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Abstract. We consider the problem of matchings under two-sided pref-
erences in the presence of maximum as well as minimum quota require-
ments for the agents. When there are no minimum quotas, stability is
the de-facto notion of optimality. In the presence of minimum quotas,
ensuring stability and simultaneously satisfying lower quotas is not an
attainable goal in many instances.

To address this, a relaxation of stability known as envy-freeness, is pro-
posed in literature. In our work, we thoroughly investigate envy-freeness
from a computational view point. Our results show that computing envy-
free matchings that match maximum number of agents is computation-
ally hard and also hard to approximate up to a constant factor. Addition-
ally, it is known that envy-free matchings satisfying lower-quotas may not
exist. To circumvent these drawbacks, we propose a new notion called
relaxed stability. We show that relaxed stable matchings are guaranteed
to exist even in the presence of lower-quotas. Despite the computational
intractability of finding a largest matching that is feasible and relaxed
stable, we give an efficient algorithm that computes a constant factor
approximation to this matching in terms of size.

Keywords: Matchings under preferences · Lower quota ·
Envy-freeness · Relaxed stability · Approximation

1 Introduction

Matching problems with two-sided preferences have been extensively investigated
for matching markets where agents (hospitals/residents or colleges/students)
have upper quotas that cannot be exceeded. Stability [6] is a widely accepted
notion of optimality in this scenario. An allocation is said to be stable if no pair
of agents has an incentive to deviate from it. However, the case when the agents
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have maximum as well as minimum quotas poses new challenges and there is
still a want of satisfactory mechanisms that take minimum quotas into account.
Practically, lower quotas are important, since it is natural for a hospital to require
a minimum number of residents to run the hospital smoothly. Lower quotas are
crucial in applications like course-allocation, and assigning teaching assistants
(TAs) in academic institutions where a minimum guarantee is essential.

Ensuring stability while satisfying lower quotas may not be attainable always.
On one hand, disregarding preferences in the interest of satisfying the lower
quotas gives rise to social unfairness (for instance agents envying each other);
on the other hand, too much emphasis on fairness can lead to wastefulness [5].
Hence, it is necessary to strike a balance between these three mutually conflicting
goals – optimality with respect to preferences, feasibility for minimum quotas
and minimizing wastefulness. The main contribution of this paper is to propose
a mechanism to achieve this balance.

Envy-freeness [3,5,7,11,12] is a widely accepted notion for achieving fairness
from a social perspective. Unfortunately, even envy-freeness and feasibility may
not be simultaneously achievable. Whether feasible envy-free matchings exist can
be answered efficiently by the characterization of Yokoi [20]. Fragiadakis et al. [5]
explore strategyproofness and the trade-off between envy-freeness and wasteful-
ness for a restricted setting of agent preferences. In our work, we thoroughly
investigate envy-freeness from a computational view point. Our results show
that computing a maximum size envy-free matching is computationally hard
and such matchings can be wasteful. To circumvent these drawbacks, we pro-
pose a new notion called relaxed stability. We show that relaxed stable matchings
are guaranteed to exist even in the presence of lower-quotas. Despite the com-
putational intractability of finding a largest feasible relaxed stable matching, we
give an efficient constant-factor approximation algorithm for it.

We state the problem formally in terms of a setting known as the HRLQ
setting in literature. An HRLQ instance consists of a bipartite graph G = (R ∪
H, E), R and H being the sets of residents and hospitals respectively, and an
edge (r, h) ∈ E denotes that r and h are mutually acceptable. Each h ∈ H
has an upper-quota q+(h) and a lower-quota q−(h), respectively denoting the
maximum and minimum number of residents that can be assigned to h. Every
vertex in R∪H ranks its neighbors in a strict order, referred to as its preference
list. If a vertex a prefers its neighbor b1 over b2, we denote it by b1 >a b2.

A matching M ⊆ E in G is an assignment of residents to hospitals such that
each resident is matched to at most one hospital, and every hospital h is matched
to at most q+(h)-many residents. Let M(r) denote the hospital that r is matched
to in M , and M(h) denote the set of residents matched to h in M . We let M(r) =
⊥ if r is unmatched in M , and ⊥ is considered as the least preferred choice of each
r ∈ R. We say that a hospital h is under-subscribed in M if |M(h)| < q+(h), is
fully-subscribed if |M(h)| = q+(h) and is deficient if |M(h)| < q−(h). A matching
is feasible for an HRLQ instance if no hospital is deficient in M . The goal in the
HRLQ setting is to find a feasible matching M that is optimal with respect to the
preference lists. The HRLQ problem is a generalization of the well-studied HR
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problem (introduced by Gale and Shapley [6]) where there are no lower quotas.
In the HR problem, stability is a de-facto notion of optimality and is defined by
the absence of blocking pairs.

