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Abstract. In recent years, positioning for simple static scenes has been unable
to meet the requirements of people’s production and life. People want to achieve
accurate positioning in practical scenarios such as airports, exhibition halls and
stations. Therefore, the research on visual SLAMpositioning in complex dynamic
scenes is increasing day by day. This article reviews the research results of SLAM
positioning methods and visual SLAM positioning methods for complex scenes
in recent years. Firstly, the development process of laser SLAM, visual SLAM,
semantic SLAM and multi-sensor fusion is introduced, but the focus is on visual
SLAM. Secondly, the paper summarizes the methods of moving object detec-
tion and visual SLAM localization in complex dynamic scenes. Then the paper
describes the development of deep learning and multi-sensor fusion in visual
SLAM positioning based on complex dynamic scenes. Finally, the shortcomings
of visual SLAM positioning methods based on complex scenes are summarized
and the research prospects are prospected.
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1 Introduction

Indoor positioning and navigation technology has always been the key technology for
intelligent service robots. As the most important link for robots to achieve autonomous
navigation, positioning has always been the focus of scientists’ research. The current
positioning technology ismainly realized through a variety of sensor information sensing
environments such as laser radar, code disks, cameras and ultrasonic sensors. However,
the positioning effect is often related to the complexity of the indoor environment and
the cost of the sensor. Most of the visible on the market is based on laser to achieve
positioning and navigation, but the cost of laser radar is high and the data is single.
In comparison, vision-based positioning technology has more development potential
than laser radar. Visual positioning and navigation technology has developed rapidly in
recent years, with the advantages of low cost, rich information, and strong scalability.
Visual positioning navigation is a popular direction of current positioning navigation
technology.
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The current visual SLAM positioning and navigation technology is unstable and is
more commonly used in simple scenes. The application scenarios of indoor positioning
technology include airports, restaurants, hotels, exhibitions, and home environments.
The application scenarios of indoor positioning technology are all complex dynamic
scenarios. The study of simple scene positioning is not enough to meet the require-
ments of production and life, so the positioning of complex scenes is more practical
and has become the focus of research in recent years. The core problem of the existing
visual positioning technology is that it has poor robustness to complex dynamic scenes,
and it is easy to lose positioning. How to achieve high robust positioning in complex
dynamic scenes is the key issue of visual positioning technology. In order to improve the
recognition accuracy, many scholars have combined deep learning with visual SLAM of
complex scenes, which has improved the recognition accuracy of images. However, it
often takes more time to process the data of complex scenes after adding deep learning,
resulting in poor real-time positioning of complex scenes and poor positioning results,
which makes them widely used in complex scenes with slow backgrounds.

The second chapter of this paper summarizes the current research status of SLAM
positioning technology. The second chaptermainly introduces positioningmethods from
laser SLAM, visual SLAM, semantic SLAMandmulti-sensor fusion, butmainly focuses
on visual SLAM positioning research. The third chapter summarizes the research on
moving object detection methods and visual SLAM positioning methods based on com-
plex dynamic scenes. The purpose of moving object detection is to eliminate the impact
of dynamic obstacles in complex environments and improve the positioning accuracy of
robots in complex environments. The fourth chapter introduces the development direc-
tion of visual SLAM positioning based on complex dynamic environment around the
future of deep learning. Finally, the shortcomings of the existing methods are further
summarized and prospects are discussed.

2 Research Status of SLAM Positioning Technology

According to the different sensors carried by the robot, SLAMismainly divided into laser
SLAM and visual SLAM. Semantic information extracted based on visual information
is the key to intelligent robots to perform advanced tasks, so semantic SLAM is derived
from the latest research directions. Researchers fuse these different sensors, and a multi-
sensor fusion method has emerged. This chapter will focus on four areas: laser SLAM,
visual SLAM, semantic SLAM and multi-sensor fusion, but we mainly focus on visual
SLAM.

