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1 Background and Motivation

The cognitive framework of conceptual spaces [3] proposes to represent concepts
and properties such as apple and round as convex regions in perception-based
similarity spaces. By doing so, the framework can provide a grounding for the
nodes of a semantic network. In order to use this framework in practice, one needs
to know the structure of the underlying similarity space. In our study, we focus
on the domain of shapes. We analyze similarity spaces of varying dimensionality
which are based on human similarity ratings and seek to identify directions in
these spaces which correspond to shape features from the psychological litera-
ture. The analysis scripts used in our study are available at https://github.com/
lbechberger/LearningPsychologicalSpaces.

Our psychological account of shapes can provide constraints and inspirations
for AI approaches. For example, distances in the shape similarity spaces can
give valuable information about visual similarity which can complement other
measures of similarity (such as distances in a conceptual graph). Moreover, the
interpretable directions in the similarity space provide means for verbalizing
this information (e.g., by noting that tools are more elongated than electrical
appliances). Furthermore, the shape spaces can be used in bottom-up procedures
for constructing new categories, e.g., by applying clustering algorithms. Finally,
membership in a category can be determined based on whether or not an item
lies inside the convex hull of a given category.

2 Data Collection

We used 60 standardized black-and-white line drawings of common objects (six
visually consistent and six visually variable categories with five objects each) for
our experiments (see Fig. 1 for an example from each category). We collected 15
shape similarity ratings for all pairwise combinations of the images in a web-
based survey with 62 participants. Image pairs were presented one after another
on the screen (in random order) and subjects were asked to judge the respective
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Fig. 1. Example stimuli for which various perceptual judgments were collected.

similarity on a Likert scale ranging from 1 (totally dissimilar) to 5 (very similar).
The distribution of within-category similarities showed that the internal shape
similarity was higher for visually consistent categories (M = 4.18) than for
visually variable categories (M = 2.56; p < .001). For further processing, the
shape similarity ratings were aggregated into a global matrix of dissimilarities
by taking the mean over the individual responses and by inverting the scale (i.e.,
dissimilarity(x, y) = 5 − similarity(x, y)).

In the psychological literature, different types of perceptual features are dis-
cussed as determining the perception of complex objects, among others the line
shape (Lines) and the global shape structure (Form) [1]. We collected values
for all images with respect to these two features in two experimental setups.

In a first line of experiments, we collected image-specific ratings which are
based on attentive (att) image perception. We collected 9 ratings per image in
a web-based survey with 27 participants. Groups of four images were presented
one after another on the screen (in random order) together with a continuous
scale representing the respective feature (Lines: absolutely straight to strongly
curved; Form: elongated to blob-like). Subjects were asked to arrange the images
on the respective scale such that the position of each image in the final configu-
ration reflected their value on the respective feature scale. The resulting values
were aggregated for each image by using the median.

In a second line of experiments, we collected image-specific feature values
which are based on pre-attentive (pre-att) image perception. This was done in
two laboratory studies with 18 participants each. In both studies, the images
were presented individually for 50 ms on the screen; immediately before and
after the image a pattern mask was shown for 50 ms in order to prevent conscious
perception of the image. Subjects were asked to decide per button press as fast
as possible which value of the respective feature pertained to the critical image
mostly (Lines study: straight or curved; Form study: elongated or blob-like).
The binary values (in total 18 per image for each feature) were transformed into
graded values (percentage of curved and blob-like responses, respectively).

A comparison of the two types of feature values revealed a strong correlation
between the judgements based on attentive and pre-attentive shape perception
(rs = 0.83 for Lines and rs = 0.85 for Form). In both cases, the 15 images with
the highest and lowest values were used as positive and negative examples for
the respective feature.
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Fig. 2. Results of our analysis of the similarity spaces.

3 Analysis

We used the SMACOF algorithm [4] for performing nonmetric multidimensional
scaling (MDS) on the dissimilarity matrix. Given a desired number n of dimen-
sions, MDS represents each stimulus as a point in an n-dimensional space and
arranges these points in such a way that their pairwise distances correlate well
with the pairwise dissimilarities of the stimuli they represent. The SMACOF
algorithm uses an iterative process of matrix multiplications to minimize the
remaining difference between distances and dissimilarities.

A good similarity space should be able to reflect the psychological dissim-
ilarities accurately. Figure 2a shows the Spearman correlation of dissimilarities
and distances as a function of the number of dimensions. As we can see, a one-
dimensional space is not sufficient for an accurate representation of the dissimi-
larities. We can furthermore observe that using more than five dimensions does
not considerably improve the correlation to the dissimilarities. As a baseline,
we have also computed the distances between the pixels of various downscaled
versions of the images. These pixel-based distances reached only a Spearman
correlation of rs = 0.40 to the dissimilarities, indicating that shape similarity
cannot easily be determined based on raw pixel information.

The framework of conceptual spaces assumes that the similarity spaces are
based on interpretable dimensions. As distances between points are invariant
under rotations, the axes of the coordinate system from the MDS solution might
however not coincide with interpretable features. In order to identify inter-
pretable directions in the similarity spaces, we trained a linear support vector
machine to separate positive from negative examples for each of the psychological
features. The normal vector of the separating hyperplane points from negative
to positive examples and can therefore be interpreted as the direction represent-
ing this feature [2]. Figure 2b shows the quality of this separation (measured
with Cohen’s kappa) as a function of the number of dimensions. While a one-
dimensional space again gives poor results, increasing the number of dimensions
of the similarity space improves the evaluation metric. Six dimensions are always
sufficient for perfect classification. Moreover, it seems like the feature Form is
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found slightly earlier than Lines. Finally, we do not observe considerable differ-
ences between pre-attentive and attentive ratings.

The framework of conceptual spaces furthermore proposes that conceptual
regions in the similarity space should be convex and non-overlapping. We have
therefore constructed the convex hull for each of the categories from our data
set. We then estimated the overlap between these conceptual regions by count-
ing for each convex hull the number of intruder items from other categories.
Figure 2c plots the overall number of these intruders as a function of the number
of dimensions. As we can see, the number of intruders one would expect for ran-
domly arranged points drops very fast with more dimensions and becomes zero
in a five-dimensional space. However, the point arrangements found by MDS
produce clearly less overlap between the conceptual regions than this random
baseline. Overall, it seems that conceptual regions tend to be convex in our
similarity spaces.

4 Discussion and Conclusions

In our study, we found that similarity spaces with two to five dimensions seem
to be good candidates for representing shapes: A single dimension does not seem
to be sufficient while more than five dimensions do not improve the quality of
the space. The shape features postulated in the literature were indeed detectable
as interpretable directions in these similarity spaces. In order to understand the
similarity space for shapes even better, additional features from the literature
(such as Orientation) will be investigated.

The main limitations of our results are twofold: Firstly, we only consider
two-dimensional line drawings in our study. Our results are therefore not directly
applicable to three-dimensional real world objects. Secondly, the similarity spaces
obtained through MDS can only be used for a fixed set of stimuli. In future
work, we aim to train an artificial neural network on mapping also novel images
to points in the shape similarity spaces (cf. [5]).
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