
Secure and Efficient Delegation
of Elliptic-Curve Pairing

Giovanni Di Crescenzo1, Matluba Khodjaeva2, Delaram Kahrobaei3(B),
and Vladimir Shpilrain4

1 Perspecta Labs Inc., Basking Ridge, NJ, USA
gdicrescenzo@perspectalabs.com

2 CUNY John Jay College of Criminal Justice, New York, NY, USA
mkhodjaeva@jjay.cuny.edu

3 University of York, Heslington, York, UK
delaram.kahrobaei@york.ac.uk

4 City University of New York, New York, NY, USA
shpil@groups.sci.ccny.cuny.edu

Abstract. Many public-key cryptosystems and, more generally, cryp-
tographic protocols, use pairings as important primitive operations. To
expand the applicability of these solutions to computationally weaker
devices, it has been advocated that a computationally weaker client del-
egates such primitive operations to a computationally stronger server.
Important requirements for such delegation protocols include privacy of
the client’s pairing inputs and security of the client’s output, in the sense
of detecting, except for very small probability, any malicious server’s
attempt to convince the client of an incorrect pairing result.

In this paper we show that the computation of bilinear pairings in
essentially all known pairing-based cryptographic protocols can be effi-
ciently, privately and securely delegated to a single, possibly malicious,
server. Our techniques provides efficiency improvements over past work
in all input scenarios, regardless on whether inputs are available to the
parties in an offline phase or only in the online phase, and on whether
they are public or have privacy requirements. The client’s online runtime
improvement is, for some of our protocols, almost 1 order of magnitude,
no matter which practical elliptic curve, among recently recommended
ones, is used for the pairing realization.

Keywords: Secure delegation · Pairings · Cryptography · Elliptic
curves

1 Introduction

Server-aided cryptography is an active research direction addressing the problem
of computationally weaker clients delegating the most expensive cryptographic
computations to computationally powerful servers. Recently, this area is see-
ing an increased interest because of shifts in modern computation paradigms
c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 45–66, 2020.
https://doi.org/10.1007/978-3-030-57808-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_3


46 G. Di Crescenzo et al.

towards cloud/fog/edge computing, large-scale computations over big data, and
computations with low-power devices, such as RFIDs and smart-grid readers.

The first formal model for delegation of cryptographic operations was intro-
duced in [28], where the authors especially studied delegation of group exponen-
tiation, as this operation is a cornerstone of so many cryptographic schemes and
protocols. In this model, we have a client, with an input x, who delegates to one
or more servers the computation of a function F on the client’s input, and the
main desired requirements are:

1. privacy: only minimal or no information about x should be revealed to the
server(s);

2. security: the server(s) should not be able, except possibly with very small
probability, to convince the client to accept a result different than F (x); and

3. efficiency: the client’s runtime should be much smaller than computing F (x)
without delegating the computation.

As in all previous work in the area, protocols can be partitioned into (a) an offline
phase, where input x is not yet known, but somewhat expensive computation
can be performed by the client or a client deployer and stored on the client’s
device, and (b) an online phase, where we assume the client runtime is limited,
and thus help by the server is needed to compute F (x).

Our Contributions. In this paper we show that bilinear pairings can be effi-
ciently, privately and securely delegated to a single, possibly malicious, server.
We consider different meaningful protocol scenarios, depending on whether each
of the two inputs A and B to the pairing is labeled as offline (i.e., available to the
client already in the offline phase) or online (i.e., only available to the client in
the online phase), and depending on whether each of the two inputs to the pair-
ing is public (i.e., known to both client and server) or private (i.e., only known
to the client and needs to remain private from the server). Our results improve
previous work across all input scenarios (thus being applicable to essentially
all pairing-based cryptographic protocols in the literature) and are presented
through 5 main novel protocols, whose input scenarios, improvement over previ-
ous best protocol and over non-delegated computation, and relevance to example
well-known pairing-based cryptographic protocols, are captured in Table 1. Our
efficiency improvements over previous schemes, in some cases almost reaching 1
order of magnitude, are measured with respect to all of the 4 recently proposed
practical elliptic curves with security levels between 128 and 256 bits, as bench-
marked in [10]. In our first two protocols, the client’s most expensive operation is
an exponentiation to a short (i.e., 128-bit) exponent. No such protocol had been
previously offered in the literature. Moreover, in all of our protocols, the client
only performs 1 or 2 exponentiations to a short exponent in the pairing target
group, as opposed to full-domain exponentiations in past work. Our largest effi-
ciency improvements are in the most practically relevant scenarios where at least
one of the two pairing inputs is known in the offline phase. When both pairing
inputs are known in the online phase, for some elliptic curves, we obtain the first
protocol improving over non-delegated computation.



Secure and Efficient Delegation of Elliptic-Curve Pairing 47

Table 1. For each of our 5 main protocols, we list the input scenario (column 2);
the average, across 4 often recommended elliptic curves, multiplicative improvement
factor on the online client’s runtime over previous best protocol (column 3) and over
non-delegated pairing computation (column 4); and some example previous work using
this input scenario and to which this delegation protocol applies (column 5).

Input scenario Avg improvement Protocol
applicability
examples

Over
previous
best

Over
non-delegated
computation

1. A public online, B public offline 5.55 9.41 [1,7,9,27,32]

2. A private online, B public offline 4.20 9.36 [1,27]

3. A private online, B private offline 4.36 5.34 [1,7,8,32]

4. A public online, B public online 2.79 4.16 [29,32]

5. A private online, B private online 1.75 1.31

Related Work. Delegating computation has been and continues to be an active
research area, with the increased importance of new computation paradigms,
such as computing with low-power devices, cloud/fog/edge computing, etc. In its
early years, a number of solutions had been proposed and then attacked in follow-
up papers. The first formal model for secure delegation protocols was presented in
[28]. There, a secure delegation protocol is formally defined essentially as a secure
function evaluation (in the sense of the concept first proposed in [38]) of the
client’s function delegated to the server. Follow-up models from [23] and [12,18]
define separate requirements of correctness, (input) privacy and (result) security.
There, privacy is defined as indistinguishability of two different inputs from the
client, even after corrupting the server; and security is defined as the adversary’s
inability to convince the client of an incorrect function output, even after cor-
rupting the server. We can partition all other (single-server) secure delegation
protocols we are aware of in 4 main classes, depending on whether they dele-
gate (a) elliptic curve pairings; (b) group exponentiation [13,16,18–21,28,33];
(c) other specific computations (e.g., linear algebra operations) [3,4,6,22,34];
and (d) an arbitrary polynomial-size circuit evaluation [17,23,25].

