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Abstract. Flows over time enable a mathematical modeling of traf-
fic that changes as time progresses. In order to evaluate these dynamic
flows from a game theoretical perspective we consider the price of anar-
chy (PoA). In this paper we study the impact of spillback effects on the
PoA, which turn out to be substantial. It is known that, in general, the
PoA is unbounded in the spillback setting. We extend this by showing
that it is still unbounded even when considering networks with unit edge
capacities and that the Braess ratio can be arbitrarily large.

In contrast to that, we show that on a fixed network the PoA as a
function of the flow amount is bounded by a constant and also upper
bound the PoA for the set of networks where the outflow capacities sat-
isfy certain constraints depending on the quickest flow. This upper bound
only depends on the worst spillback factor of the Nash flows over time
of the given network. It therefore provides a way to quantify the impact
of spillback to the quality of the dynamic equilibria.

In addition, we show the surprising fact that the introduction of spill-
back behavior can actually speed up dynamic equilibria in some net-
works.

Keywords: Nash flow over time · Dynamic equilibria · Deterministic
queuing · Price of anarchy · Spillback · Traffic
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1 Introduction

Road traffic is an integral part of modern societies, which consists of many users
with individual behaviors and goals. For this reason traffic dynamics are very
hard to predict and can barely be controlled. However, through recent tech-
nologies such as intelligent navigation systems it might be possible to positively
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affect the behavior of traffic, steering it towards shorter travel times leading to
less pollution and an overall improved quality of life.

In the following research work we focus on a mathematical traffic flow model
called flows over time with spillback. Here, the network is depicted as a graph
with a source and a sink, and the traffic flow can progress in continuous time from
one vertex over an edge to the next vertex. We consider flow as a continuous
stream affected by two types of temporal factors. First, flow does not travel
instantaneously through the network but needs actual time to traverse an edge,
and second, flow on an edge may change over time. Compared to static network
flows these temporal components enable us to model traffic realistically through
different congestion levels. To model road constraints within the network, we
equip each edge with an inflow and an outflow capacity governing with which
rate flow can enter and leave the edge, a length characterizing the time it takes
a flow-particle to travel from the tail to the head of the edge, and finally, a
storage capacity which describes how much flow volume fits on the edge. If the
desired outflow exceeds the outflow capacity of an edge the excess flow queues
up in front of the bottle-neck at the head of the edge. If at any point in time the
queue of an edge is so large that the amount of flow traversing the edge plus the
amount of flow in the queue equals the storage capacity, the edge is considered
full and new flow can only enter if at least as much flow leaves at the same time.
With this mechanic it is possible to model spillback, i.e., the phenomenon that
traffic congestion at one street can block exits or intersections further upstream.
The ability to model spillback within the framework of flows over time is a very
recent discovery [22], which has not been studied much yet.

As we experience in our everyday lives traffic is not performing optimal most
of the time, but rather consists of agents that behave egoistically. Thus, we are
interested in game theoretic aspects of this flow model, particularly in the price
of anarchy (PoA), the ratio of the worst uncoordinated behavior described via
a dynamic equilibrium, and the optimal flow behavior measured by some social
cost function. In real-world scenarios that ratio could give us an idea of how much
one can possibly improve traffic through optimized traffic control, for example
through modern navigation systems or autonomous driving. Even though it has
been shown in [22] that the PoA in networks with spillback is unbounded in
general we investigate the dependency of the PoA on several parameters, for
example, the minimal spillback factor, which measures how much the capacities
of an edge are reduced due to spillback. Another interesting phenomenon of self-
ish road users we study is the well known Braess paradox [2]. It states that the
overall travel time of all users might decrease if a frequently used road segment
gets closed. In reverse, this means that building new roads between heavily used
section of the network might cause more congestion and longer travel times.

Related Work. Flows over time were first introduced by Ford and Fulker-
son [8] in the context of an optimization problem to route as much flow as
possible in a given time horizon. Gale [9] proved the existence of earliest arrival
flows which optimize the amount of flow routed to the sink simultaneously for
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all points in time and Wilkinson [26] later presented an algorithm to compute
these flows. For an overview on flows over time from an optimization point of
view we refer to the survey by Skutella [23]. From a game theoretic point of
view, flows over time were first considered by Vickrey [24] in the setting of
transportation research. In the last years the theory of Nash equilibria for flow
models has been advanced significantly. From the introduction of the price of
anarchy by Koutsoupias and Papadimitriou [13,16] and the congestion games
studied by Roughgarden and Tardos [18,19] (both for static flows), over exis-
tence results concerning the dynamic (i.e., time dependent) model by Meunier
and Wagner [15], to the constructive approach to dynamic equilibria by Koch
and Skutella [12]. Here, the authors present a novel notion of dynamic equilibria,
called Nash flows over time, which enabled a whole set of proceeding research.
This new research includes the study of existence, uniqueness and the long-term
behavior of Nash flows over time by Cominetti et al. [4–6], the work by Macko
et al. [14] about the Braess paradox for flows over time as well as the extension
to multi-terminal settings [21]. Of special interest to the paper at hand are the
results by Bhaskar et al. [1] and very recently by Correa et al. [7] about the
PoA for flows over time. Since it was already shown that the evacuation-PoA
(maximizing the flow amount within some time horizon) is unbounded [12], they
focus on the time-PoA (minimizing the completion time for a given flow amount)
for which they establish an upper bound of e

