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Preface

On behalf of the Program Committee, we would like to welcome you to the pro-
ceedings of the 16th edition of the International Symposium on Bioinformatics
Research and Applications (ISBRA 2020), held in Moscow, Russia, December 1–4,
2020. The symposium provides a forum for the exchange of ideas and results among
researchers, developers, and practitioners working on all aspects of bioinformatics and
computational biology and their applications.

This year we received 131 submissions in response to the call for extended abstracts.
The Program Committee decided to accept 41 of them for full publication in the
proceedings and oral presentation at the symposium; a list of these contributions can be
found in this front matter. The technical program also featured two keynote and three
invited talks given by five distinguished speakers: Prof. Oxana V. Galzitskaya from the
Russian Academy of Sciences, Russia; Prof. Phoebe Chen from La Trobe University,
Australia; Prof. Nir Ben-Tal from Tel Aviv University, Israel; Prof. Cenk Sahinalp
from National Cancer Institute, USA; and Prof. Srinivas Aluru from the Georgia
Institute of Technology, USA.

We would like to thank the Program Committee members and the additional
reviewers for volunteering their time to review and discuss symposium papers. We
would like to extend special thanks to the steering and general chairs of the symposium
for their leadership, and to the finance, publicity, workshops, local organization, and
publications chairs for their hard work in making ISBRA 2020 a successful event. Last
but not least, we would like to thank all authors for presenting their work at the
symposium.

June 2020 Zhipeng Cai
Ion Mandoiu

Giri Narasimhan
Pavel Skums

Xuan Guo
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Mitochondrial Haplogroup Assignment
for High-Throughput Sequencing Data
from Single Individual and Mixed DNA

Samples

Fahad Alqahtani1,2 and Ion I. Măndoiu1(B)

1 Computer Science and Engineering Department, University of Connecticut,
Storrs, CT, USA

fahad.alqahtani@uconn.edu, ion.mandoiu@engr.uconn.edu
2 National Center for Artificial Intelligence and Big Data Technology,
King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia

Abstract. The inference of mitochondrial haplogroups is an important
step in forensic analysis of DNA samples collected at a crime scene. In
this paper we introduced efficient inference algorithms based on Jaccard
similarity between variants called from high-throughput sequencing data
of such DNA samples and mutations collected in public databases such
as PhyloTree. Experimental results on real and simulated datasets show
that our mutation analysis methods have accuracy comparable to that
of state-of-the-art methods based on haplogroup frequency estimation
for both single-individual samples and two-individual mixtures, with a
much lower running time.

Keywords: Mitochondrial analysis · Haplogroup assignment ·
High-throughput sequencing · Forensic analysis

1 Introduction

Each human cell contains hundreds to thousands of mitochondria, each carrying
a copy of the 16,569bp circular mitochondrial genome. Three main reasons have
made mitochondrial DNA analysis an important tool for fields ranging from
evolutionary anthropology [3] to medical genetics [6,12] and forensic science
[1,4]. First, the high copy number makes it easier to recover mitochondrial DNA
(mtDNA) compared to the nuclear DNA, which is present in only two copies per
cell [9,14]. This is particularly important in applications such as crime scene or
mass disaster investigations where only a limited amount of biological material
may be available, and where sample degradation may render standard forensic
tests based on nuclear DNA analysis unusable [20]. Second, mitochondrial DNA
has a mutation rate about 10 times higher than the nuclear DNA, making it
an information rich genetic marker. The higher mutation rate is due to the
fact that mtDNA is subject to damage from reactive oxygen molecules released
c© Springer Nature Switzerland AG 2020
Z. Cai et al. (Eds.): ISBRA 2020, LNBI 12304, pp. 1–12, 2020.
https://doi.org/10.1007/978-3-030-57821-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57821-3_1&domain=pdf
http://orcid.org/0000-0002-2498-4871
http://orcid.org/0000-0002-4818-0237
https://doi.org/10.1007/978-3-030-57821-3_1
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Fig. 1. Top level mtDNA haplogroups (top) and sample haplogroups with their muta-
tions (bottom) from Build 17 of PhyloTree [25].

in mitochondria as by-product of energy metabolism. Finally, mitochondria are
inherited maternally without undergoing recombination like the nuclear genome,
which can simplify analysis, particularly for mixed samples [14].

Public databases have already amassed tens of thousands of such sequences
collected from populations across the globe. Comprehensive phylogenetic anal-
ysis of these sequences has been used to infer the progressive accumulation
of mutations in the mitochondrial genome during human evolution and track
human migrations [31]. Combinations of these mutations, inherited as haplotypes,
have also been used to trace back our most recent common matrilinear ancestor
referred to as the “mitochondrial Eve” [15,29]. Last but not least, clustering
of mitochondrial haplotypes has been used to define standardized haplogroups
characterized by shared common mutations [29]. Due to lack of recombination,
the evolutionary history of these haplogroups can be represented as a tree. The
best curated haplogroup tree is PhyloTree [26], which currently catalogues over
5,400 haplogroups defined over some 4,500 different mutations (see Fig. 1).

Although many of the available mtDNA sequences have been generated
using the classic Sanger sequencing technology, current mtDNA analyses are
mainly performed using short reads generated by high-throughput sequencing
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technologies. Numerous bioinformatics tools have been developed to conduct
mtDNA analysis of such short read data. The majority of these tools – including
MitoSuite [11], HaploGrep [15], Haplogrep2 [33], mtDNA-Server [32], MToolBox
[5], mtDNAmanager [16], MitoTool [8], Haplofind [29], Mit-o-matic [28], and Hi-
MC [24] – take a reference-based approach, seeking to infer the haplotype (and
assign a mitochondrial haplogroup) assuming that the DNA sample originates
from a single individual. While these tools can be helpful for conducting popu-
lation studies [14] or identifying mislabeled samples [18], they are not suitable
for mtDNA analysis of mixed forensics samples that contain DNA from more
than one individual, e.g., the victim and the crime perpetrator [30]. Even though
the mtDNA haplotypes are not unique to the individual, mitochondrial analy-
sis of mixed forensic samples is useful for including/excluding suspects in crime
scene investigations since there is a large haplogroup diversity in human popu-
lations [10].

To the best of our knowledge, mixemt [30] is the only available bioinformatics
tool that can assign haplogroups based on short reads generated from mixed
DNA samples. By using expectation maximization (EM), mixemt estimates the
relative contribution of each haplogroup in the mixture. To increase assignment
accuracy, the EM algorithm of mixemt is combined with two heuristic filters.
The first filter removes any haplogroup that has no support from short reads,
while the second filter removes haplogroup mutations that are likely to be private
or back mutations. Experiments with synthetic mixtures reported in [30] show
that mixemt has high haplogroup assignment accuracy. More recently, mixemt
has been used to infer mitochondrial haplogroup frequencies from short reads
generated from urban sewer samples collected at tens of sites across the globe,
and shown to generate estimates consistent with population studies based on
sequencing randomly sampled individuals [22].

In this paper we propose new algorithms for haplogroup assignment from
short sequencing reads generated from both single individual and mixed DNA
samples. There are two types of prior information associated with haplogroups
and available from resources such as PhyloTree [26]. First, each haplogroup has
one or more complete mtDNA sequences collected from previous studies. These
“exemplary” haplotypes can be leveraged to infer the frequency of each hap-
logroup from the short reads. Since many short reads are compatible with more
than one of the existing haplotypes, an expectation maximization framework
can be used to probabilistically allocate these reads and obtain maximum likeli-
hood estimates for the frequency haplotypes (and hence the haplogroups) in the
database. This is the primary approach taken by mixemt – the haplogroups with
high estimated frequency are then deemed to be present in the sample, while
the haplogroups with low frequency are deemed to be absent.

The second type of information captured by PhyloTree [26] are the muta-
tions associated each branch of the haplogroup tree. Since each haplogroup cor-
responds to a node in the phylogenetic tree, haplogroups are naturally associated
with the set of mutations accumulated on the path from the root to the respective
tree node. As an alternative to the frequency estimation approach of mixemt,
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the short reads can be aligned to the reference mtDNA sequence and used to
call the variants present in the sample. The set of detected variants can then
be matched against the sets of mutations associated with each haplogroup, with
the best match suggesting the haplogroup composition of the sample.

A priori it is unclear which of the two classes of approaches would yield better
haplogroup assignment accuracy. The frequency estimation approach critically
relies on having a good representation of the haplotype diversity in each hap-
logroup, and accuracy can be negatively impacted by lack of EM convergence
to a global likelihood maximum due to the high similarity between haplogroups.
In contrast, the accuracy of the mutation analysis approach depends on the
haplogroup tree being annotated with all or nearly all of the shared mutations
defining each haplogroup. High frequency of private and back mutations can
negatively impact accuracy of this approach.

In this paper we show that an efficient implementation of the mutation anal-
ysis approach can match the accuracy of the state-of-the-art frequency based
mixemt algorithm while running orders of magnitude faster. Specifically, our
implementation of mutation-based analysis uses the SNVQ algorithm from [7]
to identify from the short sequencing reads the mtDNA variants present in the
sample. The SNVQ algorithm, originally developed for variant calling from RNA-
Seq data, has been previosly shown to be robust to large variations in sequencing
depth (commonly observed in high-throughput mitogenome sequencing [7]) and
allelic fraction (as may be expected for a mixed sample with skewed DNA con-
tributions from different individuals). The set of variants called by SNVQ is
then matched to the best set of mutations corresponding to single haplogroups
or small collections of haplogroups using the classic Jaccard similarity measure.
Exhaustively searching the space of small collections of haplogroups was deemed
“computationally infeasible” in [30]. We show that for single individual samples
finding the haplogroup with highest Jaccard similarity can be found substan-
tially faster than running mixemt. For two individual mixtures, the pair of hap-
logroups with highest Jaccard similarity can be identified by exhaustive search
within time comparable to that required by mixemt, and orders of magnitude
faster when using advanced search algorithms [2].

The rest of the paper is organized as follows. In Sect. 2 we describe our
mutation-based haplogroup assignment algorithms. In Sect. 3 we present exper-
imental results comparing Jaccard similarity algorithms with mixemt on simu-
lated and real sequencing data from single individuals and two-individual mix-
tures. Finally, in Sect. 4 we discuss ongoing and future work.

2 Methods

2.1 Algorithms for Single Individual Samples

In a preprocessing step, we generate the list of mutations for each haplogroup
in PhyloTree (MToolBox [5] already includes a file with these lists). For a given
sample, we start by mapping the input paired-end reads to the RSRS human
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mitogenome reference using hisat2 [13]. We next use SNVQ [7] to identify vari-
ants from the mapped data. In our brute-force implementation of the algorithm,
referred to as JaccardBF, we compute the Jaccard coefficient between the set of
SNVQ variants and each list of mutations associated with leaf haplogroups in
PhyloTree. The Jaccard coefficient of two sets of variants is defined as the size
of the intersection divided by the size of the union. The haplogroup with the
highest Jaccard coefficient is then assigned as the haplogroup of the input data.

The brute-force algorithm can be substantially speeded up by using advanced
indexing techniques. In Sect. 3 we report results using the “All-Pair-Binary”
algorithm of [2], referred to as JaccardAPB, as implemented in the SetSimilari-
tySearch python library.

2.2 Algorithms for Two-Individual Mixtures

High-throughput reads are aligned to RSRS using hisat2 and then SNVQ is used
to call variants as above. We experimented with several haplogroup assignment
algorithms for two-individual mixtures. In the first, referred to as JaccardBF2,
the Jaccard coefficient is computed using brute-force search for each leaf hap-
logroup, and the top 2 haplogroups are assigned to the mixture. Unfortunately
this algorithm has relatively low accuracy, mainly since the haplogroup with the
second highest Jaccard similarity is most of the time a haplogroup closely related
to the haplogroup with the highest similarity rather than the second haplogroup
contributing to the mixture. To resolve this issue we experimented with comput-
ing the Jaccard coefficient between the set of SNVQ variants and all pairs of leaf
haplogroups, with the output consisting of the pair with maximum Jaccard sim-
ilarity. We implemented both brute-force and “All-Pair-Binary” indexing based
implementations of this pair search algorithm, referred to as JaccardBF pair and
JaccardAPB pair, respectively.

2.3 Algorithms for Mixtures of Unknown Size

When only an upper-bound k is known on the mixture size, the Jaccard coef-
ficient can be computed against sets of mutations generated from unions of
up to k leaf haplogroups. For mixtures of up to 2 individuals we report results
using the “All-Pair-Binary” indexing based implementation, referred to as Jac-
cardAPB 1or2.

3 Experimental Results

3.1 Datasets

Real Datasets. We downloaded all WGS datasets used in [26]. Specifically,
whole-genome sequencing data for 20 different individuals with distinct hap-
logroups was downloaded from the 1000 Genomes project (1KGP). The 20 indi-
viduals come from two populations: British and Yoruba, with the Yoruba indi-
viduals sampled from two different locations (the United Kingdom, and Nigeria,
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Table 1. Human WGS datasets for which ground truth haplogroups are Phylotree
leaves. Percentage of mtDNA reads was estimated by mapping reads to the published
1KGP sequence, except for the datasets marked with “*” for which there is no 1KGP
sequence and mapping was done against the RSRS reference.

Sample ID Run ID #Read pairs #mtDNA pairs %mtDNA Haplogroup

HG00096 SRR062634 24,476,109 43,370 0.177 H16a1

HG00097 SRR741384 68,617,747 112,039 0.163 T2f1a1

HG00098* ERR050087 20,892,714 37,602 0.180 J1b1a1a

HG00100 ERR156632 19,119,986 39,169 0.204 X2b8

HG00101 ERR229776 111,486,484 169,840 0.152 J1c3g

HG00102 ERR229775 109,055,650 217,187 0.199 H58a

HG00103 SRR062640 24,054,672 48,912 0.203 J1c3b2

HG00104* SRR707166 58,982,989 94,242 0.159 U5a1b1g

NA19093 ERR229810 98,728,262 234,170 0.237 L2a1c5

NA19096 SRR741406 55,861,712 131,587 0.235 L2a1c3b2

NA19099 ERR001345 7,427,776 16,038 0.215 L2a1m1a

NA19102 SRR788622 15,134,619 28,239 0.186 L2a1a1

NA19107 ERR239591 9,217,863 13,297 0.144 L3b2a

NA19108 ERR034534 65,721,104 3,959 0.006 L2e1a

Table 2. Human WGS datasets for which ground truth haplogroups are Phylotree
internal nodes.

Sample ID Run ID #Read pairs #mtDNA pairs %mtDNA Haplogroup

HG00099 SRR741412 57,222,221 102,968 0.179 H1ae

HG00106 ERR162876 24,328,397 50,635 0.208 J2b1a

NA19092 SRR189830 125,888,789 337,350 0.268 L3e2a1b

NA19095 SRR741381 65,174,483 101,118 0.155 L2a1a2

NA19098 SRR493234 40,446,917 85,658 0.211 L3b1a

NA19113 SRR768183 48,428,152 62,412 0.128 L3e2b

respectively). The haplogroups of 14 of the 20 individuals correspond to leaves
nodes in PhyloTree, while the haplogroups of the other 6 correspond to internal
nodes. Accession numbers, basic sequencing statistics, and ground truth hap-
logroups for the 20 datasets are given in Tables 1 and 2.

Synthetic Datasets. For the synthetic datasets, we simulated reads using
wgsim [17] based on exemplary sequences associated with leaf haplogroups in
PhyloTree [27]. Of the 2,897 leaf haplogroups, 423 haplogroups have only one
associated sequence, 2,454 haplogroups have two sequences, and 20 haplogroups
have three or more sequences. For single individual experiments, we generated
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Table 3. Experimental results on human WGS datasets for which the ground truth
haplogroups are Phylotree leaves.

Sample ID Ground truth Mixemt JaccardBF

Haplogroup Time Haplogroup Time

HG00096 H16a1 H16a1 8,343 H16a1 264

HG00097 T2f1a1 T2f1a1 897 T2f1a1 546

HG00098 J1b1a1a J1b1a1a 16,423 J1b1a1a 275

HG00100 X2b8 X2b8 12,477 X2b8 258

HG00101 J1c3g J1c3g 61,091 J1c3g 2,523

HG00102 H58a H58a 66,350 H58a 5,343

HG00103 J1c3b2 J1c3b2 29,733 J1c3b2 1,192

HG00104 U5a1b1g U5a1b1g 27,067 U5a1b1g 5,628

NA19093 L2a1c5 L2a1c5 59,107 L2a1c5 4,345

NA19096 L2a1c3b2 L2a1c3b2 44,338 L2a1c3b2 1,054

NA19099 L2a1m1a L2a1m1a 14,515 L2a1m1a 67

NA19102 L2a1a1 L2a1a1 13,642 L2a1a1 231

NA19107 L3b2a L3b2a 8,607 L3b2a 166

NA19108 L2e1a L2e1a 1,423 L2e1a 1,049

two sets of 10,000 simulated read pairs for each haplogroup, using different exem-
plary sequences as wgsim reference whenever possible, i.e., for all but the 423
haplogroups with a single associated sequence, for which the sole sequence was
used to generate both sets of wgsim reads. For mixture experiments we sim-
ilarly generated two groups of 2,897 two-individual mixtures by pairing each
haplogroup with a second haplogroup selected uniformly at random from the
remaining ones. Within each group, the reads were generated using wgsim and
the first and the second PhyloTree sequence, respectively, except for haplogroups
with a single PhyloTree sequence in which the sole sequence was used to generate
both sets of wgsim reads. For each pair of haplogroups we generated 10,000 read
pairs, with an equal number of read pairs from each haplogroup. We used default
wgsim parameters for simulating reads, in particular the sequencing error rate
was 1% and the mutation rate 0.001.

3.2 Results on Real Datasets

Tables 3 and 4 give the results obtained by mixemt and JaccardBF on the real
datasets consisting of PhyloTree leaf and internal haplogroups, respectively. Both
algorithms infer the expected haplogroup when the ground truth is a leaf Phy-
loTree node. For the six datasets in which the ground truth is an internal node of
PhyloTree mixemt always infers the haplogroup correctly, while JaccardBF always
infers a leaf haplogroup in the subtree rooted at the ground truth haplogroup.
Despite using brute-force search to identify the best matching haplogroup,
JacardBF is substantially faster (one order of magnitude or more) than mixemt.
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Table 4. Experimental results on human WGS datasets for which the ground truth
haplogroups are Phylotree internal nodes.

Sample ID Ground truth Mixemt JaccardBF

Haplogroup Time Haplogroup Time

HG00099 H1ae H1ae 40,733 H1ae1 1,820

HG00106 J2b1a J2b1a 24,614 J2b1a5 1,040

NA19092 L3e2a1b L3e2a1b 137,218 L3e2a1b1 6,610

NA19095 L2a1a2 L2a1a2 94,921 L2a1a2b 1,529

NA19098 L3b1a L3b1a 46,110 L3b1a11 650

NA19113 L3e2b L3e2b 62,643 L3e2b3 822

Table 5. Experimental results on synthetic single individual datasets generated from
the 2,897 leaf haplogroups in Phylotree.

Mixemt JaccardBF JaccardAPB

Acc Avg. time Acc Avg. time Acc Avg. time

Group1 99.275 7,251.490 99.379 83.780 99.413 0.041

Group2 99.448 7,185.373 99.517 81.428 99.620 0.043

Mean 99.361 7,218.432 99.448 82.604 99.517 0.042

Std. Dev 0.122 46.752 0.098 1.663 0.146 0.001

3.3 Accuracy Results for Single Individual Synthetic Datasets

The above results on real datasets already suggest that the mitochondrial hap-
logroup can be accurately inferred from WGS data. For a more comprehen-
sive evaluation we simulated reads using exemplary sequences from all leaf hap-
logroups in PhyloTree. Table 5 gives the results of this comparison. Both mixem
and Jaccard algorithms achieve over 99% accuracy on simulated datasets. As
for real datasets, JaccardBF is more than one order of magnitude faster than
mixemt. The indexing approach implemented in JaccardABP further reduces
the running time needed to find the best matching haplogroup with no loss in
accuracy.

3.4 Accuracy Results for Two-Individual Synthetic Mixtures

Table 6 gives experimental results on two-individual synthetic mixtures gener-
ated as described in Sect. 3.1. In these experiments we assume that it is a priori
known that the mixture consists of two different haplogroups. Consistent with
this assumption, the mixemt prediction is taken to be the two haplogroups with
highest estimated frequencies (regardless of the magnitude of the estimated fre-
quencies). Under this model, the accuracy of mixemt remains high but is slightly
lower for mixtures than for single haplogroup samples, with an overall mean
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accuracy of 98.792% compared to 99.361%. JaccardBF2, which returns the two
haplogroups with highest Jaccard similarity to the set of mutations called by
SNVQ, performs quite poorly, with a mean accuracy of only 22.765%. The Jac-
cardBF pair algorithm, which returns the pair of haplogroups whose union has
the highest Jaccard similarity to the set of mutations called by SNVQ, nearly
matches the accuracy of mixemt (with a mean accuracy of 98.398%) with a
lower running time. The running time is drastically reduced by indexing the
haplogroups for Jaccard similarity searches, although the predefined threshold
required for indexing (0.8 in our experiments) does lead to a small additional
loss of accuracy (mean overall accuracy of 97.825% for JaccardAPB pair).

Table 6. Experimental results on synthetic two-individual mixtures generated from
the 2,897 leaf haplogroups in Phylotree.

Mixemt JaccardBF2 JaccardBF pair JaccardAPB pair

Acc Avg. time Acc Avg. time Acc Avg. time Acc Avg. time

Group1 98.619 4,890.769 22.540 83.116 98.343 1,224.589 97.480 2.101

Group2 98.964 5,273.326 22.989 80.440 98.452 1,484.743 98.171 2.315

Mean 98.792 5,082.048 22.765 81.778 98.398 1,354.666 97.825 2.208

Std. Dev 0.244 270.509 0.317 1.893 0.077 183.957 0.488 0.151

3.5 Accuracy Results for Unknown Mixture Size

In practical forensics applications there are scenarios in which the number of
individuals contributing to a DNA mixture is not a priori known. In this case,
joint inference of the number of individuals and their haplogroups is required.
Although mitochondrial haplogroup inference with unknown number of contribu-
tors remains a direction of future research, in this section we report experimental
results for the most restricted (but still practically relevant) such scenario, in
which a mixture is a priori known to contain at most two haplogroups. Specifi-
cally, the 2,897 single individual synthetic datasets analyzed in Sect. 3.3 and the
2,897 two-individual synthetic datasets analyzed in Sect. 3.4 were reanalyzed
using several joint inference algorithms. For mixemt, the joint inference was per-
formed by using a 5% cutoff on the estimated haplogroup frequencies, while
for JaccardAPB 1or2 the joint inference was performed by matching the set of
SNVQ variants to the set of one or two haplogroups that has the highest Jaccard
similarity. Table 7 reports the accuracy and runtime of the two methods. Overall,
mixemt achieves a mean accuracy of 93.398%, with most of the errors due to the
incorrect estimate of the number of individuals in the two-individual mixtures.
In contrast, most of the JaccardAPB 1or2 errors are due to mis-classification
of single individual samples as mixtures. Overall, JaccardAPB 1or2 achieves a
mean accuracy of 96.538%.
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Table 7. Experimental results for joint inference of mixture size and haplogroup
composition.

Mixemt JaccardAPB 1or2

Acc Avg. time Acc Avg. time

Group1 singles 99.275 7,251.490 94.028 1.4794

Group2 singles 99.448 7,185.373 96.548 2.098

Group1 pairs 83.914 4,890.769 97.376 1.468

Group2 pairs 90.956 5,273.326 98.205 2.244

Mean 93.398 6,150.240 96.539 1.822

Std. Dev 7.462 1,243.583 1.806 0.407

Fig. 2. Comparison of accuracy and running time needed to compute all sets with a
Jaccard coefficient greater than 0.9 using MinHash sketches with varying number of
hash functions from 2,897 randomly generated sets of average size 44.

4 Conclusions

In this paper we introduced efficient algorithms for mitochondrial haplogroup
inference based on Jaccard similarity between variants called from high-
throughput sequencing data and mutations annotated in public databases such
as PhyloTree. Experimental results on real and simulated datasets show an
accuracy comparable to that of previous state-of-the-art methods based on
haplogroup frequency estimation for both single-individual samples and two-
individual mixtures, with a much lower running time.

In ongoing work we are exploring methods for haplogroup inference of more
complex DNA mixtures. Specifically, we are seeking to scale the mutation anal-
ysis approach to larger haplogroup mixtures by employing probabilistic tech-
niques such as MinHash sketches and indexing for locality sensitive hashing (LSH)
[23]. Implementations such as MinHashLSH [34] can be used to generate all
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haplogroups with a Jaccard similarity exceeding a given user threshold in sublin-
ear time, resulting in dramatic speed-ups. However, MinHashLSH is an approxi-
mate algorithm, which may miss some of the haplogroups with high Jaccard sim-
ilarity and may also generate false positives. The accuracy and runtime of Min-
HashLSH depend among other parameters on the number of hash functions, and
the user can generally achieve higher precision and recall at the cost of increased
running time (Fig. 2). Finally, we are exploring hybrid methods that combine
mutation analysis with highly scalable frequency estimation algorithms such as
IsoEM [19,21].

References

1. Amorim, A., Fernandes, T., Taveira, N.: Mitochondrial DNA in human identifica-
tion: a review. PeerJ Prepr. 7, e27500v1 (2019)

2. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: Pro-
ceedings of the 16th International Conference on World Wide Web, pp. 131–140
(2007)

3. Blau, S., et al.: The contributions of anthropology and mitochondrial DNA analysis
to the identification of the human skeletal remains of the Australian outlaw Edward
‘Ned’ Kelly. Forensic Sci. Int. 240, e11–e21 (2014)

4. Budowle, B., Allard, M.W., Wilson, M.R., Chakraborty, R.: Forensics and mito-
chondrial DNA: applications, debates, and foundations. Annu. Rev. Genomics
Hum. Genet. 4(1), 119–141 (2003)

5. Calabrese, C., et al.: MToolBox: a highly automated pipeline for heteroplasmy
annotation and prioritization analysis of human mitochondrial variants in high-
throughput sequencing. Bioinformatics 30(21), 3115–3117 (2014)

6. Chinnery, P.F., Howell, N., Andrews, R.M., Turnbull, D.M.: Clinical mitochondrial
genetics. J. Med. Genet. 36(6), 425–436 (1999)
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21. Nicolae, M., Mangul, S., Măndoiu, I.I., Zelikovsky, A.: Estimation of alternative
splicing isoform frequencies from RNA-Seq data. Algorithms Mol. Biol. 6(1), 9
(2011)

22. Pipek, O.A., et al.: Worldwide human mitochondrial haplogroup distribution from
urban sewage. Sci. Rep. 9(1), 1–9 (2019)

23. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University
Press, Cambridge (2011)

24. Smieszek, S., et al.: HI-MC: a novel method for high-throughput mitochondrial
haplogroup classification. PeerJ 6, e5149 (2018)

25. Van Oven, M.: Phylotree. https://www.phylotree.org/. Accessed 7 Jan 2020
26. Van Oven, M.: PhyloTree build 17: growing the human mitochondrial DNA tree.

Forensic Sci. Int.: Genet. Suppl. Ser. 5, e392–e394 (2015)
27. Van Oven, M., Kayser, M.: Updated comprehensive phylogenetic tree of global

human mitochondrial DNA variation. Hum. Mutat. 30(2), E386–E394 (2009)
28. Vellarikkal, S.K., Dhiman, H., Joshi, K., Hasija, Y., Sivasubbu, S., Scaria, V.: mit-

o-matic: a comprehensive computational pipeline for clinical evaluation of mito-
chondrial variations from next-generation sequencing datasets. Hum. Mutat. 36(4),
419–424 (2015)

29. Vianello, D., Sevini, F., Castellani, G., Lomartire, L., Capri, M., Franceschi, C.:
HAPLOFIND: a new method for high-throughput mtDNA haplogroup assignment.
Hum. Mutat. 34(9), 1189–1194 (2013)

30. Vohr, S.H., Gordon, R., Eizenga, J.M., Erlich, H.A., Calloway, C.D., Green, R.E.:
A phylogenetic approach for haplotype analysis of sequence data from complex
mitochondrial mixtures. Forensic Sci. Int.: Genet. 30, 93–105 (2017)

31. Wallace, D.C., Chalkia, D.: Mitochondrial DNA genetics and the heteroplasmy
conundrum in evolution and disease. Cold Spring Harb. Perspect. Biol. 5(11),
a021220 (2013)

32. Weissensteiner, H., et al.: mtDNA-Server: next-generation sequencing data analysis
of human mitochondrial DNA in the cloud. Nucleic Acids Res. 44(W1), W64–W69
(2016)

33. Weissensteiner, H., et al.: Haplogrep 2: mitochondrial haplogroup classification in
the era of high-throughput sequencing. Nucleic Acids Res. 44(W1), W58–W63
(2016)

34. Zhu, E.E.: Minhash lsh (2019). http://ekzhu.com/datasketch/index.html

https://www.phylotree.org/
http://ekzhu.com/datasketch/index.html


Signet Ring Cell Detection
with Classification Reinforcement

Detection Network

Sai Wang1,2, Caiyan Jia1(B), Zhineng Chen2, and Xieping Gao3

1 School of Computer and Information Technology, Beijing Jiaotong University,
Beijing 100044, China

{wangsai18,cyjia}@bjtu.edu.cn
2 Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

zhineng.chen@ia.ac.cn
3 School of Medical Imaging and Examination, Xiangnan University,

Chenzhou 423043, China
xpgao@xtu.edu.cn

Abstract. Identifying signet ring cells on pathological images is an
important clinical task that highly relevant to cancer grading and prog-
nosis. However, it is challenging as the cells exhibit diverse visual appear-
ance in the crowded cellular image. This task is also less studied by com-
putational methods so far. This paper proposes a Classification Rein-
forcement Detection Network (CRDet) to alleviate the detection difficul-
ties. CRDet is composed of a Cascade RCNN architecture and a ded-
icated devised Classification Reinforcement Branch (CRB), which con-
sists of a dedicated context pool module and a corresponding feature
enhancement classifier, aiming at extracting more comprehensive and
discriminative features from the cell and its surrounding context. With
the reinforced features, the small-sized cell can be well characterized,
thus a better classification is expected. Experiments on a public signet
ring cell dataset demonstrate the proposed CRDet achieves a better per-
formance compared with popular CNN-based object detection models.

Keywords: Signet ring cell · Object detection · Deep learning

1 Introduction

Signet ring cell carcinoma (SRCC) is a highly malignant adenocarcinoma that
commonly observed in the digestive system. Taking SRCC found in stomach as
an example, it is a histological variant of gastric carcinoma generally occurred
at a later stage, thus with a poor prognosis [14]. However, if early diagnosis of
the tumor is achieved, i.e., finding signet ring cells timely, the prognosis could be
improved greatly. It is the most practical way for detecting signet ring cells that
pathologists examine the biopsy sample under the microscope, as the cell could
only be visually observed at the cellular level. Nevertheless, the examination is
time-consuming, laborious and highly dependent on the expertise of pathologists.
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Fig. 1. Illustration of some key challenges for detecting signet ring cells in pathological
images. The green and red regions represent annotated signet ring cells and signet ring
cells missed by pathologist (i.e., unannotated), respectively. (a) Densely distributed
and diverse visual appearance. (b) Incomplete annotation. (Color figure online)

The digitization of pathology, i.e., scanning the biopsy sample to the high-
resolution whole slide image (WSI) via advanced equipment such as Philips Intel-
liSite Pathology Solution, provide a unique opportunity to address the dilemma.
It is promising to leverage computer-aided diagnosis to facilitate signet ring cell
detection. However, it still remains difficult to develop an accurate method for
this task, whose challenges mainly come from three aspects. First, the resolution
of a WSI can up to 200,000× 100,000 with millions of cells of various types,
where a cell is typically small-sized, i.e., occupying dozens to hundreds pixels.
Second, only a few signet ring cells are scattered on the image. They are unevenly
distributed, and with diverse visual appearance in terms of morphology, scale,
cytoplasmic ratio, nucleus layout, etc., as depicted in Fig. 1. Third and conse-
quent, it is difficult for pathologists to enumerate all the signet ring cells even
on a cropped image region. It is not rare that a signet ring cell looks like other
cells without careful examination. To ensure the clinical significance, patholo-
gists trend to follow a strict identification scheme that only marks the cells they
are sure of. As a result, it leads to the problem of incomplete annotation, i.e.,
leaving many true signet ring cells unlabeled (the red rectangles in Fig. 1) that
brings extra troubles to computational methods.

Despite with the difficulties, there are a few studies dedicated to signet ring
cell detection recently. In [9], the authors presented a semi-supervised learning
framework for the task, where a self-training and a cooperative-training methods
were developed for a better use of labeled and unlabeled data. Convolutional
neural network (CNN) based models (e.g., Faster RCNN [15], SSD [12], Cascade
RCNN [1]), which shown competitive performance in cellular related applications



Signet Ring Cell Detection 15

such as cell detection [7] and nuclei segmentation [4,20], are also like to have
decent performance in detecting signet ring cells. However, the models are mainly
developed under the fully annotation setting. In contrast, signet ring cells are
not only partially annotated, but have diverse visual appearance in morphology,
scale, etc. Directly training models for this task seems not optimal, e.g., prone to
cause false positive or miss true positive, which is not desired in clinical practice.
Technically, the main reason for this is too many cells on an image. There are
always some other types of cells have similar visual appearance with signet ring
cells, or vice versa. Moreover, the cells are typically small but undergo a large
down-sampling before feeding into both the classification and regression heads
of a detection network, thus are not easy to distinguish. It is less studied that
how to devise novel architectures, which not only are capable of alleviating the
difficulties above, but also well inherit the advantages of traditional detection
networks.

Motivated by the observations, in this paper we devise a novel architecture,
called Classification Reinforcement Detection Network (CRDet), that aims to
improve the performance of signet ring cell detection on the crowded cellular
image. CRDet inherits the backbone of Cascade RCNN for its superiority in
detecting densely distributed small objects, e.g., cells. Additionally, it devises a
dedicated Classification Reinforcement Branch (CRB) for a more accurate signet
ring cell identification. Specifically, the branch is composed of a Context Pooling
Module (CPM) to explore visual appearance within and surrounding the cell
for a comprehensive feature extraction, and a Feature Enhancement Classifier
(FEC) that adopts the deconvolution and Squeeze-and-Excitation (SE) [6] oper-
ations for a richer and more discriminative feature representation. Besides, an
agglomerative proposal sampling strategy is developed to effectively train the
classifier. As a result, better classification results could be obtained even though
the cells are small-sized and labeled incompletely. We have conducted exten-
sive experiments on a public dataset containing over 10,000 labeled signet ring
cells. The results show that both CPM and FEC are beneficial to the detection.
CRDet achieves performance improvements of at least 4% in terms of F-measure
compared with popular object detection models on this particular task.

2 Related Work

Signet ring cell is a special cell type. Despite studied relatively few, cell image
analysis has been widely investigated in many other contexts for its essential
role in medical problems. According to the studies carried out, we can broadly
categorize existing related work into two branches, i.e., cell segmentation and
abnormal cell detection.

2.1 Cell Segmentation

Cell segmentation aims to describe the contour of the cell. With the contour, it
is beneficial to get some quantitative indicators, e.g., the density or morphology
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statistics of cells. Low-level feature based analysis (e.g., Otus thresholding, the
watershed algorithm) dominates the segmentation in early years. The advent of
CNN pushes a big step forward in this field recent years. Among them U-Net
[16] and its variants [22,23] achieved promising results on challenging dataset,
e.g., MoNuSeg for nuclei segmentation in histopathology images [8]. From these
studies we can see that elegantly designed architectures are always helpful to
cell segmentation.

2.2 Abnormal Cell Detection

Different from most existing studies that detect cells for tasks like cell counting
[18], mitosis detection [3], etc., abnormal cell detection aims to identify cells that
indicate the existence or severity of lesions. They are different from normal cells
and usually few in number. Note that the term abnormal is highly relevant to
the problem investigated thus quite different methods are developed in different
contexts. For example in [19], the authors extracted histogram of gradient as
feature and then used SVM as classifier to detect abnormal cervical cells in pap
smear images. Yao et. al. [21] also developed a deep learning based cell subtype
classification method for picking up tumor cells in histopathology images. The
work most relevant to ours is [9], which uses a semi-supervised learning frame-
work for signet ring cell detection. It used a self-learning mechanism to deal with
the challenge of incomplete annotation and used a cooperative-training mecha-
nism to explore the unlabeled regions. This work achieved good results, but it
mainly focused on how to better use both labeled and unlabeled data. While in
our study, we only utilize the labeled data and emphasize on devising a dedicated
classification branch with comprehensive and discriminative feature representa-
tion. The reinforced feature is expected to benefit signet ring cell detection.

Note that there were also a few studies that achieved better detection perfor-
mance by reinforcing the classification branch. For example, decoupled classifica-
tion Reinforcement network (DCR) [2] proposed to use a separate classification
network in parallel with the localization network. It achieved a better perfor-
mance by reducing the rate of false positive compared with methods without this
design. However, only a ResNet [5] was directly employed as the classification
branch. While our work takes a more careful design of the classification branch
from both surrounding context utilization and feature reinforcement, which will
be elaborated in the next section.

3 Method

3.1 Background

This section provides a brief overview of Cascade RCNN which is used in the
proposed CRDet as backbone. Cascade RCNN inherits from Faster RCNN and
further proposes a multi-stage architecture for a more accurate object detection.
Given a number of region proposals extracted by the Region Proposal Network
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Fig. 2. The architecture of CRDet. The whole network excluding the dashed rectan-
gle part is Cascade RCNN, while the dashed rectangle illustrates the proposed CRB
composed of a CPM and a FEC for comprehensive and discriminative feature represen-
tation. Dotted line indicates that the sampled region proposals and feature maps are
feeding into CPM. “H”, “B” and “C” means the detection head, outputted bounding
boxes and classification head, respectively.

(RPN), a sequence of detection branches trained with increasing IoU thresholds
are stacked. Through ROI pooling, all proposals are resized to 7× 7 at each
branch for further classification and bounding box regression. Compared with
other detection networks, Cascade RCNN uses an iterative mechanism to refine
the detected bounding boxes, thus better suppresses false positives, i.e., visually
similar non-object background is better identified.

For the case of signet ring cell detection, there are a large number of cells
distributed densely on an image, while signet ring cells also have diverse visual
appearance that is easy to cause false positive or miss true positive. Therefore,
we choose Cascade RCNN as the base model and further devise a reinforced
classification branch for better handling the wrongly detected cases.

3.2 Architecture

Overview architecture of the proposed CRDet is illustrated in Fig. 2. The net-
work is composed of two components: the base Cascade RCNN detector and the
proposed CRB. As a dedicated branch aims at improving the detection perfor-
mance, CRB consists of a CPM for cell and its surrounding context utilization,
and a FEC for deconvolutional-based feature enhancement and classification.
Similar to [2], we place CPM behind Stage-1 of ResNet50 (i.e., the first con-
volution group in ResNet series [5]) to receive coarsely processed feature maps,
which mainly consist of low-level image features such as textures and edges
at a relatively high resolution. Meanwhile, region proposals generated by RPN
are delivered to CPM to localize cells in the feature maps. With these inputs,
CPM uses two ROI poolings, each with a different scale factor, to extract com-
prehensive features within and surrounding the proposal. Then, FEC employs
deconvolution and SE operations to gradually increase the richness and discrim-
ination of feature maps, where a classifier is followed to make predictions on top
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of the reinforced feature. At last, predictions of different classification heads are
merged to generate the final probability of a region proposal being classified as
a signet ring cell or not.

Context Pool Module. As mentioned, the signet ring cell is small-sized and
with diverse visual appearance. When using traditional CNN-based detectors,
the image would experience a sharp down-sampling before reaching ROI pooling.
For our task, we argue that using conventional ROI pooling only for feature
extraction is not sufficient for two reasons. First, the bounding box generated
by RPN is also small-sized. Therefore feature associated with the box is limited.
It has the risk of inadequate to distinguish signet ring cells from other cells,
resulting in more false positives or missed cells. Second, the bounding box is a
rough estimate, and may only cover a part of a cell. Using it directly for ROI
pooling would like to weaken the feature representation, which also increase the
detection difficulties.

With these in mind, CPM is developed to extract more comprehensive fea-
tures to facilitate the cell identification. CPM gets feature maps from shallow
convolutional layers. It contains local details that are beneficial to describing
small objects. The detail structure of CPM is depicted in Fig. 3(a). As can be
seen, CPM has two ROI poolings, one the same as conventional ROI pooling
while the other is carried out on an enlarged ROI which is the original one
multiplied by a scale factor α. It aims at extracting feature also from the sur-
rounding context. We argue that this is meaningful as a proper enlargement
not only makes more relevant feature accessible, it also effectively compensates
the problem of inaccurate ROI localization. Note that the pooling is carried out
channel-by-channel thus each operation outputs feature maps of 7× 7× 256. We
concatenate the two separately pooled feature maps, and halve its dimension
through a 1× 1 convolution. Then the resulted feature maps are forward to the
subsequent FEC.

Fig. 3. The architecture of CPM and FEC. (a) Context pool module. (b) Feature
enhancement classifier. The dashed line shows details of the Deconv Module.
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Feature Enhancement Classifier. With the comprehensive feature represen-
tation, we devise a dedicated FEC to further enrich the feature as well as its
discrimination, and then use it to classify the cells. As seen in Fig. 3(b), FEC
is actually a special classification network. Unlike traditional CNN gradually
down-sampling the input, FEC first experiences two proposed deconv modules
and one SE block to enlarge the feature maps meanwhile selectively weighting
their channels. It increases the spatial resolution from 7× 7 to 28× 28 thus more
rich and discriminative feature is obtained. Then, global average pooling [10] is
applied to associate the feature maps with two fully-connected layers, followed
by a 2-class classification layer that decides whether a proposal is signet ring cell
or not.

As for the deconv module, it first enlarges the feature maps by 2 times by
a deconvolution operation, followed by a batch normalization and a rectified
linear unit, which provides standardization and nonlinearity that are critical to
a CNN. In the following, a 3× 3 convolution is applied to reduce the dimension
of feature maps while further increasing their semantic level. The SE block is
placed between the two deconv modules to increase the feature selectivity. The
whole classifier is lightweight while still discriminative. It is particularly suitable
for classifying objects that are small-sized but with a large quantity, e.g., densely
distributed cells.

Agglomerative Proposal Sampling. We also develop an agglomerative pro-
posal sampling strategy analogous to OHEM [17] to effectively train the classifier.
Since we can obtain the category (i.e., signet ring cell or not) of a proposal from
RPN by checking the ground truth, we first rank those correctly classified ones
in a descending order by their classification scores. Then, the top 24 proposals
are picked out for training. Since the proposals are correctly classified with high
confidence, we named them “simple samples”. Meanwhile, we also sort those
wrongly classified proposals in a descending order by their classification scores.
Also, 24 false positives are picked out as “hard samples”. Considering the mem-
ory overhead, those 48 “simple samples” and “hard samples” are fetched for
more effectively classifier training at each epoch. Compared with the conven-
tional random sampling, the proposed strategy is simple but able to guide the
training process more targeted, thus increases the discrimination of the classifier.

Loss Function. As for the base detector, we use smooth L1 loss and cross-
entropy loss for bounding box localization and classification, respectively. The
loss of base detector is defined as Ldet. The CRB carries out only the cell clas-
sification task. Its loss can be defined as the cross entropy over 2 object classes,
i.e., classifying as signet ring cell or not. Denote the set of selected “simple
samples” and “hard samples” as Ω, loss function for this classification can be
formulated as:



20 S. Wang et al.

Lcls =
1
|Ω|

∑

x∈Ω

LCRB (px, p∗
x)

=
1
|Ω|

∑

x∈Ω

(−p∗
x log px − (1 − p∗

x) log(1 − px))
(1)

where |·| is the number of samples in the set, and LCRB (px, p∗
x) represents the

cross entropy loss between the prediction result px and its labeled categories p∗
x.

Therefore the overall loss function can be written as:

L = Ldet + λclsLcls (2)

where λcls is a hyper-parameter. Since the number of samples are typically
smaller than the number of proposals, λcls is empirically set to 2 in all the
experiments to balance Ldet and Lcls.

4 Experiment

To evaluate our CRDet, we conduct extensive experiments on the recently
released signet ring cell dataset [9], which is the first public dataset on this
task. Details of the experimental setting and results are described as follows.

4.1 Dataset

The signet ring cell dataset contains 687 Hematoxylin and Eosin (H&E) stained
pathological WSIs scanned at 40X magnification, which are collected from 155
patients from 2 organs, i.e., gastric mucosa and intestine. The dataset is divided
into non-overlapping training and testing sets. The training set contains 99
patients’ 460 images, where 77 of them from 20 patients contain signet ring
cells. Since the WSI is too large, 455 image regions of size 2,000× 2,000 are
cropped from the WSIs, of which 77 positive images labeled with 12,381 signet
ring cells and the rest negative images do not label any signet ring cell. All the
cells are labeled by experienced pathologists in the form of tight bounding box.
Due to overcrowding and occlusion of cells, it can only guarantee that the labeled
cells are indeed signet ring cells, but there are some unannotated signet ring cells
in positive images. Since an image of 2,000× 2,000 is still too large for model
training, we split the image to patches of 512× 512 in a sliding-window manner.
The stride is set to 400. Note that the setting would lead to certain overlapping
between neighbor patches.

Since only the training set is public available, we use the training set only as
our entire dataset and randomly split it to 7:1:2, respective for model training,
validation and test in our experiments. As a result, there are 11821, 1433 and
2609 signet ring cells in the three partitions.
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4.2 Implement Detail

Since cell would not exhibit a wide range of aspect ratios and scales as natural
objects, we redesign the default anchor. Specifically, we calculate the distribu-
tions of both aspect ratio and scale based on the 11821 training cells at first.
With the intention of covering the vast majority of cells, we then set the aspect
ratios to {0.7, 1.0, 1.3} and the scales to {32, 64, 112, 128, 256} among all fea-
ture maps in FPN uniformly. The scale factor in CPM is empirically set to 1.2
in all experiments. Meanwhile, we keep other hyper-parameters the same as in
Cascade RCNN.

We employ ResNet50 with FPN as our backbone (in Cascade RCNN part) as
it well balances the performance and computational complexity. We use parame-
ters pre-trained on ImageNet dataset to initialize the backbone, while parameters
associated to the remaining part of CRDet are randomly initialized. Our model is
trained on 2 Nvidia TITAN Xp GPUs with batch size of 4 images for 30 epochs.
We optimize our model using SGD. The initial learning rate is set to 1× 10−2

and is divided by 10 at 12 and 24 epochs. We also use the warm up and syn-
chronized batchnorm mechanism [13]. No other data augmentation is employed
except for the standard random image flipping with ratio 0.5. During the infer-
ence, the scores of all classification heads in Cascade RCNN are averaged at first.
It then is merged with the classification score of CRB by element-wise product
to generate the final classification score. When all sliced patches corresponding
to an original image have been predicted, we add the prediction results to their
respective offsets in the original image and apply an NMS with IoU threshold
0.5 to remove duplicate boxes and get the final results.

4.3 Ablation Study

To better understand CRDet, we adopt Cascade RCNN as the baseline and
execute controlled experiments to evaluate the effectiveness of the two proposed
sub-modules, i.e., CPM and FEC, as follows.

Table 1 lists the results of different models on training images. It is seen that
when equipped the baseline with FEC, an improvement of 2.2% in terms of F-
measure is obtained. It is also observed that the improvement is the combination
of a relatively large improved precision and a slightly reduced recall. FEC can
increase the discrimination of feature thus reduces the number of false positives
at little cost. With CPM further equipped, an additional improvement of 2%

Table 1. The performance of baseline equipped with CPM and FEC.

Method Recall Precision F-measure

baseline 0.736 0.368 0.491

baseline + FEC 0.722 0.398 0.513

CRDNet: baseline + CPM + FEC 0.742 0.396 0.516
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on recall is observed. It implies that the exploration of cell surrounding context
is beneficial to more effective feature extraction, and reducing the missing rate.
Employing both modules leads to an improvement of 2.5% in terms of F-measure
compared with the baseline.

4.4 Comparison with State-of-the-art Detectors

We compare CRDet with popular CNN-based object detection models including
SSD [12], RetinaNet [11], Faster RCNN [15] and Cascade RCNN [1]. The exper-
iments aims to evaluate how well CRDet tests against state-of-the-art detection
models in this particular task, as signet ring cell detection is an emerging research
topic with few methods dedicated to it now. The results are given in Table 2.
Note that the compared methods are all supervised while [9] is a no open-sourced
semi-supervised method, So we do not implement and compare to it.

As can be seen, the proposed CRDet achieves prominent results of 51.6% and
53.9% in terms of F-measure with different backbones, both of which surpasses
all the compared models. As anticipated, the one-stage detectors (i.e., SSD and
RetinaNet) exhibit the commonly observed low precision problem. With cell pro-
posals given by two-stage detectors (i.e., the RCNN series, CRDet), the extracted
feature is more targeted thus the precision improves a lot. However, it is observed
that the feature discrimination is still the bottleneck such that a more powerful
backbone (i.e., ResNet101) could lead to an improvement of 2% to 3% in terms
of precision, mainly attributed to reducing false positives. The proposed CRDet
also takes feature reinforcement as the main objective. By incorporating CRB
on top of Cascade RCNN, it gains a better feature representation thus further
reduces false positives, where improvements of at least 4% in terms of F-measure
are consistently observed. It is also shown in Fig. 4. Although the signet ring
cells are densely distributed and with diverse visual appearance, CRDet can still
produce accurate bounding boxes to localize them.

Table 2. The performance of different methods on signet ring cell detection.

Method Backbone Recall Precision F-measure

SSD [12] VGG16 0.819 0.043 0.082

RetinaNet [11] ResNet50 0.670 0.212 0.322

Faster RCNN [15] ResNet50 0.737 0.331 0.456

Cascade RCNN [1] ResNet50 0.736 0.368 0.491

ResNet101 0.731 0.394 0.512

CRDNet ResNet50 0.742 0.396 0.516

ResNet101 0.726 0.428 0.539
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Fig. 4. Qualitative results of CRDNet and Cascade RCNN. The green and red boxes
represent ground truth and detection results respectively. (a) Ground Truth. (b) Cas-
cade RCNN. (c) CRDet. (Color figure online)

5 Conclusion

In this paper, we have presented an end-to-end trainable network named CRDet
for signet ring cell detection. With the dedicated CRB, the cell could be effec-
tively identified from challenging pathological images. The experiments con-
ducted on a public dataset basically validate our proposal, where performance
improvements are consistently observed. We note that the improvement mainly
comes from reducing false positives rather than increasing the recall, which is also
an important aspect to clinical practice. Thus, future work includes the incor-
poration of more features to improve the recall. Moreover, we are also interested
in leveraging unlabeled data to further boost the detection performance.
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Abstract. Biological networks describe the relationships among molec-
ular elements and help in the deep understanding of the biological mech-
anisms and functions. One of the common problems is to identify the
set of biomolecules that could be targeted by drugs to drive the state
transition of the cells from disease states to health states called desired
states as the realization of the therapy of complex diseases. Most pre-
vious studies based on the output control determine the set of steering
nodes without considering available biological information. In this study,
we propose a strategy by using the additionally available information like
the FDA-approved drug targets to restrict the range for choosing steering
nodes in output control instead, where we call it the Set Preference Out-
put Control (SPOC) problem. A graphic-theoretic algorithm is proposed
to approximately tackle it by using the Maximum Weighted Complete
Matching (MWCM). The computation experiment results from two bio-
logical networks illustrate that our proposed SPOC strategy outperforms
the full control and output control strategies to identify drug targets.
Finally, the case studies further demonstrate the role of the combina-
tion therapy in two biological networks, which reveals that our proposed
SPOC strategy is potentially applicable for more complicated cases.

Keywords: Set Preference Output Control · Drug targets · Biological
networks · Maximum Weighted Completed Matching

1 Background

In the last decade, network medicine has gradually formed an efficient framework
to systematically discover the underlined mechanisms of complex diseases and
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then provide potential strategies to target therapy of a particular disease [1,2].
Based on the data-driven construction algorithms, different types of complex
biological networks like the protein-protein interaction networks, the gene regu-
latory networks, and the human brain networks have been generally studied to
reveal the pivotal components that might be linked to the particular biological
processes. For example, centrality-based methods [3] have been applied to the
protein-protein interaction networks to identify the essential proteins the single
deletion of which leads to lethality or infertility [4].

Though the-state-of-art machine learning methods can outperform them in
some fields [5], the advantages of the network-based methods are to explore the
original dynamics of the biological models and give the inherent explanation of
biological mechanisms so that we can finally control the transition of the state
of complex biological networks [6,7]. In recent years, full control(FC) [8] and
output control(OC) [9,10] have been one type of the fundamental methods to
analyze complex diseases in the area of network biology [11–13]. Owing to the
demand for real biological problems, additional information is used to improve
the results when exploring biological networks. Wu et al. have added the drug
target information which ranks the possibility and efficiency of the genes targeted
by drugs to the MSS algorithm to promote the accuracy of the detection of drug
targets [14]. Guo et al. have referred to the personalized mutated genes as the
constrained set of nodes for choosing personalized driver genes in the constrained
output control(COC) [12,15].

But there are two fundamental problems when using the previous methods
to some extreme cases. As for the MSS, the number of steering nodes identified
in large gene regulatory networks accounts for the 80% of all nodes [16]. It’s not
practical in clinical experiments. Another one is that the restricted condition in
COC is too strict in the identification of drug targets. Due to the incomplete
discovery of drugs not like the case in mutated genes, many biological networks
might be impossible to be controlled by existing drugs and other target-based
treatments.

Hence, we propose the Set Preference Output Control(SPOC) strategy which
is a relaxed condition in output control so that the identification of the set of
steering nodes can be enriched with as many drug targets as possible. Addition-
ally, we provide a theoretical analysis between SPOC and maximum weighted
complete matching (MWCM). Finally, the new strategy is applied to MAPK
signaling network and ER+ breast cancer signaling network to further illustrate
the advantages of our SPOC strategy.

2 Problem Formulation

2.1 Dynamics Model of Biological Networks

As previous studies [6–15], a regulatory network with n biomolecules can be
described by the following linear time-invariant dynamic model [17]:{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) (1)
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where the state transition matrix A ∈ Rn×n describes the interactions between
biomolecules, where aij �= 0 if biomolecule j regulates biomolecule i. The input
matrix B ∈ Rn×m represents the connections between biomolecules and drugs,
where bij �= 0 if biomolecule i is targeted by drug j. The output matrix
C ∈ Rs×n specifies the set of biomolecules that define the disease genotype.
x(t) = {x1(t), x2(t), . . . , xn(t)}T represents the state of n biomolecules in net-
works at time t. y(t) = {y1(t), y2(t), . . . , ys(t)}T represents observed states of
the genotype. u(t) = {u1(t), u2(t), . . . , um(t)}T represents the drugs regulating
the biomolecules directly.

Generally, such a system can be represented as a digraph G(V,E). The set of
nodes in the digraph can be represented as the nodes V = VA ∪ VB , where VA is
the set of biomolecules and VB represents the set of control signals (drugs). The
set of edges can be represented as E = EA ∪ EB , which is defined as follows,

EA : vj → vi if Aij �= 0

and
EB : uj → vi if Bij �= 0

In practices, the nonzero values in matrices A and B are difficult to be
determined so that the structural systems are the framework to study the con-
trollability of biological networks [6,7], which we are adopting in this study.

2.2 Problem Description

Previous output (target) control (OC) [9,10] can approximately identify a set
of genes in networks without any biological constraints. However, the identi-
fied steering nodes should be enriched in the drug-target genes to practically
drive the disease states to healthy states. Hence, here we first define the Set
Preference Output Control (SPOC) strategy that preferentially determines the
minimum set of steering nodes from a predefined set of genes to fully control
the set of biomolecules that define the disease genotype. The problem could be
mathematically formulated as follows,

Problem 1: Given a directed network with system matrix A ∈ {0, 1}n×n, input
matrix B ∈ {0, 1}n×m and output matrix C ∈ {0, 1}s×n, SPOC is to control
the set of output nodes VO = {vo1 , . . . , vos} by a minimum set of steering nodes
containing as many as possible preferential steering nodes VP = {vp1 , . . . , vpl

}.

The above formulated problem is different from Constrained Output Control
(COC) proposed by Guo et al. [12,15] in which the steering nodes in COC could
only be selected from the constrained set, while the steering nodes in SPOC
could be selected from nodes outsides the preferential set. For example, if a
disease gene in a gene regulatory network is a source node whose in-degree is
0 and couldn’t be targeted by any drug, the COC would fail to deal with this
situation because the disease gene is inaccessible and uncontrollable [18]. Hence,
we relax the constrained set in COC to the preferential set (Fig. 1).
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Fig. 1. Overview of SPOC strategy. a. The left network shows the definition of the
original network including the preferential steering nodes, output nodes, and non-
preferential nodes. The right network indicates that node {v1} is chosen from the
preferential set acted as the steering node to control all the output nodes. b. It repre-
sents the process of the construction of a weighted bipartite graph. The weight of the
black solid line, black dot line, red solid line, red dot line, blue solid line and blue dot
line are 2, 1, ε+1, ε, γ +1 and γ, respectively. c. After removing the unmatched edges,
the left matched edges indicate the result of the MWCM. Cycle {v5, v6} is accessible,
indicating that no additional nodes are needed. (Color figure online)

3 Methods

Inspired by the algorithm of output control [9], we first define a bipartite graph
G(Vl, Vr ∪ VU , E,W ) where Vl = {l1, l2, . . . , ln}, Vl = {r1, r2, . . . , rn}, and VU =
{u1, u2, . . . , um} based on the structural system G(V,E). We add a self-loop
to each node if the node vi ∈ VO, VO = V − VO because those nodes with a
self-regulation need no additional signals to control in any cases. Here, we can
construct the weighted bipartite graph as follows,
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wlirj =
{

2 aji �= 0 and vi ∈ VO

1 aji �= 0 and vi ∈ VO
(2)

For each vi ∈ VP

wliui
=

{
ε + 1 vi ∈ VO

ε vi ∈ VO
(3)

Otherwise, for each vi ∈ VP , VP = V − VP ,

wliui
=

{
γ + 1 vi ∈ VO

γ vi ∈ VO
(4)

where ε = 1
n and γ < ε.

Next, we demonstrate two definitions related to the problem.

Definition 1. (Complete matching) Complete matching is a matching where all
nodes in the Vl are matched.

Definition 2. (Maximum Weight Complete Matching (MWCM) in Bipartite)
Given a bipartite graph G = (V,E) with structural system (A,B) and weight
functions, find a complete matching M maximizing the sum of weights.

After the construction of the weighted bipartite graph, we can prove that the
steering nodes selected by the maximum weight complete matching (MWCM)
algorithm [19,20] have the minimum number of nodes matching to control signals
and the maximum preferential nodes matching to control signals.

Theorem 1. The number of nodes matching to control signals is the minimum.

Proof. Consider the nodes belonging to the preferential set, if an output node is
determined as the steering node, the contribution would be ε+1 = 2+(ε−1). If
a non-output node was determined as the steering node, the contribution would
be ε = 1 + (ε − 1). The case in non-preferential set is similar. Given a set of
nodes V ′

U ⊆ Vl matching to control signals is determined by the MWCM, the
maximum score can be calculated as follows,

ScroeV ′
U

= (|VO| + 2|VO|) + ε|V ′
U ∩ VP | + γ|V ′

U ∩ VP | − |V ′
U | (5)

If another set of nodes V ′′
U ⊆ Vl matching to control signals is determined by a

complete matching and sufficient to |V ′′
U | + 1 ≤ |V ′

U |,

ScroeV ′′
U

= (|VO| + 2|VO|) + ε|V ′′
U ∩ VP | + γ|V ′′

U ∩ VP | − |V ′′
U | (6)

Owing to the fact that 0 < ε|V ′
U ∩VP |+γ|V ′

U ∩VP |, ε|V ′′
U ∩VP |+γ|V ′′

U ∩VP | < 1,

ScroeV ′′
U

− ScroeV ′
U

> |V ′
U | − |V ′′

U | − 1 ≥ 0 (7)

This result contradicts with the assumption that ScroeV ′
U

is the maximum.
Hence, the number of nodes |V ′

U | matching to control signals is the minimum.
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Based on Theorem 1, ε|VU ∩ VP | + γ|VU ∩ VP | is the maximum which is only
correlated to the score of nodes in Vl because |VO| is constant and |VU | is the
minimum.

Theorem 2. The number of preferential nodes matching to control signals is
the maximum.

Proof. Assuming that there are two set of nodes V ′
U ⊆ Vl and V ′′

U ⊆ Vl matching
to control signals, V ′

U is determined by the MWCM, while V ′′
U can be obtained by

exchanging an augmenting path from node vm ∈ V ′
U ∩VP to node vn ∈ V ′

U ∩VP ,
indicating that |V ′

U | = |V ′′
U |, |V ′′

U ∩ VP | = |V ′
U ∩ VP | + 1, and |V ′′

U ∩ VP | =
|V ′

U ∩ VP | − 1.

ScroeV ′′
U

= ε(|V ′
U ∩ VP | + 1) + γ(|V ′

U ∩ VnP | − 1) + (|VO| + 2|VO|) − |V ′′
U |

= ScroeV ′
U

+ ε − γ > ScroeV ′
U

(8)

This result contradicts with the assumption that ScroeV ′
U

is the maximum.
Hence The number of preferential nodes V ′

U ∩ VP matching to control signals
is the maximum.

After the MWCM, the nodes in Vl matching to the set of control signals are
selected as the first part of steering nodes. In the meantime, the cycles cover-
ing all output nodes could be detected by strong connected components(SCC)
algorithm to identify the set of inaccessible nodes as the second part of steering
nodes. The time complexity of MWCM and SCC are O(n3) and O(n), respec-
tively, where n is the number of nodes in biological networks.

4 Datasets

4.1 MAPK Signaling Network

The Mitogen-Activated Protein Kinase (MAPK) signaling network determine
the cancer cell fate through closely regulating diverse biological activities includ-
ing cell cycle, apoptosis, and differentiation. It contains three pivotal components
ERK, JNK, and p38 defining states of the MAPK signaling network. To deeply
understand the mechanism of cancer cell fate decision, the MAPK signaling
network was constructed as a comprehensive map of the chemical reactions in
cell [21], which consists of 46 genes and 92 edges. In the network, the state of
7 genes can directly affect the phenotypes, which are regarded as the output
nodes. Genes MYC, p70, and p21 are considered to regulate the proliferation of
the cell, while genes FOXO3, p53, ERK, and BCL2 are found to be associated
with cell apoptosis. We find that 5 nodes (BCL2, FGFR3, EGFR, JUN, and
PDK1) are the approved drug targets in DrugBank database [22], which are the
set of preferential nodes. The set of nodes have the ability to affect the cell fate
according to previous studies [23–27] (Fig. 2).
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Fig. 2. MAPK signaling Network. The nodes marked with red color are the set of
output nodes. The nodes filled with gray color are the set of preferential nodes. (Color
figure online)

4.2 ER+ Breast Cancer Signaling Network

The ER+ breast cancer signaling network was constructed on the basis of the
literature of ER+, HER2+, and PIK3CA-mutant breast cancers to deeply com-
prehend the response of variable drug targets [28]. It contains 49 nodes consisting
of proteins and transcripts and 83 edges consisting of transcriptional regula-
tion and signaling process, which involves the main signaling pathways of the
breast cancer. Six nodes are mapped to control apoptosis(BIM, MCL1, BCL2,
and BAD) and proliferation (translation and E2F), which are the set of output
nodes. There are 10 nodes directly targeted by 7 drugs: Alpelisib, Everolimus,
Fulvestrant, Ipatasertib, Neratinib, Palbociclib, and Trametinib. In the network,
all drug targets are considered as the preferential set of steering nodes.

5 Results

5.1 Measurements

In this study, we use two metrics to evaluate the result of three network control
scenarios: full control (FC), output control (OC) and set preference output con-
trol (SPOC). The first metric is defined as the percentage of identified steering
nodes in the biological networks.
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PSN =
the number of steering nodes

the number of all nodes
(9)

The lower score PSN indicates that the biological networks are easier to be con-
trolled. Owing to the non-uniqueness of network control scenarios, we randomly
relabel the network nodes for 1000 times in this study to generate different con-
trol configurations. Another one is defined as the average proportion of identified
drug targets in all control configurations.

PDT =
the average number of drug targets

the number of steering nodes
(10)

The higher score PDT demonstrates that the biological networks are with a
higher probability to be controlled by the existing drugs.

5.2 Results in Two Biological Networks

In this section, we discuss the results of controllability analysis in three scenarios:
full control (FC), output control (OC) and set preference output control (SPOC)
on MAPK signaling network and ER+ breast cancer signaling network.

In MAPK signaling network (as shown in Fig. 3a), the number of identified
steering nodes by FC is 23.9% (11/46), which is around 3 times larger than the
one 8.7% (4/46) by OC and SPOC. The results show the advantage of OC and
SPOC compared with FC in terms of the number of steering nodes. Then the
average proportion of drug targets in the 1000 times identified steering nodes
through FC, OC and SPOC are 5.9%, 11.2%, and 100%, respectively. The present
studies reveal that our algorithm can promote the enrichment of steering nodes
to the identification of drug targets, which is coherent to our objective.

Fig. 3. The PSN and PDT of three methods in two biological networks. a. MAPK
signaling network. b. ER+ breast cancer network.

We also study the set of identified steering nodes on ER+ breast cancer sig-
naling network to further evaluate our proposed algorithm (as shown in Fig. 3b).
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Similar results can be found in this network. As for the three control scenarios:
FC, OC, and SPOC, the number of identified steering nodes are 40.8%(20/49),
8.2%(4/49), and 8.2%(4/49), while the average proportion of drug targets are
5%, 23.7%, and 100%, respectively. Similar results further demonstrate the
advantages of our proposed algorithm.

5.3 Case Studies

According to previous results of SPOC, each control configuration is chosen from
the predefined set of nodes so that we analyze the binary patterns of 1000 sets of
steering nodes. The results of two biological networks are visualized through the
heatmap as shown in Fig. 4. The elements, except for diagonal elements, indicate
the frequency of two nodes in all control configurations. The diagonal elements
represent the frequency of steering nodes.

Fig. 4. The frequency of paired steering nodes. a. MAPK signaling network. b. ER+
breast cancer network.

MAPK Signaling Network. As shown in Fig. 4a, all the preferential nodes
appear in at least 731 out of the 1000 control configurations, in which gene
BCL2 appears in all control configurations. Then we choose the top5 high
score combinations of genes {(BCL2, PDK1), (BCL2,FGFR3), (BCL2, JUN),
(BCL2,EGFR), (FGFR3, PDK1)}, most of which contain the gene BCL2 which
is a popular target to cure cancers [23]. In this study, we conduct a case study
to evaluate whether the combination of genes could regulate the state of can-
cer cells. The venetoclax treatment [29] can not only inhibit the BCL2 family
members to activate the apoptosis signaling but also regulate the PDK1 to affect
cellular metabolism. The inhibition of EGFR using gefitinib can be strengthened
to induce the apoptosis when the BCL2 is silent in non-small cell lung cancer in
the meantime [30]. Hence, our proposed algorithm can potentially identify the
combination of genes to the target cancer.
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ER+ Breast Cancer Signaling Network. For this network, we can find
nodes ESR1, mTORC1 and mTORC2 are with higher probability to be the
steering nodes than other nodes in Fig. 4b. Then Top5 combinations of nodes
{(mTORC1, ESR1), (mTORC1, mTORC2), (mTORC2, ESR1), (mTORC1,
HER2/HER3), (mTORC2, HER2)} with high score are selected for the fur-
ther analysis. After mapping to drugs, {(Everolimus), (Everolimus, Fulvestrant),
(Everolimus, Neratinib)} can be found to cure breast cancer. Though Everolimus
has been found to be a drug to treat breast cancer [31], the combination therapy
is still a great challenge. Here using our algorithm, we can find two useful com-
binations. Recently, a randomized phase II trial test has proved that Everolimus
can enhance the treatment of Fulvestrant [32]. Moreover, phase I study of the
combination of Neratinib and Everolimus is ongoing [33], which indirectly indi-
cate the potential of their synergistic function in treating advanced cancers.

6 Conclusions

In this paper, we have proposed a relaxed condition for output control and an
associated algorithm to make it applicable for more general situations especially
for the detection of drug targets. Besides the theoretical analysis of SPOC, we
have compared our algorithm with two existing methods FC and OC. The results
illustrate that our algorithm can do better than two existing methods from the
integrated view of the number of steering nodes and its enrichment of drug
targets. Furthermore, we find that our algorithm can provide a new avenue to
identify the combination therapy through known treatments based on two case
studies.

SPOC is a new framework based on the output control to analyze biological
networks. However, the algorithm is determined by not only the definition of the
state nodes which dominate the state transition but also the collection of the
preferential nodes which contain the objectives. Hence, we need to get a deeper
understanding of the biological problems so that we could use the available
information to accurately apply our algorithm.
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Abstract. Biallelic mutations in the NBAS gene have been reported to cause
three different clinical signs: short stature with optic nerve atrophy and Pelger-
Huët anomaly (SOPH) syndrome, infantile liver failure syndrome 2 (ILFS2) and
a combined severe phenotype including both SOPH and ILFS2 features. Here,
we describe a case of a 6-year-old Yakut girl who presented with clinical signs
of SOPH syndrome, acute liver failure (ALF) and bone fragility by the type of
osteogenesis imperfecta (OI). Targeted panel sequencing for 494 genes of con-
nective tissue diseases of the patient revealed that he carried novel compound het-
erozygous missense mutation in NBAS, c.2535G>T (p.Trp845Cys), c.5741G>A
(p.Arg1914His). Mutation affect evolutionarily conserved amino acid residues
and predicted to be highly damaging. Timely health care of patients with such a
set of clinical spectrum of SOPH syndrome, ALF and bone fragility by the type
of OI can contribute to establishment coordinated multispecialty management of
the patient focusing on the health problems issues through childhood.

Keywords: NBAS · SOPH syndrome · Infantile liver failure syndrome 2 ·
Osteogenesis imperfecta

1 Introduction

NBAS contains 52 exons, spans 420 kb and ismapped to chromosome2p.24.3 [1]. Recent
studies has shown that there are three main subgroups of phenotypes associated with
biallelic variants of NBAS gene: 1) short stature, optic nerve atrophy and Pelger-Huët
anomaly (SOPH; MIM# 614800), which involves skeletal, ocular and immune system
in the absence of frank hepatic involvement [2]. The cause of this syndrome is the
homozygous missense mutation in NBAS p.5741G>A (p.Arg1914His), which has only
been reported in an isolated Russian Yakut population (31 families). Clinical features
included postnatal growth retardation, senile face, reduced skin turgor and elasticity,
osteoporosis, optic atrophy with loss of visual acuity and color vision, underlobulated
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neutrophils, and normal intelligence; 2) infantile liver failure syndrome 2 (ILFS2;MIM#
616483), an autosomal recessive condition characterized by isolated hepatic involvement
with recurrent episodes of acute liver failure (ALF) during intercurrent febrile illness.
Haack et al. identified homozygousmutations inNBAS gene in a cohort of 11 individuals
from ten German families with ILFS2 [3]. It has been proposed that the sensitivity to
fever in these patients may be due to thermal susceptibility of the syntaxin complex 18;
3) Further reports have suggested a multi-system phenotype [4–7].

To date, combined severe phenotype including such of clinical spectrum as SOPH,
ILFS2 and bone fragility have been reported in one case in two patients, whose parents
was ofNorth-European,NorthernSpanish and Italian origin [8].Osteogenesis imperfecta
(OI) is a congenital disorder characterized by low bonemass and increased bone fragility,
affects 1 in 15,000 live births. Early diagnosis is important, as therapeutic advances can
lead to improved clinical outcome and patient benefit.

The NBAS protein is involved in Golgi-to-endoplasmic reticulum (ER) retro-
grade transport [7] and is considered to be a component of the SNAREs (Soluble
N-Ethylmaleimide-sensitive Factor (NSF) Attachment Protein Receptors). Essentially
every step of membrane transport is carried out by a pair of different SNARE proteins (v-
SNARE and t-SNARE). The SNARE proteins mediate intracellular transport of vesicles,
such as ER to Golgi and Golgi to plasma membranes and are conserved from yeast to
human. The NBAS protein interacts with t-SNARE p31 directly and with other proteins,
forming complex syntaxin 18 [9]. In the cells of patients, a reduction in NBAS is accom-
panied by a decrease in p31, supporting an important function for NBAS in the SNARE
complex [3]. Although these intracellular events are known, the specific mechanisms by
which NBAS contributes to liver disease, bone fragility is not fully understood.

Because early health care for patientswith severe combined syndrome can effectively
improve the course of liver disease and bone fragility with the NBAS mutation, it is
important for differentially diagnose NBAS mutation-based disease.

Here, we describe a case of a 6-year-old Yakut girl who presented with clinical signs
of SOPH syndrome, ILFS2 and bone fragility by the type of OI.

2 Materials and Methods

The present study was approved by the local ethics committee of the M.K. Ammosov
North-Eastern Federal University (Yakutsk, Russia). Patientwas recruited into a research
to study bone fragility by the type of OI.

Deoxyribonucleic acid (DNA) extracted by phenol-chloroform extraction from
peripheral blood of our patient with informed consent of his parents. Targeted panel
sequencing for 494 genes of connective tissue diseases was performed on our patient.
The average depth in the target region was 144.5×.

All variants were annotated using the dbSNP (http://www.ncbi.nlm.nih.gov/SNP/),
HapMap (http://hapmap.ncbi.nlm.nih.gov/), HGMD (http://www.hgmd.org/), and the
1000 Genome (http://www.1000genomes.org/).

To predict the protein-damaging effects of the suspected pathogenic variations in
NBAS, three different software programswere used: Polyphen-2 (http://genetics.bwh.har

http://www.ncbi.nlm.nih.gov/SNP/
http://hapmap.ncbi.nlm.nih.gov/
http://www.hgmd.org/
http://www.1000genomes.org/
http://genetics.bwh.harvard.edu/pph2/
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vard.edu/pph2/), SIFT (https://sift.bii.a-star.edu.sg/), MutationTaster (http://www.mut
ationtaster.org/).

Evolutionary conservation of the sequences and structures of the proteins and
nucleic acids was assessed using MUSCLE Sequence Alignment Tool (https://www.
ebi.ac.uk/Tools/msa/muscle/). Conservation across species indicates that a sequence
has been maintained by evolution despite speciation. The human NBAS protein
sequence was aligned with the following vertebrate species: P.troglodytes, M.mulatta,
C.lupus, B.taurus, M.musculus, G.gallus, X.tropicalis, D.rerio. Homologous sequences
are obtained from HomoloGene (https://www.ncbi.nlm.nih.gov/homologene/).

3 Results

3.1 Clinical Status

The patient was a 6-year-old girl born from non-consanguineous, healthy parents of
Yakut origin. The pregnancywas threatened interruption.Delivery at term, physiological.
Her birthweightwas 2250g andbodyheightwas 45 cm.Apgar scoreswere 8/8 points.On
the 2nd day after birth, a fracture of themiddle third of the right femurwas diagnosedwith
a shift. Genealogy history of burden due to OI was not identified. Clinical examination
of the patient at the age of 6 years showed that the patient has a dysplastic physique,
with nanism (growth at the age of 2 years - 68 cm, at 4 years - 73 cm, at 6 years -
77 cm), defeat of the optic nerve, connective tissue by type of SOPH syndrome. Also
observed developmental delay, ALF and immunodeficiency. According to X-ray, there
is a shortening of the right thigh due to a consolidating fracture of the middle third of
the diaphysis of the right femur, deformation and contracture of the left elbow joint.

3.2 Clinical Significance of Variants

For determination clinical significance of genetic variants was used a set of criteria. First,
the allele frequency of variants should be less than 0.05 in dbSNP, Exome Aggregation
Consortium (ExAC), 1000 Genomes Project, Exome Sequencing Project (ESP6500)
databases. Second, variants were considered as disease mutation, if they were predicted
as loss-of-function variants (stop-gain, frameshift, canonical splicing variants, inser-
tion/deletion). Third, the variant was novel and forecasted to be damaging. If these set
of criteria were met, then the mutation was considered a disease mutation.

The following NBAS variants were detected: c.5741G>A (p.Arg1914His) in 45
exon, and c.2535G>T (p.Trp845Cys) in 23 exon (Table 1). The variant c.2535G>T
is absent in dbSNP, ExAC, 1000 Genomes Project, ESP6500 databases. This variant
predicted harmful by SIFT (score 0.000), PolyPhen-2 (HumDiv score 1.000, HumVar
score 0.998), MutationTaster (score 1.000). This information identified these two sites
as pathogenic.

3.3 Mutation Analysis

Molecular genetic study revealed the known heterozygous mutation c.5741G>A
(p.Arg1914His) in 45 exon of NBAS. This mutation is located in the C-terminal region

http://genetics.bwh.harvard.edu/pph2/
https://sift.bii.a-star.edu.sg/
http://www.mutationtaster.org/
https://www.ebi.ac.uk/Tools/msa/muscle/
https://www.ncbi.nlm.nih.gov/homologene/
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Table 1. In silico variant predictions

Variation SIFT prediction PolyPhen-2 MutationTaster Region of NBAS

c.5741G>A
(p.Arg1914His)

Damaging Possibly damaging Disease causing C-terminal

c.2535G>T
(p.Trp845Cys)

Damaging Possibly damaging Disease causing Seq39

of NBAS protein and associated with SOPH syndrome on a homozygous state (Fig. 1A).
Also, in 23 exon of NBAS was identified a previously unreported on a public databases
missense heterozygous variant c.2535G>T (p.Trp845Cys). This variant is located in
the region encoding the Sec39 domain of the NBAS. The Seq39 region is a necessary
part of Golgi-ER retrograde transport and the mutation was located in this evolutionary
conserved region. MUSCLE Sequence Alignment Tool shows that the Trp845 is highly
conserved among vertebrates (Fig. 1B).

Fig. 1. Identification of a compound heterozygous mutation in NBAS gene in Yakut patient (A)
The exon structure of the NBAS gene and a schematic representation of the NBAS protein with
known domains are shown. (B) Multiple sequence alignment of the NBAS protein among ver-
tebrates. (C) In silico single nucleotide variant predictions by PolyPhen-2, SIFT, MutationTaster
bioinformatics tools.

4 Discussion

Recent advances technologies now provide rapid and cost-effective analysis of the
causative mutations of human disorders. High throughput sequencing combined with
capture techniques are increasingly used for routine diagnosis of Mendelian disease.
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OI is a rare genetic disorder characterized by low bone mass, decreased bone strength,
increased bone fragility, and shortened stature. Bone fragility has not been previously
reported as a feature associated with variants in NBAS, except for the study of Bala-
subramanian et al. [5]. The specific mechanisms by which NBAS contributes to bone
fragility, are not fully understood.

In this study, we have identified a novel compound heterozygous variant in NBAS
(2535G>T (p.Trp845Cys); c.5741G>A (p.Arg1914His) by target NGS sequencing in
6-year-old Yakut girl with bone fragility by the type of OI.

Based on the localization of missense variants and in-frame deletions, Staufner et al.
highlighted three clinical subgroups that differ significantly regarding main clinical fea-
tures and are directly related to the affected region of the NBAS protein: β-propeller
(combined phenotype), Sec39 (infantile liver failure syndrome type 2/ILFS2), and C-
terminal (short stature, optic atrophy, and Pelger–Huët anomaly/SOPH) [10]. The high
prevalence of various multisystemic symptoms associated with variants affecting the
C-terminal part of NBAS point to important functions of this part of the protein, which
so far has no defined domains and for which no reliable 3D modeling is currently pos-
sible. However, further studies are needed to improve our knowledge about the tertiary
structure of NBAS, domain-specific protein functions, and potential sites of interaction.

Timely health care of patientswith such a set of clinical spectrumof SOPHsyndrome,
ILFS2 and bone fragility can contribute to establishment coordinated multispecialty
management of the patient focusing on the health problems issues through childhood.

This study increases the number of NBAS mutation associated with the disease and
will facilitate further studies of the syndrome.
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Abstract. Alternative splicing enables a gene spliced into different iso-
forms, which are closely related with diverse developmental abnormal-
ities. Identifying the isoform-disease associations helps to uncover the
underlying pathology of various complex diseases, and to develop pre-
cise treatments and drugs for these diseases. Although many approaches
have been proposed for predicting gene-disease associations and iso-
form functions, few efforts have been made toward predicting isoform-
disease associations in large-scale, the main bottleneck is the lack of
ground-truth isoform-disease associations. To bridge this gap, we pro-
pose a multi-instance learning inspired computational approach called
IDAPred to fuse genomics and transcriptomics data for isoform-disease
association prediction. Given the bag-instance relationship between gene
and its spliced isoforms, IDAPred introduces a dispatch and aggrega-
tion term to dispatch gene-disease associations to individual isoforms,
and reversely aggregate these dispatched associations to affiliated genes.
Next, it fuses different genomics and transcriptomics data to replenish
gene-disease associations and to induce a linear classifier for predicting
isoform-disease associations in a coherent way. In addition, to alleviate
the bias toward observed gene-disease associations, it adds a regulariza-
tion term to differentiate the currently observed associations from the
unobserved (potential) ones. Experimental results show that IDAPred
significantly outperforms the related state-of-the-art methods.

Keywords: Isoform-disease association · Alternative splicing · Data
fusion · Multi-instance learning

1 Introduction

Deciphering human diseases and the pathology is one of key fundamental tasks
in life science [4]. Thousands of genes have been identified as associated with a
variety of diseases. Identifying gene-disease associations (GDA) contributes to
decipher the pathology, which helps us to find new strategies and drugs to treat
diverse complex diseases. Many computational solutions have been developed
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to predict GDAs in large-scale, such as network propagation [32,35], literature
mining [23], clustering analysis [31], data fusion [23], matrix completion [18],
deep learning-based methods [16] and so on.

A single gene can produce multiple isoforms by alternative splicing, which
greatly increases the transcriptome and proteome complexity [29]. More than
95% multi-exon genes in human genome undergo alternative splicing [20,33].
In practice, a gene can be associated with diverse diseases mainly owing to
its abnormally spliced isoforms [29]. Increasing studies confirm that alternative
splicing is associated with diverse complex diseases, such as autism spectrum
disorders [28], ischemic human heart disease [19], and Alzheimer disease [10].
Neagoe et al. [19] observed that a titin isoform switch in chronically ischemic
human hearts with 47:53 average N2BA-to-N2B ratio in severely diseased coro-
nary artery disease transplanted hearts, and 32:68 in nonischemic transplants.
Long-term titin modifications can damage the ability of the heart. Apolipopro-
tein E (apoE) is localized in the senile plaques, congophilic angiopathy, and
neurofibrillary tangles of Alzheimer disease. Strittmatter et al. [30] compared
the difference of binding of synthetic amyloid beta (beta/A4) peptide to apoE4
and apoE3, which are two common isoforms of apoE, and observed that apoE4
is associated with the increased susceptibility to disease. The results show that
the pathogenesis of Alzheimer disease may be related to different bindings in
apoE. Sanan et al. [24] observed the apoE4 isoform binds to a beta peptide
more rapidly than apoE3. Holtzman et al. [10] found the expression of apoE3
and apoE4 in APPV717F transgenic (TG), no apoE mice resulted in fibrillar
amyloid-β deposits and neuritic plaques by 15 months of age and substantially
(>10-fold) more fibrillar deposits were observed in apoE4-expressing APPV717F
TG mice. Lundberg et al. [15] demonstrated that FOXP3 in CD4+ T cells is
associated with coronary artery disease and alternative splicing of FOXP3 is
decreased in coronary artery disease.

Existing isoform-disease associations (IDAs) are mainly detected by wet-
lab experiments (i.e., gel electrophoresis and immunoblotting). To the best of
authors knowledge, there is no computational solution for predicting IDAs at a
large-scale. The main bottleneck is that there is no public database that stores
sufficient IDAs, which are required for typical machine learning methods to
induce a reliable classifier for predicting IDAs. In fact, such lack also exists in
functional analysis of isoforms [13]. To bypass this issue, some researchers take
a gene as a bag and its spliced isoforms as instances of that bag, and adapt mul-
tiple instance learning (MIL) [2,17] to distribute the readily available functional
annotations of a gene to its isoforms [3,6,14,26,34,40].

Based on the accumulated GDAs in public databases (i.e., DisGeNET [22],
OMIM (www.omim.org)) and inspired by the MIL-based isoform function pre-
diction solutions, we kickoff a novel task of predicting IDAs, which is more
challenging than traditional GDAs prediction, due to the lack of IDAs and the
complex relationship between isoforms and genes. This task can provide a deeper
understanding of the pathology of complex diseases. To combat this task, we
introduce a computational solution (IDAPred) to predict IDAs in large scale by

www.omim.org


46 Q. Huang et al.

fusing genomic and transcriptome data and by distributing gene-disease associ-
ations to individual isoforms. IDAPred firstly introduces a dispatch and aggre-
gation term to dispatch GDAs to individual isoforms and reversely aggregate
these dispatched IDAs to affiliated genes based on the gene-isoform relations.
To remedy incomplete GDAs, it fuses nucleic acid sequences and interactome of
genes to further fulfil the to-be-dispatched GDAs. As well as that, it leverages
multiple RNA-seq datasets to construct tissue-specific isoform co-expression net-
works and to induce a linear classifier to predict IDAs. In addition, it introduces
an indicator matrix to differentiate the observed GDAs from the further ful-
filled ones and thus to alleviate the bias toward observed ones. Finally, IDAPred
merges these objectives into a unified objective function and predicts IDAs in a
coherent way. Experimental results show that IDAPred achieves better results
across various evaluation metrics than other competitive approaches that are
introduced for predicting GDAs [32] or isoform functions [14,34,40].

2 Method

2.1 Materials and Pre-processing

Suppose there are n genes, the i-th gene produces ni ≥ 1 isoforms, and the total
number of isoforms is m =

∑n
i=1 ni. We adopt the widely-used Fragments Per

Kilobase of exon per Million fragments mapped fragments (FPKM) values to
quantify the expression of isoforms. Particularly, we downloaded 596 RNA-seq
runs (of total 298 samples from different tissues and conditions) of Human from
the ENCODE project [5] (access date: 2019-11-10). These datasets are hetero-
geneous in terms of library preparation procedures and sequencing platform.
Following the pre-process done in [14,34], for each tissue, we control the qual-
ity of these RNA-seq datasets and quantify the expression value of isoforms as
follows:

(i) We firstly align the short-reads of each RNA-seq dataset of the Human
genome (build GRCh38.90) from Ensemble using HISAT2(v.2-2.1.0) [12],
and A GTF annotation file of the same build with an option of no-novel-
junction.

(ii) Then, we use Stringtie(v.1.3.3b) [21] to calculate the relative abundance
of the transcript as Fragments Per Kilobase of exon per Million fragments
mapped fragments (FPKM). We separately compute the FPKM values of a
total of 57,964 genes with 219,288 isoforms for each sample.

(iii) The FPKM values of very short isoforms are exceptionally higher. Therefore,
we discard the isoforms with less than 100 nucleotides.

(iv) To further control the quality of isoforms, we use known protein coding
gene names to map those genes obtained in step (iii). Due to the prohibitive
runtime on such a large number of isoforms and sufficient nonzero values
in the expression vector are required to induce a predictor, we refilter the
data. Particularly, we set all FPKM values lower than 0.3 as 0, and then
remove isoform with all FPKM values of 0. To ensure data filtered at the
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gene level, we do a further filtering: if an isoform of a gene is filtered, this
gene and its all spliced isoforms are removed also. Finally, we obtain 7,549
genes with 39,559 isoforms, whose values are stored in the corresponding
data matrix X ∈ R

m×d. We further normalize X by Xnor = X./max(X).
We use the normalized X for subsequent experiments.

We downloaded the gene-disease associations file and the mappings file UMLS
CUI to Disease Ontology (DO) [25] vocabularies from DisGeNET [22]. Next, we
directly use the available gene-disease associations and DO hierarchy to specify
the gene-term association matrix Y ∈ R

n×c between n genes and c DO terms.
Specifically, if a DO term s, or s’s descendant terms are positively associated
with gene i, then Y(i, s) = 1. Otherwise, Y(i, s) = 0.

We collected the gene interaction data from BioGrid (https://thebiogrid.org),
which is a curated biological database of genetic interactions, chemical interac-
tions, and post-translational modifications of gene products. Let S(v)

11 ∈ R
n×n

encode the gene-level interaction, S(1)
11 (i, j) > 0 if the gene i has a physical inter-

action with gene j, S(1)
11 (i, j) = 0 otherwise, and the weight of S(1)

11 (i, j) is deter-
mined by the interaction strength. We collected the gene sequence data from
NCBI (https://www.ncbi.nlm.nih.gov/). We adopted conjoint triad method [27]
to represent nucleic acid sequences by numeric features and then adopted cosine
similarity to construct another gene similarity network S(2)

11 ∈ R
n×n.

2.2 Isoform-Disease Associations Prediction

Owing to the lack of DO annotations of isoforms, traditional supervised learning
cannot be directly applied to predict IDAs. A bypass solution is to distribute the
collected gene-level GDAs (stored in Y) to individual isoforms spliced from the
genes using the readily available gene-isoform relations (stored in R12 ∈ R

n×m,
R12(i, j) = 1 if isoform j is spliced from gene i, R12(i, j) = 0 otherwise). Suppose
Z ∈ R

m×c stores the latent associations between m isoforms and c distinct DO
terms. Following the MIL principle that the labels of a bag is responsible by at
least one instance of this bag [2,17], a GDA should also be responsible by at
least one isoform spliced from this gene. To concrete this principle, we define a
dispatch and aggregation objective to push the gene-level associations to isoform-
level and reversely aggregate the associations to gene-level in a compatible way
as follows:

Y = ΛR12Z (1)

where Λ ∈ R
n×n is a diagonal matrix, Λ(i, i) = 1/ni, ni represents the number

of distinct isoforms spliced from the i-th gene. Given the known Y, Λ and R12,
we can optimize Z by minimizing ‖Y − ΛR12Z‖2F , and thus to predict the
associations between m isoforms and c DO terms. Next, we can induce a linear
predictor based on Z as follows:

min Ω(W,Z) = ‖Z − XW‖2F + ‖Y − ΛR12Z‖2F + α ‖W‖2F (2)

https://thebiogrid.org
https://www.ncbi.nlm.nih.gov/
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where W ∈ R
d×c is the coefficient matrix for the linear predictor, which maps

the numeric expression features X of isoforms onto c distinct DO terms. The
Frobenius norm and scale parameter α are added to control the complexity of
linear predictor.

The above equation can simultaneously distribute GDAs to individual iso-
forms and induce a classifier to predict IDAs. However, it ignores the important
genomics data, which carry important information to boost the performance of
isoform function prediction and to identify the genetic determinants of disease
[3,37]. Similarly, the incorporation of genomic data can also improve the perfor-
mance of predicting IDAs. Furthermore, the collected GDAs are still incomplete.
As a consequence, the distributed IDAs are also not sufficient to induce a reli-
able predictor and the predictor may be mislead by the collected GDAs, which
are imbalanced and biased by the research interests of the community [8,9]. To
alleviate these issues, we replenish GDAs by fusing gene-gene interactions and
nucleic acid sequence data, and update the above equation as follows:

min Ω(W,Z,F) = ‖Z − XW‖2
F + α ‖W‖2

F + ‖F − ΛR12Z‖2
F + ‖H � (F − Y)‖2

F

+
1

2Vn

Vn∑

v=1

∑n

i,j=1
‖F(i, ·) − F(j, ·)‖2

FS(v)
n (i, j)

= ‖Z − XW‖2
F + α ‖W‖2

F + ‖F − ΛR12Z‖2
F + ‖H � (F − Y)‖2

F

+
1

Vn

Vn∑

v=1

tr(FTL(v)
n F))

(3)

where F ∈ R
n×c stores the latent IDAs between n genes and c DO terms.

H = Y, � means the element-wise multiplication. ‖H � (F − Y)‖2F is intro-
duced to enforce latent IDAs being consistent with the collected ones and also
to differentiate the observed ones from latent ones, and thus to reduce the
bias toward observed ones. 1

Vn

∑Vn

v=1 tr(FTL(v)
n F)) is introduced to replenish

IDAs by fusing diverse gene-level data, and Vn is the number of genomic data
sources. Here, we specify the elements of S(v)

n using the gene interaction net-
work and nucleic acid sequences (as stated in the data preprocess subsection).
L(v)
n = D(v)

n − S(v)
n , D(v)

n is a diagonal matrix with D(v)
n (i, i) =

∑n
j=1S

(v)
n (i, j).

The co-expression pattern of isoforms also carry important information about
the functions of isoforms [3,40], whose usage also boosts the prediction of IDAs.
In addition, the expression of isoforms has tissue specificity [7,38]. To make
use of tissue-specific co-expression patterns, we update the objective function of
IDAPred as follows:

min Ω(W,Z,F) = ‖Z − XW‖2F +
1

Vm

Vm∑

v=1

tr(ZTL(v)
m Z) + α ‖W‖2F

+ β(‖F − ΛR12Z‖2F +
1
Vn

Vn∑

v=1

tr(FTL(v)
n F) + ‖H � (F − Y)‖2F )

(4)
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where Vm counts the number of tissues that are used to construct the expression
profile feature vectors of m isoforms in X, L(v)

m = D(v)
m −S(v)

m , and S(v)
m ∈ R

m×m

encodes the co-expression patterns of m isoforms from the v-th tissue. D(v)
m is a

diagonal matrix with D(v)
m (i, i) =

∑m
j=1S

(v)
m (i, j). β is introduced to balance the

information sources from the gene-level and isoform-level.
The optimization problem in Eq. (4) is non-convex with respect to W, Z

and F altogether. It is difficult to seek the global optimal solutions for them at
the same time. We follow the idea of alternating direction method of multipliers
(ADMM) [1] to alternatively optimize one variable by fixing the other two vari-
ables in an iterative way. IDAPred often converges in 60 iterations on our used
datasets. The optimization detail is omitted here for page limit.

