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Abstract Imaging modalities have been developed and established as important
and powerful tools to recover characteristics of the interior structure of a studied
specimen from induced measurements. The reconstruction process constitutes a
well-known application of the theory of inverse problems and is well understood
if the investigated object is stationary.

However, in many medical and industrial applications, the studied quantity shows
a time-dependency, for instance due to patient or organ motion. Most imaging
modalities record the data sequentially, i.e. temporal changes of the object during the
measuring process lead to inconsistent data sets. Therefore, standard reconstruction
techniques which solve the underlying inverse problem in the static case lead to
motion artefacts in the computed image and hence to a degraded image quality.

Consequently, suitable models and algorithms with a specific treatment of the
dynamics have to be developed in order to solve such time-dependent imaging
problems. This article provides a respective theoretical framework as well as
numerical results from different imaging applications, including a study of 3D cone-
beam CT.

1 Motivation and State-of-the-Art

Over the past decades, tomographic techniques have been developed and established
as powerful and important tools for non-invasive imaging with various applications
from clinical diagnosis to non-destructive testing. Exploiting the properties of an
imaging agent, e.g. propagation of electromagnetic waves, the induced response
from a studied medium is measured. The reconstruction of the searched-for
function, characteristic of the medium, from the collected data thus matches with
solving an associated inverse problem. If the object under investigation is stationary
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Fig. 1 Temporal changes of a specimen during the data acquisition in computerized tomography
(left) and standard reconstruction applied to dynamic data (right)

during the time-dependent scanning, the reconstruction process is well known for
most of the imaging systems, see [37].

However, the stationary-assumption is often not satisfied. Prominent examples
arise in medical imaging due to respiratory and cardiac motion, gastrointestinal
motility, blood flow or body movement of Parkinson patients or infants. Besides
clinical applications, investigating dynamic objects arouses the interest in non-
destructive testing such as imaging driven liquid fronts for oil recovery studies [2],
performing elasticity experiments during the scan to determine material parameters
[22], or imaging objects in working stage, e.g. aircraft engines [5].

The dynamic behaviour of the investigated object during the data collection leads
to an inconsistent data set. Therefore, standard reconstruction techniques which
solve the underlying inverse problem in the static case lead to motion artefacts in
the computed image (e.g. blurring, ghosting, distortions) which can significantly
degrade the image quality and hence misleads the diagnosis [12, 27, 47], see also
Fig. 1. For hybrid imaging methods, these artefacts lead to spatial misalignments
of the reconstructions which significantly reduce the diagnostic accuracy and hence
affect the success of the treatment [36].

Dynamic Inverse Problems
Following [44], we refer to an inverse problem, where the investigated object
is allowed to change during the measuring process, as dynamic inverse
problem.
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1.1 Hardware-Based Artefact Reduction Strategies

In medical imaging, the periodic nature of physiologic motion can be exploited
to reduce motion artefacts by hardware-based gating methods. External devices,
e.g. electrocardiographs and thoracic belts, detect respiratory expansion and/or
cardiovascular motion, and are then used to collect and assort the measured data
to specific phases in the motion cycle [9, 13]. A main drawback of the described
artefact reduction procedures is their restriction to periodic (patient) motion and
hence, it cannot be extended e.g. to applications in non-destructive testing.

Another, intuitive approach is to reduce the required data acquisition time for
individual imaging modalities by faster scanners or reduced sampling in data
space. In [42], and recently in [38], a multi-source computerized tomography set-
up is proposed to avoid the time-consuming rotation of a single radiation source.
However, this decreases the signal-to-noise-ratio and hence the quality of the
reconstructed image.

1.2 Reconstruction Techniques for Motion Compensation

A more general approach is provided by motion compensation methods, where the
dynamical information is incorporated in the reconstruction step.

For individual imaging modalities like CT, MRI or PET, several methods of this
type have been proposed in the literature, see below for an overview.

Gating methods in general neglect the strong temporal correlation between the
single phases. By taking temporal redundancies into account, the reconstruction step
can be formulated as a variational problem [10, 39]. If explicit deformation models
are incorporated, e.g. in terms of an optimal flow constraint or shape information,
this approach leads to non-convex optimization problems [3–5, 28, 29].

For special deformations which preserve the underlying data acquisition geom-
etry, exact analytic reconstruction methods have been derived, especially in com-
puterized tomography, where this type of motion includes affine deformations,
[7, 8, 14, 43]. In this case, techniques for rebinning the measured data to make them
feasible for standard reconstruction methods are proposed as well, [5, 34]. Besides
iterative methods, e.g. [1, 21], approximate inversion formulas have been derived
in computerized tomography to compensate for general, non-affine deformations
[23, 24].

So far, only a few regularization techniques have been developed in the general
context of dynamic linear inverse problems [25, 44, 45], which have been applied in
computerized and impedance tomography, respectively. The more recent article [6]
proposes a computational method in a Bayesian framework along with an approach
to quantify uncertainties of the obtained solution. However, especially the method
in [44, 45], suffers from high computational costs and the motion artefacts are not
entirely eliminated.
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1.3 Outline of the Article

This article is devoted to the study of regularization methods for dynamic inverse
problems, summarizing the theoretical framework provided in [14–16] and present-
ing novel numerical results from various imaging applications. More precisely, we
study the application of our theory in the context of photoacoustic tomography and
3D cone-beam CT, whereas the mentioned previous articles evaluated the respective
theory at the example of 2D computerized tomography with parallel scanning
geometry.

In Sect. 2, we incorporate the time-dependency of the investigated object in
the inverse problem associated to the static case by means of diffeomorphic
motion models. We then provide an overview of strategies to estimate the motion
information from the measured data, which allows to assume the motion to be
known prior to the actual reconstruction step.

The resulting mathematical model of dynamic inverse problems gives then rise to
a classification scheme distinguishing two cases depending on the object’s motion.
Section 3 summarizes a general regularization theory for the first category of
moderate deformations, a subclass of affine deformations, which was developed in
detail in [16]. The theoretical results are evaluated at an example from photoacoustic
tomography.

For the more general second category of strong deformations, a regularization
strategy is developed in Sect. 4 by extending the method of the approximate
inverse to the time-dependent setting as initially proposed in [15]. The design of
efficient algorithms is discussed and evaluated at the example of 3D cone-beam
computerized tomography.

