gogny interaction
including the basis expansion, convergence criteria, the variational procedure, and
corrections of the mean field can be found in Ref. [8] and references therein. For the
time being, only PES for even–even nuclei has been estimated.

2.1 Least-Energy Fission Path and Fission Barriers

The method used to determine the LEP of a PES is inspired from the flooding
method. It is based on a comprehensive approach, proceeding by dichotomy, to
determine the LEP using a binary search tree to store information about the saddle



Microscopic Description of Fission for the r-Process in Neutron Star Mergers 287

Fig. 1 (Color online)
Comparison of D1M,
Skyrme-BSk14 [9], and
FRLDM [10] primary fission
barrier heights with empirical
values [11] as a function of
the fissibility parameter Z2/A

points and their neighboring wells. More details can be found in [8] and references
therein.

The highest (or primary) fission barrier, which is crucial for the calculation of
fission probabilities, can directly be extracted from the LEP. It corresponds to the
difference between the energy of the highest saddle point and the ground-state 0+
level energy of the even–even fissioning nuclei. In Fig. 1, we compare the primary
barrier height of the 14 even–even nuclei for which empirical values have been
extracted from fission cross section measurements [11]. A good agreement is found
with empirical data with the root-mean-square (rms) deviation of 0.52 MeV. The
agreement is particularly good for 232U, 234U, 236U, and 238Pu. D1M fission barrier
heights are in better agreement with the empirical values than the ones obtained
with the Skyrme-HFB calculations based on the BSk14 force [9] (rms = 0.75 MeV)
as well as with the finite-range liquid-drop model (FRLDM) [10] (rms = 0.77 MeV).

2.2 Least-Action Fission Path: Fission Lifetime

The Dijkstra’s algorithm [13] is used to minimize the action of the fission path.
The action depends on the inertia tensor, the potential energy of the system (i.e. the
PES), the total energy of the system (which depends on its excitation energy), and
the trajectory of the LAP. The inner turning point is close to the ground-state well
while the outer turning point is located in the high Q20 region of the PES. More
details can be found in Ref. [8] and references therein. The spontaneous fission
half-life can be obtained within the WKB formalism as

T sf
1/2[s] = 2.86 × 10−21(1 + e2S(E∗)/h̄) (1)
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Fig. 2 (Color online)
Spontaneous fission half-lives
T sf

1/2 as a function of the

fissibility parameter Z2/A for
E∗ = E0+ (squares) and
E∗ = E0+ + 0.5 MeV
(diamonds). Theoretical
results are compared with
experimental data (dots) [12]

where S is the action along the LAP computed at an excitation energy equal to the
energy of the ground-state level, since nuclei are expected to fission spontaneously
from their fundamental 0+ level.

The resulting half-lives are compared with experimental data in Fig. 2. Experi-
mental half-lives are fairly well reproduced, though systematically overestimated.
The short half-lives (typically T sf

1/2 � 1 y) for nuclei with Z � 100 are satisfactorily
estimated. It is well known that fission half-lives are extremely sensitive to the
adopted zero-point energy E∗. To test this sensitivity, half-lives are also computed
assuming the excitation energy of the 0+ level has been underestimated by 0.5 MeV,
i.e. E∗ = E0+ +0.5 MeV. The corresponding predictions are shown in Fig. 2. Half-
lives vary by two to three orders of magnitude for heavy nuclei and up to five orders
of magnitude for U isotopes.

3 Fission Fragments and SPY Model

3.1 SPY Model

The SPY model is a static and statistical scission point model [7, 14] that assumes
a thermodynamic equilibrium at scission, hence neglects the evolution between
the saddle and the scission points. The model is based on two pillars, namely the
absolute available energy balance at the scission configurations and the statistical
description of the available phase space.

The available energy balance is performed for all energetically possible frag-
mentations of a fissioning system at scission as a function of the deformation
of both fragments. The available energy is defined as the difference between the
potential energy of the fissioning system at scission and the energy of the excited
compound nucleus where both nascent fragments are supposed to be at rest. The
potential energy of the fissioning system at scission is obtained as the sum of the
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individual binding energies of the two fragments and the interaction energy between
the fragments composed of the Coulomb repulsion and the nuclear attraction. The
system at scission is treated as a microcanonical ensemble where all available states
are equiprobable. In this framework, the number of available states of a given
fragmentation is the product of the state densities of the two isolated fragments.
The yield of a fragmentation is the number of available states associated with this
fragmentation whatever the deformation of the fragments.

The new version of the SPY model, called SPY2 [14], is based on fully
microscopic nuclear ingredients to describe the fragments properties at the scission
point. The scission configuration of the fissioning nucleus is no more defined by two
uniformly charged fragments without diffusivity separated by a scission distance,
like in the original version SPY1 [7], but rather on the basis of the fragments’
proton density derived from HFB proton spatial distributions. The proton density
at the scission neck is used as a separation criterion for the nascent fragments
which is the same whatever the fissioning system. The Coulomb repulsion is
numerically computed from the HFB proton spatial distributions of the fragments.
The state densities are no more described in the framework of a Fermi gas but in the
framework of the statistical BCS model of nuclear state densities on the basis of the
discrete single-particle level scheme obtained in the same microscopic framework
as the one used to estimate individual binding and Coulomb energies, which takes
pairing and shell effects coherently into account on the basis of the same nuclear
structure properties.

All SPY2 inputs are computed within the same self-consistent microscopic HFB
framework on the basis of the BSk27 Skyrme interaction [15].

3.2 Fission of 236U, 240Pu, and 252Cf

We compare in Fig. 3 the experimental yield distributions of the three fissioning
systems 236U, 240Pu, and 252Cf with those predicted by SPY1 and SPY2. With SPY1
(Fig. 3a–c, blue dashed lines), the yield distribution is peaked around A1 = 132
and A2 = ACN − 132, particularly for U and Pu. These peaked distributions can
be explained by the high sensitivity to the fragments shell effect, in particular
to the doubly magic nucleus 132

50 Sn82 which is associated with the soft fragment
104
42 Mo62 in the 236U case. Compared to SPY1, the SPY2 yield distributions (Fig. 3a–
c, green thin lines) are much wider and also in better agreement with experimental
data but present strong staggering patterns. To compare the overall structure with
experimental data, the yield distributions are smoothed by a normalized Gaussian
function.

