
Chapter 3
Alignment and Calibration of the CMS
Tracker

This chapter describes the calibration of the CMS tracker, and in particular its
alignment [1–3]—the position, orientation, and shape of each of its modules as
recorded in the CMS reconstruction software. The alignment is a crucial ingredient
in translating the information provided directly from the tracker readout, the position
of each hit relative to the module, to the information we actually want, the hit’s
location in 3D space.

For the pixel modules, the precision of a hit measurement is typically a few
microns. Therefore, we need to know the module’s location to similar precision.
This is much smaller than errors that can be introduced when building the detector.
In addition, the modules tend to move over time, in particular when the magnetic
field is turned on or off or when the temperature changes. Therefore, a regular data-
based alignment is needed to maintain the precision of the detector. Some changes
only cause the large mechanical structures to move; for example, the two halves of
BPIX and two halves of each endcap of FPIX are especially sensitive to magnetic
field changes. In those cases, only those structures may need to be aligned. The
detector is designed in a hierarchy of structures, shown in Fig. 3.1, any of which can
be aligned while keeping the relative positions of its components fixed.

Tracker alignment is not like a tire alignment. A tire alignment involves the
mechanic jacking up the car and physically moving its wheels to their correct
positions and orientations. By contrast, when we align the tracker, we do not go
down to the CMS cavern and move any modules, because whether the module
positions exactly match the design specifications is not the point. What matters
is that the module positions assumed in the track reconstruction match the actual
positions of the modules. Alignment can be done months or even years after data
taking, and the data can be reconstructed with the new alignment.

On the other hand, it is important that the detector not be too misaligned at the
time of data taking, because this can affect the track information that goes into the
high level trigger. While events that pass the trigger can always be rereconstructed
later, events that fail the trigger are lost forever. This happened at the beginning of
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(a) (b)

Fig. 3.1 Hierarchies of the pixel (a) and strip (b) components of the tracker. Any of these levels
of the hierarchy can be aligned [1]

the 2015 run, after the detector had been shut down for 2 years. The first cosmic
ray data revealed that one side of FPIX was several millimeters away from its
assumed position, as shown later in Fig. 3.17a, and as a result the rate of tracks
in that side of FPIX was around 50% of the rate in the other side. Many of the
events with lost tracks were triggered due to information in the muon systems, but
the tracks were not reconstructed by the software because the misalignment was
severe enough to ruin the pattern recognition responsible for track finding. those
events could be recovered by first performing a rough alignment with the tracks
that were not rejected and then rereconstructing the data using the new geometry,
matching the individual hits to form a track. Any events that did not pass the muon
trigger were just gone. Such a large error would probably not happen during the
more crucial collision data taking, but a severe enough miscalibration could result
in the loss of important events.

The alignment procedure can be done at a hierarchical level: it is possible, for
instance, to align large structures while keeping the individual modules attached
to those structures fixed. Typically, while CMS is running, an automatic procedure
aligns the six pixel structures: two half barrels of BPIX and two half cylinders on
each side of FPIX. This procedure, with only 36 degrees of freedom, is simple
enough to run without human input. Every few weeks, an alignment of the pixel
modules is performed manually. At the end of the year, with the increased statistics
of the full year’s data, a new alignment is derived covering the entire year. The
strips, which are known to be fairly stable and where small movements have less of
an impact on track resolution, are typically only aligned at the beginning of the run
period and during this full-year alignment.
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3.1 Principles of Detector Alignment

The alignment is performed using the data collected. A simple example is shown
in Fig. 3.2. When a track is reconstructed with a misaligned geometry, the result is
as shown on the right side of the illustration. The expected positions of the hits,
calculated from the track’s path and shown in red, and the measured hits, shown in
green, no longer match. This indicates that the detector is misaligned: its assumed
position is wrong.

A real alignment involves many more modules, up to all 17004 (since 2017; the
number of modules was previously slightly smaller) for the most comprehensive
cases. The assumed positions of any of these modules could be wrong, and we need
to fit for all of their positions and rotations in three dimensions. For each module, a
local coordinate system is used, as shown in Fig. 3.3. The w axis is perpendicular to
the module, and the u and v axes are within it, with the u axis in the more sensitive

Fig. 3.2 A simplified illustration of how alignment works. The left side shows the actual position
of the detector at the time of data taking, with a blue track, taken with the magnetic field turned
off, that leaves four hits shown in green. The right side shows the assumed detector position, with
the second module from the top assumed to be slightly to the left of its actual position, with the
same measured hits in green and the expected hits in red

Fig. 3.3 Illustration [2] of the module local coordinates u, v, w and the corresponding rotations
α, β, γ for a module. Three other alignment parameters, not shown here, define the curvature of
the module
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direction of measurement. The angles α, β, and γ describe rotations around u, v, w

respectively.
Millions of tracks are used simultaneously for a more precise measurement of

all of the module positions. The magnetic field is turned on and the tracks have
curvature. Unlike the exact hit positions shown in the picture, the hit measurements
have an intrinsic uncertainty, as do the expected hit positions, which are calculated
from the other hits on the track. Additionally, the track parameters themselves are
affected by the alignment, so a procedure is needed to deal with those correlations
as well.

The alignment parameterization in CMS also includes three degrees of freedom
for the deformation of the modules, expanding the curved shape of the modules up
to quadratic terms: �w = suu

2 + svv
2 + suvuv. In general, these deformations are

determined by the mechanical stresses on the modules and tend not to change over
time, so they are aligned infrequently.

