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Abstract Single molecule localization microscopy is a recently developed super-
resolution imaging technique to visualize structural properties of single cells. The
basic principle consists in chemically attaching fluorescent dyes to the molecules,
which after excitation with a strong laser may emit light. To achieve superresolution,
signals of individual fluorophores are separated in time. In this paper we follow
the physical and chemical literature and derive mathematical models describing the
propagation of light emitted from dyes in single molecule localization microscopy
experiments via Maxwell’s equations. This forms the basis of formulating inverse
problems related to single molecule localization microscopy. We also show that the
current status of reconstruction methods is a simplification of more general inverse
problems for Maxwell’s equations as discussed here.
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1 Introduction

The structure and organization of proteins in cells relate directly to their biological
function. Many proteins associate with each other and form functional supramolec-
ular arrangements known as oligomers. Protein oligomers appear in a wide range of
crucial biological processes, such as signal transduction, ion transport or immune
reactions. The accurate characterization of the supramolecular organization of pro-
teins, including oligomer stoichiometry and its spatial distribution, is fundamental
to fully understand these biological processes.

Several tools address the study of the structure of small biological units,
most popular ones being x-ray crystallography and, most recently, cryo-electron
microscopy, which have been used to characterize the structure of individual
isolated proteins with a high level of detail [27, 31]. However, currently these tools
cannot be applied for studying quaternary protein assemblies in their native cellular
environment, due to a lack in chemical contrast: it is impossible to single out the
molecular structures of interest within the plethora of other molecular species. A
solution is provided by fluorescence microscopy, where a single protein species is
addressed by specific fluorescence labelling directly in the cell. While fluorescence
microscopy allows for imaging these labelled structures at a high signal to noise
ratio, its resolution is limited to around 200 nm due to the diffraction of light.
This prohibits a characterization of oligomeric arrangements with conventional light
microscopy, since these structures are smaller than the resolution limit. In summary,
the current life sciences are limited by a resolution gap, the upper limit of which
is set by the diffraction limit of fluorescence microscopy, the lower limit by the
difficulty to interpret crystallography experiments of oligomeric protein complexes.

In principle, the arrival of superresolution microscopy techniques allows to over-
come this gap. Virtually all superresolution techniques are based on fluorescence
microscopy, and as such have to overcome or circumvent the problem of optical
diffraction. A fluorescent label emits light that is imaged by the microscopy system
as a blurry dot. This dot of diffracted light is known as the point spread function
(PSF). Its size d (the diameter of the essential support of the PSF) is determined
by the light wavelength λ and by the numerical aperture (NA) of the objective. The
angle θmax is one half of the angular aperture (A). Neglecting lens aberrations, it
can be described analytically by an Airy function, where the distance between the
maximum and its first minimum is given by (see Eq. (96))

d = λ

2n sin(θmax)
= λ

2NA
with n the refractive index of the medium. (1)

The size of the PSF determines the limit of resolution of conventional light
microscopy. It was first described by Abbe [1], and it is known as Abbe’s limit
of diffraction: If two fluorescent labels are closer than the distance d, their
PSFs overlap, and they cannot be distinguished from each other. For fluorescence
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Fig. 1 Illustration of the limit of light diffraction. (a) Crystallographic structure of the human NPC
(pdb: 5A9Q) [34] viewed with NGL viewer [28]. (b) Simplification of the NPC structure showing
its eight symmetric units. (c) Representation of an ideal, diffraction-limited image of the structure
in (b)

microscopy, with wavelengths in the visible spectrum and objectives with numerical
apertures generally lower than 1.3, this resolution limit is in the order of 200 nm.

For oligomeric protein structures, the distance between their subunits is typically
in the range of a few nanometers, far smaller than the diffraction limit. The signals
from the individual subunits overlap, and cannot be resolved by conventional light
microscopy. A prominent example for such a structure is the nuclear pore complex
(NPC), which is a large protein complex located in the nuclear membrane of
eukaryotic cells. Its structure is well characterized through electron microscopy
[34]. NPCs are composed of around 30 proteins arranged in an 8-fold symmetry
forming a pore that regulates the transport across the nuclear membrane. The overall
size ranges approximately between 80 to 120 nm depending on the species [22]. As
we see in Fig. 1, even if only one protein in each symmetrical subunit is labelled,
diffraction leads to one blurry dot as the image of the complex, where we can neither
identify the number of subunits nor their spatial arrangement.

Great efforts have been made to overcome this barrier, but it was not until
the advent of superresolution microscopy that images with a resolution below the
diffraction limit could be obtained. As a key asset, superresolution microscopy tech-
niques circumvent Abbe’s limit of diffraction by utilizing photophysical properties
of the fluorescent labels: they keep adjacent molecules at different fluorescence
states, making it possible to differentiate them from each other. This is achieved
using different techniques that can be combined into two general approaches:

1. Techniques that use patterned illumination to control the fluorescence state of the
labels, selecting which of them emit at a given moment. This approach includes,
among others, Stimulated Emission Depletion (STED) [23, 24, 35], Reversible
Saturable Optical Fluorescence Transitions (RESOLFT) [18], Minimal Photon
Fluxes (MINFLUX) [4] or Saturated Structured IlluminationMicroscopy (SSIM)
[16] methods.

2. Techniques that use properties of the fluorescent labels to stochastically switch
their fluorescent state, so that neighbouring labels do not emit at the same
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time. These techniques are commonly termed Single Molecule Localization
Microscopy (SMLM) and include, among others, Stochastic Optical Recon-
struction Microscopy (STORM) [29], Photoactivated Localization Microscopy
(PALM) [6], and DNA- Points Accumulation for Imaging in Nanoscale Topog-
raphy (DNA-PAINT) [21]. In SMLM, the signals of the individual fluorophores
are sequentially localized and used to reconstruct an image with subdiffraction
resolution.

In this work, we focus on SMLM techniques, where the working principle is
described in Sect. 2. The objective of this paper is to derive mathematical models
of light propagation through the imaging device and to formulate associated inverse
problems. This sets the base for the formulation of the inverse problems of SMLM,
which concerns the localization of the fluorescent labels with high localization
precision and the reliable reconstruction of the imaged structures. We show that the
currently used imaging workflow in SMLM can be viewed as solving an inverse
problem for Maxwell’s equations (see Sect. 7). The inverse problem of SMLM
has been previously investigated. In [9], a model for light propagation based on
Maxwell’s equations is proposed and used to localize the positions and strengths of
fluorescent dipoles. The model also accounts for the effects of the detection optics
and employed a maximum likelihood reconstruction method. The inverse scattering
problem with internal sources was investigated in [13], as a means of achieving sub
wavelength resolution in SMLM. A local inversion formula was derived and the
inverse problem was shown to be well-posed.

2 Single Molecule Localization Microscopy (SMLM)

Principle of SMLM

An SMLM experiment starts with the labelling of the proteins of interest with a
fluorophore. There are different strategies for labelling, depending on the type of
fluorescent probe, the molecule of interest, and its location in the cell. It should be
taken into account that no labelling strategy is perfect, and labelling efficiency will
likely be below 100%. In addition, the size of the probe or of the attachment of
the linker molecule, in the cases were an intermediate is necessary, can affect the
accuracy of the measurement. The influence of these aspects will be addressed in
later sections in more detail.

During an SMLM measurement, the experimental conditions are tuned such
that most of the fluorophores are in their dark state, and in each frame, a small
subset of them is stochastically activated. The active fluorophores are sufficiently
isolated from each other so that their PSFs do not overlap. After some time
these fluorophores switch to a dark state, and a new subset of fluorophores is
stochastically activated. This is repeated thousands of times, to ensure the collection
of signals from enough fluorophores. We can see a scheme of an ideal experiment
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t=1 t=2 t=3

Time

Diffraction limited Recording of SMLM frames Reconstructed image

Fig. 2 Scheme of an ideal SMLM experiment. In a classical diffraction-limited image, all the
fluorophores are active, and the structure underneath—in this example an NPC—is unresolvable.
In contrast, in an SMLM experiment only a sparse subset of fluorophores is active per image. In the
first frame (t = 1) of this exemplary SMLMmovie, only one fluorophore is active, while the others
remain in their dark state. The PSF of this fluorophore, can be fitted mathematically, which yields
the fluorophore localization. In t = 2, the first fluorophore returns to its dark state, and another
fluorophore is activated and can now be localized. This is repeated until all fluorophores have been
localized. All localizations are collected in a final reconstructed image, which corresponds to the
structure shown in Fig. 1b

in Fig. 2. The necessity for sparse labels per image and for enough localizations
to reconstruct the structure results in movies with tens of thousands of frames.
After data collection, all signals in all frames are fitted individually to obtain the
coordinates of the fluorescent probes. All localizations are then collected and used
to reconstruct a superresolution image.

The fluorophores used in SMLM are able to spontaneously change their fluo-
rescence state. This property is commonly known as photoswitching or blinking.
One dark-bright-dark cycle is usually called a blink. Photoswitching mechanisms
are different for different kinds of probes and can be the result of conformational
changes in the dye molecule, chemical changes, or binding events. Typically, a
combination of light illumination and the choice of special chemical conditions is
used for deactivation, i.e. the transitions to a long-lived dark state. The activation,
i.e. the transition back from this state, is usually light-induced, although other
phenomena may apply (for example, binding events in the case of DNA-PAINT
microscopy). An extensive review of available SMLM fluorophores and their
properties can be found in [26].

In an ideal experiment, each fluorophore undergoes exactly one blink, in which
it emits a high number of photons, and it remains in a dark state for the rest of the
measurement. Commonly, however, fluorophores undergo multiple blinking events,
or remain inactive during the whole imaging procedure. These non-ideal behaviours
directly influence the quality of the final image, and they should be considered when
analysing the data, as will be detailed in the next sections. The emission behaviour
of a fluorescent label, and therefore the quality of the collected data, will depend
largely on the kind of fluorophore used, the labelling strategy followed, and the
environmental conditions of the fluorophore [25].
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Fitting of Localizations

In an SMLM experiment, thousands of individual frames are recorded. Obtaining
the final image requires post-processing of the recorded raw data. All blinking
events are analyzed and the positions of the molecules are determined by fitting
their signals. A variety of algorithms and software packages exist that can be
applied to analyze the data [30]. Often, a Gaussian function is fitted to the detected
intensity data using a maximum likelihood or least squares method. The coordinates
of the center of the Gaussian peak are then taken as the position of the molecule.
Finally, the localizations obtained from all recorded frames are combined to yield
the reconstructed image.

Localization Error and Bias

The achievable resolution in SMLM depends on how well the position of a molecule
can be estimated by fitting its PSF. The fitting procedure is influenced by various
factors of signal quality, including brightness, background noise and the pixel size
of the detector. The error in the estimation of the molecule position follows a normal
distribution. Its standard deviation is referred to as localization precision σloc. The
mean of the error distribution is the localization accuracy μloc. In the optimal case, it
holds that μloc = 0, i.e. the estimation is unbiased. However, in practice a bias in the
localization procedure may be present, e.g. due to distortions of the PSF. A bias may
also arise from the labeling procedure. The size of some labels itself can be rather
large, which displaces the position of the fluorophore from the actual molecule of
interest by up to tens of nanometers. Various formulas for the estimation of the
localization precision σloc have been proposed in the literature [10]. The theoretical
limit for the best achievable localization precision is given by the Cramér-Rao lower
bound (CRLB), which is critically dependent on the collected number of photons
[32].

Blinking and Overcounting

In SMLM, fluorophores switch between a fluorescent on-state and a non-fluorescent
off-state. The transitions between the two states occur stochastically. Ideally, each
fluorophore is detected exactly once during the whole imaging procedure, i.e. it is
in the on-state in exactly one frame.

However, this is unlikely in a real experimental situation. Due to the stochastic
nature of transitions between the states, fluorescent dyes can stay in the on-
state for several consecutive frames and, moreover, repeatedly switch between the
on- and the off-state. Thus, a single molecule may be detected multiple times.
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Fig. 3 Exemplary time trace for a fluorophore. The fluorophore can switch between a dark off-
state and a bright on-state. Indicated are the on- and off-time (ton, toff), representing the number
of consecutive frames the molecule is in its bright or dark state, respectively, and the number of
detections N

However, the position coordinates assigned to each detection slightly differ due
to localization errors. Hence, it is not possible to distinguish whether localizations
belong to one blinking molecule or to different molecules. Overcounting of single
protein molecules may also occur as a consequence of non-stoichiometric labeling:
Depending on the labeling procedure, a single molecule of interest does not
necessarily carry one fluorescent dye only, but may be linked to multiple dyes.

The problem of overcounting is depicted in Fig. 5. Here, individual molecules of
the NPC are assumed to be detected multiple times during the imaging procedure,
leading to a misrepresentation of the actual structure.

