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Abstract. An aggregatable subvector commitment (aSVC) scheme is a
vector commitment (VC) scheme that can aggregate multiple proofs into
a single, small subvector proof. In this paper, we formalize aSVCs and
give a construction from constant-sized polynomial commitments. Our
construction is unique in that it has linear-sized public parameters, it can
compute all constant-sized proofs in quasilinear time, it updates proofs
in constant time and it can aggregate multiple proofs into a constant-
sized subvector proof. Furthermore, our concrete proof sizes are small
due to our use of pairing-friendly groups. We use our aSVC to obtain
a payments-only stateless cryptocurrency with very low communication
and computation overheads. Specifically, our constant-sized, aggregat-
able proofs reduce each block’s proof overhead to a single group element,
which is optimal. Furthermore, our subvector proofs speed up block ver-
ification and our smaller public parameters further reduce block size.

1 Introduction

In a stateless cryptocurrency, neither miners nor cryptocurrency users need to
store the full ledger state. Instead, this state consisting of users’ account balances
is split among all users using an authenticated data structure. This way, miners
only store a succinct digest of the ledger state and each user stores their account
balance. Nonetheless, miners can still validate transactions sent by users, who
now include proofs that they have sufficient balance. Furthermore, miners can
still propose new blocks of transactions and users can easily synchronize or update
their proofs as new blocks get published.

Stateless cryptocurrencies have received increased attention [Dry19,RMCI17,
CPZ18,BBF19,GRWZ20] due to several advantages. First, stateless cryptocur-
rencies eliminate hundreds of gigabytes of miner storage needed to validate
blocks. Second, statelessness makes scaling consensus via sharding much easier,
by allowing miners to efficiently switch from one shard to another [KJG+18].

An errata for this paper can be found at https://github.com/alinush/asvc-paper.
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Third, statelessness lowers the barrier to entry for full nodes, resulting in a much
more resilient, distributed cryptocurrency.

Stateless Cryptocurrencies from VCs. At a high level, a VC scheme allows
a prover to compute a succinct commitment c to a vector v = [v0, v1, . . . , vn−1] of
n elements where vi ∈ Zp. Importantly, the prover can generate a proof πi that vi

is the element at position i in v, and any verifier can check it against the commit-
ment c. The prover needs a proving key prk to commit to vectors and to compute
proofs, while the verifier needs a verification key vrk to verify proofs. (Usually
|vrk| � |prk|.) Some VC schemes support updates: if one or more elements in the
vector change, the commitment and proofs can be updated efficiently. For this,
a static update key upkj tied only to the updated position j is necessary. Alter-
natively, some schemes require dynamic update hints uphj , typically consisting
of the actual proof πj . The proving, verification and update keys comprise the
VC’s public parameters. Lastly, subvector commitment (SVC) schemes [LM19]
support computing succinct proofs for I-subvectors (vi)i∈I where I ⊂ [0, n). Fur-
thermore, some schemes are aggregatable: multiple proofs πi for vi,∀i ∈ I can
be aggregated into a single, succinct I-subvector proof.

Chepurnoy, Papamanthou and Zhang pioneered the idea of building account-
based [Woo], stateless cryptocurrencies on top of any vector commitment (VC)
scheme [CPZ18]. Ideally, such a VC would have (1) sublinear-sized, updat-
able proofs with sublinear-time verification, (2) updatable commitments and
(3) sublinear-sized update keys. In particular, static update keys (rather than
dynamic update hints) help reduce interaction and thus simplify the design (see
Sect. 4.1). We say such a VC has “scalable updates.” Unfortunately, most VCs
do not have scalable updates (see Sect. 1.1) or, if they do [CPZ18,Tom20], they
are not optimal in their proof and update key sizes. Lastly, while some schemes
in hidden-order groups have scalable updates [CFG+20], they suffer from larger
concrete proof sizes and are likely to require more computation in practice.

Our Contributions. In this paper, we formalize a new aggregatable sub-
vector commitment (aSVC) notion that supports commitment updates, proof
updates and aggregation of proofs into subvector proofs. Then, we construct
an aSVC with scalable updates over pairing-friendly groups. Compared to other
pairing-based VCs, our aSVC has constant-sized, aggregatable proofs that can be
updated with constant-sized update keys (see Table 2). Furthermore, our aSVC
supports computing all proofs in quasilinear time. We prove our aSVC secure
under q-SBDH [Goy07] in the extended version of our paper [TAB+20].

A Highly-Efficient Stateless Cryptocurrency. We use our aSVC to construct a
stateless cryptocurrency based on the elegant design of Edrax [CPZ18]. Our
stateless cryptocurrency has very low storage, communication and computation
overheads (see Table 1). First, our constant-sized update keys have a smaller
impact on block size and help users update their proofs faster. Second, our proof
aggregation drastically reduces block size and speeds up block validation. Third,
our verifiable update keys removes the need for miners to either (1) store all
O(n) update keys or (2) interact during transaction validation to check update
keys.
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Table 1. Asymptotic comparison of our work with other stateless cryptocurrencies. n is
the number of users, λ is the security parameter, and b is the number of transactions in
a block. G is an exponentiation in a known-order group. G? is a (slower) exponentiation
(of size 2λ bits) in a hidden-order group. P is a pairing computation. |πi| is the size of a
proof for a user’s account balance. |upki| is the size of user i’s update key. |πI | is the size
of a proof aggregated from all πi’s in a block. We give each Miner’s storage in terms of
VC public parameters (e.g., update keys). A miner takes: (1) Check digest time, to check
that, by “applying” the transactions from block t+1 to block t’s digest, he obtains the
correct digest for block t + 1, (2) Aggr. proofs time, to aggregate b transaction proofs,
and (3) Vrfy. |πI | time, to verify the aggregated proof. A user takes Proof synchr.
time to “synchronize” or update her proof by “applying” all the transactions in a new
block. We treat [GRWZ20] and [CFG+20] as a payments-only stateless cryptocurrency
without smart contracts. Our aggregation and verification times have an extra b log2 b F
term, consisting of very fast field operations.

