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Abstract. Finding a stable matching is one of the central problems in
algorithmic game theory. If participants are allowed to have ties and
incomplete lists, computing a stable matching of maximum cardinality
is known to be NP-hard. In this paper we present a (3L − 2)/(2L − 1)-
approximation algorithm for the stable matching problem with ties of
size at most L and incomplete preferences. Our result matches the known
lower bound on the integrality gap for the associated LP formulation.
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1 Introduction

In an instance of the classical stable matching problem we are given a (complete)
bipartite graph G = (A ∪ B,E) where, following standard terminology, the nodes
in A will be referred to as men, and the nodes in B represent women. Each man
a ∈ A possesses a (strict, and complete) preference order over women in B, and
similarly, all women in B have a preference order over men in A. A matching M
in G is called stable if there are no blocking pairs (a, b); i.e. there do not exist
(a, b) �∈ M where both a and b prefer each other over their current partners in M
(if there are any). In their celebrated work [4], Gale and Shapley proposed an
efficient algorithm for finding a stable matching, providing a constructive proof
that stable matchings always exist.

Stable matchings have wide-spread applications (e.g., see Manlove [3]), and
many of these are large-scale. Therefore, as McDermid [15] points out, assuming
that preferences are complete and strict is not realistic. Thus, in this paper, we
will focus on stable matchings in the setting where preference lists are allowed
to be incomplete and contain ties. Here, a woman is allowed to be indifferent
between various men, and similarly, a man may be indifferent between several
women. In this setting we consider the maximum-cardinality stable matching
problem where the goal is to find a stable matching of maximum cardinality.

It is well-known that, in the settings where G is either complete or prefer-
ences do not contain ties, all stable matchings have the same cardinality [5].
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Moreover, a straightforward extension of the algorithm in [4] solves our problem
in these cases. When ties and incomplete preferences are permitted simultane-
ously, on the other hand, the problem of finding a maximum-cardinality sta-
ble matching is well-known to be NP-hard [14]. Furthermore, Yanagisawa [17]
showed that it is NP-hard to find a (33/29 − ε)-approximate, maximum-
cardinality stable matching. The same author also showed that assuming the
unique games conjecture (UGC) it is hard to achieve performance guarantee of
4/3 − ε.

On the positive side, maximum-cardinality stable matchings with ties and
incomplete preferences have attracted significant attention [1,6–12,15,16]. The
best-known approximation algorithms for the problem achieve an approximation
ratio of 3/2 [9,15,16].

How does the hardness of maximum-cardinality stable matching depend on
the maximum allowed size of ties in the given instance? Huang and Kavitha [6]
recently considered the case where the size of any tie is bounded by L = 2. The
authors proposed an algorithm and showed that its performance guarantee is
at most 10/7. Chiang and Pashkovich [2] later provided an improved analysis
for the same algorithm, showing that its real performance ratio is at most 4/3,
and this result is tight under the UGC [17]. Lam and Plaxton [13] very recently
designed a 1 + (1 − 1/L)L-approximation algorithm for the so-called one-sided
special case of our problem, where only preferences of men are allowed to have
ties.

1.1 Our Contribution

Our main result is captured in the following theorem. Note that the integrality
gap of the natural LP relaxation for the problem is at least (3L−2)/(2L−1) [8].
Hence, the performance ratio of our algorithm matches the known lower bound
on the integrality gap.

Theorem 1. Given an instance of the maximum-cardinality stable matching
problem with incomplete preferences, and ties of size at most L; the polynomial-
time algorithm described in Sect. 2 finds a stable matching M with

|M | ≥ 2L − 1
3L − 2

|OPT|,

where OPT is an optimal stable matching.

Our algorithm is an extension of that by Huang and Kavitha [6] for ties of
size two: every man has L proposals where each proposal goes to the acceptable
women. Women can accept or reject these proposals under the condition that
no woman holds more than L proposals at any point during the algorithm.
Similar to the algorithm in [6], we use the concept of promotion introduced by
Király [9] to grant men repeat chances in proposing to women. In comparison to
[6], the larger number of proposals in our algorithm leads to subtle changes to
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the forward and rejection mechanisms of women, and to further modifications
to the way we obtain the output matching.