With respect to (a), pairing delegation was first studied in a work by Girault
et al. [24]. However, they only considered computation secrecy but no security
against a malicious server. Guillevic et al. [26] proposed a more efficient scheme
but their method increases communication complexity between client and server
and their scheme does not provide security against a malicious server. Proto-
cols with this latter property for delegating e(A,B) have first been provided by
Chevallier-Mames et al. [14,15] and later by Kang et al. [31], but the drawback
of the protocol in [14] is that it is more costly for the client than a non-delegated
computation. Canard et al. [11] improved their construction and proposed more



48 G. Di Crescenzo et al.

efficient and secure pairing delegation protocols. In particular, in [11] the authors
showed that in their protocols the client’s runtime is strictly lower than non-
delegated computation of a pairing on the KSS-18 curve [30]. Later, Guillevic et
al. [26] showed that in protocols in [11] the client is actually less efficient than
in a non-delegated computation of the pairing for the state of the art optimal
ate pairing on a Barreto-Naehrig curve.

2 Notations and Definitions

In this section we recall known definition and facts about pairings (in Sect. 2.1)
and known definitions for delegation protocols, including their correctness, secu-
rity, privacy and efficiency requirements (in Sect. 2.2).

2.1 Pairings

Bilinear Maps. Let G1, G2 be additive cyclic groups of order l and GT be a
multiplicative cyclic group of the same order l, for some large prime l. A bilinear
map (also called pairing and so called from now on) is an efficiently computable
map e : G1 × G2 → GT with the following properties:

1. Bilinearity: for all A ∈ G1, B ∈ G2 and any r, s ∈ Zl, it holds that e(rA, sB) =
e(A,B)rs

2. Non-triviality: if U is a generator for G1 and V is a generator for G2 then
e(U, V ) is a generator for GT

The last property rules out the trivial scenario where e maps all of its inputs to
1. We denote a conventional description of the bilinear map e as desc(e).

The currently most practical pairing realizations use an ordinary elliptic curve
E defined over a field Fp, for some large prime p, as follows. Group G1 is the l-
order additive subgroup of E(Fp); group G2 is a specific l-order additive subgroup
of E(Fpk) contained in E(Fpk) \ E(Fp); and group GT is the l-order multiplica-
tive subgroup of Fpk . Here, k is the embedding degree; i.e., the smallest positive
integer such that l|(pk − 1). After the Weil pairing was considered in [7], more
efficient constructions have been proposed as variants of the Tate pairing, includ-
ing the more recent ate pairing variants (see, e.g., [37] for more details on the
currently most practical pairing realizations).

For asymptotic efficiency evaluation of our protocols, we will use the following
definitions:

– a1 (resp. a2) denotes the runtime for addition in G1 (resp. G2);
– m1(�) (resp. m2(�)) denotes the runtime for scalar multiplication of a group

value in G1 (resp. G2) with an �-bit scalar value;
– mT denotes the runtime for multiplication of group values in GT ;
– eT (�) denotes the runtime for an exponentiation in GT to an �-bit exponent;
– pT denotes the runtime for the bilinear pairing e;
– tM denotes the runtime for testing membership of a value to GT .



Secure and Efficient Delegation of Elliptic-Curve Pairing 49

We recall some well-known facts about these quantities, of interest when eval-
uating the efficiency of our protocols. First, for large enough �, a1 << m1(�),
a2 << m2(�), mT (�) << eT (�), and eT (�) < pT . Also, using a double-and-
add (resp., square-and-multiply) algorithm, one can realize scalar multiplication
(resp., exponentiation) in additive (resp., multiplicative) groups using, for ran-
dom scalars (resp., random exponents), about 1.5� additions (resp., multiplica-
tions). Finally, membership of a value w in GT can be tested using one exponen-
tiation in GT to the l-th power (i.e., checking that wl = 1), or, for some specific
elliptic curves, including some of the most recommended in practice, using about
1 multiplication in GT and lower-order Frobenius-based simplifications (see, e.g.,
[5,35]).

For concrete efficiency evaluation of our protocols, we will use benchmark
results from [10] for the runtime of an optimal ate pairing and of the other most
expensive operations (i.e., scalar multiplication in groups G1, G2 and exponen-
tiation in GT ) for the best curve families, also recalled in Table 2 below. We
will also neglect lower-order operations such as equality testing, assignments,
Frobenius-based simplifications, etc.

Table 2. Benchmark results (obtained by [10] on an Intel Core i7-3520M CPU averaged
over thousands of random instances) for scalar multiplications in G1,G2 and exponenti-
ations in GT relative to an optimal ate pairing based on some of the best known curve
families, measured in millions (M) of clock cycles.

Sec. level Family-k Pairing e Scal. mul. in G1 Scal. mul. in G2 Exp. in GT

128-bits BN-12 7.0 0.9 1.8 3.1

192-bits BLS-12 47.2 4.4 10.9 17.5

KSS-18 63.3 3.5 9.8 15.7

256-bits BLS-24 115.0 5.2 27.6 47.1

2.2 Delegation Protocols: Definitions

Our protocol modeling builds on previous papers, including [12,18,23,28].

Basic Notations. The expression y ← T denotes the probabilistic process
of randomly and independently choosing y from set T . The expression y ←
A(x1, x2, . . .) denotes the (possibly probabilistic) process of running algorithm
A on input x1, x2, . . . and any necessary random coins, and obtaining y as out-
put. The expression (yA, yB) ← (A(xA,1, xA,2, . . .), B(xB,1, xB,2, . . .)) denotes
the (possibly probabilistic) process of running an interactive protocol between
A, taking as input xA,1, xA,2, . . . and any necessary random coins, and B, taking
as input xB,1, xB,2, . . . and any necessary random coins, where yA, yB are A and
B’s final outputs, respectively, at the end of this protocol’s execution.



50 G. Di Crescenzo et al.

System Scenario, Entities, and Protocol. We consider a system with two
types of parties: clients and servers, where a client’s computational resources
are expected to be more limited than a server’s ones, and therefore clients are
interested in delegating the computation of specific functions to servers. In all our
solutions, we consider a single client, denoted as C, and a single server, denoted
as S. We assume that the communication link between C and S is private or not
subject to confidentiality, integrity, or replay attacks, and note that such attacks
can be separately addressed using known applied cryptography techniques. As
in all previous work in the area, our time model includes an offline phase, which
may coincide with a client device setup and/or data pre-deployment, and a later
online phase, which may coincide with client operations, possibly use the data
gathered in the offline phase, and where the client is resource-constrained. For
simplicity of description, we will consider a generic algorithm run by the client
in the offline phase, but note that other parties may also run it (e.g., a client-
deploying server, the client itself, etc.) and assume that this decision is better
settled at implementation time.

Let σ denote the computational security parameter (i.e., the parameter
derived from hardness studies of the underlying computational problem), and
let λ denote the statistical security parameter (i.e., a parameter such that events
with probability 2−λ are extremely rare). Both parameters are expressed in unary
notation (i.e., 1σ, 1λ). When performing numerical performance analysis, we use
λ = 128 and a value of σ that depends on the elliptic curve and security that
we want to use. In particular, [10] reports such values for some of today’s most
practical curves, including BN-12 curves (embedding degree k = 12, security
level 128-bits) for which σ = 461, BLS-12 curves (k = 12, security level 192-bits)
for which σ = 635, KSS-18 curves (k = 18, security level 192-bits) for which
σ = 508, and BLS-24 curves (k = 24, security level 256-bits) for which σ = 629.