2 The Mathematical Model of Dynamic Inverse Problems

This section is devoted to the derivation of suitable mathematical models for
dynamic inverse problems with a specific treatment of the dynamics.

First, we derive a motion model based on the physical observation that the
particles forming the material body change their position in space over time. An
object which is changing in time is described by a sequence of functions ft : Rn →
R, t ∈ [0, T ] ⊂ R, representing the different configurations over time. Thus,
the motion can be described by a sequence of displacements which correlate the
different states of the body to one reference configuration. In particular, this motion
model corresponds to the Lagrangian description which gives the trajectory of each
material particle starting from the initial position [48].

Finally, the model describing the dynamic inverse problem is obtained by
combining the motion model with the forward operator from the underlying static
scenario.
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Fig. 2 Illustration of the motion model in terms of �t (left) and �t (right)

2.1 Diffeomorphic Motion Models

Throughout the article, let [0, T ] ⊂ R denote an interval covering the time period
required for the measurement process. Without loss of generality, we consider the
initial state of the object, denoted by f0, as the reference configuration represented
in the cartesian coordinate system of Rn. The motion of the particles can then be
expressed by a sequence of mappings �t : Rn → R

n, t ∈ [0, T ] with �0(x) =
x. Considering the particle initially located at position x ∈ R

n, the vector �t(x)

denotes its position at time t , see Fig. 2 (left).
Motivated by medical applications and elastic deformations in non-destructive

testing, �t is assumed to be a diffeomorphism for all t ∈ [0, T ] and we denote
�t := �−1

t . The descriptive interpretation of the mapping �t is the following: The
particle located at x at time t was at the initial time at position �tx, see Fig. 2 (right).

Using the motion functions �t , t ∈ [0, T ] and the initial state function f0, we
find the state of the object at time instance t to be

f (t, x) = f0(�t (x)). (1)

To simplify the notation, we write �tx instead of �t(x).

Remark 1 This motion model is intensity preserving, i.e. each particle keeps its
initial intensity over time. Analogously, a mass preserving model of type

f (t, x) = f0(�tx) | detD�tx|

could be considered. Please note that this simply results in different weights within
the mathematical model of dynamic inverse problems. In particular, this does not
alter the nature of our reconstruction algorithms, as explained in [18].

Support Condition
In applications, the studied specimen, more precisely f0 and all its trans-
formed versions ft , t ∈ [0, T ] typically have compact support. In particular,

(continued)
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we assume

supp(f0(�t ·)) ⊂ �X for all t ∈ [0, T ] (2)

with a bounded subset �X ⊂ R
n. Further, throughout the article, we make

use of the continuous extension f0(x) := 0 for x /∈ �X.

We next address how such motion information can be extracted from measured
data.

Extraction of Motion Information
In applications, the exact motion, i.e. the motion functions �t : Rn → R

n, t ∈
[0, T ] are in general unknown. If modelled by suitable basis functions bk , e.g.
B-splines [50] with coefficients wk(t) ∈ R,

�t(x) =
N∑

k=1

wk(t)bk(t, x),

this requires to estimate the paramters wk(t) prior to or within the reconstruc-
tion step.

Recovering both the unknown parameters and the reference image of
the object simultaneously leads to non-convex optimization problems of
extremely large size, [3]. This complexity however can be reduced by
decoupling the two tasks.

For instance, the calibration of the deformation parameters is proposed
to be performed via additional measurements with external devices or
via additional images, eventually obtained from another imaging modality
[1, 7, 35, 40, 41]. In [34], linear scaling and translation parameters are
estimated directly from dynamic, two-dimensional CT-data without any prior
knowledge about the object or any additional measurement. This approach
is extended in [17] to general parametrized deformation maps. The authors
in [24] propose an iterative procedure: If edges look cluttered in an initial
reconstruction, the reconstruction step is repeated with an updated motion
model.

In the following, we want to focus on the aspect of motion compensation.
Therefore, throughout the article, we assume the deformation maps �t , t ∈ [0, T ],
to be known.
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2.2 Model Operators for Dynamic Linear Inverse Problems

We now turn to the derivation of forward operators modelling dynamic inverse
problems. To this end, we combine our motion model with the mathematical model
that characterizes the underlying static case.

Many imaging modalities can be modelled mathematically by a linear integral
operator represented by a kernel k : [0, T ] × R

m × R
n → R (or C) via

A : L2(�X) −→ L2([0, T ] × �Y )

Ah(t, y) =
∫

Rn

h(x) k(t, y, x) dx, (3)

where �X and �Y denote bounded subsets of Rn and R
m, respectively. In this

model, the codomain of A is already given in the time-resolved form (i.e. the
time instance t arises explicitly as one of the data variables) accounting for a
time-dependent data acquisition. However, the investigated object described by h

is assumed to be static. Therefore, we refer to the problem

“ Find h from Ah(t, y) = g(t, y), t ∈ [0, T ], y ∈ �Y ” (4)

as static inverse problem.

Example (Static CT)
The mathematical model for 2D computerized tomography (CT) is given by
the 2D Radon transform

R : L2(V1(0)) −→ L2([0, 2π ] × R)

Rh(ϕ, s) =
∫

R2
h(x) δ(s − xT θ(ϕ)) dx

with θ(ϕ) = (cos(ϕ), sin(ϕ))T , the delta-distribution δ and the unit circle
V1(0). This model corresponds to the integration of the searched-for static
quantity h, which is compactly supported in V1(0), along the straight lines

L(ϕ, s) := {x ∈ R
2 : xT θ(ϕ) = s}. (5)

In modern CT scanners, all detector points record simultaneously. Thus,
the time consuming step of the data acquisition protocol is the rotation
of the radiation source around the specimen. Since the source position is

(continued)



58 B. N. Hahn

characterized by the angle ϕ, this is the data variable that can be uniquely
identified by a time instance t and vice versa. Thus, the mapping

R : L2(V1(0)) −→ L2([0, 2π ] × R)

Rh(t, s) =
∫

R2
h(x) δ(s − xT θ(t)) dx

matches the time-resolved representation (3).