e−1 under some constraints on the
capacities of the network. Sering and Vargas Koch [22] generalized the flows
over time model in order to represent spillback and transferred the results about
dynamic equilibria to this extension. Very recently, Graf et al. [10] characterized
an alternative equilibrium concept for flows over time, where particles do not
predict the future evolution of the flow but instead reconsider their route choice
on every node. In addition, there is a active research line on packet routing mod-
els, where traffic is represented by atomic vehicles that traverses the network in
discrete time steps. Recent progress in this area is due to Cao et al. [3], Scarsini
et al. [20], Harks et al. [11] and Peis et al. [17].

Contribution and Outline. We study the price of anarchy of flows over time
with spillback introduced in [22], which is known to be unbounded in general.
After introducing the model in Sect. 2, we show in Sect. 3 that the PoA stays
unbounded even if we restrict the set of networks to a specific topology but allow
arbitrary capacity, or in reverse if we only allow unit capacities but therefore
more complex graph structures. Furthermore, we show that the Braess ratio can
be arbitrarily large depending only on the minimum edge capacity. Even though
it seems that the addition of full edges and spillback only increases completion
times this is not a general rule, as we show that there are examples where the
completion time of Nash flows over time is larger when disabling spillback. In
contrast to the above lower bounds we show in Sect. 4 that if we consider the
case of temporal routing games on a fixed network, i.e., only the flow amount
that gets routed through the network varies, the PoA is bounded by a constant.
In the end we translate the ideas of [1] to the model with spillback and prove
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an upper bound of ce
ce−1 on the PoA in networks with specific conditions on the

capacities in dependency of a maximal flow over time. This upper bound only
depends on the worst spillback factor c of the Nash flows over time of the given
network, and therefore provides a way to quantify the impact of spillback to
the PoA (note that e denotes the Euler constant here). Finally, we give a brief
conclusion and outlook for further research in Sect. 5.

2 The Model

In the following we want to recall the essential definitions of the flow over time
model with deterministic queuing. We consider the extended version that han-
dles spillback effects, as introduced in [22] and mainly stick to the same notation.

Flow Dynamics. We consider a network Γ = (G, s, t, r0, τ, ν
+, ν−, σ) given by

a directed graph G = (V,E) with a single source s and a single sink t, such
that every vertex is reachable from s. We have a network inflow rate of r0 > 0
determining the constant rate of flow entering the network from time 0 onward.
Furthermore, every edge e ∈ E is equipped with a transit time τe ≥ 0, an in-
and outflow capacity ν+

e > 0 and ν−
e > 0 as well as a storage capacity σe > 0. In

order to avoid undefined flow behavior, we require that traversing flow alone can
never fill up an edge, i.e., σe > ν+

e · τe and that the total transit time of every
directed cycle is strictly positive. For technical reason we furthermore assume
that all properties are rational numbers.

A flow over time is given by a family of locally integrable and bounded func-
tions f = (f+

e , f−
e )e∈E , where f+

e , f−
e : R≥0 → R≥0 denote the in- and outflow

rate of edge e at every point in time. The cumulative in- and outflow and the
queue size are given by

F+
e (θ) :=

∫ θ

0

f+
e (ξ) dξ, F−

e (θ) :=
∫ θ

0

f−
e (ξ) and ze(θ) := F+

e (θ−τe)−F−
e (θ).

We require that flow is preserved at every edge e (non-deficit constraint) and
at every vertex v ∈ V \ {t} (conservation constraint), which means, for every
point in time θ we have

ze(θ) ≥ 0 and
∑
e∈δ+

v

f+
e (θ) −

∑
e∈δ−

v

f−
e (θ) =

{
0 for v ∈ V \ {s, t},

r0 for v = s.

