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Abstract. STRIM (Statistical Test Rule Induction Method) has been
proposed as an if-then rule induction method from the decision table
(DT) and has improved those methods by the conventional Rough Sets
from a statistical view. The method recognizes condition attributes (CA)
and the decision attribute (DA) in DT as random variables having the
causality of an input-output relation, and uses the relation of transform-
ing the inputs (outcomes of CA) into the outputs (those DA) through
the rules for rule induction strategies. This paper reconsiders the con-
ventional STRIM, proposes a new rule induction method and strategy
named apriori-STRIM and confirms the validity and capacity by a sim-
ulation experiment. Specifically, the new method explores CA of causes
after receiving outcomes of DA by use of co-occurrence sets of outcomes
of CA. The co-occurrence set is a well-known concept in the associa-
tion rule learning (ARL) field. This paper also clarifies the differences of
rule induction methods and their capacities between apriori-STRIM and
ARL by the same experiments.

Keywords: Rough Sets · If-then rule induction · apriori-STRIM ·
Simulation experiment

1 Introduction

The Rough Set (RS) theory was introduced by Pawlak [1] and used for inducing
if-then rules from a dataset called the decision table (DT). To date, various meth-
ods and algorithms for inducing rules by the theory have been proposed [2–5]
since the inducing rules are useful to simply and clearly express the structure
of rating and/or knowledge hiding behind the table. The basic idea to induce
rules is to approximate the concept in the DT by use of the lower and/or upper
approximation sets which are respectively derived from the equivalence relations
and their equivalence sets in the given DT. However, those methods and algo-
rithms by RS paid little attention to the fact that the DT was just a sample set
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gathered from the population of interest. If resampling the DT from the pop-
ulation or the DT by Bootstrap method for example, the new DT will change
equivalence relations, their equivalence sets, and the lower and/or upper approx-
imation sets, so the induced rules will change and fluctuate. Those methods and
algorithms also had the problem that those induced rules were not arranged
from the statistical views. Then, we proposed a rule induction method named
STRIM (Statistical Test Rule Induction Method) taking the above mentioned
problems into consideration [6–16]. Specifically, STRIM

(1) Proposed a data generation model for generating a DT. This model recog-
nized the DT as an input-output system which transformed a tuple of the
condition attribute’s value occurred by chance (the input) into the decision
attribute value (the output) through pre-specified if-then rules (generally
unknown) under some hypotheses. That is, the input was recognized as
an outcome of the random variables and the output was also the outcome
of a random variable dependent on the input and the pre-specified rules.
Accordingly, the pairs of input and output formed the DT containing rules.

(2) Assumed a trying proper condition part of if-then rules and judged whether
it was a candidate of rules by statistically testing whether the condition
caused bias in the distribution of the decision attribute’s values.

(3) Arranged the candidates having inclusion relationships by representing them
with one of the highest bias and finally induced if-then rules with a statisti-
cal significance level after systematically exploring the trying condition part
of rules. The validity and capacity of STRIM have been confirmed by the
simulation experiments that STRIM can induce pre-specified if-then rules
from the DT proposed in (1). In this way, the conventional data generation
model proposed in (1) also can be used for a verification system of a rule
induction method (VSofRIM). The validity and capacity also secure a cer-
tain extent of the confidence of rules induced by STRIM from the DT of
real-world datasets. The VSofRIM is also used for confirming the validity
and capacity of other rule induction methods proposed previously [11,14].

The conventional STRIM systematically explores the domain of the con-
dition attributes looking for rule candidates causing the bias and statistically
judges their validity by use of the DT which is accumulated by rules intervening
between the inputs of the condition attributes and the corresponding outputs of
the decision attribute. This paper reconsiders the process after (2) from the view
of Bayes’s law which generally infers the causes from the results, and proposes
a new rule induction method named apriori-STRIM. Specifically, the method
explores a co-occurrence set of the condition attribute’s value in the DT against
a specific decision attribute’s value. The concept of the co-occurrence set plays
an important role in the association rule learning (ARL) field [17] and the set
can be effectively found using the well-known Apriori algorithm [18]. That is,
apriori-STRIM focuses on the property that the specific decision attribute’s value
will occur with the specific condition attribute values by the rules’ intervention,
although the conventional STRIM focuses on the bias. The rules’ intervention
also can be judged by a statistical test using the co-occurrence set in the DT.
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The validity and capacity of apriori-STRIM is also confirmed by the same experi-
ment as the conventional and the two-way confirmations by both STRIMs secure
the validity and capacity for the rule induction method. This paper also shows
interesting features of ARL by applying it to VSofRIM and clarifies the differ-
ences between apriori-STRIM and ARL.