3 Experiment Results and Analysis

3.1 Experimental Setup

To assess the performance of IDAPred for predicting IDAs, we collect multi-
ple RNA-Seq datasets from ENCODE project, gene-disease associations data
from DisGeNET, gene interaction data from BioGrid, sequence data of genes
from NCBI. We only consider the genes within all the four types of data for
experiments. The pre-processed GDAs and isoforms of the genes are listed in
Table 1.

Table 1. Statistics of isoforms and collected GDAs. ‘associations’ is the number of
GDAs for experiment.

genes (n) isoforms (m) terms (c) associations

2,482 14,484 2,949 73,515

To comparatively study the performance of IDAPred, we take the state-
of-the-art isoform function prediction methods (iMILP [14], IsoFun [40], Dis-
ofun [34]) and gene-disease association prediction method (PRINCE [32]) as
comparing methods. The input parameters of these comparing methods are
fixed/optimized as the original papers or shared codes. For IDAPred, we choose
α and β in

{
10−4, 10−3, . . . , 103, 104

}
. Due to the lack of IDAs, we surrogate the

evaluation by aggregating the predicted IDAs to affiliated genes, this approx-
imate evaluation was also adopted in isoform function prediction [14,40]. In
addition, we further compare IDAPred against its degenerated variants to fur-
ther study the contribution components of IDAPred.

The task of predicting IDAs can be evaluated alike gene function prediction
[11,39], and multi-instance multi-label learning by taking each gene as bag, the
spliced isoforms as instances and associated diseases (DO terms) as distinct
labels [36,41]. Given that, we adopt five evaluation metrics MicroF1, MacroF1,
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1 − RankLoss, Fmax and AUPRC, which are widely-used in gene function
prediction and multi-label learning. MicroF1 computes the F1-score on the
predictions of different DO terms as a whole; MacroF1 calculates the F1-score
of each term, and then takes the average value across all DO terms; RankLoss
computes the average fraction of incorrectly predicted associations ranking ahead
of the ground-truth associations. Fmax is the global maximum harmonic mean
of recall and precision across all possible thresholds. AUPRC calculates the area
under the precision-recall curve of each term, and then computes the average
value of these areas as the overall performance. The higher the value of MicroF1,
MacroF1, 1 − RankLoss, Fmax and AUPRC, the better the performance is.
We want to remark that these five metrics quantify the prediction results from
different aspects, and it is difficult for one method to always outperform another
one across all these metrics.

3.2 Results Evaluation at Gene-Level

We adopt five-fold cross-validation at the gene-level for experiment. For each test
fold, we randomly initialize the test part of F and Y in Eq. (4). We initialize the
isoform-term association matrix Z by the gene-term association matrix F, say all
the diseases associated with a gene are also initialized as temporarily associated
with its spliced isoforms. The GDAs in the validation set are considered as
unknown during training and prediction, and only used for validation. Table 2
reports the results of IDAPred and of compared methods.

Table 2. Experimental results of five-fold cross-validation. •/◦ indicates IDAPred per-
forming significantly better/worse than the other comparing method, with significance
assessed by pairwise t-test at 95% level.

PRINCE iMILP IsoFun Disofun IDAPred

MicroF1 0.3122± 0.0274• 0.2349± 0.0273• 0.2829± 0.0195• 0.3306± 0.0092• 0.8248± 0.0118

MacroF1 0.2863± 0.0341• 0.0645± 0.0269• 0.1232± 0.0254• 0.0398± 0.0046• 0.4250± 0.0241

1-RankLoss 0.8591± 0.0434• 0.0836± 0.0473• 0.6877± 0.0536• 0.8699± 0.0016• 0.9966± 0.0003

Fmax 0.3281± 0.0097• 0.1559± 0.0750• 0.2140± 0.0143• 0.2250± 0.0109• 0.6795± 0.0068

AUPRC 0.3596± 0.0025• 0.0092± 0.0051• 0.0413± 0.0031• 0.0430± 0.0049• 0.4782± 0.0067

IDAPred gives significantly better results than the compared methods across
all the five evaluation metrics. MicroF1, MacroF1 and AUPRC are disease
term-centric metrics, while 1 − Rankloss and Fmax are gene-centric metrics.
The significant improvement shows that IDAPred can more reliably predict the
GDAs (IDAs) from both the gene (isoforms) and DO term perspectives. Three
factors contribute to this improvement. (i) IDAPred fuses the gene sequence and
interaction data to complete GDAs, along with the isoform expression data, while
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these compared methods either use only the interaction data and/or the expres-
sion data. (ii) IDAPred accounts for tissue specificity and fuses co-expression
networks of different tissues, while IsoFun and Disofun concatenate the expres-
sion profiles of different tissues into a single feature vector and then construct a
single co-expression network; as a result, they do not make use of the important
tissue specificity patterns of alternative splicing. (iii) IDAPred models the incom-
pleteness of the gene-term associations and introduces the indicator matrix H to
enforce latent IDAs being consistent with the collected ones, and to differentiate
the observed ones from latent ones.

PRINCE directly predicts GDAs based on the topology of gene interaction
networks, and it outperforms most comparing methods (except our proposed
IDAPred). One explanation is that the evaluation is approximately made at the
gene-level, not the targeted isoform-level, and these compared methods more
focus on using the transcriptomics expression data. Last but not least, we want
to remark that IDAPred is an inductive approach that can directly predict the
associations between diseases and a new isoform, whereas these compared meth-
ods can only work in transductive setting, they have to include this isoform for
retraining the model and then to make the prediction.

Overall, these comparisons indirectly prove the effectiveness of IDAPred in
predicting the associations between isoforms and diseases.

3.3 Further Analysis

Ablation Study. To further study the contribution components, we introduce
five variants of IDAPred, which are IDAPred(L), IDAPred(P), IDAPred(S),
IDAPred(A) and IDAPred(H). IDAPred(L) removes the 1

Vn

∑Vn

v=1 tr(FTL(v)
n F)

in Eq. (4), namely both the gene sequence and interaction data are excluded;
IDAPred(P) only uses the gene interaction data; IDAPred(S) only utilizes the
gene sequence data; IDAPred(A) concatenates the isoform expression profile fea-
ture vectors of different tissues into a single one, and then directly constructs
a single isoform co-expression network using cosine similarity also. IDAPred(H)
removes the indicator H in ‖H � (F − Y)‖2F ) in Eq. (4), say it does not consider
the bias toward the observed GDAs. Figure 1 reports the performance results
of IDAPred and of its variants. The experimental settings are the same as the
evaluation at the gene-level.

It is easy to observe that IDAPred manifests the highest performance among
its variants. IDAPred(L) has much lower performance values than IDAPred. This
fact corroborates our assumption that the observed GDAs are incomplete, and
also the contribution of fusing gene interaction and sequence data to complete the
GDAs, which then improve the prediction of IDAs. IDAPred(P) and IDAPred(S)
manifest better results than IDAPred(L), but they both are outperformed by
IDAPred. This comparison not only shows that gene interaction network data
and gene sequence data can help to replenish GDAs, but also expresses the joint
benefit of fusing gene interaction and sequence data. IDAPred(P) has a lower
performance than IDAPred(S), this facts the gene sequence data is more pos-
itively related with the isoform/gene-disease associations than the incomplete
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Fig. 1. Performance results of IDAPred and its variants, which fuse fewer data or do
not alleviate the bias toward observed GDAs.

gene interaction data. IDAPred(A) also loses to IDAPred, which proves the
necessity of combining isoform co-expression patterns from tissue-wise, instead
from sample-wise. There is a big performance margin between IDAPred and
IDAPred(H), which expresses the importance to explicitly account for the incom-
pleteness of observed GDAs and to alleviate the bias toward observed GDAs,
which is overlooked by most compared methods.

In summary, the ablation study also confirms the effectiveness of our unified
objective function in fusing genomics and trascriptomics data, and in handling
the difficulty of predicting IDAs.

Parameter Sensitivity Analysis. There are two input parameters (α and β)
involved with IDAPred. α controls the complexity of linear predictor, and β
balances the information sources from the gene-level and isoform-level. We vary
α and β in the grid of

{
10−4, 10−3, · · · , 103, 104

}
, and visualize the results of

IDAPred under different combinations of α and β in Fig. 2.

Fig. 2. Performance results vs. α and β.

We observe that IDAPred firstly has a clearly increased performance as α
growing from 10−4 to 10−2, and then holds a relatively stable performance as α
further growing. As β growing from 10−4 to 10−1, IDAPred also shows a sharply
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increased performance trend, and a slowly increased trend as β further growing
from 10−1 to 104. This trend again confirms that the gene-level data should be
leveraged for predicting IDAs. We also find β playing more important role than α.
That is because α only controls the complexity of predictor, while the complexity
is also inherently controlled by the simple linear classifier. When both α and
β are fixed with too small values, IDAPred has the lowest performance. This
observation again expresses the effectiveness of the unified objective function
for handling the difficulty of predicting IDAs. Based on these results, we adopt
α = 10−2 and β = 104 for experiments.

4 Conclusion

In this paper, we proposed an approach called IDAPred to computationally pre-
dict isoform-disease associations by data fusion. IDAPred makes use of multi-
instance learning to bypass the lack of the ground-truth isoform-disease associ-
ations and to push gene-disease associations onto individual isoforms. It fuses
nucleic acid sequences and interactome of genes to further fulfil the incomplete
GDAs. In addition, it leverages multiple RNA-seq datasets to construct tissue-
specific isoform co-expression networks and to induce a linear classifier to predict
IDAs. Experimental results show that IDAPred significantly outperforms related
comparing methods, which target to identify gene-disease associations or isoform
functions.
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23. Pletscher-Frankild, S., Pallejà, A., Tsafou, K., Binder, J.X., Jensen, L.J.: Diseases:
text mining and data integration of disease-gene associations. Methods 74, 83–89
(2015)

24. Sanan, D.A., et al.: Apolipoprotein E associates with beta amyloid peptide of
Alzheimer’s disease to form novel monofibrils. isoform apoE4 associates more effi-
ciently than apoE3. J. Clin. Invest. 94(2), 860–869 (1994)

25. Schriml, L.M., et al.: Disease ontology: a backbone for disease semantic integration.
Nucleic Acids Res. 40(D1), D940–D946 (2012)

26. Shaw, D., Chen, H., Jiang, T.: Deepisofun: a deep domain adaptation approach to
predict isoform functions. Bioinformatics 35(15), 2535–2544 (2019)

27. Shen, J., et al.: Predicting protein-protein interactions based only on sequences
information. Proc. Nat. Acad. Sci. 104(11), 4337–4341 (2007)

28. Skotheim, R.I., Nees, M.: Alternative splicing in cancer: noise, functional, or sys-
tematic? Int. J. Biochem. Cell Biol. 39(7–8), 1432–1449 (2007)



Isoform-Disease Association Prediction by Data Fusion 55

29. Smith, L.M., Kelleher, N.L.: Proteoforms as the next proteomics currency. Science
359(6380), 1106–1107 (2018)

30. Strittmatter, W.J., et al.: Binding of human apolipoprotein E to synthetic amy-
loid beta peptide: isoform-specific effects and implications for late-onset Alzheimer
disease. Proc. Nat. Acad. Sci. 90(17), 8098–8102 (1993)

31. Sun, P.G., Gao, L., Han, S.: Prediction of human disease-related gene clusters by
clustering analysis. Int. J. Biol. Sci. 7(1), 61 (2011)

32. Vanunu, O., Magger, O., Ruppin, E., Shlomi, T., Sharan, R.: Associating genes
and protein complexes with disease via network propagation. PLoS Comput. Biol.
6(1), e1000641 (2010)

33. Wang, E.T., et al.: Alternative isoform regulation in human tissue transcriptomes.
Nature 456(7221), 470 (2008)

34. Wang, K., Wang, J., Domeniconi, C., Zhang, X., Yu, G.: Differentiating isoform
functions with collaborative matrix factorization. Bioinformatics 36(6), 1864–1871
(2020)

35. Wang, X., Gulbahce, N., Yu, H.: Network-based methods for human disease gene
prediction. Brief. Funct. Genomics 10(5), 280–293 (2011)

36. Xing, Y., Yu, G., Domeniconi, C., Wang, J., Zhang, Z., Guo, M.: Multi-view multi-
instance multi-label learning based on collaborative matrix factorization. In: AAAI,
pp. 5508–5515 (2019)

37. Xiong, H.Y., et al.: The human splicing code reveals new insights into the genetic
determinants of disease. Science 347(6218), 1254806 (2015)

38. Yeo, G., Holste, D., Kreiman, G., Burge, C.B.: Variation in alternative splicing
across human tissues. Genome Biol. 5(10), R74 (2004). https://doi.org/10.1186/
gb-2004-5-10-r74

39. Yu, G., Rangwala, H., Domeniconi, C., Zhang, G., Yu, Z.: Protein function pre-
diction using multilabel ensemble classification. IEEE/ACM Trans. Comput. Biol.
Bioinf. 10(4), 1045–1057 (2013)

40. Yu, G., Wang, K., Domeniconi, C., Guo, M., Wang, J.: Isoform function prediction
based on bi-random walks on a heterogeneous network. Bioinformatics 36(1), 303–
310 (2020)

41. Zhou, Z.H., Zhang, M.L., Huang, S.J., Li, Y.F.: Multi-instance multi-label learning.
Artif. Intell. 176(1), 2291–2320 (2012)

https://doi.org/10.1186/gb-2004-5-10-r74
https://doi.org/10.1186/gb-2004-5-10-r74


EpIntMC: Detecting Epistatic
Interactions Using Multiple Clusterings

Huiling Zhang1, Guoxian Yu1, Wei Ren1, Maozu Guo2, and Jun Wang1(B)

1 College of Computer and Information Science,
Southwest University,

Chongqing 400715, China
kingjun@swu.edu.cn

2 College of Electronics and Information Engineering,
Beijing University of Civil Engineering and Architecture,

Beijing 100044, China

Abstract. Detecting epistatic interaction between multiple single
nucleotide polymorphisms (SNPs) is crucial to identify susceptibil-
ity genes associated with complex human diseases. Stepwise search
approaches have been extensively studied to greatly reduce the search
space for follow-up SNP interactions detection. However, most of these
stepwise methods are prone to filter out significant polymorphism com-
binations and thus have a low detection power. In this paper, we propose
a two-stage approach called EpIntMC, which uses multiple clusterings
to significantly shrink the search space and reduce the risk of filtering
out significant combinations for the follow-up detection. EpIntMC firstly
introduces a matrix factorization based approach to generate multiple
diverse clusterings to group SNPs into different clusters from different
aspects, which helps to more comprehensively explore the genotype data
and reduce the chance of filtering out potential candidates overlooked by
a single clustering. In the search stage, EpIntMC applies Entropy score
to screen SNPs in each cluster, and uses Jaccard similarity to merge
the most similar clusters into candidate sets. After that, EpIntMC uses
exhaustive search on these candidate sets to precisely detect epsitatic
interactions. Extensive simulation experiments show that EpIntMC has
a higher (comparable) power than related competitive solutions, and
results on Wellcome Trust Case Control Consortium (WTCCC) dataset
also expresses its effectiveness.

Keywords: Genome-wide association study · Epistatic interactions ·
Stepwise search · Multiple clusterings · Matrix factorization

1 Introduction

Genome-wide association study (GWAS) measures and analyzes DNA sequence
variations from genomes, with an effort to detect hundreds of single-nucleotide
polymorphisms (SNPs) associated with complex diseases [30]. In genetics, SNPs
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are notably a type of common genetic variation, and multiple SNPs are now
believed to affect individual susceptibility to complex diseases. Various joint
effects of genetic variants are often called as epistasis or epistatic interactions
[18]. Nevertheless, many efforts focus on single factors, which cannot completely
explain the pathology of complex diseases [20]. Single locus-based methods ignore
these interactions. As a consequence, two (or multi)-locus SNPs of epistasis
detection has been a critical demand.

There are twofold challenges in epistasis detection. The first is statistic. Tra-
ditional statistic tests used in univariate SNP-phenotype associations are inad-
equate to find epistasis. The second challenge is the heavy computational bur-
den. The overall complexity is linear when detecting single loci, but it becomes
exponential when the order increases [21]. An exhaustive search of epistatic
interactions of order ≥3 would lead to the ‘curse of dimensionality’ or ‘com-
binatorial explosion’. To combat with the first challenge, some statistic tests,
such as likelihood test and chi-squared test [4], have been developed to quantify
the association effect. To handle the second challenge, computationally efficient
and/or memory-saving algorithms have been proposed [17,25].

The computational methods of detecting epistasis can be divided into three
categories: exhaustive, heuristic and stepwise search-based ones. Exhaustive
search-based approaches usually use the Chi-squared test, logistic regression
and other traditional statistical analysis methods to evaluate all possible com-
binations of SNPs. Ritchie et al. [22] proposed a nonparametric and model-
free method named Multifactor-Dimensionality Reduction (MDR). With MDR,
all multi-locus genotypes are pooled into high-risk and low-risk groups to
actualize ‘Dimension Reduction’. Heuristic search methods are often occurred
in ant colony optimization (ACO) based algorithms. Wang et al. proposed
AntEpiseeker [28] which uses two-stage design on ant colony optimization to
better enhance the power of ACO algorithms. Stepwise search methods care-
fully pre-select SNP subsets or pairwise interaction candidates before the time-
consuming detection. HiSeeker [16] employs Chi-squared test and logistic regres-
sion model to obtain candidate pairwise combinations in the screening stage,
and then detects high-order interactions on candidate combinations. ClusterMI
(Clustering combined with Mutual Information) [7] utilizes mutual information
and conditional mutual information to group and screen significant pairwise SNP
combinations in each cluster, and then use the exhaustive (or improved heuris-
tic) search to obtain a high detection accuracy. DualWMDR [8] combines a dual
screening strategy with a MDR based weighted classification evaluation to detect
epistasis.

However, these aforementioned methods still have several limitations. Most of
methods are designed to detect only pairwise interactions and cannot afford the
higher-order interaction search space. For the large genome-wide data, screen-
ing the candidate set from all pairwise SNP combinations is computation-
ally overwhelming. In addition, most single-clustering based epistasis detection
approaches usually just utilize a single clustering result to obtain significant SNP
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combinations, which may reduce the coverage of SNP combinations and suffer
the risk of filtering out too many significant combinations.

In this paper, we propose a two-stage approach named EpIntMC (Epistatic
Interactions detection based on Multiple Clusterings) to more precisely detect
SNP combinations associated with disease risk. In the first stage, EpIntMC
introduces matrix factorization based multiple clusterings algorithm to gener-
ate diverse clusterings, each of which divide SNPs into different clusters. This
stage greatly reduces the search space and groups associated SNPs together from
different perspectives. In the search stage, EpIntMC applies Entropy score to
select high-quality SNPs in each cluster, then uses Jaccard similarity to merge
the most similar clusters into candidate sets, which have strongly associated
SNPs but with much smaller sizes. After that, EpIntMC uses exhaustive search
on candidate sets and report SNP combinations with the highest entropy scores
as the detected interactions. Extensive experiments on simulated datasets show
that EpIntMC is more powerful in detecting epistatic interactions than com-
petitive methods (EDCF [31], DCHE [12], DECMDR [32], MOMDR [33], and
ClusterMI [7]). Experiments on real Wellcome Trust Case Control Consortium
(WTCCC) dataset also show that EpIntMC is feasible for identifying high-order
SNP interactions on large GWAS data.

2 Materials and Methods

Suppose a genome-wide case-control dateset X ∈ R
d×n with d SNPs and n sam-

ples. Let n0 and n1 denote the number of controls (i.e. normal individuals) and
of cases (i.e. disease individuals), respectively. We use uppercase letters (A, B)
to denote major alleles and lowercase letters (a, b) to denote minor alleles. For
three genotypes, we use 0, 1, 2 to represent the homozygous reference genotype
(AA), heterozygous genotype (Aa), homozygous variant genotype (aa), respec-
tively. EpIntMC is a stepwise approach. In the first stage, multiple clusterings
algorithm is introduced to divide SNPs into different clusters. In the search stage,
EpIntMC applies Entropy score and Jaccard similarity to obtain candidate sets.
After that, EpIntMC utilizes the exhaustive search on candidate sets to detect
epistatic interactions. The next two subsections elaborate on these two stages.

2.1 Stage 1: Select SNPs by Multiple Clusterings

Clustering is one of the popular techniques in detecting epistasis [7,8,12,31], it
attempts to divide SNPs into different groups based on the similarity between
them and filter out non-significant ones. In this way, it reduces the search space
for the follow-up epistasis detection. However, existing clustering-based epistasis
detection approaches all only use a single clustering result to filter out ‘non-
significant’ SNP combinations, which may be significant ones from another per-
spective [7,8,12,31]. In addition, they group SNPs using all SNPs and may lead
a too overwhelming computational load. Thus, to boost the power of detecting
epistasis interactions, we resort to the multiple clusterings technique to generate
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different groupings of SNPs, and to minimize the chance of wrongly filtering out
significant SNP combinations. Compared with typical clustering [13], multiple
clusterings is much less studied, it aims generate a set of diverse clusterings and
to explore different aspects of the same data [3].

Semi-nonnegative matrix factorization based clustering [11] has been
extended for generating multiple clusterings [26,27,29,34,35]. Semi-NMF aims
to factorize the data matrix X ≈ GZ. By taking Z ∈ R

n×k as k cluster centroids
in the n-dimensional sample space, and G ∈ R

d×k as the soft membership indi-
cators of d SNPs to these centroids. To obtain the diversity between generated
alternative clusterings and to reduce the computational burden of factorizing a
data matrix with massive SNPs, we project d SNPs into different subspaces by
a series of projective matrices {Ph ∈ R

d×dh}mh=1 to seek m diverse clusterings in
these subspaces. And to enforce the diversity between m alternative clusterings,
we reduce the overlap between two projective matrices using a Frobenius norm.
Besides, to reduce the impact of noisy SNPs, we further add an l1-norm on
each Ph. Thus, for concreting these, we introduce a matrix factorization based
multiple clustering objective as follows:

min J(Gh,Zh,Ph) =
1
m

m∑

h=1

‖ PT
hX − GhZT

h ‖2F +λ1tr(GT
hLGh)

+
λ2

m

m∑

h=1

‖ Ph ‖1 +
λ3

m2

m∑

h=1,h�=h2

‖ PT
hPh2 ‖2F

s.t. Gh ≥ 0

(1)

where the scale parameter λ1 balances these four terms, λ2 > 0 controls the
sparsity of projective matrices, and λ3 > 0 balances the quality and diversity of
m clusterings in the projected subspaces, two normalization factors 1/m2 and
1/m are introduced to reduce the scale impact. L = D − W, where W reflects
the association strength between two SNPs and D is a diagonal matrix with
diagonal entry equal to the row sum of W of respective row. Here, we adopt
Entropy score (ES)[9] to quantify the non-linear direct associations between two
SNPs as follows:

W(S1, S2) =
min{S1, S2} − S1,2

min{S1, S2} (2)

where S1 and S2 are the single loci entropy for SNP1 and SNP2, respec-
tively. S1 =

∑2
i=0 P1ih1i, where h1i = −pi log pi − (1 − pi) log(1 − pi), pi =

ncase(i)/ntotal(i), ntotal(i), ncase(i) are the number of samples with genotype i
in all samples and case samples, respectively. P1i = ntotal(i)/n is the weighted
co-efficient for h1i and

∑2
i=0 P1i = 1, n is the number of all samples. Performing

the same calculation on S2 and S1,2. For single loci entropy, i = 0, 1, 2 denotes the
three genotypes (AA, Aa, aa) of SNP. For two-way interactions, i = 1, 2, · · · , 9
denotes SNP1�SNP2 = AABB, AABb,..., aabb, respectively. Based on Eq. (2),
we can quantify the association between interacting SNPs and disease status.
A higher ES value indicates a stronger association between two SNPs and they
will be more probably grouped into the same cluster.
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Note, the Eq. (1) explore and exploit the intrinsic local geometrical structure
of SNPs and thus to boost the grouping effect of SNPs, also has the flavor of
Elastic net [37], which encourages a grouping effect where strongly correlated
predictors tend to be in or out of the model together. Due to page limit, the
detailed optimization is not presented here.

2.2 Stage 2: Significant SNP Interactions Detection

Since SNPs in the same cluster have higher genetic association than those in
different clusters, we can select high quality SNPs that have strong association
with other SNPs in the same cluster and reduce the interference of noisy SNPs.
Given that, for each cluster, we also use Entropy score to calculate the interaction
effect and adopt the maximum entropy score to approximate the effect of SNPi:

Si = max
i�=j,j∈C(i)

{ESij}; (3)

where ESij is the association score (quantified by Eq. (2)) between SNPi and
SNPj , and j ∈ C(i) means SNPj is within the same cluster as SNPi. Next, top
T SNPs with the highest scores are selected from each cluster.

To obtain the useful dominant SNPs and search the SNPs combinations
strongly associated with disease, we use Jaccard similarity coefficient [2] to cal-
culate the similarity of different clusters from different clusterings. The larger the
Jaccard coefficient value, the greater the similarity is. Here we employ the Jac-
card similarity to measure the similarity between two clusters of two clusterings
as follows:

J(Ci
h, Cj

h′) =
|Ci

h

⋂ Cj
h′ |

|Ci
h

⋃ Cj
h′ |

(4)

where Ci
h (Cj

h′) is the i(j)-th cluster in the h(h′)-th clustering, h, h′ ≤ m,h′ �= h,
and i, j ≤ k. Note, each cluster only retains the T high quality SNP locus.
We firstly calculate the similarity of different clusters from different clusterings,
then merge the clusters among m clusterings with high similarity and discard
other clusters with low similarity. In this way, we obtain k candidate sets which
contains dominant SNPs.

Till now, we obtain k much smaller candidate sets, each set contains accurate
and strong association SNPs. Since exhaustive analysis is feasible to exhaustively
analyze all high-order interactions when the number of candidates is very small,
EpIntMC uses exhaustive search strategy on candidate sets to detect epistasis.
Each K-SNP combination is evaluated by the entropy score within k candi-
date sets. Then, all combinations from individual sets are merged into a set S
and sorted in descending order. EpIntMC reports top N combinations with the
highest entropy score as the detected K-SNP interactions.

3 Experimental Result and Analysis

In this section, we evaluate the performance of EpIntMC on both simulated
and real datasets on detecting epistasis interactions. In the simulation study,
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we compare EpIntMC with EDCF [31], DCHE [12], DECMDR [32], MOMDR
[33], and ClusterMI [7] on two-locus and three-locus epistatic models. We use a
canonically used evaluation metric Power [25] to quantify the performance of
EpIntMC and of other comparing methods. Power is defined as the proportion of
the total generated datasets in which the specific disease-associated combination
is detected. For the real study, we test EpIntMC on breast cancer (BC) dataset
collected from WTCCC.

3.1 Parameter Analysing and Setting

EpIntMC has several parameters which may affect its performance. For better
detecting epistasis interactions, we firstly study the parameter sensitivity. Power
was used as the evaluate metric on 50 simulation datasets with 1600 samples
and 1000 SNPs. Figure 1 reveals the results under different parameter settings
of m and k, and different settings of λ2 and λ3.

Given the multiplicity of genetic data, we study the number of clusterings
m in [2, 5] and the number of clusters in each clustering k in [2, 9] to seek the
suitable input values. We observe Fig. 1a that k = 3 and m = 3 gives the highest
power, and the further increase of k reduces the power. That is because two
SNPs with high association are more likely grouped into different clusters as
the growth of k, which compromises the power. As to m, we find m > 5 gives a
greatly reduced power, since strongly associated SNPs are easily separated when
merging the selected SNPs from different clusters of different clusterings as the
growth of alternative clusterings, which also reduces the quality of individual
clusterings. We want to remark that the increase of m and k requires more time
to converge and merge the SNPs. Give these results, we adopt m = 3 and k = 3
for the following simulation experiments.

(a) m and k vs. Power (b) λ2 and λ3 vs. Power

Fig. 1. Parameter analysis of EpIntMC in the screening stage. (a) EpIntMC under
different values of m and k; (b) EpIntMC under different values of λ2 and λ3.

λ1 balances the multiple clusterings and the grouping effect of SNPs, we find
that a larger λ1 contributes to a larger power. The power can be even higher when



62 H. Zhang et al.

λ1 > 100. However, such a large λ1 can lead most SNPs grouped into one cluster,
it increases the coverage but brings a very big candidate SNP combinations for
follow-up detection. Given that, we adopt λ1 = 100 for experiment. With m = 3,
k = 3 and λ1 = 100, we also study λ2 and λ3 in [10−8, 10−2] and [10−3, 102],
respectively. Figure 1b shows the power under combinations of λ2 and λ3. When
λ2 = 10−4 the power of EpIntMC achieves the highest value. A too large λ2 will
exclude the significant SNPs, while a too small λ2 cannot exclude noisy ones. λ3

is used to adjust the diversity among m clusterings, the power is higher when
λ3 = 10−2. We also observe that a too small λ3 can not ensure the diversity
among alternative clusterings but reduce power, while a too large λ3 increases
the diversity but decrease the quality of individual clusterings. We also test the
power when λ2 = 0 and λ3 = 0, which is lower than any combination in Fig. 1b.
These observations support the necessity to control the sparsity of projective
matrices and to balance the quality and diversity of multiple clusterings. Based
on these results, we adopted λ1 = 100, λ2 = 10−4 and λ3 = 10−2 for experiments.
For simplicity, we fix dh = d.

3.2 Experiments on Simulation Datasets

In the simulation data experiments, we use two two-locus epistatic models: Model
1 involves two-locus multiplicative effects [19], Model 2 is the well known XOR
(exclusive OR) model [15]. Two three-locus models: Model 3 obtained from [36] is
a three-locus model with marginal effect. Model 4 is a three-locus model without
marginal effect proposed by Culverhouse et al. [10]. Marginal effect size λ of a
disease locus in each model is defined as [36]:

λ =
PAa/PAA

(1 − PAa/(1 − PAA))
− 1 (5)

where PAA and PAa denote the penetrance of genotype AA and Aa, respectively.
For two-locus models, λ = 0.2, minor allele frequencies (MAFs) of the disease
loci are the same at three levels: 0.1, 0.2 and 0.4, linkage disequilibrium (LD)
between loci and associated markers (measured by r2) is set to 0.7 and 1.0.
We simulate 100 datasets under each parameter setting for each disease model
and each dataset contains d = 1000 SNPs. For two-locus models, each dataset
contains n = 1600 (or n = 4000) samples with balanced samples design. For
Model 3, λ = 0.3, MAFs is at three levels: MAF = 0.1, 0.2, 0.5, LD is also at two
levels: r2 = 0.7 and 1. And each dataset contains n = 2000 (or n = 4000) samples
with the balanced design. Model 4 which yields maximum genetic heritability
h2 with the population penetrance p ∈ (0, 1/16] and MAF = 0.5, heritability h2

ranges from 0.01 to 0.4. The sample size of each dataset varies from 400 to 800.
Figure 2a–2b reveals the performance of compared methods on two-locus

epistatic models. The performance of all methods increases with the growth
of the sample size. The power of these models improves significantly when r2

changing from 0.7 to 1. But in Model 1, the performance of most methods
decreases when MAFs varies from 0.2 to 0.4, the trend is consistent with the
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(a) Model 1

(b) Model 2

(c) Model 3

(d) Model 4

Fig. 2. Powers of DCHE, DECMDR, EDCF, MOMDR, ClusterMI and EpIntMC on
four disease models under different allele frequencies (MAF), sample sizes (n) and
Linkage disequilibrium (LD). n0 is the number of controls, n1 is the number of cases,
and d is the number of SNPs. The absence of a bar indicates no power.

results in Marchini et al. [19] and Wan et al. [25]. For Model 2, the power of
most methods increases as the MAFs growing from 0.1 to 0.4. EpIntMC uses
multiple clusterings to generate diverse clusterings and minimize the chance of
wrongly filtering out significant SNP combinations. As a result, EpIntMC has
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a better performance than DCHE, and they both outperform EDCF. In some
case, when MAF = 0.1 and MAF = 0.2, EpIntMC loses to DCHE and MOMDR.
That is because DCHE measures significance via the chi-squared test with low
degrees of freedom and MOMDR uses the correct classification and likelihood
rates to simultaneously evaluate interactions. EpIntMC only uses the entropy
score to evaluate the significance of candidate combinations. In practice, our
EpIntMC has a higher coverage of significant SNP combinations in the screen-
ing stage than other comparing methods, which prove the availability of multiple
clusterings. These comparisons show the effectiveness of EpIntMC in detecting
two-locus epistasis.

Figure 2c–2d shows the performance of comparing methods on three-locus
models for detecting high-order interactions. Here, we do not use MOMDR
since the extensive computational burden of MOMDR in high-order epistasis
detection. Instead, we include another high-order epistasis detection approach
(ClusterMI [7]) for experiments. For these two models, the power of all methods
increases as the growth of heritability and sample size in most cases. EpIntMC
has a higher (or comparable) power than other compared methods in most
cases. This is consistent with the results on the above two-locus datasets. When
h2 = 0.01 and n = 400 in Model 4, EpIntMC loses little performance than some
methods, which may due to the low heritability and small sample size affects
the effect of multiple clustering together. On the whole, all methods shows the
highest performance in Model 4, except DECMDR with a relatively poor perfor-
mance in selecting epistatic combinations. In summary, the results on detecting
high-order epistasis interactions again expresses the effectiveness of EpIntMC.

3.3 Experiments on Real Dataset

The Wellcome Trust Case Control Consortium (WTCCC) is a collaborative
effort between 50 British research groups established in 2005. A real breast cancer
dataset (BC) collected from WTCCC project [6] is used to evaluate EpIntMC.
This dataset contains genotypes of 15,347 SNPs from 1,045 affected individuals
and 2,073 controls. Quality control is performed to exclude very low call rate
samples and SNPs. After the quality control, the BC dataset contains 1,045 case
samples and 2,070 control samples with 5,607 SNPs.

Some significant two-locus and three-locus combinations on BC dataset iden-
tified by EpIntMC and several significant and representative combinations are
listed in Table 1. rs3742303 is located at gene USPL1 which is evidenced that
USPL1 is associated with breast cancer [5]. rs3739523 belongs to gene PRUNE2
on chromosome 9. The protein encoded by this gene plays roles in many cel-
lular processes including apotosis, cell transformation, and synaptic function.
rs2301572 is located at gene PLXND1 which is characterized as a receptor
for semaphorins and is known to be essential for axonal guidance and vascular
patterning. Emerging data show that expression of PLXND1 is deregulated
in several cancers [24]. rs4987117 is located at gene BRCA2 in chromosome
13. BRCA2 is considered a tumor suppressor gene, as tumors with BRCA2
mutations generally exhibit loss of heterozygosity (LOH) of the wild-type allele.
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It is evidenced that inherited mutations in BRCA1 and BRCA2 confer increased
lifetime risk of developing breast cancer [1].

Table 1. Significant two-locus and three-locus combinations identified by EpIntMC on
WTCCC Breast cancer data.

Significant combinations Chromosome and related genes Combination

entropy score

(rs2297089, rs3739523) (chr9:CEMIP2,chr9:PRUNE2) 0.6375

(rs3742303, rs3749671) (chr13:USPL1,chr5:MRPL22) 0.5866

(rs2301572, rs3749671) (chr3:PLXND1,chr5:MRPL22) 0.5818

(rs4987117, rs1800961) (chr13:BRCA2,chr20:HNF4A) 0.5835

(rs3749671, rs13362036) (chr5:MRPL22,chr5:CCNJL) 0.5866

(rs2297089, rs1800058, rs3784635) (chr9:CEMIP2,chr11:ATM,chr15:VPS13C) 0.8544

In the three-locus combination, (rs2297089, rs1800058, rs3784635) as the rep-
resentative one is reported in the last row of Table 1. rs2297089 is located at
gene CEMIP2 in chromosome 9. It is reported that the activation of CEMIP2
by transcription factor SOX4 in breast cancer cells mediates the pathological
effects of SOX4 on cancer progression [14]. rs1800058 is located at gene ATM .
Independent ATM (oxidized ATM) can enhance the glycolysis and aberrant
metabolism-associated gene expressions in breast Cancer-associated fibroblasts
(CAFs) [23]. These significant two-locus combinations and three-locus combina-
tions associated with breast cancer demonstrate the effectiveness of EpIntMC in
detecting SNP interactions on genome-wide data.

4 Conclusion

In this paper, we proposed a multi-clustering based approach EpIntMC to effec-
tively detect high-order SNP interactions from genome-wide case-control data. In
the first stage, considering the multiplicity of genome-wide data, EpIntMC firstly
introduces a matrix factorization based approach to generate multiple diverse
clusterings to group SNPs into different clusters from different aspects. This
stage greatly reduces the search space and also the risk of filtering out poten-
tial candidates overlooked by a single clustering. In the search stage, EpIntMC
applies Entropy score to select high-quality SNPs in each cluster, then uses Jac-
card similarity to merge the most similar clusters into candidate sets, which
have strongly associated SNPs but with much smaller sizes. Next, EpIntMC
uses exhaustive search on these candidate sets to precisely detect epistatic inter-
actions. A series of simulation experiments on two-locus and three-locus disease
models show that EpIntMC has a better performance that state-of-art methods.
Experiments on real WTCCC dataset corroborate that EpIntMC is feasible for
identifying high-order SNP interactions from genome-wide data.
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Abstract. The major problem when analyzing a metagenomic sample
is to taxonomically annotate its reads to identify the species they con-
tain. Most of the methods currently available focus on the classification
of reads using a set of reference genomes and their k-mers. While in terms
of precision these methods have reached percentages of correctness close
to perfection, in terms of recall (the actual number of classified reads)
the performances fall at around 50%. One of the reasons is the fact that
the sequences in a sample can be very different from the corresponding
reference genome, e.g. viral genomes are highly mutated. To address this
issue, in this paper we study the problem of metagenomic reads classifica-
tion by improving the reference k-mers library with novel discriminative
k-mers from the input sequencing reads. We evaluated the performance
in different conditions against several other tools and the results showed
an improved F-measure, especially when close reference genomes are not
available.

Availability: https://github.com/davide92/K2Mem.git

Keywords: Metagenomic reads classification · Discriminative k-mers ·
Minimizers

1 Introduction

Metagenomics is the study of the heterogeneous microbes samples (e.g. soil,
water, human microbiome) directly extracted from the natural environment with
the primary goal of determining the taxonomical identity of the microorganisms
residing in the samples. It is an evolutionary revise, shifting focuses from the indi-
vidual microbe study to a complex microbial community. The classical genomic-
based approaches require the prior clone and culturing for further investigation
[21]. However, not all bacteria can be cultured. The advent of metagenomics
succeeded to bypass this difficulty. Microbial communities can be analyzed and
compared through the detection and quantification of the species they contain
[26]. In this paper, we will focus on the detection of species in a sample using a set
of reference genomes, e.g. bacteria and virus. The reference-based metagenomics
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classification methods can be broadly divided into two categories: (1) alignment-
based methods, (2) sequence-composition-based methods, which are based on the
nucleotide composition (e.g. k-mers usage). Traditionally, the first strategy was
to use BLAST [1] to align each read with all sequences in GenBank. Later, faster
methods have been deployed for this task, popular examples are MegaBlast [36]
and Megan [17]. However, as the reference databases and the size of sequencing
data sets have grown, alignment has become computationally infeasible, leading
to the development of metagenomics classifiers that provide much faster results.

The fastest and most promising approaches belong to the composition-based
one [20]. The basic principles can be summarized as follows: each genome of
reference organisms is represented by its k-mers, and the associated taxonomic
label of the organisms, then the reads are searched and classified throughout this
k-mers database. For example, Kraken [33] constructs a data structure that is an
augmented taxonomic tree in which a list of significant k-mers are associated to
each node, leaves and internal nodes. Given a node on this taxonomic tree, its list
of k-mers is considered representative for the taxonomic label and it will be used
for the classification of metagenomic reads. Clark [24] uses a similar approach,
building databases of species- or genus-level specific k-mers, and discarding any
k-mers mapping to higher levels. The precision of these methods is as good as
MegaBlast [36], nevertheless, the processing speed is much faster [20]. Several
other composition-based methods have been proposed over the years. In [14] the
number of unassigned reads is decreased through reads overlap detection and
species imputation. Centrifuge and Kraken 2 [19,34] try to reduce the size of
the k-mer database with the use respectively of FM-index and minimizers. The
sensitivity can be improved by filtering uninformative k-mers [22,27] or by using
spaced seeds instead of k-mers [7].

The major problem with these reference-based metagenomics classifiers is the
fact that most bacteria found in environmental samples are unknown and cannot
be cultured and separated in the laboratory [13]. As a consequence, the genomes
of most microbes in a metegenomic sample are taxonomically distant from those
present in existing reference databases. This fact is even more important in the
case of viral genomes, where the mutation and recombination rate is very high
and as a consequence, the viral reference genomes are usually very different from
the other viral genomes of the same species.

For these reasons, most of the reference-based metagenomics classification
methods do not perform well when the sample under examination contains
strains that are different from the genomes used as references. Indeed, e.g.
CLARK [24] and Kraken [33] report precisions above 95% on many datasets.
On the other hand, in terms of recall, i.e. the percentage of reads classified, both
Clark and Kraken usually show performances between 50% and 60%, and some-
times on real metagenomes, just 20% of reads can be assigned to some taxa. In
this paper we address this problem and we propose a metagenomics classification
tool, named K2Mem, that is based, not only on a set of reference genomes but
also it uses discriminative k-mers from the input metagenomics reads to improve
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the classification. The basic idea is to add memory to a classification pipeline,
so that previously analyzed reads can be of help for the classification.

2 Methods

To improve the metagenomics classification our idea is based on the following
considerations. All reference-based metagenomics classification methods need to
index a set of reference genomes. The construction of this reference database is
based on a set of genomes, represented by its k-mers (a piece of the genome with
length k), and the taxonomic tree. For example, Kraken [33] constructs a data
structure that is an augmented taxonomic tree in which a list of discriminative k-
mers is associated with each node, leaves and internal nodes. Given a node on this
taxonomic tree, its list of k-mers is considered representative for the taxonomic
label and it is used for the classification of metagenomic reads. However, for a
given genome only a few of its k-mers will be considered discriminative. As a
consequence, only the reads that contains these discriminative k-mers can be
classified to this species.

Given a read with length n, each of its n− k + 1 k-mers have the first k − 1
bases in common with the previous k-mer, except the first k-mer. Furthermore,
it is possible that reads belonging to the input sequencing data can have many
k-mers in common.

Taxonomy ID: 821  
Taxonomy ID: 0
Taxonomy ID: 0

Reads

Taxon: 821

Fig. 1. Example of a reference-based metagenomics classifier behaviour. In red the
k-mer in common between the reads, in green the k-mer associated to a species’ taxon-
omy ID (in this case 821) present in the classifier’s database, and in bold the mutations’
positions in the reads. A taxonomy ID of zero indicates that the classifier wasn’t able
to classify the read. (Color figure online)

As can be seen in Fig. 1, in this example we have three reads containing the
same k-mer (in red) but only one is classified thanks to the presence in the read
of a discriminative k-mer (in green), with a taxonomy ID associated, contained
in the classifier’s database. The second read could not be classified because none
of its k-mers are in the k-mer reference library, as there is a mutation (in bold)
respect to the reference genome. However, the k-mers of the first read, that
are not present in the classifier’s database, can belong to the same species to
which the read classified belongs to. With reference to Fig. 1, if we associate to
the shared k-mer (the red one) the taxonomy ID of the first read then, we can
classify the other two reads. Thus, using the above considerations, one can try
to extend the taxonomy ID of a classified read to all its k-mers.
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The idea is to equip the classifier with a memory from previous classifica-
tions, thus adding novel discriminative k-mers found in the input sequencing
data. To obtain this memory effect, one needs to modify a given classifier with
additional data structures and a new classification pipeline. Note that, this idea
can be applied to any reference-based metagenomics classifiers that are based
on a database of k-mers. In this paper we choose to use Kraken 2 [34], that
was recently introduced, and that is reported to be the current state of the art.
Before to describe our classification tool, for completeness here we give a brief
introduction of Kraken 2 to better understand our contribution.

2.1 Background on Kraken 2

Kraken 2 is an improved version of the classifier Kraken [33] regarding memory
usage and classification time. These improvements were obtained thanks to the
use of the minimizers and a probabilistic compact data structure, instead of the
k-mers and a sorted list used in Kraken.

Instead of utilizing the complete genome as reference, Kraken considers only
its k-mers, as well as many other tools [2,24], thus a genome sequence is alter-
natively represented by a set of k-mers, which plays a role of efficiently indexing
a large volume of target-genomes database, e.g., all the genomes in RefSeq. This
idea is borrowed from alignment-free methods [32] and some researchers have
verified its availability in different applications. For instance, the construction of
phylogenetic trees, traditionally is performed based on multiple-sequence align-
ment, whereas with alignment-free methods it can be carried out on the whole
genomes [8,31]. Recently some variations of k-mers-based methods have been
devised for the detection of enhancers in ChIP-Seq data [5,9,10,15,18], entropic
profiles [3,4], and NGS data compression [29,30,35]. Also, the assembly-free com-
parison of genomes and metagenomes based on NGS reads and k-mers counts has
been investigated in [11,12,23,28]. For a comprehensive review of alignment-free
measures and applications we refer the reader to [32].

At first, Kraken 2 needs to build a database starting from a set of refer-
ence genomes. To build the database Kraken 2 downloads from the NCBI the
taxonomy and reference sequences libraries required. With the taxonomy data,
Kraken 2 builds a tree within each node a taxonomy ID. In each tree node, a
list of minimizer is stored that is useful for the classification. Precisely, for each
minimizer (k = 35, l = 31) if it is unique to a reference sequence then, it is associ-
ated with the node with the sequence’s taxonomy ID. Instead, if the minimizer
belongs to more than one reference sequence then, the minimizer is moved to
the node with taxonomy ID equals to the Lowest Common Ancestor (LCA) of
the two sequences it belongs. All the minimizer-taxonomy ID pairs are saved in
a probabilistic Compact Hash Table (CHT) which allows a reduction of memory
with respect to Kraken.

Once the database is built, Kraken 2 classifies the input reads in a more
efficient manner than Kraken due to the smaller number of accesses to the CHT
map. This is due to the fact that only distinct minimizers from the read trigger
the research in the map. When the minimizer is queried in the compact table
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the node ID of the augmented tree is returned, and the counter in the node is
increased. Once all the minimizers have been analyzed, the read is classified by
choosing the deepest node from the root with the highest-weight path in the
taxonomy tree.

2.2 K2Mem

Here we present K2Mem (Kraken 2 with Memory) a classifier based on Kraken
2. In order to implement the idea explained above, K2Mem needs to detect
new discriminative minimizers, to store them in memory and to use this addi-
tional information in the classification of reads. The new classification pipeline
of K2Mem discovers novel discriminative minimizers from the input sequencing
data and it saves them in a map of additional minimizers.

The data structure used to store these additional minimizers is an unordered
map that stores pairs composed of the novel discriminative minimizer, not
present in the classifier’s database, and the taxonomy ID associated to the read
that contains the minimizer. An unordered map is an associative container that
contains key-value pairs with a unique key. The choice of this structure is due to
the fact that search, insertion and removal of elements have average constant-
time complexity. Internally, the elements are not ordered in any particular order
but are organized in buckets. Which bucket an element is placed into depends
entirely on the hash of its key. This allows fast access to the single element,
once the hash is computed, it refers to the exact bucket where the element has
been inserted. The key and value are both 64-bit unsigned integer. This choice
was made to keep the complete minimizers (l = 31) on the map without loss of
information due to the CHT hash function and to contains the taxonomy ID in
case the number of taxonomy tree nodes increases in future.

K2Mem has two main steps, in the first phase all reads are processed and
novel discriminative minimizers are discovered and stored in the additional min-
imizers map. In the second phase, the same input reads are re-classified using
the Compact Hash Table and also the additional minimizers obtained in the first
phase.

An overview of the first phase, the discovery of novel discriminative mini-
mizers, is reported in Fig. 2. The population of the additional minimizers map
works as follow: for each read, its minimizers (k = 35, l = 31) are computed one
at a time and, for each of them, the Compact Hash Table (CHT) is queried (1).
If it returns a taxonomy value equal to zero, then the additional map is queried
if it is not empty (2). If the minimizer is not found in the additional minimizers
map, this means that the minimizer is not in the Kraken 2’s database and no
taxonomy ID has been assigned to it or is the first time the minimizer is found.
In that case, the minimizer is added to a temporary list of not taxonomically
assigned minimizers (3). Instead, if the CHT or the additional minimizers map
query returns a taxonomy ID not equal to zero, then the taxonomy ID count is
updated (4). Then, the read is classified (5), based on the highest-weight path
in the taxonomy tree, and the resulting taxonomy ID is checked if it is at the
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Fig. 2. An overview of K2Mem and the discovery of additional minimizers.

species level or below (6). If it is, then the minimizers in the unknown minimiz-
ers list are added to the additional minimizers map with key the minimizer and
value the taxonomy ID obtained by the read classification. If the minimizer is
already in the additional map the LCA of the input and stored taxonomy IDs
value is saved. Instead, if the taxonomy ID obtained after the read classifica-
tion is at a level above the species then, the minimizers are not added and the
list is emptied. In the first phase, this procedure is repeated for all the reads
in the dataset. Then, once the population of the additional minimizers map is
completed, in the second phase all reads are re-classified. In this phase the clas-
sification only uses the CHT and the additional minimizers map to classify the
reads in the same dataset, but without to update the additional map content.
With these additional minimizers, the dataset is processed to obtain a better
classification. K2Mem starts querying the CHT for each minimizer in the read
(1). If the minimizer is not found the additional map is queried (2). If the mini-
mizer is not present in the latest map a taxon of zero is assigned to the minimizer.
Instead if in the CHT or additional map the minimizer is found the associated
taxon is returned and the taxon’s number of hit is updated (4). Once all the
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read’s minimizer is analyzed the read’s taxon is computed (5), classifying the
read. When K2Mem ends, it generates the same output files as Kraken 2.

3 Results

To analyze the performance of K2Mem we compare it with five of the most pop-
ular classifiers: Centrifuge [19], CLARK [24], Kraken [33], Kraken 2 [34], and
KrakenUniq [6]. We test all these tools on several simulated datasets with differ-
ent bacteria and viral genomes from NCBI. The experimental setup is described
in the next section.

3.1 Experimental Setup

To assess the performance of K2Mem we follow the experimental setup of Kraken
2 [34], that is the strain exclusion experiment. This experiment consists of down-
loading the archaea, bacteria, and viral reference genomes and the taxonomy
from NCBI. From this set of reference genomes 50 are removed (40 bacteria and
10 viruses), called the origin strains, that are used for testing. All the remaining
reference genomes are used to build the classifiers’ databases, one for each tool
in this study. This setup tries to mimic a realistic scenario in which a reference
genome is available, but the sequenced genome is a different strain from the same
species.

With the origin strains chosen we build 10 datasets using Mason 2 [16] to
simulate 100 bps paired-end Illumina sequence data. Of these datasets, 7 are
built by varying the number of reads, from 50k to 100M, using the default
Illumina error profile. These datasets are used to test the impact of sequencing
coverage on the performance of the tools under examination. We also constructed
other 3 datasets, all with the same number of reads 100M, but with different
mutation rates from the original strains: 2%, 5%, and 10%. With these datasets,
we evaluate another scenario in which a close reference genome is not available.

To compare K2Mem with the other tools we use the same evaluation metrics
as in [27,34]; precisely we use Sensitivity, Positive Predicted Value (PPV), F-
measure, and Pearson Correlation Coefficient (PCC) of the abundance profile.

3.2 Performance Evaluation

In this section, we analyze the performance results at the genus level of K2Mem
respect to the other classifiers. All tools are used with the default parameters
and run in multithreading using 16 threads. Their databases are built using the
same set of reference genomes obtained from the strain exclusion experiment.
The obtained results are reported below in different figures to better understand
the performance and the impact of the different configurations.

In Fig. 3 and 4 are shown the full results obtained with the 100M reads
dataset for bacteria and viruses respectively. We analyze the 100M dataset as
the behaviour of K2Mem with the other datasets is similar. As it can be seen
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Fig. 3. Bacteria evaluation at genus level on the 100M reads dataset.

in Fig. 3, with bacteria K2Mem obtains an F-measure improvement of at least
0.5 percentage points (pps) respect to the closest competitor, Kraken 2, and the
other classifiers. This improvement is due to an increase of sensitivity of at least
2 pps despite a worsening of the PPV of about 1 pps respect to the other tools.
Moreover, K2Mem obtains the best PCC value with an improvement of at least
0.1 pps respect to Centrifuge and Kraken 2.

0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Evaluation measures

Centrifuge
CLARK
KrakenUniq
Kraken 1
Kraken 2
K2Mem

Fig. 4. Viruses evaluation at genus level on the 100M reads dataset.

On the viral dataset, as it can be observed in Fig. 4, K2Mem obtains an
F-measure improvement of almost 40 pps respect to Kraken 2 and the other
tools. This improvement is due to an increase of sensitivity, whereas the PPV
of all tools is to close to 1. Moreover, K2Mem shows the best PCC with an
improvement of about 13 pps respect to Centrifuge and Kraken 2.

In summary, with the results reported above, we can observe that thanks
to the additional information provided by the new discriminative minimizers
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Fig. 5. F-measure values for bacteria at genus level varying the number of reads.

K2Mem obtains a moderate improvement in bacteria’s classification and a sig-
nificant improvement in viruses’ classification. Similar results are observed also
for species-level classification (data not shown for space limitation).

In Fig. 5 and 6 are shown the F-measure values obtained varying the number
reads in the dataset for bacteria and viruses respectively. For bacteria, as it can
be seen in Fig. 5, K2Mem gets better F-measure values than the other tools as
the number of reads increases; obtaining improvements up to almost 1 pps. This
improvement is given mainly from the increase of sensitivity.
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Fig. 6. F-measure values for viruses at genus level varying the number of reads.

For viruses, as it can be seen in Fig. 6, K2Mem achieves greater F-measure
improvement than bacteria, always thanks to an increase of the sensitivity. It is
interesting to note that the performances of all other tools are independent of
the size of the dataset. However, we can observe that for K2Mem the greater the
amount of data the better the classification results, due to a greater possibility
of finding new discriminative minimizers.
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Fig. 7. F-measure values for bacteria at genus level varying the mutation rate.

In Fig. 7 and 8 are shown the F-measure values obtained for the 100M reads
dataset while varying the mutation rate, for bacteria and viruses respectively.
The mutation rate respect to the origin strains rages between 0.4% to 10%.

As it can be seen in Fig. 7, the first observation is that the performance
of all tools decreases as the mutation rate increases. This is expected because
the reference genomes are no longer similar to the genomes in the sample data.
However, K2Mem obtains the best F-measure values in all cases. Moreover, the
F-measure improvement increases up to 2.5 pps w.r.t. Centrifuge and 7 pps with
Kraken 2, as the mutation rate increases.
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Fig. 8. F-measure values for viruses at genus level varying the mutation rate.

With viruses, as reported in Fig. 8, K2Mem has the same behaviour described
for the bacteria, but with a bigger performance gap up to 45 pps respect to
Kraken 2. From the results above, the increase in the mutation rate leads to
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worse performance for all tools as expected. However, K2Mem is the classifier
that has suffered less from the presence of mutations in the sample.

3.3 Execution Time and Memory Usage

The execution time and memory usage of each tool during the datasets classi-
fication are shown in Fig. 9. For this analysis, the execution time and memory
usage values are reported for the largest dataset with 100M reads.
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Fig. 9. Execution time and memory usage for a dataset with 100M reads.

The execution time of K2Mem, as expected, it is larger than Kraken 2 due
to the new discriminative minimizers search phase. However, the classification
time is in line with other tools. As for the memory usage K2Mem needs more
memory than Kraken 2, due to the new map. However, K2Mem requires only
15 GB of RAM in line with the best tools.

4 Conclusions

We have presented K2Mem, a classifier based on Kraken 2 with a new classifi-
cation pipeline and an additional map to store new discriminative k-mers from
the input sequencing reads. The experimental results have demonstrated that
K2Mem obtains higher values of F-measure, mainly by an improved sensitivity,
and PCC respect to the most popular classifiers thanks to the greater number
of reference k-mers available during the classification. We showed that the per-
formance improvement of K2Mem increases as the size of the input sequencing
data grows, or when reads originate from strains that are genetically distinct
from those in the reference database. As possible future developments it could
be interesting to increase the PPV, e.g. using unique k-mers, to speed up the
classification algorithm with a better implementation and to test other data
structures, e.g. counting quotient filter [25], to decrease the memory require-
ments.
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7. Břinda, K., Sykulski, M., Kucherov, G.: Spaced seeds improve k-mer-based metage-
nomic classification. Bioinformatics 31(22), 3584 (2015). https://doi.org/10.1093/
bioinformatics/btv419

8. Comin, M., Verzotto, D.: Whole-genome phylogeny by virtue of unic subwords. In:
2012 23rd International Workshop on Database and Expert Systems Applications
(DEXA), pp. 190–194, September 2012. https://doi.org/10.1109/DEXA.2012.10

9. Comin, M., Verzotto, D.: Beyond fixed-resolution alignment-free measures for
mammalian enhancers sequence comparison. IEEE/ACM Trans. Comput. Biol.
Bioinform. 11(4), 628–637 (2014). https://doi.org/10.1109/TCBB.2014.2306830

10. Comin, M., Antonello, M.: On the comparison of regulatory sequences with mul-
tiple resolution entropic profiles. BMC Bioinform. 17(1), 130 (2016). https://doi.
org/10.1186/s12859-016-0980-2

11. Comin, M., Leoni, A., Schimd, M.: Clustering of reads with alignment-free mea-
sures and quality values. Algorithms Mol. Biol. 10(1), 1–10 (2015). https://doi.
org/10.1186/s13015-014-0029-x

12. Comin, M., Schimd, M.: Assembly-free genome comparison based on next-
generation sequencing reads and variable length patterns. BMC Bioinform. 15(9),
1–10 (2014). https://doi.org/10.1186/1471-2105-15-S9-S1

13. Eisen, J.A.: Environmental shotgun sequencing: its potential and challenges for
studying the hidden world of microbes. PLoS Biol. 5, e82 (2007)

14. Girotto, S., Comin, M., Pizzi, C.: Higher recall in metagenomic sequence classifi-
cation exploiting overlapping reads. BMC Genomics 18(10), 917 (2017)

15. Goke, J., Schulz, M.H., Lasserre, J., Vingron, M.: Estimation of pairwise sequence
similarity of mammalian enhancers with word neighbourhood counts. Bioinformat-
ics 28(5), 656–663 (2012). https://doi.org/10.1093/bioinformatics/bts028

16. Holtgrewe, M.: Mason: a read simulator for second generation sequencing data
(2010)

17. Huson, D.H., Auch, A.F., Qi, J., Schuster, S.C.: MEGAN analysis of metagenomic
data. Genome Res. 17, 377–386 (2007)

https://doi.org/10.1093/bioinformatics/btt389
https://doi.org/10.1109/TCBB.2013.2297924
https://doi.org/10.1007/978-3-642-39159-0_25
https://doi.org/10.5220/0005251001710177
https://doi.org/10.1093/bioinformatics/btv419
https://doi.org/10.1093/bioinformatics/btv419
https://doi.org/10.1109/DEXA.2012.10
https://doi.org/10.1109/TCBB.2014.2306830
https://doi.org/10.1186/s12859-016-0980-2
https://doi.org/10.1186/s12859-016-0980-2
https://doi.org/10.1186/s13015-014-0029-x
https://doi.org/10.1186/s13015-014-0029-x
https://doi.org/10.1186/1471-2105-15-S9-S1
https://doi.org/10.1093/bioinformatics/bts028


80 D. Storato and M. Comin

18. Kantorovitz, M.R., Robinson, G.E., Sinha, S.: A statistical method for alignment-
free comparison of regulatory sequences. Bioinformatics 23 (2007). https://doi.
org/10.1093/bioinformatics/btm211

19. Kim, D., Song, L., Breitwieser, F., Salzberg, S.: Centrifuge: rapid and sensitive clas-
sification of metagenomic sequences. Genome Res. 26, 1721–1729 (2016). https://
doi.org/10.1101/gr.210641.116

20. Lindgreen, S., Adair, K., Gardner, P.: An Evaluation of the Accuracy and Speed
of Metagenome Analysis Tools. Cold Spring Harbor Laboratory Press (2015)

21. Mande, S.S., Mohammed, M.H., Ghosh, T.S.: Classification of metagenomic
sequences: methods and challenges. Brief. Bioinform. 13(6), 669–681 (2012).
https://doi.org/10.1093/bib/bbs054

22. Marchiori, D., Comin, M.: SKraken: fast and sensitive classification of short
metagenomic reads based on filtering uninformative k-mers. In: BIOINFORMAT-
ICS 2017–8th International Conference on Bioinformatics Models, Methods and
Algorithms, Proceedings; Part of 10th International Joint Conference on Biomedi-
cal Engineering Systems and Technologies, BIOSTEC 2017, vol. 3, pp. 59–67 (2017)

23. Ondov, B.D., et al.: Mash: fast genome and metagenome distance estimation
using MinHash. Genome Biol. 17, 132 (2016). https://doi.org/10.1186/s13059-016-
0997-x

24. Ounit, R., Wanamaker, S., Close, T.J., Lonardi, S.: CLARK: fast and accurate
classification of metagenomic and genomic sequences using discriminative k-mers.
BMC Genomics 16(1), 1–13 (2015). https://doi.org/10.1186/s12864-015-1419-2

25. Pandey, P., Bender, M.A., Johnson, R., Patro, R.: A general-purpose counting
filter: making every bit count. In: Proceedings of the 2017 ACM International
Conference on Management of Data, pp. 775–787. ACM (2017)

26. Qian, J., Comin, M.: MetaCon: unsupervised clustering of metagenomic contigs
with probabilistic k-mers statistics and coverage. BMC Bioinform. 20(367) (2019).
https://doi.org/10.1186/s12859-019-2904-4

27. Qian, J., Marchiori, D., Comin, M.: Fast and sensitive classification of short
metagenomic reads with SKraken. In: Peixoto, N., Silveira, M., Ali, H.H., Maciel,
C., van den Broek, E.L. (eds.) BIOSTEC 2017. CCIS, vol. 881, pp. 212–226.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94806-5 12

28. Schimd, M., Comin, M.: Fast comparison of genomic and meta-genomic reads with
alignment-free measures based on quality values. BMC Med. Genomics 9(1), 41–50
(2016). https://doi.org/10.1186/s12920-016-0193-6

29. Shibuya, Y., Comin, M.: Better quality score compression through sequence-based
quality smoothing. BMC Bioinform. 20(302) (2019)

30. Shibuya, Y., Comin, M.: Indexing k-mers in linear-space for quality value compres-
sion. J. Bioinform. Comput. Biol. 7(5), 21–29 (2019)

31. Sims, G.E., Jun, S.R., Wu, G.A., Kim, S.H.: Alignment-free genome comparison
with feature frequency profiles (FFP) and optimal resolutions. Proc. Nat. Acad.
Sci. 106 (2009). https://doi.org/10.1073/pnas.0813249106

32. Vinga, S., Almeida, J.: Alignment-free sequence comparison-a review. Bioinformat-
ics 19 (2003). https://doi.org/10.1093/bioinformatics/btg005

33. Wood, D., Salzberg, S.: Kraken: ultrafast metagenomic sequence classification
using exact alignments. Genome Biol. 15, 1–12 (2014)

https://doi.org/10.1093/bioinformatics/btm211
https://doi.org/10.1093/bioinformatics/btm211
https://doi.org/10.1101/gr.210641.116
https://doi.org/10.1101/gr.210641.116
https://doi.org/10.1093/bib/bbs054
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1186/s12864-015-1419-2
https://doi.org/10.1186/s12859-019-2904-4
https://doi.org/10.1007/978-3-319-94806-5_12
https://doi.org/10.1186/s12920-016-0193-6
https://doi.org/10.1073/pnas.0813249106
https://doi.org/10.1093/bioinformatics/btg005


Improving Metagenomic Classification Using Discriminative k-mers 81

34. Wood, D.E., Lu, J., Langmead, B.: Improved metagenomic analysis with Kraken
2. Genome Biol. 20(1), 257 (2019). https://doi.org/10.1186/s13059-019-1891-0

35. Yu, Y.W., Yorukoglu, D., Peng, J., Berger, B.: Quality score compression improves
genotyping accuracy. Nat. Biotechnol. 33(3), 240–243 (2015)

36. Zhang, Z., Schwartz, S., Wagner, L., Miller, W.: A greedy algorithm for aligning
DNA sequences. J. Comput. Biol. 7(1–2), 203–214 (2004)

https://doi.org/10.1186/s13059-019-1891-0


Dilated-DenseNet for Macromolecule
Classification in Cryo-electron

Tomography

Shan Gao1,2,3, Renmin Han4, Xiangrui Zeng3, Xuefeng Cui5, Zhiyong Liu1,
Min Xu3(B), and Fa Zhang1(B)

1 High Performance Computer Research Center, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing 100190, China

{gaoshan,zyliu,zhangfa}@ict.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Computational Biology Department, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, USA

{xiangruz,mxu1}@cs.cmu.edu
4 Research Center for Mathematics and Interdisciplinary Sciences,
Shandong University, Qingdao 266237, People’s Republic of China

hanrenmin@gmail.com
5 School of Computer Science and Technology,

Shandong University, Qingdao 266237, People’s Republic of China
xfcui@email.sdu.edu.cn

Abstract. Cryo-electron tomography (cryo-ET) combined with subto-
mogram averaging (STA) is a unique technique in revealing macro-
molecule structures in their near-native state. However, due to the macro-
molecular structural heterogeneity, low signal-to-noise-ratio (SNR) and
anisotropic resolution in the tomogram, macromolecule classification, a
critical step of STA, remains a great challenge.

In this paper, we propose a novel convolution neural network, named
3D-Dilated-DenseNet, to improve the performance of macromolecule
classification in STA. The proposed 3D-Dilated-DenseNet is challenged
by the synthetic dataset in the SHREC contest and the experimen-
tal dataset, and compared with the SHREC-CNN (the state-of-the-art
CNN model in the SHREC contest) and the baseline 3D-DenseNet. The
results showed that 3D-Dilated-DenseNet significantly outperformed 3D-
DenseNet but 3D-DenseNet is well above SHREC-CNN. Moreover, in
order to further demonstrate the validity of dilated convolution in the
classification task, we visualized the feature map of 3D-Dilated-DenseNet
and 3D-DenseNet. Dilated convolution extracts a much more represen-
tative feature map.

Keywords: Cryo-electron Tomography · Subtomogram averaging ·
Object classification · Convolutional neural network
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1 Introduction

The cellular process is dominated by the interaction of groups of macromolecules.
Understanding the native structures and spatial organizations of macromolecule
inside single cells can help provide better insight into biological processes. To
address this issue, cryo-Electron Tomography (cryo-ET), with the ability to visu-
alize macromolecular complexes in their native state at sub-molecular resolution,
has become increasingly essential for structural biology [1]. In cryo-ET, a series
of two-dimensional (2D) projection images of a frozen-hydrated biological sample
is collected under the electron microscopy with different tilted angles. From such
a series of tilted images, a 3D cellular tomogram with sub-molecular resolution
can be reconstructed [2] with a large number of macromolecules in the crowded
cellular environment. To further obtain macromolecular 3D view with higher res-
olution, multiple copies (subtomograms) of the macromolecule of interest need
to be extracted, classified, aligned [3] and averaged, which is named as subto-
mogram averaging (STA) [4]. However, due to the macromolecular structural
heterogeneity, the anisotropic resolution caused by the missing wedge effect and
the particularly poor signal-to-noise-ratio (SNR), macromolecule classification
is still a great challenge in STA.

One pioneering classification method is template matching [5], where subto-
mograms are classified by comparing with established template images. However,
the accuracy of template matching can be severely affected by the template
image. Because the template image can misfit its targets when the template
image and the targets are from different organisms or have different conforma-
tion. To overcome the limitations of using template images, a few template-free
classification methods have been developed [6,7]. Most template-free methods
use iterative clustering methods to group similar structures. Because the cluster-
ing of a large number of 3D volumes is very time-consuming and computationally
intensive, template-free method is only suitable to small datasets with few struc-
tural classes.

Recently, with the blowout of deep learning, convolution neural network
(CNN) has been applied to the macromolecule classification task [8,9]. CNN clas-
sification methods recognize objects by extracting macromolecular visual shape
information. Extracting discriminative features is the key to guaranteeing model
classification performance. However, due to the high level of noise and com-
plex cellular environment, it is challenging for CNN models to extract accurate
visual shape information. Moreover, in traditional CNN architecture, with each
convolution layer directly connected, the current convolution layer only feed in
features from its adjacent previous layer. Because different depth convolution
layer extracts image feature of different level, the lack of reusing features from
other preceding convolution layer further limits the accuracy in macromolecule
classification.

In this article, we focus on improving classification performance by design-
ing a CNN model (Dilated-DenseNet) that highly utilizes the image multi-level
features. We enhance the utilization of image multi-level features by following
two ways: 1) Use dense connection to enhance feature reuse during the forward
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propagation. 2) Adapt dilated convolution in dense connection block to enrich
feature map multi-level information. For the convenience of further discussion,
here we denote this adapted block as dilated-dense block. In our dilated-dense
block, with dense connection, each convolution layer accepts features extracted
from all preceding convolution layers. And by gradually increasing the dilated
ration of dilated convolution layers, the dilated convolution layer performs con-
volution with an increasingly larger gap on the image to get multi-level infor-
mation.

In order to verify the effectiveness of the above two ways for classifica-
tion task, we designed a 3D-DenseNet [10], a 3D-Dilated-DenseNet and com-
pared these two models with the state-of-the-art CNN method (SHREC-CNN)
of SHREC, a public macromolecule classification contest [9], on synthetic data
[9] and experimental data [11,12]. Our synthetic data is SHREC dataset [9]
which contains twelve macromolecular classes and is classified by SHREC into
four sizes: tiny, small, medium and large. Our experimental data is extracted
from EMPIAR [11,12] with seven categories of macromolecules. The results on
both synthetic data and experimental data show that 3D-Dilated-DenseNet out-
performs the 3D-DenseNet but 3D-DenseNet is well above SHREC-CNN. On
synthetic data, 3D-Dilated-Dense network can improve the classification accu-
racy by an average of 2.3% for all the categories of the macromolecules. On
experimental data, the 3D-Dilated-Dense network can improve the classification
accuracy by an average of 2.1%. Moreover, in order to further demonstrate the
validity of 3D-Dilated-DenseNet, we visualized the feature map of 3D-Dilated-
DenseNet and the result shows that our model can extract more representative
features.

The remaining of the paper is organized as follows. Section 2 presents the the-
ory and implementation of our new CNN model 3D-Dilated-DenseNet. Section 3
shows dataset description, experiment details and classification performance
of 3D-Dilated-DenseNet by comparing with widely used methods. Section 4
presents the conclusions.

2 Method

2.1 3D-Dilated-DenseNet Architecture

Figure 1A shows the architecture of our 3D-Dilated-DenseNet, the network
mainly consists of three parts: dilated dense block (Sect. 2.2), transition block,
and the final global average pooling (GAP) layer. Each block comprises several
layers which is a composite operations such as convolution (Conv), average pool-
ing (AvgPooling), batch normalization (BN), or rectified linear units (ReLU).

For a given input subtomogram, represented as a 3D array of Rn×n×n, after
the first shallow Conv, the extracted features are used as input for the following
dilated dense block. In dilated dense block, we denote the input of block as
x0, the composite function and output of layer l (l = 1,...,4) as Hl(·) and xl.
With dense shortcuts interconnect between each layer, the layer l receives the
feature maps from its all preceding layers (x1, ..., xl−1), and we denote the
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input of layer l as: xl = Hl(x0, x1, ..., xl−1). Let each layer outputs k feature
maps, so the input feature map of the current l layer is k0 + k × (l − 1) where
k0 is the number of block input feature map. Thus the whole block contains
L × k0 + k × L(L − 1)/2 feature maps. Such large number of feature maps
can cause enormous memory consumption. In order to reduce model memory
requirement, the layer is designed with a feature map compress module. So
the composite function of layer (Fig. 1B) includes two consecutive convolution
operations: 1) a 1× 1 × 1 convolution operation which is used to compress the
number of input feature map, and 2) a 3× 3 × 3 dilated convolution which is used
to extract image multi-level information. The detailed information of dilated
dense block which focuses on dilated convolution is shown in the next section.

Fig. 1. The architecture of 3D-Dilated-DenseNet. (A) The model framework of 3D-
Dilated-DenseNet. (B) The composite function of each layer in dilated dense block.
(C) The composite function of transition block in 3D-Dilated-DenseNet.

Because dense connection is not available between size changed feature maps,
all feature maps in dilated dense block maintain the same spatial resolution. If
these high spatial resolution feature maps go through the entire network without
down-sampling, the computation consumption in following block is huge. So we
design a transition block between two dilated dense blocks to reduce the size
of feature maps. Due to the number of input feature map of transition block
is L × k0 + k × L(L − 1)/2, the transition block is also defined with a feature
map compress module. Therefore, transition block includes following operations:
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batch normalization (BN) followed by a 1× 1 × 1 convolution (Conv) and average
pooling layer.

After a series of convolution and down-sampling block, the given input subto-
mogram is represented as a patch of highly abstract feature maps for final classi-
fication. Usually, fully connection (FC) is used to map the final feature maps to
a categorical vector which shows the probabilities assigned to each class. In order
to increase the non-linearly, traditional CNN always contains multiple FC lay-
ers. However, FC covers most of the parameters of the network which can easily
cause model overfitting. To reduce model parameter and avoid overfitting, GAP
is introduced to replace the first FC layer [13]. The GAP does average pooling
to the whole feature map, so all feature maps become a 1D vector. Then the
last FC layer with fewer parameters maps these 1D vectors to get the category
vector.

Fig. 2. A 2D example of dilated convolution layers with 3× 3 kernel, and the dilated
ration is 1, 2, 3.

2.2 Dilated Dense Block

In order to obtain feature map with representative shape information from the
object of interest, we introduce dilated convolution [14] in the dilated dense
block. Fig. 2 shows a 2D dilated convolution example. By enlarging a small k×k
kernel filter to k + (k−1)(r−1) where r is dilation ratio, the size of receptive field
is increase to the same size. Thus, with enlarged receptive field of the convolution
layer, the model can extract multi-level information of subtomogram. And with
the stack of convolution layers, the multi-level features can be integrated to
present macromolecular shape with less noise.

However, when stack dilated convolution layer with same dilation rate, adja-
cent pixels in the output feature map are computed from completely separate
sets of units in the input, which can easily cause grid artifacts [15]. To solve this
problem, we design our dilated convolution layers by following hybrid dilated
convolution rule (HDC) [15]. First, the dilated ration of stacked dilated con-
volution cannot have a common divisor greater than 1. In each dilated dense
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block, we choose 2 and 3 as dilated ration. Second, the dilated ration should
be designed as a zigzag structure such as [1, 2, 5, 1, 2, 5]. We put the dilated
convolution layer at the mid of block.

2.3 Visualization of Image Regions Responsible for Classification

To prove that the dilated convolution layer can extract feature map with clearly
respond regions from our interest object, we visualize the class activation map-
ping (CAM) [16] image by global average pooling (GAP). For GAP, the input
is the feature map extracted from last convolution layer, and the output is a 1D
average vector of each feature map. In a trained CNN model with GAP module
followed by FC layer and softmax classification layer, the FC layer has learned a
weight matrix that maps the 1D average vector to a category vector. With the
computation of softmax classifier, the category vector can show the probability
of the input image assigned to each class. For a predicted class that has the
highest probability in the category vector, it is easy to get its corresponding
weight vector from weight matrix. In the weight vector, each value represents
the contribution of its corresponding feature map to classification. Therefore,
we can get the class activation mapping image by using a weighted summation
of feature map extracted from the last convolution layer and the weight value
learned from FC layer.

Here, we denote the kth feature map of the last convolution layer as
fk(x, y, z). After fk(x, y, z) goes through the GAP block, each fk(x, y, z) are
computed as

∑
x,y,z fk(x, y, z) that is denoted as Fk. From the linear layer fol-

lowed by GAP, we can get a weight matrix w which shows the contribution of
each feature to every category. Inputting an image, predicted with c class, we
can get wc. Each item of wc records the contribution of last convolution feature
map to c class. Then we can compute the class active mapping CAMc by

CAMc(x, y, z) =
∑

k

wc
kfk(x, y, z) (1)

Due to the fact that CAMc is the weighted sum of feature maps extracted from
last convolution. The size of CAMc(x, y, z) is generally smaller than origin input
image. In order to conveniently observe the extracted features with the input
image as a reference, we then up-sample the CAMc(x, y, z) to get an image with
same size as input data.

3 Experiments and Results

3.1 Data

The synthetic subtomogram data is extracted from SHREC dataset [9], con-
sisting of ten 512 * 512 * 512 tomograms and the corresponding ground truth
tables. Each tomogram is with 1 nm/1 voxel resolution and contains ∼2500
macromolecules of 12 categories. All macromolecules are uniformly distributed
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in tomograms with random rotation. And the ground truth table records the
location, Euler angle and category for each macromolecule. These 12 macro-
molecules have various size and have been classified by SHREC to tiny, small,
medium and large size. Table 1 shows the protein data bank (PDB) identification
of the 12 macromolecules and their size category.

Table 1. The PDB ID and corresponding size of each macromolecule in synthetic data

Macromolecule size PDB ID

Tiny 1s3x, 3qm1, 3gl1

Small 3d2f, 1u6g, 2cg9, 3h84

Medium 1qvr, 1bxn, 3cf3

Large 4b4t, 4d8q

According to the ground truth table, we extract subtomograms of size 32 ×
32 × 32 with the macromolecules located in center. From Fig. 3A we can see the
SNR of these subtomograms is low. In order to provide a noise-free subtomogram
as a reference for CAM [16] images, we generated the corresponding ground truth
using their PDB information. We first download each macromolecules structures
from PDB, then generate a corresponding density map by IMOD [17]. Finally,
we create an empty volume of 512 × 512 × 512 and put each macromolecule
density map into the volume according to the location and Euler angle recorded
in the ground truth table (Fig. 3B).

The experimental data are extracted from EMPIAR [11,12], which is a public
resource for electron microscopy images. Seven cryo-ET single particle datasets
are downloaded as the experiment data1. Each dataset on EMPIAR is an aligned
2D tilt series and only contains purified macromolecule of one category. The cat-
egories of these macromolecule are rabbit muscle aldolase, glutamate dehydroge-
nase, DNAB helicase-helicase, T20S proteasome, apoferritin, hemagglutinin, and
insulin-bound insulin receptor. To obtain subtomograms, we first reconstruct the
tilt series by IMOD and get the 3D tomogram. Then we manually picked up 400
macromolecules for each category.

3.2 Training Details

In this work, our 3D-DenseNet and 3D-Dilated-DenseNet is implemented with
Pytorch. During training, the weights of convolution layer and fully connected
layer in both networks are initialed by the Xavier algorithm [18]. In particular,
we set the parameters to random values uniformly drawn form [−a, a], where

a =
√

6
nin+nout , nin and nout denotes size of input and output channel. For batch

1 The EMPIAR indexes of these datasets are 10131, 10133, 10135, 10143, 10169, 10172
and 10173.
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Fig. 3. The example of synthetic data. (A) The middle slice of one 512 × 512 × 512
tomogram. The right 32 × 32 slices are the consecutive slices of a subtomogram with
PDB ID 4d8q. The number of right corner are their slice index. (B) Ground truth
corresponding to Fig. (A).

normalization layer, y is set to 1, b is set to 0, all biases are set to 0. The number
of feature map output from each convolution layer in dense or dilated dense block
(growth rate) is set to 12.

All our network is trained for 30 epochs on 2 GTX 1080TI GPUs with batch
size of 64. With the limit memory of GPUs, our network only contains three
dilated dense blocks. In fact, users can add more dilated dense blocks according
to their GPU memory. According to the training experience, we used Adam [19]
as the optimizer and the learning rate is set at 0.1 and scaled down by a factor
of 0.1 after every 10 epochs. In order to get efficient training, we adapted various
techniques mentioned in the [20] including learning rate warmup strategy, and
linear scaling learning rate strategy.

3.3 The Performance of 3D-Dilated-DenseNet on Synthetic Data

In order to compare the classification performance of 3D-DenseNet and 3D-
Dilated-DenseNet with the state-of-the-art method on SHREC contest (SHREC-
CNN), we chose the same test data and F1 metric as SHREC contest. The
computation of F1 metric is given by Eq. 2 which shows the balance of recall
and precision.

F1 =
2 ∗ precision ∗ recall
precision + recall

=
2TP

2TP + FN + FP
(2)

In Eq. 2. TP means true positive, FN means false negative and FP means false
positive.

Table 2 shows the classification performance of above three models on each
macromolecule. We counted number of TP (true positive), FN (false negative)
and FP (false positive) of each macromolecule and got corresponding F1 score
of each category. Judging from the result, we find that the 3D-Dilated-DenseNet
performs better than 3D-DenseNet, but 3D-DenseNet performs better than
SHREC-CNN. Second, we find the classification performance has high relation-
ship to macromolecule size. Here, we analyze the average F1 value of each model
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Table 2. Each macromolecule classification F1 score on SHREC

Model PDB ID

Tiny Small Medium Large

1s3x 3qm1 3gl1 3d2f 1u6g 2cg9 3h84 1qvr 1bxn 3cf3 4b4t 4d8q

SHREC 0.154 0.193 0.318 0.584 0.522 0.343 0.332 0.8 0.904 0.784 0.907 0.951

3D-DenseNet 0.522 0.519 0.644 0.712 0.580 0.504 0.563 0.795 0.958 0.807 1 0.997

3D-Dilated-

DenseNet

0.684 0.485 0.675 0.778 0.652 0.565 0.635 0.855 0.971 0.846 1 0.997

Fig. 4. Dilated-DenseNet performance on synthetic data. (A) Average F1 value on
macromolecules according to different size of 3D-DenseNet and 3D-Dilated-DenseNet.
(B) The relationship between F1 value and training epoch of 3D-DenseNet and 3D-
Dilated-DenseNet.

on macromolecules according to tiny, small, medium and large size (Fig. 4A). The
F1 value in Fig. 4A and B is the average of macromolecules F1 scores from same
size category. According to Fig. 4A, for all networks, the classification of large
size macromolecules has the best performance. Especially, for 3D-DenseNet and
3D-Dilated-DenseNet, the F1 value is close to 1. As the size of macromolecule
becomes smaller, the model gets poorer performance. This result is actually
valid since that compared to smaller macromolecules larger ones can preserve
more shape (or structure) information during pooling operations and get better
classification results. Furthermore, with the decreasing of macromolecule size,
the performance gap between 3D-DenseNet and 3D-Dilated-DenseNet becomes
larger. In Table 2, compared with 3D-DenseNet, 3D-Dilated-DenseNet averagely
increased macromolecule classification by 3.7% on medium size, 5.3% on small
size, and 6.8% on tiny size respectively.

Also, we test the convergence speed of 3D-DenseNet and 3D-Dilated-
DenseNet, we find that dilated convolution does not affect 3D-Dilated-DenseNet
convergence. Here, we analyze the performance of a series of 3D-DenseNet
and 3D-Dilated-DenseNet which are trained up 30 epochs at intervals of 5.
Figure 4B shows the relationship of epoch number and network performance on
tiny size macromolecules. According to Fig. 4B, although in the first 13 epoch,
the convergence speed of 3D-Dilated-DenseNet is slow, at epoch 15, both mod-
els reaches stability and the performance of 3D-Dilated-DenseNet is better than
3D-DenseNet.
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3.4 Visualization the Class Active Mapping of 3D-Dilated-DenseNet

In order to demonstrate the effectiveness of dilated convolution in improving clas-
sification performance, we visualize the feature map extracted from 3D-DenseNet
and 3D-Dilated-DenseNet. Generally, there are two ways to assess feature map
validity: 1) showing correct spatial information, in particular, the area which
contains macromolecule in the tomogram, and 2) presenting object distinguish-
able shape information. Because the raw input image has high level noise, we
further compare the CAM image of 3D-DenseNet and 3D-Dilated-DenseNet with
the ground-truth. In Fig. 5, each row shows one macromolecule with the input
image, ground truth, CAM image of 3D-DenseNet and 3D-Dilated-DenseNet.
Because the subtomogram data is 3D, we only show the center slice. Here,
we explain the image content of each data that is presented in Fig. 5. In the
input image, the cluster black regions present macromolecule, and this region
is located generally in the center. Oppositely, in ground truth data, the black
regions represent background and white regions represent macromolecule. In the
CAM image of 3D-DenseNet and 3D-Dilated-DenseNet, the response region is
presented with bright pixel and the pixel value reveals the contribution of the

Fig. 5. Class active mapping image of 3D-DenseNet and 3D-Dilated-DenseNet. Each
row represents one macromolecule. And the column images are raw input data, ground
truth, CAM image of 3D-DenseNet and CAM image of 3D-Dilated-DenseNet
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corresponding region of input data to classification. The higher the pixel value,
the more contribution to classification.

Judging from Fig. 5, we can find that compared with the CAM image of 3D-
DenseNet, the CAM image of 3D-Dilated-DenseNet shows more representative
shape information of macromolecule. First, 3D-Dilated-DenseNet CAM shows
less response to subtomogram background region. Second, the high response
region of 3D-Dilated-DenseNet CAM is more consistent with the macromolecule
region in input data. Moreover, the high response region of 3D-Dilated-DenseNet
contains clear boundaries that can help network easily distinguish macromolecule
region and background region which also arouse slight response.

3.5 The Performance of 3D-Dilated-DenseNet on Experimental
Data

We also test the classification performance of 3D-DenseNet and 3D-Dilated-
DenseNet on experimental data with F1 metric (Table 3). Compared with syn-
thetic data, the experimental data has higher SNR. Therefore, the classification
performance on experimental data is better than that on synthetic data. Because
we do not know the PDB id of each macromolecule in experimental data, we
cannot compute the relationship of particle size to model performance.

Judging from the Table 3, we can find that the F1 score of category DNAB
helicase-helicase, apoferritin is the same, both equal to 1, which means that for
these two category macromolecules, the balance between precision and recall is
the same. However, for macromolecule of other categories, 3D-Dilated-DenseNet
outperforms 3D-DenseNet. Overall, 3D-Dilated-DenseNet improved by 2.1%
compared with 3D-DenseNet. Thus, dilated convolution do have a promotion
for macromolecule classification task.

Table 3. Macromolecule classification F1 score on experimental data

Model Particle class

Rabbit

muscle

aldolase

Glutamate

dehydrogenase

DNAB

helicase -

helicase

T20S

proteasome

Apoferritin Hemagglutinin Insulin-

bound

insulin

receptor

3D-DenseNet 0.9231 0.9558 1.0 0.9339 1.0 0.9569 0.9958

3D-Dilated-DenseNet 0.9915 0.9655 1.0 0.9917 1.0 0.9677 1.0

4 Conclusion

As a significant step in STA procedure, macromolecule classification is important
for obtaining macromolecular structure view with sub-molecular resolution. In
this work, we focus on improving classification performance of the CNN-based
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method (3D-Dilated-DenseNet). By adapting dense connection and dilated con-
volution, we enhance the ability of the network to utilize image multi-level fea-
tures. In order to verify the effectiveness of dense connection and dilated con-
volution in improving classification, we implement 3D-DenseNet, 3D-Dilated-
DenseNet and compared these two models with the SHREC-CNN (the state-of-
the-art model on SHREC contest) on the SHREC dataset and the experimental
dataset. The results show that 3D-Dilated-DenseNet significantly outperforms
3D-DenseNet but 3D-DenseNet is still well above the SHREC-CNN. To further
demonstrate the validity of dilated convolution in the classification task, we visu-
alized the feature map of 3D-DenseNet and 3D-Dilated-DenseNet. The results
show that the dilated convolution can help network extract a much more rep-
resentative feature map. Although our model has significant improvements in
the macromolecule classification task. The small-sized macromolecule is still a
bottleneck for our method. And due to the lack of suitable labeled experimental
data, we have not fully explored the 3D-Dilated-DenseNet performance on exper-
imental data according to macromolecule sizes. In future works, we will focus on
improving classification performance on small size macromolecule and explore
the method performance with abundant cryo-ET tomogram experimental data.
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Abstract. Essential proteins are indispensable in the development of organisms
and cells. Identification of essential proteins lays the foundation for the discov-
ery of drug targets and understanding of protein functions. Traditional biologi-
cal experiments are expensive and time-consuming. Considering the limitations
of biological experiments, many computational methods have been proposed to
identify essential proteins. However, lots of noises in the protein-protein inter-
action (PPI) networks hamper the task of essential protein prediction. To reduce
the effects of these noises, constructing a reliable PPI network by introducing
other useful biological information to improve the performance of the prediction
task is necessary. In this paper, we propose a model called Ess-NEXG which
integrates RNA-Seq data, subcellular localization information, and orthologous
information, for the prediction of essential proteins. In Ess-NEXG, we construct
a reliable weighted network by using these data. Then we use the node2vec tech-
nique to capture the topological features of proteins in the constructed weighted
PPI network. Last, the extracted features of proteins are put into a machine learn-
ing classifier to perform the prediction task. The experimental results show that
Ess-NEXG outperforms other computational methods.

Keywords: Essential proteins · RNA-Seq data · Subcellular localization ·
Weighted protein-protein interaction network · Node embedding · XGBoost

1 Introduction

Essential proteins are very important in organisms and play a crucial role in the life
process [1]. If the absence of a certain protein would lead to organisms to become dis-
ability or death, it can be said that this protein is essential [2]. Identification of essential
proteins not only helps us to deepen the understanding of the life activities of cells
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but also provides a theoretical basis for the study of the pathogenesis of complex dis-
eases and the discovery of drug targets [3, 4]. Thus, it is important for biologists to
identify essential proteins. Conventional methods for the identification of essential pro-
teins are biological experiments including RNA interference [5], conditional knockout
[6], and single-gene knockout [7]. However, these experimental methods are expensive
and time-consuming. Therefore, it is necessary to identify essential proteins by using
computational approaches.

The rule of Centrality-Lethality, which indicates that nodes with high connectivity
in the networks tend to be essential proteins, has been proposed in 2001 [8]. After
that, several computational methods have been developed to identify essential proteins.
These computational methods can be roughly divided into two classes: topology-based
and machine learning-based methods. There are many topology-based methods, such
as Degree Centrality (DC) [9], Betweenness Centrality (BC) [10], Closeness Centrality
(CC) [11], Subgraph Centrality (SC) [12], Eigenvector Centrality (EC) [13], Information
Centrality (IC) [14], and Local Average Connectivity (LAC) [15]. These methods focus
on node centrality and provide a decent performance to identify essential proteins.

With the development of high-throughput sequencing technology, an increasingnum-
ber of protein data are available to obtain. These protein data lay the foundation for the
identification of the essential proteins. Many researchers integrated PPI network and
biological information to improve the performance of the essential protein identifica-
tion. The representative methods are PeC [16], UDoNC [17], ION [18], and CoTB [19].
Besides, many traditional machine learning algorithms are applied to this task. These
machine learning algorithms include support vector machine (SVM) [20], Naïve Bayes
[21], genetic algorithm [22], and decision tree [23]. Recently, deep learning techniques
also have been applied to essential protein prediction and achieve good performance.
Zeng et al. [24] proposed a novel computational framework to predict essential proteins
based on deep learning techniques which can automatically learn features from three
kinds of biological data. Zeng et al. also proposed a method named DeepEP [25, 26]
which integrates PPI network and gene expression profiles.

Both in topology-based and machine learning-based methods, PPI networks play
an important role. Studies showed that there are many false positive and false negative
edges in PPI networks [27, 28], which can influence the performance of essential protein
prediction [29]. Thus, to reduce the effects of these noises, it is imperative to construct
a reliable weighted network to improve the performance of essential protein prediction
by using other biological information. In this study, we used three kinds of biologi-
cal data: RNA-Seq data, the subcellular localization information, and the orthologous
information.

In this paper, we propose a novel computational framework named Ess-NEXG to
identify essential proteins. First, to eliminate the noises in the PPI network, the PPI
network is weighted by integrating RNA-Seq data, subcellular localization information,
and orthologous information. Different from using score function in traditional com-
putational methods, the weights of edges are calculated by dimension reduction from
these data. Second, the network representation learning technique is used to learn the
topological features of each protein in the weighted PPI network. Finally, the extracted
features are used as the input of XGBoost model to identify potential essential proteins.
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The effectiveness of Ess-NEXG is validated on the PPI network of saccharomyces cere-
visiae (S. cerevisiae) [30]. Comparedwith the current topology-basedmethods including
BC, CC, EC, IC, LAC, NC, SC, PeC, SPP [31], WDC [32], RSG [33] and NIE [34],
Ess-NEXG achieves a better performance. Besides, Ess-NEXG also outperforms other
machine learning-based methods.

2 Materials and Methods

2.1 Data Source and Preprocessing

In this study, we usedmultiple biological data to identify essential proteins: PPI network,
RNA-Seq data, subcellular localization information, and orthologous information. These
biological data are widely used in the prediction of essential proteins. The PPI network
dataset is downloaded from BioGRID database. After the removal of self-cycle interac-
tions and discrete nodes, there are 5,501 proteins and 52,271 interactions in the dataset.
Proteins and interactions represent nodes and edges in the PPI network, respectively.