3.2 Alignment Algorithms

Two algorithms are used on CMS to perform this minimization and determine
alignments: MillePede and HipPy. The ultimate goal is to minimize the objective
χ2 function:

χ2( �p, �q) =
tracks∑

j

hits∑

i

(
mij − fij

( �p, �qj

)

σij

)2

(3.1)

where mij ±σij is the measured position of each hit and fij is the expected position,
which depends on the positions, rotations, and deformations of the modules �p and
the track parameters �qj . (In the case of the pixels, �fij and �mij ± �σij are two-
dimensional vectors with components in the u and the v direction.) We minimize
this χ2 with respect to �p and �qj , with the primary goal being �p. Both algorithms
start by linearizing fij , and any nonlinear parts are handled by running iterations.
The quantity in the numerator of Eq. (3.1) is the difference between the measured
hit and the reconstructed hit and is known as the residual. If, as is typically the case,
fij is calculated only using mi′j for i′ �= i, then the residual is unbiased, because
mij and fij are independent. The residuals in Fig. 3.2, on the other hand, are biased,
because a single track is calculated from all of the green hits mij , and that track is
used to predict the red hits fij .

It should be stressed that alignment is not just a mathematical problem of
minimizing Eq. (3.1). Certain degrees of freedom are not well-constrained by the
tracks. Those degrees of freedom are known as weak modes, and some of them will
be described in Sect. 3.4. While in theory alignment should never make the situation
worse, in practice there can be biases in track reconstruction that lead to false shifts
in position. Sometimes this can be useful, as alignment can smooth over effective
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shifts and recover degraded performance, but in other situations, particularly when
the bias causes movement along a degree of freedom that is weakly constrained, this
can make the bias in data worse. An example of this will be shown in Sect. 3.4.1.1,
where an unknown bias causes a tension between positively and negatively charged
collision tracks, with the result that the alignment gets significantly worse in an
attempt to compromise between them. Extra constraints need to be added into the
procedure to prevent this.

3.2.1 MillePede

The MillePede algorithm [4, 5] does a simultaneous fit for pi as well as qj ,
automatically resolving most of the correlations between track parameters and
alignment parameters. The size of the linearized χ2 matrix is the number of module
parameters, 17004 × 6 ≈ 105 for a full scale alignment, plus the number of track
parameters, which could be 107. However, most of the matrix’s entries are 0: the
parameters of one track only have direct correlations with the modules hit by that
track. This fact allows MillePede to reduce the matrix to a more reasonable 105×105

matrix.
In order to improve the computation speed, the MillePede fit runs outside the

CMS software package using independent Fortran code. The track propagation
model is similar, but not identical, to the standard CMS model. This is both a
strength and a weakness of the MillePede approach: the track propagation runs faster
and provides an independent cross check of CMS’s model, but can also introduce
small inconsistencies with the final track reconstruction. In practice, large enough
inconsistencies would lead to an incorrect alignment and would be caught during
the validation procedure.

3.2.2 HipPy

The HipPy algorithm runs iteratively. In each iteration, it runs over the tracks, using
as input the alignment derived in the previous iteration. Subsequently, it aligns each
module individually, inverting a simple 6 × 6 (or 9 × 9, when the sensor curvature
is also aligned) matrix for each module. In practice, when only small, random
movements are involved, ten iterations are usually more than enough to deal with
correlations between modules.

Figure 3.4 shows the capabilities of the HipPy algorithm. It can take input both
from tracks (“AlCaReco”) and from other sources of constraints, such as the optical
survey or laser alignment system. The optical survey was in active use during Run
1 of the LHC. Although the laser system was decommissioned during Run 2, the
functionality can be used to constrain degrees of freedom that tend to move in
unphysical directions, such as the ones described in Sect. 3.4.1.1. Reading these
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Fig. 3.4 Diagram describing the HipPy alignment procedure

sources of information, and processing them through the initial alignment for the
iteration, HipPy calculates residuals, as shown in Fig. 3.2. Because HipPy’s track
reconstruction has access to the full CMS software, it has the capability to use
any type of constraint defined in that software. Certain types of tracks and hits
provide additional information—for example, the two tracks Z → μμ decays can
be constrained to come from the same vertex and to have a dimuon mass around
91.2 GeV, and cosmic rays provide a unique topology of tracks that can constrain
degrees of freedom not covered well by collisions. These tracks can be weighted
higher in the fit in order to best use this information.

In the end, the χ2 is minimized and the new output is created, which can include
the modules’ positions and rotations (“TrackerAlignmentRcd”) and their curvatures
(“TrackerSurfaceDeformationRcd”). Then, the next iteration is run, starting from
the output of the previous iteration.

HipPy can also handle multi-IOV alignment, which is necessary when part of the
detector shifts at certain points in time and we need to find a separate alignment for
each time period, known as an “interval of validity” or IOV. The simplest way to
handle this movement would be to simply derive a completely separate alignment
for each IOV. However, if we assume that some degrees of freedom remained fixed
in all IOVs, we can gain information by using all tracks to measure those degrees
of freedom, while the other degrees of freedom are aligned separately for each IOV.
In HipPy, this is handled by first aligning the components that frequently move,
independently for each IOV. Subsequently, another alignment starts from the output
of the first step and moves the individual components in a correlated way across all
IOVs.
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Typically, the large components of the pixel detector move most frequently and
the strips move less often. An example alignment procedure might start by aligning
the large pixel structures separately in each of 15 IOVs. After those outputs are
collected, the pixel modules would be aligned within those structures for each of 5
IOVs, each of which spans 3 of the original 15 IOVs. In IOVs 1, 2, and 3, the large
structures would be in 3 different places, but the relative positions and rotations of
the modules within those structures would be common. Finally, the strip modules,
which are known not to move frequently, would be aligned in a single alignment
covering all 15 IOVs. The curvatures of all of the modules, which also do not change
significantly with time, would also be aligned in the last step.

