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Preface

These are the proceedings of the 4th International Joint Conference on Rules and
Reasoning (RuleML+RR 2020). RuleML+RR joined the efforts of two well-established
conference series: the International Web Rule Symposia (RuleML) and the Web
Reasoning and Rule Systems (RR) conferences.

The RuleML symposia have been held since 2002 and the RR conferences since
2007. The RR conferences have been a forum for discussion and dissemination of new
results on Web Reasoning and Rule Systems, with an emphasis on rule-based
approaches and languages. The RuleML symposia were devoted to disseminating
research, applications, languages, and standards for rule technologies, with attention to
both theoretical and practical developments, to challenging new ideas, and to industrial
applications. Building on the tradition of both, RuleML and RR, the joint conference
series RuleML+RR aims at bridging academia and industry in the field of rules, and at
fostering the cross-fertilization between the different communities focused on the
research, development, and applications of rule-based systems. RuleML+RR aims at
being the leading conference series for all subjects concerning theoretical advances,
novel technologies, and innovative applications about knowledge representation and
reasoning with rules.

To leverage these ambitions, RuleML+RR 2020 was organized as part of the virtual
event Declarative AI 2020: Rules, Reasoning, Decisions, and Explanations, that was
held between June 29 – July 1, 2020. This event was co-organized by SINTEF AS,
University of Oslo, and Norwegian University of Science and Technology, under the
umbrella of the SIRIUS Centre for Scalable Data Access. With its general topic
“Declarative Artificial Intelligence,” a core objective of the event was to present the
latest advancements in AI and rules, reasoning, decisions, and explanations and their
adoption in IT systems. To this end, Declarative AI 2020 brought together co-located
events with related interests. In addition to RuleML+RR, this included DecisionCAMP
2020 and the Reasoning Web Summer School (RW 2020).

The RuleML+RR 2020 conference moreover included three subevents:

1. Doctoral Consortium – an initiative to attract and promote student research in rules
and reasoning, with the opportunity for students to present and discuss their ideas,
and benefit from close contact with leading experts in the field.

2. International Rule Challenge – an initiative to provide competition among work in
progress and new visionary ideas concerning innovative rule-oriented applications,
aimed at both research and industry.

3. Industry Track – a forum for all sectors of industry and business (as well as public
sector) to present, discuss, and propose existing or potential rule-based applications.

The program of the main track of RuleML+RR 2020 included the presentation of
seven full research papers and six short papers. These contributions were carefully
selected by the Program Committee (PC) from 30 high-quality submissions to the



event. Each paper was carefully reviewed and discussed by at least three members
of the PC. The technical program was then enriched with the additional contributions
from its subevents as well as from DecisionCAMP 2020, a co-located event aimed at
practitioners.

At RuleML+RR 2020 and DecisionCAMP 2020, four invited keynotes were pre-
sented by experts in the field:

• Dieter Fensel (University of Innsbruck Austria): “Knowledge Graphs: Method-
ologies, Tools, and Selected Use Cases”

• Eyke Hüllermeier (Paderborn University, Germany): “Multilabel Rule Learning”
• Derek Miers, (Gartner, UK): “What the Real World Needs From Decision

Management, Reasoning and AI”
• Arild Waaler (University of Oslo, Norway): “Requirements as Rules”

The chairs sincerely thank the keynote speakers for their contribution to the success
of the event. The chairs also thank the PC members and the additional reviewers for
their hard work in the careful assessment of the submitted papers. Further thanks go to
all authors of contributed papers, in particular, for their efforts in the preparation
of their submissions and the camera-ready versions within the established schedule.
Sincere thanks are due to the chairs of the Doctoral Consortium, the Rule Challenge,
and the Industry Track, and to the chairs of all co-located Declarative AI 2020 events.
The chairs finally thank the entire organization team including the publicity, pro-
ceedings, and sponsorship chairs, who actively contributed to the organization and the
success of the event.

A special thanks goes to all the sponsors of RuleML+RR 2020 and Declarative AI
2020: SINTEF AS, University of Oslo, Norwegian University of Science and Tech-
nology, SIRIUS Centre for Scalable Data Access, RuleML Inc., RR Association, and
Springer. A special thanks also goes to the publisher, Springer, for their cooperation in
editing this volume and publication of these proceedings. We are grateful to the
sponsors of the RuleML+RR 2020 Awards: the RR Association sponsored the Best
Paper Award and the Best Presentation Award, and Springer sponsored the Best
Student Paper Award and the Rule Challenge Award.

June 2020 Víctor Gutiérrez-Basulto
Tomáš Kliegr
Ahmet Soylu
Martin Giese

Dumitru Roman
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Keynote Abstracts



Knowledge Graphs: Methodology, Tools
and Selected Use Cases

Dieter Fensel

University of Innsbruck, STI Innsbruck, Austria
dieter.fensel@sti2.at

Abstract. Smart speakers such as Alexa and later Google Home introduced
Artificial Intelligence (AI) in billions of households making AI an everyday
experience. We can now look for information and order products and services
without leaving the house or touching a computer. We just talk to a box and this
thing will kindly perform the desired tasks for us. These new communication
channels define a new challenge for successful eMarketing and eCommerce. Just
running a traditional website with many colorful pictures is no longer state of the
art. Actually, the web is currently reinventing itself by applying schema.org.
Data, content, and services (i.e., resources) become semantically annotated
allowing software agents, so-called bots, to search through the web under-
standing its content. The user nowadays consults their personal bot to find,
aggregate, and personalize information, to reserve, book, or buy products and
services. In consequence, it becomes increasingly important for providers of
information, products, and services to be highly active and visible in these new
online channels to ensure their future economic maturity.
In our talk, we discuss methods and tools helping to achieve these goals. The

core is the development and application of machine processable (semantic)
annotations of online resources as well as their aggregation in large Knowledge
Graphs. This enables bots to not only understand a question but be able to
answer a question in a knowledgeable way and to organize a useful dialogue.
We discuss the process of knowledge generation, hosting, curation, and
deployment, focusing on the use of the Knowledge Graph to support
dialogue-based interfaces. We also provide an outlook on the broader applica-
tion context of cyber-physical systems and physical agents.

Dieter Fensel—With the help of Umutcan Şimşek, Kevin Angele, Elwin Huaman, Elias Kärle,
Oleksandra Panasiuk, Ioan Toma, Jürgen Umbrich, and Alexander Wahler.



Requirements as Rules

Arild Waaler

University of Oslo, Norway
arild@ifi.uio.no

Abstract. A requirement is a statement to the effect that some function or
quality shall be fulfilled. The concept of a requirement, and the associated
concept of verification, suggests an interpretation in logical terms, with
requirement statements represented as rules and verification conditions expres-
sed in terms of logical consequence. This talk presents an industry-driven ini-
tiative to implement this idea for the digitalization of requirement handling
along the value chain of the oil and gas industry. I will sketch an OWL-based
approach that is simple, standards-based, and scalable – features that are vital for
implementation in industry. I will then address shortcomings of the model along
with constraints for solutions.
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Rule-Based Multi-label Classification:
Challenges and Opportunities

Eyke Hüllermeier1(B), Johannes Fürnkranz2, Eneldo Loza Mencia3,
Vu-Linh Nguyen1, and Michael Rapp3

1 Paderborn University, Paderborn, Germany
eyke@upb.de

2 Johannes Kepler University, Linz, Austria
3 Technical University Darmstadt, Darmstadt, Germany

Abstract. In the context of multi-label classification (MLC), rule-based
learning algorithms have a number of appealing properties that are not,
at least not as a whole, shared by other approaches. This includes the
potential interpretability of rules, their ability to model (local) label
dependencies in a flexible way, and the facile customization of a predictor
to different loss functions. In this paper, we present a modular framework
for rule-based MLC and discuss related challenges and opportunities for
multi-label rule learning.

Keywords: Multi-label classification · Rule learning

1 Introduction

The setting of multi-label classification (MLC), which generalizes standard
multi-class classification by relaxing the assumption of mutual exclusiveness of
classes, has received a lot of attention in the recent machine learning literature—
we refer to (Tsoumakas et al. 2010) and (Zhang and Zhou 2014) for survey
articles on this topic. The motivation for MLC originated in the field of text
categorization (Hayes and Weinstein 1991; Lewis 1992, 2004), but nowadays
multi-label methods are used in applications as diverse as music categorization
(Trohidis et al. 2008), semantic scene classification (Boutell et al. 2004), and
protein function classification (Elisseeff and Weston 2001).

Rule induction is a well-established approach to supervised learning in gen-
eral (Fürnkranz et al. 2012; Fürnkranz and Kliegr 2015). Since rules can be
understood, analyzed, and qualitatively evaluated by domain experts, rule learn-
ing algorithms are often considered as a viable alternative when, in addition to
predictive accuracy, criteria such as interpretability, transparency, and explain-
ability are considered important. Ideally, by revealing patterns and regularities
in the data, a rule-based theory yields new insights in the application domain.

This motivation applies to MLC as well as to any other machine learning
problem. In addition, rule induction exhibits a number of other features that

c© Springer Nature Switzerland AG 2020
V. Gutiérrez-Basulto et al. (Eds.): RuleML+RR 2020, LNCS 12173, pp. 3–19, 2020.
https://doi.org/10.1007/978-3-030-57977-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57977-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-57977-7_1


4 E. Hüllermeier et al.

might be useful in the context of MLC. In particular, rules allow for modeling
label dependencies in a very flexible manner—the goal to improve predictive
accuracy by exploiting such dependencies is at the core of research in MLC
(Dembczyński et al. 2012), as opposed to the obvious idea of reducing multi-label
to binary classification by learning a single binary classifier for each class label
separately. Besides, a rule-based approach may well comply with the existence
of a wide spectrum of loss functions in MLC, because rules can be tailored to
different losses in a flexible way. For example, an existing rule-based model could
be adapted to a new loss function by modifying the predictions in the head of
the rules, without the need for relearning a complete model from scratch.

In this paper, we present elements of a general framework for multi-label
rule learning, which is developed by the authors in the course of a joint research
project on the topic. In particular, we highlight the potential of a rule-based
approach to MLC and the opportunities it offers, but also the challenges it
raises from a methodological point of view, especially compared to rule learning
for standard classification. In preparation of this discussion, we start with a brief
refresher on the two main topics, multi-label classification and rule learning.

2 Multi-label Classification

Let X denote an instance space, and let L = {λ1, . . . , λK} be a finite set of class
labels. We assume that an instance x ∈ X is (probabilistically) associated with
a subset of labels Λ = Λ(x) ∈ 2L; this subset is often called the set of relevant
labels, while the complement L \ Λ(x) is considered to be irrelevant for x. We
identify a set Λ of relevant labels with a binary vector y = (y1, . . . , yK), where
yk = �λk ∈ Λ�.1 By Y = {0, 1}K we denote the set of possible labelings.

We assume observations to be realizations of random variables generated
independently and identically (i.i.d.) according to a probability measure P on
X × Y (with density/mass function p), i.e., an observation y = (y1, . . . , yK) is
the realization of a corresponding random vector Y = (Y1, . . . , YK). We denote
by p(Y |x) the conditional distribution of Y given X = x, and by pk(Yk |x) the
corresponding marginal distribution of the k-th label Yk:

pk(b |x) =
∑

y∈Y:yk=b

p(y |x) . (1)

Given training data in the form of a finite set of observations

D =
{
(xn,yn)

}N

n=1
⊂ X × Y , (2)

drawn independently from P (X,Y), the goal in MLC is to learn a predictive
model that generalizes well beyond these observations, i.e., which yields predic-
tions that minimize the expected risk with respect to a specific loss function.
In this regard, we need to clarify what type of predictions are sought and how
these predictions are assessed.
1 �·� is the indicator function, i.e., �A� = 1 if the predicate A is true and = 0 otherwise.
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2.1 Predictive Models in MLC

A multi-label classifier h is a mapping X −→ Y that assigns a (predicted) label
subset to each instance x ∈ X . Thus, the output of a classifier h is a vector

h(x) = (h1(x), . . . , hK(x)) ∈ {0, 1}K . (3)

Predictions of this kind will also be denoted ŷ = (ŷ1, . . . , ŷK).
Sometimes, MLC is treated as a ranking (instead of a subset selection) prob-

lem, in which the labels are sorted according to their degree or probability of
relevance. Then, the prediction takes the form of a scoring function:

s(x) = (s1(x), s2(x), . . . , sK(x)) ∈ R
K . (4)

A prediction of that kind encodes a ranking π : [K] −→ [K], such that π(k)
is the position of label λk. This ranking is obtained by sorting the labels λk in
decreasing order of their scores sk(x), i.e., π(k) < π(j) iff sk(x) > sj(x).

2.2 MLC Loss Functions

In the literature, various MLC loss functions have been proposed. Commonly
used are the subset 0/1 loss �S and the Hamming loss �H , which both generalize
the standard 0/1 loss for multi-class classification, albeit in very different ways:

�S(y, ŷ) = �y �= ŷ� , (5)

�H(y, ŷ) =
1
K

K∑

k=1

�yk �= ŷk� . (6)

While �H measures the fraction of incorrectly predicted labels, �S indiscrimi-
nately assigns the maximal error of 1 if one or more of the labels have been
incorrectly predicted.

Besides, other performance metrics are often reported in experimental stud-
ies. For example, the (instance-wise) F-measure is defined in terms of the har-
monic mean of precision and recall, and can be written as follows:

F (y, ŷ) =
2
∑K

k=1 ŷk yk∑K
k=1 ŷk +

∑K
k=1 yk

.

The F-measure takes values in the unit interval and can be turned into a loss
function by setting �F (y, ŷ) = 1 − F (y, ŷ).

2.3 Label Dependence

The goal of classification algorithms in general is to capture dependencies
between input features Xi and the target variable Y . In fact, the prediction
of a scoring classifier is often regarded as an approximation of the conditional
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probability p(Y = ŷ |x), i.e., the probability that ŷ is the true label for the given
instance x. In MLC, dependencies may not only exist between the features Xi

and each target, but also between the targets Y1, . . . , YK themselves. The idea
to improve predictive accuracy by capturing such dependencies is a driving force
in research on multi-label classification.

One can distinguish between unconditional and conditional independence of
labels (Dembczyński et al. 2012). In the first case, the joint distribution p(Y) in
the label space factorizes into the product of the marginals p(Yk), i.e.,

p(Y) = p(Y1) × p(Y2) × · · · × p(YK) ,

whereas in the latter case, the factorization

p(Y |x) = p(Y1 |x) × p(Y2 |x) × · · · × p(YK |x)

holds conditioned on x, for every instance x. In other words, unconditional
dependence is a kind of global dependence (for example originating from a hier-
archical structure on the labels), whereas conditional dependence is a dependence
locally restricted to a single point in the instance space.

It turns out that there is a close connection between label dependence and
the decomposability of loss functions: A decomposable loss can be reduced to the
sum of label-wise losses �k : {0, 1}2 −→ R, i.e.,

�(y, ŷ) =
K∑

k=1

�k(yk, ŷk) , (7)

whereas a non-decomposable loss does not permit such a representation. Clearly,
�H in (6) is decomposable, whereas �S in (5) is not. It can be shown that, to
produce optimal predictions ŷ = h(x) which minimize the expected loss, knowl-
edge about the marginals pk(Yk |x) is sufficient in the case of a decomposable
loss, but not in the case of a non-decomposable loss (Dembczyński et al. 2012).
Instead, if a loss is non-decomposable, probabilities for larger label subsets are
needed, and in the extreme case even the entire distribution p(Y |x) (like in the
case of �S). On an algorithmic level, this means that decomposable losses can be
tackled by binary relevance learning (i.e., learning one binary classifier for each
label individually), whereas non-decomposable losses call for more sophisticated
learning methods that are able to take label-dependencies into account.

3 Rule-Based MLC Models

A rule-based classifier in the context of MLC is understood as a collection
R = {r1, . . . , rM} of individual rules rm, where each rule rm : Hm ← Bm

is characterized by a head Hm and a body Bm. Roughly speaking, the rule head
makes an assertion about the relevance or irrelevance of individual labels λk or
larger subsets of labels, whereas the rule body specifies conditions under which
this assertion is valid. Table 1 shows examples of different types of MLC rules for
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Table 1. Examples of different types of rules in a hypothetical newspaper subscription
domain (Loza Menćıa et al. 2018), which captures a hypothetical relation between
customers (characterized by their educational level, sex, marital status, and whether
they have children or not) and the types of magazine or newspapers they subscribe
to (tabloid, quality newspaper, sports, or fashion magazine). Attribute names in italic
denote label attributes, attributes with an overline denote negated conditions.

Head Body Example rule

Single-label
Positive

Label-independent
quality ← University, Female

Negative tabloid ← Secondary, Divorced

Single-label
Positive

Mixed representation
quality ← tabloid, University

Negative quality← sports, tabloid, Primary

Single-label
Positive

Label-dependent
quality ← fashion, sports

Negative sports ← fashion

Multi-label
Partial

Label-independent
quality, fashion ← University, Female

Complete quality, tabloid, fashion, sports← University, Female

Multi-label Partial
Mixed representation tabloid, sports ← fashion, Children

Label-dependent fashion, sports ← quality, tabloid

a hypothetical newspaper subscription domain. The rule body typically appears
in the form of a logical predicate that specifies conditions on a query instance
x, for example a logical conjunction of restrictions on some of the features. The
concrete type of restriction naturally depends on the type of feature (e.g., cate-
gorical, numerical), though equality and inequality constraints are often used.

Interestingly, in the context of MLC, one may think of allowing a rule to
specify conditions on instance features and labels simultaneously. This is a nat-
ural and very appealing way to capture label dependencies. We call rules of that
kind mixed representation rules, because they mix conditions on features with
conditions on class labels (cf. Table 1). Stated differently, they use labels in two
different roles: as target variables to be predicted and as auxiliary input features
to accomplish such predictions (for some example rules, we refer to Table 1 in
Sect. 4.6). Note that this is very much in line with the idea of classifier chains
(Read et al. 2011) as well as the generalizations of binary relevance learning pro-
posed by Montañés et al. (2014). In passing, we also note that these approaches
are not uncritical from a theoretical point of view, because the auxiliary input
features are only available for training. At prediction time, they constitute miss-
ing values that have to be imputed by corresponding estimates, which may cause
attribute noise and deteriorate predictive accuracy (Senge et al. 2013).

As for the rule head, the following distinctions can be made.

– Partial versus complete: A head Hm may predict relevancy or irrelevancy for
every label or only for a subset of labels. In the first case, we call the head
(or the rule) complete. In the second case, where the rule only predicts on
some of the labels but abstains on the others, we speak about a partial rule.
In the special—but not uncommon—case of rules predicting on exactly one
label, we refer to them as single-label rules.
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– Binary versus soft : Information might be given in the form of deterministic
(e.g., ŷk = 1) or probabilistic predictions (e.g., p(yk = 1) = 0.7). Besides,
other types of representations are of course conceivable. For example, instead
of using standard probability, uncertainty about a prediction could be speci-
fied in terms of generalized formalisms, such as possibility or imprecise prob-
ability distributions, or simply in terms of certain statistics on label distri-
butions (e.g., the number of positive and negative examples for each label).
We make a broad distinction between binary rules (with deterministic pre-
dictions) and “soft” rules (with non-deterministic predictions).

– Interactive versus non-interactive: The information may refer to individual
labels (in which case the rule could be split into several rules, one for each
label, and all with the same body) or capture interaction between labels. For
example, in the case of probabilistic predictions, instead of specifying one
distribution per label, a joint distribution (different from the product of the
corresponding marginal distributions) could be specified over a subset or even
the entire set of labels.

Eventually, a rule set R shall be associated with a predictive model, either a
classifier hR of the form (3) or a scoring function sR of the form (4). Obviously,
this requires a suitable interpretation of R. In Sect. 4.3, we discuss two possible
strategies, namely to order R into a rule list, which is processed sequentially
until a final prediction is obtained, or to combine the (soft) predictions of the
individual rules in the set into an overall predictions.

4 Learning Rule-Based MLC Models

Learning multi-label rules and rule-based models comes with a number of chal-
lenges that are specific to this problem. In the following, we briefly review impor-
tant problems and some proposed solutions, focusing on the differences to con-
ventional rule learning.

4.1 Rule Evaluation

At the core of essentially all rule learning methods is the search for “good”
(candidate) rules rm : Hm ← Bm, which are then combined into a global model
(cf. Sect. 4.3). But what qualifies a rule as being good?

In conventional (single-target) classification, individual rules are typically
assessed according to their coverage and precision: Ideally, a rule is general in
the sense of covering a large part of the instance space and, correspondingly,
many training examples. At the same time, the rule allows for making accurate
predictions, i.e., most of the instances it covers belong to the same class (which
then defines the head of the rule). Obviously, these two criteria tend to be in
conflict with each other. Evaluation measures commonly used as search heuristics
in this regard, such as the m-estimate or the F-measure, quantify both aspects
and combine them into a single (compromise) metric (Fürnkranz and Flach
2005).
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Fig. 1. Illustration of a rule which covers instances x3, x4, x5, and x6 (instance cov-
erage) and for these makes predictions for labels y1, y3, y5, y7, and y8 (label coverage),
as indicated by the gray background. A “good” rule has a high coverage (gray region)
while making only a few mistakes (indicated by red boxes). (Color figure online)

In the context of MLC, a third criterion comes into play, because while rules
in the standard, multi-class setting always predict one particular class value or
label (i.e., the head of a rule is always λk or, equivalently, yk = 1 for some k),
the head of a multi-label rule can predict the relevance of a different number
of labels. Complete rules predict the relevance (yk = 1) or irrelevance (yk = 0)
for all K labels. In general, however, the head may “cover” only a subset of
labels, i.e., it predicts positive or negative for some of the labels while making
no prediction on others (which we denote as yk = ⊥). To distinguish the two
types of coverage, we denote the examples covered by the rule body as instance
coverage and the labels covered by the rule head as label coverage. As sketched
in Fig. 1, the goal is then to find a rule that correctly covers many instances and
many labels, i.e., that covers a large area in this instance/label matrix.

As an aside, note that negative predictions (yk = 0) are not very common
in conventional rule learning, where a rule head is normally positive; in other
words, a rule body normally specifies conditions under which a class is present,
not absent. Then, however, no distinction between predicting negative and “not
knowing” is possible: An instance that is not predicted positive, as it is not
covered by any rule, is automatically predicted negative. In the context of MLC,
however, such a distinction is arguably important, and the learner should be
allowed to (partially) “abstain”: Having to deal with many label simultaneously,
it might be more certain on some of them and less on others.

The specification of a search heuristic that quantifies and combines instance
coverage, label coverage, and precision further complicates the evaluation com-
pared to conventional classification and calls for another compromise, namely a
trade-off between precise predictions on a few labels and presumably less precise
predictions on many labels. For example, Klein et al. (2019) extend a standard
rule evaluation measure multiplying it with a factor ρ(|Hm|), where |Hm| is
the length of the head (the number of predicted labels) and ρ a monotonically
increasing function (or a function peaked at a certain value, thereby encouraging
rule heads of a specific length).
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As already said, the local nature of rules has a number of advantages, but it
may also cause difficulties in the context of MLC, especially due to the highly
imbalanced distribution of positive and negative labels, which is a characteristic
property of MLC. In many cases, only a tiny fraction of the labels is relevant
(positive), while the majority is irrelevant (negative). In general, this makes it
difficult to find a good rule with positive predictions in its head. On the contrary,
the learner has a strong incentive to make negative predictions, especially for
loss functions such as Hamming. For example, since most labels will be irrele-
vant, even the default rule (with empty body) predicting all labels to be always
negative will often have a very low Hamming loss. In fact, with a high precision
and an even higher coverage (both in the instance and label space), this rule will
have a strong evaluation. The coverage of a rule with positive predictions will
necessarily be much smaller and probably lead to a worse evaluation, even with
a slightly better precision. Evaluation measures for multi-label rules should be
aware of this problem and avoid a strong bias in favor of negative rules.

Indeed, while negative predictions might be favored by Hamming loss, they
will yield poor predictions in terms of other loss functions, such as subset 0/1.
In fact, a possible disadvantage of general evaluation measures and rule learning
heuristics is that they are not necessarily adapted to an underlying multi-label
loss � to be minimized—for example, Rapp et al. (2019) show that, depending
on the loss �, the coverage and precision of single-label rules should be weighed
differently. Optimizing precision on individual labels is in line with minimiz-
ing the Hamming loss, however, this correspondence will not necessarily hold
for other loss functions, especially non-decomposable losses. Therefore, another
approach to rule evaluation is to consider its (empirical) performance on the
training data in terms of the loss �, i.e., the smallest loss that can be achieved on
the instance/label region covered by the rule. Constructing an optimal predictor,
i.e., finding a loss minimizing head for a given rule body, may be computationally
challenging though (as discussed in Sect. 4.2). A flexible way to directly optimize
for a broad class of multi-label losses is gradient boosting, which was successfully
used in decision tree learning. Recently, it was adapted to learning ensembles
of boosted multi-label rules (BOOMER), including the ability to optimize for
decomposable and non-decomposable losses (Rapp et al. 2020).

4.2 Rule Generation

Learning a rule-based model often starts with generating a relatively large set
of candidate rules, which substantially exceeds the size of the model R even-
tually produced. As explained above, different types of rules are conceivable
(partial/complete, binary/soft, interactive/non-interactive, etc.) in this regard.

Search Space. Like in traditional rule learning, the search space of possible bod-
ies Bm can be explored in a systematic way in order to overcome the exponential
size, e.g., in a top-down manner. However, in MLC, we face the additional dif-
ficulty that both the body and the head of a rule can be refined, and that the
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space of possible heads Hm also grows exponentially with the number of avail-
able labels. To reduce the computational complexity of a search for multi-label
heads, certain properties of commonly used multi-label evaluation measures—
namely anti-monotonicity and decomposability—can be exploited for pruning
the search space (Rapp et al. 2018). Although this allows for efficiently selecting
appropriate multi-label heads in theory, experiments have revealed that most of
the rules learned on real data sets have heads with a single label. The reason is
that these measures neglect the additional quality dimension of rules introduced
by the occurrence of multiple labels. More precisely, a high label coverage is not
especially rewarded. A better trade-off between label coverage and precision can
be achieved, for instance, by explicitly introducing a bias towards larger heads
(Klein et al. 2019). However, a more natural approach would be to incorporate
the trade-off directly into the measure, as discussed in Sect. 4.1.

Search Strategies. The space of possible multi-label rules rm can be searched
in different ways. The most obvious and commonly used choice is a general-
to-specific hill climbing search that greedily refines the current rule in order to
approach the best rule. Alternatively, more costly search techniques such as evo-
lutionary algorithms can be employed for finding strong multi-label classification
rules (Allamanis et al. 2013; Arunadevi and Rajamani 2011; Ávila et al. 2010).

Exhaustive search guarantees to find the optimal, loss-minimizing rule in
the search space, but is usually intractable. A possible compromise is to adapt
association rule discovery, which finds all rules in a search space constrained
by minimum support and minimum confidence constraints, for finding multi-
label rules. To this end, one can use the union of labels and features as the
basic itemset, discover all frequent itemsets, and derive all association rules with
minimum confidence from these frequent itemsets, as most association rule dis-
covery algorithms do. The only modification is that only rules with labels in the
head are allowed, whereas potential rules with features in the head will be dis-
regarded. Such approaches are, e.g., followed by Thabtah et al. (2006) and Bosc
et al. (2016). Thabtah et al. (2004) and similarly Li et al. (2008) first induce
only single-label association rules, which are then merged to create multi-label
rules. Veloso et al. (2007) have proposed a lazy algorithm, which finds rules
from the neighborhood of a test instance during prediction. Some works have
focused on using association rule discovery in the label space for discovering
global dependencies, with the idea of using them for improving the predictions
of a conventional MLC classifier (Park and Fürnkranz 2008; Charte et al. 2014).

4.3 Model Formation

Constructing a rule-based MLC model typically involves the selection of a suit-
able subset of rules R and their aggregation into a classifier hR or a ranker sR.
The aggregation essentially addresses the question of how to combine the predic-
tions of individual rules rm(x) into an overall prediction (cf. Sect. 4.5). In this
regard, it is worth mentioning that the type of prediction of the final classifier is
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not necessarily the same as the predictions of the individual rules; for example,
the former might be binary although the latter are soft.

In inductive rule learning, two types of models are commonly used: ordered
rule lists (also known as decision lists) and rule sets. Both can be learned with
various strategies, but the former are typically learned using a sequential cov-
ering strategy whereas the latter are often learned by ensemble algorithms. In
the following, we will briefly review both approaches in the context of multi-label
rule learning.

Learning Rule Lists. In the single-label case, rule lists are typically learned one
rule at a time, removing all covered examples after each rule has been learned.
Although it may seem quite straightforward, an adaptation of this simple cov-
ering or separate-and-conquer learning strategy (Fürnkranz 1999) to the multi-
label case is not entirely trivial. In fact, in the multi-label case, this strategy
can only be used if rules with complete heads are learned, which corresponds to
learning a rule list with the label powerset strategy, i.e., where each subset of the
labels that occurs in the training data is tackled as a separate meta-class. This,
however, comes with the disadvantage of losing flexibility and the possibility of
tailoring rules to individual labels. Indeed, the examples of a specific class often
share some common properties and could be covered by a single rule. Additional
labels could be added by additional partial-head rules. For this case, however,
the covering strategy needs to be generalized.

A possible adaptation of this strategy is to remove all covered labels from
these examples (the gray region in Fig. 1), so that each example remains in
the training set until all of its labels are covered by at least one rule. However,
in such an approach, it is difficult to model label dependencies. As a remedy,
Loza Menćıa and Janssen (2016) proposed a method that learns single-head rules
by a layer-wise binary relevance algorithm, where the rules in each layer can use
the labels that have been predicted in previous layers. Nevertheless, this method
still has its shortcomings, most notably the restriction to single-label rules.

Learning Rule Sets. For learning rule sets, ideas from ensemble learning, in
particular from stagewise additive modeling or boosting, have previously been
adapted to single-label rule learning (see, e.g., (Dembczynski et al. 2010)). Along
these lines is BOOMER (cf. Sect. 4.2), a multi-label variant of this family of rule
learning algorithms, which provides a general framework for finding rule sets
that optimize any multi-label loss functions. Following the stagewise procedure
commonly used in gradient boosting, a rule set is built incrementally by adding
partial or complete rules. For prediction, the “soft” information provided in the
heads of the rules are aggregated using a weighted voting procedure that is tai-
lored to the loss function at hand. BOOMER’s versatility has been demonstrated
on both decomposable and non-decomposable loss functions.

Learning rule sets in this way avoids many of the problems caused by rule
lists, because the rules can be learned and evaluated in isolation, independently
of the others. Then, however, multiple rules may cover a query instance at pre-
diction time. In such cases, a suitable aggregation strategy for multi-label pre-
dictions needs to be found, which will be discussed in Sect. 4.5.
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4.4 Partial Abstention

As already discussed in Sect. 4.1, a single MLC rule rm is not necessarily obliged
to predict on all labels, i.e., not all labels are necessarily covered by the rule head
Hm. In other words, a rule is allowed to abstain on a certain subset of labels,
and the choice—in particular the size—of this subset is (indirectly) controlled
by the rule evaluation measure, which reflects a preference in favor of a higher
label coverage.

The idea of (partial) abstention is actually more general and connected to
standard (multi-class) classification with a reject option (Cortes et al. 2016;
Franc and Prusa 2019). The basic notion is to make predictions more reliable
by allowing the learner to restrict to those labels on which it feels sufficiently
confident. In rule-based MLC, the possibility to abstain is of course not restricted
to single rules, but may also apply to the model as a whole, i.e., abstention might
also be allowed for the overall prediction hR(x). The following cases could be
distinguished:

– Abstention is neither allowed for individual rules nor the overall prediction.
– Abstention is allowed for individual rules, but not for the overall prediction. In

this case, abstention cannot be decided for each rule independently, because
each label must be covered by at least one rule.

– Abstention is not allowed for individual rules but for the overall prediction. In
this case, given a query x, the former could be used to produce an estimation
of p(· |x), and the overall prediction hR(x) can then be obtained via (10).

– Abstention is allowed for both individual rules and the overall prediction.

In spite of being an interesting extension of the standard setting, there is
surprisingly little work on abstention in multi-label classification so far—the
first we are aware of is (Pillai et al. 2013), which considers a specific variant of
the problem with a focus on the F-measure as a performance metric. Nguyen
and Hüllermeier (2020) introduce a generalized setting of MLC with abstention,
in which the classifier is allowed to produce partial predictions of the form

ŷ = h(x) ∈ Ypa = {0,⊥, 1}K , (8)

where ŷi = ⊥ indicates an abstention on the label λi. As already said, the basic
idea is to let the learner abstain on those labels on which it feels uncertain.
On the other side, complete predictions are of course preferred to less complete
ones. Consequently, there is a conflict between the objectives of reliability and
completeness. To capture this aspect, Nguyen and Hüllermeier (2020) introduce
a generalized class of loss functions

L : Y × Ypa −→ R+, (9)

which compare a partial prediction ŷ with a ground-truth labeling y. This is
essentially done by applying a standard MLC loss � to the predicted part of the
labeling and adding a penality for abstention, where the latter depends on the
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number of labels on which the learner abstains. Given such a loss, and assuming
a probabilistic prediction for a query instance x, i.e., a probability p(· |x) on the
set of labelings (or at least an estimation thereof), an optimal prediction can be
determined by expected loss minimization, i.e., by finding

h(x) = ŷ ∈ argmin
ŷ∈Ypa

∑

y∈Y
L(y, ŷ) · p(y |x). (10)

Thus, finding an optimal partial prediction, for example the head of a single rule,
eventually comes down to solving an optimization problem. The difficulty of this
problem depends on several choices, most notably the underlying MLC loss �
and its extension L. In any case, this approach based on expected generalized
loss minimization allows for controlling the learner’s propensity for abstention
by means of the penalty: Increasing the penalty will increase the expected loss
of a more partial compared to a less partial prediction, and therefore lead to
less abstention.

4.5 Aggregation of Predictions

An important problem when dealing with rule sets is the aggregation or com-
bination of the predictions rm(x) produced by different rules into an overall
prediction hR(x). In fact, a given query x ∈ X will normally be covered by
more than a single rule. The need for aggregation becomes especially apparent
in the case of ensemble learning, i.e., where not only a single predictor hR but a
set of multi-label classifiers h1, . . . , hM his considered. Note that the distinction
between these two cases becomes rather blurry in the case of learning rule sets,
because each single rule rm in a set R can also be seen as an individual predic-
tor hm, at least a partial predictor or a predictor that abstains on queries not
covered by its rule body.

Fig. 2. Illustration of the “combine then predict” (left) and “predict then combine”
(right) approaches for the case where relevance information consists of marginal prob-
abilities.

In any case, the aggregation of predictions in MLC is arguably more chal-
lenging and less straightforward than in single-target prediction, where simple
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techniques such as majority voting for classification and averaging for regression
are commonly used. In the case of MLC, predictions ŷ1, . . . , ŷM are elements of
Y, or perhaps Ypa if abstention is allowed, and hence of a more complex nature.
Moreover, it is clear that a single aggregation cannot be assumed to be optimal
for different MLC loss functions. Instead, different losses � will call for different
types of aggregation.

Nguyen et al. (2020) tackle the problem of aggregation from the general per-
spective of ensemble learning. More specifically, they introduce a formal frame-
work of ensemble multi-label classification, in which two principal approaches
are distinguished (cf. Fig. 2):

– In “predict then combine” (PTC), the ensemble members first make (loss
minimizing) predictions ŷ1, . . . , ŷM ∈ Y, which are subsequently combined
into an overall prediction y.

– In “combine then predict” (CTP), (label) relevance information produced by
the individual ensemble members is aggregated first, and a final prediction is
then derived from this aggregation afterward. An example of relevance infor-
mation is a probabilistic prediction, i.e., (estimated) marginal probabilities
p̂ = (p̂1, . . . , p̂K) ∈ [0, 1]K for the relevance of the different labels, or, more
generally, real-valued scores ŝ = (ŝ1, . . . , ŝK) ∈ R

K quantifying the evidence
in favor or against the relevance of a label. Such kind of information is pro-
duced (at least as an intermediate) step by most multi-label learners.

While both approaches generalize (label-wise) voting techniques commonly used
for multi-label ensembles (Gharroudi 2017; Madjarov et al. 2012; Shi et al. 2011;
Tsoumakas 2007), they allow for explicitly taking the target performance mea-
sure (MLC loss function) into account. Therefore, concrete instantiations of
CTP and PTC can be tailored to concrete loss functions �. Experimentally,
we show that standard voting techniques are indeed outperformed by suitable
instantiations of CTP and PTC, and provide some evidence that CTP performs
well for decomposable loss functions, whereas PTC is the better choice for non-
decomposable losses (Nguyen et al. 2020).

4.6 Interpretability

Rule learning algorithms are typically employed when one is not only interested
in accurate predictions but also requires an interpretable theory that can be
understood, analyzed, and qualitatively evaluated by domain experts. Ideally, by
revealing the patterns and regularities that are implicitly captured in the data,
a rule-based theory yields new insights in the application domain. Arguably,
inductive rule learning is a promising approach for solving MLC problems in
an interpretable way (Loza Menćıa et al. 2018). In particular, rules provide
an interpretable model for mapping inputs to outputs, and allow for tightly
integrating input variables and labels into coherent comprehensible theories.

As an illustration, recall the toy domain introduced by Loza Menćıa et al.
(2018), which captures a hypothetical relation between customers and the types
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of magazine or newspapers they subscribe to. Table 1 illustrates various types
of rules which mix input features and labels in a seamless manner. Conventional
rules would map input features to the labels, such as a rule suggesting that
university-educated female readers tend to subscribe to a fashion magazine and
a quality newspaper (line 4). However, in addition, global dependencies between
labels can be explicitly modeled and expressed in the form of rules such as
that subscribers to a fashion magazine do not subscribe to a sports magazine
(line 3). Mixed-representation rules can also capture local dependencies, which
include regular input features as a local context in which a label dependency
holds, such as that readers with a university education, who subscribe to a
tabloid, also subscribe to a quality newspaper (line 2). Such rules mix labels and
features, and are directly interpretable and comprehensible for humans. Even
if complex and long rules are generated, the implication between labels can
be easily grasped by focusing on the part of the rules that actually considers
the labels. Hence, in contrast to many other types of models that capture label
dependencies implicitly, such dependencies can be analyzed and interpreted more
directly.

Nevertheless, surprisingly little attention has been devoted to the aspect of
interpretability in multi-label learning in general, and in multi-label rule learning
in particular. Loza Menćıa et al. (2018) present learned rules of several types for
various real-world benchmark datasets. While these examples nicely illustrate
the potential of rule-based explanations in multi-label domains, it also became
clear that learning powerful general rules, which mix multiple labels with input
features, is still a challenging and largely unsolved problem.

We note in passing that, while rules are commonly perceived to be more
comprehensible than other types of representations and hypothesis languages in
machine learning, the topic of learning interpretable rules is still not very well
explored either (Freitas 2014). For example, in many studies, the comprehensibil-
ity of learned rules is assumed to be negatively correlated with their complexity,
a point of view that has been questioned more recently (Allahyari and Lavesson
2011; Fürnkranz et al. 2020).

In any case, we believe that mixed-dependency rules like those sketched
above, which combine input data and labels in an explicit way, have a strong
potential for increasing the interpretability of multi-label learning. A particularly
promising direction is to use rule-based local models for explaining powerful yet
opaque multi-label classifiers. While several such approaches have been proposed
recently, such as LIME (Ribeiro et al. 2016) and SHAP (Lundberg and Lee 2017),
or LORE (Guidotti et al. 2018) as a variant specifically tailored to learning local
rule-based explanations, we are not aware of any work that tries to adapt these
frameworks to the multi-label case.

5 Conclusion

In this paper, we have given an overview of the state of the art in multi-label rule
learning, specifically focusing on an ongoing research project of the authors. The
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main goal of this project it to elaborate on the potential of rule learning in the
context of MLC, and to develop a generic framework for constructing rule-based
multi-label algorithms in a flexible manner. Our interim results so far are rather
promising, although a couple of challenging problems still remain to be solved.
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Menćıa, E.L., Fürnkranz, J., Hüllermeier, E., Rapp, M.: Learning interpretable rules
for multi-label classification. In: Escalante, H.J., et al. (eds.) Explainable and Inter-
pretable Models in Computer Vision and Machine Learning. TSSCML, pp. 81–113.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98131-4 4
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Abstract. This paper describes an extension to the Decision Model and
Notation (DMN) standard, called cDMN. DMN is a user-friendly, table-
based notation for decision logic. cDMN aims to enlarge the expressivity
of DMN in order to solve more complex problems, while retaining DMN’s
goal of being readable by domain experts. We test cDMN by solving
the most complex challenges posted on the DM Community website.
We compare our own cDMN solutions to the solutions that have been
submitted to the website and find that our approach is competitive, both
in readability and compactness. Moreover, cDMN is able to solve more
challenges than any other approach.

1 Introduction

The Decision Model and Notation (DMN) [4] standard, designed by the Object
Management Group (OMG), is a way of representing data and decision logic in a
readable, table-based way. It is intended to be used directly by business experts
without the help of computer scientists.

While DMN is very effective in modeling deterministic decision processes,
it lacks the ability to represent more complex kinds of knowledge. In order to
explore the boundaries of DMN, the Decision Management Community website1

issues a monthly decision modeling challenge. Community members can then
submit a solution, using their preferred decision modeling tools or programming
languages. This allows solutions for complex problems to be found and compared
across multiple DMN-like representations. So far, none of the available solvers
have been able to solve all challenges. Moreover, the available solutions some-
times fail to meet the readability goals of DMN, because the representation is
either too complex or too large.

In this paper, we propose an extension to the DMN standard, called cDMN. It
allows more complex problems to be solved, while remaining readable by business
1 https://dmcommunity.org/.
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users. The main features of cDMN are constraint modeling, quantification, and
the use of concepts such as types and functions. We test the usability of cDMN
on the decision modeling challenges.

In [3], we presented a preliminary version of constraint modeling in DMN.
In the current paper, we extend this by adding quantification, types, functions,
relations, data tables, optimization and by evaluating the formalism on the DMN
challenges.

The paper is structured as follows. In Sect. 2 we briefly describe the DMN
standard. Section 3 gives an overview of the challenges used in this paper. After
this, we touch on the related work in Sect. 4. We discuss both syntax and seman-
tics of our new notation in Sect. 5. Section 6 briefly discusses the implementation
of our cDMN solver. We compare our notation with other notations and evaluate
its added value in Sect. 7, and conclude in Sect. 8.

2 Preliminaries: DMN

The DMN standard [4] describes the structure of a DMN model. Such a model
consists of two components: a Decision Requirements Diagram (DRD), which is
a graph that expresses the structure of the model, and Decision Tables, which
contain the in-depth business logic. An example of such a decision table can be
found in Fig. 1. It consists of a number of input columns (darker green) and a
single output column (lighter blue). Each row is read as: if the input conditions
are met (e.g., if “Age of Person” satisfies the comparison “≥18”), then the output
expression is assigned the value of the output entry (e.g. “Person is Adult” is
assigned value “Yes”). Only single values, such as strings and numbers, can be
used as output entries. In the case where no row matches the input, then each
output is either set to the special value null (which is typically taken to indicate
an error in the specification) or to the output’s default value, if one was provided.

The behaviour of a decision table is determined by its hit policy. There are
a number of single hit policies, which define that a table can have at most one
output for each possible input, such as “Unique” (no overlap may occur), “Any”
(if there is an overlap, the outputs must be the same) and “First” (if there is
an overlap, the first applicable row should be selected). There exist also multiple
hit policies such as C (collect the output of all applicable rows in a list) and C+
(sum the output of all applicable rows). Regardless of which hit policy is used,
each decision table uniquely determines the value of its output(s).

Fig. 1. Decision table to define whether a person is an adult. (Color figure online)

The entries in a decision table are typically written in the (Simple) Friendly
Enough Expression Language, or (S-)FEEL, which is also part of the DMN
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standard. S-FEEL allows to express simple values, lists of values, numerical
comparisons, ranges of values and calculations. Decision tables with S-FEEL are
generally considered quite readable by domain experts.

In addition, DMN also allows more complex FEEL statements in combination
with boxed expressions, as will be illustrated in Fig. 6. However, this also greatly
increases complexity of the representation, which makes it unsuitable to be used
by domain experts without the aid of knowledge experts.

3 Challenges Overview

Of all the challenges on the DM Community website, we selected those that
did not have a straightforward DMN-like solution submitted. The list of the 21
challenges that meet this criterion can be found in the cDMN documentation2.

We categorize these challenges according to four different properties. Table 1
shows the list of properties, and the percentage of challenges that have this
property.

The most frequent property is the need for aggregates (57.14%), such as
counting the number of violated constraints in Map Coloring with Violations
or summing the number of calories of ingredients in Make a Good Burger. The
second most frequent property is having constraints in the problem description
(33.33%). E.g., in Who Killed Agatha, the killer hates the victim and is no richer
than her; or the constraint in Map Coloring states that two bordering coun-
tries can not share the same color. The next property, universal quantification
(28.75%), is that a statement applies to every element of a type, for example in
Who Killed Agatha? : nobody hates everyone. The final property, optimization,
occurs in 23.81% of the challenges. For example, in Zoo, Buses and Kids the
cheapest set of buses must be found.

Table 1. Percentage of occurrence of properties in challenges.

Property (%)

1. Aggregates needed 57.14

2. Constraints 33.33

3. Universal quantification 28.75

4. Optimization 23.81

4 Related Work

It has been recognized that even though DMN has many advantages, it is some-
what limited in expressivity [1,3]. This holds especially for decision tables with
S-FEEL, the fragment of FEEL that is considered most readable. While full
2 https://cdmn.readthedocs.io/en/latest/community.html.

https://cdmn.readthedocs.io/en/latest/community.html
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FEEL is more expressive, it is not suitable to be used by domain experts with-
out the aid of knowledge experts. Moreover, it does not provide a solution to
other shortcomings, such as the lack of constraint reasoning and optimization.

