
Mehwish Alam
Tanya Braun
Bruno Yun (Eds.)

 123

LN
A

I 1
22

77

25th International Conference
on Conceptual Structures, ICCS 2020
Bolzano, Italy, September 18–20, 2020, Proceedings

Ontologies and Concepts
in Mind and Machine

Lecture Notes in Artificial Intelligence 12277

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Mehwish Alam • Tanya Braun •

Bruno Yun (Eds.)

Ontologies and Concepts
in Mind and Machine
25th International Conference
on Conceptual Structures, ICCS 2020
Bolzano, Italy, September 18–20, 2020
Proceedings

123

Editors
Mehwish Alam
FIZ Karlsruhe – Leibniz Institute for
Information Infrastructure
Karlsruhe, Germany

Tanya Braun
Institute of Information Systems
University of Lübeck
Lübeck, Germany

Bruno Yun
Department of Computing Science
University of Aberdeen
Aberdeen, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-57854-1 ISBN 978-3-030-57855-8 (eBook)
https://doi.org/10.1007/978-3-030-57855-8

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7867-6612
https://orcid.org/0000-0003-0282-4284
https://orcid.org/0000-0001-9370-3917
https://doi.org/10.1007/978-3-030-57855-8

Preface

The 25th edition of the International Conference on Conceptual Structures (ICCS 2020)
took place in Bozen-Bolzano, Italy, during 18–20 September, 2020, under the title
“Ontologies and Concepts in Mind and Machine.” Since 1993, ICCS has been an
yearly venue for publishing and discussing new research methods along with their
practical applications related to conceptual structures. This year ICCS was one of the
10 different conferences in the Bolzano Summer of Knowledge (BOSK 2020), which
spanned over the course of two weeks. Each of these conferences complemented each
other on a broad range of disciplines such as Philosophy, Knowledge Representation,
Logic, Conceptual Modeling and Ontology Engineering, Medicine, Cognitive Science,
and Neuroscience. Due to the global COVID-19 pandemic, the conference was moved
to a virtual venue, with tutorials, keynotes, and research presentations taking place
online to provide a safe environment for participants from around the world.

The topics of this year’s conference range from Formal Concept Analysis to
Decision Making, from Machine Learning to Natural Language Processing, all unified
by the common underlying notion of conceptual structures. The call asked for regular
papers reporting on novel technical contributions, short papers describing ongoing
work or applications, and extended abstracts highlighting the visions and open research
problems. Overall, 27 submissions were received out of which 24 were accepted for
reviewing. The committee decided to accept 10 regular papers, 5 short papers, and 1
extended abstract which corresponds to an acceptance rate of 59%. Each submission
received three to four reviews, with 3:625 reviews on average. In total, our Program
Committee members, supported by four additional reviewers, delivered 87 reviews.
The review process was double-blind, with papers anonymized for the reviewers and
reviewer names unknown to the authors. For the first time, we organized a bidding on
papers to ensure that reviewers received papers within their field of expertise. The
response to the bidding process allowed us to assign each paper to reviewers who had
expressed an interest in reviewing a particular paper. The final decision was made after
the authors had a chance to reply to the initial reviews via a rebuttal to correct factual
errors or answer reviewer questions. We believe this procedure ensured that only
high-quality contributions were presented at the conference. We are delighted and
proud to announce that this year’s program included two tutorials, “Mathematical
Similarity Models” by Moritz Schubert and Dominik Endres (Philipps-Universität
Marburg, Germany) as well as “FCA and Knowledge Discovery” by Amedeo Napoli
(Université de Lorraine, France). Two keynote talks were also held during the
conference: “Towards Ordinal Data Science” by Gerd Stumme (University of Kassel,
Germany) and “Compositional Conceptual Spaces” by Sebastian Rudolph
(TU Dresden, Germany). Note that this volume provides the extended abstracts of all
the tutorials and the keynote talks.

As general chair and program chairs, we would like to thank our speakers for their
inspiring and insightful talks. Our thanks also go out to the local organization of BOSK

who provided support in terms of registration and setting up a virtual conference. We
would like to thank the Program Committee members and additional reviewers for their
work. Without their substantial voluntary contribution, it would not have been possible
to set up such a high-quality conference program. We would also like thank EasyChair
for their support in handling submissions and Springer for their support in making these
proceedings possible. Our institutions, the Leibniz Institute for Information Infras-
tructure Karlsruhe, Germany, the University of Lübeck, Germany, and the University
of Aberdeen, UK, also provided support for our participation, for which we are
grateful. Last but not least, we thank the ICCS Steering Committee for their ongoing
support and dedication to ICCS.

July 2020 Mehwish Alam
Tanya Braun
Bruno Yun

vi Preface

Organization

Steering Committee

Madalina Croitoru University of Montpellier, France
Dominik Endres Philipps-Universitat Marburg, Germany
Ollivier Haemmerlé University of Toulouse-Mirail, France
Uta Priss Ostfalia University, Germany
Sebastian Rudolph TU Dresden, Germany

Program Committee

Mehwish Alam Leibniz Institute for Information Infrastructure
Karlsruhe, Germany

Bernd Amann Sorbonne University, France
Moulin Bernard Laval University, Canada
Tanya Braun University of Lübeck, Germany
Peggy Cellier IRISA, INSA Rennes, France
Peter Chapman Edinburgh Napier University, UK
Dan Corbett Optimodal Technologies, LLC, USA
Olivier Corby University of Côte d’Azur, France
Diana Cristea Babes-Bolyai University, Romania
Madalina Croitoru University of Montpellier, France
Licong Cui The University of Texas Health Science Center

at Houston, USA
Harry Delugach University of Alabama, Huntsville, USA
Florent Domenach Akita International University, Japan
Dominik Endres University of Marburg, Germany
Jérôme Euzenat University of Grenoble Alpes, France
Raji Ghawi TU Munich, Germany
Marcel Gehrke University of Lübeck, Germany
Ollivier Haemmerlé University of Toulouse-Mirail, France
Dmitry Ignatov National Research University Higher School

of Economics, Russia
Hamamache Kheddouci Claude Bernard University Lyon 1, France
Leonard Kwuida Bern University of Applied Sciences, Switzerland
Jérôme Lang Paris Dauphine University, France
Natalia Loukachevitch Moscow State University, Russia
Pierre Marquis Artois University, France
Philippe Martin University of La Réunion, France
Franck Michel University of Côte d’Azur, France
Amedeo Napoli University of Lorraine, France

Sergei Obiedkov National Research University Higher School
of Economics, Russia

Nir Oren University of Aberdeen, UK
Nathalie Pernelle University of Paris-Sud, France
Heather D. Pfeiffer Akamai Physics, Inc., USA
Simon Polovina Sheffield Hallam University, UK
Uta Priss Ostfalia University, Germany
Marie-Christine Rousset University of Grenoble Alpes, France
Sebastian Rudolph TU Dresden, Germany
Christian Sacarea Babes-Bolyai University, Romania
Fatiha Saïs University of Paris-Saclay, France
Diana Sotropa Babes-Bolyai University, Romania
Iain Stalker The University of Manchester, UK
Gerd Stumme University of Kassel, Germany
Srdjan Vesic Artois University, France
Serena Villata CNRS, France
Bruno Yun University of Aberdeen, UK

Additional Reviewers

Rashmie Abeysinghe University of Kentucky, USA
Dominik Dürrschnabel University of Kassel, Germany
Maximilian Stubbemann University of Kassel, Germany
Fengbo Zheng University of Kentucky, USA

viii Organization

Abstracts of Keynote Talks

Towards Ordinal Data Science

Gerd Stumme

Knowledge & Data Engineering Group, Department of Electrical Engineering
and Computer Science and Research Center for Information System Design

(ITeG), University of Kassel, Germany
https://www.kde.cs.uni-kassel.de/stumme

Order is a predominant paradigm for perceiving and organizing our physical and social
environment, to infer meaning and explanation from observation, and to search and
rectify decisions. For instance, we admire the highest mountain on earth, observe
pecking order among animals, schedule events in time, and organize our collaborations
in hierarchies. The notion of order is deeply embedded in our language, as every
adjective gives rise to a comparative (e.g., better, more expensive, more beautiful).
Furthermore, specific technical and social processes have been established for dealing
with ordinal structures, e.g., scheduling routines for aircraft take-offs, first-in-first out
queuing at bus stops, deriving the succession order as depth-first linear extension of the
royal family tree, or discussing only the borderline cases in scientific programme
committees. These processes, however, are rather task-specific.

In many cases, entities can be ordered through real-valued valuation functions like
size or price. This process of quantification has been boosted by different factors,
including i) the development of scientific measuring instruments since the scientific
revolution, ii) the claim that the social sciences should use the same numerical methods
which had been successful in natural sciences, and iii) nowadays by the instant
availability of an enormous range of datasets to almost all aspects of science and
everyday life. As real numbers constitute an ordered field, i.e., a field equipped with a
linear order, the analysis of such data benefits from the existence of the algebraic
operators of fields (addition, substraction, multiplication, division, and the existence of
0 and 1) together with total comparability (i.e., every pair of its elements is comparable)
—a combination that allows for various measures of tendency (such as mean, variance,
and skewness) as well as for a variety of transformations. If more than one real-valued
dimension is present, this yields to a real vector space (as Cartesian product of the field
of reals), which results in a multitude of additional descriptive measures and metric
properties, such as volumes, angles, correlation, covariance. This is the standard setting
for the majority of data analysis and machine learning models, and many algorithms
(eg k-Means clustering, logistic regression, neural networks, support vector machines,
to name just a few) have been developed for these tasks.

However, organizing hierarchical relationships by means of numerical values is not
always adequate, as this kind of organization presupposes two important conditions:
i) every pair of entities has to be comparable, and ii) the sizes of differences between
numerical values are meaningful and thus comparable. In many situations, however,
this is not the case: (i) does not hold, for instance, in concept hierarchies (‘mankind’ is

neither a subconcept nor a superconcept of ‘ocean’) nor in organizations (a member of
parliament is neither above nor below a secretary of state); and (ii) does not hold, for
instance, in school grades (In the German school system, is the difference between 1
(very good) and 2 (good) equal to the difference between 4 (sufficient) and 5 (insuf-
ficient/fail)?) nor in organisations (In the European Commission, is an advisor closer to
a deputy director general than a head of group to a director?).

To address such variations of data types, S. S. Stevens has distinguished four levels
of measurement: nominal, ordinal, interval, and ratio.1 For data on the ratio level (e.g.,
height), all above-mentioned operations are allowed (division, for instance, provides
ratios). Data on the interval level (e.g., temperature measured in Celsius or Fahrenheit)
do not have a meaningful zero as point of reference and thus do not allow for ratios,
while the comparison of differences is still meaningful. Ordinal data (e.g., the parent
relation) only allow for comparisons, and nominal data (e.g., eye color) only for
determining equality.

Although there is a large range of preliminary work, Ordinal Data Science is only
just emerging as distinct research field. It focusses on the development of data science
methods for ordinal data, as they lack the large variety of methods that have been
developed for other data types. To this end, we define ordinal data as sets of entities
(‘data points’) together with one or more order relations, i.e., binary relations that are
reflexive, transitive and anti-reflexive (or variations thereof, such as quasiorders or
weak orders). Ordinal data belong thus to the large family of relational data which have
received high interest of the computer science community in the last years, due to
developments in related fields such as sociology (“relational turn”), genetics or epi-
demiology, and socio-technical developments such as the rise of online social networks
or knowledge graphs. This means that, for the analysis of ordinal data, one can benefit
from all kinds of measures and methods for relational data, as for instance centrality
measures and clustering algorithms for (social) network data or inductive logic pro-
gramming or statistical relational learning from the field of relational data mining. The
specific structure of ordinal data, however, allows additionally to tap on the rich – but
up to date mostly unexploited for data science – toolset of mathematical order theory
and lattice theory. In this talk, we present selected first approaches.

1 S. S. Stevens: On the Theory of Scales of Measurement. In: Science 103.2684 (1946), 677. https://
doi.org/10.1126/science.103.2684.677. eprint: https://science.sciencemag.org/content/103/2684/677.
full.pdf.

xii G. Stumme

https://doi.org/10.1126/science.103.2684.677
https://doi.org/10.1126/science.103.2684.677
https://science.sciencemag.org/content/103/2684/677.full.pdf
https://science.sciencemag.org/content/103/2684/677.full.pdf

Compositional Conceptual Spaces

Sebastian Rudolph

Computational Logic Group, TU Dresden, Germany
sebastian.rudolph@tu-dresden.de

It has often been argued that certain aspects of meaning can or should be represented
geometrically, i.e., as conceptual spaces [6]. Vector space models (VSMs) have existed
for some time in natural language processing (NLP) and recently regained interest
under the term (vector space) embeddings in the context of deep learning. It was shown
that the principle of distributionality [4], according to which “a word is characterized
by the company it keeps” – implying that words occurring in similar contexts bear
similar meanings –, can serve as a powerful and versatile paradigm for automatically
obtaining word-to-vector mappings from large natural language corpora.

While distributional VSMs and the techniques for acquiring them (such as
word2vec [7]) have shown to perform very well for tasks related to semantic similarity
and other relations between singular words, the question how to lift this approach to
larger units of language brings about new challenges.

The principle of compositionality, going back to Frege [5], states that the meaning
of a complex language construct is a function of its constituents’ meanings. A sig-
nificant body of work in computational linguistics deals with the question if and how
the principle of compositionality can be applied to geometrical models. For VSMs, a
variety of potential vector-composition operations have been proposed and investi-
gated. Many of those, including the most popular ones (vector addition and component-
wise multiplication), are commutative and therefore oblivious to the order of words in a
given phrase.

Around a decade ago, compositional matrix space models (CMSMs) were proposed
as a unified framework of compositionality [8]. CMSMs map words to quadratic
matrices and use matrix multiplication as the one and only composition operation. Next
to certain plausibility arguments in favor of CMSMs, it was shown that they are
capable of emulating many of the common vector-based composition functions.

During the past ten years, more results have been obtained regarding the learn-
ability of CMSMs and their feasibility for practical NLP tasks [1–3, 9]. Among others,
it has been demonstrated that CMSMs can capture sentiment analysis tasks using
matrices of very low dimensionality, correctly modelling word-order sensitive phe-
nomena (like the different intensities in the phrases “not really good” and “really not
good”). Moreover, they can be successfully applied to distinguish idiomatic phrases
(such as “couch potato”) from compositional ones (such as “stomach pain”).

This keynote provides an introduction into CMSMs and gives an overview of their
theoretical and practical aspects.

http://orcid.org/0000-0002-1609-2080

Acknowledgements. Over the years, I have collaborated on the subject with several
colleagues. I am particularly thankful to Eugenie Giesbrecht, Shima Asaadi, and
Dagmar Gromann.

References

1. Asaadi, S.: Compositional Matrix-Space Models: Learning Methods and Evaluation. Ph.D.
thesis, TU Dresden (2020)

2. Asaadi, S., Rudolph, S.: On the correspondence between compositional matrix-space models
of language and weighted automata. In: Jurish, B., Maletti, A., Würzner, K.M., Springmann,
U. (eds.) Proceedings of the SIGFSM Workshop on Statistical NLP and Weighted Automata
(StatFSM 2016), pp. 70–74. Association for Computational Linguistics (2016)

3. Asaadi, S., Rudolph, S.: Gradual learning of matrix-space models of language for sentiment
analysis. In: Blunsom, P., et al. (eds.) Proceedings of the 2nd Workshop on Representation
Learning for NLP (RepL4NLP 2017), pp. 178–185. Association for Computational Lin-
guistics (2017)

4. Firth, J.R.: A synopsis of linguistic theory 1930-55. Studies in linguistic analysis 1952–1959,
pp. 1–32 (1957)

5. Frege, G.: Die Grundlagen der Arithmetik: eine logisch-mathematische Untersuchung über
den Begriff der Zahl. W. Koebner, Breslau, Germany (1884)

6. Gärdenfors, P.: Conceptual Spaces: the Geometry of Thought. MIT Press, Cambridge (2000)
7. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in

vector space. In: International Conference on Learning Representations (ICLR 2013) (2013)
8. Rudolph, S., Giesbrecht, E.: Compositional matrix-space models of language. In: Hajic, J.,

Carberry, S., Clark, S. (eds.) Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics (ACL 2010), pp. 907–916. Association for Computational Lin-
guistics (2010)

9. Yessenalina, A., Cardie, C.: Compositional matrix-space models for sentiment analysis. In:
Barzilay, R., Johnson, M. (eds.) Proceedings of the 2011 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2011), pp. 172–182. Association for Computational
Linguistics (2011)

xiv S. Rudolph

Tutorial Abstracts

FCA and Knowledge Discovery

Tutorial at ICCS 2020

Amedeo Napoli
Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

Amedeo.Napoli@loria.fr

1 Introduction and Motivation

In this tutorial we will introduce and discuss how FCA [1, 2, 4, 5] and two main
extensions, namely Pattern Structures [3, 7] and Relational Concept Analysis
(RCA) [9], can be used for knowledge discovery purposes, especially in pattern and
rule mining, in data and knowledge processing, data analysis, and classification.
Indeed, FCA is aimed at building a concept lattice starting from a binary table where
objects are in rows and attributes in columns. But FCA can deal with more complex
data. Pattern Structures allow to consider objects with descriptions based on numbers,
intervals, sequences, trees and general graphs [3, 6]. RCA was introduced for taking
into account relational data and especially relations between objects [9]. These two
extensions rely on adapted FCA algorithms and can be efficiently used in real-world
applications for knowledge discovery, e.g. text mining and ontology engineering,
information retrieval and recommendation, analysis of sequences based on stability,
semantic web and classification of Linked Open Data, biclustering, and functional
dependencies.

2 Program of the tutorial

The tutorial will be divided in three main parts, including (i) the basics of FCA, (ii) the
processing of complex data with Pattern Structures and Relational Concept Analysis,
and (iii) a presentation of some applications about the mining of linked data, the
discovery of functional dependencies, and some elements about biclustering. A tenta-
tive program is given here below.

– Introduction to Formal Concept Analysis (basics and examples): formal context,
Galois connections, formal concept, concept lattice, and basic theorem of FCA.

– Reduced notation, conceptual scaling for non binary contexts, implications and
association rules in a concept lattice.

– Algorithms for computing formal concepts and the associated concept lattice,
complexity of the design process, building and visualizing concept lattices.

– Measures for selecting interesting concepts in the concept lattice [8].
– Basics on Pattern Structures for mining complex data, the example of numerical and

interval data, pattern concepts and pattern concept lattice.

– Elements on Relational Concept Analysis, relational context family, relational
concepts and relational concept lattice.

– Applications: mining definitions in linked data, mining functional dependencies,
biclustering, hybrid Knowledge Discovery.

3 Conclusion

FCA is nowadays gaining more and more importance in knowledge and data pro-
cessing, especially in knowledge discovery, knowledge representation, data mining and
data analysis. Moreover, our experience in the domain shows that FCA can be used
with benefits in a wide range of applications, as it also offers very efficient algorithms
able to deal with complex and possibly large data.

In addition, interested researchers have the possibility to attend the two main
Conferences, International Conference on Concept Lattices and Applications
(CLA) and International Conference on Formal Concept Analysis (ICFCA). Moreover,
a companion workshop, namely FCA4AI, is regularly organized by Sergei
O. Kuznetsov, Amedeo Napoli and Sebastian Rudolph (see http://fca4ai.hse.ru/). This
year, we have the eighth edition of the the FCA4AI workshop co-located with the
ECAI 2020 Conference at the end of August 2020. The whole series of the proceedings
of the seven preceding workshops is available as CEUR proceedings (again see http://
fca4ai.hse.ru/).

References

1. Belohlavek, R.: Introduction to Formal Concept Analysis. Research report. Palacky Univer-
sity, Olomouc (2008). http://belohlavek.inf.upol.cz/vyuka/IntroFCA.pdf

2. Claudio Carpineto and Giovanni Romano. Concept Data Analysis: Theory and Applications.
Wiley Chichester (2004)

3. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S.,
Stumme, G. (eds.) ICCS 2001. LNCS, vol 2120, pp. 129–142. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44583-8_10

4. Ganter, B., Obiedkov, S.A.: Conceptual Exploration. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49291-8

5. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999). https://doi.org/
10.1007/978-3-642-59830-2

6. Kaytoue, M., Codocedo, V., Buzmakov, A., Baixeries, J., Kuznetsov, S.O., Napoli, A.:
Pattern structures and concept lattices for data mining and knowledge processing. In: Bifet,
A., et al. (eds.) ECML PKDD 2015. LNCS, vol. 9286, pp. 227–231 (2015). Springer, Cham.
https://doi.org/10.1007/978-3-319-23461-8_19

7. Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression data with
pattern structures in formal concept analysis. Inf. Sci. 181(10), 1989–2001 (2011)

8. Kuznetsov, S.O., Makhalova, TP.: On interestingness measures of formal concepts. Inf. Sci.
442–443:202–219 (2018)

9. Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis:
mining concept lattices from multi-relational data. Ann. Math. Artif. Intell. 67(1), 81–108
(2013)

xviii A. Napoli

http://fca4ai.hse.ru/
http://fca4ai.hse.ru/
http://fca4ai.hse.ru/
http://belohlavek.inf.upol.cz/vyuka/IntroFCA.pdf
https://doi.org/10.1007/3-540-44583-8_10
https://doi.org/10.1007/978-3-662-49291-8
https://doi.org/10.1007/978-3-662-49291-8
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-319-23461-8_19

Mathematical Similarity Models in Psychology

Moritz Schubert and Dominik Endres

Philipps University Marburg, Marburg, Germany
{moritz.schubert,dominik.endres}@uni-marburg.de

Similarity assessment is among the most essential functions in human cognition. It is
fundamental to imitation learning, it plays an important role in categorization and it is a
key mechanism for retrieving contents of memory.

Hence, the description and explanation of human similarity perception is a pertinent
goal of mathematical psychology. In the following, we will outline three of the most
relevant kinds of mathematical similarity models: Geometric (Sect. 1.1), featural
(Sect. 1.2) and structural (Sect. 1.3) models. These models not only differ in their
mathematical details, but also in the way they represent objects as cognitive concepts.
Finally, we will discuss the assessment of human stimulus representations, a crucial
issue for the empirical evaluation of similarity models.

1 Similarity Models

1.1 Geometric Models

Geometric models Shepard (1962) conceptualize similarity as distances, implying that
object concepts can usefully be thought of as points in an imaginary multidimensional
Euclidean space. As distances, similarity ratings would have to adhere to the metric
axioms: 1) minimality, i.e. s a; bð Þ� s a; að Þ ¼ 1, 2) symmetry, i.e. s a; bð Þ ¼ s b; að Þ and
3) triangle inequality, i.e. s a; cð Þ� s a; bð Þ þ s b; cð Þ, where s is a real number in the
range 0; 1½ � representing a similarity measure and a; b; cf g are objects. Intuitively, all
of these seem to hold for similarity (e.g. in favor of triangle inequality, if a and b are
very similar and b and c are very similar, it stands to reason that a and c are not all that
dissimilar).

An advantage of this group of models is that many stimuli can easily be represented
as points on one or several dimensions (e.g. colors with the RGB dimensions).

1.2 Featural Models

Tversky (1977) criticized the use of metric axioms for explaining similarity: In con-
fusability tasks participants tend to identify some letters more often as certain distractor
letters than as themselves, a finding that is in direct contradiction with minimality. The
empirical result that s o; pð Þ[s p; oð Þ often holds in cases where o and p belong to the
same category, but p is more prototypical for the category than o (e.g. an ellipse is more
similar to a circle than a circle is to an ellipse) provides evidence against symmetry.
Finally, plausible counter-examples can be brought against the triangle inequality (e.g.

a pineapple is similar to a melon, because they are both exotic fruits, and a melon is
similar to a beach ball, because of its shape, but a pineapple is not at all similar to a
beach ball).

As an alternative, Tversky (1977) proposed to represent objects as sets of features.
His contrast model states s a; bð Þ[s c; dð Þ whenever A\B � C \D, A� B � C � D
and B� A � D� C, where the capital letters represent sets of features of the small
lettered objects. Tversky ensured that his scale s is totally ordered through the solv-
ability axiom, which, given a set of objects, postulates the existence of new objects
with specific feature sets to ensure that any two stimuli can be ordered. However,
having to invent imaginary stimuli whenever carrying out a similarity comparison
seems to be an implausibly inefficient process for the mind.

Another featural model, the GLW model (Geist et al. 1996) offers a solution to this
problem by situating similarity ratings in a partial order, i.e. introducing the option of
not being able to determine the ranking of two object pairs. This can be interpreted
psychologically as the two object pairs being incomparable (e.g. asking whether a
parrot is more similar to a bicycle than a toothbrush is to a car seems like an unan-
swerable question). The GLW model adds one statement to the set of conditions under
which s a; bð Þ[s c; dð Þ: A[B � C [D, where A[B are all the features under con-
sideration that are neither part of a nor b. This new condition is supposed to account for
the context under which the similarity comparison is carried out. However, an
empirical evaluation of the GLW model (Schubert and Endres 2018) suggests that the
requirement of all four conditions being fulfilled is too strict and that as a result the
model makes very few predictions, strongly reducing its usefulness.

1.3 Structural Models

While representing objects as sets of features is a very versatile approach, it is also
possible to derive representations based on relations more directly. Structural models
(e.g. (Falkenhainer et al. 1989)) try to remedy this shortcoming by giving objects
structured representations which state the type of relationship between features (e.g. the
two features “pillars” and “roof” in the “cathedral” concept might be connected through
a “supports” relationship). In this view, the similarity between two stimuli is the degree
to which their two structural representations align which each other (e.g. by encom-
passing the same features and/or the same relationships).

2 Assessment of Stimulus Representation

For a similarity model to explain human similarity perception, it needs to be able to
predict human behavior. One way to test this is to feed participants’ cognitive repre-
sentations of objects into a model as input and see whether the similarity ratings output
by the model match the ones given by participants. The inherent challenge in this
approach is finding a sufficiently accurate representation of the participants’ cognitive
stimulus representations.

One approach are latent variable models (LVMs) that try to extract the latent
parameters underlying participants’ similarity ratings. For geometric models, a

xx M. Schubert and D. Endres

commonly used LVM is the nonmetric multidimensional scaling (MDS) approach
described by Shepard (1962). In this procedure, the points representing the stimuli are
being iteratively rearranged until the inverse ranking of the distances between them
corresponds (as closely as possible) to the ranking of the similarity ratings. Since for N
stimuli this can trivially be accomplished in N � 1 dimensional space, an additional
requirement of the solution is that it uses as few dimensions as possible.

One LVM used for featural models is additive clustering (Navarro and Griffiths
2008), a type of clustering that allows an object to belong to multiple clusters. Hence,
the clusters can be interpreted as features of the objects. In order to be psychologically
useful, the output of LVMs has to be filled with meaning, e.g. the dimensions produced
by MDS have to be named. Ideally, this is done by the participants themselves.

An alternative to LVMs is to ask the participants directly about their cognitive
concepts. For example, for featural models participants could be asked to type a certain
number of words they would use to describe a stimulus. While direct approaches might
make fewer assumptions than LVMs, for non-featural models they ask participants to
think in unduely abstract ways (e.g. having to arrange objects in a two-dimensional
space).

References

Falkenhainer, B., Forbus, K.D., Gentner, D.: The structure-mapping engine: algorithm
and examples. Artif. Intell. 41(1), 1–63 (1989). https://doi.org/10.1016/0004-3702
(89)90077-5

Geist, S., Lengnink, K., Wille, R.: An order-theoretic foundation for similarity mea-
sures. In: Lengnink, K. (ed.) Formalisierungen von Ähnlichkeit Aus Sicht Der
Formalen Begriffsanalyse, pp. 75–87. Shaker Verlag (1996)

Navarro, D.J., Griffths, T.L.: Latent features in similarity judgments: a nonparametric
bayesian approach. Neural Comput. 20(11), 2597–2628 (2008). https://doi.org/10.
1162/neco.2008.04-07-504

Schubert, M., Endres, D.: Empirically evaluating the similarity model of Geist,
Lengnink and Wille. In: Chapman, P., Endres, D., Pernelle, N. (eds.) ICCS 2018.
LNCS, vol. 10872, pp. 88–95 (2018). Springer, Cham. https://doi.org/10.1007/978-
3-319-91379-7_7

Shepard, R.N.: The analysis of proximities: multidimensional scal-ing with an
unknown distance function. I. Psychometrika 27(2), 125–140 (1962). https://doi.org/
10.1007/bf02289630

Tversky, A.: Features of similarity, 84 (4), 327–352 (1977). https://doi.org/10.1037/
0033-295x.84.4.327

Mathematical Similarity Models in Psychology xxi

https://doi.org/10.1016/0004-3702(89)90077-5
https://doi.org/10.1016/0004-3702(89)90077-5
https://doi.org/10.1162/neco.2008.04-07-504
https://doi.org/10.1162/neco.2008.04-07-504
https://doi.org/10.1007/978-3-319-91379-7_7
https://doi.org/10.1007/978-3-319-91379-7_7
https://doi.org/10.1007/bf02289630
https://doi.org/10.1007/bf02289630
https://doi.org/10.1037/0033-295x.84.4.327
https://doi.org/10.1037/0033-295x.84.4.327

Contents

Knowledge Bases

A Formalism Unifying Defeasible Logics and Repair Semantics
for Existential Rules . 3

Abdelraouf Hecham, Pierre Bisquert, and Madalina Croitoru

Using Grammar-Based Genetic Programming for Mining Disjointness
Axioms Involving Complex Class Expressions . 18

Thu Huong Nguyen and Andrea G. B. Tettamanzi

An Incremental Algorithm for Computing All Repairs in Inconsistent
Knowledge Bases . 33

Bruno Yun and Madalina Croitoru

Knowledge-Based Matching of n-ary Tuples . 48
Pierre Monnin, Miguel Couceiro, Amedeo Napoli, and Adrien Coulet

Conceptual Structures

Some Programming Optimizations for Computing Formal Concepts 59
Simon Andrews

Preventing Overlaps in Agglomerative Hierarchical Conceptual Clustering . . . 74
Quentin Brabant, Amira Mouakher, and Aurélie Bertaux

Interpretable Concept-Based Classification with Shapley Values 90
Dmitry I. Ignatov and Léonard Kwuida

Pruning in Map-Reduce Style CbO Algorithms. 103
Jan Konecny and Petr Krajča

Pattern Discovery in Triadic Contexts . 117
Rokia Missaoui, Pedro H. B. Ruas, Léonard Kwuida,
and Mark A. J. Song

Characterizing Movie Genres Using Formal Concept Analysis 132
Raji Ghawi and Jürgen Pfeffer

Reasoning Models

Restricting the Maximum Number of Actions for Decision Support
Under Uncertainty . 145

Marcel Gehrke, Tanya Braun, and Simon Polovina

Vocabulary-Based Method for Quantifying Controversy in Social Media 161
Juan Manuel Ortiz de Zarate and Esteban Feuerstein

Multi-label Learning with a Cone-Based Geometric Model. 177
Mena Leemhuis, Özgür L. Özçep, and Diedrich Wolter

Conceptual Reasoning for Generating Automated
Psychotherapeutic Responses . 186

Graham Mann, Beena Kishore, and Pyara Dhillon

Benchmarking Inference Algorithms for Probabilistic Relational Models 195
Tristan Potten and Tanya Braun

Analyzing Psychological Similarity Spaces for Shapes 204
Lucas Bechberger and Margit Scheibel

Author Index . 209

xxiv Contents

Knowledge Bases

A Formalism Unifying Defeasible Logics
and Repair Semantics for Existential

Rules

Abdelraouf Hecham1, Pierre Bisquert2(B), and Madalina Croitoru1

1 INRIA GraphIK, Université de Montpellier, Montpellier, France
{hecham,croitoru}@lirmm.fr

2 IATE, INRA, INRIA GraphIK, Montpellier, France
pierre.bisquert@inrae.fr

Abstract. Two prominent ways of handling inconsistency provided by
the state of the art are repair semantics and Defeasible Logics. In this
paper we place ourselves in the setting of inconsistent knowledge bases
expressed using existential rules and investigate how these approaches
relate to each other. We run an experiment that checks how human
intuitions align with those of either repair-based or defeasible methods
and propose a new semantics combining both worlds.

1 Introduction

Conflicts in knowledge representation cause severe problems, notably due the
principle of explosion (from falsehood anything follows). These conflicts arise
from two possible sources: either the facts are incorrect (known as inconsistence),
or the rules themselves are contradictory (known as incoherence). In order to
preserve the ability to reason in presence of conflicts, several approaches can be
used, in particular Defeasible Logics [8,18] and Repair Semantics [16]. These two
approaches stem from different needs and address conflicts in different ways. A
key difference between defeasible logics and Repair Semantics is that the first
was designed for incoherence while the latter was designed for inconsistence.
However, since inconsistence is a special type of incoherence [11], defeasible log-
ics can be applied to inconsistent but coherent knowledge, and thus be compared
to the Repair Semantics. In this paper we want to investigate how the different
intuitions of defeasible logics and Repair Semantics relate to each other. In order
to attain the above mentioned objective, we make use of a combinatorial struc-
ture called Statement Graph [13]. Statement Graphs have been defined as way to
reason defeasibly with existential rules using forward chaining. The reasoning is
based on labeling functions shown to correspond to various flavors of Defeasible
Logics. This paper proposes a new labeling for Repair Semantics and paves the
way to combine both conflict-tolerant approaches in one unifying formalism.

c© Springer Nature Switzerland AG 2020
M. Alam et al. (Eds.): ICCS 2020, LNAI 12277, pp. 3–17, 2020.
https://doi.org/10.1007/978-3-030-57855-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57855-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-57855-8_1

4 A. Hecham et al.

2 Logical Language

We consider a first order language �L with constants but no other function symbol
composed of formulas built with the usual quantifiers (∃,∀) and the connectives
(→,∧), on a vocabulary constituted of infinite sets of predicates, constants and
variables. A fact is a ground atom (an atom with only constants) or an exis-
tentially closed atom. An existential rule (a.k.a. a tuple generating dependency)
r is a formula of the form ∀X,Y

(B(X,Y) → ∃Z H(X,Z)
)

where X,Y are
tuples of variables, Z is a tuple of existential variables, and B, H are finite non-
empty conjunctions of atoms respectively called body and head of r and denoted
Body(r) and Head(r). In this paper we consider rules with atomic head (any
rule can be transformed into a set of rules with atomic head [4]). A negative
constraint is a rule of the form ∀X B(X) → ⊥ where B is a conjunction of
atoms and X is a set of variables with possibly constants. Negative constraints
are used to express conflicts. In this paper, we take into account binary negative
constraints, which contain only two atoms in their body.1 A knowledge base is
a tuple KB = (F ,R,N) where F is a finite set of facts, R is a finite set of rules,
and N is a finite set of negative constraints.

We denote the set of models of a knowledge base by models(F ,R ∪ N).
A derivation is a (potentially infinite) sequence of tuples Di = (Fi, ri, πi)

composed of a set of facts Fi, a rule ri and a homomorphism πi from Body(ri)
to Fi, where D0 = (F , ∅, ∅) and such that Fi results from the application of
rule ri to Fi−1 according to πi, i.e. Fi = α(Fi−1, ri, πi). A derivation from a set
of facts F to a fact f is a minimal sequence of rules applications starting from
D0 = (F0 ⊆ F , ∅, ∅) and ending with Dn = (Fn, rn, πn) such that f ∈ Fn.

A chase (a.k.a. forward chaining) is the exhaustive application of a set of
rules over a set of facts in a breadth-first manner (denoted chase(F ,R)) until no
new facts are generated, the resulting “saturated” set of all initial and generated
facts is denoted F∗. While this is not always guaranteed to stop, certain recog-
nizable classes of existential rules that are decidable for forward chaining have
been defined [3]; we limit ourselves to the recognizable FES (Finite Expansion
Set) class [5] and use Skolem chase [17]. We consider ground atomic queries.
We denote that a query is entailed from a knowledge base KB by KB |= Q
(equivalent to chase(F ,R) |= Q [9]).

Inconsistence vs. Incoherence. Conflicts appear in a knowledge base when-
ever a negative constraint becomes applicable: we say that two facts f1 and f2
are in conflict if the body of a negative constraint can be mapped to {f1, f2}.
There are two possible sources of conflicts, either the facts are incorrect (known
as inconsistence), or the rules themselves are contradictory (known as inco-
herence). A KB = (F ,R,N) is inconsistent iff it has an empty set of models
(i.e. models(F ,R ∪ N) = ∅). A knowledge base is incoherent iff R ∪ N are
unsatisfiable, meaning that there does not exist any set of facts S (even outside

1 It should be noted that this restriction does not lead to a loss of expressive power,
as [2] shows.

A Formalism Unifying Defeasible Logics and Repair Semantics 5

the facts of the knowledge base) where all rules in R are applicable such that
models(S,R ∪ N) �= ∅ [11].

Example 1 (Inconsistence). Consider the following KB = (F ,R,N) that
describes a simplified legal situation: If there is a scientific evidence incrimi-
nating a defendant then he is responsible for the crime, if there is a scientific
evidence absolving a defendant then he is not responsible for the crime. A defen-
dant is guilty if responsibility is proven. If a defendant is guilty then he will be
given a sentence. If a defendant has an alibi then he is innocent. There is a scien-
tific evidence “e1” incriminating a female defendant “alice”, while another sci-
entific evidence “e2” is absolving her of the crime. She also has an alibi. Is Alice
innocent (i.e. Q1 = innocent(alice))? Is she guilty (i.e. Q2 = guilty(alice))?

– F = {incrim(e1, alice), absolv(e2, alice), alibi(alice), female(alice)}
– R = {r1 : ∀X,Y incrim(X,Y) → resp(Y),

r2 : ∀X,Y absolv(X,Y) → notResp(X),
r3 : ∀X resp(X) → guilty(X),
r4 : ∀X alibi(X) → innocent(X),
r5 : ∀X guilty(X) → ∃Y sentence(X,Y)}

– N = {∀X resp(X) ∧ notResp(X) → ⊥,
∀X guilty(X) ∧ innocent(X) → ⊥}

The saturated set of facts resulting from the chase is

– F∗ = {incrim(e1, alice), absolv(e2, alice), alibi(alice), female(alice),
resp(alice), notResp(alice), guilty(alice), innocent(alice), sentence(alice,
null1)}.
This knowledge base is inconsistent, because a negative constraint is appli-

cable, (thus models(F ,R ∪ N) = ∅). This inconsistency is due to an erroneous
set of facts (either one of the evidences, the alibi, or all of them are not valid).
The classical answer to the Boolean queries Q1 and Q2 is “true” (i.e. Alice
is guilty and innocent), because from falsehood, anything follows. However, the
knowledge base is coherent because the set of rules are satisfiable i.e. there exists
a set of facts (e.g. F ′ = {incrim(e1,bob), absolv(e3,alice), alibi(alice)}) such
that all rules are applicable and models(F ′,R ∪ N)) �= ∅.

Inconsistency Handling. Defeasible Logics and Repair Semantics are two
approaches to handle conflicts. Defeasible Logics are applied to potentially inco-
herent situations were two types of rules are considered: strict rules expressing
undeniable implications (i.e. if B(r) then definitely H(r)), and defeasible rules
expressing weaker implications (i.e. if B(r) then generally H(r)). In this con-
text, contradictions stem from either relying on incorrect facts, or from having
exceptions to the defeasible implications.

Repair Semantics are applied to situations where rules are assumed to hold
in the true state of affair and hence inconsistencies can only stem from incorrect
facts. A repair D is an inclusion-maximal subset of the facts D ⊆ F that is

6 A. Hecham et al.

consistent with the rules and negative constraints (i.e. models(D,R ∪ N) �= ∅).
We denote the set of repairs of a knowledge base by repairs(KB). In presence of
an incoherent set of rules, Repair Semantics yield an empty set of repairs [10].

3 Statement Graphs for Defeasible Reasoning

A Statement Graph (SG) [13] is a representation of the reasoning process hap-
pening inside a knowledge base, it can be seen as an updated Inheritance Net
[15] with a custom labeling function. An SG is built using logical building blocks
(called statements) that describe a situation (premises) and a rule that can be
applied on that situation.

A statement s is a pair that is either a ‘query statement’ (Q, ∅) where Q
is a query, a ‘fact statement’ (�, f) where f is a fact, or a ‘rule application
statement’ (Φ,ψ) that represents a rule application α(F , r, π) s.t. π(B(r)) = Φ
and π(H(r)) = ψ. We denote by Prem(s) the first element of the statement
and by Conc(s) the second element. A statement can be written as Prem(s) →
Conc(s).

A statement s1 supports another statement s2 iff ∃f ∈ Prem(s2) s.t.
Conc(s1) = f . A statement s1 attacks s2 ∃f ∈ Prem(s2) s.t. Conc(s1) and
f are in conflict.

Statements are generated from a knowledge base, they can be structured in
a graph according to the support and attack relations they have between each
other.

Definition 1 (Statement Graph). A Statement Graph of a KB = (F ,R,N)
is a directed graph SGKB = (V, EA, ES): V is the set of statements generated
from KB; EA ⊆ V × V is the set of attack edges and ES ⊆ V × V is the set of
support edges.

For an edge e = (s1, s2), we denote s1 by Source(e) and s2 by Target(e). For
a statement s we denote its incoming attack edges by E−

A (s) and its incoming
support edges by E−

S (s). We also denote its outgoing attack edges by E+
A (s) and

outgoing support edges by E+
S (s).

A Statement Graph (SG) is constructed from the chase of a knowledge base.
Starting facts are represented by fact statements and rule applications are rep-
resented using rule application statements. Figure 1 shows SG of Example 1.

An SG provides statements and edges with a label using a labeling func-
tion. Query answering can then be determined based on the label of the query
statement. Continuing the previous example, in an ambiguity propagating
setting (such as [12]), innocent(alice) is ambiguous because guilty(alice) can
be derived, thus the ambiguity of guilty(alice) is propagated to innocent(alice)
and consequently KB �prop innocent(alice) and KB �prop guilty(alice) (�prop

denotes entailment in ambiguity propagating). On the other hand, in an ambi-
guity blocking setting (such as [18]), the ambiguity of resp(alice) blocks
any ambiguity derived from it, meaning that guilty(alice) cannot be used
to attack innocent(alice). Therefore innocent(alice) is not ambiguous, thus

A Formalism Unifying Defeasible Logics and Repair Semantics 7

� → female(alice)

female(alice), ∅

innocent(alice), ∅

sentence(alice, null1), ∅

� → alibi(alice)

alibi(alice) → innocent(alice) resp(alice) → guilty(alice)

guilty(alice) → sentence(alice, null1)

incrim(e1, alice) → resp(alice) absolv(e2, alice) → notResp(alice)

� → incrim(e1, alice) � → absolv(e2, alice)

Fig. 1. Example 1’s Statement Graph (fact statements are gray).

KB �block innocent(alice) and KB �block guilty(alice) (�block denotes entail-
ment in ambiguity blocking). The labeling function ‘PDL’ (Propagating Defea-
sible Logic) was proposed for Statement Graphs in [13] that yields equivalent
entailment results to Defeasible Logics with ambiguity propagating [1]. Similar-
ily, the labeling function ‘BDL’ (Blocking Defeasible Logic) was proposed by
[13] to obtain entailment results equivalent to Defeasible Logics with ambiguity
blocking [7].

4 Statement Graphs for Repair Semantics

In this paper we focus on two well-known semantics for inconsistent databases:
IAR and ICAR repair Semantics. The Intersection of All Repairs semantic [16] is
the most skeptical of the Repair Semantics. A query Q is IAR entailed (KB �IAR

Q) iff it is classically entailed by the intersection of all repairs constructed from
the starting set of facts (i.e.

⋂
repairs(KB)∪R � Q). The Intersection of Closed

ABox Repairs semantic [16] computes the repairs of the saturated set of facts.
A query Q is ICAR entailed KB �ICAR Q iff it is classically entailed by the set
of facts in the intersection of the repairs constructed after generating all facts.

Example 2. Consider the KB in Example 1. The repairs constructed from the
starting set of facts are:

– D1={absolv(e2, alice), alibi(alice), female(alice)}
– D2 = {incrim(e1, alice), female(alice)}

8 A. Hecham et al.

D1 ∩ D2 = {female(alice)} therefore only female(alice) is entailed: KB �IAR

female(alice). The repairs constructed from the saturated set of facts are:

– D′
1 = {absolv(e2, alice), alibi(alice), female(alice), notResp(alice),

sentence(alice, null1)}
– D′

2 = {incrim(e1, alice), female(alice), resp(alice), guilty(alice),
sentence(alice, null1)}

D′
1 ∩ D′

2 = {female(alice), sentence(alice, null1)} thus KB �ICAR

female(alice) ∧ sentence(alice, null1).

4.1 New Labeling for IAR Semantics

The intuition behind IAR is to reject any fact that can be used to generate
conflicting atoms, meaning that only the facts that produce no conflict will be
accepted. From an SG point of view, any statement that is attacked, or that
supports statements that lead by an attack or support edge to an attacked
statement is discarded. This can be obtained by first detecting all conflicts, then
discarding any statement that either leads to a conflict or is generated from
conflicting atoms. In order to detect conflicts using Statement Graphs, we need
to ensure that all conflicts are represented. Given that statements attack each
other on the premise, it is necessary to handle in a particular way statements
with no outgoing edges (i.e. statements that do not support or attack other
statements) as they might still generate conflicting atoms. That is why any
statement with no outgoing edges must be linked to a query statement. We first
apply PDL to detect ambiguous statements, then backwardly broadcast this
ambiguity to any statement that is linked (by a support or attack edge) to an
ambiguous statement (cf. Fig. 2). Labelings for Defeasible Logics start from fact
statements and propagate upward towards query statements, however, for Repair
Semantics, the labelings have to conduct a second pass from query statements
and propagate downward towards fact statements. We use the labeling function
‘IAR’ to obtain entailment results equivalent to IAR [16]. IAR is defined as
follows: edges have the same (i.e. given an edge e, IAR(e) = IAR(Source(e)).
Given a statement s:

(a) IAR(s) = IN iff IAR(s) �= AMBIG and PDL(s) = IN .
(b) IAR(s) = AMBIG iff either PDL(s) = AMBIG or ∃e ∈ E+

S (s) ∪ E+
A (s)

such that IAR(Target(e)) = AMBIG.
(c) IAR(s) = OUT iff PDL(s) = OUT .

A statement is labeled AMBIG if it was labeled ambiguous by PDL or if it
leads to an ambiguous statement. Otherwise, it is IN if it has an IN complete
support and is not attacked (i.e. PDL labels it IN).

In the following proposition, we will denote by SGIAR
KB an SG built on the

KB KB that uses the ICAR labeling function and by SGIAR
KB 〈s〉 the label of a

statement s.

A Formalism Unifying Defeasible Logics and Repair Semantics 9

� → female(alice)
IN

female(alice), ∅
IN

innocent(alice), ∅
AMBIG

sentence(alice, null1), ∅
AMBIG

� → alibi(alice)
AMBIG

alibi(alice) → innocent(alice)
AMBIG

resp(alice) → guilty(alice)
AMBIG

guilty(alice) → sentence(alice, null1)
AMBIG

incrim(e1, alice) → resp(alice)
AMBIG

absolv(e2, alice) → notResp(alice)
AMBIG

� → incrim(e1, alice)
AMBIG

� → absolv(e2, alice)
AMBIG

AMBIG AMBIG

AMBIG

AMBIG AMBIG

AMBIG
AMBIG

IN

AMBIG

AMBIG
AMBIG

Fig. 2. IAR applied to Example 1’s Statement Graph.

Proposition 1. Let f be a fact in a KB that contains only defeasible facts
and strict rules. KB �IAR f iff SGIAR

KB 〈(f, ∅)〉 = IN and KB �IAR f iff
SGIAR

KB 〈(f, ∅)〉 ∈ {AMBIG, OUT}.
We split the proof of (1.) in two parts, first we prove by contradiction that

if KB �IAR f then SGIAR
KB 〈(f, ∅)〉 = IN: Suppose we have a fact f such that

KB �IAR f and SGIAR
KB 〈(f, ∅)〉 �= IN:

1. KB �IAR f means that there is a derivation for f from an initial set of facts
T ⊆ F and there is no consistent set of initial facts S ⊆ F such that S ∪ T
is inconsistent (i.e. models(S,R ∪ N) �= ∅ and models(S ∪ T,R ∪ N) = ∅),
which means that there is no derivation for an atom conflicting with an atom
used in the derivation for f i.e. f is not generated from or used to generate
ambiguous atoms, thus PDL((f → ∅)) = IN.

2. SGIAR
KB 〈(f, ∅)〉 �= IN means that either:

(a) SGIAR
KB 〈(f, ∅)〉 = OUT which is impossible given 1. (i.e. PDL(f, ∅) = IN)

(b) or SGIAR
KB 〈(f, ∅)〉 = AMBIG which means either:

i. PDL(f, ∅) = AMBIG (impossible given 1.),
ii. or ∃e ∈ E+

S (s) ∪ E+
A (s) such that IAR(Target(e)) = AMBIG which

means that f is used to generate ambiguous atoms (impossible given
1.).

Now we prove by contradiction that if SGIAR
KB 〈(f, ∅)〉 = IN then KB �IAR f :

Suppose we have a fact f such that SGIAR
KB 〈(f, ∅)〉 = IN and KB �IAR f :

1. SGIAR
KB 〈(f, ∅)〉 = IN means that IAR(f, ∅) �= AMBIG and PDL(f, ∅) = IN,

which means that (f, ∅) is not attacked (i.e. there is no derivation for an atom

10 A. Hecham et al.

conflicting with f) and is not used to generate conflicting atoms (no outgoing
edge leads to an AMBIG statement).

2. KB �IAR f means that either f is generated by conflicting atoms (impossible
given 1.) or is used to generate conflicting atoms (impossible given 1.).

From (1.) the proposition (2.) directly holds (SGIAR
KB 〈(f → ∅)〉 �= IN means

SGIAR
KB 〈(f → ∅)〉 ∈ {AMBIG, OUT} given that IAR is a function).

4.2 New Labeling for ICAR Semantics

The intuition behind ICAR is to reject any fact that is used to generate conflict,
while accepting those that do not (even if they were generated after a conflict).
From an SG point of view, any statement that is attacked or that supports
statements that lead to an attack is considered “ambiguous”. This is done by
first applying PDL to detect ambiguous and accepted statements then the ICAR
labeling starts from query statements and propagates downward towards fact
statements (cf. Fig. 3). We use the labeling function ‘ICAR’ to obtain entailment
results equivalent to ICAR [16]. ICAR is defined as follows: given an edge e,
ICAR(e) = ICAR(Source(e)). Given a statement s:

(a) ICAR(s) = IN iff ICAR(s) �= AMBIG and PDL(s) ∈ {IN, AMBIG}.
(b) ICAR(s) = AMBIG iff

1. either PDL(s) = AMBIG and ∃e ∈ E−
A (s) s.t. PDL(e) ∈ {IN, AMBIG},

2. or ∃e ∈ E+
S (s) ∪ E+

A (s) such that ICAR(Target(e)) = AMBIG.
(c) ICAR(s) = OUT iff PDL(s) = Out.

A statement is labeled AMBIG if it was labeled ambiguous by PDL and it
is attacked, or if it leads to an ambiguous statement. It is labeled IN if it was
labeled IN or AMBIG by PDL and does not lead to an ambiguous statement.

In the following proposition, we will denote by SGICAR
KB an SG built on the

KB KB that uses the ICAR labeling function and by SGICAR
KB 〈s〉 the label of a

statement s.

Proposition 2. Let f be a fact in a KB that contains only defeasible facts and
strict rules: KB �ICAR f iff SGICAR

KB 〈(f, ∅)〉 = IN and KB �ICAR f iff
SGICAR

KB 〈(f, ∅)〉∈{AMBIG, OUT}.
We split the proof of (1.) in two parts, first we prove by contradiction that

if KB �ICAR f then SGICAR
KB 〈(f, ∅)〉 = IN. Suppose we have a fact f such that

KB �ICAR f and SGICAR
KB 〈(f, ∅)〉 �= IN:

1. KB �ICAR f means that there is a derivation for f and there is no consistent
set of facts S ⊆ F∗ such that S ∪ {f} is inconsistent (models(S,R ∪ N) �= ∅
and models(S ∪ {f},R ∪ N) = ∅) i.e. f is not used to generate ambiguous
atoms.

2. SGICAR
KB 〈(f, ∅)〉 �= IN means that either:

(a) SGICAR
KB 〈(f, ∅)〉 = OUT which is impossible given 1. (there is a derivation

for f i.e. PDL(f, ∅) ∈ {IN,AMBIG}).

A Formalism Unifying Defeasible Logics and Repair Semantics 11

� → female(alice)
IN

female(alice), ∅
IN

innocent(alice), ∅
AMBIG

sentence(alice, null1), ∅
IN

� → alibi(alice)
AMBIG

alibi(alice) → innocent(alice)
AMBIG

resp(alice) → guilty(alice)
AMBIG

guilty(alice) → sentence(alice, null1)
AMBIG

incrim(e1, alice) → resp(alice)
AMBIG

absolv(e2, alice) → notResp(alice)
AMBIG

� → incrim(e1, alice)
AMBIG

� → absolv(e2, alice)
AMBIG

AMBIG AMBIG

AMBIG

AMBIG AMBIG

AMBIG
AMBIG

IN

AMBIG

AMBIG
AMBIG

Fig. 3. ICAR applied to Example 1’s Statement Graph.

(b) or SGICAR
KB 〈(f, ∅)〉 = AMBIG which means either:

i. PDL(f, ∅) = AMBIG and there is an edge attacking it (impossible
given 1. i.e. there is no derivable conflicting atom with f).

ii. or ∃e ∈ E+
S (s) ∪ E+

A (s) such that ICAR(Target(e)) = AMBIG which
means that f is used to generate ambiguous atoms (impossible given
1.).

Now we prove by contradiction that if SGICAR
KB 〈(f, ∅)〉 = IN then KB �ICAR

f : Suppose we have a fact f such that SGICAR
KB 〈(f, ∅)〉 = IN and KB �ICAR f :

1. SGICAR
KB 〈(f, ∅)〉 = IN means that ICAR(f, ∅) �= AMBIG and PDL(f, ∅) ∈

{IN,AMBIG}, which means that (f, ∅) is not attacked (i.e. there is no deriva-
tion for an atom conflicting with f) and it is used to generate ambiguous
atoms (no outgoing edge leads to an AMBIG statement).

2. KB �ICAR f means that either f is not derivable (impossible given 1. since
PDL(f, ∅) ∈ {IN,AMBIG}), or there is a derivation for an atom conflicting
with f , or f is used to generate ambiguous atoms (impossible given 1.).

From (1.) the proposition (2.) directly holds (SGICAR
KB 〈(f, ∅)〉 �= IN means

SGICAR
KB 〈(f, ∅)〉 ∈ {AMBIG, OUT} given that ICAR is a function).

5 Human Intuitions for Conflict Management

The contribution of the paper is two fold. On one hand we have provided new
labelings for Statement Graphs shown to capture repair semantics. In this section

12 A. Hecham et al.

we go one step further and show (1) there is practical value into combining
defeasible reasoning and repair semantics and (2) provide a Statement Graph
labeling for this new semantics.

In order to get an idea of what intuitions humans follow in an abstract
context, we ran an experiment with 41 participants in which they were told to
place themselves in the shoes of an engineer trying to analyze a situation based
on a set of sensors. These sensors (with unknown reliability) give information
about the properties of an object called “o”, e.g. “Object ‘o’ has the property
P” (which could be interpreted for example as ‘o’ is red). Also, as an engineer,
they have a knowledge that is always true about the relations between these
properties, e.g. “All objects that have the property P, also have the property
Q”. Some of the properties cannot be true at the same time on the same object,
e.g. “An object cannot have the properties P and T at the same time”. Using
abstract situations allowed us to avoid unwanted effects of a priori knowledge
while at the same time representing formal concepts (facts, rules and negative
constraints) in a textual simplified manner. A transcript of the original text that
the experiment participants have received is shown in the following Example 3.

Example 3 (Situation 1). Textual representation: Three sensors are respec-
tively indicating that “o” has the properties S, Q, and T. We know that any
object that has the property S also has the property V. Moreover, an object can-
not have the properties S and Q at the same time, nor the properties V and T at
the same time. Question: Can we say that the object “o” has the property T?

Let us also provide here the logical representation of the above text. Please
note that the participants have not also received the logical transcript.

– F = {s(o), q(o), t(o)}

– R = {∀X s(X) → v(X)}

– N = {∀X s(X) ∧ q(X) → ⊥,
∀X v(X) ∧ t(X) → ⊥}

– Query Q = t(o)

Participants were shown in a random order 5 situations containing inconsis-
tencies. For each situation, the participant was presented with a textual descrip-
tion of an inconsistent knowledge base and a query. Possible answers for a query
is “Yes” (entailed) or “No” (not entailed). The 41 participants are second year
university students in computer science, 12 female and 29 male aged between 17
and 46 years old.

Table 1 presents the situations and the semantics under which their queries
are entailed (�) or not entailed (−). The “% of Yes” column indicates the
percentage of participants that answered “Yes”. The aim of each situation is
to identify if a set of semantics coincides with the majority, for example the
query in Situation 1 (Example 3) is only entailed under �block

2. Not all cases
can be represented, for example �IAR f and �prop f , due to productivity (c.f.
Sect. 4.2).

2 Situations and detailed results are available at https://www.dropbox.com/s/
4wkblgdx7hzj7s8/situations.pdf.

https://www.dropbox.com/s/4wkblgdx7hzj7s8/situations.pdf
https://www.dropbox.com/s/4wkblgdx7hzj7s8/situations.pdf

A Formalism Unifying Defeasible Logics and Repair Semantics 13

Table 1. Situations entailment and results.

Situations �block �prop �IAR �ICAR % of “Yes” �block
IAR

#1 � − − − 73.17% �
#2 � � − − 21.95% −
#3 � � − � 21.95% −
#4 − − − � 4.87% −
#5 � � � � 78.04% �

From the results in Table 1, we observe that blocking and IAR are the most
intuitive (Situations 1 and 5), however blocking alone is not sufficient as shown
by Situations 2 and 3, and IAR alone is not sufficient either (Situation 1). One
possible explanation is that participants are using a semantics that is a mix of
IAR and ambiguity blocking (�block

IAR). Such a semantics is absent from the lit-
erature as it is interestingly in between Repair Semantics and Defeasible Logics.
Please note that we do not argue that this particular semantics is better than
existing ones, our aim is to bridge Defeasible Logics and Repair Semantics by
defining new inference relations based on intuitions coming from both of them,
and then studying properties of these new inference relations.

5.1 New Semantics for Reasoning in Presence of Conflict

The intuition behind this new semantics is to apply IAR or ICAR on an SG
which has been labeled using BDL rather than PDL. This would amount to
replacing PDL by BDL in the definitions of IAR and ICAR. As it turns out,
IAR with BDL fully coincides with the answers given by the majority of the
participants in our experiment. To illustrate this semantics, consider Example 4.

Example 4. Applying IAR with ambiguity blocking on Example 1’s SG gives
KB �block

IAR female(alice)∧alibi(alice)∧innocent(alice). Note that the difference
with BDL is that KB �

block
IAR incrim(e1, alice) and KB �

block
IAR absolv(e2, alice).

The difference with IAR is that KB �IAR alibi(alice) and KB �IAR

innocent(alice).

Let us now analyse the productivity and complexity of new semantics. We
say that a semantics �1 is less productive than �2 (represented as �1→ �2) if,
for every KB and every f , it results in fewer conclusions being drawn (i.e. if
KB �1 f then KB �2 f). Productivity comparison of Repair Semantics has been
discussed in [6] while the productivity between Defeasible Logics semantics can
be extracted from the inclusion theorem in [8]. It can be seen that �IAR → �prop

since �prop only rejects facts that are challenged or generated from challenged
facts, while �IAR also rejects facts that would lead to a conflict. The results
from the following Proposition 3 are summarized in Fig. 4.

Proposition 3. Let KB be a knowledge base with only defeasible facts and strict
rules. Given a fact f :

14 A. Hecham et al.

1. if KB �IAR f then KB �prop f
2. if KB �IAR f then KB �block

IAR f
3. if KB �block

IAR f then KB �block f
4. if KB �block

IAR f then KB �block
ICAR f

5. if KB �ICAR f then KB �block
ICAR f

We prove (1.) by contradiction. Suppose there is a fact f such that KB �IAR

f and KB �prop f . KB �IAR f means that there is a derivation for f from an
initial set of facts T ⊆ F and there is no consistent set of initial facts S ⊆ F
such that S ∪ T is inconsistent (i.e. models(S,R ∪ N) �= ∅ and models(S ∪
T,R∪N) = ∅) [16]. This means that f is derivable and does not rely conflicting
facts, therefore the statement (f → ∅) has a complete IN support and no IN
or AMBIG attack edges, i.e. SGPDL

KB 〈(f, ∅)〉 = IN, thus KB �prop f which is a
contradiction.

We prove (2.) by contradiction, suppose we have KB �IAR f and KB �
block
IAR

f :

1. KB �IAR f means that there is a derivation for f from an initial set of facts
T ⊆ F and there is no consistent set of initial facts S ⊆ F such that S ∪ T is
inconsistent (i.e. models(S,R∪N) �= ∅ and models(S∪T,R∪N) = ∅), which
means that f is not generated by conflicting atoms and is not used to generate
conflicting atoms i.e. PDL(f, ∅) = IN which implies that BDL(f, ∅) = IN [8].

2. KB �
block
IAR f means that either BDL(f, ∅) �= IN (impossible given 1.) or f is

used to generate conflicting atoms (impossible given 1.)

We prove (3.) by contradiction, suppose we have KB �block
IAR f and KB �block

f :

1. KB �block
IAR f means that BDL(f, ∅) = IN and f is not used to generate

conflicting atoms.
2. KB �block f means that BDL(f, ∅) �= IN (impossible given 1.).

We prove (4.) by contradiction, suppose we have KB �block
IAR f and KB �

block
ICAR

f :

1. KB �block
IAR f means that BDL(f, ∅) = IN and f is not used to generate

conflicting atoms.
2. KB �

block
ICAR f means that either BDL(f, ∅) �= IN (impossible given 1.) or there

is a derivable atom conflicting with f or f is used to generate conflicting atoms
(impossible given 1.)

We prove (5.) by contradiction, suppose we have KB �ICAR f and
KB �

block
ICAR f :

1. KB �ICAR f means that PDL((f → ∅)) ∈ {IN,AMBIG}, there is no deriv-
able fact conflicting with f , and f is not used to derive conflicting atoms.

2. KB �
block
ICAR f means that BDL((f → ∅)) �= IN and BDL((f → ∅)) = AMBIG

and either there is a derivable fact that is conflicting with f (impossible given
1.) or f is used to generate conflicting atoms (impossible given 1.).

A Formalism Unifying Defeasible Logics and Repair Semantics 15

�block

�prop �AR

�IAR

�ICAR

�CAR

�block
IAR

�block
ICAR

Fig. 4. Productivity and complexity of different semantics under Skolem-FES fragment
of existential rules.

6 Discussion

In this paper we build upon Statement Graphs for existential rules and their
labeling functions for ambiguity blocking, ambiguity propagating [13], and pro-
vide custom labeling functions for IAR, and ICAR. These labelings explicitly
show how to transition from ambiguity propagating to IAR and ICAR, and how
to obtain a combination of blocking with IAR and ICAR. Using an experiment,
we have shown that bringing together Defeasible reasoning and Repair seman-
tics allows for the definition of new and potentially interesting semantics with
respect to human reasoning. Implementing these new labelings, for instance in
the platform presented in [14], would allow to study further the links between
labeling functions and human reasoning.

The modeling choices used in this paper (the use of forward chaining, specific
Repair Semantics, particular intuitions of Defeasible Logics, and no account for
preferences) stem from several rationale. More precisely:

– Skolem chase: the focus on the forward chaining mechanism is due to its abil-
ity to handle transitive rules [19] contrary to backward chaining [3]. Regarding
the choice of chase, we focused on the Skolem chase given its relatively low
cost and its ability to stay decidable for all known concrete classes of the FES
fragment [5].

– Language: Repair Semantics make the assumption of a coherent set of rules
because incoherence might yield to the trivial solution of an empty set of
repairs [10]. Therefore allowing defeasible rules with the restriction of coher-
ence defeats the purpose of having defeasible rules in the first place.

– Considered Repair Semantics: the appeal of IAR and ICAR is in their sim-
plicity and low complexity. Considering other Repair Semantics such as ICR,
AR, etc. would require using and defining a more complex version of SG
and defeasible reasoning such as well founded semantics which is one favored
future research avenue.

– Defeasible reasoning intuitions: ambiguity handling is, of course, not the only
intuition in defeasible reasoning, however other intuitions such as team defeat,
handling of strict rules, etc. are meaningless in this context given the absence
of preferences and defeasible rules. However, floating conclusions are appli-
cable in the considered language, nevertheless, neither Defeasible Logics nor
IAR/ ICAR accept floating conclusion.

16 A. Hecham et al.

Acknowledgement. We would like to thanks the anonymous reviewers for their help-
ful and constructive comments.

