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Abstract Following from the previous chapter Motion compensation strategies in
tomography, this article provides a complementary study on the overall information
content in dynamic tomographic data using the framework of microlocal analysis
and Fourier integral operators. Based on this study, we further analyze which
characteristic features of the studied specimen can be reliably reconstructed from
dynamic tomographic data and which additional artifacts have to be expected in
a dynamic image reconstruction. Our theoretical results, in particular the affect of
the dynamic behavior on the measured data and the reconstruction result, is then
illustrated in detail at various numerical examples from dynamic photoacoustic
tomography.

1 On Singularities and Artifacts

In the previous chapter Motion compensation strategies in tomography [16], we
studied regularization strategies for solving time-dependent inverse problems in
tomography, which arise when the investigated specimen changes during the data
acquisition process. In this article, we now provide a complementary study on the
overall information content of such dynamic tomography data. In particular, we
show how the respective information content affects the reconstruction quality.

Typically, the searched-for quantity f in tomographic applications can be
considered as a piecewise constant function, where each value represents a specific
material (e.g. bone, brain, air, etc.). In this case, the gradient ∇f –or more precisely
the singularities of f –contain much of the information about f . A rigorous
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mathematical definition of singularity is given in Sect. 2 along with an intuitive
example.

The task “finding f from measured data g = Af ” then corresponds to
“extracting the singular features of f from g”. Thus, a thorough analysis on how
an operator A encodes singular features has to be developed in order to fully
understand the reconstruction process. This in turn can provide important insights
regarding the design of reconstruction operators in order to avoid the formation of
unwanted artifacts in the resulting reconstruction.

The most prominent example is limited-angle computerized tomography. In
various applications, the radiation source cannot perform a complete 180- or
360◦ rotation around the specimen, such as for instance in dental diagnostics.
If data are only measured for a subinterval of this angular range, the standard
CT-reconstruction algorithm causes additional features, namely streak artifacts, to
appear in the reconstruction results, see Figs. 2 and 3. Furthermore, certain singular
features are missing in the reconstructed image.

An analysis of singularities and artifacts requires deep mathematics, namely the
theory of microlocal analysis which goes back to techniques developed by Hör-
mander and others based on Fourier transforms. Over the last decades, microlocal
analysis has been employed to understand image formation in static tomographic
problems such as classical X-ray CT [9, 27, 31], seismics [5, 11, 29], sonar [10, 25],
radar [1, 6, 28, 36], electron microscope tomography [32], Compton CT [34, 39],
and geodesic transforms [8, 19].

In this article, we extend these classic results to dynamic tomography problems.
In particular, we tackle the following questions:

• How does the dynamic behavior of the object affect the information content of
the data g?

• Which singular features can be reliably reconstructed from dynamic tomography
data?

• Which additional artifacts have to be expected in a dynamic image reconstruc-
tion?

Such a rigorous mathematical characterization can have great benefits in appli-
cations. For instance, it allows radiologists to determine whether a singularity in the
reconstructed image belongs to the object or represents an artifacts, thereby making
more reliable medical diagnoses. It could further serve as a basis for developing
an adaptive data sampling protocol depending on the motion of the patient so
that the measurements encode all relevant information. The analysis based on the
model operator A could also be combined with data driven methods for image
reconstruction or image post-processing in order to guarantee reliable results.

Microlocal analysis has begun to be used in motion-compensated CT [18, 22, 23]
with extensions to generalized dynamic Radon transforms [17, 33]. The aim of this
article is to provide a general framework for dynamic Fourier integral operators
along with a characterization of visible singularities and added artifacts.

With this aim in mind, the article is organized as follows. In Sect. 2, we provide
the basic concepts from microlocal analysis, including the concepts of singularities,
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Fourier integral operators and artifacts. Next, in Sect. 3, we derive the concept of
dynamic Fourier integral operators based on an underlying motion model, and we
study how these operators encode the singularities of the searched-for quantity in
the measured data. Due to their practical relevance in tomography, we provide, in
particular, a detailed analysis for the special case of generalized dynamic Radon
transforms. Section 4 addresses the reconstruction problem assuming the motion
is known exactly. In particular, we characterize visible and added singularities
in dynamic reconstructions using methods of filtered backprojection type. Our
theoretical results are then illustrated in Sect. 5 for various numerical examples from
dynamic photoacoustic tomography (PAT).

2 Basic Concepts of Microlocal Analysis

In this section we will outline the basic microlocal principles used in the article. We
refer to [20, 21, 24, 37, 38] for more details.

First, we introduce some basic notation. Let x = (x1, x2) be in R
2 and let h be

a real-valued function of variables including x. Let G = (g1, g2)
T be an R

2-valued
function of variables including x. Then we define

Dxh =
(

∂h

∂x1
,

∂h

∂x2

)
, DxG =

(
∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

)
=

(
Dxg1

Dxg2

)

and other derivatives are defined in a similar way; for example, if h depends on t ,
then we define Dth = ∂h

∂t
.

We now introduce notation for higher derivatives. Let n ∈ N, then the point
α = (α1, α2, . . . , αn) ∈ {0, 1, 2, . . . }n is called a multi-index. Let � be an open
subset of Rn and let h : � → R be smooth. Then we define

Dαh = ∂α1

∂x
α1
1

∂α2

∂x
α2
2

. . .
∂αn

∂x
αn
n

h and

|α| = α1 + α2 + · · · αn.

(1)

Now, we introduce some basic function classes. The set D(Rn) consists of all
C∞ smooth functions of compact support in R

n and fk → f in D(Rn) if for
some fixed compact set K , all fk are supported in K and fk → f uniformly along
with all derivatives. The set E(Rn) is the set of all C∞ smooth functions on R

n

with convergence in E being uniform convergence on compact sets along with all
derivatives.

The dual space toD(Rn) is denotedD′(Rn) and called the space of distributions.
Its topology is defined by weak convergence (i.e., uk → u in D′(Rn) if for every
f ∈ D(Rn), uk(f ) → u(f )). The dual space to E(Rn) is the set E′(Rn) of all
distributions of compact support with the topology defined by weak convergence on
functions in E(Rn). More details on these function spaces can be found, e.g., in [35].
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2.1 A Rigorous Theory of Singularities

Wavefront sets are a precise classification of singularities of functions and the key
to understanding them is the relation between smoothness of f and rapid decay at
infinity of its Fourier transform, Ff (y) = 1

2π

∫
x∈R2 e−iy·xf (x)dx.

Smoothness and Rapid Decay
A distribution f ∈ E′(Rn) is smooth if and only if Ff is rapidly decaying at
infinity (i.e., Ff (ξ) decays at infinity faster than any power of 1/ ‖ξ‖).

The proof of this statement uses the Fourier inversion formula [35], boundedness
of F : L1(Rn) → L∞(Rn), and that, under the Fourier transform, a derivative of f

becomes the product of a polynomial with Ff .

Definition 1 Let u ∈ D′(Rn) and let (x0, ξ0) ∈ R
n × (Rn \ {0}). Then u is smooth

at x0 in direction ξ0 if there is a smooth cutoff function at x0, ψ ∈ D(Rn) (i.e.,
ψ(x0) 	= 0) and an open cone V containing ξ0 such that F(ψu)(ξ) is rapidly
decaying at infinity for all ξ ∈ V .

On the other hand, if u is not smooth at x0 in direction ξ0, then (x0, ξ0) ∈ WF(u),
the C∞ wavefront set of u.

This definition generalizes the relation between rapid decay of Ff and smooth-
ness of f by considering decay near individual directions rather than in all
directions. Generally, the wavefront set is defined as a subset of a cotangent
bundle, but we will not use that abstraction since there is a natural identification
of Rn × (Rn \ {0}) with T ∗(Rn) \ {0}.

In particular, according to its definition, the vectors (x0, ξ0) ∈ WF(u) charac-
terize simultaneously the location, x0 ∈ R

n, and the direction, ξ0 ∈ R
n \ {0} of

singularities of f .

Example
The wavefront sets of characteristic functions can be understood intuitively.

First, let D be the unit disk in R2 and let χD , be its characteristic function.
Note that χD is smooth (either identically zero or identically one) away from
the boundary of D, namely the unit sphere S1. Therefore, the wavefront set
WF(χD) should involve only points x in this boundary. In fact, WF(χD) is
the set of normals to the boundary of the disk,

{
(x, tx)

∣∣ x ∈ S1, t 	= 0
}

(continued)
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Fig. 1 An illustration of WF(u) when u = χD is the characteristic function of the unit disk D

(left) and when u = χR is the characteristic function of a rectangle R (right)

as illustrated in Fig. 1 (left). Intuitively, these normal vectors point in the
direction of greatest “non-smoothness.”