Blinking statistics can be determined experimentally by labeling at sufficiently
low concentrations of the dye, so that localizations from individual molecules of
interest can be well separated. Analysis of the acquired localization data allows to
determine statistics for the number of detections of individual molecules of interest,
the duration of emission bursts (ton) and the duration of dark times (toff). In Fig. 3, a
schematic of a time trace of occupied states for an individual molecule is shown. An
exemplary result for the blinking statistics of a fluorescent dye is depicted in Fig. 4.

A simple approach to account for multiple detections of the same molecule is to
merge localizations that occur in close spatial and temporal proximity [2]. However,
the results of this method highly depend on the chosen thresholds. Moreover, it
cannot account for long-lived dark states. Other post-processing algorithms rely
on experimentally derived blinking statistics in order to correct for overcounting.
However, care must be taken here, because photophysics of fluorophores, in
particular blinking, depends on the local environment of the dye and may likely vary
under different experimental conditions [25]. An overview over different methods
for correcting overcounting artifacts is given in [5].
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Fig. 4 Experimentally derived blinking statistics for Alexa Fluor 647, a commonly used fluo-
rophore for SMLM. Shown are histograms for the number of detections N of a single fluorophore
(a), the on-time ton (b), and the off-time toff (c)

Forward Simulation of SMLM Localization Maps

In the following, we describe the main steps in the simulation of localization maps
obtained by a 2D SMLM experiment. Figure 5 shows simulation results of the
spatial arrangement for the example of NPCs.

The actual question of interest is the structural arrangement of molecules in a
cell membrane. The first step in the simulation is therefore to spread the position
of molecules on the region of interest according to the desired distribution. For
example, the molecules can be spread randomly, in clusters, or as oligomers of a
certain shape. The assigned positions represent ground truth.

As a second step, the simulated molecules are fluorescently labeled. In real
experimental conditions, not all molecules of interest are detected: some proteins
are not bound to a dye, or the dye is never detected during the imaging time. In
the simulations this is accounted for by adjusting the mean labeling efficiency,
a parameter in the interval [0, 1] that determines the mean fraction of molecules
observed in the experiment. Labeled molecules are selected randomly from all
simulated molecules according to the chosen distribution.
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a Molecules b Labels c Localizations

Fig. 5 Simulation of a SMLM experiment for the nuclear pore complex (NPC). (a) True spatial
arrangement of molecules. The distance between two neighboring molecules of the NPC was set
to 40 nm. The molecules are labeled with fluorescent probes. (b) with a labeling efficiency of 80%.
The SMLM experiment was simulated with a localization precision of σloc=5 nm, and the blinking
statistics from Fig. 4. (c) Obtained localization map. Due to overcounting and the finite localization
precision, individual molecules are observed multiple times

Next, overcounting has to be included in the simulation. As described above,
a protein molecule can be detected multiple times during the whole imaging
procedure. To account for this in the simulations, the number of detections of each
molecule of interest, the frame of its first appearance and the duration of on- and off-
times are included. For each labeled molecule, these variables are drawn randomly
either from experimentally acquired blinking statistics or from specified theoretical
distributions. This allows to assign to each molecule a list of those frames, in which
it is detected.

The last step in the simulation is to account for measurement errors. For each
detection of a molecule, its true simulated position is displaced by adding a
localization error, which is drawn randomly from a normal distribution. The mean
and the standard deviation of the error distribution correspond to the localization
accuracy and localization precision, respectively. Ideally, the mean value is zero,
i.e. the localization is accurate. However, inaccuracy may occur, e.g. due to certain
properties of the labeling procedure [10]. Localization precision depends mainly
on the collected number of photons and background noise. Typical values that are
achieved in SMLM experiments are commonly around 10 nm, but precisions of 1 nm
have been claimed.

The final result of the simulation is the localization map, i.e. a list of localization
coordinates with the according frame numbers of detection. An exemplary simulated
localization map for the NPC is shown in Fig. 5. The obtained localizations are the
basis for further analysis.

In the next section we model the experiment mathematically. In order to do so
we summarize essential notation first in Table 1.
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Table 1 Physical parameters used in the paper and dimensions

Symbol Description Reference Relations Units

d0 Maximum thickness of lens m

d Thickness of lens (function
of height)

Fig. 8 m

fL Focal length of the tube lens Fig. 8 m

fobj Focal length of the objective Fig. 8 m

λ Wavelength Eq. (1) m

n = 1 Refractive index in vacuum Eq. (1) −
nl Refractive index of lens Eq. (88) −
d Resolution limit Eq. (1) m

NA Numerical aperture Eq. (1) d = λ
2NA −

θmax ∈ [0, π/2) Angle of aperture Eq. (1) NA = n sin(θmax) −
ε0 Electric permittivity (vac.) Eq. (12) F/m

μ0 Magnetic permeability
(vac.)

Eq. (13) H/m Henries per m

ω Wave frequency Hz = 1/s

c Light speed (vac.) Eq. (22) m/s

κ , κε Wave number Eq. (22) κ = ω
c

= 2π
λ

1/m

χ Susceptibility Eq. (21) −
� Dipole Eq. (36)

�p , �s Dipole components Eq. (58)

3 Mathematical Prerequisites

In what follows we summarize some basic mathematical framework:

3.1 Distributions

In order to define distributions (generalized functions) we need to introduce
appropriate function spaces first:

Definition 1 The Schwartz-space of functions from Rn to C is defined as

S(Rn;C) :=
{
φ ∈ C∞(Rn;C) : for all α, β ∈ Nn

0, ‖φ‖α,β := sup
x∈Rn

∣∣xα∂βφ(x)
∣∣ < ∞

}
.

(2)
Accordingly the Schwartz-space of vector valued functions is defined by

S(Rn;Cm) := {
� ∈ C∞(Rn;Cm) : �i ∈ S(Rn;C), i = 1, . . . , m

}
. (3)
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The space of linear functionals T : S(Rn;Cm) → C for which there exist k, l ∈ N0
and some C > 0 such that for all � ∈ S(Rn;Cm) the following inequality holds

|〈T ,�〉| := |T �| ≤ C

m∑
i=1

∑
|α|≤k,|β|≤l

‖�i‖α,β (4)

is called space of tempered distributions and is denoted by S′(Rn;Cm).

Definition 2 (Causal Distribution) A tempered distribution T ∈ S′(Rn−1×R;C)

is called causal if its support in time is included in [0,+∞). That is T is causal if
and only if for all test functions φ ∈ S(R × Rn−1;C) which satisfy

φ(x, t) = 0 for all t � 0, x ∈ Rn−1,

we have

〈T , φ〉 = 0.

For causal distributions, the quantity | 〈T , φ〉 | can be estimated as follows.

Lemma 1 Let T ∈ S′(Rn−1×R;C) be causal. Then, there exists a constant C > 0
(which depends only on l) such that for all test functions φ ∈ S(Rn−1 × R;C) the
following estimate holds:

|〈T , φ〉| � C sup
|α|≤k,|β|≤l

sup
t�−1

x∈Rn−1

|(x, t)α∂βφ(x, t)|. (5)

Proof Let � be a C∞(R;R) cut-off function, that satisfies �(t) = 1 for t � 0 and
�(t) = 0 for t � −1. Then, for all test functions φ ∈ S(Rn−1 × R;C), we define
ψ = �φ. For t � 0, we have ψ − φ = 0, which means, since T is causal, that
〈T ,ψ − φ〉 = 0, or in other words,

〈T , φ〉 = 〈T ,ψ〉 . (6)

Now, let us use the definition of tempered distribution for T : there exist k, l ∈ N0
and C̃ > 0 such that

| 〈T ,ψ〉 | � C̃ sup
|α|�k,|β|�l

sup
(x,t)∈Rn−1×R

|(x, t)α∂βψ(x, t)|. (7)

Now, the function ψ has support in Rn−1 × [−1,+∞), which means that the last
inequality can be rewritten as

| 〈T ,ψ〉 | � C sup
|α|�k,|β|�l

sup
(x,t)∈Rn−1×[−1,+∞)

|(x, t)α∂βψ(x, t)|.
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Finally, denoting β = (βt , βx1 , · · · , βxn−1), one can expand

∂βψ =
βt∑

i=0

(
βt

i

)
�(i)(t)∂

(βt−i,βx1 ,··· ,βxn−1 )
φ(x, t).

Since the function � is fixed (independent of φ), the quantity

Cl = sup
i�l

sup
t∈R

|�(i)(t)|

is finite and independent of φ and we have

|∂βψ(x, t)| � 2lCl sup
|β|≤l

|∂βφ(x, t)|

and we can finally conclude, taking the supremum on t � −1, that

sup
|α|�k,|β|�l

sup
(x,t)∈Rn−1×[−1,+∞)

|(x, t)α∂βψ(x, t)|

� 2lCl sup
|α|�k,|β|�l

sup
(x,t)∈Rn−1×[−1,+∞)

|(x, t)α∂βφ(x, t)|.

Since ψ has a support included in [−1,+∞), one can in the left-hand side of the
inequality take the supremum over t ∈ R. Plugging this inequality into Eq. (7) and
recalling Eq. (6), we get Eq. (5). 
�

We need to notationally differ between δ-distributions in different dimensions:

Definition 3 (δ-Distributions) δ : R3 → R denotes the three-dimensional δ-
distribution. δ̃ : R → R denotes the one-dimensional δ-distribution. For r0 ∈ R,
δ̃r0 : R → R is defined by δ̃r0(r) = δ̃(r − r0) for all r ∈ R. δ̃′ : R → R denotes
the derivative of the one-dimensional δ-distribution.

3.2 Fourier- and k-Transform

The most important mathematical tool in this paper is the Fourier-transform:

Definition 4 (Temporal Fourier-Transform) Let T ∈ S′(R × Rn−1,C). We
define its Fourier-transform T̂ by its action on a test function φ ∈ S(R×Rn−1,C)

〈
T̂ , φ

〉 := 〈
T , φ̌

〉
(8)

where
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φ̌(t) := 1√
2π

∫ ∞

ξ=−∞
eiξ tφ(ξ) dξ.

As defined, the operator T 
→ T̂ is well defined and continuous from S′(R ×
Rn−1,C) into itself [15] with inverse T 
→ Ť with for all test functions φ,

〈
Ť , φ

〉
:= 〈

T , φ̂
〉

where

φ̂(ξ) := 1√
2π

∫ ∞

t=−∞
e−iξ tφ(t) dt

is the Fourier-transform on the Schwartz space (it coincides with the one given in
Eq. (8)).

The Fourier-transform in spatial variables is called the k-transform:

Definition 5 (k-Transform) Let r =
⎛
⎝r1

r2

r3

⎞
⎠ ∈ R3, and k =

⎛
⎝k1

k2

k3

⎞
⎠ ∈ R3.

• For i ∈ {1, 2, 3}, let us denote k̃(i) =
⎛
⎝k̃1

k̃2

k̃3

⎞
⎠ ∈ R3, where k̃j =

{
rj if j �= i

ki if j = i
, for j ∈ {1, 2, 3} .

The k-transform of the Fourier-transform of V : R3 → C3 in direction xi , is
defined by

Fi[V](k̃(i)) := 1√
2π

∫
R

e−iki ri V(r)dri .

• For i, î ∈ {1, 2, 3}, let k̃(i,î) =
⎛
⎝k̃1

k̃2

k̃3

⎞
⎠ ∈ R3, where k̃j =

{
rj if j �= i and j �= î

ki if j = i or j = î
,

for j ∈ {1, 2, 3} .

The k-transform of the Fourier-transform of V : R3 → C3 in direction (xi, xj )

is defined by

Fij [V](k̃(i,j)) := 1

2π

∫
R

∫
R

e−i(ki ri+kj rj )V(r)dridrj .
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• The k-transform of the Fourier-transform of V : R3 → C3 in all three directions
is defined by

F[V](k) := F1[F2[F3[V]]](k) = 1

(2π)
3
2

∫
R3

e−ik·rV(r)dr.

Remark 1 From Definition 3 it follows that for r0 ∈ R3 fixed

F[r → δ(r − r0)](k) = 1

(2π)
3
2

e−ik·r0
. (9)

3.3 Coordinate Systems

Definition 6 (Spherical Coordinates) Associated to r =
⎛
⎝r1

r2

r3

⎞
⎠ ∈ R3 is the polar

coordinate representation (r = |r| , θ, ϕ) ∈ [0,∞) × [0, π ] × [0, 2π) such that

r = r

⎛
⎝sin(θ) cos(ϕ)

sin(θ) sin(ϕ)

cos(θ)

⎞
⎠ . (10)

4 Mathematical Modeling of Light Propagation

We consider an optical single molecule localization microscopy experiment. There-
fore a mathematical modeling of the light propagation via Maxwell’s equations is
appropriate: We consider macroscopic Maxwell’s equations (in SI units), in order
to model the interaction of the incoming light with the sample. These equations
describe the time evolution of the electric field E : R3 ×R → R3 and the magnetic
field B : R3 ×R → R3 for a given charge density ρ : R3 ×R → R and an electric
current J : R3 × R → R3:

∇r· D(r; t) = ρ(r, t), r ∈ R3, t ∈ R, (11a)

∇r· B(r; t) = 0, r ∈ R3, t ∈ R, (11b)

∇r× E(r, t) = −∂tB(r; t), r ∈ R3, t ∈ R (11c)

∇r× H(r; t) = ∂tD(r; t) + J(r; t), r ∈ R3, t ∈ R. (11d)



Inverse Problems of Single Molecule Localization Microscopy 337

Here

D ≡ ε0E + P (12)

denotes the electric displacement and

H ≡ 1

μ0
B − M (13)

denotes the effective magnetic field, related to the electric andmagnetic polarization
fields P and M, respectively. All along this paper the differential operators ∇r, ∇r·,
∇r×, � are meant with respect to the variables r. More background on modeling of
electromagnetic wave propagation can be found in [20].