References

1. Antoniou, G., Billington, D., Governatori, G., Maher, M.J., Rock, A.: A family
of defeasible reasoning logics and its implementation. In: Proceedings of the 14th
European Conference on Artificial Intelligence, pp. 459–463 (2000)

2. Bacchus, F., Chen, X., van Beek, P., Walsh, T.: Binary vs. non-binary con-
straints. Artif. Intell. 140(1/2), 1–37 (2002). https://doi.org/10.1016/S0004-
3702(02)00210-2

3. Baget, J.F., Garreau, F., Mugnier, M.L., Rocher, S.: Extending acyclicity notions
for existential rules. In: ECAI, pp. 39–44 (2014)

4. Baget, J.F., Garreau, F., Mugnier, M.L., Rocher, S.: Revisiting chase termination
for existential rules and their extension to nonmonotonic negation. arXiv preprint
arXiv:1405.1071 (2014)

5. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential vari-
ables: walking the decidability line. Artif. Intell. 175(9–10), 1620–1654 (2011)

6. Benferhat, S., Bouraoui, Z., Croitoru, M., Papini, O., Tabia, K.: Non-objection
inference for inconsistency-tolerant query answering. In: IJCAI, pp. 3684–3690
(2016)

7. Billington, D.: Defeasible logic is stable. J. Log. Comput. 3(4), 379–400 (1993)
8. Billington, D., Antoniou, G., Governatori, G., Maher, M.: An inclusion theorem

for defeasible logics. ACM Trans. Comput. Log. (TOCL) 12(1), 6 (2010)
9. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for

tractable query answering over ontologies. Web Semant. Sci. Serv. Agents World
Wide Web 14, 57–83 (2012)

10. Deagustini, C.A., Martinez, M.V., Falappa, M.A., Simari, G.R.: On the influence of
incoherence in inconsistency-tolerant semantics for Datalog+-. In: JOWO@ IJCAI
(2015)

11. Flouris, G., Huang, Z., Pan, J.Z., Plexousakis, D., Wache, H.: Inconsistencies,
negations and changes in ontologies. In: Proceedings of the National Conference
on Artificial Intelligence, vol. 21, p. 1295. AAAI Press; MIT Press, Menlo Park,
Cambridge, London (1999, 2006)

12. Governatori, G., Maher, M.J., Antoniou, G., Billington, D.: Argumentation seman-
tics for defeasible logic. J. Log. Comput. 14(5), 675–702 (2004). https://doi.org/
10.1093/logcom/14.5.675.1

13. Hecham, A., Bisquert, P., Croitoru, M.: On a flexible representation of defeasible
reasoning variants. In: Proceedings of the 17th Conference on Autonomous Agents
and MultiAgent Systems, pp. 1123–1131 (2018)

14. Hecham, A., Croitoru, M., Bisquert, P.: DAMN: defeasible reasoning tool for
multi-agent reasoning. In: AAAI 2020–34th AAAI Conference on Artificial Intelli-
gence. Association for the Advancement of Artificial Intelligence, New York, United
States, February 2020. https://hal-lirmm.ccsd.cnrs.fr/lirmm-02393877

15. Horty, J.F., Thomason, R.H., Touretzky, D.S.: A skeptical theory of inheritance in
nonmonotonic semantic networks. Artif. Intell. 42(2–3), 311–348 (1990)

16. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010.
LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15918-3 9

https://doi.org/10.1016/S0004-3702(02)00210-2
https://doi.org/10.1016/S0004-3702(02)00210-2
http://arxiv.org/abs/1405.1071
https://doi.org/10.1093/logcom/14.5.675.1
https://doi.org/10.1093/logcom/14.5.675.1
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02393877
https://doi.org/10.1007/978-3-642-15918-3_9
https://doi.org/10.1007/978-3-642-15918-3_9

A Formalism Unifying Defeasible Logics and Repair Semantics 17

17. Marnette, B.: Generalized schema-mappings: from termination to tractability. In:
Proceedings of the Twenty-Eighth ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, pp. 13–22. ACM (2009)

18. Nute, D.: Defeasible reasoning: a philosophical analysis in prolog. In: Fetzer, J.H.
(ed.) Aspects of Artificial Intelligence. Studies in Cognitive Systems, vol. 1, pp.
251–288. Springer, Dordrecht (1988). https://doi.org/10.1007/978-94-009-2699-
8 9

19. Rocher, S.: Querying existential rule knowledge bases: decidability and complexity.
Ph.D. thesis, Université de Montpellier (2016)

https://doi.org/10.1007/978-94-009-2699-8_9
https://doi.org/10.1007/978-94-009-2699-8_9

Using Grammar-Based Genetic
Programming for Mining Disjointness

Axioms Involving Complex
Class Expressions

Thu Huong Nguyen(B) and Andrea G. B. Tettamanzi

Université Côte d’Azur, CNRS, Inria, I3S, Nice, France
{thu-huong.nguyen,andrea.tettamanzi}@univ-cotedazur.fr

Abstract. In the context of the Semantic Web, learning implicit knowl-
edge in terms of axioms from Linked Open Data has been the object
of much current research. In this paper, we propose a method based on
grammar-based genetic programming to automatically discover disjoint-
ness axioms between concepts from the Web of Data. A training-testing
model is also implemented to overcome the lack of benchmarks and com-
parable research. The acquisition of axioms is performed on a small sam-
ple of DBpedia with the help of a Grammatical Evolution algorithm. The
accuracy evaluation of mined axioms is carried out on the whole DBpedia.
Experimental results show that the proposed method gives high accuracy
in mining class disjointness axioms involving complex expressions.

Keywords: Ontology learning · OWL axiom · Disjointness axiom ·
Genetic programming · Grammatical Evolution

1 Motivation

The growth of the Semantic Web (SW) and of its most prominent implemen-
tation, the Linked Open Data (LOD), has made a huge number of intercon-
nected RDF (Resource Definition Framework) triples freely available for sharing
and reuse. LOD have thus become a giant real-world data resource that can be
exploited for mining implicit knowledge, i.e., for Knowledge Discovery from Data
(KDD). Such wealth of data can be organized and made accessible by ontolo-
gies [1,2], formal representations of shared domains of knowledge, which play
an essential role in data and knowledge integration. Through a shared schema,
ontologies support automatic reasoning such as query answering or classification
over different data sources. In the structure of ontologies, the definition about
the incompatibility between pairs of concepts, in the form of class disjointness
axioms, is important to ensure the quality of ontologies. Specifically, like other
types of axioms, class disjointness axioms allow to check the correctness of a
knowledge base or to derive new information, a task that is sometimes called
knowledge enrichment. For instance, a reasoner will be able to deduce an error,
c© Springer Nature Switzerland AG 2020
M. Alam et al. (Eds.): ICCS 2020, LNAI 12277, pp. 18–32, 2020.
https://doi.org/10.1007/978-3-030-57855-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57855-8_2&domain=pdf
http://orcid.org/0000-0003-3744-0467
http://orcid.org/0000-0002-8877-4654
https://doi.org/10.1007/978-3-030-57855-8_2

Grammar-Based GP for Mining Disjointness Axioms 19

i.e., a logical inconsistency of facts in the ontology, whenever the class Fish is
associated to a resource related to the class Planet, if there is a constraint of
disjointness between the two concepts Fish and Planet.

However, the manual acquisition of axioms, a central task in ontology con-
struction, is exceedingly expensive and time-consuming and mainly depends on
the availability of expert resources, i.e., domain specialists and knowledge engi-
neers. We focus on a subtask of ontology learning, which goes under the name
of axiom learning, and specifically on the learning of class disjointness axioms.
Axiom learning is essentially bottom up. While top-down approaches require
schema-level information built by domain experts to suggest axioms, bottom-up
approaches use learning algorithms and rely on instances from several existing
knowledge and information resources to mine axioms. Axiom learning algorithms
can help alleviate the overall cost of extracting axioms and of building ontologies
in general.

In terms of input data sources for the learning process, supporting dynamic
data sources, where the facts are updated or changed in time, is preferable,
if one wants to achieve scalability and evolution, instead of only focusing on
mostly small and uniform data collections. Such dynamic information can be
extracted from various data resources of LOD, which constitute an open world of
information. Indeed, the advantages of LOD with respect to learning, as argued
in [3], is that it is publicly available, highly structured, relational, and large
compared to other resources.

As a consequence of the general lack of class disjointness axioms in existing
ontologies, learning implicit knowledge in terms of axioms from a LOD repository
in the context of the Semantic Web has been the object of research using several
different methods. Prominent research towards the automatic creation of class
disjointness axioms from RDF facts include supervised classification, like in the
LeDA system [4], statistical schema induction via associative rule mining, like
in the GoldMiner system [5], and learning general class descriptions (including
disjointness) from training data, like in the DL-Learner framework [6]. Further-
more, recent research has proposed using unsupervised statistical approaches like
Formal Concept Analysis (FCA) [7] or Terminological Cluster Trees (TCT) [8],
to discover disjointness axioms.

Along the lines of extensional (i.e., instance-based, bottom-up) methods and
expanding on the Grammatical Evolution(GE) method proposed in [9,10], we
propose a new approach to overcome its limitations as well as to enhance the
diversity of discovered types of axioms. Specifically, a set of axioms with more
diverse topics is generated from a small sample of an RDF dataset which is
randomly extracted from a full RDF repository, more specifically, DBpedia. Also,
the type of mined class disjointness axioms is extended to include the existential
quantification (∃r.C) and value restriction (∀r.C) constructors, where r is a
property and C a class, which cannot be mechanically derived from a given set
of atomic axioms. Indeed, it is not because one knows that, for instance, the
two classes Person and City are disjoint, that one can conclude that, say, Person
and ∀birthPlace.City (i.e., who was born in a city) are disjoint too; indeed we all

20 T. H. Nguyen and A. G. B. Tettamanzi

know they are not! Conversely, knowing that Person and Writer are not disjoint
does not allow us to conclude that Person and ∀author.Writer are not disjoint
either. We propose a specific axiom grammar that generates the axioms of the
type we target. A set of candidate axioms is improved thanks to an evolutionary
process through the use of the evolutionary operators of crossover and mutation.
Finally, the final population of generated axioms is evaluated on the full RDF
dataset, specifically the whole DBpedia, which can be considered as an objective
benchmark, thus eliminating the need of domain experts to assess the quality of
the generated axioms on a wide variety of topics. The evaluation of generated
axioms in each generation of the evolutionary process is thus performed on a
reasonably sized data sample, which alleviates the computational cost of query
execution and enhances the performance of the method. Following [9], we apply a
method based on possibility theory to score candidate axioms. It is important to
mention that, to the best of our knowledge, no other method has been proposed
so far in the literature to mine the Web of data for class disjointness axioms
involving complex class expressions with existential quantifications and value
restrictions in addition to conjunctions.

The rest of the paper is organized as follows: some basics in GE are provided
in Sect. 2. The method to discover class disjointness axioms with a Grammar-
based Genetic Programming approach is presented in Sect. 3. Section 4 describes
the experimental settings. Results are presented and discussed in Sect. 5. A brief
survey of current related work in the field of learning class disjointness axioms
is provided in Sect. 6. Finally, conclusions and directions for future research are
given in Sect. 7.

2 Basic Concepts of Grammar-Based Genetic
Programming

Genetic Programming (GP) [11,12] is an evolutionary approach that extends
genetic algorithms (GA) to allow the exploration of the space of computer pro-
grams. Inspired by biological evolution and its fundamental mechanisms, these
programs are “bred” using iterative improvement of an initially random popu-
lation of programs. That is an evolutionary process. At each iteration, known as
a generation, improvements are made possible by stochastic variation, i.e., by a
set of genetic operators, usually crossover and mutation and probabilistic selec-
tion according to pre-specified criteria for judging the quality of an individual
(solution). According to the levels of fitness, the process of selecting individu-
als, called fitness-based selection, is performed to create a list of better qualified
individuals as input for generating a new set of candidate solutions in the next
generation. The new solutions of each generation are bred by applying genetic
operators on the selected old individuals. Then, replacement is the last step and
decides which individuals stay in a population and which are replaced on a par,
with selection influencing convergence.

A grammar-based form of GP, namely Grammatical Evolution (GE) [13],
differs from traditional GP in that it distinguishes the search space from
the solution space, through the use of a grammar-mediated representation.

Grammar-Based GP for Mining Disjointness Axioms 21

Programs, viewed as phenotypic solutions or phenotypes, are decoded from
variable-length binary strings, i.e., genotypic individuals or genotypes, through
a transformation called mapping process. According to it, the variable-length
binary string genomes, or chromosomes, are split into consecutive groups of
bits, called codons, representing an integer value, used to select, at each step,
one of a set of production rules from a formal grammar, typically in Backus-Naur
form (BNF), which specifies the syntax of the desired programs. A BNF gram-
mar is a context-free grammar consisting of terminals and non-terminals and
being represented in the form of a four-tuple {N,T, P, S}, where N is the sets of
non-terminals, which can be extended into one or more terminals; T is the set of
terminals which are items in the language; P is the set of the production rules
that map N to T ; S is the start symbol and a member of N . When there are
a number of productions that can be used to rewrite one specific non-terminal,
they are separated by the ‘|’ symbol.

In the mapping process, codons are used consecutively to choose production
rules from P in the BNF grammar according to the function:

production = codonmodulo
[
Number of productions
for the current non-
terminal

]
(1)

3 A Grammar-Based GP for Disjointness Axioms
Discovery

We consider axiom discovery as an evolutionary process and reuse the GE
method of [9,10] to mine class disjointness axioms with a few modifications.
As said, we focus on axioms involving class expressions with existential quantifi-
cation and value restriction. Also, a “training-testing” model is applied. Specifi-
cally, the learning process is performed with the input data source derived from
a training RDF dataset, a random sample of DBpedia, whereas the evaluation of
discovered axioms is based on a testing one, namely the full DBpedia. In terms
of GE, axioms are “programs” or “phenotypes”, obeying a given BNF grammar.
A population of candidate genotypic axioms, encoded as variable-length integer
strings, i.e., numerical chromosomes, is randomly generated. Then, a mapping
process based on the BNF grammar is performed to translate these chromosomes
to phenotypic axioms. The set of axioms is maintained and iteratively refined
to discover axioms that satisfy two key quality measures: generality and cred-
ibility. The quality of generated axioms can be enhanced gradually during the
evolutionary process by applying variation operators, i.e., crossover and muta-
tion, on phenotypic axioms. In this section, we first introduce the BNF grammar
construction and a specific example illustrating the decoding phase to form well-
formed class disjointness axioms. A possibilistic framework for the evaluation of
the discovered axioms is then presented in detail.

22 T. H. Nguyen and A. G. B. Tettamanzi

3.1 BNF Grammar Construction

The functional-style grammar1 used by the W3C is applied to design the gram-
mar for generating well-formed OWL class disjointness axioms. Like in [9,10]
and without loss of generality, we only focus on the case of binary axioms of
the form DisjointClasses(C1, C2), where C1 and C2 may be atomic or complex
classes involving relational operators and possibly including more than one single
class identifier, like DisjointClasses(VideoGame,ObjectAllValuesFrom(hasStadium,
Sport)). The structure of the BNF grammar here aims at mining well-formed
axioms expressing the facts, i.e., instances, contained in a given RDF triple
store. Hence, only resources that actually occur in the RDF dataset should be
generated. We follow the approach proposed by [9,10] to organize the structure
of a BNF grammar which ensures that changes in the contents of RDF reposi-
tories will not require the grammar to be rewritten. The grammar is split into
a static and a dynamic part. The static part defines the syntax of the types of
axioms to be extracted. The content of this part is loaded from a hand-crafted
text file. Unlike [9,10], we specify it to mine only disjointness axioms involving
at least one complex axiom, containing a relational operator of existential quan-
tification ∃ or value restriction ∀, i.e., of the form ∃r.C or ∀r.C, where r is a
property and C is an atomic class. The remaining class expression can be an
atomic class or a complex class expression involving an operator out of �, ∃ or
∀. The static part of the grammar is thus structured as follows.

(r1) Axiom := ClassAxiom
(r2) ClassAxiom := DisjointClasses
(r3) DisjointClasses := ’DisjointClasses’ ’(’ ClassExpression1 ’ ’ClassExpression2 ’)’
(r4) ClassExpression1 := Class (0)

| ObjectSomeValuesFrom (1)
| ObjectAllValuesFrom (2)
| ObjectIntersection (3)

(r5) ClassExpression2 := ObjectSomeValuesFrom (0)
| ObjectAllValuesFrom (1)

(r6) ObjectIntersectionOf := ’ObjectIntersectionOf’ ’(’ Class ’ ’ Class ’)’
(r7) ObjectSomeValuesFrom := ’ObjectSomeValuesFrom’ ’(’ ObjectPropertyOf ’ ’ Class ’)’
(r8) ObjectAllValuesFrom := ’ObjectAllValuesFrom’ ’(’ ObjectPropertyOf ’ ’ Class ’)’

The dynamic part contains production rules for the low-level non-terminals,
called primitives in [9,10]. These production rules are automatically filled at
run-time by querying the SPARQL endpoint of the RDF data source at hand.
The data source here is a training RDF dataset and the primitives are Class and
ObjectPropertyOf. The production rules for these two primitives are filled by the
following SPARQL queries to extract atomic classes and properties (represented
by their IRI) from the RDF dataset.

SELECT ?class WHERE { ?instance rdf:type ?class.}
SELECT ?property WHERE { ?subject ?property ?object.

FILTER (isIRI(?object))}

Let us consider an example representing a small sample of an RDF dataset:

1 https://www.w3.org/TR/owl2-syntax/#Disjoint Classes.

https://www.w3.org/TR/owl2-syntax/#Disjoint_Classes

Grammar-Based GP for Mining Disjointness Axioms 23

PREFIX dbr: http://dbpedia.org/resource/
PREFIX dbo: http://dbpedia.org/ontology/
PREFIX dbprop: http://dbpedia.org/property/
PREFIX rdf: http://www.w3.org/1999/02/22\-rdf-syntax-ns\#

dbr:Amblycera rdf:type dbo:Animal.
dbr:Salweenia rdf:type dbo:Plant.
Dbr:Himalayas rdf:type dbo:NaturalPlace.
dbr:Amadeus rdf:type dbo:Work.
dbr:Cat_Napping dbprop:director dbr:William_Hanna.
dbr:With_Abandon dbprop:artist dbr:Chasing_Furies.
dbr:Idris_Muhammad dbprop:occupation dbr:Drummer.
dbr:Genes_Reunited dbo:industry dbr:Genealogy.

The productions for Class and ObjectPropertyOf would thus be:

(r9) Class := dbo:Animal (0) (r10) ObjectPropertyOf := dbprop:director (0)
| dbo:Plant (1) | dbprop:artist (1)
| dbo:NaturalPlace (2) | dbprop:occuptation (2)
| dbo:Work (3) | dbo:industry (3)

3.2 Translation to Class Disjointness Axioms

We illustrate the decoding of an integer chromosome into an OWL class dis-
jointness axiom in functional-style syntax through a specific example. Let the
chromosome be 352, 265, 529, 927, 419. There is only one production for the
non-terminals Axiom, ClassAxiom, DisjointClasses, ObjectIntersectionOf,
ObjectSome- ValuesFrom and ObjectAllValuesFrom as it can be seen from
Rules 1–3, and 6–8. In these cases, we skip using any codons for mapping and
concentrate on reading codons for non-terminals having more than one produc-
tion, like in Rules 4, 5, 9 and 10. We begin by decoding the first codon, i.e. 352,
by Eq. 1. The result, i.e 352 modulo 4 = 0, is used to determine which produc-
tion is chosen to replace the leftmost non-terminal (ClassExpression1) from
its relevant rule (Rule 4). In this case, the leftmost ClassExpression1 will be
replaced by the value of Class. Next, the next codon will determine the pro-
duction rule for the leftmost Class and dbo:Plant is selected by the value from
265 mod 4 = 1. The mapping goes on like this until eventually there is no non-
terminal left in the expression. Not all codons were required and extra codons
have been simply ignored in this case.

3.3 Evaluation Framework

We follow the evaluation framework based on possibility theory, presented in [10]
(see [14] for the theoretical background) to determine the fitness value of gen-
erated axioms in each generation, i.e., the credibility and generality of axioms.
To make the paper self-contained, we recall the most important aspects of the
approach, but we refer the interested reader to [10,14] for an in-depth treatment.

Possibility theory [15] is a mathematical theory of epistemic uncertainty.
Given a finite universe of discourse Ω, whose elements ω ∈ Ω may be regarded
as events, values of a variable, possible worlds, or states of affairs, a possibility
distribution is a mapping π : Ω → [0, 1], which assigns to each ω a degree

24 T. H. Nguyen and A. G. B. Tettamanzi

of possibility ranging from 0 (impossible, excluded) to 1 (completely possible,
normal). A possibility distribution π for which there exists a completely possible
state of affairs (∃ω ∈ Ω : π(ω) = 1) is said to be normalized.

A possibility distribution π induces a possibility measure and its dual neces-
sity measure, denoted by Π and N respectively. Both measures apply to a set
A ⊆ Ω (or to a formula φ, by way of the set of its models, A = {ω : ω |= φ}),
and are usually defined as follows:

Π(A) = max
ω∈A

π(ω); (2)

N(A) = 1 − Π(Ā) = min
ω∈Ā

{1 − π(ω)}. (3)

In other words, the possibility measure of A corresponds to the greatest of the
possibilities associated to its elements; conversely, the necessity measure of A
is equivalent to the impossibility of its complement Ā. A generalization of the
above definition can be obtained by replacing the min and the max operators
with any dual pair of triangular norm and co-norm.

Given incomplete knowledge like RDF datasets, where there exist some miss-
ing and erroneous facts (instances) as a result of the heterogeneous and collab-
orative character of the LOD, adopting an axiom scoring heuristic based on
possibility theory is a well-suited approach. Accordingly, a candidate axiom φ is
viewed as a hypothesis that has to be tested against the evidence contained in
an RDF dataset. Its content is defined as a finite set of logical consequences

content(φ) = {ψ : φ |= ψ}, (4)

obtained through the instantiation of φ to the vocabulary of the RDF repository;
every ψ ∈ content(φ) may be readily tested by means of a SPARQL ASK query.
The support of axiom φ, uφ, is defined as the cardinality of content(φ). The
support, together with the number of confirmations u+

φ (i.e., the number of ψ

for which the test is successful) and the number of counterexamples u−
φ (i.e., the

number of ψ for which the test is unsuccessful), are used to compute a degree of
possibility Π(φ) for axiom φ, defined, for u(φ) > 0, as

Π(φ) = 1 −

√√√√1 −
(

uφ − u−
φ

uφ

)2

.

Alongside Π(φ), the dual degree of necessity N(φ) could normally be defined.
However, for reasons explained in [10], the necessity degree of a formula would
not give any useful information for scoring class disjointness axioms against real-
world RDF datasets. Possibility alone is a reliable measure of the credibility of
a class disjointness axiom, all the more so because (and this is a very important
point), in view of the open world assumption, for two classes that do not share
any instance, disjointness can only be hypothetical (i.e., fully possible, if not
contradicted by facts, but never necessary).

In terms of the generality scoring, an axiom is the more general, the more
facts are in the extension of its components. In [9], the generality of an axiom is

Grammar-Based GP for Mining Disjointness Axioms 25

defined as the cardinality of the sets of the facts in the RDF repository reflecting
the support of each axiom, i.e., uφ. However, in case one of the components of
an axiom is not supported by any fact, its generality should be zero. Hence, the
generality of an axiom should be measured by the minimum of the cardinalities of
the extensions of the two class expressions involved, i.e., gφ = min{‖[C]‖, ‖[D]‖}
where C, D are class expressions. For the above reasons, instead of the fitness
function in [9],

f(φ) = uφ · Π(φ) + N(φ)
2

, (5)

we resorted to the following improved definition, proposed in [10]:

f(φ) = gφ · Π(φ). (6)

The fitness value of a class disjointness axiom DisjointClasses(C,D) (or Dis(C,D)
in Description Logic notation) is measured by defining the numbers of coun-
terexamples and the support. These values are counted by executing the corre-
sponding SPARQL queries based on graph patterns, via an accessible SPARQL
endpoint. Each SPARQL graph pattern here is a mapping Q(E, ?x, ?y) trans-
lated from the corresponding OWL expression in axiom where E is an OWL
expression, x and y are variables such that the query SELECT DISTINCT ?x ?y
WHERE {Q(E, ?x, ?y) } returns all individuals that are instances of E.

The definition of Q(E, ?x, ?y) is based on different kinds of OWL expressions.

– E is an atomic expression.

• For an atomic class A,

Q(A, ?x, ?y) = ?x rdf : type A. (7)

where A is a valid IRI.
• For a simple relation R,

Q(R, ?x, ?y) = ?x R ?y. (8)

where R is a valid IRI.

– E is a complex expression. We only focus on the case of complex class expres-
sions involving relational operators, i.e., intersection, existential quantifica-
tion and value restriction and skip complex relation expressions, i.e., we only
allow simple relations in the expressions. In this case, Q can be inductively
extended to complex expressions:

• if E = C1 � . . . � Cn is an intersection of classes,

Q(E, ?x, ?y) = Q(C1, ?x, ?y) . . . Q(Cn, ?x, ?y). (9)

• if E is an existential quantification of a class expression C,

Q(∃R.C, ?x, ?y) = Q(R, ?x, ?z1) Q(C, ?z1, ?z2) (10)

where R is a simple relation.

26 T. H. Nguyen and A. G. B. Tettamanzi

• if E is a value restriction of a class expression C,

Q(∀R.C, ?x, ?y) = { Q(R, ?x, ?z0)
FILTER NOT EXISTS {

Q(R, ?x, ?z1)
FILTER NOT EXISTS {

Q(C, ?z1, ?z2)
} } } .

(11)

where R is a simple relation.
The support uDis(C,D) can thus be computed with the following SPARQL query:

SELECT (count (DISTINCT ?x AS ?u)WHERE {Q(C, ?x, ?y)
UNION Q(D, ?x, ?y)} (12)

To compute the generality gDis(C,D) = min(uC , uD), uC and uD are required,
which are returned by the following SPARQL queries:

SELECT (count (DISTINCT ?x) AS ?u C)WHERE {Q(C, ?x, ?y)} (13)

SELECT (count (DISTINCT ?x) AS ?u D)WHERE {Q(D, ?x, ?y)} (14)

Finally, we must figure out the number of counterexamples u−
Dis(C,D). Counterex-

amples are individuals i such that i ∈ [Q(C, ?x, ?y)] and i ∈ [Q(D, ?x, ?y)]; this
may be translated into a SPARQL query to compute u−

Dis(C,D):

SELECT (count (DISTINCT ?x) AS ?counters)
WHERE {Q(C, ?x, ?y) Q(D, ?x, ?y)} (15)

4 Experimental Setup

The experiments are divided into two phases: (1) mining class disjointness axioms
with the GE framework introduced in Sect. 3 from a training RDF dataset, i.e., a
random sample of DBpedia 2015-04, and (2) testing the resulting axioms against
the test dataset, i.e., the entire DBpedia 2015-04, which can be considered as an
objective benchmark to evaluate the effectiveness of the method.

4.1 Training Dataset Preparation

We randomly collect 1% of the RDF triples from DBpedia 2015-04 (English
version), which contains 665,532,306 RDF triples, to create the Training Dataset
(TD).2 Specifically, a small linked dataset is generated where RDF triples are
interlinked with each other and the number of RDF triples accounts for 1% of
the triples of DBpedia corresponding to each type of resource, i.e., subjects and
objects. An illustration of this mechanism to extract the sample training dataset
2 Available for download at http://bit.ly/2OtFqHp.

http://bit.ly/2OtFqHp

Grammar-Based GP for Mining Disjointness Axioms 27

Fig. 1. An illustration of the Training Dataset sampling procedure

is provided in Fig. 1. Let r be an initial resource for the extraction process, e.g.,
http://dbpedia.org/ontology/Plant; 1% of the RDF triples having r as their
subject, of the form 〈r p r′〉, and 1% of the triples having r as their object, of
the form 〈r′′ p′ r〉, will be randomly extracted from DBpedia. Then, the same
will be done for every resource r′ and r′′ mentioned in the extracted triples,
until the size of the training dataset reaches 1% of the size of DBpedia. If the
number of triples to be extracted for a resource is less than 1 (according to the
1% proportion), we round it to 1 triple.

We applied the proposed mechanism to extract a training dataset containing
6,739,240 connected RDF triples with a variety of topics from DBpedia.

4.2 Parameters

We use the BNF grammar introduced in Sect. 3.1. Given how the grammar was
constructed, the mapping of any chromosome of length ≥6 will always be suc-
cessful. Hence, we can set maxWrap = 0. We ran our algorithm in 20 different
runs on different parameter settings. In addition, to make fair comparisons pos-
sible, a set of milestones of total effort k (defined as the total number of fitness
evaluations) corresponding to each population size are also recorded for each run,
namely 100,000; 200,000; 300,000 and 400,000, respectively. The maximum num-
bers of generations maxGenerations (used as the stopping criterion of the algo-
rithm) are automatically determined based on the values of the total effort k so
that popSize · maxGenerations = k. The parameters are summarized in Table 1.

4.3 Performance Evaluation

We measure the performance of the method using the entire DBpedia 2015-
04 as a test set, measuring possibility and generality for every distinct axiom
discovered by our algorithm. To avoid overloading DBpedia’s SPARQL endpoint,
we set up a local mirror using the Virtuoso Universal Server.3

3 https://virtuoso.openlinksw.com/.

http://dbpedia.org/ontology/Plant
https://virtuoso.openlinksw.com/

28 T. H. Nguyen and A. G. B. Tettamanzi

5 Results and Discussions

We ran the GE method 20 times with the parameters shown in Table 1 on the
BNF grammar defined in Sect. 3.1. Full results are available online.4

Table 1. Parameter values for GE.

Parameter Value

Total effort k 100,000; 200,000; 300,000; 400,000

initLenChrom 6

pCross 80%

pMut 1%

popSize 1000; 2000; 5000; 10000

Table 2. Number of valid distinct
axioms discovered over 20 runs.

k popSize

1000 2000 5000 10000

100000 8806 11389 4684 4788

200000 6204 13670 10632 9335

300000 5436 10541 53021 14590

400000 5085 9080 35102 21670

The number of valid distinct axioms, i.e., axioms φ such that Π(φ) > 0 and
gφ > 0, discovered is listed in Table 2. For measuring the accuracy of our results,
given that the discovered axioms come with an estimated degree of possibility,
which is essentially a fuzzy degree of membership, we propose to use a fuzzy
extension of the usual definition of precision, based on the most widely used
definition of fuzzy set cardinality, introduced in [16] as follows: given a fuzzy set
F defined on a countable universe set Δ,

‖F‖ =
∑
x∈Δ

F (x), (16)

In our case, we may view Π(φ) as the degree of membership of axiom φ in the
(fuzzy) set of the “positive” axioms. The value of precision can thus be computed
against the test dataset, i.e., DBpedia 2015-04, according to the formula

precision =
‖true positives‖

‖discovered axioms‖ =

∑
φ ΠDBpedia(φ)∑

φ ΠTD(φ)
, (17)

where ΠTD and ΠDBpedia are the possibility measures computed on the training
dataset and DBpedia, respectively.

The results in Table 3 confirm the high accuracy of our axiom discovery
method with a precision ranging from 0.969 to 0.998 for all the different consid-
ered sizes of population and different numbers of generations (reflected through
the values of total effort). According the results, we have statistically compared
the performance of using different settings of popSize and k. The best setting
{popSize = 5,000; k = 300,000} allows the method to discover 53,021 distinct
valid axioms with very high accuracy, i.e., precision = 0.993 ± 0.007. Indeed,
the plot in Fig. 2 illustrating the distribution of axioms in terms of possibility
and generality shows that most discovered axioms with this setting are highly
possible (Π(φ) > 2

3).

4 http://bit.ly/32YEQH1.

http://bit.ly/32YEQH1

Grammar-Based GP for Mining Disjointness Axioms 29

In order to obtain a more objective evaluation, we analyze in detail the
axioms discovered by the algorithm with this best setting. First, we observe
that together with the mandatory class expression containing the ∀ or ∃ oper-
ator, most extracted disjointness axioms contain an atomic class expression.
This may be due to the fact that the support of atomic classes is usually
larger than the support of a complex class expression. We also analyse axioms
containing complex expressions in both their members. These axioms are less
general, even though they are completely possible. An example is the case
with DisjointClasses(ObjectAllValuesFrom(dbprop:author dbo:Place) ObjectAllVal-
uesFrom(dbprop:placeofBurial dbo:Place)) (Π(φ) = 1.0; gφ = 4), which states
that “what can only be buried in a place cannot be what can only have a place
as its author”.

Table 3. Average precision per run (±std)

k popSize

1,000 2,000 5,000 10,000

100,000 0.981 ±
0.019

0.999 ±
0.002

0.998 ±
0.002

0.998 ±
0.003

200,000 0.973 ±
0.024

0.979 ±
0.011

0.998 ±
0.001

0.998 ±
0.002

300,000 0.972 ±
0.024

0.973 ±
0.014

0.993 ±
0.007

0.998 ±
0.001

400,000 0.972 ±
0.024

0.969 ±
0.018

0.980 ±
0.008

0.998 ±
0.001

Fig. 2. Possibility and generality dis-
tribution of the discovered axioms

We also observe that some discovered axioms have a particularly high
generality, as it is the case with DisjointClasses(dbo:Writer ObjectAllValues-
From(dbo:writer dbo:Agent)) (Π(φ) = 0.982; gφ = 79,464). This can be explained
by the existence of classes supported by a huge number of instances (like
dbo:Agent or dbo:Writer). From it, we might say that it is quite possible that
“writers are never written by agents”. Another similar case is axiom Disjoint-
Classes(dbo:Journalist ObjectAllValuesFrom(dbo:distributor dbo:Agent)) (Π(φ) =
0.992; gφ = 32,533) whereby in general “journalists are not distributed by
agents”, although it would appear that some journalists are, since Π(φ) < 1!

Finally, we analyze an example of a completely possible and highly
general axiom, DisjointClasses(dbo:Stadium ObjectAllValuesFrom(dbo:birthPlace
dbo:Place)) (Π(φ) = 1.0; gφ = 10,245), which we can paraphrase as “stadi-
ums cannot have a place as their birthplace”. Knowing that Stadium and Place
are not disjoint, this axiom states that Stadium and ∀birthPlace.Place are in
fact disjoint; in addition, ∀.birthPlace.Place, i.e., “(people) whose birthplace is a
place” is a class with many instances, hence the high generality of the axiom.

30 T. H. Nguyen and A. G. B. Tettamanzi

6 Related Work

Some prominent works are introduced in Sect. 1 and are also analysed in [9,10].
In this paper, we only focus on recent contributions relevant to class disjointness
discovery. For instance, Reynaud et al. [7] use Redescription Mining (RM) to
learn class equivalence and disjointness axioms with the ReReMi algorithm. RM
is about extracting a category definition in terms of a description shared by all
the instances of a given class, i.e., equivalence axioms, and finding incompatible
categories which do not share any instance, i.e., class disjointness axioms. Their
method, based on Formal Concept Analysis (FCA), a mathematical framework
mainly used for classification and knowledge discovery, aims at searching for
data subsets with multiple descriptions, like different views of the same objects.
While category redescriptions, i.e., equivalence axioms, refer to complex types,
defined with the help of relational operators like A ≡ ∃r.C or A ≡ B � ∃r.C,
in the case of incompatible categories, the redescriptions are only based on the
set of attributes with the predicates of dct:subject, i.e., axioms involving atomic
classes only. Another procedure for extracting disjointness axioms [8] requires
a Terminological Cluster Tree (TCT) to search for a set of pairwise disjoint
clusters. A decision tree is built and each node in it corresponds to a concept with
a logical formula. The tree is traversed to create concept descriptions collecting
the concepts installed in the leaf-nodes. Then, by exploring the paths from the
root to the leaves, intensional definitions of disjoint concepts are derived. Two
concept descriptions are disjoint if they lie on different leaf nodes. An important
limitation of the method is the time-consuming and computationally expensive
process of growing a TCT. A small change in the data can lead to a large change
in the structure of the tree. Also, like other intensional methods, that work relies
on the services of a reasoning component, but suffers from scalability problems
for the application to large datasets, like the ones found on the LOD, caused by
the excessive growth of the decision tree.

In [9,10], a heuristic method by using Grammatical Evolution (GE) is applied
to generate class disjointness axioms from an RDF repository. Extracted axioms
include both atomic and complex axioms, i.e., defined with the help of relational
operators of intersection and union; in other words, axioms like Dis(C1, C2),
where C1 and C2 are complex class expressions including � and operators. The
use of a grammar allows great flexibility: only the grammar needs to be changed
to mine different data repositories for different types of axioms. However, the
dependence on SPARQL endpoints (i.e., query engines) for testing mined axioms
against facts, i.e., instances, in large RDF repositories limits the performance of
the method. In addition, evaluating the effectiveness of the method requires the
participation of experts in specific domains, i.e., the use of a Gold Standard,
which is proportional to the number of concepts. Hence, the extracted axioms
are limited to the classes relevant to a small scope of topics, namely the Work
topic of DBpedia.5 Also, complex axioms are defined with the help of relational
operators of intersection and union, which can also be mechanically derived from
the known atomic axioms.

5 https://wiki.dbpedia.org/.

https://wiki.dbpedia.org/

Grammar-Based GP for Mining Disjointness Axioms 31

7 Conclusion

We have proposed an extension of a grammar-based GP method for mining
disjointness axioms involving complex class expressions. These expressions con-
sist of the relational operators of existential quantification and value restriction.
The use of a training-testing model allows to objectively validate the method,
while also alleviating the computational bottleneck of SPARQL endpoints. We
analyzed some examples of discovered axioms. The experimental results confirm
that the proposed method is capable of discovering highly accurate and general
axioms.

In the future, we will focus on mining disjointness axioms involving further
types of complex classes, by bringing into the picture other relational operators
such as owl:hasValue and owl:OneOf. We might also forbid the occurrence of
atomic classes at the root of class expressions. We also plan on refining the
evaluation of candidate axioms with the inclusion of some measurement of their
complexity in the fitness function.

Acknowledgments. This work has been supported by the French government,
through the 3IA Côte d’Azur “Investments in the Future” project managed by the
National Research Agency (ANR) with the reference number ANR-19-P3IA-0002.

References

1. Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Studer,
R. (eds.) Handbook on Ontologies. IHIS, pp. 1–17. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-540-92673-3 0

2. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge
sharing? Int. J. Hum. Comput. Stud. 43(5–6), 907–928 (1995)

3. Zhu, M.: DC proposal: ontology learning from noisy linked data. In: Aroyo, L.,
et al. (eds.) ISWC 2011. LNCS, vol. 7032, pp. 373–380. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25093-4 31

4. Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning disjointness. In: Franconi,
E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72667-8 14

5. Völker, J., Fleischhacker, D., Stuckenschmidt, H.: Automatic acquisition of class
disjointness. J. Web Semant. 35, 124–139 (2015)

6. Lehmann, J.: Dl-learner: learning concepts in description logics. J. Mach. Learn.
Res. 10, 2639–2642 (2009)

7. Reynaud, J., Toussaint, Y., Napoli, A.: Redescription mining for learning defi-
nitions and disjointness axioms in linked open data. In: Endres, D., Alam, M.,
Şotropa, D. (eds.) ICCS 2019. LNCS (LNAI), vol. 11530, pp. 175–189. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-23182-8 13

8. Rizzo, G., d’Amato, C., Fanizzi, N., Esposito, F.: Terminological cluster trees for
disjointness axiom discovery. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoek-
stra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 184–201.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5 12

https://doi.org/10.1007/978-3-540-92673-3_0
https://doi.org/10.1007/978-3-642-25093-4_31
https://doi.org/10.1007/978-3-540-72667-8_14
https://doi.org/10.1007/978-3-030-23182-8_13
https://doi.org/10.1007/978-3-319-58068-5_12

32 T. H. Nguyen and A. G. B. Tettamanzi

9. Nguyen, T.H., Tettamanzi, A.G.B.: Learning class disjointness axioms using gram-
matical evolution. In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., Garćıa-
Sánchez, P. (eds.) EuroGP 2019. LNCS, vol. 11451, pp. 278–294. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-16670-0 18

10. Nguyen, T.H., Tettamanzi, A.G.B.: An evolutionary approach to class disjointness
axiom discovery. In: WI, pp. 68–75. ACM (2019)

11. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

12. Vanneschi, L., Poli, R.: Genetic programming – introduction, applications, theory
and open issues. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural
Computing, pp. 709–739. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-540-92910-9 24

13. O’Neill, M., Ryan, C.: Grammatical evolution. Trans. Evol. Comput. 5(4), 349–358
(2001). https://doi.org/10.1109/4235.942529

14. Tettamanzi, A.G.B., Faron-Zucker, C., Gandon, F.: Possibilistic testing of OWL
axioms against RDF data. Int. J. Approx. Reason. 91, 114–130 (2017)

15. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1,
3–28 (1978)

16. De Luca, A., Termini, S.: A definition of a nonprobabilistic entropy in the setting
of fuzzy sets theory. Inf. Control 20, 301–312 (1972)

https://doi.org/10.1007/978-3-030-16670-0_18
https://doi.org/10.1007/978-3-540-92910-9_24
https://doi.org/10.1007/978-3-540-92910-9_24
https://doi.org/10.1109/4235.942529

An Incremental Algorithm for Computing
All Repairs in Inconsistent Knowledge

Bases

Bruno Yun1(B) and Madalina Croitoru2

1 University of Aberdeen, Aberdeen, UK
bruno.yun@abdn.ac.uk

2 University of Montpellier, Montpellier, France

Abstract. Repair techniques are used for reasoning in presence of incon-
sistencies. Such techniques rely on optimisations to avoid the computa-
tion of all repairs while certain applications need the generation of all
repairs. In this paper, we show that the problem of all repair compu-
tation is not trivial in practice. To account for a scalable solution, we
provide an incremental approach for the computation of all repairs when
the conflicts have a cardinality of at most three. We empirically study its
performance on generated knowledge bases (where the knowledge base
generator could be seen as a secondary contribution in itself).

Keywords: Repairs · Knowledge base · Existential rule

1 Introduction

We place ourselves in the context of reasoning with knowledge bases (KBs)
expressed using Datalog± [11] and investigate inconsistent KBs, i.e. KBs with
the inconsistency solely stemming from the factual level and a coherent ontology.
For instance, a prominent practical application in this setting is Ontology Based
Data Access (OBDA) [22] that considers the querying of multiple heterogeneous
data sources via an unifying ontology. With few exceptions [7], approaches per-
forming query answering under inconsistency in the aforementioned setting rely
on repairs [3]. Repairs, originally defined for database approaches [1] are maxi-
mal subsets of facts consistent with the ontology. Inconsistency tolerant seman-
tics [21] avoid the computational overhead of computing all repairs by various
algorithmic strategies [10]. Unfortunately, certain tasks need the repair enumer-
ation problem, such as inconsistency-based repair ranking frameworks [26] or
argumentation-based decision-making [12,25].

We focus on the problem of computing possibly some or all repairs from
Datalog± inconsistent KBs. Our proposal relies on the notion of conflict (i.e.
set of facts that trigger an inconsistency). Although approaches exist for com-
puting conflicts in SAT instances or propositional logic [16,17], there are few
works addressing conflict computation for Datalog± that come with additional
c© Springer Nature Switzerland AG 2020
M. Alam et al. (Eds.): ICCS 2020, LNAI 12277, pp. 33–47, 2020.
https://doi.org/10.1007/978-3-030-57855-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57855-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-57855-8_3

34 B. Yun and M. Croitoru

challenges given the expressivity of the language [23]. In this paper we extend
the state of the art with a computationally efficient manner to generate the set
of all repairs using an incremental algorithm adapted from stable set compu-
tation in hypergraphs [9]. To this end, we make the hypothesis that the KB
allows for bounded sized conflicts (limited here at three). Our proposed algo-
rithm, in a first step, finds the conflicts of the KBs using specific sequences of
directed hyperedges (derivations) of the Graph of Atom Dependency (GAD) [19]
leading to falsum. In the second step, we use an efficient incremental algorithm
for finding all repairs of a set of facts from the set of conflicts of a given KB.
This efficient algorithm was inspired by the problem of extending a given list
of maximal independent sets in hypergraphs when hyperedges have a bounded
dimension [9]. The aforementioned graph theoretical problem was proven to be
in the NC complexity class if the size of the hyperedges were bounded by three
[9,13] which means that the task can be efficiently solved on a parallel computer
where processors are permitted to flip coins. Please note that although conflicts
of size more than three can easily occur even when the arity of the negative
constraints is limited to two, we do not find that this condition is limiting as, in
reality, it is not unlikely to find KBs with only conflicts of size two.

Therefore, the proposed algorithm is more efficient than the approach of [23]
for two reasons: (1) We do not compute all the “causes” and “consequences”
of all the atoms and restrict ourselves to the derivations that lead to an incon-
sistency. (2) We use an efficient algorithm for incrementally computing repairs
from conflicts.

When implementing our technique we noticed two key aspects of our app-
roach: (1) getting some repairs from a KB can be relatively easy as the aver-
age number of repairs found during the allotted time did not change when the
KB grew and (2) finding the last repairs was comparatively harder than the
first repairs. Please note that although the computational problem of getting all
repairs is in EXPTIME as the number of repairs can be exponential w.r.t. the
number of facts [8], the proposed algorithm has a two fold significance: (1) it
improves upon the state of the art for the task of all repair computation and (2)
it is a viable alternative for applications that require the repair enumeration.

2 Background Notions

We introduce some notions of the Datalog± language. A fact is a ground
atom of the form p(t1, . . . , tk) where p is a predicate of arity k and for every
i ∈ {1, . . . , k}, ti is a constant. An existential rule is of the form r = ∀−→

X,
−→
Y

B[
−→
X,

−→
Y] → ∃−→

Z H[
−→
Z ,

−→
X] where B (called the body) and H (called the head)

are existentially closed atoms or conjunctions of existentially closed atoms and−→
X,

−→
Y ,

−→
Z their respective vectors of variables. A rule is applicable on a set of

facts F iff there exists a homomorphism from the body of the rule to F . Apply-
ing a rule to a set of facts (also called chase) consists of adding the set of atoms
of the conclusion of the rule to the facts according to the application homo-
morphism. Different chase mechanisms use different simplifications that prevent

An Incremental Algorithm for Computing All Repairs 35

infinite redundancies [5]. We use recognisable classes of existential rules where
the chase is guaranteed to stop [5]. A negative constraint is a rule of the form
∀−→
X,

−→
Y B[

−→
X,

−→
Y] → ⊥ where B is an existentially closed atom or conjunctions

of existentially closed atoms,
−→
X,

−→
Y , their respective vectors of variables and ⊥

is falsum.

Definition 1. A KB is a tuple K = (F ,R,N) where F is a finite set of facts,
R a set of rules and N a set of negative constraints.

Example 1. Let K = (F ,R,N) with F = {a(m), b(m), c(m), d(m), e(m), f(m),
g(m), h(m), i(m), j(m)}, R = {∀x(f(x)∧h(x) → k(x)),∀x(i(x)∧ j(x) → l(x))}
and N = {∀x(a(x) ∧ b(x) ∧ c(x) → ⊥),∀x(c(x) ∧ d(x) → ⊥),∀x(e(x) ∧ f(x) ∧
d(x) → ⊥),∀x(e(x) ∧ f(x) → ⊥),∀x(i(x) ∧ k(x) → ⊥),∀x(l(x) ∧ h(x) → ⊥)}.

In a KB K = (F ,R,N), the saturation SatR(X) of a set of facts X is the
set of atoms obtained after successively applying the set of rules R on X until
a fixed point. A set X ⊆ F is R-inconsistent iff falsum can be entailed from the
saturation of X by R∪N , i.e. SatR∪N (X) |= ⊥. A conflict of a KB is a minimal
R-inconsistent subset of facts.

Definition 2. Let us consider K = (F ,R,N). X ⊆ F is a conflict of K iff
SatR∪N (X) |= ⊥ and for every X ′ ⊂ X, SatR∪N (X ′) �|= ⊥.

The set of all conflicts of K is denoted Conflict(K).

Example 2 [(Cont’d Example 1]. We have Conflict(K) = {{a(m), b(m), c(m)},
{c(m), d(m)}, {e(m), f(m)}, {f(m), h(m), i(m)}, {h(m), i(m), j(m)}}. The set
{d(m), e(m), f(m)} is not a conflict since SatR∪N ({e(m), f(m)}) |= ⊥.

To practically compute the conflicts, we use a special directed hypergraph
[14] called the Graph of Atom Dependency (GAD) and defined by [19].

Definition 3. Given a KB K = (F ,R,N), the GAD of K, denoted by GADK, is
a pair (V,D) such that V is the set of atoms in SatR∪N (F) and D = {(U,W) ∈
2V × 2V s.t. there exists r ∈ R ∪ N and a homomorphism π such that W is
obtained by applying r on U using π}.
Example 3 [Cont’d Example 1]. Here, we have that V = {⊥, a(m), b(m),
c(m), . . . , l(m)} and D = {D1,D2, . . . , D8} where D1 = ({f(m), h(m)},
{k(m)}),D2 = ({i(m)}, j(m)}, {l(m)}),D3 = ({a(m), c(m), b(m)}, {⊥}),D4 =
({c(m), d(m)}, {⊥}), D5 = ({k(m), i(m)}, {⊥}), D6 = ({h(m), l(m)},
{⊥}),D7 = ({e(m), f(m)}, {⊥}) and D8 = ({d(m), e(m), f(m)}, {⊥}).

A derivation is a sequence of rule applications such that each rule can be
applied successively. A derivation for a specific atom a is a finite minimal
sequence of rule applications starting from a set of facts and ending with a
rule application that generates a. We now define the notion of fix and repair
w.r.t. a set Y ⊆ 2F of a KB K = (F ,R,N), that will be used in the proposed
algorithms.

36 B. Yun and M. Croitoru

Definition 4. Let F be a set of facts, F ⊆ F is a fix of F w.r.t. Y ⊆ 2F iff
for every X ∈ Y,X ∩ F �= ∅. A fix F of F w.r.t. Y is called a minimal fix of F
w.r.t. Y iff for all F ′ ⊂ F , it holds that F ′ is not a fix of F w.r.t. Y . The set of
all minimal fixes of F w.r.t. Y is denoted by MFix(F , Y).

The notion of KB reparation is linked to that of conflict via the minimal
fixes. We define a repair of a set of facts F w.r.t. a set Y ⊆ 2F .

Definition 5. Let F be a set of facts, X ⊆ F is a repair of F w.r.t. Y ⊆ 2F iff
there exists F ∈ MFix(F , Y) such that X = F \ F .

Please note that there is a bijection between the set of repairs and the set of
minimal fixes of a set F w.r.t. a set Y ⊆ 2F . We denote the set of all repairs of
F w.r.t. Y by Repair(F , Y). Moreover, the repairs of F w.r.t. Conflict(K) are
the maximal, for set inclusion, consistent subsets of F .

3 Repairs Generation

In this section, we detail a framework for computing all maximal consistent sets
of a KB. The approach is given in Algorithm 1 and composed of two steps:

1. (Conflicts Generation). First, the GAD is constructed. Then, all conflicts
are computed by extracting the facts used in the minimal derivations for ⊥.

2. (From Conflicts to Repairs). Second, repairs of F w.r.t. Conflict(K) are
constructed using the FindAllRepairs call. The provided algorithm is efficient
for computing repairs in the case where the conflicts are at most of size 3.

Algorithm 1: Finding all maximal consistent sets of K
input : A KB K = (F ,R,N)
output: A set I of repairs of F w.r.t. Conflict(K)

1 GADK ← GADConstructor(K);
2 C ← FindAllConflicts(K, GADK);
3 Result ← FindAllRepairs(K, C);
4 return Result;

Conflicts are subsets of F but there is not always a negative constraint
directly triggered by the conflict (since the actual “clash” can be between the
atoms generated using rules). These two kinds of conflicts are referred to as
“conflicts” and “naive conflicts” in Rocher [23]. The use of the GAD allows to
keep track of all the rule applications and to propagate those “clashes” into F1.
1 The algorithms avoid the problem of derivation loss [19] which is important for the

completeness of our approach. Note that in Hecham et al. [19] the authors discuss
how finding all derivations for an atom is practically feasible despite the problem
being exponential for combined complexity but polynomial for data complexity.

An Incremental Algorithm for Computing All Repairs 37

FindAllConflicts takes as input a KB K and GADK and outputs the set of
all conflicts of this KB. It is based on three steps: (1) It builds the GAD. This
step has been proven to be efficient as the GAD can be constructed alongside
the chase [18]. (2) The GAD is used for finding the set of all possible minimal
derivations for ⊥. (3) For each derivation for ⊥, the facts in F that enabled the
generation of this derivation are extracted. They correspond to conflicts of K.

Example 4 (Cont’d Example 2). The set of all minimal derivations for ⊥ is
{(D2,D6), (D1,D5), (D7), (D4), (D3)}. The set of conflicts is {{h(m),
i(m), j(m)}, {f(m), h(m), i(m)}, {e(m), f(m)}, {c(m), d(m)}, {a(m), b(m),
c(m)}}.

3.1 From Conflicts to Repairs

Our approach for computing the set of maximal consistent sets of a KB from
the set of conflicts is composed of four algorithms: FindAllRepairs, NewMin-
imalFix, FindRepairs and SubRepair. In order to compute the repairs of F
w.r.t. the set of conflicts of K, we need to first compute the set of all mini-
mal fixes of F w.r.t. Conflict(K). FindAllRepairs computes the repairs of F
w.r.t. Conflict(K) by iteratively computing the set of all minimal fixes of F
w.r.t. Conflict(K) before converting them into repairs of F w.r.t. Conflict(K).
More precisely, FindAllRepairs repeatedly calls NewMinimalFix which returns
a new minimal fix of F w.r.t. Conflict(K) not previously found. The idea behind
NewMinimalF ix is that it produces new sets (U and A) depending on the min-
imal fixes of F w.r.t. Conflict(K) that were previously found. A repair for U
w.r.t. A can be modified in order to return a new fix of F w.r.t. Conflict(K).
Lastly, FindRepair computes a repair for U w.r.t. a set A ⊆ 2U by relying on
SubRepair for iteratively constructing the repair. In the rest of this section, we
detail the general outline of FindAllRepairs and NewMinimalFix.

FindAllRepairs (see Algorithm 2) takes as input a KB K and its set of con-
flicts Conflict(K) and returns the set of all repairs of F w.r.t. Conflict(K). The
sets B and I contain the set of minimal fixes and repairs of F w.r.t. Conflict(K)
respectively and are initially empty. NewMinimalF ix(K, Conflict(K), B) is
called for finding a new minimal fix of F w.r.t. Conflict(K) that is not con-
tained in B. If NewMinimalF ix(K, Conflict(K), B) returns the empty set then
B already contains all possible minimal fixes of F w.r.t. Conflict(K). Otherwise,
the new minimal fix of F w.r.t. Conflict(K) is stored in B and converted into
a repair of F w.r.t. Conflict(K) that is stored in I.

NewMinimalFix (see Algorithm 3) takes as input a KB K, the corre-
sponding set of conflicts Conflict(K) and a set of minimal fixes B of F w.r.t.
Conflict(K) and returns the empty set if B contains all the minimal fixes
of F w.r.t. Conflict(K), otherwise it returns a new minimal fix of F w.r.t.
Conflict(K) that is not contained in B. First, the facts in F that are not in any
conflict of K are removed. By definition, these facts cannot be in a minimal fix
of F w.r.t. Conflict(K). Then, we check whether or not each fact is at least in
one element of B. If this is not the case, we can build a minimal fix of F w.r.t.

38 B. Yun and M. Croitoru

Algorithm 2: FindAllRepairs
input : A KB K = (F ,R,N) and a set of conflicts Conflict(K)
output: A set I of repairs of F w.r.t. Conflict(K)

1 B ← ∅, I ← ∅, stops ← false;
2 while stops = false do
3 MF ← NewMinimalFix(K, Conflict(K), B);
4 if MF = ∅ then
5 stops = true;
6 else
7 B ← B ∪ {MF};
8 I ← I ∪ (F \ MF);

9 return I;

Conflict(K) that is not in B (line 6 to 10). To do so, we first pick an arbitrary
fact u that is not in any set of B. Then, we pick an arbitrary conflict Au con-
taining u and find a repair Rep of U w.r.t. A′ where A′ is the set of restricted
conflicts by U2 where U = F \ Au. The resulting U \ Rep is a minimal fix of U
w.r.t. A′. It is extended to a minimal fix of F w.r.t. Conflict(K) by adding the
fact u. It can thus be added to B as the first minimal fix containing u.

Example 5 (Cont’d Example 4). At step 1 in Table 1, g(m) is removed because
it is in no conflicts. Then, since

⋃
B = ∅ is included in F , an arbitrary fact u =

a(m) in F is picked. Then, an arbitrary conflict Au = {a(m), b(m), c(m)} that
contains u is selected. U = F \ Au is {d(m), e(m), f(m), h(m), i(m), j(m)} and
the restricted set of conflict by U is {{d(m)}, {e(m), f(m)}, {f(m), h(m), i(m)},
{h(m), i(m), j(m)}}. The repair of U w.r.t. A′ returned is {j(m), i(m), f(m)}
which means that {d(m), e(m), h(m)} is a minimal fix of U w.r.t. A′. We conclude
that the set {a(m), d(m), e(m), h(m)} is a minimal fix of F w.r.t. Conflict(K).
This process is repeated by iteratively selecting the facts b(m), c(m), f(m), i(m)
and j(m). As the reader can note, after step 6, we have that

⋃
B = F .

If each fact is at least in one element of B then each conflict a′ of K is a
fix of F w.r.t. B. However, if a′ is not a minimal fix of F w.r.t. B then we can
find u such that a′ \ {u} is still a fix of F w.r.t. B (line 13 to 17). We use the
previous method and find a repair Rep of U w.r.t. A′ where A′ is the restricted
set of conflicts by U with U = F \ (a′ \ {u}). U \ Rep is thus a minimal fix of
U w.r.t. A′ but also a minimal fix of F w.r.t. Conflict(K). In the example, we
skipped this as each a′ in Conflict(K) is a minimal fix of F w.r.t. B.

In the case where each fact is at least in one minimal fix of F w.r.t. B and
each conflict is a minimal fix of F w.r.t. B, we can still find new minimal fix F
w.r.t. Conflict(K) that is not in B (line 18 to 28). We first find subsets S of F

2 The set of restricted conflicts by a set U is the set containing each intersection of a
conflict with U . Namely, it is equal to {X ∩ U | X ∈ Conflict(K)}.

An Incremental Algorithm for Computing All Repairs 39

Algorithm 3: NewMinimalFix
input : A KB K = (F ,R,N), the corresponding set of conflicts Conflict(K)

and a set B of minimal fixes of F w.r.t. Conflict(K)
output: Either a new minimal fix of F w.r.t. Conflict(K) that is not in B or ∅

if B contains all of them
1 V ← F ;
2 for v ∈ V do
3 if there is no a ∈ Conflict(K) such that v ∈ a then
4 V ← V \ {v};

5 if
⋃

B ⊂ V then
6 u ← random fact in V \ ⋃

B;
7 Au ← random conflict in Conflict(K) that contains u;
8 U ← V \ Au;
9 A′ ← {a ∩ U | a ∈ Conflict(K), u /∈ a};

10 return {u} ∪ (U \ FindRepair(A′, U));

11 else
12 for a′ ∈ Conflict(K) do
13 if a′ is not a minimal fix of F w.r.t. B then
14 u ← fact in a′ s.t. a′ is still a fix of F w.r.t. B after its removal;
15 U ← V \ (a′ \ {u});
16 A′ ← {a ∩ U | a ∈ Conflict(K)};
17 return U \ FindRepair(A′, U);

18 for S ⊆ V, |S| ≤ 3, S
⊆ a and a
⊆ S, for every a ∈ Conflict(K) do
19 for v ∈ S do
20 BSv ← {X ∈ B such that B ∩ S = {v}};

21 BS0 ← {X ∈ B such that B ∩ S = ∅};
22 for {Bv | v ∈ S} ⊆ ∏

v∈S BSv do
23 if Bv
= ∅ for every v ∈ S then
24 if for every X ∈ BS0, X
⊆ ⋃

v∈S

Bv then

25 Z ← S ∪
(

V \ ⋃

v∈S

Bv

)

;

26 U ← V \ Z;
27 A′ ← {a ∩ U | a ∈ Conflict(K)};
28 return U \ FindRepair(A′, U);

29 return ∅;

that have a size equal or less than 33, that are not be included in any conflict
of K and such that any conflict of K are not be included in S. If there is a set
S that satisfies every aforementioned conditions then it can be extended into a

3 The computational problem of finding a single repair of F w.r.t. a set Y ⊆ 2F is
only in the NC complexity class when every y ∈ Y is such that |y| ≤ 3, otherwise it
has been proven to be in the RNC complexity class [6,20].

40 B. Yun and M. Croitoru

Table 1. List of minimal fixes and repairs for F w.r.t. Conflict(K) found at each step.

Step New elements of B New elements of I

1 {d, e, h, a} {b, c, f, g, i, j}
2 {d, e, h, b} {a, c, f, g, i, j}
3 {e, h, c} {a, b, d, f, g, i, j}
4 {c, h, f} {a, b, d, e, g, i, j}
5 {c, e, i} {a, b, d, f, g, h, j}
6 {c, f, j} {a, b, d, e, g, h, i}
7 {a, d, f, h} {b, c, e, g, i, j}
8 {b, d, f, h} {a, c, e, g, i, j}
...

...
...

minimal fix of B. If that is the case, the set Z does not contain any conflict of
K [9]. Then, we use the previous method and find a repair Rep of U w.r.t. A′

where A′ is the set of restricted conflicts by U with U = F \ (V \ Z). U \ Rep
is a minimal fix of U w.r.t. A′ but also a minimal fix of F w.r.t. Conflict(K)
(line 28) because Z does not contain any conflict of K. Note that this algorithm
relies on Algorithm 4 for finding a repair w.r.t. some restricted conflicts.

Example 6 (Cont’d Example 5). Let us consider S = {c(m), e(m)} at step
7 in Table 1. We have |S| ≤ 3, S �⊆ a and a �⊆ S for every a ∈
Conflict(K). We have BSc(m) = {{c(m), h(m), f(m)}, {c(m), f(m), j(m)}}
and BSe(m) = {{d(m), e(m), h(m), a(m)}, {d(m), e(m), h(m), b(m)}}. Since
BS0 = ∅, for every X ∈ BS0, X �⊆ ⋃

E where E = {{d(m), e(m), h(m),
a(m)}, {c(m), h(m), f(m)}} ∈ BSc(m) × BSe(m). Thus, we have Z =
{c(m), e(m), b(m), i(m), j(m)}, U = {a(m), d(m), f(m), h(m)} and A′ =
{{a(m)}, {d(m)}, {f(m)}, {f(m), h(m)}, {h(m)}}. The only repair of U w.r.t.
A′ is ∅. We conclude that the set U is a minimal fix of F w.r.t. Conflict(K).

3.2 Generating a Repair Efficiently

We show how to efficiently find a single repair of U w.r.t. A ⊆ 2U when |a| ≤ 3 for
every a ∈ A. The problem of finding a single repair is in the NC complexity class
(but as soon as |a| > 3, it falls into the RNC complexity class [6,20]). FindRepair
gradually build a repair by successively finding subrepairs C of large size with
SubRepair and by restricting U and A4. We now detail the general outline of
the two algorithms FindRepair and SubRepair.

FindRepair (see Algorithm 4) takes as input a set of facts U and a set
A ⊆ 2U and returns a repair of U w.r.t. A. We first initialise the algorithm
with A′ = A, V ′ = U and I = ∅ (I will eventually be the repair of U w.r.t. A).

4 A subrepair of U w.r.t. A is a subset of a repair of U w.r.t. A.

An Incremental Algorithm for Computing All Repairs 41

As long as the set A′ is not empty, we update A′ and V ′ by removing the facts
found in a large subset of a repair of V ′ w.r.t. A′. The two for-loop at line 10
and 13 remove supersets and sets of size one that may arise in A′. The reason
behind the removal of supersets is that they do not change the sets of repairs
obtained. Furthermore, at line 14, we remove facts that are in a set of size one
in A′ because they cannot be in any repairs. Finally, when A′ = ∅, I is returned
with the remaining facts in V ′.

Algorithm 4: FindRepair
input : A set of facts U and a set A ⊆ 2U such that |a| ≤ 3 for every a ∈ A
output: A repair of U w.r.t. A

1 A′ ← A, V ′ ← U, I ← ∅;
2 while A′
= ∅ do
3 C ← SubRepair(V ′,A′);
4 I ← I ∪ C;
5 V ′ ← V ′ \ C;
6 for a′ ∈ A′ do
7 a′ ← a′ ∩ V ′;

8 for a′ ∈ A′ do
9 if there exists a′′ ∈ A′ such that a′′ ⊂ a′ then

10 A′ ← A′ \ {a′};

11 for a′ ∈ A′ do
12 if |a′| = 1 then
13 V ′ ← V ′ \ a′;
14 A′ ← A′ \ {a′};

15 return I ∪ V ′;

SubRepair (see Algorithm 5) is used for finding a large subrepair of U w.r.t.
A ⊆ 2U . This algorithm uses two constants d0 and d1. When these constants
are initialised with d0 = 0.01 and d1 = 0.25, [13] showed that SubRepair returns
either a subrepair j such that |j ∪ N(j,A, U)| ≥ d0 × p

log(p) or a subrepair that
is at least of size d0 × p

log(p) where p is the size of V ′. SubRepair maintains a
collection of sets J initialised with sets of the form {v} for all facts v ∈ U such
that {v} is not a set in A. The sets in J are subrepairs and will remain mutually
disjoint throughout the algorithm. The algorithm iteratively checks if there is a
set in J that is large enough to be returned and if not, it will select which sets of J
should be merged and merge them (lines 12 to 21). However, merging subrepairs
does not always produce a subrepair, that is why it removes some facts after the
merging. Although the procedure for finding a matching M of Q at line 18 is not
described, the reader can find it in [15]. Note that the functions N and D are
defined as N(C,A, U) = {u ∈ U \C | ∃a ∈ A, a\C = {u}} and D(C,C ′,A, U) =
(N(C,A, U)∩C ′)∪(N(C ′,A, U)∩C). It has been proven that SubRepair runs in

42 B. Yun and M. Croitoru

O(log2n) time on n + m processors and since FindRepair makes at most O(log2n)
calls to SubRepair (because the subrepairs have a minimal size), FindRepair runs
in time O(log4n) on n + m EREW processors.