2 Conventional Rough Sets and STRIM

The Rough Set theory is used for inducing if-then rules from a decision table S.
S is conventionally denoted by S = (U,A = C ∪ {D}, V, ρ). Here, U = {u(i)|i =
1, ..., |U | = N} is a sample set, A is an attribute set, C = {C(j)|j = 1, ..., |C|}
is a condition attribute set, C(j) is a member of C and a condition attribute,
and D is a decision attribute. Moreover, V is a set of attribute values denoted
by V = ∪a∈AVa and is characterized by the information function ρ: U ×A → V .

The conventional Rough Set theory first focuses on the following equivalence
relation and the equivalence set of indiscernibility within the decision table S of
interest:

IB = {(u(i), u(j)) ∈ U2|ρ(u(i), a) = ρ(u(j), a),∀a ∈ B ⊆ C}.

IB is an equivalence relation in U and derives the quotient set U/IB = {[ui]B |i =
1, 2, ..., |U | = N}. Here, [ui]B = {u(j) ∈ U |(u(j), ui) ∈ IB, ui ∈ U}, [ui]B is an
equivalence set with the representative element ui.

Let X be an arbitrary subset of U then X can be approximated as B∗(X) ⊆
X ⊆ B∗(X) through the use of the equivalence set. Here, B∗(X) = {ui ∈
U |[ui]B ⊆ X}, and B∗(X) = {ui ∈ U |[ui]B ∩ X �= φ}, B∗(X) and B∗(X) are
referred to as the lower and upper approximations of X by B respectively. The
pair of (B∗(X), B∗(X)) is usually called a rough set of X by B.

Specifically, let be X = {u(i)|ρ(u(i),D) = d} = U(d) = {u(i)|uD=d(i)} called
the concept of D = d, and define a set of u(i) as U(CP ) = {u(i)|uC=CP (i),
meaning CP satisfies uC(i), where uC(i) is the tuple of the condition attribute
values of u(i)} and let it be equal to B∗(X), then CP can be used as the condition
part of the if-then rule of D = d, with necessity. That is, the following expression
of if-then rules with necessity is obtained: if CP = ∧j(C(jk) = vjk) then D = d.
In the same way, B∗(X) derives the condition part CP of the if-then rule of
D = d with possibility.

However, the approximation of X = U(d) by the lower or upper approx-
imation is respectively too strict or loose so that the rules induced by the
approximations are often of no use. Then, Ziarko expanded the original RS by
introducing an admissible error in two ways [4]: Bε(U(d)) = {u(i)|accuracy ≥
1 − ε}, Bε(U(d)) = {u(i)|accuracy > ε}, where ε ∈ [0, 0.5). The pair of
(Bε(U(d)), Bε(U(d))) is called an ε-lower and ε-upper approximation which sat-
isfies the following properties: B∗(U(d)) ⊆ Bε(U(d)) ⊆ Bε(U(d)) ⊆ B∗(U(d)),
Bε=0(U(d)) = B∗(U(d)) and Bε=0(U(d)) = B∗(U(d)). The ε-lower and/or ε-
upper approximation induce if-then rules with admissible errors in the same
way as the lower and/or upper approximation.
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As mentioned above, the conventional RS theory basically focuses on the
equivalence relation IB and its equivalence sets U/IB in U given in advance
and induces rules approximating the concept by use of the approximation sets
derived from the U/IB . However, IB is very dependent on the DT provided.
Accordingly, every DT obtained from the same population is different from each
other and, IB, U/IB and the approximation sets are different from each other for
each DT, which leads to inducing different rule sets. That is, the rule induction
methods by the conventional RS theory lack statistical views.

Rule Box &
Hypotheses

Observer

u (i)
C

u (i)
D

Input Output

NoiseC NoiseD

{u(i)=(u (i), u (i))
     | i=1,2,.... }

C D

Fig. 1. A data generation model: Rule box contains if-then rules R(d, k): if sCP (d, k)
then D = d (d = 1, 2, ..., k = 1, 2, ...).

Table 1. Hypotheses with regard to the decision attribute value.

Hypothesis 1 uC(i) coincides with R(d, k), and uD(i) is uniquely determined as
D = d (uniquely determined data)

Hypothesis 2 uC(i) does not coincide with any R(d, k), and uD(i) can only be
determined randomly (indifferent data)

Hypothesis 3 uC(i) coincides with several R(d, k) (d = d1, d2, . . .), and their
outputs of uC(i) conflict with each other. Accordingly, the output of
uC(i) must be randomly determined from the conflicted outputs
(conflicted data)