One of the systems that does effectively support constraint solving in a read-
able DMN-like representation is the OpenRules system [5]. It enables users to
define constraints over the solution space by allowing “Solver Tables” to be added
alongside decision tables. In contrast to standard decisions, which assign a spe-
cific value to an output, Solver Tables allow for setting constraints on the output
space. OpenRules offers a number of DecisionTableSolve-Templates, which can
be used to specify these constraints. It is possible to either use these predefined
templates, or define such a template manually if the predefined ones are not
expressive enough. Even though this system extends the range of applications
that can be handled, there are three reasons why it does not offer the ease of use
for business users that we are after. First, because of the wide range of available
templates for solver tables, which differ from that of standard decision tables,
using the OpenRules constraint solver entails a steep learning curve. Second,
the solver’s functionality can only be accessed through the Java API, which goes
against the DMN philosophy [4, p. 13]. Third, because of the lack of quantifi-
cation in OpenRules, solutions are generally not independent of domain size,
which reduces readability.

Another system that aims to increase expressiveness of DMN is Corticon
[6]. It implements a basic form of constraint solving by allowing the user to fil-
ter the solution space. While this approach indeed improves expressiveness, it
decreases readability. Moreover, some constraints can only be expressed by com-
bining a number of rules and a number of filters. For example, when expressing
“all female monkeys are older than 10 years”, this is split up in two parts;
(1) a rule that states Monkey.gender = female & Monkey. Age < 10 THEN
Monkey.illegal = True and (2) a filter that states that a monkey cannot be
illegal: Monkey.illegal = False. There are no clear guidelines about which
part of the constraints should be in the filter and what should be a rule.

In [1], Calvanese et al. propose an extension to DMN which allows for express-
ing additional domain knowledge in Description Logic. They share our goal of
extending DMN to express more complex real-life problems. However, they intro-
duce a completely separate Description Logic formalism, which seems too com-
plex for a domain expert to use. Unfortunately, they did not submit any solutions
to the DMN Challenges, which leaves us unable to compare its expressiveness in
practice.

5 cDMN: Syntax and Semantics

While DMN allows users to elegantly represent a deterministic decision pro-
cess, it lacks the ability to specify constraints on the solution space. The cDMN
framework extends DMN, by allowing constraints to be represented in a straight-
forward and readable manner. It also allows for representations that are indepen-
dent of domain size by supporting types, functions, relations and quantification.
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We now explain both the usage and the syntax of every kind of table present
in cDMN.

5.1 Glossary

In logical terms, the “variables” used in standard DMN correspond to constants
(i.e., 0-ary functions). cDMN extends these by adding n-ary functions and n-ary
relations. Similarly to OpenRules and Corticon, we allow the user to define their
vocabulary by means of a glossary. This glossary contains every symbol used
in a cDMN model. It consists of at most five glossary tables, each enumerating
a different kind of symbol. An example glossary for the Who Killed Agatha?
challenge is given in Fig. 2.

Type
Name Type Values
Person string Agatha, Butler, Charles
Number int [0..100]

Relation
Name
Person hates Person
Person is richer than Person

Boolean
Name
Suicide

Constant
Name Type
Killer Person

Function
Name Type
Hatees of Person Number

Fig. 2. An example cDMN glossary for the Who Killed Agatha? problem.

In the Type table, type symbols are declared. The value of each type is a set
of domain elements, specified either in the glossary or in a data table (see Sect.
5.3). An example is the type Person, which contains the names of people.

In the Function table, a symbol can be declared as a function of one or
more types to another. The infix operator of is used to apply the function to its
argument(s). For example, the Hatees of Person function denotes how many
people a person hates. It maps each element of type Person to an element of
type Number. Functions with n > 1 arguments can be declared by separating the
n arguments by the keyword and.

For each domain element, a constant with the same name is automatically
introduced, which allows the user to refer to this domain element in constraint
or decision tables. For instance, the user can use the constant Agatha to refer
to the domain element Agatha. In addition, the Constant table allows other
constants to be introduced. Recall that such logical constants correspond to
standard DMN variables. In our example case, we use a constant Killer of the
type Person, which means it can refer to any of the domain elements Agatha,
Butler or Charles.

In the Relation table, a verb phrase can be declared as a relation on one or
more given types. For instance, the relation Person is Adult denotes for each
Person whether they are an adult. This relation translates to the unary predicate
isAdult . n-ary predicates can be defined by using n arguments in the name, e.g.
Person is richer than Person is a relation with two arguments (both of the
type Person), that denotes whether one person is richer than another.



28 B. Aerts et al.

The Boolean table contains boolean symbols (i.e. propositions), which are
either true or false. An example is the boolean Suicide, which denotes whether
the murder is a suicide.

5.2 Decision Tables and Constraint Tables

As stated earlier in Sect. 2, a standard decision table uniquely defines the value of
its outputs. We extend DMN by allowing a new kind of table, called a constraint
table, which does not have this property.

Whereas decision tables only allow single values to appear in output columns,
our constraint tables allow arbitrary S-FEEL expressions in output columns,
instead of only single values. Each row of a constraint table represents a logical
implication, in the sense that, if the conditions on the inputs are satisfied, then
the conditions on the outputs must also be satisfied. This means that if, for
instance, none of the rows are applicable, the outputs can take on an arbitrary
value, as opposed to being forced to null. In constraint tables, no default values
can be assigned. Because of these changes, a set of cDMN tables does not define a
single solution, but rather a solution space containing a set of possible solutions.

We introduce a new hit policy to identify constraint tables. We call this the
Every hit policy, denoted as E*, because it expresses that every implication in
the table must be satisfied. An example of this can be found in Fig. 3, which
states that each person hates less than 3 people.

cDMN does not only introduce constraint tables, it also extends the expres-
sions that are allowed in column headers, both in decision and constraint tables.
Such a header can consist of the following expressions: (1) a type Type; (2) an
expression of the form “Type called name”; (3) a constant; (4) an expression of
the form “Function of arg1 and ... and argn”, where each of the arg i is another
header expression; (5) an arithmetic combination of header expressions (such as
a sum).

The first two kinds of expressions are called variable header expressions. They
allow universal quantification in cDMN. Each input column whose header con-
sists of such a variable expression either introduces a new universally quantified
variable (we call this a variable-introducing column), or refers back to a variable
introduced in a preceding variable-introducing column. Subsequent uses of the
same type name (in case of the first kind of variable-introducing expression)
or of the variable name (in case of the second kind) then refer back to this
universally quantified variable. Whenever a type or variable name appears in a
header of a column that is itself not variable-introducing, a unique preceding
variable-introducing column that has introduced this variable must exists.

The table in Fig. 3 shows an example of quantification in cDMN. It introduces
a universally quantified variable of the type Person, stating that every person
hates less than three others. To illustrate the use of named variables, Fig. 4
defines variables c1 and c2, both of the type Country, and states that when
those countries are bordering, they cannot have the same color.

In summary, this section has discussed three ways in which cDMN extends
DMN. First, the hit policy E* changes the semantics of the table. Second, con-
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straint tables allow S-FEEL expressions in the output columns. Third, cDMN
allows quantification, functions, predicates and calculations to be used in both
decision tables and constraint tables.

Noone hates all
E* Person Hatees of Person
1 - <3

Fig. 3. Part of the implementation of “Nobody hates everyone” in Who Killed Agatha?.

Bordering countries can not share colors
E* Country called c1 Country called c2 c1 and c2 are Bordering Color of c1
1 - - Yes Not(Color of c2)

Fig. 4. Example of a constraint table with quantification in cDMN, defining that bor-
dering countries can’t share colors.

5.3 Data Tables

Typically, problems can be split up into two parts: (1) the general logic of the
problem, and (2) the specific problem instance that needs to be solved. Take
for example the map coloring problem: the general logic consists of the rule
that two bordering countries cannot share a color, whereas the instance of the
problem is the specific map (e.g. Western Europe) to color. cDMN extends the
DMN standard to include data tables, which are used to represent the problem
instances, separating them from the general logic. The format of a data table
closely resembles that of a decision table, with a couple of exceptions. Instead
of a hit policy, a data table has “data table” in its name. Furthermore, only
basic values (integers, floats and domain elements) are allowed in data tables.
It is also possible for columns to have more than one value in a certain row, in
which case the row is instantiated for the combination of each of the values of
the columns. As an example, a snippet of the data table for the Map Coloring
challenge is shown in Fig. 5.

This use of data tables offers several advantages.

1. There is a methodological advantage: by separating the data tables from the
decision tables, reusing the specification becomes easier.

2. If the user chooses to enumerate the domain of a type in the glossary, then the
system checks that each value in a data table indeed belongs to the domain
of the appropriate type. This helps to prevent errors or typos in the input
data or glossary. If the user chooses not to enumerate a type in the glossary,
then the type’s domain defaults to the set of all values in the data table.

3. The cDMN solver is able to compute solutions faster, due to a different inter-
nal representation between data tables and decision tables.
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Data Table: Declaring which countries border
Country called c1 Country called c2 c1 and c2 are Bordering

1 Belgium France, Luxembourg, Netherlands, Germany Yes
2 Germany France, Denmark, Luxembourg, Belgium, Netherlands Yes

Fig. 5. Data table describing countries and their neighbours

5.4 Execute Table

A standard DMN model defines a deterministic decision procedure. It is typically
always used in the same way: the external inputs are supplied by the user, after
which the values of the output variables are computed by forward propagation.

In cDMN, this is no longer the case. We can fill in as many or as few variables
as we want, and use the model to derive useful information about the not-yet-
known variables. By employing an execute table, users can specify what the model
is to be used for: model expansion or optimization. Model expansion creates a
given number of solutions, and optimization looks for the solution with either
the lowest or highest value for a given term.

5.5 Semantics of cDMN

We describe the semantics of cDMN by translating it to the FO(·) language used
by the IDP system [2,7]. FO(·) is a rich extension of First Order Logic, adding
concepts such as types, aggregates and inductive definitions. The semantics of
cDMN is defined by the semantics of each of its sub-components.

It is straightforward to translate the glossary into an FO(·) vocabulary: types,
functions, constants, relations and booleans are each translated to their FO(·)
counterpart.

Decision tables retain their usual semantics as described by Calvanese [1].
We briefly recall this semantics. Each cell of a decision table (i, j) corresponds
to a formula Fij(x) in one free variable x. For instance, a cell “≤50” corresponds
to the formula “x ≤ 50”. A decision table with rows R, input columns I and
output columns O is a conjunction of material implications:

∧

i∈R

( ∧

j∈I

Fij(Hj) ⇒
∧

k∈O

Fik(Hk)
)

where Hj is the header of column j. For example, the table in Fig. 1
corresponds to the logical formula (AgeOfPerson ≥ 18 ⇒ PersonIsAdult =
Yes) ∧ (AgeOfPerson < 18 ⇒ PersonIsAdult = No).

Data tables are simply a specific case of decision tables.
In [3], the semantics of simple constraint tables (without quantification and

functions) is introduced, which is also a conjunction of implications. The seman-
tics of constraint tables and decision tables differ in the interpretation of incom-
plete tables: when no rows are applicable in decision tables, the output is forced
to null (i.e., the implicit default value is null), while the output in constraint
tables can take any value.
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Now we extend this semantics to take variables and quantification into
account. Our first step is to define a function that maps cDMN expressions
to terms. For the most part, this definition corresponds to that of Calvanese [1].
However, we extend it to take into account the fact that certain expressions –
which we call variable expressions – must be translated to FO variables. There
are three kinds of variable expressions. We now define a mapping ν that maps
each of these three kinds of cDMN variable expressions to a typed FO variable
x of type T , which we denote as x[T ]:

– The name T of a type is a variable expression. We define ν(T ) = xT [T ], with
xT a new variable of type T .

– An expression e of the form “Type called v” is a variable expression. We define
ν(e) = v[Type].

– If the header of a column contains an expression “Type called v”, then v is
a variable expression in all subsequent columns of the table and in its body.
We define ν(v) as v[Type].

Given this function ν, we now define the following mapping tν(·) of cDMN
expressions to terms.

– For a constant c, tν(c) = c; similarly, for an integer or floating point number
n, tν(n) = n;

– For an arithmetic expression e of the form e1θe2 with θ ∈ {+,−, ∗, /}, we
define tν(e) = tν(e1) θ tν(e2);

– For a variable expression v, we define tν(v) = ν(v).
– For a function expression, i.e. “Function of arg1 and ... and argn”:

tν(X) = Function(tν(arg1), ...., tν(argn)).

Similarly to Calvanese, we translate each entry c in a cell (i, j) of a table into
a formula Fij(x) in one free variable x:

– If c is of the form “θe” with θ one of the relational operators {≤,≥,=, �=},
then Fij(x) is the formula x θ t(e);

– If c is of the form Not e, then Fij is x �= t(e);
– If c is a list e1, . . . , en, then Fij is x = t(e1) ∨ . . . ∨ x = t(en). As a special

case, if c consists of a single expression e, then Fij is x = t(e).
– If c is a range, e.g. [e1, e2), then Fij is x ≥ t(e1) ∧ x < t(e2).

We are now ready to define the semantics of a constraint table. If I is the set
of input columns of the table, O the set of output columns and V ⊆ I the set of
variable introducing columns, we define the semantics of the table as:

∀
l∈V

ν(Hl) :
∧

i∈R

( ∧

j∈I

Fij

(
tν(Hj)

) ⇒
∧

k∈O

Fik

(
tν(Hk)

))

For example, in Fig. 3, ν(H1) = x[Person] and tν(H1) = x,
tν(H2) = Hatee(tν(H1)) = Hatee(x), which leads to the formula:

∀x[Person] : Hatee(x) < 3.
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The above transformation turns each decision or constraint table T into an
FO(·) formula φT . The glossary and data tables together define a structure
S for part of the vocabulary. The domain of S consists of the union of the
interpretations It of all the types t. If t is enumerated in the glossary, then It is
this enumeration. Otherwise, It consists of all the values that appear in a data
table in a column of type t. The structure S interprets all the relations/functions
for which a data table is provided, and it interprets them by the set of tuples/the
mapping that is given in this table.

The set of “solutions” of a cDMN model is the set MX (Φ, S) of all model
expansions of the structure S w.r.t. the theory Φ = {φT | T is a constraint or
decision table}, i.e., the set of all structures S′ |= Φ that extend S to the entire
vocabulary.

6 Implementation

This section gives an overview of the inner workings of the cDMN solver3. It is
a brief overview, as the solver is not the main focus of this paper. The solver
consists of two parts: a constraint solver (the IDP system), and a converter from
cDMN to IDP input. In principle, any constraint solver could be used, but we
chose the IDP system because of its flexibility.

The cDMN to IDP converter is built using Python3, and works in a two-
step process. It first interprets all tables in a .xslx sheet and converts them
into Python objects. For example, the converter parses all the glossary tables
and converts them into a single Glossary object, which then creates Type and
Predicate objects. The created Python objects are then converted into IDP
blocks. More detailed information about this conversion can be found in the
cDMN documentation4, along with an explanation of the usage of the solver
and concrete examples of cDMN implementations.

7 Results and Discussion

In this section we first look at three of the DM Community challenges, each
showcasing a feature of cDMN. For each challenge, we compare the DMN imple-
mentations from the DM Community website with our own implementation in
cDMN. Afterwards, we compare all challenges on size and quality.

3 https://gitlab.com/EAVISE/cdmn/cdmn-solver.
4 www.cdmn.be.

https://gitlab.com/EAVISE/cdmn/cdmn-solver
www.cdmn.be
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7.1 Constraint Tables

Fig. 6. An extract of the map coloring solution in standard DMN with FEEL

Constraint tables allow cDMN to model constraint satisfaction problems in a
straightforward way. For example, in Map Coloring, a map of six European
countries must be colored in such a way that no neighbouring countries share
the same color. For this challenge, a pure DMN implementation was submitted,
of which Fig. 6 shows an extract. The implementation uses complicated FEEL
statements to solve the challenge. While these statements are DMN-compliant,
they are nearly impossible for a business user to write without help. In cDMN,
we can use a single straight-forward constraint table to solve this problem, as
shown in Fig. 4. Together with the glossary and a data table (Fig. 5), this forms
a complete yet simple cDMN implementation.

7.2 Quantification

Quantification is useful in the Monkey Business challenge. In this challenge, we
want to know for four monkeys what their favorite fruit and their favorite resting
place is, based on some information. There are two DMN-like submissions for
this challenge: one using Corticon, and one using OpenRules.

One of the pieces of information is: The monkey who sat on the rock ate
the apple. The OpenRules implementation has a table with a row for each
monkey, which states that if this monkey’s resting place was a rock, their fruit
was an apple (Fig. 7a). In other words, for n monkeys, the OpenRules imple-
mentation of this rule requires n lines. Because of quantification, cDMN requires
only one row, regardless of how many monkeys there are (Fig. 7b). The Corticon
implementation also uses a similar quantification for this rule.
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(a) Open Rules
Monkey Constraints
E* Monkey Place of Monkey Fruit of Monkey
. . . . . . . . . . . .

2 — Rock Apple
. . . . . . . . . . . .

(b) cDMN

Fig. 7. An extract of Monkey Business implementation in (a) OpenRules and (b)
cDMN, specifying “The monkey who sits on the rock is eating the apple”.

(a) Corticon
Different Preferences
E* Monkey calledm1 Monkey calledm2 Place of m1 Fruit of m1
1 — not(m1) not(Place of m2) not(Fruit of m2)

(b) cDMN

Fig. 8. An extract of the Monkey Business implementation in (a) Corticon and (b)
cDMN, defining that no monkeys share fruit and no monkeys share the same place.

Another rule states that no two monkeys can have the same resting place
or fruit. In both the Corticon and OpenRules implementations, this is handled
by two tables with a row for each pair of monkeys. The Corticon tables are
shown in Fig. 8a. Each row either states that two monkeys have different fruit,
or that they have different place. Therefore, n monkeys require n×(n−1)

2 rows.
By contrast, the cDMN implementation seen in Fig. 8b requires only a single
row to express the same.

7.3 Optimization

In the Balanced Assignment challenge, 210 employees need to be divided into 12
groups, so that every group is as diverse as possible. The department, location,
gender and title of each employee is known. This is quite a complex problem to
handle in DMN. As such, of the four submitted solutions, only one was DMN-
like: an OpenRules implementation, using external CP/LP solvers. The logic for
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these external solvers is written in Java. Although the code is fairly compact, it
cannot be written without prior programming knowledge. Because optimization
is built-in in cDMN, we can solve the problem with two decision tables and one
constraint table. The table Diversity score, shown in Fig. 9, adds 1 to the total
diversity score if two similar people are in a different group. Maximizing this
score then results in the most diverse groups.

Diversity score
C+ Person

called p1
Person
called p2

Department
of p1

Location
of p1

Gender
of p1

Title
of p1

Group of p1 Score

1 - - = Department
of p2

- - - not(Group of p2) 1

2 - - - = Location
of p2

- - not(Group of p2) 1

3 - - - - = Gender
of p2

- not(Group of p2) 1

4 - - - - - = Title
of p2

not(Group of p2) 1

Execute
Maximize Score

Fig. 9. The decision tables and constraint table for Balanced Assignment.

7.4 Overview of All Challenges

Of the 21 challenges we considered, cDMN is capable of successfully modeling
19. In comparison, there were 12 OpenRules implementations and 12 Corticon
implementations submitted. Note that we have not examined whether Open-
Rules and Corticon might be capable of modeling more challenges than those
for which a solution was submitted.

To compare cDMN to other approaches, we focus on two aspects: quantity
(how big are they?) and quality (how readable and how scalable are they?). The
size of implementations was measured by counting the number of cells used in
all the decision tables. Glossaries, data tables and equivalents thereof were not
included in the count. Table 2 shows that cDMN and Corticon alternate between
having the fewest cells, and that OpenRules usually has the most. In general,
OpenRules implementations require many cells because each cell is very simple.
For instance, even an “=” operator is its own cell. The Corticon implementations,
on the other hand, contain more complex cells, rendering them more compact.

Because of this, OpenRules implementations are usually easier to read than
their Corticon counterparts. An example comparison between cDMN and Cor-
ticon can be seen in Fig. 10a and b. Each figure shows a snippet of their Make
a Good Burger implementation, in which the food properties of a burger are
calculated. While the Corticon implementation is more compact, it is less inter-
pretable, less maintainable and dependent on domain size. If the user wants to
add an ingredient to the burger, complex cells need to be changed. In cDMN,
simply adding the ingredient to the data table suffices.
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Table 2. Comparison of the number of cells used per implementation. Other imple-
mentations: 1. FEEL, 2. Blueriq, 3. Trisotech, 4. DMN
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cDMN 53 26 35 20 26 47 38 76 88 45 36 14 24 55 124 21 48 77 41
Corticon 54 14 20 19 45 64 32 22 78 21 64

OpenRules 176 95 21 150 31 205 70 111 43 30 97
Others 761 481 142 343 3704 314

A comparison between cDMN and OpenRules can be found in Fig. 11a and
b. Here we show a part of their implementations of the Who Killed Agatha?
challenge. They both show a translation of the following rule: “A killer always
hates, and is no richer than his victim.” By using constraints and a constant
(Killer), cDMN allows us to form a more readable and more scalable table. If
the police ever find a fourth suspect, they can easily add the person to the data
table without needing to change anything else.

In Sect. 3, we identified four different problem properties. We now suggest
that each property is tackled more easily by one or more of the additions cDMN
proposes.

Aggregates Needed. Figure 10b shows how aggregates are both more read-
able and scalable when using quantification. Moreover, cDMN allows the use of
aggregates for more complex operations such as optimization or defining con-
straints.

(a) Corticon
Determine Nutrition
C+ Item Total Sodium Total Fat Total Calories Total Cost
1 - Number of Item

* Sodium of Item
Number of Item
* Fat of Item

Number of Item
* Calories of Item

Number of Item
* Cost of Item

Nutrition Constraints
E* Total Sodium Total Fat Total Calories
1 <3000 <150 <3000

(b) cDMN

Fig. 10. Calculating the food properties of burger in Corticon and cDMN.
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Constraints. Constraints can be conveniently modeled by constraint tables,
such as the constraints in Fig. 11b, which states that the killer hates Agatha,
but is no richer than her. The addition of constraint tables allows for an obvious
translation from the rule in natural language to the table.

(a) OpenRules
Killer constraints

E* Killer hates Agatha Killer richer than Agatha
1 Yes No

(b) cDMN

Fig. 11. Implementation of “A killer always hates and is no richer than their victim”
in OpenRules and cDMN

Universal Quantification. Problems which contain universal quantification
can be compactly represented, as can, among others, be seen in Fig. 3. This
table states that each person hates less than 3 people.

Optimization. Because cDMN directly supports optimization, problems con-
taining this property are easily modeled. Furthermore, by the addition of more
complex data types, optimization can be used in a more flexible manner. An
example can be found in Fig. 9.

8 Conclusions

This paper presents an extension to DMN, which is able to solve complex prob-
lems while still maintaining DMN’s level of readability. This extension, which we
call cDMN, adds constraint modeling, more expressive data and quantification.

Constraint modeling allows a user to define a solution space instead of a
single solution. A user can generate a desired number of models, or generate
the model which optimizes the value of a specific term. Unlike DMN, which only
knows constants, cDMN also supports the use of functions and predicates, which
allow for more flexible representations. Together with quantification, this allows
tables to be constructed in a compact and straightforward manner, while being
independent of the size of the problem. This improves readability, maintainability
and scalability of tables.
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By comparing our cDMN implementations to the implementations of other
state-of-the-art DMN-like solvers, we can conclude that cDMN succeeds in
increasing expressivity while retaining the simplicity of standard DMN.
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Abstract. Fuzzy DL-Lite has been studied as a means to answer queries
w.r.t. vague or imprecise knowledge and facts. Existing approaches con-
sider only the Zadeh semantics or are limited to precise terminological
knowledge, where only facts are graded. We study the problem of answer-
ing conjunctive queries over fuzzy DL-LiteR ontologies which allow also
graded axioms, and whose semantics is based on mathematical fuzzy
logic. We show that for the Gödel t-norm, the degree of an answer is com-
putable through repeated calls to a classical query answering engine. For
non-idempotent t-norms, we show the difficulty in dealing with degrees,
and provide some partial solutions.

1 Introduction

Description logics [3] are a well known family of knowledge representation for-
malisms characterised by their formal logic-based semantics, and their decidable
(usually with relatively low complexity) reasoning tasks. Within these logics,
the DL-Lite family of light-weight DLs [2] is specially interesting, as it allows for
very efficient query answering in terms of data and combined complexity. It is
also the formalism underlying the OWL 2 QL profile of the standard ontology
language for the semantic web [10]. For this reason, they have been used for
many practical applications in various knowledge domains.

As the semantics are based on classical first-order logic, in their standard
form DLs are not able to handle vague or imprecise knowledge and facts. For
that reason, fuzzy extensions of DLs have been devised. Although most work
has focused on extending more expressive DLs and solving standard reasoning
services [8], some efforts have been made towards answering queries in DL-Lite.
Specifically, Straccia [20] studied the problem of computing the answers with
highest degree on a query w.r.t. some background knowledge. This was followed
by Pan et al. [17], who considered more complex queries to be answered. Other
work considering query answering in fuzzy DLs includes [21]. These three works
were based on the so-called Zadeh semantics, and had the limitation that only
the facts in the ontology could be graded, but not the terminological knowledge.

Later, Turhan and Mailis studied the problem from the point of view of
fuzzy logic [12], where the semantics are based on the properties of continuous
triangular norms. They developed a technique for computing the satisfaction
c© Springer Nature Switzerland AG 2020
V. Gutiérrez-Basulto et al. (Eds.): RuleML+RR 2020, LNCS 12173, pp. 39–53, 2020.
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degrees of queries when the semantics were based on the Gödel t-norm [14].
This technique, which is based on the construction of a classical query, was later
implemented and shown to be effective in [15]. However, it still suffered from
two main drawbacks: (i) it was only capable to handle the idempotent t-norm
and (ii) terminological knowledge had to still be precise. The latter condition is
essential for the correctness of their approach: their reduction is unable to keep
track of the degrees used by the terminological axioms, as this would require an
unbounded memory use.

In this paper, we tackle these limitations over the well-known DL-LiteR logic.
Considering the t-norm-based semantics, we show that every consistent fuzzy
DL-LiteR ontology has a canonical model, which can be homomorphically embe-
ded in every other model, and present an infinitary construction for obtaining it,
based on the ideas of classical DL-LiteR. Using this fact, we develop a method
for finding the degree of an answer to a conjunctive query, which is also capa-
ble of dealing with fuzzy terminological axioms w.r.t. the Gödel t-norm. Indeed,
despite being more general, our approach is much simpler than previous meth-
ods. We show that to verify a lower bound d of the degree, it suffices to consider
only the subontology with all axioms and assertions with a degree at least d, and
answer a classical query over it. Thus, one can use any off-the-shelf ontology-
based query answering engine available [23]. The cost of our simpler method
is that, to find the specific degree, the data complexity jumps from AC0 to
LogSpace. Whether the algorithm can be further improved or the LogSpace
upper bound is tight remains open.

Considering other continuous t-norms, we show through several examples
that query answering needs some more meticulous analysis. While deciding con-
sistency w.r.t. the product t-norm is still easy, finding the precise degrees of
an answer becomes more involved. In the case of the �Lukasiewicz t-norm, we
recall the fact that for a minimal extension of DL-LiteR consistency is already
NP-hard in combined complexity, and hence unlikely to be decidable through a
simple reduction to classical DL-LiteR.

2 Preliminaries

We briefly introduce the syntax and semantics of fuzzy DL-LiteR. Let NC , NR,
and NI be three mutually disjoint sets whose elements are called concept names,
role names, and individual names, respectively. The sets of DL-LiteR concepts
and roles are built through the grammar rules

B ::= A | ∃Q C ::= B | ¬B

Q ::= P | P− R ::= Q | ¬Q

where A ∈ NC and P ∈ NR. Concepts of the form B and roles of the form Q
are called basic, and all others are called general.

A fuzzy DL-LiteR TBox is a finite set of fuzzy axioms of the form 〈B � C, d〉
and 〈Q � R, d〉, where d is a number in [0, 1]. An axiom is positive if it does
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not have negation on its right-hand side; note that negations can never occur
on the left-hand side of an axiom. A fuzzy DL-LiteR ABox is a finite set of
fuzzy assertions of the form 〈B(a), d〉 and 〈P (a, b), d〉, where a, b ∈ NI . A fuzzy
DL-LiteR ontology is a pair of the form O = (T ,A) where T is a TBox and A
is an ABox. In the remainer of this paper, we will mostly exclude the qualifiers
“fuzzy,” and “DL-Lite” and simply refer to axioms, ontologies, etc.

Table 1. The three main continuous t-norms and related operations

Name d ⊗ e d ⇒ e �d

Gödel min{d, e}
{

1 d ≤ e

e ow

{
1 d = 0

0 ow

�Lukasiewicz max{d + e − 1, 0} min{1 − d + e, 1} 1 − d

Product d · e
{

1 d ≤ e

e/d ow

{
1 d = 0

0 ow

The semantics of fuzzy DL-LiteR is based on fuzzy interpretations, which
provide a membership degree or truth degree for objects belonging to the different
concept and role names. To fully define this semantics in the presence of other
constructors according to the theory of mathematical fuzzy logic, we need the
notion of a triangular norm (or t-norm for short).

A t-norm ⊗ is a binary operator over [0, 1] that is commutative, associative,
monotonic, and has as neutral operator 1 [13]. The t-norm is used to generalize
the logical conjunction to the interval [0, 1]. Every continuous t-norm defines a
unique residuum ⇒ where f ⊗ d ≤ e iff f ≤ d ⇒ e. The residuum interprets
implications. With the help of this operation, it is also possible to interpret other
logical operators such as negation (
d := d ⇒ 0). The three basic continuous
t-norms are the Gödel, �Lukasiewicz, and product t-norms, which are defined,
with their residua and negations in Table 1. These t-norms are the fundamental
ones in the sense that every other continuous t-norm is isomorphic to the ordinal
sum of copies of them [12,16]. Hence, as usual, we focus our study to these three
t-norms.

Note that the residuum always satisfies that d ⇒ e = 1 iff d ≤ e, and
that in the Gödel and product t-norms the negation is annihilating in the sense
that it maps to 0 any positive value, while the negation of 0 is 1. In particular,
this means that the negation is not involutive; that is, 
 
 d �= d in general.
From now on, unless specified explicitly otherwise, we assume that we have
an arbitrary, but fixed, t-norm ⊗ which underlies the operators used. When
the t-norm becomes relevant in the following sections, we will often use G, π,
and �L as prefixes to express that the underlying t-norm is Gödel, product, or
�Lukasiewicz, respectively, as usual in the literature.

We can now formally define the semantics of the logic. An interpretation is a
pair I = (ΔI , ·I), where ΔI is a non-empty set called the domain, and ·I is the
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interpretation function which maps every individual name a ∈ NI to an element
aI ∈ ΔI ; every concept name A ∈ NC to a function AI : ΔI → [0, 1]; and
every role name P ∈ NR to a function P I : ΔI × ΔI → [0, 1]. That is, concept
names are interpreted as fuzzy unary relations and role names are interpreted
as fuzzy binary relations over ΔI . The interpretation function is extended to
other constructors with the help of the t-norm operators as follows. For every
δ, η ∈ ΔI ,

(∃Q)I(δ) := sup
δ′∈ΔI

QI(δ, δ′) (¬B)I(δ) := 
 BI(δ) ()I(δ) := 1

(P−)I(δ, η) := P I(η, δ) (¬Q)I(δ, η) := 
 QI(δ, η)

The interpretation I satisfies the axiom

– 〈B � C, d〉 iff for every δ ∈ ΔI , BI(δ) ⇒ CI(δ) ≥ d;
– 〈Q � R, d〉 iff for every δ, η ∈ ΔI , QI(δ, η) ⇒ RI(δ, η) ≥ d.

It is a model of the TBox T if it satisfies all axioms in T . I satisfies the assertion

– 〈B(a), d〉 iff BI(aI) ≥ d;
– 〈P (a, b), d〉 iff P I(aI , bI) ≥ d.

It is a model of the ABox A if it satisfies all axioms in A, and it is a model of
the ontology O = (T ,A) if it is a model of T and of A.

We note that the classical notion of DL-LiteR [9] is a special case of fuzzy
DL-LiteR, where all the axioms and assertions hold with degree 1. In that case, it
suffices to consider interpretations which map all elements to {0, 1} representing
the classical truth values. When speaking of classical ontologies, we remove the
degree and assume it implicitly to be 1.

For this paper, we are interested in answering conjunctive queries, which
consider whether a combination of facts can be derived from the knowledge in
an ontology. Let NV be a set of variables, which is disjoint from NI , NC , and
NR. A term is an element of NV ∪NI ; that is, an individual name or a variable.
An atom is an expression of the form C(t) (concept atom) or P (t1, t2) (role
atom). Let x and y denote vectors of variables. A conjunctive query (CQ) is
a first-order formula of the form ∃y.φ(x,y) where φ is a conjunction of atoms
which only use the variables from x and y. Let At(φ) denote the set of all atoms
appearing in φ. The variables y are called existential variables, and those in x
are answer variables. A union of conjunctive queries (UCQ) is a finite set of CQs
that use the same answer variables.

Given the CQ q(x) = ∃y.φ(x,y), the interpretation I, and a vector of indi-
viduals a of the same length as x, a match is a mapping π which assigns to each
a ∈ NI the value aI ; to each variable in x the corresponding element of aI ; and
to each variable in y an element δ ∈ ΔI . We extend the match π to apply to
assertions as follows: π(B(t)) = B(π(t)) and π(P (t1, t2)) = P (π(t1), π(t2)). The
degree of the CQ q(x) w.r.t. the match π is

qI(aI , π(y)) :=
⊗

α∈At(φ)

(π(α))I .
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That is, a match maps all the variables in the query to elements of the interpre-
tation domain, where the vector a is used to identify the mapping of the answer
variables. The degree of the query is the (fuzzy) conjunction of the degrees of the
atoms under this mapping. From now on, Π(I) denotes the set of all matches
of q(x) w.r.t. the interpretation I.

A tuple of individuals a is an answer of q(x) to degree d w.r.t. the interpre-
tation I (denoted by I |= q(a) ≥ d) iff qI(aI) := supπ∈Π(I) qI(aI , π(y)) ≥ d. It
is a certain answer (or answer for short) of q(x) over the ontology O to degree d
(denoted as O |= q(a) ≥ d) iff for every model I of O it holds that I |= q(a) ≥ d.
The set of certain answers of the query q(x) w.r.t. O and their degree is denoted
by ans(q(x),O); that is,

ans(q(x),O) := {(a, d) | O |= q(a) ≥ d and for all d′ > d,O �|= q(a) ≥ d′}.

It is important to keep in mind that the atoms in a CQ are not graded, but
simply try to match with elements in the domain. The use of the truth degrees
becomes relevant in the degree of the answers found.

A class of queries of special significance is that where the vector of answer
variables x is empty. This means that the answer tuple of individuals must also
be empty. In the classical setting, these are called Boolean queries, because they
can only return a Boolean value: true if there is a match for the existential
variables in every model, and false otherwise. In the fuzzy setting, the set of
answers to such a query will only contain one element ((), d). Thus, in that case,
we are only interested in finding the degree d, and call them degree queries. This
degree is the tightest value for which we can find a satisfying matching. Formally,
the ontology O entails the degree query q() to degree d iff O |= q() ≥ d and
O �|= q() ≥ d′ for all d′ > d. Degree queries allow us to find the degree of a
specific answer a without having to compute ans(q(x),O): simply compute the
degree of the degree query q(a).

As typical in query answering for description logics, we consider two measures
of complexity: data complexity, where only the size of the ABox is considered
as part of the input, and combined complexity in which the size of the whole
ontology (including the TBox) is taken into account.1 For data complexity, it
is relevant to consider sub-linear complexity classes. In particular, we consider
AC0 and LogSpace. For the formal definitions, see [4,18]; here we only mention
briefly that evaluation of FO-queries over a database is in AC0 on the size of
the database [1] and AC0 is strictly contained in LogSpace [11,19].

In classical DL-Lite, query answering w.r.t. an ontology is reduced to the
standard problem of query answering over a database through a process known
as query rewriting, and thus is in AC0 w.r.t. data complexity. The main idea is
to include in the query all the information that is required by the TBox, in such
a way that only assertions from the ABox need to be considered. Since there
are many possible choices to create the matches that comply with the TBox,
1 Note that combined complexity does not include the query as part of the input, but

only the ontology. This is in line with the terminology used in ontology-based query
answering; e.g. [2]. It is typically only used in combination of simple fixed queries.
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this method results in a UCQ. At this point, the ABox is treated as a database,
which suffices to find all the certain answers. Similarly, a special UCQ can be
used to verify that the ontology is consistent ; that is, whether it is possible to
build a model for this ontology. For the full details on how these query rewritings
work in classical DL-Lite, see [9]. In terms of combined complexity, consistency
can be decided in polynomial time; in fact, it is NLogSpace-complete [2].

3 The Canonical Interpretation

A very useful tool for developing techniques for answering queries in DL-LiteR is
the canonical interpretation. We first show that the same idea can be extended
to fuzzy ontologies, independently of the t-norm underlying its semantics.

Let O = (T ,A) be a DL-Lite ontology and assume w.l.o.g. that there are
no axioms of the form 〈∃Q1 � ∃Q2, d〉 ∈ T ; any such axiom can be substituted
by the two axioms 〈∃Q1 � A, 1〉, 〈A � ∃Q2, d〉 where A is a concept name
not appearing in T . The canonical interpretation of O is the interpretation
Ican(O) over the domain ΔIcan := NI ∪ NN , where NN is a countable set of
constants obtained through the following (infinite) process. Starting from the
empty interpretation which sets AIcan(δ) = 0 and P Ican(δ, η) = 0 for every A ∈
NC , P ∈ NR and δ, η ∈ ΔIcan , exhaustively apply the following rules:

– if 〈A(a), d〉 ∈ A and AIcan(a) < d, then update AIcan(a) := d;
– if 〈P (a, b), d〉 ∈ A and P Ican(a, b) < d, then update P Ican(a, b) := d;
– if 〈A1 � A2, d〉 ∈ T and AIcan

2 (δ) < AIcan
1 (δ) ⊗ d, then update the value

AIcan
2 (δ) := AIcan

1 (δ) ⊗ d;
– if 〈A � ∃P, d〉 ∈ T and for every η ∈ ΔIcan , P Ican(δ, η) < AIcan(δ) ⊗ d

holds, then select a fresh element η0 such that P Ican(δ, η0) = 0 and update
P Ican(δ, η0) := AIcan(δ) ⊗ d;

– if 〈A � ∃P−, d〉 ∈ T and for every η ∈ ΔIcan P Ican(η, δ) < AIcan(δ) ⊗ d
holds, then select a fresh element η0 such that P Ican(η0, δ) = 0 and update
P Ican(η0, δ) := AIcan(δ) ⊗ d;

– if 〈∃P � A, d〉 ∈ T and ∃η ∈ ΔIcan such that AIcan(δ) < P Ican(δ, η) ⊗ d, then
update AIcan(δ) := P Ican(δ, η) ⊗ d;

– if 〈∃P− � A, d〉 ∈ T and ∃η ∈ ΔIcan such that AIcan(δ) < P Ican(η, δ) ⊗ d, then
update AIcan(δ) := P Ican(η, δ) ⊗ d;

– if 〈Q1 � Q2, d〉 ∈ T and QIcan
2 (δ, η) < QIcan

1 (δ, η) ⊗ d, then update the value
QIcan

2 (δ, η) := QIcan
1 (δ, η) ⊗ d.

where the rules are applied in a fair manner; that is, an applicable rule is eventu-
ally triggered. The process of rule application is a monotone increasing function,
and as such has a least fixpoint, which is the canonical interpretation Ican(O).

Intuitively, Ican(O) should be a minimal model of O, which describes the
necessary conditions of all other models of O. Indeed, the first two rules ensure
that the conditions imposed by the ABox are satisfied, while the remaining
rules guarantee that all elements of the domain satisfy the positive axioms from
the TBox, and each rule is as weak as possible in satisfying these constraints.
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However, the construction of Ican(O) does not take the negations into account.
The effect of this is that Ican(O) might not be a model of O.

Example 1. Consider the fuzzy DL-Lite ontology O0 = (T0,A0) where

T0 := {〈A1 � ¬A2, 1〉},

A0 := {〈A1(a), 0.5〉, 〈A2(a), 0.5〉}.

Under the Gödel semantics, by application of the first rule, the canonical inter-
pretation maps AIcan

1 (a) = AIcan
2 (a) = 0.5. However, this violates the axiom in

T0, which requires that AIcan
1 (a) ⇒ 
AIcan

2 (a) = 1. That is, it requires that
AIcan

1 (a) < 
AIcan
2 (a), which is only possible when AIcan

1 (a) = 0 or AIcan
2 (a) = 0.

The issue is that the negative axioms may introduce inconsistencies, by
enforcing upper bounds in the degrees used, which are not verified by the canon-
ical interpretation. However, as long as there is a model, Ican(O) is one.

Proposition 2. Ican(O) is a model of O iff O is consistent.

It can be seen that O0 from Example 1 is inconsistent under the Gödel semantics.
On the other hand, under the �Lukasiewicz semantics, O0 is consistent which, by
this proposition, means that Ican(O) is a model of this ontology. This is easily
confirmed by recalling that under the �Lukasiewicz negation 
0.5 = 0.5.

The name canonical comes from the fact that, as in the classical case, Ican(O)
can be homomorphically embedded in every model of O. We show a similar
result with the difference that in this case, the homomorphism needs to take
into account the truth degrees from the interpretation function as well. This is
described in the following proposition.

Proposition 3. Let O be a consistent fuzzy DL-Lite ontology, I = (ΔI , ·I) a
model of O, and Ican(O) = (ΔIcan , ·Ican) its canonical interpretation. There is a
function ψ from ΔIcan to ΔI such that:

1. for each A ∈ NI and δ ∈ ΔIcan , AIcan(δ) ≤ AI(δ); and
2. for each P ∈ NR and δ, η ∈ ΔIcan , P Ican(δ, η) ≤ P I(δ, η).

The consequence of this proposition is that Ican(O) is complete for existential
positive queries, and in particular for conjunctive queries.

Corollary 4. If O is a consistent fuzzy DL-Lite ontology, then for every CQ
q(x) and answer tuple a it holds that O |= q(a) ≥ d iff Ican(O) |= q(a) ≥ d.

Obviously, answering queries through Ican(O) is impractical, because it is an
infinite model constructed through an infinitary process. Additionally, we still
have the burden to prove that the ontology is consistent, before trying to use
Corollary 4 to answer queries. Fortunately, for the Gödel and product t-norms,
we resort to existing results from the literature.
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Given a fuzzy DL-Lite ontology O = (T ,A), let Ô be its classical version
defined as Ô := (T̂ , Â) with

T̂ := {B � C | 〈B � C, d〉 ∈ T , d > 0} ∪ {Q � R | 〈Q � R, d〉 ∈ T , d > 0},

Â := {B(a) | 〈B(a), d〉 ∈ T , d > 0} ∪ {P (a, b) | 〈P (a, b), d〉 ∈ T , d > 0}.

That is, Ô contains all the axioms and assertions from O which hold with a
positive degree—note that any fuzzy axiom or assertion with degree 0 could be
removed w.l.o.g. anyway. The following result is a consequence of work on more
expressive fuzzy DLs [7].

Proposition 5. Let O be a G-DL-LiteR or π-DL-LiteR ontology. Then O is
consistent iff Ô is consistent.

In those cases, consistency checking can be reduced to the classical case, without
the need to modify the query or the basic formulation of the ontology. For the
ontology O0 in Example 1, we have Ô0 = ({A1 � ¬A2}, {A1(a), A2(a)}), which
is inconsistent in the classical case. We note that the example also shows that
Proposition 5 does not hold for the �Lukasiewicz t-norm.

In particular, Proposition 5 shows that deciding consistency of G-DL-LiteR

and π-DL-LiteR ontologies is in AC0 w.r.t. data complexity and in NLogSpace
w.r.t. combined complexity. Thus adding truth degrees does not affect the com-
plexity of this reasoning task. We now turn our attention to the task of query
answering with the different semantics, starting with the idempotent case of the
Gödel t-norm.

Before studying how to answer queries over fuzzy DL-LiteR ontologies and
its complexity, we note that in the case that an ontology is classical—i.e., it
uses only degree 1 in all its axioms—its canonical interpretation constructed as
described in this section is equivalent to the classical canonical interpretation
from [9]. This fact will be used in the following section.

4 Answering Queries over Gödel Ontologies

The Gödel semantics are very limited in their expressivity. On the one hand,

d ∈ {0, 1} for all d ∈ [0, 1]. This means that whenever we have an axiom of
the form 〈B � ¬B′, d〉 or 〈Q � ¬Q′, d〉 with d > 0, we are in fact saying that
for every element δ ∈ ΔI , if BI(δ) > 0, then B′I(δ) = 0—because 
B′I(δ) = 1
(and similarly for role axioms). Thus, for this section we can assume w.l.o.g. that
all negative axioms hold with degree 1. On the other hand, a positive axiom of
the form 〈B � B′, d〉 requires that for every δ ∈ ΔI , B′I(δ) ≥ min{BI(δ), d}.
That is, the only way to guarantee that an atom gets a high degree is to use
axioms with a high degree. We use these facts to reduce reasoning tasks in this
setting to the classical DL-LiteR scenario.

Consider a consistent G-DL-LiteR ontology O. We can decide a lower bound
for the degree of a CQ simply by querying a cut of O. Given a value d ∈ (0, 1],
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the d-cut of O is defined as the sub-ontology O≥d := (T≥d,A≥d) where

T≥d := {〈γ, e〉 ∈ T | e ≥ d},

A≥d := {〈α, e〉 ∈ A | e ≥ d}.

That is, O≥d is the subontology containing only the axioms and assertions that
hold to degree at least d. To show that d-cuts suffice for answering queries, we
use the canonical interpretation.

