
Communication-Efficient Proactive Secret
Sharing for Dynamic Groups
with Dishonest Majorities

Karim Eldefrawy1(B), Tancrède Lepoint2, and Antonin Leroux3

1 SRI International, Menlo Park, USA
karim.eldefrawy@sri.com

2 Google LLC, New York, USA
tancrede@google.com

3 École Polytechnique, Palaiseau, France
antonin.leroux@polytechnique.edu

Abstract. In Secret Sharing (SS), a dealer shares a secret s among n
parties such that an adversary corrupting no more than t parties does not
learn s, while any t + 1 parties can efficiently recover s. Proactive Secret
Sharing (PSS) retains confidentiality of s even when a mobile adversary
corrupts all parties over the secret’s lifetime, but no more than a thresh-
old t in each epoch (called a refresh period). Withstanding such adver-
saries is becoming increasingly important with the emergence of settings
where private keys are secret shared and used to sign cryptocurrency
transactions, among other applications. Feasibility of (single-secret) PSS
for static groups with dishonest majorities was recently demonstrated,
but with a protocol that requires inefficient communication of O(n4).

In this work, using new techniques, we improve over prior work in two
directions: batching without incurring a linear loss in corruption threshold
and communication efficiency. While each of properties we improve upon
appeared independently in the context of PSS and in other previous work,
handling them simultaneously (and efficiently) in a single scheme faces
non-trivial challenges. SomePSS protocols can handle batching of � ∼ n
secrets, but all of them are for the honest majority setting. The tech-
niques typically used to accomplish such batching decrease the tolerated
corruption threshold bound by a linear factor in �, effectively limiting
the number of elements that can be batched with dishonest majority.
We solve this problem by finding a way to reduce the decrease to

√
�

instead, allowing to reach the dishonest majority setting when � ∼ n.
Specifically, this work introduces new bivariate-polynomials-based shar-
ing techniques allowing to batch up to n − 2 secrets in our PSS. Next,
we tackle the efficiency bottleneck and construct a PSS protocol with
O(n3/�) communication complexity for � secrets, i.e., an amortized com-
munication complexity of O(n2) when the maximum batch size is used.

Keywords: Secret Sharing · Proactive adversary · Dishonest
majorities

T. Lepoint and A. Leroux—Work performed while the author was at SRI International.

c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 3–23, 2020.
https://doi.org/10.1007/978-3-030-57808-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_1


4 K. Eldefrawy et al.

1 Introduction

Secret sharing (SS) is a fundamental cryptographic primitive used to construct
secure distributed protocols and systems [1,9,10,17–19,22,26], and in particular
secure multiparty computation (MPC) [2,4–6,11–13,25,27,30,32]. In standard
SS [7,34], a secret s is encoded in a distributed form among n parties such that
an adversary corrupting up to t parties cannot learn the secret s, while any
t + 1 parties can efficiently recover s. In some settings, SS should guarantee
confidentiality of shared secrets and correctness of the computations performed
on the shares (if such computation is required), even when the protocol is run
for a long time [30]. Similarly, there are settings where secret shared private
keys are used sporadically over long period of time, for example to (threshold)
sign cryptocurrency transactions [8,16,24,28] or in other financial applications
and settings [29]. Requiring security for long durations brings forward a new
challenge, as it gives a mobile adversary the chance to eventually corrupt all
parties. Ensuring security against such (mobile) adversaries has recently become
of increasing importance. An SS protocol that withstands mobile adversaries is
called a Proactive Secret Sharing (PSS) protocol [26,30].

In this work, we construct an efficient PSS protocol with the following key
properties: (i) batching without incurring linear loss in the corruption threshold,
(ii) tolerating dishonest majorities, and (iii) efficient communication. We achieve
this with new techniques based on bivariate sharing. Below, we summarize grad-
ually the progression from standard SS for passive adversaries to PSS for static
groups with dishonest majorities. We explain why either the tolerated threshold
or the performance of existing protocols fall short in simultaneously achieving
the goals we strive towards. Protocols required to handle dynamic groups are
left out of this version due to space constraints, the details of handling dynamic
groups can be found in the full version [20].

Prior Work. A SS protocol [7,34] typically consists of two sub-protocols: Share
and Reconstruct. Share can be used by a dealer to share a secret s among n
parties such that an adversary corrupting no more than t parties does not learn
s, while any t + 1 parties can efficiently recover s via Reconstruct. Initially, SS
schemes only considered (exclusively) passive or active adversaries. In the mali-
cious setting, we say that a SS scheme is verifiable if some auxiliary information
is exchanged that allows players to verify that the shares are consistent; such a
SS scheme is called Verifiable Secret Sharing (VSS).

The Mixed Adversary Model and Gradual Secret Sharing. In [27], Hirt, Maurer,
and Lucas introduced the concept of mixed adversaries in SS and MPC, to
capture the trade-off between passive and active corruptions. In particular, they
develop an MPC protocol using gradual VSS against mixed adversaries that
corrupt k parties actively out of less than n − k corrupted parties total. One of
the main benefits of gradual SS is to ensure fairness, i.e., if corrupted parties
can deny the output of a protocol to the set of honest parties, then they cannot



Proactive Secret Sharing with Dishonest Majorities 5

learn the secret themselves. The key idea is to additively share the secret s
(i.e., s =

∑d
i=1 si) and then linearly share each of the si to the parties under

polynomial of (gradually) increasing degrees i = 1 to i = d. In the Reconstruct
protocol, the parties open the shares gradually, from i = d to i = 1 and incorrect
parties cannot deviate without being detected.

Proactive Secret Sharing (PSS). It may be desirable to guarantee the security
of standard (and gradual) SS throughout the entire lifetime of the secret. The
notion of proactive security was first suggested by Ostrovsky and Yung [30], and
applied to SS later [26]. Proactive security protects against a mobile adversary
that can change the subset of corrupted parties over time. Such an adversary
could eventually gain control of all parties over a long enough period, but is
limited to corrupting no more than t parties during the same time period. In
this work, we use the definition of PSS from [16,27]: in addition to Share and
Reconstruct, a PSS scheme contains a Refresh and a Recover sub-protocols.
Refresh produces new shares of s from an initial set of shares. An adversary
who controls a subset of the parties before the refresh and the remaining sub-
set of parties after, will not be able to reconstruct the value of s. Recover is
required when one of the participant is rebooted to a clean initial state. In this
case, the Recover protocol is executed by all other parties to provide shares to
the rebooted party. Such rebooting should ideally be performed sequentially for
randomly chosen parties (irrespective of their state of corruption) at a predeter-
mined rate – hence the “proactive” security concept. In addition, Recover could
be executed after an active corruption is detected.

Dynamic Proactive Secret Sharing (DPSS). PSS initially considered only static
groups. DPSS schemes are both proactively secure and allow the set of parties
to change over time [3,15,33,36,37]. To the best of our knowledge, there are
currently no DPSS schemes for dynamic groups with dishonest majorities. The
authors in [3] extended the PSS introduced in [2] with ideas from [12–14] to
produce a DPSS scheme for honest majorities only. We follow a similar approach
to extend our PSS to dynamic settings (details in the full version [20]).