Assuming desc(e) is a description of pairing e : G1 × G2 → GT known to
both C and S, we define a client-server protocol for the delegated computation
of e as a 2-party, 2-phase, communication protocol between C and S, denoted
as (C(1σ, 1λ, desc(e), xC), S(1σ, 1λ, desc(e), xS)), where xC = (xC,f , xC,n), and
consisting of the following steps:

1. pp ← Offline(1σ, 1λ, desc(e), xC,f ),
2. (yC , yS) ← (C(1σ, 1λ, desc(e), pp, xC,n), S(1σ, 1λ, desc(e), xS).

One can differentiate 16 protocol scenarios, depending on certain features of the
inputs A ∈ G1 and B ∈ G2 to pairing e. We say that the first input A is

– public online if xC,n and xS include A but xC,f does not (i.e., A is unknown
in the offline phase but known by both parties in the online phase);

– public offline if xC,n, xC,f and xS include A (i.e., A is known by both parties
starting from the offline phase);

– private online if xC,n include A but xC,f , xS do not (i.e., A is unknown in the
offline phase but known by C in the online phase);

– private offline if xC,n and xC,f include A but xS does not (i.e., A is known
by C starting from the offline phase but unknown by S).



Secure and Efficient Delegation of Elliptic-Curve Pairing 51

We use similar definitions for the second input B. As an example, the scenario
denoted as ‘(A public offline, B public offline)’ is the protocol scenario where
both inputs A and B are known to both parties C and S starting from the offline
phase. (This scenario is the least interesting since we assume that C is only
resource-constrained in the online phase.) While there could be 15 additional
distinct scenarios, we now make some observations that reduce the number of
most interesting scenarios for the purpose of our study: (1) as the definition of
pairing is symmetric across the two inputs, half of the protocol scenarios are of
less interest, as a secure protocol for one scenario is also secure for the symmetric
scenario; (2) a secure protocol for a scenario where an input is labeled as private
is also a secure protocol for the otherwise identical scenario where that same
input is labeled as public; (3) a secure protocol for a scenario where an input
is labeled as online is also a secure protocol for the otherwise identical scenario
where that same input is labeled as offline. Note that, despite these 3 facts, it is
still of interest to analyze a less demanding scenario if a more efficient protocol
can be found for it. Moreover, by reviewing usages of pairings in cryptography
papers, we noted that a large majority of scenarios involve at least one of the
two inputs being known offline, which we study in greater detail in Sect. 3.

Let σ, λ be the security parameters, and let (C,S) be a client-server protocol
for the delegated computation of a pairing e, and fix a protocol scenario.

Correctness Requirement. Informally, the (natural) correctness requirement
states that if both parties follow the protocol, C obtains some output at the
end of the protocol, and this output is, with high probability, equal to the value
obtained by evaluating pairing e on its input (A,B). A formal definition follows.

Definition 1. We say that (C,S) satisfies δc-correctness if for any (A,B) in e’s
domain, it holds that

Prob
[
out ← CorrExpe(1

σ, 1λ) : out = 1
] ≥ δc,

for some δc close to 1, where experiment CorrExp is detailed below:

CorrExpe(1σ, 1λ)
1. pp ← Offline(desc(e), xC,f )
2. (yC , yS) ← (C(pp, xC,n), S(xS))
3. if yC = e(A,B) then return: 1 else return: 0

Security Requirement. Informally, the most basic security requirement would
state the following: if C follows the protocol, a malicious adversary corrupting S
cannot convince C to obtain, at the end of the protocol, some output y′ different
from the value y obtained by evaluating pairing e on C’s input (A,B). To define
a stronger and more realistic security requirement, we augment the adversary’s
power so that the adversary can even choose inputs to C and S, including A ∈ G1

and B ∈ G2, before attempting to convince C of an incorrect output. We also do
not restrict the adversary to run in polynomial time. A formal definition follows.



52 G. Di Crescenzo et al.

Definition 2. We say that (C,S) satisfies εs-security against a malicious adver-
sary if for any algorithm Adv returning inputs for C and S for the fixed protocol
scenario, it holds that

Prob
[
out ← SecExpe,Adv(1

σ, 1λ) : out = 1
] ≤ εs,

for some εs close to 0, where experiment SecExp is detailed below:

SecExpe,Adv(1σ, 1λ)
1. (xC,f , xC,n, xS , aux) ← Adv(desc(e))
2. pp ← Offline(desc(e), xC,f )
3. (y′, aux) ← (C(pp, xC,n), Adv(aux))
4. if y′ =⊥ or y′ = e(A,B), for A ∈ G1, B ∈ G2 then return: 0 else return: 1.

Privacy Requirement. Informally, the privacy requirement should guarantee
the following: if C follows the protocol, a malicious adversary corrupting S can-
not obtain any information about C’s input (A,B) from a protocol execution.
This is formalized by extending the indistinguishability-based approach typically
used in formal definitions for encryption schemes. That is, the adversary can pick
two inputs (xC,f,b, xC,n,b, xS,b), for b = 0, 1; then, one of these two inputs is cho-
sen at random and used by C in the protocol with the adversary acting as S,
and finally the adversary tries to guess which input was used by C. Note that
depending on the protocol scenario, the adversary is trying to learn about only
one of the two pairing inputs or both (or even none, in which case this require-
ment becomes vacuous). As for security, we do not restrict the adversary to run
in polynomial time. A formal definition follows.

Definition 3. We say that (C,S) satisfies εp-privacy (in the sense of indistin-
guishability) against a malicious adversary if for any algorithm Adv returning
inputs for the fixed protocol scenario, it holds that

∣
∣ Prob

[
out ← PrivExpe,Adv(1

σ, 1λ) : out = 1
] − 1/2

∣
∣ ≤ εp,

for some εp close to 0, where experiment PrivExp is detailed below:

PrivExpe,Adv(1σ, 1λ)
1. ((xC,f,0, xC,n,0, xS,0), (xC,f,1, xC,n,1, xS,1), aux) ← Adv(desc(e))
2. b ← {0, 1}
3. pp ← Offline(desc(e), xC,f,b)
4. (y′, d) ← (C(pp, xC,n,b), Adv(aux))
5. if b = d then return: 1 else return: 0.

Efficiency Metrics and Requirements. Let (C,S) be a client-server protocol
for the delegated computation of pairing e. We say that (C,S) has efficiency
parameters (tF , tP , tC , tS , cc,mc), if e can be computed (without delegation)
using tF (σ, λ) atomic operations, C can be run in the offline phase using tP (σ, λ)
atomic operations and in the online phase using tC(σ, λ) atomic operations, S
can be run using tS(σ, λ) atomic operations, C and S exchange a total of at most
mc messages, of total length at most cc. While we naturally try to minimize all
these protocol efficiency metrics, our main goal is to design protocols where



Secure and Efficient Delegation of Elliptic-Curve Pairing 53

1. tC(σ, λ)/tF (σ, λ) < 1, and
2. tS(σ, λ) is not significantly larger than tF (σ, λ).

