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Abstract. Experimental research on spatial descriptions shows that
their semantics are dependent on several modalities, among others (i)
a geometric representation of space (“where”, geometric knowledge)
and (ii) dynamic kinematic routines between objects that are related
(“what”, functional knowledge). In this paper we examine whether geo-
metric and functional bias of spatial relations is also reflected in large
corpora of images and their corresponding descriptions. In particular, we
examine whether the variation in object locations in the usage of a rela-
tion is a predictor of that relation’s functional or geometric bias. Previous
experimental psycho-linguistic work has examined the bias of some spa-
tial relations, however our corpus-based computational analysis allows us
to examine the bias of spatial relations and verbs beyond those that have
been tested experimentally. Our findings have also implications for build-
ing computational image descriptions systems as we demonstrate what
kind of representational knowledge is required to model spatial relations
contained in them.

Keywords: Spatial descriptions · Geometric · Functional · Corpus ·
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1 Introduction

The work on spatial relations such as “the chair is to the left of the table” and
“the bicycle near the door” shows that the semantics of spatial relations is com-
plex, drawing on several different modalities which include among others (i) scene
geometry, (ii) functional interactions between objects, and (iii) dialogue inter-
action between conversational partners. For example, [19] argue that language
encodes objects and places differently and this may be a reflection of different
cognitive processes in the visual system: “what” and “where”. Further, a num-
ber of papers [5–7,14] show experimentally that different spatial relations have
different bias in terms of functional (“what”) and geometric (“where”) knowl-
edge. Similarly, [18] argues that two classes of spatial relations have different
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developmental trajectories and may be rooted in different neural representa-
tions. [8] argues that the bias to function and geometry of a particular relation
is contextual and task-dependent. It is important to note that, since objects
are grounded in space, their functional properties and interaction between them
are also reflected in their geometric representations, in particular how they are
conceptualised as different geometric shapes and how they are arranged in scene
configurations (cf. [13]). However, the background knowledge that allows us to
do this geometric projection of scenes comes from our conceptual understanding
of the world, for example our knowledge that bowls are used to contain fruit and
umbrellas are used to protect people from the rain.

For this reason, computational modelling of descriptions of spatial relations
is challenging. Firstly, it requires information from each of these modalities to be
present in the dataset. For example, it is hard to collect a large enough dataset
of functional interactions between objects and represent these interactions as
computationally useful representations. Secondly, there is a challenge of infor-
mation fusion which needs to be attuned for different words in different contexts.
Recently, deep neural networks modelling language and vision as perceptually
grounded language models have demonstrated a lot of success [21,28]. An inter-
esting research question therefore is what information such networks can capture
in their representations from the available modalities and whether such represen-
tations correspond to the representations that have been argued for in linguistic
and psychological literature.

For example, [9–11] explore whether functional and geometric bias can be
recovered from the information encoded in a language model, the semantic asso-
ciations encoded in the sequences of words. Language models together with word
embeddings [2] are widely used to represent linguistic meaning in computational
semantics and they are based on the premise known as the distributional hypoth-
esis [12] that words occurring in similar contexts, represented by other words,
will have similar meanings [27]. If we relate the distributional hypothesis to
grounding in perception, this is because words co-occurring together will refer
to identical situations and therefore the contexts of words become proxies for
accessing the underlying situations. It follows that information encoded in lan-
guage models about spatial descriptions should encode some relevant semantics
about dynamic kinematic routines between the objects that are related, albeit
very indirectly. Hence, [9–11] demonstrate that the functional-geometric bias of
expressions that have been tested experimentally in [7] is reflected in the degree
to which target and landmark objects are associated with a relation in spatial
descriptions extracted from a corpus of image descriptions. They start with the
idea that while any two (abstract) objects can be related in geometric space,
functional relations between the objects and relation are more specific, defined
by the possible functional interaction between the objects. They demonstrate
that this is expressed in the variability and generality of the target and land-
mark objects. Since a geometrically-biased spatial relation can relate any kind
of objects that can be placed in a particular space, the objects used with such
a relation will be more variable than the objects that occur with functionally-
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biased relations that also encode the nature of object interaction. They also
show that usage of descriptions of an image corpus is crucial in this task since
in a general corpus, a wider range of situations is reflected in the word contexts
that may include metaphoric usages of the spatial words in other domains that
do not involve spatial geometry. We may consider such metaphorical usage of
spatial relations in other domains as highly functional.