Note that including new axioms or assertions to an ontology results in an
update of the canonical interpretation which only increases the degree of some
of the elements of the domain. More precisely, if Ican(O) is the canonical inter-
pretation of O = (T ,A), then the canonical interpretation of O′ = (T ∪ {〈B �
C, d〉},A) is the result of applying the construction rules starting from Ican(O).
Since Ican(O) has already applied all the rules on axioms of O exhaustively, the
only remaining rule applications will be based on the new axiom 〈B � C, d〉 and
new applications over T . Under the Gödel semantics, all the updates increase
the interpretation function up to the value d; that is, if ·I′

can is the interpreta-
tion function of Ican(O′), the difference between Ican(O) and Ican(O′) is that
there exist some elements such that AIcan(δ) < AI′

can(δ) = d, and similarly for
roles. Moreover, if d0 is the smallest degree appearing in the ontology O, then
its canonical interpretation uses only truth degrees in {0} ∪ [d0, 1]; that is, no
truth degree in (0, d0) appears in Ican(O). With these insights we are ready to
produce our first results. For the rest of this section, we always consider that the
semantics is based on the Gödel t-norm; i.e., we have a G-DL-LiteR ontology.

Lemma 6. Let O be a consistent G-DL-LiteR ontology, q(x) a query, a a vector
of individuals, and d ∈ (0, 1]. Then O |= q(a) ≥ d iff O≥d |= q(a) ≥ d.

Proof. Since O≥d ⊆ O, every model of O is also a model of O≥d. Hence, if
O≥d |= q(a) ≥ d, then O |= q(a) ≥ d.

For the converse, assume that O≥d �|= q(a) ≥ d. By Corollary 4, this means
that Ican(O≥d) �|= q(a) ≥ d. That is, qIcan(aIcan) < d. Let Ican(O) = (ΔI′

can , ·I′
can)

be the canonical interpretation of O. Recall that the difference between O and
O≥d is that the former has some additional axioms with degrees smaller than d.
As argued before, this means that the difference between Ican(O) and Ican(O≥d)
are just some degrees, which are all smaller than d; that is, for every A ∈ NC ,
P ∈ NR, and δ, η ∈ ΔI′

can , if AI′
can(δ) ≥ d, then AIcan(δ) ≥ d and if P I′

can(δ, η) ≥ d,
then P Ican(δ, η) ≥ d. By assumption, this means that qI′

can(aI′
can) < d and hence

Ican(O) �|= q(a) ≥ d. Thus, O �|= q(a) ≥ d. ��

What this lemma states is that in order to find a lower bound for the degree
of a query, one can ignore all the axioms and assertions that provide a smaller
degree. However, one still needs to answer a query for a fuzzy ontology, for which
we do not have any solution. The next lemma solves this issue.

Lemma 7. Let O be a consistent G-DL-LiteR ontology such that O≥d = O for
some d > 0. Then, O |= q(a) ≥ d iff Ô |= q(a).
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Algorithm 1: Compute the degree of an answer to a query
Data: Ontology O, query q, answer a, D = {d0, d1, . . . , dn+1}
Result: The degree of q(a) w.r.t. O

1 i ← n + 1

2 N ← Ô≥1

3 while N �|= q(a) and i > 0 do
4 i ← i − 1

5 N ← Ô≥di

6 return di

Proof. Every model of Ô is also a model of O, with the additional property that
the interpretation function maps all elements to {0, 1}. If O |= q(a) ≥ d > 0,
then for every model I of Ô it holds that qI(aI) ≥ d > 0 and thus qI(aI) = 1,
which means that Ô |= q(a).

Conversely, if Ô |= q(a), the canonical interpretation Ican(O) must be such
that qIcan(aIcan) > 0; but as argued before, since O only has axioms and assertions
with degrees ≥ d, it must be the case that all degrees of Ican(O) are in {0}∪[d, 1],
and hence qIcan(aIcan) ≥ d. This implies, by Corollary 4 that O |= q(a) ≥ d. ��

These two lemmas together provide a method for reducing bound queries in
G-DL-LiteR to query answering in classical DL-LiteR.

Theorem 8. If O is a consistent G-DL-LiteR ontology and d > 0, then it holds
that O |= q(a) ≥ d iff Ô≥d |= q(a).

This means that we can use a standard ontology-based query answering system
to answer fuzzy queries in DL-LiteR as well. Note that the approach proposed
by Theorem 8 can only decide whether the degree of an answer to a query is at
least d, but it needs the value d as a parameter. If, instead, we are interested in
computing the degree of an answer, or ans(q(x),O), we can proceed as follows.

Since the TBox T and the ABox A which compose the ontology O are both
finite, the set D := {d | 〈α, d〉 ∈ T ∪ A} of degrees appearing in the ontology is
also finite; in fact, its size is bounded by the size of O. Hence, we can assume
that D is of the form D = {d0, d1, . . . , dn, dn+1} where d0 ≥ 0, dn+1 ≤ 1 and
for all i, 0 ≤ i ≤ n, di < di+1. In order to find the degree of an answer a to a
query q, we proceed as follows: starting from i := n + 1, we iteratively ask the
query O≥di

|= q(a) and decrease i until the query is answered affirmatively, or i
becomes 0 (see Algorithm 1). In the former case, di is the degree for q(a); in the
latter, the degree is 0—i.e., a is not an answer of q.

During the execution of this algorithm, each classical query needed at line 3
can be executed in AC0 (and in particular in LogSpace) in the size of the data;
i.e., the ABox [2]. The iterations in the loop do not affect the overall space used,
as one can simply produce a new query every time and clean up the previous
information. Overall, this means that the degree of an answer can be computed
in LogSpace in data complexity.
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Corollary 9. The degree of an answer a to a query q w.r.t. the G-DL-LiteR

ontology O is computable in LogSpace in data complexity.

Computing ans(q(x),O) is, however, a more complex task. Although we can
follow an approach similar to Algorithm 1, where the answers to q(x) are com-
puted for each ontology Ô≥di

, in order to assign the appropriate degree to each
answer, we need to either keep track of all the answers found so far, or add a
negated query which excludes the answers with a higher degree. In both cases,
we end up outside the realm of LogSpace complexity. On the other hand, the
whole set of answers ans(q(x),O) will usually contain many answers that hold
with a very low degree, which may not be of much interest to the user making
the query. When dealing with degrees, a more meaningful task is to find the
k answers with the highest degree, for some natural number k; i.e., the top-k
answers of q.

Algorithm 1 once again suggests a way to compute the top-k answers. As
in the algorithm, one starts with the highest possible degree, and expands the
classical ontology by including the axioms and assertions with a lower degree.
The difference is that one stops now when the query returns at least k tuples
as answers. At that point, the tuples found are those with the highest degree
for the query. As before, each of these queries can be answered in AC0 in data
complexity, which yields a LogSpace upper bound for answering top-k queries
in data complexity.

Corollary 10. Top-k queries over consistent G-DL-LiteR ontologies can be
answered in NLogSpace in data complexity.

5 Non-idempotent t-Norms

We now move our attention to the t-norms that are not idempotent; in partic-
ular the product and �Lukasiewicz t-norms. Unfortunately, as we will see, the
correctness of the reductions presented in the previous section relies strongly on
the idempotency of the Gödel t-norm, and does not transfer directly to the other
cases. However, at least for the product t-norm, it is still possible to answer some
kinds of queries efficiently.

First recall that Proposition 5 holds for the product t-norm as well. Hence,
deciding consistency of a π-DL-LiteR ontology remains reducible to the classical
case and thus, efficient. We now show with simple examples that the other results
do not transfer so easily.

Example 11. Let O1 := (T1,A1) with T1 := {〈Ai � Ai+1, 0.9〉 | 0 ≤ i < n}
and A1 := {〈A0(a), 1〉}. Note that O1 = O1≥0.9, but the degree for the query
q() = An(a) is 0.9n which can be made arbitrarily small by making n large.

Similarly, it is not possible to find the top-k answers simply by layering the
d-cuts for decreasing values of d until enough answers can be found.
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Example 12. Let O′
1 := (T1,A′

1), where A′
1 := A1 ∪ {〈An(b), 0.85〉} and T1, A1

are as in Example 11. The top answer for q(x) = An(x) is b with degree 0.85,
but from O′

1≥0.9 we already find the answer a, which is not the top one.

The main point with these examples is that, from the lack of idempotency of the
t-norm ⊗, we can obtain low degrees in a match which arises from combining
several axioms and assertions having a high degree. On the other hand, the
product behaves well for positive values in the sense that applying the t-norm
to two positive values always results in a positive value; formally, if d, e > 0,
then d ⊗ e > 0. Thus, if we are only interested in knowing whether the result of
a query is positive or not, there is no difference between the Gödel t-norm and
the product t-norm.

Definition 13. A tuple a is a positive answer to the query q(x) w.r.t. the ontol-
ogy O (denoted O |= q(a) > 0) iff for every model I of O it holds that qI(aI) > 0.

Theorem 14. If O is a consistent π-DL-LiteR ontology, then O |= q(a) > 0 iff
Ô |= q(a).

Proof. Every model of Ô is also a model of O, with the additional property that
the interpretation function maps all elements to {0, 1}. If O |= q(a) > 0, then
for every model I of Ô it holds that qI(aI) > 0 and thus qI(aI) = 1, which
means that Ô |= q(a).

Conversely, if Ô |= q(a), then the canonical interpretation is such that
qIcan(aIcan) > 0, and hence for every model I it also holds that qI(aI) > 0.

��

This means that, for the sake of answering positive queries over the product
t-norm, one can simply ignore all the truth degrees and answer a classical query
using any state-of-the-art engine. In particular, this means that positive answers
can be found in AC0 in data complexity just as in the classical case.

We now briefly consider the �Lukasiewicz t-norm, which is known to be the
hardest to handle due to its involutive negation and nilpotence, despite being
in many cases the most natural choice for fuzzy semantics [6]. As mentioned
already, Proposition 5 does not apply to the �Lukasiewicz t-norm. That is, there
are consistent �L-DL-LiteR ontologies whose classical version is inconsistent (see
Example 1). As a result, there is currently no known method for deciding con-
sistency of these ontologies, let alone answering queries. The culprits for this are
the involutive negation, which is weaker than the negation used in the other two
t-norms, but also the nilpotence, which may combine positive degrees to produce
a degree of 0. The latter also means that, even if one could check consistency, it
is still not clear how to answer even positive queries.

Example 15. Consider the ontology O2 := (T2,A2) where

T2 := {〈A0 � A1, 0.5〉, 〈A1 � A2, 0.5〉}
A2 := {〈A0(a), 1〉}.
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Note that O2 is consistent, but there is a model I (e.g., the canonical interpre-
tation) of this ontology which sets AI

2 (aI) = 0. Hence, a is not a positive answer
to the query q(x) = A2(x) even though it is an answer of q(x) over Ô2.

Importantly, if we extend DL-LiteR with the possibility of using conjunc-
tions in the right-hand side of axioms—which becomes only syntactic sugar in
the classical case—one can show following the ideas from [5,6] that deciding
consistency of a �L-DL-LiteR ontology is NP-hard in combined complexity, going
beyond the NLogSpace upper bound for the case considered in this work.

6 Conclusions and Future Work

We have introduced the first method for answering conjunctive queries over
fuzzy DL-LiteR ontologies where also the axioms in the TBox are allowed to
constrain the admissible truth degrees, and the semantics is based in the notions
of mathematical fuzzy logic, with an underlying t-norm an operators.

We have shown that for the Gödel t-norm dealing with the truth degrees adds
only a linear overhead to classical query answering, and can be solved through
repeated calls to a classical QA engine, which can be chosen from any of the
many efficient existing solutions. Moreover, checking consistency of an ontology
is easily reduced to the classical case. Technically, this greatly improves the
results from [14], where the query needed to be translated into a new one to
handle the different degrees (and the TBox must be classical). In our case, we
can take any existing solver, and use it without modification. The drawback
is that, by not providing a direct translation, the data complexity of the query
answering method jumps from AC0 to LogSpace; consistency checking is still in
AC0 w.r.t. data complexity and in NLogSpace in combined complexity. Finding
the k answers with the highest truth degree remains within the same complexity
bounds. Importantly, the LogSpace upper bounds are not necessarily tight. It
remains to be seen whether answering w.r.t. G-DL-LiteR ontologies is in fact
LogSpace-hard, or can be solved in AC0. On the other hand, if one is only
interested in deciding whether the degree is greater or equal to a given bound,
the complexity lowers to that of the classical case again.

The case of other continuous t-norms is, unfortunately, not as clear as Gödel.
Although for any t-norm that is not nilpotent (that is, anyone which behaves
as the Gödel or the product t-norms at the beginning of the interval [0, 1])
ontology consistency trivially reduces to the classical case as in Proposition 5,
it is not clear how to handle other reasoning problems, and in particular query
answering efficiently. It is important to note that as soon as the t-norm is not
idempotent, query-rewriting techniques cannot work as usual; in fact, query
rewritings are agnostic to the number of times a single axiom or assertion is used
in a derivation, which affects the final result when degrees are accumulated. For
t-norms with nilpotent elements, and in particular for the �Lukasiewicz t-norm,
even the question of consistency is open. In fact, for a minimal extension of
�L-DL-LiteR consistency can be shown to be NP-hard in combined complexity.
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We emphasise that, despite both using degrees in [0, 1] and similar operators,
π-DL-LiteR ontologies are not probabilistic ontologies. In particular, in the con-
text of query answering, even if we consider only the assertions in the ABox, the
product semantics produce very different results to probabilistic databases [22].
The main difference is that a probabilistic fact spawns two possible worlds—
one in which the fact is true, and one where it is false—which pushes the data
complexity of query answering to #P-hard. In π-DL-LiteR, graded facts only
provide a truth degree, and cannot be considered possible worlds.

In the literature of fuzzy query answering, a usual task is to answer threshold
queries, where each of the conjuncts in the CQ is associated with a lower truth
degree. The technique introduced in this paper is unable to handle this task, and
new techniques will need to be developed for it. The most promising approach for
the Gödel semantics is a new rewriting, which uses graded facts in the database.
We will explore this road in more detail in the future.
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Abstract. STRIM (Statistical Test Rule Induction Method) has been
proposed as an if-then rule induction method from the decision table
(DT) and has improved those methods by the conventional Rough Sets
from a statistical view. The method recognizes condition attributes (CA)
and the decision attribute (DA) in DT as random variables having the
causality of an input-output relation, and uses the relation of transform-
ing the inputs (outcomes of CA) into the outputs (those DA) through
the rules for rule induction strategies. This paper reconsiders the con-
ventional STRIM, proposes a new rule induction method and strategy
named apriori-STRIM and confirms the validity and capacity by a sim-
ulation experiment. Specifically, the new method explores CA of causes
after receiving outcomes of DA by use of co-occurrence sets of outcomes
of CA. The co-occurrence set is a well-known concept in the associa-
tion rule learning (ARL) field. This paper also clarifies the differences of
rule induction methods and their capacities between apriori-STRIM and
ARL by the same experiments.

Keywords: Rough Sets · If-then rule induction · apriori-STRIM ·
Simulation experiment

1 Introduction

The Rough Set (RS) theory was introduced by Pawlak [1] and used for inducing
if-then rules from a dataset called the decision table (DT). To date, various meth-
ods and algorithms for inducing rules by the theory have been proposed [2–5]
since the inducing rules are useful to simply and clearly express the structure
of rating and/or knowledge hiding behind the table. The basic idea to induce
rules is to approximate the concept in the DT by use of the lower and/or upper
approximation sets which are respectively derived from the equivalence relations
and their equivalence sets in the given DT. However, those methods and algo-
rithms by RS paid little attention to the fact that the DT was just a sample set
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gathered from the population of interest. If resampling the DT from the pop-
ulation or the DT by Bootstrap method for example, the new DT will change
equivalence relations, their equivalence sets, and the lower and/or upper approx-
imation sets, so the induced rules will change and fluctuate. Those methods and
algorithms also had the problem that those induced rules were not arranged
from the statistical views. Then, we proposed a rule induction method named
STRIM (Statistical Test Rule Induction Method) taking the above mentioned
problems into consideration [6–16]. Specifically, STRIM

(1) Proposed a data generation model for generating a DT. This model recog-
nized the DT as an input-output system which transformed a tuple of the
condition attribute’s value occurred by chance (the input) into the decision
attribute value (the output) through pre-specified if-then rules (generally
unknown) under some hypotheses. That is, the input was recognized as
an outcome of the random variables and the output was also the outcome
of a random variable dependent on the input and the pre-specified rules.
Accordingly, the pairs of input and output formed the DT containing rules.

(2) Assumed a trying proper condition part of if-then rules and judged whether
it was a candidate of rules by statistically testing whether the condition
caused bias in the distribution of the decision attribute’s values.

(3) Arranged the candidates having inclusion relationships by representing them
with one of the highest bias and finally induced if-then rules with a statisti-
cal significance level after systematically exploring the trying condition part
of rules. The validity and capacity of STRIM have been confirmed by the
simulation experiments that STRIM can induce pre-specified if-then rules
from the DT proposed in (1). In this way, the conventional data generation
model proposed in (1) also can be used for a verification system of a rule
induction method (VSofRIM). The validity and capacity also secure a cer-
tain extent of the confidence of rules induced by STRIM from the DT of
real-world datasets. The VSofRIM is also used for confirming the validity
and capacity of other rule induction methods proposed previously [11,14].

The conventional STRIM systematically explores the domain of the con-
dition attributes looking for rule candidates causing the bias and statistically
judges their validity by use of the DT which is accumulated by rules intervening
between the inputs of the condition attributes and the corresponding outputs of
the decision attribute. This paper reconsiders the process after (2) from the view
of Bayes’s law which generally infers the causes from the results, and proposes
a new rule induction method named apriori-STRIM. Specifically, the method
explores a co-occurrence set of the condition attribute’s value in the DT against
a specific decision attribute’s value. The concept of the co-occurrence set plays
an important role in the association rule learning (ARL) field [17] and the set
can be effectively found using the well-known Apriori algorithm [18]. That is,
apriori-STRIM focuses on the property that the specific decision attribute’s value
will occur with the specific condition attribute values by the rules’ intervention,
although the conventional STRIM focuses on the bias. The rules’ intervention
also can be judged by a statistical test using the co-occurrence set in the DT.
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The validity and capacity of apriori-STRIM is also confirmed by the same experi-
ment as the conventional and the two-way confirmations by both STRIMs secure
the validity and capacity for the rule induction method. This paper also shows
interesting features of ARL by applying it to VSofRIM and clarifies the differ-
ences between apriori-STRIM and ARL.

2 Conventional Rough Sets and STRIM

The Rough Set theory is used for inducing if-then rules from a decision table S.
S is conventionally denoted by S = (U,A = C ∪ {D}, V, ρ). Here, U = {u(i)|i =
1, ..., |U | = N} is a sample set, A is an attribute set, C = {C(j)|j = 1, ..., |C|}
is a condition attribute set, C(j) is a member of C and a condition attribute,
and D is a decision attribute. Moreover, V is a set of attribute values denoted
by V = ∪a∈AVa and is characterized by the information function ρ: U ×A → V .

The conventional Rough Set theory first focuses on the following equivalence
relation and the equivalence set of indiscernibility within the decision table S of
interest:

IB = {(u(i), u(j)) ∈ U2|ρ(u(i), a) = ρ(u(j), a),∀a ∈ B ⊆ C}.

IB is an equivalence relation in U and derives the quotient set U/IB = {[ui]B |i =
1, 2, ..., |U | = N}. Here, [ui]B = {u(j) ∈ U |(u(j), ui) ∈ IB, ui ∈ U}, [ui]B is an
equivalence set with the representative element ui.

Let X be an arbitrary subset of U then X can be approximated as B∗(X) ⊆
X ⊆ B∗(X) through the use of the equivalence set. Here, B∗(X) = {ui ∈
U |[ui]B ⊆ X}, and B∗(X) = {ui ∈ U |[ui]B ∩ X �= φ}, B∗(X) and B∗(X) are
referred to as the lower and upper approximations of X by B respectively. The
pair of (B∗(X), B∗(X)) is usually called a rough set of X by B.

Specifically, let be X = {u(i)|ρ(u(i),D) = d} = U(d) = {u(i)|uD=d(i)} called
the concept of D = d, and define a set of u(i) as U(CP ) = {u(i)|uC=CP (i),
meaning CP satisfies uC(i), where uC(i) is the tuple of the condition attribute
values of u(i)} and let it be equal to B∗(X), then CP can be used as the condition
part of the if-then rule of D = d, with necessity. That is, the following expression
of if-then rules with necessity is obtained: if CP = ∧j(C(jk) = vjk) then D = d.
In the same way, B∗(X) derives the condition part CP of the if-then rule of
D = d with possibility.

However, the approximation of X = U(d) by the lower or upper approx-
imation is respectively too strict or loose so that the rules induced by the
approximations are often of no use. Then, Ziarko expanded the original RS by
introducing an admissible error in two ways [4]: Bε(U(d)) = {u(i)|accuracy ≥
1 − ε}, Bε(U(d)) = {u(i)|accuracy > ε}, where ε ∈ [0, 0.5). The pair of
(Bε(U(d)), Bε(U(d))) is called an ε-lower and ε-upper approximation which sat-
isfies the following properties: B∗(U(d)) ⊆ Bε(U(d)) ⊆ Bε(U(d)) ⊆ B∗(U(d)),
Bε=0(U(d)) = B∗(U(d)) and Bε=0(U(d)) = B∗(U(d)). The ε-lower and/or ε-
upper approximation induce if-then rules with admissible errors in the same
way as the lower and/or upper approximation.
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As mentioned above, the conventional RS theory basically focuses on the
equivalence relation IB and its equivalence sets U/IB in U given in advance
and induces rules approximating the concept by use of the approximation sets
derived from the U/IB . However, IB is very dependent on the DT provided.
Accordingly, every DT obtained from the same population is different from each
other and, IB, U/IB and the approximation sets are different from each other for
each DT, which leads to inducing different rule sets. That is, the rule induction
methods by the conventional RS theory lack statistical views.

Rule Box &
Hypotheses

Observer

u (i)
C

u (i)
D

Input Output

NoiseC NoiseD

{u(i)=(u (i), u (i))
     | i=1,2,.... }

C D

Fig. 1. A data generation model: Rule box contains if-then rules R(d, k): if sCP (d, k)
then D = d (d = 1, 2, ..., k = 1, 2, ...).

Table 1. Hypotheses with regard to the decision attribute value.

Hypothesis 1 uC(i) coincides with R(d, k), and uD(i) is uniquely determined as
D = d (uniquely determined data)

Hypothesis 2 uC(i) does not coincide with any R(d, k), and uD(i) can only be
determined randomly (indifferent data)

Hypothesis 3 uC(i) coincides with several R(d, k) (d = d1, d2, . . .), and their
outputs of uC(i) conflict with each other. Accordingly, the output of
uC(i) must be randomly determined from the conflicted outputs
(conflicted data)

Then, STRIM [6,9,10,12,15] has proposed a data generation model (DGM)
for the DT and a rule induction method based on the model. Specifically, STRIM
considers the decision table to be a sample dataset obtained from an input-output
system including a rule box, as shown in Fig. 1, and hypotheses regarding the
decision attribute values, as shown in Table 1. A sample u(i) consists of its
condition attribute values uC(i) and its decision attribute value uD(i). uC(i)
is the input for the rule box, and is transformed into the output uD(i) using
the rules (generally unknown) contained in the rule box and the hypotheses.
The hypotheses consist of three cases corresponding to the input. They are
uniquely determined, indifferent and conflicted cases (see Table 1). In contrast,
u(i) = (uC(i), uD(i)) is measured by an observer, as shown in Fig. 1. The exis-
tence of NoiseC and NoiseD makes missing values in uC(i), and changes uD(i)
to create another value for uD(i), respectively. Those noises bring the system
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closer to a real-world system. The data generation model suggests that a pair of
(uC(i), uD(i)), (i = 1, . . . , N), i.e. a decision table is an outcome of these random
variables: (C,D) = ((C(1), . . . , C(|C|),D) observing the population.

Based on the data generation model, STRIM (1) extracted significant pairs
of a condition attribute and its value like C(jk) = vjk for rules of D = d by the
local reduct [10,12,13], (2) constructed a tentatively trying condition part of the
rules like CP = ∧j(C(jk) = vjk) by use of the reduct results, and (3) investigated
whether U(CP ) caused a bias at nd in the frequency distribution of the deci-
sion attribute values f = (n1, n2, . . . , nMD

) or not, where nm = |U(CP ) ∩ U(m)|
(m = 1, . . . , |Va=D| = MD) and U(m) = {u(i)|uD=m(i)}, since the uC(i) coincid-
ing to sCP (d, k) in the rule box is transformed into uD(i) based on Hypotheses
1 or 3. Accordingly, the CP coinciding to one of rules in the rule box produces
bias in f . Specifically, STRIM used a statistical test method for the investigation
specifying a null hypothesis H0: f does not have any bias, that is, CP is not a
rule and its alternative hypothesis H1: f has a bias, that is, CP is a rule, and
a proper significance level, and tested H0 by use of the sample dataset, that is,
the decision table and the proper test statistics, for example,

z =
(nd + 0.5 − npd)
(npd(1 − pd))0.5

,

where nd = maxm f = (n1, . . . , nm, . . . , nMD
), pd = P (D = d), n =

∑MD

j=1 nj .
z obeys the standard normal distribution under test conditions: npd ≥ 5 and
n(1 − pd) ≥ 5 [19] and is considered to be an index of the bias of f . (4) If H0 is
rejected then the assumed CP becomes a candidate for the rules in the rule box.
(5) After repeating the processes from (1) to (4) and obtaining the set of rule
candidates, STRIM arranged their rule candidates and induced the final results
(see literatures [12,13] for details).

To summarize, STRIM directly induces rules with statistical significance level
assuming the condition part of rules: CP = ∧j(C(jk) = vjk) and statistically
testing it by use of U . STRIM does not require the basic concept of the approx-
imation which is the point for the rule induction by RS theory. Conversely, RS
theory has nothing directly to do with statistical significance.

3 Studies on STRIM by Simulation Experiment

We implemented the data generation process and verified the capacity of induc-
ing the rules by the conventional STRIM as follows: (1) Specified the rules in
Table 2 (the number of rules (Nrule) = 10) in the rule box in Fig. 1, where
|C| = 6, Va = {1, 2, . . . , 5} (a = C(j), (j = 1, . . . , |C|), a = D), and
sCP (1, 1) = 110000 denoted sCP (1, 1) = (C(1) = 1) ∧ (C(2) = 1) and was
called a rule of the rule length 2 (RL = 2), having two conditions. (2) Gen-
erated vC(j)(i) (j = 1, . . . , |C| = 6) with a uniform distribution and formed
uC(i) = (vC(1)(i), . . . , vC(6)(i)) (i = 1, . . . , N = 10,000). (3) Transformed uC(i)
into uD(i) using the pre-specified rules in Table 2 and hypotheses in Table 1,
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Table 2. An example of pre-specified rules R(d, k) in the rule box: if sCP (d, k) then
D = d (d = 1, . . . , 5, k = 1, 2).

R(d, k) sCP (d, k) D = d

R(1, 1) 110000 D = 1

R(1, 2) 001100 D = 1

R(2, 1) 220000 D = 2

R(2, 2) 002200 D = 2

R(3, 1) 330000 D = 3

R(3, 2) 003300 D = 3

R(4, 1) 440000 D = 4

R(4, 2) 004400 D = 4

R(5, 1) 440000 D = 5

R(5, 2) 004400 D = 5

Table 3. An example of estimated rules by the conventional STRIM for the DT with
NB = 5,000 generated by the data generation model in Fig. 1 and the pre-specified
rules in Table 2.

Rule no. Estimated rules
(C(1). . .C(6)D)

f = (n1, n2, n3, n4, n5) p-value Accuracy Coverage

1 (0022002) (4, 216, 8, 5, 4) 5.87E−173 0.911 0.223

2 (0011001) (207, 3, 4, 2, 3) 8.26E−162 0.945 0.200

3 (0055005) (8, 4, 7, 5, 211) 1.87E−159 0.898 0.212

4 (4400004) (5, 6, 5, 187, 4) 5.73E−150 0.903 0.195

5 (1100001) (190, 1, 6, 3, 4) 1.86E−145 0.931 0.184

6 (5500005) (5, 8, 6, 5, 191) 2.73E−142 0.888 0.192

7 (0044004) (4, 3, 3, 167, 3) 8.99E−140 0.928 0.174

8 (3300003) (5, 6, 193, 7, 3) 1.98E−139 0.902 0.186

9 (2200002) (3, 167, 6, 1, 5) 7.37E−136 0.918 0.172

10 (0033003) (3, 4, 185, 10, 2) 6.03E−135 0.907 0.178

without generating NoiseC and NoiseD for a plain experiment and then gen-
erated the decision table. After randomly selecting samples by NB = 5,000
samples, newly forming the DT and applying STRIM to the DT, Table 3 was
obtained. The table shows us the following: For example, the estimated Rule
No. 1 (RN = 1) “0022002” denotes if (C(3) = 2) ∧ (C(4) = 2) then D = 2,
has f = (n1, n2, . . . , n5) = (4, 216, 8, 5, 4) and the bias at D = 2. The outcome
probability to cause such a bias is around 5.87E-173 under H0, which leads to
rejecting H0 and adopting H1. As the result, “0022002” was adopted as a rule.
It should be noted that the reason it was adopted as the rule was not the high
accuracy = 216/237 = 0.911. STRIM just induced all the pre-specified rules in
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Table 2. This experiment suggests that conventional STRIM works well and the
DGM in Fig. 1 can be useful as a verification system of a rule induction method.

4 New Rule Induction Method by Co-occurrence Set

As mentioned in Sect. 2, conventional STRIM regards the condition attributes C
and the decision attribute D as random variables, and D of the output depends
on C of the input, rules and hypotheses and the rule induction method focuses
on P (D = d|CP ) of P (CP,D = d) = P (CP )P (D = d|CP ). That is, STRIM
regards P (D = d|CP ) as P ( if CP then D = d) and explores CP = ∧j(C(jk) =
vjk) which causes bias at nd in f = (n1, n2, . . . , nMD

). The bias can be detected
by use of the DT and the statistical test.

Line No. Algorithm to induce if-then rules by STRIM with apriori function
1 install.packages(“arules”) # import package arules
2 library(arules) # load package arules
3 input data # input Decision Table
4 for (iD in 1: MD) {# proceed co-occurrence item set of iD
5 dataiD<-data[data[, (length(C) +1)]==iD,] # extract dataset of Decision

attribute value of iD
6 dataCiD<-dataiD[1: length(C) ,] # extract its Condition attributes value part
7 CiD.tra<-transform dataCiD # CiD of transaction form
8 CiD.ap<-apriori(CiD.tra, parameter=list(support=supp0,

target=’frequent itemset’)) # explore freqent item set more than supp0
9 SFIS<-inspect(CiD.ap) # output the set of frequent item set
10 for (iCo in 1: nrow(SFIS) ) {# proceed each frequent item set
11 calculate p-value of SFIS(iCo)
12 if p-value < p-value0, save the SFIS(iCo) as a rule candidate with necessary

index
13 }# end of for of iCo
14 arrange the rule candidates of iD
15 # end of for of iD

Fig. 2. An algorithm for apriori-STRIM written in R language style.

From the view of Bayes’s law, however, another strategy of focusing on
P (CP |D = d) of P (CP,D = d) = P (D = d)P (CP |D = d) can be considered
for the rule induction. That is, after receiving the outputs of D = d, the strategy
exploring and estimating CP = ∧j(C(jk) = vjk) of the corresponding inputs can
be also valid. Specifically, when receiving the outputs, the corresponding inputs
are classified into two cases: One is the uniquely determined and/or conflicted
cases and the other is the indifferent case (see Table 1). Both cases can be eas-
ily distinguished from each other by use of a statistical test specifying the null
hypothesis H0: the event D = d has occurred by chance (the indifferent case) and
the alternative hypothesis H1: the event D = d hasn’t occurred by chance (the
uniquely and/or conflicted case). Under H0, P (CP |D = d) = P (CP ) and the
intervention of rules transforming the inputs into the output is denied. If H0 is
denied, H1 is adopted as a rule candidate, which means P (CP |D = d) �= P (CP ).
Such hypothesis testing can be easily executed by finding the co-occurrence set
with the event D = d since the concept of the co-occurrence set is well-known in
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Table 4. An example of FIS extracted from U(D = 1) of the DT corresponding to
Table 3.

No. of FIS Items Support Count

[1] {15} 0.138 143

[2] {22} 0.143 148

[27] {11} 0.337 348

[31] {15, 22} 0.032 33

[32] {15, 24} 0.028 29

[350] {11, 21} 0.184 190

[351] {31, 41} 0.200 207

[353] {21, 31} 0.101 104

[354] {15, 31, 41} 0.029 30

[387] {31, 52, 63} 0.024 25

[403] {21, 31, 41} 0.044 45

the field of association rule learning (ARL) [17] and the finding is effectively exe-
cuted by the Apriori algorithm [18]. Then, this paper names this rule induction
method apriori-STRIM. The ARL and the Apriori algorithm are summarized in
AppendixA and the differences of the idea for the rule induction method between
ARL and apriori-STRIM are shown through the same experiment in Sect. 3, that
is, by VSofRIM. See AppendixA to easily understand the following.

The specific procedure for apriori-STRIM is shown in Fig. 2 where the pro-
cedure is shown in R language style since the Apriori algorithm is already
implemented by the language as an apriori() function which has a good rep-
utation. The outline is the following: Line No. 1 (LN = 1) installs the package
of ARL as “arules” [20] via the internet and LN = 2 loads it as the library
“arules”. LN = 3 inputs the DT as “data”. From LN = 4 to NL = 15,
every iD of the decision attribute (= 1 ∼ MD) is proceeded. LN = 5 sub-
stitutes U(iD) = {u(i)|uD=iD(i)} with dataiD, and its condition part dataCiD
is extracted (LN = 6), and transformed into the transaction form CiD.tra at
LN = 7. LN = 8 extracts co-occurrence sets of CiD.tra, that is, co-occurrence
sets of the condition attributes’ values of U(iD) as frequent item sets according to
parameters which specify them as greater than or equal to supp0 and substitute
them for CiD.ap. LN = 9 extracts the set of frequent item set (SFIS). From
LN = 10 to LN = 13, every p-value of SFIS(iCo) (iCo = 1, . . . , |SFIS|) is cal-
culated and tested for whether its p-value is less than a pre-specified p-value0 and
SFIS(iCo) is saved as a candidate if it satisfies the condition. LN = 14 arranges
the candidates having inclusion relationship by representing the candidate with
the least p-value and finally decides rules for iD.
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5 Studies on Apriori-STRIM by Simulation Experiment

An experiment result for the rule induction by the conventional STRIM was
shown in Table 3 by applying it to the DT containing the pre-specified rules.
We also applied apriori-STRIM for the same DT and show the results with the
process in Fig. 2.

Table 5. An example of rule candidates extracted from Table 4.

Rule no. Estimated rules
(C(1). . .C(6)D)

Count p-value Accuracy Coverage

1 0011001 207 1.93E−81 0.945 0.200

2 1100001 190 1.48E−68 0.931 0.184

3 0100001 372 5.78E−33 0.360 0.360

4 0001001 366 7.14E−31 0.366 0.354

5 0010001 366 7.14E−31 0.366 0.354

6 0011031 57 4.44E−29 0.966 0.055

7 1000001 348 5.42E−25 0.360 0.337

8 0511001 52 7.38E−25 0.945 0.050

9 0011201 52 7.38E−25 0.963 0.050

Table 4 shows the part of SFIS obtained at LN = 8 and 9 for iD = 1,
that is, D = 1. Here, supp0 = 5 · |Va|/|U(iD)|, ∀a ∈ C was used for exploring
FIS. This specification secure freq(FIS) ≥ 5 · |Va| = count0 for the hypothesis
testing at LN = 11 and 12 and induced |SFIS| = 403. The table shows: No.
of FIS = 1 − 30 (NFIS = 1 − 30) is FIS(|items| = 1), NFIS = 31 − 353 is
FIS(|items| = 2) and NFIS = 354−403 is FIS(|items| = 3), and for example,
NFIS = 387 indicates that the co-occurrence set of items = {C(3) = 1, C(5) =
2, C(6) = 3} that is, the pattern CP = (C(3) = 1) ∧ (C(5) = 2) ∧ (C(6) = 3)
occurred count = 25 times in |U(D = 1) = {u(i)|uD=1(i)}| = 1, 033. The pre-
specified rules for D = 1 in Table 2 are R(1, 1) and R(1, 2), which appear in
NFIS = 350 and 351 respectively.

LN = 12 induced significant FIS patterns in Table 4 by the hypothesis
testing under H0. The frequency X of the co-occurrence pattern CP obeys
Binominal distribution Bn(n, p) having the expectation np where n = |U(D =
1)| and p =

∏
a∈CP

1
|Va| . For example, p = (15 )3 at NFIS = 387 due to RL = 3.

One specification for supp0 was to satisfy the requirement np = Xp ≥ 5 for
RL = 1 as well as the conventional STRIM (see the test conditions [19] in
Sect. 2). That is, min X = count0 = 5

p = 5 · |Va|. count ≥ count0 = 25 is satisfied
in Table 4. As shown in AppendixA, the small count0 tends to generate a large
number of meaningless FIS, and conversely, the large increases the possibility
to miss the valid FISs.

LN = 12 induced the number of 46 rule candidates from 403 in Table 4 using
p-value 0 = 1.0E −10 this time and saved them with p-value, accuracy, coverage
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Table 6. Finally estimated rules by apriori-STRIM for the DT corresponding to those
of Table 3.

Rule no. Estimated rules
(C(1). . .C(6)D)

Count p-value Accuracy Coverage

1 0011001 207 1.93E−81 0.945 0.200

2 1100001 190 1.48E−68 0.931 0.184

3 0022002 216 4.19E−94 0.911 0.223

4 2200002 167 2.65E−56 0.918 0.172

5 3300003 193 2.42E−70 0.902 0.186

6 0033003 185 1.64E−64 0.907 0.178

7 4400004 187 1.36E−71 0.903 0.195

8 0044004 167 6.91E−57 0.928 0.174

9 0055005 211 1.37E−87 0.898 0.212

10 5500005 191 6.45E−72 0.888 0.192

and so on. Table 5 shows the first nine candidates after sorting them in ascending
order of p-value. RN = 1 and 2 coincide with R(1, 2) and R(1, 1) respectively.
RN = 3 can be represented by RN = 2 with the smaller p-value and in the same
manner all the following candidates were arranged and represented by RN = 1
or 2 at LN = 14. Table 6 shows the final rule induction results including those
of D = 2, . . . , 5 by apriori-STRIM.

To compare Table 6 by apriori-STRIM with Table 3 by the conventional
STRIM, the following is seen:

(1) Both methods statistically induce the pre-specified rules in Table 2 in proper
quantities and justly coincide with each other in corresponding figures.

(2) The differences between two tables are their surface caput of f = (n1,
n2, . . . , n5) and count. The former focuses on P (D = d|CP ) and adopts
the strongest bias of the distribution of D by CP . The latter focuses on
P (CP |D = d) and adopts the strongest intervention by rules, which appears
in the p-value of the co-occurrence set (pattern) in Table 5.

In the same way, to compare Table 6 and/or Table 3 with Table 9 and/or
Table 10 by the associate rule learning (ARL), the following is seen:

(3) ARL first focuses on the co-occurrence set of (CP,D) and its count directly
connects to P (CP,D) and induces rules by use of parameters of support,
confidence, and so on. However, ARL has no way of distinguishing the co-
occurrence sets by rules from those by chance since ARL doesn’t have any
models for the distinction.

(4) Connecting to (3), ARL also has no way of arranging a large number of
rule candidates as shown in AppendixA although it has useful indexes of
support, confidence, lift, and so on. That is, ARL based on P (CP,D) seems
not to closely focus on inducing if-then rules although it can induce the
co-occurrence set.
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6 Conclusion

This paper summarized the rule induction methods by the conventional RS and
their statistically improved method STRIM showing the validity and capacity of
STRIM in VSofRIM. The conventional STRIM focused on P (D = d|CP ) which
can be recognized as a probabilistic structure transforming the input CP into
the corresponding output D, and used the structure and the DT for inducing the
if-then rules that causes the bias in the distribution of D. From this view, another
new rule induction method focusing on P (CP |D = d) was proposed. Specifically,
the method estimated the inputs after receiving the outputs by exploring the
co-occurrence set of U(d) = {u(i)|uD=d(i)} and executing statistical testing with
regard to the explored set under H0: P (CP |D = d) = P (CP ). The exploration
was executed by Apriori algorithm developed in the field of ARL. The new
method was named apriori-STRIM. The validity and capacity for apriori-STRIM
was confirmed by applying it to the same DT as the conventional STRIM. The
similarities and differences between the conventional, apriori-STRIM and ARL
were clarified through the same simulation dataset, that is, VSofRIM.

Table 7. An example of transaction dataset.

Transaction Record

tr(1) 1, 2, 5, 6, 7, 9

tr(2) 2, 3, 4, 5

tr(3) 1, 2, 7, 8, 9

tr(4) 1, 7, 9

tr(5) 2, 3, 7, 9

Table 8. An example of the set of FIS (SFIS) for Table 7 (θ0 = 3).

SFIS(1) = {{1}, {2}, {7}, {9}}
SFIS(2) = {{1, 2}, {1, 7}, {1, 9}, {2, 7}, {2, 9}, {7, 9}}
⇒{{1, 7}, {1, 9}, {2, 7}, {2, 9}, {7, 9}}
SFIS (3) = {{1, 2, 7}, {1, 2, 9}, {1, 7, 9}, {2, 7, 9}}
⇒{{1, 7, 9}, {2, 7, 9}}
SFIS(4) = {1, 2, 7, 9}
⇒{φ}
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Focus for future studies:

(1) The differences of performance evaluation between the above three methods
were considered by the plain data generation model. To examine them in a
much closer model to the real-world.

(2) To apply three methods to the real-world dataset after finishing the studies
(1).

(3) To expand the DT to the transaction database and study if both STRIMs
can be applied to such a database and work effectively.

A Transaction Database and Association Rule Learning
[21]

Transaction database (TrD) is defined as a set of records called transaction (tr):
TrD = {tr(i)|i = 1, . . . ,m}. Here, each tr(i) is a subset of an item set defined
with Itm = {itm(j)|j = 1, . . . , n}. One of the examples is shown in Table 7
where m = 5 and Itm = {itm(j) = j|j = 1, . . . , n = 9}. Now let be ∀X ⊆ Itm
then Occ(X) = {tr(i)|X ⊆ tr(i)} is called the occurrence set of X and its
frequency is denoted freq(X) = |Occ(X)|. For example, let be X = {1} in
Table 7 then Occ(X) = {tr(1), tr(3), tr(4)} and freq(X) = 3. ∃X ⊆ Itm whose
occurrence set is often found in TrD is called a frequent item set (FIS). Table 8
arranges FIS of X with freq(X) ≥ θ0 = 3 in Table 7 and shows the set of FIS
(SFIS(|X|)) every |X|. For example, SFIS(|X| = 1) in Table 8 can be easily
obtained by tallying the frequency of TrD with X. SFIS(|X| = 2) should be
constructed by every combination of the element of SFIS(|X| = 1) and confirm
them by use of TrD then freq({1, 2}) = 2 � 3 and {1, 2} is deleted. The
result is shown after the symbol “⇒”. In the same way, SFIS(|X| = 3) should
be constructed by every combination of items in SFIS(|X| = 2). However,
{1, 2, 7} or {1, 2, 9} should be deleted since SFIS(|X| = 2) doesn’t include
{1, 2}, which is called downward closure property of frequency (DCPF ). The
rest of FIS(|X| = 3) are confirmed by use of TrD. As well as the following.

The algorithm that effectively generates SFIS(|X| = l+1) from SFIS(|X| =
l) by use of DCPF is called Apriori algorithm [18] and implemented by R lan-
guage as apriori() function in the library “arules” and is often used for association
rule learning [17] problems.

Now let ∀X,∀Y ⊆ Itm and X ∪ Y ∈ FIS ⊆ SFIS then X and Y often
simultaneously occur, which is called a co-occurrence set with freq(X ∪ Y ) and
induce rules called the association rule (AR): if X then Y , or: if Y then X. The
following three indexes: support, confidence and lift are often referred as the quality
of AR:

supp(X) =
freq(X)
|TrD| = P (X),

conf(X → Y ) =
supp(X ∪ Y )

supp(X)
= P (Y |X),
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lift(X → Y ) =
supp(X ∪ Y )

supp(X) · supp(Y )
=

conf(X → Y )
supp(Y )

=
P (Y |X)
P (Y )

,

where “→” denotes implication. Support is an index of how frequency the item
set appears in the dataset and confidence how often the rule has been found to
be true. Lift implies the degree to which X and Y are dependent on one another.
If lift(X → Y ) = 1 then X and Y are independent of each other and AR has
no sense.

For example, {1, 7, 9} in Table 8 is a co-occurrence set with freq({1, 7, 9}) =
3, which induces AR: if {1, 7} has occurred then {9} will occur with
supp({1, 7}) = 3/5. conf({1, 7} → {9}) = 3/3 = 1 and lift({1, 7} → {9}) =
5/4. This AR is valid to some extent since the lift > 1.

There are various kinds of TrD = {tr(i)|i = 1, . . . ,m} and DT: S = (U,A =
C ∪ {D}, V, ρ) can be regarded as one of TrD with corresponding relationships:
N → m, u(i) = (ρ(u(i), C(1)) . . . ρ(u(i), C(|C|)) ρ(u(i),D)) → tr(i) and V =
∪a∈AVa → Itm. For example, if u(1) = (1234512) in the specification of Sect. 3
then {11, 22, 33, 44, 55, 61, 72} corresponds to tr(1). In this way, the U with N =
5,000 corresponding to Table 3 can be transformed into the TrD form: d.tran
and the if-then rules behind the U can be induced by ARL of the following
statement:

apriori(d.tran, parameter = list(support= 0.003, confidence = 0.80, maxlen = 5)).

This example induces rules satisfying conf(X → Y ) ≥ 0.80 after finding the co-
occurrence set satisfying the condition supp(X ∪ Y ) ≥ 0.003 and |X ∪ Y | ≤ 5.
The part of the number of 240 ARs induced is shown in Table 9 after sorting
them in descending order of lift. In the surface caput of Table 9, Rule No. shows
the descending order, lhs and rhs are abbreviations of left hand side and right
hand side of an if-then rule respectively, and count is freq(lhs ∪ rhs).

Table 9. An example of estimated rules by apriori function for the dataset correspond-
ing to that in Table 3.