Then, STRIM [6,9,10,12,15] has proposed a data generation model (DGM)
for the DT and a rule induction method based on the model. Specifically, STRIM
considers the decision table to be a sample dataset obtained from an input-output
system including a rule box, as shown in Fig. 1, and hypotheses regarding the
decision attribute values, as shown in Table 1. A sample u(i) consists of its
condition attribute values uC(i) and its decision attribute value uD(i). uC(i)
is the input for the rule box, and is transformed into the output uD(i) using
the rules (generally unknown) contained in the rule box and the hypotheses.
The hypotheses consist of three cases corresponding to the input. They are
uniquely determined, indifferent and conflicted cases (see Table 1). In contrast,
u(i) = (uC(i), uD(i)) is measured by an observer, as shown in Fig. 1. The exis-
tence of NoiseC and NoiseD makes missing values in uC(i), and changes uD(i)
to create another value for uD(i), respectively. Those noises bring the system
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closer to a real-world system. The data generation model suggests that a pair of
(uC(i), uD(i)), (i = 1, . . . , N), i.e. a decision table is an outcome of these random
variables: (C,D) = ((C(1), . . . , C(|C|),D) observing the population.

Based on the data generation model, STRIM (1) extracted significant pairs
of a condition attribute and its value like C(jk) = vjk for rules of D = d by the
local reduct [10,12,13], (2) constructed a tentatively trying condition part of the
rules like CP = ∧j(C(jk) = vjk) by use of the reduct results, and (3) investigated
whether U(CP ) caused a bias at nd in the frequency distribution of the deci-
sion attribute values f = (n1, n2, . . . , nMD

) or not, where nm = |U(CP ) ∩ U(m)|
(m = 1, . . . , |Va=D| = MD) and U(m) = {u(i)|uD=m(i)}, since the uC(i) coincid-
ing to sCP (d, k) in the rule box is transformed into uD(i) based on Hypotheses
1 or 3. Accordingly, the CP coinciding to one of rules in the rule box produces
bias in f . Specifically, STRIM used a statistical test method for the investigation
specifying a null hypothesis H0: f does not have any bias, that is, CP is not a
rule and its alternative hypothesis H1: f has a bias, that is, CP is a rule, and
a proper significance level, and tested H0 by use of the sample dataset, that is,
the decision table and the proper test statistics, for example,

z =
(nd + 0.5 − npd)
(npd(1 − pd))0.5

,

where nd = maxm f = (n1, . . . , nm, . . . , nMD
), pd = P (D = d), n =

∑MD

j=1 nj .
z obeys the standard normal distribution under test conditions: npd ≥ 5 and
n(1 − pd) ≥ 5 [19] and is considered to be an index of the bias of f . (4) If H0 is
rejected then the assumed CP becomes a candidate for the rules in the rule box.
(5) After repeating the processes from (1) to (4) and obtaining the set of rule
candidates, STRIM arranged their rule candidates and induced the final results
(see literatures [12,13] for details).

To summarize, STRIM directly induces rules with statistical significance level
assuming the condition part of rules: CP = ∧j(C(jk) = vjk) and statistically
testing it by use of U . STRIM does not require the basic concept of the approx-
imation which is the point for the rule induction by RS theory. Conversely, RS
theory has nothing directly to do with statistical significance.

3 Studies on STRIM by Simulation Experiment

We implemented the data generation process and verified the capacity of induc-
ing the rules by the conventional STRIM as follows: (1) Specified the rules in
Table 2 (the number of rules (Nrule) = 10) in the rule box in Fig. 1, where
|C| = 6, Va = {1, 2, . . . , 5} (a = C(j), (j = 1, . . . , |C|), a = D), and
sCP (1, 1) = 110000 denoted sCP (1, 1) = (C(1) = 1) ∧ (C(2) = 1) and was
called a rule of the rule length 2 (RL = 2), having two conditions. (2) Gen-
erated vC(j)(i) (j = 1, . . . , |C| = 6) with a uniform distribution and formed
uC(i) = (vC(1)(i), . . . , vC(6)(i)) (i = 1, . . . , N = 10,000). (3) Transformed uC(i)
into uD(i) using the pre-specified rules in Table 2 and hypotheses in Table 1,
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Table 2. An example of pre-specified rules R(d, k) in the rule box: if sCP (d, k) then
D = d (d = 1, . . . , 5, k = 1, 2).

R(d, k) sCP (d, k) D = d

R(1, 1) 110000 D = 1

R(1, 2) 001100 D = 1

R(2, 1) 220000 D = 2

R(2, 2) 002200 D = 2

R(3, 1) 330000 D = 3

R(3, 2) 003300 D = 3

R(4, 1) 440000 D = 4

R(4, 2) 004400 D = 4

R(5, 1) 440000 D = 5

R(5, 2) 004400 D = 5

Table 3. An example of estimated rules by the conventional STRIM for the DT with
NB = 5,000 generated by the data generation model in Fig. 1 and the pre-specified
rules in Table 2.