In dealing with a real systematic global movement, HipPy is slower to converge
than MillePede, because the correlations between modules have to be solved through
iteration. On the other hand, HipPy is more resilient than MillePede to false
correlated movements.

3.3 Validation Procedures

Several validations are used to check the effect of alignments and determine whether
a particular alignment performs well. A validation is essentially a projection of
the alignment performance onto a particularly interesting degree of freedom. The
quantities we choose to plot typically have a known value under perfectly aligned
conditions. For example, a histogram of residuals is expected to peak at 0 with some
width. The difference in parameters between two halves of a cosmic ray track is also
expected to be 0 on average. The mass of a reconstructed Z boson should be around
91.2 GeV. By detecting deviations from these expected values, especially deviations
as a function of the track location or direction, we search for biases.

This section contains a description of several of the validation procedures used
in alignment. Example plots can be found in Sects. 3.4 and 3.5.

3.3.1 Overlaps

The overlap validation monitors the alignment by using hits from tracks passing
through regions where modules overlap within a layer of the tracker. In this method,
the difference in residual values for the two measurements in the overlapping
modules is calculated. Unexpected deviations between the reconstructed hits and
the predicted positions can indicate a misalignment. This is characterized by a
non-zero mean of the residuals. This method is particularly powerful because the
distance between the overlapping modules from the same layer is relatively small,
and therefore there is a relatively small uncertainty in track propagation through
space between the modules. The double difference in estimated and measured hit
positions becomes very sensitive to systematic deformations.
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Fig. 3.5 Illustration of the effect on overlaps between modules when they move relative to each
other in the plane of the overlap. The top pictures show the module positions in the assumed
geometry, with corresponding predicted hits in red. The bottom pictures show the actual positions
of those modules, with the reconstructed hits in green. When projected onto the assumed geometry,
the two hits are inconsistent, and the residuals have opposite signs between the two modules

Two effects in the overlap validation contribute to detecting misalignments.
These effects are illustrated here for the radial misalignment, which will be dis-
cussed in detail in Sect. 3.4.5. The first effect, shown in Fig. 3.5, detects movement
of the modules within the module plane, which is a second-order effect for the radial
misalignment. This leads to a positive shift in residual mean for expansion and a
negative shift for contraction, as shown in Fig. 3.5.

A second effect detects common movement of both modules perpendicular to
themselves. The sensitivity to this movement comes from the fact that two nearby
hits provide a precise measurement of the track angle, and the precision on this
measurement, combined with knowledge of the track’s momentum from the rest
of the hits, can detect the change in track angle resulting from small perpendicular
movements. This effect has an opposite effect for positively and negatively charged
tracks because they curve in opposite directions in the magnetic field. Therefore, it
does not affect the average overlap residual, but might be usable in future studies by
isolating tracks of a particular charge. This effect is shown in Fig. 3.6.

3.3.2 Cosmic Track Splitting

Cosmic track splitting monitors the alignment of the tracker by independently
reconstructing the upper and lower portions of cosmic ray tracks that go through
the tracker. It then compares the parameters describing the two paths to see if they
match up. This method is also powerful because we know that the two halves of a
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Fig. 3.6 Illustration of the
effect on overlaps between
modules when they move
perpendicular to their plane.
The bottom illustration shows
the predicted position of the
modules with predicted hits in
red, while the top illustration
shows their actual position
with reconstructed hits in
green. The radial expansion
causes the modules to move
along the track and, because
of the curvature, to measure a
different track angle

given cosmic track should have the same parameters at the origin, while each half
of a track mimics a regular collision track originating from the interaction point.
Systematic differences between the track halves can indicate a misalignment.

3.3.3 Z → µµ Decays

The Z → μμ validation uses a sample of Z → μμ events and looks for biases by
reconstructing the mass of the muon pair. Each event, with its reconstructed mass,
is placed into a bin depending on η and φ of the muons. The mass distribution of
each bin is then fit with a Gaussian, and the mean of this Gaussian is recorded as
the reconstructed mass in that bin. The bins are then used to construct profiles of
the mass as a function of η or φ. Misalignment in the tracker may be detected if
the mean reconstructed mass strays from the expected value of 91.2 GeV, either
uniformly or as a function of η and φ.

3.3.4 Distributions of the Medians of the Residuals (DMRs)

The distribution of the medians of the residuals (DMR) is a powerful tool to assess
the statistical precision of alignment. While residuals themselves exhibit natural
statistical fluctuations, the mean of those residuals should be zero in the limit of
infinite statistics if there is no bias in the alignment and calibration of the detector.
However, in order to reduce sensitivity to the tails of the distributions, the median is
a better quantity to monitor compared to the mean. With a large enough number of
tracks N passing through each module, the median distribution should be centered
at zero, and its width should scale as 1/

√
N . With a large enough N , the width
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of this distribution of the medians of residuals (DMR) is a measure of the local
precision of the alignment results; deviations of the mean from zero indicate biases.
The unbiased residuals are used in the DMR calculations, when each track is refitted
using the alignment constants under consideration, and the hit prediction for each
module is obtained from all other track hits. The median of the distribution of
unbiased hit residuals is then taken for each module and histogrammed.

