
Multi-clients Verifiable Computation
via Conditional Disclosure of Secrets

Rishabh Bhadauria(B) and Carmit Hazay(B)

Bar-Ilan University, Ramat-Gan, Israel
{rishabh.bhadauria,carmit.hazay}@biu.ac.il

Abstract. In this paper, we explore the connection between two-party
conditional disclosure of secrets (CDS) and verifiable computation. Here,
the integrity mechanism underlying CDS is leveraged to ensure two-
clients verifiable computation, where the computation is outsourced to
an external server by two clients that share the input to the function.
Basing integrity on CDS enjoys several significant advantages such as
non-interactivity, constant rate communication complexity, a simple ver-
ification procedure, easily batched, and more.

In this work, we extend the definition of plain CDS, considering two
additional security properties of privacy and obliviousness that respec-
tively capture input and output privacy. We then show that these
extended notions of CDS are useful for designing secure two-party pro-
tocols in the presence of an untrusted third party.

We complement the above with a sequence of new CDS constructions
for a class of predicates of interest, including private set-intersection
(PSI) and set-union cardinality, comparison, range predicate, and more.
Based on these constructions we design new non-interactive constant-rate
protocols for comparing two strings based on symmetric-key cryptogra-
phy, and without requiring bit-decomposition. We additionally design
new protocols for PSI cardinality and PSI based on recent work by Le,
Ranellucci, and Gordon (CCS 2019) with similar advantages.

1 Introduction

In this paper, we explore the connection between two-party conditional disclo-
sure of secrets (CDS) [11] and verifiable computation. CDS is a generalization
of secret-sharing, where two parties (denoted by Alice and Bob), that share
a uniform string r, wish to disclose a secret s to a third party (denoted by
Claire) if and only if their respective inputs x1 and x2 satisfy some predicate
f : {0, 1}n×{0, 1}n → {0, 1} (we denote such inputs as 1-inputs). CDS is defined
by two encoding algorithms (Enc1,Enc2) for Alice and Bob to respectively com-
pute their messages to Claire. Based on these encodings, and the knowledge of x1

and x2, Claire runs a decoding algorithm Dec to extract s. Note that CDS does

C. Hazay—This work is supported by the BIU Center for Research in Applied Cryp-
tography and Cyber Security in conjunction with the Israel National Cyber Bureau in
the Prime Minister’s Office, and by ISF grant No. 1316/18.

c© Springer Nature Switzerland AG 2020
C. Galdi and V. Kolesnikov (Eds.): SCN 2020, LNCS 12238, pp. 150–171, 2020.
https://doi.org/10.1007/978-3-030-57990-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57990-6_8&domain=pdf
http://orcid.org/0000-0002-8951-5099
https://doi.org/10.1007/978-3-030-57990-6_8

Multi-clients Verifiable Computation via Conditional Disclosure of Secrets 151

not maintain the privacy of Alice and Bob’s inputs. In the past two decades, dif-
ferent aspects of CDS have been studied extensively exploring its communication
complexity, the complexity of the decoder, and its expressibility; see some recent
examples [1–3,17]. Concerning the latter aspect, note that garbled circuits [22]
imply CDS for any polynomial function assuming only one-way functions and
requiring communication complexity O(κ · |C|) where C is the computed circuit
and κ is the security parameter.

Verifiable Computation from CDS. In this work, we explore the observation
that for CDS with sufficiently long secrets, the secret can serve as proof for the
fact that the output of f equals 1. Namely, at the heart of every CDS construction
lies an integrity mechanism that prevents Claire from learning s for 0-inputs.
This observation is not new and previously made in the context of attribute-
based encryption [20], a public key object analogue to CDS. We exploit this
mechanism to demonstrate the usefulness of CDS for designing non-interactive
two-clients verifiable protocols in the presence of untrusted server, for a class of
predicates that admit CDS. Informally, given two CDS schemes for f and f̄ , the
clients forward the server the encoding of their inputs within these CDS. The
server then replies with the decoded messages. From the secrecy property of the
underlying CDS, the server should not extract both secrets.

In more detail, our basic two-client model includes three parties; two clients
C0 and C1 that have an input and access to shared randomness, and a third
untrusted server S. The clients wish to delegate the computation of some predi-
cate f to an external unreliable server while performing less work than mutually
evaluating the function. Note that this modeling differs from classic verifiable
computation [9] by distributing the input between two clients. In this work, we
prove that CDS gives rise to verifiable computation on distributed data. The
security of our constructions holds in the presence of a malicious server (that
follows an arbitrary attack strategy) and the semi-honest corruption of a single
client (or any proper subset of the clients in the general setting). Some of our
constructions also tolerate the malicious behaviour of the clients.

Prior work in the multi-client setting [6,13] showed generic solutions with a
preprocessing phase whose running time depends on the complexity of f , which
therefore must be amortized away. On the other hand, we only focus on a concrete
set of predicates of interest where our solutions are not involved with a prepro-
cessing phase. Moreover, the complexity of the input encoding algorithms of our
underlying CDS schemes is strictly smaller than applying a multi-party protocol
between the clients; we elaborate on this point more concretely below. We con-
sider two flavours of privacy: input privacy where the server may only conclude
the outcome of the predicate, and full privacy in the spirit of the simulation-
based definition of secure computation, where only the clients learn the outcome
of the predicate.

Applying the CDS abstraction for verifiable computation enjoys some quali-
tative advantages:

1. Round complexity. First, CDS based constructions are non-interactive
and require only a single message in each direction. Reducing the round

152 R. Bhadauria and C. Hazay

complexity of secure protocols is an important goal, where non-interactive
protocols are particularly attractive. Here the clients can post the “encoding”
of their inputs and go offline, allowing the server to evaluate the function on
the inputs and sending a single message to the client.

2. Hardness assumptions. CDS is an information-theoretic object that can
potentially be realized only based on one-way functions or even without any
assumption. In this work, we additionally require using Σ-protocols.

3. Constant rate communication complexity. The encoding messages
sent from the clients imply constant upload rate communication complexity.1

As demonstrated below, this complexity is much smaller than the complexity
achieved in prior work for our particular class of predicates.

4. Simplicity. The verification procedure of our schemes is as simple as check-
ing equality between the untrusted party’s response and the secret s.

5. Batching. The verification algorithm can be easily batched, taking the lin-
ear combination of many secrets and amortizing away the communication
complexity of the server. This batching approach implies (amortized) down-
load rate-1 which is much smaller than the solutions from [6,13] that incur
download rate of κ.

6. Point-to-point channels. Our protocols do not employ any broadcast
channels and only rely on point-to-point channels. This also means that Claire
can launch a selective abort attack.

7. Transparent setup and no preprocessing. Finally, recall that CDS
schemes require common randomness between Alice and Bob. This can be
viewed as mutual access to a common random string which is simpler to
realize than employing a preprocessing phase that requires communication
and has a secret trapdoor.