Limitations of Prior Work. Our goal in this work is to address limitations
and gaps in, and open problems left by, prior PSS work, as shown in Table 1.
First, the only PSS in the dishonest majority setting [16,21] assumes a static
group of parties, i.e., unchanged during the secret lifetime. In this work, we
present a PSS protocol with dishonest majorities. Security of our protocols is
computational. Second, existing PSS protocols for the dishonest majority setting
[16,21] do not explicitly handle batching of secrets [23], i.e., sharing, refreshing,
and recovering shares of several secrets in parallel. While the authors in [16]
mention a batched version of their PSS, the paper does not provide any detail
on the effect of batching on the communication complexity nor on the security
impact in the mixed adversary setting. In this work, we introduce a notion of
batched PSS that retains fairness against mixed adversaries. Third, previous



6 K. Eldefrawy et al.

Table 1. Overview of features and limitations of current PSS protocols. Communi-
cation complexity is amortized over the number of secrets handled by the schemes.
Note that batching is briefly mentioned in [16], but no technical details are provided.
A detailed comparison of complexity of the sub-protocols and tolerated corruption
thresholds is provided in Table 2 and in the full version [20].

PSS Batching Fairness Dynamic
groups

Dishonest
majority

Communication
(amortized)

[2] ✓ ✓ ✗ ✗ ✗ O(1)

[3] ✓ ✓ ✗ ✓ ✗ O(1)

[16,21] ✓ ✗ ✓ ✗ ✓ O(n4)

This work ✓ ✓ ✓ ✓ ✓ O(n2)

Table 2. Comparison of amortized communication complexity of sub-protocols in this
work and existing PSS schemes in the dishonest majority setting for � secrets. The
communication complexities stated in the column “Dynamic” are the worst-case of
three sub-protocols required to handle dynamic groups (see [20]). We note that the
complexity of the Recover sub-protocol is per party, and this is the bottleneck since
it has to be repeated n times, once when each party is (eventually) rebooted. This
explains the O(n4) overall communication complexity of [16,21], this is not an issue
in our work because our bottleneck is the Reconstruct sub-protocol not the Recover

one.

� PSS

Share

PSS

Reconstruct

PSS

Refresh

PSS

Recover

Dynamic
Redistribute

Overall

[16,21] 1 O(n2) O(n2) O(n3) O(n3) – O(n4)

This work n − 2 O(n) O(n2) O(n) O(n) O(n2) O(n2)

This work 1 O(n) O(n3) O(n2) O(n2) O(n2) O(n3)

PSS protocols [16,21] have a large communication complexity, O(n4), and an
open problem is how to reduce the communication bottleneck in the PSS (due
to the Refresh and Recover sub-protocols) to O(n2) or O(n3). Moreover, the
additional fairness feature of [16] is costly in terms of communication and it is
not clear how this additional cost can be handled. We solve these open questions
by reducing the (amortized) communication complexity to O(n2) in the batched
setting, and O(n3) in the single secret setting. In theses improvements, we obtain
fairness with no additional cost in asymptotic communication complexity.

Our Contributions. In this work, we develop a new communication-efficient
PSS protocol for groups dishonest majorities. To achieve this, we proceed in the
following steps.

(1) Batched PSS (Without Linear Loss in the Corruption Threshold). The main
feature of this work is a new PSS scheme with O(n2) amortized communication
complexity, improving by a quadratic factor the complexity of the best known



Proactive Secret Sharing with Dishonest Majorities 7

construction for dishonest majority [16]. This improvement is mainly obtained
through a bivariate polynomials based batching technique, which deviates from
how secret sharing is performed in all previous PSS schemes for dishonest majori-
ties. While bivariate polynomials have been used before for secret sharing, we
devise a new approach to compute blinding bivariate polynomial (used in the
recover protocol, Protocol 2) that will result in a significant improvement in
the communication complexity. It is well-known that linear secret sharing with
threshold t can be extended to share � secrets s1, . . . , s� by sampling a random
polynomial f of degree t such that f(βi) = si for public values β1, . . . , β� and
distributing shares f(αi) for i = 1, . . . , n to the n parties. However, in order to
learn no information about (s1, . . . , s�) an adversary must learn at most t− �+1
evaluations of f , which yields a secret sharing scheme with threshold t − � + 1.
To remove this linear dependency, we revisit the idea of using secret sharing
with bivariate polynomials (e.g., [35]). Our new approach to construct PSS from
bivariate polynomials preserves secrecy with a corruption threshold of t−√

�+1
for any � ≤ n − 2. This yields a batched PSS scheme with sublinear reduction
in the corruption threshold.1 Since gradual SS consists of a ladder of polyno-
mial shares, the same linear dependency in the number of secrets being batched
applies to the mixed adversarial model considered in [27], which then becomes
secure against mixed adversaries that corrupt k parties actively out of less than
n − k − � corrupted parties total. Similarly, we introduce the notion of batched
gradual VSS, a batched generalization of gradual VSS [27] which is secure against
adversaries corrupting either t − �√�� parties passively, or ((n − �√��)/2) − 1
parties actively, or k parties actively out of n − k − �√��. Gradual SS aims to
obtain fairness during the reconstruction, we note that our gradual batched PSS
obtains this fairness property without any additional asymptotic costs.

(2) Efficient Communication. The techniques used above were also carefully
designed to limit the communication complexity. As shown in Table 2, our (fully)
batched PSS with dishonest majorities has an overall complexity2 of O(n2) per
secret.

(3) Accommodating Dynamic Groups. Additionally, we develop sub-protocols
for nodes to join the (SS) group, and leave it, without increasing the overall
(asymptotic) communication complexity. Protocols required to handle dynamic
groups are left out of this version due to space constraints, the details of handling
dynamic groups can be found in the full version [20].

Intuition Behind New Techniques for the Proactive Setting. We sum-
marize here the main intuition behind the techniques that enable our perfor-
mance and threshold improvements outlined in Sect. 1.

1 In [20], we give a self-contained description of the special case of � = 1 that improves
the communication complexity of the gradual VSS of [16] by O(n) without any
decrease in the corruption threshold.

2 To simplify notation we often write complexity instead of amortized complexity.



8 K. Eldefrawy et al.

(1) Addressing the Recover Bottleneck in PSS. As mentioned above, the real
bottleneck of PSS is the Recover protocol. This protocol is costly in itself and
is performed regularly on each of the participants (adding a O(n) complexity
factor to the overall communication complexity). The main challenge is to effi-
ciently generate a set of blinding polynomials. We revisit the Recover protocol to
overcome this limitation by optimizing the number of blinding polynomials gen-
erated. This improvement is made possible by the use of bivariate polynomials.
The Recover protocol is also a necessary building block for our new Refresh
protocol and the “gradual” Reconstruct protocol (see item (3) below), as it
enables a subset of participants to generate random polynomials and share them
with the rest of the parties.

(2) Batching with Bivariate Polynomials: Batching O(n) secrets saves O(n)
in the overall communication complexity, but usually reduces the threshold by
a linear factor proportional to the number of batched secrets. This severely
limits the number of elements one can batch. We use bivariate polynomials
to perform sharing (of a batch of secrets) instead of univariate polynomials. As
mentioned above, the real bottleneck in this protocol is the generation of blinding
polynomials in Recover that protects the secrets without changing their values.
We develop a new technique to generate these polynomials in O(n2) with the
number of blinding values being quadratic in n − tP . To obtain information
theoretic security for the batched secrets we need this term (n − tP )2 to be
greater than �. This leads to only a sub-linear

√
� reduction in the threshold, as

opposed to linear in �. Note that our generation of blinding bivariate polynomial
is optimal. Indeed, this blinding polynomial has degree d and the data size of a
bivariate polynomial of this degree is O(n2) when we take d = O(n) (in practice,
we take d = n − 2 for maximum security). Hence, our technique cannot yield a
protocol with better communication complexity than O(n2).