The experiments based on [7] show that spatial relations have functional or
geometric bias which means that both components are relevant for the semantics
of a description, just not the same degree. For example, a functionally-biased
relation such as over is also sensitive to geometry to some extent, it appears that
a presence of a function skews the regions of acceptability for the target object
of that relation. The deviation in geometry can be explained by the fact that
under a consideration of a functional relation different parts of the target and
landmark object will become attended [3,5]. This results in a situation where
the centroids of bounding boxes of target and landmark objects are displaced
from the locations where we would expect to find them based on the geometric
constraints alone. For example, in the case of a “teapot over a cup” it must be
ensured that the spout of the teapot is located in such a way so that the liquid
will be poured into a cup. In a scene described by a description “the toothpaste
is over a toothbrush” the shape of the bounding boxes will be different from
the previous scene as well as the location of the attended areas. In the case of
an “apple in a bowl” the bowl or its contents must constrain the movement
of the apple (so that it does not fall out of the bowl) and hence locations of
apples that are outside the bounding box of the bowl are also acceptable, for
example where an apple is on the top of other apples. These examples suggest
that over all contexts of target-landmark objects, the variation in locations of
objects represented as bounding boxes will be much higher with functionally-
biased spatial relations than geometrically-biased ones which will be closer to the
axes of the geometric space. The latter is confirmed by the spatial templates of
[20] where in the absence of the functional knowledge, when an abstract shapes
are used as targets and landmarks, both geometric and functional relations such
as “over” and “above” give very similar axis-centred spatial templates. Hence,
in this work, we explore whether we can detect a difference in the variability
of the target objects in relation to the landmark objects for spatial relations of
either geometric or functional bias in terms of representations of objects as visual
features in images from a large corpus of images and descriptions and for relations
that go beyond the ones that were tested experimentally. We expect that this
variability will be the opposite of the variability that has been previously shown
for textual data [9–11]. Functional information can be recovered from the textual
information about what objects are interacting, while geometric information can
be recovered from where the visual features of objects are. Hence, we expect that
relations that were experimentally found to have a functional bias will be less
variable in their choice of target and landmark objects but more variable in
terms of where these objects are in relation to the prototypical axes from the
landmark. On the other hand, relations that were experimentally found to have a
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geometric bias, are expected show a higher variation in terms of the object kinds
they relate but these will be geometrically less variable from the axes based on
the landmark.

The experimental work on functional and geometric bias of spatial relations
focuses on abstract images where the type of objects, their location and the
nature of functional interaction is carefully controlled. This gives us accurate
judgements about the applicability of descriptions but since the task focuses
on abstract scenes this gives us different judgements to those we would have
hoped to have obtained in real-life situations simply because of the perceptual
and linguistic context is different from real-life situations [8]. Ideally, we would
need a corpus of interactions between real objects and their spatial descriptions
that on the perceptual side would be represented as 3-dimensional temporal
model. Collecting such a corpus on a large scale would be a very challenging
endeavour, although important work in this area has recently been done in route
instructions in a virtual environments [26]. On the other hand, there exist several
large corpora of image descriptions, e.g. [16] which contain spatial descriptions
and a large variety of interacting objects in real-life situations. For this reason
they are, in our opinion, an attractive test-bed for examining the meaning of
geometrically-biased and functionally-biased spatial relations. The down-side of
image corpora is that the visual representations scenes are skewed, depending
on the angle and the focus/scale at which an image was taken which means
that an object such as a chair may have a different shape and size in respect
to the image from one image to another. There is also no information about
object depth and the dynamic interaction of objects. To counter this variation
in objects we will introduce some normalisation steps. Of course, there will also
be some noise in the scene representation’s we obtain but we hope this noise
will be uniform across different images and kinds of descriptions and therefore
a relative comparison of descriptions of different bias will still give us a valid
result.