If S is an arbitrary set with smooth boundary, then the wavefront set of χS

consists of all normals to the boundary of S.
If the set S has a corner, then the wavefront set of χS will include all vectors

at the corner. For example, the wavefront set of the characteristic function
χR of a rectangle R will include all normal vectors along the edges of the
rectangle and all vectors at the vertices of the rectangle, see Fig. 1 (right).

In general, if u is not smooth at a point x, then u has wavefront set above
x; that is, for some ξ ∈ R

2 \ {0}, (x, ξ) ∈ WF(u).

The following theorem will be important to analyze added artifacts.

Theorem 1 ([21, Theorem 8.2.10]) Let �1 be an open set in R
n and let u ∈

E′(�1). If the following non-cancellation condition holds

∀(z, ξ) ∈ WF(u) : (z,−ξ) /∈ WF(χB), (2)

then the product χBu can be defined as a distribution. In this case,

WF(χBu) ⊂ Q(B,WF(u)),

where for W ⊂ �1 × R
n \ {0}

Q(B,W) := {(z, ξ+η)
∣∣ z ∈ B, [(z, ξ) ∈ W ∨ξ = 0]∧[(z, η) ∈ WF(χB)∨η = 0]}.
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2.2 Fourier Integral Operators

In this section, we define the fundamental classes of operators on which our analysis
is based. Note that we do not give the general definitions but ones that are sufficient
for our purposes. In particular, we consider two-dimensional imaging problems
in this article, i.e. we set the dimension to n = 2 in the following. For other
applications, one would use the definition for general spaces in [38, Chapter VI.2]
or [20]. These operators are defined in terms of amplitudes and we start with this
definition.

Definition 2 (Amplitude of Order k) Let �1 and �2 be open sets in R
2 and let

m ∈ {1, 2}. Now let a(z, x, τ ) be a smooth function on �1 ×�2 ×R
m. Then a is an

amplitude of order k if it satisfies the following condition. For each compact subset
K in �1 × �2 and each M ∈ N, there exists a positive constant CK,M such that

∣∣∣Dα
z D

β
x Dγ

τ a(z, x, τ )

∣∣∣ ≤ CK,M(1 + ‖τ‖)k−|γ | (3)

for all (z, x, τ ) ∈ K × R
m whenever |α| +

∣∣∣β
∣∣∣ + |γ | ≤ M .

We now define the general class of operators we consider in this article.

Definition 3 (Fourier Integral Operator (FIO)) Let m ∈ {1, 2} and let �1
and �2 be open subsets of R

2. The real-valued function � = �(z, x, τ ) ∈
C∞ (�1 × �2 × (Rm \ {0})) is called a phase function if � is positive homoge-
neous of degree 1 in the phase variable τ . We define

�� = {
(z, x, τ ) ∈ �1 × �2 × R

m \ {0} ∣∣Dτ� = 0
}

(4)

and we call the phase function � non-degenerate if

Dz� and Dx� are both nonzero for all (z, x, τ ) ∈ ��. (5)

Now let a(z, x, τ ) be an amplitude (see Definition 2) of order k and let � be a
non-degenerate phase function.

The operator T defined for u ∈ E′(�2) by

Tu(z) =
∫

ei�(z,x,τ )a(z, x, τ )u(x)dx dτ (6)

is a Fourier Integral Operator (FIO) of order k + (m − 2)/2.
The canonical relation for T is

C := {
(z,Dz�(z, x, τ ); x,−Dx�(z, x, τ ))

∣∣ (z, x, τ ) ∈ ��

}
. (7)

Since the phase function � satisfies (5), the sets�� and C are smooth manifolds.
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Example (Radon Transform)
The mathematical model of computerized tomography is given by the classi-
cal Radon transform

Ru(ϕ, s) =
∫

u(x)δ(s − xT θ(ϕ)) dx,

which integrates u along the straight lines

{
x ∈ R

2
∣∣ xT θ(ϕ) = s

}

with θ(ϕ) = (cosϕ, sinϕ)T and δ the delta-distribution. Note that �1 =
[0, 2π ] × R with 0 and 2π identified in this case; therefore the data variable
z ∈ �1 has been replaced by (ϕ, s) ∈ [0, 2π ] ×R. This operator is an FIO of
order −1/2 with phase variable τ ∈ R \ {0} and representation

Ru(ϕ, s) =
∫

eiτ(s−xT θ(ϕ)) 1

2π
u(x) dx dτ,

where the phase function is �(ϕ, s, x, τ ) = τ(s −xT θ(ϕ)) and the amplitude
is a(ϕ, s, x, τ ) = 1

2π , which is a symbol of order zero. Note that this Fourier
representation of R is valid by the Fourier Slice Theorem (e.g., [26, Theorem
1.1]).

Example (Pseudodifferential Operators (PSIDOs))
We now define a special type of FIO. In this case, m = 2 and the phase
variable will be denoted ξ ∈ R

2. Let � be an open subset of R2.
Let the function a(z, x, ξ) for (z, x, ξ) ∈ � × � × R

2 be an amplitude
satisfying Definition 2. Define

�(z, x, ξ) = ξ · (z − x),

then � is a phase function satisfying the non-degeneracy condition (5).
Under these conditions the pseudodifferential operator (PSIDO)

Pu(z) =
∫

ei�(z,x,ξ)a(z, x, ξ)u(x) dx dξ

is an FIO satisfying Definition 3.

(continued)
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Note that, if the amplitude a has order k, then P is an FIO of order k

associated to the canonical relation

� =
{
(x, ξ, x, ξ)

∣∣ (x, ξ) ∈ � ×
(
R
2 \ {0}

)
.
}

Every smooth differential operator is a PSIDO, and its order as a PSIDO is
the same as its order as a differential operator.

2.3 FIO and Wavefront Sets

To state the theorems that describe how operators change wavefront sets, we need
the following definitions. Let X and Y be sets and let B ⊂ X × Y , C ⊂ Y × X, and
D ⊂ X. Then, we define

Ct := {
(x, y)

∣∣ (y, x) ∈ C
}

C ◦ D := {
y ∈ Y

∣∣ ∃x ∈ D, (y, x) ∈ C
}

B ◦ C := {
(x′, x) ∈ X × X

∣∣ ∃y ∈ Y, (x′, y) ∈ B, (y, x) ∈ C
}
,

(8)

and

�L : C → Y, �L(y, x) = y

�R : C → X, �R(y, x) = x

are the natural projections from C.
Next, we note that the formal dual of an FIO is an FIO.

Theorem 2 ([20, Theorem 4.2.1]) Let T be an FIO of order k with canonical
relation C. Then the formal dual operator, T∗ to T is an FIO of order k with
canonical relation Ct .

The next definition is helpful to determine which singularities are visible, as we
will discuss in the next section.

Definition 4 Let T be an FIO given by (6) with amplitude a of order k. Then T
is elliptic if its amplitude a satisfies the following condition. For each compact set
K ⊂ �1 × �2 there are constants CK > 0 and SK > 0 such that for all (z, x) ∈ K

and for all τ ∈ R
m such that ‖τ‖ > SK ,

|a(z, x, τ )| ≥ CK(1 + ‖τ‖)k.
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Our next definition is fundamental for our results.

Definition 5 Let T be an FIO with canonical relation C. Then, T satisfies the semi-
global Bolker Assumption if the natural projection �L : C → �1 × R

2 \ {0} is an
embedding–a smooth injective map with injective derivative.

Victor Guillemin [12, 14] called Definition 5 plus additional geometric condi-
tions (including that T is a Radon transform defined by a double fibration for which
the projection to X is proper, and �R is surjective) the Bolker Assumption. His
extra conditions assure that one can compose T∗ and T and that the composition
is an elliptic pseudodifferential operator. This is not true in general without extra
assumptions.

A straightforward calculation shows that PSIDOs satisfy the semi-global Bolker
Assumption.

FIOs transform wavefront sets in precise ways, and our next theorem, a special
case of the Hörmander-Sato Lemma, is a key to our analysis.