Our analysis is inspired by the analyses of both, Chiang and Pashkovich [2],
and Huang and Kavitha [6], but requires several new ideas to extend it to the
setting with larger ties. In both [6] and [2], the analyses are based on charg-
ing schemes: some objects are first assigned some values, called charges, and
then charges are redistributed to nodes by a cost function. After a charging
scheme is determined, relations between the generated total charges, and the
sizes of output and optimal matchings are established, respectively, that lead to
an approximation ratio. The analysis in [6] employs a complex charging scheme
that acts globally, possibly distributing charges over the entire graph. In con-
trast, the charging scheme in [2] is local in nature, and exploits only the local
structure of the output and optimal matchings, respectively.

We do not know of a direct way to extend the local cost-based analysis of
[2] to obtain an approximation algorithm whose performance beats the best
known 3/2-approximation for the general case. Indeed we believe that any such
improvement must involve a non-trivial change in the charging scheme employed.
As a result, we propose a new analysis that combines local and global aspects
from [2,6]. The central technical novelty in the analysis is captured by Lemma 4
that provides an improved lower bound on the cost of components. As we will
see later, our new charging scheme allows for a more fine-grained accounting of
augmenting paths for the output matching of our algorithm.

2 Algorithm for Two-Sided Ties of Size Up to L

We introduce some notational conventions. Let a′, a′′ ∈ A be on the preference
list of b ∈ B. We write a′ �b a′′ if b is indifferent between a′ and a′′, and we
write a′ >b a′′, or a′ ≥b a′′ if b strongly, or weakly prefers a′ over a′′, respectively.
The preferences of men over women are defined analogously. For c ∈ A ∪ B, we
let N(c) denote the set of nodes adjacent to c in G.

2.1 How Men Propose

Each man a ∈ A has L proposals p1a, p2a, . . . , pL
a . A man starts out as basic, and

later becomes 1-promoted before he is eventually elevated to 2-promoted status.
Each man a ∈ A has a rejection history R(a) which records the women who
rejected a proposal from a during his current promotion status. Initially, we let
R(a) = ∅, for all a ∈ A.

Each proposal pi
a for a ∈ A and i = 1, 2, . . . , L goes to a woman in N(a)\R(a)

most preferred by a, and ties are broken arbitrarily. If a proposal pi
a for a ∈ A

and i = 1, 2, . . . , L is rejected by a woman b ∈ B, b is added to the rejection
history of a, and subsequently, pi

a is sent to a most preferred remaining woman
in N(a) \ R(a).
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Suppose now that R(a) becomes equal to N(a) for some man a ∈ A. If
a is either basic or 1-promoted then a’s rejection history is cleared, and a is
promoted. Otherwise, if a is already 2-promoted, a stops making proposals.

2.2 How Women Decide

Each woman b ∈ B can hold up to L proposals, and among these more than
one can come from the same man. Whenever she holds less than L proposals,
newly received proposals are automatically accepted. Otherwise, b first tries to
bounce one of her proposals, and if that fails, she will try to forward one of
her proposals. If b can neither bounce nor forward a proposal, then b rejects a
proposal.

We continue describing the details. In the following, we let P (b) and A(b)
denote the set of proposals held by b ∈ B at the current point, and the set of
men corresponding to these, respectively. Suppose that |P (b)| = L, and that b
receives a new proposal pi

a for some a ∈ A and i = 1, . . . , L.

Bounce Step. If there is a man α ∈ A(b) ∪ {a} and a woman β ∈ B \ {b} such
that β �α b, and β currently holds less than L proposals, then we move one of
α’s proposals from b to β, and we call the bounce step successful.