Definition 1 (Stable matchings). A pair (r, h) ∈ E\M is a blocking pair
w.r.t. the matching M if h >r M(r) and h is either under-subscribed in M or
there exists at least one resident r′ ∈ M(h) such that r >h r′. A matching M is
stable if there is no blocking pair w.r.t. M .

r1 : h1, h2

r2 : h1

[0,1] h1 : r1, r2
[1,1] h2 : r1

Fig. 1. An HRLQ instance with no
feasible and stable matching. Here
R = {r1, r2}, H = {h1, h2} and
quotas are denoted as [lower-quota,
upper-quota] pair preceding each
hospital.

Existence of Stable Feasible Matchings:
Given an HRLQ instance, it is natural to ask
“does the instance admit a stable feasible
matching?” Unlike HR instances, an HRLQ
instance may not admit a stable, feasible
matching. Figure 1 shows an example. The
stable matching Ms = {(r1, h1)} is not feasi-
ble since h2 is deficient in Ms, and the feasi-
ble matchings are not stable. The well-known
Rural Hospitals Theorem [18] implies that
the number of residents matched to a hospital is invariant across all stable match-
ings of the instance. Hence, for any HRLQ instance, either all stable matchings are
feasible or all are infeasible. In light of the fact that stable and feasible match-
ings may not exist, relaxations of stability, like popularity and envy-freeness
have been proposed in the literature [16,17,20]. Envy-freeness is defined by the
absence of envy-pairs.

Definition 2 (Envy-free matchings). Given a matching M , a resident r has
a justified envy (here onwards called envy) towards a matched resident r′, where
M(r′) = h and (r, h) ∈ E if h >r M(r) and r >h r′. The pair (r, r′) is an
envy-pair w.r.t. M . A matching is envy-free if there is no envy-pair w.r.t. it.

Note that an envy-pair implies a blocking pair but the converse is not true
and hence envy-freeness is a relaxation of stability. In the example in Fig. 1,
the matching {(r1, h2)} is envy-free and feasible, although not stable. Thus,
envy-free matchings provide an alternative to stability in such instances. Envy-
freeness is motivated by fairness from a social perspective. Importance of envy-
free matchings has been recognized in the context of constrained matchings
[3,5,7,11,12], and their structural properties have been investigated in [19].

∀i ∈ [n], ri : h1, h2
[0, n] h1 : r1, . . . , rn
[1, 1] h2 : r1, . . . , rn

Fig. 2. An HRLQ instance with two envy-
free matchings of different sizes.

Size of Envy-Free Matchings: In
terms of size, there is a sharp con-
trast between stable matchings in the
HR setting and envy-free matchings in
the HRLQ setting. While all the sta-
ble matchings in an HR instance have
the same size, the envy-free match-
ings in an HRLQ instance may have significantly different sizes. For example,
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in Fig. 2, there are two envy-free matchings, N1 = {(r1, h2)} of size one and
Nn = {(r1, h1), (r2, h1), . . . , (rn−1, h1), (rn, h2)} of size n.

Shortcomings of Envy-Free Matchings: It is interesting to note that a
feasible, envy-free matching itself may not exist – e.g. in Fig. 1, if both h1, h2

have a unit lower-quota, then the unique feasible matching is not envy-free.
If a stable matching is not feasible in an HRLQ instance, wastefulness may be
inevitable for attaining feasibility. A matching is wasteful if there exists a resident
who prefers a hospital to her current assignment and that hospital has a vacant
position [5]. Envy-free matchings can be significantly wasteful (e.g. the matching
N1 in Fig. 2). Therefore, it would be ideal to have a notion of optimality which
is guaranteed to exist, is efficiently computable and avoids wastefulness.

Quest for a Better Optimality Criterion: We propose a new notion of
relaxed stability which always exists for any HRLQ instance. We observe that
in the presence of lower quotas, there can be at most q−(h)-many residents
that are forced to be matched to h, even though they have higher preferred
under-subscribed hospitals in their list. Our relaxation allows these forced resi-
dents to participate in blocking-pairs,1 however, the matching is still stable when
restricted to the remaining residents. We now make this formal below.