Algorithm 5: SubRepair
input : A set of facts U and a set A ⊆ 2U such that |a| ≤ 3 for every a ∈ A
output: A subrepair of U w.r.t. A

1 Q ← ∅, p ← |U |, J ← ∅;
2 for u ∈ U do
3 if {u} /∈ A then
4 J ← J ∪ {{u}};

5 stops ← false;
6 while stops = false do
7 for j ∈ J do
8 if |j ∪ N(j,A, U)| ≥ d0 × p

log(p)
then

9 stops ← true;
10 result ← j;

11 if stops = false then
12 for j ∈ J do
13 for j′ ∈ J do

14 if |D(j, j′,A, U)| ≤ d1×p
|J|×log(p)

then

15 Q ← Q ∪ {{j, j′}};

16 M ← matching of Q of size �
(

1
4

− 2 d0
d1

)
× |J |;

17 for {j, j′} ∈ M do
18 J ← J \ j;
19 J ← J \ j′;
20 J ← J ∪ {(j ∪ j′) \ D(j, j′,A, U)};

21 return result;

Example 7 (Cont’d Example 6). Suppose that U = {d(m), e(m), f(m), h(m),
i(m), j(m)} and A = {{d(m)}, {e(m), f(m)}, {f(m), h(m), i(m)}, {h(m), i(m),
j(m)}}, SubRepair returns the set {j(m)}. We remove j(m) from V ′ and A′.
Thus, V ′ = {d(m), e(m), f(m), h(m), i(m)} and A′ = {{d(m)}, {e(m), f(m)},
{f(m), i(m), h(m)}, {h(m), i(m)}}. {f(m), i(m), h(m)} and {d(m)} are
removed from A′ because they are respectively a superset and a set of size
one. The same process is repeated and FindRepair returns {i(m), j(m), f(m)}.
Here, the condition |j ∪ N(j,A, U)| ≥ c0×p

log(p) is always satisfied with d0 = 0.01.

The approach is correct since (1) FindAllConflicts returns the set of all con-
flicts, (2) FindAllRepairs returns the set of all repairs of F w.r.t. Conflict(K)
[9] and (3) FindRepair returns a repair of U w.r.t. A ⊆ 2U [13].

An Incremental Algorithm for Computing All Repairs 43

4 Evaluation

Since the benchmarks of [10] was too large to be handled by the algorithm with
a reasonable duration, we created a generator for Datalog± KBs as follows:

1. (Facts Generation) We generates N1 facts with a fixed probability p0 of
generating a new predicate. The arity of the predicates are randomly picked
between two fixed constants c0 and c1. We used the idea that some constants
only appear at a specific position in a predicate. Thus, we linked multiple
positions of atoms into groups that share a distinct pool of constants with a
probability p1. The size of each pool of constants is increased such that for
every predicate predi, the product of the size of all the pools of constants of
positions in predicate predi is superior to the number of atoms with predicate
predi. Last, we created the necessary constants and “filled” the positions of
atoms with constants from the corresponding pool of constants such that N1

distinct facts are generated.
2. (Rules Generation) We generate N2 rules and the number of atoms in the

head and body of each rule is picked between four fixed constants c2, c3, c4
and c5 respectively. In order to avoid infinite rule applications, we only use
new predicates in the head of the rules. We used the idea that rules should be
split in levels such that a rule in level i can be applied to the N1 original facts
but also to the atoms generated by the all the rules in the level j < i. Thus,
we split the rules randomly in each level such that |Li| ≥ 1 for i ∈ {1, . . . , c6}
and | ⋃

1≤i≤c6

Li| = N2 where c6 is a constant corresponding to the maximum

level of a rule. In order to build the rules in level one, we randomly “filled” the
body of the rules with the N1 ground atom that were previously generated.
The heads of the rules are filled with atoms with new predicates but, within
the same rule, there is a probability p0 that the same predicate is reused.
The positions of the new predicates in the head of a rule r1 are also linked
to the position of the predicates in the body of r1 with a probability p2. At
this point, the atoms in the heads of the rules are also filled with constants
from the corresponding pool of constants and each rule contains only ground
atoms. Variables are added into the bodies of the rules by replacing constants
with a probability p3. There is a probability p4 that a variable is reused when
replacing a constant at a position belonging to the same group. Each constant
in the heads of the rules is replaced by a variable that is used in the body at a
position that belongs to the same group with a probability p5. The process is
repeated for the rules in level superior to one by filling the bodies of the rules
with the N1 original facts and the atoms in the head of the rules in inferior
levels instead of only the original facts.

3. (Negative constraints Generation) We generate N3 negative constraints
and the number of atoms in the body of each negative constraint is randomly
fixed between two fixed constants c7 and c8. In order to generate the negative
constraints, one has to be careful not to make the set of rules incoherent,
i.e. the union of the set of rules with the set of negative constraints has to

44 B. Yun and M. Croitoru

be satisfiable. GADK = (V,D) is constructed on the KB with the facts and
rules generated according to the aforementioned steps. For each ground atom
v ∈ V , we compute the set Wv =

⋃

S∈Sv

⋃

Di∈S

U(Di) where Sv is the set of all

possible derivations for v and Di is a rule application in S. Thus, in order to
create a negative constraint neg1 of size K, we first pick an atom v1 in V and
add it in the body of neg1. We then remove Wv1 from V and pick an atom v2
in V \Wv1 such that every atom in the body of neg1 does not belong to Wv2 ,
we add v2 to the body of neg1 and remove Wv2 from V \ Wv1 . The process is
repeated until the body of neg1 reaches the size K.

In order to generate a set of different KBs, we decided to vary some parame-
ters and fix others. Namely: N1 varies between 10, 100, 1000 and 10000, p1 varies
between 0 and 0.05, N2 varies between 10, 100 and 200, c6 varies between 1 and
3 and N3 varies between 20, 40 and 60. The other parameters were fixed such
that p0 = 0.5, p2 = 0.05, c1 = 3, c0 = c2 = c4 = 1, c3 = c5 = 2, p3 = 0.7 and
p4 = p5 = 0.8. This resulted in the generation of 144 different combinations of
the parameters and a total of 720 different KBs since we generated 5 different
KBs for each combination. The generated KBs are in DLGP format [4], the tool
for generating the KBs and the tool for computing all the repairs are all available
online at: https://gite.lirmm.fr/yun/Generated-KB.

4.1 Evaluation Results

The algorithm for finding the repairs was launched on each KB with a timeout
after 10 min. We recorded both the time for finding each repair and the time
for the conflict computation. We made the following observations: (1) On KBs
with 10 facts, the tool successfully terminated with a total median time of 418
ms and an average of 11.7 repairs. Although all instances with 100, 1000 and
10000 facts did not finish before the timeout, the program returned an average
number of 86.5 repairs by KB and this number seems to be independent of the
number of facts. (2) The last repairs are harder to find: Across all KBs, the first
repair takes an average of 763 ms to be computed whereas the last found repair
took an average of 64461 ms. Lastly, finding all the conflicts takes a small part
of the total computational time as it amounts to only an average of 12.8% of the
total time. (3) On the one hand, the parameter c6 does not impact the average
number of repairs (66.8 with c6 = 1 and 68.7 with c6 = 3) but the median time
for finding the conflicts does slightly increase (479 ms with c6 = 1 and 800 ms
with c6 = 3). On the other hand, we noticed a sharp increase in the average
time for finding the conflicts when the parameter N3 is increased (888.1 ms for
N3 = 20, 1477.5 ms for N3 = 40 and 3737.7 ms for N3 = 60).

4.2 Conclusion

We showed an efficient incremental algorithm that allows for some or all repairs
computation and empirically evaluated the proposed algorithm with a bench-
mark on inconsistent KBs expressed using Datalog±. We empirically showed

https://gite.lirmm.fr/yun/Generated-KB

An Incremental Algorithm for Computing All Repairs 45

that our approach is able to find the first repairs after a reasonable amount
of time. We argue that our approach is useful for applications where an enu-
meration, even partial, of the repairs is necessary. For example, in life science
applications such as biodegradable packaging selection [24] or wheat transfor-
mation [2] the repairs are used by the experts in order to enrich the KB with
further information. In this setting, enumerating the set of repairs could be of
practical value.

Last but not least, let us also highlight that the paper also provides a knowl-
edge base generator, a contribution in itself for the OBDA community.

Acknowledgement. The second author acknowledges the support of the Docamex
project, funded by the French Ministry of Agriculture.

References

1. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, Philadelphia, Pennsylvania, USA,
31 May–2 June 1999, pp. 68–79 (1999). https://doi.org/10.1145/303976.303983

2. Arioua, A., Croitoru, M., Buche, P.: DALEK: a tool for dialectical explanations in
inconsistent knowledge bases. In: Computational Models of Argument - Proceed-
ings of COMMA 2016, Potsdam, Germany, 12–16 September 2016, pp. 461–462
(2016). https://doi.org/10.3233/978-1-61499-686-6-461

3. Baget, J.F., et al.: A general modifier-based framework for inconsistency-tolerant
query answering. In: Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Fifteenth International Conference, KR 2016, Cape Town, South
Africa, 25–29 April 2016, pp. 513–516 (2016)

4. Baget, J.F., Gutierrez, A., Leclère, M., Mugnier, M.L., Rocher, S., Sipieter, C.:
DLGP: An extended Datalog Syntax for Existential Rules and Datalog± Version
2.0, June 2015

5. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential vari-
ables: walking the decidability line. Artif. Intell. 175(9–10), 1620–1654 (2011)

6. Beame, P., Luby, M.: Parallel search for maximal independence given minimal
dependence. In: Proceedings of the First Annual ACM-SIAM Symposium on Dis-
crete Algorithms, San Francisco, California, USA, 22–24 January 1990, pp. 212–218
(1990)

7. Benferhat, S., Bouraoui, Z., Croitoru, M., Papini, O., Tabia, K.: Non-objection
inference for inconsistency-tolerant query answering. In: Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016,
New York, NY, USA, 9–15 July 2016, pp. 3684–3690 (2016)

8. Bienvenu, M.: On the complexity of consistent query answering in the presence
of simple ontologies. In: Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, Toronto, Ontario, Canada, 22–26 July 2012 (2012). http://
www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4928

9. Boros, E., Elbassioni, K.M., Gurvich, V., Khachiyan, L.: An efficient incremental
algorithm for generating all maximal independent sets in hypergraphs of bounded
dimension. Parallel Process. Lett. 10(4), 253–266 (2000)

https://doi.org/10.1145/303976.303983
https://doi.org/10.3233/978-1-61499-686-6-461
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4928
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4928

46 B. Yun and M. Croitoru

10. Bourgaux, C.: Inconsistency Handling in Ontology-Mediated Query Answering.
Ph.D. thesis, Université Paris-Saclay, Paris, September 2016. https://tel.archives-
ouvertes.fr/tel-01378723

11. Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog±: a family
of logical knowledge representation and query languages for new applications. In:
Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science,
LICS 2010, Edinburgh, United Kingdom, 11–14 July 2010, pp. 228–242 (2010).
https://doi.org/10.1109/LICS.2010.27

12. Croitoru, M., Vesic, S.: What can argumentation do for inconsistent ontology
query answering? In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013.
LNCS (LNAI), vol. 8078, pp. 15–29. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40381-1 2

13. Dahlhaus, E., Karpinski, M., Kelsen, P.: An efficient parallel algorithm for com-
puting a maximal independent set in a hypergraph of dimension 3. Inf. Process.
Lett. 42(6), 309–313 (1992). https://doi.org/10.1016/0020-0190(92)90228-N

14. Gallo, G., Longo, G., Pallottino, S.: Directed hypergraphs and applications.
Discrete Appl. Math. 42(2), 177–201 (1993). https://doi.org/10.1016/0166-
218X(93)90045-P

15. Goldberg, M.K., Spencer, T.H.: A new parallel algorithm for the maximal inde-
pendent set problem. SIAM J. Comput. 18(2), 419–427 (1989). https://doi.org/
10.1137/0218029

16. Grégoire, É., Mazure, B., Piette, C.: Boosting a complete technique to find MSS
and MUS thanks to a local search oracle. In: IJCAI 2007, Proceedings of the 20th
International Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12
January 2007, pp. 2300–2305 (2007). http://ijcai.org/Proceedings/07/Papers/370.
pdf

17. Grégoire, É., Mazure, B., Piette, C.: Using local search to find MSSes and MUSes.
Eur. J. Oper. Res. 199(3), 640–646 (2009). https://doi.org/10.1016/j.ejor.2007.06.
066

18. Hecham, A.: Defeasible reasoning for existential rules. (Raisonnement defaisable
dans les règles existentielles). Ph.D. thesis (2018). https://tel.archives-ouvertes.fr/
tel-01904558

19. Hecham, A., Bisquert, P., Croitoru, M.: On the chase for all provenance paths with
existential rules. In: Proceedings of the Rules and Reasoning - International Joint
Conference, RuleML+RR 2017, London, UK, 12–15 July 2017, pp. 135–150 (2017)

20. Kelsen, P.: On the parallel complexity of computing a maximal independent set
in a hypergraph. In: Proceedings of the 24th Annual ACM Symposium on Theory
of Computing, Victoria, British Columbia, Canada, 4–6 May 1992, pp. 339–350
(1992). https://doi.org/10.1145/129712.129745

21. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010.
LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15918-3 9

22. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.:
Linking data to ontologies. J. Data Semant. 10, 133–173 (2008)

23. Rocher, S.: Interrogation tolérante aux incohérences, Technical report. Université
de Montpellier (2013)

24. Tamani, N., et al.: Eco-efficient packaging material selection for fresh produce:
industrial session. In: Hernandez, N., Jäschke, R., Croitoru, M. (eds.) ICCS 2014.
LNCS (LNAI), vol. 8577, pp. 305–310. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08389-6 27

https://tel.archives-ouvertes.fr/tel-01378723
https://tel.archives-ouvertes.fr/tel-01378723
https://doi.org/10.1109/LICS.2010.27
https://doi.org/10.1007/978-3-642-40381-1_2
https://doi.org/10.1007/978-3-642-40381-1_2
https://doi.org/10.1016/0020-0190(92)90228-N
https://doi.org/10.1016/0166-218X(93)90045-P
https://doi.org/10.1016/0166-218X(93)90045-P
https://doi.org/10.1137/0218029
https://doi.org/10.1137/0218029
http://ijcai.org/Proceedings/07/Papers/370.pdf
http://ijcai.org/Proceedings/07/Papers/370.pdf
https://doi.org/10.1016/j.ejor.2007.06.066
https://doi.org/10.1016/j.ejor.2007.06.066
https://tel.archives-ouvertes.fr/tel-01904558
https://tel.archives-ouvertes.fr/tel-01904558
https://doi.org/10.1145/129712.129745
https://doi.org/10.1007/978-3-642-15918-3_9
https://doi.org/10.1007/978-3-642-15918-3_9
https://doi.org/10.1007/978-3-319-08389-6_27
https://doi.org/10.1007/978-3-319-08389-6_27

An Incremental Algorithm for Computing All Repairs 47

25. Yun, B., Bisquert, P., Buche, P., Croitoru, M.: Arguing about end-of-life of pack-
agings: preferences to the rescue. In: Garoufallou, E., Subirats Coll, I., Stellato,
A., Greenberg, J. (eds.) MTSR 2016. CCIS, vol. 672, pp. 119–131. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49157-8 10

26. Yun, B., Vesic, S., Croitoru, M., Bisquert, P.: Inconsistency measures for repair
semantics in OBDA. In: Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, 13–19 July
2018, pp. 1977–1983 (2018). https://doi.org/10.24963/ijcai.2018/273

https://doi.org/10.1007/978-3-319-49157-8_10
https://doi.org/10.24963/ijcai.2018/273

Knowledge-Based Matching of n-ary
Tuples

Pierre Monnin(B) , Miguel Couceiro , Amedeo Napoli, and Adrien Coulet

Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
{pierre.monnin,miguel.couceiro,amedeo.napoli,adrien.coulet}@loria.fr

Abstract. An increasing number of data and knowledge sources are
accessible by human and software agents in the expanding Semantic
Web. Sources may differ in granularity or completeness, and thus be
complementary. Consequently, they should be reconciled in order to
unlock the full potential of their conjoint knowledge. In particular, units
should be matched within and across sources, and their level of related-
ness should be classified into equivalent, more specific, or similar. This
task is challenging since knowledge units can be heterogeneously rep-
resented in sources (e.g., in terms of vocabularies). In this paper, we
focus on matching n-ary tuples in a knowledge base with a rule-based
methodology. To alleviate heterogeneity issues, we rely on domain knowl-
edge expressed by ontologies. We tested our method on the biomedical
domain of pharmacogenomics by searching alignments among 50,435 n-
ary tuples from four different real-world sources. Results highlight note-
worthy agreements and particularities within and across sources.

Keywords: Alignment · Matching · n-ary tuple · Order · Ontology

1 Introduction

In the Semantic Web [4], data or knowledge sources often describe similar units
but may differ in quality, completeness, granularity, and vocabularies. Unlock-
ing the full potential of the knowledge that these sources conjointly express
requires matching equivalent, more specific, or similar knowledge units within
and across sources. This matching process results in alignments that enable the
reconciliation of these sources, i.e., the harmonization of their content [7]. Such
a reconciliation then provides a consolidated view of a domain that is useful in
many applications, e.g., in knowledge fusion and fact-checking.

Here, we illustrate the interest of such a matching process to reconcile knowl-
edge within the biomedical domain of pharmacogenomics (PGx), which stud-
ies the influence of genetic factors on drug response phenotypes. PGx knowl-
edge originates from distinct sources: reference databases such as PharmGKB,

Supported by the PractiKPharma project, founded by the French National Research
Agency (ANR) under Grant ANR15-CE23-0028, by the IDEX “Lorraine Université
d’Excellence” (15-IDEX-0004), and by the Snowball Inria Associate Team.

c© Springer Nature Switzerland AG 2020
M. Alam et al. (Eds.): ICCS 2020, LNAI 12277, pp. 48–56, 2020.
https://doi.org/10.1007/978-3-030-57855-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57855-8_4&domain=pdf
http://orcid.org/0000-0002-2017-8426
http://orcid.org/0000-0003-2316-7623
http://orcid.org/0000-0002-1466-062X
https://doi.org/10.1007/978-3-030-57855-8_4

Knowledge-Based Matching of n-ary Tuples 49

biomedical literature, or the mining of Electronic Health Records of hospitals.
Knowledge represented in these sources may differ in levels of validation, com-
pleteness, and granularity. Consequently, reconciling these sources would pro-
vide a consolidated view on the knowledge of this domain, certainly beneficial
in precision medicine, which aims at tailoring drug treatments to patients to
reduce adverse effects and maximize drug efficacy [5,6]. PGx knowledge consists
of n-ary relationships, here represented as tuples relating sets of drugs, sets of
genomic variations, and sets of phenotypes. Such an n-ary tuple states that a
patient being treated with the specified sets of drugs, while having the specified
genomic variations will be more likely to experience the given phenotypes, e.g.,
adverse effects. For example, Fig. 1 depicts the tuple pgt 1, which states that
patients treated with warfarin may experience cardiovascular diseases because of
variations in the CYP2C9 gene. If a source contained the same tuple but with the
genetic factor unknown, then it should be identified as less specific than pgt 1.
Conversely, if a source contained the same tuple but with myocardial infarction
as phenotype, then it should be identified as more specific than pgt 1.

CYP2C9

warfarin

cardiovascular diseasespgt 1

causes

causes

causes

Fig. 1. Representation of a PGx relationship between gene CYP2C9, drug warfarin

and phenotype cardiovascular diseases. It can be seen as an n-ary tuple pgt 1 =
({warfarin} , {CYP2C9} , {cardiovascular diseases}). This tuple is reified through
the individual pgt 1, connecting its components through the causes predicate.

Motivated by this application, we propose a general and mathematically well-
founded methodology to match n-ary tuples. Precisely, given two n-ary tuples,
we aim at deciding on their relatedness among five levels such as being equivalent
or more specific. We suppose that such tuples are represented within a knowledge
base that is expressed using Semantic Web standards. In such standards, only
binary predicates exist, which requires the reification of n-ary tuples to represent
them: tuples are individualized and linked to their components by predicates
(see Fig. 1) [12]. In these knowledge bases, entities can also be associated with
ontologies, i.e., formal representations of a domain [9]. Ontologies consist of
classes and predicates, partially ordered by the subsumption relation, denoted
by �. This relation states that a class (respectively a predicate) is more specific
than another.

The process of matching n-ary tuples appears naturally in the scope of ontol-
ogy matching [7], i.e., finding equivalences or subsumptions between classes,
predicates, or instances of two ontologies. Here, we match individuals represent-
ing reified n-ary tuples, which is somewhat related to instance matching and
the extraction of linkkeys [2]. However, we allow ourselves to state that a tuple
is more specific than another, which is unusual in instance matching but com-
mon when matching classes or predicates with systems such as PARIS [14] and

50 P. Monnin et al.

AMIE [8]. Besides, to the best of our knowledge, works available in the litera-
ture do not deal with the complex task of matching n-ary tuples with potentially
unknown arguments formed by sets of individuals. See Appendix A for further
details.

In our approach, we assume that the tuples to match have the same arity,
the same indices for their arguments, and that they are reified with the same
predicates and classes. Arguments are formed by sets of individuals (no literal
values) and may be unknown. This matching task thus reduces to comparing each
argument of the tuples and aggregating these comparisons to establish their level
of relatedness. We achieve this process by defining five general rules, designed
to satisfy some desired properties such as transitivity and symmetry. To tackle
the heterogeneity in the representation of tuples, we enrich this structure-based
comparison with domain knowledge, e.g., the hierarchy of ontology classes and
links between individuals.

This paper is organized as follows. In Sect. 2, we formalize the problem of
matching n-ary tuples. To tackle it, we propose two preorders in Sect. 3 to com-
pare sets of individuals by considering domain knowledge: links between indi-
viduals, instantiations, and subsumptions. These preorders are used in Sect. 4
to define matching rules that establish the level of relatedness between two n-
ary tuples. These rules are applied to PGx knowledge in Sect. 5. We discuss our
results in Sect. 6 and present some directions of future work in Sect. 7. Appen-
dices are available online (https://arxiv.org/abs/2002.08103).

2 Problem Setting

We aim at matching n-ary tuples represented within a knowledge base K, i.e.,
we aim at determining the relatedness level of two tuples t1 and t2 (e.g., whether
they are equivalent, more specific, or similar). K is represented in the formalism
of Description Logics (DL) [3] and thus consists of a TBox and an ABox.

Precisely, we consider a set T of n-ary tuples to match. This set is formed
by tuples whose matching makes sense in a given application. For example,
in our use-case, T consists of all PGx tuples from the considered sources. All
tuples in T have the same arity n, and their arguments are sets of individuals
of K. Such a tuple t can be formally represented as t = (π1(t), . . . , πn(t)), where
πi : T → 2Δ is a mapping that associates each tuple t to its i-th argument
πi(t), which is a set of individuals included in the domain of interpretation Δ.
The index set is the same for all tuples in T . Tuples come from potentially
noisy sources and some arguments may be missing. As K verifies the Open
World Assumption, such arguments that are not explicitly specified as empty,
can only be considered unknown and they are set to Δ to express the fact
that all individuals may apply. To illustrate, pgt 1 in Fig. 1 could be seen as a
ternary tuple pgt 1 = ({warfarin} , {CYP2C9} , {cardiovascular diseases}),
where arguments respectively represent the sets of involved drugs, genetic fac-
tors, and phenotypes.

In view of our formalism, matching two n-ary tuples t1 and t2 comes down to
comparing their arguments πi(t1) and πi(t2) for each i ∈ {1, . . . , n}. For instance,

https://arxiv.org/abs/2002.08103

Knowledge-Based Matching of n-ary Tuples 51

if πi(t1) = πi(t2) for all i, then t1 and t2 are representing the same knowledge
unit, highlighting an agreement between their sources. In the next section, we
propose other tests between arguments that are based on domain knowledge.

3 Ontology-Based Preorders

As previously illustrated, the matching of two n-ary tuples t1 and t2 relies on
the comparison of each of their arguments πi(t1) and πi(t2), which are sets of
individuals. Such a comparison can be achieved by testing their inclusion or
equality. Thus, if πi(t1) ⊆ πi(t2), then πi(t1) can be considered as more specific
than πi(t2). It is noteworthy that testing inclusion or equality implicitly consid-
ers owl:sameAs links that indicate identical individuals. For example, the com-
parison of {e1} with {e2} while knowing that owl:sameAs(e1, e2) results in an
equality. However, additional domain knowledge can be considered to help tackle
the heterogeneous representation of tuples. For instance, some individuals can
be part of others. Individuals may also instantiate different ontological classes,
which are themselves comparable through subsumption. To consider this domain
knowledge in the matching process, we propose two preorders, i.e., reflexive and
transitive binary relations.

3.1 Preorder �p Based on Links Between Individuals

Several links may associate individuals in πi(tj) with other individuals in K.
Some links involve a transitive and reflexive predicate (i.e., a preorder). Then,
for each such predicate p, we define a preorder �p parameterized by p as follows1:

πi(t1) �p πi(t2) ⇔ ∀e1 ∈ πi(t1), ∃e2 ∈ πi(t2), K |= p(e1, e2) (1)

Note that, from the reflexivity of p and the use of quantifiers ∀ and ∃, πi(t1) ⊆
πi(t2) implies πi(t1) �p πi(t2). The equivalence relation ∼p associated with �p

is defined as usual by:

πi(t1) ∼p πi(t2) ⇔ πi(t1) �p πi(t2) and πi(t2) �p πi(t1) (2)

3.2 Preorder �O Based on Instantiation and Subsumption

The second preorder we propose takes into account classes of an ontology O
ordered by subsumption and instantiated by individuals in πi(tj). We denote by
classes(O) the set of all classes of O. As it is standard in DL,
 denotes the
largest class in O. Given an individual e, we denote by ci(O, e) the set of classes
of O instantiated by e and distinct from
, i.e.,

ci(O, e) = {C ∈ classes(O)\ {
} | K |= C(e)} .

1 See Appendix B and Appendix C for the proof and examples.

52 P. Monnin et al.

Note that ci(O, e) may be empty. We explicitly exclude
 from ci(O, e) since K
may be incomplete. Indeed, individuals may lack instantiations of specific classes
but instantiate
 by default. Thus,
 is excluded to prevent �O from inade-
quately considering these individuals more general than individuals instantiating
classes other than
2.

Given C = {C1, C2, . . . , Ck} ⊆ classes(O), we denote by msc(C) the set of
the most specific classes of C, i.e., msc(C) = {C ∈ C | �D ∈ C, D � C}3. Simi-
larly, we denote by msci(O, e) the set of the most specific classes of O, except

, instantiated by an individual e, i.e., msci(O, e) = msc(ci(O, e)).

Given an ontology O, we define the preorder �O based on set inclusion and
subsumption as follows4:

πi(t1) �O πi(t2) ⇔ ∀e1 ∈ πi(t1),
[
e1 ∈ πi(t2)︸ ︷︷ ︸

(3a)

] ∨ [
msci(O, e1) �= ∅ ∧

∀C1 ∈ msci(O, e1), ∃e2 ∈ πi(t2), ∃C2 ∈ msci(O, e2), C1 � C2︸ ︷︷ ︸
(3b)

]
(3)

Clearly, if πi(t1) is more specific than πi(t2) and e1 ∈ πi(t1), then (3a) e1 ∈
πi(t2), or (3b) all the most specific classes instantiated by e1 are subsumed by
at least one of the most specific classes instantiated by individuals in πi(t2).
Thus individuals in πi(t2) can be seen as “more general” than those in πi(t1).
As before, �O induces the equivalence relation ∼O defined by:

πi(t1) ∼O πi(t2) ⇔ πi(t1) �O πi(t2) and πi(t2) �O πi(t1) (4)

The preorder �O can be seen as parameterized by the ontology O, allowing to
consider different parts of the TBox of K for each argument πi(tj), if needed.

4 Using Preorders to Define Matching Rules

Let t1, t2 ∈ T be two n-ary tuples to match. We assume that each argument
i ∈ {1, . . . , n} is endowed with a preorder �i ∈

{
⊆,�p,�O}

that enables the
comparison of πi(t1) and πi(t2). We can define rules that aggregate such compar-
isons for all i ∈ {1, . . . , n} and establish the relatedness level of t1 and t2. Hence,
our matching approach comes down to applying these rules to every ordered pair
(t1, t2) of n-ary tuples from T .

Here, we propose the following five relatedness levels: =, ∼, �, ≶, and ∝,
from the strongest to the weakest. Accordingly, we propose five matching rules
of the form B ⇒ H, where B expresses the conditions of the rule, testing equal-
ities, equivalences, or inequalities between arguments of t1 and t2. Classically,
these conditions can be combined using conjunctions or disjunctions, respectively

2 See Appendix D for a detailed example.
3 D � C means that D � C and D �≡ C.
4 See Appendix E and Appendix F for the proof and examples.

Knowledge-Based Matching of n-ary Tuples 53

denoted by ∧ and ∨. If B holds, H expresses the relatedness between t1 and t2
to add to K. Rules are applied from Rule 1 to Rule 5. Once conditions in B hold
for a rule, H is added to K and the following rules are discarded, meaning that
at most one relatedness level is added to K for each pair of tuples. When no rule
can be applied, t1 and t2 are considered incomparable and nothing is added to
K. The first four rules are the following:

Rule 1. ∀i ∈ {1, . . . , n} , πi(t1) = πi(t2) ⇒ t1 = t2

Rule 2. ∀i ∈ {1, . . . , n} , πi(t1) ∼i πi(t2) ⇒ t1 ∼ t2

Rule 3. ∀i ∈ {1, . . . , n} , πi(t1) �i πi(t2) ⇒ t1 � t2

Rule 4. ∀i ∈ {1, . . . , n} , [(πi(t1) = πi(t2)) ∨ (πi(t2) �= Δ ∧ πi(t1) �i πi(t2)) ∨
(πi(t1) �= Δ ∧ πi(t2) �i πi(t1))] ⇒ t1 ≶ t2

Rule 1 states that t1 and t2 are identical (=) whenever t1 and t2 coincide on
each argument. Rule 2 states that t1 and t2 are equivalent (∼) whenever each
argument i ∈ {1, . . . , n} of t1 is equivalent to the same argument of t2. Rule 3
states that t1 is more specific than t2 (�) whenever each argument i ∈ {1, . . . , n}
of t1 is more specific than the same argument of t2 w.r.t. �i. Rule 4 states that
t1 and t2 have comparable arguments (≶) whenever they have the same specified
arguments (i.e., different from Δ), and these arguments are comparable w.r.t.
�i. Rules 1 to 3 satisfy the transitivity property. Additionally, Rules 1, 2, and 4
satisfy the symmetry property.

In Rules 1 to 4, comparisons are made argument-wise. However, other relat-
edness cases may require to aggregate over arguments. For example, we may
want to compare all individuals involved in two tuples, regardless of their argu-
ments. Alternatively, we may want to consider two tuples as weakly related if
their arguments have a specified proportion of comparable individuals. To this
aim, we propose Rule 5. Let I = {I1, . . . , Im} be a partition of {1, . . . , n}, defined
by the user at the beginning of the matching process. We define the aggregated
argument Ik of tj as the union of all specified πi(tj) (i.e., different from Δ) for
i ∈ Ik. Formally,

πIk
(tj) =

⋃
i∈Ik

πi(tj) �=Δ

πi(tj).

We assume that each aggregated argument Ik ∈ I is endowed with a preorder �Ik

∈
{
⊆,�p,�O}

. We denote by SSD(πIk
(t1), πIk

(t2)) the semantic set difference
between πIk

(t1) and πIk
(t2), i.e.,

SSD(πIk
(t1), πIk

(t2)) = {e1 | e1 ∈ πIk
(t1) and {e1} ��Ik

πIk
(t2)} .

Intuitively, it is the set of elements in πIk
(t1) preventing it from being more

specific than πIk
(t2) w.r.t. �Ik

. We define the operator ∝Ik
as follows:

πIk
(t1) ∝Ik

πIk
(t2) =

{
1 if πIk

(t1) �Ik
πIk

(t2) or πIk
(t2) �Ik

πIk
(t1)

1 − |SSD(πIk
(t1),πIk

(t2)) ∪ SSD(πIk
(t2),πIk

(t1))|
|πIk

(t1) ∪ πIk
(t2)| otherwise

54 P. Monnin et al.

This operator returns a number measuring the similarity between πIk
(t1) and

πIk
(t2). This number is equal to 1 if the two aggregated arguments are compara-

ble. Otherwise, it is equal to 1 minus the proportion of incomparable elements.
We denote by I�=Δ(t1, t2) = {Ik | Ik ∈ I and πIk

(t1) �= Δ and πIk
(t2) �= Δ} the

set of aggregated arguments that are specified for both t1 and t2 (i.e., different
from Δ). Then, Rule 5 is defined as follows:

Rule 5. Let I = {I1, . . . , Im} be a partition of {1, . . . , n}, and let γ�=Δ, γS , and
γC be three parameters, all fixed at the beginning of the matching process.

(
|I�=Δ(t1, t2)| ≥ γ�=Δ

) ∧([
∀Ik ∈ I�=Δ(t1, t2), πIk

(t1) ∝Ik
πIk

(t2) ≥ γS

]
∨

[(∑
Ik∈I�=Δ(t1,t2)

1 (πIk
(t1) ∝Ik

πIk
(t2) = 1)

)
≥ γC

])
⇒ t1 ∝ t2

Rule 5 is applicable if at least γ�=Δ aggregated arguments are specified for both
t1 and t2. Then, t1 and t2 are weakly related (∝) whenever all these specified
aggregated arguments have a similarity of at least γS or when at least γC of
them are comparable. Notice that ∝ is symmetric.

5 Application to Pharmacogenomic Knowledge

Our methodology was motivated by the problem of matching pharmacogenomic
(PGx) tuples. Accordingly, we tested this methodology on PGxLOD5 [10], a
knowledge base represented in the ALHI Description Logic [3]. In PGxLOD,
50,435 PGx tuples were integrated from four different sources: (i) 3,650 tuples
from structured data of PharmGKB, (ii) 10,240 tuples from textual portions
of PharmGKB called clinical annotations, (iii) 36,535 tuples from biomedical
literature, and (iv) 10 tuples from results found in EHR studies. We obtained
the matching results summarized in Table 1 and discussed in Sect. 6. Details
about formalization, code and parameters are given in Appendix G.

6 Discussion

In Table 1, we observe only a few inter-source links, which may be caused by miss-
ing mappings between the vocabularies used in sources. Indeed, our matching
process requires these mappings to compare individuals represented with differ-
ent vocabularies. This result underlines the relevance of enriching the knowledge
base with ontology-to-ontology mappings. We also notice that Rule 5 generates
more links than the other rules, which emphasizes the importance of weaker
relatedness levels to align sources and overcome their heterogeneity. Some results
were expected and therefore seem to validate our approach. For example, some
tuples from the literature appear more general than those of PharmGKB (with
15 and 42 skos:broadMatch links). These links are a foreseen consequence of
5 https://pgxlod.loria.fr.

https://pgxlod.loria.fr

Knowledge-Based Matching of n-ary Tuples 55

Table 1. Number of links resulting from each rule. Links are generated between tuples
of distinct sources or within the same source. PGKB stands for “PharmGKB”, sd for
“structured data”, and ca for “clinical annotations”. As Rules 1, 2, 4, and 5 satisfy sym-
metry, links from t1 to t2 as well as from t2 to t1 are counted. Similarly, as Rules 1 to 3
satisfy transitivity, transitivity-induced links are counted. Regarding skos:broadMatch

links, rows represent origins and columns represent destinations.

PGKB (sd) PGKB (ca) Literature EHRs

Links from Rule 1

Encoded by owl:sameAs

PGKB (sd) 166 0 0 0

PGKB (ca) 0 10,134 0 0

Literature 0 0 122,646 0

EHRs 0 0 0 0

Links from Rule 2

Encoded by skos:closeMatch

PGKB (sd) 0 5 0 0

PGKB (ca) 5 1,366 0 0

Literature 0 0 16,692 0

EHRs 0 0 0 0

Links from Rule 3

Encoded by skos:broadMatch

PGKB (sd) 87 3 15 0

PGKB (ca) 9,325 605 42 0

Literature 0 0 75,138 0

EHRs 0 0 0 0

Links from Rule 4

Encoded by skos:relatedMatch

PGKB (sd) 20 0 0 0

PGKB (ca) 0 110 0 0

Literature 0 0 18,050 0

EHRs 0 0 0 0

Links from Rule 5

Encoded by skos:related

PGKB (sd) 100,596 287,670 414 2

PGKB (ca) 287,670 706,270 1,103 19

Literature 414 1,103 1,082,074 15

EHRs 2 19 15 0

the completion process of PharmGKB. Indeed, curators achieve this completion
after a literature review, inevitably leading to tuples more specific or equivalent
to the ones in reviewed articles. Interestingly, our methodology could ease such
a review by pointing out articles describing similar tuples. Clinical annotations
of PharmGKB are in several cases more specific than structured data (9,325
skos:broadMatch links). This is also expected as structured data are a broad-
level summary of more complex phenotypes detailed in clinical annotations.

Regarding our method, using rules is somehow off the current machine learn-
ing trend [1,11,13]. However, writing simple and well-founded rules constitutes
a valid first step before applying machine learning approaches. Indeed, such
explicit rules enable generating a “silver” standard for matching, which may be
useful to either train or evaluate supervised approaches. Rules are readable and
may thus be analyzed and confirmed by domain experts, and provide a basis of
explanation for the matching results. Additionally, our rules are simple enough
to be generally true and useful in other domains. By relying on instantiated
classes and links between individuals, we illustrate how domain knowledge and
reasoning mechanisms can serve a structure-based matching. In future works,
conditions under which preorders �p and �O could be merged into one unique
preorder deserve a deeper study. See Appendix H for further discussion.

56 P. Monnin et al.

7 Conclusion

In this paper, we proposed a rule-based approach to establish the relatedness
level of n-ary tuples among five proposed levels. It relies on rules and pre-
orders that leverage domain knowledge and reasoning capabilities. We applied
our methodology to the real-world use case of matching pharmacogenomic rela-
tionships, and obtained insightful results. In the future, we intend to compare
and integrate our purely symbolic approach with ML methodologies.

References

1. Alam, M., et al.: Reconciling event-based knowledge through RDF2VEC. In: Pro-
ceedings of HybridSemStats@ISWC 2017. CEUR Workshop Proceedings (2017)

2. Atencia, M., David, J., Euzenat, J.: Data interlinking through robust linkkey
extraction. In: Proceedings of ECAI 2014. Frontiers in Artificial Intelligence and
Applications, vol. 263, pp. 15–20 (2014)

3. Baader, F., et al. (eds.): The Description Logic Handbook: Theory, Implementa-
tion, and Applications. Cambridge University Press, Cambridge (2003)

4. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5),
28–37 (2001)

5. Caudle, K.E., et al.: Incorporation of pharmacogenomics into routine clinical prac-
tice: the clinical pharmacogenetics implementation consortium (CPIC) guideline
development process. Curr. Drug Metab. 15(2), 209–217 (2014)

6. Coulet, A., Smäıl-Tabbone, M.: Mining electronic health records to validate knowl-
edge in pharmacogenomics. ERCIM News 2016(104)(2016)

7. Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38721-0

8. Galárraga, L.A., Preda, N., Suchanek, F.M.: Mining rules to align knowledge bases.
In: Proceedings of AKBC@CIKM 2013, pp. 43–48. ACM (2013)

9. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (1993)

10. Monnin, P., et al.: PGxO and PGxLOD: a reconciliation of pharmacogenomic
knowledge of various provenances, enabling further comparison. BMC Bioinform.
20(Suppl. 4), 139 (2019)

11. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs: from multi-relational link prediction to automated
knowledge graph construction. Proc. IEEE 104(1), 11–33 (2016)

12. Noy, N., Rector, A., Hayes, P., Welty, C.: Defining N-ary relations on the semantic
web. W3C Work. Group Note 12(4) (2006)

13. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In:
Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F.,
Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46523-4 30

14. Suchanek, F.M., Abiteboul, S., Senellart, P.: PARIS: probabilistic alignment of
relations, instances, and schema. PVLDB 5(3), 157–168 (2011)

https://doi.org/10.1007/978-3-642-38721-0
https://doi.org/10.1007/978-3-319-46523-4_30

Conceptual Structures

Some Programming Optimizations
for Computing Formal Concepts

Simon Andrews(B)

Conceptual Structures Research Group, Department of Computing,
College of Business, Technology and Engineering, The Industry and Innovation

Research Institute, Sheffield Hallam University, Sheffield, UK
s.andrews@shu.ac.uk

Abstract. This paper describes in detail some optimization approaches
taken to improve the efficiency of computing formal concepts. In particu-
lar, it describes the use and manipulation of bit-arrays to represent FCA
structures and carry out the typical operations undertaken in computing
formal concepts, thus providing data structures that are both memory-
efficient and time saving. The paper also examines the issues and com-
promises involved in computing and storing formal concepts, describing
a number of data structures that illustrate the classical trade-off between
memory footprint and code efficiency. Given that there has been limited
publication of these programmatical aspects, these optimizations will be
useful to programmers in this area and also to any programmers inter-
ested in optimizing software that implements Boolean data structures.
The optimizations are shown to significantly increase performance by
comparing an unoptimized implementation with the optimized one.

1 Introduction

Although there have been a number of advances and variations of the Close-By-
One algorithm [14] for computing formal concepts, including [4,5,12,13], opti-
mization approaches used when implementing such algorithms have not been
described in detail. Mathematical and algorithmic aspects of FCA have been
well covered, for example in [7,9,15], but less attention has been paid to pro-
gramming. Using a bit-array to represent a formal context has previously been
reported [5,11], but without the implementation details presented here. Provid-
ing detailed code for these optimizations will be useful to programmers in this
area and also to any programmers interested in optimizing software that imple-
ments and manipulates Boolean data structures. Thus, this paper sets out to
describe and explain these optimizations, with example code, and to explore the
classical efficiency trade-offs between memory and speed in a CbO context. As an
example CbO-type algorithm, this paper makes use of In-Close2 as presented in
[6]. However, the optimization approaches detailed here should be generalizable
for most, if not all, algorithms that compute formal concepts.

The programming language chosen is C++; it is often the language of choice
for efficient coding as it facilitates low level programming and its compilers are
extremely adept at producing efficient assembler.
c© Springer Nature Switzerland AG 2020
M. Alam et al. (Eds.): ICCS 2020, LNAI 12277, pp. 59–73, 2020.
https://doi.org/10.1007/978-3-030-57855-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57855-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-57855-8_5

60 S. Andrews

2 Formal Concepts

A description of formal concepts [9] begins with a set of objects X and a set
of attributes Y . A binary relation I ⊆ X × Y is called the formal context. If
x ∈ X and y ∈ Y then xIy says that object x has attribute y. For a set of
objects A ⊆ X, a derivation operator ↑ is defined to obtain the set of attributes
common to the objects in A as follows:

A↑ := { y ∈ Y | ∀x ∈ A : xIy }. (1)

Similarly, for a set of attributes B ⊆ Y , the ↓ operator is defined to obtain
the set of objects common to the attributes in B as follows:

B↓ := { x ∈ X | ∀y ∈ B : xIy }. (2)

(A,B) is a formal concept iff A↑ = B and B↓ = A. The relations A × B
are then a closed set of pairs in I. In other words, a formal concept is a set of
attributes and a set of objects such that all of the objects have all of the attributes
and there are no other objects that have all of the attributes. Similarly, there
are no other attributes that all the objects have. A is called the extent of the
formal concept and B is called the intent of the formal concept.

A formal context is typically represented as a cross table, with crosses indi-
cating binary relations between objects (rows) and attributes (columns). The
following is a simple example of a formal context:

0 1 2 3 4

a × × ×
b × × × ×
c × ×
d × × ×

Formal concepts in a cross table can be visualized as closed rectangles of
crosses, where the rows and columns in the rectangle are not necessarily con-
tiguous. The formal concepts in the example context are:

C1 = ({a, b, c, d}, ∅) C6 = ({b}, {1, 2, 3, 4})
C2 = ({a, c}, {0}) C7 = ({b, d}, {1, 2, 4})
C3 = (∅, {0, 1, 2, 3, 4}) C8 = ({b, c, d}, {2})
C4 = ({c}, {0, 2}) C9 = ({a, b}, {3, 4})
C5 = ({a}, {0, 3, 4}) C10 = ({a, b, d}, {4})

For readers not familiar with Formal Concept Analysis, further background
can be found in [17–19].

3 A Re-Cap of the In-Close2 Algorithm

In-Close2 [6] is a CbO variant that was ‘bred’ from In-Close [2] and FCbO [13,16]
to combine the efficiencies of the partial closure canonicity test of In-Close with
the full inheritance of the parent intent achieved by FCbO.

Some Programming Optimizations for Computing Formal Concepts 61

The In-Close2 algorithm is given below, with a line by line explanation, and
is invoked with an initial (A,B) = (X, ∅) and initial attribute y = 0, where A
is the extent of a concept, B is the intent and X is a set of objects such that
A ⊆ X.

In-Close2

ComputeConceptsFrom((A,B), y)
for j ← y upto n − 1 do1

if j /∈ B then2

C ← A ∩ {j}↓
3

if A = C then4

B ← B ∪ {j}5

else6

if B ∩ Yj = C↑j then7

PutInQueue(C, j)8

ProcessConcept((A,B))9

while GetFromQueue(C, j) do10

D ← B ∪ {j}11

ComputeConceptsFrom((C,D), j + 1)12

Line 1 - Iterate across the context, from starting attribute y up to attribute
n − 1, where n is the number of attributes.

Line 2 - Skip inherited attributes.
Line 3 - Form an extent, C, by intersecting the current extent, A, with the

next column of objects in the context.
Line 4 - If C = A, then...
Line 5 - ...add the current attribute j to the current intent being closed, B.
Line 7 - Otherwise, apply the partial-closure canonicity test to C (is this a

new extent?). Note that Yj = {y ∈ Y |y < j}. Similarly, C↑j is C closed up to
(but not including) j: C↑j = { y ∈ Yj | ∀x ∈ C : xIy }

Line 8 - If the test is passed, place the new (child) extent, C, and the location
where it was found, j, in a queue for later processing.

Line 9 - Pass concept (A,B) to notional procedure ProcessConcept to pro-
cess it in some way (for example, storing it in a set of concepts).

Lines 10 - The queue is processed by obtaining each child extent and asso-
ciated location from the queue.

Line 11 - Each new partial intent, D, inherits all the attributes from its
completed parent intent, B, along with the attribute, j, where its extent was
found.

Line 12 - Call ComputeConceptsFrom to compute child concepts from j + 1
and to complete the closure of D.

62 S. Andrews

4 Implementation of the Formal Context as a Bit Array

Common to most efficient implementations of CbO-type algorithms is the imple-
mentation of the formal context as a bit array, with each bit representing a
Boolean ‘true/false’ cell in the cross-table. Such an approach leads to efficient
computation in two ways: it allows for bit-wise operations to be performed over
multiple cells in the context at the same time and reducing the size of cells to
bits allows a much larger portion of the context to be held in cache memory. So,
for example, in a 64 bit architecture the formal context can be declared in the
heap using C++ thus:

1 unsigned __int64 ∗∗ context ;

Once the number of objects, m, and number of attributes, n, are known, the
required memory can be allocated thus:

1 /∗ c r ea t e empty context ∗/
2 // c a l c u l a t e s i z e f o r a t t r i b u t e s − 1 b i t per a t t r i bu t e
3 nArray = (n−1)/64 + 1 ;
4 // c r ea t e one dimension o f the context
5 context = new unsigned __int64 ∗ [m] ;
6 f o r (i = 0 ; i<m ; i++){ // f o r each ob j e c t
7 context [i] = new unsigned __int64 [nArray] ; // c r ea t e a row o f
8 f o r (j=0;j<nArray ; j++) context [i] [j]=0; // a t t r i b u t e s
9 }

Clearly this is a memory efficient way of storing the context: not only are bits
being used to represent the individual cells, but dynamic memory allocation is
being used to declare only the number of bits required for a particular context.
Although dynamic memory allocation is a relatively time-consuming process,
here this does not matter as the context is being allocated once only, before the
invocation of the main algorithm.

It is important to declare the context so that attributes are contiguous in
memory, rather than objects. This structure allows the efficient use of cache
memory when the processing is operating on contiguous attributes, such as the
iteration across attributes in In-Close. A cache-line will be filled with row of the
table, rather than a column, so that contiguous attributes are readily available.
Arranging the context column-wise in memory would mean that the subsequent
processing would be operating ‘against the grain’ of memory, causing continuous
cache-misses when trying to access contiguous attributes, as the next attribute
would be a whole column-worth of memory away from the current one.

Obviously the use of bits to represent the Boolean cells of the cross-table
requires careful programming to identify specific cells in the cross-table. Each 64
bit unsigned integer represents 64 cells in a row of the cross-table, thus the arith-
metic required is the use of modulo-64 to identify a required cell. For example,
attribute 137 would be bit 9 of integer 3: 137 mod 64 = 9 and 137 div 64 = 2.

If the formal context is being input as a cxt file, for example, the program
will need to populate the bit array by reading and parsing rows of character

Some Programming Optimizations for Computing Formal Concepts 63

strings where ‘.’ represents an empty cell and ‘X’ represents a cross. For exam-
ple, a single row in the formal context in a cxt file will look something like this:

...X.....XX.........X........X...X.X...XX...........X....X.....X

The procedure to input the formal context will then look something like this:

1 /∗ input i n s t an c e s (rows) and t r a n s l a t e in to temporary context ∗/
2 // f o r each row (ob j e c t)
3 f o r (i = 0 ; i < m ; i++){
4 // get in s tance
5 cxtFile . getline (instance , instanceSize) ;
6 // f o r each a t t r i bu t e
7 f o r (j = 0 ; j < n ; j++){
8 // i f ob j e c t has the a t t r i bu t e
9 i f (instance [j] == 'X '){

10 // s e t context b i t to t rue at byte : i d iv 8 , b i t : i mod 8
11 contextTemp [j] [(i>>6)] |= (1 i64<<(i%64)) ;
12 // increment column support (dens i ty o f Xs) f o r a t t r i bu t e j
13 colSup [j]++;
14 }
15 }
16 }

Because binary arithmetic is being used, the C++ bit shift operators <<
and >> provide an efficient means of implementing modulo-64. Thus, j>>6 shifts
the bits in j rightwards by 6 bits, which is equivalent to integer division by 64
(26 = 64). This identifies the required 64 bit integer in the row of the bit array.
The mod operator in C++ is % and the 64 bit literal integer representation of 1
is defined as 1i64 so, similarly, bit shifting 1i64 leftwards by j%64 places 1 at
the required bit position in a 64 bit integer, with all other bits being zero. The
C++ bit-wise logical ‘or’ operator, |, can then be used to set the required bit
to 1 in the context.

Bit shift operators and bit-wise logical operators are extremely efficient (typ-
ically taking only a single CPU clock-cycle to execute) and thus are fundamental
to the fast manipulation of structures such as bit arrays. This becomes even more
important in the main cycle of CbO-type algorithms and in efficient canonicity
testing, as can be seen later in this paper. However, before considering the imple-
mentation of the algorithm itself, some consideration needs to be given to the
data structures required for the storage and processing of formal concepts.

Note that a temporary bit array, contextTemp, is used to initially store
the context in column-wise form, because we next wish to physically sort the
columns (see Sect. 4: Physical Sorting of Context Columns, below). After sorting,
the context will be translated into row-wise form in the permanent bit-array,
context, for the main computation.

5 Physical Sorting of Context Columns

It is well-known that sorting context columns in ascending order of support
(density of Xs) significantly improves the efficiency of computing formal concepts
in CbO-type implementations. The typical approach is to sort pointers to the

64 S. Andrews

columns, rather than the columns themselves, as this takes less time. However, in
actuality, physically sorting the columns in large formal contexts provides better
results, because physical sorting makes more efficient use of cache memory. If
data is contiguous in RAM, cache lines will be filled with data that are more
likely to be used when carrying out column intersections and when finding an
already closed extent in the canonicity test. This can significantly reduce level
one data cache misses, particularly when large contexts are being processed [3].
The overhead of physically sorting the context is outweighed by the saving in
memory loads.

Thus the column-wise bit array, contextTemp, is physically sorted by making
use of an array of previously logically sorted column indexes, colOriginal:

1 /∗ r ewr i t e so r t ed context (phy s i c a l s o r t) ∗/
2 i n t tempColNums [MAX_COLS] ;
3 i n t rank [MAX_COLS] ;
4 f o r (j = 0 ; j < n ; j++){
5 // use the so r t ed o r i g i n a l c o l nos to index the phy s i c a l←↩

s o r t
6 tempColNums [j]= colOriginal [j] ;
7 rank [colOriginal [j]]= j ; // record the ranking o f the column
8 }
9 f o r (j = 0 ; j < n − 1 ; j++){

10 f o r (i = 0 ; i < mArray ; i++){
11 unsigned __int64 temp = contextTemp [j] [i] ;
12 contextTemp [j] [i] = contextTemp [tempColNums [j]] [i] ;
13 contextTemp [tempColNums [j]] [i] = temp ;
14 }
15 //make note o f where swapped−out c o l has moved to us ing i t s ←↩

rank
16 tempColNums [rank [j]]= tempColNums [j] ;
17 rank [tempColNums [j]]= rank [j] ;
18 }

If, for example, tempColNums = [4,7,0,2,1,6,5,3], it means that column
4 is the least dense column and column 3 the most dense. The array rank is
used to record and maintain the relative ranking of the columns in terms of
density. Thus, in this example, rank = [2,4,3,7,0,6,5,1], which means that
that column 0 has ranking 2, column 1 has ranking 4, column 2 has ranking 3,
and so on.

Once the columns have been physically sorted, the column-wise context,
contextTemp, is written, a bit at a time, into the row-wise context, context,
ready for the main computation:

1 f o r (i n t i=0;i<m ; i++){
2 f o r (i n t j=0;j<n ; j++){
3 i f (contextTemp [j] [(i>>6)]&(1 i64<<(i%64)))
4 context [i] [(j>>6)] = context [i] [(j>>6)] | (1 i64<<(j%64)) ;
5 }
6 }

6 Storing and Processing Formal Concepts

For the purposes of efficiency, it would be desirable to store each formal con-
cept literally and completely, say as a two-dimensional array of objects (for

Some Programming Optimizations for Computing Formal Concepts 65

the extents) and a corresponding two-dimensional array of attributes (for the
intents). Adding a new formal concept as it is computed would require very
little in the way of data management and processing the computed concepts
would be via simple iteration of the arrays. However, if we wish to deal with
large numbers of objects and attributes, and large numbers of formal concepts,
it soon becomes impossible to store them in available memory and in any case
would be a very inefficient means of storing them with very little of the allocated
memory actually being used (if there are 10,000 objects, for example, each extent
would need to be declared as size 10,000 even though most extents will contain
far fewer objects). An alternative approach, in an attempt to avoid memory con-
siderations altogether, would be to process each concept as it is computed and
not to store them at all. However, it is often the case that the ‘processing’ is
not specified. It may be more useful to compute all formal concepts as a ser-
vice for later batch-type processing. Or, if the processing is simply to output
the concepts to a file, outputting each concept as it is computed is a terribly
inefficient process and would make any attempt to optimize the implementation
of the algorithm redundant. The approach adopted here, for In-Close2, is a com-
promise: it is decided to store the formal concepts for later processing, but to
store them in such a way as to reduce the memory required, whilst maintain-
ing an efficient means of data management. For speed, the most efficient data
structure to use to store intents and extents would be standard two-dimensional
arrays, indexing each item in its entirety. However, given that the storage space
for each extent would need to be of size m, and size n for each intent, it is
quickly apparent that the memory required for a typical computation would be
enormous and impractical. Compromises need to be made, and here extents are
stored in full but in a list, with the memory required for an extent being the size
of the extent. This still often requires a significant amount of memory, typically
in the order of several MBs, which, although large, is generally practicable on
today’s standard PCs. Whilst managing a list requires additional indexing over-
heads (storing starting points and sizes for each extent) the number of additional
computational operations required is not large, enabling extents to be stored for
later processing but without drastically impacting speed. This illustrates, in the
context of FCA, some typical trade-offs between memory and speed that are so
common in dealing with optimization problems.

Another approach would be to employ dynamic memory allocation, allocating
memory on the fly (e.g. using malloc) with the exact size required for storage.
Whilst this intuitively seems like a sensible idea, the process of dynamic memory
allocation is rather slow and employing it to store extents and intents increases
run-time enormously.

Further computational details (and trade-offs) in the handling of intents and
extents are given below.

6.1 Intents

In the In-Close2 algorithm, each child intent inherits fully its parent’s attributes.
Each child is then specialized by adding one or more new attributes which are

66 S. Andrews

then, along with its parental attributes, inherited by the next generation, and so
on. Thus, it seems sensible to store the intents in that natural ‘tree’ structure,
thus avoiding repetition of inherited attributes. To further save memory, a single
dimensional, linear memory, structure can be used with the addition of meta-
data to store the start of each intent in memory, the number of ‘own’ attributes
in each intent (i.e. those attributes in an intent not inherited from its parent)
and a pointer to a child intent’s parent intent so as to be able to obtain the
inherited attributes later when the concepts are ‘processed’. The data structure
can be declared in C++ as follows:

1 i n t ∗B ; // s t o r e f o r i n t en t s − memory w i l l be a l l o c a t e d
2 // f o r B at s t a r t o f main program
3 in t sizeBnode [MAX_CONS] ; //number o f 'own ' a t t r i b u t e s in each ←↩

i n t en t
4 i n t ∗ startB [MAX_CONS] ; // po i n t e r s to s t a r t o f i n t en t s
5 i n t nodeParent [MAX_CONS] ; // po i n t e r s to parent i n t en t s
6 i n t ∗ bptr ; // w i l l po int to next a v a i l a b l e l o c a t i o n in B

At the start of the main program, the memory allocation for storing intents and
pointer initialization is carried out:

1 B = new in t [MAX_FOR_B] ;
2 bptr = B ;

Note that there are some predefined literals here, namely MAX CONS (the max-
imum number of concepts that can be computed) and MAX FOR B (the amount
of memory to be allocated for storing intents). Although it would be possible to
dynamically allocate memory on the fly, in the process of computing the con-
cepts, the overheads in time required for this would reduce the efficiency of the
implementation. Again, a compromise has been made, in this case to increase
efficiency but at the expense of setting arbitrary limits on quantities and sizes.

6.2 Extents

In the In-Close2 algorithm, a new extent is formed as a sub-set of objects from
its parent extent. With the breadth then depth approach of the algorithm, it
would be possible to avoid repetition of objects (and thus save memory) by
removing the child objects from the parent once all the children have been found
and then adding meta-data to link the children to the parent. However, this
amount of data management would incur significant time overheads, so again a
compromise is chosen, in this case to store each extent in full, back-to-back, in
memory, adding meta-data to record the starting address of each extent and its
size. Thus, although individual objects may be repeated in a number of extents,
there is no ‘empty’, wasted memory that would occur if a two-dimensional array
was being used. The data structure can be declared in C++ as follows:

1 i n t ∗ A ; // s t o r e f o r extent s − memory w i l l be a l l o c a t e d
2 // at s t a r t o f main program
3 in t ∗ startA [MAX_CONS] ; // po i n t e r s to s t a r t o f ex tent s
4 i n t sizeA [MAX_CONS] ; // extent s i z e s

Some Programming Optimizations for Computing Formal Concepts 67

At the start of the program, the memory allocation for storing extents is made,
making use of another arbitrary literal for the amount of memory to use:

1 A = new in t [MAX_FOR_A] ;

Now that the underlying data structures are in place, it is possible to present
the optimized implementation of the algorithm itself.

7 Implementation of the Algorithm

The optimized implementation of the InClose2 algorithm is presented below. A
key optimization to note is the use of one-dimensional bit arrays (Bparent and
Bcurrent) to represent intents in Boolean form. It was described above how
intents are stored in a tree structure to save memory, as opposed to storing each
intent separately and in full. Even if they were stored in bit form, the memory
required for a large number of intents, each with a maximum size of n would be
prohibitive. However, in the algorithm, to skip inherited attributes (line 2) it is
necessary to search for j in B. To search the B tree data structure would require
some significant time overhead. Searching the intent in Boolean form, however,
is simply a logical ‘and’ bit-wise test (& in C++), locating the required bit in
the same way as previously described above:

24 i f (! (Bcurrent [j>>6] & (1 i64 << (j % 64))))

The memory required for a single Boolean form intent is insignificant. The parent
intent is passed down to the child intent at the next level of recursion, and thus
the total number of Boolean-form intents being stored (on the stack) at any
one time will be dependent on the level of recursion. This is unlikely to cause
problems with memory. Thus, the implementation is a two-way compromise
in the end: storing intents globally in a memory efficient data structure for
later processing, and at the same time storing intents locally in an operationally
efficient data structure to reduce computation time. The optimized code for the
In-Close2 algorithm is listed below:

1 /∗OPTIMIZED IMPLEMENTATION OF INCLOSE2 ALGORITHM ∗/
2 void InClose (i n t c , i n t y , unsigned __int64 ∗ Bcurrent)
3 // c : concept number , y : a t t r i bu t e number
4 // Bcurrent : the cur rent i n t en t in Boolean form
5 {
6 /∗ LOCAL VARIABLES ∗/
7 // a t t r i b u t e s where new extent s are found
8 in t Bchildren [MAX_COLS] ;
9 // the number o f new concepts spawned from current one

10 i n t numchildren = 0 ;
11 // the concept no . s o f the spawned concepts
12 i n t Cnums [MAX_COLS] ;
13 //a ch i l d i n t en t in Boolean form
14 unsigned __int64 Bchild [MAX_COLS /64 + 1] ;
15
16 // c a l c u l a t e the s i z e o f cur rent extent

68 S. Andrews

17 i n t sizeAc = startA [c+1]−startA [c] ;
18
19 /∗ ∗∗∗∗∗∗∗∗MAIN CYCLE ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
20 // i t e r a t e a c ro s s a t t r i bu t e columns in the context
21 // forming column i n t e r s e c t i o n s with cur rent extent
22 f o r (i n t j = y ; j < n ; j++) {
23 /∗ i f j i s not an element o f B then ∗/
24 i f (! (Bcurrent [j>>6] & (1 i64 << (j % 64)))){
25 /∗ C = A i n t e r s e c t { j }downarrow ∗/
26 // po int to s t a r t o f cur rent extent
27 i n t ∗Ac = startA [c] ;
28 // point to s t a r t o f new extent
29 i n t ∗ aptr = startA [highc] ;
30 //NOTE: highc i s maintained g l o b a l l y as
31 // next a v a i l a b l e concept number
32
33 // i t e r a t e through ob j e c t s in cur rent extent
34 f o r (i n t i = sizeAc ; i > 0 ; i−−){
35 // look ing f o r them in cur rent a t t r i bu t e column
36 i f (context [∗ Ac] [j>>6] & (1 i64 << (j % 64))){
37 // i f ob j e c t i s found
38 ∗ aptr = ∗Ac ; //add i t to new extent
39 aptr++;
40 }
41 Ac++; // next ob j e c t
42 }
43
44 // c a l c u l a t e s i z e o f new extent
45 i n t size = aptr − startA [highc] ;
46
47 /∗ i f A = C then ∗/
48 i f (size == sizeAc){
49 //add cur rent a t t r i bu t e to cur rent i n t en t
50 ∗ bptr = j ; // in the B t r e e
51 bptr++;
52 sizeBnode [c]++;
53 //and in the Boolean form of i n t en t
54 Bcurrent [j>>6] = Bcurrent [j>>6] | (1 i64 << (j % 64)) ;
55 }
56 e l s e { // s i z e < s i zeAc so :
57 // i f new extent i s canon i ca l
58 i f (IsCannonical (j , aptr , Bcurrent)){
59 /∗ PUT CHILD IN THE QUEUE ∗/
60 // record the a t t r i bu t e where i t was found
61 Bchildren [numchildren] = j ;
62 // record the new concept number
63 Cnums [numchildren++] = highc ;
64 // record the parent concept number
65 nodeParent [highc] = c ;
66 // record the s t a r t o f the new extent in A
67 startA [++highc] = aptr ;
68 }
69 }
70 }
71 }
72
73 /∗ GET CHILDREN FROM THE QUEUE ∗/
74 f o r (i n t i = numchildren −1; i >= 0 ; i−−){
75 /∗ D = B U { j } ∗/
76 // i n h e r i t a t t r i b u t e s
77 memcpy (Bchild , Bcurrent , nArray ∗8) ;
78 // record the s t a r t o f the ch i l d i n t en t in B t r e e
79 startB [Cnums [i]] = bptr ;
80 //add spawning a t t r i bu t e to B t r e e
81 ∗ bptr = Bchildren [i] ;
82 bptr++;
83 sizeBnode [Cnums [i]]++;
84 //and to Boolean form of ch i l d i n t en t

Some Programming Optimizations for Computing Formal Concepts 69

85 Bchild [Bchildren [i]>>6] =
86 Bchild [Bchildren [i]>>6] | (1 i64 << (Bchildren [i] % 64)) ;
87
88 // c l o s e the ch i l d concept from j+1
89 InClose (Cnums [i] , Bchildren [i]+1 , Bchild) ;
90 }
91 }

7.1 Optimizing the Canonicity Test

Possibly the greatest time savings can be made in the implementation of the
canonicity test. The test is, essentially, a search and is the code most frequently
executed in the program. Any performance efficiencies made here will have a
significant impact on the overal computation time. The task is to find the can-
didate new extent in an earlier column in the context cross-table. If it can be
found, then the extent is not canonical and thus not new. However, the search
must avoid looking in columns representing attributes already in the intent of
the current concept - as these will, of course, contain the new extent as a subset.
The primary source of efficiency here, is the exploitation of the context as a bit
array. Using 64-bits, the search becomes a fine-grained parallelization, searching
64 columns of the context simultaneously. To avoid looking in columns repre-
senting attributes already in the intent, a bit-mask can be used to mask out
the attributes in question. The mask can be created simply by inverting the
Boolean form of the current intent, Bcurrent, so that bit positions correspond-
ing to attributes in the current intent become zero and all others are set to
1. The mask is then applied to each object in the new extent (i.e. each corre-
sponding row of the context) using bit-wise ‘and’. If the object is present, the
corresponding bit in the mask will remain set, if the object is absent the bit will
be zeroed.