Account-based stateless

cryptocurrencies

Edrax [CPZ18] Pointproofs

[GRWZ20]

2nd VC

of [CFG+20]

Our work

|πi| log n |G| 1 |G| 1 |G?| 1 |G|
|upki| log n |G| n |G| 1 |G?| 1 |G|
|πI | b log n |G| 1 |G| 1 |G?| 1 |G|
Miner’s storage n |G| n |G| 1 |G?| b |G|
Vrfy. |πI | time b log n P 2 P + b G b log b G? 2 P + b G + b lg2 b F

Check digest time b G b G b G? b G

Aggr. proofs time × b G b log2 b G? b G + b lg2 b F

Proof synchr. time b log n G b G b G? b G

1.1 Related Work

Vector Commitments (VCs). The notion of VCs appears early in [CFM08,
LY10,KZG10] but Catalano and Fiore [CF13] are the first to formalize it. They
introduce schemes based on the Computational Diffie-Hellman (CDH), with
O(n2)-sized public parameters, and on the RSA problem, with O(1)-sized public
parameters, which can be specialized into O(n)-sized ones when needed. Lai and
Malavolta [LM19] formalize subvector commitments (SVCs) and extend both
constructions from [CF13] with constant-sized I-subvector proofs. Camenisch
et al. [CDHK15] build VCs from KZG commitments [KZG10] to Lagrange poly-
nomials that are not only binding but also hiding. However, their scheme inten-
tionally prevents aggregation of proofs as a security feature. Feist and Khovra-
tovich [FK20] introduce a technique for precomputing all constant-sized eval-
uation proofs in KZG commitments when the evaluation points are all roots
of unity. We use their technique to compute VC proofs fast. Chepurnoy et
al. [CPZ18] instantiate VCs using multivariate polynomial commitments [PST13]
but with logarithmic rather than constant-sized proofs. Then, they build the first
efficient, account-based, stateless cryptocurrency on top of their scheme. Later
on, Tomescu [Tom20] presents a very similar scheme but from univariate poly-
nomial commitments [KZG10] which supports subvector proofs.
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Boneh et al. [BBF19] instantiate VCs using hidden-order groups. They are
the first to support aggregating multiple proofs (under certain conditions). They
are also the first to have constant-sized public parameters, without the need
to specialize them into O(n)-sized ones. However, their VC uses update hints
(rather than keys), which is less suitable for stateless cryptocurrencies. Cam-
panelli et al. [CFG+20] also formalize SVCs with a more powerful notion of
infinite (dis)aggregation of proofs. In contrast, our aSVC only supports “one
hop” aggregation and does not support disaggregation. They also formalize a
notion of updatable, distributed VCs as Verified Decentralized Storage (VDS).
However, their use of hidden-order groups leads to larger concrete proof sizes.

Concurrent with our work, Gorbunov et al. [GRWZ20] also formalize aSVCs
with a stronger notion of cross-commitment aggregation. However, their formal-
ization lacks (verifiable) update keys, which hides many complexities that arise
in stateless cryptocurrencies (see Sect. 4.2.2). Their VC scheme extends [LY10]
with (1) aggregating proofs into I-subvector proofs and (2) aggregating multi-
ple I-subvector proofs with respect to different VCs into a single, constant-sized
proof. However, this versatility comes at the cost of (1) losing the ability to
precompute all proofs fast, (2) O(n)-sized update keys for updating proofs, and
(3) O(n)-sized verification key. This makes it difficult to apply their scheme in
a stateless cryptocurrency for payments such as Edrax [CPZ18]. Furthermore,
Gorbunov et al. also enhance KZG-based VCs with proof aggregation, but they
do not consider proof updates. Lastly, they show it is possible to aggregate I-
subvector proofs across different commitments for KZG-based VCs.

Kohlweiss and Rial [KR13] extend VCs with zero-knowledge protocols for
proving correct computation of a new commitment, for opening elements at
secret positions, and for proving secret updates of elements at secret positions.

Stateless Cryptocurrencies. The concept of stateless validation appeared
early in the cryptocurrency community [Mil12,Tod16,But17] and later on in
the academic community [RMCI17,Dry19,CPZ18,BBF19,GRWZ20]. Initial pro-
posals for UTXO-based cryptocurrencies used Merkle hash trees [Mil12,Tod16,
Dry19,CPZ18]. In particular, Dryja [Dry19] gives a beautiful Merkle forest con-
struction that significantly reduces communication. Boneh et al. [BBF19] further
reduce communication by using RSA accumulators.

Reyzin et al. [RMCI17] introduce a Merkle-based construction for account-
based stateless cryptocurrencies. Unfortunately, their construction relies on
proof-serving nodes: every user sending coins has to fetch the recipient’s Merkle
proof from a node and include it with her own proof in the transaction.
Edrax [CPZ18] obviates the need for proof-serving nodes by using a vector com-
mitment (VC) with update keys (rather than update hints like Merkle trees).
Nonetheless, proof-serving nodes can still be used to assist users who do not want
to manually update their proofs (which is otherwise very fast). Unfortunately,
Edrax’s (non-aggregatable) proofs are logarithmic-sized and thus sub-optimal.

Gorbunov et al. [GRWZ20] introduce Pointproofs, a versatile VC scheme
which can aggregate proofs across different commitments. They use this power
to solve a slightly different problem: stateless block validation for smart contract
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executions (rather than for payments as in Edrax). Unfortunately, their app-
roach requires miners to store a different commitment for each smart contract,
or around 4.5 GBs of (dynamic) state in a system with 108 smart contracts. This
could be problematic in applications such as sharded cryptocurrencies, where
miners would have to download part of this large state from one another when
switching shards. Lastly, the verification key in Pointproofs is O(n)-sized, which
imposes additional storage requirements on miners. Furthermore, Gorbunov et
al. do not discuss how to update nor precompute proofs efficiently. Instead they
assume that all contracts have n ≤ 103 memory locations and users can com-
pute all proofs in O(n2) time. In contrast, our aSVC can compute all proofs in
O(n log n) time [FK20]. Nonetheless, their approach is a very promising direction
for supporting smart contracts in stateless cryptocurrencies.

Bonneau et al. [BMRS20] use recursively-composable, succinct non-
interactive arguments of knowledge (SNARKs) [BSCTV14] for stateless vali-
dation. However, while block validators do not have to store the full state in
their system, miners who propose blocks still have to.

2 Preliminaries

Notation. λ is our security parameter. G1,G2 are groups of prime order p
endowed with a pairing e : G1 × G2 → GT . (We assume symmetric pairings
where G1 = G2 for simplicity of exposition.) G? is a hidden-order group. We
use multiplicative notation for all groups. ω is a primitive nth root of unity in
Zp [vzGG13a]. poly(·) is any function upper-bounded by some univariate poly-
nomial. negl(·) is any negligible function. log x and lg x are shorthand for log2 x.
[i, j] = {i, i + 1, . . . , j − 1, j}, [0, n) = [0, n − 1] and [n] = [1, n]. v = (vi)i∈[0,n) is
a vector of size n with elements vi ∈ Zp.

Lagrange Interpolation. Given n pairs (xi, yi)i∈[0,n), we can find or inter-
polate the unique polynomial φ(X) of degree < n such that φ(xi) = yi,∀i ∈
[0, n) using Lagrange interpolation in O(n log2 n) time [vzGG13b] as φ(X) =
∑

i∈[0,n) Li(X)yi, where Li(X) =
∏

j∈[0,n),j �=i
X−xj

xi−xj
. Recall that a Lagrange

polynomial Li(X) has the property that Li(xi) = 1 and Li(xj) = 0,∀i, j ∈ [0, n)
with j �= i. Note that Li(X) is defined in terms of the xi’s which, throughout
this paper, will be either (ωi)i∈[0,n) or (ωi)i∈I , I ⊂ [0, n).

