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Abstract. A secret sharing scheme allows a dealer to distribute shares
of a secret among a set of n parties P = {p1, . . . , pn} such that any
authorized subset of parties can reconstruct the secret, yet any unautho-
rized subset learns nothing about it. The family A ⊆ 2P of all authorized
subsets is called the access structure. Classic results show that if A con-
tains precisely all subsets of cardinality at least t, then there exists a
secret sharing scheme where the length of the shares is proportional to
lg n bits plus the length of the secret. However, for general access struc-
tures, the best known upper bounds have shares of length exponential in
n, whereas the strongest lower bound shows that the shares must have
length at least n/ lg n. Beimel conjectured that the exponential upper
bound is tight, but proving it has so far resisted all attempts. In this
paper we make progress towards proving the conjecture by showing that
there exists an access structure A, such that any secret sharing scheme
for A must have either exponential share length, or the function used for
reconstructing the secret by authorized parties must have an exponen-
tially long description. As an example corollary, we conclude that if one
insists that authorized parties can reconstruct the secret via a constant
fan-in boolean circuit of size polynomial in the share length, then there
exists an access structure that requires a share length that is exponential
in n.

1 Introduction

A secret sharing scheme allows a dealer to distribute shares of a secret among a
set of parties P = {p1, . . . , pn} such that any authorized subset A ⊆ P can recon-
struct the secret, yet any unauthorized subset learns nothing about it. The fam-
ily A ⊆ 2{p1,...,pn} of all authorized subsets is called the access structure. Secret
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sharing was introduced independently by Shamir [35] and Blakley [11], who
presented constructions for threshold access structures that contains all subsets
with a cardinality larger than some threshold t. The first construction for general
(monotone) access structures was presented by Ito, Saito, and Nishizeki [21].

The main measure of efficiency for secret sharing schemes is the share size.
For threshold access structures it is known that Shamir’s secret sharing, which
has a share size of Θ(lg n), is optimal up to additive constants [13]. This stands
in stark contrast to the smallest share sizes we can achieve for general monotone
access structures. The construction of Ito, Saito, and Nishizeki has a share size
of O(2n/

√
n) and 29 years later the best known upper bound on the share size,

due to Applebaum et al. [3] is still 20.892n. A widely believed conjecture suggests
that these upper bounds are, up to constants, the best ones one can hope for.
More concretely, Beimel conjectured:

Conjecture 1 ([5,6]). There exists an ε > 0 such that for every integer n there
exists an access structure with n parties for which every secret sharing scheme
distributes shares of length exponential in the number of parties, that is, 2εn.

Proving this conjecture is a major open problem in the research area of secret
sharing schemes. Karnin, Greene, and Hellman [23] initiated a line of works [12,
14,17,18] that proved different lower bounds on the share size using tools from
information theory. The best of those lower bounds is due to Csirmaz [17,18],
who uses Shannon information inequalities to prove that there exists an explicit
access structure that requires shares of size Ω(n/ lg n). Csirmaz himself and
subsequent works [9,30] indicate that it is unlikely that one can prove a super-
polynomial lower bound on the share size using such information inequalities.

A different line of works focuses on linear secret sharing schemes, where
the shared secret is a linear combination of the shares. Many of the existing
schemes, e.g. [35], are linear and applications like multiparty computation [10,
16,34] crucially rely on this property. Karchmer and Wigderson [22] introduce
monotone span programs and show that these are closely related to linear secret
sharing schemes. Through the lens of monotone span programs, a series of works
obtained increasingly stronger lower bounds. Karchmer and Wigderson prove the
first super-linear lower bound on the share size. Babai, Gál, and Wigderson [4]
prove the first super-polynomial lower bound. Finally, Pitassi and Robere [33]
prove an exponential lower bound, however, the gap between the constants in
the exponent of the lower and upper bound remain far apart.