Theorem 3 ([20, Theorems 2.5.7 and 2.5.14], [38, Section 6.3, (6.22)]) Let T be
an FIO (Definition 3) with canonical relation C. Let f ∈ E′(�2). Then

WF(Tf ) ⊂ C ◦ WF(f ). (9)

If T is elliptic and satisfies the semi-global Bolker Assumption, then equality holds
in (9).

For PSIDOs, this theorem implies that WF(P(f )) ⊂ WF(f ) and equality holds
if P is elliptic since the canonical relation of PSIDOs is �.

We will need several continuity results for FIOs.

Theorem 4 ([21, Theorem 8.2.13]) Let T be an FIO satisfying Definition 3. Then
T : E′(�2) → D′(�1) is weakly continuous.

Therefore, if P is a PSIDO satisfying the conditions in the Example on
Pseudodifferential Operators , then P : E′(�) → D′(�) is weakly continuous.

Theorem 4 is valid because we assume (5) in the definition of FIO, and this
condition holds for the phase function for PSIDO. In general, FIOs are continuous
in Sobolev scale. Before stating our theorem, we provide some definitions.

Definition 6 Let � be an open subset of R
2. The set Hs

c (�) is the set of all
distributions u with compact support in � such that the Sobolev norm

‖u‖s =
√∫

ξ∈R2
Fu(ξ)

(
1 + ‖ξ‖2)s

dξ

is finite.
The set Hs

loc(�) is the set of all distributions u supported in � such that for all
cutoff functions ϕ ∈ D(�), ϕu ∈ Hs

c (�).
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We say a linear operator A : Hs
c (�2) → Hs−k

loc (�1) is continuous if for each
fixed compact set K ⊂ �2 and each ϕ ∈ D(�1), there is a constant CK,ϕ > 0 such
that for all u ∈ E′(�2) supported in K ,

‖ϕAu‖s−k ≤ CK,ϕ ‖u‖s .

Theorem 5 ([20, Theorem 4.3.1]) Let T be an FIO of order k ∈ R and assume
the projection �L : C → �1 × R

2 is an immersion (i.e. the derivative of �L is
injective). Then

T : Hs
c (�2) → Hs−k

loc (�1)

is continuous.

Therefore, if A is a PSIDO of order k then A : Hs
c (�) → Hs−k

loc (�) is
continuous.

Note that the condition in this theorem about�L will be true wheneverT satisfies
the semi-global Bolker Assumption.

2.4 Visible Singularities and Artifacts

In the rest of the article, the reconstruction operators we consider will be either
regular PSIDOs or PSIDO-like operators that have discontinuous symbols, and we
will use the theory of singularities and FIOs developed in this section to describe
what these operators can do to singularities of the object in the reconstruction step.
We now provide the basic terminology to describe this.

Definition 7 Let L be a reconstruction operator, f ∈ E′(R2), and (x, ξ) ∈ WF(f ).
Then, (x, ξ) will be a singularity of f that is visible in the reconstruction or

visible singularity if (x, ξ) ∈ WF(Lf ).
On the other hand, (x, ξ) will be an invisible singularity of f if (x, ξ) /∈

WF(Lf ).
Any singularity (y, η) ∈ WF(Lf ) that is not in WF(f ) will be called an artefact.

This terminology is illustrated using two examples from static 2D-CT. According
to the inversion formula of the Radon transform, all singularities of f can be
recovered via a filtered backprojection algorithm, if data are collected for ϕ ∈ [0, π ],
[26]. However, if a only a smaller angular range can be covered, certain singularities
will be invisible in the reconstruction and streak artifacts arise instead [31]. This
is illustrated in Fig. 2 for the Shepp-Logan phantom with ϕ ∈ [0, 3

4π ] and in
Fig. 3 for a circular phantom with ϕ ∈ [0, π

2 ] (left). For this circular phantom, the
visible/invisible singularities and the added artifacts are highlighted in Fig. 3 (right).

A detailed analysis of visible and invisible singularities as well as added artifacts
in dynamic image reconstruction is provided in Sect. 4.
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Fig. 2 Shepp-Logan
Phantom reconstructed from
2D CT-data with limited
angular range [0, 3

4π ]

Fig. 3 Left: Circular phantom reconstructed from "D-CT data with limited angular range [0, π
2 ].

Right: Visible singularities (solid line), invisible singularities (dotted line) and added artifacts
(dashed line) for a circular phantom

3 Encoding Object Singularities in Dynamic Imaging Data

In this section, we analyze how singularities of a moving object get encoded in
dynamic imaging data. Therefore, we first recall the motion model developed in the
chapter Motion compensation strategies in tomography [16] and the mathematical
characterization for our moving object.

Let [0, T ], T ∈ R>0 = (0,∞) denote the time interval required for the data
acquisition process and let RT be an open interval containing [0, T ].

A two-dimensional specimen that changes in time can be described by a time-
dependent function h : RT × R

2 → R, where h(t, ·) corresponds to the state of the
searched-for quantity at a fixed time instance t ∈ RT . We define f (x) := h(0, x)

to be the initial state of the specimen. In tomographic applications, the object under
investigation typically has compact support at all time instances. Thus, without loss
of generality, we assume f (and all object states h(t, ·), t ∈ RT ) to be compactly
supported in a fixed open set �2 ⊂ R

2.
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Let � : RT × �2 → �2 be the mapping which relates the state of the object at
time t to its reference configuration f , more precisely

h(t, x) = f (�tx).

Thus, � describes the motion of the object particles over time. More precisely, the
vector �(t, x) denotes which particle is at position x at time t .

Throughout the article, we make the following assumption on �.

Smooth Diffeomorphic Motion Model
We call a mapping � : RT × �2 → �2 a smooth diffeomorphic motion
model with motion functions �t : �2 → �2, �t := �(t, ·), if the following
conditions are satisfied:

• � : RT × �2 → �2 is smooth,
• �t : �2 → �2 is a diffeomorphism for all t ∈ RT .

Remark 1 The diffeomorphism condition guarantees that two particles cannot move
into the same position, no particle gets lost (or added) and their relocation is smooth.

In practical applications, only discrete data sets are measured, i.e. the dynamic
behavior is only ascertained for finitely many time instances, and the body does
move continuously. This justifies the assumption that � is smooth with respect to
time

3.1 Dynamic FIOs

Let T be a FIO according to Definition 3 for a static quantity f ∈ E′(�2), where we
identify one of the data variables (without loss of generality z1) as time instance t .
Thus, we replace the data variable z by (t, y) ∈ RT × � where � is an open subset
of R. This results in the representation

Tf (t, y) =
∫

ei�(t,y,x,τ )a(t, y, x, τ )f (x)dx dτ, (t, y) ∈ RT × �.

In the dynamic setting, at time t , the state of the object f (�t ·) is encoded by T,
resulting (after a change of variables) in the associated dynamic forward operator

T�f (t, y) =
∫

ei�(t,y,�−1
t x,τ )a(t, y, �−1

t x, τ ) | detDx�
−1
t x| f (x)dx dτ.
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We denote

a�(t, y, x, τ ) := | detDx�
−1
t x| a(t, y, �−1

t x, τ )

and

��(t, y, x, τ ) := �(t, y, �−1
t x, τ )

for (t, y) ∈ RT × �, x ∈ �2, τ ∈ R
m \ {0}.

Theorem 6 Let � be a smooth diffeomorphic motion model. Assume the static
operator T is a FIO of order k + (m − 2)/2 (see Definition 3) with amplitude a

of order k and non-degenerate phase function �. Further, assume

if (t, y, �−1
t x, τ ) ∈ �� and Dy� = 0, then

Dt�(t, y, �−1
t x, τ ) + Dx�(t, y, �−1

t x, τ ) · Dt�
−1
t x 	= 0.

(10)

Then, T� is a FIO of order k + (m − 2)/2 with amplitude a� of order k and phase
function �� . If, in addition, T is elliptic, then T� is elliptic.

Remark 2 Note that the condition (10) is satisfied if Dy� is never equal to zero on
��. We will see in Sect. 3.2 that this is the case for generalized Radon transforms.

Proof Since a is an amplitude of order k, this property transfers to a� due to the
smoothness of the motion functions �t and their inverse �−1

t .
By the same argument, �� inherits the smoothness property from �. Since � is

positive homogeneous of degree 1 in τ , the same holds for �� . Thus, �� is a phase
function.