Why is identification of functional and geometric bias of spatial relations rel-
evant? Theoretically, the experiments give us more insights into the way spatial
cognition is reflected in language. Showing that there is a distinction between
these two classes of spatial relations on a large scale dataset of image descriptions
gives a further support to the experimental evidence that has been obtained in
carefully designed experiments. Knowing that there are different classes of spatial
relations can help us in the task of generating image descriptions, for example
in a robotic scenario. Following our observation, in an image description task
functional relations are more informative than geometric relations as in addition
to geometric component they also say something about the relation between the
objects.1 In a given scene a target object can be described and related to the
landmark with several spatial relations based on geometric considerations alone.

1 Notice, however, that there are tasks where geometric information may be more
informative, for example when answering a question about the location of an object
in a visual scene. The choice of a spatial relation therefore depends on the commu-
nicative intent of the speaker and the task they are engaged in.
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However, these descriptions could be filtered by considering those relations that
are functionally more likely. The investigation also has implication for end-to-
end image captioning systems build with deep learning architectures. Knowing
that different spatial relations have a different bias for visual and textual modal-
ity would allow us a better comparison and evaluation of such systems. For
example, there is a significant discussion in the vision and language community
that end-to-end image captioning systems and visual question answering systems
are relying too much on the information from language models [1] rather than
grounding words in an image, particularly when it comes to describing relations
between objects. Knowing that not all spatial relations are equally geometrically
spatial has important implications for evaluating such systems: (i) it shows that
provided there is a balanced dataset reliance of a spatial relation on a language
model is not necessarily a shortcoming but rather that is in fact the dimension
that determines their meaning and there is a gradience in the way a description
is grounded in visual vs textual features; (ii) it gives us insights into how we
should build such systems in the future so that both (or even more) modalities
are appropriately represented.

This paper is organised as follows: in Sect. 2 we describe the dataset of images
and descriptions used in our studies; in Sect. 3 we describe how we represent geo-
metric information from image annotations for spatial relations and how such
representations can be compared for functional and geometric bias; in Sect. 4
we introduce a more sophisticated comparison in terms of the variation in our
feature representations for different spatial relations from a representative rep-
resentation; and we conclude in Sect. 5.

2 Dataset

We base our investigations on the Visual Genome dataset [16] which is a crowd-
sourced annotations of 108,007 images. The dataset comprises several types of
annotations including the region descriptions (phrases and sentences referring to
one bounding box), objects (annotated as bounding boxes), attributes for each
object annotation, and relationships between them (triplet of subject, predi-
cate, object). Most object names, attributes and predicate of relationships are
also mapped to WordNet synsets. The predicates in relationships include spatial
relations such as “above”, “under”, “on”, “in” but also verbs describing events
such as “holding” and “wearing”, or a combination of both such as “sitting on”.

Without any data cleaning, the total number of possible forms of relation
tokens is 36,550. Since spatial relations are multi-word expressions, we create
a dictionary of relations capturing different variations of their syntactic form
(e.g. “to the left of”, “on the left”, “left”, etc.) based on the lists of English
spatial relation constructions in [17] and [13]. Out of 235 spatial relations, we
only found 78 types. Some variation in writing of relationships may be simply
due to the annotator shorthand notation, e.g. “to left of”. We combine the
compound variants of spatial relations to a lower-cased single variant in cases
where we can be reasonably sure that this will not affect their semantics in terms
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of functional and geometric bias. Duplicate descriptions per image which are
created by different annotators are removed, as well as those descriptions where
the extracted spatial relations are not used in a complete locative description
involving a target object, relation and a landmark, e.g. “chair on left”. At the
end, we only kept those relations which have more than 30 instances in the
dataset.

In addition to spatial relations, we also added a few verbal relations that
describe situations that are grounded in space, for example verbs that [4] have
shown to have strong predictability of object on the y-axis. The dictionary of all
relations examined in this study is given in Table 1.