Several works consider different flavors of the original secret sharing notion.
Beimel and Franklin [7] consider a relaxed security notion of weak privacy,
which only requires that any unauthorized subset can not exclude any secret
value with certainty. The unauthorized subset can, however, conclude that some
secret is more probable than another one. The authors show that this notion is
strictly weaker than the original notion of secret sharing by constructing schemes
with share sizes that are impossible for secret sharing schemes with perfect pri-
vacy. Among other results, the authors construct a weakly-private secret sharing
scheme for the threshold access structures, where the share size is independent
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of n. The authors conclude that any sensible lower bound proof has to make
use of the privacy requirement of secret sharing schemes. Applebaum et al. [1,2]
consider the efficiency of secret sharing schemes for large secrets. The authors
show that, for a certain class of access structures, one can construct secret shar-
ing schemes, where the share size does not grow with an increasing number n of
parties. Their approach requires the secrets to be exponentially large in n.

A different line of works, which is closely related to secret sharing, deals with
the conditional disclosure of secrets (CDS) problem [20]. In this setting, n parties
have a common secret s, some common randomness r and separate inputs xi.
The goal of the parties is to each send a single message to a referee, who should
learn the secret s iff the inputs xi satisfy some publicly known predicate F , i.e.
if F (x1, . . . , xn) = 1. Beimel et al. [8] show that any predicate F can be realized
with communication complexity O(2n/2) and subsequently Liu, Vaikuntanathan
and Wee [29] improve this upper bound to 2˜O(

√
n). Gay, Kerenidis, and Wee [19]

prove a lower bound for CDS schemes, which, very roughly speaking, shows that
the communication complexity of any CDS is at least as large as the one-way
communication complexity of the underlying predicate F . The techniques in this
work are similar to some of the techniques in their work and our lower bound
proof can be seen as a non-trivial generalization of their initial proof strategy to
the case of secret sharing schemes. In contrast to their linear lower bound, our
lower bound here is exponential.

Apart from being an interesting primitive on its own, CDS is also the
main building block underlying the secret sharing scheme of Liu and Vaikun-
tanathan [28] described above. All of the CDS schemes mentioned above run in
time exponential in n for certain predicates F .

Despite all progress that was made towards understanding the complexity
of secret sharing, a lower bound on the share size of secret sharing schemes for
general access structures remained out of reach.

1.1 Our Contribution

In this work we make some progress towards proving Beimel’s conjecture. Infor-
mally, we show that either the total share size or the computational effort for
reconstructing the secret has to be exponential in n. A bit more formally, let us
consider a secret sharing scheme Σ for some access structure A that takes a 1-bit
secret as input and outputs n shares, which are at most k bits long in total. Let
F be some family of reconstruction functions. We require that for any autho-
rized subset of parties A ⊆ A, there exists at least one function in F that these
parties can use to reconstruct the correct secret with probability at least 3/4.
For any A /∈ A, we require that all functions in F reconstruct the correct secret
with probability at most 1/4. These correctness and privacy requirements are
very weak. Neither do we require perfect correctness, nor do we require privacy
against an unauthorized set of parties that may use some function outside of
F to reconstruct the secret. Proving a lower bound for such a secret sharing
scheme makes our result only stronger, since any lower bound we can prove here
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also applies to any secret sharing scheme with better correctness and privacy
guarantees. In this work we prove:

Theorem 1 (Informal). For any secret sharing scheme Σ for general access
structures, with domain of secrets {0, 1} and total share length k, then there
exists an access structure A such that

lg(|F|) · k = Ω(2n/
√

n).

Our result does not prove Beimel’s conjecture, but it tells us that any secret
sharing scheme for 1-bit secrets for general access structures, which has a recon-
struction function whose description is sub-exponentially large in n, must have
a share size that is exponential in n. In particular, this holds even if the secret
sharing itself runs in time exponential in n.

To get a better feeling of what F is, one can, for example, imagine it to be
the set of all functions from {0, 1}k → {0, 1} that are computable by a constant
fan-in boolean circuit of some size t(k) ≥ k. Any one circuit can compute exactly
one function, there are a constant amount of different gates types, and for any
gate with constant fan-in, there are t(k)O(1) choices for the input wires. It follows
that there are at most t(k)O(t(k)) different reconstruction functions in F . Now,
if for example t(k) ≤ kc for a constant c ≥ 1 (decoding by a circuit of size
polynomial in the secret share length), then our theorem says that there exists
an access structure A for which the share length k must be exponential in n. On
the other hand, if k is for example polynomial in n, then our theorem tells us
that there exists some access structure A which requires an exponentially large
reconstruction circuit.