Rule no. lhs rhs Support Confidence Lift Count

1 {24, 34, 44} => {74} 0.008 1.000 5.20 40

5 {14, 24, 42, 65} => {74} 0.003 1.000 5.20 15

6 {12, 22, 32} => {72} 0.007 1.000 5.15 36

14 {15, 21, 32, 42} => {72} 0.003 1.000 5.15 15

22 {15, 25, 55, 63} => {75} 0.003 1.000 5.02 17

23 {11, 23, 35, 45} => {75} 0.003 1.000 5.02 15

41 {24, 42, 63, 72} => {32} 0.003 0.938 4.85 15

42 {11, 31, 41} => {71} 0.010 1.000 4.84 49

55 {23, 33, 43} => {73} 0.006 1.000 4.81 32

56 {13, 23, 43} => {73} 0.006 1.000 4.81 29

75 {12, 22} => {72} 0.033 0.918 4.73 167

76 {11, 21, 32} => {71} 0.008 0.976 4.72 40
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Table 9 shows the following: For example, RN = 1 indicates if C(2) = 4 ∧
C(3) = 4 ∧ C(4) = 4 then D = 4 and count = freq(lhs ∪ rhs) = support ·
|TrD| = 0.008 · 5000 = 40. RN = 41 is an interesting case that lhs includes
the decision attribute value 72 (D = 2) and rhs is the condition attribute 32
(C(3) = 2). Such rules should be deleted when inducing rules from DT by ARL
since TrD has neither the explanatory nor response variables. When inducing
rules from an information table which doesn’t have such a distinction, ARL can
be used. RN = 75 coincides with R(2, 1) in Table 2. However, most of ARs from
the DT is such rules adding a pair of the condition attribute and its value to
the pre-specified rules in Table 2, that is, the part of pre-specified rules or those
having no sense against them.

Table 10. An example of estimated rules of D = 1 by apriori function for the dataset
corresponding to that in Table 3.

Rule No. lhs rhs Support Confidence Lift Count

42(1) {11, 31, 41} => {71} 0.010 1.000 4.84 49

47(6) {11, 21, 31, 43} => {71} 0.003 1.000 4.84 17

48(7) {11, 21, 43, 52} => {71} 0.003 1.000 4.84 15

49(8) {14, 25, 31, 41} => {71} 0.004 1.000 4.84 18

124(24) {25, 31, 41} => {71} 0.010 0.945 4.58 52

125(25) {31, 41} => {71} 0.041 0.945 4.58 207

143(30) {11, 21} => {71} 0.038 0.931 4.51 190

208(46) {11, 21, 63} => {71} 0.008 0.891 4.31 41

211(47) {11, 21, 43} => {71} 0.010 0.889 4.30 48

231(48) {11, 21, 53} => {71} 0.006 0.857 4.15 30

237(49) {11, 21, 33} => {71} 0.006 0.829 4.01 29

Table 10 shows the part of 49 ARs of D = 1 extracted from the above 240
ARs where the number within parentheses in Rule No. shows the lift order in
the 49 ARs of D = 1. This table shows us the following:

(1) The pre-specified rules in Table 2 appears in RN = 125(25) and 143(30)
although there is no objective criterion or standard to adopt them by use
of support, confidence or lift and so on since ARL has no way of arranging
a lot of ARs based on an objective principle.

(2) Accordingly, an analysist can’t help but subjectively adopt several ARs by
his own domain knowledge referring to indexes like lift and so on. Inciden-
tally, the above apriori() function also had difficulties specifying its param-
eters. For example, when specified support = 0.001 or 0.008 fixing the other
parameters, the function induced ARs of the number of 1, 893 or 92. This
example suggests that the specification for its parameters including their
combinations will puzzle the analysist and he can’t help but subjectively
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specify them based on his domain knowledge after many trials when ana-
lyzing the real-world TrD.
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Abstract. We propose answer-set programs that specify and compute
counterfactual interventions as a basis for causality-based explanations
to decisions produced by classification models. They can be applied with
black-box models and models that can be specified as logic programs,
such as rule-based classifiers. The main focus is on the specification and
computation of maximum responsibility causal explanations. The use of
additional semantic knowledge is investigated.

1 Introduction

Providing explanations to results obtained from machine-learning models has
been recognized as critical in many applications, and has become an active
research direction in the broader area of explainable AI, and explainable machine
learning, in particular [23]. This becomes particularly relevant when decisions
are automatically made by those models, possibly with serious consequences for
stake holders. Since most of those models are algorithms learned from training
data, providing explanations may not be easy or possible. These models are or
can be seen as black-box models.

In AI, explanations have been investigated in several areas, and in particu-
lar, under actual causality [16], where counterfactual interventions on a causal
model are central [24]. They are hypothetical updates on the model’s variables,
to explore if and how the outcome of the model changes or not. In this way,
explanations for an original output are defined and computed. Counterfactual
interventions have been used with ML models, in particular with classification
models [6,10,17,20,21,26,27].

In this work we introduce the notion of causal explanation as a set of fea-
ture value for the entity under classification that is most responsible for the out-
come. The responsibility score is adopted and adapted from the general notion of
responsibility used in actual causality [9]. Experimental results with the respon-
sibility score, and comparisons with other scores are reported in [6]. We also
introduce answer-set programs (ASPs) that specify counterfactual interventions
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and causal explanations, and allow to specify and compute the responsibility
score. The programs can be applied with black-box models, and with rule-based
classification models.

As we show in this work, our declarative approach to counterfactual interven-
tions is particularly appropriate for bringing into the game additional declarative
semantic knowledge, which is much more complicated to do with purely proce-
dural approaches. In this way, we can combine logic-based specifications, and
use the generic and optimized solvers behind ASP implementations.

This paper is structured as follows. Section 2 introduces the background,
and the notions of counterfactual intervention and causal explanation; and the
explanatory responsibility score, x-resp, on their basis. Section 3 introduces ASPs
that specify causal explanations, the counterfactual ASPs. Section 4 argues for
the need to include semantic domain knowledge in the specification of causal
explanations. Section 5 discusses several issues raised by this work and possible
extensions.

2 Counterfactual Explanations

We consider classification models, C, that are represented by an input/output
relation. Inputs are the so-called entities, e, which are represented each by a
record (or vector), e = 〈x1, . . . , xn〉, where xi is the value Fi(e) ∈ Dom(Fi)
taken on e by a feature Fi ∈ F = {F1, . . . , Fn}, a set of functions. The output is
represented by a label function L that maps entities e to 0 or 1, the binary result
of the classification. That is, to simplify the presentation, we concentrate here
on binary classifiers, but this is not essential. We also concentrate on features
whose domains Dom(Fi) take a finite number of categorical values. C.f. Sect. 4
for the transformation of numerical domains into categorical ones.

Building a classifier, C, from a set of training data, i.e. a set of pairs T =
{〈e1, c(e1)〉, . . . , 〈eM , c(eM )〉}, with c(ei) ∈ {0, 1}, is one of the most common
tasks in machine learning [13]. It is about learning the label function L for the
entire domain of values, beyond T . We say that L “represents” the classifier C.

Classifiers may take many different internal forms. They could be decision
trees, random forests, rule-based classifiers, logistic regression models, neural
network-based (or deep) classifiers, etc. [13]. Some of them are more “opaque”
than others, i.e. with a more complex and less interpretable internal structure
and results [25]. Hence the need for explanations to their classification outcomes.
In this work, we are not assuming that we have an explicit classification model,
and we do not need it. All we need is to be able to invoke and use it. It could
be a “black-box” model.

The problem is the following: Given an entity e that has received the label
L(e), provide an “explanation” for this outcome. In order to simplify the pre-
sentation, and without loss of generality, we assume that label 1 is the one that
has to be explained. It is the “negative” outcome one has to justify, such as the
rejection of a loan application.

Causal explanations are defined in terms of counterfactual interventions that
simultaneously change feature values in e in such a way that the updated record
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gets a new label. A causal explanation for the classification of e is then a set of
its original feature values that are affected by a minimal counterfactual inter-
ventions. These explanations are assumed to be more informative than others.
Minimality can be defined in different ways, and we adopt an abstract approach,
assuming a partial order relation � on counterfactual interventions.

Definition 1. Consider a binary classifier represented by its label function L,
and a fixed input record e = 〈x1, . . . , xn〉, with Fi(e) = xi, 1 ≤ i ≤ n, and
L(e) = 1.
(a) An intervention ι on e is a set of the form {〈Fi1 , x

′
i1

〉, . . . , 〈FiK
, x′

iK
〉}, with

Fis
�= Fi�

, for s �= �, xis
�= x′

is
∈ Dom(Xis

). We denote with ι(e) the record
obtained by applying to e intervention ι, i.e. by replacing in e every xis

= Fis
(e),

with Fis
appearing in ι, by x′

is
.

(b) A counterfactual intervention on e is an intervention ι on e such that
L(ι(e)) = 0. A �-minimal counterfactual intervention is such that there is
no counterfactual intervention ι′ on e with ι′ ≺ ι (i.e. ι′ � ι, but not ι � ι′).
(c) A causal explanation for L(e) is a set of the form ε = {〈Fi1 , xi1〉, . . . ,
〈FiK

, xiK
〉} for which there is a counterfactual intervention ι = {〈Fi1 , x

′
i1

〉, . . . ,
〈FiK

, x′
iK

〉} for e. Sometimes, to emphasize the intervention, we denote the
explanation with ε(ι).
(d) A causal explanation ε for L(e) is �-minimal if it is of the form ε(ι) for a
�-minimal counterfactual intervention ι on e. �

Several minimality criteria can be expressed in terms of partial orders, such
as: (a) ι1 ≤s ι2 iff π1(ι1) ⊆ π1(ι2), with π1(ι) the projection of ι on the first
position. (b) ι1 ≤c ι2 iff |ι1| ≤ |ι2|. That is, minimality under set inclusion and
cardinality, resp. In the following, we will consider only these; and mostly the
second.

Example 1. Consider three binary features, i.e. F = {F1, F2, F3}, and they take
values 0 or 1; and the input/output relation of a classifier C shown in Table 1.
Let e be e1 in the table. We want causal explanations for its label 1. Any other
record in the table can be seen as the result of an intervention on e1. However,
only e4, e7, e8 are (results of) counterfactual interventions in that they switch
the label to 0.

For example, e4 corresponds to the intervention ι4 = {〈F1, 1〉, 〈F2, 0〉} in
that e4 is obtained from e1 by changing the values of F1, F2 into 1 and 0,
resp. For ι4, π1(ι4) = {〈F1〉, 〈F2〉}. From ι4 we obtain the causal explanation
ε4 = {〈F1, 0〉, 〈F2, 1〉}, telling us that the values F1(e1) = 0 and F2(e1) = 1 are
the joint cause for e1 to have been classified as 1. There are three causal explana-
tions: ε4 := {〈F1, 0〉, 〈F2, 1〉}, ε7 := {〈F2, 1〉}, and ε8 := {〈F2, 1〉, 〈F3, 1〉}. Here,
e4 and e8 are incomparable under �s, e7 ≺s e4, e7 ≺s e8, and ε7 turns out to
be �s- and �c-minimal (actually, minimum). �
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Table 1. Entities, feature
values and labels.

Entity (id) F1 F2 F3 L

e1 0 1 1 1

e2 1 1 1 1

e3 1 1 0 1

e4 1 0 1 0

e5 1 0 0 1

e6 0 1 0 1

e7 0 0 1 0

e8 0 0 0 0

Notice that, by taking a projection, the par-
tial order �s does not care about the values that
replace the original feature values, as long as the
latter are changed. Furthermore, given e, it would
be good enough to indicate the features whose val-
ues are relevant, e.g. ε7 = {F2} in the previous
example. However, the introduced notation empha-
sizes the fact that the original values are those we
concentrate on when providing explanations.

Clearly, every �c-minimal explanation is also
�s-minimal. However, it is easy to produce an
example showing that a �s-minimal explanation
may not be �c-minimal.

Notation: An s-explanation for L(e) is a �s-minimal causal explanation for
L(e). A c-explanations L(e) is a �c-minimal causal explanation for L(e).

This definition characterizes explanations as sets of (interventions on) fea-
tures. However, it is common that one wants to quantify the “causal strength” of
a single feature value in a record representing an entity [6,20], or a single tuple
in a database (as a cause for a query answer) [22], or a single attribute value in a
database tuple [3,4], etc. Different scores have been proposed in this direction,
e.g. SHAP in [20] and Resp in [6]. The latter has it origin in actual causality [16],
as the responsibility of an actual cause [9], which we adapt to our setting.

Definition 2. Consider e to be an entity represented as a record of feature
values xi = Fi(e), Fi ∈ F .
(a) A feature value v = F (e), with F ∈ F , is a value-explanation for L(e) if
there is an s-explanation ε for L(e), such that 〈F, v〉 ∈ ε.
(b) The explanatory responsibility of a value-explanation v = F (e) is:

x-respe,F (v) := max{ 1
|ε| : ε is s-explanation with 〈F, v〉 ∈ ε}.

(c) If v = F (e) is not a value-explanation, x-respe,F (v) := 0. �

Notice that (b) can be stated as x-respe,F (v) := 1
|ε�| , with ε� = argmin{|ε| : ε

is s-explanation with 〈F, v〉 ∈ ε}.
Adopting the usual terminology in actual causality [16], a counterfactual

value-explanation for e’s classification is a value-explanation v with x-respe(v) =
1, that is, it suffices, without company of other feature values in e, to justify
the classification. Similarly, an actual value-explanation for e’s classification is a
value-explanation v with x-respe(v) > 0. That is, v appears in an s-explanation
ε, say as 〈F, v〉, but possibly in company of other feature values. In this case,
ε � {〈F, v〉} is called a contingency set for v [22]. It turns out that maximum-
responsibility value-explanations appear in c-explanations.
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Example 2. (Example 1 cont.) ε7 is the only c-explanation for entity e1’s clas-
sification. Its value 1 for feature F2 is a value-explanation, and its explanatory
responsibility is x-respe1,F2

(1) := 1. �

3 Specifying Causal Explanations in ASP

Entities will be represented by a predicate with n+2 arguments E(·; · · · ; ·). The
first one holds a record (or entity) id (which may not be needed when dealing
with single entities). The next n arguments hold the feature values.1 The last
argument holds an annotation constant from the set {o, do, �, s}. Their semantics
will be specified below, by the generic program that uses them.

Initially, a record e = 〈x1, . . . , xn〉 has not been subject to interventions,
and the corresponding entry in predicate E is of the form E(e; x̄; o), with x̄ an
abbreviation for x1, . . . , xn, and constant o standing for “original entity”.

When the classifier gives label 1 to e, the idea is to start changing feature val-
ues, one at a time. The intervened entity becomes then annotated with constant
do in the last argument. When the resulting intervened entities are classified,
we may not have the classifier specified within the program. For this reason,
the program uses a special predicate C[·; ·], whose first argument takes (a repre-
sentation of) an entity under classification, and whose second argument returns
the binary label. We will assume this predicate can be invoked by an ASP as
an external procedure, much in the spirit of HEX-programs [11,12]. Since the
original instance may have to go through several interventions until reaching
one that switches the label to 0, the intermediate entities get the “transition”
annotation �. This is achieved by a generic program.

The Counterfactual Intervention Program:

P1. The facts of the program are all the atoms of the form Domi(c), with
c ∈ Domi, plus the initial entity E(e; f̄ ; o), where f̄ is the initial vector of
feature values.

P2. The transition entities are obtained as initial, original entities, or as the
result of an intervention: (here, e is a variable standing for a record id)

E(e; x̄; �) ←− E(e; x̄; o).
E(e; x̄; �) ←− E(e; x̄; do).

P3. The program rule specifying that, every time the entity at hand (original
or obtained after a “previous” intervention) is classified with label 1, a new
value has to be picked from a domain, and replaced for the current value.
The new value is chosen via the non-deterministic “choice operator”, a well-
established mechanism in ASP [15]. In this case, the values are chosen from

1 For performance-related reasons, it might be more convenient to use n 3-are pred-
icates to represent an entity with an identifier, but the presentation here would be
more complicated.
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the domains, and are subject to the condition of not being the same as the
current value:

E(e;x′
1, x2, . . . , xn, do) ∨ · · · ∨ E(e;x1, x2, . . . , x

′
n, do) ←− E(e; x̄; �), C[x̄; 1],

Dom1(x′
1), . . . ,Domn(x′

n), x′
1 �= x1, . . . , x

′
n �= xn,

choice(x̄;x′
1), . . . , choice(x̄;x′

n).

For each fixed x̄, choice(x̄; y) chooses a unique value y subject to the other con-
ditions in the same rule body. The use of the choice operator can be eliminated
by replacing each choice(x̄;x′

i) atom by the atom Choseni(x̄, x′
i), and defining

each predicate Choseni by means of “classical” rules [15], as follows:

Choseni(x̄, y) ← E(e; x̄; �), C[x̄; 1],Domi(y), y �= xi,not DiffChoice(x̄, y).
DiffChoice(x̄, y) ← Choseni(x̄, y′), y′ �= y.

P4. The following rule specifies that we can “stop”, hence annotation s, when
we reach an entity that gets label 0:

E(e; x̄; s) ←− E(e; x̄; do), C[x̄; 0].

P5. We add a program constraint specifying that we prohibit going back to the
original entity via local interventions:

←− E(e; x̄; do), E(e; x̄; o).

P6. The causal explanations can be collected by means of predicates Expl i(·; ·)
specified by means of:

Expl i(e;xi) ←− E(e;x1, . . . , xn; o), E(e;x′
1, . . . , x

′
n; s), xi �= x′

i.

Actually, each of these is a value-explanation. �

The program will have several stable models due to the disjunctive rule and
the choice operator. Each model will hold intervened versions of the original
entity, and hopefully versions for which the label is switched, i.e. those with
annotation s. If the classifier never switches the label, despite the fact that local
interventions are not restricted (and this would be quite an unusual classifier),
we will not find a model with a version of the initial entity annotated with s.
Due to the program constraint in P5., none of the models will have the original
entity annotated with do, because those models would be discarded [19].

Notice that the use of the choice operator hides occurrences of non-stratified
negation [15]. In relation to the use of disjunction in a rule head, the semantics
of ASP, which involves model minimality, makes only one of the atoms in the
disjunction true (unless forced otherwise by the program itself).



76 L. Bertossi

Example 3. (Example 1 cont.) Most of the Counterfactual Intervention Pro-
gram above is generic. In this particular example, the have the following facts:
Dom1(0), Dom1(1), Dom2(0),Dom2(1),Dom3(0),Dom3(1) and E(e1; 0, 1, 1; o),
with e1 a constant, the record id of the first row in Table 1.

In this very particular situation, the classifier is explicitly given by Table 1.
Then, predicate C[·; ·] can be specified with a set of additional facts: C[0, 1, 1; 1],
C[1, 1, 1; 1], C[1, 1, 0; 1] C[1, 0, 1; 0] C[1, 0, 0; 1] C[0, 1, 0; 1] C[0, 0, 1; 0] C[0, 0, 0; 0].

The stable models of the program will contain all the facts above. One
of them, say M1, will contain (among others) the facts: E(e1; 0, 1, 1; o) and
E(e1; 0, 1, 1; �). The presence of the last atom activates rule P3., because
C[0, 1, 1; 1] is true (for e1 in Table 1). New facts are produced for M1 (the new
value due to an intervention is underlined): E(e1; 1, 1, 1; do), E(e1; 1, 1, 1; �). Due
to the last fact and the true C[1, 1, 1; 1], rule P3. is activated again. Choosing
the value 0 for the second disjunct, atoms E(e1; 1, 0, 1; do), E(e1; 1, 0, 1; �) are
generated. For the latter, C[1, 0, 1; 0] is true (coming from e4 in Table 1), switch-
ing the label to 0. Rule P3 is no longer activated, and we can apply rule P4.,
obtaining E(e1; 1, 0, 1; s).

From rules P6., we obtain as explanations: Expl1(e1; 0),Expl2(e1; 1), showing
the values in ei that were changed. All this in model M1. There are other mod-
els, and one of them contains E(e1; 0, 0, 1; s), the minimally intervened version
of e1, i.e. e7. �

3.1 C-Explanations and Maximum Responsibility

There is no guarantee that the intervened entities E(e; c1, . . . , cn; s) will cor-
respond to c-explanations, which are the main focus of this work. In order to
obtain them (and only them), we add weak program constraints (WCs) to the
program. They can be violated by a stable model of the program (as opposed
to (strong) program constraints that have to be satisfied). However, they have
to be violated in a minimal way. We use WCs, whose number of violations have
to be minimized, in this case, for 1 ≤ i ≤ n (This notation follows the standard
in [7]):

:∼ E(e;x1, . . . , xn, o), E(e;x′
1, . . . , x

′
n, s), xi �= x′

i.

Only the stable models representing an intervened version of e with a mini-
mum number of value discrepancies with e will be kept.

In each of these “minimum-cardinality” stable models M, we can collect the
corresponding c-explanation for e’s classification as the set εM = {〈Fi, ci〉 |
Expl i(e; ci) ∈ M}. This can be done within a ASP system such as DLV, which
allows set construction and aggregation, in particular, counting [1,19]. Actually,
counting comes handy to obtain the cardinality of εM. The responsibility of a
value-explanation Expl i(e; ci) will then be: x-respe,Fi

(ci) = 1
|εM| .
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4 Semantic Knowledge

Counterfactual interventions in the presence of semantic conditions requires con-
sideration. As the following example shows, not every intervention, or combina-
tion of them, may be admissible [5]. It is in this kind of situations that declarative
approaches to counterfactual interventions, like the one presented here, become
particularly useful.

Example 4. A moving company makes automated hiring decisions based on fea-
ture values in applicants’ records of the form R = 〈appCode, abilitytolift , gender ,
weight , height , age〉. Mary, represented by R� = 〈101, 1, F, 160 pounds, 6 feet ,
28〉 applies, but is denied the job, i.e. the classifier returns: L(R�) = 1. To
explain the decision, we can hypothetically change Mary’s gender, from F into
M , obtaining record R�′, for which we now observe L(R�′) = 0. Thus, her value
F for gender can be seen as a counterfactual explanation for the initial decision.

As an alternative, we might keep the value of gender, and counterfactually
change other feature values. However, we might be constrained or guided by an
ontology containing, e.g. the denial semantic constraint ¬(R[2] = 1∧R[6] > 80)
(2 and 6 indicating positions in the record) that prohibits someone over 80 to be
qualified as fit to lift. We could also have a rule, such as (R[3] = M ∧ R[4] >
100 ∧ R[6] < 70) → R[2] = 1, specifying that men who weigh over 100 pounds
and are younger than 70 are automatically qualified to lift weight.

In situations like this, we could add to the ASP we had before: (a) program
constraints that prohibit certain models, e.g. ←− R(e;x, 1, y, z, u, w; �), w >
80; (b) additional rules, e.g. R(e;x, 1, y, z, u, w; �) ←− R(e;x, y,M, z, u, w; �),
z > 100, w < 70, that may automatically generate additional interventions. In
a similar way, one could accommodate certain preferences using weak program
constraints. �

Another situation where not all interventions are admissible occurs when
features take continuous values, and their domains have to be discretized. The
common way of doing this, namely the combination of bucketization and one-hot-
encoding, leads to the natural and necessary imposition of additional constraints
on interventions, as we will show. Through bucketization, a feature range is
discretized by splitting it into finitely many, say N , usually non-overlapping
intervals. This makes the feature basically categorical (each interval becoming a
categorical value). Next, through one-hot-encoding, the original feature is rep-
resented as a vector of length N of indicator functions, one for each categorical
value (intervals here) [6]. In this way, the original feature gives rise to N binary
features. For example, if we have a continuous feature “External Risk Estimate”
(ERE), its buckets could be: [0, 64), [64, 71), [71, 76), [76, 81), [81,∞). Accord-
ingly, if for an entity e, ERE(e) = 65, then, after one-hot-encoding, this value is
represented as the vector [0, 1, 0, 0, 0, 0], because 65 falls into the second bucket.

In a case like this, it is clear that counterfactual interventions are constrained
by the assumptions behind bucketization and one-hot-encoding. For example,
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the vector cannot be updated into, say [0, 1, 0, 1, 0, 0], meaning that the fea-
ture value for the entity falls both in intervals [64, 71) and [76, 81). Bucketiza-
tion and one-hot-encoding can make good use of program constraints, such as
←− ERE(e;x, 1, y, 1, z, w; �), etc. Of course, admissible interventions on predi-
cate ERE could be easily handled with a disjunctive rule like that in P3., but
without the “transition” annotation �. However, the ERE record is commonly a
component of a larger record containing all the feature values for an entity [6].
Hence the need for a more general and uniform form of specification.

5 Discussion

This work is about interacting with possibly external classifiers and reasoning
with their results and potential inputs. That is, the classifier is supposed to have
been learned by means of some other methodology. In particular, this is not
about learning ASPs, which goes in a different direction [18].

We have treated classifiers as black-boxes that are represented by external
predicates in the ASP. However, in some cases it could be the case that the
classifier is given by a set of rules, which, if compatible with ASPs, could be
appended to the program, to define the classification predicate C. The domains
used by the programs can be given explicitly. However, they can be specified
and extracted from other sources. For example, for the experiments in [6], the
domains were built from the training data, a process that can be specified and
implemented in ASP.

The ASPs we have used are inspired by repair programs that specify and
compute the repairs of a database that fails to satisfy the intended integrity
constraints [8]. Actually, the connection between database repairs and actual
query answer causality was established and exploited in [3]. ASPs that compute
attribute-level causes for query answering were introduced in [4]. They are much
simpler that those presented here, because, in that scenario, changing attribute
values by nulls is good enough to invalidate the query answer (the “equivalent”
in that scenario to switching the classification label here). Once a null is intro-
duced, there is no need to take it into account anymore, and a single “step” of
interventions is good enough.

Here we have considered only s- and c-explanations, specially the latter. Both
embody specific and different, but related, minimization conditions. However,
counterfactual explanations can be cast in terms of different optimization criteria
[17,26]. One could investigate in this setting other forms on preferences, the
generic � in Definition 1, by using ASPs as those introduced in [14]. These
programs could also de useful to compute (a subclass of) s-explanations, when
c-explanations are, for some reason, not useful or interesting enough. The ASPs,
as introduced in this work, are meant to compute c-explanations, but extending
them is natural and useful.

This article reports on preliminary work that is part of longer term and
ongoing research. In particular, we are addressing the following: (a) multi-task
classification. (b) inclusion of rule-based classifiers. (c) scores associated to more
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than one intervention at a time [6], in particular, to full causal explanations. (d)
experiments with this approach and comparisons with other forms of explana-
tions. However, the most important direction to explore, and that is a matter
of ongoing work, is described next.

5.1 From Ideal to More Practical Explanations

The approach to specification of causal explanations we described so far in this
paper is in some sense ideal, in that the whole product space of the feature
domains is considered, together with the applicability of the classifier over that
space. This may be impractical or unrealistic. However, we see our proposal as
a conceptual and specification basis that can be adapted in order to include
more specific practices and mechanisms, hopefully keeping a clear declarative
semantics. One way to go consists in restricting the product space; and this can
be done in different manners. For instance, one can use constrains or additional
conditions in rule bodies. An extreme case of this approach consists in replacing
the product space with the entities in a data sample S ⊆ Πn

i=1Dom(Fi). We
could even assume that this sample already comes with classification labels, i.e.
SL = {〈e′

1, L(e′
1)〉, . . . , 〈e′

K , L(e′
K)〉}. Actually, this dataset does not have to be

disjoint from the training dataset T mentioned early in Sect. 2. The definition of
causal explanation and the counterfactual ASPs could be adapted to these new
setting without major difficulties.

An alternative and more sophisticated approach consists in using knowledge
about the underlying population of entities, such a probabilistic distribution;
and using it to define causal explanations, and explanation scores for them. This
is the case of the Resp and SHAP explanation scores mentioned in Sect. 2 [6,20].
In these cases, it is natural to explore the applicability of probabilistic extensions
of ASP [2]. In most cases, the underlying distribution is not known, and has to
be estimated from the available data, e.g. a sample as SL above, and the scores
have to be redefined (or estimated) through by appealing to this sample. This
was done in [6] for both Resp and SHAP. In these cases, counterfactual ASPs
could be used, with extensions for set building and aggregations to compute the
empirical scores, hopefully in interaction with a database containing the sample.
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Abstract. Due to the rise in the commercial usage of knowledge graphs,
the validation of graph-based data has gained importance over the past
few years in the field of Semantic Web. In spite of this trend, the number
of graph databases that support W3C’s validation specification Shapes
Constraint Language (SHACL) can still be regarded as low, and best
practices for their SHACL implementations performance evaluation are
lacking. In this paper, we propose a benchmark for performance evalua-
tion of SHACL implementations and present an evaluation of five com-
mon graph databases using the benchmark.

Keywords: Benchmark · SHACL · Graph database

1 Introduction

The Semantic Web is a concept for an extension of the World Wide Web that
was originally popularized through a 2001 article in the Scientific American by
Berners-Lee, Hendler and Lassila [3]. The goal of the concept was to provide a
new form of web content focusing on machine interpretability. This would enable
the usage of autonomous task handling by software agents and by that enhance
the user experience on the web.

Since the initial introduction of the concept, many developments have taken
place. There has been a substantial increase in the amount of publicly available
linked data on the web. Companies like Google and Facebook started to use
semantic data structures and knowledge graphs to improve their services for
the user [23,26]. The establishment of intelligent assistants, like Cortana by
Microsoft or Siri by Apple that can act comparably to the in 2001 envisioned
software agents to autonomously solve tasks basing on the semantic annotations
[3], can be seen as a sign of the increasing importance of the Semantic Web.

With the increase in utilization of graph-based data on the web and the
issues with the published data quality [13], the need for validation of this type
of data has increased as well. To accommodate this need, the World Wide Web
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Consortium (W3C) has provided a standardized Shapes Constraint Language
(SHACL) [15] in 2017. The W3C recommendation represents a language for
the validation of RDF graphs against a set of conditions. Moreover, with the
increased velocity needs of applications, time is becoming an important factor
for the data processing with SHACL.

In spite of the need for the type of validations SHACL provides, most pop-
ular graph databases currently do not offer an implementation of the standard
or a different validation language. Depending on the size of the data graph and
shapes graph, validation can entail substantial issues in terms of the memory
consumption versus computation time. There are currently no benchmarks for
SHACL validations in graph databases, which warrant an empirical evaluation of
the available implementations. In this paper, we provide a SHACL performance
evaluation benchmark and conduct the performance evaluation of SHACL imple-
mentations of different graph databases employing it.

This paper is structured as follows. Section 2 presents related work, which
focuses on benchmarking of graph databases. Section 3 describes the method-
ology and construction of our benchmark. Section 4 presents the performance
evaluation of five common graph databases we conducted using the benchmark.
A detailed explanation for the results is provided in Sect. 5. Section 6 concludes
the paper.

2 Related Work

There are multiple available evaluations of graph databases for various bench-
mark and instruction types. Jouili and Vansteenberghe [12] performed an empir-
ical comparison of the graph databases Neo4j, Titan, OrientDB and DEX
using the specifically developed benchmarking framework GDB. The framework
focuses on benchmarking typical graph operations. The database management
system Neo4j generally yielded the best result for the performed instructions.

McColl et al. [16] conducted a performance comparison of 12 different graph
databases using the four fundamental graph algorithms SSSP, Connected Com-
ponents, PageRank and Update Rate. The evaluation was performed on a net-
work containing up to 256 million edges.

Dominguez-Sal et al. [6] evaluated the performance of the graph databases
Neo4j, Apache Jena, HypergraphDB and DEX using the HPC Scalable Graph
Analysis Benchmark. From the results, they concluded that DEX and Neo4j
were the most efficient of the four tested graph databases.

Capotă et al. [5] developed a big data benchmark for graph-processing plat-
forms. Using this benchmark, they evaluated the platforms Apache Giraph,
MapReduce, GraphX and Neo4j for five different algorithms on three different
datasets.

While these evaluations focused on ordinary graph operations, multiple eval-
uations based on benchmarks for SPARQL queries were conducted as well. Bizer
and Schulz [4] developed the Berlin SPARQL Benchmark, which focuses on
search and navigation patterns in a fictional use-case. Using this benchmark,
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they conducted a comparative evaluation of the RDF stores Sesame, Virtuoso,
Jena TDB and Jena SDB to compare them to the performance of the SPARQL-
to-SQL writers D2R Server and Virtuoso RDF.

Schmidt et al. [21] created another SPARQL performance benchmark based
on generated data using the scenario of the DBLP dataset. Compared to
the Berlin Benchmark, SP2Bench is less use-case driven and tries to address
language-specific issues. The benchmark was conducted for the RDF stores Vir-
tuoso, Sesame, Redland, ARQ and SDB.

The presented papers portray the availability of evaluations and benchmarks
for multiple aspects of graph databases. These aspects however do not include
SHACL validations at the current moment, which suggests the need for more
research in this specific area.

3 The Benchmark

We propose a benchmark for performance evaluation of SHACL implementations
in graph databases. The benchmark focuses on evaluating the performance of
full SHACL validations on a dataset using the implementations and storages
provided by the graph database management system. Using the benchmark, a
comparative analysis of five common graph databases is performed. The validity
of the validation processes is not part of our project scope.

As our dataset, we use a subset consisting of one million quads from the
Tyrolean Knowledge Graph, which contains currently around eight billion triples,
set up by Kärle et al. [14]. This dataset is very representative for the real-life data
found currently on the Web, and is therefore suitable for a benchmark construc-
tion. Based on this dataset and domain specifications1 defined by Panasiuk et al.
[18,19], we constructed 58 different SHACL shapes that are suitable to be used
as valid shapes to clean the data of this specific knowledge graph. The dataset
combined with the defined shapes form the benchmark. These two inputs are
used for the validation process to test the performance of SHACL implementa-
tions in graph databases. We have published the benchmark dataset, as well as
the developed SHACL shapes as open research data2, and discuss them further
in detail.

3.1 The Benchmark Dataset

The Tyrolean Knowledge Graph is a knowledge graph that gathers and publicly
provides tourism data in the Austrian region of Tyrol [14]. The knowledge
graph currently contains more than eight billion triples based on schema.org
1 A domain specification is a domain specific pattern that restricts and extends

schema.org for domain and task specific needs. Currently, 84 domain specifications
are available that focus on providing representations for tourism related data and
can be used for validation purposes [22].

2 Benchmark for SHACL Performance in Knowledge Bases, doi: 10.17632/jfrdpnb-
945.1.

https://doi.org/10.17632/jfrdpnb945.1
https://doi.org/10.17632/jfrdpnb945.1
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annotations collected from different sources such as destination management
organizations and geographical information systems. Apart from service types
relevant in tourism, like hotels, food and beverage establishments or events, the
knowledge graph contains information on additional attributes, like geographic
data. The vocabulary of the knowledge graph is schema.org [10], a de-facto
standard for semantically annotating data, content, and services on the web.

The SHACL shapes of our benchmark were designed for a subset of the
Tyrolean Knowledge Graph containing 30 million quads. Due to resource and
software limitations that occurred throughout the evaluation process (described
in Sect. 4.3), the size of the dataset had to be reduced to one million quads. This
allows the usage of any subset of the 30 million quads dataset as valid input
with a similar validation coverage. For different subsets of the Tyrolean Knowl-
edge Graph or other datasets based on the schema.org ontology, the number of
validated classes and properties can vary significantly. Especially the usage of
other datasets can lead to an increase of violations, since many SHACL shapes
are explicitly designed for properties in Tyrol, e.g. the latitude property of
https://schema.org/GeoCoordinates has to be between the values 46.3 and 47.5.

3.2 The SHACL Shapes

In order to validate data, SHACL requires two different inputs. First, a data
graph has to be available that may contain invalid or malformed entries. In
our benchmark, this data graph is represented by the subset of the Tyrolean
Knowledge Graph. The second required input is the shapes graph that declares
constraints upon the given data from the data graph. It is worth mentioning that
combining the data and shape graphs together into a single graph is possible,
but this has a negative impact on the readability and compatibility, due to the
limited support of SHACL by many databases.

There exist two types of shapes: node shapes and property shapes. A node
shape specifies constraints that need to be fulfilled by focus nodes. A focus node is
an RDF term from the data graph that is validated against a shape. This means
that a node shape specifies a focus node for which the remaining constraints of
the shape has to apply. A property shape specifies constraints on nodes that are
reachable from a given focus node by following a property path. This allows to
define clear restrictions on possible values for subjects of a triple or quad, e.g.
cardinality constraints, value types and value ranges.

The design philosophy of the SHACL shapes for our benchmark was to vali-
date most of the data in our dataset to make the evaluation accurate and com-
putationally demanding. With that in mind we tried to cover a majority of the
properties for each class that appears in the initial 30 million quads dataset,
prioritising the most frequent appearing properties. In addition we specified the
cardinality for each property according to the domain specifications of Schema
Tourism [20].

The constructed by us 58 different SHACL shapes can be used as valid shapes
to clean the data of this specific knowledge graph. Apart from the instrumental
shape-based constraint components, the shapes include the cardinality constraint

https://schema.org/GeoCoordinates
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components sh:maxCount and sh:minCount, value type constraint components
like sh:datatype, and string-based constraint components like sh:pattern and
sh:maxLength. We also utilize the logical constraint component sh:or, which
led to different results in the validation reports depending on the graph database.
The goal of these constraints is to mimic a non-specific validation of a knowledge
graph based on its vocabulary.

In addition to the domain related constraints, we approached a design of
specific constraints for regional attributes of the Tyrolean Knowledge Graph.
Since the dataset should only contain data about businesses and events from
Austria and more specifically from Tyrol, values of many properties of that
schema can be evaluated precisely. For instance, the property addressCountry
must have the string “AT”, which is the ISO 3166 code for Austria [11]. The
shape for this specific example is depicted in Listing 1.1.

Listing 1.1. Shape for schema PostalAddress.
@prefix schema: <http :// schema.org/> .
@prefix sh: <http ://www.w3.org/ns/shacl#> .
@prefix xsd: <http :// www.w3.org /2001/ XMLSchema#> .

:AddressCountryShape a sh:NodeShape;
sh:targetClass schema:PostalAddress;

sh:property [
sh:path schema:addressCountry;
sh:datatype xsd:string;
sh:pattern "AT";
sh:maxCount 1;

].

Following the principles described above, the SHACL shapes can be con-
structed in a similar manner for different datasets. This ensures that our app-
roach is sufficiently representative and generic.

4 Performance Evaluation

In this section, we explain the utilization of the evaluated graph databases for
the validation of our dataset. We describe the ease of use, potential pitfalls of
the current implementations and results of the overall evaluation.

4.1 Database Selection

To determine which graph databases offer SHACL implementations we per-
formed keyword searches in the respective software documentations and in the
source code of open source projects. We also searched for indications on the
official database websites, in various forums and contacted some developers of
the respective databases. Using this process, we were able to identify a number
of graph databases that provide a SHACL implementation. For the project, we
decided to use the free-to-use versions of the graph databases AllegroGraph by
Franz Inc, Apache Jena by Apache, GraphDB by Ontotext, RDF4J, Stardog by
Stardog Union Inc. We should point out that the most popular graph database
according to DB-Engines [24], Neo4j, did not have native SHACL support at the
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time we conducted our evaluation. Furthermore, we determined the absence of
SHACL support for more graph databases.

AllegroGraph [9] is a closed-source persistent RDF store with an additional
graph database management system. It is developed and published by Franz Inc
and solely supports RDFS as its data scheme. AllegroGraph uses SPARQL as
its query language and is available for Linux, OS X and Windows. The problem
with the usage lies in the limitations of the free-to-use community edition of the
commercial product. This version is only able to store up to five million triples
in its triplestore, which is not enough to work with our initial 30 million quads
dataset. Since we had to reduce our dataset to one million quads, this restriction
did not pose a problem.

Apache Jena is an open-source Java framework by Apache that offers the
component TDB [2], which acts as an RDF store and query database manage-
ment system. Jena is implemented in Java and available on every operating
system with a Java virtual machine. SPARQL is supported as a query language.

GraphDB [17] is a commercial, closed-source graph database management
system and RDF store by Ontotext. It is implemented in Java and supports
OWL/RDFS-schema as an optional feature. SPARQL is used as the query lan-
guage and it is available for all operating systems that support a Java virtual
machine. While GraphDB is a commercial product, a free version with limited
functionality exists and was deemed usable for this project. SHACL is not sup-
ported natively, instead it supports the validation language using the RDF4J
API.

RDF4J [7] is an open-source Java framework and part of the Eclipse project.
The functionality of the framework is focused on processing RDF data. It
is implemented in Java and available for Linux, OS X, Unix and Windows.
SPARQL is supported as a query language.

Stardog [25] is a closed-source graph database management system and RDF
store by Stardog Union Inc. It is implemented in Java and supports OWL/RDFS-
schema as an optional feature. It uses SPARQL as its query language and is
available for Linux, macOS and Windows. Stardog is a commercial product,
but its one-year fully-featured non-commercial use license for students renders
it usable for our project.

4.2 Evaluation Methodology

The study was conducted by installing the graph databases on a single machine
with the following specifications: Intel Core i7-6700K @ 4.00 GHz processor,
16 GB PC 3200 DDR4 RAM and a Kingston A400 240 GB SSD. Manjaro Linux
18.1.5 was used as the operating system for the evaluation. The criterion to
assess performance is measuring the time it takes to generate a SHACL report.
To measure the time the bash command time was used for all databases, since
the entire validation process should be captured. The same holds for the tested
Java frameworks, where our Java implementation could have an impact on the
overall time. Therefore, these implementations were kept relatively simple. Since
the structure and provided information of the generated reports differ between
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databases and the average size of the reports was 1.5 GB, we were not able to
compare them in detail except from size and number of violations.

The method used in the evaluation was to measure the SHACL implemen-
tation eight times on the same database under the same conditions to increase
the accuracy of the results. One requirement is that the dataset is stored in a
native, indexed triplestore. The generated reports were piped to the null device
(/dev/null) for the measurement to reduce the impact of system calls. In addi-
tion we provide information regarding the difficulty of using SHACL, the use-
fulness of the documentation and the quality of the SHACL report produced by
the database. Unlike previous measurements, these are of a qualitative nature
and consist of a textual description.

4.3 Evaluation Experience

In this subsection, we highlight our experiences in the performance evaluation of
each individual database. We explain the usage of the respective implementations
of SHACL validation and present certain challenges and pitfalls we encountered.
In addition, an extract of the respective validation reports is presented to display
the discrepancy of information in the reports. The presented violations occur
through the defined property path from Listing 1.2.

Listing 1.2. The property path leading to the violations in this subsection.
@prefix schema: <http :// schema.org/> .
@prefix sh: <http ://www.w3.org/ns/shacl#> .
@prefix xsd: <http :// www.w3.org /2001/ XMLSchema#> .

:imagePath sh:path schema:image;
sh:nodeKind sh:BlankNodeOrIRI;
sh:maxCount 1;
sh:or(

[ sh:datatype schema:ImageObject ;]
[ sh:datatype xsd:string;
sh:pattern "((?: http|https )://)?(?: www \\.)?

[\\w\\d\\-_]+\\.\\w{2 ,3}(\\.\\w{2})?(/(? <=/)
(?:[\\w\\d\\-./_]+)?)?+[.( jpg|jpeg|gif|tif|png|bmp )]?";]

)

AllegroGraph. AllegroGraph provides two different usage options: command-
line interface (CLI) and a graphical user interface called AGWebView. The graph-
ical user interface has limited functionality and does not support SHACL val-
idation. Neither the import of the dataset represented in the N-Quads format
nor the SHACL shapes written in Turtle yielded any problems.

To use SHACL in AllegroGraph, the command-line program agtool has to
be utilized, which offers a variety of utilities. We used agtool to create a new
database, import our dataset and shapes and perform the SHACL validation
to obtain the report. It is important to note that the AllegroGraph’s SHACL
implementation necessitates the explicit indication of all data graphs for the eval-
uation. The tool also allows to specify the output format of choice. We piped the
output to the null device for a more precise time measurement. In Listing 1.3 the



Benchmark for Performance Evaluation of SHACL 89

two generated violations can be seen. The only part missing from the generated
violation is a sh:resultMessage, which could describe the violation in more
detail.

Listing 1.3. Extract of the validation report from AllegroGraph.

prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

prefix sh: <http :// www.w3.org/ns/shacl#>

_:bCDDA3ADEx4018736 sh:sourceConstraintComponent sh:OrConstraintComponent ;

sh:value "asdasdasdas" ;

sh:resultPath <http :// schema.org/image > ;

sh:resultSeverity sh:Violation ;

sh:focusNode <https :// smtfy.it/Skxm5Vi17 > ;

rdf:type sh:ValidationResult ;

sh:sourceShape <http ://gdb.benchmark.com/imagePath > .

_:bCDDA3ADEx4018737 sh:sourceConstraintComponent sh:NodeKindConstraintComponent ;

sh:value "asdasdasdas" ;

sh:resultPath <http :// schema.org/image > ;

sh:resultSeverity sh:Violation ;

sh:focusNode <https :// smtfy.it/Skxm5Vi17 > ;

rdf:type sh:ValidationResult ;

sh:sourceShape <http ://gdb.benchmark.com/imagePath > .

Apache Jena. Apache Jena is a Java framework with two available versions.
The basic version contains command line interface (CLI) tools for the creation
and manipulation of a database. Apache Jena Fuseki offers the same tools as
the basic version with additional server functionalities, including a web user
interface. We used the CLI, due to the lack of SHACL support in the web
interface and the fixed method of measuring time. The CLI tool allows the
validation of datasets against SHACL shapes, if both inputs are available as
files, but it is not possible to validate data stored in triplestores. To measure
the time of validating data stored in the provided triplestore (TDB), we wrote a
Java application that uses the Jena API. The documentation was lackluster [1]
and only provided an example for validating datasets provided as files. We piped
the output to the null device to have a more accurate time measurement. The
report itself complies to the W3C standard and the extract for our example is
shown in Listing 1.4.