(3) Gradual Property only Needed in Reconstruction. We also observe that, in
previous work, the “gradual” feature of the underlying SS scheme (to withstand
dishonest majorities) is critically used during the Reconstruct operation only.
We will therefore work only with regular shares. To recreate a gradual SS, we
develop a new (gradual technique at the core of the) Reconstruct protocol that
creates directly a ladder of blinding polynomials that sum to 0, adds the shares
of the first element of the ladder, and then gradually reveals everything while
preserving confidentiality of the shared secrets. At the bottom layer, what is
revealed is the actual shared secret because all the blinding polynomials of the
ladder add up to 0. This enables us to save an additional factor (after batching) of
O(n) in Reconstruct. This results in a final communication complexity of O(n2)
for the Reconstruct which was the bottleneck as shown in Table 2. This also
implies that we can obtain fairness during the reconstruction without increasing
the total communication complexity.



Proactive Secret Sharing with Dishonest Majorities 9

Outline. The rest of this paper is organized as follows: Sect. 2 overviews some
preliminaries required for the rest of the paper. Section 3 provides the defini-
tion of batched PSS, i.e., multi-secret PSS with dishonest majorities. Section 4
presents a concrete efficient instantiation of a batched (static) PSS using bivari-
ate polynomials. Technical details, i.e., sub-protocols and their proofs, required
to extend the above PSS scheme to deal with dynamic groups are provided in
the full version [20].

2 Preliminaries

Throughout this paper, we consider a set of n parties P = {P1, ..., Pn}, connected
by pairwise synchronous secure (authenticated) channels and an authenticated
broadcast channel. P want to share and proactively maintain a confidential secret
s over a finite field F = Zq for a prime q.

For integers a, b, we denote [a, b] = {k : a ≤ k ≤ b} and [b] = [1, b].3 We
denote by Pk the set of polynomials of degree k exactly over F. When a variable
v is drawn randomly from a set S, we denote v ← S.

2.1 Mixed Adversaries

We first recall the model of mixed adversaries from [27]; we consider a central
adversary A with polynomially bounded computation power who corrupts some
parties passively (i.e., A learns the view of a Pi) and actively (i.e., A makes a
Pi behave arbitrarily) during a stage σ. We denote by PP (resp. PA ⊆ PP ) the
set of passively (resp. actively) corrupted parties and denote by tP (resp. tA)
its cardinality. A multi-threshold is a set of pairs of thresholds (t1, t2). We say
that (tP , tA) ≤ T for a multi-threshold T if there exists (t1, t2) ∈ T such that
tP ≤ t1 and tA ≤ t2. For two multi-thresholds Ta, Tb we say that Ta ≤ Tb if for
all (ta1, ta2) ∈ Ta, it holds that (ta1, ta2) ≤ Tb.

2.2 Security Properties

Throughout the paper, we study four security properties: correctness, secrecy,
robustness, and fairness. We denote the corresponding multi-thresholds Tc, Ts,
Tr, and Tf . Each property is considered guaranteed if (tP , tA) is smaller than
the corresponding multi-threshold. These properties are standard analytic tools
for protocols security. For a protocol Π:

– Correctness: Given the inputs from P1, .., Pn, each party engaged in Π either
obtains the correct output or obtains a special output ⊥.

– Secrecy : The adversary cannot learn more information about other parties’
inputs and outputs than can be learned from its own inputs and outputs.

– Robustness: The adversary cannot deny their output to the honest parties.
– Fairness: Either every party obtains its output or nobody does.
3 In particular, if a > b, we have [a, b] = ∅.



10 K. Eldefrawy et al.

We have Tr ≤ Tc and Tf ≤ Ts ≤ Tc since we cannot define secrecy, fairness
or robustness without correctness and secrecy is required by fairness. Note that
all the protocols in this work are not robust when there are more than a few
(generally 1 or 2) active corruptions. Thus, we do not study robustness of the
developed protocols as they do not provide it in most cases. As such, unless
explicitly specified, the robustness threshold is Tr = {(n, 1)}.

2.3 Definitions for Verifiable, Proactive, and Dynamic PSS

Verifiable Secret Sharing (VSS). A VSS scheme enables an (untrusted) dealer
to securely share a secret s among the parties in P, such that a set of honest
parties can reconstruct s if they reveal their shares to each other.

Definition 1 (Verifiable Secret Sharing [27]). A (Ts, Tr)-secure Verifiable
Secret Sharing (VSS) scheme is a pair of protocols Share and Reconstruct,
where Share takes inputs s from the dealer and Reconstruct outputs s to each
party, if the following conditions are fulfilled:

– Secrecy: if (tP , tA) ≤ Ts, then in Share the adversary learns no information
about s;

– Correctness: After Share, the dealer is bound to the values s′, where s′ = s
if the dealer is honest. In Reconstruct, either each honest party outputs s′

or all honest parties abort.
– Robustness: the adversary cannot abort Share, and cannot abort

Reconstruct if (tP , tA) ≤ Tr.

Proactive Secret Sharing (PSS). A PSS scheme is a VSS scheme secure against
a mobile adversary, i.e., realizes proactive security. We recall the definition of
PSS from [16]. In particular, a PSS scheme is a VSS scheme extended with two
additional sub-protocols: Refresh and Recover. An execution of PSS will be
divided into phases. A refresh phase (resp. recovery phase) is the period of time
between two consecutive executions of Refresh (resp. Recover). Furthermore,
the period of time between Share and the first Refresh (resp. Recover) is a
refresh phase (resp. recovery phase), and similarly for the period of time between
the last Refresh (resp. Recover) and Reconstruct.

Definition 2 (Proactive Secret Sharing [16]). A Proactive Secret Sharing
(PSS) scheme consists of four protocols Share, Reconstruct, Refresh, and
Recover. Share takes inputs s from the dealer and Reconstruct outputs s′ to
each party. Refresh is executed between two consecutive phases σ and σ +1 and
generates new shares for phase σ + 1 that encode the same secrets as the shares
for phase σ. Recover allows parties that lost their shares to obtain new shares
encoding s with the help of the other honest parties. A (Ts, Tr, Tc)-secure PSS
scheme fulfills the following conditions:

– Termination: all honest parties complete each execution of Share, Refresh,
Recover, and Reconstruct.



Proactive Secret Sharing with Dishonest Majorities 11

– Secrecy: if (tP , tA) ≤ Ts, then in Share the adversary learns no information
about s. If (tP , tA) ≤ Ts in both phases σ and σ + 1, and if Refresh and
Recover are run between phases σ and σ + 1, then the adversary learns no
information about s.

– Correctness: After Share, the dealer is bound to the values s′, where s′ = s if
the dealer is honest. If (tP , tA) ≤ Tc, upon completing Refresh or Recover,
either the shares held by the parties encodes s or all honest parties abort. In
Reconstruct either each honest party outputs s′ or all honest parties abort.

– Robustness: the adversary cannot abort Share, and cannot abort Refresh,
Recover, and Reconstruct if (tP , tA) ≤ Tr.