Using the chain rule, we compute

D(t,y)��(t, y, x, τ ) = D(t,y)�(t, y, �−1
t x, τ ) + Dx�(t, y, �−1

t x, τ ) · D(t,y)�
−1
t x,

Dx��(t, y, x, τ ) = Dx�(t, y, �−1
t x, τ ) · Dx�

−1
t x,

and

Dτ��(t, y, x, τ ) = Dτ�(t, y, �−1
t x, τ ).

From the last property, it follows

��� =
{
(t, y, x, τ ) ∈ RT × � × �2 × R

m \ {0}
∣∣∣ Dτ�(t, y, �−1

t x, τ ) = 0
}

=
{
(t, y, x, τ )

∣∣∣ (t, y, �−1
t x, τ ) ∈ ��

}
.
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Since � is non-degenerate, Dx� is nonzero on ��. Further, �−1
t is a diffeomor-

phism for all t and therefore, Dx�
−1
t x has nonzero determinant, i.e. the matrix is

regular. Thus, on ���, the derivative Dx��(t, y, x, τ ) is nonzero. Since �−1
t x is

independent of y, it follows together with condition (10) that �� is non-degenerate,
and thus, according to Definition 3, T� is a FIO.

The ellipticity of the static FIO T transfers to its dynamic counterpart T� due
to the smoothness of the motion functions �t and inverse �−1

t and that �t is a
diffeomorphism. ��

The next statement follows directly from Theorem 3,

Theorem 7 Let T� be a FIO (according to Definition 3) with canonical relation
C� . Then, for f ∈ E′(�2),

WF(T�f ) ⊂ C� ◦ WF(f ).

Equality holds if Tγ is elliptic and satisfies the semi-global Bolker Assumption.

Thus, each singularity in the dynamic data stems from a singularity of the object.

Warning
Without additional assumptions on the motion model, the dynamic FIO T�

does not, in general, satisfy the semi-global Bolker condition, even if the
static FIO T does. An example corresponds to T being the classical Radon
transform and � describing a smooth rotational movement of the same speed
than the radiation source, see [18].

In the next section, we state additional assumptions on �, under which the
semi-global Bolker condition holds at least for dynamic generalized Radon
transforms.

3.2 Dynamic Generalized Radon Transforms

The measurement process in many imaging modalities (such as CT, PAT, sonar, etc.)
can be modelled by a generalized Radon transform, i.e. an operator that integrates
over smooth curves in the plane. We assume the curves are defined as level sets in
x of a smooth function � : RT × �2 → R. Specifically, we assume the following
hypothesis.

Hypothesis 1 Let � : RT × �2 → R. If � satisfies the following properties, then
� will be called a defining function.

1. � is smooth and for all (t, x) ∈ RT × �2, Dx�(t, x) 	= 0.
2. There is an open interval � such that for each (t, y) ∈ Rt × �



Microlocal Properties of Dynamic Fourier Integral Operators 99

S(t, y) = {
x ∈ �2

∣∣ y = �(t, x)
}

defines a nontrivial smooth curve.
3. For each t ∈ RT , �2 ⊂ ∪y∈�S�(t, y) (so the curves S(t, ·) cover �2).
4. For each compact set K ⊂ �2, there is a compact subset L of � such that

K ∩ S(t, y) = ∅ for all (t, y) ∈ RT × (� \ L).

Each part of Hypothesis 1 puts more structure on the set of curves S(t, y). Part 1
ensures that each curve is a smooth regular curve. Part 2 means that the curve S(t, y)

is defined for all y ∈ �. Part 3 means that, for each t , the curves S(t, ·) cover �2,
and part 4 will allow us to compose operators in Sect. 4.2 by assuming that S(t, y)

is “near” the boundary of �2 if y is “near” the boundary of �.
With this notation, the generalized Radon transform can be written

Af (t, y) =
∫

a(t, y, x)f (x)δ(y − �(t, x)) dx, (t, y) ∈ RT × � (11)

which integrates the quantity f weighted with the C∞ function a on the curve in
R
2 defined by y = �(t, x). Because Dx� is never zero, A can be written

Af (t, y) =
∫

eiσ(y−�(t,x))a(t, y, x)f (x)dx dσ (12)

with phase variable σ in R and phase �(t, y, x, σ ) = σ(y − �(t, x)) and
amplitude a. These statements follow from basic facts about the Fourier transform
and arguments in [2, 13] and the calculation starting at (10) in [30]. By Theorem 8
below, A is an FIO.

Due to their practical relevance, we now study this type of operators in more
detail.

With a smooth diffeomorphic motion model �, the associated dynamic forward
operator becomes

A�f (t, y) =
∫

a(t, y, �−1
t x)f (x)δ(y − �(t, �−1

t x))| detDx�
−1
t x| dx (13)

for all (t, y) ∈ RT × �. Then, the FIO version is

A�f (t, y) =
∫

eiσ(y−�(t,�−1
t x))a(t, y, �−1

t x)| detDx�
−1
t x|f (x) dx dσ. (14)

These are justified using a change of variable in (11) and in (12). To simplify the
subsequent expressions, we set

��(t, x) := �(t, �−1
t x), (t, x) ∈ RT × �2. (15)

The operator A� integrates the weighted initial state f along the curves
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S�(t, y) := {
x ∈ �2

∣∣ y = ��(t, x)
}
. (16)

Our next theorem shows that A� is an elliptic FIO under reasonable conditions.

Theorem 8 Let � be a defining function, and let A be the generalized Radon
transform defined by (11) where a in (11) is smooth. Then A is an elliptic FIO
of order −1/2.

Let � be a smooth diffeomorphic motion model. Then, the dynamic operatorA�

in (14) is an elliptic FIO of order −1/2 with amplitude

a�(t, y, s, σ ) = | detDx�
−1
t x| a(t, y, �−1

t x),

phase function

��(t, y, x, σ ) = σ(y − �(t, �−1
t x)),

defining function �� and canonical relation

C� =
{((

t, ��(t, x)
)
,
( − σ Dt��(t, x), σ

); x, σDx��(t, x)
)

∣∣ t ∈ RT , x ∈ �2, σ ∈ R \ {0}
}
.

Proof To show that A is an FIO, we first note that the phase is

�(t, y, x, σ ) = σ(y − �(t, x)).

Since Dx� is never zero, Dx� is nowhere zero, and Dy�(t, y, x, σ ) = σ is
nonzero for all σ ∈ R \ {0}, so � is a nondegenerate phase function. Therefore, A
satisfies Definition 3 and A is an FIO. Since a is smooth, positive and independent
of σ , a is an amplitude of order zero and so A is an elliptic FIO of order −1/2.

Now, we explain why A� is an elliptic FIO. Since

Dy��� = σ and Dσ ��(t, y, x, σ ) = y − ��(t, x),

the set ��� is characterized by

��� = {
(t, ��(t, x), x, σ )

∣∣ (t, x, σ ) ∈ RT × � × �2 × R \ {0}}.
Further, we obtain the derivatives

Dx�� = −σDx��,

D(t,y)�� = (−σDt��, σ ).
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In particular Dy��� is never equal to zero on ��� . Thus, A� is an elliptic FIO
of order −1/2 according to Theorem 6. The stated representation for the canonical
relation C� follows directly from the representation of the above derivatives.

The property that �� is a defining function follows from the respective property
of �. First, Dx(��) = DxφDx�

−1
t is nowhere zero by part 1 for �. This proves

part 1 for �� . The other parts of the proposition follow from the fact that, for all
t ∈ RT , �t : �2 → �2 is a bijective diffeomorphism. ��

We now state conditions on the motion model and the phase function such that
the dynamic operator A� satisfies the semi-global Bolker assumption.

Theorem 9 Let � be a defining function, and let A be the generalized Radon
transform defined by (11) where a in (12) is smooth.

Let � be a smooth diffeomorphic motion model and let A� be the dynamic FIO
(13) with �� given by (15).

We further assume, that �� satisfies the following additional conditions:

• The map

x �→
(

��(t, x)

Dt��(t, x)

)
(17)

is one-to-one for each t .
• For all x ∈ �2 and all t ∈ RT ,

det

(
Dx��(t, x)

DxDt��(t, x)

)
	= 0. (18)

Then, A� satisfies the semi-global Bolker Assumption.

Condition (17) implies the injectivity of �L, and this ensures that the data,
respectively the integration curves, can distinguish different points in the object.
Condition (18) implies that �L : C� → RT × � × R

2 \ {0} is an immersion
(i.e. its derivative is injective), and this guarantees that the integration curves vary
sufficiently to detect the object singularities. For a more detailed interpretation, we
refer to [18].