In the U case (Fig. 3a, red line), the symmetric part of the distribution is over-
estimated compared to experimental data. This is partially due to an underestimate
of the highly asymmetric part of the yields distribution, which, in turn, is due to
an overestimate of the kinetic energy (KE) for asymmetric fragments. A lower
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Fig. 3 (Color online) The black dotted lines represent experimental (pre-neutron-emission) fission
yields for thermal neutron-induced fission of 235U (a) [16], 239Pu (b) [17], and the spontaneous
fission of 252Cf (c) [18]. The green (red) lines correspond to SPY2 raw (smoothed) fission yields
and the blue dashed line to SPY1 yields

KE of these asymmetric fragments would increase their available energy, hence
their number of available states. An increase of the number of available states of
highly asymmetric fragmentations, for a fixed number of available states of other
ones increase the probability of these asymmetric fragmentations, and consequently
decrease the symmetric contribution. Pu mass distribution (Fig. 3b, red line) matches
fairly well experimental data. Like in the U case, yields of the high asymmetric
fragmentations are underestimated due to an overestimate of the KE of the highly
asymmetric fragmentations. In the Cf case (Fig. 3c), the peak around A = 132
completely disappears with respect to SPY1. The slightly asymmetric yields are
underestimated due to an overestimate of the peaks height, i.e. an underestimate of
the KE for these slightly asymmetric fragments.

3.3 Systematic

SPY2 is now used to calculate systematically the fission yields for about 2000
heavy nuclei (Fig. 4) which allows us to study the impact of fragments shell effects
on the fission mode. Using the same peak analysis as in Ref. [7], it is possible to
estimate the peak multiplicity corresponding to the number of significant humps
characterizing the isobaric yield distribution.

The peak multiplicity is rather sensitive to the neutron number of the compound
nucleus responsible for the vertical transitions seen in Fig. 4. The fission of light
nuclei NCN ≤ 100 is found to be asymmetric (2 peaks); this is consistent with
the asymmetric mode of 180Hg [19, 20]. The symmetric fission region (1 peak)
with 100 < NCN ≤ 140 is more extended with SPY2 than with SPY1 where the
neutron-rich limit is obtained around NCN ≈ 132 [7]. According to experimental
data [21], the transition from symmetric to asymmetric modes is located around
NCN ≈ 136. The late transition predicted by the SPY2 model is responsible for the
non-negligible symmetric component found for 236

92 U144, as illustrated in Fig. 3a.
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Fig. 4 (Color online) Systematics in the (N,Z) plane of the peak multiplicity in the isobaric yields
for some 2000 nuclei for an initial excitation energy ofQ = 8 MeV

The transition between symmetric to asymmetric fission and the asymmetric fission
mode of some nuclei are complex problems which have been extensively studied
for the last decades, especially since the discovery of the mass asymmetry feature
characterizing the U fission. It remains an open problem which has been mainly
studied from different aspects, in particular considering the saddle or scission points
configuration of the fissioning system.

A doubly asymmetric fission (4 peaks) is still predicted (yellow region in Fig. 4).
These nuclei play a key role in explaining the origin of the rare-earth elements (A 	
165) during the r-process nucleosynthesis occurring in collapsing neutron stars [2].
Our new SPY2 version of the model confirms the conclusions of Ref. [2].

4 Conclusion

LEP and LAP have been obtained for a large number of even–even nuclei using
Gogny D1M PES. The fission barriers deduced from LEP are in good agreement
with evaluated data. Spontaneous fission half-lives deduced from LAP fairly well
reproduced experimental data, though the predictions remain very sensitive to the
excitation energy of the fissioning nucleus. It is planned to extend the PES, LEP,
and LAP calculations systematically to odd-A and odd-odd nuclei.

The updated version of the SPY model is based on the mean-field proton density
at the scission neck and assumes that the Coulomb repulsion between nascent
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fragments drives the evolution of the fissioning system between the saddle and
scission points. The fission yields calculation has been significantly improved, in
particular by predicting relatively wide peaks, as observed experimentally. Our
systematic study of the fission mode for some 2000 heavy nuclei with 78 ≤ Z ≤ 110
shows that the fission mode is mainly determined by the neutron number.
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Event-by-Event Fission Modeling with
FREYA

R. Vogt, J. Randrup, J. T. Van Dyke, and L. A. Bernstein

1 Overview

Nuclear fission has made a significant impact on society even though the physical
mechanisms behind the process are still not understood in detail. While great strides
have been made in theoretical many-body calculations of fission, see e.g. the talks
by W. Younes and N. Schunck in these proceedings, a comprehensive model of the
phenomenon, including neutron and photon emission, based on these theories is
still in the future. There is thus a need for more phenomenological approaches that
can model complete fission events. Such codes implement a physically consistent
description of fission and allow studies of correlations among fragments, neutrons,
and photons with full kinematic information.
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2 Introduction to FREYA

As input, FREYA requires the mass distribution of the primary fission fragments,
Y (A), and the mean total kinetic energy for a given mass split, TKE(A), for the
particular excitation considered. (FREYA can simulate both neutron-induced fission
and spontaneous fission.)

The initial nucleus A0 splits into light and heavy fragments, AL and AH ,
respectively. The Q-value for a particular split is Q = M0c

2 − MLc
2 − MHc

2.
The total fragment kinetic energy, TKE, is sampled from TKE(AH ) and the total
excitation energy available for rotational and statistical excitation at scission is
E∗

sc = Q − TKE. The corresponding “scission temperature” Tsc is obtained from
E∗

sc = a(A0)T
2
sc where the scale of the level density parameter a(A) = A/e0 is

governed by e0 ≈ 10 MeV. This is the first adjustable parameter in FREYA.
In addition to any overall rigid rotation, which imparts mean angular momenta to

the two fragments, they also acquire fluctuations around the mean values from the
wriggling and bending modes. The magnitude of these spin fluctuations is governed
by the “spin temperature” TS = cSTsc which can be adjusted through the second
FREYA parameter cS . The spin fluctuations vanish for cS = 0.

After subtracting the rotational energy of the two fragments, Erot, a total of
Estat = E∗

sc − Erot is left for statistical excitation which is distributed between
the two fragments. A preliminary partition, Estat = É∗

L + É∗
H , is made according

to the heat capacities of the fragments, which in turn is assumed to be proportional
to the level density parameters, i.e. É∗

L : É∗
H = aL : aH . If the shell corrections

are negligible, or the available energy is large, ai ≈ Ai/e0. Because the observed
neutron multiplicities for known nuclei at low energies suggest that the light
fragments tend to be disproportionately excited, the light fragment is given a larger
excitation energy by the third parameter x, E

∗
L = xÉ∗

L, E
∗
H = Estat − E∗

L, where
x > 1.

After the mean fragment excitation energies have been assigned, FREYA consid-
ers thermal fluctuations in the statistical excitation. The mean fragment excitation is
related to its temperature Ti by E

∗
i = aiT

2
i with associated variance σ 2

Ei
= 2E

∗
i Ti .