In the following we make a series of assumptions for simplifying Maxwell’s
equations:

4.1 Material Properties

Biological specimens as we are considering in single molecule localization
microscopy experiments can be assumed to be non-magnetizable:

Assumption (Non-Magnetizeable Medium) A medium is non-magnetizable if

M(r; t) = 0 for all r ∈ R3, t ∈ R. (14)


�
Remark 2 In single molecule localization microscopy experiments, fluorescent
dyes are attached to molecules of interest and upon excitation of the probe with
a strong laser impulse they emit light. The mathematical modeling of this process is
omitted and we are considering only the influence on a macroscopic level, meaning
that charge density and currents are induced. A detailed mathematical modeling
of the chemical processes would require a modeling with microsopic Maxwell’s
equations, which is omitted here for the sake of simplicity. In a similar context
microscopic Maxwell’s equations have been considered in Optical Coherence
Imaging in [11].

On a macroscopic level, from Eqs. (11a)–(11d) it follows from Assumption 4.1
that

∂tρ(r; t) = −∇r· J(r; t) for all r ∈ R3, t ∈ R. (15)

Taking into account Assumption 4.1 and combining Eqs. (11c) and (11d) we
obtain the vector Helmholtz equation for the electric field E:
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∇r×∇r× E(r; t) + 1

c2
∂tt E(r; t) = − 1

ε0c2
∂tt P(r; t) − 1

ε0c2
∂t J(r; t) for all r ∈ R3, t ∈ R

(16)

where μ0ε0 = 1/c2, with c being the speed of light in vacuum.

Remark 3 If the right-hand side of Eq. (16) vanishes then E describes the propaga-
tion of the electric field in vacuum. The right-hand side models the interaction of
light and matter and the effect of the external charges.

Equation (16) is understood in a distributional sense. That means that for every
� ∈ S(R3;R3) and � ∈ S(R;R3), and with � ⊗ � ∈ S(R3 × R;R3) denoting
the vector valued function consisting of componentwise multiplication,

〈E, (∇r×∇r×�) ⊗ �〉 +
〈
E,

1

c2
� ⊗ ∂tt�

〉
= −

〈
P,

1

ε0c2
� ⊗ ∂tt�

〉
+
〈
J,

1

ε0c2
� ⊗ ∂t�

〉
.

(17)

4.2 Linear Optics

In linear optics one assumes a linear relation between the electric polarization P and
the electric field E.

Assumption (Polarization Response Function in Linear Optics) P and E satisfy
the linear relation,

P(r; t) = ε0

∫ ∞

τ=−∞
T(r; t, τ )E(r, τ )dτ, (18)

where (t; τ) → T(r; t, τ ) ∈ R3×3 is a matrix valued function that averages the
electric field over time. T is called the (linear) polarization response function. For
fixed r the matrix valued function (t; τ) ∈ R2 → T(r; t, τ ) ∈ R3×3 is supposed to
satisfy the following assumptions:

Causality No polarization is observed before the field is induced, i.e.

T(r; t, τ ) = 0, for all t ≤ τ.

Time invariance means that (t; τ) → T(r; t, τ ) is just a function of t − τ . That
is, we can write

T(r; t − τ) = T(r; t, τ ), for all t, τ ∈ R.
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Here we use a slight abuse of notation and identify notationally the two functions
T on the left-hand side and right-hand side.


�
Remark 4 Let Assumption 4.2 hold, then T(r; t − τ) = 0 for t ≤ τ .

We now move on to the Fourier-Laplace domain. In order to do so we postulate
causality assumptions, which we assume to hold all along the remaining paper:

Assumption (Causality) The functions J, P, E (and thus in turn ρ, D, H) are
meaning that

J(t; r) = P(t; r) = E(t; r) = 0 for all t < 0, r ∈ R3. (19)

�

Let Assumption 4.2 hold (in particular we assume that T is time invariant and
causal), and assume that J, P, E are causal, then from the Fourier convolution
theorem it follows that

P̂(r;ω) = ε0χ(r;ω)Ê(r;ω), for all r ∈ R3, ω ∈ R, (20)

where

χ(r;ω)=
∫ ∞

τ=−∞
T(r; τ)e−iωτ dτ = √

2πT̂(r;ω)∈C3×3 for all r ∈R3, ω ∈R,

(21)

is called the linear electric dipolar susceptibility.
We denote the wave number by

κ(ω) := ω

c
and more general κε := κε(ω) = ω + iε

c
for all ε > 0. (22)

The application of the Fourier-transform to the vector Helmholtz Equation (16)
gives the following equation for the Fourier-transform Ê : R3 × R → C3 of the
electric field:

∇r×∇r× Ê(r; ω) − κ2(ω)Ê(r; ω) = 1

ε0
κ2(ω)̂P(r; ω) − iω

ε0c2
Ĵ(r; ω), for all r ∈ R3, ω ∈ R

and consequently by using Eq. (20) we get

∇r×∇r× Ê(r; ω) − κ2(ω)(I + χ(r; ω))Ê(r; ω) = − iω

ε0c2
Ĵ(r; ω) for all r ∈ R3, ω ∈ R,

(23)

where I ∈ R3×3 is the identity matrix.



340 M. Lopez-Martinez et al.

4.3 Isotropic Media

Additional simplifications of Maxwell’s equations can be made when the medium
is assumed to be isotropic:

Assumption (Isotropic Medium) Let Assumptions 4.1 and 4.2 hold. The medium
is isotropic if the susceptibility is a multiple of the identity, that is it can be written
as χ(r; t)I ∈ C3×3 with χ(r; t) ∈ C. With a slight abuse of notation, we identify
the diagonal matrix and the diagonal entry. 
�

4.4 Homogeneous Material

We consider an isotropic, non magnetizable material with a linear polarization
response (that is, Assumptions 4.1, 4.2, and 4.3 are satisfied), which in addition is
homogeneous:

Assumption (Homogeneous Material) An isotropic, non magnetizable material
with a linear polarization response is homogeneous if χ ≡ 0. 
�
For a homogeneous material (that is χ ≡ 0) it follows from Eq. (23) that

− iω

ε0c2
Ĵ(r;ω) = ∇r×∇r× Ê(r;ω) − κ2(ω)Ê(r;ω). (24)

Thus, by using the vector identity

∇r×∇r× Ê = ∇r ∇r· Ê − �rÊ,

we get from Eq. (24)

− iω

ε0c2
Ĵ(r;ω) = ∇r ∇r· Ê(r;ω) − �rÊ(r;ω) − κ2(ω)Ê(r;ω). (25)

Now, by using Eq. (12) and the assumption on homogeneity, χ ≡ 0, which together
with Eq. (20) implies that P ≡ 0, we get

D = ε0E + P = ε0E.

This, together with Eq. (25) shows that

− iω

ε0c2
Ĵ(r;ω) = 1

ε0
∇r ∇r· D̂(r;ω) − �rÊ(r;ω) − κ2(ω)Ê(r;ω). (26)

Now, by using Eq. (11a) in Fourier domain we get from Eq. (26)
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− iω

ε0c2
Ĵ(r;ω) = 1

ε0
∇r ρ̂(r;ω) − �rÊ(r;ω) − κ2(ω)Ê(r;ω). (27)

Finally, by using Eq. (15) in Fourier domain,

iωρ̂ = −∇r· Ĵ(r;ω) (28)

in Eq. (27) we get

− iω

ε0c2
Ĵ(r;ω) = − 1

iωε0
∇r ∇r· Ĵ(r;ω) − �rÊ(r;ω) − κ2(ω)Ê(r;ω).

In other words, we have for every r ∈ R3, ω ∈ R

�rÊ(r;ω) + κ2(ω)Ê(r;ω) = i

ε0

(
ω

c2
+ 1

ω
∇r ∇r·

)
Ĵ(r;ω)

= iω

ε0c2
Ĵ(r;ω) + 1

ε0
∇r ρ̂(r;ω).

(29)

For any τ ∈ R, a solution of the nonhomogeneous Eq. (29) is given by (see [33]):

Ê(r;ω) = τ Ê+(r;ω) + (1 − τ)Ê−(r;ω) for all r ∈ R3, ω ∈ R, where

Ê±(r;ω) := −
∫
R3

G±
ω (r, r′)

(
iω

ε0c2
Ĵ(r′;ω) + 1

ε0
∇r ρ̂(r′;ω)

)
dr′

(30)
with Green’s functions:

G±
ω (r, r′) = e±iκ(ω)|r−r′|

4π |r − r′| . (31)

The physically meaningful solution is, as we motivate below, a convolution with
the retarded Green’s function G+

ω : That is, the retarded solution of the Helmholtz
Equation (23) is given by Eq. (30) with τ = 1 (see [33]):

Ê(r;ω) = −
∫
R3

G+
ω (r, r′)

(
iω

ε0c2
Ĵ(r′;ω) + 1

ε0
∇r ρ̂(r′;ω)

)
dr′. (32)

Remark 5 With a slight abuse of notation we identify G+
ω with Gω and Ê+

ω with Êω,
since we are only interested in the retarded solutions.
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5 Attenuating Solution and Initial Conditions

Definition 7 (Attenuating and Causal Solution of Eq. (23)) Let ε > 0 and
κε(ω) = ω+iε

c
as defined in Eq. (22).

• Then, we call Êε the approximate attenuating solution of Eq. (23) if it satisfies
the equation

∇r× ∇r× Êε(r;ω) − κ2
ε (ω)(I + χ(r;ω))Êε(r;ω) = − iω − ε

ε0c2
Ĵε(r;ω),

(33)

where non-attenuating solution and attenuating solution is related by Eq. (35).
• We call Êε a causal attenuating solution of Eq. (23) if Eε (the inverse Fourier-

transform of Êε) is a causal distribution.

In the following we show that Êε approximates the retarded solution of the vector-
Helmholtz Equation (32) in a distributional sense:

Theorem 1 For every ε > 0, let Êε be the solution of Eq. (33), the causal
attenuating wave equation, and let Ê be the retarded solution of Eq. (23), which
is given by Eq. (32), then

Êε
S′

−−→
ε→0

Ê. (34)

Proof We define for all t ∈ R, r ∈ R3,

Eε(r; t) = αε(t)E(r; t) where αε(t) := e−εt . (35)

Because E is causal, Eε is a tempered distribution and since Ê is a solution of
Eq. (23), it follows that for all ε > 0, Êε is a solution of Eq. (33) and in particular

it is also causal. We show that Eε
S′

−−→
ε→0

E and because the Fourier transform (see

Eq. (8)) is a bounded operator on S′(R3 × R;R3) (see [15, Theorem 5.17]), the
assertion, Eq. (34), then follows.

To prove that Eε
S′

−−→
ε→0

E, we need to show that for all � ∈ S(R3 × R;R3),

〈Eε,�〉 → 〈E,�〉 . Noting that 〈Eε,�〉 = 〈E, αε�〉, we therefore need to show
that 〈E,� − αε�〉 → 0. Lemma 1 shows that, because E is causal, one can write

|〈E,� − αε�〉| � C sup
α�k,β�l

sup
t�−1

|tα∂
β
t (� − αε�)(t)|.

Now, note that for all β ∈ N0 and all t ∈ R,
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∂
β
t

[
(e−εt − 1)�(t)

] = −∂
β
t �(t) +

β∑
i=0

(
β

i

)
(−ε)ie−εt ∂

β−i
t �(t)

= (e−εt − 1)∂β
t �(t) + εAε(t)e

−εt .

where Aε is a polynomial (with coefficients uniformly bounded with ε) in the
derivatives of � up to the order β − 1. Since the derivatives of � are Schwartz
functions, supt�−1 |tαAε(t)| is then uniformly bounded in ε, which implies

lim
ε→0

sup
t�−1

∣∣tαεAε(t)e
−εt
∣∣ = 0.