Definition 3 (Relaxed stable matchings). A matching M is relaxed stable
if, for every hospital h, at most q−(h) residents from M(h) participate in blocking
pairs and no unmatched resident participates in a blocking pair.

r1 : h1, h3

r2 : h2, h3

r3 : h2

[0, 1] h1 : r1
[0, 1] h2 : r2, r3
[1, 1] h3 : r1, r2

Fig. 3. An HRLQ instance with two relaxed
stable matchings of different sizes, one
larger than stable matching

In Fig. 1, the matching {(r1, h2),
(r2, h1)} (which was not envy-free)
is feasible, relaxed stable and non-
wasteful. We show that a feasible
relaxed stable matching always exists
in an HRLQ instance. However, com-
puting a largest relaxed stable match-
ing is NP-hard. We present an efficient
algorithm that computes a match-
ing that is at least as large as any stable matching in the instance, thus
addressing wastefulness. In fact, a relaxed stable matching may be even
larger than the stable matching in the instance. In the instance shown in
Fig. 3, Ms = {(r1, h1), (r2, h2)} is an infeasible stable matching. Matchings
M ′

1 = {(r1, h3), (r2, h2)} and M ′
2 = {(r1, h1), (r2, h3), (r3, h2)} both are feasi-

ble, relaxed stable and M ′
2 is larger than Ms. This is in contrast to maximum

size envy-free matching which cannot be larger than a stable matching (see
Sect. 2.2).

In the spirit of allowing blocking pairs, different notions have been proposed
in [2,9]. In [9], the goal is to compute a feasible matching with the least number

1 Our initial idea was to allow them to participate in envy-pairs. We thank anonymous
reviewer for suggesting this modification which is stricter than our earlier notion.
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of blocking pairs or blocking residents; however, both these problems are NP-
hard even for CL-restriction [9] (i.e., every hospital with positive lower-quota
must rank every resident, and hence, every resident must rank every hospital
with positive lower-quota) whereas a feasible relaxed stable matching can be
efficiently computed. Popular matchings [17] allow blocking pairs to address
feasibility and guaranteed existence in the HRLQ setting. However, there is no
known bound on the number of blocking residents in a largest popular matching,
whereas the number of blocking residents in a relaxed stable matching is at most
the sum of lower quotas of all the hospitals. Lower quotas with constraints [4,10]
and in a model where hospitals can be closed [1] are investigated.

Our Contributions: We denote the problem of computing a maximum size
feasible envy-free matching (respectively a maximum size feasible relaxed stable
matching) as the MAXEFM (respectively the MAXRSM) problem. Throughout
the paper, we assume that our input HRLQ instance admits a feasible matching.
In the interest of space, proofs of Theorems and Lemmas marked with (�) are
deferred to the full-version [15].

Results on Envy-Freeness: We show that the MAXEFM problem is NP-hard,
and is hard to approximate below a constant factor.

Theorem 1 (�). The MAXEFM problem is NP-hard and cannot be approxi-
mated within a factor of 21

19 − ε for ε > 0 unless P = NP even when every
hospital has a quota of at most one.

In light of the above negative result, we turn our attention to the approximation
and tractable special cases. In practice it is common to have incomplete pref-
erence lists and in many cases the preference lists of residents may also be of
constant size. A matching M is a maximal envy-free matching if addition of an
edge to M violates either the upper-quota or envy-freeness. Prior to our work,
no size guarantee of a maximal envy-free matching was known. Let �1 and �2 be
the length of the longest preference list of a resident and a hospital respectively.

Theorem 2. A maximal envy-free matching is

(I) an �1-approximation of MAXEFM when hospital quotas are at most one.
(II) (�) an (�1 · �2)-approximation of MAXEFM when quotas are unrestricted.

Next, we consider the HRLQ instances with the CL-restriction [9]. In contrast
to the NP-hardness results in [9], the MAXEFM problem is tractable under the
CL-restriction.

Theorem 3. There is a simple linear-time algorithm for the MAXEFM problem
for CL-restricted HRLQ instances.

Results on Relaxed Stability: We prove that the MAXRSM problem is NP-
hard and is also hard to approximate, but has a better approximation behavior
than the MAXEFM problem.
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Theorem 4. The MAXRSM problem is NP-hard and cannot be approximated
within a factor of 21

19 − ε for ε > 0 unless P = NP even when every hospital has
a quota of at most one.

We complement the above negative result with the following.

Theorem 5. Any feasible HRLQ instance always admits a relaxed stable
matching. Moreover, there is a polynomial-time algorithm that outputs a 3

2 -
approximation to the maximum size relaxed stable matching.

We summarize our results in Table 1.

Table 1. Summary of our results

Problem Inapproximability Approximation Restricted
settings

MAXEFM ( 21
19

− ε)-inapproximability (�1 · �2)-approximation P-time for CL-
restriction,
�1-approximation
for 0/1 quotas

MAXRSM ( 21
19

− ε)-inapproximability 3
2
-approximation –

Organization of the Paper: Our algorithmic results for envy-free matchings and
relaxed stable matchings are presented in Sect. 2 and in Sect. 3 respectively. The
NP-hardness and inapproximability results are presented in Sect. 4.

2 Envy-Freeness: Algorithmic Results

In this section, we first focus on the approximation guarantee of maximal envy-
free matchings and then present an efficient algorithm for the MAXEFM problem
on the CL-restricted HRLQ instances.