2PC with an Untrusted Helper from CDS. The second model where CDS
is useful for is a two-party computation with an untrusted “helper”. Namely, the
classic notion of two-party computation is extended to the three-party setting,
where the third party S performs the computation on the inputs of the other
two parties. Security in this model holds as long as at most one of the parties
is corrupted. This model has been recently considered in [16] with the aim of
designing more practical set operations protocols. In order to use a simulation
based definition for our protocols, we extend the security definition of plain CDS
to support two additional features: privacy and obliviousness. Loosely speaking,
privacy implies that only the output of the predicate may be leaked to Claire
whereas obliviousness implies that nothing is leaked. This forms a hierarchy
of definitions and captures additional scenarios that require both privacy and
integrity.

New CDS Constructions. We design new (private/oblivious) CDS construc-
tions for several important predicates. We then establish our verifiable schemes
based on these CDS constructions.
1 We measure the upload rate as the ratio between the size of the encoded messages

and the inputs. We further define the download rate by the ratio between the size
of f(x1, x2) and s.

Multi-clients Verifiable Computation via Conditional Disclosure of Secrets 153

Equality/Inequality. We begin with CDS schemes for verifying equality and
inequality of sufficiently long strings without requiring bit-decomposition. Pro-
tocols for securely comparing private values are fundamental building blocks of
secure computation with numerous applications, initiated by the famous million-
aires problem by Yao [22]. Nevertheless, designing concretely efficient protocols
has remained a challenge. The state of the art concrete (amortized) analysis for
semi-honest secure comparison [7] requires O(κ�/ log κ) bits in the setup phase
and O(�) bits in the online phase, based on oblivious transfer. Another recent
work [4] for equality based on function secret sharing requires λ� bits in the
setup phase and � bits in the online phase. Currently, this work implies the best
online communication in the semi-honest setting. Using somewhat homomorphic
encryption scheme, the (amortized) bit complexity of [10] is Õ(� + κ). Both [10]
and [7] require non-constant round complexity.

In contrast, our non-interactive protocols achieve small upload rate (e.g., 10)
for moderately long strings (e.g., polylogarithmic is κ), and rely on one-way
functions and Σ-protocols.2 Compared with [4], our scheme induces a higher
upload rate in the online phase. Nevertheless, we require a simpler and more
efficient setup, as our setup only requires a uniform random string while [4]
requires correlated randomness (in the form of function secret sharing keys for
computing a distributed point function), as well as more bits in the setup phase.

We introduce two CDS schemes for equality and inequality. One first scheme
uses one-way functions (or pseudorandom functions (PRFs)) while the other
scheme uses Σ-protocols as well. Specifically, we leverage the special soundness
property of the Σ-protocol, which implies an algorithm that extracts the witness
given two transcripts with the same first message and distinct challenges. In
the semi-honest setting (where the clients are semi-honest and Claire may be
malicious), we require one way functions and Σ-protocols. Specifically, we use one
way functions to encode the input, and a Σ-protocol which is easily sampleable
with respect to witness. This means that given a witness ω, we can generate a
statement x. Moving to the malicious setting requires to replace the PRFs with
PRPs as well as to utilize Σ-protocols that have an extractability algorithm
for extracting the verifier’s randomness given the transcript, witness, statement
and prover’s randomness. For instance, Schnorr’s protocol [21] satisfies both of
these properties. The verification algorithm provided by the Σ-protocol is also
essential in allowing it to be maliciously secure. We note that this mechanism
can also be extended to the multi-party case where we would use Σ-protocol
with an extended special soundness property. We compare our construction to
prior work in Table 1. Finally, we note that our protocols can be extended to a
zero test with some tweaks.

2 Loosely speaking, a Σ-protocol is a 3-round public-coin interactive proof for an NP
relation, for which there exists an extractor that extracts the witness upon rewinding
the prover. We require an additional transcript verifiability property that is leveraged
for achieving correctness against malicious input encoding of Alice and Bob, going
beyond semi-honest security.

154 R. Bhadauria and C. Hazay

PSI cardinality. Private set-intersection (PSI) is an important functionality
that gained much attention from the cryptographic community due to its broad
applicability. It is defined by computing the intersection of two (or more) sets
X1 and X2. In this work, we show that a non-interactive variant of a recent
set-intersection protocol by Le et al. [16] implies CDS for the cardinality of
set-intersection based on one-way functions. More concretely, we show that (a
variant of one of) their protocols induces two CDS constructions for verify-
ing upper and lower bounds on the intersection size, yielding the exact size of
the set-intersection with rate 3 communication complexity. We note that these
CDS techniques can be easily extended to address set-union cardinality, set-
membership and small domain range predicates. Using the CDS for verifying
upper bounds of PSI intersection as well as using our CDS for equality, we can
construct a two-party PSI with untrusted server and constant rate (4 in the
passive setting and 8 in the active setting). As above, we can extend the security
of our schemes to the malicious setting. Finally, we note that in order to use our
CDS schemes for verifiable computation, the soundness error probability 1/|F|
must be negligible. Therefore, |F| must be at least of size polylogarithmic in κ.

Table 1. A comparison of our equality protocol with prior work where λ is the security
parameter, the inputs are of size � bits and OT is oblivious transfer.

Construction Setup Round
com-
plexity

Online
comm.

Offline
comm.

Hardness
assump.

Security

[7] Correlateda ≥ 3 O(λ�) 3� + o(�) OWF +OT Passive

[18] Uniform 3 O(λ�) O(λ�) OWF+OT Active

[4] Correlatedb 2 � λ� OWF Passive

Fig. 7 Uniform 2 3� 6� OWF Passive

Fig. 7 Uniform 2 10� 7� OWF+Σ-
protocolc

Active

a This work uses two types of correlated randomness that are generated using OT
for XOR and AND shares.
b This correlation requires keys for computing distributed point functions.
c We concretely rely here on the hardness of discrete logarithm in groups.

Prior work on verifiable set operations for the single client setting [5,19]
relied on stronger hardness assumptions such as q-string Diffie-Hellman and
extractable collision-resistant hash functions, but also achieved stronger prop-
erties such as public verifiability and dynamically changing sets. [8] was the
first work which introduced the concept of server-aided two-party PSI where the
server is used as a helper party to resolve a dispute under stringer assumptions.
While the communication complexity is linear and the number of rounds is con-
stant, the rate is higher (at least 16) and the number of rounds is at least 7

Multi-clients Verifiable Computation via Conditional Disclosure of Secrets 155

(excluding the extra rounds occurred due to zero-knowledge proofs). In a fol-
lowup work [15], Kamara et al. constructed a 3-round server-aided two-party
PSI with a malicious server where the communication complexity is inflated by
some statistical parameter γ.

A recent work on threshold PSI [12] shows semi-honest protocols for com-
paring the union size of two sets when excluded with the intersection against
some threshold parameter t. These protocols introduce communication complex-
ity Õ(t) (resp. O(t2) and O(t3)) assuming fully homomorphic encryption (resp.
additively homomorphic encryption and oblivious transfer). It is an interesting
problem to extend these techniques to the non-interactive setting (where the
second solution is not constant round).

