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Preface

This volume contains the papers and extended abstracts presented at the 13th Inter-
national Symposium on Algorithmic Game Theory (SAGT 2020) held virtually during
September 16–18, 2020.

The purpose of SAGT is to bring together researchers from Computer Science,
Economics, Mathematics, Operations Research, Psychology, Physics, and Biology to
present and discuss original research at the intersection of Algorithms and Game
Theory.

The Program Committee (PC), consisting of 24 top researchers from the field,
reviewed 53 submissions and decided to accept 24 papers. Each paper had three
reviews, with additional reviews solicited as needed. We are very grateful to the PC for
their insightful reviews and discussions. The review process was conducted entirely
electronically via Easy Chair – we gratefully acknowledge this support.

The works accepted for publication in this volume cover most of the major aspects
of Algorithmic Game Theory, including auction theory, mechanism design, two-sided
markets, computational aspects of games, congestion games, dynamic equilibrium
flows, resource allocation problems, and computational social choice.

To accommodate the publishing traditions of different fields, authors of accepted
papers could ask that only a one-page abstract of the paper appeared in the proceedings.
Among the 24 accepted papers, the authors of 3 papers selected this option.

Furthermore, due to the general support by Springer, we were able to provide a Best
Paper Award. The PC decided to give the award to the paper “On the Approximability
of the Stable Matching Problem with Ties of Constant Size up to the Integrality Gap”
authored by Jochen Könemann, Kanstantsin Pashkovich, and Natig Tofigzade.

The program included three invited talks by leading researchers in the field: Dirk
Bergemann (Yale University, USA), Paul Dütting (London School of Economics, UK),
Ruta Mehta (University of Illinois at Urbana-Champaign, USA).

We would like to thank all the authors for their interest in submitting their work to
SAGT 2020, as well as the PC members and the external reviewers for their great work
in evaluating the submissions. We also want to thank EATCS, Springer, Facebook, and
the COST Action GAMENET (CA16228) for their generous financial support. We are
grateful to Monika Deininger at Augsburg University for her help with the conference
website and organization.

Finally, we would also like to thank Anna Kramer at Springer for helping with the
proceedings, and the EasyChair conference management system.

July 2020 Tobias Harks
Max Klimm



Organization

Program Committee

Umang Bhaskar Tata Institute of Fundamental Research, India
Vittorio Bilò University of Salento, Italy
Ozan Candogan University of Chicago, USA
Jose Correa Universidad de Chile, Chile
Ágnes Cseh Hungarian Academy of Sciences, Hungary
Edith Elkind University of Oxford, UK
John Fearnley The University of Liverpool, UK
Aris Filos-Ratsikas The University of Liverpool, UK
Dimitris Fotakis National Technical University of Athens, Greece
Martin Gairing The University of Liverpool, UK
Yiannis Giannakopoulos Technical University of Munich, Germany
Tobias Harks Augsburg University, Germany
Martin Hoefer Goethe University Frankfurt, Germany
Max Klimm Technical University Berlin, Germany
Maria Kyropoulou University of Essex, UK
David Manlove University of Glasgow, UK
Evangelos Markakis Athens University of Economics and Business, Greece
Dario Paccagnan University of California, Santa Barbara, USA
Georgios Piliouras Singapore University of Technology and Design,

Singapore
Guido Schaefer CWI Amsterdam, The Netherlands
Orestis Telelis University of Piraeus, Greece
Christos Tzamos University of Wisconsin-Madison, USA
Marc Uetz University of Twente, The Netherlands
Adrian Vetta McGill University, Canada

Additional Reviewers

Adil, Deeksha
Bailey, James
Birmpas, Georgios
Boehmer, Niclas
Bullinger, Martin
Carvalho, Margarida
Cechlarova, Katarina
Chandan, Rahul
Cheung, Yun Kuen
Cristi, Andrés

de Haan, Ronald
de Keijzer, Bart
Deligkas, Argyrios
Ferguson, Bryce
Ganesh, Sai
Gergatsouli, Evangelia
Ghalme, Ganesh
Gourves, Laurent
Gupta, Sushmita
Harrenstein, Paul



Hoeksma, Ruben
Ismaili, Anisse
Kaiser, Marcus
Kanellopoulos, Panagiotis
Kenig, Batya
Kern, Walter
Kodric, Bojana
Kontonis, Vasilis
Kovacs, Annamaria
Lackner, Martin
Laraki, Rida
Leonardos, Stefanos
Lianeas, Thanasis
Misra, Neeldhara
Miyazaki, Shuichi
Molitor, Louise
Monaco, Gianpiero
Mouzakis, Nikos
Oosterwijk, Tim

Paarporn, Keith
Papasotiropoulos, Georgios
Patsilinakos, Panagiotis
Plaxton, Greg
Poças, Diogo
Psomas, Alexandros
Reiffenhäuser, Rebecca
Rubinstein, Aviad
Sakos, Iosif
Schmand, Daniel
Skopalik, Alexander
Skoulakis, Stratis
Terzopoulou, Zoi
Varloot, Estelle
Vera, Alberto
Vinci, Cosimo
Voudouris, Alexandros
Wilczynski, Anaëlle
Yokoi, Yu

viii Organization



Contents

Auctions and Mechanism Design

Two-Buyer Sequential Multiunit Auctions with No Overbidding . . . . . . . . . . 3
Mete Şeref Ahunbay, Brendan Lucier, and Adrian Vetta

Asymptotically Optimal Communication in Simple Mechanisms . . . . . . . . . . 17
Ioannis Anagnostides, Dimitris Fotakis, and Panagiotis Patsilinakos

Finding Fair and Efficient Allocations When Valuations Don’t Add Up. . . . . 32
Nawal Benabbou, Mithun Chakraborty, Ayumi Igarashi, and Yair Zick

Mechanism Design for Perturbation Stable Combinatorial Auctions . . . . . . . . 47
Giannis Fikioris and Dimitris Fotakis

Congestion Games and Flows over Time

Congestion Games with Priority-Based Scheduling . . . . . . . . . . . . . . . . . . . 67
Vittorio Bilò and Cosimo Vinci

Equilibrium Inefficiency in Resource Buying Games
with Load-Dependent Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Eirini Georgoulaki, Kostas Kollias, and Tami Tamir

A Unifying Approximate Potential for Weighted Congestion Games . . . . . . . 99
Yiannis Giannakopoulos and Diogo Poças

The Impact of Spillback on the Price of Anarchy for Flows over Time . . . . . 114
Jonas Israel and Leon Sering

Dynamic Equilibria in Time-Varying Networks. . . . . . . . . . . . . . . . . . . . . . 130
Hoang Minh Pham and Leon Sering

Price of Anarchy in Congestion Games with Altruistic/Spiteful Players . . . . . 146
Marc Schröder

Markets and Matchings

Bribery and Control in Stable Marriage . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Niclas Boehmer, Robert Bredereck, Klaus Heeger, and Rolf Niedermeier

Approximating Stable Matchings with Ties of Bounded Size . . . . . . . . . . . . 178
Jochen Koenemann, Kanstantsin Pashkovich, and Natig Tofigzade



Envy-Freeness and Relaxed Stability: Hardness and Approximation
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Prem Krishnaa, Girija Limaye, Meghana Nasre,
and Prajakta Nimbhorkar

Scheduling and Games on Graphs

Targeted Intervention in Random Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 211
William Brown and Utkarsh Patange

A New Lower Bound for Deterministic Truthful Scheduling. . . . . . . . . . . . . 226
Yiannis Giannakopoulos, Alexander Hammerl, and Diogo Poças

Modified Schelling Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Panagiotis Kanellopoulos, Maria Kyropoulou,
and Alexandros A. Voudouris

Race Scheduling Games. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Shaul Rosner and Tami Tamir

Social Choice and Cooperative Games

Line-Up Elections: Parallel Voting with Shared Candidate Pool . . . . . . . . . . 275
Niclas Boehmer, Robert Bredereck, Piotr Faliszewski,
Andrzej Kaczmarczyk, and Rolf Niedermeier

Recognizing Single-Peaked Preferences on an Arbitrary Graph:
Complexity and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Bruno Escoffier, Olivier Spanjaard, and Magdaléna Tydrichová

A General Framework for Computing the Nucleolus
via Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Jochen Könemann and Justin Toth

How Many Freemasons Are There? The Consensus Voting Mechanism
in Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Mashbat Suzuki and Adrian Vetta

Abstracts

Computing Approximate Equilibria in Weighted Congestion Games
via Best-Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Yiannis Giannakopoulos, Georgy Noarov, and Andreas S. Schulz

x Contents



On the Integration of Shapley–Scar Housing Markets . . . . . . . . . . . . . . . . . 340
Rajnish Kumar, Kriti Manocha, and Josué Ortega

The Stackelberg Kidney Exchange Problem is Rp
2-complete . . . . . . . . . . . . . 342

Bart Smeulders, Danny Blom, and Frits C. R. Spieksma

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Contents xi



Auctions and Mechanism Design



Two-Buyer Sequential Multiunit Auctions
with No Overbidding

Mete Şeref Ahunbay1(B), Brendan Lucier2, and Adrian Vetta3

1 Department of Mathematics and Statistics, McGill University, Montreal, Canada
mete.ahunbay@mail.mcgill.ca

2 Microsoft Research New England, Cambridge, USA
brlucier@microsoft.com

3 Department of Mathematics and Statistics, School of Computer Science,
McGill University, Montreal, Canada

adrian.vetta@mcgill.ca

Abstract. We study equilibria in two-buyer sequential second-price (or
first-price) auctions for identical goods. Buyers have weakly decreasing
incremental values, and we make a behavioural no-overbidding assump-
tion: the buyers do not bid above their incremental values. Structurally,
we show equilibria are intrinsically linked to a greedy bidding strategy.
We then prove three results. First, any equilibrium consists of three
phases: a competitive phase, a competition reduction phase and a monop-
sony phase. In particular, there is a time after which one buyer exhibits
monopsonistic behaviours. Second, the declining price anomaly holds:
prices weakly decrease over time at any equilibrium in the no-overbidding
game, a fact previously known for equilibria with overbidding. Third, the
price of anarchy of the sequential auction is exactly 1 − 1/e.

1 Introduction

In a two-buyer multiunit sequential auction a collection of T identical items
are sold one after another. This is done using a single-item second-price (or
first-price) auction in each time period. Due to their temporal nature, equilib-
ria in sequential auctions are extremely complex and somewhat misunderstood
objects [8,12,13]. This paper aims to provide a framework in which to under-
stand two-buyer sequential auctions. Specifically, we study equilibria in the auc-
tion setting where both duopsonists have non-decreasing & concave valuation
functions under the natural assumption of no-overbidding. Our main technical
contribution is an in-depth analysis of the relationship between equilibrium bid-
ding strategies and a greedy behavioural strategy. This similitude allows us to
provide a characterization of equilibria with no-overbidding and to prove three
results.

One, any equilibrium in a two-buyer sequential auction with no-overbidding
induces three phases: a competitive phase, a competition reduction phase and
a monopsony phase. In particular, there is a time after which one of the two
duopsonists will behave as a monoposonist. Here monopsonistic behaviour refers
c© Springer Nature Switzerland AG 2020
T. Harks and M. Klimm (Eds.): SAGT 2020, LNCS 12283, pp. 3–16, 2020.
https://doi.org/10.1007/978-3-030-57980-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57980-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-57980-7_1
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to the type of strategies expected from a buyer with the ability to clinch the
entire market. Intriguingly, we show that this fact does not hold for equilibria
where overbidding is permitted.

Two, the declining price anomaly holds for two-buyer sequential auctions
with no-overbidding; the price weakly decreases over time for any equilibrium in
the auction. This result shows that the seminal result of Gale and Stegeman [8],
showing the declining price anomaly holds for equilibria in two-buyer sequential
auctions with overbidding permitted, carries over to equilibria in auctions with
no-overbidding. Notably, this declining price anomaly can fail to hold for three
or more buyers, even with no-overbidding [13].

Three, the price of anarchy in two-buyer sequential auctions with no-over-
bidding is exactly 1 − 1

e � 0.632. We remark that the same bound has been
claimed in [3,4] for equilibria where overbidding is allowed but, unfortunately,
there is a flaw in their arguments.

1.1 Related Work

The complete information model of two-buyer sequential auctions studied in this
paper was introduced by Gale and Stegeman [8]. This was extended to multi-
buyer sequential auctions by Paes Leme et al. [12] (see also [13]). Rodriguez [14]
studied equilibria in the special case of identical items and identical buyers with
endowments.

Ashenfelter [1] observed that the price of identical lots fell over time at a
sequential auction for wine. This tendency for a decreasing price trajectory is
known as the declining price anomaly [10]. Many attempts have been made to
explain this anomaly and there is now also a plethora of empirical evidence
showing its existence in practice; see [2,13,15] and the references within for
more details. On the theoretical side, given complete information, Gale and
Stegeman [8] proved that a weakly decreasing price trajectory is guaranteed in a
two-buyer sequential auction for identical items. Prebet et al. [13] recently proved
that declining prices are not assured in sequential multiunit auctions with three
or more buyers, but gave experimental evidence to show that counter-examples
to the anomaly appear extremely rare.

In the computer science community research has focussed on the welfare of
equilibria in sequential auctions. Bae et al. [3,4] study the price of anarchy in
two-buyer sequential auctions for identical items. There has also been a series
of works bounding the price of anarchy in multi-buyer sequential auctions for
non-identical goods; see, for example, [6,12,16].

Sequential auctions with incomplete information have also been studied
extensively since the classical work of Milgrom and Weber [11,17]. We remark
that to study the temporal aspects of the auction independent of informational
aspects it is natural to consider the case of complete information. Indeed, our
work is motivated by the fact that, even in the basic setting of complete infor-
mation, the simplest case of two-buyers is not well understood.
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1.2 Overview of the Paper

Section 2 presents the model of two-buyer sequential auctions with complete
information. It also includes a collection of examples that illustrate some of the
difficulties that arise in understanding sequential auctions and provide the reader
with a light introduction to some of the technical concepts that will play a role in
the subsequent analyses of equilibria. They will also motivate the importance and
relevance of no-overbidding. This section concludes by incorporating tie-breaking
rules in winner determination. Section 3 provides a measure for the power of a
duopsonist and presents a natural greedy bidding strategy that a buyer with
duopsony power may apply. Section 4 studies how prices and duopsony power
evolve over time when the buyers apply the greedy bidding strategy.

The relevance of greedy bidding strategies is exhibited in Sect. 5 where we
explain their close relationship with equilibria bidding strategies. This relation-
ship allows us to provide a characterization of equilibria with no-overbidding.
Key features of equilibria follow from these structural results. First, any equi-
libria induces three distinct phases with a time after which some buyer behaves
as a monopsonist. Second, prices weakly decrease over time for any equilibrium.
Finally, in Sect. 6 we prove the price of anarchy is exactly 1 − 1

e .
Due to space constraints, all proofs are deferred to the full version.

2 Two-Buyer Sequential Auctions

In this section we introduce two-buyer sequential auctions and illustrate their
strategic aspects via a set of simple examples. There are T items to be sold, one
per time period by a second-price auction.1 Buyer i ∈ {1, 2} has a value Vi(k)
for obtaining exactly k items and incremental value vi(k) = Vi(k)−Vi(k −1) for
gaining a kth item. We assume Vi(·) is normalised at zero, non-decreasing and
concave.

Example 1: Consider a two-buyer auction with two items, with incremental
valuations (v1(1), v1(2)) = (10, 9) and (v2(1), v2(2)) = (8, 5). The outcome that
maximizes social welfare is for buyer 1 to receive both copies of the item. How-
ever, at equilibrium, buyer 2 wins the first item at a price of 6, and buyer 1 wins
the second item at a price of 5. To see this, imagine that buyer 1 wins in the
first period. Then in the second period she will have to pay 8 to beat buyer 2.
Given this, buyer 2 will be willing to pay up to 8 to win in the first round.
Thus, buyer 1 will win both permits for 8 each and obtain a utility (profit) of
(10 + 9) − 2 · 8 = 3. Suppose instead that buyer 2 wins in the first round. Now
in the second period, buyer 1 will only need to pay 5 to beat buyer 2, yielding a
profit of 10 − 5 = 5. So, by bidding 6 in the first period, buyer 1 can guarantee
herself a profit of 5. Given this bid, buyer 2 will maximize his own utility by
winning the first permit for 6. Note that this outcome, the only rational solution,
proffers suboptimal welfare.
1 We present our results for second-price auctions. Given an appropriate formulation

of the bidding space to ensure the existence of an equilibrium [12] these results also
extend to the case of first-price auctions.
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2.1 An Extensive-Form Game

We compactly model this sequential auction as an extensive-form game with
complete information using a directed graph. The node set is given H =
{(x1, x2) ∈ Z+|x1 + x2 ≤ T}. Each node has a label x = (x1, x2) denoting how
many items each buyer has currently won. There is a source node, 0 = (0, 0),
corresponding to the initial round of the auction, and terminal nodes (x1, x2),
where x1 + x2 = T . If x is a terminal node, we write x ∈ H0, otherwise we say
that x is a decision node and write x ∈ H+. We also denote by t(y) = T −y1−y2
the number of items remaining to be sold at node y; when the decision node is
actually denoted x, we simply write t for t(x).

We also extend our notation for incremental valuations. Specifically, we
denote the incremental value of buyer i of a kth additional item given endow-
ment x (i.e. from decision node x) as vi(k|x) = Vi(xi + k) − Vi(xi + k − 1), for
k ∈ N. For valuations at the source node, we drop the explicit notation of the
decision node: for example, vi(k) = vi(k|0).

We find an equilibrium by calculating the forward utility of each buyer at
every node. The forward utility is the profit a buyer will earn from that period
in the auction onwards. There is no future profit at the end of the auction, so the
forward utility of each buyer is zero at each terminal node. The forward utilities
at decision nodes are then obtained by backwards induction: each decision node
x has a left child x + e1 and a right child x + e2, respectively corresponding to
buyer 1 and 2 winning an item. For the case of two-buyer second-price auctions,
it is a weakly dominant strategy for each buyer to bid its marginal value for win-
ning. This bid value is the incremental value plus the forward utility of winning
minus the forward utility of losing. Thus, at the node x, the bids of each buyer
are

b1(x) = v1(1|x) + u1(x + e1) − u1(x + e2),
b2(x) = v2(1|x) + u2(x + e2) − u2(x + e1).

If b1(x) ≥ b2(x) then buyer 1 will win and the forward utilities at x are then

u1(x) = v1(1|x) + u1(x + e1) − b2(x + e2)
= (v1(1|x) − v2(1|x)) + u1(x + e1) − u2(x + e2) + u2(x + e1),

u2(x) = u2(x + e1).

The forward utilities are defined symmetrically if b1(x) ≤ b2(x) and buyer 2 wins.
Given the forward utilities at every node, the iterative elimination of weakly
dominated strategies then produces a unique equilibrium [3,8].

The auction of Example 1 is illustrated in Fig. 1. The first row in each node
contains its label x = (x1, x2) and also the number of items, t = T − x1 − x2,
remaining to be sold. The second row shows the forward utility of each buyer.
Arcs are labelled by the bid value; here arcs for buyer 1 point left and arcs for
buyer 2 point right. Solid arcs represent winning bids and dotted arcs represent
losing bids. The equilibrium path, in bold, verifies our previous argument: buyer 2
wins the first item at price 6 and buyer 1 wins the second item at price 5.
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(0,0)–2
5 : 2

(1,0)–1
1 : 0

(0,1)–1
5 : 0

(2,0)–0
0 : 0

(1,1)–0
0 : 0

(0,2)–0
0 : 0

6 8

9 8 10 5

Fig. 1. The extensive form for Example 1. The set of histories has the structure of a
rooted tree. Iteratively solving for an equilibrium gives the auction tree, with bidding
strategies and forward utilities shown.

Consequently, in a two-buyer sequential auction, each individual auction cor-
responds to a standard second-price auction. We remark that for sequential auc-
tions with three or more buyers each decision node in the extensive-form game
corresponds to an auction with interdependent valuations (or an auction with
externalities) [7,9]. As a result, equilibria in such multi-buyer sequential auc-
tions are even more complex than for two buyers; see [12,13] for details.

2.2 No-Overbidding

Unfortunately, equilibria in sequential auctions can have undesirable and unre-
alistic properties. In particular they may exhibit severe overbidding.

Example 2: Consider a sequential auction with T items for sale and incremen-
tal valuations shown in Fig. 2, where 0 < ε � 1/T 2. The key observation here
is that if buyer 1 wins her first item before the final period she will then win in
every subsequent period for a price 1− ε. On the other hand, if buyer 1 wins her
first item in the final period then the price will be 0. This is because buyer 2
must then have won the first T − 1 items and so has no value for winning in the
final round.

Incremental Values vi(1) vi(2) . . . vi(T − 1) vi(T )
Buyer 1 1 1 . . . 1 1
Buyer 2 1− ε 1− ε . . . 1− ε 0

Fig. 2. Incremental values of each buyer which induce “severe” overbidding.

These observations imply that buyer 1 will bid b1(t) = (T − t) · ε in period t.
At equilibrium, buyer 2 will beat these bids in the first T − 1 periods and make
a profit of (1 − ε) · (T − 1) − 1

2 (T − 1)T · ε = Ω(T ). But if buyer 2 loses the first
item, he will win no items at all in the auction and thus his forward utility from
losing is zero. Consequently, his marginal value for winning the first period is
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Ω(T ) and so he will bid b2(1) = Ω(T ) � 1− ε. Thus, at the equilibrium, buyer 2
will massively overbid in nearly every round.

Overbidding in a sequential auction is very risky and depends crucially on
perfect information, so it is rare in practice. To understand some of these risks
consider again Example 2. Equilibria are very sensitive to the valuation func-
tions and any uncertainty concerning the payoff valuations could lead to major
changes in the outcome. For instance, suppose buyer 1 is mistaken in her belief
regarding the T th incremental value of buyer 2. Then she will be unwilling to
let buyer 2 win the earlier items at a low price. Consequently, if buyer 2 bids
b2(1) = Ω(T ) then he will make a loss, and continuing to follow the equilib-
rium strategy will result in a huge loss. This is important even with complete
information because, for computational or behavioural reasons, a buyer cannot
necessarily assume with certainty that the other buyer will follow the equilibrium
prescription; for example, the computation of equilibria in extensive-form games
is hard. Likewise in competitive settings with externalities, where the a buyer
may have an interest in limiting the profitability of its competitor, overbidding
is an unappealing option. We address this wedge between theory and practice
by imposing a non-overbidding assumption, and indeed such assumptions are
common in the theoretical literature [5,16]. We leave the analysis of models that
explicitly capture the risks described above as a direction for future research.

For our sequential auctions, given its valuation function, each buyer will
naturally constrain its bid by its incremental value. So we will assume this no-
(incremental) overbidding property:

bi(x) ≤ vi(1|x) (1)

In particular, at each stage a buyer will bid the minimum of its incremental
value and its marginal value for winning.

We note that the no-overbidding property is especially well-suited to our
setting of valuations that exhibit decreasing marginal values and free disposal.
That is, valuations that are non-decreasing and weakly concave. Without these
assumptions, sequential auctions can exhibit severe exposure problems2 that
introduce inefficiencies driven by the tension of overbidding. For this reason,
sequential auctions are pathologically inappropriate mechanisms when valua-
tions are not concave or monotone. Many practical sequential multiunit auctions
therefore assume (or impose) that buyers declare concave non-decreasing valua-
tions. For example, in cap-and-trade (sequential) auctions, such as the Western
Climate Initiative (WCI) and the Regional Greenhouse Gas Initiative (RGGI),
multiple items are sold in each time period but bids are constrained to be weakly
decreasing. We follow the literature on multiunit sequential auctions and focus
on concave and non-decreasing valuations, where a no-overbidding constraint is
more natural.

2 The exposure problem arises when a buyer has large value for a set S of items but
much less value for strict subsets of S. Thus bidding for the items of S sold early in
the auction exposes the buyer to a high risk if he fails to win the later items of S.
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2.3 Tie-Breaking Rules

When overbidding is allowed the forward utilities at equilibria are unique (see
also [8]), regardless of the tie-breaking rule. Surprisingly, this is not the case
when overbidding is prohibited:

Example 3: Take a four round auction, where vi(k) = 1 for k ≤ 3 and vi(k) =
0 otherwise. Solving backwards, the forward utilities are the same for every
non-source node whether or not overbidding is permitted. In particular, at the
successor nodes of the source we have ui(ei) = 2 and ui(e−i) = 1. But now a
difference occurs. Without the overbidding constraint, both buyers would bid 2
at the source node 0 and, regardless of the winner, each buyer has ui(0) = 1.
But with the no-overbidding constraint both buyers will bid 1. Consequently,
if this tie is broken in favour of buyer 1 with probability p, then buyer 1 has
forward utility u1(0) = 1 + p and buyer 2 has forward utility u2(0) = 2 − p, so
buyers’ payoffs depend on p.

Thus, under no-overbidding we need to account for the tie-breaking process.
To do this, let b = (b1, b2) where bi : H+ → R is the bidding strategy of
buyer i. Given the bids at the node x, let πi(b|x) denote the probability buyer i
is awarded the item, where πi(b|x) = 1 if bi(x) > b−i(x). This defines a tie-
breaking rule at each node, and the forward utility of each buyer can again be
calculated inductively. For any terminal node x ∈ H0 the forward utility is zero:
ui(b|x) = 0. The forward utility of buyer i at decision node x ∈ H+ is then:

ui(b|x) = πi(b|x)·(vi(1|x)−b−i(x)+ui(b|x + ei))+(1−πi(b|x))·ui(b|x + e−i)

With the tie-breaking rule defined, we may again compute an equilibrium
that survives iterative elimination of weakly dominated strategies. By backwards
induction, the (expected) forward utilities at equilibria are unique. Moreover,
there is a unique bidding strategy b which survives the iterated elimination of
weakly dominated strategies. Specifically, under the no-overbidding condition,
at any node x each bidder should bid the minimum of its marginal value for
winning and its incremental value:

bi(x) = min
[
vi(1|x) , vi(1|x) + ui(b|x + ei) − ui(b|x + e−i)

]
(2)

3 Greedy Bidding Strategies

To understand equilibria in two-buyer sequential auctions with no-overbidding,
we need to consider greedy bidding strategies. At decision node x, suppose
buyer i attempts to win exactly k items by the following strategy: she waits
(bids zero) for t − k rounds and then outbids buyer −i in the final k rounds.
To implement this strategy, by the no-overbidding assumption, she must bid
≥ v−i(1|(t − k) · e−i) in the final k rounds. For this strategy to be feasible, it
must be that:

vi(k|x) ≥ v−i(t − k + 1|x)
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This strategy would then give buyer i a utility of:

μ̄i(k|x) =
k∑

j=1

vi(j|x) − k · v−i(t − k + 1|x) (3)

If buyer i attempts to apply this greedy strategy, it should select k to maximize
its profit μ̄i(k|x). So in equilibrium, buyer i should earn at least the maximum
of these utilities over all feasible k. Remarkably, this property need not be true
for equilibria when overbidding is allowed; see Example 4 below.

Buyer i’s greedy utility at decision node x is the resultant utility from apply-
ing its greedy strategy from x:

μi(x) = max
k∈[t]∪{0}

μ̄i(k|x) (4)

In turn, buyer i’s corresponding greedy demand at x is:

κi(x) = min arg max
k∈[t]∪{0}

μ̄i(k|x) (5)

But when can buyer i profitably apply this greedy strategy? It can apply it
whenever it has duopsony power. In a sequential auction this ability arises when
vi(1|x) > v−i(t|x). Formally, let buyer i’s duopsony factor at x be:

fi(x) = max{k ∈ [t] : vi(k|x) > v−i(t − k + 1|x)} ∪ {0} (6)

Observe that if fi(x) = 0 then buyer i cannot apply the greedy strategy, and
we then have μi(x) = 0 and κi(x) = 0. On the other hand, if fi(x) > 0 then
μi(x) > 0, and any maximizer of μi(x) is necessarily at most fi(x).

We say that a buyer is a monopsonist if the other buyer has no duopsony
power, that is, if f−i(x) = 0. In turn, a buyer is a strict monopsonist if she
has total duopsony power, i.e. fi(x) = t. So in a sequential auction with no-
overbidding, a strict monopsonist can guarantee it gains at least its greedy utility.
This is analogous to the corresponding static market setting. However, this simple
fact can fail to hold when overbidding occurs:

Example 4: Consider a three-item auction, where v1(k) = 1 for any k ∈
{1, 2, 3}, and buyer 2 has incremental valuations

(
v2(1), v2(2), v2(3)

)
= (2/3 −

δ, 1/2 + ε, 0), where we fix ε, δ > 0 to be small with 2ε = 3δ. With overbidding
permitted, in equilibrium with ties broken in favour of buyer 2, buyer 1 wins a
single item.

Figure 3 illustrates this example. The key observation here is that b2(0) =
2/3 − δ + 2ε > 2/3 − δ = v2(1), so buyer 2 overbids at the source node. Fur-
thermore, buyer 1 obtains a profit of 1 in this equilibrium with overbidding, but
μ̄1(3|0) = 1 + 3δ. So in the equilibrium with overbidding, buyer 1 obtains less
than her greedy utility. In contrast, under no-incremental overbidding, buyer 1
will win all three items and make exactly her greedy utility.
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(0,0)–3
1 : 0

(0,1)–2
1 : 2ε

(1,0)–2
2
3
+ 2δ : 0

(1,1)–1
1
2
− ε : 0

(0,2)–1
1: 0

(2,0)–1
1
3
+ δ : 0

(3,0)–0
0 : 0

(2,1)–0
0 : 0

(1,2)–0
0 : 0

(0,3)–0
0 : 0

2
3
+ 2δ 2

3
− δ + 2ε

5
6
+ δ + ε 2

3
− δ

1
2
− ε 1

2
+ ε

1 2
3
− δ 1 1

2
+ ε 1 0

Fig. 3. A sequential auction with overbidding permitted where neither buyer exhibits
monopolistic behaviours.

The greedy strategy induces two types of “price” that will be important.
First, we say that the baseline price of buyer i at decision node x is:

βi(x, t) =

{
vi(1|x) fi(x) = 0
v−i(t − κi(x) + 1|x) fi(x) > 0

(7)

Second, the threshold price of buyer i at decision node x is:

pi(x) = vi(1|x) + μi(x + ei) − μi(x + e−i) (8)

The baseline price may be seen as the price a greedy buyer would post if it
wanted to obtain its greedy utility. By posting a bid of βi(x) + ε on each node
following x, buyer i would be guaranteed, by the no-overbidding condition, to
win at least κi(x) items. The threshold price, in turn, arises from a behavioural
rule: it is the bid a buyer would make on the assumption that it wins exactly
its greedy utility through the rest of the auction.

4 Greedy Bidding Outcomes

Now imagine that buyers attempt to bid their threshold prices at each decision
node, subject to the no-overbidding constraint. By definition (8) of threshold
prices, this corresponds to the behavioural rule where buyers perceive their for-
ward utilities to equal their greedy utilities, and bid accordingly. We will discover
in Sect. 5 that such greedy bidding strategies are in some circumstances equiv-
alent to equilibrium bidding strategies under the no-overbidding assumption.

Accordingly, to understand equilibria we must study the consequences of
greedy bidding. So, in this section, we will inspect the properties of greedy out-
comes. We begin by analysing the behaviour of greedy utilities:
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Lemma 1. The greedy utility of a buyer weakly decreases when the buyer loses.
Specifically, for any decision node x and any buyer i,

μi(x + e−i) = μi(x) if κi(x) < t

μi(x + e−i) < μi(x) if κi(x) = t

In turn, if buyer i has non-zero greedy demand at decision node x and wins
an item, then its greedy utility decreases by at most the value it would have for
purchasing an item at his baseline price. Formally, ∀x ∈ H+,∀i ∈ {1, 2}:

κi(x) > 0 ⇒ μi(x + ei) ≥ μi(x) − vi(1|x) + βi(x)

Next, we turn attention to how the demand evolves. We show that, if the
greedy demand of a buyer is less than the entire supply, then it remains constant
upon losing the current item. Intuitively, we could assume that buyer i did not
demand the item for sale at x, so we could assume that the demand was a subset
of the supply at x+e−i. If instead buyer i wins an item, then its greedy demand
can decrease by at most one. In particular, if buyer i demands the entire supply
at decision node x, upon winning an item, it will continue to demand the entire
supply.

Lemma 2. For any x ∈ H+ and any i ∈ {1, 2}:

κi(x) < t ⇒ κi(x + e−i) = κi(x)
t > 1 ⇒ κi(x + ei) ≥ κi(x) − 1

t > 1, κi(x) = t ⇒ κi(x + ei) = t − 1

Finally, we inspect the evolution of baseline and threshold prices. The first
lemma shows that the baseline price is a lower bound for the threshold price.

Lemma 3. For any x ∈ H+ and any i ∈ {1, 2}, pi(x) ≥ βi(x).

Moreover, if buyer i’s greedy demand corresponds to the entire supply, it
should ensure that it wins every item while targeting his greedy utility. This
implies the inequality of Lemma 3 should become strict.

Lemma 4. If the greedy demand of a buyer is the entire supply then the thresh-
old price is strictly greater than the baseline price. Specifically,

κi(x) = t =⇒ pi(x) > βi(x)

Instead consider the case when some buyer i with duopsony power does not
demand the entire supply. Suppose that, buyer i wins an item, and still has
duopsony power after doing so. As its demand will not decrease significantly,
its baseline price will be weakly higher. We would then presume that buyer i is
in a situation that favours buying more items, hence it would be willing to pay
higher prices.
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Lemma 5. Given x ∈ H+ and i ∈ {1, 2} such that fi(x) > 1 and κi(x) < t.
Then βi(x+ei) ≥ pi(x), where equality holds only if μ̄(κi(x+ei)+1|x) = μi(x).
Moreover, pi(x + ei) ≥ pi(x).

If instead buyer −i wins at x, then buyer i loses the opportunity to apply its
greedy strategy to win t items from x. If buyer i still does not demand the entire
supply at x + e−i, then this loss of opportunity translates to a lesser incentive
to purchase at a given price:

Lemma 6. Given x ∈ H+ and i ∈ {1, 2} such that fi(x) > 1 but κi(x) < t − 1.
Then pi(x+ e−i, t − 1) ≤ pi(x, t). Moreover, the inequality is strict if and only
if κi(x + ei) = t − 1.

Finally, if buyer i with duopsony power targets his greedy utility and does
not demand the entire supply, then incentives for buyer −i are aligned such that
it should want to purchase items without letting buyer i win. Buyer −i would
be able to do so if buyer i’s bids do not exceed buyer −i’s incremental value.
The following lemma shows that this is the case.

Lemma 7. Given x ∈ H+ and i ∈ {1, 2}. If κi(x) < t and fi(x) > 0 then
pi(x) ≤ v−i(t−κi(x+ei)|x). Moreover, the inequality is tight if only if μ̄i(κi(x+
ei) + 1|x) = μi(x).

Altogether, this implies the following for greedy outcomes, where realised
quantities are those reached in the outcome with positive probability:

Theorem 1. Suppose buyers implement their greedy bidding strategies. Then
on any realised outcome path from some decision node x, if there exists a
monopsonist buyer i at x, then her realised utility is μi(x); else some buyer
i ∈ argminj∈{1,2} pi(x) has realised utility equal to μi(x). Furthermore, buyer
i purchases at least κi(x) items. Finally, prices are equal to pi alongside the
realised outcome path until buyer i demands the entire supply, after which prices
equal βi. In particular, prices are declining along any realised outcome path.

5 Characterisation of No-Overbidding Equilibria

In this section, we classify the equilibria of two-buyer sequential multiunit auc-
tions under the no-overbidding condition. Structurally, we will see that any equi-
librium is made up of three phases (a competitive phase, a competition reduc-
tion phase and a monopsony phase) characterized by very different strategic
behaviours.

First, however, let’s show that the declining price anomaly holds. Here, it
is worth emphasizing declining prices do not follow as a direct consequence
of the no-overbidding assumption. Indeed, for ≥ 3 buyers, the declining price
anomaly can fail to hold given decreasing incremental valuations even with the
no-overbidding assumption; see Prebet et al. [13].
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Theorem 2. In a two-buyer sequential multiunit auction with no-incremental
overbidding, under equilibrium bidding strategies, prices are non-increasing along
any realised equilibrium path.

We now proceed to show when there necessarily is a direct equivalence
between greedy bidding and equilibrium bidding strategies: it is exactly when
there exists a monopsonist.

Theorem 3. Suppose that at decision node x, some buyer i is a monopsonist.
Then for any decision node x′ of the auction tree rooted at x, prices and utilities
are equal for equilibrium and greedy bidding strategies.

Informally, suppose only buyer 1 has duopsony power; then buyer 1 is con-
strained by the equilibrium bidding strategies to make her greedy utility at every
possible future node. Thus her bids equal to her threshold price at every round
of the auction. Buyer 2 will then take advantage of buyer 1’s bidding strategies
by purchasing an item whenever possible.

But what happens in the more complex setting where both buyers have
duopsony power? Call buyer i a quasi-monopsonist at decision node x if there
exists a realised equilibrium path from x to a final round y such that bi(y) ≥
b−i(y). Note that it is possible for both agents to be quasi-monopsonists at
a node x if there is a randomized tie-breaking rule. By decreasing prices, a
quasi-monopsonist may have a realised payoff weakly less than its greedy utility;
moreover, a monopsonist is always a quasi-monopsonist. This definition, along
with properties of greedy bidding, allows us to fully characterise equilibria.

Theorem 4. For equilibrium bidding strategies, while no buyer demands the
entire supply, prices at each node are no less than the minimum threshold price.
Moreover, at every decision node x there exists a quasi-monopsonist buyer i.
Finally, if buyer i is a quasi-monopsonist at decision node x and if x+ e−i − ei

is also a decision node, then i is again a quasi-monopsonist at decision node
x + e−i − ei.

It may not be immediately apparent, but Theorem 4 gives us a very clear pic-
ture of what happens at an equilibrium. Specifically, each equilibrium consists of
three phases. The first phase is the competitive phase. In this phase the identity
of the “eventual monopsonist” may change depending on the winner of an item
(and may be uncertain due to randomized tie-breaking). Consequently, the two
buyers compete to buy items and drive prices above the threshold prices. The
buyer who fails to win enough items in this phase retains sufficient duopsony
power to become a monopsonist. The second phase, the competition reduction
phase, begins once the identity of the monopsonist is established. The monop-
sonist then posts its threshold price in each round. The other buyer exploits the
monopsonist’s bidding strategy to purchase items. This phase ends when the
competition from the other buyer has been weakened sufficiently enough for the
monopsonist to desire winning all the remaining items. Thus we enter the third
phase, the monopsony phase, where the monopsonist purchases all the remaining
items at its current baseline price.
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6 The Price of Anarchy

The price of anarchy of a sequential auction is the worst-case ratio between the
social welfare attained at an equilibrium allocation and the welfare of the optimal
allocation. In this section, we exploit our equilibrium characterization to prove
that the price of anarchy is exactly 1−1/e in two-buyer sequential auctions with
no-overbidding, assuming weakly decreasing incremental valuations.

To prove our efficiency result, we first show a result parallelling an argument
in Theorem 2 of [3]: if efficiency along an equilibrium path is less than 1, then
the efficiency is bounded below by that along a subpath, where a buyer (without
loss of generality buyer 1) holds monopsony power. We then consider extending
incremental valuations to the real line, where ∀τ ∈ [0, t]:

v̄1(τ |x) = v1(�τ |x)
v̄2(τ |x) = v2(�τ + 1� |x) (9)

By our equilibrium characterisation, the social welfare of the auction is at least
∫ κ1(0)

0

v̄1(τ)dτ +
∫ T−κ1(0)

0

v̄2(τ)dτ.

However, as buyer 1 earns its greedy utility by winning κ1(0) items, it must be
that for any k ∈ (0, T )

∫ κ1(0)

0

v̄1(τ)dτ ≥
∫ k

0

v̄1(τ)dτ − k · v̄2(T − k).

This yields a lower bound for v̄2(T − k), and combining the two expressions
allows us to compute the following lower bound on the price of anarchy.

Theorem 5. A two-buyer sequential multiunit auction with concave and non-
decreasing valuations has price of anarchy at least (1 − 1/e), given no-
overbidding.

To match this bound, for T ∈ N, consider the equilibrium where all ties are
broken in favour of buyer 2, and we let v1(i) = 1 and

v2(i) = max
{�T (1 − 1/e)� − i + 1

T − i + 1
, 0

}
.

Then the efficiency of the equilibrium in the limit T → ∞ ends up being a
Riemann integral which evaluates to 1 − 1/e. This implies the following upper
bound.

Theorem 6. There exist two-buyer sequential multiunit auctions with concave
and non-decreasing valuations and T items, whose efficiency tends to (1 − 1/e)
as T grows, given no-overbidding.
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Abstract. In this work, we show how well-known mechanisms for exten-
sively studied single-parameter environments can be implemented with
asymptotically optimal communication complexity. Specifically, we first
turn our attention to single-parameter domains in auctions, namely sin-
gle item and multi-unit auctions. For the former case, we show that the
Vickrey auction can be implemented with an expected communication
complexity of at 1 + ε bits per bidder, for any ε > 0, assuming that the
valuations can be represented with a constant number of bits. As a corol-
lary, we provide a compelling method to increment the price in English
auctions. By employing an efficient encoding scheme, we show that the
same bound can be obtained for multi-item auctions with additive bid-
ders and a constant number of items, and for multi-unit auctions with
unit demand bidders. Moreover, we apply our framework to games with-
out monetary transfers and in particular, the canonical case of facility
location games. We present an implementation of Moulin’s generalized
median mechanism that achieves an 1 + ε approximation of the optimal
social welfare, for any ε > 0, while extracting an arbitrarily small fraction
of information. Our results follow from simple sampling schemes and do
not require any prior knowledge on the agents’ parameters.

1 Introduction and Motivation

Communication complexity has been a primary concern from the inception of
Mechanism Design. The first consideration relates to the tractability of the com-
munication exchange required to approximate an underlying objective function,
such as the social welfare or the expected revenue; the domain of combinatorial
auctions provides such an example where strong negative results have been estab-
lished [16]. A second active area of research endeavors to design the interaction
process so that efficient communication is an inherent feature of the mecha-
nism. Following this line of work, we aim to establish a natural framework for
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developing asymptotically optimal mechanisms in well-studied single-parameter
environments in Auction Theory and Social Choice.

This emphasis is strongly motivated for a number of reasons. First, there is a
need to design mechanisms with strong performance guarantees in settings with
communication restrictions and possibly truncated action spaces, due to tech-
nical, behavioral or regulatory purposes [1,7]. Moreover, extracting data from
distributed parties can be burdensome, an impediment magnified in environ-
ments with vast participation. It has been also understood that the amount of
communication captures the extent of information leakage from the participants.
In this context, behavioral economists have recognized that soliciting information
requires a high cognitive cost (e.g. [24,28]) and bidders may be even reluctant
to completely reveal their private valuation. Finally, truncating the information
disclosure would provide stronger information privacy guarantees [32] for the
agents.

As a motivating example, we consider the single item auction and in particu-
lar, the shortcomings of the most well-established formats, namely the sealed-bid
and the English auction. First, it is important to point out that although every
mechanism can be simulated with direct revelation - as implied by the revela-
tion principle, this equivalence has been criticized in the literature of Economics,
not least due to the communication cost of revealing the entire valuation space.
Indeed, our work will show that the communication complexity of Vickrey’s
sealed bid auction [34] is suboptimal. Moreover, despite the theoretical appeal
of Vickrey’s auction, the ascending or English auction exhibits superior perfor-
mance in practice [2,3,21,22], for reasons that mostly relate to the simplicity, the
transparency and the privacy guarantees of the latter format. However, a faithful
implementation of Vickrey’s rule through a standard English auction requires
- in the worst case - exponential communication and indeed, time complexity
since the auctioneer has to increment the price by a single bit. In principle, the
lack of prior knowledge on the agents’ valuations would dramatically impede its
performance.

One of the issues we address is how to increment the price in an ascending
auction, without any prior knowledge, so that the communication cost is min-
imized and the desirable properties of each format are retained. More broadly,
we apply sampling techniques in order to establish mechanisms with asymp-
totically optimal communication complexity guarantees, without sacrificing the
social welfare and the incentive properties of the interaction process. In particu-
lar, we employ random samples of agents and we either request the full informa-
tion, or we query on whether their valuations exceed a particular threshold. In
this way, our mechanism elicits - asymptotically - only the necessary information
in order to implement the optimal allocation rule.

1.1 Previous Work

Communication efficiency has been a central desideratum in the literature of
Algorithmic Mechanism Design. The first consideration relates to the interplay
between communication constraints and incentive compatibility; in particular,
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Van Zandt [33] articulated conditions under which they can be studied sepa-
rately, while the authors in [17,30] investigated the communication overhead
induced in truthful implementations, i.e. the communication cost of truthful-
ness. In a closely related direction, Blumrosen et al. [7] (see also [25]) considered
the design of optimal single-item auctions under severely bounded communica-
tion: every bidder can only transmit a limited number of bits. One of their key
results was a 0.648 social welfare approximation for 1-bit auctions and uniformly
distributed valuations. In addition, the design of optimal - with respect to the
obtained revenue - bid levels in English auctions was addressed in [15], where
the authors had to posit on known distributions.

Turning to games without monetary transfers, the solution concept of effi-
cient preference elicitation has also engendered significant amount of research;
in particular, Segal [31] provided bounds on the communication required to real-
ize a Social Choice rule through the notion of budget sets, with applications in
resource allocation tasks and stable matching. Moreover, the boundaries of com-
putational tractability and the strategic issues that arise were investigated by
Conitzer and Sandholm in [10], while the same authors established in [11] the
worst-case number of bits required to execute common voting rules. The trade-off
between accuracy and information leakage in facility location games was tackled
by Feldman et al. [18], where they investigated the behavior of truthful mech-
anisms with truncated input space - ordinal and voting information models -
and constitutes the main focus of our work as well. Our approximation scheme
is founded on Moulin’s generalized median rule [26] (see also [5]).

1.2 Contributions

We develop a simple algorithmic framework for obtaining strong communication
complexity guarantees in exemplar multi-agent interaction environments. More
precisely, one of our main techniques consists of simulating a sub-auction - essen-
tially as a black box - on a random sample of agents in order to determine the
increment in an underlying ascending format. In addition, we develop an algo-
rithm that yields tight upper and lower bounds on the market clearing price by
querying random samples of agents in order to navigate on the search tree that
represents the valuation space. From an algorithmic standpoint, our approach
offers a communication efficient procedure to determine the jth highest number
in an unordered list (see Subsect. 3.3).

These ideas are applied in Sect. 3 to implement the desirable allocation rule
in several extensively studied single-parameter environments with an asymptot-
ically optimal communication of 1 + ε transmitted bits on average per bidder
(Theorem 1), for any ε > 0, assuming the valuations can be represented with
a constant number of bits. Our work supplements the results of [17,30,33] by
showing that for a series of fundamental domains, the incentive compatibility
constraint does not increase the asymptotic communication requirements of the
interaction process. We also corroborate on one of the main observations in the
work of Blumrosen et al. [7]: asymmetry helps - in deriving tight communication
bounds. More precisely, the winner in our English auction will have to transmit
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a logarithmic - with respect to the initial number of players - amount of bits,
while most of the bidders will transmit a single bit. This asymmetry distinguishes
from their model where a universal communication restriction was imposed on
all of the agents. Moreover, inspired by techniques from Information Theory, we
design efficient encoding schemes in simultaneous auctions (Theorem 2) in the
domain of additive valuations.

In Sect. 4 we turn to games without monetary transfers and in particular, the
canonical case of (single) facility location problems. In this context, our frame-
work yields a 1 + ε approximation of the social welfare achieved by Moulin’s
generalized median mechanisms, for every ε > 0, and with an arbitrarily small
information leakage - relatively to the full information mechanism. This result
constitutes a natural continuation of research in preference elicitation with trun-
cated input space by Feldman et al. [18]; however, while their approach reduces
the input through an information-extraction model beyond direct revelation (e.g.
an agent votes for her preferred location amongst a set of candidates), we differ-
entiate on the use of a limited sample of agents, without sacrificing the obtained
social welfare - up to some arbitrarily small error. In addition, our proof tech-
nique is fundamentally different from the existing ones in the literature and is
based on the asymptotic characterization of a distribution derived from esti-
mating the behavior of the underlying mechanism - in our case the generalized
median - and could be of independent interest. We believe that our results can be
applied in practical applications due to their simplicity and their communication
efficiency.

1.3 Broader Context

More broadly, communication complexity has been a primary consideration in
Game Theory. A series of works have established tractable communication pro-
cedures in order to reach an approximate Nash equilibrium in two-player games
[4,14,19]. Moreover, important work by Nisan and Segal [27] has illustrated the
limitations, and in particular the exponential communication requirements in the
domain of submodular bidders, as well as in combinatorial allocation problems -
even when 2 players compete for m indivisible items. There has been also exten-
sive research devoted in designing incentive compatible and efficient preference
elicitation mechanisms in combinatorial auctions [6,9,20]. For a comprehensive
review on fundamental notions and problems in communication complexity we
refer to [8,13,23].

2 Preliminaries

In our study we denote with n the number of participants in the game. In single
parameter environments the rank of agent i corresponds to the index of her
private valuation in ascending order (and indexed from 1 unless explicitly stated
otherwise). In the case of identical valuation profiles we accept some arbitrary but
fixed order among the agents - e.g. lexicographic order. In addition, throughout
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Sect. 3 we assume that an agent remains active in the auction only when positive
utility can be obtained; that is, if the announced price for the item is greater or
equal to the valuation of some agent i, then i will withdraw from the forthcoming
rounds of the auction. In Mechanism 2 we will assume that the agents’ valuations
are distinct.

A mechanism will be referred to as strategyproof or incentive compatible if
truthful reporting is a universally dominant strategy - a best response under
any possible action profile and randomized realization - for every agent. More-
over, we will require a weaker notion of incentive compatibility; in particular, a
strategy profile (s1, . . . , sn) constitutes an ex-post Nash equilibrium if the action
si(vi) is a best response to every action profile s−i(v−i) - for any agent i and
valuation vi. In this setting, a mechanism will be called ex-post incentive com-
patible if sincere bidding constitutes an ex-post Nash equilibrium. A strategy si

is obviously dominant if, for any deviating strategy s′
i, starting from any earliest

information set where s′
i and si disagree, the best possible outcome from s′

i is
no better than the worst possible outcome from si. A mechanism is obviously
strategyproof (OSP) if it has an equilibrium in obviously dominant strategies.

We use the standard notation of f(n) ∼ g(n) if limn→+∞ f(n)/g(n) = 1
and f(n) � g(n) if limn→+∞ f(n)/g(n) ≤ 1, where n will be implied as the
asymptotic parameter. Moreover, in order to analyze the bit complexity in Sect.
3 the valuation space will be assumed discretized and every valuation can be
represented with k bits; we will mostly consider k to be a constant. For notational
clarity we posit that

(
n
m

)
= 0, when m > n. Communication complexity is defined

as the cumulative amount of bits elicited from the participants; our analysis will
be worst-case with respect to the input - i.e. the agents’ valuations - and average-
case with respect to the introduced randomization in the procedure.

The Median Mechanism. Consider that we have to allocate a single facility
on a metric space (Rd, || · ||1) and n agents, with xi ∈ R

d the preferred location
of agent i. The social cost of an allocation x is defined as SC =

∑n
i=1 d(x,xi). In

this context, the generalized median [26] is a strategyproof and optimal - with
respect to the social cost in L1 - mechanism that allocates the facility to the
coordinate-wise median of the reported instance.

3 Auctions

We commence this section by presenting a sampling mechanism for the single
item auction; then, analogous techniques will be employed in gradually more
general environments. The more technical proofs of our claims can be found in
the full version of our paper.

3.1 Single Item Auction

Our implementation is established based on a black-box algorithm; in particular,
let A be an algorithm that interacts with a set of agents and faithfully simulates
a second-price auction; that is, A returns the VCG outcome without actually
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allocating items and imposing payments. However, the agents that are excluded
by A will be also automatically eliminated from the remainder of the auction.
Our mechanism consists of the following steps.

Mechanism 1: Ascending Auction through Sampling
Result: Winner & VCG payment
Input: Set of agents N , size of sample c, algorithm A
while |N | > c do

S := random sample of c agents from N
w := winner in A(S)
Announce p := payment in A(S)
Update the active agents: N := {i ∈ N \ S | vi > p} ∪ {w}

end
if |N | = 1 then

return w, p
else

return A(N)
end

Naturally, we assume that c ≥ 2, so that the second-price rule is properly
implemented. This mechanism induces a format that couples the auction that
is simulated by A with an ascending auction. We shall establish the following
properties.

Proposition 1. Assuming truthful bidding, Mechanism 1 implements - with
probability 1 - the VCG allocation rule.

Proof. First, if after the termination of some round only a single agent i remains
active, it follows that the announced price p - that coincides with the valuation of
some player - exceeds the valuation of every player besides i; thus, by definition,
the outcome implements the VCG allocation rule. Moreover, the claim when
2 ≤ |N | ≤ c follows given that A faithfully simulates a second-price auction.
Otherwise, in a given round - with |N | > c - only agents that are below or
equal to the second-highest valuation will withdraw from the auction. Thus,
the allocation rule over the active players remains invariant between rounds,
concluding the proof. ��
Proposition 2. If A simulates a sealed-bid auction, Mechanism 1 is strate-
gyproof.

Proof. Consider some round of the auction and some agent i that has been
selected in the sample S; if we fix the reports from the agents in the sample
besides i we can identify the following two cases. First, if vi ≥ xj ,∀j ∈ S \ {i},
with xj representing the report of agent j, then sincere bidding is a best response
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for i given that her valuation exceeds the announced price. Indeed, note that since
A simulates a second-price auction, the winner in the sample does not have any
control over the announced price of the round. In the contrary case, agent i does
not have an incentive to misreport and remain active in the auction given that
the reserved price will be greater or equal to her valuation. Let p the market
clearing price in A and i some agent that was not selected in the sample. It is
clear that if vi ≤ p then a best response for i is to withdraw from the auction,
while if vi > p then i’s best response is to remain active in the forthcoming
round. ��
Proposition 3. If A simulates an English Auction, Mechanism 1 is OSP.

Proof. The claim follows from the OSP property of the English auction. In par-
ticular, note that we simply perform an English auction without interacting with
every active agent in each round, but instead with a small sample; when only a
single player survives from the sample, we announce the price to the remainder
of the agents. ��

Before we establish the communication complexity of the induced auction, we
should point out that a trivial lower bound to recover the optimal social welfare
is n bits. Indeed, since the information is distributed to n parties and the goal
is to allocate the item to the agent with the highest utility - with probability 1,
every player has to commit at least 1 bit to the procedure. Through this prism,
we will show that our mechanism reaches this lower bound with arbitrarily small
error - assuming that k is a constant. We should also note that the information
leakage in 1 is asymmetrical, in the sense that statistically, the agents that are
closer to winning the item have to reveal relatively more bits from their private
valuation. It is clear that in order to truncate the communication complexity of
the mechanism, one has to guarantee small inclusion rate - in expectation - for
each round of the auction; this property is implied by the following lemma.

Lemma 1. Let Xa the proportion of the agents that remain active in a given
round of the auction; then

E[Xa] � 2
c + 1

(1)

Let us assume that Q(n; k) is the (deterministic) communication complexity
of A with n players. In particular, when A is a sealed-bid auction it follows
that Q(n; k) = n · k. On the other hand, the worst-case communication cost of
an English auction is Q(n, k) = 2kn. Indeed, given that A faithfully simulates
a second-price auction, the auctioneer has to cover every possible point on the
valuation space. If T (n; c, k) is the (randomized) communication complexity of
the induced Mechanism 1, it follows that when n > c

E[T (n; c, k)] = E[T (nXa; c, k)] + Q(c; k) + n − c (2)

Solving recursions of such form are standard in the analysis of randomized
algorithms (see [12]); in particular, we can establish the following theorem.
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Theorem 1. Let t(n; c, k) the expected communication complexity of Mecha-
nism 1 with k assumed constant; then, ∀ε > 0,∃c0 = c0(ε) such that ∀c ≥ c0

t(n; c, k) � n(1 + ε) (3)

Note that our asymptotic guarantee is invariant on the communication com-
plexity of the second-price algorithm A, assuming that k is a constant. On the
other hand, if we allow k to depend on n our guarantee crucially depends on A
(see Theorem 3).

3.2 Multi-item Auctions with Additive Valuations

As a direct extension of the previous setting, let us assume that the auctioneer
has to allocate m (indivisible) items and the valuation space is additive, that is
for every agent i and for a bundle of items S, vi(S) =

∑
j∈S vij . In this setting,

we shall perform an auction for each item using Mechanism 1; it is clear that
assuming truthful bidding, the induced auction will implement - with probability
1 - the VCG allocation rule, as implied by Proposition 1. Moreover, the following
proposition holds.

Proposition 4. The mechanism induced by employing m auctions as described
in Mechanism 1 is ex-post incentive compatible.

However, we will illustrate that a simultaneous implementation can signifi-
cantly truncate the communication exchange - relatively to a sequential format
- through an efficient encoding scheme. First, we assume that m is arbitrary
and that we have to perform a separate and independent auction for each of the
m items. Under this assertion, the optimality condition yields the lower bound
of n · m bits, which can be again asymptotically reached with arbitrarily small
error:

Proposition 5. Let t(n;m, c, k) the expected communication complexity of
implementing m sequential auctions as described in Mechanism 1 with k assumed
constant; then, ∀ε > 0,∃c0 = c0(ε) such that ∀c ≥ c0

t(n;m, c, k) � nm(1 + ε) (4)

On the other hand, if we assume that m is constant and that we perform
the auctions simultaneously, we will show that we can reach the bound of n bits
with a very simple coding scheme. To be precise, recall that - asymptotically -
the expected inclusion rate in Mechanism 1 is at most 2/(c+1) and thus, as the
sample size increases the overwhelmingly most probable scenario is that some
random agent will drop from the next round of the auction; we shall exploit
this property by considering the following encoding. An agent i - that remains
active in at least one auction - will transmit the bit 0 in the case of withdrawal
from every auction; otherwise, i will transmit an m bit vector that will indicate
the auctions that she wishes to remain active. Although the latter part of the
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encoding is clearly sub-optimal, we will show that in fact, we can asymptotically
obtain an optimality guarantee. In particular, consider a round of the auction
with n players that remain active in at least one auction and p the expected
probability that a player will withdraw from every auction in the current round.
Since every player is active in at most m auctions, it follows from the union
bound that 1 − p � 2m/(c + 1). As a result, if Nb denotes the total number of
bits transmitted in the round, we have that

E[Nb] = n (1 · p + m · (1 − p)) � n

((
1 − 2m

c + 1

)
+ m

(
2m

c + 1

))
(5)

As a result, since m is a constant it follows that E[Nb] � n(1 + δ), for any
δ > 0 and for a sufficiently large constant c. Moreover, the expected inclusion
rate - the proportion of agents that remain active in at least one auction - is
asymptotically at most 2m/(c + 1) and thus, we can establish the following
theorem.

Theorem 2. Let t(n;m, c, k) the expected communication complexity of imple-
menting m simultaneous auctions as described in Mechanism 1 with the afore-
mentioned encoding scheme and k and m assumed constant; then, ∀ε > 0,∃c0 =
c0(ε) such that ∀c ≥ c0

t(n;m, c, k) � n(1 + ε) (6)

3.3 Multi-unit Auctions with Unit Demand

Consider that we have to allocate m identical items to n unit demand bidders.
We are interested in the non-trivial case where m ≤ n; in this setting, our
approach will differ depending on the asymptotic value of m.

First, we consider the canonical case where m is constant. In this setting, we
can extend Mechanism 1 as follows. In each round, we invoke an algorithm A that
simulates the VCG outcome1 for a random sample of active agents c = κm + 1
for κ ∈ N. Next, the market clearing price in the sample will be announced in
order to ’prune’ the active agents. Through parameter κ, we are able to restrain
the inclusion rate in the following rounds. As a result, we can prove statements
analogous to Propositions 1, 2, 3 and Theorem 1. The analysis is very similar to
the single item mechanism and therefore it can be omitted.

Next, we study the case where m = γ ·n for γ ∈ (0, 1); in this setting, we need
to alter our approach. In particular, the main idea is to broadcast two separate
prices; the players that exceed the high price transmit a single bit of 1 and are
automatically declared winners (the price will be determined in the following
rounds), whilst the players that are below the low price transmit a bit of 0 and
are disqualified from the remainder of the auction. Therefore, the mechanism

1 The VCG outcome for this auction consists of allocating a single unit to each of the
m-highest bidders for a price coinciding with the m + 1-highest bid.
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will recurse on the agents that reside in the intermediate region - who have to
channel 2 arbitrary bits so that the encoding is non-singular. On a high level,
our mechanism consists of the following steps.

Mechanism 2: M(N,m): Multi-Unit Auction through Sampling
Result: Winners & VCG payment
Input: Set of agents N , number of items m := γn
Initialize the winners W := ∅ and the losers L := ∅
ph := estimated upper bound on the price
p� := estimated lower bound on the price
Announce p� and ph

Update the winners: W := W ∪ {i ∈ N | vi > ph}
Update the losers: L := L ∪ {i ∈ N | vi < p�}
if ph = p� then

return W,ph

else
N := N \ (W ∪ L)
Update the number of items m
return M(N,m)

end

It is clear that assuming that the estimators are valid, Mechanism 2 imple-
ments the VCG allocation rule. The crux of this algorithm is to efficiently esti-
mate the bounds ph and p�, so that the in-between players are very limited.
We introduce the following algorithm. We commence from the root of the tree
that represents the valuation space and we make decisions in each branch by
querying a random sample of agents. More precisely, the query informs us on
whether an agent’s valuation exceeds a particular threshold. Our goal is to reach
a node on the tree - a particular price - such that the agents who exceed the
price are - approximately - as many as the available items. As a randomized
process, there is a non-zero probability that the estimates are inconsistent - e.g.
the winners outnumber the available items; in this case, we simply repeat the
sampling process.

Proposition 6. Mechanism 2 is ex-post incentive compatible.

However, we remark that Mechanism 2 is not strategyproof and in particular,
answering sincerely to the queries is not necessarily a dominant strategy for the
agents in the sample due to potential retaliation strategies. Finally, we establish
the main theorem of this subsection.

Theorem 3. Let t(n; c, k) the communication complexity of Mechanism 2 with
k ∈ O(n1−�) for some � > 0; then, ∀ε > 0,∃c0 = c0(ε, k) such that ∀c ≥ c0

t(n; c, k) � n(1 + ε) (7)
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Note that for this theorem we allowed k to depend on the (initial) number
of agents.

4 Facility Location Games

Having established strong communication complexity guarantees in a series of
environments in Auction Theory, we apply our framework to games without
monetary transfers, and in particular the canonical case of facility location games
with a single resource. Our main result in this section is a 1 + ε approximation
scheme of the generalized median mechanism with very limited information from
the participants (see Corollary 1). We remark that when k is assumed constant,
our result can be obtained with an iterative process - analogously to Subsect. 3.3
- and Chernoff bounds in order to correlate the accuracy of the approximation
with the size of the sample. Nonetheless, our approach is more robust since we
do not even need the discretized valuation space hypothesis. More precisely, our
mechanism will simply employ the generalized median scheme M for a random
sample of c agents.

Proposition 7. The approximate median Mechanism 3 is strategyproof.

Proof. The claim follows from the incentive compatibility of the median
mechanism. ��

Our analysis commences with the one-dimensional case - i.e. allocating a
single facility on the line; the extension to any metric space (Rd, || · ||1) will then
follow easily. We conclude this section by illustrating why our sampling approach
cannot be efficiently applied for allocating multiple facilities. In order to make
the analysis more concise - and without any loss of generality - we assume that
n = 2κ + 1 and c = 2ρ + 1 for some κ, ρ ∈ N. Let Xr be the rank - among all of
the agents - of the sample’s median; in this section we shall assume that Xr is
normalized in the domain [−1, 1]. Thus, when Xr = 0 the median of the sample
coincides with the median among the entire instance. Through this prism, we can
determine the probability mass function with simple combinatorial arguments
as follows:

Pr
(

Xr =
i

κ

)
=

(
κ − i

ρ

)(
κ + i

ρ

)

(
2κ + 1
2ρ + 1

) (8)

Mechanism 3: Approximate Median through Sampling
Result: Facility’s Location ∈ R

d

Input: Set of agents N , size of sample c
S := random sample of c agents from N
return M(S)
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As a result, we note that the normalization constraint of the probability mass
function (8) yields a variation of the Chu-Vandermonde identity:

κ∑

i=−κ

(
κ − i

ρ

)(
κ + i

ρ

)
=

2κ∑

i=0

(
i

ρ

)(
2κ − i

ρ

)
=

(
2κ + 1
2ρ + 1

)
(9)

For this reason, the distribution defined in Eq. 8 shall be referred to as Chu-
Vandermonde distribution. One of the key aspects of our analysis is that we are
oblivious to the agents’ individual valuations and instead, we rely solely on their
relative rank. This approach is justified by the following lemma.

Lemma 2. Let xopt ∈ R be the optimal location - i.e. the median of the instance
- and x ∈ R some location, such that only at most ε·n agents reside in the interval
from x to xopt. Then, if Dopt is the minimum social cost, allocating a facility on
x yields a social cost D such that

D ≤ Dopt

(
1 +

4ε

1 − 2ε

)
(10)

Proof. Let d = dis(x, xopt) = |x − xopt|; shifting the facility from x to xopt can
only reduce the social cost by at most 2εnd, that is D ≤ Dopt + 2εnd. Moreover,
it is clear that

Dopt ≥
(n

2
− εn

)
d ⇐⇒ d ≤ Dopt

2
n(1 − 2ε)

(11)

As a result, if we combine the previous bounds the lemma will follow. We
should mention that the analysis and subsequently the obtained bound is tight
for certain instances. ��

As a corollary, obtaining a strong approximation ratio is tantamount to accu-
mulating the probability mass close to the median. The main challenge is to
quantify this concentration as a function of the sample’s size. To this end, we
prove that for κ → +∞ the Chu-Vandermonde distribution converges to a con-
tinuous function, allowing for a concise characterization of the concentration.

Theorem 4. If we let κ → ∞, the Chu-Vandermonde distribution converges to
a transformed beta distribution with the following probability density function:

f(t) =
(2ρ + 1)!
(ρ!)222ρ+1

(1 − t2)ρ (12)

We let X represent a random variable that follows distribution (12). Next,
we correlate the concentration of the distribution with parameter ρ.

Theorem 5. For any ε > 0 and for any δ > 0, there exists some constant
ρ0 = ρ0(ε, δ) such that ∀ρ ≥ ρ0

Pr(|X| ≥ ε) ≤ δ (13)
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Having established the concentration of the distribution, we apply Lemma 2
to prove the following theorem.

Theorem 6. The approximate one-dimensional median Mechanism 3 obtains
in expectation a 1 + ε approximation of the optimal social welfare, for any ε > 0
and with constant input c = c(ε), while n → ∞.

This result can be easily extended for the generalized median scheme that
applies to any metric space (Rd, || · ||1); to be precise, let us consider some
basis for the metric space. Then, we can invoke the one-dimensional sampling
approximation for each of the principal axes individually. As a result, we can
prove the following proposition.

Corollary 1. The approximate generalized median Mechanism 3 obtains in
expectation a 1 + ε approximation of the optimal social welfare, for any ε > 0
and with constant input c = c(ε), while n → ∞.

Finally, we illustrate why a sampling approach - with a constant sample size
- cannot provide meaningful guarantees when allocating multiple facilities. In
particular, we consider the family of the percentile mechanisms, namely strate-
gyproof allocation rules on the line that partition the agents’ reports into partic-
ular percentiles; the median can be clearly classified in this family. We will also
assume that at least 2 facilities are to be allocated and that the leftmost per-
centile contains at most (1−α) ·n of the agents, for some α > 0. Let us imagine a
dynamic instance where the agents from the entire leftmost percentile - including
the pivotal agent - have gradually smaller valuations x → −∞, while the other
agents remain fixed at a finite distance; then, any sampling approximation has
in expectation an unbounded competitive ratio with respect to the full infor-
mation mechanism. Indeed, there will always be a positive probability, albeit
exponentially small, that we fail to sample a single agent from −∞, whilst the
full information percentile mechanism will allocate a facility to accommodate
the divergent agents. Thus, a sampling approach cannot provide a meaning-
ful approximation of the percentile mechanisms - at least with respect to the
expected social cost. An interesting open question is whether this limitation can
be overcome if we impose additional restrictions on the instance, such as stability
conditions or bounded valuation space.
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Abstract. In this paper, we present new results on the fair and efficient
allocation of indivisible goods to agents whose preferences correspond to
matroid rank functions. This is a versatile valuation class, with several
desirable properties (monotonicity, submodularity) which naturally mod-
els several real-world domains. We use these properties to our advantage;
first, we show that when agent valuations are matroid rank functions,
a socially optimal (i.e. utilitarian social welfare-maximizing) allocation
that achieves envy-freeness up to one item (EF1) exists and is computa-
tionally tractable. We also prove that the Nash welfare-maximizing and
the leximin allocations both exhibit this fairness/efficiency combination,
by showing that they can be achieved by minimizing any symmetric
strictly convex function over utilitarian optimal outcomes. Moreover, for
a subclass of these valuation functions based on maximum (unweighted)
bipartite matching, we show that a leximin allocation can be computed
in polynomial time.

Keywords: Fair division · Envy-freeness · Submodularity ·
Dichotomous preferences · Matroid rank functions · Optimal welfare

1 Introduction

Suppose that we are interested in allocating seats in courses to prospective stu-
dents. How should this be done? On the one hand, courses offer limited seats
and have scheduling conflicts; on the other, students have preferences over the
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classes that they take, which must be accounted for. Course allocation can be
thought of as a problem of allocating a set of indivisible goods (course slots) to
agents (students). How should we divide goods among agents with subjective
valuations? Can we find a “good” allocation in polynomial time?

These questions have been the focus of intense study in the CS/Econ com-
munity in recent years; several justice criteria as well as methods for computing
allocations that satisfy them have been investigated. Generally speaking, there
are two types of justice criteria: efficiency and fairness. Efficiency criteria are
chiefly concerned with maximizing some welfare criterion, e.g. Pareto optimality
(PO). Fairness criteria require that agents do not perceive the resulting allo-
cation as mistreating them; for example, one might want to ensure that no
agent wants another agent’s assigned bundle [18]. This criterion is known as
envy-freeness (EF); however, envy-freeness is not always achievable with indivis-
ibilities: consider, for example, two students competing for a single course slot.
Any student receiving this slot would envy the other (in our stylized example,
there is just the one course with the one seat).

A simple solution ensuring envy-freeness would be to withhold the seat alto-
gether, not assigning it to either student. This solution, however, violates most
efficiency criteria. Indeed, as observed by Budish [12], envy-freeness is not always
achievable, even with the weakest efficiency criterion of completeness requiring
that each item is allocated to some agent. However, a less stringent fairness
notion—envy-freeness up to one good (EF1)—can be attained. An allocation is
EF1 if for any two agents i and j, there is some item in j’s bundle whose removal
results in i not envying j. EF1 complete allocations always exist, and in fact,
can be found in polynomial time [26].

While trying to efficiently achieve individual criteria is challenging in itself,
things get really interesting when trying to simultaneously achieve multiple
justice criteria.Caragiannis et al. [13] show that when agent valuations are
additive—i.e. every agent i values its allocated bundle as the sum of values of
individual items—there exist allocations that are both PO and EF1. Specifically,
these are allocations that maximize the product of agents’ utilities—also known
as the max Nash welfare (MNW). Further work [6] shows that such allocations
can be found in pseudo-polynomial time. While encouraging, these results are
limited to agents with additive valuations. In particular, they do not apply to set-
tings such as the course allocation problem described above (e.g. being assigned
two courses with conflicting schedules will not result in additive gain), or other
settings we describe later on. In fact, Caragiannis et al. [13] left it open whether
their result extends to other natural classes of valuation functions, such as the
class of submodular valutions.1 At present, little is known about other classes
valuation functions; this is where our work comes in.

1 There is an instance of two agents with monotone supermodular/subadditive valu-
ations where no allocation is PO and EF1 [13].
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1.1 Our Contributions

We focus on monotone submodular valuations with binary (or dichotomous)
marginal gains, which we refer to as matroid rank valuations. In this setting, the
added benefit of receiving another item is binary and obeys the law of dimin-
ishing marginal returns. This is equivalent to the class of valuations that can
be captured by matroid constraints; namely, each agent has a different matroid
constraint over the items, and the value of a bundle is determined by the size of
a maximum independent set included in the bundle.

Matroids offer a highly versatile framework for describing a variety of domains
[29]. This class of valuations naturally arises in many practical applications,
beyond the course allocation problem described above (where students are lim-
ited to either approving/disapproving a class). For example, suppose that a
government body wishes to fairly allocate public goods to individuals of differ-
ent minority groups (say, in accordance with a diversity-promoting policy). This
could apply to the assignment of kindergarten slots to children from different
neighborhoods/socioeconomic classes2 or of flats in public housing estates to
applicants of different ethnicities [8,9]. A possible way of achieving group fair-
ness in this setting is to model each minority group as an agent consisting of
many individuals: each agent’s valuation function is based on optimally match-
ing items to its constituent individuals; envy naturally captures the notion that
no group should believe that other groups were offered better bundles (this is
the fairness notion studied by Benabbou et al. [8]). Such assignment/matching-
based valuations (known as OXS valuations [25]) are non-additive in general,
and constitute an important subclass of submodular valuations. Matroid rank
functions correspond to submodular valuations with binary (i.e. {0, 1}) marginal
gains. The binary marginal gains assumption is best understood in context of
matching-based valuations—in this scenario, it simply means that individuals
either approve or disapprove of items, and do not distinguish between items
they approve (we call OXS functions with binary individual preferences (0, 1)-
OXS valuations). This is a reasonable assumption in kindergarten slot allocation
(all approved/available slots are identical), and is implicitly made in some public
housing mechanisms (e.g. Singapore housing applicants are required to effectively
approve a subset of flats by selecting a block, and are precluded from expressing
a more refined preference model).

In addition, imposing certain constraints on the underlying matching problem
retains the submodularity of the agents’ induced valuation functions: if there
is a hard limit due to a budget or an exogenous quota (e.g. ethnicity-based
quotas in Singapore public housing; socioeconomic status-based quotas in certain
U.S. public school admission systems) on the number of items each group is
able or allowed to receive, then agents’ valuations are truncated matching-based
valuations. Such valuation functions are not OXS, but are still matroid rank
functions. Since agents still have binary/dichotomous preferences over items even
with the quotas in place, our results apply to this broader class as well.

2 see, e.g. https://www.ed.gov/diversity-opportunity.

https://www.ed.gov/diversity-opportunity


Finding Fair and Efficient Allocations When Valuations Don’t Add Up 35

Using the matroid framework, we obtain a variety of positive existential and
algorithmic results on the compatibility of (approximate) envy-freeness with
welfare-based allocation concepts. The following is a summary of our main results
(see also Table 1):

(a) For matroid rank valuations, we show that an EF1 allocation that also
maximizes the utilitarian social welfare or USW (hence is Pareto optimal)
always exists and can be computed in polynomial time.

(b) For matroid rank valuations, we show that leximin3 and MNW allocations
both possess the EF1 property.

(c) For matroid rank valuations, we provide a characterization of the lex-
imin allocations; we show that they are identical to the minimizers of any
symmetric strictly convex function over utilitarian optimal allocations. We
obtain the same characterization for MNW allocations.

(d) For (0, 1)-OXS valuations, we show that both leximin and MNW allocations
can be computed efficiently.

Table 1. Summary of our computational complexity results.

MNW Leximin max-USW+EF1

(0, 1)-OXS poly-time (Th. 5) poly-time (Th. 5) poly-time (Th. 1)

Matroid rank ? ? poly-time (Th. 1)

All proofs omitted from the body of the paper due to space constraints as
well as clarifying examples remarks, extensions, and additional references are
available in the online full version with appendices at https://git.io/JJYdW.

Result (a) is remarkably positive: the EF1 and USW objectives are incompat-
ible in general, even for additive valuations. Result (b) is reminiscent of Thm.
3.2 by Caragiannis et al. [13], showing that any MNW allocation is PO and
EF1 under additive valuations. The PO+EF1 existence question beyond addi-
tive valuations, which they left open, has seen little progress. To our knowledge,
the class of matroid rank valuations is the first valuation class not subsumed
by additive valuations for which the EF1 property of the MNW allocation have
been established.

1.2 Related Work

Our paper is related to the vast literature on the fairness and efficiency issue
in resource allocation. Early work on divisible resource allocation provides an
elegant answer: an allocation that satisfies envy-freeness and Pareto optimality
3 Roughly speaking, a leximin allocation is one that maximizes the realized valuation

of the worst-off agent and, subject to that, maximizes that of the second worst-off
agent, and so on.

https://git.io/JJYdW
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always exists under mild assumptions on valuations [34], and can be computed
via convex programming of Eisenberg and Gale [17] for additive valuations. Four
decades later, Caragiannis et al. [13] prove the discrete analogue of Eisenberg
and Gale [17]: MNW allocation satisfies EF1 and Pareto optimality for additive
valuations. Subsequently, Barman et al. [6] provide a pseudo-polynomial-time
algorithm for computing allocations satisfying EF1 and PO.

While computing leximin/MNW allocations of indivisible items is hard in
general, several positive results are known when agents have binary additive
valuations. Darmann and Schauer [14] and Barman et al. [7] show that the max-
imum Nash welfare can be computed efficiently for binary additive valuations.
Further, the equivalence between leximin and MNW for binary additive valua-
tions has been obtained in several recent papers. Aziz and Rey [3] show that the
algorithm proposed by Darmann and Schauer outputs a leximin optimal allo-
cation; in particular this implies that the leximin and MNW solutions coincide
for binary additive valuations. This is implied by our results. Similar results are
shown by Halpern et al. [21], who also show that the leximin/MNW optimal allo-
cation is group-strategyproof for agents with binary additive valuations. In the
context of divisible goods, Aziz and Ye [4] show the leximin and MNW solutions
also coincide for dichotomous preferences.

From a technical perspective, our work makes extensive use of matroid the-
ory; while some papers have explored the application of matroid theory to the
fair division problem [10,20], we believe that ours is the first to demonstrate its
strong connection with fairness and efficiency guarantees.

One motivation for our paper is recent work by Benabbou et al. [8] on promot-
ing diversity in assignment problems through efficient, EF1 allocations of items
to groups in a population. Similar works study quota-based fairness/diversity
[2,9,33, and references therein], or by the optimization of carefully constructed
functions [1,15,23, and references therein] in allocation/subset selection.

Finally, Babaioff et al. [5] present a set of results similar to our own; they
further explore strategyproof mechanisms for matroid rank valuations, showing
that such mechanisms exist. Our work was developed independently, and is very
different from a technical perspective.

2 Model and Definitions

Throughout the paper, given a positive integer r, let [r] denote the set
{1, 2, . . . , r}. We are given a set N = [n] of agents, and a set O = {o1, . . . , om} of
items or goods. Subsets of O are referred to as bundles, and each agent i ∈ N has
a valuation function vi : 2O → R+ over bundles where vi(∅) = 0, i.e all valuations
are normalized. We further assume polynomial-time oracle access to the valuation
vi of all agents. Given a valuation function vi : 2O → R, we define the marginal
gain of an item o ∈ O w.r.t. a bundle S ⊆ O, as Δi(S; o) � vi(S ∪ {o}) − vi(S).
A valuation function vi is monotone if vi(S) ≤ vi(T ) whenever S ⊆ T .

An allocation A of items to agents is a collection of n disjoint bundles
A1, . . . , An, such that

⋃
i∈N Ai ⊆ O; the bundle Ai is allocated to agent i.
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Given an allocation A, we denote by A0 the set of unallocated items, also referred
to as withheld items. We may refer to agent i’s valuation of its bundle vi(Ai)
under the allocation A as its realized valuation under A. An allocation is com-
plete if every item is allocated to some agent, i.e. A0 = ∅. We admit incomplete,
but clean allocations: a bundle S ⊆ O is clean for i ∈ N if it contains no item
o ∈ S for which agent i has zero marginal gain (i.e., Δi(S \{o}; o) = 0, or equiv-
alently vi(S \ {o}) = vi(S)); an allocation A is clean if each allocated bundle
Ai is clean for the agent i that receives it. It is easy to ‘clean’ any allocation
without changing any realized valuation by iteratively revoking items of zero
marginal gain from respective agents and placing them in A0 (see Example 1 in
Appendix A).

2.1 Fairness and Efficiency Criteria

Our fairness criteria are based on the concept of envy. Agent i envies agent j
under an allocation A if vi(Ai) < vi(Aj). An allocation A is envy-free (EF) if
no agent envies another. We will use the following relaxation of the EF property
due to Budish [12]: we say that A is envy-free up to one good (EF1) if, for every
i, j ∈ N , i does not envy j or there exists o in Aj such that vi(Ai) ≥ vi(Aj \{o}).

The efficiency concept that we are primarily interested in is Pareto optimality.
An allocation A′ is said to Pareto dominate the allocation A if vi(A′

i) ≥ vi(Ai)
for all agents i ∈ N and vj(A′

j) > vj(Aj) for some agent j ∈ N . An allocation is
Pareto optimal (PO) if it is not Pareto dominated by any other allocation.

There are several ways of measuring the welfare of an allocation [31]. Specif-
ically, given an allocation A, (i) its utilitarian social welfare is USW(A) �∑n

i=1 vi(Ai); (ii) its egalitarian social welfare is ESW(A) � mini∈N vi(Ai); and (iii)
its Nash welfare is NW(A) �

∏
i∈N vi(Ai). An allocation A is said to be utilitarian

optimal (respectively, egalitarian optimal) if it maximizes USW(A) (respectively,
ESW(A)) among all allocations. Since it is possible that the maximum attain-
able Nash welfare is 0 (say, if there are less items than agents then one agent
must have an empty bundle), we use the following refinement of the maximum
Nash social welfare (MNW) used in [13]: we find a maximal subset of agents, say
Nmax ⊆ N , to which we can allocate bundles of positive values, and compute
an allocation to agents in Nmax that maximizes the product of their realized
valuations. If Nmax is not unique, we choose the one that results in the highest
product of realized valuations.

The leximin welfare is a lexicographic refinement of egalitarian optimality.
Formally, for real n-dimensional vectors x and y, x is lexicographically greater
than or equal to y (denoted by x ≥L y) if and only if x = y, or x 	= y and for the
minimum index j such that xj 	= yj we have xj > yj . For each allocation A, we
denote by θ(A) the vector of the components vi(Ai) (i ∈ N) arranged in non-
decreasing order. A leximin allocation A is one that maximizes the egalitarian
welfare in a lexicographic sense, i.e., θ(A) ≥L θ(A′) for any other allocation A′.
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2.2 Submodular Valuations

The main focus of this paper is on fair allocation when agent valuations are
submodular. A valuation function vi is submodular if single items contribute
more to smaller sets than to larger ones, namely: for all S ⊆ T ⊆ O and all
o ∈ O \ T , Δi(S; o) ≥ Δi(T ; o).

One important subclass of submodular valuations is assignment valuations,
introduced by Shapley [32] and also called OXS valuations [24]. Fair allocation
in this setting was explored by Benabbou et al. [8]. Here, each agent h ∈ N
represents a group of individuals Nh (such as ethnic groups and genders); each
individual i ∈ Nh (also called a member) has a fixed non-negative weight ui,o

for each item o. An agent h values a bundle S via a matching of the items to
its individuals (i.e. each item is assigned to at most one member and vice versa)
that maximizes the sum of weights [27]; namely, vh(S) = max{∑

i∈Nh
ui,π(i) |

π ∈ Π(Nh, S) }, where Π(Nh, S) is the set of matchings π : Nh → S in the
complete bipartite graph with bipartition (Nh, S).

Our particular focus is on submodular functions with binary marginal gains.
We say that vi has binary marginal gains if Δi(S; o) ∈ {0, 1} for all S ⊆ O
and o ∈ O \ S. The class of submodular valuations with binary marginal gains
includes the classes of binary additive valuations [7] and of assignment valuations
where the weight is binary [8]. We say that vi is a matroid rank valuation if it is a
submodular function with binary marginal gains (these are equivalent definitions
[29]), and (0, 1)-OXS if it is an assignment valuation with binary marginal gains.

3 Matroid Rank Valuations

The main theme of all results in this section is that, when all agents have
matroid rank valuations, fairness and efficiency properties are compatible with
one another, and there exist allocations that satisfy all three welfare criteria we
consider. We start by introducing some notions from matroid theory. Formally,
a matroid is an ordered pair (E, I), where E is some finite set and I is a family
of its subsets (referred to as the independent sets of the matroid), which satisfies
the following three axioms:

(I1) ∅ ∈ I,
(I2) if Y ∈ I and X ⊆ Y , then X ∈ I, and
(I3) if X,Y ∈ I and |X| > |Y |, then there exists x ∈ X \ Y such that
Y ∪ {x} ∈ I.

The rank function r : 2E → Z of a matroid returns the rank of each set X,
i.e. the maximum size of an independent subset of X. Another equivalent way
to define a matroid is to use the axiom systems for a rank function. We require
that (R1) r(X) ≤ |X|, (R2) r is monotone, and (R3) r is submodular. Then,
the pair (E, I) where I = {X ⊆ E | r(X) = |X| } is a matroid [29]. In other
words, if r satisfies properties (R1)–(R3) then it induces a matroid. In the fair
allocation terminology, if an agent has a matroid rank valuation, then the set of
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clean bundles forms the set of independent sets of a matroid. Before proceeding
further, we state some useful properties of the matroid rank valuation class.

Proposition 1. A valuation function vi with binary marginal gains is monotone
and takes values in [|S|] for any bundle S (hence vi(S) ≤ |S|).
Proposition 2. For matroid rank valuations, A is a clean allocation if and only
if vi(Ai) = |Ai| for each i ∈ N .

Even for binary additive valuations, EF and PO allocations may not exist
(as a simple example of two agents and a single good valued at 1 by each of
them demonstrates); thus, we turn our attention to EF1 and PO allocations.

3.1 Utilitarian Optimal and EF1 Allocation

For non-negative additive valuations, Caragiannis et al. [13] prove that every
MNW allocation is Pareto optimal and EF1. However, the existence question
of an allocation satisfying both the PO and EF1 properties remains open for
submodular valuations. We show that the existence of a PO+EF1 allocation [13]
extends to the class of matroid rank valuations. In fact, we provide a surprisingly
strong relation between efficiency and fairness: utilitarian optimality (stronger
than Pareto optimality) and EF1 turn out to be compatible under matroid rank
valuations. Moreover, such an allocation can be computed in polynomial time!

Theorem 1. For matroid rank valuations, a utilitarian optimal allocation that
is also EF1 exists and can be computed in polynomial time.

Our result is constructive: we provide a way of computing the above allocation
in Algorithm 1. The proof of Theorem 1 and those of the latter theorems utilize
Lemmas 1 and 2 which shed light on the interesting interaction between envy
and matroid rank valuations.

Lemma 1 (Transferability property). For monotone submodular valuation
functions, if agent i envies agent j under an allocation A, then there is an item
o ∈ Aj for which i has a positive marginal gain with respect to Ai.

Lemma 1 holds for submodular functions with arbitrary real-valued marginal
gains, and is trivially true for (non-negative) additive valuations. However, there
exist non-submodular valuation functions that violate the transferability prop-
erty, even when they have binary marginal gains (see Example 2 in Appendix A).

Below, we show that if i’s envy towards j cannot be eliminated by removing
one item, then the sizes of their clean bundles differ by at least two. Formally,
we say that agent i envies j up to more than 1 item if Aj 	= ∅ and vi(Ai) <
vi(Aj \ {o}) for every o ∈ Aj .

Lemma 2. For matroid rank valuations, if agent i envies agent j up to more
than 1 item under an allocation A and j’s bundle Aj is clean, then vj(Aj) ≥
vi(Ai) + 2.
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We are now ready to show that under matroid rank valuations, utilitarian
social welfare maximization is polynomial-time solvable (2).

Theorem 2. For matroid rank valuations, one can compute a clean utilitarian
optimal allocation in polynomial time.

Proof. We prove the claim by a reduction to the matroid intersection problem.
Let E be the set of pairs of items and agents, i.e., E = { {o, i} | o ∈ O ∧ i ∈ N }.
For each i ∈ N and X ⊆ E, we define Xi to be the set of edges incident to i,
i.e., Xi = { {o, i} ∈ X | o ∈ O }. Note that taking E = X, Ei is the set of all
edges in E incident to i ∈ N . For each i ∈ N and for each X ⊆ E, we define
ri(X) to be the valuation of i, under function vi(·), for the items o ∈ O such
that {o, i} ∈ Xi; namely,

ri(X) = vi({ o ∈ O | {o, i} ∈ Xi }).

Clearly, ri is also a submodular function with binary marginal gains; combining
this with Proposition 1 and the fact that ri(∅) = 0, it is easy to see that each
ri is a rank function of a matroid. Thus, the set of clean bundles for i, i.e
Ii = {X ⊆ E | ri(X) = |X| }, is the set of independent sets of a matroid. Taking
the union I = I1∪· · ·∪In, the pair (E, I) is known to form a matroid [22], often
referred to as a union matroid. By definition, I = {⋃

i∈N Xi | Xi ∈ Ii ∧ i ∈ N },
so any independent set in I corresponds to a union of clean bundles for each
i ∈ N and vice versa. To ensure that each item is assigned at most once (i.e.
bundles are disjoint), we will define another matroid (E,O) where the set of
independent sets is given by

O = {X ⊆ E | |X ∩ Eo| ≤ 1,∀o ∈ O }.