In all our protocols tS ≤ 5tF , so we actually devote most of our attention on
asymptotic analysis of tC and target a concrete performance ratio tC/tF < 1,
which we achieve for all protocol scenarios and all 4 practical curves for which
pairing benchmark runtimes are reported in [10].

3 Delegating Pairings with One Offline Input

In this section we investigate client-server protocols for secure pairing delegation,
in various scenarios where one of the pairing inputs is already known to the client
in the offline phase. Our main results are 3 new protocols, each applicable to a
different scenario. For each of these, we give a formal statement of our result, an
asymptotic and a concrete efficiency comparison with the previous best protocols
in the same scenario, an informal description of the ideas behind the protocol,
a formal description of the protocol and a proof of the protocol’s correctness,
privacy and security properties.

3.1 Protocol Scenario: (A Public Online, B Public Offline)

Our first protocol satisfies the following

Theorem 1. Let e be a pairing, as defined in Sect. 2.1, let σ be its computational
security parameter, and let λ be a statistical security parameter. There exists
(constructively) a client-server protocol (C,S) for delegating the computation of
e, when input A is publicly known in the online phase, and input B is publicly
known in the offline phase, which satisfies 1-correctness, 2−λ-security, 0-privacy,
and efficiency with parameters (tF , tS , tP , tC , cc,mc), where

– tF = pT , tS = 2 pT and tP = pT ;
– tC ≤ a1 + m1(λ) + mT + eT (λ) + tM ;
– cc = 1 value in G2 + 2 values in GT and mc = 2.

The main takeaway from this theorem is that C can securely and efficiently del-
egate to S the computation of a bilinear pairing whose first input A is publicly
known in the online phase and second input B is already publicly known in the
offline phase. In particular, in the online phase C only performs one exponen-
tiation to a λ-bit exponent in GT , and 1 multiplication to a λ-bit scalar in G1,
as well as other lower-order operations. (See Table 3 for a concrete comparison
with best previous work, also showing estimated ratios of C’s online runtime
tC and the runtime tF of a non-delegated pairing calculation ranging between
0.077 and 0.160 depending on the curve used.) Additionally, C only computes
1 pairing in the offline phase, S only computes 2 pairings, and C and S only
exchange 2 messages containing a small number of group values.



54 G. Di Crescenzo et al.

Table 3. Protocol comparison in the scenario (A public online, B public offline)

Protocols tC Ratio: tC/tF

BN-12
σ = 461

BLS-12
σ = 635

KSS-18
σ = 508

BLS-24
σ = 629

[14,15] [Sect. 6.1] a2 + m2(σ) + mT + eT (σ) + tM 0.702 0.603 0.404 0.651

Ours [Sect. 3.1] a1 + m1(λ) + mT + eT (λ) + tM 0.160 0.094 0.077 0.093

Protocol Description. The main idea in this protocol is that since both inputs
A and B are publicly known, S can compute w0 = e(A,B) and send w0 to C,
along with some efficiently verifiable ‘proof’ that w0 was correctly computed.
This proof is realized by the following 3 steps: first, C sends to S a randomized
version Z1 of value A, then S computes and sends to C pairing value w1 =
e(Z1, B); and finally C verifies that w1 ∈ GT and uses w1 and a pairing value
computed in the offline phase in an efficient probabilistic verification for the
correctness of w0. A formal description follows.

Offline Input to C: B ∈ G2

Offline phase instructions:

1. C randomly chooses U1 ∈ G1

2. C sets v1 := e(U1, B)

Online Input to C: 1σ, 1λ, desc(e), U1, v1, A ∈ G1, B ∈ G2

Online Input to S: 1σ, 1λ, desc(e), A ∈ G1, B ∈ G2

Online phase instructions:

1. C randomly chooses b ∈ {1, . . . , 2λ}
C sets Z1 := b · A + U1 and sends Z1 to S

2. S computes w0 := e(A,B), w1 := e(Z1, B) and sends w0, w1 to C
3. (Membership Test:) C checks that w0 ∈ GT

(Probabilistic Test:) C checks that w1 = wb
0 · v1

If any of these tests fails then C returns ⊥ and the protocol halts
C returns y = w0

Protocol Properties: The efficiency properties are verified by protocol inspec-
tion. In particular, we note that C’s calculation of Z1 only requires 1 multipli-
cation in G1 to a short, λ-bit, scalar, C’s membership test only requires 1 multi-
plication in GT , as discussed in Sect. 2.2, and C’s probabilistic test only requires
1 multiplication and 1 exponentiation in GT to a short, λ-bit, exponent.

The correctness property follows by showing that if C and S follow the pro-
tocol, C always outputs y = e(A,B). We first show that the 2 tests performed



Secure and Efficient Delegation of Elliptic-Curve Pairing 55

by C are always passed. The membership test is always passed by the pairing
definition; the probabilistic test is always passed since

w1 = e(Z1, B) = e(b · A + U1, B) = e(A,B)b · e(U1, B) = wb
0 · v1.

This implies that C never returns ⊥, and thus always returns y = w0 = e(A,B).
To prove the security property against any malicious S we need to compute

an upper bound εs on the security probability that S convinces C to output
a y such that y �= e(A,B). We obtain that εs ≤ 2−λ as a consequence of the
following 3 facts, which we later prove:

1. Z1 leaks no information about b to S;
2. for any S’s message (w0, w1) different than what would be returned according

to the protocol instructions, there is only one b for which (w0, w1) satisfy both
the membership and the probabilistic test in step 3 of the protocol;

3. for any S’s message (w0, w1) different than what would be returned accord-
ing to the protocol instructions, the probability that (w0, w1) satisfies the
probabilistic test is ≤ 2−λ.

Towards proving Fact 1, we observe that Z1 is uniformly distributed in G1

since so is U1, which is unknown to S. Thus, the distribution of Z1 is independent
from that of b, from which Fact 1 follows.

Towards proving Fact 2, let (w0, w1) be the values that would be returned by
S according to the protocol, and assume a malicious algorithm Adv corrupting
S returns a different pair (w′

0, w
′
1). Because GT is cyclic, we can consider a

generator g for GT and write wi = gai , for i = 1, 2. Note that if the membership
and probabilistic test, both values in (w′

0, w
′
1) are verified to be in GT . Then we

can write

w′
0 = gu · w0 and w′

1 = gv · w1 for some u, v ∈ Zl such that u �= 0 or v �= 0.