An energy fluctuation δE∗
i is sampled from a truncated normal distribution of

variance 2cE
∗
i Ti and the fragment excitations are adjusted accordingly, E∗

i =
E

∗
i + δE∗

i , i = L,H . Energy is conserved by making a compensating opposing
fluctuation in TKE, TKE = TKE−δE∗

L−δE∗
H . The factor cmultiplying the variance

is the fourth FREYA parameter. It compensates for the truncation of the normal
distribution due to energy conservation. Finally, TKE may be adjusted by the fifth
and final FREYA parameter, dTKE, to reproduce the average neutron multiplicity,
ν.

The neutrons are evaporated isotropically in the frame of the emitting fragment,
apart from a slight flattening due to the nuclear rotation. Their energy is sampled
from a black-body energy spectrum, dNn/dEn ∼ En exp(−En/Tmax), where Tmax
is the maximum possible temperature in the daughter nucleus. FREYA generally
assumes that neutron evaporation continues until the nuclear excitation energy is
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below the neutron separation energy Sn, so that neutron evaporation continues as
long as energetically possible.

After neutron evaporation has ceased, the excited product nucleus emits photons.
First, statistical photons are emitted isotropically with an energy distribution
sampled from a black-body spectrum modulated by a giant-dipole resonance form
factor. When the nuclear excitation energy enters the regime of the tabulated decays
from the RIPL-3 compilation [1], FREYA switches to a discrete cascade which is
continued until the half-life exceeds a specified value, tmax, based on the detector
response time, or until the nucleus is in its ground state. The average photon
energy and photon multiplicity depend on tmax as well as the minimum photon
energy measurable in the detectors, denoted in FREYA as gmin. While the photon
observables depend on both tmax and gmin, these quantities are not parameters but
depend on specific experimental details.

3 Recent Results on Photon Emission

The detector-dependent quantities gmin and tmax were added to FREYA in Ref. [2]
when the RIPL lines were introduced. We studied the effect of changing gmin on the
calculated average Eγ and Mγ . If gmin is on the order of a few hundred keV, the
total energy emitted in photons does not change much. Increasing gmin to 1–2 MeV
would correspondingly reduce the measured photon energy by a similar amount.
There is a stronger dependence of Mγ on gmin. A 1 MeV cutoff energy reduces
the photon multiplicity by a factor of three or more, depending on cS . (A larger cS
results in the emission of more soft photons. See Ref. [2] for details.)

The effects of tmax on Eγ and Nγ are more subtle. Increasing tmax is more likely
to increase the photon multiplicity from some individual long-lived isomers but the
changes are generally on the percent level [2].

We compare our calculated prompt fission photon spectrum to the results of
Oberstedt et al. [3]. The measured high-energy slope of the photon energy spectrum
is in good agreement with the FREYA calculation, even without including the
experimental uncertainties. The peaks observed in the low-energy part of the photon
spectrum, shown in Fig. 1b, arising from the inclusion of the RIPL transitions,
also agree well with FREYA. The peaks in the data are somewhat above our
calculation, leading to a discrepancy between our calculated multiplicity and the
data using the same gmin and tmax. Obsertedt et al. measured 〈Mγ 〉 = 8.19 ± 0.11,
〈Eγ 〉 = 6.92 ± 0.09 MeV, and 〈Eγ /Mγ 〉 = 0.85 ± 0.02 MeV while, for the same
cutoffs, we find 〈Mγ 〉 = 6.93, 〈Eγ 〉 = 6.48 MeV, and 〈Eγ /Mγ 〉 = 0.93 MeV.
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Fig. 1 (Color online) The photon energy spectrum calculated for 235U(nth,f) (magenta points)
compared to data from Oberstedt et al. [3] (black points). The total photon spectrum is shown in
(a) while the low-energy spectrum is shown in (b)
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4 Parameter Optimization for Spontaneous Fission

The five FREYA parameters, e0, cS , x, c, and dTKE, are all physics-based and
affect some observables directly without having any significant effect on others. For
example, cS , the parameter related to spin fluctuations, controls the photon energy
and multiplicity but has a negligible effect on the neutron observables. (The only
effect of cS on neutron emission comes from the fact that it controls the division
of the total excitation energy into rotational and statistical excitation. Giving more
energy to rotation by a large cS reduces the energy available for neutron emission.)
The parameter x controlling the excitation energy advantage given to the light
fragment has a direct effect on the neutron multiplicity as a function of fragment
mass, ν(A), while, e.g. having no effect on the neutron multiplicity distribution
P(ν). The parameter x is also the only parameter to have a strong effect on the
neutron–neutron angular correlations, as will be discussed later. The parameter
controlling the width of the thermal fluctuations, c, conversely, has a strong effect on
P(ν) and its moments but no effect on ν(A). All the parameters, however, have some
effect on the prompt fission neutron spectrum because all affect the energy available
for neutron emission, either directly, as through cS and dTKE, or indirectly, through
the excitation energy sharing via x or the fluctuations controlled by c. Indeed, the
only observable that is affected by e0 is the neutron spectrum. See Refs. [2, 4] for
more discussion on how the parameter choices affect observables.

A first attempt to make a global fit of the five FREYA parameters was made in
Ref. [5] using a grid search method. More recently an optimization using simulated
annealing was able to generally reproduce these results as well as provide variances
and covariance on the parameter values [6]. Similar studies were carried out for all
spontaneous fission isotopes in FREYA.

Techniques such as a brute force grid search are computationally intensive and,
in order to avoid local minima, which are not the global minimum and thus not
physically relevant, it is necessary to move away from simpler optimization schemes
like gradient descent. Optimized parameters were determined for FREYA using the
simulated annealing method [7] in Ref. [6] which injects a certain randomness into
the process to allow for the procedure to occasionally jump in a seemingly “worse”
direction in order to move out of a potential local minimum and eventually find
the global solution. The general flow of such an algorithm is to first generate a
random solution, calculate its cost using some objective function, generate a random
neighboring solution, calculate the cost of this new solution with the same objective
function, and then compare these costs using an acceptance probability function.
This acceptance probability is calculated by comparing the difference of the two
costs with the so-called temperature. This is a parameter which is initially equal
to unity and is decreased to a new value, T ′, after each iteration of the algorithm
employing a scale factor α, generally between 0.8 and 1, allowing the algorithm
to become less stochastic as the number of iterations is increased. This procedure
helps prevent the algorithm from sinking into a local minimum. In the FREYA
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Table 1 Results of the optimization for all spontaneously fissioning isotopes which are modeled
by FREYA. The best fit values of the five parameters, y, and their associated variances, σy , are
given for each isotope. In addition, the number of data sets and evaluations used for each isotope
are indicated. The evaluations of Ref. [8], available for all isotopes, provide multiple observables:
the neutron multiplicity distribution P(ν) and its first three moments: ν, ν2, and ν3