Here, Eo = { e = {o, i} | i ∈ N } for o ∈ O. The pair (E,O) is known as a
partition matroid [22].

Now, observe that a common independent set of the two matroids X ∈ O∩I
corresponds to a clean allocation A of our original instance where each agent i
receives the items o with {o, i} ∈ X; indeed, each item o is allocated at most
once because |Eo ∩X| ≤ 1, and each Ai is clean because the realized valuation of
agent i under A is exactly the size of the allocated bundle. Conversely, any clean
allocation A of our instance corresponds to an independent set X =

⋃
i∈N Xi ∈

I∩O, where Xi = { {o, i} | o ∈ Ai }: for each i ∈ N , ri(Xi) = |Xi| by Proposition
2, and hence Xi ∈ Ii, which implies that X ∈ I; also, |X ∩ Eo| ≤ 1 as A is an
allocation, and hence X ∈ O.

Thus, the maximum utilitarian social welfare is the same as the size of a
maximum common independent set in I ∩ O. It is well known that one can find
a largest common independent set in two matroids in time O(|E|3θ) where θ is
the maximum complexity of the two independence oracles [16]. Since the max-
imum complexity of checking independence in two matroids (E,O) and (E, I)
is bounded by O(mnF ) where F is the maximum complexity of the value query
oracle, we can find a set X ∈ I ∩ O with maximum |X| in time O(|E|3mnF ). �
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We are now ready to prove Theorem 1.

Proof (Proof of Theorem 1). Algorithm 1 maintains optimal USW as an invariant
and terminates on an EF1 allocation. Specifically, we first compute a clean allo-
cation that maximizes the utilitarian social welfare. The EIT subroutine in the
algorithm iteratively diminishes envy by transferring an item from the envied
bundle to the envious agent; Lemma 1 ensures that there is always an item in
the envied bundle for which the envious agent has a positive marginal gain.

Algorithm 1: Algorithm for finding utilitarian optimal EF1 allocation
1 Compute a clean, utilitarian optimal allocation A.
2 /*Envy-Induced Transfers (EIT)*/
3 while there are two agents i, j such that i envies j more than 1 item. do
4 Find item o ∈ Aj with Δi(Ai; o) = 1.
5 Aj ← Aj \ {o}; Ai ← Ai ∪ {o}.

6 end

Correctness: Each EIT step maintains the optimal utilitarian social welfare as
well as cleanness: an envied agent’s valuation diminishes exactly by 1 while
that of the envious agent increases by exactly 1. Thus, if it terminates, the
EIT subroutine retains the initial (optimal) USW and, by the stopping criterion,
induces the EF1 property. To show that the algorithm terminates in polynomial
time, we define the potential function φ(A) �

∑
i∈N vi(Ai)2. At each step of

the algorithm, φ(A) strictly decreases by 2 or a larger integer. To see this, let
A′ denote the resulting allocation after reallocation of item o from agent j to i.
Since A is clean, we have vi(A′

i) = vi(Ai) + 1 and vj(A′
j) = vj(Aj) − 1; since

all other bundles are untouched, vk(A′
k) = vk(Ak) for every k ∈ N \ {i, j}. Also,

since i envies j up to more than one item under allocation A, vi(Ai)+2 ≤ vj(Aj)
by Lemma 2. Combining these, simple algebra gives us φ(A′) − φ(A) ≤ −2.

Complexity : By Theorem 2, computing a clean utilitarian optimal allocation can
be done in polynomial time. The value of the non-negative potential function
has a polynomial upper bound:

∑
i∈N vi(Ai)2 ≤ (

∑
i∈N vi(Ai))2 ≤ m2. Thus,

Algorithm 1 terminates in polynomial time. �
An interesting implication of the above analysis is that a utilitarian optimal

allocation that minimizes
∑

i∈N vi(Ai)2 is always EF1.

Corollary 1. For matroid rank valuations, any clean, utilitarian optimal allo-
cation A that minimizes φ(A) �

∑
i∈N vi(Ai)2 among all utilitarian optimal

allocations is EF1.

Despite its simplicity, Algorithm 1 significantly generalizes that of Benabbou
et al. [8]’s Theorem 4 (which ensures the existence of a non-wasteful EF1 allo-
cation for (0, 1)-OXS valuations) to matroid rank valuations. We note, however,
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that the resulting allocation may be neither MNW nor leximin even when agents
have (0, 1)-OXS valuations: Example 3 in Appendix A illustrates this and also
shows that the converse of Corollary 1 does not hold.

3.2 MNW and Leximin Allocations for Matroid Rank Functions

We characterize the set of leximin and MNW allocations under matroid rank
valuations. We start by showing that Pareto optimal allocations coincide with
utilitarian optimal allocations when agents have matroid rank valuations. Intu-
itively, if an allocation is not utilitarian optimal, one can find an ‘augmenting’
path that makes at least one agent happier but no other agent worse off. The full
proof, which is more involved and relies on the concept of circuits of matrices,
is available online in Appendix A.

Theorem 3. For matroid rank valuations, PO allocations are utilitarian
optimal.

Since leximin and MNW allocations are Pareto optimal [11,13], Theorem 3
implies that such allocations are utilitarian optimal as well. Next, we show that
for the class of matroid rank valuations, leximin and MNW allocations are iden-
tical to each other; further, they can be characterized as the minimizers of any
symmetric strictly convex function among all utilitarian optimal allocations.

A function Φ : Zn → R is symmetric if for any permutation π : [n] → [n],

Φ(z1, z2, . . . , zn) = Φ(zπ(1), zπ(2), . . . , zπ(n)),

and is strictly convex if for any x, y ∈ Z
n with x 	= y and λ ∈ (0, 1) where

λx + (1 − λ)y is an integral vector, λΦ(x) + (1 − λ)Φ(y) > Φ(λx + (1 − λ)y).
Examples of symmetric, strictly convex functions include: Φ(z1, z2, . . . , zn) �∑n

i=1 z2i for zi ∈ Z ∀i; Φ(z1, z2, . . . , zn) �
∑n

i=1 zi ln zi for zi ∈ Z≥0 ∀i. For an
allocation A, we define φ(A) � φ(v1(A1), v2(A2), . . . , vn(An)).

Theorem 4. Let Φ : Zn → R be a symmetric strictly convex function; let A be
some allocation. For matroid rank valuations, the following are equivalent:

1. A is a minimizer of Φ over all the utilitarian optimal allocations; and
2. A is a leximin allocation; and
3. A maximizes Nash welfare.

The proof is highly technical and is hence relegated to Appendix A online. To
summarize, we first establish the equivalence of statements 1 and 2 by showing:
(i) Lemma 4: given a non-leximin utilitarian optimal allocation A, there exists
an “adjacent” utilitarian optimal allocation A′ which is the result of transferring
one item from a ‘happy’ agent j to a less ‘happy’ agent i (the underlying sub-
modularity guarantees the existence of such an allocation); (ii) Lemma 5: such
an adjacent allocation A′ has a strictly higher value of any symmetric strictly
convex function than A. We complete the three-way equivalence by noting that
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maximizing Nash welfare is identical to minimizing the symmetric, strictly con-
vex function φ(x) = −∑n

i=1 log xi (carefully accounting for the possibility that
some agents may realize zero valuations).

Theorem 4 does not generalize to the non-binary case: Example 5 in
Appendix A presents an instance where the leximin and MNW allocation are
not USW optimal.

Combining the above characterization with the results of Sect. 3.1, we get
the following fairness-efficiency guarantee for matroid rank valuations.

Corollary 2. For matroid rank valuations, any clean leximin or MNW alloca-
tion is EF1.

4 Assignment Valuations with Binary Gains

We now consider the practically important special case where valuations come
from maximum matchings. For this valuation class, we show that invoking The-
orem 3, one can find a leximin or MNW allocation in polynomial time, by a
reduction to the network flow problem. We note that the complexity of the
problem remains open for general matroid rank valuations.

Theorem 5. For assignment valuations with binary marginal gains, one can
find a leximin or MNW allocation in polynomial time.

The proof, available in Appendix A, is based on the following key idea: given
any instance with (0, 1)-OXS valuations, we construct a flow network such that
the problem of finding a leximin allocation in the original instance reduces to that
of finding a increasingly-maximal integer-valued flow on the induced network for
which Frank and Murota [19] recently gave a polynomial-time algorithm.

In contrast with (0, 1)-OXS valuations, computing a leximin or MNW alloca-
tion becomes NP-hard for weighted assignment valuations, even for two agents.

Theorem 6. Computing a leximin/MNW allocation for two agents with general
assignment valuations is NP-hard.

The proof is available in Appendix A. We give a Turing reduction from
Partition. The reduction is similar to the hardness reduction for two agents
with identical additive valuations [28,30].

5 Discussion

We study allocations of indivisible goods under matroid rank valuations in terms
of the interplay among envy, efficiency, and various welfare concepts. Since the
class of matroid rank functions is rather broad, our results can be immediately
applied to settings where agents’ valuations are induced by a matroid struc-
ture. Beyond the domains described in this work, these include several others.
For example, partition matroids model instances where agents’ have access to
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different item types, but can only hold a limited number of each type (their util-
ity is the total number of items they hold); a variety of other domains, such as
spanning trees, independent sets of vectors, coverage problems and more admit a
matroid structure (see Oxley [29] for an overview). Indeed, a well-known result in
combinatorial optimization states that any agent valuation structure where the
greedy algorithm can be used to find the (weighted) optimal bundle, is induced
by some matroid [29, Theorem 1.8.5].

There are several known extensions to matroid structures, with deep connec-
tions to submodular optimization [29, Chapter 11]. Matroid rank functions are
submodular functions with binary marginal gains; however, general submodu-
lar functions admit some matroid structure which may potentially be used to
extend our results to more general settings. Finally, it would be interesting to
explore other fairness criteria such as proportionality, the maximin share guar-
antee, equitability. etc. (see, e.g. [11] and references therein) for matroid rank
valuations. We present some of our attempts along these lines in Appendices B
through D.
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Abstract. Motivated by recent research on combinatorial markets with
endowed valuations by (Babaioff et al., EC 2018) and (Ezra et al.,
EC 2020), we introduce a notion of perturbation stability in Combi-
natorial Auctions (CAs) and study the extend to which stability helps
in social welfare maximization and mechanism design. A CA is γ-stable
if the optimal solution is resilient to inflation, by a factor of γ ≥ 1,
of any bidder’s valuation for any single item. On the positive side, we
show how to compute efficiently an optimal allocation for 2-stable sub-
additive valuations and that a Walrasian equilibrium exists for 2-stable
submodular valuations. Moreover, we show that a Parallel 2nd Price
Auction (P2A) followed by a demand query for each bidder is truthful
for general subadditive valuations and results in the optimal allocation
for 2-stable submodular valuations. To highlight the challenges behind
optimization and mechanism design for stable CAs, we show that a Wal-
rasian equilibrium may not exist for 2-stable XOS valuations, that a
polynomial-time approximation scheme does not exist for (2 − ε)-stable
submodular valuations, and that any DSIC mechanism that computes
the optimal allocation for stable CAs and does not use demand queries
must use exponentially many value queries. We conclude with analyzing
the Price of Anarchy of P2A and Parallel 1st Price Auctions (P1A) for
CAs with stable submodular and XOS valuations. Our results indicate
that the quality of equilibria of simple non-truthful auctions improves
only for γ-stable instances with γ ≥ 3.

1 Introduction

Combinatorial auctions appear in many different contexts (e.g., spectrum auc-
tions [26], network routing auctions [22], airport time-slot auctions [29], etc.)
and have been studied extensively (and virtually from every possible aspect) for
a few decades (see e.g., [28] and the references therein).

This work was supported by the Hellenic Foundation for Research and Innovation
(H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty
members and Researchers and the procurement of high-cost research equipment grant”,
project BALSAM, HFRI-FM17-1424.

c© Springer Nature Switzerland AG 2020
T. Harks and M. Klimm (Eds.): SAGT 2020, LNCS 12283, pp. 47–63, 2020.
https://doi.org/10.1007/978-3-030-57980-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57980-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-57980-7_4


48 G. Fikioris and D. Fotakis

In a combinatorial auction, a set M of m items (or goods) is to be allocated
to n bidders. Each bidder i has a valuation function vi : 2M → R≥0 that assigns
a non-negative value vi(S) to any S ⊆ M and quantifies i’s preferences over item
subsets. Valuation functions are assumed to be non-decreasing (free disposal),
i.e., vi(S) ≥ vi(S′), for all S′ ⊆ S, and normalized, i.e., v(∅) = 0. The goal is to
compute a partitioning (a.k.a. allocation ) S = (S1, . . . , Sn) of M that maximizes
the social welfare sw(S) =

∑n
i=1 vi(Si).

Most of the previous work has focused on CAs with either submodular (and
XOS) or complement-free valuations. A set function v : 2M → R≥0 is submodular
if for all S, T ⊆ M , v(S) + v(T ) ≥ v(S ∩ T ) + v(S ∪ T ), and subadditive (a.k.a.
complement-free ) if v(S) + v(T ) ≥ v(S ∪ T ). A set function v is XOS (a.k.a.
fractionally subadditive, see [17]) if there are additive functions wk : 2M → R≥0

such that for every S ⊆ M , v(S) = maxk{wk(S)}. The class of submodular
functions is a proper subset of the class of XOS functions, which in turn is a
proper subset of subadditive functions.

Since bidder valuations have exponential size in n and m, algorithmic effi-
ciency requires that the bidders communicate their preferences through either
value or demand queries. A value query specifies a bidder i and a set (or bundle)
S ⊆ M and receives its value vi(S). A demand query specifies a bidder i, a set
T of available items and a price pj for each available item j ∈ T , and receives
a bundle S ⊆ T that maximizes i’s utility vi(S) − ∑

j∈S pj from the set of
available items at these prices. Demand queries are strictly more powerful than
value queries, in the sense that value queries can be simulated by polynomially
many demand queries, and in terms of communication cost, demand queries are
exponentially stronger than value queries [7].

The approximability of social welfare maximization by polynomial-time algo-
rithms and truthful mechanisms for CAs with submodular and subadditive bid-
ders has been extensively studied by the communities of Approximation Algo-
rithms and Algorithmic Mechanism Design in the last two decades and are prac-
tically well understood (see e.g., Sect. 1.3 for a selective list of references most
relevant to our work).

1.1 Perturbation Stability in Combinatorial Auctions

Motivated by recent work on beyond worst-case analysis of algorithms [31] and
on endowed valuations for combinatorial markets [4,16], in this work, we investi-
gate whether strong performance guarantees for social welfare maximization (by
polynomial time algorithms and truthful mechanisms, or even at the equilibrium
of simple auctions) can be achieved for a very restricted (though still natural)
class of CAs with perturbation stable valuations, where the optimal solution is
resilient to a small increase of any bidder’s valuation for any single item.

From a bird’s-eye view, we follow the approach of beyond worst-case analysis
(see e.g., [31]), where we seek a theoretical understanding of the superior practi-
cal performance of certain algorithms by formally analyzing them on practically
relevant instances. Hence, researchers restrict their attention to instances that
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satisfy certain application-area-specific assumptions, which are likely to be satis-
fied in practice. Such assumptions may be of stochastic (e.g., smoothed analysis
of Simplex and local search [15,34,35]) or deterministic nature (e.g., perturba-
tion stability in clustering [1,3,5,6]).

The beyond worst-case approach is not anything new for (Algorithmic) Mech-
anism Design. Bayesian analysis, where the bidder valuations are drawn as inde-
pendent samples from an arbitrary distribution known to the mechanism, is stan-
dard in revenue maximization [33] and has led to many strong and elegant results
for social welfare maximization by truthful posted price mechanisms (see e.g.,
[14,19]). However, in this work, we significantly deviate from Bayesian analysis,
where the mechanism has a relatively accurate knowledge of the distribution of
bidder valuations. Instead, we suggest a deterministic restriction on the class of
instances (namely, perturbation stability) and investigate if there is a natural
class of mechanisms (e.g., Parallel 2nd Price Auctions (P2A)) that are incentive-
compatible and achieve optimality for CAs with stable submodular valuations.

Our focus on perturbation stable valuations was actually motivated by the
recent work of Babaioff et al. [4] and Ezra et al. [16] on combinatorial markets
where the valuations exhibit the endowment effect. The endowment effect was
proposed by the Nobel Laureate Richard Thaler [37] to explain situations where
owning a bundle of items causes its value to increase. Babaioff et al. [4] defined
that if an allocation S = (S1, . . . , Sn) is α-endowed, for some α > 1, in a CA with
valuations (v1, . . . , vn), then the valuation function of each bidder i becomes

v′
i(T ) = vi(T ) + (α − 1)vi(Si ∩ T ) , (1)

for all item sets T ⊆ M . Roughly speaking, the value of Si (and its subsets)
is inflated by a factor of α due to the endowment effect. The main result of [4]
is that for any combinatorial market with submodular valuations (v1, . . . , vn),
any locally optimal allocation S and any α ≥ 2, the market with α-endowed
valuations (v′

1, . . . , v
′
n) for S admits a Walrasian equilibrium (see Sect. 2 for

the definition) where each bidder i receives Si. In simple words, social welfare
maximization in combinatorial markets with endowed valuations (v′

1, . . . , v
′
n) is

polynomially solvable and the optimal allocation is supported by item prices.
Subsequently, Ezra et al. [16] presented a general framework for endowed valua-
tions and extended the above result to XOS valuations and general valuations,
for a sufficiently large endowment (see also previous work on bundling equilib-
rium and conditional equilibrium [12,21]).

Inflated valuations due to the endowment effect naturally occur in auctions
that take place regularly over time. Imagine auctions for e.g., season tickets of
an athletic club, spots in a parking lot, reserving timeslots for airport gates,
vacation packages at resorts, etc., where regular participants tend to value more
the bundles allocated to them in the past, due to the endowment effect (see also
[37] for more examples). Given the strong positive results of [4,16], a natural
question is whether CAs with valuations inflated due to the endowment effect
allow for stronger approximation guarantees in social welfare maximization and
mechanism design.
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Stable Combinatorial Auctions. To investigate the question above, we adopt
a slightly stronger condition on valuation profiles, namely perturbation stability,
which is inspired by (and bears a resemblance to) the definition of perturbation
stable clustering instances (see e.g., [1,3,5,6]).

Definition 1. For a constant γ ≥ 1, a γ-perturbation of a valuations profile
v = (v1, . . . , vn) on a bidder i and an item j is a new valuations profile v′ =
(v′

1, . . . , v
′
n), where v′

k = vk for all bidders k 	= i, and for all S ⊆ M ,

v′
i(S) = vi(S) + (γ − 1)vi(S ∩ {j}) (2)

A CA with valuations v = (v1, . . . , vn) is γ-perturbation stable (or γ-stable) if
the optimal allocation for v is unique and remains unique for all γ-perturbations
v′ of v.

Example 1. Let Alice and Bob compete for 2 items, a and b, and have valuations
vA({a}) = vA({a, b}) = 2 and vA({b}) = 1, and vB({b}) = vB({a, b}) = 2 and
vB({a}) = 1. The (unique) optimal allocation is to give a to Alice and b to Bob,
with social welfare 4. A perturbation with most potential to change the optimal
solution is to inflate Alice’s value of b by γ ≥ 1. Then, we get v′

A({a}) = 2,
v′

A({b}) = γ and v′
A({a, b}) = 1 + γ. The optimal solution remains unique for

any γ < 3. Hence the above CA is (3 − ε)-stable, for any ε > 0. 
�
At the conceptual level, we feel that the condition of γ-stability is easier to

grasp and to think about in the context of mechanism design for CAs (compared
against considering valuation profiles v resulting from the α-endowment of an
optimal solution to an initial valuations profile x)1. From an algorithmic and
mechanism design viewpoint, we remark that for any γ ≥ 2, CAs with γ-stable
submodular valuations can be treated (to a certain extent) as multi-item auctions
with additive bidders. In fact, this is the technical intuition behind several of
our positive results.
1 For a better understanding of the two conditions at a technical level, we note that a

(technically very useful) necessary condition for a valuations profile v to be γ-stable
is that for the optimal allocation (O1, . . . , On), any bidders i �= k and any item
j ∈ Oi,

vi(Oi) − vi(Oi \ {j}) > vk(Ok ∪ {j}) − vk(Ok) + (γ − 1)vk({j}) ≥ (γ − 1)vk({j}) .

For this condition, we use (local) optimality of (O1, . . . , On) for both v and its γ-
perturbation on bidder k and item j (see also Lemma 1).

A similar (technically useful) condition satisfied by any valuations profile v that
has resulted from the α-endowment of an optimal (or locally optimal) solution
(O1, . . . , On) to an initial valuations profile x is that for any bidders i �= k and
any item j ∈ Oi,

vi(Oi) − vi(Oi \ {j}) ≥ α
(
vk(Ok ∪ {j}) − vk(Ok)

)
.

For this condition, we use local optimality of (O1, . . . , On) for x, multiply the result-
ing inequality by α, and observe that vi(Oi)−vi(Oi \{j}) = α

(
xi(Oi)−xi(Oi \{j})

)

and that vk(Ok ∪ {j}) − vk(Ok) = xk(Ok ∪ {j}) − xk(Ok).
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1.2 Contributions

We focus on deterministic algorithms and mechanisms. We first show that a
simple greedy algorithm (Algorithm 1) that allocates each item j to the bidder
i with maximum vi({j}) finds the optimal allocation for CAs with 2-stable sub-
additive valuations (Theorem 1). Moreover, similarly to [4], we show that for
2-stable submodular valuations, combining the optimal allocation with a second
price approach, where each item j gets a price of pj = maxk �=i vk({j}), results
in a Walrasian equilibrium (Theorem 3).

On the negative side, we prove that our positive results above cannot be
significantly strengthened. We first show that there is a simple (2 − ε)-stable
CA with submodular bidders where approximating the social welfare within any
factor larger than 1− 1

2k requires at least
(
m
k

)
value queries, for any integer k ≥ 1

(Theorem 2). Thus, a polynomial-time approximation scheme does not exist for
(2 − ε)-submodular valuations. Moreover, we show that for any γ ≥ 1, there is a
γ-stable CA with a XOS bidder and a unit demand bidder that does not admit
a Walrasian equilibrium (Lemma 2).

On the mechanism design part, in a nutshell, we show that (possibly appro-
priately modified) Parallel 2nd Price Auctions (P2A) behave very well for stable
CAs. We should highlight that despite the fact that maximizing the social wel-
fare for 2-stable subadditive CAs is easy, VCG is not an option for the design of
computationally efficient incentive compatible mechanisms. The reason is that
removing a single bidder from a 2-stable CA may result in an NP-hard (and
hard to approximate) (sub)instance.

In Sect. 5, we show that a P2A followed by a demand query for each bidder
is dominant strategy incentive compatible (DSIC) for all CAs with subadditive
bidders and maximizes the social welfare if the valuations profile is submodular
and 2-stable (Theorem 4). If demand queries are not available, the mechanism
boils down to a simple P2A. We show that P2A is ex-post incentive compatible
(EPIC) for 2-stable submodular valuations and that truthful bidding leads to
the optimal allocation.

On the negative side and rather surprisingly, we show that demand queries
are indeed necessary for computationally efficient mechanisms that are DSIC
for all submodular valuations and maximize the social welfare if the instance
is γ-stable (even if γ is arbitrarily large, Theorem 6). Our construction is an
insightful adaptation of the elegant lower bound in [10, Theorem 1] to the case
of stable submodular valuations. We show that any DSIC mechanism that com-
putes the optimal allocation for stable CAs and does not use demand queries
must use exponentially many value queries. The crux of the proof is that in
certain instances, the bidders may find profitable to misreport and switch from
a non-stable instance to a stable one.

In Sect. 6, we analyze the Price of Anarchy (PoA) of P2A and Parallel 1st
Price Auctions (P1A). Our results demonstrate that the quality of equilibria of
simple non-truthful auctions improves only for γ-stable valuations, with γ ≥ 3.
We show that the PoA of P2A for CAs with 3-stable submodular valuations
is 1 (Theorem 7), while there are (3 − ε)-stable CAs with PoA equal to 1/2



52 G. Fikioris and D. Fotakis

(Lemma 3), which matches the PoA for CAs with general submodular valuations
(see e.g., [32]). Moreover, we show that the PoA of both P2A and P1A for CAs
with γ-stable XOS valuations is at least γ−2

γ−1 , for any γ ≥ 2 (Theorem 8 and
Theorem 9).

The technical details and the proofs omitted from this extended abstract,
due to lack of space, can be found at the full version of our work [20].

1.3 Previous Work

Social welfare maximization with submodular and subadditive valuations has
been studied extensively. Submodular Welfare Maximization (SMOD-WM) is
known to be (1 − 1/e)-approximable with polynomially many value queries [38]
and (1 − 1/e + ε)-approximable, for a fixed constant ε > 0, with polynomially
many demand queries [18]. Moreover, a simple and natural greedy algorithm
achieves an approximation ratio of 1/2 using only value queries [25]. The results
about polynomial-time approximability with value queries are best possible, in
the sense that approximating SMOD-WM within a factor of 1− 1/e+ ε, for any
constant ε > 0, is NP-hard [23] and requires exponentially many value queries
[27]. Furthermore, there is a constant ε > 0, such that approximating SMOD-
WM within a factor of 1 − ε with demand queries is NP-hard [18]. Subadditive
Welfare Maximization (SADD-WM) is m−1/2-approximable with polynomially
many value queries (and this is best possible [27]) and 1/2-approximable with
polynomially many demand queries [17].

Truthful maximization of social welfare in CAs with submodular (or XOS)
bidders has been a central problem in Algorithmic Mechanism Design. In the
worst-case setting, where we do not make any further assumptions on bidder
valuations, Dobzinski et al. [13] presented the first truthful mechanism that
uses polynomially many demand queries and achieves a non-trivial approxima-
tion guarantee of O((log m)−2). Dobzinski [9] improved the approximation ratio
to O( 1

log m log log m ) for the more general class of subadditive valuations. Subse-
quently, Krysta and Vöcking [24] provided an elegant randomized online mecha-
nism with an approximation ratio of O( 1

log m ) for XOS valuations. Dobzinski [11]
broke the logarithmic barrier for XOS valuations, by showing an approximation
guarantee of O((log m)−1/2), which was recently improved to O((log log m)−3)
by Assadi and Singla [2]. Accessing valuations through demand queries is essen-
tial for these strong positive results. Dobzinski [10] proved that any truthful
mechanism for CAs with submodular bidders with approximation ratio better
than m− 1

2+ε must use exponentially many value queries. Truthful Θ(m−1/2)-
approximate mechanisms that use polynomially many value queries are known
even for the more general class of subadditive valuations (see e.g., [13]).

In the Bayesian setting, Feldman et al. [19] showed how to obtain item prices
that provide a constant approximation ratio for XOS valuations. These results
were significantly extended and strengthened by Düetting et al. [14].

Previous work has also shown strong Price of Anarchy (PoA) guarantees for
CAs with submodular, XOS and subadditive bidders that can be achieved by
simple (non-truthful) auctions, such as P2A and P1A (see e.g., [8,30,32,36]).
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Our notion of perturbation stability for CAs is inspired by conceptually sim-
ilar notions of perturbation stability in clustering [3,6]. Angelidakis et al. [1]
presented a polynomial-time algorithm for 2-stable clustering instances with
center-based objectives (e.g., k-median, k-means, k-center), while Balcan et al.
[5] proved that there is no polynomial-time algorithm for (2−ε)-stable instances
of k-center, unless NP = RP. To the best of our knowledge, this is the first
time that the notion of perturbation stability has been applied to social welfare
maximization and to algorithmic mechanism design for Combinatorial Auctions.

2 Notation and Preliminaries

The key notion of γ-perturbation stability (Definition 1) and a significant part
of the terminology and the notation are introduced in Sect. 1. In this section,
we introduce some additional terminology, notation and conventions used in the
technical part.

We always let O = (O1, . . . , On) denote the optimal allocation for the
instance at hand, and let Oi be the bundle of bidder i in O. For convenience, we
usually let an index j also denote the singleton set {j} (we write vi(j), vi(S ∪ j),
vi(S \ j), etc., instead of vi({j}), vi(S ∪ {j}), vi(S \ {j})). We use both S1 \ S2

and S1 − S2 for the set difference. We denote the marginal contribution of a
bundle S wrt. T as v(S|T ) = v(S ∪ T ) − v(T ).

In addition to submodular, XOS and subadditive valuations, we consider
additive and unit-demand valuations v : 2M → R≥0, where there exist
b1, . . . , bm ∈ R≥0, such that for any S ⊆ M , v(S) =

∑
j∈S bj and v(S) =

maxj∈S bj , respectively. A useful property of an XOS valuation v is that for
any S ⊆ M , there is an additive valuation q that supports S, in the sense that
v(S) = q(S) and for any T ⊆ M , v(T ) ≥ q(T ).

We focus on deterministic algorithms and mechanisms and consider bidders
with quasi-linear utilities, where the utility of bidder i with valuation vi for a
bundle S at price p(S) is ui(S) = vi(S) − p(S). For a price vector (p1, . . . , pm),
we often let p(S) =

∑
j∈S pj denote the price of a bundle S ⊆ M .

An allocation S = (S1, . . . , Sn) and a price vector (p1, . . . , pm) form a Wal-
rasian Equilibrium if all items j with pj > 0 are allocated and each bid-
der i gets a utility maximizing bundle (or, his demand) in S, i.e., ∀S ⊆ M ,
vi(Si) − p(Si) ≥ vi(S) − p(S).

A mechanism is dominant-strategy incentive compatible (DSIC) (or truthful)
if for any valuations profile v, answering (value or demand) queries truthfully
is a dominant strategy and guarantees non-negative utility for all bidders. A
mechanism is called ex-post incentive compatible (EPIC) if truthful bidding is
an ex-post Nash equilibrium and guarantees non-negative utility for all bidders.

Let D = (D1, ...,Dn) be a profile of distributions over valuation func-
tions (i.e., over possible bids). In a mechanism with allocation rule S(·) =
(S1(·), . . . , Sn(·)) and item pricing rule p = (p1(·), . . . , pm(·)), D forms a Mixed
Nash Equilibrium (MNE), if no bidder has an incentive to unilaterally deviate
from D, i.e., for any bidder i and any distribution D′

i over valuation functions,



54 G. Fikioris and D. Fotakis

Algorithm 1: Algorithm for 2-Stable Subadditive Valuations
Input: Value query access to subadditive valuations v1(·), ..., vn(·)
Set O1 = O2 = ... = On = ∅
for j ∈ M do

Let i be the bidder that maximizes vi(j), and set Oi ← Oi ∪ {j}.

return Allocation (O1, ...On)

E
b∼D

⎡

⎣vi(Si(b)) −
∑

j∈Si(b)

pj(b)

⎤

⎦ ≥ E
b∼(D′

i,D−i)

⎡

⎣vi(Si(b)) −
∑

j∈Si(b)

pj(b)

⎤

⎦

If instead of distributions over valuation functions, we restrict each Di and D′
i

to valuation functions (i.e., to pure strategies over possible bids), we get the
definition of a Pure Nash Equilibrium (PNE).

In Sect. 6, we consider the Price of Anarchy (PoA) of Parallel 2nd Price Auc-
tions (P2A) and Parallel 1st Price Auctions (P1A). In a Combinatorial Auction,
the PoA of a mechanism is the ratio of (resp. expected) social welfare at the
worst Pure (resp. Mixed) Nash Equilibrium to the social welfare of the optimal
allocation. Formally, focusing on the more general case of Mixed Nash Equilibria:

PoA = min
D is a MNE

Eb∼D [
∑

i vi(Si(b))]∑
i vi(Oi)

Properties of Stable Valuations. The following shows a technically useful
property of γ-stable CAs (see also Footnote 1).

Lemma 1 (Valuation Stability). Let v be γ-stable and subadditive valua-
tions. Then, for all bidders i 	= k and all items j ∈ Oi , vi(j) ≥ vi(Oi) − vi(Oi \
j) > (γ − 1)vk(j).

3 Social Welfare Maximization for Stable Valuations

We next consider the problem of social welfare maximization for 2-stable CAs.
We first show that for 2-stable subadditive valuations, we can compute the opti-
mal solution with value queries in polynomial time.

Theorem 1. Let v be a 2-stable subadditive valuations profile. Then Algorithm 1
outputs the optimal allocation (O1, ..., On) using nm value queries.

Proof. The number of value queries follows directly from the description of the
algorithm. As for optimality, we fix an item j and let i be the bidder that gets
j in the optimal solution. Because of Lemma 1 and the fact that v is 2-stable,
we know that vi(j) > vk(j), for any other bidder k 	= i. Because Algorithm 1
allocates j to the bidder with the highest singleton value, i gets item j in the
allocation of Algorithm 1. 
�
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On the negative side, we next show that a polynomial-time approximation
scheme does not exist even for (2 − ε)-stable submodular valuations.

Theorem 2. For any ε > 0, there exists a submodular (2 − ε)-stable valuations
profile v such that for any integer k ≥ 1, approximating the optimal allocation
in v within any factor larger than 1 − 1

2k requires at least
(
m
k

)
value queries.

Proof (Sketch). Inspired by [10, Lemma 3.10], we consider the following class of
submodular valuations:

vO(S) =

⎧
⎪⎨

⎪⎩

|S|, if |S| ≤ |O| − 1
|O| − 1/2, if |S| = |O| and S 	= O

|O|, otherwise (S = O or S ≥ |O| + 1)

We consider 2 and any allocation (O1, O2), with |O1| = |O2|. We can show
that the valuations vO1 and vO2 are submodular and (2 − ε)-stable. Moreover,
finding the optimal allocation requires

(
m

|O1|
)

queries. By generalizing this argu-
ment to n bidders, we get the inapproximability ratio. 
�

4 Existence of Walrasian Equilibrium

Similarly to [4, Theorem 4.2], we next show that combinatorial markets with
2-stable submodular valuations admit a Walrasian Equilibrium.

Theorem 3. Let v be 2-stable submodular valuations. For every bidder i every
item j ∈ Oi, let maxk �=i vk(j) ≤ pj ≤ vi(j|Oi − j). Then, the prices p1, . . . , pm

form a Walrasian Equilibrium.

Proof. Fix a bidder i and his optimal bundle Oi. We note that the price pj of each
item is well defined. Because of Lemma 1, 2-stability and j ∈ Oi, vi(j|Oi − j) >
vk(j).

We next show that for any j 	∈ Oi, bidder i is not interested in getting j.
Because of subadditivity, i’s additional utility due to item j is at most vi(j)−pj .
Because j 	∈ Oi, pj ≥ vi(j), making i’s utility from j non-positive. Hence, i’s
demand is a subset of Oi.

To conclude the proof, we show that for any item j ∈ Oi, i gets non-negative
utility due to j. Fix a bundle S in the demand of bidder i with j 	∈ S. Note that we
have already proven that S ⊆ Oi. The utility gained by taking j is vi(j|S) − pj ,
which is non-negative; submodularity makes vi(j|S) ≥ vi(j|Oi − j) ≥ pj . Hence,
Oi is the demand of bidder i. 
�

We next show that Theorem 3 cannot be extended to stable XOS valuations.
In the proof of Theorem 3, 2-stability and submodularity ensure that the prices
cannot exceed the marginal increase vi(j|S) of adding an item j to some S ⊂ Oi.
For XOS valuations, however, the marginals vi(j|S) may not be decreasing with
S. As a result, the utility of a bidder i may be maximized by a strict subset of
his optimal bundle Oi.

Lemma 2. For every γ ≥ 1, there exists a γ-stable valuations profile with a XOS
bidder and a unit demand bidder which does not admit a Walrasian Equilibrium.
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Mechanism 2: Extended Parallel 2nd Price Auction (EP2A)
Input: Value and demand query access to valuations v = (v1, . . . , vn).

For all bidders i and items j, query vi(j) and let bij denote the response.
Set the price pj of each item j to its second highest bid.
For each bidder i, let Si be the set of items for which i has the highest bid.
Bidder i receives his demand from Si, where each item has price pj .
Bidder i pays the total price for his demand from Si.

5 Mechanism Design for Stable Combinatorial Auctions

In this section, we investigate truthful mechanism design for CAs with stable
submodular valuations. We should emphasize that despite Theorem 1, VCG
cannot be used as a computationally efficient DSIC mechanism for stable sub-
additive CAs, because the subinstances v−i, whose optimal solutions determine
the payments, may not be stable and may be NP-hard to solve optimally (e.g.,
adding a bidder with additive valuation that has a huge value for each singleton
to any CA results in a stable instance).

We first present a truthful extension of Algorithm 1, which is implemented
as a Parallel 2nd Price Auction (P2A) and also uses a demand query for each
bidder.

Theorem 4. Mechanism 2 uses nm value queries and n demand queries, and is
DSIC for any CA with subadditive valuations. Moreover, if the valuations profile
v is 2-stable submodular, Mechanism 2 returns the optimal allocation.

Proof. First, we show that Mechanism 2 is DSIC for subadditive bidders. We
focus on the bidding step, because assuming that each set Si is determined in a
truthful way, it is always in each bidder’s best interest to respond to his demand
query truthfully.

We observe that no bidder has incentive to bid lower than his singleton value
for an item. Bidding lower could only lead to the bidder losing some items,
thus restricting the set of items available tom him through his demand query.
Moreover, no bidder has incentive to bid higher than his singleton value for an
item. This would only entail having access to an item that has price at least his
actual singleton value. However, because of subadditivity, the bidder does not
include such an item in his demand set.

The fact that Mechanism 2 computes an optimal allocation for 2-stable sub-
modular valuations is an immediate consequence of Theorem 1 and Theorem 3.


�
Next, we show that a P2A (Mechanism 3), that uses only value queries, is

ex-post incentive compatible when restricted to 2-stable submodular valuations
profiles. The proof of the following is an immediate consequence of Theorem 3
and Theorem 1.
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Mechanism 3: Parallel 2nd Price Auction (P2A)
Input: Value query access to valuations v = (v1, . . . , vn).

For all bidders i and items j, query vi(j) and let bij denote the response.
Set the price pj of each item j to its second highest bid.
For each bidder i, let Si be the set of items for which i has the highest bid.
Bidder i receives Si and pays

∑
j∈Si

pj .

Theorem 5. Mechanism 3 uses nm value queries and is EPIC for any CA with
2-stable submodular valuations. Moreover, under truthful bidding, Mechanism 3
computes the optimal allocation.

Interestingly, Mechanism 3 is not DSIC even when restricted to submodular
CAs. The reason is that the bidder valuations profile may be 2-stable, but their
bids might be not. Hence, it may happen that bidder k bids higher than his real
singleton value on some item j, but j is allocated to different bidder i. This may
increase pj to a level that is no longer profitable for bidder i to get item j (which
is exactly the reason that we employ the demand queries in Mechanism 2).

The remark above naturally motivates the question about existence of a
computationally efficient DISC mechanism that computes the optimal allocation
for 2-stable submodular CAs using only value queries. Rather surprisingly, the
following answers this question in the negative.

Theorem 6. Let A be any mechanism that is DSIC, uses only value queries and
finds the optimal solution for γ-stable submodular valuations, for some γ ≥ 1.
Then A makes exponentially many value queries.

Proof. The proof is an interesting adaptation of the proof of [10, Theorem 3.1].
For the proof, we use instances with just 2 bidders. Fixing one to be additive,
the other may bid “stably” and get any bundle. However, due to the structure
of his (hidden) valuation, finding his demand may be intractable, which makes
misreporting a profitable strategy.

To reach a contradiction, we assume that A is DSIC, makes polynomially
many value queries and always finds the optimal solution for γ-stable submodular
valuations, for some fixed γ ≥ 1. First we establish the following, which helps
determining whether a set of additive valuations is stable.

Proposition 1. Let v be a profile with additive valuations. Then, for any γ ≥
1, v is γ-stable if for any item j ∈ M , the largest value for j in v differs
from the second largest value for j in v by a factor larger than γ. Namely, if
i = arg maxk∈[n]{vk(j)}, then vi(j) > γvk(j), for all bidders k 	= i.

Proof (of Proposition 1). The proposition follows directly from the fact that
endowing an additive bidder k for an item j keeps him additive and inflates his
singleton value by a factor of γ. 
�
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For the rest of the proof, we consider 2 bidders and fix the valuation according
to which bidder 1 makes his bids: v1(S) = |S|/m. We fix his (hidden) valuation
to be also additive, with the value of each item large enough. This valuation,
together with any other bounded and submodular valuation, results in a valua-
tions profile that is submodular and stable (for a large enough stability factor).

We next prove that bidder 1 can get any bundle.

Proposition 2 For any bundle O, bidder 2 will be allocated O, if he bids accord-
ing to

v2(S) = |S ∩ O| +
|S − O|

m2
(3)

Proof (of Proposition 2). First we fix any bundle O ⊆ M . By Proposition 1,
valuations (v1, v2) are (m − ε)-stable. Taking m large enough makes the valua-
tions γ-stable. Given that they are also additive, and thus submodular, we get
that the mechanism A (which, by hypothesis, computes the optimal allocation
for γ-stable instances) allocates O to bidder 2. 
�

Next, we show that the prices set by A for bidder 2 are bounded and
increasing.

Proposition 3. For any bundle T and any S ⊆ T , it holds that

|T | − |S|
m2

≤ pT − pS ≤ |T | − |S| (4)

where pS and pT are the prices of bundles S and T assigned from A for bidder 2.

Proof (of Proposition 3). We examine what happens when bidder 2 bids accord-
ing to (3). First we set O = T , which means that bidder 2 will receive T . Since
A is DSIC, bidder 2 should not prefer S over T , i.e., v2(T ) − pT ≥ v2(S) − pS .
This implies the rhs of (4), because v2(T ) = |T | and v2(S) = |S| (since S ⊆ T ).

The argument for the lhs of (4) is symmetric. We let bidder 2 bid according
to (3), where O = S. Then, bidder 2 should not prefer T over S, i.e., v2(S)−pS ≥
v2(T ) − pT . Since v(S) = |S| and v(T ) = m · |S| + |T − S|/m2, we get the lhs
of (4). 
�

We also note that setting S = ∅ in (4), we get that |T |/m2 ≤ pT ≤ |T |.
We now create an exponentially large structured submenu, as in [10, Defini-

tion 3.2]. This concludes the proof, since the existence of such a submenu entails
that A requires exponentially many value queries to find the demand of bidder
2, as shown in [10, Lemma 3.10]. For completeness, we recall that a collection of
bundles S comprises a structured submenu for bidder 2 if:

1. For all S ∈ S, bidder 2 can be allocated S.
2. For each S, T ∈ S: |S| = |T | and |pS − pT | ≤ 1

m5 .
3. For all S, T ⊆ M such that S ∈ S and S ⊂ T : pT − pS ≥ 1

m3 .
4. For all S ∈ S: pS ≤ m.
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Since bidder 2 can get any bundle, the first property is satisfied. Also by
Proposition 3, the third property is satisfied, because for any S ⊂ T : pT − pS >
1/m3.

To create the structured submenu, we fix k = m/2 and consider all the
(
m
k

)

different bundles of size k. Our submenu is a subset of those bundles, which
immediately satisfies the first part of the second property. Also since |T |/m2 ≤
pT ≤ |T |, the price of each bundle is at most k, which implies the last property.

We need to show that last part of the second property. To this end, following
the construction of [10, Section 3.1], we split the interval [0,m] into m5 bins. For
each bundle S of size k, we put S in the i-th bin if pS ∈ [

i/m5, (i + 1)/m5
)
.

Since there are m5 bins and
(
m
k

)
bundles, one bin must have exponentially many

bundles. Let S be the set of bundles in such a bin. Notice that the bundles of
the same bin have prices which differ less 1/m5, thus satisfying the last part of
the second property.

Proof. This completes the proof that there is an exponentially large collection S
of bundles that comprises a structured submenu. The last step is to apply [10,
Lemma 3.10]. 
�

A natural question is whether one could also follow the first part of the proof
of [10, Theorem 3.1], in order to get a much stronger inapproximability bound of
m−1/2+ε, for any ε > 0. Unfortunately the answer is negative, because the polar
additive valuation profiles in [10, Section 3.1] are far from stable. This explains
the necessity of our careful construction of stable valuation profiles, in the first
part of the proof of Theorem 6.

6 Price of Anarchy in Stable Combinatorial Auctions

For XOS valuations, the PoA of P2A is at least 1/2 [8] . We next show that even
for (3 − ε)-stable valuations, the PoA of P2A does not improve.

Lemma 3. There exists a (3− ε)-stable profile with unit-demand valuations for
which the PoA of P2A is 1/2.

Proof. The instance in Example 1 is (3 − ε)-stable and has been used to show
that the PoA of P2A is at most 1/2. More precisely, we observe that there is an
equilibrium with social welfare 2: Alice bids 0 for a and 1 for b and Bob bids 1
for a and 0 for b. 
�

Interestingly, the previous result is tight. With 3-stable submodular valua-
tions, every equilibrium is optimal. To prove this, we introduce a no-overbidding
assumption, which is weaker than the usual Strong No Overbidding assumption
(where each bidder’s value for any bundle S is at most the sum of his bids for
S). We call our assumption Singleton No Overbidding (SiNO), as it restricts
the bids to be below each corresponding singleton value. We also note that the
bidding profile in Lemma 3 SiNO.
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Definition 2 (Singleton No Overbidding). A bidding profile (b1, ..., bn) sat-
isfies Singleton No Overbidding (SiNO) if for any bidder i and item j: vi(j) ≥ bij.

The Price of Anarchy in Parallel 2nd Price Auctions. Now we are ready
to prove that with SiNO, PoA is always 1 for CAs with 3-stable submodular
valuations.

Theorem 7. Let v be a 3-stable submodular valuations profile, and let b be a
bidding profile that forms a Pure Nash Equilibrium for P2A and satisfies SiNO.
Then the allocation at the equilibrium coincides with the optimal allocation.

Intuitively, because the gap between the highest and the second highest sin-
gleton values has gotten large enough, the bidder who is optimally allocated an
item has much more incentive to outbid the other bidders for that item. The
intuitive that the valuations must be at least 3 stable is that bidders should value
their optimal items at least twice than the other bidders value them. Otherwise,
if the other bidders bid their maximum value, the bidder might prefer to get
other items at low prices, which is what happens in Lemma 3.

We proceed to study the PoA of P2A for the more general class of XOS
valuations. For general XOS valuations, the PoA is at least 1/2, which cannot
be improved for (3 − ε)-stable XOS valuations, due to Lemma 3. We can show
that as valuation stability increases, the PoA improves.

Theorem 8. For any γ ≥ 2, let v be a γ-stable profile with XOS valuations. Let
b be a bidding profile that forms a Pure Nash Equilibrium for P2A and satisfies
SiNO. Then the PoA is larger than γ−2

γ−1 .

The intuition is similar to that in the proof of Theorem 7. Even if the prices
are as high as possible, as γ gets larger, each bidder has more incentive to prefer
the items in his optimal bundle than any other items.

The Price of Anarchy in Parallel 1st Price Auctions. We conclude with
a lower bound on the PoA of Parallel 1st Price Auctions (P1A) for CAs with
stable valuations. If bidders are restricted to a mixed Nash equilibrium, the PoA
of P1A for bidders with XOS valuations is at least 1− 1

e . Similarly to Theorem 8,
we show that the PoA of P1A increases, as the stability of a XOS valuations
profile increases.

Theorem 9. For any γ ≥ 2, let v be a γ-stable profile with XOS valuations.
Let b be a bidding profile that forms a Mixed Nash Equilibrium for P1A. Then
the PoA is larger than γ−2

γ−1 .

For the proof, we observe that as the stability factor γ increases, the valuation
of a bidder i for each item j in his optimal bundle becomes considerably larger
than the second highest singleton valuation for item j. Hence, if bidder i bids
the second highest singleton valuation for each item in his optimal bundle, i’s
utility should be large enough to establish that the allocation of the equilibrium
achieves a large enough social welfare.
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27. Mirrokni, V., Schapira, M., Vondrák, J.: Tight information-theoretic lower bounds
for welfare maximization in combinatorial auctions. In: Proceedings 9th ACM Con-
ference on Electronic Commerce (EC 2008), pp. 70–77 (2008)

28. Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions. MIT Press, Cam-
bridge (2006)

29. Rassenti, S., Smith, V., Bulfin, R.: A combinatorial auction mechanism for airport
time slot allocation. Bell J. Econ. 13(2), 402–417 (1982)

30. Roughgarden, T.: Barriers to near-optimal equilibria. In: Proceedings of the 55th
IEEE Symposium on Foundations of Computer Science (FOCS 2014), pp. 71–80
(2014)

31. Roughgarden, T.: Beyond worst-case analysis. Commun. ACM 62(3), 88–96 (2019)
32. Roughgarden, T., Syrgkanis, V., Tardos, É.: The price of anarchy in auctions. J.
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Vittorio Bilò1(B) and Cosimo Vinci2

1 Department of Mathematics and Physics, University of Salento, Lecce, Italy
vittorio.bilo@unisalento.it

2 Department of Computer Science, Gran Sasso Science Institute, L’Aquila, Italy
cosimo.vinci@gssi.it

Abstract. We reconsider atomic and non-atomic affine congestion
games under the assumption that players are partitioned into p priority
classes and resources schedule their users according to a priority-based
policy, breaking ties uniformly at random. We derive tight bounds on
both the price of anarchy and the price of stability as a function of p,
revealing an interesting separation between the general case of p ≥ 2
and the priority-free scenario of p = 1. In fact, while non-atomic games
are more efficient than atomic ones in absence of priorities, they share
the same price of anarchy when p ≥ 2. Moreover, while the price of
stability is lower than the price of anarchy in atomic games with no
priorities, the two metrics become equal when p ≥ 2. Our results hold
even under singleton strategies. Besides being of independent interest,
priority-based scheduling shares tight connections with online load bal-
ancing and finds a natural application within the theory of coordination
mechanisms and cost-sharing policies for congestion games. Under this
perspective, a number of possible research directions also arises.

1 Introduction

In priority-based scheduling, requests issued by some users are favoured over
others, differently than what happens in fair policies, such as round-robin or
first-in first-out, where all users are treated equally. Priority-based scheduling is
effectively used in a variety of domains, ranging from manufacturing processes
to socio-economic activities. Simple examples are the largest-job-first algorithm
and the boarding strategies of airline companies.

To the best of our knowledge, despite this widespread diffusion, the impact
of priority-based scheduling has been considered only marginally in state-of-the-
art game-theoretical models. In this work, we try to fill this gap by investigating
congestion games with priority-based scheduling.
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In a congestion game [40], there is a finite set of players competing for the
usage of a finite set of resources and all players require the same effort on every
resource. We assume that players are partitioned into p priority classes and that,
on every resource, all players of priority class c are scheduled before any player
of class c′ > c (the lower the class, the higher the priority), while players of
the same class are scheduled in a random order. Hence, the cost that player i
experiences on resource r is a function of two parameters: (i) the position that
i occupies in the schedule of r, and (ii) the latency function of r, i.e., how fast
r processes its requests. Parameter (i), which depends on i’s priority class, is
a random variable. Thus, the cost of i becomes the sum of the expected costs
she experiences on every selected resource. There are two fundamental models
of congestion games, namely atomic and non-atomic games, which differ on the
way in which players and requests are interpreted. In atomic games, the effort
that every player requires on a resource is non-negligible and normalized to one,
whereas, in the non-atomic variant, each player asks for an infinitesimally small
effort. Roughly speaking, a non-atomic game can be thought as an atomic game
in which players are allowed to arbitrarily split their requests along different sets
of resources.

The majority of the literature devoted to congestion games (e.g. [3,18,36,40,
43] and subsequent work) assumes that all users experience the same cost on a
same resource (the makespan model). This can be interpreted as the outcome
of the round-robin scheduling under the assumption that requests are processed
according to a time-sharing policy organized in such a way that all requests are
completed (almost) simultaneously. Note that this assumption requires preemp-
tion of the requests. Other approaches, for which preemption is not necessary,
consider Smith’s Rule [22], the first-in first-out policy [28] and the random pol-
icy [11,22,36,39]. The first and the last model, in particular, can be seen as
the specialization of priority-based scheduling obtained when p = n and p = 1,
respectively. With this respect, our model extends and generalizes previously
considered non-preemptive scheduling policies by simultaneously incorporating
the presence of priorities and a source of uncertainty due to randomness.

We are interested in characterizing the performance of priority-based con-
gestion games by studying the price of anarchy (PoA) [36] and price of stability
(PoS) [2] of pure Nash equilibria [38] with respect to the utilitarian social welfare.
Pure Nash equilibria constitute an ideal solution concept in congestion games
as they are guaranteed to exist in almost all of their variants. These metrics
have been precisely characterized in several subclasses of congestion games, the
majority of them focusing on the makespan model. When the resources have
affine latency functions, the PoA is 5/2 [18] and the PoS is 1 + 1/

√
3 ≈ 1.577

[13,17] for atomic games; for non-atomic ones both metrics are equal to 4/3 [43].
Scheduling policies departing from the makespan model generate a richer cost
model yielding a wide range of possibilities with significantly different outcomes.
For instance, the PoA under non-preemptive policies based on a total ordering
of the players gets equal to 4 and 17/3, respectively, in non-atomic and atomic
games [28]. However, much better bounds are possible when either preemption
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p PoA p PoA p PoA p PoA
1 {4/3, 5/3} 6 2.9683 11 3.4576 20 3.7625
2 2 7 3.1063 12 3.5137 30 3.8756
3 2.3248 8 3.2196 13 3.5617 40 3.9239
4 2.5875 9 3.3133 14 3.603 50 3.9487
5 2.7984 10 3.3916 15 3.6389 ∞ 4

Fig. 1. The PoA of priority-based affine congestion games for some values of p. For
p = 1, the bound 4/3 [43] holds for non-atomic games, while the bound 5/3 [39] holds
for atomic ones. For p ≥ 2, the bounds hold also for the PoS under singleton strategies.

or randomization is allowed. In fact, for atomic games, a preemptive scheduling
policy yielding a PoA of 5/2 is derived in [22], while, under the random policy,
the PoA drops to 5/3 [39] and the PoS to 1+1/

√
5 ≈ 1.447 [11]. Thus, as in this

setting the efficiency of pure Nash equilibria is tremendously influenced by the
chosen strategy, the study of the PoA/PoS induced by different scheduling poli-
cies, despite being interesting per se, plays a fundamental role also in the theory
of coordination mechanisms and cost-sharing policies for congestion games. A
coordination mechanism [19] is a local policy rule that each resource applies to
schedule its assigned requests, while a cost-sharing policy [32,33,46] is a rule
determining how the cost of a resource has to be shared among its users. Both
machineries are usually used with the aim of mitigating the inefficiencies caused
by selfish behavior.
Our Results. First of all, we prove that both atomic and non-atomic priority-
based affine congestion games admit pure Nash equilibria. As for non-atomic
games it also turns out that all pure Nash equilibria share the same social welfare,
it follows that the PoA and the PoS coincide within this class.

Having shown the existence of pure Nash equilibria in both models, our
main result is the derivation of tight bounds for both the PoA and the PoS of
priority-based affine congestion games as a function of p. These bounds, which
are reported in Fig. 1, are tight even under singleton strategies and reveal an
interesting separation between the general case of p ≥ 2 and the priority-free
scenario of p = 1. In fact, while non-atomic games are more efficient than atomic
ones in absence of priorities, they share the same PoA when p ≥ 2. Moreover,
while the PoS is lower than the PoS in atomic games with no priorities, the two
metrics become equal when p ≥ 2. To the best of our knowledge, this is the
first example of such a unified behavior. The technique we exploit to derive the
upper bounds is the primal-dual method introduced in [7] and based on pairs of
primal/dual formulations.

An interesting application of our results falls within the problem of online
scheduling with related machines and identical jobs. Assume we have an online
scheduling problem P , where we are given a set of m related machines, with
machine i having speed si, and an input sequence of n unit-length jobs (with n
not known in advance), each coming with an associated set of machines where
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it can be processed. Suppose also that the input sequence is divided into p sub-
sequences of jobs (p does not need to be known) and that, for each 1 ≤ c ≤ p,
when the c-th subsequence arrives, the sets of allowable machines of all jobs in
the subsequence are immediately revealed (thus, the traditional setting in which
jobs arrive one at time coincides with the case of p = n). Now interpret P as an
atomic affine congestion game with p priority classes, where each subsequence is
seen as a priority class and each machine of speed s is a resource having latency
function equal to �(x) = x/s. As the cost of a job belonging to class c is not
influenced by jobs of higher classes, it is easy to see that one can inductively
construct a pure Nash equilibrium for the congestion game yielded by the jobs
of class c upon a pure Nash equilibrium for the game induced by all jobs belong-
ing to classes smaller than c, so as to obtain a pure Nash equilibrium for the
whole game P . As a pure Nash equilibrium for singleton congestion games can
be computed in polynomial time [34], our results provide an efficient algorithm
for online scheduling with related machines and identical jobs arranged into p
subsequences and characterize its competitive ratio as a function of p.

Related Work. The study of the efficiency of (pure) Nash equilibria in conges-
tion games initiated with the seminal papers [2,3,18,36,43]. Since then, many
results have been obtained in the literature under different generalizations or spe-
cializations [1,5–7,9,10,13,15–17,20,23–25,27,29–31,37,41,42,44]. All of these
contributions, however, focus on the makespan model.

To the best of our knowledge, priority-based congestion games have been
previously addressed in [28] only. They consider the case in which each resource
applies an independent non-preemptive scheduling policy which, however, always
assumes a total ordering of the players (i.e., as in the case of p = n in our model).
For affine latencies, they show a PoA of 4 for non-atomic games and a PoA of
17/3 for atomic ones. Observe that, while the PoA of non-atomic games coincides
with the one we derive in this case when p = n, this is not the case for atomic
games, where the PoA in our model is much lower. This is due to the fact that, in
[28], a different cost function is considered. In fact, while we assume that a player
scheduled at position k on a resource with latency function �(x) pays a cost of
�(k), they assume a cost of

∫ k

k−1
�(x)dx. While this diversity is inconsequential in

non-atomic games, for atomic ones a different cost model, with different efficiency
bounds, arises. Finally, [28] also considers generalizations to polynomial latency
functions and to weighted players.

Tight connections between (singleton) affine congestion games and greedy
algorithms for (online) scheduling problems have been noted and investigated in
several papers [8,9,12–14,21,22,35,44,45].

Paper Organization. Next section introduces the model and definitions.
Section 3 contains the existential results of pure Nash equilibria, while Sect.
4 presents the characterization of their efficiency. Finally, we conclude in Sect. 5
by discussing possible future research directions. Due to space constraints, some
proofs have been omitted.
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2 Model

For an integer k ≥ 1, denote by [k] := {1, . . . , k} the set of the first k positive
integers. Moreover, set [0] := ∅.

Atomic Games. For any integer p ≥ 1, a priority-based affine atomic conges-
tion game with p priority classes Γ a

p = ([n], R, (Si)i∈[n], (αr, βr)r∈R, (Pc)c∈[p]) is
defined by a finite set [n] of n ≥ 2 players, a finite set R of resources, a strategy
set Si ⊆ 2R \ ∅ for each player i ∈ [n], two coefficients αr ≥ 0 and βr ≥ 0 for
each resource r ∈ R and a priority class Pc ⊆ [n] for each c ∈ [p] such that
∪c∈[p]Pc = [n] and Pc ∩ Pc′ = ∅ for each c, c′ ∈ [p] with c �= c′, i.e., the sets
P1, . . . , Pp realize a partition of [n]. We use c(i) to refer to the priority class of
player i, i.e., c(i) = j if and only if i ∈ Pj .

Denote by σ = (σ1, . . . , σn) the strategy profile in which each player i ∈ [n]
chooses strategy σi ∈ Si. For a strategy profile σ, a priority class c ∈ [p] and
a resource r ∈ R, let nc

r(σ) = |{i ∈ Pc : r ∈ σi}| be the number of players
belonging to class c selecting resource r in σ, n<c

r (σ) =
∑

c′∈[c−1] n
c′
r (σ) be the

number of players belonging to any class c′ < c selecting resource r in σ and
nr(σ) =

∑
c∈[p] n

c
r(σ) be the congestion of resource r in σ, i.e., the number of

its users.
The cost that a player experiences on resource r when she occupies the kth

position in the schedule of r (say i is the kth user of r) is equal to αrk + βr

(affine latency functions). Thus, the expected cost of player i in σ is defined as

costi(σ) =
∑

r∈σi

∑

k∈[nr(σ)]

((αrk + βr) · Pr[i is the kth user of r])

=
∑

r∈σi

⎛

⎝αr

⎛

⎝n<c(i)
r (σ) +

1

n
c(i)
r (σ)

∑

k∈[n
c(i)
r (σ)]

k

⎞

⎠ + βr

⎞

⎠

=
∑

r∈σi

(

αr

(

n<c(i)
r (σ) +

n
c(i)
r (σ) + 1

2

)

+ βr

)

.

The utilitarian social welfare, from now on simply the social welfare,
of σ is defined as the sum of the expected costs of all players in σ,
thus equal to SW(σ) =

∑
i∈[n] costi(σ) =

∑
r∈R

∑
k∈[nr(σ)] (αrk + βr) =

∑
r∈R

(
αr

nr(σ)(nr(σ)+1)
2 + βrnr(σ)

)
, where the last equality easily follows by

observing that, for each r ∈ R with nr(σ) users, there is exactly one player
occupying the kth position in the schedule of r for each k ∈ [nr(σ)]. We shall
denote by σ∗ the social optimum of Γ a

p , that is, the strategy profile minimizing
the social welfare.

We shall focus on the notion of pure Nash equilibrium which is defined as
follows.

Definition 1. A strategy profile σ is a pure Nash equilibrium for Γ a
p if, for each

i ∈ [n] and S ∈ Si, costi(σ) ≤ costi(σ−i, S).
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By the above definition, given a pure Nash equilibrium σ and a social optimum
σ∗ for Γ a

p , the following inequality holds for each i ∈ [n]:

∑

r∈σi

(

αr

(

n<c(i)
r (σ) +

n
c(i)
r (σ) + 1

2

)

+ βr

)

−
∑

r∈σ∗
i

(

αr

(

n<c(i)
r (σ) +

n
c(i)
r (σ) + 2

2

)

+ βr

)

≤ 0. (1)

Non-atomic Games. For any integer p ≥ 1, a priority-based affine non-atomic
congestion game with p priority classes
Γna

p = ([n], R, (fi)i∈[n], (Si)i∈[n], (αr, βr)r∈R, (Pc)c∈[p]) has the same definition
of its atomic counterpart with a different interpretation on the set of players
and on how they handle their requests. For every i ∈ [n], in fact, there is an
amount of flow fi belonging to priority class c(i) that needs to be assigned to
strategies in Si in an arbitrarily splittable way. Let mi = |Si| denote the number
of strategies available to the ith flow and set Si = {S1

i , . . . , Smi
i }. In this set-

ting, a strategy profile is identified by a tuple σ = (σ1
1 , . . . σ

m1
1 , . . . , σ1

n, . . . σmn
n ),

where, for every i ∈ [n] and j ∈ [mi], σj
i ≥ 0 denotes the fraction of the ith

flow assigned to Sj
i . We shall only consider feasible strategy profiles, i.e., such

that
∑

j∈[mi]
σj

i = fi for each i ∈ [n]. We overload the notation of σ for the
sake of analysing both atomic and non-atomic games under the same frame-
work. To this aim, we also denote by nc

r(σ) =
∑

i∈Pc

∑
j∈[mi]:r∈Sj

i
σj

i the total
amount of flow of priority class c assigned to resource r in σ. Similarly, we define
n<c

r (σ) =
∑

c′∈[c−1] n
c′
r (σ) and nr(σ) =

∑
c∈[p] n

c
r(σ).

Here, the expected cost that a flow of class c experiences for each
(arbitrarily small) unitary fraction assigned to resource r becomes equal to
αr

(
n<c

r (σ) + 1
nc

r(σ)

∫ nc
r(σ)

0
tdt

)
+βr = αr

(
n<c

r (σ) + nc
r(σ)
2

)
+βr, while the social

welfare in σ becomes SW(σ) =
∑

r∈R

(
αr

nr(σ)2

2 + βrnr(σ)
)

.

The notion of pure Nash equilibrium assumes the following definition.

Definition 2. A strategy profile σ is a pure Nash equilibrium for Γna
p if and

only if, for each i ∈ [n], j ∈ [mi]

such that σj
i > 0, and j′ ∈ [mi],

∑
r∈Sj

i

(
αr

(
n

<c(i)
r (σ) + nc(i)

r (σ)
2

)
+ βr

)
≤

∑
r∈Sj′

i

(
αr

(
n

<c(i)
r (σ) + nc(i)

r (σ)
2

)
+ βr

)
.

Thus, if σ is a pure Nash equilibrium and σ∗ is a social optimum for Γna
p ,

the following inequality holds for each i ∈ [n]:

∑

r∈σi

(

αr

(

n<c(i)
r (σ) +

n
c(i)
r (σ)

2

)

+ βr

)

−
∑

r∈σ∗
i

(

αr

(

n<c(i)
r (σ) +

n
c(i)
r (σ)

2

)

+ βr

)

≤ 0. (2)
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Definition of PoA and PoS. Given a congestion game Γ , denote by
NE(Γ ) the set of its pure Nash equilibria. The PoA of Γ is defined as
PoA(Γ ) = maxσ∈NE(Γ )

SW(σ)
SW(σ∗) , while the PoS of Γ is defined as PoS(Γ ) =

minσ∈NE(Γ )
SW(σ)
SW(σ∗) .

Results for p = 1. We end this section by recalling the known results for
the priority-free case of p = 1. For atomic games, [39] shows that the PoA is 5/3,
while [11] proves that the PoS drops to 1+1/

√
5 ≈ 1.447. For non-atomic games,

it is not difficult to see that both the random and the round-robin policy induce
the same set of pure Nash equilibria. Hence, by the results in [43], the PoA and
the PoS are equal to 4/3 (for instance, the classical Pigou network yields a 4/3
lower bound on the PoS also in the random model).

3 Existence of Pure Nash Equilibria

In this section, we shall prove that priority-based congestion games always admit
pure Nash equilibria. For non-atomic games, we also show that all equilibria
attain the same social welfare, thus implying that the PoA and the PoS coincide
within this class.

Atomic Games. A priority-based (affine) atomic congestion game with only
one priority class boils down to a traditional congestion game for which exis-
tence of pure Nash equilibria (and more generally the finite improvement path
property) is guaranteed by Rosenthal’s Theorem [40]. However, for more priority
classes, this equivalence does not hold any more and a dedicated existential proof
is required. Towards this end, we need to introduce some additional notation.
Given an atomic game Γ a

p , with p ≥ 1, and a priority class c ∈ [p], denote by Γ a
≤c

the restriction of Γ a
p to the players of priority class at most c; moreover, given

a strategy profile σ<c for Γ a
≤c−1, with σ0 := ∅, denote by Γ

a

c (σ<c) the game
obtained from Γ a

≤c by freezing the strategic choices of all players of class c′ < c
according to σ<c and letting only the players of class c play. We shall denote by
σc a strategy profile for Γ

a

c (σ<c), i.e., a strategy profile satisfying σc
i = σ<c

i for
each player i such that c(i) < c.

We first show that, for any strategy profile σ<c for Γ a
≤c−1, Γ

a

c (σ<c) is an
exact potential game.

Lemma 1. For any p ≥ 2, affine atomic congestion game with p priority classes
Γ a

p , priority class c ∈ [p] and strategy profile σ<c for Γ a
≤c−1, game Γ

a

c (σ<c)
admits the following exact potential function:

Φc(σc) :=
∑

r∈R

(

αrn
c
r(σ

c)
(

n<c
r (σc) +

nc
r(σ) + 3

4

)

+ nc
r(σ

c)βr

)

. (3)

We can now prove that any priority-based affine atomic congestion game
admits a pure Nash equilibrium.
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Theorem 1. For any p ≥ 1, game Γ a
p admits pure Nash equilibria.

Proof. As the cost of a player of priority class c is not influenced by the choices
of the players of higher classes, it follows that, given a strategy profile σ for Γ a

p

and a player i, it holds that σi is a best-response for i against σ−i in Γ a
p if and

only if σi is a best-response for i against σ
c(i)
−i in Γ

a

c(i)(σ
<c(i)). Thus, for each

c ∈ [p], thanks to Lemma 1, a pure Nash equilibrium for Γ a
≤c can be constructed

inductively by extending a pure Nash equilibrium for Γ a
≤c−1. �

Non-atomic Games. By following and extending [4,26,43], we show that every
non-atomic priority-based affine congestion game admits pure Nash equilibria
and that there is no difference between the PoA and the PoS within this class.

Theorem 2. Every non-atomic priority-based affine congestion game admits
pure Nash equilibria. Moreover, all equilibria have the same social welfare.

4 Bounding the PoA and the PoS

In this section, we characterize the PoA and the PoS of priority-based affine
congestion games for both of their versions: atomic and non-atomic. We perform
our analysis by relying on the primal-dual method introduced in [7]. As the base
case of p = 1 has been already solved, we shall focus on games with at least two
priority classes.

4.1 The Primal-Dual Formulation

Fix a priority-based affine congestion game Γp with p ≥ 2, a pure Nash equilib-
rium σ for Γp and a social optimum σ∗ for Γp. For a resource r ∈ R and a pri-
ority class c ∈ [p], set kc

r = nc
r(σ), oc

r = nc
r(σ

∗), k<c
r = n<c

r (σ), o<c
r = n<c

r (σ∗),
kr = nr(σ) and or = nr(σ∗). Observe that, no matter whether Γp is an atomic
or non-atomic game, all the previous quantities are well defined.

If Γp is an atomic game, for each c ∈ [p], by summing inequality (1) for each
i ∈ [n] such that c(i) = c, we obtain

∑

r∈R

(

αr

(

kc
r

(

k<c
r +

kc
r + 1
2

)

− oc
r

(

k<c
r +

kc
r + 2
2

))

+ βr (kc
r − oc

r)
)

≤ 0.

Similarly, if Γp is a non-atomic game, for each c ∈ [p], by summing inequality
(2) for each i ∈ [n] such that c(i) = c, we get

∑

r∈R

(

αr

(

kc
r

(

k<c
r +

kc
r

2

)

− oc
r

(

k<c
r +

kc
r

2

))

+ βr (kc
r − oc

r)
)

≤ 0.

Thus, we have that, in general, inequality

∑

r∈R

(

αr

(

kc
r

(

k<c
r +

kc
r + δ

2

)

− oc
r

(

k<c
r +

kc
r + 2δ

2

)))
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+
∑

r∈R

(βr (kc
r − oc

r)) ≤ 0 (4)

holds for each c ∈ [p], with δ = 1 when dealing with atomic games and
δ = 0 when dealing with non-atomic ones. Moreover, also the social welfare
of both σ and σ∗ can be expressed in a unified manner, as we have SW(σ) =
∑

r∈R

(
αr

kr(kr+δ)
2 + βrkr

)
and SW(σ∗) =

∑
r∈R

(
αr

or(or+δ)
2 + βror

)
with the

same constraints on δ.
By applying the primal-dual method to bound the PoA of Γp, we get the

following primal linear program PP (Γp):

max
∑

r∈R

(

αr
kr(kr + δ)

2
+ βrkr

)

s.t.
∑

r∈R

(

αr

(

kc
r

(

k<c
r +

kc
r + δ

2

)

− oc
r

(

k<c
r +

kc
r + 2δ

2

)))

+
∑

r∈R

(βr (kc
r − oc

r)) ≤ 0, ∀c ∈ [p]

∑

r∈R

(

αr
or(or + δ)

2
+ βror

)

= 1

αr, βr ≥ 0, ∀r ∈ R

The dual program DP (Γp) is the following:

min γ

s.t.
∑

c∈[p]

(

xc

(

kc
r

(

k<c
r +

kc
r + δ

2

)

− oc
r

(

k<c
r +

kc
r + 2δ

2

)))

+ γ
or(or + δ)

2
− kr(kr + δ)

2
≥ 0 ∀r ∈ R (5)

∑

c∈[p]

(xc(kc
r − oc

r)) + γor − kr ≥ 0 ∀r ∈ R (6)

xc ≥ 0 ∀c ∈ [p]

4.2 Upper Bounds

For any p ≥ 2, consider the following non-linear program NLP (p):

min γ

s.t. x1 ≤ γ (7)
x2

c+1 ≤ γ(xc − 1) ∀c ∈ [p − 2] (8)
xp−1 ≤ γ(xp−1 − 1) (9)

xp =
2xp−1

xp−1 + 1
(10)
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xc ≥ 0 ∀c ∈ [p] (11)

As our main result, we show that NLP (p) admits a unique optimal solution
which is also feasible for DP (Γp).

Theorem 3. For every p ≥ 2, there exists a unique optimal solution s(p) =
(x1(p), . . . , xp(p), γ(p)) for NLP (p). Moreover, s(p) is a feasible solution for
DP (Γp) and xc(p) > 1 for each i ∈ [p].

Having shown that s(p) is feasible for DP (Γp), we can claim the following
result.

Corollary 1. For any priority-based affine congestion game Γp with p ≥ 2,
PoA(Γp) ≤ γ(p).

By numerically solving NLP (p), we explicitly quantify the upper bounds on
the PoA for some values of p as outlined in Fig. 1 (where, for completeness,
we also report the previously known bound for the case of p = 1, which is not
covered by our analysis).

4.3 Lower Bounds

Here, we construct, given an integer p ≥ 2, a family of singleton congestion
games to obtain lower bounds on the PoS matching the upper bounds given in
Corollary 1 for the PoA. These games, which cover both the atomic and non-
atomic cases, are defined by relying on the optimal solution s(p) for NLP (p). It
is important to highlight that the explicit computation of s(p) is not necessary.
Before presenting the promised family of games, we warm up by considering
separately the cases of p = 2, 3 that require different constructions.

Theorem 4. For any ε > 0, there exist two priority-based singleton affine
atomic congestion games Γ a

2 and Γ a
3 such that PoS(Γ a

2 ) ≥ 2 − ε and PoS(Γ a
3 ) ≥

2.3247 − ε.

Proof. We only show here the claim for p = 2, the full proof is deferred to the
Appendix. Game Γ a

2 is defined as follows. There are θ players of class 1 and θ
players of class 2. The set of resources R is defined as follows: R = R1 ∪ {r2},
with R1 = {r1,1, r1,2, . . . , r1,θ}. All resources in R1 have a linear latency function
with coefficient equal to (θ+2)/2, while resource r2 has a linear latency function
with coefficient equal to 1. All players of class 2 have a unique strategic choice
corresponding to resource r2, while each player of class 1 can choose between
two resources, called the first and second resource, respectively. More precisely,
the ith player of class 1 can choose between resources r1,i and r2. Observe that
Γ a
2 is a singleton game. We stress that the use of dummy players with a unique

strategic choice is a common technique in the literature and is not a limiting
assumption, as one can always add a second choice, with an arbitrarily high
cost, that can never be adopted in a pure Nash equilibrium.
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It is immediate to check that the second strategy, which may cost at most
(θ + 1)/2, is a dominant one for all players of class 1. Thus, the strategy profile
σ in which all players of class 1 choose their second resource is the unique pure
Nash equilibrium for Γ a

2 . We lower bound the PoS of Γ a
2 by comparing the social

welfare of σ with the one yielded by the strategy profile σ∗ in which all players
of class 1 choose their first resource. In particular, we shall consider the limit
of this lower bound for θ → ∞. We get limθ→∞ PoS(Γ a

2 ) ≥ limθ→∞
SW(σ)
SW(σ∗) =

limθ→∞
1
22θ(2θ+1)

θ( θ+2
2 )+ 1

2 θ(θ+1)
= 2, thus showing the claim. �

The previous construction can be easily adapted to provide a lower bound
for the PoA (and so also for the PoS) of non-atomic games with p = 2, 3.

Theorem 5. There exists two priority-based singleton affine non-atomic con-
gestion games Γna

2 and Γna
3 such that PoA(Γna

2 ) ≥ 2 and PoA(Γna
3 ) ≥ 2.3247.

We now show how to generalize the previous constructions for any p ≥ 4.

Theorem 6. For any ε > 0 and p ≥ 4, there exists a priority-based singleton
affine atomic congestion game Γ a

p such that PoS(Γ a
p ) ≥ γ(p) − ε.

Proof. Fix a value ε > 0 and an integer p ≥ 4 and consider the following singleton
atomic game Γ a

p . For every c ∈ [p], the number of players of class c is equal to
|Pc| := πc, with

πc =

⎧
⎪⎨

⎪⎩

θ if c = p,
θ

2(xp−1(p)−1) if c = p − 1,
xc+1(p)
xc(p)−1πc+1 if c ∈ [p − 2].

Here, the values xc(p) for each c ∈ [p] are the ones yielded by the optimal solution
s(p) for NLP (p). We shall consider the case in which θ goes to infinity. Thus,
as xc(p) > 1 for each c ∈ [p] by Theorem 3, each value πc belongs to the set of
positive integers and is, so, well defined.

The set of resources is R = R1 ∪ {r2, . . . , rp}, with R1 = {r1,1, . . . , r1,|P1|}.
All resources in R1 have a linear latency function with coefficient equal to α1,
while, for c ∈ [p] \ {1}, resource rc has a linear latency function with coefficient
equal to αc. All players of class p have a unique strategic choice corresponding
to resource rp. For each c ∈ [p − 1], instead, each player of class c can choose
between two resources, called the first and second resource, respectively. For
every c ∈ [p − 1] \ {1}, the first and second resources of a player of class c are rc

and rc+1, while the ith player of class 1 can choose between resources r1,i and
r2. Observe that Γ a

p is a singleton game.
In order to maximize the PoA yielded by this instance, let us use the pair

of primal-dual formulations PP (Γ a
p ) and DP (Γ a

p ), where we set σ and σ∗ as
the strategy profiles in which all players of class c, with c ∈ [p − 1], choose their
second and first resource, respectively. As we consider the case of θ going to
infinity, which implies that the number of players in each class grows arbitrarily
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large, we can get rid of small constants in the formulation, thus obtaining the
following simplified primal linear program PP (Γ a

p ):

max
p−1∑

i=2

αiπ
2
i−1

2
+

αp(πp−1 + πp)2

2

s.t.
α2π

2
1

2
−

∑

i∈[π1]

α1,i ≤ 0,

αc+1π
2
c

2
− αcπcπc−1 ≤ 0, ∀c ∈ [p − 1] \ {1}

∑

i∈[π1]

α1,i +
p∑

i=2

αiπ
2
i

2
= 1

α1,i ≥ 0, ∀i ∈ [π1]
αc ≥ 0, ∀c ∈ [p] \ {1}

The dual program DP (Γ a
p ) is the following:

min γ

s.t. −x1 + γ ≥ 0
π2

c−1

2
xc−1 − πc−1πcxc + γ

π2
c

2
− π2

c−1

2
≥ 0 ∀c ∈ [p − 1] \ {1}

π2
p−1

2
xp−1 + γ

π2
p

2
− (πp−1 + πp)2

2
≥ 0

xc ≥ 0 ∀c ∈ [p]

As DP (Γ a
p ) is a particular instantiation of the dual program DP (·), it follows

that its optimal solution has to be not smaller than γ(p). However, by substi-
tuting the values πc and setting xc = xc(p) for each c ∈ [p], DP (Γ a

p ) rewrites
as:

min γ

s.t. x1(p) ≤ γ

xc+1(p)2 ≤ γ(xc(p) − 1) ∀c ∈ [p − 2]
xp−1(p) ≤ γ(xp−1(p) − 1)

xp(p) =
2xp−1(p)

xp−1(p) + 1
.

This implies that γ(p) is also an optimal solution for DP (Γ a
p ).

Now consider the solution for PP (Γ a
p ) obtained by setting αp = 1 and αc =

αc+1πc

2πc−1
for each c ∈ [p − 1], where we assume P0 = ∅, so that π0 = 0. By

the complementary slackness conditions, as this solution satisfies at equality all
primal constraints which are related to a non-zero dual variable, it follows that
SW(σ)/SW(σ∗) = γ(p). This indeed shows that the PoA of Γ a

p is at least γ(p).
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To extend this result to the PoS, we need to show that σ is the unique
pure Nash equilibrium for Γ a

p . To this aim, we slightly perturb the coefficients
of the latency functions by setting αc = αc+1(πc+1)

2(πc−1+1) + ε′ for each c ∈ [p − 1],
where ε′ > 0 is arbitrarily small. With this modification, we prove that, for
every c ∈ [p − 1], under the assumption that all players of class c − 1 choose
their second resource, playing the second resource is a dominant strategy for all
players of class c. Because of players of class c−1 are using their second resource,
the first resource of a player of class c costs at least (πc−1+1)αc, while the second
one costs at most (πc+1)αc+1

2 . By the definition of αc, the second resource always
yields a strictly smaller cost, thus showing the claim. The modification decreases
the ratio SW(σ)/SW(σ∗) of a negligible amount so that, for a suitable choice of
ε′, we have PoS(Γ a

p ) ≥ γ(p) − ε. �
The game used in proof of the previous theorem can be adapted, with some

modifications, to show the same result for non-atomic games.

Theorem 7. For any p ≥ 4, there exists a priority-based singleton affine non-
atomic congestion game Γna

p such that PoA(Γna
p ) ≥ γ(p).

5 Conclusions

We have given tight bounds for the PoA and the PoS of both atomic and non-
atomic affine congestion games, under the assumption that the set of players
is partitioned into p ≥ 2 priority classes and the resources schedule its users
according to a priority-based policy, breaking ties uniformly at random. These
bounds hold even for load balancing games. Our findings outline an interesting
separation between the case of p ≥ 2 and the priority-free scenario of p = 1.
The results are obtained by using the primal-dual method of [7]. An important
consequence of this fact is that the upper bounds extend with no degradation
to coarse correlated equilibria, as shown in [6].

There are several possible research directions that may be investigated. For
instance, one can consider generalizations such as weighted players, polynomial
latency functions, approximate Nash equilibria. Although the PoA matches the
PoS even under singleton strategies, this may not be the case in presence of
symmetric players or identical resources: both these restricted scenarios may hide
useful properties. Moreover, as the lower bounding instances are based on a very
constrained construction, it is also interesting to address special cases in which
priorities classes and strategies are restricted to obey particular relationships.
An orthogonal approach may be that of considering the presence of a central
authority which has the power of assigning priority classes to the players so as
to induce games with low PoA/PoS.

Our randomized model assumes that players are risk neutral. Different behav-
ior may arise under alternative models of risk averseness as investigated in [39]
for the priority-free case.
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6. Bilò, V.: On the robustness of the approximate price of anarchy in generalized con-
gestion games. In: Gairing, M., Savani, R. (eds.) SAGT 2016. LNCS, vol. 9928, pp.
93–104. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53354-3 8
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Abstract. We study the inefficiency of equilibria of resource buying
games, i.e., congestion games with arbitrary cost-sharing. Under arbi-
trary cost-sharing, players do not only declare the resources they will
use, they also declare and submit a payment per resource. If the total
payments on a resource cover its cost, the resource is activated, oth-
erwise it remains unavailable to the players. Equilibrium existence and
inefficiency under arbitrary cost-sharing is very well understood in cer-
tain models, such as network design games, where the joint cost of every
resource (edge) is constant. In the case of congestion-dependent costs
the understanding is not yet complete. For increasing per player cost
functions, it is known that the optimal solution can be cast as a Nash
equilibrium with the appropriate selection of payments and, hence, the
price of stability is 1. In this work we initially focus on the price of
anarchy for linear congestion games and prove that (in the direct gen-
eralization of the arbitrary cost-sharing model to congestion-dependent
costs) it grows to infinity as the number of players grows large. However,
we also show that with a natural modification to the cost-sharing model,
the price of anarchy becomes 17/3. Turning our attention to strong Nash
equilibria, we show that the worst-case inefficiency of the best and worst
stable outcomes remains the same as for Nash equilibria, with the strong
price of stability staying at 1 and the strong price of anarchy staying
at 17/3. These results imply arbitrary cost-sharing is comparable to
fair cost-sharing as it has a better best-case scenario and a (slightly)
worse worst-case scenario. We also study models with restricted strategy
sets (uniform matroid congestion games) and properties of best response
dynamics with arbitrary cost-sharing.

1 Introduction

The class of unweighted congestion games [30] includes a large collection of appli-
cations where players compete for the use of resources with congestion-dependent
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costs. Players are called to select the subsets of resources they will use, with
each one of them having a strategy set of allowable such subset selections, and
these decisions induce joint costs on the resources as dictated by their respective
activation-cost functions. These joint costs are split among the users of resources
in a way specified by the cost-sharing policy of the game. Players are expected
to reach a stable outcome, such as a pure Nash equilibrium (NE), i.e., a solution
robust against unilateral deviations, or a strong Nash equilibrium (SE), i.e., a
solution robust against group deviations.1 Metrics of interest from the perspec-
tive of the system designer include the price of anarchy (PoA), i.e., the worst
case ratio of the total cost in a NE divided by the optimal cost, the price of
stability (PoS), i.e., the worst case ratio of the total cost in the best NE divided
by the optimal cost, and, similarly for SE, the strong price of anarchy (SPoA)
and the strong price of stability (SPoS).

A large body of work studies the above setting under the fair cost-sharing
policy which dictates that the joint cost of a resource is split equally among
its users. Among the most fundamental classes of games in these studies one
finds network design games where a player’s strategy set consists of all possible
paths in a graph between the player’s designated endpoints and where the joint
cost of every edge is a given constant, together with linear congestion games,
where the joint cost of a resource is quadratic in the number of players using it
(with the per-player cost being linear). For network design games, [6] shows that
the PoA is equal to the number of players n, whereas the PoS is Θ(log n). For
linear congestion games, the PoA was shown to be 5/2 in [9,16] and the PoS was
shown to be 1 +

√
3/3 in [11,15]. The SPoA was shown to also be 5/2 in [14].

Generalizations of fair cost-sharing to weighted versions of congestion games are
studied in [2,10,31].

Different kinds of cost-sharing policies for congestion games have also been
studied. For example, [13,28] study various types of cost-sharing methods for
network design games (such as the class of weighted Shapley values). In the
congestion-dependent costs setting, which includes linear congestion games, [21]
shows that fair cost-sharing minimizes the PoA among all cost-sharing policies
that dictate player costs. Other literature that studies cost-sharing in congestion
games and their weighted variants includes [19,22,34].

A different flavor of cost-sharing is given by arbitrary cost-sharing, which
induces the class of resource buying games. In contrast to the methods described
above, which prescribe player costs on a resource, arbitrary cost-sharing allows
players to declare their cost shares. Specifically, each player picks the resources
that he will use and submits a different payment for each one. If the total pay-
ments for a given resource cover the cost induced by its users, the resource is
activated. In the opposite case, the resource remains inaccessible. This setting
has been studied comprehensively for network design games. The work in [7]
shows that a NE is not guaranteed to exist under arbitrary cost-sharing and
that the PoA and PoS are large (almost equal to the number of players n). For

1 In this paper, we consider pure strategies, as is common in the study of resource
buying games.
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the special case of a common destination node, the PoS is 1 and a NE is guar-
anteed to exist. An SPoA of Θ(log n) is given in [17]. Other works that study
arbitrary cost-sharing in network design games include [4,5,8,12,24,26]. Sum-
marizing the results and comparing against fair cost-sharing, we observe that,
in the general network design game, arbitrary costs-sharing loses the NE exis-
tence property and increases the PoS from logarithmic to linear. The situation
improves for the common destination case where NE existence is maintained
and the PoS improves to 1. Interestingly, a special case of network design games
where even the PoA improves has been identified in the face of real-time schedul-
ing games [33] in which the PoA drops from Θ(

√
n) for fair cost-sharing to 2 for

arbitrary cost-sharing [20].
Less is known about resource buying games with congestion-dependent costs.

The work in [25] studies classes of games with non-decreasing per player costs.
Most closely related to our setting is the work in [23], which shows that for
increasing per player costs, a NE always exists and that, in fact, the optimal
solution can be made to be a NE with appropriate payments, thus settling the
PoS to be equal to 1. In this landscape, our work sets out to further investigate
the inefficiency of equilibria in linear congestion games and compare against fair
cost-sharing, which achieves PoA and SPoA 5/2, and PoS 1 +

√
3/3.

Other related work deals with selfish and greedy load balancing. In natural
dynamics, a player that joins a resource needs to cover the marginal change in the
resource activation cost. This property also characterizes selfish load balancing
instances [11,32]. Some of our results for matroid games generalize results from
these papers.

1.1 Our Results

We initially study the obvious generalization of arbitrary cost-sharing to lin-
ear costs, in which players can submit any payment for a resource. We quickly
observe that the PoA can be very large with a simple and somewhat uninter-
esting example, the details of which are given in Sect. 3. The example relies on
having one player who is restricted to a single resource and multiple others who
freeload on him instead of switching to empty resources. The restricted player
ends up paying an astronomical cost of n2 even though his marginal contribution
to the joint cost is much smaller (specifically 2n−1). Given that such an instance
is unreasonable from a practical perspective (a player would not tolerate paying
a very large part of a resource’s cost that is clearly not caused by his presence
so that others may use it), we seek a minor modification to the arbitrary cost-
sharing model that leads to more meaningful results. We choose to impose the
marginal contribution constraint, which suggests that no payment larger than
the marginal contribution of a player on a resource is accepted.