We prove Theorem 1 via a counting argument, meaning that we do not
explicitly provide an access structure A that is affected by the lower bound. The
high-level idea of our proof is as follows. Assume that there exists some secret
sharing scheme ΣA for every access structure A with the desired correctness
and privacy properties and a total share size of kA ≤ k. In the first step, we
construct a family D that contains all access structures A of a certain type and
we show that the size of this family is 2Ω(2n/

√
n). By the pingeon-hole principle,

we know that the description of any A ∈ D is at least lg |D| = Ω(2n/
√

n) bits
long. On the other hand, we show that for any A ∈ D one can use ΣA to
construct a O(lg |F| ·k)-bit long lossless encoding from which A can be uniquely
recovered. Combining the two observations directly yields the theorem stated
above. The main challenge in realizing this proof idea lies in the construction of
an appropriate encoding (and decoding) algorithm with the desired efficiency.
Our encoding algorithm proceeds in two steps. First, we exploit the correctness
and privacy properties of our secret sharing scheme to construct a randomized
lossless encoding algorithm that works well for 99% of the sets A in any given A
and encodes them into O(lg |F| · k) bits. A careful analysis reveals that we can
simply write out the remaining 1% of A ∈ A as part of the encoding and still
obtain a lower bound on lg |F| · k.

Proving lower bounds via such encoding arguments has been done quite exten-
sively in the area of data structure lower bounds, see e.g. [15,24,25,31,32,36]
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and was also used recently to prove optimality of the Johnson-Lindenstrauss
lemma in dimensionality reduction [26] and to prove optimality of ORAMs with-
out balls-in-bins assumptions [27].

Remark. At first sight it may seem that the reconstruction function must take
the access structure as input to be able to reconstruct. If this was the case, then
our lower bound would be meaningless, since we can construct exponentially
large access structures. This, however, is not the case. Consider the following
trivial secret sharing scheme for some bitstring x among parties p1, . . . , pn for
any access structure A. For each authorized set A = {pi1 , . . . , pim} ∈ A, we pick
uniformly random si1 , . . . , sim such that x = si1 ⊕ · · · ⊕ sim and give (A, sij )
to pij . If a set A wants to reconstruct a secret, they check whether they have
a share corresponding to A and xor their corresponding shares together if this
is the case. If they do not have a share corresponding to A, they conclude that
they are not an authorized set. Note that reconstruction function only takes the
shares as input and not the access structure itself.

2 Formal Model and Result

In this section, we formally define secret sharing schemes and the precise condi-
tions under which our lower bounds holds. Except for the security requirements,
we define a secret sharing scheme precisely as in [6].

Definition 1. Let {p1, . . . , pn} be a set of parties. A collection A ⊆ 2{p1,...,pn}

is monotone if B ∈ A and B ⊆ C imply C ∈ A. An access structure is a
monotone collection A ⊆ 2{p1,...,pn} of non-empty subsets of {p1, . . . , pn}. Sets
in A are called authorized, and sets not in A are called unauthorized.

Definition 2. Let {p1, . . . , pn} be a set of parties. A distribution scheme Σ =
(Π,μ) with domain of secrets {0, 1} is a pair, where μ is a probability distribution
on some finite set R called the set of random strings and Π is a mapping from
{0, 1} × R to a set of n-tuples {0, 1}k1 × · · · × {0, 1}kn , where {0, 1}kj is called
the domain of shares of pj. A dealer distributes a secret b ∈ {0, 1} according to
Σ by first sampling a random string r ∈ R according to μ, computing a vector of
shares Π(b, r) = (s1, . . . , sn) and privately communicating each share sj to party
pj. For a set A ⊆ {p1, . . . , pn}, we denote Π(b, r)A as the restriction of Π(b, r)
to its A-entries.