Table 1. The list of consolidated spatial relations and verbs.

over, above, below, under, left of, right of, on, in, inside, outside,

far from, away from, next to, near to, across, at, with, beneath,

underneath, through, alongside, against, off, between, from, beside, to, by, along,

around, behind, bottom, top, front of, back of, side of,

flying, kicking, cutting, catching, riding, seeing, looking, floating, finding, pulling,

removing, having, wearing, containing, holding, supporting, sitting, touching

3 Representing Locations as Dense Geometric Vectors

Each bounding box in Visual Genome is represented with 4 numerical values:
the x-, y- coordinates relative to the image frame, the bounding box width and
height. In order to compare the geometric arrangements of objects represented
as bounding boxes between different spatial relations, as well as to compare this
data with the data from spatial templates from [20], we convert both representa-
tions to 3-dimensional dense vectors [x, y, d] where x and y represent directions
in the 2-dimensional space and d is a Euclidean distance between x and y. Hence,
we separate directionality (represented by x and y) from the distance. The intu-
ition behind this comes from a distinction between projective relations (“to the
left of” and “above”) and topological relations (“in”, “at”, “near”) where the
former are dependent on both directionality and distance but the latter are only
dependent on distance. The 3-dimensional vectors (the x and y dimension) are
inspired by vectors introduced in the Attentional Vector Sum Model (AVS) [23].
However, as we will describe below they are used quite differently. Rather then
modelling the attention for a particular pair of bounding boxes in the AVS model
we use them to estimate attention between all bounding boxes that are related
by a particular spatial relation. In other words, we use them to estimate the
likelihood that for a particular spatial relation a particular location is occupied
by an object. Therefore, the representations are similar to the notion of spa-
tial templates. Here, other representations of bounding boxes could also be used



Functional-Geometric Grounding 225

(see for example [22,24]. No doubt, different geometric representations favour
different classes of spatial relations differently and this will be reflected in our
results. For example, we expect that our 3-dimensional dense vectors are not
suited to ground relations such as “around” that require grounding in multiple
locations at different sides. This raises two interesting questions that have no
straightforward answers: what are basic geometric representations required to
model spatial language and to what degree is the choice of what representations
go into our geometric framework a part of the functional knowledge. Overall,
we opt for simplest low-level geometric representations that are used in spatial
templates and the AVS model.

(a) Bounding boxes in an image (b) Spatial template

Fig. 1. (a) Images are segmented to a fixed set of locations and relation vectors are
calculated for every pair of locations occupied by the bounding boxes of target and
landmark. (b) In spatial templates a vector is calculated for every location of the
template originating in the location of the landmark.

We derive the dense features as follows. First, as shown in Fig. 1a, we segment
images into 7 × 7 locations. Then, for every pair of points in the locations matrix,
we define a dense vector as:

for two points on image

{
p1 = 〈i1, j1〉
p2 = 〈i2, j2〉

,up1,p2 =

⎡
⎣xy
d

⎤
⎦ =

⎡
⎢⎣

i2−i1
||−−→p1p2||2
j1−j2

||−−→p1p2||2
sgn · ||−−→p1p2||2

⎤
⎥⎦

where up1,p2 represents the dense geometric relation features between two points,
which p1 is a point on landmark and p2 is on the target, the Euclidean distance
between them is ||−−→p1p2||2 =

√
(i2 − i1)2 + (j2 − j1)2, and sgn is a sign value

which is −1 if p2 is also a point on the landmark bounding box, otherwise +1.
For each relation rel, this gives us a collection of vectors. For bounding boxes

annotated with relations in the images of Visual Genome, we build the collection
of dense vectors of all points connecting targets and landmarks related by each
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particular relation in the dataset (V (vg)
rel ). Formally, this set is represented as

follows:

V
(vg)
rel =

{
up1, p2

}
〈trg,rel,lnd〉 ∈ Images

p1 ∈ bboxlnd
p2 ∈ bboxtrg

(1)

where bboxtrg and bboxlnd are the collection of points in bounding boxes of
target trg and landmark lnd.2

Similarly, we use this method on spatial templates from [20] to build all
possible dense vectors. As shown in Fig. 1b, we create a dense vector originating
in the central location of the landmark and ending at every possible location of
target in the spatial template. Each vector from a spatial template is associated
with the acceptability score of the target location.