We now derive the mathematical model for the associated time-dependent inverse
problem. Let the sequence of functions (ft )t∈[0,T ], ft : Rn → R, characterize the
time-dependent object with compact support in �X ⊂ R

n. Then, at time instance t ,
the measurement g(t, ·) encodes the state ft . Thus, the associated dynamic inverse
problem is given by

Adynf (t, y) = g(t, y) (6)

with the dynamic operator

Adynf (t, y) := Aft (t, y)

and f ∈ L2([0, T ] × �X), f (t, x) := ft (x). Thus, Adyn can be considered as
mapping from L2([0, T ] × �X) into L2([0, T ] × �Y ). If the static operatorA is of
type (3), then

Adynf (t, y) =
∫

Rn

f (t, x) k(t, y, x) dx.

From this representation, it becomes clear that additional information are required in
order to extract the time-dependent quantity f from the dynamic data g = Adynf .

Additional Information Required
The added time dimension regarding the searched-for quantity results in an
incomplete data problem: In the static case, all measured data, i.e. g(t, ·) ∀ t ∈
[0, T ], encode the information about one single object state. For instance
in CT, this corresponds to recovering a function from all its line integrals.
In contrast, in the dynamic scenario, only a very small portion of the data,
namely g(t, ·) for one single time instance t , encode each individual state. In

(continued)
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CT, this corresponds to the task of recovering each state ft from a subset of
its line integrals (namely only from line integrals in direction θ(t)⊥).

Thus, solving dynamic inverse problems typically requires the incorpora-
tion of some additional information. Hence, we now incorporate temporal
correlations of the individual object states in terms of a motion model as
described in Sect. 2.1.

Incorporating correlation (1), i.e. f (t, x) = f0(�tx), in the definition of the
dynamic forward operatorAdyn, we obtain the following operatorA� for the initial
state function

A�f0(t, y) :=
∫

Rn

f0(�tx) k(t, y, x) dx,

which depends on the motion functions �t , t ∈ [0, T ]. In particular, the substitution
x �→ �tx yields the equivalent representation

A�f0(t, y) =
∫

Rn

| detD�−1
t (x)| f0(x) k(t, y, �−1

t x) dx. (7)

The support condition (2) ensures that the range R(A�) is a subset of L2([0, T ] ×
�Y ). Thus, A� can be considered as mapping from L2(�X) → L2([0, T ] × �Y ).

If the deformation fields �t are known, the dynamic inverse problem (6) reduces
to determining f0 from the equation

A�f0 = g. (8)

Example (Dynamic CT)
In dynamic 2D CT, the inverse problem

R�f0 = g

has to be solved with the dynamic forward operator

R�f0(t, s) =
∫

| detD�−1
t x| f0(x) δ(s − (�−1

t x)T θ(t)) dx.

This operator integrates a weighted version of the reference state f0 along the
curved lines

(continued)



60 B. N. Hahn

Fig. 3 Integration curves in
the static case (left) and in
case of a non-affine
deformation (right)

C�(t, s) = {x ∈ R
2 | (�−1

t x)T θ(t) = s},

see also Fig. 3.
If the dynamic behaviour is described by affine deformations, i.e. �tx :=

Atx + bt with At ∈ R
2×2 and bt ∈ R

2 for all t ∈ [0, T ], then the integration
curves simplify to

CAt ,bt (t, s) = {x ∈ R
2 | xT (AT

t θ(t)) = s + AT
t bt }.

Thus, in this particular case, they correspond to shifted and rotated versions of
the original straight lines L(t, s) from the static case, see (5), and the dynamic
operator R� can be related to the underlying static operator R by a change of
coordinates in data space. This means

R� = VR

with suitable transformation V.
In general, however, it is not possible to express a curved line as rigid

transformation of a straight line. In this case, the dynamic model R� cannot
be related to R by modifying the data acquisition scheme, so we can say they
differ strongly.

This observation from dynamic CT motivates the following classification scheme
for dynamic inverse problems.

Classification Scheme [16]
Let A be a static operator and let (�t )t∈[0,T ] be a motion model. If there
exists a diffeomorphism M : [0, T ] × R

m → [0, T ] × R
m and a continuous

function α : [0, T ] × R
m → [0, T ] × R

m \ {0} such that

(continued)
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A� = VA

with an operator

Vg(y) = α(t, y) g(M(t, y)), (9)

then the motion model (�t )t∈[0,T ] is called moderate with respect to A.
Otherwise, we speak of a strong motion model with respect toA.

The operator V as in (9) is studied in more detail in Theorem 1.

Inverse problems, including (6) and (8), are in general ill-posed and thus, a
regularization method is required to solve these problems. In the following sections,
we address the derivation of suitable dynamic regularizations for both types of
deformations.

We conclude this section by stating the representation of the adjoint operators
A∗

� and Adyn∗
, since they play an important role throughout the article. For the

time-resolved operator Adyn∗
, we calculate

Adyn∗
g(t, x) =

∫

�Y

k(t, y, x) g(t, y) dy.

A change of coordinates in the integral 〈A�f, g〉L2 leads to the representation

A∗
�g(x) =

∫

[0,T ]×�Y

k(t, y, �−1
t x) g(t, y) dt dy. (10)

If we denote

At : L2(�X) −→ L2(R
m)

f �→ At f (y) := Af (t, y)

for fixed t ∈ [0, T ], then, with

A∗g(x) =
∫

[0,T ]
A∗

t gt (x) dt,

it holds

Adyn∗
g(x) = A∗

t gt (x), (11)

and
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A∗
�g(x) =

∫

[0,T ]
| detD�−1

t x|A∗
t gt (�

−1
t x) dt (12)

for g ∈ L2([0, T ] × R
m) with gt (y) := g(t, y).

With the mathematical model at hand, we now develop suitable regularization
methods within the subsequent sections.

3 Compensating Moderate Deformations

In this section, we study regularization strategies for dynamic inverse problems with
moderate motion. To this purpose, we consider the more general setting of A being
a mapping into a weighted L2-space, i.e.

A : L2(�X) → L2([0, T ] × �Y ,w)

with a measurable weight w. Considering such weighted L2-spaces has several
advantages, for instance with respect to mapping properties or the derivation of a
singular value decomposition. Regarding the Radon transform R for instance, the
singular value decomposition is known if R is considered as mapping L2(V1(0)) →
L2([0, 2π ] × [−1, 1], w) with weight w(s) := (1 − s2)−1/2.