Dynamic Proactive Secret Sharing (DPSS). A DPSS scheme is a PSS scheme
extended by a Redistribute protocol that enables (secure distributed) transfer
of the secret s from one group of participants to another. Our DPSS definition is
inspired by a previous one in [3]. The only difference is that we do not combine
Refresh, Recover and Redistribute into one phase. We define a redistribute
phase analogously to the refresh and recover phases. The refresh phases are
denoted by σ, the redistribute phases by ω, n(ω) is the number of participants
at phase ω. The multi-thresholds Tr, Tc, Ts are considered as functions of n (the
number of participants). We denote T

(ω)
r , T

(ω)
c , T

(ω)
s the thresholds at phase ω

computed from n(ω).

Definition 3 (Dynamic Proactive Secret Sharing). A Dynamic Proactive
Secret Sharing (DPSS) scheme consists of a PSS constituted of four protocols
Share, Reconstruct, Refresh, Recover according to Definition 2 completed by
a Redistribute protocol. Redistribute is executed between consecutive redis-
tribute phases ω and ω + 1 and allows a set of n(ω) participants at phase ω
to transfer its shares to the set of n(ω+1) participants of phase ω + 1. In the
following, when we denote (tP , tA) ≤ T

(ω)
s , it is implicit that this is true dur-

ing redistribute phase ω. A (Ts, Tr, Tc)-secure DPSS scheme fulfills the following
conditions:

– For any phase ω, Share, Reconstruct, Refresh and Recover is a T
(ω)
s ,

T
(ω)
r , T

(ω)
c )-secure PSS under Definition 2.

– Termination: all honest parties complete each execution Redistribute.
– Secrecy: if (tP , tA) ≤ T

(ω)
s and (tP , tA) ≤ T

(ω+1)
s , the adversary learns no

information about s during the execution of Redistribute between phases ω
and ω + 1.

– Correctness: After Share, the dealer is bound to the values s′, where s′ = s

if the dealer is honest. If (tP , tA) ≤ T
(ω)
c , upon completing Redistribute,

either the shares held by the parties encodes s or all honest parties abort.
– Robustness: the adversary cannot abort Redistribute if (tP , tA) ≤ T

(ω)
r .

2.4 Homomorphic Commitments and VSS

To obtain security against malicious adversaries, we use a homomorphic com-
mitment scheme, e.g., Pedersen commitments [32]. We assume that all values



12 K. Eldefrawy et al.

(secrets, polynomial coefficients, commitments) are in Zq for a prime q and that
a cyclic group G of order q with two random generators g, h is distributed to the
parties. Commitment to a secret s is C(s, r) = gs · hr for a random value r. Due
to the use of Pedersen commitment scheme, our protocols are computationally
secure under the Discrete Logarithm Problem (DLP) hardness assumption.

2.5 Bivariate Polynomials

We rely on bivariate polynomials as a building block in our design of a batched
SS scheme for groups with dishonest majorities. We use polynomials of degree d
in both x and y variables. Such a polynomial g is uniquely defined by (d + 1)2

points g(x, y) with (x, y) ∈ X × Y and |X| = |Y | = d + 1. Indeed, for any
(x0, y0), the value g(x0, y0) can be found by the interpolation of g(x, y0) for all
x ∈ X. The values g(x, y0) can be interpolated with g(x, y) for all y ∈ Y . In the
following, when we say that g is a bivariate polynomial of degree d, it means
that g is of degree d in both its variables.

3 Batched PSS for a Static Group with a Dishonest
Majority

In this section, we introduce the definition of (Dynamic) Batched Proactive
Secret Sharing (BPSS). In order to understand why the batched setting requires
new definitions, we first explain the issue arising when using batching in PSS
against mixed adversaries in Sect. 3.1. Then, we introduce the definition of a
�-Batch �′-Gradual Secret Sharing in Sect. 3.2.

3.1 The Issue with the Number of Shared Secrets

Recall the naive version of Shamir’s (t, n)-secret sharing [34] for t < n: a secret
s ∈ F is stored in the constant coefficient f(0) := s of a polynomial f ∈ Pt.
Each party Pr for r ∈ [n] will receive f(αr) where the αj ’s are (public) distinct
nonzero elements and reconstruction is performed by interpolating of the value
in 0 using t + 1 evaluations of f .

The extension the above secret sharing scheme to handle batching is a well-
known construction [23]: to share � secrets s1, . . . , s�, sample a polynomial f ∈
Pt+�−1 such that f(i) = si and set αr /∈ [�]. However, now one must ensure that
t + � − 1 < n so that (s1, . . . , s�) remains information-theoretically hidden given
up to t evaluations of f in the αr’s; i.e., there is a linear dependency between
the number of shared batched secrets and the bound on the tolerated corruption
threshold (with respect to n).

Now, let us recall the core idea from [27] to design a fair secret sharing scheme
against mixed adversaries. We consider Shamir’s secret sharing extended with
homomorphic commitments in order to provide verifiability [31]. Now, during the
reconstruction step, all correct parties broadcast their shares, and secrecy is given
up against all subsets at one. Therefore, the reconstruction protocol does not



Proactive Secret Sharing with Dishonest Majorities 13

achieve fairness (that is, every party obtains its output or nobody does). In order
to achieve fairness and handle mixed adversaries, Hirt et al. [27] propose to first
split the secret into additive summands, i.e., s = s(1) + · · ·+ s(d), with d = n− 1
and then use Shamir’s (i, n)-secret sharing on s(i) = fi(0) for all i ∈ [d]. Next,
Pr for r ∈ [n] receives as share the tuple (f1(αr), . . . , fd(αr)). Reconstruction
then recovers each of the s(i) for i from d = n − 1 to 1 sequentially. If there
is a violation of fairness at any step, i.e., an s(i) cannot be reconstructed, the
protocol aborts. A mixed adversary cannot abort before the degree i0 = tP (for
i < tP the adversary already knows all the values fi(0)). In this case, to preserve
fairness the honest parties need to be able to recover all the remaining values
fi(0). Thus we have i0 + 1 ≤ n − tA. By putting the two constraints together we
obtain the bound (tP , tA) ≤ (n − k − 1, k). Additionally, since tA ≤ tP , we get
k ≤ 
n

2 � − 1.
Now, assume we want to design a batched secret sharing scheme against

mixed adversaries. Combining the above arguments prevents a mixed adversary
from aborting before the degree i0 = tP +�−1 and therefore we obtain the bound
(tP , tA) ≤ (n − k − �, k). In particular, this implies that as soon as one batches
� ≥ n/2 secrets, achieving security with a dishonest majority is not attainable.

To overcome this issue, we introduce a notion of �-Batch �′-Gradual Secret
Sharing against mixed adversaries with bound (tP , tA) ≤ (n − k − �′, k) in
Sect. 3.2; and then similarly to [16], it is easy to extend the latter primitive
to define a Batched PSS against mixed adversaries. In Sect. 4, we will instanti-
ate such a primitive for � ≤ n − 2 and �′ = �√�� by revisiting the idea of secret
sharing using bivariate polynomials (e.g., [35]).

3.2 Batched Gradual Secret Sharing Against Mixed Adversaries

Definition 4 (Gradual VSS [27]). A (Ts, Tr, Tc)-secure VSS scheme is grad-
ual if the following conditions are fulfilled: If Reconstruct aborts, each party
outputs a non-empty set B ⊂ PA and the adversary cannot obtain information
about the secret s if (tP , tA) ≤ Ts and tP ≤ n − |B| − 1.