e0 (MeV−1) x c cS dTKE (MeV) # Sets
238U(sf)

y 10.391 1.220 0.939 0.899 −1.375 1

σy ±0.124 ±0.005 ±0.080 ±0.078 ±0.528 –
238Pu(sf)

y 10.521 1.232 1.968 0.893 −1.408 1

σy ±0.337 ±0.049 ±0.005 ±0.005 ±17.679 –
240Pu(sf)

y 10.750 1.307 3.176 0.908 −3.219 2

σy ±0.019 ±0.005 ±0.126 ±8.374 × 10−5 ±0.015 –
242Pu(sf)

y 10.018 1.144 3.422 0.911 −1.662 3

σy ±3.238 ±0.0232 ±0.116 ±0.066 ±0.014 –
244Cm(sf)

y 10.488 1.239 1.391 0.906 −4.494 3

σy ±2.306 ±0.022 ±0.339 ±0.104 ±0.028 –
252Cf(sf)

y 10.429 1.274 1.191 0.875 0.525 6

σy ±1.189 ±0.035 ±0.131 ±0.040 ±1.918 × 10−6 –

optimization, the solutions are values of the 5 parameters and the objective function
is the χ2 uncertainty.

The results for all isotopes undergoing spontaneous fission in FREYA are given
in Table 1. Note that in some cases only a single data set or evaluation is available
for optimization. In general, however, the single set is an evaluation of the neutron
multiplicity distribution and its first three moments, providing multiple observables.
However, these observables are directly associated with the parameter c, affecting
the width of P(ν), and indirectly to dTKE through the value of the neutron
multiplicity ν.

Some general trends can be observed in the results. The asymptotic value of
the level density parameter e0, the excitation energy sharing parameter x, and the
scale factor of the scission temperature setting the photon energy and multiplicity
cS all are equivalent within the uncertainties with 〈e0〉 ∼ 10.2/MeV, 〈x〉 ∼ 1.2,
and 〈cS〉 ∼ 0.89, respectively. Thus these quantities are rather isotope independent.
One might expect that e0, regulating the temperature of the fragment, as well as the
spontaneously fissioning nucleus itself, for neutron emission has a universal value
since it is related to the asymptotic level density parameter. However, it is the least
constrained of all the parameters because no observables are directly sensitive to e0
except the prompt fission neutron spectrum and it is sensitive to all five parameters.
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The parameters c and dTKE are strongly isotope dependent. In some cases, where
c is large, the neutron multiplicity is close to 2 and FREYA would produce a rather
narrow P(ν) without increasing c. Interestingly, the multiplicity distribution for
238U(sf) is so narrow that it forces c < 1 in this case. The values of dTKE are
strongly correlated with c (positive correlation) as well as e0 and cS (negative
correlation) because these parameters are more directly related to ν than x is since
changing x can change ν(A) while keeping ν fixed. See Ref. [6] for more details
and for comparison to data. This study is being followed by parameter optimization
for neutron-induced fission.
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Capabilities of the NIFFTE FissionTPC

R. J. Casperson

1 Introduction

Accurate neutron-induced fission cross section measurements are crucial for nuclear
reactor design and stockpile stewardship. Future nuclear reactors may use fast
neutrons, which would require higher precision measurements at higher incident
neutron energies [1–3]. Fission cross section measurements are often performed
in ratio, with 238U or 235U used as a reference reaction, and many of these past
measurements were performed with parallel-plate ionization chambers [4]. The
stacks of actinide foils are spaced close together to emphasize the large specific
ionization of fission fragments relative to α particles from the decay of the target
material.

Twin Frisch-grid ionization chambers [5, 6] go beyond conventional ionization
chambers, using multiple signals to enable a determination of the charged-particle
track angle. The detected angle contains information about the amount of actinide
target material traversed, and can be included in the estimation of fission fragment
detection efficiency.

The fission Time Projection Chamber (fissionTPC) was designed for full three-
dimensional charge cloud reconstruction by the NIFFTE (Neutron-Induced Fission
Fragment Tracking Experiment) Collaboration, applying technologies that have
been used since the 1970s for high-energy physics to low-energy nuclear physics
challenges. The fissionTPC has a two volume drift chamber with MICROMEGAS
of 2 mm pitch, typically operated with a blend of argon and isobutane [7]. Tracking
algorithms allow for vertexing of the charge cloud, providing a mass distribution for
actinide target, as well as angle and energy information of detected particles.
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Fig. 1 Joint length and energy distribution adapted from [8]. Various particle types have been
labeled. ADC is the integrated signal strength and is proportional to the particle energy

A measurement of the normalized cross section ratio of 238U/235U was recently
measured by the NIFFTE Collaboration [8], using angle and energy information for
sophisticated efficiency modeling, and position information to identify the source
of detected fission fragments from side-by-side actinide deposits. The particle
identification used was relatively simple, and an energy cut alone was applied to
select fission fragments. The joint distribution of length and energy can be seen in
Fig. 1, where ADC is the integrated signal strength and is proportional to the particle
energy. A wealth of additional information is available in the three-dimensional
charge cloud data, and the following sections describe how this information can
be used.

2 Stopping Power Model

Reconstructed tracks from the fissionTPC have start and end vertices that define
the track direction. The cloud of charge recorded by the detector can be projected
along this axis to define a one-dimensional distribution of ionization density. This
distribution can then be fit with a stopping power model to determine the atomic
number and atomic mass of the detected particle. A phenomenological global
function was defined that describes a wide range of stopping powers for argon +
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Fig. 2 Electronic and nuclear stopping power of argon + 5% isobutane calculated using SRIM [9]

Fig. 3 Fits to 1H and 208Pb SRIM stopping powers using five-term function

5% isobutane calculated in SRIM [9], where the input data for the fit can be seen in
Fig. 2.

The local electronic stopping power fit function for a single particle has the form
f (x) = a−b√c + (x − e)2+d(x−e), which has five free parameters and describes
the logarithm of the stopping power vs. the logarithm of the particle energy per amu.
Fits to 1H and 208Pb can be seen in Fig. 3, which have very different parameters, but
both describe the stopping power function to ∼5% accuracy. The shell effects visible
at low energy for 208Pb are smoothed over in the fit, and the oscillations deviate from
the fit by up to 15%, but this should not impact the interpretation of fissionTPC data.

