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Abstract Magnetic particle imaging (MPI) is a tracer-based technique for medical
imaging where the tracer consists of ironoxide nanoparticles. The key idea is to
measure the particle response to a temporally changing external magnetic field to
compute the spatial concentration of the tracer inside the object. A decent mathe-
matical model demands for a data-driven computation of the system function which
does not only describe the measurement geometry but also encodes the interaction of
the particles with the external magnetic field. The physical model of this interaction
is given by the Landau–Lifshitz–Gilbert (LLG) equation. The determination of
the system function can be seen as an inverse problem of its own which can be
interpreted as a calibration problem for MPI. In this contribution the calibration
problem is formulated as an inverse parameter identification problem for the LLG
equation. We give a detailed analysis of the direct as well as the inverse problem in
an all-at-once as well as in a reduced setting. The analytical results yield a deeper
understanding of inverse problems connected to the LLG equation and provide a
starting point for the development of robust numerical solution methods in MPI.

1 Introduction

Magnetic particle imaging (MPI) is a dynamic imaging modality for medical appli-
cations that has first been introduced in 2005 by B. Gleich and J. Weizenecker [10].
Magnetic nanoparticles, consisting of a magnetic iron oxide core and a nonmagnetic
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coating, are inserted into the body to serve as a tracer. The key idea is to measure the
nonlinear response of the nanoparticles to a temporally changing external magnetic
field in order to draw conclusions on the spatial concentration of the particles inside
the body. Since the particles are distributed along the bloodstream of a patient, the
particle concentration yields information on the blood flow and is thus suitable for
cardiovascular diagnosis or cancer detection [23, 24]. An overview of MPI basics
is given in [23]. Since MPI requires the nanoparticles as a tracer, it mostly yields
quantitative information on their distribution, but does not image the morphology of
the body, such as the tissue density. The latter can be visualized using computerized
tomography (CT) [29] or magnetic resonance imaging (MRI) [15]. These do not
require a tracer, but involve ionizing radiation in the case of CT or, in the case of
MRI, a strong magnetic field and a potentially high acquisition time. Other tracer-
based methods are, e.g., single photon emission computerized tomography (SPECT)
and positron emission tomography (PET) [8, 30, 36], which both involve radioactive
radiation. The magnetic nanoparticles that are used in MPI, on the other hand, are
not harmful for organisms. For a more detailed comparison of these methods, we
would like to refer the reader to [23].

At this point there have been promising preclinical studies on the performance of
MPI, showing that this imaging modality has a great potential for medical diagnosis
since it is highly sensitive with a good spatial and temporal resolution, and the
data acquisition is very fast [24]. However, particularly in view of an application
to image the human body, there remain some obstacles. One obstacle is the time-
consuming calibration process. In this work, we assume that the concentration of the
nanoparticles inside the body remains static throughout both the calibration process
and the actual image acquisition. Mathematically, the forward problem of MPI then
can essentially be formulated as an integral equation of the first kind for the particle
concentration (or distribution) c,

u(t) =
∫

�

c(x)s(x, t) dx,

where the integration kernel s is called the system function. The system function
encodes some geometrical aspects of the MPI scanner, such as the coil sensitivities
of the receive coils in which the particle signal u is measured, but mostly it is
determined by the particle behavior in response to the applied external magnetic
field.

The actual inverse problem in MPI is to reconstruct the concentration c under
the knowledge of the system function s from the measured data u. To this end,
the system function has to be determined prior to the scanning procedure. This is
usually done by evaluating a series of full scans of the field of view, where in each
scan a delta sample is placed in a different pixel until the entire field of view is
covered [23]. Another option is a model-based approach for s (see for example
[22, 28]), which basically involves a model for the particle magnetization. Since
this model often depends on unknown parameters, the model-based determination
of the system function itself can again be formulated as an inverse problem. This
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article now addresses this latter type of inverse problem, i.e., the identification of the
system function for a known set of concentrations from calibration measurements.
More precisely, our goal is to find a decent model for the time-derivative of the
particle magnetization m, which is proportional to s.

So far, in model-based approaches for the system function, the particle magne-
tization m is not modeled directly. Instead, one describes the mean magnetization
m of the particles via the Langevin function, i.e., the response of the particles is
modeled on the mesoscopic scale [21, 23]. This approach is based on the assumption
that the particles are in thermodynamic equilibrium and respond directly to the
external field. For this reason, the mean magnetization is assumed to be a function
of the external field, such that the mean magnetization is always aligned with the
external field. The momentum of the mean magnetization is calculated via the
Langevin function. This model, however, neglects some properties of the particle
behavior. In particular, the magnetic moments of the particles do not align instantly
with the external field [4].

In this work, we thus address an approach from micromagnetics, which models
the time-dependent behavior of the magnetic material inside the particles’ cores on
the micro scale and allows to take into account various additional physical properties
such as particle-particle interaction. For an overview, see for example [25]. Since the
core material is iron oxide, which is a ferrimagnetic material that shows a similar
behavior as ferromagnets [5, 6], we use the Landau–Lifshitz–Gilbert (LLG) equation

∂

∂t
m = −α̃1m × (m × Heff) + α̃2m × Heff,

see also [9, 26], for the evolution of the magnetization m of the core material.
The field Heff incorporates the external magnetic field together with other relevant
physical effects. According to the LLG equation, the magnetization m performs a
damped precession around the field vector of the external field, which leads to a
relaxation effect. The LLG equation has been widely applied to describe the time
evolution in micromagnetics [2, 7, 11].

In contrast to the imaging problem of MPI, the inverse problem of determining
the magnetization m along with the constants α̃1, α̃2 turns out to be a nonlinear
inverse problem, which is typical for parameter identification problems for partial
differential equations, for example electrical impedance tomography [1], terahertz
tomography [38], ultrasound imaging [3] and other applications from imaging and
nondestructive testing [20].

We use the all-at-once as well as the reduced formulation of this inverse problem
in a Hilbert space setting, see also [16, 17, 31], and analyze both cases including
well-definedness of the forward mapping, continuity, and Fréchet differentiability
and calculate the adjoint mappings for the Fréchet derivatives. By consequence,
iterative methods such as the Landweber method [14, 27], also in combination
with Kaczmarz’ method [12, 13], Newton methods (see, e.g., [33]), or subspace
techniques [37] can be applied for the numerical solution. An overview of suitable
regularization techniques is given in [18, 19].
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We begin with a detailed introduction to the modelling in MPI. In particular, we
describe the full forward problem and present the initial boundary value problem for
the LLG equation that we use to describe the magnetization evolution. In Sect. 3,
we formulate the inverse problem of calibration both in the all-at-once and in
the reduced setting to obtain the final operator equation that is analyzed in the
subsequent section. First, in Sect. 4.1, we present an analysis for the all-at-once
setting. The inverse problem in the reduced setting is then addressed in Sect. 4.2.
Finally, we conclude our findings in Sect. 5 and give an outlook on further research.

Throughout the article, we make use of the following notation: The differential
operators −� and ∇ are applied by components to a vector field. In particular this
means that by ∇u we denote the transpose of the Jacobian of u. Moreover, 〈a,b〉
or a · b denotes the Euclidean inner product between two vectors and A : B the
Frobenius inner product between two matrices.

2 The Underlying Physical Model for MPI

The basic physical principle that is exploited in MPI is Faraday’s law of induction,
which states that whenever the magnetic flux density B through a coil changes in
time, this change induces an electric current in the coil. This current, or rather the
respective voltage, can be measured. In MPI, the magnetic flux density B consists
of the external applied magnetic field Hext and the particle magnetization MP, i.e.,

B = μ0

(
Hext + MP

)
,

where μ0 is the magnetic permeability in vacuum. The particle magnetization
MP(x, t) in x ∈ � ⊆ R

3 depends linearly on the concentration c(x) of magnetic
material, which corresponds to the particle concentration, in x ∈ � and on the
magnetization m(x, t) of the magnetic material. We thus have

MP(x, t) = c(x)m(x, t),

where |m| = mS > 0, i.e., the vectorm has the fixed length mS that depends on the
magnetic core material inside the particles. At this point it is important to remark
that we use a slightly different approach to separate the particle concentration, which
carries the spatial information on the particles, from the magnetization behavior of
the magnetic material and the measuring process. In our approach, the concentration
is a dimensionless quantity, whereas in most models, it is defined as the number of
particles per unit volume (see, e.g. [23]).

A detailed derivation of the forward model in MPI, based on the equilibrium
model for the magnetization, can be found in [23]. The steps that are related to the
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measuring process can be adapted to our approach. For the reader’s convenience, we
want to give a short overview and introduce the parameters related to the scanner
setup.

If the receive coil is a simple conductor loop, which encloses a surface S, the
voltage that is induced can be expressed by

u(t) = − d

dt

∫
S

B(x, t) · dA = −μ0
d

dt

∫
S

(
Hext + MP

)
· dA. (1)

The signal that is recorded in the receive coil thus originates from temporal changes
of the external magnetic field H as well as of the particle magnetization MP,

u(t) = −μ0

(∫
�

pR(x) · ∂

∂t
Hext(x, t) dx +

∫
�

pR(x) · ∂

∂t
MP(x, t) dx

)
(2)

=: uE(t) + uP(t) (3)

For the signal that is caused by the change in the particle magnetization we obtain

uP(t) = −μ0
d

dt

∫
�

pR(x) · MP(x, t) dx

= −μ0

∫
�

pR(x) · ∂

∂t
MP(x, t) dx

= −μ0

∫
�

c(x)pR(x) · ∂

∂t
m(x, t) dx

= −μ0

∫
�

c(x)s(x, t) dx.