Rule no. Estimated rules
(C(1). . .C(6)D)

f = (n1, n2, n3, n4, n5) p-value Accuracy Coverage

1 (0022002) (4, 216, 8, 5, 4) 5.87E−173 0.911 0.223

2 (0011001) (207, 3, 4, 2, 3) 8.26E−162 0.945 0.200

3 (0055005) (8, 4, 7, 5, 211) 1.87E−159 0.898 0.212

4 (4400004) (5, 6, 5, 187, 4) 5.73E−150 0.903 0.195

5 (1100001) (190, 1, 6, 3, 4) 1.86E−145 0.931 0.184

6 (5500005) (5, 8, 6, 5, 191) 2.73E−142 0.888 0.192

7 (0044004) (4, 3, 3, 167, 3) 8.99E−140 0.928 0.174

8 (3300003) (5, 6, 193, 7, 3) 1.98E−139 0.902 0.186

9 (2200002) (3, 167, 6, 1, 5) 7.37E−136 0.918 0.172

10 (0033003) (3, 4, 185, 10, 2) 6.03E−135 0.907 0.178

without generating NoiseC and NoiseD for a plain experiment and then gen-
erated the decision table. After randomly selecting samples by NB = 5,000
samples, newly forming the DT and applying STRIM to the DT, Table 3 was
obtained. The table shows us the following: For example, the estimated Rule
No. 1 (RN = 1) “0022002” denotes if (C(3) = 2) ∧ (C(4) = 2) then D = 2,
has f = (n1, n2, . . . , n5) = (4, 216, 8, 5, 4) and the bias at D = 2. The outcome
probability to cause such a bias is around 5.87E-173 under H0, which leads to
rejecting H0 and adopting H1. As the result, “0022002” was adopted as a rule.
It should be noted that the reason it was adopted as the rule was not the high
accuracy = 216/237 = 0.911. STRIM just induced all the pre-specified rules in
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Table 2. This experiment suggests that conventional STRIM works well and the
DGM in Fig. 1 can be useful as a verification system of a rule induction method.

4 New Rule Induction Method by Co-occurrence Set

As mentioned in Sect. 2, conventional STRIM regards the condition attributes C
and the decision attribute D as random variables, and D of the output depends
on C of the input, rules and hypotheses and the rule induction method focuses
on P (D = d|CP ) of P (CP,D = d) = P (CP )P (D = d|CP ). That is, STRIM
regards P (D = d|CP ) as P ( if CP then D = d) and explores CP = ∧j(C(jk) =
vjk) which causes bias at nd in f = (n1, n2, . . . , nMD

). The bias can be detected
by use of the DT and the statistical test.

Line No. Algorithm to induce if-then rules by STRIM with apriori function
1 install.packages(“arules”) # import package arules
2 library(arules) # load package arules
3 input data # input Decision Table
4 for (iD in 1: MD) {# proceed co-occurrence item set of iD
5 dataiD<-data[data[, (length(C) +1)]==iD,] # extract dataset of Decision

attribute value of iD
6 dataCiD<-dataiD[1: length(C) ,] # extract its Condition attributes value part
7 CiD.tra<-transform dataCiD # CiD of transaction form
8 CiD.ap<-apriori(CiD.tra, parameter=list(support=supp0,

target=’frequent itemset’)) # explore freqent item set more than supp0
9 SFIS<-inspect(CiD.ap) # output the set of frequent item set
10 for (iCo in 1: nrow(SFIS) ) {# proceed each frequent item set
11 calculate p-value of SFIS(iCo)
12 if p-value < p-value0, save the SFIS(iCo) as a rule candidate with necessary

index
13 }# end of for of iCo
14 arrange the rule candidates of iD
15 # end of for of iD

Fig. 2. An algorithm for apriori-STRIM written in R language style.

From the view of Bayes’s law, however, another strategy of focusing on
P (CP |D = d) of P (CP,D = d) = P (D = d)P (CP |D = d) can be considered
for the rule induction. That is, after receiving the outputs of D = d, the strategy
exploring and estimating CP = ∧j(C(jk) = vjk) of the corresponding inputs can
be also valid. Specifically, when receiving the outputs, the corresponding inputs
are classified into two cases: One is the uniquely determined and/or conflicted
cases and the other is the indifferent case (see Table 1). Both cases can be eas-
ily distinguished from each other by use of a statistical test specifying the null
hypothesis H0: the event D = d has occurred by chance (the indifferent case) and
the alternative hypothesis H1: the event D = d hasn’t occurred by chance (the
uniquely and/or conflicted case). Under H0, P (CP |D = d) = P (CP ) and the
intervention of rules transforming the inputs into the output is denied. If H0 is
denied, H1 is adopted as a rule candidate, which means P (CP |D = d) �= P (CP ).
Such hypothesis testing can be easily executed by finding the co-occurrence set
with the event D = d since the concept of the co-occurrence set is well-known in



New Rule Induction Method by Use of a Co-occurrence Set 61

Table 4. An example of FIS extracted from U(D = 1) of the DT corresponding to
Table 3.