Now, assume wlog that u �= 0 mod l and consider the following equivalent
rewritings of the probabilistic test, obtained by variable substitutions and sim-
plifications:

w′
1 = (w′

0)
b · v1

gv · w1 = (gu · e(A,B))b · e(A,U1)

gv · e(A,Z1) = gub · e(A,B)b · e(A,U1)

gv = gub

v = ub mod l.

Now, if there exist two distinct b1 and b2 such that

ub1 = v mod l and ub2 = v mod l

then u(b1 − b2) = 0 mod l then b1 − b2 = 0 mod l (i.e b1 = b2) because u �= 0
mod l. This shows if u �= 0 mod l then that b is unique. On the other hand, if



56 G. Di Crescenzo et al.

u = 0 mod q then the above calculation implies that v = 0 mod q, and thus S
is honest. This proves Fact 2.

Towards proving Fact 3, note that, by Fact 1, C’s message Z1 does not leak
any information about b. This implies that all values in {1, . . . , 2λ} are still
equally likely even when conditioning over message Z1. Then, by using Fact 2,
the probability that S’s message (w0, w1) satisfies the probabilistic test, is 1
divided by the number 2λ of values of b that are still equally likely even when
conditioning over message Z1. This proves Fact 3.

3.2 Protocol Scenario: (A Private Online, B Public Offline)

Our second protocol satisfies the following

Theorem 2. Let e be a pairing, as defined in Sect. 2.1, let σ be its computational
security parameter, and let λ be a statistical security parameter. There exists
(constructively) a client-server protocol (C,S) for delegating the computation of
e, when input A is privately known in the online phase, and input B is publicly
known in the offline phase, which satisfies 1-correctness, 2−λ-security, 0-privacy,
and efficiency with parameters (tF , tS , tP , tC , cc,mc), where

– tF = pT , tS = 2 pT and tP = 2 pT ;
– tC ≤ 2 a1 + m1(λ) + 2mT + eT (λ) + tM ;
– cc = 2 values in G1 + 2 values in GT and mc = 2.

The main takeaway from this theorem is that C can securely and efficiently
delegate to S the computation of a bilinear pairing whose first input A is known
to C in the online phase and has to remain private, while second input B is
publicly known in the offline phase. In particular, in the online phase C only
performs 1 exponentiation to a λ-bit exponent in GT and 1 multiplication to
a λ-bit scalar in G1, and lower-order operations. (See Table 4 for a concrete
comparison with best previous work, also showing estimated ratios of C’s online
runtime to a non-delegated pairing calculation ranging between 0.078 and 0.161
depending on the curve used.) Additionally, C only computes 2 pairings in the
offline phase, S only computes 2 pairings, and C and S only exchange 2 messages
containing a small number of group values.

Table 4. Protocols comparison in the scenario (A private online, B public offline)

Protocols tC Ratio: tC/tF

BN-12
σ = 461

BLS-12
σ = 635

KSS-18
σ = 508

BLS-24
σ = 629

[31] [Sect. 4.3] a1 + m1(σ) + mT + eT (σ) 0.572 0.464 0.304 0.455

[11] [Sect. 5.2] 2 a1 + m1(σ) + 2mT + eT (σ) + tM 0.574 0.465 0.304 0.456

Ours [Sect. 3.2] 2 a1 + m1(λ) + 2mT + eT (λ) + tM 0.161 0.095 0.078 0.094



Secure and Efficient Delegation of Elliptic-Curve Pairing 57

Protocol Description. This protocol uses as a starting point the protocol from
Sect. 3.1, but includes an additional technique to achieve the additional property
that input A remains private. As S does not know A, it cannot directly compute
e(A,B) as before. Instead, C sends an additional randomly masked version Z0

of A and lets S compute w0 = e(Z0, B), where the mask is based on a value U0

for which C had computed v0 = e(U0, B) in the offline phase. Using U0 and v0,
C can both compute e(A,B) as w0 · v0 and run membership and probabilistic
tests analogously to the previous protocol. A formal description follows.

Offline Input to C: B ∈ G2

Offline phase instructions:

1. C randomly chooses U0, U1 ∈ G1, and b ∈ {1, . . . , 2λ}
2. C sets v0 = e(U0, B) and v1 = e(U1, B)

Online Input to C: 1σ, 1λ, desc(e), b, U0, U1, v0, v1, A ∈ G1, B ∈ G2

Online Input to S: 1σ, 1λ, desc(e), B ∈ G1

Online phase instructions:

1. C sets Z0 := A − U0 and Z1 := b · A + U1

C sends Z0, Z1 to S
2. S computes w0 := e(Z0, B) and w1 := e(Z1, B)

S sends w0, w1 to C
3. (Membership Test:) C checks that w0 ∈ GT

C computes: y := w0 · v0
(Probabilistic Test:) C checks that w1 = yb · v1
If any of these tests fails then C returns ⊥ and the protocol halts
C returns y

Properties of Protocol (C,S): The efficiency properties are verified by pro-
tocol inspection. In particular, we note that with respect to the protocol in
Sect. 3.1, this protocol gains privacy of input A with very small additional over-
head: 1 additional subtraction in G1 and 1 additional multiplication in GT with
respect to C’s online work, and 1 additional pairing computation with respect
to C’s offline work.

The correctness property follows by showing that if C and S follow the proto-
col, C always output y = e(A,B). We show that the 2 tests performed by C are
always passed. The membership test is always passed by the pairing definition;
the probabilistic test is always passed since

w1 = e(Z1, A) = e(b · A + U1, B) = e(A,B)b · e(U1, B) = yb · v1



58 G. Di Crescenzo et al.

This implies that C never returns ⊥, and thus returns y. To see that this
returned value y is the correct output, note that

y = w0 · v0 = e(Z0, B) · e(U0, B) = e(A − U0, B) · e(U0, B)

= e(A,B) · e(U0, B)−1 · e(U0, B) = e(A,B).

The privacy property of the protocol against any arbitrary malicious S fol-
lows by observing that C’s only message (Z0, Z1) to S does not leak any informa-
tion about C’s input A, because both Z0 and Z1 are uniformly and independently
distributed in G1, as so are U0 and U1. Moreover, by essentially the same rea-
soning, this message does not leak any information about b, a fact which we also
use in the proof of the security property.

To prove the security property against any malicious S we need to compute
an upper bound εs on the security probability that S convinces C to output
a y such that y �= e(A,B). We obtain that εs ≤ 2−λ as a consequence of the
following 3 facts:

1. (Z0, Z1) leaks no information about b to S;
2. for any S’s message (w0, w1) different than what would be returned according

to the protocol instructions, there is only one b for which (w0, w1) satisfy both
the membership and the probabilistic test in step 3 of the protocol;

3. for any S’s message (w0, w1) different than what would be returned accord-
ing to the protocol instructions, the probability that (w0, w1) satisfies the
probabilistic test is ≤ 2−λ.