In case of a moderate deformation, the dynamic forward operatorA� is given by
A� = VA with an operatorV as stated in (9). We start by summarizing properties
of this mapping V from [16].

Theorem 1 The operator

V : L2([0, T ] × �Y ,w) −→ L2(M([0, T ] × R
m),w�)

Vg(t, y) = α(t, y) g(M(t, y))

with weight w�(t, y) = | detDM(t, y)| α(t, y)−2 w(M(t, y)) is linear and bijective
with inverse

V−1 = V∗.

Proof According to its Definition, V is linear. We first compute its adjoint

V∗ : L2(M([0, T ] × �Y ),w�) −→ L2([0, T ] × �Y ,w).

It holds

〈Vg, h〉L2([0,T ]×�Y ,w�) =
∫

[0,T ]×�Y

Vg(t, y) h(t, y)w�(t, y) dtdy
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=
∫

[0,T ]×�Y

α(t, y)−1 g(M(t, y)) h(t, y) | detDM(t, y)| w(M(t, y)) dtdy

=
∫

M([0,T ]×�Y )

g(t, y)m
(
M−1(t, y)

)−1
h(M−1(t, y))w(t, y) dtdy

= 〈g,V∗h〉L2(M([0,T ]×�Y ),w)

with V∗h(t, y) = m
(
M−1(t, y)

)−1
h(M−1(t, y)). For g ∈ L2([0, T ] × �Y ,w),

we further obtain

V∗Vg(t, y) = m
(
M−1(t, y)

)−1
Vg(M−1(t, y))

= m
(
M−1(t, y)

)−1
m

(
M−1(t, y)

)
g(M(M−1(t, y)))

= g(t, y),

and respectively for g ∈ L2(M([0, T ] × �Y ),w�)

VV∗g(t, y) = g(t, y),

i.e. V−1 = V∗. ��
Due to the properties of V verified in Theorem 1, many properties of the static

operator A transfer directly to its dynamic counterpart A� . A detailed overview
is given in [16]. The following Lemma states some of these properties which are
relevant regarding the formulation of suitable dynamic regularization methods.

Lemma 1

(i) IfA : L2(�X) → L2([0, T ] × �Y ,w) is continuous, then

A� : L2(�X) → L2(M([0, T ] × �Y ),w�)

is continuous.
(ii) Regarding the nullspace, noted N, it holds

N(A�) = N(A). (13)

(iii) LetA† be the generalized inverse ofA. Then, the pseudoinverse ofA� is given
by

A†
� = A†V−1.
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Proof

(i) Since V is a unitary transformation, it holds

‖A�‖L2(M([0,T ]×�Y ),w�) = ‖A‖L2([0,T ]×�Y ,w).

(ii) The nullspace property follows from the bijectivity of V.
(iii) Let f = A†

�g, i.e. f ∈ N(A�)⊥ and A∗
�A�f = A∗

�g. Since V is a unitary
operator, it holds

A∗
�A� = A∗V∗VA = A∗A,

and further

A∗Af = A∗V−1g.

Due to the nullspace property (13), f ∈ N(A�)⊥ implies f ∈ N(A)⊥. Thus,
f = A†V−1g.

��
From the proof of Lemma 1 iii), it follows directly for the domain D(A†

�) =
R(A�) ⊕ R(A�)⊥, where R(A�) denotes the range of A�:

Corollary 1 For g ∈ D(A†
�), it holds V−1g ∈ D(A†).

With these properties, we can show the following regularization property.

Theorem 2 Let the family (Tγ )γ∈(0,∞) be a regularization forA†. Then, the family
(Sγ )γ∈(0,∞) with

Sγ := TγV−1

is a regularization for A†
� .

Proof Let g ∈ D(A†
�) and ‖g − gε‖ ≤ ε. With Corollary 1, it follows V−1g ∈

D(A†) and due to the unitary property of V, it holds ‖V−1g − V−1gε‖ = ‖g −
gε‖ ≤ ε. Since (Tγ )γ∈(0,∞) is a regularization forA†, we obtain with the parameter
choice rule γ = γ (ε, gε) and the regularizing property of (Tγ )γ∈(0,∞)

lim
ε→0

gε→g

Sγ (ε,gε)g
ε = lim

ε→0
gε→g

Tγ (ε,gε)V−1gε = A†V−1g = A†
�g.

This concludes the proof. ��
Thus, for moderate deformations, we obtain a dynamic regularization method

for solving A�f0 = g by adapting any static regularization for A according to the
transformV.
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Further properties, including a singular value decomposition and a characteri-
zation of the ill-posedness of the dynamic forward operator A� under moderate
deformation � can be found in [16].

Example: Photoacoustic Tomography
To illustrate the theoretical results of this section, we consider the static
inverse problem Af = g with the circular Radon transform

Af (θ(t), r) = 1

2πr

∫

V1(0)
f (x) δ(r − ‖θ(t) − x‖) dx, (14)

which integrates a measurable function f supported inside the unit disk
V1(0) ⊂ R

2 along circles

C(t, r) = {x ∈ R
2 : ‖x − θ(t)‖ = r}

with θ(t) = (cos(t), sin(t))T and (t, r) ∈ [0, 2π ] × (0,∞). This operator
represents for instance a simplified mathematical model in 2D photoacoustic
tomography (PAT), see for instance [26].

Theorem 3 Let (�t )t∈[0,T ] describe a rotational movement of the initial state
f0, i.e. �tx := Atx with unitary matrix

At =
(
cos(ωt ) − sin(ωt )

sin(ωt ) cos(ωt )

)
∈ R

2×2

for all t ∈ [0, 2π ] with ωt ∈ R such that {θ(t + ωt) : t ∈ [0, 2π ]} = S1.
Then, the dynamic operator A� is related to the static transform A via

A� = VA

withVg(θt , r) = g(θωt+t , r).

Thus, rotations as stated in the Theorem are moderate deformations with
respect to the spherical Radon transform.

Proof According to (7), the dynamic operator A� with the stated motion
model is given by

A�f (t, r) = 1

2πr

∫

V1(0)
| detA−1

t | f (x) δ(r − ‖θ(t) − A−1
t x‖) dx.