V (st) =
{
u〈3,3〉,〈i,j〉

}
i∈{1,..,7}
j∈{1,..,7}

, Srel =
{
si,j

}
i∈{1,..,7}
j∈{1,..,7}

(2)

where Srel represents the collection of normalised acceptabilities in spatial tem-
plate of the relation rel.

These vectors in each collection are then projected to a single vector rep-
resentation using the following methods. For the collection of vectors from a
spatial template, the representative vector is the weighted sum of all possible
vectors with acceptability scores:

v
(st)
rel =

∑
i∈{1,..,7}
j∈{1,..,7}

si,j · u〈3,3〉,〈i,j〉 (3)

For the collection of vectors from the Visual Genome bounding boxes, the rep-
resentative vector is the expected 3-feature vector:

v
(vg)
rel = E[V (vg)

rel ] =
1

|V (vg)
rel |

∑
v∈V

(vg)
rel

v (4)

where |V (vg)
rel | is the number of vectors. Adding vectors with contradicting fea-

tures will cancel each other and the remaining vector points at a direction with
the least opposite directions. More importantly, the resulting three dimensional
feature vector v(vg)

rel from bounding box annotations in Visual Genome is similar
to v

(st)
rel from spatial templates (Fig. 2).
To compare the projected dense vectors we have obtained from the images

with those from the spatial templates we use cosine similarity or distance as
shown in Fig. 3 where the horizontal axis represents the vectors from spatial
templates v(st)

rel and the vertical axis represents the vectors from images v(vg)
rel . The

2 For computational convenience, instead of including all possible annotations in this
set, we randomly sampled a maximum of 1000 triplets from the relationship dataset.
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Fig. 2. Examples of v
(vg)
rel and v

(st)
rel : vectors are similar in all three dimensions but their

origin and scale are different.

Fig. 3. A comparison of dense vector representations from images v
(vg)
rel and those from

spatial templates v
(st)
rel with the cosine distance: 1 − cosine(v

(vg)
rel , v

(st)
rel ).

results indicate that the 3-dimensional vectors from the two datasets are very
similar except in the case of “away from”. Except for this case the lowest cosine
distance is on the diagonal. The results also indicate that pairs of geometrically
or functionally biased spatial relations such as “over” and “above” and “under”
and “below” have similar overall directions and distances. Projective relations
have clearly defined opposites alongside one axis but topological relations are
overlapping with the projective relations. “next tost” is similar to “next tovg”,
“away fromvg”, “near tovg” and “far fromvg” and “away fromst” is dissimilar
to all. This has possibly to do with the way distance is represented in images.
Humans are able to estimate distance between two focused objects not on their
actual size but the size they know from their background knowledge.

The comparison of dense vectors here indicates that similar dense vectors
are obtained from both datasets. However, it does not distinguish functional
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and geometric bias of different relations. For example, “overst” is equally similar
to “overvg” and “abovevg” while we were expecting that since “overst” is used
in the geometric context it will be similar to “abovevg”. This is because cosine
similarity/distance takes into account all three dimensions x, y and z of the dense
vectors. However, we expect that “overst” will be similar to “overvg” in y and
d dimensions but different in the x dimension which distinguishes its geometric
and functional use.

In the following section we examine the 3-dimensional feature space of the
dense vectors in terms of the variation in the distribution of features. Therefore,
we need to look for a measure that captures variation in distribution of features.