Here, δ−
v is the set of all incoming and δ+v the set of all outgoing edges of

node v. An edge e is full at time θ if the total amount of flow on e, called edge
load, de(θ) := F+

e (θ) − F−
e (θ) reaches the storage capacity σe. The inflow bound

b+e (θ) denotes that current inflow capacity, which might be smaller than ν+
e due

to spillback, and the push rate b−
e (θ) specify the current desired outflow rate,

which is reached whenever there are no restrictions of following links. Formally,
we have
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b+e (θ) :=

{
ν+

e if de(θ)<σe

min{f−
e (θ), ν+

e } else,
and b−

e (θ) :=

{
ν−

e if ze(θ)>0,

min{f+
e (θ − τe), ν−

e } else.

A flow over time f is feasible if for all edges e and all times θ it satisfies
f+

e (θ) ≤ b+e (θ) (inflow condition) and if there exists a cv ∈ (0, 1] for every
v ∈ V such that for every e ∈ δ−(v) f−

e (θ) = min{b−
e (θ), ν−

e · cv} (fair allocation
condition). Furthermore, we require for all time θ that every vertex v with an
incoming edge e1 ∈ δ−

v with f−
e1

(θ) < b−
e1

(θ) (called throttled edge) there exists an
outgoing edge e2 ∈ δ+v with f+

e2
(θ) = b+e2

(θ) (no-slack condition). Finally, the set
of full edges should be cycle free at every point in time (no-deadlock condition).

For a given v ∈ V the maximal value c that satisfies the fair allocation con-
dition at a given point in time θ is called spillback factor denoted by cv(θ).
This value denotes the reduction of the outflow capacity due to spillback leading
to the effective outflow capacity of ν−

e · cv(θ). If the outflow rate f−
uv(θ) of an

incoming edge is strictly smaller than the push rate b−
uv(θ), this edge is throttled

implying cv(θ) < 1, which means that there is spillback at v. In this case the
no-slack condition ensures that there is a reason for the spillback in form of an
outgoing exhausted edge vw: f+

vw(θ) = b+vw(θ). The spillback factor will play an
important role throughout this paper. For more details and further intuition on
the definitions of a feasible flow over time in this setting we refer to [22].

Nash Flows Over Time. In order to define Nash flows over time we need to
define the arrival time of every particle of the flow. To simplify the notation we
identify every particle with the point in time θ when it enters the network at
the source. For every edge e we define the waiting time function qe : R≥0 → R≥0

by qe(θ) := min
{

q ≥ 0
∣∣∣ ∫ θ+τe+q

θ+τe
f−

e (ξ) dξ = ze(θ + τe)
}

, i.e., qe(θ) denotes the
time a particle entering e at time θ waits in the queue. For every vertex v the
earliest arrival time function 	v : R≥0 → R≥0 denotes the earliest point in time
the particle θ (which enters the network at time θ) can reach v:

	v(θ) :=

{
θ if v = s,

min
e=uv∈E

	u(θ) + τe + qe(	u(θ)) else.

For a given particle θ the current shortest path network G′
θ = (V,E′

θ) is the
network of all edges e = uv that are active for θ, i.e., for which 	v(θ) = 	u(θ) +
τe + qe(	u(θ)). It contains all s-v-paths that particle θ can use to be at v at
the earliest possible point in time. Furthermore, we denote the resetting edges
E∗

θ as the set of edges for which particle θ encounters a queue when taking
a current shortest path and Ēθ denotes the set of edges which are full when
particle θ reaches its tail. More precisely, E∗

θ := {e = uv ∈ E|qe(	u(θ)) > 0} and
Ēθ := {e = uv ∈ E|de(	u(θ)) = σe}.

Definition 1 (Nash flow over time). We call a feasible flow over time f
a Nash flow over time, or dynamic equilibrium, if almost every particle uses a
current shortest s-t-path, i.e., if f+

e (θ) > 0 implies θ ∈ 	u(Θe) for all e = uv ∈ E
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and almost all θ ∈ R≥0, where Θe := {θ ∈ R≥0|e ∈ E′
θ} denotes all particles for

which e is active.