(continued)
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For each t ∈ [0, 2π ], At represents a rotation with angle ωt , i.e. it holds
| detA−1

t | = 1, and we further obtain

A�f (θ(t), r) = 1

2πr

∫

V1(0)
f (x) δ(r − ‖Atθ(t) − x‖) dx

= VA�(θ(t), r)

withVg(θ(t), r) = g(θ(ωt + t), r). ��
Remark 2

(i) Please note that the property {θ(t + ωt) : t ∈ [0, 2π ]} = S1

guarantees the required diffeomorphism property of the transform T :
S1 × (0,∞) −→ S1 × (0,∞). Descriptively, this condition ensures that
all information about the object f are actually encoded in the dynamic
data g = A�f . This is studied in more detail in the subsequent book
chapter Microlocal properties of dynamic Fourier integral operators.

(ii) Theorem 3 states, that in the presence of an object rotation, the dynamic
operator A� still integrates along circles. The additional constraint on
the rotation sequence (At )t∈[0,2π ] ensures, that all these modified circles
cover the complete unit disk (i.e. the support of the object).

Theorem 4 A suitable reconstruction method SDFBP : L2(S
1 × (0, 2)) →

L2(V1(0)) for dynamic photoacoustic tomography with rotational movement
as stated above is given by

SDFBPg(x) = 1

2π

∫ 2π

0

∫ 2

0
(∂rr∂rg)(θ(t), r) log

∣∣∣r2 − ‖x − �tθ(t)‖2
∣∣∣ dr dt.

Proof Since rotational deformations as stated above are moderate defor-
mations with respect to the circular Radon transform, we obtain a suitable
dynamic reconstruction method by adapting an established regularization
strategy from the static case. The circular Radon transform as given in (14) is
well known in the literature and various inversion formulae were worked out,
for instance in the 2D case as

f (x) = 1

2π

∫ 2π

0

∫ 2

0
(∂rr∂rAf )(θ(t), r) log

∣∣∣r2 − ‖x − θ(t)‖2
∣∣∣ drdt

=: TFBP f (x),

(continued)
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see [11], providing a static reconstruction method denoted TFBP . Thus,
SDFBP := TFBPV−1 is a dynamic reconstruction method according to
Theorem 2 and with the representation of V, it holds

SDFBP g(x) = 1

2π

∫ 2π

0

∫ 2

0
(∂r r∂rV−1g)(θ(t), r) log

∣∣∣r2 − ‖x − θ(t)‖2
∣∣∣ drdt

= 1

2π

∫ 2π

0

∫ 2

0
V−1(∂r r∂rg)(θ(t), r) log

∣∣∣r2 − ‖x − θ(t)‖2
∣∣∣ drdt

= 1

2π

∫ 2π

0

∫ 2

0
(∂r r∂rg)(θ(t), r) log

∣∣∣r2 − ‖x − Atθ(t)‖2
∣∣∣ drdt.

This concludes the proof. ��
For the numerical evaluation, we consider the phantom depicted in Fig. 4

(left). In this example, the phantom performs on the time interval [0, π ] a
rotational movement given by the angles ωt = t/10, t ∈ [0, π ] and during
[π, 2π ] returns to its initial state. The state of the object at the end of the
scanning is shown in Fig. 4 (right).

The respective PAT data are simulated by discretizing the forward operator
A� with the trapezoidal rule with 1400 samples. More precisely, we hereby
obtain the discrete data

gj,k := (A�tj
f )(tj , rk), j = 1, . . . , N and k = 1, . . . , M,

where tj are uniformly distributed angles in [0, 2π), rk uniformly distributed
in [0, 2] with N = 300, M = 300. Furthermore, in order to test stability, we
add a sample of White Noise to the data set, corresponding to a noise level of
2.5%.

The result of the above stated reconstruction method is illustrated in Fig. 5
(left), which shows the reconstructed initial state of the object on a 512× 512
grid. Figure 5 (right) illustrates the result of the static filtered backprojection
algorithm applied to the dynamic data. The comparison with the exact initial
state shows that the dynamic reconstruction technique in fact compensates for
the motion while the static algorithm causes strong distortion artefacts.

Further examples, including a detailed evaluation regarding computerized
tomography can be found in [16].
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Fig. 4 Phantom at the initial
time t = 0 (left) and at half
time of the scanning, i.e. at
time t = π (right)

Fig. 5 Dynamic
reconstruction at the initial
time (left) and static
reconstruction (right) from
noisy data

4 Compensating General Deformations via the Method of
the Approximate Inverse

After working out a regularization theory for moderate deformations, we now turn
towards the more general scenario of strong deformations. To this purpose, we focus
on (8) and apply the method of the approximate inverse which calculates linear
functionals of the sought-for solution, see [30, 32]. To simplify the notation, we
consider in the following

A : L2(�X) → L2([0, T ] × �Y ),

i.e. as mapping between classical L2-spaces. Nevertheless, the presented theory can
be easily extended to weighted L2-spaces as well.

4.1 The Method of the Approximate Inverse

In order to obtain a stable approximation of the solution f0, we calculate the
smoothed version f

γ

0 ,

f0(x) ≈ f
γ

0 (x) = 〈f0, δγ
x 〉L2(�X)
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with a prescribed mollifier δ
γ
x . The precise definition of a mollifier is given in the

following, see also [46].

Definition 1 For all x ∈ �X, let δ
γ
x ∈ L2(�X) with

∫

�X

δ
γ
x (z) dz = 1, γ > 0.

Let further

f γ (x) =
∫

�X

f (z) δ
γ
x (z) dz

converge to f in L2(�X) as γ → 0. Then, δγ
x is called a mollifier.

A mollified version f
γ

0 can be reconstructed by evaluating linear functionals on
the measured dynamic data g = A�f0.

Theorem 5 Let δγ
x ∈ L2(�X) be a mollifier and let ψγ

x be the solution of

A∗
�ψ

γ
x = δ

γ
x . (15)

Then,

f
γ

0 (x) = 〈g,ψ
γ
x 〉L2([0,T ]×�Y ).