Further efficiency is possible by stopping the search as soon as the mask
becomes completely zeroed - in other words, as soon as it is clear that an object
in the extent is not present in any of the columns, it is unnecessary to search
for the other objects. The search can then move on the next 64 columns in the
context. Conversely, the search can also be stopped as soon as the extent is found:
once found it is then not necessary to search any more columns. The combination
of fine-grained parallel processing using bit-wise operators and minimizing the
amount of searching required, makes the optimized canonicity test extremely
efficient. The optimizied canonicity test code is listed below:

1 /∗ OPTIMIZED CANONICITY TEST ∗/
2 bool IsCannonical (i n t y , i n t ∗ endAhighc , unsigned __int64 ←↩

Bcurrent [])
3 /∗ y : a t t r i bu t e number , endAhighc : po in t s to end o f the new ←↩

extent ∗/
4 /∗ Bcurrent : the cur rent i n t en t in Boolean form ∗/
5 {
6 /∗ CREATE BIT MASK FOR SEARCHING ∗/
7 unsigned __int64 Bmask [MAX_COLS /64 + 1] ;
8 i n t p ; // counter f o r 64 b i t segments
9 f o r (p = 0 ; p < y>>6; p++){

70 S. Andrews

10 // i nv e r t 64 b i t segments o f cur rent i n t en t
11 Bmask [p]=˜ Bcurrent [p] ;
12 }
13 // i nv e r t l a s t 64 b i t s up to cur rent a t t r i bu t e
14 // ze ro ing any b i t s a f t e r cur rent a t t r i bu t e
15 Bmask [p]= ˜ Bcurrent [p] & ((1 i64 << (y % 64))−1) ;
16
17 /∗ SEARCH 64 BIT SEGMENTS OF CONTEXT FOR THE EXTENT ∗/
18 f o r (p=0; p <= y>>6; p++){
19 i n t i ; // ob j e c t counter
20 // po int to s t a r t o f extent
21 i n t ∗ Ahighc = startA [highc] ;
22 // i t e r a t e through ob j e c t s in new extent
23 f o r (i = endAhighc − Ahighc ; i > 0 ; i−−){
24 // apply mask to context (t e s t i n g 64 c e l l s at a time)
25 Bmask [p] = Bmask [p] & context [∗ Ahighc] [p] ;
26 // i f an ob j e c t i s not found , stop sea r ch ing t h i s segment
27 i f (! Bmask [p]) break ;
28 Ahighc++; // otherwise , next ob j e c t
29 }
30 // i f extent has been found , i t i s not canon i ca l
31 i f (i==0) return (f a l s e) ;
32 }
33 // i f extent has not been found , i t i s canon i ca l
34 re turn (t rue) ;
35 }

8 Evaluation

Evaluation of the optimization was carried out using some standard FCA data
sets from the UCI Machine Learning Repository [8] and some artificial data
sets. The comparison was between a version of In-Close with and without the
optimizations described above, i.e. without a bit-array for the context (an array
of type Bool is used instead), without the Boolean form of intent being used to
skip inherited attributes (the ‘tree’ of intents is searched instead), and without
physical sorting of the context. The difference in performance on the standard
data sets, that can be seen in Table 1, is striking, particularly when bearing in
mind that the same algorithm is being implemented in both cases - the code
optimization is the only difference.

Table 1. UCI data set results (timings in seconds).

Data set Mushroom Adult Internet ads

|X| × |Y | 8124 × 125 48842 × 96 3279 × 1565

Density 17.36% 8.24% 0.77%

#Concepts 226,921 1,436,102 16,570

Optimized 0.16 0.83 0.05

Unoptimized 0.47 2.14 0.39

Artificial data sets were used that, although partly randomized, were con-
strained by properties of real data sets, such as many valued attributes and a

Some Programming Optimizations for Computing Formal Concepts 71

fixed number of possible values. The results of the artificial data set experiments
are given in Table 2 and, again, show a significant improvement achieved by the
optimized implementation.

Table 2. Artificial data set results (timings in seconds).

Data set M7X10G120K M10X30G120K T10I4D100K

|X| × |Y | 120, 000 × 70 120, 000 × 300 100, 000 × 1, 000

Density 10.00% 3.33% 1.01%

#Concepts 1,166,343 4,570,498 2,347,376

Optimized 0.98 8.37 9.10

Unoptimized 2.42 18.65 33.21

9 Conclusions and Further Work

It is clear that certain optimization techniques can make a significant difference
to the performance of implementations of CbO-type algorithms. Bit-wise opera-
tions and efficient use of cache memory are big factors in this, along with a choice
of data structures for storing formal concepts that make a good compromise
between size and speed, given the memory typically available and addressable
in standard personal computers. Clearly, with more specialized and expensive
hardware and with the use of multi-core parallel processing, other significant
improvements can be made. However, as far as optimizations are concerned, the
ones presented here are probably the most important.

Although space does not permit here, it would be interesting, perhaps in a
future, expanded work, to investigate the individual effects of each optimization.
It may be that some optimizations are more useful than others. Similarly, it
may be interesting to investigate the comparative effectiveness of optimization
with respect to varying the number of attributes, number of objects and context
density.

The power of 64-bit bit-wise operators naturally leads to the tempting possi-
bility of using even larger bit-strings to further increase the level of fine-grained
parallel processing. So-called streaming SIMD extensions (SSEs) and correspond-
ing chip architecture from manufacturers such as Intel and AMD [1,10] provide
the opportunity of 128 and even 256 bit-wise operations. However, our early
attempts to leverage this power have not shown any significant speed-up. It
seems that the overheads of manipulating the 128/256 bit registers and variables
are outweighing the increase in parallelism. It may be because we are currently
applying the parallelism to the columns of a formal context (the bit-mask in the
canonicity test) rather than the rows, that we are not seeing good results from
SSEs. Whereas there are typically only tens or perhaps hundreds of columns,
there are often tens or even hundreds of thousands of rows, particularly if we

72 S. Andrews

are applying FCA to data sets. Thus, a 256-bit parallel process is likely to have
more impact used column-wise than row-wise. The task will be to work out how
to incorporate this approach into an implementation.

It may also be worth exploring how the optimizations presented here could
be transferred into other popular programming languages, although interpreted
languages, such as Python, are clearly not an ideal choice where speed is of the
essence. For Java and C#, there appears to be some debate on efficiency com-
pared to C++. It would be interesting to experiment to obtain some empirical
evidence.

In-Close is available free and open source on SourceForge1.

References

1. AMD: AMD64 Architecture Programmers Manual Volume 6: 128-Bit and 256-Bit
XOP, FMA4 and CVT16 Instructions, May 2009

2. Andrews, S.: In-Close, a fast algorithm for computing formal concepts. In: Rudolph,
S., Dau, F., Kuznetsov, S.O. (eds.) ICCS 2009, vol. 483. CEUR WS (2009)

3. Andrews, S.: In-Close2, a high performance formal concept miner. In: Andrews, S.,
Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS 2011. LNCS (LNAI), vol. 6828, pp.
50–62. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22688-5 4

4. Andrews, S.: A partial-closure canonicity test to increase the efficiency of
CbO-type algorithms. In: Hernandez, N., Jäschke, R., Croitoru, M. (eds.) ICCS
2014. LNCS (LNAI), vol. 8577, pp. 37–50. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08389-6 5

5. Andrews, S.: A best-of-breed approach for designing a fast algorithm for
computing fixpoints of Galois connections. Inf. Sci. 295, 633–649 (2015)

6. Andrews, S.: Making use of empty intersections to improve the performance of
CbO-type algorithms. In: Bertet, K., Borchmann, D., Cellier, P., Ferré, S. (eds.)
ICFCA 2017. LNCS (LNAI), vol. 10308, pp. 56–71. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-59271-8 4

7. Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications.
Wiley, Hoboken (2004)

8. Frank, A., Asuncion, A.: UCI machine learning repository (2010). http://archive.
ics.uci.edu/ml

9. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-642-59830-2

10. Intel: Intel Developer Zone, ISA Extensions. https://software.intel.com/en-us/
isa-extensions. Accessed June 2016

11. Krajca, P., Outrata, J., Vychodil, V.: Parallel recursive algorithm for FCA. In:
Belohavlek, R., Kuznetsov, S.O. (eds.) Proceedings of Concept Lattices and their
Applications (2008)

12. Krajca, P., Outrata, J., Vychodil, V.: FCbO program (2012). http://fcalgs.
sourceforge.net/

13. Krajca, P., Vychodil, V., Outrata, J.: Advances in algorithms based on CbO. In:
Kryszkiewicz, M., Obiedkov, S. (eds.) CLA 2010, pp. 325–337. University of
Sevilla (2010)

1 In-Close on SourceForge: https://sourceforge.net/projects/inclose/.

https://doi.org/10.1007/978-3-642-22688-5_4
https://doi.org/10.1007/978-3-319-08389-6_5
https://doi.org/10.1007/978-3-319-08389-6_5
https://doi.org/10.1007/978-3-319-59271-8_4
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-642-59830-2
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/en-us/isa-extensions
http://fcalgs.sourceforge.net/
http://fcalgs.sourceforge.net/
https://sourceforge.net/projects/inclose/

Some Programming Optimizations for Computing Formal Concepts 73

14. Kuznetsov, S.O.: A fast algorithm for computing all intersections of objects in a
finite semi-lattice. Nauchno-Tekhnicheskaya Informatsiya, ser. 2 27(5), 11–21
(1993)

15. Kuznetsov, S.O.: Mathematical aspects of concept analysis. Math. Sci. 80(2),
1654–1698 (1996)

16. Outrata, J., Vychodil, V.: Fast algorithm for computing fixpoints of Galois
connections induced by object-attribute relational data. Inf. Sci. 185(1), 114–127
(2012)

17. Priss, U.: Formal concept analysis in information science. Ann. Rev. Inf. Sci.
Technol. (ASIST) 40 (2008)

18. Wille, R.: Formal concept analysis as mathematical theory of concepts and
concept hierarchies. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept
Analysis. LNCS (LNAI), vol. 3626, pp. 1–33. Springer, Heidelberg (2005).
https://doi.org/10.1007/11528784 1

19. Wolff, K.E.: A first course in formal concept analysis: how to understand line
diagrams. Adv. Stat. Softw. 4, 429–438 (1993)

https://doi.org/10.1007/11528784_1

Preventing Overlaps in Agglomerative
Hierarchical Conceptual Clustering

Quentin Brabant(B), Amira Mouakher, and Aurélie Bertaux

CIAD, Université de Bourgogne, 21000 Dijon, France
{quentin.brabant,amira.mouakher,aurelie.bertaux}@u-bourgogne.fr

Abstract. Hierarchical Clustering is an unsupervised learning task,
whi-ch seeks to build a set of clusters ordered by the inclusion rela-
tion. It is usually assumed that the result is a tree-like structure with no
overlapping clusters, i.e., where clusters are either disjoint or nested. In
Hierarchical Conceptual Clustering (HCC), each cluster is provided with
a conceptual description which belongs to a predefined set called the
pattern language. Depending on the application domain, the elements in
the pattern language can be of different nature: logical formulas, graphs,
tests on the attributes, etc. In this paper, we tackle the issue of over-
lapping concepts in the agglomerative approach of HCC. We provide a
formal characterization of pattern languages that ensures a result with-
out overlaps. Unfortunately, this characterization excludes many pattern
languages which may be relevant for agglomerative HCC. Then, we pro-
pose two variants of the basic agglomerative HCC approach. Both of
them guarantee a result without overlaps; the second one refines the
given pattern language so that any two disjoint clusters have mutually
exclusive descriptions.

Keywords: Conceptual knowledge acquisition · Conceptual
clustering · Hierarchical clustering · Agglomerative clustering ·
Conceptual structure · Overlap

1 Introduction

Cluster analysis or simply clustering is the unsupervised task of partitioning
a set of objects into groups called clusters, such that objects belonging to the
same cluster are more similar than objects belonging to different clusters. Based
on regularities in data, this process is targeted to identify relevant groupings
or taxonomies in real-world databases [9]. There are many different clustering
methods, and each of them may give a different grouping of a dataset. One of the
most important method of clustering analysis is the hierarchical clustering [14].
In fact, in the latter, the set of objects is partitioned at different levels, and the
ordering of clusters, w.r.t. inclusion, can be represented as a dendogram.

Traditional clustering methods are usually unable to provide human-readable
definitions of the generated clusters. However, conceptual clustering techniques,
c© Springer Nature Switzerland AG 2020
M. Alam et al. (Eds.): ICCS 2020, LNAI 12277, pp. 74–89, 2020.
https://doi.org/10.1007/978-3-030-57855-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57855-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-57855-8_6

Preventing Overlaps in Agglomerative Hierarchical Conceptual Clustering 75

in addition to the list of objects belonging to the clusters, provide for each
cluster a definition, as an explanation of the clusters. This definition belongs
to a predefined set called the pattern language. The pair of a cluster and its
definition is usually called a concept.

In this paper, we are paying hand to Hierarchical Conceptual Clustering
(HCC), to wit the task of generating concepts that decompose the set of data at
different levels. We focus on the agglomerative approach, which is easily adapt-
able to various application cases. Indeed, its requirements on the pattern lan-
guage are easy to meet (see Sect. 2).

A particularity of conceptual clustering approaches is that only clusters hav-
ing a definition in the pattern language can be returned. Quite often, the chosen
pattern language does not allow expressing every possible subset of objects in
the data. Thus, the pattern language can be seen as a tool for guiding the
clustering and avoiding over-fitting. However, this particularity may lead to an
issue: näıve agglomerative HCC algorithms outputs are sometimes not, strictly
speaking, hierarchical. A structure of this kind cannot be represented by a den-
dogram. This problem is the main focus of the present paper, which is organized
as follows:

The next section recalls the key notions used throughout this paper and
reviews the related work. In Sect. 3, we provide a formal characterization of pat-
tern languages ensuring that the result of agglomerative HCC does not contain
overlaps. As many relevant pattern languages for the agglomerative HCC are
excluded from our proposed characterization, we provide, in Sect. 4, a variant of
agglomerative HCC that always outputs a set of non-overlapping clusters. Then,
Sect. 5 reports an experimental study and its results. Section 6 concludes the
paper and identifies avenues for future work.

2 Preliminaries and Related Work

This section reviews the fundamental notions used in this paper, then briefly
surveys the related works in Agglomerative Hierarchical Conceptual Clustering.

2.1 Some Definitions

Pattern Language. We consider a partially ordered set (L,�), to which we
refer as the pattern language. The partial order � is called a generality relation.
For any two patterns p, q ∈ L, the relation p � q indicates that any object that
is described by p is also described by q. We say that q is more general than p
(or that q generalizes p) and that p is more specific than q (or that p specifies
q). The set of most general elements of a set of patterns P is:

P̂ =
{

p ∈ P
∣

∣ ∀q ∈ P, p �� q
}

.

76 Q. Brabant et al.

Example 1. We now describe a pattern language that will be used as an exam-
ple throughout the paper. This pattern language is composed of all subsets of
{0, . . . , 9}, i.e., L = 2{0,...,9}. The generality relation � is defined as the inverse
of inclusion (p � q if and only if q ⊆ p). In other words, the more elements a pat-
tern contains, the more specific it is; for instance {1, 2} � {1}. This framework
is similar to that of FCA (see, e.g. [8]).

Data Representation. We consider a set of objects X. Each object x ∈ X is
associated to a pattern referred to as its most specific description (MSD) through
a function δ : X → D, where D is a subset of L that contains all potential MSD
of objects. The MSD δ(x) can be interpreted as the pattern providing the most
information about x.

Example 2. We consider X = {x1, . . . , x5}, D = L and δ : X → D such that:

x x1 x2 x3 x4 x5

δ(x) {0, 1} {1, 2, 3, 4} {1, 2, 3, 5} {2, 5, 6} {2, 5, 7} .

Clusters and Concepts. For any pattern p, we denote by cl(p) the cluster of
objects that p describes, i.e.:

cl(p) =
{

x ∈ X
∣

∣ δ(x) � p
}

.

It follows from this definition that p � q is equivalent to cl(p) ⊆ cl(q). A pair
(cl(p), p) is called a concept if there is no pattern q ∈ L such that q � p and
cl(q) = cl(p). The pattern p and the cluster cl(p) are then called the intension
and the extension of (cl(p), p), respectively. Note that if, for a given cluster
A ⊆ X, there is no p ∈ L such that A = cl(p), then no concept corresponds to
A. A natural order relation of concepts is defined by:

(cl(p), p) ≤ (cl(q), q) ⇐⇒ p � q ⇐⇒ cl(p) ⊆ cl(q). (1)

Example 3. Let’s consider the following patterns: {1, 2, 3}, {2, 5} and ∅. The
corresponding concepts are ({x2, x3}, {1, 2, 3}), ({x3, x4, x5}, {2, 5}) and (X, ∅).
The pattern {5} has no corresponding concept, since cl({5}) = {x3, x4, x5} and
{2, 5} is a more specific pattern that describes the same cluster. The cluster
{x4, x5} has also no corresponding concept, since the most specific pattern that
describes x4 and x5 (which is {2, 5}) also describes x3. As an illustration of (1),
notice that {1, 2, 3} � ∅ and {x2, x3} ⊆ X, and thus ({x2, x3}, {1, 2, 3}) ≤ (X, ∅).

Agglomerative Clustering. The principle of (non-conceptual) agglomerative
clustering is the following:

1. a set of clusters H = {{x} | x ∈ X} is initialized;
2. while H does not contain the cluster X:

(a) pick C1 and C2 from {C ∈ H | ∀C ′ ∈ H, C �⊂ C ′};
(b) add C1 ∪ C2 to H.

Preventing Overlaps in Agglomerative Hierarchical Conceptual Clustering 77

At the end of the process, clusters of H are either nested or disjoint, which allows
to represent H by a dendogram. Usually, the chosen clusters C1 and C2 are the
closest according to some inter-cluster distance, which is itself defined w.r.t. a
given inter-object distance.

Generalization Operation. In the case of agglomerative HCC, we substi-
tute clusters with concepts. Merging two concepts (cl(p), p), (cl(q), q) is done
by choosing a pattern r that generalises both p and q; the resulting concept is
then (cl(r), r). In this paper, we consider a binary operation � on L such that
p � q generalizes both p and q. Moreover, we assume that � is a join semilattice
operator [4]. This assumption is not very restrictive, since the properties that
characterize join operators are quite natural for the purpose of agglomerative
HCC. Indeed, � begin a join semilattice operation is equivalent to:

– � being idempotent, commutative and associative;
– � being idempotent, monotonic and satisfies p � p � q for all p, q ∈ L;
– p � q being the most specific generalization of p and q for all p, q ∈ L.

Since � is associative, it naturally extends into the function
⊔

: 2L → L, where:
⊔

{p1, . . . , pn} = p1 � . . . � pn for all n > 0 and all p1, . . . , pn ∈ L.

Example 4. In the pattern language of the previous examples, the most specific
generalization of two sets is given by their intersection. Thus, the join operation
associated to L and ⊆ is ∩. So, if we want to merge the concepts ({x1}, {0, 1})
and ({x2}, {1, 2, 3, 4}), we first compute

{0, 1} � {1, 2, 3, 4} = {0, 1} ∩ {1, 2, 3, 4} = {1},

and then

cl({1}) =
{

x ∈ X
∣

∣ δ(x) � {1}} = {x1, x2, x3},

and we get the concept ({x1, x2, x3}, {1}).

Finally, we assume that L has a minimal element ⊥, such that ⊥ �∈ D. Since
(L,�) is a join semi-lattice with a lower bound, it is a lattice. We denote its
meet operation by �. Note that ⊥ cannot describe any object, since ⊥ � p for
all p ∈ D. Furthermore, saying that p� q = ⊥ is equivalent to say that no object
can be described by both p and q.

Example 5. Although {1, . . . , 9} is the least elements of L, we have {1, . . . , 9} ∈
D. Thus, in order to fit our assumptions about ⊥, we set L = 2{0,...,9} ∪ {⊥}
such that ⊥ � {1, . . . , 9}, and D = L \ {⊥}. Finally, the reader can check that
the meet operation associated to L is the set union ∪.

78 Q. Brabant et al.

2.2 Related Work

In the following, we review the few previous works that addressed the agglomer-
ative approach of HCC. For a broader review on conceptual clustering, we refer
the reader to [12].

The work that is the most closely related to ours is certainly [6], where an
agglomerative HCC algorithm is described. This algorithm takes as parameter a
pattern language and a distance over the set of objects. Moreover, the authors
define several levels of “agreement” between the chosen pattern language and dis-
tance. Those levels of agreement are though as conditions that limit the impact
of the pattern language on the outcome of the clustering (when compared to a
classical approach relying only on distance). However, the clusters produced by
this approach can overlap with each other.

Other papers propose algorithms that make use of a specific pattern language:
[13] introduces a method (HICAP) for hierarchical conceptual clustering where
patterns are itemsets. Just as the classical UPGMA method, HICAP relies on
the average linkage criteria. It seems to perform as well as UPGMA or bisecting
k-means, while providing clusters with human-readable definitions.

One of the reason for avoiding overlaps in the result of HCC is readability.
However, it is possible to allow some overlaps while preserving readability to
some extent. Pyramids are cluster structures that can be drawn without crossing
edges, while allowing some overlaps. In this context, Brito and Diday proposed a
clustering method using the pyramidal model to structure symbolic objects [2].
Their approach is based on an agglomerative algorithm to build the pyramid
structure. Each cluster is defined by the set of its elements and a symbolic
object, which describes their properties. This approach is used for knowledge
representation and leads to a readable graphical representation.

Finally, note that the theoretical notions of this paper are directly inspired
from the pattern structure formalism [7], which extends Formal Concept Anal-
ysis [8] and provides a useful theoretical framework for thinking about pattern
languages.

2.3 An Abstract View of Agglomerative HCC

In this paper, we abstract ourselves from the chosen pattern language and from
how the concepts to merge are picked at each step. In this respect, our work can
be seen as a continuation of [6]. Algorithm 1 formalizes the general process of
agglomerative HCC. It takes as argument the data (X and δ), the join operation
� of the pattern language, and a function f that picks, at each step, the two
patterns that are going to be merged. Typically, the selected pair is the closest
according to some metric on X.

Example 6. We consider a distance d defined as the complement of the Jaccard
index of object MSDs:

d(xi, xj) = 1 − |δ(xi) ∩ δ(xj)|
|δ(xi) ∪ δ(xj)| .

Preventing Overlaps in Agglomerative Hierarchical Conceptual Clustering 79

1 function AHCC(X, δ, �, f):
2 P ← {

δ(x)
∣
∣ x ∈ X

}

3 while |P̂ | > 1 do

4 {p1, p2} ← f(P̂ , X, δ, �)
5 P ← P ∪ {p1 � p2}
6 end
7 return P

Algorithm 1: The agglomerative approach of HCC. The function returns
a set of patterns where each pattern characterizes a concept.

We define f to return the two concepts whose extents are the closest according
to d, following a single linkage strategy, i.e., for any two clusters Ci and Cj :

d(Ci, Cj) = min{d(xi, xj) | xi ∈ Ci, xj ∈ Cj}.

The set of patterns returned by AHCC is represented in Fig. 1.

x1

{0, 1}

x2

{1, 2, 3, 4}

x3

{1, 2, 3, 5}

x4

{2, 5, 6}

x5

{2, 5, 7}

{1, 2, 3} {2, 5}

{2}

{}

Fig. 1. Result of AHCC in Example 6. The leaves of the tree are created at the initial-
ization of P . The other nodes are created by merging their children, in the following
order: {1, 2, 3}, {2, 5}, {2}, ∅.

2.4 Overlaps

It is usually said that two clusters A,B overlap if

A �⊆ B, B �⊆ A, and A ∩ B �= ∅.

We define the notion of overlaps for patterns in an analogous manner. We say
that two patterns p and q overlap if:

p �� q, q �� p and p � q �= ⊥,

This is to say, if one does not generalize the other, and if it can exist an object
that is described by both. Note that two patterns p, q necessarily overlap if cl(p)
and cl(q) overlap; but the reverse is not true; if p and q overlap, whether cl(p)

80 Q. Brabant et al.

and cl(q) also overlap depends on the objects in X and there descriptions given
by δ. In general, the result of Algorithm 1 can contain both extent overlaps and
intent overlaps.

Example 7. In Example 6, we have cl({2, 5}) = {x3, x4, x5} and cl({1, 2, 3}) =
{x2, x3}. Thus, the clusters described by {2, 5} and {1, 2, 3} overlap on x3.
Figure 2 is misleading, because it omits the link between the patterns {1, 2, 3, 5}
and {2, 5}, and it suggests that x3 does not belong to cl({2, 5}). Finally, note
that, although some pair of patterns describe non-overlapping clusters, any pair
of patterns from 2{0,...,9} is either related by inclusion or overlapping. Indeed,
since ⊥ �∈ 2{0,...,9}, we always have p ∪ q �= ⊥.

3 Formal Characterization of Pattern Languages
Ensuring a Result Without Overlaps

In this section, we present conditions on � and D that ensure the absence of
overlap in AHCC(X, δ, �, f), regardless of X, δ and f . For any pattern p, we say
that a set B ⊆ L is a base of p if

⊔

B = p, and we set

β(p) =
{

B ⊆ D
∣

∣

⊔

B = p
}

.

In other words, β(p) is the set of bases of p that are included in D.

Example 8. In our running example, the base of {1, 2, 3} contains all S ⊆ 2{0,...,9}

such that
⋂

S = {1, 2, 3}.

Proposition 1. The two following propositions are equivalent:

(a) D contains no overlap and for any overlapping p1, p2 ∈ L we have

∀G2 ∈ β(p2) ∃q ∈ G2 : q � p1 (2)

(b) For any X, δ and f , AHCC(X, δ, �, f) contains no overlap.

Proof. In order to make the proof easier to follow, we define, for all p ∈ L,
↓p =

{

q ∈ L ∣

∣ q � p
}

. We also reformulate (2) as follows:

∀G2 ∈ β(p2) : G2 ∩ ↓p1 �= ∅.

We first show by induction that (a) implies (b). Assume that (a) holds, and
consider the algorithm of function AHCC.

1. P is initialized with value
{

δ(x)
∣

∣ x ∈ X
} ⊆ D, thus without overlaps.

2. Now we consider the k-th iteration of the while loop, and assume that P
contains no overlap (before line 5 is executed). We will show that P ∪{p1�p2}
does not contain overlap either. For any r ∈ P , since p1, p2 ∈ P̂ , we have
p1 �� r and p2 �� r. Then:

– if r � p1 or r � p2 then r � p1 � p2 (thus r and p1 � p2 do not overlap);

Preventing Overlaps in Agglomerative Hierarchical Conceptual Clustering 81

– if neither r � p1 nor r � p2 then, since P contains no overlap, we have:

↓p1 ∩ ↓r = ↓p2 ∩ ↓r = ∅, and thus (↓p1 ∪ ↓p2) ∩ ↓r = ∅

and therefore for all B1 ∈ β(p1) and all B2 ∈ β(p2) we have (B1 ∪ B2) ∩
↓r = ∅. Since

⊔
(

B1 ∪ B2) =
(

⊔

B1

)

�
(

⊔

B2

)

= p1 � p2

we also have (B1 ∪ B2) ∈ β(p1 � p2). Therefore, there is a base of p1 � p2
that is disjoint from ↓r. Thus, using (a), we can deduce that p1 � p2 and
r do not overlap.

Hence, p1 � p2 does not overlap with any r ∈ P , and thus P ∪ {p1 � p2}
contains no overlap. The proof by induction is then complete.

In order to show that (b) implies (a), we show that if (a) does not hold then
(b) does not. Assume that (a) does not hold: we will show that we can define
X, δ and f so that AHCC(X, δ, �, f) contains at least one overlap.

– If D contains at least two overlapping patterns p1 and p2, then AHCC(X, δ,
�, f) contains overlaps for X = {x1, x2}, δ(x1) = p1 and δ(x2) = p2.

– If D contains no overlap, then the second part of condition (a) does not hold,
i.e., there are overlapping patterns p1, p2 ∈ L such that

∃ G2 ∈ β(p2) : G2 ∩ ↓p1 = ∅.

Let G2 ∈ β(p2) such that G2 ∩ ↓p1 = ∅ and let G1 ∈ β(p1). We set X and
δ so that δ is a bijection from X to (G1 ∪ G2). The algorithm initializes P
to G1 ∪ G2. Since we have not placed any restrictions on the function f , this
can be chosen so as to obtain an arbitrary merger order. We choose f such
that the order of merging of patterns is as follows: first, the patterns of G1

are merged with each other until obtaining p1. When p1 is added to P , since
G2 is disjoint from ↓p1, after p1 is added to P , we have P̂ = {p1} ∪ G2. We
then choose the following merging order: the patterns of G2 are merged with
each other until obtaining p2. Then, we get p1, p2 ∈ P , and thus the result of
the algorithm is not hierarchical.

��
Remark 1. Condition (a) on D and � is necessary and sufficient to prevent
overlaps in the result of AHCC. However, this condition is quite restrictive and is
not met by many interesting pattern languages. Some cases are listed below.

– L is the powerset of a given set and � is the inverse of the inclusion relation
(see Example 1).

– L is the set of n-tuples whose components are numeric intervals, with n ≥ 3,
and � is defined as in Subsect. 5.2.

82 Q. Brabant et al.

– The pattern language is as defined in [5]. Besides, the paper also presents an
example of HCC whose result contains overlaps, although this is not explicitly
noted (see Fig. 3, diagrams (c) and (e)).

– The patterns are antichains of a given poset (X,≤), and � is defined by:

p � q ⇐⇒ ∀a ∈ q ∃b ∈ p : b ≤ a.

Note that this includes cases where X contains complex structures (e.g.,
graphs, trees, sequences, etc) and where b ≤ a means “a is the substruc-
ture of b”. Examples of such pattern languages are given, for instances, in
[11] with syntactic trees, and in [10] with graphs representing molecules.

– L is the set of expressible concepts of a given Description Logic, objects are
individuals from an A-Box, and δ maps each individual to its most specific
concept (see [1], Sect. 6.3). In this case, D equals L and contains overlaps.

To our current knowledge, languages fulfilling condition (a) are either very
expressive or very simple. Some cases of such simple pattern languages are the
followings:

– L contains no overlap (in other words, L \ {⊥} can be represented as a tree).
– the elements of L\{⊥} can be seen as interval of some total order, where the

join operator is the intersection.

A case of very expressive language is the following: L is the set of n-ary boolean
functions (for some n > 0), and � is the logical OR. For instance, for two
functions b1, b2 ∈ L defined by

b1(x1, . . . , xn) = x1 and b2(x1, . . . , xn) = (x2 AND x3),

the pattern b1 � b2 is the function expressed by (x1 OR (x2 AND x3)). Since (a)
requires that D does not contain overlap, we define it as the subset of boolean
functions that have only one true interpretation, i.e. functions that are of the
form:

b(x1, . . . , xn) = l1(x1) AND l2(x2) AND . . . AND ln(xn)

with, for each i ∈ {1 . . . n}: either li(xi) = xi, or li(xi) = NOT xi.

4 Preventing Overlaps in Agglomerative HCC

In this section, we describe a variant of agglomerative HCC where concepts are
created agglomeratively but: (i) the pattern merging step is corrected in order
to prevent cluster overlaps; (ii) the pattern language is extended with a “pattern
negation” and (iii) when a new pattern is created, existing patterns are updated
in a top-down fashion for preventing pattern overlaps.

Correcting Pattern Creation. In Algorithm 1, when a new pattern p1 � p2
is added to P , it can happen that P already contains some pattern q such that
cl(q) and cl(p1 � p2) overlaps. In our variant, we avoid such situation by adding
the pattern p1 � p2 � q to P , instead of p1 � p2 (see Algorithm 2).

Preventing Overlaps in Agglomerative Hierarchical Conceptual Clustering 83

Refined Pattern Language. We define L as the set of antichains of L, i.e.:
L =

{

P̂
∣

∣ P ⊆ L}

. We define meet and join operations on L by, respectively:

P � Q = P ∪ Q̂ and P � Q = {p � q | p ∈ P, q ∈ Q}̂.

The set L endowed with � and � is a lattice (see [3], Lemma 4.1) whose
maximal element is the empty set. Its order relation � is characterized by:

P � Q ⇐⇒ ∀q ∈ Q ∃p ∈ P : q � p.

Now, we define the lattice (L∗,�∗) as the product of L and L. In other words:
L∗ = L × L, the meet and join operations on L∗ are defined by, respectively:

(p,N) �∗ (q,M) = (p � q, P � Q) and (p,N) �∗ (q,M) = (p � q, P � Q),

and the associated order relation �∗ is such that

(p,N) �∗ (q,M) ⇐⇒ [

p � q and P � Q
]

.

We say that L∗ is the refinement of L.

Semantic of L∗. Each refined pattern (p,N) ∈ L∗ can be interpreted as “p
minus all patterns in N”. A semantic of (p,N) is given by the function Ψ : L∗ →
2L such that:

Ψ(p,N) =
{

q ∈ L ∣

∣ q � p and ∀r ∈ N : q �� r
}

.

Notice that, if (p,N) �∗ (q,M), then Ψ(p,N) ⊆ Ψ(q,M) but the reversed impli-
cation is not true. We then define the set of objects described by (p,N) by:

cl∗(p,N) =
{

x ∈ X
∣

∣ δ(x) ∈ Ψ(p,N)
}

.

Example 9. Following Example 5: the elements of L are antichains from 2{0,...,9}.
For instance, {{0, 5}, {2}} ∈ L. The pattern ({1}, {{0, 5}, {2}}) ∈ L∗ describes
all objects that are described by {1}, but are not described by {0, 5} nor {2}.

The Algorithm. Algorithm 2 describes our variant AHCC-Tree of agglomerative
HCC. The result of AHCC-Tree is a couple (P, neg), where P ⊆ L and neg is a
map from P to L. The couple (P, neg) describes the set of refined patterns

P ∗ =
{(

p, neg(p)
) ∣

∣ p ∈ P
} ⊆ L∗.

Provided that there are no x1, x2 ∈ X such that δ(x1) � δ(x2), the set of clusters
{cl(p) | p ∈ P} does not contain overlaps. Provided that

{

δ(x)
∣

∣ x ∈ X
}

has no
overlap: patterns of P may overlap, but the set of patterns P ∗ has no overlap.

Example 10. We consider the same L,�,X, δ and f as in Example 7. Throughout
the iterations of AHCC-Tree, P̂ and neg evolve as follows:

84 Q. Brabant et al.

1. Initialization: P̂ = {{0, 1}, {1, 2, 3, 4}, {1, 2, 3, 5}, {2, 5, 6}, {2, 5, 7}};
for p ∈ P : neg(p) = ∅

2. {1, 2, 3, 4} and {1, 2, 3, 5} are merged into {1, 2, 3};
P̂ = {{0, 1}, {1, 2, 3}, {2, 5, 6}, {2, 5, 7}};
for p ∈ {{0, 1}, {2, 5, 6}, {2, 5, 7}}: neg(p) = {{1, 2, 3}}

3. {2, 5, 6} � {2, 5, 7} gives {2, 5}, but cl({2, 5}) overlaps with cl({1, 2, 3}), thus
{2, 5} and {1, 2, 3} are merged into {2}, which is added to P ;
P̂ = {{0, 1}, {2}};
neg({0, 1}) = {{1, 2, 3}} � {{2}} = {{2}}

4. {0, 1} and {2} are merged into ∅;
P̂ = {∅}.

The result is represented in Fig. 2.

1 function AHCC-Tree(X, δ, �, f):
2 P ← {

δ(x)
∣
∣ x ∈ X

}

3 ∀p ∈ P : [neg(p) ← ∅]

4 while |P̂ | > 1 do

5 q ← ⊔
f(P̂ , X, δ, �)

6 while ∃p ∈ P̂ : [cl(p) and cl(q) overlap] do
7 q ← q � p
8 end
9 P ← P ∪ {q}

10 for p ∈ P such that p and q overlap. do
11 neg(p) ← neg(p) 	 {q}
12 end

13 end
14 return P, neg

Algorithm 2: The corrected agglomerative approach of HCC.

x1

{0, 1}¬{{2}}
δ

x2

{1, 2, 3, 4}¬{}

x3

{1, 2, 3, 5}¬{}

x4

{2, 5, 6}¬{{1, 2, 3}}

x5

{2, 5, 7}¬{{1, 2, 3}}

{1, 2, 3}¬{}

{2}¬{}

{}¬{}

Fig. 2. Set of patterns P ∗ corresponding to the result of Example 10. Patterns of P ∗

are written in the form “p¬neg(p)”.

Preventing Overlaps in Agglomerative Hierarchical Conceptual Clustering 85

5 Empirical Study

In the following experiments, we perform agglomerative HCC on widely used
datasets from the UCI repository1. We try to quantify the presence of overlaps
in the result of agglomerative HCC. Then, we test the corrected version of AHCC
and compare it to the basic AHCC in terms of how well results fit with data.
The code and datasets used for the experiments are available on GitHub2.

5.1 Datasets

We ran experiments on 6 datasets form the UCI repository. The characteristics
of those datasets are summarized in Table 1. These datasets are 2-dimensional
tables where rows can be seen as objects and columns as attributes. An attribute
can be numerical or categorical. In some datasets, a target attribute is specified
for the purpose of supervised learning; we treat target attributes just as normal
ones.

Table 1. Datasets’ characteristics.

Id. Name # objects # numerical att. # categorical att.

1 Glass 214 9 1

2 Wine 178 13 0

3 Yeast 1484 8 1

4 Breast cancer wisconsin 699 10 0

5 Seeds 210 7 1

6 Travel reviews 980 10 0

5.2 Definition of a Pattern Language

The pattern language is defined as follows. Firstly, categorical attributes are
translated into numerical ones using a one-hot encoding. We denote by n the
number of attributes after this transformation. We define L as the set of n-tuples
of the form ([a1; b1], . . . , [an; bn]) where each [ai; bi] is an interval on IR, and we
define � by:

(

[a1; b1], . . . , [an; bn]
) � (

[c1; d1], . . . , [cn; dn]
)

=
(

[min(a1, c1);max(b1, d1)], . . . , [min(an, cn);max(bn, dn)]).

Each row corresponds to an object x ∈ X. Let us denote the values in the row
by a1, . . . , an. The description of x is then δ(x) = ([a1; a1], . . . , [an; an]). Finally,
we define f as the function that returns the two clusters whose centröıds are
closest according to the Euclidean distance.
1 Available at UC Irvine Machine Learning Database http://archive.ics.uci.edu/ml/.
2 https://github.com/QGBrabant/ACC.

http://archive.ics.uci.edu/ml/
https://github.com/QGBrabant/ACC

86 Q. Brabant et al.

5.3 Basic Agglomerative HCC Experiment

We applied Algorithm 1 on the different dataset presented in Table 1. For each
dataset, we ran 10 tenfold cross-validations (except for yeast and travel reviews,
which have many rows, and for which we ran 10 twofold cross-validations); a set
of patterns P was learned on each training set using the method specified above.

Then, we estimate the number of overlaps contained, on average, in P . This
estimation relied on two measures: for all pattern p, we call covering rate of
p the rate of objects that are described by p, and we call overlapping rate of
p the rate of objects that are described by p and (at least) another pattern
q ∈ P that is incomparable with p. Measuring one of these two rates can yield
different values depending on whether the measure is done the training or test
set. We will simply refer to the covering rate of a cluster on the training set as
its size. In order to assess the relevance of a cluster, we can compare its size to
its covering rate on the test set (a significantly smaller rate on the test set is a
sign of overfitting). Here, however, we are mostly interested in the overlapping
rate of clusters, depending on their size. The results are depicted by Fig. 3.

0

0.2

0.4

0.6

0.8

1
glass wine yeast

0.20.40.60.81
0

0.2

0.4

0.6

0.8

breast-cancer-Wisconsin

0.20.40.60.81

seeds

00.20.40.60.81

travel-reviews

Fig. 3. The abscissa represents the interval of possible cluster sizes (which is [0; 1]).
This interval is divided into 40 sub-intervals of length 0.025. For each sub-interval
]a; a + 0.025], we consider all clusters whose sizes belong to]a; a + 0.025], and we plot
their average value for the following rates: covering rate on the test set (vertical line);
overlapping rate on the learning set (plain line); overlapping rate on the test set (dashed
line). Note that, when no cluster has a size belonging to a given interval, no vertical
line is displayed.

We observe that the covering rates on the test sets tend to be close to the
size of the clusters. Moreover, the overlapping rates on the test sets are very

Preventing Overlaps in Agglomerative Hierarchical Conceptual Clustering 87

similar to those obtained on the training sets. Determining which characteristics
of the dataset determine the overlapping rate would require and empirical study
using more diverse datasets. However, our study allows to conclude that high
overlapping rates can occur in practice when performing agglomerative HCC.

5.4 Corrected Agglomerative HCC Experiment

In order to compare how well AHCC and AHCC-Tree fit to the data, we applied
Algorithm 2 on the same data, with the same cross-validation setting.

One way to asses the quality of fit of a pattern set P on a test set Xtest would
be to measure the distance of each x ∈ Xtest to the centröıd of the most specific
concept of P it belongs to. However, such a measure could fail to account for the
quality of fit of concepts that are “higher in the tree”. In order to have a more
comprehensive view, we introduce a parameter k ∈ [0; 1] and define P (x, k) as
the set of most specific patterns p ∈ P such that δ(x) � p and |cl(p)|

|Xtrain| ≥ k. Then
we define an error function e by:

e(P,Xtest, k) =
1

|Xtest|
∑

x∈Xtest

1
|P (x, k)|

∑

C∈P (x,k)

d(x,C),

where d(x,C) is the Euclidean distance between x and the centröıd of C. We
rely on e to evaluate both AHCC and AHCC-Tree on each dataset. The results are
reported in Fig. 4. Although the reported values are consistently in favor of
AHCC, the difference between both algorithms is very slight. Thus, the proposed
method AHCC-Tree seems to be a viable alternative to AHCC in term of fitting.

0.20.40.60.81
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

·10−2

glass

0.20.40.60.81
wine

00.20.40.60.81

yeast

0.20.40.60.81
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

breast-cancer W.
0.20.40.60.81

seeds
00.20.40.60.81

travel reviews

Fig. 4. Mean value of e as a function of k, for AHCC (black) and AHCC-Tree (red). (Color
figure online)

88 Q. Brabant et al.

6 Conclusion and Future Work

In this paper, we were interested in Agglomerative Hierarchical Conceptual Clus-
tering. We presented a formal characterization of pattern languages in order to
guarantee the hierarchical aspect of the resulting clusters. Unfortunately, this
characterization is too restrictive and excludes many relevant pattern languages
for HCC. So, we proposed two variants of the basic agglomerative HCC approach
preventing overlaps. The second variant also refines the given pattern language
so that any two disjoint clusters have mutually exclusive descriptions.

Although more thorough experiments have to be conducted to confirm the
empirical results, our study suggests that the proposed AHCC-Tree function is a
viable alternative to basic agglomerative HCC.

Acknowledgments. This research was supported by the QAPE company under the
research project Kover.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, New York (2003)

2. Brito, P., Diday, E.: Pyramidal representation of symbolic objects. In: Schader,
M., Gaul, W. (eds.) Knowledge, Data and Computer-Assisted Decision. ATO ASI
Series, pp. 3–16. Springer, Heidelberg (1990). https://doi.org/10.1007/978-3-642-
84218-4 1

3. Crampton, J., Loizou, G.: The completion of a poset in a lattice of antichains. Int.
Math. J. 1(3), 223–238 (2001)

4. Davey, B.A., Priestly, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press, Cambridge (2002)

5. Funes, A., Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: An instantia-
tion of hierarchical distance-based conceptual clustering for propositional learning.
In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009.
LNCS (LNAI), vol. 5476, pp. 637–646. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-01307-2 63

6. Funes, A.M., Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: Hierarchi-
cal distance-based conceptual clustering. In: Daelemans, W., Goethals, B., Morik,
K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5211, pp. 349–364. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-87479-9 41

7. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delu-
gach, H.S., Stumme, G. (eds.) ICCS-ConceptStruct 2001. LNCS (LNAI), vol. 2120,
pp. 129–142. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44583-
8 10

8. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-59830-2

9. Jonyer, I., Holder, L.B., Cook, D.J.: Graph-based hierarchical conceptual cluster-
ing. Int. J. Artif. Intell. Tools 10(1–2), 107–135 (2001). https://doi.org/10.1142/
S0218213001000441

https://doi.org/10.1007/978-3-642-84218-4_1
https://doi.org/10.1007/978-3-642-84218-4_1
https://doi.org/10.1007/978-3-642-01307-2_63
https://doi.org/10.1007/978-3-642-01307-2_63
https://doi.org/10.1007/978-3-540-87479-9_41
https://doi.org/10.1007/3-540-44583-8_10
https://doi.org/10.1007/3-540-44583-8_10
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1142/S0218213001000441
https://doi.org/10.1142/S0218213001000441

Preventing Overlaps in Agglomerative Hierarchical Conceptual Clustering 89

10. Kuznetsov, S.O.: Machine learning and formal concept analysis. In: Eklund, P.
(ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 287–312. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24651-0 25

11. Leeuwenberg, A., Buzmakov, A., Toussaint, Y., Napoli, A.: Exploring pattern
structures of syntactic trees for relation extraction. In: Baixeries, J., Sacarea,
C., Ojeda-Aciego, M. (eds.) ICFCA 2015. LNCS (LNAI), vol. 9113, pp. 153–168.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19545-2 10

12. Pérez-Suárez, A., Mart́ınez-Trinidad, J.F., Carrasco-Ochoa, J.A.: A review of con-
ceptual clustering algorithms. Artif. Intell. Rev. 52(2), 1267–1296 (2018). https://
doi.org/10.1007/s10462-018-9627-1

13. Xiong, H., Steinbach, M.S., Tan, P., Kumar, V.: HICAP: hierarchical clustering
with pattern preservation. In: Proceedings of the Fourth SIAM International Con-
ference on Data Mining, Lake Buena Vista, Florida, USA, 22–24 April 2004, pp.
279–290 (2004)

14. Zhou, B., Wang, H., Wang, C.: A hierarchical clustering algorithm based on GiST.
In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007. CCIS, vol. 2, pp. 125–134.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74282-1 15

https://doi.org/10.1007/978-3-540-24651-0_25
https://doi.org/10.1007/978-3-319-19545-2_10
https://doi.org/10.1007/s10462-018-9627-1
https://doi.org/10.1007/s10462-018-9627-1
https://doi.org/10.1007/978-3-540-74282-1_15

Interpretable Concept-Based
Classification with Shapley Values

Dmitry I. Ignatov2,3(B) and Léonard Kwuida1

1 Bern University of Applied Sciences, Bern, Switzerland
leonard.kwuida@bfh.ch

2 National Research University Higher School of Economics,
Moscow, Russian Federation

dignatov@hse.ru
3 St. Petersburg Department of Steklov Mathematical Institute of Russian Academy

of Sciences, Saint Petersburg, Russia

Abstract. Among the family of rule-based classification models, there
are classifiers based on conjunctions of binary attributes. For example,
JSM-method of automatic reasoning (named after John Stuart Mill) was
formulated as a classification technique in terms of intents of formal con-
cepts as classification hypotheses. These JSM-hypotheses already repre-
sent interpretable model since the respective conjunctions of attributes
can be easily read by decision makers and thus provide plausible reasons
for model prediction. However, from the interpretable machine learning
viewpoint, it is advisable to provide decision makers with importance
(or contribution) of individual attributes to classification of a particular
object, which may facilitate explanations by experts in various domains
with high-cost errors like medicine or finance. To this end, we use the
notion of Shapley value from cooperative game theory, also popular in
machine learning. We provide the reader with theoretical results, basic
examples and attribution of JSM-hypotheses by means of Shapley value
on real data.

Keywords: Interpretable Machine Learning · JSM hypotheses ·
formal concepts · Shapley values

1 Introduction

In this paper we consider the JSM method of inductive reasoning in terms of
Formal Concept Analysis for classification problems [6,8,19] from Interpretable
Machine Learning viewpoint [24]. Briefly, this is a rule-based classification tech-
nique [7], i.e. it relies on rules in the form “if an object satisfies a certain subset
of attributes, then it belongs to a certain class”. Under some conditions these
subsets of attributes are called JSM-hypotheses or classification hypotheses (see
Sect. 2).

c© Springer Nature Switzerland AG 2020
M. Alam et al. (Eds.): ICCS 2020, LNAI 12277, pp. 90–102, 2020.
https://doi.org/10.1007/978-3-030-57855-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57855-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-57855-8_7

Interpretable Concept-Based Classification with Shapley Values 91

In Interpretable Machine Learning (IML) we want to build from our training
data a classification model, that is capable not only to infer the class of unde-
termined examples (not seen in the training data), but also to explain, to some
extent, the possible reasons why a particular classification has been performed
in terms of separate attributes and their values [24]. From this point of view,
classification based on JSM-hypotheses belongs to interpretable machine learn-
ing techniques since combination of attributes provides clear interpretation. To
have further insights and rely on statistically stable hypotheses under examples
deletion, the notion of stability of hypotheses was proposed [16,18]. It enables
ranking of hypotheses to sort out the most stable ones for classification purposes.

However, in modern machine learning, especially for the so-called black-box
models like deep neural nets, the analyst would like to receive plausible interpre-
tation of particular classification cases (why to approve (or disapprove) a certain
money loan, why a certain diagnosis may (or not) take place) even on the level
of ranking of individual attributes by their importance for classification [24].

To further enrich the JSM-based methodology not only by ranking single
hypotheses, but also by ranking individual attributes, we adopt Shapley value
notion from Cooperative Game Theory [25], which has already been proven to be
useful in supervised machine learning [21,26]. Following this approach, we play
a game on subsets of attributes of a single classification example, also called
coalitions, so each player is a single attribute. If a coalition contains any positive
hypothesis (or negative one, in case of binary classification problem), then it
is called a winning coalition and it receives a value 1 as a pay-off (or −1, in
case of negative hypothesis). If we fix a certain attribute m belonging to the
chosen classification example, the total pay-off across all the winning coalitions
containing m is aggregated into a weighed sum, which takes values in [0, 1].
This aggregation rule enjoys certain theoretical properties, which guarantee fair
division of the total pay-off between players [25], i.e. attributes in our case.

In what follows, we explain the details of this methodology for JSM method
in FCA terms with illustrative classification examples and attribute ranking for
classic real datasets used in machine learning community.

The paper is organised as follows: Sect. 2 introduces mathematical formali-
sation of binary classification problem by hypotheses induction based on formal
concepts. In Sect. 3, related work on interpretable machine learning and Shapley
values from Game Theory is summarised. Section 4 describes one of the possible
applications of Shapley values in Formal Concept Analysis setting. Section 5 is
devoted to machine experiments with real machine learning data. Finally, Sect. 6
concludes the paper.

2 JSM-Hypotheses and Formal Concepts

The JSM-method of hypothesis generation proposed by Viktor K. Finn in late
1970s was introduced as an attempt to describe induction in purely deductive
form, and thus to give at least partial justification of induction [6]. JSM is an
acronym after the philosopher John Stuart Mill, who proposed several schemes of

92 D. I. Ignatov and L. Kwuida

inductive reasoning in the 19th century. For example, his Method of Agreement,
is formulated as follows: “If two or more instances of the phenomenon under
investigation have only one circumstance in common, ... [it] is the cause (or
effect) of the given phenomenon.”

In FCA community, the JSM-method is known as concept learning from
examples in terms of inductive logic related to Galois connection [15]. Thus, in
[8,19] this technique was formulated in terms of minimal hypotheses, i.e. minimal
intents(see Definition 1) that are not contained in any negative example.

The method proved its ability to enable learning from positive and negative
examples in various domains [18], e.g., in life sciences [1].

In what follows, we rely on the definition of a hypothesis (“no counter-
example-hypothesis” to be more precise) in FCA terms that was given in [8]
for binary classification1.

There is a well-studied connection of the JSM-method in FCA terms with other
concept learning techniques like Version Spaces [10,23]. Among interesting venues
of concept learning by means of indiscernibility relation one may find feature selec-
tion based on ideas from Rough Set Theory and JSM-reasoning [11] and Rough
Version Spaces; the latter allows handling noisy or inconsistent data [3].

Let K = (G,M, I) be a formal context; that is a set G of objects (to be
classified), a set M of attributes (use to describe the objects) and a binary
relation I ⊆ G × M (to indicate if an object satisfies an attribute). Let w /∈ M
be our target attribute. The goal is to classify the objects in G with respect to
w. The target attribute w partitions G into three subsets:

– positive examples, i.e. the set G+ ⊆ G of objects known to satisfy w,
– negative examples, i.e. the set G− ⊆ G of objects known not to have w,
– undetermined examples, i.e. the set Gτ ⊆ G of objects for which it remains

unknown whether they have the target attribute or do not have it.

This partition induces three subcontexts Kε := (Gε,M, Iε), ε ∈ {−,+, τ} of
K = (G,M, I). The first two of them, the positive context K+ and the negative
context K−, form the training set, and are used to build the learning context
K± = (G+ ∪ G−,M ∪ {w}, I+ ∪ I− ∪ G+ × {w}). The subcontext Kτ is called
the undetermined context and is used to predict the class of not yet classified
objects. The context Kc = (G+ ∪ G− ∪ Gτ ,M ∪ {w}, I+ ∪ I− ∪ Iτ ∪ G+ × {w})
is called a classification context.

Definition 1. For a formal context K = (G,M, I) a derivation is defined as
follows, on subsets A ⊆ G and B ⊆ M :

A′ = {m ∈ M | aIm, ∀a ∈ A} and B′ = {g ∈ G | gIb, ∀b ∈ B}.

An intent is a subset B of attributes such that B′′ = B.

1 Basic FCA notions needed for this contribution can be found in one of these books
[12,13].

Interpretable Concept-Based Classification with Shapley Values 93

In the subcontexts Kε := (Gε,M, Iε), ε ∈ {−,+, τ} the derivation operators
are denoted by (·)+, (·)−, and (·)τ respectively. We can now define positive and
negative hypotheses.

Definition 2. A positive hypothesis H ⊆ M is an intent of K+ that is not
contained in the intent of a negative example. i.e. H++ = H and H �⊆ g− for
any g ∈ G−. Equivalently,

H++ = H and H ′ ⊆ G+ ∪ Gτ .

Similarly, a negative hypothesis H ⊆ M is an intent of K− that is not contained
in the intent of a positive example. i.e. H−− = H and H �⊆ g+ for any g ∈ G+.
Equivalently,

H−− = H and H ′ ⊆ G− ∪ Gτ .

An intent of K+ that is contained in the intent of a negative example is called
a falsified (+)-generalisation.

Example 1. Table 1 shows a many-valued context representing credit scoring
data. The sets of positive and of negative examples are G+ = {1, 2, 3, 4} and
G− = {5, 6, 7, 8}. The undetermined examples are in Gτ = {9, 10, 11, 12} and
should be classified with respect to the target attribute which takes values +
and −, meaning “low risk” and “high risk” client, respectively.

Table 1. Many-valued classification context for credit scoring

G/M Gender Age Education Salary Target

1 Ma Young Higher High +

2 F Middle Special High +

3 F Middle Higher Average +

4 Ma Old Higher High +

5 Ma Young Higher Low −
6 F Middle Secondary Average −
7 F Old Special Average −
8 Ma Old Secondary Low −
9 F Young Special High τ

10 F Old Higher Average τ

11 Ma Middle Secondary Low τ

12 Ma Old Secondary High τ

To apply JSM-method in FCA terms we need to scale the given data. The
context K below is obtained by nominal scaling the attributes in Table 1. It
shows the first eight objects whose class is known (either positive or negative)
together with the last four objects which are still to be classified.

94 D. I. Ignatov and L. Kwuida

K Ma F Y Mi O HE Sp Se HS A L w w̄

g1 × × × × ×
g2 × × × × ×
g3 × × × × ×
g4 × × × × ×
g5 × × × × ×
g6 × × × × ×
g7 × × × × ×
g8 × × × × ×
g9 × × × ×
g10 × × × ×
g11 × × × ×
g12 × × × ×

We need to find positive and negative non-falsified hypotheses. Figure 1 shows
the lattices of positive and negative examples for the input context, respectively.
The intents of the nodes form the hypotheses. Note that the intent of a given
node is obtained by collecting all attributes in the order filter of this node2. For
example the hypothesis given by the intent of the red node, labelled by A, is
{A,Mi, F,HE}.

g3 g2 g1g4

L,SE

F, Mi

A
Sp

HE

Ma

YO

HS

g8g5 g6 g7

HS

L,Ma

HE,Y

A,F

Mi Sp

Se O

Fig. 1. The line diagrams of the lattice of positive hypotheses (left) and the lattice of
negative hypotheses (right).

Shaded nodes correspond to maximal non-falsified hypotheses, i.e. they have
no upper neighbours being non-falsified hypotheses. For K+ the hypothesis {HE}
is falsified by the object g5, since {HE} ⊆ g−

5 = {Ma, Y, HE, L}. For K− the
hypothesis {A,F} is falsified by the object g3, since {A,F} ⊆ g+3 = {F, Mi, HE,
A}. �

2 This concise way of representation is called reduced labelling [13].

Interpretable Concept-Based Classification with Shapley Values 95

The undetermined examples gτ from Gτ will be classified as follows:

– If gτ
τ contains a positive, but no negative hypothesis, then gτ is classified

positively (presence of the target attribute w predicted).
– If gτ

τ contains a negative, but no positive hypothesis, then gτ classified nega-
tively (absence of the target attribute w predicted).

– If gτ
τ contains both negative and positive hypotheses, or if gτ

τ does not con-
tain any hypothesis, then this object classification is contradictory or unde-
termined, respectively. In both cases gτ is not classified.

For performing classification it is enough to have only minimal hypotheses
(w.r.t. ⊆), negative and positive ones.

There is a strong connection between hypotheses and implications. An impli-
cation in a context K := (G,M, I) is a pair of attribute sets (B1, B2), also
denoted by B1 → B2. The implication B1 → B2 holds in K if each object having
all attributes in B1 also has all attributes in B2. We call B1 premiss and B2

conclusion.

Proposition 1 ([16]). A positive hypothesis H corresponds to an implication
H → {w} in the context K+ = (G+,M ∪ {w}, I+ ∪ G+ × {w}). Similarly,
a negative hypothesis H corresponds to an implication H → {w̄} in the context
K− = (G−,M∪{w̄}, I−∪G−×{w̄}). Hypotheses are implications which premises
are closed (in K+ or in K−).

A detailed yet retrospective survey on JSM-method (in FCA-based and orig-
inal formulation) and its applications can be found in [15]. A further extension
of JSM-method to triadic data with target attribute in FCA-based formulation
can be found in [14]; there, the triadic extension of JSM-method used CbO-like
algorithm for classification in Bibsonomy data.

Input data are often numeric or categorical and need scaling, however, it
might not be evident what to do in case of learning with labelled graphs [17].
Motivated by the search of a possible extensions of original FCA to analyse data
with complex structure, the so called Pattern Structures were proposed [9].

3 Interpretable Machine Learning and Shapley Values

3.1 Interpretable Machine Learning

In early 90ies, the discipline of Data Mining emerged a step of Knowledge Dis-
covery in Databases (KDD) process, which was defined as follows: “KDD is the
nontrivial process of identifying valid, novel, potentially useful, and ultimately
understandable patterns in data” [5]. In [5], the primary goals of data min-
ing were also identified as prediction and description, where the latter focuses
on finding human-interpretable patterns describing the data. The authors also
noted that the boundaries between prediction and description are not sharp.
So, from the very beginning, Data Mining is geared towards understandable or

96 D. I. Ignatov and L. Kwuida

human-interpretable patterns, while Machine Learning and Deep Learning, in
particular, do not share this constraint.

However, recently machine learning researchers realised the necessity of inter-
pretation for a wide variety of black-box models3 and even for ensemble rule-
based methods when many attributes are involved [20].

Among the family of approaches, the book [24] on interpretable machine
learning poses global versus local interpretations. Thus, the global interpretabil-
ity “is about understanding how the model makes decisions, based on a holistic
view of its features and each of the learned components such as weights, other
parameters and structures”, while the local interpretability focuses on “a sin-
gle instance and examines what the model predicts for this input, and explains
why” [24]. From this point of view, the JSM-method provides local interpreta-
tions when we deal with a particular classification example. According to the
other taxonomic criteria, the JSM-method is intrinsic but not a post-hoc model
since interpretability is introduced already on the level of hypotheses genera-
tion and their application (inference phase), and provides model-specific but not
model-agnostic interpretations since it is based on a concrete rule-based model.

Shapley value is a model-agnostic method and produces a ranking of indi-
vidual attributes by their importance for the classification of a particular exam-
ple, i.e. it provides a decision maker with local interpretations. This attribution
methodology is equivalent to the Shapely value solution to value distribution
in Cooperative Game Theory [25]. Štrumbelj and Kononenko [26] consistently
show that Shapley value is the only solution for the problem of single attribute
importance (or attribution problem) measured as the difference between model’s
prediction with and without this particular attribute across all possible subsets
of attributes. Lundberg and Lee [21] extend this approach further to align it with
several other additive attribution approaches like LIME and DeepLift under the
name SHAP (Shapley Additive explanation) values [21].

To compute SHAP value for an example x and an attribute m the authors
define fx(S), the expected value of the model prediction conditioned on a subset
S of the input attributes, which can be approximated by integrating over samples
from the training dataset. SHAP values combine these conditional expectations
with the classic Shapley values from game theory to assign a value φm to each
attribute m:

φm =
∑

S⊆M\{m}

|S|!(|M | − |S| − 1)!
|M |! (fx(S ∪ {m}) − fx(S)) , (1)

where M is the set of all input attributes and S a certain coalition of players,
i.e. set of attributes. In our exposition of this problem, we will follow classical
definition of Shapley value [25], where a Boolean function is used instead of the
expected value fx(S).

3 The workshops on Interpretable Machine Learning: https://sites.google.com/view/
whi2018 and https://sites.google.com/view/hill2019.

https://sites.google.com/view/whi2018
https://sites.google.com/view/whi2018
https://sites.google.com/view/hill2019

Interpretable Concept-Based Classification with Shapley Values 97

3.2 Shapley Values in FCA Community

In [4], the authors introduced cooperative games on concept lattices, where a
concept is a pair (S, S′), S is a subset of players or objects, and S′ is a subset
of attributes. In its turn, any game of this type induces a game on the set of
objects, and a game on the set of attributes. In these games, the notion of Shap-
ley value naturally arises as a rational solution for distributing the total worth
of the cooperation among the players. The authors of [22] continued the devel-
opment of the topic by studying algorithms to compute the Shapley value for a
cooperative game on a lattice of closed sets given by an implication system; the
main computational advantage of the proposed algorithms is based on maximal
chains and product of chains of fixed length.

Even though these approaches considering games on lattices of closed sets and
implication systems are related to hypotheses families, they do not use Shapley
values for interpretation or ranking attributes in classification setting.

4 Shapley Values as Means of Attribute Importance for a
Given Example

Let Kc = (G+ ∪ G− ∪ Gτ ,M ∪ {w}, I+ ∪ I− ∪ Iτ ∪ G+ × {w}) be our learning
context. The set of all minimal positive and all minimal negative hypotheses
of Kc are denoted by H+ and H−, respectively. For a given object g ∈ G, the
Shapley value of an attribute m ∈ g′ is defined as follows:

ϕm(g) =
∑

S⊆g′\{m}

|S|!(|g′| − |S| − 1)!
|g′|! (v(S ∪ {m}) − v(S)), (2)

where

v(S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, ∃H+ ∈ H+ : H+ ⊆ S and ∀H− ∈ H− : H− �⊆ S

0, (∀H+ ∈ H+ : H+ �⊆ S and ∀H− ∈ H− : H− �⊆ S)
or (∃H+ ∈ H+ : H+ ⊆ S and ∃H− ∈ H− : H− ⊆ S)

−1, ∀H+ ∈ H+ : H+ �⊆ S and ∃H− ∈ H− : H− ⊆ S.

The Shapley value ϕm̃(g) is set to 0 for every m̃ ∈ M \ g′. In other words,
if we consider an undetermined object gS such g′

S = S, then v(S) = 1 when gS

is classified positively, v(S) = 0 when gS is classified contradictory or remains
undetermined, and v(S) = −1 if gS is classified negatively. Note that v(∅) = 0.