3.3.5 Primary Vertex Validation

The resolution of the reconstructed vertex position is driven by the pixel detector,
since it is the closest detector to the interaction point and has the best hit resolution.
The primary vertex residual method is based on the study of the distance between
the track itself and the unbiased vertex, which is reconstructed without the track
under scrutiny.

The distributions of the unbiased track-vertex residuals in the transverse plane,
dxy and in the longitudinal direction, dz, are studied in bins of track azimuth φ and
pseudo-rapidity η. Random misalignments of the modules affect only the resolution
of the unbiased track-vertex residual, increasing the width of the distributions, but
without biasing their mean. Systematic movements of the modules will bias the
distributions in a way that depends on the nature and size of the misalignment and
of the selected tracks.

3.4 Systematic Misalignments

This section will discuss studies designed to detect systematic misalignments of
the tracker, where all modules move in a correlated way. Two basic categories of
systematic misalignments arise in alignment:

1. Weak modes are particular degrees of freedom that are difficult to detect using
the standard alignment procedures. The most obvious, but not very interesting,
example is a global movement of the whole detector: if we reconstructed tracks
under the assumption that the entire CMS was transported to the moon, the shape
and quality of all tracks would be unchanged. In this section, we study some
more interesting cases. For example, a uniform radial expansion of the tracker by
a factor 1 + ε preserves the shape of tracks as helixes, but introduces biases in
the track curvature and hence in the momentum.

2. Biases can also arise due to tension between conflicting constraints used in
the alignment procedure. For example, sometimes alignment using cosmic
rays and alignment using collisions will find two slightly different optimal
positions, and in a real alignment, which uses both types of tracks, the algorithm
tries to compromise between them. When this happens, it indicates a bias in
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the procedure to reconstruct the tracks, before alignment enters the picture.
The information provided by alignment can be used to improve the tracking
procedure and, in the meantime, to find the best alignment to use for practical
purposes given the non-optimal tracks. Applying weights to different kinds of
tracks is a useful strategy in this case, because we can weight each track topology
based on the confidence we have in the information provided by that topology.

The goal of this study was to identify systematic misalignments in CMS
tracker geometry using various validation tools. The misalignments examined
were first order misalignments of �φ, �r and �z as functions of z, r and φ.
Each misalignment was characterized by some ε. Systematic misalignments were
generated on the ideal geometry using Monte Carlo. For each type of systematic
misalignment, four different misalignments were generated using different values of
ε. The effect of each of the four misalignments was then found in some validation
plot for each different systematic misalignment, and a fit was applied to determine
the relationship between ε and a parameter of that fit.

We determined constraints on these systematic misalignments in the CMS
Tracker by comparing the effects of misalignment in simulated Monte Carlo sample
and in a representative Run2 data period using both collision and cosmic track data.
The two most important validation techniques in this study are the overlap residuals
and cosmic tracks split into two halves, have been the focus of this work, following
on the original work during the tracker commissioning at the start of Run1 [2].
We have also revisited the systematic z-expansion in the TEC and TOB, following
studies from the beginning of Run 2. Data from the 2017D run period, which ran
from August 30 to September 20, 2017, was used with one of the intermediate
alignments towards the final alignment to be used for reprocessing of the 2017 data.
Values of ε for each systematic misalignment in this geometry were determined by
looking at the parameter identified using the Monte Carlo simulation and using the
corresponding fit to identify a characteristic ε according to Eq. (3.2).

Let us introduce nine first-order deformations natural for the cylindrical geome-
try of the CMS tracker and parameterize them with simple models described by a
single parameter ε. The misalignments in �z, �r , �φ are functions of z, r , φ, with
an overall scaling given by ε. The functional forms used to generate each systematic
misalignment are listed in Table 3.1.

For each misalignment, we use the following equation to relate the systematic
misalignment plots to ε:

Quantity from Plot = aε + b (3.2)

where the quantity from a plot could be, for example, the mean of a distribution or
a parameter extracted from a fit. In general, we expect b = 0, but we allow this
additional degree of freedom in the equation to distinguish alignment issues from
other possible effects related to reconstruction.

In describing the ε values for misalignments, care must be taken as to the
sign. In order to save computing time, Monte Carlo simulations are always done
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Table 3.1 Table of the nine
basic systematic distortions in
the cylindrical system, with
the names of each systematic
misalignment, the function by
which the misalignment is
generated, and a validation
type sensitive to the
misalignment. In the formula
for bowing, z0 = 271.846 cm,
which is the length of the
tracker

�z �r �φ

z-Expansion Bowing Twist
z �z = εz �r = εr(z2

0 − z2) �φ = εz

Overlap Overlap Z → μμ

Telescope Radial Layer rotation
r �z = εr �r = εr �φ = εr

Cosmics Overlap Cosmics

Skew Elliptical Sagitta
φ �z = ε cos φ �r = εr cos(2φ) �φ = ε cos φ

Cosmics Cosmics Cosmics

using the ideal geometry, and the track reconstruction is done with a possibly
misaligned geometry. That is, the “actual” detector position remains fixed to the
ideal geometry, and the geometry used in reconstruction changes. When discussing
data, the opposite convention is more natural: the geometry used in reconstruction
is initially fixed and the actual detector moves.