When designing secret sharing schemes, one would typically consider larger
domains of secrets than just a single bit as in Definition 2. In this paper we are
proving a lower bound, so focusing on the simplest possible setting of a secret
consisting of a single bit only makes our lower bound stronger and the proof
simpler. The lower bound we prove in this paper holds for secret sharing schemes
that are computationally more efficient when authorized parties reconstruct the
secret than when unauthorized parties attempt to. We define this formally in
the following:
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Definition 3. Let {p1, . . . , pn} be a set of parties, let A ⊆ 2{p1,...,pn} be an
access structure and Σ = (Π,μ) a distribution scheme with domain of secrets
{0, 1} and domain of shares {0, 1}k1×· · ·×{0, 1}kn . Let F be a family of functions
from ∪∞

i=1

({0, 1}i → {0, 1}) and let U be the uniform distribution on {0, 1}. We
say that (F ,A, Σ) is an efficient secret sharing scheme if it satisfies the following
two conditions:

For any A ∈ A, there exists a function fA ∈
(
F ∩

(
{0, 1}

∑

j∈A kj → {0, 1}
))

such that

∣
∣
∣
∣ Pr
b∼U,r∼μ

[fA(Π(b, r)A) = b] − Pr
b∼U,r∼μ

[fA(Π(b, r)A) �= b]
∣
∣
∣
∣ ≥ 3/4.

For any A /∈ A, it holds for all functions f ∈
(
F ∩

(
{0, 1}

∑

j∈A kj → {0, 1}
))

that
∣
∣
∣
∣ Pr
b∼U,r∼μ

[f(Π(b, r)A) = b] − Pr
b∼U,r∼μ

[f(Π(b, r)A) �= b]
∣
∣
∣
∣ ≤ 1/4.

For intuition on Definition 3, consider as an example instantiating F to be
the set that contains for each i, the set of all functions from {0, 1}i → {0, 1}
that are computable by a constant fan-in boolean circuit of size t(i) ≤ ic for
a constant c > 1, i.e. F contains functions computable by polynomially sized
circuits. With this choice of F , consider an access structure A. A distribution
scheme Σ gives an efficient secret sharing scheme (F ,A, Σ) precisely if any
authorized set of parties A ∈ A can recover the secret using some constant fan-in
boolean circuit with size polynomial in the share length, whereas no unauthorized
set of parties can recover the secret using any constant fan-in boolean circuit
with size polynomial in the share length. We can thus think of F as defining the
computational resources with which authorized parties can recover the secret,
but unauthorized parties cannot. For ease of notation, define F≤k as

F≤k := F ∩ (∪k
i=1

({0, 1}i → {0, 1}))

and define
F=k := F ∩ ({0, 1}k → {0, 1}) .

in the remainder of the paper.

Discussion 1. When designing secret sharing schemes, one would typically insist
that authorized parties can reconstruct the secret with probability 1 − negl(n).
Similarly, one would insist that unauthorized parties cannot reconstruct the
secret except with probability negl(n). Since we are proving a lower bound,
using the constants 3/4 and 1/4 in Definition 3 only makes our results stronger.
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Discussion 2. One could consider allowing randomization in the algorithms used
for reconstructing the secret, both for the authorized and unauthorized parties.
That is, a natural extension of Definition 3 would say that there exists a distri-
bution γA over functions in

(
F ∩

(
{0, 1}

∑

j∈A kj → {0, 1}
))

such that Prb∼U,r∼μ,fA∼γA
[· · · . We remark that the definition would be equiv-

alent to Definition 3 since one can always fix the randomness in fA to achieve
the same guarantees (equivalent to one direction of Yao’s minimax principle).

Discussion 3. Our definition may seem superficially similar to the definition of
weakly-private secret sharing schemes by Beimel and Franklin [7]. Their defini-
tion states that any unauthorized set cannot exclude any potential secret with
probability 1. It does, however, allow the adversary to guess the secret correctly
with a probability that is arbitrarily close to 1. In contrast to their definition,
ours is strictly stronger, since it requires a sharp upper bound on the probability
that an unqualified set of parties guesses the correct secret.