Equation (15) is called auxiliary problem, its solution ψ
γ
x called reconstruction

kernel. SinceA� depends on the dynamic behavior, we speak of Eq. (15) as dynamic
auxiliary problem, and of ψ

γ
x as dynamic reconstruction kernel.

As a further specification, we call ψ
γ
x a special reconstruction kernel since it

depends on the specific reconstruction point x.

The Approximate Inverse
Theorem 5 introduces an operator Sγ : L2([0, T ] × �Y ) → L2(�X) with
Sγ g(x) = 〈g,ψ

γ
x 〉L2 , which is called approximate inverse of A� . The

regularization property of the method is ensured by imposing conditions on
the mollifier and on the choice of parameter γ [30, 31]. The effect of the
dynamic behavior on the smoothing properties of the forward operator is
analyzed in the chapter Microlocal properties of dynamic Fourier integral
operators [19].

Since the auxiliary problem (15) is independent of the data, the reconstruction
kernel ψ

γ
x can be precomputed. In principle, mollifiers for different reconstruction

points x can be chosen independently. In this case, however, the auxiliary problem
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(15) has to be solved for distinct right-hand sides leading to high computational
costs and storage needs. This effort can be reduced by considering invariances of
A∗

� .

Theorem 6 Let

T x
1 : L2(�X) → L2(R

n), T x
2 : L2([0, T ] × �Y ) → L2([0, T ] × R

m)

be linear operators with

T x
1 A

∗
� = A∗

�T x
2 , (16)

and let ψγ be a solution of the auxiliary problem

A∗
�ψγ = δγ (17)

with δγ ∈ L2(�X). Then a solution of

A∗
�ψ

γ
x = δ

γ
x

with the special mollifier

δ
γ
x = T x

1 δγ (18)

is given by

ψ
γ
x = T x

2 ψγ .

Proof According to the relations (16), (17), and (18), it holds

A∗
�T x

2 ψγ = T x
1 A

∗
�ψγ = T x

1 δγ = δ
γ
x ,

and thus, T x
2 ψγ solves the auxiliary problem A∗

�ψ
γ
x = δ

γ
x . ��

Consequently, only a single auxiliary problem has to be solved while the special
mollifiers and corresponding reconstruction kernels are generated by applying the
operators T x

1 and T x
2 , respectively.

Remark 3 The method of the approximate inverse can be extended to enable the so-
called feature reconstruction, where a featureLf0 with a linear feature operatorL is
determined directly from the measured data, see [20, 31]. In this case, the respective
reconstruction kernel can be computed by solving the auxiliary problem

A∗
�ψ

γ
x = L∗δγ

x ,



Motion Compensation Strategies in Tomography 71

and efficient algorithms are obtained by considering linear invariance properties for
A∗

� as well as L∗.

4.2 Computing the Dynamic Reconstruction Kernel

We now address the solution of the auxiliary problem (15). In static CT, for instance,
an explicit representation of the kernel ψγ can be derived using the inversion
formula for the Radon transform [31]. For dynamic forward operators A� , no
general inversion formula is known so far. Thus, we present an alternative strategy
to compute suitable dynamic reconstruction kernels. The idea consists in exploiting
the relation with the time-resolved forward operator Adyn and its adjoint operator.

Adyn∗
g(t, x) =

∫

Rm

k(x, t, y) g(t, y) dy.

Theorem 7 Let δγ
x be a mollifier for the initial state function f0 and denote

e
γ

0,x(t, z) =
(∫

[0,T ]
| detD�−1

v (�tz)| dv
)−1

δ
γ
x (�tz). (19)

Further assume there exists ψ
γ

0,x with

A∗ψγ

0,x = e
γ

0,x . (20)

Then, it holds

(i)

〈f, e
γ

0,x〉L2([0,T ]×�X) = 〈f0, δγ

0,x〉L2(�X),

in particular, e
γ

0,x is a time-dependent mollifier incorporating the motion
information,

(ii)

Adyn∗
�ψ

γ

0,x = δ
γ
x ,

i.e. ψγ

0,x is our searched-for reconstruction kernel.

Proof

(i) From the definition of e
γ

0,x , it follows
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∫

[0,T ]
| detD�−1

t z| eγ

0,x(t, �
−1
t z) dt

=
∫

[0,T ]
| detD�−1

t z| δγ
x (z)

(∫

[0,T ]
| detD�−1

v (z)| dv
)−1

dt = δ
γ
x (z).

Together with the temporal correlation (1), namely f (t, x) = f0(�tx), the
support property (2) and the substitution z := �t(z), we then obtain

〈f, e
γ

0,x〉L2([0,T ]×�X) =
∫

[0,T ]×�X

f (t, z) e
γ

0,x(t, z) dt dz

=
∫

[0,T ]×Rn

f0(�tz) e
γ

0,x(t, z) dt dz

=
∫

[0,T ]×Rn

f0(z) | detD�−1
t z| eγ

0,x(t, �
−1
t z) dt dz

=
∫

Rn

f0(z) δ
γ
x (z) dt dz

= 〈f0, δγ
x 〉L2(�X).

A simple calculation further shows

∫

[0,T ]×Rn

e
γ

0,x(v, z) dv dz =
∫

Rn

δ
γ
x (z) dz = 1,

i.e. e
γ

0,x is in fact a time-dependent mollifier for f (0, x) according to Defini-
tion 1.

(ii) The correlation between δ
γ
x and e

γ

0,x from the proof of i) along with the equation

Adyn∗
ψ

γ

0,x = e
γ

0,x and the representations ofAdyn∗
andA∗

� , see (11) and (12),
yields

δ
γ
x (z) =

∫

[0,T ]
| detD�−1

t z| eγ

0,x(t, �
−1
t z) dt

=
∫

[0,T ]
| detD�−1

t z|Adyn∗
ψ

γ

0,x(t, �
−1
t z) dt

=
∫

[0,T ]
| detD�−1

t z|A∗
t ψ

γ

0,x(t, �
−1
t z) dt

= A∗
�ψ

γ

0,x(z).

Thus, ψγ

0,x is the searched-for dynamic reconstruction kernel.
��
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Exploiting invariances, it is sufficient to solve the auxiliary problem for x = 0,
i.e. Adyn∗

ψγ = eγ with eγ := e
γ

0,0.