2.1 KZG Polynomial Commitments

Kate, Zaverucha and Goldberg (KZG) proposed a constant-sized commitment
scheme for degree n polynomials φ(X). Importantly, an evaluation proof for
any φ(a) is constant-sized and constant-time to verify; it does not depend in any
way on the degree of the committed polynomial. KZG requires public parameters
(gτ i

)i∈[0,n], which can be computed via a decentralized MPC protocol [BGM17]
that hides the trapdoor τ . KZG is computationally-hiding under the discrete log
assumption and computationally-binding under n-SDH [BB08].
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Committing. Let φ(X) denote a polynomial of degree d ≤ n with coefficients
c0, c1, . . . , cd in Zp. A KZG commitment to φ(X) is a single group element C =
∏d

i=0

(
gτ i

)ci

= g
∑d

i=0 ciτ
i

= gφ(τ). Committing to φ(X) takes Θ(d) time.

Proving One Evaluation. To compute an evaluation proof that φ(a) = y,
KZG leverages the polynomial remainder theorem, which says φ(a) = y ⇔
∃q(X) such that φ(X)−y = q(X)(X −a). The proof is just a KZG commitment
to q(X): a single group element π = gq(τ). Computing the proof takes Θ(d)
time. To verify π, one checks (in constant time) if e(C/gy, g) = e(π, gτ/ga) ⇔
e(gφ(τ)−y, g) = e(gq(τ), gτ−a) ⇔ φ(τ) − y = q(τ)(τ − a).

Proving Multiple Evaluations. Given a set of points I and their evalua-
tions {φ(i)}i∈I , KZG can prove all evaluations with a constant-sized batch proof
rather than |I| individual proofs. The prover computes an accumulator poly-
nomial a(X) =

∏
i∈I(X − i) in Θ(|I| log2 |I|) time and computes φ(X)/a(X)

in Θ(d log d) time, obtaining a quotient q(X) and remainder r(X). The batch
proof is πI = gq(τ). To verify πI and {φ(i)}i∈I against C, the verifier first
computes a(X) from I and interpolates r(X) such that r(i) = φ(i),∀i ∈ I
in Θ(|I| log2 |I|) time. Next, she computes ga(τ) and gr(τ). Finally, she checks if
e(C/gr(τ), g) = e(gq(τ), ga(τ)). We stress that batch proofs are only useful when
|I| ≤ d. Otherwise, if |I| > d, the verifier can interpolate φ(X) directly from the
evaluations, which makes verifying any φ(i) trivial.

2.2 Account-Based Stateless Cryptocurrencies

In a stateless cryptocurrency based on VCs [CPZ18], there are miners running a
permissionless consensus algorithm [Nak08] and users, numbered from 0 to n−1
who have accounts with a balance of coins. (n can be ∞ if the VC is unbounded.)
For simplicity of exposition, we do not give details on the consensus algorithm,
on transaction signature verification nor on monetary policy.

The (Authenticated) State. The state is an authenticated data structure
(ADS) mapping each user i’s public key to their account balance bali. (In prac-
tice, the mapping is also to a transaction counter ci, which is necessary to avoid
transaction replay attacks. We address this in Sect. 4.3.1.) Importantly, miners
and users are stateless: they do not store the state, just its digest dt at the latest
block t they are aware of. Additionally, each user i stores a proof πi,t for their
account balance that verifies against dt.

Miners. Despite miners being stateless, they can still validate transactions,
assemble them into a new block, and propose that block. Specifically, a miner
can verify every new transaction spends valid coins by checking the sending
user’s balance against the latest digest dt. This requires each user i who sends
coins to j to include her proof πi,t in her transaction. Importantly, user i should
not have to include the recipient’s proof πj,t in the transaction, since that would
require interacting with proof-serving nodes (see Sect. 4.3.2)

Once the miner has a set V of valid transactions, he can use them to create
the next block t + 1 and propose it. The miner obtains this new block’s digest
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dt+1 by “applying” all transactions in V to dt. When other miners receive this
new block t + 1, they can validate its transactions from V against dt and check
that the new digest dt+1 was produced correctly from dt by “reapplying” all the
transactions from V .

Users. When creating a transaction tx for block t+1, user i includes her proof πi,t

for miners to verify she has sufficient balance. When she sees a new block t + 1,
she can update her proof πi,t to a new proof πi,t+1, which verifies against the new
digest dt+1. For this, she will look at all changes in balances (j,Δbalj)j∈J , where
J is the set of users with transactions in block t + 1, and “apply” those changes
to her proof. Similarly, miners can also update proofs of pending transactions
which did not make it in block t and now need a proof w.r.t. dt+1

Users assume that the consensus mechanism produces correct blocks. As a
result, they do not need to verify transactions in the block; they only need to
update their own proof. Nonetheless, since block verification is stateless and fast,
users could easily participate as block validators, should they choose to.

3 Aggregatable Subvector Commitment (aSVC) Schemes

In this section, we introduce the notion of aggregatable subvector commitments
(aSVCs) as a natural extension to subvector commitments (SVCs) [LM19] where
anybody can aggregate b proofs for individual positions into a single constant-
sized subvector proof for those positions. Our formalization differs from previous
work [BBF19,GRWZ20] in that it accounts for (static) update keys as the veri-
fiable auxiliary information needed to update commitments and proofs. This is
useful in distributed settings where the public parameters of the scheme are split
amongst many participants, such as in stateless cryptocurrencies.

3.1 aSVC API

Our API resembles the VC API by Chepurnoy et al. [CPZ18] and the SVC
API by Lai and Malavolta [LM19], extended with an API for verifying update
keys (see Section 4.2.2) and an API for aggregating proofs. Unlike [CPZ18], our
VC.UpdateProof API receives both upki and upkj as input. This is reasonable
in the stateless setting, since each user has to store their upki anyway and they
extract upkj from the transactions (see Sect. 4).

VC.KeyGen(1λ, n) → prk, vrk, (upkj)j∈[0,n). Randomized algorithm that, given a
security parameter λ and an upper-bound n on vector size, returns a proving
key prk, a verification key vrk and update keys (upkj)j∈[0,n).

VC.Commit(prk,v) → c. Deterministic algorithm that returns a commitment c
to any vector v of size ≤ n.

