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Preface

Inverse problems deal with the reconstruction of unknown quantities from indirect
observations and have a large number of applications ranging from medical
imaging via nondestructive testing to geophysical prospection, to name just a
few exemplary areas. These problems are by their nature ill-posed in the sense
that small perturbations in the given data, e.g., due to measurement noise, can
lead to large deviations in the reconstructions, unless appropriate mathematical
tools—regularization methods—are developed and used. In addition, the question
of uniqueness, i.e., whether the given observations unambiguously determine
the searched-for quantity, is essential and often challenging to answer. Another
important aspect in inverse problems is mathematical modeling, i.e., the correct
description of the underlying relations and processes governing the connection
between the parameters to be reconstructed on the one hand and the observed data
on the other hand.

While investigations on these questions have so far mainly been focused on static
problems, the dependence of parameters and/or states not only on space but also on
time plays an increasingly important role in inverse problems applications: Time-
resolved observations on the one hand allow to image evolutionary phenomena
such as blood flow or a motion of the object, for example, a beating heart. On
the other hand, they enable super-resolution in microscopy. Correspondingly, the
underlying physical mechanisms are instationary and thus require modeling with
time-dependent partial differential equations (PDEs)—typically wave, diffusion, or
transport equations. The aim of this book is to collect some novel contributions on
time-dependent parameter identification and imaging problems, therewith providing
an overview on recent developments as well as a stimulus on further research in this
area.

A key step for working with novel time-resolved imaging techniques is their
proper modeling based on the underlying physics. Consequently, a considerable
emphasis of the contributions in chapters “Joint Phase Reconstruction and Magni-
tude Segmentation from Velocity-Encoded MRI Data”, “Quantitative OCT Recon-
structions for Dispersive Media”, “Inverse Problems of Single Molecule Localiza-
tion Microscopy”, and “Parameter Identification for the Landau–Lifshitz–Gilbert

vii
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Equation in Magnetic Particle Imaging” is on describing or actually even deriving
such models.

Chapter “Joint Phase Reconstruction and Magnitude Segmentation from Veloc-
ity-Encoded MRI Data” provides a complete description of the inverse problem
of velocity-encoded MRI from the acquisition process to the spin proton density
estimation and devises a joint variational model to simultaneously estimate phase
and magnitude reconstruction and its segmentation. The resulting non-convex and
nonlinear optimization problem is then solved by a Bregman iteration.

In chapter “Quantitative OCT Reconstructions for Dispersive Media”, optical
coherence tomography (OCT) for layered media is described as an inverse problem
for a one-dimensional wave equation, which can be explicitly solved in the
nondispersive case, thus leading to a layer stripping type reconstruction algorithm.
This approach is then extended to the practically relevant dispersive setting and the
case of an absorbing medium is addressed as well.

Also, chapter “Parameter Identification for the Landau–Lifshitz–Gilbert Equa-
tion in Magnetic Particle Imaging” contains a modeling section, describing the
physics of magnetic particle imaging (MPI) and yielding the Landau–Lifshitz–
Gilbert (LLG) equation as a mathematical model. The task of calibration thus
becomes a parameter identification problem for the LLG equation and is considered
from two different inverse problem perspectives: A classical reduced approach
relying on a parameter-to-state map and an all-at-once approach considering model
and observations as a simultaneous system of operator equations for parameter and
state.

Finally, chapter “Inverse Problems of Single Molecule Localization Microscopy”
is entirely devoted to the derivation of a model for a novel super-resolution
microscopy technique, namely single-molecule localization microscopy (SMLM).
Here the resolution limit determined by Abbe’s limit of diffraction is overcome
by replacing the simultaneous acquisition of a microscopy image with a sequence
of frames recording single blinking events. The chapter provides a complete
mathematical description of the measurement setup by Maxwell’s equations and
adaptations thereof, thus finally establishing SMLM as an inverse problem for a
coupled system of PDEs.