Equivalently, it has been shown [22, Lemma 4.1] that a feasible flow over
time is a dynamic equilibrium if and only if F+

e (	u(θ)) = F−
e (	v(θ)) for all

e = uv ∈ E and all θ ∈ R≥0. By setting xe(θ) := F+
e (	u(θ)) = F−

e (	v(θ)) we
observe that (xe(θ))e∈E form a static s-t-flow of value r0 · θ. Since the xe are
absolute continuous, their derivatives

x′
e(θ) = f+

e (	u(θ)) · 	′
u(θ) = f−

e (	v(θ)) · 	′
v(θ) (1)

exist almost everywhere and can be seen as the strategy of particle θ (as for every
θ it is a static s-t-flow of value r0). For a fixed θ the derivatives x′

e := x′
e(θ) and

	′
v := 	′

v(θ) together with the spillback factors cv := cv(	v(θ)) are called spillback
thin flows and with b+e := b+e (	u(θ)) for all e = uv satisfy the following equations:

	′
s = 1,

	′
v = min

e=uv∈E′
θ

ρe (	′
u, x′

e, cv) for v ∈ V \ {s},

	′
v = ρe (	′

u, x′
e, cv) for e = uv ∈ E′

θ with x′
e > 0,

	′
v ≥ max

e=vw∈E′
θ

x′
e

b+e
for v ∈ V,

	′
v = max

e=vw∈E′
θ

x′
e

b+e
for v ∈ V with cv < 1,

where

ρe(	′
u, x′

e, cv) :=

⎧⎨
⎩

x′
e

cv·ν−
e

if e = uv ∈ E∗
θ ,

max
{

	′
u,

x′
e

cv·ν−
e

}
if e = uv ∈ E′

θ \ E∗
θ .

It turns out that the particles of a Nash flow over time f can be divided into
intervals, so called phases, for which the derivatives (and thus the inflow and
outflow rates) stay constant. We denote the set of phases by If . The transition
points between two phases correspond to one or multiple events: A new edge
(and therefore new s-t-paths) can become active, a queue can deplete, an edge
can become full or the outflow rate (and hence the inflow bound) of a full edge
might change. Note however, that an event at edge e = uv for a particle θ does
not happen at time θ itself but rather at time 	u(θ) when the particle entering
the network at time θ reaches vertex u (while taking a shortest s-u path).

Games, Optimal Flows and the Price of Anarchy. For a temporal routing
game we consider a finite volume of flow M ∈ (0,∞) entering the network. For
a Nash flow over time f the last particle enters the network at time M

r0
and

leaves the network at time 	t(M
r0

). As the network satisfy the first-in-first-out-
principle (FIFO), 	t is non-decreasing, which means that Tf := 	t(M

r0
) denotes

the completion time when the entire flow of volume M has reached t. Most of
the time we identify a network Γ with its corresponding temporal routing game
(i.e., Γ and M). In contrast to dynamic equilibria, optimal quickest flows can
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be computed by determining a time horizon T with 	t(M
r0

) = T by applying a
binary search framework to the maximum flow over time problem. Hereby, a
maximum flow over time for time horizon T can be constructed via a feasible
static flow y maximizing T · |y| − ∑

e∈E τe · ye. This underlying static flow y is
then temporally repeated, which means a rate of yp is sent into every s-t path
p ∈ Pst over time [0, T − τp]. The arrival time of the last particle at t (i.e., the
optimal completion time) is denoted by Topt(M). For more details on optimal
flows over time we refer to Skutella’s survey [23].

In this paper we consider the time price of anarchy (which we simply refer
to as “price of anarchy”). For a given temporal routing game Γ it measures
the worst ratio between the arrival time at t for the last particle in a Nash
flow over time and the arrival time in an optimal flow: PoA(Γ ) := TEQ(Γ )

Topt(Γ ) .
1

As it is unknown whether the arrival time functions 	t are unique over all
Nash flows over time, we need to consider the worst dynamic equilibrium, i.e.,
TEQ(Γ ) := supf∈F(Γ ) Tf , where F(Γ ) denotes the set of Nash flows over time
in Γ .

Further Notation. We enumerate the event points by the order of their occur-
rence seen by particles at the source, i.e., θi < θi+1 and say phase i is given by
(θi−1, θi) (using θ0 = 0).2 In addition, we consider the point in time M

r0
when

the last particle enters the network as the last event r, i.e., θr := M
r0

. Since the
edge sets E′

θ, E∗
θ , Ēθ, the inflow bound, and hence, the spillback thin flow stay

constant within each phase i we use the following notation for θ ∈ (θi−1, θi)

G′
i :=G′

θ, E
′
i :=E′

θ, E
�
i :=E�

θ , Ēi := Ēθ, x
′
i :=x′(θ), 	′

i,v :=	′
v(θ), ci,v :=cv(	v(θ)).

The inflow at the sink is also constant in a phase. We denote this by the capacity
κi := f+

t (	t(θ)) for some θ ∈ (θi−1, θi) where we use f+
t (θ) :=

∑
vt∈δ−(t) f−

vt(θ).
Finally, the derivatives of the waiting times (qe(	u(θ)))′ stay constant within a
phase as they are either 	′

v(θ) − 	′
u(θ) if e = uv is active or 0 otherwise. For

θ ∈ (θi−1, θi) we write q′
i,e := (qe(	u(θ)))′ and q′

i,p :=
∑

e∈p q′
i,e for an s-t path p.