With acceptable local fits to SRIM electronic stopping powers, a global fit can be
generated by expanding each term into a series of logarithmic powers of the atomic
number, where x is log(E/A):

log

(
dEe

dx

)
= (a0 + a1 logZ + a2 log2 Z + a3 log3 Z)

− b0

√
(c0 + c1Z)+

(
x − (e0 + e1 logZ + e2 log2 Z + e3 log3 Z)

)2

+ x(d0 + d1 logZ + d2 log2 Z) (1)
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The nuclear recoil contribution to stopping power is important for slower-moving
particles, and can be described with a simpler function:

log

(
dEn

dx

)
= (a0 + a1 logZ)+ x(b0 + b1 logZ)+ x2(c0 + c1 logZ)

+ x3(d0 + d1 logZ) (2)

The combined stopping power has 24 parameters and is fit to the data shown in
Fig. 2. The results shown in the following section use a fit that is only applicable to
argon + 5% isobutane, but the same functional form is expected to apply to other
materials as well. Future fissionTPC measurements with ratios involving recoils of
hydrogen isotopes (e.g. 6Li(n,t) or 1H(n,el)) will likely use an alternative gas such
as Ar+CO2, in order to avoid background recoils from hydrogen in the isobutane.

3 Ionization Profile Results

The fit functions defined in Eqs. 1 and 2 contain the atomic mass A and atomic
number Z, and these quantities can be fit for each track recorded with the
fissionTPC. Figure 4 shows the distribution of A, Z, and energy for in-beam data
from 235U and 239Pu targets. ADC again refers to the integrated track signal, and is
proportional to energy.

The upper two plots show the heavy and light fragment distributions from fission,
but the two distributions appear to be skewed relative to one another. One possibility
is that the SRIM stopping powers for fission fragments have systematic errors.
Past work on 252Cf fission fragments traveling through a mylar foil found the
SRIM stopping power to be ∼15% low for light fragments and ∼25% low for
heavy fragments, making this interpretation likely [10]. Another possibility is that
the digital threshold for recording points of charge in the fissionTPC requires a
stopping power dependent correction. The diagonal line of events at Z=20 and A=40
represents argon recoils, and should be a localized point. This indicates that the
determination of Z and A is energy dependent and will require some correction.

Comparisons of SRIM stopping powers to experiment can guide corrections to
the stopping power model (e.g. a linear correction as a function of mass or energy),
but calibrations using the fissionTPC data itself will be important for validating
such a model. Argon and carbon recoils are straightforward examples for an argon
isobutane drift gas, but the addition of krypton or xenon to the gas would be useful
calibrations for light and heavy fragments, respectively. Measuring 252Cf(sf) could
be a useful validation for the distribution as a whole.

The lower two plots in Fig. 4 show fits to the lower-energy distribution of events.
The α particles are clearly localized, although not precisely at Z = 2 and A = 4, and
the proton distribution is distorted. The halo of events surrounding the α-peak is
most likely due to pile-up and fragmentation of tracks from the high decay-rate of
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Fig. 4 Fits to combined 235U and 239Pu in-beam data, for two different energy ranges

the 239Pu target. The ionization density of the recorded protons is very low, which
indicates that attempts to distinguish hydrogen isotopes will require larger signals,
and therefore higher MICROMEGAS gain.

4 Discussion

Applying particle identification algorithms to the ionization profiles of fissionTPC
data is the logical next step in future experiments, and would leverage one of the
strengths of time projection chambers. The stopping power distributions in Fig. 2
showed that there are a small number of distinct features in the stopping power of a
given particle. Fitting with a full stopping power model is one approach, but other
parameterizations could include initial charge density, maximum charge density, and
relative position of the maximum charge density. Future work will consider the most
effective approach to fitting the ionization profiles.

A few new types of experiments become accessible with true particle identifica-
tion. Fitting prompt fission product yield distributions would be useful, but requires
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a better understanding of the stopping power bias, and would benefit from a few
calibration experiments (e.g. 252Cf and various drift gas recoils). Light ion reactions
(e.g. n+Li) require distinguishing hydrogen isotope recoils, as would multi-particle
breakup reactions.
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Resonance Measurements at Rensselaer
Polytechnic Institute

Ezekiel Blain, Devin Barry, Greg Leinweber, Michael Rapp,
and Yaron Danon

1 Introduction

The Gaerttner Linear Accelerator (LINAC) Center houses a 60 MeV electron
linear accelerator located at Rensselaer Polytechnic Institute (RPI). The LINAC is
primarily used for cross-section measurements and provides accurate nuclear data
from the thermal region up to 20 MeV. These measurements are a combination
of transmission, capture, scattering, and fission measurements. The time-of-flight
(ToF) technique is used to obtain the cross section as a function of the incident
neutron energy. Flight paths exist at a range of detector locations from 15 m
out to 250 m which can provide excellent energy resolution for a wide range of
experiments. The accelerator operates at pulse widths down to 8 ns and can operate
at peak currents as high as 3 A. This results in a neutron flux of approximately
4 × 1013 neutrons per second. Additionally, an upgrade is currently underway for
the facility which will greatly increase the neutron flux from the facility allowing
for more sophisticated measurements to be performed. An overview of some of the
experimental detector systems as well as recent measurement results are as follows.
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2 Transmission Measurements

Some of the most common measurements performed at the RPI LINAC facility are
transmission measurements which are used to measure total cross section. These
measurements involve a detector located in the neutron beam which measures the
transmission through a sample material. The ratio of the counts with and without
the sample can be used to determine the total cross section of the sample material.
These measurements are particularly useful since the ratio method eliminates the
need to know the specific detector efficiency and neutron flux since they cancel out
in the calculation. There are several transmission detector setups which span a broad
energy range from thermal up to 20 MeV. The detectors in the thermal to keV region
all employ 6Li glass. The thermal detector is located at a flight path of 15 m and has a
thickness of 3 mm which allows for excellent energy resolution while maintaining a
high counting rate. Two mid-energy transmission detectors are located at 31 and
100 m, respectively. These 0.5 in. detectors are used to accurately measure the
resonances to higher energy in an attempt to extend the resolved resonance region.
There is an additional EJ-301 detector array at 250 m that is used to measure total
cross section for the neutron energy range from 0.5 to 20 MeV.

Recent transmission results have been achieved for measurements of separated
isotopes of Mo. These measurements combined data taken with both the 31 m trans-
mission detector and the 100 m transmission detector. These measurements resulted
in new measured resonances from all isotopes that could be used to extend the
resolved resonance region. Additionally, new fits were obtained for the unresolved
resonance region (URR). More detailed results for these Mo measurements can be
found in the following references [1, 2].