The marginal contribution constraint can be interpreted in two ways. In the
first one, the system designer closes down resources where the constraint is vio-
lated. This is a means for the designer to reduce the PoA in a manner that is
instance-oblivious, i.e., requires only local observation of the players and pay-
ments on each resource as opposed to global knowledge of the full set of players



86 E. Georgoulaki et al.

and their available strategies. In the second interpretation, players suffer a large
cost when they pay more than their marginal contribution due to the perception
of being exploited and they themselves deviate away from such strategies.

Some of our results refer to uniform matroid resource buying game, in which
every player j is associated with a set of feasible resources, and a demand �j .
The strategy space of a player includes all the subsets of size �j of his feasible
resources. A singleton game is a special case of matroid game with unit demands.
A prominent example of uniform matroid games, is preemptive real-time schedul-
ing, where every player corresponds to a job of a specific length that should be
processed after its release- time and before its deadline. Since preemptions are
allowed, any selection of �j slots in this interval can do.

Our results on arbitrary cost-sharing with the marginal contribution con-
straint in linear congestion games are as follows:

– In Sect. 3 we prove that the PoA and SPoA for general games are equal to
17/3 and the SPoS is equal to 1. We also show that a NE always exists.

– In Sect. 4 we prove that the PoA and SPoA for the special case of uniform
matroid games reduces to a value between 4 and 4.055. We also show that
in a singleton game, the minimal size of a coalition that may benefit from
a coordinated deviation from a NE profile is 3, thus a NE is stable against
any coordination of two players. We also show that while the worst-case PoA
is equal to the worst-case PoA, there are games for which the PoA is higher
than the SPoA.

– In Sect. 5 we discuss convergence properties of best-response dynamics, show-
ing that convergence is typically faster than fair cost-sharing. For uniform
matroid games we suggest a rule for selecting the deviating player in every
BR step, such that convergence is guaranteed in time lower than the players’
total demand.

2 Model

In the linear resource buying games that we study, there is a set of n unweighted
players N and a set of m resources E. Each player j ∈ N selects a set pj ⊆ E of
resources that he will use, from a set of available such profiles Sj ⊆ 2E .

A profile pj , together with payments ξe,j for each e ∈ pj constitute the
strategy (pj , ξj) of player j. We write p for the complete profile and fe(p) for
the load on e in p, that is, the number of players using e in p. Every resource e
induces an activation cost ce(fe(p)) = fe(p)2 (by convention, games with such
costs are called linear, given that the per player cost on a resource is linear).
The players have to cover this cost with their payments. We write (p, ξ) for the
complete strategies of all players. Each player j seeks to minimize his cost which
is:

costj(p, ξ) =
{∑

e∈pj
ξe,j , if all e ∈ pj are open

+∞, otherwise.
(1)



Equilibrium Inefficiency in Resource Buying Games 87

A resource is open if its activation cost is paid for by the players, i.e., when:∑
j:e∈pj

ξe,j ≥ ce(fe(p)).

Given the cost structure defined above, we may describe the solution concepts
we study in this paper, namely the pure Nash equilibrium (NE) and the strong
Nash equilibrium (SE). The NE condition enforces that no player should be able
to unilaterally change his declared payments and/or set of resources and reduce
his cost. Formally, in a NE (p, ξ), we have that for every player j and every
strategy (p′

j , ξ
′
j) of that player:

costj(p, ξ) ≤ costj({p−j , p
′
j}, {ξ−j , ξ

′
j}).

The SE condition enforces that there should not be a set of players Γ who
can coordinate to change their strategies in a way such that every one of them
reduces his cost. Formally, for a SE (p, ξ) we have that, for every subset of
players Γ , and for every collection of strategies (p′

Γ , ξ′
Γ ) of these players, there

exists some player j ∈ Γ such that:

costj(p, ξ) ≤ costj({p−Γ , p′
Γ }, {ξ−Γ , ξ′

Γ }).

Best-response dynamics (BRD) is a natural method by which players proceed
toward a pure Nash equilibrium via a local search method. Player j is said to
be sub-optimal in (p, ξ) if he can reduce his cost by a unilateral deviation, i.e., if
there exists (p′

j , ξ
′
j) such that

costj({p−j , p
′
j}, {ξ−j , ξ

′
j}) < costj(p, ξ).

In BRD, as long as the strategy profile is not a NE, a sup-optimal player is
chosen to deviate to a strategy that will minimize his cost, given the profile of
others.

Some of our results refer to uniform matroid games in which every player
j is associated with a subset Mj ⊆ E of the resources, and a demand �j . The
strategy space of player j includes all subsets of Mj of size �j . A singleton game
is a special case in which ∀j, �j = 1.

The cost of a profile (p, ξ) is the total players’ cost, that is, cost(p, ξ) =∑
j costj(p, ξ). We denote by OPT (G) the cost of a social optimal solution of a

game G.
We conclude the section by defining our performance metrics. We quantify

the inefficiency incurred due to self-interested behavior according to the price
of anarchy (PoA) [29] and price of stability (PoS) [6] measures. The PoA is the
worst-case inefficiency of a pure Nash equilibrium, while the PoS measures the
best-case inefficiency of a pure Nash equilibrium. Formally, Let G be a family of
games, and let G be a game in G. Let Υ (G) be the set of pure Nash equilibria
of the game G. Assume that Υ (G) 	= ∅.

– The price of anarchy of G is the ratio between the maximal cost of a NE and
the social optimum of G. That is, PoA(G) = maxp∈Υ (G) cost(p)/OPT (G).
The price of anarchy of the family of games G is PoA(G) = supG∈GPoA(G).
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– The price of stability of G is the ratio between the minimal cost of a NE and
the social optimum of G. That is, PoS(G) = minp∈Υ (G) cost(p)/OPT (G). The
price of stability of the family of games G is PoS(G) = supG∈GPoS(G).

The strong price of anarchy (SPoA) and the strong price of stability (SPoS)
introduced in [3] are defined similarly, where Υ (G) refers to the set of strong
equilibria.

3 General Resource Buying Games

We begin by proving that the PoA of resource buying games with linear per
player costs (i.e., resource activation costs c(x) = x2) grows to infinity with the
number of players.

Theorem 1. The PoA of linear resource buying games is Ω(n).

Proof. Consider a game with n players and n resources. Player 1 can only pick
resource 1, i.e., S1 = {{1}}. Every other player j can pick either resource 1 or
resource j, i.e., Sj = {{1}, {j}}. Let p be the profile in which every player picks
resource 1 and let the declared payments be ξ1,1 = n2 − (n − 1) and ξ1,j = 1 for
every j > 1.

We observe that (p, ξ) is a NE as follows. The players receive service on
resource 1, since they have covered its cost. Hence, no one has an incentive to
increase the payment there. Decreasing the payment will result in losing service,
hence there is no incentive for that either. Each player j > 1 also has the option
to move to the alternative resource j. There j would have to pay 1, which offers
no improvement in cost.

The cost of profile p is n2. If we let p∗ be the assignment in which every
player j picks resource j, we get a cost of n. This proves the PoA is at least n. ��

We observe that the high PoA is given by an unrealistic and uninteresting
instance. It assumes that there is one player who will effectively suffer a very
large cost so others can freeload on him. To correct for such degenerate outcomes,
we impose the marginal contribution constraint which enforces that no player
may declare a cost higher than ce(fe(p)) − ce(fe(p) − 1), otherwise the resource
remains unavailable. Note that this expression is the highest increase that the
player can cause to the joint resource cost in any ordering of the resource’s users
and observe that such a constraint is implicit in the large literature of arbitrary
cost-sharing in network design games: when an edge has unit cost, the largest
increase a player can cause to the joint cost is 1 and that is precisely that max
payment seen in a NE.

Through the rest of the paper and for simplicity of exposition, when analyzing
equilibria we only consider outcomes in which all players are serviced and have a
finite cost, i.e., outcomes on which the payments on every used resource equal its
cost. While this is automatically true for the class of SE, some extra care needs
to be taken to ensure it is also true for the class of NE or otherwise players



Equilibrium Inefficiency in Resource Buying Games 89

can get stuck in low payment outcomes, e.g., when every player on a resource
declares a 0 payment and unilateral increases cannot cover the resource cost
without violating the marginal contribution constraint. We note that imposing
a cost structure that addresses this is easy to achieve with a tweak on handling
underpaid resources: Resources remain closed when a player is paying more than
his marginal contribution but, when players underpay, each one is charged his
bid plus twice the unpaid amount. Then each player has an incentive to increase
his payment up to the marginal contribution until the resource costs are covered.
Hence, w.l.o.g., we may consider only outcomes in which all players are serviced.
We next present our results on the inefficiency of equilibria of arbitrary cost-
sharing with the marginal contribution constraint.

Let G be the class of linear resource buying games with the marginal contri-
bution constraint.

Theorem 2. SPoS(G) = 1 (and hence also PoS(G) = 1) and a pure NE exists
for every G ∈ G.
Proof. Let p∗ be an optimal profile. Assume that the players are ordered arbi-
trarily and every player is added greedily to his strategy in p∗ and pays the
marginal cost. By Theorem 6.1 in [23] this payment scheme produces a NE. We
show it is also a strong NE. Assume by contradiction that p∗ is not a SE and
let Γ be a coalition. Let p′ be the profile after the deviation of Γ . Let E+, E−

denote the set of resources whose load increases and decreases respectively in
the deviation of Γ , and let Δe denote the corresponding gap in the load on e.∑

e

fe(p′)2 −
∑

e

fe(p∗)2 =

∑
e∈E+

((f∗
e + Δe)2 − (f∗

e )2) −
∑

e∈E−
((f∗

e )2 − (f∗
e − Δe)2) < 0.

To see why the last expression is negative, note that the first term is exactly the
added cost on E+ that the coalition Γ has to cover and the second term is the
saved cost on E−, which is at most what is saved by the coalition. Then, the
fact that the expression is negative follows from the fact that the total cost of
the coalition members strictly decreases. Hence, we get a contradiction to the
optimality of p∗. ��

We note that the above theorem easily generalizes to cost functions of the
form c(x) = xd for d > 1. Now that we have shown that the nice properties of
arbitrary cost-sharing from [23] still hold after our modification, we proceed to
analyze the PoA and SPoA. We begin with a technical lemma that captures the
well known PoA smoothness framework [31] in our model.

Lemma 1. Suppose λ and μ < 1 are positive real numbers such that for all
integers y ≥ 1 and x ≥ 0 it holds that

(2x + 1)y ≤ λy2 + μx2.

Then we get that the PoA of linear resource buying games with the marginal
contribution constraint is at most λ/(1 − μ).
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Proof. Let p∗
j be the set of resources used by player j in the optimal solution and

let pj be the set of resources used by player j in a worst case NE. Then, if ξe,j

is the payment of j for resource e, we get
∑

j

∑
e∈pj

ξe,j for the total cost. Now
consider the possible deviation of each player j, in which he uses the resources
in p∗

j and pays:

– ξe,j for each resource e that is both in pj and p∗
j ,

– (fe(p) + 1)2 − fe(p)2 for each resource e that is in p∗
j but not in pj (where

fe(p) is the number of players on e in the NE p).

Note that this is a valid deviation from the NE, to the set of resources used
by j in the optimal solution, since all resources in p∗

j will be paid for. By the
equilibrium condition, each such cost is at least

∑
e∈E ξe,j , so we get:

∑
e∈E

fe(p)2 =
∑

j

∑
e∈pj

ξe,j ≤
∑

j

∑
e∈p∗

j ∩pj

ξe,j +
∑

e∈p∗
j \pj

(fe(p) + 1)2 − fe(p)2

≤
∑

j

∑
e∈p∗

j

(fe(p) + 1)2 − fe(p)2 =
∑

j

∑
e∈p∗

j

2fe(p) + 1.

Here the last inequality follows by our marginal contribution constraint. Now if
we let f∗

e be the number of players using resource e in the optimal solution and
C∗ be the optimal cost, we get:
∑
e∈E

fe(p)2 ≤
∑

j

∑
e∈p∗

j

2fe(p) + 1 ≤
∑

e

∑
j:e∈p∗

j

2fe(p) + 1 ≤
∑

e

(2fe(p) + 1)fe(p∗)

≤
∑

e

λfe(p∗)2 + μfe(p)2 = λ
∑
e∈E

fe(p)2 + μ
∑
e∈E

fe(p∗)2.

The last inequality follows by the assumption in the statement of the lemma.
Rearranging gives ∑

e∈E fe(p)2∑
e∈E fe(p∗)2

≤ λ

1 − μ
,

which proves the lemma.

Lemma 2. PoA(G) ≤ 17/3.

Proof. Here we simply prove that values λ = 3.4 and μ = 0.4 satisfy Lemma 1.
Hence we focus on inequality:

(2x + 1)y ≤ 3.4y2 + 0.4x2.

The inequality trivially holds for y = 0. We now focus on the case with y = 1. It
is easy to check that the inequality holds for x = 0, 1, 2, 3. It is similarly easy to
check that is holds for every real x > 3 since the derivative of (0.4x2−2x+2.4)′ =
0.8x − 2 is positive for x > 3 and hence 0.4x2 − (2x + 1) + 3.4 remains positive
after x = 3.
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We now switch to y ≥ 2. Our main inequality can be rewritten as:

3.4y2 + 0.4x2 − 2xy − y ≥ 0.

The value of x that minimizes the left hand side is 2.5y. It is enough to satisfy
the inequality with this value of x, which is:

3.4y2 + 0.4 · 2.52y2 − 5y2 − y ≥ 0 ⇒ 0.9y2 − y ≥ 0,

which is true since we have assumed y ≥ 2. ��
Lemma 3. PoA(G) ≥ 17/3.

Proof. We construct the following instance with 7 players and 21 resources. The
players are numbered 1, 2, . . . , 7 and the resources are labeled A1, B1, C1, . . . ,
A7, B7, C7. Each player j wants to use one of two possible sets of resources.
The first one, which will be the one used by the player in the optimal solution,
is {Aj , Bj , Cj}. The second one, which will used by the player in the NE,
is {Aj+1, Aj+2, Aj+3, Bj+1, Bj+2, Cj+1, Cj+2}. When the indices overflow (by
becoming larger than 7) we assume we go back to 1 for 8, back to 2 for 9, and
back to 3 for 10. In our NE we assume the players equally split the cost on every
resource. Observe that every type A resource will have 3 players on it in the NE,
while every type B and type C resource will have two players. Since each player
uses 3 As, 2 Bs, and 2 Cs, each player’s cost is: 3 · 3 + 2 · 2 + 2 · 2 = 17.

If a player j wishes to move to his other possible set of resources, he will have
to cover the marginal increase to the costs there. He will be increasing the cost
on resource Aj from 9 to 16, the cost on resource Bj from 4 to 9, and similarly
the cost on resource Cj from 4 to 9. These give a total marginal payment of 17,
which proves our assignment is indeed a NE. It is not hard to check that the
total cost in the NE is 119 whereas the total cost in the optimal solution is 21.
Taking the ratio completes the proof. ��
Theorem 3. PoA(G) = 17/3.

Proof. Follows from Lemma 2 and Lemma 3. ��
Lemma 4. For every ε > 0, there exists a game G ∈ G, such that SPoA(G) ≥
17/3 − ε.

Proof. We construct a game G, with n players and 3(n + 3) + 18 resources as
follows. The players are numbered 1, 2, . . . , n, the first 3(n + 3) resources are
labeled A1, B1, C1, A2, B2, C2, . . . , An+3, Bn+3, Cn+3, and the final 18 resources
are labeled D1,D2, . . . , D18. Each player j has two strategies:

• The first one, which will be used by the player in the optimal solution, is
p∗

j = {Aj , Bj , Cj}, for j ∈ {4, 5, . . . , n}, p∗
1 = {A1, B1, C1,D1,D2, . . . , D9},

p∗
2 = {A2, B2, C2,D10,D11, . . . , D16}, and p∗

3 = {A3, B3, C3,D17,D18}.
• The second one, p′

j = {Aj+1, Aj+2, Aj+3, Bj+1, Bj+2, Cj+1, Cj+2}, will be
used by the player in the SE.
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Consider the profile (p′, ξ) in which every player selects his second strategy,
and the players equally split the cost on every resource. We first show that p′ is
a NE by examining each player separately:

– Player 1 is alone in {A2, B2, C2}, shares {A3, B3, C3} with player 2, and shares
{A4} with players 2 and 3. So cost1(p′, ξ) = 1 · 3 + 2 · 3 + 3 · 1 = 12. If he
switches to p∗

1, he would also be paying 12, since he would be alone on all 12
resources.

– Player 2 shares {A3, B3, C3} with player 1, two other A-resources with two
other players, one B-resource with one other player and one C-resource with
one other player. So cost2(p′, ξ) = 2 · 3+3 · 2+2 · 1+2 · 1 = 16. If he switches
to p∗

2, he would be paying (22 − 1) · 3 + 1 · 7 = 16.
– Player 3 shares three A-resources with two other players, two B-resources and

two C-resources with one other player. So cost3(p′, ξ) = 3 ·3+2 ·2+2 ·2 = 17.
If he switches to p∗

3, he would be paying (32 − 22) · 3 + 2 = 17.
– A player j ∈ {4, 5, . . . , n−2} shares three A-resources with two other players,

two B-resources and two C-resources with one other player. So costj(p′, ξ) =
3 · 3 + 2 · 2 + 2 · 2 = 17. A player that switches to p∗

j , he would be paying
(42 − 32) + (32 − 22) · 2 = 17.

– Player n − 1 shares two A-resources with two other players, one A-
resource, two B-resources and two C-resources with one other player. So
costn−1(p′, ξ) = 3 ·2+2 ·1+2 ·2+2 ·2 = 16. If he switches to p∗

n−1, he would
be paying (42 − 32) + (32 − 22) · 2 = 17.

– Player n shares one A-resource with two other players, one A-resource, one
B-resource and one C-resource with one other player, and is alone on one
A-resource, one B-resource and one C-resource. So costn(p′, ξ) = 3 · 1 + 2 ·
1 + 2 · 1 + 2 · 1 + 1 · 1 + 1 · 1 + 1 · 1 = 12. If he switches to p∗

n, he would be
paying (42 − 32) + (32 − 22) · 2 = 17.

To see that (p′, ξ) is a SE, suppose that an arbitrary subset of the players
switch to their other strategy. Then the lowest-numbered player j in the sub-
set experiences no improvement, since the resources that j would occupy if he
switches are still occupied by the same players as in p′.

From the latter and from the fact that no resources are being shared in the
optimal solution, we get that

SPoA(G) ≥ 17n − 12
3n + 18

→ 17
3

, as n → ∞

This means that for every ε > 0, the exists a game such that SPoA(G) ≥
17/3 − ε, which completes the proof. ��
Theorem 4. SPoA(G) = 17/3.

Proof. Follows from Lemma 2 and Lemma 4. ��
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4 Uniform Matroid Resource Buying Games

In a uniform matroid resource buying game, every player j is associated with a
subset Mj ⊆ E of the resources, and a demand �j . The strategy space of player j
includes all subsets of Mj of size �j . A singleton game is a special case of matroid
games in which ∀j, �j = 1. Let GUM be the class of resource buying games with
the marginal contribution constraint, and uniform matroid strategies.

For any resource buying game instance, a possible algorithm for computing
a NE is to index the players arbitrarily, and then assign them in that order. If a
player is added to a resource e with current load fe, then ξe,j = 2fe + 1. Every
player selects a strategy that minimizes his total payment. It is easy to verify
that the resulting profile is a NE, as the load on the resources can only increase
after a player j is assigned, and every profitable deviation of j contradicts his
greedy choice at the assignment time.

By the above, for the case of singleton games, we conclude that the PoA of
our game is at least the approximation ratio of greedy load balancing with the
objective of minimizing the loads’ L2-norm. This problem is studied in [11,32]. In
fact, the lower bound of 4−ε presented in [11], can be adapted for our game. We
present a simpler lower bound that exploits the payment distribution flexibility
in our game, and also handles coordinated deviations.

Theorem 5. For every ε > 0, there exists a game G ∈ GUM , with SPoA(G) ≥
4 − ε. The lower bound is achieved already by a singleton game.

We defer the proof to our full version. For the upper bound, we show that
the elegant analysis in [11] for bounding the approximation ratio of greedy load
balancing, can also be used for our game. The main challenge is to show that the
2-neighborhood property they define for the load balancing problem, is also valid
in games with arbitrary payment distribution and uniform matroid strategies.

Theorem 6. PoA(GUM ) ≤ 2
√

21/3 + 1 ≈ 4.055.

Proof. Let G be a uniform matroid game achieving the highest PoA, let (p, ξ)
be a NE of G, and let p∗ be an optimal solution such that the ratio of the total
cost in p to the total cost in p∗ is maximal. As shown in the proof of Lemma 2,
for every profile (p, ξ) where ξ obeys the marginal contribution constraint, the
total cost of p is at most

∑
e(2fe +1)f∗

e . In addition, in every matroid game, the
total load on the resources is fixed. Specifically,

∑
e∈E fe =

∑
e∈E f∗

e =
∑

j �j .
We can assume that the strategy space of player j is exactly pj ∪p∗

j . That is,
player j needs to select �j resources from pj ∪ p∗

j . If the set of feasible resources
for j includes more resources, then they can be removed without hurting the
stability of p.

Define a directed graph Δ as follows. The vertex set of Δ consists of one
vertex for every resource. The edge set reflects the difference between p and p∗

and is defined in the following way. For every player j, since G is a matroid game,
|pj | = |p∗

j |. Define a mapping Hj : p∗
j → pj . If e ∈ pj ∩ p∗

j then Hj(e) = e, else,
the mapping is arbitrary as long as it is 1-to-1 and onto. Player j contributes �j
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edges to Δ, one edge for every pair (e,Hj(e)). Thus, a directed edge may be a
self loop (e, e) if player j uses e in both p and p∗, or an edge (e1, e2) if j uses
resource e1 only in the optimal solution, and resource e2 only in the NE. We say
that resource e is of type fe/f∗

e . Note that fe and f∗
e correspond, respectively,

to the in-degree and out-degree of e in the graph Δ. We show that for any game
instance we can construct another game instance that has at least the same PoA
and satisfies the following 2-neighborhood property, defined in [11]: the incoming
edge of any resource of type 1/1originates from a resource of type 0/1. Formally
(an extension of the definition in [11]),

Claim. Let j be a resource for which fe = f∗
e = 1. Assume e ∈ pa and e ∈ p∗

b .
That is, player a is the only player using e in p, and player b is the only player
using e in p∗. Then, (i) a 	= b, (ii) Let e′ be the resource such that Ha(e) = e′,
then fe′ = 0 and f∗

e′ = 1.

Proof. (i) Assume by contradiction that a = b, that is, the same player is the only
player that uses e in both profiles. Construct a new game instance by excluding
resource e and reducing by one the demand of player a. If �j = 1 in G, then
player a is totally excluded from G. In the resulting game, both the optimal cost
and the cost of p are decreased by 1, and, therefore, the PoA increases.

(ii) Given that a 	= b, the two players define a path 〈e′ − e − e′′〉 in Δ, such
that Ha(e′) = e and Hb(e) = e′′. That is, e′ ∈ p∗

a, e ∈ pa, e ∈ p∗
b and e′′ ∈ pb.

Assume by contradiction that fe′ > 0, that is, e′ is not empty in p. Construct a
new game instance by (i) excluding resource e and reducing by one �a and �b.
If a demand is reduced to 0, then exclude the corresponding player from G, (ii)
introducing a new player c whose demand is �c = 1 and whose strategy space is
{e′, e′′}. Set f∗

c = {e′} and fc = {e′′}. Also, set ξe′′,c = ξe′′,b, that is, the payment
of the new player for using e′′ is exactly the payment of b for using e′′. We show
that the resulting game has a higher PoA, by showing that the resulting profile
is a NE. Since p is a NE, we know that b cannot benefit from replacing e′′ by
e. Since fe = 1, this implies that ξe′′,b ≤ 3. In the new instance, the cost of c
for using e′′ is therefore at most 3. Our assumption that fe′ > 0 implies that
replacing e′′ by e′ would result in cost at least 3 for c, thus, it is not beneficial,
and the strategy of c is stable. No other player can benefit from changing his
strategy, since all the loads are as in p. In the modified game, both the optimal
cost and the cost of p are decreased by 1, and therefore the PoA increases.

We turn to show that f∗
e′ = 1, that is, a is the only player that uses e′ in p∗.

Assume by contradiction that f∗
e′ > 1. Thus, some other player, c, is together

with a on e′ in p∗. Construct a new game by introducing a new resource that is
only feasible for a. In an optimal solution of the modified instance, a is the only
player on the new resource, thus, the optimal cost is reduced by at least 3. On
the other hand, p remains a NE, as also in p, a is using a resource with load 1.
Again, we get a modified game with an increased PoA.

Summing up, the following three conditions hold:
∑

e f2
e ≤ ∑

e(2fe + 1)f∗
e ,∑

e∈E fe =
∑

e∈E f∗
e , and the 2-neighborhood property is valid. Therefore, we

have the three building blocks required for the analysis of [11] to get the PoA
bound. ��
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In our full version, we also prove the following results on coordinated devia-
tions in uniform matroid games.

Theorem 7. The minimal size of a coalition that has a profitable deviation from
a NE profile of a singleton game is 3.

Theorem 8. There exists a symmetric singleton game G and a NE profile (p, ξ)
such that (p, ξ) is a NE, and there exists a set of 3 players that have a profitable
coordinated deviation from (p, ξ).

5 Convergence Rate of BRD

Given a strategy profile, the best-response (BR) of player j is the set of strate-
gies that minimize his cost after fixing the strategies and payments of all other
players. A player is sub-optimal in (p, ξ) if his current strategy is not in his BR
set. If no player is sub-optimal, then (p, ξ) is a NE.

We analyze the convergence time of BRD by letting a player deviate to his
BR and updating the payments of resources that the player departs from. We
assume that these updates are not counted as a change of strategy and that only
a change in the set of resources selected by a player counts as such. This fits
analysis of BR convergence in other models – in which players costs are modified
when other players change strategies.

It is well known that BRD converges to a NE in congestion games with
fair cost-sharing. However, the BR-sequence may be exponentially long [1,18].
We first bound the number of steps in every BR sequence in a general resource
buying game. The bound we achieve is identical to the bound for singleton games
with fair cost-sharing [27].

Theorem 9. For every resource buying game, and every initial profile (p0, ξ0),
every BRD staring from (p0, ξ0) converges to a NE within less than n2m steps.

We defer the proof to our full version. For uniform matroid games, we suggest
a rule for selecting in every BR step the deviating sub-optimal player, such that,
if the initial profile is based on fair cost-sharing, then BRD converges within
less than

∑
j �j steps. In particular, for singleton games, we get a bound of less

than n steps on the convergence time, starting from an arbitrary profile with
fair cost-sharing.

The intuition is that, unlike regular congestion games, the payment of a
player does not increase if other players join resources he is using. Thus, every
migration sets an upper bound on the cost of a player in the final NE.

Consider any BR sequence performed in a uniform matroid game. Denote
by (pt, ξt) the profile after t BR steps. In particular (p0, ξ0) is the initial profile.
Observe that in a BR move of player j, he exchanges k ≤ �j resources. Without
loss of generality, every exchange is associated with a reduced cost. That is,

For all eout ∈ pt
j \ pt+1

j and ein ∈ pt+1
j \ pt

j , it holds that ξt+1
ein,j < ξt

eout,j . (2)
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This holds since otherwise, pt+1
j ∪ {eout} \ {ein} is a better or not worse

deviation.
For every profile (p, ξ), and every sub-optimal player j, let zj(p, ξ) be the

minimal payment of j for a resource that he wishes to exchange in a BR move.
Finally, let m0 be the number of resources with positive load in the initial profile.

Theorem 10. In uniform matroid games, if ξ0 is based on fair cost-sharing,
and in every BR step a sub-optimal player with minimal zj(p, ξ) is activated,
then a NE is reached after at most

∑
j �j − m0 steps.

We defer the proof to our full version. We note that for every n,m0, the
above analysis is tight for a symmetric singleton game with n resources. If in the
initial profile the players are assigned on m0 < n resources, then in turn, each
activated player will select an empty resource.
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Abstract. We provide a unifying, black-box tool for establishing exis-
tence of approximate equilibria in weighted congestion games and, at the
same time, bounding their Price of Stability. Our framework can handle
resources with general costs—including, in particular, decreasing ones—
and is formulated in terms of a set of parameters which are determined
via elementary analytic properties of the cost functions.

We demonstrate the power of our tool by applying it to recover the
recent result of Caragiannis and Fanelli [ICALP’19] for polynomial con-
gestion games; improve upon the bounds for fair cost sharing games by
Chen and Roughgarden [Theory Comput. Syst., 2009]; and derive new
bounds for nondecreasing concave costs. An interesting feature of our
framework is that it can be readily applied to mixtures of different fam-
ilies of cost functions; for example, we provide bounds for games whose
resources are conical combinations of polynomial and concave costs.

In the core of our analysis lies the use of a unifying approximate
potential function which is simple and general enough to be applicable
to arbitrary congestion games, but at the same time powerful enough to
produce state-of-the-art bounds across a range of different cost functions.

Keywords: Atomic congestion games · Potential games ·
Approximate equilibria · Price of stability

1 Introduction

Atomic congestion games are one of the most well-studied topics in algorithmic
game theory [24,30]. In their most general form, players have weights and com-
pete over a common set of resources; the cost of each resource is a function of
the total weight of the players that end up using it. As a result, they can model
a wide range of interesting applications including, e.g., network routing [29] and
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load balancing [32], but also even cost-sharing games (via the use of decreasing
cost functions) like fair network design [31].

An important special case is that of unweighted congestion games, where
the costs depend only on the number of players that use each edge. In a semi-
nal paper, Rosenthal [27] proved that unweighted congestion games always have
(pure Nash) equilibria. A key tool in his derivation was the novel use of a poten-
tial function, which is able to capture the different players’ deviations in a very
elegant and concise way. Then, the desired equilibrium is derived as the mini-
mizer of that function (over all feasible outcomes of the game). This technique
can also be viewed as an equilibrium refinement, and has been a very influen-
tial idea in game theory [23]. It allows us not only to establish the existence of
equilibria, but in many cases, this special potential-minimizer equilibrium has
additional desired properties.

Of particular importance to us in this paper, is that it has been the de facto
method for proving Price of Stability (PoS) bounds in congestion games (see,
e.g., [24, Ch. 18, 19]). The PoS notion [1,10] captures the minimum approxi-
mation ratio of the social cost, among all equilibria, to the socially optimum
outcome of the game (that might not be an equilibrium). In other words, the
PoS is the best-case counterpart of the notorious Price of Anarchy (PoA) notion
introduced by Koutsoupias and Papadimitriou [21,26]

Unfortunately, though, it is a well-known fact that general weighted conges-
tion games do not always have equilibria [28] and thus, do not admit a potential
function. To alleviate this, a line of work has focused on designing approximate
potential functions (see, e.g., [4,6,8,9,18]): the minimizer of such functions is
guaranteed to be an approximate equilibrium (as opposed to an exact one that
is given by Rosenthal’s potential in the unweighted case), while at the same time
it can achieve a good approximation ratio to the optimal social cost (providing,
thus, an upper bound for the approximate-equilibrium extension of the PoS
notion). However, most of those prior works use different approximate poten-
tials, designed specially for the particular cost-function model that each one
studies.

Our goal in this paper is to provide a simple, high-level framework whose
interface is agnostic to the underlying potential function technicalities and which
can readily be instantiated for all resource costs at hand to derive meaningful
bounds.

1.1 Related Work

Following the seminal work of [27,28], a long line of results has been devoted to
the (non)existence of equilibria in weighted congestion games. [14,17,22] demon-
strated that equilibria might not exist even in very simple classes of games,
including network congestion games with quadratic cost functions and games
where player weights are either 1 or 2. On the other hand, [14,19,25] showed
that equilibria do exist in games with affine or exponential cost functions; [13,20]
proved the same for singleton games (where players can only occupy single
resources). Dunkel and Schulz [11] were able to extend the nonexistence instance
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of Fotakis et al. [14] to a hardness gadget, in order to show that, deciding whether
a congestion game with step cost functions has an equilibrium, is a (strongly)
NP-complete problem.

Regarding the existence of approximate equilibria in general weighted con-
gestion games, [7] showed that games with n players always have n-approximate
equilibria, and this guarantee is tight (up to logarithmic factors); they also
proved that the corresponding decision problem, i.e., of the existence of Θ̃(n)-
approximate equilibria, is NP-complete.

A lot of work has been focused on the important special case of polynomial
congestions games, parameterized by the maximum degree d of the cost func-
tions. Although, due to [14] we already know that exact equilibria do not in
general exist in such games, Caragiannis et al. [5] were the first to show that
α-approximate equilibria do exist for α = d!; this factor was later improved to
α = d + 1 [8,18] and α = d [4]. As a matter of fact, Caragiannis and Fanelli [4]
provide an even more comprehensive result that, for any choice of a parameter
δ ∈ [0, 1], simultaneously establishes the existence of (d+δ)-approximate equilib-
ria and gives an upper bound of d+1

δ+1 on their PoS. They achieve this by designing
an appropriate approximate potential function, tailored to polynomial costs. On
the nonexistence front, [18] first gave instances of very simple, two-player polyno-
mial congestion games that do not have α-approximate equilibria, for α ≈ 1.153.
This was recently improved to α = Ω(

√
d

log d ) by Christodoulou et al. [7], who also
established NP-hardness of the corresponding existence decision problem.

The work of Hansknecht et al. [18] is very relevant for our approach in
this paper, since they also propose a “generic” approximate potential func-
tion that can, in principle, be applied to general cost functions. They instan-
tiate it for polynomial costs to derive their aforementioned existence of (d + 1)-
approximate equilibria. Additionally, they also state a result about the existence
of 3

2 -approximate equilibria in games with nondecreasing concave costs; however,
this proof in their paper is not complete. Furthermore, [18] focuses just on the
existence of approximate equilibria, and thus it does not provide any PoS bounds.

Another well-studied class of congestion games is that of fair cost sharing,
where each resource has a constant initial cost which is split equally among the
players that use it. Thus, such games have decreasing cost functions. Finding
the PoS for the special, undirected network version of such games is a notorious
open problem in the field (see, e.g., [1–3,12,15]). Very relevant for us is the work
of Chen and Roughgarden [6] who showed that general weighted fair cost sharing
games always have α-approximate equilibria whose PoS is at most O

(
log W

α

)
,

for any choice of parameter α = Ω(log wmax), where wmax is the maximum
weight of any player and W the maximum possible load in any resource. They
achieve this by designing a special approximate potential function, tailored to
the specific form of the cost functions.
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1.2 Our Results and Techniques

We propose a new approximate potential function (see (7)) for weighted con-
gestion games with general cost functions. In particular, our potential can be
instantiated beyond the standard model of polynomial cost functions and the
common assumption of non-decreasing monotonicity. However, this potential is
only used in the analysis part of our paper: we hide away its specific form by
hard-coding it within the proof of a unifying tool (Theorem 1). Then, this tool
can be used in a black-box way to readily derive both existence of approximate
equilibria, and bounds on their PoS. This proof makes also use of a general, high-
level lemma that can capture the essence of the potential method as a technique
for deriving existence and PoS bounds for approximate equilibria (Lemma 1);
we believe this might be of independent interest, since in future work it could be
used for alternative potential functions, beyond our choice of (7) in this paper.

Our framework effectively works in two steps. Given a congestion game, first
one has to determine how good its cost functions are with respect to two simple,
analytic properties (Definition 2). Then, the resulting “goodness” parameters
can be plugged straight into our master theorem (Theorem 1) to deduce the
existence of an (α, β)-equilibrium; that is, an α-approximate (pure Nash) equi-
librium whose social cost is at most a factor of β away from the optimum.

We demonstrate the power of our tool by applying it to recover and improve
prior bounds on the existence of (α, β)-equilibria for well-studied classes of con-
gestion games, as well as to derive novel results. The simplicity and the alge-
braic nature of our tool allows us to produce fine-grained bounds in the form
of a parametric trade-off curve that describes the relation between the α and
β parameters of the (α, β)-equilibrium; in other words, all our results give a
continuum of existence bounds. Our bounds are summarized in Table 1.

Table 1. Our main results on the existence of (α, β)-equilibria for different cost models.
For polynomials of degree d we recover the result of [4]. For fair costs our results improve
those of [6] and for concave costs we extend those of [18]. For mixtures of different cost
functions, namely polynomial and concave, our results are novel.

Cost functions Previous work Our results

General Extreme points

Polynomials of

degree ≤ d

(
λ, d+1

λ

)
, for

λ ∈ [d, d + 1] [4]

(
λ, d+1

λ

)
, for λ ∈ [d, d + 1]

[Theorem 2]

(d, 1 + 1
d
), (d + 1, 1)

Concave
(

3
2 , ∞

)
[18]

(
λ, λ

λ−1

)
, for λ ∈

[
3
2 , 2

]

[Theorem 3]

(
3
2 , 3

)
, (2, 2)

Polynomials +

Concave

N/A
(

λ, 1 + d+1
λ

)
, for

λ ∈ [d, d + 1] [Theorem 5]

(d, 2 + 1
d
), (d + 1, 2)

Fair cost

sharing

(
λ, 1 +

2 log2(1+W )
λ

)
,

for λ = Ω(ln wmax) [6]

(
Θ(ln wmax) + λ, 1 + ln W

λ

)
,

for λ ≥ 1 [Theorem 4]

(Θ(ln wmax), 1 + ln W ),

(Θ(ln W ), Θ(1))(Θ(ln W ), Θ(1))

More specifically, first (Theorem 2) we rederive the recent bounds of [4] for
polynomial congestion games, in a more “clean”, high-level way. Then (The-
orem 4), we improve the α, β parameters on the (α, β)-equilibrium existence
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results of [6] for fair cost-sharing games (a more detailed comparison can be
seen in Fig. 1). Furthermore, we derive new results for (nondecreasing) concave
costs: we show that (λ, λ

λ−1 )-equilibria always exist, for all λ ∈ [32 , 2] (Theorem
3). The special corner case of a ( 32 , 3)-equilibrium is compatible, thus, with the
3
2 -approximate equilibrium existence stated in [18].

Another interesting characteristic of our tool is its modularity : it can readily
combine different cost functions to give bounds for more complex congestion
games (see Definition 3). For example, we prove that games with cost functions
that are conical combinations of d-degree polynomials and concave costs, always
have

(
λ, 1 + d+1

λ

)
-equilibria, where λ ranges in [d, d + 1] (Theorem 5).

Finally, an added advantage of our black-box method is that it also results in
arguably simpler and more streamlined proofs for the existence and PoS bounds.

Before concluding the overview of our results, we want to elaborate a bit
more on the comparison to the potential approach of Hansknecht et al. [18].
Although [18] does not deal with PoS bounds, as far as existence of approximate
equilibria is concerned, their paper is rather similar in principle to ours. They
propose a general potential function which is based on a discrete interpretation
of the cost function’s integral, which corresponds to the first component of our
potential in (7). We take a different approach by using directly the actual inte-
gral, and also adding an extra term that corresponds to a weighted average of
the costs of the players’ weights. In that way, we avoid a lot of the intricate
technicalities that are involved with the discrete arguments (e.g., orderings of
the weights) in [18], making the application of our potential (via our high-level
tool of Theorem 1) more “tractable” for a wider range of cost functions.

Due to space constraints, all omitted proofs can be found at the full version
of the paper [16].

2 Model and Notation

We use R+ to denote the set of nonnegative real numbers.
In a (weighted) congestion game G there are finite, nonempty sets of players

N and resources E. Let n = |N |. Each player i ∈ N has a weight wi ∈ R+

and a strategy set Si ⊆ 2E . We use wmin = mini∈N wi and wmax = maxi∈N wi

for the minimum and maximum player weights, respectively, and for a subset of
players I ⊆ N , we use wI =

∑
i∈I wi to denote the sum of their weights. For the

special case of wmin = wmax = 1, that is, if all weights are 1, we say that G is
unweighted.

Associated with each resource e ∈ E is a cost function ce : R+ −→ R+.
In general, we will make no extra assumptions on the cost functions. However,
important special cases, that we will also study as applications of the main tool
of our paper, include polynomial congestion games of degree d, for d ≥ 1 integer,
and fair cost sharing games. In the former, the cost functions are polynomials
with nonnegative coefficients and degree at most d; in the latter, cost functions
are (decreasing) of the form ce(x) = ae

x where ae is a positive real.
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A (pure) strategy profile (or outcome) is a choice of strategies s =
(s1, s2, ..., sn) ∈ S = S1 ×· · ·×Sn. We use the standard game-theoretic notation
s−i = (s1, . . . , si−1, si+1, . . . sn), S−i = S1 ×· · ·×Si−1 ×Si+1 ×· · ·×Sn. In that
way, for example, we can denote s = (si, s−i). Given a profile s ∈ S, we define
the load xe(s) of resource e as the total weight of players that use resource e at
outcome s, i.e., xe(s) = wNe(s) =

∑
i∈N :e∈si

wi, where Ne(s) is the set of players
using e. We will use W =

∑
i∈N wi to denote the maximum possible load of any

resource. The cost of player i is defined by Ci(s) =
∑

e∈si
ce(xe(s)). The social

cost of a strategy profile s is the weighted sum of the players’ costs

C(s) =
∑
i∈N

wi · Ci(s) =
∑
e∈E

xe(s) · ce(xe(s)).

We use OPT(G) = mins∈S C(s) to denote the optimum social cost over all
outcomes.

An outcome s is an α-approximate (pure Nash) equilibrium, for α ≥ 1, if

Ci(s) ≤ α · Ci(s′
i, s−i) for all i ∈ N, s′

i ∈ Si (1)

That is, no player can unilaterally deviate from s and improve her cost by more
than a factor of α. Notice that for the special case of α = 1 we get the definition of
the standard, exact pure Nash equilibrium. We denote the set of all α-equilibria
of G by NEα(G) Then, the α-approximate Price of Stability (α-PoS) of G is the
social cost of the best-case Nash equilibrium over the optimum social cost:

PoSα(G) = min
s∈NEα(G)

C(s)
OPT(G)

. (2)

For α = 1 we get the standard definition of the Price of Stability (PoS) for
exact equilibria [1]. We combine the notions of an approximate equilibrium with
approximating the optimum social cost in the following definition:

Definition 1 ((α, β)-equilibrium). Fix a congestion game G. A strategy pro-
file s is an (α, β)-equilibrium if it is an α-approximate equilibrium of G (see (1))
and its social cost is at most β times the optimal cost of G, i.e., C(s) ≤
β · OPT(G).

Notice that if a game has an (α, β)-equilibrium then, due to (2), its α-PoS is at
most β.

2.1 Equivalent Cost Functions

It is not difficult to see that, in any weighted congestion game, the cost functions
of each resource are actually evaluated on finitely many points: although our
model assumes ce to be defined over the entire R+, its values outside the domain
{xe(s) | s ∈ S } are irrelevant. In particular, this domain is included within the
set of different sums of weights

W =

{∑
i∈N

yi · wi

∣∣∣∣∣ yi ∈ {0, 1}, i ∈ N

}
.
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This means that one only needs to define costs on at most |W| = 2n different
values: any two games whose costs coincide on W are equivalent.

However, it is still convenient to treat our costs as functions over R+. First,
because this allows for simple and succinct representations. But of particular
importance to us, is also the fact that our main tool (Theorem 1) can be applied
to all integrable cost functions (so that Definition 2 can be utilized). From the
above discussion, it should be obvious that any congestion game has (infinitely)
many equivalent representations, that is, different extensions from W to R+.
Such an extension can always be done in a way that ce is an integrable function
(since W is finite).

It is interesting to point out here that different representations can potentially
give different existence and PoS bounds via our tool. Although we do not deal
with this feature for most of the paper, it is important for our fair cost sharing
results (Sect. 4.3); since function x �→ 1/x is not integrable over the interval
[0, wmin) (and as a matter of fact, not even defined on x = 0) we have the
freedom, according to the discussion above, to redefine it in any way we want
on [0, wmin), so that it is a well-defined, integrable function over R+.

3 The Main Tool

In this section we present our framework for establishing existence of (α, β)-
equilibria in weighted congestion games with general cost functions. We begin
with the following lemma, that tries to distil and abstract the potential method
technique in congestion games. Specialized or restricted forms of it have essen-
tially been used, even if not explicitly stated, in multiple works in the past (see,
e.g., [4,6,18]). It can be seen as a more fine-grained version of [8, Lemma 4.1],
although some extra care is needed to adapt it to the more abstract setting of
our paper and utilize its full power.

Lemma 1 (Potential Method). Fix a congestion game. Assume that, for
each resource e, there exist positive reals α1,e, α2,e, β1,e, β2,e, and a function φe :
2N −→ R such that φe(∅) = 0 and

α1,e ≤ φe(I ∪ {i}) − φe(I)
wi · ce(wI + wi)

≤ α2,e for all i ∈ N, I ⊆ N \ {i}; (3)

β1,e ≤ φe(I)
wI · ce(wI)

≤ β2,e for all ∅ �= I ⊆ N. (4)

Then the game has an (α, β)-equilibrium with

α = max
e∈E

α2,e

α1,e
and β =

maxe∈E β2,e/α1,e

mine∈E β1,e/α1,e
.

We continue with defining a critical notion that will act as the medium to
utilize our main black-box tool in Theorem 1. It involves a set of parameters,
that determine how “well” a given cost function behaves with respect to two
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specific, simple analytic properties (namely (5) and (6)). These properties can
be interpreted as bounds on the average of the cost function over continuous
intervals.

Definition 2 (Good Cost Functions). Fix a congestion game G. A func-
tion c : R+ −→ R+ will be called (α1, α2, β1, β2)-good (with respect to G), for
α1, α2, β1, β2 > 0, if there exists a nonnegative constant ξ such that, for all
x ∈ {0} ∪ [wmin,W ], w ∈ [wmin, wmax]:

α1 · c(x + w) − ξ · c(w) ≤ 1
w

∫ x+w

x

c(t) dt ≤ α2 · c(x + w) − ξ · c(w) (5)

and for all x ∈ [wmin,W ]:

β1 · c(x) − ξ · cmin(x) ≤ 1
x

∫ x

0

c(t) dt ≤ β2 · c(x) − ξ · cmax(x), (6)

where cmin(x) = miny∈[wmin,x] c(y), cmax(x) = maxy∈[wmin,x] c(y).

Definition 3 (Good Games). A congestion game will be called
{(α1,j , α2,j , β1,j , β2,j)}j∈J -good if any cost function is a conical combination of
such good functions. Formally, for any e ∈ E there exists a nonempty Je ⊆ J
and nonnegative constants {λe,j}j∈Je

, such that

ce(t) =
∑
j∈Je

λe,jcj(t)

where, for all j ∈ J , cj is a (α1,j , α2,j , β1,j , β2,j)-good function (see Definition 2).

Remark 1. Notice that an important special case of Definition 3 is when J = E,
Je = {e}, and λe,e = 1, meaning that the actual cost functions of the game
are good themselves. As a matter of fact, it is not hard to see that any good
game G can be transformed to a strategically equivalent one G′ that has that
property. First, replace each resource e of G with a gadget of “parallel” resources
{(e, j)|j ∈ Je}, each having a cost function of c(e,j)(t) = λe,jcj(t); this results
in a strategically equivalent game G′ with resources E′ = {(e, j)|e ∈ E, j ∈
Je}. Next, just observe that Definition 2 is invariant under nonnegative scalar
multiplication: since functions cj satisfy conditions (5) and (6), so do functions
λe,j · cj that are exactly the cost functions of the new game G′.

Remark 2 (Increasing Good Functions). If a cost function is nondecreasing,
then (6) can be replaced by the (weaker, sufficient) condition:

β1c(x) ≤ 1
x

∫ x

0

c(t) dt ≤ (β2 − ξ)c(x), (6
′
)

since 0 ≤ c(y) ≤ c(x) for any y ∈ [wmin, x].
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Now we are ready to state our main tool. This is essentially the interface
of our entire framework: under the hood it uses a specific potential function
form (see (7)), but its statement involves only the goodness parameters of the
cost functions, as defined above. In that way, one can readily derive meaningful
bounds about the existence of (α, β)-equilibria in a black-box way, just by study-
ing the simple analytic properties given in (2) and the plugging the parameters
in the theorem below:

Theorem 1. Any {(α1,j , α2,j , β1,j , β2,j)}j∈J -good congestion game has an
(α, β)-equilibrium with

α = max
j∈J

α2,j

α1,j
and β =

maxj∈J β2,j/α1,j

minj∈J β1,j/α1,j
.

Proof. First notice that, by Remark 1, it is without loss to assume that J = E
and that any cost function ce, e ∈ E, is (α1,e, α2,e, β1,e, β2,e)-good. Denote by ξe

(a choice of) the parameter ξ for which resource e satisfies Definition 2.
We will then show that functions

φe(I) =
∫ wI

0

ce(t) dt + ξe

∑
i∈I

wice(wi) (7)

satisfy the conditions of Lemma 1,
Fix some resource e ∈ E, a player i and a subset I ⊆ N \ {i} of remaining

players. For simplicity, from now on we drop the e subscripts and also denote
w = wi and x = wI . Then,

φ(I ∪ {i}) − φ(I) =
∫ x+w

0

ce(t) dt −
∫ x

0

ce(t) dt

+ ξe

⎛
⎝∑

j∈I

wjce(wj) −
∑

j∈I∪{i}
wjce(wj)

⎞
⎠

=
∫ x+w

x

c(t) dt + ξwc(w).

So, by deploying (5), it is not difficult to see that

α1c(x + w) ≤ 1
w

[φ(I ∪ {i}) − φ(I)] ≤ α2c(x + w),

and thus condition (3) of Lemma 1 is indeed satisfied.
Next, observe that since wj ∈ [wmin, wmax] for all j ∈ I, and x =

∑
j∈I wj ,

we have the bounds

cmin(x) ≤ min
j∈I

c(wj) ≤ 1
x

∑
j∈I

wjc(wj) ≤ max
j∈I

c(wj) ≤ cmax(x), (8)
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where the first and the last inequalities hold due to the fact that {wj | j ∈ I } ⊆
[wmin, x]. Assuming I �= ∅, we have that x ∈ [wmin,W ] and so we can use (8)
and (6) to bound 1

xφ(I) from below and above by:

β1c(x) ≤ 1
x

φ(I) =
1
x

∫ x

0

c(t) dt + ξ
1
x

∑
j∈I

wjc(wj) ≤ β2c(x).

Thus, condition (4) of Lemma 1 is also satisfied.

4 Applications

In this section we present several applications of our black-box Theorem 1, that
demonstrate both its power and simplicity. In accordance to the nature of that
tool, they all share a common structure: first, we prove lemmas describing the
right goodness parameters (according to Definition 2) for each special cost func-
tion of interest (see Lemmas 2 to 4); then, we plug them in Theorem 1 to derive
our bounds (see Theorems 2 to 4).

4.1 Polynomial Costs

We start with polynomial cost functions, arguably the most studied setting in
congestion games. We recover the result from Caragiannis and Fanelli [4] that,
for polynomials of degree at most d with nonnegative coefficients, there exist
(d + δ)-approximate equilibria with social cost at most d+1

d+δ times the optimum,
for any δ ∈ [0, 1]. This is the currently best known guarantee of (α, β)-equilibria
for polynomial cost functions. Let us begin by analysing the goodness parameters
of each monomial.

Lemma 2. Any monomial of degree d ≥ 1 is
(
μ, 1, 1

d+1 , μ
)
-good, for any μ ∈

[ 1
d+1 , 1

d ].

For the special case of constant cost functions, i.e., 0-degree monomials, it is
not difficult to get the following:

Lemma 3. Any constant function is (1, 1, 1, 1)-good.

Theorem 2. Any weighted polynomial congestion game of degree d ≥ 1 has an
(λ, d+1

λ )-equilibrium, for any λ ∈ [d, d + 1].

The parameter λ quantifies the trade-off curve between the approximation
guarantee on the existence of α-approximate equilibria and their PoS. At one
extreme case λ = d + 1, we get that α = d + 1 and β = 1; in other words,
there always exist (d + 1)-approximate equilibria with an optimal PoS of 1 (as
a matter of fact, from [8] we already know that every social optimum is itself a
(d + 1)-approximate equilibrium). At the other extreme case λ = d, we get that

α = d, β =
d + 1

d
= 1 +

1
d
;

in other words, there always exist d-approximate equilibria with PoS at most
1 + 1

d .
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4.2 Concave Costs

We now look at nondecreasing concave cost functions. The best known result
in this setting is due to Hansknecht et al. [18], who state that 3/2-approximate
equilibria exist. However, the proof in their paper is not complete. Moreover, the
PoS of the existing approximate equilibria is not discussed. In this section, not
only we provide a simpler proof of this result, but we also extend it for a range
of λ-approximate equilibria with λ ∈ [3/2, 2], and for a guarantee on the PoS.

Lemma 4. Any nondecreasing concave function is (μ, μ+ 1
2 , 1

2 , μ+ 1
2 )-good, for

all μ ∈ [12 , 1].

Theorem 3. Any weighted congestion game with nondecreasing concave cost
functions has a (λ, λ

λ−1 )-equilibrium, for any λ ∈ [32 , 2].

4.3 Fair Cost Sharing

In this section, we focus on the fair cost sharing model in which ce(x) = ae

x ,
where ae is a positive, resource-dependent value. We assume that wmin = 1;
this is without loss, since we can just rescale the player weights. This setting
was studied by Chen and Roughgarden [6]. Here we improve on their results
(see Fig. 1), with a simpler proof.

We must notice that the function x �→ ae/x is not integrable in an interval
starting at 0, and hence we cannot immediately apply our Definition 2. However,
based on our discussion in Sect. 2.1 we can modify the game in order to overcome
this. First, we assume for our analysis that ae = 1 since any other choice of ae

can be seen as a trivial conical combination of the function 1/x (see Definition
3). Next, we change the cost function ce(x) to be constant and equal to λ in the
interval [0, 1), for some λ ≥ 1.

Lemma 5. Fix a weighted congestion game with wmin = 1. For any λ ≥ 1, the
cost function

c(x) =

{
1/x, x ≥ 1,

λ, 0 ≤ x < 1

is (α1, α2, β1, β2)-good with

α1 = 1, α2 = max
((

1 +
1

wmax

)
ln(1 + wmax), ln(wmax) + λ

)
,

β1 = λ, β2 = ln W + λ.

Theorem 4. Fix a fair cost sharing game with unit minimum weight (wmin =
1), and let wmax,W be the maximum weight and the maximum total load. Then,
for any λ ≥ 1, our game has an (α, β)-equilibrium where

α = max
((

1 +
1

wmax

)
ln(1 + wmax), ln(wmax) + λ

)
, β = 1 +

ln W

λ
.
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wmax

α

1
1.386

2.443

α

β

1
Θ(lnwmax)

Θ(lnW )

Θ(lnW )

Θ(1)

Fig. 1. Fair cost sharing games. Left: guarantee on the existence of α-approximate
equilibria, as a function of wmax, given by Theorem 4 (setting λ = 1). Right: trade-
off curve for the existence of (α, β)-equilibria, given by Theorem 4; here we choose
wmax = 3, W = 50. For comparison, the previously best bounds [6, Theorem 5.1 and
Lemma 5.3] are plotted in red, while our results are in blue. The fact that the blue line
of the right plot starts earlier is a direct consequence of our results providing a strictly
better (smaller) absolute existence guarantee α (see left plot).

Proof. Combining Theorem 1 with Lemma 5 we conclude that, for λ ≥ 1, our
game has an (α, β)-equilibrium with

α =
α2

α1
= max

((
1 +

1
wmax

)
ln(1 + wmax), ln(wmax) + λ

)
,

β =
β2/α1

β1/α1
=

ln W + λ

λ
= 1 +

ln W

λ
.

�
The parameter λ quantifies the trade-off curve between the approximation

guarantee on equilibria and their price of stability. At one extreme case λ = 1,
we get that

α = max
((

1 +
1

wmax

)
ln(1 + wmax), ln(wmax) + 1

)
= Θ(ln wmax),

β = 1 + lnW.

In other words, there exist Θ(ln wmax)-approximate equilibria with price of sta-
bility Θ(ln W ). At the other extreme case λ = Θ(ln W ), we get that

α = max
((

1 +
1

wmax

)
ln(1 + wmax), ln(wmax) + Θ(ln W )

)
= Θ(ln W ),

β = 1 +
ln W

Θ(ln W )
= Θ(1)

in other words, there exist Θ(ln W )-approximate equilibria with constant price
of stability Θ(1). The complete trade-off curve can be seen in Fig. 1 (right). We
can also compare our results with the best known upper bounds. In [6, Lemma
5.3], it was shown that α-approximate equilibria exist for α ≥ log2[e(1+wmax)];
and in [6, Theorem 5.1], it was shown that

(
f, 1 + 2 log2(1+W )

f

)
-equilibria exist

for any f ≥ 2 log2[e(1 + wmax)]. As Fig. 1 shows, we improve on both results.
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4.4 Mixtures of Cost Functions

A big advantage of our approach is that we can study the existence of (α, β)-
equilibria for games that merge cost functions of two or more different types.
For example, in this section we look at congestion games that have both concave
costs and polynomial costs (as well as any conical combination). Interestingly, we
show that this results in only a small increase in the PoS guarantee of Theorem
2, while the existence guarantee stays the same. For the following theorem we
consider polynomials of degree at least 2, since affine functions are themselves
concave and would be already captured by Theorem 3.

Theorem 5. Any weighted congestion game with cost functions that are conical
combinations of concave and polynomial costs of maximum degree d ≥ 2 has an
(λ, 1 + d+1

λ )-equilibrium, for any λ ∈ [d, d + 1].

Proof. Fix a maximum degree d ≥ 2 for the polynomial costs and a parameter
λ ∈ [d, d + 1]. By defining μ = d+1

2λ we have that 1
2 ≤ μ ≤ 1

2

(
1 + 1

d

) ≤ 1, and so
by applying Lemma 4 we can derive that any concave cost is (μ, μ+ 1

2 , 1
2 , μ+ 1

2 )-
good. Next, by Lemmas 2 and 3 we can derive that all monomials of degree
k = 0, . . . , d − 1 are ( 1

k+1 , 1, 1
k+1 , 1

k+1 )-good and the monomial of degree d is
( 1

λ , 1, 1
d+1 , 1

λ )-good.
Deploying our black-box tool Theorem 1 (and shortcutting some calculations

that we have already performed in the proof of Theorem 2) we can guarantee
the existence of an (α, β)-equilibrium with

α = max
{

1 +
1
2μ

, λ

}
= max

{
1 +

λ

d + 1
, λ

}
= λ,

since 2 ≤ d ≤ λ ≤ d + 1, and

β =
max

{
μ+1/2

μ , 1
}

min
{

1/2
μ , λ

d+1

} =
1 + 1

2μ

min
{

1
2μ , λ

d+1

} = 1 + 2μ = 1 +
d + 1

λ
,

where for the third equality we used that, from the definition of μ, 1
2μ = λ

d+1 . �
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20. Harks, T., Klimm, M., Möhring, R.H.: Strong equilibria in games with the lexi-
cographical improvement property. Int. J. Game Theory 42(2), 461–482 (2012).
https://doi.org/10.1007/s00182-012-0322-1

21. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-49116-3 38

22. Libman, L., Orda, A.: Atomic resource sharing in noncooperative net-
works. Telecommun. Syst. 17(4), 385–409 (2001). https://doi.org/10.1023/A:
1016770831869

23. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143
(1996). https://doi.org/10.1006/game.1996.0044

24. Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V. (eds.): Algorithmic
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Abstract. Flows over time enable a mathematical modeling of traf-
fic that changes as time progresses. In order to evaluate these dynamic
flows from a game theoretical perspective we consider the price of anar-
chy (PoA). In this paper we study the impact of spillback effects on the
PoA, which turn out to be substantial. It is known that, in general, the
PoA is unbounded in the spillback setting. We extend this by showing
that it is still unbounded even when considering networks with unit edge
capacities and that the Braess ratio can be arbitrarily large.

In contrast to that, we show that on a fixed network the PoA as a
function of the flow amount is bounded by a constant and also upper
bound the PoA for the set of networks where the outflow capacities sat-
isfy certain constraints depending on the quickest flow. This upper bound
only depends on the worst spillback factor of the Nash flows over time
of the given network. It therefore provides a way to quantify the impact
of spillback to the quality of the dynamic equilibria.

In addition, we show the surprising fact that the introduction of spill-
back behavior can actually speed up dynamic equilibria in some net-
works.

Keywords: Nash flow over time · Dynamic equilibria · Deterministic
queuing · Price of anarchy · Spillback · Traffic

Related Version: A full version of this paper including all proofs is available
at https://arxiv.org/abs/2007.04218.

1 Introduction

Road traffic is an integral part of modern societies, which consists of many users
with individual behaviors and goals. For this reason traffic dynamics are very
hard to predict and can barely be controlled. However, through recent tech-
nologies such as intelligent navigation systems it might be possible to positively
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affect the behavior of traffic, steering it towards shorter travel times leading to
less pollution and an overall improved quality of life.

In the following research work we focus on a mathematical traffic flow model
called flows over time with spillback. Here, the network is depicted as a graph
with a source and a sink, and the traffic flow can progress in continuous time from
one vertex over an edge to the next vertex. We consider flow as a continuous
stream affected by two types of temporal factors. First, flow does not travel
instantaneously through the network but needs actual time to traverse an edge,
and second, flow on an edge may change over time. Compared to static network
flows these temporal components enable us to model traffic realistically through
different congestion levels. To model road constraints within the network, we
equip each edge with an inflow and an outflow capacity governing with which
rate flow can enter and leave the edge, a length characterizing the time it takes
a flow-particle to travel from the tail to the head of the edge, and finally, a
storage capacity which describes how much flow volume fits on the edge. If the
desired outflow exceeds the outflow capacity of an edge the excess flow queues
up in front of the bottle-neck at the head of the edge. If at any point in time the
queue of an edge is so large that the amount of flow traversing the edge plus the
amount of flow in the queue equals the storage capacity, the edge is considered
full and new flow can only enter if at least as much flow leaves at the same time.
With this mechanic it is possible to model spillback, i.e., the phenomenon that
traffic congestion at one street can block exits or intersections further upstream.
The ability to model spillback within the framework of flows over time is a very
recent discovery [22], which has not been studied much yet.

As we experience in our everyday lives traffic is not performing optimal most
of the time, but rather consists of agents that behave egoistically. Thus, we are
interested in game theoretic aspects of this flow model, particularly in the price
of anarchy (PoA), the ratio of the worst uncoordinated behavior described via
a dynamic equilibrium, and the optimal flow behavior measured by some social
cost function. In real-world scenarios that ratio could give us an idea of how much
one can possibly improve traffic through optimized traffic control, for example
through modern navigation systems or autonomous driving. Even though it has
been shown in [22] that the PoA in networks with spillback is unbounded in
general we investigate the dependency of the PoA on several parameters, for
example, the minimal spillback factor, which measures how much the capacities
of an edge are reduced due to spillback. Another interesting phenomenon of self-
ish road users we study is the well known Braess paradox [2]. It states that the
overall travel time of all users might decrease if a frequently used road segment
gets closed. In reverse, this means that building new roads between heavily used
section of the network might cause more congestion and longer travel times.

Related Work. Flows over time were first introduced by Ford and Fulker-
son [8] in the context of an optimization problem to route as much flow as
possible in a given time horizon. Gale [9] proved the existence of earliest arrival
flows which optimize the amount of flow routed to the sink simultaneously for
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all points in time and Wilkinson [26] later presented an algorithm to compute
these flows. For an overview on flows over time from an optimization point of
view we refer to the survey by Skutella [23]. From a game theoretic point of
view, flows over time were first considered by Vickrey [24] in the setting of
transportation research. In the last years the theory of Nash equilibria for flow
models has been advanced significantly. From the introduction of the price of
anarchy by Koutsoupias and Papadimitriou [13,16] and the congestion games
studied by Roughgarden and Tardos [18,19] (both for static flows), over exis-
tence results concerning the dynamic (i.e., time dependent) model by Meunier
and Wagner [15], to the constructive approach to dynamic equilibria by Koch
and Skutella [12]. Here, the authors present a novel notion of dynamic equilibria,
called Nash flows over time, which enabled a whole set of proceeding research.
This new research includes the study of existence, uniqueness and the long-term
behavior of Nash flows over time by Cominetti et al. [4–6], the work by Macko
et al. [14] about the Braess paradox for flows over time as well as the extension
to multi-terminal settings [21]. Of special interest to the paper at hand are the
results by Bhaskar et al. [1] and very recently by Correa et al. [7] about the
PoA for flows over time. Since it was already shown that the evacuation-PoA
(maximizing the flow amount within some time horizon) is unbounded [12], they
focus on the time-PoA (minimizing the completion time for a given flow amount)
for which they establish an upper bound of e

e−1 under some constraints on the
capacities of the network. Sering and Vargas Koch [22] generalized the flows
over time model in order to represent spillback and transferred the results about
dynamic equilibria to this extension. Very recently, Graf et al. [10] characterized
an alternative equilibrium concept for flows over time, where particles do not
predict the future evolution of the flow but instead reconsider their route choice
on every node. In addition, there is a active research line on packet routing mod-
els, where traffic is represented by atomic vehicles that traverses the network in
discrete time steps. Recent progress in this area is due to Cao et al. [3], Scarsini
et al. [20], Harks et al. [11] and Peis et al. [17].

Contribution and Outline. We study the price of anarchy of flows over time
with spillback introduced in [22], which is known to be unbounded in general.
After introducing the model in Sect. 2, we show in Sect. 3 that the PoA stays
unbounded even if we restrict the set of networks to a specific topology but allow
arbitrary capacity, or in reverse if we only allow unit capacities but therefore
more complex graph structures. Furthermore, we show that the Braess ratio can
be arbitrarily large depending only on the minimum edge capacity. Even though
it seems that the addition of full edges and spillback only increases completion
times this is not a general rule, as we show that there are examples where the
completion time of Nash flows over time is larger when disabling spillback. In
contrast to the above lower bounds we show in Sect. 4 that if we consider the
case of temporal routing games on a fixed network, i.e., only the flow amount
that gets routed through the network varies, the PoA is bounded by a constant.
In the end we translate the ideas of [1] to the model with spillback and prove
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an upper bound of ce
ce−1 on the PoA in networks with specific conditions on the

capacities in dependency of a maximal flow over time. This upper bound only
depends on the worst spillback factor c of the Nash flows over time of the given
network, and therefore provides a way to quantify the impact of spillback to
the PoA (note that e denotes the Euler constant here). Finally, we give a brief
conclusion and outlook for further research in Sect. 5.

2 The Model

In the following we want to recall the essential definitions of the flow over time
model with deterministic queuing. We consider the extended version that han-
dles spillback effects, as introduced in [22] and mainly stick to the same notation.

Flow Dynamics. We consider a network Γ = (G, s, t, r0, τ, ν
+, ν−, σ) given by

a directed graph G = (V,E) with a single source s and a single sink t, such
that every vertex is reachable from s. We have a network inflow rate of r0 > 0
determining the constant rate of flow entering the network from time 0 onward.
Furthermore, every edge e ∈ E is equipped with a transit time τe ≥ 0, an in-
and outflow capacity ν+

e > 0 and ν−
e > 0 as well as a storage capacity σe > 0. In

order to avoid undefined flow behavior, we require that traversing flow alone can
never fill up an edge, i.e., σe > ν+

e · τe and that the total transit time of every
directed cycle is strictly positive. For technical reason we furthermore assume
that all properties are rational numbers.

A flow over time is given by a family of locally integrable and bounded func-
tions f = (f+

e , f−
e )e∈E , where f+

e , f−
e : R≥0 → R≥0 denote the in- and outflow

rate of edge e at every point in time. The cumulative in- and outflow and the
queue size are given by

F+
e (θ) :=

∫ θ

0

f+
e (ξ) dξ, F−

e (θ) :=
∫ θ

0

f−
e (ξ) and ze(θ) := F+

e (θ−τe)−F−
e (θ).

We require that flow is preserved at every edge e (non-deficit constraint) and
at every vertex v ∈ V \ {t} (conservation constraint), which means, for every
point in time θ we have

ze(θ) ≥ 0 and
∑
e∈δ+

v

f+
e (θ) −

∑
e∈δ−

v

f−
e (θ) =

{
0 for v ∈ V \ {s, t},

r0 for v = s.

Here, δ−
v is the set of all incoming and δ+v the set of all outgoing edges of

node v. An edge e is full at time θ if the total amount of flow on e, called edge
load, de(θ) := F+

e (θ) − F−
e (θ) reaches the storage capacity σe. The inflow bound

b+e (θ) denotes that current inflow capacity, which might be smaller than ν+
e due

to spillback, and the push rate b−
e (θ) specify the current desired outflow rate,

which is reached whenever there are no restrictions of following links. Formally,
we have
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b+e (θ) :=

{
ν+

e if de(θ)<σe

min{f−
e (θ), ν+

e } else,
and b−

e (θ) :=

{
ν−

e if ze(θ)>0,

min{f+
e (θ − τe), ν−

e } else.

A flow over time f is feasible if for all edges e and all times θ it satisfies
f+

e (θ) ≤ b+e (θ) (inflow condition) and if there exists a cv ∈ (0, 1] for every
v ∈ V such that for every e ∈ δ−(v) f−

e (θ) = min{b−
e (θ), ν−

e · cv} (fair allocation
condition). Furthermore, we require for all time θ that every vertex v with an
incoming edge e1 ∈ δ−

v with f−
e1

(θ) < b−
e1

(θ) (called throttled edge) there exists an
outgoing edge e2 ∈ δ+v with f+

e2
(θ) = b+e2

(θ) (no-slack condition). Finally, the set
of full edges should be cycle free at every point in time (no-deadlock condition).

For a given v ∈ V the maximal value c that satisfies the fair allocation con-
dition at a given point in time θ is called spillback factor denoted by cv(θ).
This value denotes the reduction of the outflow capacity due to spillback leading
to the effective outflow capacity of ν−

e · cv(θ). If the outflow rate f−
uv(θ) of an

incoming edge is strictly smaller than the push rate b−
uv(θ), this edge is throttled

implying cv(θ) < 1, which means that there is spillback at v. In this case the
no-slack condition ensures that there is a reason for the spillback in form of an
outgoing exhausted edge vw: f+

vw(θ) = b+vw(θ). The spillback factor will play an
important role throughout this paper. For more details and further intuition on
the definitions of a feasible flow over time in this setting we refer to [22].

Nash Flows Over Time. In order to define Nash flows over time we need to
define the arrival time of every particle of the flow. To simplify the notation we
identify every particle with the point in time θ when it enters the network at
the source. For every edge e we define the waiting time function qe : R≥0 → R≥0

by qe(θ) := min
{

q ≥ 0
∣∣∣ ∫ θ+τe+q

θ+τe
f−

e (ξ) dξ = ze(θ + τe)
}

, i.e., qe(θ) denotes the
time a particle entering e at time θ waits in the queue. For every vertex v the
earliest arrival time function 	v : R≥0 → R≥0 denotes the earliest point in time
the particle θ (which enters the network at time θ) can reach v:

	v(θ) :=

{
θ if v = s,

min
e=uv∈E

	u(θ) + τe + qe(	u(θ)) else.

For a given particle θ the current shortest path network G′
θ = (V,E′

θ) is the
network of all edges e = uv that are active for θ, i.e., for which 	v(θ) = 	u(θ) +
τe + qe(	u(θ)). It contains all s-v-paths that particle θ can use to be at v at
the earliest possible point in time. Furthermore, we denote the resetting edges
E∗

θ as the set of edges for which particle θ encounters a queue when taking
a current shortest path and Ēθ denotes the set of edges which are full when
particle θ reaches its tail. More precisely, E∗

θ := {e = uv ∈ E|qe(	u(θ)) > 0} and
Ēθ := {e = uv ∈ E|de(	u(θ)) = σe}.

Definition 1 (Nash flow over time). We call a feasible flow over time f
a Nash flow over time, or dynamic equilibrium, if almost every particle uses a
current shortest s-t-path, i.e., if f+

e (θ) > 0 implies θ ∈ 	u(Θe) for all e = uv ∈ E
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and almost all θ ∈ R≥0, where Θe := {θ ∈ R≥0|e ∈ E′
θ} denotes all particles for

which e is active.

Equivalently, it has been shown [22, Lemma 4.1] that a feasible flow over
time is a dynamic equilibrium if and only if F+

e (	u(θ)) = F−
e (	v(θ)) for all

e = uv ∈ E and all θ ∈ R≥0. By setting xe(θ) := F+
e (	u(θ)) = F−

e (	v(θ)) we
observe that (xe(θ))e∈E form a static s-t-flow of value r0 · θ. Since the xe are
absolute continuous, their derivatives

x′
e(θ) = f+

e (	u(θ)) · 	′
u(θ) = f−

e (	v(θ)) · 	′
v(θ) (1)

exist almost everywhere and can be seen as the strategy of particle θ (as for every
θ it is a static s-t-flow of value r0). For a fixed θ the derivatives x′

e := x′
e(θ) and

	′
v := 	′

v(θ) together with the spillback factors cv := cv(	v(θ)) are called spillback
thin flows and with b+e := b+e (	u(θ)) for all e = uv satisfy the following equations:

	′
s = 1,

	′
v = min

e=uv∈E′
θ

ρe (	′
u, x′

e, cv) for v ∈ V \ {s},

	′
v = ρe (	′

u, x′
e, cv) for e = uv ∈ E′

θ with x′
e > 0,

	′
v ≥ max

e=vw∈E′
θ

x′
e

b+e
for v ∈ V,

	′
v = max

e=vw∈E′
θ

x′
e

b+e
for v ∈ V with cv < 1,

where

ρe(	′
u, x′

e, cv) :=

⎧⎨
⎩

x′
e

cv·ν−
e

if e = uv ∈ E∗
θ ,

max
{

	′
u,

x′
e

cv·ν−
e

}
if e = uv ∈ E′

θ \ E∗
θ .

It turns out that the particles of a Nash flow over time f can be divided into
intervals, so called phases, for which the derivatives (and thus the inflow and
outflow rates) stay constant. We denote the set of phases by If . The transition
points between two phases correspond to one or multiple events: A new edge
(and therefore new s-t-paths) can become active, a queue can deplete, an edge
can become full or the outflow rate (and hence the inflow bound) of a full edge
might change. Note however, that an event at edge e = uv for a particle θ does
not happen at time θ itself but rather at time 	u(θ) when the particle entering
the network at time θ reaches vertex u (while taking a shortest s-u path).

Games, Optimal Flows and the Price of Anarchy. For a temporal routing
game we consider a finite volume of flow M ∈ (0,∞) entering the network. For
a Nash flow over time f the last particle enters the network at time M

r0
and

leaves the network at time 	t(M
r0

). As the network satisfy the first-in-first-out-
principle (FIFO), 	t is non-decreasing, which means that Tf := 	t(M

r0
) denotes

the completion time when the entire flow of volume M has reached t. Most of
the time we identify a network Γ with its corresponding temporal routing game
(i.e., Γ and M). In contrast to dynamic equilibria, optimal quickest flows can
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be computed by determining a time horizon T with 	t(M
r0

) = T by applying a
binary search framework to the maximum flow over time problem. Hereby, a
maximum flow over time for time horizon T can be constructed via a feasible
static flow y maximizing T · |y| − ∑

e∈E τe · ye. This underlying static flow y is
then temporally repeated, which means a rate of yp is sent into every s-t path
p ∈ Pst over time [0, T − τp]. The arrival time of the last particle at t (i.e., the
optimal completion time) is denoted by Topt(M). For more details on optimal
flows over time we refer to Skutella’s survey [23].

In this paper we consider the time price of anarchy (which we simply refer
to as “price of anarchy”). For a given temporal routing game Γ it measures
the worst ratio between the arrival time at t for the last particle in a Nash
flow over time and the arrival time in an optimal flow: PoA(Γ ) := TEQ(Γ )

Topt(Γ ) .
1

As it is unknown whether the arrival time functions 	t are unique over all
Nash flows over time, we need to consider the worst dynamic equilibrium, i.e.,
TEQ(Γ ) := supf∈F(Γ ) Tf , where F(Γ ) denotes the set of Nash flows over time
in Γ .

Further Notation. We enumerate the event points by the order of their occur-
rence seen by particles at the source, i.e., θi < θi+1 and say phase i is given by
(θi−1, θi) (using θ0 = 0).2 In addition, we consider the point in time M

r0
when

the last particle enters the network as the last event r, i.e., θr := M
r0

. Since the
edge sets E′

θ, E∗
θ , Ēθ, the inflow bound, and hence, the spillback thin flow stay

constant within each phase i we use the following notation for θ ∈ (θi−1, θi)

G′
i :=G′

θ, E
′
i :=E′

θ, E
�
i :=E�

θ , Ēi := Ēθ, x
′
i :=x′(θ), 	′

i,v :=	′
v(θ), ci,v :=cv(	v(θ)).

The inflow at the sink is also constant in a phase. We denote this by the capacity
κi := f+

t (	t(θ)) for some θ ∈ (θi−1, θi) where we use f+
t (θ) :=

∑
vt∈δ−(t) f−

vt(θ).
Finally, the derivatives of the waiting times (qe(	u(θ)))′ stay constant within a
phase as they are either 	′

v(θ) − 	′
u(θ) if e = uv is active or 0 otherwise. For

θ ∈ (θi−1, θi) we write q′
i,e := (qe(	u(θ)))′ and q′

i,p :=
∑

e∈p q′
i,e for an s-t path p.

3 Lower Bounds on the Price of Anarchy

We first show in 3 that the PoA can be unbounded even on very simple graphs
(an observation first made in [22]) and that the same is true for graphs with
unit capacities. Afterwards, in 3 and 3, we use similar constructions to inves-
tigate the Braess paradox for flows over time with spillback and to show that
1 All results from Sect. 4 can also be translated to the total delay price of anarchy

measuring the arrival times of all particles combined, similarly as is done in [1].
2 We imagine i as a natural number. But since it is an open question whether the

event point converges to a finite limit, it is possible to expand the index set to the
ordinal numbers up to ωω. In this case the i-th phase should be defined as (θi, θi+1)
as it is not possible to determine a predecessor of an ordinal number. For the sake
of simplicity however, we stick to the definition where (0, θ1) is the first phase.
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there exist networks on which Nash flows over time with spillback are faster than
their respective counterparts without spillback.

PoA Depending on Graph Structure or Capacities. Consider the network
Γ given in Fig. 1 and a Nash flow over time f of it. Since in the first phase the
shortest path is (e1, e2), edge e2 fills up quickly. Once this happens flow already
queues up at the end of edge e1, and thus, e3 is never used by f . An optimal
flow can use e3 and therefore routes flow to the sink much faster, resulting in an
unbounded PoA. This construction can easily be generalized to all graphs that
have the graph given in Fig. 1 as a minor.

Theorem 1. (cf. [22, introductary example]) Let G be any graph that has the
graph given in Fig. 1 as a minor, then there exists a temporal routing game Γ
on G with PoA(Γ ) ∈ Ω( 1

ν−
min

) where ν−
min := mine∈E{ν−

e : ν−
e > 0}.

τe ν+
e ν−

e σe

e1 0 ∞ 3 ∞
e2 0 ∞ ε ε
e3 2 ∞ 3 ∞

r0 = 3
s v t

e1 e2

e3

Fig. 1. This is a network on which Nash flows over time with spillback have unbounded
price of anarchy (see Theorem 1). A similar example was first given in [22, Fig. 2].

To avoid the above unboundedness one could ask for the PoA for temporal
routing games on graphs with restricted edge capacities. By constrictions of the
model we have to set the inflow and storage capacities of all edges e ∈ δ+(s) to
ν+

e > r and σe = ∞, respectively. We say a network has unit edge capacities if
for all edges e /∈ δ+(s) it holds that ν+

e = ν−
e = σe = 1 and further for all edges

e ∈ δ+(s) also ν−
e = 1. Unfortunately, even when restricting to networks with

unit edge capacities the PoA is unbounded.

Theorem 2. capacities There exists a family of networks with unit edge capac-
ities and τe ∈ {0, 1} for all edges for which the PoA is linear in the number of
edges.

This can be seen by considering the network given in Fig. 1 and exchanging
e1 and e3 with bunches of unit-capacity parallel edges and setting ν−

e2
= σe2 = 1.

If we use enough parallel edges we can generate a similar flow behavior as we
encountered when lowering the capacity of edge e2 in the proof of Theorem 1.

Nevertheless, we show another way of constraining edge capacities to achive
an interesting upper bound on the PoA in Sect. 4.2.

Braess Ratio. In his work on selfish routing with static flows [2] Braess showed
that there are networks where adding an edge can paradoxically increase conges-
tion leading to a worse equilibrium. In line with the paper of Macko et al. [14]
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we define the Braess ratio for flows over time with spillback as follows. Let Γ
be a temporal routing game on a graph G and let Γ (H) be the same instance
restricted to some subgraph H ⊆ G. Then the Braess ratio of Γ is

BR(Γ ) = max
H⊆G

TEQ(Γ )
TEQ(Γ (H))

.

We say graph G admits a Braess paradox if there is a temporal routing game Γ
on G with BR(Γ ) > 1. In [14] it is shown that the Braess ratio for flows over
time without spillback (for a slightly different cost function instead of the last
completion time) is arbitrarily large depending linearly on the number of edges
of the underlying graph. The authors furthermore show that a graph G or its
transpose (the graph where every edge uv is replaced by the edge vu and s and
t are swapped) admit a Braess paradox if and only if G contains at least one of
the following graphs as a topological minor.

When considering flows over time with spillback and the graph in Fig. 1 it is
easy to see that this graph admits a Braess paradox with arbitrarily large Braess
ratio even though it does not have one of the graphs above as a topological minor
(and neither does its transpose). To see this choose H to be the subgraph where
from the graph in Fig. 1 we delete edge e2.

Corollary 1. For any a ∈ R there exists a temporal routing game Γ on the
graph given in Fig. 1 such that the Braess ratio satisfies BR(Γ ) > a.

Spillback Can Improve Completion Time. The following proposition shows
that there are temporal routing games where Nash flows with spillback perform
better than Nash flows without spillback. This might at first be surprising, as
spillback seems to only be obstructive to routing flow fast. But it is indeed
possible to construct networks where spillback leads to shorter completion times.
In the network depicted in Fig. 2 there are two parallel edges, namely e3 and e3′ ,
for which it holds that the completion time of a Nash flow is worse if the edges
are present compared to the same network without those edges. We exploit this
in our construction: In the spillback model one of these ‘bad’ edges becomes full
nearly instantaneously yielding the other ‘bad’ edge to never get active. Thus,
the spillback Nash flow routes flow only over one of those ‘bad’ edges. Since in
the Koch-Skutella model without spillback both of these parallel edges get active
at some point, the Nash flow over time here uses both of them resulting in a
worse completion time.

Proposition 1. In the network Γ given in Fig. 2 the completion time of any
Nash flow over time with spillback is less than the completion time of the Nash
flow over time without spillback on the same network using νe := min{ν+

e , ν−
e }.
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Fig. 2. This example shows that Nash flows over time with spillback can be faster than
Nash flows over time without spillback, see Proposition 1.

4 Upper Bounds on the Price of Anarchy

In the following we prove two upper bounds on the price of anarchy. First, we
show that for a single, fixed network the PoA is bounded by a constant in the
long run. After that we show that if for a given network we are allowed to
decrease the outflow capacities by a certain amount then the PoA only depends
on the worst spillback factor of the Nash flows over time.

4.1 Price of Anarchy for a Fixed Network

Until now we have studied the PoA depending on the structure of the underlying
graph or its capacities. For both questions we constructed games satisfying strong
constraints that still have unbounded PoA. Now we are interested in the PoA of
a network where every parameter is fixed except for the target amount M , i.e.,
we ask the question of how the PoA behaves in the long run on a single network.

Lemma 1. For a temporal routing game Γ on a fixed network the comple-
tion time of the optimal flow depending on the target amount M is bounded
by Topt(M) ∈ Θ(M).

This result is mainly due to the fact that the optimal flow does not build
up any queues. Therefore its completion time depends mainly on M and the
minimum edge-capacity, which we consider to be fixed.

For the classification of the asymptotic long term behavior of TEQ(M) we
use the following auxiliary lemma that gives us a lower bound on the spillback
factors of a Nash flow. The lemma follows by an application of [22, Lemma 3].

Lemma 2. For a temporal routing game Γ there exists an ε > 0 such that for
any Nash flow over time f ∈ F(Γ ) the spillback factors satisfy min{cv(θ) : v ∈
V, θ ∈ R≥0} > ε.
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To get an asymptotic bound on TEQ(M) = supf∈F(Γ ) Tf (M) we first argue
that seen as a function in M , Tf is a piece-wise linear and non-decreasing func-
tion. We can then use Lemma 2 to bound its derivative and with that obtain the
desired result.

Theorem 3. For a temporal routing game Γ on a fixed network the completion
time of any Nash flow over time f ∈ F(Γ ) is bounded by Tf (M) ∈ Θ(M).

We can now use Lemma 1 and Theorem 3 and the fact that PoA(M) =
TEQ(M)
Topt(M) to bound the PoA for a fixed network. In order to do so we consider the
PoA as a function of the target flow amount M .

Theorem 4. For a temporal game Γ on a fixed network, i.e. when treating
everything except the amount of flow M as a constant, the price of anarchy is
bounded by a constant, PoA(M) ∈ Θ(1).

4.2 Bound on the Price of Anarchy for Saturated Graphs

In this section we focus on networks with an additional constraint on the edge
capacities. Given a game Γ we know that the quickest flow of Γ is also a tem-
porally repeated flow, i.e., it has an underlying static flow y. We say that y
saturates every edge of the given graph if for each edge the outflow capacity
is exhausted by y, i.e., for each e ∈ E we have ν−

e = ye and additionally it
holds that |y| =

∑
sv∈δ+(s) ysv = r0. We call the underlying graph of such a

game a saturated graph. Even though restricting attention to saturated graphs
may seem harsh, note, that every network can be made saturated by lowering
the edge capacities. This can be imagined to be done by a system operator in
a Stackelberg strategy-like scenario [25] and is applicable in many real-world
examples. For one, streets can be narrowed down by a city administration in
practice.

For temporal routing games on saturated graphs we will show that the PoA
can be bounded by a value that is only dependent on the worst spillback factor
of all Nash flows over time. In order to do that we adapt the idea of the proofs
given by Bhaskar et al. [1] for the Koch-Skutella model to the spillback model.
Note, however, that the proofs given in [1] implicitly assume only finitely many
phases, which has not been proven for any of the two models. Our generalization
also holds for the case of an infinite number of phases in both models.3

In principle the proof works as follows. For a given game Γ the relation of
the completion time of any Nash flow over time of Γ to the optimal completion
time can be determined by examining the capacity of the current shortest path
network and the derivatives of the waiting times for a single phase of the Nash
flow. One can then bound the derivatives of the waiting times and use the fact
that the PoA is the maximum over the relation of the optimal completion time
to the completion times of all Nash flows. This achieves the desired bound.

3 Note, that in [7] an even more general result is shown for the Koch-Skutella model.
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Bound on the Derivatives of the Waiting Times. We start by proving a
relation between the derivative of the label-function at the sink and the inflow
into the sink. Our proof of this result uses a different idea than the one given
in [1] and is considerably shorter.

Lemma 3. (cf. [1, Lemma 15]) Let Γ be a temporal routing game and let f ∈
F(Γ ) with corresponding labels 	. Then for any θ ≤ M

r0
we have

	′
t(θ) =

r0

f+
t (	t(θ))

.

Proof. Let θ ≤ M
r0

be arbitrary. Using that x′(θ) is a static s-t flow of value r0

and x′
vt(θ) = f−

vt(	t(θ)) · 	′
t(θ) from Eq. (1) we obtain

r0 =
∑

vt∈δ−(t)

x′
vt(θ) =

∑
vt∈δ−(t)

f−
vt(	t(θ)) · 	′

t(θ) = 	′
t(θ) · f+

t (	t(θ)).

Since f+
t (	t(θ)) > 0 for all θ, rearranging terms give the desired result. �	

We now proceed with a path-wise bound on the derivatives of the waiting
times q′

i,p for a single phase of the Nash flow over time i using the capacities κi.

Lemma 4. (cf. [1, Lemma 18]) Let Γ be a temporal routing game where the
static flow underlying the quickest flow saturates every edge and let f ∈ F(Γ ).
For any s-t path p, the travel time is bounded by

τp ≥ 	t(θr) −
∑
i∈If

(1 + q′
i,p) · κi

r0
· (	t(θi) − 	t(θi−1)).

In the proof we first establish a dependence of the length of a phase as it is
experienced at the source and at the sink, respectively. Then we express τp in
terms of the label functions 	 and the waiting times q and their derivatives. The
result then follows from applying Lemma3.

Relation of the Completion Times of Nash Flow and Quickest Flow.
The following lemma enables us to give a first relation of the completion times
of the optimal quickest flow and a Nash flow over time.

Lemma 5. (cf. [1, Lemma 19]) Let Γ be a temporal routing game where the
static flow y underlying the quickest flow saturates every edge and let f ∈ F(Γ ).
Then, the completion time Topt of the optimal flow and the completion time Tf

of the Nash flow f are related as

r0 · Topt =
∑

p∈Ps,t

ypτp +
∑
i∈If

κi · (	t(θi) − 	t(θi−1)),

where Ps,t is the set of all simple s-t paths in G and 	t(θr) = Tf .
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The proof idea is to compare the arrival rates of both flows at the sink
t where we use a flow decomposition along paths for the optimal flow and a
decomposition by phases for the Nash flow over time.