3 Lower Bounds on the Price of Anarchy

We first show in 3 that the PoA can be unbounded even on very simple graphs
(an observation first made in [22]) and that the same is true for graphs with
unit capacities. Afterwards, in 3 and 3, we use similar constructions to inves-
tigate the Braess paradox for flows over time with spillback and to show that
1 All results from Sect. 4 can also be translated to the total delay price of anarchy

measuring the arrival times of all particles combined, similarly as is done in [1].
2 We imagine i as a natural number. But since it is an open question whether the

event point converges to a finite limit, it is possible to expand the index set to the
ordinal numbers up to ωω. In this case the i-th phase should be defined as (θi, θi+1)
as it is not possible to determine a predecessor of an ordinal number. For the sake
of simplicity however, we stick to the definition where (0, θ1) is the first phase.
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there exist networks on which Nash flows over time with spillback are faster than
their respective counterparts without spillback.

PoA Depending on Graph Structure or Capacities. Consider the network
Γ given in Fig. 1 and a Nash flow over time f of it. Since in the first phase the
shortest path is (e1, e2), edge e2 fills up quickly. Once this happens flow already
queues up at the end of edge e1, and thus, e3 is never used by f . An optimal
flow can use e3 and therefore routes flow to the sink much faster, resulting in an
unbounded PoA. This construction can easily be generalized to all graphs that
have the graph given in Fig. 1 as a minor.

Theorem 1. (cf. [22, introductary example]) Let G be any graph that has the
graph given in Fig. 1 as a minor, then there exists a temporal routing game Γ
on G with PoA(Γ ) ∈ Ω( 1

ν−
min

) where ν−
min := mine∈E{ν−

e : ν−
e > 0}.

τe ν+
e ν−

e σe

e1 0 ∞ 3 ∞
e2 0 ∞ ε ε
e3 2 ∞ 3 ∞

r0 = 3
s v t

e1 e2

e3

Fig. 1. This is a network on which Nash flows over time with spillback have unbounded
price of anarchy (see Theorem 1). A similar example was first given in [22, Fig. 2].

To avoid the above unboundedness one could ask for the PoA for temporal
routing games on graphs with restricted edge capacities. By constrictions of the
model we have to set the inflow and storage capacities of all edges e ∈ δ+(s) to
ν+

e > r and σe = ∞, respectively. We say a network has unit edge capacities if
for all edges e /∈ δ+(s) it holds that ν+

e = ν−
e = σe = 1 and further for all edges

e ∈ δ+(s) also ν−
e = 1. Unfortunately, even when restricting to networks with

unit edge capacities the PoA is unbounded.

Theorem 2. capacities There exists a family of networks with unit edge capac-
ities and τe ∈ {0, 1} for all edges for which the PoA is linear in the number of
edges.

This can be seen by considering the network given in Fig. 1 and exchanging
e1 and e3 with bunches of unit-capacity parallel edges and setting ν−

e2
= σe2 = 1.

If we use enough parallel edges we can generate a similar flow behavior as we
encountered when lowering the capacity of edge e2 in the proof of Theorem 1.

Nevertheless, we show another way of constraining edge capacities to achive
an interesting upper bound on the PoA in Sect. 4.2.

Braess Ratio. In his work on selfish routing with static flows [2] Braess showed
that there are networks where adding an edge can paradoxically increase conges-
tion leading to a worse equilibrium. In line with the paper of Macko et al. [14]
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we define the Braess ratio for flows over time with spillback as follows. Let Γ
be a temporal routing game on a graph G and let Γ (H) be the same instance
restricted to some subgraph H ⊆ G. Then the Braess ratio of Γ is

BR(Γ ) = max
H⊆G

TEQ(Γ )
TEQ(Γ (H))

.

We say graph G admits a Braess paradox if there is a temporal routing game Γ
on G with BR(Γ ) > 1. In [14] it is shown that the Braess ratio for flows over
time without spillback (for a slightly different cost function instead of the last
completion time) is arbitrarily large depending linearly on the number of edges
of the underlying graph. The authors furthermore show that a graph G or its
transpose (the graph where every edge uv is replaced by the edge vu and s and
t are swapped) admit a Braess paradox if and only if G contains at least one of
the following graphs as a topological minor.