We are ready to present our main theorem in its full generality:

Theorem 2. Let F be a family of functions from ∪∞
i=1

({0, 1}i → {0, 1}) and let
{p1, . . . , pn} be a set of parties. There exists an access structure A ⊆ 2{p1,...,pn}

such that any efficient secret sharing scheme (F ,A, Σ) with domain of secrets
{0, 1} and domain of shares {0, 1}k1 × · · · × {0, 1}kn with k =

∑
j kj, satisfies

lg(|F≤k|) · k = Ω(2n/
√

n).

To appreciate Theorem 2, consider instantiating F to be the set that contains
for each i, the set of all functions from {0, 1}i → {0, 1} that are computable by a
constant fan-in boolean circuit of size t(i) (with t(i) ≥ i). A simple counting argu-
ment shows that |F≤k| ≤ t(k)O(t(k)) (A circuit computes only one function and
there are t(k)O(1) choices for the input wires to each gate, there are O(1) choices
for the function computed by each gate, and there are t(k) gates). Theorem 2
thus gives us that there must exist an access structure A such that any efficient
secret sharing scheme (F ,A, Σ) with domain of shares {0, 1}k1 ×· · · {0, 1}kn with
k =

∑
j kj must satisfy t(k) lg(t(k))k = Ω(2n/n1/2). If we plug in polynomially

sized constant fan-in boolean circuits, i.e. t(i) ≤ ic for a constant c ≥ 1, this
gives us that kc+2 = Ω(2n/n1/2) ⇒ k = 2Ω(n), i.e. any secret sharing scheme
for A must have shares with exponential length if decoding can be done by con-
stant fan-in boolean circuits with size polynomial in the share length. Moreover,
the lower bound holds even if we only require that unauthorized parties cannot
reconstruct the secret using a polynomially sized constant fan-in boolean circuit
(polynomial in the length of the shares). Notice that since this is a lower bound,
it only makes the result stronger than if we e.g. required that a computation-
ally unbounded set of parties cannot reconstruct the secret. We can also deduce
from Theorem 2 that the size of the decoding circuit must be exponential in n,
regardless of the share length.
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Another interesting instantiation of Theorem 2 is to let F consist of all
functions computable by a Turing machine with at most 106 states and alphabet
{0, 1} (or some other constant number of states). Then |F ∩({0, 1}i → {0, 1})| =
O(1) and the lower bound says that there exists an access structure A for which
any efficient secret sharing scheme (F ,A, Σ) must satisfy k2 = Ω(2n/

√
n) ⇒ k =

2Ω(n), i.e. shares must have exponential length if the secret can be reconstructed
by authorized parties using a Turing machine with at most 106 states and binary
alphabet. The lower bound holds as long as we require that unauthorized parties
cannot recover the secret using a Turing machine with at most 106 states and
alphabet {0, 1}.

An even more exotic instantiation of Theorem 2 follows by letting F contain,
for every i, the set of functions from {0, 1}i → {0, 1} that are computable by
a C-program with up to t ASCII characters. A counting argument shows that
|F≤k| ≤ k2O(t) (there are 2O(t) sequences of t ASCII characters, and any program
computes at most one function from {0, 1}i → {0, 1}) and we conclude that it
must be the case that there exists an access structure A such that any efficient
secret sharing (F ,A, Σ) must have (t + lg k) · k = Ω(2n/

√
n). This means that

either the length of the C-program has to grow exponentially with the number
of parties n, or the length of the shares has to grow exponentially with n. Thus
if we insist on short shares, then the C-programs for reconstructing the secret
have to be extremely non-uniform, and if we insist on reconstructing secrets
using C-programs of any constant length t independent of n, then the shares
must have exponential length. This lower bound holds as long as we require that
unauthorized parties cannot recover the secret via a C-program of length t or
less.