By combining the previous two lemmas we can now derive a lower bound on
the inverse of the PoA that we will afterwards use to achieve an upper bound
on the actual PoA. But in order to proof that we first need the following.

Lemma 6. Let λi := κi

r0
· ∑

p∈Ps,t
ypq

′
i,p for each phase i ∈ If . Then,

∑
i∈If

λi · (	t(θi) − 	t(θi−1)) ≤ (	t(θr) − 	t(θ0)) · sup
i∈If

λi.

In the proof we first establish that the set {λi : i ∈ If} is bounded and then
use this and the telescoping principle to bound the left hand side.

The next lemma establishes the aforementioned bound on the inverse of the
PoA. It is in this proof that the number of α-extension phases comes into play. If
we assume that the supremum in the statement of Lemma 6 is attained by some
phase i ∈ If , which is in particular true if there are only finitely many phases,
then we can prove Lemma 7 without the ε error and the proofs go through similar
to [1]. But since it is still an open problem whether the number of those phases
is always finite (in the Koch-Skutella model as well as the spillback model), we
prove it here for the case of infinitely many α-extension phases.

Lemma 7. Let Γ be a temporal routing game where the static flow y underlying
the quickest flow saturates every edge and let f ∈ F(Γ ). Then for every ε > 0
there exists a phase i of f such that

Topt

Tf
+ ε ≥ 1 − κi

r02

∑
e∈E

ν−
e q′

i,e.

The proof idea is to sum ypτp over all paths p ∈ Ps,t and using Lemma 4 to
bound this from below. Afterwards, we use Lemmas 5 and 6 to obtain a lower
bound on Topt

Tf
in terms of a supremum of the capacities and derivatives of the

queuing delay over all phases. Since we do not know whether this supremum is
attained we have to inject the ε error and after rearranging terms we obtain the
desired result.

Upper Bound for Saturated Graphs. We can now turn the lower bound in
Lemma 7 into an upper bound on the price of anarchy by proving a bound on
the sum of the right-hand side of the expression given in Lemma 7. Here for the
first time the spillback factors of the Nash flow over time play an important role.

Lemma 8. Let Γ be a temporal routing game and f ∈ F(Γ ). In any phase i of
f where r0

κi
≥ 1 we have

∑
e∈E

ν−
e q′

i,e ≤ r0

cf
i

ln
(

r0
κi

)
,

where cf
i := min{cv(θ) : v ∈ V, θ ∈ (θi−1, θi)} is the minimal cv of f in phase i.
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The proof utilizes [7, Claim 12] and follows the line of argumentation in [1]
but incorporates the added complexity of the spillback model. We obtain that
cvν−

e q′
e = x′

e · (1 − 	′
u

	′
v
) for every edge e = uv and then sum this expression over

all edges in the graph. Rearranging and plugging in the above expression then
yields the desired result.

We can now obtain the desired upper bound on the price of anarchy.

Theorem 5. Let Γ be a temporal routing game where the static flow y underly-
ing the quickest flow saturates every edge of the graph. If the minimal spillback
factor satisfies c := minf∈F(Γ ) min{cv(θ) : v ∈ V, θ ∈ R≥0} > 1

e , then the price
of anarchy is bounded by TEQ

Topt
≤ ce

ce−1 .

Proof. For any f ∈ F(Γ ) with completion time Tf we know that f+
t (θ) =∑

vt∈δ−(t) f−
vt(θ) ≤ r0 for all θ ∈ R≥0 since we only consider saturated graphs.

Thus, we have r0
κi

≥ 1 in all phases of f . From Lemmas 7 and 8 we obtain that
for every ε > 0 there exists a phase i of f such that

Topt

Tf
+ ε ≥ 1 − κi

r02

∑
e∈E

ν−
e q′

i,e ≥ 1 − κi

r02
r0

cf
i

· ln
(

r0
κi

)
= 1 − ai

c
· ln

(
1
ai

)
,

where c := minf∈F(Γ ) min{cv(θ) : v ∈ V, θ ∈ R≥0} ≤ cf
i and ai := κi

r0
.

Simple calculus shows that the term ai

c · ln
(

1
ai

)
is maximized for ai = 1

e .
Using the above inequality, derived from some phase i, for any ε > 0 we obtain

Topt

Tf
+ ε ≥ 1 − 1

ce
=

ce − 1
ce

.

Since by assumption we have c > 1
e we can take the inverse of the inequality to

obtain Tf

Topt
≤ ce

ce−1 . We finish by noting that TEQ = supf∈F(Γ ) Tf . �	

5 Conclusions

Our work shows that the PoA is highly dependent on spillback effects. Although,
even in restricted network classes the completion times of dynamic equilibria can
be arbitrarily bad compared to a quickest flow, the PoA can still be bounded
in terms of the spillback factors under some constraints on the edge capacities.
Transferred to real-world traffic this means the interplay between selfish traffic
users is critical in particular in high congested areas.

Even though we give a substantial analysis of the PoA in the flow over time
model with spillback, there are still some open problems remaining. Is the bound
we establish in Theorem 5 tight? Are there any bounds in the case of c ≤ 1

e or is it
possible to enforce c > 1

e through some Stackelberg-like strategy? Do the results
of the recent work of Correa et al. [7] also transfer to the spillback setting?
On the more applied side of the research it would also be very interesting to
algorithmically identify street segments (edges) which are especially vulnerable
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for spillback. In the long run this could help road administrations to decide which
roads should be expanded (increasing the storage capacity) or which roads should
be narrowed or closed (due to the Braess effect).
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Abstract. Predicting selfish behavior in public environments by con-
sidering Nash equilibria is a central concept of game theory. For the
dynamic traffic assignment problem modeled by a flow over time game,
in which every particle tries to reach its destination as fast as possible,
the dynamic equilibria are called Nash flows over time. So far, this model
has only been considered for networks in which each arc is equipped with
a constant capacity, limiting the outflow rate, and with a transit time,
determining the time it takes for a particle to traverse the arc. How-
ever, real-world traffic networks can be affected by temporal changes,
for example, caused by construction works or special speed zones dur-
ing some time period. To model these traffic scenarios appropriately, we
extend the flow over time model by time-dependent capacities and time-
dependent transit times. Our first main result is the characterization
of the structure of Nash flows over time. Similar to the static-network
model, the strategies of the particles in dynamic equilibria can be char-
acterized by specific static flows, called thin flows with resetting. The
second main result is the existence of Nash flows over time, which we
show in a constructive manner by extending a flow over time step by
step by these thin flows.

Keywords: Nash flows over time · Dynamic equilibria · Deterministic
queuing · Time-varying networks · Dynamic traffic assignment

Related Version: A full version of this paper including all proofs
is available at https://arxiv.org/abs/2007.01525.

1 Introduction

In the last decade the technological advances in the mobility and communi-
cation sector have grown rapidly enabling access to real-time traffic data and
autonomous driving vehicles in the foreseeable future. One of the major advan-
tages of self-driving and communicating vehicles is the ability to directly use
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information about the traffic network including the route-choice of other road
users. This holistic view of the network can be used to decrease travel times and
distribute the traffic volume more evenly over the network. As users will still
expect to travel along a fastest route it is important to incorporate game theo-
retical aspects when analyzing the dynamic traffic assignment. The results can
then be used by network designers to identify bottlenecks beforehand, forecast
air pollution in dense urban areas and give feedback on network structures. In
order to obtain a better understanding of the complicated interplay between traf-
fic users it is important to develop strong mathematical models which represent
as many real-world traffic features as possible. Even though the more realistic
models consider a time-component, the network properties are considered to stay
constant in most cases. Surely, this is a serious drawback as real road networks
often have properties that vary over time. For example, the speed limit in school
zones is often reduced during school hours, roads might be completely or par-
tially blocked due to construction work and the direction of reversible lanes can
be switched, causing a change in the capacity in both directions. A more exotic,
but nonetheless important setting are evacuation scenarios. Consider an inhab-
ited region of low altitude with a high risk of flooding. As soon as there is a flood
warning everyone needs to be evacuated to some high-altitude-shelter. But, due
to the nature of rising water levels, roads with low altitude will be impassable
much sooner than roads of higher altitude. In order to plan an optimal evacua-
tion or simulate a chaotic equilibrium scenario it is essential to use a model with
time-varying properties. This research work is dedicated to providing a better
understanding of the impact of dynamic road properties on the traffic dynamics
in the Nash flow over time model. We will transfer all essential properties of Nash
flows over time in static networks to networks with time-varying properties.

1.1 Related Work

The fundamental concept for the model considered in this paper are flows over
time or dynamic flows, which were introduced back in 1956 by Ford and Fulk-
erson [8,9] in the context of optimization problems. The key idea is to add a
time-component to classical network flows, which means that the flow particles
need time to travel through the network. In 1959 Gale [10] showed the existence
of so called earliest arrival flows, which solve several optimization problems at
once, as they maximize the amount of flow reaching the sink at all points in time
simultaneously. Further work on these optimal flows is due to Wilkinson [25],
Fleischer and Tardos [7], Minieka [17] and many others. For formal definitions
and a good overview of optimization problems in flow over time settings we refer
to the survey of Skutella [22].

In order to use flows over time for traffic modeling it is important to con-
sider game theoretic aspects. Some pioneer work goes back to Vickrey [23] and
Yagar [26]. In the context of classical (static) network flows, equilibria were intro-
duced by Wardrop [24] in 1952. In 2009 Koch and Skutella [14] (see also [15] and
Koch’s PhD thesis [13]) started a fruitful research line by introducing dynamic
equilibria, also called Nash flows over time, which will be the central concept
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in this paper. In a Nash flow over time every particle chooses a quickest path
from the origin to the destination, anticipating the route choice of all other flow
particles. Cominetti et al. showed the existence of Nash flows over time [3,4] and
studied the long term behavior [5]. Macko et al. [16] studied the Braess paradox
in this model and Bhaskar et al. [1] and Correa et al. [6] bounded the price of
anarchy under certain conditions. In 2018 Sering and Skutella [20] transferred
Nash flows over time to a model with multiple sources and multiple sinks and in
the following year Sering and Vargas Koch [21] considered Nash flows over time
in a model with spillback.

A different equilibrium concept in the same model was considered by Graf
et al. [11] by introducing instantaneous dynamic equilibria. In these flows over
time the particles do not anticipate the further evolution of the flow, but instead
reevaluate their route choice at every node and continue their travel on a current
quickest path. In addition to that, there is an active research line on packet
routing games. Here, the traffic agents are modeled by atomic packets (vehicles)
of a specific size. This is often combined with discrete time steps. Some of the
recent work on this topic is due to Cao et al. [2], Harks et al. [12], Peis et al. [18]
and Scarsini et al. [19].

1.2 Overview and Contribution

In the base model, which was considered by Koch and Skutella [15] and by the
follow up research [1,3–6,16,20], the network is constant and each arc has a
constant capacity and constant transit time. In real-world traffic, however, tem-
porary changes of the infrastructure are omnipresent. In order to represent this,
we extend the base model to networks with time-varying capacities (including
the network inflow rate) and time-varying transit times.

We start in Sect. 2 by defining the flow dynamics of the deterministic queuing
model with time-varying arc properties and proving some first auxiliary results.
In particular, we describe how to turn time-dependent speed limits into time-
dependent transit times. In Sect. 3 we introduce some essential properties, such
as the earliest arrival times, which enable us to define Nash flows over time. As
in the base model, it is still possible to characterize such a dynamic equilibrium
by the underlying static flow. Taking the derivatives of these parametrized static
flows provides thin flows with resetting, which are defined in Sect. 4. We show
that the central results of the base model transfer to time-varying networks, and
in particular, that the derivatives of every Nash flow over time form a thin flow
with resetting. In Sect. 5 we show the reverse of this statement: Nash flows over
time can be constructed by a sequence of thin flows with resetting, which, in
the end, proves the existence of dynamic equilibria. We close this section with
a detailed example. Finally, in Sect. 6 we present a conclusion and give a brief
outlook on further research directions.

Due to space restrictions we omit most technical proofs. They can be found in
the appendix of the full version available at https://arxiv.org/abs/2007.01525.

https://arxiv.org/abs/2007.01525


Dynamic Equilibria in Time-Varying Networks 133

2 Flow Dynamics

We consider a directed graph G = (V,E) with a source s and a sink t such
that each node is reachable by s. In contrast to the Koch-Skutella model, which
we will call base model from now on, this time each arc e is equipped with
a time-dependent capacity νe : [0,∞) → (0,∞) and a time-dependent speed
limit λe : [0,∞) → (0,∞), which is inversely proportional to the transit time.
We consider a time-dependent network inflow rate r : [0,∞) → [0,∞) denoting
the flow rate at which particles enter the network at s. We assume that the
amount of flow an arc can support is unbounded and that the network inflow is
unbounded as well, i.e., for all e ∈ E we require that

∫ θ

0

νe(ξ) dξ → ∞,

∫ θ

0

λe(ξ) dξ → ∞ and
∫ θ

0

r(ξ) dξ → ∞ for θ → ∞.

Later on, in order to be able to construct Nash flows over time, we will addition-
ally assume that all these functions are right-constant, i.e., for every θ ∈ [0,∞)
there exists an ε > 0 such that the function is constant on [θ, θ + ε).

λθ = 0 λθ = 1 λθ = 2

Fig. 1. Consider a road segment with time-dependent speed limit that is low in the
time interval [0, 1) and large afterwards. All vehicles, independent of their position, first
traverse the link slowly and immediately speed up to the new speed limit at time 1.

Speed Limits. Let us focus on the transit times first. We have to be careful
how to model the transit time changes, since we do not want to lose the following
two properties of the base model:

(i) We want to have the first-in-first-out (FIFO) property for arcs, which leads
to FIFO property of the network for Nash flows over time [15, Theorem 1].

(ii) Particles should never have the incentive to wait on a node.

In other words, we cannot simply allow piecewise-constant transit times, since
this could lead to the following case: If the transit time of an arc is high at the
beginning and gets reduced to a lower value at some later point in time, then
particles might overtake other particles on that arc. Thus, particles might arrive
earlier at the sink if they wait right in front of the arc until its transit time
drops. Hence, we let the speed limit change over time instead. In order to keep
the number of parameters of the network as small as possible, we assume that the
lengths of all arcs equal 1 and, instead of a transit time, we equip every arc e ∈ E
with a time-dependent speed limit λe : [0,∞) → (0,∞). Thus, a particle might
traverse the first part of an arc at a different speed than the remaining distance
if the maximal speed changes midway; see Fig. 1.
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λe(θ) τe(θ)

θ θθ0θ0

1
τe(θ0)

τe(θ0)

Fig. 2. From speed limits (left side) to
transit times (right side). The transit
time τe(θ) denotes the time a particle
needs to traverse the arc when entering
at time θ. We normalize the speed limits
by assuming that all arcs have length 1,
and hence, the transit time τe(θ) equals
the length of an interval starting at θ
such that the area under the speed limit
graph within this interval is 1.

f+(θ) f−(θ + τe(θ))

λ λ

Fig. 3. An illustration of how the flow
rate changes depending on the speed lim-
its. On the left: As the speed limit λ is
high, the flow volume entering the arc per
time unit is represented by the area of the
long rectangle. On the right: The speed
limit is halved, and therefore, the same
amount of flow needs twice as much time
to leave the arc (or enter the queue if there
is one). Hence, if there is no queue, the
outflow rate at time τ + τe(θ) is only half
the size of the inflow rate at time θ.

Transit Times. Note that we assume the point queue of an arc to always
right in front of the exit. Hence, a particle entering arc e at time θ immediately
traverses the arc of length 1 with a time-dependent speed of λe. The transit
time τ : [0,∞) → [0,∞) is therefore given by

τe(θ) := min

{
τ ≥ 0

∣∣∣∣∣
∫ θ+τ

θ

λe(ξ) dξ = 1

}
.

Since we required
∫ θ

0
λe(ξ) dξ to be unbounded for θ → ∞, we always have a

finite transit time. For an illustrative example see Fig. 2.
The following lemma shows some basic properties of the transit times.

Lemma 1. For all e ∈ E and almost all θ ∈ [0,∞) we have:

(i) The function θ �→ θ + τe(θ) is strictly increasing.
(ii) The function τe is continuous and almost everywhere differentiable.
(iii) For almost all θ ∈ [0,∞) we have 1 + τ ′

e(θ) = λe(θ)
λe(θ+τe(θ))

.

These statement follow by simple computation and some basic Lebesgue integral
theorems.

Speed Ratios. The ratio in Lemma 1 (iii) will be important to measure the
outflow of an arc depending on the inflow. We call γe : [0,∞) → [0,∞) the speed
ratio of e and it is defined by γe(θ) := λe(θ)

λe(θ+τe(θ))
= 1 + τ ′

e(θ). Figuratively
speaking, this ratio describes how much the flow rate changes under different
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speed limits. If, for example, γe(θ) = 2, as depicted in Fig. 3, this means that
the speed limit was twice as high when the particle entered the arc as it is at
the moment the particle enters the queue. In this case the flow rate is halved on
its way, since the same amount of flow that entered within one time unit, needs
two time units to leave it. With the same intuition the flow rate is increased
whenever γe(θ) < 1. Note that in figures of other publications on flows over time
the flow rate is often pictured by the width of the flow. But for time-varying
networks this is not accurate anymore as the transit speed can vary. Hence, in
this paper the flow rates are given by the width of the flow multiplied by the
current speed limit.

A flow over time is specified by a family of locally integrable and bounded
functions f = (f+

e , f−
e )e∈E denoting the in- and outflow rates. The cumulative

in- and outflows are given by

F+
e (θ) :=

∫ θ

0

f+
e (ξ) dξ and F−

e (θ) :=
∫ θ

0

f−
e (ξ) dξ.

A flow over time conserves flow on all arcs e:

F−
e (θ + τe(θ)) ≤ F+

e (θ) for all θ ∈ [0,∞], (1)

and conserves flow at every node v ∈ V \ { t } for almost all θ ∈ [0,∞):

∑
e∈δ+

v

f+
e (θ) −

∑
e∈δ−

v

f−
e (θ) =

{
0 if v ∈ V \ { t } ,

r(θ) if v = s.
(2)

A particle entering an arc e at time θ reaches the head of the arc at time θ +
τe(θ) where it lines up at the point queue. Thereby, the queue size ze : [0,∞) →
[0,∞) at time θ + τe(θ) is defined by ze(θ + τe(θ)) := F+

e (θ) − F−
e (θ + τe(θ)).

We call a flow over time in a time-varying network feasible if we have for
almost all θ ∈ [0,∞) that

f−
e (θ + τe(θ)) =

{
νe(θ + τe(θ)) if ze(θ + τe(θ)) > 0,

min
{

f+
e (θ)

γe(θ)
, νe(θ + τe(θ))

}
else,

(3)

and f−
e (θ) = 0 for almost all θ < τe(0).

Note that the outflow rate depends on the speed ratio γe(θ) if the queue is
empty (see Fig. 3). Otherwise, the particles enter the queue, and therefore, the
outflow rate equals the capacity independent of the speed ratio. Furthermore,
we observe that every arc with a positive queue always has a positive outflow,
since the capacities are required to be strictly positive. And finally, (3) implies
(1), which can easily be seen by considering the derivatives of the cumulative
flows whenever we have an empty queue, i.e., F−

e (θ + τe(θ)) = F+
e (θ). By (3) we

have that f−
e (θ + τe(θ)) · (1 + τ ′

e(θ)) ≤ f+
e (θ). Hence, (2) and (3) are sufficient

for a family of functions f = (f+
e , f−

e )e∈E to be a feasible flow over time.
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νe(θ) qe(θ)

θ θθ0

τe(θ0)

ze

qe(θ0)

qe(θ0)

θ0 θ1 θ2Te(θ0)

Fig. 4. Waiting times for time-dependent capacities. The waiting time of a particle θ0
(right side) is given by the length of the interval starting at θ0 + τe(θ0) such that the
area underneath the capacity graph equals the queue size at time θ0+τe(θ0) (left side).
The right boundary of the interval equals the exit time Te(θ0). The waiting time does
not only depend on the capacity but also on the inflow rate and the transit times. For
example, if the capacity and the speed limit are constant but the inflow rate is 0, the
waiting time will decrease with a slope of 1 (right side within [θ1, θ2]).

The waiting time qe : [0,∞) → [0,∞) of a particle that enters the arc at
time θ is defined by

qe(θ) := min

{
q ≥ 0

∣∣∣∣∣
∫ θ+τe(θ)+q

θ+τe(θ)

νe(ξ) dξ = ze(θ + τe(θ))

}
.

As we required
∫ θ

0
νe(ξ) dξ to be unbounded for θ → ∞ the set on the right side is

never empty. Hence, qe(θ) is well-defined and has a finite value. In addition, qe is
continuous since νe is always strictly positive. The exit time Te : [0,∞) → [0,∞)
denotes the time at which the particles that have entered the arc at time θ finally
leave the queue. Hence, we define Te(θ) := θ + τe(θ)+ qe(θ). In Fig. 4 we display
an illustrative example for the definition of waiting and exit times.

With these definitions we can show the following lemma.

Lemma 2. For a feasible flow over time f it holds for all e ∈ E, v ∈ V and
θ ∈ [0,∞) that:

(i) qe(θ) > 0 ⇔ ze(θ + τe(θ)) > 0.
(ii) ze(θ + τe(θ) + ξ) > 0 for all ξ ∈ [0, qe(θ)).
(iii) F+

e (θ) = F−
e (Te(θ)).

(iv) For θ1 < θ2 with F+
e (θ2) − F+

e (θ1) = 0 and ze(θ2 + τe(θ2)) > 0 we have
Te(θ1) = Te(θ2).

(v) The functions Te are monotonically increasing.
(vi) The functions qe and Te are continuous and almost everywhere differen-

tiable.
(vii) For almost all θ ∈ [0,∞) we have

T ′
e(θ) =

⎧⎨
⎩

f+
e (θ)

νe(Te(θ))
if qe(θ) > 0,

max
{

γe(θ),
f+

e (θ)
νe(Te(θ))

}
else.

Most of the statements follow immediately from the definitions and some involve
minor calculations. For (vi) we use Lebesgue’s differentiation theorem.
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3 Nash Flows over Time

In order to define a dynamic equilibrium we consider the particles as players in
a dynamic game. For this the set of particles is identified by the non-negative
reals denoted by R≥0. The flow volume is hereby given by the Lebesgue-measure,
which means that [a, b] ⊆ R≥0 with a < b contains a flow volume of b − a. The
flow particles enter the network according to the ordering of the reals beginning
with particle 0. It is worth noting that a particle φ ∈ R≥0 can be split up
further so that for example one half takes a different route than the other half.
As characterized by Koch and Skutella, a dynamic equilibrium is a feasible flow
over time, where almost all particles only use current shortest paths from s to t.
Note that we assume a game with full information. Consequently, all particles
know all speed limit and capacity functions in advance and have the ability to
perfectly predict the future evolution of the flow over time. Hence, each particle
perfectly knows all travel times and can choose its route accordingly. We start
by defining the earliest arrival times for a particle φ ∈ R≥0.

The earliest arrival time functions 
v : R≥0 → [0,∞) map each particle φ to
the earliest time 
v(φ) it can possibly reach node v. Hence, it is the solution to


v(φ) =

⎧⎨
⎩

min
{

θ ≥ 0
∣∣∣ ∫ θ

0
r(ξ) dξ = φ

}
for v = s,

min
e=uv∈δ−

v

Te(
u(φ)) else.
(4)

Note that for all v ∈ V the earliest arrival time function 
v is non-decreasing,
continuous and almost everywhere differentiable. This holds directly for 
s and
for v 
= s it follows inductively, since these properties are preserved by the
concatenation Te ◦ 
u and by the minimum of finitely many functions.

For a particle φ we call an arc e = uv active if 
v(φ) = Te(
u(φ)). The set
of all these arcs are denoted by E′

φ and these are exactly the arcs that form the
current shortest paths from s to some node v. For this reason we call the subgraph
G′

φ = (V,E′
φ) the current shortest paths network for particle φ. Note that G′

φ is
acyclic and that every node is reachable by s within this graph. The arcs where
particle φ experiences a waiting time when traveling along shortest paths only
are called resetting arcs denoted by E∗

φ := { e = uv ∈ E | qe(
u(φ)) > 0 }.
Nash flows over time in time-varying networks are defined in the exact same

way as Cominetti et al. defined them in the base model [3, Definition 1].

Definition 1 (Nash flow over time). We call a feasible flow over time f a
Nash flow over time if the following Nash flow condition holds:

f+
e (θ) > 0 ⇒ θ ∈ 
u(Φe) for all e = uv ∈ E and almost all θ ∈ [0,∞), (N)

where Φe := {φ ∈ R≥0 | e ∈ E′
φ } is the set of particles for which arc e is active.

As Cominetti et al. showed in [4, Theorem 1] these Nash flows over time can
be characterized as follows.
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Lemma 3. A feasible flow over time f is a Nash flow over time if, and only if,
for all e = uv ∈ E and all φ ∈ R≥0 we have F+

e (
u(φ)) = F−
e (
v(φ)).

Since the exit and the earliest arrival times have the same properties in time-
varying networks as in the base model, this lemma follows with the exact same
proof that was given by Cominetti et al. for the base model [4, Theorem 1]. The
same is true for the following lemma; see [4, Proposition 2].

Lemma 4. Given a Nash flow over time the following holds for all particles φ:

(i) E∗
φ ⊆ E′

φ.
(ii) E′

φ = { e = uv | 
v(φ) ≥ 
u(φ) + τe(θ) }.
(iii) E∗

φ = { e = uv | 
v(φ) > 
u(φ) + τe(θ) }.
Motivated by Lemma 3 we define the underlying static flow for φ ∈ R≥0 by

xe(φ) := F+
e (
u(φ)) = F−

e (
v(φ)) for all e = uv ∈ E.

By the definition of 
s and the integration of (2) we have
∫ 	s(φ)

0
r(ξ) dξ = φ, and

hence, xe(φ) is a static s-t-flow (classical network flow) of value φ, whereas the
derivatives (x′

e(φ))e∈E form a static s-t-flow of value 1.

4 Thin Flows

Thin flows with resetting, introduced by Koch and Skutella [15], characterize the
derivatives (x′

e)e∈E and (
′
v)v∈V of Nash flows over time in the base model. In

the following we will transfer this concept to time-varying networks.
Consider an acyclic network G′ = (V,E′) with a source s and a sink t, such

that every node is reachable by s. Each arc is equipped with a capacity νe > 0
and a speed ratio γe > 0. Furthermore, we have a network inflow rate of r > 0
and an arc set E∗ ⊆ E′. We obtain the following definition.

Definition 2 (Thin flow with resetting in a time-varying network).
A static s-t flow (x′

e)e∈E of value 1 together with a node labeling (
′
v)v∈V is

a thin flow with resetting on E∗ if:

�′
s =

r
(TF1)

�′
v = min

e=uv∈E′
ρe(�′

u, x′
e) for all v ∈ V \ { s } , (TF2)

�′
v = ρe(�′

u, x′
e) for all e = uv E′ with x′

e > 0, (TF3)

where ρe(
′
u, x′

e) :=

⎧⎨
⎩

x′
e

νe
if e = uv ∈ E∗,

max
{

γe · 
′
u,

x′
e

νe

}
if e = uv ∈ E′\E∗.
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The derivatives of a Nash flow over time in time-varying networks do indeed
form a thin flow with resetting as the following theorem shows.

Theorem 1. For almost all φ∈R≥0 the derivatives (x′
e(φ))e∈E′

φ
and (
′

v(φ))v∈V

of a Nash flow over time f = (f+
e , f−

e )e∈E form a thin flow with resetting
on E∗

φ in the current shortest paths network G′
φ = (V,E′

φ) with network inflow
rate r(
s(φ)) as well as capacities νe(
v(φ)) and speed ratios γe(
u(φ)) for each
arc e = uv ∈ E.

Proof. Let φ ∈ R≥0 be a particle such that for all arcs e = uv ∈ E the derivatives
of xe, 
u, Te ◦ 
u and τe exist and x′

e(φ) = f+
e (
u(φ)) · 
′

u(φ) = f−
e (
v(φ)) · 
′

v(φ)
as well as 1 + τ ′

e(
u(φ)) = γe(
u(φ)). This is given for almost all φ.
By (4) we have

∫ 	s(φ)

0
r(ξ) dξ = φ and taking the derivative by applying the

chain rule, yields r(
s(φ)) · 
′
s(φ) = 1, which shows (TF1).

Taking the derivative of (4) at time 
u(φ) by using the differentiation rule
for a minimum yields 
′

v(φ) = mine=uv∈E′ T ′
e(
u(φ)) · 
′

u(φ). By using Lemma 2
(vii) we obtain

T ′
e(
u(φ)) · 
′

u(φ) =

⎧⎨
⎩

f+
e (	u(φ))

νe(Te(	u(φ)))
· 
′

u(φ) if qe(
u(φ)) > 0,

max
{

γe(
u(φ)), f+
e (	u(φ))

νe(Te(	u(φ)))

}
· 
′

u(φ) else,

= ρe(
′
u(φ), x′

e(φ)),

which shows (TF2).
Finally, in the case of f−

e (
v(φ)) · 
′
v(φ) = x′

e(φ) > 0 we have by (3) that


′
v(φ) =

x′
e(φ)

f−
e (
v(φ))

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′
e(φ)

min
{

f+
e (	u(φ))

γe(	u(φ))
, νe(
v(φ))

} if qe(
u(φ)) = 0,

x′
e(φ)

νe(
v(φ))
else,

=

⎧⎨
⎩

max
{

γe(
u(φ)) · 
′
u(φ), x′

e(φ)
νe(	v(φ))

}
if e ∈ E′

φ\E∗
φ,

x′
e(φ)

νe(	v(φ))
if e ∈ E∗

φ,

= ρe(
′
u(φ), x′

e(φ)).

This shows (TF3) and finishes the proof. �
In order to construct Nash flows over time in time-varying networks, we first

have to show that there always exists a thin flow with resetting.

Theorem 2. Consider an acyclic graph G′ = (V,E′) with source s, sink t,
capacities νe > 0, speed ratios γe > 0 and a subset of arcs E∗ ⊆ E′, as well as a
network inflow r > 0. Furthermore, suppose that every node is reachable from s.
Then there exists a thin flow ((x′

e)e∈E , (
′
v)v∈V ) with resetting on E∗.

This proof works exactly as the proof for the existence of thin flows in the
base model presented by Cominetti et al. [4, Theorem 3].
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5 Constructing Nash Flows over Time

In the remaining part of this paper we assume that for all e ∈ E the functions νe

and λe as well as the network inflow rate function r are right-constant. In order
to show the existence of Nash flows over time in time-varying networks we use
the same α-extension approach as used by Koch and Skutella in [15] for the base
model. The key idea is to start with the empty flow over time and expand it
step by step by using a thin flow with resetting.

Given a restricted Nash flow over time f on [0, φ], i.e., a Nash flow over time
where only the particles in [0, φ] are considered, we obtain well-defined earliest
arrival times (
v(φ))v∈V for particle φ. Hence, by Lemma 4 we can determine
the current shortest paths network G′

φ = (V,E′
φ) with the resetting arcs E∗

φ,
the capacities νe(
v(φ)) and speed ratios γe(
u(φ)) for all arcs e = uv ∈ E′ as
well as the network inflow rate r(
s(φ)). By Theorem 2 there exists a thin flow
((x′

e)e∈E′ , (
′
v)v∈V ) on G′

φ with resetting on E∗
φ. For e 
∈ E′

φ we set x′
e := 0. We

extend the 
- and x-functions for some α > 0 by


v(φ + ξ) := 
v(φ) + ξ · 
′
v and xe(φ) := xe(φ) + ξ · x′

e for all ξ ∈ [0, α)

and the in- and outflow rate functions by

f+
e (θ) :=

x′
e


′
u

for θ ∈ [
u(φ), 
u(φ+α)); f−
e (θ) :=

x′
e


′
v

for θ ∈ [
v(φ), 
v(φ+α)).

We call this extended flow over time α-extension. Note that 
′
u = 0 means that

[
u(φ), 
u(φ + α)) is empty, and the same holds for 
′
v.

An α-extension is a restricted Nash flow over time, which we will prove later
on, as long as the α stays within reasonable bounds. Similar to the base model
we have to ensure that resetting arcs stay resetting and non-active arcs stay
non-active for all particles in [φ, φ + α). Since the transit times may now vary
over time, we have the following conditions for all ξ ∈ [0, α):


v(φ) + ξ · 
′
v − 
u(φ) − ξ · 
′

u > τe(
u(φ) + ξ · 
′
u)) for every e ∈ E∗

φ, (5)


v(φ) + ξ · 
′
v − 
u(φ) − ξ · 
′

u < τe(
u(φ) + ξ · 
′
u)) for every e ∈ E \ E′

φ. (6)

Furthermore, we need to ensure that the capacities of all active arcs and the
network inflow rate do not change within the phase:

νe(
v(φ)) = νe(
v(φ) + ξ · 
′
v) for every e ∈ E′

φ and all ξ ∈ [0, α). (7)

r(
s(φ)) = r(
s(φ) + ξ · 
′
s) for all ξ ∈ [0, α). (8)

Finally, the speed ratios need to stay constant for all active arcs, i.e.,

γe(
u(φ)) = γe(
u(φ) + ξ · 
′
u) for every e ∈ E′

φ and all ξ ∈ [0, α). (9)

We call an α > 0 feasible if it satisfies (5) to (9).
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Lemma 5. Given a restricted Nash flow over time f on [0, φ] then for right-
constant capacities and speed limits there always exists a feasible α > 0.

Proof. By Lemma 4 we have that 
v(φ) − 
u(φ) > τe(φ) for all e ∈ E∗
φ and


v(φ)− 
u(φ) < τe(φ) for all e ∈ E \E′
φ. Since τe is continuous there is an α1 > 0

such that (5) and (6) are satisfied for all ξ ∈ [0, α1). Since νe, r and λe are
right-constant so is γe, and hence, there is an α2 > 0 such that (7), (8) and (9)
are fulfilled for all ξ ∈ [0, α2). Clearly, α := min { α1, α2 } > 0 is feasible. �

For the maximal feasible α we call the interval [φ, φ + α) a thin flow phase.

Lemma 6. An α-extension is a feasible flow over time and the extended 
-labels
coincide with the earliest arrival times, i.e., they satisfy Eq. (4) for all ϕ ∈
[φ, φ + α).

The final step is to show that an α-extension is a restricted Nash flow over
time on [0, φ + α) and that we can continue this process up to ∞.

Theorem 3. Given a restricted Nash flow over time f = (f+
e , f−

e )e∈E on [0, φ)
in a time-varying network and a feasible α > 0 then the α-extension is a
restricted Nash flow over time on [0, φ + α).

Proof. Lemma 3 yields F+
e (
u(ϕ)) = F−

e (
v(ϕ)) for all ϕ ∈ [0, φ), so for ξ ∈ [0, α)
it holds that

F+
e (
u(φ+ξ)) = F+

e (
u(φ))+
x′

e


′
u

·ξ ·
′
u = F−

e (
v(φ))+
x′

e


′
v

·ξ ·
′
v = F−

e (
v(φ+ξ)).

It follows again by Lemma 3 together with Lemma 6 that the α-extension is a
restricted Nash flow over time on [0, φ + α). �

Finally, we obtain our main result:

Theorem 4. There exists a Nash flow over time in every time-varying network
with right-constant speed limits, capacities and network inflow rates.

Proof. The process starts with the empty flow over time, i.e., a restricted Nash
flow over time for [0, 0). We apply Theorem 3 with a maximal feasible α. If one
of the α is unbounded we are done. Otherwise, we obtain a sequence (fi)i∈N,
where fi is a restricted Nash flow over time for [0, φi), with a strictly increasing
sequence (φi)i∈N. In the case that this sequence has a finite limit, say φ∞ < ∞,
we define a restricted Nash flow over time f∞ for [0, φ∞) by using the point-wise
limit of the x- and 
-labels, which exists due to monotonicity and boundedness
of these functions. Note that there are only finitely many different thin flows,
and therefore, the derivatives x′ and 
′ are bounded. Then the process can be
restarted from this limit point. This so called transfinite induction argument
works as follows: Let PG be the set of all particles φ ∈ R≥0 for which there
exists a restricted Nash flow over time on [0, φ) constructed as described above.
The set PG cannot have a maximal element because the corresponding Nash flow
over time could be extended by using Theorem 3. But PG cannot have an upper



142 H. M. Pham and L. Sering

Fig. 5. A Nash flow over time with seven thin flow phases in a time-varying network.
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bound either since the limit of any convergent sequence would be contained in
this set. Therefore, there exists an unbounded increasing sequence (φi)∞

i=1 ∈ PG.
As a restricted Nash flow over time on [0, φi+1] contains a restricted Nash flow
over time on [0, φi] we can assume that there exists a sequence of nested restricted
Nash flow over time. Hence, we can construct a Nash flow over time f on [0,∞)
by taking the point-wise limit of the x- and 
-labels, completing the proof. �

Example. An example of a Nash flow over time in a time-varying network
together with the corresponding thin flows is shown in Fig. 5 on the next page.
On the top: The network properties before time 8 (left side) and after time 8
(right side). In the middle: There are seven thin flow phases. Note that the third
and forth phase (both depicted in the same network) are almost identical and
only the speed ratio of arc vt changes, which does not influence the thin flow at
all. At the bottom: Some key snapshots in time of the resulting Nash flow over
time. The current speed limit λvt is visualized by the length of the green arrow
and, for θ ≥ 8, the reduced capacity νsu(θ) is displayed by a red bottle-neck.

As displayed at the top the capacity of arc su drops from 2 to 1 at time 8
and, at the same time, the speed limit of arc vt decreases from 1

2 to 1
6 . The first

event for particle 4 is due to a change of the speed ratio leading to an increase
of 
′

t. For particle 6, the top path becomes active and is taken by all following
flow as particles on arc vt are still slowed down. For particle 8, the speed ratio
at arc vt changes back to 1 but, as this arc is inactive, this does not change
anything. Particle 12 is the first to experience the reduced capacity on arc su.
The corresponding queue of this arc increases until the bottom path becomes
active. This happens in two steps: first only the path up to node v becomes
active for φ = 16, and finally, the complete path is active from φ = 20 onwards.

6 Conclusion and Open Problems

In this paper, we extended the base model that was introduced by Koch and
Skutella, to networks which capacities and speed limits that changes over time.
We showed that all central results, namely the existence of dynamic equilibria
and their underlying structures in form of thin flow with resetting, can be trans-
fered to this new model. With these new insights it is possible to model more
general traffic scenarios in which the network properties are time-dependent. In
particular, the flooding evacuation scenario, which was mentioned in the intro-
duction, could not be modeled (not even approximately) in the base model.

There are still a lot of open question concerning time-varying networks. For
example, it would be interesting to consider other flows over time in this setting,
such as earliest arrival flows or instantaneous dynamic equilibria (see [11]) and
show their existence. Can the proof for the bound of the price of anarchy [6]
be transfered to this model, or is it possible to construct an example where the
price of anarchy is unbounded?
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7. Fleischer, L., Tardos, É.: Efficient continuous-time dynamic network flow algo-
rithms. Oper. Res. Lett. 23(3–5), 71–80 (1998)

8. Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows.
Oper. Res. 6, 419–433 (1958)

9. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Prince-
ton (1962)

10. Gale, D.: Transient flows in networks. Michigan Math. J. 6(1), 59–63 (1959)
11. Graf, L., Harks, T., Sering, L.: Dynamic flows with adaptive route choice. Math.

Program. (2020)
12. Harks, T., Peis, B., Schmand, D., Tauer, B., Vargas Koch, L.: Competitive packet

routing with priority lists. ACM Trans. Econo. Comp. 6(1), 4 (2018)
13. Koch, R.: Routing Games over Time. Ph.D. thesis, Technische Universität Berlin

(2012). https://doi.org/10.14279/depositonce-3347
14. Koch, R., Skutella, M.: Nash equilibria and the price of anarchy for flows over time.

In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp.
323–334. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04645-
2 29

15. Koch, R., Skutella, M.: Nash equilibria and the price of anarchy for flows over
time. Theor. Comput. Syst. 49(1), 71–97 (2011)

16. Macko, M., Larson, K., Steskal, L.: Braess’s paradox for flows over time. Theor.
Comput. Syst. 53(1), 86–106 (2013)

17. Minieka, E.: Maximal, lexicographic, and dynamic network flows. Oper. Res. 21(2),
517–527 (1973)

18. Peis, B., Tauer, B., Timmermans, V., Vargas Koch, L.: Oligopolistic competitive
packet routing. In: 18th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (2018)
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Price of Anarchy in Congestion Games
with Altruistic/Spiteful Players

Marc Schröder(B)
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marc.schroeder@oms.rwth-aachen.de

Abstract. We consider an extension of atomic congestion games with
altruistic or spiteful players. Restricting attention to games with affine
costs, we study a special class of perception-parameterized congestion
games as introduced by Kleer and Schäfer [19]. We provide an upper
bound on the price of anarchy for games with players that are sufficiently
spiteful, answering an open question posed in [19]. This completes the
characterization of the price of anarchy as a function of the level of altru-
ism/spite. We also provide an upper bound on the price of stability when
players are sufficiently altruistic, which almost completes the picture of
the price of stability as a function of the level of altruism/spite.

Keywords: Price of anarchy · Price of stability · Altruism · Spite

1 Introduction

Congestion games provide a natural model for resource allocation in large-scale
decentralized systems such as traffic on roads or data packets in computer net-
works. A congestion game is given by a set of users that each want to utilize
a subset of resources, while the cost of these resources increase as more users
make use of them. These games were first introduced by Rosenthal [24], who
showed that a pure Nash equilibrium always exists. In fact, Rosenthal proved
that congestion games are potential games, which implies that better-response
dynamics converge to a Nash equilibrium. This means that not only is there
a steady state, selfish users are able to reach such a steady state with natural
dynamics. However, these steady states might be inefficient from a societal per-
spective. The inefficiency of Nash equilibria is quantified by the price of anarchy
[20] and the price of stability [3,26].

The assumption that players are selfish and only care about their own costs
but not about others is restrictive and is at odds with altruistic or spiteful
behavior that is observed in real-life experiments (see for example, [21] or [22]).
Caragiannis et al. [8] proposed a simple extension of congestion games that
allows players to be altruistic. They proved, contrary to what one would expect,
that the price of anarchy in general increases with the level of altruism. Chen
et al. [9] tested this result for several other classes of games and concluded that
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the increase in the price of anarchy with altruism is not a universal phenomenon.
In fact, if one takes the price of stability as a measure of inefficiency of equilibria,
then the price of stability even decreases with the level of altruism.

Kleer and Schäfer [19] generalized the previous two models and unified several
extensions of congestion games by means of the class of perception-parameterized
congestion games. This class allows to model congestion games in which players
are spiteful instead of altruistic. Kleer and Schäfer [19] leaves it as an open
question to find tight bounds on the price of anarchy when players are sufficiently
spiteful. This paper answers that open question.

1.1 Our Contribution

We study atomic congestion games with affine cost functions, and altruistic
or spiteful players. We model this by means of a special class of perception-
parameterized congestion games, introduced by Kleer and Schäfer [19], in which
the perceived cost of a player choosing a resource e with load x is equal to
ae · (1 + p · (x − 1)) + be for some p > 0. If p ∈ (0, 1), the model considers a game
with players that are spiteful, whereas if p > 1, the players are altruistic similar
to the models introduced by Caragiannis et al. [8] and Chen et al. [9].

Our main result is the completion of the characterization of the PoA(p) for
all p > 0. Caragiannis et al. [8] proved a tight bound of 1+4p

1+p if 1 ≤ p ≤ 2 and of
1 + p if p ≥ 2. Caragiannis et al. [7] gave a lower bound of 1 + 2√

3
for all p > 0

and showed it is tight for p = 2
√
3

9−2
√
3
. Kleer and Schäfer [19] extended the result

of Caragiannis et al. [8] by giving a tight bound of 1+4p
1+p for 2

√
3

9−2
√
3

≤ p ≤ 1.

They posed a tight bound for 0 < p < 2
√
3

9−2
√
3

as open question.
We show that the lower bound of Caragiannis et al. [7] of 1 + 2√

3
is tight

for 4 − 2
√

3 ≤ p ≤ 2
√
3

9−2
√
3
, and that the lower bound of Kleer and Schäfer [19]

of 4
p(4−p) is tight for 0 < p ≤ 4 − 2

√
3. Figure 1 plots the price of anarchy as a

function of p. Similar to [19], our proof makes use of (λ, μ)-smoothness defined
by [25]. So all upper bounds extend to mixed, correlated and coarse-correlated
equilibria.

Figure 1 also depicts the price of stability as a function of p. Chen et al. [9]
derived an upper bound on the price of stability of 1+

√
3

p−1+
√
3

for 1 ≤ p ≤ 2. Kleer

and Schäfer [19] obtained a tight bound for the price of stability of 1+
√
3

p−1+
√
3

for

4 − 2
√

3 ≤ p ≤ 2 and gave a lower bound for 0 < p ≤ 4 − 2
√

3. We complete this
picture by showing that the lower bound of 4

p(4−p) is tight for 0 < p ≤ 4 − 2
√

3,

and we derive an upper bound on the price of stability of 4−2
√
3+(

√
3−1)p

2 for
p ≥ 2. We leave the question whether this upper bound for p ≥ 2 is tight as
open question. Caragiannis et al. [8] derived a lower bound of 2+4p

4 on the price
of stability for p ≥ 2 using two players and two resources.
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1.2 Related Work

The price of anarchy of atomic congestion games was examined in Christodoulou
and Koutsoupias [13] for unweighted players, and in Awerbuch et al. [4] for
unweighted and weighted players. Aland et al. [1] provided exact bounds for the
price of anarchy when costs are polynomial functions. As an extension of results
by Harks and Végh [17] and Aland et al. [1], Roughgarden [25] introduced the
concept of (λ, μ)-smoothness which provides a simple yet powerful tool to bound
the price of anarchy. The bounds obtained by this technique not only hold for
pure equilibria, but also for mixed, correlated, and coarse-correlated equilibria.
Our proofs make use of (λ, μ)-smoothness.

PoS(p)

PoA(p)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

Fig. 1. Upper bounds on the price of anarchy (red) and the price of stability (blue).
Almost all bounds are tight, except for the upper bound on the price of stability if
p ≥ 2. (Color figure online)

The price of stability of atomic congestion games was studied in Christodoulou
and Koutsoupias [12] and this bound was proven to be tight in Caragiannis et
al. [6]. Christodoulou and Gairing [10] provided exact bounds for the price of sta-
bility when costs are polynomial functions. Lower and upper bounds for weighted
players were given by Christodoulou et al. [11].

Multiple other papers than [8] and [9] studied altruism in congestion games.
Hoefer and Skopalik [18] consider an atomic congestion game in which players
are allowed to have different levels of altruism. Their focus is on the existence
and computation of pure Nash equilibria. Anagnostopoulos et al. [2] generalized
the model of [8] by assuming that there is a matrix of coefficients measuring the
importance of the other players to a player. Bilo [5] extended and generalized
some of the existence and inefficiency results in this model.

Our model is a special class of perception-parameterized congestion games,
introduced by Kleer and Schäfer [19]. As already mentioned, this class extends
the models of Caragiannis et al. [8] and Chen et al. [9]. Other special classes
of perception-parameterized congestion games are the following. Caragiannis
et al. [7] studied the impact of universal tax functions on the price of anarchy.
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Piliouras et al. [23] considered an atomic congestion game where players using
a given resource are randomly ordered, and their costs depend on their posi-
tion in this order. Cominetti et al. [15] investigated Bernoulli congestion games.
These are congestion games in which each player independently participates in
the game with a fixed probability. Recently, Cominetti et al. [14] studied the
convergence of Bernoulli congestion games to Poisson games as the probability
of participation goes to zero.

2 Congestion Games with Spiteful Players

2.1 Atomic Congestion Games

Consider a finite set of players N = {1, . . . , n} and a finite set of resources E.
Each player i ∈ N has a set of feasible strategies Si ⊆ 2E . Given a profile
s ∈ S := ×i∈NSi, the cost for player i is

ci(s) =
∑

e∈si

ce(ne(s)) . (2.1)

Here, ne(s) is the load of resource e ∈ E, defined as the number of players using
the resource, that is,

ne(s) = |{j ∈ N |e ∈ sj}|, (2.2)

and ce : N → R+ is the cost of the resource e, with ce(k) being the cost experi-
enced by each player using that resource when the load is k.

The tuple Γ = (N,E, S, (ce)e∈E) defines an atomic congestion game. We
define the social cost to be the sum of all players’ costs:

c(s) =
∑

i∈N

ci(s) =
∑

e∈E

ne(s) ce(ne(s)) , (2.3)

and we call a social optimum any strategy profile s∗ that minimizes this social
cost.

2.2 Altruistic/Spiteful Players

Given an atomic congestion game Γ , we consider an extension that allows players
to be altruistic or spiteful. A player is altruistic if his costs increase when the
costs of the other players increase. A player is spiteful if his costs decrease when
the costs of the other players increase. We restrict attention to congestion games
with nondecreasing and nonnegative affine costs, that is, we restrict the attention
to the class C0 of costs of the form c(x) = a x + b with a, b ≥ 0.

The model we consider is a special class of the class of perception-
parameterized congestion games defined by [19]. Given p > 0, the perceived
cost for player i ∈ N is given by

cp
i (s) =

∑

e∈si

ae · (1 + p(ne(s) − 1)) + be. (2.4)

We denote the resulting congestion game by Γ p.
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A pure Nash equilibrium is a strategy profile s ∈ S such that no player i ∈ N
can benefit by unilaterally deviating to si ∈ Si, that is, for every player i ∈ N
and every s′

i ∈ Si, we have

cp
i (s) ≤ cp

i (s
′
i, s−i). (2.5)

The set of pure Nash equilibria of this game is denoted by NE(Γ p). Rosen-
thal [24] showed that atomic congestion games are potential games. Given that
our extension is still an atomic congestion game but with adjusted cost func-
tions, a potential exists. In particular, the set NE(Γ p) is nonempty. Rosenthal’s
potential for our game is defined by

Φp(s) =
∑

e∈E

ae ·
(

ne(s) + p · ne(s)(ne(s) − 1)
2

)
+ be · ne(s).

It is not immediately clear that the costs in Eq. (2.4) model altruism or spite.
Caragiannis et al. [8] defined altruism as follows. The cost of a ξ-altruistic player,
where ξ ∈ [0, 1], equals

cξ
i (s) = (1 − ξ) · ci(s) + ξ(c(s) − ci(s))

Later Chen et al. [9] defined a slightly different version of altruism. The cost of
an α-altruistic player, where α ∈ [0, 1], equals

cα
i (s) = (1 − α) · ci(s) + α · c(s).

The next two results show that perception-parameterized congestion games
generalize the model of [8] and [9]. This equivalence has already been observed
by [19]. The proofs can be found in the appendix.

Lemma 1. For all ξ ∈ [0, 1), s is a Nash equilibrium with respect to costs cξ
i (·)

if and only if s is a Nash equilibrium with respect to costs cp
i (·), where p = 1

1−ξ .

Lemma 2. For all α ∈ [0, 1], s is a Nash equilibrium with respect to costs cα
i (·)

if and only if s is a Nash equilibrium with respect to costs cp
i (·), where p = 1+α.

Summarizing, the players are spiteful if p ∈ (0, 1) and the players are altruistic
if p > 1. To be more precise, if p ≥ 1, this model is equivalent to the model of
[8], and if p ∈ [1,2], this model is equivalent to the model of [9].

2.3 Price of Anarchy

The price of anarchy and price of stability are defined as

PoA(Γ p) = max
s∈NE(Γp)

c(s)
c(s∗)

and PoS(Γ p) = min
s∈NE(Γp)

c(s)
c(s∗)

, (2.6)

where s∗ is a social optimum and we recall that

c(s) =
∑

e∈E

ne(s) ce(ne(s)) . (2.7)
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For each p > 0, we define

PoA(p) = sup
Γp∈G(C0)

PoA(Γ p),

where G(C0) denotes the class of altruistic/spiteful extensions of atomic conges-
tion games with affine costs.

3 Main Results

3.1 Price of Anarchy

Our main result is the completion of the characterization of the PoA(p) for all
p > 0. We show that the lower bound of [7] of 1 + 2√

3
is tight for 4 − 2

√
3 ≤ p ≤

2
√
3

9−2
√
3
, and that the lower bound of [19] of 4

p(4−p) is tight for 0 < p ≤ 4 − 2
√

3.
In particular, the price of anarchy is smallest when players are spiteful with
4 − 2

√
3 ≤ p ≤ 2

√
3

9−2
√
3
. See Fig. 2 for an illustration.
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Fig. 2. Tight bounds for the price of anarchy in the four regions.

Theorem 1. Let p̄0 = 4 − 2
√

3 ≈ 0.536 and let p̄1 = 2
√
3

9−2
√
3

≈ 0.626. Then

PoA(p) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4
p(4−p) if 0 ≤ p ≤ p̄0,

1 + 2√
3

if p̄0 ≤ p ≤ p̄1,
1+4p
1+p if p̄1 ≤ p ≤ 2,

1 + p if p ≥ 2.

Proof. Caragiannis et al. [8] proved a tight bound of 1+4p
1+p if 1 ≤ p ≤ 2 and of

1 + p if p ≥ 2. Caragiannis et al. [7] gave a lower bound of 1 + 2√
3

for all p > 0
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and showed it is tight for p = 2
√
3

9−2
√
3
. Kleer and Schäfer [19] extended the result

of Caragiannis et al. [8] by giving a tight bound of 1+4p
1+p for 2

√
3

9−2
√
3

≤ p ≤ 1. So

what remains to show is an upper bound of 4
p(4−p) for 0 < p ≤ 4 − 2

√
3, and

an upper bound of 1 + 2√
3

for 4 − 2
√

3 ≤ p ≤ 2
√
3

9−2
√
3
. We need the following

technical lemma.

Lemma 3. Let p ≤ 2
√
3

9−2
√
3
. If there exists a λ ≥ 1

p and μ > 0 such that

k

(
m +

1
p

)
+

p − 1
p

m ≤ λ k2 + μm2 ∀k,m ∈ N. (3.1)

then PoA(p) ≤ λ
1−μ .

Proof. Let s be a Nash equilibrium and s∗ be a social optimum. Observe that
∑

i∈N

ci(s) =
∑

i∈N

∑

e∈si

(ae · (p · ne(s) + 1 − p) + be)

=
∑

e∈E

(ae · ne(s) · (p · ne(s) + 1 − p) + be · ne(s))

= p ·
∑

e∈E

(ae · ne(s)2 + be · ne(s)) +
∑

e∈E

((ae + be) · ne(s) · (1 − p))

= p · c(s) +
∑

e∈E

((ae + be) · ne(s) · (1 − p)),

and
∑

i∈N

ci(s∗
i , s−i) =

∑

i∈N

∑

e∈s∗
i

(ae · (p · ne(s∗
i , s−i) + 1 − p) + be)

≤
∑

e∈E

(ae · ne(s∗) · (p · ne(s) + 1) + be · ne(s∗)).

Hence we have that

c(s)

≤
∑

e∈E

(
ae ·

(
ne(s∗) ·

(
ne(s) +

1
p

)
+ ne(s) · p − 1

p

)
+ be ·

(
ne(s∗)

p
+ ne(s) · p − 1

p

))

≤
∑

e∈E

(ae · (λ · ne(s∗)2 + μ · ne(s)2) + λ · be · ne(s∗))

≤ λ · c(s)∗ + μ · c(s).

where the first inequality follows from
∑

i∈N ci(s) ≤ ∑
i∈N ci(s∗

i , s−i) from the
Nash equilibrium condition and the above two equalities, and the second inequal-
ity follows from Eq. (3.1) and p ≤ 1. Rewriting the last inequality yields the
desired result. 
�
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The last two results give precise values for λ and μ satisfying Eq. (3.1) for
the two regions that have to be considered.

Lemma 4. If 0 < p ≤ 2(2 − √
3), then λ = 1

p and μ = p
4 satisfies Eq. (3.1).

Proof. We show that λ = 1
p and μ = p

4 satisfies Eq. (3.1), or equivalently

4(m(1 − p) − k) + (2k − mp)2 ≥ 0 ∀k,m ∈ N. (3.2)

If m(1 − p) ≥ k, the result follows trivially. So we can assume that m(1 − p) < k
and in particular, k > 0. If k = 1, Eq. (3.2) is equivalent to m·(4−8p+mp2) ≥ 0,
which is satisfied for m = 0, 1, 2 as 0 < p ≤ 2(2 − √

3).
If k = 2, Eq. (3.2) is equivalent to 8 + 4m − 12mp + m2p2 ≥ 0. Observe

that the left-hand side of Eq. (3.2) is a quadratic in m and is strictly larger than
0 for m = 0. The global minimum of the quadratic expression is obtained at
m = 2(3p−1)

p2 , and Eq. (3.2) is thus satisfied for p ≤ 1/3. For 1/3 < p ≤ 2(2−√
3),

calculating the global minimum shows that Eq. (3.2) is satisfied.
For k ≥ 2, the partial derivative of the left-hand side of Eq. (3.2) with respect

to k equals −4+8k−4mp. Since k ≥ 2 and m(1−p) < k, we have −4+8k−4mp >
8k − 4 − 4k p

1−p ≥ 3k − 4 > 0, where the second inequality follows because
0 < p ≤ 2(2 − √

3). Since the left-hand side of Eq. (3.2) is at least 0 for k = 2
and the partial derivative with respect to k is larger than 0 for k ≥ 2, the result
follows. 
�
Lemma 5. If 2(2 − √

3) ≤ p ≤ 2
√
3

9−2
√
3
, then λ = 2+

√
3

2 and μ = 2−√
3

2 satisfies
Eq. (3.1).

Proof. We show that λ = 2+
√
3

2 and μ = 2−√
3

2 satisfies Eq. (3.1), or equivalently

2(m(1 − p) − k) + p

(√
2 +

√
3k −

√
2 −

√
3m

)2

≥ 0 ∀k,m ∈ N. (3.3)

First observe that λ ≥ 1
p for all 2(2 − √

3) ≤ p ≤ 2
√
3

9−2
√
3
. If m(1 − p) ≥ k, the

result follows trivially. So we can assume that m(1 − p) < k and in particular,
k > 0. If k = 1 and m = 0, Eq. (3.3) is equivalent to −2+2p+

√
3p ≥ 0, which is

satisfied since p ≥ 2(2 − √
3). If k = 1 and m = 1, the left-hand side of Eq. (3.3)

is equal to 0. If k = 1 and m ≥ 2, the partial derivative of the left-hand side of
Eq. (3.3) with respect to m equals 2 − 2(2 + (−2 +

√
3)m)p. Since m ≥ 2 and

p ≤ 2
√
3

9−2
√
3
, this partial derivative is larger than 0. Since the left-hand side of

Eq. (3.3) is 0 for m = 2 and the partial derivative with respect to m is larger
than 0 for m ≥ 2, Eq. (3.3) is satisfied.

For k ≥ 2, observe that the left-hand side of Eq. (3.3) is a quadratic in m. The
global minimum of the quadratic expression is obtained at m = 1−(1+k)p

−2+
√
3p

> 0.
Calculating the global minimum shows that Eq. (3.3) is satisfied when k ≥ 2 and
2(2 − √

3) ≤ p ≤ 2
√
3

9−2
√
3
. 
�

Combining Lemma 3 with Lemmas 4 and 5 yields the desired result. 
�



154 M. Schröder

3.2 Price of Stability

Theorem 1 derives an upper bound on the price of anarchy and hence price of
stability of 4

p(4−p) if p ≤ 4−2
√

3. We complete the picture of the price of stability
by deriving an upper bound on the price of stability for p ≥ 2. We leave it as an
open question whether this upper bound is tight. Caragiannis et al. [8] derived
a lower bound of 2+4p

4 on the price of stability for p ≥ 2. In particular, the price
of stability is smallest when players are altruistic with p = 2. See Fig. 3 for an
illustration.
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Fig. 3. Upper bounds on the price of stability in the three regions.

Theorem 2. Let p̄0 = 4 − 2
√

3 ≈ 0.536. Then

PoS(p) ≤

⎧
⎪⎪⎨

⎪⎪⎩

4
p(4−p) if 0 ≤ p ≤ p̄0,
1+

√
3

p−1+
√
3

if p̄0 ≤ p ≤ 2,
4−2

√
3+(

√
3−1)p

2 if p ≥ 2.

Proof. Chen et al. [9] derived an upper bound on the price of stability of 1+
√
3

p−1+
√
3

for 1 ≤ p ≤ 2. Kleer and Schäfer [19] obtained a tight bound for the price of
stability of 1+

√
3

p−1+
√
3

for 4 − 2
√

3 ≤ p ≤ 2 and gave a lower bound for 0 < p ≤
4 − 2

√
3, which Theorem 1 shows to be tight. So what remains to show is an

upper bound of 4−2
√
3+(

√
3−1)p

2 for p ≥ 2.
Without loss of generality, we may assume that ae = 1 and be = 0 for all

e ∈ E (see, e.g., [9]). We need the following technical lemma.

Lemma 6. If there exists a γ ≥ 0, a δ ≥ 0 and an S ≥ 1 such that

γ · [p · (k2 − m) + (2 − p) · (k − m)] + δ · [(1 + p · m)k − m(1 + p(m − 1))]

≤ S · k2 − m2 ∀k,m ∈ N, (3.4)

then PoS(p) ≤ S.
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Proof. Recall that the Rosenthal’s potential is given by

Φp(s) =
∑

e∈E

ae ·
(

ne(s) + p · ne(s)(ne(s) − 1)
2

)
+ be · ne(s).

Let s be a global minimizer of the Rosenthal’s potential, and let s∗ be a social
optimum. Since s is a global minimizer of the potential, we have that

∑

e∈E

p · ne(s)2 + (2 − p) · ne(s) ≤
∑

e∈E

p · ne(s∗)2 + (2 − p) · ne(s∗).

Since s is a Nash equilibrium, we have that
∑

i∈N ci(s) ≤ ∑
i∈N ci(s∗

i , s−i)
and hence

∑

e∈E

ne(s) · (1 + p(ne(s) − 1)) ≤ ne(s∗) · (1 + p · ne(s)).

Assume that γ, δ ≥ 0 and S ≥ 1 satisfy Eq. (3.4). Then for all e ∈ E, we have

0 ≤ γ · [p · (ne(s∗)2 − ne(s)) + (2 − p) · (ne(s∗) − ne(s))]
+ δ · [ne(s∗) · (1 + p · ne(s)) − ne(s) · (1 + p(ne(s) − 1))]

≤ S · ne(s∗)2 − ne(s)2,

and thus by summing over e ∈ E, we get PoS(p) ≤ C(s)/C(s∗) ≤ S. 
�
The last results gives precise values for γ, δ and S satisfying Eq. (3.4).

Lemma 7. If p ≥ 2, then δ = (
√
3−1)(p−2)

2p , γ = 2
√
3−2+(3−√

3)p
4p and S =

4−2
√
3+(

√
3−1)p

2 satisfies Eq. (3.4).

Proof. Let p ≥ 2. We show that δ = (
√
3−1)(p−2)

2p , γ = 2
√
3−2+(3−√

3)p
4p and

S = 4−2
√
3+(

√
3−1)p

2 satisfies Eq. (3.4), or equivalently ∀k,m ∈ N,

1
4

· (p − 2) ·
(

(3 −
√

3)k − (1 +
√

3)m +
(√

3
√

3 − 5k −
√

1 +
√

3m

)2
)

≥ 0.

(3.5)

Observe that p−2 ≥ 0. If (3−√
3)k ≥ (1+

√
3)m, the result follows trivially. So

we can assume that (3 − √
3)k < (1 +

√
3)m and in particular, m > 0. If m = 1,

Eq. (3.5) is equivalent to 1
4 ·(p−2)·k ·(5−3

√
3+(−5+3

√
3)k) ≥ 0, which is satis-

fied. If m ≥ 2, the partial derivative of the left-hand side of Eq. (3.5) with respect
to m equals 1

4 ·(p−2)·
(
−1 − √

3 − 2
√

1 +
√

3
(√

−5 + 3
√

3k −
√

1 +
√

3m
))

≥
1
4 · (p − 2) ·

(
−1 − √

3 − 2
√

1 +
√

3
(

−
√

1 +
√

3m + (1+
√
3)

√
−5+3

√
3m

3−√
3

))
≥ 0,

where the first inequality follows as (3 − √
3)k < (1 +

√
3)m and the second

inequality as m ≥ 2.
Since the left-hand side of Eq. (3.5) is at least 0 for m = 1 and the partial

derivative with respect to m is larger than 0 for m ≥ 2, Eq. (3.5) is satisfied. 
�
Combining Lemma 6 with Lemma 7 yields the desired result. 
�
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4 Conclusion

We have studied the inefficiency of Nash equilibria in atomic congestion games
which spiteful or altruistic players. We have completed the characterization of the
price of anarchy as a function of the parameter that describes the level of spite
or altruism of players. In particular, we obtained upper bounds on the price of
anarchy when players are sufficiently spiteful, which was left as an open question
by Kleer and Schäfer [19]. These bounds immediately imply upper bounds on
the price of stability and additionally, we obtained an upper bound on the price
of stability when players are sufficiently altruistic. What is interesting is that the
best price of anarchy is obtained for players that are moderately spiteful, whereas
the best price of stability is obtained when players are moderately altruistic. So
there seems to be tradeoff between having a good price of anarchy and a good
price of stability. A question that has been recently addressed by Filos-Ratsikas
et al. [16] in mechanism design.

Appendix

Proof of Lemma 1. Observe that for all i ∈ N and all s ∈ S,

cξ
i (s) = (1 − 2ξ) ·

∑

e∈si

(ae · ne(s) + be) + ξ ·
∑

e∈E

(ae · ne(s)2 + be · ne(s)).

The Nash equilibrium condition with respect to costs cξ
i (·), for all i ∈ N and all

s′
i ∈ Si,

cξ
i (s) ≤ cξ

i (s
′
i, s−i),

is equivalent to

(1 − 2ξ) ·
∑

e∈si\s′
i

(ae · ne(s) + be) + ξ ·
∑

e∈si\s′
i

(ae · ne(s)2 + be · ne(s))

+ ξ ·
∑

e∈s′
i\si

(ae · ne(s)2 + be · ne(s)

≤ (1 − 2ξ) ·
∑

e∈s′
i\si

(ae · ne(s) + be) + ξ ·
∑

e∈si\s′
i

(ae · (ne(s) − 1)2

+ be · (ne(s) − 1)) + ξ ·
∑

e∈s′
i\si

(ae · (ne(s) + 1)2 + be · (ne(s) + 1)),

which is equivalent to
∑

e∈si\s′
i

(ae · (ne(s) − ξ) + be · (1 − ξ)) ≤
∑

e∈s′
i\si

(ae · (ne(s
′
i, s−i) − ξ) + be · (1 − ξ)),

or equivalently
∑

e∈si

(ae · (ne(s) − ξ) + be · (1 − ξ)) ≤
∑

e∈s′
i

(ae · (ne(s′
i, s−i) − ξ) + be · (1 − ξ)).

(4.1)
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The Nash equilibrium condition with respect to costs cp
i (·), for all i ∈ N and all

s′
i ∈ Si,

cp
i (s) ≤ cp

i (s
′
i, s−i),

is equivalent to
∑

e∈si

(ae · (p · ne(s) + 1 − p) + be) ≤
∑

e∈s′
i

(ae · (p · ne(s′
i, s−i) + 1 − p) + be),

which for p = 1
1−ξ is equivalent to

∑

e∈si

(
ae ·

(
ne(s)
1 − ξ

− ξ

1 − ξ

)
+ be

)
≤

∑

e∈s′
i

(
ae ·

(
ne(s′

i, s−i)
1 − ξ

− ξ

1 − ξ

)
+ be

)
.

(4.2)

Since Eq. (4.1) and Eq. (4.2) are equivalent, the result follows. 
�
Proof of Lemma 2. Observe that for all i ∈ N and all s ∈ S,

cα
i (s) = (1 − α) ·

∑

e∈si

(ae · ne(s) + be) + α ·
∑

e∈E

(ae · ne(s)2 + be · ne(s)).

The Nash equilibrium condition with respect to costs cα
i (·), for all i ∈ N and all

s′
i ∈ Si,

cα
i (s) ≤ cα

i (s′
i, s−i),

is equivalent to

(1 − α) ·
∑

e∈si\s′
i

(ae · ne(s) + be) + α ·
∑

e∈si\s′
i

(ae · ne(s)2 + be · ne(s))

+ ξ ·
∑

e∈s′
i\si

(ae · ne(s)2 + be · ne(s)

≤ (1 − α) ·
∑

e∈s′
i\si

(ae · ne(s) + be) + ξ ·
∑

e∈si\s′
i

(ae · (ne(s) − 1)2

+ be · (ne(s) − 1)) + ξ ·
∑

e∈s′
i\si

(ae · (ne(s) + 1)2 + be · (ne(s) + 1)),

which is equivalent to∑

e∈si\s′
i

(ae · ((1 + α) · ne(s) − α) + be) ≤
∑

e∈s′
i\si

(ae · ((1 + α) · ne(s
′
i, s−i) − α) + be),

or equivalently
∑

e∈si

(ae · ((1 + α) · ne(s) − α) + be) ≤
∑

e∈s′
i

(ae · ((1 + α) · ne(s′
i, s−i) − α) + be).

(4.3)
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The Nash equilibrium condition with respect to costs cp
i (·), for all i ∈ N and all

s′
i ∈ Si

cp
i (s) ≤ cp

i (s
′
i, s−i)

is equivalent to
∑

e∈si

(ae · (p · ne(s) + 1 − p) + be) ≤
∑

e∈s′
i

(ae · (p · ne(s′
i, s−i) + 1 − p) + be), (4.4)

which for p = 1 + α is equivalent to Eq. (4.3). 
�
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price of anarchy. ACM Trans. Econ. Comput. (TEAC) 2(4), 1–45 (2014)

10. Christodoulou, G., Gairing, M.: Price of stability in polynomial congestion games.
ACM Trans. Econ. Comput. (TEAC) 4(2), 1–17 (2015)

11. Christodoulou, G., Gairing, M., Giannakopoulos, Y., Spirakis, P.G.: The price of
stability of weighted congestion games. SIAM J. Comput. 48(5), 1544–1582 (2019)

12. Christodoulou, G., Koutsoupias, E.: On the price of anarchy and stability of cor-
related equilibria of linear congestion games. In: Brodal, G.S., Leonardi, S. (eds.)
ESA 2005. LNCS, vol. 3669, pp. 59–70. Springer, Heidelberg (2005). https://doi.
org/10.1007/11561071 8

13. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion
games. In: STOC’05: Proceedings of the 37th Annual ACM Symposium on The-
ory of Computing, pp. 67–73. ACM, New York (2005). https://doi.org/10.1145/
1060590.1060600

https://doi.org/10.1137/090748986
https://doi.org/10.1137/070702370
https://doi.org/10.1007/978-3-319-08783-2_47
https://doi.org/10.1007/978-3-642-15640-3_12
https://doi.org/10.1007/978-3-642-15640-3_12
https://doi.org/10.1007/11561071_8
https://doi.org/10.1007/11561071_8
https://doi.org/10.1145/1060590.1060600
https://doi.org/10.1145/1060590.1060600


Price of Anarchy in Congestion Games with Altruistic/Spiteful Players 159
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Bribery and Control in Stable Marriage
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Abstract. We initiate the study of external manipulations in Stable
Marriage by considering several manipulative actions as well as sev-
eral “desirable” manipulation goals. For instance, one goal is to make
sure that a given pair of agents is matched in a stable solution, and
this may be achieved by the manipulative action of reordering some
agents’ preference lists. We present a comprehensive study of the com-
putational complexity of all problems arising in this way. We find several
polynomial-time solvable cases as well as NP-hard ones. For the NP-hard
cases, focusing on the natural parameter “budget” (that is, the number
of manipulative actions), we also perform a parameterized complexity
analysis and encounter parameterized hardness results.

Keywords: Stable matching · Matching markets · Manipulation ·
Strategic behavior · Polynomial-time algorithms · Parameterized
hardness

1 Introduction

In the Stable Marriage problem, we have two sets of agents, each agent has
preferences over all agents from the other set, and the goal is to find a matching
between agents of the one set and agents of the other set such that no two agents
prefer each other to their assigned partners.

Looking at applications of stable marriages and corresponding generalizations
in the context of matching markets, we evidence external manipulations in mod-
ern applications. For instance, surveys reported that in college admission systems
in China, Bulgaria, Moldova, and Serbia, bribes have been performed in order to
gain desirable admissions [12,15]. Focusing on the most basic scenario with the
same number of agents on both sides and a one-to-one assignment, that is, Sta-
ble Marriage, we initiate a thorough study of manipulative actions (bribery
and control) from a computational complexity perspective. Notably, bribery sce-
narios have also been used as motivation in other papers around Stable Mar-
riage, e.g., when finding robust stable matchings [3] or when studying strongly
stable matchings in the Hospitals/Residents problem with ties [13].
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External manipulation may have many faces such as deleting agents, adding
agents, or changing agents’ preference lists. We consider three different manip-
ulation goals and five different manipulative actions.

We introduce the manipulation goals Constructive-Exists, Exact-Exists, and
Exact-Unique, where Constructive-Exists is the least restrictive goal and asks
for modifications such that a desired agent pair is contained in some stable
matching. More restrictively, Exact-Exists asks for modifications such that a
desired matching is stable. Most restrictive, Exact-Unique requires that a desired
matching becomes the only stable matching.

As manipulative actions, we investigate Swap, Reorder, DeleteAcceptabil-
ity , Delete, and Add. The actions Swap and Reorder model bribery through an
external agent. While a single Reorder action allows to completely change the
preferences of an agent (modeling a briber who can “buy an agent”), a Swap
action is more fine-granular and only allows to swap two neighboring agents
in some agent’s preference list (modeling a briber who has to slightly convince
agents with increasing costs/effort). For both actions, the external agent might
actually change the true preferences of the influenced agent, for example, by
advertising some possible partner. However, in settings where the agents’ prefer-
ences serve as an input for a centralized mechanism computing a stable matching
which is subsequently implemented and cannot be changed, it is enough to bribe
the agents to cast untruthful preferences. Delete and Add model control of the
instance. They are useful to model an external agent, i.e. the organizer of some
matching system, with the power to accept or reject agents to participate or
to change the participation rules. While a Delete (resp. Add) action allows to
delete (resp. add) an agent to the instance, a DeleteAcceptability action for-
bids for a specific pair of agents the possibility to be matched to each other
and to be blocking. The latter can be seen as a hybrid between bribery and
control because it can model an external agent that changes acceptability rules
(for example introducing a maximum age gap) as well as it can model a briber
who convinces an agent about inacceptability of some other agent at some cost.
Note that we do not consider the actions Delete and Add in the Exact-Exists
and Exact-Unique setting, as these two actions cannot be applied to the natural
definitions of these two goals.

Related Work. Since its introduction [10], Stable Marriage has been intensely
studied by researchers from different disciplines and in many contexts [11,14,19].

One topic related to manipulation in stable marriages is the study of strategic
behavior, which focuses on the question whether agents can misreport their pref-
erences to fool a given matching algorithm to match them to a better partner.
Numerous papers have addressed the question of strategic behavior for differ-
ent matching algorithms, types of agents’ preferences and restrictions on the
agents that are allowed to misreport their preferences (e.g., [10,20,21,23]; see
[19, Chapter 2.9] for a survey). This setting is related to ours in the sense that
the preferences of agents are modified to achieve a desired outcome, while it
is fundamentally different with respect to the allowed modifications and their
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Table 1. Overview of our results, where � denotes the given budget. All stated W[1]-
and W[2]-hardness results also imply NP-hardness.

Action/Goal Constructive-Exists Exact-Exists Exact-Unique

Swap W[1]-h. wrt. � (Theorem2) P NP-c. (Proposition 2)

Reorder W[1]-h. wrt. � (Theorem2) P W[2]-h. wrt. � (Theorem4)

2-approx in P (Proposition 1)

Delete
Accept.

W[1]-h. wrt. � (Theorem2) P P (Theorem5)

Delete P (Theorem3) − −
Add W[1]-h. wrt. � (Theorem1) − −

NP-h. even if � = ∞ (Theorem1)

goal: In the context of strategic behavior, an agent is only willing to change her
preferences if she directly benefits from it.

While we are interested in finding ways to influence a profile to change the
set of stable matchings, finding robust stable matchings [3,16,17] corresponds
to finding stable matchings such that a briber cannot easily make the matching
unstable. For instance, Chen et al. [3] introduced the concept of d-robustness: A
matching is d-robust if it is stable in the given instance and remains stable even
if d arbitrary swaps in preference lists are performed.

Conceptually, our work is closely related to the study of bribery and control
in elections (see [7] for a survey). In election control problems [1], the goal is
to change the structure of a given election, e.g., by modifying the candidate or
voter set, such that a designated candidate becomes the winner/looser of the
resulting election. In bribery problems [6], the briber is allowed to modify the
votes in the election to achieve the goal. Most of the manipulative actions we
consider are inspired by either some control operation or bribery action already
studied in the context of voting.

Our manipulation goals are also related to problems previously studied in
the stable matching literature: For example, the Constructive-Exists problem
with given budget zero reduces to the Stable Marriage with Forced Pairs
problem, which aims at finding a stable matching in a given Stable Marriage
instance that includes some given agent pairs. While the problem is polynomial-
time solvable for Stable Marriage instances without ties [19], deciding the
existence of a “weakly stable” matching is NP-hard if ties are allowed even if only
one pair is forced [18]. This directly implies hardness of the Constructive-Exists
problem if ties are allowed.

Our Contributions. Providing a complete P vs. NP dichotomy, we settle the
computational complexity of all computational problems emanating from our
manipulation scenarios. We also conduct a parameterized complexity analysis of
these problems using the parameter budget �, that is, the number of elementary
manipulative actions that we are allowed to perform. Table 1 gives an overview of
our results. Additionally, we prove that Constructive-Exists-Swap does not
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admit an O(n1−ε)-approximation in f(�)nO(1) time for any ε > 0 unless FPT =
W[1]. Furthermore, we observe XP-algorithms with respect to the parameter �
for all problems. The Constructive-Exists-Reorder and Exact-Unique-
Reorder problem require non-trivial XP-algorithms, which can be found in the
full version [2].

Comparing the results for the different combinations of manipulation goals
and manipulative actions, we observe a quite diverse complexity landscape:
While for all other manipulative actions the corresponding problems are
computationally hard, Constructive-Exists-Delete and Exact-Unique-
DeleteAcceptability are polynomial-time solvable. Relating the different
manipulation goals to each other, we show that specifying a full matching that
should be made stable instead of just one agent pair that should be part of
some stable matching makes the problem of finding a successful manipulation
significantly easier. In contrast to this, providing even more information about
the resulting instance by requiring that the given matching is the unique sta-
ble matching instead of just one of the stable matchings makes the problem of
finding a successful manipulation again harder.

Due to space constraints, we defer the proof of several results (marked by �)
and some details to the full version [2].

2 Preliminaries

Parameterized Complexity. A parameterized problem consists of a problem
instance I and a parameter value k (in our case the budget �). It is called fixed-
parameter tractable with respect to k if there exists an FPT-algorithm, i.e., an
algorithm running in time f(k)|I|O(1) for a computable function f . Moreover, it
lies in XP with respect to k if it can be solved in time |I|f(k) for some computable
function f . There is also a theory of hardness of parameterized problems that
includes the notion of W[t]-hardness with W[t] ⊆ W[t′] for t ≤ t′. If a problem
is W[t]-hard for a given parameter for any t ≥ 1, then it is widely believed not
to be fixed-parameter tractable for this parameter.

Stable Marriage. An instance I of the Stable Marriage (SM) problem
consists of a set U = {m1, . . . mn} of men and a set W = {w1, . . . , wn} of women,
together with a strict preference list Pa for each a ∈ U ∪W . We call the elements
from U ∪ W agents and denote as A = U ∪ W the set of agents. The preference
list Pa of an agent a is a strict order over the agents of the opposite gender. We
denote the preference list of an agent a ∈ A by a : a1 � a2 � a3 � . . . , where a1

is a’s most preferred agent, a2 is a’s second most preferred agent, and so on. For
the sake of readability, we sometimes only specify parts of the agents’ preference

relation and end the preferences with “� (rest)
. . . ”. In this case, it is possible to

complete the given profile by adding the remaining agents in an arbitrary order.
We say that a prefers a′ to a′′ if a ranks a′ above a′′ in her preference list,
i.e., a′ � a′′. For two agents a, a′ ∈ A of opposite gender, let rank(a, a′) denote
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the rank of a′ in the preference relation of a, i.e., one plus the number of agents a
prefers to a′.

A matching M is a subset of U × W such that each agent is contained in
at most one pair. An agent is unassigned in a matching if no pair contains this
agent. For a matching M and an assigned agent a ∈ A, we denote by M(a)
the agent a is matched to in M , i.e., M(a) = w if (a,w) ∈ M and M(a) = m
if (m,a) ∈ M . We slightly abuse notation and write a ∈ M for an agent a if
there exists some agent a′ such that (a, a′) ∈ M . A matching is called complete
if no agent is unassigned. For a matching M , a pair (m,w) ∈ U × W is blocking
if both m is unassigned or prefers w to M(m), and w is unassigned or prefers m
to M(w). A matching is stable if it does not admit a blocking pair. We denote
as MI the set of stable matchings in an SM instance I.

The Stable Marriage with Incomplete Lists (SMI) problem is a gen-
eralization of the Stable Marriage problem where each agent a is allowed
to specify incomplete preferences of agents of the opposite gender and a pair
of agents (m,w) ∈ U × W can only be part of a stable matching M if they
both appear in each others preference list. Let ma(M) denote the set of agents
matched in a matching M . Moreover, for an SMI instance I, let ma(I) denote
the set of agents that are matched in a stable matching in I. Note that by the
Rural Hospitals Theorem [22] it holds for all stable matchings M,M ′ ∈ MI
that: ma(I) = ma(M) = ma(M ′).

Manipulative Actions. We introduce five manipulative actions and necessary
notation. We denote by X ∈ {Swap,Reorder,DeleteAcceptability,Delete,Add}
the type of a manipulative action.

Swap. A Swap operation changes the order of two neighboring agents in the
preference list of an agent.

Reorder. A Reorder operation of an agent’s preference list reorders her prefer-
ences arbitrarily, i.e., one performs an arbitrary permutation.

Delete Acceptability. A DeleteAcceptability operation is understood as delet-
ing the mutual acceptability of a man and a woman. This enforces that such
a deleted pair cannot be part of any stable matching and cannot be a block-
ing pair for any stable matching. Thus, after applying a DeleteAcceptability
action, the given SM instance is transformed into an SMI instance.

Delete. A Delete operation deletes an agent from the instance and this agent
from the preferences of all remaining agents. Slightly abusing notation, for an
SM instance I = (U,W,P) and a subset of agents A′ ⊆ A, we write I \ A′ to
denote the instance I ′ that results from deleting the agents A′ in I.

Add. An Add operation adds an agent from a predefined set of agents to the
instance. Formally, the input for a computational problem considering the
manipulative action Add consists of an SM instance (U,W,P) together with
two subsets Uadd ⊆ U and Wadd ⊆ W . Uadd and Wadd contain agents that can
be added to the instance. All other men Uorig := U \Uadd and women Worig :=
W \ Wadd are part of the original instance. Adding a set of agents XA =
XU ∪ XW with XU ⊆ Uadd and XW ⊆ Worig results in the instance
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(Uorig ∪ XU ,Worig ∪ XW ,P ′), where P ′ is the restriction of P to agents
from Uorig ∪ XU ∪ Worig ∪ XW .

Manipulation Goals. In the Constructive-Exists setting, the goal is to mod-
ify a given SM instance using manipulative actions of some given type such
that a designated man-woman pair is part of some stable matching. For X ∈
{Swap,DeleteAcceptability,Delete,Add}, the formal definition of the problem is
presented below. For the manipulative action Reorder, we adapt the definition
and forbid to reorder the preferences of m∗ and w∗, as otherwise there always
exists a trivial solution by reordering the preferences of both m∗ and w∗.

Input: Given an SM instance I = (U, W,P), a man-woman
pair (m∗, w∗), and a budget � ∈ N.

Question: Is it possible to perform � manipulative actions of type X
such that (m∗, w∗) is part of at least one matching that is
stable in the altered instance?

Constructive-Exists-X

In the Exact setting, we are given a complete matching. Within this setting,
we consider two different computational problems. First, we consider the Exact-
Exists problem where the goal is to modify a given SM instance such that the
given matching is stable in the altered instance. Second, we consider the Exact-
Unique problem where the goal is to modify a given SM instance such that the
given matching is the unique stable matching.

Input: Given an SM instance I = (U, W,P), a complete match-
ing M∗, and budget � ∈ N.

Question: Is it possible to perform � manipulative actions of type X
such that M∗ is a (the unique) stable matching in the altered
instance?

Exact-Exists (Unique)-X

There also exist natural optimization variants of all considered decision prob-
lems which ask for the minimal number of manipulative actions that are neces-
sary to alter a given SM instance to achieve the specified goal.

3 Constructive-Exists

In this section, we analyze the computational complexity of Con-
structive-Exists-X . We start with showing intractability for X ∈
{Add,Swap,DeleteAcceptability,Reorder}. Subsequently, we show that Con-
structive-Exists-Delete is solvable in O(n2) time, and Constructive-
Exists-Reorder admits a 2-approximation in the same time.
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3.1 A Framework for Computational Hardness

All W[1]-hardness results essentially follow from the same basic idea for a param-
eterized reduction. We explain the general framework of the reduction, using
the manipulative action Add as an example. The necessary modifications for the
manipulative actions Swap, DeleteAcceptability , and Reorder are described in
the full version [2].

We construct a parameterized reduction from the W[1]-hard Clique prob-
lem [4], where given an undirected graph G and an integer k, the question
is whether G admits a size-k clique, i.e., a set of k vertices that are pair-
wise adjacent. Fix an instance (G, k) of Clique and denote the set of vertices
by V (G) = {v1, . . . , vn} and the set of edges by E(G) = {e1, . . . , em}. Let dv

denote the degree of vertex v. Moreover, let ev
1, . . . , e

v
dv

be a list of all edges
incident to v.

The high-level approach works as follows. We start by introducing two
agents m∗ and w∗. The pair (m∗, w∗) shall be contained in a stable match-
ing. Furthermore, we add q :=

(
k
2

)
women w†

1, . . . , w
†
q, which we call penalizing

women. The idea is that m∗ prefers all penalizing women to w∗, and thereby,
a stable matching containing the pair (m∗, w∗) can only exist if all penalizing
women w†

j are matched to agents they prefer to m∗, as otherwise (m∗, w†
j) would

be a blocking pair for any matching containing (m∗, w∗).
In addition, we introduce one vertex gadget for every vertex and one edge

gadget for every edge, which differ for the different manipulative actions. Each
vertex gadget includes a vertex woman and each edge gadget an edge man: A
penalizing woman can only be matched to an edge man. However, an edge man
can only be matched to a penalizing woman if the gadgets corresponding to
the endpoints of the edge and the gadget corresponding to the edge itself are
manipulated. Thus, a budget of � = k +

(
k
2

)
suffices if and only if G contains a

clique of size k.
We implement the ideas of the general approach for the manipulative action

Add. For each vertex v ∈ V , we introduce a vertex gadget consisting of one
vertex woman wv and two men m′

v and mv. For each edge e ∈ E, we introduce
an edge gadget consisting of an edge man me and one man m′

e and one woman we.
Additionally, we introduce a set of k women w̃1, . . . , w̃k. The agents that can be
added are Uadd := {mv : v ∈ V } ∪ {m′

e : e ∈ E} and Wadd =: ∅, while all other
agents are part of the original instance. We set � := k +

(
k
2

)
. However, we also

show that the reduction holds even if � = ∞. The preferences of the agents are
as follows:

m′
v : wv � w̃1 � . . . mv : wv � (rest)

. . . , � w̃k � w∗ � (rest)
. . . ,

wv : mv � mev1
� · · · � mev

dv
� m′

v � (rest)
. . . , we : m′

e � me � (rest)
. . . ,

me : we � wu � wv � w†
1 � · · · � w†

q � (rest)
. . . , m′

e : we � (rest)
. . . ,

w†
i : me1 � · · · � mem � m∗ � (rest)

. . . , w̃i : m′
v1 � · · · � m′

vn � (rest)
. . . ,

m∗ : w†
1 � · · · � w†

q � w∗ � (rest)
. . . , w∗ : m′

v1 � · · · � m′
vn � m∗ � (rest)

. . . .
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wu

w†
i

mu

m′
u

me m′
e

we

w̃t

m∗w∗

dv + 21 1
1

1 2 1 1j + 1 2
i + 3

p

t + 1q

i m + 1

k + 2

q

q + 1n + 1

Fig. 1. A vertex gadget and an edge gadget for the hardness reduction for Add,
where e = euj = ep and u = vq. The squared vertices are the vertices from Uadd

that can be added to the instance. For each i ∈ [q] (resp. t ∈ [k]), we only exemplar-
ily show one w†

i (resp. w̃t). For an edge {x, y}, the number on this edge closer to x
indicates the rank of y in x’s preferences.

Note that in addition to all penalizing women also all men m′
v need to be

matched to agents which they prefer to w∗, as otherwise every matching contain-
ing (m∗, w∗) is blocked by (m′

v, w∗). This ensures that at most k men mv can
be added to the instance, as there exist only k women w̃i that can be matched
to some m′

v from a manipulated vertex gadget. A visualization of parts of the
construction is depicted in Fig. 1.