When considering flows over time with spillback and the graph in Fig. 1 it is
easy to see that this graph admits a Braess paradox with arbitrarily large Braess
ratio even though it does not have one of the graphs above as a topological minor
(and neither does its transpose). To see this choose H to be the subgraph where
from the graph in Fig. 1 we delete edge e2.

Corollary 1. For any a ∈ R there exists a temporal routing game Γ on the
graph given in Fig. 1 such that the Braess ratio satisfies BR(Γ ) > a.

Spillback Can Improve Completion Time. The following proposition shows
that there are temporal routing games where Nash flows with spillback perform
better than Nash flows without spillback. This might at first be surprising, as
spillback seems to only be obstructive to routing flow fast. But it is indeed
possible to construct networks where spillback leads to shorter completion times.
In the network depicted in Fig. 2 there are two parallel edges, namely e3 and e3′ ,
for which it holds that the completion time of a Nash flow is worse if the edges
are present compared to the same network without those edges. We exploit this
in our construction: In the spillback model one of these ‘bad’ edges becomes full
nearly instantaneously yielding the other ‘bad’ edge to never get active. Thus,
the spillback Nash flow routes flow only over one of those ‘bad’ edges. Since in
the Koch-Skutella model without spillback both of these parallel edges get active
at some point, the Nash flow over time here uses both of them resulting in a
worse completion time.

Proposition 1. In the network Γ given in Fig. 2 the completion time of any
Nash flow over time with spillback is less than the completion time of the Nash
flow over time without spillback on the same network using νe := min{ν+

e , ν−
e }.
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Fig. 2. This example shows that Nash flows over time with spillback can be faster than
Nash flows over time without spillback, see Proposition 1.

4 Upper Bounds on the Price of Anarchy

In the following we prove two upper bounds on the price of anarchy. First, we
show that for a single, fixed network the PoA is bounded by a constant in the
long run. After that we show that if for a given network we are allowed to
decrease the outflow capacities by a certain amount then the PoA only depends
on the worst spillback factor of the Nash flows over time.

4.1 Price of Anarchy for a Fixed Network

Until now we have studied the PoA depending on the structure of the underlying
graph or its capacities. For both questions we constructed games satisfying strong
constraints that still have unbounded PoA. Now we are interested in the PoA of
a network where every parameter is fixed except for the target amount M , i.e.,
we ask the question of how the PoA behaves in the long run on a single network.

Lemma 1. For a temporal routing game Γ on a fixed network the comple-
tion time of the optimal flow depending on the target amount M is bounded
by Topt(M) ∈ Θ(M).

This result is mainly due to the fact that the optimal flow does not build
up any queues. Therefore its completion time depends mainly on M and the
minimum edge-capacity, which we consider to be fixed.

For the classification of the asymptotic long term behavior of TEQ(M) we
use the following auxiliary lemma that gives us a lower bound on the spillback
factors of a Nash flow. The lemma follows by an application of [22, Lemma 3].

Lemma 2. For a temporal routing game Γ there exists an ε > 0 such that for
any Nash flow over time f ∈ F(Γ ) the spillback factors satisfy min{cv(θ) : v ∈
V, θ ∈ R≥0} > ε.
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To get an asymptotic bound on TEQ(M) = supf∈F(Γ ) Tf (M) we first argue
that seen as a function in M , Tf is a piece-wise linear and non-decreasing func-
tion. We can then use Lemma 2 to bound its derivative and with that obtain the
desired result.

Theorem 3. For a temporal routing game Γ on a fixed network the completion
time of any Nash flow over time f ∈ F(Γ ) is bounded by Tf (M) ∈ Θ(M).

We can now use Lemma 1 and Theorem 3 and the fact that PoA(M) =
TEQ(M)
Topt(M) to bound the PoA for a fixed network. In order to do so we consider the
PoA as a function of the target flow amount M .

Theorem 4. For a temporal game Γ on a fixed network, i.e. when treating
everything except the amount of flow M as a constant, the price of anarchy is
bounded by a constant, PoA(M) ∈ Θ(1).

4.2 Bound on the Price of Anarchy for Saturated Graphs

In this section we focus on networks with an additional constraint on the edge
capacities. Given a game Γ we know that the quickest flow of Γ is also a tem-
porally repeated flow, i.e., it has an underlying static flow y. We say that y
saturates every edge of the given graph if for each edge the outflow capacity
is exhausted by y, i.e., for each e ∈ E we have ν−

e = ye and additionally it
holds that |y| =

∑
sv∈δ+(s) ysv = r0. We call the underlying graph of such a

game a saturated graph. Even though restricting attention to saturated graphs
may seem harsh, note, that every network can be made saturated by lowering
the edge capacities. This can be imagined to be done by a system operator in
a Stackelberg strategy-like scenario [25] and is applicable in many real-world
examples. For one, streets can be narrowed down by a city administration in
practice.