The proof has been stated in the literature, for instance in [33] for generic
integration curves, in [18] for dynamic CT or in [4] for dynamic PAT. The argument
applies by analogy to our case and is therefore omitted here.

Theorem 10 Let � be a defining function, and let A be the generalized Radon
transform defined by (11) where a in (11) is smooth. Let � be a smooth diffeomor-
phic motion model. Then, for our dynamic imaging operatorA� in (13),

WF(A�f ) ⊂ C� ◦ WF(f ).
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IfA is, in addition, elliptic (a is nowhere zero) and if the motion model satisfies the
stronger conditions (17) and (18), then

WF(A�f ) = C� ◦ WF(f ).

This theorem is a direct consequence of Theorems 7 and 8.
Using the representation of the canonical relation C� from Theorem 8, we obtain

the following explicit correspondence between wavefront ofA�f and that of f . Let
(t, y) ∈ RT × � and σ 	= 0, ν ∈ R. If

(
(t, y), (−σν, σ )

) ∈ WF(A�f ), then there
exists an element x ∈ S�(t, y) such that

(x, σDx��(t, x)) ∈ WF(f ),

where S�(t, y) is the integration curve given by (16).
If A� is in addition elliptic and satisfies the semi-global Bolker Assumption,

then, for t ∈ RT ,
(
(t, y), (−σν, σ )

) ∈ WF(A�f ) if and only if there exists an
x ∈ S�(t, y) such that Dt��(t, x) = ν and (x, σDx��(t, x)) ∈ WF(f ). In case
such a point x exists, it is unique.

We conclude this section by stating smoothing properties ofA� between Sobolev
spaces. Note that RT × � is an open subset of R2 so one can use our definitions for
Sobolev spaces on RT × �.

Theorem 11 Let � be a defining function, and let A be the generalized Radon
transform defined by (11) where a in (12) is smooth. Assume � is a smooth
diffeomorphic motion model, and assume the dynamic operatorA� in (13) satisfies
the additional condition (18). Then,

A� : Hs
c (�2) → Hs+1/2

loc
(RT × �)

is continuous.

Proof According to Theorem 8, A� is a FIO of order k = −1/2. Additionally,
condition (18) yields that the projection �L : C� → T ∗(RT × �) \ {0} is an
immersion. Hence, we can apply Theorem 5 and obtain that A� : Hs

c (�2) →
H

s+1/2
loc (RT × �) is continuous. ��
According to the above theorem, the data A�f are smoother than f by 1/2 in

Sobolev scale. In particular, for a smooth diffeomorphic motion model satisfying
(17) and (18), A� has the same smoothing property as the static operator A.

After analyzing the overall information content of dynamic data, we now study
which object singularities can be reliably reconstructed and which additional
artifacts have to be expected.
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4 Reconstruction Operators and Artefact Study

In this section, we apply the theory of microlocal analysis to define and analyze
reconstruction operators to solve dynamic inverse problemsT�f = g. From Sect. 2,
we know that Fourier integral operators encode singularities of f in specific ways.
The idea now is to construct reconstruction operators which recover the visible
singularities from the measured data g = T�f .

4.1 An Ideal Scenario: Smoothly Periodic Motion

In practical applications, data can only be measured for t in a closed interval
[0, T ] ⊂ RT . From a theoretical point of view, this is troublesome since smooth
function (and hence distributions) are defined on open sets in order for derivatives
to be well defined.

For a specific type of functions, namely smoothly T -periodic functions, this does
not impose a restriction. A function of t (and perhaps other variables) will be called
smoothly T −periodic if it extends to t ∈ R as a smooth function that is T −periodic.
This allows us to define E([0, T ] × �) to be the set of functions on [0, T ] × �

which extend to functions on R × � that are smooth and T −periodic in t . The set
D([0, T ] × �) then denotes the set of those functions with compact support.

We start our study of reconstruction operators within this idealized framework
by assuming that the motion model �, the amplitude a and the phase function �

(and � in case of a generalized Radon transform) are all smoothly T −periodic. So,
for example, � can be extended in t to a function on R and �(t, ·) = �(t + T , ·) for
all t ∈ R.

The dual operator plays a crucial role, and it is defined by

Tt
�g(x) =

∫
[0,T ]

∫
�

∫
R2

ei�(t,y,�−1
t x,τ )a(t, y, �−1

t x, τ ) | detDx�−1
t x| g(t, y) dτ dy dt.

In particular, the operator Tt
� then corresponds to the formal dual of T� for g ∈

D([0, T ] × �).
For dynamic generalized Radon transforms as in (13), this corresponds to the

backprojection operator At
� defined by

At
�g(x) =

∫
t∈[0,T ]

a�(t,��(t, x), x)g(t,��(t, x))dt, (19)

for g ∈ E(RT × �). This is true by taking the expression (13) and calculating its
dual and integrating the δ function with respect to y.
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Our next theorem provides conditions under which T� is an FIO in the
T −periodic case, and this includes dynamic generalized Radon transforms satis-
fying Hypothesis 1.

Theorem 12 Let � be a smooth diffeomorphic T −periodic motion model such that
T� is a dynamic FIO that satisfies the semi-global Bolker Assumption. In addition,
assume that T� and T�

t are both strongly continuous as mappings

T� : D(�2) → D([0, T ] × �), Tt
� : E([0, T ] × �) → E(�2). (20)

Let P be a PSIDO. Then, the operator

L� := Tt
�PT�

is well defined for f ∈ E′(�2) and

WF(L�f ) ⊂ WF(f ). (21)

Now, assume that P and T� are elliptic with positive symbols and the natural
projection �R : C� → �2 × R

2 \ {0} is surjective. Then

WF(L�f ) = WF(f ). (22)

Let � be smoothly T −periodic and satisfy Hypothesis 1 and let A be a
generalized Radon transform with defining function �. Then (20) holds for A� .
Therefore, (21) and (22) hold under the appropriate hypotheses above.

Proof Let C� denote the canonical relation of the FIO T� . Since, the operator Tt
� is

the formal dual of T� , it is a FIO as well with canonical relation Ct
� . As T� satisfies

the semi-global Bolker Assumption,

Ct
� ◦ C� ⊂ � := {

(x, ξ ; x, ξ)
∣∣ (x, ξ) ∈ �2 × R

2 \ {0}}.
According to Theorem 4, the PSIDO P : E′([0, T ] × �) → D′([0, T ] × �) is
weakly continuous. By duality with their adjoints and the continuity assumptions
(20), T� : E′(R2) → E′([0, T ] × �) is weakly continuous as is Tt

� : D′([0, T ] ×
�) → D′(�2). Therefore, the composition L� := Tt

�PT� is well-defined and
weakly continuous for f ∈ E′(�2).

Using Theorem 3, we obtain

WF(L�f ) ⊂ Ct
� ◦ C� ◦ WF(f ) ⊂ WF(f ).

Next we explain why equality holds in (21) if all operators are elliptic, T�

satisfies the semi-global Bolker Assumption and �R is surjective from C� to
�2×R

2\{0}. SinceP is a PSIDO, its canonical relation is�. Since�R is surjective,
Ct

� ◦ � ◦ C� = �. By the semi-global Bolker Assumption, the operators can be
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composed as FIO, and since they are all elliptic the symbol of the composition, L� ,
is the product symbol on the product canonical relations pulled back to � (see the
symbol calculation in [30]). In this case, L� is an elliptic PSIDO and equality holds
in (21).

Now letA be a T −periodic generalized Radon transform with defining function,
�. Since � satisfies Hypothesis 1, the dynamic generalized Radon transformA� is
a T −periodic FIO with defining function �� .

We now outline the proof of (20) for A� . Let K be a compact subset of �2
and let L ⊂ � be the compact set in Hypothesis 1 part 4 for K . Then, A� maps
functions supported in K to functions supported in [0, T ] × L. One proves that
this map is continuous from DK to D[0,T ]×L (see [35, sections 6.1-6.6]) using the
explicit expression (13) (or that A� is a generalized Radon transform, e.g., [30]).
To prove that At

� : E([0, T ] × �) → E(�2), one uses the expression (19) for At
�

and the fact that [0, T ] is compact and all functions are smoothly T −periodic. This
allows us to apply the statements for T� for A� . ��

Theorem 12 provides a strategy to design suitable reconstruction operators. If we
choose a PSIDO as above, then the operator

S� := Tt
�P

applied to the data g = T�f provides an image L�f whose singularities coincide
with singularities of the searched-for quantity f . In particular, L�f displays the
object singularities that it reconstructs at their correct location with the correct
direction, i.e. the motion is compensated for. If the operators are elliptic and the
other assumptions of Theorem 12 hold, then L�f reproduces all singularities of f .
Therefore,L�f = Tt

�PT�f = S�g can be interpreted as an approximate inversion
formula for the purpose of motion compensation.