Now, B(t) := ∂
β
t � is also a Schwartz function, which means that for every k ∈ N0

there exists Ck such that supt |(tk+2 + 1)B(t)| � Ck . It then follows that for all
t � −1,

∣∣tα(e−εt − 1)B(t)
∣∣

=
∣∣∣∣ tα

tα+2 + 1
(e−εt − 1)(tα+2 + 1)B(t)

∣∣∣∣ � Cα sup
t�−1

∣∣∣∣ t
α(e−εt − 1)

tα+2 + 1

∣∣∣∣ ,

where the last supremum converges to zero with ε → 0. Therefore we conclude that

lim
ε→0

sup
t�−1

∣∣∣tα∂
β
t ((e−εt − 1)�(t))

∣∣∣ = 0,

which means 〈E,� − αε�〉 → 0. 
�

5.1 Dipoles

The emission of fluorescent dyes will be modeled as dipoles.

Definition 8 (Emitting Dipole) An emitting dipole is a vector � = (
�1 �2 �3

)T
,

which is associated to a point r� in space; |�| is called charge intensity and �
|�|

can be represented in spherical coordinates (θm, ϕm) ∈ S
2. Both notations are used

synonymously and called the orientation of the emitting dipole. That is

� =
⎛
⎝�1

�2

�3

⎞
⎠ =

⎛
⎝|�| sin(θm) cos(ϕm)

|�| sin(θm) sin(ϕm)

|�| cos(θm)

⎞
⎠ . (36)
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The limiting density of a dipole at position r� =
⎛
⎝ 0

0
r�3

⎞
⎠ ∈ R3 is defined as a

generalized function in space

ρ̂(r) := |�| lim
s→0+

δr�−s �
|�|

(r) − δr�+s �
|�|

(r)

2s
for all r ∈ R3. (37)

That is, in mathematical terms, the dipole charge is the directional derivative of a
three-dimensional δ-distribution in direction − �

|�| . Moreover, we denote by

Ĵ(r;ω) := iω�δ(r −r�) (38)

the dipole current (which is frequency dependent).
In what follows we assume that the emitting dipole is a unit-vector (that is |�| =

1), which simplifies the considerations and the notation.

Lemma 2 Let Ĵ and ρ̂ be as defined in Eqs. (38) and (37), respectively and satisfy
Eq. (28). Then

R̂(r;ω) := iω

c2
Ĵ(r;ω) + ∇r ρ̂(r;ω) (39)

satisfies

R̂(r;ω) = −ω2�

c2
δ(r −r�)

−
⎛
⎝�1δ̃

′′(x1)δ̃(x2)δ̃(x3) + �2δ̃
′(x1)δ̃′(x2)δ̃(x3) + �3δ̃

′(x1)δ̃(x2)δ̃′(x3)
�1δ̃

′(x1)δ̃′(x2)δ̃(x3) + �2δ̃(x1)δ̃
′′(x2)δ̃(x3) + �3δ̃(x1)δ̃

′(x2)δ̃′(x3)
�1δ̃

′(x1)δ̃(x2)δ̃′(x3) + �2δ̃(x1)δ̃
′(x2)δ̃′(x3) + �3δ̃(x1)δ̃(x2)δ̃

′′(x3)

⎞
⎠ ,

(40)
where (x, x3)

T := r −r� , wherer� denotes the dipole position.

Proof Taking into account that the three-dimensional δ-distribution can be written
as

δr�±s�(r) =
3∏

j=1

δ̃(r� )j ±s�j
(rj ) =

3∏
j=1

δ̃(rj − (r�)j ∓ s�j )

we find

ρ̂(r;ω)=−
3∑

i=1

�i(δ̃(r� )i
)′(ri )

∏
j �=i

δ̃(r� )j
(rj ) = −

3∑
i=1

�iδ̃
′((r−r�)i)

∏
j �=i

δ̃((r−r�)j )
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and we get

− ∇rρ̂(r;ω)

=
⎛
⎝�1δ̃

′′(x1)δ̃(x2)δ̃(x3) + �2δ̃
′(x1)δ̃′(x2)δ̃(x3) + �3δ̃

′(x1)δ̃(x2)δ̃′(x3)
�1δ̃

′(x1)δ̃′(x2)δ̃(x3) + �2δ̃(x1)δ̃
′′(x2)δ̃(x3) + �3δ̃(x1)δ̃

′(x2)δ̃′(x3)
�1δ̃

′(x1)δ̃(x2)δ̃′(x3) + �2δ̃(x1)δ̃
′(x2)δ̃′(x3) + �3δ̃(x1)δ̃(x2)δ̃

′′(x3)

⎞
⎠ .

(41)
On the other hand

−∇ · Ĵ(r;ω) = −iω∇ · (�δ(r −r�))

= −iω
3∑

i=1

�iδ̃
′((r −r�)i)

∏
j �=i

δ̃((r −r�)j ) = iωρ̂(r),

and thus Eq. (28) is satisfied.
Moreover, using Eq. (41) in Eq. (28) gives Eq. (40). 
�

In the following we calculate the solution Ê of Eq. (30), similar as in [12].
The following lemma and its proof are based on [12].

Lemma 3 Let Ê as in Eq. (32) be the retarded solution of Eq. (33) at fixed frequency
ω. In what follows we omit therefore the dependency ofω and write Ê(r) := Ê(r;ω).

Moreover, let the medium be isotropic, non magnetizable, homogeneous and have
a linear polarization response (that is, χ ≡ 0).

As above we assume that a dipole� ∈ R3 is located at positionr� = (0, 0, r�3 )T .
Moreover, for all ε > 0 let κε be as in Eq. (22) and we define for fixed k1, k2 ∈ R

q := lim
ε→0+ qε where qε := aε + ibε :=

√
κ2
ε − k21 − k22 with bε > 0 (42)

(that is qε is the complex root with positive imaginary part). Let now r ∈ R3 be such
that r3 − r�3 ≥ 0, then

Ê(r) = − 1

2π

1

ε0
F−1
12

[
(k1, k2) 
→ �3e3δ̃(r3 − r�3 ) + ieiq(r3−r�3 )

2q
(� × kq) × kq

]
(r1, r2),

(43)
where kq = (k1, k2, q)T .

Proof First let ε > 0, and we prove an identity of the form Eq. (43) for Êε. We note
that

F[∇r ×∇r ×Êε](k) = −(F[Êε](k) × k) × k for all k ∈ R3.

Thus from Eq. (23) with χ ≡ 0 it follows by applying the k-transform, and by using
Eqs. (38), (22) and (9) that
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− (F[Êε](k) × k) × k − κ2
εF[Êε](k) = − iω − ε

ε0c2
F[̂Jε](k) = κ2

ε

(2π)
3
2 ε0

�e−ik3r�3 .

(44)
Elementary calculation rules for × provide that

(v × k) × k = (k · v)k − |k|2 v for all v, k ∈ R3, (45)

which, by application to v = F[Êε](k) and v = �, respectively, shows that

|k|2 F[Êε](k) = −(F[Êε](k) × k) × k + (k · F[Êε](k))k and

|k|2 � = −(� × k) × k + (k · �)k.
(46)

Therefore, by multiplying Eq. (44) with |k|2 and using Eq. (46), it follows that

(κ2
ε − |k|2)(F[Êε](k) × k) × k − κ2

ε (k · F[Êε](k))k

= κ2
ε

(2π)
3
2 ε0

e−ik3r�3 [−(� × k) × k + (k · �)k] .
(47)

Since k and (v × k) × k are orthogonal, it follows from Eq. (47) that:

(F[Êε](k) · k)k = − 1

(2π)
3
2

1

ε0
e−ik3r�3 (� · k)k

− 1

(2π)
3
2

1

ε0
e−ik3r�3

(
|k|2 � + (� × k) × k

)
,

(|k|2 − κ2
ε )(F[Êε](k) × k) × k = κ2

ε

(2π)
3
2 ε0

e−ik3r�3 (� × k) × k.

Inserting these two identities into Eq. (46) and noting that since κε is not real, one
can divide by |k|2 − κ2

ε , yields

|k|2 F[Êε](k) = − 1

(2π)
3
2

1

ε0
e−ik3r�3

(
|k|2 � + (� × k) × k + κ2

ε

|k|2 − κ2
ε

(� × k) × k

)

= − 1

(2π)
3
2

1

ε0
e−ik3r�3

(
|k|2 � + |k|2

|k|2 − κ2
ε

(� × k) × k

)
,

such that

F[Êε](k) = − 1

(2π)
3
2

1

ε0
e−ik3r�3

(
� + (� × k) × k

|k|2 − κ2
ε

)
.
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Therefore

Êε(r) = − 1

(2π)
3
2

1

ε0
F−1
12

[
F−1
3

[(
� + (� × k) × k

|k|2 − κ2
ε

)
e−ik3r�3

]
(r3)

]
(r1, r2).

In order to prove Eq. (43) for Êε, it remains to show that

1√
2π

F−1
3

[
k3 →

(
� + (� × k) × k

|k|2 − κ2
ε

)
e−ik3r�3

]
(r3) = �3e3δ̃(r3 − r�3 )

+ ieiqε(r3−r�3 )

2qε

(� × kqε ) × kqε ,

which is done by standard, but quite lengthy computations, which are presented in
Appendix 1.

Now, we consider ε → 0. Theorem 1 combined with the continuity of the inverse
Fourier transform F−1

12 in S′(R2,R2) which implies that

Ê(r) = − 1

2π

1

ε0
F−1
12

[
(k1, k2) → �3e3δ̃(r3 − r�3 ) + lim

ε→0

ieiqε(r3−r�3 )

2qε

(� × kqε ) × kqε

]
(r1, r2).

To prove the assertion, we simply need to check that, in S′

lim
ε→0

ieiqε(r3−r�3 )

2qε

(� × kqε ) × kqε = ieiq(r3−r�3 )

2q
(� × kq) × kq .

These two quantities being L1
loc functions, it is enough to show that the limit holds

in L1
loc(R × (R2 × R)). The L1

loc convergence is then obtained noticing that

eiqε(r3−r�3 )(� × kqε ) × kqε − eiq(r3−r�3 )(� × kq) × kq
L∞−−→ 0

and that

1

qε

− 1

q
= κ2

ε − κ2

(κ2
ε − k21 − k22)

√
κ2 − k21 − k22 + (κ2 − k21 − k22)

√
κ2
ε − k21 − k22

converges to zero in L1
loc. Note that this would imply only a convergence in D′, but

the two functions are actually uniformly L∞ outside the compact set {k21 + k22 �
|κ|2 + 1}, so the convergence holds in S′ as well. 
�

Moreover, we make the assumption that the dipole can be rotating.
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Fig. 6 The axis of cone has
angular coordinates θm and
ϕm in the coordinate system.
A general orientation within
the cone has coordinates θ

and ϕ in the coordinate
system, and axial coordinate
β, and azimuthal coordinate η

with respect to the cone axis.
The outer limit of motion in
the cone is given by β = αm

Definition 9 (Rotating Dipole) The emitting dipole is considered wobbling uni-
formly distributed around the dipole orientation �m|�m| = (θm, ϕm) ∈ S

2 in a cone of
semi-angle αm (see Fig. 6). Assuming a dipole-emission from an oscillating source
we get after averaging, a source represented as the indicator function

1m = 1

|C(�m, αm)|1C(�m,αm), (48)

where

C(�m, αm) =
{
τ� ∈ S

2 : |���m| ≤ αm, 0 ≤ τ ≤ |�m|
}

. (49)

Note that |C(�m, αm)| = 1
3π |�m|3 tan2(αm). Taking into account Eqs. (38)

and (37) the according charge density and current of dye m are given by

Ĵm(r;ω) = iω1m, ρ̂m(r;ω) = i

ω
∇r· Ĵm(r;ω) and

R̂m(r;ω) := iω

c2
Ĵm(r;ω) + ∇r ρ̂m(r;ω).

(50)
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6 The Forward Problem

In the following we present mathematical models describing the emission and
propagation of light caused by dyes, which are exposed to strong laser light
illumination. See Fig. 7 for a schematic representation of the experiment. In
single molecule localization microscopy two-dimensional images are recorded after
exposing the probe subsequently to strong laser illuminations, such that the dyes
appear in dark (“off”) and light (“on”) state. This allows to separate the fluorescent
emission of individual dyes in time, allowing for high resolution images. In order to
minimize the notational effort we consider recording of a single image frame first.
The mathematical model of consecutive recordings of multiple frames is analogous
and requires one additional parameter representing numbering of frames (a virtual
time).

In the following we state a series of assumptions, which are used throughout the
remainder of the paper:

Assumption (Medium, Monochromatic Source and Response) In the following
we assume that

• The incident light is a monochromatic plane wave of frequency ωinc and
orientation v.

• The medium is assumed to be isotropic, non magnetizable, homogeneous and has
a linear polarization response.

• Moreover, we assume that a dye can be modeled as an absorbing dipole �a ,
which emits monochromatic waves of frequency ω �= ωinc resulting in an
emitting dipole

� = (v · �a)v. (51)

Indeed what we will measure is the electric field at frequency ω, which is not
affected by the incident field at frequency ωinc. As a consequence we only have
to consider the electric field at the frequency ω ∈ R.