Let us consider the example from Sect. 2. The set of positive hypotheses,
H+ consists of {F, Mi, HE, A} and {HS}, while H− contains three negative
hypotheses {F, O, Sp, A}, {Se}, and {M, L}.

Now, let us classify every undetermined example and find the Shapley value of
each attribute, i.e. the corresponding Shapley vector denoted Φ(g). The example
g9 is classified positively since it does not contain any negative hypothesis, while
{HS} ⊆ g′

9 = {F, Y, Sp, HS}. The corresponding Shapley vector is

Φ(g9) = (0, 0.0, 0.0, 0, 0, 0, 0.0, 0, 1.0, 0, 0).

98 D. I. Ignatov and L. Kwuida

The decimal point for some zero values of ϕm(g), i.e. 0.0, means that these
values have been computed, while 0 (without decimal point) means that the
corresponding attribute m is not in g′. For the example g9, only one attribute has
non-zero Shapley value, ϕHS(g9) = 1. The example g10 remains undetermined,
since g′

10 = {F, O, HE, A} does not contain positive or negative hypotheses.
This results in zero Shapley vector:

Φ(g10) = (0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 0.0, 0).

When an undetermined example is classified negatively, the Shapley vector con-
tains negative values that add up to −1. For example, two negative hypotheses
are contained in g11, namely {Se} ⊆ g′

11 = {M, Mi, Se, L} and {M, L} ⊆ g′
11.

Only the attributes of these two negative hypotheses have non-zero Shapley
values:

Φ(g11) = (−1/6, 0, 0, 0.0, 0, 0, 0,−2/3, 0, 0,−1/6).

In case an undetermined example is classified contradictory, at least two hypothe-
ses of both signs are contained in it and the sum of Shapley values for all
its attributes is equal to zero. The positive hypothesis {HS} is contained in
g′
12 = {M, O, Se, HS}, which also contains the negative hypothesis {Se}. Two

components of the Shapley vector are non-zero, namely ϕSe(g12) = −1 and
ϕHS(g12) = 1. Thus,

Φ(g12) = (0.0, 0, 0, 0, 0.0, 0, 0,−1.0, 1.0, 0, 0).

Having Shapley values of undetermined examples, we are able to not only deter-
mine the result of classification but also to rank individual attributes by their
importance for the outcome of the classification. In case of the example g11,
the attribute Se denoting secondary education has two times higher value in
magnitude than the two remaining attributes Ma and L, expressing male gender
and low income, respectively; Their signs show negative classification. In case of
the example g12, both attributes Se and HS are equally important, but being of
opposite signs cancels classification to one of the two classes.

Proposition 2. The Shapley value of an attribute m for an object g of ϕm(g)
fulfils the following properties:

1. ϕm(g) = 0 for every m ∈ g′ that does not belong to at least one positive or
negative hypothesis contained in g′;

2.
∑

m∈g′
ϕm(g) = 1 if g is classified positively;

3.
∑

m∈g′
ϕm(g) = 0 if g is classified contradictory or remains undetermined;

4.
∑

m∈g′
ϕm(g) = −1 if g is classified negatively.

An attribute m such that ϕm(g) = 0 is known as the dummy player [25] since
its contribution for every formed coalition is zero.

Interpretable Concept-Based Classification with Shapley Values 99

5 Machine Experiments Demo

To provide the reader with examples of Shapley vectors on real data, we take
the Zoo dataset from UCI Machine Learning Repository4. It has 101 examples
of different animals along with their 16 attributes; the target attribute, type, has
seven values. One attribute expresses the number of legs with values 0, 2, 4, 5, 6
and 8. We transform it into a binary attribute using nominal scale. The resulting
input context has 101 objects and 21 attributes in total.

Since this dataset supposes a solution to a multi-class problem, we consider
one of possible associated binary classification problems where the major class,
mammals, is our positive class, while all the remaining compose the negative
class. We could also consider the remaining six classes as positive classes using
the scheme one-versus-the-rest.

There are 41 examples for the positive class and 60 examples for the negative
class5. After generating the hypotheses, we get only one positive hypothesis,

H+ =
{{milk, backbone, breathes}}

and nine negative hypotheses:

H− =
{{feathers, eggs, backbone, breathes, legs2, tail}, {predator, legs8},

{eggs, airborne, breathes}, {eggs, aquatic, predator, legs5}, {eggs, legs0},

{eggs, toothed, backbone}, {eggs, legs6}, {venomous}, {eggs, domestic}}
.

If we apply the trained JSM classifier to all the examples of positive class,
we obtain the same Shapley vector for all of them since they classified positively
by the only one positive hypothesis (in the absence of negative hypotheses):

(0.0, 0, 0, 1/3, 0, 0, 0.0, 0.0, 1/3, 1/3, 0, 0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0.0).

Note that in the Shapley vector above, we display zero components in two
different ways as it was explained previously. Thus, values 0.0 are shown for
non-contributing attributes of example 1, i.e. aardvark with attributes

{hair,milk, predator, toothed, backbone, breathes, legs4, tail, catsize}.

All the attributes from the unique positive hypothesis, i.e. milk, backbone and
breathes contribute equally by 1/3.

However, not every negative example is classified negatively. Two negative
examples crab and tortoise remain undetermined:

crab′ = {eggs, aquatic, predator, legs4}

4 https://archive.ics.uci.edu/ml/datasets/zoo.
5 There are no undetermined examples here since we would like to test decision explain-
ability by means of Shapley values rather than to test prediction accuracy of the
JSM-method.

https://archive.ics.uci.edu/ml/datasets/zoo

100 D. I. Ignatov and L. Kwuida

and
tortoise′ = {eggs, backbone, breathes, legs4, tail, catsize}.

Let us have a look at the correctly classified negative examples. For example,
duck′ = {feathers, eggs, airborne, aquatic, backbone, breathes, legs2, tail} con-
tains two negative hypotheses {feathers, eggs, backbone, breathes, legs2, tail}
and {eggs, airborne, breathes}. The Shapley vector for the duck example is6:

−(0, 0.024, 0.357, 0, 0.190, 0.0, 0, 0, 0.024, 0.357, 0, 0, 0, 0, 0.024, 0, 0, 0, 0.024, 0, 0).

Eggs, breathes, and airborne are the most important attributes with Shapley
values −0.357, −0.357, and −0.19, respectively, while the attribute aquatic has
zero importance in terms of Shapley value.

A useful interpretation of classification results could be an explanation for
true positive or true negative cases. Thus, one can see which attributes has largest
contribution to the wrong classification, i.e. possible reason of the classifier’s
mistake.

The executable iPython scripts for the synthetic context on credit scoring
and the scaled zoo context, can be found at http://bit.ly/ShapDemo20207.

6 Conclusion

In this paper we have introduced usage of Shapley value from Cooperative Game
Theory to rank attributes of objects while performing binary classification with
the JSM-method within FCA setting. It helps a decision maker to not only see
the hypotheses contained in the corresponding example’s description but to also
take into account the constituent attributes contribution. Thus, it is also possible
to explain mistakes of the classifiers known as false positive and false negative
examples.

As the forthcoming work, we would like to address scalability issues, which
are due to subset enumeration and suitable visual display for showing attribute
importance. Note that all the subsets of attributes from g′ that do not con-
tain any positive or negative hypothesis can be omitted during summation in
(2). Therefore, we need to explore only order filters (w.r.t. the Boolean lattice
(2g′

,⊆)) of hypotheses contained in g′. Histograms of importance vectors can be
implemented and used for better differentiation between small and high impor-
tance values of vectors like XGBoost feature importance diagrams [2].

The considered variant of JSM-method might be rather crisp and cautious in
the sense that it prohibits classification in case of hypotheses of both signs, so its
variants with voting are important. Another interesting venue is the prospective
extension of the proposed approach for multi-class classification problems via

6 All the non-zero values are given with precision up to the third significant sign after
decimal point.

7 The full version of this script along with the used datasets will be available at https://
github.com/dimachine/Shap4JSM.

http://bit.ly/ShapDemo2020
https://github.com/dimachine/Shap4JSM
https://github.com/dimachine/Shap4JSM

Interpretable Concept-Based Classification with Shapley Values 101

one-versus-the-rest and one-versus-one schemes for reduction to binary classifi-
cation problems.

The comparison with SHAP [21] is also desirable. However, it is not possible
in a direct way since SHAP relies on probabilistic interpretation of Shapley
values in terms of conditional probability to belong to a certain class given an
input example x, e.g. P (Class = +1|x), and designed for classifiers with such a
probabilistic output.

Acknowledgements. The study was implemented in the framework of the Basic
Research Program at the National Research University Higher School of Economics,
and funded by the Russian Academic Excellence Project ‘5-100’. The first author was
also supported by Russian Science Foundation under grant 17-11-01276 at St. Peters-
burg Department of Steklov Mathematical Institute of Russian Academy of Sciences,
Russia. The first author would like to thank Prof. Fuad Aleskerov for the inspirational
lectures on Collective Choice and Alexey Dral’ from BigData Team for pointing to
Shapley values as an explainable Machine Learning tool.

References

1. Blinova, V.G., Dobrynin, D.A., Finn, V.K., Kuznetsov, S.O., Pankratova, E.S.:
Toxicology analysis by means of the JSM-method. Bioinformatics 19(10), 1201–
1207 (2003)

2. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2016, pp. 785–794 (2016)

3. Dubois, V., Quafafou, M.: Concept learning with approximation: rough version
spaces. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002.
LNCS (LNAI), vol. 2475, pp. 239–246. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45813-1 31

4. Faigle, U., Grabisch, M., Jiménez-Losada, A., Ordóñez, M.: Games on concept
lattices: Shapley value and core. Discrete Appl. Math. 198, 29–47 (2016)

5. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge
discovery in databases. AI Mag. 17(3), 37–54 (1996)

6. Finn, V.: On machine-oriented formalization of plausible reasoning in F. Bacon-
J.S.Mill Style. Semiotika i Informatika 20, 35–101 (1983). (in Russian)

7. Fürnkranz, J., Gamberger, D., Lavrac, N.: Foundations of Rule Learning. Cog-
nitive Technologies. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
540-75197-7

8. Harras, G.: Concepts in linguistics – concepts in natural language. In: Ganter,
B., Mineau, G.W. (eds.) ICCS-ConceptStruct 2000. LNCS (LNAI), vol. 1867, pp.
13–26. Springer, Heidelberg (2000). https://doi.org/10.1007/10722280 2

9. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delu-
gach, H.S., Stumme, G. (eds.) ICCS-ConceptStruct 2001. LNCS (LNAI), vol. 2120,
pp. 129–142. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44583-
8 10

10. Ganter, B., Kuznetsov, S.O.: Hypotheses and version spaces. In: Ganter, B., de
Moor, A., Lex, W. (eds.) ICCS-ConceptStruct 2003. LNCS (LNAI), vol. 2746, pp.
83–95. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45091-7 6

https://doi.org/10.1007/3-540-45813-1_31
https://doi.org/10.1007/3-540-45813-1_31
https://doi.org/10.1007/978-3-540-75197-7
https://doi.org/10.1007/978-3-540-75197-7
https://doi.org/10.1007/10722280_2
https://doi.org/10.1007/3-540-44583-8_10
https://doi.org/10.1007/3-540-44583-8_10
https://doi.org/10.1007/978-3-540-45091-7_6

102 D. I. Ignatov and L. Kwuida

11. Ganter, B., Kuznetsov, S.O.: Scale coarsening as feature selection. In: Medina, R.,
Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 217–228. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78137-0 16

12. Ganter, B., Obiedkov, S.A.: Conceptual Exploration. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49291-8

13. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations.
Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

14. Ignatov, D.I., Zhuk, R., Konstantinova, N.: Learning hypotheses from triadic
labeled data. In: 2014 IEEE/WIC/ACM International Joint Conference on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT), 2014, vol. I, pp. 474–
480 (2014)

15. Kuznetsov, S.O.: Galois connections in data analysis: contributions from the Soviet
era and modern Russian research. In: Ganter, B., Stumme, G., Wille, R. (eds.) For-
mal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 196–225. Springer, Heidelberg
(2005). https://doi.org/10.1007/11528784 11

16. Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell. 49(1–
4), 101–115 (2007)

17. Kuznetsov, S.O., Samokhin, M.V.: Learning closed sets of labeled graphs for
chemical applications. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS
(LNAI), vol. 3625, pp. 190–208. Springer, Heidelberg (2005). https://doi.org/10.
1007/11536314 12

18. Kuznetsov, S.: JSM-method as a machine learning method. Itogi Nauki i Tekhniki,
ser. Informatika 15, 17–53 (1991). (in Russian)

19. Kuznetsov, S.: Mathematical aspects of concept analysis. J. Math. Sci. 80(2), 1654–
1698 (1996)

20. Lipton, Z.C.: The mythos of model interpretability. Commun. ACM 61(10), 36–43
(2018)

21. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: I.G., et al. (ed.) Advances in Neural Information Processing Systems, vol. 30,
pp. 4765–4774. Curran Associates, Inc. (2017)

22. Maafa, K., Nourine, L., Radjef, M.S.: Algorithms for computing the Shapley value
of cooperative games on lattices. Discrete Appl. Math. 249, 91–105 (2018)

23. Mitchell, T.M.: Version spaces: a candidate elimination approach to rule learn-
ing. In: Reddy, R. (ed.) Proceedings of the 5th International Joint Conference on
Artificial Intelligence, 1977, pp. 305–310. William Kaufmann (1977)

24. Molnar, C.: Interpretable Machine Learning (2019). https://christophm.github.io/
interpretable-ml-book/

25. Shapley, L.S.: A value for n-person games. In: Contributions to the Theory of
Games, vol. 2, no. 28, pp. 307–317 (1953)

26. Štrumbelj, E., Kononenko, I.: Explaining prediction models and individual predic-
tions with feature contributions. Knowl. Inf. Syst. 41(3), 647–665 (2013). https://
doi.org/10.1007/s10115-013-0679-x

https://doi.org/10.1007/978-3-540-78137-0_16
https://doi.org/10.1007/978-3-662-49291-8
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/11528784_11
https://doi.org/10.1007/11536314_12
https://doi.org/10.1007/11536314_12
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1007/s10115-013-0679-x
https://doi.org/10.1007/s10115-013-0679-x

Pruning in Map-Reduce Style CbO
Algorithms

Jan Konecny and Petr Krajča(B)

Department of Computer Science, Palacký University Olomouc,
17. listopadu 12, 77146 Olomouc, Czech Republic

{jan.konecny,petr.krajca}@upol.cz

Abstract. Enumeration of formal concepts is crucial in formal concept
analysis. Particularly efficient for this task are algorithms from the Close-
by-One family (shortly, CbO-based algorithms). State-of-the-art CbO-
based algorithms, e.g. FCbO, In-Close4, and In-Close5, employ several
techniques, which we call pruning, to avoid some unnecessary computa-
tions. However, the number of the formal concepts can be exponential
w.r.t. dimension of the input data. Therefore, the algorithms do not scale
well and large datasets become intractable. To resolve this weakness, sev-
eral parallel and distributed algorithms were proposed. We propose new
CbO-based algorithms intended for Apache Spark or a similar program-
ming model and show how the pruning can be incorporated into them.
We experimentally evaluate the impact of the pruning and demonstrate
the scalability of the new algorithm.

Keywords: Formal concept analysis · Closed sets · Map-reduce
model · Close-by-One · Distributed computing

1 Introduction

Formal concept analysis (FCA) [10] is a well-established method of data analysis,
having numerous applications, including, for instance, mining of non-redundant
association rules [19], factorization of Boolean matrices [7], text mining [16], or
recommendation systems [1]. The central notion of FCA is a formal concept and
many applications of FCA depend on enumeration of formal concepts.

Kuznetsov [14] proposed a tree-recursive algorithm called Close-by-One
(CbO) which enumerates formal concepts in lexicographical order. The tree-
recursive nature of CbO allows for more efficient implementation and further
enhancements. These enhancements include parallel execution [11,12], partial
closure computation [2–6], pruning [4–6,15], or execution using the map-reduce
framework [13]. The CbO-based algorithms are among the fastest algorithms for
enumerating formal concepts.

Supported by the grant JG 2019 of Palacký University Olomouc, No. JG 2019 008.

c© Springer Nature Switzerland AG 2020
M. Alam et al. (Eds.): ICCS 2020, LNAI 12277, pp. 103–116, 2020.
https://doi.org/10.1007/978-3-030-57855-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57855-8_8&domain=pdf
http://orcid.org/0000-0003-3934-5690
http://orcid.org/0000-0003-4278-3130
https://doi.org/10.1007/978-3-030-57855-8_8

104 J. Konecny and P. Krajča

One of the most recognized problems of FCA is the large amount of formal
concepts present in the data. Typically, with growing sizes of data, the num-
ber of formal concepts grows substantially: even adding one column can double
the number of formal concepts. Due to this exponential nature, large datasets
become intractable.

To resolve this weakness, several parallel [11,12] and distributed [8,13,17]
algorithms have been proposed. However, parallel or distributed programming
may be challenging even for experienced developers. To simplify the develop-
ment of distributed programs, Google proposed a restricted programming model
called map-reduce [9]. This model allows the user to describe algorithms solely
by simple transformation functions and leave tasks related to distributed com-
puting to the underlying framework. This approach has been the subject of
enhancements and currently is superseded by a framework called Apache Spark
– a state-of-the-art approach to large datasets processing. This framework trans-
forms data similarly, but provides a less restricted interface for data processing
than map-reduce and, most importantly, is by more than an order of magnitude
faster [18].

The main contribution of the paper are new CbO-based algorithms for enu-
merating formal concepts intended for Apache Spark or a similar programming
model. Furthermore, we show how the pruning utilized in [5] can be incorpo-
rated into them. We experimentally evaluate the impact of the pruning and
demonstrate the scalability of the new algorithm.

This paper is organized as follows. In Sect. 2, we introduce basic notions of
FCA along with the programming model we use. In Sect. 3, we describe the basic
CbO algorithm, its enhanced variants, and reformulation of these algorithms for
an Apache Spark programming model. The performance of these algorithms is
evaluated in Sect. 4. Section 5 sumarizes and concludes the paper.

2 Preliminaries

We introduce basic notions of FCA and the programming model we use to
describe proposed algorithms.

2.1 Formal Concept Analysis

The input for FCA is a formal context—a triplet 〈X,Y, I〉 where X is a finite non-
empty set of objects, Y is a finite non-empty set of attributes, and I ⊆ X × Y
is a relation of incidence between objects and attributes; incidence 〈x, y〉 ∈ I
means that the object x ∈ X has the attribute y ∈ Y .

Every formal context 〈X,Y, I〉 induces two so called concept-forming operators
↑ : 2X → 2Y and ↓ : 2Y → 2X defined, for each A ⊆ X and B ⊆ Y , by

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I}, (1)

B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}. (2)

Pruning in Map-Reduce Style CbO Algorithms 105

In words, A↑ is the set of all attributes shared by all objects from A and B↓ is
the set of all objects sharing all attributes from B. For singletons {i}, we use
the simplified notation i↑ and i↓.

A formal concept in 〈X,Y, I〉 is a pair 〈A,B〉 such that A↑ = B and B↓ = A,
where ↑ and ↓ are concept-forming operators induced by 〈X,Y, I〉. The sets A
and B are called the extent and the intent, respectively.

Throughout the paper, we assume that the set of attributes is Y =
{1, 2, . . . , n}.

We have introduced only the notions from FCA that are necessary for the
rest of the paper. The interested reader can find more detailed description of
FCA in [10].

2.2 Map-Reduce Style Data Processing

In seminal work [9], Google revealed the architecture of its internal system which
allows them to process large datasets with commodity hardware. In short, the
proposed system and its programming model represents all data as key-value
pairs which are transformed with two operations, map and reduce. This is why
the data processing system based on this model is called the map-reduce frame-
work. The main advantage of this approach is that the programmer has to pro-
vide transformation functions and the framework takes care of all necessary tasks
related to distributed computation, for instance, workload distribution, failure
detection and recovery, etc.

Several independent implementations of the map-reduce framework [9] are
available. The most prominent is Apache Hadoop1. Beyond this, the map-reduce
data processing model is used, for instance, in Infinispan, Twister, or Apache
CouchDB.

Remark 1. It has been shown that many algorithms can be represented only with
these two operations. Algorithms for enumeration of formal concepts are not an
exception. Variants of CbO [13], Ganter’s NextClosure [17], and UpperNeigh-
bor [8] were proposed for map-reduce framework. In the cases of [17] and [8], to
handle iterative algorithms, specialized map-reduce frameworks are used.

Nowadays, the original map-reduce approach was superseded by more gen-
eral techniques, namely by Resilient Distributed Datasets (RDDs) [18] as imple-
mented in Apache Spark2. RDDs allow us to work with general tuples and pro-
vide a more convenient interface for data processing. This interface is not lim-
ited to the two elementary operations, map and reduce. More convenient oper-
ations, like map, flatMap, filter, groupBy, or join, are available. Even though
the underlying technology is different, the approach to data processing is sim-
ilar to map-reduce. Likewise, the program is also represented as a sequence of
transformations and the framework takes care of workload distribution, etc.

1 https://hadoop.apache.org/.
2 https://spark.apache.org/.

https://hadoop.apache.org/
https://spark.apache.org/

106 J. Konecny and P. Krajča

Remark 2. Throughout the paper, to describe the proposed algorithms, we use
operations which are close to those provided by Apache Spark. However, all
of these operations can be transformed to map and reduce operations as used
in the map-reduce framework [9]. Therefore, we term the proposed algorithms
map-reduce style.

We shall introduce the most important Apache Spark operations we use in
this paper:

(i) Operation map(X, f) takes a collection of tuples X and function f , and
applies f on each tuple in X.

(ii) Operation filter(X, p) takes a collection of tuples X and predicate p, and
keeps only tuples satisfying the predicate p.

(iii) Operation flatMap(X, f) takes a collection of tuples X and function f that
for every tuple returns a collection of tuples, and applies the function f on
every tuple. It then merges all the collections into a single collection.

Other operations we introduce where necessary. Furthermore, we shall use
x ⇒ y to denote transformation functions. Namely:

(i) 〈x1, . . . , xn〉 ⇒ 〈y1, . . . , ym〉 denotes a function transforming a tuple
〈x1, . . . , xn〉 into a tuple 〈y1, . . . , ym〉,

(ii) 〈x1, . . . , xn〉 ⇒ {〈y1, . . . , ym〉 | cond} is a function transforming a tuple
〈x1, . . . , xn〉 into a set of tuples 〈y1, . . . , ym〉 satisfying condition cond,

(iii) 〈x1, . . . , xn〉 ⇒ condition represents a predicate.

For example, for a set X = {〈a, 1〉, 〈b,−2〉, 〈c, 3〉} ⊆ {a, b, c} × Z:

map(X, 〈x, y〉 ⇒ 〈x, y, y2〉) = {〈a, 1, 1〉, 〈b,−2, 4〉, 〈c, 3, 9〉},
filter(X, 〈x, y〉 ⇒ y > 0) = {〈a, 1〉, 〈c, 3〉},
flatMap(X, 〈x, y〉 ⇒ {〈x, z〉 | z > 0 and z ≤ y}) = {〈a, 1〉, 〈c, 1〉, 〈c, 2〉, 〈c, 3〉}.

3 Close-by-One Algorithm

We describe the basic CbO algorithm and its two reformulations for the map-
reduce style programming model. Then we discuss pruning techniques improving
efficiency of CbO. We show how one of these techniques can be incorporated
into the map-reduce style CbO algorithms. The two new map-reduce style CbO
algorithms with pruning are the main contribution of the paper.

3.1 Basic Close-by-One

The CbO algorithm belongs to a family of algorithms that enumerate formal
concepts in lexicographical (or similar) order and use this order to ensure that
every formal concept is listed exactly once. Note that intent B is lexicograph-
ically smaller than D, if B ⊂ D, or B 	⊂ D and min((B ∪ D)\(B ∩ D)) ∈ B.

Pruning in Map-Reduce Style CbO Algorithms 107

For instance, a set {1} is lexicographically smaller than {1, 2} and the set {1, 2}
is lexicographically smaller than {1, 3}.

The CbO algorithm can be described as a tree recursive procedure, Gen-
erateFrom, which has three parameters (see Algorithm 1)—extent A, intent
B, and attribute y, indicating the last attribute included into the intent. The
algorithm starts (line 9) with the topmost formal concept, i.e. 〈X,X↑〉 and 0
(indicating no attribute has been included yet).

The GenerateFrom procedure prints the given concept 〈A,B〉 out (line 2)
and extends the intent B with all attributes i such that i /∈ B and i > y (line 3
and 4). Subsequently, a new extent (B∪{i})↓ is obtained. Note that (B∪{i})↓ =
A∩i↓. This fact allows us to eliminate the time consuming operation ↓ and replace
it with an intersection which is significantly faster (line 5). Afterwards, a new
intent (B ∪ {i})↓↑ is computed (line 6) and its canonicity is checked (line 7).
A formal concept is canonical if its intent D is not lexicographically smaller
than B. That is, if D ∩ {1, . . . , i − 1} = B ∩ {1, . . . , i − 1}. For convenience, we
use the shorter notation Di = D ∩ {1, . . . , i − 1}. If the concept is canonical,
it is recursively passed to GenerateFrom, along with the attribute that was
inserted into the intent (line 8).

Algorithm 1: Close-by-One
1 proc GenerateFrom(A, B, y):

input : A is extent, B is intent, y is the last added attribute

2 print(〈A,B〉)
3 for i ← y + 1 to n do
4 if i /∈ B then

5 C ← A ∩ i↓

6 D ← C↑

7 if Di = Bi then
8 GenerateFrom(C, D, i)

9 GenerateFrom(X, X↑, 0)

3.2 Map-Reduce Style Close-by-One

We use a depth first search (DFS) strategy to describe CbO since this strategy
is natural for the algorithm. However, other search strategies are possible. One
may use also breadth-first search (BFS) [13] and even a combination of BFS and
DFS [3–6,15]. No matter which strategy is used, CbO always enumerates the
same set of formal concepts, but in different order. This feature is essential since
it allows us to express CbO by means of distributed and parallel frameworks.
Note that algorithms for map-reduce frameworks often demand BFS.

108 J. Konecny and P. Krajča

The map-reduce style CbO algorithm is an iterative algorithm, see
Algorithm 2 for pseudo-codes. Each of its iterations represents the processing of
a single layer of the CbO’s search tree. Note that each step has to be expressed
in transformations provided by the given framework.

Algorithm 2: Close-by-One
1 proc CbOPass(Li):

input : Li is a collection of tuples 〈A,B, y〉 where A is extent, B is
intent, y is the last added attribute

2 Latt
i ← flatMap(Li, 〈A,B, y〉 ⇒ {〈A,B, y, i〉 | i ∈ Y and i > y and i �∈ B})

3 Lext
i ← map(Latt

i , 〈A,B, y, i〉 ⇒ 〈B, y, i, A ∩ i↓〉)
4 Lint

i ← map(Lext
i , 〈B, y, i, C〉 ⇒ 〈B, y, i, C,C↑〉)

5 Lcan
i ← filter(Lint

i , 〈B, y, i, C,D〉 ⇒ (Bi = Di))
6 Li+1 ← map(Lcan

i , 〈B, y, i, C,D〉 ⇒ 〈C,D, i〉)
7 return Li+1

8 L0 ← {〈X,X↑, 0〉}
9 i ← 0

10 while |Li| > 0 do
11 Li+1 ← CbOPass(Li)
12 i ← i + 1

13 return
⋃i

j=0 Lj

The algorithm starts (line 8) with the first layer L0 containing a single tuple
〈X,X↑, 0〉 describing the topmost formal concept, along with attribute 0, indi-
cating that no attribute has been included yet to build this formal concept. This
layer is passed to the CbOPass procedure, which uses a sequence of transfor-
mations to obtain a new layer of formal concepts.

The first transformation (line 2) for each formal concept generates a set of
tuples consisting of a given concept along with an attribute that will extend the
given concept in the next step. Subsequently, these tuples are used to compute
the extents of the new concepts (line 3). Notice that the original extent is no
longer necessary, thus is omitted from the tuple. Afterwards, the intents are
obtained (line 4). At this point, the new formal concepts are fully available and
all that remains is to filter those passing the canonicity test (line 5) and keep
only the new extent and the intent along with the attribute that was added
(line 6).

The outcome of the CbOPass is then used as an input for the next iteration
of the algorithm. The algorithm stops when no new concept is generated (lines 10
to 12).

All transformations used in Algorithm 2 are obviously parallelizable. How-
ever, the first transformation (line 2) is not associated with a computationally
heavy task, hence the workload distribution may cause an unnecessary overhead.

Pruning in Map-Reduce Style CbO Algorithms 109

Thus, it may be reasonable to combine lines 2 and 3 into a single transformation
as follows:

Lext
i ← flatMap(Li, 〈A,B, y〉 ⇒ {〈B, y,A ∩ i↓〉 | i ∈ Y and i > y and i 	∈ B}).

This gives two variants of map-reduce style CbO: (i) the first one as described
in Algorithm 2 and (ii) the latter, where the first two transformations are com-
bined together. To distinguish these variants, we denote them (i) fine-grained and
(ii) coarse-grained, since the first variant provides more fine-grained parallelism
and the second one more coarse-grained parallelism.

3.3 Close-by-One with Pruning

The most fundamental challenge which all algorithms for enumerating formal
concepts are facing is the fact that some concepts are computed multiple times.
Due to the canonicity test, each concept is returned only once. However, the
canonicity test does not prevent redundant computations. Therefore, several
strategies to reduce redundant computations were proposed.

In FCbO [15], a history of failed canonicity tests is kept during the tree
descent and is used to skip particular attributes for which it is clear that the
canonicity test fails. To maintain this history, FCbO uses an indexed set of sets
of attributes. This means, each invocation of FCbO’s GenerateFrom requires
passing a data structure of size O(|Y |2). This space requirement makes FCbO
unsuitable for map-reduce style frameworks.

In-Close4 [5] keeps a set of attributes during the descent for which intersection
A∩ i↓ is empty. This allows us to skip some unnecessary steps. Furthermore, In-
Close5 [6] extends In-Close4 with a new method for passing information about
failed canonicity tests. Unlike FCbO, In-Close4 and In-Close5 require the passing
of only a single set of attributes for which the canonicity test failed. This makes
them more suitable for distributed programming.

3.4 Using Empty Intersections for Pruning

The In-Close4 algorithm is based on two observations. (i) If the intersection
C = A∩i↓ (Algorithm 1, line 5) is empty, then the corresponding intent C↑ is Y .
Note that the concept with the intent Y is the lexicographically largest concept
which always exists and is always listed as the last one. Thus, the canonicity test
fails for all such concepts with the exception of the last one. (ii) Further, from
the properties of concept-forming operators, it follows that for every two intents
B,D ⊆ Y and attribute i ∈ Y such that B ⊂ D, i 	∈ B, and i 	∈ D holds that
(B ∪ {i})↓ ⊇ (D ∪ {i})↓. Particularly, if (B ∪ {i})↓ = ∅, then (D ∪ {i})↓ = ∅.

In fact, observations (i) and (ii) provide information on certain canonicity
test failures and their propagation. Not considering the last concept 〈Y ↓, Y 〉,
we may use a simplified assumption that an empty extent implies canonicity
failure. Furthermore, if adding an attribute i to the intent B leads to an empty
extent, then adding i into any of its supersets D leads to an empty extent as
well. Subsequently, this leads to a canonicity test failure, unless it is the last
concept. Note that concept 〈Y ↓, Y 〉 has to be treated separately.

110 J. Konecny and P. Krajča

Algorithm 3: Close-by-One with In-Close4 pruning
1 proc GenerateFrom(A, B, y, N):

input : A is extent, B is intent, y is the last added attribute,
N is a set of attributes to skip

2 print(〈A,B〉)
3 M ← N
4 for i ← y + 1 to n do
5 if i /∈ B and i /∈ N then

6 C ← A ∩ i↓

7 if C = ∅ then
8 M ← M ∪ {i}
9 else

10 D ← C↑

11 if Di = Bi then
12 PutInQueue(〈C,D, i〉)

13 while GetFromQueue(〈C,D, i〉) do
14 GenerateFrom(C, D, i, M)

15 GenerateFrom(X, X↑, 0, ∅)

Algorithm 3 shows how these observations can be incorporated into CbO.
First, there is an additional argument N , a set of attributes that can be skipped
(line 5) since their inclusion into an intent of a newly formed concept would
lead to an empty extent. Additionally, a set M which is a copy of N is created
(line 3). If the newly formed extent (line 6) is empty, the attribute i is inserted
into the set M and algorithm proceeds with the next attribute.

To collect information on canonicity test failures, Algorithm 3 uses a com-
bined DFS and BFS. The combination of DFS and BFS means that the recursive
call is not performed immediately, but rather is postponed until all attributes
are processed (line 12). All recursive calls are then processed in a single loop
(lines 13 and 14).

Remark 3. Algorithm 3 is similar to In-Close4 [5], it uses empty intersections for
pruning and a combined depth-first and breadth-first search, however, it does
not compute formal concepts incrementally.

In the same way as CbO is transformed into an iterative BFS map-reduce
style algorithm, one may transform Algorithm 3 as well. However, handling
information on empty intersections requires additional steps. All steps of the
algorithm are described in Algorithm 4.

We highlight only the main differences w.r.t. Algorithm 2. Namely, tuples
processed in Algorithm 4 contain the additional set N with attributes to skip.

Pruning in Map-Reduce Style CbO Algorithms 111

Algorithm 4: Close-by-One with In-Close4 pruning (fine-grained)
1 proc CbO4PassFine(Li):

input : Li is a collection of tuples 〈A,B, y,N〉 where A is extent, B is
intent, y is the last added attribute, N is a set of attributes to
skip

2 Latt
i ← flatMap(Li, 〈A,B, y,N〉 ⇒ {〈A,B, y, i,N〉 | i ∈ Y and i >
y and i �∈ B and i �∈ N})

3 Lex0
i ← map(Latt

i , 〈A,B, y, i,N〉 ⇒ 〈B, y, i,N,A ∩ i↓〉)
4 Lext

i ← filter(Lex0
i , 〈A,B, y, i,N,C〉 ⇒ |C| > 0)

5 Lint
i ← map(Lext

i , 〈B, y, i,N,C〉 ⇒ 〈B, y, i,N,C,C↑〉)
6 Lcan

i ← filter(Lint
i , 〈B, y, i,N,C,D〉 ⇒ (Bi = Di))

7 Lem0
i ← filter(Lex0

i , 〈A,B, y, i,N,C〉 ⇒ |C| = 0)
8 Lemp

i ← map(Lem0
i , 〈A,B, y, i,N,C〉 ⇒ 〈〈B, y〉, i〉)

9 Lfails
i ← groupByKey(Lemp

i)

10 Ljoin
i ← leftOutterJoin(Lcan

i ,Lfails
i) on B, y

11 Li+1 ← map(Ljoin
i , 〈B, y, i,N,C,D,M〉 ⇒ 〈C,D, i,M ∪ N〉)

12 return Li+1

13 L0 ← {〈X,X↑, 0, ∅〉}
14 i ← 0
15 while |Li| > 0 do
16 Li+1 ← CbO4PassFine(Li)
17 i ← i + 1

18 return
⋃i

j=0 Lj

The condition in line 2 contains additional check whether i 	∈ N . Extents are
computed (line 3) and non-empty extents (line 4) are used to obtain intents
(line 5) which are tested for canonicity (line 6).

Beside this, information on empty extents is collected (lines 7 to 9). First,
empty extents are selected (line 7) and transformed to key-value pairs 〈〈B, y〉, i〉
(line 8). Then, operation groupByKey is used to group these pairs by their
keys (line 9) to form new pairs 〈〈B, y〉,M〉, where M denotes a set of attributes
which led to an empty extent.

It only remains to join together the valid concepts and information
on attributes implying canonicity test failures (line 10). This subtask is
achieved with the leftOutterJoin operation. This operation for each tuple
〈B, Y, i,N,C,D〉 in a set Lcan

i finds a matching pair 〈〈B, y〉,M〉 in Lfails
i (i.e. val-

ues B and y of both tuples are equal) and forms a new tuple 〈B, Y, i,N,C,D,M〉.
In the case that there is no matching pair in Lfails

i , an empty set is used instead
of M . Afterwards, every tuple is transformed into a form suitable for the next
iteration (line 11). Namely, values related to the current iteration are stripped
out and sets M and N are merged into a single set.

112 J. Konecny and P. Krajča

Algorithm 5: Computing extents
1 proc CoarseExtents(A, B, y, N):

input : A is extent, B is intent, y is last added attribute,
N is set of attributes to skip

2 M ← N
3 E ← ∅
4 for i ← y + 1 to n do
5 if i /∈ B and i /∈ N then

6 C ← A ∩ i↓

7 if C = ∅ then
8 M ← M ∪ {i}
9 else

10 E ← E ∪ {C}

11 E′ ← ∅
12 foreach C ∈ E do
13 E′ ← E′ ∪ {〈B, y, i,M,C〉}
14 return E′

In Sect. 3.2, two variants of map-reduce style CbO are proposed—fine-grained
and coarse-grained. Algorithm 4 corresponds to the fine-grained variant. Analo-
gously, the coarse-grained variant can also be considered. To simplify the descrip-
tion of the coarse-grained variant, we introduce the auxiliary procedure Coarse-
Extents (see Algorithm 5), which for a given formal concept 〈A,B〉, attribute
y, and a set N returns set of tuples 〈B, y, i,M,A∩ i↓〉 such that i is newly added
attribute, A∩i↓ is a non-empty extent and M is a set of attributes which implies
empty intersections for the given intent B.

Algorithm 6: Close-by-One pass with In-Close4 pruning (coarse-
grained)
1 proc CbO4PassCoarse(Li):

input : Li is a collection of tuples 〈A,B, y,N〉 where A is extent, B is
intent, y is the last added attribute, N is a set of attributes to
skip

2 Lext
i ← flatMap(Li, 〈A,B, y,N〉 ⇒ CoarseExtents(A,B, y,N))

3 Lint
i ← map(Lext

i , 〈B, y, i,M,C〉 ⇒ 〈B, y, i,M,C,C↑〉)
4 Lcan

i ← filter(Lint
i , 〈B, y, i,M,C,D〉 ⇒ (Bi = Di))

5 Li+1 ← map(Lcan
i , 〈B, y, i,M,C,D〉 ⇒ 〈C,D, i,M〉)

6 return Li+1

The coarse-grained variant of the algorithm is presented in Algorithm 6. One
can see that it requires fewer steps than Algorithm 4, since all steps related

Pruning in Map-Reduce Style CbO Algorithms 113

to empty intersections are processed in the CoarseExtents procedure. Notice
that the coarse-grained variant is similar to Algorithm 2 – both consist of four
steps: (i) computation of extents, (ii) computations of intents, (iii) application
of canonicity test, and (iv) transformation for the next pass. Steps collecting
information on empty intersections are omitted in Algorithm 6.

4 Evaluation

We implemented all described algorithms as Apache Spark jobs to evaluate
their performance and scalability. A cluster of three virtual computers (nodes)
equipped with 40 cores of Intel Xeon E5-2660 (at 2.2 GHz) and 374 GiB of
RAM, each interconnected with 1 Gbps network was used. All nodes were run-
ning Debian 10.2, OpenJDK 1.8.0, and Apache Spark 2.4.4. All source codes
were compiled with Scala 2.12. One node was selected as a master, and all nodes
served as workers. To improve data locality, we limited each worker to 20 GiB
RAM. To distribute the workload equally, after each iteration, we repartitioned
the data into a number of partitions equal to twice the number of cores.

We focus on overall performance and scalability of proposed algorithms first.
We have selected three datasets from the UCI Machine Learning Repository
(mushrooms, anonymous web, T10I4D100K) and our own dataset (debian tags)
and measured time taken to enumerate all formal concepts using 1, 20, 40, and
80 cores. The results are presented in Table 1. According to these results, map-
reduce style CbO without pruning is significantly slower than the novel algo-
rithms we propose. Furthermore, coarse-grained variants of both algorithms seem
to be in many cases slightly faster, but it is not a general rule.

Properties of the datasets and results of measurements in Table 1 suggest
that the map-reduce approach is more suited for large datasets. To confirm
this, we prepared a second set of experiments. We created artificial datasets3

that simulate transactional data and focused on how the number of object and
attributes affects scalability. Scalability is a ratio ST (n) = T1

Tn
where T1 and

Tn are times necessary to complete the task with one and with n CPU cores,
respectively. In other words, scalability provides information on how efficiently
an algorithm can utilize multiple CPU cores.

Results of this experiment are presented in Figs. 1 and 2 which show scal-
ability CbO with the In-Close4 pruning for datasets having 500 attributes, 2 %
density, and varying numbers of objects (Fig. 1), and scalability for datasets con-
sisting of 10,000 objects, 2 % density, and varying numbers of attributes (Fig. 2).
These results confirm that scalability depends on the size of the data and that
mainly large datasets can benefit from distributed data processing. Notice that
fine-grained variants appear to scale better than coarse-grained variants. This is
partially due to the fact that the fine-grained variants tend to be slower when
running on a single CPU core. When multiple cores are used, the differences
between fine-grained and coarse-grained variants become negligible.

3 IBM Quest Synthetic Data Generator was used.

114 J. Konecny and P. Krajča

Table 1. Running times for selected datasets (cbo—algorithm without pruning; cbo4—
algorithm with pruning from In-Close4)

Data Cores cbo/fine cbo/coarse cbo4/fine cbo4/coarse

Debian-tags 1 475.2 s 431.4 s 34.0 s 17.2 s

Size: 8124 × 119 20 104.3 s 83.7 s 14.8 s 11.7 s

Density: 19 % 40 41.9 s 47.1 s 14.8 s 11.0 s

80 40.5 s 53.1 s 17.7 s 12.8 s

An. web 1 711.6 s 603.6 s 101.5 s 61.7 s

Size: 32710 × 296 20 102.8 s 74.3 s 23.9 s 21.3 s

Density: 1 % 40 60.7 s 68.3 s 21.1 s 19.4 s

80 70.0 s 56.5 s 24.7 s 21.9 s

Mushrooms 1 64.4 s 60.4 s 47.4 s 33.6 s

Size: 8124 × 119 20 22.2 s 22.7 s 18.1 s 18.5 s

Density: 19 % 40 18.3 s 17.2 s 17.1 s 19.2 s

80 31.7 s 30.8 s 21.6 s 32.0 s

T10I4D100K 1 3+ h 3+ h 79.5 min 40.7 min

Size: 100000 × 1000 20 49.5 min 54.3 min 4.8 min 3.2 min

Density: 1 % 40 39.3 min 37.9 min 3.5 min 2.4 min

80 35.9 min 34.1 min 3.2 min 2.5 min

Fig. 1. Scalability of CbO with the In-Close4 pruning w.r.t. number of objects—fine-
grained (left), coarse-grained (right)

Remark 4. Besides the CbO-based algorithms with In-Close4 pruning, we also
implemented algorithms with:

– FCbO pruning [15]. The performance of the resulting algorithm was very
unsatisfactory. As expected, the algorithm was slow and memory demanding
due to the quadratic nature of information on failed canonicity tests.

Pruning in Map-Reduce Style CbO Algorithms 115

– In-Close5 pruning [6]: The performance of the resulting algorithm did not
show any significant improvements. We will present detailed results in the
full version of this paper.

Fig. 2. Scalability of CbO with the In-Close4 pruning w.r.t. number of attributes—
fine-grained (left), coarse-grained (right)

5 Conclusions

We designed and implemented a CbO-based algorithm with pruning intended for
Apache Spark. While a few FCA algorithms were adapted to map-reduce frame-
work (see Remark 1), to our best knowledge, this is the first map-reduce style
algorithm for enumeration of formal concepts which utilizes pruning techniques.
Our experimental evaluation indicates promising performance results.

References

1. Akhmatnurov, M., Ignatov, D.I.: Context-aware recommender system based on
Boolean matrix factorisation. In: Yahia, S.B., Konecny, J. (eds.) Proceedings of
the Twelfth International Conference on Concept Lattices and Their Applications,
Clermont-Ferrand, France, 13–16 October 2015, CEUR Workshop Proceedings,
vol. 1466, pp. 99–110 (2015). CEUR-WS.org

2. Andrews, S.: In-Close, a fast algorithm for computing formal concepts. In: 17th
International Conference on Conceptual Structures, ICCS 2009. Springer (2009)

3. Andrews, S.: In-Close2, a high performance formal concept miner. In: Andrews, S.,
Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS 2011. LNCS (LNAI), vol. 6828, pp.
50–62. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22688-5 4

4. Andrews, S.: A ‘best-of-breed’ approach for designing a fast algorithm for comput-
ing fixpoints of Galois connections. Inf. Sci. 295, 633–649 (2015)

5. Andrews, S.: Making use of empty intersections to improve the performance
of CbO-type algorithms. In: Bertet, K., Borchmann, D., Cellier, P., Ferré, S.
(eds.) ICFCA 2017. LNCS (LNAI), vol. 10308, pp. 56–71. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-59271-8 4

http://www.CEUR-WS.org
https://doi.org/10.1007/978-3-642-22688-5_4
https://doi.org/10.1007/978-3-319-59271-8_4

116 J. Konecny and P. Krajča

6. Andrews, S.: A new method for inheriting canonicity test failures in Close-by-One
type algorithms. In: Ignatov, D.I., Nourine, L. (eds.) Proceedings of the Fourteenth
International Conference on Concept Lattices and Their Applications, CLA 2018,
Olomouc, Czech Republic, 12–14 June 2018, CEUR Workshop Proceedings, vol.
2123, pp. 255–266 (2018). CEUR-WS.org

7. Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a
novel method of matrix decomposition. J. Comput. Syst. Sci. 76(1), 3–20 (2010)

8. Chunduri, R.K., Cherukuri, A.K.: Haloop approach for concept generation in for-
mal concept analysis. JIKM 17(3), 1850029 (2018)

9. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Brewer, E.A., Chen, P. (eds.) 6th Symposium on Operating System Design
and Implementation (OSDI 2004), San Francisco, California, USA, 6–8 December
2004, pp. 137–150. USENIX Association (2004)

10. Ganter, B., Wille, R.: Formal Concept Analysis Mathematical Foundations.
Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

11. Krajca, P., Outrata, J., Vychodil, V.: Advances in algorithms based on CbO. In:
Proceedings of the 7th International Conference on Concept Lattices and Their
Applications, Sevilla, Spain, 19–21 October 2010, pp. 325–337 (2010)

12. Krajca, P., Outrata, J., Vychodil, V.: Parallel algorithm for computing fixpoints
of Galois connections. Ann. Math. Artif. Intell. 59(2), 257–272 (2010)

13. Krajca, P., Vychodil, V.: Distributed algorithm for computing formal concepts
using map-reduce framework. In: Adams, N.M., Robardet, C., Siebes, A., Bouli-
caut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 333–344. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03915-7 29

14. Kuznetsov, S.O.: A fast algorithm for computing all intersections of objects
from an arbitrary semilattice. Nauchno-Tekhnicheskaya Informatsiya Seriya
2-Informatsionnye Protsessy i Sistemy 27(1), 17–20 (1993). https://www.
researchgate.net/publication/273759395 SOKuznetsov A fast algorithm for
computing all intersections of objects from an arbitrary semilattice Nauchno-
Tekhnicheskaya Informatsiya Seriya 2 - Informatsionnye protsessy i sistemy No
1 pp17-20 19

15. Outrata, J., Vychodil, V.: Fast algorithm for computing fixpoints of Galois connec-
tions induced by object-attribute relational data. Inf. Sci. 185(1), 114–127 (2012)

16. Poelmans, J., Ignatov, D.I., Viaene, S., Dedene, G., Kuznetsov, S.O.: Text mining
scientific papers: a survey on FCA-based information retrieval research. In: Perner,
P. (ed.) ICDM 2012. LNCS (LNAI), vol. 7377, pp. 273–287. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31488-9 22

17. Xu, B., de Fréin, R., Robson, E., Ó Foghlú, M.: Distributed formal concept analysis
algorithms based on an iterative MapReduce framework. In: Domenach, F., Igna-
tov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS (LNAI), vol. 7278, pp. 292–308.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29892-9 26

18. Zaharia, M., Das, T., Li, H., Shenker, S., Stoica, I.: Discretized streams: an efficient
and fault-tolerant model for stream processing on large clusters. In: Fonseca, R.,
Maltz, D.A. (eds.) 4th USENIX Workshop on Hot Topics in Cloud Computing,
HotCloud 2012, Boston, MA, USA, 12–13 June 2012. USENIX Association (2012)

19. Zaki, M.J.: Mining non-redundant association rules. Data Min. Knowl. Discov.
9(3), 223–248 (2004)

http://www.CEUR-WS.org
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-642-03915-7_29
https://www.researchgate.net/publication/273759395_SOKuznetsov_A_fast_algorithm_for_computing_all_intersections_of_objects_from_an_arbitrary_semilattice_Nauchno-Tekhnicheskaya_Informatsiya_Seriya_2_-_Informatsionnye_protsessy_i_sistemy_No_1_pp17-20_19
https://www.researchgate.net/publication/273759395_SOKuznetsov_A_fast_algorithm_for_computing_all_intersections_of_objects_from_an_arbitrary_semilattice_Nauchno-Tekhnicheskaya_Informatsiya_Seriya_2_-_Informatsionnye_protsessy_i_sistemy_No_1_pp17-20_19
https://www.researchgate.net/publication/273759395_SOKuznetsov_A_fast_algorithm_for_computing_all_intersections_of_objects_from_an_arbitrary_semilattice_Nauchno-Tekhnicheskaya_Informatsiya_Seriya_2_-_Informatsionnye_protsessy_i_sistemy_No_1_pp17-20_19
https://www.researchgate.net/publication/273759395_SOKuznetsov_A_fast_algorithm_for_computing_all_intersections_of_objects_from_an_arbitrary_semilattice_Nauchno-Tekhnicheskaya_Informatsiya_Seriya_2_-_Informatsionnye_protsessy_i_sistemy_No_1_pp17-20_19
https://www.researchgate.net/publication/273759395_SOKuznetsov_A_fast_algorithm_for_computing_all_intersections_of_objects_from_an_arbitrary_semilattice_Nauchno-Tekhnicheskaya_Informatsiya_Seriya_2_-_Informatsionnye_protsessy_i_sistemy_No_1_pp17-20_19
https://doi.org/10.1007/978-3-642-31488-9_22
https://doi.org/10.1007/978-3-642-29892-9_26

Pattern Discovery in Triadic Contexts

Rokia Missaoui1(B), Pedro H. B. Ruas2, Léonard Kwuida3,
and Mark A. J. Song2

1 Université du Québec en Outaouais, Gatineau, Canada
rokia.missaoui@uqo.ca

2 Pontifical Catholic University of Minas Gerais, Belo Horizonte, Brazil
pedrohbruas@gmail.com, song@pucminas.br

3 Bern University of Applied Sciences, Bern, Switzerland
leonard.kwuida@bfh.ch

Abstract. Many real-life applications are best represented as ternary and
more generally n-ary relations. In this paper, we use Triadic Concept Anal-
ysis as a framework to mainly discover implications. Indeed, our contribu-
tions are as follows. First, we adapt the iPred algorithm for precedence link
computation in concept lattices to the triadic framework. Then, new algo-
rithms are proposed to compute triadic generators by extending the notion
of faces and blockers to further calculate implications.

Keywords: Triadic concepts · Triadic generators · Implication rules

1 Introduction

Multidimensional data are ubiquitous in many real-life applications and Web
resources. This is the case of multidimensional social networks, social resource
sharing systems, and security policies. For instance, in the latter application,
a user is authorized to use resources with given privileges under constrained
conditions. A folksonomy is a resource sharing system where users assign tags
to resources. Finding homogeneous groups of users and associations among their
features can be useful for decision making and recommendation purposes.

The contributions of this paper are as follows: (i) we adapt the iPred algorithm
for precedence link computation in concept lattices [1] to the triadic framework,
and (ii) we propose new algorithms for computing triadic generators and implica-
tions. Our research work is implemented in a mostly Python coded platform whose
architecture includes the following modules, as presented in Fig. 1:

1. The call of Data-Peeler procedure [4] to get triadic concepts
2. The computation of the precedence links by adapting iPred to the triadic

setting
3. The calculation of two kinds of generators, namely feature-based and extent-

based generators

This study was financed in part by the NSERC (Natural Sciences and Engineering
Research Council of Canada) and by the Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior - Brazil (CAPES) - Finance Code 001.

c© Springer Nature Switzerland AG 2020
M. Alam et al. (Eds.): ICCS 2020, LNAI 12277, pp. 117–131, 2020.
https://doi.org/10.1007/978-3-030-57855-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57855-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-57855-8_9

118 R. Missaoui et al.

4. The generation of three kinds of triadic implications as well as two kinds of
association rules

5. The adaptation of stability and separation indices to the triadic framework.

In this paper, we will focus on presenting our work on Module 2 and parts
of Modules 3 and 4 only.

Fig. 1. The architecture modules of our proposed solution.

Our findings consider the initial triadic context without any transformation
such as context flattening used in [7,9], and extend notions and algorithms ini-
tially defined in Formal Concept Analysis to its triadic counterpart.

The paper is organized as follows: in Sect. 2 we provide a background on
Triadic Concept Analysis while in Sect. 3 we propose an adapted version of
the iPred algorithm to link triadic concepts (TCs) according to the quasi-order
based on extents. In a similar way, one can build a Hasse diagram with respect
to either the intent or the modus. The identification of links allows us not only
to produce a poset of triadic concepts, but also to compute generators using the
notion of faces and blockers as defined by [10]. Section 4 describes algorithms
for computing triadic generators while Sect. 5 provides a procedure to gener-
ate implications. Section 6 describes a preliminary empirical study, and Sect. 7
concludes the paper and identifies the future work.

2 Background

In this section we first recall the main notions related to Triadic Concept Analysis
such as triadic concepts and implications. Then, we recall other notions related
to the border and the faces of a given concept.

2.1 Triadic Concept Analysis

Triadic Concept Analysis (TCA) was originally introduced by Lehmann and
Wille [8,12] as an extension to Formal Concept Analysis [6], to analyze

Pattern Discovery in Triadic Contexts 119

data described by three sets K1 (objects), K2 (attributes) and K3 (condi-
tions) together with a ternary relation Y ⊆ K1 ×K2 ×K3. We call K :=
(K1,K2,K3, Y) a triadic context as illustrated. by Table 1 borrowed from [5]
and its adaptation in [9]. It represents the purchase of customers in K1 :=
{1, 2, 3, 4, 5} from suppliers in K2 := {Peter,Nelson,Rick,Kevin,Simon} of
products in K3 := {accessories,books, computers,digital cameras}.

With (a1, a2, a3) ∈ Y , we mean that the object a1 possesses the attribute
a2 under the condition a3. For example, the value ac at the cross of Row 1 and
Column R means that Customer 1 orders from Supplier R the products a and c.
We will often use simplified notations for sets: e.g. 1 2 5 (or simply 125) stands
for {1, 2, 5} and a b (or simply ab) means {a, b}.

A triadic concept or closed tri-set of a triadic context K is a triple (A1, A2, A3)
(also denoted by A1 × A2 × A3) with A1 ⊆ K1, A2 ⊆ K2, A3 ⊆ K3 and
A1 ×A2 ×A3 ⊆ Y is maximal with respect to inclusion in Y . For example,
the tri-set 135 × PN × d ⊆ Y is not closed since 135 × PN × d ⊆ Y �

12345 × PN × d ⊆ Y .
Let (A1, A2, A3) be a triadic concept; We will refer to A1 as its extent, A2

as its intent, A3 as its modus, and (A2, A3) as its feature. From Table 1, we can
extract three triadic concepts with the same extent 2 5, namely 25 × PNR × d,
25 × PR × ad and 25 × R × abd.

To compute triadic concepts, three derivation operators are introduced. Let
K := (K1,K2,K3, Y) be a triadic context and {i, j, k} = {1, 2, 3} with j < k.
Let Xi ⊆ Ki and (Xj ,Xk) ⊆ Kj ×Kk

1. The (i)-derivation [8] is defined by:

X
(i)
i := {(aj , ak) ∈ Kj ×Kk | (ai, aj , ak) ∈ Y ∀ai ∈ Xi} (1)

(Xj ,Xk)(i) := {ai ∈ Ki | (ai, aj , ak) ∈ Y for all (aj , ak) ∈ Xj ×Xk}. (2)

For example, the (2)-derivation in K is the derivation in the dyadic context
K

(2) := (K2,K1 ×K3, Y
(2)) with (y, (x, z)) ∈ Y (2) : ⇐⇒ (x, y, z) ∈ Y .

Table 1. A triadic context.

P N R K S

1 abd abd ac ab a

2 ad bcd abd ad d

3 abd d ab ab a

4 abd bd ab ab d

5 ad ad abd abc a

The set of triadic concepts can be ordered and forms a complete trilattice
with a tridimensional representation [3,8]. For each i ∈ {1, 2, 3}, the relation

1 We write (Xj , Xk) ⊆ Kj ×Kk to mean that Xj ⊆ Kj and Xk ⊆ Kk.

120 R. Missaoui et al.

(A1, A2, A3) �i (B1, B2, B3) ⇔ Ai ⊆ Bi is a quasi-order whose equivalence
relation ∼i is given by: (A1, A2, A3) ∼i (B1, B2, B3) ⇔ Ai = Bi. These three
quasi-orders satisfy the following antiordinal dependencies:

(A1, A2, A3) �i (B1, B2, B3)
(A1, A2, A3) �j (B1, B2, B3)

}
=⇒ (B1, B2, B3) �k (A1, A2, A3)

for {i, j, k} = {1, 2, 3} and for all triadic concepts (A1, A2, A3) and (B1, B2, B3).
Biedermann [3] was the first to investigate implications in triadic contexts.

A triadic implication has the form (A → D)C and holds if A occurs under
conditions in C as a whole, then D also occurs under the same set of con-
ditions. Later on, Ganter and Obiedkov [5] extended Biedermann’s work and
defined three types of implications: attribute × condition implications (AxCIs),
conditional attribute implications (CAIs), and attributional condition implica-
tions (ACIs). In this paper we focus on implications “à la Biedermann”, and we
borrow the following definitions from [9] for conditional attribute and attribu-
tional condition implications.

A Biedermann conditional attribute implication (BCAI) has the form (A →
D)C (s), and means that whenever A occurs under the conditions in C, then
D also occurs under the same condition set with a support s. A Biedermann
attributional condition implication (BACI) has the form (A → D)C (s), and
means that whenever the conditions in A occur for all the attributes in C, then
the conditions in D also occur for the same attribute set with a support s.

2.2 Border and Faces

Let (P,≤) be a poset. If x ≤ y (resp. x < y) we state that x is below (resp.
strictly below) y. If x < y and there is no element between x and y, we call x a
lower cover of y, and y an upper cover of x, and write x ≺ y. The upper cover
of x is uc(x) = {y | x ≺ y}, and its lower cover is lc(x) = {y | y ≺ x} [2].

Let L = (C,≤1) be a poset such that each node represents all the triadic
concepts associated with the same extent, and ≤1 the order relation induced by
the quasi-order �1. This poset is not a complete lattice since the intersection
of extents is not necessarily an extent in the triadic setting. The goal is to
construct the Hasse diagram of L. Thus we need the covering relation ≺1 of ≤1.
The elements will be processed in a linear ordering <p on Ext(C) according to
an increasing size of the extents. To each current node/extent x, we associate its
border B(x), which consists of maximal elements w.r.t. ≤1 among the elements
already processed. Therefore:

y ∈ B(x) ⇐⇒ ext(y) <p ext(x) and y is maximal w.r.t.≤1.

This definition of border is different from the one proposed in [2] but identical
to the one stated in [1]. It is important to note that in our definition, the value
of B(x) depends on the ordering of the extents with the same size in Ext(C).

Using the notion of face in [1,10], we define the extent-based face of a node
n ∈ L with respect to an immediate predecessor ñ, denoted by FaceE(n � ñ),

Pattern Discovery in Triadic Contexts 121

as the difference between their extents. In a similar way, we define the feature-
based face of a node n ∈ L with respect to an immediate successor ñ, denoted
by FaceF (n ≺ ñ), as the difference between the union of the features associated
with n and the union of those attached to ñ.

FaceF (n ≺ ñ) =
{⋃

Features(n) \
⋃

Features(ñ)
}

(3)

These two face variants will be useful for precedence link computation and
feature-based generator identification respectively.

If we consider the extents 1 4 and 1 3 4 and their associated features computed
using Data-Peeler, we get:

FaceF (1 4 ≺ 1 3 4) = (KNP × b ∪ NP × bd) \ (P × abd ∪ KP × ab) = N × bd.

FaceE(1 3 4 � 1 4) = 3.

3 The Hasse Diagram Representation

To the best of our knowledge, the unique work about trilattice representation
is due to [12]. However, the authors in [11] highlight the difficulty to read and
navigate through such structure, and hence suggest new visualization, navigation
and exploration mechanisms based either on reachability relation among formal
concepts or membership constraints.

In order to visualize and navigate through triadic concepts together with
their quasi-order with respect to the extents, we build a Hasse diagram in which
each node represents a set of triadic concepts with the same extent, and the
precedence link is defined as an adaptation of iPred algorithm [1].

Such adaptation that we call T-iPred considers concepts according to an
increasing order of their extent size rather than their intent size, and hence
builds the diagram from the bottom to the top. Since the obtained poset is
not closed under the intersection of either the extent, intent or modus, we had
to modify the initial iPred procedure to first discard some extent intersections
that do no represent actual extents of existing TCs. Therefore, a link is created
between two nodes in two cases: i) when the intersection of the accumulated -
union of - extent-based faces of a candidate node together with the extent of
the current node is empty, ii) or when the union of this intersection together
with the candidate extent represents a discarded intersection of actual extents.
An intersection B1 of extents is discarded whenever all its associated features
describe a superset of B1. In our example, this is the case of the object subsets
3, 1 3 and 3 5. Indeed, although 3 has five features, the associated actual extents
are either 3 4, 1 3 4, 1 3 5 or 1 2 3 4 5. For example, KPRS×a is already attached
to 1 3 5.

122 R. Missaoui et al.

3.1 T-iPred Algorithm

Starting from a set of extents, Algorithm 1 computes borders, candidates and
links between two nodes w.r.t. to their extent. In Line 1, the extents of triadic
concepts are sorted in an ascending order of their size while in Line 2, the
variable which will store all the created links is initialized with the empty set.
In Lines 3 to 5, a hash structure (denoted by �) is created using the extents
presented in the set E as a key and the empty set as the initial value associated
with each key (extent). The first element in the border is the element with the
smallest extent size (Line 6). In Lines 7 to 19, all remaining elements in the input
sequence are processed in the order in which they appear in the enumeration.
The Candidate set is computed by intersecting the current element E [i] with all
elements present in the border (Line 8). Since some intersections of extents are
not extents of existing triadic concepts, Lines 9 to 10 aim to discard them from
the Candidate set. If Discarded is equal to the empty set, it means that all the
candidates represent valid extents. The Discarded set is then removed from the
current Candidate set.

Algorithm 1: T-iPred algorithm.
Input : E = {e1, ..., el} the set of the existing extents.
Output: (E,�1)

1 E ← Sort(E)
2 �1 ← ∅
3 foreach i = 2 . . . l do
4 �[E [i]] ← ø
5 end
6 Border ← E [1]
7 foreach i ∈ {2, l} do
8 Candidate ← {E [i] ∩ ẽ | ẽ ∈ Border}
9 Discarded ← Candidate \ E

10 Candidate ← Candidate \ Discarded
11 foreach ẽ ∈ Candidate do
12 e = �[ẽ] ∩ ei
13 if e = ∅ or e ∪ ẽ ∈ Discarded then
14 �1← �1 ∪ (E [i] , ẽ)
15 �[ẽ] = �[ẽ] ∪ (E [i] − ẽ)
16 Border ← Border − ẽ

17 end
18 Border ← Border ∪ E [i]

19 end

In Lines 11 to 17 we check if the current extent belongs to the lower set of
the elements in the candidate set. If the intersection of the accumulated faces
of a candidate node together with the extent of the current node is empty, or
if the union of this intersection together with the candidate extent represents a
discarded extent, a link is added to the output set (Line 14). Then, the current
extent is inserted into the set of accumulated faces of ẽ while the current can-
didate ẽ is removed from that set and from the Border set (Line 16). Finally,
in Line 18, before processing the next extent, the current extent is added to the
Border set.

Pattern Discovery in Triadic Contexts 123

Let us assume that one of the possible orderings for the E is:

E = [∅, 5, 2, 1, 4, 2 4, 3 4, 1 4, 2 5, 1 5, · · · · · · , 1 2 3 4 5].

In Table 2 we present a running example with only the first nine triadic
concepts for the T-iPred algorithm based on the triadic context given in Table 1.
To illustrate how the algorithm works for a given extent, let us see the processing
of ei = 24 with its border equal to {5, 2, 1, 4}2. Line 6 of Algorithm 1 returns the
candidate set {∅, 2, 4}. In Lines 7 to 8, no element is discarded from the candidate
set. If we consider the candidate ẽ = 2 in Line 9, then e = �[2] ∩ 2 4 =ø. Since
the condition in Line 11 is true, a link is then created between ei = 24 and
ẽ = 2 and the accumulated face �[2] changes from ∅ to {4} (Line 13), and
ẽ = 2 is removed from the border (Line 14). After processing all the candidates,
a second link is created between ei = 24 and ẽ = 4, and the border takes the
value ({5, 2, 1, 4} \ {2, 4}) ∪ {24} = {5, 1, 24}.