3 Capture Measurements

In combination with the transmission measurements, capture measurements are also
performed in order to provide a more complete set of experimental data to be
used in evaluations. By simultaneously measuring the capture and transmission the
resonance widths for the neutron and gamma can be fit together to allow for more
accurate resonance parameters. At RPI capture measurements can be performed
from thermal energies up to the low MeV region utilizing one of two capture
detection systems described in the following sections.

3.1 Low Energy Capture

For low energy capture measurements in the thermal to low keV region a capture
multiplicity detector is used. This is a 16-segment NaI(Th) detector which provides
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almost a total 4π detection coverage with a capture sample located in the center
of the detector. A liner of B4C with enriched 10B is used to absorb scattered
neutrons which could cause capture in the detector crystals and be mistaken for
a capture event. The detector is located at a flight path of ∼25.6 m which provides
excellent resolution up to a neutron energy of several keV. A recent measurement
was performed measuring the capture yield of several separated Gd isotopes. This
new measurement identified several new resonances in the measured Gd isotopes;
particularly 169 new resonances in 155Gd and 96 new resonances in 157Gd. This
showcases the ability of the RPI low energy capture detector to provide high quality
capture data on separated isotopes which can extend the resolved resonance region
of isotopes. A full analysis of the Gd results can be found in reference [3].

Using this detector the total energy deposited in the detector can be measured as a
function of the ToF. This is of particular value when measuring isotopes which have
both capture and fission. A recent measurement was performed at RPI using this
detector which measured the capture and fission from a sample of 235U. By only
looking at events which deposited a greater energy than the binding energy from
capture, a selection of events only from fission could be obtained. This allowed
for the separation of the fission signal from the capture signal at all energies. The
results were typically in agreement with previous evaluations; however, the new
measurement suggested a lower cross section in the range from 0.6 to 2.25 keV
compared to the ENDF 7.1 evaluation. The measurement was used in the new
evaluation of 235U for ENDF 8.0, and the new evaluation agrees much better with
this measurement. A full analysis of the measurement and techniques used can be
found in reference [4].

3.2 Mid-Energy Capture

A detector array was recently built at RPI at a 45 m flight path in order to perform
capture measurements in the mid-energy region. This region extends from the end
of the resolved resonance region into the unresolved resonance region. The array
consists of four C6D6 detectors mounted in a low mass system centered around
a capture sample. C6D6 was chosen for the detector material due to its very low
capture cross section limiting the probability for false capture detection. A B4C
sample is used in order to obtain the neutron flux shape at low energies in order
to calculate the capture yields. To measure the flux shape at higher energies, a thin
plastic beam monitor was created and placed behind the detection system [5]. The
array utilizes the combination of the total detection method with a pulse weighting
criteria in order to obtain the capture yields.

A recent measurement was done on a sample of isotopic 56Fe in order to measure
the capture yield at higher energies. The measured yield was higher than the ENDF
7.1 evaluation but lower than the JEFF 3.3 evaluation. These results were sent to
the International Atomic Energy Agency (IAEA) for their new evaluation of 56Fe.
Figure 1 shows the comparison of the data with the previous ENDF 7.1 and JEFF 3.3
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Fig. 1 A comparison of the experimental capture yield found using the RPI mid-energy capture
detector with the ENDF 7.1, JEFF 3.3, and ENDF 8.0 evaluation. The ENDF 7.1 is shown to be
higher than the experimental yield and JEFF 3.3 is lower; however, the new evaluation from ENDF
8.0 which utilizes the data is in much better agreement

evaluations, and the new ENDF 8.0 evaluation which uses the IAEA evaluation. This
shows that the data provided from this measurement were helpful in constraining the
new evaluation of 56Fe. Further information on this measurement can be found in
the following reference [6].

4 Fission Measurements

Fission measurements investigating aspects of the resonance region have previously
been performed at RPI utilizing the Lead Slowing Down Spectrometer (LSDS).
The LSDS is a 1.8 m cube of high purity lead which incorporates the high neutron
scattering and low absorption cross section of lead to increase the neutron flux
locally within the cube. This allows for neutron fluxes several orders of magnitude
higher than traditional ToF measurements. The fission measurements use a double
Frisch gridded ionization chamber to measure the fission fragment mass and charge
distribution as a function of neutron ToF. The LSDS uses a modified ToF equation
which takes into account the slowing down spectrum of the neutrons in the lead
and can be seen below in Eq. (1) where k = 165,000 eV μs, E is in eV, and
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t is in μs. This slowing down in the lead broadens the energy resolution of
the measurement and makes direct resonance measurements difficult. However,
resonance information can still be obtained through looking at the change in fission
fragment mass distribution looking at specific energy regions corresponding to
resonance clusters. This work has been previously performed for neutron induced
fission on 235U and 239Pu and the results can be seen in full in reference [7]. These
results highlight the ability to utilize the LSDS for fission measurements in the
resonance region which provide meaningful results regardless of the resolution of
the system.

E(t) = k

(t + 0.3)2
(1)

5 Conclusions

The RPI LINAC is one of the leading experimental facilities for neutron cross-
section measurements using the ToF technique. Its many detector arrays and flight-
path locations allow for various types of measurements to be performed spanning
from thermal energy up to 20 MeV. Particularly, in the resonance region, the ability
to simultaneously measure the capture and transmission allows for the extraction of
the neutron and gamma resonance parameters providing a more complete view of
the resolved resonance region. Many of the measurements have already been used
for new evaluations, recently 56Fe and 235U which have impacted the new ENDF
8.0 evaluations. Additionally, with the new facility upgrade scheduled to complete
in 2021, the LINAC facility will offer higher neutron fluxes and energies than were
previously achievable allowing for more accurate measurements to be performed in
the future.
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Experimental Facilities at iThemba
LABS and Measurements to Constrain
Astrophysical Processes

Mathis Wiedeking

1 Introduction

The iThemba LABS K = 200 separated sector cyclotron (SSC) has been utilized
for nuclear physics research since its commissioning in the mid-1980s. In the past
30 years, beam time has been divided between three programs (nuclear physics,
hadron therapy, and isotope production), which limited the competitiveness of the
nuclear physics research program. While beam time for nuclear physics research
is not limited to weekends any longer, it will be increased significantly when the
laboratory starts operations of the 70 MeV accelerator for radioisotope production
(South African Isotope Facility—SAIF).

Subatomic Physics research will continue to play a major part of research at
iThemba LABS. The research programs will focus on niche areas where iThemba
LABS will complement the research carried out at cognate laboratories around the
world [1]. The research infrastructure is in the progress to be significantly improved
and the human resources will be supplemented to enable the laboratory to deliver
on its research and training/education mandates.