One of the key issues in the context of time-dependent imaging is motion of
the target. This may be of periodic nature or irregular, and the actual motion
may be the object of interest or an unwanted side effect—think of tracking flow
in a pipe on the one hand and the movement of a patient during a recording
on the other hand. Thus, detection and estimation of motion, as well as its
compensation for proper imaging are key topics in chapters “Motion Compensation
Strategies in Tomography”, “Microlocal Properties of Dynamic Fourier Integral
Operators”, “Joint Motion Estimation and Source Identification Using Convective
Regularisation with an Application to the Analysis of Laser Nanoablations”,
and “Tomographic Reconstruction for Single Conjugate Adaptive Optics”.

Chapter “Joint Motion Estimation and Source Identification Using Convective
Regularisation with an Application to the Analysis of Laser Nanoablations” con-
siders spatially one-dimensional imaging of a certain morphogenesis process and
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proposes a variational method for joint motion estimation and source identification
in the underlying one-dimensional mechanical model of tissue formation. Here
the data misfit term in the variational model is defined as the L2 residual of the
nonhomogeneous continuity equation and regularization is based on the convective
derivative of the source.

Chapter “Tomographic Reconstruction for Single Conjugate Adaptive Optics”
deals with the reconstruction of atmospheric turbulence profiles from wavefront
measurements. Here the wind speeds, which cause the motion of the different
turbulent layers, play a crucial role for uniqueness: It is proven that mutually
different velocities lead to unique identifiability of the turbulence profiles. This
result is extended to the practically relevant setting of finite telescope aperture based
on Fourier expansions.

Chapter “Motion Compensation Strategies in Tomography” provides a frame-
work for compensating known motion in tomographic imaging in order to avoid
artifacts in the reconstruction. The motion is described as a sequence of diffeo-
morphisms, corresponding to deformation vector fields. Moderate deformations,
where the dynamic forward operator results as an appropriate concatenation of
the static forward operator with a (multiplicative and superposition type) function
of a diffeomorphism, allow for an explicit reversal of motion which, combined
with a static reconstruction, yields a correct image from dynamic data. In the
complementary case of strong deformations, the method of the approximate inverse
is shown to provide efficient motion compensation.

In chapter “Microlocal Properties of Dynamic Fourier Integral Operators”,
methods frommicrolocal analysis are used to answer the question which features (in
the sense of singularities) of the imaged object can be recovered from the given data
and in which locations motion artifacts can arise. The analysis is based on the theory
of Fourier integral operators, which covers many relevant dynamic tomographic
methods based on integral transforms, such as the classical Radon transform in
X-ray CT or the circular Radon transform in a particular setting of photoacoustic
tomography but is probably also applicable to PDE-based models.

Reconstruction schemes are often built on existing paradigms known from
static inverse and imaging problems and need to be adapted to the time-dependent
setting in order to work efficiently. In view of practical applications, the solution
of time-dependent problems often involves elaborate computations, which demands
fast reconstruction schemes. In the case of ill-posed inverse problems, they also
need to incorporate regularization. Iterative reconstruction schemes, as consid-
ered, e.g., in chapters “Joint Phase Reconstruction and Magnitude Segmentation
from Velocity-Encoded MRI Data”, “Dynamic Inverse Problems for the Acoustic
Wave Equation”, “Sequential Subspace Optimization for Recovering Stored Energy
Functions in Hyperelastic Materials from Time-Dependent Data”, and “Parameter
Identification for the Landau–Lifshitz–Gilbert Equation in Magnetic Particle Imag-
ing”, generate successive approximations of the searched-for quantity and achieve
regularization by a well-chosen stopping criterion. To guarantee convergence of
these methods, conditions on the forward problem need to be verified, such as
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differentiability of the forward operator and certain restrictions on its nonlinearity
such as the so-called tangential cone condition.

The latter is investigated in chapter “The Tangential Cone Condition for Some
Coefficient Identification Model Problems in Parabolic PDEs”, first of all in an
abstract setting of evolution models and then for several concrete inverse source
or coefficient problems for linear and nonlinear parabolic PDEs, contrasting the
reduced and the all-at-once approach of formulating the inverse problem.