Listing 1.4. Extract of the validation report from Apache Jena.
@prefix schema: <http :// schema.org/> .
@prefix sh: <http ://www.w3.org/ns/shacl#> .

sh:result [
a sh:ValidationResult ;
sh:focusNode <https :// smtfy.it/Skxm5Vi17 > ;
sh:resultMessage "NodeKind[BlankNodeOrIRI] : Expected

BlankNodeOrIRI for \" asdasdasdas \"" ;
sh:resultPath schema:image ;
sh:resultSeverity sh:Violation ;
sh:sourceConstraintComponent sh:NodeKindConstraintComponent ;
sh:sourceShape :imagePath ;
sh:value "asdasdasdas"

] ;
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sh:result [
a sh:ValidationResult ;
sh:focusNode <https :// smtfy.it/Skxm5Vi17 > ;
sh:resultMessage "Or[NodeShape

[4 acc5427c0d3a31145d9a2b6b7c5cb74],
NodeShape [24 c96f02c540f8563a4b2914d2af61b4]]
at focusNode \" asdasdasdas \"" ;

sh:resultPath schema:image ;
sh:resultSeverity sh:Violation ;
sh:sourceConstraintComponent sh:OrConstraintComponent ;
sh:sourceShape :imagePath ;
sh:value "asdasdasdas"

] ;

GraphDB. GraphDB is a graph database management system built upon the
Java framework RDF4J. Due to this, the implementation of SHACL validation
is internally equivalent to the one of RDF4J. The implementation of SHACL
into GraphDB 9.1 focuses on the specific use case of validation as part of data
imports. Validations of already existing repositories are not supported by the
workbench. The sole available application of SHACL is restricted by file limits
and has the issue that the validation process stops on a single violation and does
not yield a validation report, rendering it unusable for our comparative analysis.

To circumvent this problem we tried to implement a validation for GraphDB
repositories using the RDF4J API in Java. Even though this appears possi-
ble from reading the documentation, the current implementation of SHACL in
RDF4J utilizes a specifically defined repository type that requires its input data
in form of a local repository or RDF file. An option to utilize an existing repos-
itory as provided by GraphDB is currently not available. In contrary to our
implementation of the RDF4J evaluation it is also not possible to import the
raw storage of the database as a local storage, as GraphDB’s file structure dif-
fers from the triplestore provided by RDF4J. The only possibility to perform
the validation for an entire repository, as we need for our comparative analysis,
would be to export the data from the GraphDB repository and import it again
into an empty ShaclRepository generated by RDF4J. This was not an option
for our comparative analysis, as the only relevant information extracted from it
would be the export performance of GraphDB’s triplestore.

Due to the problems and limitations described in this subsection we decided
to not include GraphDB in our quantitative performance evaluation, as its cur-
rent SHACL implementation is too limited to be meaningfully compared to the
implementations of the other graph databases.

RDF4J. Similar to Apache Jena, RDF4J is a framework for processing RDF
data. Therefore, many features of a complete graph database are missing. The
basic RDF4J installation allows the user to store and manipulate data in the
provided triplestore, which is capable of handling around 100 million triples [7].
There exists an out-of-the-box approach to validate data via SHACL with the
restriction that only RDF files can be used. Even though the entirety of our
dataset has to be validated, reading the data from a file instead of an indexed
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database could have a noticeable impact on our measurements and is therefore
not an acceptable method for our evaluation.

To validate data from the provided triplestore, implementing an application
that uses the RDF4J framework is required. The application connects to the
triplestore, loads the SHACL shapes from a file and performs the validation.
Although the described structure seems relatively simple, the outdated docu-
mentation [7] was a hurdle and required us to search through the Javadoc [8] in
order to achieve the desired outcome.

If a violation of the SHACL constraints occurs, a RepositoryException is
thrown after the entire data is checked. From this exception the validation report
can be generated and written to a file. A downside of this specific implementation
is the large amount of main memory necessary. These high resource demands
forced us to reduce the original dataset to a subset of one million quads, since
larger data exceeded our available resources. In our case 18 GB of heap memory
had to be allocated for the Java Virtual Machine (JVM) to successfully generate
the validation report. We were not able to determine all reasons for the large
memory requirement, because even though our generated report has a size of
around 1.1 GB, the used dataset consists of only 160 MB.

The validation report for RDF4J contains the most violations for our specific
example. RDF4J interprets any constraint in the sh:or construct, and sh:or
itself as a violation, if none of the constraints are fulfilled. This leads to a total
number of four violations, which can be seen in Listing 1.5. The report complies
to the W3C standard, but is missing two components. The fields sh:value as
well as the sh:resultMessage are not included in the violation, which makes
the identification of the cause of the violation more difficult.

Listing 1.5. Extract of the validation report from RDF4J.
@prefix sh: <http ://www.w3.org/ns/shacl#> .

_:node1dvlsg0iux1660 sh:result _:node1dvlsg0iux3491406 .
_:node1dvlsg0iux3491406 sh:resultPath <http :// schema.org/image >;

sh:detail _:node1dvlsg0iux3491407 .

_:node1dvlsg0iux3491407 a sh:ValidationResult;
sh:focusNode <https :// smtfy.it/Skxm5Vi17 >;
sh:sourceConstraintComponent sh:DatatypeConstraintComponent;
sh:sourceShape _:node1dvlsg0gqx20;
sh:resultPath <http :// schema.org/image >;
sh:detail _:node1dvlsg0iux3491408 .

_:node1dvlsg0iux3491408 a sh:ValidationResult;
sh:focusNode <https :// smtfy.it/Skxm5Vi17 >;
sh:sourceConstraintComponent sh:PatternConstraintComponent;
sh:sourceShape _:node1dvlsg0gqx22;
sh:resultPath <http :// schema.org/image > .

_:node1dvlsg0iux3491406 a sh:ValidationResult;
sh:focusNode <https :// smtfy.it/Skxm5Vi17 >;
sh:sourceConstraintComponent sh:OrConstraintComponent;
sh:sourceShape <http ://gdb.benchmark.com/imagePath > .

_:node1dvlsg0iux1660 sh:result _:node1dvlsg0iux3494319 .

_:node1dvlsg0iux3494319 sh:resultPath <http :// schema.org/image >;
a sh:ValidationResult;
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sh:focusNode <https :// smtfy.it/Skxm5Vi17 >;
sh:sourceConstraintComponent sh:NodeKindConstraintComponent;
sh:sourceShape <http ://gdb.benchmark.com/imagePath > .

Stardog. Stardog provides CLI tools for creating and interacting with the
database. There exists also an integrated development environment (IDE) called
Stardog Studio that provides a user interface and many features from the CLI
tools. It is the only graphical user interface we encountered that allows users to
create and validate SHACL shapes for a database. For our evaluation we used
the CLI tool, due to the fixed method of time measurement.

While performing the validation process using our benchmark, it is important
to increase the limit of returned validation results with the -l flag. The default
value is 100 and Stardog will stop to validate the rest of the graph after that limit
is reached. We piped the output to the null device to have valid time measure-
ment without additional time consumed by writing the report to the command
line or a file. The output of the report is in Turtle format and complies with the
specification made by W3C. In contrast to the other databases, Stardog gener-
ates only a single violation in the report, which still provides enough information
about violation itself. This can be seen in Listing 1.6.

Listing 1.6. Extract of the validation report from Stardog.
@prefix sh: <http ://www.w3.org/ns/shacl#> .

_:bnode_2394dca2_2e9a_4242_af3d_e81fc0951ac8_6965339 a sh:ValidationResult ;
sh:resultSeverity sh:Violation ;
sh:sourceShape <http ://gdb.benchmark.com/imagePath > ;
sh:sourceConstraintComponent sh:NodeKindConstraintComponent ;
sh:focusNode <https :// smtfy.it/Skxm5Vi17 > ;
sh:resultPath <http :// schema.org/image > ;
sh:value "asdasdasdas" ;
sh:resultMessage "Image is neither a schema:ImageObject nor a valid URL" .

_:bnode_2394dca2_2e9a_4242_af3d_e81fc0951ac8_3598217 sh:result
_:bnode_2394dca2_2e9a_4242_af3d_e81fc0951ac8_6965339 .

4.4 Evaluation Results

The focus of our work was to evaluate the performance of the SHACL implemen-
tation from each graph database by measuring the required time to validate our
data according to the defined SHACL shapes and generate a SHACL validation
report. The obtained results are illustrated in Fig. 1 and the evaluation specifics
are summarized in Table 1.

Based on the measurements a large discrepancy between some graph
databases can be observed. Our results show that AllegroGraph requires around
11,6 times longer to validate the data and produce the validation report com-
pared to the fastest graph database Stardog, which only took ∼2 min for the
entire dataset. A noticeable difference is also visible regarding both frameworks.
RDF4J requires around 2,4 times longer than Apache Jena.
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5 Discussion

The results of our performance evaluation using the benchmark suggest Star-
dog’s implementation as the currently best performing option for SHACL val-
idation, with Apache Jena following at a close second place. The validation in
RDF4J performed significantly worse, tripling the runtime for the equivalent
task in Stardog. AllegroGraph’s current implementation of SHACL validation
performed the worst out of the four evaluated graph databases.
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Fig. 1. Average validation time out of 8 measurements.

Table 1. Evaluation results of one million N-Quads based on the 58 SHACL shapes.

Graph

database

Validation

time (sec)

Number of

violations

Report

size

W3C

compliant

report

Require-

ments

Limitations

Allegro

Graph

1.374,04 3.567.930 1,24 GB Yes Validation

performed by

agtool

Free version

supports only

5M triples

Apache

Jena

162,66 3.615.753 1,82 GB Yes Addition

application

that uses

Jena API was

developed

Lack of docu-

mentation
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In addition to performance, we decided to include ease of use and resource
demand into our evaluation. The evaluation of those factors displays a disparity
between the two frameworks (RDF4J and Apache Jena) and the two complete
database management systems. Concerning ease of use, the frameworks only pro-
vide out-of-the-box validation implementations for data provided as files. Valida-
tion for additional use cases like the included triplestores have to be implemented
by the users of the framework, rendering the barrier of entry for the usage of
those validation options higher than for the database management systems.

Another disparity between the database management systems and the frame-
works can be found by looking at the differences in resource requirements for
equivalent SHACL validations. For the specific case of our evaluation the vali-
dation of our data (160 MB) in Stardog utilized about 1.2 GB of RAM, which
is easily manageable by even older personal machines. The resource demand of
AllegroGraph amounts to about 3.7 GB of RAM, which is more than three times
the amount of memory required by Stardog. Both frameworks demand a signifi-
cantly higher amount of resources, with Jena requiring about 14 GB and RDF4J
requiring about 18 GB of RAM for the evaluation of the same dataset using the
same SHACL shapes. This exceeds the power of many personal machines and
can put a strain on servers.

We conclude from our evaluation that Stardog’s implementation of SHACL
validation seems to be the best option at the moment, as it offers the best
performing validation operation with the lowest resource demand for task like our
benchmark. Additionally, no programming is required from the user, rendering
the database management system significantly easier to use than the other well
performing candidates. Our evaluation also uncovered some pitfalls concerning
the state-of-the-art in SHACL implementations.

As SHACL can be seen as relatively new compared to other standards of the
Semantic Web, only a few graph databases currently offer an implementation.
For most databases that offer validation using the recommendation, the option
does not seem like a focus of development. During our evaluation we encoun-
tered a significant number of lacking or inaccurate documentation. Some current
implementations are unfinished, missing core functionality of the W3C standard
or only adhere to specific use cases.

The large amount of violations prevents us from having a ground truth, thus
we can not be sure to find all violations. Even comparing results between the dif-
ferent databases is difficult, because of the way some outputs are structured and
messages are generated for intermediate nodes down to the node with the vio-
lation. Out of the four evaluated graph databases only AllegroGraph generated
a validation report that deviated from the SHACL W3C standard, presenting
the violations in a different format. This resulted in differences of information
portrayed by the validation outputs, rendering them hard to compare or validate.

In addition to this problem the implementations of SHACL validation differ in
their interpretation of certain shapes. An example for this behaviour is the sh:or
shape, which depending on the implementation can either report all violations or
ignore the other arguments after a first violation is found. Another example for
inconsistencies is the treatment of subclasses, which can lead to single violations
being thrown multiple times.
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Due to those pitfalls we conclude that SHACL is currently still very new as
a de-facto standard to perform full-scale complete performance evaluations, but
our work is a first step in this direction. The still low number of graph databases
offering implementations in combination with the displayed lack of adherence
to the standard currently results in too many factors reducing the informative
value of performance evaluations and benchmarks significantly.

6 Conclusions

As contributions for our work, we have developed a benchmark for the evaluation
of the performance of the SHACL processing in graph databases and have applied
it to the evaluation of four graph databases. The benchmark is published as open
research data and is available for further experimentation and development.

As described in Sect. 3, our benchmark is designed to maximize utility for the
current state of the art and other specific constraints (such as being restricted
to the use of the free versions of the graph databases and having limited hard-
ware capacities). While we think that it is generally applicable and yields accu-
rate performance evaluations, other constraints or positive developments in the
implementations of SHACL evaluation in graph databases may render other,
more advanced approaches in the future.

One possible approach could be to provide shapes for a complete validation
of a dataset, instead of just a representative subset. A benchmark evaluating
the performance of complete validations would yield a more representative eval-
uation, but because of the substantial differences in resource demand the result
would depend more on the evaluation hardware. Other approaches that could
be worth trying out include handcrafted benchmark databases to be able to
test specific constraints in a more controlled fashion and the expansion of the
evaluation on truthfulness of the validation reports.
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Mart́ınez-Bazán, N., Larriba-Pey, J.L.: Survey of graph database performance on
the HPC scalable graph analysis benchmark. In: Shen, H.T., et al. (eds.) WAIM
2010. LNCS, vol. 6185, pp. 37–48. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-16720-1 4

https://jena.apache.org/documentation/shacl/index.html
https://jena.apache.org/documentation/shacl/index.html
https://jena.apache.org/documentation/tdb
https://doi.org/10.1007/978-3-642-16720-1_4
https://doi.org/10.1007/978-3-642-16720-1_4


96 R. Schaffenrath et al.

7. Eclipse PMC: RDF4J (2019). https://rdf4j.org/documentation
8. Eclipse PMC: RDF4J Javadoc (2019). https://rdf4j.org/javadoc/latest/
9. Franz Inc.: AllegroGraph (2019). https://franz.com/agraph/support/document-

ation
10. Guha, R.V., Brickley, D., Macbeth, S.: Schema. org: evolution of structured data

on the web. Commun. ACM 59(2), 44–51 (2016)
11. International Organization for Standardization: ISO 3166 Standard for Austria

(2019). https://www.iso.org/obp/ui/#iso:code:3166:AT
12. Jouili, S., Vansteenberghe, V.: An empirical comparison of graph databases. In:

2013 International Conference on Social Computing, pp. 708–715. IEEE (2013)
13. Kärle, E., Fensel, A., Toma, I., Fensel, D.: Why are there more hotels in Tyrol

than in Austria? Analyzing schema.org usage in the hotel domain. In: Inversini, A.,
Schegg, R. (eds.) Information and Communication Technologies in Tourism 2016,
pp. 99–112. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28231-2 8
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Abstract. SMT solvers can be used efficiently to search for optimal
paths across multiple graphs when optimising for certain resources. In the
medical context, these graphs can represent treatment plans for chronic
conditions where the optimal paths across all plans under consideration
are the ones which minimize adverse drug interactions. The SMT solvers,
however, work as a black-box model and there is a need to justify the
optimal plans in a human-friendly way. We aim to fulfill this need by
proposing explanatory dialogue protocols based on computational argu-
mentation to increase the understanding and trust of humans interacting
with the system. The protocols provide supporting reasons for nodes in
a path and also allow counter reasons for the nodes not in the graph,
highlighting any potential adverse interactions during the dialogue.

Keywords: Explanations · Dialogues games · Argumentation · SMT
solvers

1 Introduction

Intelligent systems are becoming increasingly popular in today’s digital world
with the pervasiveness of Artificial Intelligence (AI). The focus on human-
friendly integration of AI has increased in recent years with growing awareness
of the need for transparency and justifiability of the black-box recommendations
made by some of these systems. Limited transparency and justifiability has been
shown to hamper the mainstream adoption of these systems [2].

An even more urgent need for clarity comes with critical systems, such as clin-
ical decision support systems, and there are ongoing efforts towards eXplainable
Artificial Intelligence (XAI) [2], specially for medical XAI [23]. While most of the
existing approaches to XAI focus on interpretability of machine learning models
[1], rule-based approaches can be used to justify decisions of non-interpretable
systems by explaining why a decision is a good one rather than how it was made.
We follow the later approach here.

Medical treatment plans (aka clinical guidelines) are drawn from evidence-
based recommendations, and published in the UK by the National Institute for
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Health and Care Excellence (NICE)1 to document treatment practices for spe-
cific chronic diseases such as diabetes, hypertension, and so on. The plans capture
a series of steps in the management of the disease, giving an indication of which
advice to follow including which drugs (e.g., from a group) to prescribe at a
given stage of the disease and what changes to do once the disease progresses
(e.g., add a specific medication). These plans, however, fall short for patients
with multiple chronic health conditions, known as multimorbidity, and in par-
ticular they do not account for the potential adverse drug reactions (ADRs)
caused by drugs taken for different conditions [14]. Treatment plans for individ-
ual chronic conditions can essentially be regarded as graphs, and in the presence
of multimorbidities we are in effect trying to search for the optimal path across
several graphs which minimises ADRs as much as possible. Satisfiability Mod-
ulo Theories (SMT) solvers are popular in analysis and model checking settings
because of their expressive power, arithmetic capabilities and scalability [19].
SMT solvers have been used efficiently to identify and minimise ADRs in [5–7].
There is, however, still a need to add clarity to the identified optimal path and
justify why one combination of paths across different treatment plans may be
preferable to another.

The use of computational argumentation has been popular in health-
care [4,15] and more recently for managing multimorbidity [9,20], because its for-
mulation and evaluation of pros and cons can be seen as emulating human critical
thinking. Recently argumentation has also generated interest for its explainabil-
ity potential [12,13] because of its reasoning transparency. Artificial dialogue
based on argumentation allows agents to engage in a gradual exploration of
reasons for a conclusion and potential disagreement. In human argumentation,
argumentation-based dialogue has shown to be effective in improving under-
standing of scientific topics [10]. Consequently we think argumentation is a great
fit for tackling the problem of justifying optimal paths for multimorbidity treat-
ment plans in a way that ensures human engagement.

The contribution of this paper is a novel approach for justifying recommen-
dations of an SMT solver in an interactive way through argumentation-based
dialogues. We use argumentation to augment these recommendations with expla-
nations and propose a novel model of explanatory dialogue protocols to allow
human-like engagement with the explanation model. The explanations model the
underlying reasoning of the SMT solver while the dialogue protocols highlight
any unresolved issues in the recommended solution.

The remaining paper is organised as follows. Section 2 summarises the
background of the argumentation model underlying the explanation dialogues.
Section 3 presents the dialogue protocols. Finally, Sect. 4 concludes and identifies
directions for future research.

1 For details see https://www.nice.org.uk.

https://www.nice.org.uk
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2 Argumentation for Pharmaceutical Treatment Plans

Here we summarise the background research for the work presented in this paper
and introduce relevant underlying concepts related to argumentation.

2.1 Finding Optimal Plans with SMT Solver

We base our approach on the work of Kovalov and Bowles [16] which identifies
optimal treatment plans for multimorbid patients using the optimising SMT
solver Z3 [18]. The authors manually convert the flowchart representations of
clinical guidelines for treating specific health conditions into a compact graph
which they refer to as a Pharmaceutical Graph (PG). A PG is a directed acyclic
graph where the root node represents the diagnosed disease, and all the other
nodes represent drugs or groups of drugs to be given to a patient. A maximal
path in the graph represents a complete treatment plan.

Kovalov and Bowles [16] first create PGs corresponding to different health
conditions for a hypothetical multimorbid patient and feed them to the SMT
solver to identify the optimal paths for each of the PGs such that adverse
drug reactions across all PGs are minimised. They take three types of ADRs
into account: drug-drug interactions, drug-disease interactions and drug-patient
interactions. Z3 is a Boolean satisfiability problem modulo theories (SMT) solver
which finds the optimal assignment given by some objective function [3]. The
objective function used by the authors, called score, is computed as a combina-
tion of medicine efficacy (positive score) and drug interaction conflict (negative
score). More comprehensive extensions that incorporate side-effects, time and
patient preferences have been recently developed in [7]. The approach is scalable
to any number of drug alternatives.

2.2 Modelling Explanations

The resulting maximal path described above is a sequence of drugs or group of
drugs for a specific health condition [16]. While PGs encode a score wrt known
ADRs to extract a most effective solution, when presenting the sequence of treat-
ments to a health professional or to a patient, the reasons for this to be indeed
the most effective solution are not immediately accessible. This means that the
user might have to search for additional information to better understand the
solution provided. To facilitate this process, we design a multi-layer explanation
model in order to have flexible interactions that can adapt to the user’s need for
clarification. We organise the graph into abstraction layers and explicitly mark
the abstractions levels in the graph structure in terms of branches, sub-branches
and nodes. We refer to the resulting graph as PGraph. We define four abstraction
levels for the PGraph and the explanations: Branch, Entity, Drug and Group.
A Branch is a cluster of nodes joined by an initial node and a terminating node
such that initial node has only one incoming edge and the terminating node
has only one outgoing edge. An Entity can be an atomic node representing a
Drug or a composite node representing a group of drugs (Group). A Group is a
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Fig. 1. PGraphs for diabetes and hypertension.

sub-branch with all member drugs related semantically. A path on a PG maps
directly to a PGraph after accounting for additional marking nodes. An example
PGraph is provided in Fig. 1 where the grey shaded nodes represent a path.

In addition to different levels of explanations, we also require to encode text
that can be presented to a user. We base the explanation texts on the drug
information provided by NICE2 and the intuitions given in NICE pathways
themselves. We manually filter out relevant information from these sources and
organize it into types and levels. Types group the explanations into categories
such as justification for a treatment (IP), using graph structure as a justifica-
tion (PGRAPH), drug-drug conflict (DD), drug-disease conflict (CD) and drug-
patient (CP) conflict, while levels correspond to the abstraction layers in the
PGraph. We code these reasons with symbols Ri.

2.3 Argumentation Framework

In explaining a PGraph, our system should be able to progressively explore the
solution path along PGraph identified by the SMT solver, and provide reasons

2 For details see https://bnf.nice.org.uk/.

https://bnf.nice.org.uk/
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for a specific choice on request from the user. We also require the system to
be able to provide reasons explaining why another path has not been taken.
To this end, we have chosen to encode PGraphs as argumentation frameworks,
another form of graph, where nodes represent arguments and edges represent
conflicts between arguments, where an evaluation process allows the identifica-
tion of alternative sets of conflict-free nodes. The requirement for our system is
two-fold: the encoding of the PGraph with additional justifications in a struc-
tured logic-based framework from which we can extract arguments that justify
the pathway chosen by the SMT solver; and the definition of an exploratory dia-
logue protocol to allow human-like engagement with the explanation model. In a
separate line of work, we have formulated a structured argumentation framework
that encodes the reasons directly into the framework and allows us to identify
a justified solution for a treatment plan obtained via the SMT solver. In this
paper, however, our focus is on the dialogue describing this justified solution,
therefore we only present here an abstraction of the arguments that can be for-
mulated about a PGraph. In order to achieve this, we make use of an abstract
argumentation framework (AF) as proposed by Dung [11]. Such a framework is
defined as AF = 〈AR, att〉, where AR is a set of arguments and att represents a
binary relation on AR, i.e., att ⊆ AR × AR.

We use the approach of reformulating preferred semantics as argument
labellings by Caminada et al. [8] to generate discussions about acceptable as
well as rejected arguments in explanatory dialogue games. Caminada et al. [8]
propose the following definitions which are useful in this regard.

Definition 1. For a framework AF = 〈AR, att〉:
1. A labelling is a total function, Lab : AR → {in, out, undec}.
2. Lab is an admissible labelling iff for each A ∈ AR:

(a) if Lab(A) = in then ∀B ∈ AR : (B attA ⊃ Lab(B) = out).
(b) if Lab(A) = out then ∃B ∈ AR : (B attA ∧ Lab(B) = in).

3. Lab is a preferred labelling iff it is an admissible labelling where in(Lab) and
out(Lab) are maximal (w.r.t. set inclusion) among all admissible labellings.

4. A preferred extension is the set of in-labelled arguments of a preferred
labelling.

Here, we compute preferred extensions as above, and we then use the exten-
sions as the basis of a dialogue game inspired by the approach of Shams et al. [22],
where they use preferred semantics as the basis of a Socratic discussion. We map
the optimal paths returned by the SMT solver to equivalent preferred extensions
and use preferred labelling to generate discussion about in and out status of each
argument representing a node on a specific path.

Internally we model three types of arguments in the AF: path arguments,
explanation arguments, and prescription arguments. We assume that the con-
clusion of a Path argument is a node representing a drug or a graph structure
marker such as a start branch node. An Explain argument for a drug is used to
conclude that there is a justifications for prescribing the drug, and will include
a specific reason Ri. A Prescribe argument concludes that if there is a justified
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drug, the drug can be prescribed. Path arguments attack all other Path and
corresponding Prescribe arguments that are not on the same path. A Path
argument can also attack Explain arguments of nodes not in the selected path
if the latter describes an ADR for that particular Path argument. Consequently,
each extension includes arguments prescribing a particular drug on a path in the
graph along with its corresponding explanations.

3 Dialogue Games for Explanations

Formally dialogue games are interactions between two or more players according
to a pre-defined set of rules [17]. The rules describe commencement conditions,
permitted utterances (locutions), permitted combinations of locutions, commit-
ments of participants, and termination conditions for the game. Dialogue game
protocols have been developed for most of the primary dialogue types identified
by Walton and Krabbe [24] such as Information Seeking, Inquiry, Persuasion,
Negotiation, Deliberation and Eristic Dialogue.

We present two explanatory dialogue game protocols based on the Informa-
tion Seeking dialogue which involves one participant seeking an answer from the
other participant, who the former believes knows the answer. The objective of
the dialogue game is to justify why a node is included or not included in a path.

The game has two participants: an ‘Oracle’ that disseminates information
and a ‘Seeker’ who is looking for explanations. The Oracle has the AF and the
extension corresponding to the recommendation by the SMT solver as part of
its knowledge base. The Oracle knows the preferred labelling and shares argu-
ments related to the treatment pathway with the Seeker at the start of the game
through a claim. This is a list of Path arguments (labelled Lab(Arg) = in nodes)
along with the Path arguments labelled Lab(Arg) = out; we refer to this set as
S where (Arg,Lab(Arg)) ∈ S if Arg ∈ AR and Lab is a preferred labelling.

Subsequently, the Oracle uses the explanations present in the extension to
answer the questions by the Seeker. In our dialogue protocols, the Seeker corre-
sponds to a Patient agent seeking explanations for recommended medications.
We define two versions of the dialogue protocols, passive explanatory protocol
and active explanatory protocol based on the role of the Seeker. In the former,
the Seeker acts as a passive listener while in the latter, the Seeker plays an active
role in the dialog by confirming or refuting the Oracle’s assumptions about its
preferences. Passive protocol covers the essential interaction and can be used
in a scenario where preference information is missing such as an agent seeking
information on behalf of another. Active protocol, on the other hand, provides
detailed interaction which takes preferences into account and models a real world
medical practice of taking patient history. The subsequent sections formalise the
protocols and provide example dialogues.

Each dialogue protocol has three stages: Commencement, Progress, and Ter-
mination. The protocol specifies what speech acts can be exchanged according
to what was previously exchanged in the dialogue at each phase. In our model,
this is represented with a table where the right-hand side column states what
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speech act can be used in response to the speech act moved on the left-hand side
column (see Table 1 and Table 3). In the dialogue protocol, participants have a
commitment store CS which includes a set of arguments with which the partici-
pants have committed to stand by [17]. In our dialogue, the commitment store is
formed by arguments exchanged and related attacks. During the dialogue, partic-
ipants update the commitment store via an assertion Assert(Arg) such that the
new commitment store results in CS = CS ∪Arg, assuming monotonic updates.
If an argument Arg exchanged is a rejection of a previous argument, we assume
that CS is updated with a new attacking argument Arg′ where Arg′ attArg; this
update is referred to as ∼Arg for convenience. We provide example dialogues
in Table 2 and Table 4 with the three dialogue stages marked. The tables show
the locutions underlying each natural language sentence next to each sentence
and highlight the corresponding explanation Types and Levels that the natural
language explanation represents. The last column shows example assertions for
the CS of each participant including the assertion type and argument as defined
in Table 1 and Table 3.

3.1 Passive Explanatory Dialogue Game

In this dialogue, the Seeker plays a passive role and only receives updates from
the Oracle. Information flow is one sided. Figure 2 shows an overview of the
dialogue.

Fig. 2. Passive explanatory dialogue overview.

Commencement. The first move by Oracle (O) is a Claim which sets the
context of the dialogue.

Progress

1. Every subsequent move by O is an explanation for the previous move of Seeker
(P).

2. Each subsequent move by P is a query about an in or out label in the claim.
3. P can repeat any query until O forces it to move on by sending a Move

locution.
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Table 1. Passive explanatory dialogue protocol definition.

Request Response

StartP ClaimO(S)

ClaimO(S) WhyP (queryi) where queryi ∈ S and query can be
in-query or out-query

WhyP (query) BecauseO(Rij) where Rij represents all the reasons from
1 to i at abstraction level j. Different reasons at the same
level can be combined using and or alert depending on the
context. This response equals an assertion of one of the types
defined as:
Assert(Arg): simple assertion where Arg ∈ AR
Assert-Alt(Arg): asserting PGRAPH Type reason
Assert-CD(Arg): asserting a drug-disease conflict as reason
Assert-DD(Arg): asserting a drug-drug conflict as reason

WhyP (in-query) AlertO(Rij) where Rij as previously explained. Alert
message indicates a counter reason and represents a
conflict that cannot be helped

But-WhyP (query) BecauseO(Rij−1) where j − 1 is the next lower abstraction
level than was used in previous BecauseO response for
same query

But-WhyP (in-query) AlertO(Rij−1)

But-WhyP (query) MoveO if j − 1 = 0 where j equals the maximum number
of levels defined

MoveO WhyP (queryk) where queryk �= queryi for
queryk, queryi ∈ S and queryi has already been dealt with

BecauseO EndP

AlertO EndP

EndP No response. End dialogue session

4. O provides all the explanations at the highest abstraction level in the graph
first and moves on to the next lower abstraction level for subsequent repe-
titions of the query until it runs out of explanations. It then uses the Move
locution.

5. O provides supporting reasons (IP Type) to justify an in status or counter
reasons (CD, DD Types) to explain any possible conflicts that influenced the
out label assignment.

Termination

1. P can terminate the dialogue at any time by using an End locution.
2. O can end the dialogue when all the nodes in the claim have been justified.
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3.2 An Example Dialogue

We provide an example of a passive exploratory dialogue in Table 2. Subscripts O
and P represent the Oracle and Seeker respectively and identify the participant
making the move. Assume that the resulting argumentation framework for a
path chosen by the SMT solver on the basis of a PGraph in Fig. 1 is presented
in Fig. 3.

Fig. 3. Argument graph for the example in Table 2.

The AF is represented using an argument graph where the nodes represent
arguments and the directed edges point towards the attacked nodes. Let argu-
ments A1..A8 ∈ AR represent edges in a PGraph, A9..A13 ∈ AR repre-
sent corresponding justifications and A14..A17 ∈ AR represent prescriptions
for drugs represented by A5..A8. Arguments

{
A1, A2, A3, A5, A6, A9, A10, A11,

A13, A14, A15
}

represent a preferred extension which is part of the preferred
labelling.

3.3 Properties of the Protocol

1. The protocol exploits the lack of path order in the extension by allowing P
to query about any random node in the Claim.

2. The protocol preserves the graph abstraction levels qualitatively through
abstractions of explanations.
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3. O combines more than one explanations as a justification for the same query
if multiple explanations exist at the same abstraction level.

4. The protocol ensures termination by preventing infinite loops using two
strategies:
(a) O cannot repeat the same answer for the same query, rather it is forced

to exhaust explanations at different abstraction levels progressively.
(b) P cannot repeat any query for which it has received a Move locution.

5. The protocol highlights any inconsistency between nodes in an extension
through explanations by grouping supporting reasons for a node with counter
reasons indicating possible adverse interactions.

Table 2. Passive explanatory dialogue example

Dialogue Explanation

type/level

Locutions Commitment store

Commencement:

O: You have Diabetes and

Hypertension. Let us go

through your recommended

NICE pathways for drug

treatment. We will go

through each drug one by

one. Suggested solution is:

S= [Diabetes,

in(Metformin),

out(Sulfonylurea),

out(Acarbose),

in(Olmesartan) ...]

Claim(S) Assert(Diabetes)

Assert(Hypertension)

Assert(Metformin)

Assert( Sulfonylurea)

Assert( Acarbose)

Assert(Olmesartan) ...

Progress:

P: Why is Metformin

suggested?

Why(in-Metformin)

O: Because it is the default

treatment on the

recommended pathway

Type

IP/Branch

Level

Because Assert(A8)

P: But why is Metformin

suggested?

But-Why(in-

Metformin)

O: Because it is initial

drug for treating Diabetes

Type IP/Drug

Level

Because Assert(A9)

P: Why is Sulfonylurea not

suggested?

Why(out-

Sulfonylurea)

O: Because Metformin is

an alternative to

Sulfonylurea

PGraph/

PGraph Level

Because Assert-Alt

(Metformin,

Sulfonylurea)

P: But why is Acarbose

not suggested?

But-Why(out-

Acarbose)

O: Because it adversely

reacts with suggested drug

Olmesartan

Type DD/Drug

Level

Because Assert-DD(Acarbose,

Olmesartan)

Termination:

P: I have now received an update on the recommended pathway.End
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3.4 Active Explanatory Dialogue Game

In this case the Seeker actively participates in the conversation and confirms
or refutes the assertions of the Oracle. The protocol follows a static update
approach, where Seeker’s assertions do not take immediate effect. The Oracle
passes the Seeker’s assertions to the SMT solver to get a more customized rec-
ommendation and uses that as the basis of a new discussion. In case Seeker’s
assertions rule out all possible path options in the graph, the SMT solver returns
the path that optimizes Seeker’s preferences even if it is not possible to meet all
the requirements. Figure 4 shows a schematic overview of the workflow.

Fig. 4. Active explanatory dialogue overview.

The dialogue starts off with the Oracle going through a checklist of items
with the Seeker which capture Seeker preferences such as patient intolerance of
specific drugs in a medical setting. We modelled the preferences for multimorbid
patients by considering drug information available online and talking to experts.
We learned that the presence of three conditions need to be considered before
prescribing any drug: hepatic impairment, renal impairment, and pregnancy.
This information is not part of the PGraph, rather the Oracle extracts this
information from the Seeker at the start and passes it to the SMT solver which
takes them into account when finding the suitable path.

Commencement

1. The first move by Oracle (O) marks the start of the Checklist phase in which
each subsequent move by O is directed towards establishing preferences of
the Seeker (P).

2. Each move by P in this phase confirms or refutes the assertion made by O in
previous move.

3. O ends Checklist phase by send a Claim locution which proceeds as before.



108 Q. Shaheen et al.

Table 3. Active explanatory dialogue protocol definition.

Request Response

ChecklistO Ready-ChecklistP

Assert-ItemO(Argi) Assert-ItemP (Argi) where Argi ∈ AR is
the ith item on the check list and can
equal ∼Argi to show rejection of the
assumption by the Seeker

BecauseO(Rij) with a simple
assertion, AssertO(Arg) as only this
assertion type is defeasible. The rest
represent facts which cannot be
disputed by the Seeker

AssertP (Arg) where Arg ∈ AR. A
positive Arg shows approval by Seeker
whereas ∼Arg represents rejection of the
recommendation

AssertP (Arg) ConcedeO

EndP AlternativeO(S)

AlternativeO Ready-AlternativeP

AlternativeO RefuseP

AcceptO(S) ConcedeP (S)

Ready-AlternativeP ClaimO(S)

AcceptO(S) RejectP

RejectP AlternativeO

RefuseP No response. End dialogue

Progress

1. The progress rules for passive dialogue hold. Additionally each explanation
for a query about an in labelled argument requires P to state its preference for
the argument Arg ∈ AR mentioned in the explanation by either confirming
or refuting the assumption of O regarding Arg.

2. O can propose an alternative claim after all the labels in the first claim have
been discussed. The dialogue then proceeds with the alternative claim as
before.

Termination

1. P can end the dialogue at any time by using an End locution as before.
2. P accepts the proposed solution.
3. P refuses the offer of O to discuss an alternative claim.

Active Explanatory Dialogue Protocol extends Passive Dialogue Protocol
with additional responses given in Table 3. Table 4 provides an example of how
this dialogue starts.

3.5 Properties of the Protocol

1. O can use the assertions of P regarding its preferences as justifications when
discussing the alternative claim.
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2. Since the same query can be repeated, P must repeat the assertions. This
could lead to an inconsistency if P changes the truth value for its assertion.
This can be resolved in two ways:
(a) By preventing P from changing the truth value for the same query.
(b) By allowing P to change truth values and letting the last truth value hold.

This last value can then be passed to the SMT solver.
3. O can use an estimate of how much P’s assertions contradict its world view

and use a threshold value to proceed with finding an alternative claim. O could
resolve minor objections by itself if the estimate is less than the threshold
value.

Table 4. Active explanatory dialogue game example.

Dialogue Explanation

type/level

Locution Commitment store

Commencement:

O: Let’s go through your basic

health check list

Checklist

P: OK. I am ready Ready

O: Do you suffer from Hepatic

Impairment?

Type CP/Drug

Level

Assert-Item Assert(C2)

P: No, I do not suffer from

Hepatic Impairment

Assert-Item Assert(∼C2)

O: Do you suffer from Renal

Impairment?

Type CP/Drug

Level

Assert-Item Assert(C3)

P: No, I do not suffer from Renal

Impairment

Assert-Item Assert(∼C3)

4 Conclusion and Future Work

Explanations are an important tool to increase the trust we have on the rec-
ommendations of AI systems. Because of their critical importance, numerous
approaches have been developed for clinical decision support such as expert
systems [21], SMT solvers [5,6], and argumentation [9,15]. Here we use argu-
mentation in an explanatory role to explain the decisions of the SMT solver.

We show how the recommendations of a black-box model like the SMT solver,
can be justified through argumentation-based explanatory dialogue games. We
describe how the dialogue games can provide explanations for the underlying rea-
soning of the SMT solver in calculating optimal paths which minimize ADRs.
We also show that the games protocol is flexible and can highlight possible ADRs
qualitatively. The approach allows engaging with the justifications behind the
recommendations at various abstraction levels, resulting in a dialogue model
which adapts to specific needs of the user. It also allows additional informa-
tion such as preferences to be introduced without overwhelming the user. The
argument formulation is very expressive and allows both supporting reasons for
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selecting a node to be modelled as well as counter reasons expressed as a negative
relationship between entities. The reasons themselves form part of the premise
of the arguments, and are represented as propositions which are mapped to nat-
ural language representation during the dialogue. This approach can be used for
interactive explanatory dialogues to explain similar sequence graphs in different
domains when the underpinning justification model is provided.

In the future, we plan to divide the Oracle between multiple agent special-
ists as it will enable a more modular approach. Another possible direction is
to explore the changes in the dialogue protocol if the Seeker’s assertions have
immediate effect. The current protocol takes the credibility of the agents for
granted. It will be interesting to see how adding a credibility function can affect
the dependability of the dialogue game. Most importantly, we plan to evaluate
the approach through user studies involving health practitioners and patients
alike and how they engage with our explanatory dialogue games. This will not
only give us a mechanism to validate our approach, but also explore further
arguments such as whether in some cases the optimal solution computed by an
SMT solver is not in fact the preferred one.
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Abstract. The paper presents BiMetaTrans(Prolog, RuleML), an
invertible bidirectional metalogical translator across subsets of ISO
Prolog and RuleML/XML 1.02 on the level of Negation-as-failure Horn
logic with Equality. BiMetaTrans, itself written in Prolog, introduces
a tighter integration between RuleML and Prolog, which enables the
reuse of, e.g., RuleML Knowledge Bases (KBs) and query engines. A
Prolog/'$V' encoding is defined as the BiMetaTrans translation source-
and-target counterpart to RuleML/XML. This metalogical encoding,
along with the introduction of the split translation pattern, allows
BiMetaTrans to build upon the abstraction of Definite Clause Grammars
(DCGs), supporting invertible bi-translation. The BiMetaTrans DCG is
explored and an invertibility proof is outlined. BiMetaTrans is exempli-
fied for knowledge representation and querying applied to an Air Traffic
Control KB.

1 Introduction

In decentralized systems such as peer-to-peer [1] or multi-agent [2] architec-
tures, peers or agents should be equipped with invertible translators for informa-
tion exchange so that they can send/receive data and knowledge to/from other
peers or agents, on-the-fly, in a round-trippable manner. This paper presents a
RuleML-Prolog translator and outlines its invertibility proof.

In Logic Programming (LP) [3], multidirectional algorithms such as the one
for append have often been used to exemplify the declarative advantages of spec-
ifying multiple functions as a single predicate. While most of LP’s multidirec-
tional predicates constitute “programming-in-the-small”, few Knowledge Bases
(KBs) of predicate definitions exist for multidirectional “programming-in-the-
large.” This paper contributes to filling the gap by presenting an (extensible)
‘mid-size’ invertible bidirectional translation algorithm, BiMetaTrans(Prolog,
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RuleML), applicable to (extensible) subsets of ISO Prolog and RuleML. The
source of BiMetaTrans is available1, consisting of about 1200 lines of code includ-
ing comprehensive documentation, and can be easily downloaded and run in any
ISO Prolog system. The source directory also includes a test suite featuring an
ISO Prolog variant of an Air Traffic Control (ATC) KB [4–6] as a use case.

A common sublanguage of RuleML 1.02 (particularly, of NafFologEq, one
of its anchor languages)2 and of ISO Prolog is proposed to become an anchor
language, Negation-as-failure (Naf) Horn logic with Equality (NafHornlogEq),
which is motivated by combining the following:

– A practical LP language – often restricted to NafHornlog (and further to NafData-
log) or to HornlogEq – with many implementations and applications.

– A target language for a Naf extension of the graph-relational PSOATransRun [7].
– The interchange language for BiMetaTrans(Prolog/'$V', RuleML/XML) of this

paper, where the Eq component is restricted to syntactic equality.

Made bidirectionally translatable between RuleML – a KB-interoperation
hub [8] – and Prolog – an actively refined and expanded ISO standard [9]
– NafHornlogEq can become the de facto standard for its expressivity level
of knowledge representation. For the current NafHornlogEq subset, BiMeta-
Trans already provides ISO Prolog with the XML format of RuleML, and
RuleML/XML with the common presentation syntax of Prolog. This enables the
reuse of, e.g., KB libraries, query engines, analysis tools, editors/IDEs, APIs,
and composed translators. Subsequently, for increasing subsets, bidirectional,
semantics-preserving translations between the two languages will facilitate fur-
ther interoperation and reuse.

Regarding the metalogical aspect, BiMetaTrans(Prolog, RuleML) is itself
written entirely in Prolog, and translates RuleML/XML from and to equivalent
Prolog compounds (tree-shaped Prolog terms with a function symbol, at their
root). BiMetaTrans uses a specialized Prolog encoding, Prolog/'$V', a short-
hand for “Metalogic Prolog with variable-as-'$V'-compound-reification,” which
is described in Sect. 3. Its purpose is to permit processing of KBs and queries
as ground terms. A rigorous exploration of the concept of metalogical encoding
and its applications is found in Sect. 1.2 of [10].

Once the encoding and the mapping between it and RuleML/XML are given,
we will restrict our attention to their bi-translation. This approach sacrifices no
expressivity, as programs written in pure Prolog (or more accurately, Hornlog)
can be encoded as Prolog/'$V' (and vice versa) by replacing variable names
with a Prolog compound (resp. the inverse) headed by the function symbol '$V',

1 https://github.com/mthom/scryer-prolog/blob/master/src/examples/
bimetatrans/.

2 See penultimate row of http://deliberation.ruleml.org/1.02/relaxng/#anchor table.
Also note row for NafNegHornlogEq on the sublanguage path to NafFologEq.
Our initial version of BiMetaTrans – like Prolog – assumes ordered conjunctions,
disjunctions, and rulebases, although the corresponding RuleML/XML formula
edges with index="1", index="2", ... attributes (http://wiki.ruleml.org/index.php/
Glossary_of_Deliberation_RuleML_1.02#.40index) are omitted for simplicity.

https://github.com/mthom/scryer-prolog/blob/master/src/examples/bimetatrans/
https://github.com/mthom/scryer-prolog/blob/master/src/examples/bimetatrans/
http://deliberation.ruleml.org/1.02/relaxng/#anchor
http://wiki.ruleml.org/index.php/Glossary_of_Deliberation_RuleML_1.02#.40index
http://wiki.ruleml.org/index.php/Glossary_of_Deliberation_RuleML_1.02#.40index
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whose only subterm is the text of the variable name rendered as a symbol (see
the translation table of Sect. 3.1 for details).

On the RuleML/XML side, BiMetaTrans targets: (1) the ifthen-compact
form3, using <then> and <if> edges – in this Prolog-aligned order – on
<Implies> nodes as shown in Fig. 1a; (2) the mapClosure form4, omitting –
for Prolog alignment – <Forall> and <Exists> wrappers; (3) a minified (xmL)
rendering where the XML is stripped of extraneous whitespace, which is not a
limitation since RuleML/XML can be rendered as RuleML/xmL without content
loss.

The rest of this paper is organized thus: We begin with a primer on Definite
Clause Grammars (DCGs), a domain-specific language for context-free parsing
and generation in Prolog. Next we explain our Prolog/'$V' encoding and its cor-
respondence to various elements of RuleML/XML, restricted to NafHornlogEq.
An outline of a formalized proof of the translator’s bidirectionality and termina-
tion properties under appropriate term groundedness assumptions follows. We
then give an overview of the specification of BiMetaTrans(Prolog, RuleML) as a
DCG, with examples of bi-translating parts of a core ATC KB, and descriptions
of the interoperation achieved. The conclusions also discuss future work.

2 DCGs and Bidirectional Translation

BiMetaTrans is written almost entirely in the domain-specific language of
DCGs [11]. To convey how BiMetaTrans achieves its bidirectionality, we describe
how DCGs work by detailing how they might be implemented in raw Prolog.
Because of their modular compositionality, DCGs can capture entire grammars,
groups of their productions, as well as their individual productions.