What if eγ Is Not in the Range ofA∗?
If eγ is not in the range of A∗, then the auxiliary problem A∗ψγ = eγ has
no solution in the classical sense and instead, the generalized solution via the
Moore-Penrose inverse has to be computed. However, an analysis provided
in [15] turns out, that in the static setting, the generalized solution of (20)
does not represent an adequate approximation to the exact kernel. Thus, [15]
proposed instead to approximate ψγ by minimizing the penalized defect

∥∥∥Adyn∗
ψγ − eγ

∥∥∥
2 + α

∥∥ψγ − ψγ,stat
∥∥2 , α > 0,

or equivalently by solving the normal equation

(AdynAdyn∗ + αI)ψγ = Adyneγ + αψγ,stat

with the identity operator I , incorporating the exact static reconstruction
kernel in the penalty term. The numerical examples in [15] as well as our
results in Sect. 4.3 will illustrate that reconstruction kernels of this kind
provide in fact a good motion compensation. Besides, the normal equation
is an integral equation of the second kind, so it can be solved numerically
without the severe problems arising for equations of the first kind.

We now address suitable invariance operators for the dynamic scenario. This is
studied in detail in [15].

For affine deformations, we can adapt invariances holding in the static case to
invariance properties in the dynamic case.

Theorem 8 Let T x
1 : L2(�X) −→ L2(R

n) and T
x,t
2 : L2(�Y ) −→ L2(R

m) be
invariance operators for the static problem with fixed time instance t , i.e.

T x
1 A

∗
t = A∗

t T
x,t
2 ∀ x, t.

Then, for affine motion functions �t , t ∈ [0, T ], it holds

T x
1 A

∗
� = A∗

�T
dyn

2

with

T
dyn

2 : L2([0, T ] × R
m) −→ L2([0, T ] × R

m)
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T
dyn

2 g(t, y) := T
�−1

t x−�−1
t 0,t

2 gt (y).

Proof Since �t is an affine mapping, it holds in particular

�−1
t (z − x) = �−1

t z − (�−1
t x − �−1

t (0)).

With the definition of the involved operators, we obtain

A∗
�T

dyn

2 g(z) =
∫

[0,T ]
| detD�−1

t z|A∗
t T

�−1
t x−�−1

t 0,t
2 gt (�

−1
t x) dt

=
∫

[0,T ]
| detD�−1

t z| T �−1
t x−�−1

t 0
1 A∗

t gt (�
−1
t z) dt

=
∫

[0,T ]
| detD�−1

t z|A∗
t gt (�

−1
t z − (�−1

t x − �−1
t 0)) dt

=
∫

[0,T ]
| detD�−1

t z|A∗
t gt (�

−1
t (z − x)) dt

= A∗
�g(z − x)

= T x
1 A

∗
�g(z).

This concludes the proof. ��
Remark 4 As discussed in [15], deriving linear invariances in the presence of non-
linear object motion might in general not be possible. Hence, the use of approximate
invariances is suggested instead and an error analysis has been provided. For our
numerical examples, we are going to use approximate invariance which are exact for
affine deformations, namely by using the operators T x

1 and T
dyn

2 as defined above.

4.3 Applications

We want to illustrate our general dynamic reconstruction technique at the example
of 3D X-ray tomography. An evaluation regarding 2D computerized tomography
with parallel scanning geometry can be found in [15].

Example: 3D X-Ray Tomography
We consider an X-ray source emitting a cone of X-rays through the studied
specimen to a 2D detector. The movement of the combination source-detector
determines different geometries. Let M ⊂ R

3 describe the curve of the X-ray

(continued)
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source. Then, the mathematical model of 3D-CT for a static object h is given
by the cone-beam transform

Dh(a, θ) =
∫ ∞

0
h(a + βθ) dβ

with a ∈ M ⊂ R
3 denoting the position of the source and θ ∈ S2

characterizing the direction of the ray.
One simple realization consists in rotating the radiation source on

a circle around the specimen with radius R > 0, i.e. M =
{R (cos(ϕ), sin(ϕ), 0)T | ϕ ∈ [0, 2π ]}. Despite some drawbacks from a
mathematical point of view (for instance the Tuy–Kirillov condition is not
satisfied resulting in incomplete data), this geometry is used in many real-
world applications. Thus, we consider this setting in the following.

As in the 2D case, see the example of the Radon transform on page 7, the
rotation of the radiation source represents the time-dependent step of the data
acquisition, i.e. we identify the angle ϕ which characterizes the current source
position as time variable. Thus, we obtain the dynamic operator

Ddynf (t, θ) =
∫ ∞

0
f (a(t) + βθ, t) dβ

for a time-dependent function f ∈ L2([0, T ]×�X). If we further incorporate
the motion information, we obtain

D�f0(t, θ) =
∫ ∞

0
f0(�t (a(t) + βθ)) dβ

as dynamic operator for the initial state f0, respectively.
In order to derive a reconstruction algorithm which compensates for the

motion, we apply the method proposed in Sect. 4.2. Following Theorem 7, we
determine the reconstruction kernel ψγ by considering the auxiliary problem

Ddyn∗
ψγ = eγ , (21)

with the time-dependent mollifier eγ (19) stemming from the static mollifier
δγ .

Lemma 2 The adjoint operatorDdyn∗
as mapping from L2([0, 2π ] × S2) to

L2([0, 2π ] × R
3) is given by

Ddyn∗
g(t, x) = ‖x − a(t)‖−2 g

(
a(t),

x − a(t)

‖x − a(t)‖
)

.

(continued)
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Proof Since the investigated object has compact support (and is surrounded
by source and detector), there is a minimal radius L such that suppf ⊂ VL(0)
and L < R. Therefore, in the definition of the cone beam transform, we can
restrict ourselves to the integration over a compact interval [L1, L2] ⊂ R,
where 0 < L1 < R − L and L2 > L + R. This results in the following
representation for the dynamic operator

Ddynf (t, θ) =
∫ L2

L1

f (a(t) + βθ, t) dβ.