2 Preliminaries

2.1 Σ-Protocols

A Σ-protocol is a 3-round primitive that implies zero-knowledge for honest ver-
ifiers with special soundness. In this work, we require the following additional
properties:

– Efficiently sampleable. We require from the underlying Σ-protocol to be
efficiently sampleable with respect to the witness. Formally, there exists an
efficient algorithm x ← Gen(ω, 1κ) such that (x, ω) ∈ R.

– Randomness extraction. We require from the underlying Σ-protocol to
have an extractability property where the extractor extracts the prover’s
randomness given the protocol’s transcript, witness and statement of the
Σ-protocol. More formally, there exist a PPT algorithm RandExt such that
pr = RandExt(x, ω, T) which can extract the randomness rp associated with
the prover’s algorithm in Σ-protocol, (x, ω) ∈ R and T correspond to the
transcript of Σ-protocol.

In this work, we employ Schnorr’s Protocol [21] that satisfies these two proper-
ties. We also use the verification algorithm of the verifier to determine whether
a transcript is accepting (or valid).

2.2 Conditional Disclosure of Secrets

We begin with the basic definition of CDS as given in [11]. We require compu-
tational privacy and thus implicitly assume that all our algorithms receive the
security parameter κ as part of their input. Furthermore, some of our construc-
tions will evaluate a predicate over a field F rather than on bit strings. We note
that the input sizes will always be polynomially related to κ.

Definition 1 (CDS). Let f : {0, 1}n ×{0, 1}n → {0, 1} be a predicate. Let Enc1
and Enc2 be two PPT encoding algorithms and Dec be deterministic decoding
algorithm. Let s ∈ {0, 1}κ be a secret and r joint randomness drawn from the
uniform distribution. Then the following conditions must hold:

156 R. Bhadauria and C. Hazay

– Correctness: For every input (x1, x2) which satisfies the condition
f(x1, x2) = 1 and a secret s, Pr[Dec(x1, x2,Enc1(x1, s, r),Enc2(x2, s, r)) �=
s] ≤ negl(κ)

– Secrecy: There exists a PPT simulator Sim such that for every input (x1, x2)
which satisfies the condition f(x1, x2) = 0 and a secret s ∈ {0, 1}κ,

{
Sim(x1, x2)

}
x1,x2∈{0,1}n

c≈ {
Enc1(x1, s, r),Enc2(x2, s, r)

}
x1,x2∈{0,1}n

2.3 Multi-clients Verifiable Computation

In this model, a set of clients outsource the computation of a function f over their
distributed inputs to an untrusted server. We are interested in a non-interactive
multi-client verifiable computation where the clients do not interact with each
other after the setup phase (which is used to generate common randomness r
and is independent of the function and the client’s inputs). Note that this phase
can be realized either via a one-time coin-tossing protocol or by accessing a
public source of randomness, such as a random oracle applied on a fixed value.
As in [13], we consider two security flavours for this setting, where the clients
are either semi-honest or malicious whereas the servers are always malicious. We
will continue with the syntax.

Syntax. An t-party multi-clients verifiable computation (MVC) scheme with
semi-honest clients consists of the following algorithms:

– r ← Setup: All clients receive a uniform string r.
– (x̃j , τj) ← Input(xj , r, 1κ). Each client Cj will run this input encoding algo-

rithm on its input xj and randomness r. The output of this algorithm is an
encoded input x̃j , which will be sent to the server, and the input decoding
secret τj which will be kept private by the client.

– (α1, . . . , αt) ← Compute(x̃1, . . . x̃t, f). Given the encoded inputs {x̃j}j and
the function description, this computation algorithm computes an encoded
output αj .

– y ∪ {⊥} ← Verify(τj , αj). Each client Cj runs this verification algorithm with
the decoding secret τj , and the encoded output αj . The algorithm outputs
either a value y (that is supposed to be f(x1, . . . , xt)), or ⊥ indicating that
the server attempted to cheat.

Note that the setup can also be made reusable using a pseudorandom func-
tion. In contrast, prior work requires a more complicated setup phase. Efficiency
wise, we would like the time it takes for encoding the input and for verifying the
output of the server to be less than computing f . Moreover, correctness can be
defined naturally by requiring that the outcome of the computation algorithm
passes the verification algorithm with overwhelming probability when correctly
generated. We continue with a soundness definition.

Multi-clients Verifiable Computation via Conditional Disclosure of Secrets 157

Definition 2 (Soundness of MVC). For a multi-client verifiable computation
scheme MVC, consider the following experiment with respect to an adversarial
server A:

Pr

[
y �= f(x1, . . . , xt)

∣∣∣∣∣ for all j ∈ [t], r ← Setup, (x̃j , τj) ← Input(xj , r, 1
κ),

(α1, . . . , αt) ← A(x̃1, . . . x̃t, f) , y ← Verify(τj , αj)

]

≤ negl(κ)

Security Against Malicious Clients. The above definition holds for semi-
honest clients (that follow the protocol faithfully) as long as they do not collude
with the server. A stronger notion considers security in the presence of malicious
clients (that follow an arbitrary attack strategy). In the two-client setting, our
constructions are secure in the presence of a single malicious corruption of one
of the clients.

Achieving Privacy. Our definition does not guarantee input or output privacy.
These properties will be derived directly from the underlying CDS construction.
Namely, if the CDS will be private or oblivious then the MVC will respectively
maintain input or output privacy. For the constructions that achieve both privacy
and correctness, we will use a simulation-based definition to prove security.

3 New Variants of CDS

In this section, we define two new variants of CDS: - private CDS and oblivious
CDS. While private CDS hides the input of the clients achieving input privacy,
oblivious CDS achieves input privacy as well as output privacy.

We extend Definition 1 by not giving the inputs x1 and x2 to both the decoder
and the simulator Sim. This implies that Claire does not gain any information
about x1 and x2 from the encoded messages of Alice and Bob, but may still
conclude the outcome of the predicate. This definition will be useful for achieving
input privacy in our multi-client verifiable computation constructions.

Definition 3 (Private CDS). Let f : {0, 1}n × {0, 1}n → {0, 1} be a predi-
cate. Let Enc1 and Enc2 be PPT encoding algorithms and Dec be deterministic
decoding algorithm. Let s ∈ {0, 1}κ be a secret and r joint randomness drawn
from the uniform distribution. Then the following conditions must hold:

– Correctness: For every input (x1, x2) which satisfies the condition f(x1, x2)
= 1 and a secret s, Pr[Dec(Enc1(x1, s, r),Enc2(x2, s, r)) �= s] ≤ negl(κ).

– Privacy: There exists a PPT simulator Sim such that for every input (x1, x2)
and a secret s,

{
Sim(1|x1|, 1|x2|, y)

}
x1,x2∈{0,1}n

c≈ {
Enc1(x1, s, r),Enc2(x2, s, r)

}
x1,x2∈{0,1}n

{
Sim(1|x1|, 1|x2|, y, s)

}
x1,x2∈{0,1}n

c≈ {
Enc1(x1, s, r),Enc2(x2, s, r)

}
x1,x2∈{0,1}n

where the first equation holds for y = 0 and the second equation holds for
y = 1, and y = f(x1, x2).