Finally, if one insist that authorized parties can efficiently reconstruct the
secret via a C-program of length at most t ASCII characters, then the previous
lower bound is strengthened. That is, we can now let F contain, for every i, the
set of functions from {0, 1}i → {0, 1} that are computable by a C-program with
up to t ASCII characters that terminates in at most h steps. If we insist that
authorized parties can reconstruct the secret by running such a C-program, then
the lower bound (t + lg k) · k = Ω(2n/

√
n) holds even if we only require that

unauthorized parties cannot reconstruct the secret via a C-program of length t
and running time at most h steps.

3 Lower Bound Proof

To prove Theorem 2, let {p1, . . . , pn} be a set of parties and let F be a family
of functions from ∪∞

i=1

({0, 1}i → {0, 1}). Assume that there is a parameter k

such that it holds for all access structures A ⊆ 2{p1,...,pn}, that there exists an
efficient secret sharing scheme (F ,A, (ΠA, μA)) with domain of secrets {0, 1}
and domain of shares {0, 1}kA

1 × · · · × {0, 1}kA
n with

∑
j kA

j = kA ≤ k.
We will prove a lower bound on lg(|F≤k|)·k via a counting argument. The high

level intuition is that two distinct access structures A1 and A2 must be different
either in terms of the shares they use, or in terms of the procedures used for
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reconstructing the secrets. Since there are overwhelmingly many distinct access
structures, this gives a lower bound on either the share length (a lower bound on
k), or on the descriptional size of the procedures used for reconstructing secrets
(a lower bound on lg(|F≤k|)).

More formally, let D be the family containing all access structures A ⊆
2{p1,...,pn} such that A contains no sets A of cardinality less than n/2� and A
contains all sets A of cardinality more than n/2�. We claim that |D| = 2( n

�n/2�) =
2Ω(2n/

√
n). To see this, observe that A is monotone for any choice of subsets with

cardinality n/2� that we might include in it. Since there are
(

n
�n/2�

)
subsets of

cardinality n/2�, we conclude that there are 2( n
�n/2�) ways of choosing which

subsets to include in A.
We will show that we can encode any A ∈ D into

λ = O(lg(|F≤k|) · k) + 0.1 ·
(

n

n/2�
)

bits and still uniquely recover A from the encoding alone. The encoding proce-
dure thus defines an injective mapping from D to {0, 1}λ. By the pigeon-hole
principle, this implies that

λ ≥ lg |D| ⇒
O(lg(|F≤k|) · k) ≥ 0.9 ·

(
n

n/2�
)

⇒

lg(|F≤k|) · k = Ω(2n/
√

n).

We are now ready to describe our encoding and decoding procedures.

Encoding. Let A ∈ D. Our procedure for uniquely encoding A is as follows:

1. For i = 1, . . . , T for a parameter T to be fixed, consider sampling bi ∼ U
as a uniform random bit, and sample ri ∼ μA. Let A ⊆ {p1, . . . , pn} be an
arbitrary set of cardinality n/2� and define kA

A =
∑

j∈A kA
j . By Definition 3,

it holds that:
– If A ∈ A, then there exists a function fA ∈ F=kA

A
such that

∣
∣
∣
∣ Pr
bi,ri

[fA(ΠA(bi, ri)A) = bi] − Pr
bi,ri

[fA(ΠA(bi, ri)A) �= bi]
∣
∣
∣
∣ ≥ 3/4.

– If A /∈ A, then for all functions f ∈ F=kA
A

, it holds that

∣
∣
∣
∣ Pr
bi,ri

[f(ΠA(bi, ri)A) = bi] − Pr
bi,ri

[f(ΠA(bi, ri)A) �= bi]
∣
∣
∣
∣ ≤ 1/4.

We use this observation as follows: We set T = c lg |F≤k| for a sufficiently
large constant c > 1. If A /∈ A, then since |F=kA

A
| ≤ |F≤k|, we can use a
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Chernoff bound and a union bound over all f ∈ F=kA
A

to conclude that with
probability at least 99/100, it holds simultaneously for all f ∈ F=kA

A
that

||{i : f(ΠA(bi, ri)A) = bi}| − |{i : f(ΠA(bi, ri)A) �= bi}|| < T/3.