With the substitution x := a(t) + βθ , we obtain

〈Ddynf, g〉L2([0,2π ]×S2) =
∫

[0,2π ]

∫

S2

∫ L2

L1

f (a(t) + βθ, t) g(t, θ) dβ dθ dt

=
∫

[0,2π ]

∫

VL(0)
f (x, t) ‖x − a(t)‖−2

g

(
t,

x − a(t)

‖x − a(t)‖
)

dx dt,

and thus the stated representation for Ddyn∗
. ��

A generalized solution of (21) is computed via the penalized normal
equation

(DdynDdyn∗ + αI)ψγ = Ddyneγ + αψγ,stat .

Due to the property

DdynDdyn∗
g(t, θ) =

∫ L2

L1

Ddyn∗
g(a(t) + βθ, t) dβ

=
∫ L2

L1

‖βθ‖−2 g

(
t,

βθ

‖βθ‖
)

dβ

=
(

1

L1
− 1

L2

)
g(t, θ),

with appropriately selected L1, L2 ∈ R (see proof of Lemma 2), we obtain

ψγ =
(

1

L1
− 1

L2
+ α

)−1 (
Ddyneγ + αψγ,stat

)
.

(continued)
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Thus, the reconstruction kernel for dynamic cone-beam tomography results
from averaging the generalized solution of the dynamic auxiliary problem
and the static reconstruction kernel. In the static case, suitable reconstruction
kernels have been derived for the circular cone beam transform. For instance,
the static reconstruction kernel associated to the Gaussian mollifier

δγ (z) = (2π)−3/2 1

γ 3
e
− ‖z‖2

2γ 2

has been computed by Weber in his PhD-thesis [49] and in [33]. Further, he
and his co-authors derived the special reconstruction kernels ψ

γ,stat
x by

ψ
γ,stat
x (a(t), θ) = T

x,t
2 ψγ (a(t), θ)

with (approximate) invariance operator

T
x,t
2 ψ(a(t), θ) = R2

‖a − x‖2ψ(a,UT
x θ),

where UT
x corresponds to the unitary matrix that rotates a−x

‖a−x‖ onto a/R, i.e.

UT
x

a − x

‖a − x‖ = a

R
.

We adapt this invariance operator according to Theorem 8 and Remark 4 to
the dynamic setting with motion model �.

Numerical Results

The algorithm is tested for the three-dimensional phantom with compact
support in V1(0) whose initial state is shown in Fig. 6 (first row) for three
different cross sections throughout the object. The dynamic behavior is
described by the nonlinear scaling

�tx =

⎛

⎜⎜⎝

(s1(t) x1+1)5−1
5s1(t)

(s2(t) x2+1)5−1
5s2(t)

x3
s3(t)

⎞

⎟⎟⎠

with

(continued)
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Fig. 6 Initial state (first row) and final state (second row) of our 3D phantom with nonaffine
deformation. The three columns correspond to different crossections of the phantom (first column:
fixed component x3 = 0, second column: fixed component x2 = −0.27, third column: fixed
component x1 = 0)

s1(t) = 4
√
sin(0.0375 · t/π), s2(t) = 4

√
sin(0.045 · t/π),

s3(t) = 1 + 25

128
(s1(t) + s2(t)), t ∈ [0, 2π ].

To illustrate this dynamic behavior, the final state of the three cross sections
is shown in Fig. 6 (last row). The respective dynamic cone-beam data are
simulated for 360 source positions rotating on a circle with radius R = 8 and
801 × 801 planar detector points. In order to account for the statistical nature
of photon emission, we further add noise to the simulated data characterized
by the Poisson distribution resulting in an overall peak-signal-to-noise-ratio
of 16 dB (corresponding to a noise level of approximately 6%).

We then apply the proposed dynamic algorithm with regularization param-
eters γ = 0.0025 and α = 1. We further choose L1 = R−1

2 and L2 = 2R.

(continued)
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Fig. 7 Dynamic reconstruction (first row) and static reconstruction (second row) from noisy
dynamic data. The three columns correspond to different crossections of the phantom (first column:
fixed component x3 = 0, second column: fixed component x2 = −0.27, third column: fixed
component x1 = 0)

The respective reconstruction result is shown in Fig. 7 (first row) for the three
cross sections of the object. As a comparison, the second row of Fig. 7 depicts
the respective result when the algorithm with the static filter from [33] with
regularization parameter γ = 0.0025 is applied to the dynamic data. Compar-
ing the results highlights the motion compensation property of the proposed
dynamic reconstruction approach. Despite the severe non-affine displacement
during the data collection, the initial state is reconstructed without distortions
or motion artefacts. With a static algorithm however, severe distortions arise.
In particular, the small inclusion in the right ellipse (see first and second
column) is not visible in the static reconstruction for x2 = −0.27 (since it
moved out from this cross section in the course of the data acquisition). In
practical applications, the motion parameters have to be extracted beforehand,
see our discussion in Sect. 2.1. Thus, we further want to evaluate how

(continued)
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our dynamic reconstruction strategy performs in combination with a potential
motion estimation procedure. For this purpose, we apply the dynamic recon-
struction algorithm with approximate motion parameters, which are obtained
by adding noise samples uniformly distributed in [−0.09, 0.09] to the exact
parameters. These noise samples correspond to a relative estimation error
of 12, 5%. Figure 8 provides a visual comparison between the exact motion
parameter s1 and the noisy version used for the reconstruction step.

The result of the dynamic algorithm with approximate motion parameters
is displayed in Fig. 9. This experiment shows that the dynamic regularization
technique compensates well for the motion even if its parameters are not
exactly known.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

0

0.2

0.4

0.6

exact motion paramter s1(t)
noisy motion parameter

Fig. 8 Motion parameter s1(t) for t ∈ [0, 2π ] (solid line) and its noisy version (dashed line)

Fig. 9 Dynamic reconstruction with noisy motion parameters with nonaffine deformation from
noisy dynamic data. The three columns correspond to different crossections of the phantom (first
column: fixed component x3 = 0, second column: fixed component x2 = −0.27, third column:
fixed component x1 = 0)
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5 Conclusion

In this chapter, we presented regularization strategies to solve general linear
dynamic inverse problems with known object motion. In particular, our method
based on the approximate inverse is not restricted to affine deformations. The numer-
ical results from 3D cone-beam tomography illustrate its capability to compensate
for strong, non-affine motion. The subsequent chapter provides a complementary
study on the effect of the motion on the overall information content in dynamic
data.
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