For the identification of space- and time-dependent coefficients in an acoustic
wave equation, chapter “Dynamic Inverse Problems for the Acoustic Wave Equa-
tion” provides results on the derivative of the forward operator in appropriate
function spaces, as well as its adjoint, as required for iterative regularization.
Likewise, this is done in chapter “Parameter Identification for the Landau–Lif-
shitz–Gilbert Equation in Magnetic Particle Imaging” for magnetic particle imaging
and in chapter “Sequential Subspace Optimization for Recovering Stored Energy
Functions in Hyperelastic Materials from Time-Dependent Data” for structural
health monitoring with hyperelastic waves.

The latter, i.e., chapter “Sequential Subspace Optimization for Recovering Stored
Energy Functions in Hyperelastic Materials from Time-Dependent Data”, also
devises an accelerated iteration scheme, namely sequential subspace optimization,
which uses, instead of only one gradient step, a linear combination of directions
with optimized step sizes. This method is applied to a dictionary discretization of
the stored energy function characterizing the hyperelastic material and thus, via its
spatial variability, allowing to detect damage in the inspected medium.

Whenever a quantity is to be determined from indirect measurements, the
question arises whether these data uniquely determine the hidden object. The more
complex the underlying model that connects the searched-for parameters with the
given observations, the more challenging is the answer to this question. Uniqueness
proves are provided in chapters “Holmgren-John Unique Continuation Theorem
for Viscoelastic Systems” and “An Inverse Source Problem Related to Acoustic
Nonlinearity Parameter Imaging”.

Chapter “Holmgren-John Unique Continuation Theorem for Viscoelastic Sys-
tems” establishes the unique continuation property for a viscoelastic system, i.e.,
a hyperbolic PDE with a memory term, based on the Holmgren-John concept of
proving uniqueness for problems with analytic coefficients and noncharacteristic
boundaries. This is essential for solving inverse problems such as the detection of
obstacles or inclusions.

For a nonlinear acoustic wave equation (the Moore–Gibson–Thompson equa-
tion), the uniqueness of an inverse source problem as well as its conditional
stability is established in chapter “An Inverse Source Problem Related to Acoustic
Nonlinearity Parameter Imaging”, as a first step into the mathematical analysis of
ultrasonic nonlinearity imaging.

Segmentation and Registration, i.e., the decomposition of image regions
according to their different intensities, as well as the alignment of different frames
or modalities to a common coordinate system, are imaging tasks that play a role in
many applications and require special adaptation in the time-dependent context.
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Here similarity measures are crucial in order to identify objects of the same
type on the one hand and to distinguish between different ones on the other hand.
Chapter “Review of Image SimilarityMeasures for Joint Image Reconstruction from
Multiple Measurements” provides a broad overview on similarity measures with a
particular view on joint multi-modality imaging, as often also encountered in time-
dependent settings.

In the context of imaging flow motion by velocity-encoded MRI, segmentation is
implemented in chapter “Joint Phase Reconstruction and Magnitude Segmentation
from Velocity-Encoded MRI Data” by means of a spatially resolved penalty term in
a variational model.

Future research on time-dependent parameter identification and imaging prob-
lems will on the one hand be certainly directed into complementation and unification
of the theory, as it has to a certain extent already been accomplished for static inverse
problems. On the other hand, many new tailored methods for specific dynamic
inverse problems as well as innovative general solution paradigms to tackle time-
dependence are just about to emerge. In particular, questions concerning the optimal
sampling of data or the promotion of special features of solutions such as spatial
and/or temporal sparsity will be further investigated. Last but not least, in the
exploding field of machine learning, evolutionary models turn out to play a crucial
role.

1. Joint Phase Reconstruction and Magnitude Segmentation from Velocity-
Encoded MRI Data (Veronica Corona, Martin Benning, Lynn F. Gladden,
Andi Reci, Andrew J. Sederman, and Carola-Bibiane Schönlieb)

2. Dynamic Inverse Problems for the Acoustic Wave Equation (Thies Gerken)
3. Motion Compensation Strategies in Tomography (Bernadette N. Hahn)
4. Microlocal Properties of Dynamic Fourier Integral Operators (Bernadette N.