At the same time, if A ∈ A and we have T = c lg |F≤k|, then with overwhelm-
ing probability, we will have that there exists at least one function f ∈ F=kA

A

such that

||{i : f(ΠA(bi, ri)A) = bi}| − |{i : f(ΠA(bi, ri)A) �= bi}|| > T/3.

Thus intuitively, the variables b1, . . . , bT and r1, . . . , rT reveal whether A is
in A or not, i.e. they carry information about A. We exploit this as follows:
Let χA be the random variable taking the value 1 if the test

∃f ∈ F=kA
A

:

||{i : f(ΠA(bi, ri)A) = bi}| − |{i : f(ΠA(bi, ri)A) �= bi}|| > T/3?

correctly predicts whether A ∈ A. Then Pr[χA = 1] ≥ 99/100. Let S be the
family of all subsets of {p1, . . . , pn} that have cardinality n/2�. It follows
by linearity of expectation that E[

∑
A∈S χA] ≥ 99|S|/100. This means that

there must exist a choice values b̂1, . . . , b̂T and r̂1, . . . , r̂T such that the test
∃f ∈ F=kA

A
: ||{i : f(ΠA(b̂i, r̂i)A) = b̂i}| − |{i : f(ΠA(b̂i, r̂i)A) �= b̂i}|| > T/3?

correctly predicts whether A ∈ A for at least 99|S|/100 sets A ∈ S. Fix such
values.

2. Write down lg k bits specifying kA, followed by k bits specifying kA
1 , . . . , kA

n

(this can be done by writing a length k bit string, where positions
∑j

i=1 kA
i

are set to 1 for all j = 1, . . . , n). Then write down the bits b̂1, · · · , b̂T and
ΠA(b̂1, r̂1)), · · · ,ΠA(b̂T , r̂T )) for a total of at most lg k + k + T (1 + k) bits.

3. Let S̄ be the subset of sets from S where the prediction is incorrect. Encode
S̄ as a subset of S using lg

(
n

�n/2�
) ≤ n bits to specify |S̄| and lg

(|S|
|S̄|

) ≤
|S̄| lg(e|S|/|S̄|) ≤ (|S|/100) lg(100e) < 0.1 · ( n

�n/2�
)

bits to specify the subset.

Next we argue how to recover A from the above encoding:

Decoding.

1. Read the first lg k + k bits to recover kA and kA
1 , . . . , kA

n . Then use the fol-
lowing T (k + 1) bits to recover b̂1, . . . , b̂T and ΠA(b̂1, r̂1), . . . , ΠA(b̂T , r̂T ).

2. For each A ∈ S, iterate over all f ∈ F=kA
A

and compute the value

Δf :=
∣
∣
∣|{i : f(ΠA(b̂i, r̂i)A) = b̂i}| − |{i : f(ΠA(b̂i, r̂i)A) �= b̂i}|

∣
∣
∣ .

Observe that the decoder can extract ΠA(b̂i, r̂i)A from ΠA(b̂i, r̂i) since the
decoder knows kA

1 , . . . , kA
n . Thus the decoder can indeed compute Δf . If there

is at least one f with Δf ≥ T/3, we initially predict that A ∈ A and otherwise,
we predict that A /∈ A. These predictions are correct, except for A ∈ S̄.
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3. Finally we read the last part of the encoding to determine which sets A that
were predicted incorrectly in step 2. Together with the correct predictions
from step 2., this recovers A.

Analysis. Finally we derive the lower bound. We have just argued that we can
give a unique encoding of each A ∈ D, hence the length of the encoding must
be at least lg |D| =

(
n

�n/2�
)

bits. But the above encoding uses at most:

lg k + k + T (1 + k) + n + 0.1 ·
(

n

n/2�
)

bits. Thus we must have

lg k + k + T (1 + k) + n + 0.1 ·
(

n

n/2�
)

≥
(

n

n/2�
)

⇒

Tk = Ω

((
n

n/2�
))

= Ω(2n/
√

n).

But T = c lg |F≤k| and we conclude:

lg |F≤k| · k = Ω(2n/
√

n).
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31. Pǎtraşcu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model.
SIAM J. Comput. 35(4), 932–963 (2006)
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