4.2 The Realistic Case: Non-periodic Motion

The T -periodicity assumption on � in the last section imposes a severe restriction
regarding practical applications. This assumption implies that the data have to
encode the same state of the object at beginning and end of the scanning–a condition
which, in general, will not be met.

Therefore, we want to analyze this more realistic setting in the following. More
generally, we consider the scenario that data g(t, y) = T�f (t, y) are measured
for (t, y) ∈ [α, β] ⊂ RT with 0 ≤ α < β ≤ T . This framework covers, for
instance, also data acquisition protocols with limited angular range. Then, formally,
the forward operator T� needs to be restricted to the data set. This can be achieved
by multiplying with the characteristic function χ[α,β]×� of [α, β] × �.
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In order to study the effect on the singularities in the data and under reconstruc-
tion, we can apply the paradigm given in [10] which characterizes a broad range of
incomplete data problems. In particular, the study divides into the following steps:

Verify that the multiplication of χ[α,β ]×Π and Γ
is well defined for distributions f (Ω2).

Check that Γ,[α,β ] := χ [α,β ]×Π f
has compact support for (Ω2).

Construct a reconstruction operator in anal-
ogy to Section 4.1 by introducing a smooth
cut-off function such that the composition

Γ,[α,β ] := *
Γ (ρ

ρ

Γ,[α,β ]) : (Ω2) → (Ω2)

with PSIDO is well defined.

Characterize the wavefront set WF( Γ,[α,β ] f ).

f
Γ

Note if T�
∗ : D′ → D′ then the cutoff ρ is not necessary.

With this general outline, we now perform the artefact study for operator A�

from Sect. 3.2 (13), i.e. for a dynamic generalized Radon transform with smooth
diffeomorphic motion model �.

First, we verify that the multiplication with the characteristic function χ[α,β]×�

is well-defined.

Proposition 1 Assume � satisfies Hypothesis 1 and � is a smooth motion model.
Then, the operator A�,[α,β]f := χ[α,β]×�A�f is well-defined for distributions
f ∈ E′(�2).

Proof Let f ∈ E′(�2). We apply Theorem 1 with the data set B := [α, β] × �.
Using the representation of the canonical relation C� of A� (see Theorem 8), it
follows that

C� ◦ WF(f ) ⊂ {
(t, y, ξ) ∈ RT × � × R

2 \ {0} ∣∣ ξ2 	= 0
}
. (23)

However, WF(χ[α,β]) = {
(t, y, ξ1, 0)

∣∣ t ∈ {α, β} , y ∈ �, ξ1 	= 0
}
. Therefore

sums of such points are of the form (t, y, η1, ξ2) where ξ2 	= 0. Therefore, the
non-cancellation condition (2) holds, and Theorem 1 can be used to conclude that
A�,[α,β]f is well-defined for f ∈ E′(�2). ��
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Proposition 2 Assume � satisfies Hypothesis 1 and � is a smooth motion model.
Then, A�,[α,β]f has compact support for all f ∈ E′(�2), i.e. A�,[α,β] : E′(�2) →
E′(RT × �).

Proof Let f ∈ E′(�2). By Theorem 8,�� is a defining function. Thus, according to
Hypothesis 1 part 4, there is a compact set L ⊂ � such thatA�f (t, y) is supported
on RT × L.

Because χ[α,β] is zero for t /∈ [α, β] and all y and A�,[α,β]f is zero for all y

outside a compact set, the product, A�,[α,β]f has compact support in [α, β] × L.
��

The formal dual toA� on RT × � is given by

A∗
�g(x) =

∫
RT

a�(t, ��(t, x), x) g(t,��(t, x))dt. (24)

Since the domain ofA∗
� is not, in general,D′(RT ×�), we multiply by a smooth

cutoff function. Therefore, let ρ : RT → R be smooth and equal to one on [α, β]
and be supported in RT . The corresponding restricted backprojection operator is
then given by

At
�,ρg := A∗

�(ρg). (25)

In analogy to Sect. 4.1, we would like to consider

L�,[α,β] := At
�,ρPA�,[α,β], (26)

with a PSIDO P to build a reconstruction operator for the non-periodic case.
Therefore, we have to prove that this composition is well-defined.

Proposition 3 Let P be a pseudodifferential operator, then At
�,ρ , P, and A�,[α,β]

can be composed and L�,[α,β] : E′(�2) → D′(�2) is well-defined.

Proof From Propositions 1 and 2, we know that A�,[α,β]f ∈ E′(RT × �) for
f ∈ E′(�2). Therefore, PA�,[α,β]f is defined as a distribution in D′(RT × �).

Since Mρ : g �→ Mρ := ρg is a trivial pseudodifferential operator, which is
continuous onD(RT ×�), the operatorMρA� = ρA� is continuous fromD(�2)

to D(RT × �). Here we use Hypothesis 1 and the fact that ρ has compact support
in t .

This implies, that the dual (MρA�)∗ = (ρA�)∗ = A∗
�ρ = At

�,ρ is weakly
continuous from D′(RT × �) toD′(�2). Therefore, L�,[α,β] is well-defined. ��

We now state the main result of this section, which provides a characterization
of the visible singularities and the possible added artifacts from data above [α, β].
Theorem 13 Let f ∈ E′(�2) and � be a smooth diffeomorphic motion which
satisfies the additional conditions (17) and (18). Further, let P be a PSIDO and
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L�,[α,β] be given by (26) where � satisfies Hypothesis 1. Then,

WF(L�,[α,β]f ) ⊂ (WF(f ) ∩ V[α,β]) ∪ Z{α,β}(f ),

where

V[α,β] := {
(x, σ∂x��(t, x))

∣∣ x ∈ �2, t ∈ [α, β], σ ∈ R \ {0}}

is the set of all (potentially) visible singularities from data above [α, β], and

Z{α,β}(f ) := {
(x, σDx��(t, x))

∣∣ t ∈ {α, β}, y ∈ �, x ∈ S�(t, y), σ ∈ R \ {0},
∃x̃ ∈ S�(t, y) : (x̃, σDx��(t, x̃)) ∈ WF(f )

}

denotes the set of (possible) added artifacts.

Proof Since ρ is a smooth cutoff, At
�,ρ is a FIO with the same canonical relation

as A∗
� . Thus, we have

WF(L�,[α,β]f ) = WF(At
�,�PA�,[α,β]f ) ⊂ Ct

� ◦ WF(PA�,[α,β]f ). (27)

Further, P is a pseudodifferential operator, i.e. its canonical relation is � and
therefore

WF(PA�,[α,β]f ) ⊂ WF(A�,[α,β]f ).

Following Proposition 1 and Theorem 1, we obtain

WF(A�,[α,β]f ) ⊂ Q([α, β] × �,WF(A�f )) (28)

with Q defined in Theorem 1. From Theorem 10, we know WF(A�f ) ⊂ C� ◦
WF(f ) and hence

WF(L�,[α,β]f ) ⊂ Ct
� ◦ Q([α, β] × �,C� ◦ WF(f )). (29)

From the definition, we get

Q([α, β] × �,C� ◦ WF(f ))

= {
(z, ξ + η)

∣∣ z ∈ [α, β] × �,[(z, ξ) ∈ C� ◦ WF(f ) ∨ ξ = 0]
∧ [(z, η) ∈ WF(χ[α,β]×�) ∨ η = 0]}.

This set can be written as a union of three sets

Q([α, β] × �,C� ◦ WF(f )) =(C� ◦ WF(f )) ∩ ([α, β] × � × R
2 \ {0})
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∪ WF(χ[α,β]×�)

∪ W{α,β}(f ),

where W{α,β}(f ) summarizes the case ξ 	= 0 ∧ η 	= 0, i.e. the set is defined by

W{α,β}(f ) := {
(z, ξ + η)

∣∣
z ∈ [α, β] × �, (z, ξ) ∈ C� ◦ WF(f ), (z, η) ∈ WF(χ[α,β]×�))

}
= {

((t, y), (ν, σ )
∣∣ t ∈ {α, β}, ν ∈ R, y ∈ �, σ ∈ R \ {0},

∃x ∈ S�(t, y) : (x, σDx��(t, x)) ∈ WF(f )
}
.