Illumination

Fig. 7 Illustration of the experiment: Biomolecular structures are placed on the glass surface at
position r�

3 � 0 and illuminated from the bottom. The glass plate has a thickness r�
3
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• In what follows we assume that the considered dipole � =
⎛
⎝�1

�2

�3

⎞
⎠ is located

at position r� = (
0 0 r�3

)T
with r�3 � 0. Unless stated otherwise r ∈ R3 with

r3 > 0. The sign assumptions on r3 and r�3 are in accordance with the experiment:
the object is assumed left of the lens system (see Fig. 8) and r is a point of the
measurement system.

• The dyes absorb light, which can result in fluoresence emission. We describe the
states of an absorbing dye with index m via a time indicator function: The on-off
indicator

Im ∈ {0, 1} , (52)

tells us whether the m-th dye is an emitting state or not.

�

The complete experimental setup of the optical experiment of single molecule
localization microscopy is represented in Fig. 8. For the mathematical modeling we
are considering the propagation of light at different locations of the optical system.
The dyes are considered at positions r�m with r

�m

3 � 0 and the focal plane (which
contains the focal point of the objective) corresponds to the bottom of the glass plate,
which is not mathematically modeled, that is the focal plane is at position r3 = 0.
Note that in particular the dipole is not located at the focal plane, unless if r

�m

3 = 0.
For the sake of simplicity of presentation we consider only a single dye, and leave
the subscript m whenever appropriate.

The mathematical modeling of the experimental setup follows [3], however it is
adapted to our notation:

• In Sect. 6.1 we describe the propagation of the electric field in the medium, that
is from the bottom of the cell (the assumption is that only molecules labeled with
a dye at the bottom of the cell emit light) up to the objective (see Fig. 8). This
domain will be denoted by �. Since the objective is far away from the molecule
(relative to the size of the molecule) the electric field can be approximated well
by its far field, which is calculated below. The three-dimensional k-transformed
coordinate system is denoted by k ∈ R3 (see Sect. 6.1).

• In Sect. 6.2 we present in mathematical terms the propagation of the emitted light
when it passes through the objective; that is after passing through the medium.
In fact the light rays are aligned parallel by the objective in r3 direction. The
objective has a focal length fobj and it is positioned orthogonal to the r3 axis
with left distance to the focal plane (glass plate) r

obj
3 = fobj (see Fig. 10).

Indeed the lens system is complicated and a detailed mathematical modeling is
not possible. A simplified model assumes that the objective is big compared to the
wavelength, such that the intensity law of Geometric Optics applies (see Fig. 9
and [7]), and phase shifts due to the curvature of the lenses can be neglected.
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• In Sect. 6.3 we calculate the propagation of the light after passing through the
back focal plane of the objective, that is in between r

bfp
3 and r

tli

3 (see Fig. 8),

from knowledge of the field at the plane with third coordinate r
bfp
3 . This is

achieved by solving the Helmholtz equation in air between the back focal plane
of the objective and the incident plane of the tube lens.

• We assume that the lens is a circular plano-convex tube lens with maximal
thickness d0. The thickness is described as a function d. Moreover, we assume
that the lens has a focal length fL and that its pupil function is given by
PL : R2 → R,

PL(x) =
{
1 for |x| ≤ R

0 for |x| > R
, (53)

in the plane r3 = rtl3 (see Fig. 8). The lens is assumed to be converging, such
that the paraxial approximation holds, that is we can assume that the wave vector
of the wave is almost aligned with the optical axis [14, Sec. 4.2.3]. The adequate
formulas are derived in Sect. 6.4.

• Finally the light is bundled to the image plane, which provides an image
described by coordinates xf ∈ R2 (see Sect. 6.5).

We summarize the different coordinate systems used below in a table:

r =
|r |

Focal Plane Objective Back focal plane Tube Lens Image Plane

subsection 6.1 subsection 6.2 subsection 6.3 subsection 6.4 subsection 6.5

Ω

θ

e

r
3

s

0

ep

φ
| |

e3 r
3

r i
3
r
3 r o

3

0

r
3

Fig. 8 The plane of observation is defined as the plane containing the dipole �, the e3-axis, and
the path of a particular ray through the objective, the back focal plane and the tube lens (with focal
length fobj)
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Table 2 Some abbreviation used in Lemma 3 and its proof, as well as in Appendix 1 and 2

Position Coordinates Fourier

Medium � r ∈ R3, (r, θ, ϕ) ∈
R+ × S

2
k ∈ R3

Back focal plane (BFP) x ∈ R2, (ρ, ϕ) ∈ R+ ×
[0, 2π)

u ∈ R2, (ξ, ν) ∈ R+ × [0, 2π)

Tube Lens y ∈ R2, (�, σ ) ∈ R+ ×
[0, 2π)

v ∈ R2, (�, ϑ) ∈ R+ × [0, 2π)

Image plane (IP) I xf ∈ R2 uf ∈ R2

Between BFP and IP (x, r3) ∈ R3

General notation k12 = (k1, k2)
T ∈ R2, k = (k1, k2, k3)

T ∈ R3

kz = (k1, k2, z)
T z ∈ C, k1, k2 ∈ R

6.1 Far Field Approximation in the Medium

In this subsection we derive the far field approximation of the Fourier-transform of
the electric field, Ê, in the medium. The derivation expands [12].

First, we give the definition of the far field:

Definition 10 The far field F∞ : S2 → C3 of a function F : R3 → C3 satisfies:
There exists Ĉ > 0 and a function C : [0,∞) → [0,∞) such that

lim
r→∞ |F(r, θ, ϕ) − C(r)F∞(θ, ϕ)| = 0 with |rC(r)| ≤ Ĉ for all r ∈ [0,∞).

(54)

Lemma 4 Let the medium be isotropic, non magnetizable, homogeneous and have
a linear polarization response. We assume that the considered dipole � is located

at position r� =
⎛
⎝ 0

0
r�3

⎞
⎠ with r�3 < 0. Moreover, let r =

⎛
⎝r1

r2

r3

⎞
⎠ ∈ R3 with r3 >

r�3 ; The later assumption means that we are considering only light rays, which are
propagating into the lens system (see Fig. 8).

Then the far field of Ê in the medium is given by

eiκr�3 cos(θ)Ê∞(θ, ϕ) = cos(θ)

(
−�p cos(θ) + �3 sin(θ)

)
ep − �ses

+ sin(θ)

(
�p cos(θ) − �3 sin(θ)

)
e3

(55)

and

C(r) = κ2

4πε0

eiκr

r
. (56)
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where �j = 〈
�, ej

〉
, j = p, s, 3 are the coefficients of � with respect to the

orthonormal basis

ep := (
cos(ϕ) sin(ϕ) 0

)T
, es := (− sin(ϕ) cos(ϕ) 0

)T
, e3, (57)

that is

� = �pep + �ses + �3e3. (58)

Proof Taking into account the assumption that r3 − r�3 > 0, and by representing
the vector r ∈ R3 as

r = r3e3 + r3
(
v 0
)T = r3

(
v1 v2 1

)T
, (59)

with a (non-unit) vector
(
v1 v2

)T = v ∈ R2 in the plane spanned by e1 and e2, it
follows from Eq. (43) that

Ê(r) = − 1

8π2

1

ε0

∫
k12∈R2

eir3v·k12

(
ieiq(r3−r�3 )

q
(� × kq) × kq

)
dk12, (60)

where q and kq are as defined in Eq. (42). Note that in Eq. (60) q = q(k12) is
defined as in Eq. (115), and therefore the integral on the right-hand side is of the
form (neglecting the factor − i

8π2
1
ε0
)

∫
k12∈R2

eir3ζ(k12)β(k12) dk12

with

ζ(k12) = k12 · v + q and β(k12) = e−ir�3 q

q
(� × kq) × kq . (61)

The stationary phase method, [19, Th. 7.7.5], states that if k̂ is a critical point of ζ ,
which has been calculated in Eq. (114), then

∫
k12∈R2

eir3ζ(k12)β(k12) dk12 = eir3ζ(k̂)
(
det

(
r3H(ζ)(k̂)/(2π i)

))−1/2
β(k̂) + o

(
1

r3

)
.

Taking into account Eq. (113) in Lemma 11, and k̂12 of ζ as defined in Eq. (114),
and being aware that q = q(k12) (that is q is a function of k12), we apply Eqs. (116),
and (115) and get
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∫
k12∈R2

eir3(k12·v+q)

q
e−iqr�3 (� × kq) × kq dk12

=2iπκ2 e
ir3κ

√
1+|v|2

r3
e
−i

κr�3√
1+|v|2

(
� × r

|r|
)

× r
|r| + o

(
1

r3

)
for r3 → ∞.

Now, we recall Eqs. (10) and (59), which imply that

√
1 + |v|2 = 1

cos(θ)
,

r
|r| =

⎛
⎝sin(θ) cos(φ)

sin(θ) sin(φ)

cos(θ)

⎞
⎠ = sin(θ)ep + cos(θ)e3

and |r| cos(θ) = r3,

such that we get

∫
k12∈R2

eir3(k12·v+q)

q
e−iqr�3 (� × kq) × kq dk12

= 2iπκ2e−iκr�3 cos(θ) e
iκ|r|

|r|
(

� × r
|r|
)

× r
|r| + o

(
1

r3

)
.

This shows that

Ê(r) = e−iκr�3 cos(θ) κ2

4πε0

eiκ|r|
|r|

(
� × r

|r|
)

× r
|r| + o

(
1

r3

)
= C(r)Ê∞(r) + o

(
1

r3

)
.

(62)

It remains to compute the second identity of Eq. (55). Expressing
r
|r| and � in terms

of the associated basis ep, es , e3 from Definition 6, and using Eq. (45), we get from
Eq. (58)

(
� × r

|r|
)

× r
|r| =

(
� · r

|r|
)

r
|r| − �

=
(

(sin(θ)ep + cos(θ)e3) · (�pep + �ses + �3e3)
)

(sin(θ)ep + cos(θ)e3) − �pep − �ses − �3e3

=
(
sin(θ)�p + cos(θ)�3

)
(sin(θ)ep + cos(θ)e3) − �pep

− �ses − �3e3,

which after rearrangement proves the second identity. 
�
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In the imaging system the calculation of the electric field is not done at once but
in different sections (Sects. 6.1, 6.2, 6.3, 6.4, and 6.5). In each of these sections the
electric field is calculated by transmission from the electric field computed at the
previous section. In addition, we assume that the light which hits the objective from
� can be approximated by its far field expansion C(fobj)Ê∞, which we will use
instead of Ê.

6.2 Propagation of the Electric Field through the Objective

In the following we calculate the electric field in the objective. Assuming that the
electric field (light) emitted from the dipoles travels along straight lines in the
medium to the objective, the objective aligns the emitted rays from the dipole
parallel to the r3-axis in such a way that the electric field between the incidence
surface of the objective and the back focal plane undergoes a phase shift that does
not depend on the distance to the optical axis. In the ideal situation, where the
wavelength is assumed to be infinitely small compared to the length parameters
of the optical system, the electric field can be computed via the intensity law of
geometrical optics (see Fig. 9 and [7, Sec. 3.1.2] for a derivation).

Assumption The objective consists of a set of optical elements (lenses and mirrors)
which are not modelled here (see some examples in [7, Sec. 6.6]). Its aim is to
transform spherical waves originated at its focal point into waves which propagate
along the optical axis. In what follows, the computations are made ignoring a
constant (independent on the point in the back focal plane) phase shift which is
underwent by the wave through the objective. 
�

Lemma 5 Let r be a point at the back focal plane of the objective, that is with r3
coordinate r

bfp
3 and with spherical coordinates (r, θ, ϕ). We define the radial length

on the propagation plane (planes with constant r3 coordinate) (see Fig. 10), by

Fig. 9 Intensity law of
Geometrical optics: the
energy carried along a ray
must remain constant. The
power transported by a ray is
proportional to |E|2 dA,
where dA is an infinitesimal
cross-section perpendicular to
the ray propagation. Thus, the
fields must satisfy
|E2| = |E1| 1√

cos(θ)

O e3

dA2

E2

dA 1

E1

dA1 cos θ = dA 2

θ
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Fig. 10 Approximation used:
We assume that the cell is
fixed to the glass, and the
distance of the dipole

∣∣r�
3

∣∣
from the focal plane is
sufficiently smaller than
r = |r|, such that fobj ≈ r ,
and θ ′ ≈ θ

r
3

e3

ρ

0

Focal Plane Objective

θ θ

ρ := ρ(θ) := fobj sin(θ). (63)

Then

Êbfp(ρ, ϕ) :=
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C(fobj)√
cos(θ)

e−iκr�3 cos(θ)

⎛
⎜⎜⎝
cos(ϕ)

(−�p cos(θ) + �3 sin(θ)
)− sin(ϕ)�s

sin(ϕ)
(−�p cos(θ) + �3 sin(θ)

)+ cos(ϕ)�s

0

⎞
⎟⎟⎠ θ � θmax

0 θ > θmax
(64)

where C(fobj) is as defined in Eq. (56), and

θmax := arcsin(NA)

is the maximal angle θ for rays to enter the objective (the other rays simply do not
enter the optical system). Note that the refractive index in air is assumed one.