Prolog source code shares the same internal representation as Prolog data,
allowing abstract syntax trees to be directly manipulated at compile time using
specially designated Prolog predicates known as term expansions. Many Prolog
systems support term expansion and often implement DCGs using it.5 Here is
an example of a DCG of BiMetaTrans, before and after term expansion:

Before DCG Expansion After DCG Expansion
sign(’-’) --> "-". sign(’-’,_A,_B) :- _A = [’-’|_B].
sign(’+’) --> "+". sign(’+’,_A,_B) :- _A = [’+’|_B].

Note how the variables _A and _B only appear in the expanded DCG. They
are component to a specialized Prolog data structure commonly known as the
“difference list” [3]. Difference lists are lists with uninstantiated tails. By keeping

3 http://wiki.ruleml.org/index.php/Specification_of_Deliberation_RuleML_1.02#
XSLT-Based_Compactifiers.

4 https://wiki.ruleml.org/index.php/Glossary_of_Deliberation_RuleML_1.02#.40
mapClosure.

5 https://www.metalevel.at/prolog/dcg#implementation.

http://wiki.ruleml.org/index.php/Specification_of_Deliberation_RuleML_1.02#XSLT-Based_Compactifiers
http://wiki.ruleml.org/index.php/Specification_of_Deliberation_RuleML_1.02#XSLT-Based_Compactifiers
https://wiki.ruleml.org/index.php/Glossary_of_Deliberation_RuleML_1.02#.40mapClosure
https://wiki.ruleml.org/index.php/Glossary_of_Deliberation_RuleML_1.02#.40mapClosure
https://www.metalevel.at/prolog/dcg#implementation


Invertible Bidirectional Metalogical Prolog-RuleML Translation 115

track of a logical variable bound to the uninstantiated tail, it becomes possible
to concatenate terms to difference lists in constant time.

DCGs maintain an underlying difference list of grammar items through two
additional arguments in the heads of grammar clauses: one to the head, and one
to the as-yet uninstantiated tail. The variable _A is bound to the difference list
starting with the character ‘-’ and terminating at the tail variable _B.

To see how tail variables are threaded across multiple lists, we turn to the
more elaborate example:

Before DCG Expansion After DCG Expansion
conditions([I | Is]) -->

condition(I),
conditions(Is).

conditions([I | Is], _A, _B) :-
condition(I, _A, _C),
conditions(Is, _C, _B).

In the post-expansion body of conditions, condition and conditions are
both expanded as calls to the named grammar rules. The variable _C is bound
to the tail of the difference list created by condition and to the head of the
difference list next created by conditions. The tail of the caller is always that of
its final called grammar, here named _B. If the DCG succeeds, _B will be bound
to either [] or the head of another difference list.

The underlying list passed among the DCGs of BiMetaTrans is always a
RuleML/XML string that is either parsed or generated, depending on the trans-
lation direction. The bi-translatability of Prolog/'$V' terms is addressed via
the split translation pattern, a technique of reflecting a parsing strategy across
translation boundaries. The reflected strategy is expected to perform the inverse
translation of the counterpart element. Small changes to the reflected strategy
are sometimes needed, but in general, the pattern is highly effective.

The pattern is applied by first writing a uni-translation of a RuleML/XML
element, after checking that Item is unbound. Here, we give the first half of the
ruleml_atom DCG production, before applying split translation, with an ‘if’
part to the left of “->” and a ‘then’ part in the lines below it:

ruleml_atom(Item) -->
( { var(Item) } ->

list_ws("<Atom>"),
list_ws("<Rel>"),
prolog_symbol(Name),
list_ws("</Rel>"),
ruleml_items(Args),
list_ws("</Atom>"),
{ Item =.. [Name | Args] }

; . . .
).

The variable Item stands for a Prolog/'$V' term, since it is specified as an
explicit grammar argument. var(Item) succeeds when Item is a free variable,
which BiMetaTrans takes as proof that it is translating from RuleML/XML
to Prolog/'$V'. The atom’s name and arguments are bound to the variables
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Name and Args. The extraction of those data from the implicit XML string will
be explained in later sections. Central to the split translation pattern is the
observation that the predicate “=..”, as with many other ISO Prolog built-ins,
is itself bidirectional. It presupposes that one of its arguments contains enough
information to determine the other. In one direction, the list has the function
symbol of the compound at its head, followed by a list of its arguments at its
tail: the Name and Args of the structure, in this context. Conversely, if Name
and Args are specified, as they are in the first half of ruleml_atom, the Prolog
compound just described is bound to Item on the left-hand side.

Therefore, to apply the pattern in the second half, we reflect the translation
of the ‘then’ part from the first half across the boundary of translation, here
(and everywhere in BiMetaTrans) signified by a “;” for the ‘else’ part:

ruleml_atom(Item) -->
( . . .
; { Item =.. [Name | Args] },

list("<Atom>"),
list("<Rel>"),
prolog_symbol(Name),
list("</Rel>"),
ruleml_items(Args),
list("</Atom>")

).

In the above reflected (inverse) direction of translation, Name and Args are
extracted from the specified Prolog/'$V' term Item, and control is threaded to
the bidirectional DCG productions prolog_symbol and ruleml_items. Some
small differences are present in the reflected translation: list_ws is replaced by
list, which doesn’t match (or, for that matter, generate) trailing whitespace as
list_ws does. Also, the order of the XML element matching was not changed
in the reflected translation.

3 The Prolog/'$V' Bidirectional Metalogical Translation

Prolog/'$V' KBs are encoded according to a convention that reifies RuleML
variables by name. Initially, it may seem simpler to translate RuleML vari-
ables directly, to and from Prolog variables, but we soon discover a problem.
In many popular Prolog implementations, including those in which BiMeta-
Trans was tested, the variable names are never stored. In fact, once variables
have been rendered to the Prolog heap, their textual, source-level names are
promptly discarded and forgotten by the Prolog engine.

Therefore, if we want fully invertible translation, we must store variable
names in terms, so they can be recovered by an inverse translation, thus com-
pleting a round-trip. As detailed in a row of the translation table of Sect. 3.1,
BiMetaTrans reifies RuleML variable names to Prolog symbols wrapping them
each in a Prolog compound with the function symbol '$V'. The leading “$” was
so chosen because atoms with leading “$” ’s are seldom used by Prolog program-
mers, making '$V' an unlikely source of name clash.
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3.1 The BiMetaTrans Translation Table and Syntax Graph

We define the mapping χ'$V' as translating from Prolog/'$V' to the equivalent
RuleML/XML elements and the mapping πxmL as translating in the inverse direc-
tion. The aim of this section is to outline a proof showing that χ'$V' ◦πxmL = idxmL
and πxmL ◦ χ'$V' = id'$V'; in words, both compositions yield the identity function.

The recursive definition of χ'$V' is given in the table below, similar in style
to the tables in [12]. We should stress that, while the translator uses minified
XML (or xmL, as in the mapping subscripts), the second column of the table
uses indented XML for readability (see Sect. 1 for a definition of minified XML).

Prolog/’$V’ Syntax RuleML/xmL

[
assertitem 1

, . . .
, assertitemn

]

<Assert mapClosure="universal">
χ'$V'(assertitem 1)
. . .

χ'$V'(assertitemn)
</Assert>

?- queryitem
<Query mapClosure="existential">

χ'$V'(queryitem )
</Query>

(
conjunct 1

, . . .
, conjunctn

)

<And>
χ'$V'(conjunct 1)
. . .

χ'$V'(conjunctn)
</And>

(
disjunct 1

; . . .
; disjunctn

)

<Or>
χ'$V'(disjunct 1)
. . .

χ'$V'(disjunctn)
</Or>

consequent :- antecedent
<Implies>

<then>χ'$V'(consequent )</then>
<if>χ'$V'(antecedent )</if>

</Implies>

pred (
argument 1,
. . .
argumentn

)

<Atom>
<Rel>χ'$V'(pred )</Rel>
χ'$V'(argument 1)
. . .
χ'$V'(argumentn)

</Atom>

continued on next page
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continued from previous page

func (
argument 1,
. . .
argumentn

)

<Expr>
<Fun>χ'$V'(func )</Fun>
χ'$V'(argument 1)
. . .
χ'$V'(argumentn)

</Expr>

left = right
<Equal>

χ'$V'(left )
χ'$V'(right )

</Equal>

\+ form
<Naf>

χ'$V'(form )
</Naf>

"prologstring " <Data
iso:type="string ">prologstring </Data>

prolognumber <Data
iso:type="number ">prolognumber </Data>

prologcharseries <Data
iso:type="symbol ">prologcharseries </Data>

'capitalizedprologcharseries ' <Ind>capitalizedprologcharseries </Ind>

'$V'(prologcharseries ) <Var>prologcharseries </Var>

[argument 1, ..., argumentn]

<Plex>
χ'$V'(argument 1)
. . .
χ'$V'(argumentn)

</Plex>

[argument 1, ..., argumentn |
repo ]

<Plex>
χ'$V'(argument 1)
. . .
χ'$V'(argumentn)
<repo>

χ'$V'(repo )
</repo>

</Plex>

prolognumber and prologstring are expected to conform to the lexical
grammar of numbers and strings as defined in the ISO Prolog standard [9].
As such, χ'$V' is not applied to them. A similar constraint applies to pro-
logcharseries, which is assumed to start with a lower case letter followed by a
sequence of alphanumeric characters. capitalizedprologcharseries differs only
in that the first letter must be upper case. As shown in the table, Prolog’s con-
vention of distinguishing variables from symbols by capitalizing the former, in
BiMetaTrans becomes a convention of RuleML distinguishing Individuals from
<Data>6. A capitalizedprologcharseries may also represent a symbol, in which
case it is printed between single quotes so as not to be mistaken for a variable.

6 Complementing RuleML’s xsi:type, we introduce iso:type for ISO Prolog types.
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Most elements of RuleML/XML below the root element <RuleML>7 are con-
strained to appear as children of certain container elements. The two top-most
container elements are the performatives <Assert> and <Query>. <Assert>
issues new facts and rules to the underlying RuleML KB while <Query> posts
queries to its query engine. <Assert> makes an implicit <Rulebase> assumption,
containing <Assert>’s children.

To indicate the main RuleML/XML elements’ parent-child relations, and
as an overview of how the translator DCG is built up from smaller DCGs, we
present the grammar of the NafHornlogEq dialect of RuleML/XML as a syntax
graph in Fig. 1a. The supplemental syntax graph in Fig. 1b elaborates Fig. 1a’s
Term box. Taken together, they comprise a single graph describing the grammar
as a whole.

In each graph, boxes labeled by XML elements map one-to-one to the rows
of the translation table. Solid arrows visualize the choice operator in DCGs and
EBNF, indicating that an origin box chooses any of its destination boxes. Dashed
arrows originate from boxes with angular bracketed text, which are always XML
elements; consequently, their destination boxes are the children of their origin
box’s parent XML element. The children are said to be sequenced if they are
meant to appear in a prescribed left-to-right order. Sequencing is denoted in the
syntax graphs by sequencers, horizontal arrows with rectangular heads overlaying
each of the dashed arrows fanning out from an origin.

Other boxes are labeled by intermediate nonterminals. In Fig. 1a, a solid
(choice) arrow points from the intermediate Condition box to the intermediate
Conclusion box. It entails that the <Atom> and <Equal> elements, the children
of the Conclusion box, are also admissible as conditions in the grammar.

Choice arrowheads are in some cases marked by a “?” or “*” modifier, meaning
that the corresponding XML parent can have, respectively, an optional child or
zero or more occurrences of its destination as children. Sequenced arrows may
also be marked by the “?” or “*” modifiers.

Lastly, there are two cases of labeled choice arrows in the composite syntax
graph. In RuleML/XML, the consequent and antecedent children of <Implies>
must be wrapped by <then> and <if> elements, in that order. The ordering
reflects the Prolog convention for writing implications/inference rules using the
infix operator “:-”, which places the consequent on its left-hand side and the
antecedent on the right.

3.2 An Invertibility Proof Outline

We now consider the invertibility property: πxmL◦χ'$V' = id'$V'∧χ'$V'◦πxmL = idxmL
(“◦” denotes function composition and idX the identity function on set X).

7 The <RuleML> root is assumed by BiMetaTrans(Prolog/'$V', RuleML/XML), thus
simplifying its various (KB-only, query-only, KB&query) translation uses.
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<Assert> Payload <Query>

Conclusion

<Atom>

<Rel> Term

<Equal>

Term Term

<Implies>

Condition

<And> <Or><Naf>

<if><then>

(a) The top-level of the syntax graph.

Term <Plex>

<repo>

<Expr>

<Fun>

<Var> <Ind> <Data>

(b) The term syntax subgraph.

Fig. 1. RuleML/XML elements and their children.

The following definitions will be needed. Let R = {=, :-, \+, '$V', '.'}
be the set of reserved symbols and S ⊃ R the set of ISO Prolog symbols. A
RuleML/XML document is R-valid if its atoms never contain a member of R
in their <Rel> elements. Note that R-validity applies to all document parts, e.g.
to RuleML/XML KBs (rooted in <Assert>) and queries (rooted in <Query>).

With these definitions in place, we outline the invertibility proof, having
established the translation table and syntax graph to help us present the proof
as a case analysis. We will partly show that πxmL ◦ χ'$V' = id'$V', leading to the
analysis of an exemplary case.

A valid RuleML/XML KB or query can be viewed as a traversal tree of the
syntax graph, all of whose leaves correspond to grammar terminals. The traversal
tree must have either the <Assert> or <Query> box as its root. χ'$V' is defined
on the set of subtrees of all valid traversal trees, and so, we outline an inductive
proof on the height of a given traversal tree. Since each traversal tree is finite,
the proof will implicitly show that BiMetaTrans terminates on valid inputs.
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R-validity requires that RuleML/XML atoms named under the <Rel> ele-
ments of <Atom> elements are not members of R. This constraint is vital to the
invertibility of BiMetaTrans. For example, suppose we naïvely translated this
(minified) RuleML/xmL atom:
<Atom><Rel>=</Rel><Var>x</Var><Var>y</Var></Atom>

BiMetaTrans would represent the atom as the Prolog compound specifiable in
Prolog under the equivalent (∼) prefix and infix forms:

'='('$V'(x), '$V'(y)) ∼ '$V'(x) = '$V'(y)

Following the translation table in the opposite direction, it would produce
<Equal><Var>x</Var><Var>y</Var></Equal>

which is not the original XML. The mistranslation occurs because plain Prolog
compounds are the targets of both the Atom and Equal elements, leaving χ'$V'
unable to tell which of the two was the source. Therefore, we see that disallowing
RuleML atoms with a Rel element value of “=” is necessary to avoid ambiguity.
In effect, the Prolog symbol “'='” can only be used for the translation of Equal
elements.8

The leaves <Var>, <Ind>, and <Data> are the subjects of the induction basis.
We have already seen an example translation sending <Var> to a “'$V'” com-
pound and back. Since '$V' ∈ R, this can be done at no information loss. <Ind>
is more subtle in that on the RuleML/XML side, we suppose that all Individuals
are capitalized strings. We can represent capitalized strings as Prolog symbols
under the requirement that they be printed in single quotes to avoid confusion
with variable names, which are always unquoted, capitalized strings. Similarly,
the contents of <Data> are recognized on both translation sides by unique lexical
characteristics that need no special effort to be distinguished from other forms.

For the induction hypothesis (IH), we assume that invertibility holds for all
trees of height bounded by some h ≥ 1. BiMetaTrans uses two recursive patterns
based on the outgoing arrow types of the tree’s root box. We outline the IH by
demonstrating the invertibility of a single instance of each.

We focus on the <Implies> element of the case analysis. <Implies> has two
outgoing sequenced arrows to its child edge elements <then> and <if>. Referring
to the translation table, we see that <Implies> elements are translated as Prolog
compounds headed by :- ∈ R. First, we want to show this equation:

πxmL ◦ χ'$V'(then :- if ) = πxmL ◦ χ'$V'(then) :-πxmL ◦ χ'$V'(if ) (1)

Consulting the translation table, we find a row permitting this rewrite:

χ'$V'(then :- if ) � <Implies>

<then>χ'$V'(then)</then>
<if>χ'$V'(if )</if>
</Implies>

8 A conclusion compound with function symbol '=' is not permissible in an ISO Prolog
KB, but we are concerned only with Prolog/'$V' encodings as ground terms.
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Then, πxmL performs the inverse transformation, establishing Eq. (1). The IH
entails

πxmL ◦ χ'$V'(then) = then

and similarly by swapping if for then , completing the argument for this case.
For recursion based on arrows of the second type, we consider the case of

the Condition box. The Condition box in Fig. 1a does not directly pertain to a
RuleML/XML element, but chooses one among <Atom>, <Equal>, and <Naf>.
Any of the three descends into a subtree of height < h, so we use the IH.

Proofs of the invertibility of other elements can be similarly obtained, with
some modifications for variable numbers of children or an optional child, com-
pleting the πxmL ◦ χ'$V' direction. The proof of χ'$V' ◦ πxmL = idxmL is symmetric.

4 A Guided Tour of BiMetaTrans via ATC KB Examples

In this section we walk through the implementation of BiMetaTrans as a Prolog
DCG. We will follow the exposition with examples of translating an ISO Prolog
variant9 of a POSL ATC KB to RuleML/XML.

The sole public predicate of BiMetaTrans is parse_ruleml/3. Its first
two arguments are Prolog-content lists; the third is a string containing a
RuleML/XML serialization (parsed by BiMetaTrans as RuleML/xmL ‘on-the-
fly’) consisting of an (optional) assertion followed by (optional) queries. It has
these modes:

parse_ruleml(+AssertItems, +QueryItems, ?XML) % Realizes χ'$V' of Sect. 3
parse_ruleml(?AssertItems, ?QueryItems, +XML) % Realizes πxmL of Sect. 3

The modes constrain the inputs to fit one of two patterns, each describing a
translation direction. The first, where AssertItems and QueryItems are instan-
tiated and XML is possibly a free variable, describes translation from Prolog/'$V'
to RuleML/xmL. The other direction is captured by the second mode, where the
(un)instantiation conditions are swapped: a RuleML/xmL string is assigned to
XML while AssertItems and QueryItems may be unbound. A third assumption
of parse_ruleml not expressed by its modes is that its inputs, when instantiated,
are ground, meaning they do not contain free variables. These assumptions help
ensure that BiMetaTrans is deterministic and will terminate on all valid inputs.

9 http://users.ntua.gr/mitsikas/ATC_KB/ATC_KB_ISO_PL.pl.

http://users.ntua.gr/mitsikas/ATC_KB/ATC_KB_ISO_PL.pl
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The possible children of <Assert> elements are disjunctively connected by

ruleml_assert_item(Item) -->
ruleml_implies(Item) | ruleml_equal(Item) | ruleml_atom(Item).

using the “|” operator, which realizes the choice operator in the EBNF meta-
syntax: In DCGs, “|” causes its operands to be backtracked over from left to
right until one succeeds. Thus, the <Implies>, <Equal>, and <Atom> elements
are valid children of the <Assert> element, as seen in the translation table.

The remaining boxes of the syntax graph/rows of the translation table are
similarly represented by other DCGs. For container elements with one or more
children, the “*”s of the syntax graph, we have – for the greedy consumption of
children – patterns such as the following:

ruleml_assert_items([Item | Items]) -->
ruleml_assert_item(Item),
ruleml_assert_items(Items).

ruleml_assert_items([]) --> [].

Here, children of an <Assert> fill the argument list until an </Assert> is
met.

We now turn to the NafHornlogEq ATC KB (see Footnote 9), which we have
translated into Prolog/'$V' (see the end of this section). Its purpose is to help
determine the separation minima of pairs of aircraft according to various ATC
regulations.

The first clause is a ground fact describing aircraft Characteristics, from left
to right – type, weight (kilograms), wingspan (feet), and approach speed (knots):

aircraftChar([’B763’, 186880.06, 156.08, 140.0]).

BiMetaTrans renders the fact as an atom because its head aircraftChar �∈ R:

<Atom>
<Rel>aircraftChar</Rel>
<Plex>

<Ind>B763</Ind>
<Data iso:type="number">186880.06</Data>
<Data iso:type="number">156.08</Data>
<Data iso:type="number">140.0</Data>

</Plex>
</Atom>

The aircraft Char’s are collected in a single <Plex>, specialized to a
RuleML/XML counterpart for Prolog’s list data type. Each <Data> element
is matched by the ruleml_data DCG. The contents of <Data> elements are
matched and generated by the following ruleml_data_contents grammar with
three disjoint cases:

ruleml_data_contents(number, Cs) -->
ruleml_number(Cs).

ruleml_data_contents(symbol, Cs) -->
ruleml_symbol(Cs).

ruleml_data_contents(string, Cs) -->
ruleml_string(Cs).
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The ruleml_data_contents DCG notably breaks from the “|” convention of
other choice-driven DCGs: the first argument is used to pass or receive type
information to/from the caller, which is (resp.) generated as the “iso:type”
attribute or used to index the clauses of ruleml_data_contents, depending on
the translation direction.

The preceding grammars match disjoint character sequences. Consequently,
numbers, strings, and symbols are inlined into Prolog/'$V' compounds without
annotation. “'B763'” is a capitalizedprologcharseries that is not wrapped in
a “$V”, and so is considered an Individual.

A more advanced example is found in a rule for categorizing an aircraft in its
wake turbulence category, according to regulations set by the International Civil
Aviation Organization (ICAO). The original NafHornlogEq rule in ISO Prolog
is given on the left, and the encoded Prolog/'$V' source is on the right:10

ISO Prolog Prolog/’$V’

icaoCategory(Aircraft, heavy) :-
aircraftChar([Aircraft, Kg | Rest]),
greaterThanOrEqual(Kg, 136000.0),
\+ icaoCategory(Aircraft, super).

icaoCategory('$V'(aircraft), heavy) :-
aircraftChar(['$V'(aircraft), '$V'(kg)

| '$V'(rest)]),
greaterThanOrEqual('$V'(kg), 136000.0),
\+ icaoCategory('$V'(aircraft), super).

In the following “co-alignment” and “DCG” tables, circle superscripts co-
reference between the children of Naf (“1”) and Var (“2”) as well as the source
(“black”) and target (“white”). While in the co-alignment table, the source is on
the right of the target, in the DCG table, the source is below the target.

For the co-alignment table, recalling the <Implies> box in the syntax graph
of Fig. 1a, we see that <then> precedes <if>. The child of <if> is an <And>
containing, as its first child, an aircraftChar <Atom> with a single <Plex>
argument. This example’s use of <Plex> contains an optional (EBNF’s “?”) child
<repo> (Prolog’s “|”). A <repo> must be either a <Var> or another <Plex>.
This distinction is realized by a structural check. The second <And> child is
a greaterThanOrEqual atom. The third conjunct is a Naf that contains an
icaoCategory atom.

For the DCG table, notice that the <Naf> and <Var> elements each contain
one element, albeit with different children.

10 In the Emacs text editor, the reification can be done by the interactive command M-x
query-replace-regexp with basically \([A-Z][a-z]*\) as the matching expression
and '$V'(\,(downcase \1)) as the transform. Such a command could also be named
as an Emacs Lisp function.
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The targeted RuleML/XML is on the left while the Prolog/'$V' rule has
been co-aligned on the right, where its tree structure is made more explicit:

RuleML/XML Prolog/’$V’
<Implies>
<then>
<Atom>
<Rel>icaoCategory</Rel>

<Var>aircraft
2

</Var>
<Data iso:type="symbol">heavy</Data>

</Atom>
</then>
<if>
<And>
<Atom>
<Rel>aircraftChar</Rel>
<Plex>

<Var>aircraft
2

</Var>

<Var>kg
2

</Var>
<repo>

<Var>rest
2

</Var>
</repo>

</Plex>
</Atom>
<Atom>
<Rel>greaterThanOrEqual</Rel>

<Var>kg
2

</Var>
<Data iso:type="number">136000.0</Data>

</Atom>
<Naf>

<Atom>
1

<Rel>icaoCategory</Rel>

<Var>aircraft
2

</Var>
<Data iso:type="symbol">super</Data>

</Atom>
</Naf>

</And>
</if>

</Implies>

icaoCategory(
'$V'(

aircraft
2

),
heavy

) :- aircraftChar([
'$V'(

aircraft
2

),
'$V'(

kg
2

)
|
'$V'(

rest
2

)]),
greaterThanOrEqual(
'$V'(

kg
2

),
136000.0,

),

\+ icaoCategory(
1

'$V'(

aircraft
2

),
super

).

For the DCGs, circle-superscripted parts of ruleml_naf and ruleml_var
translate the circle-superscripted data of the co-alignment table:

DCG production for Naf DCG production for Var

ruleml_naf(I) -->
( { var(I) } ->

list_ws("<Naf>"),

ruleml_condition(NI)
1

,
{ Item = (\+ NI) },
list_ws("</Naf>")

; "<Naf>",
{ Item = (\+ NI) },

ruleml_condition(NI)
1

,
"</Naf>"

).

ruleml_var(V) -->
( { var(V) } ->

list_ws("<Var>"),

ruleml_var_contents(VCs)
2

,
{ atom_chars(VN, VCs) },
{ V = '$V'(VN) },
list_ws("</Var>")

; "<Var>",
{ V = '$V'(VN) },
{ atom_chars(VN, VCs) },

ruleml_var_contents(VCs)
2

,
"</Var>"

).
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As a final example, we consider a query against the ATC KB in ISO Prolog
(see Footnote 9). Here is its presentation syntax before and after reifying (see
Footnote 10) to Prolog/'$V':

ISO Prolog Prolog/'$V'
?- icaoCategory('B763', Wtc). ?- icaoCategory('B763','$V'(wtc)).

This is the translation of the second column to (minified) RuleML/xmL:

<Query><Atom><Rel>icaoCategory</Rel><Ind>B763</Ind><Var>wtc</Var></Atom></Query>

The only new element introduced by this case is <Query>. Note that, unlike the
<Assert> performative, <Query> does not implicitly contain a <Rulebase>.

When posed to either a RuleML/XML or ISO Prolog engine with a KB
of just the sample fact and rule, this query will succeed, binding its variable
<Var>wtc</Var> or Wtc to the symbol heavy.

5 Conclusions

This paper presents BiMetaTrans, an invertible bidirectional metalogical trans-
lator between RuleML/XML and Prolog/'$V'. The latter is an encoding used to
represent the complete contents of RuleML/XML KBs/queries as Prolog terms.

The case for writing invertible translators in DCGs is bolstered by comparing
the simplicity and compactness of BiMetaTrans to recent approaches of the
functional programming community in this area [13–15]. DCGs natively harness
the declarativity of Prolog, making them at once simple, efficient, and effective.

The grammar of the NafHornlogEq RuleML language, and its translation to
Prolog/'$V', were explained in a syntax graph and translation table, respec-
tively. We gave a proof outline of BiMetaTrans’ invertibility, focusing on the
πxmL ◦ χ'$V' direction, and examined its operation on a NafHornlogEq ATC KB.

Future work includes extending the RuleML/XML use of <Equal> from
Prolog’s “=” for syntactic unification to its is primitive for (arithmetic) func-
tional built-ins, e.g. as in PSOATransRun’s Prolog conversion. BiMetaTrans
could also be extended to NafHornlogEq RuleML superlanguages, e.g. adding
strong Negation for the anchor NafNegHornlogEq and Disjunctive conclusions
for a NafDisHornlogEq. Moreover, we intend to explore ways of automating the
reflection step of the split translation pattern.

BiMetaTrans was created and is being developed in Scryer Prolog11, an ISO
Prolog system under development by the first author. Its unique features include
“partial strings”12, which provide a 24-fold reduction in memory usage over how
strings are typically represented in Prolog systems. Partial strings pack charac-
ters in UTF-8 format, but act as difference lists of characters. This allows their

11 https://github.com/mthom/scryer-prolog.
12 https://github.com/mthom/scryer-prolog#strings-and-partial-strings.

https://github.com/mthom/scryer-prolog
https://github.com/mthom/scryer-prolog#strings-and-partial-strings
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use in DCGs, which, combined with their compact representation, makes them
well-suited to generating/parsing large (RuleML/)XML KBs/queries as strings.

BiMetaTrans could be composed with the PSOA RuleML API [16], creat-
ing a translation chain from ISO Prolog via RuleML/XML to PSOA RuleML
presentation syntax (for subsets of each).
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Abstract. We provide a framework for probabilistic reasoning in Vada-
log-based Knowledge Graphs (KGs), able to satisfy the requirements
of ontological reasoning: full recursion, powerful existential quantifica-
tion, and the ability to express inductive definitions. Vadalog is based on
Warded Datalog+/−, an existential rule language that strikes a good bal-
ance between computational complexity: with tractable reasoning in data
complexity, and expressive power covering SPARQL under set semantics
and the entailment regime for OWL 2 QL. Vadalog and its logical core
Warded Datalog+/− are not covered by existing probabilistic program-
ming and statistical relational models for many reasons including weak
support for existentials, recursion and the impossibility to express induc-
tive definitions. We introduce Soft Vadalog, a probabilistic extension to
Vadalog satisfying these desiderata. It defines a probability distribution
over the nodes of a chase network, a structure induced by the grounding
of a Soft Vadalog program with the chase procedure.

Keywords: Knowledge Graphs · Reasoning · Markov Logic Networks

1 Introduction

Knowledge Representation and Reasoning (KRR) languages adopted in Knowl-
edge Graphs (KGs) systems should support a number of desiderata, including:
a predilection for a rule-based fully explainable approach having simple syntax,
high expressive power, low complexity, probabilistic reasoning and, importantly,
explainability [2]. vadalog is a state-of-the-art logic-based KRR language based
on Warded Datalog± [3], a member of the Datalog± family [4]. Datalog± lan-
guages are also known as existential rules or tuple-generating dependencies, which
generalize Datalog rules with existential quantifiers in heads. Warded Datalog±

supports recursion and existential quantification, while introducing syntactic
restrictions to guarantee decidability and data tractability [2].

c© Springer Nature Switzerland AG 2020
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Example 1. Consider a Knowledge Graph G, with facts describing semantics
relationships between constants a, b, c, l,m, n:

{Triple(a, b, c), Inverse(b, l),Restriction(m, l),Subclass(m,n)}

Let us extend G with the following existential rules, encoding the membership
part of the OWL 2 semantics entailment regime for OWL 2 QL (see [2,10]):

0.9 :: Type(x, y),Restriction(y, z) → ∃v Triple(x, z, v) (1)
0.8 :: Type(x, y),SubClass(y, z) → Type(x, z) (2)

0.7 :: Triple(x, y, z), Inverse(y, w) → Triple(z, w, x) (3)
Triple(x, y, z),Restriction(w, y) → Type(x,w). (4)

Ignoring what precedes the :: symbols, intuitively, Rule (1) encodes that if x is
of type y (as expressed by the atom Type) and is involved in a binary relation z
(expressed by the atom Restriction), then there exists some value v s.t. the tuple
(x, v) occurs in some instance of z (as specified by the atom Triple). Similarly,
Rules (2–4) encode usual notions of subclass, inverse, and type restriction. �

An example of (ontological) reasoning task over G is the query: “What are all
the entailed Triples?”. We see such triples are Triple(c, l, a) and Triple(c, l, v0),
where v0 is a fresh arbitrary value (a labeled null). Let us now consider a modified
version Example 1, where Rules (1–3) are not definitive but hold with a certain
probability. We prefix them with a weight proportional to such bias (indicated
by the number before the :: symbol). A probabilistic reasoning task would then
consist in answering, over such uncertain logic programs, queries like: “What is
the probability for each Triple to be entailed?’. We wish to compute the marginal
probability of entailed facts, so, e.g., of Triple(c, l, a) and Triple(c, l, v0).

To enable such scenarios, we need KRR languages able to perform proba-
bilistic reasoning and, at the same time, satisfy the requirements for ontological
reasoning: (i) adoption of well-founded semantics [6], (ii) powerful existential
quantification, supporting the quantification of SPARQL and OWL 2 QL, (iii)
full recursion, (iv) ability to express non-ground inductive definitions (e.g., tran-
sitive closure) [7,16]. While probabilistic reasoning is of interest to three research
areas, probabilistic logic programming (e.g., ProbLog) [1,5,19,21–23,25], prob-
abilistic programming languages (e.g., BLOG) [8,14,17,18] and statistical rela-
tional learning (e.g., Markov Logic Networks) [13,16,20], none of the approaches
fits our requirements as they fail either in providing simultaneous support for
recursion and existential quantification or do not allow inductive definitions.

Contribution. In this short paper we propose the following contributions:

– We introduce soft vadalog, a probabilistic extension to vadalog. It allows
reasoning on Probabilistic Knowledge Graphs (PKGs) while guaranteeing
the desiderata for ontological reasoning. A soft vadalog program defines
a probability distribution over the nodes of a chase network, a structure
obtained via grounding of the program with a chase-based procedure.
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– We propose the MCMC-chase algorithm, an approximate technique for
marginal inference combining a Markov Chain Monte Carlo method (specifi-
cally the Metropolis-Hastings algorithm) with a chase-based procedure. Chase
procedures are used in databases to enforce logic rules by generating entailed
facts. Here, the chase application is guided by MCMC and marginal inference
is performed in the process.

Overview. In Sect. 2 we provide motivation for our approach and analyze the
related work. In Sect. 3, we introduce PKGs and soft vadalog. In Sect. 4 we
present the MCMC-chase algorithm. Section 5 concludes the paper.

2 Motivation and Related Work

Let us briefly recap the three main related research areas to argue why extending
Vadalog-based KGs with probabilistic reasoning needs a tailored approach.

Probabilistic Logic Programming (PLP) approaches [5] adopt the well-known
distribution semantics [22]. For the task at hand here, it offers insufficient support
in handling recursion and existentials together in a single decidable fragment.
In fact, apart from some PLP languages which simply forbid recursion, most of
others (e.g., ICL [19], PRISM [23], LPAD [21,25] ProbLog [5], cPlint [1]) do not
allow non-ground probabilistic rules involving the creation of new values; others
do not disclose details about how recursion is handled (e.g., cProbLog [15]).

These limitations are self-evident going back to Example 1 and trying to
answer the query “What are all the entailed Triples?” over G. Existing PLP
techniques fail to conclude Triple(c, l, v0), because they abort when running into
a probabilistic recursive rule that involves the creation of new values.

Probabilistic Programming Languages (PPL) systems, such as BLOG [17],
BLP [14], Church [8], Figaro [18], are typically based on an underlying Bayesian
network model and forbid recursion or existential quantification.

In Statistical Relational Learning (SRL) approaches, FO formulas are a
template for the definition of graphical models, and inference then consists
of construction of the network (grounding) and probabilistic inference on it.
Examples are Relational Bayesian Networks [13] and Markov Logic Networks
(MLN) [20]. Yet, as it is well known that FO logic can only express that a
given relation is transitive, but cannot in general specify its closure [12], any
FO logic theory expressed via MLNs cannot enforce marginal probability zero
for models with facts not in the range of the transitive closure, making MLN
unsuitable for reasoning over KGs. In Example 1, with FO logic semantics, one
can make arbitrary conclusions leading to incorrect results. For example, as
{Triple(a, b, c), Inverse(b, n)} falsifies the premise of Rule (3), we can incorrectly
conclude Triple(c, b, a).

This is one example of a broader area, studied more deeply by [7] and [16],
that refer to the “ability to express (non-ground) inductive definitions”, such
as a graph path in terms of its edges. LPMLN [16] is also relevant in SRL: it
combines logic programming and the log-linear semantics of MLNs. Yet, it is
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unsuitable for reasoning on KGs, as it adopts stable model semantics instead of
well-founded semantics, the standard option for nonmonotonic normal programs
in the database context and very promising for ontological reasoning [11].

3 Probabilistic Knowledge Graphs

Our approach consists of the following steps: (i) first we define a Probabilistic
Knowledge Graph as the ensemble of an input database D and a set Σ of uncer-
tain first-order rules, (ii) then, given a query Q, i.e., an n-ary predicate appearing
in Σ, we construct a structure, called chase network, that comprises all possible
databases that can be obtained from D by applying rules in Σ. This structure is
already enough to compute marginal probabilities. However, we need to mitigate
two issues: logical inference in the presence of general FO rules is undecidable or
intractable; computing exact marginal probabilities is intractable as well (#P-
hard). For the first issue, we leverage the language vadalog, for which logical
inference can be done in polynomial time in input data size. For the second, we
compute approximate marginal probability. Thus, (iii) we introduce an MCMC
method that simultaneously performs logical and marginal inference and allows
to efficiently answer queries over large PKGs.

Datalog± and VADALOG. soft vadalog is an extension of vadalog, a
language in the Datalog± family [9]. We first introduce needed concepts.

Datalog± generalizes Datalog, with existential quantification in the rule con-
clusion. A rule is a first-order sentence of the form ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)),
where ϕ (the body) and ψ (the head) are conjunctions of atoms (for brevity
we will omit universal quantifiers and use comma to denote conjunctions). The
semantics of a set of existential rules Σ over an instance D, denoted Σ(D), is
defined via the chase procedure. This procedure adds new facts to D (possibly
involving generation of new labeled nulls used to satisfy the existentially quan-
tified variables) until the final result Σ(D) satisfies all the existential rules of Σ.
More formally, initially Σ(D) = D. By a unifier we mean a mapping from vari-
ables to constants or labeled nulls. We say ρ = ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) is applicable
to Σ(D) if there is a unifier θρ such that ϕ(x̄θρ, ȳθρ) ⊆ Σ(D) and θρ has not
been used to generate new facts in Σ(D) via ρ. If ρ is applicable to Σ(D) with a
unifier θρ, then it performs a chase step, i.e., it generates new facts ψ(x̄θ′

ρ, z̄θ′
ρ)

that are added to Σ(D), where x̄θρ = x̄θ′
ρ and ziθ

′
ρ, for each zi ∈ z̄, is a fresh

labeled null that does not occur in Σ(D). The chase step easily generalizes to
a set of rules. The chase procedure performs chase steps until no rule in Σ is
applicable. Σ(D) is in principle potentially infinite because of the generation of
infinite labeled nulls. However, for the purpose of this work, we will consider the
chase up to isomorphism of facts, which is sufficient for our logical reasoning
task in Warded Datalog± and is finite [3], as we shall see.

Given a query Q = (Σ,Ans) and an instance D, called an extensional database
(EDB), where Σ is a set of rules and Ans an n-ary predicate, a tuple t̄ ∈ dom(D)n

is an answer to Q over D if Ans(t̄) ∈ Σ(D). Since Σ(D) is potentially infinite, the
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number of answers to a query could be infinite as well. For this, we are interested
in finding a representative set of answers, called universal answer set, that can
be embedded into any other answer set with a renaming of labeled nulls. In our
setting, a logical reasoning task is computing a universal answer set.

A vadalog program is a set of facts and rules that obey specific restrictions
on the syntax of the rules (namely, wardedness [10]) which ensure that the reason-
ing task is decidable and scalable [4], i.e., there is a finite subset Σ′(D) ⊂ Σ(D)
s.t. the universal answer sets for a query Q over D calculated via Σ(D) and
Σ′(D) are isomorphic. Thanks to this property, in vadalog, a solution to the
reasoning task can be obtained by executing just a finite number of chase steps.
In particular, given two isomorphic facts h and h′ (i.e., having same terms up to
renaming of the labeled nulls), one needs to explore only h and so never perform
chase steps starting from h′. As a consequence, for the purpose of this work, we
will consider chase up to isomorphism of facts. By a warded chase step we refer
to a chase step limited to those unifiers allowed by such criterion.

Syntax of SOFT VADALOG. We extend vadalog to soft vadalog with soft
rules. A soft vadalog rule is a pair (ρ,w), where ρ is a (usual) vadalog rule
and w ∈ R ∪ {+∞,−∞}, a real number, is a weight, reflecting how strong a
constraint is and so the absolute bias for a model to respect it (or not to respect
it, in the case of negative weights). A soft rule (ρ,+∞) is called a hard rule.

By abuse of notation, ρ denotes a soft rule and w(ρ) its weight. A soft
vadalog program is a set of soft vadalog rules.

Semantics of SOFT VADALOG. A soft vadalog program specifies a proba-
bility distribution over the facts generated by any application of the chase proce-
dure over a given database instance (chase network). To define this distribution,
let us start from Probabilistic Knowledge Graphs.

A Probabilistic Knowledge Graph is a pair 〈D,Σ〉, where D is a database
instance and Σ is a soft vadalog program. A PKG can be viewed as a template
for constructing chase networks. Given a PKG G = 〈D,Σ〉 and a set of database
instances D, each closed under the hard rules of Σ and with relation symbols
from D ∪ Σ, a chase network Γ(G) is a tuple 〈W,T, λ,W0〉, where:

1. W is a set of nodes and T is a set of edges.
2. λ : W → D is a total injective labeling function associating nodes W of W

to database instances λ(W ).
3. W0 ∈ W is a source node, s.t. λ(W0) = clΣ(D), i.e., W0 is associated to the

closure of D w.r.t. the hard rules of Σ.
4. There is an edge ts ∈ T from W to W ′ iff λ(W ′) can be obtained from λ(W )

by one transition step. A transition step s from λ(W ) to λ(W ′) consists of a
warded chase step of at least one applicable soft rule with one unifier followed
by the closure w.r.t. the hard rules of Σ. Edge ts is then labeled by

∑
ρ∈σ w(ρ),

where σ is the set of soft rules applied.
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Note that since a transition step always adds new facts, there are no
(directed) cycles in the chase network; also, as, λ is injective, all the paths in
the chase network leading to the same database instance will converge into the
same terminal node; moreover, two nodes W and W ′ can be connected by mul-
tiple edges (the chase network has a multigraph structure), one for each possible
transition step from λ(W ) to λ(W ′). Furthermore, the chase network is finite by
wardedness, as we consider the chase up to isomorphism, as discussed earlier.
Apart from the technical side, this is intuitively justified by the fact that such
isomorphic space should not be considered at all because its facts are semanti-
cally irrelevant for query answering and so should be for marginal probability.

We define the weight w(W ) of a node W in Γ(G) as the sum of the edge
labels on all the paths from W0 to W . The chase network induces the following
probability distribution over its nodes: P (W ) = 1

Z exp w(W ), where Z is a nor-
malization constant (a partition function), to make P (W ) a proper distribution,
defined as Z =

∑
W exp w(W ). For a given fact f , its marginal probability P (f)

can be calculated as
∑

Wi:f∈λ(Wi)
P (Wi).

Figure 1 summarizes the chase network for Example 1. Nodes are facts f in
database instances λ(Wi), where Wi is a node of the chase network. Facts f are
annotated with a set {W0, . . . ,Wn} of nodes of the chase network s.t. for each
Wi in the set, f ∈ λ(Wi). Solid edges are warded chase steps applying hard rules;
dashed edges are for soft rules, with weight γ.

Fig. 1. Chase network for Example 1.

Let us now compute the marginal
probability of Triples. We have w(W0) =
0. Then it follows w(W1) = 0.7 and
w(W2) = 0.7 + 0.8 = 1.5, w(W3) =
0.7 + 0.9 = 1.6, and w(W4) = 0.7 +
(0.8 + 0.9) × 2 = 4.3. So we can calculate
marginal probability for Triple(c, l, a).
This fact appears for W1, W2, W3,
W4, so we have: (e0.7 + e1.5 + e1.6 +
e4.3)/Z = 0.98, with Z = 1 +
e0.7 + e1.5 + e1.6 + e4.3. Similarly, for
Triple(c, l, v0), we have: (e1.6 + e4.3)/Z =
0.91.

Probabilistic Reasoning. Given an instance D and a query Q = (Σ,Ans),
the probabilistic reasoning task consists in computing the set {〈t̄, P (t̄)〉}, where
Ans(t̄) ∈ D, with D being the instances associated to nodes in Γ(G), defined on
the PKG G = 〈D,Σ〉, and P (t̄) is the marginal probability of Ans(t̄).

Reasoning on PKGs is a computationally hard problem. For marginal infer-
ence, an exploration of the full chase network is needed and thus an exponential
number of chase executions, each with polynomial complexity in the size of D.
This makes it NP-hard. By adapting the proof for #P-hardness of query answer-
ing over probabilistic databases [24], it can be shown that marginal inference in
soft vadalog is #P -hard, where the program is assumed to be fixed.
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4 The MCMC-Chase Algorithm

MCMC-chase is an independence sampling MCMC where the chase is seen as a
Markov process over the nodes of the chase network. Given a PKG G = 〈D,Σ〉,
the MCMC-chase satisfies soft rules of Σ, applied to D, with a probability that
is proportional to the rule weight and generates nodes of Γ(G). The algorithm
keeps track of the weight of the current node. A node is accepted or rolled back
according to an acceptance probability, in a Metropolis-Hastings style.

Algorithm 1 gives pseudo-code for the MCMC-chase. It takes as input a PKG
G and returns samples from the distribution P (W ) = 1

Z exp w(W ) over the
nodes W of the chase network Γ(G). The algorithm performs N iterations, each
consisting of S steps, with S extracted from a Poisson (jump) distribution (line
5). In each step, forward or backward depending on a value δ uniformly chosen,
the algorithm selects subsets Ra and Ru of rules from Σ with a probability
proportional to w(ρ) (lines 10–11) of applicable or undoable (that generated
leaf facts) rules. Forward steps (line 12) try to apply a transition step with the
selected rules Ra to the current node T of the chase network. Backward steps
(line 13) try to undo a transition step with rules in Ru.