2.1 Approximation to MAXEFM

A maximal envy-free matching can be efficiently computed; Krish-
napriya et al. [16] present one such algorithm which extends a given envy-free
matching. The results in [16] are empirical and no theoretical guarantee is known
about the size of a maximal envy-free matching. Below we prove the guarantee
for the instances where hospital quotas are at most one.

Proof (of Theorem 2(I)). Let M and OPT be respectively a maximal and a
maximum size envy-free matching. Let ROPT and RM denote the set of residents
matched in OPT and M respectively. Let X1 be the set of residents matched
in both M and OPT . Let X2 be the set of residents matched in OPT but not
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matched in M . Thus, |ROPT | = |X1| + |X2|. Since X1 = ROPT ∩ RM ⊆ RM , so
|X1| ≤ |RM |. Our goal is to show that |X2| ≤ |RM | · (�1 − 1). Recall that �1 is
the length of the longest preference list of a resident. Once we establish that, it
is immediate that a maximal envy-free matching is an �1-approximation.

We show that for every resident r ∈ X2 we can associate a unique hospital
hr such that hr is unmatched in M and there exists a resident r′ in the neigh-
bourhood of hr such that r′ is matched in M . Denote the set of such hospitals
as Y2. Note that due to the uniqueness assumption |X2| = |Y2|. Since each resi-
dent has a preference list of length at most �1, any r′ who is matched in M can
have at most �1 − 1 neighbouring hospitals which are unmatched in M . Thus
|X2| = |Y2| ≤ |RM | · (�1 − 1) which establishes the approximation guarantee. To
finish the proof we show a unique hospital hr with desired properties that can
be associated with each r ∈ X2. Let r ∈ X2 such that h = OPT (r). We have
following two exhaustive cases.

Case 1: If h is unmatched in M , then due to maximality of M , there must exist
a resident r′ matched in M such that adding (r, h) causes envy to r′. Thus, h
has a neighboring resident r′ matched in M , and we let hr = h.

Case 2: If h is matched in M , then since M and OPT are both envy-free,
there must exist a path 〈r, h, r1, h1 , . . . , ri, hi〉 such that (r, h) ∈ OPT , for each
k = 1, . . . , i, we have (rk, hk) ∈ OPT , (r1, h) ∈ M , for each k = 2, . . . , i, we have
(rk, hk−1) ∈ M and hi is unmatched in M . Thus, hi has a neighboring resident
ri matched in M , and we let hr = hi.

Uniqueness Guarantee: For any r ∈ X2 such that case 1 applies, the associ-
ated hi is unique since hospital quotas are at most 1. For two distinct r, r′ ∈ X2

such that case 2 applies for both, the paths mentioned above are disjoint since
hospital quotas are at most 1, which guarantees uniqueness within case 2.
The hi associated in case 2 cannot be associated in case 1 to OPT (hi) since
OPT (hi) = ri /∈ X2. This completes the proof of existence of the unique
hospital. 
�

2.2 Polynomial Time Algorithm for the CL-Restricted Instances

In this section, we consider the MAXEFM problem on CL-restricted HRLQ
instances with general quotas. Recall that under CL-restriction [9], hospitals with
positive lower-quota rank every resident and vice versa. It follows from the char-
acterization of Yokoi [20] that every HRLQ instance with CL-restriction admits a
feasible envy-free matching. We now present a simple modification to the stan-
dard Gale and Shapley algorithm [6] that computes a maximum size envy-free
matching. We start with an empty matching M . Throughout the algorithm, we
maintain two parameters:

– d: denotes the deficiency of the matching M , that is, the sum of deficiencies
of all hospitals with positive lower-quota.

– k: the number of unmatched residents w.r.t. M .
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In every iteration, an unmatched resident r who has not yet exhausted its pref-
erence list, proposes to the most preferred hospital h. If h is deficient w.r.t. M ,
h accepts r’s proposal. Otherwise, if h is under-subscribed w.r.t. M , h accepts
the r’s proposal only if there are enough unmatched residents to satisfy the
deficiency of the other hospitals, that is, k > d. If h is fully-subscribed, then h
rejects the least preferred resident in M(h)∪{r}. This process continues as long
as some unmatched resident has not exhausted its preference list.