158 R. Bhadauria and C. Hazay

Finally, we consider a simulation-based definition, where we require that
Claire cannot conclude any information about the secret. This definition is for-
malized by requiring that the encoded messages can be simulated without the
knowledge of both the inputs nor the output (namely, the secret).

Definition 4 (Oblivious CDS). Let f : {0, 1}n × {0, 1}n → {0, 1} be a predi-
cate. Let Enc1 and Enc2 be two PPT encoding algorithms and Dec be determin-
istic decoding algorithm. Let s ∈ {0, 1}κ be a secret and r a joint randomness
drawn from the uniform distribution. Then the following conditions must hold:

– Correctness: For every input (x1, x2) which satisfies the condition f(x1, x2)
= 1 and a secret s, Pr[Dec(Enc1(x1, s, r),Enc2(x2, s, r)) �= s] ≤ negl(κ).

– Indistinguishability: For every PPT active adversary A in real model cor-
rupting Claire, there exists a PPT algorithm Sim in ideal world such that:

{
REALf,A(z)(x1, x2, s, n)}x1,x2,s,n

c≈ {
IDEALf,Sim(z)(x1, x2, s, n)}x1,x2,s,n

where f is the computed predicate and x1 and x2 are the inputs of Alice and
Bob, respectively.

4 New CDS Constructions

In what follows, we discuss our CDS constructions for a class of predicates. In
Sect. 4.1 we present private and oblivious CDS schemes for the equality predicate.
In Sect. 4.2 we present two private CDS schemes for the inequality predicate. In
Sect. 4.3 we present a CDS scheme for verifying lower and upper bounds of PSI
cardinality. As a general note, we remark that our analysis relies on the fact that
the secret is unpredictable (or uniformly random). This is sufficient for our appli-
cations, as the parties choose the secret by themselves. For applications where
the parties have no control in choosing the secret, they can run our protocols
with Fk(s), where F is a PRF.

4.1 CDS for Equality

In this section, we present two CDS constructions for verifying the equality of two
strings. Our first construction, presented in Fig. 1, shows a simple oblivious CDS
scheme with information-theoretic security. Whereas our second CDS scheme,
presented in Fig. 2, shows a private CDS scheme assuming one-way functions.
The latter construction uses Σ-protocols as an underlying building block and can
be extended to ensure the correctness of the encoding computations of Alice and
Bob by relying on the verifiability property of the Σ-protocol, thus enhancing
the security of the scheme.

The high level idea of our first construction is by generating two linearly
independent equations such that extracting the secret is possible only if the
inputs are equal. Due to the perfect secrecy nature of the two equations, the

Multi-clients Verifiable Computation via Conditional Disclosure of Secrets 159

scheme preserves obliviousness, as Claire cannot detect whether she learned the
correct secret or not. Specifically, our CDS achieves information-theoretic secu-
rity and is computationally lightweight. This idea is similar to the multi-party
CDS construction from [14].

CDSEQ1

– Inputs. The CDS protocol for equality is invoked by the interface
CDSEQ1(x1, x2, s, (r1, r2)) where

– x1 and x2 is input of Alice and Bob respectively over a field F.
– r1 and r2 are the shared randomness.
– s ∈ F is a secret value which is shared between Alice and Bob.

The computed function is f(x1, x2) =

{
1 if x1 = x2

0 otherwise

– Output. Claire outputs s if f(x1, x2) = 1 and an independent string s′ �= s otherwise.

– Algorithms.
– Enc1(x1, s, (r1, r2)) = r1 · x1 + r2 + s.
– Enc2(x2, s, (r1, r2)) = r1 · x2 + r2.
– Dec(x̃1, x̃2) = x̃1 − x̃2.

Fig. 1. Oblivious CDS for equality.

Theorem 4.1. Protocol CDSEQ1 from Fig. 1 is an oblivious CDS (cf. Defini-
tion 4) for the equality predicate.

Our second CDS construction for the equality predicate uses Σ-protocols as
a platform to compare between two strings in a private manner. Namely, we
leverage the (PRF evaluations of the) parties’ inputs as the randomness sources
to compute the prover’s first message of the Σ-protocol and fix the secret as the
witness for the corresponding relation. Then, only if equality holds we ensure
that Claire can extract the secret due to the special soundness property of the
protocol. Our detailed construction is given in Fig. 2. Note that this scheme
achieves private CDS as Claire cannot conclude any information about the par-
ties’ inputs due to the privacy of the PRF. Nevertheless, it can conclude the
outcome of the predicate.

Theorem 4.2. Assume the existence of pseudorandom functions and a Σ-
protocol for some predefined NP relation R, then protocol CDSEQ2 from Fig. 2
is a private CDS (cf. Definition 3) for the equality predicate.

160 R. Bhadauria and C. Hazay

CDSEQ2

– Inputs. The CDS protocol for equality is invoked by the interface
CDSEQ2(x1, x2, s, (r1, r2, rPRF)) where

– x1 and x2 are the respective inputs of Alice and Bob from {0, 1}κ.
– r1, r2 and rPRF are the shared randomness.
– s ∈ {0, 1}κ is a secret value which is shared between Alice and Bob.

The computed function is f(x1, x2) =

{
1 if x1 = x2

0 otherwise
– Notations. We require that the fractions of r1 and r2 from the joint randomness should

not be equal (namely, r1 �= r2). This is necessary for the extractability of secret s. The
protocol is parameterized by an NP relation (x, ω) ∈ R and a Σ-protocol with an extrac-
tor E , such that s serves as the witness and x is the corresponding public statement (we
assume one can compute x from ω). The Σ-protocol transcript is generated by emulating
P and V yielding (a, e, z) = 〈P(x, ω; r), V(x)〉 where r is the prover’s randomness.

– Output. Claire outputs s if f(x1, x2) = 1 and ⊥ otherwise.
– Algorithms.

• Enc1(x1, s, (r1, r2, rPRF)) :
– A public statement x is generated as explained above using ω = s for the Σ-

protocol.
– A PRF key k is generated using rPRF.
– The input x1 is encoded as x1 = Fk(x1).
– The output is generated as

x̃1 = (x, (a1, e1, z1)) = (x, 〈P(x, ω;x1), V(x, r1)〉).
• Enc2(x2, s, (r1, r2, rPRF)) :

– A public statement x is generated as explained above using ω = s for the Σ-
protocol.

– A PRF key k is generated using rPRF.
– The input x2 is encoded as x2 = Fk(x2).
– The output is generated as

x̃2 = (x, (a2, e2, z2)) = (x, 〈P(x, ω;x2), V(x, r2)〉).
• Dec(x̃1, x̃2) :

– The message x̃1 is broken down into (x, (a1, e1, z1)) and the message x̃2 is
broken down into (x, (a2, e2, z2)).