The equations in Table 3.1 are to the geometry used in reconstruction. Taking
the radial misalignment as an example, a value of ε > 0 means that the geometry
used for reconstruction is expanded in the r direction with respect to the geometry
used in data taking. If this happens in data, we call it a radial contraction, because
the detector has moved with respect to the expected position. This is the convention
used in the text when describing the misalignments in data, as well as in Figs. 3.5
and 3.6 above.

3.4.1 z-Expansion

z-expansion (or contraction) is the uniform misalignment of the tracker in the z

direction as a function of z. Because the strip barrel modules are blind to the z

direction, this misalignment is difficult to detect there. z-expansion in BPIX can be
detected using overlaps. We find that a change in ε causes a shift in the mean of
the overlap validation plot for overlaps in the z direction. The misalignment is an
increasing function of ε. The effect of the misalignment on the mean of the overlap
plot is relatively small.

After fitting the mean of the Overlap Validation distribution in Fig. 3.7 with
Eq. (3.2), we have that a = (−2.83 ± 0.05) × 104 µm and b = (0.58 ± 0.07) µm.
We find that in the pixels, the run 2017D ε corresponding to z-expansion is
(3 ± 6) × 10−5. In BPIX (at z = 260 mm), this corresponds to a contraction of
(9 ± 16) µm, consistent with zero.
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Fig. 3.7 z-expansion
validation: distribution of
overlaps in the z direction
with modules overlapping in
the z direction in BPIX for
cosmic muon events in Monte
Carlo and data. The Monte
Carlo events are simulated
with the ideal detector
geometry and reconstructed
using five geometries,
corresponding to the
z-expansion misalignment
with ε = −2.02 × 10−4,
−1.01 × 10−4, 0,
1.01 × 10−4, and
2.02 × 10−4
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3.4.1.1 z-Expansion in the TEC: DMRs Separated by Charge

In previous alignments, it has been noticed that TEC has experienced some
z-expansion. This is caused by a tension between collisions and cosmics, as the
collisions appear to show a z-expansion but the cosmics do not. It was also found
that in TEC with collision data generated by Monte Carlo, there was a bias between
positively and negatively charged tracks, as shown in Fig. 3.8, indicating that there
may also be a tension between positive and negative tracks in alignment. A possible
explanation could be biased modeling of the track propagation, possibly due to the
material model. This suggestion is supported by the fact that the bias is reduced
for higher-momentum tracks. Since the same effect appears in both data and MC, it
should be possible to track it further with MC simulation. Whatever the source of
this effect, it comes from outside alignment, and further study is beyond the scope
of this work.

3.4.2 Bowing

Bowing is the misalignment of the tracker in the r direction as a function of z. It
is similar to the radial expansion, which will be discussed in Sect. 3.4.5, and differs
only by the fact that the bowing effect is a function of z. For small values of ε, many
millions of events would be needed to measure the z modulation. However, fewer
events are needed to exclude the presence of either a bowing or a radial misalign-
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Fig. 3.8 z-expansion
validation in the TEC: DMR
separated by charge for
cosmics and collisions in
Monte Carlo. These events
are simulated with the ideal
detector geometry
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Fig. 3.9 Bowing validation:
distribution of overlaps in the
φ direction with modules
overlapping in the φ direction
in TOB for cosmic muon
tracks in Monte Carlo and
data. The Monte Carlo events
are simulated with the ideal
detector geometry and
reconstructed using five
geometries, corresponding to
the Bowing misalignment
with ε = 6.77 × 10−9 cm2,
3.385 × 10−9 cm2, 0,
−3.385 × 10−9 cm2, and
−6.77 × 10−9 cm2
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ment. There is a clear relationship between ε set and the mean value of the overlap
distribution, μ = ε(−3.816 ± 0.014) × 109 µm cm2 + (−0.86 ± 0.05) µm. In data,
we observe μ = (−0.64 ± 0.16) µm, yielding ε = (−5.8 ± 4.5) × 10−11 cm2. See
Fig. 3.9 for results.
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Fig. 3.10 Twist validation:
profile of Mμμ vs. �η for
Z → μμ events in Monte
Carlo and data. The Monte
Carlo events are simulated
with the ideal detector
geometry and reconstructed
using five geometries,
corresponding to the Twist
misalignment with
ε = 2.04 × 10−6 cm−1,
1.02 × 10−6 cm−1, 0,
−1.02 × 10−6 cm−1, and
−2.04 × 10−6 cm−1
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3.4.3 Twist

Twist is the misalignment of the tracker in the φ direction as a function of z. As
such, twist shows up clearly in Z → μμ plots, and also in overlap plots. The
parameter used is the slope of the Mμμ vs. �η plot, taken from �η = −2 to +2,
as the plot becomes nonlinear for larger �η. Fitting to the Monte Carlo events, we
find that a = (−4.42 ± 0.05) × 10−5 GeV cm and b = (−0.018 ± 0.008) GeV.
The slope in data was found to be (−7 ± 4) × 10−3 GeV, corresponding to ε =
(−2.5 ± 2.2) × 10−8 cm−1. See Fig. 3.10 for results.