VC.ProvePos(prk, I,v) → πI . Deterministic algorithm that returns a proof πI

that vI = (vi)i∈I is the I-subvector of v. For notational convenience, I can
be either an index set I ⊆ [0, n) or an individual index I = i ∈ [0, n).
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VC.VerifyPos(vrk, c,vI , I, πI) → T/F . Deterministic algorithm that verifies the
proof πI that vI is the I-subvector of the vector committed in c. As before,
I can be either an index set I ⊆ [0, n) or an individual index I = i ∈ [0, n).

VC.VerifyUPK(vrk, i, upki) → T/F . Deterministic algorithm that verifies that
upki is indeed the ith update key.

VC.UpdateComm(c, δ, j, upkj) → c′. Deterministic algorithm that returns a new
commitment c′ to v′ obtained by updating vj to vj + δ in the vector v
committed in c. Needs upkj associated with the updated position j.

VC.UpdateProof(πi, δ, i, j, upki, upkj) → π′
i. Deterministic algorithm that

updates an old proof πi for the ith element vi, given that the jth element
was updated to vj + δ. Note that i can be equal to j.

VC.AggregateProofs(I, (πi)i∈I) → πI Deterministic algorithm that, given proofs
πi for vi,∀i ∈ I, aggregates them into a succinct I-subvector proof πI .

3.2 aSVC Correctness and Security Definitions

Definition 1 (Aggregatable SVC Scheme). (VC.KeyGen, VC.Commit,
VC.ProvePos, VC.VerifyPos, VC.VerifyUPK, VC.UpdateComm, VC.UpdateProof,
VC.AggregateProofs) is a secure aggregatable subvector commitment scheme if ∀
upper-bounds n = poly(λ) it satisfies the following properties:

Definition 2 (Correctness). ∀ honestly generated prk, vrk, (upkj)j∈[0,n) via
VC.KeyGen, ∀ vectors v = (vj)j∈[0,n) with commitment c obtained via VC.Commit
and, optionally, VC.UpdateComm calls, ∀I ⊆ [0, n), if πI is a (sub)vector
proof for vI = (vi)i∈I obtained via any valid interleaving of VC.ProvePos,
VC.AggregateProofs and VC.UpdateProof, then VC.VerifyPos(vrk, c,vI , I, πI)
returns true. Furthermore, VC.VerifyUPK(vrk, i, upki) = T,∀i ∈ [0, n).

Definition 3 (Update Key Uniqueness). ∀ adversaries A running in time
poly(λ):

Pr

⎡

⎢
⎢
⎢
⎢
⎣

prk, vrk, (upkj)j∈[0,n) ← VC.KeyGen(1λ, n),
i, upk, upk′ ← A(1λ, prk, vrk, (upkj)j∈[0,n)) :

VC.VerifyUPK(vrk, i, upk) = T ∧
VC.VerifyUPK(vrk, i, upk′) = T∧

upk �= upk′

⎤

⎥
⎥
⎥
⎥
⎦

≤ negl(λ)

Observation: Definitions that allow for dynamic update hints rather than unique
update keys are possible too, but would be less simple to state and less useful
for stateless cryptocurrencies (see Sect. 4).

Definition 4 (Position Binding Security). ∀ adversaries A running in time
poly(λ), if vI = (vi)i∈I and v′

J = (v′
j)j∈J , then:

Pr

⎡

⎢
⎢
⎢
⎢
⎣

prk, vrk, (upki)i∈[0,n) ← VC.KeyGen(1λ, n),
(c, I, J,vI ,v′

J , πI , πJ ) ← A(1λ, prk, vrk, (upki)i∈[0,n)) :
VC.VerifyPos(vrk, c,vI , I, πI) = T ∧
VC.VerifyPos(vrk, c,v′

J , J, πJ ) = T ∧
∃k ∈ I ∩ J, such that vk �= v′

k

⎤

⎥
⎥
⎥
⎥
⎦

≤ negl(λ)
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Table 2. Asymptotic comparison of our aSVC with other (aS)VCs based on prime-
order groups. n is the vector size and b is the subvector size. See our extended
paper [TAB+20] for a more detailed analysis. All schemes have O(n)-sized parame-
ters (except [LM19] has O(n2) and [CFG+20] has O(1)); can update commitments
in O(1) time (except for [KZG10]); have O(1)-sized proofs that verify in O(1) time
(except [CPZ18] and [Tom20] proofs are O(lg n)). Com. is the time to commit to a
size-n vector. Proof upd. is the time to update one individual proof πi after a change
to one vector element vj . Prove one, Prove subv. and Prove each are the times to
compute a proof πi for one vi, a size-b subvector proof πI and proofs for all (vi)i∈[0,n),
respectively.

(aS)VC

scheme

|vrk| |upki| Com. Prove

one

Proof

upd.

Prove subv. Verify

subv.

Aggregate Prove

each

[LM19] n n n n 1 bn b × n2

[KZG10] b × n lg2 n n × b lg2 b+n lg n b lg2 b × n2

[CDHK15] n n n lg2 n n 1 n lg2 n b lg2 b × n2

[CPZ18] lg n lg n n n lg n × × × n2

[Tom20] lg n + b lg n n lg n n lg n lg n b lg2 b+n lg n b lg2 b × n lg n

[GRWZ20] n n n n 1 bn b b n2

[CFG+20] 1 1 n lg n n lg n 1 (n −
b) lg (n − b)

b lg b b lg2 b n lg2 n

Our work b 1 n n 1 b lg2 b+n lg n b lg2 b b lg2 b n lg n

Our work∗ b 1 n lg n 1 1 b lg2 b b lg2 b b lg2 b n lg n

3.3 aSVC from KZG Commitments to Lagrange Polynomials

In this subsection, we present our aSVC from KZG commitments to
Lagrange polynomials. Similar to previous work, we represent a vector v =
[v0, v1, . . . , vn−1] as a polynomial φ(X) =

∑
i∈[0,n) Li(X)vi in Lagrange

basis [KZG10,CDHK15,Tom20,GRWZ20]. However, unlike previous work, we
add support for efficiently updating and aggregating proofs. For aggregation,
we use known techniques for aggregating KZG proofs via partial fraction
decomposition [But20]. For updating proofs, we introduce a new mechanism
to reduce the update key size from linear to constant. We use roots of unity
and “store” vi as φ(ωi) = vi, which means our Lagrange polynomials are
Li(X) =

∏
j∈[0,n),j �=i

X−ωj

ωi−ωj . For this to work efficiently, we assume without
loss of generality that n is a power of two.

Committing. A commitment to v is just a KZG commitment c = gφ(τ) to
φ(X), where τ is the trapdoor of the KZG scheme (see Sect. 2.1). Similar to
previous work [CDHK15], the proving key includes commitments to all Lagrange
polynomials 
i = gLi(τ). Thus, we can compute c =

∏n
i=1(
i)vi in O(n) time

without interpolating φ(X) and update it as c′ = c · (
i)δ after adding δ to vi.
Note that c′ is just a commitment to an updated φ′(X) = φ(X) + δ · Li(X).