Forward Step. If there is a man α ∈ A(b) ∪ {a} and a woman β ∈ B \ {b}
such that β �α b, at least two proposals from α are present in P (b), no proposal
from α is present in P (β) and β is not in R(α), then b forwards a proposal
pj

α ∈ P (b) ∪ {pi
a} for some j = 1, . . . , L to β and the forward step is called

successful. As a consequence of a successful forward step, α makes the proposal
pj

α to β.
We point out that bounce and forward steps do not lead to an update to the

rejection history of an involved man. To describe the rejection step, we introduce
the following notions. For a woman b ∈ B, a proposal pi′

a′ is called more desirable
than pi′′

a′′ for a′, a′′ ∈ A and i′, i′′ = 1, . . . , L if b strongly prefers a′ to a′′, or if
b is indifferent between a′ and a′′ and a′ has higher promotion status than a′′.
A proposal pi′

a′ ∈ P (b) is least desirable in P (b) if pi′
a′ is not more desirable than

any proposal in P (b). Whenever b ∈ B receives a proposal pi
a, |P (b)| = L, and

neither bounce nor forward steps are successful, we execute a rejection step.

Rejection Step. If there is unique least desirable proposal in P (b) ∪ {pi
a}, then

b rejects that proposal. Otherwise, if there are more than one least desirable
proposal in P (b), b rejects a proposal from a man with the largest number of
least desirable proposals in P (b) ∪ {pi

a}. If there are several such men, then we
break ties arbitrarily. Subsequently, b is added to the rejection history of the
man whose proposal is rejected.

2.3 The Algorithm

An approximate maximum-cardinality stable matching for a given instance G =
(A ∪ B,E) is computed in two stages.
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Stage 1. Please see Algorithm 1 for the pseudo code for Stage 1.
Men propose in an arbitrary order and women bounce, forward or reject

proposals as described above. The first stage finishes, when for each man a ∈ A,
one of the following two conditions is satisfied: all proposals of a are accepted;
R(a) becomes equal to N(a) for the third time.

We represent the outcome of the first stage as a bipartite graph G′ = (A ∪
B,E′) with the node set A ∪ B and the edge set E′, where each edge (a, b) ∈ E′

denotes a proposal from a held by b at the end of the first stage. Note that G′

may be a multigraph in which an edge of the form (a, b) appears with multiplicity
equal to the number of proposals that b holds from a. Clearly, each node u in G′

has degree at most L, denoted by degG′(u) ≤ L, since every man has at most L
proposals that may be accepted and every woman can hold at most L proposals
at any point in the first stage.

Stage 2. We compute a maximum-cardinality matching M in G′ such that
all nodes of degree L in G′ are matched. The existence of such matching is
guaranteed by Lemma 1. The result of the second stage is such a matching M ,
that is the output of the algorithm.

Lemma 1. There exists a matching in the graph G′ such that all nodes of degree
L in G′ are matched. Moreover, there is such a matching M , where all nodes of
degree L in G′ are matched and we have

|M | ≥ |E′|/L .

Proof. Consider the graph G′ = (A ∪ B,E′) and the following linear program

max
∑

e∈E′
xe

s.t.
∑

e∈δ(u)

xe ≤ 1 (u ∈ A ∪ B)

∑

e∈δ(u)

xe = 1 (u ∈ A ∪ B,degG′(u) = L)

x ≥ 0.

It is well-known that the feasible region of the above LP is an integral polyhedron.
Moreover, the above LP is feasible as is easily seen by considering the point that
assigns 1/L to each edge in E′. Hence there exists an integral point optimal
for this linear program. Notice, that every integral point feasible for this linear
program is a characteristic vector of a matching in G′, which matches all nodes
of degree L in G′. To finish the proof, notice that the value of the objective
function calculated at x� equals |E′|/L. Thus the value of this linear program is
at least |E′|/L, finishing the proof. �	