Algorithm 1: MAXEFM in CL-restricted HRLQ instances.
Input: An HRLQ instance G = (R ∪ H, E) with CL-restriction
Output: Maximum size envy-free matching

1 let M = ∅; d =
∑

h:q−(h)>0

q−(h); k = |R|;

2 while there is an unmatched resident r who has at least one hospital not yet
proposed to do

3 r proposes to the most preferred hospital h;
4 if |M(h)| < q−(h) then
5 M = M ∪ {(r, h)};
6 reduce d and k each by 1;

7 else
8 if |M(h)| == q+(h) then
9 let r′ be the least preferred resident in M(h) ∪ {r};

10 M(h) = M(h) ∪ {r} \ {r′};

11 if |M(h)| < q+(h) and k == d then
12 let r′ be the least preferred resident in M(h) ∪ {r};
13 M(h) = M(h) ∪ {r} \ {r′};

14 else
// we have |M(h)| < q+(h) and k > d

15 M = M ∪ {(r, h)};
16 reduce k by 1;

17 return M ;

Since the input instance is feasible, we start with k ≥ d and this inequality is
maintained throughout the algorithm. If no resident is rejected due to k = d in
line 11, then our algorithm degenerates to the Gale and Shapley algorithm [6] and
hence outputs a stable matching. It is straightforward to verify that Algorithm 1
runs in linear time in the size of the instance. Lemma 1 proves the correctness
of our algorithm and establishes Theorem 3.

Lemma 1. The matching M computed by Algorithm 1 is feasible and maximum
size envy-free.

Proof. We first prove that the output is feasible. Suppose not. Then at termi-
nation, d > 0, that is, there is at least one hospital h that is deficient w.r.t. M .
It implies that k ≥ 1. Thus there is some resident r unmatched w.r.t. M . Note
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that r could not have been rejected by every hospital with positive lower-quota
since h appears in the preference list of r, and h is deficient. This contradicts
the termination of our algorithm and proves the feasibility of our matching.

Next, we prove that M is envy-free. Suppose for the sake of contradiction, M
contains an envy-pair (r′, r) such that (r, h) ∈ M where r′ >h r and h >r′ M(r′).
This implies that r′ must have proposed to h and h rejected r′. If h rejected r′

because |M(h)| = q+(h), h is matched with better preferred residents than r′,
a contradiction to the fact that r′ >h r. If h rejected r′ because k = d, then
there are two cases. Either r was matched to h when r′ proposed to h. In this
case, in line 11 our algorithm rejected the least preferred resident in M(h). This
contradicts that r′ >h r. Similarly if r proposed to h later, since k = d, the
algorithm rejected the least preferred resident again contradicting the presence
of any envy-pair.

Finally, we show that M is a maximum size envy-free matching. We have
k ≥ d at the start of the algorithm. If during the algorithm, k = d at some
point, then at the end of the algorithm we have k = d = 0, implying that, we
have an R-perfect matching and hence the maximum size matching. Otherwise,
k > d at the end of the algorithm and then we output a stable matching which
is maximum size envy-free by Lemma 2. 
�
Lemma 2 (�). A stable matching when feasible, is an optimal solution of
MAXEFM.

Note that Algorithm 1 is similar to the ESDA algorithm presented in [5]. The
ESDA algorithm needs a stricter assumption that the underlying graph is com-
plete, whereas we assume the weaker CL-restriction. Moreover, only empirical
results without theoretical guarantees on the size of the output matching are
presented in [5].

3 Relaxed Stability: Algorithmic Results

In this section, we present Algorithm 2 that computes a relaxed stable matching
in an HRLQ instance and prove that it gives a 3

2 -approximation to MAXRSM.
Furthermore, we show that the output of Algorithm 2 is at least as large as any
stable matching in the instance (disregarding lower-quotas).

We say a feasible matching M0 is minimal if, for any edge e ∈ M0, M0 \ {e}
is infeasible. Thus, if M0 is minimal, then for every hospital h, |M0(h)| = q−(h).
Algorithm 2 begins by computing a feasible matching M0 in the instance G dis-
regarding the preferences of the residents and hospitals. Such a feasible matching
can be computed by the standard reduction from bipartite matchings to flows
with demands on edges [14]. Let M = M0. We now associate levels with the resi-
dents – all residents matched in M are set to have level-0; all residents unmatched
in M are assigned level-1. We now execute the Gale and Shapley resident propos-
ing algorithm, with the modification that a hospital prefers any level-1 resident
over any level-0 resident (irrespective of the preference list of h). Furthermore, if
a level-0 resident becomes unmatched during the course of the proposals, then it
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gets assigned a level-1 and it starts proposing from the beginning of its preference
list. Amongst two residents of the same level, the hospital uses its preference list
to order them. Our algorithm terminates when every resident is either matched
or has exhausted its preference list when proposing hospitals at level-1. The two
level idea is somewhat similar to the one used in Király [13] for stable matchings
with ties and incomplete lists. It is clear that our algorithm runs in polynomial
time since it only computes a feasible matching (using a reduction to flows) and
executes a modification of Gale and Shapley algorithm. We prove the correctness
of our algorithm below.