Hahn, Melina-L. Kienle Garrido, and Eric Todd Quinto)
5. The Tangential Cone Condition for Some Coefficient Identification Model

Problems in Parabolic PDEs (Barbara Kaltenbacher, Tram Thi Ngoc Nguyen,
and Otmar Scherzer)

6. Sequential Subspace Optimization for Recovering Stored Energy Functions in
Hyperelastic Materials from Time-Dependent Data (Rebecca Klein, Thomas
Schuster, and Anne Wald)

7. Joint Motion Estimation and Source Identification Using Convective Regular-
isation with an Application to the Analysis of Laser Nanoablations (Lukas
F. Lang, Nilankur Dutta, Elena Scarpa, Bénédicte Sanson, Carola-Bibiane
Schönlieb, and Jocelyn Étienne)

8. Quantitative OCT Reconstructions for DispersiveMedia (Peter Elbau, Leonidas
Mindrinos, and Leopold Veselka)

9. Review on Image Similarity Measures for Joint Multi-modality Image Recon-
struction (Ming Jiang)

10. Holmgren-John Unique Continuation Theorem for Viscoelastic Systems
(Maarten V. de Hoop, Ching-Lung Lin, and Gen Nakamura)
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11. Tomographic Reconstruction for Single Conjugate Adaptive Optics (Jenny
Niebsch and Ronny Ramlau)

12. Inverse Problems of Single Molecule Localization Microscopy (Montse Lopez-
Martinez, Gwenael Mercier, Kamran Sadiq, Otmar Scherzer, Magdalena
Schneider, John C. Schotland, Gerhard J. Schütz, and Roger Telschow)

13. Parameter Identification for the Landau–Lifshitz–Gilbert Equation in Magnetic
Particle Imaging (Barbara Kaltenbacher, Tram Thi Ngoc Nguyen, Anne Wald,
and Thomas Schuster)

14. An Inverse Source Problem Related to Acoustic Nonlinearity Parameter Imag-
ing (Masahiro Yamamoto and Barbara Kaltenbacher)
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Joint Phase Reconstruction and
Magnitude Segmentation from
Velocity-Encoded MRI Data

Veronica Corona, Martin Benning, Lynn F. Gladden, Andi Reci,
Andrew J. Sederman, and Carola-Bibiane Schönliebs

Abstract Velocity-encoded MRI is an imaging technique used in different areas
to assess flow motion. Some applications include medical imaging such as car-
diovascular blood flow studies, and industrial settings in the areas of rheology,
pipe flows, and reactor hydrodynamics, where the goal is to characterise dynamic
components of some quantity of interest. The problem of estimating velocities
from such measurements is a nonlinear dynamic inverse problem. To retrieve time-
dependent velocity information, careful mathematical modelling and appropriate
regularisation is required. In this work, we use an optimisation algorithm based
on non-convex Bregman iteration to jointly estimate velocity-, magnitude- and
segmentation-information for the application of bubbly flow imaging. Furthermore,
we demonstrate through numerical experiments on synthetic and real data that
the joint model improves velocity, magnitude and segmentation over a classical
sequential approach.

1 Introduction

Magnetic resonance imaging (MRI) is an imaging technique that allows to visualise
the chemical composition of patients or materials in a non-invasive fashion. Besides
resolving in great detail the morphology of the object under consideration, MRI

V. Corona · C.-B. Schönlieb
Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge, UK
e-mail: vc324@cam.ac.uk; cbs31@cam.ac.uk

M. Benning (�)
School of Mathematical Sciences, Queen Mary University of London, London, UK
e-mail: m.benning@qmul.ac.uk

L. F. Gladden · A. Reci · A. J. Sederman
Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge,
UK
e-mail: lfg1@cam.ac.uk; ar622@cam.ac.uk; ajs40@cam.ac.uk

© Springer Nature Switzerland AG 2021
B. Kaltenbacher et al. (eds.), Time-dependent Problems in Imaging and Parameter
Identification, https://doi.org/10.1007/978-3-030-57784-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57784-1_1&domain=pdf
mailto:vc324@cam.ac.uk
mailto:cbs31@cam.ac.uk
mailto:m.benning@qmul.ac.uk
mailto:lfg1@cam.ac.uk
mailto:ar622@cam.ac.uk
mailto:ajs40@cam.ac.uk
https://doi.org/10.1007/978-3-030-57784-1_1