No. of FIS Items Support Count

[1] {15} 0.138 143

[2] {22} 0.143 148

[27] {11} 0.337 348

[31] {15, 22} 0.032 33

[32] {15, 24} 0.028 29

[350] {11, 21} 0.184 190

[351] {31, 41} 0.200 207

[353] {21, 31} 0.101 104

[354] {15, 31, 41} 0.029 30

[387] {31, 52, 63} 0.024 25

[403] {21, 31, 41} 0.044 45

the field of association rule learning (ARL) [17] and the finding is effectively exe-
cuted by the Apriori algorithm [18]. Then, this paper names this rule induction
method apriori-STRIM. The ARL and the Apriori algorithm are summarized in
AppendixA and the differences of the idea for the rule induction method between
ARL and apriori-STRIM are shown through the same experiment in Sect. 3, that
is, by VSofRIM. See AppendixA to easily understand the following.

The specific procedure for apriori-STRIM is shown in Fig. 2 where the pro-
cedure is shown in R language style since the Apriori algorithm is already
implemented by the language as an apriori() function which has a good rep-
utation. The outline is the following: Line No. 1 (LN = 1) installs the package
of ARL as “arules” [20] via the internet and LN = 2 loads it as the library
“arules”. LN = 3 inputs the DT as “data”. From LN = 4 to NL = 15,
every iD of the decision attribute (= 1 ∼ MD) is proceeded. LN = 5 sub-
stitutes U(iD) = {u(i)|uD=iD(i)} with dataiD, and its condition part dataCiD
is extracted (LN = 6), and transformed into the transaction form CiD.tra at
LN = 7. LN = 8 extracts co-occurrence sets of CiD.tra, that is, co-occurrence
sets of the condition attributes’ values of U(iD) as frequent item sets according to
parameters which specify them as greater than or equal to supp0 and substitute
them for CiD.ap. LN = 9 extracts the set of frequent item set (SFIS). From
LN = 10 to LN = 13, every p-value of SFIS(iCo) (iCo = 1, . . . , |SFIS|) is cal-
culated and tested for whether its p-value is less than a pre-specified p-value0 and
SFIS(iCo) is saved as a candidate if it satisfies the condition. LN = 14 arranges
the candidates having inclusion relationship by representing the candidate with
the least p-value and finally decides rules for iD.
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5 Studies on Apriori-STRIM by Simulation Experiment

An experiment result for the rule induction by the conventional STRIM was
shown in Table 3 by applying it to the DT containing the pre-specified rules.
We also applied apriori-STRIM for the same DT and show the results with the
process in Fig. 2.

Table 5. An example of rule candidates extracted from Table 4.

Rule no. Estimated rules
(C(1). . .C(6)D)

Count p-value Accuracy Coverage

1 0011001 207 1.93E−81 0.945 0.200

2 1100001 190 1.48E−68 0.931 0.184

3 0100001 372 5.78E−33 0.360 0.360

4 0001001 366 7.14E−31 0.366 0.354

5 0010001 366 7.14E−31 0.366 0.354

6 0011031 57 4.44E−29 0.966 0.055

7 1000001 348 5.42E−25 0.360 0.337

8 0511001 52 7.38E−25 0.945 0.050

9 0011201 52 7.38E−25 0.963 0.050

Table 4 shows the part of SFIS obtained at LN = 8 and 9 for iD = 1,
that is, D = 1. Here, supp0 = 5 · |Va|/|U(iD)|, ∀a ∈ C was used for exploring
FIS. This specification secure freq(FIS) ≥ 5 · |Va| = count0 for the hypothesis
testing at LN = 11 and 12 and induced |SFIS| = 403. The table shows: No.
of FIS = 1 − 30 (NFIS = 1 − 30) is FIS(|items| = 1), NFIS = 31 − 353 is
FIS(|items| = 2) and NFIS = 354−403 is FIS(|items| = 3), and for example,
NFIS = 387 indicates that the co-occurrence set of items = {C(3) = 1, C(5) =
2, C(6) = 3} that is, the pattern CP = (C(3) = 1) ∧ (C(5) = 2) ∧ (C(6) = 3)
occurred count = 25 times in |U(D = 1) = {u(i)|uD=1(i)}| = 1, 033. The pre-
specified rules for D = 1 in Table 2 are R(1, 1) and R(1, 2), which appear in
NFIS = 350 and 351 respectively.