The nuclear physics research topics at iThemba LABS are broadly classified into
Nuclear Reaction, Nuclear Structure, and Applications of Nuclear Physics.

Over the last few years the benefits and possibilities of combining research equip-
ment to perform cutting edge measurements have been realized and implemented.
The merging of the K600 magnetic spectrometer with the AFRODITE Clover
detectors is a prime example of a powerful setup and is shown in Fig. 1. New silicon
particle arrays have also been developed over the last few years and can be coupled
to AFRODITE and the K600 spectrometer. Several major experimental capabilities
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Fig. 1 Coupling Clover γ-ray detectors to the K600 magnetic spectrometer. Visible on the left are
Clover detectors around the scattering chamber and on right is the first of two dipole magnets of
the K600

have been or are in the process of being implemented. These include an electron
spectrometer, fast-timing and large-volume LaBr3:Ce detectors, a tape station, and
a Doppler Shift Attenuation Method setup. These and other developments, together
with the existing infrastructure will lay the foundation for research efforts during the
coming years and will enable exciting nuclear physics measurements to be carried
out.

One of the main research efforts focus on measurements to unravel the structure
of the Giant Electric Dipole Resonance (GEDR) and resonances on its low-energy
tail (e.g., Pygmy Dipole Resonance (PDR)), as well as the related photon strength
function (PSF) and nuclear level density (NLD) below the particle threshold.

A selected number of the facility developments are detailed in sect. 2, which
have been taken from iThemba LABS 2018 Long Range Plan [1] and elaborated
on, while sect. 3 focuses on interesting measurements in particular those related to
PSF and NLD measurements at iThemba LABS and examples of measurements that
place constraints on astrophysical processes.

2 Experimental Facilities and Developments

2.1 K600 Magnetic Spectrometer

The K = 600 magnetic spectrometer (K600) at iThemba LABS is a high-resolution
magnetic spectrometer for light ions. It has the capability to measure light-charged
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particles from scattering or direct reactions at extreme forward angles, including
zero degrees. This makes it one of only two facilities worldwide, the other being
at RCNP Japan, with the capability of combining high-energy resolution with zero
degree measurements at medium beam energies.

Accurate scattering angle information is imperative to allow for the necessary
corrections of the first- and second-order dependence of the focal plane position on
the horizontal scattering angle at the K600 spectrometer. This capability is critical
and essential to exploit the high-resolution capabilities of the K600.

The K600 experimental program is increasingly dependent on the horizontal and
vertical drift chambers and one additional drift chamber will be manufactured to
provide the much needed redundancy for the focal plane detector setup. A new focal
plane is currently being designed to further allow for the detection of heavier ions
or lower excitation energies.

2.2 AFRODITE

AFRODITE (AFRican Omnipurpose Detector for Innovative Techniques and
Experiments) is a γ-ray detector array with the capability of detecting both high-
and low-energy photons with a reasonably high efficiency by combining Compton
Suppressed HPGe detectors (CLOVERS) with Low-Energy Photon Spectrometer
(LEPS) detectors. A range of ancillary detectors can be combined with AFRODITE,
such as silicon or CsI charged-particle detectors, recoil detectors, and fast neutron
detectors for time-of-flight discrimination for neutron reaction channels. The fast-
timing array of eight 2” × 2” LaBr3:Ce detectors can also be added to AFRODITE.

The upgrade of the nine Compton suppressed Clover detector array, AFRODITE,
includes doubling the number of Clover detectors, which will provide the capability
to improve on high-resolution measurements with double the efficiency, and a
factor of ~4 increase in the doubles coincidence rate and a factor of ~10 for
triples coincidences. At the end of 2018, a total of 14 Compton suppressed Clover
detectors are available with four additional detectors expected to be available by
the end of 2019, with funding through the GAMKA consortium which consists of
five institutes: University of the Witwatersrand, University of the Western Cape,
University of Zululand, Stellenbosch University, and iThemba LABS.

In addition to the detectors, a nitrogen liquefier will be procured through the
GAMKA consortium to provide sufficient liquid nitrogen to operate the full array
throughout the year.

2.3 ALBA

ALBA (African LaBr3:Ce Array) with large-volume high-efficiency LaBr3:Ce
detectors will cover approximately ½ of a sphere and consist of a total of 23
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Fig. 2 Schematic arrangement of the African LaBr3:Ce Array (ALBA) with 23 large-volume
detectors [1]

large-volume (89 × 203mm) LaBr3:Ce detectors. Coupling these detectors to the
K600, other particle detection devices and/or AFRODITE, will provide a unique
combination with each detector type capable of probing a different aspect of the
nuclear response. ALBA’s efficiencies (for 20 detectors) are calculated to be 18.9%,
7.8%, and 4.5% at γ-ray energies of 1, 5, and 10 MeV, respectively. This will
provide a significant increase in efficiencies for new and cutting edge research,
in particular for measurements of the PSF, PDR, and γ-ray decay of the GEDR,
which are not feasible with Clover detectors alone. Currently, six ALBA detectors
are already available for measurements. Another 17 detectors are funded through
GAMKA funds and are expected to be delivered in 2019 and the first half of 2020
A schematic arrangement of the ALBA array is shown in Fig. 2.
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2.4 Fast Neutron Beams

The iThemba LABS fast neutron beam facility can provide quasi-mono-energetic
neutron beams of energies between 30 and 200 MeV, using the (p,n) reaction on
thin Li and Be targets. The neutron beam line is currently one of the few facilities
in the world that can provide quasi-mono-energetic neutron beams up to 200 MeV.

The neutron beam line is currently undergoing significant upgrades with the
goal of reducing neutron backgrounds to further improve conditions for metrology
and neutron physics measurements. The improvements include an enhancement of
available beam diagnostics, improved target system, beam dump, extension of the
16 degree flight path, as well as the rearrangement of shielding blocks. The upgrade
is expected to be completed in 2019.

3 Experimental Measurements

Two of the main experimental projects focus on the development of innovative
techniques for characterizing the quasi-continuum through the measurement of the
PSF, NLD, and the PDR which will provide new opportunities for nuclear structure
and astrophysics studies. The significant developments of new and existing exper-
imental infrastructure with the addition of new detector technologies at iThemba
LABS (see sect. 2) make it possible to embark on research programs with impact
on the fields of nuclear structure and astrophysics. Results from measurements of
the NLD and PSF (together with its resonances) allow for interesting investigations
into the nucleosynthesis processes and can provide constraints of processes for the
production of individual nuclei. Some examples of key experimental measurements,
results, and conclusions are now summarized.