The essential proteins are downloaded from Four databases: MIPS [35], SGD [36],
DEG [37], OGEE [38]. After integrating information of essential proteins in the four
databases, the dataset contains 1285 essential proteins. The RNA-Seq data is collected
from the NCBI SRA database by Lei et al. [39]. This dataset contains gene expression
data of 7108 proteins. The subcellular localization information is downloaded from the
knowledge channel of COMPARTMENTS database [40]. The orthologous information
is gathered from InParanoid database [41].

2.2 Constructing Weighted PPI Network

Formally, the PPI network is described as an undirected graph G (V, E) consisting of a
set of nodes V = {v1, v2, . . . , vn} and edges E = {

e
(
vi, vj

)}
. A node vi ∈ V represents

a protein and an edge e
(
vi, vj

) ∈ E represents the interaction between protein vi and vj.
As mentioned above, the PPI network plays an indispensable role in essential protein
prediction. However, recent studies showed that there are some noises in the current
PPI network, which can affect the identification performance. In order to improve the
performance of the essential protein prediction, it is necessary to construct a reliable PPI
network.

In this paper, we used RNA-Seq data, subcellular localization information, and
orthologous information to weigh the PPI network to reduce the effects of noises. The
three types of biological data represent the co-expression of two interacting proteins, the
spatiality of proteins, and the conservatism of proteins, respectively. Thus, they can be
used to filter the noises and calculate the weight of interacting proteins.

2.2.1 Obtain Better Representation with Principal Component Analysis

We have three different types of biological data. If we combine them directly, each
protein has a 24-dimensional feature vector. However, the three kinds of biological data
are from different sources and have the following properties:
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1. The ranges of values in the three types of biological data vary a lot. The range of
values in RNA-Seq data is from zero to tens of thousands; the values in subcellular
localization information are binary (0 and 1); the range of values in orthologous
information is from 0 to 99.

2. The subcellular localization information is very sparse; the RNA-Seq data and
orthologous information are dense.

3. The dimensionality of three kinds of data is different. To order to extract useful
features, we used principal component analysis (PCA) to reduce the dimensionality
and obtain better representations of proteins.

It is important to find a good way that combines three kinds of biological data
for calculating how strong two proteins interact. In consideration of the differences in
those three kinds of biological data, we use PCA to reduce the dimension of the 24-
dimensional vector to get a better protein representation vector. PCA is a useful tool
for feature extraction. The samples are projected from high-dimensional space into low-
dimensional space by PCA through linear transformation, which can obtain a dense
protein vector and be more suitable for calculating the weight of edges. After the steps
of PCA, we can obtain a dense vector which is a better representation.

2.2.2 Calculate the Strength of Interacting Proteins by Pearson’s Correlation
Coefficient

Pearson’s correlation coefficient (PCC) is used to calculate how strong two proteins
interact in the rawPPI network.After PCA, each protein has a dense representation vector
Wi = (ω1, ω2, . . . ωn′). So the strength of two interacting proteins vi = (x1, x2, . . . xn′)
and protein vj = (y1, y2, . . . yn′) is calculated by PCC. The value of PCC ranges from
−1 to 1, if PCCvi, vj is a positive value, it means that the relationship between protein
vi and vj is positive. On the contrary, if PCCvi, vj is a negative value, it means that the
relationship between protein and vj is negative.

Finally, the weight of edges in the network is Weight
(
vi, vj

) = PCC
(
vi, vj

)
. So far,

the raw PPI network has been weighted by integrating three types of biological data.
Figure 1 plots the workflow of the weighting process.

2.3 Identification of Essential Proteins Based on Network Representation
Learning and XGboost

In order to identify essential proteins more correctly, it is necessary to learn better topo-
logical features for proteins. In this study, we use node2vec [42] to learn the topological
features. Node2vec techniquewas developed in 2016, it is inspired byword2vec [43] and
DeepWalk [44]. It projects every node in the network to a low-dimensional space vector
based on unsupervised learning. Node2vec defines two parameters p and q that are used
to balance the depth-first search (DFS) and the breadth-first search (BFS), which can
preserve the local neighbor node relations and global structure information.

After getting topological features of proteins, the next step is choosing a suitable
classifier for essential protein prediction. XGBoost (eXtreme Gradient Boosting) [45] is
one of the best available machine learning methods. XGBoost algorithm uses a simple
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Fig. 1. A diagram of the weighted PPI network construction. The raw protein representation
vector is constituted by using RNA-Seq data, subcellular location, and orthologous information.
In order to obtain a better representation, we use the PCA technique to reduce the dimension of
the raw protein representation vector. Finally, we weight the PPI network by PCC based on the
dense representation vector and the raw PPI network.

model to fit the data that can get a general performance. Then, simplemodels are added to
the whole XGBoost model constantly. Until the whole model approaches the complexity
of the sample data, the performance of this model is best to identify essential proteins.
Figure 2 plots the whole workflow.

Fig. 2. A diagram of the essential proteins identifying. We use node2vec to extract the protein
features, and then use the features we extract as the input of XGBoost to classify proteins.
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3 Results

3.1 Comparisons with Current Topology-Based Methods

To validate the performance of Ess-NEXG, we compared Ess-NEXG with some current
topology-based methods (BC, CC, EC, IC, LAC, NC, SC, PeC, SPP, WDC, RSG, NIE).
In these methods, every node has a score according to corresponding score function.
Because there are 1285 essential proteins in the PPI network, we select the top 1285
proteins as candidate essential proteins, and the rest 4216 proteins are candidate non-
essential proteins. According to the true label, we calculated the accuracy, precision,
recall, and F-score of the 12 computation-based methods. The results of Ess-NEXG and
other topology-based methods are shown in Table 1.

Table 1. Comparison of the values of accuracy, precision, recall, and F-score of Ess-NEXG and
other topology-based methods.

Methods Accuracy Precision Recall F-score

BC 0.728 0.411 0.383 0.396

CC 0.670 0.278 0.259 0.268

EC 0.732 0.420 0.391 0.405

IC 0.746 0.454 0.423 0.438

LAC 0.763 0.492 0.458 0.475

NC 0.762 0.490 0.457 0.473

SC 0.732 0.420 0.391 0.405

PeC 0.758 0.480 0.447 0.463

SPP 0.706 0.561 0.479 0.516

WDC 0.758 0.481 0.448 0.464

RSG 0.758 0.475 0.518 0.495

NIE 0.757 0.473 0.528 0.499

Ess-NEXG 0.819 0.600 0.580 0.590

From Table 1, we can see that all assessment metrics obtained by Ess-NEXG are
higher than other topology-based methods. According to the results of these topology-
based methods, we find that the accuracy of LAC, the precision of SPP, the recall of NIE,
and the F-score of SPP are the highest values in these four assessment metrics among
these topology-based methods. Compare with the four assessment metrics, Ess-NEXG
improves the performance by 7.3%, 7.0%, 9.8%, and 14.3% respectively. In summary,
the results indicate that Ess-NEXG outperforms other topology-based methods.

3.2 Comparisons with Other Machine Learning Algorithms

In Ess-NEXG, we choose the XGBoost classifier to identify essential proteins. In order
to validate the performance of Ess-NEXG, we compared Ess-NEXGwith other machine
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learning algorithms including support vectormachine (SVM),NaïveBayes, and decision
tree, random forest [46], AdaBoost [47]. To ensure equitably, we also use the same
input features of proteins and assessment metrics. The results are shown in Table 2.
From Table 2, we can see that Ess-NEXG has the best performance. Figure 3 plots the
ROC curve of Ess-NEXG and other machine learning algorithms. We can see that the
ROC curve of Ess-NEXG is significantly higher than other machine learning algorithms.
Table 2 and Fig. 3 show that Ess-NEXG is better than other machine learning algorithms.

Table 2. Comparison of the values of accuracy, precision, recall, F-score, and AUC of Ess-NEXG
and other machine learning algorithms.

Model Accuracy Precision Recall F-score AUC

SVM 0.70 0.38 0.62 0.47 0.73

Naïve
Bayes

0.79 0.50 0.38 0.43 0.72

Decision
tree

0.71 0.35 0.40 0.37 0.62

Random
forest

0.80 0.58 0.26 0.36 0.71

AdaBoost 0.79 0.51 0.29 0.37 0.71

Ess-NEXG 0.82 0.60 0.58 0.59 0.82

Fig. 3. ROC curves of Ess-NEXG and other machine learning algorithms.
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4 Conclusions

Essential proteins are very important proteins in the life process, which can help us
understanding life activities in living organisms. The identification of essential pro-
teins is helpful in drug design and disease prediction. In this paper, we propose a novel
computational framework to identify essential proteins in the PPI network. Previous
studies have shown that the noises in the PPI network affect the performance of essen-
tial protein identification. In order to reduce the effects of noises in the PPI network,
we propose a weighted method that integrates RNA-Seq data, subcellular localization
information, and orthologous information. After obtaining the protein representation
vector by using PCA technique, PCC is used to calculate the edge weights in the PPI
network. Then node2vec is applied to extract topological features from the weighted
PPI network. Finally, the topological features are fed into XGboost model to identify
essential proteins. In order to evaluate the performance of Ess-NEXG, we compared
it with current topology-based methods. The results show that Ess-NEXG outperforms
them. In addition, we also compared Ess-NEXG with machine learning algorithms to
show effectiveness. While Ess-NEXG outperforms other computational models, it still
has some limitations. The biggest limitation is that we have to collect biological data for
each new species, which is expensive and cumbersome. In the future, we would further
improve the performance of essential protein prediction by using powerful deep learning
techniques [48] and useful biological information [49].
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Abstract. Long reads play an important role for the identification of
structural variants, sequencing repetitive regions, phasing of alleles, etc.
In this paper, we propose a new approach for mapping long reads to
reference genomes. We also propose a new method to generate accurate
alignments of the long reads and the corresponding segments of reference
genome. The new mapping algorithm is based on the longest common
sub-sequence with distance constraints. The new (local) alignment algo-
rithms is based on the idea of recursive alignment of variable size k-mers.
Experiments show that our new method can generate better alignments
in terms of both identity and alignment scores for both Nanopore and
SMRT data sets. In particular, our method can align 91.53% and 85.36%
of letters on reads to identical letters on reference genomes for human
individuals of Nanopore and SMRT data sets, respectively. The state-
of-the-art method can only align 88.44% and 79.08% letters of reads for
Nanopore and SMRT data sets, respectively. Our method is also faster
than the state-of-the-art method.

Availability: https://github.com/yw575/mapAlign

Keywords: Long read mapping · Local alignment of long reads · LCS
with distance constraints · Variable length k-mer alignment

1 Introduction

The next-generation sequencing (NGS) technologies have changed biological
studies in many fields. However, short length of reads poses a limitation for
the identification of structural variants, sequencing repetitive regions, phasing
of alleles, etc. The long-read sequencing technologies may offer improvements in
solving those problems. Nevertheless, the current long read technology suffers
from high error rates. The first two steps for DNA analyses are read mapping
and aligning reads with the corresponding segments of reference genomes. Most
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of the existing methods for read mapping do not work properly for new types
of long reads that have high error rates. A few new methods are available now
for read mapping, but they are still very slow. The accuracy of existing align-
ment methods also needs to be improved for long reads. Efficient algorithms are
required before any further analysis such as SNP calling and haplotype assembly
can be done.

For read mapping, the problem has been solved for short reads. Lots of tools
have been developed for short reads that can map large size data sets, e.g.,
data sets for human individuals, in reasonable time. BWA might be the best
tool for short reads and works well for data sets of human individuals [1]. How-
ever, tools for short reads cannot work well for large size long read data sets.
Some tools for long read mapping have been developed. BLASR [2] is a tool
developed by PacBio Company which is designed for SMRT data. GraphMap
[3], which is proposed in 2016, is the first tool ever that was reported to design
for Nanopore data. Mashmap [6] is a method to use minimizer technique. Min-
imap [4] and Minimap2 [5] also give solutions for long read mapping. The most
updated version Minimap2 can do read mapping and produce alignments of long
reads against the corresponding segments in reference genomes. Minimap2 uses
the idea of minimizer to reduce the size of reference genomes and speed up
the mapping algorithm. A dynamic programming approach is used to find the
location of each read by calculating a score that represents number of matched
minimizers/k-mers and others facts. SIMD technique is also a key for the success
of Minimap2. The speed of Minimap2 is very fast.

Many tools have been developed for aligning reads with reference genomes.
In [7], a seed DNA sequence is found based on a “hash table” containing all
k-mers present in the first DNA sequence. The hash table is then used to locate
the occurrences of the k-mer sequence in the other DNA sequence. Subsequently,
this seed is extended on both sides to complete the alignment. Tools as BLAT
[8], SOAP [9], SeqMap [10], mrsFAST [11] and PASS [12] also applied the idea of
seed. This implementation is simple and quick for shorter sequences, but is more
memory-intensive for long sequences. An improvement is PatternHunter [13],
which uses “spaced seeds”. This approach is similar to the “seed and extend”
approach, but requires only some positions of the seed to match. Many tools
were developed based on this approach, including the Corona Lite mapping tool
[14], BFAST [15] and MAQ [16]. Newer tools like SHRiMP [17] and RazerS [18]
improve on this approach by using multiple seed hits and allowing indels. Other
“retrieval-based” approaches was aimed at reducing the memory requirements
for alignment and use “Burrows-Wheeler Transform” (BWT), an technique that
was first used for data compression [19]. Several very fast tools like SSAHA2
[20], BWA-SW [1], YOABS [21] and BowTie [22] have been created based on
this approach, being useful for mapping longer reads. Other alignment tools
like SOAP3 [23], BarraCUDA [24] and CUSHAW [25] combine “retrieval-based”
approaches with GPGPU computing, taking advantage of parallel GPU cores to
accelerate the process. However, the above approaches are still very slow when
handling Nanopore and SMRT data sets.
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In this paper, we propose a new approach for mapping long reads to refer-
ence genomes. We also propose a new method to generate accurate alignments
of the long reads and the corresponding segments of reference genome. The
new mapping algorithm is based on the longest common sub-sequence with dis-
tance constraints. The new (local) alignment algorithms is based on the idea
of recursive alignment of variable size k-mers. Experiments show that our new
method can generate better alignments in terms of both identity and alignment
scores for both Nanopore and SMRT data sets. In particular, our method can
align 91.53% and 85.36% of letters on reads to identical letters on reference
genomes for human individuals of Nanopore and SMRT data sets, respectively.
The state-of-the-art method can only align 88.44% and 79.08% letters of reads
for Nanopore and SMRT data sets, respectively. Our method is also faster than
the state-of-the-art method. Here we did not use the SIMD technique as in the
state-of-the-art method. Our new mapping method is based on the longest com-
mon subsequence with approximate distance constraint model (LCSDCδ). We
designed an O(m log n) running time algorithm for LCSDCδ. The alignment
algorithm is based on the idea of recursively aligning k-mers of different values
of k. We expect that the more than 3–5% identically aligned letters will make
some differences in the upcoming analysis such as SNP calling and haplotype
assembly.

2 Methods

Our method contains two parts. The first part tries to identify the location of
each read in the reference genome. The second part does accurate local alignment
for the read and the corresponding segment in the reference genome.

2.1 Identifying the Location of a Read in the Reference Genome

To identify the location of a long read in the reference genome, a common tech-
nique for all the existing methods is to start with a set of k-mers from the read
and based on the set of k-mers positions in the reference genome to find the cor-
rect location of the read in the reference genome. The only reason that multiple
k-mers should be used is due to the fact that the length of long read could be
more than 100k base pairs. Different methods use different strategies to select
multiple k-mers and different approaches to find the location of the read in ref-
erence genome based on the positions in reference genomes of the set of selected
k-mers.

Reference Genome Index. We use homopolymer compressed k-mers for ref-
erence genomes. A homopolymer compressed k-mer is obtained from a sequence
by compressing every subsequence of identical letters into one letter. It contains k
letters where any two consecutive letters in the k-mer are different. Homopolymer
compressed (HPC) k-mers was first proposed by SmartDenovo (https://github.
com/ruanjue/smartdenovo; J. Ruan) and it can improve overlap sensitivity for

https://github.com/ruanjue/smartdenovo
https://github.com/ruanjue/smartdenovo
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SMRT reads [5]. To increase the speed of the algorithm, we directly use an array
of size 4 × 3k−1 − 1 as a hash table. Each k-mer p corresponds to an integer i(p)
between 0 and 4 × 3k−1 − 1. We use i(p) to indicate the location of k-mer p in
the indexing array of size 4 × 3k−1 − 1. When k is very large, i(p) can serve as
the key in a normal hash table. Each cell in the hash table (array) corresponds
to a list of positions in the reference genome where the k-mer appears.

Identifying the Location of a Read. The main difficulty to find the location
of a read in reference genome is that each k-mer on the read may appear at
many positions in the reference genome. To identify the true location of a read
on reference genome, we need to use multiple k-mers and require efficient and
effective algorithms to identify the location of the read.

Sample n k-mers from a Read: GraphMap decomposes the whole genome into a
set of overlapping buckets and looks at the number of k-mers in each bucket [3].
The method is slow since the number of buckets is very large (proportional to
the total length of the genome), and the number of k-mers in each bucket is
an inaccurate measure without considering the order among the k-mers and the
distance between two consecutive k-mers. As a result, they have to use all the
k-mers of the read in the process and the running time is very slow comparing
to the state-of-the-art tool such as Minimap2.

Minimap2 uses the idea of minimizer to reduce the number of k-mers used
for each read and uses a dynamic programming approach to optimize a score
which considers the number of matched k-mers and other facts.

Here we propose to use a relatively small number n of k-mers that are approx-
imately evenly distributed over the read, where the default value is n = 128.
Assume that the average length of each read is 6k to 18k bps, n = 128 is very
small comparing to 18k (if using all the k-mers of a read) and 18k/10 (if using
minimizers with window size 10). Since n is small, we need a more accurate
measure to handle the n samples of k-mers. Therefore, we model the problem as
the longest common subsequence with distance constraints problem.

The New Measure: For a read r, we select n k-mers that are evenly distributed
over the read. Let r = r1r2 . . . rn be a sequence of k-mers, where the n k-mers ri

are evenly distributed over the read and the distance between two consecutive
k-mers is denoted as d. We treat each ri as a letter in the sequence r.

Each k-mer ri may appear at many places over the genome. Let g =
g1g2 . . . gm be a sequence, where each gj is an occurrence of a k-mer ri for
some 1 ≤ i ≤ n. (Here a genome is considered as a sequence. For genomes with
multiple chromosomes, we can handle the chromosomes one by one.)

The Longest Common Subsequence with Distance Constraint Problem (LCSDC):
Let g = g1 g2 . . . gm and r = r1 r2 . . . rn be sequences obtained by sampling n
k-mers from the read, where m is the total number of occurrences of the n k-
mers on the genome. When both r and g are viewed as sequences, we assume
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that each gj is a ri for some 1 ≤ i ≤ n. Let d be the distance between two
consecutive k-mers in r. Our task is to compute a longest common subsequence
s = s1 s2 . . . st for g and r such that for any two consecutive letters si and si+1

in s, the distance between si and si+1 is exactly d.
Since there are indels in both reads and genomes, we have the approximate

version, the longest common subsequence with approximate distance constraint
problem (LCSDCδ), where we want to find a longest common subsequence s =
s1 s2 . . . st for g and r such that for any two consecutive letters si and si+1 in s,
the distance between si and si+1 is between d − δ and d + δ.

An O(m) Exact Algorithm for LCSDC: Let r = r1 r2 . . . rn be the sequence of n
k-mers for the read. For each ri, there is a list of all the occurrences of ri in the
genome. Thus, g can be represented as n lists L1, L2, . . ., Ln, where each list Li

stores the positions of the occurrences of ri over the genome. Every Li is sorted
based on the positions of ri over the genome.

For two consecutive lists, say, L1 and L2, we can merge them into a new list
L1,2 as follows:

Algorithm 1. Merge two sorted lists
Input: two sorted lists L1 and L2

y ← first item in L2

for each item x in L1 do
//x should always be before y on the genome
while d(x, y) < d do

add y to the new list L1,2

y = y.next
end while
if d(x,y)== d then

merge two items x and y as a new item (x,y)
add (x,y) to the new list L1,2

else
add x to the new list L1,2

end if
end for
add the rest of items in L2 to the new list L1,2

Obviously, the running time of Algorithm1 is linear in terms of the total
length of L1 and L2. Based on the merge process, we have the following algo-
rithm:

We merge Li and Li+1 for i = 1, 3, 5, . . . , n−1 (assuming that n is even) for
the first round. After the first round, we have 0.5n lists. We repeatedly merge two
consecutive lists rounds by round. After log n rounds, there is only one list left.
We go through the list once more to get the longest (merged) items. The longest
item is actually the longest common subsequence with distance constraint. This
will lead to an O(m log n) time algorithm if everything is correct.
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Nevertheless, the merge process does not work properly for the second and
the rest of rounds. The merge process heavily depends on the two facts: (1)
the two lists are sorted based on the items position in the genome and (2) the
“distance” between the two lists is a fixed value d. For item (1) the newly merged
list can still be kept as sorted. The real problem is that the newly created lists
contain items from different lists. When we merge two newly created lists, e.g.,
L1,2 (obtained from merging L1 and L2) and L3,4 (obtained from merging L3

and L4), the distance is not unique. There are four pairs, (L1 and L3), (L1 and
L4), (L2 and L3) and (L2 and L4.).

To solve the problem, we need to move each item y in L2 that cannot be
merged to any item in L1 forward by the distance d when creating the new list
L1,2 from L1 and L2. In this way, when we merge L1,2 and L3,4, we can always
use the distance between L1 and L3 as the d value to merge. (Note that when
obtaining L3,4, we also modify the items in L4 in the same way.) Now the m log n
algorithm works.

Theorem 1. LCSDC admits an O(m) running time algorithm to get an optimal
solution.

Proof. To get the O(m) running time algorithm, we just move every item in list
Li for i = 2, 3, . . . , n forward by the distance between L1 and Li, where such a
distance is always known. After that at each newly obtained position, we have
a counter to record the number of times such a position is visited during the
“moving forward process”. Finally, we output the maximum counter over all the
(at most m) positions as the length of the LCSDC. A common subsequence can
also be built for each of the (at most m) positions when the value of counter is
updated. ��

An O(m log n) Running Time Heuristic Algorithm for LCSDCδ: The approxi-
mate version LCSDCδ is more complicated to deal with. We do not know any
efficient algorithm to obtain an optimal solution. Here we propose an O(m log n)
time heuristic algorithm for LCSDCδ. The main difficulty for LCSDCδ is that
when many identical k-mers occur at nearby locations in the reference genome,
those nearby identical k-mers compete for matching the k-mer on the read. It is
hard to decide which nearby k-mer can best match the k-mer on the read. Here
we propose a heuristic that works well in practice for LCSDCδ.

We add a pre-process to remove identical k-mers that a within distance
0.25δ from both g and r. After that, we use an algorithm that is similar to
the O(mlogn) exact algorithm for LCSDC. The only difference is that (1) We
change the condition d(x, y) == d to a new condition d − δ ≤ d(x, y) ≤ d + δ
and (2) When the first y in L2 is found to satisfy d − δ ≤ d(x, y) ≤ d + δ, we
look at the next y in L2 and select the one with the smallest error. We do not
use the O(m) algorithm here because the δ is proportional to the distance d and
d could be very large if the two consecutive letters are from two far away lists.

Shifting: The running time heavily depends on the total length of lists for
k-mers. To further reduce the running time for finding LCSDCδ, for each of the
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n k-mers of the read, we look at the next 6 consecutive base pairs and choose
the one with the shortest list.

Implementation of the Algorithms: The algorithm is implemented in C++. For
each k-mer, the list containing all occurrences of the k-mer in genome are actually
stored in an array (instead of a linked list) and this is one of the keys to speed
up the program. It is perhaps worth to emphasize that accessing a list for a
k-mer in a huge size array/hash table is time consuming and we access the huge
size array/hash table only once for each k-mer on the read. When the final list
is obtained after log n rounds of the merge processes, we will select the item in
the unique list that corresponds to the longest subsequence. When the length of
LCSDC is less than 4, we assume that we cannot find the location of the read
over the genome.

The number of k-mers n is set to be 128 when the length of the read >640. If
the length of the read is between 225 and 640, n is set to be 64. If the length of
the read is between 80 and 225, n = 32. Any read with length <80 are ignored.

We use small size Nanopore and SMRT data sets (see Sect. 3: dataset 3 and
dataset 4) to test the tool for the LCSDCδ model. The histograms for the length
of LCSDC are given in Figs. 1. We can see that for the Nanopore and SMRT
data sets, the average lengths of LCSDC are 21.57 and 35.80, respectively.

Length of LCSDC of Nanopore dataset (avg: 21.57)
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Fig. 1. The distributions of the LCSDC lengths for the dataset 3 (Nanopore) and
dataset 4 (SMRT) (GRCh38 as the reference).

K-mer Size vs the Algorithm Speed: The running time of our read mapping
algorithm is O(m log n), where n is the number of k-mers selected from the read
and m is the total length of the n lists for k-mers. The running time is heavily
depends on the k values of k-mers when indexing the reference genome. Let l(k)
be the expected length of a list for a k-mer. The expected total length of n list
for k-mers is m(k) = n × l(k). The expected length of a list for (k + 1)-mer is



112 W. Yang and L. Wang

l(k + 1) = l(k)/4 since the list of a k-mer will be decomposed into 4 lists when
there is one more letter. Thus, the running time of our algorithm will be faster
when the value of k increases. On the other hand, increasing the value of k will
decreases the chance of finding a matched pair of k-mer.

To illustrate the speed of our algorithm for different k values, we did exper-
iments on a Nanopore dataset and a SMRT dataset (See Sect. 3, dataset 3 and
dataset 4). The results are given in Table 1. We can see that when k increases,
the running time decreases and the average length of LCSDC also decreases
slightly. For k > 16, we need to use an efficient way to handle the hash table
and will be implemented later.

Table 1. The running time of our algorithm for dataset 3 and dataset 4 with different
k-values (GRCh38 as the reference).

Dataset 3 k-mer size = 14 k-mer size = 15 k-mer size = 16

Average LCSDC length 24.38 22.69 21.57

Identity 75.41% 75.66% 75.80%

Align. score 89.42% 89.61% 89.70%

Failure cases 1.55% 1.97% 2.39%

CPU time 262 s 189 s 128 s

Peak Memory 19.6 G 22.1 G 25.7 G

Dataset 4 k-mer size = 14 k-mer size = 15 k-mer size = 16

Average LCSDC length 35.32 35.92 35.80

Identity 81.10% 81.23% 81.30%

Align. score 86.34% 86.42% 86.53%

Failure cases 2.00% 2.29% 2.64%

CPU time 185 s 141 s 105 s

Peak memory 19.0 G 20.7 G 25.2 G

2.2 Aligning a Read Against the Reference Genome

Once the read location on reference genome is found, we will align the read
with the corresponding segment on the reference genome. It is well known that
a dynamic programming algorithm with quadratic running time can give the
optimum solution. However, the algorithm is too slow to handle huge size data
sets such as Nanopore or SMRT data for human individuals. Here will propose
a heuristic algorithms for local alignment which is much more accurate than all
the existing heuristic methods.

Our key idea is to view the DNA sequences (with 4 letters) as a sequence
of k-mers. When the DNA sequence is long, we use large size k-mer to find an
alignment of the k-mers between the two sequences. Such an alignment of k-mers
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between the two sequences decomposes the whole sequence region into many
smaller size regions and for each pair of smaller size regions we can recursively
use smaller size k-mers to do alignment. When the size of the pair of regions
is small enough, e.g., <15, we use the dynamic programming algorithm to give
the alignment. We refer to our algorithm as the recursive variable length k-mer
alignment algorithm.

After the read mapping procedure, our program has found an LCSDC for k-
mers with k = 16. Starting with a matched k-mer (with k = 16), we try to extend
the matching to the two ends. The LCSDC for k-mers with k = 16 decomposes
the whole read into many smaller size regions and the lengths of those regions
could be from a few hundreds to a few thousands (if the read has 18k bps and
the length of LCSDC is from 10 to 30). Each time, we look at a pair of segments
with 256 DNA letters from both sequences. We then view the two segments as
sequences of k-mers with k = 9 and use the heuristic Algorithm2 to align the
two sequences. The right ends of the two sequences stop at the positions where
the last pair of matched k-mer with k = 9 ends. Our algorithm can still handle
large size >256 indels since the extension from the other direction can handle
this.

The Heuristic Algorithm for Alignment of K-mer Sequences. Let L =
L1L2 . . . Ln be a sequence of k-mers from the read. Each Li is a list of positions
on the reference genome that the k-mer appears. We use |Li| to represent the
length of the list. Let p0 and l0 be integers representing the position in the
reference genome and the location in the read, where the previous pair of k-
mers match. Our algorithm looks at each Li for i = 1, 2, . . . , n. If the list Li is
empty, i.e., |Li| = 0 then the corresponding k-mer does not have a match on the
reference genome. If Li| > 3, then there are to many occurrences of the k-mer
and a repeated region is found. In this case, we do not try to identify the match.
When |Li| > 0 and |Li| ≤ 3, our algorithm will try to find a match that satisfies
the condition |(l − l0) − (p − p0)| ≤ min{l−l0,p−p0}

2 . Such a condition is used to
ensure that the lengths of the newly created pair of regions (by determining the
pair of matched k-mer) on the reference genome and the read are roughly the
same. Once a match of a pair of k-mers is found, the algorithm tries to extend
the length of the match by looking at the next pair of DNA letters whenever
possible.

Obviously, the running time of Algorithm2 is linear in term of the input
sequences and is much simpler and faster than the heuristic algorithm for
LCSDCδ. The key point here is that once a pair of k-mers is matched, the
region is decomposed into two parts of smaller sizes. Missing some matches of
k-mers does not affect the final alignment as long as the matched pairs are
correct.

After that, we re-start with the last pair of matched k-mers (with k = 9) and
look at the next pair of segments with 256 DNA letters and repeat the process.
The process stops if we meet the next matched k-mer with k = 16 (obtained in
read mapping process) or there is no matched pair of k-mer for k = 9.
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Algorithm 2. A heuristic algorithm to align two sequences of k-mers
Input: a sequence L = L1L2 . . . Ln and integers p0 and l0.
STATE hit=0
for i=1 to n do

if |Li| > 0 and |Li| ≤ 3 then
for each position p in Li do

Let l be the location of the i-th k-mer on the read
if |(l − l0) − (p − p0)| ≤ min{l−l0,p−p0}

2
then

match the current pair of k-mers and hit=1
while The next pair of letters are identical do

extend the match
end while

end if
end for

end if
end for
return hit

If the returned hit == 0, we will reduce the size of k by 1 and repeat the
process. The process can be repeated by at most 6 times when k goes down from
9 to 4.

3 Results

In this section, we use some datasets to illustrate the running time and alignment
quality of our method.

3.1 Data Sets

We downloaded two large size (human) datasets (dataset 1 and dataset 2) for
full comparison purpose. Also, We generated two small size datasets (dataset 3
and dataset 4) for quick testing purpose. The human genome GRCh38 is used
as the reference.

Dataset 1: We use a human dataset (NA12878) sequenced on Oxford
Nanopore Technology. This dataset is downloaded at http://s3.amazonaws.com/
nanopore-human-wgs/rel6/rel 6.fastq.gz [26]. There are 15666888 reads in this
dataset.

Dataset 2: To do comparison with SMRT data, we use a raw sequence data
resulting from PacBio SMRT Sequencing. This dataset is downloaded at http://
bit.ly/chm1p5c3 [27]. This dataset has 22565609 reads.

Dataset 3: We randomly select 10000 reads from dataset 1.
Dataset 4: We randomly select 12000 reads from Ashkenazim trio-Child

NA24385 dataset sequenced by PacBio SMRT.

http://s3.amazonaws.com/nanopore-human-wgs/rel6/rel_6.fastq.gz
http://s3.amazonaws.com/nanopore-human-wgs/rel6/rel_6.fastq.gz
http://bit.ly/chm1p5c3
http://bit.ly/chm1p5c3
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3.2 Alignment Quality Comparison with BLAST

To compare the quality of the generated alignments, we use two different scores.
The alignment score is defined as the number of identically matched pairs of
letters over the total length of read. The identity score is define to be the number
of identically matched pairs of letters over the total length of the alignment.
Note that in many cases, the two ends of a read are excluded in the resulting
alignments. Different programs may excluded different segments of the read ends.
Thus identify score cannot fully represent the quality of the alignment. On the
other hand, the alignment score defined here can only represent the percentage
of read letters to be matched. There may be the case that all the letters in a
read of length 100 can be perfectly matched to a region of length 10000. This is
also not reasonable. Here we use both measures.

We did a preliminary comparison with BLAST (version: 2.9.0) which suppose
to be good at doing alignment. We use dataset 3 against GRCh38. The results
are as follows: The identity score and alignment score for BLAST are 77.77% and
70.40%, while the identity score and alignment score for our method are 75.80%
and 89.70%, respectively. We can see that our method can align 89.70% of letters
from the read to identical letters on the reference genome while BLAST can only
align 70.40% of letters from the read. The identify score of our method is 75.80
which is slightly worse than that of BLAST. This means that the alignments
generated by our method have slightly more number of letters from the reference
genome that are aligned with spaces into order to get 89.70 – 70.40 = 19.3% more
letters from the read to be matched to identical letters. BLAST often cannot
align well at the two ends of the read. The 77.77% identity score for BLAST
is obtained by using the alignment length, where the two ends of read are not
included in the alignment. BLAST is at least 30 times slower than our method.
Thus, we do not give the details of running time comparison.

3.3 Comparison with Other Methods

GraphMap is at least 50 times slower than Minimap2. According to [5], Min-
imap2 also has better alignment quality. Here we did a comparison with Min-
imap2 using two large size datasets, i.e., dataset 1 and dataset 2. The results are
shown in Table 2.

For the large Nanopore dataset (dataset 1). The failure cases for Minimap2
and mapAlign are 16.83% and 17.72%, respectively. We have a slightly higher
failure case than Minimap2. However, the alignment quality (in terms of both
the identify and alignment scores) of our method is better. Also, we use only
53% CPU time of Minimap2.

For the large SMRT dataset (dataset 2). The failure cases for Minimap2 and
mapAlign are 4.38% and 6.26%, respectively. Both our identify and alignment
scores are about 5% higher than Minimap2. Also, our method is faster than
Minimap2.
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Table 2. Comparison between Minimap2 and mapAlign for dataset 1 and dataset
2(GRCh38 as the reference).

Dataset 1 Minimap2 mapAlign

Identity 81.71% 83.45%

align. score 88.44% 91.53%

CPU time 266375 sec 141559 sec

Failure cases 16.83% 17.72%

Peak Memory 13.5 G. 27.1 G.

Dataset 2 Minimap2 mapAlign

Identity 74.17% 79.12%

align. score 79.08% 85.36%

CPU time 390029 sec 247005 sec

Failure cases 4.38% 6.26%

Peak Memory 9.2 G. 26.2 G.

4 Discussions

The main reason that our algorithm is faster than Minimap2 is that we use a
much small number (128) of k-mers for each read, where each k-mer corresponds
to a list. If the read is of length 10k, then Minimap2 with minimizer and window
size 10 needs to handle 1k k-mers and the corresponding lists. Thus Minimap2
needs more time. On the other hand, increasing the window size for minimizer
approach will reduce the accuracy. Our LCSDCδ model allows us to sample a
small number of k-mers and obtain accurate results by considering the distance
between two consecutive k-mers.

The main reasons that our algorithm can generate more accurate alignments
are: (1) Starting with a pair of matched k-mer for (k = 16), we consider to
match k-mers of smaller size (e.g., 7 or 9) for the two small size segments (at most
256 bps each) of the read and the genome. The length of the list for each k-mer is
very short since we do not use the list for the whole genome anymore; (2) In most
case, k-mers (for k = 16, 9, 7) are “correctly” matched; and (3) The matched k-
mers decompose the whole region into many small size regions and for each small
size region (≤15 bps in most cases) we use the exact quadratic time algorithm
to give local optimal solutions. The quadratic algorithm works efficiently when
the size of region is small. Moreover, our algorithm use more strict conditions to
ignore cases where the two segments are not similar at all. Thus, we have slightly
higher failure cases than Minimap2. A few failure cases could consume lots of
computational time for our algorithm since the two sequences are not similar, the
sizes of the decomposed regions are large, and the quadratic algorithm becomes
very slow.
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mapping with sensitivity control. Genome Res. 19, 1646–54 (2009)

19. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Digital Equipment Corporation 124 (1994)

20. Ning, Z., Cox, A.J., Mullikin, J.C.: SSAHA: a fast search method for large DNA
databases. Genome Res. 11, 1725–9 (2010)

http://arxiv.org/abs/1708.01492


118 W. Yang and L. Wang

21. Galinsky, V.L.: YOABS: yet other aligner of biological sequences-an efficient lin-
early scaling nucleotide aligner. Bioinformatics 28, 1070–7 (2012)

22. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol. 10, R25
(2009)

23. Liu, C.-M., et al.: SOAP3: ultra-fast GPU-based parallel alignment tool for short
reads. Bioinformatics 28, 878–9 (2012)

24. Klus, P., et al.: BarraCUDA - a fast short read sequence aligner using graphics
processing units. BMC Res. Notes 5, 27 (2012)

25. Liu, Y., Schmidt, B., Maskell, D.L.: CUSHAW: a CUDA compatible short read
aligner to large genomes based on the Burrows-Wheeler transform. Bioinformatics
28, 1830–1837 (2012)

26. Jain, M., et al.: Nanopore sequencing and assembly of a human genome with ultra-
long reads. bioRxiv, 128835 (2017)

27. Ono, Y., et al.: PBSIM: pacBio reads simulator-toward accurate genome assembly.
Bioinformatics 29, 119–121 (2013)



Functional Evolutionary Modeling Exposes
Overlooked Protein-Coding Genes Involved

in Cancer

Nadav Brandes1(B), Nathan Linial1, and Michal Linial2(B)

1 School of Computer Science and Engineering, The Hebrew University of Jerusalem,
Jerusalem, Israel

nadav.brandes@mail.huji.ac.il
2 Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences,

The Hebrew University of Jerusalem, Jerusalem, Israel
michall@cc.huji.ac.il

Abstract. Numerous computational methods have been developed to screening
the genome for candidate driver genes based on genomic data of somaticmutations
in tumors. Compiling a catalog of cancer genes has profound implications for the
understanding and treatment of the disease. Existing methods make many implicit
and explicit assumptions about the distribution of random mutations. We present
FABRIC, a new framework for quantifying the evolutionary selection of genes by
assessing the functional effects of mutations on protein-coding genes using a pre-
trainedmachine-learningmodel. The framework compares the estimated effects of
observed genetic variations against all possible single-nucleotide mutations in the
coding human genome. Compared to existing methods, FABRIC makes minimal
assumptions about the distribution of random mutations. To demonstrate its wide
applicability, we applied FABRIC on both naturally occurring human variants
and somatic mutations in cancer. In the context of cancer, ~3M somatic mutations
were extracted from over 10,000 cancerous human samples. Of the entire human
proteome, 593 protein-coding genes show statistically significant bias towards
harmful mutations. These genes, discovered without any prior knowledge, show
an overwhelming overlap with contemporary cancer gene catalogs. Notably, the
majority of these genes (426) are unlisted in these catalogs, but a substantial frac-
tion of them is supported by literature. In the context of normal human evolution,
we analyzed ~5M common and rare variants from ~60 K individuals, discovering
6,288 significant genes. Over 98% of them are dominated by negative selection,
supporting the notion of a strong purifying selection during the evolution of the
healthy human population. We present the FABRIC framework as an open-source
project with a simple command-line interface.

Keywords: Driver genes ·Machine learning · TCGA · Positive selection ·
Cancer evolution · Single nucleotide variants · ExAC

1 Introduction

Most arising somatic mutations in cancer are considered passenger mutations, whereas
only a small fraction of them have a direct role in oncogenesis, and are thus referred
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to as cancer driver mutations [1, 2]. The Cancer Genome Atlas (TCGA) is a valuable
resource of genomic data from cancer patients covering >10,000 samples in over 30
cancer types [3]. An ongoing effort in cancer research is compiling a comprehensive
catalog of cancer genes which have a role in tumorigenesis.

Numerous computational frameworks have been designed for the purpose of identi-
fying suspect cancer genes [4–6]. Most of these frameworks, regarded as “frequentist”,
are based on the premise that cancer genes are recurrent across samples and can be
recognized by high numbers of somatic mutations. In contrast, passenger mutations are
expected to appear at random. Assessing whether a gene shows an excessive number of
mutations must be considered in view of an accurate null background model. Since can-
cer is characterized by order-of-magnitudes variability in mutation rates among cancer
types and genomic loci [7], the frequentist approach requires complex modeling of gene
mutation rates as a function of the composition of samples, cancer types and specific
loci in the genomes that display extreme deviation in their mutation rates [8]. The sensi-
tivity of the frequentist approach to modeling choices leads to lingering uncertainty and
controversy [4].

An alternative to the frequentist approach, which can be regarded as “functionalist”,
considers the content of mutations rather than their numbers. It is based on the premise
that somaticmutations in cancer genes, are subjected to positive selection and, as a result,
aremore damaging than expected at random.Under the functionalist approach, each gene
has its own inherent background model which only depends on static properties of the
gene and the number of mutations. Other variables, such as the samples or cancer types
that the mutations have originated from, or the specific genomic region of the gene under
study, do not need to be part of the model.

A simplistic functionalist model is based on the ratio of non-synonymous to syn-
onymous (dN/dS) mutations [9]. This model is a common metric for studying the evo-
lutionary selection of a gene. A richer functionalist model was recently explored by
OncodriveFML [10]. It estimates the pathogenicity of mutations using CADD [11],
which provides numeric scores for the clinical effects of mutations. OncodriveFML
then compares the CADD effect scores of the somatic mutations observed within a gene
to those of random mutations using permutation tests. OncodriveFML still uses a com-
plex background model that includes sample identities and cancer types. As a result
of its complex background model, it requires computationally demanding permutation
tests and is unable to analytically calculate probabilities.

With the goal of developing an analytical functionalist model, we introduce a new
framework called FABRIC (Functional Alteration Bias Recovery In Coding-regions)
[12]. FABRIC is a purely functionalist framework, with a simple background model that
is completely agnostic to samples, cancer-types and genomic regions. This simplicity
allows calculation of precise p-values per gene. As a result, FABRIC can provide a
detailed ranking of all genes by significance.

The full description of FABRICand its demonstration to cancer is available elsewhere
[12]. In this report, we iterate the highlights of that work and further demonstrate the
applicability of FABRIC to broad evolutionary contexts. In particular, we show its ability
to detect a trend of negative selection in the context of naturally occurring human genetic
variations.
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2 Methods

Framework Overview
FABRIC analyzes each protein-coding gene independently, extracting all the single
nucleotide variations (SNVs) observed within the coding regions of that gene (Fig. 1A).
It then uses FIRM, a machine-learning model to assign functional effect scores to each
SNV, which measure the predicted effects of those variants explicitly on the protein
function (Fig. 1B). Intuitively, this score can be thought of as the probability of the
protein to retain its original biochemical function given the mutation. Simplistically, all
synonymous mutations are assigned a score of 1 and loss of function (LoF) mutations
are assigned a 0 score. Missense mutations are processed through FIRM [12] to obtain a
score between 0 to 1. Notably, FIRM was trained in advance on an independent dataset.

Independently to the calculation of scores for the observed mutations, a background
distribution for the expected scores is also constructed, assuming that unselected pas-
senger mutations occur at random by a uniform distribution across the gene (Fig. 1C).
This background model is precise, and calculated individually for each gene. Significant
deviations between the null background distribution to the observed effect scores are
then detected (Fig. 1D). Z-values measure the strengths of deviations between observed
to expected scores, and used to derive exact p-values. If a gene’s average z-value is sig-
nificantly negative, it means that mutations are more damaging to the gene function than
expected by the same number of mutations randomly distributed along the gene’s coding
sequence. In such case, the gene is deemed to be “alteration promoting”, reflecting its
tendency to harbor damaging mutations. An observed score that is significantly higher
than expected indicates a gene that is more constrained than expected. We refer to these
genes as “alteration rejecting”.

We illustrate FABRIC’s background model by analyzing TP53, one of the most stud-
ied cancer gene (Fig. 1E-H; see details in [12]). Importantly, we derive 12 background
distributions, corresponding to the 12 possible single-nucleotide substitutions (Fig. 1F).
These distributions are gene specific and are independent of the input data (Fig. 1E).
Hence, the backgroundmodel accounts for the exact number of mutations and their SNV
frequencies as observed for the studied gene. The mixed model background distribution
is gene specific (Fig. 1G). Note that we only considered SNVs (and ignored in-frame
indels and splicing variants) at coding regions. Following such simplification, 93% of the
somatic mutations in the analyzed dataset is considered. Note that by ignoring complex
variations and effects, FABRIC underestimates the damage to gene function.

Effect Score Prediction Mode
A key component of FABRIC is a pre-trained machine-learning model for predicting the
effects of missense genetic variants on protein function. This machine-learning model is
called FIRM (Functional Impact Rating at the Molecular-level; Fig. 2). Different from
many mutation prediction tools (e.g. CADD [11], Polyphen2 [13]) that predict clinical
pathogenicity scores, FIRM seeks positive selection at the biochemical, functional level.
Importantly, FIRMwas pre-trained on ClinVar [14], which is independent to the datasets
used in this work.
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�Fig. 1. FABRIC framework. (A-D) Framework overview, (E-H) background model (TP53 as
an example). (A) All somatic mutations within a particular gene are collected from a variety of
samples and cancer types. SNVs within protein-coding regions are analyzed to study their effects
on the protein sequence (synonymous, missense or nonsense). (B) Using a machine-learning
model, we assign each mutation a score for its effect on the protein biochemical function, with
lower scores indicating mutations that are more likely harmful. (C) In parallel, a precise null
background score distribution is constructed (details in E-H). (D) By comparing the observed
scores to their expected distribution, we calculate z-values for the mutations, and overall z-value
and p-value for the gene. (E) 3,167 SNVs were observed in coding regions of TP53 from which
a 4 × 4 matrix of single-nucleotide substitution frequencies was derived. Note that this matrix
is non-symmetric (e.g. 25.3% of the substitutions are G to A, while only 2.9% are A to G).
(F) For each of the 12 possible nucleotide substitutions, an independent background effect score
distribution was calculated, by considering all possible substitutions within the coding region of
TP53 and processing themwith the same effect score prediction model used in (B). (G) Bymixing
the 12 distributions calculated in (F) with the weights of the substitution frequencies calculated
in (E), we obtained the gene’s final effect score distribution, used as its null background model
for the analysis. (H) According to the null background distribution, we would expect mutations
within the TP53 gene to have a mean score of μ = 0.49. However, the observed mean score of the
3,167 analyzed mutations is μ = 0.05, which is 1.05 standard deviations below the mean (p-value
< E−300). The observed mean (0.05) was calculated from the 3,167 SNVs observed in TP53
which are categorized as follows: 92 synonymous mutations (effect scores of 1), 512 nonsense
mutations (effect scores of 0), and 2,563 missense mutations with an average score of 0.02.
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Fig. 1. (continued)

In order to ensure that FIRM does not capture any clinical or evolutionary informa-
tion, we restricted its used features to purely biochemical properties. FIRM extracts an
immense set of features (1,109 in total), aimed at capturing the rich proteomic context of
each missense variant. The main classes of features include: i) the location of the variant
within the protein sequence, ii) the identities of the reference and alternative amino-
acids, iii) the score of the amino-acid substitution under various BLOSUM matrices,
iv) an abundance of annotations extracted from UniProtKB, v) amino-acid scales (i.e.

Fig. 2. Overview of FIRM. FIRM is the underlying machine-learning model used to predict
the functional effects of variants, which is used by the FABRIC framework. By exploiting a rich
proteomic knowledgebase, FIRM extracts features representing variants in a 1,109-dimensional
space. A random-forest classifier then assigns each variant a predicted functional effect score.
FIRM was pre-trained on the ClinVar dataset (which is independent of the datasets examined by
FABRIC in this work).
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various numeric values assigned to amino-acids [15, 16]), vi) Pfam domains and Pfam
clans. More details on FIRM, including performance analysis, are described in [12].

3 Results and Discussion

Alteration Bias in Cancer We applied FABRIC on ~3M somatic mutations from over
10,000 cancerous human samples extracted from the TCGA database [3]. Of the entire
human proteome, we discovered 593 alteration promoting protein-coding genes, namely
genes showing statistically significant bias towards harmful mutations [12]. To verify
our results and check for new discoveries, we compared our results against prominent
resources of cancer genes: COSMIC-Census catalogue [17], and the recently compiled
PanSofware catalogue of 299 cancer driver genes [6]. We found a very strong and signif-
icant overlap between the discovered alteration promoting genes and those catalogues
[12], although the majority of the genes (426 of 593) were not listed in them.

Alteration Bias in the Healthy Human Population
We tested the evolutionary signal that can be extracted from germline variants in healthy
human population. We used the ExAC dataset [18], one of the largest and most complete
contemporary catalogs of genetic variation in the healthy human population. The full
dataset of ExAC contained 10,089,609 variants. We filtered out 1,054,475 low-quality
variants, and among the remaining 9,035,134 variants we found 8,538,742 SNVs. Of
these, 4,747,096 were found to be in coding regions, contributing to a final dataset
of 4,752,768 gene effects. Applying FABRIC on this dataset, the effect scores of the
variants in each gene were compared against the background distribution derived from
the nucleotide substitution frequencies of the same observed variants.

We observed that variants with lower allele frequencies have lower z-values, i.e. are
generally more damaging than expected (Fig. 3A). As expected, more harmful variants
(with lower z-values) are less likely to become fixed in the population. We also found
expected correlations between the effect score biases of genes (mean z-values) to other
popular scoring techniques that measure evolutionary selection. We report Spearman’s
correlation of ρ =−0.4 (p-value< E−300) between the Residual Variation Intolerance
Score (RVIS) [19] to the mean effect score z-values of genes. Similarly, we report
Spearman’s correlation of ρ = −0.28 (p-value < E−300) to the Gene Damage Index
(GDI) [20]. Both metrices give higher scores to genes that are damaged more than
expected, while we give lower scores to such genes, hence the expectation for negative
correlation. This further confirms the evolutionary constraints reflected by the effect
score biases.

Considering all ~20K protein coding genes, we discovered 6,141 significant alter-
ation rejecting genes, andonly 147 significant alteration promoting genes. In otherwords,
almost all of the significant results (97.7%) are alteration rejecting genes, meaning that in
the case of the healthy human population, most genes are under negative selection. This
is the exact opposite to the trend observed in cancer (Fig. 3B). Whereas cancer is dom-
inated by positive selection, germline variants that have undergone selective pressure
throughout long-term human evolution are dominated by negative selection.
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Fig. 3. Alteration rejection in the healthy human population. (A) Alteration bias (measured
by z-value) of germline variants from ExAC across ranges of Allele Frequency (AF). The boxes
represent theQ1–Q3 ranges, themiddle lines themedians (Q2), and thewhite dots themeans. Since
there are ~60 k samples in the dataset, the last range (AF < 0.001%) captures only the 2,454,501
effect scores of singleton variants. (B) Distribution of alteration bias (measured by mean z-value)
of the 17,828 and 17,946 analyzed genes in TCGA (red) and ExAC (blue), respectively. The
density plots show the distribution of all analyzed genes, while the shaded histograms only the
599 and 6,288 genes with significant alteration bias in each dataset (comprised of both alteration
promoting and alteration rejecting genes in both datasets). (Color figure online)

It is also interesting to note a mild overlap between the alteration promoting genes
in cancer, found in the analysis of somatic mutations in TCGA, to alteration rejecting
genes in the healthy human population, found in the analysis of germline variants in the
ExAC dataset. Of the 17,313 genes that are shared to both analyses, 584 are significant
alteration promoters in cancer, 5,995 are significant alteration rejecters in the human
population, and 350 are both. According to random hyper-geometric distribution, we
would expect only 202 overlapping genes (×1.73 enrichment, p-value = 1.17E−36).
This supports the notion that cancer driver genes,which undergo positive selection during
tumor evolution, are subjected to negative selection during normal human evolution.

Funding. This work was supported by the European Research Council’s grant on High Dimen-
sional Combinatorics (N.B. fellowship) [N.L. grant #339096] and a grant fromYadHanadiv (M.L.
#9660)
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Abstract. The input to the agreement problem is a collection P =
{T1, T2, . . . , Tk} of phylogenetic trees, called input trees, over partially
overlapping sets of taxa. The question is whether there exists a tree T ,
called an agreement tree, whose taxon set is the union of the taxon sets
of the input trees, such that for each i ∈ {1, 2, . . . , k}, the restriction of
T to the taxon set of Ti is isomorphic to Ti. We give a O(nk(

∑
i∈[k] di +

log2(nk))) algorithm for a generalization of the agreement problem in
which the input trees may have internal labels, where n is the total
number of distinct taxa in P, k is the number of trees in P, and di is the
maximum number of children of a node in Ti.

Keywords: Phylogenetic tree · Taxonomy · Agreement · Algorithm

1 Introduction

In the tree agreement problem (agreement problem, for short), we are given a
collection P = {T1, T2, . . . , Tk} of rooted phylogenetic trees with partially over-
lapping taxon sets. P is called a profile and the trees in P are the input trees.
The question is whether there exists a tree T whose taxon set is the union of the
taxon sets of the input trees, such that, for each i ∈ {1, 2, . . . , k}, Ti is isomorphic
to the restriction of T to the taxon set of Ti. If such a tree T exists, then we call
T an agreement tree for P and say that P agrees; otherwise, P disagrees. The
first explicit polynomial-time algorithm for the agreement problem is in refer-
ence [16]1. The agreement problem can be solved in O(n2k) time, where n is the
number of distinct taxa in P [10].

Here we study a generalization of the agreement problem, where the internal
nodes of the input trees may also be labeled. These labels represent higher-
order taxa; i.e., in effect, sets of taxa. Thus, for example, an input tree may
contain the taxon Glycine max (soybean) nested within a subtree whose root
is labeled Fabaceae (the legumes), itself nested within an Angiosperm subtree.
Note that leaves themselves may be labeled by higher-order taxa. We present
a O(nk(

∑
i∈[k] di + log2(nk))) algorithm for the agreement problem for trees

1 These authors refer to what we term “agreement” as “compatibility”. What we call
“compatibility”, they call “weak compatibility”.
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with internal labels, where n is the total number of distinct taxa in P, k is the
number of trees in P, and, for each i ∈ {1, 2, . . . , k}, di is the maximum number
of children of a node in Ti.

Background. A close relative of the agreement problem is the compatibility prob-
lem. The input to the compatibility problem is a profile P = {T1, T2, . . . , Tk} of
rooted phylogenetic trees with partially overlapping taxon sets. The question is
whether there exists a tree T whose taxon set is the union of the taxon sets of
the input trees such that each input tree Ti can be obtained from the restriction
of T to the taxon set of Ti through edge contractions. If such a tree T exists,
we refer to T as a compatible tree for P and say that P is compatible; otherwise,
P is incompatible. Compatibility is a less stringent requirement than agreement;
therefore, any profile that agrees is compatible, but the converse is not true.
The compatibility problem for phylogenies (i.e., trees without internal labels),
is solvable in O(MP log2 MP) time, where MP is the total number of nodes and
edges in the trees of P [9]. Note that MP = O(nk).

Compatibility and agreement reflect two distinct approaches to dealing with
multifurcations; i.e., non-binary nodes, also known as polytomies. Suppose that
node v is a multifurcation in some input tree of P and that �1, �2, and �3 are
taxa in three distinct subtrees of v. In an agreement tree for P, these three taxa
must be in distinct subtrees of some node in the agreement tree. In contrast,
a compatible tree for P may contain no such node, since a compatible tree is
allowed to “refine” the multifurcation at v—that is, group two out of �1, �2, and
�3 separately from the third. Thus, compatibility treats multifurcations as “soft”
facts; agreement treats them as “hard” facts [15]. Both viewpoints can be valid,
depending on the circumstances.

The agreement and compatibility problems are fundamental special cases of
the supertree problem, the problem of synthesizing a collection of phylogenetic
trees with partially overlapping taxon sets into a single supertree that represents
the information in the input trees [2,4,18,24]. The original supertree methods
were limited to input trees where only the leaves are labeled, but there has been
increasing interest in incorporating internally labeled trees in supertree analysis,
motivated by the desire to incorporate taxonomies in these analyses. Taxonomies
group organisms according to a system of taxonomic rank (e.g., family, genus,
and species); two examples are the NCBI taxonomy [21] and the Angiosperm
taxonomy [23]. Taxonomies provide structure and completeness that can be hard
to obtain otherwise [12,17,19], offering a way to circumvent one of the obstacles
to building comprehensive phylogenies: the limited taxonomic overlap among
different phylogenetic studies [20].

Although internally labeled trees, and taxonomies in particular, are not,
strictly speaking, phylogenies, they have many of the same mathematical prop-
erties as phylogenies. Both phylogenies and internally labeled trees are X-trees
(also called semi-labeled trees) [5,22]. Algorithmic results for compatibility and
agreement of internally labeled trees are scarce, compared to what is available
for ordinary phylogenies. To our knowledge, the first algorithm for testing com-
patibility of internally labeled trees is in [7] (see also [3]). The fastest known
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algorithm for the problem runs in O(MP log2 MP) time [8]. We are unaware of
any previous algorithmic results for the agreement problem for internally labeled
trees.

All algorithms for compatibility and agreement that we know of are indebted
to Aho et al.’s Build algorithm [1]. The time bounds for agreement algorithms
are higher than those of compatibility algorithms, due to the need for agreement
trees to respect the multifurcations in the input trees. To handle agreement,
Build has to be modified so that certain sets of the partition of the taxa it
generates are re-merged to reflect the multifurcations in the input trees, adding
considerable overhead [10,16] (similar issues are faced when testing consistency
of triples and fans [13]). This issue becomes more complex for internally labeled
trees, in part because internal nodes with the same label, but in different trees,
may jointly imply multifurcations, even if all input trees are binary.

Organization of the Paper. Section 2 provides a formal definition of the agree-
ment problem for internally labeled trees. Section 3 studies the decomposability
properties of profiles that agree. These properties allow us to reduce an agree-
ment problem on a profile into independent agreement problems on subprofiles,
leading to the agreement algorithm presented in Sect. 4. Section 5 contains some
final remarks. All proofs are available in [14].

2 Preliminaries

For each positive integer r, [r] denotes the set {1, . . . , r}.

Graphs and Trees. Let G be a graph. V (G) and E(G) denote the node and edge
sets of G. Let U be a subset of V (G). Then the subgraph of G induced by U is
the graph whose vertex set is U and whose edge set consists of all of the edges
in E(G) that have both endpoints in U .

A tree is an acyclic connected graph. All trees here are assumed to be rooted.
For a tree T , r(T ) denotes the root of T . Suppose u, v ∈ V (T ). Then, u is an
ancestor of v in T , denoted u ≤T v, if u lies on the path from v to r(T ) in T . If
u ≤T v, then v is a descendant of u. Node u is a proper ancestor of v, denoted
u <T v, if u ≤T v and u �= v. If {u, v} ∈ E(T ) and u ≤T v, then u is the parent
of v and v is a child of u. For each x ∈ V (T ), we use parentT (x), and ChT (x),
T (x) to denote the parent of x, the children of x, and the subtree of T rooted at
x, respectively. We extend the child notation to subsets of V (T ) in the natural
way: for U ⊆ V (T ), ChT (U) =

⋃
u∈U ChT (u). Thus, if U = ∅, then ChT (U) = ∅.

Let T be a tree and suppose U ⊆ V (T ). The lowest common ancestor of U
in T , denoted LCAT (U), is the unique smallest upper bound of U under ≤T .

X-Trees. Throughout the paper, X denotes a set of labels (that is, taxa, which
may be, e.g., species or families of species). An X-tree is a pair T = (T, φ)
where T is a tree and φ is a mapping from X to V (T ) such that, for every node
v ∈ V (T ) of degree at most two, v ∈ φ(X). X is the label set of T and φ is the
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Fig. 1. (a) A profile P = {T1, T2, T3, T4}. (b) An agreement tree for P.

labeling function of T . For every node v ∈ V (T ), φ−1(v) denotes the (possibly
empty) subset of X whose elements map into v; these elements as the labels of
v. If φ−1(v) �= ∅, then v is labeled ; otherwise, v is unlabeled.

By definition, every leaf in an X-tree is labeled, and any node, including the
root, that has a single child must be labeled. Nodes with two or more children
may be labeled or unlabeled. An X-tree T = (T, φ) is singularly labeled if every
node in T has at most one label; T is fully labeled if every node in T is labeled.

X-trees, also known as semi-labeled trees, generalize ordinary phylogenetic
trees (also known as phylogenetic X-trees [22]). An ordinary phylogenetic tree
is a semi-labeled tree T = (T, φ) where r(T ) has degree at least two and φ is a
bijection from X into leaf set of T (thus, internal nodes are not labeled).

Let T = (T, φ) be an X-tree. For each u ∈ V (T ), X(u) denotes the set of all
labels in the subtree of T rooted at u; that is, X(u) =

⋃
v:u≤T v φ−1(v). X(u) is

called a cluster of T . Cl(T ) denotes the set of all clusters of T . We extend the
cluster notation to sets of nodes as follows. Let U be a subset of V (T ). Then,
X(U) =

⋃
v∈U X(v). If U = ∅, then X(U) = ∅.

Suppose Y ⊆ X for an X-tree T = (T, φ). The restriction of T to Y , denoted
T |Y , is the semi-labeled tree whose cluster set is Cl(T |Y ) = {W ∩ Y : W ∈
Cl(T ) and W ∩ Y �= ∅}. Intuitively, T |Y is obtained from the minimal rooted
subtree of T that connects the nodes in φ(Y ) by suppressing all vertices v such
that v /∈ φ(Y ) and v has only one child.

Let T = (T, φ) be an X-tree and T ′ = (T ′, φ′) be an X ′-tree such that
X ′ ⊆ X. T agrees with T ′ if Cl(T ′) = Cl(T |X ′). It is well known that the
clusters of a tree determine the tree, up to isomorphism [22, Theorem 3.5.2].
Thus, T agrees with T ′ if T ′ and T |X ′ are isomorphic.

Profiles and Agreement. Throughout the rest of this paper, P denotes a set
{T1, T2, . . . , Tk} such that, for each i ∈ [k], Ti = (Ti, φi) is a phylogenetic Xi-tree
for some set Xi (Fig. 1a). We refer to P as a profile, and to the trees in P as
input trees. We write XP to denote

⋃
i∈[k] Xi.

A profile P agrees if there is an XP -tree T that agrees with each of the trees
in P. If T exists, we refer to T as an agreement tree for P. See Fig. 1b.

Given a subset Y of XP , the restriction of P to Y , denoted P|Y , is the
profile defined as P|Y = {T1|Y ∩ X1, T2|Y ∩ X2, . . . , Tk|Y ∩ Xk}. The proof of
the following lemma is straightforward.
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Lemma 1. Suppose a profile P has an agreement tree T . Then, for any Y ⊆
XP , T |Y is an agreement tree for P|Y .

Suppose P contains trees that are not fully labeled. We can convert P into
an equivalent profile P ′ of fully-labeled trees as follows. For each i ∈ [k], let li be
the number of unlabeled nodes in Ti. Create a set X ′ of n′ =

∑
i∈[k] li labels such

that X ′ ∩ XP = ∅. For each i ∈ [k] and each v ∈ V (Ti) such that φ−1
i (v) = ∅,

make φ−1
i (v) = {�}, where � is a distinct element from X ′. We refer to P ′ as the

profile obtained by adding distinct new labels to P (see Fig. 1a).
The proof of the following result is analogous to that of [7, Lemma 3.4].

Lemma 2. Let P ′ be the profile obtained by adding distinct new labels to P.
Then, P agrees if and only if P ′ agrees. Further, if T is an agreement tree for
P ′, then T is also an agreement tree for P.

From this point forward, we make the following assumption.

Assumption 1. For each i ∈ [k], Ti is fully and singularly labeled.

By Lemma 2, no generality is lost in assuming that all trees in P are fully
labeled. The assumption that the trees are singularly labeled is inessential; it is
only for clarity. Note that, even with the latter assumption, a tree that agrees
with P is not necessarily singularly labeled. Figure 1b illustrates this fact.

Lemma 3. If profile P agrees, then P has an agreement tree T = (T, φ) such
that φ−1(v) �= ∅ for each node v ∈ V (T ).

By Assumption 1, for each i ∈ [k], there is a bijection between the labels in
Xi and the nodes of V (Ti). For this reason, we will often refer to nodes by their
labels. In particular, given a label � ∈ Xi, we write Xi(�) to denote Xi(φi(�))
(the cluster of Ti at the node labeled �), ChTi

(�) to denote φi(ChTi
(φi(�)) (the

labels of children of � in Ti), and, for A ⊆ Xi, ChTi
(A) to denote φi(ChTi

(φi(A)).
The following characterization of agreement generalizes a result in [10].

Lemma 4. Let P be a profile and T = (T, φ) be an XP -tree. Then, T is an
agreement tree for P if and only if, for each i ∈ [k], there exists a function
φi : Xi → V (T ) such that for every label a ∈ Xi,

(E1) φi(a) = LCAT (Xi(a)),
(E2) for each label b ∈ ChTi

(a), φi(a) <T φi(b), and
(E3) for every two distinct labels b, c ∈ ChTi

(a), there exist distinct nodes u, v ∈
ChT (φi(a)) such that φi(b) ∈ XP(u) and φi(c) ∈ XP(v).

We refer to a function φi satisfying conditions (E1)–(E3) of Lemma4 as a
topological embedding of Ti into T . Observe that, by transitivity, condition (E2)
implies that, for any a, b ∈ Xi, if a <Ti

b, then φi(a) <T φi(b).
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3 Positions in a Profile

A position in a profile P is a tuple π = (π1, π2, . . . , πk) where, for each i ∈ [k],
either πi = ∅ or πi = {�}, for some � ∈ Xi. Note that the definition of a position
allows for the possibility that there exist i, j ∈ [k], i �= j, such that � ∈ πi, but
� /∈ πj , even if � ∈ Xi and � ∈ Xj . At any given point during its execution,
our agreement algorithm focuses on testing the agreement of the subprofile of P
determined by the subtrees associated with a specific position.

For a position π in P, let XP(π) denote the set of labels
⋃

i∈[k] Xi(πi). A
label � ∈ XP(π) is exposed in πif πi = {�} for every i ∈ [k] such that � ∈ Xi(π).
We say that position π has an agreement tree if P|XP(π) has an agreement tree.

A position π in P is valid if Xi(πi) = XP(π)∩Xi, for each i ∈ [k]. The initial
position for P is the position πinit, where, for each i ∈ [k], πinit

i is a singleton set
consisting of the label of r(Ti) (i.e., πinit

i = φ−1
i (r(Ti)). Clearly, πinit is a valid

position.

Lemma 5. A profile P has an agreement tree if and only if there is an agreement
tree for every valid position π in P.

Decomposing a Position. In what follows, π denotes a valid position in P. For
each i ∈ [k] such that πi �= ∅, let �i ∈ Xi denote the single label in πi. Let ChP(π)
denote the set of all children of some label in π; i.e., ChP(π) =

⋃
i∈[k] ChTi

(πi).
Let π be a valid position in P. A good decomposition of π is a pair

(S,Π), where S is a subset of the exposed labels in
⋃

i∈πi
πi and Π =

{π(1), π(2), . . . , π(d)} is a collection of valid positions such that

(D1) S ∪
⋃

j∈[d] XP(π(j)) = XP(π) and S ∩
⋃

j∈[d] XP(π(j)) = ∅, and
(D2) XP(π(p)) ∩ XP(π(q)) = ∅, for all p, q ∈ [d] such that p �= q.

Note that we allow S or Π to be empty. We refer to the labels in S as semi-
universal labels and to the positions in Π as successor positions of π. The next
result is central to our agreement algorithm.

Lemma 6. Let π be a valid position in a profile P. Then, π has an agreement
tree if and only if there exists a good decomposition (S,Π) of π such that S �= ∅
and, for each position π′ ∈ Π, π′ has an agreement tree. If such a good decom-
position exists, then π has an agreement tree T = (T, φ) where φ−1(r(T )) = S.

Good Partitions. To find a good decomposition of a position π, it is convenient to
work with partitions of ChP(π). (Recall that a partition of a set Y is a collection
Γ of nonempty subsets of Y such that every element x ∈ Y is in exactly one set
in Γ .) A good decomposition (S,Π), where Π = {π(j)}j∈[d] defines a partition
Γ of the set ChP(π) where, for any a, b ∈ ChP(π), a and b are in the same set of
Γ if and only if there exists j ∈ [d] such that a, b ∈ XP(π(j)). We refer to Γ as
the partition of ChP(π) associated with (S,Π). Next, we show that, conversely,
certain partitions of ChP(π) define good decompositions of π.

Set A ⊆ ChP(π) is nice with respect to a subset S of the exposed labels in
π if, for each i ∈ [k] and each label � ∈

⋃
i∈[k] πi such that ChP(�) ∩ A �= ∅,



Testing the Agreement of Trees with Internal Labels 133

(N1) if � ∈ S and each i ∈ [k] such that � ∈ πi, then |ChTi
(�) ∩ A| = 1, and

(N2) if � �∈ S, then ChP(�) ⊆ XP(A).

Suppose A is a nice set. The position associated with A is the position πA,
where, for each i ∈ [k], πA

i is defined as follows. If πi = ∅, then πA
i = ∅. Otherwise,

let � be the single element in πi. Then,

πA
i =

⎧
⎪⎨

⎪⎩

∅ if ChTi
(�) ∩ A = ∅,

ChTi
(�) ∩ A if � ∈ S, and

πi if � /∈ S.

(1)

A partition Γ of ChP(π) is good with respect to S if each set A ∈ Γ is nice with
respect to S and, for every two distinct sets A,B ∈ Γ , XP(πA) ∩ XP(πB) = ∅.

Lemma 7. There is a bijection between good decompositions of π and good par-
titions of ChP(π). That is, the following statements hold.

(i) Suppose (S,Π) is a good decomposition of π. Let (S, Γ ) be the partition of
ChP(π) associated with (S,Π). Then, (S, Γ ) is a good partition of ChP(π).

(ii) Suppose (S, Γ ) is a good partition of ChP(π). Let Π = {πA : A ∈ Γ}. Then,
(S,Π), a good decomposition of π.

We refer to the good partition (S, Γ ) of ChP(π) obtained from a good decom-
position (S,Π) of π, as described in Lemma 7 (i), as the good partition of ChP(π)
associated with (S,Π). Likewise, we refer to the good decomposition (S,Π) of π
obtained from a good partition (S, Γ ) of ChP(π), as described in Lemma 7 (ii),
as the good decomposition of ChP(π) associated with (S, Γ ).

Let (S, Γ ), (S′, Γ ′) be good partitions of ChP(π). We say that (S, Γ ) is finer
than (S′, Γ ′), denoted (S, Γ ) 
 (S′, Γ ′), if and only if, S ⊇ S′ and, for every
A ∈ Γ , there exists an A′ ∈ Γ ′ such that A ⊆ A′. We write (S, Γ ) � (S′, Γ ′)
to denote that (S, Γ ) 
 (S′, Γ ′) and (S, Γ ) �= (S′, Γ ′). We say that a partition
(S, Γ ) of ChP(π) is minimal if there does not exist another partition (S′, Γ ′) of
ChP(π) such that (S′, Γ ′) � (S, Γ ).

Lemma 8. Let π be a valid position in a profile P. Then, the minimal good
partition of ChP(π) is unique.

We refer to the (unique) good decomposition (S,Π) associated with the
minimal good partition of ChP(π) as the maximal good decomposition of π.

Corollary 1. Let π be a valid position in a profile P and (S,Π) be the maximal
good decomposition of π. If π has an agreement tree, then S �= ∅.

4 Constructing an Agreement Tree

BuildAST (Algorithm 1) takes as input a profile P on a set of labels X and either
returns an agreement tree for P or reports that no such tree exists. BuildAST
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1 BuildAST(P)
Data: A profile P = {T1, T2, . . . , Tk} on a set of taxa X.
Result: Returns an agreement tree T for P, if one exists; otherwise,

returns disagreement.
2 Q.enqueue(〈πinit, null〉)
3 while Q �= ∅ do
4 〈π, pred〉 = Q.dequeue()
5 〈S, Π〉 = GetDecomposition(π)
6 if S = ∅ then
7 return disagreement

8 Create a node r(π)
9 r(π).parent = pred

10 foreach � ∈ S do
11 φ(�) = r(π)
12 foreach π′ ∈ Π do
13 Q.enqueue(〈π′, r(π)〉)
14 return T = (T, φ), where T is the tree with root r(πinit)

Algorithm 1: Testing agreement

assumes the availability of an algorithm GetDecomposition that, given a valid
position π in P, returns a maximal good decomposition (S,Π) of π.

BuildAST proceeds from the top down, starting from the initial position
πinit of P, attempting to construct an agreement tree for P in a breadth-first
manner. Like other algorithms based on breadth-first search, BuildAST uses a
queue, which stores pairs 〈π,pred〉, where π is a position in P and pred is a
reference to the parent of the tree node (potentially) to be created for π. At the
outset, the queue contains only the pair 〈πinit, null〉, corresponding to the root
of the agreement tree, which has no parent.

At each iteration of its outer while loop (lines 3–13), BuildAST extracts a
pair 〈π,pred〉 from its queue and invokes GetDecomposition to obtain a maximal
good decomposition (S,Π) of π. If S = ∅, then, by Corollary 1, no agreement
tree for π exists. BuildAST reports this fact (line 7) and terminates.

If S �= ∅, BuildAST creates a tree node r(π) for π; r(π) is the tentative root
for the agreement tree for π. By Lemma 6, if π has an agreement subtree, then
it has an agreement tree where φ(�) = r(π). Lines 10–11 set up the mapping
φ accordingly. Also by Lemma 6, if π has an agreement tree, then so does each
position π′ ∈ Π; furthermore, the roots of the trees for each position in Π
will be the children of r(π). Thus, BuildAST adds 〈π′, r(π)〉, for each π′ ∈ Π
to the queue, to ensure that π′ is processed at a later iteration and that the
root of the agreement tree constructed for π′ (if such a tree exists) is made to
have r(π) as its parent (lines 12–13). Therefore, if BuildAST terminates without
reporting disagreement, then the result returned in line 14 is an agreement tree
for P. BuildAST indeed terminates, because there are only two possibilities at
any given iteration: either the algorithm terminates reporting disagreement or
(since S �= ∅) the maximal good decomposition (S,Π) of π has the property
that

⋃
π′∈Π XP(π′) is a proper subset of XP(π). The number of iterations of
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1 GetDecomposition(π)
Data: A valid position π.
Result: Returns the maximal good decomposition (S, Π) of π.

2 S = {� : � is exposed in π}, K = {i : πi = {�} for some � ∈ S}
3 Γ = {A : A =

W ∩ ChP(π), for some connected component W of HP(π) \ S}
4 while S contains a bad label do
5 Choose any bad label � ∈ S
6 K′ = {i : πi = {�}}
7 Γ ′ = {A ∈ Γ : ChTi(�) ∩ A �= ∅ for some i ∈ K′}
8 B =

⋃
A∈Γ ′ A

9 Γ = Γ \ Γ ′ ∪ {B}
10 S = S \ {�}, K = K \ K′

11 Π ← ∅
12 foreach A ∈ Γ do
13 foreach i ∈ [k] do πA

i = ∅
14 foreach i ∈ [k] do
15 Let � be the single label in πi

16 if ChTi(�) ∩ A �= ∅ then
17 if � ∈ S then πA

i = ChTi(�) ∩ A

18 else πA
i = πi

19 Π = Π ∪ πA

20 return (S, Π)

Algorithm 2: Computing the maximal good decomposition.

BuildAST cannot exceed the total number of nodes in an agreement tree for P,
which is O(n). Thus, we have the following result.

Theorem 1. Given a profile P = {T1, T2, . . . , Tk}, BuildAST returns an
agreement tree T for P, if such a tree exists; otherwise, BuildAST returns
disagreement. The total number of iterations of BuildAST’s outer loop is O(n).

Finding the Maximal Good Decomposition. GetDecomposition (Algorithm 2)
computes a maximal good decomposition of a position π, relying on an auxiliary
graph known as the display graph of the input profile and denoted by HP [6,
8,9]. The graph HP is obtained from the disjoint union of the underlying trees
T1, . . . , Tk of the P by identifying nodes that have the same label. Multiple edges
between the same pair of nodes are replaced by a single edge. See Fig. 2.

HP has O(nk) nodes and edges, and can be constructed in O(nk) time. By
Assumption 1, there is a bijection between the labels in X and the nodes of HP .
Thus, from this point forward, we refer to the nodes of HP by their labels. For
a valid position π, HP(π) denotes the subgraph of HP induced by X(π). Thus,
HP(πinit) = HP .

Lines 2–10 of GetDecomposition construct the minimal good partition of
ChP(π). Line 2 initializes S to contain all exposed labels in π, and sets K to
consist of the indices of the trees in P that contain the labels in S. Line 3
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Fig. 2. The display graph HP for the profile of Fig. 1a.

initializes Γ using HP(π). We say that a label � ∈ S is bad if there exist i ∈ K
and A ∈ Γ such that πi = {�} and |ChTi

(�) ∩ A| ≥ 2. Lines 4–10 construct
the minimal nice partition (S, Γ ) of ChP(π) by deleting bad labels from S and
merging sets in Γ accordingly. Let (S∗, Γ ∗) denote the minimal good partition
of ChP(π).

Lemma 9. Let π be a valid position in a profile P and let (S∗, Γ ∗) be the min-
imal good partition of ChP(π). Let (S0, Γ0) denote the initial value of (S, Γ ) in
GetDecomposition before entering the while loop, (Sj , Γj) denote the value of
(S, Γ ) after j executions of the body of the loop, and r denote the total number
of iterations. Then, r ≤ k and (S0, Γ0) � (S1, Γ1) � (S2, Γ2) � · · · � (Sr, Γr) =
(S∗, Γ ∗).

By Lemma 9, the pair (S, Γ ) constructed in lines 4–10 of GetDecomposition
is a minimal good partition of ChP(π). The for each loop of lines 11–19 simply
uses Eq. (1) to construct the maximal good decomposition (S,Π) of π from
(S, Γ ). We thus have the following.

Lemma 10. GetDecomposition returns the maximal good decomposition of π.

Implementation. Throughout its execution, BuildAST maintains the display
graph HP . Also, for each label � ∈ X, it maintains a field �.appear contain-
ing every index i such that πi = {�} for some π in Q. Label � is exposed when
|�.appear| = k�, where k� denotes the number of input trees containing label
�. For each π in BuildAST’s queue, the set ChP(π) is stored as a sparse array
((i,ChTi

(πi)) : i ∈ [k] and ChTi
(πi)) �= ∅). This enables GetDecomposition to

access the parts of ChP(π) associated with each input tree separately. We use
this representation of ChP(π) to build similar representations of the sets in the
partition Γ of ChP(π) produced from HP(π)\S in line 3 of GetDecomposition.
For each label a ∈ ChP(π), we maintain a mapping that returns, in O(1) time,
the set A ∈ Γ containing a. During the execution of GetDecomposition’s while
loop, sets in Γ may be merged, and representations of these merged sets must
be produced and the mapping from ChP(π) to Γ must be modified.

Lemma 11. The total time needed to maintain the display graph throughout the
entire execution of BuildAST is O(nk log2(nk)).
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In the following results, di denotes the maximum number of children of a
node in tree Ti, for each i ∈ [d].

Lemma 12. Excluding the time needed to maintain the display graph, Lines 2
and 3 of GetDecomposition take O(

∑
i∈[k] di) time.

Lemma 13. GetDecomposition’s while loop takes O(k
∑

i∈[k] di) time.

Theorem 2. BuildAST can be implemented to run in O(nk(
∑

i∈[k] di +
log2(nk))) time, where n is the number of distinct taxa in P, k is the num-
ber of trees in P, and di is the maximum number of children of tree Ti, for
i ∈ [k].

5 Concluding Remarks and Future Work

BuildAST may be much faster in practice than Theorem 2 suggests, since that
bound assumes the unlikely scenario where every edge deletion performed in
constructing HP(π) \ S in GetDecomposition generates a new component and
that most of these components are remerged in the GetDecomposition’s while
loop. In any case, Theorem 2 implies that BuildAST performs well if the sum of
the maximum out-degrees is small relative to the number of taxa.

The running time of BuildAST can be further improved to O(nk(
∑

i∈[k] di +
log2(nk)/ log log(nk))) using the graph connectivity data structure of reference
[25]. It is not clear, however, that the latter data structure is practical. In fact,
our previous experimental work [11], in the context of tree compatibility, suggests
that data structures much simpler than HDT (and, therefore, than [25]) perform
well in practice. As part of our future work, we intend to implement BuildAST
and test it on simulated and real datasets.

BuildAST can be modified to run in O(nk log2(nk)) time for profiles P where
the input trees are all binary and solely leaf-labeled. For such profiles, |A ∩
ChTi

(πi)| ≤ 2, for A ∈ Γ and i ∈ [k] in a position π of P. Labels a, a′ ∈ ChTi
(πi)

are either in the same set A or in different sets A,A′ where A,A′ ∈ Γ . In the first
case, � ∈ πi must be bad. Bad labels can then be detected earlier in Line 3 and
directly removed from S. Thus, we can skip GetDecomposition’s while loop.
Hence, maintaining graph connectivity dominates the performance of BuildAST.

BuildAST enables users to deal with hard polytomies. In applications, we
may encounter both hard and soft polytomies. It would be interesting to modify
BuildAST to handle a mixture of both types polytomies, as appropriate.
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Abstract. Genome structural variants have great impacts on human
phenotype and diversity, and have been linked to numerous diseases.
Long read sequencing technologies arise to make it possible to find struc-
tural variants of as long as ten thousand nucleotides. Thus, long read
based structural variant detection has been drawing attention of many
recent research projects, and many tools have been developed for long
reads to detect structural variants recently.

In this article, we present a new method, called SVLR, to detect Struc-
tural Variants based on Long Read sequencing data. Comparing to exist-
ing methods, SVLR can detect three new kinds of structural variants:
block replacements, block interchanges and translocations. Although
these new structural variants are structurally more complicated, SVLR
achieves accuracies that are comparable to those of the classic struc-
tural variants. Moreover, for the classic structural variants that can be
detected by state-of-the-art methods (e.g., SVIM and Sniffles), our exper-
iments demonstrate recall improvements of up-to 38% without harming
the precisions (i.e., above 78%). We also point out three directions to
further improve structural variant detection in the future.

Source codes: https://github.com/GWYSDU/SVLR.

Keywords: Genome structural variant · Genome structural variant
detection · Third generation sequencing · Long-read sequencing ·
Single-molecule sequencing

1 Introduction

Studies show that genome variants play a major role on phenotypes [18] and
contribute to large-scale chromosome evolution [26] and human disease (such
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as cancer [16,22], Mendelian disorders [28], autism [10], and Alzheimer [25]).
Genome variants can be categorized into single nucleotide variation (SNV) [14,
17,24], small insertion/deletion (indel) [6,27], and structural variation [20,23].
The characterization of structural variants is of major importance to genetic
disorders [4] and can help to elucidate their underlying genetic and molecular
processes [8]. In other organisms such as plants, structural variants can drive
phenotypic variation and adaptation to different environments variation [12,
32]. From the above aspects, it is imperative to develop effective methods to
identify structural variants that traditional structural variants include insertions,
deletions, inversions, tandem duplications, interspersed duplications, cut&paste
insertions, and translocations [21].

The development of the genome sequencing technology has highly promoted
the researches on genome variant detection. Some robust algorithms [1,3,19]
were developed to distinguish structural variants based on the next generation
sequencing (NGS), which usually uses four different methods: pair-end mapping,
split read, read depth, and de novo assembly. But due to the size and association
with repeats, it is hard to efficiently detect structural variants by NGS (i.e. short
reads).

Single-molecule sequencing which can produce long reads shows many advan-
tages to characterize the full spectrum of human genetic variation. Two com-
mercial single-molecule sequencing solutions exist to date: single-molecule real-
time sequencing by Pacific Biosciences and Nanoporous sequencing by Oxford
Nanoporous Technologies (ONT). Single-molecule nanopore sequencing can
sequence genome with hundreds of kilobases, which has led to genome sequenc-
ing of several organisms [9]. So, long read sequencing lays the foundation for a
deeper discovery of structural variants [5,31].

There are already a wide variety of tools to call structural variants on the
basis of the long reads, such as Sniffles [29] and SVIM [11]. Sniffles uses sig-
natures from split-read alignments, highmismatch regions and coverage analy-
sis to identify structural variants [29]. SVIM consists of three components for
the collection, clustering and combination of structural variant signatures from
read alignments [11]. A common first step in these tools is to align the reads
with the reference genome. Both Sniffles and SVIM use NGMLR [29] aligner
to obtain the split read mapping. Besides NGMLR, we also use another aligner
LAST [7], because LAST have been designed for long reads with high rates of
insertion and deletion error, e.g. nanopore or PacBio, and it enables more accu-
rate genome alignments, with reliability measures for local alignments and for
individual aligned bases. So we can use this information to detect structural
variants efficiently.

In this study, we introduce SVLR, a novel pipeline for sensitive detection and
accurate classification of nine classes of structural variants (as shown in Fig. 1).
Our results demonstrate that SVLR reaches substantially higher recalls and
precisions than existing tools for structural variant detection from long reads.
Beyond that, our method has two more prominent contributions. First, SVLR is
the first tool to be able to recognize block interchange [30] and block replacement
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in the intra-chromosome, translocation in the inter-chromosome, and get the
corresponding source and destination regions [11]. They play important roles for
biologists to analyze the generation of structural variants. Another prominent
contribution is that SVLR considers the situations where structural variants are
interactive, and it is the reason why SVLR can detect block interchange, block
replacement and translocation. We call two structural variants are interactive
with each other when one’s source region is covered by the destination region
of the other. At the end, three directions for future structural variant detection
improvements are discussed.

2 Preliminaries

The ultimate goal of the structural variant (SV) detection problem is to find
all SVs between a target genome and its reference genome. For the reference
genome, we have its complete sequences G = {g1, g2, · · · , gp}, where gi represents
the sequence of chromosome i. For the target genome, we have its sequencing
long reads R = {r1, r2, · · · , rq}, where ri represents a long read conducted from
sequencing experiments. Before finding SVs, the reference genome G and the
sequencing reads R are preprocessed and aligned by calling a read alignment
tool. The alignment results are summarized as A = {a1, a2, · · · , an}, where ai =
(ri, gi, bri , e

r
i , b

g
i , e

g
i ) represents an alignment between nucleotides from bri to eri of

read ri and nucleotides from bgi to egi of chromosome gi. Given these alignments,
different types of SVs can be identified. A DEL, an INS, a TDUP or an INV SV
(highlighted by yellow in Fig. 1) involves a single region of the reference genome,
and hence is called a monomer SV. An IDUP, a BREP, a CPI, a BINT or a
TRANS SV (not highlighted by yellow in Fig. 1) involves two regions of the
reference genome, and hence is called a dimer SV. Computationally, a monomer
SV is denoted as svi = (ti, gi, bsvi , esvi ), and a dimer SV is denoted as svi =
(ti, gi, sri, dri). Here, ti represents the SV type, gi represents the associated
chromosome, bsvi and esvi represents the beginning and the ending nucleotides
of the associated region on chromosome gi, sri = (bsri , esri ) and dri = (bdri , edri )
represents the source and the destination regions on chromosome gi. Therefore,
the solution of the SV detection problem is denoted as SV = {sv1, sv2, · · · , svm}
including all SVs between the reference genome and the target genome.

3 Method

In this manuscript, we introduce a new method, called SVLR, to detect genome
Structure Variants using Long Read alignments as followings. First, SV sig-
natures are located by analyzing the read alignments. Such signatures contain
critical information to identify SVs. However, they also contain redundant and
noise information. Thus, a clustering algorithm is used to eliminate such informa-
tion. Based on the remaining high-confident and non-redundant signatures, the
signature clusters are labeled by SV types. Finally, the labels are combined and
optimized to address conflicting labels in the same reference genome regions.
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Fig. 1. Different types of structural variants between a reference genome and a long
read of the target genome: the monomer structural variants are highlighted with yel-
low backgrounds; other than the monomer structural variants, all structural variants
are dimer structural variants; the dimer structural variants highlighted with
cyan backgrounds are new structural variants that cannot be detected by
previous methods. (Color figure online)

Fig. 2. A case study of the SVLR workflow: (0, white) sequencing long reads are
preprocessed and aligned to the reference genome; (1, yellow) structural variant signa-
tures are identified by analyzing long read alignments; (2, green) high-confident and
non-redundant signatures are identified by clustering signatures; (3, cyan) a structural
variant type is labeled for each cluster based on its signatures; (4, red) cluster labels
are combined and optimized to address conflicting labels. (Color figure online)
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A case study showing how the pipeline is used to identify an SV is shown in
Fig. 2, and the detailed explanations of each step is provided in this section.

3.1 Finding Structure Variant Signatures

In the first step, long read alignments are analysed to find SV signatures (SGs)
that are later used to identify SVs. In this section, we first define different kinds
of SGs. Then, we describe an algorithm to locate SGs. Finally, we explain how
SGs are related to SVs.

Similar to SVs, SGs can be divided into monomer SGs and dimer SGs. Here,
a monomer SG is discovered by analyzing adjacent alignments. Recall that an
alignment is denoted as ai = (ri, gi, bri , e

r
i , b

g
i , e

g
i ). Then, two alignments ai and

aj are adjacent if there is no alignment ak such that ri = rj = rk, gi = gj = gk
and bri < brk < brj . By analyzing adjacent alignments, four kinds of monomer SVs
can be detected directly, and they are temporally marked as INV, DEL, INS and
TDUP SGs. For example, if two adjacent alignments contain a big gap in the
reference genome, a DEL SG is marked for the gap region.

There are two special kinds of monomer SGs that are used to build up dimer
SGs, and they cannot be mapped to any monomer SVs. Specifically, for two
adjacent alignments, if the reference fragment of one alignment covers that of
the other alignment, a COVER signature is marked. Similarly, if the reference
fragment of the first alignment is in front of that of the second alignment, while
the read fragment of the second alignment is in front of that of the first alignment,
a CROSS SG is marked.

A dimer SG is discovered by analyzing two adjacent monomer SGs. Let sgi =
(ti, ri, gi, b

sg
i , esgi ) denote a monomer SG. Then, two monomer SGs sgi and sgj

are adjacent if there is no SG sgk such that ri = rj = rk, gi = gj = gk
and bsgi < bsgk < bsgj . By analyzing two adjacent monomer SGs, COVDEL and
CRODEL dimer SGs can be detected. For example, if a DEL SG is adjacent to
a COVER SG, the two monomer SGs are combined as a new COVDEL dimer
SG. It can be shown that a dimer SV always contains at least one dimer SG.

Based on the above definitions, SGs can be found using Algorithm1. We set
Lmax = 1 Mbp as the maximum SV size, and Lmin = 40 bp as the minimum SV size.
Finding TRANS SVs is highly similar to finding BINT SVs with the modification
that the source and the destination regions are from different instead of the same
chromosomes. Thus, the details are eliminated to simply explanations.

The relationships between SGs and SVs are shown in Table 1. It can be
seen that the monomer SGs are either mapped to monomer SVs or used to
build dimmer SGs. Although there is no one-to-one mapping between dimer SGs
and dimer SVs, additional conditions can be used in the third step to precisely
distinguish different types of dimer SVs from dimer SGs. Moreover, each SV
contains at least one SG. Therefore, finding SGs provides the foundation of
finding SVs.
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Algorithm 1. Find structural variant signatures from long read alignments.
Input: Alignments A = {a1, a2, · · · ap}, where ai = (ri, gi, b

r
i , e

r
i , b

g
i , e

g
i ).

Output: Signatures SG = {sg1, sg2, · · · sgp}, where sgi = (ti, ri, gi, b
sg
i , esgi ) for

monomer signatures,
and sgi = (ti, ri, gi, sr

sg
i , drsgi ) for dimer signatures.