We note that these 3 facts are proved similarly as in the proof of the security
property for the protocol in Sect. 3.1, with a few minor changes due to C’s
message now being of the form (Z0, Z1) instead of just Z1, and the probabilistic
test now being w1 = (w0 · v0)b · v1 instead of w1 = wb

0 · v1.
Specifically, to prove Fact 1, we observe that the pair (Z0, Z1) is uniformly

distributed in G1 since so is pair (U0, U1), which is unknown to S. Thus, the
distribution of (Z0, Z1) is independent from that of b, from which Fact 1 follows.

Towards proving Fact 2, we only note that the rewriting of the probabilistic
test is slightly different than in Sect. 3.1, but again brings to the same conclusion
v = ub mod l. Specifically, the probabilistic test is now rewritten as

w′
1 = (w′

0 · v0)b · v1

gv · w1 = (gu · e(A,Z0) · e(A,U0))b · e(A,U1)

gv · e(A,Z1) = gub · e(A,B)b · e(A,U1)

gv = gub

v = ub mod l.

Then, the rest of the proof for Fact 2 continues to hold.
The proof for Fact 3 still holds with only syntactic changes by modifying Z1

into (Z0, Z1).



Secure and Efficient Delegation of Elliptic-Curve Pairing 59

3.3 Protocol Scenario: (A Private Online, B Private Offline)

Our third protocol satisfies the following

Theorem 3. Let e be a pairing, as defined in Sect. 2.1, let σ be its computational
security parameter, and let λ be a statistical security parameter. There exists
(constructively) a client-server protocol (C,S) for delegating the computation of
e, when input A is privately known in the online phase, and input B is privately
known in the offline phase, which satisfies 1-correctness, 2−λ-security, 0-privacy,
and efficiency with parameters (tF , tS , tP , tC , cc,mc), where

– tF = pT , tS = 2 pT and tP = 2 pT + 2m1(σ) + m2(σ) + il;
– tC ≤ 2 a1 + m1(σ) + m1(λ) + 2mT + eT (λ) + tM ;
– cc = 3 values in G1 + 2 values in GT and mc = 2.

The main takeaway from this theorem is that C delegates to S can securely and
efficiently delegate to S the computation of a bilinear pairing where both inputs
A and B have to remain private and first input A (resp., second input B) is known
to C in the online (resp., offline) phase. In particular, in the online phase C only
performs 2 multiplications and 1 exponentiation to a λ-bit exponent in GT , 2
additions and 2 multiplications in G1, and 1 group membership verification in
GT . (See Table 5 for a concrete comparison with best previous work, also showing
estimated ratios of C’s online runtime to a non-delegated pairing calculation
ranging between 0.13 and 0.29 depending on the curve used.) Additionally, C
only computes 2 pairings in the offline phase, S only computes 2 pairings, and
C and S only exchange 2 messages containing a small number of group values.

Table 5. Protocols comparison in the scenario (A private online, B private offline)

Protocols tC Ratio: tC/tF

BN-12
σ = 461

BLS-12
σ = 635

KSS-18
σ = 508

BLS-24
σ = 629

[31] [Sect. 4.2]
a1 + m1(σ) + mT

+2 eT (σ) + tM
1.016 0.836 0.552 0.865

Ours [Sect. 3.3]
2 a1 + m1(σ) + m1(λ)

+2 mT + eT (λ) + tM
0.290 0.188 0.133 0.139

Protocol Description. The main idea in this protocol builds on those in pro-
tocols from Sect. 3.1 and 3.2. The difference between the scenario in this section
and the scenario in Sect. 3.2 is that here input B has to remain private. Thus,
S cannot directly compute e(Z0, B), e(Z1, B) as before. Instead, C applies an
additional layer of random masks, based on a single random value r, as follows.
First, Z0 = r−1B is used as a masked variant of B. Next, Z1 = r(A − U0) and
Z2 = r(bA − U1) are used as doubly-masked variants of A, using r to both fur-
ther mask previously computed values (A − U0) and (bA − U1) as well as cancel



60 G. Di Crescenzo et al.

out exponent r−1 after pairing computations. S again computes 2 pairing values:
w0 = e(Z1, Z0) and w1 = e(Z2, Z0). Using U0, U1 and v0, v1, C can both compute
e(A,B) as w0v0 and efficiently run a membership test for w0 and a probabilistic
test based on w1 analogously to the previous two protocols (since mask r gets
canceled out in the pairing computations). The protocol also redistributes the
computation of the double masking of Z1 and Z2 so to reduce online runtime at
the expense of some additional offline runtime. A formal description follows.

Offline Input to C: B ∈ G2

Offline phase instructions:

1. C randomly chooses U0, U1 ∈ G1, b ∈ {1, . . . , 2λ} and r ∈ Zl

2. C sets
– v0 = e(U0, B) and v1 = e(U1, B)
– Z0 := r−1 · B, Z1,1 := −r · U0 and Z2,1 := r · U1

3. C stores aux = (b, r, U0, U1, v0, v1, Z0, Z1,1, Z1,2)

Online Input to C: 1σ, 1λ, desc(e), aux,A ∈ G1, B ∈ G2

Online Input to S: 1σ, 1λ, desc(e)

Online phase instructions:

1. C sets Z1,0 = Z2,0 = rA, Z1 = Z1,0 + Z1,1 and Z2 = bZ2,0 + Z2,1

C sends Z0, Z1, Z2 to S
2. S computes w0 := e(Z1, Z0) and w1 := e(Z2, Z0)

S sends w0, w1 to C
3. (Membership Test:) C checks that w0 ∈ GT

C computes: y = w0 · v0
(Probabilistic Test:) C checks that w1 = yb · v1
if any of these tests fails C returns ⊥ and the protocol halts
C returns y

Protocol Properties: The efficiency properties are verified by protocol inspec-
tion. In particular, we note that with respect to the protocol in Sect. 3.2, this
protocol gains privacy of input B with very small additional overhead: 1 addi-
tional scalar multiplication in G1 with respect to C’s online work, 2 scalar mul-
tiplications in G1 with respect to C’s offline work, and 1 additional group value
sent from C to S.

The correctness property follows by showing that if C and S follow the pro-
tocol, C always output y = e(A,B). We show that the 2 tests performed by
C are always passed. The membership test is always passed by the pairing
definition. To see that the probabilistic test is always passed, first note that
Z1 = Z1,0 + Z1,1 = r(A − U0), and Z2 = Z2,0 + Z2,1 = r(bA + U1). Then

w1 = e(Z2, Z0) = e(r · (b · A + U1), r−1 · B)

= e(b · A + U1, B) = e(A,B)b · e(U1, B) = yb · v1.



Secure and Efficient Delegation of Elliptic-Curve Pairing 61

This implies that C never returns ⊥, and thus returns y. To see that this returned
value y is the correct output, note that

y = w0 · v0 = e(Z1, Z0) · e(U0, B) = e(r · (A − U0), r−1 · B) · e(U0, B)

= e(A,B) · e(U0, B)−1 · e(U0, B) = e(A,B).