2.4 Stability of Output Matching

Let the above algorithm terminate with a matching M . We first argue that it is
stable.
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Algorithm 1. Pseudo code for Stage 1 of the algorithm
1: let G = (A∪B, E) be an instance graph, and N(c) denote the set of nodes adjacent

to c ∈ A ∪ B in G
2: let G′ = (A ∪ B, E′) be a multigraph with E′ initialized to the empty multiset of

edges
3: let degG′(u) denote the degree of node u in G′, and A(b) denote the set of nodes

adjacent to b ∈ B in G′

4: for all a ∈ A do
5: R(a) := ∅ � R(a) is the rejection history of man a
6: stata := 0 � stata is the promotion status of man a
7: end for
8: while ∃a ∈ A s.t. degG′(a) < L and R(a) �= N(a) do
9: let b ∈ N(a) \ R(a) be a woman s.t. b ≥a b′ for all b′ ∈ N(a) \ R(a)

10: propose(a, b)
11: end while
12: return E′

{The following subroutine describes how b accepts the proposal from a, or bounces,
forwards, or rejects a proposal}

13: procedure propose(a, b)
14: if degG′(b) < L then
15: E′ := E′ ∪ {(a, b)}
16: else if ∃α ∈ A(b) ∪ {a} and ∃β ∈ N(α) s.t. β �α b and degG′ β < L then
17: E′ := E′ ∪ {(a, b), (α, β)} \ {(α, b)} � bounce
18: else if ∃α ∈ A(b) ∪ {a} and ∃β ∈ N(α) \ R(α) s.t. β �α b,

|(E′ ∪ {(a, b)}) ∩ {(α, b)}| ≥ 2 and α /∈ A(β) then
19: E′ := E′ ∪ {(a, b)} \ {(α, b)}
20: propose(α, β) � forward
21: else
22: let A denote {α ∈ A(b) ∪ {a} : for all a′ ∈ A(b) ∪ {a}, α ≤b a′ and

if α �b a′, then statα ≤ stata′}
23: let α0 be a man in arg maxα∈A |(E′ ∪ {(a, b)}) ∩ {(α, b)}|
24: E′ := E′ ∪ {(a, b)} \ {(α0, b)} � reject
25: R(α0) := R(α0) ∪ {b}
26: if R(α0) = N(α0) then
27: if statα0 < 2 then
28: statα0 := statα0 + 1
29: R(α0) := ∅

30: end if
31: end if
32: end if
33: end procedure

Lemma 2. The output matching M is stable in G = (A ∪ B,E).

Proof. Suppose for contradiction that M is not stable, i.e. suppose that there
exists an edge (a, b) ∈ E that blocks M . If b rejected a proposal from a during
the algorithm, then b holds L proposals when the algorithm terminates and all
these proposals are from men, who are weakly preferred by b over a. Thus the
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degree of b in G′ is L implying that b is matched in M with a man, who is not
less preferred by b than a. We get a contradiction to the statement that (a, b)
blocks M .

Conversely, if b did not reject any proposal from a during the algorithm, then
the algorithm terminates with all L proposals of a being accepted, particularly,
by women, who are weakly preferred by a over b. Therefore the degree of a in G′

is L implying that a is matched in M with a woman, who is not less preferred by
a than b. Again, we get a contradiction to the statement that (a, b) is a blocking
pair for M . �	

2.5 Running Time

We now show that each stage of the algorithm has polynomial execution time.
For the first stage, we illustrate that only a polynomial number of proposals
are bounced, forwarded, or rejected during this stage. For the second stage, the
proof of Lemma 2 implies that it is sufficient to find an optimal extreme solution
for a linear program of polynomial size.

First, we show that proposals are bounced only polynomially many times.
For every b ∈ B, at most L proposals may be bounced to b. Indeed, with each
proposal bounced to b, the number of proposals held by b increases; also, the
number of proposals held by b never decreases or exceeds L during the algorithm.
Hence at most L|B| proposals are bounced during the first stage.

Second, we illustrate that proposals are forwarded only polynomially many
times. For each a ∈ A, promotion status of a, and b ∈ B such that (a, b) ∈
E, at most one proposal of a may be forwarded to b. To see this, let b′ be a
woman forwarding a proposal of a to b. Notice that b cannot bounce the proposal
after b receives it because, otherwise, b′ could bounce it by the transitivity of
indifference. Observe also that b may forward a proposal from a only if she holds
another proposal from him. Then it follows from the forward step that no woman
can forward a proposal of a to b as long as b holds a proposal from him. If b
rejects the proposal, then she is added to the rejection history of a, and so b
does not receive any proposal from a unless the promotion status of a changes.
Hence at most 3|A||B| proposals are forwarded during the first stage.