Lemma 1. If there exists a set XA of agents (no matter of which size) such that
after their addition there exists a stable matching containing (m∗, w∗), then G
contains a clique of size k.

Proof. Let M be a stable matching containing (m∗, w∗). Since the edges (m∗, w†
i )

are not blocking, all penalizing women are matched to an edge man me for
some e ∈ E. This requires that m′

e ∈ XA, as otherwise (me, we) is a blocking
pair. Moreover, for each such edge e = {u, v}, the vertex women wu and wv

have to be either matched to other edge men or to the men mu or mv. Note
that in both cases, the corresponding agents m′

u and m′
v are matched to one of

the women w̃i, as otherwise (m′
u, w∗) or (m′

v, w∗) is a blocking pair. Thus, there
exist at most k vertices v ∈ V where wv is matched to an edge men or to mv.

Since there are
(
k
2

)
penalizing women, and each of them is matched to an

edge man, it follows that those k vertices form a clique in G, and these edge men
correspond to the edges in the clique. 
�
The reverse direction can be found in the full paper [2]. We conclude that there
exists a parameterized reduction from Clique parameterized by k to Con-
structive-Exists-Add parameterized by �:

Theorem 1. Parameterized by budget �, it is W[1]-hard to decide whether
Constructive-Exists-Add has a solution with at most � additions or has
no solution with an arbitrary number of additions, even if we are only allowed
to add agents of one gender.
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It is also possible to implement the general approach described above for the
manipulative actions Reorder, DeleteAcceptability , and Swap to show hardness
for the respective problems.

Theorem 2 (�). Constructive-Exists-Reorder and Constructive-
Exists-DeleteAcceptability are W[1]-hard parameterized by budget �.
Unless FPT = W[1], Constructive-Exists-Swap does not admit an O(n1−ε)-
approximation in f(�)nO(1) time for any ε > 0.

3.2 Polynomial-Time Algorithms

In sharp contrast to the hardness results for all other considered manipula-
tive actions, there is a simple algorithm for instances Idel of Constructive-
Exists-Delete consisting of an SM instance I together with a man-woman
pair (m∗, w∗) in linear time in the size of the input. The algorithm is based on
the following observation. Let W ∗ be the set of women preferred by m∗ to w∗,
and U∗ the set of men preferred by w∗ to m∗. In all stable matchings M includ-
ing (m∗, w∗), every woman in W ∗ needs to be matched to a man which she
prefers to m∗, or needs to be deleted. Analogously, every man in U∗ needs to
be matched to a woman which he prefers to w∗, or needs to be deleted. Conse-
quently, all pairs consisting of an agent a ∈ U∗ ∪ W ∗ and an agent a′ which a
does not prefer over w∗ or m∗ cannot be part of any stable matching. This
observation motivates a transformation of the given SM instance I into a SMI
instance I ′ through the deletion of all such pairs. We also delete w∗ and m∗

from I ′ and compute a stable matching M in the resulting instance.
Let A′ be the set of agents from U∗ ∪ W ∗ which are unassigned in M . We

claim that deleting A′ is indeed a minimum number of agents to delete such that
(m∗, w∗) is part of a stable matching in I. To show this, we need the following
lemma.

Lemma 2 (�). Let I ′ be an SMI instance and a ∈ A some agent. Then, there
exists at most one agent a′ ∈ A who was unassigned in I ′, i.e., a′ /∈ ma(I ′), and
is matched in I ′ \ {a}, i.e., a′ ∈ ma(I ′ \ {a}).

Using Lemma 2, we can now show the correctness of the algorithm.

Theorem 3. Constructive-Exists-Delete is solvable in O(n2) time.

Proof. Since a stable matching in an SMI instance can be computed in O(n2)
time [10], the set A′ clearly can be computed in O(n2). We claim that Idel is a
YES-instance if and only if |A′| ≤ �.

First assume |A′| ≤ �. Let M ′ be a stable matching in I ′. We add (m∗, w∗)
to M ′, and claim that this is a stable matching in I \ A′, showing that I is a
YES-instance. For the sake of a contradiction, assume that there exists a blocking
pair (m,w). Since this is not a blocking pair in I ′ \ A′, it contains an agent a
from (U∗ ∪ W ∗) \ A′, and a prefers w∗ over w if a = m or m∗ over m if a = w.
Without loss of generality, let a = m. However, as m is matched in M ′, he
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prefers M ′(m) = M(m) to w∗. Thus, m prefers M(m) over w, a contradiction
to (m,w) being blocking for M .

Now assume that |A′| > �. For the sake of contradiction, assume that there
exists a set of agents B′ = {b1, . . . , bk} with k ≤ � such that I\B′ admits a stable
matching M containing (m∗, w∗). For each i ∈ [k], let Mi be a stable matching
in I ′ \ {b1, . . . , bi}. By the definition of A′, all agents from A′ are unassigned
in M0. Note that each agent a ∈ A′ ⊆ A∗ is either part of B′ or prefers M(a)
over m∗ or w∗ due to the stability of M ; in particular, a is matched in M
and thereby also in Mk. Since k ≤ � < |A′|, there exists an i such that there
exist two agents a, a′ ∈ A′ which are unassigned in Mi−1 and not contained
in {b1, . . . , bi−1} but matched in Mi or contained in {b1, . . . bi}.

From Lemma 2 it follows that it is not possible that both a and a′ are
unassigned in Mi−1 but matched in Mi. Consequently, without loss of generality
it needs to hold that a = bi, and a′ ∈ ma(I \ {b1, . . . bi}) \ ma(I \ {b1, . . . bi−1}).
However, by deleting an agent that was previously unassigned, the set of matched
agents does not change, i.e., ma(I \ {b1, . . . bi−1}) = ma(I \ {b1, . . . bi}), since a
matching that is stable in I \ {b1, . . . bi−1} is also stable in ma(I \ {b1, . . . bi}),
as by deleting unassigned agents it is not possible to create new blocking pairs.
This contradicts a′ ∈ ma(I \ {b1, . . . bi}) \ ma(I \ {b1, . . . bi−1}). 
�

Using the same ideas (but observing that a Reorder operation can make two
previously unassigned agents assigned), we get a 2-approximation for Reorder.

Proposition 1 (�). One can compute a factor-2 approximation of the opti-
mization version of Constructive-Exists-Reorder in O(n2) time.

4 Exact-Exists

In this section, we deal with the problem of making a given matching in an SM
instance stable by performing Swap, Reorder, or DeleteAcceptability actions.
In fact, it turns out that specifying the full matching instead of one pair makes
the problem easier, as for all manipulative actions for which we showed hardness
in the previous section, Exact-Exists-X becomes polynomial-time solvable.
The intuitive reason for this difference is that the problem of making a given
matching M∗ stable reduces to “resolving” all blocking pairs for M∗. We only
briefly describe the main ideas here and refer to the full version for details [2].

For DeleteAcceptability , this task is straightforward, as it is always optimal
to delete the acceptability of all blocking pairs. For Reorder, it is possible to
delete all blocking pairs involving some agent a at cost one, as it possible to
reorder the preferences of a such that M∗(a) becomes her top-choice. Therefore,
to find an optimal solution, it is necessary to find a minimal subset of agents that
covers all blocking pairs. This reduces to finding a vertex cover in a bipartite
graph where we introduce for each agent a vertex and connect two vertices if the
corresponding agents form a blocking pair.

For Swap, the cost of resolving a blocking pair (m,w) by modifying the
preferences of m, and symmetrically for w, is the number of swaps needed to
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swap M∗(m) with w. However, by resolving some blocking pair involving an
agent, also other blocking pairs involving this agent may be resolved. Thereby,
the “true” costs of resolving a pair are difficult to compute, and a more involved
approach is needed to determine which of the two agents involved in a blocking
pair should be manipulated to resolve it. However, it turns out that this problem
can be reduced to an instance of the Minimum Cut problem, proving that
Exact-Exists-Swap can be solved in O(n3) time.

5 Exact-Unique

Now, we turn from the task of making a given matching stable to the task of
making it the unique stable matching. We show that this change makes the
considered computational problems significantly more demanding in the sense
that the Exact-Unique question is W[2]-hard with respect to � for Reorder and
NP-complete for Swap. In contrast, the problem for DeleteAcceptability is still
solvable in polynomial time.

The W[2]-hardness result for the manipulative action Reorder and the NP-
completeness of Swap both follow from the same parameterized reduction from
the W[2]-complete Hitting Set problem [4] with small modifications. In an
instance of Hitting Set, we are given a universe Z, a family F = {F1, . . . , Fp}
of subsets of Z, and an integer k, and the task is to decide whether there exists
a hitting set of size k, i.e., a set X ⊆ Z with |X| ≤ k and X ∩ F = ∅ for
all F ∈ F . The general idea of the construction is to add, for each set F ∈ F , a
set gadget consisting of two men and two women, and, for each element z ∈ Z,
an element gadget consisting of a man-woman pair. We connect all set gadgets to
the element gadgets corresponding to the elements in the set. The preferences are
constructed in a way such that in each set gadget where none of the connected
element gadgets are manipulated, the two women can switch their partners and
the resulting matching is still stable given that M∗ is stable. In contrast, when
a connected element gadget is manipulated, then this switch is blocked and M∗

is the unique stable matching in this gadget. Thereby, the manipulated element-
gadgets form a hitting set.

Theorem 4. Exact-Unique-Reorder parameterized by � is W[2]-hard, even
if the given matching M∗ is already stable in the original instance and we are
only allowed to modify the preferences of agents of one gender.

Proof sketch. We give the construction of a parameterized reduction from Hit-
ting Set, which is known to be W[2]-complete parameterized by the solution
size k [4]. For each element z ∈ Z, we add a man mz and a woman wz, which
are the first choices of each other. For each set F = {z1, . . . , zq} ∈ F , we add
two men m1

F and m2
F and two women w1

F and w2
F with the following preferences

m1
F : w1

F � wz1 � wz2 � · · · � wzq
� w2

F � (rest)
. . . , m2

F : w2
F � w1

F � (rest)
. . . ,

w1
F : m2

F � m1
F � (rest)

. . . , w2
F : m1

F � m2
F � (rest)

. . . .
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We set M∗ := {(mz, wz) : z ∈ Z} ∪ {(m1
F , w1

F ), (m2
F , w2

F ) : F ∈ F}, and � := k.

�

It is possible to adapt the reduction from the previous theorem to prove
hardness for the manipulative action Swap. Here, we utilize the fact that Reorder
operations can be modeled by (up to n2 + n) Swap operations. To do so, we
adapt the reduction such that it is only possible to modify the preferences of
women wz and add an “activation cost” to modifying the preferences of wz such
that only the preferences of a fixed number of women can be modified but for
these we can modify them arbitrarily.

Proposition 2 (�). Exact-Unique-Swap is NP-complete, even if the given
matching M∗ is already stable in the original instance and we are only allowed
to modify the preferences of agents of one gender.

In contrast to the hardness results for the other two manipulative actions,
Exact-Unique-DeleteAcceptability is solvable in polynomial time. On an
intuitive level, one reason for this is that it is not possible to manipulate whether
an agent a ranks some other agent a′ above or below M∗(a).

The polynomial-time algorithm for Exact-Unique-DeleteAcceptability
uses the theory of rotations, which we briefly recap. In a stable matching M ,
for a man m ∈ U , let sM (m) denote the first woman w succeeding M(m)
in m’s preference list that prefers m to M(w). If no such woman exists,
then we set sM (m) := ∅. A rotation exposed in a stable matching M is a
sequence ρ = (mi0 , wj0), . . . , (mir−1 , wjr−1) such that for each k ∈ [0, r − 1]
it holds that (mik , wjk) ∈ M and wjk+1 = sM (mik), where additions are taken
modulo r. We call such a rotation a man-rotation and sM (m) the rotation succes-
sor of m. We define sW (w) for w ∈ W analogously and call a rotation where the
roles of men and women are switched woman-rotation. As a matching is unique
if and only if it exposes neither a man-rotation nor a woman-rotation [11], it
is possible to reformulate the goal of Exact-Unique-DeleteAcceptability:
Modify the given SM instance by deleting the acceptability of at most � pairs
such that neither a man-rotation nor a woman-rotation is exposed in M∗.

First of all, note that it is possible to solve the problem of removing all man-
rotations exposed in M∗ and the problem of removing all woman-rotations sepa-
rately. To remove man-rotations, we only delete the acceptability of pairs (m,w)
where m prefers M∗(m) to w and w prefers m to M∗(w). For woman-rotations,
the situation is symmetric. We solve both problems by reducing them to the
Minimum Weight Spanning Anti-Arborescence problem, which can be
solved in O(m + n log n) time [5,9]. In an instance of the Minimum Weight
Spanning Anti-Arborescence problem, we are given a directed graph G with
arc costs and a budget k ∈ N. The question is whether there exists a spanning
anti-arborescence, i.e., an acyclic subgraph of G such that all vertices of G but
one have out-degree exactly one, of cost at most k.

The basic idea of the algorithm is the following for man-rotations (and
symmetrically for woman-rotations). For a set of deleted acceptabilities F ,
let sF

M∗(m) denote the rotation successor of m after the deletion of F . We
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need to find a set of deleted acceptabilities F such that M∗ ∪ {(m, sF
M∗(m)) :

m ∈ U with sF
M∗(m) = ∅} is acyclic. Note that we can change sM∗(m) only by

deleting the pair (m, sM∗(m)). In this case, the new rotation successor becomes
the first woman w′ succeeding sM∗(m) in m’s preference list that prefers m
over M∗(w′). Thus, we know the costs of making a woman w′ the rotation succes-
sor of m. The problem of making M∗∪{(m, sF

M∗(m)) : m ∈ U with sF
M∗(m) = ∅}

acyclic can thus be translated to finding a minimum weight spanning anti-
arborescence where we add a “sink” t to represent the case that sF

M∗(m) = ∅.

Theorem 5. Exact-Unique-DeleteAcceptability can be solved in O(n2)
time.

Proof. Clearly, any solution needs to delete all blocking pairs. Thus, we assume
without loss of generality that M∗ is a stable matching.

We reduce the problem to two instances of the Minimum Weight Spanning
Anti-Arborescence problem. The first instance of this problem is constructed
as follows. We contract all pairs (m,w) of M∗ to a vertex {m,w} and add a sink t.
We add an arc ({m,w}, {m′, w′}) if w′ prefers m to m′ and m prefers w to w′.
The weight of this arc is the number of women w∗ such that m prefers w∗ to w′

and w to w∗, and w∗ prefers m to M∗(w∗). We call this graph HU . Similarly,
we construct a graph HW (where the roles of men and women are exchanged).

We claim that M∗ can be made the unique stable matching after the deletion
of � arcs if and only if the minimum weight anti-arborescences in HU and HW

together have weight at most �.
(⇒) Let F ⊆ U × W be the set of pairs whose deletion makes M∗ the

unique stable matching. Let FU := {(m,w) ∈ F : w �m M∗(m)} and FW :=
{(m,w) ∈ F : m �w M∗(w)}. For any man m, let em := {w′,M∗(w′)}, where w′

is the woman best-ranked by m succeeding M∗(m) such that w prefers m
to M∗(w) after the manipulation, i.e,. w′ is the rotation successor of m after
the manipulation. If no such woman exists, then we set em := t. We construct
an anti-arborescence in HU of cost at most |FW | by adding for each pair (m,w)
the arc ({m,w}, em) to the anti-arborescence. We claim that HU is an anti-
arborescence. Every vertex but t has exactly one outgoing arc, so it is enough to
show that there does not exist a cycle. As we have inserted for each man an arc
from the node including him to the node including his rotation successor, there
cannot exist any cycle in the anti-arborescence, as such a cycle would induce a
man-rotation in the modified SM instance. Such a man-rotation cannot exist, as
we have assumed that M∗ is the unique stable matching after the modifications.

In the same way one can construct an anti-arborescence of cost |FU | in HW .
The constructed anti-arborescences together have weight at most |FW |+ |FU | ≤
|F |, as any arc in FW ∩ FU would be a blocking pair for M∗.

(⇐) Let AU be an anti-arborescence in HU , and AW be an anti-arborescence
in HW . For every arc ({m,w}, {m̃, w̃}) ∈ AU , we delete the acceptability of
all pairs {m,w′} with m preferring w′ to w̃, and w to w′, and w′ preferring m
to M∗(w′). After these deletions, w̃ is the rotation successor of m. Let FU denote
the set of pairs deleted. We proceed with AW analogously, and denote as FW

the set of deleted pairs. Clearly, AU has cost |FU |, and AW has cost |FW |.
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Assume that M∗ is not the unique stable matching after deleting the
pairs from FU ∪ FW . Then, without loss of generality, a man-rotation is
exposed in M∗: (mi0 , wj0), . . . , (mir−1 , wjr−1). As we already observed, the
anti-aborescence AU contains all arcs ({m,w}, {m̃, w̃}) where w̃ is m’s
rotation-successor (after the deletion of FU ). Thus, AU contains the
arcs ({mik , wjk}, {mik+1 , wjk+1}) for all k ∈ [0, r − 1] (all indices are taken mod-
ulo r). This implies that AU contains a cycle, a contradiction to AU being an
anti-arborescence. 
�

6 Conclusion

We provided a first comprehensive study of the computational complexity of
several manipulative actions and goals in the context of the Stable Marriage
problem. Our rich and diverse set of theoretical results is surveyed in Table 1.

Several challenges for future research remain. In contrast to the setting con-
sidered here, there is also a destructive view on manipulation, where the goal is to
prevent a certain constellation—our algorithmic results and some of our hardness
results for the constructive case seem to carry over. Moreover, for the Construc-
tive-Unique scenario not presented here, most of our hardness results still hold.
A very specific open question is whether the Exact-Unique-Swap problem is
fixed-parameter tractable when parameterized by the budget. Additionally, there
is clearly a lot of room for investigating more manipulative actions or to extend
the study of external manipulation to stable matching problems beyond Stable
Marriage. Also weighted matchings might be of special interest.

On the practical side, we performed some preliminary experimental work
with some of the algorithms derived in this paper. Experimenting with several
forms of synthetic data and one set of real-world data collected in the context of
the analysis of speed dating [8], we draw the following main conclusions for two
of our settings: First, in the Constructive-Exists setting, we observed that for
more than half of all possible agent pairs it was sufficient to delete around 15% or
less of the agents to ensure that this agent pair is part of a stable matching. This
suggests that the Delete operation is pretty powerful in this setting. Second, in
the Exact-Exists setting, the given instance needs to be significantly changed to
make a randomly drawn complete matching stable. Surprisingly, for the powerful
action Reorder on average close to half of the agents had to be modified. In this
regard, observe that there always exists a trivial solution where the preferences
of all agents from one gender are reordered.
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Abstract. Finding a stable matching is one of the central problems in
algorithmic game theory. If participants are allowed to have ties and
incomplete lists, computing a stable matching of maximum cardinality
is known to be NP-hard. In this paper we present a (3L − 2)/(2L − 1)-
approximation algorithm for the stable matching problem with ties of
size at most L and incomplete preferences. Our result matches the known
lower bound on the integrality gap for the associated LP formulation.

Keywords: Stable matching · Approximation algorithms ·
Combinatorial optimization

1 Introduction

In an instance of the classical stable matching problem we are given a (complete)
bipartite graph G = (A ∪ B,E) where, following standard terminology, the nodes
in A will be referred to as men, and the nodes in B represent women. Each man
a ∈ A possesses a (strict, and complete) preference order over women in B, and
similarly, all women in B have a preference order over men in A. A matching M
in G is called stable if there are no blocking pairs (a, b); i.e. there do not exist
(a, b) �∈ M where both a and b prefer each other over their current partners in M
(if there are any). In their celebrated work [4], Gale and Shapley proposed an
efficient algorithm for finding a stable matching, providing a constructive proof
that stable matchings always exist.

Stable matchings have wide-spread applications (e.g., see Manlove [3]), and
many of these are large-scale. Therefore, as McDermid [15] points out, assuming
that preferences are complete and strict is not realistic. Thus, in this paper, we
will focus on stable matchings in the setting where preference lists are allowed
to be incomplete and contain ties. Here, a woman is allowed to be indifferent
between various men, and similarly, a man may be indifferent between several
women. In this setting we consider the maximum-cardinality stable matching
problem where the goal is to find a stable matching of maximum cardinality.

It is well-known that, in the settings where G is either complete or prefer-
ences do not contain ties, all stable matchings have the same cardinality [5].
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Moreover, a straightforward extension of the algorithm in [4] solves our problem
in these cases. When ties and incomplete preferences are permitted simultane-
ously, on the other hand, the problem of finding a maximum-cardinality sta-
ble matching is well-known to be NP-hard [14]. Furthermore, Yanagisawa [17]
showed that it is NP-hard to find a (33/29 − ε)-approximate, maximum-
cardinality stable matching. The same author also showed that assuming the
unique games conjecture (UGC) it is hard to achieve performance guarantee of
4/3 − ε.

On the positive side, maximum-cardinality stable matchings with ties and
incomplete preferences have attracted significant attention [1,6–12,15,16]. The
best-known approximation algorithms for the problem achieve an approximation
ratio of 3/2 [9,15,16].

How does the hardness of maximum-cardinality stable matching depend on
the maximum allowed size of ties in the given instance? Huang and Kavitha [6]
recently considered the case where the size of any tie is bounded by L = 2. The
authors proposed an algorithm and showed that its performance guarantee is
at most 10/7. Chiang and Pashkovich [2] later provided an improved analysis
for the same algorithm, showing that its real performance ratio is at most 4/3,
and this result is tight under the UGC [17]. Lam and Plaxton [13] very recently
designed a 1 + (1 − 1/L)L-approximation algorithm for the so-called one-sided
special case of our problem, where only preferences of men are allowed to have
ties.

1.1 Our Contribution

Our main result is captured in the following theorem. Note that the integrality
gap of the natural LP relaxation for the problem is at least (3L−2)/(2L−1) [8].
Hence, the performance ratio of our algorithm matches the known lower bound
on the integrality gap.

Theorem 1. Given an instance of the maximum-cardinality stable matching
problem with incomplete preferences, and ties of size at most L; the polynomial-
time algorithm described in Sect. 2 finds a stable matching M with

|M | ≥ 2L − 1
3L − 2

|OPT|,

where OPT is an optimal stable matching.

Our algorithm is an extension of that by Huang and Kavitha [6] for ties of
size two: every man has L proposals where each proposal goes to the acceptable
women. Women can accept or reject these proposals under the condition that
no woman holds more than L proposals at any point during the algorithm.
Similar to the algorithm in [6], we use the concept of promotion introduced by
Király [9] to grant men repeat chances in proposing to women. In comparison to
[6], the larger number of proposals in our algorithm leads to subtle changes to
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the forward and rejection mechanisms of women, and to further modifications
to the way we obtain the output matching.

Our analysis is inspired by the analyses of both, Chiang and Pashkovich [2],
and Huang and Kavitha [6], but requires several new ideas to extend it to the
setting with larger ties. In both [6] and [2], the analyses are based on charg-
ing schemes: some objects are first assigned some values, called charges, and
then charges are redistributed to nodes by a cost function. After a charging
scheme is determined, relations between the generated total charges, and the
sizes of output and optimal matchings are established, respectively, that lead to
an approximation ratio. The analysis in [6] employs a complex charging scheme
that acts globally, possibly distributing charges over the entire graph. In con-
trast, the charging scheme in [2] is local in nature, and exploits only the local
structure of the output and optimal matchings, respectively.

We do not know of a direct way to extend the local cost-based analysis of
[2] to obtain an approximation algorithm whose performance beats the best
known 3/2-approximation for the general case. Indeed we believe that any such
improvement must involve a non-trivial change in the charging scheme employed.
As a result, we propose a new analysis that combines local and global aspects
from [2,6]. The central technical novelty in the analysis is captured by Lemma 4
that provides an improved lower bound on the cost of components. As we will
see later, our new charging scheme allows for a more fine-grained accounting of
augmenting paths for the output matching of our algorithm.

2 Algorithm for Two-Sided Ties of Size Up to L

We introduce some notational conventions. Let a′, a′′ ∈ A be on the preference
list of b ∈ B. We write a′ �b a′′ if b is indifferent between a′ and a′′, and we
write a′ >b a′′, or a′ ≥b a′′ if b strongly, or weakly prefers a′ over a′′, respectively.
The preferences of men over women are defined analogously. For c ∈ A ∪ B, we
let N(c) denote the set of nodes adjacent to c in G.

2.1 How Men Propose

Each man a ∈ A has L proposals p1a, p2a, . . . , pL
a . A man starts out as basic, and

later becomes 1-promoted before he is eventually elevated to 2-promoted status.
Each man a ∈ A has a rejection history R(a) which records the women who
rejected a proposal from a during his current promotion status. Initially, we let
R(a) = ∅, for all a ∈ A.

Each proposal pi
a for a ∈ A and i = 1, 2, . . . , L goes to a woman in N(a)\R(a)

most preferred by a, and ties are broken arbitrarily. If a proposal pi
a for a ∈ A

and i = 1, 2, . . . , L is rejected by a woman b ∈ B, b is added to the rejection
history of a, and subsequently, pi

a is sent to a most preferred remaining woman
in N(a) \ R(a).
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Suppose now that R(a) becomes equal to N(a) for some man a ∈ A. If
a is either basic or 1-promoted then a’s rejection history is cleared, and a is
promoted. Otherwise, if a is already 2-promoted, a stops making proposals.

2.2 How Women Decide

Each woman b ∈ B can hold up to L proposals, and among these more than
one can come from the same man. Whenever she holds less than L proposals,
newly received proposals are automatically accepted. Otherwise, b first tries to
bounce one of her proposals, and if that fails, she will try to forward one of
her proposals. If b can neither bounce nor forward a proposal, then b rejects a
proposal.

We continue describing the details. In the following, we let P (b) and A(b)
denote the set of proposals held by b ∈ B at the current point, and the set of
men corresponding to these, respectively. Suppose that |P (b)| = L, and that b
receives a new proposal pi

a for some a ∈ A and i = 1, . . . , L.

Bounce Step. If there is a man α ∈ A(b) ∪ {a} and a woman β ∈ B \ {b} such
that β �α b, and β currently holds less than L proposals, then we move one of
α’s proposals from b to β, and we call the bounce step successful.

Forward Step. If there is a man α ∈ A(b) ∪ {a} and a woman β ∈ B \ {b}
such that β �α b, at least two proposals from α are present in P (b), no proposal
from α is present in P (β) and β is not in R(α), then b forwards a proposal
pj

α ∈ P (b) ∪ {pi
a} for some j = 1, . . . , L to β and the forward step is called

successful. As a consequence of a successful forward step, α makes the proposal
pj

α to β.
We point out that bounce and forward steps do not lead to an update to the

rejection history of an involved man. To describe the rejection step, we introduce
the following notions. For a woman b ∈ B, a proposal pi′

a′ is called more desirable
than pi′′

a′′ for a′, a′′ ∈ A and i′, i′′ = 1, . . . , L if b strongly prefers a′ to a′′, or if
b is indifferent between a′ and a′′ and a′ has higher promotion status than a′′.
A proposal pi′

a′ ∈ P (b) is least desirable in P (b) if pi′
a′ is not more desirable than

any proposal in P (b). Whenever b ∈ B receives a proposal pi
a, |P (b)| = L, and

neither bounce nor forward steps are successful, we execute a rejection step.

Rejection Step. If there is unique least desirable proposal in P (b) ∪ {pi
a}, then

b rejects that proposal. Otherwise, if there are more than one least desirable
proposal in P (b), b rejects a proposal from a man with the largest number of
least desirable proposals in P (b) ∪ {pi

a}. If there are several such men, then we
break ties arbitrarily. Subsequently, b is added to the rejection history of the
man whose proposal is rejected.

2.3 The Algorithm

An approximate maximum-cardinality stable matching for a given instance G =
(A ∪ B,E) is computed in two stages.
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Stage 1. Please see Algorithm 1 for the pseudo code for Stage 1.
Men propose in an arbitrary order and women bounce, forward or reject

proposals as described above. The first stage finishes, when for each man a ∈ A,
one of the following two conditions is satisfied: all proposals of a are accepted;
R(a) becomes equal to N(a) for the third time.

We represent the outcome of the first stage as a bipartite graph G′ = (A ∪
B,E′) with the node set A ∪ B and the edge set E′, where each edge (a, b) ∈ E′

denotes a proposal from a held by b at the end of the first stage. Note that G′

may be a multigraph in which an edge of the form (a, b) appears with multiplicity
equal to the number of proposals that b holds from a. Clearly, each node u in G′

has degree at most L, denoted by degG′(u) ≤ L, since every man has at most L
proposals that may be accepted and every woman can hold at most L proposals
at any point in the first stage.

Stage 2. We compute a maximum-cardinality matching M in G′ such that
all nodes of degree L in G′ are matched. The existence of such matching is
guaranteed by Lemma 1. The result of the second stage is such a matching M ,
that is the output of the algorithm.

Lemma 1. There exists a matching in the graph G′ such that all nodes of degree
L in G′ are matched. Moreover, there is such a matching M , where all nodes of
degree L in G′ are matched and we have

|M | ≥ |E′|/L .

Proof. Consider the graph G′ = (A ∪ B,E′) and the following linear program

max
∑

e∈E′
xe

s.t.
∑

e∈δ(u)

xe ≤ 1 (u ∈ A ∪ B)

∑

e∈δ(u)

xe = 1 (u ∈ A ∪ B,degG′(u) = L)

x ≥ 0.

It is well-known that the feasible region of the above LP is an integral polyhedron.
Moreover, the above LP is feasible as is easily seen by considering the point that
assigns 1/L to each edge in E′. Hence there exists an integral point optimal
for this linear program. Notice, that every integral point feasible for this linear
program is a characteristic vector of a matching in G′, which matches all nodes
of degree L in G′. To finish the proof, notice that the value of the objective
function calculated at x� equals |E′|/L. Thus the value of this linear program is
at least |E′|/L, finishing the proof. �	

2.4 Stability of Output Matching

Let the above algorithm terminate with a matching M . We first argue that it is
stable.
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Algorithm 1. Pseudo code for Stage 1 of the algorithm
1: let G = (A∪B, E) be an instance graph, and N(c) denote the set of nodes adjacent

to c ∈ A ∪ B in G
2: let G′ = (A ∪ B, E′) be a multigraph with E′ initialized to the empty multiset of

edges
3: let degG′(u) denote the degree of node u in G′, and A(b) denote the set of nodes

adjacent to b ∈ B in G′

4: for all a ∈ A do
5: R(a) := ∅ � R(a) is the rejection history of man a
6: stata := 0 � stata is the promotion status of man a
7: end for
8: while ∃a ∈ A s.t. degG′(a) < L and R(a) �= N(a) do
9: let b ∈ N(a) \ R(a) be a woman s.t. b ≥a b′ for all b′ ∈ N(a) \ R(a)

10: propose(a, b)
11: end while
12: return E′

{The following subroutine describes how b accepts the proposal from a, or bounces,
forwards, or rejects a proposal}

13: procedure propose(a, b)
14: if degG′(b) < L then
15: E′ := E′ ∪ {(a, b)}
16: else if ∃α ∈ A(b) ∪ {a} and ∃β ∈ N(α) s.t. β �α b and degG′ β < L then
17: E′ := E′ ∪ {(a, b), (α, β)} \ {(α, b)} � bounce
18: else if ∃α ∈ A(b) ∪ {a} and ∃β ∈ N(α) \ R(α) s.t. β �α b,

|(E′ ∪ {(a, b)}) ∩ {(α, b)}| ≥ 2 and α /∈ A(β) then
19: E′ := E′ ∪ {(a, b)} \ {(α, b)}
20: propose(α, β) � forward
21: else
22: let A denote {α ∈ A(b) ∪ {a} : for all a′ ∈ A(b) ∪ {a}, α ≤b a′ and

if α �b a′, then statα ≤ stata′}
23: let α0 be a man in arg maxα∈A |(E′ ∪ {(a, b)}) ∩ {(α, b)}|
24: E′ := E′ ∪ {(a, b)} \ {(α0, b)} � reject
25: R(α0) := R(α0) ∪ {b}
26: if R(α0) = N(α0) then
27: if statα0 < 2 then
28: statα0 := statα0 + 1
29: R(α0) := ∅

30: end if
31: end if
32: end if
33: end procedure

Lemma 2. The output matching M is stable in G = (A ∪ B,E).

Proof. Suppose for contradiction that M is not stable, i.e. suppose that there
exists an edge (a, b) ∈ E that blocks M . If b rejected a proposal from a during
the algorithm, then b holds L proposals when the algorithm terminates and all
these proposals are from men, who are weakly preferred by b over a. Thus the
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degree of b in G′ is L implying that b is matched in M with a man, who is not
less preferred by b than a. We get a contradiction to the statement that (a, b)
blocks M .

Conversely, if b did not reject any proposal from a during the algorithm, then
the algorithm terminates with all L proposals of a being accepted, particularly,
by women, who are weakly preferred by a over b. Therefore the degree of a in G′

is L implying that a is matched in M with a woman, who is not less preferred by
a than b. Again, we get a contradiction to the statement that (a, b) is a blocking
pair for M . �	

2.5 Running Time

We now show that each stage of the algorithm has polynomial execution time.
For the first stage, we illustrate that only a polynomial number of proposals
are bounced, forwarded, or rejected during this stage. For the second stage, the
proof of Lemma 2 implies that it is sufficient to find an optimal extreme solution
for a linear program of polynomial size.

First, we show that proposals are bounced only polynomially many times.
For every b ∈ B, at most L proposals may be bounced to b. Indeed, with each
proposal bounced to b, the number of proposals held by b increases; also, the
number of proposals held by b never decreases or exceeds L during the algorithm.
Hence at most L|B| proposals are bounced during the first stage.

Second, we illustrate that proposals are forwarded only polynomially many
times. For each a ∈ A, promotion status of a, and b ∈ B such that (a, b) ∈
E, at most one proposal of a may be forwarded to b. To see this, let b′ be a
woman forwarding a proposal of a to b. Notice that b cannot bounce the proposal
after b receives it because, otherwise, b′ could bounce it by the transitivity of
indifference. Observe also that b may forward a proposal from a only if she holds
another proposal from him. Then it follows from the forward step that no woman
can forward a proposal of a to b as long as b holds a proposal from him. If b
rejects the proposal, then she is added to the rejection history of a, and so b
does not receive any proposal from a unless the promotion status of a changes.
Hence at most 3|A||B| proposals are forwarded during the first stage.

Finally, for each a ∈ A, promotion status of a, and b ∈ B such that (a, b) ∈ E,
b may reject at most L proposals from a. Indeed, b holds at most L proposals
at any point in time, and since b is added to the rejection history of a after
she rejected him, b does not receive any proposal from a unless the promotion
status of a changes. Hence at most 3L|A||B| proposals are rejected during the
first stage.

3 Tight Analysis

Recall that OPT is a maximum-cardinality stable matching in G, and let M be
the output matching defined above. If a ∈ A is matched with b ∈ B in OPT, we
write OPT(a) := b and OPT(b) := a. Similarly, we use the notations M(a) := b
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and M(b) := a when a ∈ A is matched with b ∈ B in M . Note that our analysis
is based on graph G′ and therefore all graph-related objects will assume G′.

Definition 1. A man a ∈ A is called successful if the algorithm terminates with
all of his L proposals being accepted. Likewise, a woman b is called successful
if she holds L proposals when the algorithm stops. In other words, a person
c ∈ A ∪ B is successful if the degree of c in G′ is L, and unsuccessful otherwise.

Definition 2. A woman is called popular if she rejected a proposal during the
algorithm, and unpopular otherwise.

Remarks 1 and 2 below directly follow from the algorithm and are conse-
quences of the bouncing step, and the rejection step, respectively.

Remark 1. Let a ∈ A and b, b′ ∈ B be such that b holds a proposal from a when
the algorithm finishes, b′ is unsuccessful, and b′ �a b. Then b is unpopular.

Proof. Suppose for contradiction that b is popular. Then at some point she
could not bounce or forward any one of her proposals and so she was to reject a
proposal. This implies that after b became popular, whenever she received a new
proposal that could be bounced, that proposal would immediately be bounced.
But then, when the algorithm terminates, b holds a proposal from a, that could
successfully be bounced to b′, a contradiction. �	
Remark 2. Let a, a′ ∈ A and b ∈ B be such that b holds at least two proposals
from a when the algorithm finishes, b rejected a proposal from a′ at some point,
a is basic, and a′ �b a. Then there is an edge (a′, b) in G′.

Proof. Suppose for a contradiction that (a′, b) /∈ G′ holds. Let t be the most
recent point in time when b rejects a proposal from a′. Then it follows from the
algorithm that, at t, a′′ ≥b a′ holds for all a′′ ∈ A(b). The rejection step also
implies that, at t, there is no a′′ ∈ A such that a′ �b a′′, a′′ is basic, and b holds
more than one proposal from a′′. Moreover, the algorithm implies that, after t,
whenever she receives a new proposal from a man a′′ such that a′′ <b a′, she
will immediately reject it unless she successfully bounces or forwards it. Now,
consider a point in time after t when there is a man a′′ such that a′ �b a′′, b
already holds a proposal from a′′, and receives another proposal from a′′. Then
the rejection step implies that she will reject one of the proposals from a′′ unless
she successfully bounces or forwards it. But then, when the algorithm terminates,
b holds at least two proposals from a, a contradiction.

3.1 Analytical Techniques

In the following, we define inputs, outputs, and costs – notions that are central
in the analysis of our charging scheme. Before we take a closer look at these
notions and define them formally, let us discuss phenomena captured by them.

We use two different objects, inputs and outputs, to differentiate between
two different viewpoints on proposals accepted when the algorithm ends. In
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particular, inputs are associated with the viewpoint of women on the proposals
whereas outputs are associated with the viewpoint of men. The choice of terms
“inputs” and “outputs” is due to the analysis in [6] where the edges of G′ are
directed from men to women, and so each proposal becomes an “input” for the
woman, and analogously becomes an “output” for the corresponding man.

Now we describe the ideas that motivated our definitions concerning outputs
and inputs. Let M +OPT denote the multiset that contains the edges in M and
the edges in OPT. To establish the approximation guarantee of our algorithm,
we analyze each connected component in M + OPT. In order to show that M -
augmenting paths in M +OPT do not lead to a large approximation guarantee,
we introduce the notions of bad and good inputs as well as bad and good outputs.
For example, a certain number of bad inputs and bad outputs are generated
by the edges incident to the endpoints of an M -augmenting path in M + OPT.
Indeed, as we will see later, if a0 − b0 − a1 − . . . − ak − bk is an M -augmenting
path in M + OPT of length 2k + 1, k ≥ 2 where a0 ∈ A, then b0 has at least
L − 2 bad inputs and ak has at least L − 2 bad outputs. Then to show the
approximation guarantee of (3L − 2)/(2L − 1), we provide a way to obtain a
lower bound on the number of bad inputs and bad outputs of men and women
in each M -augmenting path; and later we provide an upper bound on the total
number of bad inputs and bad outputs of all men and women.

To implement the above ideas, we use a charging scheme. Our charging
scheme associates a cost with each man and each woman. These costs keep
track of bad inputs and bad outputs: bad inputs lead to an increase of the corre-
sponding woman’s cost and bad outputs lead to an increase of the corresponding
man’s cost. We show that the total cost of all men and women is bounded above
by 2L|M |. On the other side, we provide a lower bound on the total cost by
giving a lower bound on the cost of each connected component in M + OPT.
These upper and lower bounds lead to the desired approximation guarantee of
(3L − 2)/(2L − 1).

3.2 Inputs and Outputs

In our analysis inputs and outputs are fundamental edge-related objects for our
charging scheme. Each edge in G′ generates a certain number of charges. For
example, as we will see in Sect. 3.3, if an edge (a, b) in G′ belongs either to
M or to OPT, two charges are generated by (a, b) so that one is carried to
node a and one is carried to node b by cost function. To define similar charging
mechanisms for the remaining types of edges in G′, we first distinguish them as
in the following definitions.

Definition 3. Given an edge (a, b) in G′, we say that (a, b) is an output from
a ∈ A and an input to b ∈ B if (a, b) is not in M + OPT.

To illustrate how outputs and inputs are determined, for example, let (a, b) ∈
M , a ∈ A, b ∈ B and n(a,b) be the number of edges of the form (a, b) in the
multigraph G′, then the edge (a, b) gives rise to the following number s(a,b) of
inputs (and to the same number of outputs)
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s(a,b) :=

⎧
⎪⎨

⎪⎩

n(a,b) − 1 if (a, b) �∈ OPT

0 if n(a,b) = 1
n(a,b) − 2 otherwise.

Definition 4. An input (a, b) to b ∈ B is called a bad input if one of the
following is true:

– b is popular and a >b OPT(b).
– b is popular, a �b OPT(b), but OPT(b) is unsuccessful.
– b is popular, a is 1-promoted, OPT(b) is successful and M(b) �b OPT(b) �b a.

An input (a, b) to b ∈ B is a good input if it is not a bad input. In other
words, an input (a, b) to b ∈ B is a good input if one of the following is true:

– b is unpopular.
– b is popular and OPT(b) >b a.
– b is popular, a �b OPT(b), OPT(b) is successful and a is not 1-promoted.
– b is popular, a �b OPT(b),OPT(b) is successful, but not M(b) �b OPT(b) �b a.

An output (a, b) from a man a is called a bad output if one of the following
is true:

– b is unpopular.
– b is popular, b >a OPT(a), a is 1-promoted, but not M(b) �b OPT(b) �b a.
– b is popular, b >a OPT(a) and a is basic.

An output from a man a is a good output if that is not a bad output. In
other words, an output (a, b) from a man a ∈ A is a good output if one of the
following is true:

– b is popular and OPT(a) ≥a b.
– b is popular, b >a OPT(a) and a is 2-promoted.
– b is popular, b >a OPT(a), a is 1-promoted and M(b) �b OPT(b) �b a.

Lemma 3. There is no edge which is both a bad input and a bad output.

Proof. Assume that an edge (a, b), a ∈ A, b ∈ B is both a bad input to b and
a bad output from a. First, consider the first case from the definition of a bad
output. It trivially contradicts all the cases from the definition of a bad input.
Second, consider the first case from the definition of a bad input and either the
second or the third case from the definition of a bad output. Then the case
(1) below is implied. Third, consider the second case from the definition of a
bad input and either the second or the third case from the definition of a bad
output. Then the case (2) below is implied. Finally, consider the third case from
the definition of a bad input. It trivially contradicts both the second and the
third case from the definition of a bad output. Thus one of the following cases
is true:
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1. a >b OPT(b); b >a OPT(a).
2. a �b OPT(b), and OPT(b) is unsuccessful; a is not 2-promoted.

In case (1), the edge (a, b) is a blocking pair for OPT, contradicting the
stability of OPT.

In case (2), since OPT(b) is unsuccessful, OPT(b) was rejected by b as a
2-promoted man. On the other hand, a �b OPT(b), a is not 2-promoted, and
b holds a proposal from a when the algorithm terminates, contradicting the
rejection step. �	
Corollary 1. The number of good inputs is at least the number of bad outputs.

Proof. Assume for a contradiction that the number of good inputs is smaller
than the number of bad outputs. Then there is an edge in G′ which is a bad
output but not a good input. In other words, there is an edge in G′ which is
both a bad output and a bad input, contradicting Lemma 3. �	

3.3 Cost

In our charging scheme, cost is a function that assigns charges, that originate
from the edges, to the nodes. More specifically, the cost of a man a is obtained
by counting the edges in G′ incident to a, where bad outputs contribute 2 and
all other edges contribute 1. Similarly, the cost of a woman b is obtained by
counting the edges in G′ incident to b, to which good inputs contribute 0 and
all other edges contribute 1.

In the following, let deg(u) be the degree of the node u in G′. For a ∈ A, we
define his cost as follows:

cost(a) := deg(a) + k , where k is the number of bad outputs from a;

for b ∈ B, we define her cost as follows:

cost(b) := deg(b) − k , where k is the number of good inputs to b,

For a node set S ⊆ A ∪ B, cost(S) is defined as the sum of costs of all the nodes
in S.

The above definitions lead to next three remarks.

Remark 3. Let b ∈ B be matched in M and have at least k bad inputs. Then
cost(b) ≥ k + 1.

Proof. Let k′ be the number of good inputs to b. Since b is matched in M , the
edge (M(b), b) is contained in G′ and therefore it is not an input to b. Thus
deg(b) ≥ k + k′ + 1. Hence, by definition of cost, cost(b) = deg(b) − k′ ≥ k + 1
holds. �	
Remark 4. Let b ∈ B be matched in OPT, have at least k bad inputs, and
(OPT(b), b) ∈ E′ where E′ is the edge set of G′. Then cost(b) ≥ k + 1.
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Proof. Let k′ be the number of good inputs to b. Since the edge (OPT(b), b) is
in G′, it is not an input to b. Thus deg(b) ≥ k + k′ + 1. So, by definition of cost,
cost(b) = deg(b) − k′ ≥ k + 1 holds. �	
Remark 5. Let b ∈ B be matched in both OPT and M , OPT(b) �= M(b), and
(OPT(b), b) ∈ E′ where E′ is the edge set of G′. Then cost(b) ≥ 2.

Proof. Let k and k′ be the numbers of bad inputs and good inputs to b,
respectively. Since the edges (OPT(b), b) and (M(b), b) are contained in G′,
they are not inputs to b. Thus deg(b) ≥ k + k′ + 2. So, by definition of cost,
cost(b) = deg(b) − k′ ≥ k + 2 ≥ 2 holds. �	

3.4 The Approximation Ratio

Let C(M +OPT) denote the set of connected components in a graph induced by
the edge set M + OPT. Lemma 4 below bounds the cost of M + OPT. For the
proof of this lemma, we refer the reader to the full version of the paper on arXiv

Lemma 4.
∑

C∈C(M+OPT) cost(C) ≥ (L + 1)|OPT| + (L − 2)(|OPT| − |M |).
We are ready to prove our main theorem, and restate it here for completeness.

Theorem 1. Given an instance of the maximum-cardinality stable matching
problem with incomplete preferences, and ties of size at most L; the polynomial-
time algorithm described in Sect. 2 finds a stable matching M with

|M | ≥ 2L − 1
3L − 2

|OPT|,

where OPT is an optimal stable matching.

Proof. By Lemma 1, we have

|M | ≥ |E′|
L

=
∑

u∈A∪B

deg(u)
2L

.

By definition of cost and by Corollary 1, we obtain
∑

u∈A∪B

deg(u) ≥ cost(A ∪ B) .

Combining the above inequalities, we get

2L|M | ≥
∑

u∈A∪B

deg(u) ≥ cost(A ∪ B) =
∑

C∈C(M+OPT)

cost(C) ,

By Lemma 4, we obtain

2L|M | ≥
∑

C∈C(M+OPT)

cost(C) ≥ (L + 1)|OPT| + (L − 2)(|OPT| − |M |) .

https://arxiv.org/abs/2005.05228v2
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By rearranging the terms, we obtain

2L|M | + (L − 2)|M | ≥ (L + 1)|OPT| + (L − 2)|OPT| ,
and so we obtain the desired inequality

(3L − 2)|M | ≥ (2L − 1)|OPT| .
�	

3.5 Tightness of the Analysis

The following example shows that the bound in Theorem 1 is tight.

Men’s preferences Women’s preferences

a0 : (b0 bγ
1 . . . bγ

L−1) b0 : (a0 aβ
1 . . . aβ

L−1)

aα
1 : (bα

1 bγ
1 . . . bγ

L−1) bα
1 : aα

1 aβ
1 . . . aβ

L−1

...
...

aα
L−1 : (bα

L−1 bγ
1 . . . bγ

L−1) bα
L−1 : aα

L−1 aβ
1 . . . aβ

L−1

aβ
1 : (b0 bα

1 . . . bα
L−1) bβ

1 bβ
1 : aβ

1

...
...

aβ
L−1 : (b0 bα

1 . . . bα
L−1) bβ

L−1 bβ
L−1 : aβ

L−1

aγ
1 : bγ

1 bγ
1 : (a0 aα

1 . . . aα
L−1) aγ

1

...
...

aγ
L−1 : bγ

L−1 bγ
L−1 : (a0 aα

1 . . . aα
L−1) aγ

L−1

Fig. 1. An instance with ties of size at most L, L ≥ 2 for which the algorithm outputs
a stable matching M with |OPT|/|M | = (3L − 2)/(2L − 1)

Example 1. In Fig. 1, the preference list of each individual is ordered from a most
preferred person to a least preferred one, where individuals within parentheses
are tied. For example, aβ

1 is indifferent between all the women in his preference
list except bβ

1 , who is less preferred than the others.
It is straightforward to check that there exists a unique maximum-cardinality

stable matching, namely OPT = {(a0, b0)} ∪ {(aj
i , b

j
i ) | i = 1, . . . , L − 1, j =

α, β, γ}. We show that there exists an execution of the algorithm which outputs
the matching M = {(a0, b0)} ∪ {(aα

i , bγ
i ) | i = 1, . . . , L − 1} ∪ {(aβ

i , bα
i ) | i =

1, . . . , L − 1}, leading to the ratio |OPT|/|M | = (3L − 2)/(2L − 1).

Proof. The following is an execution of the algorithm which leads either to the
matching M or a matching with the size of M .
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– a0 makes one proposal to every woman in his list; the women accept.
– aα

i for all i = 1, . . . , L − 1 makes one proposal to every woman in his list; the
women accept.

– aβ
i for all i = 1, . . . , L−1 makes one proposal to every woman except the last

one in his list; the women accept.
– aγ

i starts to propose bγ
i for all i = 1, . . . , L − 1, but each time aγ

i makes a
proposal, the proposal is rejected; aγ

i gives up.

�	
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Abstract. We consider the problem of matchings under two-sided pref-
erences in the presence of maximum as well as minimum quota require-
ments for the agents. When there are no minimum quotas, stability is
the de-facto notion of optimality. In the presence of minimum quotas,
ensuring stability and simultaneously satisfying lower quotas is not an
attainable goal in many instances.

To address this, a relaxation of stability known as envy-freeness, is pro-
posed in literature. In our work, we thoroughly investigate envy-freeness
from a computational view point. Our results show that computing envy-
free matchings that match maximum number of agents is computation-
ally hard and also hard to approximate up to a constant factor. Addition-
ally, it is known that envy-free matchings satisfying lower-quotas may not
exist. To circumvent these drawbacks, we propose a new notion called
relaxed stability. We show that relaxed stable matchings are guaranteed
to exist even in the presence of lower-quotas. Despite the computational
intractability of finding a largest matching that is feasible and relaxed
stable, we give an efficient algorithm that computes a constant factor
approximation to this matching in terms of size.

Keywords: Matchings under preferences · Lower quota ·
Envy-freeness · Relaxed stability · Approximation

1 Introduction

Matching problems with two-sided preferences have been extensively investigated
for matching markets where agents (hospitals/residents or colleges/students)
have upper quotas that cannot be exceeded. Stability [6] is a widely accepted
notion of optimality in this scenario. An allocation is said to be stable if no pair
of agents has an incentive to deviate from it. However, the case when the agents
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have maximum as well as minimum quotas poses new challenges and there is
still a want of satisfactory mechanisms that take minimum quotas into account.
Practically, lower quotas are important, since it is natural for a hospital to require
a minimum number of residents to run the hospital smoothly. Lower quotas are
crucial in applications like course-allocation, and assigning teaching assistants
(TAs) in academic institutions where a minimum guarantee is essential.

Ensuring stability while satisfying lower quotas may not be attainable always.
On one hand, disregarding preferences in the interest of satisfying the lower
quotas gives rise to social unfairness (for instance agents envying each other);
on the other hand, too much emphasis on fairness can lead to wastefulness [5].
Hence, it is necessary to strike a balance between these three mutually conflicting
goals – optimality with respect to preferences, feasibility for minimum quotas
and minimizing wastefulness. The main contribution of this paper is to propose
a mechanism to achieve this balance.

Envy-freeness [3,5,7,11,12] is a widely accepted notion for achieving fairness
from a social perspective. Unfortunately, even envy-freeness and feasibility may
not be simultaneously achievable. Whether feasible envy-free matchings exist can
be answered efficiently by the characterization of Yokoi [20]. Fragiadakis et al. [5]
explore strategyproofness and the trade-off between envy-freeness and wasteful-
ness for a restricted setting of agent preferences. In our work, we thoroughly
investigate envy-freeness from a computational view point. Our results show
that computing a maximum size envy-free matching is computationally hard
and such matchings can be wasteful. To circumvent these drawbacks, we pro-
pose a new notion called relaxed stability. We show that relaxed stable matchings
are guaranteed to exist even in the presence of lower-quotas. Despite the com-
putational intractability of finding a largest feasible relaxed stable matching, we
give an efficient constant-factor approximation algorithm for it.

We state the problem formally in terms of a setting known as the HRLQ
setting in literature. An HRLQ instance consists of a bipartite graph G = (R ∪
H, E), R and H being the sets of residents and hospitals respectively, and an
edge (r, h) ∈ E denotes that r and h are mutually acceptable. Each h ∈ H
has an upper-quota q+(h) and a lower-quota q−(h), respectively denoting the
maximum and minimum number of residents that can be assigned to h. Every
vertex in R∪H ranks its neighbors in a strict order, referred to as its preference
list. If a vertex a prefers its neighbor b1 over b2, we denote it by b1 >a b2.

A matching M ⊆ E in G is an assignment of residents to hospitals such that
each resident is matched to at most one hospital, and every hospital h is matched
to at most q+(h)-many residents. Let M(r) denote the hospital that r is matched
to in M , and M(h) denote the set of residents matched to h in M . We let M(r) =
⊥ if r is unmatched in M , and ⊥ is considered as the least preferred choice of each
r ∈ R. We say that a hospital h is under-subscribed in M if |M(h)| < q+(h), is
fully-subscribed if |M(h)| = q+(h) and is deficient if |M(h)| < q−(h). A matching
is feasible for an HRLQ instance if no hospital is deficient in M . The goal in the
HRLQ setting is to find a feasible matching M that is optimal with respect to the
preference lists. The HRLQ problem is a generalization of the well-studied HR
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problem (introduced by Gale and Shapley [6]) where there are no lower quotas.
In the HR problem, stability is a de-facto notion of optimality and is defined by
the absence of blocking pairs.

Definition 1 (Stable matchings). A pair (r, h) ∈ E\M is a blocking pair
w.r.t. the matching M if h >r M(r) and h is either under-subscribed in M or
there exists at least one resident r′ ∈ M(h) such that r >h r′. A matching M is
stable if there is no blocking pair w.r.t. M .

r1 : h1, h2

r2 : h1

[0,1] h1 : r1, r2
[1,1] h2 : r1

Fig. 1. An HRLQ instance with no
feasible and stable matching. Here
R = {r1, r2}, H = {h1, h2} and
quotas are denoted as [lower-quota,
upper-quota] pair preceding each
hospital.

Existence of Stable Feasible Matchings:
Given an HRLQ instance, it is natural to ask
“does the instance admit a stable feasible
matching?” Unlike HR instances, an HRLQ
instance may not admit a stable, feasible
matching. Figure 1 shows an example. The
stable matching Ms = {(r1, h1)} is not feasi-
ble since h2 is deficient in Ms, and the feasi-
ble matchings are not stable. The well-known
Rural Hospitals Theorem [18] implies that
the number of residents matched to a hospital is invariant across all stable match-
ings of the instance. Hence, for any HRLQ instance, either all stable matchings are
feasible or all are infeasible. In light of the fact that stable and feasible match-
ings may not exist, relaxations of stability, like popularity and envy-freeness
have been proposed in the literature [16,17,20]. Envy-freeness is defined by the
absence of envy-pairs.

Definition 2 (Envy-free matchings). Given a matching M , a resident r has
a justified envy (here onwards called envy) towards a matched resident r′, where
M(r′) = h and (r, h) ∈ E if h >r M(r) and r >h r′. The pair (r, r′) is an
envy-pair w.r.t. M . A matching is envy-free if there is no envy-pair w.r.t. it.

Note that an envy-pair implies a blocking pair but the converse is not true
and hence envy-freeness is a relaxation of stability. In the example in Fig. 1,
the matching {(r1, h2)} is envy-free and feasible, although not stable. Thus,
envy-free matchings provide an alternative to stability in such instances. Envy-
freeness is motivated by fairness from a social perspective. Importance of envy-
free matchings has been recognized in the context of constrained matchings
[3,5,7,11,12], and their structural properties have been investigated in [19].

∀i ∈ [n], ri : h1, h2
[0, n] h1 : r1, . . . , rn
[1, 1] h2 : r1, . . . , rn

Fig. 2. An HRLQ instance with two envy-
free matchings of different sizes.

Size of Envy-Free Matchings: In
terms of size, there is a sharp con-
trast between stable matchings in the
HR setting and envy-free matchings in
the HRLQ setting. While all the sta-
ble matchings in an HR instance have
the same size, the envy-free match-
ings in an HRLQ instance may have significantly different sizes. For example,
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in Fig. 2, there are two envy-free matchings, N1 = {(r1, h2)} of size one and
Nn = {(r1, h1), (r2, h1), . . . , (rn−1, h1), (rn, h2)} of size n.

Shortcomings of Envy-Free Matchings: It is interesting to note that a
feasible, envy-free matching itself may not exist – e.g. in Fig. 1, if both h1, h2

have a unit lower-quota, then the unique feasible matching is not envy-free.
If a stable matching is not feasible in an HRLQ instance, wastefulness may be
inevitable for attaining feasibility. A matching is wasteful if there exists a resident
who prefers a hospital to her current assignment and that hospital has a vacant
position [5]. Envy-free matchings can be significantly wasteful (e.g. the matching
N1 in Fig. 2). Therefore, it would be ideal to have a notion of optimality which
is guaranteed to exist, is efficiently computable and avoids wastefulness.

Quest for a Better Optimality Criterion: We propose a new notion of
relaxed stability which always exists for any HRLQ instance. We observe that
in the presence of lower quotas, there can be at most q−(h)-many residents
that are forced to be matched to h, even though they have higher preferred
under-subscribed hospitals in their list. Our relaxation allows these forced resi-
dents to participate in blocking-pairs,1 however, the matching is still stable when
restricted to the remaining residents. We now make this formal below.

Definition 3 (Relaxed stable matchings). A matching M is relaxed stable
if, for every hospital h, at most q−(h) residents from M(h) participate in blocking
pairs and no unmatched resident participates in a blocking pair.

r1 : h1, h3

r2 : h2, h3

r3 : h2

[0, 1] h1 : r1
[0, 1] h2 : r2, r3
[1, 1] h3 : r1, r2

Fig. 3. An HRLQ instance with two relaxed
stable matchings of different sizes, one
larger than stable matching

In Fig. 1, the matching {(r1, h2),
(r2, h1)} (which was not envy-free)
is feasible, relaxed stable and non-
wasteful. We show that a feasible
relaxed stable matching always exists
in an HRLQ instance. However, com-
puting a largest relaxed stable match-
ing is NP-hard. We present an efficient
algorithm that computes a match-
ing that is at least as large as any stable matching in the instance, thus
addressing wastefulness. In fact, a relaxed stable matching may be even
larger than the stable matching in the instance. In the instance shown in
Fig. 3, Ms = {(r1, h1), (r2, h2)} is an infeasible stable matching. Matchings
M ′

1 = {(r1, h3), (r2, h2)} and M ′
2 = {(r1, h1), (r2, h3), (r3, h2)} both are feasi-

ble, relaxed stable and M ′
2 is larger than Ms. This is in contrast to maximum

size envy-free matching which cannot be larger than a stable matching (see
Sect. 2.2).

In the spirit of allowing blocking pairs, different notions have been proposed
in [2,9]. In [9], the goal is to compute a feasible matching with the least number

1 Our initial idea was to allow them to participate in envy-pairs. We thank anonymous
reviewer for suggesting this modification which is stricter than our earlier notion.
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of blocking pairs or blocking residents; however, both these problems are NP-
hard even for CL-restriction [9] (i.e., every hospital with positive lower-quota
must rank every resident, and hence, every resident must rank every hospital
with positive lower-quota) whereas a feasible relaxed stable matching can be
efficiently computed. Popular matchings [17] allow blocking pairs to address
feasibility and guaranteed existence in the HRLQ setting. However, there is no
known bound on the number of blocking residents in a largest popular matching,
whereas the number of blocking residents in a relaxed stable matching is at most
the sum of lower quotas of all the hospitals. Lower quotas with constraints [4,10]
and in a model where hospitals can be closed [1] are investigated.

Our Contributions: We denote the problem of computing a maximum size
feasible envy-free matching (respectively a maximum size feasible relaxed stable
matching) as the MAXEFM (respectively the MAXRSM) problem. Throughout
the paper, we assume that our input HRLQ instance admits a feasible matching.
In the interest of space, proofs of Theorems and Lemmas marked with (�) are
deferred to the full-version [15].

Results on Envy-Freeness: We show that the MAXEFM problem is NP-hard,
and is hard to approximate below a constant factor.

Theorem 1 (�). The MAXEFM problem is NP-hard and cannot be approxi-
mated within a factor of 21

19 − ε for ε > 0 unless P = NP even when every
hospital has a quota of at most one.

In light of the above negative result, we turn our attention to the approximation
and tractable special cases. In practice it is common to have incomplete pref-
erence lists and in many cases the preference lists of residents may also be of
constant size. A matching M is a maximal envy-free matching if addition of an
edge to M violates either the upper-quota or envy-freeness. Prior to our work,
no size guarantee of a maximal envy-free matching was known. Let �1 and �2 be
the length of the longest preference list of a resident and a hospital respectively.

Theorem 2. A maximal envy-free matching is

(I) an �1-approximation of MAXEFM when hospital quotas are at most one.
(II) (�) an (�1 · �2)-approximation of MAXEFM when quotas are unrestricted.

Next, we consider the HRLQ instances with the CL-restriction [9]. In contrast
to the NP-hardness results in [9], the MAXEFM problem is tractable under the
CL-restriction.

Theorem 3. There is a simple linear-time algorithm for the MAXEFM problem
for CL-restricted HRLQ instances.

Results on Relaxed Stability: We prove that the MAXRSM problem is NP-
hard and is also hard to approximate, but has a better approximation behavior
than the MAXEFM problem.
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Theorem 4. The MAXRSM problem is NP-hard and cannot be approximated
within a factor of 21

19 − ε for ε > 0 unless P = NP even when every hospital has
a quota of at most one.

We complement the above negative result with the following.

Theorem 5. Any feasible HRLQ instance always admits a relaxed stable
matching. Moreover, there is a polynomial-time algorithm that outputs a 3

2 -
approximation to the maximum size relaxed stable matching.

We summarize our results in Table 1.

Table 1. Summary of our results

Problem Inapproximability Approximation Restricted
settings

MAXEFM ( 21
19

− ε)-inapproximability (�1 · �2)-approximation P-time for CL-
restriction,
�1-approximation
for 0/1 quotas

MAXRSM ( 21
19

− ε)-inapproximability 3
2
-approximation –

Organization of the Paper: Our algorithmic results for envy-free matchings and
relaxed stable matchings are presented in Sect. 2 and in Sect. 3 respectively. The
NP-hardness and inapproximability results are presented in Sect. 4.

2 Envy-Freeness: Algorithmic Results

In this section, we first focus on the approximation guarantee of maximal envy-
free matchings and then present an efficient algorithm for the MAXEFM problem
on the CL-restricted HRLQ instances.

2.1 Approximation to MAXEFM

A maximal envy-free matching can be efficiently computed; Krish-
napriya et al. [16] present one such algorithm which extends a given envy-free
matching. The results in [16] are empirical and no theoretical guarantee is known
about the size of a maximal envy-free matching. Below we prove the guarantee
for the instances where hospital quotas are at most one.

Proof (of Theorem 2(I)). Let M and OPT be respectively a maximal and a
maximum size envy-free matching. Let ROPT and RM denote the set of residents
matched in OPT and M respectively. Let X1 be the set of residents matched
in both M and OPT . Let X2 be the set of residents matched in OPT but not
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matched in M . Thus, |ROPT | = |X1| + |X2|. Since X1 = ROPT ∩ RM ⊆ RM , so
|X1| ≤ |RM |. Our goal is to show that |X2| ≤ |RM | · (�1 − 1). Recall that �1 is
the length of the longest preference list of a resident. Once we establish that, it
is immediate that a maximal envy-free matching is an �1-approximation.

We show that for every resident r ∈ X2 we can associate a unique hospital
hr such that hr is unmatched in M and there exists a resident r′ in the neigh-
bourhood of hr such that r′ is matched in M . Denote the set of such hospitals
as Y2. Note that due to the uniqueness assumption |X2| = |Y2|. Since each resi-
dent has a preference list of length at most �1, any r′ who is matched in M can
have at most �1 − 1 neighbouring hospitals which are unmatched in M . Thus
|X2| = |Y2| ≤ |RM | · (�1 − 1) which establishes the approximation guarantee. To
finish the proof we show a unique hospital hr with desired properties that can
be associated with each r ∈ X2. Let r ∈ X2 such that h = OPT (r). We have
following two exhaustive cases.

Case 1: If h is unmatched in M , then due to maximality of M , there must exist
a resident r′ matched in M such that adding (r, h) causes envy to r′. Thus, h
has a neighboring resident r′ matched in M , and we let hr = h.

Case 2: If h is matched in M , then since M and OPT are both envy-free,
there must exist a path 〈r, h, r1, h1 , . . . , ri, hi〉 such that (r, h) ∈ OPT , for each
k = 1, . . . , i, we have (rk, hk) ∈ OPT , (r1, h) ∈ M , for each k = 2, . . . , i, we have
(rk, hk−1) ∈ M and hi is unmatched in M . Thus, hi has a neighboring resident
ri matched in M , and we let hr = hi.

Uniqueness Guarantee: For any r ∈ X2 such that case 1 applies, the associ-
ated hi is unique since hospital quotas are at most 1. For two distinct r, r′ ∈ X2

such that case 2 applies for both, the paths mentioned above are disjoint since
hospital quotas are at most 1, which guarantees uniqueness within case 2.
The hi associated in case 2 cannot be associated in case 1 to OPT (hi) since
OPT (hi) = ri /∈ X2. This completes the proof of existence of the unique
hospital. 
�

2.2 Polynomial Time Algorithm for the CL-Restricted Instances

In this section, we consider the MAXEFM problem on CL-restricted HRLQ
instances with general quotas. Recall that under CL-restriction [9], hospitals with
positive lower-quota rank every resident and vice versa. It follows from the char-
acterization of Yokoi [20] that every HRLQ instance with CL-restriction admits a
feasible envy-free matching. We now present a simple modification to the stan-
dard Gale and Shapley algorithm [6] that computes a maximum size envy-free
matching. We start with an empty matching M . Throughout the algorithm, we
maintain two parameters:

– d: denotes the deficiency of the matching M , that is, the sum of deficiencies
of all hospitals with positive lower-quota.

– k: the number of unmatched residents w.r.t. M .
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In every iteration, an unmatched resident r who has not yet exhausted its pref-
erence list, proposes to the most preferred hospital h. If h is deficient w.r.t. M ,
h accepts r’s proposal. Otherwise, if h is under-subscribed w.r.t. M , h accepts
the r’s proposal only if there are enough unmatched residents to satisfy the
deficiency of the other hospitals, that is, k > d. If h is fully-subscribed, then h
rejects the least preferred resident in M(h)∪{r}. This process continues as long
as some unmatched resident has not exhausted its preference list.

Algorithm 1: MAXEFM in CL-restricted HRLQ instances.
Input: An HRLQ instance G = (R ∪ H, E) with CL-restriction
Output: Maximum size envy-free matching

1 let M = ∅; d =
∑

h:q−(h)>0

q−(h); k = |R|;

2 while there is an unmatched resident r who has at least one hospital not yet
proposed to do

3 r proposes to the most preferred hospital h;
4 if |M(h)| < q−(h) then
5 M = M ∪ {(r, h)};
6 reduce d and k each by 1;

7 else
8 if |M(h)| == q+(h) then
9 let r′ be the least preferred resident in M(h) ∪ {r};

10 M(h) = M(h) ∪ {r} \ {r′};

11 if |M(h)| < q+(h) and k == d then
12 let r′ be the least preferred resident in M(h) ∪ {r};
13 M(h) = M(h) ∪ {r} \ {r′};

14 else
// we have |M(h)| < q+(h) and k > d

15 M = M ∪ {(r, h)};
16 reduce k by 1;

17 return M ;

Since the input instance is feasible, we start with k ≥ d and this inequality is
maintained throughout the algorithm. If no resident is rejected due to k = d in
line 11, then our algorithm degenerates to the Gale and Shapley algorithm [6] and
hence outputs a stable matching. It is straightforward to verify that Algorithm 1
runs in linear time in the size of the instance. Lemma 1 proves the correctness
of our algorithm and establishes Theorem 3.

Lemma 1. The matching M computed by Algorithm 1 is feasible and maximum
size envy-free.

Proof. We first prove that the output is feasible. Suppose not. Then at termi-
nation, d > 0, that is, there is at least one hospital h that is deficient w.r.t. M .
It implies that k ≥ 1. Thus there is some resident r unmatched w.r.t. M . Note
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that r could not have been rejected by every hospital with positive lower-quota
since h appears in the preference list of r, and h is deficient. This contradicts
the termination of our algorithm and proves the feasibility of our matching.

Next, we prove that M is envy-free. Suppose for the sake of contradiction, M
contains an envy-pair (r′, r) such that (r, h) ∈ M where r′ >h r and h >r′ M(r′).
This implies that r′ must have proposed to h and h rejected r′. If h rejected r′

because |M(h)| = q+(h), h is matched with better preferred residents than r′,
a contradiction to the fact that r′ >h r. If h rejected r′ because k = d, then
there are two cases. Either r was matched to h when r′ proposed to h. In this
case, in line 11 our algorithm rejected the least preferred resident in M(h). This
contradicts that r′ >h r. Similarly if r proposed to h later, since k = d, the
algorithm rejected the least preferred resident again contradicting the presence
of any envy-pair.

Finally, we show that M is a maximum size envy-free matching. We have
k ≥ d at the start of the algorithm. If during the algorithm, k = d at some
point, then at the end of the algorithm we have k = d = 0, implying that, we
have an R-perfect matching and hence the maximum size matching. Otherwise,
k > d at the end of the algorithm and then we output a stable matching which
is maximum size envy-free by Lemma 2. 
�
Lemma 2 (�). A stable matching when feasible, is an optimal solution of
MAXEFM.

Note that Algorithm 1 is similar to the ESDA algorithm presented in [5]. The
ESDA algorithm needs a stricter assumption that the underlying graph is com-
plete, whereas we assume the weaker CL-restriction. Moreover, only empirical
results without theoretical guarantees on the size of the output matching are
presented in [5].

3 Relaxed Stability: Algorithmic Results

In this section, we present Algorithm 2 that computes a relaxed stable matching
in an HRLQ instance and prove that it gives a 3

2 -approximation to MAXRSM.
Furthermore, we show that the output of Algorithm 2 is at least as large as any
stable matching in the instance (disregarding lower-quotas).

We say a feasible matching M0 is minimal if, for any edge e ∈ M0, M0 \ {e}
is infeasible. Thus, if M0 is minimal, then for every hospital h, |M0(h)| = q−(h).
Algorithm 2 begins by computing a feasible matching M0 in the instance G dis-
regarding the preferences of the residents and hospitals. Such a feasible matching
can be computed by the standard reduction from bipartite matchings to flows
with demands on edges [14]. Let M = M0. We now associate levels with the resi-
dents – all residents matched in M are set to have level-0; all residents unmatched
in M are assigned level-1. We now execute the Gale and Shapley resident propos-
ing algorithm, with the modification that a hospital prefers any level-1 resident
over any level-0 resident (irrespective of the preference list of h). Furthermore, if
a level-0 resident becomes unmatched during the course of the proposals, then it
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gets assigned a level-1 and it starts proposing from the beginning of its preference
list. Amongst two residents of the same level, the hospital uses its preference list
to order them. Our algorithm terminates when every resident is either matched
or has exhausted its preference list when proposing hospitals at level-1. The two
level idea is somewhat similar to the one used in Király [13] for stable matchings
with ties and incomplete lists. It is clear that our algorithm runs in polynomial
time since it only computes a feasible matching (using a reduction to flows) and
executes a modification of Gale and Shapley algorithm. We prove the correctness
of our algorithm below.

Algorithm 2: Algorithm to compute 3
2 -approximation of MAXRSM

Input: Input: HRLQ instance G = (R ∪ H, E)
Output: A relaxed stable matching that is a 3

2
-approximation of MAXRSM

1 M0 is a minimal feasible matching in G. Let M = M0;
2 For every matched resident r, set level of r to level-0;
3 For every unmatched resident r, set level of r to level-1;
4 while there is an unmatched resident r who has not exhausted his preference list

do
5 r proposes to the most preferred hospital h to whom he has not yet

proposed;
6 if h is under-subscribed then
7 M = M ∪ {(r, h)};
8 else
9 if M(h) has at least one level-0 resident r′ then

10 M = M \ {(r′, h)} ∪ {(r, h)};
11 Set level of r′ to level-1 and r′ starts proposing from the beginning

of his list;
12 else
13 h rejects the least preferred resident in M(h) ∪ {r};

14 Return M ;

Remark 1. If r is unmatched in M then r is a level-1 resident and all the hospitals
in r’s preference list are fully-subscribed with level-1 residents preferred over r.

Lemma 3. Matching M output by Algorithm 2 is feasible and relaxed stable.

Proof. We note that M0 is feasible and since residents propose it is clear that
for any hospital h, we have |M(h)| ≥ |M0(h)| = q−(h). Thus M is feasible.

To show relaxed stability, we claim that when the algorithm terminates, a
resident at level-1 does not participate in a blocking pair. Whenever a level-
1 resident r proposes to a hospital h, resident r always gets accepted except
when h is fully-subscribed and all the residents matched to h are level-1 and
are better preferred than r. When a matched level-1 resident r is rejected by
a hospital h, h gets a better preferred resident than r. Thus, a level-1 resident
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does not participate in a blocking pair. By Remark 1, an unmatched resident
(being at level-1) does not participate in a blocking pair. Recall that all residents
matched in M0 are level-0 residents and M0 is minimal. This implies that for
every hospital h, at most q−(h) many residents assigned to h in M0 participate
in a blocking pair. We show that in M , the number of level-0 residents assigned
to any hospital does not increase. To see this, if r is matched to h in M , but
not matched to h in M0, it implies that either r was unmatched in M0 or r was
matched to some h′ in M0. In either case r becomes level-1 when it gets assigned
to h in M . Thus the number of level-0 residents assigned to any hospital h in M
is at most q−(h), all of which can potentially participate in blocking pairs. This
completes the proof that M is relaxed stable. 
�
Lemma 4. Matching M output by Algorithm 2 is a 3

2 -approximation to the
maximum size relaxed stable matching.

Proof. Let OPT denote the maximum size relaxed stable matching in G. To
prove the lemma we show that in M ⊕OPT there does not exist any one-length
as well as any three-length augmenting path. Suppose that (r, h) is a one-length
augmenting path w.r.t. M in M⊕ OPT implying that r is unmatched in M . Then
by Remark 1, h is fully-subscribed - a contradiction that (r, h) is an augmenting
path. Thus, there is no one-length augmenting path in M ⊕ OPT .

For the three-length augmenting paths, we first convert the matchings M and
OPT as one-to-one matchings, by making clones of the hospital. In particular we
make q+(h) many copies of the hospital h for every h where the first q−(h) copies
are called lower-quota copies and the q−(h) + 1 to q+(h) copies are called non
lower-quota copies of h. Let M1 denote the one-to-one matching corresponding
to M . To obtain M1, we assign every resident r ∈ M(h) to a unique copy of h as
follows: first, all the residents in M(h) who participate in blocking pair w.r.t. M
are assigned unique lower-quota copies of h arbitrarily. The remaining residents
in M(h) are assigned to the rest of the copies of h, ensuring all lower-quota
copies get assigned some resident. We get OPT1 from OPT in the same manner.

Now, suppose there exists a three-length augmenting path w.r.t. M which
starts at an under-subscribed hospital, say hj and ends at an unmatched resident
in M . Since hj is under-subscribed in M , and there is an augmenting path
starting at hj , it implies that there exists a copy hd

j such that (i) hd
j is matched

in OPT1 and unmatched in M1, say OPT1(hd
j ) = rd and (ii) the resident rd

is matched in M1 (otherwise there is a one-length augmenting path w.r.t. M1,
which does not exist); let M1(rd) = hc

i , and (iii) the copy hc
i is matched in

OPT1 and OPT1(hc
i ) = rc is unmatched in M1 (else the claimed three-length

augmenting path does not exist).
We first note that hc

i and hd
j are not copies of the same hospital, that is,

i �= j, otherwise there is a one-length augmenting path (rc, hi) w.r.t. M . Since
rc is unmatched, by Remark 1, rd is a level-1 resident and rd >hi

rc. Thus, rd
proposed to hospitals from the beginning of its preference list. Since hj is under-
subscribed, it must be the case that hi >rd hj . Thus, (rd, hi) is a blocking pair
w.r.t. OPT . By the construction of OPT1 from OPT , we must have assigned rd
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to a lower-quota copy of hj . However, copy hd
j is a non lower-quota copy, since it

is unassigned in M1, a contradiction. Thus, the claimed three-length augmenting
path does not exist. 
�
We note that our analysis is tight [15]. We now show that the matching M
computed by Algorithm 2 is at least as large as any stable matching.

Lemma 5 (�). A resident matched in a stable matching Ms is also matched in
M output by Algorithm 2. Hence |M | ≥ |Ms|.
Proof (Sketch). Suppose there exists a resident r matched in Ms to hospital h
but unmatched in M . We start constructing a path starting at r using edges
from Ms and M alternately. We show that such a path can neither terminate at
a resident nor at a hospital and hence cannot exist. Thus, every resident matched
in Ms is matched in M and hence |M | ≥ |Ms|. 
�

4 Hardness Results

In this section we give an overview of the techniques used in proving the hard-
ness and inapproximability results. Theorem 1 and Theorem 4 are proved using
suitable reductions from the Minimum Vertex Cover (MVC) problem. We present
the proof for Theorem 4 below.

Proof (of Theorem 4). Given a graph G = (V,E), which is an instance of the
MVC problem, we construct an instance G′ of the MAXRSM problem. Corre-
sponding to each vertex vi in G, G′ contains a gadget with three residents
ri1, r

i
2, r

i
3, and three hospitals hi

1, h
i
2, h

i
3. All hospitals have an upper-quota of

1 and hi
3 has a lower-quota of 1. Assume that the vertex vi has d neighbors in G,

namely vj1 , . . . , vjd . The preference lists of the residents and hospitals are shown
in Fig. 4. We impose an arbitrary but fixed ordering on the vertices which is
used as a strict ordering of neighbors in the preference lists of resident ri1 and
hospital hi

2 in G′. Note that G′ has N = 3|V | residents and hospitals.

ri1 : hi
3, h

j1
2 , hj2

2 , . . . , h
jd
2 , hi

1

ri2 : hi
2, h

i
3

ri3 : hi
2

[0, 1] hi
1 : ri1

[0, 1] hi
2 : ri2, r

j1
1 , rj22 , . . . , r

jd
2 , ri3

[1, 1] hi
3 : ri2, r

i
1

Fig. 4. Preferences of agents corresponding to a vertex vi in G.

Lemma 6. If V C(G) denotes a minimum vertex cover of G and OPT (G′)
denotes a maximum size relaxed stable matching in G′, then |OPT (G′)| =
3|V | − |V C(G)|.
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Proof. We first prove that |OPT (G′)| ≥ 3|V | − |V C(G)|. Given a minimum
vertex cover V C(G) of G we construct a relaxed stable matching M for G′

as follows. M = {(ri1, h
i
3), (r

i
2, h

i
2) | vi ∈ V C(G)} ∪ {(ri1, h

i
1), (r

i
2, h

i
3), (r

i
3, h

i
2) |

vi /∈ V C(G)}. Thus, |OPT (G′)| ≥ |M | = 2|V C(G)| + 3(|V | − |V C(G)|) =
3|V | − |V C(G)|.
Claim. M is relaxed stable in G′.

Proof. When vi ∈ V C(G), residents ri1 and ri2 both are matched to their top
choice hospitals and hospital hi

2 is matched to its top choice resident ri2. Thus,
when vi ∈ V C(G), no resident from the i-th gadget participates in a blocking
pair. When vi /∈ V C(G), hospitals hi

1 and hi
3 are matched to their top choice

residents and we ignore blocking pair (ri2, h
i
2) because ri2 is matched to a lower-

quota hospital hi
3, thus there is no blocking pair within the gadget for vi /∈

V C(G). Now suppose that there is a blocking pair (ri1, h
j
2) for some j such

that (vi, vj) ∈ E. Note that either vi or vj is in V C(G). If vi ∈ V C(G), ri1 is
matched to its top choice hospital hi

3, thus cannot participate in a blocking pair.
If vi /∈ V C(G), it implies that vj ∈ V C(G). Then for vj ’s gadget, hj

2 is matched
to its top choice rj2, thus cannot form a blocking pair. 
�

Now we prove that OPT (G′) ≤ 3|V | − |V C(G)|. Let M = OPT (G′) be a
maximum size relaxed stable matching in G′. Consider a vertex vi ∈ V and the
corresponding residents and hospitals in G′. Refer Fig. 5 for the possible patterns
caused by vi. Hospital hi

3 must be matched to either resident ri1 (Pattern 1) or
resident ri2 (Pattern 2 to Pattern 7). If (ri1, h

i
3) ∈ M , then the resident ri2 must

be matched to a higher preferred hospital hi
2 in M . If (ri2, h

i
3) ∈ M then hi

2 may
be matched with either ri3 or rj1 of some neighbour vj or may be left unmatched.
Similarly, ri1 can either be matched to hi

1 or hj
2 of some neighbour vj . This leads

to 6 combinations as shown in Fig. 5b to Fig. 5g.

ri1

ri2

ri3

hi
1

hi
2

hi
3

(a) Pat. 1

ri1

ri2

ri3

hi
1

hi
2

hi
3

(b) Pat. 2

ri1

ri2

ri3

hi
1

hi
2

hi
3

(c) Pat. 3

ri1

ri2

ri3

hi
1

hi
2

hi
3

(d) Pat. 4

ri1

ri2

ri3

hi
1

hi
2

hi
3

(e) Pat. 5

ri1

ri2

ri3

hi
1

hi
2

hi
3

(f) Pat. 6

ri1

ri2

ri3

hi
1

hi
2

hi
3

(g) Pat. 7

Fig. 5. Seven patterns possibly caused by vertex vi

Claim. A vertex cannot cause pattern 5.

Proof. Assume for the sake of contradiction that a vertex vi causes pattern 5.
Then, there must exist a vertex vj adjacent to vi such that vj causes either
pattern 4 or pattern 7.
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Case 1: If vertex vj causes pattern 4, then (rj1, h
i
2) form a blocking pair, a con-

tradiction.

Case 2: If vertex vj causes pattern 7, then there must exist vertices
vj+1, . . . , vt such that there are following edges in G: (vi, vj), (vj , vj+1), (vj+1,
vj+2), . . . , (vt−1, vt) and vertices vj to vt−1 cause pattern 7 and vt causes pat-
tern 4. See Fig. 6. In the vertex ordering, we must have vj+1 > vi otherwise
(rj1, h

i
2) form a blocking pair. But, since hj

2 is matched to ri1, vj+2 > vj . Contin-
uing this way, vt > vt−2 but this causes (rt1, h

t−1
2 ) form a blocking pair. Thus,

the claimed set of edges cannot exist. 
�

ri1

ri2

ri3

hi
1

hi
2

hi
3

rj1

rj2

rj3

hj
1

hj
2

hj
3

rj+1
1

rj+1
2

rj+1
3

hj+1
1

hj+1
2

hj+1
3

. . .

rt−1
1

rt−1
2

rt−1
3

ht−1
1

ht−1
2

ht−1
3

rt1

rt2

rt3

ht
1

ht
2

ht
3

Fig. 6. Pattern combination that is not relaxed stable if vi causes pattern 5

Claim. A vertex cannot cause pattern 3 or pattern 6 or pattern 4.

Proof. In pattern 3 and 6, ri3 participates in a blocking pair (ri3, h
i
2), contradict-

ing that M is relaxed stable. If a vertex vi causes pattern 4, then there exists a
set of t vertices vi+1, . . . , vi+t such that for 0 ≤ k < t, (vi+k, vi+k+1) is an edge
in G and vi+t causes pattern 6. But, since pattern 6 cannot occur, pattern 4
cannot occur. 
�

Thus, a vertex can cause either pattern 1 or 2 and thus match all the residents
and hospitals within its own gadget or pattern 7 and match r1 and h2 outside
its own gadget. Accordingly there are following cases.

Case 1: A vertex causing pattern 7 contributes size 1 for (ri2, h
i
3) edge and 0.5

each for two edges matched to another vertex causing pattern 7, contributing an
average matching size of 2.

Case 2: It is clear that a vertex causing pattern 1 or 2 contributes to matching
size of 2 or 3 respectively.

Vertex Cover C of G Corresponding to M : Using M , we now construct
the set C of vertices in G which constitute a vertex cover of G. If vi causes
pattern 2, we do not include it in the C; Otherwise, we include it. We prove
that C is a vertex cover. Suppose not, then there exists an edge (vi, vj) such
that both vi and vj cause pattern 2. But, this means that (ri1, h

j
2) and (rj1, h

i
2)

form a blocking pair, a contradiction since M is relaxed stable. Now, it is easy
to see that |OPT (G′)| = 2|C|+3(|V |− |C|) = 3|V |− |C|. Thus, V C(G) ≤ |C| =
3|V | − |OPT (G′)|. This completes the proof of the lemma. 
�
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The rest of our proof is similar to the approach of Halldórsson et al. [8]
to prove inapproximability of the stable matchings with ties and incomplete
lists; however our gadgets above are entirely different. Lemma 7 is analogous to
Theorem 3.2 and Corollary 3.4 from [8] and its proof can be reproduced in a
similar way [15].

Lemma 7. It is NP-hard to approximate the MAXRSM problem within a factor
of 21

19 − ε, for any constant ε > 0, even when the quotas of all hospitals are either
0 or 1.
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Abstract. We consider a setting where individuals interact in a net-
work, each choosing actions which optimize utility as a function of neigh-
bors’ actions. A central authority aiming to maximize social welfare at
equilibrium can intervene by paying some cost to shift individual incen-
tives, and the optimal intervention can be computed using the spec-
tral decomposition of the graph, yet this is infeasible in practice if the
adjacency matrix is unknown. In this paper, we study the question of
designing intervention strategies for graphs where the adjacency matrix
is unknown and is drawn from some distribution. For several commonly
studied random graph models, we show that there is a single intervention,
proportional to the first eigenvector of the expected adjacency matrix,
which is near-optimal for almost all generated graphs when the bud-
get is sufficiently large. We also provide several efficient sampling-based
approaches for approximately recovering the first eigenvector when we
do not know the distribution. On the whole, our analysis compares three
categories of interventions: those which use no data about the network,
those which use some data (such as distributional knowledge or queries
to the graph), and those which are fully optimal. We evaluate these
intervention strategies on synthetic and real-world network data, and
our results suggest that analysis of random graph models can be useful
for determining when certain heuristics may perform well in practice.

Keywords: Random graphs · Intervention · Social welfare · Sampling

1 Introduction

Individual decision-making in many domains is driven by personal as well as
social factors. If one wants to decide a level of time, money, or effort to exert on
some task, the behaviors of one’s friends or neighbors can be powerful influencing
factors. We can view these settings as games where agents in a network are
playing some game, each trying to maximize their individual utility as a function
of their “standalone value” for action as well as their neighbors’ actions. The
actions of agents who are “central” in a network can have large ripple effects.
Identifying and understanding the role of central agents is of high importance for
tasks ranging from microfinance [6] and vaccinations [7], to tracking the spread
of information throughout a community [8]. We view our work as providing
theoretical support for heuristic approaches to intervention in these settings.
c© Springer Nature Switzerland AG 2020
T. Harks and M. Klimm (Eds.): SAGT 2020, LNCS 12283, pp. 211–225, 2020.
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A model for such a setting is studied in recent work by Galeotti, Golub, and
Goyal [20], where they ask the natural question of how a third party should
“intervene” in the network to maximally improve social welfare at the equilib-
rium of the game. Interventions are modeled by assuming that the third party
can pay some cost to adjust the standalone value parameter of any agent, and
must decide how to allocate a fixed budget. This may be interpreted as suggest-
ing that these targeted agents are subjected to advertizing, monetary incentives,
or some other form of encouragement. For their model, they provide a general
framework for computing the optimal intervention subject to any budget con-
straint, which can be expressed in terms of the spectral decomposition of the
graph. For large budgets, the optimal intervention is approximately proportional
to the first eigenvector of the adjacency matrix of the graph, a common measure
of network centrality.

While this method is optimal, and computable in polynomial time if the
adjacency matrix is known, it is rare in practice that we can hope to map all
connections in a large network. For physical networks, edges representing per-
sonal connections may be far harder to map than simply identifying the set of
agents, and for large digital networks we may be bound by computational or data
access constraints. However, real-world networks are often well-behaved in that
their structure can be approximately described by a simple generating process.
If we cannot afford to map an entire network, is optimal targeted intervention
feasible at all? A natural target would be to implement interventions which
are competitive with the optimal intervention, i.e. obtaining almost the same
increase in social welfare, without access to the full adjacency matrix. Under
what conditions can we use knowledge of the distribution a graph is drawn from
to compute a near-optimal intervention without observing the realization of the
graph? Without knowledge of the distribution, how much information about
the graph is necessary to find such an intervention? Can we ever reach near-
optimality with no information about the graph? These are the questions we
address.