4 Variation of Features Within Dense Vectors

We argued in Sect. 1 that we expect that functionally-biased relations will be
associated with more variable locations of target and landmark objects as these
will also be dependent on the functional relations between individual object
pairs. In the previous section we represented the locations between targets and
landmarks as dense vectors which were then projected to one representative
vector for each spatial relation. The degree of divergence from the representative
vectors can be considered as an indication for non-geometrical use of spatial
relations. In order to test this, for each spatial relation, we calculate a deviation
of individual target-landmark vectors v from the representative 3-dimensional
dense vector v

(vg)
rel . As a metric of deviation we use cosine distance:

Distances =
{

1 − cosine(v(vg)
rel ,v)

}
v ∈V

(vg)
rel

(5)

We expect that on average, cosine distances in geometrically-bias relations
are closer to 0 (there is a clearer central tendency), and the overall distribution
of cosine distances is positively skewed: the mode of cosine distances is close
to zero while the mean and the tail of differences is skewed to the right.3 In
Fig. 4, we select a set of geometrically- and functionally-biased relations that
have been experimentally tested and reported in the literature and plot (a)
their average cosine distances of dense vectors from their representative vector
and (b) the skewness of cosine differences. We also include relations the bias
of which has not been tested experimentally (other) but we expect that this
is demonstrated by their position in the graph between the key-points deter-
mined experimentally. Finally, we also include some verbs describing events and
situations involving interacting objects in space that are also annotated as rela-
tionships in the Visual Genome, e.g. “boy, feeds, giraffe”. We are particularly
interested in the verbs that are reported in Collell et al. [4] for which the loca-
tion of the (target) object is most strongly predictable from the y dimension
(“flying”, “kicking”, “cutting”, “catching” and “riding”) (verb set 2 in Fig. 4)

3 To calculate skewness we use an implementation of the Fisher-Pearson coefficient
[15, s.2.2.24.1] in scipy.stats.skew.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skew.html
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(a)

(b)

Fig. 4. (a) The average cosine distance of dense vectors [x, y, d] from the expected
dense vector of each spatial relation. (b) The skewness in distribution of distances. The
colour indicates the status of each relation as reported in the literature.

and those for which the y dimension is the least predictable in respect to the
location of the object (“see”, “float”, “finding”, “pulled” and “removes”) (verb
set 1) listed in their [4, Table 3], p.6770. Note, however, that [4] do not consider
the x-dimension which may be a relevant dimension for the verbs in the pic-
ture. A quick comparison of the two lists gives an impression that the former
contains descriptions of events involving object relations that are more strongly
grounded in the image representations (e.g. “riding”) and are therefore similar
to geometrically-biased spatial relations, while the second list contains descrip-
tions of events that are less strongly grounded in the image representations (e.g.
“sees”) and would require a simulation of dynamic kinematic routines between
the objects which makes them similar to functionally-biased spatial relations.

Examining the average cosine distances from the representation vector of
each spatial relation in Fig. 4a we can see that relations that have been identi-
fied as geometrically-biased tend to have a lower average cosine distance from the
representation’s dense vector than those that have been identified as functionally-
biased. The same tends also to be the case for verbs identified in [4] for which the
objects are more dependent on the y (verb set 2) compared to verbs for which
the objects are less dependent on the y dimension (verb set 1). Note that in this
comparison a deviation of the entire 3-dimensional vector [x, y, d] was taken into
account and therefore a deviation can be in any of these dimensions. Examining
the skewness of cosine distances from the representation vector of each spatial
relation in Fig. 4b we can see that geometrically-biased verbs and verbs that are
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more strongly grounded show a tendency towards a higher skewness of distri-
bution, they are more biased towards the representational vectors. Overall, the
results indicate support for our hypothesis in Sect. 1 that bounding boxes are
predictors of the functional and geometric bias as well as they indicate that the
same bias is also present in verbal descriptions of scenes.

Fig. 5. Using the KDE method we plot a histogram of cosine distances of individual
examples from the representational vector of each relation. The histogram shows skew-
ness to zero for geometrically-biased usages of relations. The individual lines show some
examples of target-landmark pairs which have the lowest (blue/dark) and the highest
(brown/light) average distance from the representational vectors. (Color figure online)

In Fig. 5 we examine the histograms of deviations from the representational
vectors of “on”, “in”, “over”, “above”, “right of” and “left of”. To plot these
histograms we use Kernel Density Estimation (KDE)4 [25] which indicates the
density of samples in the range of [0, 2] of the cosine distance (Eq. 5). We also
give examples of target-landmark pairs which have the highest (brown/light) and