The privacy property of the protocol against any arbitrary malicious S fol-
lows by observing that C’s only message (Z0, Z1, Z2) to S does not leak any
information about C’s input A or B. This follows because (a) values Z1, Z2 are
uniformly and independently distributed in G1, as so are U0, U1; and (b) value
Z0 = rA is uniformly and independently distributed in G1 as r is a random scalar
in Zl and G1 is cyclic. Moreover, by similar reasoning, this message does not leak
any information about b, a fact useful in the proof of the security property.

The proof for the security property is a direct extension of the proof of the
security property for protocols in Sect. 3.1 and 3.2, and therefore we only discuss
relevant changes. As before, we compute an upper bound εs on the security
probability that S convinces C to output a y such that y �= e(A,B), and we
obtain that εs ≤ 2−λ as a consequence of 3 facts, formulated analogously to
those in Sect. 3.1 and 3.2.

Fact 1 says that C’s message (Z0, Z1, Z2) leaks no information about b to S.
This follows by a proof similar (in fact, simpler) than the proof for the privacy
property for the same protocol.

Towards proving Fact 2, we only note that the rewriting of the probabilistic
test is slightly different than in Sect. 3.2, but again brings to the same conclusion
v = ub mod l. Specifically, the probabilistic test is now rewritten as

w′
1 = (w′

0 · v0)b · v1

gv · w1 = (gu · e(Z0, Z1) · e(A,U0))b · e(A,U1)

gv · e(Z0, Z2) = gub · e(r−1A, r(B − U0))b · e(A,U0))b · e(A,U1)

gv · e(r−1A, r(bB + U1)) = gub · e(A,B − U0)b · e(A, bB + U1))b · e(A,U1)

gv · e(A,B)b · e(A,U1) = gub · e(A,B)b · e(A,U1)

gv = gub

v = ub mod l.

Then, the rest of the proof for Fact 2 continues to hold.
The proof for Fact 3 still holds with only syntactic changes by using

(Z0, Z1, Z2) as C’s message.

Extension. We observe that the above pairing delegation protocol can also be
used as a secure pairing delegation protocol in the (A Public Online, B Private
Offline) scenario, in which case the improvement over previous work is as shown
in Table 6 below.



62 G. Di Crescenzo et al.

Table 6. Protocols comparison in the scenario (A public online, B private offline)

Protocols tC Ratio: tC/tF

BN-12
σ = 461

BLS-12
σ = 635

KSS-18
σ = 508

BLS-24
σ = 629

[14,15] [Sect. 6.2]
a2 + m2(σ) + mT

+eT (σ) + tM
1.145 0.973 0.652 1.060

Ours [Sect. 3.3]
2 a1 + m1(σ) + m1(λ)

+2 mT + eT (λ) + tM
0.290 0.188 0.133 0.139

4 Delegating Pairings with Online Inputs

In this section we show that our secure pairing delegation protocols in Sect. 3
(i.e., in scenarios where at least one input is known in the offline phase) can
be combined and give protocols for scenarios where both inputs are known in
the online phase. We informally describe two protocols in two different input
scenarios, depending on a public/private requirement for both inputs, we defer
the formal description to a longer version of the paper, and show in Table 7 a
performance comparison with previous constructions for the same scenarios. The
performance improvement, although smaller than for the protocols in Sect. 3, is
still significant as for some curves we obtain the first protocol for the (A private
online, B private online) scenario with client online runtime smaller than the
non-delegated pairing computation time.

Scenario (A Public Online, B Public Online). Our starting point to design
a secure pairing delegation protocol in this scenario is the protocol in Sect. 3.1,
since in both scenarios inputs A and B are publicly known. In that protocol,
however, C computes e(U1, B) in the offline phase, for some random U1 ∈ G1,
which is not possible in the current scenario given that B is only known in
the online phase. This problem is solved by C delegating the computation of
e(B,U1), which is equal to e(U1, B), to S using the protocol in Sect. 3.3 for the (B
private online, U1 private offline) scenario, which suffices for the current scenario,
where B is public online and U1 is randomly chosen in the offline phase. Moreover,
after combining the two protocols, we observe that this combination has two
independent probabilistic tests, which would result in 2 separate exponentiations
in GT to λ-bit exponents by C.

Scenario (A Private Online, B Private Online). We start by observing
that: (a) A and B are not publicly known and therefore S cannot directly com-
pute e(A,B) as in Sect. 4; (a) A and B are only known in the online phase and
therefore none of the protocols in Sect. 3 solves this case. However, it turns out
that C can suitably randomize both A and B and then use, as a black-box,
protocols for the (A public online, B public online) and (A private online, B
private offline) scenarios from previous sections, as follows. In the offline phase,
C randomly chooses r ∈ Zl and U ∈ G1 and set s = r−1. Then C and S run the



Secure and Efficient Delegation of Elliptic-Curve Pairing 63

protocol in the (A′ public online, B′ public online) scenario, where A′ = rA and
B′ = r−1(B −U), and the protocol in the (A′′ private online, B′′ private offline)
case, where A′′ = A and B′′ = U .

Table 7. Protocols comparison in scenarios where both A and B are known online

Protocols Scenario Ratio: tC/tF

BN-12
σ = 461

BLS-12
σ = 635

KSS-18
σ = 508

BLS-24
σ = 629

[14,15] [Sect. 5.2] A and B public online 1.719 1.439 0.956 1.517

[11] [Sect. 4.1] A and B public online 0.832 0.697 0.460 0.697

Ours [Sect. 4] A and B public online 0.492 0.329 0.228 0.235

[14,15] [Sect. 4.1] A and B private online 2.606 2.182 1.453 2.337

[31] [Sect. 3] A and B private online 1.719 1.439 0.956 1.517

[11] [Sect. 5.1] A and B private online 1.658 1.391 0.917 1.390

Ours [Sect. 4] A and B private online 1.090 0.777 0.540 0.649

5 Conclusions

In this paper we showed techniques for a computationally weaker client to effi-
ciently, privately and securely delegate bilinear pairings to a single, possibly mali-
cious, server. Efficiency gains obtained by our resulting protocols with respect
to the main metric (client’s online runtime) can be up to almost 1 order of
magnitude, regardless of which of the most practical elliptic curves are used for
the pairing realization. Our techniques improve the state of the art on all input
scenarios and are therefore applicable to essentially all known pairing-based cryp-
tographic protocols. Our largest improvements are in scenarios where at least
one of the two pairing inputs is known in the offline phase, which happens to
be a very typical situation in published protocols (e.g., one input is part of a
public key). Even when both pairing inputs are known in the online phase, for
some elliptic curves we show the first protocol that improves over non-delegated
computation when both inputs have privacy requirements.