– s′ =

{
E(x̃1, x̃2) if a1 = a2

⊥ otherwise

Fig. 2. Private CDS for equality.

The correctness property of Protocol CDSEQ2 relies on the special soundness
property. The messages sent by Alice and Bob to Claire consist of a statement
of Σ-protocol along with the transcripts of Σ-protocol. In the case of the two

Multi-clients Verifiable Computation via Conditional Disclosure of Secrets 161

input values of Alice and Bob are equal, this will result in the first message of the
transcript being same. As we have two different transcripts with the same first
message, the special soundness property of Σ-protocol always allows us to extract
the secret s. The privacy property of the inputs in case of 0-output relies on the
special honest verifier zero-knowledge which allows the Sim to generate valid
transcripts of a given statement x based on inputting x and the random value e
which acts as the second message in Σ protocol. We show that two transcripts
generated through the above algorithm is indistinguishable to the message sent
in the real protocol. The privacy property of the inputs in the case of 1-output
is based on indistinguishability of pseudorandom functions from truly random
functions.

Communication Complexity. Note that both our protocols achieve a constant
upload rate. Specifically, the rate of our oblivious CDS (Fig. 1) is 1 whereas the
rate of our private CDS (Fig. 2) is 5. These are the first protocols to achieve this
rate for comparison based on symmetric-key assumptions and Σ-protocols.

Achieving Malicious Security. We further note that our private protocol can
achieve stronger security for the clients by relying on the verifiability property
of the Σ-protocol for NP statements with a single witness. In particular, before
extracting the secret, Claire can check whether the transcripts are generated
correctly and that e1 �= e2. That would imply that the prover knows some
secret, but not necessarily that it has used the correct secret. However, from the
fact that the parties also send the statements as part of their messages, Claire
can easily test whether the same secret was used by both parties and abort
otherwise. This implies correctness with respect to the encoding algorithms. To
prove malicious security, we would also need to extract the parties’ inputs using
the randomness extraction property specified in Definition 2.1.

4.2 CDS for Inequality

In this section, we present two CDS constructions for inequality for checking
whether two strings are identical. Both constructions, presented in Figs. 3 and 4,
achieve private CDS assuming one-way functions. The latter construction uses
Σ-protocols as an underlying building block and can be extended to ensure
the correctness of the encoding computations of the parties by relying on the
verifiability property of the Σ-protocol, similar to the argument for the equality
CDS scheme from the prior section.

Our first construction for the inequality predicate uses a 1-degree polynomial
as the basis of the construction. The parties first apply a PRF on their inputs,
and then utilize it to generate an evaluation of a polynomial that is embedded
with the secret as the constant coefficient. Then if the inequality condition holds,
algorithm Dec will be given two different evaluations of a 1-degree polynomial
and can interpolate the polynomial, learning the secret. If inequality does not

162 R. Bhadauria and C. Hazay

CDSINEQ1

– Inputs. The CDS protocol for equality is invoked by the interface
CDSINEQ1(x1, x2, s, (r, rPRF)) where:

• x1 and x2 are the respective inputs of Alice and Bob over a field F.
• r and rPRF are the shared randomness.
• s ∈ F is a secret value which is shared between Alice and Bob.

The computed functions if f(x1, x2) =

{
1 if x1 �= x2

0 otherwise

– Output. Claire outputs s if f(x1, x2) = 1 and s′ �= s otherwise.

– Algorithms.
• Enc1(x1, s, (r1, r2)) :

– A PRF key k is generated using rPRF.
– The input x1 is encoded as x1 = Fk(x1).
– A polynomial is constructed as p(x) = r · x + s.
– The output is generated as x̃1 = (x1, p(x1)).

• Enc2(x2, s, (r1, r2)) :
– A PRF key k is generated using rPRF.
– The input x2 is encoded as x2 = Fk(x2).
– A polynomial is constructed as p(x) = r · x + s.
– The output is generated as x̃2 = (x2, p(x2)).

• Dec(x̃1, x̃2) :
– The secret is generated by interpolating the points x̃1 and x̃2 to retrieve the

polynomial p′(·) and output s′ = p′(0). If x̃1 = x̃2, then output s′ = ⊥

Fig. 3. First private CDS for inequality.

hold then there will be only one evaluation of the polynomial, resulting in Dec
not being able to restore the polynomial and the secret.

Theorem 4.3. Assume the existence of pseudorandom functions then protocol
CDSINEQ1 from Fig. 3 is a private CDS (cf. Definition 3) for the inequality pred-
icate.

Our second private CDS construction from Fig. 4 for the inequality predicate
uses Σ-protocols as a platform to compare between two strings in a private
manner. Namely, we leverage the (PRF evaluations of the) parties’ inputs as
the public randomness of the verifier’s algorithm to produce different challenges,
while using the same randomness for the prover’s algorithm to ensure that its
first message is identical for both parties. The secret is fixed as the witness as
before. Then, only if inequality holds Claire can extract the secret due to the
special soundness of the protocol.

As before, note that this scheme achieves private CDS due to the privacy of
the PRF.

Multi-clients Verifiable Computation via Conditional Disclosure of Secrets 163

CDSINEQ2

– Input. The CDS protocol for equality is invoked by the interface
CDSINEQ2(x1, x2, s, (r, rPRF)) where:

• x1 and x2 are the respective inputs of Alice and Bob from {0, 1}κ.
• r and rPRF are the shared randomness.
• s ∈ {0, 1}κ is a secret value which is shared between Alice and Bob.

The computed function is f(x1, x2) =

{
1 if x1 �= x2

0 otherwise

– Notations. We require that the fractions of r1 and r2 from the joint randomness should
not be equal (namely, r1 �= r2). This is necessary for the extractability of secret s. The
protocol is parameterized by an NP relation (x, ω) ∈ R and a Σ-protocol with an
extractor E , such that s serves as the witness and x is the corresponding public statement
(we assume one can compute x from ω). The Σ-protocol transcript is generated by
emulating P and V yielding (a, e, z) = 〈P(x, ω; r), V(x)〉 where r is the prover’s
randomness.

– Output. Claire outputs s if f(x1, x2) = 1 and ⊥ otherwise.

– Algorithms.
• Enc1(x1, s, (r, rPRF)) :

– A public statement x is generated as explained above using ω = s for the Σ-
protocol.

– A PRF key k is generated using rPRF.
– The input x1 is encoded as x1 = Fk(x1).
– The output is generated as

x̃1 = (x, (a1, e1, z1)) = (x, 〈P(x, ω; r), V(x;x1)〉).
• Enc2(x2, s, (r1, r2, rPRF)) :

– A public statement x is generated as explained above using ω = s for the Σ-
protocol.

– A PRF key k is generated using rPRF.
– The input x2 is encoded as x2 = Fk(x2).
– The output is generated as

x̃2 = (x, (a2, e2, z2)) = (x, 〈P(x, ω; r), V(x;x2)〉).
• Dec(x̃1, x̃2) :

– The message x̃1 is broken down into (x, (a1, e1, z1)) and the message x̃2 is
broken down into (x, (a2, e2, z2)).