LN = 12 induced significant FIS patterns in Table 4 by the hypothesis
testing under H0. The frequency X of the co-occurrence pattern CP obeys
Binominal distribution Bn(n, p) having the expectation np where n = |U(D =
1)| and p =

∏
a∈CP

1
|Va| . For example, p = (15 )3 at NFIS = 387 due to RL = 3.

One specification for supp0 was to satisfy the requirement np = Xp ≥ 5 for
RL = 1 as well as the conventional STRIM (see the test conditions [19] in
Sect. 2). That is, min X = count0 = 5

p = 5 · |Va|. count ≥ count0 = 25 is satisfied
in Table 4. As shown in AppendixA, the small count0 tends to generate a large
number of meaningless FIS, and conversely, the large increases the possibility
to miss the valid FISs.

LN = 12 induced the number of 46 rule candidates from 403 in Table 4 using
p-value 0 = 1.0E −10 this time and saved them with p-value, accuracy, coverage
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Table 6. Finally estimated rules by apriori-STRIM for the DT corresponding to those
of Table 3.

Rule no. Estimated rules
(C(1). . .C(6)D)

Count p-value Accuracy Coverage

1 0011001 207 1.93E−81 0.945 0.200

2 1100001 190 1.48E−68 0.931 0.184

3 0022002 216 4.19E−94 0.911 0.223

4 2200002 167 2.65E−56 0.918 0.172

5 3300003 193 2.42E−70 0.902 0.186

6 0033003 185 1.64E−64 0.907 0.178

7 4400004 187 1.36E−71 0.903 0.195

8 0044004 167 6.91E−57 0.928 0.174

9 0055005 211 1.37E−87 0.898 0.212

10 5500005 191 6.45E−72 0.888 0.192

and so on. Table 5 shows the first nine candidates after sorting them in ascending
order of p-value. RN = 1 and 2 coincide with R(1, 2) and R(1, 1) respectively.
RN = 3 can be represented by RN = 2 with the smaller p-value and in the same
manner all the following candidates were arranged and represented by RN = 1
or 2 at LN = 14. Table 6 shows the final rule induction results including those
of D = 2, . . . , 5 by apriori-STRIM.

To compare Table 6 by apriori-STRIM with Table 3 by the conventional
STRIM, the following is seen:

(1) Both methods statistically induce the pre-specified rules in Table 2 in proper
quantities and justly coincide with each other in corresponding figures.

(2) The differences between two tables are their surface caput of f = (n1,
n2, . . . , n5) and count. The former focuses on P (D = d|CP ) and adopts
the strongest bias of the distribution of D by CP . The latter focuses on
P (CP |D = d) and adopts the strongest intervention by rules, which appears
in the p-value of the co-occurrence set (pattern) in Table 5.

In the same way, to compare Table 6 and/or Table 3 with Table 9 and/or
Table 10 by the associate rule learning (ARL), the following is seen:

(3) ARL first focuses on the co-occurrence set of (CP,D) and its count directly
connects to P (CP,D) and induces rules by use of parameters of support,
confidence, and so on. However, ARL has no way of distinguishing the co-
occurrence sets by rules from those by chance since ARL doesn’t have any
models for the distinction.

(4) Connecting to (3), ARL also has no way of arranging a large number of
rule candidates as shown in AppendixA although it has useful indexes of
support, confidence, lift, and so on. That is, ARL based on P (CP,D) seems
not to closely focus on inducing if-then rules although it can induce the
co-occurrence set.
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6 Conclusion

This paper summarized the rule induction methods by the conventional RS and
their statistically improved method STRIM showing the validity and capacity of
STRIM in VSofRIM. The conventional STRIM focused on P (D = d|CP ) which
can be recognized as a probabilistic structure transforming the input CP into
the corresponding output D, and used the structure and the DT for inducing the
if-then rules that causes the bias in the distribution of D. From this view, another
new rule induction method focusing on P (CP |D = d) was proposed. Specifically,
the method estimated the inputs after receiving the outputs by exploring the
co-occurrence set of U(d) = {u(i)|uD=d(i)} and executing statistical testing with
regard to the explored set under H0: P (CP |D = d) = P (CP ). The exploration
was executed by Apriori algorithm developed in the field of ARL. The new
method was named apriori-STRIM. The validity and capacity for apriori-STRIM
was confirmed by applying it to the same DT as the conventional STRIM. The
similarities and differences between the conventional, apriori-STRIM and ARL
were clarified through the same simulation dataset, that is, VSofRIM.

Table 7. An example of transaction dataset.

Transaction Record

tr(1) 1, 2, 5, 6, 7, 9

tr(2) 2, 3, 4, 5

tr(3) 1, 2, 7, 8, 9

tr(4) 1, 7, 9

tr(5) 2, 3, 7, 9

Table 8. An example of the set of FIS (SFIS) for Table 7 (θ0 = 3).