Finally, for each a ∈ A, promotion status of a, and b ∈ B such that (a, b) ∈ E,
b may reject at most L proposals from a. Indeed, b holds at most L proposals
at any point in time, and since b is added to the rejection history of a after
she rejected him, b does not receive any proposal from a unless the promotion
status of a changes. Hence at most 3L|A||B| proposals are rejected during the
first stage.

3 Tight Analysis

Recall that OPT is a maximum-cardinality stable matching in G, and let M be
the output matching defined above. If a ∈ A is matched with b ∈ B in OPT, we
write OPT(a) := b and OPT(b) := a. Similarly, we use the notations M(a) := b
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and M(b) := a when a ∈ A is matched with b ∈ B in M . Note that our analysis
is based on graph G′ and therefore all graph-related objects will assume G′.

Definition 1. A man a ∈ A is called successful if the algorithm terminates with
all of his L proposals being accepted. Likewise, a woman b is called successful
if she holds L proposals when the algorithm stops. In other words, a person
c ∈ A ∪ B is successful if the degree of c in G′ is L, and unsuccessful otherwise.

Definition 2. A woman is called popular if she rejected a proposal during the
algorithm, and unpopular otherwise.

Remarks 1 and 2 below directly follow from the algorithm and are conse-
quences of the bouncing step, and the rejection step, respectively.

Remark 1. Let a ∈ A and b, b′ ∈ B be such that b holds a proposal from a when
the algorithm finishes, b′ is unsuccessful, and b′ �a b. Then b is unpopular.

Proof. Suppose for contradiction that b is popular. Then at some point she
could not bounce or forward any one of her proposals and so she was to reject a
proposal. This implies that after b became popular, whenever she received a new
proposal that could be bounced, that proposal would immediately be bounced.
But then, when the algorithm terminates, b holds a proposal from a, that could
successfully be bounced to b′, a contradiction. �	
Remark 2. Let a, a′ ∈ A and b ∈ B be such that b holds at least two proposals
from a when the algorithm finishes, b rejected a proposal from a′ at some point,
a is basic, and a′ �b a. Then there is an edge (a′, b) in G′.

Proof. Suppose for a contradiction that (a′, b) /∈ G′ holds. Let t be the most
recent point in time when b rejects a proposal from a′. Then it follows from the
algorithm that, at t, a′′ ≥b a′ holds for all a′′ ∈ A(b). The rejection step also
implies that, at t, there is no a′′ ∈ A such that a′ �b a′′, a′′ is basic, and b holds
more than one proposal from a′′. Moreover, the algorithm implies that, after t,
whenever she receives a new proposal from a man a′′ such that a′′ <b a′, she
will immediately reject it unless she successfully bounces or forwards it. Now,
consider a point in time after t when there is a man a′′ such that a′ �b a′′, b
already holds a proposal from a′′, and receives another proposal from a′′. Then
the rejection step implies that she will reject one of the proposals from a′′ unless
she successfully bounces or forwards it. But then, when the algorithm terminates,
b holds at least two proposals from a, a contradiction.

3.1 Analytical Techniques

In the following, we define inputs, outputs, and costs – notions that are central
in the analysis of our charging scheme. Before we take a closer look at these
notions and define them formally, let us discuss phenomena captured by them.

We use two different objects, inputs and outputs, to differentiate between
two different viewpoints on proposals accepted when the algorithm ends. In
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particular, inputs are associated with the viewpoint of women on the proposals
whereas outputs are associated with the viewpoint of men. The choice of terms
“inputs” and “outputs” is due to the analysis in [6] where the edges of G′ are
directed from men to women, and so each proposal becomes an “input” for the
woman, and analogously becomes an “output” for the corresponding man.