Hence, we obtain

WF(L�,[α,β]f ) ⊂Ct
� ◦ [

(C� ◦ WF(f )) ∩ ([α, β] × � × R
2 \ {0})] (30)

∪ Ct
� ◦ WF(χ[α,β]×�) (31)

∪ Ct
� ◦ W{α,β}(f ). (32)

Under the additional conditions (17) and (18) on the motion �, A� satisfies the
semi-global Bolker Assumption (see Theorem 9). Thus, Ct

� ◦ C� ⊂ � and Ct
� ◦

C� ◦ WF(f ) ⊂ WF(f ).
Therefore, the first component (30) yields

Ct
� ◦ [

(C� ◦ WF(f ))∩([α, β] × � × R
2 \ {0})]

⊂ WF(f ) ∩ (Ct
� ◦ ([α, β] × � × R

2 \ {0})).

Since

Ct
� = {

(x, σDx��(t, x); (t, ��(t, x)),(−σ∂t��(t, x), σ ))
∣∣

t ∈ [α, β], x ∈ �2, σ ∈ R \ {0}}

we obtain

Ct
� ◦ ([α, β]×�×R

2 \ {0})={
(x, σDx��(t, x))

∣∣ t ∈ [α, β], x ∈ �2, σ ∈ R \{0}}
= V[α,β].

For the second component (31), we have Ct
� ◦ WF(χ[α,β]×�) = ∅, since for any

(x, ξ) ∈ WF(χ[α,β]×�) it is ξ2 = 0, but for all vectors ((z, η), (x̃, ξ̃ )) ∈ Ct
� we have

ξ̃2 = σ 	= 0.
Now, we consider the third set (32): Ct

� ◦ W{α,β}(f ).
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Let ρ = ((t, y), (ν, σ )) ∈ W{α,β}(f ). Then, we obtain from the definition of the
set W{α,β}(f ), that t ∈ {α, β}, ν ∈ R, y ∈ �, σ ∈ R \ {0} and that there exists an
element x ∈ S�(t, y) with (x, σDx��(t, x)) ∈ WF(f ). So any element of the set

Ct
� ◦ {ρ} = {

(x̃, σDx��(t, x̃))
∣∣ (x̃, σDx��(t, x̃), ρ) ∈ Ct

�

}
(33)

has to fulfill s = ��(t, x̃) (by definition of Ct
�) and

ν = −σDt��(t, x̃) ⇔ − ν

σ
= Dt��(t, x̃).

Since ν is arbitrary, the set (33) is nonempty. Hence, for any x̃ ∈ S�(t, y), we have
(x̃, σDx��(t, x̃)) ∈ Ct

� ◦ W{α,β}(f ) and

Ct
� ◦ W{α,β}(f )={

(x̃, σDx��(t, x̃))
∣∣ t∈{α, β}, y ∈ �, x̃ ∈ S�(t, y), σ ∈ R \ {0},

∃x ∈ S�(t, y) : (x, σDx��(t, x)) ∈ WF(f )
}

= Z{α,β}(f ).

This concludes the proof. ��
The above theorem shows that only singularities, which are in the visibility range

(i.e., in V[α,β]) can be reconstructed from the dynamic data, whereas singularities
outside of this range are smoothed. According to the computations within the
proof, the singularities arising in a reconstruction L�f can be divided into three
categories:

• Visible singularities of f from data above [α, β]
(corresponding to the set WF[α,β](f )),

• Added artefacts that stem from the scanning geometry and that are independent
of the object f
(corresponding to the set Ct

� ◦ WF(χ[α,β]×�)),
• Added artefacts that stem from the object

(corresponding to the setZ�,[α,β]).

The proof further reveals that the artefact set Ct
� ◦ WF(χ[α,β]×�) is empty in our

case of generalized Radon transforms. However, for different cutoff functions than
χ[α,β]×�, this might no longer be the case, see [3].

The added artefacts stemming from the object can be descriptively characterized
as follows. If (x, σ∂x��(t0, x)) ∈ WF(f ), where t0 ∈ {α, β}, then this singularity
of f can generate artifacts along the curve S�(t0, ��(t0, x)).

In the next section we illustrate this theoretical characterization by numerical
examples.
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5 Numerical Results

In this section, we want to illustrate our theoretical results at numerical examples
from Photoacoustic tomography (PAT).

In this imaging modality, an organism is subjected to non-ionizing laser pulses.
The biological tissue absorbs a part of the delivered energy and converts it into
heat generating ultrasonic pressure waves (photoacoustic effect). The emitted waves
propagate through the medium and are measured by transducers located outside the
organism on an observation surface. The goal is to recover the initial pressure f (x)

from the measured response g since it encodes characteristic information about the
biological tissue.

In practical PAT applications, the object is not entirely surrounded by trans-
ducers. We consider the case where the transducer rotates around the object, thus
acquiring the data g sequentially in time [4, 17].

Under simplifying assumptions, the measured data g match in the two-dimen-
sional setting with the circular Radon transform of the initial pressure f (x), i.e.

g(t, y) = 1

2πy

∫
f (x) δ(y − ‖θ(t) − x‖) dx =: Af (t, y),

for f ∈ E′(V1(0)), V1(0) being the open unit disk and where (t, y) ∈ [0, 2π ] ×
(0, 2) and θ(t) = (cos t, sin t)T . In particular A represents a FIO with amplitude
a(y) = (2πy)−1 and phase function �(t, y, x, σ ) = σ(y − �(t, y, x)), where
�(t, y, x) = ‖θ(t) − x‖ is a defining function according to our Hypothesis 1.

If the searched-for quantity changes during the sequential data acquisition
according to a smooth diffeomorphic motion model �, the corresponding dynamic
forward operator

A�f (t, y) = 1

2πy

∫
f (x) | detD�−1

t x| δ(y − ‖θ(t) − �−1
t x‖) dx (34)

is a FIO according to Theorem 8 which integrates the reference configuration f (x)

along the curves

S�(t, y) := {x ∈ V1(0)
∣∣ y = ��(t, x)}

with

��(t, x) = ‖θ(t) − �−1
t x‖. (35)

If the motion model fulfills the additional conditions (17) and (18), thenA� satisfies
the semi-global Bolker Assumption.

In particular, we want to illustrate the reconstruction results obtained by applying
an operator of type
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S� := At
�,[0,2π ]P

to the dynamic data g(t, y) = A�f (t, y), (t, y) ∈ [0, 2π ] × (0, 2) with

Pg(t, y) =
∫

∂rr∂rg(t, r) log |r2 − y2| dr

stemming from the inversion formula for A in the static case, see [7, 17]. In the
following examples, we simulate (dynamic) PAT data by discretizingA�f with the
trapezoidal rule with 1400 samples, where f is the respective phantom. The discrete
dynamic data is then given by

gi,j := (A�ti
f )(ti , yj ), i = 1, . . . , N and j = 1, . . . , M,

with N = 300 uniformly distributed angles ti in [0, 2π ] and M = 300 uniformly
distributed radii yj in (0, 2]. The reconstructed images are computed on a 600×600
grid.

5.1 2π-Periodic Motion

For our first numerical example, we consider the ideal scenario (from Sect. 4.1),
where we have a smooth and 2π -periodic motion model. More precisely, we
consider the rotation matrix

Bt =
(

cos (2t) sin (2t)
− sin (2t) cos (2t)

)
,

which defines a 2π -periodic motion �tx = Btx for x ∈ R
2 and t ∈ [0, 2π ].

The dynamic behavior of the object–namely a rotation in the same direction as the
transducer but twice as fast–is illustrated in Fig. 4. In particular, with � describing
such a rotational movement, the representation (34) of the dynamic FIO A�

simplifies to

A�f (t, y) = 1

2πy

∫
f (x) δ(y − ‖Btθ(t) − x‖) dx,

i.e. the dynamic behavior of f can be equivalently expressed by adapting the
rotation of the transducer, see [16] for more details.