The function

s(x, t) := pR(x) · ∂

∂t
m(x, t) =

〈
pR(x),

∂

∂t
m(x, t)

〉
R3

(4)

is called the system function and can be interpreted as a potential to induce a signal
in the receive coil. The function pR is called the coil sensitivity and is determined
by the architecture of the respective receive coil. For our purposes, we assume that
pR is known. The measured signal that originates from the magnetic particles can
thus essentially be calculated via an integral equation of the first kind with a time-
dependent integration kernel s.

The particle magnetization, however, changes in time in response to changes
of the external field. It is thus an important objective to encode the interplay of
the external field and the particles in a sufficiently accurate physical model. The
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magnetization of the magnetic particles that are used in MPI can be considered on
different scales. The following characterization from ferromagnetism has been taken
from [25]:

On the atomic level, one can describe the behavior of a magnetic material as a
spin system and take into account stochastic effects that arise, for example, from
Brownian motion.

In themicroscopic scale, continuum physics is applied to work with deterministic
equations describing the magnetization of the magnetic material.

In the mesoscopic scale, we can describe the magnetization behavior via a mean
magnetization, which is an average particle magnetic moment.

Finally, on a macroscopic scale, all aspects that arise from the microstructure
are neglected and the magnetization is described by phenomenological constitutive
laws.

In this work, we intend to use a model frommicromagnetism, allowing us to work
with a deterministic equation to describe the magnetization of the magnetic material.
The core material of the nanoparticles consists of iron-oxide or magnetite, which
is a ferrimagnetic material. The magnetization curve of ferrimagnetic materials is
similar to the curve that is observed for ferromagnets, but with a lower saturation
magnetization (see, e.g., [5, 6]). This approach has also been suggested in [32]. The
evolution of the magnetization in time is described by the Landau–Lifshitz–Gilbert
(LLG) equation

mt := ∂

∂t
m = −α̃1m × (m × Heff) + α̃2m × Heff, (5)

see [9, 25] and the therein cited literature. The coefficients

α̃1 := γαD

mS(1 + α2
D)

> 0, α̃2 := γ

(1 + α2
D)

> 0

are material parameters that contain the gyromagnetic constant γ , the saturation
magnetization mS of the core material and a damping parameter αD. The vector
field Heff is called the effective magnetic field. It is defined as the negative gradient
−DE(m) of the Landau energy E(m) of a ferromagnet, see, e.g., [25]. Taking into
account only the interaction with the external magnetic field H and particle-particle
interactions, this energy is given by

EA(m) = A

∫
�

|∇m|2 dx − μ0mS

∫
�

〈H,m〉
R3 dx,

where A ≥ 0 is a scalar parameter (the exchange stiffness constant [9]). We thus
have

Heff = 2A�m + μ0mSHext. (6)
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Together with Neumann boundary conditions and a suitable initial condition our
model for the magnetization thus reads

mt = −α1m × (m × (�m + hext)) + α2m × (�m + hext) in [0, T ] × �,

(7)

0 = ∂νm on [0, T ] × ∂�,

(8)

m0 = m(t = 0), |m0| = mS in �, (9)

where hext = μ0mS
2A Hext and α1 := 2Aα̃1, α2 := 2Aα̃2 > 0. The initial value

m0 = m(t = 0) corresponds to the magnetization of the magnetic material in the
beginning of the measurement. To obtain a reasonable value for m0, we take into
account that the external magnetic field is switched on before the measuring process
starts, i.e., m0 is the state of the magnetization that is acquired when the external
field is static. This allows us to precompute m0 as the solution of the stationary
problem

α1m0 × (m0 × (�m0 + hext(t = 0))) = α2m0 × (�m0 + hext(t = 0)) (10)

with Neumann boundary conditions.

Remark 1 In the stationary case, damping does not play a role, and if we addition-
ally neglect particle-particle interactions, we obtain the approximative equation

m̂0 × (
m̂0 × hext(t = 0)

) = 0

with an approximation m̂0 to m̂, since α2 ≈ 0 and Heff ≈ μ0mSHext. The above
equation yields m̂0 ‖ hext(t = 0). Together with |m̂0| = mS this yields

m̂0 = mS
hext(t = 0)

|hext(t = 0)| .

This represents a good approximation to m0 where hext is strong at the time point
t = 0:

m0 ≈ m̂0 = mS
hext(t = 0)

|hext(t = 0)| .

2.1 The Observation Operator in MPI

Faraday’s law states that a temporally changing magnetic field induces an electric
current in a conductor loop or coil, which yields the relation (1). By consequence,
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not only the change in the particle magnetization contributes to the induced current,
but also the dynamic external magnetic field Hext. Since we need the particle
signal for the determination of the particle magnetization, we need to separate the
particle signal from the excitation signal due to the external field. This is realized by
processing the signal in a suitable way using filters.

MPI scanners usually use multiple receive coils to measure the induced particle
signal at different positions in the scanner. We assume that we have L ∈ N receive
coils with coil sensitivities pR� , � = 1, . . . , L, and the measured signal is given by

ṽ�(t) = −μ0

∫ T

0
ã�(t − τ)

∫
�

c(x)pR� (x) · ∂

∂τ
m(x, τ ) dx dτ, (11)

where T is the repetition time of the acquisition process, i.e., the time that is needed
for one full scan of the object, and a� : [0, T ] → R is the transfer function
with periodic continuation ã� : R → R. The transfer function serves as a filter
to separate particle and excitation signal, i.e., it is chosen such that

ṽE� (t) := (̃
a� ∗ uE�

)
(t) = −μ0

∫ T

0
ã�(t − τ)

∫
�

pR� (x) · ∂

∂t
Hext(x, t) dx dt ≈ 0.

In practice, ã� is often a band pass filter. For a more detailed discussion of
the transfer function, see also [23]. In this work, the transfer function is known
analytically.

We define

K�(t, τ, x) := −μ0ã�(t − τ)c(x)pR� (x),

such that the measured particle signals are given by

v�(t) =
∫ T

0

∫
�

K�(t, τ, x) · ∂

∂τ
m(x, τ ) dτ dx, (12)

where m fulfills (7), (8), (9).
To determine m in � × (0, T ), we use the data vk�(t), k = 1, . . . , K , � =

1, . . . , L, from the scans that we obtain for different particle concentrations ck , k =
1, . . . , K , K ∈ N. The forward operator thus reads

vk�(t) =
∫ T

0

∫
�

Kk�(t, τ, x) · ∂

∂τ
m(x, τ ) dx dτ ,

Kk�(t, τ, x) := −μ0ã�(t − τ)ck(x)pR� (x).

(13)
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2.2 Equivalent Formulations of the LLG Equation

In this section, we derive additional formulations of (7)–(9) that are suitable for the
analysis. The approach is motivated by Kruzík and Prohl [25], where only particle-
particle interactions are taken into account.

First of all, we observe that multiplying (7) with m on both sides yields

1

2
· d

dt
|m(x, t)|2 = m(x, t) · mt (x, t) = 0, (14)

which shows that the absolute value ofm does not change in time. Since |m0| = mS,
we have m(x, t) ∈ mS · S2, where S2 := {v ∈ R

3 : |v| = 1} is the unit sphere in
R
3. As a consequence, we have 0 = ∇|m|2 = 2∇m · m in �, so that, by taking the

divergence we get

〈m,�m〉 = −〈∇m,∇m〉. (15)

Now we make use of the identity

a × (b × c) = 〈a, c〉b − 〈a,b〉c

for a,b, c ∈ R
3 to derive

m × (m × �m) = 〈m,�m〉m − |m|2�m = −|∇m|2m − m2
S�m, (16)

m × (m × hext) = 〈m,hext〉m − |m|2hext = 〈m,hext〉m − m2
Shext. (17)

Using (15) together with (16), (17) and |m| = mS, we obtain from (7)–(9)

mt − α1 m2
S �m = α1|∇m|2m + α2m × �m

− α1〈m,hext〉m + α1 m2
S hext + α2m × hext

in [0, T ] × Ω,

(18)

0 = ∂νm on [0, T ] × ∂Ω,

(19)

m0 = m(t = 0), |m0| = mS in Ω, (20)

Taking the cross product of m with (18) and multiplying with −α̂2, where α̂1 =
α1

m2
Sα

2
1+α2

2
, α̂2 = α2

m2
Sα

2
1+α2

2
, by (16), (17) and cancellation of the first and third term on

the right hand side we get
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− α̂2m × mt + α1α̂2m
2
Sm × �m

= α2
2

m2
Sα

2
1 + α2

2

(
|∇m|2m + m2

S�m
)

− α1α̂2m
2
Sm × hext + α2

2

m2
Sα

2
1 + α2

2

(
m2

Shext − 〈m,hext〉m
)

,

where the second term on the left hand side can be expressed via (18) as

α1α̂2m × �m = α̂1mt + α2
1

m2
Sα

2
1 + α2

2

(
−m2

S�m − |∇m|2m

+〈m,hext〉m − m2
Shext

)
− α1α̂2m × hext .

This yields the alternative formulation

α̂1m
2
Smt − α̂2m × mt − m2

S�m = |∇m|2m + m2
Shext − 〈m, hext〉m in [0, T ] × �, (21)

0 = ∂νm on [0, T ] × ∂�, (22)

m0 = m(t = 0), |m0| = mS in � . (23)

3 An Inverse Problem for the Calibration Process in MPI

Apart from the obvious inverse problem of determining the concentration c of
magnetic particles inside a body from the measurements v�, � = 1, . . . , L, MPI
gives rise to a range of further parameter identification problems of entirely different
nature. In this work, we are not addressing the imaging process itself, but consider
an inverse problem that is essential for the calibration process. Here, calibration
refers to determining the system function s�, which serves as an integral kernel in
the imaging process. The system function includes all system parameters of the
tomograph and encodes the physical behaviour of the magnetic material in the
cores of the magnetic particles inside a temporally changing external magnetic
field. Experiments show that a simple model for the magnetization, based on the
assumption that the particles are in their equilibrium state at all times, is insufficient
for the imaging, see, e.g., [22]. A model-based approach with an enhanced physical
model has so far been omitted due to the complexity of the involved physics and
the system function is usually measured in a time-consuming calibration process
[23, 24].