Algorithm 2: Algorithm to compute 3
2 -approximation of MAXRSM

Input: Input: HRLQ instance G = (R ∪ H, E)
Output: A relaxed stable matching that is a 3

2
-approximation of MAXRSM

1 M0 is a minimal feasible matching in G. Let M = M0;
2 For every matched resident r, set level of r to level-0;
3 For every unmatched resident r, set level of r to level-1;
4 while there is an unmatched resident r who has not exhausted his preference list

do
5 r proposes to the most preferred hospital h to whom he has not yet

proposed;
6 if h is under-subscribed then
7 M = M ∪ {(r, h)};
8 else
9 if M(h) has at least one level-0 resident r′ then

10 M = M \ {(r′, h)} ∪ {(r, h)};
11 Set level of r′ to level-1 and r′ starts proposing from the beginning

of his list;
12 else
13 h rejects the least preferred resident in M(h) ∪ {r};

14 Return M ;

Remark 1. If r is unmatched in M then r is a level-1 resident and all the hospitals
in r’s preference list are fully-subscribed with level-1 residents preferred over r.

Lemma 3. Matching M output by Algorithm 2 is feasible and relaxed stable.

Proof. We note that M0 is feasible and since residents propose it is clear that
for any hospital h, we have |M(h)| ≥ |M0(h)| = q−(h). Thus M is feasible.

To show relaxed stability, we claim that when the algorithm terminates, a
resident at level-1 does not participate in a blocking pair. Whenever a level-
1 resident r proposes to a hospital h, resident r always gets accepted except
when h is fully-subscribed and all the residents matched to h are level-1 and
are better preferred than r. When a matched level-1 resident r is rejected by
a hospital h, h gets a better preferred resident than r. Thus, a level-1 resident
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does not participate in a blocking pair. By Remark 1, an unmatched resident
(being at level-1) does not participate in a blocking pair. Recall that all residents
matched in M0 are level-0 residents and M0 is minimal. This implies that for
every hospital h, at most q−(h) many residents assigned to h in M0 participate
in a blocking pair. We show that in M , the number of level-0 residents assigned
to any hospital does not increase. To see this, if r is matched to h in M , but
not matched to h in M0, it implies that either r was unmatched in M0 or r was
matched to some h′ in M0. In either case r becomes level-1 when it gets assigned
to h in M . Thus the number of level-0 residents assigned to any hospital h in M
is at most q−(h), all of which can potentially participate in blocking pairs. This
completes the proof that M is relaxed stable. 
�
Lemma 4. Matching M output by Algorithm 2 is a 3

2 -approximation to the
maximum size relaxed stable matching.

Proof. Let OPT denote the maximum size relaxed stable matching in G. To
prove the lemma we show that in M ⊕OPT there does not exist any one-length
as well as any three-length augmenting path. Suppose that (r, h) is a one-length
augmenting path w.r.t. M in M⊕ OPT implying that r is unmatched in M . Then
by Remark 1, h is fully-subscribed - a contradiction that (r, h) is an augmenting
path. Thus, there is no one-length augmenting path in M ⊕ OPT .

For the three-length augmenting paths, we first convert the matchings M and
OPT as one-to-one matchings, by making clones of the hospital. In particular we
make q+(h) many copies of the hospital h for every h where the first q−(h) copies
are called lower-quota copies and the q−(h) + 1 to q+(h) copies are called non
lower-quota copies of h. Let M1 denote the one-to-one matching corresponding
to M . To obtain M1, we assign every resident r ∈ M(h) to a unique copy of h as
follows: first, all the residents in M(h) who participate in blocking pair w.r.t. M
are assigned unique lower-quota copies of h arbitrarily. The remaining residents
in M(h) are assigned to the rest of the copies of h, ensuring all lower-quota
copies get assigned some resident. We get OPT1 from OPT in the same manner.

Now, suppose there exists a three-length augmenting path w.r.t. M which
starts at an under-subscribed hospital, say hj and ends at an unmatched resident
in M . Since hj is under-subscribed in M , and there is an augmenting path
starting at hj , it implies that there exists a copy hd

j such that (i) hd
j is matched

in OPT1 and unmatched in M1, say OPT1(hd
j ) = rd and (ii) the resident rd

is matched in M1 (otherwise there is a one-length augmenting path w.r.t. M1,
which does not exist); let M1(rd) = hc

i , and (iii) the copy hc
i is matched in

OPT1 and OPT1(hc
i ) = rc is unmatched in M1 (else the claimed three-length

augmenting path does not exist).
We first note that hc

i and hd
j are not copies of the same hospital, that is,

i �= j, otherwise there is a one-length augmenting path (rc, hi) w.r.t. M . Since
rc is unmatched, by Remark 1, rd is a level-1 resident and rd >hi

rc. Thus, rd
proposed to hospitals from the beginning of its preference list. Since hj is under-
subscribed, it must be the case that hi >rd hj . Thus, (rd, hi) is a blocking pair
w.r.t. OPT . By the construction of OPT1 from OPT , we must have assigned rd
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to a lower-quota copy of hj . However, copy hd
j is a non lower-quota copy, since it

is unassigned in M1, a contradiction. Thus, the claimed three-length augmenting
path does not exist. 
�
We note that our analysis is tight [15]. We now show that the matching M
computed by Algorithm 2 is at least as large as any stable matching.