2.1 Laser SLAM

After SLAM was proposed, it has gone through several research stages. The early laser
SLAM used extended Kalman filter [1], and then estimated the pose of the robot through
the information provided by the odometer and laser, but the effect was not good. For
some strong nonlinear systems, this method will bring more The truncation error makes
it impossible to accurately locate and map. Then the particle filter-based laser SLAM
gradually became the mainstream, and it was widely used in non-linear systems, and it
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is still a popular method until today [2–4]. However, particle filtering consumes memory
and is not suitable for detecting large scenes. Grissett et al. [5] proposed an improved
particle filtering method and proposed an adaptive resampling method to reduce the
computational load of particle filtering. Then someone proposed a method of graph
optimization instead of filtering [6–10]. It is generally considered that with the same
amount of calculation, nonlinear optimization can achieve better results than Kalman
filtering [11]. One of the major problems with the above method is the laser closed-loop
detection problem. For the difficult closed-loop phenomenon caused by accumulated
errors, Google proposed a cartographer [12], a solution that uses laser data and maps to
identify closed-loops. This scheme can guarantee the accuracy of the map structure, but
this scheme only relies on lasers and the closed loop is prone to errors.

2.2 Visual SLAM

Visual SLAM has become a research hotspot of SLAM due to low cost of sensors
and rich image information. However, visual SLAM is more complicated than laser
SLAM. Visual SLAM extracts feature points to achieve positioning and mapping. At
first, Kalman filter [13] and particle filter [14] were used to extract feature points for
matching to calculate the camera pose. The feature points are extracted to match the
camera pose. The commonly used image features are SIFT [15], SURF [16] and ORB
[17], etc. However, processing all data directly will cause excessive calculation. In
order to achieve better real-time performance, the subsequent visual SLAM adopts the
form of multi-threading. SLAM is divided into two parts: front-end and back-end. Non-
linear optimization method is used [6] and ORB feature is used to improve real-time
performance and use the bag of words model Implement closed-loop detection [7].

Visual SLAM can also be combined with direct methods to achieve positioning and
mapping. Compared with extracting feature points, the direct method is more practical
for weakly textured scenes. Stuhmer et al. [8] proposed pixel calibration of dense images
to construct dense three-dimensional maps. Engel et al. [18, 19] proposed dense image
registrationmethod to calculate camera pose and LSD-SLAM. LSD-SLAM is a success-
ful example of direct method in semi-dense monocular SLAM. Subsequent researchers
have successively proposed Kinect-based fusion methods [20], direct RGB-D SLAM
method [21] and multi-camera realization of accurate positioning [22], etc. to perform
positioning mapping work.

2.3 Semantic SLAM

Semantic SLAM has only been developed in recent years in order to make robots under-
stand the environment closer to humans. Bao et al. [23] used image semantics to improve
the robot’s ability to recognize objects in the environment. Salas-Moreno et al. [24]
generated dense, accurate problem-level semantic maps in order to be able to identify
pre-modeled objects. Vineet et al. [25] for the first time realized a system capable of
simultaneous semantic segmentation and mapping. Bowman et al. [26] and Schönberger
et al. [27] implemented SLAM positioning using semantic information. The RGB-D
SLAM system proposed by Rünz et al. [28] can realize scene multi-target recognition.
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2.4 Multi-sensor Fusion

In terms ofmulti-sensor fusion, there are currently various sensors such as vision sensors,
lidar, and inertial measurement unit (IMU). Currently, the mainstream approach is to
fuse laser radar with vision sensors and IMU with vision sensors. Zhang Jie and Zhou
Jun [29] proposed a SLAM method combining lidar and vision, which uses laser map
navigation and visual map to restore the detection scene. Qin et al. [30] proposed a
tight coupling scheme between vision and IMU, combining the visual structure and the
residuals of the IMU structure to form a joint optimization problem.Yin Lei et al. [31, 32]
proposed a method of positioning and mapping combining laser and vision. Combining
laser data and image information effectively improved the accuracy of positioning and
mapping.

3 Visual SLAM Positioning Method Based on Complex Scene

3.1 Moving Object Detection

Moving object detection refers to the process of detecting moving objects from complex
background images. Usually, the common methods of detecting moving objects are
divided into the following categories: frame-based method, background-based method
and light flow-based method, etc.

Frame Difference Method. Thismethoddetectsmovingobjects by comparing the gray
value of the pixel corresponding to the current frame and the adjacent frame in the video
image to find the difference. Cheng et al. [33] proposed a difference method for three
consecutive frames. The basic principle is to use the difference between two adjacent
frames of three consecutive frames to obtain the result. This method can effectively
remove the background due to motion occlusion. The detection error caused. Min et al.
[34] are prone to some loopholes in the frame difference method. The backgroundmodel
method is difficult to establish amodel. The improved frame differencemethod ofmotion
history image is combined with the background difference method based on improved
Gaussian mixture model to perform moving targets detection.