In this work, we address the inverse problem of calibrating an MPI system for
a given set of standard calibration concentrations ck , k = 1, . . . , K , for which we
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measure the corresponding signals and obtain the data vk�(t), k = 1, . . . , K , � =
1, . . . , L. Here we assume that the coil sensitivity pR� as well as the transfer function
ã� are known.

This, together with the fact thatm is supposed to satisfy the LLG equation (21)–
(23), is used to determine the system function (4). Actually, since pR is known, the
inverse problem under consideration here consists of reconstructing m from (13),
(21)–(23). As the initial boundary value problem (21)–(23) has a unique solution
m for given α̂1, α̂2, it actually suffices to determine these two parameters. This is
the point of view that we take when using a classical reduced formulation of the
calibration problem

F(α̂) = y (24)

with the data yk� = vk� and the forward operator

F : D(F )(⊆ X) → Y, α̂ = (α̂1, α̂2) �→ K ∂

∂t
S(α̂) (25)

containing the parameter-to-state map

S : X → Ũ (26)

that maps the parameters α̂ into the solutionm := S(α̂) of the LLG initial boundary
value problem (21)–(23). The linear operator K is the integral operator defined by
the kernels Kk�, k = 1, . . . , K , � = 1, . . . , L, i.e.,

Kk�u =
∫ T

0

∫
�

Kk�(t, τ, x) · u(x, τ ) dτ dx . (27)

Here, the preimage and image spaces are defined by

X = R
2, Y = L2(0, T )KL (28)

and the state space Ũ will be chosen appropriately below, see Sect. 4.2.
Alternatively, we also consider the all-at-once formulation of the inverse problem

as a simultaneous system

F(m, α̂) = y := (0, y)T (29)

for the state m and the parameters α̂, with the forward operator

F(m, α̂) =
(
F0(m, α̂)(
Fk�(m, α̂)

)
k=1,...,K , �=1,...,L

)
,
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where

F0(m, α̂1, α̂2) =: α̂1mt − �m − α̂2m × mt − |∇m|2m − hext + (m · hext)m

and

Fk�(m, α̂1, α̂2) = Kk,�mt

withKk,� as in (27). Here Fmaps betweenU×X andW×Y with X,Y as in (28),
and U, W appropriately chosen function spaces, see Sect. 4.1.

Iterative methods for solving inverse problems usually require the linearization
F ′(α̂) of the forward operator F and its adjoint F ′(α̂)∗ (and likewise for F) in the
given Hilbert space setting.

For example, consider Landweber’s iteration cf., e.g., [14, 27] defined by a
gradient decent method for the least squares functional ‖F(α̂) − y‖2Y as

α̂n+1 = α̂n − μnF
′(α̂n)

∗(F (α̂n) − y)

with an appropriately chosen step size μn. Alternatively, one can split the forward
operator into a system by considering it row wise Fk(α̂) = yk with Fk = (Fkl)�=1...L
or column wise F�(α̂) = y� with F� = (Fkl)k=1,...,K , or even element wise Fkl(α̂) =
ykl , and cyclically iterating over these equations with gradient descent steps in a
Kaczmarz version of the Landweber iteration cf., e.g., [12, 13]. The same can be
done with the respective all-at-once versions [16]. These methods extend to Banach
spaces as well by using duality mappings, cf., e.g., [35], however, for the sake of
simplicity of exposition and implementation, we will concentrate on a Hilbert space
setting here; in particular, all adjoints will be Hilbert space adjoints.

4 Derivatives and Adjoints

Motivated by their need in iterative reconstruction methods, we now derive and
rigorously justify derivatives of the forward operators as well as their adjoints, both
in an all-at-once and in a reduced setting.

To simplify notation for the following analysis sections, the subscript “ext” in the
external magnetic field will be skipped. Moreover, to avoid confusion with the dual
pairing, we will use the dot notation for the Euclidean inner product.

4.1 All-at-Once Formulation

We split the magnetization additively into its given initial valuem0 and the unknown
rest m̂, so that the forward operator reads
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F(m̂, α̂1, α̂2) =
⎛
⎜⎝
F0(m̂, α̂1, α̂2)

(
Fk�(m̂, α̂1, α̂2)

)
k=1,...,K , �=1,...,L

⎞
⎟⎠

:=

⎛
⎜⎜⎜⎝

α̂1m̂t − �N(m0 + m̂) − α̂2(m0 + m̂) × m̂t

−|∇(m0 + m̂)|2(m0 + m̂) − h + ((m0 + m̂) · h)(m0 + m̂)

( ∫ T

0

∫
�
Kk�(t, τ, x) · mt (x, τ ) dx dτ

)
k=1,...,K , �=1,...,L

⎞
⎟⎟⎟⎠ ,

for given h ∈ L2(0, T ;Lp(�;R3)), p ≥ 2, where �N : H 1(�) → H 1(�)∗ and,
using the same notation, �N : H 2

N(�) → L2(�)(⊆ H 1(�)∗) with H 2
N(�) = {u ∈

H 2(�) : ∂νu = 0 on ∂�}1 is equipped with homogeneous Neumann boundary
conditions, i.e, it is defined by

〈−�Nu, v〉H 1(�)∗,H 1(�) = (∇u,∇v)L2(�) ∀u, v ∈ H 1(�)

and thus satisfies

(−�Nu, v)L2(�) =
∫

�

∇u · ∇v dx ∀u ∈ H 2
N(�) , v ∈ H 1(�) . (30)

The forward operator is supposed to act between Hilbert spaces

F : U × R
2 → W × L2(0, T )KL

with the linear space

U = {u ∈ L2(0, T ;H 2
N(�;R3)) ∩ H 1(0, T ;L2(�;R3)) : u(0) = 0}

⊆ C(0, T ;H 1(�)) ∩ Hs(0, T ;H 2−2s(�)) ,
(31)

for s ∈ [0, 1], where the latter embedding is continuous by, e.g., [34, Lemma 7.3],
applied to ∂ui

∂xj
, and interpolation, as well as

W = H 1(0, T ;H 1(�;R3))∗ or, in case p > 2,W = H 1(0, T ;L2(�;R3))∗ .

(32)
We equip U with the inner product

(u1,u2)U :=
∫ T

0

∫
�

(
(−�Nu1) · (−�Nu2) + u1t · u2t

)
dx dt

+
∫

�

∇u1(T ) : ∇u2(T ) dx ,

1Note that as opposed to H 1(�) functions, H 2(�) functions do have a Neumann boundary trace.
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which, in spite of the nontrivial nullspace of the Neumann Laplacian−�N , defines a
norm equivalent to the usual norm on L2(0, T ;H 2(�;R3))∩H 1(0, T ;L2(�;R3)),
due to the estimates

‖u‖2
L2(0,T ;L2(�))

= −
∫ T

0

∫
�

∫ t

0
u(s) ds ut (t) dx dt +

∫
�

∫ t

0
u(s) ds u(T ) dx

≤
(
T ‖ut‖L2(0,T ;L2(�)) + √

T ‖u(T )‖L2(�)

)
‖u‖L2(0,T ;L2(�))

‖u(T )‖L2(�) = ‖
∫ T

0
ut (t) dt‖L2(�) ≤ √

T ‖ut‖L2(0,T ;L2(�)) .

This, together with the definition of the Neumann Laplacian (30), and the use of
solutions z, v to the auxiliary problems

⎧⎨
⎩
zt − �z = v in (0, T ) × �

∂νz = 0 on (0, T ) × ∂�

z(0) = 0 in �

,

⎧⎨
⎩

−vt − �v = f in (0, T ) × �

∂νv = 0 on (0, T ) × ∂�

v(T ) = g in �

, (33)

allows to derive the identity

(u, z)U =
∫ T

0

∫
�

(
∇u : ∇(−�N z) − u · zt t

)
dx dt +

∫
�
u(T ) ·

(
zt (T ) − �N z(T )

)
dx

=
∫ T

0

∫
�

(
∇u : ∇(v − zt ) − u · (vt + �N zt )

)
dx dt +

∫
�
u(T ) · v(T ) dx

=
∫ T

0

∫
�
u ·

(
− �Nv − vt

)
dx dt +

∫
�
u(T ) · v(T ) dx

=
∫ T

0

∫
�
u · f dx dt +

∫
�
u(T ) · g dx ,

(34)
which will be needed later on for deriving the adjoint.

OnW = H 1(0, T ;H 1(�;R3))∗ we use the inner product

(w1,w2)W :=
∫ T

0

∫
�

(
I1[∇(−�N + id)−1w1](t) : I1[∇(−�N + id)−1w2](t)

+ I1[(−�N + id)−1w1](t) · I1[(−�N + id)−1w2](t) dx dt ,

with the isomorphism −�N + id : H 1(�) → (H 1(�))∗ and the time integral
operators
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I1[w](t) :=
∫ t

0
w(s) ds − 1

T

∫ T

0
(T − s)w(s) ds ,

I2[w](t) := −
∫ t

0
(t − s)w(s) ds + t

T

∫ T

0
(T − s)w(s) ds ,

so that I2[w]t (t) = −I1[w](t), I1[w]t (t) = −I2[w]t t (t) = w(t) and I2[w](0) =
I2[w](T ) = 0, hence

∫ T

0
I1[w1](t) I1[w2](t) dt =

∫ T

0
I2[w1](t) w2(t) dt,

so that in case w2 ∈ L2(0, T ;L2(�;R3)),

(w1,w2)W =
∫ T

0

∫
�

(
I2[∇(−�N + id)−1w1](t) : [∇(−�N + id)−1w2](t)

+ I2[(−�N + id)−1w1](t) · [(−�N + id)−1w2](t) dx dt

=
∫ T

0

∫
�

I2[(−�N + id)−1w1](t) · w2(t) dx dt .