Now we describe the ideas that motivated our definitions concerning outputs
and inputs. Let M +OPT denote the multiset that contains the edges in M and
the edges in OPT. To establish the approximation guarantee of our algorithm,
we analyze each connected component in M + OPT. In order to show that M -
augmenting paths in M +OPT do not lead to a large approximation guarantee,
we introduce the notions of bad and good inputs as well as bad and good outputs.
For example, a certain number of bad inputs and bad outputs are generated
by the edges incident to the endpoints of an M -augmenting path in M + OPT.
Indeed, as we will see later, if a0 − b0 − a1 − . . . − ak − bk is an M -augmenting
path in M + OPT of length 2k + 1, k ≥ 2 where a0 ∈ A, then b0 has at least
L − 2 bad inputs and ak has at least L − 2 bad outputs. Then to show the
approximation guarantee of (3L − 2)/(2L − 1), we provide a way to obtain a
lower bound on the number of bad inputs and bad outputs of men and women
in each M -augmenting path; and later we provide an upper bound on the total
number of bad inputs and bad outputs of all men and women.

To implement the above ideas, we use a charging scheme. Our charging
scheme associates a cost with each man and each woman. These costs keep
track of bad inputs and bad outputs: bad inputs lead to an increase of the corre-
sponding woman’s cost and bad outputs lead to an increase of the corresponding
man’s cost. We show that the total cost of all men and women is bounded above
by 2L|M |. On the other side, we provide a lower bound on the total cost by
giving a lower bound on the cost of each connected component in M + OPT.
These upper and lower bounds lead to the desired approximation guarantee of
(3L − 2)/(2L − 1).

3.2 Inputs and Outputs

In our analysis inputs and outputs are fundamental edge-related objects for our
charging scheme. Each edge in G′ generates a certain number of charges. For
example, as we will see in Sect. 3.3, if an edge (a, b) in G′ belongs either to
M or to OPT, two charges are generated by (a, b) so that one is carried to
node a and one is carried to node b by cost function. To define similar charging
mechanisms for the remaining types of edges in G′, we first distinguish them as
in the following definitions.

Definition 3. Given an edge (a, b) in G′, we say that (a, b) is an output from
a ∈ A and an input to b ∈ B if (a, b) is not in M + OPT.

To illustrate how outputs and inputs are determined, for example, let (a, b) ∈
M , a ∈ A, b ∈ B and n(a,b) be the number of edges of the form (a, b) in the
multigraph G′, then the edge (a, b) gives rise to the following number s(a,b) of
inputs (and to the same number of outputs)
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s(a,b) :=

⎧
⎪⎨

⎪⎩

n(a,b) − 1 if (a, b) �∈ OPT

0 if n(a,b) = 1
n(a,b) − 2 otherwise.

Definition 4. An input (a, b) to b ∈ B is called a bad input if one of the
following is true:

– b is popular and a >b OPT(b).
– b is popular, a �b OPT(b), but OPT(b) is unsuccessful.
– b is popular, a is 1-promoted, OPT(b) is successful and M(b) �b OPT(b) �b a.

An input (a, b) to b ∈ B is a good input if it is not a bad input. In other
words, an input (a, b) to b ∈ B is a good input if one of the following is true:

– b is unpopular.
– b is popular and OPT(b) >b a.
– b is popular, a �b OPT(b), OPT(b) is successful and a is not 1-promoted.
– b is popular, a �b OPT(b),OPT(b) is successful, but not M(b) �b OPT(b) �b a.

An output (a, b) from a man a is called a bad output if one of the following
is true:

– b is unpopular.
– b is popular, b >a OPT(a), a is 1-promoted, but not M(b) �b OPT(b) �b a.
– b is popular, b >a OPT(a) and a is basic.

An output from a man a is a good output if that is not a bad output. In
other words, an output (a, b) from a man a ∈ A is a good output if one of the
following is true:

– b is popular and OPT(a) ≥a b.
– b is popular, b >a OPT(a) and a is 2-promoted.
– b is popular, b >a OPT(a), a is 1-promoted and M(b) �b OPT(b) �b a.

Lemma 3. There is no edge which is both a bad input and a bad output.