Algorithm 1. MCMC-chase

1: function mcmc-chase(G = 〈D, Σ〉,N)
2: WS = ∅ � samples from the distribution over the nodes W of Γ(G)
3: D0 = D
4: for n ← 1 to N do � N : # of iterations
5: Sample S ∼ P(λ) � # of steps, from a Poisson distr.
6: T ← Dn−1

7: w(T ) ← w(Dn−1)
8: for s ← 1 to S do
9: Sample δ ∼ U(0, 1); Sample μ ∼ U(0, 1)

10: Rf ← all applicable ρ in Σ s.t. μ < 1 − e−w(ρ)

11: Ru ← all undoable ρ in Σ s.t. μ < 1 − e−w(ρ)

12: if δ < 0.5 then transition step(T ,Ra)
13: else undo transition step(T ,Ru)

14: α ← f(T )/f(Dn−1) � acceptance probability
15: With prob. min(1, α) add 〈T , w(T )〉 to WS
16: if accepted then Dn ← T else Dn ← Dn−1 � accept or rollback

return WS

In forward (resp. backward) steps, applicable (resp. undoable) hard rules
are used to add (resp. remove) facts from the closure of T ; applicable (resp.
undoable) soft rules are applied and their weight is summed to (resp. subtracted
from) the total weight of T . When applicable, hard rules are in Ra and Ru (lines
10–11) and therefore applied or undone, without affecting the total weight. After
S steps, an acceptance function f(Y) = exp w(Y) evaluates the acceptability of
the current node. Finally, all accepted nodes and their weights are returned.
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Observe that the stochastic process underlying MCMC-chase is memoryless
(i.e., it satisfies the Markov property) by construction, since a future process
status—a candidate node of the chase network—only depends on the present
one: a candidate node inherits all the facts only from one previously generated
node, and some facts are added to or removed from it by the applicable rules.

5 Conclusion

Motivated by the fact that a probabilistic extension of Warded Datalog± is not
covered by existing approaches, we introduced the soft vadalog language and
discussed its semantics. It features soft rules in the presence of full recursion,
existential quantification, and inductive definitions. Given the hardness of the
probabilistic reasoning task, we contributed an MCMC algorithm for approxi-
mate marginal inference with soft vadalog.
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nology (WWTF) grant VRG18-013.
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Abstract. We study the problem of distributed reasoning over con-
nected database components with a class of ontologies based on dis-
junctive tuple-generating dependencies, called restricted weakly-linear
disjunctive tuple-generating dependencies. This language extends linear
tuple-generating dependencies as well as linear disjunctive Datalog. We
provide the first distributability results on these queries and report exper-
imental results on real-world ontology benchmark suites.

1 Introduction

Ontology-mediated queries (OMQs) [7] provide key formalisms for effective
access to heterogeneous and incomplete data with a unified conceptual view of
various data sources and paves the way for enriching user queries with domain
knowledge. A major challenge of OMQ answering is provisioning of coordination-
free reasoning, which has been tackled in recent years by query distribution over
components [2]. The question is: given an OMQ Q, whether the answer to Q for
any database D, denoted Q(D), coincides with

⋃
1≤i≤n Q(Di), where D1, . . . , Dn

are the (maximally connected) components of D.
The problem of checking whether an OMQ is distributable is in general unde-

cidable even for ontology-mediated queries based on Datalog [2]. However, for
some fragments of existential rule languages, such as linear, guarded, and sticky,
this problem is known to be decidable for conjunctive queries [6]. Despite this,
the scope of current decidability results is limited due to the lack of support
to represent even simple constructs such as disjunctive axioms. In particular,
disjunction, with which one can model classification, is a useful property in the
biology domain among many others for which the importance of coordination-
free query answering is most apparent.

Consider, for instance, an ontology in the domain of biological sciences which
is specified by the following set of disjunctive existential rules, which describes
different types of organisms in terms of their effect on their victim. In particular,

c© Springer Nature Switzerland AG 2020
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if an organism x with a weak immune system (WeakImmune(x)) hosts a parasitic
prokaryote (Parasitic(y)), it gets sick by it (GetsSickBy(x, y)). If x gets sick by
y, then y harms x and y is parasitic. The rest of the rules are self-explanatory.

σ1 : Organism(x) → Eukaryote(x) ∨ Prokaryote(x)
σ2 : Prokaryote(x) → Bacteria(x) ∨ Archaea(x)
σ3 : Parasitic(x) → ∃y Hosts(y, x),Harms(x, y)
σ4 : Hosts(x, y) → Organism(x),DependsOn(y, x)
σ5 : Parasitic(y),Hosts(x, y),WeakImmune(x) → GetsSickBy(x, y)
σ6 : GetsSickBy(x, y) → Parasitic(y),Harms(y, x)
σ7 : Bacteria(x),Harms(x, y) → Infectious(x),Victim(y)

In this paper, we study the problem of distribution over components for
ontology-mediated queries constructed from what we call restricted weakly-
linear tuple-generating dependencies and a subset we introduce as bidirectionally-
guarded queries, and additionally, for the first time, we conduct experiments to
evaluate the performance of distributed reasoning on real-world ontology bench-
marks.

2 Preliminaries

Let C and V be pairwise disjoint countably infinite sets of constants and variables.
A schema is a finite set S of predicate symbols where each symbol R ∈ S has
an arity, denoted arity(R). Terms are elements in C ∪ V. An atom over S is an
expression of the form R(t), where R ∈ S and t ∈ (C ∪ V)arity(R). An instance
over a schema S is a set of atoms. A database over S is a finite instance over
S that contains only constants. The active domain of an instance I, denoted
adom(I), is the set of all terms occurring in I.

Given two instances I and J (over the same schema), a homomorphism h :
I → J is a substitution on terms that is identity on constants and for every
atom R(t) of I we have that R(h(t)) ∈ J which may be alternatively written
as h(R(t))) is an atom of J . A conjunctive query (CQ) over S is a formula of
the form ∃y φ(x,y), where x and y are tuples of variables in V and φ(x,y) is
a conjunction of atoms over S and x ∪ y. A CQ is answer-guarded if it has an
atom that contains x, and it is acyclic if its hypergraph is α-acyclic (cf. [10]).
Furthermore, it is quantifier-free if y = ∅. The evaluation of a CQ q over an
instance I, denoted q(I), is defined as the set of all tuples h(t) of constants such
that h is a homomorphism from q to I. A union of conjunctive queries (UCQ) is
a disjunction of CQs that share the same free variables. Given two queries q and
q′ over S, q ⊆ q′ if for every S-database D, q(D) ⊆ q′(D). Two queries q and
q′ over S are equivalent, denoted q ≡ q′, if q ⊆ q′ and q′ ⊆ q. A query language
Q′ is at least as expressive as another query language Q, denoted Q 
 Q′, if for
every S-query q ∈ Q, there is an S-query q′ ∈ Q′ such that q ≡ q′. Q and Q′ are
equi-expressive, denoted Q = Q′, if Q 
 Q′ and Q′ 
 Q. With CQ (resp. UCQ),
we denote the class of all queries definable by some CQ (resp. UCQ).
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A disjunctive tuple-generating dependency (DTGD, also called a rule) σ is a

first-order formula ∀x(
φ(x) →

n∨

i=1

∃yi ψi(xi,yi)
)
, where φ and ψi (1 ≤ i ≤ n)

are conjunctions of atoms. The formula φ (resp.
n∨

i=1

ψi) is called the body of σ,

denoted body(σ) (resp. the head of σ, denoted head(σ)). The set of predicates
appearing in Σ is called the schema of Σ, denoted sch(Σ).

A DTGD without disjunction is called a tuple-generating dependency (TGD).
We denote by TGD the class of all finite sets of TGDs. A Datalog rule is a TGD
without existential variables. A finite set of Datalog rules is called a Datalog
program. A disjunctive Datalog rule is a DTGD without existential variables. A
finite set of disjunctive Datalog rules is called a disjunctive Datalog program.

We say a TGD set Σ′ is a rewriting of a CQ q w.r.t. a set of DTGDs Σ if there
exists a predicate Pq such that for each database D over the schema of Σ, and
for each tuple of constants a, we have D∪Σ |= q(a) if and only if D∪Σ′ |= Pq(a).
A set Σ′ of TGDs is a rewriting of Σ if it is a rewriting of every atomic query
over sch(Σ). A rule σ is linear if it has at most one body atom. A rule set Σ
islinear if all rules of Σ are linear.

An ontology-mediated query (OMQ) over S is a triple Q = (S,Σ, q) in which
S is called the data schema, Σ is a finite set of DTGDs, and q is a CQ over
S∪ sch(Σ). Given an OMQ Q = (S,Σ, q) and a database D where arity(q) = n,
we define the certain answer to Q over D as: ans(D,Σ, q) = {a ∈ Cn | D ∪ Σ |=
q(a)}, and semantically interpret Q by assigning Q(D) = ans(D,Σ, q) for all
databases D. For an OMQ Q = (S,Σ, q), if Σ belongs to a class C, we then say
that Q belongs to C.

Connectedness is a key notion to characterize the distributable fragments of
TGDs [2,6]. A finite instance I is called connected if for all x, y ∈ adom(I),
there exists a sequence β1, . . . , βn of atoms in I such that a) x ∈ adom(β1)
and y ∈ adom(βn), and b) for each 1 ≤ i < n, adom(βi) ∩ adom(βi+1) �= ∅.
Furthermore, I ′ ⊆ I is called a component of I if I ′ is connected and for every
α ∈ I\I ′, I ′∪{α} is not connected. The set of all components of such an instance
I is denoted co(I).

A TGD is connected if so is its body, and a TGD set Σ is connected if every
TGD in Σ has this property. For each class Q of query languages, we denote by
conQ the class of all OMQs that belong to Q and are connected (i.e., their rule
sets as well queries are connected).

Given a database D over schema S, an OMQ Q = (S,Σ, q) is said to distribute
over components if Q(D) =

⋃
D′∈co(D) Q(D′). We will simply call such a query

distributable.

3 Bidirectionally-Guarded Queries

Let us first introduce a subclass of DTGDs which we call restricted weakly-linear.

Definition 1. The labelled dependency graph GΣ = (N,E, μ) of a DTGD set Σ
is the smallest labelled digraph such that:
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1. N contains all predicates that occur in Σ;
2. for two nodes P,Q ∈ N , and a rule σ ∈ Σ if P and Q occur in body(σ) and

head(σ), respectively, then σ ∈ μ(P,Q); and
3. (P,Q) ∈ E whenever μ(P,Q) is non-empty.

A predicate Q depends on a rule σ ∈ Σ if GΣ has a path which ends in Q and
involves an edge labelled with σ. A predicate Q is called non-disjunctive if it only
depends on non-disjunctive rules, and otherwise it is disjunctive. An atom is
disjunctive if its predicate is, and otherwise it is called non-disjunctive. A rule
set Σ is restricted weakly-linear (RWL) if (i) each rule in Σ has at most one
occurrence of a disjunctive predicate in the body, and (ii) for each rule σ ∈ Σ of

the form χ ∧ Q(t) →
n∨

i=1

Pi(xi), in which χ is a conjunction of non-disjunctive

atoms and Q(t) is a disjunctive atom, the set of all variables which occur in Q
but neither in χ nor in the head of σ is ∅. The class of all finite sets of restricted
weakly-linear DTGDs is denoted by RWL.

The class of all finite sets of disjunctive Datalog rules that are also RWL is a
subclass of weakly-linear (WL) rules, introduced in [13], where condition (ii) in
Definition 1 is relaxed. It was shown that any WL disjunctive Datalog program
can be rewritten to a set of non-disjunctive Datalog rules in polynomial time. We
use this transformation for a proper subclass, RWL disjunctive Datalog, with a
slight modification to make it suitable for establishing our distribution results. In
the sequel, when we make a reference to Ξ, we are talking about this particular
Datalog rewriting.1

To establish our distribution results, we need some conditions/assumptions.
First, we assume that the given DTGDs are under a restricted syntax known as
normal form. These DTGDs are composed of rules of the form (1) B → ∃zH,
or (2) φ → ψ, where B and H are atoms, φ is a conjunction of atoms, and ψ is a
disjunction of atoms. Let us denote the set of rules of the form (1) (resp. (2)) by
Σ∃ (resp. Σ∀). This assumption is based on a result in [1] (cf. Prop. 2) that any
DTGD set can be rewritten to the normal form while preserving certain answers
for acyclic or quantifier-free CQs. From now on, a given rule set is Σ = Σ∃ ∪Σ∀.

Second, we will focus on a syntactically-restricted fragment of RWL rules
that are guarded. A rule set Σ is called guarded (G) if for each rule σ ∈ Σ,
body(σ) contains an atom α such that adom(α) = adom(body(σ)). We denote
the set of all G rules by G.

Then, we consider the class of OMQs where a query q involves at most one
disjunctive atom from the underlying Σ∀. Let us denote this class by (RWL ∩
G,Q), where Q is the class of queries definable by answer-guarded CQs that are
either acyclic or quantifier-free. In general, it is unknown whether the problem of
distribution over components for this class of OMQs is decidable. In this paper,
we show that we can characterize and decide the problem of distribution over
components for a subclass which we call bidirectionally-guarded.
1 Our version of transformation Ξ is slightly different from that of [13] to make it work

for our problem of deciding distribution over components. The details can be found
in the full report of this work.
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Definition 2. Let Q = (S,Σ = Σ∀ ∪ Σ∃, q) ∈ (RWL ∩ G,Q) in which q =
∃yφ(x,y) ∈ Q. Q is called bidirectionally-guarded if the output of the Ξ trans-
formation on Σ∀ is guarded, or equivalently if it satisfies the following conditions:

(1) for each rule χ ∧ Q(t) →
n∨

i=1

Pi(xi) ∈ Σ, we have: (i) var(χ) ⊆
n⋃

i=1

xi, and

(ii) ∃ i s.t., var(Pi(xi)) = var(
n∧

i=1

Pi(xi)); (2) for each rule χ →
n∨

i=1

Pi(xi) ∈ Σ,

we have: (a) var(χ) =
n⋃

i=1

xi, and (b) ∃ i s.t., var(Pi(xi)) = var(
n∧

i=1

Pi(xi)); and

(3) The maximum arity of all disjunctive predicates occurring in Σ is 1. We
denote the set of bidirectionally-guarded queries by BG.

Note that the restriction imposed on the arity of disjunctive predicates is
to ensure that the output of Ξ on Σ∀ is guarded. Moreover, the requirement
that the rule sets in BG queries are guarded guarantee that the certain answers
are preserved.2 This condition is needed in establishing the main results of this
paper.

Example 1. Consider the rule set Σ in Introduction. It can be verified that any
query Q = (S,Σ, q) ∈ (RWL ∩ G,Q), where Σ = {σ1, . . . , σ7}, is bidirectionally-
guarded.

Definition 2 is formulated with the goal that BG 
 (RWL∩G,Q) holds rather
directly. Let DIST be the class of queries that distribute over components. We
can show

Theorem 1. BG ∩ DIST = conBG.

4 Deciding Distributability via Rewriting

Since BG rules are by definition guarded, the complexity of checking Theorem1
is upper bounded by that of equivalence checking of guarded fragment which is
known to be in 2ExpTime [5]. In this section we show that this complexity can
be reduced for a subset which we call BGS queries, to single exponential time.
A query Q = (S,Σ = Σ∀ ∪ Σ∃, q) ∈ BG is in BGS , called singly bidirectionally-
guarded if Σ∀ is restricted to linear rules. This is relevant to our experiments
since the ontologies we used turn out to be linear rules.

Example 2. Let Σ1 = {σ1, σ2, σ3, σ4} be the first four rules of the rule set in
Introduction. Then, each query Q = (S,Σ1, q) ∈ (RWL ∩ G,Q) belongs to BGS.

Note that as a corollary to Theorem 1, we have BGS ∩ DIST = conBGS .
For BGS queries, we utilize UCQ-rewritability of OMQs composed of linear

DTGDs with CQs [8], to realize distribution over components for BGS queries.
Our rewriting-based checking mechanism to decide Dist(Q) is presented in Algo-
rithm1, which takes as input a query Q ∈ BGS that consists of a rule set Σ
2 Guardedness here refers to the given DTGDs.
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and an answer-guarded CQ q, and returns true if Q is distributable and false,
otherwise. It computes a UCQ-rewriting Q′ of Q. It is clear that Q ∈ DIST if and
only if Q′ ∈ DIST. In the rest of the algorithm, a mechanism to decide Dist(Q′)
is presented.

Algorithm 1. Checking membership of Q ∈ BGS in DIST

Input: An OMQ Q ∈ Q = BGS ;
Output: Boolean value IsDistributable;

1: procedure Dist(Q), where Q ∈ Q
2: IsDistributable ← true; Temp ← false;
3: Construct the UCQ-rewriting Q′(x) of Q;
4: for each CQ q′ = ∃y(

∧n
i=1 Ri(x,y))) ∈ Q′(x)

5: for each D′ ∈ co(D[q′]), where D[q′] =
∧n

i=1 Ri(〈x, ∗〉, 〈y, ∗〉), and 〈v, ∗〉 is a
fresh constant;

6: if 〈x, ∗〉 ∈ Q(D′)
7: Temp ← true; break;
8: if Temp == false
9: IsDistributable ← false; break;

10: return IsDistributable

The procedure Dist(Q) always terminates for any given Q ∈ Q, since for all
the given OMQs the size of rewritten UCQ is always finite [8]. Moreover, the
complexity of UCQ-rewriting of linear disjunctive TGDs, which is known to be
in ExpTime [11], provides an upper bound for this algorithm.

5 Experiments on OMQs Based on Linear Disjunctive
TGDs

We conducted two experiments on three ontology benchmarks. The first exper-
iment concerns the evaluation of our distributability checking algorithm and
in the second, we evaluate the performance of forward chaining for distributed
vs. centralized schemes. All experiments were done on a private cluster and on
the Amazon EC2 platform. For this purpose, we utilized EC2 instances of type
a1.2xlarge. The physical cluster is managed with VMware Fusion version 11.5.3
and a virtual cluster of 8 Virtual Machines (VMs) is provisioned to run the
experiments. Each VM is located on a separate physical host and configured
with 4 vCPUs, 8 GB of RAM and 128 GB of local disk. The software on each
VM is 64-bit macOS Catalina.

A master-slave architecture was adopted where each slave machine runs a
chase engine (for the second experiment) and the partial query results are aggre-
gated back in the master machine to answer the query posed by any client (the
first experiment). For the second experiment, we compared different statistics
derived from our distributed approach, using chase engines RDFox [17] and Graal
[4], against centralized approaches for query processing.
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Experimented Ontologies: The first benchmark in our experiments is
LUBM∃

20 [15], for which we generated instances with 100K, 500K, and 1M facts
with the data generator and singled out axioms that correspond to linear rules.
All manually curated queries are CQs in SPARQL 1.0 syntax. We added 30
more handcrafted queries to the available query pool. Thus, forming 50 over-
all OMQs up for evaluation. The second benchmark concerns linear rules from
Open Biomedical Ontology (OBO) corpus [18]. For this benchmark, we ended up
with 50 terminating linear ontologies for which we handcrafted acyclic CQs and
created an initial database for each. The last benchmark is MOWLCorp corpus
[16], which was selected for evaluations on linear disjunctive rules. For the last
two corpora, our selected ontologies were those for which the number of their
existential axioms was 10. This gives us 41 and 73 linear ontologies from a total
of 125 and 132 ontologies from OBO and MOWLCorp corpora, respectively.

For each considered ontology, we perform standard transformation to extract
the corresponding DTGDs.3 For each OMQ Q = (S,Σ, q) as constructed above
and targeted query q, we perform the following tasks: (i) acyclicity checking of Σ
and q; (ii) membership checking about whether it belongs to BGS , (iii) checking
whether it is distributable, and (iv) distributed reasoning with it.

For testing the acyclicity conditions for the rule sets, following [8], we replace all
occurrences of ∨ with ∧, and check rules for membership in WA [9] and aGRD [3].

To check whether Q belongs to BGS (for the MOWLCorp corpus), we first
find the normalized form for the given rule set. Then, we apply our implemen-
tation of transformation Ξ on the resulting rule set. Finally we check the condi-
tions for BGS , manually, on the transformed OMQ. We implemented a module
to track dependencies of Σ to output disjunctive atoms. Also, while ensuring all
CQs involve at most one occurrence of these atoms, we check acyclicity of CQs
manually or handcraft them to be acyclic.

For (iii), we perform UCQ-rewriting of Ξ(Σ). We then apply Algorithm1
on Q as a decision module for distributability checking on the master machine
for both BGS queries as well as those consisting of only linear TGDs. We use
pure [14] for UCQ-rewriting of both query types as above. For (iv), for each
distributable query Q = (S,Σ, q) from step (iii), we perform chase experiments
on Ξ(Σ), as depicted in Table 2.

After preprocessing and acyclicity checking, for the collection of ontologies
from the MOWLCorp, 10 were found to be terminating under tested acyclic-
ity conditions, for each of which we handcrafted 10 acyclic CQs and an initial
database for each OMQ was considered. Thus, overall, 100 OMQs were tested
from the last corpus.

Table 1 shows statistics on distributability checking of the considered corpora.
Overall, 50 linear OMQs from the LUBM∃

20 benchmark suite have been tested
for distributability and 37 (74%) of them satisfied distributability condition of
Algorithm 1 and the other 13 did not. For the OBO ontology benchmark, the
same number were considered for distributability checking and 42 (84%) satisfied

3 We refer to [12] for details on this standard normalization procedure. Our normalized
forms follow their Table 1, but with an additional form A1�· · ·�An 	 B1
· · ·
Bm.
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Table 1. Statistical results for distributability membership checking

Ontology # Total
OMQs

# Dist.
OMQs

Avg. dist.
checking time (s)

Avg. query
rewriting time (s)

LUBM∃
20 50 37 31.5 25.3

OBO 50 42 56.6 43.3

MOWLCorp 100 40 63.2 29.9

this condition. Furthermore, among 100 OMQs considered from the MOWLCorp
corpus, we found 60 (60%) that belong to BGS . Of these OMQs, 40 (67%) passed
the distributability test of Algorithm1 which form 40% of the total number of
considered OMQs for this corpus.

The second experiment is conducted over distributable queries. Given a
database D which is the result of transforming the input RDF store, the number
of components of D for each Q ∈ DIST gives us the number of cluster machines
needed for evaluation. At each node i, we deployed Graal and RDFox chase
engines to compute the chase of the ith component of D and rules in parallel,
using the skolem and the restricted variants of chase respectively. All the results
of local computations are sent and aggregated at the master node. Table 2 gives
the statistics related to this operation (including comparisons of the chase per-
formance for centralized and distributed schemes as described above) for these
two chase engines regarding the evaluation time on the master node for the
considered OMQs.

Table 2. Statistics of distributed vs. centralized chase schemes

Ontologies Centr. (s) Distr. (s) Avg. #

components

RDFox Graal RDFox Graal

Restr. Sk. Restr. Sk. Restr. Sk. Restr. Sk.

LUBM∃
20 65.2 72.3 2375.8 2450.2 24.9 26.7 338.0 343.1 8

OBO 261.4 264.3 4223.0 4264.4 75.1 77.8 904.9 903.4 5

MOWLCorp 342.4 351.6 4237.0 4243.9 58.2 63.7 631.5 640.0 4

6 Conclusion

In this paper we studied distributed reasoning for a class of disjunctive TGDs
we introduced as restricted weakly-linear disjunctive TGDs. We discovered suf-
ficient conditions for OMQs based on these dependencies to be distributable
over connected database components. We showed experimentally that query
answering using state-of-the-art chase engines can be significantly improved in
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selected ontology benchmarks for distributable ontology-mediated queries. The
results of this paper can benefit chase-based and rewriting-based query answer-
ing approaches alike.
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Abstract. Inspired by our previous experiences in the design of fuzzy
logic languages not dealing yet with similarity relations, in this work we
introduce a symbolic extension of FASILL (acronym of “Fuzzy Aggre-
gators and Similarity Into a Logic Language”). Since one of the most
difficult tasks when specifying a fuzzy logic program is determining the
right weights/connectives used in the rules and the similarity relation
of FASILL programs, our technique is able to symbolically execute them
with unknown parameters, so that the user can guess the impact of their
possible values in further developments. Then, it is possible to auto-
matically tune such programs by appropriately substituting (with the
concrete values that best satisfy the user’s preferences) the symbolic
constants appearing in their program rules and similarity relations.

Keywords: Fuzzy logic programs · Similarity · Symbolic execution ·
Tuning

1 Introduction

In essence, Bousi∼Prolog [3] and MALP [5] represent two different ways for
introducing fuzzy constructs in the logic language Prolog by embedding simi-
larity relations or using fuzzy connectives for dealing with truth degrees beyond
{true, false}, respectively. We have recently combined both approaches in the
design of FASILL [1] (acronym of “Fuzzy Aggregators and Similarity Into a Logic
Language”), whose symbolic extension, called sFASILL and inspired by our initial
experiences with MALP described in [6,7]1, constitutes the kernel of this paper.
Once defined both the syntax and the operational semantics of sFASILL, it is
possible to apply our empowered tuning technique (coping now with similarity
relations) that we are developing at https://dectau.uclm.es/fasill/sandbox.
1 Although there exist other approaches somehow connected with our preliminary

works [6,7], in the sense that they are also able to tune fuzzy operators [10–12], none
of them manage similarity relations as our current work does.
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In this work, given a complete lattice L, we consider a first order language
LL built upon a signature ΣL, that contains the elements of a countably infi-
nite set of variables V, function and predicate symbols (denoted by F and Π,
respectively) with an associated arity—usually expressed as pairs f/n or p/n,
respectively, where n represents its arity—, and the truth degree literals ΣT

L and
connectives ΣC

L from L. Therefore, a well-formed formula in LL can be either:

– A value v ∈ ΣT
L , which will be interpreted as itself, i.e., as the truth degree

v ∈ L.
– p(t1, . . . , tn), if t1, . . . , tn are terms over V ∪ F and p/n is an n-ary predicate.

This formula is called atomic (atom, for short).
– ς(e1, . . . , en), if e1, . . . , en are well-formed formulas and ς is an n-ary connec-

tive with truth function [[ς]] : Ln �→ L.

Definition 1 (Complete Lattice). A complete lattice is a partially ordered
set (L,≤) such that every subset S of L has infimum and supremum elements.
Then, it is a bounded lattice, i.e., it has bottom and top elements, denoted by ⊥
and 	, respectively.

Example 1. In this paper we use the lattice ([0, 1],≤), where ≤ is the usual
ordering relation on real numbers, and three sets of conjunctions/disjunctions
corresponding to the fuzzy logics of Gödel, �Lukasiewicz and Product (with dif-
ferent capabilities for modelling pessimistic, optimistic and realistic scenarios).
It is possible to include also other fuzzy connectives (aggregators) like the arith-
metical average @aver(x, y) � (x + y)/2 or the linguistic modifier @very(x) � x2.

As usual, a substitution σ is amapping fromvariables fromV to terms overV∪F
such that Dom(σ) = {x ∈ V | x 
= σ(x)} is its domain. Substitutions are usually
denoted by sets of mappings like, {x1/t1, . . . , xn/tn}, being id = {} the identity
substitution. Substitutions are extended to morphisms from terms to terms in a
natural way. The composition of substitutions is denoted by juxtaposition, i.e., σθ
denotes a substitution δ such that δ(x) = θ(σ(x)) for all x ∈ V.

Definition 2 (Similarity Relation). Given a domain U and a lattice L with
a fixed t-norm ∧, a similarity relation R is a fuzzy binary relation on U , that is,
a fuzzy subset on U ×U (namely, a mapping R : U ×U → L) fulfilling the follow-
ing properties: reflexive ∀x ∈ U ,R(x, x) = 	, symmetric ∀x, y ∈ U ,R(x, y) =
R(y, x), and transitive ∀x, y, z ∈ U ,R(x, z) ≥ R(x, y) ∧ R(y, z).

The structure of this paper is as follows. The mathematical concepts intro-
duced so far will be used in Sect. 2 for describing the FASILL language and pre-
senting its symbolic extension. Next, in Sect. 3 we adapt the original operational
semantics to the symbolic language sFASILL for running and tuning programs.
Finally, in Sect. 4 we conclude and propose some future work.

2 The FASILL Language and Its Symbolic Extension

The fuzzy logic language FASILL relies on complete lattices and similarity rela-
tions [1]. We are now ready for summarizing its symbolic extension where, in
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essence, we allow some undefined values (truth degrees) and connectives in pro-
gram rules as well as in the associated similarity relation, so that these elements
can be systematically computed afterwards. The symbolic extension of FASILL
defined in this paper is called sFASILL.

Here, given a complete lattice L, we consider an augmented signature Σ#
L

producing an augmented language L#
L ⊇ LL which may also include a number

of symbolic values and symbolic connectives which do not belong to L. Symbolic
objects are usually denoted as o# with a superscript # and, in our tool, their
identifiers always start with #. An L#-expression is now a well-formed formula
of L#

L which is composed by values and connectives from L as well as by symbolic
values and connectives. We let exp#L denote the set of all L#-expressions in L#

L .
Given a L#-expression E, [[E]] = E′ refers to the new L#-expression obtained

after evaluating as much as possible the connectives in E. Particularly, if E does
not contain any symbolic value or connective, then [[E]] = v ∈ L. In order to
simplify the resulting L#-expressions, we can take advantage of some properties
of the connectives of L like 	 & x = x & 	 = x, ⊥ | x = x | ⊥ = x or
sup {x,⊥} = sup {⊥, x} = x, for all x ∈ L.

In the following we consider symbolic substitutions that are mappings from
symbolic values and connectives to expressions over ΣT

L ∪ ΣC
L . We let sym(o#)

denote the symbolic values and connectives in o#. Given a symbolic substitution
Θ for sym(o#), we denote by o#Θ the object that results from o# by replacing
every symbolic symbol e# by e#Θ.

Definition 3 (Symbolic Similarity Relation). Given a domain U and a lat-
tice L with a fixed—possibly symbolic—t-norm ∧, a symbolic similarity relation
is a mapping R# : U ×U → exp#

L such that, for any symbolic substitution Θ for
sym(R#), the result of fully evaluating all L-expressions in R#Θ, say [[R#Θ]],
is a similarity relation.

Definition 4 (Symbolic Rule and Symbolic Program). Let L be a com-
plete lattice. A symbolic rule over L is a formula A ← B, where the following
conditions hold:

– A is an atomic formula of LL (the head of the rule);
– ← is an implication from L or a symbolic implication;
– B (the body of the rule) is a symbolic goal, i.e., a well-formed formula of L#

L ;

A sFASILL program is a tuple P# = 〈Π#,R#, L〉 where Π# is a set of symbolic
rules, R# is a symbolic similarity relation between the elements of the signature
Σ of Π#, and L is a complete lattice.

Example 2. Consider a symbolic sFASILL program P# = 〈Π#,R#, L〉 based
on lattice L = ([0, 1],≤), and the following set of symbolic rules Π# and
symbolic similarity relation R# (expressed as a graph –or a matrix – on
U = {vanguardist, elegant,modern,metro, taxi, bus}):
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Π# =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R1 : vanguardist(rizt) ← 0.9

R2 : elegant(hydropolis) ← s#3

R3 : close(hydropolis, taxi) ← 0.7

R4 : good hotel(x) ← @#
s4(elegant(x),@very(close(x,metro)))

metro

taxi

bus

0.5 &#
s2 s#1 s#1

sup{0.5, s#1 &#
s2 (s#1 &#

s2 0.5)}

elegant

vanguardist

modern
sup{s#0 , (s#0 &#

s2 0.9) &#
s2 0.9}

0.9s#0 &#
s2 0.9

where &#
s2 is a symbolic t-norm for the symbolic similarity relation R#.

Given that Definition 3 seems to be quite demanding in order to design valid
symbolic similarity relations, we present a method for achieving this goal in a
simple and safe way, starting from an initial set of symbolic similarity equations.

Definition 5 (Symbolic Similarity Scheme).Given a domain U and a lattice
L, a symbolic similarity scheme S# is a set of equations x ∼ y = v, where
x, y ∈ Uand v is an L#-expression.

The closure of a symbolic similarity scheme is performed by the following
algorithm inspired by [2,4,9] which, in essence, is an adaptation of the classical
Warshall’s algorithm for computing transitive closures.

Definition 6 (Algorithm for closure of a symbolic similarity scheme).
Input: a domain U , a lattice L with a fixed t-norm ∧, and a symbolic similarity
scheme S#.
Output: a symbolic similarity relation R# : U × U → L.

1. Start with a symbolic relation R#(x, y) =

⎧
⎨

⎩

	 if x = y
v if (x ∼ y = v) ∈ S#

⊥ otherwise
;

2. For each x, y ∈ U , set R#(x, y) = [[sup {R#(x, y),R#(y, x)}]];
3. Then, for each x, y ∈ U , set R#(x, y) = [[sup∀z∈U {R#(x, z) ∧ R#(z, y)}]];
4. Finally, return the symbolic similarity relation R#.
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Example 3. Consider the symbolic similarity relation R# of Example 2 on U =
{vanguardist, elegant,modern,metro, taxi, bus}. The closure of the following
symbolic similarity scheme S# with a symbolic t-norm &#

s2 produces the sym-
bolic similarity relation R#:

S# =

⎧
⎪⎪⎨

⎪⎪⎩

elegant ∼ modern = s#0
modern ∼ vanguardist = 0.9
metro ∼ bus = 0.5
bus ∼ taxi = s#1

3 Running sFASILL Programs

As a logic language, sFASILL inherits the concepts of substitution, unifier and
most general unifier (mgu) from pure logic programming, but extending some
of them in order to cope with similarities, as Bousi∼Prolog [3] does, where the
concept of most general unifier is replaced by the one of weak most general
unifier (w.m.g.u.). One step beyond, in this paper we extend again this notion
by referring to symbolic weak most general unifiers (s.w.m.g.u.) and a symbolic
weak unification algorithm is introduced to compute them. Roughly speaking,
the symbolic weak unification algorithm states that two expressions (i.e, terms or
atomic formulas) f(t1, . . . , tn) and g(s1, . . . , sn) weakly unify if the root symbols
f and g are close with a certain—possibly symbolic—degree (i.e. R#(f, g) = r 
=
⊥) and each of their arguments ti and si weakly unify.

More technically, the symbolic weak unification algorithm we are going to
use, can be seen as an reformulation/extension of the ones appearing in [13]
(since now we manage arbitrary complete lattices) and [1,3] (because now we
deal with symbolic similarity relations). We formalize it as a transition system
supported by a symbolic similarity-based unification relation “⇒”. The unifica-
tion of the expressions E1 and E2 is obtained by a state transformation sequence
starting from an initial state 〈G ≡ {E1 ≈ E2}, id, α0〉, where id is the identity
substitution and α0 = 	 is the supreme of (L,≤): 〈G, id, α0〉 ⇒ 〈G1, θ1, α1〉 ⇒
· · · ⇒ 〈Gn, θn, αn〉. When the final state 〈Gn, θn, αn〉, with Gn = ∅, is reached
(i.e., the equations in the initial state have been solved), the expressions E1 and
E2 are unifiable by symbolic similarity with s.w.m.g.u. θn and symbolic unifi-
cation degree αn, where αn is a L#-expression (instead of a value, in contrast
to [1,3,13]). Therefore, the final state 〈∅, θn, αn〉 signals out the unification suc-
cess. On the other hand, when expressions E1 and E2 are not unifiable, the state
transformation sequence ends with failure (i.e., Gn = Fail).

The symbolic similarity-based unification relation, “⇒”, is defined as the
smallest relation derived by the following set of transition rules (where Var(t)
denotes the set of variables of a given term t).
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〈{X ≈ X} ∪ E, θ, r1〉
〈E, θ, r1〉

2
〈{X ≈ t} ∪ E, θ, r1〉 X /∈ Var(t)

〈(E){X/t}, θ{X/t}, r1〉
3

〈{t ≈ X} ∪ E, θ, r1〉
〈{X ≈ t} ∪ E, θ, r1〉

4
〈{X ≈ t} ∪ E, θ, r1〉 X ∈ Var(t)

〈Fail, θ, r1〉
5

〈{f(t1, . . . , tn) ≈ g(s1, . . . , sn)} ∪ E, θ, r1〉 R#(f, g) = ⊥
〈Fail, θ, r1〉

6

〈{f(t1, . . . , tn) ≈ g(s1, . . . , sn)} ∪ E, θ, r1〉 R#(f, g) = r2 �= ⊥
〈{t1 ≈ s1, . . . , tn ≈ sn} ∪ E, θ, r1 ∧ r2〉

1

Rule 1 decomposes two expressions and annotates the relation between the
function (or predicate) symbols at their root. The second rule eliminates spuri-
ous information and the fourth rule interchanges the position of the symbols to be
handled by other rules. The third and fifth rules perform an occur check of vari-
able X in a term t. In case of success, it generates a substitution {X/t}; otherwise
the algorithm ends with failure. It can also end with failure if the relation between
function (or predicate) symbols in R# is ⊥, as stated by Rule 6.

Usually, given two expressions E1 and E2, if there is a successful transition
sequence, 〈{E1 ≈ E2}, id,	〉 ⇒� 〈∅, θ, E〉, then we write that wmgu#(E1, E2) =
〈θ,E〉, being θ the symbolic weak most general unifier of E1 and E2, and E is
their symbolic unification degree.

Example 4. Given the complete lattice L = ([0, 1],≤) of Example 1 and the
symbolic similarity relation R# of Example 2, two different symbolic weak uni-
fication processes, using a symbolic t-norm &#

s2, are:

〈{modern(taxi) ≈ vanguardist(bus)}, id, 1〉 Rule 1
=⇒ 〈{taxi ≈ bus}, id, 0.9〉

Rule 1
=⇒ 〈{}, id, 0.9 &#

s2 s#
1 〉

〈{close to(X, taxi) ≈ close to(ritz, busbus)}, id, 1〉 Rule 1
=⇒ 〈{X ≈ ritz, taxi ≈ bus}, id, 1〉

Rule 3
=⇒ 〈{taxi ≈ bus}, {X/ritz}, 1〉 Rule 1

=⇒ 〈{}, {X/ritz}, s#
1 〉

In order to describe the procedural semantics of the sFASILL language, in the
following we denote by C[A] a formula where A is a sub-expression (usually an
atom) which occurs in the –possibly empty– context C[] whereas C[A/A′] means
the replacement of A by A′ in the context C[]. Moreover, Var(s) denotes the set
of distinct variables occurring in the syntactic object s and θ[Var(s)] refers to
the substitution obtained from θ by restricting its domain to Var(s). In the next
definition, we always consider that A is the selected atom in a goal Q, L is the
complete lattice associated to Π# and, as usual, rules are renamed apart:

Definition 7 (Computational Step). Let Q be a goal and σ a substitution.
The pair 〈Q;σ〉 is a state. Given a symbolic program 〈Π#,R#, L〉 and a (possi-
bly symbolic) t-norm ∧ in L, a computation is formalized as a state transition
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system, whose transition relation � is the smallest relation satisfying these rules

1) Successful step (denoted as SS� ):

〈Q[A], σ〉 A′ ← B ∈ Π# wmgu#(A, A′) = 〈θ, E〉 E �= ⊥
〈Q[A/E ∧ B]θ, σθ〉 SS

2) Failure step (denoted as FS� ):

〈Q[A], σ〉 �A′ ← B ∈ Π# : wmgu#(A, A′) = 〈θ,E〉
〈Q[A/⊥], σ〉 FS

3) Interpretive step (denoted as IS� ):

〈Q;σ〉 where Q is a L#-expression
〈[[Q]];σ〉 IS

Definition 8 (Derivation and Symbolic Fuzzy Computed Answer). A
derivation is a sequence of arbitrary length 〈Q; id〉 �∗〈Q′;σ〉. When Q′ is an
L#-expression that cannot be further reduced, 〈Q′;σ′〉, where σ′ = σ[Var(Q)], is
called a symbolic fuzzy computed answer (sfca). Also, if Q′ is a concrete value
of L, we say that 〈Q′;σ′〉 is a fuzzy computed answer (fca).

The following example illustrates the operational semantics of sFASILL.

Example 5. Let P# = 〈Π#,R#, L〉 be the program from Example 2. It is possi-
ble to perform this derivation with sfca 〈Q1;σ1〉 = 〈@#

s3(0.6 &#
s2 s#2 , 0), {x/ritz}〉

for P# and goal Q = good hotel(x):

〈good hotel(x), id〉 SS�
R4

〈@#
s4(elegant(x1),@very(close(x1,metro))), {x/x1}〉 SS�

R2

〈@#
s4(s

#
3 ,@very(close(ritz,metro))), {x/ritz}〉 FS�

〈@#
s4(s

#
3 ,@very(0)), {x/ritz}〉 IS�

〈@#
s4(s

#
3 , 0), {x/ritz}〉

Apart from this derivation, there exists a second one ending with the alterna-
tive sfca 〈Q2;σ2〉 = 〈@#

s4((s
#
0 &#

s2 0.9) &godel 0.9,@very((0.5 &#
s2 s#1 ) &godel 0.7)),

{x/hydropolis}〉 associated to the same goal (observe the presence of symbolic
constants coming from the symbolic similarity relation, which were not allowed
in our precedent works [6,7]):
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〈good hotel(x), id〉 SS�
R4

〈@#
s4(elegant(x1),@very(close(x1,metro))), {x/x1}〉 SS�

R1

〈@#
s4((s

#
0 &#

s2 0.9) &godel 0.9,@very(close(hydropolis,metro))), {x/hydro...}〉 SS�
R3

〈@#
s4((s

#
0 &#

s2 0.9) &godel 0.9,@very((0.5 &#
s2 s#1 ) &godel 0.7)), {x/hydro...}〉

Now, let Θ = {s#0 /0.8, s#1 /0.8,&#
s2/&luka, s

#
3 /1.0,@#

s4/@aver} be a symbolic
substitution that can be used for instantiating the previous sFASILL program
in order to obtain a non-symbolic, fully executable FASILL program. This sub-
stitution can be obtained by our tuning tool after introducing a couple of test
cases (namely, 0.4−> good hotel(hydropolis) and 0.6−> good hotel(ritz))
representing the desired degrees for two goals, according the user preferences.

4 Conclusions and Future Work

The symbolic extension of the FASILL language designed in this paper is based on
symbolic similarity relations useful for designing tuning techniques (beyond our
preliminary versions dealing with MALP programs presented in [6,7]) intended to
substitute symbolic values/connectives that best fit a set of test cases provided
by users a priori.

In the future we plan to improve the efficiency of our approach by using the
thresholded operational semantics defined in [1] as well as SAT/SMT solvers in
the line of [8].
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Abstract. The right to contest a decision with consequences on indi-
viduals or the society is a well-established democratic right. Despite this
right also being explicitly included in GDPR in reference to automated
decision-making, its study seems to have received much less attention
in the AI literature compared, for example, to the right for explana-
tion. This paper investigates the type of assurances that are needed in
the contesting process when algorithmic black boxes are involved, open-
ing new questions about the interplay of contestability and explainabil-
ity. We argue that specialised complementary methodologies to evaluate
automated decision-making in the case of a particular decision being
contested need to be developed. Further, we propose a combination of
well-established software engineering and rule-based approaches as a pos-
sible socio-technical solution to the issue of contestability, one of the new
democratic challenges posed by the automation of decision making.

Keywords: Right to contest · AI ethics · Explainable AI

1 Introduction

Searching for efficiency and cheaper solutions, governments and organisations are
increasingly investing in automated solutions for a variety of decisions and activ-
ities, ranging from deciding on benefit claims to assessing the risk of recidivism
in felons. With such life-changing determinations being treated automatically,
the right to contest a decision must be ensured for all automated decision appli-
cations. Precisely outlining this necessity, Article 22 of the European Union’s
General Data Protection Regulations (GDPR) stipulates that whenever a deci-
sion which legally or significantly affects an individual relies solely on automated
processing, then the right to contest the decision must be guaranteed. Similarly,
although this right is not as explicitly phrased in the American law, we have
already seen legal cases where the plaintiffs sued governmental organisations
using algorithmic decision systems looking for accountability.
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Complementing the current attention in the literature on fairness, trans-
parency, explainability and accountability for automated decision-making sys-
tems, in this work we focus on the right to contest decisions, an aspect that
has received considerably less research focus. This paper investigates the type
of assurances that are needed in the contesting process when algorithmic black
boxes are involved, opening new questions about the interplay of contestability
and explainability. Further, we propose a combination of well-established soft-
ware engineering and rule-based approaches as a possible socio-technical solution
to the issue of contestability, one of the new democratic challenges posed by the
automation of decision making.

2 A Right in Its Own Right

The right to contest a decision that strongly impacts an individual takes many
forms. It encompasses the right of appeal allowing to ask for a court’s decision to
be changed and even the right to challenge the outcome of an election. Appealing
is the democratic mechanism enacted to correct errors and allow for reparation.
In the case of automated decision-making, this right is equally acknowledged.
For example, Article 22 of GDPR explicitly states the right to contest significant
decisions resulting relying solely on automated processing. Likewise, due process
is a right recognised in the Anglo-American legal system, and it has been argued
that individuals affected by decisions based on predictive algorithms should have
similar rights to those in the legal system with respect to how their personal data
is used in such adjudications, including the right to challenge them [6].

The ability to guarantee the right to contest is inextricably tied to the funda-
mental principles of responsible AI [8]: transparency, explainability and account-
ability. Transparency plays a crucial role in ensuring that stakeholders are aware
that they are being subjected to automated decision making and that they have
the right to challenge it [5]. Further, to be able to understand a decision and
assess if they believe that a contest needs to be raised, stakeholders need to be
given a good explanation on how that decision was reached [17]. However, gen-
eral provisions for explainability and transparency are not sufficient to guarantee
the right of contest: whereas explanation and transparency methodologies focus
on exposing the internal logic behind an algorithm or on describing how or why
a specific decision was taken [14], they do not specifically reveal whether rele-
vant rules and regulations have been adhered to or violated and why. To base
this determination on an explanation requires a thorough examination of the
explanation itself in light of the legal framework, which may be open to inter-
pretation depending on its accuracy and level of detail. In contrast, the focus of
a contesting procedure is expressly to ascertain post hoc whether relevant rules
and regulations were followed for a particular decision. Contesting therefore goes
beyond the scope of explanation: it is not only the decision itself, but also the
socio-legal context in which it was taken that need to be accounted for.

To effectively address the right to contest a decision, policies should openly
specify the regulations and adequacy determinations for specific applications
[12]. Further, if a decision is challenged and mistakes are discovered a proper
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attribution of accountability and effective methods of compensation are needed.
For this, AI governance is necessary to ensure that any moral responsibility
or legal accountability is properly appropriated by the relevant stakeholders,
together with the processes that support the redressing, mitigation, and eval-
uation of potential harm, alongside with the means to monitor and intervene
on the system’s operation. These should be accompanied with pre-established
procedures for when a decision is contested, allowing to determine whether the
relevant stipulations were followed in a way that is not open to interpretation.
Thus, we argue that specialised complementary methodologies to evaluate auto-
mated decision-making in the case of a decision being contested need to be
developed.