For temporal routing games on saturated graphs we will show that the PoA
can be bounded by a value that is only dependent on the worst spillback factor
of all Nash flows over time. In order to do that we adapt the idea of the proofs
given by Bhaskar et al. [1] for the Koch-Skutella model to the spillback model.
Note, however, that the proofs given in [1] implicitly assume only finitely many
phases, which has not been proven for any of the two models. Our generalization
also holds for the case of an infinite number of phases in both models.3

In principle the proof works as follows. For a given game Γ the relation of
the completion time of any Nash flow over time of Γ to the optimal completion
time can be determined by examining the capacity of the current shortest path
network and the derivatives of the waiting times for a single phase of the Nash
flow. One can then bound the derivatives of the waiting times and use the fact
that the PoA is the maximum over the relation of the optimal completion time
to the completion times of all Nash flows. This achieves the desired bound.

3 Note, that in [7] an even more general result is shown for the Koch-Skutella model.
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Bound on the Derivatives of the Waiting Times. We start by proving a
relation between the derivative of the label-function at the sink and the inflow
into the sink. Our proof of this result uses a different idea than the one given
in [1] and is considerably shorter.

Lemma 3. (cf. [1, Lemma 15]) Let Γ be a temporal routing game and let f ∈
F(Γ ) with corresponding labels 	. Then for any θ ≤ M

r0
we have

	′
t(θ) =

r0

f+
t (	t(θ))

.

Proof. Let θ ≤ M
r0

be arbitrary. Using that x′(θ) is a static s-t flow of value r0

and x′
vt(θ) = f−

vt(	t(θ)) · 	′
t(θ) from Eq. (1) we obtain

r0 =
∑

vt∈δ−(t)

x′
vt(θ) =

∑
vt∈δ−(t)

f−
vt(	t(θ)) · 	′

t(θ) = 	′
t(θ) · f+

t (	t(θ)).

Since f+
t (	t(θ)) > 0 for all θ, rearranging terms give the desired result. �	

We now proceed with a path-wise bound on the derivatives of the waiting
times q′

i,p for a single phase of the Nash flow over time i using the capacities κi.

Lemma 4. (cf. [1, Lemma 18]) Let Γ be a temporal routing game where the
static flow underlying the quickest flow saturates every edge and let f ∈ F(Γ ).
For any s-t path p, the travel time is bounded by

τp ≥ 	t(θr) −
∑
i∈If

(1 + q′
i,p) · κi

r0
· (	t(θi) − 	t(θi−1)).

In the proof we first establish a dependence of the length of a phase as it is
experienced at the source and at the sink, respectively. Then we express τp in
terms of the label functions 	 and the waiting times q and their derivatives. The
result then follows from applying Lemma3.

Relation of the Completion Times of Nash Flow and Quickest Flow.
The following lemma enables us to give a first relation of the completion times
of the optimal quickest flow and a Nash flow over time.

Lemma 5. (cf. [1, Lemma 19]) Let Γ be a temporal routing game where the
static flow y underlying the quickest flow saturates every edge and let f ∈ F(Γ ).
Then, the completion time Topt of the optimal flow and the completion time Tf

of the Nash flow f are related as

r0 · Topt =
∑

p∈Ps,t

ypτp +
∑
i∈If

κi · (	t(θi) − 	t(θi−1)),

where Ps,t is the set of all simple s-t paths in G and 	t(θr) = Tf .
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The proof idea is to compare the arrival rates of both flows at the sink
t where we use a flow decomposition along paths for the optimal flow and a
decomposition by phases for the Nash flow over time.

By combining the previous two lemmas we can now derive a lower bound on
the inverse of the PoA that we will afterwards use to achieve an upper bound
on the actual PoA. But in order to proof that we first need the following.

Lemma 6. Let λi := κi

r0
· ∑

p∈Ps,t
ypq

′
i,p for each phase i ∈ If . Then,

∑
i∈If

λi · (	t(θi) − 	t(θi−1)) ≤ (	t(θr) − 	t(θ0)) · sup
i∈If

λi.

In the proof we first establish that the set {λi : i ∈ If} is bounded and then
use this and the telescoping principle to bound the left hand side.

The next lemma establishes the aforementioned bound on the inverse of the
PoA. It is in this proof that the number of α-extension phases comes into play. If
we assume that the supremum in the statement of Lemma 6 is attained by some
phase i ∈ If , which is in particular true if there are only finitely many phases,
then we can prove Lemma 7 without the ε error and the proofs go through similar
to [1]. But since it is still an open problem whether the number of those phases
is always finite (in the Koch-Skutella model as well as the spillback model), we
prove it here for the case of infinitely many α-extension phases.