Note that this definition is equivalent to fairness when the adversary is
bounded by a multi-threshold Tf = {(n − k − 1, k) : k ∈ [0, 
n

2 � − 1] and (n −
k − 1, k) ≤ Ts}.

Batched Gradual VSS. We naturally extend Definitions 1 and 4 to batch � secrets.
A Batch VSS scheme enables a dealer to share � secrets s1, . . . , s� among the
parties in P, such that the parties can reconstruct the secrets.

Definition 5 (�-Batch VSS). A (Ts, Tr)-secure �-Batch VSS scheme is a pair
of protocols Share and Reconstruct, where Share takes inputs s1, . . . , s� from
the dealer and Reconstruct outputs s′

1, . . . , s
′
� to each party, if the following

conditions are fulfilled:

– Secrecy: if (tP , tA) ≤ Ts, then in Share the adversary learns no information
about s1, . . . , s�;



14 K. Eldefrawy et al.

– Correctness: After Share, the dealer is bound to the values s′
1, . . . , s

′
�, where

s′
i = si if the dealer is honest. In Reconstruct, either each honest party

outputs s′
1, . . . , s

′
� or all honest parties abort.

– Robustness: the adversary cannot abort Share, and cannot abort
Reconstruct if (tP , tA) ≤ Tr.

Definition 6 (�-Batch �′-Gradual VSS). A (Ts, Tr, Tc)-secure �-Batch VSS
is �′-gradual if the following conditions are fulfilled: If Reconstruct aborts, each
party outputs a non-empty set B ⊂ PA and the adversary cannot obtain infor-
mation about the secret s if (tP , tA) ≤ Ts and tP ≤ n − |B| − �′.

This definition is equivalent to fairness when the adversary is bounded by a
multi-threshold Tf = {(n−k−�′, k) : k ∈ [0, 
n−�′

2 �−1] and (n−k−�′, k) ≤ Ts}.

4 Efficient Batched PSS Using Bivariate Polynomials

We defer the definitions of the ideal functionalities for Share, Reconstruct,
Refresh, and Recover, and their formal simulator-based security proofs, to the
full version [20]. In this section, we introduce the protocols and prove in prelim-
inary lemmas the core elements of their security proofs.

In the protocols below, we highlight the critical steps using boxes , as the
full protocols include (standard) use of commitments and openings to resist
against malicious/mixed adversaries.

4.1 The Share Protocol

We assume that α1, . . . , αn, β1, . . . , β� ∈ F are distinct public values. The num-
ber � is assumed to be smaller than d, the degree of the bivariate polynomial
produced by the sharing. With d = n−2 in practice, we have the bound � ≤ n−2
that we mentioned above.

Protocol 1. Share

INPUT: Secrets s1, . . . , s� held by a dealer PD.
OUTPUT: Each party Pr holds shares {g(αr, αr′)}r′∈[d+1] of the secrets
s1, . . . , s� (and the corresponding commitments).

1. For j ∈ [�], the dealer samples fj ← Pd such that fj(βj) = sj .

2. For r ∈ [d + 1], the dealer samples g(αr, ·) ← Pd such that

∀j ∈ [�], g(αr, βj) = fj(αr) .
(Note that this implicitly defines a bivariate polynomial g of degree d.)

3. The dealer interpolates g(x, y) and computes {g(αr, αr′)}r′∈[d+1] for

all r ∈ [n].
4. The dealer broadcasts (homomorphic) commitments of the g(αr, αr′) for

all r, r′ ∈ [d + 1].



Proactive Secret Sharing with Dishonest Majorities 15

5. Each party Pr locally computes commitments for {g(αr, αr′)}r′∈[d+1]

(using the homomorphic property for r > d+1), and the dealer sends the
corresponding opening informations to party Pr. Each party broadcasts
a complaining bit indicating if an opening received from the dealer is
incorrect.

6. For each element g(αr, αr′) for which a complaint was broadcast, the
dealer broadcasts its opening. If the opening is correct, Pr accepts the
value, otherwise the dealer is disqualified.

Lemma 1. Let d ≤ n − 1. Share is correct and preserves the secrecy of a batch
of secrets s1, . . . , s� if (tP , tA) ≤ {

(d, d)
}
.

Proof. Correctness follows from the use of homomorphic commitments which
allow the parties to verify that the dealer distributed shares for a bivariate
polynomial g of degree d in both variables.

For secrecy, we show that the adversary cannot find the values s1, . . . , s�

when tP ≤ d. Without loss of generality, we assume that the adversary controls
passively {P1, . . . , PtP } and that the dealer is honest. Hence, the adversary knows
the values {g(αr, αr′)}r′∈[d+1] for r ∈ [tP ]. It can interpolate g(αr, βj) = fj(αr)
for all r ∈ [tP ] and j ∈ [�]. For every j, since tP ≤ d, fj(βj) = sj is information-
theoretically hidden. ��
Remark 1 (Communication). In Step 4, the dealer broadcasts (d + 1)2 commit-
ments, and in Step 5, (d + 1) · n messages are sent. With d = O(n), we obtain
an amortized communication complexity of O(n2)/�.

Remark 2 (Corruption Threshold). Lemma 1 claims security for up to d corrup-
tion when we mentioned several time already that our protocol is secure up to
d + 1 − √

�. This is because the Share protocol in itself tolerates more corrup-
tions. The threshold d + 1 − √

� is a consequence of the Recover protocol, as is
explained below.

4.2 The Recover Protocol

The Recover protocol enables a set of d + 1 parties {P1, . . . , Pd+1} to send to
a recovering party PrC

its shares (g{αrC
, αr′)}r′∈[d+1]. In [16], to perform the

recovery of one value f(αrC
), each participant Pr generates one blinding polyno-

mial fr verifying f(αrC
) = 0 and share it among the other participants so that

PrC
can receive f(αr) +

∑n
u=1 fu(αr) for r ∈ [n] and interpolate f(αrC

). This
is inefficient as each value f(αr) requires O(n) communication to be blinded. In
our secret sharing, each participant Pr have a polynomial g(αr, ·). Just like in
[16], our Recover protocol requires each Pr to generate one polynomial fr veri-
fying fr(αrC

) = 0 and share it to the other. The number of blinding polynomials
remains the same, but the size of the sharing has been multiplied by a fac-
tor O(n), it yields an optimal O(1) communication complexity per value. Yet,
it will be enough to blind the batch of � secrets when the corruption thresh-
old is decreased to d + 1 − √

�. Indeed, PrC
is going tor receive the values



16 K. Eldefrawy et al.

g(αr, αr′) + fr′(αr) from each of the Pr for r′ ∈ [d + 1]. When Pr′ and PrC
are

corrupted, the adversary will be able to learn the values g(αr, αr′) for r ∈ [d+1]
that were unknown to the adversary prior to Recover. However, when both
Pr and Pr′ are honest, the value g(αr, αr′) is blinded by fr′(αr). Therefor, the
security of the � secrets is going to be protected by the (d + 1 − tP )2 values
corresponding to pairs (Pr, Pr′) of honest participants in P2. That yields the
bound tP ≤ d + 1 − √

�. The formal security analysis of Recover is provided in
the full version [20].