Background Difference Method. The video image is divided into foreground and
background images. And the current frame and the background frame are subjected
to difference operation. Stauffer et al. [35] further proposed a mixed Gaussian model
in order to improve the detection capability of the single Gaussian model in complex
environments. Zhou Jianying et al. [36] to solve the problem that the parameters of the
traditional gaussian mixture model converge slowly and it is difficult to adapt to the real-
time change of the real background in the scene with time. And the traditional method
leads to the increase of error detection rate of moving target. They proposed a moving
target detection method based on gaussian mixture model.

Optical Flow Method. The optical flow method extracts the velocity field from the
image by using the change of the gray scale information of the image, and derives the
motion parameter and the object structure of the moving object due to the existence of
the constraint condition.



Visual SLAM Location Methods Based on Complex Scenes: A Review 491

3.2 Research on Visual SLAM Location Method Based on Complex Scenes

In the study of visual SLAM based on complex dynamic scenes, the SLAMIDE algo-
rithm [37] uses the expectation maximization algorithm to update the feature point
motion model in the scene. After updating the motion model, the dynamic object is
introduced into SLAM through a reversible model selection mechanism. The disadvan-
tage of this algorithm is that the continuous introduction of dynamic map points in the
map will increase memory consumption and reduce the search speed of map points. Tan
et al. [38] proposed an adaptive RANSAC algorithm based on existing knowledge in
order that the system can run stably in a dynamic environment. Tan et al. Iteratively
screens static feature points in the image and removes external points introduced by
dynamic objects, and according to the static feature points in the scene, obtains a more
uniform distribution, a larger number, and a more consistent camera motion model. The
algorithm adaptively models the dynamic environment and can effectively detect and
handle appearance or structural changes. Oh [39] proposed a SLAM method based on
dynamic extended Kalman filter (EKF) in order to solve the robot pose estimation and
environment mapping errors caused by the change of landmark position. This algorithm
divides SLAMinto traditional static SLAMpart and single dynamicSLAMpart to reduce
the impact of dynamic environment on SLAM and improve the positioning accuracy of
robots in dynamic landmarks. Newcombe et al. [40] proposed that the Dynamic Fusion
algorithm can reconstruct the dynamic changes of the environment and is suitable for
various moving objects and scenes. However, the algorithm can only be used in smaller
environments and requires the GPU to complete the composition, and its deployment is
not easy. Kumar [41] proposed an online spatiotemporal joint model in order to obtain
motion information. This model is used to estimate joint structure. The model predicts
the future motion of joint objects by integrating spatial and temporal structures and
adds it to the SLAM algorithm. This model enables the algorithm to include the motion
of dynamic objects in the real-time SLAM framework, improving detection accuracy.
Sun [42] proposed a motion culling method based on RGB-D data and integrated it into
RGB-D SLAM. Sun first performs rough detection of moving targets through image dif-
ference, then uses particle filtering to trackmotion, andfinally determinesmoving objects
by estimating the maximum posterior probability on depth images. Experimental results
show that this method effectively improves all the performance of RGB-D SLAM, but
there are still some defects. For example, when the parallax between consecutive frames
is large, the homography estimation will decrease and when the moving object becomes
stationary, the trackingwill fail. Sun [43] proposed amethod of removingmoving objects
in order to effectively eliminate moving objects and assist the scene modeling algorithm
to establish a clear scene model. This method mainly relies on optical flow method and
depth information to achieve moving object culling in RGB-D SLAM. The disadvantage
of this method is that the camera is assumed to be static during scene modeling. Barsan
et al. [44] proposed a three-dimensional large-scale dynamic urban environment density
mapping algorithm. The algorithm uses instance-perceived semantic segmentation and
sparse scene flow to divide the object into background and movement and reconstruct
the background and moving objects through the depth information calculated by visual
odometry and stereo vision. The algorithm outputs high-quality static backgrounds and
dense model dynamic objects of backgrounds, which prevents the impact of dynamic
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scenes on positioning. In order to improve the performance of RGB-D SLAM in high
dynamic scenes, Yu Xiang [45] proposed to build and update the motion foreground
model by learning. This model can implement moving object culling and apply it to
visual SLAM, but this method still has some limitations. First, the parallax between
consecutive frames is required to be small. Second, requiring static objects to dominate