Proving. A proof πi for a single element vi is just a KZG evaluation proof for
φ(ωi). A subvector proof πI for for vI , I ⊆ [0, n) is just a KZG batch proof for all
φ(ωi)i∈I evaluations. Importantly, we use the Feist-Khovratovich (FK) [FK20]
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technique to compute all proofs (πi)i∈[0,n) in O(n log n) time. This allows us to
aggregate I-subvector proofs faster in O(|I| log2 |I|) time (see Table 2).

3.4 Partial Fraction Decomposition

A key ingredient in our aSVC scheme is partial fraction decomposition, which we
re-explain from the perspective of Lagrange interpolation. First, let us rewrite
the Lagrange polynomial for interpolating φ(X) given all

(
φ(ωi)

)
i∈I

:

Li(X) =
∏

j∈I,j �=i

X − ωj

ωi − ωj
=

AI(X)

A′
I(ω

i)(X − ωi)
, where AI(X) =

∏

i∈I

(X − ωi) (1)

Here, A′
I(X) =

∑
j∈[0,n) AI(X)/(X −ωj) is the derivative of AI(X) [vzGG13b].

Next, for any φ(X), we can rewrite the Lagrange interpolation formula as φ(X) =
AI(X)

∑
i∈[0,n)

yi

A′
I(ω

i)(X−ωi) . In particular, for φ(X) = 1, this implies 1
AI(X) =

∑
i∈[0,n)

1
A′

I(ω
i)(X−ωi) . In other words, we can decompose AI(X) as:

1

AI(X)
=

1∏
i∈I(X − ωi)

=
∑

i∈[0,n)

ci · 1

X − ωi
, where ci =

1

A′
I(ω

i)
(2)

AI(X) can be computed in O(|I| log2 |I|) time [vzGG13b]. Its derivative, A′
I(X),

can be computed in O(|I|) time and evaluated at all ωi’s in O(|I| log2 |I|)
time [vzGG13b]. Thus, all ci’s can be computed in O(|I| log2 |I|) time. For the
special case of I = [0, n), we have AI(X) = A(X) =

∏
i∈[0,n)(X − ωi) = Xn − 1

and A′(ωi) = nω−i [TAB+20, Appendix A]. In this case, any ci can be computed
in O(1) time.

3.4.1 Aggregating Proofs
We build upon Drake and Buterin’s observation [But20] that partial fraction
decomposition (see Sect. 3.4) can be used to aggregate KZG evaluation proofs.
Since our VC proofs are KZG proofs, we show how to aggregate a set of proofs
(πi)i∈I for elements vi of v into a constant-sized I-subvector proof πI for (vi)i∈I .

Recall that πi is a commitment to qi(X) = φ(X)−vi

X−ωi and πI is a commitment

to q(X) = φ(X)−R(X)
AI(X) , where AI(X) =

∏
i∈I(X − ωi) and R(X) is interpolated

such that R(ωi) = vi,∀i ∈ I. Our goal is to find coefficients ci ∈ Zp such that
q(X) =

∑
i∈I ciqi(X) and thus aggregate πI =

∏
i∈I πci

i . We observe that:

q(X) = φ(X)
1

AI(X)
− R(X)

1

AI(X)
(3)

= φ(X)
∑

i∈I

1

A′
I(ω

i)(X − ωi)
−

(
AI(X)

∑

i∈I

vi
A′

I(ω
i)(X − ωi)

)
· 1

AI(X)
(4)

=
∑

i∈I

φ(X)

A′
I(ω

i)(X − ωi)
−

∑

i∈I

vi
A′

I(ω
i)(X − ωi)

=
∑

i∈I

1

A′
I(ω

i)
· φ(X)− vi

X − ωi
(5)

=
∑

i∈I

1

A′
I(ω

i)
· qi(X) (6)
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Thus, we can compute all ci = 1/A′
I(ω

i) using O(|I| log2 |I|) field operations (see
Sect. 3.4) and compute πI =

∏
i∈I πci

i with an O(|I|)-sized multi-exponentiation.

3.4.2 Updating Proofs
When updating πi after a change to vj , it could be that either i = j or i �= j.
First, recall that πi is a KZG commitment to qi(X) = φ(X)−vi

X−ωi . Second, recall
that, after a change δ to vj , the polynomial φ(X) is updated to φ′(X) = φ(X)+
δ · Lj(X). We refer to the party updating their proof πi as the proof updater.

The i = j Case. Consider the quotient polynomial q′
i(X) in the updated proof

π′
i after vi changed to vi + δ:

q′
i(X) =

φ′(X)− (vi + δ)

X − ωi
=

(φ(X) + δLi(X))− vi − δ

X − ωi
(7)

=
φ(X)− vi
X − ωi

+
δ(Li(X)− 1)

X − ωi
= qi(X) + δ

(Li(X)− 1

X − ωi

)
(8)

This means the proof updater needs a KZG commitment to Li(X)−1
X−ωi , which is

just a KZG evaluation proof that Li(ωi) = 1. This can be addressed very easily
by making this commitment part of upki. To conclude, to update πi, the proof

updater obtains ui = g
Li(τ)−1

τ−ωi from upki and computes π′
i = πi·(ui)

δ. (Remember
that the proof updater, who calls VC.UpdateProof(πi, δ, i, i, upki, upki), has upki.)

The i �= j Case. Now, consider the quotient polynomial q′
i(X) after vj changed

to vj + δ:

q′
i(X) =

φ′(X)− vi
X − ωi

=
(φ(X) + δLj(X))− vi

X − ωi
(9)

=
φ(X)− vi
X − ωi

+
δLj(X)

X − ωi
= qi(X) + δ

( Lj(X)

X − ωi

)
(10)

In this case, the proof updater will need to construct a KZG commitment to
Lj(X)
X−ωi . For this, we put enough information in upki and upkj , which the proof
updater has (see Sect. 3.1), to help her do so.

Since Ui,j(X) = A(X)
A′(ωj)(X−ωj)(X−ωi) and A′(ωj) = nω−j , it is sufficient

to reconstruct a KZG commitment to Wi,j(X) = A(X)
(X−ωj)(X−ωi) , which can

be decomposed as Wi,j(X) = A(X)
(
ci

1
X−ωi + cj

1
X−ωj

)
= ci

A(X)
X−ωi + cj

A(X)
X−ωj ,

where ci = 1/(ωi − ωj) and cj = 1/(ωj − ωi) (see Sect. 3.4). Thus, if we include
aj = gA(τ)/(τ−ωj) in each upkj , the proof updater can first compute wi,j = aci

i a
cj

j ,

then compute ui,j = (wi,j)
1

A′(ωj) and finally update the proof as π′
i = πi · (ui,j)δ.