Lemma 7. Let Γ be a temporal routing game where the static flow y underlying
the quickest flow saturates every edge and let f ∈ F(Γ ). Then for every ε > 0
there exists a phase i of f such that

Topt

Tf
+ ε ≥ 1 − κi

r02

∑
e∈E

ν−
e q′

i,e.

The proof idea is to sum ypτp over all paths p ∈ Ps,t and using Lemma 4 to
bound this from below. Afterwards, we use Lemmas 5 and 6 to obtain a lower
bound on Topt

Tf
in terms of a supremum of the capacities and derivatives of the

queuing delay over all phases. Since we do not know whether this supremum is
attained we have to inject the ε error and after rearranging terms we obtain the
desired result.

Upper Bound for Saturated Graphs. We can now turn the lower bound in
Lemma 7 into an upper bound on the price of anarchy by proving a bound on
the sum of the right-hand side of the expression given in Lemma 7. Here for the
first time the spillback factors of the Nash flow over time play an important role.

Lemma 8. Let Γ be a temporal routing game and f ∈ F(Γ ). In any phase i of
f where r0

κi
≥ 1 we have

∑
e∈E

ν−
e q′

i,e ≤ r0

cf
i

ln
(

r0
κi

)
,

where cf
i := min{cv(θ) : v ∈ V, θ ∈ (θi−1, θi)} is the minimal cv of f in phase i.
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The proof utilizes [7, Claim 12] and follows the line of argumentation in [1]
but incorporates the added complexity of the spillback model. We obtain that
cvν−

e q′
e = x′

e · (1 − 	′
u

	′
v
) for every edge e = uv and then sum this expression over

all edges in the graph. Rearranging and plugging in the above expression then
yields the desired result.

We can now obtain the desired upper bound on the price of anarchy.

Theorem 5. Let Γ be a temporal routing game where the static flow y underly-
ing the quickest flow saturates every edge of the graph. If the minimal spillback
factor satisfies c := minf∈F(Γ ) min{cv(θ) : v ∈ V, θ ∈ R≥0} > 1

e , then the price
of anarchy is bounded by TEQ

Topt
≤ ce

ce−1 .

Proof. For any f ∈ F(Γ ) with completion time Tf we know that f+
t (θ) =∑

vt∈δ−(t) f−
vt(θ) ≤ r0 for all θ ∈ R≥0 since we only consider saturated graphs.

Thus, we have r0
κi

≥ 1 in all phases of f . From Lemmas 7 and 8 we obtain that
for every ε > 0 there exists a phase i of f such that

Topt

Tf
+ ε ≥ 1 − κi

r02

∑
e∈E

ν−
e q′

i,e ≥ 1 − κi

r02
r0

cf
i

· ln
(

r0
κi

)
= 1 − ai

c
· ln

(
1
ai

)
,

where c := minf∈F(Γ ) min{cv(θ) : v ∈ V, θ ∈ R≥0} ≤ cf
i and ai := κi

r0
.

Simple calculus shows that the term ai

c · ln
(

1
ai

)
is maximized for ai = 1

e .
Using the above inequality, derived from some phase i, for any ε > 0 we obtain

Topt

Tf
+ ε ≥ 1 − 1

ce
=

ce − 1
ce

.

Since by assumption we have c > 1
e we can take the inverse of the inequality to

obtain Tf

Topt
≤ ce

ce−1 . We finish by noting that TEQ = supf∈F(Γ ) Tf . �	

5 Conclusions

Our work shows that the PoA is highly dependent on spillback effects. Although,
even in restricted network classes the completion times of dynamic equilibria can
be arbitrarily bad compared to a quickest flow, the PoA can still be bounded
in terms of the spillback factors under some constraints on the edge capacities.
Transferred to real-world traffic this means the interplay between selfish traffic
users is critical in particular in high congested areas.

Even though we give a substantial analysis of the PoA in the flow over time
model with spillback, there are still some open problems remaining. Is the bound
we establish in Theorem 5 tight? Are there any bounds in the case of c ≤ 1

e or is it
possible to enforce c > 1

e through some Stackelberg-like strategy? Do the results
of the recent work of Correa et al. [7] also transfer to the spillback setting?
On the more applied side of the research it would also be very interesting to
algorithmically identify street segments (edges) which are especially vulnerable
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for spillback. In the long run this could help road administrations to decide which
roads should be expanded (increasing the storage capacity) or which roads should
be narrowed or closed (due to the Braess effect).
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