Lemma 5 (�). A resident matched in a stable matching Ms is also matched in
M output by Algorithm 2. Hence |M | ≥ |Ms|.
Proof (Sketch). Suppose there exists a resident r matched in Ms to hospital h
but unmatched in M . We start constructing a path starting at r using edges
from Ms and M alternately. We show that such a path can neither terminate at
a resident nor at a hospital and hence cannot exist. Thus, every resident matched
in Ms is matched in M and hence |M | ≥ |Ms|. 
�

4 Hardness Results

In this section we give an overview of the techniques used in proving the hard-
ness and inapproximability results. Theorem 1 and Theorem 4 are proved using
suitable reductions from the Minimum Vertex Cover (MVC) problem. We present
the proof for Theorem 4 below.

Proof (of Theorem 4). Given a graph G = (V,E), which is an instance of the
MVC problem, we construct an instance G′ of the MAXRSM problem. Corre-
sponding to each vertex vi in G, G′ contains a gadget with three residents
ri1, r

i
2, r

i
3, and three hospitals hi

1, h
i
2, h

i
3. All hospitals have an upper-quota of

1 and hi
3 has a lower-quota of 1. Assume that the vertex vi has d neighbors in G,

namely vj1 , . . . , vjd . The preference lists of the residents and hospitals are shown
in Fig. 4. We impose an arbitrary but fixed ordering on the vertices which is
used as a strict ordering of neighbors in the preference lists of resident ri1 and
hospital hi

2 in G′. Note that G′ has N = 3|V | residents and hospitals.

ri1 : hi
3, h

j1
2 , hj2

2 , . . . , h
jd
2 , hi

1

ri2 : hi
2, h

i
3

ri3 : hi
2

[0, 1] hi
1 : ri1

[0, 1] hi
2 : ri2, r

j1
1 , rj22 , . . . , r

jd
2 , ri3

[1, 1] hi
3 : ri2, r

i
1

Fig. 4. Preferences of agents corresponding to a vertex vi in G.

Lemma 6. If V C(G) denotes a minimum vertex cover of G and OPT (G′)
denotes a maximum size relaxed stable matching in G′, then |OPT (G′)| =
3|V | − |V C(G)|.
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Proof. We first prove that |OPT (G′)| ≥ 3|V | − |V C(G)|. Given a minimum
vertex cover V C(G) of G we construct a relaxed stable matching M for G′

as follows. M = {(ri1, h
i
3), (r

i
2, h

i
2) | vi ∈ V C(G)} ∪ {(ri1, h

i
1), (r

i
2, h

i
3), (r

i
3, h

i
2) |

vi /∈ V C(G)}. Thus, |OPT (G′)| ≥ |M | = 2|V C(G)| + 3(|V | − |V C(G)|) =
3|V | − |V C(G)|.
Claim. M is relaxed stable in G′.

Proof. When vi ∈ V C(G), residents ri1 and ri2 both are matched to their top
choice hospitals and hospital hi

2 is matched to its top choice resident ri2. Thus,
when vi ∈ V C(G), no resident from the i-th gadget participates in a blocking
pair. When vi /∈ V C(G), hospitals hi

1 and hi
3 are matched to their top choice

residents and we ignore blocking pair (ri2, h
i
2) because ri2 is matched to a lower-

quota hospital hi
3, thus there is no blocking pair within the gadget for vi /∈

V C(G). Now suppose that there is a blocking pair (ri1, h
j
2) for some j such

that (vi, vj) ∈ E. Note that either vi or vj is in V C(G). If vi ∈ V C(G), ri1 is
matched to its top choice hospital hi

3, thus cannot participate in a blocking pair.
If vi /∈ V C(G), it implies that vj ∈ V C(G). Then for vj ’s gadget, hj

2 is matched
to its top choice rj2, thus cannot form a blocking pair. 
�

Now we prove that OPT (G′) ≤ 3|V | − |V C(G)|. Let M = OPT (G′) be a
maximum size relaxed stable matching in G′. Consider a vertex vi ∈ V and the
corresponding residents and hospitals in G′. Refer Fig. 5 for the possible patterns
caused by vi. Hospital hi

3 must be matched to either resident ri1 (Pattern 1) or
resident ri2 (Pattern 2 to Pattern 7). If (ri1, h

i
3) ∈ M , then the resident ri2 must

be matched to a higher preferred hospital hi
2 in M . If (ri2, h

i
3) ∈ M then hi

2 may
be matched with either ri3 or rj1 of some neighbour vj or may be left unmatched.
Similarly, ri1 can either be matched to hi