Proof The electric field is transmitted according to the law of geometrical optics [3,
Eq. 16] into the objective at the points

r =
⎛
⎝ 0

0
r�3

⎞
⎠+ fobjS

2, (65)
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that is the electric field simply undergoes a rotation of axis es and angle θ as well as
a magnification of 1√

cos θ
(see Assumption 6.2).

The rotation with angle θ around the axis es changes the unit vectors as follows:

ep → sin(θ)e3 + cos(θ)ep

e3 → cos(θ)e3 − sin(θ)ep

es → es .

(66)

Now, Eq. (66) shows that the expression of the electric field in the back focal
plane will be simpler using coordinates (ep, es , e3). Equation (55) leads to

Êbfp(ρ, ϕ) = C(fobj)√
cos(θ)

e−iκr�3 cos(θ)

{(
−�p cos(θ) + �3 sin(θ)

)
ep − �ses

}
,

where C(fobj) is as defined in Eq. (56). Writing the unit vectors ep and es in the
fixed system of coordinates (x1, x2, x3) gives Eq. (64). 
�

6.3 Between the Objective and the Lens

Behind the objective, the light propagates through air until it reaches the tube lens.
Denoting by κ2 the wave number in air (see Eq. (22)) the electric field satisfies the
homogeneous Helmholtz equation in the tube lens:

�Ê(r) + κ2Ê(r) = 0 in H :=
{

r ∈ R3 : r
bfp
3 < r3 < r

tli

3

}
(67)

together with the boundary condition

Ê(r1, r2, r
bfp
3 ) = Êbfp(r1, r2) for all (r1, r2) ∈ R2. (68)

The solution of Eq. (67) can actually be calculated by applying a phase shift to Êbfp

as the following lemma shows.

Lemma 6 Representing x = (fobj sin(θ) cos(ϕ),fobj sin(θ) sin(ϕ)) ∈ R2, then
the Fourier transforms of Ê in the transverse plane of (x, r3) can be calculated from
Ê(x, r

bfp
3 ) in the following way

F12(Ê)(k1, k2, r3) = F12[Êbfp](k1, k2)e(r3−r
bfp
3 )

√
−κ2+k21+k22 . (69)

where the square root can denote both of the complex square roots.



358 M. Lopez-Martinez et al.

Proof First, we notice that since Êbfp is bounded with compact support, it is a
L2 function in the plane {r3 = r

bfp
3 }. Taking the Fourier transform in these two

variables, Eqs. (67) and (68) are equivalent to

∂2r3F12(Ê)(k1, k2, r3) + (κ2 − k21 − k22)F12(Ê)(k1, k2, r3)

= 0 for all r ∈ R3, r
bfp
3 < r3 < r

tli

3 (70)

with the boundary condition

F12(Ê)(k1, k2, r
bfp
3 ) = F12[Êbfp](k1, k2) for all (k1, k2) ∈ R2. (71)

Now, Eq. (70) is a simple ODE whose solution writes (for κ2 − k21 − k22 �= 0)

F12(Ê)(k1, k2, r3) = F12[Êbfp](k1, k2)e(r3−r
bfp
3 )

√
−κ2+k21+k22 .


�
Among the fields computed in Eq. (69), several are not physical or will not be
observed:

• Having κ2 < k21+k22 leads to either a real positive square root which corresponds
to a wave exploding as r3 increases and is therefore not physical or a real negative
root, which yields an exponentially decreasing wave (evanescent) which exist
but, since (r3 − r

bfp
3 ) is several orders of magnitude bigger than the wave length,

will be damped by the time it hits the tube lens. Therefore we also do not consider
it.

• When, κ2 > k21 + k22, we get two imaginary roots, namely ±i
√

κ2 − k21 − k22,
which corresponds to the two Green functions Eq. (31). For the same reason as
above, we will only consider the positive sign.

This can be summerized in the following assumption, that will hold in what follows.

Assumption We only consider κ2 � k21 + k22 and we obtain

F12(Ê)(k1, k2, r3) = F12[Êbfp](k1, k2)ei(r3−r
bfp
3 )

√
κ2−k21−k22 . (72)


�
In the following we calculate F12[Êtli ], where Êtli = Ê(x, r

tli

3 ).

Lemma 7 Let Êtli (x) = Ê(x, r
tli

3 ) be the electric field at the indicent plane of the

tube thin lens (at rtli

3 ) as defined in Eq. (69), then the Fourier transform of Êtli in
this plane in polar coordinates (ξ, ν) of (k1, k2) is given, for ξ2 � κ2, by
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F12[Êtli ](ξ, ν) = F12[Êbfp](ξ, ν)ei(r
tli
3 −r

bfp
3 )

√
κ2−ξ2

= 1

2
(fobj)

2C(fobj)e
i(r

tli
3 −r

bfp
3 )

√
κ2−ξ2 ·

·
(

−�1[I1,0(ξ) + I2,0(ξ)] + �1 cos(2ν)[I1,2(ξ) + I2,2(ξ)] + �2 sin(2ν)[I1,2(ξ) + I2,2(ξ)] − 2i�3 cos(ν)I2,1(ξ)

−�2[I1,0(ξ) + I2,0(ξ)] + �2 cos(2ν)[I1,2(ξ) + I2,2(ξ)] + �1 sin(2ν)[I1,2(ξ) + I2,2(ξ)] − 2i�3 sin(ν)I2,1(ξ)

0

)
,

(73)
where

I1,0(ξ) =
∫ θmax

0

√
cos(θ) sin(θ) e−iκr�3 cos(θ)J0

(
fobjξ sin(θ)

)
dθ

I1,2(ξ) =
∫ θmax

0

√
cos(θ) sin(θ) e−iκr�3 cos(θ)J2

(
fobjξ sin(θ)

)
dθ

I2,1(ξ) =
∫ θmax

0
(cos(θ))3/2

1 − cos(2θ)

2
e−iκr�3 cos(θ)J1

(
fobjξ sin(θ)

)
dθ

I2,0(ξ) =
∫ θmax

0

√
cos(θ)

sin(2θ)

2
e−iκr�3 cos(θ)J0

(
fobjξ sin(θ)

)
dθ

I2,2(ξ) =
∫ θmax

0

√
cos(θ)

sin(2θ)

2
e−iκr�3 cos(θ)J2

(
fobjξ sin(θ)

)
dθ,

(74)

Jm denotes the Bessel function of the first kind of order m, and θmax is the angle of
aperture as defined in Eq. (1).

Proof We use the following notation

u =
(

u1

u2

)
= ξ

(
cos(ν)

sin(ν)

)
and x =

(
x1

x2

)
= ρ

(
cos(ϕ)

sin(ϕ)

)
,

where ρ = ρ(θ) (see Eq. (63)) is the radial length on the back focal plane.
The two-dimensional Fourier transform of the Êobj (defined in Eq. (64)) reads

as follows:

F12[Êobj](u) = 1

2π

∫
x∈R2

Êobj(x)e−iu·xdx

= 1

2π
(fobj)

2
∫ θmax

0

∫ 2π

0
Êobj(ρ(θ), ϕ)e−iξρ(θ) cos(ϕ−ν) cos(θ) sin(θ)dϕdθ

= (fobj)2

2π
C(fobj)

∫ θmax

0

∫ 2π

0

{(
−�p cos(θ) + �3 sin(θ)

)
ep − �ses

}

· e−iκr�3 cos(θ)e−iξρ(θ) cos(ϕ−ν)
√
cos(θ) sin(θ)dϕdθ.

(75)
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Next we calculate the integral on the right-hand side of Eq. (75):

∫ θmax

0

∫ 2π

0

{(
−�p cos(θ) + �3 sin(θ)

)
ep − �ses

}
·

· e−iκr�3 cos(θ)e−iξρ(θ) cos(ϕ−ν)
√
cos(θ) sin(θ)dϕdθ

= −
∫ θmax

0
e−iκr�3 cos(θ)

√
cos(θ)

sin(2θ)

2

(∫ 2π

0
�pepe

−iξρ(θ) cos(ϕ−ν)dϕ

)
dθ

−
∫ θmax

0
e−iκr�3 cos(θ)

√
cos(θ) sin(θ)

(∫ 2π

0
�sese

−iξρ(θ) cos(ϕ−ν)dϕ

)
dθ

+
∫ θmax

0
e−iκr�3 cos(θ)(cos(θ))3/2

1 − cos(2θ)

2

(∫ 2π

0
�3epe

−iξρ(θ) cos(ϕ−ν)dϕ

)
dθ,

(76)
where we use sin and cos summation formulas.

We proceed by first evaluating the inner integrals (involving the ϕ variable) on the
right-hand side of Eq. (76), by transforming the (ep, es , e3) system to the (e1, e2, e3)
system, and then using the Bessel identities Eq. (117), to evaluate the integrals.

Using Eq. (57) it follows from Eq. (36) that

�p = |�| sin(θm) cos(ϕm − ϕ), �s = |�| sin(θm) sin(ϕm − ϕ). (77)

Again by application of Eq. (36) and sin and cos summation formulas we get

�p cos(ϕ) = �1
1 + cos(2ϕ)

2
+ �2

sin(2ϕ)

2
, �p sin(ϕ)

= �1
sin(2ϕ)

2
+ �2

1 − cos(2ϕ)

2
,

�s cos(ϕ) = −�1
sin(2ϕ)

2
+ �2

1 + cos(2ϕ)

2
, �s sin(ϕ)

= −�1
1 − cos(2ϕ)

2
+ �2

sin(2ϕ)

2
.

(78)

Using Eq. (57), we express the first inner integral on the right-hand side of Eq. (76):

∫ 2π

0
�pe

−iξρ(θ) cos(ϕ−ν)dϕep =
∫ 2π

0
�p cos(ϕ)e−iξρ(θ) cos(ϕ−ν)dϕe1

+
∫ 2π

0
�p sin(ϕ)e−iξρ(θ) cos(ϕ−ν)dϕe2,

(79)

and to evalute the integral we use the Bessel identities Eqs. (117), and (78).
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We use Eq. (117) for m = 0 and m = 2, and Eq. (63) to evaluate the first integral
in Eq. (79):

∫ 2π

0
�p cos(ϕ)e−iη cos(ϕ−ν)dϕ = �1

∫ 2π

0

1 + cos(2ϕ)

2
e−iη cos(ϕ−ν)dϕ

+ �2

∫ 2π

0

sin(2ϕ)

2
e−iη cos(ϕ−ν)dϕ

= �1

2

∫ 2π

0
e−iη cos(ϕ−ν)dϕ + �1

2

∫ 2π

0
cos(2ϕ)e−iη cos(ϕ−ν)dϕ

+ �2

2

∫ 2π

0
sin(2ϕ)e−iη cos(ϕ−ν)dϕ

= π�1J0(η) − π�1 cos(2ν)J2(η) − π�2 sin(2ν)J2(η),

(80)

where η = fobjξ sin(θ), and a calculation similar to Eq. (80) yields

1

π

∫ 2π

0
�p sin(ϕ)e−iη cos(ϕ−ν)dϕ = �2J0(η) − �2 cos(2ν)J2(η) − �1 sin(2ν)J2(η).

(81)
Thus, using Eqs. (80) and (81), in Eq. (79), the first integral expression on the

right-hand side of Eq. (76), becomes

− 1

π

∫ θmax

0
e−iκr�3 cos(θ)

√
cos(θ)

sin(2θ)

2

(∫ 2π

0
�pepe

−iξρ(θ) cos(ϕ−ν)dϕ

)
dθ

= −(�1e1 + �2e2)
∫ θmax

0

√
cos(θ)

sin(2θ)

2
e−iκr�3 cos(θ)J0

(
fobjξ sin(θ)

)
dθ

+ (�1e1 + �2e2) cos(2ν)

∫ θmax

0

√
cos(θ)

sin(2θ)

2
e−iκr�3 cos(θ)J2

(
fobjξ sin(θ)

)
dθ

+ (�2e1 + �1e2) sin(2ν)

∫ θmax

0

√
cos(θ)

sin(2θ)

2
e−iκr�3 cos(θ)J2

(
fobjξ sin(θ)

)
dθ

= −(�1e1 + �2e2)I2,0(ξ, r�3 ) + (�1e1 + �2e2) cos(2ν)I2,2(ξ, r�3 )

+ (�2e1 + �1e2) sin(2ν)I2,2(ξ, r�3 ),

(82)
where integrals Ip,q(ξ, r�3 ) are as in Eq. (74).