1: SG1 := ∅;
2: for adjacent triplet (ai, ai+1, ai+2) with bri < bri+1 < bri+2 do
3: if ((bgi − egi ) ∗ (bgi+1 − egi+1) < 0) and ((bgi+1 − egi+1) ∗ (bgi+2 − egi+2) < 0) then
4: SG1 := SG1 + (INV, ri, gi, e

g
i , b

g
i+2);

5: end if
6: end for
7: for adjacent pair (ai, ai+1) with bri < bri+1 do
8: dri,i+1 := bri+1 − eri ; d

g
i,i+1 := bgi+1 − egi ;

9: if Lmin < dgi,i+1 − dri,i+1 < Lmax then
10: SG1 := SG1 + (DEL, ri, gi, e

g
i , b

g
i+1);

11: else if Lmin < dri,i+1 − dgi,i+1 < Lmax then
12: SG1 := SG1 + (INS, ri, gi, e

g
i , b

g
i+1);

13: else if −Lmax < dgi,i+1 − dri,i+1 < −Lmin then
14: if bgi < bgi+1 < egi < egi+1 then
15: SG1 := SG1 + (TDUP, ri, gi, b

g
i+1, e

g
i );

16: else if bgi < bgi+1 < egi+1 < egi or bgi+1 < bgi < egi < egi+1 then
17: SG1 := SG1 + (COVER, ri, gi, b

g
i+1, e

g
i );

18: else if bgi+1 < egi+1 < bgi < egi then
19: SG1 := SG1 + (CROSS, ri, gi, b

g
i+1, e

g
i );

20: end if
21: end if
22: end for
23: SG2 := ∅;
24: for adjacent pair (sgi, sgi+1) with bgi < bgi+1, where sgi, sgi+1 ∈ SG1 do
25: sr := (bgi , b

g
i+1); dr := (egi , e

g
i+1);

26: if (ti = COVER and ti+1 = DEL) or (ti = DEL and ti+1 = COVER) then
27: SG2 := SG2 + (COVDEL, ri, gi, sr, dr);
28: else if (ti = CROSS and ti+1 = DEL) or (ti = DEL and ti+1 = CROSS) then
29: SG2 := SG2 + (CRODEL, ri, gi, sr, dr);
30: end if
31: end for
32: SG := SG1 ∪ SG2;

3.2 Clustering Structure Variant Signatures

The previous step found all SGs between the reference genome and the long
reads. However, there are many SGs that are highly similar to each other. More-
over, there are many false positive SGs caused by read errors. In order to address
these issues, the SGs are first clustered, and the SG clusters are then scored. Since
true positive SGs tend to form highly scored clusters, lowly scored clusters are
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Table 1. Mappings from signatures to structural variants: monomer structural variants
can be determined from monomer signatures; additional conditions can be used to
distinguish dimer structural variants from dimer signatures; and all structural variants
hit at least one signature.

Monomer types

Signatures DEL INS TDUP INV COVER CROSS

Structure Variants DEL INS TDUP INV ∅ ∅
Dimer types

Signatures COVDEL CRODEL

Structure variants {IDUP, BREP} {IDUP, BREP, CPI, BINT}

treated as noises. Since all SGs within the same cluster are highly similar (i.e.,
redundant), one representative is generated for each highly scored cluster. As a
result, the second step significantly reduces the number of SGs to work with,
and yields high-confident and non-redundant SGs for the SVLR pipeline.

This approach was adopted from SVIM [11], and it is briefly summarized here.
First, a graph is constructed, where each vertex represents an SG, and each edge
represents a pair of SGs with a span-position distance below a threshold. Then,
maximal cliques of the graph are found and treated as clusters. The cluster
scores are evaluated based on the number of SGs, the total alignment scores and
lengths, the standard deviation of the genomic span and position scores. Finally,
one representative is generated for each cluster passing a cutoff score.

3.3 Labeling Signature Clusters

The purpose of this step is to classify the cluster representative SGs as SVs.
Recall that the monomer SVs can be simply determined from the mapping SGs
(as shown in Table 1). Hence, we focus on the dimer SG classification in this
section. The idea is that we first roughly classify all dimer SGs as IDUP or
BREP SVs, and then fix the two kinds of errors: CPI labeled as IDUP, and
BINT labeled as BREP.

First, all dimer SGs are roughly classified as IDUP or BREP SVs. The key
difference between the two SV classes is the size of the destination region. Specif-
ically, if the destination region is small (with a size smaller than Lmin), the dimer
SG (i.e., either a COVDEL or a CRODEL SG) is labeled as an IDUP SV. Oth-
erwise, it is labeled as a BREP SV.

Since the roughly labeled SGs contain two kinds of errors, they have to be
carefully checked and corrected one by one. One possible error is that a CRODEL
SG is labeled as an IDUP SV, which should be a CPI SV. Such errors can be
found by checking if there is a DEL SG in the source region of the CRODEL
SG, and then fixed by changing the labels to CPI.
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The other possible error is that two CRODEL SGs are labeled as two BREP
SVs, which should be a single BINT SV. In this case, the source region of the first
SG is the same as the destination region of the second SG, and the destination
region of the first SG is the same as the source region of the second SG. Again,
such cases can be found and fixed by combining the two SGs as a single one with
a label of BINT.

3.4 Optimizing Cluster Labels

After the previous three steps, SVLR had generated a set of SV labels assigned
to the SG clusters. Here, each label is correct or optimal with respect to the
SGs of the corresponding cluster. However, it can still be observed that different
labels are assigned to the same region of the reference genome. Thus, we need
to carefully optimize the labels by picking the subset of non-conflicting labels
yielding the highest total cluster score. Here, we try to explain the causes of con-
flicting labels because everything becomes straight forward once we understand
the causes.

There are two causes of conflicting labels. First, in the error fixing process
of the third step, two labels are combined to a new label without removing the
original ones. The removing process cannot be done in the third step because it
is not safe until all the labels are finalized. Now, it can be done safely and easily.
For example, the DEL SV used to identify a CPI SV should be removed, and
the two BREP SVs used to identify a BINT SV should also be removed.

The other cause of conflicting labels is the ambiguous SGs introduced by
the high reading error rate of the long read sequencing technology. For exam-
ple, given a reference sequence of ABCDE and a true read of ABCDbcdE (each
character represents several nucleotides, and bcd represents the duplicated frag-
ment of BCD), true read alignments of ABCD-ABCD and BCDE-bcdE should
be observed, and a TDUP SG should be detected. However, due to the high
reading error rate, it is possible that ambiguous read alignments of D-D and
B-b are observed, and a CROSS SG is detected. Consequently, incorrect SV
labels are assigned based on the ambiguous SGs. In case that the sequencing
coverage is sufficiently high and both the true and the ambiguous alignments
are observed, the problem can be fixed by removing the ambiguous alignments
and the corresponding SGs and SVs.

4 Results

Our SVLR pipeline for SV detection has been implemented in Java, and the
source codes can be downloaded from https://github.com/GWYSDU/SVLR.
In order to evaluate the performance of SVLR, two datasets are used: a homozy-
gous dataset and a heterozygous dataset. Each dataset contains a reference
genome, a modified genome with implanted SVs, and simulated long reads of
the genomes. One major difference between the simulated data and the real

https://github.com/GWYSDU/SVLR
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data is that the true SVs are known, and this significantly simplifies the evalu-
ation process. Then, SVLR is used to find all SVs from the dataset. The results
are compared to state-of-the-art methods, Sniffles [29] and SVIM [11]. In sum-
mary, SVLR is not only the best performing method, but also capable of finding
new types of SVs (BREP, BINT and TRANS) that cannot be found by previous
methods.

4.1 Simulated Data

In order to evaluate the performance of SV detection, a homozygous dataset
and a heterozygous dataset is prepared. The homozygous dataset is prepared
as followings. First, the hg19 genome sequences of chromosomes 21 and 22 are
downloaded from the UCSD Genome Browser [15]. Both chromosomes have sizes
of approximately 50Mbp, and they are used as the reference genome. Then,
the reference genome is modified by implanting different SVs, including 300
DELs, 200 INS’s, 200 TDUPs, 200 INVs, 100 IDUPs, 100 CPIs, 100 BINTs, 100
TRANS’s and 77 BREPs. Each SV ranges between 800 bp and 10 Kbp, and they
are implanted by RSVSim [2]. Afterwards, long reads of the modified genome
are generated using SimLoRD [13] with default parameters. Moreover, several
read sets are generated with different sequencing coverages, including 6X, 11X,
15X, 21X, 31X and 41X. Finally, the read alignments are produced using a read
alignment tool, either NGMLR [29] or LAST[7] in our experiments.

In addition to the homozygous dataset, a heterozygous dataset is prepared.
The only difference between preparing the two datasets is that half of the long
reads are generated from the reference genome and the other half of the long
reads are generated from the modified genome for the heterozygous dataset.
Thus, this dataset simulates the situation that SVs do not always happen, and
a frequency of 50% simulates the case with the maximum entropy.

4.2 Improving Performance by Read Aligners

The first strategy to improve the performance of SV detection is to use more
accurate read aligners. Here, the importance of aligners is demonstrated by com-
paring the precision-recall curves of the same SV detection method (SVLR) with
different aligners: NGMLR [29] and LAST [7]. As shown in Fig. 3, supporting
different aligners is an important feature because different aligners might be
more suitable for different sequencing technologies. For this reason, SVLR is
implemented to support different read alignment formats.

The results of SV detection using 6x coverage sequencing data, SVLR and
different aligners are shown in Fig. 3. It is observed that the precisions remains
high and are not sensitive to the choice of aligners. Here, it is important to
mention that recalls for the more challenging INS, IDUP and CPI SVs can be
significantly improved by between 12% and 38% if the right aligner is used.
This also suggests that improving read alignment algorithms is critical to the
following biological studies based on sequence analysis’s.
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Fig. 3. Precision-recall curves for structural variant detection with different aligners:
(a) the homozygous dataset and (b) the heterozygous dataset with a 6x coverage is
used here; results for only SVLR are shown because SVIM and Sniffles only supports
the NGMLR aligner.

4.3 Improving Recalls by SVLR

Other than the quality of the read alignments, the SV detection method is also
critical to the performance. In this experiment, SVLR, SVIM [11] and Sniffles [29]
SV detection methods are compared. Here, recalls of the top predictions are
used instead of precision-recall curves to evaluate the performance because in
practice, biologists tend to focus on studying the top scored predictions instead
of trying different cutoffs to produce different number of predictions to work
with. Figure 4 shows that SVLR achieved either the highest recalls in most cases
or near-highest recalls in the worst case.

This experiment tries to simulate how biologists tend to use SV detection
tools. In Fig. 4, the recalls of the top scored SVs found by different methods
are calculated and shown. The precisions are also calculated but not shown here
because the values are consistently high and they do not affect our conclusions.
From Fig. 4, it can be seen that SVLR achieves near-perfect recalls when finding
DEL, TDUP and INV SVs, no matter if the SVs occurred occasionally or con-
sistently. Generally, SVLR can reliably find SVs with a recall comparable to the
best performing method. Indeed, SVLR is the best performing method in most
cases.
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Fig. 4. Recalls for different numbers of calls (i.e., predictions): (a) the homozygous
dataset and (b) the heterozygous dataset with a 6x coverage and the NGMLR aligner
is used in this experiment.

4.4 Discovering New Structural Variants by SVLR

Another way to improve the SV detection is to discover new kinds of SVs that
cannot be discovered by existing methods. Comparing to state-of-the-art meth-
ods, SVLR is the first method capable of discovering BREP, BINT and TRANS
SVs. Moreover, the performance is similar to previously discovered SVs as shown
in Fig. 5.

Recall that BINT and TRANS SVs are the most complicated SVs involv-
ing four monomer signatures and two dimer signatures (as shown in Fig. 1).
However, their structural complexities are well addressed by SVLR. Specifically,
Figs. 5(a–b) show that SVLR can detect BINT and TRANS SVs with accuracies
comparable to those of relatively simpler IDUP and CPI SVs. Moreover, INS
SVs have relativly simpler structural complexities, but all tested methods seem
to have difficulties to achieve high recalls (as shown in Fig. 4). These observations
imply that SV structure complexity is not strongly correlated to the accuracies.
Moreover, Figs. 5(c–d) also show that sequencing coverage is not a bottleneck
for SV detection.
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Fig. 5. Precision-recall curves for new structural variants that cannot be found by
existing methods: (a) the homozygous dataset and (b) the heterozygous dataset with
a 6x coverage and different score cutoffs are used; (c) the homozygous dataset and (d)
the heterozygous dataset with different coverages (i.e., 6X, 11X, 15X, 21X, 31X and
41X) and the same cutoff is used.

5 Conclusion

Structural variants have drawn more and more attention with the development of
genome sequencing technologies. Due to the wide variety of structural variants,
it is essential to propose more sensitive tools for structural variant detection. In
this manuscript, a new method, called SVLR, is introduced and implemented for
Structural Variant detection using Long Read sequencing data. Our results show
that SVLR is more accurate than Sniffles [29] and SVIM [11], and can discover
new types of structural variants that cannot be discovered by previous tools.
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Abstract. The identification of drug-target interactions plays a cru-
cial role in drug discovery and design. However, capturing interactions
between drugs and targets via traditional biochemical experiments is an
extremely laborious, expensive and time-consuming procedure. There-
fore, the use of computational methods for predicting potential interac-
tions to guide the experimental verification has attracted a lot of atten-
tion. In this paper, we propose a new algorithm, named Laplacian Reg-
ularized Schatten-p Norm Minimization (LRSpNM), to predict poten-
tial target proteins for novel drugs and potential drugs for new targets.
First, we take advantage of the drug and target similarity information to
dynamically prefill the partial unknown interactions. Then based on the
assumption that the interaction matrix is low-rank, we use Schatten-p
norm minimization model to improve prediction performance in the new
drug/target cases by combining the loss function with a Laplacian regu-
larization term. Finally, we numerically solve the LRSpNM model by an
efficient alternating direction method of multipliers (ADMM) algorithm.
Performance evaluations on benchmark datasets show that LRSpNM
achieves better and more robust performance than five state-of-the-art
drug-target interaction prediction algorithms. In addition, we conduct
case study in practical applications, which also illustrates the effective-
ness of our proposed method.

1 Introduction

The prediction of drug-target interactions (DTIs) is an important part of phar-
maceutical scientific research in drug discovery, which has various applications.
According to the statistics, there are more than 90 million chemical molecules
in DrugBank [1] and more than 100,000 human target proteins in UniProt [2].
However, only about 4,000 known drug-target interactions have been verified by
biological experiments. Therefore, identifying more interactions is an extremely
c© Springer Nature Switzerland AG 2020
Z. Cai et al. (Eds.): ISBRA 2020, LNBI 12304, pp. 154–165, 2020.
https://doi.org/10.1007/978-3-030-57821-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57821-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-57821-3_14


De novo Prediction of Drug-Target Interaction via LRSpNM 155

valuable task which can bring huge breakthrough in biopharmaceutical and
biomedical research.

Many computational approaches have been developed to infer novel DTIs
under the advantage of lower cost and wider coverage. Yamanishi et al. [3]
first proposed a bipartite local model (BLM) to predict target proteins of a
given drug, then to predict drugs targeting a given protein. BLM uses the
chemical structure similarity of drugs and the sequence similarity of targets
to improve the prediction accuracy. Analogously, Laplacian Regularized Least
Squares (LapRLS) [4] is another algorithm based on the BLM. LapRLS uses reg-
ularized least squares to minimize an objective function that includes an error
term as well as a graph regularization term. To perform prediction, Laarhoven
et al. [5] utilized a weighted nearest neighbor (WNN) procedure for inferring
a profile of a drug by using interaction profiles of the compounds. The experi-
mental results have shown that neighbors information is indeed beneficial to the
prediction results.

It is worth noting that matrix factorization and completion methods have
exhibited excellent performance for computational DTI prediction in recent
years. Kernelized Bayesian Matrix Factorization with Twin Kernels (KBMF2K)
[6] applies a Bayesian probabilistic matrix factorization to perform prediction.
KBMF2K uses variational approximation to perform nonlinear dimensionality
reduction, which can improve the computational efficiency. Collaborative Matrix
Factorization (CMF) [7] employs collaborative filtering for prediction. This app-
roach transforms the input DTI matrix into the inner product between the
two feature vectors, which share the same feature dimension. Liu et al. [8] pro-
posed the logistic matrix decomposition based on neighborhood regularization
(NRLMF). NRLMF focuses on the probability of drug-target interaction using
logistic matrix decomposition, in which the characteristics of drug and target
are represented by drug-specific and target-specific potential carriers respec-
tively. The neighborhood constraint matrix completion method (NCMC) [9]
applies the similar information of drugs/targets to define the concept of neigh-
borhood. NCMC combines nuclear norm minimization model with neighborhood
constraints to captures the strong correlation between drug and target.

Although these computational methods have been achieved excellent perfor-
mance for predicting DTIs, it is a challenging task to identify interactions for
new drugs or new targets, which is known as de novo prediction. To solve the
cold start problem where drugs or targets have no given interactions in de novo
tests, the information from drugs and targets can be taken advantage to achieve
further improvement. Therefore, in order to enhance the prediction accuracy in
de novo tests, more effective computational methods can be developed to predict
potential DTIs.

In this paper, we propose a Laplacian Regularized Schatten-p Norm Mini-
mization (LRSpNM) for de novo prediction of DTIs. Based on the assumption
that similar drugs are normally interacted with similar targets and vice versa,
the DTIs matrix can be assumed to be of low rank. Accordingly, matrix com-
pletion algorithms, which efficiently construct low-rank matrix approximations
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consistent with known interactions, can provide tremendous help in discovering
the novel DTIs. In our method, we use Schatten-p norm to approximate the
matrix rank and combine the Laplacian regularized term to assist prediction.
In addition, considering that many of the non-interactions in the DTIs matrix
are unknown cases, we use a preprocessing step to enhance prediction. Com-
putational results on the benchmark dataset demonstrate the effectiveness of
our proposed method. Besides, LRSpNM also performs better than other five
state-of-the-art methods.

2 Materials

Evaluation experiments are performed using a benchmark dataset [10], which
is generally used in drug-target interaction prediction. Specifically, the dataset
consists of four different sub-datasets targeting protein of Enzyme, Ion Chan-
nel, G protein-coupled receptor (GPCR), and Nuclear Receptor. Each dataset
includes three matrices: an interaction matrix A between drugs and targets, a
similarity matrix of drugs Sd, and a similarity matrix of targets St. The four
datasets are publicly available at http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/
drugtarget/. The matrix A is the adjaceny matrix encoding the drug-target
interactions, where Aij is 1 if drug di and target tj are known to interact and
0 otherwise. The drug similarity Sd is computed from the chemical structures
of drugs by using SIMCOMP [11]. The target similarity St is computed accord-
ing to target sequences by using a normalized Smith-Waterman score [12]. The
statistical information of drug-target interaction matrix in each dataset is sum-
marized in Table 1.

Table 1. Statistics of drug-target interactions datasets

Datasets No. of drugs No. of targets No. of interactions Sparsity

Enzyme 445 664 2926 0.010

Ion Channel 210 204 1476 0.034

GPCR 223 95 635 0.030

Nuclear Receptor 54 26 90 0.064

3 Methods

3.1 Preprocessing Step

The known DTI matrix A ∈ Rm×n has m drug rows and n target columns.
Many of the non-interactions in A are unknown cases that can potentially be

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
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positive interaction. Hence, we use a preprocessing step which utilizes the similar-
ity information between drugs and targets to estimate the interaction likelihoods
for unknown cases in Y .

Firstly, for drug di, we select the K most similar drugs as its neighbors
based on drug similarities and use N (di) to denote the set of them. We use an
adjacency matrix ˜Sd to represent the drug neighborhood information, which is
defined as follows:

˜Sd (di, dμ) =

{

Sd(di,dµ)∑
p:dp∈N(di)

Sd(di,dp)
if dμ ∈ N (di)

0, otherwise,
(1)

where Sd (di, dμ) is the original similarity score between di and dμ. Similarly,
we use N (tj) to represent the set of tj ’s neighbors, and calculate the adjacency
matrix ˜St in the same way. Based on the K nearest known neighbors information
from drugs and targets, we can obtain the drug-target interaction likelihoods for
partial unknown pairs, which is marked as AN and calculated in the following
equation:

AN =
˜SdA + A˜ST

t

2
. (2)

Finally, we combine the prefilling interaction probabilities with known interac-
tions as the input matrix to be completed.

3.2 Laplacian Regularized Schatten-p Norm Minimization

Assuming a low-rank structure, the general matrix completion problem to fill
out the missing entries is formulated as:

min
X

rank(X)

s.t.PΩ(X) = PΩ(A),
(3)

where A ∈ Rm×n is the given incomplete matrix, X ∈ Rm×n is the variable
matrix, rank(X) denotes the rank function of X, Ω is a set containing index
pairs of all known entries in A and PΩ is the projection operator onto Ω, which
is defined as:

(PΩ(X))ij =
{

Xij , (i, j) ∈ Ω
0, (i, j) /∈ Ω.

(4)

Unfortunately, the rank minimization problem (3) is known to be NP-hard.
One of the solutions is that turns the rank function to a more tractable solu-
tion by minimizing the nuclear norm, which has been proven to be the convex
relaxation of matrix rank [13]. Although the nuclear norm minimization model
is a convex problem with a global solution, the relaxation may deviate from
the problem of the original solution. Therefore, Nie et al. [14,15] proposed non-
convex optimization models where the Schatten-p norm of a matrix is used to
replace the rank function of Eq. (3), which is defined as:

‖X‖p
Sp =

min{n,m}
∑

i=1

σp
i = Tr

(

(

XT X
)

p
2
)

, (5)
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where σi is the singular value of X and when p = 1, the Schatten 1-norm is the
well-known nuclear norm. That is to say, the nuclear norm is the special case
of Schatten-p norm. As a result, the baseline Schatten-p norm minimization is
formulated as:

min
X

‖X‖p
Sp +

α

2
‖PΩ(X) − PΩ(A)‖2F , (6)

where α is the harmonic parameter that balances the Schatten-p norm and the
error term, We optimize the effectiveness of matrix completion by fine tuning
the value of p.

Based on the assumption that similar drugs share the similar molecular path-
ways to interact with similar targets, the interaction matrix A is inherently
low-rank. Thus, the DTI prediction problem can then be modeled as a matrix
completion problem by completing the unknown elements with pharmacologi-
cal space information in the interaction matrix. In this work, we first introduce
Schatten-p norm to approximate the matrix rank for DTI prediction. In addi-
tion, we present a new objective function through incorporation of the Laplacian
regularized terms of drugs and targets into the matrix completion framework for
increasing generalization capability. Specially, a Laplacian Regularized Schatten-
p Norm Minimization (LRSpNM) model is proposed for DTI prediction. The
optimization problem of LRSpNM can be formulated as follows:

min
X

‖X‖p
Sp +

α

2
‖PΩ(X) − PΩ(A)‖2F + λdTr

(

XT LdX
)

+ λtTr
(

XLtX
T
)

, (7)

where Ld ∈ Rm×m is the drug Laplacian matrix with Ld = Dd − Sd, Dd is the
diagonal matrix with Dd(i, i) =

∑

i Sd(i, j), Lt ∈ Rn×n is the target Laplacian
matrix with Lt = Dt − St, Dt is the diagonal matrix with Dt(i, i) =

∑

i St(i, j)
and λd, λt are parameters balancing the reconstruction terms of LRSpNM model.

To solve the optimization problem in (7), we use the alternating direction
methods of multipliers (ADMM) [16] framework and introduce two auxiliary
variables W and Z to make the objective function separable:

min
X

‖W‖p
Sp +

α

2
‖PΩ(Z) − PΩ(A)‖2F + λdTr

(

XT LdX
)

+ λtTr
(

XLtX
T
)

s.t.X = W,X = Z.
(8)

The corresponding augmented Lagrange function of (8) is:

L(W,Z,X,U, V ) = ‖W‖p
Sp +

α

2
‖PΩ(Z) − PΩ(A)‖2F

+ λdTr
(

XT LdX
)

+ λtTr
(

XLtX
T
)

+ Tr
(

UT (X − W )
)

+
μ1

2
‖X − W‖2F

+ Tr
(

V T (X − Z)
)

+
μ2

2
‖X − Z‖2F ,

(9)

where U and V are the Lagrange multipliers, μ1 > 0 and μ2 > 0 control the
penalties for violating the linear constraints. Then the variables can be approx-
imated alternatively.
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Compute Wk+1: The variable W can be calculated by the following equation

with other variables fixed:

Wk+1 = arg min
W

L (W,Zk,Xk, Uk, Vk)

= arg min
W

‖W‖p
Sp

+ Tr
(

U�
k (Xk − W )

)

+
μ1

2
‖Xk − W‖2F

= arg min
W

‖W‖p
Sp

+
1
μ1

∥

∥

∥

∥

W −
(

Xk +
1
μ1

Uk

)∥

∥

∥

∥

2

F

,

(10)

where Wk+1 can be obtained by the algorithm provided in [15], which guaranteed
convergence when 0 < p < 2.

Compute Zk+1: When other variables are fixed, Z can be obtained by mini-
mizing following function:

Zk+1 = arg min
W

L (Wk+1, Z,Xk, Uk, Vk)

= arg min
W

α

2
‖PΩ(Z) − PΩ(A)‖2F

+ Tr
(

V T
k (Xk − Z)

)

+
μ2

2
‖Xk − Z‖2F ,

(11)

which is a convex optimization problem and can be solved by setting the deriva-
tive of Eq. (11) to zero. Referred to the solution of [17], then we directly obtain:

Zk+1 =
1
μ2

Vk +
α

μ2
PΩ(A) + Xk − α

α + μ2
PΩ

(

1
μ2

Vk +
α

μ2
PΩ(A) + Xk

)

.

(12)

Compute Xk+1: When other variables are fixed, X can be solved by minimizing
the following objective function:

Xk+1 = arg min
X

L (Wk+1, Zk+1,X, Uk, Vk)

= arg min
X

λdTr
(

X�LdX
)

+ λtTr
(

XLtX
�)

+ Tr
(

U�
k (X − Wk+1)

)

+
μ1

2
‖X − Wk+1‖2F

+ Tr
(

V �
k (X − Zk+1)

)

+
μ2

2
‖X − Zk+1‖2F ,

(13)

By setting the derivative of Eq. (13) with respect to X to zero, we have:

(2λdLd + μ1I)X + X (2λtLt + μ2I) = μ1Wk+1 + μ2Zk+1 − Uk − Vk, (14)

Formula (14) is a Sylvester equation [18] which provides the solution X =
Sylvester(A,B,C) of the matrix equation AX + XB = C. Thus Xk+1 can be
solved by the following equation:

Xk+1 = Sylvester (2λdLd + μ1I, 2λtLt + μ2I, μ1Wk+1 + μ2Zk+1 − Uk − Vk) .
(15)
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Compute Uk+1 and Vk+1: We update the multipliers by:

Uk+1 = Uk + μ1 (Xk+1 − Wk+1) ,

Vk+1 = Vk + μ2 (Xk+1 − Zk+1) .
(16)

The variables W , Z, and X are iteratively updated until convergence. Finally,
we obtain the predicted DTIs based on the completed entities in matrix X.

4 Results and Discussions

4.1 Experimental Settings

In this experiment, we conduct 10-fold cross-validation (CV) to evluate the de
novo performance of LRSpNM. In order to test the different aspect of the pre-
diction methods, we consider two following types of de novo tests from new
drugs and new targets aspects, respectively. The first is called CV drug where
all drugs are randomly divided into 10 subsets. Another is CV target where all
targets are randomly divided into 10 subsets. That is to say, for a given DTI pre-
diction method, CV drug tests its ability to predict interactions for new drugs
and CV target tests its ability to predict interactions for new targets. Each sub-
set is treated as the testing set in turn, while the remaining nine subsets are used
as the training set. Both two types of de novo tests are repeated five times and
the average accuracy values are showed as the final results. We use Area Under
the Precision-Recall curve (AUPR) [19] as the evaluation metric.

We perform the 10-fold cross-validation on the training set for setting LRSp-
NMs four parameters, α, p, λd, λt. Using grid search, the best parameter com-
bination is selected from the range of values: α ∈ {

10−2, 10−1, 100, 101, 102
}

,
p ∈ {0.25, 0.50, 0.75, 1, 1.25, 1.50, 1.75, 2}, λd and λt ∈ {

10−4, 10−3, 10−2, 10−1
}

.
As for the pre-filling step, the parameter K ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} is also
set by grid search.

4.2 Performance Results

In order to measure the prediction performance, five existing state-of-the-art
DTI prediction methods are used to compare with our LRSpNM model, includ-
ing LapRLS [4], WNN [5], KBMF2K [6], CMF [7], and NRLMF [8]. For these
competing methods, all parameters are set to their default values according to
the authors’ recommendation.

Table 2 shows the result of AUPR under the setting CV drug. As shown
in Table 2, LRSpNM outperforms all five competing methods on four datasets
for new drug predictions. The results obtained under setting CV target is pre-
sented in Table 3. For new target prediction, LRSpNM outperforms the compet-
ing methods except for the Enzyme dataset, where LRSpNM performs slightly
worse than NRLMF algorithm. LRSpNM reports AUPR values that are 2.094%,
0.992% and 5.596% higher than the methods with second best performance in
other three datasets, respectively.
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These results adequately demonstrate that LRSpNM has a higher accuracy
on top ranked drug-target pairs for novel prediction, which is more meaningful
in drug discovery process.

Table 2. AUPR results for DTI prediction under CV drug

AUPR Enzyme Ion Channel GPCR Nuclear Receptor

LapRLS 0.111(0.002) 0.172(0.005) 0.219(0.004) 0.370(0.020)

WNN 0.393(0.013) 0.334(0.010) 0.367(0.007) 0.540(0.020)

KBMF2K 0.254(0.010) 0.317(0.009) 0.390(0.014) 0.483(0.030)

CMF 0.386(0.008) 0.353(0.014) 0.406(0.010) 0.523(0.030)

NRLMF 0.335(0.031) 0.355(0.039) 0.353(0.028) 0.539(0.059)

LRSpNM 0.399(0.009) 0.357(0.014) 0.408(0.012) 0.546(0.021)

Best and second best AUPR results are bold and underlined, respectively. Stan-
dard deviations are given in (parentheses).

Table 3. AUPR results for DTIs prediction under CV target

AUPR Enzyme Ion Channel GPCR Nuclear Receptor

LapRLS 0.638(0.005) 0.702(0.004) 0.310(0.011) 0.369(0.023)

WNN 0.778(0.018) 0.763(0.007) 0.574(0.021) 0.492(0.033)

KBMF2K 0.672(0.024) 0.727(0.013) 0.528(0.018) 0.406(0.021)

CMF 0.781(0.013) 0.779(0.011) 0.599(0.032) 0.475(0.016)

NRLMF 0.810(0.017) 0.795(0.026) 0.539(0.039) 0.523(0.082)

LRSpNM 0.803(0.017) 0.812(0.011) 0.605(0.022) 0.554(0.047)

Best and second best AUPR results are bold and underlined, respectively. Stan-
dard deviations are given in (parentheses).

4.3 Parameters Analysis

In this section,we analyze the parameter K from the pre-filling step in four
datasets. We can see that sensitivity analyses are provided for K in Fig. 1. The
result displays that the most K nearest neighbors information of drugs and
targets will assist the DTI prediction.

In addition, we analyze the parameter p to explore the prediction accuracy
of Schatten-p norm. From the results of Fig. 2, the AUPR values increase as
the increase of the values of p and then become stable after certain value of p
is reached under CV drug setting in all datasets. Under CV target setting, the
Nuclear Receptor dataset appears a special situation, where the AUPR values
fluctuate with the increase of p. From the results we can find that the Schatten-
p norm-based objective can approximate the rank minimization problem much
better than the nuclear norm minimization (when p =1) to achieve better matrix
completion results.
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Fig. 1. Sensitivity analysis for K. (a) CV drug; (b) CV target.
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Fig. 2. AUPR with different values of p on benchmark datasets. (a) Enzyme; (b) Ion
Channel; (c) GPCR; (d) Nuclear Receptor.

4.4 Case Study

In order to illustrate the prediction ability of LRSpNM in practical applications,
we treat the whole known DTI matrix in the GRCR dataset as training set
and regard the missing drug-target pairs as the candidate. After the prediction
scores of all candidate pairs are computed by LRSpNM, we rank the unknown
pairs and verify the top 10 novel DTIs by the latest version of DrugBank [1]



De novo Prediction of Drug-Target Interaction via LRSpNM 163

and KEGG [20] databases. The results are shown in Table 4. The last column
shows the databases evidence for each novel pair, and we can find that 70%
of predictions are confirmed in latest databases. This encouraging result indi-
cates that LRSpNM is effective for identifying new DTIs, which means it can
provide reliable guidance for drug discovery. In addition, other predicted DTIs
that have not been validated in public databases, which deserves to be tested by
biochemical experiments in the future.

Table 4. Top 10 novel DTIs predicted by LRSpNM on GPCR dataset.

Rank Drug Name (Drug ID) Target Name (Target ID) Evidence

1 Octreotide acetate (D02250) SSTR1 (hsa6751) KEGG

2 Metoprolol (D02358) ADRB2 (hsa154) DrugBank

3 Albuterol (D02147) PTGER1 (hsa5731) DrugBank

4 Ambuphylline (D02884) ADORA2B (hsa136) Unknown

5 Dinoprostone (D00079) PTGER1 (hsa5731) DrugBank

6 Octreotide (D00442) SSTR5 (hsa6755) KEGG

7 Rocuronium bromide (D00765) CHRM1 (hsa1128) Unknown

8 Epinephrine (D00095) ADRA2A (hsa150) DrugBank

9 Trospium chloride (D01103) CHRM2 (hsa1129) KEGG

10 Rocuronium bromide (D00765) CHRM1 (hsa1128) Unknown

5 Conclusions

In this paper, we proposed a novel matrix completion method named LRSpNM
for de novo prediction of drug-target interactions. The novelty of LRSpNM comes
from firstly integrating Schatten-p norm minimization with Laplacian regular-
ization to predict the interaction probability of an unknown drug-target pair.
Specifically, when p becomes a tunable parameter in completing the DTI matrix,
it can be adjusted to achieve better performance than nuclear norm where p = 1.
Moreover, we use a preprocessing step which fully utilizes the information of drug
and target to fill partial unknown drug target pairs. Experiments have been con-
ducted using two different types of cross validations for de novo prediction to
compare our method with five state-of-the-art methods. In most of the cases,
LRSpNM achieves the highest accuracy and presents the reliability of LRSpNM
in de novo prediction. Our case study also confirms the effectiveness of our
method in practical applications.
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Abstract. The resting-state functional magnetic resonance imaging
(rs-fMRI) as a non-invasive technique with the high spatial and tem-
poral resolution can help characterize the pathogenesis of autism spec-
trum disorder (ASD). Some results have been achieved with machine
learning techniques to diagnose ASD with rs-fMRI data. However, most
of machine learning methods have neglected the temporal dependency
of the time-series fMRI data. In this study, we propose a method for
diagnosing ASD based on brain dynamic networks (BDNs) which are
constructed with time series rs-fMRI brain image data to describe the
dynamic relationship among multiple brain regions. The least squares
method with the forward model selection method was used to establish
BDNs, and the Bayesian information criterion (BIC) was adopted as
the model selection criteria to avoid overfitting. The resulted DBNs are
weighted directed networks. Then a feature extraction method was pro-
posed to extract representative and discriminated features from BDNs.
Lastly, machine learning classifiers were trained with the whole ABIDE
I cohort to diagnose ASD. The accuracy of 88.8% was achieved, which is
higher than any previously reported methods.

Keywords: Autism spectrum disorder · Resting-state fMRI · Brain
dynamic network · Machine learning · Time series brain image

1 Introduction

Autism spectrum disorder (ASD) is a prevalent and heterogeneous childhood
neuro-developmental disease with an estimated prevalence of 1% of the global
population and one in 68 children in the United States [10,18]. The resting-state
functional magnetic resonance imaging (rs-fMRI) is a non-invasive technique
showing fluctuations of functional activities of a whole brain through measuring
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blood oxygen level-dependent (BOLD) signals. The lack of a task makes rs-
fMRI image particularly attractive for patients who may have difficulty with
task instructions. Hence, the application of rs-fMRI images in the ASD research
has been growing for the past two decades [7,14,21].

A currently widely used method for fMRI study is the functional connectivity
(FC) network derived from rs-fMRI image data [12] which has been extensively
applied for diagnosing brain diseases [17]. FC networks are constructed by calcu-
lating Pearson’s Correlation Coefficient (PCC) between pairs of ROIs resulting
the FC networks only reflect the correlation of ROIs rather than their dynamic
relationships. Note that the directions of the relationships between ROIs are
ignored when using FC networks although directed influences between ROIs
can help characterize the functional role of a brain region [2,6]. Furthermore,
although rs-fMRI brain images consist of time series images, most of machine
learning classifiers do not take the temporal dependency, which is a valued prop-
erty of the time-series fMRI data, into consideration. In principle, the state of
one ROI should be dynamically associated with multiple ROIs [2,6]. Therefore,
building brain dynamic networks (BDN) would help us understand how ROIs
dynamically influence each other, and thus can provide more representative and
discriminate information for ASD diagnosis.

In this study, we propose a method for diagnosing ASD based on BDN which
are constructed with time series rs-fMRI brain imaging data. The BDN can
model directed influences among multiple ROIs across the whole brain based
on the assumption that the current state of specific ROI depends on the linear
combination of the previous states of multiple ROIs. Since, BDN is constructed
with the temporal dependency of rs-fMRI brain image data, it can capture more
complex interactions cross multiple brain ROIs than FC networks. Subsequently,
graph theory and complex network analysis were applied on DBNs, which are
the weighted and directed dynamic networks, to extract more representative
and discriminated features. Lastly, machine learning classifiers were trained with
whole ABIDE I cohort to identify ASD. The accuracy of 88.8% was achieved,
which is higher than any previously reported methods (e.g.[1,10,11,13,20]).

2 Methods

2.1 Dataset and Pre-processing

The data used in this study are obtained from the Autism Brain Imaging Data
Exchange I (ABIDE I), which was released in August 2012 and integrated 17
international sites. In total, the dataset includes 1111 subjects, 539 from indi-
viduals with ASD and 573 from typical developments (TDs) [3].

Brain image pre-processing includes slice-timing correction, motion correc-
tion, nuisance signal regression and temporal filtering. Firstly, functional volumes
are registered to structural images, then, structural images are registered to the
symmetric standard MNI152 brain atlas. Consequently, spatial smoothing and a
band-pass filter of 0.01–0.1 Hz are applied to reduce the influence of heart beat
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and breath. The parcellation scheme used in this study is the whole-brain parcel-
lation based on meta-analysis of fMRI, yielding 264 ROIs in MNI 152 standard
space [16]. More data pre-processing details can be found in [13,20].

2.2 Brain Dynamic Networks

The construction of a Brain dynamic network is to find the relationships among
multiple ROIs with the hypothesis that the state value of one ROI at one time
point can be represented as a linear combination of the state values of other
ROIs at their previous time point. We apply the forward model selection app-
roach based on the least squares method to establish one specific ROIs’ dynamic
model by gradually including one ROI each time until some criterion is met.
The strategy for selecting the next candidate ROI is based on the correlation
strengths between the target ROI and its regulating ROIs. Besides, we apply
the BIC criterion to conduct the model selection and use the ridge regulariza-
tion to avoid overfitting. The schematic diagram of the proposed BDN modeling
algorithm with time-series rs-fMRI brain image data is depicted in Fig. 1.

Considering a time series of a target ROI, let

xi = {x1,i, · · · , xt,i, · · · , xT,i} (1)

be the time series of the i−th ROI with T time points. Assuming that the
observed value xt,i of the i−th ROI at time point t is a linear combination of
the observed values of its regulating ROIs at their previous time point,i.e. time
point t − 1. Formally, the model can be written as:

xt,i = xt−1,1β1,i + xt−1,2β2,i + · · · + xt−1,rβr,i + · · · + xt−1,RβR,i (2)

where i(i = 1, · · · , R) denotes the index of a ROI, and t(t = 1, · · · , T ) denotes
the time point, T is the length of the time series data while R represents the
number of ROIs of the whole brain, βr,i corresponds to the dynamic coefficients
representing the regulation strength between the objective ROIi and its regu-
lating ROIr. Collecting Eq. 2 for t = 2, · · · , T yields to the following general
form:

Y = Xβ (3)

where

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2,i

x3,i

...
xt,i

...
xT,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,1 · · · x1,r · · · x1,R

x2,1 · · · x2,r · · · x2,R

...
. . .

...
. . .

...
xt−1,1 · · · xt−1,r · · · xt−1,R

...
. . .

...
. . .

...
xT−1,1 · · · xT−1,r · · · xT−1,R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, β =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1,i

β2,i

...
βr,i

...
βR,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

Given the observation data, time series fMRI brain imaging data of one
subject, to estimate the parameter β using the least square method, we have the
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Fig. 1. The schematic diagram of BNW modeling algorithm. (1) Extract time courses
of ROIs from rs-fMRI brain image data, then construct the time course matrix for a
subject, which has R ROIs and T time points. (2) Construct two matrices using sliding
window to T −1 time points from the time course matrix of the subject with one matrix
represents the state of all ROIs at time points 1 to T −1, and the other matrix keeps the
state of all ROIs at time points 2 to T . (3) Calculate Pearson Correlation Coefficients
(PCCs) between the time course vector consisting of time points 2 to T of the ith ROI
and the time course vector consisting of time points 1 to T −1 of all ROIs. (4) Rank the
absolute values of PCCs in descending order. (5) Build the dynamic model for the i-th
ROI using the forward model selection method initialed with containing the top ranked
ROI in terms of PCC and then add one candidate ROI into the model each step until a
stoping criterion is met. Thus, the state of the i-th ROI at time point t (t = 2, · · · , T )
may be represented by the linear combination of the state of other p ROIs (p is the
number of parameters in the model) at time point t − 1 with the regulation strengths
β. (6) Collect the vectors β of all ROIs into matrix S, which is the coefficient matrix
of the BDN for one subject.
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objective function in the matrix format as follows:

S(β) = (Y − Xβ)T (Y − Xβ) = ‖Y − Xβ‖2 (5)

The least squares estimator βLS is given by :

βLS = [XTX]−1XTY (6)

In this study, the number of variables (264 ROIs) in the linear system exceeds
the number of observations (T = 120), in this case, the ordinary least-squares
problem is ill-posed. Therefore, it is hard to fit as the model has infinitely many
solutions. The ridge regularization introduces further constraints to uniquely
determine the solution while preventing over-fitting as follows

S(β) = (Y − Xβ)T (Y − Xβ) = ‖Y − Xβ‖2 + λ ‖β‖22 (7)

Then the estimator β̂Ridge can be obtained by:

β̂Ridge = (XTX + λI)−1XTY (8)

where λ > 0 is a tuning parameter, to be determined separately, I is a R × R
identity matrix. Selecting a good value for λ is critical.

The forward model selection is a type of step wise regression which begins
with an empty model and adds in variables one by one. In each forward step,
the one ‘best’ variable is added which gives the single best improvement to
the model. The ‘best’ variable is determined by some pre-determined criteria.
Then, the algorithm continues adding in one variable at a time and testing at
each step until the model cannot be improved [8,9]. In this study, the criteria
for selecting the next ‘best’ is based on the rank of the values of Pearson’s
correlation coefficients (PCCs) between the target ROI and all other ROIs as its
regulating ROIs. Firstly, we rank the absolute values of PCCs, which represent
the correlation strength of the target ROI and other ROIs in descending order.
The reason behind the ranking criterion is aiming to keep both the positive and
negative PCCs with significant values ranked on the top so that ROIs hold higher
correlation coefficients have the priority to be added into the expansion process
of the model for the target ROI. Secondly, the algorithm begins with adding the
top-ranked ROI into the model, then regards the remaining ROIs in the order
of the rank.

When building models using the forward model approach, the likelihood can
increase by adding parameters, yet it may result in overfitting. In order to avoid
over-fitting, the model selection criterion is needed to be applied. The Akaike
Information Criterion (AIC) and the Bayesian information criterion (BIC) are
two most commonly used criteria in the model selection based on the information
theory by quantifying or measuring the expected value of information [19].

The best model has the minimum value of AIC function is defined as

AIC(p) = −2lnL(β|Y ) + 2p (9)
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while the BIC criterion is formally defined as Eq. 10, BIC is a criterion for model
selection among a finite set of models; the model with the lowest BIC is preferred.

BIC(p) = −2lnL(β|Y ) + pln(n) (10)

where lnL(β|Y ) represents the log-likelihood of estimates of the model param-
eters, and the final terms in Eq. 9 and Eq. 10 stand for the penalty on the log-
likelihood as a function of the number of parameters p in the model [19]. The
penalty term of BIC takes the sample size into consideration and it is larger in
BIC than in AIC. Hence BIC results in smaller models. We choose BIC as our
model selection criterion aiming to have comparatively smaller models.

To sum up, the pseudo algorithm of dynamic modeling algorithm for fMRI
brain imaging data is described in Algorithm 1.

Algorithm 1. The dynamic modeling algorithm for fMRI brain imaging data
Input : DataT×R is the matrix of time series of one subject with column vector

represents the time series vector of one ROI. T denotes the length of time course of
the fMRI brain image data, and R denotes the number of ROIs in the input subject.

Output: SR×R is the dynamic network of the input subject in matrix format with
each row vector standing for the generated linear model of one ROI.

1: Normalise Data by column to represent percent change from the average signal for
that time point with having mean 0 and standard deviation 1.

2: X ← Data[1 : T − 1, :] � X denotes the state of Data at time point t.
3: for ROIid ∈ [1, R] do
4: Y = Data[2 : T, ROIid] � Y denotes the time course of one ROI at the

succeed time point t + 1.
5: Calculate PCCs between the Y and each time course of X and save as PCClist

6: Rank the absolute values of PCClist in descending order.
7: Forward stepwise selection:
8: Let M1 denotes the initial model containing the time course of the top ranked

ROI in PCClist.
9: k ← 2 � k denotes the index of models

10: for k ∈ [2, p] do � p is an empirical constant.
11: ROIselected ← PCClist(k) � Select the k-th ROI from the ROI ranking list
12: Expand the model in Mk−1 with ROIselected using ridge least square regres-

sion to build a new model Mk.
13: end for
14: Apply BIC to select a single best model Mbest from (M0, · · · , Mp) by choosing

the model with the minimum BIC value.
15: βROIid ← Mbest

16: end for
17: Collect the vectors βROIid(ROIid ∈ [1, R]) into a matrix S
18: return= S

After obtaining the model 3 for all ROIs of one subject, collecting the vectors
β of all ROIs into a matrix S, which is the coefficient matrix of the BDN for one
subject.
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2.3 Feature Extraction

The BDNs constructed by last step are weighted and directed graphs. Theo-
retically, let G = (V,E) denote the BDN, where V denotes the set of R nodes
(ROIs), E denotes the set of edges. The set of R nodes constitutes the columns
and rows of an adjacency matrix S with the entries sij represent connections
between nodes (ROIs) i and j, i.e., the coefficients of a constructed BDN. Hence,
the adjacency matrix represents both topological properties and biophysics of
the brain network. Figure 2 illustrates an example of the BDN as a directed and
weighted graph. As shown in this figure, the DBN consists of 6 ROIs connected
with weighted and directed edges. The adjacent matrix is an asymmetric matrix
with each row representing the linear model of a target ROI holding the meaning
that the current state of the target ROI depends on the linear combination of
the previous states of its regulating ROIs. Furthermore, rows of the adjacent
matix can be used as the attributes or features of the corresponding ROIs. In
Fig. 2, ROI A is affected by the previous states of B and E, and the feature of
ROI A is the corresponding row vector of the adjacency matrix.

Fig. 2. A dynamic network and its adjacency matrix.

We proposed a binary mask method based on the average network of TD
group to explore the higher level features. Since we assume the variation of the
BDNs in TD group is less than the those in ASD group, a comparatively consis-
tent network structure can be found from it. Figure 3 illustrates the framework
of this strategy and the major steps are described as follows:

1. Calculate the average network of TD group
Firstly, the average dynamic network of TD group is calculated, and then
we sort the absolute weights of edges in descending order. Since the absolute
weights represent the regulation strength between the pair of ROIs, we set a
threshold to delete those weak strength edges resulting in the average network
MeanNetwork.
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Fig. 3. The pipeline of extracting the binary mask based on the average dynamic
networks of TD group.

2. Representative modular partition discovery
The Louvain community discovery algorithm is used to discover the repre-
sentative partition of MeanNetwork, which refers to the partition holds the
largest value of the modularity network metric.

3. Find the important ROIs using network centrality measures
Network centrality identifies the most important vertices within a graph. We
calculate several centralities in the average networks of both TD and ASD
group, then select top d from each centrality to form a ROI list ROIlist.
Based on the ROI list ROIlist, we select the sub-module of Partitionrepresent

holding the largest intersection set with ROIlist, as it can be representative
if it includes more important ROIs of ROIlist. The selected module is named
as FeatureModule.

4. Generate the binary mask
Firstly, we binarize the TD average network MeanNetwork by setting
nonzero values as 1, then the node attributes of ROIs which belong to the
selected module FeatureModule are preserved through setting other node
attributes as 0. Thus, the mask BinayMask for feature extraction is obtained
and will be used for all BDNs of both TD group and ASD group. Lastly, the
weighted edges of each BDN are aggregated into a single feature vector and
fed into machine learning classifiers.

2.4 Identification ASD Based on Machine Learning Algorithms

We train and evaluate machine learning classifiers SVM and Logistic Regression
(LR). Evaluation metrics include the mean roc auc score of the 10-fold cross
validation, testing accuracy, F1, precision, sensitivity and specificity. The sen-
sitivity represents the proportion of ASDs correctly predicted, while the speci-
ficity describe the proportion of TDs correctly predicted, where roc stands for
the receiving operating characteristic while auc stands for the area under the
roc curve.
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3 Results and Discussion

3.1 Data Preparation

The lengths of time course obtained from different sites fluctuate in the range
of 82 to 320 showing the heterogeneity of the ABIDE cohort. We cut the time
courses of all subjects using a fixed length window T = 120 beginning with the
first time point. For those subjects with the length of time course shorter than
120, their original lengths were kept. Then, we normalized the rs-fMRI time
series matrix by rows of time series to have mean of zero and standard deviation
of one in order to measure the fluctuation of BOLD signals of ROIs at each
time point. The experiment data were split into two parts, 80% for training and
validation, 20% for testing.

3.2 Dynamic Network Construction and Analysis

For the construction of BDNs of all subjects, the regularization parameter λ was
set to 0.2. However, the structures of our constructed BDNs were inconsistent
because the heterogeneity of fMRI data obtained from different sites. The min-
imum numbers of edges in the BDNs of TD group and ASD group are 11,934
(17.1% sparsity) and 11,845 (16.7% sparsity), respectively. In this study, sparsity
refers to the ratio of the number of edges of the network to the number of all
possible edges. We selected a stringent threshold (10,000 edges) to capture the
main structure of the BDNs for both ASD and TD average networks.

Eigenvector centrality was used on the directed binary networks; and node
strengths, betweenness, pagerank, authorities were employed to the directed
weighted networks. Top 4 (1.5%) ROIs with high centralities were selected from
each centrality and the unique ROIs were preserved in the ROI list ROIlist (1,
3, 7, 13, 17, 20, 21, 23, 30, 31, 39, 57, 59, 64, 75, 76, 118, 131, 134, 136, 138, 143,
173, 185, 196, 198, 202, 206, 224, 230, 234, 238, 240, 245, 249, 256, 262). This
ROI list was used as a reference index for the feature extraction.

To discover the distinct communities within the BDNs, the Louvain modu-
larity algorithm was applied to the average BDN of TD group. Over the course
of 100 runs of the algorithm, the representative partition with 8 modules was
obtained. The detailed information is shown in Table 1. As can be seen from the
table, the 6th module is the largest module and the intersection with ROIlist
is the largest as well. Therefore, we selected it as the representative module to
extract features for machine learning classifiers. For comparison purpose, we also
took the 5th module to do the experiments, since the module size is smaller while
it contains more important ROIs.

By using the proposed feature extraction method, features of 1236 dimensions
and 2721 dimensions were extracted from the 5th module and the 6th module,
respectively. Consequently, we used the principal component analysis (PCA) to
reduce the dimension of features and selected the principal components which
preserved the 20% cumulative variance, as a result, we have the 47-dimensional
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Table 1. The module sizes of the representative partition and the corresponding inter-
sections with the important ROI list.

Index of module 1 2 3 4 5 6 7 8

Size of module 24 16 13 76 29 77 17 12

Intersection 4 5 5 6 6 7 2 2

features for the 5th module and the 57-dimensional features for the 6th module.
Tables 2 and 3 illustrate the performances of ASD/TD classification based on
different machine learning classifiers, such as the support vector machines (SVM)
with the Radial Basis Function (RBF) kernel, SVM with the linear kernel and
logistic regression (LR).

The mean roc auc score of the 10-fold cross validation was used as the model
evaluation metric. As shown from the tables, the 6th module achieved the best
roc auc value. The sensitivity metric achieved 87.5% showing that the model
has strong ability to correctly detect ASD patients. Especially, the accuracy of
88.8% was achieved in this study, which is higher than any previously reported
methods, as shown in Table 4.

Table 2. Performance of ASD/TD classification using the 5th module.

Classifier Feature size ROC AUC Accuracy F1 Precision Specificity Sensitivity

SVM (rbf) 1236 81.7 75.0 70.1 83.9 89.0 60.3

SVM (linear) 1236 77.1 70.0 68.4 70.3 73.2 66.7

Logistic R 1236 81.7 75.6 71.9 82.0 86.6 64.1

SVM (rbf) 47 82.4 77.5 76.0 72.2 75.3 80.3

SVM (linear) 47 80.9 78.1 76.8 72.5 75.3 81.7

Logistic R 47 80.7 79.4 79.0 72.1 73.0 87.3

Table 3. Performance of ASD/TD classification using the 6th module.

Classifier Feature size ROC AUC Accuracy F1 Precision Specificity Sensitivity

SVM (linear) 2721 84.8 71.5 70.9 72.2 73.3 69.7

SVM (rbf) 2721 86.4 77.8 77.4 78.4 79.2 76.5

Logistic R 2721 86.5 76.6 75.2 79.4 81.7 71.4

SVM (rbf) 57 94.7 88.8 89.5 91.7 90.3 87.5

SVM (linear) 57 92.9 85.6 84.9 84.4 85.7 85.5

Logistic R 57 93.2 85.0 86.7 84.8 80.6 88.6
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Table 4. Comparison of proposed method and other methods, which used the entire
ABIDE I cohort.

Methods Accuracy (%) Methods Accuracy (%)

E.Wong et al. [22] 71.1 Dvornek et al. [4] 70.1

Heinsfeld et al. [10] 70.0 Eslami et al. [5] 70.1

Abraham et al. [1] 66.8 Khosla et al. [11] 73.3

Parisot et al. [15] 69.5 Mostafa et al. [13] 77.7

Proposed method 88.8

4 Conclusions

In this study, we have proposed a method for diagnosing ASD based on brain
dynamic networks using time series rs-fMRI brain imaging data. A constructed
BDN is a weighted directed complex network which describes the dynamic rela-
tionship among multiple ROIs. Important ROIs were found through centrality
measures and used as referencing index for the representative module selection.
Further, the binary mask was derived from the selected module to extract fea-
tures of BDNs for machine learning classification. Our proposed method have
achieved the accuracy of 88.8% on the whole ABIDE I cohort, which is higher
than any previously reported methods. Since our BDN construction algorithm
and feature extraction method are generic methods, they could be applied to
diagnose other brain diseases, which is an interesting direction for future study.
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Abstract. MicroRNAs (miRNAs) are a class of non-coding RNAs
of approximately 22 nucleotides. Cumulative evidence from biological
experiments has confirmed that miRNAs play a key role in many com-
plex human diseases. Therefore, the accurate identification of potential
associations between miRNAs and diseases is beneficial to understanding
the mechanisms of diseases, developing drugs and treating complex dis-
eases. We propose a new method to predict miRNA-disease associations
based on a negative sample selection strategy and multi-layer percep-
tron (called NMLPMDA). For obtaining more similarity information,
NMLPMDA integrates the miRNA functional similarity and the Gaus-
sian interaction profile (GIP) kernel similarity of miRNAs as the final
miRNA similarity, and integrates the disease semantic similarity and
the GIP kernel similarity of diseases as the final disease similarity. In
particular, we propose a negative sample selection strategy based on
common gene information to select more reliable negative samples from
unknown miRNA-disease associations. The 5-fold cross validation is used
to evaluate the performance of NMLPMDA and other competing meth-
ods. On four datasets (HMDD2.0-Yan, HMDD2.0-Lan, HMDD2.0-You,
HMDD3.0), the AUC values of NMLPMDA are 0.9278, 0.9206, 0.9301
and 0.9350, respectively. In addition, we also illustrate the prediction
ability of NMLPMDA in Lymphoma. As a result, 28 of the top 30 miR-
NAs associated with the disease have been validated experimentally in
dbDEMC and previous studies, respectively. These experimental results
indicate that NMLPMDA is a reliable model for predicting associations
between miRNAs and diseases.

Keywords: miRNA-disease associations · Negative sample selection ·
Multi-layer perceptron

c© Springer Nature Switzerland AG 2020
Z. Cai et al. (Eds.): ISBRA 2020, LNBI 12304, pp. 178–188, 2020.
https://doi.org/10.1007/978-3-030-57821-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57821-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-57821-3_16


A New Method to Predict MiRNA-Disease Associations 179

1 Introduction

MicroRNAs (miRNAs) are small, endogenous, single-stranded, non-coding RNAs
(about ∼22 nucleotides), which are involved in many important biological pro-
cesses, such as viral infections, immune responses, tumor invasion, signal trans-
duction, cell proliferation, cell growth and cell death. In addition, human diseases
may be caused by miRNA abnormalities and abnormal regulation of disease
gene expression, such as cancer, hereditary diseases, etc. With the synergy of
bioinformatics, more and more miRNA-disease associations have been revealed.
For example, miR-145 is a candidate tumor suppressor miRNA, which may be
involved in the regulation of human hepatocarcinoma cell differentiation [1].
However, the traditional experimental methods are of small scale, as well as
time-consuming and costly. Therefore, developing more efficient computational
models is particularly urgent to achieve large-scale and reliable prediction of
associations between miRNAs and diseases.

More and more computational methods have been proposed to predict
miRNA-disease associations. These computational methods can be roughly
divided into two categories: similarity-based methods and machine learning-
based methods. The similarity-based methods predict the probability scores
that a miRNA interacts with a disease. You et al. [2] developed the predic-
tion model PBMDA to discover miRNA-disease associations, which constructed
a heterogeneous graph with paths. Lan et al. [3] developed KBMF-MDI, in which
kernelized Bayesian matrix factorization method was employed to infer poten-
tial miRNA-disease associations by integrating different data sources. Yan et al.
[4] proposed DNRLMF-MDA to predict miRNA-disease associations based on
dynamic neighborhood regularized logistic matrix factorization.

Prediction models based on machine learning apply the machine learning
classification algorithm to predict potential miRNA-disease associations. Com-
pared to predicting miRNA-disease associations by measuring the association
strength between nodes in the miRNA and disease network, machine learning-
based methods can better predict new miRNAs (have no known miRNA-disease
associations). Xu et al. [5] proposed a miRNA target-dysregulated network model
MTDN based on support vector machine (SVM) to prioritize candidate disease-
related miRNAs for prostate cancer. Chen et al. [6] developed a prediction model
ABMDA, which was able to integrate weak classifiers to form a strong classifier
based on corresponding weights. Chen et al. [7] proposed a model of Extreme
Gradient Boosting machine for miRNA-disease association prediction.

In this study, we present a new miRNA-disease association prediction
method. We integrate the miRNA functional similarity and the GIP kernel simi-
larity of miRNAs as the final miRNA similarity, and integrate the disease seman-
tic similarity and the GIP kernel similarity of diseases as the final disease sim-
ilarity. Furthermore, a negative sample selection strategy is proposed based on
miRNA-gene associations and disease-gene associations. Unlike existing meth-
ods, our negative sample selection is based on the reasoning that if a miRNA
and a disease are not associated with common genes, this miRNA-disease pair
is likely to be a reliable negative sample, otherwise it is an unreliable negative
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sample. Finally, a multi-layer perceptron (MLP) neural network is trained for
miRNA-disease association prediction using feature vectors through concatenat-
ing similarities of miRNAs and diseases. In order to comprehensively evaluate
the performance of our model, NMLPMDA compares with current state-of-the-
art methods on four datasets (HMDD2.0-Yan, HMDD2.0-Lan, HMDD2.0-You,
HMDD3.0) through the 5-fold cross validation. Our method has the AUC values
of 0.9278, 0.9206, 0.9301, 0.9350 on four datasets HMDD2.0-Yan, HMDD2.0-Lan,
HMDD2.0-You, HMDD3.0, respectively. Furthermore, we validate the proposed
model against Lymphoma. Ultimately, 28 of top 30 miRNA candidates associ-
ated with the disease predicted by NMLPMDA were confirmed in dbDEMC and
previous studies.

2 Materials and Methods

2.1 Data Description

Four datasets are used to evaluate our method, including HMDD2.0-You,
HMDD2.0-Yan, HMDD2.0-Lan and HMDD3.0. All these datasets are down-
loaded from HMDD database [8]. HMDD (the Human microRNA Disease
Database) is a database that curates experiment-supported evidence for human
miRNA and disease associations. Some miRNAs were judged to be unreli-
able by the public database miRBase, which were removed from HMDD3.0
[9]. HMDD2.0-You, HMDD2.0-Lan and HMDD2.0-Yan are downloaded from
HMDD2.0 dataset at different times. The statistics of four datasets are shown
in Table 1, where Nm is the number of miRNAs, Nd is the number of diseases,
and Nmd is the number of known miRNA-disease associations.

Table 1. MiRNAs, diseases and miRNA-disease associations in each dataset.

Dataset Nm Nd Nmd

HMDD2.0-You 495 383 5430

HMDD2.0-Lan 550 383 6084

HMDD2.0-Yan 576 356 6391

HMDD3.0 1057 850 32226

On this basis, matrix Y ∈ RNm×Nd is defined as adjacency matrix of Nm

miRNAs and Nd diseases. The value of element yij is 1 if the association between
miRNA mi and disease dj has been confirmed in database, otherwise 0. The
disease-gene associations and the miRNA-gene associations used in the negative
sample selection strategy are from DisGeNET database [10] and miRTArBase
database [11], respectively. In our study, we remove those genes that have no
association with diseases or miRNAs.
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Fig. 1. The framework of NMLPMDA.

2.2 Method

As shown in Fig. 1, our method mainly consists of three steps to predict miRNA-
disease associations. First, we calculate the miRNA similarity and disease simi-
larity. Second, given a miRNA, disease and gene network, reliable negative sam-
ples are selected from unlabeled miRNA-disease pairs. Third, we generate feature
vectors for miRNA-disease pairs based on these similarities and a multi-layer per-
ceptron network is constructed to predict the associations between miRNAs and
diseases based on the representation vectors.

2.2.1 Similarity Calculation
Mesh database is used to calculate the disease semantic similarity [12], which
describes the relationship between different diseases by a direct acyclic graph
(DAG). Given disease d1 and disease d2, their semantic similarity is calculated
as follows:

Dss(d1, d2) =

∑
t∈Td1∩Td2

(SVd1(t) + SVd2(t))

Sem(d1) + Sem(d2)
(1)

where Tdi
is the ancestor node set of disease di and itself. Sem(d1) represents

the semantic value of disease d1 in DAG, which is calculated as follows:

Sem(d1) =
∑

t∈Td1

SVd1(t) (2)

where SVd1(t) is defined as the semantic value between diseases t and d1, and t
is a common ancestor of diseases d1 and d2. SVd1(t) is calculated as follows:

SVd1(t) =
{

1, t = d1
ΔK , t = the smallest K layer ancestor node of d1

(3)

where Δ is defined as the layer contribution factor between disease t and its direct
ancestor disease. The value of Δ is 0.5 in our study [12]. Similarly, Sem(d2) and
SVd2(t) can be calculated in the same way.

We also compute the GIP kernel similarity of diseases. The GIP kernel sim-
ilarity between disease d1 and disease d2 is calculated as follows [13]:

KGIP,d(d1, d2) = exp(−γd||yd1 − yd2||2) (4)
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where yd1 = {y11, y21...yNm1} is the association profile of disease d1. γd is the
regulation parameter of kernel bandwidth, which is calculated as follows [13]:

γd = γ′
d/(

1
N

∑Nd

i=1
||ydi||2) (5)

where γ′
d is set to be 1 in this study.

To gain more similarity information, the final disease similarity of diseases
d1 and d2 is calculated as follows [14]:

Sd(d1, d2) =
{

Dss(d1, d2), if d1, d2 has semantic similarity
KGIP,d(d1, d2), otherwise

(6)

Wang et al. proposed a model to calculate the functional similarity between
different miRNAs [13]. Given miRNA m1 and miRNA m2, their functional sim-
ilarity is calculated as follows:

Mfs(m1,m2) =

∑
1≤i≤n1

S(dt1i,DT2) +
∑

1≤j≤n2
S(dt2j ,DT1)

n1 + n2
(7)

DT1 and DT2 are diseases sets associated with miRNAs m1 and m2, respectively.
n1 and n2 are their cardinality. S(dt1i,DT2) is the semantic similarity of disease
dt1i and disease set DT2, which is calculated as follows:

S(dt1i,DT2) = max
1≤i≤n2

(Dss(dt1i, dt2j)) (8)

Similarly, S(dt2j ,DT1) can be calculated in the same way. The final miRNA
similarity of miRNAs m1 and m2 is calculated as follows:

Sm(m1,m2) =
{

Mfs(m1,m2), if m1,m2 has functional similarity
KGIP,m(m1,m2), otherwise

(9)

2.2.2 Selecting Reliable Negative Samples from Unlabeled
MiRNA-Disease Pairs

In HMDD database, any miRNA-disease association entries without any rela-
tionship have not been provided. Traditional methods treat the non-association
samples as negative samples which is unreasonable as those non-association sam-
ples may be undetected miRNA-disease associations. Therefore, a negative sam-
ple selection strategy is designed to find more reliable negative samples from
unlabeled samples (unknown miRNA-disease pairs) in this work.

We build a network (MGDN) including miRNA-disease associations, miRNA-
gene associations, disease-gene associations and select a group of miRNA-disease
pairs from MGDN as reliable negative samples. In this network, each node repre-
sents a disease, a disease (miRNA)-associated gene or a miRNA and each node is
connected with its associated nodes. If a disease node and a miRNA node share
the same genes, there is a potential association between them. From a biological
perspective, if a miRNA shares certain genes with a disease, the miRNA may
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have the potential to cause this disease. On the contrary, if a miRNA does not
share any gene with a disease, it can assume that the miRNA can’t cause the
disease.

To illustrate, the second part of Fig. 1 depicts a sub network of MGDN with
2 diseases (d1, d2), 2 miRNAs (m1,m2) and a gene (g1). The connection between
disease node and miRNA node in the MGDN represents their relationships. A
disease node and a miRNA node are connected (d1 and m1), which indicates the
miRNA is associated with the disease. A disease node and a miRNA node share
the same genes (d1 and m2; d2 and m2), which indicates they have a potential
association. If there is no path between a miRNA node and a disease node (d2
and m1), the miRNA-disease pair is a reliable negative sample. It is worth noting
that some of the miRNA names in miRTarBase are different from the miRNA
names in HMDD, so we make a mapping on two datasets for miRNA names
based on miRBase.

2.2.3 Multilayer Perceptron Neural Network
Each miRNA-disease pair is represented by concatenating integrated similarities
of miRNAs and diseases as a feature vector. Each disease is described by a Nd-
dimensional feature vector. For example, disease di is described by a feature
vector as follows:

Sd(di) = (a1, a2, a3...aNd
) (10)

where Sd(di, :) is the i-th row vector of matrix Sd, and aj is the integrated
similarity value between disease di and dj . Similarly, miRNA can be represented
by a Nm-dimensional feature vector as follows:

Sm(mu) = (b1, b2, b3...bNm
) (11)

Therefore, each miRNA-disease pair can be described by an (Nd + Nm)-
dimensional vector based on integrated similarities of miRNA and disease as
follows:

Fmudi
= (Sm(mu), Sd(di)) (12)

Multi-layer perceptron (MLP) neural networks are the most commonly used
feedforward neural networks because of their fast operation, ease of implemen-
tation and smaller training set requirements. The MLP consists of three sequen-
tial layers, including input layer, hidden layer and output layer. MLP model
with insufficient or excessive number of neurons in the hidden layer most likely
causes the problems of bad generalization and overfitting, respectively. There
is no analytical method for determining the number of neurons in the hidden
layer. Therefore, it is only found by trial and error. In the study, an MLP neural
network is trained with two hidden layers of 512, 64 hidden neurons to get the
final prediction of the association between each miRNA-disease pair. Sigmoid
function and Adam algorithm are used as the activation function and the opti-
mization method, respectively. In addition, since the number of reliable negative
samples are more than that of positive ones, we randomly select a subset from
reliable negative samples with the size equal to the positive samples to train the
model.
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3 Results and Discussion

3.1 Experimental Settings

In order to evaluate the performance of NMLPMDA, we conduct the 5-fold cross
validation, which is widely used in inferring miRNA-disease associations. In each
round, the balanced data is divided into the five sets, four of which are used as
the training set and the rest one as the testing sets. The AUC (area under the
receiver operating curve) value is used as an evaluation metric. The AUC value
of a model may lie between 0.5 and 1, and it is less than or equal to 0.5 when
the prediction model has no predictive ability while an optimal model has the
value of AUC near 1.0.

3.2 Comparison with Other Methods

NMLPMDA is compared with other two competing methods, namely, ABMDA
[6] and EGBMMDA [7], because both models are built using balanced data. This
makes the data structure of the testing sets consistent and makes the comparison
of AUC more fair and interpretable. ABMDA was able to integrate weak clas-
sifiers to form a strong classifier based on corresponding weights and balanced
the positive and negative samples by performing random sampling based on
k-means clustering on negative samples. EGBMMDA was a model of Extreme
Gradient Boosting machine for miRNA-disease association prediction by inte-
grating the miRNA functional similarity, the disease semantic similarity, and
known miRNA-disease associations.

3.2.1 The 5-fold Cross Validation
We perform the 5-fold cross validation experiments on four datasets. Figure 2(a)
plots the ROC curves and shows the AUC values of ABMDA, EGBMMDA
and NMLPMDA on HMDD2.0-You dataset. In terms of AUC, NMLPMDA
is the best because of its AUC value is 0.9301, while the other results are
0.9007(ABMDA), 0.7433(EGBMMDA). We also conduct the experiment on
HMDD2.0-Yan dataset. Figure 2(b) shows the ROC curves of ABMDA, EGB-
MMDA and NMLPMDA on HMDD2.0-Yan dataset. Compared with the other
results of 0.9050(ABMDA), 0.7283(EGBMMDA), NMLPMDA achieves 0.9278,
which is superior to other methods. Similarly, as shown in Fig. 2(c), NMLP-
MDA also outperforms other methods on HMDD2.0-Lan dataset. The AUC
value of NMLPMDA is 0.9206, which is superior to the other results of
0.9031(ABMDA), 0.7316(EGBMMDA). Finally, the AUC of NMLPMDA is
0.9350 on the HMDD3.0 dataset, while those of ABMDA and EGBMMDA are
0.8693, 0.7941, respectively. Obviously, NMLPMDA performs the best among
three methods in terms of AUC, as shown in Fig. 2(d). In summary, these exper-
iments show that NMLPMDA can achieve improvement in predicting miRNA-
disease associations compared to some state-of-the-art approaches.

In this study, the original miRNA-disease adjacency matrix is updated in
each repetition of the 5-fold cross validation experiment, as miRNA functional
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similarity and GIP kernel similarities of miRNAs and diseases calculation is
based on the adjacency matrix that is different in each repetition of 5-fold cross
validation experiment. We follow the same way to reproduce ABMDA and EGB-
MMDA and find that the AUC values in our experiment is lower than the AUC
values of the original text. The reason may be that the authors neglected the
fact that the adjacency matrix should be updated when computing miRNA func-
tional similarity and GIP kernel similarities of miRNAs and diseases.

(a) (b)

(c) (d)

Fig. 2. The ROC curves for the models of four datasets with the 5-fold cross validation.

3.2.2 Denovo MiRNA Validation
In addition, we adopt the denovo miRNA validation on four datasets. We ran-
domly select 50 miRNAs on each dataset and remove all their known associations
in turn as the test set to evaluate the prediction performance for new miRNAs
(have no known miRNA-disease associations). Table 2 shows the AUC value of
denovo miRNA validation. The AUC values of NMLPMDA on four datasets are
0.8937, 0.9054, 0.7679 and 0.8974, respectively, which are superior to the other
results of denovo miRNA validation.
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Table 2. The AUC value of denovo miRNA validation.

AUC NMLPNDA ABMDA EGBMMDA

HMDD2.0-You 0.8937 0.8842 0.8384

HMDD2.0-Yan 0.9054 0.8900 0.7683

HMDD2.0-Lan 0.7679 0.7584 0.7575

HMDD3.0 0.8974 0.8827 0.7393

3.3 Case Studies

In order to further illustrate the performance of NMLPMDA, we evaluate the
prediction ability of NMLPMDA on Lymphoma. Lymphoma is a malignant
tumor that originates in the lymphoid hematopoietic system [15]. More and
more studies have reported that many miRNAs are closely related to the disease.
Therefore, Lymphoma are chosen as the case study to evaluate the prediction
ability of NMLPMDA. In this experiment, the model is trained using all known
miRNA-disease pairs as the training set in the HMDD3.0 dataset to predict
miRNAs related with Lymphoma. After obtaining the predicted results, we pick
up the 30 miRNAs with the highest scores and verify them with dbDEMCv2.0
database.

Table 3. The result of top 30 related miRNAs of Lymphoma predicted by NMLPMDA
on the HMDD3.0 dataset.

Top1-15miRNA Evidence Top16-30miRNA Evidence

hsa-mir-874 dbDEMC 2.0 hsa-mir-9-3 PMID:22310293

hsa-mir-663a Unknown hsa-mir-20a dbDEMC 2.0

hsa-mir-21 dbDEMC 2.0 hsa-mir-31 dbDEMC 2.0

hsa-mir-155 dbDEMC 2.0 hsa-mir-15a dbDEMC 2.0

hsa-mir-146a dbDEMC 2.0 hsa-mir-222 dbDEMC 2.0

hsa-mir-223 dbDEMC 2.0 hsa-mir-9-2 PMID:22310293

hsa-mir-34a dbDEMC 2.0 hsa-mir-92a dbDEMC 2.0

hsa-mir-145 dbDEMC 2.0 hsa-mir-489 dbDEMC 2.0

hsa-mir-126 dbDEMC 2.0 hsa-mir-146b dbDEMC 2.0

hsa-mir-7-1 Unknown hsa-mir-9 dbDEMC 2.0

hsa-mir-221 dbDEMC 2.0 hsa-mir-210 dbDEMC 2.0

hsa-mir-150 dbDEMC 2.0 hsa-mir-19a dbDEMC 2.0

hsa-mir-16 dbDEMC 2.0 hsa-mir-29a dbDEMC 2.0

hsa-mir-17 dbDEMC 2.0 hsa-mir-205 dbDEMC 2.0

hsa-mir-143 dbDEMC 2.0 hsa-mir-451 dbDEMC 2.0
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Table 3 demonstrates the result of top 30 miRNAs related-Lymphoma pre-
dicted by NMLPMDA on the HMDD3.0 dataset. It shows that 26 of top 30 are
confirmed in the dbDEMC database. In addition, there are 2 novel associations
that are validated in literature. For example, inhibition of miR-9 de-represses
HuR and DICER1 and impairs Hodgkin lymphoma tumour outgrowth in vivo
[16]. With these recent literature and database evidences, 28 out of the top 30
potentially Lymphoma-related miRNAs were verified.

4 Conclusion

In this study, we propose a new method to predict miRNA-disease associations
based on negative sample selection strategy and MLP, in which reliable nega-
tive samples are used to train the multi-layer perceptron neural network. On
four datasets (HMDD2.0-Yan, HMDD2.0-Lan, HMDD2.0-You, HMDD3.0), the
AUC values of 5-fold cross validation for NMLPMDA are 0.9278, 0.9206, 0.9301
and 0.9350, respectively. In addition, 28 of top 30 miRNAs associated with
Lymphoma were validated experimentally in various case studies, respectively.
Nowadays, although some important progress in predicting miRNA-disease asso-
ciations have been made, the lack of non-associated miRNA-disease pairs and
the limitation of data volume of known miRNA-disease associations also influ-
ence the further development of miRNA-disease association prediction methods.
Therefore, to further development of prediction methods for miRNA-disease
associations, larger scale of experimentally validated data should be collected
for associated data and non-associated data. In addition, more biological data
related to miRNAs and diseases should be explored to further predict miRNA-
disease associations, such as miRNA family and cluster information, neighbor-
hood information, etc.
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Abstract. Suppose we have a set X consisting of n taxa and we are
given information from k loci from which to construct a phylogeny for
X. Each locus offers information for only a fraction of the taxa. The ques-
tion is whether this data suffices to construct a reliable phylogeny. The
decisiveness problem expresses this question combinatorially. Although
a precise characterization of decisiveness is known, the complexity of the
problem is open. Here we relate decisiveness to a hypergraph coloring
problem. We use this idea to (1) obtain lower bounds on the amount of
coverage needed to achieve decisiveness, (2) devise an exact algorithm
for decisiveness, (3) develop problem reduction rules, and use them to
obtain efficient algorithms for inputs with few loci, and (4) devise an inte-
ger linear programming formulation of the decisiveness problem, which
allows us to analyze data sets that arise in practice.

Keywords: Phylogenetic tree · Taxon coverage · Algorithms

1 Introduction

Missing data poses a challenge to assembling phylogenetic trees. The question
we address here is how much data can one afford to miss without compromising
accuracy. We focus on data sets assembled by concatenating data from many
(sometimes thousands) of loci [13,14,25]. Such data sets are used to construct
phylogenetic trees by either (i) combining the data from all the loci into a single
supermatrix that is then used as input to some standard phylogeny construction
method (e.g., [10,20]) or (ii) taking phylogenetic trees computed separately for
each locus and combining them into a single supertree that summarizes their
information [4,18,24]. For various reasons, the coverage density of concatenated
datasets — i.e., the ratio of the amount of available data to the maximum
possible amount — is often much less than 1 [16]. Reference [6] examines a
wide range of phylogenetic analyses using concatenated data sets, and reports
coverage densities ranging from 0.06 to 0.98, with the majority being under 0.5.

Low coverage density can give rise to ambiguity [17,21,26]. In supertree anal-
yses, ambiguity manifests itself in multiple supertrees that are equivalent with
respect to the method upon which they are based. In super-matrix analyses,
it is manifested in multiple topologically different, but co-optimal (in terms of
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parsimony or likelihood scores) trees. Note that high coverage density does not,
by itself, guarantee lack of ambiguity. More important is the coverage pattern
itself. The question is whether one can identify conditions under which a given
coverage pattern guarantees a unique solution. Sanderson and Steel [17,23] have
proposed a formal approach to studying this question, which we explain next.

A taxon coverage pattern for a taxon set X is a collection of sets S =
{Y1, Y2, . . . , Yk}, where, for each i ∈ {1, 2, . . . , k}, Yi is a subset of X consisting
of the taxa for which locus i provides information. S is decisive if it satisfies the
following property: Let T and T ′ be two binary phylogenetic trees for X such
that, for each i ∈ {1, 2, . . . , k}, the restrictions of T and T ′ to Yi are isomorphic
(restriction and isomorphism are defined in Sect. 2). Then, it must be the case
that T and T ′ are isomorphic. The decisiveness problem is: Given a taxon cov-
erage pattern S, determine whether or not S is decisive. Intuitively, if a taxon
coverage pattern S is not decisive, we have ambiguity. That is, there are at least
two trees that cannot be distinguished from each other by the subtrees obtained
when these trees are restricted to the taxon sets in S.

The complexity of the decisiveness problem has been surprisingly hard to
settle, and, to our knowledge, remains an open question (but see Sect. 2, Remark
1). A necessary and sufficient condition — the four-way partition property — for
a coverage pattern to be decisive is known [17,23] (see also Sect. 2). However, it
is not clear how to test this condition efficiently. On the positive side, the rooted
case, where at least one taxon for which every locus offers data, is known to
be polynomially solvable, and software for it is available [27]. Groves [1,7] are a
related, but not identical, notion. For a discussion on the relationship between
groves and decisiveness, see [16].

Contributions. In Sect. 2, we define decisiveness precisely, and review some ear-
lier results, including the four-way partition property. In Sect. 3, we show that
checking decisiveness is equivalent to checking for the non-existence of a “no-
rainbow” coloring in a hypergraph associated with the given coverage pattern.
The no-rainbow coloring problem is conjectured to be NP-complete. If this con-
jecture holds true, then checking decisiveness is co-NP complete. In Sect. 4 we
derive a lower bound on the amount of coverage needed to achieve decisiveness.
This bound can be used to quickly rule out the decisiveness of certain cover-
age patterns. Next, we turn our attention to developing algorithms to check
decisiveness. Using the four-way partition property näıvely leads to a O(4n)
algorithm for decisiveness. In Sect. 5, we give a considerably faster exact algo-
rithm, which checks decisiveness in O(2.8n) time by exploiting the connection
with no-rainbow 4-colorings. Section 6 studies reduction rules that allow us to
compress an instance of the decisiveness problem to a smaller, but equivalent,
instance. One consequence is that we can show that the decisiveness problem is
fixed-parameter tractable in the number of loci. The performance in practice of
the algorithms of Sects. 5 and 6 remains to be tested. Nevertheless, in Sect. 7, we
show that checking decisiveness in practice may not be as difficult as the conjec-
tured complexity of the problem would suggest. In that section, we present an
integer linear programming (ILP) formulation of the decisiveness problem, along
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with experimental results using this formulation on real data sets. In all cases,
an ILP solver was able to check decisiveness within seconds; indeed, an answer
was found within a fraction of a second in most cases. We also show that the
ILP approach can be used to obtain subsets of taxa for which the given data is
decisive. Section 8 gives some concluding remarks.

2 Preliminaries

Throughout the rest of this paper, X denotes a set of taxa, n denotes |X|, and,
for any positive integer q, [q] denotes the set {1, 2, . . . , q}.

Phylogenetic Trees. A phylogenetic X-tree [19,22] is a tree T with leaf set X,
where every internal vertex has degree at least three. Biologists are often inter-
ested in rooted trees, where the root is considered as the origin of species and
edges are viewed as being directed away from the root, indicating direction of
evolution. Note, however, that most phylogeny construction methods produce
unrooted trees.

A split of taxon set X is a bipartition A|B of X such that A,B �= ∅. Let T
be a phylogenetic X-tree. Each edge e in T defines a split σT (e) = A|B, where A
and B are the subsets of X lying in each component of T −e. Spl(T ) denotes the
set {σe : e ∈ E(T )}. It is well-known that a phylogenetic X-tree T is completely
determined by Spl(T ) [19, Theorem 3.5.2]. Two X-trees T and T ′ are isomorphic
if Spl(T ) = Spl(T ′).

Let T be a phylogenetic X-tree, and suppose Y ⊆ X. The restriction of T to
Y , denoted by T |Y , is the phylogenetic Y -tree where Spl(T |Y ) = {A∩Y |B ∩Y :
A|B ∈ Spl(T ) and A ∩ Y,B ∩ Y �= ∅}. Equivalently, T |Y is obtained from the
minimal subtree of T that connects Y by suppressing all vertices of degree two
that are not in Y .

Decisiveness. A taxon coverage pattern S for X is phylogenetically decisive if
it satisfies the following property: If T and T ′ are binary phylogenetic X-trees,
with T |Y = T ′|Y for all Y ∈ S, then T = T ′. In other words, for any binary
phylogenetic X-tree T , the collection {T |Y : Y ∈ S} uniquely determines T
(up to isomorphism). The decisiveness problem is the problem of determining
whether a given coverage pattern is decisive.

Let QS denote the set of all quadruples from X that lie in at least one set
in S. That is: QS =

⋃
Y ∈S

(
X
4

)
. A collection S of subsets of X satisfies the

four-way partition property (for X) if, for all partitions of X into four disjoint,
nonempty sets A1, A2, A3, A4 (with A1 ∪A2 ∪A3 ∪A4 = X) there exists ai ∈ Ai

for i ∈ {1, 2, 3, 4} for which {a1, a2, a3, a4} ∈ QS .

Theorem 1 [23]. A taxon coverage pattern S for X is phylogenetically decisive
if and only if S satisfies the four-way partition property for X.

Corollary 1. The decisiveness problem is in co-NP.
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Proof. A certificate for non-decisiveness is a partition of X into four disjoint,
nonempty sets A1, A2, A3, A4, such that there is no quadruple {a1, a2, a3, a4} ∈
QS where ai ∈ Ai for each i ∈ {1, 2, 3, 4}. �

Conjecture 1. The decisiveness problem is co-NP-complete.

Remark 1. A recent preprint [28] presents a proof that the no-rainbow 3-coloring
problem (defined in Sect. 3) is NP-complete. This result would imply that deci-
siveness is indeed co-NP complete.

Note that Theorem 1 implies that a taxon coverage pattern S for X such
that X ∈ S (that is, one set in S contains all the taxa) is trivially decisive.

Theorem 2 [23]. Let S be a taxon coverage pattern for X.

(i) If S is decisive, then for every set A ∈ (
X
3

)
, there exists a set Y ∈ S such

that A ⊆ Y .
(ii) If

⋂
Y ∈S Y �= ∅, then, S is decisive if and only if for every set A ∈ (

X
3

)
, there

exists a set Y ∈ S such that A ⊆ Y .

Part (ii) of Theorem 2 implies that decisiveness is polynomially solvable in
the rooted case [22].

3 Hypergraphs, No-Rainbow Colorings, and Decisiveness

Hypergraphs. A hypergraph H is a pair H = (X,E), where X is a set of ele-
ments called nodes or vertices, and E is a set of non-empty subsets of X called
hyperedges or edges [2,3]. Two nodes u, v ∈ V are neighbors if {u, v} ⊆ e, for
some e ∈ E. A hypergraph H = (X,E) is r-uniform, for some integer r > 0, if
each hyperedge of H contains exactly r nodes.

A chain in a hypergraph H = (X,E) is an alternating sequence v1, e1, v2, . . . ,
es, vs+1 of nodes and edges of H such that: (1) v1, . . . , vs are all distinct nodes
of H, (2) e1, . . . , es are all distinct edges of H, and (3) {vj , vj+1} ∈ ej for
j ∈ {1, . . . , s}. Two nodes u, v ∈ X are connected in H, denoted u ≡ v, if
there exists a chain in H that starts at u and ends at v. The relation u ≡ v
is an equivalence relation [2]; the equivalence classes of this relation are called
the connected components of H. H is connected if it has only one connected
component; otherwise H is disconnected.

No-Rainbow Colorings and Decisiveness. Let H = (X,E) be a hypergraph and
r be a positive integer. An r-coloring of H is a mapping c : X → [r]. For node
v ∈ X, c(v) is the color of v. Throughout this paper, r-colorings are assumed to
be surjective; that is, for each i ∈ [r], there is at least one node v ∈ X such that
c(v) = i. An edge e ∈ E is a rainbow edge if, for each i ∈ [r], there is at least one
v ∈ e such that c(v) = i. A no-rainbow r-coloring of H is a surjective r-coloring
of H such that H has no rainbow edge.
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Given an r-uniform hypergraph H = (X,E), the no-rainbow r-coloring prob-
lem (r-NRC) asks whether H has a no-rainbow r-coloring [5]. r-NRC is clearly
in NP, but it is unknown whether the problem is NP-complete [5].

Let S be a taxon coverage pattern for X. We associate with S a hypergraph
H(S) = (X,S), and with QS , we associate a 4-uniform hypergraph H(QS) =
(X,QS). The next result states that r-NRC is equivalent to the complement of
the decisiveness problem.

Proposition 1. Let S be a taxon coverage pattern. The following statements
are equivalent.

(i) S is not decisive.
(ii) H(QS) admits a no-rainbow 4-coloring.
(iii) H(S) admits a no-rainbow 4-coloring.

Proof. (1) ⇔ (2): By Theorem 1, it suffices to show that S fails to satisfy the
4-way partition property if and only if H(QS) has a no-rainbow 4-coloring. S
does not satisfy the 4-way partition property if and only if there exists a 4-way
partition A1, A2, A3, A4 of X such that, for every q ∈ QS , there is an i ∈ [4] such
that Ai ∩ q = ∅. This holds if and only if the coloring c, where c(v) = i if and
only if v ∈ Ai, is a no-rainbow 4-coloring of H(QS).

(2) ⇔ (3): It is clear that if c is a no-rainbow 4-coloring of H(S), then c is a no-
rainbow 4-coloring of H(QS). We now argue that if c is a no-rainbow 4-coloring of
H(QS), then c is a no-rainbow 4-coloring of H(S). Suppose, to the contrary, that
there a rainbow edge Y ∈ S. Let q be any 4-tuple {v1, v2, v3, v4} ⊆ Y such that
c(vi) = i, for each i ∈ [4]. Then, q is a rainbow edge in QS , a contradiction. �

Proposition 2. Let H = (X,E) be a hypergraph and r be a positive integer.

(i) If H has at least r connected components, then H admits a no-rainbow r-
coloring.

(ii) If r = 2, then H admits a no-rainbow r-coloring if and only if H is discon-
nected.

Proof. (i) Suppose the connected components of H are C1, . . . , Cq, where q ≥ r.
For each i ∈ {1, . . . , r − 1}, assign color i to all nodes in Ci. For i = {r, . . . , q},
assign color r to all nodes in Ci. Thus, no edge is rainbow-colored.

(ii) By part (i), if H is disconnected, it admits a no-rainbow 2-coloring. To
prove the other direction, assume, for contradiction that H admits a no-rainbow
2-coloring but it is connected. Pick any two nodes u and v such that c(u) = 1
and c(v) = 2. Since H is connected, there is a (u, v)-chain in H. But this chain
must contain an edge with nodes of two different colors; i.e., a rainbow edge. �

Part (ii) of Proposition 2 implies the following.

Corollary 2. 2-NRC ∈ P .

Lemma 1. Let H = (X,E) be an r-uniform hypergraph. Suppose that there
exists a subset A of X such that 2 ≤ |A| ≤ r−1 and A �⊆ e for any e ∈ E. Then,
H has a no-rainbow r-coloring.
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Proof. Let c be the coloring where each of the nodes in A is assigned a distinct
color from the set [|A|] and the remaining nodes are assigned colors from the set
{|A| + 1, . . . , r}. Then, c is a no-rainbow r-coloring of H. �

4 A Tight Lower Bound on the Coverage

The next result provides a tight lower bound on the minimum amount of coverage
that is needed to achieve decisiveness.

Theorem 3. Let S be a taxon coverage pattern for X and let n = |X|. If S is
decisive, then |QS | ≥ (

n−1
3

)
. This lower bound is tight. That is, for each n ≥ 4,

there exists a decisive taxon coverage pattern S for X such that |QS | =
(
n−1
3

)
.

To prove Theorem 3, for every pair of integers n, r such that n ≥ r ≥ 1 let
us define the function A(n, r) as follows.

A(n, r) =

{
1 if r = 1 or n = r

A(n − 1, r − 1) + A(n − 1, r) otherwise.
(1)

Lemma 2. Let n and r be integers such that n ≥ r ≥ 1 and let H = (X,E) be
an n-vertex r-uniform hypergraph. If |E| < A(n, r), then H admits a no-rainbow
r-coloring. If |E| ≥ A(n, r), then H may or may not admit a no-rainbow r-
coloring. Furthermore, there exist n-vertex r-uniform hypergraphs with exactly
A(n, r) edges that do not admit a no-rainbow r-coloring.

Proof. For r = 1 or n = r, H has at most one hyperedge. If H has exactly one
hyperedge, then any coloring that uses all r colors contains a rainbow edge. If
H contains no hyperedges, then H trivially admits a no-rainbow r-coloring.

Let us assume that for any i and j with 1 ≤ i < n and 1 ≤ j ≤ r, A(i, j)
equals the minimum number of hyperedges an i-node, j-uniform hypergraph H
that does not admit a no-rainbow r-coloring. We now prove the claim for i = n
and j = r.

Pick an arbitrary node v ∈ X. There are two mutually disjoint classes of
colorings of H: (1) the colorings c such that c(v) �= c(u) for any u ∈ X \ {v},
and (2) the colorings c such that c(v) = c(u) for some u ∈ X \ {v}.

For the colorings in class 1, we need hyperedges that contain node v, since in
the absence of such hyperedges, any coloring is a no-rainbow coloring. Assume,
without loss of generality, that c(v) = r. The question reduces to finding the
number of hyperedges in an (n − 1)-node (r − 1)-uniform hypergraph (since
v’s color, r, is unique). The minimum number of hyperedges needed to avoid a
no-rainbow (r − 1)-coloring for an (n − 1)-node hypergraph is A(n − 1, r − 1).

To find the minimum number of hyperedges needed to cover colorings of class
2, we ignore v, since v is assigned a color that is used by other nodes as well.
The number of hyperedges needed for this class is A(n − 1, r).

To obtain a lower bound, we add the lower obtained for the two disjoint
classes of colorings. Thus, A(n, r) = A(n − 1, r − 1) + A(n − 1, r). �



Checking Phylogenetic Decisiveness in Theory and in Practice 195

Lemma 3. A(n, r) =
(
n−1
r−1

)
.

Proof. For r = 1, A(n, r) =
(
n−1
0

)
= 1 and for n = r, A(n, r) = A(r, r) =

(
r−1
r−1

)
= 1. Now, assume that A(i, j) =

(
i−1
j−1

)
, for 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ r.

Then, A(n, r) = A(n − 1, r) + A(n − 1, r − 1) =
(
n−2
r−1

)
+

(
n−2
r−2

)
=

(
n−1
r−1

)
. �

Proof (of Theorem 3). Follows from Lemmas 2 and 3, by setting r = 4, and
Proposition 1(ii). �

5 An Exact Algorithm for Decisiveness

The näıve way to use Theorem 1 to test whether a coverage pattern S is decisive
is to enumerate all partitions of X into four non-empty sets A1, A2, A3, A4 and
verify that there is a set Y ∈ S that intersects each Ai. Equivalently, by Propo-
sition 1, we can enumerate all surjective colorings of H(S) and check if each of
these colorings yields a rainbow edge. In either approach, the number of options
to consider is given by a Stirling number of the second kind, namely

{
n
4

} ∼ 4n

4!
[9]. The next result is a substantial improvement over the näıve approach.

Theorem 4. Let S be a taxon coverage pattern for a taxon set X. Then, there
is an algorithm that, in O∗(2.8n) time1 determines whether or not S is decisive.

The proof of Theorem 4 relies on the following result.