(35)
In case p > 2 in the assumption on h, we can set W = H 1(0, T ;L2(�;R3))∗ and
use the simpler inner product

(w1,w2)W :=
∫ T

0

∫
�

I1[w1](t) · I1[w2](t) dx dt ,

which in case w2 ∈ L2(0, T ;L2(�;R3)) satisfies

(w1,w2)W =
∫ T

0

∫
�

I2[w1](t) · w2(t) dx dt .

4.1.1 Well-Definedness of the Forward Operator

Indeed it can be verified that F maps between the function spaces introduced
above, cf. (31), (32). For the linear (with respect to m̂) parts α̂1m̂t , −�N m̂, and∫ T

0

∫
�
Kk�(t, τ, x) ·mt (x, τ ) dx dτ of F, this is obvious and for the nonlinear terms

α̂2(m0 + m̂) × m̂t , |∇(m0 + m̂)|2(m0 + m̂), ((m0 + m̂) · h)(m0 + m̂) we use the
following estimates (36), (37), (38), (39), (40), (41), holding for any u,w, z ∈ U.
For the term α̂2(m0 + m̂) × m̂t , we estimate
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‖u × wt‖H 1(0,T ;H 1(�;R3))∗

≤ ‖u × wt‖L2(0,T ;(H 1(�;R3))∗)

≤ C�
H 1→L3‖u × wt‖L2(0,T ;L3/2(�;R3))

≤ C�
H 1→L3‖u‖C(0,T ;L6(�;R3))‖wt‖L2(0,T ;L2(�;R3))

≤ C�
H 1→L3C

�
H 1→L6‖u‖C(0,T ;H 1(�;R3))‖wt‖L2(0,T ;L2(�;R3)) ,

(36)

where we have used duality and continuity of the embeddingsH 1(0, T ;H 1(�;R3))

↪→ L2(0, T ;H 1(�;R3)) ↪→ L2(0, T ;L3(�)) in the first and second estimate, and
Hölder’s inequality with exponent 4 in the third estimate; For the term |∇(m0 +
m̂)|2(m0 + m̂), we use

‖(∇u : ∇w)z‖H 1(0,T ;H 1(�;R3))∗

≤ C
(0,T )

H 1→L∞‖(∇u : ∇w)z‖L1(0,T ;(H 1(�;R3))∗)

≤ C
(0,T )

H 1→L∞C�
H 1→L6‖(∇u : ∇w)z‖L1(0,T ;L6/5(�;R3))

≤ C
(0,T )

H 1→L∞C�
H 1→L6

‖∇u‖L2(0,T ;L6(�;R3))‖∇w‖L2(0,T ;L6(�;R3))‖z‖C(0,T ;L2(�;R3))

≤ C
(0,T )

H 1→L∞C�
H 1→L6

‖u‖L2(0,T ;H 2(�;R3))‖w‖L2(0,T ;H 2(�;R3))‖z‖C(0,T ;H 1(�;R3)) ,

(37)

again using duality and the embeddings H 1(0, T ;H 1(�;R3))

↪→ L∞(0, T ;H 1(�)) ↪→ L∞(0, T ;L6(�));
For the term ((m0 + m̂) · h)(m0 + m̂), we estimate

‖(u · h)z‖H 1(0,T ;H 1(�;R3))∗

≤ C�
H 1→L6‖(u · h)z‖L2(0,T ;L6/5(�;R3))

≤ C�
H 1→L6‖u‖C(0,T ;L6(�;R3))‖z‖C(0,T ;L6(�;R3))‖h‖L2(0,T ;L2(�;R3))

≤ (C�
H 1→L6;R3)‖u‖C(0,T ;H 1(�;R3))‖z‖C(0,T ;H 1(�;R3))‖h‖L2(0,T ;L2(�;R3))

(38)
by duality and the embedding H 1(0, T ;H 1(�;R3)) ↪→ L2(0, T ;L6(�)), as well
as Hölder’s inequality.
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In case p > 2, F maps into the somewhat stronger space W =
H 1(0, T ;L2(�;R3))∗, due to the estimates

‖u × wt‖H 1(0,T ;L2(�;R3))∗

≤ C
(0,T )

H 1→L∞‖u × wt‖L1(0,T ;L2(�;R3))

≤ C
(0,T )

H 1→L∞‖u‖L2(0,T ;L∞(�;R3))‖wt‖L2(0,T ;L2(�;R3))

≤ C
(0,T )

H 1→L∞C�
H 2→L∞‖u‖L2(0,T ;H 2(�;R3))‖wt‖L2(0,T ;L2(�;R3)) ,

(39)

as well as

‖(∇u : ∇w)z‖H 1(0,T ;L2(�;R3))∗

≤ C
(0,T )

H 1→L∞‖(∇u : ∇w)z‖L1(0,T ;L2(�;R3))

≤ C
(0,T )

H 1→L∞‖∇u‖L2(0,T ;L6(�;R3))‖∇w‖L2(0,T ;L6(�;R3))‖z‖C(0,T ;L6(�;R3))

≤ C
(0,T )

H 1→L∞(C�
H 1→L6;R3)‖u‖L2(0,T ;H 2(�;R3))

‖w‖L2(0,T ;H 2(�;R3))‖z‖C(0,T ;H 1(�;R3)) ,

(40)
and

‖(u · h)z‖H 1(0,T ;L2(�;R3))∗

≤ C
(0,T )

H 1→L∞‖(u · h)z‖L1(0,T ;L2(�;R3))

≤ C
(0,T )

H 1→L∞‖u‖L4(0,T ;Lp∗∗
(�;R3))‖z‖L4(0,T ;Lp∗∗

(�;R3))‖h‖L2(0,T ;Lp(�;R3))

≤ C
(0,T )

H 1→L∞(C
(0,T )

H 1/4,L4)
2(C�

H 3/2,Lp∗∗ )2

‖u‖H 1/4(0,T ;H 3/2(�;R3))‖z‖H 1/4(0,T ;H 3/2(�;R3))‖h‖L2(0,T ;Lp(�;R3)) ,

(41)
for p∗∗ = 2p

p−2 < ∞, which can be bounded by the U norm of u and z, using

interpolation with s = 1
4 in (31).

4.1.2 Differentiability of the Forward Operator

Formally, the derivative of F is given by
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F
′(m̂, α̂1, α̂2)(u, β1, β2)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

β1m̂t − β2(m0 + m̂) × m̂t

+α̂1ut − �Nu − α̂2u × m̂t − α̂2(m0 + m̂) × ut

−2(∇(m0 + m̂) : ∇u)(m0 + m̂) − |∇(m0 + m̂)|2u
+((m0 + m̂) · h)u + (u · h)(m0 + m̂)

( ∫ T

0

∫
�
Kk�(t, τ, x) · ut (x, τ ) dx dτ

)
k=1,...,K , �=1,...,L

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
(

∂F0
∂m̂ (m̂, α̂)

∂F0
∂α̂1

(m̂, α̂)
∂F0
∂α̂2

(m̂, α̂)

(
∂Fk�

∂m̂ (m̂, α̂))k=1,...,K,�=1,...,L 0 0

)⎛
⎝ u

β1

β2

⎞
⎠

where ∂F0
∂m̂ (m̂, α̂) : U → W, ∂F0

∂α̂1
(m̂, α̂) : R → W, ∂F0

∂α̂2
(m̂, α̂) : R → W,

(
∂Fk�

∂m̂ (m̂, α̂))k=1,...,K,�=1,...,L : U → L2(0, T )KL. Fréchet differentiability follows
from the fact that in

F(m̂ + u, α̂1 + β1, α̂2 + β2) − F(m̂, α̂1, α̂2) − F
′(m̂, α̂1, α̂2)(u, β1, β2)

all linear terms cancel out and the nonlinear ones are given by (abbreviating m =
m0 + m̂)

(α̂1 + β1)(mt + ut ) − α̂1mt − α̂1ut − β1mt

= β1ut

(α̂2 + β2)(m + u) × (mt + ut ) − α̂2m × mt−β2m × mt−α̂2u × mt−α̂2m × ut

= α̂2u × ut + β2m × ut + β2u × mt + β2u × ut

|∇m + ∇u|2(m + u) − |∇m|2m − 2(∇m : ∇u)m − |∇m|2u
= |∇u|2(m + u) + 2(∇m : ∇u)u

((m + u) · h)(m + u) − (m · h)m − (u · h)m − (m · h)u

= (u · h)u ,

hence, using again (36)–(38), they can be estimated by some constant multiplied by
‖u‖2U + β2

1 + β2
2 .