SFIS(1) = {{1}, {2}, {7}, {9}}
SFIS(2) = {{1, 2}, {1, 7}, {1, 9}, {2, 7}, {2, 9}, {7, 9}}
⇒{{1, 7}, {1, 9}, {2, 7}, {2, 9}, {7, 9}}
SFIS (3) = {{1, 2, 7}, {1, 2, 9}, {1, 7, 9}, {2, 7, 9}}
⇒{{1, 7, 9}, {2, 7, 9}}
SFIS(4) = {1, 2, 7, 9}
⇒{φ}
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Focus for future studies:

(1) The differences of performance evaluation between the above three methods
were considered by the plain data generation model. To examine them in a
much closer model to the real-world.

(2) To apply three methods to the real-world dataset after finishing the studies
(1).

(3) To expand the DT to the transaction database and study if both STRIMs
can be applied to such a database and work effectively.

A Transaction Database and Association Rule Learning
[21]

Transaction database (TrD) is defined as a set of records called transaction (tr):
TrD = {tr(i)|i = 1, . . . ,m}. Here, each tr(i) is a subset of an item set defined
with Itm = {itm(j)|j = 1, . . . , n}. One of the examples is shown in Table 7
where m = 5 and Itm = {itm(j) = j|j = 1, . . . , n = 9}. Now let be ∀X ⊆ Itm
then Occ(X) = {tr(i)|X ⊆ tr(i)} is called the occurrence set of X and its
frequency is denoted freq(X) = |Occ(X)|. For example, let be X = {1} in
Table 7 then Occ(X) = {tr(1), tr(3), tr(4)} and freq(X) = 3. ∃X ⊆ Itm whose
occurrence set is often found in TrD is called a frequent item set (FIS). Table 8
arranges FIS of X with freq(X) ≥ θ0 = 3 in Table 7 and shows the set of FIS
(SFIS(|X|)) every |X|. For example, SFIS(|X| = 1) in Table 8 can be easily
obtained by tallying the frequency of TrD with X. SFIS(|X| = 2) should be
constructed by every combination of the element of SFIS(|X| = 1) and confirm
them by use of TrD then freq({1, 2}) = 2 � 3 and {1, 2} is deleted. The
result is shown after the symbol “⇒”. In the same way, SFIS(|X| = 3) should
be constructed by every combination of items in SFIS(|X| = 2). However,
{1, 2, 7} or {1, 2, 9} should be deleted since SFIS(|X| = 2) doesn’t include
{1, 2}, which is called downward closure property of frequency (DCPF ). The
rest of FIS(|X| = 3) are confirmed by use of TrD. As well as the following.

The algorithm that effectively generates SFIS(|X| = l+1) from SFIS(|X| =
l) by use of DCPF is called Apriori algorithm [18] and implemented by R lan-
guage as apriori() function in the library “arules” and is often used for association
rule learning [17] problems.

Now let ∀X,∀Y ⊆ Itm and X ∪ Y ∈ FIS ⊆ SFIS then X and Y often
simultaneously occur, which is called a co-occurrence set with freq(X ∪ Y ) and
induce rules called the association rule (AR): if X then Y , or: if Y then X. The
following three indexes: support, confidence and lift are often referred as the quality
of AR:

supp(X) =
freq(X)
|TrD| = P (X),

conf(X → Y ) =
supp(X ∪ Y )

supp(X)
= P (Y |X),
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lift(X → Y ) =
supp(X ∪ Y )

supp(X) · supp(Y )
=

conf(X → Y )
supp(Y )

=
P (Y |X)
P (Y )

,

where “→” denotes implication. Support is an index of how frequency the item
set appears in the dataset and confidence how often the rule has been found to
be true. Lift implies the degree to which X and Y are dependent on one another.
If lift(X → Y ) = 1 then X and Y are independent of each other and AR has
no sense.

For example, {1, 7, 9} in Table 8 is a co-occurrence set with freq({1, 7, 9}) =
3, which induces AR: if {1, 7} has occurred then {9} will occur with
supp({1, 7}) = 3/5. conf({1, 7} → {9}) = 3/3 = 1 and lift({1, 7} → {9}) =
5/4. This AR is valid to some extent since the lift > 1.

There are various kinds of TrD = {tr(i)|i = 1, . . . ,m} and DT: S = (U,A =
C ∪ {D}, V, ρ) can be regarded as one of TrD with corresponding relationships:
N → m, u(i) = (ρ(u(i), C(1)) . . . ρ(u(i), C(|C|)) ρ(u(i),D)) → tr(i) and V =
∪a∈AVa → Itm. For example, if u(1) = (1234512) in the specification of Sect. 3
then {11, 22, 33, 44, 55, 61, 72} corresponds to tr(1). In this way, the U with N =
5,000 corresponding to Table 3 can be transformed into the TrD form: d.tran
and the if-then rules behind the U can be induced by ARL of the following
statement:

apriori(d.tran, parameter = list(support= 0.003, confidence = 0.80, maxlen = 5)).