Overall, our Recover protocol consists of the following steps:

(a) First, the set of parties jointly generate random univariate polynomials
f1, . . . , fd+1 of degree d that evaluates to 0 in αrC

.
(b) Then, every party uses its shares of fr′ ’s to randomize its shares g(αr, αr′)

so that Prc
can interpolate g(αrC

, αr′) for r′ ∈ [d + 1].

Protocol 2. Recover

INPUT: A set P = {P1, . . . , Pd+1} with respective shares {g(αr, αr′)}r′∈[d+1]

and a recovering party PrC
.

OUTPUT: Each party Pr for r ∈ [d+1]∪{rC} obtains {g′(αr, αr′)}r′∈[d+1],
where g′(βj , βj) = g(βj , βj) for all j ∈ [�].

1. For r ∈ [d + 1], Pr broadcasts the commitments to {g(αr, αr′)}r′∈[d+1].
Each broadcast commitment consistency is locally verified; if consistency
fails, Pr broadcasts a complaining bit and the protocol aborts.

2. For r ∈ [d + 1], Pr samples fr ← Pd such that fr(αrC
) = 0 , then

broadcasts commitments of fr(αr′) for all r′ ∈ [d + 1], and then sends

an opening to the commitment of fr(αr′) to each Pr′ .
3. Each party verifies that fr′(αrC

) opens to 0 for every r′ ∈ [d + 1]. When
the opening fails, Pr′ is disqualified and added to the set of corrupted
parties B, and the protocol aborts and each party outputs B.

4. For r ∈ [d + 1], Pr locally computes fr′(αr), r′ ∈ [d + 1] and broad-
casts a complaining bit indicating if the opening is correct. For each
share fr′(αr), for which an irregularity was reported, Pr′ broadcasts the
opening. If the opening is correct, Pr accepts the value, otherwise Pr′ is
disqualified and added to the set of corrupted parties B. The protocols
aborts and each party outputs B.

5. For r ∈ [d + 1], Pr sends to PrC
openings to the values

g(αr, αr′) + fr′(αr) for all r′ ∈ [d+1]. PrC
is able to compute locally a

commitment to the values g(αr, αr′)+fr′(αr) and for each r′ broadcasts
a bit indicating if the opening was correct.

6. For each share g(αr, αr′)+fr′(αr), for which an irregularity was reported,
Pr broadcasts the opening. If the opening is correct, PrC

accepts the



Proactive Secret Sharing with Dishonest Majorities 17

value, otherwise Pr is disqualified and added to the set of corrupted
parties B. The protocols aborts and each party outputs B.

7. PrC
locally interpolates g(αrC

, αr′) for all r′ ∈ [d + 1].

Remark 3 (Communication). In Step 1, (d+1)2 commitments are broadcast. In
Step 2, (d + 2)(d + 1) openings are sent. In Step 5, (d + 1)2 openings are sent.
With d = O(n), we obtain an amortized communication complexity of O(n2)/�.

4.3 The Reconstruct Protocol

Recall that gradual verifiable secret sharing was introduced in [27] to capture
the notion of a mixed adversary by gradually reducing the number of corrupted
parties against which secrecy is guaranteed during reconstruction, and at the
same time increasing the number of corrupted parties against which robustness is
guaranteed. In particular, in [27] a secret s is split into summands s = s1+· · ·+sd

and each si is secret shared using a polynomial of degree i. During reconstruction,
the protocol aborts at step n−k only if strictly less than n−k+1 parties opened
their commitments correctly and therefore the number of active parties is lower
bounded by k. Now, if the total number of corruptions is less than n−k, then the
adversary learns nothing, which retains secrecy against adversaries controlling k
parties actively out of n − k compromised parties.

Now, let’s assume we instead have a sharing of 0 = e1 + · · · + ed (as poly-
nomials), where e1, . . . , ed−1 are bivariate polynomials of degrees 1, . . . , d − 1
respectively. Then the above protocol can be reproduced with si = ei(β) for
i < d and sd = s + ed(β); this is the core idea in the protocol below. The core
novelty of the protocol is in how to construct this ladder. We will show that by
using (i) some fixed public values λ1, . . . , λd such that

∑d
i=1 λi = 0 and (ii) the

Recover above to share freshly generated polynomials, gradually constructing
such a ladder is possible. The key idea is the following: at each step from i = d
to i = 2, the current bivariate polynomial of degree i is blinded by a random
bivariate polynomial of degree i − 1 generated by a subset of size i of the parties
and recovered with a i + 1-th party using Recover. All the blinding polynomials
ei will be constructed so that e1 + · · · + ed =

(∑d
k=1 λk

)
· Q, at the end of the

protocol for Q a random bivariate polynomial, so that
∑d

k=1 λk = 0 can even-
tually be factored out. Note that it does not harm the security to take public
λi values. Indeed, the security requires that each of the si appears uniformly
random (up to s1 that depends on s and the previous si). The way that each
gi is constructed from the Qi polynomials that are random polynomials ensures
this property.

The Reconstruct protocol is described in Protocol 3, and its correctness and
security proofs can be found in the full version [20].

Protocol 3. Reconstruct

INPUT: A set P = {P1, . . . , Pn} with respective shares {g(αr, αr′)}r′∈[d+1].
A (public) set of nonzero values (λk)1≤k≤d such that λ1 + · · · + λd = 0 and



18 K. Eldefrawy et al.

λ1 + . . . + λi �= 0 for all i < d.
OUTPUT: Values sj = g(βj , βj) for j ∈ [�] to all parties in P.

1. Initialization: Set B = ∅,i = d and the number of remaining parties as
N = n. Each party in P sets locally sj = 0 for all j ∈ [�] .

2. First step (i = d):
(a) Without loss of generality, assume P = {P1, . . . , PN}.

For r ∈ [d], Pr samples Qd−1(αr, ·) ← Pd−1 and broadcast commit-
ments to {Qd−1(αr, αr′)}r′∈[d].
Note that this implicitly defines Qd−1 a random bivariate polynomial
of degree d − 1.

(b) Using Recover, P1, . . . , Pd reveal {Qd−1(αd+1, αr′)}r′∈[d+1]

to Pd+1. If Recover aborts with output B′, sets B = B ∪ B′,
N = N − |B′| and P = P \ B′. If N > d, go to step (a), other-
wise the protocol aborts and outputs B.

(c) Denote gd = g + λdQd−1 . For r ∈ [d+1], Pr locally updates their

shares to {gd(αr, αr′)}r′∈[d+1] using the Qd−1(αr, αr′)’s, and broad-
casts commitments thereof.

3. Gradual Reconstruction: While i ≥ 2 :

(a) Wlog, assume P = {P1, . . . , PN}. For r ∈ [i + 1], Pr broadcasts

openings to {gi(αr, αr′)}r′∈[i+1] , and all parties locally verify the

openings. Let B′ denote the parties with incorrect openings. Each
party sets B = B ∪ B′, N = N − |B′| and P = P \ B′. If N > i, go
the step (b), otherwise the protocol aborts and outputs B.

(b) For r ∈ [i + 1, N ], Pr interpolates its shares {gi(αr, αr′)}r′∈[i+1].
Then, computes the values {Qi−1(αr, αr′)}r′∈[i].
Note that we have the invariant gi+ · · ·+gd = g+(λd+ · · ·+λi)Qi−1.

(c) All parties interpolate gi and update sj ← sj + gi(βj , βj) .

Set i ← i − 1.