4.1.3 Adjoints

We start with the adjoint of ∂F0
∂m̂ (m̂, α̂). For any u ∈ U, y ∈ L2(0, T ;L2(�)), we

have, using the definition of −�N , i.e., (30),
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∫ T

0

∫
�

(
∂F0

∂m̂
(m̂, α̂)u) · y dx dt

=
∫ T

0

∫
�

(
α̂1ut · y + ∇u : ∇y − α̂2(u × m̂t ) · y − α̂2((m0 + m̂) × ut ) · y

− 2(∇(m0 + m̂) : ∇u) ((m0 + m̂) · y) − |∇(m0 + m̂)|2 (u · y)
+ ((m0 + m̂) · h) (u · y) + (u · h) ((m0 + m̂) · y)

)
dx dt

=
∫ T

0

∫
�
u ·

(
− α̂1yt + (−�y) − α̂2m̂t × y + α̂2yt × (m0 + m̂) + α̂2y × m̂t

− 2((m0 + m̂) · y) (−�N(m0 + m̂)) + 2((∇(m0 + m̂)T (∇y)) (m0 + m̂)

+ 2((∇(m0 + m̂)T (∇(m0 + m̂))) y − |∇(m0 + m̂)|2y
+ ((m0 + m̂) · h) y + ((m0 + m̂) · y) h

)
dx dt

+
∫
�
u(T ) ·

(
α̂1y(T ) − α̂2y(T ) × (m0 + m̂(T ))

)
dx

=:
∫ T

0

∫
�
u · fy dx dt +

∫
�
u(T ) · gy

T
dx ,

where we have integrated by parts with respect to time and used the vector identities

a · (b × c) = b · (c × a) = c · (a × b) .

Matching the integrals over � × (0, T ) and � × {T }, respectively, and tak-
ing into account the homogeneous Neumann boundary conditions implied by
the definition of −�N , (30), as well as the identities (34), (35), we find that
∂F0
∂m̂ (m̂, α̂)∗y =: z is the solution of (33) with f = fy, g = gyT , where in case
W = H 1(0, T ;H 1(�;R3))∗, y = I2 [̃y], with ỹ(t) solving

{−�ỹ(t) + ỹ(t) = w(t) in �

∂νỹ = 0 on ∂�

for each t ∈ (0, T ), or in caseW = H 1(0, T ;L2(�;R3))∗, just y = I2[w].
With the same y, after pointwise projection onto the mutually orthogonal vectors

m̂t (x, t) and (m0(x) + m̂(x, t)) × m̂t (x, t) and integration over space and time, we
also get the adjoints of ∂F0

∂α̂1
(m̂, α̂), ∂F0

∂α̂2
(m̂, α̂)

∂F0

∂α̂1
(m̂, α̂)∗w =

∫ T

0

∫
�

m̂t · y dx dt ,

∂F0

∂α̂2
(m̂, α̂)∗w = −

∫ T

0

∫
�

((m0 + m̂) × m̂t ) · y dx dt .
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Finally, the fact that for u ∈ U, y ∈ L2(0, T )KL

((∂Fk�

∂m̂
(m̂, α̂)

)
k=1,...,K,�=1,...,L

u, y

)
L2(0,T )KL

=
K∑

k=1

L∑
�=1

∫ T

0

((∂Fk�

∂m̂
(m̂, α̂)

)
k=1,...,K,�=1,...,L

u
)

k�

(t)yk�(t) dt

=
K∑

k=1

L∑
�=1

∫ T

0

∫ T

0

∫
�

Kk�(t, τ, x) · ut (x, τ ) dx dτyk�(t) dt

=
K∑

k=1

L∑
�=1

∫ T

0

(
−
∫ T

0

∫
�

∂

∂τ
Kk�(t, τ, x) · u(x, τ ) dx dτ

+
∫

�

Kk�(t, T , x) · u(x, T ) dx
)
yk�(t) dt ,

(42)

where we have integrated by parts with respect to time, implies that due to (34),
(
∂Fk�

∂m̂ (m̂, α̂))∗k=1,...,K,�=1,...,Ly = z is obtained by solving another auxiliary problem
(33) with

f(x, τ ) = −
∫ T

0

K∑
k=1

L∑
�=1

∂

∂τ
Kk�(t, τ, x)yk�(t) dt,

g(x) =
∫ T

0

K∑
k=1

L∑
�=1

Kk�(t, T , x)yk�(t) dt .

(43)

Remark 2 In case of a Landweber-Kaczmarz method iterating cyclically over the
equations defined by F0,Fk�, k = 1, . . . , K , � = 1, . . . , L, adjoints of derivatives
of F0 remain unchanged while adjoints of ∂Fk�

∂m̂ (m̂, α̂))k=1,...,K,�=1,...,L are defined
as in (42), (43) by just skipping the sums over k and � there.

4.2 Reduced Formulation

We now consider the formulation (24) with F defined by (25), (26), and (27). Due
to the estimate

‖Kk�mt‖2L2(0,T )
≤ T ‖̃a�‖2L2(0,T )

‖ckpR
� ‖2

L2(�,R3)
‖m‖2

H 1(0,T ;L2(�,R3))
,

if ã� ∈ L2(0, T ), ckpR
� ∈ L2(�,R3) we can choose the state space in the reduced

setting as
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Ũ = H 1(0, T ;L2(�,R3)), (44)

which is different from the one in the all-at-once setting.

4.2.1 Adjoint Equation

From (25) the derivative of the forward operation takes the form

F ′(α̂)β = Kut , (45)

where u solves the linearized LLG equation

α̂1ut − α̂2m × ut − α̂2u × mt − �u − 2(∇u : ∇m)m

+ u(−|∇m|2 + (m · h)) + (u · h)m

= −β1mt + β2m × mt in (0, T ) × �

∂νu = 0 on (0, T ) × ∂�

u(0) = 0 in �,

andm is the solution to (21)–(23). This equation can be obtained by formally taking
directional derivatives (in the direction of u) in all terms of the LLG equation (21)–
(23), or alternatively by subtracting the defining boundary value problems for S(m+
εu) and S(m), dividing by ε and then letting ε tend to zero.

The Hilbert space adjoint

F ′(α̂)∗ : L2(0, T )KL → R
2

of F ′(α̂) satisfies, for each z ∈ L2(0, T )KL,

(F ′(α̂)∗z, β)R2

= (z, F ′(α̂)β)L2(0,T )KL

=
K∑

k=1

L∑
�=1

∫ T

0
zk�(t)

∫ T

0

∫
�

(−μ0)̃a�(t − τ)ck(x)pR
� (x) · uτ (τ, x)dx dτ dt

=
K∑

k=1

L∑
�=1

∫ T

0
zk�(t)

(
−
∫ T

0

∫
�

(−μ0) · (−1)̃a� t (t−τ)ck(x)pR
� (x) · u(τ, x) dx dτ

+
∫

�

(−μ0)̃a�(t − T )ck(x)pR
� (x) · u(T , x) dx

)
dt
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=
∫ T

0

∫
�

u(τ, x) ·
K∑

k=1

L∑
�=1

(∫ T

0
(−μ0)̃a� t (t − τ)zk�(t) dt

)
ck(x)pR

� (x) dx dτ

+
∫

�

u(T , x) ·
K∑

k=1

L∑
�=1

(∫ T

0
(−μ0)̃a�(t)zk�(t) dt

)
ck(x)pR

� (x) dx

=: (u, K̃z)L2(0,T ;L2(�,R3)) + (u(T ), K̃T z)L2(�,R3) (46)

as the transfer function ã is periodic with period T , and the continuous embedding
H(0, T ) ↪→ C[0, T ] allows us to evaluate u(t = T ).

Observing

∫ T

0

∫
�

−α̂1qz
t · u dx dt

=
∫ T

0

∫
�

α̂1ut · qz dx −
∫

�

α̂1qz(T ) · u(T ) dx ,

∫ T

0

∫
�

−α̂2(m × qz)t · u dx dt

=
∫ T

0

∫
�

−α̂2(m × ut ) · qz dx dt −
∫

�

α̂2(m × qz)(T ) · u(T ) dx ,

∫ T

0

∫
�

α̂2(qz × mt ) · u dx dt

=
∫ T

0

∫
�

−α̂2(u × mt ) · qz dx dt ,

∫ T

0

∫
�

−�qz · u dx dt

=
∫ T

0

∫
�

−qz · �u dx dt −
∫ T

0

∫
∂�

∂νqz · u dx dt ,

∫ T

0

∫
�

qz(−|∇m|2 + (m · h)) · u dx dt

=
∫ T

0

∫
�

(
u(−|∇m|2 + (m · h))

)
· qz dx dt ,

∫ T

0

∫
�

(
qz · m)

h · u dx dt

=
∫ T

0

∫
�

(u · h)m · qz dx dt ,
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∫ T

0

∫
�

2(m · qz)�m · u dx dt

= −
∫ T

0

∫
�

2(∇m : ∇u)(m · qz) dx dt

+ 2
∫ T

0

∫
�

−u · ((∇m)�∇m)qz − u · ((∇m)�∇qz)m dx dt ,

we see that, if qz solves the adjoint equation

− α̂1qz
t − α̂2m × qz

t − 2α̂2mt × qz − �qz

+ 2
(
(∇m)�∇m

)
qz + 2

(
(∇m)�∇qz

)
m

+ (−|∇m|2 + (m · h))qz + (m · qz)(h + 2�m) = K̃z in (0, T ) × �

(47)

∂νqz = 0 on (0, T ) × ∂�

(48)

α̂1qz(T ) + α̂2(m × qz)(T ) = K̃T z in � (49)

then with (46), we have

(F ′(α̂)∗z, β)R2 = (u, K̃z)L2(0,T ;L2(�,R3)) + (u(T ), K̃T z)L(�,R3)

=
∫ T

0

∫
�

(−β1mt + β2m × mt ) · qz dx dt

= (β1, β2) ·
(∫ T

0

∫
�

−mt · qz dx dt,

∫ T

0

∫
�

(m × mt ) · qz dx dt

)
,

which implies the Hilbert space adjoint F ′(α̂)∗ : Y → R
2

F ′(α̂)∗z =
(∫ T

0

∫
�

−mt · qz dx dt,

∫ T

0

∫
�

(m × mt ) · qz dx dt

)
, (50)

provided that the adjoint state qz exists and belongs to a sufficiently smooth space
(see Sect. 4.2.2 below).