Similar calculation to Eq. (80) yields

1

π

∫ 2π

0
�s sin(ϕ)e−iη cos(ϕ−ν)dϕ = −�1J0(η) − �1 cos(2ν)J2(η) − �2 sin(2ν)J2(η),

1

π

∫ 2π

0
�s cos(ϕ)e−iη cos(ϕ−ν)dϕ = �2J0(η) + �2 cos(2ν)J2(η) + �1 sin(2ν)J2(η).

(83)
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Next, using Eqs. (57) and (83), we compute the second integral term on the
right-hand side of Eq. (76):

− 1

π

∫ θmax

0
e−iκr�3 cos(θ)

√
cos(θ) sin(θ)

(∫ 2π

0
�sese

−iξρ(θ) cos(ϕ−ν)dϕ

)
dθ

= −(�1e1 + �2e2)
∫ θmax

0

√
cos(θ) sin(θ)e−iκr�3 cos(θ)J0

(
fobjξ sin(θ)

)
dθ

+ (�1e1 + �2e2) cos(2ν)

∫ θmax

0

√
cos(θ) sin(θ)e−iκr�3 cos(θ)J2

(
fobjξ sin(θ)

)
dθ

+ (�2e1 + �1e2) sin(2ν)

∫ θmax

0

√
cos(θ) sin(θ)e−iκr�3 cos(θ)J2

(
fobjξ sin(θ)

)
dθ

= −(�1e1 + �2e2)I1,0(ξ, r�3 ) + (�1e1 + �2e2) cos(2ν)I1,2(ξ, r�3 )

+ (�2e1 + �1e2) sin(2ν)I1,2(ξ, r�3 ),

(84)
where integrals Ip,q(ξ, r�3 ) are as in Eq. (74).

Next, we compute the last integral term on the right-hand side of Eq. (76):

1

π

∫ θmax

0
e−iκr�3 cos(θ)(cos(θ))3/2

1 − cos(2θ)

2

(∫ 2π

0
�3epe

−iξρ(θ) cos(ϕ−ν)dϕ

)
dθ

= 1

π
�3

∫ θmax

0
e−iκr�3 cos(θ)(cos(θ))3/2

1 − cos(2θ)

2(
e1

∫ 2π

0
cos(ϕ)e−iξρ(θ) cos(ϕ−ν)dϕ

)
dθ

+ 1

π
�3

∫ θmax

0
e−iκr�3 cos(θ)(cos(θ))3/2

1 − cos(2θ)

2(
e2

∫ 2π

0
sin(ϕ)e−iξρ(θ) cos(ϕ−ν)dϕ

)
dθ

= −2i�3 (cos(ν)e1 + sin(ν)e2)
∫ θmax

0
(cos(θ))3/2

1 − cos(2θ)

2
e−iκr�3 cos(θ)J1

(
fobjξ sin(θ)

)
dθ

= −2i�3 (cos(ν)e1 + sin(ν)e2) I2,1(ξ, r�3 ),

(85)
where in the second equality we use Eq. (117) for m = 1, and in the last equality we
use the integral Ip,q(ξ, r�3 ) as in Eq. (74).
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Using Eqs. (82), (84), and (85), the expression of Eq. (76) becomes

1

π

∫ θmax

0

∫ 2π

0

{(
−�p cos(θ) + �3 sin(θ)

)
ep − �ses

}
·

· e−iκr�3 cos(θ)e−iξρ(θ) cos(ϕ−ν)
√
cos(θ) sin(θ)dϕdθ

= − (�1e1 + �2e2)[I1,0(ξ, r�3 ) + I2,0(ξ, r�3 )]
+ (�1e1 + �2e2) cos(2ν)[I1,2(ξ, r�3 ) + I2,2(ξ, r�3 )]
+ (�2e1 + �1e2) sin(2ν)[I1,2(ξ, r�3 ) + I2,2(ξ, r�3 )]
− 2i�3(cos(ν)e1 + sin e2)I2,1(ξ),

(86)

where the integrals Ip,q(ξ) are defined in Eq. (74). 
�

6.4 Electric Field Approximation in the Lens

After the light ray has passed through the objective and the back focal plane, a tube
lens is placed to focus the light rays onto the image plane.

Definition 11 (Tube Lens Parameters) For the tube lens, we assume that it is a
plano-convex converging lens with focal length fL > 0, placed with one side at
r
tli

3 and the other side at rtlo

3 (see Fig. 8). Moreover the lens has a thickness which
is measured orthogonal to e3 by the function d.

The incoming field at the tube lens Êtli (as defined in Eq. (69)) and the outgoing
wave field Êtlo immediately after the lens aperture are related by (we use the same
polar coordinates (ρ, ϕ) in both planes {r3 = r

tli

3 } and {r3 = r
tlo

3 } )

Êtlo (ρ, ϕ) = eiμ(ρ)PL(ρ)Êtli (ρ, ϕ), (87)

where PL is the pupil function associated with the tube lens as in Eq. (53), μ is
the phase shift experienced by the field through the tube lens (note that it does not
depend on ϕ):

μ(ρ) = κnld(ρ)︸ ︷︷ ︸
phase delay by lens

+ κ(d0 − d(ρ))︸ ︷︷ ︸
phase delay by vacuum

, (88)

where d0 is the maximum thickness of the lens, d(ρ) is the thickness of the lens at
distance ρ from the optical axis, nl is the refractive index of the lens material, and
κ as defined in Eq. (22). The phase delay induced by the lens, under the assumption
of a paraxial approximation reads as follows (see Table 1 for the summary of all
physical parameters below):
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μ(ρ) ≈ κnld0 − κ

2fL
ρ2 for all ρ ∈ R. (89)

6.5 Electric Field Approximation in the Image Plane

Definition 12 The electric field at the focal plane,

I :=
{
(xf, rf3 ) : xf ∈ R2

}
, (90)

is denoted by Êf(xf) := Ê(xf, rf3 ), where Ê solves the boundary value problem

�Ê(x, r3) + κ2(x, r3)Ê(x, r3) = 0 for all x ∈ R2, r
tlo

3 < r3 < rf3 (91)

with boundary data

Ê(x, r
tlo

3 ) = Êtlo (x) for all x ∈ R2. (92)

Note that Êtlo as defined in Eq. (64) is already an approximation of the electric field
outside of the lens system.

Following [14, Eqs 5-14], we can calculate the field Ê in the image plane.

Lemma 8 At a point xf in the image plane,

Êf(xf) = 1

iλfL
ei

2π
λ

(fL+nld0)e
i π

λfL|xf|2
∫

x∈R2
PL(x)Êtli (x)e

−i 2π
λfL

〈xf,x〉
dx for all xf ∈ R2.

(93)

Proof We apply the Huygens-Fresnel principle (see [14, Eqs 4-17]) to compute the
field in the image plane:

Êf(xf) = 1

iλd
eiκde

iκ
2d |xf|2

∫
x∈R2

Êtlo (x)ei
κ
2d |x|2e−i κd 〈xf,x〉dx

= 1

iλd
eiκde

iκ
2d |xf|2

∫
x∈R2

PL(x)Êtli (x)eiμ(x)ei
κ
2d |x|2e− iκ

d 〈xf,x〉dx

= 1

iλd
eiκde

iκ
2d |xf|2

∫
x∈R2

PL(x)Êtli (x)eiκnld0e−i κ
2fL

|x|2ei κ
2d |x|2e−i κd 〈xf,x〉dx

= 1

iλd
ei

2π
λ

(d+nld0)ei
π
λd |xf|2

∫
x∈R2

PL(x)Êtli (x)e−i π
λfL

(1− fL
d )|x|2e−i 2π

λd 〈xf,x〉dx,

where in the second equality we use Eq. (87), in the third equality we use the paraxial
approximation Eq. (89), and in the last equality we use κ = 2π

λ
. Now, if the image
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plane is at the distance d = fL, the quadratic phase factor terms within the integrand
exactly cancel, leaving

Êf(xf) = 1

iλfL
ei

2π
λ

(fL+nld0)ei
π

λfL
|xf|2

∫
x∈R2

PL(x)Êtli (x)e−i 2π
λfL

〈xf,x〉
dx,

where the term ei
2π
λ

(fL+nld0) is a constant amplitude, and the term ei
π

λfL
|xf|2

describes a spherical phase curvature in the focal plane. 
�
Remark 6 From Eq. (93) it follows by the convolution theorem for the Fourier
transform that

Êf(xf) = 2π

λfL
e
iπ
(
− 1

2+ 2
λ
(fL+nld0)+ 1

λfL
|xf|2

)
F12[PLÊtli ]

(
2π

xf
λfL

)

= Cf�f
(
F12[PL] ∗ F12[Êtli ])

(
2π

λfL
xf

)
for all xf ∈ R2,

(94)

where

Cf = 1

λfL
and �f = e

iπ
(
− 1

2+ 2
λ
(fL+nld0)+ 1

λfL
|xf|2

)
. (95)

In the next step we calculate the Fourier-transform of a circular pupil function:

Lemma 9 Let P : R2 → R be the circular pupil function with radius R, as defined
in Eq. (53), then

F12[P ](v) = R2 J1(R |v|)
R |v| for all v ∈ R2. (96)

Proof We use the following polar coordinates:

v = �

(
cos(ϑ)

sin(ϑ)

)
and y = �

(
cos(σ )

sin(σ )

)
,

then the Fourier transform of the pupil function

F12[P ](v) = 1

2π

∫
y∈R2

P(y)e−iy·vdy = 1

2π

∫ R

0
�

∫ 2π

0
e−i�� cos(σ−ϑ)dσd�

=
∫ R

0
�J0(��)d� = R

�
J1(R�) = R2 J1(R |v|)

R |v| ,

(97)
where we use Eq. (117) for m = 0 in the third equality. 
�

Now, we calculate the k-transform of Êbfp in this approximation.
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6.6 Small Aperature

In what follows, we are interested in a small aperture. Of course small apertures
have the problem that only little light of the emitted dipoles passes through the lens
and thus these considerations are more of theoretical nature.

In case the numerical aperture NA is small, that is if θmax is small, it follows from
Eq. (64) that

Êbfp
small(ρ, ϕ) = C(fobj)

⎛
⎝�1

�2

0

⎞
⎠χρ�NA. (98)

In what follows, we denote by PNA the pupil function χρ�NA. We emphasize that
the left-hand side of Eq. (98) is actually an approximation of the right-hand side
of Eq. (64). Next we calculate the k-transform of Êbfp in this approximation.
Noting that the objective acts again as a pupil function with disc radius NA we get
analogously to Lemma 9 and by using Eq. (73)

F12[Êtli

small](ξ, ν) = C(fobj)e
i(r

tli
3 −r

bfp
3 )

√
κ2−ξ2

⎛
⎝�1

�2

0

⎞
⎠F12[PNA](ξ, ν), ξ2 ≤ κ2, ν ∈ [0, 2π).

(99)

7 Single Molecule Localization Microscopy Experiments and
Inverse Problems

We consider two experiments in two different settings:

Experiment

For setting 1 we assume n static emitting dipoles: Several monochromatic
plane waves of the same frequency ωinc but with different orientations v(j),
j = 1, 2, . . . ,M with M > 1 are used to illuminate the cell. Every emitting
dipole emits light in an orientation �(j)(k), k = 1, 2, . . . , n, j = 1, 2, . . . , M
(depending on the incident field according to Eq. (51)).

Therefore, for each experiment j = 1, 2, . . . , M the current

Ĵ(j)(r) = iω
n∑

k=1

�(j)(k)δ(r − r�(k))

and the density
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ρ̂(j)(r) = −
n∑

k=1

∣∣∣�(j)(k)

∣∣∣ δ′(r − r�(k)) = −
n∑

k=1

δ′(r − r�(k))

are given via Eqs. (38) and (37) as the superposition of all dipoles. Note, that we
assume that all dipoles are unit vectors.

Consequently, the electric field Ê := Ê(j) solves Eq. (29),

�rÊ(r;ω) + κ2(ω)Ê(r;ω) = iω

ε0c2
Ĵ(j)(r) + 1

ε0
∇rρ̂

(j)(r) for all r ∈ �.

1. The measurements recorded in a static experiment are the energies of the
electric field in the image plane, after the light has passed through the imaging
system. That is, for each experiment j = 1, 2, . . . , M the data

m
(j)
i (xf; t) =

∣∣∣(Ef
i )(j)

∣∣∣2 (xf; t) for all xf ∈ R2, t > 0 and for i = 1, 2

(100)

are recorded.
2. In the dynamic experiment setting the static experiment is repeated. We denote

the experiment repetitions with the parameter s: This experimental setup is
used in practice because it makes use of blinking dyes, which allows for better
localization of the dyes, and thus molecules. That is, the measurements are

m(j)(xf; t; s) =
∣∣∣(Ef

i )(j)
∣∣∣2 (xf; t; s) for all xf ∈ R2, t, s > 0 for i = 1, 2.