3.4.3 aSVC Algorithms
Having established the intuition for our aSVC, we can now describe it in detail
using the aSVC API from Sect. 3.1.



56 A. Tomescu et al.

VC.KeyGen(1λ, n) → prk, vrk, (upkj)j∈[0,n). Generates n-SDH public parameters
g, gτ , gτ2

, . . . , gτn

. Computes a = gA(τ), where A(X) = Xn − 1. Computes
ai = gA(τ)/(X−ωi) and 
i = gLi(τ),∀i ∈ [0, n). Computes KZG proofs ui =

g
Li(τ)−1

X−ωi for Li(ωi) = 1. Sets upki = (ai, ui), prk =
(
(gτ i

)i∈[0,n], (
i)i∈[0,n),
(upki)i∈[0,n)

)
and vrk = ((gτ i

)i∈[0,|I|], a).
VC.Commit(prk,v) → c. Returns c =

∏
i∈[0,n)(
i)vi .

VC.ProvePos(prk, I,v) → πI . Computes AI(X) =
∏

i∈I(X−ωi) in O(|I| log2 |I|)
time. Divides φ(X) by AI(X) in O(n log n) time, obtaining a quotient q(X)
and a remainder r(X). Returns πI = gq(τ). (We give an O(n) time algorithm
in [TAB+20, Appendix D.7] for the |I| = 1 case.)

VC.VerifyPos(vrk, c,vI , I, πI) → T/F . Computes AI(X) =
∏

i∈I(X − ωi) in
O(|I| log2 |I|) time and commits to it as gAI(τ) in O(|I|) time. Interpolates
RI(X) such that RI(i) = vi,∀i ∈ I in O(|I| log2 |I|) time and commits to it
as gRI(τ) in O(|I|) time. Returns T iff. e(c/gRI(τ), g) = e(πI , g

AI(τ)). (When
I = {i}, we have AI(X) = X − ωi and RI(X) = vi.)

VC.VerifyUPK(vrk, i, upki) → T/F . Checks that ωi is a root of Xn − 1 (which
is committed in a) via e(ai, g

τ/g(ω
i)) = e(a, g). Checks that Li(ωi) = 1 via

e(
i/g1, g) = e(ui, g
τ/g(ω

i)), where 
i = a
1/A′(ωi)
i = gLi(τ).

VC.UpdateComm(c, δ, j, upkj) → c′. Returns c′ = c · (
j)δ, where 
j = a
1/A′(ωj)
j .

VC.UpdateProof(πi, δ, i, j, upki, upkj) → π′
i. If i = j, returns π′

i = πi · (ui)δ. If

i �= j, computes wi,j = a
1/(ωi−ωj)
i · a

1/(ωj−ωi)
j and ui,j = w

1/A′(ωj)
i,j (see

Sect. 3.4.2) and returns π′
i = πi · (ui,j)δ.

VC.AggregateProofs(I, (πi)i∈I) → πI . Computes AI(X) =
∏

i∈I(X − ωi), its
derivative A′

I(X) and all ci = (A′
I(ω

i))i∈I in O(|I| log2 |I|) time. Returns
πI =

∏
i∈I πci

i .

3.4.4 Distributing the Trusted Setup
Our aSVC requires a centralized, trusted setup phase that computes its public
parameters. We can decentralize this phase using highly-efficient MPC protocols
that generate (gτ i

)’s in a distributed fashion [BGM17]. Then, we can derive the
remaining parameters from the (gτ i

)’s, which has the advantage of keeping our
parameters updatable. First, the commitment a = gA(τ) to A(X) = Xn − 1
can be computed in O(1) time via an exponentiation. Second, the commitments

i = gLi(τ) to Lagrange polynomials can be computed via a single DFT on the
(gτ i

)’s [Vir17, Sec 3.12.3, pg. 97]. Third, each ai = gA(τ)/(τ−ωi) is a bilinear
accumulator membership proof for ωi w.r.t. A(X) and can all be computed in

O(n log n) time using FK [FK20]. But what about computing each ui = g
Li(τ)−1

X−ωi ?

Computing All ui’s Fast. Inspired by the FK technique [FK20], we show how
to compute all n ui’s in O(n log n) time using a single DFT on group elements.

First, note that ui = g
Li(τ)−1

X−ωi is a KZG evaluation proof for Li(ωi) = 1. Thus,
ui = gQi(τ) where Qi(X) = Li(X)−1

X−ωi . Second, let ψi(X) = A′(ωi)Li(X) =
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Xn−1
X−ωi . Then, let πi = gqi(τ) be an evaluation proof for ψi(ωi) = A′(ωi) where

qi(X) = ψi(X)−A′(ωi)
X−ωi and note that Qi(X) = 1

A′(ωi)qi(X). Thus, computing
all ui’s reduces to computing all πi’s. However, since each proof πi is for a
different polynomial ψi(X), directly applying FK does not work. Instead, we
give a new algorithm that leverages the structure of ψi(X) when divided by
X − ωi. Specifically, in [TAB+20, Appendix B], we show that:

qi(X) =
∑

j∈[0,n−2]

Hj(X)ωij ,∀i ∈ [0, n), where Hj(X) = (j + 1)X(n−2)−j (11)

If we let hj be a KZG commitment to Hj(X), then we have πi =
∏

j∈[0,n−2] h
(ωij)
j , ∀i ∈ [0, n). Next, recall that the Discrete Fourier Transform

(DFT) on a vector of group elements a = [a0, a1, . . . , an−1] ∈ G
n is:

DFTn(a) = â = [â0, â1, . . . , ân−1] ∈ G
n, where âi =

∏

j∈[0,n)

a
(ωij)
j (12)

If we let π = [π0, π1, . . . , πn−1] and h = [h0, h1, . . . , hn−2, 1G, 1G], then π =
DFTn(h). Thus, computing all n hi’s takes O(n) time and computing all n πi’s
takes an O(n log n) time DFT. As a result, computing all ui’s from the (gτ i

)’s
takes O(n log n) time overall.

3.4.5 Correctness and Security
The correctness of our aSVC scheme follows naturally from Lagrange interpo-
lation. Aggregation and proof updates are correct by the arguments laid out in
Sects. 3.4.1 and 3.4.2, respectively. Subvector proofs are correct by the correct-
ness of KZG batch proofs [KZG10]. We prove our aSVC is position binding and
has update key uniqueness in the extended version [TAB+20, Appendix C].

4 A Highly-Efficient Stateless Cryptocurrency

In this section, we enhance Edrax’s elegant design by replacing their VC with
our secure aggregatable subvector commitment (aSVC) scheme from Sect. 3.3.
As a result, our stateless cryptocurrency has smaller, aggregatable proofs and
smaller update keys. This leads to smaller, faster-to-verify blocks for miners and
faster proof synchronization for users (see Table 1). Furthermore, our verifiable
update keys reduce the storage overhead of miners from O(n) update keys to
O(1). We also address a denial of service (DoS) attack in Edrax’s design.