2 V. Corona et al.

is intrinsically sensitive to motion, flow and diffusion [1, 2]. This means that in a
single experiment, MRI can produce both structural and functional information. By
designing the acquisition protocol appropriately, MRI can provide flow and motion
estimation. This technique is known as MR velocimetry or phase-encoded MR
velocity imaging [3–6]. In this work, we will focus on the inverse problem involved
in recovering velocities from this kind of data.

In many MRI applications, the goal is not only to extract the structure of the
object of interest, but also to estimate some functional features. An example is
flow imaging, in which the aim is to reconstruct the velocity of the fluid that is
moving in some structure. In order to acquire the velocity information and assess
flow motion, phase-encoded MR velocity imaging is widely used in different areas.
In medical imaging, this is used for example in cardiovascular blood flow studies
to assess the distribution and variation in flow in blood vessels around the heart [7].
Other industrial applications include the study of the rheology of complex fluids
[8], liquids and gases flowing through packed beds [9–11], granular flows [4, 12]
and multiphase turbulence [13].

MRI scanners use strong magnetic fields and radio waves to excite subatomic
particles (like protons) that subsequently emit radio frequency signals which can
be measured by the radio frequency coils. Because the local magnetisation of the
spins is a vector quantity, it is possible to derive both magnitude and phase images
from the signal. Furthermore, for appropriately designed experiments, the velocity
information can be estimated from the phase image. The problem of retrieving
magnitude and phase (and therefore velocities) from such measurements is non-
linear. Many standard approaches reduce this inverse problem to a complex but
linear inverse problem, where magnitude and phase are estimated subsequently.
With this strategy, however, it is impossible to impose regularity on the velocity
information. In this work, we therefore propose a joint framework to simultaneously
estimate magnitude and phase from undersampled velocity-encoded MRI. Based
on [14], we additionally introduce a third task, that is the segmentation on the
magnitude, to improve the overall reconstruction quality. The main motivation
is that by estimating edges simultaneously from the data, both magnitude and
segmentation are reconstructed more accurately. By enhancing the magnitude
reconstruction, we expect in turn to improve the corresponding phase image and
therefore the final velocity estimation.

Contributions
In this work we consider the problem of estimating flow, magnitude and seg-
mentation of regions of interest from undersampled velocity-encoded MRI data.
The problem is of great interest in different areas including cardiovascular blood
flow analysis in medical imaging and rheology of complex fluids in industrial
applications. To this end, we propose a joint variational model for undersampled
velocity-encoded MRI. The significance of our approach is that by tackling the
phase and magnitude reconstruction jointly, we can exploit their strong correlation
and finally impose regularity on the velocity component. This is further assisted by
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the introduction of a segmentation term as additional prior to enhance edges of the
regions of interest. Our main contributions are

• A description of the forward and inverse problem of velocity-encoded MRI in
the setting of bubbly flow estimation.

• A joint variational framework for the approximation of the non-linear inverse
problem of velocity estimation. We show that by exploiting the strong correlation
in the data, our joint method yields an accurate estimation of the underlying
flow, alongside a magnitude reconstruction that preserves and enhances intrinsic
structures and edges, due to a joint segmentation approach. Moreover, we achieve
an accurate segmentation to discern between different areas of interest, e.g. fluid
and air.

• An alternating Bregman iteration method for non-convex optimisation problems.
• Numerical experiments on synthetic and real data in which we demonstrate

the suitability and potential of our approach and provide a comparison with
sequential approach.

Organisation of the Paper
This paper is organised as follows. In Sect. 2 we describe the derivation of the
inverse problem of velocity-encoded MRI from the acquisition process to the spin
proton density estimation. In Sect. 3 we present our joint variational model to jointly
estimate phase and magnitude reconstruction and its segmentation. In Sect. 4 we
propose an optimisation scheme to solve the non-convex and non-linear problem
using Bregman iteration. To conclude, in Sect. 5 we demonstrate the performance of
our proposed joint method in comparison with a sequential approach for synthetic
and real MRI data.