the detection environment reduces performance in low dynamic environments. Finally,
this method is very time-consuming and has poor real-time performance. Berta et al.
[46] proposed a dynamic object detection system DynaSLAM based on ORB-SLAM2
in order to track and reuse scene maps more accurately. DynaSLAM can detect moving
objects through multi-view geometry method and deep learning method. DynaSLAM
uses MASK-RCNN [47] for instance segmentation and segmentation of objects with
mobility. In highly dynamic situations, DynaSLAM is superior to standard visual SLAM
in accuracy, and it can also estimate the map of the static part of the scene. However, the
performance of DynaSLAM on low dynamic sequences is not obvious. Yu et al. [48]
proposed DS-SLAM in order to allow the robot to complete advanced tasks and reduce
the impact of dynamic objects on pose estimation. The algorithm combines semantic
segmentation network with optical flow method and provides semantic representation
of octree maps. The algorithm focuses on reducing the impact of dynamic objects in
vision-based SLAM and improving the robot’s positioning and mapping performance
in complex dynamic environments. The algorithm improves the robustness and accu-
racy of positioning and mapping. Xu [49] combined instance segmentation into RGB-D
SLAM to provide stable motion estimation. However, this combination runs at a slower
speed, which can only run at a speed of 2–3 Hz and does not include instance segmen-
tation. Zhenlong Du et al. [50] proposes an improved SLAM algorithm, which mainly
improves the real-time performance of classical SLAM algorithm, applies KDtree for
efficient organizing feature points, and accelerates the feature points correspondence
building. Moreover, the background map reconstruction thread is optimized, the SLAM
parallel computation ability is increased. The improved SLAM algorithm holds bet-
ter real-time performance than the classical SLAM. Xianyu Wu et al. [51] in order to
solve the natural scene image has more interference and complexity than text. They
propose a new text detection and recognition method based on depth convolution neu-
ral network is proposed for natural scene image. In text detection, this method obtains
high-level visual features from the bottom pixels by ResNet network, and extracts the
context features from character sequences by BLSTM layer, then introduce to the idea
of faster R-CNN vertical anchor point to find the bounding box of the detected text,
which effectively improves the effect of text object detection. The method can replace
the artificially defined features with automatic learning and context-based features. It
improves the efficiency and accuracy of recognition. Zhe Liu et al. [52] In order to avoid
most image segmentation methods based on clustering algorithm, single objective func-
tion is used to realize image segmentation. An image segmentation method based on
multi-objective particle swarmoptimization (PSO) clustering algorithm is proposed. The
unsupervised algorithm not only provides a new similarity calculation method based on
electromagnetic force, but also obtains the appropriate number of clusters determined by
scale space theory. Zhang Jinfeng et al. [53] proposed a SLAM method based on visual
features in dynamic scenes in order to reduce the impact of dynamic objects on tracking
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and positioning. This algorithm introduces a deep learning-based object detection algo-
rithm into the classic ORB_SLAM2 method. The algorithm divides feature points into
latent dynamic features and non-latent dynamic features. The algorithm will calculate
the motion model based on the non-potential dynamic feature points and then filter out
the static feature points in the scene for pose tracking. The algorithm uses static feature
points in non-latent dynamic features for mapping. Compared with ORB_SLAM2, the
performance of the system has been significantly improved and the running speed of the
system canmeet the real-time requirements. GaoChengqiang et al. [54] proposed a semi-
direct RGB-D SLAM algorithm for indoor dynamic environment. The algorithm uses a
sparse image alignment algorithm to make a preliminary estimation of the camera pose.
The algorithm uses the pose estimation of the visual odometer to compensate the motion
of the image. The algorithm establishes a Gaussian model based on real-time update of
image blocks. The algorithm divides the moving target in the image according to the
variance to eliminate the local map points projected on the moving area of the image.
The algorithm completes the real-time update of the map in a dynamic environment and
improves the camera pose accuracy.

In order to better reflect the improvement results of different algorithms, this article
selects some algorithms for comparison. The comparison results are shown in Table 1.
Table 1 compares the absolute path error (ATE) of ORB-SLAM2, DS-SLAM [48] and
Zhang Jinfeng’s improved dynamic scene SLAM method [53]. Both DS-SLAM and
Zhang Jinfeng’s improved dynamic scene SLAM methods are improvements based
on the original system ORB-SLAM2. It can be seen from Table 1 that the improved
dynamic scene SLAMmethod proposed by DS-SLAM and Zhang Jinfeng has improved
performance compared to the original system ORB-SLAM2.