4 We use an implementation based on scipy.stats.gaussian kde.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html
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above

over

cutting

Fig. 6. The individual features of dense vectors [x, y, d] have different distributions for
different relations.

the lowest (blue/dark) average distances from the representational vectors. These
examples indicate that functionally biased relations (“on”, “in” and “over”) are
used in contexts where the geometric constraint is satisfied and also in contexts
where there is a deviation from the geometric constraint, just as predicted by
experiments in [7]. Interestingly, among the cases that show high deviation from
the representational vectors we also find examples that are typically considered to
involve more complex geometric conceptualisations which we argued are a result
of taking into account object function, for example “bracelet on wrist”, “woman
in dress”, and “trees over rocks”. However, within the relations that we consider
to be geometrically-biased we also find examples of high deviation from the
representational vectors. The examples for “above” correspond to usages where
there is an element of covering or protection that has been argued to be the
functional component of “over”, e.g. “clouds above/over pasture” and “mirror
above/over bench” or cases that require complex geometric conceptualisation of
the scene, e.g. “tree above ground”. We are intrigued by the examples that
deviate from the representational vectors for “left of” and “right of”. They
frequently contain animate beings or objects with clearly defined front and back
and therefore have orientation. Our interpretation is that these examples are a
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reflection of changes of the perspective from the relative frame of reference of the
observer of the image to the intrinsic frame of reference of the landmark. Since
our framework assumes the relative frame of reference by default, the change to
a different frame of reference in a description would lead to high distances in our
results.

As stated earlier, the dense vector representations including their cosine dis-
tances aggregate three features [x, y, d] and therefore the previous comparisons
do not take into account the role of each individual feature for spatial relations.
In Fig. 6 we plot the distribution of all features over all vectors of V

(vg)
rel for

some relations. These relations were found to be strongly dependent on the y
feature in [4] who only considered this feature. The individual histograms for
the x (centre top), y (centre right) and d feature (on the right side) indicate
the density of their values and the mixture density graph for x, y (centre) shows
how these features interact. This graph demonstrates that “over” and “cutting”
have more freedom of variation in the x dimension as well as the negative y
dimension (which indicates overlap of objects) than “above”. As discussed ear-
lier, there is also considerable overlap between all three graphs which is due to
the fact that functionally-biased relations are also used in situations when geo-
metric constraints are satisfied. While “cutting” is more similar to “over” than
“above” in terms of the xy dimensions, it has a very different distance dimension.

5 Conclusion

In this paper we have demonstrated how the functional and geometric bias of spa-
tial relations can be identified from geometric annotations of objects as bound-
ing boxes connected by spatial relations in a corpus of images and associated
descriptions. The bounding boxes are converted to 3-dimensional dense vectors
that contain information about the x, y and d dimensions. These vectors are
then merged to a single representational vector for each spatial relation. Vectors
for different relations are then compared with cosine similarity. To increase the
granularity of comparison we examine how individual examples of annotated sit-
uations diverge from the representational vectors and what are the distributions
of these divergences, also at the level of individual features. Our results indicate
that functional and geometric bias of spatial relations can be identified from the
geometric spatial information captured in a large corpus of images and descrip-
tions and that this distinction can be carried over to verbs describing situations
involving objects. Our study makes a contribution to the study of semantics
of spatial descriptions by demonstrating that information that was previously
determined experimentally under constrained conditions for a smaller number
of spatial relations can be replicated on a larger scale and in noisy contexts.
Practically, such information is extremely useful for building end-to-end deep
neural models of image captioning as it demonstrates what kind of representa-
tions are relevant for different kinds of descriptions which has also been the focus
of our other studies. Another question that we find relevant to explore in our
future work is the observation that the context in which the dataset was created
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introduces a general bias on the degree to which function and geometry is con-
sidered to be relevant. For example, is the intent of the image description task
to describe what is happening to the objects in the scene or to locate where the
objects are. Finally, different classes of verbs would also deserve a more focused
study.
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