2 Velocity-Encoded MRI

In the following we will briefly describe the mathematics of the acquisition process
involved in MRI velocimetry. Subsequently we are going to see that finding the
unknown spin proton density basically leads to solving the inverse problem of the
Fourier transform.

2.1 From the Bloch Equations to the Inverse Problem

The magnetisation of a so-called spin isochromat can be described by the Bloch
equations
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d

dt

⎛
⎝

Mx(t)

My(t)

Mz(t)

⎞
⎠ =

⎛
⎜⎝
− 1

T2
γ Bz(t) −γ By(t)

−γ Bz(t) − 1
T2

γ Bx(t)

γ By(t) −γ Bx(t) − 1
T1

⎞
⎟⎠

⎛
⎝

Mx(t)

My(t)

Mz(t)

⎞
⎠+

⎛
⎜⎝

0
0

M0
T1

⎞
⎟⎠ .

(1)

Here M(t) = (Mx(t), My(t), Mz(t)) is the nuclear magnetisation (of the spin
isochromat), γ is the gyromagnetic ratio, B(t) = (Bx(t), By(t), Bz(t)) denotes
the magnetic field experienced by the nuclei, T1 is the longitudinal and T2 the
transverse relaxation time and M0 the magnetisation in thermal equilibrium. If we
define Mxy(t) = Mx(t)+ iMy(t) and Bxy(t) = Bx(t)+ iBy(t), with i2 = −1, we
can rewrite (1) to

d

dt
Mxy(t) = −iγ

(
Mxy(t)Bz(t)−Mz(t)Bxy(t)

)− Mxy(t)

T2
(2a)

d

dt
Mz(t) = i

γ

2

(
Mxy(t)Bxy(t)−Mxy(t)Bxy(t)

)− Mz(t)−M0

T1
(2b)

with · denoting the complex conjugate of ·.
If we assume for instance that B = (0, 0, B0) is just a constant magnetic field in

z-direction, (2) reduces to the decoupled equations

d

dt
Mxy(t) = −iγ B0Mxy(t)− Mxy(t)

T2
, (3a)

d

dt
Mz(t) = −Mz(t)−M0

T1
. (3b)

It is easy to see that this system of Eqs. (3) has the unique solution

Mxy(t) = e−t (iω0+1/T2)Mxy(tj ) (4a)

Mz(t) = Mz(tj )e
− t

T1 +M0

(
1− e

− t
T1

)
(4b)

for ω0 := γ B0 denoting the Larmor frequency, and Mxy(tj ),Mz(tj ) being the initial
magnetisations at time t = tj ≥ 0.

2.2 Signal Recovery

The key idea to enable spatially resolved nuclear magnetic resonance spectrometry
is to add a magnetic field B̂(t) to the constant magnetic field B0 in z-direction that
varies spatially over time. Then, (3a) changes to
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d

dt
Mxy(t) = −iγ (B0 + B̂(t))Mxy(t)− Mxy(t)

T2
,

which, for initial value Mxy(tj ), has the unique solution

Mxy(t) = e
−iγ

(
B0t+

∫ t
tj

B̂(τ ) dτ
)
e
− t

T2 Mxy(tj ) , (5)

if we ensure B̂(tj ) = 0. If now x(t) denotes the spatial location of a considered
spin isochromat at time t , we can write B̂(t) as B̂(t) = x(t) · g(t), with a vectorial
function g : [0,∞)→ R

3 that describes the influence of the magnetic field gradient
over time.