3.4.4 Telescope

Telescope is the uniform misalignment of the tracker in the �z direction as a
function of r (z → z + εr). This creates concentric rings that are offset in
the z-direction, and this misalignment can be visualized by imagining an actual
telescope. Because of its z-dependence, Telescope is identified primarily with
the track reconstruction of cosmic rays. From fitting Monte Carlo data, we find
a = 3508 ± 40 and b = −0.86 ± 0.06. Running this validation on observed data
and plugging the mean into Eq. (3.2) yields ε = (−2.2 ± 0.5) × 10−5. In the pixel
detector (r = 160 mm) this epsilon corresponds to a maximum relative movement
of 3.5 µm, and in the whole tracker (r = 1100 mm) it corresponds to a maximum
movement of 24 µm. See Fig. 3.11 for results.
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Fig. 3.11 Telescope
validation: distribution of
�θ/δ(�θ) for cosmic muons
in Monte Carlo and data. The
Monte Carlo events are
simulated with the ideal
detector geometry and
reconstructed using five
geometries, corresponding to
the Telescope misalignment
with ε = 5 × 10−4,
2.5 × 10−4, 0, −2.5 × 10−4,
and −5 × 10−4
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3.4.5 Radial

Radial is the uniform misalignment of the tracker in the �r direction as a function
of r (r → r + εr). Because of the uniform and symmetric nature of this
misalignment, it is not easily detected with cosmic track-splitting or Z → μμ

decays. However, it is easily detected using the Overlap Validation since, in the
case of a radial expansion, modules that overlap in the radial direction will move
uniformly apart. Therefore, the difference between actual and predicted hit location
on two overlapping modules is a good indicator of a radial expansion or contraction.
In fact, the linear relationship between the mean of the Overlap Validation plots and
the magnitude of the radial misalignment can be used to categorize the presence of
radial expansion or contraction in real tracker data.

In TOB, after running the Overlap Validation on Monte Carlo data and fitting
the results with Eq. (3.2), we find a = (−7.461 ± 0.010) × 104 µm and b =
(−6.023 ± 0.034) µm. After applying a similar method to tracker data and plugging
the mean from the overlap validation into the fit, ε = (2.23 ± 0.40) × 10−5.

In TIB, we find a = (−5.035 ± 0.010) × 104 µm, b = (−3.460 ± 0.033) µm,
and ε = (−2.82 ± 0.34) × 10−5.

In BPIX, we find a=(−1.4012 ± 0.0008) × 104 µm, b=(−1.6450 ± 0.0030) µm,
and ε = (−9.26 ± 0.39) × 10−5.

Based on the relative epsilon values, we measure a greater radial bias in BPIX
than in the other subdetectors. The radius of BPIX is approximately 160 mm, so this
corresponds to an overall radial expansion of approximately 15 µm. In TIB (r =
550 mm), we find a contraction of 15 µm, and in TOB (r = 1100 mm), we find a
contraction of 24 µm. See Fig. 3.12 for results.
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Fig. 3.12 Radial expansion validation: distribution of overlaps in the φ direction for modules
in the φ direction in TOB, TIB, and BPIX for collision events in Monte Carlo and data. The
Monte Carlo events are simulated with the ideal detector geometry and reconstructed using
five geometries, corresponding to the radial misalignment with ε = 5 × 10−4, 2.5 × 10−4, 0,
−2.5 × 10−4, and −5 × 10−4

Fig. 3.13 Layer rotation
validation: distribution of
�(q/pt ) for cosmic muon
events in Monte Carlo and
data. The Monte Carlo events
are simulated with the ideal
detector geometry and
reconstructed using five
geometries, corresponding to
the Layer Rotation
misalignment with
ε = 9.43 × 10−6 cm−1,
4.715 × 10−6 cm−1, 0,
−4.715 × 10−6 cm−1, and
−9.43 × 10−6 cm−1
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3.4.6 Layer Rotation

Layer rotation is the misalignment of the tracker in the φ direction as a function
of r . The outer layers twist in one direction, while the inner layers twist in the
other direction. The distortion is easily picked up with cosmic track-splitting, as we
can see a change in track curvature between the two tracks. As such, we take the
mean of a value proportional to the curvature, for each epsilon. We found a linear
relationship between μ and ε, using Eq. (3.2), with a = (208.5 ± 3.9) cm e/GeV
and b = (0.9 ± 2.6) × 10−5 e/GeV. For the data, μ = (0.005 ± 0.009) e/GeV, so
ε = (−0.2 ± 1.4) × 10−7 cm−1 See Fig. 3.13 for results.
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Fig. 3.14 Skew validation:
Profile of �dz/

√
2 vs φ for

cosmic muon events in Monte
Carlo and data. The Monte
Carlo events are simulated
with the ideal detector
geometry and reconstructed
using five geometries,
corresponding to the Skew
misalignment with
ε = 5.5 × 10−2 cm,
2.25 × 10−2 cm, 0,
−2.25 × 10−2 cm, and
−5.5 × 10−2 cm
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3.4.7 Skew

Skew is the misalignment of the tracker in the z direction as a function of φ.
Because of the φ dependency, it can be detected with cosmic track splitting. We
found that the plots of �dz vs. φ which could be fit by a hyperbolic tangent function
A×tanh(B(φ+C)), which can give us ε. Setting A = 134 and C = 1.654, we found
a linear relationship between B and ε using Eq. (3.2), with a = (−62.5 ± 1.9) cm
and b = (0.002 ± 0.016) cm. Since for the data, B = −0.007 ± 0.012, ε =
(1.4 ± 3.2) × 10−4 cm. See Fig. 3.14 for results.