Proof. Assume that an edge (a, b), a ∈ A, b ∈ B is both a bad input to b and
a bad output from a. First, consider the first case from the definition of a bad
output. It trivially contradicts all the cases from the definition of a bad input.
Second, consider the first case from the definition of a bad input and either the
second or the third case from the definition of a bad output. Then the case
(1) below is implied. Third, consider the second case from the definition of a
bad input and either the second or the third case from the definition of a bad
output. Then the case (2) below is implied. Finally, consider the third case from
the definition of a bad input. It trivially contradicts both the second and the
third case from the definition of a bad output. Thus one of the following cases
is true:
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1. a >b OPT(b); b >a OPT(a).
2. a �b OPT(b), and OPT(b) is unsuccessful; a is not 2-promoted.

In case (1), the edge (a, b) is a blocking pair for OPT, contradicting the
stability of OPT.

In case (2), since OPT(b) is unsuccessful, OPT(b) was rejected by b as a
2-promoted man. On the other hand, a �b OPT(b), a is not 2-promoted, and
b holds a proposal from a when the algorithm terminates, contradicting the
rejection step. �	
Corollary 1. The number of good inputs is at least the number of bad outputs.

Proof. Assume for a contradiction that the number of good inputs is smaller
than the number of bad outputs. Then there is an edge in G′ which is a bad
output but not a good input. In other words, there is an edge in G′ which is
both a bad output and a bad input, contradicting Lemma 3. �	

3.3 Cost

In our charging scheme, cost is a function that assigns charges, that originate
from the edges, to the nodes. More specifically, the cost of a man a is obtained
by counting the edges in G′ incident to a, where bad outputs contribute 2 and
all other edges contribute 1. Similarly, the cost of a woman b is obtained by
counting the edges in G′ incident to b, to which good inputs contribute 0 and
all other edges contribute 1.

In the following, let deg(u) be the degree of the node u in G′. For a ∈ A, we
define his cost as follows:

cost(a) := deg(a) + k , where k is the number of bad outputs from a;

for b ∈ B, we define her cost as follows:

cost(b) := deg(b) − k , where k is the number of good inputs to b,

For a node set S ⊆ A ∪ B, cost(S) is defined as the sum of costs of all the nodes
in S.

The above definitions lead to next three remarks.

Remark 3. Let b ∈ B be matched in M and have at least k bad inputs. Then
cost(b) ≥ k + 1.

Proof. Let k′ be the number of good inputs to b. Since b is matched in M , the
edge (M(b), b) is contained in G′ and therefore it is not an input to b. Thus
deg(b) ≥ k + k′ + 1. Hence, by definition of cost, cost(b) = deg(b) − k′ ≥ k + 1
holds. �	
Remark 4. Let b ∈ B be matched in OPT, have at least k bad inputs, and
(OPT(b), b) ∈ E′ where E′ is the edge set of G′. Then cost(b) ≥ k + 1.
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Proof. Let k′ be the number of good inputs to b. Since the edge (OPT(b), b) is
in G′, it is not an input to b. Thus deg(b) ≥ k + k′ + 1. So, by definition of cost,
cost(b) = deg(b) − k′ ≥ k + 1 holds. �	
Remark 5. Let b ∈ B be matched in both OPT and M , OPT(b) �= M(b), and
(OPT(b), b) ∈ E′ where E′ is the edge set of G′. Then cost(b) ≥ 2.

Proof. Let k and k′ be the numbers of bad inputs and good inputs to b,
respectively. Since the edges (OPT(b), b) and (M(b), b) are contained in G′,
they are not inputs to b. Thus deg(b) ≥ k + k′ + 2. So, by definition of cost,
cost(b) = deg(b) − k′ ≥ k + 2 ≥ 2 holds. �	

3.4 The Approximation Ratio

Let C(M +OPT) denote the set of connected components in a graph induced by
the edge set M + OPT. Lemma 4 below bounds the cost of M + OPT. For the
proof of this lemma, we refer the reader to the full version of the paper on arXiv

Lemma 4.
∑

C∈C(M+OPT) cost(C) ≥ (L + 1)|OPT| + (L − 2)(|OPT| − |M |).
We are ready to prove our main theorem, and restate it here for completeness.