1 or hj
2 of some neighbour vj . This leads

to 6 combinations as shown in Fig. 5b to Fig. 5g.

ri1

ri2

ri3

hi
1

hi
2

hi
3

(a) Pat. 1

ri1

ri2

ri3

hi
1

hi
2

hi
3

(b) Pat. 2

ri1

ri2

ri3

hi
1

hi
2

hi
3

(c) Pat. 3

ri1

ri2

ri3

hi
1

hi
2

hi
3

(d) Pat. 4

ri1

ri2

ri3

hi
1

hi
2

hi
3

(e) Pat. 5

ri1

ri2

ri3

hi
1

hi
2

hi
3

(f) Pat. 6

ri1

ri2

ri3

hi
1

hi
2

hi
3

(g) Pat. 7

Fig. 5. Seven patterns possibly caused by vertex vi

Claim. A vertex cannot cause pattern 5.

Proof. Assume for the sake of contradiction that a vertex vi causes pattern 5.
Then, there must exist a vertex vj adjacent to vi such that vj causes either
pattern 4 or pattern 7.
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Case 1: If vertex vj causes pattern 4, then (rj1, h
i
2) form a blocking pair, a con-

tradiction.

Case 2: If vertex vj causes pattern 7, then there must exist vertices
vj+1, . . . , vt such that there are following edges in G: (vi, vj), (vj , vj+1), (vj+1,
vj+2), . . . , (vt−1, vt) and vertices vj to vt−1 cause pattern 7 and vt causes pat-
tern 4. See Fig. 6. In the vertex ordering, we must have vj+1 > vi otherwise
(rj1, h

i
2) form a blocking pair. But, since hj

2 is matched to ri1, vj+2 > vj . Contin-
uing this way, vt > vt−2 but this causes (rt1, h

t−1
2 ) form a blocking pair. Thus,

the claimed set of edges cannot exist. 
�

ri1

ri2

ri3

hi
1

hi
2

hi
3

rj1

rj2

rj3

hj
1

hj
2

hj
3

rj+1
1

rj+1
2

rj+1
3

hj+1
1

hj+1
2

hj+1
3

. . .

rt−1
1

rt−1
2

rt−1
3

ht−1
1

ht−1
2

ht−1
3

rt1

rt2

rt3

ht
1

ht
2

ht
3

Fig. 6. Pattern combination that is not relaxed stable if vi causes pattern 5

Claim. A vertex cannot cause pattern 3 or pattern 6 or pattern 4.

Proof. In pattern 3 and 6, ri3 participates in a blocking pair (ri3, h
i
2), contradict-

ing that M is relaxed stable. If a vertex vi causes pattern 4, then there exists a
set of t vertices vi+1, . . . , vi+t such that for 0 ≤ k < t, (vi+k, vi+k+1) is an edge
in G and vi+t causes pattern 6. But, since pattern 6 cannot occur, pattern 4
cannot occur. 
�

Thus, a vertex can cause either pattern 1 or 2 and thus match all the residents
and hospitals within its own gadget or pattern 7 and match r1 and h2 outside
its own gadget. Accordingly there are following cases.

Case 1: A vertex causing pattern 7 contributes size 1 for (ri2, h
i
3) edge and 0.5

each for two edges matched to another vertex causing pattern 7, contributing an
average matching size of 2.

Case 2: It is clear that a vertex causing pattern 1 or 2 contributes to matching
size of 2 or 3 respectively.

Vertex Cover C of G Corresponding to M : Using M , we now construct
the set C of vertices in G which constitute a vertex cover of G. If vi causes
pattern 2, we do not include it in the C; Otherwise, we include it. We prove
that C is a vertex cover. Suppose not, then there exists an edge (vi, vj) such
that both vi and vj cause pattern 2. But, this means that (ri1, h

j
2) and (rj1, h

i
2)

form a blocking pair, a contradiction since M is relaxed stable. Now, it is easy
to see that |OPT (G′)| = 2|C|+3(|V |− |C|) = 3|V |− |C|. Thus, V C(G) ≤ |C| =
3|V | − |OPT (G′)|. This completes the proof of the lemma. 
�
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The rest of our proof is similar to the approach of Halldórsson et al. [8]
to prove inapproximability of the stable matchings with ties and incomplete
lists; however our gadgets above are entirely different. Lemma 7 is analogous to
Theorem 3.2 and Corollary 3.4 from [8] and its proof can be reproduced in a
similar way [15].

Lemma 7. It is NP-hard to approximate the MAXRSM problem within a factor
of 21

19 − ε, for any constant ε > 0, even when the quotas of all hospitals are either
0 or 1.

Acknowledgement. We thank the anonymous reviewers for their useful comments
which has improved the presentation of the paper.
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