3.4.8 Elliptical

Elliptical is the uniform misalignment of the tracker in the �r direction as a function
of φ(r → r + rε cos(2φ + δ)). Because of its φ dependency, elliptical is easily
detected with cosmic track-splitting. This misalignment is especially clear in the
modulation of the difference in the impact parameter �dxy as a function of the
track’s angle φ. We fit this modulation to a sine function, �dxy = −A × sin(2φ),
and find a linear relationship between A and ε. Using Eq. (3.2), we find a =
(8.63 ± 0.11) × 104 µm and b = (−0.22 ± 0.34) µm. Using Eq. (3.2), this yields
ε = 2.5 ± 0.6 × 10−5. In the pixel detector (r = 160 mm), this ε corresponds
to a maximum movement of 4 µm, and in the whole tracker (r = 1100 mm) it
corresponds to a maximum movement of 30 µm. The positive sign of ε means that
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Fig. 3.15 Elliptical
validation: profile of
�dxy/

√
2 vs. φ for cosmic

muon events in Monte Carlo
and data. The Monte Carlo
events are simulated with the
ideal detector geometry and
reconstructed using five
geometries, corresponding to
the elliptical misalignment
with ε = 5 × 10−4,
2.5 × 10−4, 0, −2.5 × 10−4,
and −5 × 10−4
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there is a expansion in �r as a function of φ, with the long axis of the resulting oval
shape is in the y direction. See Fig. 3.15 for results.

3.4.9 Sagitta

Sagitta is the uniform misalignment of the tracker in the �φ direction as a function
of φ. As with the elliptical misalignment, the φ dependence in sagitta allows it to be
detected with the cosmic track-splitting validation. The effect of the misalignment
can be seen in plots with �φ vs φ. Figure 3.16 shows sinusoidal distributions, fit to
−A × cos(φ + B), We fit to Eq. (3.2) using the amplitude (A) of the sine wave as
the quantity from the plot. Fitting to Monte Carlo, we find that a = 1199 ± 5 and
b = (−2 ± 2) × 10−3. For data, we find that A = (0.052 ± 0.009) µm and thus
ε = (4.5 ± 0.7) × 10−5 mrad. See Fig. 3.16 for results.

3.4.10 Summary

In this section, we have introduced nine first-order deformations of the CMS tracker
geometry natural for the cylindrical geometry and parameterized them with the
simple models described by a single parameter ε. We have determined constraints
on these systematic misalignments by examining the effects of misalignment
in simulated Monte Carlo sample, and then comparing to collision and cosmic
track data from Run2. A characteristic ε value, describing the magnitude of a
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Fig. 3.16 Sagitta validation:
distribution of �φvs. φ for
cosmic muon events in Monte
Carlo and data. The Monte
Carlo events are simulated
with the ideal detector
geometry and reconstructed
using five geometries,
corresponding to the Sagitta
misalignment with
ε = 5 × 10−4, 2.5 × 10−4, 0,
−2.5 × 10−4, and −5 × 10−4
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misalignment in each of the nine scenarios, has been determined for each of the
systematic misalignments, along with a corresponding upper limit on the magnitude
of ε. These results are summarized in Table 3.2. The constraints are presented at
68% CL (1σ ). The obtained constraints could be used in physics analyses sensitive
to systematic distortions in the tracker geometry to set limits on possible biases.

It may be possible that there is a systematic misalignment present in the tracker
that is not represented by any of the nine misalignments studied in this note.
However, such a misalignment would likely be a higher order function of z, r or
φ than the ones used in this study and would likely still have some first order
component that would appear in the validation plots described in this note. It would
still be useful to examine such systematic misalignments to better characterize the
systematic misalignments in the tracker.

One indication of a higher order systematic misalignment would be potential
differences between different kinds of tracks or different kinds of plots in estimating
the magnitude of the same misalignment. These differences could indicate that the
misalignment is not exactly of the form studied or could indicate biases in track
reconstruction, unrelated to alignment, similar to the ones seen in Sect. 3.4.1.1.

While we do not pursue this in detail in this study, in the case of radial expansion
(Sect. 3.4.5) we obtained three different estimates of ε, one each in BPIX, TIB,
and TOB, and found different ε values, so the misalignment appears to be a higher
order function of r . Additionally, because bowing and radial are so similar, we can
compare our estimate of ε for bowing in TOB, obtained using cosmic rays, and our
estimate of ε for radial in TOB, obtained using collision tracks. In the center plane
of the detector, where bowing’s effect is largest, a bowing misalignment with εb = ε

is equivalent to a radial misalignment with εr = εbz
2
0. Using z0 = 271.846 cm and
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Table 3.2 Summary table of ε in each misalignment, each misalignment is listed with its
corresponding validation type and a maximum amplitude of ε (at 68% CL, or 1σ )

�z �r �φ

z-Expansion Bowing Twist
�z = εz �r = εr(z2

0 − z2) �φ = εz

z Overlap Overlap Z → μμ

ε=(3 ± 6) × 10−5 ε=(−5.8 ± 4.5) × 10−11 cm−2 ε=(−2.5 ± 2.2) × 10−8 cm−1

|ε| < 9 × 105 |ε| < 1.0 × 10−10 cm−2 |ε| < 4.7 × 10−8 cm−1

Telescope Radial Layer rotation
�z = εr �r = εr �φ = εr

r Cosmics Overlap Cosmics

ε=(2.18 ± 0.48) × 10−5 ε=(−9.26 ± 0.39) × 10−5 ε=(−0.2 ± 1.4) × 10−7 cm−1

|ε| < 2.7 × 105 |ε| < 9.9 × 105 |ε| < 1.6 × 10−7 cm−1

Skew Elliptical Sagitta
�z = ε cos φ �r = εr cos(2φ) �φ = ε cos φ

φ Cosmics Cosmics Cosmics

ε=(1.4 ± 3.2) × 10−4 cm ε=(2.5 ± 0.6) × 10−5 ε=(4.5 ± 0.7) × 10−5

|ε| < 4.6 × 10−4 cm |ε| < 3.1 × 105 |ε| < 5.2 × 105

our measured value for εb, we find εr = (−4.2 ± 3.6) × 10−6, which is 2σ away
from our direct estimate using collision tracks, εr = ε = (2.23±0.40)×10−5. This
may indicate that the misalignment has some other position dependence that affects
cosmic rays differently from collisions, though to make a more definite statement it
would be necessary to run over more events.