From our theory (in particular Theorem 12), we expect to see no additional
artefacts and, since all singularities are encoded in the data according to the theory
developed in Sect. 3, we anticipate to see all singularities correctly reconstructed.
These theoretical results are indeed confirmed by our numerical reconstruction
result in Fig. 5.
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Fig. 4 Movement of phantom in [0, π ] for t = 0, π
2 , 3π

2 , π . This movement is repeated in
[π, 2π ]

Fig. 5 Left: Ground-truth phantom. Right: Dynamic reconstruction under the 2π -periodic rota-
tional motion model �t = Bt

5.2 Non-periodic Motion

In our next examples, we consider the more realistic case of a non-periodic motion.
In order to make clearly observable the visible (and invisible) singularities and the
additional artifacts, which we expect from our theory (Sect. 4), we first consider a
less complex phantom, namely a circle (see Fig. 6 (left)).

We start with an example that illustrates the following: Even in case of a full data,
i.e. when all object singularities are encoded in the measured data, added artifacts
can appear if the object is not in the same state at the beginning and the end of the
scanning. As example, we consider the rotation matrix

Gt =
⎛
⎝ cos

(
− 2

3 t
)

sin
(
− 2

3 t
)

− sin
(
− 2

3 t
)
cos

(
− 2

3 t
)
⎞
⎠

and the associated motion model �tx = Gtx, for x ∈ R
2 and t ∈ [0, 2π ]. In this

example, the investigated object rotates in the opposite direction than the transducer.
Thus, the transducer in relation to the object can perform at least one complete turn
(even more) around the object, i.e. all object singularities are encoded in the dynamic
data.
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Fig. 6 Ground-truth phantom (left) and dynamic reconstruction (right)

Since �0x = x, the transducer position at t = 0 is θ(0) = (1, 0)T . Further, we
have

��(t, x) = ‖θ(t) − G−1
t x‖ = ‖Gtθ(t) − x‖,

since Gt is an isometry. Hence, the transducer position at t = 2π with respect

to the initial state of the object is given by Gtθ(t) = θ
(
5t
3

)
= θ

(
10
3 π

)
=

θ
(
4
3π

)
=

(
− 1

2 ,−
√
3
2

)T

. In the interval [0, 4
3π ] the object is scanned twice and

thus, all singularities of the object are visible in the reconstruction, see Fig. 6, where
the contour of the circle is clearly visible.

However, we notice in the dynamic reconstruction Fig. 6 (right) the appearance
of additional artifacts which occur because the motion is not 2π -periodic. We have

Dx��(t, x) =
x − θ

(
5t
3

)

‖θ
(
5t
3

)
− x‖

,

so any singularity (x, ξ) of f with

ξ = σDx��(t, x) = σ
x − θ

(
5t
3

)

‖θ
(
5t
3

)
− x‖

= σ̃
(
x − θ

(
5t
3

))
,

for σ̃ ∈ R \ {0} and t ∈ {0, 2π} can create artifacts along the curve

S�(t,��(t, x)) =
{
x̃ ∈ R

2 : ��(t, x̃) = ��(t, x)
}

=
{
x̃ ∈ R

2 : ‖θ
(
5t
3

)
− x̃‖ = ‖θ

(
5t
3

)
− x‖

}
.
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Fig. 7 Dynamic reconstruction with the visible singularities (left) and added artifacts (right)
predicted by our theory highlighted in red

Hence, the artifacts appear along circle lines with centers θ(0) = (1, 0)T and

θ
(
4
3π

)
=

(
− 1

2 ,−
√
3
2

)T

, when a singularity of f is conormal to the circle. Figure 7

confirms that the additional artifacts predicted by our theory match the artifacts
arising in our numerical reconstruction result.

Our next example shows that the dynamic behaviour of the investigated object
can cause a limited-data problem. Here, we consider the rotation matrix

Rt =
⎛
⎝ cos

(
3
4 t

)
sin

(
3
4 t

)
− sin

(
3
4 t

)
cos

(
3
4 t

)
⎞
⎠

and the respective motion model �tx = Rtx, for x ∈ R
2 and t ∈ [0, 2π ]. In this

example, the object performs a rotational movement in the same direction as the
rotation of the transducer.

The transducer position at t = 0 is θ(0) = (1, 0)T as in the example before and
the source position at t = 2π is now given by Rtθ(t) = θ

(
t
4

) = θ
(

π
2

) = (0, 1)T .
This scenario corresponds to the static limited angle case, where the object is only
scanned for transducer locations associated to the interval [0, 3

2π ] � [0, 2π ].
To validate our theory, we again compare the observed artifacts with their

analytic characterization from Sect. 4.2. We have

Dx��(t, x) = x − θ
(

t
4

)
‖θ (

t
4

) − x‖ ,

so any singularity (x, ξ) of f with

ξ = σDx��(t, x) = σ
x − θ

(
t
4

)
‖θ (

t
4

) − x‖ = σ̃
(
x − θ

(
t
4

))
,

for σ̃ ∈ R \ {0} and t ∈ {0, 2π} can create artifacts along the curve
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Fig. 8 Ground-truth phantom (left) and dynamic reconstruction (right)

Fig. 9 Left: Visible (red solid line) and invisible (red dashed line) singularities. Right: Added
artifacts (red)

S�(t,��(t, x)) =
{
x̃ ∈ R

2 : ��(t, x̃) = ��(t, x)
}

=
{
x̃ ∈ R

2 : ‖θ (
t
4

) − x̃‖ = ‖θ (
t
4

) − x‖
}

.

I.e. here, the artifacts appear along circle lines with centers θ(0) = (1, 0)T and
θ

(
π
2

) = (0, 1)T , when a singularity of f is conormal to the circle, see Fig. 9 (right).

Since the visible singularities are given by

V[0,2π ] =
{(

x, σ̃
(
x − θ

(
t
4

))
dx

) : t ∈ [0, 2π ], x ∈ R
2, σ̃ ∈ R \ {0}

}

=
{
(x, σ̃ (x − θ(tv)) dx) : tv ∈ [0, π

2 ] ∪ [ 3π2 , 2π ], x∈R2, σ̃∈R \ {0}
}

,

singularities (x, ξ) of f with direction ξ = σ(x − θ(tξ )), tξ ∈ (π
2 , 3π

2 ), cannot be
reconstructed from the dynamic data, see Figs. 8 and 9 (left).

As we can see in Fig. 9 visible singularities and added artifacts appear as
predicted from our theory.
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Fig. 10 Movement of phantom in [0, 2π ] for t = 0, 2π
3 , 4π

3 , 2π

This example shows, that the dynamic behavior can result in limited data
problems (even though in the static case, the measured data would have been
sufficient to recover all singularities).

After this detailed study, we finally want to provide one last example with the
phantom from Sect. 5.1 and a more complex motion model, namely the non-affine
(and non-periodic) deformation illustrated in Fig. 10.

Regarding the dynamic behavior, we consider

�tx = ZtAtx,

with the rotation matrix

At =
⎛
⎝ cos

(
1
2 t

)
sin

(
1
2 t

)
− sin

(
1
2 t

)
cos

(
1
2 t

)
⎞
⎠

and the non-affine motion described by Z0x = x and

(Ztx)i = ( 4
√
5mi(t)xi + 1)5 − 1

5 4
√
5mi(t)

,

for t ∈ (0, 2π ] and i = 1, 2 with

m1(t) = sin

(
0.005

(
t
N + 1

2π
− 1

)
3

N

)
,

m2(t) = sin

(
0.007

(
t
N + 1

2π
− 1

)
3

N

)
.

Applying our reconstruction method to the corresponding dynamic data set
provides an image showing the visible singularities of the initial object state as
well as additional artifacts, see Fig. 11 (right), which are caused by the object
singularities encoded at beginning and end of the scanning and which spread along
the respective integration curves. In particular, we observe that the artifacts spread
along deformed circle lines due to the non-affine motion model.
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Fig. 11 Ground-truth phantom (left) and dynamic reconstruction (right)

6 Conclusion

In this chapter, we analysed the overall information content of dynamic tomography
data using the framework of Fourier integral operators and microlocal analysis. In
particular, we extended our previous results in [18] and [17] to a larger class of
operators. Based on this analysis, we further provided a detailed characterization
on what is visible in a respective reconstruction result assuming the motion is
exactly known, which we illustrated with various numerical examples from dynamic
photoacoustic tomography.

The developed theory can further be utilized to study the scenario where only
incorrect motion information are available (accounting for instance for modelling
or estimation errors). So far, this has been studied for instance in [15] for the
specific example of dynamic computerized tomography. The gained insights could
then serve as a guiding principle for the design of motion estimation protocols or
additional artifact reduction strategies.
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