– s′ =

{
E(x̃1, x̃2) if e1 �= e2

⊥ otherwise

Fig. 4. Second private CDS for inequality.

164 R. Bhadauria and C. Hazay

Theorem 4.4. Assume the existence of pseudorandom functions and a Σ-
protocol for some predefined NP relation R, then protocol CDSINEQ2 from Fig. 4
is a private CDS (cf. Definition 3) for the inequality predicate.

The proof idea of Protocol CDSINEQ2 is almost similar to that of Protocol
CDSEQ2 with small modifications. In the equality protocol (CDSEQ2), the input
is encoded and utilized as the randomness of P algorithm in Σ-protocol. The
latter protocol (CDSINEQ2), the input is encoded and utilized as the randomness
of V algorithm in Σ-protocol.

Note that the communication rate of our protocols is between 2 and 5 and
that the security for Alice and Bob can be enhanced based on the verification
procedure of the Σ-protocol (as discussed in the previous section) as well as
extract the input of corrupt parties in malicious case by extracting the verifier’s
randomness (using Definition 2.1).

4.3 CDS for Bounds on PSI Cardinality

In this section, we present two CDS constructions for verifying the bound of PSI
cardinality (namely, the intersection size). Figure 5 presents a CDS construction
to verify a lower bound on the PSI cardinality while Fig. 6 presents a CDS
construction to verify an upper bound on this cardinality. Our protocols leak
the PSI cardinality to Claire. Technically, both constructions rely on polynomial
evaluations as the base of the construction and utilize PRF for the privacy of
parties’ input. We remark that our protocols follow due simple modifications
of one of the PSI protocols from [16]. Our main observation here shows that
the techniques used in [16] induce CDS constructions on PSI (lower and upper
bounds) cardinality.

Our first construction is a CDS scheme that verifies whether the PSI cardi-
nality is lower bounded by some value t, that is hardcoded within the scheme.
Namely, it utilizes the property that if t values are in common for both sets, then
Claire should be able to extract the secret by recovering the polynomial p(·) of
a degree t − 1. In essence, the parties utilize an additive secret sharing on their
polynomial evaluations to enable that. Claire can see which encoded elements
are in common and retrieve their polynomial evaluations to extract the secret s.
We next prove the following theorem.

Theorem 4.5. Assume the existence of pseudorandom functions, then proto-
col CDS≥t from Fig. 5 is a private CDS (cf. Definition 3) for the greater than
predicate.

The second construction in Fig. 6 is a CDS scheme to verify if the PSI cardi-
nality is of size at most t. It utilizes the property that if t values are in common
for both sets, then the union X1 ∪ X2 will include n + m − t items. Therefore,
Alice and Bob encode their inputs using a polynomial of degree n + m − t − 1,
embedding the secret s as the constant coefficient. As a result, given enough
points, Claire should be able to extract the secret by recovering the polynomial
p(·) of a degree n + m − t − 1.

Multi-clients Verifiable Computation via Conditional Disclosure of Secrets 165

CDS≥t

– Inputs. The CDS protocol for a lower bound of PSI cardinality is parameterized by t and
invoked by the interface CDS≥t(X1, X2, s, (rpoly, rPRF1 , rPRF2)) where:

• X1 and X2 are the inputs of Alice and Bob over F of respective sizes n and m.
• rpoly,rPRF1 and rPRF2 are the shared randomness.
• s ∈ F is a secret value which is shared between Alice and Bob.

The computed function is f(X1, X2) =

{
1 if |X1 ∩ X2| ≥ t

0 otherwise

– Output. Claire outputs s if f(X1, X2) = 1 and ⊥ or s′ �= s otherwise.

– Algorithms.
• Enc1(X1, s, (rpoly, rPRF1 , rPRF2)) :

– Two PRF keys k1 and k2 are generated using rPRF1 and rPRF2 , respectively.
– A polynomial p(·) of degree t − 1 is picked at random based on randomness

rpoly and s as the constant coefficient of p(·) (namely, p(0) = s).
– The input X1 is encoded as X1 = {Fk1(x1) | ∀x1 ∈ X1}.
– The output is generated as X̃1 = {(x1, p(x1) − Fk2(x1)) | x1 ∈ X1}.

• Enc2(X2, s, (rpoly, rPRF1 , rPRF2)) :
– Two PRF keys k1 and k2 are generated using rPRF1 and rPRF2 , respectively.
– A polynomial p(·) of degree t − 1 is generated with randomness rpoly and s as

the constant coefficient of s.
– The input X2 is encoded as X2 = {Fk1(x2) | ∀x2 ∈ X2}.
– The output is generated as X̃2 = {(x2, Fk2(x2)) | x2 ∈ X2}.

• Dec(X̃1, X̃2) :
– A set X̃ = {(a, b + c) | (a, b) ∈ X̃1 AND (a, c) ∈ X̃2} is defined.
– If

∣∣∣X̃∣∣∣ ≥ t then polynomial p′(·) is generated by interpolating the points in X̃ .

– s′ =

{
p′(0) if

∣∣∣X̃∣∣∣ ≥ t

⊥ otherwise

Fig. 5. Private CDS for a lower bound on PSI cardinality.

Theorem 4.6. Assume the existence of pseudorandom functions, then protocol
CDS≤t from Fig. 6 is a private CDS (cf. Definition 3) for the less than predicate.

5 Multi-clients Verifiable Computation via CDS

We next discuss how to use our CDS constructions from the previous section in
order to construct verifiable computation schemes in the presence of two clients
(Alice and Bob) and a server (Claire). We construct such schemes for the equality
predicate (Sect. 5.1), for PSI cardinality (Sect. 5.2) and for PSI (Sect. 5.3). Our
constructions follow the paradigm where we construct verifiable computation
based on CDS schemes for predicate f and f̄ . Namely, security is proven in

166 R. Bhadauria and C. Hazay

CDS≤t

– Inputs. The CDS protocol for an upper bound of PSI cardinality is parameterized by t
and invoked by the interface CDS≤t(X1, X2, s, (rpoly, rPRF)) where:

• X1 and X2 are the inputs of Alice and Bob over F of the respective sizes n and m.
• rpoly and rPRF are the shared randomness.
• s ∈ F is a secret value which is shared between Alice and Bob.

The computed function is f(X1, X2) =

{
1 if |X1 ∩ X2| ≤ t

0 otherwise

– Output. Claire outputs s if f(X1, X2) = 1 and ⊥ or s′ �= s otherwise.

– Algorithms.
• Enc1(X1, s, (rpoly, rPRF)) :

– A PRF key k is generated using rPRF.
– A polynomial p(·) of degree n + m − t − 1 is picked at random based on

randomness rpoly and s as the constant coefficient of p(·) (namely, p(0) = s).
– The input X1 is encoded as X1 = {Fk(x1) | ∀x1 ∈ X1}.
– The output is generated as X̃1 = {(x1, p(x1)) | x1 ∈ X1}.