This example induces rules satisfying conf(X → Y ) ≥ 0.80 after finding the co-
occurrence set satisfying the condition supp(X ∪ Y ) ≥ 0.003 and |X ∪ Y | ≤ 5.
The part of the number of 240 ARs induced is shown in Table 9 after sorting
them in descending order of lift. In the surface caput of Table 9, Rule No. shows
the descending order, lhs and rhs are abbreviations of left hand side and right
hand side of an if-then rule respectively, and count is freq(lhs ∪ rhs).

Table 9. An example of estimated rules by apriori function for the dataset correspond-
ing to that in Table 3.

Rule no. lhs rhs Support Confidence Lift Count

1 {24, 34, 44} => {74} 0.008 1.000 5.20 40

5 {14, 24, 42, 65} => {74} 0.003 1.000 5.20 15

6 {12, 22, 32} => {72} 0.007 1.000 5.15 36

14 {15, 21, 32, 42} => {72} 0.003 1.000 5.15 15

22 {15, 25, 55, 63} => {75} 0.003 1.000 5.02 17

23 {11, 23, 35, 45} => {75} 0.003 1.000 5.02 15

41 {24, 42, 63, 72} => {32} 0.003 0.938 4.85 15

42 {11, 31, 41} => {71} 0.010 1.000 4.84 49

55 {23, 33, 43} => {73} 0.006 1.000 4.81 32

56 {13, 23, 43} => {73} 0.006 1.000 4.81 29

75 {12, 22} => {72} 0.033 0.918 4.73 167

76 {11, 21, 32} => {71} 0.008 0.976 4.72 40
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Table 9 shows the following: For example, RN = 1 indicates if C(2) = 4 ∧
C(3) = 4 ∧ C(4) = 4 then D = 4 and count = freq(lhs ∪ rhs) = support ·
|TrD| = 0.008 · 5000 = 40. RN = 41 is an interesting case that lhs includes
the decision attribute value 72 (D = 2) and rhs is the condition attribute 32
(C(3) = 2). Such rules should be deleted when inducing rules from DT by ARL
since TrD has neither the explanatory nor response variables. When inducing
rules from an information table which doesn’t have such a distinction, ARL can
be used. RN = 75 coincides with R(2, 1) in Table 2. However, most of ARs from
the DT is such rules adding a pair of the condition attribute and its value to
the pre-specified rules in Table 2, that is, the part of pre-specified rules or those
having no sense against them.

Table 10. An example of estimated rules of D = 1 by apriori function for the dataset
corresponding to that in Table 3.

Rule No. lhs rhs Support Confidence Lift Count

42(1) {11, 31, 41} => {71} 0.010 1.000 4.84 49

47(6) {11, 21, 31, 43} => {71} 0.003 1.000 4.84 17

48(7) {11, 21, 43, 52} => {71} 0.003 1.000 4.84 15

49(8) {14, 25, 31, 41} => {71} 0.004 1.000 4.84 18

124(24) {25, 31, 41} => {71} 0.010 0.945 4.58 52

125(25) {31, 41} => {71} 0.041 0.945 4.58 207

143(30) {11, 21} => {71} 0.038 0.931 4.51 190

208(46) {11, 21, 63} => {71} 0.008 0.891 4.31 41

211(47) {11, 21, 43} => {71} 0.010 0.889 4.30 48

231(48) {11, 21, 53} => {71} 0.006 0.857 4.15 30

237(49) {11, 21, 33} => {71} 0.006 0.829 4.01 29

Table 10 shows the part of 49 ARs of D = 1 extracted from the above 240
ARs where the number within parentheses in Rule No. shows the lift order in
the 49 ARs of D = 1. This table shows us the following:

(1) The pre-specified rules in Table 2 appears in RN = 125(25) and 143(30)
although there is no objective criterion or standard to adopt them by use
of support, confidence or lift and so on since ARL has no way of arranging
a lot of ARs based on an objective principle.

(2) Accordingly, an analysist can’t help but subjectively adopt several ARs by
his own domain knowledge referring to indexes like lift and so on. Inciden-
tally, the above apriori() function also had difficulties specifying its param-
eters. For example, when specified support = 0.001 or 0.008 fixing the other
parameters, the function induced ARs of the number of 1, 893 or 92. This
example suggests that the specification for its parameters including their
combinations will puzzle the analysist and he can’t help but subjectively
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specify them based on his domain knowledge after many trials when ana-
lyzing the real-world TrD.
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