(d) If i = 1, sets Q0 = 0 and go to Step (f).
Else, for r ∈ [i], Pr samples Qi−1(αr, ·) ← Pi−1 and broadcast com-
mitments to {Qi−1(αr, αr′)}r′∈[i+1].
Note that this implicitly defines Qi−1 a random bivariate polynomial
of degree i − 1.

(e) Using Recover , P1, . . . , Pi enable Pi+1 to obtain

evaluations of {Qi−1(αr, αr′)}r′∈[i+1] . If Recover aborts with out-

put B′, sets B = B ∪ B′, N = N − |B′| and P = P \ B′. If N > i, go
to step (d), otherwise the protocol aborts and outputs B.



Proactive Secret Sharing with Dishonest Majorities 19

(f) Denote gi = λiQi +
( ∑i−1

k=1 λk

) · (Qi − Qi−1) .

For r ∈ [i+1], Pr locally updates its shares to {gi(αr, αr′)}r′∈[i+1]

and broadcast commitments to these values.
4. Last Step (i = 1):

Wlog, assume P = {P1, . . . , PN}. Each party Pr ∈ P broadcasts open-

ings to g1(αr, α1) and g1(αr, α2) . If there are at least 2 correct set

of openings, all parties compute g1(βj , βj) for all j ∈ [�] and set

sj ← sj + g1(βj , βj) ; otherwise the protocol aborts.

Remark 4. We reiterate that we have the invariant
∑d

k=i gk = g +
(∑d

k=i λk

)
·

Qi−1, for all i ≥ 2, that comes from the fact that
∑d

k=1 λk = 0. In particular
since Q0 = 0, it holds that

∑d
k=1 gk = g. Hence, Step 3 (b) and Step 4 yield

sj =
∑d

i=1 gi(βj , βj) = g(βj , βj).

Remark 5 (Communication). Note that the Recover in Steps 2(b) and 3(e) are
ran a maximum of d + tA = O(n) times total, which yields a communication
complexity of O(n3/�). Ignoring the Recover, Step 2 requires O(n2) communica-
tion (broadcast of commitments for the new polynomials and new shares). Then,
each iteration of the loop is performed in O(i2) = O(n2) with (i + 1)2 openings
in 3(a), (i − 1)2 commitments in 3(d) and i2 commitments in 3(f). Overall, the
communication complexity of Reconstruct is O(n3/�) for � secrets.

Theorem 1. The pair of protocols (Share, Reconstruct) constitutes a (Ts, Tc)-
secure (under the DLP assumption) �-Batch

√
�-Gradual VSS, as in Definition 6,

for Ts = {(n − 1 − �√��, n − 1 − �√��)} and Tc = {(n, n − 1)}.
The proof of Theorem 1 is in the full version of this paper [20].

4.4 The Refresh Protocol

Similarly to Reconstruct, the Refresh protocol uses a blinding polynomial Q
to guarantee privacy of the secrets. This blinding polynomial Q needs to verify
Q(βj , βj) = 0 for j ∈ [�]. The easiest way to achieve this property is to take
Q(x, y) = (x − y)R(x, y) where R is a random bivariate polynomial of degree
d − 1. However, this polynomial Q is equal to zero on the entire diagonal (x, x).
To obtain the level of secrecy required for Refresh we also need to refresh
the shares g(x, x) for any x �∈ {β1, . . . , β�}.To solve this issue, inspired by the
univariate blinding factor in Recover, we blind the other diagonal values by a
univariate polynomial that evaluates to 0 in the βj . More precisely, at the end
of the protocol, we constructed g′ as g′(x, y) = g(x, y)+Q(x, y) = g(x, y)+ (x−
y) · R(x, y) + h(x) · ∏

j∈�(y − βj) where h is a random univariate polynomial in
Pd and R is a random bivariate polynomial.

Concretely, the Recover protocol is used to build and share the blinding
polynomial in the following manner:



20 K. Eldefrawy et al.

(a) First, a set of d participants generates R a random bivariate polynomial of
degree d − 1 and uses Recover to share it with the remaining participants.

(b) Then, every party generates a random univariate polynomial hr and share
it among each other, so that every participant Pr can compute its value
h(αr) =

∑n
u=1 hu(αr)

(c) Finally, all parties compute g′(αr, αr′) = g(αr, αr′)+(αr−αr′)·R(αr, αr′)+
h(αr) · ∏

j∈�(αr′ − βj) from their blinded shares.

Refresh is described in Protocol 4 and its correctness and security proofs can
be found in the full version [20].

Protocol 4. Refresh

INPUT: A set P = {P1, . . . , Pn} with respective shares {g(αr, αr′)}r′∈[d+1].
OUTPUT: Each party Pr ∈ P obtains {g′(αr, αr′)}r′∈[d+1], where
g′(βj , βj) = g(βj , βj) for all j ∈ [�].

1. For r ∈ [d], Pr samples R(αr, ·) ← Pd−1 and broadcasts homomorphic
commitments to the values {R(αr, αr′)}r′∈[d].
Note that this implicitely defines a bivariate polynomial R(x, y) of degree
d − 1.

2. For i ∈ {d + 1, ..., n}, {Pi} ∪ {P1, ..., Pd} perform Recover to provide

Pi with the shares R(αi, αr′) for r′ ∈ [d] .
Note that the first step of Recover is unnecessary since each Pi already
knows the homomorphic commitments to R.

3. For r ∈ [n], Pr samples hr ← Pd , and broadcasts commitments to the

coefficients of hr(αr′) for all r′ ∈ [d + 1]. Pr sends to Pr′ an opening of

the commitment to hr(αr′) for all r′ ∈ [d + 1].
4. For r ∈ [n], Pr locally verifies the commitments and for each r′ broadcasts

a bit indicating if the opening was correct. For every irregularity on
hr′(αr), Pr′ broadcasts the opening. If the opening is correct, Pr accepts
the value, otherwise Pr′ is disqualified and added to the set of corrupted
parties B. The protocols aborts and each party outputs B.

5. For r ∈ [n], Pr computes h(αr) =
∑n

r′=1 hr′(αr) .

6. For r ∈ [n], for all r′ ∈ [d + 1], Pr computes

g′(αr, αr′) = g(αr, αr′) + (αr − αr′) · R(αr, αr′) + h(αr) · ∏
j∈[�](αr′ − βj) .

Remark 6 (Communication). The bottleneck of the communication is during
Step 2 when (n − d) Recover are performed. In the case of maximum security
(when n−d−1 = O(1)), the communication complexity is O(n2)/� for � secrets.



Proactive Secret Sharing with Dishonest Majorities 21

Theorem 2. The four protocols Share, Reconstruct, Refresh, Recover con-
stitute a Ts, Tc-secure (under the DLP assumption) �-Batch PSS with multi-
threshold Tc = {(n, n−1)} and Ts = {(n−1−�√��, n−1−�√��)} and � = n−2.

The proof of Theorem 2 is in the full version of this paper [20].