Lemma 4. There exists an algorithm that, given a 4-uniform hypergraph H =
(X,E), determines if H has a no-rainbow 4-coloring in time O∗(2.8n).

Proof. We claim that algorithm FindNRC (Algorithm 1) solves 4-NRC in
O∗(2.8n) time. FindNRC relies on the observation that if H has a no-rainbow
4-coloring c, then (1) there must exist a subset A ⊆ X where |A| ≤ �n

4 �, such
that all nodes in A have the same color, which is different from the colors used
for X \ A, and (ii) there must exist a subset B ⊆ X \ A, where |B| ≤ �n−|A|

3 �,
such that all nodes in B have the same color, which is different from the colors
used for the nodes in X \ B. FindNRC tries all possible choices of A and B and,
without loss of generality, assigns c(v) = 1, for all v ∈ A and c(v) = 2, for all
v ∈ B. We are now left with the problem of determining whether we can assign
colors 3 and 4 to the nodes in X \ (A ∪ B) to obtain a no-rainbow 4-coloring for
H.

Let c be the current coloring of H. For each e ∈ E and each i ∈ [4], mc
e(i)

denotes the number of nodes v ∈ e such that c(v) = i. Consider the situation
after FindNRC assigns colors 1 and 2 to the nodes in A and B. There are two
cases, both of which can be handled in polynomial time.

1. There is no e ∈ E, such that, for each i ∈ [2], mc
e = 1. Then, if we partition

the nodes of X \(A∪B), arbitrarily into subsets C and D and assign c(v) = 3
for each v ∈ C and c(v) = 4 for each v ∈ D, we obtain a no-rainbow 4-coloring
of H.

1 The O∗-notation is a variant of O-notation that ignores polynomial factors [8].
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1 FindNRC(H)
Input: A 4-uniform hypergraph H = (X,E) such that |X| ≥ 4.
Output: A no-rainbow 4-coloring of H, if one exists; otherwise, fail.

2 for i = 1 to �n
4
� do

3 foreach v ∈ X do c(v) = uncolored

4 foreach A ⊆ X such that |A| = i do
5 foreach v ∈ A do c(v) = 1
6 for j = 1 to �n−i

3
� do

7 foreach B ⊆ X \ A such that |B| = j do
8 foreach v ∈ B do c(v) = 2
9 if there is no e ∈ E such that, for each i ∈ [2], mc

e(i) = 1
then

10 Arbitrarily split X \ (A ∪ B) into nonempty sets C,D
11 foreach v ∈ C do c(v) = 3
12 foreach v ∈ D do c(v) = 4
13 return c

14 else
15 Choose any e ∈ E such that mc

e(i) = 1 for each i ∈ [2]
16 foreach uncolored node x ∈ e do c(x) = 3
17 while there exists e ∈ E s.t. mc

e(i) = 1 for each i ∈ [3]
do

18 Pick any e ∈ E s.t. mc
e(i) = 1 for each i ∈ [3]

19 Let x be the unique uncolored node in e
20 c(x) = 3

21 if X contains no uncolored node then return fail

22 else
23 foreach uncolored vertex u ∈ X do c(u) = 4
24 return c

25 return fail

Algorithm 1: No-rainbow 4-coloring of H

2. There exists e ∈ E, such that, for each i ∈ [2], mc
e = 1. Let e be any such

edge. Then e must exactly contain two uncolored nodes, x and y. To avoid
e becoming a rainbow edge, we must set c(x) = c(y) �∈ [2]. Without loss of
generality, make c(x) = c(y) = 3. Next, as long as there exists any hyperedge
e such that mc

e(i) = 1 for each i ∈ [3], the (unique) uncolored node x in e
must be assigned c(x) = 3, because setting c(x) = 4 would make e a rainbow
hyperedge. Once no such hyperedges remain, we have two possibilities:
(a) X does not contain uncolored nodes. Then, there does not exist a no-

rainbow 4-coloring, given the current choice of A and B.
(b) X contains uncolored nodes. Then, there is no e ∈ E such that mc

e(i) = 1
for each i ∈ [3]. Thus, if we set c(u) = 4 for each uncolored node u, we
obtain a no-rainbow 4-coloring for H.

The total number of pairs (A,B) considered throughout the execution of

FindNRC is at most
∑�n

4 �
i=1

(
n
i

) ∑�n−i
3 �

j=1

(
n−i
j

)
. We have estimated this sum numer-
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ically to be O(2.8n). The time spent per pair (A,B) is polynomial in n; hence,
the total running time of FindNRC is O∗(2.8n). �

Proof (of Theorem 4). Given S, we construct the hypergraph H(QS), which
takes time polynomial in n, and then run FindNRC(H(QS)), which, by Lemma
4, takes O∗(2.8n) time. If the algorithm returns a no-rainbow 4-coloring c of
H(QS), then, by Proposition 1, S is not decisive; if FindNRC(H(QS)) returns
fail, then S is decisive. �

6 Reduction Rules and Fixed Parameter Tractability

A reduction rule for the decisiveness problem is a rule that replaces an instance S
of the problem by a smaller instance S̃ such that S is decisive if and only if S̃ is.
Here we present reduction rules that can reduce an instance of the decisiveness
problem into a one whose size depends only on k. This size reduction is especially
significant for taxon coverage patterns where the number of loci, k, is small
relative to the number of taxa. Such inputs are not uncommon in the literature
— examples of such data sets are studied in Sect. 7.

We need to introduce some definitions and notation. Let H = (X,E) be a
hypergraph where X = {x1, x2, . . . , xn} and E = {e1, e2, . . . , ek}. The incidence
matrix of H is the n × k binary matrix where MH [i, j] = 1 if xi ∈ ej and
MH [i, j] = 0 otherwise. Two rows in MH are copies if the rows are identical
when viewed as 0-1 strings; otherwise, they are distinct.

Let M̃H denote the matrix obtained from MH by striking out duplicate rows,
so that M̃H retains only one copy of each row in MH . Let ñ denote the number
of rows of M̃H . Then, ñ ≤ 2k. M̃ is the incidence matrix of a hypergraph
H̃ = (X̃, Ẽ), where X̃ ⊆ X, and each v ∈ X̃ corresponds to a distinct row of
MH . For each v ∈ X, X(v) ⊆ X consists of all nodes u ∈ X that correspond to
copies of the row of MH corresponding to v.

Given two binary strings s1 and s2 of length k, s1 & s2 denotes the bitwise
and of s1 and s2; 0 denotes the all-zeroes string of length k.

The next result is a direct consequence of Lemma 1.

Proposition 3. If M̃H has two rows r1 and r2 such that r1 & r2 = 0 or three
rows r1, r2 and r3 such that r1 & r2 & r3 = 0, then H̃ and H admit no-rainbow
4-colorings.

Corollary 3. If M̃H has more than 2k−1 rows, where k is the number of
columns, then H admits a no-rainbow 4-coloring.

Proof. Suppose ñ ≥ 2k−1. Then, there are at least two rows r1 and r2 in M̃H

that are complements of each other (that is, r2 is is obtained by negating each
bit in r1) and, thus, r1 & r2 = 0. The claim now follows from Proposition 3. �

Theorem 5. Suppose n ≥ ñ + 2. H admits a no-rainbow 4-coloring if and only
if H̃ admits a no-rainbow r-coloring for some r ∈ {2, 3, 4}.
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Proof. (If ) Suppose H̃ = (X̃, Ẽ) admits a no-rainbow r-coloring c̃ for some
r ∈ {2, 3, 4}. Let c be the coloring for H obtained by setting c(u) = c̃(v), for
each v ∈ X̃ and each u ∈ X(v). If c̃ is a no-rainbow 4-coloring of H̃, then c is
also one for H, and we are done. Suppose c̃ is a 3-coloring. Since n ≥ ñ+2, there
must exist v ∈ X̃ such that |X(v)| ≥ 2. We choose one node u ∈ X(v) \ {v},
and set c(u) = 4, making c a no-rainbow 4-coloring for H. Suppose c̃ is a no-
rainbow 2-coloring. If there exists v ∈ X̃ \ {v} such that |X(v)| ≥ 3, we pick any
u,w ∈ X̃ \ {v}, and set c(u) = 3 and c(w) = 4. If there is no v ∈ X̃ such that
|X(v)| ≥ 3, there must exist v1, v2 ∈ X̃ such that |X(vi)| ≥ 2 for i ∈ {1, 2}. For
i ∈ {1, 2}, choose any ui ∈ X(vi) \ {vi} and set c(ui) = i + 2.

(Only if ) Suppose H has a no-rainbow 4-coloring c. Let c̃ be the coloring
of H̃ where, for each v ∈ X̃, c̃(v) = c(u), for some arbitrarily chosen node in
u ∈ X(v). If c̃ is a surjective 4-coloring of v, c̃ must be a no-rainbow 4-coloring
of H̃, and we are done. In the extended version of the paper [15], we show that
any r-coloring of H̃, where r ∈ {1, 2, 3, 4} can be converted into a no-rainbow
4-coloring of H̃ by altering some of the colors assigned by c̃. �

Theorem 6. Decisiveness is fixed-parameter tractable in k.

Proof. Let S be the input coverage pattern. First, in O∗(2k) time, we construct
H̃(S). By Theorem 2, we need to test if H̃(S) admits a non-rainbow r-coloring
for any r ∈ {2, 3, 4}. If the answer is “yes” for any such r, then S is not decisive;
otherwise S is decisive. By Corollary 2, the test for r = 2 takes polynomial time.
We perform the steps for r = 3 and r = 4 using the algorithm of Sect. 5. The
total time is O∗(2.8ñ), which is O∗(2.82

k

). �

7 An Integer Linear Programming Formulation

Let S = {Y1, Y2, . . . , Yk} be a taxon coverage pattern for X. Here we formulate a
0-1 integer linear program (ILP) that is feasible if and only if S is non-decisive.2

We use the equivalence between non-decisiveness of S and the existence of a
no-rainbow 4-coloring of hypergraph H(S) (Proposition 1).

Suppose X = {a1, a2, . . . , an}. For each i ∈ [n] and each color q ∈ [4], define
a binary color variable xiq, where xiq = 1 if taxon i is assigned color q. To ensure
that each i ∈ X is assigned only one color, we add constraints

∑

q∈[4]

xiq = 1, for each i ∈ X. (2)

The following constraints ensure that each color q ∈ [4] appears at least once.
∑

i∈X

xiq ≥ 1, for each q ∈ [4]. (3)

2 For an introduction to the applications of integer linear programming, see [12].
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To ensure that, for each j ∈ [k], Yj is not rainbow colored, we require that
there exist at least one color that is not used in Yj ; i.e, that

∑
i∈Yj

xiq = 0, for
some q ∈ [4]. To express this condition, for each j ∈ [k] and each q ∈ [4], we
define a binary variable zjq, which is 1 if and only if

∑
i∈Yj

xiq = 0. We express
zjq using the following linear constraints.

(1 − zjq) ≤
∑

i∈Yj

xiq ≤ n · (1 − zjq), for each j ∈ [k] and each q ∈ [4] (4)

The requirement that Yj not be rainbow-colored is expressed as
∑

q∈[4]

zjq ≥ 1, for each j ∈ [k]. (5)

Proposition 4. S is non-decisive if and only if the 0-1 ILP with variables xiq

and zjq and constraints (2), (3), (4), and (5) is feasible.

Experimental Results. Here we summarize our computational results using ILP
on the data sets studied in [6].

We wrote a Python script that given a taxon coverage pattern, generates an
ILP model. Table 1 shows the time taken to generate the ILP models for the data
sets analyzed in [6] (see the latter reference for full citations of the corresponding
phylogenetic studies). The models were generated on a Linux server.

We generated ILP models for all the data sets in [6] and used Gurobi [11]
to solve 9 of these models. All but one of these models were solved in under
0.1 seconds. Table 2 shows the time taken to solve the models. Only one of the
data sets, Insects, is decisive (and its ILP took the longest to solve). Indeed, the
Insects data set is trivially decisive, as one locus spans all the taxa.

For the non-decisive data sets, we used a simple heuristic to identify a subset
of the taxa for which the data is decisive. If the data set is non-decisive, we
remove the taxon covered by the fewest loci, breaking ties in favor of the first
taxon in the input. After removing a taxon, we update the ILP model and run
it again. When the model becomes infeasible, the remaining data set is decisive.

For two data sets (Saxifragales and Mammals), the heuristic yielded trivially
decisive coverage patterns. We obtained non-trivial results for three data sets.
For the complete Birds data set, the largest of all, the heuristic took 1.1 h.
Although the heuristic retained only 2.5% of the original taxa, every family of
taxa except one from the original data set is represented in the final result. For
Bats, the heuristic took 70 seconds and achieved 4.3% coverage, but had sparse
coverage across the families. For Primates, the heuristic took 33 seconds and
achieved 50.3% coverage, distributed over most families. For all data sets, the
most time-consuming step was attempting to solve the final, infeasible, ILP.
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Table 1. Running times for generating ILPs for data sets studied in [6]

Data set Execution time (seconds) Number of taxa Number of loci

Allium 0.051037 57 6

Asplenium 0.047774 133 6

Bats 0.152805 815 29

Birds (complete) 4.688950 7000 32

Birds 2.723334 5146 32

Caryophyllaceae 0.068084 224 7

Chameleons 0.059073 202 6

Eucalyptus 0.058591 136 6

Euphorbia 0.061188 131 7

Ficus 0.063072 112 5

Fungi 0.223971 1317 9

Insects 7.649374 144 479

Iris 0.055743 137 6

Mammals 0.110263 169 26

Primates 0.363623 372 79

Primula 0.064607 185 6

Scincids 0.071276 213 6

Ranunculus 0.059699 170 7

Rhododendron 0.052903 117 7

Rosaceae 0.092148 529 7

Solanum 0.062660 187 7

Saxifragales 0.173522 946 51

Szygium 0.051021 106 5

Table 2. Solution times for a subset of ILPs listed in Table 1

Data set Execution time (seconds)

Bats 0.098

Birds (complete) 0.03

Eucalyptus 0.002

Ficus 0.001

Insects 5.902

Iris 0.002

Mammals 0.091

Primates 0.013

Saxifragales 0.004
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8 Discussion

Despite its apparent complexity, the decisiveness problem appears to be quite
tractable in practice. Since real data sets are likely to be non-decisive, testing
for decisiveness can only be considered a first step. Indeed, if we determine that
a data set is not decisive, it is useful to find a subset of the data that is decisive.
In Sect. 7, we have taken some preliminary steps in that direction, using a simple
heuristic. This heuristic could potentially be improved upon, perhaps relying on
the data reduction ideas of Sect. 6. One open problem is whether the doubly-
exponential algorithm of Theorem 6 can be improved.

Acknowledgements. Mike Steel pointed out the connection between decisiveness and
hypergraph coloring. We thank Mike Sanderson for useful discussions. He and Barbara
Dobrin provided the data studied in Sect. 7.
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Abstract. The inference of disease transmission networks from genetic
sequence data is an important problem in epidemiology. One popular
approach for building transmission networks is to reconstruct a phyloge-
netic tree using sequences from disease strains sampled from (a subset
of) infected hosts and infer transmissions based on this tree. However,
most existing phylogenetic approaches for transmission network infer-
ence cannot take within-host strain diversity into account, which affects
their accuracy, and, moreover, are highly computationally intensive and
unscalable.

In this work, we introduce a new phylogenetic approach, TNet, for
inferring transmission networks that addresses these limitations. TNet
uses multiple strain sequences from each sampled host to infer transmis-
sions and is simpler and more accurate than existing approaches. Further-
more, TNet is highly scalable and able to distinguish between ambiguous
and unambiguous transmission inferences. We evaluated TNet on a large
collection of 560 simulated transmission networks of various sizes and
diverse host, sequence, and transmission characteristics, as well as on 10
real transmission datasets with known transmission histories. Our results
show that TNet outperforms two other recently developed methods, phy-
loscanner and SharpTNI, that also consider within-host strain diversity
using a similar computational framework. TNet is freely available open-
source from https://compbio.engr.uconn.edu/software/TNet/.

1 Introduction

The accurate inference of disease transmission networks is fundamental to under-
standing and containing the spread of infectious diseases [2,10,16]. A key chal-
lenge with inferring transmission networks, particularly those of rapidly evolving
RNA and retroviruses [7], is that they exist in the host as “clouds” of closely
related sequences. These variants are referred to as quasispecies [6,22], and the
resulting genetic diversity of the strains circulating within a host has impor-
tant implications for efficiency of transmission, disease progression, drug/vaccine
c© Springer Nature Switzerland AG 2020
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resistance, etc. The availability of quasispecies, or sequences from multiple
strains per infected host, also has direct relevance for inferring transmission
networks and has the potential to make such inference easier and far more accu-
rate [18,20,23]. Yet, while the advent of next-generation sequencing technologies
has revolutionized the study of quasispecies, most existing transmission network
inference methods cannot use multiple distinct strain sequences per host.

Existing methods for inferring transmission networks can be classified into
two categories: Those based on constructing and analyzing sequence similarity or
relatedness graphs, and those based on constructing and analyzing phylogenetic
trees for the infecting strains. Many methods based on sequence similarity or
relatedness graph analysis exist and several recently developed methods in this
category are also able to take into account multiple distinct strain sequences per
host [9,14,19]. However, similarity/relatedness based methods can suffer from a
lack of resolution and are often unable to infer transmission directions or com-
plete transmission histories. Phylogeny-based methods [5,11,13,16,23] attempt
to overcome these limitations by constructing and analyzing phylogenies of the
infecting strains. We refer to these strain phylogenies as transmission phyloge-
nies. These phylogeny-based methods infer transmission networks by computing
a host assignment for each node of the transmission phylogeny, where this phy-
logeny is either first constructed independently or is co-estimated along with the
host assignment. Leaves of the transmission phylogeny are labelled by the host
from which they are sampled, and an ancestral host assignment is then inferred
for each node/edge of the phylogeny. This ancestral host assignment defines the
transmission network, where transmission is inferred along any edge connecting
two nodes labeled with different hosts.

Several sophisticated phylogeny-based methods have been developed over
the last few years. These include BEASTlier [11], SCOTTI [4], phybreak
[13], TransPhylo [5], and phyloscanner [23], BadTrIP [3]. Among these, only
SCOTTI [4], BadTrIP [3], and phyloscanner [23] can explicitly consider multiple
strain sequences per host. BEASTlier also allows for the presence of multiple
sequences per host, but requires that all sequences from the same host be clus-
tered together on the phylogeny, a precondition that is often violated in practice.
Among the methods that explicitly consider multiple strain sequences per host,
SCOTTI, BadTrIP, and BEASTlier are model-based and highly computationally
intensive, relying on the use of Markov Chain Monte Carlo (MCMC) algorithms
for inference. These methods also require several difficult-to-estimate epidemio-
logical parameters, such as infection times, and make several strong assumptions
about pathogen evolution and the underlying transmission network. Thus, phy-
loscanner [23] is the only previous method that takes advantage of multiple
sequences per host and that is also computationally efficient, easy to use, and
scalable to large datasets.

In this work, we introduce a new phylogenetic approach, TNet, for infer-
ring transmission networks. TNet uses multiple strain sequences from each sam-
pled host to infer transmissions and is simpler and more accurate than existing
approaches. TNet uses an extended version of the classical Sankoff algorithm [17]
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Fig. 1. Phylogeny-based transmission network inference. The figure shows a
simple example with three infected individuals A, B, and C, represented here by the
three different colors, where A has three viral variants while B and C have two each.
The tree on the left depicts the transmission phylogeny for the seven sampled strains,
with each of these strains colored by the host from which it was sampled. The tree in the
middle shows a hypothetical assignment of hosts to ancestral nodes of the transmission
phylogeny. This ancestral host assignment can then be used to infer the transmission
network shown on the right.

from the phylogenetics literature for ancestral host assignment, where the exten-
sion makes it possible to efficiently compute support values for individual trans-
mission edges based on a sampling of optimal host assignments where the num-
ber of back-transmissions (or reinfections by descendant disease strains) is min-
imized. TNet is parameter-free and highly scalable and can be easily applied
within seconds to datasets with hundreds of strain sequences and hosts. In
recent independent work, Sashittal et al. [18] developed a new method called
SharpTNI that is based on similar ideas to TNet. SharpTNI is based on an NP-
hard problem formulation that seeks to find parsimonious ancestral host assign-
ments minimizing the number of co-transmissions [18].The authors provide an
efficient heuristic for this problem that is based on uniform sampling of parsimo-
nious ancestral host assignments (not necessarily minimizing co-transmissions)
and subsequently filtering them to only keep those assignments among the sam-
ples that minimize co-transmissions [18]. Thus, both TNet and SharpTNI are
based on the idea of parsimonious ancestral host assignments and on aggre-
gating across the diversity of possible solutions obtained through some kind of
sampling of optimal solutions. The primary distinction between the two methods
is the strategy employed for sampling of the optimal solutions, with SharpTNI
minimizing co-transmissions and TNet minimizing back-transmissions.

We evaluated TNet, SharpTNI, and phyloscanner on a large collection of
560 simulated transmission networks of various sizes and representing a wide
range of host, sequence, and transmission characteristics, as well as on 10 real
transmission datasets with known transmission histories. We found that both
TNet and SharpTNI significantly outperformed phyloscanner under all tested
conditions and all datasets, yielding more accurate transmission networks for
both simulated and real datasets. Between TNet and SharpTNI, we found that
both methods performed similarly on the real datasets but that TNet showed
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better accuracy on the simulated datasets. TNet is freely available open-source
from: https://compbio.engr.uconn.edu/software/TNet/.

2 Basic Definitions and Preliminaries

Given a rooted tree T , we denote its node set, edge set, and leaf set by V (T ),
E(T ), and Le(T ) respectively. The root node of T is denoted by rt(T ), the parent
of a node v ∈ V (T ) by paT (v), its set of children by ChT (v), and the (maximal)
subtree of T rooted at v by T (v). The set of internal nodes of T , denoted I(T ),
is defined to be V (T ) \ Le(T ). A rooted tree is binary if all of its internal nodes
have exactly two children. In this work, the term tree refers to a rooted binary
tree.

2.1 Problem Formulation

Let T denote the transmission phylogeny constructed from the genetic sequences
of the infecting strains (i.e., pathogens) sampled from the infected hosts under
consideration. Note that such trees can be easily constructed using standard
phylogenetic methods such as RAxML [21]. These trees can also be rooted rel-
atively accurately using either standard phylogenetic rooting techniques or by
using a related sequence from a previous outbreak of the same disease as an out-
group. Let H = {h1, h2, . . . , hn} denote the set of n hosts under consideration.
We assume that each leaf of T is labeled with the host from H from which the
corresponding strain sequence was obtained. Figure 1 shows an example of such
a tree and its leaf labeling, where the labeling is depicted using the different
colors.

Observe that each internal node of T represents an ancestral strain sequence
that existed in some infected host. Moreover, each internal node (or bifurcation)
represents either intra-host diversification and evolution of that ancestral strain
or a transmission event where that ancestral strain is transmitted from one host
to another along one of the child edges. Thus, each node of T is associated with
an infected host. Given t ∈ V (T ), we denote the host associated with node t
by h(t). Note that internal nodes may represent strains from hosts that do not
appear in H, i.e., strains from unsampled hosts, and so there may be t ∈ I(T ) for
which h(t) �∈ H. Given an ancestral host assignment for T , i.e., given h(t) for each
t ∈ I(T ), the implied transmission network can be easily inferred as follows: A
transmission edge is inferred from host x to host y if there is an edge (pa(t), t) ∈
E(T ), where h(pa(t)) = x and h(t) = y. Note that each transmission edge in the
reconstructed transmission network may represent either direct transmission or
indirect transmission through one or more unsampled hosts. Thus, to reconstruct
transmission networks it suffices to compute h(t) for each t ∈ I(T ).

TNet (along with SharpTNI) is based on finding ancestral host assignments
that minimize the number of inter-host transmission events on T . The utility
of such parsimonious ancestral host assignment for transmission network infer-
ence when multiple strain sequences per host are available was first systemati-
cally demonstrated by Romero-Severson et al. [16] and later developed further

https://compbio.engr.uconn.edu/software/TNet/
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by Wymant et al. [23] in their phyloscanner method. The basic computational
problem under this formulation can be stated as follows:

Problem 1 (Optimal ancestral host assignment). Given a transmission
phylogeny T on strain sequences sampled from a set H = {h1, h2, . . . , hn} of n
infected hosts, compute h(t) for each t ∈ I(T ) such that the number of edges
(t′, t′′) ∈ E for which h(t′) �= h(t′′) is minimized.

Problem 1 is equivalent to the well-known small parsimony problem in phylo-
genetics and can be solved efficiently using the classical Fitch [8] and Sankoff [17]
algorithms. In TNet, we solve a modified version of the problem above that
considers all possible optimal ancestral host assignments and samples greedily
among them to minimize the number of back-transmissions (or reinfection by
a descendant disease strain). To accomplish this goal efficiently, TNet uses an
extended version of Sankoff’s algorithm.

3 Algorithmic Details

A primary methodological and algorithmic innovation responsible for the
improved accuracy of TNet (and also of SharpTNI) is the explicit and prin-
cipled consideration of variability in optimal ancestral host assignments. More
precisely, TNet recognizes that there are often a very large number of distinct
optimal ancestral host assignments and it samples the space of all optimal ances-
tral host assignments in a manner that preferentially preserves optimal ancestral
host assignments (described in detail below). TNet then aggregates across these
samples to compute a support value for each edge in the final transmission
network. This approach is illustrated in Fig. 2. Thus, the core computational
problem solved by TNet can be formulated as follows:

Definition 1 (Back-Transmission). Given a transmission network N on n
infected hosts H = {h1, h2, . . . , hn}, we say that there exists a back-transmission
for host hi if there exists a directed cycle containing hi in N . The total num-
ber of back-transmissions implied by N equals the number of hosts with back-
transmissions.

Problem 2 (Minimum back-transmission sampling). Given a transmis-
sion phylogeny T on strain sequences sampled from a set H = {h1, h2, . . . , hn}
of n infected hosts, let O denote the set containing all distinct ancestral host
assignments for T . Further, let O′ denote the subset of O that implies the fewest
back-transmissions in the resulting transmission network. Compute an optimal
ancestral host assignment from O′ such that each element of O′ has an equal
probability of being computed.

Observe that the actual number of optimal ancestral host assignments (both
O and O′) can grow exponentially in the number of hosts n. By address-
ing the sampling problem above instead, TNet seeks to efficiently account for
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Fig. 2. Accounting for multiple optima in transmission network inference.
The tree on the left depicts the transmission phylogeny for the seven strains sampled
from three infected individuals A, B, and C, represented here by the three different
colors. This tree admits two distinct optimal ancestral host assignments as shown in the
figure. These two optimal ancestral host assignments can then be together used to infer
a transmission network, as shown on the right, in which each edge has a support value.
The support value of a transmission edge is define to be the percentage of optimal
ancestral host assignments that imply that transmission edge.

the diversity within optimal ancestral host assignments with minimum back-
transmissions, without explicitly having to enumerate them all.

Note that SharpTNI performs a similar sampling among all optimal ances-
tral host assignments, but employs a different optimality objective. Specifically,
SharpTNI seeks to sample optimal ancestral host assignments that minimize the
number of co-transmissions, i.e., minimize the number of inter-host edges in the
transmission network.

3.1 Minimum Back-Transmission Sampling of Optimal Host
Assignments

TNet approximates minimum back-transmission sampling by combining uniform
sampling of ancestral host assignments with a greedy procedure to assign spe-
cific hosts to internal nodes. This is accomplished by suitably extending and
modifying Sankoff’s algorithm. This extended Sankoff algorithm computes, for
each t ∈ V (T ) and hi ∈ H, the number of distinct optimal host assignments for
the subtree T (t) under the constraint that h(t) = hi, denoted by N(t, hi). After
all N(·, ·) numbers have been computed, we perform our greedy sampling proce-
dure using probabilistic backtracking. The basic idea is to perform a pre-order
traversal of T and make final host assignment at the current node based on the
number of optimal ancestral host assignments available for each optimal choice
at that node, while preferentially preserving the parent host assignment. This is
described in detail in Procedure GreedyProbabilisticBacktracking below.
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Procedure GreedyProbabilisticBacktracking
1: Let α = mini{C(rt(T ), hi)}.
2: for each t ∈ I(T ) in a pre-order traversal of T do
3: if t = rt(T ) then
4: Let X = {hi ∈ H | C(rt(T ), hi) = α}.
5: For each hi ∈ X, assign h(t) = hi with probability N(t,hi)∑

hj∈X N(t,hj)
.

6: if t �= rt(T ) then
7: Let X = {hi ∈ H | C(t, hi) + p(h(pa(t)), hi) is minimized}.
8: if h(pa(t)) ∈ X then
9: Assign h(t) = h(pa(t)).

10: if h(pa(t)) �∈ X then
11: For each hi ∈ X, assign h(t) = hi with probability N(t,hi)∑

hj∈X N(t,hj)
.

The procedure above preferentially assigns each internal node the same host
assignment as that node’s parent, if such an assignment is optimal. This strategy
is based on the following straightforward observation: If the host assignment of
an internal node t could be the same as that of its parent (while remaining opti-
mal), i.e., h(t) = h(pa(t)) is optimal, then assigning a different optimal mapping
h(t) �= h(pa(t)) can result in a transmission edge back to h(pa(t)), effectively
implying a reinfection of host h(pa(t)) by a descendant disease strain. Thus, the
goal of TNet’s sampling strategy is to strike a balance between sampling the
diversity of optimal ancestral host assignments but avoiding sampling solutions
with unnecessary back-transmissions.

3.2 Additional Methodological Details

Aggregation Across Multiple Optimal Ancestral Host Assignments.
As illustrated in Fig. 2, aggregating across the sampled optimal ancestral host
assignments can be used to improve transmission network inference by distin-
guishing between high-support and low-support transmission edges. Specifically,
each directed edge in the transmission network can be assigned a support value
based on the percentage of sampled optimal ancestral host assignments that
imply that transmission edge. By executing TNet multiple times on the same
transmission phylogeny (100 times per tree in our experimental study), these
support values for edges can be estimated very accurately.

Accounting for Phylogenetic Inference Error. In addition to capturing the
uncertainty of minimum back-transmission ancestral host assignments, which
we show how to handle above, a second key source of inference uncertainty
is phylogenetic error, i.e., errors in the inferred transmission phylogeny. Phy-
loscanner [23] accounts for such phylogenetic error by aggregating results across
multiple transmission phylogenies (e.g., derived from different genomic regions
of the samples strains, bootstrap replicates, etc.). We employ the same approach
with TNet, aggregating the transmission network across multiple transmission
phylogenies, in addition to the aggregation across multiple optimal ancestral
host assignments per transmission phylogeny.
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4 Datasets and Evaluation Methodology

Simulated Datasets. To evaluate the performance of TNet, SharpTNI, and
phyloscanner, we generated a number of simulated viral transmission data sets
across a variety of parameters. These datasets were generated using FAVITES
[15], which can simultaneous simulate transmission networks, phylogenetic trees,
and sequences. The simulated contact networks consisted of 1000 individuals,
with each individual connected to other individuals through 100 outgoing edges
preferentially attached to high-degree nodes using the Barabasi-Albert model [1].
On these contact networks, we simulated datasets with (i) four types of transmis-
sion networks using both Susceptible-Exposed-Infected-Recovered (SEIR) and
Susceptible-Infected-Recovered (SIR) [12] models with two different infection
rates for each, (ii) number of viruses sampled per host (5, 10, and 20), (iii) three
different nucleotide sequence lengths (1000nt, 500nt, and 250nt), and (iv) three
different rates of with-in host sequence evolution (normal, half, and double).
This resulted in 560 different transmission network datasets representing 28 dif-
ferent parameter combinations. Further details on the construction and specific
parameters used for these simulated datasets appear in [20]. These 560 simulated
datasets had between 35 and 1400 sequences (i.e., leaves in the corresponding
transmission phylogeny), with an average of 287.44 leaves. The maximum num-
ber of hosts per tree was 75, with an average of 26.72.

Data from Real HCV Outbreaks. We also evaluated the accuracies of TNet,
SharpTNI, and phyloscanner on real datasets of HCV outbreaks made available
by the CDC [19]. This collection consists 10 different datasets, each representing
a separate HCV outbreak. Each of these outbreak data sets contains between 2
and 19 infected hosts and a few dozen to a few hundred strain sequences. The
approximate transmission network is known for each of these datasets through
CDC’s monitoring and epidemiological efforts. In each of the 10 cases, this esti-
mated transmission network consists of a single known host infecting all the
other hosts in that network.

Evaluating Transmission Network Inference Accuracy. For all simulated
and real datasets, we constructed transmission phylogenies using RAxML and
used RAxML’s own balanced rooting procedure to root them [21]. Note that
TNet, SharpTNI, and phyloscanner all require rooted transmission phylogenies.
To account for phylogenetic uncertainty and error, we computed 100 bootstrap
replicates for each simulated and real dataset. For SharpTNI we used the effi-
cient heuristic implementation for evaluation (not the exponential-time exact
solution). All TNet results were based on aggregating across 100 sampled opti-
mal host assignments per transmission phylogeny, and all SharpTNI results were
aggregated across that subset of 100 samples that had minimum co-transmission
cost, per transmission phylogeny. Results for all methods were aggregated across
the different bootstrap replicates to account for phylogenetic uncertainty and
yield edge-weighted transmission networks. To convert such edge-weighted trans-
mission networks into unweighted transmission networks, we used the same 0.5
(or 50%) tree-support threshold used by phyloscanner in [23]. Thus, all directed
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edges with an edge-weight of at least 0.5 (or 50%) tree-support were retained in
the final inferred transmission network and other edges were deleted. For a fair
evaluation, none of the methods were provided with any epidemiological infor-
mation such as sampling times or infection times. Finally, since both TNet and
SharpTNI build upon uniform sampling procedures for optimal ancestral host
assignments (minimizing the total number of inter-host transmissions), we also
report results for uniform random sampling of optimal ancestral host assign-
ments as a baseline.

To evaluate the accuracies of these final inferred transmission networks, we
computed precision (i.e., the fraction of inferred edges in the transmission net-
work that are also in the true network), recall (i.e., the fraction of true trans-
mission network edges that are also in the inferred network), and F1 scores (i.e.,
harmonic mean of precision and recall).

5 Experimental Results

5.1 Simulated Data Results

Accuracy of Single Samples. We first considered the impact of inferring
the transmission network using only a single optimal solution, i.e., without any
aggregation across samples or bootstrap replicates. Figure 3 shows the results of
this analysis. As the figure shows, TNet has by far the best overall accuracy, with
precision, recall, and F1 scores of 0.72, 0.75, and 0.73, respectively. Phyloscanner
showed the greatest precision at 0.828 but had significantly lower recall and F1 at
0.522 and 0.626, respectively. SharpTNI performed slightly better than a random
optimal solution (uniform sampling), with precision, recall, and F1 scores of 0.68,
0.71, and 0.694, respectively, compared to 0.67, 0.71, and 0.687, respectively, for
a randomly sampled optimal solution.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Precision Recall F1

Sc
or

e

Phyloscanner Random Sampling sharpTNI TNet

Fig. 3. Accuracy of methods using single samples. This figure plots precision,
recall, and F1 scores for the different methods without any aggregation of results across
multiple samples or bootstrap replicates. Results are averaged across the 560 simulated
datasets.

Impact of Sampling Multiple Optimal Solutions on TNet and Sharp
TNI. For improved accuracy, both TNet and SharpTNI rely on aggregation
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across multiple samples per transmission phylogeny. Note that, when aggregating
across multiple optimal ancestral host assignments, the final transmission net-
work is obtained by applying a cutoff for the edge support values. For example,
in Fig. 2, at a cutoff threshold of 100%, only a single transmission from (A → B)
would be inferred, while with a cutoff threshold of 50%, all three transmission
edges shown in the figure would be inferred. We studied the impact of multiple
sample aggregation by considering two natural sampling cutoff thresholds: 50%
and 100%. As Fig. 4 shows, results improve as multiple optimal are considered.
Specifically, for the 50% sampling cutoff threshold, we found that the overall
accuracy of all methods improves as multiple samples are considered. For TNet,
precision, recall, and F1 score all increase to 0.73, 0.75, and 0.74, respectively.
For SharpTNI, precision and F1 score increase significantly to 0.76 and 0.72,
respectively, while recall decreases slightly to 0.706. Surprisingly, we found that
uniform random sampling outperformed SharpTNI, with precision, recall, and
F1 score of 0.77, 0.70, and 0.73, respectively.
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Fig. 4. Accuracy of methods using multiple samples on a single transmis-
sion phylogeny. This figure plots average precision, recall, and F1 scores for random
sampling, sharpTNI, and TNet when 100 samples are used on a single transmission
phylogeny. Values reported are averaged across all 560 simulated datasets, and results
are shown for both 50% and 100% sampling cutoff thresholds.

We also see a clear tradeoff between precision and recall as the sampling cutoff
threshold is increased. Specifically, for the 100% sampling cutoff threshold, the
precision of all methods increases significantly, but overall F1 score falls to 0.65
and 0.64 for SharpTNI and random sampling, respectively. Surprisingly, recall
only decreases slightly for TNet, and its overall F1 score remains 0.74 even for
the 100% sampling cutoff threshold.

Accuracy on Multiple Bootstrapped Transmission Phylogenies. To fur-
ther improve inference accuracy, results can be aggregated across the different
bootstrap replicates to account for phylogenetic uncertainty. We therefore ran
phyloscanner, TNet, and SharpTNI with 100 transmission phylogeny estimates
(bootstrap replicates) per dataset. (We tested for the impact of using varying
numbers of bootstrap replicates, trying 25, 50, and 100, but found that results
were roughly identical in each case. We therefore report results for only the
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100 bootstrap analyses.) As Fig. 5 shows, for the 50% sampling cutoff threshold,
the accuracies of all methods improve over the corresponding single-tree results,
with particularly notable improvements in precision. For the 100% sampling cut-
off threshold, the precision of all methods improves further, but for phyloscanner
and SharpTNI this comes at the expense of large reductions in recall. TNet con-
tinues to be best performing method overall for both samplng cutoff thresholds,
with precision, recall, and F1 score of 0.79, 0.73, and 0.76, respectively, at the
50% sampling cutoff threshold, and 0.82, 0.71, and 0.754, respectively at the
100% sampling cutoff threshold.

Precision-Recall Characteristics of SharpTNI and TNet. The results
above shed light on the differences between the sampling strategies (i.e, objec-
tive functions) used by SharpTNI and TNet, revealing that SharpTNI tends to
have higher precision but much lower recall. Thus, depending on use case, either
SharpTNI or TNet may be the method of choice. We also note that random sam-
pling shows similar accuracy and precision-recall characteristics as SharpTNI,
suggesting that SharpTNI may not offer much improvement over the much sim-
pler random sampling strategy.
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Fig. 5. Transmission network inference accuracy when multiple transmission
phylogenies are used. This figure plots average precision, recall, and F1 scores for
phyloscanner, random sampling, sharpTNI, and TNet when 100 bootstrap replicate
transmission phylogenies are used for transmission network inference. Values reported
are averaged across all 560 simulated datasets, and results are shown for both 50% and
100% sampling cutoff thresholds.

5.2 Real Data Results

We applied TNet, SharpTNI, and phyloscanner to the 10 real HCV datasets
using 100 bootstrap replicates per dataset. We found that both TNet and
SharpTNI performed almost identically on these datasets, and that both dramat-
ically outperformed phyloscanner on the real datasets in terms of both precision
and recall (and, consequently, F1 scores). Figure 6 shows these results averaged
across the 10 real datasets. As the figure shows, both TNet and SharpTNI have
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identical F1 scores for the 50% and 100% sampling cutoff thresholds, with both
methods showing F1 scores of 0.57 and 0.56, respectively. In contrast, phyloscan-
ner shows much lower precision and recall, with an F1 score of only 0.22. Random
sampling had slightly worse performance than TNet and SharpTNI at both the
50% and 100% sampling cutoff thresholds. At the 100% sampling cutoff thresh-
old, we observe the same precision-recall characteristics seen in the simulated
datasets, with SharpTNI showing higher precision but lower recall.
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Fig. 6. Transmission network inference accuracy across the 10 real HCV
datasets. This figure plots average precision, recall, and F1 scores for phyloscanner,
random sampling, sharpTNI, and TNet on the 10 real HCV datasets with known trans-
mission histories. Results are shown for both 50% and 100% sampling cutoff thresholds.

6 Discussion

In this paper, we introduced TNet, a new method for transmission network
inference when multiple strain sequences are sampled from the infected hosts.
TNet has two distinguishing features: First, it systematically accounts for vari-
ability among different optimal solutions to efficiently compute support values
for individual transmission edges and improve transmission inference accuracy,
and second, its objective function seeks to find those optimal host assignments
that minimize the number of back-transmissions. TNet is based on a relatively
simple parsimony-based formulation and is parameter-free and highly scalable.
It can be easily applied within seconds to datasets with many hundreds of strain
sequences and hosts. As our experimental results on both simulated and real
datasets show, TNet is highly accurate and significantly outperforms phyloscan-
ner. We find that TNet also outperforms SharpTNI, a distinct but very similar
method developed independently and published recently.

Going forward, several aspects of TNet can be tested and improved further.
The simulated datasets used in our experimental study assume that all infected
hosts have been sampled. It would be useful to test how accuracy decreases
as fewer and fewer infected hosts are sampled. Phyloscanner employs a simple
technique to estimate if an ancestral host assignment may be to an unsampled
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host, and a similar technique could be used in TNet. Currently, TNet does not use
branch lengths or overall strain diversity within hosts, and these could be used
to further improve the accuracy of ancestral host assignment and transmission
network inference. Finally, our results suggest that, despite their conceptual
similarities, SharpTNI and TNet, show different precision-recall characteristics.
It may be possible to meaningfully combine the objective functions of SharpTNI
and TNet to create a more accurate hybrid method.
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Abstract. Genome rearrangement is a hallmark of all cancers. Cancer breakpoint
prediction appeared to be a difficult task, and various machine learningmodels did
not achieve high prediction power. We investigated the power of machine learning
models to predict breakpoint hotspots selected with different density thresholds
and also compared prediction of hotspots versus individual breakpoints. We found
that hotspots are considerably better predicted than individual breakpoints. While
choosing a selection criterion, the test ROCAUC only is not enough to choose the
best model, the lift of recall and lift of precision should be taken into consideration.
Investigation of the lift of recall and lift of precision showed that it is impossible
to select one criterion of hotspot selection for all cancer types but there are three to
four distinct groups of cancer with similar properties. Overall the presented results
point to the necessity to choose different hotspots selection criteria for different
types of cancer.

Keywords: Cancer genome rearrangements · Cancer breakpoints · Cancer
breakpoint hotspots ·Machine learning · Random forest

1 Introduction

Cancer genome rearrangement is a hallmark of all cancers and hundreds of thousands
of cancer breakpoints has been documented for different types of cancers [1–3]. Het-
erogeneity of cancer mutations has been noticed long ago [4] and the accumulated data
on cancer genome mutations was termed as cancer genome landscapes [5]. Thousands
of cancer full genome data became available to researchers by the International Cancer
Genome Consortium (ICGC) [6]. Later, instead of individual cancer genomes a notion
of pan cancer has emerged [7, 8] revealing common and individual properties of cancer
genome mutations. Recently, the Pan-Cancer Analysis of Whole Genomes (PCAWG)
Consortium [9] of the International Cancer Genome Consortium (ICGC) [6] and The
Cancer Genome Atlas (TCGA) [10] reported the integrative analysis of more than 2,500
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whole-cancer genomes across 38 tumour types [11]. Apart from [11–13] point muta-
tions, a genome rearrangement with creation of structural elements is often an early
event in cancer evolution sometimes preceding point mutation accumulation.

Machine learning methods were successful in finding regularities in studying cancer
genome mutations. The most successful machine learning models was shown to be
in predicting densities of somatic mutations [14, 15]. In [14] the density of somatic
point mutations was predicted by densities of HDNase and histone modifications with
determination coefficient of 0.7–0.8. The relative contribution of non-B DNA structures
and epigenetic factors in predicting the density of cancer point mutations was studied in
[15]. It was shown that taking both groups of factors into account increased prediction
power of models.

Despite success in prediction of densities of somatic point mutations, cancer break-
point prediction models showed low or moderate power [15, 16]. This fact could be
explained both by the lack of causal determinants in the models and constrains of the
machine learning algorithms.

Previously we showed that the breakpoint density distribution varies across different
chromosomes in different cancer types [16]. Also, we showed that determination of
hotspot breakpoints depends on a threshold, and the choice of the threshold could vary
between different types of cancer and could affect the results ofmachine learningmodels.
Here we aimed at conducting a systematic study of how breakpoint hotspots density
thresholds influence prediction power of machine learning models. We also posed a
question whether the prediction power of machine learning models will be different
whether we predict individual breakpoints or breakpoint hotspots.

2 Methods

2.1 Data

Data on cancer breakpoints were downloaded from the International Cancer Genome
Consortium (ICGC) [6]. The dataset comprises more than 652 000 breakpoints of 2803
samples from more than 40 different types cancers that we grouped in 10 groups of
cancer according to tissue types and further refer as cancer types.We cut the genome into
non-overlapping windows of 100 KB of length and excluded regions from centromeres,
telomeres, blacklisted regions and Y chromosome. Then for each window we estimated
breakpoint density as the ratio of the number of breakpoints in the window to the total
number of breakpoints in a given chromosome. We used the density metric to designate
hotspots, i.e. genomic regions with a relatively high concentration of breakpoints. In the
study,we investigate three labeling types of hotspots - 99%, 99.5%and 99.9%percentiles
of breakpoint density distribution. Besides, we assigned “individual breakpoints” label
to windows containing at least one breakpoint. The proportion of the number of these
windows from the total number of windows varied from 2.8% to 90% for different cancer
types.

In the study we used the most comprehensive set of predictors, available as of today
mostly from next-generation sequencing experiments. The features include genomic
regions, TAD boundaries, secondary structures, transcription factor binding sites and a



Cancer Breakpoint Hotspots Versus Individual Breakpoints Prediction 219

set of epigenetic factors (chromatin accessibility, histone modifications, DNA methy-
lation). These data were collected from The Encode, DNA Punctuation, Non-B DB
projects, UCSC Genome Browser. The data were transformed into feature vectors by
calculating window coverage of each characteristic.

2.2 Machine Learning Models

After data collection we got 30 datasets that comprise genomic features’ coverage and
binary target labeling (3 hotspots labeling with different quantile threshold of 99%,
99.5% and 99.9% per each of 10 cancer types).

The hotspot prediction power was evaluated through the train-test splits with strati-
fication by a chromosome with proportion of 70–30, retaining 30% of data for testing.
To get a reliable estimate of quality metrics we performed train-test splits 30 times for
each dataset because of high class-imbalance (very small ratio of positive examples). For
this reason, we also applied the class balancing technique (oversampling) when training
a machine learning model. We selected Random Forest as one of the most performing
and popular classification algorithm for table data to assess hotspots and breakpoints
prediction power. For the model we estimated the best hyperparameters (the number
of trees, number of features to grow a tree, minimal number of examples in a terminal
node, maximal number of nodes in a tree) by averaging performance metrics among all
cancer types.

2.3 Evaluation Metrics

We used several metrics for model evaluation: ROC AUC (Area Under Receiver Oper-
ating Curve), precision, recall, lift of precision and lift of recall. As we were dealing
with a high class imbalance for each dataset we averaged the results from 30 random
train-test splits by taking mean (or median) ROC AUC on the test set and controlling
for its standard deviation, which demonstrates how strongly the results depend on the
distribution of examples in train and test sets. We calculated recall and precision for
different probability percentiles – from 0.5% to 50%. To get an estimate of how well a
model performs in comparison with a random choice we used the lift of recall and lift
of precision. The lift of recall for a given probability percentile shows how many times
the recall of the model (estimated on examples labeled as the positive class according
to a probability percentile threshold) is higher than a random choice (it is equal to the
recall of the model divided by the probability percentile). Similarly, the lift of precision
demonstrates howmany times precision for a given probability percentile is higher than a
random choice (equal to the precision of the model divided by the proportion of positive
examples in a dataset).
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3 Results

3.1 Distribution of Test and Train ROC AUC for All Cancer Types by Hotspot
Labeling Type

We train Random Forest model on all 30 datasets for hotspot prediction and 10 datasets
for individual breakpoint prediction. The distribution of ROC AUC on test set by cancer
type and labeling type is given in Fig. 1. It could be seen that for the half of cancer types
including blood, brain, breast, pancreatic and skin cancer the higher the hotspot labeling
threshold the higher the median of test ROC AUC. For bone, liver, uterus cancer there
is no monotonically increasing median test quality but for the highest labeling type this
value is higher than for the lowest while for the rest of cancers (ovary and prostate) there
is no significant difference between labeling types.

Fig. 1. Distribution of test ROC AUC for all cancer types by hotspots labeling.

Median values of the test ROC AUC by cancer type and labeling type are presented
in Fig. 2 and Table 1. The highest quality in terms of considered metric belongs to the
breast cancer for all labeling types while the lowest – to the blood and skin cancer for
99% labeling type. The difference greater than 0.10 between the median test ROC AUC
for models of the 99% and 99.9% hotspot labeling types is observed for the blood, brain,
breast, liver and pancreatic cancer. For the half of the cancer types the highest labeling
type implies significantly higher quality according to the median test ROC AUC.



Cancer Breakpoint Hotspots Versus Individual Breakpoints Prediction 221

Fig. 2. Median test ROC AUC for each cancer and labeling type.

Table 1. Median test ROC AUC for each cancer and labeling type.

Cancer type Median test ROC AUC
(99%)

Median test ROC AUC
(99.5%)

Median test ROC AUC
(99.9%)

Blood 0,552 0,593 0,693

Bone 0,606 0,621 0,673

Brain 0,612 0,689 0,75

Breast 0,715 0,81 0,861

Liver 0,645 0,646 0,784

Ovary 0,684 0,648 0,683

Pancreatic 0,625 0,689 0,752

Prostate 0,659 0,706 0,717

Skin 0,587 0,607 0,668

Uterus 0,603 0,689 0,68

On the other hand, as it could be seen in Fig. 3, the more rare hotspots we aim
to predict the higher the variance of the test ROC AUC on the test set as well as the
difference between the train and test ROC AUC. This could be explained by the fact that
for the case of rare hotspots there is small number of positive examples in a dataset and its
random permutation between the train and test set leads to different results. Moreover,
for all cancer types except for the breast cancer difference between the median train
and test ROC AUC for the 99.9% labeling type approaches 0.2 ROC AUC and is 2–3
times higher than for the 99.5% and 99% labeling types. Hence, when selecting the best
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hotspot labeling type it would be reasonable to choose the 99% or 99.5% labeling type
according to the highest median test ROC AUC.

Fig. 3. Dependence of the difference of train and test ROC AUC from test ROC AUC at different
labeling types and different standard deviations of test ROC AUC.

3.2 Lift of Precision and Lift of Recall

Next we analyzed the distribution of other quality metrics such as the lift of recall and
lift of precision. The results are presented in Fig. 4 and 5 respectively. Here confidence
intervals for the mean of these metrics are plotted against different probability quantiles
selected as a threshold for model predictions for each cancer and hotspot labeling type.
The main conclusion that could be made according to these results is that there is no
single labeling type which guarantees the best classification results for all cancer types.
However, three groups of cancer types were distinguished: the best labeling type for
the blood, brain, liver and pancreatic cancers is 99.9%, for the bone, breast and uterus
cancers - 99.5%, for the rest (ovary, prostate, skin cancers) - 99%.
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Fig. 4. Dependence of lift of recall from quantile threshold for different aggregation levels (see
text for explanation).

Fig. 5. Dependence of lift of precision from quintile threshold for different aggregation levels
(see text for explanation).

When comparing the best labeling type determined with the median test ROC AUC
and with the lift of recall/precision, it is the same only for ovary, bone and uterus cancer.
As we are mainly interested in selection of minimal number of genome regions with
the maximal concentration of hotspots, the final choice of the best labeling type will
coincide with the decision according to the lift of recall/precision.
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Interestingly, for the breast cancer all three labeling types are almost equally well
predicted: they have relatively high lift of recall and differ slightly. Besides, for pancreatic
cancer 99.9% labeling type showed significant boost in both lift of precision and lift of
recall.

3.3 Prediction of Hotspot Breakpoints Versus Individual Breakpoints

Further, we testedwhether recurrent breakpoints could bemore effectively recognized by
machine learningmodel than non-recurrent breakpoints and also howwell the individual
breakpoints are predicted. Distributions of test ROC AUC for hotspots prediction (the
best labeling type) and breakpoint prediction tasks are presented in Fig. 6.

Fig. 6. Distribution of test ROC AUC for the best labeling hotspot profile and all breakpoints
prediction.

The observed results can be summarized as follows. Firstly, for the majority of
cancer types hotspots are recognized by machine learning models considerably better
than individual breakpoints for all cancer types except for the prostate cancer. The
quantitative estimate of the difference is given in Fig. 7 and Table 2. The highest ratio of
the median test ROCAUC for hotspot prediction model to the median test ROCAUC for
breakpoint prediction model is observed for the uterus and brain cancer (1.36 and 1.23
respectively) while for the prostate cancer they are almost equal. For the other cancer
types the metric for hotspot model is 9–18% higher than for the breakpoints. Thus,
in general, breakpoints are harder to recognize than hotspots using the same genomic
features.

Also it could be seen that variance of ROCAUC is significantly lower for breakpoints
and this could be a consequence of having a considerably higher number of positive
examples for the model.
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Fig. 7. Median test ROC AUC for best labeling hotspot profile and breakpoints prediction.

Table 2. Median test ROC AUC for best labeling hotspot profile and breakpoints prediction.

Cancer type Breakpoints median test
ROC AUC

Hotspots median test
ROC AUC

Ratio of median test ROC
AUC for hotspots and
breakpoints prediction
models

Prostate 0,698 0,706 1,011

Skin 0,559 0,607 1,087

Ovary 0,625 0,684 1,095

Breast 0,766 0,861 1,124

Liver 0,572 0,645 1,128

Pancreatic 0,604 0,689 1,14

Bone 0,537 0,621 1,157

Blood 0,505 0,593 1,175

Brain 0,559 0,689 1,234

Uterus 0,505 0,689 1,363

Secondly, the quality of breakpoint prediction is quite low so that it is a difficult task
to predict cancer breakpoints by a machine learning model. For 6 cancer types including
skin, liver, bone, blood, brain and uterus cancer the median test ROC AUC does not
exceed 0.6. In contrast, the highest value of the metric (0.77) is achieved for breast
cancer.

The conclusion is confirmed by the statistics of the lift of recall given in Fig. 8. All
cancer types could be divided into 2 groups. For the pancreatic and skin cancer break-
points are unrecognizable as the lift of recall is very low (almost equal to zero). For the
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ovary, breast, uterus and prostate the metric hardly achieves 1 for the probability per-
centile threshold of 0–0.1 so that in these cases breakpoints are predicted as successfully
as in the case of a random choice. For the blood, bone, brain and liver cancers there are
some probability thresholds for which the lift of recall is higher than 1 with the brain
cancer model performing the best. In total, for 6 cancer types the breakpoint prediction
model quality does not significantly differ from a random choice and only for 4 cancer
types the prediction is slightly better.

Fig. 8. Lift of recall for breakpoints prediction model

Additionally, it should be noted that for the blood, bone and brain cancer the lift of
recall decreases with probability threshold. This could mean that for these cancer types
some breakpoints are highly pronounced and could be more easily identified than the
rest of breakpoints.

Besides, a set of cancer type models achieving the best performance for the task
of breakpoint prediction according to the median ROC AUC (prostate, ovary, breast)
differs from a set determined by the lift of recall (blood, bone, brain and liver). This
difference outlines the fact that it is very important to choose the right performance
metric for a given machine learning task. As the ROCAUCmeasures a quality of overall
examples’ ordering produced by themodel and the lift of recallmeasures ordering quality
of examples with the highest probabilities, they describe the model performance from
different perspectives.

4 Conclusions and Discussion

In this study, using machine learning approach we systematically investigated the effect
of different selection criteria for cancer breakpoint predictions for 10 large types of
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cancer. We built machine-learning models predicting hotspot breakpoints defined by
different density thresholds and investigated distributions of the train and test ROC
AUC as well as the lift of precision and recall. Almost for all types of cancer the median
test ROC AUC increases with an increase of threshold for hotspot selection, though
the total quantity of those regions decreases and variance of quality metrics grows up.
This fact confirms the fact that the machine learning models better recognize regions
with increased density of breakpoint mutations, or regions with recurrent breakpoints,
which requires further research. This result could be considered as expected however
we empirically found an exception for prostate cancer where median test ROC AUC for
hotspots and individual breakpoint do not differ much both being close to 0.70. This
suggests that mutagenic processes of individual and recurrent breakpoints in prostate
cancer most likely have similar nature. However the effect needs further investigation.

We would like to emphasize that, without actual tests of machine-learning perfor-
mance on individual breakpoints and breakpoint hotspots, it is not evident, which one
of the two will have a higher prediction power. Indeed, breakpoint hotspots are regions
enriched with breakpoints, and genomic features of these regions should explain their
recurrent formation. On the opposite, rare events are often harder to predict except for
the cases when strong predictors of a rare event are available. In the research we posed
a question whether the considered genome features identify breakpoints hotspots better
than individual breakpoints, and whether individual breakpoints have also distinctive
features that influence their formation. The comprehensive analysis of the features is out
of scope of the present study is the subject of further systematic research.

The lift of recall and lift of precision signify how many times recall or precision is
higher compared to a random choice. Analysis of the distributions of the lift of recall and
lift of precision showed that it is impossible to choose one breakpoint density threshold
that would lead to themaximumprediction power ofmodels for all types of cancer. Three
groups of cancer with similar behavior according to the lift of recall and lift of precision
were distinguished. Common properties of cancer breakpoint formation in these three
groups of cancer require further investigations.

Selection criteria for the best hotspot labeling threshold based on themedian testROC
AUC and the lift of recall and precision coincide only for three types of cancer – ovary,
bone, uterus. Moreover, concerning evaluation of prediction power of breakpoints these
metrics produce different results. As the ROC AUC and lift of recall measure quality of
examples’ ordering by the model at different scales (based on all examples and examples
with the highest probabilities respectively) we recommend to use the lift of recall and
lift of precision metrics to choose the hotspot thresholds.

Comparison of breakpoint predictions and breakpoint hotspots with a chosen selec-
tion criterion based on the best machine-learning model showed that the median test
AUC is always higher for hotspots rather than for individual breakpoints. We tested
additionally several machine learning models such as logistic regression and XGBoost
(results are not presented here due to the paper size limitation) and they all show approx-
imately the same relative distribution of ROC AUC, lift of recall and lift of precision
across different types of cancer.

Overall the results of our study showed that machine learning model prediction
power depends on density threshold for cancer hotspots, and the threshold is different for
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different types of cancer. Besides, we demonstrated that though individual breakpoints
are harder to predict than breakpoint hotspots, individual breakpoints can be predicted
to a certain extent, and, moreover, in prostate cancer they are predicted equally well as
hotspots. While choosing a selection criterion, the test ROC AUC only is not enough
to choose the best model, the lift of recall and lift of precision should be taken into
consideration at the level of individual type of cancer.
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Abstract. The classical Duplication-Loss-Coalescence parsimony
model (DLC-model) is a powerful tool when studying the complex evolu-
tionary scenarios of simultaneous duplication-loss and deep coalescence
events in evolutionary histories of gene families. However, inferring such
scenarios is an intrinsically difficult problem and, therefore, prohibitive
for larger gene families typically occurring in practice. To overcome this
stringent limitation, we make the first step by describing a non-trivial and
flexible Integer Linear Programming (ILP) formulation for inferring DLC
evolutionary scenarios. To make the DLC-model more practical, we then
introduce two sensibly constrained versions of the model and describe
two respectively modified versions of our ILP formulation reflecting these
constraints. Using a simulation study, we showcase that our constrained
ILP formulation computes evolutionary scenarios that are substantially
larger than the scenarios computable under our original ILP formulation
and DLCPar. Further, scenarios computed under our constrained DLC-
model are overall remarkably accurate when compared to corresponding
scenarios under the original DLC-model.

Keywords: Phylogenetics · Duplications · Losses · Coalescence ·
Reconciliation

1 Introduction

Reconstructing evolutionary histories of gene families, or gene trees, is of cen-
tral importance for the understanding of gene and protein function. Gene trees
make comparative and investigative studies possible that illuminate relationships
between the structure and function among orthologous groups of genes, and are
an indispensable tool for assessing the functional diversity and specificness of
biological interlinkage for genes within the same family [1,9,11,15,16].

Crucial for understanding evolutionary histories of gene families (gene trees)
is contemplating them against a respective species phylogeny; i.e., the evolution-
ary history of species that host(ed) the genes under consideration. This approach
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is known as gene tree reconciliation, and it can directly reveal the most valuable
points of interest, such as (i) gene duplication events, (ii) gene loss events, and
(iii) deep coalescence or incomplete lineage sorting events (which appear as a
result of a genetic polymorphism surviving speciation).

Traditional tree reconciliation approaches, while computationally efficient,
are rather limited in practice, as they either only account for duplication and
loss events, or, on the other hand, only for deep coalescence events [7,12,19].
Beyond the traditional approaches, recently, a robust unified duplication-loss-
coalescence (DLC) approach has been developed that simultaneously accounts
for duplications, losses, and deep coalescence events. In particular, Rasmussen
and Kellis [17] originally developed a rigorous statistical model referred to as
DLCoal. Then a computationally more feasible parsimony framework, which we
refer to here as DLC-model was developed by Wu et al. [20]. That is, DLC-model
is a discrete version of the DLCoal model, and it was shown to be very effective
in practice in terms of identification of ortholog/paralog relations and accurate
inference of the duplication and loss events. Wu et al. additionally presented
an optimized strategy for enumerating possible reconciliation scenarios and a
dynamic programming solution to find the optimum reconciliation cost; this
algorithm is known as DLCPar.

While it has been demonstrated that DLC-model is computationally more
feasible when compared to DLCoal, the exact DLCPar algorithm is still only
applicable to reconciliation problems involving less than 200 genes. Limiting
evolutionary studies to such a small number of genes is highly restrictive in
practice, where frequently gene families with thousands of genes and hundreds
of host species appear [10]. Further, the DLCPar algorithm is not scalable due
to its exponential runtime [3]. Naturally, there is a demand for novel models
that are (i) efficiently computable and (ii) comparable to DLCPar in terms of
its accuracy.

In this work, we present a non-trivial and flexible integer linear programming
(ILP) formulation of the DLC-model optimization problem. Then we formulate
two novel and constrained DLC-models, and use our ILP formulation to vali-
date these constrained models. That is, our models have smaller solution space
and, therefore, are more efficiently computable than the original DLC-model.
The validation is performed via a comprehensive simulation study with realistic
parameters derived from a real-world dataset. The simulations demonstrate that
both our models are applicable to larger datasets than DLCPar. Moreover, one
of the models, despite the constraints, almost always provides the same recon-
ciliation cost as the unconstrained algorithms.

Related Work. In recent years, there has been an increased interest in phylo-
genetic methods involving simultaneous modeling of duplication, loss, and deep
coalescence events [6,18]. For example, recently, an approach for co-estimation
of the gene trees and the respective species tree based on the DLCoal model
was presented [5]. Further, Chen et al. [2] presented a parsimony framework for
the reconciliation of a gene tree with a species tree by simultaneously modeling
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DLC events as well as horizontal gene transfer events. While promising, their
approach remains computationally challenging.

Note that to the best of our knowledge, no models were proposed that would
be more efficiently computable than DLC-model but be comparable with it in
terms of effectiveness.

Our Contribution. We developed a flexible ILP formulation that solves the
DLCPar optimization problem. During the development of this formulation, we
observed formal issues with the original definition of the DLC-model in [20].
Consequently, in this work, we also present corrected and improved model defi-
nitions, which are equivalent to the Wu et al. model. For example, we corrected
problems with the definition of a partial order on gene tree nodes, which could
otherwise lead to incorrect scoring of deep coalescence events (see Sect. 2 for the
full updated model definitions).

Further, the ILP formulation enabled us to test the viability of a constrained
DLC-model, which we present in this work. In particular, we observed that the
advanced time complexity of DLCPar originates from allowing the duplications
to appear at any edge of the gene tree, even if there is no direct “evidence” for
such occurrences. While this flexibility allows accounting for all feasible DLC sce-
narios, we show that constraining the duplication locations to those with direct
evidence of duplications will enable one to dramatically improve the efficiency
of computing optimum reconciliations (without losing the accuracy).

To study the performance of the ILP formulation and test our constrained
models, we designed a coherent simulation study with parameters derived from
the 16 fungi dataset [17], which became a standard for multi-locus simula-
tions [4,14,20]. We compared the runtimes of the unconstrained ILP (DLCPar-
ILP), the constrained ILPs, and the DLCPar algorithm by Wu et al. While we
observed that DLCPar was generally faster than DLCPar-ILP there were multi-
ple instances where DLCPar-ILP was able to compute optimum reconciliations,
whereas DLCPar failed. Out of 30 instances, when DLCPar failed, DLCPar-ILP
was able to provide an optimum in 17 cases. Therefore, we suggest using those
two methods as complements of each other. Further, an advantage of using ILPs,
is that one can terminate an ILP solver early, but still get a good approximation
of the optimum reconciliation cost due to the intricate optimization algorithms
used by ILP solvers.

Finally, the constrained ILP models proved to be efficient even on larger
datasets with more than 200 genes, where DLCPar and DLCPar-ILP failed.
Moreover, we observed that one of our constrained models was accurate in
98.17% of instances.

2 Model Formulation

We use definitions and terminology similar to [20], but modify them for improved
clarity and correctness.

A (phylogenetic) tree T = (V (T ), E(T )) is a rooted binary tree, where V (T )
and E(T ) denote the set of nodes and the set of directed edges (u, v), respectively.
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Leaves of a phylogenetic tree are labeled by species names. By L(T ) we denote the
set of leaves (labels) and by I(T ) the set of internal nodes of T , i.e., V (T )\L(T ).
Let r(T ) denote the root node. By V̇ (T ) we denote the set V (T ) \ {r(T )}. For
a node v, c(v) is the set of children of v (note that c(v) is empty if v is a leaf),
p(v) is the parent of v, and e(v) denotes the branch (p(v), v). Let T (v) be the
(maximal) subtree of T rooted at v. Further, by clu(v) we denote the species
labels below v.

Let ≤T be the partial order on V (T ), such that u ≤T v if and only if u
is on the path between r(T ) and v, inclusively. For a non-empty set of nodes
b ⊆ V (T ), let lcaT (b) be the least common ancestor of b in T .

A species tree S represents the relationships among a group of species, while
a gene tree G depicts the evolutionary history of a set of genes samples from
these species. To represent the correspondence between these biological entities,
we define a leaf mapping Le : L(G) → L(S) that labels each leaf of a gene tree
with the species, i.e., a leaf from S, from which the gene was sampled. The LCA
mapping, M, from gene tree nodes to species tree notes is defined as follows:
if g is a leaf node, then M(g) := Le(g); if g has two children g′ and g′′ then
M(g) := lca(M(g′),M(g′′)).

Definition 2.1 (DLC scenario). Given a gene tree G, a species tree S, and a leaf
mapping Le : L(G) → L(S), the DLC (reconciliation) scenario for G,S, and Le
is a tuple 〈M,L,O〉, such that

– M : V (G) → V (S) denotes a species map that maps each node of gene tree
to a species node. In this work, species maps are fixed to the LCA mapping.

– L denotes the locus set.
– L : V (G) → L is a surjective locus map that maps each node of gene tree to

a locus,
– For a species node s, let parent loci(s) be the set of loci that yield a new

locus in s defined as {L(p(g)) : g ∈ V̇ (G), M(g) = s and L(g) �= L(p(g))}.
Then, O is a partial order on V (G), such that, for every s and every l ∈
parent loci(s), O is a total order on the set of nodes O(s, l) := {g : g ∈
V̇ (G), M(g) = s and L(p(g)) = l}.

Subject to the constraints.

1. For every locus l, the subgraph of the gene tree induced by L−1({l}) is a tree.
Moreover, every leaf of such a tree that is also a leaf in G must be uniquely
labeled by species.

2. For every s ∈ V (S), l ∈ parent loci(s), g, g′ ∈ O(s, l) if g ≤G g′, then g ≤O g′.
3. A node g is called bottom if no child of g maps to M(g). We say that a node

g is top (in M(g)) if g is bottom in M(p(g)). Then, x >O y >O z for every
bottom node x ∈ O(s, l), every non-bottom node y ∈ O(s, l), and every top
node z in s.

The first constraint assures that all gene nodes with the same locus form
a connected component; i.e., each locus is created only once. The second con-
straint incorporates the gene tree’s topology in partial order O. Finally, the third
constraint guarantees that bottom and top nodes are properly ordered by O.
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Inserting Implied Speciation Nodes. For proper embedding a gene tree into
a species tree, we require additional degree-two nodes inserted into the gene tree.

Given a gene tree, we define the transformation called insertion of an implied
speciation as follows. The operation subdivides an edge (g, g′) ∈ G with a new
node h, called an implied speciation, and sets M(h) = p(M(g′)) if (i) either
p(M(g′)) > M(g), or (ii) p(M(g′)) = M(g) and g is not a bottom node of
M(g). Note that h becomes a bottom node after the insertion.

Then, we transform G by a maximal sequence of implied speciation insertions.
It is not difficult to see that the resulting gene tree with implied speciation nodes
is well defined and unique.

Counting Evolutionary Events. Note that, we first define the species map M,
then we transform gene tree by inserting the implied speciation nodes. Next, we
define the locus map and partial order O on the transformed gene tree. Finally,
having the DLC scenario, we can define the evolutionary events induced by the
scenario.

We start with several definitions. Let s be a node from the species tree.
By ⊥(s) and 
(s) we denote the sets of all bottom and all top nodes of s,
respectively. By nodes(s) we denote the set of gene nodes mapping to s (i.e.,
M−1({s}). The internal nodes of s are defined as int(s) = nodes(s) \ ⊥(s).

For G, S, Le and α = 〈M,L,O〉, we have the following evolutionary events
at s ∈ V (S).

– Duplication: A non-root gene tree node g is called a duplication (at M(g))
if L(g) �= L(p(g)). Additionally, we call g the locus root. We then say that a
duplication happened on edge (p(g), g).

– Loss: A locus l is lost at s if l is present in s or at the top of s but l is not
present at the bottom of s. Formally, l is lost if l ∈ L(
(s) ∪ nodes(s)) and
l /∈ L(⊥(s)).

– ILS at speciation: Let C(s, l) be the set of all gene lineages (g, g′) such
that g is a top node at s, whose loci is l, and g′ is mapped to s. Then, locus
l induces max{|C(s, l)| − 1, 0} (deep) coalescence events at speciation s.

– ILS at duplication: For each duplication d, whose parent loci is l, a gene
lineage in species s at locus l is contemporaneous with d if the lineage starts
before and ends after the duplication node d. Let K(d) denote the set of all
edges contemporaneous with d. Formally, K(d) = {g : g ∈ O(s, l) and g >O
d >O p(g)}. Then, the duplication d induces max{|K(d)| − 1, 0} (deep) coa-
lescence events.

Problem 1 (DLCParsimony). Given G, S, Le, and real numbers cD, cL. and
cDC , the reconciliation cost for a DLC scenario α = (M,L,O) is

Rα :=
∑

s∈V (S)

cD · nDα(s) + cL · nLα(s) + cDC · (nCSα(s) + nCDα(s)),

where nDα(s), is the total number of duplication nodes at s, nLα(s) is the total
number of lost loci at s, and nCSα(s) is the total number of coalescence events at
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Fig. 1. An example of a DLC scenario with six loci 1 through 6. Stars indicate the
duplication events. Left: a gene tree with nodes annotated by locus numbers. Middle:
species tree. Right: embedding of the gene tree into the species tree.

speciation s, and nCDα(s) is the total number coalescence events at duplications
mapped to s in the scenario α (Fig. 1).

3 ILP Formulation for DLCParsimony

We now present an Integer Linear Programming (ILP) formulation for solv-
ing the DLCParsimony problem. From now on, we refer to this formulation as
DLCPar-ILP. First, we define global parameters that can be used to constraint
the formulation (see constrained models in the next section).

Model Parameters

Dg Binary parameter for each g ∈ I(G). It is 1, if a duplication event is allowed
in one of the children of g. In this section Dg = 1 for all g, since we do not
want to constrain our model.
Next we define the notation that will be used throughout the formulation.

Model Notation

I(s) Possible order values (indices) of gene nodes within a total ordering of
gene nodes induced by O and restricted to species node s. That is, I(s) =
{1, ..., |int(s)|}.

N The maximum possible number of loci; i.e., maximum possible number of
duplications plus one. In particular, N = 1 +

∑
g∈I(G) Dg. Further, we

denote the set {1, . . . ,N} by [N ].
Fg Indicates the locus index of node g and is defined as Fg :=∑

g′∈I(G),g′≤ord g Dg′ , where ≤ord is some total order on I(G). Fg guaran-
tees that duplication at node g yields a new and distinguished locus Fg in
the locus tree.
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Now we declare the core variables needed for the ILP formulation.
Decision Variables

xuv A binary variable for edge (u, v) ∈ E(G). Equals to 1 if v is a duplication;
otherwise 0.

ygl Binary variable. 1 if node g ∈ V (G) is assigned to locus l; otherwise 0.
els Binary variable. 1 if locus l is lost at species node/branch s; otherwise 0.
cls The number of deep coalescence events at a speciation s induced by the

locus l.
dgl If g is a duplication and l = L(p(g)), then it denotes the number of corre-

sponding deep coalescence events induced by locus l. Otherwise, dgl = 0.
zgo Binary variable. 1, if node g ∈ V (G) is assigned to order o ∈ I(M(g)).
wgol Binary variable. 1, if node g ∈ V (G) is assigned to order o and locus l.
mgol Binary variable. 1, if node g is assigned to order o and locus l and one of

children of g is a locus root (i.e., a duplication event happened immediately
below g).

Finally, we describe the objective function and the model constraints using
the above variables. In particular, the objective function at Eq. 1 minimizes the
DLC score. The first term in objective function calculates the total number of
duplication events, whereas the second term computes the number of loss events
and coalescence events at speciations. The coalescence events at duplications are
computed by the last term in the objective function.

Model Constraints

min ζ =
∑

e∈E(G)
xe +

∑
s∈V (S)

∑
l∈[N ]

(els + cls)

+
∑

s∈V (S)

∑
l∈[N ]

∑
g∈int(s)

dgl (1)

s.t.
∑

e=(g,g′)∈E(G)
xe ≤ Dg g ∈ V (G) (2)

∑
g∈⊥(s)

ygl ≤ 1 ∀s ∈ L(S), l ∈ [N ] (3)
∑

l∈[N ]
ygl = 1 ∀g ∈ V (G) (4)

yr(G),1 = 1 (5)

Fgxe ≤
∑

l∈[N ]
lyg′l ≤ Fgxe + N (1 − xe) ∀e = (g, g′) ∈ E(G) (6)

− Nxgg′ ≤ yg′l − ygl ≤ Nxgg′ ∀(g, g′) ∈ E(G), l ∈ [N ] (7)
∑

g∈�(s)
ygl − |V (G)|(els +

∑
g∈⊥(s)

ygl) ≤ 0 ∀l ∈ [N ], s ∈ V (S) (8)
∑

g∈�(s),(g,g′)∈E(G),g′∈nodes(s)
ygl − 1 ≤ cls ∀l ∈ [N ], s ∈ V (S) (9)

∑
o∈I(s)

zgo = 1 ∀s ∈ V (S), g ∈ int(s) (10)
∑

g∈int(s)
zgo = 1 ∀s ∈ V (S), o ∈ I(s) (11)
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∑
o′∈I(s),o′≤o

zg′o′ ≤ 1 − zgo ∀s ∈ V (S), g, g′ ∈ int(s),

(g, g′) ∈ E(G), o ∈ I(s)
(12)

2wgol ≤ ygl + zgo ≤ 1 + wgol ∀s ∈ V (S), l ∈ [N ],
g ∈ int(s), o ∈ I(s) (13)

∑
g∈�(s),(g,g′)∈E(G),g′∈nodes(s)

yg′l − 1 ≤ nls ∀l ∈ [N ], s ∈ V (S) (14)

nls +
∑

g′∈int(s)\{g}

∑
o′<o

(wg′o′l − mg′o′l) ∀l ∈ [N ], s ∈ V (S),

≤ dgl + |
(s)|(1 − mgol) o ∈ I(s), g ∈ int(s) (15)

2mgol ≤ wgol +
∑

e=(g,g′)∈E(G)
xe ≤ 1 + mgol ∀s ∈ V (S), l ∈ [N ],

g ∈ int(s), o ∈ I(s) (16)
dgl, els, cls.nls ≥ 0 (17)

mgol, wgol, xe, ygl, zgo ∈ {0, 1} (18)

In a most parsimonious reconciliation scenario for each internal gene node g
only one of its children can be a new locus root [20]. This condition is enforced by
inequality 2. Inequality 3 enforces that extant gene nodes mapping to the same
extant species must be assigned to different loci. Further, each gene node must
be assigned to one locus and it is enforced by Constraint 4. Constraint 5 assigns
the original locus (locus 1) to the root of the gene tree. Constraint 6 forces the
child gene and its parent to map to different loci if there exists a duplication
event between them. Constraint 7 guarantees that if there is no duplication event
at gene edge (g, g′), then the locus of g and g′ must be the same.

Constraint 8 enforces the correct calculation of loss events. In particular, it
ensures that els for locus l and species s is 1 if there exists a gene node from

(s) with locus l, while there is no gene node in ⊥(s) with the same locus.
Constraint 9 ensures the correct assignment of cls variables (i.e., the number of
coalescence events at speciations). Constraints 10 and 11 jointly assign the par-
tial orders to interior nodes at each species branch. Based on these constraints
each order must be assigned to one interior node and each interior node must
be assigned to one position in the order. Constraint 12 corresponds to the con-
straint 2 in Definition 2.1. Constraint 13 ensures proper assignment of the wgol

variables. Constraints 14 and 15 should be considered together (note that nls is
an additional variable that joins those two equations; it is required to properly
count extra gene lineages at duplications). Those constraints together ensure
proper counting of the deep coalescence events at a duplication that happens in
one of the children of node g for locus l at species node s. Constraint 16 assures
the correct assignment of mgol variables.



Integer Linear Programming Formulation 237

3.1 Designing Efficiently Computable Formulations

While the original DLCPar model is very flexible in terms of edges, where dupli-
cations can appear, this flexibility contributes substantially to the computational
complexity of DLCPar (see the Scalability study for more details). Therefore,
in this section, we consider a strategy of restraining the duplication placement
only to those edges, where there is evidence that a duplication has occurred.

In particular, we call a node g ∈ V (G) with children g′ and g′′ an apparent
duplication parent if clu(g′) ∩ clu(g′′) is not empty. That is, there exist extant
species, which both child lineages of g sort out to.

We then constraint the DLCPar model in the way that only children of
apparent duplication parents can be locus roots. In fact, there are two options
for how this constraint can be implemented, which we call ILP-C1 and ILP-C2
that are formalized below.

ILP-C1. Observe that Dg variables defined in the previous section allow us to
constrain the locations of gene duplication events easily. That is, we define the
ILP-C1 formulation by properly setting the Dg variables: Dg = 1 if and only if
g is an apparent duplication parent.

ILP-C2. Since apparent duplication parents provide strong evidence of duplica-
tions, we define, in addition, a tighter model (ILP-C2). In this model, we require
that one of the children of each apparent duplication parent must be a dupli-
cation. Note that, while this is a strong condition, it allows us to simplify the
ILP formulation and reduce the number of variables. That is, we anticipate that
ILP-C2 formulation performs fastest in practice.

More precisely, in this model, we “know”, where duplications must appear (at
least we know the parents of duplications). Therefore, Inequality 2 in DLCPar-
ILP should become an equality (which tightens the solution space); further, the
mgol variables become redundant, so they can be removed.

3.2 Size of ILP Formulations

We analyze the size of our ILP formulations in terms of their number of variables
and constraints. Let n denote the number of nodes in the gene tree and let
m denote the number of nodes in the species tree. Further, let k denote the
maximum possible number of loci in the gene tree. Note that k < n and k in the
ILP-C1 and ILP-C2 models can be expected to be significantly smaller than in
the DLCPar-ILP model due to the modified Dg variables.

Then in the DLCPar-ILP and ILP-C1 models, the upper bound on the num-
ber of variables is

2km + (2k + 1)(n + n2) = O(k(m + n2)),

and the number of constraints is

(3k + 1)n2 + (k + 2m + 3)n + 4mk + 1 = O(kn2 + m(n + k)).
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Finally, the ILP-C2 model has

2km + (2k + 1)n + (k + 1)n2

variables, and
(k + 1)n2 + (k2 + 2m + 3)n + 4mk + 1

constraints. Observe, that the ILP-C2 model has fewer variables than the other
two models (while asymptotically the same).

3.3 Searching for Multiple Optimal Solutions

The proposed formulations can be extended to detect multiple optimal solutions
through an iterative algorithm. At each iteration of that algorithm, our models
identify one more alternative optimal solution (if such a solution exists). In
particular, for a fixed model, at the first iteration, we solve the original model
and save the optimal variables x∗, y∗, and z∗ as a part of an optimal solution.
To identify a different optimal solution with the same objective value, we add a
new constraint such that the ILP model does not repeat identifying previously
detected optimal solutions. This constraint is defined as

∑

e∈E(G)

(xe − 1)x∗
e +

∑

g∈V (G)

∑

l∈[N ]

(ygl − 1)y∗
gl +

∑

g∈V (G)

∑

l∈[N ]

(zgo − 1)z∗
go ≤ −1.

We repeat this process as long as the optimal DLC score is the same as the
previous iterations.

4 Simulation Study

We present a broad simulation study that (i) compares the computational effi-
ciency and scalability of the developed ILP models with DLCPar and (ii) vali-
dates the accuracy of the constrained ILP formulations. Note that we carry out
our studies under varied simulation parameters controlling the rate of duplica-
tion/loss events as well as the rate of ILS.

Experimental Setup. The process for converting an instance of the DLCPar-
simony problem to an ILP formulation was implemented in Python 3. Then
ILP instances were solved with the Gurobi optimizer version 9.0 [8]. As for
DLCPar [20], we used the exact version of the software without heuristic options
for a fair comparison. Further, we set the DLCParsimony cost parameters as
cD = cL = cDC = 1. We performed the experiments on a standard workstation
with 1.2 GHz (3.6 GHz maximum) CPU.

Simulated Data. We used the standard SimPhy simulator [13] to generate the
DLCParsimony instances. SimPhy works by first simulating a birth-death species
tree and then applying the 2-step DLCoal process by Rasmussen et al. [17] to
simulate the multi-locus gene trees. We use the standard simulation parameters
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derived from the real-world 16 fungi dataset [4,14,17]. In particular, we follow
the parameter settings by Molloy and Warnow [14].

To conduct a comprehensive analysis and properly evaluate the proposed
constrained DLCPar model, we perform our experiments under various realistic
levels of the gene duplication and loss (GDL) and incomplete lineage sorting
(ILS). More precisely, we use three different GDL levels: 1e−10 duplication&loss
events per year (low GDL rate), 2e−10 (moderate GDL rate), and 5e−10 (high
GDL rate). Further, we use two different ILS levels by controlling the tree-wide
effective population size; i.e., we use the effective population sizes of 1e7 and 5e7
(that correspond to low and moderate ILS levels respectively, according to [14]).

Finally, we simulated DLCParsimony instances with the number of species
varying from 5 to 50. That is, overall, we had 3×2×10 = 60 different parameter
settings for DLCParsimony instances. Then to ensure consistency, for each of
the 60 parameter combinations, we generated 10 independent DLCParsimony
instances. Then we executed DLCPar, DLCPar-ILP, and two constrained ILP
models (referred to here as ILP-C1 and ILP-C2 ) on each of the 600 gener-
ated problem instances. Due to a large number of instances and the advanced
complexity of the models, we constrained each execution time to 10 min.

4.1 Results and Discussion

Run-Time Comparison. Table 1 shows the breakdown for each algorithm,
on how many instances did it fail to complete within 10 min. Further, Fig. 2
demonstrates the scalability ILP-C1 and ILP-C2 algorithms using examples of
high-GDL and low-ILS levels. Note that we omitted DLCPar and DLCPar-ILP
from the figure as there were multiple instances where those algorithms did not
complete (introducing noise).

As expected, we observed that the constrained ILP formulations generally
performed faster than both DLCPar and DLCPar-ILP, particularly for instances
with more than 50 genes. Overall, ILP-C1 and ILP-C2 were not able to complete
within 10 min only on 3 and 2 instances out of 600, respectively. The smallest
instance size, where all algorithms failed, contained 50 species and 202 genes.
Note, however, that ILP-C1 and ILP-C2 were able to complete on other instances
with up to 272 genes (which was the largest number of genes in our study).

Further, we generally observed that DLCPar-ILP failed to complete on
more instances than DLCPar (54/600 compared to 30/600), and DLCPar was
faster than DLCPar-ILP on average. However, we observed that there were 17
instances, where DLCPar-ILP was able to complete, while DLCPar failed. At
the same time, there were 38 instances, where DLCPar was able to complete,
while DLCPar-ILP failed. That is, there is no clear domination of one method
over the other, and the two methods can be used as complements of each other.

Validating Constrained Models. Given that for the vast majority of
instances DLCPar-ILP or DLCPar have completed, we were able to validate the
assumptions of the constrained models. That is, we compare the optimum DLC
reconciliation score from the constrained models against the overall optimum
DLC score (in the unconstrained case). See Table 2 for the results breakdown.
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Table 1. Number of instances with running time above 600 s out of 100 instances for
each combination

Combination Population size GDL Number of instances

DLCPar-ILP ILP-C1 ILP-C2 DLCPar

1 1e7 1e−10 2 0 0 0

2 1e7 2e−10 9 0 0 1

3 1e7 5e−10 10 1 1 8

4 5e7 1e−10 8 0 0 2

5 5e7 2e−10 9 0 0 3

6 5e7 5e−10 16 2 1 16

Interestingly, we observed that in 98.17% of instances (where we know the
optimum unconstrained cost) ILP-C1 provided exactly the same reconciliation
cost as the original DLC-model. Moreover, in the 10 instances, where ILP-C1
provided a slightly higher cost, the difference in costs was at most 2. On the other
hand, ILP-C2, which showed to be faster on average than ILP-C1, provided over-
estimated reconciliation costs more often. It was exactly correct in 89.9% cases,
and the difference in costs in the other 55 cases was at most 8.

That is, overall, ILP-C1 proved to be both very effective and efficient in prac-
tice, almost always providing the globally optimum reconciliation cost. There-
fore, we suggest the use of this constrained model in practice.

ILP-C2 proved to be faster than ILP-C1 on average, but it gives worse accu-
racy due to the strength of the constraints. Indeed, ILP-C2 can be very effective
in domains with low levels of ILS, since it over-estimated costs significantly less
frequently when population size was smaller (see Table 2).

Fig. 2. Computational time comparison for ILP-C1 and ILP-C2 on the example of
high-GDL and low-ILS instances.



Integer Linear Programming Formulation 241

Table 2. Number of Instances, where ILP-C1 and ILP-C2 score was larger than the
DLCPar-ILP/DLCPar score.

Combination Population size GDL Number of Instances

ILP-C1 ILP-C2

1 1e7 1e−10 0/98 0/98

2 1e7 2e−10 1/91 1/91

3 1e7 5e−10 2/90 14/90

4 5e7 1e−10 0/92 6/92

5 5e7 2e−10 2/91 14/91

6 5e7 5e−10 5/84 20/84
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Abstract. An integrated computational approach to in silico drug designwas used
to identify novel HIV-1 entry inhibitor scaffolds mimicking broadly neutralizing
antibody (bNAb) N6 targeting CD4-binding site of the viral gp120 protein. This
computer-based approach included (i) generation of pharmacophore models rep-
resenting 3D-arrangements of chemical functionalities that make bNAb N6 active
towards CD4-binding site of gp120, (ii) shape and pharmacophore-based identifi-
cation of the N6-mimetic candidates by a web-oriented virtual screening platform
Pharmit, (iii) molecular docking of the identified compounds with gp120, (iv)
optimization of the docked ligand/gp120 complexes using semiempirical quan-
tum chemical method PM7, and (v)molecular dynamics simulations of the docked
structures followed by binding free energy calculations. As a result, six hits able
to mimic the key interactions of N6 with the Phe-43 cavity of gp120 were selected
as the most probable N6-mimetic candidates. The pivotal role in the interaction of
these compoundswith gp120 is shown to playmultiple van derWaals contactswith
conserved residues of the hydrophobic Phe-43 cavity critical for theHIV-1 binding
to cellular receptorCD4, aswell as hydrogenbondwithAsp-368gp120 that increase
the chemical affinity without activating unwanted allosteric effect. According to
the data of molecular dynamics, the complexes of the identified molecules with
gp120 are energetically stable and show the lower values of binding free energy
compared with the HIV-1 entry inhibitors NBD-11021 and DMJ-II-121 used in
the calculations as a positive control. Taken together, the findings obtained suggest
that these compounds may serve as promising scaffolds for the development of
novel, highly potent and broad anti-HIV-1 therapeutics.
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1 Introduction

Discovery of potent broadly neutralizing antibodies (bNAbs) isolated from HIV-1 long-
term non-progressors gave hope for the possibility of eliciting naturally produced bNAbs
through vaccination that may provide a pragmatic way forward. Over 40 bNAbs are cur-
rently considered as potential candidates for the development of a globally safe and
effective anti-HIV-1 vaccine. These bNAbs target four functionally conserved regions
on the trimeric spikes of theHIV-1 envelope (Env) that play a key role inHIV attachment,
co-receptor binding, and membrane fusion. In particular, the newly identified antibody
from an HIV-infected person, named N6, neutralizes up to 98% of HIV-1 isolates tested,
including 16 of 20 strains resistant to other bNAbs that target the CD4-binding site of
gp120 [1]. BNAb N6 interacts mostly with relatively conserved regions among world-
wide HIV-1 strains and depends less on a variable region V5 of gp120 than its VRC-
class predecessors [1]. This unique mode of binding enables N6 to endure Env changes,
including N-linked glycosylation of the V5 region which is a major reason of the HIV-1
resistance to other VRC01-like antibodies [1]. In addition, N6 shows wonderful breadth
and potency, making this antibody a relevant candidate for further development of both
prevention and treatment strategies [1].

Despite significant progress towards the identification of anti-HIV-1 bNAbs and spe-
cific modes of their binding to the viral Env, the major challenges in the development
of immunogens able to induce potent cross-reactive neutralizing antibodies still remain.
Unfortunately, currentHIV-1 vaccine candidates are unable to elicit neutralizing antibod-
ies against most circulating virus strains, and thus the induction of a protective antibody
response continues to be a major priority for HIV-1 vaccine development. In this con-
text, development of small-molecule HIV-1 entry inhibitors able to show structural and
functional mimicry of anti-HIV-1 bNAbs paratopes may be of great interest.

In thiswork, an integrated computational approach to in silicodrugdesignwas used to
identify novel HIV-1 entry inhibitor scaffolds mimicking structural and pharmacophore
features of the bNAbN6paratope. This computer-based approach included (i) generation
of pharmacophore model representing 3D-arrangements of chemical functionalities that
make bNAb N6 active towards the CD4-binding site of gp120, (ii) pharmacophore-
based identification of the N6-mimetic candidates by a web-oriented virtual screening
platform Pharmit (http://pharmit.csb.pitt.edu), (iii) docking of the identified compounds
with the molecular target, and (iv) molecular dynamics (MD) simulations of the docked
structures followedbybinding free energy calculations and selectionof themost probable
N6 peptidomimetics.

As a result, six hits able to mimic the key interactions of N6 with the Phe-43 cavity
of gp120 were selected as the most probable N6-mimetic candidates.

2 Methods

The Pharmit web platform providing an interactive environment for the virtual screen-
ing of large compound databases using pharmacophores, molecular shape and energy
minimization (http://pharmit.csb.pitt.edu) [2] was applied for generating the pharma-
cophore model of anti-HIV-1 antibody N6 based on the crystal N6/gp120 complex as

http://pharmit.csb.pitt.edu
http://pharmit.csb.pitt.edu
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the input dataset (Protein Data Bank; code 5TE7; https://www.rcsb.org) [1]. According
to the X-ray data [1], the N6 residues Tyr-54H and Arg-71H that specifically interact
with the hydrophobic Phe-43 cavity of the gp120 CD4 binding site play a key role in
the N6 attachment to the HIV-1 gp120 protein. These two N6 residues were therefore
used to construct the pharmacophore model of the antibody paratope by the Pharmit
platform software [2] combined with the X-ray data [1]. This model was used for vir-
tual screening of the Pharmit chemical databases containing over 1 billion 200 million
conformers for ~ 96 million chemical compounds (http://pharmit.csb.pitt.edu) [2] to
identify small-molecule drug candidates able to mimic the pivotal interactions of bNAb
N6 with gp120. As a result, a set of small-molecule compounds that satisfied the given
pharmacophore model and exhibited negative values of binding energies to gp120 was
identified. The efficacy of intermolecular interactions between these compounds and the
Phe-43 cavity of gp120 was then estimated in terms of the values of binding free energy
and dissociation constant usingmolecular docking andmolecular dynamics simulations.