For this reason, in the remainder of this paper we put forward a socio-
technical approach to establishing a contesting procedure for automated deci-
sions, combining well-established software engineering practices and rule-based
approaches. We propose that any contestable automated system should be
accompanied by a formal specification that describes in an unambiguous lan-
guage the constraints that each constituent agent-module of the system needs to
fulfil. This formal specification effectively corresponds to the organisation’s legal-
compliance contract, and includes all necessary legal and consumer-protection
requirements. When a system’s decision is contested in a certain context, this
is taken as a request to verify that the system indeed operated in line with
its accompanying formal specification in that particular context. Verification
is achieved by examining the system’s (and each agent-module’s intermediate)
behaviour while monitoring for the violation or fulfilment of the constituent
provisions of the specifications.

Since the contesting procedure is an examination of a decision already taken,
software development practices that ensure traceability become fundamental.
Furthermore, to ensure that all the relevant factors for the review of the decision
are being preserved, this should be done in conjunction with standardised elicita-
tion and interpretation processes to identify the relevant policy that the system
is mandated to adhere to and to translate it into specific constraints on the sys-
tem. These requirements are part of designing intelligent systems responsibly[8],
and align with the push for relating high-level governance, including legal and
ethical considerations, with concrete system functionalities [16].

3 Compliance Contract

We propose that any contestable automated system should be accompanied by a
formal specification that describes in an unambiguous language the constraints
that each constituent agent-module of the system needs to fulfil. Our proposed
approach includes the following steps: 1. norm management, 2. norm formali-
sation, and 3. negotiation and validation. Each of these stages is further bro-
ken down into explicit steps, described in this section. The end-product of this
process is the organisation’s compliance contract, which can then be used for
monitoring specific decisions in case of contest.

To illustrate our method, we will use the real-life example of Lufthansa’s
automated pricing algorithm, which increased prices up to 30% immediately
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following the bankruptcy of competitor Air Berlin [4]. Following consumer com-
plaints of abusive monopoly, the German consumer-protection regulator, Bun-
deskartellamt, conducted an investigation. Lufthansa’s initial response was that
the algorithm acted autonomously, but Bundeskartellamt made it clear that even
though Lufthansa was cleared of wrongdoing, the fact that price increases were
the result of an automated algorithm had no bearing on their decision.

Norm Management. Building concrete specifications for a compliance con-
tract starts, similarly to a ‘traditional’ software life cycle, with the norm manage-
ment phase. Inspired by the IEEE Recommended Practice for Software Require-
ments Specification [1], we propose a two-step process: elicitation followed by
interpretation. Each of these phases necessarily involves the participation of both
the software development team and the legal department of the organisation,
whose different areas of expertise will be fundamental in obtaining norms that
are both implementable and legally sound.

The elicitation stage takes place by consulting governance, i.e. standards
and legislation relevant to the system. The purpose of this stage is not to set the
norms at once, but rather to identify and list the relevant policy that the system
is mandated to adhere to. The produced list of rules and guidelines provide
the high-level policy that not only the software deliverable itself, but also its
development, deployment, and usage processes need to follow. In the case of an
airline pricing system, relevant laws include the anti-monopoly and consumer-
protection regulations. Moreover, laws such as non-discrimination should also be
followed by the system. For example, in the case of Lufthansa’s pricing algorithm,
German anti-monopoly laws clearly apply.

The standard practice for setting airline ticket prices is to have similar seats
divided in tiers, where each tier is in a more expensive preset price range than
the previous one. The first seats sold belong to the first tier, and only when all of
them are sold the more expensive seats of the second tier are made available to
buy. Thus, price steadily increases as the plane fills up. In the case of a competi-
tors’ bankruptcy, airlines are not allowed to capitalise on it by imposing extreme
price increases or selling only the most expensive tiers. Lufthansa was cleared
from wrongdoing by demonstrating two points: (1) that only the comparatively
more expensive booking tiers were available as the cheaper booking classes were
imminently booked, and (2) that the price range for each tier was comparable
to previous years’ prices and not illegally increased. These requirements set out
by Bundeskartellamt would be clearly identified at this stage, and set down as
the basis for the compliance contract.

In order to interpret these rules into concrete checkable norms, abstract con-
cepts such as “comparable to previous years’ prices” must be turned into concrete
computable requirements. Thus, the interpretation stage entails a translation
of high-level governance and legal requirements into concrete norms specifying
the constraints that the system needs to fulfil, taking into account its purpose
and the context of its deployment. The resulting norms should be comprehen-
sive enough so that fulfilling them can prove that the system is adhering to the
ethical and legal policy of its developers’ organisation. The shift from abstract
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to concrete necessarily involves careful consideration of the context identified in
the previous phase. In this sense, the implementation of each requirement will
vary from context to context the same way it can vary from system to system. In
our simple example, an acceptable set of concrete norms that the company could
set that would satisfy the consumer protection agency’s concerns over the anti-
monopoly regulations would be given by: (1)“cheaper tiers must be fully booked
before more expensive tiers are made available” and (2)“the pricing range of a
tier does not differ by more than 30% from the average price of the same tier on
the same route on the same day in the previous 5 years”.

Formalisation. This phase entails the formal specification of the constraints
for each of the component agents. This step requires a further concretisation of
the norms: they need to be formulated in a way that makes them operational
and allows for the detection of violations. This requires linking the concepts
contained in the rules with a rule-based language that will determine the nor-
mative framework [2]. The formal normative system obtained in this stage will
constitute the organisation’s proposed compliance contract.

An appropriate language for this purpose needs sufficient expressiveness to
model the relevant legal requirements and policies, while allowing for compliance
with these requirements to be monitored and tracked. Many existing approaches
to norm monitoring in the MAS literature take an enforcement point of view, in
which a monitoring system is an observation mechanism, that can log norm vio-
lations provided it can access the relevant information [11,15]. This mechanism
is particularly developed for scenarios where each participant and component of
the system has a well-defined purpose (such as buyer or seller) with clear actions
available for each role (such as buy, sell, negotiate, concede) and has been suc-
cessfully applied in contexts like marketplaces [13]. This type of encoding is
therefore a proposed approach in this type of well-bounded scenario.

In heavily regulated scenarios, powerful expressive languages to capture the
semantics of the regulations and their interactions are needed. To monitor adher-
ence, these must be combined with a useful representation of the computation
and run-time events of the decision being observed. A similar challenge is found
in the case of automated compliance checking of business processes. Languages for
automated compliance checking provide both a formalism to model and reason
with regulations, and formal representations of processes [7,9]. Our proposed con-
testing procedure, likewise, requires monitoring adherence to regulations, but for
determined and completed instances of a computation rather than for verifying
adherence of processes. For this reason, we propose that automated compliance
checking methods and languages could be usefully adapted to this framework.

Negotiation and Validation . This stage facilitates an open discussion of the
proposed compliance contract with representatives of all groups of internal stake-
holders; from product managers to software developers to the quality assurance
engineers to legal experts. Where possible, external stakeholders—such as users
and regulators—should also be consulted. These discussions aim to validate the
norms to ensure their accurate interpretation of relevant legislation and their
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acceptance. The approval of the relevant regulators is particularly desirable, as
their acceptance of the norms as a compliance contract entails that showing
that the norms where adhered to is enough to dismiss a complaint under the
grounds that the decision is fully legal. If possible, a negotiation and validation
phase would occur after each phase of the process of obtaining the compliance
contract, to maintain maximum transparency.

4 Examining a Contested Decision Under Monitoring

To adequately examine the original decision-taking under the compliance con-
tract, both the inputs that the target process received and the ‘state of the
world’ that held when the original decision was taken must be recorded. In the
same vein, depending on the constraints imposed by the norms, the occurrence
of certain events will need to be tracked and recorded as well. In the case of our
example, knowing when a tier has been sold out, knowing which prices have been
set for each tier through time and when seats from a certain tier were put on
sale is indispensable to ascertain whether the criteria set by Bundeskartellamt
were followed. Awareness of this trace of events is fundamental whether it is a
human or an artificial agent that makes the determination of whether rules were
followed. Furthermore, if the decision-taking algorithm is adaptive (for example
learning from new data and adapting its behaviour) then it is the version that
held at the time of the original decision that should be evaluated. Both of these
challenges can be addressed with version control and thorough record keeping.
Like formal specifications, version control is part of software engineering: even
for machine learning approaches, advanced forms of version control including
record keeping of data is recommended and increasingly used [3]. This practice
ensures traceability and, therefore, reproducibility and auditability – as in the
context of a contested decision.

The compliance contract could of course be used to check every decision
for compliance with the specifications, or even to forcibly enforce adherence to
norms. For example, the system could be endowed with norm-reasoning mech-
anisms forcing it to act upon the specified norms [10]. This could however con-
siderably slow down the computation, and be expensive in terms of resources.
Indeed, at each decision and action, the system would need to check whether a
norm applies, and then how to act upon it. To assess the former, it may even
need to access extraneous information about the state of the world. If an organi-
sation is willing to pay this cost, this regimentation approach could be deployed
for every decision, or perhaps for every critical decision as a safeguard. How-
ever, it may be preferable cost-wise to use monitoring specifically in the case of
contests, and bear the cost of sanctions instead when norms have been violated.

5 Discussion and Future Work

Whenever a decision process takes place that has individual or social conse-
quences, the right to contest the said decision is a well-established democratic
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right. In this paper we focused on contestability of decisions through the appli-
cation of well-established software engineering and rule-based policy modeling
techniques.

An important requirement for our proposed approach is that the norms iden-
tified in the elicitation and interpretation stages should be captured accurately in
a computational language that can be used for specification and automated mon-
itoring. If the normative framework is very complex, such as cases where great
knowledge about the state of the world is required or when reasoning about
causes and consequences is necessary, this can become a challenge. Research on
how to completely capture regulatory frameworks is ongoing, involving the fields
of policy modeling, normative reasoning and knowledge representation amongst
others. For this reason, we expect this approach to work best in cases where
the regulation is very clear and focused on the behaviour of the system itself,
with limited dependence on the outside world. The range of application of our
proposed approach will keep increasing, as more approaches are developed for
increasingly complex normative frameworks.

An additional cornerstone of our proposed approach is the requirement of
exhaustive record-keeping, to make decisions examinable. Although such good
software development practices should be standard, they could prove technically
challenging for some applications, or could interfere with other requirements such
as data protection and privacy. Our proposed approach is versatile enough to still
be applicable in such cases: by re-computing the decision under the monitoring
agent, rather than operating with a record of events, certain norm violations
could still be identified.

We believe our proposal opens new interesting research questions for further
examination. First and foremost, it promotes a new avenue of research for rule-
based representations of complex norms. While we have only begun to consider
monitoring approaches, there is a need to conduct real-world implementations
to identify real-world needs. Furthermore, looking beyond the implementation
details, we call upon an exploration on how contestability and explainability
differ in terms of costs, system requirements and trust calibration for naive and
expert users, and advocate the development of concrete methodologies oriented
specifically to contestability.
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Abstract. Data is essential for machine learning projects, and data
accuracy is crucial for being able to trust the results obtained from
the associated machine learning models. Previously, we have developed
machine learning models for predicting the treatment outcome for breast
cancer patients that have undergone chemotherapy, and developed a
monitoring system for their treatment timeline showing interactively the
options and associated predictions. Available cancer datasets, such as
the one used earlier, are often too small to obtain significant results,
and make it difficult to explore ways to improve the predictive capa-
bility of the models further. In this paper, we explore an alternative to
enhance our datasets through synthetic data generation. From our origi-
nal dataset, we extract rules to generate fabricated data that capture the
different characteristics inherent in the dataset. Additional rules can be
used to capture general medical knowledge. We show how to formulate
rules for our cancer treatment data, and use the IBM solver to obtain a
corresponding synthetic dataset. We discuss challenges for future work.

Keywords: Cancer data · Synthetic data · Constraint solvers ·
Fabrication rules

1 Introduction

Data accuracy is crucial for being able to trust the results obtained from any
machine learning models. Previously, we have developed machine learning mod-
els for predicting the treatment outcome for breast cancer patients that have
undergone chemotherapy at a health board in Scotland [12], and developed a
monitoring system for their treatment timeline showing interactively the options
and associated predictions [13]. Available cancer datasets, such as the one used
in our work, are often too small to obtain significant results, and make it diffi-
cult to explore ways to improve the predictive capability of the models further.
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Within the options available with machine learning and deep learning, we often
require substantially more data than we can get access to. Even though we have
direct access to the oncology dataset within the local health board, it is not easy
to extract the required quantity of data for developing our model. Indeed, there
may not be enough data available to perform a suitable analysis.

We explore an alternative approach to enhance our cancer dataset through
synthetic data generation. This approach gives us enough data to design proof-
of-concept enhanced prediction models. From our original dataset, we extract
rules to fabricate data. These rules must formulate exactly the characteristics
of the original dataset. Further rules can be added to capture general medical
knowledge and information that a small dataset may not contain. This paper
shows how to formulate all required rules for our cancer treatment data, which
will enable us to obtain a corresponding synthetic dataset. An added complexity
in our dataset is the relationship between different events throughout the treat-
ment of a patient. Hence, to generate realistic synthetic datasets, we have to be
able to capture accurately the various constraints associated to a treatment as
well as possible relationships between events. We will show that the IBM Data
Fabrication Platform allows us to capture these complex constraints as needed.

This paper is structured as follows: Sect. 2 motivates our approach, presents
related work, and describes the structure of the original dataset and some restric-
tions on what is involved in a chemotherapy treatment for a given patient.
Section 3 gives a brief description of the IBM data fabrication platform, and
shows how to obtain the rules for our cancer treatment dataset. We conclude in
Sect. 4 with a discussion of future work.

2 Motivation, Related Work and Cancer Data

Obtaining accurate toxicity prediction models in cancer care is vital, as it can
help identify treatments that are not suited to a patient, and thus improve their
outcome overall. However, cancer treatment data, and healthcare data in general,
may be limited or difficult to access due to its sensitive and private nature.

There are advantages of using synthetic data in the healthcare domain. Fab-
ricated data allows us to start building models without the need to access real
data. We can fabricate large-scale datasets quickly, which allows us to improve
the model to resist over-fitting (often a problem with small datasets). Further-
more, the use of synthetic data enables us to simulate outlier events (e.g., rare
diseases). Note that we later need to retrain the model with the real dataset.

One option to generate fabricated data involves the use of an existing dataset
and imputing the values for a desired field. Rubin [11] proposed the idea of using
multiple imputations for all the data-points in the dataset to generate a (partial
or complete) synthetic dataset. In statistics, imputation is the process of replac-
ing missing data with substituted values. Given enough data and iterations, it
is possible to generate a synthetic dataset for specific purposes. With the rise
of machine learning in data mining, Reiter et al. [5,9] extend the idea of using
multiple imputers by using several machine learning algorithms to generate syn-
thetic data. There are many data synthesisers [6] available with machine learning
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models (e.g., linear regression, random forest, decision tree, neural networks) in
their backbone. However, machine learning is not well suited for this task: we
need sufficient data to be able to infer a pattern in the dataset, and machine
learning cannot capture data sequences accurately. Data sequences arise in a
cancer dataset, where every entry corresponds to a patient event (e.g., hospital
visit, treatment), and several events form an ordered sequence in the treatment.

Generating data with potentially complicated dependencies, requires the use
of solvers, such as constraint satisfaction problem (CSP) solvers [14] or satisfia-
bility modulo theories (SMT) solvers [8]. As an example, there is a solution that
generates data for form-centric applications using an SMT solver [2]. Although
this may avoid many of the challenges of other data formats, such as relational
databases with complex topologies and hierarchical structures, the solution uses
workarounds which can introduce an under approximation of the solution space,
thus yielding additional complications to the solver. These complications affect
the performance and the scalability of the technology, as well as the quality of
its results. In our approach we use the IBM solver which avoids these issues [4].

We use a cancer dataset extract from a Scottish health board from 2014 to
2016, consisting of Scottish Morbidity Records1 which includes SMR01 (hospi-
tal admission data), SMR06 (cancer registry), and Charlson Comorbidity Index
(categorising the coexistence of a chronic condition with cancer [10]); National
Records of Scotland (e.g., Data on Deaths); the Oncology DCO database which
includes Demographics (e.g., date of birth, gender, ethnicity), Diagnosis (e.g.,
cancer stage and site), Surgery and ChemoCare (e.g., chemocare general and
chemocare toxicity). In addition, note that a patient in Scotland is uniquely
identified by a Community Health Index (CHI).

A cancer patient may be given a series of different treatments, known as a
treatment pathway. New patients undergo different sets of tests (e.g., MRI, CT
SCAN) to determine the type of cancer and the first treatment to be given.
There are several types of primary and follow-up treatments, but we focus
on chemotherapy treatments here. Chemotherapy uses one or more anti-cancer
drugs as part of a standardised chemotherapy regimen, and may be given with
a curative intent, or with a palliative intent where the aim is to prolong life or
to reduce symptoms. Overall the treatment is very aggressive and it affects the
toxicity levels of the patient, particularly in case of comorbidities. Predicting
toxicity levels is thus important throughout the treatment in order to be able to
adjust it for the wellbeing of the patient. The general pattern of chemotherapy,
important to define correct rules for data fabrication, is given below:

– A patient can only be treated with one intention or purpose of the treatment,
such as, curative, palliative, adjuvant (an add-on therapy).

– After a specific time has passed, in case of cancer relapse, the patient might
be given another treatment with a different intention.

– Each intention has several different regimens.
– Each regimen has several different drugs.
1 See https://www.ndc.scot.nhs.uk/National-Datasets/ for Information on SMR

datasets.

https://www.ndc.scot.nhs.uk/National-Datasets/


On Defining Rules for Cancer Data Fabrication 171

– The treatment may last for several weeks or months that is given in cycles.
Hence, each regimen may have more than one cycle.

– A patient may be given several regimens at a time.
– Some regimens may belong to one protocol.

3 The IBM Data Fabrication Platform and Cancer Rules

We use the IBM Data Fabrication Platform (DFP) to generate synthetic data
in our EU H2020 project Serums [7]. DFP is based on rule-guided fabrication
whereby the data and metadata logic is extracted from the underlying real data
or its description and is modelled using rules that the platform provides. DFP
allows for new rule types to be added by users. Once a user requests the gener-
ation of a certain amount of data into a set of test databases or test files, the
platform ensures that the generated data satisfies the modelled rules as well as
the data consistency requirements. The platform is capable of generating data
from scratch which we do for our dataset. We define the rules, type of data,
volume of data, and the relationships among different columns in the dataset.
The rule types include:

– Constraints: domains, mathematical functions, arithmetical relations, string
relations, regular expressions.

– Knowledge: chosen from existing data sources.
– Analytics: value and pattern distributions, smart classifications.
– Transformations: constraints describing relations between targets and sources,

can be bundled to transform tuples.
– Programmatic rules: user-defined code/script functions that generate target

values.

Once the user has defined the data sources and rules, the solution builds the
fabrication task, maintaining the referential integrity of data based on database
constraints or applied constraints. Here, the constraints are solved by the solver
and the solution is used to obtain the fabricated dataset [1]. The output can
have multiple formats/extensions.

In order to generate fabricated data, we need to provide the constraints of
the variables within the domain including the data fields and ranges of values.
After specifying the constraints, the solver finds solutions by constraint propa-
gation and search. Every time the solver generates a solution to all given rules
(constraints), this solution is an instance in our dataset. Running the solver an
indefinite number of times will give us a fabricated dataset which satisfies all
the provided constraints. In case of inconsistencies in rules, no solution can be
generated, but it indicates which rules are in conflict and these can be corrected.

Rules are formulated following the syntax accepted by the solver, which
includes conditions, dependencies between fields, mathematical equations, order-
ing, and Boolean conditions. We can express weighted/probability, normal, and
random distributions to determine the value of our fields.
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Rules may result from a combination of medical knowledge and information
extracted from the real dataset. Consider the rule below. If it is known that the
cancer has metastasised into site C34.9 we set pulmonary flag to 1. Otherwise,
we use a weight distribution to set the value of pulmonary flag. We infer the
weight distribution from the data extraction.

general.pulmonary_flag = (

// Knowledge:

(general.metastasis1 == ’C34.9’ || general.metastasis2 == ’C34.9’

|| general.metastasis3 == ’C34.9’) ? 1 :

// From extraction:

randomWeightedValue(general.pulmonary_flag,1200? 0, 120 ? 1). )

In Scotland, patients have a unique identifier given by the Community Health
Index (CHI). The CHI has 10 digits consisting of the date-of-birth (DDMMYY )
followed by a three-digit sequence number and a check digit. The ninth digit is
always even for females and odd for males. To generate a proper CHI for patients
we have to model this definition through several rules. For instance,

allDiff(from(general), general.chi)

specifies that every CHI is unique. The next rule specifies the structure of a CHI,

general.chi = concat(dateToString(general.DOB,DMy),

intToString(general.D7),intToString(general.D8),

intToString(general.D9),intToString(general.D10))

where the last four digits follow specific constraints. Here D7,D8,D10 are arbi-
trary, e.g., 0 <= general.D7 <= 9, and D9 is used to indicate gender, which in
our case has a 0.99 probability of being female given by:

randomBool(99)?general.D9 = {0,2,4,6,8}:general.D9 = {1,3,5,7,9}

We specify the first incident date or diagnosis date, to be between 2014 and
2016 by using the equality-inequality relation:

currentDate-(6*365)<general.incidence_date<= currentDate-(4*365)

We can use regular expressions to capture a postcode, and assign constants to
fields such as cancer site, general.site = ’C50.9’ to indicate breast cancer.
We perform summation to populate the Charlson Comorbidity Index [10]. There
are field values which influence other field values, and can be captured through
implication (if there is not a first metastasis there cannot be a second or third).

(general.metastasis1 is Null -> general.metastasis2 is Null) &&

(general.metastasis2 is Null -> general.metastasis3 is Null)

To populate some fields we check whether we can use a normal distribution or
add another correlation between fields from inspecting the original dataset. For
instance, for the BMI we use the probability distribution to determine the cate-
gory (e.g. underweight, normal, overweight) and then use a normal distribution
to populate the exact BMI value for the patients in each category.
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Some patients may have more than one hospital admission (recorded in the
dataset SMR01 ) during their cancer care, for example, when they experience
side-effects as a result of their treatment. Here, we create a new table for the
patient admission and use the CHI as a reference to the general table. First, we
specify the admission rate to fabricate the admission data. The rule is as follow:

numOf(from(smr01s), smr01s.chi = general.chi) =

randomWeightedNumber(500 ? 1,300 ? 2,200 ? 0)

stating that 50% of patients have one admission, 30% have two and 20%
patients have none. Since the admission date is time based (sequential), we
create another helper field, elapsed days. The admission date depends on both.

smr01s.admission_date = (smr01s.incidence_date + smr01s.elapsed_days)

The elapsed date has a monotonically increasing value as follows:

monotonic(from(smr01s), per(smr01s.chi), smr01s.elapsed_days,

{normalDistributionNumber(110.4, 17.2)}, randomNumber(14,100))

The first value for elapsed days is populated using a normal distribution with
110.4 as the mean and 17.2 as the variance. The next instance of elapsed days
increases by a random number between 14 to 100 days. Because the admission
date is calculated by adding elapsed days to incidence date, its value increases
sequentially. With this, we can fabricate a patient’s admission event.

The next dataset we fabricate is the chemotherapy treatment dataset, where
the main challenge is capturing the relation between data that belongs to the
same patient. Briefly, a patient may have more than one intention, and each
intention may have more than one regimen. Each regimen has more than one
cycle and so on. To capture this relation, we created five helper tables (i.e.,
patients, intentions, regimens, cycles, and drugs). There are similarities between
these helper tables. We create patients as the reference point. We create inten-
tions to model the condition where each patient may have one or more intentions.
Similarly, regimens is created to model the condition where each intention may
have one or more regimens (i.e., cycles and drugs have the same purpose). Each
helper table has foreign keys to each other (e.g., patient id, intention id).

The patients table has the demographic information during the treatment,
with values assumed to be relatively constant, such as CHI, height, hospital,
tumour group. The patients table acts as the proxy to the general where CHI is
used as the foreign key. The ratio between the data in the patients and general
table is set to one. We also have the first intention field in this table, used as
the reference for populating the intention value. We use randomWeightedValue
to populate this field. By counting the number of each intention occurring in the
first cycle, we can get the weight value. The rule for the first intention is shown
below:

patients.first_intention = randomWeightedNumber(

350? ’Adjuvant’,

200? ’Palliative’,

180? ’Neo-Adjuvant’,

15? ’Durable Remission’,

5? ’Curative’)
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The ratio between the patients and the intentions tables is determined by
the first intention because some intentions may or may not have follow up treat-
ments. We specify the intentions.ratio rule as follow:

numOf(from(intentions), intentions.patient_id = patients.patient_id)=

(intentions.first_intention == ’Adjuvant’?randomWeightedNumber(15?2:85?1),

intentions.first_intention == ’Durable Remission’?1,

intentions.first_intention==’Neo-adjuvant’?randomWeightedNumber(60?2,40?:1),

intentions.first_intention == ’Palliative’?1,

intentions.first_intention == ’Curative’?1)

The first intention field determines the value of the next instance of inten-
tion. Similarly to the patients, we have a field first regimen. The value of this
field depends on intentions.intention and has the same function like the field
first intention (i.e., this method is repeated to capture the sequence behaviour
for cycles and drugs).

To populate the treatment appointment date we use a similar rule (as for
instance for patient hospital admission) as mentioned before. We have the
appointment date field in intentions to populate the first appointment date for
each intention. In the intentions table, we set elapsed days based on the regi-
men ratio, cycle ratio and regimen interval days to prevent the overlap between
appointment dates for each regimen.

In the regimens, we have another elapsed day field to determine the date of
the first regimen. The starting date for the regime.elapsed day is taken from the
regimen.init appointment date. The regimen.init appointment date equals the
intention.appointment date. The rule for the regimen.elapsed day is as shown
below:

monotonic (from(regimens),per(regimen.intention_id),regimen.elapsed_days,

{cycle_ratio*regimen_interval_days},regimen.init_appointment_date)

Unlike intentions and regimens, we have the cycle ratio in the regimens
because we need to know the number of cycles for determining the correct elapsed
days between regimens.

Finally, to populate several fields like the toxicity outcome, regimens and
performance status, we integrate a simple Markov model into the rules (the value
of the current fields depends only on its previous value). We use the previous
value because we have observed a high correlation, based on the Pearson standard
of correlation [3], between the previous value and the current value.

4 Conclusions and Future Work

We presented some of the rules describing the characteristics of our cancer treat-
ment dataset which are fed to the IBM Data Fabrication Platform to generate
synthetic data. The rules describe the expected range of values within a column,
relationships between columns, and - more significantly - relationships between
rows where these describe different events in the treatment of the same patient.
An accurate set of rules is essential to generate realistic data, and we need to
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evaluate how realistic the synthetic data is. Machine learning can be useful to
establish this to some extent, but was outside the scope of the present paper.

Although synthetic data is valuable it is not a replacement of real data. If
all the features present in a dataset have been incorporated into a synthetic
dataset, then the later may in fact have the same biases as the original dataset.
However, we believe that an added advantage of using the IBM Data Fabrication
Platform comes from the ability to generate rules derived from a combination of
domain knowledge directly (in our context this includes information from clinical
guidelines, clinical studies as well as medical practice) and features extracted
from real data. This flexibility, may consequently lead to a synthetic dataset less
prone to biases inherent in real data specially when real datasets are small.
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Abstract. We discuss how to use Defeasible Deontic Logic to provide
a formal representation of the Commonwealth of Australia spent convic-
tion schema (Part VII C of the Crimes Act (1914)). The formalisation is
directly written and implemented in Turnip (a modern implementation
of Defeasible Deontic Logic).

1 Background: Spent Conviction

A “spent conviction” is a conviction that becomes hidden from public view after
a set period of time but, depending on certain factors, still remains accessible
for specific (public) purposes by specific interested parties. These schemes are
mainly focused on convictions for less serious crimes and generally do not extend
to convictions for violent sexual offences. The set period of time is also extended
where the person has re-offended during the set period.

Australia has a spent conviction scheme operating at a Commonwealth level
and Territories and States also have schemes, but the nature and rules of these
schemes differ. Each regime has exemptions which permit the lawful disclosure
of spent convictions in certain limited circumstances. These exemptions usually
relate to employment in particularly sensitive positions (e.g., on application for
appointment as a police official, teacher, or childcare worker). In this sense,
unless an ex-offender falls within an exemption, spent conviction schemes operate
to encourage the rehabilitation of ex-offenders and to reduce the potential for
ongoing punishment or discrimination against them [6]. The paper focuses on
elements of the Commonwealth spent conviction scheme National Crime Check
describes a “spent conviction” as follows for purposes of this scheme:

A “spent conviction” is a conviction of a Commonwealth, Territory, State or
foreign offence that satisfies all of the following conditions: (i) it is 10 years since
the date of the conviction (or 5 years for juvenile offenders); AND (ii) the indi-
vidual was not sentenced to imprisonment or was not sentenced to imprisonment
for more than 30 months; (iii) AND the individual has not re-offended during
the 10 years (5 years for juvenile offenders) waiting period; (iv) AND a statutory

c© Springer Nature Switzerland AG 2020
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or prescribed exclusion does not apply. (A full list of exclusions is available from
the Office of the Australian Information Commissioner).1

Exchanges of criminal records data among the jurisdictions in Australia are
coordinated by and through the Australian Criminal Intelligence Commission
(ACIC). It manages the processes and provides the system through which Aus-
tralian police agencies and accredited bodies submit nationally coordinated crim-
inal history checks. The ACIC operates the National Police Checking Service
that assists organisations to screen and make informed decisions for example
about prospective employees and volunteers, visa and citizenship applications
and work-related due diligence relating to national security. The service is used
by 251 accredited agencies and bodies. During the period 2017–18 the number
of checks processed increased by 11.1% to 5.29 million, and 1.49 million checks
were referred to police agencies for further assessment to determine whether the
information may be disclosed in accordance with their spent convictions legis-
lation and/or information release policies.2 The aim of the paper is to explore
the possibilities to automatise or, better, semi-automatise the service described
above. The extensive number of checks referred to police agencies is directly
linked to the complexity of the regime and inconsistencies among the different
jurisdictional schemes. Accordingly, the objective of this work was to produce
a proof of concept to partially model project use case solutions relating to the
Spent Convictions Scheme, to lessen the current pressure on officials who need
to process the checks.

For the modelling required to implement the proof of concept we selected
Part VIIC (Pardons, Quashed Convictions and Spent Conviction) of the Crimes
Act 1914 (Cth). Modelling of the Part of the Act we selected Defeasible Deontic
Logic (DDL) for its ability:

– to integrate reasoning with exceptions,
– to model deontic concepts such us obligations, permissions, prohibitions, and
– to represent both prescriptive norms and definitional norms.

All such elements are present in the Commonwealth spent conviction scheme
as set out in the Crimes Act 1914 (Cth). The aim of the modelling was to
understand to what extent formal models are suitable to represent legislation and
if they offer suitable environment to support legal decision. The encoding of the
selected section was done in the Turnip language and reasoner that implements
DDL. The encoding was then tested with a few examples to provide an initial,
small scale, validation of the approach.

2 Defeasible Deontic Logic

In this section we provide a brief outline of Defeasible Deontic Logic, for the full
details of the logic see [4]. DDL is an extension of the Defeasible Logic [1] and [5]
1 https://www.nationalcrimecheck.com.au/resources/spent convictions information.
2 ACIC. Annual Report 2017–18 https://www.acic.gov.au/25-national-information-

and-intelligence-sharing-services-0.

https://www.nationalcrimecheck.com.au/resources/spent_convictions_information
https://www.acic.gov.au/25-national-information-and-intelligence-sharing-services-0
https://www.acic.gov.au/25-national-information-and-intelligence-sharing-services-0
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combining defeasibility for the natural handling of exceptions, deontic modalities
for modelling legal provisions about obligations, prohibitions and permissions,
and a non-classical compensation operator to model obligations in force after a
violation. Also, DDL has been used for applications in the legal domain [3].

In DDL a rule is an IF. . . THEN . . . statement where the IF part encodes the
condition of applicability of the rule (where in general a rule corresponds to a
norm or a part of a norm), and the THEN part models the effect of the norm.
Rules can then be divided in constitutive rules that are used to provide the
definitions of the terms used in a normative document, and normative rules that
give the conditions (IF part) under which legal requirements (i.e., obligations,
permissions, prohibitions, . . . ), THEN part, are in force. In DDL rules can be
further classified according to their strength: thus we have strict rules, defeasible
rules and defeaters. A strict rule is a rule in the classical sense. Defeasible rules
are rules subject to exceptions: the conclusion of the rule holds unless there are
other (applicable) rules (for the same conclusion) that defeat the rule. Finally,
defeaters are a special kind of rules, they do not support conclusions, but prevent
the conclusion to the opposite.

Constitutive rules are rules in standard defeasible logic, while for normative
rules we consider prescriptive rules (setting when something is obligatory/forbid-
den) and permissive rules (rules making something explicitly permitted derogat-
ing rules for prohibitions or obligations to the contrary). Normative rules have
the following form:

r : A1, . . . , An ↪→� C1 � · · · � Cm

where A1, . . . , An are the conditions of applicability of the rule and are expressed
as literals or deontic literals (a literal in the scope a deontic modality: obligation
O or permission P), � is one of the deontic modalities, and the Ci are literals
(C1 � · · · � Cm is called a reparation chain). The mode of the rule � determines
the scope of the conclusion. In case the mode is O the meaning of the right-hand
side of the rule is that when the rule applies OC1 is in force (C1 is obligatory),
and if it is violated, i.e., ¬C1 holds, then OC2 is in force (C2 is obligatory), and
C2 compensates for the violation of OC1. We can repeat the reasoning when
OC2 is violated. The reasoning mechanism of DDL extends the proof theory of
Defeasible Logic [1] and it is based on an argumentation like schema. To prove a
conclusion, there must be an applicable rule for the conclusion we want to prove.
A rule is applicable if all the elements of the antecedent of the rule hold (have
already been proved). In addition, all counter-arguments are either rebutted or
defeated. A counter-argument is a rule for a conflicting conclusion (the negation
of the conclusion, or in case of deontic conclusions, conflicting deontic modalities).
A counter-argument is rebutted if some of its premises do not hold (we proved
that the premises do not hold) and the counter-argument is defeated when the
rule is weaker than an applicable rule for the conclusion. For reparation chains,
in addition to the normal defeasibility conditions, to prove OCk we require that
for all the elements before it in the chain, we are able to prove OCl and ¬Cl.
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Turnip3 is a modern (typed) functional programming implementation of DDL
written in Haskell. The aims of Turnip is to provide a reference implementation
of DDL and at the same time to offer features to facilitate the encoding of norms
as rules. Turnip requires that the terms used in a set of rules are defined before
they are used, where the definition of a term has the following form:

Type Name description_string

where Type is either a Boolean (Atom, string, numeric, date, datetime or duration.
The description string is optional, and its main use is to provide the meaning
of the term in natural language. Arithmetic operators (i.e., +, -, *, /,) can
be used for numeric terms and values and comparison operators (i.e., ==, !=,
<, <=, >, >=) to create boolean types from numeric and duration terms. Also,
Turnip provides conversion functions (e.g., interval, toDays, after) to oper-
ate on dates, times and duration terms. For example, the interval function
takes two dates as input and returns a duration. Consider the snippet

case.date := 2019 -09 -01
conviction.date := 2010 -12 -03
interval(case.date ,conviction.date) >=5y

where we use the assignment operator := to give values to two terms of type
date; then, we use the interval operator to compute the duration (time elapsed
between the two dates), and we compare it with a given duration (5 years). Rules
consist of a label (optional), a condition list, an arrow and a conclusion list.

label: condition_list => conclusion_list

where the arrow determines the type of rule (strict, defeasible or defeaters).
Rules are meant to represent norms and it is reasonably common that a norm
prescribes multiple (simultaneous) effects; similarly, the same effect can be pre-
scribed by different norms. To ease the effort of writing the rules encoding such
norms, the condition list can be either a conjunction (&) or a disjunction (|) of
Boolean, while the conclusion list is either an assignment, a single Boolean, a
conjunction of assignments, or a conjunction of Boolean. For the Boolean expres-
sion Turnip, in addition to Atom, their negation ~, and expression constructed
from numeric and temporal expression allows for deontic expressions, where a
deontic expression is obtained from the combination of one the following deontic
modalities [O], [P], [F], [E] (standing, respectively for Obliged, Permitted, For-
bidden, Exempt) and an atom. For the modalities, notice that: [F]A is equivalent
to [O]~A (and ~[P]A) and [E]A is equivalent to [P]~A.

3 Formal Modelling of the Spent Conviction Schema

The encoding of Part VIIC requires the extraction of the terms (or atoms in
DDL parlance), corresponding to the concepts, used in the legislation. While
the Turnip language supports different data types (e.g., Boolean, numeric, date
and time, duration, . . . ), for the encoding of this part we only needed to use

3 An online environment to run Turnip rulesets, with samples of the features it offers
is available at http://turnipbox.netlify.com/.

http://turnipbox.netlify.com/
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Boolean, duration and date. The representation of each atom comes with its
textual description providing the meaning in natural language of the term. The
atoms encode either factual information relevant for a case (e.g., the date when
a person was convicted for an offence, or the whether a person was convicted or
found guilty of an offence) or for information that can be obtained based on the
conditions defined in the Act (whether the waiting period for an offence ended).
For example, we can create the following atoms
Date conviction.date "the date when the person was convicted"
Date case.date "the date when the current case is dealt with"
Atom minor "the person was a minor when the offence was dealt with"
Atom WaitingPeriodEnded "the waiting period for the offence ended"

that can then be used by the following constitutive rules
wp1: interval(conviction.date ,case.date) >=5y & minor

=> WaitingPeriodEnded
wp2: interval(conviction.date ,case.date) >=10y => WaitingPeriodEnded

encoding the definition of waiting period given in Division 1 of Part VIIC,
namely:

waiting period, in relation to an offence, means:
(a) if the person convicted of the offence was dealt with as a minor in relation

to the conviction–the period of 5 years beginning on the day on which the
person was convicted of the offence; or

(b) in any other case–the period of 10 years beginning on the day on which the
person was convicted of the offence.

Similarly, Section 85ZM on the meaning of conviction and spent conviction, i.e.:

(1) For the purposes of this Part, a person shall be taken to have been convicted
of an offence if:

(a) the person has been convicted, whether summarily or on indictment, of
the offence;

(b) the person has been charged with, and found guilty of, the offence but
discharged without conviction; or

(c) the person has not been found guilty of the offence, but a court has taken
it into account in passing sentence on the person for another offence.

(2) For the purposes of this Part, a person’s conviction of an offence is spent if:
(a) the person has been granted a pardon for a reason other than that the

person was wrongly convicted of the offence; or
(b) the person was not sentenced to imprisonment for the offence, or was not

sentenced to imprisonment for the offence for more than 30 months, and
the waiting period for the offence has ended.

can be encoded by the following atoms and (constitutive) rules:
Atom Person "an individual not a body corporate"

Atom ConvictionVII "a conviction according to Part VII"

Atom Conviction "a person has been convicted for an offence"

Atom Guilty "a person has been charged and found guilty"

Atom Discharged "a person has been discharged without a conviction"

Atom OtherOffence "a person has not been found guilty , but the court

has taken it into account (for the conviction) for another offence"
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s85ZM_1a: Person & Conviction => ConvictionVII

s85ZM_1b: Person & Guilty & Discharged => ConvictionVII

s85ZM_1c: Person & OtherOffence => ConvictionVII

where the ConvictionVII atom corresponds to the “institutional” fact that an
event counts as a conviction for the purpose of applying Part VIIC to that event.
Atom SpentConviction "a conviction is considered spent"
Atom Pardon "a person has been granted a pardon"
Atom Imprisonment "a person was sentence to imprisonment"
Duration imprisonment_term "the length of the imprisonment"

s85ZM_2a: ConvictionVII & Pardon => SpentConviction
s85ZM_2b1: ConvictionVII & ~Imprisonment & WaitingPeriodEnded

=> SpentConviction
s85ZM_2b1: ConvictionVII & imprisonment_term <= 30m

& WaitingPeriodEnded => SpentConviction

As one can notice, the rules in DDL bear a close resemblance with the textual
provisions they are meant to encode. For examples of prescriptive rules we can
consider the rules encoding Section 85ZS(1a-b)

(1) Subject to Division 6, but despite any other Commonwealth law or any State
law or Territory law, where, under Section 85ZR, a person is, in particular
circumstances or for a particular purpose, to be taken never to have been
convicted of an offence:

(a) the person is not required, in those circumstances or for that purpose, to
disclose the fact that the person was charged with, or convicted of, the
offence;

(b) it is lawful for the person to claim, in those circumstances, or for that
purpose, on oath or otherwise, that he or she was not charged with, or
convicted of, the offence;

s85ZS_1a: Person & PardonOrWronglyConvicted
=> [E] Disclose.charged & [E] Disclose.conviction

s85ZS_1b: Person & PardonOrWronglyConvicted
=> [E] Oath.not_charged & [E] Oath.not_conviction

Section 85ZW on Effect of right of non-disclosure

(b) anyone else who knows, or could reasonably be expected to know, that
Section 85ZV applies to the person in relation to the offence shall not:

(i) without the person’s consent, disclose the fact that the person was charged
with, or convicted of, the offence to any other person, or to a Com-
monwealth authority or State authority, where it is lawful for the first–
mentioned person not to disclose it to that other person or that authority;

is then encoded as follows:
Atom ExpectedKnow85ZV "the other entity knows or could reasonably be

expected to know that Section 85ZW applies"

s85ZW_b: OtherEntity & ExpectedKnow85ZV & [E] Disclose.convictionInfo
=> [F] OtherDisclose .conviction & [F] OtherDisclose .charged
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As Section 85ZS(1) recites, there are exemptions to the provisions allowing a
person the right of non-disclosure (and preventing other entities to disclose such
information). For instance, one can consider Subdivision B of Section 6, where
Section 85ZZH Exclusions (a) and (g) provide that:

Division 3 does not apply in relation to the disclosure of information to or by,
or the taking into account of information by a person or body referred to in one
of the following paragraphs for the purpose specified in relation to the person or
body:

(a) a law enforcement agency, for the purpose of making decisions in relation to
prosecution or sentencing or of assessing:

(i) prospective employees or prospective members of the agency; or
(ii) persons proposed to be engaged as consultants to, or to perform services

for, the agency or a member of the agency;
. . .

(g) Commonwealth authority, for the purpose of assessing appointees or prospec-
tive appointees to a designated position;

These provisions can be modelled by the following DDL rules:
s85ZZHa_2: LawEnforcementAgency & PurposeOfEngagementWithAgency =>

[O] Disclose.charged & [O] Disclose.conviction &
[P] OtherDisclose .conviction & [P] OtherDisclose .charged

s85ZZHh: CommonwealthAutority & PurposeOfEngagementWithAgency =>
[O] Disclose.charged & [O] Disclose.conviction &
[P] OtherDisclose .conviction & [P] OtherDisclose .charged

where CommonwealthAutority and LawEnforcementAgency are defined by con-
stitutive rules based on the definition of the terms in Section 85ZL. Similarly,
PurposeOfEngagementWithAgency can be defined by an auxiliary constitutive
rule based on the conditions in 85ZZH(a)(ii).

The rules for Section 85ZS and Section 85ZZH are in conflict with each other,
DDL provides a mechanism (called superiority relation) to solve the conflict.
Specifically, rule s85ZZHa 2 overrides rule s85ZS 1a (same for rule s85ZZHh):
s85ZZHa_2 >> s85ZS_1a
s85ZZHh >> s85ZS_1a

Thus, in case both rules apply, i.e., a person who received a pardon for an
offence, seeking to work for the Australian Federal Police has to disclose the
conviction. Consider a case related to the vetting of Person A’s appointment as a
management consultant to the Australian Federal Police. Person A had two prior
convictions for insider trading in 1998 and had been released on entering into a
good behaviour bond for two years. For the sample case we have to determine
(1) it there was a conviction, (2) whether the conviction has been spent or not,
and in case the conviction is spent (3) to assess if any exclusions under Section 6
apply. Accordingly, we encoded the facts of the cases in Turnip as follows:
Person // Person A
Conviction // there was a conviction for insider trading
conviction.date := 1998 -08 -10 // when A was convicted
case.date := 2019 -09 -22 // when the case was examined
Guilty // A was found guilty
Discharged // A was discharged with 2y good conduct bond
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~Imprisonment // A was discharged with 2y good conduct bond
proposedConsultant // A seeks to work as proposed consultant for
AustralianFederalPolice // the Australian Federal Police

based on the above facts, we obtain the following conclusions (excluding the
given facts)

[O] Disclose.charged
[O] Disclose.conviction
[P] OtherDisclose .charged
[P] OtherDisclose .conviction

CommonwealthAutority
ConvictionVII
LawEnforcementAgency
SpentConviction
WaitingPeriodEnded

showing that the waiting period for the conviction ended and so the conviction is
spent; but the person has to disclose the information for his application to work
as consultant and other entities (expected to know the conviction) are permitted
to disclose the information to the relevant authority or agency (in this case the
Australian Federal Police).

The encoding for Part VIIC in Turnip, with the facts of the case, is available
at https://turnipbox.netlify.com/fiddles/fcA5uXkUnQ0y4B9uVkIq.

4 Conclusions and Future Work

This paper reported on the formal representation of elements of the Australian
Spent Conviction Scheme, developed in the course of research of the Australian
government-funded Data to Decisions Cooperative Research Centre (D2D CRC).
The project [2], which concluded in June 2019, focused on specific spent convic-
tions use cases selected by the ACIC to produce a proof of concept on Compliance
through Design (CtD) modelling [7].

The main conclusion is that the modelling of the Spent Convictions scheme
can be used to process the most common cases at the federal level. The encod-
ing has proved to be consistent both at the formal and empirical levels in the
most common cases. But its implementation with legal effects in more complex
scenarios would require embedding it into a broader legal context. This align-
ment between the extracted rules with the legal conceptual analysis for decision-
making purposes at Commonwealth and State and Territory levels constitute
the challenge that we are going to face in the immediate future.
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