4.1 From VCs to Stateless Cryptocurrencies

Edrax pioneered the idea of building account-based, stateless cryptocurrencies on
top of any VC scheme [CPZ18]. In contrast, previous approaches were based on
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authenticated dictionaries (ADs) [RMCI17,But17], for which efficient construc-
tions with static update keys are not known. In other words, these AD-based
approaches used dynamic update hints uphj consisting of the proof for position
j. This complicated their design, requiring user i to ask a proof-serving node for
user j’s proof in order to create a transaction sending money to j.

Trusted Setup. To support up to n users, public parameters
(prk, vrk, (upki)i∈[0,n)) ← VC.KeyGen(1λ, n) are generated via a trusted setup,
which can be decentralized using MPC protocols [BGM17]. Miners need to store
all O(n) update keys to propose blocks and to validate blocks (which we fix in
Sect. 4.2.2). The prk is only needed for proof-serving nodes (see Sect. 4.3.2).

The (Authenticated) State. The state is a vector v = (vi)i∈[0,n) of size n
that maps user i to vi = (addri|bali) ∈ Zp, where bali is her balance and addri
is her address, which we define later. (We discuss including transaction counters
for preventing replay attacks in Sect. 4.3.1.) Importantly, since p ≈ 2256, the first
224 bits of vi are used for addri and the last 32 bits for bali. The genesis block’s
state is the all zeros vector with digest d0 (e.g., in our aSVC, d0 = g0). Initially,
each user i is unregistered and starts with a proof πi,0 that their vi = 0.

“Full” vs. “Traditional” Public Keys. User i’s address is computed as
addri = H(FPKi), where FPKi = (i, upki, tpki) is her full public key. Here, tpki

denotes a “traditional” public key for a digital signature scheme, with corre-
sponding secret key tski used to authorize user i’s transactions. To avoid confu-
sion, we will clearly refer to public keys as either “full” or “traditional.”

Registering via INIT Transactions. INIT transactions are used to register
new users and assign them a unique, ever-increasing number from 1 to n. For
this, each block t stores a count of users registered so far cntt. To register, a user
generates a traditional secret key tsk with a corresponding traditional public key
tpk. Then, she broadcasts an INIT transaction:

tx = [INIT, tpk]

A miner working on block t + 1 who receives tx, proceeds as follows.

1. He sets i = cntt+1 and increments the count cntt+1 of registered users,
2. He updates the VC via dt+1 = VC.UpdateComm(dt+1, (addri|0), i, upki),
3. He incorporates tx in block t+1 as tx′ = [INIT, (i, upki, tpki)] = [INIT,FPKi].

The full public key with upki is included so other users can correctly update
their VC when they process tx′. Note that to compute addri = H(FPKi), the
miner needs to have the correct upki which requires O(n) storage. We discuss
how to avoid this in Sect. 4.2.2.

Transferring Coins via SPEND Transactions. When transferring v coins to
user j, user i (who has v′ ≥ v coins) must first obtain FPKj = (j, upkj , tpkj).
This is similar to existing cryptocurrencies, except the (full) public key is now
slightly larger. Then, user i broadcasts a SPEND transaction, signed with her tski:

tx = [SPEND, t,FPKi, j, upkj , v, πi,t, v
′]
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A miner working on block t + 1 processes this SPEND transaction as follows:

1. He checks that v ≤ v′ and verifies the proof πi,t that user i has v′ coins via
VC.VerifyPos(vrk, dt, (addri|v′), i, πi,t). (If the miner receives another transac-
tion from user i, it needs to carefully account for i’s new v′ − v balance.)

2. He updates i’s balance in block t+1 with dt+1 = VC.UpdateComm(dt+1,−v, i,
upki), which only sets the lower order bits of vi corresponding to bali, without
touching the higher order bits for addri.

3. He does the same for j with dt+1 = VC.UpdateComm(dt+1, +v, j, upkj).

Validating Blocks. Suppose a miner receives a new block t+1 with digest dt+1

that has b SPEND transactions:

tx = [SPEND, t,FPKi, j, upkj , v, πi,t, v
′]

To validate this block, the miner (who has dt) proceeds in three steps (INIT
transactions can be handled analogously):

Step 1: Check Balances. First, for each tx, he checks that v ≤ v′ and that user i
has balance v′ via VC.VerifyPos(vrk, dt, (addri|v′), i, πi,t) = T . Since the sending
user i might have multiple transactions in the block, the miner has to carefully
keep track of each sending user’s balance to ensure it never goes below zero.

Step 2: Check Digest. Second, he checks dt+1 has been computed correctly from
dt and from the new transactions in block t + 1. Specifically, he sets d′ = dt

and for each tx, he computes d′ = VC.UpdateComm(d′,−v, i, upki) and d′ =
VC.UpdateComm(d′,+v, j, upkj). Then, he checks that d′ = dt+1.

Step 3: Update Proofs, If Any. If the miner lost the race to build block t + 1, he
can start mining block t + 2 by “moving over” the SPEND transactions from his
unmined block. For this, he updates all proofs in those SPEND transactions, so
they are valid against the new digest dt+1. Similarly, the miner must also “move
over” all INIT transactions, since block t + 1 might have registered new users.

User Proof Synchronization. Consider a user i who has processed the ledger
up to time t and has digest dt and proof πi,t. Eventually, she receives a new
block t + 1 with digest dt+1 and needs to update her proof so it verifies against
dt+1. Initially, she sets πi,t+1 = πi,t. For each [INIT,FPKj ] transaction, she
updates her proof πi,t+1 = VC.UpdateProof(πi,t+1, (H(FPKj)|0), i, j, upki, upkj).
For each [SPEND, t,FPKj , k, upkk, v, πj,t, v

′], she updates her proof twice: πi,t+1 =
VC.UpdateProof(πi,t+1,−v, i, j, upki, upkj) and πi,t+1 = VC.UpdateProof(πi,t+1,
+v, i, k, upki, upkk). We stress that users can safely be offline and miss new
blocks. Eventually, when a user comes back online, she downloads the missed
blocks, updates her proof and is ready to transact.

4.2 Efficient Stateless Cryptocurrencies from aSVCs

In this subsection, we explain how replacing the Edrax VC with our aSVC from
Sect. 3.3 results in a more efficient stateless cryptocurrency (see Table 1). Then,
we address a denial of service attack on user registrations in Edrax.
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4.2.1 Smaller, Faster, Aggregatable Proofs
Our aSVC enables miners to aggregate all b proofs in a block of b transac-
tions into a single, constant-sized proof. This drastically reduces Edrax’s per-
block proof overhead from O(b log n) group elements to just one group element.
Unfortunately, the b update keys cannot be aggregated, but we still reduce their
overhead from O(b log n) to b group elements per block (see Sect. 4.2.3). Our
smaller proofs are also faster to update, taking O(1) time rather than O(log n).
While verifying an aggregated proof in our aSVC is O(b log2 b) time, which is
asymptotically slower than the O(b) time for verifying b individual ones, it is
still concretely faster as it only requires two, rather than O(b), cryptographic
pairings. This makes validating new blocks much faster in practice.