Molecular docking of the designed compounds with gp120 was performed by the
QuickVina 2 program [3] in the approximation of rigid receptor and flexible ligands.
The HIV-1 inhibitors NBD-11021 [4] and DMJ-II-121 [5] presenting a new genera-
tion of the viral entry antagonists were used in the calculations as a positive control.
The 3D structure of gp120 was isolated from the crystal N6/gp120 complex (Protein
Data Bank; code 5TE7; https://www.rcsb.org) [1]. The 3D structures of NBD-11021
and DMJ-II-121 were taken from the X-ray complexes of these compounds with gp120
(the PDB files 4RZ8 and 4I53) [4, 5]. The gp120 and ligand structures were prepared
by adding hydrogen atoms with the Open Babel software (http://openbabel.org/wiki/
Main_Page) followed by their optimization in the UFF force field (https://doi.org/10.
1021/ja00051a040). The ligands were docked to the crystal gp120 structure [1] using
QuickVina 2 [3]. The grid box included the Phe-43 cavity of the gp120 CD4-biding
site and was the region of the crystal structure [1] with the following boundary X, Y,
Z values: X ∈{38 Ǻ, 63 Ǻ}, Y ∈{34 Ǻ, 59 Ǻ}, Z ∈{55 Ǻ, 75 Ǻ}.The value of “ex-
haustiveness” parameter defining number of individual sampling “runs” was set to 50
[3].

The classical dynamics of the ligand/gp120 complexes in water was made with the
implementation of Amber 16 using the Amber ff10 force field (http://ambermd.org/).
TheANTECHAMBERmodulewas employed to set theGasteiger atomic partial charges
(http://ambermd.org/). To prepare the force field parameters, the general AMBERGAFF
force field [6] was used. Hydrogen atoms were added to gp120 by the tleap program of
the AMBER 16 package (http://ambermd.org/). Initially, the ligand/gp120 complexes
were each placed in an octahedron box with periodic boundary conditions. In addition
to the ligand/gp120 complex, the box for the MD simulations included TIP3P water [7]
as an explicit solvent, Na+ and Cl− ions providing overall salt concentration of 0.15 M.
After setting up the system, an energy minimization was performed using 500 steps of
the steepest descent algorithm followed by 1000 steps of the conjugate-gradient method.
The atoms of the complex assembly were then fixed by an additional harmonic potential
with the force constant of 1.0 kcal/mol and the system was subject to the equilibration
phase. The system equilibrationwas carried out in three consecutive stages: 1) the system
was gradually heated from 0 K to 310 K for 1 ns in NVT ensemble using a Langevin

https://www.rcsb.org
http://pharmit.csb.pitt.edu
https://www.rcsb.org
http://openbabel.org/wiki/Main_Page
https://doi.org/10.1021/ja00051a040
http://ambermd.org/
http://ambermd.org/
http://ambermd.org/
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thermostat with a collision frequency of 2.0 ps−1 (http://ambermd.org/); 2) pressure
equilibration was made for 1 ns at 1.0 bar in NPT ensemble using Berendsen barostat
with a 2.0 ps characteristic time (http://ambermd.org/); 3) the constraints on the complex
assembly were removed and the system was equilibrated again at 310 K over 2 ns under
constant volume conditions. After equilibration was achieved, the MD simulations were
carried out for 30 ns in NPT ensemble at temperature T = 310 K and P = 1 bar. Bonds
involving hydrogen atoms were constrained using SHAKE algorithm (http://ambermd.
org/) to achieve the integration time-step of 2 fs. Long-range electrostatic interactions
were calculated using Particle Mesh Ewald (PME) algorithm (http://ambermd.org/).
Coulomb interactions and van der Waals interactions were truncated at 10 Å.

3 Results

Based on the findings obtained, six potential peptidomimetics of the cross-reactive neu-
tralizing anti-HIV-1 antibody N6 targeting CD4-binding site of the viral gp120 protein
were identified (Fig. 1). Analysis of the complexes of the identified compounds with
gp120 reveals a large number of intermolecular interactions involving the residues of
gp120 pivotal for the HIV-1 binding to cellular receptor CD4. As an example, Fig. 2
casts shed on the complex of the top-scoring hit with gp120. With the data obtained,
this compound forms 7 intermolecular hydrogen bonds (Fig. 2) and 33 van der Waals
contacts with the gp120 residues associated with the key hotspots of the CD4-binding
site, namely, the Phe-43 cavity, Asp-368gp120 and Met-426gp120. In particular, the ana-
lyzed molecule is involved in the H-bonding with Asp-368gp120 mimicking the critical
H-bond interaction of this highly conserved gp120 residue with Arg-59CD4, as well as
in the H-bonding with Met-426gp120 which was also defined as a binding hotspot of the
CD4-gp120 interface.

Along with hydrogen bonds, the best compound forms multiple van der Waals con-
tacts centered on the residues of gp120 significant for theHIV-1 binding to CD4.Accord-
ing to Fig. 2, the molecule of interest is involved in van der Waals interactions with the
gp120 residues Asp-368, Glu-370, Ile-371, Arg-425 and Trp-427, which are highly con-
served among various viral isolates and the most important for the HIV-1 attachment to
the primary receptor [8].

Thus, inspection of the complex between gp120 and the N6-mimetic candidate with
the best scoring function indicates that, in amechanismsimilar to that ofN6, the identified
compound makes hydrogen bonds and van der Waals contacts with the gp120 residues
that play a key role in the HIV-1 binding to CD4, resulting in destruction of the critical
interactions of gp120 with Phe-43CD4 and Arg-59CD4. The mechanism of interactions
between the other identified molecules and gp120 is close to that described above for
the top-ranking compound.

This mechanism is generally provided by intermolecular hydrogen bonds with Asp-
368gp120, Met-426gp120 and multiple van der Waals contacts with the gp120 residues
that bind to Phe-43CD4.

The data of MD simulations support the results obtained for the docked structures of
the N6-mimetic candidates with gp120. These complexes show relative conformational
stability within the MD simulations, keep the hydrogen bonds identified in the static

http://ambermd.org/
http://ambermd.org/
http://ambermd.org/
http://ambermd.org/
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Fig. 1. Chemical structures of the potential peptidomimetics of the neutralizing anti-HIV-1
antibody N6. Systematic names of these compounds are given.

models and expose the high percentage occupancies of intermolecular H-bonds, in line
with the low values of binding free energy predicted for the analyzed molecules based
on the MD studies (Table 1). Importantly to note that these values are lower than those
calculated using the identical computational protocol for the HIV-1 entry inhibitors
NBD-11021 [4] andDMJ-II-121 [5]whichwere involved in the calculations as a positive
control.

Thus, the post-molecular modeling analysis shows that the identified N6-mimetic
candidates (Fig. 1) exhibit the similarmodes of binding to gp120, resulting in destruction
of the critical interactions of Phe-43CD4 and Arg-59CD4 with the two well-conserved
hotspots of the HIV-1 CD4-binding site, namely the Phe-43 cavity and Asp-368gp120.
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Fig. 2. The docked structure of compound I with gp120. The residues of gp120 forming
intermolecular contacts with the ligang are indicated. Hydrogen bonds are shown by dotted lines.

Table 1. Mean values of binding free energy <�G> for the complexes of the antibody N6
mimetics with the HIV-1 gp120 protein and their standard deviations �GSTD.

Ligand <�H>

kcal/mol
(�H)STD
kcal/mol

<T�S>

kcal/mol
(T�S)STD
kcal/mol

<�G>

kcal/mol
�GSTD
kcal/mol

I −54.87 7.12 −27.66 9.08 −27.20 11.54

II −41.62 5.92 −17.57 5.54 −24.05 8.11

III −48.09 5.25 −26.87 8.09 −21.23 9.64

IV −43.01 10.54 −24.78 7.72 −18.24 13.07

V −39.22 4.53 −24.64 8.95 −14.59 10.03

VI −39.59 5.75 −25.20 8.82 −14.38 10.53

DMJ-II-121 −38.81 3.83 −26.42 8.94 −12.39 9.72

NBD-11021 −32.17 6.02 −19.87 6.09 −12.30 8.56

<�H> and <T�S> are the mean values of enthalpic and entropic components of free energy
respectively; (�H)STD and (T�S)STD are standard deviations corresponding to these values.

These binding modes are mainly provided by numerous van der Waals interactions with
the gp120 residues that are the major contributors to the gp120-CD4 interaction, and the
hydrogen bond with Asp-368gp120 that is associated with increasing the binding affinity
without triggering the undesirable allosteric signal [5] is also highly important.
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4 Conclusion

Taken together, the data obtained suggest that the identified N6-mimetic candidates
(Fig. 1) may serve as promising scaffolds for the development of novel, highly potent
and broad anti-HIV-1 therapeutics.
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Abstract. Learning continuous vector representations of genes has been
proved to be conducive for many bioinformatics tasks as it can incorpo-
rate information of various sources including gene interactions and gene-
disease interactions. However, most of the existing approaches, following
a paradigm stemmed from the natural language processing community,
treat the embedding context in a flat fashion such as a sequence, and tend
to overlook the fact that proteins are more likely to function together.
In this study, we propose an unsupervised gene embedding algorithm
which utilizes graph convolutional network to learn structural informa-
tion of genes from their neighborhoods in genetic interaction networks.
We also propose a neighborhood sampling strategy to generate training
samples. Our approach does not assume conditional independence of the
node neighborhood and focuses on learning structural information. We
compare our method against state-of-the-art baselines and experimental
results demonstrate the effectiveness of our approach.

Keywords: Gene embedding · Graph convolutional network ·
Protein-protein interaction · Essential gene identification

1 Introduction

Like words to natural language processing (NLP), genes are the fundamental
building blocks of molecular biological systems. It has been proved that treating
genes as atomic units may not be the best solution in many scenarios [3,6,
35], whereas high dimensional vector representation of genes learned through
unsupervised training could be used as features to improve performances of many
downstream tasks including protein-protein interaction prediction and essential
gene identification. Such representations capture properties of genes based on
their biological properties and allow them to generalize across tasks.
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Most of the current approaches for gene embedding are based on the Skip-
gram model [23,24] introduced for the NLP community which utilizes the co-
occurrence statistics from sequential context of words. In particular, given a
sequence of words, Skip-gram model tries to maximize the probability of one
word given another using a simple neural network model whose weights are
obtained as learned embeddings for each word. Du et al. [6] transferred this con-
cept to the domain of bioinformatics and successfully learned meaningful embed-
dings for genes using co-expression data. Furthermore, Dai et al. [3] applied the
Node2Vec algorithm for gene network embedding which generates sequential
contexts for each gene via biased random walks and then utilizes the Skip-gram
model to the generated contexts to learn embeddings for each gene. However,
all of the aforementioned approaches tend to overlook the fact that proteins
rarely act alone and tend to team up as “molecular machines” characterized
by intricate physicochemical dynamic connections to perform complex biologi-
cal functions [4]. Specifically, the Skip-gram model based approaches assume the
conditional independence of neighborhood genes and treat the gene interactions
in a flat and pair-wise fashion, ignoring the rich structural information displayed
by complex protein-protein interaction networks.

Recent years have witnessed the success of neural networks, including con-
volutional neural networks, recurrent neural networks, and graph convolutional
network (GCN) on many applications [8,32]. Graph neural networks, in partic-
ular [5,12,15,19,27,33], have been proved to be particularly useful for capturing
structural information on graphs. It extends the notion of convolutional neu-
ral networks on grid-like input to irregular input such as graphs and provides
the flexibility to incorporate both node features and topological features. Sev-
eral studies have been conducted to utilize GCN for incorporating structural
information into word or gene embeddings. In particular, Vashishth et al. [31]
employed GCN to efficiently incorporate syntactic as well as semantic informa-
tion into pre-trained word embeddings and Li et al. [20] proposed a GCN based
approach to learn node embeddings from heterogeneous networks made by genes
and diseases for disease gene prioritization. On the other hand, most of the pre-
vious approaches which are based on the Skip-gram architecture treat the nodes
in a pair-wise fashion and fail to utilize the structural nature of genetic interac-
tion networks. To overcome this drawback and by recognizing the advantages of
GCN, we make the following contributions in this paper.

– We propose GeneGCN to incorporate structural information of genetic inter-
action networks into continuous vector representations of genes in an unsu-
pervised fashion. We also propose a graph neighborhood sampling strategy
to generate training samples for each gene.

– We train our model using the genetic information mined from the stringDB
[28] database and evaluate the learned embeddings on two downstream tasks
including protein-protein interaction prediction and essential gene identifica-
tion. For each task, we compare our model against state-of-the-art baselines
to demonstrate the effectiveness of our approach.
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The rest of the paper is organized as follows. In Sect. 2, we review related works.
In Sect. 3, we describe our approach in detail. Section 4 presents the empirical
results and Sect. 5 concludes the paper.

2 Related Work

2.1 Unsupervised Learning for Distributional Representations

Learning continuous representations for words has been widely recognized to be
effective for many NLP tasks and many models have been proposed to incor-
porate the contextual information into word embeddings. In particular, Mikolov
et al. [23,24] proposed the popular neural network based Skip-gram model to
learn word embeddings in an unsupervised fashion. Based on this, Grover et
al. [10] proposed the Node2Vec model to generate sequential contexts which are
then fed to the Skip-gram model to learn node embeddings. Du et al. [6] and Dai
et al. [3] applied the two aforementioned models to protein-protein interaction
networks to learn vector representations for genes. But all of these approaches
treat the words or nodes in a pair-wise fashion and tend to overlook the struc-
tural properties of the input networks.

2.2 Graph Convolutional Networks

By extending the notion of neural network from grid-like input to irregular
graphs, GCN has achieved remarkable success in many fields [26], including
word and gene embedding. Li et al. [20] employed GCN to learn gene-disease
associations from heterogeneous network made by genes and diseases. Vashishth
et al. [31] utilized GCN trained on large-scale unlabeled data to incorporate
both syntactic and semantic information into word embeddings. These studies
together inspired our work.

2.3 Protein-Protein Interaction

As indicated in [4], proteins within a tissue rarely act alone and tend to team
up to undertake complex biological functions together through multimodal
physicochemical dynamic connections. Some studies [1,13] proved that groups
of genes linked by molecular interactions are more likely to have correlated
gene profiles than genes chosen at random and some sub-networks of the entire
protein-protein interaction network could have high statistical significance for
the identification of certain diseases [14]. Furthermore, recent studies [3,6] have
proved that learning gene embeddings from protein-protein interaction networks
in an unsupervised fashion is indeed conducive for downstream bioinformatics
tasks.

3 Methodology

In this section, we first introduce the background information for GCN, then
describe the sampling strategy to generate training data and finally present our
GeneGCN.
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3.1 Background: Graph Convolutional Networks

Inspired by deep convolutional neural networks on grid-like input, GCN learns
node embeddings in a graph by conducting convolutional operations over the
neighborhood of nodes. In general, to generate new embedding of a node given
the current learned embeddings in the network, GCN collects embeddings of
the neighboring nodes, multiply the embeddings with trainable weights, and
then merge them using some aggregate function and this procedure could be
repeated for K hops which is usually termed the depth of graph convolution.

Formally, given a graph G = {V, E ,X} where V denotes the set of nodes, E
the set of edges and X the input node features, GCN generates embedding for
node v on the (k + 1)-th layer as follows.

hk+1
v = f

⎛
⎝ ∑

u∈N (v)

W khk
u + bk

⎞
⎠ (1)

where k denotes the depth of the graph convolution, hk ∈ R
d the node repre-

sentation at the k-th layer, W k ∈ R
d×d and bk ∈ R

d the trainable parameters
of the k-th layer, and Nv the neighborhood of node v. f could be an activation
function or an aggregation function and d is the input dimension (embedding
dimension). The graph convolution process is illustrated in Fig. 1.

Fig. 1. The graph convolution process.

3.2 GeneGCN

Similar to the learning scheme proposed in [31], we learn gene embeddings in
an unsupervised fashion. Specifically, given the GCN embedding (ht) of a target
gene (gt) and its target embedding vgt , we use its neighbors in the input network
to predict the target gene. Formally, we seek to maximize the following objective.
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L =

|V |∑
t=1

log Pr(gt|N (gt)) (2)

where gt is the target gene, N (gt) the neighborhood of gt in the input network
and V the set of all the distinct genes in the input network. The probability
Pr(gt|N (gt)) is calculated as follows.

Pr(gt|N (gt)) =
exp(vT

gtht)
|V |∑
i=1

exp(vT
giht)

(3)

where ht is the GCN representation of the target gene and vgt is its target
embedding. Using Eq. 3, L can be further reduced to

L =

|V |∑
t=1

⎛
⎝vT

gtht − log
|V |∑
i=1

exp(vT
giht)

⎞
⎠ (4)

Unlike Node2Vec [10], our GeneGCN assumes no conditional independence of
the nodes in a target gene’s neighborhood and aims to learn the structural
information from the input network. The embedding process of GeneGCN is
illustrated in Fig. 2.
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Fig. 2. An example of the embedding process of GeneGCN.

3.3 Graph Neighborhood Sampling

In this section, we propose an efficient neighborhood sampling strategy to gener-
ate training samples for our GeneGCN. Unlike Node2Vec which generates sam-
ples for each node, we employ an edge-based sampling strategy. In particular,
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we first sort the neighborhood for each node according to the edge-associated
weights (e.g., interaction confidence) and then keep only the top n nodes as the
considered neighborhood. Next, for each edge (u, v) in the input graph, we first
use u as the target node (gene) and then uniformly sample m nodes without
replacement from its considered neighborhood. Finally, we add v to the sampled
neighborhood to create the sampled neighborhood N T

s (u). Here n and m are the
hyperparameters to control the neighborhood size and we use multiple values of
m to create training samples of different sizes. We repeat the procedure for v
to generate the training examples associated with v. The detailed algorithm is
described in Algorithm 1. The proposed sampling strategy allows different sizes
of neighborhood to be considered and assumes no conditional independence of
the neighborhood.

Algorithm 1: Edge-based Graph Neighborhood Sampling
input : Graph G(V, E ,W); considered neighborhood size n; set of sample sizes

S; times to repeat the sampling process Z; random sampling without
replacement function: SAMPLE(X, y).

output: List of tuples L: [(gt, N T
s (gt))]

1 For each node v ∈ V, sort its neighborhood according to the connection weights.
Keep only the top n nodes for each neighborhood to obtain Ns(v) ;

2 for i ← 1 to Z do
3 for k ∈ S do
4 for (u, v) ∈ E do
5 N T

s (u) ← SAMPLE(Ns(u) - {v}, k) ∪ {v}
6 L ← L ∪ {(u, N T

s (u))}
7 N T

s (v) ← SAMPLE(Ns(v) - {u}, k) ∪ {u}
8 L ← L ∪ {(v, N T

s (v))}
9 end

10 end

11 end
12 return L

4 Experimental Results

In order to demonstrate the effectiveness of our approach, we evaluate our genetic
network embedding approach on two tasks: protein-protein interaction prediction
and essential gene identification. We first describe the datasets that we use in the
experiments, then detail the evaluation process and finally present the empirical
results.

4.1 Datasets

We use the stringDB [28] as our major source of network embedding data. The
STRING database collects, scores and integrates all publicly available sources
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of protein–protein interaction information, and complements these with compu-
tational predictions to achieve a comprehensive and objective global network,
including direct (physical) as well as indirect (functional) interactions. For the
first task which is protein-protein interaction prediction, we use only the co-
expression data in stringDB as did in [6] for network embedding (we exclude
edges whose connection confidence is lower than 0.05) and for the second which
is essential gene identification, we use the combined scores of protein-protein
interactions as the network input.

We followed the procedures in [18] to generate the gene-gene interaction pre-
diction data based on the shared Gene Ontology (GO) annotations which is
obtained using R package “org.Hs.eg.db”. We download the GO structure file
from1 and we define the gene pairs that share GO annotations as the posi-
tive set of functional associations as did in [6]. Specifically, we choose the GO
category “Biological Process” with experimental evidence: IDA (inferred from
direct assay), IMP (inferred from mutant phenotype), IPI (inferred from protein
interaction), IGI (inferred from genetic interaction), and TAS (traceable author
statement). We also exclude the highly over-represented GO terms to minimize
generalized annotations as did in [6]. This creates a positive set of 270,704 pairs
involving 5369 genes. We collect all gene-pairs that do not share any GO term or
their children GO terms as negative set of functional associations, which results
in a total of 40,879,714 gene pairs involving 12,521 human genes.

For the second task, which is predicting human essential genes, we download
the data from the supplementary files of [11] which are extracted from the DEG
database2. It contains 12015 genes among which 1516 are essential genes and
10499 are non-essential genes.

4.2 Task 1: Protein-Protein Interaction Prediction

In our first task, we evaluate the effectiveness of our approach by predicting
protein-protein interactions. Given a pair of genes, we employ the same gene-
gene interaction predictor neural network (GGIPNN) proposed in [6] to pre-
dict whether there is any association between these two genes. We first use
GeneGCN to learn gene embeddings from the co-expression network and then
use the learned embeddings as the input of GGIPNN. We randomly sample
negative pairs with equal number of positive pairs to avoid the impact of the
imbalanced labels distribution and we divide the data into training, validation
and testing with a ratio of 7 : 1 : 2 as did in [6]. We use pairs that both two
genes appear only in the training set for training; we use pairs that both two
genes appear only in the validation set for validation; we use pairs that both
two genes appear only in the testing set for testing. We also remove genes that
do not appear in the stringDB data. This ends up with a training set that has
156,221 pairs (involving 8722 genes), validation set that has 3416 pairs (1054
genes) and testing set that has 13,022 pairs (2370 genes).

1 http://geneontology.org/ontology/go.obo.
2 http://tubic.tju.edu.cn/deg/.

http://geneontology.org/ontology/go.obo
http://tubic.tju.edu.cn/deg/


Learning Structural Genetic Information via Graph Neural Embedding 257

For this task, we compare our approach against three baselines: random ini-
tialization, Gene2Vec [6] and Node2Vec [10]. We use the F1 score, Matthews
Correlation Coefficient (MCC) and Area Under ROC Curve (AUC) as the per-
formance comparison metrics. For the hyperparameters, we use 50000 for the
considered neighborhood size n, 10 for the repetition times Z and [2, 5, 10]
for the sample sizes S. We use 100 for the embedding dimension and we fix
all the learned embeddings during training. For each algorithm, we repeat the
experiments for 5 random runs and the results are reported in Table 1.

Table 1. Performance comparison with baselines on the protein-protein interaction
prediction task.

Algorithm F1 MCC AUC

Random initialization 0.364 ± 0.172 0.008 ± 0.012 0.504 ± 0.002

Gene2Vec [6] 0.628 ± 0.035 0.331 ± 0.012 0.721 ± 0.011

Node2Vec [3] 0.662 ± 0.030 0.349 ± 0.012 0.734 ± 0.010

GeneGCN (Our Approach) 0.685 ± 0.02 0.370 ± 0.006 0.753 ± 0.003

From the table, we can see that GeneGCN outperforms all the baseline mod-
els on all the metrics. Besides, we observe that our approach could greatly reduce
variance compared to the baseline models.

4.3 Task 2: Essential Gene Identification

In this section, we further evaluate GeneGCN on the task of predicting essential
genes. Genes can be deemed as essential if they play indispensable role in cell
viability and fertility [34]. Since there is a mismatch between the gene set of
stringDB and the gene pairs we obtained from the DEG database, we only
consider the genes that are available in both sources and this results in a total
number of 6193 genes 1207 of which are positive genes and 4986 are negative
genes. In order to make a fair comparison, we use support vector machine (SVM)
as the downstream classifier as did in [3]. We conduct five fold cross validation
and for each fold, we randomly down sample the negative data to obtain 1 : 1
ratio with the positive data as did in [3]. We use the same set of hyperparameters
that we used for Task 1 except that we use 15 for Z. For this task, we compare our
GeneGCN against the λ-interval Z curve method [11], Gene2Vec, and Node2Vec.
We also use the F1 score, MCC and AUC as the comparison metrics and repeat
the experiments for each algorithm for 5 random runs. We report the results in
Table 2.

From the table we observe similar behavior as we do in Task 1 that GeneGCN
outperforms all the baselines on all the metrics and generally achieves a smaller
variance.

From both two tasks, we see that our approach could indeed mine additional
structural information from the input network, which is reflected by the improved
performance over the baselines.
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Table 2. Performance comparison with baselines on the essential gene identification
task

Algorithm F1 MCC AUC

Z curve [11] 0.783 ± 0.011 0.568 ± 0.016 0.834 ± 0.006

Gene2Vec [6] 0.805 ± 0.009 0.669 ± 0.015 0.935 ± 0.005

Node2Vec [3] 0.865 ± 0.006 0.731 ± 0.012 0.933 ± 0.005

GeneGCN (Our Approach) 0.883 ± 0.007 0.770 ± 0.013 0.949 ± 0.002

4.4 Embedding Visualization by t-SNE

In this section, we seek to visualize and interpret the gene embeddings learned by
GeneGCN. We use the gene embeddings learned in the first task and we employ
the t-Distributed Stochastic Neighbor Embedding (t-SNE) [21] which maps high
dimensional data to 2 or 3 dimensional vectors. As recommended in [6], we first
use the principal component analysis (PCA) to reduce the learned embedding
dimension to 50 and then apply the multi-core version of Barnes-Hut t-SNE [30]
to speed up the mapping process. For the hyperparameters, we use a value of 30
for the perplexity, 200 for the learning rate and 100,000 for number of iterations.
The mapping results are plotted in Fig. 3.

Cluster 1
Cluster 2

Cluster 3

Cluster 5

Cluster 4

Cluster 8Cluster 7

Cluster 6

Fig. 3. Gene embedding map generated using t-SNE. “Dim 1” and “Dim 2”
are the two embedding dimensions. Blue: leucine-rich repeat (LRR) genes [16]; pink:
cytochromes P450 (CYP) genes [9]; green: homebox genes [2]; orange: ankryin repeat
genes [22]; cyan: ZNF genes; brown: kinesin genes [17]; red: receptor tyrosine kinase
genes [25]; purple: RhoGAP gens [29]. (Color figure online)
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From the figure we can see that most of the genes form a single cloud while
several small groups of genes scatter around it. In order to further illustrate
the embedding map, we color the genes that belong to the several well known
gene families and these genes display strong trend of clustering. In particular, in
cluster 4 which is the island on the lower right corner, we can see an abundance of
the ZNF genes which are colored in cyan [7]. Similarly, the kinesin genes (brown)
[17] and the ankryin repeat genes (orange) [22] are mapped around cluster 6 and
cluster 7 respectively. We also spot clusters of closely related genes within the
single cloud, such as the leucine-rich repeat containing genes (blue, cluster 1)
[16] and the homebox genes (green, cluster 3) [2]. The clustering behavior of
these gene families demonstrates the effectiveness of our approach.

5 Conclusion

In this paper, we propose a novel approach to learn continuous vector represen-
tations for genes by using graph convolutional neural network. We introduce an
edge-based graph neighborhood sampling algorithm to generate context graphs
for each node from the input network. We use the graph convolutional neu-
ral network to predict each target gene given its sampled context graphs. Our
approach focuses on learning the structural information contained in the input
networks and does not assume the conditional independence of neighborhood
nodes as some of the baseline models did. We evaluate our approach on two
tasks which are predicting protein-protein interaction from gene co-expression
data and human essential gene identification. Experimental results prove the
effectiveness of our approach as our model outperforms all the baselines on all
the metrics and achieves smaller variances. We further visualize the learned
embeddings using t-SNE which maps the high dimensional embeddings to a
2-dimensional space where we can identify clearly clustering patterns. Our app-
roach is more suitable for the structural nature of gene interactions and provides
a new perspective for many bioinformatics applications.
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Abstract. The investigation of influence of the molecular structure of different
organic compounds on acute, developmental toxicity, mutagenicity has been car-
ried out with the usage of 2D simplex representation of molecular structure and
SupportVectorMachine (SVM),RandomForest (RF),GradientBoostingMachine
(GBM), Partial Least Squares (PLS). Suitable QSAR (Quantitative Structure -
Activity Relationships) models were obtained. The study was focused on QSAR
model interpretation. The aim of the study was to develop a set of structural frag-
ments that steadily increase various types of toxicity. The interpretation allowed
to detail the molecular environment of known toxicophors and to propose new
fragments.

Keywords: Toxicity · Simplex descriptors ·Modeling · Interpretation

1 Introduction

Integrated toxicity assessment is an important task in drug development. Experimental
testing of compounds on different types of toxicity being costly is also criticized on
ethical reasons. This is the key reason why Quantitative Structure–Activity Relationship
(QSAR) modeling continues to be a viable approach to reduce the amount of efforts and
cost of experimental toxicity assessments [1].

To address this challenge, many QSAR studies have been conducted and reported for
different toxicity endpoints [2]. Toxicity is a complex phenomenonwhich includes action
of chemicals through different biochemical mechanisms. Such complexity hampers the
process of QSAR modeling. For example, a detailed analysis of 150 QSAR models led
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to the conclusion that many available models have only limited usefulness due to their
poor or modest statistical quality or because they were obtained from limited data sets
[3]. Nevertheless, several works with reasonable results appeared in the past years [4–6].
Today the trend in QSARmodeling is associated with the study of large sets of toxicants
using different machine learning methods [7, 8].

The attention of the researchers is directed to the complex prediction of the toxic-
ity of chemical compounds. Many programs and web- resources allow simultaneously
predicting acute, reproductive toxicity for different organisms, mutagenicity [9–11].

Unfortunately, for most existing QSAR models there is no structural interpretation.
Organisation for Economic Co-operation and Development (OECD) principles include
the fifth requirement for mechanistic interpretation of QSARmodels used for regulatory
purposes [12]. This information could provide for the formation of new hypotheses as to
mechanisms of chemical toxic action and allows to carry out the molecular design [13].

Thus, the aim of this study was to compare the results of interpretation of QSAR
models to identify common mechanisms of toxic action for different organisms and
identify fragments that persistently increase different types of toxicity.

Several articles have beenpublished recently onnewapproaches for the interpretation
of QSARmodels that allow us to estimate the contributions of structural fragments from
QSAR models built by any machine learning methods [14, 15].

Many of these approaches utilize the idea of matchedmolecular pair (MMP) analysis
[16] to calculate atom or fragment contributions.

Following this trend, we have applied Universal Approach for Structural Interpre-
tation [17] to search for structural fragments that steadily increase different toxicity
endpoints:

1. 96 h fathead minnow LC50;
2. 48 h Daphnia magna LC50;
3. 48 h Tetrahymena pyriformis IGC50;
4. Oral rat LD50;
5. Bioaccumulation factor;
6. Developmental toxicity;
7. Ames mutagenicity.

In Fig. 1, we briefly recapitulate our earlier proposed Universal Approach for
Structural Interpretation.

Fig. 1. Schemes of structural interpretation of QSAR models.
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If we have a compound A consisting of two fragments B and C then the contribution
of the fragmentC can be calculated as the difference between predicted activity values for
the initial compoundA and the counter-fragment B (obtained by removal of the fragment
C from the molecule A). Thus we calculate overall contribution of the fragment C in
units of a studied activity.

This simple procedure can be used for the interpretation of both regression and binary
classificationQSARmodels based on any combination ofmachine learningmethods and
descriptors. In the case of regression models, predicted numerical values are used for the
calculation of fragment contributions, and thus, the contributions have the same units
as the investigated property value and reflect the change in the value of the investigated
property with the addition of certain fragments. In the case of binary classification mod-
els, predicted probabilities of belonging to the active class of compounds are used. Thus,
the fragment contributions are probabilities to change class upon addition of those frag-
ments. The developed approach for structural interpretation can estimate contributions
of scaffolds and linkers as well as contributions of single substituents. After removal of
the linker or scaffold, the remaining structure will consist of two or more disconnected
fragments. This creates a certain limitation, since not all descriptors can be calculated
for such multifragment structures, which can be chemically not meaningful. However,
simplex descriptors and fingerprints can handle such structures perfectly. Therefore, in
this study we used simplex descriptors [18] because they provide great flexibility and
opportunity to analyze the contributions of any fragments.

2 Materials and Methods

2.1 Data Sets

All data sets were obtained from the Toxicity Estimation Software Tool (T.E.S.T.),
version 4.2, provided by the U.S. Environmental Protection Agency [11]. Structures
were checked for errors [19] and duplicates which were removed. The distribution of
chemical compounds after removing duplicates is given in Table 1.

All modeling steps including descriptor calculation, model development and valida-
tion, molecule fragmentation and calculation of fragment contributions were performed
by means of open-source SPCI software [20, 21].

2.2 Simplex Representation of Molecular Structure (SiRMS)

Themain concept of SiRMSapproach is that anymolecule can be represented as a system
of different simplexes (tetratomic fragments with fixed composition and topological
structure). At the 2D level, the connectivity of atoms in simplex, atom type and bond
nature (single, double, triple, aromatic) are taken into consideration (Fig. 2). Atoms
were differentiated not only by their atom types but also by other physico-chemical
characteristics, such as partial charge, lipophilicity, refraction and the ability for an atom
to be a hydrogen bond donor or acceptor. The usage of sundry variants of differentiation
of simplex vertexes (atoms) represents the principal feature of the proposed approach.

In this study,we used simplex descriptors labeled by partial atomic charge, lipophilic-
ity, refractivity, and H-bonding. All of these parameters were calculated using the
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Table 1. Sets of investigation compounds.

Toxicity endpoints Brief description Number of substances in the
set

96 h, fathead minnow, LC50 Concentration of the test
chemical in water in mg/L
that causes 50% of fathead
minnow to die after 96 h

803

48 h, Daphnia magna, LC50 Concentration of the test
chemical in water in mg/L
that causes 50% of Daphnia
magna to die after 48 h

335

48 h, Tetrahymena pyriformis,
IGC50

Concentration of the test
chemical in water in mg/L
that causes 50% growth
inhibition to Tetrahymena
pyriformis after 48 h

1780

Oral, rat, LD50 Amount of chemical in
mg/kg body weight that
causes 50% of rats to die
after oral ingestion

7205

BCF Ratio of the chemical
concentration in fish as a
result of absorption via the
respiratory surface to that in
water at steady state

676

Developmental toxicity Whether or not a chemical
causes developmental
toxicity effects to humans or
animals

285

Ames mutagenicity A compound is positive for
mutagenicity if it induces
revertant colony growth in
any strain of Salmonella
typhimurium

5718

ChemAxon cxcalc software tool [22]. When we carried out structural interpretation,
we removed the descriptors of all four groups mentioned above for each selected frag-
ment. The structures of compounds were standardized using ChemAxon Standardizer
[23].
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Fig. 2. Simplex representation of molecular structure

2.3 Model Building

The Python sklearn package was used for modeling. Support Vector Machine (SVM)
with radial basis function (RBF) kernel, Random Forest (RF), and gradient boosting
method (GBM) models were built to overcome the classification problem. For regres-
sion problems, SVM, RF, GBM, and partial least squares (PLS) techniques were used.
Consensus predictions were produced by averaging the predictions of regression mod-
els or by choosing the major voted class among classification models. The performance
of all models was assessed by fivefold cross-validation. The tuning parameters of the
models were optimized by a grid search.

2.4 Fragmentation of Molecules

Exhaustive fragmentation was applied to generate fragments from compounds
of the data set. Fragments were enumerated using a SMARTS
pattern [#6+0;!$(*=,#[!#6])]!@!=!#[*] matching bonds which can be cleaved during
fragmentation.

3 Results and Discussion

The statistical characteristics of individual models, their consensus predictions are given
in Table 2 and Table 3. Predictive performance of SVM, RF and GBM models was
reasonable whereas PLS model had low predictivity. Therefore, consensus prediction
was obtained by averaging of predictions of SVM, RF and GBM models.

Table 3 also shows the statistical characteristics that have been obtained for these
sets by other researchers in the program T.E.S.T. v.4.2 [11]. Predictive ability of the
developed QSAR models was comparable to the models developed by other researchers
with use of other modeling approaches (Table 2 and Table 3).

The fragment contributions calculated from individual models were in good agree-
ment (R Pearson = 0.69–0.94). Therefore, further analysis was focused only on a
discussion of interpretation results of the consensus model.

First, structural interpretation of the obtained QSAR models was carried out using
for 75 molecular fragments. These toxicophors were described in details in our previous



The Cross-Interpretation of QSAR Toxicological Models 267

Table 2. Predictive performance of regression QSAR models.

Toxicity endpoints SiRMS T.E.S.T.

Model R2 RMSE Model R2 RMSE

96 h, fathead
minnow, LC50

GBM 0.64 0.87 Hierarchical 0.71 0.80

RF 0.66 0.85 Single model 0.70 0.80

SVM 0.59 0.94 FDA 0.63 0.92

PLS 0.45 1.09 Group contribution 0.69 0.81

Nearest neighbor 0.67 0.88

Consensus 0.67 0.84 Consensus 0.73 0.77

48 h, Daphnia
magna, LC50

GBM 0.55 1.14 Hierarchical 0.70 0.98

RF 0.58 1.1 Single Model 0.70 0.99

SVM 0.58 1.1 FDA 0.57 1.19

PLS 0.39 1.33 Group contribution 0.67 0.80

Nearest neighbor 0.73 0.98

Consensus 0.61 1.06 Consensus 0.74 0.91

48 h, Tetrahymena
pyriformis, IGC50

GBM 0.79 0.48 Hierarchical 0.72 0.54

RF 0.77 0.51 FDA 0.75 0.49

SVM 0.74 0.54 Group contribution 0.68 0.58

PLS 0.67 0.60 Nearest neighbor 0.60 0.64

Consensus 0.81 0.46 Consensus 0.76 0.48

Oral, rat, LD50 GBM 0.57 0.62 Hierarchical 0.58 0.65

RF 0.61 0.59 FDA 0.56 0.65

SVM 0.56 0.63 Nearest neighbor 0.56 0.66

PLS 0.44 0.71

Consensus 0.62 0.59 Consensus 0.63 0.60

BCF GBM 0.74 0.70 Hierarchical 0.73 0.71

RF 0.75 0.68 Single model 0.74 0.68

SVM 0.61 0.86 FDA 0.71 0.75

PLS 0.39 1.07 Group contribution 0.68 0.76

Nearest neighbor 0.61 0.88

Consensus 0.73 0.71 Consensus 0.76 0.66

publications [20, 24, 25]. According to literature analysis they are associated with high
acute and reproductive toxicity.

Interpretation analysis involved only those molecular fragments that were found in
5 or more compounds of the training set, which, in our opinion, allowed us to focus
on fragments that stably affect the studied type of toxicity and to a certain extent avoid
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Table 3. Predictive performance of classification QSAR models.

Toxicity
endpoints

SiRMS T.E.S.T.

Model BA SEN SP Model CON SEN SP

Developmental
toxicity

GBM 0.71 0.89 0.52 Hierarchical 0.72 0.83 0.47

RF 0.70 0.93 0.47 Single model 0.73 0.85 0.44

SVM 0.66 0.98 0.34 FDA 0.72 0.78 0.59

Nearest neighbor 0.80 0.84 0.67

Consensus 0.70 0.94 0.46 Consensus 0.79 0.90 0.53

Ames
mutagenicity

GBM 0.81 0.83 0.78 Hierarchical 0.76 0.78 0.75

RF 0.82 0.84 0.80 FDA 0.78 0.77 0.79

SVM 0.79 0.80 0.79 Nearest neighbor 0.77 0.78 0.75

Consensus 0.82 0.84 0.80 Consensus 0.79 0.79 0.79

where: BA– balanced accuracy, SEN –sensitivity, SP –specificity, CON–Concordance

the influence of random factors, for example, errors in experimental data or predicted
toxicity values and fragment contributions. Then we compared fragments for pairs of
endpoints.

Analyzing the calculated contributions of fragments, we can note the following:

1) fragment contributions for aquatic toxicity (Tetrahymena pyriformis, Daphnia
magna, Fathead minnow) were well correlated.

2) aliphatic and aromatic fragments substituted with chlorine or oxygen had much
greater contributions to aquatic toxicity endpoints rather than to the acute oral tox-
icity on rats. At the same time phosphorous containing fragments had comparable
contributions to both endpoints.

3) nitro groups and fragment containing them and CCl3 groups had high contributions
to mutagenicity and also contributed to aquatic toxicity.

4) nitrosamine, nitro-groups, acyl halides had high contributions to mutagenicity and
moderate or low to acute oral toxicity on rats.

5) in some cases small fragments (like methyl, ethyl) had considerably different con-
tributions. We assume that this was caused by the context of those fragments rather
than their toxicity themselves.

6) for Tetrahymena pyriformis and bioconcentration factor (BCF) there was a clear
difference. While aromatic fragments had comparable contributions, the aliphatic
fragments had very high contributions for Tetrahymena pyriformis but low for BCF.

Summarizing the obtained relationships and previously proposed mechanisms of
toxic action [26, 27] we can assume that aquatic organisms have similar mechanisms of
toxic action. Inhibition of acetyl cholinesterase is the most important. Also in this case,
an important role is played by oxidative phosphorylation in mitochondria.
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Probably, the toxicity for Tetrahymena pyriformis is not due to the accumulation of a
toxicant in the organism, but is realized through mentioned mechanisms of toxic action
within a short period of time.

Alkylating agents are also highly significant for mutagenicity as opposed to acute
toxicity for rats.

Table 4. Molecular fragments which steadily improve acute aquatic toxicity

Fragment, 
«A» is the place of 

attachment of a frag-
ment to the rest of the 

molecule

SMARTS Representative structures

4,5-dichlorobenzene

Clc1c([*:1])c([*:1
])c([*:1])cc1Cl

Fathead minnow,-lg(LC50)=5.4
Daphnia magna,-lg(LC50)=6.0
T. pyriformis,-lg(IGC50)=5.2

3-phenoxy

O([*:1])c1cc([*:1])
ccc1

Daphnia magna,-lg(LC50)=5.6

Fathead minnow,-lg(LC50)=4.3
T. pyriformis,-lg(IGC50)=3.9

(continued)
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Table 4. (continued)

4-chlorobenzene

Clc1ccc([*:1])cc1

Daphnia magna,-lg(LC50)=5.7

Fathead minnow,-lg(LC50)=5.0

T. pyriformis,-lg(IGC50)=4.5

4-nitrobenzene

[O-
][N+](=O)c1cc([*:1

])c([*:1])cc1

Daphnia magna,-lg(LC50)=4.0
T. pyriformis,-lg(IGC50)=3.6

Fathead minnow,-lg(LC50)=4.7

(continued)
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Table 4. (continued)

esters of phthalic acid O=C(O([*:1]))c1cc
ccc1C(=O)O([*:1])

Daphnia magna,-lg(LC50)= 4.9
Fathead minnow,-lg(LC50)= 5.4 
T. pyriformis,-lg(IGC50)=4.6

Besides, from the above fragment sets, those fragments that occur in at least three
sets with high calculated fragment contributions to the corresponding activity or property
were determined. Thus, we have identified fragments that have a higher contribution to
toxicity to aquatic organisms than known toxicophors, such as carbamates and phospho-
ryl (Table 4). The main toxicophors for aquatic organisms are described in publications
[28–30] and included as “structural alerts” (Endpoint “Acute Aquatic Toxicity”) in the
expert system OCHEM (https://ochem.eu//alerts/show.do?render-mode=full). Unfortu-
nately, toxicophors proposed by other researchers have a rather general structure. For
example, toxicophore “Aryl halide” does not allow us to understand the number of halo-
gens in the benzene ring and their location relative to other substituents in the molecule.
The analysis made it possible to define more precisely the toxicophors “Mononitroaro-
matics”, “Aromatic alcohols”, “Aryl halide”, which are proposed in the OCHEM [31].
These new molecular fragments can be used as structural alerts for virtual screening of
potentially hazardous organic compounds.

4 Conclusion

The proposed QSAR/QSPR models are expected to be useful for the prediction
ecological endpoints used in the regulatory assessment of chemicals.

The structural interpretation was performed for the QSAR/QSPR models obtained
using simplex descriptors. It allowed us to analyze the relationship between molecular
fragments for different types of toxicity and suggest similar mechanisms of toxicity for
different organisms. In this investigation, we have identified a set of structural fragments
that increase the acute aquatic toxicity. The information canbeuseddirectly for fragment-
based drug design or to establish structure–toxicity relationship trends and uncover
possible mechanism(s) of toxic action.

https://ochem.eu//alerts/show.do%3frender-mode%3dfull
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The task of the next stage of research is to identify common fragments that persis-
tently increase other types of toxicity, as well as to detail the molecular surroundings of
other known toxicophors.
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Abstract. Interactions between microRNA targets are defined as com-
peting endogenous RNAs. After discovery of the repressive activity of
microRNAs with different mechanisms, various experimental or compu-
tational approaches have been developed to understand the relationships
among their targets. We developed a package ceRNAnetsim that provides
network-based computational method as considering the expressions and
interaction factors of microRNAs and their targets. By using ceRNA tar-
gets that have similar expression value as trigger on a relatively small
network with 4 microRNAs and 20 gene targets, the perturbation effi-
ciency of these ceRNAs on the network has been shown to be significantly
different. However, the change was observed in the time (or iteration) to
gaining steady-state of nodes on the network. So, we have provided the
package which defines a user-friendly method for understanding com-
plex ceRNA relationships, simulating the fluctuating behaviors of ceR-
NAs, clarifying the mechanisms of regulation and defining potentially
important ceRNA elements. The ceRNAnetsim package can be found in
Bioconductor software packages.

Keywords: Competing endogenous RNA · microRNA · Network
modelling

1 Motivation

MicroRNAs are the family of the non-coding RNA group that plays an impor-
tant role in the regulation of transcripts by post-transcription mechanisms [4,17].
This family shows activity on free gene transcripts in the cell, by mechanisms
of degradation or repression of translation [3]. Following the determination that
microRNAs have different mRNA transcript targets, it has been understood that
the regulations of microRNA:targets is a rich and complex interaction network
[20,21]. The state of change due to expression changes between different targets
of a microRNA was explained by two mRNAs and one microRNA by study of Ala
et al. [1]. Briefly, the ceRNA hypothesis is explained by the change in the expres-
sion of one of the mRNAs in the balanced/steady state (i.e. closely expressed
genes that are targeted by a common microRNA), and the amount of other free
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target mRNAs in the cell as a result of the change in the repression interest of
the microRNA. Following this, genes acting as competing endogenous RNA have
been identified in different studies [2,16,18]. Initial studies to understand inter-
actions between microRNA and target genes include algorithms based on the
detection of genes that are regulated in the same direction [7,19]. In these stud-
ies correlation based analysis with expression datasets identified mRNA genes
showing comparable trends in microRNA based regulation. Similarly, List et al.
have developed an R package [15] that allows to discovers and displays gene
pairs with correlation coefficients using the sparse partial correlation method
from inputs of gene expression and microRNA expression matrices. The method
provided an understandable and user-friendly method for determining potential
ceRNAs by analyzing their interactions on genome-wide [13].

Determining the regulation of potential ceRNA behavior will provide a good
insight into studies that focus on using microRNA or mRNA targets as poten-
tial therapeutics. For this purpose, computational approaches have been devel-
oped for the expression relationships between microRNA:target genes. These
approaches have been implemented by taking into account a small number of
microRNAs:targets interaction content with few factors that are important in
interactions [5,6,8,9]. However, considering the multi-layered and complex inter-
actions of the ceRNAs, it needs to be handled in genome-wide network while
incorporating more detailed interaction parameters [20].

2 Methods

2.1 Context of ceRNAnetsim

We have prepared an R package that processes the microRNA:target dataset
into a network object and simulates microRNA:target regulation on this net-
work via user-provided iteration. It can simulate the regulation of the ceRNAs
on the network as function of microRNA, target gene expression and numeri-
cal coefficients that are important in interaction (such as affinity, degradation
activity).

In the interaction of a balanced microRNA:target gene, the proportional dis-
tribution of the microRNAs to their targets are assigned as variables in edge
data of network object. At this stage, if the user specify numeric values that
are important in interactions in edge data (optionally), can add them as coeffi-
cients for the proportional distribution of microRNAs. Initially, the expression of
microRNAs is distributed by taking into account the ratio of the target expres-
sion to the total target expression.

This situation is characterized as a steady or balanced state. When the user
changes the expression of a network element (node) which will define its dis-
turbing activity, the network found at steady state identifies this change as a
trigger. This causes steady-state proportional distribution to spread to primary
neighbors due to a perturbed node, followed by the changes in the edge data of
the primary neighbors of the affected neighbors.
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The number of iterations required for the system to become steady-state is
a user-defined argument however, our package provides function which assist
user to select appropriate iteration number. It creates the graphical output of
the number of effected nodes in the system for each iteration, when trigger
and expression change arguments are provided. So, user can visually pick the
appropriate number of iterations for simulation.

On the other hand, find node perturbation function calculates overall effect
of each node when perturbed. This function gives the user an idea about the
effectiveness of the nodes used as triggers under the same expression change and
iteration conditions. In other words, it provides the importance of network nodes
to be determined by the coefficient of perturbation effectiveness. Additionally,
there are additional functions in the ceRNAnetsim package such as displaying
simulation results, calculating the perturbation efficiency of individual elements.

2.2 Simulation Evaluation in Small Dataset

We used networks that can be considered small compared to biological networks,
in order to demonstrate capabilities of our approach. For this, we simulated the
midsamp dataset containing interactions between 20 genes and 4 microRNAs and
parameters (seed, binding energy and binding region on the target) converted
into numerical expressions that may be important in interactions. We randomly
selected two nodes; one central and another with lower centrality (Gene17 circled
with black, Gene5 circled with red in Fig. 2E, respectively).

The find iteration function was used to determine the number of iterations
needed to reach steady-state in simulations. Consequently, we performed simula-
tions using the Gene17 and Gene5 nodes as triggers with 3 fold upregulation and
10 iterations. To evaluate how perturbation activity will be affected by interac-
tion parameters, we simulated with and without interaction parameters on the
same node (Gene17).

3 Results and Discussion

We have devised a new approach to microRNA-mediated regulation of mRNAs
that can take into account target gene and microRNA expressions and factors
that are important in microRNA:target gene interactions (Workflow shown at
Fig. 2A, briefly). Our approach can integrate many factors affecting repression or
distribution of microRNA targets. For instance, seed location is known to affect
repression whereas seed type and binding energy are known to affect distribution
of microRNA over its targets [6,10,12]. The network-based approach has the
potential to provide explanations on how genes that do not interact directly can
be associated.

The ceRNAnetsim package contains functions for visualizing changes in net-
work after set number of iterations. The user can obtain the network data of the
steady state by using the simulate() function in dataset, as well as monitoring the
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perturbation spread by creating the network image for each iteration or a spe-
cific iteration with the visualisation functions (i.e.simulate vis() or vis graph() ).
The outputs of the visualisation functions in the first 4 iterations of the Gene17
perturbation are given at Fig. 1. Based on this, it has been shown that the simu-
lation model can be used to spread effect of perturbation (at Fig. 1B-C) following
the perturbation of steady state with a change (at Fig. 1A) in microRNA:target
interactions, and to follow the re-regulation behavior (at Fig. 1D) of compet-
ing gene targets by indirect interactions. We found that ceRNA re-regulations
display fluctuating trends, supporting previous literature information.

Fig. 1. Simulation visualisation of first four iterations when perturbation triggered
by Gene17 in small sample dataset. (A) First response of network: upregulation of
Gene17, (B) and (C) spreading of perturbation on network, (D) Fluctuating trend of
perturbation. (Color figure online)

We have shown that all ceRNA nodes are affected (Fig. 2B) when simulation
is triggered without taking into account the interaction parameters (see Fig. 2E,
node circled in red with expression value of 5000), in a small sample network.
However, different perturbation efficiency (Fig. 2C) was obtained by using a gene
at another location that exhibits approximately the same expression (see Fig. 2E,
node circled in black with expression value of 6000) as the trigger under the same
conditions. However, when additional conditions (node circled in black in Fig. 2E,
additional parameters are seed type and binding energy) are taken into account
lower perturbation efficiency is calculated (see Fig. 2D). We observed that the
time to reach steady-state in networks with fewer nodes is shorter and ceRNA
behaviors are easier to understand.
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Fig. 2. (A) General workflow and essential functions in ceRNAnetsim, (B) perturba-
tion efficiency of node circled with red and (C) black in sample graph, (D) perturbation
efficiency of node marked with black circle (in considering interaction parameters), (E)
Sample graph at steady-state expression of ceRNA node circled in red is 5000, node
circled in black is 6000. (Color figure online)

The fact that not every network element has the same perturbation activity
in a given microRNA:target network has raised an important question. Can the
importance of all network elements in terms of perturbation be found with our
model? Simply, the function find node perturbation scans each node under the
same conditions in order to determine perturbation efficiency, giving the number
of affected elements and the percentage of mean expression change of nodes in
the network. Aforementioned function can identify the importance of existing
genes as regulators, independent of network topological features.

Perturbation efficiencies with (seeds and binding energies) and without inter-
action parameters were compared in Table 1. There have been changes in the top
six elements (0.25 of the total number of nodes) that are significant for pertur-
bation in the network. For instance, the overall perturbation effect of Gene6 is
reduced when we take into account seed and binding energy interaction param-
eters, while it is a significant element when interaction parameters are not taken
into account. On the other hand, Gene9 has more perturbation efficiency with
interaction parameters. Although Gene9 has almost half the expression of Gene6
expression in dataset (given as 6000 and 10000, respectively) Gene6 could not
show effective perturbation due to the fact that Gene9 has higher seed interac-
tion parameter value.
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Table 1. Top six nodes which have highest perturbation efficiency in network

Without interaction parameters With interaction parameters

Node name Perturbation efficiency Node name Perturbation efficiency

Mir4 8,25 Mir4 17,53

Mir3 4,47 Mir3 3,87

Mir2 2,89 Mir2 2,65

Gene6 2,04 Gene14 1,67

Gene14 1,33 Gene11 1,59

Gene11 1,07 Gene9 1,06

4 Conclusion

microRNAs are responsible for the regulation of many functions such as cell
division, tissue differentiation, metabolism, signaling and immunity. Especially
with the introduction of the ceRNA hypothesis, microRNA:target regulation
has been a crucial topic for the diagnosis and treatment of different diseases
[11,14]. microRNA:target interactions were explored by experimental methods or
integrative analysis of microRNA and gene expressions. However, an appropriate
computational method has not been developed which encompasses the whole
microRNA:target network.

Graph-based approach to microRNA:target interactions is advantageous
since complex calculations on edges and nodes can be performed easily. We pro-
vided the simulation of regulations by calculating microRNA activity as a func-
tion of these variables via network edge variables, in case the important parame-
ters of microRNA:target interactions are given in numerical expressions. So, this
package may be a new tool in the clarification of complex microRNA:ceRNA
interactions, and it can identify critical nodes on the network.

In the case of simulating large data sets (i.e the network object contains too
many edges and nodes), calculations take longer time despite parallel process-
ing. We plan to speed up simulations and critical node detection so that large
networks can be analyzed easily.

In summary, ceRNAnetsim package allows studying ceRNA networks with
user-friendly and easy to understand functions. Our package is flexible so users
can plug in factors regulating ceRNA effects. Although microRNAs play role
as one of the key regulators in gene regulation, many other cellular molecules
also have effect on gene regulation and our package is extendable to any type
biological (molecular) elements affecting microRNAs, such as circular RNAs or
non-coding RNAs.
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Abstract. In bioinformatics analysis, the correct identification of an unknown
sequence by subsequent matching with a known sequence is a crucial and critical
initial step. One of the constantly evolving open and challenging areas of research
is understanding the adaptation of microbiome communities derived from differ-
ent environment as well as human gut. The critical component of such studies
is to analyze 16s rRNA gene sequence and classify it to a corresponding taxon-
omy. Thus far recent literature discusses such sequence classification tasks being
solved using many algorithms such as early methods of k-mer frequency match-
ing, and assembly-based clustering or advanced methods of machine learning
algorithms– for instance, random forests, naïve Bayesian techniques, and recently
deep learning architectures. Our previous work focused on a comprehensive study
of 16s rRNA gene classification by implementing simplistic singular neural mod-
els of Recurrent Neural Networks (RNNs) and Convolutional Neural Networks
(CNNs). The outcome of this study demonstrated very promising classification
results for family, genus and species taxonomic levels, prompting an immediate
investigation into deep ensemble models for problem at hand. In this study, we
attempt to classify 16s rRNA gene using deep ensemble models along with a
hybrid model that emulates an ensemble in its early convolutional layers followed
by a recurrent layer.

Keywords: 16S rRNA gene · Bacterial classification · RNNs · CNNs · Deep
learning in genomics · Ensemble deep models

1 Introduction

In the early millennia, the first ever human genome was successfully sequenced. Ever
since, a plethora of sequences including that of microbes, archaea and plants, have been
sequenced and publicly made available for various genomic studies. In more recent
decades, progressive trend in emerging next generation sequencing technologies have
been seen, which vastly enhanced accuracy and rapidness of not only the whole genome
shotgun sequencing (WGS) but also targeted gene sequencing or amplicon sequencing
(AS) [1]. This phenomenon is noticeable in many areas of bioinformatics, especially in
metagenomics. Metagenomics focuses on studying the composition of environmental
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and human gut samples for abundance and identification of microbiome community
and its chronological comparisons [2]. Metagenomics studies are crucial due to their
applications in various fields such as ecology, biomedicine, environmental sciences,
and microbiology. They are also important for studying gut microbiota for its role in
maintaining healthy weight, blood sugar, cholesterol and immune system [3–6]. One of
the most commonly used markers to correctly identify the composition of a microbiome
community is 16S ribosomal ribonucleotide acid (rRNA) gene sequence [7]. In every cell
of prokaryotic organisms, 16S rRNA gene is part of 30S subunit [7, 8]. This 30S subunit
togetherwith 50S subunitmakes 70S ribosome –a site of protein synthesis [7, 8]. Because
16S rRNA gene is present in all bacteria and archaea, it serves as an identification card
or a biological marker to study the presence of a species/taxa in biological samples.
The sequence of 16S rRNA consists of nine hypervariable regions wrapped in between
highly conserved regions. These hypervariable (V1–V9) regions make 16S rRNA gene
to be rendered as a biological marker [9]. 16S rRNA gene sequencing is preferred due
to it having low sequencing cost per Gigabyte, not requiring laboratory cell culture
[10, 11] and requiring relatively low input DNA at the beginning [7]. On the contrary
to popular belief that metagenomics and 16S rRNA are similar, metagenomics differs
from 16s rRNA gene study on an important instance; while 16S rRNA gene study is an
examination of relationship among different taxa based on a single gene, metagenomics
is a study of all translated genes (entire translated genome) of allmicrobiomes in a sample
[2]. While 16S rRNA gene study allows one to identify underlying taxa composition,
it has limitation when the taxa composition of two different samples is predicted to be
exactly the same or when two species have a very high sequence identity of>99.5% such
as Streptococcus mitis and Streptococcus pneumoniae [7]. In this case, metagenomics
whole genome shot gun sequencing may provide with a much deeper resolution of
abundance as it sequences all translated genes of all present species including that of
low fraction taxa, virus, and fungi. Figure 1 depicts an overview knowledge graph of
16S rRNA motivation and classification techniques.

Some of the basic techniques applied for classification of bacterial taxonomy are
based on alignment, assembly [12], machine learning, and more recently deep learning.
Many bioinformatics applications involve finding sequence similarity and correctlymap-
ping sequences to sequences in knowndatabases. Finding sequence similarity and correct
sequence labeling require sequences to be mapped to databases with known sequence
taxonomy known as reference genomes. Metagenomic sequences or 16s rRNA gene
sequences are thus mapped to reference genomes using alignment algorithms such as
Basic Local Alignment Search Tool (BLAST) to classify and measure abundance of
taxa; for example, mothur and kraken known to perform read based sequence matching
[13, 14]. Second widely utilized technique is assembly based in which first sequence
is assembled into entire genome or large contigs and then gene curation is performed
by matching predicted genes from contigs to known database. In either case, sequence
matching requires some bioinformatics sequence manipulations and analysis. However,
in machine learning or deep learning-based techniques, sequence reads or k-mers from
sequences can be directly tested on previously trained models, reducing analysis dura-
tion. Some of the known machine learning based techniques such as naïve Bayesian,
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Fig. 1. Overview of 16S rRNA sequencing application and motivation in bioinformatics.

hierarchical clustering, random forests, and support vector machines, also have shown
comparable results to aforementioned classifying techniques [15–17].

The recent advances of various affordable sequencing technologies coupled with the
advancements of fast hardware (general-purpose graphic processing units (GPGPUs)),
categorical big datasets, open source libraries and improved algorithms have enabled
researchers, and scientists to develop multi-disciplinary studies [18]. This hardware
acceleration aided in refinement of very powerful deep learning architectures for image
and text classification; these discoveries then resulted in the rise of deep learning appli-
cations inmedical imaging and genomics [12, 19]. Thus far, only a few studies have been
published including ours that studies direct classification of 16S rRNA using deep learn-
ing architectures. Fiannaca et al. implemented a CNN and deep belief network (DBN)
based classifiers for both targeted sequencing and whole genome sequencing taxonomy
classification [12]. More recently, Busia et al. published a study with deep neural net-
work (DNN) classifier that looked at various length sequences to note the performance
[20]. Our published study’s main goal was to compare performances of deep learning
architectures especially of RNNs such as LSTM, BiLSTM with CNNs for 16S rRNA
classification task [21].

2 Methods

Method development focuses on dataset preprocessing, and proposed deep learning
models for 16S rRNAclassification task. For all proposedmodels, input dataset is exactly
the same, and tested on same training and validation data split. The overall goal of
this study is to be able to create a model that can take raw reads with minimum pre-
quality check and trimming requirements. This work implements architecturally four
different models, three ensemble models and a hybrid model. The ensemble models
average three different deepmodels, while hybridmodel consists of both convolution and
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recurrent layers. The hybrid model, however, emulates the Multi-Filter model in Fig. 3a
of published study [21] for its early convolutional layers with one striking difference:
variable length of kernels in Multi-Filter model versus the same kernel sizes in the
parallel convolutional branches of the hybridmodel. For ensemblemodels, there are three
different intrinsicmodels involved inmaking three different combination ofmodels.Next
two sections further discuss dataset and implemented models.

2.1 Dataset

The dataset used in this study remained same as previously published study [21]. This
manually curated dataset is obtained fromGenomic-based 16s ribosomal RNADatabase
(GRD) [22]. 16s rRNA gene or rDNA sequence length is approximately 1500 base pairs
long; however, some of the bacteria can have multiple copies of 16s rRNA gene, hence
input sequences from this dataset varies in length from 65 to 2900. Input files are same
as [21], consists of two raw files; one containing tab delaminated fasta header with its
corresponding bacterial taxonomy and other is fasta header tag with a fasta sequence
containing all of the sequences in database. This study also focuses family, genus and
species taxa levels as opposed to phylum, class, and order that are known to have>99%
classification accuracies. Number of classes at each taxonomic level were 272, 840 and
2456 for family, genus, and species respectively. Approximately ~13,000 sequences
were used for training the model and ~3500 for validation, which is 80%–20% split for
training vs validation dataset. Preprocessing of sequences for input sequences is exactly
as first published study, for further details please refer to [21]. The main focus of this
study is to demonstrate the effectiveness of ensemble and hybrid models in achieving
better classification accuracies compared to simpler deep models.

2.2 Deep Learning Approach

As discussed in introduction, deep learningmodels are on the risewithmany applications
in medical and biological fields. Architectures presented in this study are driven from
previous study’s results. In study [21], we observe a trend where recurrent models,
Bidirectional LSTM and LSTM, outdo convolutional models. The outcome in this study
[21] shows singular BiLSTM achieving highest accuracies for genus and species taxa;
whereas, LSTM achieved the best accuracy for family taxa. The run time of BiLSTM for
~13,500, 100-character long sequences in trainingwasmuchhigher than of simpleLSTM
and simple CNN. Hence, in this study, the proposed model architectures are explored to
grasp whether proposed models can achieve comparable accuracies as BiLSTM.

One type of proposed model is an ensemble model. Ensemble models have multiple
classification algorithms incorporated, allowing them to perform better upon completion
as oppose to an individual model [23]. Generally, ensemble model is able to improve
accuracy if there is a good amount of variety in model architectures that makes up
an ensemble model. In this study four different models – model 1, model 2, model 3
and model 4 – are developed. Model 1–3 are an averaging ensemble models, which
are made up using combinations of four intrinsic sub-models: 1) a simple CNN model
with two convolutional layers, 2) multi-filter CNN [21], 3) a hybrid model with two
convolutional layers followed by a LSTM layer, lastly, 4) a simple two layers LSTM
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model. Specifically, model 1 – CNN-MultiFilterCNN-LSTM, consists aforementioned
sub-models 1, 2 and 4; model 2 – CNN-CNN-LSTM, consists of two sub-models 1
and one sub-model 4; while, model 3 – CNN-hybrid-LSTM, consists of sub-model 1,
3, and 4. These three ensemble models average the output weights of its intrinsic sub-
models. However, model 4 is a hybrid model, which is a single model that imitates the
multi-filter CNN architecture from [21] in its earlier convolutional layers followed by a
recurrent LSTM layer before the softmax classifier. Figure 2a illustrates the ensemble
model particularly showcasing the model 3, while Fig. 2b illustrates model 4.

Fig. 2. Overall architecture of data flow of a) an ensemble model (depicted 3rd combination
CNN-hybrid-LSTM), and b) hybrid model used for the classification task at hand.

Model 4 draws its architecture inspiration from the sequence to sequence deepmodel,
which is staple model used for machine translation tasks deployed in many Natural Lan-
guage Processing (NLP) such as speech recognition, language translation, and Computer
Vision (CV) applications like video captioning [24, 25]. Sequence to sequence models
are broadly made up with one model that acts as an encoder and another that decodes the
output of an encoder. Model 4, however, does not have an encoder-decoder arrangement;
it is a singular model that incorporates the convolutional and recurrent layers within its
instance.
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3 Results

Neural networks are known for their ability to learn very complex underlying patterns
from large dataset; however, at the same time, their performance heavily relies on initial
training weights as well as balanced un-bias training data. Due to such initial conditions,
neural networks are susceptible to high variance, and ensemble models are one of the
ways to reduce this variance by combining prediction accuracies of different models.
Compared to previous studies, performance of the ensemble models and hybrid model
aligns with accuracy greater than 85% for family and genus taxa [12, 20]. For species
level, however, thesemodels didn’t surpass 70% accuracy achieved in our previous study
[21].

Figure 3a, b and c shows loss and accuracy curves for family, genus and species
taxa respectively. These figures only show model 3 (averaging ensemble) and model
4 (hybrid) curves since they achieved the highest accuracies. As described in Table 1
below, the highest validation accuracies for family and species taxa are 92.22% and
67.95%, achieved with hybrid model. However, at genus level, the highest validation
accuracy achieved was 85.98% with CNN-hybrid-LSTM model and second highest
validation accuracy of 85.94% with hybrid model. Even though, model 3 and model 4
outperformed previously obtained classification results for family and genus taxa, both
models failed to outperform at species level, but stayed within 3% percentile range. All
of the models in this study have comparable outcomes within 1–2% accuracies obtained
for all taxa amongst each other, unlike our previously explored simplistic single models
[21]. This agrees to the notion that ensemble and/or hybrid models tend to achieve better
performance predictions than any singular model.

Fig. 3. The training and validation(testing) accuracies of classification for family (a), genus (b)
and species (c) level including both hybrid model and ensemble model. For ensemble model,
accuracies shown here are from the best performing CNN-hybrid-LSTM model.
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Table 1. Final accuracies and losses of all four models for each family, genus and species
taxonomic levels. Accuracies highlighted in bold are the highest classification accuracy achieved
within each level.

Model Info Family Genus Species

No. Name Val_Loss Val_Acc Val_Loss Val_Acc Val_Loss Val_Acc

1 CNN-MF-CNN-LSTM
Ensemble Model

0.5760 90.20% 1.2330 85.76% 2.6654 66.86%

2 CNN-CNN-LSTM
Ensemble Model

0.7239 91.33% 1.1342 85.80% 2.2033 67.15%

3* CNN-hybrid-LSTM
Ensemble Model

0.4670 91.60% 1.0007 85.98% 2.0057 67.39%

4* Hybrid model 0.5231 92.22% 0.9988 85.94% 1.9226 67.95%

All models are trained using the same hyperparameters for all taxa classification at
hand, except for epochs and non-linearity function. For family taxa classification, all
four models are run with 20 epochs; whereas, for genus and species taxa, the models ran
for 100 epochs until we saw no further improvements on the outcome loss and accuracy
curves. For all LSTM layers, the number of hidden states is set to 500. For all models,
the batch size used is 128, with ‘adadelta’ optimizer, learning rate applied is 0.01, and
momentum of 0.0. Further hyperparameter optimization is an open avenue for ongoing
improvisation.

4 Conclusion and Future Work

After studying various different deep learning architectures, it is determined that higher
accuracies at species taxa level requires further refinement of 1) cleaning and pre-
processing of 2456 classes to ensure at least thirty to forty sequences per class is main-
tained in species, 2) using larger than 100 bp length sequences (this is applicable to
improve accuracies of other two taxa as well), and 3) developing a probabilistic model
on top of a deep learning model. In this study, input reads are hundred base pair long,
in other words, input is hundred characters long string; however, the model can easily
be adapted for longer or shorter read lengths. Ongoing experiments are being devel-
oped to test different read length effects on outcome. With deep learning architectures
such as recurrent neural networks, longer strings may provide a finer representation of
features in recognizing underlying patterns. These taxonomical data consist of a hierar-
chical relationship which cannot be used to find abundance of sequences in a sample,
but it can certainly be used for sequence classification tasks. Next steps involve of using
such information along with higher dimension input feature vector of different sequence
regions to further improve accuracies at Family, Genus and Species taxa levels.
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Abstract. Using the RPWM method, we searched for tandem repeats of 2 to 50
nucleotides long in the rice genome.We compared the effectiveness of the RPWM
methodwithMreps, T-reks, TandemRepeat Finder andATRHunter.About 70%of
the tandem repeats found could not be found by other algorithms. The correlation
of dispersed repeats and transposons with tandem repeats was studied in this work.
We assumed that some of the dispersed repeats and transposons originated from
tandem repeats
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1 Introduction

The search for tandem repeats is an important task in studying the genomes of various
organisms. The interest in tandem repeats emanated from the fact that their excessive
or insufficient number in some regions of the genome leads to a wide range of human
diseases. These diseases include Fragile-X syndrome, Huntington’s disease, Friedreich’s
ataxia, and certain forms of cancer [1].

Two classes of mathematical methods are currently used to search for periodicity
in nucleotide sequences. The first class of methods includes spectral approaches. These
methods make it possible to perfectly find the periodicity in the nucleotide sequence,
even when individual tandem repeats are significantly different from each other [2–4].
However, spectral methods cannot find tandem repeats in the presence of insertions or
deletions of nucleotides, which is a very serious drawback and severely limits the use of
these methods.

The second class of methods includes algorithms that use dynamic programming
and can find tandem periods in the presence of insertions and deletions of nucleotides
[5]. These methods use pairwise repetition comparison. Therefore, they cannot detect
tandem periods when the similarity is statistically insignificant between any two repeats
[4]. Methods based on dynamic programming include algorithms and programs such as
TRF [5], Mreps [6], TRStalker [7], ATRHunter [8], T-REKS [9], IMEX [10], CRISPRs
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[11], SWAN[12]. Therefore, the question remains unresolvedwhether all tandem repeats
can be found by the developed mathematical methods and algorithms. It is convenient
to introduce a measure of the evolutionary distance between two separate repeats in the
form of the average number of nucleotide substitutions per nucleotide x accumulated
by them relative to each other. It is shown below that all developed methods can detect
tandem repeats for x< 2.0. However, DNA regionsmay exist where tandem repeats have
accumulated a significant number of DNA base replacements and x > 2.0. In this case,
they will be skipped by all previously developed mathematical methods and algorithms.

Previously, based on the generation of random position-weight matrices (RPWM), a
newmathematical method was developed to search for tandem repeats [13]. The RPWM
method allows the detection of tandem repeats with a significant number of insertions or
deletions. In this paper,wewanted to solve three problems. Firstly,wewanted to compare
the effectiveness of searching for tandem repeats by the RPWMmethod and some other
popular programs. Secondly, we wanted to find all tandem repeats, including tandem
repeats for which x > 1.25. These calculations were carried out in the range of period
lengths from 2 to 50 nucleotides. Third, we wanted to study the correlation between
the tandem repeats we discovered and the dispersed repeats, which were discovered
earlier in the rice genome in [14]. Our results showed that the mathematical method we
developed allowed us to find many tandem repeats in the rice genome that have not been
previously identified. The RPWMmethod [13] allows this to be done for 0.0< x < 3.2.
A comparative analysis showed that other developed algorithms can find tandem repeats
for x in the range from 0.0. up to 1.25.

2 Methods and Algorithms

To conduct a comparative analysis of the effectiveness of various methods of searching
for tandem repeats, we created an artificial nucleotide sequence S with a specific value
of x. Here x, as above, is the average number of nucleotide substitutions between any
two repeats in the sequence S. The sequence length was 3000 nucleotides, the number of
repeats was 100, the length of one repeat was 30 nucleotides. In sequence S, 50 insertions
and 50 deletions of nucleotides weremade at random positions. For each value of x in the
interval from 0.0 to 4.0 with a step equal to 0.25, we generated a set ofQ(x) sequences of
S. Each setQ(x) contained 100 sequences of S. The sequences in the setQ(x) differed in
the initial 30 nucleotide period. Thereafter, we analyzed eachQ(x) set with the programs
Mreps [6], T-reks [9], Tandem Repeat Finder [5], and ATR Hunter [8]. These programs
produced a file with various tandem repeats. In the output file, we counted the number
of repeats of 30 nucleotides in length. This calculation was made for all programs for
the set Q(x) for different x. We obtained similar data for the RPWM method [13]. This
algorithm calculated a quantitative measure for the found tandem repeats in the form of
the similarity function Fmax(x) (see paragraph 2.2). We calculated Fmax(x) for Q(10.0)
and in this case, the sequences were considered as random. The set Q(10.0), as written
above, contains 100 sequences of S. Therefore, we got 100 values of Fmax(10.0). We
calculated the average value Fmax(10.0) and D(Fmax(10.0)). Then, we calculated:

Z(x) = Fmax(x) − Fmax(10.0)√
D(Fmax(10.0))

(1)
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The RPWM algorithm for tandem repeats search was described in detail in [13].
Dispersed repeat coordinates were obtained from [14] from the site https://github.com/
oushujun/EDTA. We believed that there is overlap between these genome regions and
the regions earlier found with tandem repeats, if the length of the intersecting region was
more than 80%. This 80% was taken from the minimum length of the two compared
regions.

3 Results and Discussion

In this work, we did not analyze tandem repeats having lengths of 3 nucleotides. This is
because these lengths of periods are inherent in the triplet periodicity of the genes [15].
Therefore, a filter was applied that eliminated such tandem repeats without insertions
or deletions in the analyzed window with a length of 600 bases. We calculated the
information decomposition for a period of length 3 [15]. Triplet periodicity was found
in thiswork only if tandem repeatswith length equal to 3 nucleotides contained insertions
or deletions of nucleotides and therefore was not screened out by a preliminary filter.

Table 1 shows thatMreps [6], T-reks [9], TandemRepeat Finder [5], and ATRHunter
[8] found approximately half of the dispersed repeats for x from 0.5 to 0.75. For x greater
than 1.25, the ability to correctly find tandem repeats for these methods is completely
absent.At the same time, it can be seen fromTable 2 that theRPWMmethod [13] revealed
statistically significant tandem repeats up to x = 3.0. Z(3.0) = 5.1 is a statistically
significant value (approximately 1 false positive per million S sequences). This shows
that the ability of the method [13] to search for tandem repeats is approximately 3 times
higher than that of all previously developed algorithms. The same result was obtained
earlier when we compared RPWM with T-reks [13] only.

Table 1. Average percentage of found tandem repeats in test nucleotide sequences from the set
Q(x).

X Mreps T_REKS TR Finder ATR
Hunter

0 85 89 100 52

0,25 0 22 100 52

0,5 0 16 99,6 28

0,75 0 6 18,3 16

1,0 0 0 0 2

1,25 0 0 0 0

Then, we studied the complete first chromosome from the rice genome by theRPWM
method. The sequence was obtained from https://plants.ensembl.org/info/website/ftp/
index.html. A total of 8277 regions with tandem periods of various lengths were found.

https://github.com/oushujun/EDTA
https://plants.ensembl.org/info/website/ftp/index.html
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In Table 3, we divided all dispersed repeats found in the rice genome in [14] into sep-
arate classes of tandem repeats. A total of 33 classes of dispersed repeats (including
transposons) were obtained in [14].

Table 2. Z(x) for the previously developed tandem repeat search method [13].

x 0 0,5 1,0 1,5 2,0 2,25 2,5 2,75 3,0 3,5 4,0

Z 114 96 67 43 23 19 12.5 7,0 5,1 3,8 2,8

For each class of dispersed repeats, we calculated the number of intersections with
the tandem repeats found. We also estimated the statistical significance of intersections
between dispersed and tandem repeats. For this, we used 100 artificial chromosomes,
where the positions of each class of dispersed repeats were randomly mixed without
changing their length. Here, Z shows the number of deviations from the average, for the
number of intersections in the number of standard deviations. Table 3 shows that some
classes of dispersed repeats have a strong correlation with the tandem repeats which we
found. This was observed for transposons as well.

Table 3. The intersection of the found tandem repeats with dispersed repeats where Z> 0.0 [14].

№ Repeat name Number of repeats The number of
intersections with the
found tandem repeats

Expected number of
intersections

Z

1 Anona/Helitron 4173 605 326 15,45

2 Anona/MULE 7121 1038 402 31,72

3 NE/unknown 2188 274 164 8,59

4 R/Gypsy 4233 1256 990 8,45

5 Anona/hAT 2585 282 134 1279

6 R/Copia 1412 273 198 5,33

7 Aauto/CACTA 400 154 74 9,30

8 Anona/CACTA 1100 237 60 22,85

9 R/unknown 132 26 10 5,06

10 Anona/CACTG 389 122 26 18,83

11 Aauto/CACTG 512 330 124 18,50

12 Centro/tandem 74 183 20 36,45

For example, such a correlation is visible for Helitron transposons (No. 1), Mutator-
like transposable elements (Mule, No. 2), retrotransposon Gypsy (No. 4), and many
other dispersed repeats. More than 70% of the identified tandem repeats cannot be
detected by previously developed methods [13]. In general, the results show that many
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families of dispersed repeats and transposons either contain tandem repeats themselves,
or are integrated into parts of the genome that contains tandem repeats. This preferential
embedding can be explained by the fact that some tandem repeats in genome are well
recognized during transposition. It can be assumed that part of the dispersed repeats and
transposons could have evolved from tandem repeats.
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Abstract. The ability to predict protein complexes is important for applications
in drug design and generating models of high accuracy in the cell. Recently deep
learning techniques showed a significant success in protein structure prediction,
but a protein docking problem is unsolved yet. We developed a two-staged app-
roach which consists of deep convolutional neural network to predict protein con-
tact map for homodimers and optimization procedure based on gradient descent
to build the homodimer structure from the contact map. Neural network uses the
distance map calculated as all pairwise Euclidian distances between CB atoms of
protein 3D structure as input, which is invariant to rotation and translation. The
network has a large receptive filed to capture patterns in contacts between residues.
The suggested approach could be generalized to heterodimers because it does not
depend on symmetry features inherent in homodimers. The presented algorithm
could be also used for scoring protein homodimers models in docking.

Keywords: Protein docking · Protein homodimers · Deep learning

1 Introduction

Structural characterization of protein-protein interactions can significantly boost the
development in structural biology and has important applications in drug design. Inter-
action between proteins is characterized by the 3D structure of their complex. The
problem of finding the three-dimensional structure of a complex formed by proteins is
called a protein docking. Despite substantial number of docking approaches there is no
universal algorithmwhich could predict the structure of protein complex with high accu-
racy [1]. Experimental techniques remain the only alternative but consume much time
and resources. Computational methods can be helpful in fast and reliable modeling of
protein complexes, using as input the three-dimensional structure of individual proteins,
their sequences, functional properties and other information available. In this case, the
region of binding, or the interface of the protein complex, is of the greatest importance.
This region contains amino acids which are necessary for the formation of the complex
to perform inherent functionality.
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Methods to model the protein complexes can be divided into two classes. The first
class includes methods based on templates. It uses an assumption that structure to be
modelled (called target) has to be close to the complex with similar properties (called
template). Similarity criteria could be based on sequence identity, functional annotations
and etc. [2–9]. The second class of methods is called free modeling (ab initio docking),
when the structure of the complex is predicted by searching for a relative orientation
of the proteins with minimum binding energy. Since in this case the binding energy
is unknown, various functions are used to predict its value for a given orientation of
the proteins. These functions can be built on the basis of statistical potentials, physico-
chemical properties, geometric complementarity, etc. [10–16]. Recently Deep Learning
became very popular [17–19] providing new opportunities for structural biology [20]. It
has pushed community to create algorithms to solve protein docking problem by deep
learning [21, 22]. Inspired by the success of Deep Mind team, we developed an algo-
rithm which exploits deep neural network to predict the structure of protein homodimer
complexes.

2 Materials and Methods

The prediction algorithm comprises two stages. In the first stage deep fully convolu-
tional neural network [23] with only delated operations (without subsampling) [24] and
residual blocks was built to predict contact map (contacts between interfacial residues
in homodimers) based on protein distance map (distances between residues inside the
one chain of homodimer) [23, 25–27]. Interfacial residues were defined as residues at
opposite chains of homodimer having less than 8Å between CB atoms. The developed
architecture consists of the repetition of blocks shown in Fig. 1.

Binary cross-entropy was used as a loss function, where yi denotes an existence of
the contact (that is, y is equal to 1 if the contact exists, 0 otherwise), p(yi) stands for
probability of the contact prediction, N is the number of CB atoms (CA in case of GLY)
[5]:

Hp(q) = − 1

N

∑N

i=1
yi × log(p(yi))+ (1− yi)× log(1− p(yi)) (1)

Except for well-known neural networks operations like convolution andmaxpooling,
which are common operation for CNN, here is some specificity which distinguishes the
architecture developed.

Best results were obtained with the following parameters:

The number of epochs (iterations in the learning process, including the feeding of all
examples from the training set to the network and the verification of the quality of
training on the control set) – 500;
Number of iterations per one epoch – 200;
Learning rate – 0,0001;
Optimization – Adam method [28].

In the second stage an optimization procedure based on gradient descent algorithm
was used to build the homodimer structure. This procedure allows to build the model
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A

A

Fig. 1. Architecture of the blockof deepneural network to predict the contactmapof a homodimer.

of protein homodimer structure provided that the contact map was predicted with high
accuracy in the previous stage. It requires a predicted contact map and 3D structure of the
protein forming the homodimer as input. Let us consider a binary matrix A= [a(i, j)] of
shape (N× N), where N is the number of residues in a single protein of the homodimer.
The matrix elements were calculated as follows [1]:

a(i, j) =
{
1, if d(i, j) < 8Å

0, else
(2)

As in the case of the standard approach of free modeling of a dimeric (consisting of
two proteins) complex, one protein structure is fixed in 3D space. Then the problem is
formulated as second protein position prediction relative to the first one. It can be unam-
biguously identified by 6 parameters responsible for 6 degrees of freedom: 3 parameters
specify a rotation and 3 parameters determine a shift.

We assume at the beginning that the initial position of the second protein structure
coincides with the location of the first one, i.e., all 6 parameters are 0.

For each iteration one needs to calculate:
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– Distance matrix between CB atoms of the first and second protein structures.
– Loss function values.
– Derivative of the loss function.
– Parameters responsible for rotation and shift to minimize the loss function in the
direction of the calculated derivative.

– Transformation matrix for the new atomic coordinates.
– New coordinates of the second protein structure from the resulting matrix.

At the last stage, 6 parameters are transformed into an affine transformation matrix,
which is then applied to the structure of the second protein to obtain its coordinates.

The provided output is a matrix of affine transformation T of size 4 × 4 [4]:

T =

⎛

⎜⎜⎝

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

⎞

⎟⎟⎠ (3)

Here elements rij denote rotation parameters, and ti shift parameters respectively.
After the second stage additional procedure for penetration removal at interface

was introduced. It is an iterative process of changing translation values in the obtained
transformation matrix for the homodimer with 2Å step until penetration between chains
of the homodimer was removed.

3 Datasets

Homodimers dataset was retrieved from biounits files from Protein Data Bank (PDB)
[29]. Filtration procedure was applied to the obtained data: files with erroneous infor-
mation were excluded, biounits files with number of chains different from two were
filtered out. Additionally, BSA (Buried Surface Area) was calculated with FreeSASA
library [30] to ensure selected complexes have interfaces of reasonable size [31]. Final
dataset comprised about 10000 structures. Obtained dataset was split into training and
test dataset in proportion 4:1 accordingly.

4 Results and Discussion

For more than half of the complexes it was possible to predict most of the interface
residues with an accuracy of more than 50%, out of which the quarter of the complexes
reached the accuracy of more than 70%. The predicted interface contacts greatly reduce
the search area for a three-dimensional structure, since the binding region is known.
This allows to impose restrictions on the search area and significantly reduce the num-
ber of possible orientations of protein structures in the complex. For many docking
algorithms, the accuracy of the structure prediction increases with provided information
about potential interface.

An example of predicted interface in comparison with the real one is shown in Fig. 2.
Here the obtained interface can be used as constraint for protein docking or as input data
for the second stage of the algorithm.
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Fig. 2. Example of the interface prediction for homodimer 3w1x (left panel) in comparison with
the real interface (right panel). Two protein chains of the homodimer are shown in cyan and green.
(Color figure online)

For nearly 30% of homodimers the given algorithm has provided predictions of
complex structure of good quality which means RMSD between CB atoms of real and
predicted structures was less than 10Å. An example of input and output data for the
first stage of the algorithm is presented in Fig. 3. Middle and right columns present the
images of the real and predicted contact maps which are hardly distinguishable.

Fig. 3. Examples of the successful prediction of the contact map for the protein homodimer 3w1x
(upper row) and 1jzk (lower row). Left column: distancemap between CB atoms of the first protein
in the homodimer used as input data for deep neural network.Middle column: contact map (ground
truth) for the protein homodimer. Right column: predicted contact map for the protein homodimer.

The example of the second stage of the prediction algorithm is shown in Fig. 4,
where the predicted position of the second protein in homodimer is compared with the
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real position. Figure 4 shows results produced after additional procedure for penetration
removal described in Materials and methods.

Fig. 4. Example of the predicted protein homodimer structures. Two chains of protein homod-
imers are shown in green and cyan, position of the structures for second protein (cyan chain)
predicted by the algorithm are in red. RMSD between superposition of cyan and red chains is
equal to 3Å for 3w1x homodimer (left panel) and 4.3Å for 1jzk homodimer (right panel). (Color
figure online)

It should be noted that another type of input – distance maps between the CA atoms –
could also be used as input for the neural network. This approach was tested and resulted
in less accuracy both in predicting the contact map and in restoring the structure of the
complex at the second stage of the algorithm. The rationale behind it that CA atoms
belong to the main chain of the protein, and the distance between the corresponding CA
atoms of the two proteins is greater than in the case of CB atoms located on the side
chains of the protein.

We intend to continue the development of the algorithm in two directions. The
first one is to generalize the described approach to heterodimers and to explore other
architectures of deep neural networks to increase accuracy of predictions. The second one
is to generalize to multimeric homocomplexes having more than two identical proteins.

References

1. Vakser, I.A.: Protein-protein docking: from interaction to interactome. Biophys. J. 107, 1785–
1793 (2014). https://doi.org/10.1016/j.bpj.2014.08.033

2. Mukherjee, S., Zhang,Y.: Protein-protein complex structure predictions bymultimeric thread-
ing and template recombination. Structure 19, 955–966 (2011). https://doi.org/10.1016/j.str.
2011.04.006

3. Lu, L., Lu,H., Skolnick, J.:MULTIPROSPECTOR: an algorithm for the prediction of protein-
protein interactions by multimeric threading. Proteins 49, 350–364 (2002). https://doi.org/10.
1002/prot.10222

4. Baspinar, A., Cukuroglu, E., Nussinov, R., Keskin, O., Gursoy, A.: PRISM: a web server and
repository for prediction of protein-protein interactions and modeling their 3D complexes.
Nucleic Acids Res. 42, W285–W289 (2014). https://doi.org/10.1093/nar/gku397

5. Källberg,M., et al.: Template-based protein structuremodeling using the RaptorXweb server.
Nat. Protoc. 7, 1511–1522 (2012). https://doi.org/10.1038/nprot.2012.085

https://doi.org/10.1016/j.bpj.2014.08.033
https://doi.org/10.1016/j.str.2011.04.006
https://doi.org/10.1002/prot.10222
https://doi.org/10.1093/nar/gku397
https://doi.org/10.1038/nprot.2012.085


302 A. Hadarovich et al.

6. Sinha, R., Kundrotas, P.J., Vakser, I.A.: Docking by structural similarity at protein-protein
interfaces. Proteins Struct. Funct. Bioinforma. 78, 3235–3241 (2010). https://doi.org/10.1002/
prot.22812

7. Kundrotas, P.J., Zhu, Z., Janin, J., Vakser, I.A.: Templates are available to model nearly
all complexes of structurally characterized proteins. Proc. Natl. Acad. Sci. U. S. A 109,
9438–9441 (2012). https://doi.org/10.1073/pnas.1200678109

8. Negroni, J., Mosca, R., Aloy, P.: Assessing the applicability of template-based protein dock-
ing in the twilight zone. Structure 22, 1356–1362 (2014). https://doi.org/10.1016/j.str.2014.
07.009

9. Vakser, I.A.: Low-resolution structural modeling of protein interactome. Curr. Opin. Struct.
Biol. 23, 198–205 (2013). https://doi.org/10.1016/j.sbi.2012.12.003

10. Pierce, B.G., Hourai, Y., Weng, Z.: Accelerating protein docking in ZDOCK using an
advanced 3D convolution library. 6, e24657 (2011). https://doi.org/10.1371/journal.pone.002
4657

11. Pierce, B., Weng, Z.: ZRANK: reranking protein docking predictions with an optimized
energy function. Proteins Struct. Funct. Genet. 67, 1078–1086 (2007). https://doi.org/10.
1002/prot.21373

12. Zacharias,M.: Protein-protein dockingwith a reducedproteinmodel accounting for side-chain
flexibility. Protein Sci. 12, 1271–1282 (2003). https://doi.org/10.1110/ps.0239303

13. Gabb, H.A., Jackson, R.M., Sternberg, M.J.E.: Modelling protein docking using shape com-
plementarity, electrostatics and biochemical information. J. Mol. Biol. 272, 106–120 (1997).
https://doi.org/10.1006/jmbi.1997.1203

14. Neveu, E., Ritchie, D.W., Popov, P., Grudinin, S.: PEPSI-Dock: a detailed data-driven protein-
protein interaction potential accelerated by polar Fourier correlation. Bioinformatics 32, i693–
i701 (2016). https://doi.org/10.1093/bioinformatics/btw443

15. Kastritis, P.L., Bonvin, A.M.J.J.: Are scoring functions in protein-protein docking ready to
predict interactomes? Clues from a novel binding affinity benchmark. J. Proteome Res. 9,
2216–2225 (2010). https://doi.org/10.1021/pr9009854

16. Chen, R., Li, L., Weng, Z.: ZDOCK: an initial-stage protein-docking algorithm. Proteins
Struct. Funct. Genet. 52, 80–87 (2003). https://doi.org/10.1002/prot.10389

17. Senior, A.W., et al.: Improved protein structure prediction using potentials from deep learning.
Nature 577, 706–710 (2020). https://doi.org/10.1038/s41586-019-1923-7

18. Billings, W.M., Hedelius, B., Millecam, T., Wingate, D., Corte, D.D.: ProSPr: democratized
implementation of alphafold protein distance prediction network. bioRxiv. 830273 (2019).
https://doi.org/10.1101/830273

19. Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K., Moult, J.: Critical assessment of meth-
ods of protein structure prediction (CASP)—Round XIII. Proteins Struct. Funct. Bioinforma.
87, 1011–1020 (2019). https://doi.org/10.1002/prot.25823

20. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.
org/10.1038/nature14539

21. Balci, A.T., Gumeli, C., Hakouz,A.,Yuret, D.,Keskin,O.,Gursoy,A.:DeepInterface: protein-
protein interface validation using 3D Convolutional Neural Networks. bioRxiv. 617506
(2019). https://doi.org/10.1101/617506

22. Derevyanko, G., Lamoureux, G.: Protein-protein docking using learned three-dimensional
representations. bioRxiv. 738690 (2019). https://doi.org/10.1101/738690

23. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation.
In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 3431–3440. IEEEComputer Society (2015). https://doi.org/10.1109/CVPR.
2015.7298965

https://doi.org/10.1002/prot.22812
https://doi.org/10.1073/pnas.1200678109
https://doi.org/10.1016/j.str.2014.07.009
https://doi.org/10.1016/j.sbi.2012.12.003
https://doi.org/10.1371/journal.pone.0024657
https://doi.org/10.1002/prot.21373
https://doi.org/10.1110/ps.0239303
https://doi.org/10.1006/jmbi.1997.1203
https://doi.org/10.1093/bioinformatics/btw443
https://doi.org/10.1021/pr9009854
https://doi.org/10.1002/prot.10389
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1101/830273
https://doi.org/10.1002/prot.25823
https://doi.org/10.1038/nature14539
https://doi.org/10.1101/617506
https://doi.org/10.1101/738690
https://doi.org/10.1109/CVPR.2015.7298965


Deep Learning Approach with Rotate-Shift Invariant Input 303

24. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: 4th Interna-
tional Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings.
International Conference on Learning Representations, ICLR (2015)

25. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June,
pp. 3141–3149 (2018)

26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceed-
ings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 770–778. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.90

27. Chen, L.C., Papandreou,G., Kokkinos, I.,Murphy,K., Yuille, A.L.: DeepLab: semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs.
IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848 (2018). https://doi.org/10.1109/TPAMI.
2017.2699184

28. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International
Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings.
International Conference on Learning Representations, ICLR (2015)

29. Berman, H.M.: The protein data bank: a historical perspective. Acta Crystallogr. Sect. A:
Found. Crystallogr. 64, 88–95 (2008). https://doi.org/10.1107/S0108767307035623

30. Mitternacht, S.: FreeSASA: an open source C library for solvent accessible surface area
calculations. F1000Research. 5, 189 (2016). https://doi.org/10.12688/f1000research.7931.1

31. Janin, J., Bahadur, R.P., Chakrabarti, P.: Protein-protein interaction and quaternary structure.
Q. Rev. Biophys. 41, 133–180 (2008). https://doi.org/10.1017/S0033583508004708

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1107/S0108767307035623
https://doi.org/10.12688/f1000research.7931.1
https://doi.org/10.1017/S0033583508004708


Development of a Neural Network-Based
Approach for Prediction of Potential HIV-1

Entry Inhibitors Using Deep Learning
and Molecular Modeling Methods

Grigory I. Nikolaev1, Nikita A. Shuldov2, Arseny I. Anischenko2,
Alexander V. Tuzikov1, and Alexander M. Andrianov3(B)

1 United Institute of Informatics Problems, National Academy of Sciences of Belarus, Minsk,
Republic of Belarus

2 Belarusian State University, Minsk, Republic of Belarus
3 Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk,

Republic of Belarus
alexande.andriano@yandex.ru

Abstract. A generative adversarial autoencoder for the rational design of poten-
tial HIV-1 entry inhibitors able to block the region of the viral envelope protein
gp120 critical for the virus binding to cellular receptor CD4 was developed using
deep learning methods. In doing so, the following studies were carried out: (i) the
architecture of the neural network was constructed; (ii) a virtual compound library
of potential anti-HIV-1 agents for training the neural network was formed; (iii)
molecular docking of all compounds from this library with gp120 was made and
calculations of the values of binding free energy were performed; (iv) molecular
fingerprints for chemical compounds from the training dataset were generated;
(v) training the neural network was implemented followed by estimation of the
learning outcomes and work of the autoencoder. The validation of the neural net-
work on a wide range of compounds from the ZINC database was carried out.
The use of the neural network in combination with virtual screening of chemi-
cal databases was shown to form a productive platform for identifying the basic
structures promising for the design of novel antiviral drugs that inhibit the early
stages of HIV infection.