References

1. Backes, M., Cachin, C., Strobl, R.: Proactive secure message transmission in asyn-
chronous networks. In: Proceedings of the Twenty-Second ACM Symposium on
Principles of Distributed Computing, PODC 2003, Boston, Massachusetts, USA,
13–16 July 2003, pp. 223–232 (2003). https://doi.org/10.1145/872035.872069.
http://doi.acm.org/10.1145/872035.872069

2. Baron, J., Eldefrawy, K., Lampkins, J., Ostrovsky, R.: How to withstand mobile
virus attacks, revisited. In: PODC, pp. 293–302. ACM (2014)

3. Baron, J., Defrawy, K.E., Lampkins, J., Ostrovsky, R.: Communication-optimal
proactive secret sharing for dynamic groups. In: Malkin, T., Kolesnikov, V., Lewko,
A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 23–41. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 2

4. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communi-
cation complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–
230. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 13.
http://dl.acm.org/citation.cfm?id=1802614.1802632

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1–10. ACM (1988)

6. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 39

7. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS National
Computer Conference, vol. 48, pp. 313–317 (1979)

8. Boneh, D., Gennaro, R., Goldfeder, S.: Using level-1 homomorphic encryption to
improve threshold DSA signatures for bitcoin wallet security. In: Lange, T., Dunkel-
man, O. (eds.) LATINCRYPT 2017. LNCS, vol. 11368, pp. 352–377. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25283-0 19

9. Canetti, R., Herzberg, A.: Maintaining security in the presence of transient faults.
In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 425–438. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5 38

10. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

11. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure proto-
cols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, STOC 1988, pp. 11–19. ACM, New York (1988). https://doi.org/10.
1145/62212.62214. http://doi.acm.org/10.1145/62212.62214

12. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 23

https://doi.org/10.1145/872035.872069
http://doi.acm.org/10.1145/872035.872069
https://doi.org/10.1007/978-3-319-28166-7_2
https://doi.org/10.1007/978-3-540-78524-8_13
http://dl.acm.org/citation.cfm?id=1802614.1802632
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-030-25283-0_19
https://doi.org/10.1007/3-540-48658-5_38
https://doi.org/10.1145/62212.62214
https://doi.org/10.1145/62212.62214
http://doi.acm.org/10.1145/62212.62214
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23


22 K. Eldefrawy et al.

13. Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable mul-
tiparty computation with nearly optimal work and resilience. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 14

14. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

15. Desmedt, Y., Jajodia, S.: Redistributing secret shares to new access structures and
its applications (1997). Technical Report ISSE TR-97-01, George Mason University

16. Dolev, S., Eldefrawy, K., Lampkins, J., Ostrovsky, R., Yung, M.: Proactive secret
sharing with a dishonest majority. In: Zikas, V., De Prisco, R. (eds.) SCN 2016.
LNCS, vol. 9841, pp. 529–548. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44618-9 28

17. Dolev, S., Garay, J., Gilboa, N., Kolesnikov, V.: Swarming secrets. In: Proceedings
of the 47th Annual Allerton Conference on Communication, Control, and Com-
puting, Allerton 2009, pp. 1438–1445. IEEE Press, Piscataway (2009). http://dl.
acm.org/citation.cfm?id=1793974.1794220

18. Dolev, S., Garay, J.A., Gilboa, N., Kolesnikov, V.: Secret sharing Krohn-Rhodes:
private and perennial distributed computation. In: ICS (2011)

19. Dolev, S., Garay, J.A., Gilboa, N., Yelena Yuditsky, V.K.: Towards efficient private
distributed computation on unbounded input streams. J. Math. Cryptol. 9(2), 79–
94 (2015). https://doi.org/10.1515/jmc-2013-0039

20. Eldefrawy, K., Lepoint, T., Leroux, A.: Communication-efficient proactive secret
sharing for dynamic groups with dishonest majorities. Cryptology ePrint Archive,
Report 2019/1383 (2019). https://eprint.iacr.org/2019/1383

21. Eldefrawy, K., Ostrovsky, R., Park, S., Yung, M.: Proactive secure multiparty
computation with a dishonest majority. In: Catalano, D., De Prisco, R. (eds.) SCN
2018. LNCS, vol. 11035, pp. 200–215. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98113-0 11

22. Frankel, Y., Gemmell, P., MacKenzie, P.D., Yung, M.: Optimal resilience proac-
tive public-key cryptosystems. In: 38th Annual Symposium on Foundations of
Computer Science, FOCS 1997, Miami Beach, Florida, USA, 19–22 October 1997,
pp. 384–393. IEEE Computer Society (1997). https://doi.org/10.1109/SFCS.1997.
646127

23. Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract). In: STOC, pp. 699–710 (1992)

24. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless
setup. In: ACM Conference on Computer and Communications Security, pp. 1179–
1194. ACM (2018)

25. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A.V. (ed.) STOC,
pp. 218–229. ACM (1987)

26. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how
to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
44750-4 27

27. Hirt, M., Maurer, U., Lucas, C.: A dynamic tradeoff between active and pas-
sive corruptions in secure multi-party computation. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 203–219. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 12

https://doi.org/10.1007/978-3-540-85174-5_14
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-319-44618-9_28
https://doi.org/10.1007/978-3-319-44618-9_28
http://dl.acm.org/citation.cfm?id=1793974.1794220
http://dl.acm.org/citation.cfm?id=1793974.1794220
https://doi.org/10.1515/jmc-2013-0039
https://eprint.iacr.org/2019/1383
https://doi.org/10.1007/978-3-319-98113-0_11
https://doi.org/10.1007/978-3-319-98113-0_11
https://doi.org/10.1109/SFCS.1997.646127
https://doi.org/10.1109/SFCS.1997.646127
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/978-3-642-40084-1_12


Proactive Secret Sharing with Dishonest Majorities 23

28. Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
pp. 1837–1854. ACM, New York (2018). https://doi.org/10.1145/3243734.3243788.
http://doi.acm.org/10.1145/3243734.3243788

29. Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In: ACM Conference on
Computer and Communications Security, pp. 1837–1854. ACM (2018)

30. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended
abstract). In: PODC, pp. 51–59. ACM (1991)

31. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

32. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: STOC, pp. 73–85. ACM (1989)

33. Schultz, D.: Mobile proactive secret sharing. Ph.D. thesis, Massachusetts Institute
of Technology (2007)

34. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
35. Tassa, T., Dyn, N.: Multipartite secret sharing by bivariate interpolation. J. Cryp-

tol. 22(2), 227–258 (2009)
36. Wong, T.M., Wang, C., Wing, J.M.: Verifiable secret redistribution for archive sys-

tem. In: IEEE Security in Storage Workshop, pp. 94–106. IEEE Computer Society
(2002)

37. Zhou, L., Schneider, F.B., van Renesse, R.: APSS: proactive secret sharing in asyn-
chronous systems. ACM Trans. Inf. Syst. Secur. 8(3), 259–286 (2005)

https://doi.org/10.1145/3243734.3243788
http://doi.acm.org/10.1145/3243734.3243788
https://doi.org/10.1007/3-540-46766-1_9

	Communication-Efficient Proactive Secret Sharing for Dynamic Groups with Dishonest Majorities
	1 Introduction
	2 Preliminaries
	2.1 Mixed Adversaries
	2.2 Security Properties
	2.3 Definitions for Verifiable, Proactive, and Dynamic PSS
	2.4 Homomorphic Commitments and VSS
	2.5 Bivariate Polynomials

	3 Batched PSS for a Static Group with a Dishonest Majority
	3.1 The Issue with the Number of Shared Secrets
	3.2 Batched Gradual Secret Sharing Against Mixed Adversaries

	4 Efficient Batched PSS Using Bivariate Polynomials
	4.1 The Share Protocol
	4.2 The Recover Protocol
	4.3 The Reconstruct Protocol
	4.4 The Refresh Protocol

	References