• Enc2(X2, s, (rpoly, rPRF)) :
– A PRF key k is generated using rPRF.
– A polynomial p(·) of degree n+m − t − 1 is generated with randomness rpoly

and s as the constant coefficient of s (p(0) = s).
– The input X2 is encoded as X2 = {Fk(x2) | ∀x2 ∈ X2}.
– The output is generated as X̃2 = {(x2, p(x2)) | x2 ∈ X2}.

• Dec(X̃1, X̃2) :
– A set is generated X̃ = {(a, b) | (a, b) ∈ X̃1 OR (a, b) ∈ X̃2}.
– If

∣∣∣X̃∣∣∣ ≥ n + m − t then p′(·) is generated by interpolating the points in X̃ .

– s′ =

{
p′(0) if

∣∣∣X̃∣∣∣ ≥ n + m − t

⊥ otherwise

Fig. 6. Private CDS construction for an upper bound on PSI cardinality.

the presence of a malicious server, and either semi-honest or malicious servers.
We assume that the clients have access to a coin-tossing functionality FCOIN

that produces a sufficiently long string for the underlying CDS schemes, chosen
uniformly at random.

5.1 MVC for Equality

We begin with a protocol for equality. Namely, Alice and Bob hold two strings
they want to learn whether they are equal or not. Our protocol relies on the
techniques used for the CDS constructions from Figs. 1 and 3, implying the
following theorem.

Multi-clients Verifiable Computation via Conditional Disclosure of Secrets 167

Theorem 5.1. Assume the existence of pseudorandom functions, then protocol
VCEQ from Fig. 7 is a two-clients verifiable computation for the equality predicate
in the presence of semi-honest clients and malicious server.

We prove that protocol VCEQ is a verifiable computation in the presence of
semi-honest Alice and Bob and malicious Claire. We actually prove that parties’
views can be simulated. The only interesting case is when Claire is corrupted,
since when either Alice or Bob are corrupted, the simulator can send then the
corresponding secret (which is their only incoming message). When Claire is
corrupted, the security follows from the privacy property of CDS for equality
and inequality and so is straight forward.

VCEQ

– Inputs. The VC protocol for equality is invoked by the interface VCEQ1(x1, x2) where
x1 and x2 are respective inputs of Alice and Bob over a field F.

– Setup. (s0, s1, r1, r2, r3, r4, rPRF) ← G

An ideal functionality FCOIN is invoked to generate the shared randomness
(s0, s1, r1, r2, r3, r4, rPRF).

– Protocol.
– Alice, Bob and Claire run CDSINEQ1(x1, x2, s0, (r1, r2, rPRF)) (cf. Figure 3).

Claire sends s′
0 to Alice and Bob as the output of the CDS protocol.

– Alice and Bob run CDSEQ1(x1, x2, s1, (r3, r4)) (cf. Figure 1). Claire sends s′
1 to

Alice and Bob as the output of the CDS protocol. In case s′
0 �= ⊥, Claire sets s′

1 = ⊥
and sends it as the output of CDSEQ1 . This step can run in parallel to the step above
where Claire sends (s′

0, s
′
1) together.

– Upon receiving (s′
0, s

′
1) from Claire, Alice/Bob outputs ’0’ if s′

0 = s0, ’1’ if s′
1 = s1

and outputs “ABORT” otherwise.

Fig. 7. 2-client VC for equality.

Recalling that we have two instantiations of both the equality and inequality
CDS schemes. Then another construction can be defined based on CDSINEQ2 and
CDSEQ2 . The difference between the two protocols is that in the former both
underlying CDS schemes are based on Σ-protocols that we exploit to achieve
malicious security. Specifically, Claire checks whether the transcripts are gener-
ated correctly and tries to extract one of the secrets.

5.2 MVC for PSI Cardinality

We continue with our construction for PSI cardinality. As a warmup, we describe
a slight variant of [16], where the parties first learn from Claire (a possibly
incorrect) size t of the intersection, and then invoke our CDS schemes CDS≥t and

168 R. Bhadauria and C. Hazay

PSI − CA

– Inputs. The VC for PSI cardinality protocol is invoked by the interface
PSI − CA1(X1, X2) where X1 and X2 are the inputs of Alice and Bob of the respective
sizes n and m. Every element in the set is over a field F.

– Setup. (s0, s1, rpoly1 , rpoly2 , rPRP, rPRP2) ← G

An ideal functionality FCOIN is invoked to generate the shared randomness
(s0, s1, rpoly1 , rpoly2 , rPRP, rPRP2).

– Protocol.
– A PRP key k is generated using rPRP.

– Alice and Bob encode their inputs as X1 = {Fk(x1) | x1 ∈ X1} and X2 =
{Fk(x2) | x2 ∈ X2} and send X1 and X2 to Claire respectively.

– Claire sends t = |X1 ∩ X2| to Alice and Bob.

– Alice, Bob and Claire run CDS≥t(X1, X2, s0, (rpoly1 , rPRP, rPRP2)). Claire sends
s′
0 to Alice and Bob as the output of the CDS protocol.

– Alice, Bob and Claire run CDS≤t(X1, X2, s1, (rpoly2 , rPRP@Its)). Claire sends s′
1

to Alice and Bob as the output of the CDS protocol. This step can run in parallel
with the step above where Claire can send (s′

0, s
′
1).

– Upon receiving (s′
0, s

′
1) from Claire, Alice/Bob outputs t if (s′

0, s
′
1) = (s0, s1) and

outputs “ABORT” otherwise.

Fig. 8. 2-round PSI cardinality.

CDS≤t for checking lower and upper bounds. Although we abstract the protocol
differently, the end result is very similar to the protocol from [16], which can
also be proven secure in the presence of malicious corruptions by replacing the
PRF we use for the CDS with a pseudorandom permutation (PRP).

Theorem 5.2. Assume the existence of pseudorandom permutations, then pro-
tocol PSI − CA from Fig. 8 is a 2-round two-clients verifiable computation for
PSI cardinality in the presence of malicious parties.

5.3 MVC for PSI

We conclude this section with a verifiable construction for PSI (given in Fig. 9)
which extends the PSI cardinality from the previous section. In more detail,
our scheme is built on the equality CDS scheme CDSEQ2 from Fig. 2, taking a
different approach than the PSI from [16] (which we build our PSI cardinality
on). In the first phase, Claire provides the list of elements in the intersection
together with an equality proof. This is required to ensure that the only attack
Claire can carry out is excluding elements from the set. In particular, every

Multi-clients Verifiable Computation via Conditional Disclosure of Secrets 169

PSI1

– Inputs. The MVC for PSI protocol is invoked by the interface PSI(X1, X2) where X1

and X2 are the respective inputs of Alice and Bob of sizes n and m.

– Setup. (s, spoly, r1, r2, rpoly, rPRP, rPRP2) ← Setup(1κ).
An ideal functionality FCOIN is invoked to generate the shared randomness
(s, spoly, r1, r2, rpoly, rPRP, rPRP2).