The final condition (49) is equivalent to

⎛
⎝ α̂1 −α̂2m3(T ) α̂2m2(T )

α̂2m3(T ) α̂1 −α̂2m1(T )

−α̂2m2(T ) α̂2m1(T ) α̂1

⎞
⎠qz(T ) =: Mα̂

T q
z(T ) = K̃T z,
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where mi (T ), i = 1, 2, 3, denotes the i-th component of m(T ). The matrix Mα̂
T

with det(Mα̂
T ) = |α̂1(α̂

2
1 + α̂2

2)| is invertible if α̂1 > 0, which matches the condition
for existence of the solution to the LLG equation. Hence, we are able to rewrite the
adjoint equation in the form

− α̂1qz
t − α̂2m × qz

t − 2α̂2mt × qz − �qz

+ 2
(
(∇m)�∇m

)
qz + 2

(
(∇m)�∇qz

)
m

+ (−|∇m|2 + (m · h))qz + (m · qz)(h + 2�m) = K̃z in (0, T ) × �

(51)

∂νqz = 0 on (0, T ) × ∂�

(52)

qz(T ) = (Mα̂
T )−1K̃T z in �. (53)

Remark 3 Formula (50) inspires a Kaczmarz scheme relying on restricting the
observation operator to time subintervals for every fixed k, �, namely, we segment
(0, T ) into several subintervals (tj , tj+1) with the break points 0 = t0 < . . . <

tn−1 = T and

F
j
k� : D(F )(⊆ X) → Yj , α̂ �→ yj := Kk�

∂

∂t
S(α̂)|(tj ,tj+1) (54)

with

Yj = L2(tj , tj+1)KL j = 0 . . . n − 1, (55)

hence

y
j
k�(t) =

∫ tj+1

tj

∫
�

−μ0ã�(t − τ)ck(x)pR
� (x) · mτ (x, τ )dxdτ. (56)

Here we distinguish between the superscript j for the time subinterval index and
subscripts k, � for the index of different receive coils and concentrations.

For zj ∈ Yj ,

(K̃zj )(x, t) =
K∑

k=1

L∑
�=1

−μ0ck(x)pR
� (x)

∫ tj+1

tj
ã� τ (τ − t)z

j
k�(τ ) dτ t ∈ (0, T ) ,

(K̃T zj )(x) =
K∑

k=1

L∑
�=1

−μ0ck(x)pR
� (x)

∫ tj+1

tj
ã�(τ )z

j
k�(τ ) dτ
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yield the same Hilbert space adjoint Fj ′
(α̂)∗ : Yj → R

2 as in (50), and the adjoint
state qzj

still needs to be solved on the whole time line [0, T ] with

− α̂1qzj

t − α̂2m × qzj

t − 2α̂2mt × qzj − �qzj

+ 2
(
(∇m)�∇m

)
qzj + 2

(
(∇m)�∇qzj

)
m

+ (−|∇m|2 + (m · h))qzj + (m · qzj

)(h + 2�m) = K̃zj in (0, T ) × �

(57)

∂νqzj = 0 on (0, T ) × ∂�

(58)

qzj

(T ) = (Mα̂
T )−1K̃T zj in �. (59)

Besides this, the conventional Kaczmarz method resulting from the collection
of observation operators Kk� with k = 1 . . . K, � = 1 . . . L as in (13) is always
applicable, where

Fk� : D(F )(⊆ X) → Yk�, α̂ �→ yk� := Kk�

∂

∂t
(S(α̂)) (60)

with

Yk� = L2(0, T ) k = 1 . . . K, � = 1 . . . L (61)

Thus F ′
k�(α̂)

∗ can be seen as (50), where the adjoint state qz
k� solves (51)–(53) with

corresponding data

K̃k�z(x, t) = −μ0ck(x)pR
� (x)

∫ T

0
ã� τ (τ − t)z(τ ) dτ t ∈ (0, T ) ,

K̃T k�z(x) = −μ0ck(x)pR
� (x)

∫ T

0
ã�(τ )z(τ ) dτ

for each z ∈ Yk�.

4.2.2 Solvability of the Adjoint Equation

First of all, we derive a bound for qz. To begin with, we set τ = T − t to convert
(51)–(53) into an initial boundary value problem. Then we test (51) with qz

t and
obtain the identities and estimates
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∫
�

α̂1qz
t (t) · qz

t (t) dx

= α̂1‖qz
t (t)‖2L2(�,R3)

,

∫
�

α̂2(m(t) × qz
t (t)) · qz

t (t) dx

= 0 ,∫
�

α̂2(mt (t) × qz(t)) · qz
t (t) dx

≤ |α̂2|‖mt (t)‖L3(�,R3)‖qz(t)‖L6(�,R3)‖qz
t (t)‖L2(�,R3) ,∫

�

−�qz(t) · qz
t (t) dx

= 1

2

d

dt
‖∇qz(t)‖2

L2(�,R3)
,

∫
�

(
((∇m(t))�∇m(t))qz(t)

)
· qz

t (t) dx

≤ (C�
H 1→L6)

2‖∇m‖2
L∞(0,T ;H 1(�,R3))

‖qz(t)‖L6(�,R3)‖qz
t (t)‖L2(�,R3) ,

∫
�

(
((∇m(t))�∇qz(t))m(t)

)
· qz

t (t) dx

≤ C�
H 2→L∞‖∇m(t)‖H 2(�,R3)‖∇qz(t)‖L2(�,R3)‖qz

t (t)‖L2(�,R3) ,∫
�

(−|∇m(t)|2 + (m(t) · h))qz(t) · qz
t (t) dx

≤
(
(C�

H 1→L6)
2‖∇m‖2

L∞(0,T ;H 1(�,R3))
+ ‖h(t)‖L3(�,R3)

)

‖qz(t)‖L6(�,R3)‖qz
t (t)‖L2(�,R3) ,∫

�

(
m(t) · qz(t)

)
h(t) · qz

t (t) dx

≤ ‖h(t)‖L3(�,R3)‖qz(t)‖L6(�,R3)‖qz
t (t)‖L2(�,R3) ,∫

�

(m(t) · qz(t))�m(t) · qz
t (t) dx

≤ C�
H 1→L3‖�m(t)‖H 1(�,R3))‖qz(t)‖L6(�,R3)‖vqz

t (t)‖L2(�,R3) ,∫
�

K̃z(t) · qz
t (t) dx

≤ ‖K̃z(t)‖L2(�,R3)‖qz
t (t)‖L2(�,R3) .
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Above, we employ the fact that the solution m to the LLG equation has
|m| = 1 and the continuity of the embeddings H 1(�,R3) ↪→ L6(�,R3) ↪→
L3(�,R3),H 2(�,R3) ↪→ L∞(�,R3) through the constants C�

H 1→L6 , C
�
H 1→L3

and C�
H 2→L∞ , respectively.

Employing Young’s inequality we deduce, for each t ≤ T and ε > 0 sufficiently
small,

1

2

d

dt
‖∇qz(t)‖2

L2(�,R3)
+ (α̂1 − ε)‖qz

t (t)‖2L2(�,R3)

≤
[ (

‖∇m‖4
L∞(0,T ;H 1(�,R3))

+‖∇m(t)‖2
H 2(�,R3)

+‖mt (t)‖2L3(�,R3)
+‖h(t)‖2

L3(�,R3)

)

.‖qz(t)‖2
H 1(�,R3)

+ ‖K̃z(t)‖2
L2(�,R3)

]
C

4ε
. (62)

The generic constant C might take different values whenever it appears.
To have the full H 1−norm on the left hand side of this estimate, we apply

the transformation q̃z(t) = etqz(t), which yields q̃z
t (t) = et (qz(t) + qz

t (t)).
After testing by qz

t , the term
∫
�
qz(t) · qz

t (t) dx = 1
2

d
dt

‖qz(t)‖2
L2(�,R3)

will

contribute to 1
2

d
dt

‖∇qz(t)‖2
L2(�,R3)

forming the full H 1−norm on the left hand side.
Alternatively, one can add qz to both sides of (51) and evaluate the right hand side
with

∫
�
qz(t) · qz

t (t) dx ≤ 1
4ε ‖qz(t)‖2

H 1(�,R3)
+ ε‖qz

t (t)‖2L2(�,R3)
.