It is interesting to note that four systematic misalignments were found with ε

inconsistent with zero at very high confidence level: Telescope, Radial, Elliptical,
and Sagitta. This may indicate either some time-dependence in the systematic
distortions within a given IOV, or more likely some tension between different
constraints in the alignment procedure. The observed effects are still small and
would not affect most of the physics analyses on CMS, but further investigation
of these effects will be a natural continuation of these studies for further refinement
of the alignment procedure.

3.5 Performance During Run II of the LHC

This section will cover some of the alignment results throughout Run 2, which ran
from 2015–2018. In each year, a selection of plots are shown, so that each type of
validation is covered between the 4 years. For comprehensive plots for each year,
see [6–9].
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Fig. 3.17 Illustration of the differences in the pixel detector position (a) between the end of Run
1 of the LHC and the beginning of Run 2, and (b) between the cosmic ray data collection with the
magnetic field turned off and with the field turned on. In both plots, the older module positions
are shown in gray and the new positions are shown in brighter colors. the colors indicate which
modules moved the most, but the color scaling is different between the plots to better illustrate the
scale of the movements [6]

3.5.1 2015 Startup

The 2015 run of the LHC saw the first collisions at 13 TeV. It was primarily a
preparation run, with only 2.7 fb−1 of collisions. During the long shutdown since
Run 1, the detector had been opened and the pixel detector was completely removed
and replaced, so large movements were expected. Figure 3.17a shows the differences
in the pixel detector between the end of Run 1 and the beginning of Run 2. The
larger movements are seen in the −z forward pixel detector, which was inserted
a few millimeters away from its previous position. The alignment result was the
first indication that this had happened. BPIX is mostly yellow in this plot due to
a recentering procedure that was performed. Figure 3.17b shows the much smaller
movements that resulted from turning on the magnetic field.

3.5.2 2016

The 2016 run produced the first higher luminosity 13 TeV proton collisions. As one
of the 3 years of Run 2 designed for precise physics analyses, it was important to
maintain the performance throughout the year. Figure 3.18 shows primary vertex
validation plots for the 2016 data, comparing the performance before and after the
alignment was performed.
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Fig. 3.18 Primary vertex validation plots for 2016 data, comparing the initial alignment used for
data taking in red, the alignment used to rereconstruct the data for data analyses in blue, and the
Monte Carlo simulation reconstructed under ideal conditions in green. The z distance between the
probe track and the vertex is plotted as a function of (a) φ and (b) η of the probe track [7]

3.5.3 2017

For the 2017 run, an entirely new pixel detector was installed. This detector was
designed to provide better resolution for tracks by adding an additional BPIX layer
closer to the beam pipe and an additional disk on each side of FPIX. At the beginning
of 2017, this detector had to be aligned from scratch. The DMR plots in Fig. 3.19
show the improvement resulting from the alignment, first using cosmic rays and
then using the first collisions. The plot in Fig. 3.20 shows the effect of the alignment
on φ modulation of the reconstructed Z boson mass. This kind of modulation is
characteristic of a weak mode effect, described in Sect. 3.4, and is fixed by the
alignment.

3.5.4 2018

Figure 3.21 shows a comparison of track splitting performance on 2018 cosmic ray
data between the alignment at the end of 2017 and at the beginning of 2018.
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Fig. 3.19 DMR plots for 2017 collision data, comparing three different alignments: the initial
geometry used for data taking (black), the first calibration of the detector using cosmic rays (blue),
and the updated alignment derived using collision data (red). The alignment with cosmic rays
significantly improves the performance, and the alignment with collisions, sensitive to different
degrees of freedom that are relevant to the collision tracks used in the validation, brings further
improvements [8]

Fig. 3.20 A Z → μμ

validation plot for 2017,
plotting the average
reconstructed mass of the
dimuon system as a function
of φ of the positively charged
muon [8]
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Fig. 3.21 Track splitting plots, showing histograms of �dxy and �dz for the 2018 alignment,
reconstructed with the alignment from the end of 2017 and the alignment derived in 2018 [9]

3.6 Conclusions and Outlook

The results shown here are just a small selection of the plots produced by the
CMS tracker alignment group over Run 2 of the LHC. The detector conditions
changed from what they were in Run 1, first with the increased collision energy
in 2015 and subsequently with the new pixel detector in 2017. The conditions will
become even more challenging at the High Luminosity LHC (HL-LHC), when the
luminosity delivered by the LHC, and hence the number of simultaneous collisions,
will increase drastically. The plan is to upgrade the tracker again at that time,
including a much more extensive forward pixel detector that can handle the large
numbers of particles produced close to the beam line, and the forward degrees of
freedom are among the most difficult to align.

Extensive studies are ongoing and will continue throughout Run 3 in order to
prepare for these conditions, which will be more challenging than any faced so far.
The alignment group and procedures have proven to be flexible and resilient to date,
and should be able to incorporate the new developments needed to deliver fast and
precise alignments throughout the run period of the HL-LHC.
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