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-40061-5 29

2. Asokan, N., Tsudik, G., Waidner, M.: Server-supported signatures. J. Comput.
Secur. 5(1), 91–108 (1997)

3. Atallah, M., Pantazopoulos, K., Rice, J., Spafford, E.: Secure outsourcing of sci-
entific computations. Adv. Comput. 54, 215–272 (2002)

https://doi.org/10.1007/978-3-540-40061-5_29


64 G. Di Crescenzo et al.

4. Atallah, M., Frikken, K.: Securely outsourcing linear algebra computations. In:
Proceedings of 5th ACM ASIACCS, pp. 48–59 (2010)

5. Barreto, P.S.L.M., Costello, C., Misoczki, R., Naehrig, M., Pereira, G.C.C.F.,
Zanon, G.: Subgroup security in pairing-based cryptography. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 245–
265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 14

6. Benjamin, D., Atallah, M.: Private and cheating-free outsourcing of algebraic com-
putations. In: 6th Sixth Annual Conference on Privacy, Security and Trust, pp.
240–245 (2008)

7. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

8. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45682-1 30

10. Bos, J.W., Costello, C., Naehrig, M.: Exponentiating in pairing groups. In: Lange,
T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 438–455.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7 22

11. Canard, S., Devigne, J., Sanders, O.: Delegating a pairing can be both secure and
efficient. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS,
vol. 8479, pp. 549–565. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07536-5 32

12. Cavallo, B., Di Crescenzo, G., Kahrobaei, D., Shpilrain, V.: Efficient and secure
delegation of group exponentiation to a single server. In: Mangard, S., Schaumont,
P. (eds.) RFIDSec 2015. LNCS, vol. 9440, pp. 156–173. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24837-0 10

13. Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New algorithms for secure outsourcing
of modular exponentiations. IEEE Trans. Parallel Distrib. Syst. 25(9), 2386–2396
(2014)

14. Chevallier-Mames, B., Coron, J.S., McCullagh, N., Naccache, D., Scott, M.: Secure
delegation of elliptic-curve pairing. Cryptology ePrint Archive. In report 2005/150
(2005). http://eprint.iacr.org/2005/150

15. Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure
delegation of elliptic-curve pairing. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny,
J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 24–35. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12510-2 3

16. Chevalier, C., Laguillaumie, F., Vergnaud, D.: Privately outsourcing exponentia-
tion to a single server: cryptanalysis and optimal constructions. In: Askoxylakis, I.,
Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp.
261–278. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45744-4 13

17. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using
fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 483–501. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 26

18. Di Crescenzo, G., Khodjaeva, M., Kahrobaei, D., Shpilrain, V.: Practical and secure
outsourcing of discrete log group exponentiation to a single malicious server. In:
Proceedings of 9th ACM CCSW, pp. 17–28 (2017)

https://doi.org/10.1007/978-3-319-22174-8_14
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-662-43414-7_22
https://doi.org/10.1007/978-3-319-07536-5_32
https://doi.org/10.1007/978-3-319-07536-5_32
https://doi.org/10.1007/978-3-319-24837-0_10
http://eprint.iacr.org/2005/150
https://doi.org/10.1007/978-3-642-12510-2_3
https://doi.org/10.1007/978-3-319-45744-4_13
https://doi.org/10.1007/978-3-642-14623-7_26
https://doi.org/10.1007/978-3-642-14623-7_26


Secure and Efficient Delegation of Elliptic-Curve Pairing 65

19. Di Crescenzo, G., Kahrobaei, D., Khodjaeva, M., Shpilrain, V.: Efficient and secure
delegation to a single malicious server: exponentiation over non-abelian groups. In:
Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.) ICMS 2018. LNCS, vol.
10931, pp. 137–146. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96418-8 17

20. Di Crescenzo, G., Khodjaeva, M., Kahrobaei, D., Shpilrain, V.: Secure delegation
to a single malicious server: exponentiation in RSA-type groups. In: Proceedings
of IEEE CNS, pp. 1–9 (2019)

21. Dijk, M., Clarke, D., Gassend, B., Suh, G., Devadas, S.: Speeding up exponentiation
using an untrusted computational resource. Des. Codes Crypt. 39(2), 253–273
(2006)

22. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In: Proceedings of ACM CCS Conference,
pp. 501–512 (2012)

23. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

24. Girault, M., Lefranc, D.: Server-aided verification: theory and practice. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 605–623. Springer, Heidelberg
(2005). https://doi.org/10.1007/11593447 33

25. Goldwasser, S., Tauman Kalai, Y., Rothblum, G.N.: Delegating computation: inter-
active proofs for muggles. J. ACM (JACM) 62(4), 1–64 (2015)

26. Guillevic, A., Vergnaud, D.: Algorithms for outsourcing pairing computation. In:
Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 193–211. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16763-3 12

27. Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg,
K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36492-7 20

28. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 15

29. Joux, A.: A one round protocol for tripartite Diffie–Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000). https://
doi.org/10.1007/10722028 23

30. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng pairing-
friendly elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D.,
Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-85538-5 9

31. Kang, B.G., Lee, M.S., Park, J.H.: Efficient delegation of pairing computation. In:
IACR Cryptology ePrint Archive, no. 259 (2005)

32. Liu, J.K., Au, M.H., Susilo, W.: Self-generated-certificate public key cryptography
and certificateless signature/encryption scheme in the standard model. In: Pro-
ceedings of the ACM Symposium on Information, Computer and Communications
Security. ACM Press (2007)

33. Ma, X., Li, J., Zhang, F.: Outsourcing computation of modular exponentiations in
cloud computing. Cluster Comput. 16, 787–796 (2013). (also INCoS 2012)

34. Matsumoto, T., Kato, K., Imai, H.: An improved algorithm for secure outsourc-
ing of modular exponentiations. In: Proceedings of CRYPTO 1988, pp. 497–506.
LNCS, Springer, Cham (1988)

https://doi.org/10.1007/978-3-319-96418-8_17
https://doi.org/10.1007/978-3-319-96418-8_17
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/11593447_33
https://doi.org/10.1007/978-3-319-16763-3_12
https://doi.org/10.1007/3-540-36492-7_20
https://doi.org/10.1007/978-3-540-30576-7_15
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/978-3-540-85538-5_9


66 G. Di Crescenzo et al.

35. Scott, M.: Unbalancing pairing-based key exchange protocols. In: IACR Cryptology
ePrint Archive, no. 688 (2013)

36. Shi, Y., Li, J.: Provable efficient certificateless public key encryption. In: IACR
Cryptology ePrint Archive, no. 284 (2005)

37. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010)
38. Yao, A.: Protocols for secure computations. In: Proceedings of 23rd IEEE FOCS,

pp. 160–168 (1982)


	Secure and Efficient Delegation of Elliptic-Curve Pairing
	1 Introduction
	2 Notations and Definitions
	2.1 Pairings
	2.2 Delegation Protocols: Definitions

	3 Delegating Pairings with One Offline Input
	3.1 Protocol Scenario: (A Public Online, B Public Offline)
	3.2 Protocol Scenario: (A Private Online, B Public Offline)
	3.3 Protocol Scenario: (A Private Online, B Private Offline)

	4 Delegating Pairings with Online Inputs
	5 Conclusions
	References