1.1 Contributions

Our main result shows that for random graphs with independent edges, the first
eigenvector of the “expected adjacency matrix”, representing the probability of
each edge being included in the graph, constitutes a near-optimal intervention
simultaneously for almost all generated graphs, when the budget is large enough
and the expected matrix satisfies basic spectral conditions. We further explore
graphs with given expected degrees, Erdős-Rényi graphs, power law graphs, and
stochastic block model graphs as special cases for which our main result holds.
In these cases, the first eigenvector of the expected matrix can often be charac-
terized by a simple expression of parameters of the graph distribution.

Yet in general, this approach still assumes a fair amount of knowledge about
the distribution, and that we can map agents in the network to their corre-
sponding roles in the distribution. We give several sampling-based methods for
approximating the first eigenvector of a graph in each of the aforementioned
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special cases, which do not assume knowledge of agent identities or distribution
parameters, other than group membership in the stochastic block model. These
methods assume different query models for accessing information about the real-
ized graph, such as the ability to query the existence of an edge or to observe a
random neighbor of an agent. Using the fact that the graph was drawn from some
distribution, we can reconstruct an approximation of the first eigenvector more
efficiently than we could reconstruct the full matrix. The lower-information set-
tings we consider can be viewed as assumptions about qualitative domain-specific
knowledge, such as a degree pattern which approximately follows an (unknown)
power law distribution, or the existence of many tight-knit disjoint communities.

We evaluate our results experimentally on both synthetic and real-world net-
works for a range of parameter regimes. We find that our heuristic interventions
can perform quite well compared to the optimal intervention, even at mod-
est budget and network sizes. These results further illustrate the comparative
efficacies of interventions requiring varying degrees of graph information under
different values for distribution parameters, budget sizes, and degrees of network
effects.

On the whole, our results suggest that explicit mapping of the connections
in a network is unnecessary to implement near-optimal targeted interventions in
strategic settings, and that distributional knowledge or limited queries will often
suffice.

1.2 Related Work

Recent work by Akbarpour, Malladi, and Saberi [3] has focused on the challenge
of overcoming network data barriers in targeted interventions under a diffusion
model of social influence. In this setting, for G(n, p) and power law random
graphs, they derive bounds on the additional number of “seeds” needed to match
optimal targeting when network information is limited. A version of this problem
where network information can be purchased is studied in [19]. Another similar
model was employed by Candogan, Bimpikis, and Ozdaglar [11] where they study
optimal pricing strategies to maximize profit of a monopolist selling service to
consumers in a social network where the consumer experiences a positive local
network effect, where notions of centrality play a key role. Similar targeting
strategies are considered in [18], where the planner tries to maximize aggregate
action in a network with complementarities. [23] studies the efficacy of blind
interventions in a pricing game for the special case of Erdős-Rényi graphs. In
[25], targeted interventions are also studied for “linear-quadratic games”, quite
similar to those from [20], in the setting of infinite-population graphons, where
a concentration result is given for near-optimal interventions.

Our results can be viewed as qualitatively similar findings to the above results
in the model of [20]. While they have showed that exact optimal interventions
can be constructed on a graph with full information, we propose that local infor-
mation is enough to construct an approximately optimal intervention for many
distributions of random graphs. It is argued in [9] that collecting data of this
kind (aggregate relational data) is easier in real networks compared to obtaining
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full network information. We make use of concentration inequalities for the spec-
tra of random adjacency matrices; there is a great deal of work studying various
spectral properties of random graphs (see e.g. [2,13–16]). Particularly relevant to
us is [16], which characterizes the asymptotic distributions of various centrality
measures for random graphs. There is further relevant literature for studying
centrality in graphons, see e.g. [4]. Of relevance to our sampling techniques, a
method for estimating eigenvector centrality via sampling is given in [26], and
the task of finding a “representative” sample of a graph is discussed in [24].

2 Model and Preliminary Results

Here we introduce the “linear-quadratic” network game setting from [20], also
studied in e.g. [25], which captures the dynamics of personal and social motiva-
tions for action in which we are interested.

2.1 Setting

Agents are playing a game on an undirected graph with adjacency matrix A.
Each agent takes an action ai ∈ R and obtains individual utility given by:

ui(a,A) = biai − 1
2
a2

i + β
∑

j

Aijaiaj

Here, bi represents agent i’s “standalone marginal value” for action. The param-
eter β controls the effect of strategic dynamics, where a positive sign promotes
complementary behavior with neighbors and a negative sign promotes acting in
opposition to one’s neighbors. In this paper we focus on the case where each
value Aij is in {0, 1} and β > 0. The assumption that β > 0 corresponds to
the case where agents’ actions are complementary, meaning that an increase in
action by an agent will increase their neighbors’ propensities for action.1 We
assume that bi ≥ 0 for each agent as well.

The matrix M = (I − βA) can be used to determine the best response for
each agent given their opponents’ actions. The best response vector a∗, given
current actions a, can be computed as:

a∗ = b + βAa.

Upon solving for a∗ = a, we get that a∗ = (I − βA)−1b = M−1b, giving us the
Nash equilibrium for the game as all agents are simultaneously best responding
to each other. We show in Appendix D of [10] that when agents begin with null
action values, repeated best responses will converge to equilibrium, and further
that the new equilibrium is likewise reached after intervention.
1 When β < 0, neighbors’ actions act as substitutes, and one obtains less utility when

neighbors increase levels of action. In that case, the optimal intervention for large
budgets is approximated by the last eigenvector of the graph, which measures its
“bipartiteness”.
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Our results will apply to cases where all eigenvalues of M are almost surely
positive, ensuring invertibility.2 The social welfare of the game W =

∑
i ui can

be computed as a function of the equilibrium actions:

W =
1
2
(a∗)�a∗

Given the above assumptions, equilibrium actions a∗
i will always be non-negative.

2.2 Targeted Intervention

In this game, a central authority has the ability to modify agents’ standalone
marginal utilities from bi to b̂i by paying a cost of (bi − b̂i)2, and their goal is to
maximize social welfare subject to a budget constraint C:

max
∑

i

ui subject to
∑

i

(bi − b̂i)2 ≤ C.

Here, an intervention is a vector y = b̂ − b such that ‖y‖2 ≤ C. Let W (y)
denote the social welfare at equilibrium following an intervention y.3 It is shown
in [20] that the optimal budget-constrained intervention for any C can be com-
puted using the eigenvectors of A, and that in the large-budget limit as C tends
to infinity, the optimal intervention approaches

√
C · v1(A). Throughout, we

assume vi(A) is the unit �2-norm eigenvector associated with λi, the ith largest
eigenvalue of a matrix A. We also define αi = 1

(1−βλi)2
, which is the square of the

corresponding eigenvalue of M−1. Note that we do not consider eigenvalues to be
ordered by absolute value; this is done to preserve the ordering correspondence
between eigenvalues of A and M−1. A may have negative eigenvalues, but all
eigenvalues of M−1 will be positive when βλ1 < 1, as we will ensure throughout.

The key result we use from [20] states that when β is positive, as the budget
increases the cosine similarity between the optimal intervention y∗ and the first
eigenvector of a graph, which we denote by ρ(v1(A), y∗),4 approaches 1 at a rate
depending on the (inverted) spectral gap of the adjacency matrix.5

Our results will involve quantifying the competitive ratio of an intervention y,
which we define as W (y)

W (y∗) , where W (·) denotes the social welfare at equilibrium
after an intervention vector is applied, and where y∗ = arg maxx : ‖x‖=√

C W (x).
This ratio is at most 1, and maximizing it will be our objective for evaluating
interventions.

2 If β > 0 and M is not invertible, equilibrium actions will be infinite for all agents in
some component of the graph.

3 Unless specified otherwise, ‖·‖ refers to the �2 norm. When the argument is a matrix,
this denotes the associated spectral norm.

4 The cosine similarity of two non-zero vectors z and y is ρ(z, y) = z·y
‖z‖‖y‖ . For unit

vectors x, y, by the law of cosines, ‖x − y‖2 = 2(1 − ρ(x, y)), and so 1 − ‖x−y‖2

2
=

ρ(x, y). Thus ‖x − y‖ < ε for ε > 0 if and only if ρ(x, y) > 1 − ε2/2.
5 It will sometimes be convenient for us to work with what we call the inverted spectral
gap of a matrix A, which is the smallest value κ such that |λi(A) ≤ κ · λ1(A)|.
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2.3 Random Graph Models

We introduce several families of random graph distributions which we consider
throughout. All of these models generate graphs which are undirected and have
edges which are drawn independently.

Definition 1 (Random Graphs with Independent Edges). A distribution
of random graphs with independent edges is specified by a symmetric matrix
A ∈ [0, 1]n×n. A graph is sampled by including each edge (i, j) independently
with probability Aij.

Graphs with given expected degrees (G(w), or Chung-Lu graphs) and
stochastic block model graphs, often used as models of realistic “well-behaved”
networks, are notable cases of this model which we will additionally focus on.

Definition 2 (G(w) Graphs). A G(w) graph is an undirected graph with an
expected degree sequence given by a vector w, whose length (which we denote by n)
defines the number of vertices in the graph. For each pair of vertices i and j with
respective expected degrees wi and wj, the edge (i, j) is included independently
with probability Aij = wiwj∑

k∈[n] wk
.

Without loss of generality, we impose an ordering on wi values so that w1 ≥ w2 ≥
. . . ≥ wn. To ensure that each edge probability as described above is in [0, 1], we
assume throughout that for all vectors w we have that w1 ≤

√∑
k∈[n] wk.

G(n, p) graphs and power law graphs are well-studied examples of graphs
which can be generated by the G(w) model.6 For G(n, p) graphs, w is a uniform
vector where wi = np for each i. Power law graphs are another notable special
case where w is a power law sequence {wi}n

i=1 such that wi = c (i + i0)
− 1

σ−1 for
σ > 2, some constant c > 0, and some integer i0 ≥ 0. In such a sequence, the
number of elements with value x is asymptotically proportional to 1

xσ .

Definition 3 (Stochastic Block Model Graphs). A stochastic block model
graph with n vertices is undirected and has m groups for some m ≤ n. Edges
are drawn independently according to a matrix A, and the probability of an edge
between two agents depends only on their group membership. For any two groups
i and j, there is an edge probability pij ∈ [0, 1] such that Akl = pij for any agent
k in group i and agent l in group j.7

For each graph model, one can choose to disallow self-loops by setting Aii = 0
for 1 ≤ i ≤ n, as is standard for G(n, p) graphs. Our results will apply to both
cases.

6 There are several other well-studied models of graphs with power law degree
sequences, such as the BA preferential attachment model, as well as the fixed-degree
model involving a random matching of “half-edges”. Like the G(w) model, the latter
model can support arbitrary degree sequences. We restrict ourselves to the indepen-
dent edge model described above.

7 If m = n, the stochastic block model can express any distribution of random graphs
with independent edges, but will be most interesting when there are few groups.
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3 Approximately Optimal Interventions

The main idea behind all of our intervention strategies is to target efforts pro-
portionally to the first eigenvector of the expected adjacency matrix. Here we
assume that this eigenvector is known exactly. In Sect. 4, we discuss cases when
an approximation of the eigenvector can be computed with zero or minimal
information about the graph. Our main theorem for random graphs with inde-
pendent edges shows conditions under which an intervention proportional to the
first eigenvector of the expected matrix A is near-optimal.

We define a property for random graphs which we call (ε, δ)-concentration
which will ensure that the expected first eigenvector constitutes a near-optimal
intervention. In essence, this is an explicit quantification of the asymptotic
properties of “large enough eigenvalues” and “non-vanishing spectral gap” for
sequences of random graphs from [16]. Intuitively, this captures graphs which
are “well-connected” and not too sparse. One can think of the first eigenvalue as
a proxy for density, and the (inverse) second eigenvalue as a proxy for regularity
or degree of clustering (it is closely related to a graph’s mixing time). Both are
important in ensuring concentration, and they trade off with each other (via the
spectral gap condition) for any fixed values of ε and δ.

Definition 4 ((ε, δ)-Concentration). A random graph with independent edges
specified by A satisfies (ε, δ)-concentration for ε, δ ∈ (0, 1) if:

1. The largest expected degree dmax = maxi

∑
j∈[n] Aij is at least 4

9 log(2n/δ)
2. The inverted spectral gap of A is at most κ

3. The quantity λ1(A) · (1 − κ2) is at least 1024
√

dmax log(2n/δ)

ε2

Theorem 1. If A satisfies (ε, δ)-concentration, then with probability at least
1− δ, the competitive ratio of y =

√
Cv1(A) for a graph drawn from A is at least

1− ε for a sufficiently large budget C if the spectral radius of the sampled matrix
A is less than 1/β.

The concentration conditions are used to show that the relevant spectral
properties of generated graphs are almost surely close to their expectations, and
the constraint on β is necessary to ensure that actions and utilities are finite at
equilibrium.8 The sufficient budget will depend on the size of the spectral gap
of A, as well as the standard marginal values. For example, if λ1 > 2|λi| holds
in the realized graph for all i > 1, then a budget of C = 256 · ‖b‖2 /(εβλ1(A))2

will suffice. Intuitively, a large β would mean more correlation between neigh-
bors’ actions at equilibrium. A large λ1

(
A

)
would mean a denser graph (more

connections between agents) in expectation and a large ε would mean that the
realized graph is more likely to be close to expectation. All of these conditions
reduce the required budget because a small intervention gets magnified by agent
8 The spectral radius condition holds with probability 1 − δ when 1/β is at least

λ1(A) +
√

4dmax log(2n/δ) (follows from e.g. [15], see Appendix E.2 of [10] for
details).
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interaction. Further, the smaller the magnitude of initial b, the easier it is to
change its direction.

The proof of Theorem 1 is deferred to the full version of the paper [10],
along with proofs for the lemmas stated throughout. At a high level, our results
proceed by first showing that the first eigenvector is almost surely close to v1(A),
then showing that the spectral gap is almost surely large enough such that the
first eigenvector is close to the optimal intervention for appropriate budgets. A
key lemma for completing the proof shows that interventions which are close to
the optimal intervention in cosine similarity have a competitive ratio close to 1.

Lemma 1. Let b be the vector of standalone values, and assume that C >
max(‖b‖2 , 1). For any y where ‖y‖2 = C and ρ(y, y∗) > γ for some γ, the
competitive ratio of y is at least 1 − 4

√
2(1 − γ).

The main idea behind this lemma is a smoothness argument for the welfare
function. When considering interventions as points on the sphere of radius

√
C,

small changes to an intervention cannot change the resulting welfare by too
much. This additionally implies that when a vector y is close to y∗, the exact
utility of y∗ for some budget C can be achieved by an intervention proportional
to y with a budget C ′ which is not much larger than C.

In the full paper [10], we give a specialization of Theorem 1 to the case of G(w)
graphs. There, the expected first eigenvector is proportional to w when self-loops
are not removed. We give more explicit characterizations of the properties for
G(w), G(n, p), and power law graphs which ensure the above spectral conditions
(i.e. without relying on eigenvalues), as well as a budget threshold for near-
optimality. We discuss the steps of the proof in greater detail, and they are
largely symmetric to the steps required to prove Theorem 1.

4 Centrality Estimation

The previous sections show that interventions proportional to v1(A) are often
near-optimal simultaneously for almost all graphs generated by A. While we
often may have domain knowledge about a network which helps characterize its
edge distribution, we still may not be able to precisely approximate the first
eigenvector of A a priori. In particular, even if we believe our graph comes from
a power law distribution, we may be at a loss in knowing which vertices have
which expected degrees.

In this section, we discuss approaches for obtaining near-optimal interven-
tions without initial knowledge of A. We first observe that “blind” interventions,
which treat all vertices equally in expectation, will fail to approach optimality.
We then consider statistical estimation techniques for approximating the first
eigenvector which leverage the special structure of G(w) and stochastic block
model graphs. In each case, we identify a simple target intervention, computable
directly from the realized graph, which is near-optimal when (ε, δ)-concentration
is satisfied. We then give efficient sampling methods for approximating these tar-
get interventions. Throughout Sect. 4, our focus is to give a broad overview of
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these techniques rather than to present them as concrete algorithms, and we
frequently omit constant-factor terms with asymptotic notation.

4.1 Suboptimality of Blind Interventions

Here we begin by showing that when the spectral gap is large, all interventions
which are far from the optimal intervention in cosine similarity will fail to be
near-optimal even if the budget is very large.

Lemma 2. Assume that C is sufficiently large such that the role of standalone
values is negligible. For any y where ‖y‖2 = C and ρ(y, y∗) < γ, the competitive
ratio is bounded by

γ2

(
1 − α2

α1

)
+

α2

α1
+ 2

√
α2

α1
,

where αi is the square of the ith largest eigenvalue of M−1.

This tells us that if one were to design an intervention without using any informa-
tion about the underlying graph, the intervention is unlikely to do well compared
to the optimal one for the same budget unless eigenvector centrality is uniform,
as in the case of G(n, p) graphs. Thus, there is a need to try to learn graph
information to design a close-to-optimal intervention. We discuss methods for
this next.

4.2 Degree Estimation in G(w) Graphs

For G(w) graphs, we have seen that expected degrees suffice for near-optimal
interventions, and we show that degrees can suffice as well.

Lemma 3. If a G(w) graph specified by A satisfies (ε, δ)-concentration, then
with probability at least 1 − O(δ),

‖w − w∗‖ ≤ O(ε ‖w‖),

where w∗ is the empirical degree vector, and the intervention proportional to w∗

obtains a competitive ratio of 1 − O(ε) when the other conditions for Theorem 1
are satisfied.

Thus, degree estimation is our primary objective in considering statistical
approaches. As we can see from the analysis in Theorems 1 and 2 of [10], if
we can estimate the unit-normalized degree vector w∗ to within ε �2-distance,
our competitive ratio for the corresponding proportional intervention will be
1−O(ε). Our approaches focus on different query models, representing the types
of questions we are allowed to ask about the graph; these query models are also
studied for the problem of estimating the average degree in a graph [17,22]. If
we are allowed to query agents’ degrees, near-optimality follows directly from
the above lemma, so we consider more limited models.
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Edge Queries. Suppose we are allowed to query whether an edge exists between
two vertices. We can then reduce the task of degree estimation to the problem
of estimating the mean of n biased coins, where for each vertex, we “flip” the
corresponding coin by picking another vertex uniformly at random to query.
By Hoeffding and union bounds, O

(
n
ε2 log

(
n
δ

))
total queries suffice to ensure

that with probability 1 − δ, each degree estimate is within εn additive error.
Particularly in the case of dense graphs, and when ε is not too small compared
to 1/n, this will be considerably more efficient than reconstructing the entire
adjacency matrix. In particular, if ‖w‖1 = Θ(n2), the above error bound on
additive error for each degree estimate directly implies that the estimated degree
vector ŵ is within �1 (and thus �2) distance of O(ε ‖w‖2).

Random Neighbor Queries. Suppose instead we are restricted to queries
which give us a uniformly random neighbor of a vertex. We give an approach
wherein queries are used to conduct a random walk in the graph. The stationary
distribution is equivalent to the the first eigenvector of the diffusion matrix
P = AD−1, where D is the diagonal matrix of degree counts.9 We can then learn
estimates of degree proportions by sampling from the stationary distribution via
a random walk.

The mixing time of a random walk on a graph determines the number of steps
required such that the probability distribution over states is close to the station-
ary distribution in total variation distance. We can see that for G(w) graphs sat-
isfying (ε, δ)-concentration with a large enough minimum degree, mixing times
will indeed be fast.

Lemma 4. For G(w) graphs satisfying (ε, δ)-concentration and with wn ≥ 1
ε ,

the mixing time of a random walk to within ε total variation distance to the
stationary distribution is O(log(n/ε)). Further, the largest connected component
in A contains n(1 − exp (−O(1/ε)) vertices in expectation.

If a random walk on our graph has some mixing time t to an approximation of
the stationary distribution, we can simply record our location after every t steps
to generate a sample. Using standard results on learning discrete distributions
(see e.g. [12]), O

(
n+log(1/δ)

ε2

)
samples from ε-approximate stationary distribu-

tions suffice to approximate w∗ within �1 distance of O(ε ‖w∗‖) with probability
1 − δ, directly giving us the desired �2 bound. Joining this with Lemma 4, our
random walk takes a total of O

(
n+log(1/δ)

ε2 log
(

n
ε

))
steps (and thus queries) to

obtain our target intervention, starting from an arbitrary vertex in the largest
connected component.

9 The stationary distribution of a random walk on a simple connected graph is di∑
j dj

for all vertices i, where di is the degree. While G(w) graphs may fail to be connected,
in many cases the vast majority of vertices will belong to a single component, and
we can focus exclusively on that component. We show this in Lemma 4.
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4.3 Matrix Reconstruction in SBM Graphs

There is a fair amount of literature on estimation techniques for stochastic
block model graphs, often focused on cases where group membership is unknown
[1,27–29]. The estimation of eigenvectors is discussed in [5], where they consider
stochastic block model graphs as a limit of a convergent sequence of “graphons”.
Our interest is primarily in recovering eigenvector centrality efficiently from sam-
pling, and we will make the simplifying assumption that group labels are visible
for all vertices. This is reasonable in many cases where a close proxy of one’s pri-
mary group identifier (e.g. location, job, field of study) is visible but connections
are harder to map.

In contrast to the G(w) case, degree estimates no longer suffice for estimating
the first eigenvector. We assume that there are m groups and that we know each
agent’s group. Our aim will be to estimate the relative densities of connection
between groups. When there are not too many groups, the parameters of a
stochastic block model graph can be estimated efficiently with either edge queries
or random neighbor queries, From here, we can construct an approximation of
A and compute its first eigenvector directly. In many cases, the corresponding
intervention is near-optimal.

A key lemma in our analysis shows that the “empirical block matrix” is close
to its expectation in spectral norm. We prove this for the case where all groups
are of similar sizes, but the approach can be generalized to cover any partition.

Lemma 5. For a stochastic block model graph generated by A with m groups,
each of size O( n

m ), let Â denote the empirical block matrix of edge frequencies
for each group. Each entry per block in Â will contain the number of edges in
that block divided by the size of the block. With probability at least 1 − δ,

∥∥∥A − Â
∥∥∥ ≤ O

(
max

(
m

√
log(n/δ)√

n
, log2(n/δ)

))
.

The same bound will then apply to the difference of the first eigenvectors,
rescaled by the first eigenvalues (which will also be close). Similar bounds can also
be obtained when group sizes may vary, but we stick to this case for simplicity.

Edge Queries. If we are allowed to use edge queries, we can estimate the
empirical edge frequency for each of the O(m2) pairs of groups by repeatedly
sampling a vertex uniformly from each group and querying for an edge. This
allows reconstruction of the empirical frequencies up to ε error for each group
pair, with probability 1−δ, with O

(
m2

ε2 log(m/δ)
)

samples. For the block matrix

Â of edge frequencies for all group pairs, Lemma 5 implies that this will be close
to its expectation when there are not too many groups, and so our estimation
will be close to A in spectral norm as well. If A satisfies (ε, δ)-concentration and
the bound from Lemma 5 is small compared to the norm of A, then the first
eigenvectors of A, A, and Â will all be close, and the corresponding intervention
proportional to v1(Â) will be near-optimal.
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When all group pairs may have unique probabilities, this will only provide
an advantage over a naive graph reconstruction with O(m2) queries in the case
where m = o(n). If we know that all out-group probabilities are the same across
groups, our dependence on m becomes linear, as we can treat all pairs of distinct
groups as one large group. If in-group probabilities are the same across groups
as well, the dependence on m vanishes, as we only have two probabilities to
estimate.

Random Neighbor Queries. We can also estimate the empirical group fre-
quency matrix with random neighbor queries. For each group, the row in A
corresponding to the edge probabilities with other groups can be interpreted as
a distribution of frequencies for each group. O(m

ε2 log(m
δ )) samples per row suf-

fice to get additive error at most ε for all of the relative connection probabilities
for our chosen group. This lets us estimate each of the m rows up to scaling, at
which point we can use the symmetry of the matrix to recover an estimate of
A up to scaling by some factor. Again, when (ε, δ)-concentration holds and the
bound from Lemma 5 is small, the first eigenvector of this estimated matrix will
give us a near-optimal intervention.

5 Experiments

Our theoretical results require graphs to be relatively large in order for the
obtained bounds to be nontrivial. It is natural to ask how well the heuristic
interventions we describe will perform on relatively small random graphs, as
well as on real-world graphs which do not come from a simple generative model
(and may not have independent edges). Here, we evaluate our described interven-
tions on real and synthetic network data, by adjusting bi values and computing
the resulting welfare at equilibrium, and find that performance can be quite
good even on small graphs. Our experimental results on synthetic networks are
deferred to the full paper [10].

5.1 Real Networks

To test the usefulness of our results for real-world networks which we expect to
be “well-behaved” according to our requirements, we simulate the intervention
process using network data collected from villages in South India, for purposes
of targeted microfinance deployments, from [6]. In this context, we can view
actions ai as indicating levels of economic activity, which we wish to stimulate
by increasing individual propensities for spending and creating network effects.
The dataset contains many graphs for each village using different edge sets (each
representing different kinds of social connections), as well as graphs where nodes
are households rather than individuals. We use the household dataset containing
the union of all edge sets. These graphs have degree counts ranging from 77
to 365, and our experiments are averaged over 20 graphs from this dataset.
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We plot competitive ratios while varying C (scaled by network size) and the
spectral radius of βA, fixing bi = 1 for each agent.

The expected degree intervention is replaced by an intervention proportional
to exact degree. We also fit a stochastic block model to graphs using a version
of the approach described in Sect. 4.3, using exact connectivity probabilities
rather than sampling. Our group labels are obtained by running the Girvan-
Newman clustering algorithm [21] on the graph, pruning edges until there are
either at least 10 clusters with 5 or more vertices or 50 clusters total. We evaluate
the intervention proportional to the first eigenvector of the reconstructed block
matrix. All interventions are compared to a baseline, where no change is applied
to b, for demonstrating the relative degree in social welfare change.

Fig. 1. Intervention in village graphs

In Fig. 1, we find that degree interventions perform quite well, and are only
slightly surpassed by first eigenvector interventions. The stochastic block model
approach performs better than uniform when the spectral radius sufficiently
large, but is still outperformed by the degree and first eigenvector interventions.
Upon inspection, the end result of the stochastic block model intervention was
often uniform across a large subgraph, with little or no targeting for other ver-
tices, which may be an artifact of the clustering method used for group assign-
ment. On the whole, we observe that minimal-information approaches can indeed
perform quite well on both real and simulated networks.

Acknowledgments. We thank Ben Golub, Yash Kanoria, Tim Roughgarden, Chris-
tos Papadimitriou, and anonymous reviewers for their invaluable feedback.
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Abstract. We study the problem of truthfully scheduling m tasks to n
selfish unrelated machines, under the objective of makespan minimiza-
tion, as was introduced in the seminal work of Nisan and Ronen [NR99].
Closing the current gap of [2.618, n] on the approximation ratio of deter-
ministic truthful mechanisms is a notorious open problem in the field of
algorithmic mechanism design. We provide the first such improvement
in more than a decade, since the lower bounds of 2.414 (for n = 3) and
2.618 (for n → ∞) by Christodoulou et al. [CKV07] and Koutsoupias
and Vidali [KV07], respectively. More specifically, we show that the cur-
rently best lower bound of 2.618 can be achieved even for just n = 4
machines; for n = 5 we already get the first improvement, namely 2.711;
and allowing the number of machines to grow arbitrarily large we can
get a lower bound of 2.755.

Keywords: Mechanism design · Scheduling unrelated machines ·
Makespan minimization · Truthfulness

1 Introduction

Truthful scheduling of unrelated parallel machines is a prototypical problem in
algorithmic mechanism design, introduced in the seminal paper of Nisan and
Ronen [NR99] that essentially initiated this field of research. It is an extension
of the classical combinatorial problem for the makespan minimization objective
(see, e.g., [Vaz03, Ch. 17] or [Hal97, Sec. 1.4]), with the added twist that now
machines are rational, strategic agents that would not hesitate to lie about their
actual processing times for each job, if this can reduce their personal cost, i.e.,
their own completion time. The goal is to design a scheduling mechanism, using
payments as incentives for the machines to truthfully report their true process-
ing costs, that allocates all jobs in order to minimize the makespan, i.e., the
maximum completion time across machines.
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Nisan and Ronen [NR01] showed right away that no such truthful deter-
ministic mechanism can achieve an approximation better than 2 to the optimum
makespan; this is true even for just n = 2 machines. It is worth emphasizing that
this lower bound is not conditioned on any computational complexity assump-
tions; it is purely a direct consequence of the added truthfulness requirement and
holds even for mechanisms that have unbounded computational capabilities. It is
interesting to compare this with the classical (i.e., non-strategic) algorithmic set-
ting where we do know [LST90] that a 2-approximate polynomial-time algorithm
does exist and that it is NP-hard to approximate the minimum makespan within
a factor smaller than 3

2 . On the positive side, it is also shown in [NR01] that the
mechanism that myopically allocates each job to the machine with the fastest
reported time for it, and compensates her with a payment equal to the report
of the second-fastest machine, achieves an approximation ratio of n (where n
is the number of machines); this mechanism is truthful and corresponds to the
paradigmatic VCG mechanism (see, e.g., [Nis07]).

Based on these, Nisan and Ronen [NR01, Conjecture 4.9] made the bold con-
jecture that their upper bound of n is actually the tight answer to the approxima-
tion ratio of deterministic scheduling; more than 20 years after the first confer-
ence version of their paper [NR99] though, very little progress has been made in
closing their gap of [2, n]. Thus, the Nisan-Ronen conjecture remains up to this
day one of the most important open questions in algorithmic mechanism design.
Christodoulou et al. [CKV07] improved the lower bound to 1 +

√
2 ≈ 2.414,

even for instances with only n = 3 machines and, soon after, Koutsoupias and
Vidali [KV07] showed that by allowing n → ∞ the lower bound can be increased
to 1 + φ ≈ 2.618. The journal versions of these papers can be found at [CKV09]
and [KV13], respectively. In our paper we provide the first improvement on this
lower bound in well over a decade.

Another line of work tries to provide better lower bounds by imposing fur-
ther assumptions on the mechanism, in addition to truthfulness. Most notably,
Ashlagi et al. [ADL12] were actually able to resolve the Nisan-Ronen conjecture
for the important special case of anonymous mechanisms, by providing a lower
bound of n. The same can be shown for mechanisms with strongly-monotone
allocation rules [MS18, Sec. 3.2] and for mechanisms with additive or local pay-
ment rules [NR01, Sec. 4.3.3].

Better bounds have also been achieved by modifying the scheduling model
itself. For example, Lavi and Swamy [LS09] showed that if the processing times
of all jobs can take only two values (“high” and “low”) then there exists a
2-approximate truthful mechanism; they also give a lower bound of 11

10 . Very
recently, Christodoulou et al. [CKK20] showed a lower bound of Ω(

√
n) for a

slightly generalized model where the completion times of machines are allowed
to be submodular functions (of the costs of the jobs assigned to them) instead
of additive in the standard setting.

Although in this paper we focus exclusively on deterministic mechanisms,
randomization is also of great interest and has attracted a significant amount of
attention [NR01,MS18,Yu09], in particular the two-machine case [LY08b,LY08a,
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Lu09,CDZ15,KV19]. The currently best general lower bound on the approxima-
tion ratio of randomized (universally) truthful mechanisms is 2− 1

n [MS18], while
the upper one is 0.837n [LY08a]. For the more relaxed notion of truthfulness in
expectation, the upper bound is n+5

2 [LY08b]. Related to the randomized case is
also the fractional model, where mechanisms (but also the optimum makespan
itself) are allowed to split jobs among machines. For this case, [CKK10] prove
lower and upper bounds of 2 − 1

n and n+1
2 , respectively; the latter is also shown

to be tight for task-independent mechanisms.
Other variants of the strategic unrelated machine scheduling problem

that have been studied include the Bayesian model [CHMS13,DW15,GK17]
(where job costs are drawn from probability distributions), scheduling with-
out payments [Kou14,GKK19] or with verification [NR01,PV14,Ven14], and
strategic behaviour beyond (dominant-strategy) truthfulness [FRGL19]. The
related machines model, which is essentially a single-dimensional mechanism
design variant of our problem, has of course also been well-studied (see, e.g.,
[AT01,DDDR11,APPP09]) and a deterministic PTAS exists [CK13].

1.1 Our Results and Techniques

We present new lower bounds on the approximation ratio of deterministic truth-
ful mechanisms for the prototypical problem of scheduling unrelated parallel
machines, under the makespan minimization objective, introduced in the semi-
nal work of Nisan and Ronen [NR01]. Our main result (Theorem 2) is a bound
of ρ ≈ 2.755, where ρ is the solution of the cubic equation (6). This improves
upon the lower bound of 1+φ ≈ 2.618 by Koutsoupias and Vidali [KV13] which
appeared well over a decade ago [KV07]. Similar to [KV13], we use a family of
instances with the number of machines growing arbitrarily large (n → ∞).

Furthermore, our construction (see Sect. 3.4) provides improved lower bounds
also pointwise, as a function of the number of machines n that we are allowed
to use. More specifically, for n = 3 we recover the bound of 1 +

√
2 ≈ 2.414

by [CKV09]. For n = 4 we can already match the 2.618 bound that [KV13]
could achieve only in the limit as n → ∞. The first strict improvement, namely
2.711, comes from n = 5. As the number of machines grows, our bound converges
to 2.755. Our results are summarized in Table 1.

A central feature of our approach is the formulation of our lower bound as
the solution to a (non-linear) optimization programme (NLP); we then provide
optimal, analytic solutions to it for all values of n ≥ 3 (Lemma 3). It is important
to clarify here that, in principle, just giving feasible solutions to this programme
would still suffice to provide valid lower bounds for our problem. However, the
fact that we pin down and use the actual optimal ones gives rise to an interesting
implication: our lower bounds are provably the best ones that can be derived
using our construction.

There are two key elements that allow us to derive our improved bounds,
compared to the approach in previous related works [CKV09,KV13]. First, we
deploy the weak-monotonicity (Theorem 1) characterization of truthfulness in
a slightly more delicate way; see Lemma 1. This gives us better control and
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flexibility in considering deviating strategies for the machines (see our case-
analysis in Sect. 3). Secondly, we consider more involved instances, with two
auxiliary parameters (namely r and a; see, e.g., (3) and (4)) instead of just
one. On the one hand, this increases the complexity of the solution, which now
has to be expressed in an implicit way via the aforementioned optimization
programme (NLP). But at the same time, fine-tuning the optimal choice of the
variables allows us to (provably) push our technique to its limits. Finally, let us
mention that, for a small number of machines (n = 3, 4, 5) we get r = 1/a in an
optimal choice of parameters. Under r = 1/a, we end up with a as the only free
parameter, and our construction becomes closer to that of [CKV09,KV13]; in
fact, for 3 machines it is essentially the same construction as in [CKV09] (which
explains why we recover the same lower bound). However, for n ≥ 6 machines
we need a more delicate choice of r.

Due to space constraints, the proofs of Lemmas 1 to 3 are omitted; they can
be found in the full version of our paper [GHP20].

Table 1. Lower bounds on the approximation ratio of deterministic truthful scheduling,
as a function of the number of machines n, given by our Theorem 2 (bottom line).
The previous state-of-the-art is given in the line above and first appeared in [CKV07]
(n = 3) and [KV07] (n ≥ 4). The case with n = 2 machines was completely resolved
in [NR99], with an approximation ratio of 2.

n 3 4 5 6 7 8 . . . ∞
Previous work 2.414 2.465 2.534 2.570 2.590 2.601 . . . 2.618

This paper 2.414 2.618 2.711 2.739 2.746 2.750 . . . 2.755

2 Notation and Preliminaries

Before we go into the construction of our lower bound (Sect. 3), we use this
section to introduce basic notation and recall the notions of mechanism, truth-
fulness, monotonicity, and approximation ratio. We also provide a technical tool
(Lemma 1) that is a consequence of weak monotonicity (Theorem 1); this lemma
will be used several times in the proof of our main result.

2.1 Unrelated Machine Scheduling

In the unrelated machine scheduling setting, we have a number n of machines and
a number m of tasks to allocate to these machines. These tasks can be performed
in any order, and each task has to be assigned to exactly one machine; machine i
requires tij units of time to process task j. Hence, the complete description of a
problem instance can be given by a n×m cost matrix of the values tij , which we
denote by t. In this matrix, row i, denoted by ti, represents the processing times
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for machine i (on the different tasks) and column j, denoted by tj , represents
the processing times for task j (on the different machines). These values tij are
assumed to be nonnegative real quantities, tij ∈ R+.

Applying the methodology of mechanism design, we assume that the pro-
cessing times for machine i are known only by machine i herself. Moreover,
machines are selfish agents; in particular, they are not interested in running
a task unless they receive some compensation for doing so. They may also lie
about their processing times if this would benefit them. This leads us to consider
the central notion of (direct-revelation) mechanisms: each machine reports her
values, and a mechanism decides on an allocation of tasks to machines, as well
as corresponding payments, based on the reported values.

Definition 1 (Allocation rule, payment rule, mechanism). Given n
machines and m tasks,

– a (deterministic) allocation rule is a function that describes the allocation of
tasks to machines for each problem instance. Formally, it is represented as a
function a : Rn×m

+ → {0, 1}n×m such that, for every t = (tij) ∈ R
n×m
+ and

every task j = 1, . . . ,m, there is exactly one machine i with aij(t) = 1, that
is,

n∑

i=1

aij(t) = 1; (1)

– a payment rule is a function that describes the payments to machines for each
problem instance. Formally, it is represented as a function p : Rn×m

+ → R
n;

– a (direct-revelation, deterministic) mechanism is a pair (a, p) consisting of
an allocation and payment rules.

We let A denote the set of feasible allocations, that is, matrices a = (aij) ∈
{0, 1}n×m satisfying (1). Given a feasible allocation a, we let ai denote its row
i, that is, the allocation to machine i. Similarly, given a payment vector p ∈ R

n,
we let pi denote the payment to machine i; note that the payments represent
an amount of money given to the machine, which is somewhat the opposite
situation compared to other mechanism design frameworks (such as auctions,
where payments are done by the agents to the mechanism designer).

2.2 Truthfulness and Monotonicity

Whenever a mechanism assigns an allocation ai and a payment pi to machine
i, this machine incurs a quasi-linear utility equal to her payment minus the sum
of processing times of the tasks allocated to her,

pi − ai · ti = pi −
m∑

j=1

aijtij .

Note that the above quantity depends on the machine’s true and reported
processing times, which in principle might differ. As already explained, machines
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behave selfishly. Thus, from the point of view of a mechanism designer, we wish to
ensure a predictable behaviour of all parties involved. In particular, we are only
interested in mechanisms that encourage agents to report their true valuations.

Definition 2 (Truthful mechanism). A mechanism (a, p) is truthful if every
machine maximizes their utility by reporting truthfully, regardless of the reports
by the other machines. Formally, for every machine i, every ti, t

′
i ∈ R

m
+ , t−i ∈

R
(n−1)×m
+ , we have that

pi(ti, t−i) − ai(ti, t−i) · ti ≥ pi(t′
i, t−i) − ai(t′

i, t−i) · ti. (TR)

In (TR), we “freeze” the reports of all machines other than i. The left hand
side corresponds to the utility achieved by machine i when her processing times
correspond to ti and she truthfully reports ti. The right hand side corresponds
to the utility achieved if machine i lies and reports t′i.

The most important example of a truthful mechanism in this setting is the
VCG mechanism, that assigns each task independently to the machine that can
perform it fastest, and paying that machine (for that task) a value equal to the
second-lowest processing time. This is somewhat the equivalent of second-price
auctions (that sell each item independently) for the scheduling setting.

A fundamental result in the theory of mechanism design is the very useful
property of truthful mechanisms, in terms of “local” monotonicity of the alloca-
tion function with respect to single-machine deviations.

Theorem 1 (Weak monotonicity [NR01,LS09]). Let t be a cost matrix, i
be a machine, and t′

i another report from machine i. Let ai be the allocation of
i for cost matrix t and a′

i be the allocation of i for cost matrix (t′i, t−i). Then,
if the mechanism is truthful, it must be that

(ai − a′
i) · (ti − t′

i) ≤ 0. (WMON)

As a matter of fact, (WMON) is also a sufficient condition for truthfulness,
thus providing an exact characterization of truthfulness [SY05]. However, for
our purposes in this paper we will only need the direction in the statement
of Theorem 1 as stated above. We will make use of the following lemma, which
exploits the notion of weak monotonicity in a straightforward way. The second
part of this lemma can be understood as a refinement of a technical lemma that
appeared before in [CKV09, Lemma 2] (see also [KV13, Lemma 1]).

Lemma 1. Suppose that machine i changes her report from t to t′, and that
a truthful mechanism correspondingly changes her allocation from ai to a′

i. Let
{1, . . . , m} = S ∪ T ∪ V be a partition of the tasks into three disjoint sets.

1. Suppose that (a) the costs of i on V do not change, that is, ti,V = t′
i,V and

(b) the allocation of i on S does not change, that is, ai,S = a′
i,S. Then

(ai,T − a′
i,T ) · (ti,T − t′

i,T ) ≤ 0.

2. Suppose additionally that (c) the costs of i strictly decrease on her allocated
tasks in T and strictly increase on her unallocated tasks in T . Then her allo-
cation on T does not change, that is, ai,T = a′

i,T .
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2.3 Approximation Ratio

One of the main open questions in the theory of algorithmic mechanism design
is to figure out what is the “best” possible truthful mechanism, with respect to
the objective of makespan minimization. This can be quantified in terms of the
approximation ratio of a mechanism.

If t is a problem instance (with n machines and m tasks) and a is a feasible
allocation, its makespan is defined as the quantity

makespan(a, t) = max
i=1,...,n

m∑

j=1

aijtij .

The optimal makespan for a problem instance t is defined as the quantity

OPT(t) = min
a∈A

makespan(a, t).

We say that an allocation rule a has approximation ratio ρ ≥ 1 if, for any
problem instance t, we have that

makespan(a(t), t) ≤ ρOPT(t);

if no such quantity ρ exists, we say that a has infinite approximation ratio.
As shown in [NR01], the VCG mechanism has an approximation ratio of

n, the number of machines. The long-standing conjecture by Nisan and Ronen
states that this mechanism is essentially the best one; any truthful mechanism
is believed to attain a worst-case approximation ratio of n (for sufficiently many
tasks). In this paper, we prove lower bounds on the approximation ratio of any
truthful mechanism (Table 1 and Theorem 2), which converge to 2.755 as n → ∞.

3 Lower Bound

To prove our lower bound, from here on we assume n ≥ 3 machines, since the case
n = 1 is trivial and the case n = 2 is resolved by [NR99] (with an approximation
ratio of 2). Our construction will be made with the choice of two parameters
r, a. For now we shall simply assume that a > 1 > r > 0. Later we will optimize
the choices of r and a in order to achieve the best lower bound possible by our
construction.

We will use Ln to denote the n × n matrix with 0 in its diagonal and ∞
elsewhere,

Ln =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 ∞ · · · ∞
∞ 0 · · · ∞
...

...
. . .

...

∞ ∞ · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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We should mention here that allowing tij = ∞ is a technical convenience.
If only finite values are allowed, we can replace ∞ by an arbitrarily high value.
We also follow the usual convention, and use an asterisk ∗ to denote a full or
partial allocation. Our lower bound begins with the following cost matrix for n
machines and 2n − 1 tasks:

A0 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ln

∗1 1 a−1 a−2 · · · a−n+3

1 1 a−1 a−2 · · · a−n+3

∞ 1 ∞ ∞ · · · ∞
∞ ∞ a−1 ∞ · · · ∞
∞ ∞ ∞ a−2 . . . ∞
...

...
...

. . . . . .
...

∞ ∞ ∞ ∞ · · · a−n+3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

The tasks of cost matrix A0 can be partitioned in two groups. The first n tasks
(i.e., the ones corresponding to the Ln submatrix) will be called dummy tasks.
Machine i has a cost of 0 for dummy task i and a cost of ∞ for all other dummy
tasks. The second group of tasks, numbered n + 1, . . . , 2n − 1, will be called
proper tasks. Notice that machines 1 and 2 have the same costs for proper tasks;
they both need time 1 to execute task n + 1 and time a−j+2 to execute task
n + j, for all j = 2, . . . n − 1. Finally for i ≥ 3, machine i has a cost of a−i+3 on
proper task n + i − 1 and ∞ cost for all other proper tasks.

In order for a mechanism to have a finite approximation ratio, it must not
assign any tasks with unbounded costs. In particular, each dummy task must be
assigned to the unique machine that completes it in time 0; and proper task n+1
must be assigned to either machine 1 or 2. Since the costs of machines 1 and
2 are the same on all proper tasks, we can without loss assume that machine 1
receives proper task n+1. Hence, the allocation on A0 should be as (designated
by an asterisk) in (2).

Next, we reduce the costs of all proper tasks for machine 1, and get the cost
matrix

A1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ln

r a−1 a−2 a−3 · · · a−n+2

1 1 a−1 a−2 · · · a−n+3

∞ 1 ∞ ∞ · · · ∞
∞ ∞ a−1 ∞ · · · ∞
∞ ∞ ∞ a−2 . . . ∞
...

...
...

. . . . . .
...

∞ ∞ ∞ ∞ · · · a−n+3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)



234 Y. Giannakopoulos et al.

Under the new matrix A1, the cost of machine 1 for proper task n+1 is reduced
from 1 to r; and her cost for any other proper task n + j, j = 2, . . . , n − 1, is
reduced by a factor of a, that is, from a−j+2 to a−j+1. The key idea in this step
is the following: we want to impose a constraint on r and a that ensures that at
least one of the proper tasks n + 1, n + 2 is still allocated to machine 1. Using
the properties of truthfulness, namely part 1 of Lemma 1, this can be achieved
via the following lemma:

Lemma 2. Consider a truthful scheduling mechanism that, on cost matrix A0,
assigns proper task n + 1 to machine 1. Suppose also that

1 − r > a−1 − a−n+2. (4)

Then, on cost matrix A1, machine 1 must receive at least one of the proper tasks
n + 1, n + 2.

For the remainder of our construction, we assume that r and a satisfy (4).
Next, we split the analysis depending on the allocation of the proper tasks n +
1, . . . 2n − 1 to machine 1 on cost matrix A1, as restricted by Lemma 2.

3.1 Case 1: Machine 1 Gets All Proper Tasks

In this case, we perform the following changes in machine 1’s tasks, obtaining a
new cost matrix B1. We increase the cost of dummy task 1, from 0 to 1, and we
decrease the costs of all her proper tasks by an arbitrarily small amount. Notice
that

– for the mechanism to achieve a finite approximation ratio, it must still allocate
the dummy task 1 to machine 1;

– given that the mechanism does not change the allocation on dummy task 1,
and that machine 1 only decreases the completion times of her proper tasks,
part 2 of Lemma 1 implies that machine 1 still gets all proper tasks.

Thus, the allocation must be as shown below (for ease of exposition, in the cost
matrices that follow we omit the “arbitrarily small” amounts by which we change
allocated/unallocated tasks):

B1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗1 ∞ ∞ ∞ · · · ∞ ∗r ∗a−1 ∗a−2 · · · ∗a−n+2

∞ ∗0 ∞ ∞ · · · ∞ 1 1 a−1 · · · a−n+3

∞ ∞ ∗0 ∞ · · · ∞ ∞ 1 ∞ · · · ∞
∞ ∞ ∞ ∗0 · · · ∞ ∞ ∞ a−1 · · · ∞
...

...
...

...
. . .

...
...

...
...

. . .
...

∞ ∞ ∞ ∞ · · · ∗0 ∞ ∞ ∞ · · · a−n+3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.



A New Lower Bound for Deterministic Truthful Scheduling 235

This allocation achieves a makespan of 1 + r + a−1 + . . . + a−n+2, while a
makespan of 1 can be achieved by assigning each proper task n + j to machine
j + 1. Hence, this case yields an approximation ratio of at least 1 + r + va−1 +
. . . + a−n+2.

3.2 Case 2: Machine 1 Gets Task n + 1, But Does Not Get All
Proper Tasks

That is, at least one of tasks n + 2, . . . 2n − 1 is not assigned to machine 1.
Suppose that task n + j is the lowest indexed proper task that is not allocated
to her. We decrease the costs of her allocated proper tasks n + 1, . . . , n + j − 1
to 0, while increasing the cost a−j+1 of her (unallocated) proper task n + j by
an arbitrarily small amount. By Lemma 1, the allocation of machine 1 on the
proper tasks n+1, . . . , n+ j does not change. Hence we get a cost matrix of the
form

B2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ln

∗0 ∗0 · · · a−j+1 · · · a−n+2

1 1 · · · a−j+2 · · · a−n+3

∞ 1 · · · ∞ · · · ∞
...

...
. . .

... · · · ∞
∞ ∞ · · · a−j+2 . . . ∞
...

...
...

. . . . . .
...

∞ ∞ ∞ ∞ · · · a−n+3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since task n + j is not allocated to machine 1, and the mechanism has finite
approximation ratio, it must be allocated to either machine 2 or machine j + 1.
In either case, we increase the cost of the dummy task of this machine from 0 to
a−j+1, while decreasing the cost of her proper task n + j by an arbitrarily small
amount. For example, if machine 2 got task n + j, we would end up with

C2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗0 ∞ ∞ · · · ∞ · · · ∞ 0 0 · · · a−j+1 · · · a−n+2

∞ ∗a−j+1 ∞ · · · ∞ · · · ∞ 1 1 · · · ∗a−j+2 · · · a−n+3

∞ ∞ ∗0 · · · ∞ · · · ∞ ∞ 1 · · · ∞ · · · ∞
...

...
...

. . .
...

. . .
...

...
...

. . .
...

. . . ∞
∞ ∞ ∞ · · · ∗0 · · · ∞ ∞ ∞ · · · a−j+2 · · · ∞
...

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

∞ ∞ ∞ · · · ∞ · · · ∗0 ∞ ∞ ∞ ∞ · · · a−n+3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Similarly to the previous Case 1, the mechanism must still allocate the
dummy task to this machine, and given that the allocation does not change
on the dummy task, Lemma 1 implies that the allocation must also remain
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unchanged on the proper task n + j. Finally, observe that the present allocation
achieves a makespan of at least a−j+1 + a−j+2, while a makespan of a−j+1 can
be achieved by assigning proper task n + j to machine 1 and proper task n + j′

to machine j′ + 1, for j′ > j. Hence, this case yields an approximation ratio of
at least

a−j+1 + a−j+2

a−j+1
= 1 + a.

3.3 Case 3: Machine 1 Does Not Get Task n + 1

By Lemma 2, machine 1 must receive proper task n + 2. In this case, we decrease
the cost of her task n + 2, from a−1 to 0, while increasing the cost r of her
(unallocated) task n + 1 by an arbitrarily small amount. Since by truthfulness,
the allocation of machine 1 for these two tasks does not change, the allocation
must be as below:

B3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ln

r ∗0 a−2 · · · a−n+2

∗1 1 a−1 · · · a−n+3

∞ 1 ∞ · · · ∞
∞ ∞ a−1 · · · ∞
...

...
...

. . .
...

∞ ∞ ∞ · · · a−n+3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since task n + 1 is not allocated to machine 1, and the mechanism has finite
approximation ratio, it must be allocated to machine 2. We now increase the
cost of the dummy task of machine 2 from 0 to max{r, a−1}, while decreasing
the cost of her proper task n + 1 by an arbitrarily small amount. Similarly to
Cases 1 and 2, the mechanism must still allocate the dummy task to machine 2,
and preserve the allocation of machine 2 on the proper task n + 1. Thus, we get
the allocation shown below:

C3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗0 ∞ ∞ ∞ · · · ∞ r 0 a−2 · · · a−n+2

∞ ∗ max{r, a−1} ∞ ∞ · · · ∞ ∗1 1 a−1 · · · a−n+3

∞ ∞ ∗0 ∞ · · · ... ∞ 1 ∞ · · · ∞
∞ ∞ ∞ ∗0 · · · ∞ ∞ ∞ a−1 · · · ∞
...

...
...

...
. . .

...
...

...
...

. . .
...

∞ ∞ ∞ ∞ · · · ∗0 ∞ ∞ ∞ · · · a−n+3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This allocation achieves a makespan of at least 1 + max{r, a−1}, while a
makespan of max{r, a−1} can be achieved by assigning proper tasks n + 1, n + 2
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to machine 1 and proper task n+ j′ to machine j′ +1, for all j′ > 2. Hence, this
case yields an approximation ratio of at least

1 + max{r, a−1}
max{r, a−1} = 1 + min{r−1, a}.

3.4 Main Result

The three cases considered above give rise to possibly different approximation
ratios; our construction will then yield a lower bound equal to the smallest of
these ratios. First notice that Case 3 always gives a worse bound than Case 2:
the approximation ratio for the former is 1+min{r−1, a}, whereas for the latter
it is 1 + a. Thus we only have to consider the minimum between Cases 1 and 3.

Our goal then is to find a choice of r and a that achieves the largest possi-
ble such value. We can formulate this as a nonlinear optimization problem on
the variables r and a. To simplify the exposition, we also consider an auxiliary
variable ρ, which will be set to the minimum of the approximation ratios:

ρ = min
{
1 + r + a−1 + . . . + a−n+2, 1 + min{r−1, a}}

= min
{
1 + r + a−1 + . . . + a−n+2, 1 + r−1, 1 + a

}
.

This can be enforced by the constraints ρ ≤ 1+r+a−1+ . . .+a−n+2, ρ ≤ 1+r−1

and ρ ≤ 1 + a. Thus, our optimization problem becomes

sup ρ (NLP)

s.t. ρ ≤ 1 + r + a−1 + . . . + a−n+2

ρ ≤ 1 + r−1

ρ ≤ 1 + a

0 < r < 1 < a

1 − r > a−1 − a−n+2

Notice that any feasible solution of (NLP) gives rise to a lower bound on
the approximation ratio of truthful machine scheduling. In our next lemma, we
characterize the limiting optimal solution of the above optimization problem.
Thus, the lower bound achieved corresponds to the best possible lower bound
using the general construction in this paper.

Lemma 3. An optimal solution to the optimization problem given by (NLP) is
as follows.

1. For n = 3, 4, 5, choose ρ = 1 + a, r = 1
a , and a as the positive solution of the

equation
2
a

= a, for n = 3;

2
a

+
1
a2

= a, for n = 4;

2
a

+
1
a2

+
1
a3

= a, for n = 5.
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2. For n ≥ 6, choose ρ = 1 + a, r = 1 − 1
a + 1

an−2 , and a as the positive solution
of the equation

1 +
1
a2

+ · · · +
1

an−3
+

2
an−2

= a. (5)

Using the above technical lemma, we are able to prove our main result.

Theorem 2. No deterministic truthful mechanism for unrelated machine
scheduling can have an approximation ratio better than ρ ≈ 2.755, where ρ is
the (unique real) solution of equation

(ρ − 1)(ρ − 2)2 = 1. (6)

For a restricted number of machines the lower bounds can be seen in Table 1.

Proof. For n large enough we can use Case 2 of Lemma 3. In particular, taking
the limit of (5) as n → ∞, we can ensure a lower bound of ρ = a + 1, where a
is the (unique) real solution of equation

1 +
∞∑

i=2

1
ai

= 1 +
1

a(a − 1)
= a.

Performing the transformation a = ρ − 1, and multiplying throughout by (ρ −
1)(ρ − 2), we get exactly (6).

For a fixed number of machines n, we can directly solve the equations given
by either Case 1 (n = 3, 4, 5) or Case 2 of Lemma 3 to derive the corresponding
value of a, for a lower bound of ρ = a + 1. In particular, for n = 3, 4, 5 one
gets a =

√
2 ≈ 1.414, a = φ ≈ 1.618 (i.e., the golden ratio) and a ≈ 1.711,

respectively. The values of ρ for up to n = 8 machines are given in Table 1.

References

ADL12. Ashlagi, I., Dobzinski, S., Lavi, R.: Optimal lower bounds for anonymous
scheduling mechanisms. Math. Oper. Res. 37(2), 244–258 (2012). https://
doi.org/10.1287/moor.1110.0534

APPP09. Auletta, V., De Prisco, R., Penna, P., Persiano, G.: The power of verifica-
tion for one-parameter agents. J. Comput. Syst. Sci. 75(3), 190–211 (2009).
https://doi.org/10.1016/j.jcss.2008.10.001
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Abstract. We introduce the class of modified Schelling games in which
there are different types of agents who occupy the nodes of a location
graph; agents of the same type are friends, and agents of different types
are enemies. Every agent is strategic and jumps to empty nodes of the
graph aiming to maximize her utility, defined as the ratio of her friends
in her neighborhood over the neighborhood size including herself. This is
in contrast to the related literature on Schelling games which typically
assumes that an agent is excluded from her neighborhood whilst com-
puting its size. Our model enables the utility function to capture likely
cases where agents would rather be around a lot of friends instead of just
a few, an aspect that was partially ignored in previous work. We provide
a thorough analysis of the (in)efficiency of equilibria that arise in such
modified Schelling games, by bounding the price of anarchy and price
of stability for both general graphs and interesting special cases. Most
of our results are tight and exploit the structure of equilibria as well as
sophisticated constructions.

Keywords: Schelling games · Price of anarchy · Price of stability

1 Introduction

More than 50 years ago, Thomas Schelling [23,24] presented the following simple
probabilistic procedure in an attempt to model residential segregation. There are
two types of agents who are uniformly at random placed at the nodes of a location
graph (such as a line or a grid), and a tolerance threshold parameter τ ∈ (0, 1). If
the neighborhood of an agent consists of at least a fraction τ of agents of her own
type, then the agent is happy and remains at her current location. Otherwise,
the agent is unhappy and either jumps to a randomly selected empty node of the
graph or swaps locations with another randomly chosen unhappy agent. Schelling
experimentally showed that this random process can lead to placements such
that the graph is partitioned into multiple parts, each containing mostly agents
of the same type, even when the agents are tolerant towards having neighbors
of the other type (that is, when τ < 1/2).

Since its inception, Schelling’s model and interesting variants of it have been
studied extensively both experimentally and theoretically from the perspective
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of a plethora of different disciplines, including Sociology [12], Economics [22,26],
Physics [25], and Computer Science [4,5,9,17]. Most of these works have focused
on the analysis of random processes similar to the one proposed by Schelling,
either via agent-based simulations or via Markov chains, and have shown that
segregation occurs with high probability.

A more recent stream of papers [1,6,10,11,14,16] have considered Schelling
games, that is, game-theoretic variants of Schelling’s model with multiple types
of agents and general location graphs. The agents behave strategically and aim
to maximize a utility function, which is defined as the minimum between the
threshold parameter τ and the ratio of the other agents of the same type within
one’s neighborhood over the (occupied) neighborhood size. These papers have
considered both jump games, in which the agents are allowed to jump to empty
nodes of the location graph, and swap games, in which the agents are only
allowed to pairwise swap positions. Among other questions, they have studied
the complexity of computing equilibrium assignments (i.e., placements such that
no agent wants to jump to an empty node or no pair of agents wants to swap
positions), the complexity of maximizing social welfare (i.e., the total utility of
the agents), and have shown bounds on the price of anarchy [18] and the price
of stability [2].

One limitation of the utility function defined above and used in the related
literature on Schelling games, which our model aims to address, is that it does not
allow the agents to distinguish between neighborhoods that consist only of agents
of their own type, but may vary in size. To give a concrete example, consider
a red agent who faces the dilemma of choosing between two empty nodes, one
of which is adjacent to one red agent, while the other is adjacent to two red
agents. Since the utility is defined as the fraction of red neighbors, both empty
nodes offer the same utility of 1 to our agent, which means that she can choose
arbitrarily amongst them. However, it is arguably more realistic to assume that
the second empty node is more attractive than the first one as it is adjacent to a
strictly larger number of red agents, and consequently the agent would normally
choose it. To strengthen the ability of the utility function to express preferences
of this kind, we redefine it by assuming that the agent considers herself as part
of the set of her neighbors, which simply translates to a “+1” term added to
the denominator of the ratio; this is similar to fractional hedonic games (see the
discussion below). Back to our example, the new modified utility function would
yield utilities of 1/2 and 2/3 for the two empty nodes, respectively, reflecting
the agent’s preference for the second node.

Our Setting and Contribution. We introduce the class of modified Schelling
games. In such games, there are k types of agents who occupy the nodes of some
location graph and aim to maximize their utility, which is defined by the modified
function discussed above, by jumping to empty nodes whenever such a move is
beneficial; following most of the related work in Schelling games, we assume
that τ = 1. Since the modified utility function is able to express preferences over
monochromatic neighborhoods of different sizes, a strategic game is induced even
when there is a single type of agents. For k = 1, we argue that the best-response
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Table 1. Overview of our price of anarchy and price of stability bounds. For k = 1,
the case of balanced games is obviously non-applicable (N/A). For k ≥ 2, all price of
anarchy bounds are for games with at least two agents per type (otherwise, the PoA
can be easily seen to be unbounded); the PoA bounds for lines and trees are restricted
to balanced games. Unless specified otherwise (like for PoS), the bounds presented are
tight.

PoA PoS

Arbitrary Balanced Line Tree

k = 1 2 − 2
n

N/A 4
3

− 2
3n

4
3

− 2
3n

∈ [ 15
14
, 3
2
]

k ≥ 2 2n(n−k)
n+2

2k 2 (k = 2)
k + 1/2 (k ≥ 3)

14
9
k (k ∈ {2, 3})

2k2

k+1
(k ≥ 4)

≥ 4
3

(k = 2)

dynamics always converges to an equilibrium assignment in polynomial time,
while this is not generally true for k ≥ 2. Our main technical contribution is a
thorough price of anarchy and price of stability analysis. We distinguish between
games on arbitrary location graphs, balanced games in which there is the same
number of agents per type (for k ≥ 2), as well as games with structured location
graphs such as lines and trees. We show tight bounds on the price of anarchy, by
carefully exploiting the structure of equilibrium assignments and the properties
of the games we study. We also show lower bounds on the price of stability for
k ∈ {1, 2}, as well as an upper bound for k = 1; to the best of our knowledge, this
is the first non-trivial upper bound on the price of stability for general location
graphs in the related literature. An overview of our results is given in Table 1.
Due to space constraints, many proofs are omitted.

Related Work. We will mainly discuss the related literature on Schelling games.
Chauhan et al. [11] studied the convergence of the best-response dynamics to an
equilibrium assignment in both jump and swap Schelling games with two types
of agents and for various values of the threshold parameter τ . They presented
a series of positive and negative results depending on the relation of τ to other
parameters related to the location graph. Their results were later extended by
Echzell et al. [14] for more than two types of agents and for two different gener-
alizations of the utility function: one that considers all types in the denominator
of the ratio, and one that considers only the type of the agent at hand and the
type of maximum cardinality among the remaining types.

Elkind et al. [16] considered a variant of jump Schelling games with k ≥ 2
types of agents who may behave in two different ways: some of them are strategic
and aim to maximize their utility, while some others are stubborn and stay at
their initial location regardless of the composition of the neighborhood. Elkind
et al. showed that equilibrium assignments may fail to exist, they proved that the
problem of computing an equilibrium or an assignment with high social welfare
is intractable, and also showed bounds on the price of anarchy and the price of
stability. Furthermore, they discussed several extensions, among which that of
social Schelling games, where the friendships among agents are specified by a



244 P. Kanellopoulos et al.

social network. This class of games was further studied by Chan et al. [10], who
also assumed that the nodes of the location graph can be shared by different
agents.

Agarwal et al. [1] considered swap Schelling games. Besides studying com-
plexity and price of anarchy questions similar to those of Elkind et al., they also
considered related questions for a different objective function over assignments,
called degree of integration, which aims to capture how diverse an assignment
is; this function counts the number of agents who have at least one neighbor of
different type. Very recently, Bilò et al. [6] performed a refined price of anarchy
analysis with respect to the social welfare in the model of Agarwal et al. for
swap games: they showed improved bounds for k = 2, as well as for games with
structured location graphs such as cycles, trees, regular graphs, and grids. Fur-
thermore, they initiated the study of games restricted movement, in which the
agents can swap positions only with agents within a given radius from their cur-
rent location (such as their neighbors). In a slightly different context, Massand
and Simon [19] studied games that are similar to swap social Schelling games,
but with linear utility functions, instead of fractions.

As pointed out by Elkind et al., Schelling games are very similar to hedonic
games [8,13], but also quite distinct from them: while one can think of the
neighborhoods as coalitions, these coalitions generally overlap depending on the
structure of the location graph. Somewhat counter-intuitively, the games studied
by almost all the aforementioned papers are analogous to modified fractional
hedonic games [15,20,21], where the agents are connected via a weighted social
graph and are then partitioned into coalitions; each agent derives a utility which
is the total weight of her connections within her coalition divided by the size
of the coalition excluding herself. In contrast, the modified Schelling games we
study in this paper are analogous to fractional hedonic games [3,7], where the
utility of an agent is defined as the total weight of her connections within her
coalition divided by the size of the coalition including herself.

2 Preliminaries

There are n ≥ 2 agents who are partitioned into k ≥ 1 types. We denote by T� the
set of all agents of type � ∈ [k], and let n� = |T�| such that n =

∑
�∈[k] n�; also,

let n = (n�)�∈[k]. Agents of the same type are friends, and agents of different
types are enemies. The agents occupy the nodes of a simple undirected connected
location graph G = (V,E) with |V | > n nodes; following previous work, we refer
to this graph as the topology. An assignment v = (vi)i∈[n] is a vector containing
the node vi ∈ V occupied by each agent i ∈ [n] such that vi �= vj for i �= j.

For an assignment v, we denote by N(v|v) the set of agents that are
adjacent to node v ∈ V . Moreover, let x(v|v) = |N(v|v)| and denote by
x�(v|v) = |N(v|v) ∩ T�| the number of agents of type � ∈ [k] in the neigh-
borhood of node v. Then, the utility of an agent i of type � who occupies node
vi under assignment v is defined as
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ui(v) =
x�(vi|v)

1 + x(vi|v)
.

To simplify our notation, we will omit v whenever it is clear from context, and
will sometimes use colors to refer to different types.

The agents are strategic and can jump to empty nodes of the topology to
maximize their utility. An assignment v is called a pure Nash equilibrium (or,
simply, equilibrium) if no agent prefers to jump to any empty node, that is,
ui(v) ≥ ui(v,v−i) for every agent i and empty node v, where (v,v−i) is the
assignment according to which agent i occupies v and all other agents occupy
the same nodes as in v. Let EQ(G) denote the set of all equilibrium assignments
of a modified k-Schelling game G = (n, G).

The social welfare of an assignment v is the total utility of the agents:

SW(v) =
∑

i∈[n]

ui(v).

For a given game, the maximum social welfare among all possible assignments is
denoted by OPT = maxv SW(v). The price of anarchy of a modified k-Schelling
game G with EQ(G) �= ∅ is the ratio of the maximum social welfare achieved by
any possible assignment over the minimum social welfare achieved at equilibrium,
that is,

PoA(G) =
OPT

minv∈EQ(G) SW(v)
.

Then, the price of anarchy of a class C of modified k-Schelling games is

PoA(C) = sup
G∈C:EQ(G) �=∅

PoA(G).

Similarly, the price of stability of a modified k-Schelling game G with EQ(G) �= ∅

is the ratio of the maximum social welfare achieved by any possible assignment
over the maximum social welfare achieved at equilibrium, that is,

PoS(G) =
OPT

maxv∈EQ(G) SW(v)
,

and the price of stability of a class C of modified k-Schelling games is

PoS(C) = sup
G∈C:EQ(G) �=∅

PoS(G).

Besides general modified k-Schelling games, we will consider balanced games in
which there are n/k agents of each type � ∈ [k], as well as games in which the
topology has a particular set of properties (for instance, it is a line or a tree).
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3 One-Type Games

Interestingly, the modified Schelling model that we consider in this paper admits
a game even when all agents are of the same type. This is in sharp contrast to
the original model in which the utility of any agent who only has neighbors
of the same type is always 1, implying that any connected assignment is an
equilibrium when there is only one type of agents; see Sect. 1 for a more detailed
discussion on the differences between the two utility models. In this section,
we focus entirely on the case where there is one type of agents and study the
equilibrium properties of the induced strategic games. We start by showing that
there always exist equilibrium assignments in such games. The proof follows by
defining a suitable potential function.

Theorem 1. Modified 1-Schelling games always admit at least one equilibrium
assignment, which can be computed in polynomial time.

We continue by showing tight bounds on the price of anarchy of modified
1-Schelling games for two cases. The first is the most general one in which the
topology can be any arbitrary graph, while the second is for when the topology
is a tree.

Theorem 2. The price of anarchy of modified 1-Schelling games on arbitrary
graphs is exactly 2 − 2

n .

Our next result shows that the price of anarchy slightly improves when the
topology is more structured.

Theorem 3. The price of anarchy of modified 1-Schelling games on trees and
lines is exactly 4

3 − 2
3n .

We now turn our attention to the price of stability. By arguing about the
structure of the optimal assignment, and by exploiting the properties of a variant
of the best-response dynamics which gives priority to agents of minimum utility,
we are able to show an upper bound on the price of stability. We remark that
this is the first upper bound on the price of stability in the literature on Schelling
games that holds for arbitrary graphs, albeit only when there is a single type of
agents.

Theorem 4. The price of stability of modified 1-Schelling games is at most 3/2.

Proof. Consider any modified 1-Schelling game, and let v∗ be its optimal assign-
ment. We first claim that if there exists an agent with utility 1/2 in v∗, then v∗

must be an equilibrium, and thus the price of stability is 1. To see this, suppose
otherwise that v∗ is not an equilibrium and there exist agents with utility 1/2.
Since someone can benefit by jumping to an empty node v, it must be the case
that there exists an agent i with utility 1/2 who can increase her utility by jump-
ing to v too. The utility of i will then increase by at least 2/3 − 1/2 = 1/6, the
utility of the agents in N(v|v∗) will increase by some strictly positive quantity
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(since the number of their neighbors increases by one), while the utility of i’s
single neighbor in v∗, who has y neighbors in v∗ (including i), will decrease by

y
y+1 − y−1

y = 1
y(y+1) ≤ 1

6 , where the inequality follows since the optimal assign-
ment must form a connected graph, which implies that y ≥ 2. Since |x(v|v∗)| ≥ 1,
the jump of i to v leads to a new assignment with strictly larger social welfare
than v∗, which contradicts the optimality of v∗. So, it suffices to consider the
case where all agents have utility at least 2/3 in the optimal assignment.

We now claim that starting from v∗ the best-response dynamics according to
which the agent with the minimum utility jumps in each step, terminates at an
equilibrium v in which there are at most two agents with utility 1/2, while all
other agents have utility at least 2/3. This will imply that the maximum social
welfare we can achieve at equilibrium is at least SW(v) ≥ (n − 2)23 + 1. Since
the optimal social welfare is at most n − 1, we will obtain an upper bound of

n−1
(n−2) 2

3+1
≤ 3

2 on the price of stability, as desired.
We use a recursive proof to show that starting with any assignment where the

minimum utility among all agents is at least 2/3, we will either reach another
assignment with minimum utility 2/3, or an equilibrium where at most two
agents have utility 1/2. This is sufficient by the fact that the best response
dynamics is guaranteed to terminate to an equilibrium; the proof of Theorem 1
actually uses a potential function to show that the dynamics always converges
to an equilibrium.

Let m denote the minimum number of neighbors an agent has in the current
assignment. Let a be an agent that has minimum utility m

m+1 . If m ≥ 3, then
a’s jump to an empty node will lead to a new assignment where every agent has
at least 2 neighbors, as desired. If m = 2, then a’s jump leads to at most two
agents with utility exactly 1/2 in the new assignment. If this assignment is an
equilibrium, then we are done. Otherwise, we distinguish between the following
two cases:

Case (1): There are two agents i and j who have utility 1/2 and are connected to
each other. According to the best-response dynamics we consider, one of these
agents, say i, will jump to an empty node to increase her utility to 2/3. The
jump of i will leave j with utility 0, who subsequently will jump to get utility
at least 1/2. If j’s best response yields her utility exactly 1/2, then there is no
empty node adjacent to strictly more than one agents, which implies that the
resulting assignment is an equilibrium, in which j is the only agent with utility
1/2. Otherwise, all agents have utility at least 2/3 in the new assignment.

Case (2): There is either only one agent i with utility 1/2, or there is also another
agent j with utility 1/2 such that i and j are not neighbors. If i can increase
her utility by jumping, then she will no longer have utility 1/2, but such a jump
might leave her neighbor with exactly one neighbor (and utility 1/2). However,
observe that no other agent can end up with utility 1/2 after i’s jump, which
means that the number of agents with utility 1/2 in the resulting assignment
cannot increase. Again, we distinguish between Cases (1) and (2).
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Fig. 1. The topology of the game used for the proof of the price of stability lower
bound in Theorem 5. The edges connecting different components indicate that each
node of one component is connected to each node of the other one.

Therefore, by starting with the optimal assignment, the process described
above will terminate at an equilibrium with at most two agents with utility 1/2,
and the bound follows. ��

We also show a lower bound on the price of stability, which establishes that
even the best equilibrium assignment (in terms of social welfare) is not always
optimal.

Theorem 5. The price of stability of modified 1-Schelling games is at least
15/14 − ε, for any constant ε > 0.

Proof. Consider a modified 1-Schelling game with n = 3λ + 10 agents, where λ
is a positive integer whose value will be determined later. The topology consists
of multiple components: a clique C with 6 nodes, and λ + 2 independent sets J ,
Z, I1, ..., Iλ such that |J | = 4, |Z| = 3λ and |I�| = 3 for every � ∈ [λ]; observe
that there are 6λ+10 nodes in total. These components are connected as follows:
Every node of C is connected to every node of J ; every node of J is connected
to every node of Z; one node of Z is connected to one node of I1; every node of
I� is connected to every node of I�+1 for � ∈ [λ − 1]. The topology is depicted in
Fig. 1.

The optimal social welfare is at least as high as the social welfare of the
assignment according to which the agents occupy all nodes except for those in
Z. Since the agents in C have 9 neighbors each, the agents in J have 6, the
agents in I1 ∪ Iλ have 3, and the agents in I2 ∪ ...∪ Iλ−1 have 6 again, we obtain
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OPT ≥ 6 · 9
10

+ 4 · 6
7

+ 6 · 3
4

+ 3(λ − 2) · 6
7

=
18
7

λ +
573
70

.

Now, consider the assignment v where the agents are placed at the nodes
of C ∪ J ∪ Z. The agents in C have 9 neighbors each, the agents in J have
3λ+6, and the agents in Z have 4. Since every agent has utility at least 4/5 and
would obtain utility at most 1/2 by jumping to any of the empty nodes, v is an
equilibrium. Its social welfare is

SW(v) = 6 · 9
10

+ 4 · 3λ + 6
3λ + 7

+ 3λ · 4
5

=
12
5

λ +
3(47λ + 103)

5(3λ + 7)
.

We will now show that v is the unique equilibrium of this game. Assume
otherwise that there exists an equilibrium where at least one agent is at a node
in I� for some � ∈ [λ]. Let i be an agent occupying a node of I�∗ , where �∗ is the
largest index among all � ∈ [λ] such that I� contains at least one occupied node.
Then, the utility of agent i is at most 3/4 (realized in case I�∗−1 is fully occupied).
Since agent i has no incentive to jump to a node in C ∪J ∪Z, it must be the case
that either there is no empty node therein, or each of these sets contains at most
three occupied nodes. The first case is impossible since |C ∪J ∪Z| = 3λ+10 = n
and we have assumed that agent i occupies a node outside this set. Similarly, the
second case is impossible since it implies that C ∪ J ∪ Z should contain at most
9 occupied nodes, but the remaining n − 9 = 3λ + 1 agents do not fit in the 3λ
nodes outside of this set. Therefore, the only possible equilibrium assignments
are such that there is no agent outside C ∪ J ∪ Z, which means that v is the
unique equilibrium.

By the above discussion, we have that the price of stability is

OPT
SW(v)

≥
18
7 λ + 573

70

12
5 λ + 3(47λ+103)

5(3λ+7)

,

which tends to 15/14 as λ becomes arbitrarily large. ��
We conclude this section with a result regarding the complexity of computing

an assignment with maximum social welfare. Inspired by a corresponding result
in [16], we show that, even in the seemingly simple case of modified 1-Schelling
games, maximizing the social welfare is NP-hard.

Theorem 6. Consider a modified 1-Schelling game and let ξ be a rational num-
ber. Then, deciding whether there exists an assignment with social welfare at least
ξ is NP-complete.
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4 Multi-type Games

In this section, we consider the case of strictly more than one type of agents.
We will show bounds on the price of anarchy and the price of stability, both for
general games as well as for interesting restrictions on the number of agents per
type or on the structure of the topology.

4.1 Arbitrary Topologies

We start by showing tight bounds on the price of anarchy for games on arbitrary
graphs when there are at least two agents per type. When there is only one agent
per type, any assignment is an equilibrium, and thus the price of anarchy is 1.
When there exists a type with at least two agents and one type with a single
agent, the price of anarchy can be unbounded: Consider a star topology and an
equilibrium assignment according to which the center node is occupied by this
lonely agent; then, all agents have utility 0. In contrast, the assignment according
to which an agent with at least one friend occupies the center node guarantees
positive social welfare.

Theorem 7. The price of anarchy of modified k-Schelling games with at least
two agents per type is exactly 2n(n−k)

n+2 .

Proof. For the upper bound, consider an arbitrary modified k-Schelling game in
which there are n� ≥ 2 agents of type � ∈ [k]. Clearly, the maximum utility that
an agent of type � can get is n�−1

n�
when she is connected to all other agents of

her type, and only them. Consequently, the optimal social welfare is

OPT ≤
∑

�∈[k]

n�
n� − 1

n�
= n − k. (1)

Now, let v be an equilibrium assignment, according to which there exists an
empty node v which is adjacent to x� = x�(v) agents of type � ∈ [k], such that
x� ≥ 1 for at least one type �; let x = x(v) =

∑
�∈[k] x�. We will now count the

contribution of each type � to SW(v).

– n� ≥ 3. In order to not have incentive to jump to v, every agent of type �

must have utility at least x�

x+1 if she is not adjacent to v, or x�−1
x ≥ x�−1

x+1
otherwise. Hence, the contribution of all agents of type � to the social welfare
is at least

(n� − x�)
x�

x + 1
+ x�

x� − 1
x + 1

=
(n� − 1)x�

x + 1
≥ 2x�

x + 1
.

– n� = 2. Let i and j be the two agents of type �. If x� = 2, then both i and
j have utility at least 1

x so that they do not have incentive to jump to v.
Otherwise, if x� = 1 and i is adjacent to v, then i and j must be neighbors,
since otherwise they would both have utility 0, and j would want to jump
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Fig. 2. The topology of the game used for the proof of the lower bound in Theorem 7.
The big squares C1, ..., Ck correspond to cliques such that c is connected only to a
single node of each C�.

to v to increase her utility to positive. Hence, i has utility at least 1
n and j

has utility at least 1
x+1 . Overall, from both cases, the contribution of the two

agents of type � is at least

x�

(
1

x + 1
+

1
n

)

.

Let Λ = {� ∈ [k] : n� = 2} be the set of all types with exactly two agents. By
the above discussion, the social welfare at equilibrium is

SW(v) ≥
∑

�∈[k]\Λ

2x�

x + 1
+

∑

�∈Λ

x�

(
1

x + 1
+

1
n

)

=
∑

�∈[k]

x�

x + 1
+

∑

�∈[k]\Λ

x�

x + 1
+

∑

�∈Λ

x�

n

=
x

x + 1
+

∑

�∈[k]\Λ

x�

x + 1
+

∑

�∈Λ

x�

n
.

If Λ = ∅, since x ≥ 1, we obtain

SW(v) ≥ x

x + 1
+

∑

�∈[k]

x�

x + 1
=

2x

x + 1
≥ 1.

Otherwise, we have

SW(v) ≥ x

x + 1
+

1
n

≥ 1
2

+
1
n

=
n + 2
2n

.

Since n ≥ 2, it is n+2
2n ≤ 1, and thus SW(v) ≥ n+2

2n in any case. By (1), the price
of anarchy is at most 2n(n−k)

n+2 .
Observe that the proof of the upper bound implies that the worst case occurs

when at equilibrium there exists an empty node that is adjacent to a single agent
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of some type � such that there are only two agents of type �. Using this as our
guide for the proof of the lower bound, consider a modified Schelling game with
n agents who are partitioned into k types such that there are n1 = 2 agents
of type 1 and n� ≥ 2 agents of type � ∈ [k]. The topology consists of a star
with a center node c and n − 1 leaf nodes {α1, ..., αn−1}, as well as k cliques
{C1, ..., Ck} such that C� has size n�. These subgraphs are connected as follows:
c is connected to a single node of C� for each � ∈ [k]; see Fig. 2.

Clearly, in the optimal assignment the agents of type � ∈ [k] are assigned to
the nodes of clique C� so that every agent is connected to all other agents of her
type, and only them. Consequently, the optimal social welfare is exactly

∑

�∈[k]

n�
n� − 1

n�
= n − k.

On the other hand however, there exists an equilibrium assignment where c is
occupied by one of the agents of type 1 and all other agents occupy the leaf
nodes α1, ..., αn−1. Then, only the two agents of type 1 have positive utility, in
particular, 1/n and 1/2, respectively. Hence, the price of anarchy is at least

n − k
1
2 + 1

n

=
2n(n − k)

n + 2
.

This completes the proof. ��
From the above theorem it can be easily seen that the price of anarchy can be

quite large in general. This motivates the question of whether improvements can
be achieved for natural restrictions. One such restriction is to consider balanced
games in which the n agents are evenly distributed to the k types, so that there
are exactly n/k agents per type. In the following we will focus exclusively on
balanced games.

Theorem 8. The price of anarchy of balanced modified k-Schelling games with
at least two agents per type is exactly 2k.

We continue by presenting a lower bound on the price of stability for modified
2-Schelling games, which holds even for the balanced case.

Theorem 9. The price of stability of modified 2-Schelling games is at least 4/3−
ε, for any constant ε > 0.

4.2 Restricted Topologies

We now turn our attention to balanced modified Schelling games on restricted
topologies. We start with the case of lines, and show the following statement.

Theorem 10. The price of anarchy of balanced modified k-Schelling games on
a line is exactly 2 for k = 2, and exactly k + 1/2 for k ≥ 3.
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Proof. We will only present the proof of the upper bound for k = 2. Let there
be n agents, with half of them red and half of them blue. Since the topology is a
line, in the optimal assignment the agents of same type are assigned right next
to each other and the two types are well-separated by an empty node (which
exists). Consequently, for each type, there are two agents with utility 1/2 and
n/2 − 2 agents with utility 2/3, and thus

OPT = 2 ·
(

2 · 1
2

+
(n

2
− 2

) 2
3

)

=
2(n − 1)

3
. (2)

Now, let v be an equilibrium assignment, and consider an empty node v
which, without loss of generality that, is adjacent to a red agent i. We distinguish
between three cases:

v is adjacent to another red agent j. Then, v cannot be an equilibrium. If i and
j are the only red agents, they get utility 0 and want to jump to v to get
1/2. Otherwise, there exists a third red agent that gets utility at most 1/2 (by
occupying at best the end of a red path) who wants to jump to v to get 2/3.

v is also adjacent to a blue agent j. Since v is connected to a red and a blue
agent, every agent must have utility at least 1/3 in order to not want to jump
to v. However, observe that v defines two paths that extend towards its left and
its right. The two agents occupying the nodes at the end of these paths must
be connected to friends and have utility 1/2; otherwise they would have utility
0 and would prefer to jump to v. Therefore, we have two agents with utility
exactly 1/2 and n − 4 agents with utility at least 1/3; we do not really know
anything about the utility of i and j. Putting all these together, we obtain

SW(v) ≥ 2 · 1
2

+ (n − 4)
1
3

=
n − 1

3
,

and the price of anarchy is at most 2.

v is a leaf or is adjacent to an empty node. Any of the remaining n/2 − 1 red
agents must have utility at least 1/2 in order to not have incentive to jump to
v. So, all red agents are connected only to red agents, which further means that
i is also connected to another red agent (otherwise she would be isolated, have
utility 0 and incentive to jump), and all blue agents are only connected to other
blue agents. Therefore, everyone has utility at least 1/2, yielding price of anarchy
at most 4/3.

Hence, the price of anarchy of balanced modified 2-Schelling games is at
most 2. ��

It should be straightforward to observe that the price of stability of modified
k-Schelling games on a line is 1. Indeed, the optimal assignment that allocates
agents of the same type next to each other and separates different types with an
empty node (if possible) is an equilibrium.

As we showed in Sect. 3, for k = 1, the price of anarchy of games on arbitrary
trees is the same as the price of anarchy of games on lines. However, this is no
longer true when we consider games with k ≥ 2 types.
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Theorem 11. The price of anarchy of balanced modified k-Schelling games on
a tree is exactly 14

9 k for k ∈ {2, 3}, and exactly 2k2

k+1 for k ≥ 4.

The proof of the theorem follows by distinguishing between cases, depending
on the number of agents per type. In particular, we show that the worst case
occurs when there are four agents per type for k ∈ {2, 3}, and when there are
two agents per type for k ≥ 4.

5 Conclusion and Possible Extensions

We introduced the class of modified Schelling games and studied questions about
the existence and efficiency of equilibria. Although we made significant progress
in these two fronts, our work leaves many interesting open problems.

In terms of our results, the most interesting and challenging open question is
whether equilibria always exist for k ≥ 2. We remark that to show such a positive
result one would have to resort to techniques different than defining a potential
function; we can show that it is not possible to define a potential function, even
when there are only two types of agents and the topology is a tree. Not being
able to argue about the convergence to an equilibrium for k ≥ 2 further serves
as a bottleneck towards proving upper bounds on the price of stability, which
we strongly believe that is one of the most challenging questions in Schelling
games (not only modified ones). Furthermore, one could also consider bounding
the price of anarchy for more special cases such as games on regular or bipartite
graphs.

Going beyond our setting, there are many interesting extensions of modified
Schelling games that one could consider. For example, when k ≥ 3, following the
work of Echzell et al. [14], we could define the utility function of agent i such that
the denominator of the ratio only counts the friends of i, the agents of the type
with maximum cardinality among all types with agents in i’s neighborhood, and
herself. Alternatively, following the work of Elkind et al. [16], one could focus on
social modified Schelling games in which the friendships among the agents are
given by a social network.
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den, T.: The price of stability for network design with fair cost allocation. SIAM
J. Comput. 38(4), 1602–1623 (2008)

3. Aziz, H., Brandl, F., Brandt, F., Harrenstein, P., Olsen, M., Peters, D.: Fractional
hedonic games. ACM Trans. Econ. Comput. 7(2), 6:1–6:29 (2019)

4. Barmpalias, G., Elwes, R., Lewis-Pye, A.: Digital morphogenesis via Schelling seg-
regation. In: Proceedings of the 55th IEEE Annual Symposium on Foundations of
Computer Science (FOCS), pp. 156–165 (2014)



Modified Schelling Games 255

5. Bhakta, P., Miracle, S., Randall, D.: Clustering and mixing times for segregation
models on Z

2. In: Proceedings of the 25th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 327–340 (2014)
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Abstract. Job scheduling on parallel machines is a well-studied single-
ton congestion game. We consider a variant of this game in which the
jobs are partitioned into competition sets, and the goal of every player
is to minimize the completion time of his job relative to his competitors.
Specifically, the primary goal of a player is to minimize the rank of its
completion time among his competitors, while minimizing the completion
time itself is a secondary objective. This fits environments with strong
competition among the participants, in which the relative performance
of the players determine their welfare.

We define and study the corresponding race scheduling game (RSG).
We show that RSGs are significantly different from classical job-
scheduling games, and that competition may lead to a poor outcome.
In particular, an RSG need not have a pure Nash equilibrium, and best-
response dynamics may not converge to a NE even if one exists. We
identify several natural classes of games, on identical and on related
machines, for which a NE exists and can be computed efficiently, and we
present tight bounds on the equilibrium inefficiencies. For some classes
we prove convergence of BRD, while for others, even with very limited
competition, BRD may loop. Among classes for which a NE is not guar-
anteed to exist, we distinguish between classes for which, it is tractable
or NP-hard to decide if a given instance has a NE.

Striving for stability, we also study the Nashification cost of RSGs,
either by adding dummy jobs, or by compensating jobs for having high
rank. Our analysis provides insights and initial results for several other
congestion and cost-sharing games that have a natural ‘race’ variant.

1 Introduction

Two men are walking through a forest. Suddenly they see a bear in the distance,
running towards them. They start running away. But then one of them stops,
takes some running shoes from his bag, and starts putting them on. “What are
you doing?” says the other man. “Do you think you will run faster than the bear
with those?” “I don’t have to run faster than the bear,” he says. “I just have to
run faster than you.”

In job-scheduling applications, jobs are assigned on machines to be processed.
Many interesting combinatorial optimization problems arise in this setting, which
is a major discipline in operations research. A centralized scheduler should assign
the jobs in a way that achieves load balancing, an effective use of the system’s
c© Springer Nature Switzerland AG 2020
T. Harks and M. Klimm (Eds.): SAGT 2020, LNCS 12283, pp. 257–272, 2020.
https://doi.org/10.1007/978-3-030-57980-7_17
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resources, or a target quality of service [20]. Many modern systems provide
service to multiple strategic users, whose individual payoff is affected by the
decisions made by others. As a result, non-cooperative game theory has become
an essential tool in the analysis of job-scheduling applications (see e.g., [3,10,12,
19], and a survey in [24]). Job-scheduling is a weighted congestion game [21] with
singleton strategies, that is, every player selects a single resource (machine).