Table 2. A part of the T-iPred trace. We used a simplified notation for sets. For
example {5, 1, 2 4} stands for the set of sets {{5}, {1}, {2, 4}}.

ei Candidate set �[ẽ] ∩ ei �L �[ẽ] Border

ø

5 5 ∩ ø = ø �[ø] ∩ 5 = ø (5, ø) �[ø] = {5} {5}
2 2 ∩ {5} = ø �[ø] ∩ 2 = ø (2, ø) �[ø] = {5, 2} {5,2}
1 1 ∩ {5, 2} = ø �[ø] ∩ 1 = ø (1, ø) �[ø] = {5, 2, 1} {5,2,1}
4 4 ∩ {5, 2, 1} = ø �[ø] ∩ 4 = ø (4, ø) �[ø] = {5, 2, 1, 4}{5,2,1,4}
2 42 4 ∩ {5, 2, 1, 4} = {ø, 2, 4} �[ø] ∩ 2 4 = {ø, 2, 4}- �[ø] = {5, 2, 1, 4}

2 4 ∩ {5, 2, 1, 4} = {ø, 2, 4} �[2] ∩ 2 4 = ø (2 4, 2)�[2] = {4} {5,1,4}
2 4 ∩ {5, 2, 1, 4} = {ø, 2, 4} �[4] ∩ 2 4 = ø (2 4, 4)�[4] = {2} {5,1,2 4}

3 43 4 ∩ {5, 1, 2 4} = {ø, 4} �[ø] ∩ 3 4 = {ø, 4} - �[ø] = {5, 2, 1, 4}
3 4 ∩ {5, 1, 2 4} = {ø, 4} �[4] ∩ 3 4 = ø (3 4, 4)�[4] = {2, 3} {5,1,24,34}

1 41 4 ∩ {5, 1, 2 4, 3 4} = {ø, 1, 4} �[ø] ∩ 1 4 = {ø, 1, 4}- �[ø] = {5, 2, 1, 4}
1 4 ∩ {5, 1, 2 4, 3 4} = {ø, 1, 4} �[1] ∩ 1 4 = ø (1 4, 1)�[1] = {4} {5, 2 4, 3 4}
1 4 ∩ {5, 1, 2 4, 3 4} = {ø, 1, 4} �[4] ∩ 1 4 = ø (1 4, 4)�[4] = {2, 3, 1} {5, 2 4, 3 4, 1 4}

2 52 5 ∩ {5, 2 4, 3 4, 1 4} = {5, 2, ø}�[5] ∩ 2 5 = ø (2 5,5) �[5] = {2} {2 4, 3 4, 1 4}
2 5 ∩ {5, 2 4, 3 4, 1 4} = {5, 2, ø}�[2] ∩ 2 5 = ø (2 5,2) �[2] = {4, 5} {2 4, 3 4, 1 4}
2 5 ∩ {5, 2 4, 3 4, 1 4} = {5, 2, ø}�[ø] ∩ 2 5 = {5, 2, ø}- �[ø] = {5, 2, 1, 4}{24, 34, 14, 25}

1 515 ∩ {24, 34, 14, 25} = {ø, 1, 5} �[ø] ∩ 15 = {5, 1, ø} - �[ø] = {5, 2, 1, 4}
15 ∩ {24, 34, 14, 25} = {ø, 1, 5} �[ø] ∩ 15 = ø (15,1) �[1] = {4, 5} {24, 34, 14, 25}
15 ∩ {24, 34, 14, 25} = {ø, 1, 5} �[5] ∩ 15 = ø (15,5) �[5] = {2, 1} {24, 34, 14, 25, 15}

Once we process the element whose extent is 15, we obtain the lower part of
the Hasse diagram presented in Fig. 2.

2 The border of a node (extent) at the beginning of an extent processing appears in
the immediately upper line of Table 2.

124 R. Missaoui et al.

Fig. 2. Lower part of the Hasse diagram after computing the element 15.

At the end, once all the elements in E are processed, we get the Hasse diagram
of triadic concepts presented in Fig. 3 where the value inside each node represents
an extent while the pairs of values are the corresponding features. For exam-
ple, the node with the label 25 represents the extent of the TCs (25, NPR, d),
(25, PR, ad) and (25, R, abd).

Fig. 3. Final Hass diagram of triadic concepts obtained with T-iPred.

Pattern Discovery in Triadic Contexts 125

The complexity of T-iPred algorithm can be estimated by |E| ×w(L) × |K1|
as an adaptation of the complexity of iPred where E, w(L) and K1 are the set
of extents, the width of the diagram L and the whole object set.

4 Triadic Generators Computation

In this section we define a triadic feature-based generator and propose new algo-
rithms to compute it.

4.1 Definition

Definition 1. Let (A1, A2, A3) be a triadic concept. (B2, B3) is a triadic feature-
based generator (F-generator for short) of (A2, A3) if A2 × A3 ⊆ (B2, B3)(1)(1).

As a generator, (B2, B3) needs to be minimal and have a non empty intersection
with each face of the node with the extent A1.

4.2 Algorithms

Algorithm 2: Computing Feature-based generators
Input : A formal context C = (Kc

2, Kc
3 , Ic) that represents all the features associated

with the node c whose extent is E in the lattice.
A triadic context K = (K1, K2, K3, Y).

The s formal contexts Ck = (Kk
2 , Kk

3 , Ik), k = 1, . . . , s as the successors of c.
Output: A set TG of triadic generators of the current node c

1 n ← |Kc
2 | m ← |Kc

3 |
2 G ← ∅ VA(n) := Attrib(Kc

2) VM (m) := Cond(Kc
3)

3 for k = 1, s do

4 Fk ← Ic \ Ik

5 if k=1 then
6 for i=1, n do
7 for j=1,m do
8 if Fk(i, j) = 1 then G ← G ∪ {VA(i), VM (j)} ;
9 end

10 end

11 else
12 F ← Face(ck)
13 Update(G,F)

14 end
15 TG ← ∅
16 for e in G do
17 if Derive(e) = E then TG ← TG ∪ e ;
18 end
19 return MinSet(TG)

In Lines 1 and 2, a few variables are initialized. The set G of generators is
initialized to the empty set while VA and VM are global variables that store the
n attributes and the m conditions found in the features of node c. In Lines 3
to 14, each successor ck of c is used to compute the feature-based face of node

126 R. Missaoui et al.

c with respect to its successor ck to further compute the set G of potential
generators. Line 4 computes the k-th face of c named Fk as the matrix of size
n×m representing the difference between the two binary relations Ic and Ik. If
k = 1 (Lines 5 to 10), the first face F1 is decomposed into a set of elementary
pairs (b2, b3) as cells in F1 with b2 ∈ Kc

2 and b3 ∈ Kc
3. The set of these pairs

serves as the preliminary value of G. Lines 12 to 13 compute the subsequent faces
and update the set G. Update(G,F) aims to check if each potential generator g
in G has a non empty intersection with the current face. If not, g needs to be
augmented in its intent and/or its modus parts with elements from the current
face as indicated in Algorithm 3. Since the latter set may contain elements whose
corresponding extent is possibly larger that the current extent E, Lines 16 to 18
use the derivation operation to discard such elements. Finally, the set of minimal
F-generators is returned.

Algorithm 3: FACE - Computing the components of the k-th face when
k > 1

Input : A formal context Ck = (Kk
2 , Kk

3 , Ik) of the k-th successor of C = (Kc
2, Kc

3 , Ic).
n = |Kc

2 |
m = |Kc

3 |
Output: The component set F of the face Fk

1 Fk ← Ic \ Ik U3 ← ø F ← ø
2 for i=1, n do
3 for j = 1, m do
4 if Fk(i, j) = 1 then U3 ← U3 ∪ VM (j) ;
5 end
6 F ← F ∪ (VA(i), U3)

7 end
8 return F

Algorithm 4: UPDATE - Updating the set of feature-based generators
Input : The temporary set of G of T-generator.

The set F of Face components.
Output: The updated set G of the T − generators.

1 G1 ← G
2 for g in G do
3 i ← 0
4 switch ∃f ∈ F do
5 case (Int(f) ∩ Int(g)
= ∅ & Modus(f) ∩ Modus(g)
= ∅) do
6 i ← 2
7 case (Int(f) ∩ Int(g) = ∅ & Modus(f) ∩ Modus(g) = ∅) do
8 i ← 1
9 for e in Int(f) do G1 ← G1 ∪ (Int(g) ∪ e, Modus(g)) ;

10 for e in Modus(f) do G1 ← G1 ∪ (Int(g), Modus(g) ∪ e) ;

11 case (Int(f) ∩ Int(g) = ∅ & Modus(f) ∩ Modus(g)
= ∅) do
12 i ← 1
13 for e in Int(f) do G1 ← G1 ∪ (Int(g) ∪ e, Modus(g)) ;

14 case (Int(f) ∩ Int(g)
= ∅ & Modus(f) ∩ Modus(g) = ∅) do
15 i ← 1
16 for e in Modus(f) do G1 ← G1 ∪ (Int(g), Modus(g) ∪ e) ;

17 end
18 if i = 1 then G1 ← G1 \ g ;

19 end
20 return G1

Pattern Discovery in Triadic Contexts 127

4.3 Example

As an example, let us consider the feature-based generators for the triadic con-
cepts associated with the extent 14. The first step is to compute the feature-based
face of the node labelled by this extent and each one of its successors, which are
134 and 124.

To do so, we create a dyadic context representing all the features - KNP × b
and NP × bd - associated with the current node whose extent is 14, and then we
remove the features - P × abd and KP × ab - which belong to its first successor
134. Then, the second face F2 is computed by considering the following feature
associated with the successor node 124: N,×bd, as shown in Tables 3 and 4.

Table 3. Face F1 covering the non
highlighted crosses

b d

K x

N x x

P x x

Table 4. Face F2

b d

K x

N x x

P x x

Since F1 = N × bd is the first computed face, the set G is assigned the value
{N × b,N × d} obtained by a combination of an element of the intent part with
an element of the modus part of F1. The second face is F2 = {K × b, P × bd}.
Next, it is necessary to update the set G by checking if each element of the
current generator set has a non empty intersection with F2. This is illustrated
as follows:

• The first element g in G is (N, b) and has no intersection with F2. Then we
proceed as follows:

– Int(K, b) ∩ Int(N, b) = ∅ (3rd case of Algorithm 4)
◦ Then, G = {(NK,b), (N, d)}

– Int(P, bd) ∩ Int(N, b) = ∅ (3rd case of Algorithm 4)
◦ Then, G = {(NK, b), (NP,b), (N, d)}

• The second element (N, d) in G does not have an intersection with F2:
– Int(K, b)∩ Int(N, d) = ∅ and Modus(K, b)∩Modus(N, d) = ∅ (2nd case

of Algorithm 4)
◦ Then, G = {(NK, b), (NP, b), (NK, bd)}

– Int(P, bd) ∩ Int(N, d) = ∅ (3rd case of Algorithm 4)
◦ Then, G = {(NK, b), (NP, b), (NK, bd), (NP, d)}.

Now, we need to check if all the elements in G are actually F-generators of
the features associated with the node whose extent is 14. The pairs (NK, bd)
and (NP, d) will be removed from G because the former is not minimal while

128 R. Missaoui et al.

the extent associated with the latter is actually 12345. The final set of F-
generators of the features associated with the node whose extent is 14 is
G = {(NK, b), (NP, b)}.

Once all the features associated with the distinct extents in E are processed,
we get the lattice annotated with the F-generators as presented in Fig. 4.

Fig. 4. Triadic lattice annotated with features and F-generators.

5 Implication Computation

In the following, we propose a more precise definition than the one given in [9]
for two types of implications using feature-based generators.

5.1 Feature-Based Implications

Proposition 1. Let (A1, A2, A3) be a triadic concept and (B2, B3) a feature-
based generator of (A2, A3). Then, the BCAI-implication (B2 → A2 \ B2)B3

holds with a support equal to |A1|/|K1| if B2 ⊂ A2 and B3 ⊆ A3, where K1

stands for the set of objects. Dually, the BACI-implication (B3 → A3 \ B3)B2

holds with a support equal to |A1|/|K1| if B3 ⊂ A3 and B2 ⊆ A2.

Pattern Discovery in Triadic Contexts 129

Proof. The implication (B2 → A2 \B2)B3 is valid iff (B2, B3)(1) ⊆ (A2 \B2, A3 \
B3)(1), i.e., all the objects having the attributes in the premise B2 own necessarily
the attributes in the conclusion A2 \ B2 under the conditions in B3. This is
equivalent to the condition A2 × A3 ⊆ (B2, B3)(1)(1) in the definition of F-
generators (see Definition 1).

For example, we can extract the following implications from the node whose
extent is 14 in Fig. 4: (KN → P)b, (NP → K)b and (b → d)NP . The first one
means that whenever N and K supply the item b, then the supplier P does so.
The last implication means that if the product b is supplied jointly by P and N ,
then product d is also jointly supplied by these suppliers.

5.2 Algorithm

Algorithm 5: Computing feature-based implications.
Input : The set C = {(A1

i , A
2
i , A

3
i)} of triadic concepts

A hash structure FG of F-generators associated with the concepts in C
Output: The set AC and CA of implications.

1 AC ← ∅; CA ← ∅;
2 foreach c ∈ C do
3 A1 ← Ext(c) A2 ← Int(c) A3 ← Modus(c)
4 for f ∈ FG(A1) do
5 B2 ← Int(f) B3 ← Modus(f)
6 if (B2 ⊂ A2) and (B3 ⊆ A3) then

7 AC ← AC ∪ (B2 → A2 \ B2, B3,
|A1|
|K1|)

8 if (B3 ⊂ A3) and B2 ⊆ A2) then

9 CA ← CA ∪ (B3 → A3 \ B3, B2,
|A1|
|K1|)

10 end

11 end

In Line 1 of Algorithm 5, the two sets AC and CA for storing the implications
BACIs and BCAIs respectively are initialized to the empty set. Each element
in the set CA is a triple that represents an association between attribute sub-
sets, the condition part and the implication support. For the set AC, the triple
contains an association between condition subsets, the attribute part and the
support.

The outer loop in Lines 2 to 11 explores each triadic concept to get its
extent, its intent and its modus. The inner loop in Lines 4 to 10 looks for each
F-generator in the hash structure FG to extract the implications BCAIs and
BACIs as defined in Proposition 1.

6 Experimental Results

The objective of this section is to conduct preliminary tests and empirically
provide the execution time of each module of our software solution that produces
the Hasse diagram of TCs, F-generators, and implications.

130 R. Missaoui et al.

All the empirical tests were executed on a Ubuntu 19.10 based system with
32 GB of RAM memory and an Intel i7-4790 3.6 GHz 8-core processor. Regarding
the data sets used in our experiments, a random selection on both objects and
attributes of The Mushroom Data Set3 was performed. Indeed, we took four
subsets (100, 250, 500 and 1000) of the mushroom set and split a subset of the
initial attribute set into a set of ten attributes and a set of four corresponding
conditions. In Table 5 we present the execution time of each module and the
amount of Implication rules (BCAIs and BACIs) computed for each data set.

Table 5. Execution time in seconds for each module.

Subsets of the mushroom data set

Objects 100 250 500 1000

Attributes 10 10 10 10

Conditions 4 4 4 4

Context density 31.3% 32.6% 33.2% 32.7%

Triadic concepts 28 34 34 63

Links 20 24 24 84

Number of implications 90 92 92 125

Data peeler 0.0036 0.0084 0.0146 0.0413

T-iPred 0.0006 0.0010 0.0014 0.0086

F-Generators 0.4154 1.5039 5.6808 109.4080

Implications 0.0009 0.0009 0.0009 0.0013

Total time 0.4205 1.5142 5.6977 109.4592

One can see from Table 5 that the execution time is dominated by the compu-
tation of the F-generators. Such a preliminary result is stimulating us to improve
the underlying procedures and exploit parallel processing in the near future.

7 Conclusion

In this paper we described a set of algorithms in Triadic Concept Analysis to
construct the Hasse diagram of triadic concepts, compute generators and implica-
tions. The objective of having a Hasse diagram that represents the set of triadic
concepts partially ordered according to their extent is to allow (i) the com-
putation of feature-based generators to further identify implications and more
generally association rules, and (ii) the browsing and the querying of this struc-
ture. While the former objective is detailed in the paper, the latter is a research
topic that we are about to complete in order to either retrieve a triadic concept
or compute the approximation of a triple (A1, A2, A3). The query against the

3 Available at: https://archive.ics.uci.edu/ml/datasets/mushroom.

https://archive.ics.uci.edu/ml/datasets/mushroom

Pattern Discovery in Triadic Contexts 131

diagram can concern the three dimensions: objects, attributes and conditions,
or any subset of them. Moreover, the implementation of the T-iPred algorithm
allows us to order concepts according to anyone of the three dimensions.

To the best of our knowledge, there are neither implementations nor algo-
rithms that compute in a same way the type of patterns (generators and impli-
cations) that we considered in this paper.

We are presently working on the following topics: (i) the design of procedures
for both computing feature-based association rules and a new kind of extent-
based implications, (ii) the investigation of new relevancy measures for triadic
concepts, and (iii) finally the implementation of our algorithms to analyze large
triadic contexts using Apache Spark.

References

1. Baixeries, J., Szathmary, L., Valtchev, P., Godin, R.: Yet a faster algorithm for
building the hasse diagram of a concept lattice. In: ICFCA 2009, pp. 162–177
(2009)

2. Balcázar, J.L., T̂ırnăucă, C.: Border algorithms for computing hasse diagrams of
arbitrary lattices. In: Valtchev, P., Jäschke, R. (eds.) ICFCA 2011. LNCS (LNAI),
vol. 6628, pp. 49–64. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-20514-9 6

3. Biedermann, K.: How triadic diagrams represent conceptual structures. In: ICCS,
pp. 304–317 (1997)

4. Cerf, L., Besson, J., Robardet, C., Boulicaut, J.F.: Data-peeler: constraint-based
closed pattern mining in n-ary relations. In: ICDM 2008, pp. 37–48 (2008)

5. Ganter, B., Obiedkov, S.A.: Implications in triadic formal contexts. In: ICCS, pp.
186–195 (2004)

6. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999).
https://doi.org/10.1007/978-3-642-59830-2. translator-C. Franzke

7. Jaschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: TRIAS - an algorithm
for mining iceberg tri-lattices. In: ICDM 2006, pp. 907–911 (2006)

8. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: ICCS,
pp. 32–43 (1995)

9. Missaoui, R., Kwuida, L.: Mining triadic association rules from ternary relations.
In: Valtchev, P., Jäschke, R. (eds.) ICFCA 2011. LNCS (LNAI), vol. 6628, pp.
204–218. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20514-
9 16

10. Pfaltz, J.L., Taylor, C.M.: Closed set mining of biological data. In: BIOKDD 2002,
pp. 43–48 (2002)

11. Rudolph, S., Sacarea, C., Troanca, D.: Towards a navigation paradigm for triadic
concepts. In: ICFCA 2015, pp. 252–267 (2015)

12. Wille, R.: The basic theorem of triadic concept analysis. Order 12(2), 149–158
(1995)

https://doi.org/10.1007/978-3-642-20514-9_6
https://doi.org/10.1007/978-3-642-20514-9_6
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-642-20514-9_16
https://doi.org/10.1007/978-3-642-20514-9_16

Characterizing Movie Genres Using
Formal Concept Analysis

Raji Ghawi(B) and Jürgen Pfeffer

Bavarian School of Public Policy, Technical University of Munich, Munich, Germany
{raji.ghawi,juergen.pfeffer}@tum.de

Abstract. We propose to use Formal Concept Analysis to conceptual-
ize movies and their associated genres. We construct a formal context in
which movies are objects and genres are attribute. The context is then
used to find formal concepts organized in a concept lattice. This con-
ceptual structure is useful to measure semantic genre-based similarity of
movies, which is important for content-based recommender systems.

Keywords: Formal Concept Analysis · Genre · Semantic similarity

1 Introduction

The term “genre” was used to organize films according to type since the earliest
days of cinema. Genre is a class, type or category, associated with any form of
art or entertainment (literature, music, film, etc.) based on some set of stylistic
criteria, such as science fiction, musical, horror, comedy, and thriller. Films are
rarely purely from one genre, rather, many films cross into multiple genres. For
example, spy films often cross genre boundaries with thriller films [7].

Genre is an important feature of movies, where it can be effectively used in
measuring movie-similarity, along with other features, such as actors, director,
location, etc. Hwang et al. [8] proposed an algorithm for movie recommendation
that exploits the genre of the movie to enhance the accuracy of rating predictions.

In order to understand the relatedness among different film genres, we need
a data-driven analysis, not only at statistical level, but at structural level as
well. In this paper, we are interested in studying the inter-relatedness of genres,
based on the movies that cross multiple genres. For this purpose, we use Formal
Concept Analysis (FCA), which is a mathematical framework mainly used for
classification and knowledge discovery [5]. FCA has been used in many practical
applications in various fields [9], including: data mining [4], text mining [3],
machine learning [10], knowledge management [11], and semantic web [1].

Central to FCA is the notion of a formal context, which is a structure that
comprises a set of objects, described through a set of attributes, via a binary
relation, called incidence, that expresses which objects have which attributes.
Another central notion in FCA is formal concept, which associates a set of objects
A (called the extent) with a set of attributes B (called the intent), where the
c© Springer Nature Switzerland AG 2020
M. Alam et al. (Eds.): ICCS 2020, LNAI 12277, pp. 132–141, 2020.
https://doi.org/10.1007/978-3-030-57855-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57855-8_10&domain=pdf
http://orcid.org/0000-0002-2865-2014
http://orcid.org/0000-0002-1677-150X
https://doi.org/10.1007/978-3-030-57855-8_10

Characterizing Movie Genres Using Formal Concept Analysis 133

extent A consists of all objects that share the attributes in B, and the intent B
consists of all attributes shared by the objects in A. The formal concepts of a
given context can be ordered in a hierarchy called the context’s concept lattice.

Organizing movies and genres in a concept lattice provides many advantages.
Among others, a promising application is the ability to measure semantic genre-
based similarity between movies. Semantic similarity can be measured using
several approaches based on the edges in a concept lattice, or based on the
nodes (information content). The contributions of the paper are the following:

– We propose to use FCA methods to characterize movie genres.
– We construct a formal context, such that movies are the objects, and genres

are the attributes, and use this context to find formal concepts and organize
them into a concept lattice.

– We demonstrate how to use the concept lattice in order to measure semantic
similarity of movies using several approaches.

The paper is organized as follows. Section 2 provides a preliminary intro-
duction about Formal Concept Analysis, while Sect. 3 gives an overview about
the used dataset. In Sect. 4, we address how to construct a formal context for
movies and genres; and the concept lattice derived from it. Finally, Sect. 5 dis-
cusses how the concept lattice can be used to measure the semantic similarity
between movies, and Sect. 6 concludes the paper.

2 Formal Concept Analysis

Formal Concept Analysis (FCA) [5] starts with a formal context, which is a triple
K = 〈G,M, I〉 where G = {g1, · · · , gn} is a set of objects, M = {m1, · · · ,mk} a
set of attributes, and I ⊆ G × M is a binary relation, called incidence relation,
with (g,m) ∈ I (denoted gIm) meaning that object g has attribute m. Two dual
derivation operators, denoted by (.)′, are defined as follows:

A′ = {m ∈ M | ∀g ∈ A, gIm} for A ⊆ G

B′ = {g ∈ G | ∀m ∈ B, gIm} for B ⊆ M

A′ is the set of attributes common to all objects of A; and B′ is the set
of objects sharing all attributes of B. The two compositions of both derivation
operators, denoted by (.)′′, are closure operators. In particular, for A ⊆ G and
B ⊆ M , we have A ⊆ A′′ and B ⊆ B′′. Then A and B are closed sets when
A = A′′ and B = B′′ respectively. A formal concept is a pair (A,B), where
A ⊆ G, B ⊆ M , whenever A′ = B and B′ = A, where A is closed and called the
“extent” of the concept (A,B), and B is closed and called the “intent” of the
concept (A,B). The set of all concepts is denoted by B(K).

The formal concepts of a given context are partially ordered by the sub-
concept - superconcept relation as defined by the inclusion of their extents or
(which is equivalent) inverse inclusion of their intent. An order � on the concepts
is defined as follows: for any two concepts (A1, B1) and (A2, B2) of K, we say that

134 R. Ghawi and J. Pfeffer

(A1, B1) � (A2, B2) precisely when A1 ⊆ A2. Equivalently, (A1, B1) � (A2, B2)
whenever B1 ⊇ B2. The set of all formal concepts of a context K together with
the order relation � forms the concept lattice of K, denoted B(K). Every set of
formal concepts has a greatest common subconcept. Its extent consists of those
objects that are common to all extents of the set. Dually, every set of formal
concepts has a least common superconcept, the intent of which comprises all
attributes which all objects of that set of concepts have.

3 Data

We used the MovieLens 20M movie ratings dataset1 [6] which includes a movies
table, that comprises movie information. In this table, each entry represents one
movie, and has the following format: (movieId, title, genres). This table com-
prises 27,278 movies. Genres are a pipe-separated list, and are selected from
the following set of 20 genres: Action, Adventure, Animation, Children, Com-
edy, Crime, Documentary, Drama, Fantasy, Film-Noir, Horror, IMAX, Musical,
Mystery, Romance, Sci-Fi, Thriller, War, Western and (no genres listed).

The distribution of genres (number of movies of each genre) is shown in
Fig. 1-a, where we can observe that the most frequent genre is Drama (about
13,000 movies), followed by Comedy (about 8,000 movies). Figure 1-b shows the
distribution of number of genres per movies. For instance, about 10,800 movies
have one genre only, while about 8,800 movies have two genres. Very few movies
have more than 5 genres. On average, a movie has 2 genres.

Fig. 1. Genres distribution

In the dataset, there are 1,342 different combinations (groups) of genres.
Figure 1-c shows how many of these combinations exist per number of genres. For
instance, there are 20 groups of size 1 (corresponding to the 20 genres); whereas
there are 130 groups of 2 genres, and 378 groups of 3 genres, etc. Table 1 shows
the largest genres groups along with the number of movies in each group. For
instance, the largest 2-genres group is {Comedy, Drama} (1,264 movies), whereas
the largest 3-genres group is {Comedy, Drama, Romance} (605 movies).

1 https://grouplens.org/datasets/movielens/20m/.

https://grouplens.org/datasets/movielens/20m/

Characterizing Movie Genres Using Formal Concept Analysis 135

Table 1. Largest genre groups

Genres group # movies Genres group # movies

1 {Drama} 4,520 3 {Comedy, Drama, Romance} 605

{Comedy} 2,294 {Crime, Drama, Thriller} 304

{Documentary} 1,942 {Action, Crime, Thriller} 127

{Horror} 565 {Horror, Mystery, Thriller} 115

{Thriller} 268 {Action, Crime, Drama} 114

2 {Comedy, Drama} 1,264 4 {Action, Crime, Drama, Thriller} 109

{Drama, Romance} 1,075 {Crime, Drama, Mystery, Thriller} 71

{Comedy, Romance} 757 {Drama, Horror, Mystery, Thriller} 38

{Crime, Drama} 448 {Adventure, Animation, Children, Comedy} 36

{Drama, Thriller} 426 {Action, Adventure, Drama, War} 36

4 Movie Genres Formal Context and Concept Lattice

The objective of this paper is to use FCA in order to characterize movie genres.
The first step is to construct a formal context describing the relation between
movies and their genres. In this context, the objects are the movies, and the
attributes are the genres. We draw an incidence between a movie and a genre
whenever that movie has (belongs to) that genre.

To illustrate the construction of the formal context, we use a toy example as
shown in Table 2, where we have seven well known movies, that are the objects
of the formal context (the rows). Each movie belongs to one or more genres. The
genres are the attributes, and hence shown in the columns of the context. For
example, the movie The Matrix has three genres: Action, Thriller, and Sci-Fi;
whereas the movie Braveheart has the three genres: Action, War, and Drama.

Table 2. Example formal context

Crime Action War Drama Adventure Thriller Sci-Fi

The Matrix × × ×
Jurassic Park × × × ×
Independence Day × × × ×
Gladiator × × ×
Braveheart × × ×
The Godfather × ×
Batman × × ×

The formal context constructed from our movie-genres dataset (Sect. 3) con-
sists of 20 attributes corresponding to the 20 genres, and 27,278 objects corre-
sponding to all the movies in the dataset. It consists of 54,406 incidences, each
of which corresponds to an association of a movie and a genre.

136 R. Ghawi and J. Pfeffer

In order to reduce the complexity of the formal context, we perform context
clarification. A formal context is called clarified if the corresponding table does
neither contain identical rows nor identical columns. Clarification can therefore
be performed by removing identical rows and columns (only one of several identi-
cal rows/columns is left). In our case, many movies share the same set of genres;
i.e., genres groups, as we can see in Table 1. The concept lattice derived from a
clarified context is isomorphic to that one of the original formal context. In our
example formal context (Table 2), the movies Jurassic Park and Independence
Day have both the same set of genres, namely: Action, Adventure, Thriller, and
Sci-Fi. Hence, it is possible to remove one of them and retain the other.

After performing clarification on the complete movie-genres formal context,
the resulting clarified context consists of: 20 attributes, 1,342 objects (4.9%),
and 5,145 incidences (9.5%). Since no two genres have the same set of movies,
the clarified context has the same set of attributes (genres) as the original one.
The next step is to use the clarified formal context in order to find all formal
concepts, which can be then organised in a concept lattice.

Figure 2 shows the concept lattice corresponding to our formal context exam-
ple (Table 2). For instance, under the top concept, we can see three concepts
corresponding to the attributes/genres: Action, Drama and Crime. The concept
corresponding to the Crime genre has two sub-concepts which correspond to the
movies: Batman and The Godfather.

Fig. 2. Concept lattice of the example Fig. 3. Edge distance

The actual concept lattice corresponding to the complete clarified formal
context consists of 1,773 formal concepts. After the construction of this con-
cept lattice, we re-populate each concept with its original set of objects/movies.
Trivially, the top concept consists of all movies/objects (27,278) and has no

Characterizing Movie Genres Using Formal Concept Analysis 137

attributes/genres. The immediate sub-concepts of the top concept are 20 con-
cepts that correspond to the 20 attributes/genres. Also, the bottom concept has
all the 20 attributes/genres, and has no objects. It has 265 immediate super-
concepts.

5 Semantic Similarity of Movies

Recommender systems are tools which attempt to predict a user’s interest
towards an item, such as movies to watch, books to read, or products to buy.
Recommender systems are popular in both commercial and research settings,
and they are applied in a variety of applications such as movies, music, books,
social connections and venues. In particular, movie recommender systems (such
as Netflix) provide the customers with personal recommendations of movies they
might like. Recommender systems usually make use of either or both collabo-
rative filtering and content-based filtering. Content-based filtering methods are
based on a description of the item and a profile of the user’s preferences. They
try to recommend items that are similar to those that a user liked in the past.
Similarity between items is based on the content of the item, i.e., known data
about the item. For instance, similarity between movies can be modeled using
the properties of movies, such as title, description, actors, director, genres, etc.

To measure the similarity of two movies based on their sets of genres, one can
use some set-based similarity measure, such as the Jaccard index: SJac(x, y) =
|x∩y|
|x∪y| or Sorensen coefficient: SSor(x, y) = 2|x∩y|

|x|+|y| .
One of the advantages of the movie-genre concept lattice that we constructed is

the ability to compute semantic similarity between movies. Basically, the semantic
similarity of movies can be measured by the semantic (conceptual) similarity of the
concepts of the movies. In the literature, several semantic similarity measures were
developed, including: (1) edge-based (path-length) similarities [13,15], (2) node-
based similarities [12,14], and (3) FCA-based similarities [2].

5.1 Edge Based (Path Length) Similarities

Let C1 and C2 be two concepts in a concept lattice (or in a taxonomy or an is-a
semantic net). A measure of the conceptual distance between C1 and C2 is given
by the minimum number of edges separating C1 and C2 [13,15]. The measure
for distance on the nodes could be a path metric, i.e. length of the shortest path
between them. Let C0 be the least (most specific) common superconcept (lcs)
of the concepts C1 and C2 (Fig. 3). Let N1 and N2 be the number of edges (on
a shortest path) from C1 and C2 to their lcs, respectively; then the distance
between C1 and C2 is given by d(C1, C2) = N1 + N2. One can transform a
distance metric into a similarity measure, as follows:

Sp(C1, C2) =
1

1 + d(C1, C2)
=

1
1 + N1 + N2

(1)

138 R. Ghawi and J. Pfeffer

The problem with this measure is that, it makes no difference between sim-
ilarities of node pairs located at different depths. To cope with this issue, the
previous formula can be adjusted to account for the depth of the nodes within
the lattice, as follows:

Sadj(C1, C2) =
1 + N0

1 + N0 + N1 + N2
(2)

where N0 is the distance between the lcs C0 and the root (top concept).
Another adjusted formula is proposed by Wu and Palmer [16] as follows:

SWP (C1, C2) =
2N0

2N0 + N1 + N2
(3)

5.2 Node Based (Information Content) Similarities

Resnik Similarity [14]. This similarity measure is based on the notion of
information content. The information content of a concept is the logarithm of
the probability of finding an instance of the concept.

SResnik(C1, C2) = − logP (C0) (4)

where C0 is the least common superconcept (aka. lowest common subsumer)
of the two concepts C1 and C2. In our case, the probability of a concept C =
(A,B) can be simply given as the fraction of the objects of that concept (its
extent) to all the objects in the context (the set G): P (C) = |A|

|G|

Lin Similarity [12]. This similarity measure is based on Resnik’s similarity,
however it considers the information content of lowest common subsumer (lcs)
and the two compared concepts. It is given by:

SLin(C1, C2) =
2 ∗ logP (C0)

logP (C1) + logP (C2)
(5)

5.3 FCA-Based Similarities

Two similarity measures specific for FCA were proposed in [2]:

Weighted Concept Similarity . Given formal concepts C1 = (A1, B1), C2 =
(A2, B2), the weighted concept similarity of C1 and C2 is

Sw
S (C1, C2) = w.S(A1, A2) + (1 − w).S(B1, B2) (6)

where 0 ≤ w ≤ 1 and S is some set-based similarity measure, such as the
Jaccard index or Sorensen coefficient.

Characterizing Movie Genres Using Formal Concept Analysis 139

Zero Induced Similarity. Formal concepts may be viewed as maximal sub-
matrices full of ones in a formal context K, and thus combining any two concepts
C1 = (A1, B1) and C2 = (A2, B2) to form a larger sub-matrix D = (A1∪A2, B1∪
B2) must result in the introduction of zeros. The zeros induced by C1 and C2,
denoted as z(C1, C2), is the number of zeros enclosed by the sub-matrix induced
by rows (A1 ∪ A2) and columns (B1 ∪ B2) in K:

z(C1, C2) =
∑

a∈A1∪A2

|(B1 ∪ B2) \ a′|

The zeros-induced index of two concepts C1 and C2 is then given by:

Sz =
|A1 ∪ A2|.|B1 ∪ B2| − z(C1, C2)

|A1 ∪ A2|.|B1 ∪ B2| (7)

5.4 Example

For example, let us consider the concept lattice example in Fig. 2, and let us
measure the similarity between the movies Batman and Jurassic Park. We see
that the lcs of these movies is the concept Thriller. We also can see that N1 = 2,
N2 = 1, and N0 = 2. Hence, Sp = 1

1+2+1 = 0.25, Sadj = 1+2
1+2+2+1 = 0.5, and

SWP = 2∗2
2∗2+2+1 = 0.57.

Let us look at our example, and measure the similarity between the movies
Batman and Jurassic Park. In this example, there are 7 movies: |G| = 7. The
lcs of those movies is the concept Thriller which contains 4 movies, hence:
P (Thriller) = 4

7 = 0.57. Then Resnik similarity is: SResnik = − logP (Thriller) =
0.56.

To find Lin similarity, we need also the probabilities of the compared con-
cepts: P (Batman) = 1

7 , and P (Jurassic Park) = 2
7 .

SLin =
2 ∗ logP (Thriller)

logP (Batman) + logP (Jurassic Park)
=

2 ∗ log 4
7

log 1
7 + log 2

7

= 0.35.

In our example, the concepts are: C1 = ({Batman}, {Crime, Action,
Thriller}), C2 = ({Jurassic Park, Independence Day}, {Action, Adventure,
Thriller, Sci-Fi}). Let w = 0.5, hence the weighted concept similarity is:
S0.5
Jac(C1, C2) = 0.2 and S0.5

Sor(C1, C2) = 0.29.
To calculate the zero induced index, we draw the sub-context induced by

the concepts C1 and C2, as shown in Table 3. The size of this sub-context is
3 × 5 = 15, and it introduces 4 zeros. Thus, Sz = 15−4

15 = 0.73

140 R. Ghawi and J. Pfeffer

Table 3. Sub-context induced by C1 and C2

Crime Action Adventure Thriller Sci-Fi

C1 Batman × × ×
C2 Jurassic Park × × × ×

Independence Day × × × ×

6 Conclusion

In this paper, we have proposed to use Formal Concept Analysis in order to
characterize movies and genres. We start be constructing a formal context, in
which movies are the objects and the genres are the attributes. Since the size of
the constructed formal context is large, we opt to clarify it, i.e., remove redundant
objects. Then, using the formal context, formal concepts have been identified and
organized in a concept lattice. A promising application of having a conceptual
structure of movies and genres is the ability to measure semantic genre-based
similarity among movies. We have presented several semantic similarity measures
that were proposed in the literature. Those measures can be used as alternatives
of traditional set-theory based measures (e.g., Jaccard) in many areas such as
content-based recommender systems. However, an open question remains about
the effectiveness of those measures and which one to choose. Answering this
question requires a comparative study in the context of recommender systems,
which will be the focus of our future work.

References

1. Alam, M., Buzmakov, A., Codocedo, V., Napoli, A.: Mining definitions from RDF
annotations using formal concept analysis. In: 24th International Joint Conference
on Artificial Intelligence, IJCAI, Buenos Aires, Argentina, pp. 823–829 (2015)

2. Alqadah, F., Bhatnagar, R.: Similarity measures in formal concept analysis. Ann.
Math. Artif. Intell. 61(3), 245–256 (2011)

3. Carpineto, C., Romano, G.: Using concept lattices for text retrieval and mining.
In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS
(LNAI), vol. 3626, pp. 161–179. Springer, Heidelberg (2005). https://doi.org/10.
1007/11528784 9

4. Ganter, B., Grigoriev, P.A., Kuznetsov, S.O., Samokhin, M.V.: Concept-based data
mining with scaled labeled graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S.
(eds.) ICCS-ConceptStruct 2004. LNCS (LNAI), vol. 3127, pp. 94–108. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27769-9 6

5. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999).
https://doi.org/10.1007/978-3-642-59830-2

6. Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM
Trans. Interact. Intell. Syst. 5(4), 19:1–19:19 (2015)

7. Hayward, S.: Cinema Studies: The Key Concepts. Routledge Key Guides, Taylor
& Francis (2006)

https://doi.org/10.1007/11528784_9
https://doi.org/10.1007/11528784_9
https://doi.org/10.1007/978-3-540-27769-9_6
https://doi.org/10.1007/978-3-642-59830-2

Characterizing Movie Genres Using Formal Concept Analysis 141

8. Hwang, T.G., Park, C.S., Hong, J.H., Kim, S.K.: An algorithm for movie classifica-
tion and recommendation using genre correlation. Multimedia Tools Appl. 75(20),
12843–12858 (2016)

9. Ignatov, D.I.: Introduction to formal concept analysis and its applications in infor-
mation retrieval and related fields. In: Braslavski, P., Karpov, N., Worring, M.,
Volkovich, Y., Ignatov, D.I. (eds.) RuSSIR 2014. CCIS, vol. 505, pp. 42–141.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25485-2 3

10. Kuznetsov, S.O.: Machine learning and formal concept analysis. In: Eklund, P.
(ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 287–312. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24651-0 25

11. Kuznetsov, S.O.: Fitting pattern structures to knowledge discovery in big data. In:
Cellier, P., Distel, F., Ganter, B. (eds.) ICFCA 2013. LNCS (LNAI), vol. 7880, pp.
254–266. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38317-
5 17

12. Lin, D.: An Information-Theoretic Definition of Similarity. In: In Proceedings of
the 15th International Conference on Machine Learning, pp. 296–304 (1998)

13. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a
metric on semantic nets. IEEE Trans. Syst. Man Cybern. 19(1), 17–30 (1989)

14. Resnik, P.: Using Information Content to Evaluate Semantic Similarity in a Tax-
onomy. In: Proceedings of the 14th International Joint Conference on Artificial
Intelligence, IJCAI 1995, vol. 1. pp. 448–453, San Francisco, CA, USA (1995)

15. Sologub, G.: On Measuring of similarity between tree nodes. In: Proceedings of
Young Scientists Conference in Information Retrieval, pp. 63–71 (2011)

16. Wu, Z., Palmer, M.: Verbs Semantics and lexical selection. In: Proceedings of the
32nd Annual Meeting on Association for Computational Linguistics, pp. 133–138.
ACL 1994, Association for Computational Linguistics, USA (1994)

https://doi.org/10.1007/978-3-319-25485-2_3
https://doi.org/10.1007/978-3-540-24651-0_25
https://doi.org/10.1007/978-3-642-38317-5_17
https://doi.org/10.1007/978-3-642-38317-5_17

Reasoning Models

Restricting the Maximum Number
of Actions for Decision Support

Under Uncertainty

Marcel Gehrke1 , Tanya Braun1(B) , and Simon Polovina2

1 Institute of Information Systems, University of Lübeck, Lübeck, Germany
{gehrke,braun}@ifis.uni-luebeck.de

2 Conceptual Structures Research Group, Sheffield Hallam University, Sheffield, UK
s.polovina@shu.ac.uk

Abstract. Standard approaches for decision support are computing a
maximum expected utility or solving a partially observable Markov deci-
sion process. To the best of our knowledge, in both approaches, external
restrictions are not accounted for. However, restrictions to actions often
exists, for example in the form of limited resources. We demonstrate that
restrictions to actions can lead to a combinatorial explosion if performed
on a ground level, making ground inference intractable. Therefore, we
extend a formalism that solves a lifted maximum expected utility prob-
lem to handle restricted actions. To test its relevance, we apply the new
formalism to enterprise architecture analysis.

1 Introduction

Supporting decision making often involves suggesting from a pool of actions the
action with the highest expected reward based on some reward function. Two
standard approaches are solving a maximum expected utility (MEU) problem in
a probabilistic model to find the action with the highest expected utility [19] or
solving a partially observable Markov decision process (POMDP) [2,4] yielding
a policy that maps belief states to actions. To the best of our knowledge, in both
approaches, external restrictions are not accounted for. However, resources are
not limitless, leading to restrictions on actions. Consider a small company with
five employees and ten tasks to be performed. If each employee can only perform
one task at a time, delegating all ten tasks is not possible. Hence, the number
of possible actions (delegating a task) actually is restricted to five.

That inference is intractable in general [5] becomes noticeable if modelling
all tasks and employees as propositional random variables (randvars) with the
number of tasks and employees reasonably high. Further, with each task an own
randvar, restricting the number of executable tasks is not straightforward. In a
lifted model with lifted computations, however, inference is at most polynomial
in domain sizes [20], leading to tractable inference for models with many tasks
and employees. Additionally, in lifted decision support, actions are executed for

c© Springer Nature Switzerland AG 2020
M. Alam et al. (Eds.): ICCS 2020, LNAI 12277, pp. 145–160, 2020.
https://doi.org/10.1007/978-3-030-57855-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57855-8_11&domain=pdf
http://orcid.org/0000-0001-9056-7673
http://orcid.org/0000-0003-0282-4284
http://orcid.org/0000-0003-2961-6207
https://doi.org/10.1007/978-3-030-57855-8_11

146 M. Gehrke et al.

sets of indistinguishable individuals. Therefore, in this paper, we investigate how
to restrict actions in lifted models to given numbers of individuals.

Specifically, we focus on solving MEU problems in parameterised probabilistic
decision models (PDecMs) to support online decision support in contrast to the
offline support provided by (relational) POMDPs. To this end, this paper con-
tributes (i) a restricted version of PDecMs, which allows for specifying resources,
overall as well as required per action, and restrictions on the number of times
an action is executable, and (ii) an algorithm called ReLiA for restricted lifted
assignments, which computes all possible lifted assignments in restricted PDecMs
by building on the Ford-Fulkerson algorithm for computing a maximum flow in
a network [8]. Given the assignments computed, one can solve the MEU problem
in the underlying model. Using ReLiA leads to significantly fewer assignments
to test for MEU in contrast to working with all permutations of assignments,
lifted or ground. The contributions are accompanied by an ongoing case study
to highlight an application. We end with an application of our formalism to
enterprise architecture (EA) analysis.

2 Case Study Setup

In this section, we show how to support decision making with PDecMs. Along the
way, we recapitulate parameterised probabilistic models (PMs), first introduced
by Poole [21], and PDecMs, based on [9]. The case study involves a simple case
of business process modelling with a pool of employees and a set of tasks, which
need delegating in a way that as many tasks as possible are delegated while
avoiding tasks being overdue. The following sections set up a fitting PDecM.

2.1 Parameterised Probabilistic Model

In PMs, parameterised randvars (PRVs) represent sets of indistinguishable rand-
vars, with logical variables (logvars) as parameters. For the case study, we model
tasks being done as a PRV using a randvar for done with a logvar for tasks. For
the sake of simplicity, all tasks are equally important, making them indistin-
guishable. After defining PMs, we set up PRVs for the case study.

Definition 1 (PRV, parfactor, PM). Let R be a set of randvar names, L
a set of logvar names, Φ a set of factor names, and D a set of constants. All
sets are finite. Each logvar L has a domain D(L) ⊆ D. A constraint is a tuple
(X , CX) of a sequence of logvars X = (X1, . . . , Xn) and a set CX ⊆ ×n

i=1D(Xi).
The symbol � for C marks that no restrictions apply, i.e., CX = ×n

i=1D(Xi). A
PRV R(L1, . . . , Ln), n ≥ 0 is a construct of a randvar R ∈ R possibly combined
with logvars L1, . . . , Ln ∈ L. If n = 0, the PRV is parameterless and forms a
propositional randvar. The term R(A) denotes the possible values (range) of a
PRV A. An event A = a denotes the occurrence of PRV A with range value
a ∈ R(A). We denote a parametric factor (parfactor) g by φ(A)|C with A =
(A1, . . . , An) a sequence of PRVs, φ : ×n

i=1R(Ai) �→ R
+ a function with name

φ ∈ Φ, and C a constraint on the logvars of A. A PRV A or logvar L under

Restricting Actions for Decision Support Under Uncertainty 147

constraint C is given by A|C or L|C , respectively. We may omit |� in A|�, L|�,
or φ(A)|�. A PM G is a set of parfactors {gi}ni=1.

The term rv(P) refers to the set of PRVs with their constraints in a parfactor
or PM, lv(P) to the logvars. The term gr(P) denotes the set of all instances
of P w.r.t. given constraints. An instance is an instantiation (grounding) of P ,
substituting the logvars in P with a set of constants from given constraints. If
P is a constraint, gr(P) refers to the second component CX. Given a parfactor
φ(A)|C , φ is identical for the propositional randvars in gr(A|C).

Given R = {Done,Overdue}, L = {X}, and D(X) = {x1, . . . , x100}, we
build boolean PRVs Done(X) and Overdue(X). With C = ((X), {(x1), (x2)}),
gr(Done(X)|C) = {Done(x1),Done(x2)}. The set of gr(Done(X)|�) also con-
tains the instances Done(x3) . . . Done(x100).

The semantics of a model is given by grounding and building a full joint
distribution. In general, a query asks for a probability distribution of a randvar
given the full joint of a model and fixed events as evidence. Answering a query
then requires eliminating all randvars in G not occurring in the query.

Definition 2 (Semantics, query). With Z as normalising constant, a model
G represents the full joint distribution PG = 1

Z

∏
f∈gr(G) f . The term P (Q|E)

denotes a query in G with Q a grounded PRV and E a set of events.

PMs allow for modelling relational aspects between objects including recur-
ring patterns in these relations. PDecMs build on PMs, also containing actions
and utilities to support decision making.

2.2 Parameterised Probabilistic Decision Model

For the case study, we need to encode in our model that overdue tasks lead to a
punishment, i.e., negative utility, and done tasks lead to a reward, i.e., positive
utility. To this end, we need to form a PDecM, which contains actions and utili-
ties [9]. Actions are modelled using PRVs with the actions in its range. Utilities
are modelled with PRVs as well, which are identical for groups of indistinguish-
able objects, leading to utility parfactors, defined as follows.

Definition 3 (PDecM). Let Φu be a set of utility factor names. A parfactor
with a utility PRV U as output is a utility parfactor μ(A)|C where C is a con-
straint on lv(A) and μ is given by μ : ×A∈A\{U}R(A) �→ R, with μ ∈ Φu. The
output of μ is the value of U . A PDecM G is a PM with an additional set Gu

of utility parfactors. The term rv(Gu) refers to all probability PRVs in Gu. Gu

represents the combination of all utilities UG =
∑

v∈×r∈rv(gr(Gu))R(r) PGu
(v).

The semantics already shows how lifting can speed up performance: The calcula-
tions for each f ∈ gr(gu), gu ∈ Gu are identical, allowing for rewriting summing
over all groundings f ∈ gr(gu) into a product of |gr(gu)| and gu.

For the case study, we introduce a boolean action PRV Delegate(X) to del-
egate tasks and a parameterless utility PRV Util to amass rewards and punish-
ments. Figure 1 shows the model with Delegate(X) and Util in grey next to regu-
lar PRVs Done(X) and Overdue(X). Further, a utility parfactor gu (crosses) and

148 M. Gehrke et al.

a regular parfactor g0 are depicted, which connect Done(X) and Overdue(X)
with Delegate(X) and Util, respectively. The potentials in gu encode that a
task done on time gets a high positive utility, an overdue task done gets a small
positive utility, an overdue task not done gets a high negative utility, and a task
that is not done but also not overdue gets a small negative utility.

Done(X)

Overdue(X)

g0
Delegate(X)

gu

Util

Fig. 1. Delegating tasks with action and utility nodes in grey

On such a PDecM, one can solve an MEU problem to determine the best
actions, i.e., how to delegate tasks (without any restrictions). To define the
MEU problem on a PDecM, we need to define expected utilities in a PDecM.
The MEU problem asks for those action assignments that lead to the maximum
expected utility, defined as follows.

Definition 4 (Expected utility, MEU). Given a PDecM G, events E,
action assignments a, the expected utility of G is defined by

eu(E,a) =
∑

v∈×r∈rv(G)R(r)

P (v|E,a) · U(v,E,a) (1)

with U(V) the utility of PRVs V. Then, the MEU problem is given by

meu[G|E] = (arg max
a

eu(E,a),max
a

eu(E,a)). (2)

The inner product in Eq. (1) calculates a belief state P (v|E,a) and combines
it with corresponding utilities U(v,E,a). By summing over the range of all PRVs
of G, one obtains a scalar representing an expected utility. Equation (2) suggests
a naive algorithm for solving an MEU problem, namely by iterating over all
possible action assignments, solving Eq. (1) for each assignment. However, with
lifting, the complexity of computing Eq. (2) is no longer exponential in the
number of ground actions, enabling tractable inference in terms of domain sizes
[20]. Instead of the domain sizes, the complexity is exponential in the number
of groups forming due to evidence, which is usually very much lower than the
number of constants in domains.

Assume that we observe whether a task is overdue. Observations are of the
range of Overdue(X) (boolean). Thus, X can be split into three groups, with
observed values of true, of false, or no observation. For each group individually,
Delegate(X) can be set to either true or false. Thus, there are 21 to 23 action
assignments depending on evidence.

Restricting Actions for Decision Support Under Uncertainty 149

In Fig. 1, simply delegating all tasks leads to the highest expected utility.
However, with limited resources or other more general restrictions, it might not
be possible to perform all actions. E.g., employees can only perform one task at
a time and there is not an unbounded number of employees. Such restrictions
currently are not captured in PDecMs.

3 ReLiA: Restricting Lifted Action Assignments

In our case study, we have a pool of employees that can perform tasks, which so
far have no effect on the model. Therefore, we introduce two types of restrictions.
The first type restricts how often an action can be performed, i.e., an action
can be performed at most five times. The second type restricts resources, e.g.,
an action can only be performed if sufficient resources are available. Within the
boundaries of restrictions, ReLiA constructs possible action assignments. Solving
the corresponding MEU problem only requires iterating over the assignments
computed by ReLiA, saving unnecessary computations. Algorithm 1 shows an
overview of the steps of ReLiA, which we present in the next sections.

3.1 Restricting Actions

To restrict actions, we need a way to specify resources required for an action and
how often an action is executable. We first introduce resources to the model.

Definition 5 (Resources). Let B be a set of resource names. Each resource
B has assigned a number of available resources v ∈ N, denoted by B = v.

To restrict actions, we introduce action parfactors. An action parfactor spec-
ifies resources required and restrictions on executions for one action PRV.

Definition 6 (Action parfactors). Let Θ be a set of action factor names.
We denote an action parfactor g by θ(A)|C with A an action PRV, θ : R(A) �→
((B,N),N) a function with name θ ∈ Θ and B ∈ B, and C a constraint on the
logvars of A. The first element of the tuple, (B,N), denotes how many resources
of B are required to set A to the corresponding range value for one grounding. The
second element of the tuple determines how often the corresponding range value
can be selected. The symbol ⊥ indicates that no restrictions apply. A restricted
PDecM G is a PDecM, which also contains a set of action parfactors Ga.

Algorithm 1. ReLiA: Construct Lifted Action Assignments under Restrictions
function ReLiA(Restricted model G)

Resource graph R ← ConstructResourceGraph(G)
Assignments A ← ObtainAssignments(R, |Ga|)
return A � Input to an algorithm solving an MEU problem

150 M. Gehrke et al.

Action parfactors are ignored during calculations for query answering since
they do not form a part of a full joint. Given B = {Employee}, we specify that
there are 15 employees by setting Employee = 15. Further, we specify an action
parfactor for our action PRV Delegate(X). We specify that setting the action
to true requires one employee with (Employee, 1) and that the action can be set
to true at most 20 times, i.e., true �→ ((Employee, 1), 20) Setting the action to
false does not require any resources and can be set to false as often as desired,
leading to ⊥ in both cases, i.e., false �→ (⊥,⊥).

With the pool of employees incorporated, our restricted PDecM fully rep-
resents our initial setting. But, we still need a way to efficiently identify valid
assignments to the action PRV, which we present next. Afterwards, we are able
to iterate over these assignments to solve the corresponding MEU problem.

3.2 Computing All Action Assignments Given Restrictions

Our case study has 15 employees and 100 tasks. Assume that 10 tasks are overdue
(evidence), which leads to splitting X into two groups, X ′ for the 90 tasks with-
out evidence and X ′′ for the overdue tasks. A valid action assignment would
be Delegate(X ′′) = true, requiring 10 employees, Delegate(X ′) = true for
5 X ′ instances (5 employees), and Delegate(X ′) = false for the remaining
85 instances. Another assignment is Delegate(X ′′) = false, Delegate(X ′) =
true for 15 X ′ instances, and Delegate(X ′) = false for the remaining 75
instances. The assignments Delegate(X ′′) = true, Delegate(X ′) = false as
well as Delegate(X ′′) = false, Delegate(X ′) = false do not use all resources
available.

To construct such action assignments, we reformulate our problem as a max-
flow problem [11] to benefit from the well-understood problem of computing a
maximum flow in a network with capacities. To formulate our problem as a max-
flow problem, we build a resource graph from our resource restrictions. Ford and
Fulkerson [8] propose a well-known algorithm to solve the max-flow problem.
However, we are not only interested in one set of paths that maximises the flow,
but all assignments that maximise the flow. Thus, we present how ReLiA builds
a resource graph and then identifies all flows.

Constructing a Resource Graph. The resource graph needs to account for
the number of groundings, restrictions of how often an action is applicable,
and resource restrictions. Algorithm 2 outlines how ReLiA constructs such a
resource graph R with a model G as input. G is a restricted PDecM, which has
its parfactors already split based on evidence. First, ReLiA adds a source node
S and a target node T to R. Second, ReLiA goes through all action parfactors ga
to span R. For an action parfactor ga, ReLiA adds a node tempi as a successor
to S to R. Then, ReLiA assigns the number of groundings of ga as capacity. By
definition, the set of PRVs of each action parfactor contains exactly one action
PRV. Next, ReLiA iterates over all range values of the action PRV A in ga to
account for the given restrictions specified in the action parfactor.

Restricting Actions for Decision Support Under Uncertainty 151

Algorithm 2. Constructing Resource Graph
function ConstructResourceGraph(Restricted model G)

Resource graph R with starting node S and target node T
for ga ∈ Ga of G do

Add node tempi and edge S −→ tempi to R
Assign |gr(ga)| as capacity to S −→ tempi

Action PRV A ← rv(ga)
for r ∈ R(A) do

if A = r not a node in R then
Add node A = r to R
Add node tempr and edge A = r −→ tempr to R
Get ((B, n), m) from θ(A = r)
Assign m as capacity to A = r −→ tempr

if B not a node in R then
Add node B and edge B −→ T to R
Assign v from resource restriction B = v as capacity to R

Add edge tempr −→ B to R
Assign capacity ∞ to tempr −→ B and n

Add edge tempi −→ A = r to R
Assign capacity ∞ to tempi −→ A = r

return R

S

temp0

temp1

Delegate(X) = true

Delegate(X) = false

tempD=true

tempD=false

Employee

⊥

T

10

90

∞

∞

∞
∞

∞

20 ∞, 1

∞

15

∞

Fig. 2. Resource graph for our example

For each range value r, ReLiA checks if a node A = r for the assignment
of action r to action PRV A is already included in R. This check is included
as evidence may split parfactors including action parfactors, leading to multiple
parfactors regarding different instances of the same action PRV and therefore,
A = r may already be in R. However, the restrictions defined in the action
parfactors still apply over all split action parfactors combined. If r is not included
in R, ReLiA ensures that the restrictions of r are represented in R. To this end,
ReLiA adds a node A = r to R. Further, ReLiA adds a node tempr to R to be
able to represent that a range value as well as a resource can be restricted while
accounting for the fact that a resource can be used in multiple actions.

For the resource restriction, ReLiA obtains the name of the resource, B, the
number of the resource used for executing that range value for one grounding,
n, and the restriction of how often r can be selected, m. Then, ReLiA adds
an edge from A = r to tempr to R and assigns m as capacity to the edge.

152 M. Gehrke et al.

Next, ReLiA checks if there already exists a node B corresponding to this
resource in R. In case there is no node B, ReLiA adds a node B to R as well as
an edge from B to T with the corresponding resource restriction v of the model,
B = v, as capacity. Having B in the model, ReLiA adds an edge between tempr

and B while storing how many resources selecting the range value requires, i.e.,
storing n. When calculating the maximum flow, ReLiA has to multiply all values
arriving at tempr with n to obtain the resources used at B from r. After ReLiA
has added the nodes and edges for the resource restrictions and resources, it
adds an edge between tempi and A = r to R without any capacity limitations
to connect this path to S over tempi. In the last step, after having iterated over
all resources, range values, and actions parfactors, ReLiA returns R.

Figure 2 shows the corresponding resource graph for our case study. We can
see that our tasks are split into 2 groups. The first group with 10 tasks that are
overdue corresponds to temp0 and the other group with 90 tasks, where we have
no additional information, corresponds to temp1. For both groups, we have the
very same action PRV, leading to both temp0 and temp1 being connected to the
same range values without any capacity restrictions. Overall, delegating a task
can be done at most 20 times as shown on the edge between Delegate(X) = true
and TempD=true. Further, delegating a task requires 1 employee, evident at the
edge between TempD=true and Employee. Additionally, there are 15 employees
as depicted on the edge between Employee and T . For not assigning a task, no
restrictions apply, which can be seen in the lower part of the network with the
paths going over Delegate(X) = false.

Based on such a graph, ReLiA computes all action assignments within the
boundaries of the restrictions, which is a max-flow problem on such a graph.

Calculating Assignments of Maximum Flow. To obtain all action assign-
ments that lead to the maximum flow in a given resource graph, ReLiA has to
iterate over all action PRVs and their corresponding range values. The rough idea
is that for each action parfactor, ReLiA has to select paths from source to target.
By combining all paths, ReLiA obtains valid action assignments. An assumption
we make for ReLiA is that each action PRV always has an unrestricted default
case. In the case study, the unrestricted default case in Delegate(X) = false,
which has no further restrictions as denoted by the ⊥ symbols.

Algorithm 3 outlines how ReLiA obtains assignments. Inputs are a resource
graph R of a model G and the number num of action parfactors in G, i.e.,
num = |Ga|. First, ReLiA fills a list n of nodes to traverse with all tempi nodes,
which correspond to action parfactors. Second, ReLiA calls a function named
compile with n and an empty list of paths, p, to compute assignments.

In compile, ReLiA gets the first node, currentNode, from n and computes
all possible paths from S to T over currentNode that assign an action to all
instances of the action parfactor behind currentNode. The paths are constructed
in a way that they always use as many instances as possible. For each path,
ReLiA also has to obtain assignments for all other action parfactors. Therefore,
ReLiA calls compile again with the current path(s) and the remaining nodes

Restricting Actions for Decision Support Under Uncertainty 153

Algorithm 3. Obtaining All Assignments
function ObtainAssignments(Resource graph R, number of action parf. num)

n empty list of nodes
p empty list of paths
i := 0
for i < num do

n = n + tempi

return compile(n,p)

function compile(Nodes to traverse n, current paths p)
currentNode := pop n
for each successor A = r of currentNode do

tempP := path from S over currentNode and r to T
p′ := tempP + p
if tempP uses all capacities of currentNode then

if n not empty then
return compile(n,p′)

else
a := get all capacities and their assignments from p′

return a
else

for each possible completion to use all capacities of currentNode do
p′ := p′+ completion path(s)
if n not empty then

return compile(n,p′)
else

a := get all capacities and their assignments from p′

return a

to traverse. Last, when ReLiA has no more nodes to traverse, it obtains the
assignments and the corresponding capacities by propagating the used capaci-
ties backwards from the target to the source. Overall, ReLiA roughly computes
maxnum action assignments, where max refers to the highest number of range
values in any of the action PRVs and num = |Ga| as above.

Let us explain Algorithm 3 in more detail by having a look at the resource
graph in Fig. 2. ReLiA starts by adding temp0 and temp1 to n. Then, ReLiA calls
the helper function compile with n and an empty list of paths p. In compile,
temp0 becomes currentNode. The capacity between S and temp0 is 10. As temp0

comes from the action parfactor with two values in the range of its action PRV,
temp0 has two assignments, Delegate(X) = true and Delegate(X) = false, as
successors. For the first assignment, Delegate(X) = true, ReLiA finds a path
from S over temp0 and Delegate(X) = true to T . Thus, the path is added to p′.
That path is able to let all 10 instances of the capacity flow to T . Then, ReLiA
again calls compile.

This time, n only contains temp1 and p′ contains one path. Now, temp1

becomes currentNode, which again has two assignments as successors, over

154 M. Gehrke et al.

which ReLiA iterates. For the first assignment, Delegate(X) = true, ReLiA
finds a path from S over temp1 and Delegate(X) = true to T . Thus, the path
is added to p′, leading to two paths being in p′. This newly added path does
not send all 90 instances, but only 5 since 5 is the remaining capacity on the
last edge going into T . The remaining 85 instances can be send from S over
temp1 and Delegate(X) = false to T , which then is added to p′. In case there
would be other paths to use all instances, ReLiA would have to iterate over
them. Having no more nodes to travers, ReLiA computes the assignment for the
paths in p′. Here, ReLiA outputs Delegate(X) = true for the 10 overdue tasks,
Delegate(X) = true for 5 tasks, where we have no additional information, and
Delegate(X) = false for the remaining 85 tasks.

We now jump back to the point where ReLiA iterates over all successors of
temp1 with p′ containing only the path from S over temp0 and Delegate(X) =
true to T sending 10 instances. The node temp1 has another assignment, namely
Delegate(X) = false, as successor and ReLiA finds a path from S over temp1

and Delegate(X) = false to T . Hence, that path is added to p′ in addition to
the one path from temp0 in p. That path uses all 90 instances, leading to an
assignment of Delegate(X) = true for the 10 overdue tasks and Delegate(X) =
false for 90 tasks, where we have no additional information.

ReLiA also traverses the path for Delegate(X) = false for temp0, for which
ReLiA again has to traverse all paths from temp1 as it is still contained in
n at this point. Finally, ReLiA returns four action assignments to test for
MEU. In addition to the two assignments above, the third assignment set reads
Delegate(X) = false for the 10 overdue tasks, Delegate(X) = true for 15
tasks, where we have no additional information, and Delegate(X) = false for
the remaining 75 tasks. The forth assignment set contains Delegate(X) = false
for the 10 overdue tasks and Delegate(X) = false for the 90 tasks, where we
have no additional information. Hence, ReLiA computes the desired four action
assignments with corresponding capacities that obey all restrictions.

Before we discuss theoretical aspects of ReLiA, we consider related work of
lifted inference and relational decision support.

3.3 Related Work

We take a look at inference under uncertainty in relational models as well as
relational decision support.