Theorem 1. Given an instance of the maximum-cardinality stable matching
problem with incomplete preferences, and ties of size at most L; the polynomial-
time algorithm described in Sect. 2 finds a stable matching M with

|M | ≥ 2L − 1
3L − 2

|OPT|,

where OPT is an optimal stable matching.

Proof. By Lemma 1, we have

|M | ≥ |E′|
L

=
∑

u∈A∪B

deg(u)
2L

.

By definition of cost and by Corollary 1, we obtain
∑

u∈A∪B

deg(u) ≥ cost(A ∪ B) .

Combining the above inequalities, we get

2L|M | ≥
∑

u∈A∪B

deg(u) ≥ cost(A ∪ B) =
∑

C∈C(M+OPT)

cost(C) ,

By Lemma 4, we obtain

2L|M | ≥
∑

C∈C(M+OPT)

cost(C) ≥ (L + 1)|OPT| + (L − 2)(|OPT| − |M |) .

https://arxiv.org/abs/2005.05228v2
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By rearranging the terms, we obtain

2L|M | + (L − 2)|M | ≥ (L + 1)|OPT| + (L − 2)|OPT| ,
and so we obtain the desired inequality

(3L − 2)|M | ≥ (2L − 1)|OPT| .
�	

3.5 Tightness of the Analysis

The following example shows that the bound in Theorem 1 is tight.

Men’s preferences Women’s preferences

a0 : (b0 bγ
1 . . . bγ

L−1) b0 : (a0 aβ
1 . . . aβ

L−1)

aα
1 : (bα

1 bγ
1 . . . bγ

L−1) bα
1 : aα

1 aβ
1 . . . aβ

L−1

...
...

aα
L−1 : (bα

L−1 bγ
1 . . . bγ

L−1) bα
L−1 : aα

L−1 aβ
1 . . . aβ

L−1

aβ
1 : (b0 bα

1 . . . bα
L−1) bβ

1 bβ
1 : aβ

1

...
...

aβ
L−1 : (b0 bα

1 . . . bα
L−1) bβ

L−1 bβ
L−1 : aβ

L−1

aγ
1 : bγ

1 bγ
1 : (a0 aα

1 . . . aα
L−1) aγ

1

...
...

aγ
L−1 : bγ

L−1 bγ
L−1 : (a0 aα

1 . . . aα
L−1) aγ

L−1

Fig. 1. An instance with ties of size at most L, L ≥ 2 for which the algorithm outputs
a stable matching M with |OPT|/|M | = (3L − 2)/(2L − 1)

Example 1. In Fig. 1, the preference list of each individual is ordered from a most
preferred person to a least preferred one, where individuals within parentheses
are tied. For example, aβ

1 is indifferent between all the women in his preference
list except bβ

1 , who is less preferred than the others.
It is straightforward to check that there exists a unique maximum-cardinality

stable matching, namely OPT = {(a0, b0)} ∪ {(aj
i , b

j
i ) | i = 1, . . . , L − 1, j =

α, β, γ}. We show that there exists an execution of the algorithm which outputs
the matching M = {(a0, b0)} ∪ {(aα

i , bγ
i ) | i = 1, . . . , L − 1} ∪ {(aβ

i , bα
i ) | i =

1, . . . , L − 1}, leading to the ratio |OPT|/|M | = (3L − 2)/(2L − 1).

Proof. The following is an execution of the algorithm which leads either to the
matching M or a matching with the size of M .
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– a0 makes one proposal to every woman in his list; the women accept.
– aα

i for all i = 1, . . . , L − 1 makes one proposal to every woman in his list; the
women accept.

– aβ
i for all i = 1, . . . , L−1 makes one proposal to every woman except the last

one in his list; the women accept.
– aγ

i starts to propose bγ
i for all i = 1, . . . , L − 1, but each time aγ

i makes a
proposal, the proposal is rejected; aγ

i gives up.

�	
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