In traditional analysis of congestion games, the goal of a player is to minimize
his cost. We propose a new model denoted race games that fits environments
with strong competition among the participants. Formally, the players form com-
petition sets, and a player’s main goal is to do well relative to his competitors.
The welfare of a player is not measured by a predefined cost or utility function,
but relative to the performance of his competitors. This natural objective arises
in many real-life scenarios. For example, in cryptocurrency mining, one needs to
be the first miner to build a block. It does not matter how fast a miner builds
a block, as long as she is the first to do so. Similarly, when buying event tick-
ets from online vendors, the time spent in the queue is far less important than
what tickets are available when it is your turn to buy. Participants’ ranking is
crucial in numerous additional fields, including auctions with a limited number
of winners, where, again, the participants’ rank is more important than their
actual offer, transplant queues, sport leagues, and even submission of papers to
competitive conferences.

In this paper we study the corresponding race scheduling game (RSG, for
short). We assume that the jobs are partitioned into competition sets. The pri-
mary goal of a job is to minimize the rank of its completion time among its
competitors, while minimizing the completion time itself is a secondary objec-
tive. As an example, consider a running competition. In order to be qualified
for the final, a runner should be faster than other participants in her heat. The
runners’ ranking is more important than their finish time.

Unfortunately, as we show, even very simple RSGs may not have a NE. We
therefore focus on potentially more stable instances. In many real-life scenarios,
competition is present among agents with similar properties. For example, there
is a competition among companies that offer similar services; in sport competi-
tions, the participants are categorized by their sex and age group, or by their
weight. Some of our results consider games in which competing players are homo-
geneous. Specifically, we assume that all the jobs in a competition set have the
same length.

Our results highlight the differences between RSGs and classical job-
scheduling games. We identify classes of instances for which a stable solution
exists and can be computed efficiently, we analyze the equilibrium inefficiency,
and the convergence of best-response dynamics. We distinguish between differ-
ent competition structure, and between environments of identical and related
machines. In light of our negative results regarding stability existence, we also
study the problem of Nashification. The goal of Nashification is, given an instance
of RSGs, to turn it into an instance that has a stable solution. This is done either
by adding dummy jobs, or by compensating jobs for having high rank. We believe
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that this ‘race’ model fits many natural scenarios, and should be analyzed for
additional congestion and cost-sharing games.

2 Model and Preliminaries

A race scheduling game (RSG) is given by G = 〈J ,M, {p(j)} ∀j ∈ J , {di} ∀i ∈
M, S〉, where J is a set of n jobs, M is a set of m machines, p(j) is the length
of job j, di is the delay of machine i, and S is a partition of the jobs into
competition sets. Specifically, S = {S1, . . . , Sc} such that c ≤ n, ∪c

�=1S� = J ,
and for all �1 �= �2, we have S�1 ∩ S�2 = ∅. For every job j ∈ S�, the other jobs
in S� are denoted the competitors of j. Let n� denote the number of jobs in S�.

Job j is controlled by Player j whose strategy space is the set of machines
M. A profile of an RSG is a schedule s = 〈s1, . . . , sn〉 ∈ Mn describing the
machines selected by the players1. For a machine i ∈ M, the load on i in s,
denoted Li(s), is the total length of the jobs assigned on machine i in s, that
is, Li(s) =

∑
{j|sj=i} p(j). When s is clear from the context, we omit it. It

takes p(j) · di time-units to process job j on machine i. As common in the
study of job-scheduling games, we assume that all the jobs assigned on the same
machine are processed in parallel and have the same completion time. Formally,
the completion time of job j in the profile s is Cj = Lsj

(s) · dsj
. Machines are

called identical if their delays are equal.
Unlike classical job-scheduling games, in which the goal of a player is to

minimize its completion time, in race games, the goal of a player is to do well
relative to its competitors. That is, every profile induces a ranking of the players
according to their completion time, and the goal of each player is to have a
lowest possible rank in its competition set. Formally, for a profile s, let Cs

S�
=

〈Cs
�1

, . . . , Cs
�n�

〉 be a sorted vector of the completion times of the players in S�.
That is, Cs

�1
≤ . . . ≤ Cs

�n�
, where Cs

�1
is the minimal completion time of a player

from S� in s, etc. The rank of Player j ∈ S� in profile s, denoted rank j(s) is
the rank of its completion time in Cs

S�
. If several players in a competition set

have the same completion time, then they all have the same rank, which is
the corresponding median value. For example, if n� = 4 and Cs

S�
= 〈7, 8, 8, 13〉

then the players’ ranks are 〈1, 2.5, 2.5, 4〉, and if all players in S� have the same
completion time then they all have rank (n� + 1)/2. Note that, independent of
the profile,

∑
j∈S�

rank j(s) = n�(n� + 1)/2.
For a profile s and a job j ∈ S�, let Nlow(j, s) be the number of jobs from S�

whose completion time is lower than Cj(s), and let Neq(j, s) be the number of
jobs from S� whose completion time is Cj(s). We have,

Observation 1. rank j(s) = Nlow(j, s) + 1+Neq(j,s)
2 .

The primary objective of every player is to minimize its rank. The secondary
objective is to minimize its completion time. Formally, Player j prefers profile s′

1 In this paper, we only consider pure strategies.
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over profile s if rank j(s′) < rank j(s) or rank j(s′) = rank j(s) and Cj(s′) < Cj(s).
Note that classic job-scheduling games are a special case of RSGs in which the
competition sets are singletons; thus, for every job j, in every profile, s, we have
rank j(s) = 1, and the secondary objective, of minimizing the completion time is
the only objective.

A machine i is a best response (BR) for Player j if, given the strategies of all
other players, j’s rank is minimized if it is assigned on machine i. Best-Response
Dynamics (BRD) is a local-search method where in each step some player is
chosen and plays its best improving deviation (if one exists), given the strategies
of the other players.

The focus in game theory is on the stable outcomes of a given setting. The
most prominent stability concept is that of a Nash equilibrium (NE): a profile
such that no player can improve its objective by unilaterally deviating from its
current strategy, assuming that the strategies of the other players do not change.
Formally, a profile s is a NE if, for every j ∈ J , sj is a BR for Player j.

Some of our results consider RSGs with homogeneous competition sets. We
denote by Gh the corresponding class of games. Formally, G ∈ Gh if, for every �,
all the jobs in S� have the same length, p�. The following example summarizes
the model and demonstrates several of the challenges in analyzing RSGs.

Example: Consider a game G ∈ Gh on m = 3 identical machines, played by
n = 9 jobs in two homogeneous competition sets. S1 consists of four jobs having
length 4, and S2 consists of five jobs having length 3 (to be denoted 4-jobs and 3-
jobs, respectively). All the machines have the same unit-delay. Figure 1 presents
four profiles of this game. The completion times are given above the machines
and the jobs are labeled by their ranks. Consider the jobs of S2 in Profile (a).
Their completion times are C

(a)
S2

= (7, 12, 12, 12, 12). Thus, the 3-job on M2 has
rank 1, and the four jobs on M3 all have rank 2+3+4+5

4 = 3.5. Profile (a) is a
NE. For example, a deviation of a 4-job from M1 to M2 leads to Profile (b), and
thus involves an increase in the rank of the deviating jobs from 3 to 3.5. It can
be verified that other deviations are not beneficial either. This example demon-
strates that race games are significantly different from classical job-scheduling
games. In particular, a beneficial migration may increase the completion time
of a job. For example, the migration of a 3-job that leads from Profile (c) to
Profile (a) increases the completion time of the deviating job from 10 to 12, but
reduces its rank from 4.5 to 3.5. Moreover, simple algorithms that are known
to produce a NE schedule for job-scheduling games without competition need
not produce a NE in race games. In our example, Profile (d) is produced by the
Longest Processing Time (LPT) rule. It is not a NE since the 3-job on M1 can
reduce its rank from 5 to 4 by migration to either M2 or M3.

The social cost of a profile s, denoted cost(s) is the makespan of the cor-
responding schedule. That is, the maximal completion time of a job, given by
maxiLi(s) ·di. A social optimum of a game G is a profile that attains the lowest
possible social cost. We denote by OPT (G) the cost of a social optimum profile;
i.e., OPT (G) = mins maxiLi(s) · di.
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Fig. 1. Jobs are labeled by their ranks. (a) A NE profile. (b) and (c) Deviations from
the NE are harmful. (d) An LPT schedule.

It is well known that decentralized decision-making may lead to sub-optimal
solutions from the point of view of the society as a whole. We quantify the
inefficiency incurred due to self-interested behavior according to the price of
anarchy (PoA) [19] and price of stability (PoS) [2,23] measures. The PoA is the
worst-case inefficiency of a pure Nash equilibrium, while the PoS measures the
best-case inefficiency of a pure Nash equilibrium.

2.1 Related Work

There is wide literature on job scheduling on parallel machines. The minimum
makespan problem corresponds to the centralized version of our game in which all
jobs obey the decisions of one entity. This is a well-studied NP-complete problem.
For identical machines, the simple greedy List-scheduling (LS) algorithm [15]
provides a (2− 1

m )-approximation to the minimum makespan problem. A slightly
better approximation-ratio of (43 − 1

3m ) is guaranteed by the Longest Processing
Time (LPT) algorithm [16], and A PTAS is given in [17]. For related machines,
with various speeds, LS algorithm provides a θ(m)-approximation [9], and a
PTAS is given in [18].

Congestion games [21] consist of a set of resources and a set of players who
need to use these resources. Players’ strategies are subsets of resources. Each
resource has a latency function which, given the load generated by the players
on the resource, returns the cost of the resource. In singleton congestion games
players’ strategies are single resources. In weighted congestion games, each player
j has a weight p(j), and its contribution to the load of the resources he uses as
well as its cost are multiplied by p(j) [7].

The special case of symmetric weighted singleton congestion games corre-
sponds to the setting of job-scheduling: the resources are machines and the play-
ers are jobs that need to be processed by the machines. A survey of results of
job-scheduling games appears in [24]. For identical machines, it is known that
LPT-schedules are NE schedules [14], and that the price of anarchy, which cor-
responds to the makespan approximation, is 2− 2

m+1 [13]. For uniformly related
machines, the price of anarchy is bounded by log m

log log log m [10]. For two machines,

a bound of 1+
√
5

2 is given in [19].
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Other related work studies additional models in which players’ objective
involves social preferences. In standard game theoretic models, players’ objective
is to maximize their own utility, while in games with social preferences, players
have preferences over vectors of all players’ utilities. For example, [25] studies
a model in which the mental state of a player is a score based on all players’
utilities, and in a mental equilibrium, players can not deviate and improve this
score. The main difference from our setting is that in their model, optimizing
one’s utilization has the highest priority, thus, every NE is also a mental equilib-
rium, which is not the case in race games. Other models that capture preferences
based on emotions such as empathy, envy, or inequality aversion are presented
and studied in [4,6,11]. A lot of attention has been given to such models in behav-
ioral game theory. We are not aware of previous work that analyzes competition
in the framework of congestion games. Other social effect, such as altruism and
spite were studied, e.g., in [1,5,8].

2.2 Our Results

We show that competition dramatically impacts job-scheduling environments
that are controlled by selfish users. RSGs are significantly different from clas-
sical job-scheduling games; their analysis is unintuitive, and known tools and
techniques fail even on simple instances. We start by analyzing RSGs on identi-
cal machines. We show that an RSG need not have a NE, and deciding whether
a game instance has a NE is a NP-complete problem. This is valid even for
instances with only two pairs of competing jobs and two machines, and for
instances with homogeneous competition sets. Moreover, even in cases where a
NE exists, BRD may not converge. On the other hand, we identify several non-
trivial classes of instances for which a NE exists and can be calculated efficiently.
Each of these positive results is tight in a sense that a slight relaxation of the
class characterization results in a game that may not have a NE. Specifically, we
present an algorithm for calculating a NE for games with unit-length jobs, for
games in Gh with a limited number of competition sets and machines, or with
limited competition-set size, and games in Gh in which the job lengths form a
divisible sequence (e.g., powers of 2).

We then provide tight bounds on the equilibrium inefficiency with respect to
the minimum makespan objective. For classical job-scheduling, it is known that
PoS = 1 and PoA = 2− 2

m+1 [13]. We show that for RSGs on identical machines,
PoS = PoA = 3− 6

m+2 . This result demonstrates the ‘price of competition’. The
fact that PoS > 1 implies that even if the system has full control on the initial
job assignment, the best stable outcome may not be optimal. Moreover, since
PoA = PoS, in the presence of competition, having control on the initial job
assignment may not be an advantage at all.

For related machines, we start with a negative result showing that even the
seemingly trivial case of unit-length jobs is tricky, and a NE may not exist, even
if all jobs are in a single competition set. For this class of games, however, it is
possible to decide whether a game has a NE, and to calculate one if it exists.
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Without competition, for unit-jobs and related machines, a simple greedy algo-
rithm produces an optimal schedule. Moreover, PoA = PoS = 1. We show that
for RSGs with unit jobs and related machines, PoS = PoA = 2. We then move to
study games on related machines and arbitrary-length jobs. Striving for positive
results, we focus on two machines and homogeneous instances. We present an
algorithm for calculating a NE, and prove that any application of BRD converges
to a NE. We then bound the equilibrium inefficiency for arbitrary competition
structure. Specifically, for RSGs on two related machines, PoS = PoA = 2. The
PoS lower bound is achieved already with homogeneous competition sets. Note
that for classical job-scheduling game on two related machines, it holds that
PoS = 1 and PoA = 1+

√
5

2 [19], thus, again, we witness the harmful effects of a
competition.

In light of the negative results regarding equilibrium existence, we discuss
possible strategies of the system to modify an RSG instance or the players’ uti-
lization, such that the resulting game has a NE. We consider two approaches for
Nashification. The first is addition of dummy jobs, and the second is compensa-
tion of low-rank players. Our hardness results imply that min-cost Nashification
is also hard. For both approaches, we present tight bounds on the Nashification
cost, in general and for unit-jobs on related machine.

We conclude with a discussion of additional congestion games whose ‘race’
variant is natural and interesting. We show that some of our results and tech-
niques can be adopted to other games, and suggest some directions for future
work. A full version that includes all the proofs is available in [22].

3 Identical Machines - Equilibrium Existence

In this section we assume that all the machines have the same unit-delay, that
is, for all i ∈ M, di = 1. The following example demonstrates that even very
simple RSGs may not have a NE. Consider an instance with two machines and
two competing jobs of lengths p1 < p2. If the jobs are on different machines, then
the long job has a higher completion time and can reduce its rank by joining the
short one, so they both have the same completion time and therefore the same
rank. If the jobs are on the same machine, then the short job can reduce its rank
by escaping to the empty machine. Thus, no profile is a NE.

Hoping for positive results, we turn to consider the class Gh of RSGs with
homogeneous competition sets. Recall that G ∈ Gh if, for every 1 ≤ � ≤ c, all
the jobs in S� have the same length, p�.

Unfortunately, as demonstrated in Fig. 2, games in this class, even with only
three sets and three machines, may not admit a NE. Moreover, as demonstrated
in Fig. 3, even if a NE exists, it may be the case that a BRD does not converge.

The next natural question is whether there is an efficient way to decide, given
a game G ∈ Gh, whether G has a NE. We answer this question negatively:

Theorem 2. Given an instance of RSG with homogeneous competition sets, it
is NP-complete to decide whether the game has a NE profile.
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Fig. 2. An example of an RSG with homogeneous competition sets, that has no NE.
Jobs are labeled by their ranks. Profiles (a)–(b) show that big jobs must be on different
machines. Profiles (c1)− (c2)− (c3)− (c1) loop when big jobs are on different machines.

Fig. 3. An example of an RSG with homogeneous competition sets in which c = 2,
p1|p2, and BRD may loop (profiles (a)–(b)–(c)–(a)). A NE exists (profile (d)). Jobs are
labeled by their ranks.

In light of the above negative results, we would like to characterize instances
in which a NE is guaranteed to exist. One such class includes instances of unit-
length jobs and arbitrary competition sets.

Theorem 3. If all jobs have the same length, then a NE exists and can be
computed efficiently.

Another class for which we have a positive result considers instances of only
two competition sets and three machines. It is tight in light of the no-NE example
given in Fig. 2, in which there are three sets on three machines.

Theorem 4. If G ∈ Gh has c = 2 and m = 3, then a NE exists and can be
computed efficiently.

Classical job-scheduling games are race games with singleton competition
sets. A NE may not exist even if there is just one pair of competing jobs. Also,
in the full version we show that it is NP-hard to decide if a NE exists even if
there are only singletons and two competing pairs. For games with homogeneous
competition sets, in which there are only singleton and pairs, we have positive
news.

Theorem 5. If G ∈ Gh, and for all �, |S�| ≤ 2 then a NE exists and can be
computed efficiently.
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In search of more positive results, we turn to look at games with homogeneous
competition sets with divisible lengths. Instances with divisible lengths arise
often in applications in which clients can only select several levels of service.
Moreover, naturally, in such settings, clients with similar service requirements
compete with each other. Let Gdiv be the class of RSGs with homogeneous
competition sets in which the job lengths form a divisible sequence. Formally, let
p1 > p2 > . . . > pc denote the different job lengths in J , then S� = {j|p(j) = p�},
and for every �1 > �2, it holds that p�1 |p�2 . For example, if all job lengths are
powers-of-2 and S� = {j|p(j) = 2c−�+1} then G ∈ Gdiv.

As demonstrated in Fig. 3, BRD may not converge to a NE even if G ∈ Gdiv

and c = 2. Nevertheless, we prove that a NE can be computed directly for any
game G ∈ Gdiv. In the proof we provide an algorithm for computing a NE for
instances in this class.

Theorem 6. If G ∈ Gdiv, then a NE exists and can be computed efficiently.

4 Identical Machines - Equilibrium Inefficiency

In this section we analyze the equilibrium inefficiency of RSGs with respect
to the objective of minimizing the maximal cost of a player (equivalent to the
makespan of the schedule). For the classical job-scheduling game, the Price of
Anarchy is known to be 2 − 2

m+1 for m identical machines, and the Price of
Stability is known to be 1. We show that competition causes higher inefficiency.
Specifically, both the PoA and the PoS are 3 − 6

m+2 . We prove below the upper
bound for the PoA and the lower bound for the PoS. In the full version [22],
we describe, given m ≥ 3 and ε > 0, a game G, with homogeneous competition
sets, for which PoA(G) = 3 − 6

m+2 − ε. Given that we prove a matching PoS
bound, the proof in the full version is less interesting. However, it can serve as
a warm-up for the lower bound PoS proof, which is more involved.

Theorem 7. If G is an RSG on m identical machines that has a NE, then
PoA(G) ≤ 3 − 6

m+2 . For every m ≥ 3 and ε > 0, there exists an RSG G on m

identical machines such that G has a NE, and PoS(G) ≥ 3 − 6
m+2 − ε.

Proof. The proof of the PoA upper bound is given in the full version [22]. We
describe the lower bound on the PoS. Given m ≥ 3 and ε > 0, we describe an
RSG G such that PoS(G) = 3− 6

m+2 −ε. Let E = {δ1, δ2, δ3}∪{εi|1 ≤ i ≤ m(m−
1)} be a set of 3+m(m−1) small positive numbers such that δ1 < δ2 < δ3 ≤ εm

3 ,
δ1+δ2 > δ3,

∑
i>0 εi < 1

4 , and any subset of E with any coefficient in {−1,+1} for
each element, has a unique sum. That is, ∀A1, A2 ⊆ {δ1, δ2, δ3, ε1, . . . , εm(m−1)}
such that A1 �= A2, and any γk ∈ {−1,+1} we have

∑
k∈A1

γk ·k �= ∑
k∈A2

γk ·k.
The set of jobs consists of 1 + m(m − 1) competition sets, S0, . . . , Sm(m−1):

1. S0 consists of three jobs, where ji
0 for i = 1, 2, 3 has length m − δi.

2. For � = 1, . . . ,m(m − 1), the set S� consists of two jobs: j1� of length 1
4 − ε�,

and j2� of length 3
4 + ε�. Note that p(j1� ) + p(j2� ) = 1.
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The PoS analysis is based on the fact that in every NE, the three long jobs
of S0 are assigned on the same machine, while an optimal assignment is almost
balanced. We first restrict, the possible assignments of the jobs in S� for all � ≥ 0.

Claim. In every NE, the three jobs of S0 are assigned on the same machine, and
for all � ≥ 1, the two jobs of S� are assigned on the same machine.

By the above claim, the cost of every NE is at least the load incurred by
the three jobs in S0, that is, 3m − ∑3

i=1 δi. We show that a NE of this cost
exists. An example for m = 5 is given in Fig. 4(a). Assign the jobs of S0 on
M1. Distribute all remaining jobs such that for all � ≥ 1 the jobs of S� are on
the same machine, and there are m such sets assigned on each machine other
than M1. For all a ≥ 2 we have La = m. This assignment is a NE since any
migration of a job j from S� with � ≥ 1 will increase its rank from 1.5 to 2, and
any migration of a job jx

0 from S0, will end up with load at least 2m − δx which
is more than 2m − δy − δz, the remaining load on M1. Thus, such a migration
increases the rank of the deviating job from 2 to 3 and is not beneficial.

Fig. 4. A tight example for m = 5. (a) The only NE profile. (b) an optimal profile.

We turn to describe an optimal assignment. The total load of the jobs is
m(m−1)+3m−∑3

i=1 δi = m(m+2)−∑3
i=1 δi. The maximal length of a job is

less than m, and there are 3 ≤ m long jobs. The remaining jobs can be arranged
in unit-length pairs. Thus, an optimal assignment is almost perfectly balanced
(up to a gap of δ3), where the most loaded machine has load m(m+2)

m = m + 2.

The resulting PoS is 3m−∑3
i=1 δi

m+2 < 3 − 6
m+2 − ε. �

5 Related Machines

In this section we consider RSGs played on related machines. Recall that di is
the processing delay of machine Mi. Thus, it takes p(j) ·di time units to process
a job of length p(j) on Mi. For a profile s, Ci(s) = Li(s) · di is the completion
time of Mi, and the cost of every job assigned on it.
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5.1 Unit-Length Jobs

For classical job-scheduling games with unit-jobs and related machines the pic-
ture is simple and well understood. For a profile s, let C+

i (s) = (Li(s) + 1) · di

denote the completion time of Mi if one more job would be assigned on it. A
simple greedy algorithm that assigns the jobs sequentially, each on a machine
minimizing C+

i , is known to produce a Nash equilibrium profile that also min-
imizes the makespan. Moreover, every best-response sequence converges to an
optimal schedule, thus, without competition, PoA = PoS = 1.

Surprisingly, as we show, even this simple setting of RSGs with unit-length
jobs may not have a NE. Consider a game with n = 5 unit jobs, that form a
single competition set. Assume there are three machines with delays 1, 1+ ε and
1 + 2ε. First note that a NE profile must fulfil L1 ≥ L2 ≥ L3, as otherwise,
it is clearly beneficial to deviate from a slow machine to a less loaded faster
machine. Also note that if L1 = 4, then one of the slower machines is empty
and a deviation from M1 to the empty machine is beneficial. The remaining load
vectors are {〈3, 2, 0〉, 〈3, 1, 1〉, 〈2, 2, 1〉}. As demonstrated in Fig. 5, none of the
corresponding profiles is a NE. Profile (c) is the output of a greedy algorithm.
However, a job on M2 can reduce its rank from 4.5 to 4 by a migration to M1

(Profile (a)). Once it migrates, it is beneficial for the job on M3 to join M2

(Profile (b)), and a migration from M1 to M3 brings us back to Profile (c).

Fig. 5. No NE of an RSG with five competing unit-jobs on three related machines.
The profiles loop (a)–(b)–(c)–(a). Jobs are labeled by their ranks.

While a NE may not exist, this class of instances is somewhat simpler. We
show that it is possible to decide efficiently whether a given game instance has
a NE and to compute one if it exists. Recall that the same task is NP-hard for
games in Gh even on identical machines.

Theorem 8. Let G be a game with unit-jobs on related machines in which all
jobs are in the same competition set (S1 = J ). It is possible to decide efficiently
whether G has a NE and to compute one if it exists.

The above positive result may lead one to expect that it would be possible
to modify an instance slightly in order to get a game in which a NE exists. In
Sect. 6 we discuss the Nashification of RSGs with unit-jobs by adding dummy
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jobs, and show that, unfortunately, given n jobs and m related machines, there is
no constant k such that a game of n+k jobs on this set of machines is guaranteed
to have a NE.

For the equilibrium inefficiency of games with unit-jobs or related machines,
we show the following tight bounds.

Theorem 9. If G is a game on related machines and unit-jobs, for which a NE
exists, then PoA(G) < 2. Also, for every ε > 0 there exists a game for which
PoS(G) = 2 − ε.

5.2 Variable-Length Jobs

Our negative results for unit-jobs are clearly valid for variable-length jobs, even
with homogeneous competition sets. We are still able to come up with some good
news for two machines. We present a linear-time algorithm for calculating a NE,
show that any BRD sequence converges to a NE, and provide tight bounds on
the equilibrium inefficiency.

Theorem 10. If m = 2 and G ∈ Gh then G has a NE, and a NE can be
calculated efficiently.

Theorem 11. If m = 2 and G ∈ Gh then BRD converges to a NE.

Proof. Assume that BRD is performed starting from an arbitrary profile. It is
easy to see that a migration from Ma to Mb is never beneficial if La · da ≤ Lb · db

before the migration. Therefore, the only migrations in the BRD are from the
machine with the higher completion time. We denote by a switching migration,
a beneficial migration of a job j ∈ S� from Ma to Mb such that La · da > Lb · db

but (La − pi)·da < (Lb + pi)·db, that is, the target of the migration becomes the
machine with the higher completion time. Note that a job j ∈ S� that performs
a switching migration has the maximal rank in S� before the migration, and also
the maximal rank in S� after the migration. The migration is beneficial since the
number of jobs from S� on Mb after the migration is higher than their number
on Ma before the migration.

Assume by contradiction that a BRD does not halt. Since the number of
profiles is finite, this implies that BRD loops. Let Cmax = Lb · db denote the
maximal cost of a machine during the BRD loop, where Mb can be either the
fast or the slow machine. Let t be the first time in which Cmax is achieved during
the BRD loop. Since a migration out of the machine with lower completion time
is never beneficial, Cmax is a result of a switching migration into Mb, say of
j ∈ S�.

Since BRD loops, a job from S� migrates back to Ma after time t. We claim
that such a migration cannot be beneficial. Before the switching migration, Cj =
(La(t) + pj) · da. The switching migration implies that jobs from S� have lower
rank when their completion time is Cmax = Lb(t) · db compared to their rank
(with fewer competitors) on Ma with load La(t) + pj . Therefore, a migration of
j′ ∈ S� to Ma after time t is beneficial only if the load on Ma is less than La(t).
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However, this implies that the load on Mb is more than Lb(t), contradicting the
choice of Cmax as the maximal cost during the BRD loop. �
Theorem 12. If G is an RSG on two related machines, for which a NE exists,
then PoA(G) < 2. Also, for every ε > 0 there exists a game G ∈ Gh for which
PoS(G) = 2 − ε.

6 Nashification of Race Scheduling Games

In this section we discuss possible strategies of a centralized authority to change
the instance or compensate players such that the resulting game has a NE. The
first approach we analyze is addition of dummy jobs. The cost of such an opera-
tion is proportional to the total length of the dummy jobs, as this corresponds to
the added load on the system. By Theorem 2, it is NP-hard to identify whether
Nashification with budget 0 is possible. Thus, the min-budget problem is clearly
NP-hard. We present several tight bounds on the required budget.

Theorem 13. Let G be an RSG on m identical machines. Let pmax = maxjp(j)
be the maximal length of a job in J . It is possible to Nashificate G by adding
dummy jobs of total length at most (m − 1)pmax. Also, for every m and ε > 0
there exists a game G for which jobs of total length (m− 1)pmax − ε are required
to guarantee a NE.

For related machines and unit-jobs we showed in Sect. 5.1 that a game may
not have a NE even with a single competition set. It is tempting to believe that
for such simple instances, Nashification may be achieved by an addition of a
constant number of dummy jobs. Our next result shows that m − 2 dummies
may be required, and always suffice.

Theorem 14. For any RSG on m related machines and a single competition set
of unit-jobs, it is possible to achieve a NE by adding at most m − 2 dummy jobs
to the instance. Also, for every m there exists an RSG with a single competition
set of unit jobs on m machines that requires m − 2 dummy jobs to be added in
order for a NE to exist.

Proof. For the lower bound, given m, consider a game with m + 4 unit-jobs and
m machines having the following delays: d1 = 0.31, d2 = 0.4, d3 = 1, and for all
4 ≤ i ≤ m, di = 0.5+ iε. Figure 6 shows the behaviour of such an instance. A full
description of this game, as well as an algorithm that produces a NE by adding
at most m − 2 dummy jobs is provided in the full version [22]. �

A different approach to achieve a NE, is Nashification by payments. The cost
of a job is Cj − γj where γj is a compensation given to the job by the system. A
deviating job, will lose the compensation currently suggested to it. The goal is
to achieve a NE, while minimizing

∑
j γj . For example, with two competing jobs

of length 1 and 1 + ε on two identical machines, by setting γ2 = ε, the optimal
schedule is a NE.



270 S. Rosner and T. Tamir

Fig. 6. A game for which an addition of m − 2 jobs is inevitable for Nashification. A
BRD loop exists on the starred machines. Profile (0) is a dummy-free profile fulfilling
simple stability constrains. Profile (k) fulfills the simple stability constraints after k
dummy jobs are added. Profile (m− 2) is a NE with m− 2 dummy jobs.

Theorem 15. For any RSG G on identical machines, it is possible to achieve a
NE with total compensation less than P , where P =

∑
j∈J p(j). Also, for every

m and ε > 0 there is a game G for which total compensation P − ε is required
to achieve a NE.

7 Conclusions and Directions for Future Work

Our paper suggests a new model for analyzing environments with strong com-
petition. Race games are congestion games in which players’ welfare depends on
their relative performance. The main objective of a player is to perform well rel-
ative to his competitors, while minimizing his cost is a minor objective. A profile
is a NE if no player can improve her rank, or reduce her cost while keeping her
rank.

We analyzed job-scheduling race games on parallel machines. Having an addi-
tional constraint for stability, race games are less stable than classical load-
balancing games, thus our results for general games are mostly negative. In par-
ticular, for all the classes of instances we considered, we showed that PoS = PoA,
while the same competition-free game has a lower PoA and PoS = 1. Practi-
cally, it means that competition may lead to a poor outcome even if the system
can control the initial players’ strategies. Striving for stability, we also studied
the cost of Nashification, by either adding dummy jobs to the instance, or com-
pensating jobs for having high rank. While in the general case, Nashification
may involve balancing all the machines or jobs’ cost, in some natural classes it
can be achieved in cheaper ways. Min-cost Nashification of a given instance is
NP-complete. We leave open the corresponding approximation problem.

Race games can be studied in various additional settings. In fact, every con-
gestion game in which players are associated with a utility has its ‘race’ variant.
In the full version we list several examples. Additional questions may refer to the
structure of the competition-sets, for example, competition sets may overlap, or
may be defined according to the players’ strategy space (symmetric competition
sets). The study of coordinated deviations is another intriguing direction. In the
presence of competition, coalitions may be limited to include only members of
different competition sets. On the other hand, temporal collaboration may be
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fruitful even for competing players. Thus, there are many different interesting
variants of coordinated deviations in race games.
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10. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. ACM Trans.
Algorithms 3(1), 4:1–4:17 (2007)

11. Fehr, E., Schmidt, K.M.: A theory of fairness, competition, and cooperation. Q. J.
Econ. 114(3), 817–868 (1999)

12. Fiat, A., Kaplan, H., Levi, M., Olonetsky, S.: Strong price of anarchy for machine
load balancing. In: Proceedings of 34th ICALP (2007)

13. Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor
scheduling. BIT Numer. Math. 19(3), 312–320 (1979)

14. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spiraklis, P.:
The structure and complexity of Nash equilibria for a selfish routing game. In:
Proceedings of 29th ICALP, pp. 510–519 (2002)

15. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J.
45, 1563–1581 (1966)

16. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17, 263–269 (1969)

17. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems: practical and theoretical results. J. ACM 34(1), 144–162 (1987)

18. Jansen, K., Klein, K.M., Verschae, J.: Closing the gap for makespan scheduling via
sparsification techniques. In: Proceedings of 43rd ICALP, pp. 1–13 (2016)

19. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Comput. Sci. Rev. 3(2),
65–69 (2009)

20. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-642-46773-8 5

https://doi.org/10.1007/s00224-014-9602-4
https://doi.org/10.1007/s00224-014-9602-4
https://doi.org/10.1007/978-3-642-46773-8_5


272 S. Rosner and T. Tamir

21. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int.
J. Game Theory 2, 65–67 (1973)

22. Rosner, S., Tamir, T.: Race Scheduling Games. https://cs.idc.ac.il/∼tami/Papers/
RSG-full.pdf

23. Schulz, A.S., Stier Moses, N.: On the performance of user equilibria in traffic net-
works. In: Proceedings of 43rd SODA, pp. 86–87 (2003)
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Abstract. We introduce the model of line-up elections which captures
parallel or sequential single-winner elections with a shared candidate
pool. The goal of a line-up election is to find a high-quality assignment
of a set of candidates to a set of positions such that each position is filled
by exactly one candidate and each candidate fills at most one position.
A score for each candidate-position pair is given as part of the input,
which expresses the qualification of the candidate to fill the position. We
propose several voting rules for line-up elections and analyze them from
an axiomatic and an empirical perspective using real-world data from
the popular video game FIFA.

Keywords: Single-winner voting · Multi-winner voting · Assignment
problem · Axiomatic analysis · Empirical analysis

1 Introduction

Before the start of the soccer World Cup 2014, Germany’s head coach Joachim
Löw had problems to find an optimal team formation. Due to several injuries,
Löw was stuck without a traditional striker. He decided to play with three offen-
sive midfielders instead, namely, Müller, Özil, and Götze. However, he struggled
to decide who of the players should play in the center, on the right, and on the
left.1 At the final coaching meeting, he surveyed the opinions of ten coaching
assistants asking for each of the candidates, “Is this candidate suitable to play
on the left/in the center/on the right?”. Coaching assistants were allowed to
approve an arbitrary subset of candidate-position pairs. He got answers result-
ing in the following numbers of approvals for each candidate-position pair:
1 This story and the opinions of the coaches are fictional. However, Löw really faced

the described problem before the World Cup 2014.
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Candidate Position

Left Center Right

Müller 5 10 9

Özil 3 8 5

Götze 4 7 4

After collecting the results, some of the coaches argued that Müller must play
in the center, as everyone agreed with this. Others argued that Müller should
play on the right, as otherwise this position would be filled by a considerably
less suitable player. Finally, someone pointed out that Müller should play on the
left, as this was the only possibility to fill the positions such that every position
gets assigned a player approved by at least half of the coaches.

The problem of assigning Müller, Özil, and Götze can be modeled as three
parallel single-winner elections with a shared candidate pool, where every can-
didate can win at most one election and each voter is allowed to cast different
preferences for each election. In our example, the coaches are the voters, the
players are the candidates and the three locations on the field are the positions.
Classical single-winner voting rules do not suffice to determine the winners in
such settings, as a candidate may win multiple elections. Also multi-winner vot-
ing rules cannot be used, as a voter can asses the candidates differently in dif-
ferent elections. Other examples of parallel single-winner elections with a shared
candidate pool include a company that wants to fill different positions after an
open call for applications, a cooperation electing an executive board composed
of different positions, and a professor who assigns students to projects.

In this paper, we introduce a framework for such settings: In a line-up elec-
tion, we get as input a set of candidates, a set of positions, and for each candidate-
position pair a score expressing how suitable this candidate is to win the election
for this position. The goal of a line-up election is to find a “good” assignment of
candidates to positions such that each position gets assigned exactly one candi-
date and each candidate is assigned at most once. There exist multiple possible
sources of the scores. For instance, a variety of single-winner voting rules aggre-
gate preference profiles into single scores for each candidate and then select the
candidate with the highest score as the winner of the given election. Examples
of such rules include Copeland’s voting rule, where the score of a candidate is
the number of her pairwise victories minus the number of her pairwise defeats,
positional scoring rules, or Dodgson’s voting rule. Thus, line-up elections offer a
flexible framework that can be built upon a variety of single-winner voting rules.

Our Contributions. This paper introduces line-up elections—parallel single-
winner elections with a shared candidate pool—and initiates a study thereof.
After stating the problem formally, we propose two classes of voting rules,
sequential and OWA-rules. Sequential rules fill positions in some order—which
may depend on the scores—and select the best still available candidate for a
given position. In the versatile class of OWA-rules, a rule aims at maximizing
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some ordered weighted average (OWA) of the scores of the assigned candidate-
position pairs. We highlight seven rules from these two classes. Subsequently,
inspired by work on voting, we describe several desirable axioms for line-up vot-
ing rules and provide a comprehensive and diverse picture of their axiomatic
properties. We complement this axiomatic analysis by empirical investigations
on data from the popular soccer video game FIFA [9] and synthetic data.

As our model considers multiple, parallel single-winner elections, it can be
seen as an extension of single-winner elections; indeed, we can view the scores of
candidates for a position as obtained from some voting rule [2,8,28]. It reduces to
multi-winner voting [12] if every voter casts the same vote in all elections. Most
of our proposed axioms are generalizations of axioms studied in those settings
[4,10,28]. Previously, committee elections where the committee consists of dif-
ferent positions were rarely considered. Aziz and Lee [5] studied multi-winner
elections where a given committee is partitioned into different sub-committees
and each candidate is only suitable to be part of some of these sub-committees.

Due to lack of space, we defer most of the proofs from our axiomatic analysis
and several details of the conducted experiments to the full version [7].

2 Our Model

In a line-up election E, we are given a set of m candidates C = {c1, . . . , cm}
and q positions P = {p1, . . . , pq} with m ≥ q, together with a score matrix S ∈
Q

m×q. For i ∈ [m] and j ∈ [q], Si,j is the score of candidate ci for position pj ,
which we denote as scorepj

(ci). An outcome of E is an assignment of candidates
to positions, where each position is assigned exactly one candidate and each
candidate gets assigned to at most one position. We call an outcome a line-up π
and write, for a position p ∈ P , πp ∈ C to denote the candidate that is assigned
to position p in π. We write a line-up π as a q-tuple π = (πp1 , . . . πpq

) ∈ Cq with
pairwise different entries.

For a candidate-position pair (c, p) ∈ C × P , we say that (c, p) is assigned
in π if πp = c and write (c, p) ∈ π. Moreover, for an outcome π and a candi-
date c, let π(c) ∈ P ∪ {�} be the position that c is assigned to in π; that is,
π(c) = p if πp = c and π(c) = � if c does not occur in π. We write c ∈ π
if π(c) �= �, and c /∈ π otherwise. For a line-up π and a subset of positions
P ′ ⊆ P , we write π|P ′ to denote the tuple π restricted to positions P ′ and πP ′

to denote the set of candidates assigned to positions P ′ in π. For a position
p ∈ P and line-up π, we write scorep(π) to denote scorep(πp). Moreover, we refer
to (scorep1(π), . . . , scorepq

(π)) as the score vector of π. A line-up voting rule f

maps a line-up election E to a set of winning line-ups, where we use f(E) ⊆ 2Cq

to denote the set of winning line-ups returned by rule f applied to election E.

3 Line-Up Elections as Assignment Problems

It is possible to interpret line-up elections as instances of the Assignment Prob-
lem, which aims to find a (maximum weight) matching in a bipartite graph.
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The assignment graph G of a line-up election (S, C, P ) is a complete weighted
bipartite graph G = (C � P,E,w) with edge set E := {{c, p} | c ∈ C ∧ p ∈ P}
and weight function w(c, p) := scorep(c) for {c, p} ∈ E. Every matching in the
assignment graph which matches all positions induces a valid line-up.

The Assignment Problem and its generalizations have been mostly stud-
ied from an algorithmic and fairness perspective [16–18,20,22,23]. For instance,
Lesca et al. [22] studied finding assignments with balanced satisfaction from
an algorithmic perspective. They utilized ordered weighted average operators
and proved that finding assignments that maximize an arbitrary non-decreasing
ordered weighted average is NP-hard (see next section for definitions). One
generalization of the Assignment Problem is the Conference Paper Assignment
Problem (CPAP), which tries to find a many-to-many assignment of papers to
reviewers with capacity constraints on both sides [19]. Focusing on egalitarian
considerations, Garg et al. [17] studied finding outcomes of CPAP which are
optimal for the reviewer that is worst off, where they break ties by looking at
the next worst reviewer. They proved that this task is computationally hard in
this generalized setting. In contrast to our work and the work by Lesca et al.
[22], Lian et al. [23] employed OWA-operators in the context of CPAP on a
different level. Focusing on the satisfaction of reviewers, they studied finding
assignments maximizing the ordered weighted average of the values a reviewer
gave to her assigned papers and conducted experiments where they compare
different OWA-vectors.

In contrast to previous work on the Assignment Problem, we look at the
problem through the eyes of voting theorists. We come up with several axiomatic
and quantitative properties that are desirable to fulfill by a mechanism if we
assume that the Assignment Problem is applied in the context of an election.

4 Voting Rules

As we aim at selecting an individually-excellent line-up, a straightforward app-
roach is to maximize the social welfare, which is determined by the scores of the
assigned candidate-position pairs. However, it is not always clear which type of
social welfare may be of interest. For example, the overall performance of a line-
up may depend on the performance of the worst candidate. This may apply to
team sports. Sometimes, however, the performance of a line-up is proportional
to the sum of the scores and it does not hurt if some positions are not filled by
a qualified candidate. OWA-operators provide a convenient way to express both
these goals, as well as a continuum of middle-ground approaches [26].

OWA-Rules FΛFΛFΛ. For a tuple a = (a1, . . . , ak) and i ∈ [k], let a[i] be the i-
th largest entry of a. We call Λ := (λ1, . . . , λk) an ordered weighed-average
vector (OWA-vector) and define the ordered weighted average of a under Λ as
Λ(a1, . . . , ak) :=

∑
i∈[k] λi · a[i] [26]. For a line-up π, we define Λ(π) as the

ordered weighted average of the score vector of π under Λ. That is, Λ(π) :=
Λ

(
scorep1(π), . . . , scorepq

(π)
)
. The score of a line-up π assigned by an OWA-

rule fΛ is Λ(π). Rule fΛ chooses (possibly tied) line-ups with the highest score.
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Among this class of rules, we focus on the following four natural ones, quite
well studied in other contexts, such as finding a collective set of items [11,25]:

– Utilitarian rule fut: Λut := (1, . . . , 1). This corresponds to computing a max-
imum weight matching in the assignment graph. It is computable in O(m3)
time for m candidates [20].

– Egalitarian rule f eg: Λeg := (0, . . . , 0, 1). This corresponds to solving the
Linear Bottleneck Assignment Problem, which can be done in O(m2) time
for m candidates [16].

– Harmonic rule fhar: Λhar := (1, 1
2 , 1

3 , . . . , 1
q ). The computational complexity

of finding a winning line-up under this rule is open. In our experiments, we
compute it using Integer Linear Programming (ILP).

– Inverse harmonic rule f ihar: Λihar := (1q , 1
q−1 , . . . , 1

2 , 1). While computing the
winning line-up for an arbitrary non-decreasing OWA-vector is NP-hard [22],
the computational complexity of computing this specific rule is open. We
again use an ILP to compute a winning line-up.

Sequential-Rules F seqF seqF seq. OWA-rules require involved algorithms and cannot be
applied by hand easily. In practice, humans tend to solve a line-up election in a
simpler way, for instance, by determining the election winners one by one. This
procedure results in a class of quite intuitive sequential voting rules. A sequential
rule is defined by some function g that, given a line-up election E = (S, C, P )
and a set of already assigned candidates Cas and positions Pas, returns the next
position to be filled. This position is then filled by the remaining candidate
C \ Cas with the highest score on this position. Sequentializing decisions which
partly depend on each other has also proven to be useful in other voting-related
problems, such as voting in combinatorial domains [21], or in the House Allo-
cation problem in form of the well-known mechanism of serial dictatorship. We
focus on the following three linear-time computable sequential rules.

Fixed-Order Rule f seq
fix . Here, the positions are filled in a fixed order (for sim-

plicity, we assume the order in which the positions appear in the election). The
fixed-order sequential rule is probably the simplest way to generalize single-
winner elections to the line-up setting and it enables us to make the decisions
separately. Moreover, it is not necessary to evaluate all candidates for all posi-
tions, which is especially beneficial if evaluating the qualification of a candidate
on a position comes at some (computational) cost.

Max-First Rule f seq
max. In the max-first rule, at each step, the position with

the highest still available score is filled. That is, g(S, C, P,Cas, Pas) :=
arg maxp∈P\Pas

maxc∈C\Cas scorep(c). This is equivalent to adding at each step
the remaining candidate-position pair with the highest score to the line-up. Max-
first is intuitively appealing because a candidate who is outstanding at a position
is likely to be assigned to it. Notably, this rule is an approximation of the utilitar-
ian rule, as it corresponds to solving the Maximum Weight Matching problem in
the assignment graph by greedily selecting the remaining edge with the highest
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Table 1. Overview of axiomatic properties of all studied rules. For each of the axioms,
we indicate whether this axiom is strongly satisfied (S), only weakly satisfied (W), or
not satisfied at all (−). For the egalitarian rule, all entries marked with a † can be
improved if a variant of this rule that selects the egalitarian outcome with the highest
summed score is used.

non Pareto reasonable score mono- line-up

wasteful optimal satisfaction consistent tonicity enlargement

fut S S − S S S

fhar S S − − − −
f ihar S S − − − −
feg W† W† − − −† W†

f seq
fix S W − W S S

f seq
max S W S − S S

f seq
min S − − − − −

weight. For every possible tie-breaking, this approach is guaranteed to yield a
1
2 -approximation of the optimal solution in polynomial time [3].

Min-First Rule f seq
min. In the min-first rule, the position with the low-

est score of the most-suitable remaining candidate is filled next. That
is, g(S, C, P,Cas, Pas) := arg minp∈P\Pas

maxc∈C\Cas scorep(c). The reasoning
behind this is that the deciders focus first on filling critical positions where
all candidates perform poorly.

5 Axiomatic Analysis of Voting Rules

We propose several axioms and properties that serve as a starting point to char-
acterize and compare the introduced voting rules. We checked all introduced
voting rules against all the axioms and collected the results in Table 1. The
underlying proofs can be found in the full version [7]. We will introduce two
efficiency and one fairness axiom for line-ups. These definitions extend to voting
rules as follows. A voting rule f strongly (weakly) satisfies a given axiom if for
each line-up election E, f(E) contains only (some) line-ups satisfying the axiom.

Efficiency Axioms. As our goal is to select individually-excellent outcomes,
we aim at selecting line-ups in which the score of each position is as high as
possible. Independent of conflicts between positions, there exist certain outcomes
which are suboptimal. For example, it is undesirable if there exists an unassigned
candidate that is more suitable for some position than the currently assigned one.

Axiom 1 Non-wastefulness: In a line-up election (S, C, P ), a line-up π is
non-wasteful if there is no unassigned candidate c /∈ π and a position p ∈ P such
that scorep(c) > scorep(π).
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This axiom implies that in the special case of a single position, the candidate
with the highest score for the position wins the election. In the context of non-
wastefulness, we only examine whether a line-up can be improved by assigning
unassigned candidates. However, it is also possible to consider arbitrary rear-
rangements. This results in the notion of score Pareto optimality.

Axiom 2 Score Pareto optimality: In a line-up election (S, C, P ), a line-up
π is score Pareto dominated if there exists a line-up π′ such that for all p ∈ P ,
scorep(π′) ≥ scorep(π) and there exists a position p ∈ P with scorep(π′) >
scorep(π). A line-up is score Pareto optimal if it is not score Pareto dominated.

While all OWA-rules with an OWA-vector containing no zeros are clearly
strongly non-wasteful and strongly score Pareto optimal, the egalitarian rule
satisfies both axioms only weakly, as this rule selects a line-up purely based on
its minimum score. All sequential rules naturally satisfy strong non-wastefulness.
Yet, by breaking ties in a suboptimal way, all of them may output line-ups
that are not score Pareto optimal. While for the fixed-order rule and the max-
first rule at least one winning outcome is always score Pareto optimal, slightly
counterintuitively, there exist instances where the min-first rule does not output
any score Pareto optimal line-ups.

Fairness Axioms. Another criterion to judge the quality of a voting rule is to
assess whether positions and candidates are treated in a fair way. The underlying
assumption for fairness in this context is that every position should have the best
possible candidate assigned. Similarly, from candidates’ perspective, one could
argue that each candidate deserves to be assigned to the position for which
the candidate is most suitable. In the following, we call a candidate or position
for which fairness is violated dissatisfied. Unfortunately, line-ups in which all
positions and candidates are satisfied simultaneously may not exist. That is why
we consider a restricted fairness property, where we call a candidate-position
pair (c, p) ∈ π reasonably dissatisfied in π if candidate c has a higher score for p
than πp and c is either unassigned or c’s score for p is higher than for π(c).

Axiom 3 Reasonable satisfaction: A line-up π is reasonably satisfying if
there are no two positions p and p′ such that

scorep(πp′) > scorep(πp) and scorep(πp′) > scorep′(πp′)

and there is no candidate c /∈ π and position p such that scorep(c) > scorep(πp).

It is straightforward to prove that all winning line-ups under the max-first
rule are reasonably satisfying; hence, a reasonably satisfying outcome always
exists. Note that it is also possible to motivate reasonable satisfaction as a notion
of stability if we assume that candidates and positions are allowed to leave their
currently assigned partner to pair up with a new candidate or position. Thus,
reasonable satisfaction resembles the notion of stability in the context of the
Stable Marriage problem [15].

However, fulfilling reasonable satisfaction may come at the cost of select-
ing a line-up that is suboptimal for various notions of social welfare. For some
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ε > 0, consider an election with P = {p1, p2}, C = {a, b}, scorep1(a) = 2,
scorep2(a) = scorep1(b) = 2 − ε, and scorep2(b) = 0. We see that the outcome
(b, a) of utilitarian welfare 4 − 2ε maximizes utilitarian social welfare, while the
outcome (a, b) of utilitarian welfare 2 is the only outcome fulfilling reasonable
satisfaction. Therefore, it is interesting to measure the price of reasonable satis-
faction in terms of utilitarian welfare. Analogous to the price of stability [1], we
define this as the maximum utilitarian social welfare achievable by a reasonably
satisfying outcome, divided by the maximum achievable utilitarian social wel-
fare. The example from above already implies that this price is upper bounded by
1
2 . In fact, this bound is tight, as the max-first rule that only outputs reasonably
satisfying line-ups is a 1

2 -approximation of the utilitarian outcome.

Voting Axioms. We now formulate several axioms that are either closely
related to axioms from single-winner [28] or multi-winner voting [10]. We define
all axioms using two parts, (a) and (b). On a high level, condition (a) imposes
that certain line-ups should be winning after modifying a line-up election, while
condition (b) demands that no other line-ups become (additional) winners after
the modifications. If a voting rule only fulfills condition (a), then we say that it
weakly satisfies the corresponding axiom. If it fulfills both conditions, then we
say that it strongly satisfies the corresponding axiom.

In single-winner and multi-winner voting, the consistency axiom requires
that if a voting rule selects the same outcome in two elections (over the same
candidate set), then this outcome is also winning in the combined election [27].
We consider a variant of this axiom, adapted to our setting.

Axiom 4 Score consistency: For two line-up elections (S, C, P ) and
(S′, C, P ) with f(S, C, P ) ∩ f(S′, C, P ) �= ∅ it holds that: a) f(S, C, P ) ∩
f(S′, C, P ) ⊆ f(S + S′, C, P ) and b) f(S, C, P ) ∩ f(S′, C, P ) ⊇ f(S + S′, C, P ).

The utilitarian rule is the only OWA-rule that satisfies weak (and even strong)
score consistency. The fixed-order rule is the only other considered rule that sat-
isfies weak score consistency. For all other rules, it is possible to construct simple
two-candidates two-positions line-up elections where this axiom is violated.

Besides focusing on consistency related considerations, it is also important
to examine how the winning line-ups change if the election itself is modified. We
start by considering a variant of monotonicity [13].

Axiom 5 Monotonicity: Let (S, C, P ) be a line-up election with a winning
line-up π. Let (S′, C, P ) be the line-up election obtained from (S, C, P ) by increas-
ing scorep(πp) for some p. Then, it holds that (a) π is still a winning line-up,
that is, π ∈ f(S′, C, P ), and (b) no new winning line-ups are created, that is, for
all π′ ∈ f(S′, C, P ) it holds that π′ ∈ f(S, C, P ).

While the utilitarian, fixed-order, and max-first rule all satisfy strong mono-
tonicity, all other rules fail even weak monotonicity. As these negative results
are intuitively surprising, we present their proof here.

Proposition 1. The egalitarian rule f eg, the harmonic rule fhar, and the min-
first rule f seq

min all violate weak monotonicity.
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Proof. We present counterexamples for all three rules:

E1 :

p1 p2
a 0 3
b 3 0
c 4 0

E2 :

p1 p2 p3
a 4 1 0
b 4.75 3 0
c 0 0 2

E3 :
p1 p2

a 2 1
b 0 0

In E1, (b, a) and (c, a) are winning under f eg. However, after increasing scorep2(a)
to 4, (c, a) has an egalitarian score of 4 and thereby becomes the unique winning
line-up. We now turn to election E2 and voting rule fhar. It is clear that c will
be assigned to p3 in every outcome. In fact, (a, b, c) is the winning line-up in E2,
as Λhar(a, b, c) = 1 · 4 + 1

2 · 3 + 1
3 · 2 > 1 · 4.75 + 1

3 · 1 + 1
2 · 2 = Λhar(b, a, c). After

increasing scorep3(c) to 3, (b, a, c) becomes the unique winning line-up in E2, as
Λhar(a, b, c) = 1·4+ 1

2 ·3+ 1
3 · 3 < 1·4.75+ 1

3 ·1+ 1
2 · 3 = Λhar(b, a, c). By the mod-

ification, the score of (b, a, c) increases more than the score of (a, b, c), because in
(b, a, c), scorep3(c) is multiplied by a larger coefficient. Lastly, considering f seq

min,
(b, a) is the unique winning outcome in E3. After increasing scorep2(a) to 3, the
ordering in which the positions get assigned changes, and thereby, (a, b) becomes
the unique winning line-up. �

In the context of multi-winner voting, an additional monotonicity axiom
is sometimes considered: Committee enlargement monotonicity deals with the
behavior of the set of winning outcomes if the size of the committee is
increased [6,10]. We generalize this axiom to our setting in a straightforward
way.

Axiom 6 Line-up enlargement monotonicity: Let (S, C, P ) be a line-up
election and let (S′, C, P ′) with P ′ = P ∪ {p∗} be an election where position p∗

and the scores of candidates for this position have been added. It holds that (a)
for all π ∈ f(S, C, P ) there exists some π′ ∈ f(S′, C, P ′) such that πP ⊂ π′

P ′ and
(b) for all π′ ∈ f(S′, C, P ′) there exists some π ∈ f(S, C, P ) such that πP ⊂ π′

P ′ .

Note that line-up enlargement monotonicity does not require that the selected
candidates are assigned to the same position in the two outcomes π and π′.
Despite the fact that this axiom seems to be very natural, neither of the two
harmonic rules satisfy it at all. Intuitively, the reason for this is that by intro-
ducing a new position, the coefficients in the OWA-vector “shift”. Moreover,
surprisingly, the min-first rule also violates the weak version of this axiom. The
proof for this consists of a rather involved counterexample exploiting the fact
that by introducing a new position, the order in which the positions are filled
may change. All other rules, apart from the egalitarian one, satisfy strong line-
up enlargement monotonicity; the egalitarian rule satisfies line-up enlargement
monotonicity only in the weak sense. We conclude with presenting the proof that
the utilitarian rule, fut, satisfies weak line-up enlargement monotonicity, as the
proof nicely illustrates how it is possible to reason about this axiom.

Proposition 2. The utilitarian rule fut satisfies weak line-up enlargement
monotonicity.
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Proof. Let π be a winning line-up of the initial election E = (S, C, P ) and let π′

be a winning line-up of the extended election E′ = (S′, C, P ∪ {p∗}) such that
there exists a candidate c ∈ C with c ∈ π and c /∈ π′. We claim that it is always
possible to construct from π′ a winning line-up π∗ of the extended election such
that all candidates from π appear in π∗: Initially, we set π∗ := π′. As long as
there exists a candidate c ∈ C with c ∈ π and c /∈ π∗, we set π∗

π(c) := c. Let P̃ be
the set of all positions where π′ and π∗ differ. Note that none of the replacements
can change the candidate assigned to p∗. Thus, it holds that P̃ ⊆ P .

Obviously, all candidates from π appear in π∗. For the sake of contradiction,
let us assume that π∗ is not a winning line-up of the extended election. Conse-
quently, the summed score of π∗ has decreased by the sequence of replacements
described above, which implies that the summed scores of candidates on posi-
tions from P̃ is higher in π′ than in π: Λut(π|

˜P ) < Λut(π′|
˜P ). We claim that

using this assumption, it is possible to modify π such that its utilitarian score
increases, which leads to a contradiction, as we have assumed that π is a win-
ning line-up. Let πalt be a line-up resulting from copying π and then replacing
all candidates assigned to positions in P̃ by the candidates assigned to these
positions in π′. This is possible as p∗ /∈ P̃ . By our assumption, πalt has a higher
utilitarian score than π. It remains to argue that πalt is still a valid outcome,
that is, every candidate is only assigned to at most one position. This directly
follows from the observation that if p ∈ P̃ with π′

p ∈ π, then at some point
during the construction of π∗, π′

p is kicked out of the line-up and is assigned to
position π(π′

p) at some later point, which implies that π(π′
p) ∈ P̃ . �

Summary. From an axiomatic perspective, the utilitarian rule is probably the
most appealing one. Indeed, it satisfies all axioms except weak reasonable satis-
faction, which imposes quite rigorous restrictions on every rule fulfilling it. For
the egalitarian rule, although this rule is pretty simple, both efficiency axioms are
only weakly satisfied and, slightly surprisingly, score consistency and monotonic-
ity are not satisfied at all. As in Proposition 1, most of the counterexamples for
the egalitarian rule utilize that the OWA-vector of this rule contains some zeros.
If one adapts the egalitarian rule such that the egalitarian outcome with the
highest summed score is chosen, strong non-wastefulness, strong score Pareto
optimality, strong monotonicity, and strong line-up enlargement monotonicity
are additionally satisfied. Note that this variant of the egalitarian rule is still
computable in polynomial time.

Both harmonic rules are less appealing from an axiomatic perspective because
they do not satisfy any of our considered voting axioms. On a high level, as illus-
trated in Proposition 1, this is because the corresponding OWA-vectors consist
of multiple different entries. Thereby, some modifications change the coefficients
by which the scores are multiplied in some undesirable way. Overall, the contrast
between the utilitarian rule and the harmonic rule is quite remarkable because
they come both from the same class and work pretty similarly.

Turning to sequential rules, apart from reasonable dissatisfaction, the fixed-
order rule outperforms the other two. However, a clear disadvantage of the fixed-
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order rule (and the two other sequential rules) is that a returned winning line-up
might not be score Pareto optimal. As the max-first rule fulfills all axioms—
except score consistency—at least weakly, and it is the only voting rule that is
reasonably satisfying, this rule is also appealing if satisfaction of the candidates
or positions is an important criterion. The min-first rule, on the other hand,
does not even weakly satisfy any axiom except non-wastefulness. The reason for
this is that in some elections modifying the election changes the order in which
the positions are filled. The considerable differences between the max-first and
min-first rule are quite surprising, as they first appear to be symmetric.

6 Experiments

In this section, we analyze the proposed rules experimentally. We first describe
how we generated our data, and then present and analyze the results.

FIFA Data. In the popular video game FIFA 19 [9], 18.207 soccer players have
their own avatar. To mimic the quality of a player, experts assessed them on
29 attributes, such as sprint speed, shot power, agility, and heading [14]. From
these, the game computes the quality of a player on each possible position, such
as left striker or right wing-back etc., in a soccer formation, using a weighted sum
of the attribute scores with coefficients depending on the position in question
[24]. We used this data to model a coach of a national team X that wants to
find an “optimal” assignment of players with nationality X to positions in a
formation he came up with. This can be modeled as a line-up election.

In soccer, there exist several possible formations consisting of different posi-
tions a team can play in. We fixed one formation, that is, a set of ten different
positions. In the generated elections, the candidates are some selected number
of players of a given nationality with the highest summed score, the positions
are the field positions in a selected soccer formation, and the scores are those
assigned by FIFA 19 for the player playing on a particular position. We consid-
ered 84 national teams (those with over ten field players in FIFA 19).

Synthetic Data. We also generated a synthetic dataset (M2) consisting of
1.000 line-up elections. Here, every candidate c has a ground qualification μc ∈
[0.4, 0.7] and every position p has a difficulty αp ∈ [1, 2] both drawn uniformly
at random. For each candidate c and for each position p, we sample a basic
score βc,p from a Gaussian distribution with mean μc and standard deviation
0.05. The score of a candidate-position pair is then calculated as: scorep(c) =
β

αp
c,p. The intuition behind this is that very talented candidates are presumably

not strongly affected by the difficulty of a position, whereas weaker candidates
may feel completely overburdened by a difficult position.

For both models, we normalized each line-up election by dividing all scores
by the maximum score of a candidate-position pair.

Analysis of Experimental Results. We focus on the case of ten candidates
on ten positions, as this is the most relevant scenario in the FIFA setting. How-
ever, we also conducted experiments for twenty candidates on ten positions and
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Fig. 1. Summed score of winning line-ups for different voting rules. The black horizon-
tal lines indicate the median for the utilitarian rule on the two datasets.

twenty candidates on twenty positions, where we observed the same trends as
in the case presented here. For settings with more candidates than positions,
however, the differences between the rules are less visible. In the following, we
refer to the (possibly invalid) outcome where every position gets assigned its best
candidate as the utopic outcome. To visualize our results, we use violin plots. In
a violin plot, the white dot represents the median, the thick bar represents the
interquartile range, and the thin line represents the range of the data without
outliers. Additionally, a distribution interpolating the data is plotted on both
sides of the center.

Comparison of Data Models. To compare the datasets, we calculated different
metrics designed to measure the amount of “competition” in instances. For exam-
ple, we calculated the difference between the summed score of the utopic out-
come and the summed score of a utilitarian outcome. Generally speaking, the M2
model produces instances with more “competition” than the FIFA data which
helps us to make the differences between the rules more pronounced.

Comparison of Voting Rules. We compare the different voting rules by examining
the following four metrics: (i) the summed score of the computed winning line-
up π normalized by the summed score of the utopic outcome, (ii) the minimum
score of a position in the winning line-up, (iii) the Gini coefficient2 of the score
vector, and (iv) the amount of reasonable dissatisfaction measured as the sum
of all reasonable dissatisfactions, that is, the difference between the score of a
position p in π and the score of a candidate c on p if the candidate-position pair
(p, c) is reasonably dissatisfied. For the egalitarian rule, if multiple line-ups are
winning, then we always select the line-up with the highest summed score.

Concerning the summed score (see Fig. 1), as expected, all four OWA-rules
clearly outperform the three sequential rules. The OWA-rules all behave remark-
ably similar, especially on the FIFA data. The utilitarian rule produces by defi-
nition line-ups with the highest possible summed score, closely followed by the

2 The Gini coefficient is a metric to measure the dispersion of a probability distribu-
tion; it is zero for uniform distributions and one for distributions with a unit step
cumulative distribution function.
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Fig. 2. Gini coefficient of score vector of line-ups for different voting rules.

Fig. 3. Reasonable dissatisfaction in winning line-ups for different voting rules.

harmonic rule. Turning to the sequential rules, the min-first rule produces the
worst results, while the max-first rule produces the best results.

Turning to the minimum score, the OWA-rules mostly outperform the
sequential rules. The two rules producing the highest minimum score are the
egalitarian rule and the inverse harmonic rule. The utilitarian and harmonic
rule produce slightly worse results on the easier FIFA data and significantly
worse results on the more demanding M2 data. Among the sequential rules, the
min-first rule performs best, sometimes even outperforming the utilitarian rule,
while the max-first rule produces the worst results. For the Gini coefficient (see
Fig. 2), the overall picture is quite similar, i.e., rules that produce line-ups with
a higher minimum score also produce line-ups that are more balanced in general.

Lastly, considering the amount of reasonable dissatisfaction (see Fig. 3), by
definition, the max-first rule does not produce any reasonable dissatisfaction.
Among the other rules, the harmonic rule produces the best results followed
by the utilitarian rule. The egalitarian, inverse harmonic, and fixed-order rule
all produce around double the amount of reasonable dissatisfaction, while the
min-first rule produces significantly worse results by an additional factor of two.

Summary. Somewhat surprisingly, all OWA-rules outperform all sequential
rules for all quantities, with only two exceptions: The min-first rule produces



288 N. Boehmer et al.

pretty balanced outcomes and the max-first rule produces no reasonable dis-
satisfaction. However, even if one aims at optimizing mainly one of these two
quantities, it is usually recommendable to use an OWA-rule. Selecting the inverse
harmonic rule instead of the min-first rule results in outcomes which are compa-
rably balanced, have significantly higher summed and minimum scores, and have
way less reasonable dissatisfaction. Using the harmonic rule instead of the max-
first rule will introduce only little reasonable dissatisfaction in exchange for more
balanced line-ups with higher summed and minimum scores. Comparing the dif-
ferent OWA-rules to each other, it is possible to differentiate the utilitarian and
harmonic rule on the one side, from the egalitarian and inverse harmonic rule
(which behave particularly similarly) on the other side: Rules from the former
class tend to favor more imbalanced line-ups with lower minimum but higher
summed score and less reasonable dissatisfaction.

7 Discussion

Overall, the considered OWA-rules produce better outcomes than the sequential
rules. Nevertheless, sequential rules might sometimes be at an advantage, since
sequential rules are, generally speaking, more transparent, more intuitive, and
easier to explain. If one requires a sequential rule, either the fixed-order rule
or the max-first rule should be chosen, as the min-first rule violates nearly all
studied axioms and produces undesirable outcomes. Focusing on OWA-rules,
the harmonic and inverse harmonic rules are rather to be avoided, as they fail
to fulfill all considered voting and fairness axioms. Comparing the utilitarian
and egalitarian rule, from an axiomatic perspective, the utilitarian rule is at
an advantage, because it satisfies the most axioms among all considered rules.
However, choosing between these two rules in practice should depend on the
application, as the line-ups produced by these rules maximize different metrics.
A rule that could somehow incorporate egalitarian and utilitarian considerations
is the product rule, which selects outcomes with the highest product of scores.

For future work, it would be interesting to look at line-up elections that take
as input the preferences of voters instead of aggregated scores. Analogously to
multi-winner voting, new rules for this setting could, for example, focus on select-
ing proportional and diverse, instead of individually-excellent, line-ups. Such a
path would also require developing appropriate axioms. Another possible line of
future research could be to run experiments using preference data to examine the
influence of the selected single-winner voting rule to aggregate the preferences
into scores on the selected line-up. There are also several algorithmic problems
that arise from our work. For instance, the computational complexity of comput-
ing a winning outcome under the (inverse) harmonic rule and even more generally
of computing winning outcomes for arbitrary non-increasing OWA-rules is open.
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Abstract. We study in this paper single-peakedness on arbitrary
graphs. Given a collection of preferences (rankings of alternatives), we
aim at determining a connected graph G on which the preferences are
single-peaked, in the sense that all the preferences are traversals of G.
Note that a collection of preferences is always single-peaked on the com-
plete graph. We propose an Integer Linear Programming formulation
(ILP) of the problem of minimizing the number of edges in G or the
maximum degree of a vertex in G. We prove that both problems are NP-
hard in the general case. However, we show that if the optimal number of
edges is m − 1 (where m is the number of candidates) then any optimal
solution of the continuous relaxation of the ILP is integer and thus the
integrality constraints can be relaxed. This provides an alternative proof
of the polynomial time complexity of recognizing single-peaked prefer-
ences on a tree. We prove the same result for the case of a path (an axis),
providing here also an alternative proof of polynomiality of the recogni-
tion problem. Furthermore, we provide a polynomial time procedure to
recognize single-peaked preferences on a pseudotree (a connected graph
that contains at most one cycle). We also give some experimental results,
both on real and synthetic datasets.

1 Introduction

Aggregating the preferences of multiple agents is a primary task in many applica-
tions of artificial intelligence, e.g., in preference learning [8,9] or in recommender
systems [2,19]. The preferences of agents are often represented as rankings of
alternatives, such as cultural products (books, songs, movies...), technological
products, candidates for an election, etc. The aim of aggregation is then to pro-
duce a single ranking from a collection of rankings (called preference profile).

The preferences are said to be structured if they share some common struc-
ture [13]. For example, in a political context, it is conventional to assume that
each individual preference is decreasing as one moves away from the preferred
candidate along a left-right axis on the candidates, axis on which individuals all
agree. Such preferences are called single-peaked [5]. They have been the subject of
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much work in social choice theory. The most well-known result states that if pref-
erences are single-peaked, then one escapes from Arrow’s impossibility theorem.
We recall that Arrow’s theorem states that any unanimous aggregation function
for which the pairwise comparison between two alternatives is independent of
irrelevant alternatives is dictatorial. Furthermore, from the computational view-
point, many NP-hard social choice problems (e.g., Kemeny rule and Young rule
for rank aggregation [6], Chamberlin-Courant rule for proportional representa-
tion [4]) become polynomially solvable if the preferences are single-peaked.

Given the axiomatic and algorithmic consequences, the question of the com-
putational complexity of recognizing single-peaked preferences is thus natural.
Bartholdi and Trick [3] have proposed an O(nm2) algorithm to compute a com-
pact representation of all axes on which a collection of n preferences on m
candidates are single-peaked, or state that none exists. This complexity can be
decreased to O(nm + m2) if one looks for only one possible axis [12].

Several classes of structured preferences have been proposed to generalize
the single-peaked domain with respect to an axis, i.e., a path, to more general
graphs. Given a set C = {1, . . . , m} of candidates, a preference order � over C is
single-peaked on an undirected graph G = (C, E) if it is a traversal of G, i.e., for
each j ∈ C the upper-contour set {i ∈ C : i � j} is connected. A preference profile
is then single-peaked on G if every preference is single-peaked on G. Demange
studied single-peakedness on a tree [11]; Peters and Lackner on a circle [22].

Some good axiomatic properties remain valid when preferences are single-
peaked on a tree: if the number of voters is odd, such profiles still admit a
Condorcet winner (a candidate who is preferred over each other candidate by a
majority of voters) [11], and returning this Condorcet winner is a strategyproof
voting rule. On the contrary, every majority relation can be realized by a collec-
tion of preferences single-peaked on a circle [22], hence single-peaked preferences
on a circle do not inherit the good axiomatic properties of single-peakedness on
an axis regarding voting rules that are based on the majority relation.

The goal of this paper is to study the recognition problem for single-peaked
preferences on arbitrary connected graphs. Although one cannot expect social
choice theoretic guarantees from single-peakedness on arbitrary graphs (as it
does not result in a domain restriction, any profile being single-peaked on the
complete graph), a sparse graph gives some insights on the similarity between
candidates/items. This could be used, e.g., in recommendation systems: assume
that one discovers that the preferences over movies {1, 2, 3, 4, 5} are single-peaked
w.r.t. axis (1, 2, 3, 4, 5); if ones knows that an agent likes movies 3 and 5, then it is
natural to recommend movie 4. More generally, one can take advantage of single-
peakedness on a sparse graph to make recommendations in the neighbourhood
of liked items. Thereby, we focus here on determining a graph that minimizes
(1) the number of edges or (2) the maximum degree of a vertex. This choice is
motivated by the fact that these criteria are measures of sparsity of a graph (the
sparser the graph is, the more informative), but also because they generalize
known cases such as paths, cycles and trees. Let us indeed emphasize that the
mathematical programming approach we propose to identify a graph generalizes
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the best known instances of the single-peaked recognition problem and provides
a uniform treatment of them, leading to simple polynomial time algorithms.

Our Contribution. We propose Integer Linear Programming formulations
(ILP) of problems (1) and (2), and we show that both of them are NP-hard (Sect.
2). Nevertheless, if the optimal value for problem (1) is m − 1 (where m is the
number of candidates), we prove the integrality of the optimal basis solution of
the Linear Program (LP) obtained by relaxing the integrality constraint (Sect.
3). This provides an alternative polynomial time method, based on a simple LP
solver, to recognize single-peakedness on a tree, as a connected graph with m ver-
tices and m−1 edges is a tree. By adding some constraints on the max degree of a
vertex, we obtain the same result for the case of paths. As a last theoretical result,
we prove that single-peakedness on a pseudotree (a connected graph containing at
most one cycle) is recognizable in polynomial time (Sect. 4). We also provide some
experimental results on real-world and synthetic datasets, where we measure the
density of the graphs depending on the diversity of preferences of voters (Sect. 5).
All along the article, some proofs are skipped due to lack of space.

Related Work. We briefly describe here some previous contributions that have
addressed the concept of single-peakedness on arbitrary graphs, the optimization
view of the recognition problem and the use of ILP formulations for computa-
tional social choice problems related to structured preferences:

• Nehring and Puppe defined a general notion of single-peaked preferences
based on abstract betweenness relations between candidates [18]. In their
setting, it is possible to define single-peaked preferences on a graph G by
considering the graphic betweenness relation: candidate j is between candi-
dates i and k if and only if j lies on a shortest path between i and k in G.
A preference profile is then single-peaked on G if for every preference �, if i∗

is the most preferred candidate w.r.t. � and j is on a shortest path between
i∗ and k then j � k. This definition enables them to state general results
regarding strategyproofness on restricted domains of preferences. Note that
this definition of single-peakedness on a graph does not coincide with the one
we use (see Sect. 2.1).

• Peters and Elkind showed how to compute in polynomial time a compact rep-
resentation of all trees with respect to which a given profile is single-peaked
[21]. This structure allows them to find in polynomial time trees that have,
e.g., the minimum degree, diameter, or number of internal nodes among all
trees with respect to which a given profile is single-peaked. On the contrary,
they show that it is NP-hard to decide whether a given profile is single-peaked
on a regular tree (where each vertex has degree either 1 or d), or if a pro-
file is single-peaked on a tree isomorphic to a given tree. We provide here
alternative proofs for some of the polynomial time results, based on linear
programming arguments.

• Peters recently proposed ILP formulations for proportional representation
problems, and showed that the binary constraint matrix is totally unimodular
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if preferences are single-peaked, because the matrix has then the consecutive
ones property [20]. We recall that the vertices of a polyhedron defined by a
totally unimodular constraint matrix are all integer, thus solving the linear
programming relaxation yields an optimal solution to the original ILP prob-
lem. We also rely on linear programming for proving the polynomial time
complexity of some of the recognition problems we tackle here.

2 ILP Formulation and Complexity

2.1 Problem Definition

We start by recalling some basic terminology of social choice theory. Given a set
C = {1, 2, . . . ,m} of candidates and a set {v1, . . . , vn} of voters, each voter vi

ranks all candidates from the most to the least preferred one. This ranking is
called the preference of vi. It is simply a permutation of C, which can be formally
described as an m-tuple Ri = (πi(1), . . . , πi(m)), where πi(k) is the k -th most
preferred candidate of voter vi. The set P = {R1, . . . , Rn} of preferences of all
voters is called the profile. As emphasized in the introduction, several definitions
of single-peakedness on an arbitrary graph can be found in the literature. In our
study, we are using the following one [13]:

Definition 1 Single-peakedness on an arbitrary graph (SP). Let C be a
set of m candidates and P the profile of preferences of n voters. Let G = (C, E)
be a connected undirected graph. We say that P is single-peaked on the graph
G (SP) if every Ri ∈ P is a traversal of G, i.e., for each Ri ∈ P and for each
k ∈ {1, . . . m}, the subgraph of G induced by the vertices {πi(1), . . . , πi(k)} is
connected.

This definition coincides with the standard definition on an axis [5]/cycle
[22]/tree [24] when G is a path/cycle/tree. Note that the definition based on
shortest paths [18] mentioned earlier does not generalize single-peakedness on a
circle as defined in [22]. When a profile P is single-peaked w.r.t. G, for conciseness
we say that P is compatible with G (or that G is compatible with P).

Example 1. Consider the profile with 4 voters and 5 candidates: R1 : (1, 2, 3, 4, 5),
R2 : (1, 3, 4, 2, 5), R3 : (2, 5, 3, 4, 1), and R4 : (3, 5, 4, 2, 1).

Note that, for R1, the connectivity constraint applied to the first two candi-
dates makes the edge {1, 2} necessary in the graph. The same occurs for {1, 3},
{2, 5} and {3, 5}. Thus, any solution contains the 4-cycle (1, 2, 5, 3, 1) (in par-
ticular the profile is not SP on a tree or on a cycle). One can easily check that
adding edge {3, 4} makes a graph with 5 edges compatible with the profile, and
this is the (unique) optimal solution if we want to minimize the number of edges.

Obviously, any profile is SP on the complete graph. However, this case is
not interesting because it does not give any information about the preference
structure. That is why we are looking for a minimal graph on which the profile
is SP. The notion of minimality needs to be made more precise. In our study,
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we focus essentially on minimizing the number of graph edges. Another criterion
we consider is the minimization of the maximum degree of vertices. Put another
way, given a preference profile P, we want to determine a graph G on which the
profile is SP, so as to minimize either the number of edges of G, or its (maximum)
degree. We emphasize the fact that:

– minimizing the number of edges allows to detect when the profile is compatible
with a tree (this occurs iff the minimum number of edges is m − 1, since G is
necessarily connected);

– minimizing the degree of G allows to detect when the profile is compatible
with a cycle (this occurs iff there exists a graph G with maximum degree 2);

– combining the objective allows to detect when the profile is compatible with
an axis: this occurs iff there is a graph G with maximum degree 2 and m − 1
edges.

So the tackled problems generalize the most well known (tractable) recognition
problems of single-peakedness.

2.2 ILP Formulation

We now present an ILP formulation of the tackled problems. We are looking for a
graph G with m vertices. For each pair {k, l} ⊆ {1, . . . , m} of vertices, we define
a binary variable x{k,l} which is equal to 1 if such that edge {k, l} is present in
graph G, and 0 otherwise.

Hence, if we are minimizing the number of graph edges, the objective function
f(x) takes the form f(x) =

∑
{k,l}⊆{1,...,m} x{k,l}. If we are minimizing the

maximum degree, then f(x) = maxk∈{1,...,m}
∑m

l=1,l �=k x{k,l}. In this latter case,
the classical way of linearizing f(x) is to minimize an auxiliary variable z with
the constraint

∑m
l=1,l �=k x{k,l} ≤ z, for all k ∈ {1, . . . , m}.

Regardless of the objective function, the other constraints of the problem
remain the same. Each Ri = (πi(1), . . . , πi(m)) for i ∈ {1, . . . ,n} has to be a
graph traversal. In other words, for each k ∈ {2, . . . m}, πi(k) is connected to
at least one of the vertices πi(1), . . . , πi(k − 1). This is formulated as the LP
constraints

∑k−1
j=1 x{πi(j),πi(k)} ≥ 1.

To sum up, the ILP formulation of the tackled problems is

min f(x)

s.t.

{∑k−1
j=1 x{πi(j),πi(k)} ≥ 1 ∀i ∈ {1, . . . ,n},∀k ∈ {2, . . . , m}

x{k,l} ∈ {0, 1} ∀{k, l} ⊆ {1, . . . , m}

2.3 Minimizing the Number of Edges

In this section, we study the computational complexity of the problem of mini-
mizing the number of edges of G. As a first observation, note that we cannot use
the continuous relaxation of this ILP (x{k,l} ∈ [0, 1]) to solve the problem. The
following example indeed shows that the optimal solution (when minimizing the
number of edges) of this relaxation is not necessarily integer:
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Example 2. Consider the profile with 3 voters and 4 candidates: R1 : (1, 2, 4, 3),
R2 : (2, 3, 4, 1), and R3 : (1, 3, 4, 2).

From the two first options of each voter, we see immediately that the edges
{1, 2}, {2, 3} and {1, 3} are necessarily present in the graph. Then, we observe
that vertex 4 needs to be connected to at least one of vertices 1 and 2, at least one
of vertices 2 and 3 and finally at least one of vertices 1 and 3. Consequently any
integer solution of the problem will be a graph with at least 5 edges. However,
there exists a fractional solution of the continuous relaxation with value 4.5:

1 2

34

1

1

1
0.5

0.5

0.5

We now show that the problem is actually NP-hard.

Theorem 1. Given a preference profile P, it is NP-hard to find a graph com-
patible with P with a minimum number of edges.

Proof. We use a polynomial time reduction from the set cover problem, known
to be NP-hard [16], where given a finite set U = {e1, . . . en} of elements, a set
S = {S1, . . . , Sm} of subsets of U and k ∈ N, the question is to determine if
there exists a subset C ⊆ S of size k such that ∪S∈CS = U .

From an instance of set cover, we define a preference profile P as follows:

(i) Let {S1, . . . , Sm, z} be a set of candidates.
(ii) Let {v1, . . . , vn} be a set of voters. Let Si1 , . . . Sil

be the subsets in S con-
taining element ei ∈ U , and Sil+1 , . . . , Sim

the other subsets in S. Then, the
preference of voter vi is defined as Ri = (Si1 , . . . , Sil

, z, Sil+1 , . . . , Sim
).

(iii) We add m·(m−1)
2 voters v{i,j}, {i, j} ⊆ {1, . . . , m} such that

R{i,j} = (Si, Sj , S1, . . . , Sm︸ ︷︷ ︸
except Si,Sj

, z).

We prove that there exists a set cover of size k if and only if there exists a graph
G compatible with P that has m·(m−1)

2 + k edges.
Let C be a set cover solution of size k. We generate a graph G compatible

with P in the following manner:

a) For each {i, j} ∈ {1, . . . , m}2, i 	= j, the edge {Si, Sj} is in G - this is
necessary for the preferences of type (iii) above to be SP on G.

b) For each i ∈ {1, . . . ,m}, the edge {Si, z} is in G if and only if Si ∈ C.
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Hence, the subgraph formed by vertices {S1, . . . , Sm} is a clique having m·(m−1)
2

edges, and there are exactly k more edges adjacent to z - in total, G has m·(m−1)
2 +

k edges. As k > 0, the graph is connected and all preferences of type (iii) are
SP on G. Let Ri be one of the preferences of type (ii). We need to prove that z
is connected to at least one of the vertices Si1 , . . . , Sil

. As the sets Si1 , . . . , Sil

are the only sets of S containing the element ei, and as C is a solution of the set
cover instance, this is true due to b). So, G is a graph compatible with P that
has m·(m−1)

2 + k edges.
To prove the other implication, let G be a graph compatible with P that has

m·(m−1)
2 + k edges. As G is compatible with P, the subgraph induced by the set

of vertices {S1, . . . Sm} must be a clique so that the preferences R{i,j} of type
(iii) are SP on G. Hence, this subgraph contains m·(m−1)

2 edges, and so, there
are exactly k edges adjacent to z. Let us define C containing Si iff Si is adjacent
to z in G. As G is compatible with P, each preference Ri of type (ii) is SP on
G. It means that at least one of Si1 , . . . , Sil

is adjacent to z, so is in C. As all
these sets contains ei, there is an element of C that covers ei. The subset C ⊆ S
is thus a solution of size k of the set cover instance. 
�

2.4 Minimizing the Maximum Degree

We now consider our second objective function, namely the maximum degree of
a vertex in the graph (to be minimized). We come up with similar results.

First, as for the minimization of the number of edges, the ILP formulation
we have proposed in Sect. 2.2 is not integer Moreover, here again we show that
the problem of minimizing the degree of G is NP-hard, by a similar reduction.

Theorem 2. Given a preference profile P, it is NP-hard to find a graph com-
patible with P with a minimum degree.

3 Recognition of Trees and Paths

In this section, we focus on the tree and path recognition - given a profile P, we
are looking for a tree (or a path) on which the profile if SP.

Recognizing single-peaked preferences on a tree can be done using the combi-
natorial algorithm proposed by Trick [24]. As an alternative proof of this result,
we show in this section that the continuous relaxation of the ILP formulations
given in Sect. 2.2 can be used to solve this recognition problem in polynomial
time: in fact, all (optimal) extremal solution are integral (Theorem 3). We show
in Theorem 4 a similar result for the recognition of profiles SP on a path.

We start by recalling Trick’s procedure [24], as we will use it in the proof of
the results of the two theorems mentioned above.

Recognition of Profiles SP on a Tree [24]. Let P be a profile containing preference
lists {R1, . . . , Rn} of n voters over m candidates. Let k be a candidate placed at
the last position by at least one voter. Trick shows that, if preferences are SP on
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a tree, then k must necessarily be a leaf. More formally, for each i ∈ {1, . . . ,n},
let us denote by A(k)i the set of candidates ranked better than k by voter vi if
k is not ranked first by vi; if k is ranked first by vi, then A(k)i is the singleton
containing the second most-preferred candidate of vi. From A(k) =

⋂n
i=1 A(k)i,

the following conclusions can be drawn:

– if A(k) = ∅, there does not exist a tree solution.
– Otherwise, A(k) is the set of vertices the leaf k can be connected to.

In the latter case, the algorithm of Trick deletes k from all preferences, and
repeats this process on the modified profile with preferences over m − 1 candi-
dates.

Using LP to Recognize SP Preferences on a Tree or a Path. Let us consider the
following continuous relaxation LP-SP (linear program for single-peakedness) of
the ILP introduced in Sect. 2.2:

min
∑

{k,l}⊆{1,...,m} x{k,l}

s.t.

{∑k−1
j=1 x{πi(j),πi(k)} ≥ 1 ∀i ∈ {1, . . . ,n}, k ∈ {2, . . . , m}

x{k,l} ∈ [0, 1] ∀{k, l} ⊆ {1, . . . , m}

We show in Theorem 3 that we can use LP-SP to solve in polynomial time
the problem to determine, given a profile, whether there exists or not a tree
compatible with it.

Theorem 3. If a profile P is compatible with a tree, then any extremal optimal
solution x of LP-SP is integral, i.e., x{k,l} ∈ {0, 1} for any {k, l} ⊆ {1, . . . ,m}.
Proof. The proof is based on two properties of optimal solutions of LP-SP when
the profile is compatible with a tree. These two properties allow to come up with
a reformulation of the problem as a maximum flow problem, where there is a
bijection between the solutions of LP-SP of value m − 1 and the (optimal) flows
of value m − 1. The result then comes from the fact that any extremal solution
of the flow problem (with integral capacity) is integral [1].

The first property states that all constraints of LP-SP are tight in a solution
of value m − 1.

Property 1. If the optimal value of LP-SP is m − 1, then all constraints are
tight in an optimal solution x∗:

∑k−1
j=1 x∗

{πi(j),πi(k)} = 1.
Now, let us consider that the profile is SP with respect to a tree. The recog-

nition procedure recalled above starts by identifying a candidate, say m, ranked
last in at least one ranking and such that A(m) 	= ∅. This procedure is then
applied recursively, till there is only one candidate. For simplicity, let us assume
that the first removed (identified) candidate is m, the second m − 1, and so on.
Let us now focus on the step when candidate k is identified as a leaf (and then
removed from the profile). To avoid confusion, we denote by B(k) the set A(k)
at this step, i.e., when considering the profile restricted to the first k candidates.
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Property 2. If the profile is SP on a tree, then in an optimal solution of LP-SP,
for any candidate k ≥ 2 we have

∑
j∈B(k) x{j,k} = 1, and x{j,k} = 0 for any

j ∈ {1, . . . , k − 1} \ B(k).
Now we reformulate the problem as a flow problem. From P, we build a

network (directed graph) R with:

– A source s, a destination t, and for each candidate k two vertices �k and rk.
– We have an arc from s to each �k with capacity 1, and an arc from each rk

to t with capacity ∞.
– For each candidate k, we have an arc (�k, rj) for each j < k. The capacity of

this arc is 1 if j ∈ B(k), and 0 otherwise.

Let us denote by φ a flow on this network, with φ(e) the flow on edge e. Note
that �1 has no outgoing edge, so the optimal flow is at most m − 1.

We show that the correspondence x{k,j} = φ(k, j) (for each j < k) is a
bijection between solutions of value m−1 of LP-SP and (optimal) flows of value
m − 1 in R.

Let φ be a flow of value m−1. As there is no flow through �1, there is a flow of
value 1 through each �k, k > 1. Since arc (k, j) has capacity 0 if j 	∈ B(k), by flow
conservation we have

∑
j∈B(k) φ(k, j) = 1, which means that

∑
j∈B(k) x{k,j} = 1.

Now consider a voter vi for which k is not ranked first. By the procedure of Trick,
when k is identified as a leaf, all candidates in B(k) are ranked before k, and the
corresponding constraint is satisfied. This is true for all candidates and voters,
so x is a feasible solution of LP-SP, of value m − 1.