First-order probabilistic inference leverages relational aspects. For models
with known domain size, it exploits symmetries in a model by handling indistin-
guishable instances with representatives, known as lifting [21]. Poole [21] intro-
duces parametric factor graphs as relational models and proposes lifted variable
elimination (LVE) as an exact inference algorithm on relational models. Other
lifted inference algorithms include (i) the lifted junction tree algorithm (LJT)
[6], (ii) first-order knowledge compilation [7], (iii) probabilistic theorem proving
[10], and (iv) lifted belief propagation [1],

Nath and Domingos [16] introduce Markov logic decision networks (MLDNs),
which are relational models with action and utility nodes. Nath and Domingos

Restricting Actions for Decision Support Under Uncertainty 155

calculate approximate solutions to an MEU problem in a MLDN, grounding
the model [18]. Another approach of Nath and Domingos includes unnecessary
groundings [17]. Apsel and Brafman [3] propose an exact lifted solution to the
MEU problem based on [16]. Gehrke et al. [9] extend LJT to meuLJT to solve
MEU problems in PDecMs exactly while also supporting marginal queries.

Additional research focuses on sequential decision making by investigating
first-order (PO)MDPs [13,23,24], which use lifting techniques from de Salvo
Braz, Amir, and Roth [22]. In contrast to first-order POMDPs, which are solved
offline using policy iteration, we propose to support online decision making, i.e.,
by solving an MEU problem. In this paper, we introduce resources and enable
restriction actions to bring PDecMs closer to real-world applications.

3.4 Discussion

In this section, we discuss the assumption we make about restrictions as well as
how to compute an MEU with the possible actions.

Assumptions about Restrictions. An assumption we make is that each action
parfactor has a default action, which is unrestricted. The implication of the
assumption for ReLiA is that it has to iterate over all action parfactors one
time. In case such an assumption would not hold, the difference would be that
the order in which ReLiA iterates over the action parfactors could matter in
the sense that a different iteration order could lead to other assignments for
actions. Thus, without the assumption, ReLiA would need to iterate over each
permutation of action parfactors to calculate the action assignments.

Extending our Case Study. An interesting extension to our case study is to
introduce hard tasks as a new logvar name with a corresponding PRVs and
action parfactor. Assume that delegating a hard tasks requires two employees
for execution. Although our model then has two different action PRVs and the
two corresponding action parfactors require the same resource, ReLiA computes
valid assignments given the number of employees available. While constructing
the resource graph, ReLiA identifies that both action parfactors require the
same type of resource, even though they concern different action PRVs. Thus,
there only is one node for employees in the resource graph. While computing
the assignments, ReLiA ensures that the capacity gets multiplied with 2 when
taking the edge between the nodes tempDelegateHardTask(Y) and Employee in
the corresponding resource graph. Hence, the required resources to perform an
action are accounted for. Similar to our case study so far, with splits due to
evidence, both action parfactors pointing to the same resource poses no problem
to ReLiA.

To complete our case study, we briefly describe how to obtain the best action
for the action assignments next.

Computing an MEU. Having the action assignments, any algorithm solving the
lifted MEU problem, e.g., [3,9], can calculate best actions leading to the high-
est expected utility. The action assignments ReLiA computes are the actions

156 M. Gehrke et al.

to iterate over in Eq. (2). Thus, an algorithm solving the MEU problem does
not have to generate (all) action assignments anymore. However, normally in a
lifted MEU, a range value of an action is selected for each group of indistin-
guishable instances. The action assignments of ReLiA do not necessarily assign
the same range value for all indistinguishable instances of a group as a result
of the restrictions. In our case study, one assignment is Delegate(X) = false
for the 10 overdue tasks, Delegate(X) = true for 15 tasks, where we have no
additional information, and Delegate(X) = false for the remaining 75 tasks.
Thus, the tasks, for which we have no additional information, need to be split
even further. As all instances are indistinguishable, it does not matter which
instances are split off. Thus, an algorithm solving the MEU problem using the
action assignments of ReLiA might need to split logvars before it can calculate
the corresponding expected utility.

3.5 Theoretical Analysis

Let us now investigate the theoretical implications of ReLiA. Here, we focus on
two points, namely whether always using the maximum capacity for paths to
obtain assignments is reasonable as well as how ReLiA compares to calculating
action assignments in a similar fashion for a ground model.

Fewest Possible Action Sets. ReLiA only obtains assignments with the highest
possible capacity given the restrictions, e.g., Delegate(X) = true for the 10
overdue tasks. In theory, ReLiA could also compute all other assignments, e.g.,
Delegate(X) = true for 9 overdue tasks and Delegate(X) = false for the one
remaining overdue task, Delegate(X) = true for 8 and Delegate(X) = false for
2, and so on. The reason why ReLiA only obtains assignments with the highest
capacity and not also all other possible assignment lies within the semantics
of PDecMs. Computing an expected utility involves adding up all utilities at
the end. Assuming that the two action range values map to different potentials
and keeping in mind that the instances within a group are indistinguishable,
one of the range values leads to a higher expected utility than the other, which
is true for all instances of that group. Thus, we only need to check assigning
all instances either the one value or the other. As a consequence, ReLiA only
has to obtain assignments with the highest possible capacity. Preferably, ReLiA
assigns all instances the same action but with restrictions, groups may be split
further to stay within the boundaries of the restrictions. Hence, by only obtaining
assignments with the highest capacity, ReLiA provides reasonable assignments
and highly reduces the number of action assignments to reason over.

Comparison to the Ground Case. While computing action assignments, ReLiA
uses the fact that instances are indistinguishable. Calculating such action assign-
ments on a ground model, a corresponding algorithm could not exploit this fact.
Without indistinguishable instances, such an algorithm would have to model
actions for each instance. Each instance would be connected to the source with an
edge having a capacity of 1. ReLiA iterates over all of these nodes and then their

Restricting Actions for Decision Support Under Uncertainty 157

range values. As mentioned above, ReLiA roughly computes maxnum, where
num is the number of action parfactors after splitting. In a ground case the
number of assignments would be maxnum, where num is the number of ground-
ings of action parfactors, which can be a huge number. In our example num
would be 100, so even for boolean range values a ground algorithm would have
to compute roughly 2100 action assignments. Hence, there is a combinatorial
blow up as all permutations of actions would need to be tested. Further, while
solving an MEU problem, there are many redundant calculations, which is infea-
sible for large enough numbers. Therefore, restricting resources and actions in a
lifted case allows for a practical formalism.

4 Case Study: Enterprise Architecture Analysis

Johnson et al. [12] present an Enterprise Architecture (EA) analysis, extending
propositional influence diagrams, which essentially are Bayesian networks with
utility and action or decision nodes added. They do not consider the relational
aspect, which blows up a propositional model if many components, processes, or
employees are involved. Therefore, we can review EA analysis using PDecMs and
consider what role ReLiA can play in this analysis. We take the case study in [12]
and adapt it to the relational setting, which enables us to consider employees
and work stations.

IDLic(S) AV Lic(S) CCLic(S) Format Act(S, E) Servers

θ1 θ2 θ3 θ4

Licenses CapForm ITSize CapServ

φ1 φ2 φ3 φ4 φ5 φ6

ID(S) AV (S) CC(S) UT (E) IM(S,E) BU(S)

φi φc φa

Integrity Confidentiality Availablility

φca φeff

CompAdv Efficiency

μ

Profit

Fig. 3. A PDecM about IT security components (resources are represented as nodes
without a border)

Figure 3 shows a PDecM for an EA scenario regarding IT security for a
company where a decision maker has to set up an architecture for its IT security

158 M. Gehrke et al.

system. The model considers the following components of IT security as randvars:
(i) intrusion detection applications (ID), (ii) anti-virus applications (AV), (iii)
cryptographic control applications (CC), (iv) user training processes (UT), (v)
incident management processes (IM), and (vi) back-up processes (BU). The
randvars are parameterised with S for work stations and E for employees where
appropriate. Regarding the applications, there are decisions to be made about the
number of licenses to purchase, which may be limited. Regarding user training,
the format of the training sessions is to be considered in terms of cost and
number of people that can be trained at once. Regarding incident management,
the number of people trained to handle incidents is limited. Regarding back-
ups, the capacity of servers is limited. Overall, these components influence the
integrity, confidentiality, and availability of a company, which in turn influence
the competitive advantage as well as the efficiency emerging out of the decisions,
which then influences the profit the company might make.

Given different scenarios for capacities, ReLiA computes the action assign-
ments to consider for each scenario. Using these assignment sets, meuLJT solves
the corresponding MEU problems for each scenario, yielding one MEU assign-
ment set for each scenario. The decision maker then can compare the results and
incorporate further external factors in their final decision.

5 Conclusion

We introduce restrictions to PDecMs as a representation for models to support
decision making. Restrictions are crucial as not every action can be performed
as often as desired as well as resources are not limitless. We presnt ReLiA to
compute all possible lifted assignments in restricted PDecMs. ReLiA computes
all required action assignments, which an algorithm that solves the MEU problem
in a lifted way can iterate over to identify best actions given restrictions. Further,
ReLiA significantly reduces the assignment space to iterate over, making explicit
that calculating assignments under restrictions is only feasible in lifted models.

Future work includes investigating whether actions can be learnt online, as
for example Morgenstern does for agents using a specific logic [15]. Another
interesting path would be to look into the situation calculus [14] and investigate
whether additional restrictions can be included for decision support without
adding another layer of logic on top. Additionally, we look into applying the
presented theory to business process modelling. Johnson et al. [12] enabled us to
show the usefulness of the theory in EA analysis for extended influence diagrams,
going beyond propositional probabilistic models. With many instances, a lifted
approach such as the presented one appears to be indispensable.

References

1. Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting symmetries
for scaling loopy belief propagation and relational training. Mach. Learn. 92(1),
91–132 (2013)

Restricting Actions for Decision Support Under Uncertainty 159

2. Aoki, M.: Optimal control of partially observable Markovian systems. J. Franklin
Inst. 280(5), 367–386 (1965)

3. Apsel, U., Brafman, R.I.: Extended lifted inference with joint formulas. In: Pro-
ceedings of the 27th Conference on Uncertainty in Artificial Intelligence, pp. 11–18.
AUAI Press (2011)

4. Åström, K.J.: Optimal control of Markov processes with incomplete state informa-
tion. J. Math. Anal. Appl. 10(1), 174–205 (1965)

5. Boyen, X., Koller, D.: Tractable inference for complex stochastic processes. In:
Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence.
pp. 33–42. Morgan Kaufmann Publishers Inc. (1998)

6. Braun, T., Möller, R.: Lifted iunction tree algorithm. In: Friedrich, G., Helmert,
M., Wotawa, F. (eds.) KI 2016. LNCS (LNAI), vol. 9904, pp. 30–42. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46073-4 3

7. Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted prob-
abilistic inference by first-order knowledge compilation. In: IJCAI11 Proceedings
of the Twenty-Second International Joint Conference on Artificial Intelligence, pp.
2178–2185. AAAI Press/International Joint Conferences on Artificial Intelligence
(2011)

8. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8,
399–404 (1956)

9. Gehrke, M., Braun, T., Möller, R., Waschkau, A., Strumann, C., Steinhäuser, J.:
Lifted maximum expected utility. In: Koch, F., et al. (eds.) AIH 2018. LNCS
(LNAI), vol. 11326, pp. 131–141. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-12738-1 10

10. Gogate, V., Domingos, P.M.: Probabilistic Theorem Proving. In: UAI 2011, Pro-
ceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelli-
gence, Barcelona, Spain, 14–17 July 2011, pp. 256–265. AUAI Press (2011)

11. Harris, T., Ross, F.: Fundamentals of a method for evaluating rail net capacities.
Technical report, Rand Corp, Santa Monica, CA (1955)

12. Johnson, P., Lagerström, R., Närman, P., Simonsson, M.: Enterprise architecture
analysis with extended influence diagrams. Inf. Syst. Front. 9, 163–180 (2007)

13. Joshi, S., Kersting, K., Khardon, R.: Generalized first order decision diagrams
for first order markov decision processes. In: IJCAI09 Proceedings of the 21st
International Joint Conference on Artifical Intelligence, pp. 1916–1921. Morgan
Kaufmann Publishers Inc. (2009)

14. McCarthy, J.: Situations, actions, and causal laws. Stanford Univ CA Dept of
Computer Science, Technical report (1963)

15. Morgenstern, L.: Knowledge preconditions for actions and plans. In: Readings in
Distributed Artificial Intelligence, pp. 192–199. Elsevier (1988)

16. Nath, A., Domingos, P.: A language for relational decision theory. In: International
Workshop on Statistical Relational Learning (2009)

17. Nath, A., Domingos, P.: Efficient lifting for online probabilistic inference. In: Pro-
ceedings of the 6th AAAI Conference on Statistical Relational Artificial Intelli-
gence, AAAIWS 2010-06, pp. 1193–1198. AAAI Press (2010)

18. Nath, A., Domingos, P.M.: Efficient belief propagation for utility maximization and
repeated inference. In: AAAI10 Proceedings of the Twenty-Fourth AAAI Confer-
ence on Artificial Intelligence, pp. 1187–1192. AAAI Press (2010)

19. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behaviour.
Princeton University Press, Princeton (1944)

https://doi.org/10.1007/978-3-319-46073-4_3
https://doi.org/10.1007/978-3-030-12738-1_10
https://doi.org/10.1007/978-3-030-12738-1_10

160 M. Gehrke et al.

20. Niepert, M., Van den Broeck, G.: Tractability through exchangeability: a new per-
spective on efficient probabilistic inference. In: AAAI14 Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, pp. 2467–2475. AAAI Press
(2014)

21. Poole, D.: First-order probabilistic inference. In: IJCAI03 Proceedings of the 18th
International Joint Conference on Artificial Intelligence, pp. 985–991. Morgan
Kaufmann Publishers Inc. (2003)

22. de Salvo Braz, R., Amir, E., Roth, D.: MPE and partial inversion in lifted proba-
bilistic variable elimination. In: AAAI, pp. 1123–1130. AAAI Press (2006)

23. Sanner, S., Boutilier, C.: Approximate solution techniques for factored first-order
MDPs. In: 17th International Conference on Automated Planning and Scheduling,
pp. 288–295. AAAI Press (2007)

24. Sanner, S., Kersting, K.: Symbolic dynamic programming for first-order POMDPs.
In: AAAI10 Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intel-
ligence, pp. 1140–1146. AAAI Press (2010)

Vocabulary-Based Method for
Quantifying Controversy in Social Media

Juan Manuel Ortiz de Zarate1,2(B) and Esteban Feuerstein1,2,3(B)

1 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina

{jmoz,efeuerst}@dc.uba.ar
2 Instituto de Ciencias de la Computación, Buenos Aires, Argentina

3 Fundación Sadosky, Buenos Aires, Argentina

Abstract. Identifying controversial topics is not only interesting from
a social point of view, it also enables the application of methods to
avoid the information segregation, creating better discussion contexts
and reaching agreements in the best cases. In this paper we develop a sys-
tematic method for controversy detection based primarily on the jargon
used by the communities in social media. Our method dispenses with the
use of domain-specific knowledge, is language-agnostic, efficient and easy
to apply. We perform an extensive set of experiments across many lan-
guages, regions and contexts, taking controversial and non-controversial
topics. We find that our vocabulary-based measure performs better than
state of the art measures that are based only on the community graph
structure. Moreover, we shows that it is possible to detect polarization
through text analysis.

1 Introduction

Controversy is a phenomenon with a high impact at various levels. It has been
broadly studied from the perspective of different disciplines, ranging from the
seminal analysis of the conflicts within the members of a karate club [45] to
political issues in modern times [9,30]. The irruption of digital social networks
[14] gave raise to new ways of intentionally intervening on them for taking some
advantage [7,38]. Moreover highly contrasting points of view in some groups
tend to provoke conflicts that lead to attacks from one community to the other
by harassing, “brigading”, or “trolling” it [25]. The existing literature shows dif-
ferent issues that controversy brings up such as splitting of communities, biased
information, hateful discussions and attacks between groups, generally proposing
ways to solve them. For example, Kumar, Srijan, et al. [25] analyze many tech-
niques to defend us from attacks in Reddit1 while Stewart, et al. [38] insinuate
that there was external interference in Twitter during the 2016 US presidential
elections to benefit one candidate.

1 https://www.reddit.com/.

c© Springer Nature Switzerland AG 2020
M. Alam et al. (Eds.): ICCS 2020, LNAI 12277, pp. 161–176, 2020.
https://doi.org/10.1007/978-3-030-57855-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57855-8_12&domain=pdf
http://orcid.org/0000-0002-0291-1997
http://orcid.org/0000-0003-2985-810X
https://www.reddit.com/
https://doi.org/10.1007/978-3-030-57855-8_12

162 J. M. O. de Zarate and E. Feuerstein

Also, as shown in [24], detecting controversy could provide the basis to
improve the “news diet” of readers, offering the possibility to connect users
with different points of views by recommending them new content to read [31].

Other studies on “bridging echo chambers” [16] and the positive effects of
inter-group dialogue [2,33] suggest that direct engagement could be effective
for mitigating such conflicts. Moreover, a recent work [8] have found that small
changes on social networks made by an administrator could have a big impact on
the polarization of the discussion. Therefore, easily and automatically identifying
controversial topics could allow us to quickly implement different strategies for
preventing miss-information, fights and bias. Quantifying the controversy is even
more powerful, as it allows us to establish controversy levels, and in particular
to classify controversial and non-controversial topics by establishing a thresh-
old score that separates the two types of topics. With this aim, we propose in
this work a systematic, language-agnostic method to quantify controversy on
social networks taking tweet’s content as root input. Our main contribution is
a new vocabulary-based method that works in any language and equates the
performance of state-of-the-art structure-based methods. Besides, controversy
quantification through vocabulary analysis opens several research avenues to
analyze whether polarization is being created, maintained or augmented by the
ways of talking of each community.

Having this in mind, and if we draw from the premise that when a discussion
has a high controversy it is in general due to the presence of two principal
communities fighting each other (or, conversely, that when there is no controversy
there is just one principal community the members of which share a common
point of view), we can measure the controversy by detecting if the discussion has
one or two principal jargon in use. Our method is tested on Twitter datasets.
This micro-blogging platform has been widely used to analyze discussions and
polarization [30,35,40,42,44]. It is a natural choice for these kind of problems,
as it represents one of the main fora for public debate in online social media [42],
it is a common destination for affiliative expressions [20] and is often used to
report and read news about current events [37]. An extra advantage of Twitter
for this kind of studies is the availability of real-time data generated by millions of
users. Other social media platforms offer similar data-sharing services, but few
can match the amount of data and the accompanied documentation provided
by Twitter. One last asset of Twitter for our work is given by retweets, whom
typically indicate endorsement [4] and hence become a useful concept to model
discussions as we can set “who is with who”. However, our method has a general
approach and it could be used a priori in any social network. In this work we
report excellent results tested on Twitter but in future work we plan to test the
method in other social networks.

Our paper is organized as follows. In Sect. 2, we review related work. Section 3
contains the detailed explanation of the pipeline we use for quantifying contro-
versy of a topic, and each of its stages. In Sect. 4 we report the results of an
extensive empirical evaluation of the proposed measure of controversy. Finally,

Vocabulary-Based Method for Quantifying Controversy in Social Media 163

Sect. 5 is devoted to discuss possible improvements and directions for future
work, as well as lessons learned.

2 Related Work

Many previous works are dedicated to quantifying the polarization observed in
online social networks and social media [1,3,9,10,18,19]. The main character-
istic of those works is that the measures proposed are based on the structural
characteristics of the underlying graph. Among them, we highlight the work of
Garimella et al. [18] that presents an extensive comparison of controversy mea-
sures, different graph-building approaches, and data sources, achieving the best
performance of all.

In their research they propose different metrics to measure polarization on
Twitter. Their techniques based on the structure of the endorsement graph can
successfully detect whether a discussion (represented by a set of tweets), is con-
troversial or not regardless of the context and most importantly, without the
need of any domain expertise. [18] also considers two different methods to mea-
sure controversy based on the analysis of the posts contents, but both fail when
used to create a measure of controversy.

Matakos et al. [29] develop a polarization index. Their measure captures
the tendency of opinions to concentrate in network communities, creating echo-
chambers. They obtain a good performance at identifying controversy by taking
into account both the network structure and the existing opinions of users. With
this aim, they model opinions as positive or negative with a real number between
−1 and 1. Their performance is good but, although their method is opinion-
based, it is not a text-related one. Other recent works [27,36,39] have shown that
communities may express themselves with different terms or ways of speaking,
or use different jargon, something that in turn can be detected with the use of
text-related techniques.

In his thesis [22], Jang explains controversy via generating a summary of two
conflicting stances that conform the controversy. This work shows that a sub-set
of tweets could represent the two opposite positions in a polarized debate.

A good tool to see how communities interact is ForceAtlas2 [21], a force-
directed layout widely used for visualization. This layout has been recently found
to be very useful at visualizing community interactions [41], as this algorithm
will draw groups with little communication between their members in different
areas, whereas, if they have many interactions they will be drawn closer to each
other. Therefore, whenever there is controversy the layout will show two well
separated groups and will tend to show only one big community otherwise.

The method we propose to measure the controversy equates in accuracy the
one developed by Garimella et al.[18] and improves considerably computing time
and robustness with respect to the amount of data needed to effectively apply
it. Our method is also a graph-based approach but it has its main focus on the
vocabulary. We first train an NLP classifier that estimates opinion polarity of
the main users, then we run label-propagation [46] on the endorsement graph to
get the polarity of the whole network.

164 J. M. O. de Zarate and E. Feuerstein

Finally, we establish the controversy score through a computation inspired
in Dipole Moment, a measure used in physics to estimate electric polarity on a
system.

In our experiments we use the same data-sets from other works [11,17,18] as
well as other datasets that we collected by us using a similar criterion (described
in Sect. 4).

3 Method

Our approach to measuring controversy is based on a systematic way of charac-
terizing social media activity through content. We employ a pipeline with five
stages, namely graph building, community identification, model training, predict-
ing and controversy measure. The final output of the pipeline is a value that
measures how controversial a topic is, with higher values corresponding to higher
degrees of controversy. The method is based on analyzing posts content through
Fasttext [23], a library for efficient learning of word representations and sen-
tence classification developed by Facebook Research team. In short, our method
works as follows: through Fasttext we train a language-agnostic model which
can predict the community to which the users belong by their jargon. Then we
take their predictions and compute a score based on the physic notion Dipole
Moment2 using a language approach to identify core or characteristic users and
set the polarity through them. We provide a detailed description of each stage
in the following.

3.1 Graph Building

This paragraph provides details about the approach used to build graphs from
raw data. As we said in Sect. 1, we extract our discussions from Twitter. Our
purpose is to build a conversation graph that represents activity related to a
single topic of discussion -a debate about a specific event.

For each topic, we build a graph G where we assign a vertex to each user who
contributes to it and we add a directed edge from node u to node v whenever user
u retweets a tweet posted by v. Retweets typically indicate endorsement [4]: users
who retweet signal endorsement of the opinion expressed in the original tweet
by propagating it further. Retweets are not constrained to occur only between
users who are connected in Twitter’s social network, but users are allowed to
retweet posts generated by any other user. As many other works in literature
[5,7,15,26,30,38] we establish that one retweet among a pair of users is needed
to define an edge between them.

2 In physics, the electric dipole moment is a measure of the separation of positive and
negative electrical charges within a system, that is, a measure of the system’s overall
polarity.

Vocabulary-Based Method for Quantifying Controversy in Social Media 165

3.2 Community Identification

To identify a community’s jargon we need to be very accurate at defining its
members. If we, in our will of finding two principal communities, force the par-
tition of the graph in that precise number of communities, we may be adding
noise in the jargon of the principal communities that are fighting each other.
Because of that, we cluster the graph using two popular algorithms: Walktrap
[34] and Louvain [6]. Both are structure-based algorithms that have very good
performance with respect to the Modularity Q measure3. These techniques do
not detect a fixed number of clusters; their output depends on the Modular-
ity Q optimization, resulting in less “noisy” communities. The main differences
between the two methods, in what regards our work, are that Louvain is a
much faster heuristic algorithm but produces clusters with worse Modularity Q.
Therefore, in order to analyze the trade-off between computing time and quality
we decide to test both methods. At this step we want to capture the tweets
of the principal communities to create the model that could differentiate them.
Therefore, we take the two communities identified by the cluster algorithm that
have the maximum number of users, and use them for the following step of our
method.

3.3 Model Training

After detecting the principal communities we create our training dataset to feed
the model. To do that, we extract the tweets of each cluster, we sanitize them and
we subject them to some transformations. First, we remove duplicate tweets -e.g.
retweets without additional text. Second, we remove from the text user names,
links, punctuation, tabs, leading and lagging blanks, general spaces and “RT” -
the text that points that a tweet is in fact a retweet.

As shown in previous works, emojis4 are correlated with sentiment [32]. More-
over, as we think that communities will express different sentiment during dis-
cussion, it is foreseeable that emojis will play an important role as separators of
tweets that differentiate between the two sides. Accordingly, we decide to add
them to the train-set by translating each emoji into a different word. For exam-
ple, the emoji :) will be translated into happy and :(into sad. Relations between
emojis and words are defined in the R library textclean5.

Finally, we group tweets by user concatenating them in one string and
labelling them with the user’s community, namely with tags C1 and C2, corre-
sponding to the biggest and second biggest groups respectively. It is important
to note that we take the same number of users of each community to prevent
bias in the model. Thus, we use the number of users of the smallest principal
community.

3 Q(G)=
∑

C∈G(ec − ac), where G is the graph, C each of its communities, ec the
fraction of internal edges and ac the fraction of edges in the border.

4 https://emojipedia.org/twitter/.
5 https://cran.r-project.org/web/packages/textclean/textclean.pdf.

https://emojipedia.org/twitter/
https://cran.r-project.org/web/packages/textclean/textclean.pdf

166 J. M. O. de Zarate and E. Feuerstein

The train-set built that way is used to feed the model. As we said, we use
Fasttext [23] for this training. To define the values of the hyper-parameters we
use the findings of [43], where the best hyper-parameters to train word embed-
ding models using Fasttext and Twitter data are found. We also change the
default value of the hyper-parameter epoch to 20 instead of 5 because we want
more convergence preventing as much as possible the variance between different
training. These values could change in other contexts or social networks where
we have more text per user or different discussion dynamics.

3.4 Predicting

The next stage consists of identifying the characteristic users of each side of the
discussion. These are the users that better represent the jargon of each side. To
do that, tweets of the users belonging to the largest connected component of the
graph are sanitized and transformed exactly as in the Training step.

We decide to restrict to the largest connected component because in all cases
it contains more than 90% of the nodes. The remaining 10% of the users don’t
participate in the discussion from a collective point of view but rather in an
isolated way and this kind of intervention does not add interesting information
to our approach. Then, we remove from this component users with degree smaller
or equal to 2 (i.e. users that were retweeted by another user or retweeted other
person less than three times in total). Their participation in the discussion is
marginal, consequently they are not relevant wrt controversy as they add more
noise than information at measuring time. This step could be adjusted differently
in a different social network. We name this result component root-graph.

Finally, we classify the users. Considering that Fasttext returns for each
classification both the predicted tag and the probability of the prediction, we
classify each user of the resulting component by his sanitized tweets with our
trained model, and take users that were tagged with a probability greater or
equal than 0.9. These are the characteristic users that will be used in next step
to compute the controversy measure.

3.5 Controversy Measure

This section describes the controversy measures used in this work. This compu-
tation is inspired in the measure presented by Morales et al. [30], and is based
on the notion of dipole moment that has its origin in physics.

First, we assign to the characteristic users the probability returned by the
model, negativizing the value if the predicted tag was C2. Therefore, these users
are assigned values in the set [−1,−0.9] ∪ [0.9,1]. Then, we set values for the rest
of the users of the root-graph by label-propagation [46] - an iterative algorithm
to propagate values through a graph by node’s neighbourhood.

Let n+ and n− be the number of vertices with positive and negative values

respectively, V be the total number of vertices , and ΔA =
| n+ − n− |

| V | the

absolute difference of their normalized size. Moreover, let gc+ (resp. gc−) be

Vocabulary-Based Method for Quantifying Controversy in Social Media 167

the average value among vertices n+ (resp. n−) and set τ as half their absolute

difference, τ =
| gc+ − gc− |

2
. The dipole moment content controversy measure

is defined as: DMC = (1 − ΔA)τ .
The rationale for this measure is that if the two sides are well separated,

then label propagation will assign different extreme values to the two partitions,
where users from one community will have values near to 1 and users from the
other to −1, leading to higher values of the DMC measure. Note also that larger
differences in the size of the two partitions (reflected in the value of ΔA) lead
to smaller values for the measure, which takes values between zero and one.

4 Experiments

We run the above method over different discussions, with the following results.

4.1 Topic Definition

In the literature, a topic is often defined by a single hashtag. However, this might
be too restrictive in many cases. Sometimes a discussion in a particular moment
could not have a defined hashtag but it could be around a certain keyword, i.e.
a word or expression that is not specifically a hashtag but it is widely used
in the topic. For example during the Brazilian presidential elections in 2018
we captured the discussion by the mentions to the word Bolsonaro, that is the
principal candidate’s surname. In our approach, a topic is operationalized as a
specific hashtag or key word. Thus, for each topic we retrieve all the tweets that
contain one of its hashtags or the keyword and that are generated during the
observation window. We also ensure that the selected topic is associated with a
large enough volume of activity.

4.2 Datasets

In this section we detail the discussions we use to test our metric and how
we determine the ground truth (i.e. whether the discussion is controversial or
not). We use thirty different discussions that took place between March 2015
and June 2019, half of them with controversy and half without it. We considered
discussions in four different languages: English, Portuguese, Spanish and French,
occurring in five regions over the world: South and North America, Western
Europe, Central and Southern Asia. We also studied these discussions taking
first 140 characters and then 280 from each tweet to analyze the difference in
performance and computing time wrt the length of the posts.

To define the amount of data needed to run our method we established that
the Fasttext model has to predict at least one user of each community with a
probability greater or equal than 0.9 during ten different trainings. If that is not
the case, we are not able to use DMC method. This decision made us consider
only a subset of the datasets used in [18], because due to the time elapsed since

168 J. M. O. de Zarate and E. Feuerstein

their work, many tweets had been deleted and consequently the volume of the
data was not enough for our framework. To enlarge our experiment base we
added new debates, more detailed information about each one is available in
the code repository6. To select new discussions and to determine if they are
controversial or not we looked for topics widely covered by mainstream media,
and that have generated ample discussion, both online and offline. For non-
controversy discussions we focused on “soft news” and entertainment, but also
on events that, while being impactful and/or dramatic, did not generate large
controversies. To validate that intuition, we manually checked a sample of tweets,
being unable to identify any clear instance of controversy. On the other side, for
controversial debates we focused on political events such as elections, corruption
cases or justice decisions.

To furtherly establish the presence or absence of controversy in our datasets,
we visualized the corresponding networks through ForceAtlas2 [21]. Figure 1a
and b show an example of how non-controversial and controversial discussions
look like respectively with ForceAtlas2 layout. As we can see in these figures, in
a controversial discussion this layout tends to show two well separated groups
while in a non-controversial one it tends to be only one big group.

To avoid potential overfitting, we use only twelve graphs as testbed during
the development of the measures, half of them controversial (netanyahu, ukraine,
@mauriciomacri 1–11 Jan, Kavanaugh 3 Oct, @mauriciomacri 11–18 Mar, Bol-
sonaro 27 Oct) and half non-controversial (sxsw, germanwings, onedirection,
ultralive, nepal, mothersday). This procedure resembles a 40/60% train/test split
in traditional machine learning applications.

Some of the discussions we consider refer to the same topics but in different
periods of time. We needed to split them because our computing infrastructure
does not allow us to compute such an enormous amount of data. However, being
able to estimate controversy with only a subset of the discussion is an advantage,
because discussions could take many days or months and we want to identify
controversy as soon as possible, without the need of downloading the whole dis-
cussion. Moreover, for very long lasting discussions in social networks gathering
the whole data would be impractical for any method.

4.3 Results

Training a Fasttext model is not a deterministic process, as different runs could
yield different results even using the same training set in each one. To analyze
if these differences are significant, we decided to compute 20 scores for each
discussion. The standard deviations among these 20 scores were low in all cases,
with mean 0.01 and maximum 0.05. Consequently, we decided to report in this
paper the average between the 20 scores, in practice taking the average between
5 runs would be enough. Figure 2 reports the scores computed by our measure
in each topic for the two clustering methods. The beanplot shows the estimated

6 Code and networks used in this work are available here: http://github.com/jmanuoz/
Vocabulary-based-Method-for-Quantify-Controversy.

http://github.com/jmanuoz/Vocabulary-based-Method-for-Quantify-Controversy
http://github.com/jmanuoz/Vocabulary-based-Method-for-Quantify-Controversy

Vocabulary-Based Method for Quantifying Controversy in Social Media 169

(a) ForceAtlas2 layout over the root
graph of Halsey discussion

(b) ForceAtlas2 layout over the root
graph of Kavanaugh discussion

Fig. 1. ForceAtlas2 layout over controversial and no-controversial discussions

probability density function for a measure computed on the topics, the individual
observations are shown as small white lines in a one-dimensional scatter plot, and
the median as a longer black line. The beanplot is divided into two groups, one for
controversial topics (left/dark) and one for non-controversial ones (right/light).
Hence, the black group shows the score distribution over controversial discussions
and the white group over non-controversial ones. A larger separation of the two
distributions indicates that the measure is better at capturing the characteristics
of controversial topics, because a good separation allows to establish a threshold
in the score that separates controversial and non-controversial discussions.

0.
0

0.
2

0.
4

0.
6

controversy+no controversy

Dipole Moment Content

S
co

re

Controversy
No Controversy

Fig. 2. Average controversy scores over 20 runs on datasets with 280 characters

170 J. M. O. de Zarate and E. Feuerstein

Fig. 3. Average controversy scores over 20 runs on datasets of 140 character per tweet

As we may see in the figure, the medians are well separated in both cases, with
little overlapping. To better quantify this overlap we measure the sensitivity [28]
of these predictions by measuring the area under the ROC curve (AUC ROC),
obtaining a value of 0.98 for Walktrap clustering and 0.967 for Louvain (where 1
represents a perfect separation and 0.5 means that they are indistinguishable).

As Garimella et al. [18] have made their code public7, we reproduced their
best method Randomwalk8 on our datasets and measured the AUC ROC, obtain-
ing a score of 0.935. An interesting finding was that their method had a poor
performance over their own datasets. This was due to the fact (already explained
in Sect. 4) that it was not possible to retrieve the complete discussions, more-
over, in no case could we restore more than 50% of the tweets. So we decided
to remove these discussions and measure again the AUC ROC of this method,
obtaining a 0.99 value. Our hypothesis is that the performance of that method
was seriously hurt by the incompleteness of the data. We also tested our method
on these datasets, obtaining a 0.99 AUC ROC with Walktrap and 0.989 with
Louvain clustering.

We conclude that our method works better, as in practice both approaches
show same performances -specially with Walktrap, but in presence of incomplete
information our measure is more robust. The performance of Louvain is slightly
worse but, as we mentioned in Sect. 3, this method is much faster. Therefore,
we decided to compare the running time of our method with both clustering
techniques and also with the Randomwalk algorithm. In Fig. 4 we can see the
distribution of running times of all techniques through box plots. Both versions of
our method are faster than Randomwalk, while Louvain is faster than Walktrap.

7 https://github.com/gvrkiran/controversy-detection.
8 This is a measure based on random walks over the graph structure.

https://github.com/gvrkiran/controversy-detection

Vocabulary-Based Method for Quantifying Controversy in Social Media 171

Fig. 4. Running time measures of our method with each cluster type and Randomwalk
algorithm

We now analyze the impact of the length of the considered text in our method.
Figure 3 depicts the results of similar experiment as Fig. 2, but considering only
140 characters per tweet. As we may see, here the overlapping is bigger, having
an AUC of 0.88. As for the impact on computing time, in practice we observed
a linear growth as a function of the size of the text. Previous results of [23]
reported a complexity of O(h log2(k))9 at training and test tasks.

We measured the running times of the training and predicting phases (the
two text-related phases of our method), the resulting times are reported in Fig. 5,
which shows running time as a function of the text-size. We include also the best
estimated function that approximate computing time as a function of text-set
size. As it may be seen, time grows almost linearly, ranging from 30 s for a set of

Fig. 5. Time text-related runs measures as a function of text-set size

9 Where k is the number of classes and h the dimension of the text representation.

172 J. M. O. de Zarate and E. Feuerstein

111 KB to 84 s for a set of 11941 KB10. Finally, we measured running times for
the whole method over each dataset with 280 characters. Times were between
170 and 2467 s with a mean of 842, making it in practice a reasonable amount
of time.

5 Discussions

The task we address in this work is certainly not an easy one, and our study has
some limitations, which we discuss in this section. Our work leads us to some
conclusions regarding the overall possibility of measuring controversy through
text, and what aspects need to be considered to deepen our work.

5.1 Limitations

As our approach to controversy is similar to that of Garimella et al. [18], we share
some of their limitations with respect to several aspects: Evaluation -difficulties
to establish ground-truth, Multisided controversies -controversy with more than
two sides, Choice of data - manually pick topics, and Overfitting - small set of
experiments.

Although we have more discussions, it is still a small set from a statistical
point of view. Apart from that, our language-based approach has other lim-
itations which we mention in the following, together with their solutions or
mitigation.

Data-Size. Training an NLP model that can predict tags with a probabil-
ity greater or equal than 0.9 requires significant amount of text, therefore our
method works only for “big” discussions. Most interesting controversies are those
that have consequence at a society level, in general big enough for our method.

Multi-language Discussions. When multiple languages are participating in
a discussion it is common that users tend to retweet more tweets in their own
language, creating sub-communities. In this cases our model will tend to predict
higher controversy scores. This is the case for example of #germanwings, where
users tweet in English, German and Spanish and it has the highest score in
no-controversial topics. However, the polarization that we tackle in this work
is normally part of a society cell (a nation, a city, etc.), and thus developed in
just one language. We think that limiting the effectiveness of our analysis to
single-language discussions is not a serious limitation.

Twitter Only. Our findings are based on datasets coming from Twitter. While
this is certainly a limitation, Twitter is one of the main venues for online public
discussion, and one of the few for which data is available. Hence, Twitter is
a natural choice. However, Twitter’s characteristic limit of 280 characters per
message (140 till short time ago) is an intrinsic limitation of that network. We

10 We compare polynomial models of degree 1 to 5 and logmodel, linear model has the
lowest RMSE error training with 10-fold cross-validation.

Vocabulary-Based Method for Quantifying Controversy in Social Media 173

think that in other social networks as Facebook or Reddit our method will work
even better, as having more text per user could redound on a better NLP model
as we verified comparing the results with 140 and 280 characters per post.

5.2 Conclusions

In this article, we introduced the first large-scale systematic method for quan-
tifying controversy in social media through content. We have shown that this
method works on Spanish, English, French and Portuguese, it is context-agnostic
and does not require the intervention of a domain expert.

We have compared its performance with state-of-the-art structure-based con-
troversy measures showing that it has the same performance while being more
robust. We also have shown that more text implies better performance without
significantly increasing computing time, therefore, the method could be used in
other contexts such as other social networks like Reddit or Facebook. We plan
to test it in those network as future work.

Training the model is not an expensive task since Fasttext has a good per-
formance at this. However, the best performance for detecting principal commu-
nities is obtained by Walktrap. The complexity of that algorithm is O(mn2)[34],
where m and n are the number of edges and vertices respectively. This makes
this method rather expensive to compute on big networks. Nevertheless, we have
shown that with Louvain the method still obtains a very similar AUC ROC (0.99
with Walktrap and 0.989 with Louvain). With incomplete information its per-
formance gets worse but it is still good (0.96) and better than previous state of
the art.

This work opens several avenues for future research. One is identifying what
words, semantics/concepts or language expressions make differ one community
from the other. There are various ways to do this, for instance through the
word-embbedings that Fasttext returns after training [23]. Also we could use
interpretability techniques on machine learning models [13]. Finally, we could
try other techniques for measuring controversy through text, using another NLP
model as pre-trained neural network BERT [12] or, in a completely different
approach measuring the dispersion index of the discussions word-embbedings
[36]. We are currently starting to follow this direction.

References

1. Akoglu, L.: Quantifying political polarity based on bipartite opinion networks. In:
Eighth International AAAI Conference on Weblogs and Social Media (2014)

2. Allport, G.W., Clark, K., Pettigrew, T.: The nature of prejudice (1954)
3. Amelkin, V., Bogdanov, P., Singh, A.K.: A distance measure for the analysis of

polar opinion dynamics in social networks. In: 2017 IEEE 33rd International Con-
ference on Data Engineering (ICDE), pp. 159–162. IEEE (2017)

4. Bessi, A., Caldarelli, G., Del Vicario, M., Scala, A., Quattrociocchi, W.: Social
determinants of content selection in the age of (Mis)Information. In: Aiello, L.M.,
McFarland, D. (eds.) SocInfo 2014. LNCS, vol. 8851, pp. 259–268. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-13734-6 18

https://doi.org/10.1007/978-3-319-13734-6_18

174 J. M. O. de Zarate and E. Feuerstein

5. Bild, D.R., Liu, Y., Dick, R.P., Mao, Z.M., Wallach, D.S.: Aggregate characteri-
zation of user behavior in twitter and analysis of the retweet graph. ACM Trans.
Internet Technol. (TOIT) 15(1), 4 (2015)

6. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008
(2008)

7. Calvo, E.: Anatomı́a poĺıtica de twitter en argentina. Tuiteando# Nisman. Buenos
Aires: Capital Intelectual (2015)

8. Chitra, U., Musco, C.: Analyzing the impact of filter bubbles on social network
polarization. In: Proceedings of the 13th International Conference on Web Search
and Data Mining, pp. 115–123 (2020)

9. Conover, M.D., Ratkiewicz, J., Francisco, M., Gonçalves, B., Menczer, F., Flam-
mini, A.: Political polarization on twitter. In: Fifth International AAAI Conference
on Weblogs and Social Media (2011)

10. Dandekar, P., Goel, A., Lee, D.T.: Biased assimilation, homophily, and the dynam-
ics of polarization. Proc. Natl. Acad. Sci. 110(15), 5791–5796 (2013)

11. Darwish, K.: Quantifying polarization on twitter: the kavanaugh nomination. In:
International Conference on Social Informatics, pp. 188–201. Springer (2019)

12. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805

13. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. arXiv preprint arXiv:1702.08608 (2017)

14. Easley, D., Kleinberg, J., et al.: Networks, Crowds and Markets, vol. 8. Cambridge
University Press, Cambridge (2010)

15. Feng, W., Wang, J.: Retweet or not?: personalized tweet re-ranking. In: Proceedings
of the Sixth ACM International Conference on Web Search and Data Mining, pp.
577–586. ACM (2013)

16. Garimella, K., De Francisci Morales, G., Gionis, A., Mathioudakis, M.: Reducing
controversy by connecting opposing views. In: Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, pp. 81–90. ACM (2017)

17. Garimella, K., Mathioudakis, M., Morales, G.D.F., Gionis, A.: Exploring contro-
versy in twitter. In: Proceedings of the 19th ACM Conference on Computer Sup-
ported Cooperative Work and Social Computing Companion, pp. 33–36. ACM
(2016)

18. Garimella, K., Morales, G.D.F., Gionis, A., Mathioudakis, M.: Quantifying con-
troversy on social media. ACM Trans. Soc. Comput. 1(1), 3 (2018)

19. Guerra, P.C., Meira Jr, W., Cardie, C., Kleinberg, R.: A measure of polarization on
social media networks based on community boundaries. In: Seventh International
AAAI Conference on Weblogs and Social Media (2013)

20. Hong, S.: Online news on twitter: newspapers’ social media adoption and their
online readership. Inf. Econ. Policy 24(1), 69–74 (2012)

21. Jacomy, M., Venturini, T., Heymann, S., Bastian, M.: Forceatlas2, a continuous
graph layout algorithm for handy network visualization designed for the gephi
software. PLoS ONE 9(6), e98679 (2014)

22. Jang, M.: Probabilistic Models for Identifying and Explaining Controversy (2019)
23. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text

classification. arXiv preprint arXiv:1607.01759 (2016)
24. Kulshrestha, J., Zafar, M.B., Noboa, L.E., Gummadi, K.P., Ghosh, S.: Character-

izing information diets of social media users. In: Ninth International AAAI Con-
ference on Web and Social Media (2015)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1702.08608
http://arxiv.org/abs/1607.01759

Vocabulary-Based Method for Quantifying Controversy in Social Media 175

25. Kumar, S., Hamilton, W.L., Leskovec, J., Jurafsky, D.: Community interaction
and conflict on the web. In: Proceedings of the 2018 World Wide Web Conference
on World Wide Web, pp. 933–943. International World Wide Web Conferences
Steering Committee (2018)

26. Kupavskii, A., et al.: Prediction of retweet cascade size over time. In: Proceed-
ings of the 21st ACM International Conference on Information and Knowledge
Management, pp. 2335–2338. ACM (2012)

27. Lahoti, P., Garimella, K., Gionis, A.: Joint non-negative matrix factorization for
learning ideological leaning on twitter. In: Proceedings of the Eleventh ACM Inter-
national Conference on Web Search and Data Mining, pp. 351–359. ACM (2018)

28. Macmillan, N.A., Creelman, C.D.: Detection Theory: A User’s Guide. Psychology
press (2004)

29. Matakos, A., Terzi, E., Tsaparas, P.: Measuring and moderating opinion polar-
ization in social networks. Data Min. Knowl. Discovery 31(5), 1480–1505 (2017).
https://doi.org/10.1007/s10618-017-0527-9

30. Morales, A., Borondo, J., Losada, J.C., Benito, R.M.: Measuring political polar-
ization: twitter shows the two sides of venezuela. Chaos Interdiscipl. J. Nonlinear
Sci. 25(3), 033114 (2015)

31. Munson, S.A., Lee, S.Y., Resnick, P.: Encouraging reading of diverse political
viewpoints with a browser widget. In: Seventh International AAAI Conference
on Weblogs and Social Media (2013)

32. Novak, P.K., Smailović, J., Sluban, B., Mozetič, I.: Sentiment of emojis. PLoS ONE
10(12), e0144296 (2015)

33. Pettigrew, T.F., Tropp, L.R.: Does intergroup contact reduce prejudice? recent
meta-analytic findings. In: Reducing Prejudice and Discrimination, pp. 103–124.
Psychology Press (2013)

34. Pons, P., Latapy, M.: Computing communities in large networks using random
walks. In: Yolum, I., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005.
LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005). https://doi.org/10.
1007/11569596 31

35. Rajadesingan, A., Liu, H.: Identifying users with opposing opinions in twitter
debates. In: Kennedy, W.G., Agarwal, N., Yang, S.J. (eds.) SBP 2014. LNCS,
vol. 8393, pp. 153–160. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
05579-4 19

36. Ramponi, G., Brambilla, M., Ceri, S., Daniel, F., Di Giovanni, M.: Vocabulary-
based community detection and characterization (2019)

37. Shearer, E., Gottfried, J.: News use across social media platforms 2017. Pew Res.
Center 7 (2017)

38. Stewart, L.G., Arif, A., Starbird, K.: Examining trolls and polarization with a
retweet network. In: Proceedings ACM WSDM, Workshop on Misinformation and
Misbehavior Mining on the Web (2018)

39. Tran, T., Ostendorf, M.: Characterizing the language of online communities and
its relation to community reception. arXiv preprint arXiv:1609.04779 (2016)

40. Trilling, D.: Two different debates? investigating the relationship between a polit-
ical debate on tv and simultaneous comments on twitter. Social science computer
review 33(3), 259–276 (2015)

41. Venturini, T., Jacomy, M., Jensen, P.: What do we see when we look at networks. an
introduction to visual network analysis and force-directed layouts. An introduction
to visual network analysis and force-directed layouts, 26 April 2019

42. Weller, K., Bruns, A., Burgess, J., Mahrt, M., Puschmann, C.: Twitter and society,
vol. 89. Peter Lang (2014)

https://doi.org/10.1007/s10618-017-0527-9
https://doi.org/10.1007/11569596_31
https://doi.org/10.1007/11569596_31
https://doi.org/10.1007/978-3-319-05579-4_19
https://doi.org/10.1007/978-3-319-05579-4_19
http://arxiv.org/abs/1609.04779

176 J. M. O. de Zarate and E. Feuerstein

43. Yang, X., Macdonald, C., Ounis, I.: Using word embeddings in twitter election
classification. Inf. Retrieval J. 21(2–3), 183–207 (2018)

44. Yardi, S., Boyd, D.: Dynamic debates: an analysis of group polarization over time
on twitter. Bull. Sci. Technol. Soc. 30(5), 316–327 (2010)

45. Zachary, W.W.: An information flow model for conflict and fission in small groups.
J. Anthropol. Res. 33(4), 452–473 (1977)

46. Zhur, X., Ghahramanirh, Z.: Learning from labeled and unlabeled data with label
propagation (2002)

Multi-label Learning with a Cone-Based
Geometric Model

Mena Leemhuis1(B) , Özgür L. Özçep1 , and Diedrich Wolter2

1 University of Lübeck, Lübeck, Germany
mena.leemhuis@student.uni-luebeck.de, oezcep@ifis.uni-luebeck.de

2 University of Bamberg, Bamberg, Germany
diedrich.wolter@uni-bamberg.de

Abstract. Recent approaches for knowledge-graph embeddings aim at
connecting quantitative data structures used in machine learning to the
qualitative structures of logics. Such embeddings are of a hybrid nature,
they are data models that also exhibit conceptual structures inherent to
logics. One motivation to investigate embeddings is to design conceptu-
ally adequate machine learning (ML) algorithms. This paper investigates
a new approach to embedding ontologies into geometric models that
interpret concepts by closed convex cones. As a proof of concept this
cone-based embedding was implemented in a ML algorithm for weak
supervised multi-label learning. The system was tested with the gene
ontology and showed a performance similar to comparable approaches,
but with the advantage of exhibiting the conceptual structure underlying
the data.

Keywords: Concept learning · Knowledge graph embedding ·
Multi-label learning

1 Introduction

Recent approaches to knowledge-graph embeddings [12] aim at linking quanti-
tative data structures used in machine learning (ML), such as (low-dimensional)
Euclidean spaces, to the qualitative structures of logics. Conceptual structures
of logics like that of first-order logic (FOL) are characterized by the respective
domain of models considered, specific individuals, as well as the relations and
functions defined. By restricting the language of FOL, several specialized logics
can be defined, each giving rise to a certain repertoire of structures that can
be expressed. In this work we consider a subclass of description logics (DL) [2]
that is particularly suited to the representation of concept structures. There-
fore, DL presents an ideal candidate when investigating the link between data
models and structures of logics. Once a link between a specific embedding and
a specific logic has been established, embeddings induce logic structures in the
quantitative domain, say Euclidean space.

Embeddings present a promising approach to the development of concept-
level machine learning. Assume a knowledge graph is given, i.e., triples stating
c© Springer Nature Switzerland AG 2020
M. Alam et al. (Eds.): ICCS 2020, LNAI 12277, pp. 177–185, 2020.
https://doi.org/10.1007/978-3-030-57855-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57855-8_13&domain=pdf
http://orcid.org/0000-0003-1017-8921
http://orcid.org/0000-0001-7140-2574
http://orcid.org/0000-0001-9185-0147
https://doi.org/10.1007/978-3-030-57855-8_13

178 M. Leemhuis et al.

relations between objects, then specific concept definitions learned by means of
ML techniques get enhanced by the structure of the knowledge graph. Put dif-
ferently, one obtains a grounding of abstract entities mentioned in the knowledge
graph that respects the relational structure of that graph. Pushing the idea even
further, one may even consider embedding to go beyond capturing single knowl-
edge graphs, but to represent whole ontologies—as is the case for the convex
region based geometric models of [6].

In this paper we consider geometric models based on convex cones as possible
groundings of concepts. One reason for considering convex entities is their ade-
quacy from a linguistic-cognitive point of view to model natural concepts, as has
been argued by Gärdenfors in his book on conceptual spaces [4]. We are moti-
vated to consider cones as they enable us to define negation (using polarity [9])
which pushes forward the expressivity of structures exhibited by embeddings.
We note that Gärdenfors [4, p. 202] considered the representation of negation
(and quantification) as particularly difficult. Most importantly, for this paper,
convex regions are computationally attractive as efficient methods from the area
of convex optimization [3] become available to realizing ML algorithms.

The contribution of this paper is to show how cone-based geometric models
can be used for the important ML task of (weak) supervised multi-label learning
[5], while retaining the conceptual structures defined by an ontology. We present
a cone-based semantics for DL ontologies defined in the language of propositional
ALC [2]. Based on this semantics we propose a new ML method for acquiring an
embedding. This paper concentrates on the application of the cone-based embed-
ding to Machine Learning. The theoretical basis of the cone-based approach like
characterizing the link of cone models to models in the sense of logics is not in
the scope of this paper. For these aspects we refer the reader to our [8] which
considers full ALC (not just propositional ALC).

Multi-label problems are problems in which each entity has to be attached
one or more labels. They may be regarded as a generalization of the ML task of
classification, which assigns exactly one label to each object. The multi-labeling
problem is considered to be a hard ML task [5], but is particularly important
for mastering non-trivial conceptual structures: every entity may be a member
of several conceptual classes.

There are several types of weak supervised learning problems. We concentrate
on handling inexact data, i.e., the training data set may include labels that are
not fine-grained [13]. This represents a typical case of how humans would label
an entity: we may claim a lion to be a carnivore, but omit class labels such as
mammal or animal. A particular feature of our cone models is their ability to
express partial knowledge: elements are not required to be labeled with respect
to every class. In case of the lion the ML method may thus refrain from assigning
a class label like “can swim” or its negation “cannot swim”, if neither evidence
is given in the training data. By linking a given ontology to the ML model by
means of an embedding it is guaranteed that the result, i.e., the grounding of
entities, conforms to the ontology. Coming back to the example of animals, we

Multi-label Learning with a Cone-Based Geometric Model 179

would be able to guarantee that no animal will be labeled herbivore if it is known
to eat other animals.

In this paper we consider a medical scenario based on the gene ontology [1]
that could for example be used to make disease predictions. The ML method
described in this paper demonstrates that learning with cone-based models is
competitive to related approaches for multi-label learning [11]. Above all, we are
able to demonstrate that a given ontology can be exploited and leads to better
results in learning.

Parts of this work were published in the proceedings of a student conference
held at the University of Lübeck [7].

2 Preliminaries

The family of description logics is a family of variable-free fragments of FOL
that are designed, in particular, for the representation of ontologies. Hence, DLs
provide a good balance of expressivity and computational feasibility. They can be
classified by the set of concept-constructors offered. Any DL vocabulary contains
a set of constants Nc, a set of concept names NC and role names (corresponding
to binary relations). We consider here the propositional part of the logic ALC
[2]. The set of Boolean ALC concepts C is defined according to the following
context-free grammar:

C → A | ⊥ | � | C � C | C � C | ¬C, (1)

with atomic concepts A ∈ NC and an arbitrary concepts C. An ALC interpre-
tation (Δ, ·I) consists of the domain Δ (the space of possible elements) and
an interpretation function ·I mapping constants to elements in Δ and concept
names to subsets of Δ. The semantics of arbitrary concepts is given in Table 1.

Table 1. Syntax and semantics for Boolean ALC for an interpretation I

Name Syntax Semantics

Top � ΔI

Bottom ⊥ ∅
Conjunction C � D CI ∩ DI

Disjunction C � D CI ∪ DI

Negation ¬C ΔI \ CI

An ontology O is a pair (T ,A). The terminological-box (T -box) T contains
general concept inclusions of the form C � D stating that C is a subconcept of
D, for arbitrary concepts C and D. The assertional-box (A-box) A consists of
facts of the form C(a), a ∈ Nc, which says that a is in the extension of C.

180 M. Leemhuis et al.

3 Geometric Models

In our cone-based models, Boolean ALC ontologies are embedded into geometric
models of a Euclidean vector space with a linear product 〈·, ·〉 that measures the
similarity of vectors (representation of objects) by the cosine. The geometric
model I represents the T -box axioms in a geometric way and is region-based,
that means in particular, when AI � BI , then A is a subspace of B in the model.
The main idea is to split the vector space into convex regions. To preserve the
convexity under disjunction and negation, a special convex structure—namely
an axis-aligned cone (al-cone)—is used.

Definition 1. An al-cone is a special case of a closed convex cone. An al-cone
in the n-dimensional space is of the form

(X1, ...,Xn) where each Xi ∈ {R,R+,R−, {0}}. (2)

The negation of arbitrary cones X (and in particular of an al-cone), is defined
by its polar cone [9] X◦, which is the set of all vectors leading to a negative or
zero similarity with all vectors in X.

X◦ = {v ∈ R
n|∀w ∈ X : 〈v, w〉 ≤ 0}. (3)

For better readability, subsequently R,R+,R−, {0} are replaced by u, +,−, 0.
Every concept of an ontology is assigned to an al-cone as defined in (2) with

respect to the T -box axioms. An operation on an al-cone assignment of a concept
is executed dimension-wise. So, e.g., the intersection of (+,−) and (+,+) reduces
to considering the intersection of the first components + and + (giving +) and
the intersection of the second components − and +, giving 0. The constants are
placed in a region were the corresponding A-box axioms are valid. Special cases
are the top concept �, represented as {u}n which thus covers the whole space
and the bottom concept ⊥, which is represented as the point of origin {0}n.

A special feature of this geometric model is its ability to model partial know-
ledge. It is not obligatory that an element is an instance of a concept or of
its negation, its assignment can also be unknown. When representing negation
with polarity, any point neither contained in an al-cone A nor its polar cone A◦

represents an entity for which class membership of the class A is unknown.
Figure 1 is an example of a geometric model for an empty T -box and two

concepts A and B. The A-box consists of B(a1), B(a2) and ¬A(a2). The element
a1 is in a region where it is neither in A nor in ¬A.

The geometric model for a given T -box is constructed based on the set K of
all possible fully specified concepts k in the ontology. A concept is fully specified
when it contains every atomic concept or its negation. The geometric model
has the dimension d =

⌈
|K|
2

⌉
. No conjunction between fully specified concepts

is possible, so every k is placed on one half-axis. The al-cone for each atomic
concept can be determined by constructing the union of all k in which it appears
positively. The corresponding negative concept can be found by negating the

Multi-label Learning with a Cone-Based Geometric Model 181

x − axis = A B

y − axis = A ↔ B

BA

¬B ¬A

¬A BA B

A
B

¬A
B

⊥

A B

¬A B

A B ¬A B

a1

a2

Fig. 1. Example of a geometric model

positive concept. With an empty T -box with n concepts this results in 2n fully
specified concepts and thereby in a geometric model with d = 2n−1 dimensions.

With a non-empty T -box the number of possible k decreases, but it is still
exponential in the most cases. The construction of the model is similar to the
empty case (using the Lindenbaum-Tarski algebra induced by the T -box).

For example the construction of the geometric model with an empty T -Box is
conducted as follows: The fully specified concepts are {A,B}, {A,¬B}, {¬A,B},
and {¬A,¬B}. The geometric representation of each of this concepts is placed
on an individual half axis. Thus the geometric representation Ψ(·) is

Ψ({A,B}) = (0,+) (4)
Ψ({A,¬B}) = (−, 0) (5)
Ψ({¬A,B}) = (+, 0) (6)
Ψ({¬A,¬B}) = (0,−). (7)

The representations of the other concepts are unions of the representations of
the fully specified concepts and thus the resulting model is the one shown in
Fig. 1.

4 Multi-label Classification with a Geometric Model

The geometric model can be used in combination with the A-box axioms given by
the training data to train a classifier. To this end, every element x of the training
data is mapped to a subspace of the vector space by creating a code vector cv(x)
with cv(x) = {+,−, 0, u}d. In this way an element is not represented by an
individual point in space but by an al-cone. In every al-cone there could be several
individuals. Thus the training elements are embedded into the geometric model,

182 M. Leemhuis et al.

and therefore into the ontology space. The main idea is to use the knowledge
incorporated in the geometric model to train a classifier for each dimension of
the geometric model.

For each dimension of the code-vectors a classifier is trained separately to
divide the code-vectors in classes determined by their entry in this dimension,
because elements with the same region in one dimension should have some shared
attributes. For each dimension 1 ≤ i ≤ d all elements are separated into classes
as follows:

Xpos,i = {x | cv(x)i = +} (8)
Xneg,i = {x | cv(x)i = −} (9)
Xzero,i = {x | cv(x)i = 0} (10)

A code-vector with an u at dimension i is ignored.
Training of the classifier is done as follows: For each dimension i the separa-

tion of Xpos,i,Xneg,i, and Xzero,i is computed as follows. When only one of the
three classes in dimension i is used, then training of the classifier is not possible
and all elements are assigned to the existing class. When in one dimension there
are only two of the three labels chosen, then a binary classifier is trained and the
third class is ignored. For three existing classes two classifiers are trained, one
separating + from the rest, one separating − from the rest. This is explained in
more detail at the end of this chapter.

For classification the classification result for the test element is determined
for each dimension separately. The results of every dimension are concatenated
and produce a code-vector (an al-cone) for the test element. This code vector is
then placed in the geometric model. An element e is said to belong to a concept
C if the code-vector of e is covered by the code-vector of C.

Our approach is used for weak supervised learning. In the weak supervised
learning scenario, some labels are given, but they can be incomplete or inaccurate
and it is possible that not all labels are determinable for a given element. In
particular, an individual which is not labeled with a specific concept could be
contained in it or its negation.

Each entry in code-vectors shows information about its properties. Our aim
is to find a separation of 0 vs. + vs. −. So why should this be possible?

First we note that an element whose code-vector is u in dimension i is ignored
in this dimension because it does not represent a single piece of information. In a
geometric model, every operation can be executed per dimension. By definition,
in each dimension, 0 is covered by + and −. So + and − are not disjoint. This
means that their separability depends on the training data and is not necessarily
given. Individuals which are labeled as + (or −) could be in fact 0, but never
− (or +). But when a code vector is 0 in the specific dimension, then it stays 0
even after gaining new knowledge. This property is used for the separation task.

One option for training this separation for all three classes existing is to
train two classifiers. The first one separates + from the rest, the second one
separates − from the rest. Of course there are some + (−) which are not fully
classified and thus wrongly appear in an area which is in fact 0. By increasing the

Multi-label Learning with a Cone-Based Geometric Model 183

misclassification cost for a 0 this error is mitigated. The classifier is interpreted
as + only when one classifier is + and the second 0 and analogue for −. In the
other cases it is classified as 0.

It follows that even the elements which are incompletely classified and thus
have a + or − which in fact is a 0 give information because the probability for
their appearance is higher close to their actual region.

5 Experiments

Data. The method can be used for any ontology expressed in Boolean ALC.
Here the Gene Ontology (GO) [1] is used. It does not contain negation or union
and is hence a directed acyclic graph. The relations of GO have not been con-
sidered. The data set for the experiments is that of Saccharomyces cerevisiae
[10]. First the concepts of the training elements are extended in the way that
all ancestor concepts of the given concepts are contained. Then every concept
without enough elements representing it was deleted to facilitate the training
process. The number of concepts was reduced to eight and for every element the
most specific concepts were determined. With these concept labels the training
and testing was conducted.

Implementation. For classification a support vector machine with a polynomial
kernel is used, because it is an established method for handling bioinformatic
datasets like the one used. For the test of the method the assumption is used
that not having a positive label means that it could be contained or not.

For comparison purposes we implemented the approach of Wan and Xu [11].
The approach presented in [11] does not use ontology information. It is based
on a variant of the 1-vs-1-classifier. Any two concepts are compared to each
other in a ternary way. A separation of elements of concept A, of concept B,
and of concept A � B is learned for all concepts A,B. Via a voting-scheme and
a threshold the concepts of an element are obtained. This approach is used for
comparison because of its high similarity to the presented approach. Its main
difference is that the ontology information is not used. In this way the advantage
of using this information is investigated. For better comparability—instead of
the Tri-class SVM as used in their approach—we use in our implementation the
SVM-architecture presented above.

Results and Discussion. Classification of the test set using a six-fold cross vali-
dation results in similar performance measures for the presented and the com-
parison approach (see Table 2).

An advantage of the presented approach is that it can only have ontological
correct results, while the other approach can result in contradictions. In every
dimension more training elements and thus more information than in normal
1-vs-1 can be used, because not only elements with the same concept, but also
with some similar attributes are used in the same class for training.

The similarity in the results of both approaches is caused by the simple struc-
ture of GO, which incorporates no negation or disjunction. Only subsumption

184 M. Leemhuis et al.

needs to be considered. Without negated elements or negated concept inclusions
there is no knowledge about concept exclusions and therefore the space of pos-
sible concepts per element cannot be restricted. Another reason could be the
choice of the binary classifier, which could perhaps improve the generalization
quality.

The presented approach has improvement potential w.r.t. the error tolerance.
Concepts at the bottom of the tree have only a small al-cone where the elements
could be placed. This means, that even a small misclassification in one dimension
could prevent the correct classification. One possible solution is to incorporate
knowledge of the certainty of the classification for each dimension. For a test
element an uncertain result in a dimension could be changed to 0 to reduce its
influence.

In a second experiment our method was tested with an empty T -box.
This resulted in an accuracy near to zero and demonstrates the usefulness of
the ontology information for training. Without this information the knowledge
about dependencies of elements cannot be used and elements which have similar
attributes can not be separated from elements without similar attributes. With
an empty T -box impossible separations are tried to be learned as well. Therefore
classifying a test element results in a code-vector not containing any information
and thus no assigned concept. This shows that the approach can actually use
the knowledge represented in the ontology.

Table 2. Results for the presented method and the approach of Wan and Xu [11]

Accuracy Precision Recall

This approach 0.185 ± 0.03 0.190 ± 0.02 0.164 ± 0.03

Wan, Xu [11] 0.197 ± 0.03 0.199 ± 0.03 0.278 ± 0.08

6 Conclusion

The paper presented a proof-of-concept implementation of an algorithm for weak
multi-label learning that relies on a geometric model of a Boolean ALC ontology.
As the test results showed, having a geometric model of a non-empty T -box leads
to useful information that can be exploited for multi-labeling.