– Protocol.
– A PRP key k and k2 is generated using respective randomness rPRP and rPRP2 .

– Alice and Bob encode their inputs as X1 = {Fk(x1) | x1 ∈ X1} and X2 =
{Fk(x2) | x2 ∈ X2}.

– For each element x1 ∈ X1, Alice generates:
∗ s(x1) = Fk2(s‖x1).

∗ r
(x1)
1 = Fk2(r1‖x1).

∗ r
(x1)
2 = Fk2(r2‖x1).

– For each element x2 ∈ X2, Bob generates:
∗ s(x2) = Fk2(s‖x2).

∗ r
(x2)
1 = Fk2(r1‖x2).

∗ r
(x2)
2 = Fk2(r2‖x2).

– Alice generates

X̃1 = {(x1,CDSEQ2 : Enc1(x1, s
(x1), (r(x1)

1 , r
(x2)
2 , rPRP))) | x1 ∈ X1}.

– Bob generates

X̃2 = {(x2,CDSEQ2 : Enc2(x2, s
(x2), (r(x2)

1 , r
(x2)
2 , rPRP))) | x2 ∈ X2}.

– Alice and Bob send their respective messages X̃1 and X̃2 to Claire.

– Claire generates X̃ = {(x, 1,2) | (x,1) ∈ ~X1 and (x,2) ∈ ~X2}.

– Claire generates a set S = {(x, s) | ∀(x,1 ,2) ∈ ~X where each element s =
CDSEQ2 : Dec(1,2) �= ⊥} and sends S to Alice and Bob.

– Alice and Bob calculate t = |S| and check if all (x, s(x)) ∈ S satisfy Fk2(s‖x) =
s(x). If any check fails, they output “ABORT”.

– If Alice/Bob doesn’t output “ABORT”, PSI = {v|(x, s) ∈ S and Fk(v) = x}.

– Alice, Bob and Claire run CDS≤t(X1, X2, spoly, (rpoly, rPRP)). Claire sends s′
poly

to Alice and Bob as the output of the CDS protocol.

– Upon receiving s′
poly, Alice/Bob output PSI if s′

poly = spoly otherwise they output
“ABORT”.

Fig. 9. 2-round PSI.

170 R. Bhadauria and C. Hazay

party can check whether the declared intersection is part of its input, and is
also convinced that the same elements appear within the other party’s input, as
ensured by the security of the CDS for quality. In the second phase, the parties
continue with a PSI cardinality based on the estimated outcome from the first
phase.

Theorem 5.3. Assume the existence of pseudorandom permutations, a Σ-
protocol for some predefined NP relation R, then protocol PSI from Fig. 9 is a
2-round two-clients verifiable computation for PSI in the presence of malicious
parties.

References

1. Applebaum, B., Arkis, B.: On the power of amortization in secret sharing: d-
Uniform secret sharing and CDS with constant information rate. In: Beimel, A.,
Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 317–344. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03807-6 12

2. Applebaum, B., Arkis, B., Raykov, P., Vasudevan, P.N.: Conditional disclosure of
secrets: amplification, closure, amortization, lower-bounds, and separations. In:
Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 727–757.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 24

3. Applebaum, B., Vasudevan, P.N.: Placing conditional disclosure of secrets in the
communication complexity universe. In: ITCS, pp. 4:1–4:14 (2019)

4. Boyle, E., Gilboa, N., Ishai, Y.: Secure computation with preprocessing via function
secret sharing. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp.
341–371. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6 14

5. Canetti, R., Paneth, O., Papadopoulos, D., Triandopoulos, N.: Verifiable set oper-
ations over outsourced databases. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 113–130. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54631-0 7

6. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifi-
able computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 28

7. Couteau, G.: New protocols for secure equality test and comparison. In: Preneel,
B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 303–320. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93387-0 16

8. Dong, C., Chen, L., Camenisch, J., Russello, G.: Fair private set intersection with
a semi-trusted arbiter. In: Wang, L., Shafiq, B. (eds.) DBSec 2013. LNCS, vol.
7964, pp. 128–144. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39256-6 9

9. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

10. Gentry, C., Halevi, S., Jutla, C., Raykova, M.: Private database access with HE-
over-ORAM architecture. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychron-
akis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 172–191. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-28166-7 9

https://doi.org/10.1007/978-3-030-03807-6_12
https://doi.org/10.1007/978-3-319-63688-7_24
https://doi.org/10.1007/978-3-030-36030-6_14
https://doi.org/10.1007/978-3-642-54631-0_7
https://doi.org/10.1007/978-3-642-54631-0_7
https://doi.org/10.1007/978-3-642-36594-2_28
https://doi.org/10.1007/978-3-319-93387-0_16
https://doi.org/10.1007/978-3-642-39256-6_9
https://doi.org/10.1007/978-3-642-39256-6_9
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-319-28166-7_9

Multi-clients Verifiable Computation via Conditional Disclosure of Secrets 171

11. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–629 (2000)

12. Ghosh, S., Simkin, M.: The communication complexity of threshold private set
intersection. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 3–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 1

13. Gordon, S.D., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-client verifiable
computation with stronger security guarantees. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9015, pp. 144–168. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7 6

14. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal
interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 31

15. Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set inter-
section to billion-element sets. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014.
LNCS, vol. 8437, pp. 195–215. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45472-5 13

16. Le, P.H., Ranellucci, S., Gordon, S.D.: Two-party private set intersection with an
untrusted third party. In: CCS (2019)

17. Liu, T., Vaikuntanathan, V., Wee, H.: Conditional disclosure of secrets via non-
linear reconstruction. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 758–790. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 25

18. Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine learning.
IACR Cryptology ePrint Archive 2018, 403 (2018)

19. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of opera-
tions on dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
91–110. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 6

20. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28914-9 24

21. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991). https://doi.org/10.1007/BF00196725

22. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1007/978-3-030-26951-7_1
https://doi.org/10.1007/978-3-662-46497-7_6
https://doi.org/10.1007/978-3-662-46497-7_6
https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/978-3-319-63688-7_25
https://doi.org/10.1007/978-3-319-63688-7_25
https://doi.org/10.1007/978-3-642-22792-9_6
https://doi.org/10.1007/978-3-642-28914-9_24
https://doi.org/10.1007/978-3-642-28914-9_24
https://doi.org/10.1007/BF00196725

	Multi-clients Verifiable Computation via Conditional Disclosure of Secrets
	1 Introduction
	2 Preliminaries
	2.1 -Protocols
	2.2 Conditional Disclosure of Secrets
	2.3 Multi-clients Verifiable Computation

	3 New Variants of CDS
	4 New CDS Constructions
	4.1 CDS for Equality
	4.2 CDS for Inequality
	4.3 CDS for Bounds on PSI Cardinality

	5 Multi-clients Verifiable Computation via CDS
	5.1 MVC for Equality
	5.2 MVC for PSI Cardinality
	5.3 MVC for PSI

	References