Integrating over (0, t), we get

1

2
‖qz(t)‖2

H 1(�,R3)
+ (α̂1 − ε)‖qz

t ‖2L2(0,t;L2(�,R3))

≤ C

4ε

[ ∫ t

0

(
‖∇m‖4

L∞(0,T ;H 1(�,R3))
+ ‖∇m(τ )‖2

H 2(�,R3)
+ ‖mt (τ )‖2

L3(�,R3)

+ ‖h(τ )‖2
L3(�,R3)

)
.‖qz(τ )‖2

H 1(�,R3)
dτ

+ ‖K̃z‖2
L2(0,T ;L2(�,R3))

+ ‖(Mα̂
T )−1K̃T z‖2

H 1(�,R3)

]

with the evaluation for the terms ‖K̃z‖L2(0,T ;L2(�,R3)) and ‖(Mα̂
T )−1K̃T z‖2

H 1(�,R3)

(not causing any misunderstanding, we omit here the subscripts k, � for indices of
concentrations and coil sensitivities)

‖K̃z(t)‖2
L2(�,R3)

≤ C‖cpR‖2
L2(�,R3)

‖ã‖2
H 1(0,T )

‖z‖2
L2(0,T )

≤ Cã,c,pR‖z‖2
L2(0,T )

,

|(Mα̂
T )−1K̃T z‖2

H 1(�,R3)

≤ Cα̂‖z‖2
L2(0,T )

‖ã‖2
L2(0,T )
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.
(
‖cpR‖2

H 1(�,R3)
+ ‖cpmi (T )‖2

H 1(�,R3)
+ ‖cpRmj (T )mk(T )‖2

H 1(�,R3)

)

≤ Cα̂0,ρ,ã‖z‖2
L2(0,T )

(
‖cpR‖2

H 1(�,R3)
+ ‖cpR‖2

L6(�,R3)
‖∇m(T )‖2

L3(�,R3)

)

≤ Cã‖z‖2
L2(0,T )

.
(
‖cpR‖2

H 1(�,R3)
+ (C�

H 1→L6C
�
H 1→L3)

2‖cpR‖2
H 1(�,R3)

‖∇m‖2
L∞(0,T ;H 1(�,R3))

)

≤ Cã,c,pR‖z‖2
L2(0,T )

‖∇m‖2
L∞(0,T ;H 1(�,R3))

with some i, j, k = 1, 2, 3. This estimate holds for cpR ∈ H 1(�,R3) and thus
requires some smoothness of the concentration c, while the coil sensitivity pR is
usually smooth in practice.

Then applying Grönwall’s inequality yields

‖qz‖L∞(0,T ;H 1(�,R3))

≤ C exp
(
‖∇m‖2

L∞(0,T ;H 1(�,R3))
+ ‖∇m‖L2(0,T ;H 2(�,R3)) + ‖mt‖L2(0,T ;L3(�,R3))

+ ‖h‖L2(0,T ;L3(�,R3))

)
.
(‖K̃z‖L2(0,T ;L2(�,R3)) + ‖(Mα̂

T )−1K̃T z‖H 1(�,R3)

)

≤ Cã,c,pR
(
‖∇m‖L∞(0,T ;H 1(�,R3))∩L2(0,T ;H 2(�,R3)), ‖mt‖L2(0,T ;L3(�,R3))

, ‖h‖L2(0,T ;L3(�,R3))

)
.‖z‖L2(0,T ).

Integrating (62) on (0, T ), we also get

‖qz
t ‖L2(0,T ;L2(�,R3))

≤ Cã,c,pR
(
‖∇m‖L∞(0,T ;H 1(�,R3))∩L2(0,T ;H 2(�,R3)), ‖mt‖L2(0,T ;L3(�,R3)))

, ‖h‖L2(0,T ;L3(�,R3))

)
.‖z‖L2(0,T ).

Altogether, we obtain

‖qz‖L∞(0,T ;H 1(�,R3)) + ‖qz
t ‖L2(0,T ;L2(�,R3))

≤ Cã,c,pR
(
‖∇m‖L∞(0,T ;H 1(�,R3))∩L2(0,T ;H 2(�,R3)), ‖mt‖L2(0,T ;L3(�,R3))

, ‖h‖L2(0,T ;L3(�,R3))

)
.‖z‖L2(0,T ). (63)

This result applied to the Galerkin approximation implies existence of the solution
to the adjoint equation. Uniqueness also follows from (63).
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4.2.3 Regularity of the Solution to the LLG Equation

In (63), first of all we need the solution m ∈ L∞(0, T ;H 2(�,R3))

∩L2(0, T ;H 3(�,R3)) to the LLG equation. This can be obtained from
the regularity result in [11, Lemma 2.3] for m0 ∈ H 2(�,R3) with small
‖∇m0‖L2(�,R3). The remaining task is verifying that the estimate still holds in
case the external field h is present, i.e., the right hand side of (21) contains the
additional term Projm⊥h.

Following the lines of the proof in [11, Lemma 2.3], we take the second spatial
derivative of Projm⊥h, then test it by �m such that
∫

�

�h(t) · �m(t) dx

≤
{

‖�h(t)‖L2(�,R3)‖�m(t)‖L2(�,R3) if h ∈ L2(0, T ; H 2(�,R3))

‖∇h(t)‖L2(�,R3)‖∇3m(t)‖L2(�,R3) if h ∈ L2(0, T ; H 1(�,R3)), ∂νh = 0 on ∂�
,

∫
�

�((m(t) · h(t))m(t)) · �m(t) dx

≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C‖h(t)‖H 2(�,R3)

(
1 + 6‖∇m(t)‖H 1(�,R3) + 2‖∇m(t)‖H 2(�,R3)‖∇m‖L∞(0,T ;L2(�,R3))

)
.‖�m(t)‖L2(�,R3) if h ∈ L2(0, T ; H 2(�,R3))

C‖h(t)‖H 1(�,R3)

(
1 + 2‖∇m(t)‖L3(�,R3)

) ‖∇3m(t)‖L2(�,R3)

if h ∈ L2(0, T ; H 1(�,R3)), ∂νh = 0 on ∂�

with C just depending on the constants in the embeddings H 1(�,R3) ↪→
L6(�,R3) ↪→ L3(�,R3). Then we can proceed similarly to the proof of [11,
Lemma 2.3] by applying Young’s inequality, Gronwall’s inequality and time
integration to arrive at

‖∇m‖L∞(0,T ;H 1(�,R3))∩L2(0,T ;H 2(�,R3))

≤ (‖∇m0‖H 1(�,R3) + ‖h‖)C(‖∇m0‖H 1(�,R3), ‖h‖),
(64)

where ‖h‖ is evaluated in L2(0, T ;H 1(�,R3)) or L2(0, T ;H 2(�,R3)) as in the
two cases mentioned above.

It remains to prove mt ∈ L2(0, T ;H 1(�,R3)) ↪→ L2(0, T ;L3(�,R3)) to
validate (63). For this purpose, instead of working with (21) we test (18) by −�mt

and obtain
∫

�

mt (t) · (−�mt (t)) dx

= ‖∇mt (t)‖2L2(�,R3)
,
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∫
�

−α1�m(t) · (−�mt (t)) dx

= α1

2

d

dt
‖�m(t)‖2

L2(�,R3)
,

∫
�

−α1|∇m(t)|2m(t) · (−�mt (t)) dx

= −α1

∫
�

∇
(
|∇m(t)|2m(t)

)
: ∇mt (t) dx

≤ α1

(
2C�

H 1→L6C
�
H 1→L3‖∇m‖L∞(0,T ;H 1(�,R3))‖�m(t)‖H 1(�,R3)

+ (C�
H 1→L6)

3‖∇m‖3
L∞(0,T ;H 1(�,R3))

)
.‖∇mt (t)‖L2(�,R3) ,

∫
�

−α1(h(t) − (m(t) · h(t))m(t)) · (−�mt (t)) dx

= −α1

∫
�

∇(h(t) − (m(t) · h(t))m(t)) : ∇mt (t) dx

≤ 2α1

(
‖∇h(t)‖L2(�,R3)

+ C�
H 1→L6‖h(t)‖L3(�,R3)‖∇m‖L∞(0,T ;H 1(�,R3))

)
.‖∇mt (t)‖L2(�,R3) ,

∫
�

−α2(m(t) × �m(t)) · (−�mt (t)) dx

=
∫

�

−α2∇(m(t) × �m(t)) : ∇mt (t) dx

≤ |α2|
(
C�

H 1→L6C
�
H 1→L3‖∇m‖L∞(0,T ;H 1(�,R3))‖�m(t)‖H 1(�,R3)

+ ‖∇3m(t)‖L2(�,R3)

)
.‖∇mt (t)‖L2(�,R3) ,

∫
�

−α2(m(t) × h(t)) · (−�mt (t)) dx

=
∫

�

−α2∇(m(t) × h(t)) : (∇mt (t)) dx

≤ |α2|
(
C�

H 1→L6‖h(t)‖L3(�,R3)‖∇m‖L∞(0,T ;H 1(�,R3))

+ ‖∇h(t)‖L2(�,R3)

)
.‖∇mt (t)‖L2(�,R3) .

Integrating over (0, T ) then employing Hölder’s inequality, Young’s inequality and
(64), it follows that
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(1 − ε)‖∇mt‖L2(0,T ;L2(�,R3))

≤ C

4ε

(
‖∇m‖L∞(0,T ;H 1(�,R3))‖∇m‖L2(0,T ;H 2(�,R3)) + ‖∇m‖3

L∞(0,T ;H 1(�,R3))

+ ‖∇m‖L2(0,T ;H 2(�,R3)) + ‖h‖L2(0,T ;H 1(�,R3))‖∇m‖L∞(0,T ;H 1(�,R3))

+ ‖h‖L2(0,T ;H 1(�,R3))

)

≤ (‖∇m0‖H 1(�,R3) + ‖h‖)C(‖∇m0‖H 1(�,R3), ‖h‖). (65)

Also ‖mt‖L2(0,T ;L2(�,R3)) < C
(‖∇m0‖L2(�,R3) + ‖h‖L2(0,T ;L2(�,R3))

)
according

to [25] with taking into account the presence of h, we arrive at

‖mt‖L2(0,T ;H 1(�,R3)) ≤ (‖∇m0‖H 1(�,R3) + ‖h‖)C(‖∇m0‖H 1(�,R3), ‖h‖),
(66)

where ‖h‖ is evaluated in L2(0, T ;H 1(�,R3)) or L2(0, T ;H 2(�,R3)).
In conclusion, the fact thatm ∈ L∞(0, T ;H 2(�,R3))∩L2(0, T ;H 3(�,R3))∩

H 1(0, T ;H 1(�,R3)) for m0 ∈ H 2(�,R3) with small ‖∇m0‖L2(�,R3), and
h ∈ L2(0, T ;H 1(�,R3)), ∂νh = 0 on ∂� or h ∈ L2(0, T ;H 2(�,R3))

guarantee unique existence of the adjoint state qz ∈ L∞(0, T ;H 1(�,R3)) ∩
H 1(0, T ;L2(�,R3)). And this regularity of qz ensures the adjoint F ′(α̂)∗ in (50)
to be well-defined.