The tests were conducted for an ontology over a very weak logic (not even
containing negation) to show its general applicability for weak supervised learn-
ing, but our approach is applicable for general Boolean ALC-ontologies—whereas
an approach such as that of [11] can not be used because it can not incorpo-
rate ontological knowledge. We expect to get even better results for ontologies
that allow for full negation (and disjunction) because of the higher amount of
ontological information contained.

Multi-label Learning with a Cone-Based Geometric Model 185

Future work concerns incorporating a method for dimension reduction in
order to reduce the exponential size (w.r.t. the number of atoms in the Boolean
algebra of concepts induced by the T -box) of the geometric model. Moreover, we
plan to improve the approach by using a different classifier for the dimensions
instead of the ternary SVM: the idea is to consider certainty of the answer for
each dimension and to improve the dimension-wise separation quality.

References

1. Ashburner, M., et al.: Gene ontology: tool for the unification of biology. Nat. Genet.
25(1), 25 (2000). https://doi.org/10.1038/75556

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

4. Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. The MIT Press,
Cambridge (2000)

5. Gibaja, E., Ventura, S.: Multilabel learning: a review of the state of the art and
ongoing research. Wiley Interdisc. Rev. Data Min. Knowl. Discovery 4, 411–444
(2014)

6. Gutiérrez-Basulto, V., Schockaert, S.: From knowledge graph embedding to ontol-
ogy embedding? an analysis of the compatibility between vector space representa-
tions and rules. In: Thielscher, M., Toni, F., Wolter, F. (eds.) Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Sixteenth International
Conference, KR 2018, Tempe, Arizona, 30 October–2 November 2018, pp. 379–
388. AAAI Press (2018)

7. Leemhuis, M., Özçep, Ö.: Multi-label learning with a cone based geometric model.
In: Proceedings of the Student Conference 2020. Infinite Science Publishing (2020)

8. Özçep, Ö.L., Leemhuis, M., Wolter, D.: Cone semantics for logics with negation.
In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20 (2020). (To appear)

9. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1997)
10. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for

hierarchical multi-label classification. Mach. Learn. 73(2), 185 (2008). https://doi.
org/10.1007/s10994-008-5077-3

11. Wan, S.P., Xu, J.H.: A multi-label classification algorithm based on triple class
support vector machine. In: 2007 International Conference on Wavelet Analysis
and Pattern Recognition, vol. 4, pp. 1447–1452, November 2007. https://doi.org/
10.1109/ICWAPR.2007.4421677

12. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of
approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743
(2017). https://doi.org/10.1109/TKDE.2017.2754499

13. Zhou, Z.H.: A brief introduction to weakly supervised learning. Nat. Sci. Rev. 5(1),
44–53 (2017). https://doi.org/10.1093/nsr/nwx106

https://doi.org/10.1038/75556
https://doi.org/10.1007/s10994-008-5077-3
https://doi.org/10.1007/s10994-008-5077-3
https://doi.org/10.1109/ICWAPR.2007.4421677
https://doi.org/10.1109/ICWAPR.2007.4421677
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1093/nsr/nwx106

Conceptual Reasoning for Generating
Automated Psychotherapeutic Responses

Graham Mann(B) , Beena Kishore , and Pyara Dhillon

Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
{g.mann,b.kishore,p.dhillon}@murdoch.edu.au

Abstract. The need for software applications that can assist with mental dis-
orders has never been greater. Individuals suffering from mental illnesses often
avoid consultation with a psychotherapist, because they do not realize the need,
or because they cannot or will not face the social and economic consequences,
which can be severe. Between ideal treatment by a human therapist and self-help
websites lies the possibility of a helpful interaction with a language-using com-
puter. A practical model of empathic response planning for sentence generation in
a forthcoming automated psychotherapist is described here. The model combines
emotional state tracking, contextual information from the patient’s history and
continuously updated therapeutic goals to form suitable conceptual graphs that
may then be realized as suitable textual sentences.

Keywords: Natural language generation · Conceptual graphs ·Model-based
reasoning

1 Introduction

Many parts of the world now face a serious mental health care treatment gap, especially
in low to middle income countries, and non-urban areas in high income countries [1].
The reasons are complex, but much of the shortage is caused by a lack of available skilled
psychiatric professionals, and a failure of engagement by patients for economic or social
stigma reasons [2]. A review of evidence shows that there are good reasons to think
computerized therapy may be one effective approach to overcoming these difficulties
[3]. While we do not imagine that these would be equivalent to consultation with skilled
human psychiatrists, even existing mental health care apps can play a role and would
often be better than nothing. In the case of “talking” therapies – those relying primarily on
psychiatric interviews - software can today carry out natural conversations with a patient,
simulating the role of the therapist. This paper deals with the formation and expression
of appropriate responses to be used by an automated therapist during a consultation.
It is a conceptual graph (CG) based language theory realized as a computer model of
language generation.

Current trends in conversational systems tend to favour machine learning (ML)
approaches, typically employing neural networks (NN), but we believe that these are not
ideal in this application, for the following reasons. First, the knowledge and executable

© Springer Nature Switzerland AG 2020
M. Alam et al. (Eds.): ICCS 2020, LNAI 12277, pp. 186–194, 2020.
https://doi.org/10.1007/978-3-030-57855-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57855-8_14&domain=pdf
http://orcid.org/0000-0002-2273-6399
http://orcid.org/0000-0001-7642-3358
http://orcid.org/0000-0001-9551-1804
https://doi.org/10.1007/978-3-030-57855-8_14

Conceptual Reasoning for Generating Automated Psychotherapeutic Responses 187

skills of a machine learning system are typically opaque, lack auditability and so lack
trust [4]. This is a serious drawback in medical applications. Knowledge and skills
in conceptual graph (CG) based systems are as a rule much more human-readable and
subject to logical reasoning that can readily be comprehended and verified. Second, NN-
based or statistical ML approaches (with the possible exception of Bayesian learners)
cannot easily incorporate high level, a priori knowledge into their processing [5]. This
disadvantages learners in domains where such high-level knowledge is available or must
be policy. But by virtue of their standardized knowledge representation, CG systems can
freely mix prior knowledge incoming data relatively easily. Third, ML language systems
are typically very data-hungry, and while large corpuses of language knowledge are
now available, using these is computationally expensive. By contrast, model-based CG
systems can, with some labour, be made to work with a relatively small amount of
domain-specific language knowledge and with little or no learning.

In the rest of this paper, Sect. 2 proposes a linguistic model that integrates tracked
emotional states, patient’s utterances and background information on the patient with
pragmatic cues from a control executive to generate a suitable response in conceptual
form. Section 3 then describes our experimental implementation, consisting of heuristic
Lisp functions to fetch instances of the above informative content from diverse sources,
and calling on conceptual functions to bring these together to form CGs that can be
realised as linear texts. Thewhole process is controlled by an expert system implementing
psychotherapeutic rules. Finally, Sect. 4 concludes with some current challenges of this
approach and its prospects for further development.

2 Sources Informing the Generation of Responses

2.1 Tracking of Patient’s Expressed Emotions

It is difficult to imagine a successful psychotherapist who is not concerned with the
emotional state of the patient. Even behaviourist therapies that emphasise overt actions in
response to stimuli over mental state today include emotions as a recognised behavioural
response, if not an important internal state determining them[e.g. 6]. The evidence is clear
that the patient’s emotional state is important for treatment needs to be closelymonitored
[7]. This state must be dealt with properly to maintain patients a comfortable place,
while at the same time empathizing, noting the significance of the emotion and helping
the patient to find meaning from it. Much emotional information can be obtained by
monitoring a speaker’s tone of voice, facial expression or other body language. Today’s
mobile devices, with their microphones and cameras could hope to read these forms of
expression, but since our larger system is working with text alone it may not depend on
non-verbal cues.

According to the survey conducted by Calvo and D’Mello [8] on models of affect,
early approaches to detect emotional words in text include lexical analysis of the text
to recognize words that are imminent of the affective states [9] or specific semantic
analyses of the text based on an affect model [10]. Another approach is to construct
affectivemodels from large corpora ofworld knowledge and apply thesemodels [e.g. 11].
The current work adapts Smith & Ellsworth’s six-dimensional model [12] to make a
system that can better grasp the subtleties of patient affect. Their chosen modal values

188 G. Mann et al.

on the principle component states for 15 distinguished emotional states are shown in
Table 1.

One way that emotional tracking can be used is for the appropriate application of
sympathy. We define a “safe region” in the 6D affective space. The therapist should be
able to continue the therapy as long as the patient’s tracked emotional state is within the
safe region. A single point in the 6D affective space was chosen as the “most distressed”
emotional state (we used {1.10 1.3 1.15 1.0 −1.15 2.0}). The simplest model of a safe
region is outside a hypersphere of fixed radius centered on this point. The process is then
reduced to finding the Euclidian distance between the current emotional state and the
above-defined distressed center:

�Ω =
√

(Pi− Pj)2 + (Ei− Ej)2 + (Ci− Cj)2 + (Ai− Aj)2 + (Ri− Rj)2 + (Oi− Oj)2

Table 1. Mean locations of labelled emotional points in the range [−1.5, +1.5] as compiled in
Smith & Ellsworth’s study.

Emotion P R C A E O

Happiness −1.46 0.09 −0.46 0.15 −0.33 −0.21

Sadness 0.87 −0.36 0 −0.21 −0.14 1.15

Anger 0.85 −0.94 −0.29 0.12 0.53 −0.96

Boredom 0.34 −0.19 −0.35 −1.27 −1.19 0.12

Challenge −0.37 0.44 −0.01 0.52 1.19 −0.2

Hope −0.5 0.15 0.46 0.31 −0.18 0.35

Fear 0.44 −0.17 0.73 0.03 0.63 0.59

Interest −1.05 −0.13 −0.07 0.7 −0.07 0.41

Contempt 0.89 −0.5 −0.12 0.08 −0.07 −0.63

Disgust 0.38 −0.5 −0.39 −0.96 0.06 −0.19

Frustration 0.88 −0.37 −0.08 0.6 0.48 0.22

Surprise −1.35 −0.97 0.73 0.4 −0.66 0.15

Pride −1.25 0.81 −0.32 0.02 −0.31 −0.46

Shame 0.73 1.31 0.21 −0.11 0.07 −0.07

Guilt 0.6 1.31 −0.15 −0.36 0 −0.29

If the calculated distance is greater than an arbitrarily-defined tolerance threshold
(radius), the patient’s current emotional state is considered safe. The calculated �� of
an emotional state {1.15 0.09 1.3 0.15 −0.33 −0.21} from the above-defined distress
point would be 1.70. For an arbitrary tolerance radius of 2.5 units from the distress point,
the patient’s tracked emotive state would not be in the safe region. Further work on a
better model of the actual “shape of distress” might improve the heuristic’s ability to
pick a highly appropriate response for any given emotional state.

Conceptual Reasoning for Generating Automated Psychotherapeutic Responses 189

2.2 Conceptual Analysis of Patient’s Utterances

Study of a reference corpus of 118 talking therapy interviews [13], reveals that these
patient utterances can be long and rambling, often incoherent and quite difficult for a per-
son, much less a machine, to comprehend. While we have a conceptual parser, SAVVY,
capable of converting real, non-grammatical paragraphs into meaning-preserving CGs
[14], it was not developed for use in this domain. Though possible in principle, for the
present work we do not intend to improve it to the point of creating meaningful con-
ceptual representations for most of the utterances observed in our corpus. Conceptual
parsers depend on an ontology in the form of a hierarchy of concepts, a set of relations
and a set of actors. Manually creating representations of all the terms used in those
interviews for SAVVY would be a very difficult and time-consuming task. (This most
serious of drawbacks for conceptual knowledge-based systems is now being addressed
in automated ontology-building machines [e.g. 15, 16]). Our focus in this study is the
generation of language.

Yet this kind of psychotherapy is essentially conversational, so we must allow the
conceptual representations of patient utterances to be an input even to test response
formation. Therefore, SAVVY will be adapted to accept selected patient utterances of
interest. In some cases, to keep the project manageable, we hand-write plausible input
CGs to avoid diverting too much time and energy away from our generation pipeline.

2.3 Using Context to Inform the Planning Process

In regular clinical practice, the first step for a new patient is an admitting (or triage)
interview, that can capture important biographical details, a presenting complaint, back-
ground histories, and perhaps an initial diagnosis. Because we wish our model of lan-
guage generation to account for existing, contextual information, we will not actively
model this initial interview, but rather only subsequent interviews that have access to
this previously gathered background. A set of background topics that should be sought
during an admitting interview is described by Morrison [17]. Our current model draws
12 topics from this source and adds three extra topics specific to our clinical model.

2.4 Executive Control

An executive based on a theory about how therapy should be done is needed for overall
control. At each conversational turn, the executive should recommend the best “prag-
matic move” for the response generation process. This allows selection and instantiation
of appropriate high-level conceptual templates that form the therapist’s utterances to
support, guide, query, inform or sympathize with the patient as appropriate during the
treatment process. Our executive is based on the brief therapy of Hoyt [18] and the
solution-based therapy of Shoham et al. [19]. As recommended by Hoyt, the focus is
on negotiating treatment practices, not diagnostic classification. However, in this exper-
iment a working diagnosis might become available as a result of the therapy or be input
as background knowledge.

For a natural interviewing style, the executive must allow its goal-seeking behaviour
to be interrupted by certain imperatives imposed by conversational conventions and good

190 G. Mann et al.

clinical practice. If the patient asks a question, this deserves some kind of answer. If the
patient wishes to express some attitude or feeling about some point, that should usually
be entertained immediately. If the patient’s estimated emotional state falls into distress,
it is important that the treatment model is suspended until the patient can be comforted
and settled. Similarly, if rapport with the patient is lost (the quality of the patient’s
responses deteriorates), special steps must be taken to recover this before anything else
can be done. We call these forced responses, to distinguish them from less obligatory
pragmatic moves, which in our model are driven by key goals in the therapy.

In most cases, a conceptual structure representing a suitable therapist’s response can
be formed by unifying pragmatically-selected schemata with content-bearing informa-
tion from the other sources. This process is to be handled by heuristic rules that must
be sufficiently general to keep the number needed as low as possible. In a few cases, a
single standardized expressive form can be accessed without the need for unification.

3 Implementation Details

3.1 Collection of Emotional State, Patient Utterances and Background
Knowledge

To track emotions, we are experimenting with computationally cheap heuristics that
can distinguish the patient’s current emotional states directly from the text (Fig. 1),
though this has the disadvantage that it does not model cognitive aspects of emotion. For
example, a patient would be talking about his or her current emotional reaction if there is
a cluster of words in an utterance that includes, within a window of nwords, one or more
members of the word bag {I, I’m, me, myself}, optionally one of {feel, think, consider,
say} AND at least one emotion cue such as {hate, love, enjoy, relax…etc.}. Additional
rules have to be implemented to account for negation and to check for past tense such as
{was, did, suffixes such as ‘ed’}. The 15 emotional states were annotated with synonyms
retrieved from WordNet-Affect [20]. A short list of common generic non-emotional
words such as {the, then, who, when… etc.} is also provided (excluded_list).

Function DetectEmotion (text)
{For each word in a text
{If the word is in one of the 15 annotated lists

{If the emotion belongs to the patient and not past tense
{emotion_list ← push the 6D value of identified state
}}}

{If #(emotion_list) > 1
emotional_state ← mean(emotion_list)}

Else {emotional_state ← emotion_list}
return emotional_state }

Fig. 1. Pseudocode for the heuristic function detecting the emotional state in the utterance

To bring patient’s conversational utterances into the picture, a text-to-CG parser is
required. But even if it was feasible to construct complete representations for every
utterance made by a patient, this would not be desirable, because from analysis of the

Conceptual Reasoning for Generating Automated Psychotherapeutic Responses 191

corpus, surprisingly few such representations would actually have useful implications
for treatment, at least within our simplified model. Therefore whatever method we use
to parse patient input into CGs can afford to be selective about the outputs it forms,
using top-down influences to prefer those interpretations that are likely to lead to useful
content. Our conceptual parser, SAVVY, can do this because it assembles composite CGs
out of prepared conceptual components that are already pre-selected for the domain of
use towhich theywill be put. Thismeans that the composite graphs are stronglyweighted
toward semantic structures of implicit value, leaving utterances that result in disjoint or
useless component parts not able to aggregate at all. For example, if the patient says

I’m scared that one day, he’ll just stab me
SAVVY is able to assemble the conceptual graph

[FEAR] –
(expr) -> [PERSON:Patient]
(attr) -> [NEGATIVE]

(caus) ->[(futr) -> [SITUATION: [PERSON] < - (agnt) <- [PTRANS] -
(ptnt) -> [PERSON: Patient] - - - - - - - - - - - - - - - - - -¡
(rslt) -> [PHARM] -> (expr) -> [PERSON:Patient] - -!
(inst) -> [BLADE]
(ptim) -> [DAY:@1]]

only because the lexicon had definitions of useful subgraphs for “scared”, “stab” etc.
which, because they would likely represent harm to someone, are considered important
inclusions. Not every act or even every emotion is so provided for.

A simple database currently provides background knowledge for our experiments.
Each entry in the knowledgebase is a history list of zero or more CGs, indexed by
both a patient identifier and one of the 15 background topics (Sect. 2.3) such as
suicide_attempts, willingness_to_change and chief_complaint. Entries may be added,
deleted or modified during processing, so the database can be used as a working memory
to update and maintain therapeutic reasoning over sessions. Initially these entries are
provided manually to represent information from the pre-existing admitting interview,
but these can be updated, edited or deleted by the automated therapist. Automatic entries
are vetted by domain-specific heuristic filters focussed on the topic of interest, so that
only relevant CGs can be pushed onto the appropriate lists. Our experience suggests that
it is not difficult to write these provided high-level conceptual functions, based on the
canonical operators, are available to find and test specific sections of the graphs.

3.2 Expert System for Executive Control

Psychiatric expertise is represented by a clinical Expert System Therapist (EST), based
on TMYCIN [21]. This shell is populatedwith rules from the above-mentioned treatment
theories. Consultation of the system is performed at each conversational turn, informed
by the current state of variables from the inputs. Backward-chaining inference maintains
internal state variables and recommends the best “pragmatic move” and” therapist’s
target” for the response generation process. These parameters allow the selection and
instantiationof appropriate high-level template graphs that form the therapist’s utterances

192 G. Mann et al.

to support, guide, query, inform or sympathize at that moment. In some simple cases,
canned responses are issued to bypass the language pipeline and reduce processing
demands.

3.3 Response Generation

Responses CGs are generated based on the three input sources and two variables from
the therapeutic process (Fig. 2). The heuristic first checks the patient’s emotional state.
If this is outside the distressed region (Sect. 2), an expressive form CG is created by first
maximally joining generalised CG templates for the pragmatic move (e.g. query) and the
content recommended for the current therapeutic goal (e.g. establish_complaint). This is
then instantiated with background information. If the patient’s emotional state is inside
the distressed region, the EST will recommend a pragmatic move of sympathy and the
heuristic will force the use of a sympathy template for its expressive form. The con-
structed CG is subsequently passed to a realization heuristic, SentenceRealization()which
in turn expresses the CG as a grammatically correct sentence using YAG (Yet Another
Generator) [22].

Function GenerateSentence (emotional_state, patient_CG, background_info, pragmatic_move, therapeutic_goal) {
If the emotional_state is not in distressed region {

pragmatic_move_CG ← retrieve the template for this pragmatic move
therapeutic_goal_CG ← retrieve the CG for this therapeutic goal, elaborated from patient_CG
expressive_form_CG ← maximal_join (pragmatic_move_CG, therapeutic_goal_CG)
constructed_CG ← instantiate_background (expressive_form_CG, background_info)
SentenceRealization (constructed_CG, pragmatic_move)}}

else {
SentenceRealization (sympathy_CG, pragmatic_move)}

Fig. 2. Pseudocode for the heuristic function creating the expressive form.

YAG is a template-based syntactic realization system, which comes with a set of
core grammar templates that can be used to generate noun phrases, verbs, prepositional
phrases, and other clauses. We are developing a further set of custom templates using
those core grammar templates with optional syntactic constraints. The heuristic function
SentenceRealization()(Fig. 3) loops through the constructed CG and creates a list of
attribute-value pairs, based on grammatical/semantic roles.

Function SentenceRealization (constructed_CG, pragmatic_move)
{For each concept in a CG

{knowledge_list ← push attribute-value pair onto knowledge_list}
Retrieve template based on the pragmatic move and the constructed_CG
For each slot in the template

{Override the slot default value with the value from knowledge_list}
Realize the template using the command surface-1 of YAG.}

Fig. 3. Pseudocode for realizing the expressive form as text.

Conceptual Reasoning for Generating Automated Psychotherapeutic Responses 193

4 Conclusion

This generation component is still in development, so no systematic evaluation has
yet been conducted. Some components have been coded and unit tested. Getting the
heuristics of the system to interact smoothly with each other is a challenge; that is to be
expected in this modelling approach. We are concerned about the number of templates
that may be required, particularly at the surface expression level. If they become too
difficult or too many to create, the method might become infeasible. The heuristic tests
are not difficult to write, but are, of course, imperfect compared to algorithms. Also, we
have not fully tested the emotion tracking on real patient texts so far.

Our planned evaluation has two parts. First, a systematic “glass-box” analysis will
discover the strengths and limitations of the generation component, particularly with
respect to the amount of prior knowledge that needs to be provided and the generality of
the techniques. Second, the “suitability”, “naturalness” and “empathy” of the response
generation for human use will be tested, using a series of ersatz patient interview sce-
narios to avoid the ethical complications of testing on real patients. The scenarios will
provide human judges (expert psychotherapists or, more likely, students in training to be
psychotherapists) with information about an ongoing therapeutic intervention. Example
patient utterances and the actual responses generated by the systemwill also be provided
as transcripts. The judges will then rate these transcripts on those variables using their
own knowledge of therapy.

Finally, we reiterate that if hand-built conceptual representations can be practically
built up using existingmethods, the effort will beworthwhile if the systems are thenmore
transparent and auditable than NN or statistical ML system and thus, more trustworthy.

References

1. Jack, H.E., Myers, B., Regenauer, K.S., Magidson, J.F.: Mutual capacity building to reduce
the behavioral health treatment gap globally. Adm. Policy Mental Health Mental Health Serv.
Res. 47(4), 497–500 (2019). https://doi.org/10.1007/s10488-019-00999-y

2. Meltzer, H.E., et al.: The reluctance to seek treatment for neurotic disorders. Int. Rev.
Psychiatry 15(2), 123–128 (2003)

3. Fairburn, C.G., Patel, V.H.: The impact of digital technology on psychological treatments and
their dissemination. Behav. Res. Therapy 88, 19–25 (2017)

4. Marcus, G.: Deep learning: a critical appraisal. arXiv preprint arXiv:1801.00631 (2018)
5. Pearl, J.: Theoretical impediments to machine learning with seven sparks from the causal

revolution. arXiv preprint arXiv:1801.04016 (2018)
6. Ellis, A.: Rational-emotive therapy. Big Sur Recordings, CA, USA, pp. 32–44 (1973)
7. Greenberg, L.S., Paivio, S.C.: Working with Emotions in Psychotherapy, vol. 13. Guilford

Press, New York (2003)
8. Calvo, R.A., D’Mello, S.: Affect detection: an interdisciplinary review of models, methods,

and their applications. IEEE Trans. Affect. Comput. 1, 18–37 (2010)
9. Hancock, J.T., Landrigan, C., Silver, C.: Expressing emotion in text-based communication. In:

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 929–
932. Association for Computing Machinery (2007)

10. Gill, A.J., French, R.M., Gergle, D., Oberlander, J.: Identifying emotional characteristics from
short blog texts. In: 30th Annual Conference of the Cognitive Science Society, Washington,
DC, pp. 2237–2242. Cognitive Science Society (2008)

https://doi.org/10.1007/s10488-019-00999-y
http://arxiv.org/abs/1801.00631
http://arxiv.org/abs/1801.04016

194 G. Mann et al.

11. Breck, E., Choi, Y., Cardie, C.: Identifying expressions of opinion in context. In: IJCAI, vol.
7, pp. 2683–2688, January 2007

12. Smith, C.A., Ellsworth, P.C.: Attitudes and social cognition. J. Pers. Soc. Psychol. 48(4),
813–838 (1985)

13. McNally, A., et al.: Counseling and Psychotherapy Transcripts, Volume II. Alexander Street
Press, Alexandria (2014)

14. Mann, G.A.: Control of a navigating rational agent by natural language. Unpublished Ph.D.
thesis, University of New South Wales, Sydney, Australia (1996). https://manualzz.com/doc/
42762943/control-of-a-navigating-rational-agent-by-natural-language

15. Paola, P.V., et al.: Evaluation of OntoLearn, a methodology for automatic learning of domain
ontologies. In: Ontology Learning from Text: Methods, Evaluation and Applications, vol.
123, p. 92 (2005)

16. Leuzzi, F., Ferilli, S., Rotella, F.: ConNeKTion: a tool for handling conceptual graphs auto-
matically extracted from text. In: Catarci, T., Ferro, N., Poggi, A. (eds.) IRCDL 2013. CCIS,
vol. 385, pp. 93–104. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54347-
0_11

17. Morrison, J.: The First Interview: A Guide for Clinicians. Guilford Press, New York (1993)
18. Hoyt, M.F.: The temporal structure of therapy. In: O’Donohue, W.E., et al. (ed.) Clinical

Strategies for Becoming a Master Psychotherapist, pp. 113–127. Elsevier (2006)
19. Shoham, V., Rohrbaugh, M., Patterson, J.: Problem-and solution-focused couple therapies:

the MRI and Milwaukee models. In: Jacobson, N.S., Gurman, A.S. (eds.) Clinical Handbook
of Couple Therapy, pp. 142–163. Guilford Press, New York (1995)

20. Strapparava, C., Valitutti, A.: WordNet-affect: an affective extension of WordNet. In: 4th
International Conference on Language Resources and Evaluation, pp. 1083–1086 (2004)

21. Novak, G.: TMYCIN expert system tool. Technical Report AI87–52, Computer Science
Department, University of Texas at Austin (1987). http://www.cs.utexas.edu/ftp/AI-Lab/tech-
reports/UT-AI-TR-87-52.pdf. Accessed 5 Feb 2018

22. Channarukul, S.,McRoy, S.W., Ali, S.S.: Enriching partially-specified representations for text
realization using an attribute grammar. In: Proceedings of the 1st International Conference on
NLG,Mitzpe Ramon, Israel, vol. 14, pp. 163–170. Association for Computational Linguistics
(2000)

https://manualzz.com/doc/42762943/control-of-a-navigating-rational-agent-by-natural-language
https://doi.org/10.1007/978-3-642-54347-0_11
http://www.cs.utexas.edu/ftp/AI-Lab/tech-reports/UT-AI-TR-87-52.pdf

Benchmarking Inference Algorithms
for Probabilistic Relational Models

Tristan Potten and Tanya Braun(B)

Institute for Information Systems, University of Lübeck, Lübeck, Germany
tristan.potten@student.uni-luebeck.de, braun@ifis.uni-luebeck.de

Abstract. In the absence of benchmark datasets for inference algo-
rithms in probabilistic relational models, we propose an extendable
benchmarking suite named ComPI that contains modules for automatic
model generation, model translation, and inference benchmarking. The
functionality of ComPI is demonstrated in a case study investigating both
average runtimes and accuracy for multiple openly available algorithm
implementations. Relatively frequent execution failures along with issues
regarding, e.g., numerical representations of probabilities, show the need
for more robust and efficient implementations for real-world applications.

Keywords: StaRAI · Lifted inference · Probabilistic inference

1 Introduction

At the heart of many machine learning algorithms lie large probabilistic models
that use random variables (randvars) to describe behaviour or structure hid-
den in data. After a surge in effective machine learning algorithms, efficient
algorithms for inference come into focus to make use of the models learned or to
optimise machine learning algorithms further [5]. This need has lead to advances
in probabilistic relational modelling for artificial intelligence (also called statisti-
cal relational AI, StaRAI for short). Probabilistic relational models combine the
fields of reasoning under uncertainty and modelling incorporating relations and
objects in the vein of first-order logic. Handling sets of indistinguishable objects
using representatives enables tractable inference [8] w.r.t. the number of objects.

Very few datasets exist as a common baseline for comparing different
approaches beyond models of limited size (e.g., epidemic [11], workshops [7],
smokers [18]). Therefore, we present an extendable benchmarking suite named
ComPI (Compare Probabilistic Inference) that allows for benchmarking imple-
mentations of inference algorithms. The suite consists of (1) an automatic gen-
erator for models and queries, (2) a translation tool for providing the generated
models in the format needed for the implementations under test, and (3) a mea-
surement module that batch-executes implementations for the generated models
and collects information on runtimes and inference results.

In the following, we begin with a formal definition of the problem that the
benchmarked inference algorithms solve. Afterwards, we present the functions of
the modules of ComPI. Lastly, we present a case study carried out with ComPI.
c© Springer Nature Switzerland AG 2020
M. Alam et al. (Eds.): ICCS 2020, LNAI 12277, pp. 195–203, 2020.
https://doi.org/10.1007/978-3-030-57855-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57855-8_15&domain=pdf
http://orcid.org/0000-0003-4873-0398
http://orcid.org/0000-0003-0282-4284
https://doi.org/10.1007/978-3-030-57855-8_15

196 T. Potten and T. Braun

2 Inference in Probabilistic Relational Models

The algorithms considered in ComPI solve query answering problems on a model
that defines a full joint probability distribution. In this section, we formally
define a model and the query answering problem in such models. Additionally,
we give intuitions about how query answering algorithms solve these problems.

2.1 Parameterised Models

Parameterised models consist of parametric factors (parfactors). A parfactor
describes a function, mapping argument values to real values (potentials).
Parameterised randvars (PRVs) constitute arguments of parfactors. A PRV is
a randvar parameterised with logical variables (logvars) to compactly represent
sets of randvars [9]. Definitions are based on [13].

Definition 1. Let R be a set of randvar names, L a set of logvar names, Φ
a set of factor names, and D a set of constants (universe). All sets are finite.
Each logvar L has a domain D(L) ⊆ D. A constraint is a tuple (X , CX) of a
sequence of logvars X = (X1, . . . , Xn) and a set CX ⊆ ×n

i=1D(Xi). The sym-
bol � for C marks that no restrictions apply, i.e., CX = ×n

i=1D(Xi). A PRV
R(L1, . . . , Ln), n ≥ 0 is a syntactical construct of a randvar R ∈ R possibly
combined with logvars L1, . . . , Ln ∈ L. If n = 0, the PRV is parameterless and
constitutes a propositional randvar. The term R(A) denotes the possible values
(range) of a PRV A. An event A = a denotes the occurrence of PRV A with range
value a ∈ R(A). We denote a parfactor g by φ(A)|C with A = (A1, . . . , An) a
sequence of PRVs, φ : ×n

i=1R(Ai) �→ R
+ a function with name φ ∈ Φ, and C a

constraint on the logvars of A. A set of parfactors forms a model G := {gi}ni=1.

The term gr(P) denotes the set of all instances of P w.r.t. given constraints. An
instance is a grounding, substituting the logvars in P with constants from given
constraints. The semantics of a model G is given by grounding and building
a full joint distribution PG. Query answering refers to computing probability
distributions, which boils down to computing marginals on PG. Lifted algorithms
seek to avoid grounding and building PG. A formal definition follows.

Definition 2. With Z as normalising constant, a model G represents the full
joint distribution PG = 1

Z

∏
f∈gr(G) f . The term P (Q|E) denotes a query in G

with Q a grounded PRV and E a set of events. The query answering problem
refers to solving a query w.r.t. PG.

2.2 Exact Lifted Inference Algorithms

The very first lifted algorithm is lifted variable elimination (LVE) [9], which
has been further refined [2,7,11,13]. LVE takes a model G and answers a query
P (Q|E) by absorbing evidence E and eliminating all remaining PRVs except Q
from G (cf. [13] for further details). With a new query, LVE restarts with the
original model. Therefore, further research concentrates on efficiently solving

Benchmarking Inference Algorithms for Probabilistic Relational Models 197

Fig. 1. Modules ComPI. The arrows indicate the direction of the flow of created models.
The arrow bypassing the translator module indicates that no translation is needed for
frameworks working on BLOG models.

multiple query answering problems on a given model, often by building a helper
structure based on a model, yielding algorithms such as (i) the lifted junction
tree algorithm (LJT) [1], (ii) first-order knowledge compilation (FOKC) [17,18],
or (iii) probabilistic theorem proving (PTP) [3]. LJT solves the above defined
query answering problem while FOKC and PTP actually solve a weighted first
order model counting (WFOMC) problem to answer a query P (Q|E).

For all algorithms mentioned, implementations are freely available (see
Sect. 3.3). LVE and LJT work with models as defined above. The other algo-
rithms usually use a different modelling formalism, namely Markov logic net-
works (MLNs) [10]. One can transform parameterised models to MLNs and vice
versa [16]. Next, we present ComPI.

3 The Benchmarking Suite ComPI

ComPI allows for collecting runtimes and inference results from implementations
given automatically generated models. Figure 1 shows a schematic description of
ComPI consisting of three main parts, (i) a model generator BLOGBuilder that
allows the automatic creation of multiple models (in the BLOG grammar [6]) fol-
lowing different generation strategies, (ii) a translator TranslateBLOG for trans-
lation from the BLOG format to correct input format for individual frameworks
(if necessary), and (iii) a benchmarking tool PInBench for collection of runtimes
and inference results, summarized in multiple reports.

The modules can be accessed at https://github.com/tristndev/ComPI.
Below, we briefly highlight each module.

3.1 Model Generation

The goal is to generate models as given in Definition 1, generating logvar/randvar
names and domain sizes, combining logvars and randvars as well as forming
parfactors with random potentials. The input to BLOGBuilder is a model creation
specification, which selects a model creation and augmentation strategy, which
describe how models are created possibly based on a previous model.

Running BLOGBuilder creates a number of models as well as a number of
reports and logs that describe specific characteristics of the created models. The
output format of the models is BLOG. Additionally, BLOGBuilder generates

https://github.com/tristndev/ComPI

198 T. Potten and T. Braun

reports describing the model creation process and highlighting possible devia-
tions from the model creation specification. The module can be extended with
additional model creation and augmentation strategies.

3.2 Model Translation

The task is to translate models from the baseline BLOG format into equiva-
lent models of those different formats required for the frameworks in PInBench.
Accordingly, TranslateBLOG takes a number of model files in the BLOG format
as input. It subsequently translates the parsed models into different formats of
model specifications. As of now, the generation of the following output types
is possible: (i) Markov logic networks (MLNs) [10], (ii) dynamic MLNs [4], and
(iii) dynamic BLOG files. TranslateBLOG is easily extendable as new output
formats can be added by specifying and implementing corresponding translation
rules and syntactic grammar to create valid outputs.

3.3 Benchmarking

The final module in ComPI is PInBench (Probabilistic Inference Benchmarking),
which serves to batch process the previously created model files, run inferences,
and collect data on these runs. PInBench can be interpreted as a control unit that
coordinates the running of an external implementation which it continuously and
sequentially supplies with the available model files. The following implementa-
tions in conjunction with the corresponding input formats are supported:

– GC-FOVE1 with propositional variable elimination and LVE,
– WFOMC2 with FOKC,
– Alchemy3 with PTP and sampling-based alternatives, and
– the junction tree algorithm4 in both its propositional and lifted form.

We also developed a dynamic version of PInBench, named DPInBench, for
dynamic models, i.e., models with a sequence of state, which could refer to pas-
sage of time. Currently, the implementations of UUMLN, short for University of
Ulm Markov Logic Networks5 and the Lifted Dynamic Junction Tree (LDJT)6

as well as their input formats are supported. The data collected by PInBench is
stored in multiple reports, e.g., giving an overview on the inference success per
file and query (queries on big, complex models might fail) or summarizing the
run times and resulting inference probabilities.

Implementations not yet supported can easily be added by wrapping each in
an executable file and specifying calls needed for execution. Additionally, parsing
logics for generated outputs need to be implemented to extract information.
1 dtai.cs.kuleuven.be/software/gcfove (accessed 16 Apr. 2020).
2 dtai.cs.kuleuven.be/software/wfomc (accessed 16 Apr. 2020).
3 alchemy.cs.washington.edu/ (accessed 16 Apr. 2020).
4 ifis.uni-luebeck.de/index.php?id=518#c1216 (accessed 16 Apr. 2020).
5 uni-ulm.de/en/in/ki/inst/alumni/thomas-geier/ (accessed 16 Apr. 2020).
6 ifis.uni-luebeck.de/index.php?id=483 (accessed 16 Apr. 2020).

https://dtai.cs.kuleuven.be/software/gcfove
https://dtai.cs.kuleuven.be/software/wfomc
http://alchemy.cs.washington.edu/
https://www.ifis.uni-luebeck.de/index.php?id=518#c1216
https://www.uni-ulm.de/en/in/ki/inst/alumni/thomas-geier/
https://www.ifis.uni-luebeck.de/index.php?id=483

Benchmarking Inference Algorithms for Probabilistic Relational Models 199

4 Case Study

To demonstrate the process of benchmarking different implementations using
ComPI, we present an exemplary case study. Within the case study, the pro-
cess consists of model generation with BLOGBuilder, model translation with
TranslateBLOG, and benchmarking of inference runs with PInBench. All imple-
mentations currently supported by ComPI are included here. We do not con-
sider sampling-based algorithms implemented in Alchemy as performance highly
depends on the parameter setting for sampling, which requires an analysis of its
own and is therefore not part of this case study.

4.1 Model Generation

Model generation starts with creating base models given a set of specified param-
eters (number of logvars/randvars/parfactors, domain sizes). Subsequently, these
base models are augmented according to one of the following strategies:

– Strategy A - Parallel Factor Augmentation: The previous model is cloned
and each parfactor extended by one additionally created PRV with randomly
chosen existing logvars.

– Strategy B - Increment By Model : The base model is duplicated (renaming
names) and appended to the current. A random randvar from the duplicate is
connected with a random randvar of the current model via a new parfactor.

The strategies are set up to increase complexity based on LVE. Strategy A
increases the so-called tree width (see, e.g., [12] for details). Strategy B increases
the model size, while keeping the tree width close to constant.

It is non-trivial to generate series of models that increase in complexity with-
out failing executions. Overall, we intend the generation of “balanced” models
with moderately connected factors to allow all methods to demonstrate their
individual strengths and weaknesses while maintaining manageable runtimes.
Creating multiple base models with random influences (e.g., regarding relations
between model objects) leads to multiple candidate model series, which allows for
selecting one series that leads to runs with the least amount of errors. We tested
multiple parameter settings for both strategies to generate candidate series. The
specific numbers for parameters are random but small to generate models of lim-
ited size, ensuring that the tested programs successfully finish running them. We
vary the domain sizes while keeping the number of logvars small for the models
to be liftable from a theoretical point of view.7 More precisely, the settings given
by the Cartesian product of the following parameters have been evaluated for
generating base models for each strategy:

– Strategy A: domain size ∈ {10, 100, 1000}, #logvar ∈ {2}, #randvar ∈
{3, 4, 5}, #factor = #randvar− 1, max randvar args = 2. Augmentation in
16 steps.

7 Models with a maximum of two logvars per parfactor are guaranteed to have infer-
ence runs without any groundings during its calculations [14,15].

200 T. Potten and T. Braun

Fig. 2. Mean inference times per query (with logarithmic y-axis).

– Strategy B: domain size ∈ {10, 100, 1000}, #logvar ∈ {1}, #randvar ∈
{2}, #factor ∈ {1}. Further restrictions: max randvar occurrences = 4,
max randvar args = 2, max factor args = 2. Augmentation in 40 steps.

In each model file, one query is created per randvar. Model generation was
executed in three independent runs to obtain multiple candidate models due to
the included factors of randomness. The randomness may also lead to model
series of potentially varying complexity. Preliminary test runs have led to the
selection of the model series investigated below.

4.2 Evaluation Results

We analyse the given frameworks regarding two aspects: Firstly, runtimes of
inference and secondly, inference accuracy.

Runtimes. Figure 2 shows runtimes, displaying the relation between augmenta-
tion steps, domain sizes, and mean query answering times for PTP, FOKC, LVE
and LJT. The two propositional algorithms supported are not shown in the plots
as both presented very steep increases along with failures on early augmentation
steps for bigger domain sizes (as expected without lifting).

Regarding Strategy A, the mean time per query increases for bigger domain
sizes for all frameworks. PTP and FOKC have a similar early increase and fail
on the models after augmentation steps 6 and 7, respectively. They are the
only implementations working with MLNs as input. As the original models have

Benchmarking Inference Algorithms for Probabilistic Relational Models 201

random potentials for each argument value combination in each parfactor, the
translated MLNs do not have any local symmetries, which these algorithms
would be able to exploit. Generating models with many local symmetries, e.g.,
only two different potentials per whole parfactor, may lead to better results for
FOKC and PTP, with the remaining algorithms taking longer. Another possible
explanation may (of course) also be that there are bugs in implementations or
employed heuristics may be improvable. One could actually use ComPI to test
an implementation with random inputs for bugs or better heuristics. The lifted
algorithms LJT and LVE have steeper increases for high augmentation steps and
the biggest domain size. The reason lies in so-called count-conversions that have
a higher complexity than normal elimination operations and become necessary
starting with augmentation step 11.

A Technical Note on Count Conversions: A count-conversion is a more
involved concept of lifted inference where a logical variable is counted to remove
it from the list of logical variables [13]. A count-conversion involves reformulating
the parfactor, which enlarges it. A PRV is replaced by a so called counted PRV
(CRV), which has histograms as range values. Consider a Boolean PRV R(X)
with three possible X values, then a CRV #X [R(X)] has the range values [0, 3],
[1, 2], [2, 1] and [3, 0], which denote that given a histogram [n1, n2], n1 ground
instances of R(X) have the value true and n2 instances the value false. Given
the range size r of the PRV and the domain size n of the logical variable that
gets counted, the new CRV has

(
n+r−1
n−1

)
range values, which lies in O(rn) [12].

In the case study, we use boolean PRVs, so r = 2. If n is small, the blow up
by a count conversion is easily manageable. However, with large n, the blow up
leads to a noticeable increase in runtimes, which is the reason why the increase
in runtimes with step 11, at which point count conversion become necessary, is
more noticeable with larger domain sizes.

Given Strategy B, the collected times display less extreme increases over the
augmentation steps compared to Strategy A. PTP and FOKC exhibit similar
behaviour compared to Strategy A. Again, changing domain sizes has little effect
on FOKC. LVE only manages to finish models with small domain sizes as the
models become too large overall. LJT is able to finish the models even for larger
augmentation steps. The reason is that runtimes of LJT mainly depend on the
tree width, i.e., the models of Strategy B have roughly the same complexity
during query answering for LJT. The jump between augmentation step 23 and
24 again can be explained by more count conversions occurring.

Inference Accuracy. Investigating the actual inference results presents an
alternative approach to analysing collected data. Since the tested implemen-
tations all perform exact inference, we expect the implementations to obtain
the same results on equivalent files and queries. Looking at accuracy allows for
identifying bugs. If adding implementations of approximate inference algorithms
to ComPI, one could compare accuracy of approximate inference against exact
results. Figure 3 shows a comparison of probabilities queried for one (smaller)
model generated for this case study. In this case, the implementations under

202 T. Potten and T. Braun

Fig. 3. Comparison of inference results between different frameworks.

investigation calculated identical results for all shown queries. However, exam-
ining models created at later augmentation steps reveals that increased model
complexities lead to errors in the outputted probabilities or even to no inter-
pretable values at all. The latter case is caused by flaws in the numerical rep-
resentations: NaN values occur when potentials get so small that they become
0 if represented as a float. When normalising a distribution, the normalising
constant is a sum over 0, leading to dividing 0 by 0, which results in a NaN.

5 Conclusion

We present ComPI, a benchmarking suite for comparing various probabilistic
inference implementations. ComPI consists of extendable tools for automatic
model generation, model translation, and inference benchmarking. A case study
demonstrates the simplicity of comparative analyses carried out with ComPI.
Similar analyses are needed in the evaluation of future novel algorithms in the
field of probabilistic inference. The extensibility of ComPI has the potential to
reduce the efforts for these evaluations.

For the tested implementations, it becomes evident that there is still a need to
provide bulletproof implementations. Occurring issues range from high memory
consumption to the lack of robustness regarding heuristics used by the algo-
rithms, exact numerical representations of probabilities, or reliable handling of
errors. Future work will need to address these points.

References

1. Braun, T., Möller, R.: Preventing groundings and handling evidence in the lifted
junction tree algorithm. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds.)
KI 2017. LNCS (LNAI), vol. 10505, pp. 85–98. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-67190-1 7

2. Braun, T., Möller, R.: Parameterised queries and lifted query answering. In: IJCAI
2018 Proceedings of the 27th International Joint Conference on AI, pp. 4980–4986.
IJCAI Organization (2018)

https://doi.org/10.1007/978-3-319-67190-1_7
https://doi.org/10.1007/978-3-319-67190-1_7

Benchmarking Inference Algorithms for Probabilistic Relational Models 203

3. Gogate, V., Domingos, P.: Probabilistic theorem proving. In: UAI 2011 Proceedings
of the 27th Conference on Uncertainty in AI, pp. 256–265. AUAI Press (2011)

4. Kersting, K., Ahmadi, B., Natarajan, S.: Counting belief propagation. In: UAI
2009 Proceedings of the 25th Conference on Uncertainty in AI, pp. 277–284. AUAI
Press (2009)

5. LeCun, Y.: Learning World Models: the Next Step Towards AI. Invited Talk
at IJCAI-ECAI 2018 (2018). https://www.youtube.com/watch?v=U2mhZ9E8Fk8.
Accessed 19 Nov 2018

6. Milch, B., Marthi, B., Russell, S., Sontag, D., Long, D.L., Kolobov, A.: BLOG:
probabilistic models with unknown objects. In: IJCAI 2005 Proceedings of the
19rd International Joint Conference on AI, pp. 1352–1359. IJCAI Organization
(2005)

7. Milch, B., Zettelmoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted
probabilistic inference with counting formulas. In: AAAI 2008 Proceedings of the
23rd AAAI Conference on AI, pp. 1062–1068. AAAI Press (2008)

8. Niepert, M., Van den Broeck, G.: Tractability through exchangeability: a new
perspective on efficient probabilistic inference. In: AAAI 2014 Proceedings of the
28th AAAI Conference on AI, pp. 2467–2475. AAAI Press (2014)

9. Poole, D.: First-order probabilistic inference. In: IJCAI 2003 Proceedings of the
18th International Joint Conference on AI, pp. 985–991. IJCAI Organization (2003)

10. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–
136 (2006). https://doi.org/10.1007/s10994-006-5833-1

11. de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference.
In: IJCAI 2005 Proceedings of the 19th International Joint Conference on AI, pp.
1319–1325. IJCAI Organization (2005)

12. Taghipour, N., Davis, J., Blockeel, H.: First-order decomposition trees. In: NIPS
2013 Advances in Neural Information Processing Systems, vol. 26, pp. 1052–1060.
Curran Associates, Inc. (2013)

13. Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted variable elimination:
decoupling the operators from the constraint language. J. Artif. Intell. Res. 47(1),
393–439 (2013)

14. Taghipour, N., Fierens, D., Van den Broeck, G., Davis, J., Blockeel, H.: Com-
pleteness results for lifted variable elimination. In: AISTATS 2013 Proceedings of
the 16th International Conference on AI and Statistics, pp. 572–580. AAAI Press
(2013)

15. Van den Broeck, G.: On the completeness of first-order knowledge compilation
for lifted probabilistic inference. In: NIPS 2011 Advances in Neural Information
Processing Systems, vol. 24, pp. 1386–1394. Curran Associates, Inc. (2011)

16. Van den Broeck, G.: Lifted inference and learning in statistical relational models.
Ph.D. thesis, KU Leuven (2013)

17. Van den Broeck, G., Davis, J.: Conditioning in first-order knowledge compilation
and lifted probabilistic inference. In: AAAI 2012 Proceedings of the 26th AAAI
Conference on AI, pp. 1961–1967. AAAI Press (2012)

18. Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted
probabilistic inference by first-order knowledge compilation. In: IJCAI 2011 Pro-
ceedings of the 22nd International Joint Conference on AI, pp. 2178–2185. IJCAI
Organization (2011)

https://www.youtube.com/watch?v=U2mhZ9E8Fk8
https://doi.org/10.1007/s10994-006-5833-1

Analyzing Psychological Similarity Spaces
for Shapes

Lucas Bechberger1(B) and Margit Scheibel2

1 Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany
lbechberger@uos.de

2 Institute for Language and Information Science,
Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany

scheibel@uni-duesseldorf.de

1 Background and Motivation

The cognitive framework of conceptual spaces [3] proposes to represent concepts
and properties such as apple and round as convex regions in perception-based
similarity spaces. By doing so, the framework can provide a grounding for the
nodes of a semantic network. In order to use this framework in practice, one needs
to know the structure of the underlying similarity space. In our study, we focus
on the domain of shapes. We analyze similarity spaces of varying dimensionality
which are based on human similarity ratings and seek to identify directions in
these spaces which correspond to shape features from the psychological litera-
ture. The analysis scripts used in our study are available at https://github.com/
lbechberger/LearningPsychologicalSpaces.

Our psychological account of shapes can provide constraints and inspirations
for AI approaches. For example, distances in the shape similarity spaces can
give valuable information about visual similarity which can complement other
measures of similarity (such as distances in a conceptual graph). Moreover, the
interpretable directions in the similarity space provide means for verbalizing
this information (e.g., by noting that tools are more elongated than electrical
appliances). Furthermore, the shape spaces can be used in bottom-up procedures
for constructing new categories, e.g., by applying clustering algorithms. Finally,
membership in a category can be determined based on whether or not an item
lies inside the convex hull of a given category.

2 Data Collection

We used 60 standardized black-and-white line drawings of common objects (six
visually consistent and six visually variable categories with five objects each) for
our experiments (see Fig. 1 for an example from each category). We collected 15
shape similarity ratings for all pairwise combinations of the images in a web-
based survey with 62 participants. Image pairs were presented one after another
on the screen (in random order) and subjects were asked to judge the respective

c© Springer Nature Switzerland AG 2020
M. Alam et al. (Eds.): ICCS 2020, LNAI 12277, pp. 204–207, 2020.
https://doi.org/10.1007/978-3-030-57855-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57855-8_16&domain=pdf
http://orcid.org/0000-0002-1962-1777
https://github.com/lbechberger/LearningPsychologicalSpaces
https://github.com/lbechberger/LearningPsychologicalSpaces
https://doi.org/10.1007/978-3-030-57855-8_16

Analyzing Psychological Similarity Spaces for Shapes 205

Fig. 1. Example stimuli for which various perceptual judgments were collected.

similarity on a Likert scale ranging from 1 (totally dissimilar) to 5 (very similar).
The distribution of within-category similarities showed that the internal shape
similarity was higher for visually consistent categories (M = 4.18) than for
visually variable categories (M = 2.56; p < .001). For further processing, the
shape similarity ratings were aggregated into a global matrix of dissimilarities
by taking the mean over the individual responses and by inverting the scale (i.e.,
dissimilarity(x, y) = 5 − similarity(x, y)).

In the psychological literature, different types of perceptual features are dis-
cussed as determining the perception of complex objects, among others the line
shape (Lines) and the global shape structure (Form) [1]. We collected values
for all images with respect to these two features in two experimental setups.

In a first line of experiments, we collected image-specific ratings which are
based on attentive (att) image perception. We collected 9 ratings per image in
a web-based survey with 27 participants. Groups of four images were presented
one after another on the screen (in random order) together with a continuous
scale representing the respective feature (Lines: absolutely straight to strongly
curved; Form: elongated to blob-like). Subjects were asked to arrange the images
on the respective scale such that the position of each image in the final configu-
ration reflected their value on the respective feature scale. The resulting values
were aggregated for each image by using the median.

In a second line of experiments, we collected image-specific feature values
which are based on pre-attentive (pre-att) image perception. This was done in
two laboratory studies with 18 participants each. In both studies, the images
were presented individually for 50 ms on the screen; immediately before and
after the image a pattern mask was shown for 50 ms in order to prevent conscious
perception of the image. Subjects were asked to decide per button press as fast
as possible which value of the respective feature pertained to the critical image
mostly (Lines study: straight or curved; Form study: elongated or blob-like).
The binary values (in total 18 per image for each feature) were transformed into
graded values (percentage of curved and blob-like responses, respectively).

A comparison of the two types of feature values revealed a strong correlation
between the judgements based on attentive and pre-attentive shape perception
(rs = 0.83 for Lines and rs = 0.85 for Form). In both cases, the 15 images with
the highest and lowest values were used as positive and negative examples for
the respective feature.

206 L. Bechberger and M. Scheibel

Fig. 2. Results of our analysis of the similarity spaces.

3 Analysis

We used the SMACOF algorithm [4] for performing nonmetric multidimensional
scaling (MDS) on the dissimilarity matrix. Given a desired number n of dimen-
sions, MDS represents each stimulus as a point in an n-dimensional space and
arranges these points in such a way that their pairwise distances correlate well
with the pairwise dissimilarities of the stimuli they represent. The SMACOF
algorithm uses an iterative process of matrix multiplications to minimize the
remaining difference between distances and dissimilarities.

A good similarity space should be able to reflect the psychological dissim-
ilarities accurately. Figure 2a shows the Spearman correlation of dissimilarities
and distances as a function of the number of dimensions. As we can see, a one-
dimensional space is not sufficient for an accurate representation of the dissimi-
larities. We can furthermore observe that using more than five dimensions does
not considerably improve the correlation to the dissimilarities. As a baseline,
we have also computed the distances between the pixels of various downscaled
versions of the images. These pixel-based distances reached only a Spearman
correlation of rs = 0.40 to the dissimilarities, indicating that shape similarity
cannot easily be determined based on raw pixel information.

The framework of conceptual spaces assumes that the similarity spaces are
based on interpretable dimensions. As distances between points are invariant
under rotations, the axes of the coordinate system from the MDS solution might
however not coincide with interpretable features. In order to identify inter-
pretable directions in the similarity spaces, we trained a linear support vector
machine to separate positive from negative examples for each of the psychological
features. The normal vector of the separating hyperplane points from negative
to positive examples and can therefore be interpreted as the direction represent-
ing this feature [2]. Figure 2b shows the quality of this separation (measured
with Cohen’s kappa) as a function of the number of dimensions. While a one-
dimensional space again gives poor results, increasing the number of dimensions
of the similarity space improves the evaluation metric. Six dimensions are always
sufficient for perfect classification. Moreover, it seems like the feature Form is

Analyzing Psychological Similarity Spaces for Shapes 207

found slightly earlier than Lines. Finally, we do not observe considerable differ-
ences between pre-attentive and attentive ratings.

The framework of conceptual spaces furthermore proposes that conceptual
regions in the similarity space should be convex and non-overlapping. We have
therefore constructed the convex hull for each of the categories from our data
set. We then estimated the overlap between these conceptual regions by count-
ing for each convex hull the number of intruder items from other categories.
Figure 2c plots the overall number of these intruders as a function of the number
of dimensions. As we can see, the number of intruders one would expect for ran-
domly arranged points drops very fast with more dimensions and becomes zero
in a five-dimensional space. However, the point arrangements found by MDS
produce clearly less overlap between the conceptual regions than this random
baseline. Overall, it seems that conceptual regions tend to be convex in our
similarity spaces.

4 Discussion and Conclusions

In our study, we found that similarity spaces with two to five dimensions seem
to be good candidates for representing shapes: A single dimension does not seem
to be sufficient while more than five dimensions do not improve the quality of
the space. The shape features postulated in the literature were indeed detectable
as interpretable directions in these similarity spaces. In order to understand the
similarity space for shapes even better, additional features from the literature
(such as Orientation) will be investigated.

The main limitations of our results are twofold: Firstly, we only consider
two-dimensional line drawings in our study. Our results are therefore not directly
applicable to three-dimensional real world objects. Secondly, the similarity spaces
obtained through MDS can only be used for a fixed set of stimuli. In future
work, we aim to train an artificial neural network on mapping also novel images
to points in the shape similarity spaces (cf. [5]).

References

1. Biederman, I.: Recognition-by-components: a theory of human image understanding.
Psychol. Rev. 94(2), 115–147 (1987)

2. Derrac, J., Schockaert, S.: Inducing semantic relations from conceptual spaces:
a data-driven approach to plausible reasoning. Artif. Intell. 228, 66–94 (2015).
https://doi.org/10.1016/j.artint.2015.07.002

3. Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press, Cam-
bridge (2000)

4. de Leeuw, J.: Recent Development in Statistics, Chap. Applications of Convex Anal-
ysis to Multidimensional Scaling, pp. 133–146. North Holland Publishing, Amster-
dam (1977)

5. Sanders, C.A., Nosofsky, R.M.: Using deep-learning representations of complex nat-
ural stimuli as input to psychological models of classification. In: Proceedings of the
2018 Conference of the Cognitive Science Society, Madison (2018)

https://doi.org/10.1016/j.artint.2015.07.002

Author Index

Andrews, Simon 59

Bechberger, Lucas 204
Bertaux, Aurélie 74
Bisquert, Pierre 3
Brabant, Quentin 74
Braun, Tanya 145, 195

Couceiro, Miguel 48
Coulet, Adrien 48
Croitoru, Madalina 3, 33

Dhillon, Pyara 186

Feuerstein, Esteban 161

Gehrke, Marcel 145
Ghawi, Raji 132

Hecham, Abdelraouf 3

Ignatov, Dmitry I. 90

Kishore, Beena 186
Konecny, Jan 103
Krajča, Petr 103
Kwuida, Léonard 90, 117

Leemhuis, Mena 177

Mann, Graham 186
Missaoui, Rokia 117
Monnin, Pierre 48
Mouakher, Amira 74

Napoli, Amedeo 48
Nguyen, Thu Huong 18

Ortiz de Zarate, Juan Manuel 161
Özçep, Özgür L. 177

Pfeffer, Jürgen 132
Polovina, Simon 145
Potten, Tristan 195

Ruas, Pedro H. B. 117

Scheibel, Margit 204
Song, Mark A. J. 117

Tettamanzi, Andrea G. B. 18

Wolter, Diedrich 177

Yun, Bruno 33

	Preface
	Organization
	Abstracts of Keynote Talks
	Towards Ordinal Data Science
	Compositional Conceptual Spaces
	Tutorial Abstracts
	FCA and Knowledge Discovery
	Mathematical Similarity Models in Psychology
	Contents
	I Knowledge Bases
	A Formalism Unifying Defeasible Logics and Repair Semantics for Existential Rules
	1 Introduction
	2 Logical Language
	3 Statement Graphs for Defeasible Reasoning
	4 Statement Graphs for Repair Semantics
	4.1 New Labeling for IAR Semantics
	4.2 New Labeling for ICAR Semantics

	5 Human Intuitions for Conflict Management
	5.1 New Semantics for Reasoning in Presence of Conflict

	6 Discussion
	References

	Using Grammar-Based Genetic Programming for Mining Disjointness Axioms Involving Complex Class Expressions
	1 Motivation
	2 Basic Concepts of Grammar-Based Genetic Programming
	3 A Grammar-Based GP for Disjointness Axioms Discovery
	3.1 BNF Grammar Construction
	3.2 Translation to Class Disjointness Axioms
	3.3 Evaluation Framework

	4 Experimental Setup
	4.1 Training Dataset Preparation
	4.2 Parameters
	4.3 Performance Evaluation

	5 Results and Discussions
	6 Related Work
	7 Conclusion
	References

	An Incremental Algorithm for Computing All Repairs in Inconsistent Knowledge Bases
	1 Introduction
	2 Background Notions
	3 Repairs Generation
	3.1 From Conflicts to Repairs
	3.2 Generating a Repair Efficiently

	4 Evaluation
	4.1 Evaluation Results
	4.2 Conclusion

	References

	Knowledge-Based Matching of n-ary Tuples
	1 Introduction
	2 Problem Setting
	3 Ontology-Based Preorders
	3.1 Preorder p Based on Links Between Individuals
	3.2 Preorder O Based on Instantiation and Subsumption

	4 Using Preorders to Define Matching Rules
	5 Application to Pharmacogenomic Knowledge
	6 Discussion
	7 Conclusion
	References

	I Conceptual Structures
	Some Programming Optimizations for Computing Formal Concepts
	1 Introduction
	2 Formal Concepts
	3 A Re-Cap of the In-Close2 Algorithm
	4 Implementation of the Formal Context as a Bit Array
	5 Physical Sorting of Context Columns
	6 Storing and Processing Formal Concepts
	6.1 Intents
	6.2 Extents

	7 Implementation of the Algorithm
	7.1 Optimizing the Canonicity Test

	8 Evaluation
	9 Conclusions and Further Work
	References

	Preventing Overlaps in Agglomerative Hierarchical Conceptual Clustering
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Some Definitions
	2.2 Related Work
	2.3 An Abstract View of Agglomerative HCC
	2.4 Overlaps

	3 Formal Characterization of Pattern Languages Ensuring a Result Without Overlaps
	4 Preventing Overlaps in Agglomerative HCC
	5 Empirical Study
	5.1 Datasets
	5.2 Definition of a Pattern Language
	5.3 Basic Agglomerative HCC Experiment
	5.4 Corrected Agglomerative HCC Experiment

	6 Conclusion and Future Work
	References

	Interpretable Concept-Based Classification with Shapley Values
	1 Introduction
	2 JSM-Hypotheses and Formal Concepts
	3 Interpretable Machine Learning and Shapley Values
	3.1 Interpretable Machine Learning
	3.2 Shapley Values in FCA Community

	4 Shapley Values as Means of Attribute Importance for a Given Example
	5 Machine Experiments Demo
	6 Conclusion
	References

	Pruning in Map-Reduce Style CbO Algorithms
	1 Introduction
	2 Preliminaries
	2.1 Formal Concept Analysis
	2.2 Map-Reduce Style Data Processing

	3 Close-by-One Algorithm
	3.1 Basic Close-by-One
	3.2 Map-Reduce Style Close-by-One
	3.3 Close-by-One with Pruning
	3.4 Using Empty Intersections for Pruning

	4 Evaluation
	5 Conclusions
	References

	Pattern Discovery in Triadic Contexts
	1 Introduction
	2 Background
	2.1 Triadic Concept Analysis
	2.2 Border and Faces

	3 The Hasse Diagram Representation
	3.1 T-iPred Algorithm

	4 Triadic Generators Computation
	4.1 Definition
	4.2 Algorithms
	4.3 Example

	5 Implication Computation
	5.1 Feature-Based Implications
	5.2 Algorithm

	6 Experimental Results
	7 Conclusion
	References

	Characterizing Movie Genres Using Formal Concept Analysis
	1 Introduction
	2 Formal Concept Analysis
	3 Data
	4 Movie Genres Formal Context and Concept Lattice
	5 Semantic Similarity of Movies
	5.1 Edge Based (Path Length) Similarities
	5.2 Node Based (Information Content) Similarities
	5.3 FCA-Based Similarities
	5.4 Example

	6 Conclusion
	References

	I Reasoning Models
	Restricting the Maximum Number of Actions for Decision Support Under Uncertainty
	1 Introduction
	2 Case Study Setup
	2.1 Parameterised Probabilistic Model
	2.2 Parameterised Probabilistic Decision Model

	3 ReLiA: Restricting Lifted Action Assignments
	3.1 Restricting Actions
	3.2 Computing All Action Assignments Given Restrictions
	3.3 Related Work
	3.4 Discussion
	3.5 Theoretical Analysis

	4 Case Study: Enterprise Architecture Analysis
	5 Conclusion
	References

	Vocabulary-Based Method for Quantifying Controversy in Social Media
	1 Introduction
	2 Related Work
	3 Method
	3.1 Graph Building
	3.2 Community Identification
	3.3 Model Training
	3.4 Predicting
	3.5 Controversy Measure

	4 Experiments
	4.1 Topic Definition
	4.2 Datasets
	4.3 Results

	5 Discussions
	5.1 Limitations
	5.2 Conclusions

	References

	Multi-label Learning with a Cone-Based Geometric Model
	1 Introduction
	2 Preliminaries
	3 Geometric Models
	4 Multi-label Classification with a Geometric Model
	5 Experiments
	6 Conclusion
	References

	Conceptual Reasoning for Generating Automated Psychotherapeutic Responses
	1 Introduction
	2 Sources Informing the Generation of Responses
	2.1 Tracking of Patient’s Expressed Emotions
	2.2 Conceptual Analysis of Patient’s Utterances
	2.3 Using Context to Inform the Planning Process
	2.4 Executive Control

	3 Implementation Details
	3.1 Collection of Emotional State, Patient Utterances and Background Knowledge
	3.2 Expert System for Executive Control
	3.3 Response Generation

	4 Conclusion
	References

	Benchmarking Inference Algorithms for Probabilistic Relational Models
	1 Introduction
	2 Inference in Probabilistic Relational Models
	2.1 Parameterised Models
	2.2 Exact Lifted Inference Algorithms

	3 The Benchmarking Suite ComPI
	3.1 Model Generation
	3.2 Model Translation
	3.3 Benchmarking

	4 Case Study
	4.1 Model Generation
	4.2 Evaluation Results

	5 Conclusion
	References

	Analyzing Psychological Similarity Spaces for Shapes
	1 Background and Motivation
	2 Data Collection
	3 Analysis
	4 Discussion and Conclusions
	References

	Author Index