Keywords: HIV-1 · Gp120 protein · HIV-1 entry inhibitors · Virtual screening ·
Molecular docking · Molecular dynamics · Anti-HIV drugs

1 Introduction

Modern methods of computer-aided drug design significantly expand the capabilities of
the pharmaceutical industry, vastly reducing the time and costs required for developing
novel therapeutic agents. Despite the efficacy of computer methods in drug design is
currently universally recognized, the development of new mathematical approaches and
the availability of powerful and cheap computing resources promote their continuous
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improvement. Among these approaches, machine learning methods and, in particular,
deep learning technique, which offers great potential for further progress in this research
area, occupy an important place. To date, computer-aided design of potential drugs using
machine learning methods is one of the most important and rapidly developing areas of
chemoinformatics [1]. Unlike physicalmodels based on explicit physical equations, such
as quantum chemistry or molecular dynamics modeling, machine learning approaches
use pattern recognition algorithms to determine the mathematical relationships between
empirical observations of small molecules and their extrapolation to predict chemical,
biological and physical properties of new compounds. In addition, compared to physical
models, machine learning methods are more efficient and can easily scale to big data
sets. One of the benefits of using machine learning to design drugs is to help researchers
understand and use the relationships between chemical structures and their biological
activity [2]. Modern machine learning methods can be used to model the quantita-
tive structure-activity relationship (QSAR) or quantitative structure-property relations
(QSPR) and develop intelligent tools that can accurately predict the effect of chemical
modifications of a compound on its biological activity, pharmacokinetic and toxicologi-
cal characteristics [1]. In this context, the use of machine learning methods for computer
design of potential drugs is of great scientific and practical importance [3].

The goal of this study was to develop a generative adversarial autoencoder for the
rational design of potential HIV-1 entry inhibitors able to block the region of the viral
envelope gp120 protein critically important for the virus attachment to cellular receptor
CD4.

In doing so, the following studies were carried out: (i) architecture of the generative
adversarial autoencoder was constructed; (ii) a virtual compound library of potential
anti-HIV-1 agents for training the neural network was formed using the concept of click
chemistry; (iii) molecular docking of all compounds from this library with gp120 and
calculation of binding free energy values were performed; (iv) molecular fingerprints for
chemical compounds from the training dataset were generated; (v) training the neural
network was implemented followed by evaluation of the learning outcomes and work of
the autoencoder.

2 Methods

The structure of the developed adversarial autoencoder is based on the model of the
basic neural network that was designed to generate chemical compounds with anticancer
properties [4]. The model consists of two neural networks including autoencoder and
discriminator that work during training in a competitive mode (Fig. 1). The developed
autoencoder is a seven-layer neural network with input and output layers, a latent layer,
and 4 fully connected layers (Fig. 1). Fingerprints of chemical compounds are fed to
the input layer, the data of which pass through two fully connected layers (encoder)
and fall on the latent layer where a numerical estimate of the binding energy to the
molecular target is added to the result obtained. Next, fingerprints pass through 2 fully
connected layers (decoder) and go to the output, which, like the input, is a fingerprint
vector. A network operating in this mode reduces the number of neurons entering the
latent layer containing compressed information about the vector fed to the input of the
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network followed by its expansion at the output. The latent layer consists of 3 neurons
two of which receive values from the encoder, and the third neuron receives the value of
the binding free energy. In the autoencoder generative mode, random numbers are fed
to the latent layer containing the most important information about the object and then
pass through a decoder generating fingerprints of molecules with the desired properties.
For the generation of such molecules, it is important that the data entering the latent
layer after passing through the encoder have a normal distribution, to which the random
number generator and discriminator are trained. To ensure this condition, in the course
of competitive training of the encoder and discriminator, it was ensured that the encoder
was able to encode data with a normal distribution on the latent layer, and that the
discriminator distinguishes the standard normal distribution (generated data) from the
distribution obtained on the latent layer.

Fig. 1. The architecture of a generative adversarial autoencoder for prediction of potential anti-
HIV-1 agents targeting the viral envelope gp120 protein. The encoder consists of two consecutive
layers L1 and L2 with 32 and 16 neurons, respectively. The decoder includes two layers L’1 and
L’2 containing 16 and 32 neurons, respectively. The latent layer consists of 3 neurons.

The training dataset was generated using theAutoClickChemprogram [5]. In the first
stage of the study, virtual screening of the Drug-Like subset of the ZINC15 database
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[6] was performed to form two molecular libraries of small modular units with the
functional groups involved in the reaction of azide-alkyne cycloaddition. To do this,
the DataWarrior program [7] providing data visualization and analysis was employed.
Using DataWarrior, small aromatic molecules withmolecular mass< 250Da containing
azide or alkyne groups were selected from ZINC15 and placed into library 1. In the same
way, all low-molecular compounds (molecularmass< 250Da)with the above functional
groupswere collected in library 2. The choice of aromaticmolecules asmodular units for
the design of CD4-mimetic candidates is due to the fact that their aromatic moieties can
mimic the key interactions of Phe-43CD4 with the Phe-43 cavity of gp120 that dominate
the HIV-1 binding to CD4. According to the X-ray data [8], the benzene ring of Phe-
43CD4 is buried into the Phe-43 cavity of gp120, resulting in the blockade of the gp120
residues critically important for viral adsorption to CD4+ cells. In addition, novel HIV-1
entry antagonists, such as NBD-11021and NBD-14010, show the similar interaction
modes to bind this hydrophobic pocket of gp120 [9, 10]. As a result of screening of
the ZINC15 database, a total of 1388 and 3769 compounds were included into libraries
1 and 2, respectively. These small modular units were then used as reactants to mimic
the click-reaction of azide-alkyne cycloaddition by AutoClickChem [5], resulting in
1 655 301 hybrid molecules. 120 000 compounds out of the designed molecules that
fully satisfied the Lipinski’s “rule of five” [11] were included into the training dataset.

Molecular docking of these drug-like molecules with gp120 was performed by the
QuickVina 2 program [12] in the approximation of rigid receptor and flexible ligands.
The 3D structure of gp120 was isolated from the crystal complex of this glycoprotein
with CD4 and antibody 17b [8]. The gp120 and ligand structures were prepared by
adding hydrogen atoms with the OpenBabel software followed by their optimization in
the UFF force field (http://openbabel.org/wiki/Main_Page). The ligands were docked
to the crystal gp120 structure [8] using QuickVina 2 [12]. The grid box included the
Phe-43 cavity of the gp120 CD4-biding site and was the region of the crystal structure

[8] with the following boundary X, Y, Z values: X ∈ (24 Ǻ; 34 Ǻ, Y ∈ (−15 Ǻ;−5 Ǻ), Z

∈ (78 Ǻ; 88 Ǻ). The value of “exhaustiveness” parameter defining number of individual
sampling “runs” was set to 50 [12].

Molecular fingerprints of the compounds from the dataset were calculated using
the open-source chemoinformatics software package RDKit (https://www.rdkit.org/). A
three-stage iterative procedure was used for training and validation of the developed
autoencoder, namely: (i) training the discriminator to distinguish a given normal distri-
bution from the encoded one obtained by the encoder on the latent layer; (ii) joint training
of the encoder and decoder as an autoencoder; (iii) training the encoder to compress the
data in such a way that they look like a normal distribution.

To validate the developed autoencoder, the library of theMACCSfingerprints (http://
www.dalkescientific.com/writings/NBN/fingerprints.html) for 21 325 567 compounds
from the Drug Like subset of the ZINC15 database was generated using the RDKit soft-
ware package and molecular fingerprints of 5 ligands were constructed by the autoen-
coder at a threshold value of the binding free energy equal to –5.0 kcal/mol. As a result of
virtual screening of this library, the ligands with fingerprints similar to those generated
by the neural network were found. To do this, the Hamming distance and the Tanimoto
coefficient were used as a measure of fingerprint similarity.

http://openbabel.org/wiki/Main_Page
https://www.rdkit.org/
http://www.dalkescientific.com/writings/NBN/fingerprints.html
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3 Results

Analysis of the obtained data showed that the combined use of the developed neural net-
work with virtual screening of the library of molecular fingerprints allows one to identify
the ligands with the lower values of binding free energy compared to a given thresh-
old value. Furthermore, the compound with code ZINC000026430653 in the ZINC15
database exhibits the value of binding free energy comparable with that of −9.5 ±
0.1 kcal/mol measured for the CD4-gp120 complex by isothermal titration calorimetry
[13]. This value is also very close to that predicted by QuickVina 2 for NBD-11021
(Table 1), the lead HIV-1 entry antagonist [9] which was used in the calculations as a
positive control. The data on the high-affinity binding of ZINC000026430653 to gp120
are also supported by the values of dissociation constants (Kd) calculated for the docking
models of gp120 with this molecule and NBD-11021 using the neural network-based
scoring function NNScore 2.0 [14] (Table 1). Furthermore, the above conclusions are in
agreement with the values of binding free energy of the analyzed molecules to gp120
calculated from the predicted values of Kd with the formula �GKd = R × T × ln(Kd)
(where�GKd is the binding free energy, R is the universal gas constant, T is the absolute
temperature equal to 310 K) [15]. Taking together, the data of Table 1 suggest that the
identified compound may expose strong attachment to the hydrophobic Phe-43 cavity of
the HIV-1 CD4-binding site of gp120, in line with the low values of binding free energy
and Kd comparable with those predicted for NBD-11021.

Table 1. Values of binding free energy �G and Kd calculated for the docking complexes of
ZINC000026430653 and NBD-11021 with gp120.

Compound ZINC000026430653 NBD-11021

�G, kcal/mol −8.8 −8.4

Kd (μM) 0.788 0.948

�GKd, kcal/mol −8.65 −8.53

Examination of the ligang-gp120 complex reveals multiple van der Waals contacts
of ZINC000026430653 with the gp120 Phe-43 cavity that plays a key role in the HIV-1
binding to cellular receptor CD4 (Fig. 2). By analogy with CD4 [8], one of the aromatic
systems of ZINC00002643065 is buried into this hydrophobic pocket and mimics the
pivotal interactions of the benzene ring of Phe-43CD4 with the functionally important
residues of gp120. These gp120 residues are Val-255, Ser-256, Thr-257, Glu-370, Ile-
371, Asp-368, Ser-375, Phe-376, Phe-382, Met-426, Trp-427, and Met-475 (Fig. 2).
From the crystal gp120-CD4 structure, all these amino acids are involved in the direct
interatomic contacts with CD4, and the highly conserved Asp-368, Glu-370 and Trp-427
are the dominant contributors to the gp120-CD4 interaction [8].

Along with van der Waals contacts, analysis of the docking ligand-gp120 model
indicates a high probability of a special type of weak hydrogen bond C–H···O [16]
associated with the CH group of the aromatic ring of ZINC000026430653 and the
carboxyl group of Asp-368 that is located within the vestibule of the Phe-43 cavity of
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Fig. 2. The docking model of ZINC000026430653 with gp120. The Phe-43 cavity of gp120 and
the residues located within the vestibule of this hydrophobic pocket are shown. The residues of
gp120 forming van der Waals contacts with the CD4-mimetic candidate are indicated. C–H···O
interaction of the CH group of the aromatic ring of ZINC000026430653 and the carboxyl group
of Asp-368gp120 is marked by dotted line.

gp120 (Fig. 2). These are evidenced by the values of the distance d between the O and
C atoms (d = 3.33 Å) and the angle α between the C, H and O atoms (α is close to 90°)
(Fig. 2)which support the assumption that these atomsmay be involved in a dipole-dipole
C–H···O interaction [17]. These findings are of considerable interest because hydrogen
bonding with Asp-368 of gp120 is highly important for potential CD4 mimetics to show
the properties characteristic for the small-molecule CD4 antagonists [9, 10].

Thus, the validation of the developed generative adversarial autoencoder using a
wide range of chemical compounds from the ZINC15 database shows that this neural
network combined with virtual screening of chemical databases by molecular finger-
prints and traditional methods of molecular modeling forms a productive platform for
discovery of promising anti-HIV-1 agents able to target CD4-binding site of the viral
envelope gp120protein.According to the data ofmolecularmodeling, the smallmolecule
ZINC000026430653 identified when the autoencoder validation exhibits a high-affinity
binding to gp120 (Table 1)which is providedby interactionmodes dominating the gp120-
CD4 interface (Fig. 2). In addition, this molecule fully satisfies the criteria imposed on
potential drug by Lipinski’s “rule of five” [11]. This drug-like molecule may be used
therefore as a good starting point for design of novel potent antiviral drugs inhibit-
ing the early stages of HIV-1 infection. In this context, the further advancement of the
current study proposes the use of this CD4-mimetic candidate as the basic structure
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for computer-assisted generation of its chemical modifications with the higher anti-
HIV activity and improved ADMET parameters followed by synthesis and detailed
biochemical assays.

4 Conclusion

The data obtained indicate the great opportunities of applying deep learning methods
in pharmaceutical research which allow one not only to predict novel promising drug
candidates but also significantly decrease resources, time and financial investments.
This is supported by the recent reports of successful using deep learning approaches to
drug discovery and development (reviewed in [18]) and, in particular, by the findings
of a newly study [19] in which a deep learning network was developed and used for
predicting compounds that are structurally distant from known antibiotics and exhibit
antibactericidal activity against a wide phylogenetic spectrum of pathogens.
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Abstract. Computational development of novel triazole-based aromatase
inhibitors (AIs) was carried out followed by investigation of the possible interac-
tion modes of these compounds with the enzyme and prediction of the binding
affinity by tools of molecular modeling. In doing so, in silico design of potential
AIs candidates fully satisfying the Lipinski’s “rule of five” was performed using
the concept of click chemistry. Complexes of these drug-like molecules with the
enzyme were then simulated by molecular docking and optimized by semiempir-
ical quantum chemical method PM7. To identify the most promising compounds,
stability of the PM7-based ligand/aromatase structures was estimated in terms of
the values of binding free energies and dissociation constants. At the final stage,
structures of the top ranking compounds bound to aromatase were analyzed by
molecular dynamic simulations and binding free energy calculations. As a result,
eight hits that specifically interact with the aromatase catalytic site and exhibit
the high-affinity ligand binding were selected for the final analysis. The selected
AIs candidates show strong attachment to the enzyme active site, suggesting that
these small drug-like molecules may present good scaffolds for the development
of novel potent drugs against breast cancer.

Keywords: Aromatase ·Molecular docking · Quantum chemistry ·Molecular
dynamics · Aromatase inhibitors · Breast cancer

1 Introduction

In women organism during the fertile phase, estrogen synthesis occurs mainly in the
ovaries. However, the intensity of estrogen synthesis in the ovaries decreases in post-
menopause associated with about a third of cases of breast cancer [1–3]. At this phase,
estrogens synthesized in the peripheral tissues using the cytochrome P450 complex,
called aromatase. This complex consists of the heme-containing cytochrome P450
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(CYP19A1) protein and flavoprotein NADPH-cytochrome P450 reductase [1–3]. Aro-
matase encoded by a single large gene, CYP19A1, catalyzes conversion of androgens to
estrogens and exhibits biological activity in both peripheral target tissues and the mam-
mary tumor tissues, providing a high level of estrogen concentration [1–3]. In estrogen-
dependent malignant neoplasms, estrogens act as growth factors for tumor development.
Therefore, inhibition of aromatase results in a decrease of estrogens level in the organism
and prevents to growth and spread of cancer cells [1–3].

There are three generations of AIs among the drugs for treating hormone-dependent
breast cancer. The disadvantage of the drugs of the first two generations (aminog-
lutethimide, fadrozole, formestane) is the lack of selectivity of action: besides aromatase,
these drugs inhibit a number of other enzymes. The third-generation AIs vorozole, letro-
zole, anastrozole, and exemestane approved for clinical use by the USA Food and Drug
Administration show greater specificity and efficacy. These inhibitors include drugs of
twocategories, namely i) irreversible steroidal inhibitor exemestane that is an androstene-
dione derivative and ii) reversible non-steroidal inhibitors vorozole, anastrozole and
letrozole. Steroidal AIs and, in particular, exemestane are transformed by aromatase
into compounds that irreversibly bind to the enzyme active site, completely disrupt-
ing its activity as a biocatalyst. After the termination of the action of these inhibitors,
aromatase needs considerable time to be synthesized in the tissues again. Reversible
nonsteroidal AIs vorozole, letrozole and anastrozole are triazole compounds that bind to
the catalytic site of the enzyme by coordinating the heme iron of the CYP19A1 through
a heterocyclic nitrogen lone pair. The third generation AIs are now the front-line drugs
for treating the early and advanced stages of breast cancer in postmenopausal women.

Despite significant progress in the treatment of hormone-dependent breast cancer,
this problem has not been completely solved. Unfortunately, the third-generation of
aromatase inhibitors (AIs) cause a number of serious side effects, such as inhibition of
muscle growth, arthralgia, decreased bone strength, impaired blood lipid profile, drop in
libido, as well as deterioration of the general condition. In addition, resistance acquired
after long-term therapy with these drugs also occurs. In this context, development of
novel, more effective and less toxic AIs is of great value.

2 Methods

In this study, computational development of novel triazole-based AIs was carried out
followed by evaluation of their antitumor activity by tools of molecular modeling. In
doing so, the following studies were performed: i) in silico design of potential aro-
matase inhibitor candidates by the AutoClickChem techniques [4]; ii) identification of
compounds satisfying the Lipinski’s “rule of five” [5]; iii) molecular docking of these
drug-like compounds with the enzyme active site using the QuickVina 2 program [6];
iv) refinement of the ligand-binding poses by the PM7 semiempirical quantum chem-
ical method [7]; v) prediction of the interaction modes dominating the binding; vi)
calculation of the values of binding free energy and dissociation constant (Kd) for the
ligand/CYP19A1 complexes; vii) prediction of the binding affinity between the iden-
tified compounds and aromatase by molecular dynamics simulations and binding free
energy calculations [8]; and viii) selection of molecules most promising for synthesis
and biochemical trials.
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3 Results

Based on the analysis of the data obtained, eight top-ranked compounds that exhibited the
low values of binding free energy (<−7 kcal/mol) in the PM7-based ligand/aromatase
complexes were selected for the final analysis. Depending on the mechanism of binding
to the active site of CYP19A1, these compounds were divided into two structural groups
designated as groups 1 and 2. The data of molecular modeling indicate that each of the
identified compounds of group 1 (Fig. 1) shows peculiar interactions with the enzyme
binding pocket, the interaction being realized between the triazole ring and the heme
iron, van der Waals interactions with the hydrophobic pocket lined by Arg-115, Ile-133,
Phe-134, Trp-224, Thr-310, Val-370,Met-374, Leu-477, Ser-478, and, except compound
II, the hydrogen bond with Met-374, which is also involved in hydrogen bonding with
the natural substrate androstenedione. In addition, some identified compounds form van
der Waals contacts with the heme of CYP19A1, and π-conjugated systems of individual
molecules participate in specific π-π interactions with the pyrrole rings of the heme
group. Finally, the selectedAIs candidates expose strong attachment to the enzyme active
site, in line with the low values of binding free energy and Kd (Table 1). In summary,
the conclusions that can be made by the new identified AIs from group 1 are that, in
addition to the interaction between the triazole rings and the heme iron, hydrophobic
contacts play a pivotal role in the ligand binding, and hydrogen bond involving Met-374
is essential for the ligand recognition (Fig. 1).

Unlike the molecules of group 1, the ligands of group 2 demonstrate a mechanism of
binding to aromatase uncharacteristic for triazole-based compounds generally coordi-
nating the iron atom of the heme via a heterocyclic nitrogen lone pair. According to the
calculated data (Fig. 2), the ligands of interest coordinate the iron atom of the CYP19A1
heme group through the lone pairs of their oxygen atoms. Similarly to the molecules of
group 1, all these compounds target the well-conserved hotspots of the aromatase cat-
alytic site usingmultiple van derWaals interactions with the critically important residues
of this hydrophobic pocket.

Molecular dynamics insights into the ligand/aromatase complexes validate the main
findings derived from the analysis of their static structures. These complexes are rela-
tively stable during the MD simulations, which is supported by the averages of bind-
ing free energies, their enthalpic components, and corresponding standard deviations
(Table 3). The averages of binding free energy predicted for the designed compounds
in the complexes with aromatase are comparable with the value calculated for the letro-
zole/aromatase complex by the identical computational protocol (Table 3). Furthermore,
these averages are also comparable with the values estimated for the static models of
the ligand/aromatase complexes (Tables 1, 2) as well as to that of −12.06 kcal/mol
obtained with the formula �G = R × T × ln(Kd) [9] at temperature T = 310 K using
the experimental value of Kd for letrozole bound to aromatase [10]

Besides, compound II participates in specific π-π interactions with the pyrrole rings
of the CYP19A1 heme group and form hydrogen bonds with residues Met-374 and
Thr-310, and compound I forms a salt bridge with the enzyme heme.

Finally, analysis of the data of Table 2 indicates that, like the molecules from group
1, the compounds of group 2 exhibit a high binding affinity in the complexes with
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Fig. 1. The PM7-based structures of compounds I (a), II (b), III (c), IV (d), V (e), and VI (f)
from group 1 bound to aromatase. The residues of CYP19A1 forming van derWaals contacts with
ligands are located in rectangles. The residues involved in the hydrogen bonding are marked by
ellipses.
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Table 1. Values of binding free energy (�G) and Kd for the compounds of group 1 bound to
aromatase.

Compound I II III IV V VI

�G, kcal/mol −7.8 −9.2 −8.8 −8.1 −8.7 −8.0

Kd (nM) 12.21 38.35 43.24 51.07 64.39 73.72

Fig. 2. The PM7-based structures of compounds I (a) and II (b) from group 2 bound to aromatase.
The residues of CYP19A1 forming van der Waals contacts with ligands are located in rectangles.
The residues involved in hydrogen bonding are marked by ellipses.

aromatase, as evidence with the low values of dissociation constant and binding free
energy.

Table 2. Values of binding free energy (�G) and Kd for the compounds of group 2 bound to
aromatase.

Compound I II

�G, kcal/mol −8.7 −8.6

Kd (nM) 22.38 30.30

Unlike the molecules of group 1, the ligands of group 2 demonstrate a mechanism of
binding to aromatase uncharacteristic for triazole-based compounds generally coordi-
nating the iron atom of the heme via a heterocyclic nitrogen lone pair. According to the
calculated data, the ligands of interest coordinate the iron atom of the CYP19A1 heme
group through the lone pairs of their oxygen atoms. Similarly to the molecules of group
1, all these compounds target the well-conserved hotspots of the aromatase catalytic site
using multiple van der Waals interactions with the critically important residues of this
hydrophobic pocket. Besides, compound II participates in specificπ-π interactions with
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Table 3. Averages of binding free energy (<�G>) for the complexes of the AIs candidates and
letrozole with aromatase and their standard deviations (�GSTD)a

Compound <�H>

kcal/mol
(�H)STD
kcal/mol

<T�S>

kcal/mol
(T�S)STD
kcal/mol

<�G>

kcal/mol
�GSTD
kcal/mol

Compounds of group 1

I −32.2 4.0 −22.6 2.9 −9.6 3.4

II −28.3 5.7 −16.4 4.0 −11.9 4.8

III −35.2 5.6 −23.9 6.2 −11.3 5.9

IV −26.8 4.5 −17.9 3.4 −8.9 3.9

V −25.7 5.5 −16.1 3.6 −9.6 4.4

VI −28.4 4.6 −19.7 3.6 −8.7 4.0

Compounds of group 2

I −27.9 3.5 −18.5 3.7 −9.4 3.6

II −24.8 3.6 −16.5 5.5 −8.3 4.5

Letrozole

−37.3 4.3 −27.0 9.6 −10.3 6.4
a <�H> and <T�S> are the mean values of enthalpic and entropic components of free energy,
respectively; (�H)STD and (T�S)STD are standard deviations corresponding to these values.

the pyrrole rings of the CYP19A1 heme group and form hydrogen bonds with residues
Met-374 and Thr-310, and compound I forms a salt bridge with the enzyme heme.

Finally, analysis of the ligand/aromatase complexes indicates a high binding affinity
between the identified compounds and the enzyme, in agreement with the low values of
binding free energy calculated both for their static and dynamic models.

4 Conclusions

Thus, the data of molecular modeling indicate that each of the identified compounds of
group1 showspeculiar interactionswith the enzymebindingpocket, the interaction being
realized between the triazole ring and the heme iron, van der Waals interactions with
the hydrophobic pocket lined by Arg-115, Ile-133, Phe-134, Trp-224, Thr-310, Val-370,
Met-374, Leu-477, Ser-478, and, except compound II, the hydrogen bond withMet-374,
which is also involved in hydrogen bonding with the natural substrate androstenedione.
In addition, some identified compounds form van der Waals contacts with the heme
of CYP19A1, and π-conjugated systems of individual molecules participate in specific
π-π interactions with the pyrrole rings of the heme group. Finally, the selected AIs
candidates expose strong attachment to the enzyme active site, in line with the low
values of binding free energy and Kd. In summary, the conclusions that can be made by
the new identified AIs are that, in addition to the interaction between the triazole rings
and the heme iron, hydrophobic contacts play a pivotal role in the ligand binding, and
hydrogen bond involving Met-374 is also essential for the ligand recognition.
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Abstract. Genes are sequences of nucleotide in DNA that encode pro-
teins. Essential genes are a type of genes that are critical and indispens-
able for an organism’s survival. Many network-based algorithms have
been developed to identify essential genes. We introduce a novel app-
roach to predict essential genes that are based on network motif pro-
files (NemoProfile) and various machine learning models. Experimental
results show that NemoProfile is an effective data feature generated from
biological networks, and balanced data is a critical factor to improve the
overall performance.

Keywords: NemoProfile · Machine learning · Essential genes · PPI
network

1 Introduction

Essential genes are the genes that are required to sustain the life of an organism
in nutritious conditions [10,18]. They play significant roles in synthetic biology,
and identification of them can help design new therapies for infectious diseases.
While there are numerous computational methods to identify essential genes with
graph theory, we suggest an alternative approach using network motif profile
(NemoProfile) and various machine learning models.

Network motifs are subgraphs patterns that are statistically significant in a
graph. Network motif has been applied in various biological and medical prob-
lems [2], including predicting protein interactions, determining protein functions,
detecting breast-cancer susceptibility genes, and discovering essential proteins.
Kim and Haukap introduced “NemoProfile” and “NemoCollect” as additional
output options to the traditional output of “NemoCount” [9]. While NemoCount
fails to provide network motif instances, NemoCollect provides whole set of all
network motif instances, and NemoProfile provides the number of times a node
involved in each network motif as shown in Fig. 1. For example, the node 6141
belonged 2538 times to the instances of motif1, 306 times to motif2, 9 times to
motif3, 8 times to motif4, and once to motif5.
c© Springer Nature Switzerland AG 2020
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Fig. 1. Example input graph and its corresponding NemoProfile data feature. Nemo-
Profile is a 2D matrix format of n by m, where n is the number of nodes, and m is
the number of network motifs. The first column lists all the node ids from the input
graph. The (i, j) cell indicates ith node’s involvement on the jth motif.

In this paper, we used the NemoProfile as data feature to find the essen-
tial genes. Through the experiments with various machine learning models, we
show that NemoProfile is an innovative and effective data feature for detecting
essential genes.

2 Data Feature Extraction

For the experiment, We preprocessed two data sets from the organism Bacillus
subtilis 168 and extracted features using network motif analysis before the actual
training process, as Fig. 2 summarizes the experimental processes as a flowchart.

Fig. 2. Flowchart of experiment process.

The first data set is from STRING database consisting of a protein-protein
interaction (PPI) network [17]. The second data set is the information of essential
genes obtained in the work by Kobayashi et al. [11]. The PPI network includes
1,021,787 edges and 4,169 vertices with confidence scores. The essentiality data
contains 4,176 tested genes with their essentiality, out of which 228 are essential
genes. We processed a number of steps to extract data features.
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First, we excluded isolated genes (0.1% of genes) in the PPI, and removed
edges with a low confidence score. The confidence score measures the reliability
of each interaction based on the nature and quality of the supporting evidence.
The threshold of confidence score was determined to 750 because the number of
essential genes dropped out abruptly after 750. Consequently, there are 41,290
edges, 3,700 vertices, and 227 essential genes.

Next, we detected four network motifs which are labeled as Cr, CN, C˜,
and Cˆ(see Fig. 3). Therefore, we obtained a NemoProfile where each gene is
a vector of a dimension four. Then we normalized the feature vectors using
standardization (Eq. (1)) and min-max normalization (Eq. (2)).

Fig. 3. There are six non-isomorphic subgraph patterns for size 4 undirected graphs.
The canonical label of each pattern shown at top of each graph. The detected network
motifs from our datasets are Cr, CN, C˜, and Cˆ.

x′ =
x − x̄

σ
(1)

x′ =
x − min(x)

max(x) − min(x)
× (max − min) + min (2)

where x̄ is the mean and σ is the standard deviation, and max and min are set
as 1 and 0, respectively.

3 Methods

We used five machine learning models for the prediction of essential genes: Deci-
sion Tree, K-nearest neighbors, Support-vector Machines, Logistic Regression,
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and Convolutional Neural Network. We chose those five models because we were
unclear which model would be the best fit with this new data feature (Nemo-
Profile) since there is no previous work that we could learn from. We used scikit-
learn [13] to implement the machine learning models. To test, we used 10 fold
cross-validation to find the best target score.

Through parameter tuning, we selected the best parameters for each model
with our data sets. These parameters are provided in Table 1.

Table 1. Best parameter settings for each model

Model Parameter setting

Decision tree min samples leaf = 8, min samples split = 2,
criterion = entropy

KNN number of neighbors= 9, leaf size = 30,
metric = Manhattan distance

SVM kernel = linear,
decision function shape = one vs rest,
degree = 3, C = 5

Logistic regression solver = liblinear, max iter = 100

CNN activation = relu, solver = sgd,
max iter = 200, learning rate = constant,
hidden layer sizes = 90

The Decision Tree model [15] builds a tree based on training data, and the
best split is decided by impurity, entropy, and information gain. We tried differ-
ent random seeds to reach the suboptimal solution. K-Nearest Neighbor (KNN)
[5] model, which is a nonparametric lazy learning algorithm, considers close
points belong to the same class and the class of a test data point is decided by
a majority vote of its K nearest neighbors. Support Vector Machine (SVM) [4]
is another nonparametric learning algorithm designed for binary classification.
Logistic Regression [3,6] provides the probability of the essentiality of each node.
Convolutional Neural Network (CNN) [12,16] is one of the deep neural network
methods which has a long developing history and became popular over the past
seven years. CNNs are composed of regularized multi-layer perceptrons, which
are connected networks where some regularization is added.

4 Results

We compared the results of our experiments with various measurements. This
section illustrates the performance metrics and provides the results.
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4.1 Performance Metrics

The prediction of essential genes is a binary classification problem. Since unbal-
anced data can produce poor prediction accuracy [1,14], we used five different
performance metrics: Accuracy, precision, recall, F1 score, and AUC ROC score.

Accuracy is the measure of the correctly predicted true positive and true
negative overall input dataset.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision is the measure of proportion of correctly predicted true positive over
the positively predicted data.

Precision =
TP

TP + FP
(4)

Recall is the measure of correctly predicted true positive and among all actual
positive data.

Recall =
TP

TP + FN
(5)

F1 Score is the harmonic mean of precision and recall.

F1 Score =
2 × Precision × Recall

Precision + Recall
(6)

ROC curve plots TPR vs. FPR where TPR on y-axis and FPR on x-axis.
AUC ROC measures the area underneath the ROC curve. It measures the overal
quality of the model’s prediction.

TPR =
TP

TP + FN
(7)

Specificity =
TN

TN + FP
(8)

FPR = 1 − Specificity (9)

4.2 Experimental Results

We experimented with the balanced and unbalanced data sets to see the per-
formance differences. Since the original data is unbalanced, we generated bal-
anced data sets, where the same number of essential and non-essential genes are
randomly selected. All tests are performed both on unbalanced and balanced
datasets. As Table 2 and 3 show, tests with balanced datasets provide better
results in general. The values are the average of 10-fold cross-validation.

We can see that the decision tree model shows the best performance with the
balanced dataset from Table 2, while logistic regression and CNN models have
better results with the unbalanced dataset as shown in Table 3. SVM model has
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the lowest AUC ROC values for both datasets, indicating that its overall low
performance with our datasets. It seems that the fact of PPI’s incompleteness
and noisiness affected the performance of SVM. The logistic regression model,
although the precision is comparable with others, performs poorly with the low-
est recall value. Considering that the limited parameters may have caused bad
performance, we could improve the performance with different parameters and
random seeds. With balanced datasets, CNN model does not perform well. The
low performance might be because of the limited time, limited hyper-parameters,
and resources.

Table 2. Testing with balanced dataset

Model Accuracy Precision Recall F1 Score AUC ROC

Decision tree 0.811 0.824 0.794 0.796 0.874

KNN 0.786 0.761 0.797 0.768 0.849

SVM 0.774 0.784 0.646 0.695 0.841

Logistic regression 0.759 0.782 0.584 0.641 0.865

CNN 0.726 0.755 0.514 0.585 0.844

Table 3. Testing with unbalanced dataset

Model Accuracy Precision Recall F1 Score AUC ROC

Decision tree 0.931 0.651 0.34 0.391 0.748

KNN 0.945 0.541 0.282 0.339 0.773

SVM 0.948 0.546 0.274 0.336 0.658

Logistic regression 0.950 0.588 0.295 0.360 0.882

CNN 0.951 0.582 0.304 0.375 0.873

5 Conclusion

We proposed a novel approach to predicting essential genes based on network
motif analysis. We used NemoProfile as data features and applied five machine
learning models to compare the performance. We built models with the balanced
data set and tested them with both the balanced and unbalanced data sets. We
used 10-cross fold evaluation methods and the results are average of 10 experi-
ments. The performance of the balanced model is significantly better than the
unbalanced one. Our experiment with NemoProfile data feature can be consid-
ered successful compared with other previous works shown in Table 4 [7,8,10].
From our experiments, the AUC ROC values range from 0.841 to 0.874, while
previous works have values ranging from 0.711 to 0.818.

Although we had decent results, there are many improvements that can be
made. For example, using other machine learning models such as Naive Bayes,
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Random Forest, and Gradient Boosting algorithms; or more parameter tuning
for each model. Additionally, different size of network motifs can be tried for the
improvement.

Table 4. The performances of each method with accuracy, area under ROC, area under
PR [8]

Method Accuracy AUC ROC AUC PR

CENT-GO(ALL) 0.727 0.784 0.781

DCGO 0.716 0.760 0.733

BCGO 0.682 0.711 0.682

CCGO 0.701 0.742 0.711

SCGO 0.682 0.732 0.719

ECGO 0.675 0.718 0.720

SoECCGO 0.702 0.743 0.741

LACGO 0.689 0.743 0.738

MCGO 0.710 0.749 0.747

CENT-GO 0.727 0.784 0.781

ING-GO 0.723 0.793 0.784

CENT-ING-GO(CENT-GO + ING-GO) 0.753 0.818 0.804
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Abstract. Network motifs are frequent and unique subgraph patterns
located inside networks, and have been applied to solve various biological
problems. Due to the high computational costs of performing network
motif analysis, various tools have been created to make the process more
efficient. However, existing tools lack extensible functionality and provide
limited output formats. This restricts the ability to use network motif
analysis for extensive and exhaustive experiments in real problems. We
provide NemoLib (Network Motif Libraries) as a general purpose tool for
detection and analysis of network motifs. It is an easily adoptable and
highly accessible tool with a focus on efficiency and extensibility.

Keywords: NemoLib · ESU · Biological network · Network motif

1 Introduction

The interconnections between biological components (such as species, molecules,
or neurons) are often represented as biological networks to explain complex bio-
logical systems. There are many types of networks at various levels including
ecological, neurological, metabolic, and protein-protein interaction networks.

Network motif analysis is a graph-based algorithm used for finding biologi-
cal functions using unique patterns (network motifs) that exist within biologi-
cal networks [6]. Network motifs are defined as statistically frequent and unique
subgraph patterns, which have been applied to various problems such as predict-
ing protein interactions [1], determining protein functions [3], detecting breast-
cancer susceptibility genes [18], and discovering essential proteins [10]. Being
able to perform network motif analysis quickly and efficiently will allow for the
process to be more available and applicable to more problems in the future.

Detection of a network motif requires expensive computational power. There-
fore, multiple heuristic methods and parallel algorithms have been proposed to
alleviate the computational burden [9]. Currently, there are various tools avail-
able for network motif detection, including [9]: MFinder [8], FANMOD [16],
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Kavosh [7], Mavisto [15], NeMoFinder [2], LaMoFinder [3], Grochow’s [4], and
MODA [14].

However, current tools suffer from multiple drawbacks that restrict their
range of application, and consequently cause a certain amount of skepticism
regarding their structure-based and pattern-based analyses. The drawbacks
include the following: some tools are unavailable; most tools fail to collect
instances of network motifs due to heavy memory overhead; many tools only
accept the input graphs whose nodes are integers; some lack of functionality;
and some are non-extensible as they work only for smaller sized motifs [12].

To deal with these drawbacks and provide a more accessible way of perform-
ing network motif analysis, NemoLib (Network Motif Libraries) was created and
published. This library alleviates the problems aforementioned for the following
reasons: it is well-optimized to run faster than other tools; it can provide different
output options including frequency, motifs’ profiles, and instances of motifs; it
runs on graphs with various type of nodes and edges (directed and undirected);
and it is designed to be flexible and easy for developers to incorporate or extend.
NemoLib is a powerful tool for developers to efficiently perform network motif
analysis.

Source codes of NemoLib are available at https://github.com/
Kimw6/NemoLib-Java-V2 and at https://github.com/Kimw6/NemoLib-C-V2-
StaticLib.

2 Network Motif

A network motif is a connected subgraph pattern M of size k that is frequent and
unique in a target network G. The uniqueness is determined by P-value (Eq. (1))
or Z-score (Eq. (2)) of the frequency of M in a randomly generated pool.

P-value(M) =
1
N

N∑

n=1

c(n), where c(n) =
{

1, if fR(M) ≥ fG(M)
0, otherwise (1)

Z-score(M) =
fG(M) − μ(fR(M))

σ(fR(M))
(2)

Here, N is the number of random graphs, and fG(M) is the frequency of M in
the target network, while fR(M) is the frequency of M in the random network.
μ(fR(M)) is the mean of frequencies of M in the random networks and σ(fR(M))
is the standard deviation of frequencies of M in the random networks. Generally,
subgraphs with P-value < 0.05 or Z-score > 2.0 are considered network motifs.

Figure 1 illustrates the process of detection of network motifs. A directed
or undirected network (a) is provided as an input, then all subgraph of size
k is enumerated and categorized into different non-isomorphic patterns to find
their frequencies (b). Each pattern’s frequency is compared in a random pool
to determine whether the frequency is statistically high (c), which will provide

https://github.com/Kimw6/NemoLib-Java-V2
https://github.com/Kimw6/NemoLib-Java-V2
https://github.com/Kimw6/NemoLib-C-V2-StaticLib
https://github.com/Kimw6/NemoLib-C-V2-StaticLib
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Fig. 1. The process of detecting network motifs: (a) is the example of a target network;
(b) shows all the possible non-isomorphic patterns of size four; (c) shows the example
output that compares each pattern’s frequency in a target, average frequency in random
graphs, and its P-value. (d) shows the determined network motifs

the statically verified frequent patterns, that is, network motifs (d). From the
example, the subgraphs labeled as C ,CΛ, CN are network motifs from the input
graph (a).

There are two approaches to detecting network motifs: network-centric and
motif-centric. The former approach will search all possible patterns from the
input graph, while the latter finds all instances of given patterns in the input
graph. Currently, NemoLib includes a network-centric method that implements
the ESU (Enumerate Subgraph) algorithm [17], and plans to add a motif-centric
method in near future.

3 NemoLib: Network Motif Library

NemoLib is a library that can be used as a better alternative to contemporary
tools. It is developed with the idea to abstract the complexity of the detection
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Fig. 2. This shows the essential processes that make up NemoLib. Starting from a
file in graph format, the relative frequencies are gathered using the ESU algorithm.
Depending on our output type, the instances might be collected alongside the ESU
algorithm. The program will then generate and enumerate the selected number of
random graphs and develop a set of relative frequencies based on the results. The final
results are used to determine the network’s network motifs in the statistical analysis
process. The results and instances will be shown based on the selected output type.

of a network motif while allowing for easy customization. The design follows the
principle of “open for extension, closed for modification” by exposing an API
of common tools used for network motif detection. A user can use NemoLib to
develop a web-based network motif detection program, as an example. Currently
NemoLib is available through a public Github repository in Java and C++. Both
versions have been tested to work in Linux and Windows.
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The network-centric method used by NemoLib for network analysis includes
three steps as described in Fig. 2: enumeration, random graph generation, and
statistical analysis. First, enumeration searches the network to find each pattern
to create a map of the relative frequencies for each pattern from the target
graph. Then, random graph generation produces a pool of random graphs with
the same degree distribution as the input graph, and then provide the average
frequency of each pattern. Finally, statistical analysis takes the generated maps
from the previous steps and computes the P-value and Z-score for each pattern
and then returns their associated values. Network motifs are then determined
by the P-value and Z-score whose threshold can be also customized.

Fig. 3. NemoLib: (a) is the example of a target network; (b) is the input file format,
where each line is an edge which consists of two end nodes; (c) shows the three output
options which NemoLib provides.

NemoLib can read undirected or directed graph with any type of nodes (inte-
ger or string), however does not read in weights. Figure 3 describes some features
of NemoLib. The target network (a) is given as a graph file shown in (b), which
a list of edges, and each edge is a pair of two end nodes. When implementing
a program with NemoLib, there are three possible output formats as shown in
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Fig. 3 (c). The NemoCount option, the most basic option, displays each node’s
frequency, P-value, and Z-value. Choosing NemoProfile shows each node’s par-
ticipation in every pattern as well as the NemoCount results [11]. NemoProfile
results are stored inside as an object matrix in memory during run time, and
users will have the choice of outputting the results as a file. Finally, NemoCollect
provides the NemoCount results and the list of instances for each motif. Nemo-
Collect results are always saved in a file to avoid heavy memory overhead due
to the volume of results that accompany this operation.

Fig. 4. It shows the performance of NemoLib is better than FANMOD program as the
size of motif grows.

NemoLib was designed to provide efficient and effective results. Figure 4 com-
pares the time efficiency of NemoLib with that of the FANMOD program, which
is implementing ESU algorithm. After testing on various target graphs of dif-
ferent sizes, we could conclude that both the Java and C++ versions appear
to be significantly faster than FANMOD. This result indicates that, along with
providing additional functionality, NemoLib will provide a faster alternative to
other tools.

4 Conclusion

NemoLib provides a combination of extensibility, efficiency, and functionality
that the modern network motif detection software programs lack. It is designed
to be an ideal tool for testing novel network motif detection algorithms and for
learning about network motif detection. Currently, Nemolib is available online
in both C++ and Java as a library, able to run faster than contemporary tools,
and able to provide multiple ways to view network motifs.

Going forward, there are multiple ideas to improve the NemoLib family. The
first proposed work is the development of a java version of the Nauty program
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[13], since the current version, NemoLib-Java, spends additional time to exter-
nally call the Nauty program (which is a C-library) to get the canonical label for
each non-isomorphic subgraph pattern. The next step is incorporating parallel
and multi-threaded client programs into NemoLib for performance enhancement.
Further along, another undertaking would be completing the Python version,
which is not yet fully optimized. The final planned improvement is adding a
motif-centric option by extending the NemoMap algorithm [5]. NemoLib fills a
void in network motif detection, and should be an ideal tool for testing and
learning about network motif detection.
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Abstract. Metatranscriptome sequence data analysis is necessary for
understanding biochemical changes in the microbial community and their
effects. In this paper, we propose a methodology to estimate activities of
individual metabolic pathways to better understand the activity of the
entire metabolic network. Our novel pipeline includes an expectation-
maximization based estimation of enzyme expression and simultaneous
estimation of pathway activity level and enzyme participation level in
each pathway. We applied our novel pipeline to metatranscriptome data
generated from surface water planktonic communities sampled over a
day-night cycle in the Northern Gulf of Mexico (Louisiana Shelf). Our
results show the estimated enzyme expression, pathway activity levels
as well as enzyme participation levels in each pathway are robust and
stable across all data points. In contrast to expression of enzymes, the
estimated activity levels of significant number of metabolic pathways
strongly correlate with the environmental parameters.
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1 Introduction

Measuring the functional activity, enrichment, and interaction of metabolic path-
ways in microbial communities is essential for understanding the biochemical
and ecological contributions of microorganisms. Despite many advances in using
microbial biomolecules (DNA, RNA, proteins) to assess the biochemical contri-
butions of microbes, it remains challenging to quantify how the expression of indi-
vidual enzymes contributes to the activity of multi-enzyme metabolic pathways.
In this study, we analyze time-series metatranscriptomic (community RNA) data
to generate an efficient model for understanding metabolic pathway activity in
depth [4,12,14,15]. Even though advances in high-throughput sequencing have
aided the exploration of RNA sequencing data, particularly for single organisms,
it is often challenging to disentangle community-level data [3,12,16], notably as
existing pathway analysis tools (e.g., MEGAN4, MetaPathways, MinPath) often
yield variable conclusions about the activity of pathways based on RNA data
[6,9,13,17]. To overcome the current challenges, we developed a workflow that
uses a Maximum Likelihood-based model and annotations based on the KEGG
[7] database to estimate transcript frequency, enzyme expression, enzyme par-
ticipation in pathways, and metabolic pathway activity. In this paper, we test
this model using metatranscriptomic data from a marine microbial community.
The data span multiple time points with different environmental parameters to
elucidate the complex metabolic pathway activity in the microbial community,
generally challenging to mimic in the laboratory.

The proposed methodology is the first to use a likelihood model to infer
the pathway activity considering an enzyme’s expression and participation
coefficient. First, we filtered the microbial community-specific metabolic path-
ways from the KEGG database and merged the expression of enzymes shar-
ing the same contigs and having sequence homologs. We implemented a novel
Expectation-Maximization algorithm to estimate the enzyme participation level
in each pathway and then used these estimations for more accurate predictions
of pathway activity. Increased correlation between estimated metabolic pathway
activity and environmental parameters validated our approach. Our contribu-
tions include the following:

– An EM-based algorithm for estimating enzyme expression.
– A novel EM-based algorithm for estimating metabolic pathway activity levels

using estimation of enzyme participation level in each pathway.
– Validation of enzymes expression and pathways activity using their correla-

tion with the environmental parameters.

The rest of the paper is organized as follows. In the next section we describe
the pipeline of our software framework and several EM-based algorithms for esti-
mating enzyme expression and metabolic pathway activity in microbial commu-
nities. Then we describe our datasets including sequencing data, and extraction
of metabolic enzymes and pathways. Finally our results statistically validate the
proposed pipeline.
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2 Methods

We first describe the pipeline containing the previous version of our software
and an alternative flow with three new EM algorithms. Then each of these three
new EMs are described separately and the global loop for pathway activity level
estimation concludes description of our software.

Fig. 1. Pipeline of metabolic pathway analysis for a microbial community sample. The
metatranscriptomic data obtained from microbial community samples are sequenced,
and raw reads are assembled into contigs. The genes containing obtained contigs are
further mapped into the enzyme-pathway database. Contig frequencies are obtained
using IsoEM2 [11]. Instead of estimating pathway activity levels using direct EM [10],
we propose to first estimate enzyme expression. Then the pathway activity level and
enzyme participation coefficients are estimated in a single EM feedback loop.

2.1 Pipeline for Estimating Pathway Activity Levels

This paper proposes to enhance the pipeline proposed in [10] (see Fig. 1) with
the inference of enzyme expressions and enzyme participation levels in metabolic
pathway repeatedly applying the maximum likelihood model. These models are
resolved using the Expectation-Maximization (EM) algorithm. The proposed
inferences are highlighted in red (see Fig. 1). The first step is to estimate the
abundances of the assembled contigs. The abundances can be inferred by any
RNA-seq quantification tool, but we suggest using IsoEM [11] since it is suffi-
ciently fast to handle Illumina Hiseq data and more accurate than Kallisto [1].
We propose to estimate the enzyme expressions based on contig abundances
and mapping of contigs onto enzymes (EM for enzyme expression in Fig. 1).
The EM for pathway activity levels is based on inferred enzyme expressions and
metabolic pathway annotation. Each enzyme is initially assigned a participa-
tion level of 1/|w|, where |w| is the total amount of enzymes in the pathway
w. The Global loop for pathway activity updates the enzyme participation level
by fitting expected enzyme expressions to the expressions estimated by EM for
enzyme expression.
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2.2 EM for Enzyme Expression and Pathway Activity Level
Estimation

Let T be a random variable with values from the set of observed contigs, and
let E be a random variable whose values belong to the set of relevant metabolic
enzymes from the KEGG database. The probability of observing a contig t is
given by the following formula: P (T = t) =

∑
w∈W fw P (T = t | E = e), where

fe stands for the expression of the relevant metabolic enzyme e. Thus, in our
model we adopt the following likelihood function:

L(fe) =
∏

t∈T

(
∑

e∈E

fe P (T = t | E = e)

)at

where at denotes the abundance of t estimated by IsoEM2. Following [10] we
estimate the probability of contig t coming from enzyme e as follows:

P (T = t|E = e) = pte =
bte∑

t′∈e bt′e
(1)

where bte is the best bit-score obtained from the alignment of t to the protein
that have a function of the enzyme e.

The details of the EM for enzyme expression are as follows. We initialize
estimates for each enzyme with a random number fe ∈ [0, 1], e ∈ E. Then, we
iterate the following two steps until a convergence criteria is satisfied:

The E-step. We first compute the expected number of reads ne emitted by each
enzyme e through the following formula:

ne =
∑

t∈T

at · ptefe∑
e′∈E pte′fe′

The M-step. The new estimates are provided based on a standard normaliza-
tion step:

fnew
e =

ne∑
e′∈E ne′

The algorithm halts when the change in estimates between iterations is small
enough: ||fnew

E − fE || ≤ ε, where ε � 1
The EM algorithm for estimating pathway activity levels fW = {fw|w ∈

W} based on frequencies of enzymes fE = {fe|e ∈ E} is similar to the EM
algorithm above. The only difference is that insted of Eq. (1) we use the uniform
probability distribution over the set of enzymes/enzyme groups participating in
each pathway:

P (E = e|W = w) = pew =

{
1

|w| , if e ∈ w

0, otherwise
(2)
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2.3 Global Loop for Pathway Activity Level Estimation

The initial estimate (2) of the participation level of enzyme e in the pathway w
can be very far from reality. More accurate estimates of the enzyme participation
levels can lead to more accurate estimates for the pathway activity levels. The
algorithm below estimates pathway activity levels Steps (1–3) and then checks
how well the computed activities fw’s fit the enzyme expressions (step (4)). If
the fit is not good enough, then EM-based algorithm is applied to update the
enzyme participation levels pew’s (Steps (5–6)) and then fw’s are recomputed
according to updated pew’s in Step (3).

1. Find expression f(e) of each enzyme e running EM from Sect. 2.2.
2. According to (2), initialize pew = 1

|w| for e ∈ w and pew = 0, otherwise.
3. Find activity levels fw for each pathway w ∈ W running EM from Sect. 2.3.
4. Find expected frequency of each enzyme e according to formula fexp

e =∑
w∈W pewfw If expected and observed enzymes frequencies are close to each

other: ||fexp
e∈E − fe∈E || =

∑
e∈E(fexp

e − fe)2 < ε � 1, then exit, i.e. go to step
7.

5. Find better fitted p′
ew’s by using the following EM algorithm:

The E-step. Compute expected pexpew ’s that will make fe = fexp
e for each

e ∈ E,w ∈ W ,

pexpew = pew × fe
fexp
e

The M-step. Provide the new estimates by normalization for each e ∈ E,w ∈
W ,

pnewew =
pexpew∑

e∈E pexpew

The algorithm halts when the change in estimates between iterations is small
enough:
||pnew − p|| =

∑
e∈E,w∈W (pnewew − pew)2 ≤ ε � 1

6. For each e ∈ E,w ∈ W , update pew ← p′
ew and go to step 3

7. Output {fw|w ∈ W} and {pew|e ∈ E,w ∈ W}

3 Datasets

Samples. The study uses metatranscriptome data from 26 samples collected
from surface water (depths of 2 and 18 m) on the Louisiana Shelf in the Gulf of
Mexico. These samples were collected via Niskin water at the same site (28.867N
−90.476W) over a 3-day period in July 2015. Furthermore, six environmental
parameters - including PAR (photosynthetic active radiation) and seawater dis-
solved oxygen concentration, density, salinity, temperature, and chlorophyll con-
centration - were measured for each sample. One liter of seawater was pumped
onto a 0.22 um Sterivex filter. Filtered biomass was then preserved using 1.8 ml of
RNA-later and flash frozen. Filters were stored at −80 C until RNA extraction.
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RNA was extracted via the mirVanaTM Total RNA Isolation kit, with resid-
ual DNA removed via DNase treatment. RNA samples were then sequenced via
the Illumina HiSeq 2500 1TB sequencing protocol following cDNA preparation
at the Department of Energy Joint Genome Institute (DOE-JGI). All datasets
are publicly available through the JGI Genomes Online (GOLD) database via
GOLD ID Gs0110190. Out of 26 samples three samples (Day1, 12:00, 18m; Day
2, 20:00, 2m; Day 3, 08:00, 2m) were discarded as they did not contain enough
reads to assemble transcripts for our pipeline.

Microbial-Specific Metabolic Pathway Identification. The KEGG path-
way database has information on all metabolic pathways that occur in the living
organisms. However, the scope of the current tool is to analyse metabolic path-
ways in microbial communities. We extracted metabolic pathways that play a
significant role in microbial communities which is confirmed by literature refer-
enced in PUBMED. Furthermore, we remove from consideration the high-level
metabolic pathways including ec01100, ec01110, ec01120, and ec01130. As a
result, we extracted 69 microorganism-relevant pathways out of 152 metabolic
pathways. The reduced number of pathways increased the efficiency and perfor-
mance of the algorithm.

Metabolic Enzyme Dataset Identification and Modification. We restrict
ourselves to enzymes that belong to microbial metabolic pathways and remove
the unlikely enzyme matches. Since the same set of contigs assembled from reads
can match multiple metabolic enzymes, the EM for enzyme expression cannot
differentiate between them. Therefore, we identified the enzymes sharing the
same set of contigs and grouped them. For detecting such groups of enzymes, we
use an essential property that the individual enzyme expression can vary across
randomly initialized EM runs, while the sum of the expression of all enzymes
in the group does not change. We collapsed the enzymes belonging to a single
group and rerun EM to get an accurate and stable enzyme expression. After
applying the above method, we obtain expressions of 1446 enzymes and enzyme
groups for the metabolic pathway activity analysis.

4 Results

Our results consist of empirical and statistical validation of estimated enzyme
expression, enzyme participation levels, and pathway activity level estimations.
We first analyze the stability of enzyme participation levels and then wcheck how
many enzyme expressions and pathway activities correlate with environmental
parameters.

We estimate the participation level of each enzyme in each pathway sepa-
rately for each data point. Table 1 presents the participation level of all expressed
enzymes in the pathway ec00020. We can see that the participation level does not
significantly change from one data point to another, i.e. the standard deviation
is significantly smaller than the mean for all enzymes. Note that if an enzyme
is not expressed in a sample, then the participation is not defined and the par-
ticipation level is reported as 0. This means that we need to take in account



Estimating Enzyme Participation in Metabolic Pathways 341

Table 1. Enzyme participation levels for all enzymes across all data points for 2 m
depth in the metabolic pathway ec00020. Two rightmost columns are means and stan-
dard deviations of enzyme participation levels.

ec00020 D1:12 D1:16 D1:20 D2:00 D2:04 D2:08 D2:12 D2:16 D3:00 D3:04 D3:12 AVE STD

EC:1.2.4.1 12.82 21.68 20.64 33.71 35.76 30.38 21.78 23.71 32.40 28.07 21.98 25.72 6.60

EC:1.2.7.1 0.51 6.18 15.43 6.69 4.97 9.32 13.14 9.61 7.87 12.95 2.54 8.11 4.37

EC:1.2.7.3 13.99 21.46 20.32 26.74 28.96 24.87 21.26 22.22 27.08 24.44 26.70 23.46 4.02

EC:1.8.1.4 7.61 12.92 11.24 16.94 16.65 14.39 12.93 16.92 19.16 14.03 22.16 15.00 3.78

EC:2.3.1.12 12.82 21.68 20.64 33.71 35.76 30.38 21.78 23.71 32.40 28.07 21.98 25.72 6.60

EC:4.1.1.32 12.82 21.68 20.64 33.71 35.76 30.38 21.78 23.71 32.40 28.07 21.98 25.72 6.60

EC:4.1.1.49 14.78 23.66 23.38 32.19 36.13 37.34 26.62 28.41 35.90 33.66 25.61 28.88 6.60

EC:1.1.1.37 18.14 19.76 26.62 17.90 18.93 30.78 20.27 20.43 22.97 22.13 44.21 23.83 7.43

EC:1.1.1.41 72.88 72.85 70.78 71.20 68.42 38.66 45.68 60.11 62.77 61.29 27.09 59.25 14.74

EC:1.1.1.42 19.96 24.06 22.58 21.52 23.68 19.95 22.48 22.32 22.95 21.92 42.38 23.98 5.95

EC:1.1.5.4 0.00 0.00 0.00 29.35 0.00 0.00 0.00 20.53 0.00 0.00 0.00 24.94 4.41

EC:1.2.4.2 10.10 13.02 10.76 11.91 10.91 11.72 12.75 14.08 14.74 10.13 25.75 13.26 4.21

EC:1.3.5.1 21.35 27.74 28.74 34.65 39.51 30.74 29.40 29.56 36.38 33.32 46.73 32.56 6.43

EC:2.3.1.61 10.10 13.02 10.76 11.91 10.91 11.72 12.75 14.08 14.74 10.13 25.75 13.26 4.21

EC:2.3.3.1 86.31 41.26 66.16 28.14 39.20 260.4 209.0 93.27 70.39 107.9 96.40 99.85 68.92

EC:2.3.3.8 19.96 24.06 22.58 21.52 23.68 19.95 22.48 22.32 22.95 21.92 42.38 23.98 5.95

EC:4.2.1.2 14.54 18.81 19.68 23.77 28.00 20.30 19.67 20.16 24.74 22.70 32.79 22.29 4.72

EC:4.2.1.3 33.31 29.83 34.13 23.43 28.96 41.10 44.43 37.46 35.39 8.11 69.02 37.74 11.35

EC:6.2.1.4 19.96 24.06 22.58 21.52 23.68 19.95 22.48 22.32 22.95 21.92 42.38 23.98 5.95

EC:6.4.1.1 14.54 18.81 19.68 23.77 28.00 20.30 19.67 20.16 24.74 22.70 32.79 22.29 4.72

only data points with non-zero participation levels when computing mean and
standard deviation over all data points.

Table 2. 1. The number of enzymes significantly correlated with each of 6 environmen-
tal parameters and their linear combination (via multiple linear regression (MLP)). 2.
The number of enzymes strongly correlated with randomly permuted parameter val-
ues (95% CI). 3. The EC number of the metabolic enzyme which is the most strongly
correlated with the corresponding parameter.

Salinity Temp Oxygen Chl PAR Density MLP

1. # enzymes 146 110 117 93 97 138 156

2. 95% CI 80–190 79–114 62–94 58–92 36–63 82–123 70–107

3. EC number 1.2.1.59 2.6.1.1 3.1.3.11 2.2.1.7 3.5.1.16 2.4.1.16 1.1.1.136

The goal of regression-based validation is to check our hypothesis that there
exist enzymes and pathways whose expression and activity level variation across
data points can be explained (i.e. correlate with) certain environmental param-
eters. For each environmental parameter, we check whether it significantly cor-
relates (P < 5%) with each enzyme across 11 data points for the 2-meter depth
(see Table 2). In the row 2 we give 95% CI for the number of significantly cor-
related enzymes withe randomly permuted parameter. Since the upper bound
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of 95% CI for salinity is 190 (row 2), we conclude that there is no evidence of
enzymes significantly correlated with salinity. We also report the enzyme that
correlates the most with salinity, i.e. EC 1.2.1.59. From Table 2 we see that most
parameters do not correlate well with enzymes, except perhaps PAR.

Table 3 is the same as Table 2 but reports correlation significance of pathway
activities instead of enzyme expressions. In contrast to enzymes it is clear that
the many metabolic pathways correlate with each environmental parameter and
this correlation is not by chance. Indeed, pathway activity is supposed to be
more stable than enzyme expression since generally metabolism is much less
affected by the current. For each environmental parameter, we also cross-check
the PubMed database whether the most correlated pathway is known to depend
on this parameter. For instance, fatty acid degradation is well correlated with
salinity, and several studies reported that fatty acid degradation is often altered
by salinity at sea surface environments [2,5,8].

Table 3. 1. The number of pathways significantly correlated with each of 6 environ-
mental parameters and correlated via multiple linear regression. 2. The number of
pathways strongly correlated with randomly permuted parameter values (95% CI). 3.
The EC number of the metabolic pathway which is the most strongly correlated with
the corresponding parameter.

Salinity Temp Oxygen Chl PAR Density Multiple

1. # pathways 31 22 19 18 14 30 22

2. 95% CI 1–8 0–8 0–6 0–6 0–6 1–8 (0–7)

3. Pathway ec00071 ec00195 ec00622 ec00460 ec00360 ec00071 ec00626

5 Discussion

This paper proposes a maximum likelihood model for the estimation of metabolic
pathway activity in the microbial community using the KEGG pathway
database. Specifically, the proposed approach uses an EM-based pipeline to esti-
mate enzyme expression, enzyme participation levels in pathways, and metabolic
pathway activity from metatranscriptomic data. The proposed metabolic path-
way analysis was applied to the metatranscriptomic data of 26 samples collected
with different environmental parameters. The key findings of the study are as
follows:
– The participation levels of enzymes in pathways do not significantly vary

across the data samples.
– The enzyme expression and metabolic pathway activities were validated using

regression with each environmental parameter: salinity, temperature, oxygen,
chlorophyll, and PAR.

– In contrast to enzyme expressions, pathway activity levels significantly cor-
relate with environmental parameters, e.g. 31 out of 61 metabolic pathways
significantly correlate with salinity.
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Abstract. As a main composition of the human-associated microbiome,
viruses are directly associated with our health and disease. The receptor-
binding is critical for the virus infection. So identifying potential virus-
receptor interactions will help systematically understand the mechanisms
of virus-receptor interactions and effectively treat infectious diseases
caused by viruses. Several computational models have been developed
to identify virus-receptor interactions based on assumption that similar
viruses show similar interaction patterns with receptors and vice versa,
but the performance need to be improved. Furthermore, the virus net-
work and the receptor network are also noisy. Therefore, we present a
new prediction model (NERLS) to identify potential virus-receptor inter-
actions based on Network Enhancement, virus sequence information and
receptor sequence information by Regularized Least Squares. Firstly, the
virus network is constructed based on the virus sequence similarity and
Gaussian interaction profile (GIP) kernel similarity of viruses by a mean
method. They are calculated based on the viral RefSeq genomes down-
loaded from NCBI and known virus-receptor interactions, respectively.
Similarly, we also use the same mean method to construct the receptor
network based on the amino acid sequence similarity and known virus-
receptor interactions. Then Network Enhancement is applied to denoise
the virus network and the receptor network. Finally, we employ the
regularized least squares algorithm to identify potential virus-receptor
interactions. The 10-fold cross validation (10CV) experimental results
indicate that an average Area Under Curve (AUC) values of NERLS is
0.8930, which is superior to other computing models of 0.8675 (IILLS),
0.7959 (BRWH), 0.7577 (LapRLS), and 0.7128 (CMF). Furthermore, the
Leave One Out Cross Validation (LOOCV) experimental results also
show that NERLS can achieve the AUC values of 0.9210, which is bet-
ter than other models (IILLS: 0.9061, BRWH: 0.8105, LapRLS: 0.7713,
CMF: 0.7491). In addition, a case study also confirms the effectiveness
of NERLS in predicting potential virus-receptor interactions.
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1 Introduction

Viruses can infect humans and cause hundreds of diseases [1]. Above all, some
emerging and epidemic-prone viral diseases, such as Coronavirus Disease 2019
(COVID-19) [2], Severe Acute Respiratory Syndrome (SARS) [3], and Middle
East Respiratory Syndrome (MERS) [4], directly threaten human health and
become the public health concern [5]. For example, the current outbreak of
COVID-19 in Wuhan, China [2] has leaded to more and more Chinese peo-
ple to start staying at home to prevent contagion. A recent study shows that
SARS-CoV-2 is the pathogen of COVID-19 and can use its matching receptor,
angiotensin converting enzyme 2, to enter human cells [2]. The binding of viruses
to their matching receptors is thought to have started on the virus infection. To
explore the interaction mechanism of viruses and receptors, Yan et al. selected
104 viruses, 74 receptors and 211 virus-receptor interactions as a benchmark
dataset from viralReceptor [6,7]. Based on this dataset, NERLS is presented for
identifying virus-receptor interactions.

The advantages of NERLS are as below: (i) The virus network is constructed
with the virus sequences information and known virus-receptor interactions. (ii)
Network Enhancement is used to denoise the virus network and the receptor
network, and the regularized least squares (RLS) algorithm is applied to predict
virus-receptor interactions.

2 Methods

2.1 Construct Virus Network

Let {v1, v2, v3, ..., vnv} denote the set of viruses V , and {r1, r2, r3, ..., rnr} denote
the set of receptors R. Then, Y is an adjacency matrix of the nv rows and
nr columns and Y ∈ R

nv×nr denotes known virus-receptor interactions. The
virus network can be constructed with the virus sequence similarity and virus
GIP kernel similarity. First of all, the virus sequence similarity is computed by
d∗
2 oligonucleotide frequency measures based on genomic sequences. The correla-

tion of genomic sequences is inferred by the dissimilarity measure approach based
on genomic k-mer frequencies. According to the assumption that similar k-mer
patterns are shared between similar viruses [8], we can use the k-mer similarity
to measure the correlation of genomic sequences. So the distance of k-mer fre-
quency vectors between each virus-virus pair is computed by d∗

2 oligonucleotide
frequency measures [8]. According to the existing research [8], we can obtain the
correlation Vseq(vi, vj) between each pair of virus vi and virus vj when k is set
to be 6.
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Afterwards, the virus GIP kernel similarity VGIP (vi, vj) between virus vi and
virus vj is computed as below:

VGIP (vi, vj) = exp(−γv||yvi
− yvj

||2) (1)

γv = γ′
v/(

1
nv

nv∑

i=1

||yvi
||2) (2)

Here yvi
and yvj

denote the interaction profiles of virus vi and virus vj , respec-
tively. γv regulates the normalized kernel bandwidth by the original bandwidth
γ′
v. Based on other similar research [9], we can set γ′

v to be 1.
Finally, we can construct the virus network SV based on two virus similarity

matrices by a linear weighted method. In the virus network, the weight of edge
SV (vi, vj) between virus vi and virus vj can be calculated as follows:

SV (vi, vj) =
VGIP (vi, vj) + Vseq(vi, vj)

2
(3)

2.2 Construct Receptor Network

To construct the receptor network, the receptor sequence similarity and recep-
tor GIP kernel similarity are computed. Firstly, We can use their normalized
Smith-Waterman score SW (ri, rj) to compute the sequences similarity of recep-
tors. Then the receptor sequence similarity Rseq(ri, rj) between receptor ri and
receptor rj is computed as below:

Rseq(ri, rj) = SW (ri, rj)/
√

SW (ri, ri)
√

SW (rj , rj) (4)

According to the above method of the virus GIP kernel similarity, we can
calculate the receptor GIP kernel similarity RGIP (ri, rj) between receptor ri and
receptor rj based on the known virus-receptor interactions.

Finally, two receptor similarity matrices are also used to construct the recep-
tor network by the linear weighted method. The weight of edge SR(ri, rj) in the
receptor network is computed as follows:

SR(ri, rj) =
RGIP (ri, rj) + Rseq(ri, rj)

2
(5)

2.3 Network Enhancement

Inspired by the Network Enhancement (NE) method [10], we adopt NE to
denoise the virus network and the receptor network, respectively. For exam-
ple, the virus network is chosen as an input network. Let W be a weighted virus
matrix of the nv rows and nv columns, Nm be a set with K-nearest neighbors of
virus m and τ be a novel localized network based on the weighted virus matrix.
Then τm,n of virus m and its neighbors n can be calculated as follows:

Pm,n ← Wm,n∑
k∈Nm

Wn,k
I{n∈Nm}, τm, ←

nv∑

k=1

Pm,kPn,k∑nv
u=1Pu,k

(6)
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where P is a row-normalized transition probability matrix, and I{·} denotes a
indicator function. If n is one of K-nearest neighbors of virus m, the value of this
indicator function is 1, otherwise is 0. Based on zhou et al. a diffusion process
can be expressed by random walk with restart and the regularization information
flow in NE.

Wt+1 = ατ × Wt × τ + (1 − α)τ (7)

Here α denotes a regularized parameter, t denotes iterative step and the initial
value of Wt is the virus network SV . For each input, the update rule is expressed
as follows:

(Wt+1)m,n = α
∑

k∈Nm

∑

l∈Nn

τm,k(Wt)k,lτl,n + (1 − α)τm,n (8)

The final virus network SVNE is obtained based on this diffusion process. Simi-
larly, we can use the same method to obtain the final receptor network SRNE .

2.4 Initialized Interaction Profiles for New Viruses and Receptors

Considering all neighbors of viruses and receptors directly affects the ability of
NERLS, if a new virus (receptor) has no known association with all receptors
(viruses), we introduce the known interactions profiles of all neighbors to initial-
ize an interaction score for new virus (receptor). Then the initial score of this
new virus vi and a certain receptor rj is computed as below:

y(vi, rj) =
∑nv

l=1SV
(il)
NEylj

∑nv
l=1SV

(il)
NE

(9)

As mentioned above, the initial score of a new receptor can be computed by the
same mothod. We can compute the initial interaction profile between this new
receptor rj and a certain virus vi as follows:

y(vi, rj) =
∑nr

l=1SR
(jl)
NEyil

∑nr
l=1SR

(jl)
NE

(10)

2.5 Regularized Least Squares

In our study, RLS is applied to identify virus-receptor interactions based on the
virus sequence information and the receptor sequence information. To make full
use of the feature of viruses and receptors, SVNE and SRNE are normalized for
two laplacian similarity matrixes LV and LR by the laplacian operation, respec-
tively. Let ||.|| be the Frobenius norm, βv and βr be the trade-off parameters,
and tr(.) be the matrix trace. According to the Regularized Least Squares, we
can compute two matrixes FV and FR with minimizing the cost functions.

FV ∗ = argFV min[||Y − FV T ||2F + βvtr(FV T · LV · FV )] (11)
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FR∗ = argFRmin[||Y − FR||2F + βrtr(FRT · LR · FR)] (12)

Based on the existing studies [6,11], FV ∗ and FR∗ can be expressed as:

FV ∗ = SVNE(SVNE + βv · LV · SVNE)−1Y (13)

FR∗ = SRNE(SRNE + βr · LR · SRNE)−1
Y T (14)

Finally, two prediction matrixes FV ∗ and FR∗ are transformed into an inte-
grated prediction matrix with a linear mean method as follows:

F ∗ =
FV ∗ + (FR∗)T

2
(15)

3 Experimental Results and Discussion

3.1 Performance Evaluation

To assess the prediction performance of NERLS, we use 10CV and LOOCV
to verify potential virus-receptor interactions. In 10CV, we randomly divide
all known virus-receptor interactions (S+) into ten roughly equal subsets. Each
subset in turn can be selected as the testing data, while other subsets as the
training data. Furthermore, all the rest are the candidate interactions. At the
very least, 10CV is run 100 times to get the average as the final result.

S
+ = S

+
1 ∪ S

+
2 ∪ · · · ∪ S

+
10 (16)

with
Ø = S

+
1 ∩ S

+
2 ∩ · · · ∩ S

+
10 (17)

|S+1 | ≈ |S+2 | ≈ · · · ≈ |S+10| (18)

where ∪ is a union of the set, ∩ is a intersection of the set, and Ø is the empty
set.

In LOOCV, each known virus-receptor interaction is in turn selected as a
testing data, and other known virus-receptor interactions can be treated as the
training data. In addition, all the remaining interactions are the candidate inter-
actions.

3.2 Comparison with Other Methods

NERLS is compared with four recent models: IILLS [6], BRWH [12],
LapRLS [11], and CMF [13]. Figure 1 shows that NERLS outperforms other
models in 10CV. Specifically, NERLS obtains AUC values of 0.8930, while IILLS,
BRWH, LapRLS, and CMF have 0.8675, 0.7959, 0.7577, and 0.0.7128 in 10CV,
respectively. In LOOCV, the AUC value of NERLS is also higher than the
AUC values of other models. As be shown in Fig. 2, NERLS can achieve 0.9210
when IILLS, BRWH, LapRLS, and CMF is 0.9061, 0.8105, 0.7713, and 0.7491 in
LOOCV, respectively. And it is obvious that NERLS is better than other four
models.
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Fig. 1. The AUC curves of NERLS among different similarities in 10-fold CV
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Fig. 2. The AUC curves of NERLS among different similarities in LOOCV

3.3 Case Study

In this section, a case study is selected to validate the prediction ability of
NERLS. As shown in the Table 1, 4 of top 10 hidden interactions are validated
by existing literatures. For example, C-type lectin domain family 4 member M is
also named as L-SIGN or CD209L. Its carbohydrate recognition domain medi-
ates the recognition of fucose and high-mannose glycan, and these carbohydrate
structures are discovered in Lassa virus [14,15]. Human coronaviruses and 229E
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can use CD209 for viral infection [16]. Rift valley fever virus and uukuniemi virus
can use L-SIGN to infects cells of the expression lectin abnormally [14,17].

Table 1. Top-10 Predicted Results of NERLS

Rank Virus name Receptor name References

1 Lassa mammarenavirus C-type lectin domain family 4

member M

Garcia-Vallejo et al. (2015),

Sakuntabhai et al. (2005)

2 Lymphocytic

choriomeningitis

mammarenavirus

C-type lectin domain family 4

member M

unknown

3 Human coronavirus 229E CD209 molecule Lo et al. (2006)

4 Marburg marburgvirus C-type lectin domain family 4

member G

unknown

5 Uukuniemi virus C-type lectin domain family 4

member M

Lger et al., (2016),

Sakuntabhai et al., (2005)

6 Rift Valley fever virus C-type lectin domain family 4

member M

Lger et al., (2016),

Sakuntabhai et al., (2005)

7 Ebola virus dystroglycan 1 unknown

8 Marburg marburgvirus NPC intracellular cholesterol

transporter 1

unknown

9 Lassa mammarenavirus MER proto-oncogene, tyrosine

kinase

unknown

10 Human immunodeficiency

virus 2

C-type lectin domain family 4

member M

unknown

4 Conclusion

Accumulating evidences show that systematically understanding the interaction
mechanisms of viruses and receptors will be helpful to the prevention, diagno-
sis, treatment of human infectious diseases caused by viruses. To explore this
mechanisms, a prediction model (NERLS) is proposed to identify interactions
of viruses and receptors based on Network Enhancement, virus and receptor
sequence information. Furthermore we already have confirmed the effectiveness
of NERLS by cross validation and a case study. In addition, the efficient inte-
grated approaches should be explored in the future, and more computational
models should be considered to improve the prediction performance.
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Abstract. Biological pathway enrichment analysis is mainly applied to interpret
correlated behaviors of activated gene clusters. In traditional approaches, signifi-
cant pathwayswere highlighted basedonhypergeometric distribution statistics and
calculated P-values. However, two important factors are ignored for enrichment
analysis, including fold-change levels of gene expression and gene locations on
biological pathways. In addition, several reports have shown that noncodingRNAs
could inhibit/activate target genes and affect the results of over-representation
analysis. Hence, in this study, we provided an alternative approach to enhance
functional gene annotations by considering different fold-change levels, gene
locations in a pathway, and non-coding RNA associated genes simultaneously.
By considering these additional factors, the ranking of significant P-values would
be rearranged and several important and associated biological pathways could be
successfully retrieved. To demonstrate superior performance, we used two experi-
mental RNA-seq datasets as samples, including Birc5a and HIF2α knocked down
in zebrafish during embryogenesis. Regarding Birc5a knock-down experiments,
two biological pathways of sphingolipidmetabolism andHerpes simplex infection
were additionally identified; for HIF2α knock-down experiments, fourmissed bio-
logical pathways could be re-identified including ribosome biogenesis in eukary-
otes, proteasome, purine metabolism, and complement and coagulation cascades.
Thus, a comprehensive enrichment analysis for discovering significant biological
pathways could be overwhelmingly retrieved and it would provide integrated and
suitable annotations for further biological experiments.

Keywords: RNA-seq · Differential expression · Biological pathway ·
Long-noncoding RNA

1 Introduction

Next generation sequencing (NGS) is a high-throughput technology for RNA-seq
datasets and provides authoritative operation to discover gene functions of species
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through genome and transcriptome analysis in recent years [1]. Contrary to microarray,
NGS provides efficient and effective performance through powerful sequencing tech-
niques so that it is easy to discover biological reactions between two different biological
experiments under various environmental settings. Sequenced NGS raw data requires
standard pipelines to assemble short sequenced reads into contigs through assembling
tools and referred the assembled contigs to known genes annotated in authoritative
databases. Once the assembled sequences and corresponding expression levels were
obtained, the following enrichment analysis for differentially expressed gene clusters is
performed for genes function annotations.

A biological pathway describes the interactive relationships between chemical sub-
stances and genes, and identified over-representative pathways are considered as similar
to real biological responses. Regarding to biological pathway functional annotations
analysis, the developed approaches in current years would be roughly generalized into
two ways. One is Over-Representation Analysis (ORA) which focuses on only differ-
ential expressed genes clusters. This method mainly applied thresholdingon statistics
theory such as P-values. This operation is easy to distinguish the significant biological
pathways, but some considerable biological pathways might be discarded by using the
ambiguous limitation [2]. The other method is Functional Class Scoring (FCS) which
considers all genes clusters. It uses the specific scoring mechanisms and sorts the rank-
ings of importance for each biological pathway by the scores. In contrast to ORA, all the
possible situations of biological pathways would be concerned and the rough limitation
is not required either. However, how to pick the final results of biological pathways based
on the scoring mechanisms becomes the crucial problems [3]. In this study, we adopt
different ways to improve functional annotations. The method of calculation of P-values
and the thresholds from ORA were continuously applied, but we tied to take the scoring
mechanisms from FCS to avoid the problems with the situation of ignored important
biological pathways. The purposed method focuses on the gene expression levels and
locations of associated genes within a pathway map.

In this study, a mechanism of enhanced functional enrichment analysis was designed
for utilizing KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways database.
For RNA-seq datasets, all differentially expressed genes would be grouped according to
various fold-change levels of gene expression and gene location within a pathway map,
and each stratified gene class would imply their importance index respectively through
additionally assigned weightings. According to the principles, it becomes easy to realize
and annotate behaviors of various genes within a pathway and gains more flexibility
and supporting to decide the suitable key genes for following biological experiment
design. It is expected that we could appropriately re-adjust relative P-values for all path-
ways and try to recall significant biological pathways based on differentially expressed
transcripts. Besides, to involve differentially expressed long non-coding RNAs in this
study, the new modified parameters for the hypergeometric distribution analysis was
proposed to retrieve associated genes that did not possess significant fold-change rep-
resentation. Hence, hidden regulation responses by lncRNAs would be revealed in each
associated pathway. Briefly, the proposed system provides a comprehensive functional
enrichment analysis on biological pathways and considers additional characteristics of
gene responses. To demonstrate the proposed mechanism, we adopted two scenarios
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of RNS-seq experiments, including Birc5a and HIF2α knocked down experiments in
zebrafish embryo stages respectively. For the first experiment, it was already verified
that Birc5a knock down would strongly impact cell survival, involve the reaction of
apoptosis, and influence nerve growth and development during embryogenesis [4]. For
the second experiment of knocking down HIF2α, the hypoxia-inducible factor regulated
genes related to angiogenesis and anaerobic metabolism of cells exposed to hypoxic
stress [5]. The additionally obtained significant pathways and corresponding importance
indices will be compared to the identified significant pathways by traditional approaches.

2 Materials and Methods

2.1 KEGG Database and Data Processing

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a biological database system
[7], which provides the information of biological pathways with corresponding genes.
A pathway is a series of interactions among molecules in cell that leads to a certain pro-
duction of a change in cell. Besides, a pathway can turn genes on and off or spur a cell
to move. KEGG is easy to observe chemical interactions among various molecular com-
ponents. In the study, some global and overview KEGG pathways were discarded and a
total of 388 biological pathways were considered in this study. Here we added two addi-
tional factors to enhance enrichment analysis, including gene expression fold-change
and gene location. Furthermore, modifying P-values to discover missed biological path-
ways which were not considered as significant pathways. The DFS (depth-first search)
algorithm was applied to count how many downstream substances connected to each
gene element in a pathwaymap, and therefore, the locations and relative impact factor of
each specific gene in a biological pathway could be annotated. If a gene contains abun-
dant leaf nodes as downstream elements within a pathway, then the genemust locate near
the source regions and vice versa. With all associated number of leaf nodes in a pathway,
the location and corresponding impact factor for each gene could be roughly classified
into three categories including upstream, midstream and downstream regions in each
biological pathway. For the second factor of gene expression fold-change, the acquired
differentially expressed gene datasetmight possess problems of different contigsmapped
with an identical gene in KEGG. Therefore, the system calculates the average coverage
from all different contigs mapped to the identical gene, and the average expressed lev-
els are applied to calculate corresponding fold-change. Fold-change values are divided
into two types, increasing and declining tendencies with high, medium, and low levels.
Thus, there were a total of six different types regarding fold-change levels. To enhancing
functional enrichment analysis in terms of KEGG pathways, three classes of distinctive
gene locations and six subcategories of fold-change levels of differentially expressed
genes were applied as additional impact factors for calculating corresponding P-values
of all pathways. Therefore, a total 18-class important indices by integrating these two
additional features would be obtained for distinguishing impact factor of each differ-
ential expressed gene. The formula to calculate corresponding feature scores for each
biological pathway is formulated as following Eq. (1).

Sj =

∑i=n
i=1

(
fi,j(x)gi(x)

)

n
(1)
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If n differentially expressed genes were mapped to the jth biological pathway. Then,
fi,j(x) represents a categorized score of the ith gene located in jth pathway and gi(x) rep-
resents a categorized score of ith gene regarding its fold-change level of gene expression.
In both categorized features, three various values of a, b, and c are used to represent
the ith gene under various conditions. For all identified significant genes within the jth

biological pathway, the average impact factor of Sj could be obtained for the jth pathway.
In this research, the default impact factors were default settled as a = 9, b = 6, c = 3,
and the obtained average impact scores for each biological pathway could be calculated.
According to these guidelines, both features of fold-change level and gene location were
simultaneously involved within the functional enrichment analysis for discriminating
and ranking true significance of identified pathways.

2.2 Functional Enrichment Analysis

For biological pathway enrichment analysis, we applied hypergeometric distribution
statistics theory to calculate P-value for representing corresponding significance of each
pathway. To reflect the conditions of possible hidden interactions within a pathway,
several genes without significant fold-change expression could be recalled according
to differentially expressed long-noncoding RNAs. An additional dataset was built for
annotating associated genes with neighbor and/or overlapped long-noncoding RNAs.
The additionally recalled gene set due to differentially expressed long-noncoding RNAs
are applied to design a new mechanism for functional enrichment analysis. The mod-
ified formula is represented in Eq. (2), which is mainly based on the total numbers of
mapped genes, differentially expressed genes, and the additionally recalled genes due
to differentially expressed long noncoding RNAs.

Pj(at least i genes|N , n,K, r) =
∑min(n+r,K)

k=i

(
K

k + r

)(
N − K

(n+ r)− (k + r)

)

(
N

n+ r

) (2)

According to additionally retrieved gene dataset, the parameters are dynamically
modified when proximity genes are additionally identified, where the N is the number
of mapped unique genes, n is the number of the differentially expressed genes, K is the
number of all genes which were annotated in the jth pathway, k is the number of differ-
entially expressed genes which were successfully mapped in the jth pathway, and r is the
number of extra genes which were recalled on jth pathway due to differentially expressed
long noncoding RNAs. Therefore, we could calculate a new P-value for each pathway
and select significant biological pathways according to a threshold of equal to or smaller
than 0.05. To avoid controversial results between traditional and the novel proposed
approaches due to false positive recalled genes and/or two impact factors, the calculated
P-values from traditional enrichment analysis were divided into two conditions, smaller
and larger than 0.05. No matter considering the additional lncRNA associated genes or
not, the pathways with traditional P-values less than 0.05 are primarily considered as
significant pathways, and these pathways are only ranked in order according to the pro-
posed two impact factors. For the pathways with traditional P-values larger than 0.05, a
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new P-value could be recalculated by subtracting a proportional factor according to the
ranking positions of pathways.

For the first group identified as significant pathways with P-values less than 0.05,
we rebuilt their significant ranking positions according to their corresponding impact
scores instead of P-values. Hence, an identified biological pathway with a larger P-value
(less significant pathway) might be revised and recommended due to better gene impact
scores. In contrast, an identified biological pathway with a smaller P-value (very signifi-
cant pathway)might be switched to lower ranking position due to the pathway possessing
low average impact score obtained from less influential gene locations or lower fold-
change of gene expression. By this constraint, we could maintain all original identified
significant pathways with P-values less than 0.05 and provide gene expression and gene
location associated attributes for ranking significance order for primarily detected path-
ways. For the second group identified as insignificant pathways with P-values larger
than 0.05, the impact scores of fold-change gene expression and gene location might
play a key to retrieve the pathways as significant pathways by adjusting the P-values.
These additionally identified pathways were similar to consider additional genes regu-
lated by lncRNAs, even these genes are not with significant changes in gene expression
for themselves. The way to diminish the P-values for changing the significance status of
a specific pathway, the original number of identified pathways with small P-values (less
than 0.05) and the statistical analysis of P-values of each pathway were considered. The
statistical attributes of P-values of each pathway was analyzed in advance for construct-
ing a look-up table as a reference for proportional adjustment. According to traditional
P-value calculation, for a specific organism, both parameters of N and K are fixed for
a specific species. For various ratios of differentially expressed genes (n) and various
ratios of mapped differentially expressed genes in the corresponding pathway (k), all
combinations of (n, k) with different ratios could be calculated for all 388 KEGG path-
ways. Therefore, an average P-values and a standard deviation from 388 pathways under
different ratios of differential expressed genes could be constructed as a reference table
for P-value adjustment. In general, twice of standard deviation was considered as the
largest subtracting values for adjusting the P-values according to a normal distribution.
To guarantee the modified P-values are in accordance with the ranking order by con-
sidering proposed impact feature factors, decreasing subtraction values is applied. The
decreasing interval is obtained by taking the standard deviance divided by the number
of ranking from impact scores.

3 Results

To validate the effectiveness of the enhanced functional enrichment analysis, we com-
pared gene expression profiles of the transcriptome of zebrafish with Birc5a gene
knocked down against the wild type (WT) transcriptome. Both RNA-seq datasets were
sequenced by NextSeq 500 (Illumina) sequencer with paired-end short read fragments
of length 100 bps, and raw reads were assembled through a standard pipeline. The
sequenced raw reads were filtered and trimmed to remove low quality reads for sequence
mapping. The public assembling tools include TopHat2 and cufflinks. TopHat2 aligned
filtered reads to zebrafish genome sequences (Ensembl release 79 version Zv9) and the
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cufflinks analyzed and normalized mapped reads for corresponding expression values.
The expression values were normalized by FPKM (Fragments Per Kilobase of transcript
per Million). For long noncoding RNA analysis, the GTF file from zflncRNApedia [6]
was applied for annotating lncRNAs in zebrafish. To compare differentially expressed
changes of genes and lncRNAs between Birc5a knock-down and WT datasets, the Cuf-
fcompare [7] was applied by using average FPKM of repeated samples, and the differ-
ential FPKM values of each gene were checked according to the following rules: FPKM
> 1 and fold change >1.5 or <−1.5. Genes nearby filtered differentially expressed
lncRNAs within 5 kb upstream and downstream regions were identified and considered
as lncRNA associated genes (lncGenes). All annotated transcripts and differentially
expressed genes were mapped to KEGG through the function Retrieve and ID mapping
of Uniprot [8], and a total of 2162 mapped genes involving 88 differentially expressed
genes, and 67 additional genes (lncGenes) were identified. We applied the proposed P-
value formula and compared the differences between traditional approaches and employ-
ing additional lncGenes. Focused on the identified significant biological pathways with
P-values smaller than 0.05, the former datasets without considering lncGenes identified 7
over-representation biological pathways, while the later employing additional lncGenes
increased to 28 significant biological pathways. For example, the P-value of ko00790
(Folate biosynthesis) was improved (from 391.E-02 to 3.25E-03) because the gene of
gch1 was concerned from the lncGene dataset. Besides, some additional biological path-
ways could be identified as significant pathways when additional lncGenes were applied.
In contrast to only signaling transductions pathway, ko04330 (Notch signaling pathway)
detected, several signaling transductions pathways which actually related to cell Apop-
tosis and neurogenesis were appearedwhenDE genes andDE lncRNAs associated genes
were both concerned. These pathways include ko04210 (Apoptosis), ko04010 (MAPK
signaling pathway), ko04068 (FoxO signaling pathway), ko04150 (mTOR signaling
pathway), ko04020 (Calcium signaling pathway), ko04371(Apelin signaling pathway),
and ko04070 (Phosphatidylinositol signaling system). Among them, FoxO and MAPK
signaling pathway were main pathways which connect to apoptosis. There were three
subnetworks of MAPK pathway, including MAP/ERK, JNK/p38, and ERK5. It was
reported that MAP/ERK and JNK/p38 pathways related to cell proliferation and apopto-
sis. In addition, MAP/ERK was associated with CNS development and JNK/p38 played
an important role in neural stem cells [9, 10]. The rest of pathways: ko4150, ko04020
and ko04070 are proved to have indirect connection with apoptosis by specific mecha-
nisms [11–13]. The results showed that differentially expressed long-noncoding RNAs
indeed interacted with proximity or target genes in certain mechanisms. According to
the results, the biological pathways were divided into two group with P-values smaller
or larger than a threshold of 0.05. We compared the ranking orders of traditional app-
roach and the adjusted orders after adding impact scores based on gene location and
fold-change of differential expressed genes. The 28 identified significant pathways with
P-value smaller than 0.05 were shown in Table 1. In the table, ranking order of P-values
and corresponding impact score were shown in the right columns. It can be observed that
ko00531 (Glycosaminoglycan degradation) is ranked as the last position by sorting orig-
inal P-values and rearranged as the most important pathway according to the proposed
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impact feature score. It is mainly due to the gene HPSE in this biological pathway pos-
sessing high fold-change level of gene expression and located at the source (upstream)
region of the pathway, which provides the highest average impact score compared to
other identified significant pathways. It is noticed that HPSE located at the beginning
position of the biological pathway with large fold change and decreasing trend. For the
identified pathway of ko04261 (Adrenergic signaling in cardiomyocytes) was ranked as
the first according to the original P-value calculation. However, the significant genes of
ATP1B (INak), CACNB4 (DHPR), AKT, and ATF4 (CREBP) located at downstream
region (ending region) within the pathway, so the newly adjusted orders could not be
changed to a higher-ranking position among all identified significant pathways.