(101)

For setting 2 we assume rotating dipoles, which are modelled via Eq. (50)—here
in particular we assume that the cone becomes the ball. That is, θ = π . Note
that in this case several monochromatic excitations do not provide an asset, so
we can constrain ourselves to the case M = 1. As a consequence of Eq. (50),
the emitted currents of all rotating dipoles of a single molecule localization
microscopy experiment are given by

Ĵ(r;ω) = iω
n∑

k=1

Ik1k(r), (102)

and according to Eq. (29) the electric field satisfies the equation
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�rÊ(r;ω) + κ2(ω)Ê(r;ω) = 1

ε0

∑
m

ImR̂m(r;ω) for all r ∈ �. (103)

1. The measurements recorded in a single molecule localization microscopy are
the energies of the electric field in the focal plane (see Eq. (93)), after the light
has passed through the imaging system. That is, the data

m(xf; t) = ∣∣Ef
∣∣2 (xf; t) for all xf ∈ R2, t > 0 (104)

are recorded.
2. In the dynamic experiment setting the static experiment is repeated, and

we denote every repetition experiment with the parameter s: That is the
measurements are

m(xf; t; s) = ∣∣Ef
∣∣2 (xf; t; s) for all xf ∈ R2, t, s > 0. (105)

Note the difference between setting 1 and 2. In the former it is much easier to
identify dipoles because the orientation can be resolved and is not changing over
time.

7.1 The Limit

Using the small aperture limit of Sect. 6.6 in combination with the formula for the
electric field on the image plane Eq. (94), we can compute the electric field in the
image plane from Eq. (99). We first make use of a linear approximation of the
function [0, κ] � ρ → √

κ2 − ρ2 � κ , that is we assume that between the back
focal plane of the objective and the lens, the electric field only undergoes a phase
shift which does not depend on the distance to the optical axis. It follows then from
Eq. (99) that

F12[Êtli

small](ξ, ν) � C(fobj)e
i(r

tli
3 −r

bfp
3 )κ

⎛
⎝�1

�2

0

⎞
⎠F12[PNA](ξ, ν). (106)

Applying Eq. (94) where we replace F12[Êtli ] by F12[Êtli

small] and inserting
Eq. (106), we obtain
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Êf
small(xf) = Cf�f

(
F12[PL] ∗ F12[Êtli

small]
)( 2π

λfL
xf

)

=
⎛
⎝�1

�2

0

⎞
⎠ (F12[PL] ∗ F12[PNA]) (ξ, ν)

=
⎛
⎝�1

�2

0

⎞
⎠F12[PLPNA](ξ, ν),

where we use the following polar coordinates: 2π
λfL

xf = ξ

(
cos(ν)

sin(ν)

)
.

Now, assuming that R � NA (the lens is bigger than the objective), we have
PLPNA = PNA and Eq. (97) provides,

Êf
small(xf) = C(fobj)Cf�fei(r

tli
3 −r

bfp
3 )κ

⎛
⎝�1

�2

0

⎞
⎠NA2 J1(NA

2π
λfL

|xf|)
NA 2π

λfL
|xf| =: �(ω)

⎛
⎝�1

�2

0

⎞
⎠NA2 J1(NA

2π
λfL

|xf|)
NA 2π

λfL
|xf| .

Finally, what is actually measured in experiments is the intensity m(xf, t) =
|Ef(xf, t)|2 averaged in time. If we assume that the signal E is compactly supported
in time and that what is measured by the detector contains this whole support, we
can use that the time Fourier transform is a unitary operator and write

m̄(xf) =
∫

t∈R
|Ef(xf)|2 dt

=
∫

ω∈R
|Êf(xf)|2 dω

=
∫

ω∈R
|�(ω)|2

(
NA2

J1(NA
2π
λfL

|xf|)
NA 2π

λfL
|xf|

)2 (
�2

1 + �2
2

)
dω.

(107)

So, under these approximations (small aperture), what is observed by the detector
is an Airy pattern (see Fig. 11) whose intensity depends on the optical system but
is also proportional to the squared norm of the component of the dipole which lies
orthogonally to the optical axis. Making use of the notation introduced before for
the dipole orientation, we obtain that the measured intensity m is proportional to
cos2(θm). Since the Airy function can be well approximated by a Gaussian function,
the measured signals of the emitted dyes very much looks like a superposition of
Gaussian functions.
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Fig. 11 Airy pattern

Now, having summarized the mathematical modeling of single molecule local-
ization microscopy we can state the associated inverse problems:

Definition 13 (Inverse Problem) The inverse problem of single molecule local-
ization microscopy in the two different settings for the two experiments consists in
calculating

(�m, rm, χm(s))m=1,...,M, from the measurements m.

Indeed the inverse problem could also be generalized to reconstruct Eq. (103) in
addition, which would result in an inverse scattering problem [8]. However, this
complex problem is not considered here further.

In current practice of single molecule localization microscopy the simplified
formulas Eq. (107) are used for reconstruction of the center of gravities (r1m, r2m)

in the measurement data m induced by the point spread function PSFω.

8 Conclusion

The main objective of this work was to model mathematically the propagation of
light emitted from dyes in a superresolution imaging experiment. We formulated
basic inverse problems related to single molecule superresolution microscopy,
with the goal to have a basis for computational and quantitative single molecule
superresolution imaging. The derivation of the according equations follows the
physical and chemical literature of superresolution microscopy, in particular [3, 17],
which are combined with the mathematical theory of distributions to translate
physical and chemical terminologies into a mathematical framework.
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Appendix 1: Derivation of Particular Fourier Transforms

Before reading through the appendix it might be useful to recall the notation of
Table 2. The derivation in Lemma 3 uses the residual theorem.

Theorem 2 (Residual Theorem) Let the function z ∈ C → f̃ (z) := f (z)eiaz with
a > 0 satisfy the following properties:

1. f is analytic with at most finitely many poles pi , i = 1, . . . , m, which do not lie
on the real axis.

2. There exists M,R > 0 such that for every z ∈ C satisfying �(z) ≥ 0 and |z| ≥ R

|f (z)| ≤ M

|z| . (108)

Then

∫
R

f̃ (x)dx = 2π i
m∑

i=1

Res(f̃ ;pi).

Using this lemma we are able to prove the following result used in Lemma 3:

Lemma 10 Let the assumptions and notation of Lemma 3 hold (in particular this
means that r3, r�

3 ∈ R satisfy r3 − r�
3 > 0), then

1√
2π

F−1
3

[
k3 →

(
� + (�×k)×k

|k|2−κ2ε

)
e−ik3r�

3

]
(r3)

= �3e3δ̃(r3 − r�
3 ) + ieiqε(r3−r�3 )

2qε
(� × kqε ) × kqε . (109)

First, we note that

� + (� × k) × k

k23 − q2
ε

=
(

� − �3e3 + (� × k) × k

k23 − q2
ε

)
+ �3e3.

Now, we calculate the Fourier-transform of each of the two terms on the right-hand
side. The second term can be calculated from Eq. (9) and is given by

F−1
3 [k3 
→ e−ik3r�

3 ](r3) = √
2πδ̃(r3 − r�

3 ). (110)

For the calculation of the first term, let

z ∈ C → f (z) := 1

z2 − q2
ε

⎛
⎝� ×

⎛
⎝k1

k2

z

⎞
⎠
⎞
⎠×

⎛
⎝k1

k2

z

⎞
⎠+ � − �3e3, (111)
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and we use the residual theorem:

• Clearly f is analytic with potential poles at k3 = ±qε.
• To verify Eq. (108) we use the elementary calculation rules for ∇r×, summarized

in Eq. (45) and get

(� × k) × k

k23 − q2
ε

= − 1

k23 − q2
ε⎛

⎝k23(� − �3e3) − k3

⎛
⎝ �3k1

�3k2

�1k1+�2k2

⎞
⎠+(k21 + k22)�−

⎛
⎝(�1k1 + �2k2)k1

(�1k1 + �2k2)k2

0

⎞
⎠
⎞
⎠

= − 1

k23 − q2
ε

⎛
⎝k23 (� − �3e3) − k3

⎛
⎝ �3k1

�3k2

�1k1 + �2k2

⎞
⎠

+(k21 + k22) (� − �3e3) +
⎛
⎝−�1k

2
1 − �2k2k1

−�2k
2
2 − �1k1k2

(k21 + k22)�3

⎞
⎠
⎞
⎠

= − 1

k23 − q2
ε

⎛
⎝(k23 − q2

ε ) (� − �3e3) − k3

⎛
⎝ �3k1

�3k2

�1k1 + �2k2

⎞
⎠+ κ2 (� − �3e3)

+
⎛
⎝−�1k

2
1 − �2k2k1

−�2k
2
2 − �1k1k2

(k21 + k22)�3

⎞
⎠
⎞
⎠ = −� + �3e3 + k3

k23 − q2
ε

a − 1

k23 − q2
ε

b

where

a =
⎛
⎝ �3k1

�3k2

�1k1 + �2k2

⎞
⎠ and b =

⎛
⎝(κ2 − k21)�1 − �2k1k2

(κ2 − k22)�2 − �1k1k2

(k21 + k22)�3

⎞
⎠ .

Using that

k3

k23 − q2
ε

= 1

2

(
1

k3 − qε

+ 1

k3 + qε

)
and

1

k23 − q2
ε

= 1

2qε

(
1

k3 − qε

− 1

k3 + qε

)

we get

(� × k) × k

k23 − q2
ε

+� −�3e3 = 1

k3 − qε

(
1

2
a − 1

2qε

b
)

+ 1

k3 + qε

(
1

2
a + 1

2qε

b
)

.

(112)
This shows Eq. (108).
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Therefore we can apply the residual Theorem 2 for f defined in (111). Then, since
qε is complex with positive imaginary part, f has only one pole in the upper half
plane, and we get

∫
R

f (k3)e
ik3(r3−r�

3 )dk3 = 2π iRes
(
f (z)eiz(r3−r�

3 ); z = qε

)

= 2π i

⎛
⎝ 1

2qε

⎛
⎝� ×

⎛
⎝k1

k2

qε

⎞
⎠
⎞
⎠×

⎛
⎝k1

k2

qε

⎞
⎠ eiqε(r3−r�

3 )

⎞
⎠ .

This implies

1√
2π

F−1
3

[
k3 →

(
� + (� × k) × k

|k|2 − κ2
ε

)
e−ik3r�

3

]
(r3)

= �3e3δ̃(r3 − r�
3 ) + ieiqε(r3−r�

3 )

2qε

(� × kqε ) × kqε .

Appendix 2: Derivation of the Far Field Approximation for the
Electric Field

Lemma 11 Let ζ be the function defined in Eq. (61). That is, for all k12 ∈ R2

ζ(k12) = k12 · v + q(k12), with q =
√

κ2 − k21 − k22; note the formal definition of q
in Eq. (42) is via the limit ε → 0. Then the gradient of ζ is given by

∇ζ(k12) = v − k12√
κ2 − |k12|2

, (113)

which vanishes for

k̂12 := κ√
1 + |v|2

v. (114)

Consequently r = r3e3 + r3
(
v 1
)T

as in Eq. (59) satisfies

r
|r| = 1√

1 + |v|2
(

v
1

)
. (115)

Moreover, with q as defined in Eq. (42), we get the following identities
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ζ(k̂) = k̂12 · v + q = κ

√
1 + |v|2 and

q = q(k̂) =
√

κ2 − k̂21 − k̂22 = κ√
1 + |v|2

.

(116)

The Hessian of ζ is given by

H(ζ)(k12) =
⎛
⎜⎝

− 1√
κ2−|k12|2

− k21
(κ2−|k12|2)3/2 − k1k2

(κ2−|k12|2)3/2

− k1k2
(κ2−|k12|2)3/2 − 1√

κ2−|k12|2
− k22

(κ2−|k12|2)3/2

⎞
⎟⎠ ,

which evaluated at k̂ gives

H(ζ)(k̂) =
⎛
⎝− c

ω

√
1 + |v|2 − c3

ω3 (1 + |v|2)3/2 · v21ω
2

c2(1+|v|2) − c3

ω3 (1 + |v|2)3/2 · v1v2ω
2

c2(1+|v|2)
− c3

ω3 (1 + |v|2)3/2 · v1v2ω
2

c2(1+|v|2) − c
ω

√
1 + |v|2 − c3

ω3 (1 + |v|2)3/2 · v22ω
2

c2(1+|v|2)

⎞
⎠ ,

= − c

ω

√
1 + |v|2

(
1 + v21 v1v2

v1v2 1 + v22

)
,

and the determinant satisfies

= c2(1 + |v|2)2
ω2

> 0.

Appendix 3: Bessel Identities

For x ∈ R and ϕ0 ∈ [0, 2π) the Bessel-identities hold:

2π(−1)mimJm(x) cos(mϕ0) =
∫ 2π

0
e−ix cos(ϕ−ϕ0) cos(mϕ)dϕ,

2π(−1)mimJm(x) sin(mϕ0) =
∫ 2π

0
e−ix cos(ϕ−ϕ0) sin(mϕ)dϕ,

(117)

where Jm is the Bessel function of the first kind of order m.
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