4.2.2 Reducing Miner Storage Using Verifiable Update Keys

We stress that miners must validate update keys before using them to update a
digest. Otherwise, they risk corrupting that digest, which results in a denial of
service. Edrax miners sidestep this problem by simply storing all O(n) update
keys. Alternatively, Edrax proposes outsourcing update keys to an untrusted
third party via a static Merkle tree. Unfortunately, this would either require
interaction during block proposal and block validation or would double the update
key size. Our implicitly-verifiable update keys avoid these pitfalls, since miners
can directly verify the update keys in a SPEND transaction via VC.VerifyUPK.
Furthermore, for INIT transactions, miners can fetch (in the background) a run-
ning window of the update keys needed for the next k registrations. By carefully
upper-bounding the number of registrations expected in the near future, we can
avoid interaction during the block proposal. This background fetching could be
implemented in Edrax too, either with a small overhead via Merkle proofs or by
making their update keys verifiable (which seems possible).

4.2.3 Smaller Update Keys

Although, in our aSVC, upki contains ai = gA(τ)/(X−ωi) and ui = g
Li(τ)−1

X−ωi ,
miners only need to include ai in the block. This is because of two reasons.
First, user i already has ui to update her own proof after changes to her own
balance. Second, no other user j �= i will need ui to update her proof πj . However,
as hinted in Sect. 4.1, miners actually need ui when only a subset of i’s pending
transactions get included in block t. In this case, the excluded transactions must
have their proofs updated using ui so they can be included in block t + 1.
Fortunately, this is not a problem, since miners always receive ui with user
i’s transactions. The key observation is that they do not have to include ui in
the mined block, since users do not need it.

4.2.4 Addressing DoS Attacks on User Registrations.
Unfortunately, the registration process based on INIT transactions is susceptible
to Denial of Service (DoS) attacks: an attacker can simply send a large num-
ber of INIT transactions and quickly exhaust the free space in the vector v.
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There are several ways to address this. First, one can use an aSVC from hidden-
order groups, which supports an unbounded number of elements [CFG+20].
However, that would negatively impact performance. Second, as future work,
one could develop and use unbounded, authenticated dictionaries with scal-
able updates. Third, one could simply use multiple bounded aSVCs together
with cross-commitment proof aggregation, which our aSVC supports [GRWZ20].
Lastly, one can add a cost to user registrations via a new INITSPEND transaction
that registers a user j by having user i send her some coins:

[INITSPEND, t,FPKi, tpk, v, πi,t, v
′], where 0 < v ≤ v′

Miners processing this transaction would first register a new user j with tradi-
tional public key tpk and then transfer her v coins. We stress that this is how
existing cryptocurrencies operate anyway: in order to join, one has to be trans-
ferred some coins from existing users. Lastly, we can ensure that each tpk is
only registered once by including in each INIT/INITSPEND transaction a non-
membership proof for tpk in a Merkle prefix tree of all TPKs. We leave a careful
exploration of this to future work.

Finally, miners (and only miners) will be allowed to create a single
[INIT,FPKi] transaction per block to register themselves. This has the advan-
tage of letting new miners join, without “permission” from other miners or users,
while severely limiting DoS attacks, since malicious miners can only register a
new user per block. Furthermore, transaction fees and/or additional proof-of-
work can also severely limit the frequency of INITSPEND transactions.

4.2.5 Minting Coins and Transaction Fees
Support for minting new coins can be added with a new MINT transaction type:

tx = [MINT, i, upki, v]

Here, i is the miner’s user account and v is the amount of newly minted coins.
(Note that miners must register as users using INIT transactions if they are to
receive block rewards.) To support transaction fees, we can extend the SPEND
transaction format to include a fee, which is then added to the miner’s block
reward specified in the MINT transaction.

4.3 Discussion

4.3.1 Making Room for Transaction Counters
As mentioned in Sect. 2.2, to prevent transaction replay attacks, account-based
stateless cryptocurrencies such as Edrax should actually map a user i to
vi = (addri|ci|bali), where ci is her transaction counter. This change is trivial,
but does leave less space in vi for addri, depending on how many bits are needed
for ci and bali. (Recall that vi ∈ Zp typically has ≈ 256 bits.) To address this, we
propose using one aSVC for mapping i to addri and another aSVC for mapping
i to (ci|bali). Our key observation is that if the two aSVCs use different n-SDH
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parameters (e.g., (gτ i

)’s and (hτ i

)’s, such that logg h is unknown), then we could
aggregate commitments, proofs and update keys so as to introduce zero compu-
tational and communication overhead in our stateless cryptocurrency. Security
of this scheme could be argued similar to security of perfectly hiding KZG com-
mitments [KZG10], which commit to φ(X) as gφ(τ)hr(τ) in an analogous fashion.
We leave investigating the details of this scheme to future work.

4.3.2 Overhead of Synchronizing Proofs
In a stateless cryptocurrency, users need to keep their proofs updated w.r.t.
the latest block. For example, in our scheme, each user spends O(b · Δt) time
updating her proof, if there are Δt new blocks of b transactions each. Fortu-
nately, when the underlying VC scheme supports precomputing all n proofs
fast [Tom20], this overhead can be shifted to untrusted third parties called proof-
serving nodes [CPZ18]. Specifically, a proof-serving node would have access to
the proving key prk and periodically compute all proofs for all n users. Then, any
user with an out-of-sync proof could ask a node for their proof and then manually
update it, should it be slightly out of date with the latest block. Proof-serving
nodes save users a significant amount of proof update work, which is important
for users running on constrained devices such as mobile phones.

5 Conclusion

In this paper, we formalized a new cryptographic primitive called an aggre-
gatable subvector commitment (aSVC) that supports aggregating and updating
proofs (and commitments) using only constant-sized, static auxiliary informa-
tion referred to as an “update key.” We constructed an efficient aSVC from
KZG commitments to Lagrange polynomials which, compared to other pairing-
based schemes, can precompute, aggregate and update proofs efficiently and,
compared to schemes from hidden-order groups, has smaller proofs and should
perform better in practice. Lastly, we continued the study of stateless validation
initiated by Chepurnoy et al., improving block validation time and block size,
while addressing attacks and limitations. We hope our work will ignite further
research into stateless validation for payments and smart contracts and lead to
improvements both at the theoretical and practical level.
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