For the rest biological pathways with P-values larger than 0.05 were also re-checked
for their significance. A standard deviation of 1.48E-02 was selected from the look-
up table which was obtained by taking various ratios of differentially expressed genes
compare to all collected genes in KEGG pathways. According to the original P-values,
these biological pathways (with P-values larger than 0.05) were also ranked according
to corresponding impact feature scores. The adjusted P-values were obtained by sub-
tracting a proportional standard deviation according to the ranked orders. We found that
two additional biological pathways could be marked as significant pathways due to stan-
dard deviation subtraction and possessing new P-value less than 0.05. The results were
shown in Table 2. For the pathway of ko00600 (Sphingolipid metabolism), a reference
standard deviation of 1.48E–02 based on 4% of n against N and 14% of k against K. A
new P-value could be obtained as 0.026 by taking a subtraction of two-fold of standard
deviation. The P-value was adjusted from 0.0510 to 0.0268, and it could be consid-
ered as a significant pathway due to high gene fold-change level and gene locations.
The associated gene of GAL3ST1 [EC:2.8.2.11]] located at upstream region and the
gene of PPAP2 [EC:3.1.3.4] possessing high fold-change levels are the main reason in
this case. The sphingolipid is particularly abundant in the central nervous system and it
is considered as important components in membrane neurons [14]. These additionally
identified biological pathways are actually corresponding to this experiment regarding
neurons development function. The other biological pathway of ko05168 (Herpes sim-
plex infection) was also additionally selected because of P-value changed from 0.0542
to 0.0421. It is due to the gene of IRF9 possessed higher gene fold-change expression.
This pathway mainly showed cell apoptosis and the influence of viral Herpes. However,
the viral Herpes were verified with relation to neurons infection. It would establish a
quiescent or latent infection in peripheral neurons and actually caused severe infection
with neurological impairment and high mortality [15, 16].

Taking the same analytical steps, our proposed mechanisms were applied to another
HIF2α knock-down experiments.However, therewere differentways for selectingmodel
species in KEGG. The biological pathways were only appeared for choosing specific
specie. In this case, the pathways would be only shown for zebrafish, but some pathways
would might be missed. Hence, if we would like to expect that other interesting results
were highlighted or not, the reference specie needs to be changed. Here, we choose
Human to be the only reference specie. Following the processes for gene annotation,
there were 2686 mapped genes, 32 differentially expressed genes, and 14 additional
significant genes perhaps regulated by differentially expressed long non-coding RNAs.
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Table 1. Compare two ranked pathways based on P-values and impact scores. ko00531 is
considered as the last significant pathway according to the adjusted ranking, but which is was
considered as the first significant pathway based on impact feature score analysis. In contrast to
the pathway of ko04261, it was ranked as the 13rd significant pathway without considering the
gene location and gene expression profiles.

Path_id. Pathway name P-value Score Rank P-value Rank Score

ko00531 Glycosaminoglycan degradation 5.00E–02 81 28 1

ko00270 Cysteine and methionine
metabolism

1.28E–04 81 2 1

ko00561 Glycerolipid metabolism 3.02E–02 67.5 21 2

ko00564 Glycerophospholipid metabolism 1.48E–03 52.5 7 3

ko04330 Notch signaling pathway 2.48E–02 51 19 4

ko04210 Apoptosis 4.58E–04 42 3 5

ko03008 Ribosome biogenesis in
eukaryotes

9.60E–03 41.4 13 6

ko00760 Nicotinate and nicotinamide
metabolism

3.91E–02 36 25 7

ko04020 Calcium signaling pathway 3.21E–02 36 23 7

ko00240 Pyrimidine metabolism 2.58E–02 36 20 7

ko00565 Ether lipid metabolism 2.48E–03 33.75 8 8

ko00790 Folate biosynthesis 3.25E–03 31.5 9 9

ko00562 Inositol phosphate metabolism 2.00E–02 30 17 10

ko00510 N-Glycan biosynthesis 4.76E–02 27 27 11

ko04150 mTOR signaling pathway 3.14E–02 27 22 11

ko04371 Apelin signaling pathway 2.27E–02 27 18 11

ko04621 NOD-like receptor signaling
pathway

7.90E–04 27 5 11

ko04260 Cardiac muscle contraction 6.44E–03 24 10 12

ko04261 Adrenergic signaling in
cardiomyocytes

1.08E–04 23.4 1 13

ko04010 MAPK signaling pathway 1.09E–02 23.4 14 13

ko04141 Protein processing in endoplasmic
reticulum

5.34E–04 20.25 4 14

ko04068 FoxO signaling pathway 1.16E–02 20.25 15 14

ko04620 Toll-like receptor signaling
pathway

3.48E–02 18 24 15

ko04912 GnRH signaling pathway 1.26E–03 18 6 15

(continued)
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Table 1. (continued)

Path_id. Pathway name P-value Score Rank P-value Rank Score

ko04070 Phosphatidylinositol signaling
system

8.06E–03 18 12 15

ko00534 Glycosaminoglycan biosynthesis -
heparan sulfate/heparin

1.17E–02 18 16 15

ko04914 Progesterone-mediated oocyte
maturation

4.73E–02 9 26 16

ko04270 Vascular smooth muscle
contraction

7.02E–03 9 11 16

Table 2. The two ignored biological pathways by original enrichment analysis. Both ko00600
(Sphingolipid metabolism) and ko05168 (Herpes simplex infection) were retrieved as significant
pathway by adjusting P-values according to the ranking order impact features.

Path_id. Pathway name n/N (%) k/K (%) SD P-value (1) P-value (2)

ko00600 Sphingolipid metabolism 4 14 1.48E–02 5.10E–02 2.68E–02

ko05168 Herpes simplex infection 4 9 1.33E–02 5.42E–02 4.21E–02

The examining pathways with P-values smaller than 0.05, we compared the results with
additional lncGenes to the original approaches. The traditional approach identified only
3 significant biological pathways, while the number of significant pathways was 21 by
considering additional lncGene sets.

Next, we focused on the identified biological pathways (with P-values less than
0.05) and tried to rank the enrichment pathways according to corresponding impact
feature scores. The pathway of ko05322 (Systemic lupus erythematosus) possessed a
P-value of 0.029 (consider lncGenes) and considered as the 10th significant pathway,
but the pathway became the first ranked significant pathway due to the gene of C5
(MAC) possessing high gene fold-change expression and located at midstream regions.
In contrast to ko04976 (Bile secretion), the biological pathway was annotated as the
most significant pathway due to the lowest P-value. However, the genes of SLC2A1
located at downstream region and possessing low fold-change expression and the gene
of ATP1A also located in the downstream region as well. Thus, the new orders obtained
by impact score were readjusted the pathway to the significant position.

Next, original P-values larger than 0.05 were tuned by standard deviation based
on impact factors. In Table 3, there were four additional biological pathways could
be retrieved as significant pathways. The adjusted P-values became smaller than 0.05
based on subtraction of various proportion of standard deviation. Among them, ko03008
(Ribosome biogenesis in eukaryotes) showed both genes of WDR75 (NAN1) and smfn
(Rex1/2) had high gene fold-change expression and located at midstream regions. Then,
the gene of C5 in ko04610 (Complement and coagulation cascades) also possesses high
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gene fold-change expression and located at midstream regions. For the other two biolog-
ical pathways, including ko03050 (Proteasome) and ko00230 (Purine metabolism), even
though the impact scores in both pathways ranked inmiddle range, the previous P-values
from traditional approach were already near the threshold of 0.05, so that they also had
chances to be considered as significant pathways. In addition, both additionally iden-
tified Proteasome and Purine metabolism pathway had been experimentally verified as
important and associated biological pathwayswithin hypoxia environments [17, 18], and
which possibly triggered the situation of cancer development. In summary, we proposed
a novel approach to obtain the better performance in biological pathway enrichment
analysis. Not only concern additional genes regulated by differentially expressed lncR-
NAs, but also using a heuristic approach to rank the significant index by gene expression
levels and location, this proposedmechanism provides more integral and comprehensive
results compared to traditional approaches. It is very helpful for biologists to presume
the real situations before designing biological experiments.

Table 3. The P-values of four ignored biological pathwayswere retrieved as significant pathways,
and the P-values were readjusted from P-value (1) to P-value (2) through a standard deviation
mechanism

Path_id. Pathway name n/N (%) k/K (%) SD P-values (1) P-value (2)

ko03008 Ribosome
biogenesis in
eukaryotes

1 6 1.33E–02 6.09E–02 3.76E–02

ko04610 Complement and
coagulation
cascades

1 6 1.33E–02 6.10E–02 4.77E–02

ko03050 Proteasome 1 6 1.33E–02 5.16E–02 4.49E–02

ko00230 Purine
metabolism

1 4 1.41E–02 5.48E–02 4.42E–02

4 Discussion

In this study, we focused on enhancing the biological pathways enrichment analysis for
RNA-seq dataset comparisons. In tradition approach for over-representation analysis,
Only the number of mapped genes, differentially expressed genes, mapped genes in a
specific pathway and mapped differentially expressed genes in specific pathway were
required for calculating P-value. However, there were some gene characteristics includ-
ing the quantity of gene response levels and influence index of gene location in a pathway
were ignored. Besides, most of the hidden and frequent interactions between genes and
long non-coding RNAs were yet not shown in most pathways. Therefore, we proposed
a concept of gene impact scores affecting the ranking order of identified significant
pathways. We constructed a look-up tables for different species according the ratios of
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n/N and k/K regarding hypergeometric distribution among KEGG databases. The set of
pathways with p-values over 0.05 were not identified as significant pathways through
traditional approaches. The original P-value would be subtracted by a value of various
proportion of standard deviations from a look-up table according to their impact score
ranking order. Only original P-values closed to 0.05 were possible too be retrieved and
consider as significant pathways. In the results, we took two RNA-seq experiments for
illustration and comparisons. Both Bric5a knocked-down and HIF2αa knocked-down
experiments during zebrafish embryo stages were used for demonstration. In Bric5a
datasets, some additional significant biological pathways related to cell apoptosis would
be actually identifiedwhen concerned the regulated genes (lncGenes), includingApopto-
sis, MAPK signaling pathway and FoxO signaling pathways. In addition, two biological
pathways of Sphingolipid metabolism and Herpes simplex infection were re-highlighted
through our mechanism. Regarding the HIF2α knock-down experiment, some biologi-
cal pathways related to cancer development could be annotated as significant pathways
through adopting our proposed mechanisms. Furthermore, we would find additional
significant biological pathways including Ribosome biogenesis in eukaryotes, Comple-
ment and coagulation cascades, Proteasome, and Purine metabolism. It illustrates that
additionally identified significant pathways were affected under hypoxia environments.
From the illustrated examples, we believed that our proposed approaches provide flexible
and comprehensive analysis for gene enrichment analysis and provide suitable mecha-
nisms in terms of gene characteristics. Therefore, the systematic analysis is helpful to
discover significant biological pathways and provide biologists an effective and efficient
experimental design.
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Abstract. Sleep Apnea (SA) seriously affects human life and health. In
recent years, many studies use polysomnography (PSG) to detect sleep
apnea, but it is expensive and inconvenient. In order to solve this prob-
lem, this paper proposes a method to detect sleep apnea automatically
by using a single Abdominal Respiratory Signal. In this method, Hilbert-
Huang Transform (HHT) is used to extract frequency domain features,
and combined with time domain features. Then sleep apnea is detected by
machine learning methods such as Support Vector Machine, AdaBoost-
ing and Random Forest (RF). The experimental results show that HHT
can extract significant frequency domain features, and the accuracy of
sleep apnea detection can reach 95% using Random Forest method. This
method is better than the existing methods in the convenience and accu-
racy of detection. It is more suitable for family environment, and has a
wide range of application prospects.

Keywords: Sleep Apnea · Abdominal Respiratory Signal ·
Hilbert-Huang Transform · Random Forest

1 Background

Sleep Apnea is a common sleep disorder, affecting 2–4% of the adult popula-
tion. It is characterized by the occurrence of breathing pauses of at least 10 s
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during the night. If left untreated, sleep apnea could lead to serious problems
such as heart failure and stroke [1]. The gold standard to detect sleep apnea is
polysomnography (PSG) in a specialized sleep laboratory. But PSG is discom-
fortable and expensive for the patient.

Recently, many automatic sleep apnea detection approches have been devel-
oped using various biological signals [2–4]. Respiratory signals can directly reflect
the breathing condition during sleep. They can be obtained directly from the
airflow, chest and abdomen. Many studies detect sleep apnea using these respi-
ratory signals [5–15]. But some challenges still need to be addressed. One of the
major challenges is that process of respiratory signal collection affects human
sleep. Respiratory signals are susceptible to interference from other physiolog-
ical signals. For example, the respiratory signals of nasal airflow tend to cause
discomfort to human beings, the respiratory signals of chest are easily inter-
fered by Electrocardiogram (ECG) and Electromyograph (EMG). Another chal-
lenge is that respiratory signals are non-stationary. It is very difficult to extract
frequency domain features. Although wavelet transform can extract frequency
domain features, it is very sensitive to the selection of wavelet basis.

To tackle the above challenges, we propose a sleep apnea detection method
based on single abdominal respiratory signal using Hilbert-Huang Transform.
This method only uses a single abdominal respiratory signal to detect sleep
apnea, avoiding the problems of poor comfort and easy interference. For the
nonstationary abdominal respiratory signal, HHT overcomes the shortcomings
of Fourier transform which can not reflect the local features of time-frequency,
and is not limited by the selection of wavelet basis. It extracts the frequency
domain features of significant changes in normal sleep and sleep apnea, and
then combines the time domain features to detect sleep apnea automatically by
machine learning method. It does not require sleep experts to analyze each sleep
epoch manually, reducing the cost of sleep detection.

2 Methods

In this paper, a method of automatic sleep apnea detection from abdominal res-
piratory signal using HHT is proposed, as shown in Fig. 1. Firstly, the method
needs to preprocess the abdominal respiratory signal due to electrical inference
and measurement noise. Secondly, the time domain and frequency domain fea-
tures of respiratory signal are extracted. Considering that abdominal respiratory
signal belongs to non-stationary signal, HHT is used to extract frequency domain
correlation features.Thirdly, because of the redundancy between features, feature
selection is needed. Finally, sleep apnea is detected by using different machine
learning algorithms, and the number of sleep apnea is counted according to the
detection results of each epoch, so as to detect whether the subject is a sleep
apnea patient.
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Fig. 1. Schematic illustration of automatic Sleep Apnea detection.

2.1 Dataset and Proprocessing

In order to evaluate the performance of the proposed approach, we have applied
this algorithm to Apnea-ECG datasets. Apnea-ECG datasets consists of eight
records which contain nasal airflow, chest respiratory and abdominal respiratory
signals. In this paper, only a single abdominal respiratory signal was selected to
perform automatic sleep apnea detection. These records from the participants
who are aged 27–63 years old, weighed 35–135 kg and slept for 7–10 h. The respi-
ratory signal is sampled at 100 Hz and the resolution is 16 bits. The abdominal
respiratory signal was divided into epochs of 60s. Each epoch contained 6000
points of data. Each epoch was labelled as Normal(N) and Apnea(A), which
were scored by sleep experts according to the standard of American Academy of
Sleep Medicine.

In order to improve the accuracy of classification, it is necessary to fil-
ter the noise. Since the frequency recognition interval of the spectrum is
100/6000 = 0.017 Hz, the respiratory frequency of adults ranges from 12 to 25
times per minute, resulting in a respiratory frequency range of 0.2-0.4167 Hz,
while the respiratory frequency of infants can reach up 0.748 Hz. For this pur-
pose, this paper uses a eighth-order low-pass Butterworth filter. The cut-off
frequency is set as 0.8 Hz.

2.2 Feature extraction and selection

After proprocessing, the features of abdominal respiratory signals of each epoch
should be extracted. This paper mainly extracts two kinds of features: time
domain features and frequency domain features.
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Time Domain Features: It is the statistical features in time domain, including
maximum value, minimum value, mean value and variance of peak and trough.

Frequency domain features: Since the signals of abdominal respiration are
nonstationary, HHT was used to analyze the frequency information of respiratory
signals. HHT decomposes the signals by empirical mode decompositon (EMD),
obtains a finite number of intrinsic mode functions (IMF). The EMD process
is shown in formula (1). Each IMF performs the Hilbert transform to get the
instantaneous frequency and instantaneous amplitude of respiratory signals.

data(t) =
n∑

i=1

IMFi + r(t) (1)

Hilbert transformation is carried out for each IMF to obtain the correspond-
ing Hilbert spectrum, and the marginal spectrum of the respiratory signal is
obtained by integrating the Hilbert spectrum in time. The marginal spectrum
of normal sleep and sleep apnea are different, as shown in Fig. 2. (a) the curve
in the red rectangle is the marginal spectrum of respiratory signals during nor-
mal sleep, and (b) the curve in the red rectangle is the marginal spectrum of
respiratory signals during sleep apnea, and the two curves are greatly different
between normal sleep and apnea sleep.

(a) Normal Sleep (b) Apnea Sleep

Fig. 2. Marginal spectrum of abdominal respiratory signal.

For abdominal respiratory signals, 27 time domain features and 14 frequency
domain features were extracted in this paper. There is redundancy among these
features, which affects the accuracy of classification, so features need to be
selected before classification. By evaluating the predictive ability of each fea-
ture and the redundancy between features, some features were selected which
high correlation with classification and low correlation between features.
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2.3 Classification Methods

After selecting 16 features, sleep apnea was detected using Naive Bayes, Support
Vector Machine, Logistic regression, decision tree J48 algorithm, Adaboosting
algorithm and Random Forest algorithm. According to PhysioNet Apnea-ECG
data set, the performance of each classification algorithm was analyzed from
the accuracy, recall rate, f-score, ROC curve, etc. Choose a best performance of
machine learning algorithm to detect sleep apnea.

Table 1. Evaluation the performance of different classifiers.

Method Accuracy Precision Recall F-score MCC ROC

LibSVM 0.832 0.841 0.832 0.833 0.665 0.838

J48 0.931 0.932 0.931 0.931 0.858 0.926

NaiveBayes 0.932 0.935 0.932 0.932 0.864 0.962

Logistic 0.947 0.947 0.947 0.947 0.890 0.985

Adaboosting 0.932 0.934 0.932 0.932 0.862 0.974

RF 0.950 0.951 0.950 0.951 0.898 0.990

3 Experiments

In order to verify the effectiveness of the method, training and testing were
carried out on the Apnea-ECG data set. The datas used in the experiment
included 8 abdominal respiratory records, or 3955 epochs of data. The feature
subset was evaluated to reduce the redundancy between features. 16 features
were selected from 41 features, including 9 time domain features and 7 features
extracted by Hilbert-Huang transformation. These features were significantly
different during normal sleep and sleep apnea. As shown in Fig. 3, the percentage
of high frequency IMF energy is higher in normal sleep than sleep apnea, and
the mean and standard deviation of IMF3 and IMF4 are higher in sleep apnea
than in normal sleep. The quartile distribution of these features is significantly
different between normal sleep(N) and sleep apnea(A).

A variety of machine learning algorithms are used to detect sleep apnea and
different performance indicators are used for evaluation. The detection results
are shown in Table 1. The experimental results show that the random forest
method can achieve 95% accuracy in detecting sleep apnea, which is better than
other methods. For this purpose, Random Forest (RF) is selected to detect sleep
apnea.

According to the detection results of sleep Apnea at each epoch, the number
of sleep Apnea per patient could be counted to calculate the Apnea Hypopnea
Index (AHI). According to the AHI value, the severity of sleep apnea in patients
can be classified.The number of sleep apnea per patient divided by the total
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(a) The percentage of IMF1’s
energy

(b) Mean of IMF3’s instantaneous
amplitude

(c) Standard variance of IMF3’s
features

(d) Mean of IMF4’s features

Fig. 3. Quartile map of features in sleep apnea and normal sleep

Fig. 4. Comparision so real AHI and computed AHI
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number of hours of sleep to obtain the value of AHI, compared with the actual
AHI of each patient. The experimental results are shown in Fig. 4, and it can
be found that the two AHI are approximately equal. If AHI=5 is taken as the
basis to determine whether a record is a patient with sleep apnea, this method
can correctly determine the record whether is sleep apnea.

Table 2. A comparision of algorithmic performance on respiration signals.

Authors Signals Classifier Accuracy% Sensitivity% Specificity%

Maali [11] AF AE TE SVM 89 87 90

Cafer [12] AF AE TE RF 98.6 — —

Haidar [13] AF AE TE CNN 83.4 — —

Kagawa [14] AE TE Threshold 94.0 96.0 100

Koley [6] AF SVM 89.6 92.8 88.9

Gutierrez [7] AF AB-CART 86.5 89.0 80.0

Ours AE RF 95.0 94.4 96.0

The comparison of the accuracy, sensitivity and specificity of the detection
of sleep apnea using respiratory signals in the existing literature is shown in
Table 2. AF denotes nasal airflow respiratory signal, TE denotes Thoracic Effort
respiratory signal, and AE denotes Abdominal Effort respiratory signal. It can
be seen from the table that three kinds of respiratory signals can get 98.6%
accuracy. Both kinds of respiratory signals yields 96.0% sensitivity and 100%
specificity. However, the using of multiple respiratory signals at the same time
can increase the cost, and affect the patient’s normal sleep. In this study, singal
abdominal respiratory signals are used to detect sleep apnea, with an accuracy
of 95.0%. Although the accuracy of using respiratory signals in three parts at
the same time is not achieved, the signal collection is convenient, the normal
sleep of patients is not affected, and the monitoring cost is reduced. This sleep
monitoring process can be applied to family environment.

4 Conclusion

In order to reduce the cost and the impact of human sleep, and facilitate patients
to monitor sleep in the home environment, this paper only used the single abdom-
inal respiratory signal to detect sleep apnea. Firstly, features were extracted from
time domain and frequency domain, and then features were selected. Sleep apnea
was detected by Random Forest method. Experimental results showed that the
accuracy of this method can reach 95.0% for each epoch detection of sleep apnea,
and the accuracy of each recording could correctly determine whether the patient
was a sleep apnea patient. In the future work, larger datasets will be tested to
verify the robustness of the algorithm.
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Abstract. Na,K-ATPase is a redox-sensitive transmembrane protein. Under-
standing the mechanisms of Na,K-ATPase redox regulation can help to prevent
impairment ofNa,K-ATPase functioning under pathological conditions and reduce
damage and death of cells. One of the basic mechanisms to protect Na,K-ATPase
against stress oxidation is the glutathionylation reaction that is aimed to reduce
several principal oxidized cysteines (244, 458, and 459) that are involved in Na,K-
ATPase action regulation. In this study, we carried out in silico modeling to eval-
uate glutathione affinity on various stages of Na,K-ATPase action cycle, as well
as to discover a reaction mechanism of disulfide bond formation between reduced
glutathione and oxidized cysteine. To achieve this goal both glutathione andNa,K-
ATPase conformer samplingwas applied, the reliability of the protein-ligand com-
plexes was examined by MD assay, the reaction mechanism was studied using
semi-empirical PM6-D3H4 approach that could have a deal with large organic
systems optimization.
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1 Introduction

Na,K-ATPase creates a transmembrane gradient ofNa+andK+ ions and acts as a receptor
for cardiotonic steroids (CTS). Its functioning is necessary for the viability of all animal
cells. Na,K-ATPase is redox-sensitive and interruption of its activity in some pathologies
is associated with a change in the redox status of cells. The optimum activity of Na,K-
ATPase is observed in a specific range of redox conditions. The enzyme activity has a
maximum at the physiological concentration of oxygen, decreasing both under hypoxia
and hyperoxia. Understanding the mechanisms of Na,K-ATPase redox regulation can
help to prevent the interruption of its functioning under pathological conditions and
reduce cell damage.

The functional monomer of Na,K-ATPase consists of α- and β-subunits. The α-
subunit is catalytic subunit, which contains binding sites for ATP, K+, Na+ and CTS.
The β-subunit is a regulatory subunit. The α-subunit contains 23 cysteine residues, 15
of which are cytosolic and available for redox modification. It was found that one of the
main reasons for the redox sensitivity of Na,K-ATPase is the S-glutathionylation of the
α-subunit of the enzyme [9]. S-glutathionylation is a binding of the tripeptide glutathione
to the thiol group of the cysteine residue. Induction of the α-subunit glutathionylation
leads to inhibition of the enzyme, up to its complete inactivation due to the disruption
of adenine nucleotides binding [9]. The ratio of reduced (GSH) and oxidized (GSSG)
form of glutathione determines the thiol redox status of the cell and changes under
pathological conditions. It was shown that the reason for the inhibition of Na,K-ATPase
during hypoxia is the induction glutathionylation of α-subunit due to an increase in the
level of GSSG. It was found that residues of Cys 244 in the actuator domain and residues
of Cys 454, 458, 459 in the nucleotide-binding domain of the protein undergo regulatory
glutathionylation [12]. Glutathionylation of the Cys 244 residue plays a major role in the
Na,K-ATPase inhibition [8]. The enzyme with Cys244Ala replacement is not inhibited
by GSSG and becomes insensitive to hypoxia [11]. In addition, the viability of cells
expressing the α1 subunit Na,K-ATPase with Cys244Ala or Cys244-454-458-459Ala
substitutions decreases under hypoxia [8]. Thus glutathionylation of the α-subunit of
Na,K-ATPase plays an important role in the adaptation of cells to hypoxia and helps
prevent ATP depletion in the cell. Under hypoxia, not only the transport but also the
receptor function of Na, K-ATPase is disturbed [8]. It was found that substitutions
Cys454-458-459Ala disrupt the receptor function of Na,K-ATPase. In cells with these
substitutions, Src kinase is not activated in response to the CTS ouabain and the oxygen
sensitivity of the receptor function of Na,K-ATPase is impaired [8]. Using simulation, it
was shown that the glutathionylation of Cys 458 and 459 prevents the inhibitory binding
of Src kinase to the nucleotide-binding domain of Na,K-ATPase. Thus the regulation of
receptor function is closely related to the glutathionylation of residues of Cys 458 and
459.
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One of the key questions is the availability of the described regulatory residues for
glutathionylation in different conformations of the enzyme. Ligands and partner pro-
teins, increasing the residence time of the enzyme in a certain conformation, can affect
the effectiveness of glutathionylation. It was experimentally shown that the greatest effi-
ciency of α-subunit glutathionylation is observed for the enzyme in the E1 conformation,
it decreases in the E2 conformation and becomes minimal in the E2P conformation [10].
It correlates with the availability of cysteine residues for the solvent [10]. However, the
availability of regulatory residues for glutathionylation in different conformations was
not evaluated. The solution to this problem is important because redox regulation under
different conditions can be carried out in different ways and glutathionylation can be
involved in the regulation of the binding of Na, K-ATPase to ligands and partner proteins.

2 Materials and Methods

2.1 Coarse-Grained Modeling of Conformational Movement

Full-atomic 29 conformations of Na,K-ATPase were modeled by using the coarse-
grained method PROMPT [3, 15]. These conformations represent a time-lapse of a
transition from E2P (PDB ID: 3B8E) to E1P (PDB ID: 3WGU) state.

2.2 ATPase Conformations Clustering

Previously obtained full-atomic 29 conformations of Na,K-ATPase were additionally
optimized using Protein Preparation Wizard pipeline, MacroModel package [13]. Due
to their significant geometries similarity, we came to the decision to reduce the number
of studied geometries employing clustering assay. 29 conformations were aligned to
the first structure and clustered using their heavy atom coordinates. The fact that each
structure contains an equal number of heavy atoms allowed us to use atomic coordinates
as the features for clustering. To strictly reduce the number of considered features, the
PCA algorithm (Python 3, sklearn library) was applied, 95%of input dispersionwas hold
down. The obtained matrix was clusterized using the Ward algorithm with the centroid
linkage method, 4 principle clusters were separated which were applied in the further
studies.

2.3 Glutathione Conformer Search

To achieve glutathione conformer distribution close to the native Maxwell-Boltzmann
one in water media, the self-developed experimental conformer sampling algorithm was
applied. The glutathione reduced form (monomer) was placed in the orthorhombic box
60 × 60 × 60 Å filled with TIP3P water molecules. To gain an extended set of geome-
tries the ligand and solvent were thermostated individually, both using the Nose-Hoover
chain algorithm with coupling strength 20 ps [1]. Glutathione was heated to 700 K, at
the same time solvent temperature was 300 K only - this hybrid MD approach (“cold
solvent-hot solute”) allowed to eliminate all steric barriers in ligand molecule and at the
same time to conserve water molecules parametrization (e.g. hydrogen bonds, viscosity,
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self-diffusion, etc.). The MD simulation was run during 50 ns, the NVT ensemble was
emulated. After that, the MD trajectory was separated to 10000 frames, from which the
ligand and its first solvate shell (water molecules around 4 Å) were extracted. In the first
step, obtained water-ligand complexes were minimized using the OPLS3e force field
[12] to achieve better bond length and dihedral angles in glutathione and to eliminate
abnormal location of water molecules near the ligand (so-called ‘boiling effect’). In
the next step, water-ligand complexes were optimized using the semi-empirical PM6-
D3H4 method [11] in MOPAC [14]. We applied the two-stage optimization algorithm,
on the first stage the ligand was optimized in the frozen water shell, on the second -
water molecules were preset to the frozen ligand geometry. This complicated approach
allowed us to maintain ligand geometry polymorphism obtained in MD simulation. To
make the calculations less time-consuming, input complexes were clusterized by lig-
and torsional angles and the optimization time for each water-ligand complex was also
strictly limited to 2000 minimization steps; the geometries with non-converged SCF
were dropped from further studies. Obtained water-ligand complexes were grouped by
the number of water molecules and in every group, the structure with the lowest energy
was selected. In a few cases when the energy difference between the most profitable
complexes was less than 5 kJ/mol, the best-in-group structure was chosen after addi-
tional B97-3c/PCM(water) optimization [2] in the ORCA program [7]. Finally, the best
complexes were clusterized by ligand torsional angles once again, when geometry dif-
ferences were too low the structure with smaller solvent shell was selected due to the
higher statistical existence probability. Final ligand-water complexes were applied in the
further docking calculations.

2.4 Molecular Docking

The Top 20 conformers were obtained from the advanced glutathione conformer search.
The five Na,K-ATPase clusters (corresponding conformations) were taken for perform-
ing docking procedures. Receptor grids for docking were generated using the default
algorithm. For each structure, 30× 30× 30 Å outer grid box (with the 20× 20× 20 Å
inner box) was centered on 244 and on 458, 459 cysteines. The flexible ligand docking
was performed using the Glide v8.1 in the extra precision (XP) mode [5]. The Top 20
conformers of glutathione were docked into every five clusters of Na,K-ATPase. We
used the extra precision Glide score (XPG Score) tool to evaluate ligand docked poses,
which enables calculating Gscore and Emodel scoring functions. Protein-glutathione
complexes with the best scoring function were chosen for further analysis. To character-
ize the three-dimensional protein-binding mode, we applied the Interaction fingerprint
assay [4]. Thismethod includedgrouping the compoundswith similar bindingmodes into
the same clusters. It includes the following interaction types: any contact, backbone and
sidechain contact, polar contacts, hydrogen bond acceptors, hydrogen bond donors, and
aromatic. We performed the clustering of all Na,K-ATPase-glutathione docking poses
using their associated interaction fingerprints. Finally, the 6 protein-ligand structures
were selected for the next molecular dynamics simulations.
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2.5 Molecular Dynamics

For MD simulations Desmond v5.4 program package was applied [1]. The most reliable
protein-ligand complexes were placed in the orthorhombic box 20× 20× 20 Å (buffer)
filled with TIP3P water molecules. During the 50 ns dynamic, the NPT ensemble was
simulated,Nose-Hoover chain thermostat (coupling strength 20 ps) andMartyna-Tobias-
Klein barostat were applied. The protein-ligand complexes were neutralized by 27 Na+
ions, additionally, the 0.15Msalt concentrationwas emulated by addingmonovalentNa+
and Cl- ions. To increase calculation efficiency, all protein atoms beyond 10 Å around
glutathione atoms were frozen. In every MD we analyzed protein-ligand contacts and
RMSD fluctuation during the trajectory to examine the stability of the protein-ligand
complex. Obtained MD trajectories were clusterized by glutathione and target cysteine
(244 or 458) atom coordinates, up to 10 clusters for every trajectory (cluster sets) were
separated. In all clusters sets the structure with the optimal cysteine-glutathione superpo-
sition (minimum distance between cysteine and glutathione sulfur atoms) was selected.
Chosen best structures were used in the further transition state scanning calculations.

2.6 Quantum Chemistry Calculations

To analyze the availability of disulfide covalent bond formation between oxidized cys-
teine and reduced glutathione, we cut out the binding pocket 5 Å around the glutathione,
full amino acid residues and water molecules were included. Additionally, we deleted
water molecules 4 Å around the glutathione to reduce the number of calculated atoms.
The distorted valence on the protein backbone atoms caused by fragment separation was
restored by adding a proton to theNHgroup and by addingOHatoms to theCOgroup. To
achieve better accuracy, all involved ions were deleted. For all obtained protein-ligand-
water complexeswere optimized both ‘reagents’ and ‘products’ geometries in the ground
state and detected the transition state in MOPAC using the PM6-D3H4 method. Due to a
large number of atoms COSMO solvation model was not applied. Despite the low accu-
racy, vibrational frequencies were calculated to examine the ground state achievement.
Thus, we calculated the energy barrier (heat of formation) of studied reaction for all
complexes to determine the availability of the reaction in principle.

3 Results

3.1 ATPase Conformations Clustering

In concordance to clustering results, four separate clusters were obtained. As expected,
they reflect the tendency of ATPase geometry rearrangement during the ion channel
action cycle, so the structures from the same cycle stage were grouped in the single
cluster. Clusterswere enumerated in agreementwith the included conformation numbers.
To obtain general preliminary results, one conformation from each cluster was randomly
selected (conformations 7, 14, 21, and 28 respectively) for subsequent analysis. To
examine the geometry differences between selected clusters, we studied the RMSD
values between four chosen structures aligned to the conformation 2. The gradual RMSD
growing was observed. For both full protein and target cysteine environment (amino
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acid residues around 5 Å) very low geometry rearrangement was observed. One of the
explanations could rely on the significant movement of the extra-membrane domain
only.

3.2 Glutathione Conformer Search

Our experimental conformer sampling assay allowed us to obtain glutathione geometries
similar to both extended and folded conformations which were previously described by
NMR data [6]. The closest to the experimental geometries water-ligand complexes are
presented in Fig. 1. Geometry deviations (RMSD) of the other glutathione conformations
were no more than 1.8 Å relative to the presented configurations. At the same time,
explicit simulation of water molecules made it possible to calculate the glutathione -
water bulk interaction energy that will be used for docking energy corrections assay.
Since the docking process runs usually in a vacuum, it does not take into account the
geometry transition barrier between docked conformer and docking pose, especiallywith
solvent media corrections. Previously obtained energy of solvation will allow us to get
a reliable evaluation of proper protein-ligand interaction energy for the most promising
protein-ligand complexes. To achieve this goal, the short ligand geometry optimization
in the corresponding approximation (PM6-D3H4 orB97-3c) is needed. There is no doubt
that the considered pipeline could be used as the first iteration corrections: one ought
to arrive at the final decision related to the recognition availability after the so-called
“funnel MD” which simulates the docking algorithm as a stochastic process in explicit
solvent media only.

3.3 Docking Assay and MD Relaxation

It has been known that 244, 458, and 459 cysteines play an important role in glutathiony-
lation [8, 10]. Twenty glutathione conformationswere docked in two sites centered on the
244 and 458, 459 cysteines respectively.We examined all possible types of protein-ligand
interactions using Interaction fingerprints for docking poses clustering. In each cluster,
the most reliable glutathione docking pose was selected in agreement with their Glide
score and Emodel criterium assessment. For conformation 14 (cluster 2) no appropriate
docking pose near Cys 458 was found - the distance between glutathione and cysteine
sulfur atoms was too large. A similar situation was observed near Cys 244: only in con-
formations 21 and 28, the protein-ligand complex geometry close to the transition state
was achieved. Thus, we discovered five complexes, in which the disulfide bond forma-
tion could take place in theory. Their stability and geometry rearrangement analysis in
the presence of water were validated using MD simulations.

To examine the MD results both protein-ligand interactions analysis and trajectories
clustering were performed. In concordance to the obtained results, the glutathione was
washed out from the binding site in conformations 7, despite the large negative value of
docking binding energy. For conformations 21 and 28, the significant glutathione reloca-
tion was discovered, although it was tightly bounded with the protein. In conformation
21 the distance between glutathione and Cys244 was increased relative to the dock-
ing pose, thus this complex was dropped out from the further analysis. Protein-ligand
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Fig. 1. Folded (A) and extended (B) conformers of glutathione in water bulk. Aligned confor-
mations of glutathione conformers (C), folded and extended geometries are colored in green and
violet correspondingly. Water molecules are hidden. (Color figure online)

interaction analysis for the last three complexes (conformation 21 - Cys458, confor-
mation 28 - Cys458, and conformation 28 - Cys244) is presented below. Glutathione
rearrangement in the binding pocket is reflected on the RMSD plots, the extremely low
protein geometry changes are connected with the relatively small amount of non-frozen
atoms. MD clusters with the smallest distance between sulfur atoms are presented as 3D
structures, amino acid residues involved in protein-glutathione interactions are signed.
Discovered optimum MD clusters were used as start configurations in transition state
scanning assays.

3.4 Quantum Chemistry Calculations

Table 1 presents the data of thermodynamic calculations of the corresponding S-S bond
formation reactions in the studied docking poses. Quantum chemical calculations for
docking poses were carried out in parallel with molecular dynamics calculations.

The calculation data show that, in theory, glutathione binding is possible in all three
considered complexes; however, the reaction in conformation 28 for Cys244 is the most
profitable. The strong scatter in the dG values is most likely caused by the presence
of water in the resulting system. Perhaps the water molecule stabilizes not the most
profitable system geometries, and it is challenging to obtain more reasonable values
of energy. Also, transition states for the examined docking poses were optimized, the
TS method of the MOPAC program was used for optimization. The criterion for the
correctness of the calculation results was the presence of the single imaginary frequency
in the resulting structure.
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Table 1. Thermodynamic calculations of the corresponding S-S bond formation reactions.

Complex dG (kJ/mole)

7 - Cys458 −95

21 - Cys458 −7

28 - Cys458 −21

28 - Cys244 −318

Obtained results clearly show that the SN1 mechanism is the most probable for
the studied reaction. I.e., at the first stage of the reaction, the proton of the SH group
is attached to oxygen on the SOH group with subsequent separation of water, and at
the second stage, a covalent S-S bond is formed. However, further refinement by more
accurate methods is required.
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11. Řezáč, J., et al.: Semiempirical quantum chemical PM6 method augmented by dispersion
and H-bonding correction terms reliably describes various types of noncovalent complexes.
J. Chem. Theory Comput. (2009). https://doi.org/10.1021/ct9000922

12. Roos, K., et al.: OPLS3e: extending force field coverage for drug-like small molecules. J.
Chem. Theory Comput. (2019). https://doi.org/10.1021/acs.jctc.8b01026

13. Schrödinger Release: Desmond Molecular Dynamics System
14. Stewart, J.J.P.: MOPAC2016 (2016). https://doi.org/10.2106/JBJS.G.00147
15. Tamazian, G., et al.: Modeling conformational redox-switch modulation of human succinic

semialdehyde dehydrogenase. Proteins Struct. Funct. Bioinforma. (2015). https://doi.org/10.
1002/prot.24937

https://doi.org/10.1016/j.bbrc.2019.01.052
https://doi.org/10.1021/ct9000922
https://doi.org/10.1021/acs.jctc.8b01026
https://doi.org/10.2106/JBJS.G.00147
https://doi.org/10.1002/prot.24937


HiChew: a Tool for TAD Clustering
in Embryogenesis

Nikolai S. Bykov1(B) , Olga M. Sigalova2 , Mikhail S. Gelfand3,4 ,
and Aleksandra A. Galitsyna3,4,5

1 Faculty of Computer Science, Higher School of Economics, Moscow, Russia
nickandroid1@gmail.com

2 Genome Biology Unit, EMBL, Heidelberg, Germany
3 Skolkovo Institute of Science and Technology, Moscow, Russia

4 A.A. Kharkevich Institute for Information Transmission Problems, Moscow, Russia
5 Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia

Abstract. The three-dimensional structure of the Drosophila chromatin
has been shown to change at the early stages of embryogenesis from
the state with no local structures to compartmentalized chromatin seg-
regated into topologically associated domains (TADs). However, the
dynamics of TAD formation and its association with the expression and
epigenetics dynamics is not fully understood. As TAD calling and anal-
ysis of TAD dynamics have no standard, universally accepted solution,
we have developed HiChew, a specialized tool for segmentation of Hi-C
maps into TADs of a given expected size and subsequent clustering of
TADs based on their dynamics during the embryogenesis. To validate the
approach, we demonstrate that HiChew clusters correlate with genomic
and epigenetic characteristics. Particularly, in accordance with previous
findings, the maturation rate of TADs is positively correlated with the
number of housekeeping genes per TAD and negatively correlated with
the length of housekeeping genes. We also report a high positive cor-
relation of the maturation rate of TADs with the growth rate of the
associated ATAC-Seq signal.

Keywords: Chromatin 3D structure · Embryogenesis · Epigenetics ·
Housekeeping genes · TADs · Clustering

1 Introduction

Interconnection between the epigenetic regulation of biological processes, genes
expression, and three-dimensional organization of chromatin during the develop-
ment of an organism remains unclear [8,10,15]. The genome folding is established
during early embryogenesis at different levels [2,10]. One of these levels, topolog-
ically associated domains (TADs), demonstrates diverse maturation rates dur-
ing the embryo development [3,10]. The chromatin conformation in Drosophila
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melanogaster is established during the zygotic genome activation (ZGA) between
the 13th and 14th nuclear cycles, and the boundaries of TADs appear at early
expressed loci enriched in housekeeping genes and remain stable in later-stage
embryos [14]. Thus, TADs are finally matured by the stage 3–4 hours [10]. To
identify these structural units, dynamic programming algorithms like Armatus
or modularity are used [3,6]. A plethora of methods could be applied to cluster
TADs in the space of developmental stages by their maturation rate with sub-
sequent analysis of functional annotation in genome regions forming clustered
TADs [3,10].

Here, we introduce HiChew, a tool for TAD segmentation that fits the
expected mean TAD size and subsequent clustering of these TADs. We apply
HiChew to data from four time points in early embryogenesis of Drosophila
melanogaster [10] in order to test the hypothesis that TADs differ in the mat-
uration time, and this time is associated with functional annotation of the cor-
responding genomic segments, in particular, gene composition and chromatin
accessibility measured by ATAC-Seq [2,10,16].

Fig. 1. Drosophila melanogaster embryo TAD calling: stage 3–4 h, chromosome X,
2400..2500 bins, method – modularity, expected TAD size – 60 Kb. (Color figure online)
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2 Results

2.1 TAD Calling and Clustering with HiChew

HiChew Design. Since there are many methods for TAD calling but no clear
consensus for the selection of their parameters [7,13], we have developed a console
program that constructs TAD segmentation for a given organism fitting the
expected mean size of TADs [6]. The program is based on existing algorithms for
TAD calling, in particular, dynamic programming with modularity and Armatus
scoring functions [12]. In usual cases, these algorithms both require a user to
pre-set the parameter γ, which cannot be directly converted to the expected
TAD size of the output segmentation. HiChew allows the user to avoid the need
to pre-set this parameter γ, but to provide interpretable and straightforward
expected size of TADs instead.

Next, the compactness of each TAD is measured by D-score [3] at each time
point in the time-resolved Hi-C (Fig. 1). D-score equals to the ratio of the sum
of chromatin contacts within a TAD to the sum of contacts of this TAD with
the rest of the chromosome [3] (Fig. 1). Each TAD is characterized by a set of
D-scores corresponding to stages of the embryo development. These sets of D-
score series are further clustered to produce groups of TADs that have similar
time dynamics of folding.

HiChew Pipeline. HiChew constructs the TAD segmentation that fits the given
expected TAD size. The resulting TAD segmentation is clustered by D-scores
using the HiChew clustering function (Fig. 2b). However, this general scheme is
a complex pipeline consisting of several building blocks that are repeated for
each chromosome arm. We provide the pipeline and its details in Fig. 2a.

HiChew Implementation. HiChew is based on two Python libraries for Hi-C
data processing, Cooler [1] (for reading and converting cool files) and Lavaburst
[12] (for TAD calling given parameters for Armatus or modularity). The following
procedures are implemented using these libraries and used as building blocks in
HiChew pipeline (Fig. 2):

1. Filtering out noisy TADs. For each Hi-C map iterative correction [11] is
applied (using Cooler v. 0.8.5) to identify low-coverage bins. TADs that appear
to be in the neighborhood of such bins might arise a technical artifact. Thus
they are excluded from the downstream analyses.

2. Refining interval of the grid of parameter γ. The method is based
on a binary search algorithm. To initialize it, we specify boundaries of the
interval large enough to allow the search for the optimal value of γ. We do this
because segmentation stops changing starting from some γ due to the nature
of the Armatus and modularity scoring functions. Then the method reduces
the upper boundary of the interval of the γ parameter using the binary search
algorithm, until the segmentation obtained with the upper boundary begins
to change.
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3. Identifying the optimal value of γ. To find the optimal value of γ, the
user specifies the expected average TAD size. For each γ in the refined grid,
HiChew constructs the corresponding segmentation into TADs, calculates the
average TAD size and selects the one closest to user-specified expectation.
Subsequently, HiChew iteratively decreases the grid step in the neighborhood
of the found optimum, until the calculated average TAD size becomes closer
to the specified one than the user-defined error ε.

4. Clustering of TADs by D-score profiles. The constructed TADs are clus-
tered by D-score profiles using one of the clustering algorithms that HiChew
provides (K-means, MeanShift, Affinity Propagation, Hierarchical clustering
and Spectral clustering).

TAD Calling for the 3–4 Hours Fruit Fly Embryo. As the first step of
HiChew testing for Drosophila melanogaster embryogenesis, we segmented 5Kb-
binned Hi-C map of the Drosophila embryo at the 3–4 h. Each map consists of
five regions (chromosome arms 2R, 2L, 3R, 3L and chromosome X). We selected
the modularity method [4,6] with the expected TAD size of 60 Kb [10] (Fig. 1)
to produce the TAD segmentation. This TAD segmentation is used further for
the analysis of D-scores.

TAD Clustering. The D-score profiles were clustered using K-means algorithm
[3]. We selected 7 as the optimal number of clusters according to the Silhouette
criterion value (0.25). The dynamics of D-scores in clusters is presented in Fig. 3b.

2.2 Housekeeping Genes Are Prevalent in Faster-Forming TADs

To identify trends in the D-score dynamics we have built a regression line for
each cluster (Fig. 3b-c). In order to computationally address the type of pattern
for each cluster, we introduce maturation rate of the cluster, which is calculated
as the regression coefficient α for the corresponding D-scores series. Matura-
tion rate α for each cluster correlates well with the ratio of tissue-specific over
housekeeping genes (Fig. 3a,c), as supported by the Pearson correlation coeffi-
cient −0.95 (seven data points, p < 0.001). Thus, housekeeping genes are more
prevalent in faster-forming TADs.

2.3 Shorter Housekeeping Genes Are More Prevalent in
Faster-Forming TADs

In each cluster, the length of housekeeping genes significantly differs from the
length of tissue-specific genes within the clusters (MWU-test, p < 10−5 for each
cluster, Fig. 3d). Maturation rate correlates well with the median length of both
housekeeping and tissue-specific genes (Fig. 3c-d, Pearson’s r = −0.95, p = 0.001
for housekeeping genes and r = −0.76, p = 0.046 for tissue-specific genes). More-
over, the length of housekeeping genes significantly differs for almost all pairs
of clusters (MWU-test, p < 0.02, Fig. 3d), suggesting that shorter housekeeping
genes might be prevalent in faster-forming TADs.
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Fig. 2. HiChew flowchart for TAD segmentation (a) and clustering (b).
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Fig. 3. a) The ratio of the numbers of tissue-specific to housekeeping genes. Higher
values are highlighted in red. b) K-means clustering of seven clusters of D-score profiles
in the space of four early embryogenesis stages. c) Linear regression lines computed
for each cluster from (b). d) Whisker-box plots for the length of housekeeping and
tissue-specific genes in each cluster; blue boxes for housekeeping genes, red boxes for
tissue-specific genes. e) Whisker-box plots for the ATAC-Seq signal averaged for TADs
in each considered stage (Fig. 3b). f) Wilcoxon test p-values for the differences in the
ATAC-Seq signal distribution for TADs between stages (Fig. 3e). Significant p-values
are highlighted in red. Arrows indicate significant changes (rise or fall) in ATAC-Seq
signal between different stages (according to the Whisker-box plots from the Fig. 3e
and Wilcoxon test p-values for these box plots). (Color figure online)
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2.4 Faster-Forming TADs Demonstrate Distinct ATAC-Seq
Changes

We noticed that the fastest-forming TADs (cluster 6 that highlighted with the
purple dashed frame, Fig. 3) demonstrate a significant increase of the ATAC-
Seq signal at nuclear cycle 12 and then decrease at nuclear cycle 13. Notably,
the drop of the ATAC-Seq signal at nuclear cycle 13 can be detected for the
second group of fast-forming TADs (sorted by the linear regression coefficient
in clusters, cluster 4 – also highlighted with the purple dashed frame). No other
cluster features a statistically different ATAC-Seq signal for pairwise comparisons
of subsequent nuclear cycles. This might indicate that unbinding of regulatory
factors [5] might cause rapid compaction of TADs during embryogenesis.

3 Discussion

Here we report the development of console program HiChew, implemented to
segment the genome into TADs and cluster TADs by their compactness (D-
score) for time-resolved Hi-C.

We observe that within the clusters, housekeeping genes are significantly
longer than tissue-specific genes. Also, the length of housekeeping genes sig-
nificantly differs among all clusters. These observations are consistent with the
results of earlier studies [9,10], in particular, that TAD boundaries are positioned
at the early and short transcription loci, enriched in housekeeping genes.

By applying the program to Hi-C data of Drosophila melanogaster embryo
[10], we demonstrate that the resulting clusters have distinct chromatin open-
ness characteristics and different housekeeping genes ratio. Taken together, this
work might be considered as proof that the constructed clusters by HiChew are
biologically relevant.

4 Data and Software Availability

Hi-C data of the early embryogenesis of Drosophila melanogaster for four stages
nc12-14 and 3–4 h for chromosome arms 2R, 2L, 3R, 3L and chromosome X, was
obtained from [10], accession: E-MTAB-4918. ATAC-Seq data (three stages nc11-
13, accession: GSE83851) was obtained from [2]. Annotation of housekeeping
genes was taken from [16]. HiChew is available in the GitHub repository https://
github.com/encent/hichew.
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Computer Science and Engineering Department, University of Connecticut,
Storrs, CT 06269, USA

{marmar.moussa,ion.mandoiu}@uconn.edu

Abstract. Single cell RNA-seq (scRNA-Seq) is critical for studying cel-
lular function and phenotypic heterogeneity as well as the development of
tissues and tumors. Here, we present a web-based interactive scRNA-Seq
data analysis tool publicly accessible at https://sc1.engr.uconn.edu. The
tool implements a novel method of selecting informative genes based on
Term-Frequency Inverse-Document-Frequency (TF-IDF) scores and pro-
vides a broad range of methods for cell clustering, differential expression,
gene enrichment, interactive visualization, and cell cycle analysis. In just
a few steps, researchers can generate a comprehensive initial analysis and
gain powerful insights from their single cell RNA-seq data.

1 Introduction

Currently there are only few packages for comprehensive scRNA-Seq data anal-
ysis. Most of them are implemented using the R programming language, require
considerable programming knowledge, and are not easy to use by researchers in
life sciences.

In this work, we present a web-based, highly interactive scRNA-Seq data
analysis tool publicly accessible at https://sc1.engr.uconn.edu. The tool includes
several data quality control (QC) options, a novel method for gene selection
based on Term-Frequency Inverse-Document-Frequency (TF-IDF) scores [9], fol-
lowed by cell clustering and visualization tools as well as Differential Expression
(DE) analysis and gene enrichment steps. Additional analyses include various 3D
interactive visualizations based on t-SNE and UMAP dimensionality reduction
algorithms as well as a novel approach to clustering and ordering cells according
to their cell cycle phase [7]. With robust default parameter values SC1 empowers
researchers to generate a comprehensive initial analysis of their scRNA-Seq data
in just a few steps, while also allowing them to conduct in depth interactive data
exploration and parameter tuning.

2 SC1 Workflow

The SC1 workflow is implemented in the R programming language, with an inter-
active web-based front-end built using the Shiny framework [1]. In the following
we present details of the main analysis steps of the workflow.
c© Springer Nature Switzerland AG 2020
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Fig. 1. SC1 QC dashboard.

Data Pre-processing. Before a detailed analysis of scRNA-Seq datasets (in 10X
Genomics or csv format) can be performed, several pre-processing steps are car-
ried out, starting with an initial quality control step in which cells with less
than 500 detected genes and genes detected in less that 10 cells are excluded.
Imputation is provided as an optional pre-processing step. Empirical experi-
ments in [6] show that over-imputation is a concern for most existing meth-
ods. In SC1 we implemented the Locality Sensitive Imputation method (LSIm-
pute) from [8], which was shown in [6] to yield high accuracy with minimum
over-imputation. SC1 pre-processing also includes performing dimensionality
reduction using three commonly used algorithms: Principal Component Analysis
(PCA) [2], t-distributed Stochastic Neighborhood Embedding (t-SNE) projec-
tions [11], and Uniform Manifold Approximation and Projection (UMAP) [5].

scDat Upload. Pre-processed data is saved in SC1’s “.scDat” file format that can
then be uploaded for interactive analysis. Several publicly available datasets from
[3,4,12] spanning different scRNA-Seq technologies are provided in SC1 as exam-
ple datasets. Initial data exploration includes detecting the species (mouse or
human), generating basic summary statistics including the number of expressed
genes and the number of cells per library, and the ability to relabel the libraries.
‘At-a-glance’ two dimensional views of the data are also generated based on
PCA, tSNE, and UMAP.

Quality Control Dashboard. Before further analyses, SC1 allows users to perform
additional Quality Control (QC) checks as shown in Fig. 1, whereby poor quality
cells and outlier cells and genes can be excluded from subsequent analysis. The
tool implements widely used criteria for cell filtering: library size, number of
detected genes, as well as the fraction of reads mapping to mitochondrial genes,
ribosomal protein genes, or synthetic spike-ins. SC1 also allows outlier removal
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Fig. 2. Heat map of genes with top average TF-IDF scores for cells of the 7-class
PBMC mixture from [9].

based on the ratio between the number of detected genes to total read/UMI
count per cell.

Gene Selection. SC1 implements a novel method of selecting informative genes
based on the average TF-IDF (Term Frequency times Inverse Document Fre-
quency) scores, as detailed in [9]. TF-IDF scores are applied to scRNA-Seq data
by considering the cells to be analogous to documents; in this analogy, genes cor-
respond to words and UMI counts replace word counts. The TF-IDF scores can
then be computed from UMI counts (or expression values). Similar to document
analysis, the genes with highest TF-IDF scores in a cell are expected to provide
most information about the cell type. Genes with highest average TF-IDF scores
differentiate best between heterogeneous cell populations; visually this leads to
a clear “chess-board” effect in the heat map constructed using the top average
TF-IDF genes as shown in Fig. 2.

Clustering. By default, SC1 automatically infers the number of clusters using
the Gap Statistics method as described in [9]. However, users can also manually
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Fig. 3. SC1 clustering.

specify the number of clusters based on prior knowledge of the expected sample
heterogeneity. Valuable insight into sample heterogeneity is also provided by
inspecting the heat map generated using the top TF-IDF genes (Fig. 2) before
clustering. Clustering can be performed using Ward’s Hierarchical Agglomerative
Clustering or Spherical K-means (both using the top average TF-IDF genes
as features) or using Graph-based Clustering using binarized TF-IDF data as
described in [9]. Several visualizations describe clustering details (see Fig. 3).

Differential Expression Analysis. Differential expression (DE) analysis is done by
performing “One vs. the Rest” t-tests for each of the identified clusters. Results
of the Log2 Fold Change and the p-value from the analysis are provided as a
downloadable numeric matrix. A custom test of two selected groups of clusters or
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Fig. 4. SC1 differential expression analysis.

libraries is also provided, with results provided both as a downloadable numeric
table and as a Volcano plot visualizing the Log2 Fold Change and p-values for
the tested groups (Fig. 4).

Enrichment Analysis. DE analysis is followed by cluster-based gene functional
enrichment analysis performed using the ‘gProfileR’ R package [10] with results
visualized as word clouds (Fig. 5) and provided as downloadable term significance
values to help with cluster annotation. Labels assigned to the clusters at this
step update throughout SC1 tool output and visualization plots.

Interactive Data Visualization. Many SC1 analysis steps generate visualizations
of the results, including for instance the violin plots showing the probability den-
sity of gene expression values for each selected cluster/library and the bar-plots
showing percentage of cells expressing selected genes by cluster or by library.
Additional visualizations include:

– Clustering and gene co-expression visualization. SC1 includes multiple inter-
active visualization options; the interactive 3D t-SNE or UMAP visualization
tabs include the ability to select genes individually, in pairs, or in groups as
predefined gene sets. Cells are identified where all (AND) or any (OR) of
the selected genes are detected. Identified cell populations can be selected
or excluded to form a subset that can be downloaded and used to form a
new sub-population for further analysis in SC1 (Fig. 6). Identifying various
cell populations in SC1 and downloading relevant cells’ expression profiles
can be achieved in various ways in SC1: by selecting pre-defined libraries or
conditions or selecting cell populations based on gene selection, also selecting
specific cell types from clustering analysis results. Gene pair co-expression can
also be visualized using interactive 3D plots as well as scatter plots Fig. 7)
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Fig. 5. SC1 cluster-based gene enrichment analysis.

– Detailed and summary heatmaps. SC1 provides several ways to select genes
and cells visualized in configurable heat maps. Automatic identification
of informative genes based on average TF-IDF allows the generation of
exploratory heat maps to investigate the heterogeneity of the data. Also,
a list of highly expressed/abundant genes can be downloaded from SC1 and
used to construct a heat map. SC1 also supports custom gene selection by
manually selecting or uploading a list of genes of interest to use for heat map
construction. After the DE analysis step is concluded, the list of differentially
expressed genes can also be visualized as a heat map. The expression/count
values are by default log transformed in SC1 heat maps using the log2(x+1)
transformation. The summary heat map view in SC1 provides a “pseudo-
bulk” view of the data, showing average expression profiles for selected genes
by cluster or library (Fig. 8). The gene expression levels in summary heat
maps are row-normalized, i.e., gene means expressions in libraries and clus-
ters are normalized by dividing by the max mean expression of each gene
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Fig. 6. SC1 3D visualization of clustering results and selected genes on data from [4].

Fig. 7. SC1 gene co-expression visualization.
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Fig. 8. Summary heat map showing cluster/library breakdown mean expression profiles
of selected genes. (Color figure online)

over all libraries and clusters. This assigns a maximum value of 1 (red) to the
groups for which the mean expression of the gene is the highest.

Cell Cycle Analysis. The variation in the gene expression profiles of single cells in
different phases of the cell cycle can present a leading source of variance between
cells and can interfere with cell type identification and functional analysis of
scRNA-Seq data. In SC1, an orthogonal analysis of cell cycle effects can be
performed at any stage of the analysis by clustering and ordering cells according
to the expression levels of cell cycle genes, as described in [7].

3 Conclusion

SC1 provides a powerful tool for interactive web-based analysis of scRNA-Seq
data. The SC1 workflow is implemented in the R programming language, with an
interactive web-based front-end built using the Shiny framework [1]. SC1 employs
a novel method for gene selection based on Term-Frequency Inverse-Document-
Frequency (TF-IDF) scores [9], and provides a broad range of methods for cell
clustering, differential expression analysis, gene enrichment, visualization, and
cell cycle analysis. Future work includes integrating additional clustering meth-
ods, as well as other differential expression analysis methods and integrating
methods for cell differentiation analysis. As the amount of scRNA-Seq data con-
tinues to grow at an accelerated pace, we hope that SC1 will help researchers to
fully leverage the power of this technology to gain novel biological insights.



SC1: A Tool for Interactive Web-Based Single Cell RNA-Seq Data Analysis 397

References

1. Chang, W., Cheng, J., Allaire, J., Xie, Y., McPherson, J.: Shiny: web application
framework for R. http://CRAN.R-project.org/package=shiny (2017)

2. Erichson, N.B., Voronin, S., Brunton, S.L., Kutz, J.N.: Randomized matrix decom-
positions using R. arXiv preprint arXiv:1608.02148 (2016)

3. Gubin, M.M., et al.: High-dimensional analysis delineates myeloid and lymphoid
compartment remodeling during successful immune-checkpoint cancer therapy. Cell
175(4), 1014–1030 (2018)

4. Lukowski, S.W., et al.: Detection of HPV E7 transcription at single-cell resolution
in epidermis. J. Investig. Dermatol. 138(12), 2558–2567 (2018)

5. McInnes, L., Healy, J., Melville, J.: Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)
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Abstract. Predetermination, formation and maintenance of the primary morpho-
genetic gradient (bicoid, bcd, gradient) of the early Drosophila embryo involves
many interrelated processes. Here we focus on a systems biological analysis of
the bcd mRNA redistribution in an early embryo. The results of the quantitative
analysis of experimental data, together with the results of their dynamic modeling,
substantiate the role of active transport in the redistribution of the bcd mRNA.

Keywords: Biomolecular imaging · Gene expression · Dynamic modeling ·
Systems biology

1 Introduction

In the 1960s and early 1970s, the concept of morphogenetic gradients in developmental
biology acquired the form in which it is still known. Namely, substrates (morphogens)
diffuse through arrays of cells, forming spatial concentration gradients (Crick 1970;
Gierer and Meinhardt 1972). Simple molecular mechanisms, such as the localized pro-
tein synthesis, diffusion and degradation, can create a constant uneven distribution of
morphogens in the cells of the embryo. Cells are able to recognize local concentrations
of morphogen molecules and, in response, trigger activation of certain genes when a
certain concentration threshold of these molecules is reached (Crick 1970). As a result,
patterns of expression of genes controlling subsequent morphogenesis begin to form.
Since then, a number of morphogenetic gradients have been extensively studied exper-
imentally. The most thoroughly studied is the Bicoid (Bcd) protein gradient along the
anteroposterior (AP) axis of the Drosophila embryo.

The gradient of Bcd protein emerges when maternal bcd mRNA accumulates (is
deposited) at the anterior end of the embryo at the early stage of its formation (St
Johnston et al. 1989). bcd mRNA begins to translate as soon as an egg is laid, and the
protein gradient is formed within 3 h.

bcd mRNA is deposited in the head of the zygote as a conglomerate, forming a
complex with several proteins (Weil et al. 2012). This forms an extremely specialized
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structure (P-bodies (Weil et al. 2012)), which supports the translation stability and pro-
duction of large amounts of Bcd protein. However, the mechanism of action of this
structure has not yet been clarified. Therefore, the widely used working hypothesis con-
siders this conglomerate as a point source (not extended spatially) for the synthesis of
Bcd protein. This led to the formulation of the Synthesis-Degradation-Diffusion (SDD)
model for the Bcd morphogenetic gradient (Grimm et al. 2010). The idea underlying the
SDD model is that the Bcd protein synthesis begins at the anterior point of the embryo,
then the protein diffuses from the head to the tail, while gradually degrading.

Recent studies of this primarymorphogenetic gradient suggest the higher complexity
of its regulation. In particular, it turned out that the bcd mRNA forms not a point source,
but an extended spatial gradient, which is highly dynamic (Spirov et al. 2009; Cai et al.
2017). This leads to significant consequences for the mechanism of formation of the
morphogenetic gradient of the Bcd protein.

The purpose of our report is to outline our systematic approach to analyzing
the behavior of the bcd mRNA using dynamic modeling, based on the accumulated
experimental data.

2 Biological Background

Below, we briefly describe what is known about the behavior of the bcd mRNA in the
early Drosophila embryogenesis. In a mature zygote, the bcd mRNA is fixed in the
anterior cortical layer of an egg. Following fertilization, mRNA-containing particles are
released into the cytoplasm. Following this, complex processes of redistribution of this
mRNA in the earliest embryogenesis are started (Alexandrov et al. 2018). There are at
least three stages of redistribution of the mRNA bcd.

Firstly, it is the redistribution of particles containing mRNA during the very first
cycles of cleavage division at the pre-blastoderm stage (Little et al. 2011). The detailed
analysis of the data suggests a consistent full-scale reorganization of the early head
region of an embryo (Spirov et al. 2009; Little et al. 2011). The second event is the
further expansion of the mRNA gradient in the posterior direction (Spirov et al. 2009).
It lasts from the late cleavage stage to the beginning of the 14th division. The third key
event is the basal-apical redistribution of the bcd mRNA at the beginning of cycle 14
(Spirov et al. 2009).

We can consider these observed redistributions and reorganizations of the mRNA-
containing material as the identification of some key stages in the formation of the
source of the Bcd protein gradient (Bcd production site). These stages are: formation (1),
sequential enlargement and amplification (2), and, finally, disassembly of the spatially
distributed source of the Bcd protein (3).

3 Methods and Approaches

3.1 Quantitative Data on the Redistribution of the bcd mRNA in Zygote-Early
Embryo

Embryos were heat-fixed and processed by the FISHmethod on the bcdmRNAmodified
to achieve the high sensitivity (as described in Spirov et al. (2009)).
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Fig. 1. An example of a sagittal image of a bcd mRNA pattern (FISH) in the head of an early
embryo (A) and the result of its processing presented as a 3D plot (B). Plot (B) was obtained by
digitizing the results of scanning by a small window sliding along a series of profiles parallel to
the contour of the embryo.

Next, the embryos were subjected to layer-by-layer confocal scanning. Then, the
obtained sagittal images were subjected to quantitative processing so as to obtain a
series of expression profiles, as in Fig. 1.

3.2 Dynamic Modeling of bcd mRNA Redistribution

Nowwewill give a brief description of our dynamicmodel and the key results obtained by
numerical experiments with the model. As mentioned, the second stage of the dynamics
of the bcd mRNA consists in the propagation of the gradient of this RNA in the posterior
direction.

We have reason to believe that usually any bcd mRNA profile consists of a short and
sharp anterior gradient and a long flattened “tail” (Alexandrov et al. 2018). The tail may
be flat, decreasing or increasing (in the anteroposterior direction). For the purposes of
our dynamic modeling, we consider only profiles with a decreasing tail.

We assume here that the well-known tests with the bcd mRNA injection (RNA
injection assay (Ferrandon et al. 1994; Ferrandon et al. 1997)) reflect some key features
of the mechanisms of the bcd mRNA transport. Our main hypothesis here is that the
mRNA released from the initial anterior conglomerate forms complexes with adapter
proteins and molecular motors. These complexes, in turn, are able to move along the
MT network of the syncytial embryo. The experimental data on which this hypothesis
is based are presented in recent publications (Spirov et al. 2009; Cai et al. 2017).

Therefore, our first equation describing the large apical bcd complexes is:

d [bcd ]

dt
= Drnp�[bcd ] − C[bcd ] (1)

Here [bcd] is the concentration of the bcdmRNA (in fact, RNAmolecules are located
in large partially immobilized macromolecular complexes, which we call RNP for sim-
plicity);Drnp is the diffusion coefficient for these large RNA-containing complexes;C is
the coefficient corresponding to the release of the bcdmRNA from large slow complexes
to smaller and/or significantly more mobile ones (we call them bcd’).
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Due to the apparently very low rate of mRNA propagation in the posterior direction,
the diffusion coefficient must be very low. This would correspond to those large bcd
mRNA complexes that are still probably linked to some cytoskeletal elements.

The second equation describes the dynamics of bcd in complexes that can be
transported via microtubules (MT):

d
[
bcd ′]

dt
= Drna�

[
bcd ′] + C[bcd ] − Φ([bcd ]) (2)

Here [bcd′] is the concentration of bcd mRNA in complexes with motors such as
Dynein that can move along MT; Drna is the diffusion coefficient for RNA-containing
complexes capable of active MT transport; Φ([bcd ]) is a term describing in a general
way the degradation of a bcd mRNA.

We assume that the MT network is not oriented, so bcd transport can be described
by the Fick’s law. The diffusion coefficient in this case should be significantly higher
than in the above case (Eq. 1).

We performed quite simple, but sufficiently detailed testswith one-dimensionalmod-
els. We used 500 cells of 1 µm each. The duration of each run is 7200 s, ~120 min. The
initial conditions were as follows: the first N cells contain X units of mRNA each, the
rest cells – 0. We neglected the mRNA degradation during these first 2 h of embryo
development. The model was fitted to real experimental data by the method of genetic
algorithms.

4 Results and Discussion

4.1 Redistribution of bcd mRNA in a Syncytial Embryo

In this brief report, we present the results of modeling two of the three consecutive stages
of the dynamics of the bcd mRNA gradient (second and third, final).

A typical result is shown in Fig. 2. As we can see, the simulation result is similar to
real observations.

As we found out in these computational experiments, the diffusion coefficient for
larger and very slow bcd containing particles is about 0.05 µm2/s. This is a very slow
movement indeed, even if we compare with the Gregor’s results for the Bcd protein, D=
0.3µm2/s (Gregor et al. 2007). It is six times smaller and this corresponds to either large
multimolecular complexes, or partial immobilization through the cytoskeleton, or both.
On the contrary, as one would expect, the second transportation process looks really fast:
D = 1.50 µm2/s.

It is appropriate to recall here how large complexes such as bcd2-Stau-Dynein are.
So, we come to the conclusion that this numerical result really implies the processes of
active molecular transport for the bcd mRNA.

4.2 Elimination of the bcd mRNA Gradient

In this subsection, we present the results of modeling the third stage of the bcd mRNA
dynamics. At this stage, the mRNA gradient is being quickly eliminated. These simu-
lations are illustrated in Fig. 3. This 1D model of transport was organized to simulate
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Fig. 2. Modeling the redistribution of bcdmRNA in a syncytial embryo. (A) Acquisition of inten-
sity profiles for anteroposterior direction (red arrow). An example of extracting the anteroposterior
profile of bcd mRNA from mid-cycle 14. (B) The initial distribution of mRNA in the model (rect-
angular, blue) and the data for fitting the model (real representative profile of the bcd mRNA in
the 13th cycle embryo; red). (C) Simulation results (superposition of the model results, blue, and
the real profile in red). (Color figure online)

the process in the apical part of the early embryo (as opposed to the model presented in
Fig. 2). Here, our goal was to fit the simulation results to really observed changes in the
bcd profile at the stages of the mature syncytial stage, the beginning of cellularization.
As the initial conditions, a representative bcd profile for the 13th cycle embryo was used
here.

The key point here was to study the effect of the mRNA degradation law. We were
interested in the law and parameters of mRNA degradation (and dose dependence for
bcd gene). We searched for the best value of the order of degradation rate (first order, or
lower or higher). The goal was to obtain an embryo profile typical for the very beginning
of the 14th cycle (~10 min), starting from a given profile of the end of the 13th cycle.
Our modeling approach and typical result are presented in detail in Fig. 3. Randomized
active transport was modeled according to the Fick’s law; degradation was modeled by
a 1st order reaction.

To our surprise, we found that the best value of the degradation rate of the bcd
mRNA matching the experimental data was about 3/2, as illustrated in Fig. 4. That is,
degradation is not just proportional to concentration, but the higher is the concentration
of mRNA, the faster is its degradation (Fig. 4).

What is especially interesting,modelingwith a degradation rate higher than 1 demon-
strates such a significant feature as the robustness (insensitivity) of the solution to the
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Fig. 3. Data and model of the bcd mRNA degradation organized to simulate the process in the
apical part of the early embryo only. (A) Schematic of the profile extraction: from ventral (V) to
dorsal (D), through the anterior pole (red arrow) (B) A set of representative profiles for cycle 13
embryos (profiles are extracted as in scheme (A). (C) A set of representative profiles for embryos
from the beginning of the 14th cycle. (D–E) A typical simulation result: the initial profile (D)
quickly decreases to (E). Degradation was modeled by a 1st order reaction. (Color figure online)

variability of the initial gradient. Such doses of bcd have been tested: 1 (haploid), 2
(WT) and higher doses (4 and 6). Simulation results demonstrated that higher-order
degradation (e.g. 2/3) can compensate for the gene dosage at the mRNA level (Fig. 4).

Such compensation was reported at the level of accuracy of the Hb factor domain,
but the mechanisms are still unclear (Houchmandzadeh et al. 2002). It is known that the
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Fig. 4. The mRNA degradation model, as in Fig. 3, at various doses of the bcd gene. Typical
simulation result: the initial profile (A) quickly decreases to (B). Randomized active transport
was modeled according to the Fick’s law; degradation was modeled by the reaction of order 3/2.
Different doses of bcd have been tested: 1 (haploid), 2 (WT) and higher doses (4 and 6). As it
turned out, higher-order degradation can compensate the gene dose at the mRNA level.

beginning of cycle 14A, immediately before the mid-blast transition, is characterized
by a much more stable pattern of segmentation than in the early cycles (Holloway et al.
2006; Surkova et al. 2008). What we found here means that the robustness of pattern
formation can be realized not only at the level of segmentation factors, but also at the
level of some mRNAs.
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Abstract. While atom tracking with isotope-labeled compounds is an
essential and sophisticated wet-lab tool in order to, e.g., illuminate reac-
tion mechanisms, there exists only a limited amount of formal methods to
approach the problem. Specifically when large (bio-)chemical networks
are considered where reactions are stereo-specific, rigorous techniques
are inevitable. We present an approach using the right Cayley graph of a
monoid in order to track atoms concurrently through sequences of reac-
tions and predict their potential location in product molecules. This can
not only be used to systematically build hypothesis or reject reaction
mechanisms (we will use the mechanism “Addition of the Nucleophile,
Ring Opening, and Ring Closure” as an example), but also to infer natu-
rally occurring subsystems of (bio-)chemical systems. We will exemplify
the latter by analysing the carbon traces within the TCA cycle and infer
subsystems based on projections of the right Cayley graph onto a set of
relevant atoms.

1 Introduction

Traditionally, atom tracking is used in chemistry to understand the underlying
reactions and interactions behind some chemical or biological system. In prac-
tice, atoms are usually tracked using isotopic labeling experiments. In a typical
isotopic labeling experiment, one or several atoms of some educt molecule of
the chemical system we wish to examine are replaced by an isotopic equiva-
lent (e.g. 12C is replaced with 13C). These compounds are then introduced to
the system of interest, and the resulting product compounds are examined, e.g.
by mass spectrometry [5] or nuclear magnetic resonance [7]. By determining
the positions of the isotopes in the product compounds, information about the
underlying reactions might then be derived. From a theoretical perspective, char-
acterizing a formal framework to track atoms through reactions is an important
step to understand the possible behaviors of a chemical or biological system. In
this contribution, we introduce such a framework based on concepts rooted in
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semigroup theory. Semigroup theory can be used as a tool to analyze biological
systems such as metabolic and gene regulatory networks [9,15]. In particular,
Krohn-Rhodes theory [17] was used to analyze biological systems by decompos-
ing a semigroup into simpler components. The networks are modeled as state
automatas (or ensembles of automatas), and their characteristic semigroup, i.e.,
the semigroup that characterizes the transition function of the automata [14], is
then decomposed using Krohn-Rhodes decompositions or, if computational not
feasible, the holonomy decomposition variant [10]. The result is a set of symmet-
ric natural subsystems and an associated hierarchy between them, that can then
be used to reason about the system. In [4] algebraic structures were employed
for modeling atom tracking: graph transformation rules are iteratively applied to
sets of undirected graphs (molecules) in order to generate the hyper-edges (the
chemical reactions) of a directed hypergraph (the chemical reactions network)
[1,2]. A semigroup is defined by using the (partial) transformations that natu-
rally arise from modeling chemical reactions as graph transformations. Utilizing
this particular semigroup so-called pathway tables can be constructed, detailing
the orbit of single atoms through different pathways to help with the design of
isotopic labeling experiments.

In this work, we show that we can gain a much deeper understanding of
the analyzed system by considering how atoms move in relation to each other.
To this end, we show how the possible trajectories of a subset of atoms can be
intuitively represented as the (right) Cayley graph [8] of the associated semi-
group. Moreover, natural subsystems can be defined in terms of reversible atom
configurations. We demonstrate the usefulness by differentiating chemical path-
ways, and we show how the (right) Cayley graph provides a natural handle for
the analysis of cyclic chemical systems such as the TCA cycle. We note, that
an extended version of this paper can found at https://cheminf.imada.sdu.dk/
preprints/isbra-2020.pdf.

2 Chemical Networks and Their Algebraic Structures

We consider a chemical network CN modeled as a hypergraph and generated
by a graph grammar as done in [2]. In this model, vertices of CN are molecules
modeled as graphs and hyper-edges are reactions modeled as graph transforma-
tions. A graph transformation is modeled as an application of a Double-pushout
rule transforming the educts of a reaction to its products. A rule application in
CN defines a bijective map, called an atom map, specifying how atoms move
through reactions of CN . We let tr(CN) be all atoms maps that can be derived
from CN . Where possible, we use common graph and semigroup notations and
definitions, and refer to the original paper [13] for more details.

Characteristic Monoids. Assume we are given some chemical network CN
that is some hypergraph modeling some chemistry. As we are interested in track-
ing the possible movements of atoms in CN, we are inherently interested in the
reactions of CN, i.e., in its edge set E(CN). Indeed, atoms can only reconfigure
to construct new molecules under the execution of some reaction. We will refer

https://cheminf.imada.sdu.dk/preprints/isbra-2020.pdf
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to the execution of a reaction as an event. The possible reconfigurations of atoms
caused by a single event, is given by the set of atom maps tr(CN) constituting
a set of (partial) transformations on X =

⋃
M∈V (CN) V (M). Note, the vertex

M ∈ V (CN) corresponds to an entire molecule for which V (M) denotes the
set of atoms (=labeled vertices). A transformation t on X describes the position
(i.e., in what molecule and where in the molecule the atom is found) of each atom
in X when X is transformed by t. In what follows, we will sometimes refer to
such transformations on X as atom states, as the transformations encapsulates
the “state” of the network, i.e., the position of each atom. To track the possible
movement of atoms through a chemical network, we must consider sequences of
events.

Definition. Let Σ be an alphabet containing a unique identifier t for each atom
map in tr(CN). An event trace is an element of the free monoid Σ∗.

The free monoid Σ∗ contains all possible sequences of events that can move
the atoms of X. Note, Σ∗ does not track the actual atoms through event traces.
For this, we use the following structure:

Definition. Let the characteristic monoid of CN be defined as the transfor-
mation monoid S(CN) = (X, 〈tr(CN) ∪ 1X〉). Moreover, given a set of edges
E ⊆ E(CN), and the set of atoms Y ⊆ X found in E (that is Y = ∪e∈EYe), we
let the characteristic monoid of E be defined as S(E) = (Y, 〈tr(E) ∪ 1Y 〉).

Let σ : Σ → tr(CN) be the function, that maps all identifiers of Σ to their
corresponding atom map in tr(CN). Given an event trace t = t1t2 . . . tn ∈ Σ∗, we
let the events of t refer to their corresponding transformations in tr(CN) when
acting on an element s ∈ S(CN), i.e., st = sσ(t1)σ(t2) . . . σ(tn) ∈ S(CN). Every
event trace t ∈ Σ∗ gives rise to a member S(CN), in particular the transforma-
tion 1Xt, that represents the resulting atom state obtained from moving atoms
according to t. Hence, there is a homomorphism from Σ∗ to S(CN), meaning
that S(CN) captures all possible movements of atoms through reactions of CN.

Often, we are only interested in tracking the movement of a small number of
atoms. Let z̄ be a tuple of distinct elements from X that we want to track. Then,
there is again a homomorphism from Σ∗ and O(z̄,S(CN)). Namely, for a given
event trace t ∈ Σ∗, we can track the atoms of z̄ as the atom state 1{x | x∈z̄}t
corresponding to an element in the orbit O(z̄,S(CN)), if we treat the element as
a (partial) transformation. As a result, O(z̄,S(CN)) characterizes the possible
movements of the atoms in z̄, and we will refer to its elements as atom states
similarly to elements in S(CN) as they conceptually represent the same thing.

We note, the above definitions are not unlike some of the core definitions
within algebraic automata theory [14]. Here, the possible inputs of an automata
is often defined in terms of strings obtained from the free monoid on the alphabet
of the automata. The characteristic semigroup is then defined as the semigroup
that characterizes the possible state transitions. In the same vein, we can view
our notion of event traces as the possible “inputs” to our chemical network CN
that moves some initial configuration of atoms 1X . The characteristic monoid of
CN then characterize the possible movements of atoms through event traces.
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In what follows we let Cay(CN) denote the Cayley graph Cay(S(CN),
tr(CN)∪1X). Similarly, given a tuple of atoms z̄, we let PCay(CN, z̄) denote the
projected Cayley graph PCay(S(CN), tr(CN) ∪ 1X , z̄). We note, that by Defi-
nition, S(CN) is constructed from the generating set 〈tr(CN) ∪ 1X〉, and hence
Cay(CN) and PCay(CN, z̄) are well defined. Since the transformation 1X will
always result in a loop on every vertex of the (projected) Cayley graph, and con-
veys no meaningful information, we will refrain from including any edge arising
from 1X . We can illustrate the relation between atom states using the Cayley
graph Cay(CN). More precisely, there exists an edge between two atom states
a, b ∈ S(CN) with label t, if it is possible to move the atoms in a to b using t. It
is natural to relate Σ∗ to Cay(CN). Namely, any path in Cay(CN) corresponds
directly to an event trace in Σ∗. Hence, where Σ∗ encapsulates the “inputs”
of the chemical network and S(CN) contains the possible atoms states derived
from Σ∗, the Cayley graph Cay(CN) captures how atom states from S(CN) can
be created by event traces.

Natural Subsystems of Atom States. In the intersection between group the-
ory and systems biology, attempts to formalize the notion of natural subsystems
and hierarchical relations within such systems have been done by works such as
[15]. Here, natural subsystems are defined as symmetric structures arising from a
biological system. Such symmetries manifests as permutation groups of the asso-
ciated semigroup representing said system. In such a model the Krohn-Rhodes
decomposition or the holonomy decomposition [10] can be used to construct
a hierarchical structure on such natural subsystems of the biological system. In
terms of atom tracking, however, defining natural subsystems in terms of the per-
mutation groups in S(CN) does not have an immediately useful interpretation.
Similarly, the hierarchical structure obtained from methods such as holonomy
decomposition are not intuitive to interpret. Instead, when talking about natural
subsystems in terms of atom tracking, we are interested in systems of reversible
event traces, i.e., event traces that do not change the original configuration of
atoms. To this end, it is natural to define natural subsystems of S(CN) in terms
of Green’s relations [6]. For elements s1, s2 ∈ S(CN), we define the reflexive tran-
sitive relation �R as s1 �R s2, if there exists an event trace t ∈ Σ∗ such that
s1t = s2. In addition, we define an equivalence relation R, where s1 is equivalent
to s2, in symbols s1Rs2 whenever s1 �R s2 and s2 �R s1.

Definition (Natural Subsystems). The natural subsystems of S(CN) is the
set of equivalence classes induced by the R-relation.

The equivalence classes correspond to the strongly connected components
of the Cayley graph Cay(CN) [11]. We note, that for a tuple of atoms z̄, the
natural extension to natural subsystems of the orbit O(z̄,S(CN)) is simply the
strongly connected components of its projected Cayley graph PCay(CN, z̄). The
R relation is interesting, as the equivalence classes on S(CN) induced by the
R relation forms pools of reversible event traces. More precisely, let s1Rs2 for
some s1, s2 ∈ S(CN), where s1 · t12 = s2 and s2 · t21 = s1 for some t12, t21 ∈ Σ∗.
Then, the event traces t12 and t21 are reversible, i.e. we can re-obtain s1 as
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s1t12t21 = s1 and s2 as s2t21t12 = s2. Additionally, the quotient graph of the
equivalence classes of the R relation on the Cayley graph Cay(CN) naturally
forms a hierarchical relation on the atom states of S(CN) that has a useful
interpretation from the point of view of chemistry as we will see in Sect. 3.

3 Results

Differentiating Pathways. In this section, we will explore the possibilities
of using the characteristic monoids of chemical networks to determine if it is
possible to distinguish between two pathways P1 and P2, based on their atom
states of their respective characteristic monoids. The motivation stems from
methods such as isotope labeling. Here, a “labeled” atom, is a detectable isotope
whose position is known in some initial molecule and can then be detected, along
with its exact position, in the product molecules of some pathway. In contrast
to [4], we will not focus on the orbits of atoms in isolation, as we lose the ability
to reason about atom positions in relation to each other. Moreover, as we will
see here, the Cayley graph of the chemical network can be used to identify the
exact event two pathways split.

Given a chemical network CN, a pathway P is a set of hyper-edges (i.e.
reactions) from CN equipped with a set of input and output molecules. We think
of a pathway as a process that consumes a set of input molecules to construct
a set of output molecules, using the reactions specified by P . In our case, a
“labeled” atom is a point in S(CN). Given two pathways P1 and P2, we can
characterize the possible movement of atoms as the characteristic monoids S(P1)
and S(P2). In practice, it might not be feasible to track every atom in CN, e.g. we
are only able to replace a few atoms with its corresponding detectable isotope,
and hence it becomes useful to consider the orbits O(z̄,S(P1)) and O(z̄,S(P2))
where z̄ is the atoms from the input molecules we can track. Clearly, of the atom
states in O(z̄,S(P1)) and O(z̄,S(P2)), we can only expect to observe, e.g. in an
isotope labeling experiment, the atom states that locates the tracked atoms in
the output molecules. As a result, we arrive at the following observation:

Observation 1. Let Yi ⊆ O(z̄,S(Pi)), i ∈ {1, 2}, be the atom states we can
hope to observe after some isotope labeling experiment. Then, we can always
distinguish between P1 and P2 if Y1 ∩ Y2 = ∅.
Example: Consider the network CN depicted in Fig. 1a modelling the cre-
ation of product 4-phenyl-6-aminopyrimidine (denoted P) from the educt 4-
(benzyloxy)-6-bromopyrimidine (denoted E) using ammonia. This well investi-
gated and widely used substitution mechanism (ANRORC) [16] was proven to
non-trivially function via ring opening and ring closure (and an accompanied car-
bon replacement) via isotope labeling. Two possible pathways are modelled: the
input molecules for the two pathways are the molecules E, NH3, NH2, while the
output is the single molecule P. The first, seemingly correct but wrong, pathway
P1 = {r3} converts E and an NH3 molecule directly into P, by replacing the Br
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(a) (b)

Fig. 1. (a) The chemical network for the creation of P from E using ammonia. The
dotted red and blue lines shows the possible atom trajectories for the atoms 2 and 3
respectively. (b) The projected Cayley graph PCay(CN, (2, 3)). (Color figure online)

atom with NH2. The second pathway consists of the reactions P2 = {r0, r1, r2, r4}
and models the ANRORC mechanism.

Assume we wanted to device a strategy to decide what pathway is executed in
reality. By replacing the nitrogen atoms of the E molecule with the isotope 13N
we would be able to observe where the atoms are positioned in the produced
P molecule. Since we, by assumption, only label the nitrogen atoms of the E
molecule, i.e., the atoms 3 and 2, we can look at the orbits of the characteristic
monoids O((2, 3),S(P1)) and O((2, 3),S(P2)) with the order of 5 and 2 respec-
tively. We see that both orbits only contains a single element locating (2, 3) in
the P molecule, namely the element (14, 15) for O((2, 3),S(P1)) and (14, 13) for
O((2, 3),S(P2)). As the possible configurations are different for P1 and P2, it is
hence possible to always identify if the P molecule was created by P1 or P2.

This fact, also becomes immediately obvious by looking at the projected
Cayley graph PCay(CN, (2, 3)) depicted in Fig. 1b, that shows the immediate
divergence of atom states of the two pathways.

Natural Subsystems in the TCA Cycle. The citric acid cycle, also known
as the tricarboxylic (TCA) cycle or the Krebs cycle, is at the heart of many
metabolic systems. The cycle is used by aerobic organisms to release stored
energy in the form of ATP by the oxidation of acetyl-CoA into water and CO2.
The details for the TCA cycle can be found in any standard chemistry text book,
e.g. [12]. In [18], the trajectories of different carbon atoms in the TCA cycle was
examined to explain the change of their oxidation states. It is well known that
there is an enzymatic differentiation of the two carboxymethyl groups in citrate,
which requires a rigorous stereochemical modeling of the graph grammar rules
used [3]. Ignoring such stereochemical modeling would lead to atom mappings
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not occurring in nature. We will provide a formal handle to analyze theoretically
possible carbon trajectories using the algebraic constructs provided in this paper.
As we will see, such structures provides intuitive interpretations for the TCA
cycle.

In our setting, the TCA cycle is a chemical network CN giving rise to trans-
formations of the underlying monoid (depicted and discussed in the Appendix of
[13]). To start the cycle, an Acetyl-CoA molecule is condensed with an oxaloac-
etate (OAA) molecule, executing a cycle of reactions that ends up regenerating
the OAA molecule while expelling two CO2 and water on the way. For the sake of
demonstration, assume we are interested in answering the following questions:
What are the possible trajectories of the carbons of an OAA within a TCA
cycle while (i.) ignoring the enzymatic differentiation of the two carboxymethyl
groups in citrate (denoted TCA-�), or (ii.) not ignoring (denoted TCA- ). To
answer these questions, we will decompose the characteristic monoid of the TCA
cycle into its natural subsystems and examine them using the projected Cayley
graph. When an original atom is expelled from the cycle, we will consider it per-
manently lost. The carbon atoms of the OAA molecule that we are interested
in tracking are annotated with the ids 4, 5, 6, and 7. Let z̄ = (4, 5, 6, 7). The
projected Cayley graph of PCay(CN, z̄) wrt. TCA-� (resp. TCA- ) , consists of
213 (resp. 67) vertices. The full Cayley graphs are depicted in the Appendix of
[13]. When a carbon atom leaves the TCA cycle we denote it by “ ”. E.g. the
atom state ( , 7, 6, ) should be read as the original carbon atoms with ids 4 and
7 has been expelled, while the carbon atoms with ids 5 and 6 are located at the
atoms with id 7 and 6 respectively.

We can find the natural subsystems of CN as the strongly connected compo-
nents of PCay(CN, z̄). In TCA-� (resp. TCA- ) we find 92 (resp. 51) strongly
connected components of which 8 (resp. only 1) are non-trivial. Any non-trivial
strongly connected component must invariably contain at least one tour around
the TCA cycle. Moreover, any non-trivial strongly connected component repre-
sents a sequence(s) of reactions that uses (some of the) original atoms of the
OAA molecule. To simplify PCay(CN, z̄) such that only the information on car-
bon traces of the atoms of OAA are depicted, we will construct the simplified
projected Cayley graph, denoted SCay(CN, z̄), as follows: collapse any vertex in
PCay(CN, z̄) that is part of a trivial strongly connected component and whose
atoms are not located in an OAA molecule. Moreover, for any non-trivial strongly
connected component, hide the edges between atom states in the same strongly
connected component, and finally only include atom states if the atoms are
located in a OAA molecule. The resulting graphs for TCA-� and TCA- are
depicted in Fig. 2. Each box in the figure represents a natural subsystem that
contains an atom state where every atom is either expelled or located in an OAA
molecule. When ignoring the stereochemical formation of citrate, ( , 5, 6, 7) is a
grey node in SCay(CN, z̄) (i.e., a representative of a strongly connected com-
ponent PCay(CN, z̄)), i.e., there is a trajectory where three of the four original
carbons of OAA are re-used at the same location after a TCA-� cycle turnover.
However in TCA- only ( , 5, , ) is a representative of a strongly connected
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(a)

(b) (c)

Fig. 2. (a) The oxaloacetate molecule. The carbon atoms are equipped with the ids
4, 5, 6, and 7. (b) The simplified projected Cayley graph SCay(CN, (4, 5, 6, 7)), when
adjusting for stereospecific citrate in tr(CN). (c) The simplified projected Cayley graph
SCay(CN, (4, 5, 6, 7)) when not considering stereospecificity.

component, i.e., only the carbon with id 5 of OAA can be kept at the same loca-
tion when a multitude of TCA- turnovers are executed. If that carbon changes
location it will leave the TCA cycle after exactly two more turnovers (the natu-
ral subsystems reachable from ( , 5, , ) do not correspond to strongly connected
components) via positions 5 → 6 → 4 → or via 5 → 6 → 7 → . To the best of
our knowledge such investigations have not been executed formally before.

4 Conclusion

In this work we have extended the insights provided by [4], by showing the
natural relationship between event traces, the characteristic monoid and its cor-
responding Cayley graph. The projected Cayley graph provides valuable insights
into local substructures of reversible event traces.

We see future steps for this approach to branch in at least two directions.
On one hand, these methods shows obvious applications in isotopic labeling
design. To this end, it is natural to extend the system to model the actual
process of such experiments. E.g. when doing isotopic labeling experiments with
mass spectrometry, molecules are broken into fragments and the weight of such
fragments are deduced to determine the topology of the fragment. Using our
model to track where the atoms might end up in such fragments and how it affects
their weight seems like a natural next step. On the other hand, a more rigorous
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investigation of the fundamental properties derived from semigroup theory of the
characteristic monoid seems appealing. As we have shown here, understanding
such relations might grant insights into the nature of the examined system.
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