Conversely, let x be a feasible solution of LP-SP of value m−1. From Property
2, we have

∑
j∈B(k) x{j,k} = 1 for each candidate k ≥ 2. This immediately gives

a flow of value m − 1.
By integrality of extremal flows (any non integral optimal flow is a convex

combination of integral flows), any extremal optimal solution of LP-SP is integral
(when there exists a tree compatible with P). 
�

Let us now turn to the recognition of profiles SP on a path. A (connected)
graph is a path iff it is a tree with degree at most 2. Hence, we consider the
following ILP formulation where we minimize the number of edges and add
constraints on the vertex degrees:

min
∑

{k,l}⊂{1,...,m}
x{k,l}

s.t.

⎧
⎪⎨

⎪⎩

∑k−1
j=1 x{πi(j),πi(k)} ≥ 1 ∀i ∈ {1, . . . ,n}, k ∈ {2, . . . , m}

∑m
l=1,l �=k x{k,l} ≤ 2 ∀k ∈ {1, . . . , m}

x{k,l} ∈ {0, 1} ∀{k, l} ⊆ {1, . . . , m}

Clearly, a profile is compatible with a path iff the optimal value of the previous
ILP is m−1. Let us call LP-SP2 the continuous relaxation. By using very similar
arguments as above (same reformulation as a flow problem), one can prove the
following result.
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Theorem 4. If a profile P is compatible with a path, then any extremal optimal
solution of LP-SP2 is integral, i.e., x{k,l} ∈ {0, 1} for any {k, l} ⊆ {1, . . . , m}.

4 Recognition of Pseudotrees

So far, we have seen that our minimization problem is NP-hard in the general
case, but polynomially solvable in the case where the optimal solution is a tree.
As a natural extension, we consider the problem to recognize profiles that are
single-peaked with respect to a graph with m − 1 + k edges, for some fixed k,
thus allowing k more edges than in a tree. In this section, we consider the case
k = 1. A graph on m vertices with m edges is called a pseudotree. We show
that recognizing if there exists a pseudotree compatible with a given profile
can be done in polynomial time. We leave as open question the parameterized
complexity of the problem when k is the parameter: would the problem be in
XP? Or even in FPT?

Let us now deal with the case of pseudotree. Hence, the set of solutions we
want to recognize is the class of connected graphs having (at most) m edges. To
solve the problem in polynomial time, we devise an algorithm that first identifies
the leaves of the pseudotree and then the cycle on the remaining vertices. The
second step (cycle recognition) is done using the polynomiality of recognizing
single-peakedness on a cycle [22]. For the first step, we need to modify the pro-
cedure recalled in Sect. 3. This procedure was able to correctly identify leaves
when the profile was compatible with a tree, but it fails to correctly identify
leaves when the underlying structure is a pseudotree. With a slight modifica-
tion though, we obtain in Proposition 1 a necessary and sufficient condition
for a candidate to be a leaf in a pseudotree. This is the stepping stone leading
to the polynomiality of detecting whether a given profile is compatible with a
pseudotree, stated in Theorem 5.

Example 3. Let us consider the profile on 4 voters and 5 candidates given in
Example 1, for which there is a (unique) pseudotree compatible with it.

The procedure to detect leaves when looking for a tree focuses on candidates
ranked last in some Ri, candidates 1 and 5 here, and A(1) = A(5) = ∅. Note
that the whole profile is not compatible with a cycle, so we need somehow to
first detect 4 as a leaf, and then detect that the candidates 1, 2, 3, 5 are SP with
respect to a cycle.

The central property that allows to recognize profiles compatible with a pseu-
dotree is given in the following proposition.

Proposition 1. Let P be a preference profile, and suppose that a candidate i is
such that A(i) 	= ∅. Then P is compatible with a pseudotree if and only if it is
compatible with a pseudotree where i is a leaf.

Proof. Let G be a pseudotree compatible with P where i is not a leaf. We trans-
form G into a pseudo-tree G′ compatible with P where i is a leaf. Let j ∈ A(i).
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Case 1: {i, j} ∈ G. Let us first consider an easy case, where {i, j} ∈ G. Then we
build G′ from G by simply replacing each edge {i, k} (with k 	= j) by the edge
{j, k}. Since for each voter either j is ranked before i, or i is first and j second,
then this modification creates a graph G′ compatible with all the preferences.
Note that G′ has (at most) as many edges as G, so it is a pseudotree (or a tree,
and we can add any edge to create a pseudotree).

Case 2: {i, j} 	∈ G. Let us now consider the case where {i, j} 	∈ G. Note that
then j is ranked before i in all preferences (otherwise i is first and j is second,
and the edge {i, j} is forced to be in any compatible graph, a contradiction).
Then we transform G into a graph G′ which is a pseudotree containing the edge
{i, j}, and then Case 1 applies to G′. To do this, let us consider two subcases.

Case 2a. If, in G, in all (simple) paths from j to i the predecessor of i is the
same vertex u. Then we create G′ by replacing the edge {u, i} by the edge {j, i}.
Consider a voter v. Since j is ranked before i by v, then u is ranked before i
by v (the subgraph induced by i and the candidates ranked before him by v is
connected and contains i and j, so it contains u). Then the modification does
not affect u (it is still connected to one of the candidates ranked before him),
and i is now connected to j.

Case 2b. In the other case, in G there are two simple paths from j to i such that
the predecessor of i is u1 in the first one and u2 	= u1 in the second one (note
that there cannot be more than 2 since G is a pseudotree). We build G′ from G
by deleting edges {u1, i} and {u2, i}, and adding edges {i, j} and {u1, u2}.

Consider a voter v. Since v prefers j to i and the subgraph of G induced by
the candidates up to i in the ranking of v is connected, then u1 or u2 is ranked
before i by v, say u1 (we assume wlog that u1 is preferred to u2 by v). Then
we see that G′ is compatible with the preference of v: indeed, when considering
candidates one by one in the order of v, the only modification holds for u2, which
is now connected to u1 (ranked before him), and for i, which is now connected
to j (ranked before him). 
�
Proposition 2. If a profile P is compatible with a pseudotree, then either there
exists a candidate i such that A(i) 	= ∅, or P is compatible with a cycle.

Consider now the following procedure Detect PseudoTree:

1. Set E′ = ∅
2. While there are at least 4 candidates, and a candidate i such that A(i) 	= ∅:

(a) Add edge {i, j} to E′ for some j ∈ A(i).
(b) Remove i from the profile.

3. Detect if there is a cycle C which is compatible with the (remaining) profile.
(a) If YES: output E′ ∪ C.
(b) If NO: output NO.

Theorem 5. Given a preference profile P on at least 3 candidates, the procedure
Detect PseudoTree is polynomial-time and returns a pseudotree compatible
with P if some exists, or returns NO otherwise.
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Note that the generalization of this polynomiality result to connected graphs
with (n − 1 + k) edges seems to require new techniques (even for fixed k, i.e. to
show that the problem is in XP when parameterized by k). Indeed, an enumera-
tion of all subsets of k edges does not allow to reduce the problem to trees. Proce-
dure Detect PseudoTree does not seem to generalize either, as it specifically
relies on the decomposition of the solution into one cycle and leaves.

5 Experimental Study

We carried out numerical experiments1 on real and randomly generated instances
of the problems tackled in the paper. In the case of real data, we compare
the optimal solution of the ILP to that of its continuous relaxation. We also
focus on the ability to detect structure in voters’ preferences depending on the
election context. To go further, we use randomly generated instances to study
structural aspects of solutions; we notably study the graph density depending
on the number of voters and on the dispersion of their opinions.

5.1 Numerical Tests on Real Data

We used PrefLib data sets available on www.preflib.org to perform our numer-
ical tests [17]. While this database offers four different types of data, only the ED
(Election Data) type is relevant for our study. Among the ED data sets, we used
the complete strict order lists (which correspond to files with .soc extension).

At the time we carried out these experiments, 315 data files of this type
were available in PrefLib, however, many of them were not adapted to our study
for several reasons. The first one is that many elections dealt with only 3 or 4
candidates and a great number of voters, hence the obtained graph was, unsur-
prisingly, always complete. We also met the opposite problem when there were
very few voters, typically 4, so there was no point in looking for some general
structure. Thus, in practice, there were 25 real data files usable for our purposes.

The detailed results are given in Fig. 1 The tackled optimization problem
was to determine a graph with a minimal number of edges.

As for computational issues, the ILP formulation turned out to efficiently
solvable for all instances, as for all of them an optimal graph has been obtained
in about 40 ms. Moreover, it is noticeable that the (continuous relaxation) linear
programming formulation always returned an integer solution.

For the results, we note that though no data set is compatible with an axis,
most are compatible with a tree or a pseudo-tree. This is true in particular for the
Data Set ED-6 which contains figure skating rankings from various international
competitions during the 1998 season. The possible interpretation of these results
is that, even though the rankings are based on subjective opinions of the judges,
there is something like a “true ranking” behind as some skaters are objectively

1 All tests were performed on a Intel Core i7-1065G7 CPU with 8 GB of RAM under
the Windows OS. We used the IBM Cplex solver for the solution of ILPs.
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Set File #cand. #vot. #edges Set File #cand. #vot. #edges

ED-6 3 14 9 13 (tree) ED-6 34 23 9 22 (tree)
ED-6 4 14 9 13 (tree) ED-6 35 18 9 17 (tree)
ED-6 7 23 9 22 (tree) ED-6 36 18 9 17 (tree)
ED-6 8 23 9 22 (tree) ED-6 37 19 9 18 (tree)
ED-6 11 20 9 20 (ps-tree) ED-6 44 20 9 19 (tree)
ED-6 12 20 9 20 (ps-tree) ED-6 46 30 9 30 (ps-tree)
ED-6 18 24 9 23 (tree) ED-6 48 24 9 23 (tree)
ED-6 21 18 7 17 (tree) ED-9 1 9 146 8 (tree)
ED-6 22 18 7 17 (tree) ED-9 2 7 153 6 (tree)
ED-6 28 24 9 23 (tree) ED-12 1 11 30 25
ED-6 29 19 9 23 ED-14 1 10 5000 45 (clique)
ED-6 32 23 9 23 (ps-tree) ED-32 2 6 15 7
ED-6 33 23 9 22 (tree)

Fig. 1. Minimal number of edges (fifth/last column) on real data sets from PrefLib.
Specific structures (ps-tree stands for pseudotree) are indicated in parentheses.

better than other ones. Thus, the rankings given by the judges can be viewed
as biased observations of the true ranking, so that they are quite close. On the
opposite, the instances leading to denser graphs correspond to preferences over
T-shirt designs (ED-12) and over sushis (ED-14), consistent with the intuition
that there is probably no strong structure behind.

5.2 Experimental Study on Randomly Generated Data

The experimental study on real data revealed some interesting information. Nev-
ertheless, it is limited by the small amount of data available. Here, we conduct
experiments on random data in order to study the structure of solutions. As
mentioned above, in some contexts we can assume that the voter’s preferences
are biased observations of a “true” ranking. This idea can be modeled using the
Mallows distribution on rankings. In this model, the “true” ranking is called
central permutation and its probability is the highest one. The probability of
other permutations decreases with the Kendall tau distance from the central
permutation. Formally, let R0 be the central permutation. The probability of
a permutation R is P (R) = exp(−θd(R,R0))

ψ(θ) , where d(., .) is the Kendall tau dis-
tance, θ ≥ 0 is a dispersion parameter modeling the opinion heterogeneity, and
ψ(θ) is a normalisation constant. If θ = 0, the uniform distribution is obtained.
The greater the value of θ, the more the voters agree on the central permutation.

We used the PerMallows R package2 for generating the random data according
to the Mallows model. The number of candidates was set to m = 20, the value of θ
varied from 0 to 1 by step of 0.1. The number of voters n varied from 20 to 100 by
step of 10. For each pair (θ0, n0) of parameter values, the results are averaged over

2 https://cran.r-project.org/web/packages/PerMallows/index.html.

https://cran.r-project.org/web/packages/PerMallows/index.html
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1000 randomly drawn preference profiles. The curves in Fig. 2 show the evolution
of the graph density according to these parameter values.

In the best case, the obtained solution is a tree, hence, the density is (m −
1)/m(m−1)

2 = 2
m . As we set m = 20, this corresponds to a density of 0.1. The

function representing the graph density seems indeed to converge to the constant
function of value 0.1 while the value of θ increases and the preferences in the
profile become similar (the curves get closer and closer to the x-axis). Put another
way, the density captures the similarity of voters’ preferences, as clearly the
higher θ the lower the curve. On the contrary, the graph density becomes of
course higher when the number n of voters increases. Nevertheless, note that,
even for 100 voters, the graph is still quite far from being complete. Besides,
the slope of the curve decreases with n. During our experiments, we plotted
functions 1 − log(density) and obtained a set of (approximate) straight lines,
thus indicating that the convergence towards density 1 (complete graphs) is of
the form 1 − e−λθn, where λθ > 0 is a parameter decreasing with θ.

Fig. 2. Density of the graph according to parameters θ and n (with m = 20).

6 Concluding Remarks

While the generalization of single-peakedness to arbitrary graphs makes it more
plausible to learn some preference structures in applications, an interesting
research direction would be to formulate the recognition problem as the determi-
nation of a maximum likelihood graph (while possibly imposing that the graph
is an axis or a tree) on which the preferences are single-peaked. Put another
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way, one would relax the requirement of perfect compatibility of the graph with
the observed preferences in order to facilitate structure learning on real prefer-
ence data3. As shown in the experiments, for an high preference heterogeneity,
the graph can indeed become very dense when the number of voters increases
(as is often the case in real applications), thus making essential to consider a
more flexible view of single-peakedness. Some interesting works in this direction
have already been carried out (recognition of nearly structured preferences, e.g.,
[7,10,14,15]), but a lot remains to be done to make the approach fully opera-
tional.
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9. Clémençon, S., Korba, A., Sibony, E.: Ranking median regression: learning to order
through local consensus. In: ALT, pp. 212–245 (2018)

10. Cornaz, D., Galand, L., Spanjaard, O.: Bounded single-peaked width and propor-
tional representation. In: ECAI, vol. 12, pp. 270–275 (2012)

11. Demange, G.: Single-peaked orders on a tree. Math. Soc. Sci. 3(4), 389–396 (1982)
12. Doignon, J., Falmagne, J.: A polynomial time algorithm for unidimensional unfold-

ing representations. J. Algorithms 16(2), 218–233 (1994)
13. Elkind, E., Lackner, M., Peters, D.: Structured preferences. In: Trends in Compu-

tational Social Choice, Chapter 10, pp. 187–207. AI Access (2017)
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Abstract. This paper defines a general class of cooperative games for
which the nucleolus is efficiently computable. This class includes new
members for which the complexity of computing their nucleolus was
not previously known. We show that when the minimum excess coali-
tion problem of a cooperative game can be formulated as a hypergraph
dynamic program its nucleolus is efficiently computable. This gives a
general technique for designing efficient algorithms for computing the
nucleolus of a cooperative game. This technique is inspired by a recent
result of Pashkovich [24] on weighted voting games. However our tech-
nique significantly extends beyond the capabilities of previous work. We
demonstrate this by applying it to give an algorithm for computing the
nucleolus of b-matching games in polynomial time on graphs of bounded
treewidth.

Keywords: Combinatorial optimization · Algorithmic game theory ·
Dynamic programming

1 Introduction and Related Work

Cooperative game theory studies situations in which individual agents form coali-
tions to work together towards a common goal. It studies questions regarding
what sort of coalitions will form and how they will share the surplus generated by
their collective efforts. A cooperative game is defined by an ordered pair ([n], ν)
where [n] is a finite set of players (labelled 1, . . . , n), and ν is a function from
subsets of [n] to R indicating the value earned by each coalition.

This paper studies the computational complexity of one of the most classical,
deep, and widely applicable solution concepts for surplus division in cooperative
games, the nucleolus. In particular we study the relationship between the nucle-
olus, finding the minimum excess of a coalition, congruency-constrained opti-
mization, and dynamic programming. Our first result unifies these areas and
provides a general method for computing the nucleolus.
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Theorem 1. For any cooperative game (n, ν), if the minimum excess coalition
problem on (n, ν) can be solved in time T via an integral dynamic program then
the nucleolus of (n, ν) can be computed in time polynomial in T .

Pashkovich [24] showed how to reduce the problem of computing the nucleolus
for weighted voting games to a congruency-constrained optimization problem.
Pashkovich then shows how to solve this congruency-constrained optimization
problem for this specific class of games via a dynamic program. In Sect. 3 we
abstract his reduction to the setting of computing the nucleolus of general com-
binatorial optimization games.

Our main technical achievement is showing that adding congruency con-
straints to dynamic programs modelled by a directed acyclic hypergraph model
inspired by the work of Campbell, Martin, and Rardin [7] adds only a polyno-
mial factor to the computational complexity. This is the content of Theorem 3,
which is instrumental in demonstrating Theorem 1. Our formal model of dynamic
programming, where solutions correspond to directed hyperpaths in a directed
acyclic hypergraph, is described in Sect. 4. Proving Theorem 3 requires signif-
icant new techniques beyond [24]. The series of lemmas in Sect. 4.1 take the
reader through these techniques for manipulating directed acyclic hypergraph
dynamic programs.

We show how Theorem 1 not only generalizes previous work on computing
the nucleolus, but significantly extends our capabilities to new classes of combi-
natorial optimization games that were not possible with just the ideas in [24]. As
we explain in Sect. 1.3, matching games are central to the study of combinatorial
optimization games. The problem of computing the nucleolus of weighted match-
ing games was a long-standing open problem [11,16] resolved only recently [20],
nearly twenty years after it was first posed. The frontier for the field has now
moved to b-matching games, for which computing the nucleolus is believed to
be NP-hard in general due to the result in [5] which shows computing leastcore
allocations to be NP-hard even in the unweighted, bipartite case with b ≡ 3.
In Sect. 5 we give a result which significantly narrows the gap between what is
known to be tractable and what is known to be intractable in that area.

Theorem 2. For any cooperative b-matching game on a graph whose treewidth
is bounded by a constant, the nucleolus can be computed in polynomial time.

To achieve this result we give a dynamic program for computing the minimum
excess coalition of a b-matching game in Lemma 11 then apply Theorem 1.
This dynamic program necessarily requires the use of dynamic programming on
hypergraphs instead of just simple graphs, motivating the increased complexity
of our model over previous work.

Proofs of our results appear in the full version of the paper [19].

1.1 The Nucleolus

When studying the question of surplus division, it is commonly desirable that
shares will be split so all players have an incentive to work together, i.e. that the
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grand coalition forms. A vector x ∈ R
n is called an allocation, and if that vector

satisfies x([n]) = ν([n]) (efficiency) and xi ≥ ν({i}), for all i ∈ [n], (individual
rationality) we call x an imputation. We denote the set of imputations of (n, ν)
by I(n, ν). For any S ⊆ [n] we define x(S) − ν(S) to be the excess of S with
respect to allocation x. The following linear program maximizes the minimum
excess:

max{ε : x(S) ≥ ν(S) + ε,∀S ⊆ [n] and x ∈ I(n, ν)} (P1)

We call this the leastcore linear program. For any ε be let P1(ε) denote the set
of allocations x such that (x, ε) is a feasible solution to (P1). If we let ε1 denote
the optimal value of (P1) then we call P1(ε1) the leastcore of the cooperative
game.

For an imputation x ∈ I(n, ν) let θ(x) ∈ R
2n−2 be the vector obtained by

sorting the list of excess values x(S) − ν(S), for each ∅ �= S ⊂ [n], in non-
decreasing order.

Definition 1. The nucleolus is the imputation which lexicographically maxi-
mizes θ(x), formally: the nucleolus is equal to arg lexmax{θ(x) : x ∈ I(n, ν)}.

The nucleolus was first defined by Schmeidler [29]. In the same paper, Schmei-
dler showed the nucleolus to be a unique allocation and a continuous function
of ν. The nucleolus is a classical object in game theory, attracting attention for
its geometric beauty [22], and its surprising applications. The most ancient of
which is the application of the nucleolus as a bankruptcy division scheme in the
Babylonian Talmud [2]. Some notable applications of the nucleolus include but
are not limited to water supply management [1], fair file sharing on peer-to-peer
networks [23], resource sharing in job assignment [30], and airport pricing [6].

1.2 Computing the Nucleolus

Multiple approaches exist for algorithmically finding the nucleolus of a coopera-
tive game. The most ubiquitous of which is Maschler’s Scheme [22] which oper-
ates by solving a hierarchy of at most n linear programs, the last of which has the
nucleolus as its unique optimal solution. In Sect. 2 we elaborate on Maschler’s
Scheme and a natural relaxation thereof. An alternative method of computing
the nucleolus via characterization sets was proposed independently by Granot,
Granot, and Zhu [13] and Reinjerse and Potters [27].

The complexity of computing the nucleolus varies dramatically depending
on how the cooperative game (n, ν) is presented as input. If the function ν is
presented explicitly, by giving as input the value of ν(S) for each S ⊆ [n], then
Maschler’s Scheme can be used to compute the nucleolus in polynomial time.
The issue in this case is that the size of the specification of ν is exponential in the
number of players and so the computation is trivial. We are interested coopera-
tive games where ν can be determined implicitly via some auxiliary information
given as input, which we call a compact representation of (n, ν).
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One prominent example of a cooperative game with a compact representation
is the class of weighted voting games. In a weighted voting game, each player
i ∈ [n] is associated with an integer weight wi ∈ Z. Additionally a threshold
value T ∈ Z is given. For each S ⊆ [n] the value of ν(S) ∈ {0, 1} is 1 if and only
if w(S) ≥ T .

It is not hard to see that (n, ν) is completely determined by (w, T ). In this
case (w, T ) is a compact representation of the weighted voting game (n, ν). Even
though they may appear simple at first, weighted voting games can have a lot of
modelling power. In fact the voting system of the European Union can be mod-
elled by a combination of weighted voting games [3]. In [10] Elkind, Goldberg,
Goldberg, and Wooldridge show that the problem of computing the nucleolus of
a weighted voting game is NP-hard, in fact even the problem of testing if there
is a point in the leastcore of a weighted voting game that assigns a non-zero
payoff to a given player is NP-complete. Pashkovich [24] later followed up with
an algorithm based on Maschler’s Scheme which solves O(n) linear programs,
each in pseudopolynomial time, and thus computes the nucleolus of a weighted
voting game in pseudopolynomial time.

Pashkovich’s result crucially relies on the existence of a well-structured
dynamic program for knapsack cover problems which runs in pseudopolynomial
time. Theorem 1 and Sect. 5 place Pahskovich’s algorithm in the context of a
general framework for computing the nucleolus of cooperative games where a
natural associated problem has a dynamic program: the minimum excess coali-
tion problem.

Definition 2. In the minimum excess coalition problem the given input is a
compact representation of a cooperative game (n, ν) and an imputation x. The
goal is to output a coalition S ⊆ [n] which minimizes excess, i.e. x(S) − ν(S),
with respect to x.

1.3 Combinatorial Optimization Games

A very general class of cooperative games with compact representations comes
from the so-called cooperative combinatorial optimization games. In games of
this class some overarching combinatorial structure is fixed on the players, and
for each subset S of players, ν(S) can be determined by solving an optimization
problem on this structure. Many classes of combinatorial optimization games can
be defined and the complexity of their nucleoli have been studied leading to poly-
nomial time algorithms, such as fractional matching, cover, and clique games [8],
simple flow games [26], assignment games [31] and matching games [16]. Fleiner,
Solymosi and Sziklai used the concept of dually essential coalitions [32] to com-
pute the nucleolus of a large class of directed acyclic graph games [33] via the
characterization set method. Other cases have led to NP-hardness proofs, such
as flow games [9], weighted voting games [10], and spanning tree games [12].

A prominent example of combinatorial optimization games is matching
games. In matching games the players are vertices of a graph G and ν(S) is
equal to the size of the largest matching on G[S]. The question of computing
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the nucleolus of weighted matching games in polynomial time was open for a
long time [11,16]. Solymosi and Raghavan [31] gave an algorithm for computing
the nucleolus of matching games on bipartite graphs. Biró, Kern and Paulusma
gave a combinatorial algorithm for computing the nucleolus of weighted match-
ing games with a non-empty core [4]. Recently Koenemann, Pashkovich, and
Toth [20] resolved the question by giving a compact formulation for each linear
program in Maschler’s Scheme for weighted matching games with empty core.

A natural generalization of matching games is to weighted b-matching games.
In weighted b-matching games a vector b ∈ Z

V (G) and vector w ∈ R
E(G) are given

in addition to the graph G. The value of S ⊆ [n] is equal to the maximum w-
weight subset of edges in G[S] such that each playere v ∈ V (G) is incident to
at most bv edges. In [5] they show how to test if an allocation is in the core of
b-matching games when b ≤ 2, and they show that for matching games where
b ≡ 3 deciding if an allocation is in the core is coNP-complete. This result likely
means that computing the nucleolus of b ≡ 3-matching games is NP-hard. In [20]
they show how to separate over the leastcore of any b ≤ 2-matching game. The
question of computing the nucleolus of b-matching games remains open. By the
preceding complexity discussion, it is highly likely that it is necessary to impose
some structure on b-matching games to compute their nucleolus in polynomial
time. In Theorem 2 we impose the structure of bounded treewidth and use our
general framework to give an algorithm which computes the nucleolus of weighted
b-matching games on graphs which have bounded treewidth.

2 Maschler’s Scheme

The most prominent technique for computing the nucleolus is Maschler’s
Scheme [22]. To define Maschler’s Scheme we need the notion of a fixed set
for a polyhedron. For any polyhedron Q, we define the set Fix(Q) as

Fix(Q) := {S ⊆ [n] : ∃c ∈ R such that ∀x ∈ Q,x(S) = c}.

In Maschler’s Scheme a sequence of linear programs (P1), (P2), . . . , (PN ) is
computed where the ith linear program (i ≥ 2) is of the form

max{ε : x(S) ≥ ν(S) + ε, ∀S �∈ Fix(Pi−1(εi−1)) and x ∈ Pi−1(εi−1)} (Pi)

and the first linear program is the leastcore linear program (P1). The method
terminates when the optimal solution is unique (yielding the nucleolus), and
this happens after at most n rounds [25], since the dimension of the set of
characteristic vectors of sets in Fix(Pi(εi)) increases by at least one in each
iteration.

Since Maschler’s Scheme ends after at most n linear program solves, the run
time of the method is dominated by the time it takes to solve (Pi). To use the
Ellipsoid Method [17,21] to implement Maschler’s Scheme we need be able to
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separate over the constraints corresponding to all coalitions in Fix(Pi−1(εi−1))
in each iteration. There can be an exponential number of such constraints in
general, and some structure on the underlying cooperative game would need to
be observed in order to separate these constraints efficiently. This requirement
can be relaxed somewhat, and still retain the linear number of iterations required
to compute the nucleolus.

2.1 The Relaxed Maschler’s Scheme

We will define a sequence of linear programs Q1, Q2, . . . , QN where the unique
optimal solution to QN is the nucleolus of (n, ν). With each linear program Qi

there will be an associated set of vectors Vi contained in the set of incidence
vectors of Fix(Qi). The feasible solutions to Qi will lie in R

n × R. In keeping
with the notion we used for Pi(εi), for each linear program Qi we let ε̄i be the
optimal value of Qi and let

Qi(ε̄i) := {x ∈ R
n : (x, ε̄i) is feasible for Qi}.

We will describe the linear programs {Qi}i inductively. The first linear pro-
gram is again the leastcore linear program of (n, ν). That is to say Q1 is equal to
(P1). Let V1 ⊆ R

n be a singleton containing the incidence vector of one coalition
in Fix(Q1(ε̄1)). Now given Qi−1 and Vi−1 we describe Qi as follows

max{ε : x(S) ≥ ν(S) + ε, ∀S : χ(X) �∈ span(Vi−1) and x ∈ Qi−1(ε̄i−1} (Qi)

Now we choose v ∈ Fix(Qi(ε̄i))\ span(Vi−1) and set Vi := Vi−1 ∪ {v}. By the
optimality of ε̄i, v always exists as long as Qi(ε̄i) has affine dimension at least 1.
If Qi(ε̄i) has affine dimension 0 we terminate the procedure and conclude that
Qi(ε̄i) is a singleton containing the nucleolus.

A nice proof of correctness for this scheme is given in [24], where this scheme
is used to give a pseudopolynomial time algorithm for computing the nucleolus
of weighted voting games.

Lemma 1. When the Relaxed Maschler Scheme is run on a cooperative game
(n, ν) yielding a hierarchy of linear programs Q1, . . . , QN , with optimal values
ε̄1, . . . , ε̄N respectively, the set QN (ε̄N ) is a singleton containing the nucleolus of
(n, ν). Moreover N is at most n.

3 The Linear Subspace Avoidance Problem

Motivated by the desire to design a separation oracle for the constraints of
(Qi) we initiate a general study of combinatorial optimization problems whose
feasible region avoids a linear subspace. For our purposes, we say a combinatorial
optimization problem is an optimization problem of the form

max{f(x) : x ∈ X} (P )
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where X ⊆ {0, 1}n is known as the feasible region, and f : X → R is the
objective function. Normally (P) is presented via a compact representation. For
example in the shortest path problem on a directed graph, X is the family of
paths in a directed graph D and f(x) is a linear function. The entire feasible
set X is uniquely determined by the underlying directed graph D, and f is
determined by weights on the arcs of D. When giving as input D and the arc
weights, the problem is completely determined without specifying every one of
the exponentially many paths in X .

For compactly represented cooperative games the minimum excess coalition
problem can be phrased as a problem of the form (P). Simply take X to be the
set of incidence vectors of subsets of [n] and take f(x) to be x(S) − ν(S).

Now consider a linear subspace L ⊆ R
E . For our combinatorial optimization

problem (P), the associated linear subspace avoidance problem is

max{f(x) : x ∈ X\L} (PL)

Even when (P) can be solved in polynomial time with respect to its compact
representation and L is given through a basis, (PL) can be NP-hard.

Lemma 2. (PL) is NP-hard in general even when (P) can be solved in polyno-
mial time with respect to its compact representation and L is given through a
basis.

Observe that when we formulate the minimum excess coalition problem for a
cooperative game (n, ν) as a problem of the form (P) and we take L = span(Vi−1)
then (PL) is the ellipsoid method separation problem for (Qi), the i-th linear
program in the relaxed Maschler Scheme. This discussion yields the following
easy lemma

Lemma 3. If (P) is a minimum excess coalition problem of a cooperative game
(n, ν) and one can solve the associated (PL) for any L in polynomial time then
the nucleolus of (n, ν) can be computed in polynomial time.

3.1 Reducing Linear Subspace Avoidance to Congruency-
Constrained Optimization

The goal of this subsection is to show the connection between solving (PL) and
solving congruency-constrained optimization. This connection was first drawn in
the work of Pashkovich [24] for the special case of weighted voting games. Here
we abstract their work to apply it to our more general framework.

By the following lemma, we can restrict our attention from linear indepen-
dence over R to linear independence over finite fields.

Lemma 4 (Pashkovich [24]). Let P be a set of prime numbers such that
|P | ≥ log2(n!) with n ≥ 3. A set of vectors v1, . . . , vk ∈ {0, 1}n are linearly
independent over R if and only if there exists p ∈ P such that v1, . . . , vk are
linearly independent over Fp.
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Moreover, the set P can be found in O(n3) time, and each p in P can be
encoded in O(log(n)) bits.

This lemma enables us to reduce the problem (PL) to the problem of com-
puting (P) subject to a congruency constraint with respect to a given prime p,
k ∈ Zp, v ∈ ZE

p :

max{f(x) : x ∈ X , vT x = k mod p}. (PL,p,v,k)

Lemma 5 If one can solve (PL,p,v,k) in time T then one can solve (PL) in time
O(n6T ).

4 Dynamic Programming

Our goal is to define a class of problems where tractability of (P) can be lifted
to tractability of (PL,p,v,k) and hence via Lemma 5 to (PL). Our candidate will
be problems which have a dynamic programming formulation. The model of
dynamic programming we propose is based on the model of Martin, Rardin, and
Campbell [7]. The essence of a dynamic programming solution to a problem is a
decomposition of a solution to the program into optimal solutions to smaller sub-
problems. We will use a particular type of hypergraph to describe the structure
of dependencies of a problem on its subproblems.

To begin we will need to introduce some concepts. A directed hypergraph
H = (V,E) is an ordered pair, where V is a finite set referred to as the vertices
or nodes of the hypergraph, and E is a finite set where each element is of the
form (v, S) where S ⊆ V and v ∈ V \S. We refer to the elements of E as edges
or arcs of H. For an arc e = (v, S) ∈ E we call v the tail of e and say e is
outgoing from v. We call S the heads of e, call each u ∈ S a head of e, and say e
is incoming on each u ∈ S. We call vertices with no incoming arcs sources and
we call vertices with no outgoing arcs sinks. For a directed hypergraph H, the
set L(H) denotes the set of sinks of H.

For any non-empty strict subset of vertices U ⊂ V , we define the cut induced
by U , denoted δ(U), as follows δ(U) := {(v, S) ∈ E : v ∈ U and S ∩(V \U) �= ∅}.
We say a directed hypergraph is connected if it has no empty cuts.

A directed hyperpath is a directed hypergraph P satisfying the following:

– there is a unique vertex s ∈ V (P ) identified as the start of P ,
– the start s is the tail of at most one arc of P , and the head of no arcs of H,
– every vertex in V (P )\{s} is the tail of precisely one arc of H,
– P is connected.

Observe that there is at least one, and potentially many, vertices of a path which
have one incoming arc and no outgoing arcs. These vertices we call the ends of
the path. If there is a path starting from a vertex u and ending with a vertex
v then we say u is an ancestor to v and v is a descendant of u. For any vertex
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v ∈ V (H), the subgraph of H rooted at v, denoted Hv, is the subgraph of H
induced by the descendants of v (including v).

We say that a directed hypergraph H = (V,E) is acyclic if there exists a
topological ordering of the vertices of H. That is to say, there exists a bisection
t : V → [|V |] such that for every (v, S) ∈ E, for each u ∈ S, t(v) < t(u).

A common approach to dynamic programming involves a table of subprob-
lems (containing information pertaining to their optimal solutions), and a recur-
sive function describing how to compute an entry in the table based on the values
of table entries which correspond to smaller subproblems. The values in the table
are then determined in a bottom-up fashion. In our formal model, the entries
in the table correspond to vertices of the hypergraph, and each hyperarc (v, S)
describes a potential way of computing a feasible solution to the subproblem at
v by composing the solutions to the subproblems at each node of S.

Consider a problem of the form (P). That is, we have a feasible region X ⊆ R
n

and an objective function f : X → R and we hope to maximize f(x) subject
to x ∈ X . We need some language to describe how solutions to the dynamic
program, i.e. paths in the directed hypergraph, will map back to solutions in the
original problem space. To do this mapping back to the original space we will use
an affine function. A function g : Rm → R

n is said to be affine if there exists a
matrix A ∈ R

n×m and a vector b ∈ R
n such that for any x ∈ R

m, g(x) = Ax+ b.
Oftentimes an affine function g will have a domain RE indexed by a finite

set E. When this happens for any S ⊆ E we use g(S) as a shorthand for g(χ(S))
where χ(S) is the incidence vector of S. We further shorten g({e}) to g(e).

Definition 3. Let H = (V,E) be a directed acyclic connected hypergraph with
set of sources T . Let P(H) denote the set of paths in H which begin at a source
in T and end only at sinks of H. Let g : RE → R

n be an affine map which we will
use to map between paths in P(H) and feasible solutions in X . Let c : RE → R

be an affine function we will use as an objective function. We say (H, g, c) is a
dynamic programming formulation for (P) if g(P(H)) = X , and moreover for
any x ∈ X , f(x) = max{c(P ) : P ∈ g−1(x)}.

In other words, the optimal values of

max{c(P ) : P ∈ P(H)} (DP )

and (P) are equal, and the feasible region of (P) is the image (under g) of the
feasible region of (DP). The size of a dynamic programming formulation is the
number of arcs in E(H).

In [7] the authors show that (DP) has a totally dual integral extended for-
mulation of polynomial size. Thus they show that (DP) can be solved in poly-
nomial time via linear programming. They further show that the extreme point
optimal solution of this extended formulation lie in {0, 1}E under a condition
which is equivalent to the following no common descendants condition: for each
(�, J) ∈ E(H) for all u �= v ∈ J , there does not exist w ∈ V (H) such that w is a
descendant of both u and v. We say that a dynamic programming formulation
(H, g, c) of a problem (P) is integral if H satisfies the no common descendants
condition. By the preceding discussion we have the following lemma
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Lemma 6. If a problem (P) has an integral dynamic programming formulation
(H, g, c) then (P) can be solved in time polynomial in the encoding of (H, g, c).

4.1 Congruency Constrained Dynamic Programming

In this subsection our goal is to show that when a problem of the form (P) has
a dynamic programming formulation, then its congruency constrained version
(PL,p,v,k) has a dynamic programming formulation that is only a O(p3) factor
larger than the formulation for the original problem. This will prove Theorem 3.

We begin with a handy lemma for constructing dynamic programming for-
mulations of combinatorial optimization problems.

Lemma 7. If (H, g, c) is a dynamic programming formulation for (P) and we
have a dynamic programming formulation (H ′, g′, c′) for (DP) with respect to
hypergraph H and costs c then (H ′, g ◦ g′, c′) is a dynamic programming formu-
lation for (P).

Consider a directed hypergraph H = (V,E) and an edge (u, S) ∈ E. For
v ∈ S we define the hypergraph obtained from the subdivision of (u, S) with
respect to v to be the hypergraph H ′ = (V ′, E′) where V ′ = V ∪̇{bv} for a new
dummy vertex bv and E′ = (E\{(u, S)}) ∪ {(u, {v, bv}), (bv, S\{v})}. That is,
H ′ is obtained from H by replacing edge (u, S) with two edges: (u, {v, bv}) and
(bv, S\{v}). We call the edges (u, {v, bv}) and (bv, S\{v}) the subdivision of edge
(u, S).

Lemma 8. Let H = (V,E) be a directed acyclic hypergraph and let H ′ =
(V ′, E′) be the directed acyclic hypergraph obtained via a subdivision of (u, S) ∈ E
with respect to v ∈ S. Then there is an affine function g : RE′ → R

E, such that
for any affine function c : RE → R, there exists an affine function c′ : RE′ → R

such that (H, g, c′) is a dynamic programming formulation of the problem (DP)
on H with objective c.

Moreover if H satisfies the “no common descendants” property, this dynamic
programming formulation is integral.

For a directed hypergraph H = (V,E) let Δ(H) := max{|S| : (u, S) ∈ E}
and let Γ(H) := |{(u, S) ∈ E : |S| = Δ(H)}|. The following Lemma shows
that we may assume the number of heads of any arc in a dynamic programming
formulation is constant.

Lemma 9. Consider a combinatorial optimization problem of the form (P).
If there exists a dynamic programming formulation (H, g, c) for (P) then
there exists a dynamic programming formulation (H∗, g∗, c∗) for (P) such that
Δ(H∗) ≤ 2, and |E(H∗)| =

∑
u∈V (H)

∑
(u,S)∈E(H)(|S| − 1).

Moreover, if H is integral then H∗ is integral.

The next lemma is our main technical lemma. It provides the backbone of our
dynamic programming formulation for (PL,p,v,k) by showing that we can track
the congruency of all hyperpaths rooted at a particular vertex by expanding the
size of our hypergraph by a factor of pΔ(H) + 1.
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Lemma 10. Let H = (V,E) be a directed acyclic hypergraph. Let p be a prime.
Let k ∈ Zp and let a ∈ Z

E
p . There exists a directed acyclic hypergraph H ′ =

(V ′, E′) and an affine function g′ : P(H ′) → P(H), g′(x) = Ax + b, such that:

1) |E′| ≤ pΔ(H)+1|E|
2) For every v ∈ V \L(H), for every k ∈ Zp, if {P ∈ P(Hv) : a(P ) = k

mod p} �= ∅ then there exists v′ ∈ V (H ′) such that

g′(P(H ′
v′)) = {P ∈ P(Hv) : a(P ) = k mod p}.

Moreover if H satisfies the “no common descendants” property then H ′ satisfies
the “no common descendants” property.

We are now ready to show our main theorem. Theorem 3 with Lemma 6 yield
Corollary 1. Via Corollary 1, Lemma 3, and Lemma 5 we obtain Theorem 1.

Theorem 3. Consider an instance of a combinatorial optimization problem (P).
Let p be a prime, let v ∈ Z

n
p , and let k ∈ Zp. Consider the corresponding

congruency-constrained optimization problem (PL,p,v,k). If (P) has a dynamic
programming formulation (H, g, c) then (PL,p,v,k) has a dynamic programming
formulation (H ′, g′, c′) such that |E(H ′)| ≤ p3 · |V (H)| · |E(H)|.

Moreover if (H, g, c) is integral then (H ′, g′, c′) is integral.

Corollary 1. If (P) has an integral dynamic programming formulation (H, g, c)
then for any v, k, p problem (PL,p,v,k) can be solved in time polynomial in size of
H, the prime p, and the encoding of g, c, v, k,

5 Applications

In this section we show a couple of applications of Theorem 1 to computing
the nucleolus of cooperative games. The first application is to Weighted Voting
Games. In [24] a pseudopolynomial time algorithm for computing the nucleolus
of Weighted Voting Games was given. We show how the same result can be
obtained as a special case of Theorem 1. Recall that a weighted voting game
(n, ν) has value function ν : 2[n] → {0, 1} determined by a vector w ∈ Z

n and
T ∈ Z, such that for any S ⊆ [n], ν(S) = 1 if and only if w(S) ≥ T .

We partition 2[n] into two classes: N0 := {S ⊆ [n] : w(S) < T} and N1 :=
{S ⊆ [n] : w(S) ≥ T}. If we can design a dynamic programming formulation for
the minimum excess coalition problem restricted to N0: max{−x(S) : w(S) ≤
T −1, S ⊆ [n]} and a dynamic programming formulation for the minimum excess
coalition problem restricted to N1: max{−x(S) + 1 : w(S) ≥ T, S ⊆ [n]}, then
the dynamic programming formulation which takes the maximum of these two
formulations will provide a dynamic programming formulation for the minimum
excess coalition problem of the weighted voting game.

If we let W [k,D] denote max{−x(S) : w(S) ≤ D,S ⊆ [k]} then we can solve
the minimum excess coalition problem restricted to N0 by computing W [n, T −1]
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via the following recursive expression

W [k,D] =

⎧
⎪⎨

⎪⎩

max{W [k − 1,D − wk],W [k − 1,D]}, if k > 1
−x1, if k = 1 and w1 ≤ D

−∞, if k = 1 and w1 > D.

It is not hard to construct a dynamic programming formulation (H0, g0, c0) for
the minimum excess coalition problem restricted to N0 by following this recur-
sive expression. The hypergraph H0 will in fact be a rooted tree (i.e. all heads
will have size one), and H0 will have O(nT ) vertices and arcs. Via a similar tech-
nique, a dynamic programming formulation (H1, g1, c1) with O(nT ) arcs can be
constructed for the minimum excess problem restricted to N1. Then by tak-
ing the union these dynamic programming formulations, we obtain an integral
dynamic programming formulation of size O(nT ). Therefore by Theorem 1 we
obtain a short proof that

Theorem 4 ( [10,24]). The nucleolus of a weighted voting game can be com-
puted in pseudopolynomial time.

In the following subsections we will see how the added power of hyperarcs
lets us solve the more complex problem of computing the nucleolus of b-matching
games on graphs of bounded treewidth.

5.1 Treewidth

Consider a graph G = (V,E). We call a pair (T,B) a tree decomposition [14,28]
of G if T = (VT , ET ) is a tree and B = {Bi ⊆ V : i ∈ VT } is a collection of
subsets of V , called bags, such that 1)

⋃
i∈VT

Bi = V , i.e. every vertex is in some
bag, 2) for each v ∈ V , the subgraph of T induced by {i ∈ VT : v ∈ Bi} is a tree,
and 3) for each uv ∈ E, there exists i ∈ VT such that u, v ∈ Bi.

The width of a tree decomposition is the size of the largest bag minus one,
i.e. maxi∈VT

{|Bi| − 1}. The treewidth of graph G, denoted tw(G), is minimum
width of a tree decomposition of G. We may assume that tree decompositions
of a graph have a special structure. We say a tree decomposition (T,B) of G is
nice if there exists a vertex r ∈ VT such that if we view T as a tree rooted at r
then every vertex i ∈ VT is one of the following types:

– Leaf: i has no children and |Bi| = 1.
– Introduce: i has one child j and Bi = Bj∪̇{v} for some vertex v ∈ V .
– Forget: i has one child j and Bi∪̇{v} = Bj for some vertex v ∈ V .
– Join: i has two children j1, j2 with Bi = Bj1 = Bj2 .

Nice tree decompositions can be computed in polynomial time.

Theorem 5 ([18] Lemma 13.1.3). If G = (V,E) has a tree decompostion of
width w with n tree vertices then there exists a nice tree decomposition of G of
width w and O(|V |) tree vertices which can be computed in O(|V |) time.
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5.2 Dynamic Program for b-Matching Games

We want to show that on graphs of bounded treewidth, the nucleolus of b-
matching games can be computed efficiently. Fix a graph G = (V,E), a vector
of b-values b ∈ Z

V , and tree decomposition (T,B) of treewidth w, where T is
rooted at r, to be used throughout this section. For i ∈ V (T ) let Ti denote the
subtree of T rooted at i, and also let Gi := G[

⋃
j∈V (Ti)

Bj ]. For any v ∈ V (Gi),
let δi(v) := {uv ∈ E(Gi)}.

For any i ∈ V (T ), X ⊆ Bi, d ∈ {d ∈ Z
Bi : 0 ≤ d ≤ Δ(G)}, and F ⊆ E(Bi),

we define the combinatorial optimization problem C[i,X, d, F ] to be the problem
of finding a b-matching M and a set of vertices S such that M uses only edges
of Gi, S uses only vertices of Gi, the intersection of M and E(Bi) is F , the
number of edges in M adjacent to u is du for each u in Bi, and the vertices
in S not intersecting an edge in F is X. We define C[i] to be the union over
all C[i,X, d, F ]. A formal definition of C[i,X, d, F ] and C[i] is given in the full
version of the paper [19].

We will show a dynamic programming formulation (H, g, c) for C[i]. Since the
feasible region of the minimum excess coalition problem for b-matching games
is the image of the feasible region of C[i] under the linear map which projects
out M , and ν(S) − x(S) = max(M,S)feasible for C[i] w(M) − x(S), the existence
of (H, g, c) will imply the existence a dynamic programming formulation of the
minimum excess coalition problem for b-matching games of the same encoding
length. Lemma 11, and Theorem 1 we have shown Theorem 2.

Lemma 11 Let i ∈ V (T ). There exists an integral dynamic programming for-
mulation (H, g, c) for C[i] such that for every j ∈ V (Ti), X ⊆ Bi, d ∈ Z

Bi ,
and F ⊆ E(Bi), if C[i,X, d, F ] has a feasible solution then there exists a ∈
V (H) such that (Ha, g, c) is an integral dynamic programming formulation for
C[i,X, dF ]. Moreover |E(H)| ≤ |V (Ti)| · w · Δ(G)w · w2.

6 Conclusion and Future Work

We have given a formalization of dynamic programming, and shown that adding
congruency constraints to this model only increases the complexity by a polyno-
mial factor of the prime modulus. Further, we showed that whenever the mini-
mum excess coalition problem of a cooperative game can be solved via dynamic
programming, its nucleolus can be computed in time polynomial in the size of
the dynamic program. Using this result we gave an algorithm for computing the
nucleolus of b-matching games on graphs of bounded treewidth.

In [15] they show that a generalization of the dynamic programming model
in [7] called Branched Polyhedral Systems also has an integral extended formu-
lation. It is natural to wonder how our framework could extend to Branched
Polyhedral Systems and if that would enable to computation of the nucleolus
for any interesting classes of cooperative games.



320 J. Könemann and J. Toth

References

1. Akbari, N., Niksokhan, M.H., Ardestani, M.: Optimization of water allocation
using cooperative game theory (Case study: Zayandehrud basin). J. Environ. Stud.
40, 10–12 (2015)

2. Aumann, R.J., Maschler, M.: Game theoretic analysis of a bankruptcy prob-
lem from the Talmud. J. Econ. Theory (1985). https://doi.org/10.1016/0022-
0531(85)90102-4

3. Bilbao, J.M., Fernández, J.R., Jiménez, N., López, J.J.: Voting power in the
European Union enlargement. Eur. J. Oper. Res. (2002). https://doi.org/10.1016/
S0377-2217(01)00334-4
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Abstract. We study the evolution of a social group when admission
to the group is determined via consensus or unanimity voting. In each
time period, two candidates apply for membership and a candidate is
selected if and only if all the current group members agree. We apply
the spatial theory of voting where group members and candidates are
located in a metric space and each member votes for its closest (most
similar) candidate. Our interest focuses on the expected cardinality of
the group after T time periods. To evaluate this we study the geometry
inherent in dynamic consensus voting over a metric space. This allows
us to develop a set of techniques for lower bounding and upper bounding
the expected cardinality of a group. We specialize these methods for
two-dimensional Euclidean metric spaces. For the unit ball the expected

cardinality of the group after T time periods is Θ(T
1
8 ). In sharp contrast,

for the unit square the expected cardinality is at least Ω(lnT ) but at
most O(lnT · ln lnT ).

1 Introduction

This paper studies the evolution of social groups over time. In an exclusive
social group, the existing group members vote to determine whether or not to
admit a new member. Familiar examples include the freemasons, fraternities,
membership-run sports and social clubs, acceptance to a condominium, as well as
academia. To analyze the inherent dynamics we use the model of Alon, Feldman,
Mansour, Oren and Tennenholtz [1]. In each time period, two candidates apply
for membership and the current members vote to decide if either or none of them
is acceptable. The spatial model of voting is used: each candidate is located
uniformly at random in a metric space and each group member votes for the
candidate closest to them.

Alon et al. [1] analyze social group dynamics in a one-dimensional Euclidean
metric space, specifically, the unit interval [0, 1]. They examine how outcomes
vary under different winner determination rules, in particular, majority voting
and consensus voting. In consensus voting or unanimity voting a candidate is
elected if and only if the group members agree unanimously. Equivalently, every
member may veto a potential candidate.
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Our interest lies in the evolution of the group size under consensus voting;
that is, what is the expected cardinality of the social group GT after T time
periods? In the one-dimensional setting the answer is quite simple. There, Alon
et al. [1] show that under consensus voting if a candidate is elected in round t
then, with high probability, it is within a distance Θ(1/

√
t) of one endpoint of

the interval. Because the winning candidate must be closer to all group members
than the losing candidate, both candidates must therefore be near the endpoints.
This occurs with probability Θ(1/t). As a consequence, in a one-dimensional
Euclidean metric space, the expected size of the social group after T time periods
is E[|GT |] ∼= ln T . Here we use the notation f ∼= g if both f � g and g � f ,
where f � g if f ≤ c · g for some constant c > 0.

Bounding the expected group size in higher-dimensional metric spaces is
more complex and is the focus of this paper. To do this, we begin in Sect. 2
by examining the geometric aspects of consensus voting in higher-dimensional
metric spaces. More concretely, we explain how winner determination relates
to the convex hull of the group members and the Voronoi cells formed by the
candidates. This geometric understanding enables us to construct, in Sect. 3, a
set of techniques, based upon cap methods in probability theory, that allow for the
upper bounding and lower bounding of expected group size under the Euclidean
metric. In Sects. 4 and 5, we specialize these techniques to two-dimensional
Euclidean spaces for application on the fundamental special cases of the unit
square and the unit ball. Specifically, for the unit square we show the following
lower and upper bounds on expected group size.

Theorem 1. The expected cardinality of the social group on the unit square H

after T periods is bounded by ln T � E[|GT |] � ln T ln lnT .

Thus, expected group size for the two-dimensional unit square is comparable
to that of the one-dimensional interval. Surprisingly, there is a dramatic differ-
ence in expected group size between the unit square and the unit ball. For the
unit ball, the expected group size evolves not logarithmically but polynomially
with time.

Theorem 2. The expected cardinality of the social group on the unit ball B

after T periods is E[|GT |] ∼= T
1
8 .

1.1 Background and Related Work

Here we discuss some background on the spatial model and consensus voting.
The spatial model of voting utilized in this paper dates back nearly a century
to the celebrated work of Hotelling [16]. His objective was to study the division
of a market in a duopoly when consumers are distributed over a one-dimension
space, but he noted his work had intriguing implications for electoral systems.
Specifically, in a two-party system there is an incentive for the political platforms
of the two parties to converge. This was formalized in the median voter theorem
of Black [5]: in a one-dimensional ideological space the location of the median
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voter induces a Condorcet winner1, given single-peaked voting preferences. The
traditional voting assumption in a metric space is proximity voting where each
voter supports its closest candidate; observe that proximity voting gives single-
peaked preferences.

The spatial model of voting was formally developed by Downs [10] in 1957,
again in a one-dimensional metric space. Davis, Hinich, and Ordeshook [9]
expounded on practical necessity of moving beyond just one dimension. Interest-
ingly, they observed that in two-dimensional metric spaces, a Condorcet winner
is not guaranteed even with proximity voting. Of particular relevance here is their
finding that, in dynamic elections, the order in which candidates are considered
can fundamentally affect the final outcome [5,9].

There is now a vast literature on spatial voting, especially concerning the
strategic aspects of simple majority voting; see, for example, the books and sur-
veys [11,12,20,21,23]. There has also been a vigorous debate concerning whether
voter utility functions in spatial models should be distance-based (such as the
standard assumption of proximity voting used here), relational (e.g. directional
voting [22]), or combinations thereof [20]. This debate has been philosophical,
theoretical and experimental [7,14,17–19,25]. Recently there has also been a
large amount of interest in the spatial model by the artificial intelligence com-
munity [2,3,6,13,24]. It is interesting to juxtapose these modern potential appli-
cations with the original motivations suggested by Black [5], such as the admin-
istration of colonies!

Consensus is one of the oldest group decision-making procedures. In addition
to exclusive social groups, it is familiar in a range of disparate settings, including
judicial verdicts, Japanese corporate governance [26], and even decision mak-
ing in religious groups, such as the Quakers [15]. From a theoretic perspective,
consensus voting in a metric spaces has also been studied by Colomer [8] who
highlights the importance the initial set of voters can have on outcomes in a
dynamic setting.

2 The Geometry of Consensus Voting

In this section, we present a simple geometric interpretation of a single election
using consensus voting in the spatial model. In the subsequent sections, we will
apply this understanding, developed for the static case, to study the dynamic
model. Specifically, we examine how a group grows over time when admission to
the group is via a sequence of consensus elections.

Let G0 = {v1, · · · , vk} denote the initial set of group members2, selected uni-
formly and independently from a metric space K. In the consensus voting mech-
anism, for each round t ≥ 1, a finite set of candidates Ct = {w1, · · · , wn} ⊆ K,
drawn uniformly and independently from K, applies for membership. Members
1 A candidate is a Condorcet winner if, in a pairwise majority vote, it beats every
other candidate.

2 We may take the cardinality of the initial group to be any constant k. In particular,
we may assume k = 1.
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of the group at the start of round t, denoted Gt−1, are eligible to vote. Assuming
the spatial theory of voting, each group member will vote for the candidate who
is closest to her in the metric space. That is, member vi votes for candidate
wj if and only if d(vi, wj) ≤ d(vi, wk) for every candidate wk �= wj . Under the
consensus (unanimity) voting rule, if every group member selects the candidate
wj ∈ Ct then wj is accepted to the group and Gt = Gt−1 ∪ wj ; otherwise,
if the group does not vote unanimously then no candidate wins selection and
Gt = Gt−1.

As stated, to study how group size evolves over time, our first task is to
develop a more precise understanding of when a candidate will be selected under
consensus voting in a single election. Fortunately, there is a nice geometric char-
acterization for this property in terms of the Voronoi cells (regions) formed in
the metric space K by the candidates (points) C = {w1, · · · wn}. Specifically,
the Voronoi cell Hi associated with point wi is Hi := {v ∈ K | d(v, wi) ≤
d(v, wj) for all i �= j}. The characterization theorem for the property that a
candidate is selected under the consensus voting mechanism is then:

Theorem 3. Let C = {w1, w2, . . . , wn} be the candidates and let H1,H2, . . . ,
Hn be the Voronoi cells on K generated by C. Then there is a winner under
consensus voting if and only if G ⊆ Hi for some candidate wi.

Proof. Assume G ⊆ Hi for some candidate wi ∈ C. Then, for every voter vj ∈ G,
we have d(vj , wi) ≤ d(vj , wk) for any other candidate wk ∈ C. Hence, every
voter prefers candidate wi over all the other candidates. Thus candidate wi is
selected. Conversely, assume that candidate wi is selected. Then, by definition
of consensus voting, each voter vj ∈ G voted for wi. Thus d(vj , wi) ≤ d(vj , wk)
for all k �= i. Ergo, G ⊆ Hi. 
�

The next lemma requires the following definition: let B(v, w) denote the ball
centred at v with radius d(v, w), that is B(v, w) := {u ∈ K | d(v, u) ≤ d(v, w)}.

Lemma 1. Let G be current set of group members and C = {w1, w2, · · · , wn}
be the candidates. Under consensus, there is a winning candidate if and only if
∃wi ∈ C such that

wi ∈
⋂

k∈[n]\i

⋂

vj∈G

B(vj , wk) (1)

Due to space constraints, the proof of Lemma 1 and several subsequent results
in the paper are deferred to the full version.

As discussed, our main focus is on Euclidean metric spaces. In this set-
ting the Voronoi cells are convex. Hence, Hi = conv(Hi) and so, in The-
orem 3, the condition G ⊆ Hi is equivalent to conv(G) ⊆ Hi. Further-
more, when the metric is Euclidean, condition (1) in Lemma 1 is equiv-
alent to wi ∈ ⋂

k∈[n]\i

⋂
vj∈∂(conv(G))

B(vj , wk), where ∂(conv(G)) denotes the

extreme points of convex hull of the group members. To see this note that
∂(conv(G)) ⊆ G so one inclusion follows immediately. For the other direction,
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suppose wi ∈ ⋂
k∈[n]\i

⋂
vj∈∂(conv(G))

B(vj , wk). Then d(vj , wi) ≤ d(vj , wk) for each

vj ∈ ∂(conv(G)) and any k �= i. Hence ∂(conv(G)) ⊆ Hi. Given Hi is convex
when the metric is Euclidean, taking convex hulls on both sides gives G ⊆ Hi

and condition (1) is satisfied.
Following Alon et al. [1], from now on we restrict attention to case of n = 2

candidates in each round. The case n ≥ 3 is not conceptually harder and the basic
techniques presented in this paper do extend to that setting, but mathematically
the analyses would be even more involved than those that follow.

3 General Tools for Bounding Expected Group Size

In this section we introduce a general approach for obtaining both upper and
lower bounds on the expected cardinality of the social group in round t. From
this section on we make the natural assumption that the underlying metric is
Euclidean. These techniques apply for consensus voting in any convex compact
domain K. In the rest of the paper we will specialize these methods for the cases
in which K is either a unit ball or a unit square. In particular, lower bounds are
provided for these two domains in Sect. 4 and upper bounds in Sect. 5.

Let K be a convex compact set, and let Ct = {w1, w2} be candidates appear-
ing in round t. Again, we assume each candidate wi is distributed uniformly and
independently on K. We may also assume that vol(K) = 1, as otherwise we can
absorb the associated constant factor into our bounds. Note that the expected
group size is E[|GT |] =

∑T
t=1 Pr[Xt], where Xt denotes the event a new candi-

date wins in round t.
In Euclidean spaces the convex hull of the voters St := conv(Gt) play an

important role. By Theorem 3 and noting the metric is Euclidean, we know that
a candidate is accepted if and only if St ⊆ Hi for some candidate i. We can use
this fact to obtain the following:

Corollary 1. Let Ct = {w1, w2} be set of candidates. If there is a candidate
accepted with St = A, then the same candidate is also accepted with St = B for
any convex set B ⊆ A.

Let’s first present the intuition behind our approach to upper bounding
the probability of selecting a candidate in any round. Recall that, by The-
orem 3, given two candidates {w1, w2} in round t + 1, we accept candidate
i if and only if St ⊆ Hi(w1, w2). Now in order for the convex hull to sat-
isfy St ⊆ Hi(w1, w2), it must be the case that in the previous round (i)
St−1 ⊆ Hi(w1, w2), and (ii) a new candidate did not get accepted inside the
complement Hi(w1, w2) = cl(K \ Hi(w1, w2)), where cl denotes set closure.
Applying this argument recursively with respect to the worst case convex hulls
for accepting candidates inside Hi(w1, w2), we will obtain an upper bound on
the probability of accepting a candidate. Such worst case convex hulls can be
found by appropriately applying Corollary 1.
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To formalize this intuition, we require some more notation. We denote by
Z(H) the event that a new candidate is selected inside H. Let Pr[Z(H)|S = A]
denote the probability of selecting a candidate inside H given the convex hull of
the group members is A. The shorthand Pr[Z(H)|A] = Pr[Z(H)|S = A] will be
used when the context is clear. Note, by Theorem 3, the probability of acceptance
depends only on the shape of the convex hull of the members, and not on the
round. That is, if St = S t̂ = A for two rounds t �= t̂ then the probabilities of
accepting a candidate inside a given region in the rounds t + 1 and t̂ + 1 are
exactly the same.

We say a set A is a cap if there exists a half space W such that A = K ∩ W .
We remark that caps have been widely used for studying the convex hull of
random points; see the survey article [4] and the references therein. Of particular
relevance here is that, in the case of two candidates, the Voronoi regions for the
candidates are caps. Furthermore, H1(w1, w2) = H2(w1, w2) and vice versa.

Theorem 4. Let K be convex compact domain and let fK(w1, w2) be any func-
tion which satisfies fK(w1, w2) ≤ min

i
Pr[Z(Hi(w1, w2)) | Hi(w1, w2)]. Then

Pr[Xt+1] �
∫

K

∫

K

e−tfK(w1,w2) dw1 dw2

Proof. Observe that, for any cap A, we have the following inequality:

Pr[St ⊆ A] =
(
1 − Pr[Z(A) | St−1 ⊆ A]

) · Pr[St−1 ⊆ A]

≤ (
1 − Pr[Z(A) | St−1 = A]

) · Pr[St−1 ⊆ A]

≤ (
1 − Pr[Z(A) | A ]

)t
(2)

Here the first inequality follows from Corollary 1. The second inequality is
obtained by repeating the argument inductively for St−1. Hence:

Pr[Xt+1] =
∫ ∫

Pr[Xt+1 | (w1, w2) are candidates] dw1 dw2

=
∫ ∫ (

Pr[St ⊆ H1(w1, w2)] + Pr[St ⊆ H2(w1, w2)]
)
dw1 dw2

≤
2∑

i=1

∫ ∫ (
1 − Pr[Z(Hi(w1, w2)) | Hi(w1, w2) ]

)t
dw1 dw2

≤ 2
∫ ∫

(1 − fK(w1, w2))t dw1 dw2

≤ 2
∫ ∫

e−tfK(w1,w2) dw1 dw2

The second equality holds by Theorem 3. The first inequality follows by com-
bining inequality (2) and the facts H1(w1, w2) = H2(w1, w2) and H2(w1, w2) =
H1(w1, w2). Next, by assumption, fK(w1, w2) ≤ Pr[Z(Hi(w1, w2)) | Hi(w1, w2)]
for each i; the last two inequalities follow immediately. 
�
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As stated, Theorem 4 allows us to upper bound the expected group size.
However, the theorem is not easily applicable on its own. To rectify this, consider
the following easier to apply corollary.

Corollary 2. Let K be compact space. If fK satisfies the conditions of Theo-
rem 4 then

Pr[Xt+1] � 1
t

+
∫ ln(t)

t

0

te−tλ · Φ(λ) dλ

where Φ(λ) =
∫ ∫

I [fK(w1, w2) ≤ λ] dw1dw2.

As alluded to earlier, when obtaining upper bounds for the unit ball and the
unit square, we will apply Corollary 2. Of course, in order to do this, we must
find an appropriate function fK(w1, w2) which lower bounds the probability of
acceptance inside a Voronoi region Hi(w1, w2), given the current convex hull is
Hi(w1, w2). Finding such a function fK can require some ingenuity, but Lemma 2
below will be useful in assisting in this task. Moreover, as we will see in Sect. 4,
this lemma can be used to obtain lower bounds as well as upper bounds on the
expected cardinality of the group.

Lemma 2. Given a two-dimensional convex compact domain K and a cap A.
If z1 and z2 are the endpoints of the line segment separating A and A then

Pr[Z(A) | A ] = 2 ·
∫

A

vol(B(z1, ξ) ∩ B(z2, ξ) ∩ A) dξ

4 Lower Bounds on Expected Group Size

In this section we provide lower bounds for the cases where K is either a unit
ball B or a unit square H. Recall, we assumed that vol(K) = 1 but vol(B) = π
for the unit ball. We remark that this is of no consequence as we may absorb
the associated constant factor into our bounds.

4.1 Lower Bound for the Unit Ball

For the unit ball B, a circular segment is the small piece of the circle formed
by cutting along a chord. Evidently, this means that every cap of B is either a
circular segment or the complement of a circular segment. Thus, to analyze the
case of the unit ball we must study circular segments.

Lemma 3. Let B be a unit ball, and Jδ be a circular segment with height δ ≤ 1
8

then Pr[Z(Jδ) | Jδ ] � δ4.

Note that Lemma 3 can be used to prove lower bound on the expected cardi-
nality of the group. It is also used in later sections to obtain appropriate function
fK when using Corollary 2.
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Theorem 5. For the unit ball B, expected size of the social group after T rounds
satisfies E[|GT |] � T

1
8 .

Proof. For each t, we construct collection {At
1, A

t
2, . . . , A

t
N(t)} of disjoint circular

segments on the unit ball. To do this, let the height of each circular segment in the
collection be δ(t) = 1

4t
1
4
. Then we can fit N(t) =

⌊
π · t

1
8

⌋
of these segments into

B. To see this, observe that a circular segment of height δ has a chord of length
2
√

δ
√

2 − δ. The central angle of the segment is then θ = 2arctan
(√

δ
√
2−δ

1−δ

)
≤

4
√

δ, implying the existence of at least N =
⌊

π
2
√

δ

⌋
disjoint circular segments of

height δ. Now define τ ≤ T to be the last round for which Pr[Sτ ∩ Aτ
i �= ∅] ≥ 1

2 .
Thus,

E[|Gτ |] ≥
N(τ)∑

i=1

Pr[Sτ ∩ Aτ
i �= ∅] = N(τ) · Pr[Sτ ∩ Aτ

1 �= ∅] ≥ 1
2

⌊
πτ

1
8

⌋
� τ

1
8 (3)

Here, the first inequality follows from the observation that if St ∩ At
i �= ∅ then

there is a least one group member inside At
i. The equality is due to symmetry;

that is, Pr[St∩At
i �= ∅] = Pr[St∩At

j �= ∅] for each pair 1 ≤ i, j ≤ N(t). The second
inequality follows because, by definition, Pr[Sτ ∩ Aτ

i �= ∅] ≥ 1
2 . Next consider

rounds t > τ . For these rounds, by definition of τ , we know Pr[St ∩ At
i �= ∅] ≤ 1

2
which implies Pr[St ∩ At

i = ∅] ≥ 1
2 . Therefore,

Pr[Xt+1] �
N(t)∑

i=1

Pr
[
Z(At

i) ∧ (
St ∩ At

i = ∅)]

= N(t) · Pr
[
Z(At

i) | St ∩ At
i = ∅] · Pr[ St ∩ At

i = ∅ ]

� N(t) · Pr
[
Z(At

i) | At
i

]
(4)

Where the last inequality follows by Corollary 1. Finally by Lemma 3, we see
Pr

[
Z(At

i) | At
i

]
� 1

t , and thus Pr[Xt+1] � t−
7
8 for any t > τ . We may now lower

bound the expected group size at the end of round T . Specifically, for T ≥ 4,

E[|GT |] = E[|Gτ |] +
T∑

t=τ+1

Pr[Xt = 1] � τ
1
8 +

T∑

t=τ+1

t−
7
8 � T

1
8

The last inequality was obtained using integral bounds. 
�

4.2 Lower Bound for the Unit Square

For the unit square H caps are either right-angled triangles or right-angled trape-
zoids (trapezoids with two adjacent right angles). We can bound the probability
of accepting a point inside a right-angled trapezoid by consideration of the largest
inscribed triangle it contains. Thus, it suffices to consider only the case in which
the cap forms a triangle.
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Lemma 4. Let Ja,b be triangular cap on the unit square with perpendicular side
lengths a ≤ b. Then Pr[Z(Ja,b) | Ja,b ] ≥ 1

211 a4 · (
1 + ln

(
b
a

))
.

Similar to the ball case, Lemma 4 is used to prove lower bound on the
expected cardinality.

Theorem 6. For the unit square H, the expected size of the social group after
T rounds satisfies E[|GT |] � ln(T ).

Proof. For each t, consider the triangle At = conv
(
(0, 0),

(
0, 1

4t
1
4

)
,
(

1

4t
1
4
, 0

))
.

As discussed, the triangle At is a cap of the unit square.

Pr[Xt+1] ≥ Pr[Z(At) ∧ (St ∩ At = ∅)]

= Pr[Z(At) | (St ∩ At = ∅) ] · Pr[ St ∩ At = ∅ ]

≥ Pr[Z(At) | At ] · Pr[ St ∩ At = ∅ ]

� 1
t

· Pr[ St ∩ At = ∅ ] (5)

Here the second inequality follows from Corollary 1. The third inequality is
derived by applying Lemma 4 with respect to the cap At, for which a = b = 1

4t
1
4
.

Now, let T1, T2, T3 and T4 be right-angled triangles each containing one of the
corners with perpendicular side lengths a = b = 1

4 . By Lemma 4, the probability
of accepting a candidate inside triangle T�, given no member is currently in T�,
is lower bounded by a4

211 = 1
219 . Thus

Pr[T� ∩ Si = ∅] ≤
(

1 − 1
219

)i

= ki (6)

Fig. 1. Figure on the left illustrates that if there is a member in each T� then Q ⊆ Si.
The figure on the right shows if ξ ∈ B

((
1
4
, 3
4

)
, w1

)∩B
((

3
4
, 1
4

)
, w1

)
then ‖ξ‖1 ≥ ‖w1‖1

Next let Q be the square
[
1
4 , 3

4

]2. Observe that if there is a member of Si

selected in each of the four triangles T1, T2, T3 and T4 then Q ⊆ Si, as illustrated
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in Fig. 1. Consequently, applying the union bound and (6), for all 1 ≤ � ≤ 4,
we have Pr[Q �⊆ Si] ≤ 4ki. Note, since k = 1 − 1

219 , there exists a fixed round τ
such that 4kτ < 1; hence, Pr[Q ⊆ Sτ ] ≥ 1−4kτ is lower bounded by a constant.
Therefore, for t ≥ τ + 1,

Pr[S
t ∩ A

t
= ∅] = Pr[S

t ∩ A
t
= ∅ | Q ⊆ S

τ
] Pr[Q ⊆ S

τ
] � Pr[S

t ∩ A
t
= ∅ | Q ⊆ S

τ
]

To complete the proof, it suffices to show that Pr[ St ∩ At = ∅ | Q ⊆ Sτ ] is
bounded below by some constant. To show this, we use the following basic idea:
if the convex hull contains the square Q and a candidate is selected inside At

then it must have been the case that both candidates were in At. Recursively,
we have

Pr[St ∩ At = ∅ | Q ⊆ Sτ ] = Pr[¬Z(At) ∧ (St−1 ∩ At = ∅) | Q ⊆ Sτ ]

= Pr[¬Z(At) | (St−1 ∩ At = ∅) ∧ (Q ⊆ Sτ )] · Pr[ St−1 ∩ At = ∅ |Q ⊆ Sτ ]

=
t−1∏

i=τ

(1 − Pr[Z(At) | Si ∩ At = ∅ ∧ (Q ⊆ Sτ )]) · Pr[ Sτ ∩ At = ∅ | Q ⊆ Sτ ]

�
t−1∏

i=τ

(1 − Pr[Z(At) | Si ∩ At = ∅ ∧ (Q ⊆ Sτ )]) · Pr[ Sτ ∩ Aτ = ∅ | Q ⊆ Sτ ]

�
t−1∏

i=τ

(1 − Pr[Z(At) | Si ∩ At = ∅ ∧ (Q ⊆ Sτ )])

�
t−1∏

i=τ

(1 − Pr[Z(At) | Q ]) (7)

Here the first inequality holds because, by definition, At ⊆ Aτ for all t ≥ τ .
The second inequality holds for any constant τ satisfying 4kτ < 1 (for example,
τ = 1000000) because then Pr[ Sτ ∩ Aτ = ∅ | Q ⊆ Sτ ] is lower bounded
by a constant. This is because Aτ is a small triangle and there is a positive
probability that no candidate was selected inside Aτ in the previous τ rounds,
even when the convex hull of the members includes the square Q. Finally, for
the third inequality, observe that Sτ ⊆ Si when i ≥ τ . Thus, by Corollary 1,
Pr[Z(At) | Si ∩ At = ∅ ∧ (Q ⊆ Sτ )] ≤ Pr[Z(At) | Q ].

Next, we claim that if Q is the convex hull then a candidate can be accepted
inside At only if both candidates are in At. In particular, this gives the following
useful inequality:

Pr[ Z(At) | Q] ≤ vol(At)2 =

(
1
2

(
1

4t
1
4

)2
)2

=
1

210 · t
(8)

To see this, suppose the claim is false. That is, w2 ∈ At is selected when Q is
the convex hull but w1 /∈ At. Then, by Lemma 1, it must be the case that

w2 ∈ B

((
1
4
,
1
4

)
, w1

)
∩ B

((
3
4
,
1
4

)
, w1

)
∩ B

((
1
4
,
3
4

)
, w1

)
∩ B

((
3
4
,
3
4

)
, w1

)
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Observe that w1 ∈ At if and only if ‖w1‖1 = |(w1)1| + |(w1)2| ≤ 1

4t
1
4
, where

(w1)i denotes the i’th component of w1. Since w1 �∈ At, we have ‖w1‖1 > 1

4t
1
4
.

As illustrated in Fig. 1, the region B((14 , 3
4 ), w1)∩B((34 , 1

4 ), w1) does not intersect
At if w1 �∈ At. Thus, the winner w2 cannot be inside At and the claim is verified.

Finally, applying the inequalities (5), (7) and (8), we have

Pr[Xt+1 = 1] � 1
t

t−1∏

i=τ

(1 − Pr[Z(At)|Q]) � 1
t

t−1∏

i=τ

(
1 − 1

210 · t

)
� 1

t

Ergo, we have E[GT ] =
∑T

t=1 Pr[Xt] �
∑T

t=1
1
t

∼= ln(T ). 
�

5 Upper Bounds on Expected Group Size

We now apply the techniques developed in Sects. 3 and 4 to upper bound the
expected cardinality of the group for the unit ball and the unit square. Specif-
ically, we apply Corollary 2 to these metric spaces using the fK obtained from
Lemma 3 and Lemma 4, respectively.

5.1 Upper Bound for the Unit Ball

Observe that exactly one of the two Voronoi regions corresponds to a circu-
lar segment. Furthermore, since a circular segment fits inside its complement,
arg min

i
Pr[Z(Hi(w1, w2))|Hi(w1, w2)] is attained by the Hi corresponding to a

circular segment. Let δ(w1, w2) denote the height of the circular segment for this
Voronoi region Hi. Then, by Lemma 3, we have Pr[Z(Hi(w1, w2))|Hi(w1, w2)] �
δ(w1, w2)4. Thus fB(w1, w2) = δ(w1, w2)4, satisfies the conditions of Corollary 2.
However when using Corollary 2 we need to understand Φ(λ); Lemma 5 allows
us to do exactly that.

Lemma 5. Let δ(w1, w2) be the height of the circular segment Hi(w1, w2)
formed by the Voronoi regions. Then, for all λ ≤ 1

104 , we have

Φ(λ) =
∫ ∫

I
[
δ(w1, w2)4 ≤ λ

]
dw1 dw2 � λ

7
8

Theorem 7. For the unit ball B, the expected cardinality of the group after T
rounds satisfies E[|GT |] � T

1
8 .

Proof. When applying Corollary 2, we also need to bound on Φ(λ) for 0 ≤ λ ≤
ln(t)

t . Let t0 be a constant such that such that ln(t0)
t0

≤ 1
104 , then for round

t ≥ t0 we have 0 ≤ λ ≤ ln(t)
t ≤ ln(t0)

t0
≤ 1

104 . Hence we may apply the bound
Φ(λ) � λ

7
8 for any round t ≥ t0, by Lemma 5 using fB(w1, w2) = δ(w1, w2)4.

Thus combining Lemma 5 and Corollary 2 for t ≥ t0, we see that

Pr[Xt+1] � 1
t

+
∫ ln(t)

t

0

te−tλλ
7
8 dλ =

1
t

+
1
t
7
8

∫ ln(t)

0

e−u · u
7
8 du � 1

t
7
8
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Here the equality holds by the substitution u = tλ. The theorem follows
as E[|GT |] =

∑T
t=1 Pr[Xt] � t0 +

∑T
t=t0+1 1/t

7
8 � T

1
8 by applying integral

bounds. 
�

5.2 Upper Bound for the Unit Square

Similar to the unit ball case, we must find an appropriate function fH satisfying
the conditions of Corollary 2. For a cap A with A ⊆ Hi(w1, w2) by Corollary 1,

Pr[Z(Hi(w1, w2))|Hi(w1, w2)] ≥ Pr[Z(A)|Hi(w1, w2)] ≥ Pr[Z(A)|A] (9)

Let a(w1, w2) ≤ b(w1, w2) be the two side lengths of the triangular cap of greatest
area that fits inside both Hi(w1, w2). Applying Lemma 4, along with (9) gives

min
i

Pr[Z(Hi(w1, w2)) | Hi(w1, w2)] � a(w1, w2)4 · ln
(

e · b(w1, w2)
a(w1, w2)

)

Thus fH(w1, w2) = a(w1, w2)4 ln
(
e b(w1,w2)

a(w1,w2)

)
satisfies the conditions of Corol-

lary 2.

Lemma 6. Let a(w1, w2) ≤ b(w1, w2) be the two side lengths of the triangular
cap of greatest area that fits inside both Hi(w1, w2). Then, for any λ ≤ 1

20 ,

Φ(λ) =

∫ ∫
I

[
a(w1, w2)

4 · ln
(

e · b(w1, w2)

a(w1, w2)

)
≤ λ

]
dw1 dw2 � λ · ln

(
ln

(
1

λ

))

Proof. We need only consider pairs w1 and w2 that satisfy the indicator func-
tion. As λ ≤ 1

20 , this implies a(w1, w2) ≤ λ
1
4 ≤ (

1
20

) 1
4 ≤ 1

2 and, without loss
of generality, H1(w1, w2) is the smallest Voronoi region and fits (under symme-
tries) into H2(w1, w2). Furthermore, applying rotational and diagonal symme-
tries, any pair of points can be transformed into a pair of the form w1 = (x, y)
and w2 = (x + Δx, y + Δy), with s = Δy/Δx ≤ 1 and Δx,Δy ≥ 0. Hence, we
lose only a constant factor in making the following assumptions on w1 and w2:
the triangular cap of greatest area that fits inside both the Hi(w1, w2) is con-
tained in H1(w1, w2); the cap contains the origin; the larger side corresponding
to b(w1, w2) is along the y-axis; the smaller side corresponding to a(w1, w2) is
along the x-axis.

Recall that H1(w1, w2) is either a right-angled triangle or a right-angled
trapezoid. In the former case, the triangular cap of greatest area which fits inside
both of the Voronoi regions is H1 itself. Let H be the hyperplane separating
the two Voronoi regions, it holds that H(w1, w2) = {ξ ∈ R

2 : (w2 − w1) ·(
ξ − w2+w1

2

)
= 0}. The side lengths of H1 are then the intercepts of H along the

axes. In the latter case, the triangular cap of greatest area satisfies b(w1, w2) = 1
and a(w1, w2) is the intercept of H on the x-axis. We can then compute explicit
expressions for both terms a(w1, w2) and b(w1, w2). In particular,

a(w1, w2) =
‖w2‖2 − ‖w1‖2
2(w2 − w1)1

= x + sy +
Δx

2
(1 + s2) = x + sy +

Δy

2

(
1 + s2

s

)

(10)
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Now, because this is the unit square, we have b(w1, w2) ≤ 1. Thus, b(w1, w2) =
min

(
1, a(w1,w2)

s

)
. Hence,

a(w1, w2)4 ln
(

e · b(w1, w2)
a(w1, w2)

)
= a(w1, w2)4 ln

(
emin

(
1

a(w1, w2)
,
1
s

))
(11)

For a fixed w1 = (x, y), let R(x, y) be a rectangle containing all the points
w2 = (x + Δx, y + Δy) satisfying the condition of the indicator function. Thus,
it will suffice to show that we can select R(x, y) to have small area. To do this
we must show that Δx and Δy cannot be too large. Again, recall that if the
indicator function is true then a(w1, w2) ≤ λ

1
4 . So (10) implies x ≤ λ

1
4 and

s ≤ λ
1
4

y . If λ
1
4 ≤ y ≤ 1 then min

(
1

a(w1,w2)
, 1

s

)
≥ y

λ
1
4
. Plugging into (11) gives

a(w1, w2)4 ·ln
(
e · b(w1,w2)

a(w1,w2)

)
≥ a(w1, w2)4 ·ln

(
e · y

λ
1
4

)
. It follows that a(w1, w2) ≤

λ1/4

ln1/4
(

ey

λ1/4

) . Therefore, by (10):

Δx ≤ 2 ·
⎛

⎝ λ
1
4

ln
1
4

(
ey

λ
1
4

) − ys − x

⎞

⎠ ≤ 2 ·
⎛

⎝ λ
1
4

ln
1
4

(
ey

λ
1
4

) − x

⎞

⎠ (12)

Δy ≤ 2s ·
⎛

⎝ λ
1
4

ln
1
4

(
ey

λ
1
4

) − ys − x

⎞

⎠ ≤ 1
2y

·
⎛

⎝ λ
1
4

ln
1
4

(
ey

λ
1
4

) − x

⎞

⎠
2

(13)

Final inequalities in (12) and (13) were obtained by optimizing over s ∈ [0, 1].
Then noting that x ≤ λ

1
4 , we have

Φ(λ) �
∫ 1

0

∫ λ
1
4

0

|R(x, y)| dx dy

=
∫ λ

1
4

0

∫ λ
1
4

0

|R(x, y)| dx dy +
∫ 1

λ
1
4

∫ λ
1
4

0

|R(x, y)| dx dy

� λ +
∫ 1

λ1/4

1
y

·
∫ λ1/4

ln1/4( ey

λ1/4 )

0

(
λ1/4

ln1/4( ey
λ1/4 )

− x

)3

dx dy

� λ ·
∫ 1

λ1/4

1
y

· 1
ln( ey

λ1/4 )
dy

� λ · ln
(

ln
(

1
λ

))

For the second inequality, since Δx must be positive, (12) implies that the limit of
the integral becomes x = λ1/4

ln1/4( ey

λ1/4 )
. To bound the area |R(x, y)| of the rectangles
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we have two cases. When 0 ≤ y ≤ λ
1
4 , observe, by (10), that a(w1, w2) ≤ λ

1
4

implies Δx ≤ 2λ
1
4 and Δy ≤ 2λ

1
4 . Thus |R(x, y)| ≤ Δx · Δy �

√
λ. When

λ
1
4 ≤ y ≤ 1, the bound on |R(x, y)| holds by (12) and (13). 
�

Theorem 8. For the unit square H, the expected cardinality of the group after
T rounds satisfies E[|GT |] � ln T · ln lnT .

Proof. Note that for any round t ≥ 100 we have 0 ≤ λ ≤ ln(t)
t ≤ 1

20 . Thus,
combining Corollary 2 and Lemma 6 we get

Pr[Xt+1] � 1
t

+
∫ ln(t)

t

0

te−tλ · λ ln
(

ln
(

1
λ

))
dλ

=
1
t

+
1
t

∫ 1

0

u ln
(

ln
(

t

u

))
du +

1
t

∫ ln(t)

1

ue−u ln
(

ln
(

t

u

))
du

Here the equality holds via the substitution u = tλ. Note that u ln
(
ln

(
t
u

)) ≤
ln ln t, when t ≥ 100 and 0 ≤ u ≤ 1, and

∫ ln(t)

1

ue−u · ln
(

ln
(

t

u

))
du ≤ ln ln t ·

∫ ∞

1

ue−u du ≤ ln ln t

Hence it follows Pr[Xt+1] � ln ln t
t for all t ≥ 100. Finally, we see that E[|GT |] =∑T

t=1 Pr[Xt] � 100 +
∑T

t=101
ln ln t

t � ln T · ln lnT , where the last inequality was
obtained using integral bounds. 
�

6 Conclusion

In this paper we presented techniques for studying the evolution of an exclusive
social group in a metric space, under the consensus voting mechanism. A natural
open problem is to close the gap between the Ω(ln T ) lower bound and the
O(ln T · ln lnT ) upper bound on the expected cardinality of the group, after T
rounds, in the unit square. Interesting further directions include the study of
higher dimensional metric spaces, and allowing for more than two candidates
per round. In either direction, our analytic tools may prove useful.

Acknowledgement. We thank the anonymous reviewers for many helpful comments
and suggestions.
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Abstract. We present a deterministic polynomial-time algorithm for
computing dd+o(d)-approximate (pure) Nash equilibria in weighted con-
gestion games with polynomial cost functions of degree at most d. This is
an exponential improvement of the approximation factor with respect to
the previously best deterministic algorithm. An appealing additional fea-
ture of our algorithm is that it uses only best-improvement steps in the
actual game, as opposed to earlier approaches that first had to transform
the game itself. Our algorithm is an adaptation of the seminal algorithm
by Caragiannis et al. [FOCS’11, TEAC 2015], but we utilize an approxi-
mate potential function directly on the original game instead of an exact
one on a modified game.

A critical component of our analysis, which is of independent inter-
est, is the derivation of a novel bound of [d/W (d/ρ)]d+1 for the Price
of Anarchy (PoA) of ρ-approximate equilibria in weighted congestion
games, where W is the Lambert-W function. More specifically, we show
that this PoA is exactly equal to Φd+1

d,ρ , where Φd,ρ is the unique positive

solution of the equation ρ(x + 1)d = xd+1. Our upper bound is derived
via a smoothness-like argument, and thus holds even for mixed Nash and
correlated equilibria, while our lower bound is simple enough to apply
even to singleton congestion games.
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Price of anarchy · Approximate equilibria · Potential games
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On the Integration of Shapley–Scarf
Housing Markets
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Abstract. We study the consequences of merging Shapley–Scarf mar-
kets assuming that the core allocation is implemented before and after
the merge occurs. We focus on (i) the number of agents who obtain a
better allocation, and (ii) the size of the welfare gains, measured by the
rank of the assigned house. We present worst- and average-case results.

In the worst-case scenario, we show that the merge of k markets with
nj agents each and with n agents in total, may harm the vast majority of
agents (up to, but no more than, n − k agents). Furthermore, the aver-
age rank of an agent’s house can decrease asymptotically by, but not more
than, 50% of the length of their preference list. These results are substan-
tially worse than those for Gale–Shapley markets [3, 4]. On the other side,
our average-case results are more optimistic. We prove that the expected

gains from integration in random markets equal
(n+1)[(nj+1)Hnj

−nj ]

nj(nj+1)n
−

(n+1)Hn−n

n2 , where Hn is the n-th harmonic number. Our computation
shows that the expected welfare gains from integration are positive for all
agents, and larger for agents that are initially in smaller markets. We also
provide an upper bound on the expected number of agents harmed by inte-
gration, that allows us to guarantee that a majority of agents benefit from
integrationwhen allmarkets are of equal size and this is below 26.Ourwork
builds on previous probabilistic analysis of Shapley–Scarf markets in the
computer science literature [1, 2].

The full article is available at https://arxiv.org/abs/2004.09075.

Keywords: Shapley–Scarf markets · Gains from integration · Random
markets
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The Stackelberg Kidney Exchange
Problem is Σp

2-complete
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Kidney Exchange Programmes (KEPs) play a growing role in treatment of end
stage renal disease, offering living donor kidneys to recipients with a willing but
incompatible donor. Scale is important to KEPs, as combining different pools
(owned by separate agents) of patient-donor pairs allows for more transplants
compared to the separate pools optimizing independently. The organization of
such collaborations is a delicate matter, as the benefits of cooperation may be
shared unequally. In some cases, individual agents may even lose transplants
when combining patient-donor pools. This observation has motivated research
into mechanisms for planning transplants in combined pools. An important result
is that, assuming individual agents are rational, no socially optimal mechanism
exists. Thus, any mechanism that maximizes transplants in the combined pool
runs the risk that agents will not contribute some or all of their pairs.

The risk of agents not cooperating fully depends in part on the agents ability
to identify situations where withholding pairs is beneficial to them. We study
a relatively simple situation, where the agent has perfect information on pairs
of all other agents, knows the fixed strategies of all other agents and knows
how the mechanism selects an optimal solution in the common pool. The agent
has to decide which pairs to contribute and which to withhold. Her goal is to
maximize the total number of her recipients receiving a transplant, either in the
common pool or by internal matches in the withheld set. We call this problem
the Stackelberg KEP game. Our main result is:

Theorem 1. Stackelberg KEP game is a Σp
2-complete problem, for each fixed

maximum cycle length K ≥ 3.

For K = 2, we rely on results in [1] to prove the following:

Theorem 2. The Stackelberg KEP game is polynomially solvable if the maxi-
mum cycle length K = 2.

A full working paper can be found at https://arxiv.org/abs/2007.03323.
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