Table 1. Absolute path error (ATE) comparison

Data Walking_static Walking_rpy Walking_halfsphere

ORB-SLAM2 RMSE 0.3900 0.8705 0.4863

Mean 0.3554 0.7425 0.4272

S.D. 0.1602 0.4520 0.2290

DS-SLAM RMSE 0.0081 0.4442 0.0303

Mean 0.0073 0.3768 0.0258

S.D. 0.0036 0.2350 0.0159

Zhang Jinfeng’s improved
method

RMSE 0.0088 0.0595 0.0394

Mean 0.0079 0.0427 0.0326

S.D. 0.0040 0.0362 0.0220

Visual SLAM started late and most of the research on visual SLAM positioning in
complex dynamic scenes has only begun in recent years. Research on visual SLAM in
complex scenes is relatively shallow and only applicable to simple dynamic scenes. The
most common optical flow method often assumes that the largest connected area in the



494 H. Zhang and J. Peng

picture is a static background, but the opposite situation may exist in the actual scene.
Using deep learning to consider semantic information into dynamic scene vision SLAM
also has the problem of large amount of calculation and cannot be real-time. Moreover,
the deep segmentation of the object semantics in the image through deep neural network
can only obtain its own information, but cannot directly determine the movement.

4 Direction of Development

The following discussion will help to advance the development of visual SLAM
positioning methods based on complex environments:

(1) Visual SLAM positioning and deep learning

Aiming at the impact of dynamic objects on the robot’s current positioning in com-
plex dynamic scenes, a lightweight dynamic semantic segmentation network architec-
ture with real-time performance can be used. This architecture can optimize existing
semantic segmentation network models and reduce the number of network model lay-
ers. Specific training samples are given for specific scenarios, for example, for airports,
the environment contains a large number of people, luggage, walkers, and so on. The
architecture specifically trains network models for these objects and extracts dynamic
semantic information from images.The architecture redesigns a learning inferencemodel
that combines semantically segmented images with the original images for the detection
and elimination of dynamic objects. The architecture reduces the variety of seman-
tics through specialized training samples to reduce network complexity and achieve
lightweight real-time semantic segmentation. At the same time, in the sample process-
ing stage, artificially designed mobility tags are added for classified semantics. The tag
can distinguish whether the object has mobility or not, and can distinguish whether the
object is easily moved.

(2) Multi-sensor fusion positioning

Multiple sensor fusion positioning is also the focus of research. The laser sensor has high
detection accuracy, but it is difficult to achieve a closed loop. The difficulty of closed
loop greatly affects the establishment of maps by robots in indoor environments. Vision
sensors are currently widely used and are easy to implement closed loops for maps. Can
be visual sensor is detection accuracy is not enough. The inertialmeasurement unit (IMU)
has large drift errors and accumulated errors. Semantic SLAM has only been developed
in recent years and is mostly used in complex dynamic environments. But semantic
SLAM detection accuracy is not enough to meet the requirements of production and
life. At present, there are many researches on the combination of semantic segmentation
and visual SLAM, but the current research is insufficient to meet people’s positioning
requirements for indoor robots in complex dynamic environments. Multi-sensor fusion
also requires researchers to continuously improve their methods to improve robustness
and real-time performance.
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5 Conclusion

Visual SLAM positioning based on complex scenes has made great progress, driven
by the continuous development of deep learning and computer vision. However, the
visual SLAM based on complex scenes still fails to meet the requirements of people’s
production and life in terms of real-time, robustness and scalability. At present, the
combination of SLAM and deep learning has improved the object detection of complex
scenes to a certain extent. The combination of SLAM and deep learning also has an
important impact on the rapid and accurate generation of high-level semantics and the
construction of robot knowledge bases. However, after SLAM combined with deep
learning, the detection and recognition time of complex scenes increases significantly,
which makes it difficult to meet the system real-time requirements. And the training
parameters greatly depend on the experience of adjusting the parameters. The detection
result also greatly depends on the similarity of the current field application scenario.
Therefore, the visual SLAM of complex scenes in the future needs to rely on the further
development and integration of target recognition, semantic segmentation, and deep
learning. And how to apply deep learning to the entire SLAM system instead of just
positioning, closed-loop modules, etc. is still a huge challenge.
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