Remark 4

• The LLG equation (21)–(23) is uniquely solvable for α̂1 > 0 and arbitrary α̂2.
Therefore, the regularization problem should be locally solved within the ball
Bρ(α̂0) of center α̂0 with α̂0

1 > 0 and radius ρ < α̂0
1.

• [11, Lemma 2.3] requires smallness ‖∇m0‖L2(�,R3) ≤ λ, and this smallness

depends on α̂ through the relation CI
(
λ2 + 2λ + α̂2

α̂1
λ
)

< 1 with CI depending

on the constants in the interpolation inequalities.

Altogether, we arrive at

D(F ) =
{
α̂ = (α̂1, α̂2) ∈ Bρ(α̂0) : 0 < α̂0

1, ρ < α̂0
1, C

I

(
λ2 + 2λ + α̂2

α̂1
λ

)
< 1

}
.

(67)

4.2.4 Differentiability of the Forward Operator

Since the observation operator K is linear, differentiability of F is just the question
of differentiability of S.
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Let us rewrite the LLG equation (21) in the following form

g̃(α̂,m) − �m = f̃ (m)

and denote

ṽε := S(α̂ + εβ) − S(α̂)

ε
− u =: n − m

ε
− u =: vε − u.

Considering the system of equations

g̃(α̂ + εβ,n) − �n = f̃ (n),

g̃(α̂,m) − �m = f̃ (m),

g̃′
m(α̂,m)u + g̃′

α̂
(α̂,m)β − �u = f̃ ′

m(m)u,

with the same boundary and initial data for each, we see that ṽε solves

g̃′
m(α̂,m)ṽε − �ṽε − f̃ ′

m(m)ṽε

= f̃ (n) − f̃ (m)

ε
− f̃ ′

m(m)vε − g̃(α̂ + εβ,n) − g̃(α̂,m)

ε
(68)

+ g̃′
m(α̂,m)vε + g̃′

α̂
(α̂,m)β in (0, T ) × �

∂ν ṽε = 0 on [0, T ] × ∂� (69)

ṽε(0) = 0 in �, (70)

explicitly

α̂1ṽε
t − α̂2m × ṽε

t − α̂2ṽε × mt − �ṽε

− 2(∇ṽε : ∇m)m + ṽε(−|∇m|2 + (m · h)) + (ṽε · h)m

= 1

ε

(
|∇n|2n + Projn⊥h − |∇m|2m − Projm⊥h

)
(71)

− 2(∇vε : ∇m)m + vε(−|∇m|2 + (m · h)) + (vε · h)m

− 1

ε

(
(α̂1 + εβ1)nt − (α̂2 + εβ2)n × nt − α̂1mt + α̂2m×mt

)

+ α̂1vε
t − α̂2m × vε

t − α̂2vε × mt

+ β1mt − β2m × mt in (0, T ) × �

∂ν ṽε = 0 on [0, T ] × ∂�

(72)

ṽε(0) = 0 in �. (73)
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Observing the similarity of (71)–(73) to the adjoint equation (51)–(53) with ṽε in
place of qz and denoting by bε the right-hand side of (68) or (71), one can evaluate
‖ṽε‖ using the same technique as in Sect. 4.2.2. By this way, one achieves, for each
ε ∈ [0, ε̄],

‖ṽε‖L∞(0,T ;H 1(�,R3))∩H 1(0,T ;L2(�,R3)) ≤ C‖bε‖L2(0,T ;L2(�,R3))

with bε ∈ L2(0, T ;L2(�,R3)) also by analogously estimating and employing
m,n ∈ L∞(0, T ;H 2(�,R3)) ∩ L2(0, T ;H 3(�,R3)) ∩ H 1(0, T ;H 1(�,R3)).
We note that the constant C here is independent of ε.

Next letting V := L∞(0, T ;H 1(�,R3)) ∩ H 1(0, T ;L2(�,R3)), we have

‖bε‖L2(0,T ;L2(�,R3)) =
∥∥∥∥ f̃ (n) − f̃ (m)

ε
− f̃ ′

m(m)vε − g̃(α̂ + εβ,n) − g̃(α̂,m)

ε

+ g̃′
m(α̂,m)vε + g̃′

α̂
(α̂,m)β

∥∥∥∥
L2(0,T ;L2(�,R3))

≤
∥∥∥∥
∫ 1

0

((
f̃ ′
m(m + λεvε) − f̃ ′

m(m)
)
vε − (

g̃′
m(α̂ + λεβ,m + λεvε) − g̃′

m(α̂,m)
)
vε

− (
g̃′
α̂
(α̂ + λεβ,m + λεvε) − g̃′

α̂
(α̂,m)

)
β
)

dλ

∥∥∥∥
L2(0,T ;L2(�,R3))

≤ 2 sup
λ∈[0,1]
ε∈[0,ε̄]

(
‖f̃ ′

m(m + λεvε)‖V→L2(0,T ;L2(�,R3))‖vε‖V

+ ‖g̃′
m(α̂ + λεβ,m + λεvε)‖V→L2(0,T ;L2(�,R3))‖vε‖V

+ ‖g̃′
α̂
(α̂ + λεβ,m + λεvε)‖

R2→L2(0,T ;L2(�,R3))|β|
)
.

In order to prove uniform boundedness of the derivatives of f̃ , g̃ w.r.t λ, ε in the
above estimate, we again proceed in a similar manner as in Sect. 4.2.2 since the
space for qz in Sect. 4.2.2 (c.f. (64)) coincides withV here and by the fact that

max{‖m‖, ‖n‖} ≤ max
{ 1

α̂1
,

1

α̂1 + εβ1

}
C
(‖m0‖H 2(�,R3)), ‖h‖L2(0,T ;H 2(�,R3))

)

≤ C

α̂0
1 − ρ

(74)

form,n ∈ L∞(0, T ;H 2(�,R3))∩L2(0, T ;H 3(�,R3))∩H 1(0, T ;H 1(�,R3)).
If ∂νh = 0 on ∂�, we just need the ‖.‖L2(0,T ;H 1(�,R3))-norm for h as claimed in
(64). This estimate holds for any ε ∈ [0, ε̄], and the constant C is independent of ε.
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To accomplish uniform boundedness for ‖bε‖L2(0,T ;L2(�,R3)), we need to show
that ‖vε‖V is also uniformly bounded w.r.t ε. It is seen from

g̃(α̂ + εβ,n) − �n = f̃ (n),

g̃(α̂,m) − �m = f̃ (m)

that vε solves

∫ 1

0
g̃′
m(α̂ + λεβ,m + λεvε)vε + g̃′

α̂
(α̂ + λεβ,m + λεvε)β dλ − �vε

=
∫ 1

0
f̃ ′
m(m + λεvε)vε dλ in (0, T ) × �

(75)

∂νvε = 0 on [0, T ] × ∂�

(76)

vε(0) = 0 in �. (77)

Noting that M := m + λεvε = λn + (1 − λ)m has ‖M‖ ≤ C

α̂0
1−ρ

for all λ ∈ [0, 1]
with C being independent of ε, and g̃ is first order in α̂, we can rewrite (75) into the
linear equation

G̃(α̂ + λεβ,M)vε − �vε + F̃ (M)vε = B̃(M)β. (78)

Following the lines of the proof in Sect. 4.2.2, boundedness of the terms−�, F̃ (M),
B̃(M) are straightforward, while the main term in G̃(α̂ + λεβ,M) producing the
single square norm of vε

t , after being tested by vε
t is

∫ 1

0
(α̂1 + λεβ1)

∫
�

vε
t (t) · vε

t (t) dx dλ = ‖vε
t (t)‖2L2(�,R3)

(
α̂1 + εβ1

2

)

≥ ‖vε
t (t)‖2L2(�,R3)

(α̂0
1 − ρ).

According to this, one gets, for all ε ∈ [0, ε̄],

‖vε‖V ≤ C|β|‖B̃(M)‖R2→L2(0,T ;L(�,R3)) ≤ |β|C (79)

with C depending only on m0,h, α̂0, ρ.

Since bε → 0 pointwise and ‖bε‖L2(0,T ;L2(�,R3)) ≤ C for all ε ∈ [0, ε̄],
applying Lebesgue’s Dominated Convergence Theorem yields convergence of
‖bε‖L2(0,T ;L2(�,R3)), thus of ‖ṽε‖V, to zero. Fréchet differentiability of the forward
operator in the reduced setting is therefore proved.
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5 Conclusion

In this contribution we outlined a mathematical model of MPI taking into account
relaxation effects, which led us to the LLG equation describing the behavior of
the magnetic material inside the particles on a microscale level. For calibrating the
MPI device it is necessary to compute the system function, which mathematically
can be interpreted as an inverse parameter identification problem for an initial
boundary value problem based on the LLG equation. To this end we deduced a
detailed analysis of the forward model, i.e., the operator mapping the coefficients
to the solution of the PDE as well as of the underlying inverse problem. The
inverse problem itself was investigated in an all-at-once and a reduced approach.
The analysis includes representations of the respective adjoint operators and Fréchet
derivatives. These results are necessary for a subsequent numerical computation of
the system function in a robust manner, which will be subject of future research.
Even beyond this, the analysis might be useful for the development of solution
methods for other inverse problems that are connected to the LLG equation.
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