3.1 PSF and NLD from Inverse Kinematic Reactions

iThemba LABS in collaboration with other institutes has conceived and developed
a novel technique to extract the shape of the PSF which relies on the combined
detection of particles, primary high-energy as well as low-energy discrete γ-ray
transitions [2, 3]. This initial effort to fully characterize the PSF was recently
enhanced at iThemba LABS through the first measurement of the NLD and PSF
using inverse kinematics with the 86Kr(d,p) reaction and analyzed with the Oslo
Method [4]. The success of this Inverse-Oslo approach makes it possible to measure
the NLD and PSF of nuclei, which were previously inaccessible, either due to
their chemical or physical properties or their radioactive character, and provides
complementary access and information to other methods.
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3.2 Pygmy Dipole Resonance

Studies of the PSF and NLD are mainly concerned with determining the overall
electromagnetic decay (and excitation) properties of a nucleus, but researchers at
iThemba LABS are also interested in understanding particular nuclear structure
aspects, such as the GEDR and the PDR, that define the structure of the PSF. While
the PDR has been studied for a range of nuclei, spanning several mass regions, its
nature and evolution with deformation is not understood. While the PDR has be
studied in 74Ge with a combination of particle telescopes and AFRODITE [5], the
available equipment is ideally suited for an experimental investigation of the PDR
with the use of the K600 magnetic spectrometer at zero degrees, coupled to an array
of γ-ray detectors, and an experimental program is underway to study the PDR in
deformed nuclei (L. Pellegri, private communications).

3.3 138La

Researchers at iThemba LABS have measured the PSFs and NLDs for 138,139,140La
at the Oslo Cyclotron Laboratory (OCL) [6]. The Maxwellian-averaged cross
sections (MACS) were calculated and from these the (γ, n) production rates were
found. The results show that the 139La(γ,n)138La production rate is smaller than the
138La(γ,n)137La destruction rate. Through this new determination of the reaction
rates the conclusion is made that 138La cannot be produced by photoreactions during
the p-process and instead the neutrino process is the dominant production process
for 138La [7].

3.4 180Ta

The PSFs and NLDs were measured for 180,181,182Ta [8] at the OCL and used as
input parameters in the TALYS reaction code [9] to calculate (n, γ) cross sections.
From these the MACS and reaction rates of astrophysical interest are obtained. The
latter is used in s-process calculations and p-process simulations to re-estimate the
nucleosynthesis of 180Ta in light of the new experimental data [10]. The results show
that the s-process contribution in the production of 180Ta is negligible and instead
the p-process is the primary production mechanism of nature’s rarest stable isotope.
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Late Gamma Rays from
Neutron-Induced Fission and Capture
from 235U

G. Rusev, J. M. O’Donnell, I. Stetcu, M. Jandel, P. Talou , B. Baramsai,
T. A. Bredeweg, E. Bond, A. Couture, S. Mosby, C. J. Prokop, J. L. Ullmann,
and C. L. Walker

1 235U+n Experiment

The late emission γ rays from the 235U(n, γ ) and 235U(n, f ) reactions were studied
in an experiment with a 26-mg/cm2 thick target enriched to 235U. The experiment
was performed at flight path 14 of the Lujan Center using neutrons produced via
spallation reaction of 800-MeV protons striking a tungsten target with a repetition
rate of 20 Hz [1]. A 1 in. thick water moderator increases the neutron flux at low
energies. The γ -rays were measured with the DANCE array, which consists of
160 BaF2 detectors in a 4π configuration [2]. Pictures of DANCE are shown in
Fig. 1. DANCE was equipped with the NEUANCE array [3] serving as a fission
trigger by measuring the prompt fission neutrons. NEUANCE consists of 21 stilbene
detectors in a cylindrical configuration located in the central cavity of DANCE (cf.
Fig. 1). The signals from all DANCE and NEUANCE detectors were digitized by
CAEN VX1730B cards (14-bit, 500 MHz). In offline analysis, coincidence events
of detectors fired within 5 ns were built and ordered in time relative to the beginning
of the neutron spill (T0).
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Fig. 1 A photograph of DANCE (left). DANCE consists of 160 BaF2 detectors in a 4π
configuration. One of the DANCE hemispheres (right) with the beam line and NEUANCE installed
in the central cavity

2 Preliminary Results

The train of detector hits for a fission event starts with the detection of at least
one neutron by NEUANCE. In the same 5-ns coincidence event, a few DANCE
detectors register the prompt fission γ rays (PFG). This event is followed by a
long sequence of events containing γ rays from de-excitation of isomeric states
in the fission fragments (late γ rays) as well as background events (beam related
background, natural background, and cosmic rays). We applied a method, developed
for similar experiments, to estimate the background [4]. The method requires three
time spectra: PFG relative to T0, late γ rays relative to T0, and “late-prompt” events.
See Appendix B in Ref. [4] for more details. A “late-prompt” spectrum with the
estimated background is given in Fig. 2. Time 0 refers to the time of fission while
the counts at later times correspond to the detected late γ rays. An energy spectrum
of the late γ rays is produced by integrating the “late-prompt” spectrum from
50 ns to 2 μs. The energy spectrum obtained is shown in Fig. 2 and compared with
predictions [5] from the CGMF code [6]. Note, we estimate the background for each
energy bin of the spectrum independently.

The product nucleus of the 235U(n, γ )236U reaction exhibits two low-lying
isomeric states, one at 687.6 keV (T1/2 = 3.78 ns) and the other at 1052.4 keV
(T1/2 = 100 ns). A partial level scheme of 236U is shown in Fig. 3. We applied the
same method for background estimation to obtain the energy spectrum of the late γ
rays. The prompt γ rays, i.e. the γ rays feeding any of the isomers, are selected by
the total γ -ray energy (Etotalγ )measured by DANCE: Etotalγ = 6545.5 − 687.6 keV

or 6545.5−1052.5 keV, where 6545.5 keV is theQ value of the 235U(n, γ ) reaction.
The late γ rays are selected by the condition Etotalγ = 687.6 keV or 1052.5 keV,
respectively. A sample γ -ray spectrum is given in Fig. 3.
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Fig. 2 A spectrum of “late-prompt” events (left) with background estimated using the method
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Fig. 3 A partial level scheme of 236U (left). A spectrum of late γ rays (right) de-exciting the
isomeric state at 1052.5 keV at 50 ns since the 235U(n, γ ) reaction occurred

In summary, we presented preliminary results for spectra of late γ rays from
fission and neutron capture demonstrating the potential of DANCE to measure
isomeric states with half lives from a few ns up to μs.
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