If a radio-frequency (RF) pulse that has been used to induce magnetisation in
the x-y-plane is subsequently turned off at some time t = t∗ and thus, Bx(t) = 0
and By(t) = 0 for t > t∗ > tj , the same coils that have been used to induce the
RF pulse can be used to measure the x-y magnetisation. Using (4a) and assuming
t∗ < t � T2 for all x ∈ R

3, this gives rise to the following model-equation:

Mxy(t) = e
−iγ

(
B0t+

∫ t
tj

x(τ )·g(τ) dτ
)
Mxy(tj ) . (6)

In the following we assume that x(t) can be approximated reasonably well via
its Taylor approximation around a time t = tj , i.e.

x(t) =
∞∑

n=0

x(n)(tj )

n!
(
t − tj

)n
,

which yields

∫ t

tj

x(s) · g(s) ds =
∞∑

n=0

[
x(n)(tj )

n! ·
∫ t

tj

g(s)
(
s − tj

)n
ds

]

=
∞∑

n=0

[
x(n)(tj )

n! ·
∫ t−tj

0
g(τ + tj ) τn dτ

]
, (7)

for t ≥ tj . It is well-known that appropriate application of gradients (i.e. appropriate
design of g) enables the approximation of individual moments of (7). If we further
assume that the system to be observed does only contain zero- and first-order
moments, we can assume

∫ t

tj

x(s) · g(s) ds = xj ·
∫ t

tj

g(τ + tj ) dτ + ϕj ·
∫ t

tj

g(τ + tj ) τ dτ , (8)
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where xj is now short for x(tj ) and ϕj := x′(tj ) is the corresponding velocity
information.

Equation (8) allows us to turn (6) into a useful mathematical model as we
can encode velocity information and remove the temporal dependency of x. For
notational convenience, we denote

ξj (t) :=
∫ t

tj

g(τ + tj ) dτ and ζj (t) :=
∫ t

tj

g(τ + tj ) τ dτ .

Note that throughout this work we will refer to ζj as the velocity-encoding gradients.
Since the RF-coils measure a volume of the whole x-y net-magnetisation, the

acquired signal then equals

fj (t) =
∫
R3

u(xj ) e−iγ (B0(xj ) t+ϕj ·ζj (t)) e−iγxj ·ξj (t) dxj . (9)

with u(xj ) denoting the spin-proton density Mxy(tj ) at a specific spatial coordinate
xj ∈ R

3. Note that for r(xj ) := u(xj ) e−iγ (B0(xj )t+ϕj ·ζj (t)) we observe that f is
just the Fourier transform of the complex signal r(xj ) with magnitude u(xj ) and
phase −γ (B0(xj )t + ϕj · ζj ).

2.3 Removal of Background Magnetic Field

Our goal is to recover the velocity information ϕ from f . Assuming that we do
not know B0, we can alternatively conduct two experiments, where the setup is
identical apart from the velocity-encoding gradients having opposite polarities, i.e.
we take two measurements with velocity-encoding gradients ζ+j and ζ−j that satisfy

ζ−j = −ζ+j . Dropping the ±-notation for ζj and replacing it with a single ζj , we
measure

f+j (t) =
∫
R3

u(xj ) e−iγ (B0(xj )t+ϕ(xj )·ζj (t)) e−iγxj ·ξj (t) dxj , (10a)

f−j (t) =
∫
R3

u(xj ) e−iγ (B0(xj )t−ϕ(xj )·ζj (t)) e−iγj x·ξj (t) dxj . (10b)

If we define ϕ+j (xj , t) := B0(xj )t + ϕ(xj ) · ζj (t) and ϕ−j (xj , t) := B0(xj )t −
ϕ(xj ) · ζj (t), we immediately observe

ϕ(xj ) · ζj (t) = 1

2

(
ϕ+j (xj , t)− ϕ−j (xj , t)

)
.

The inverse problem of (10) is to recover u(xj ) and ϕj from f+j and f−j .
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2.4 Zero-Flow Experiment

As we are going to focus on applications in chemical engineering, we have the
ability to manipulate our sample and perform additional experiments to correct for
certain artefacts in the acquisition. In particular, a zero-flow experiment is con-
ducted. This experiment is to account for imperfections in the measurement system
which causes an added signal between the positive and negative ζ experiments even
in the absence of flow, and enables a correction that allows direct quantification
of flow and tissue motion. We refer to this technique as flow compensation, which
consists of acquiring a reference scan, with any flow switched-off, with vanishing
zero and first gradient moments, before the actual velocity encoding scan with added
bipolar gradients is performed. In this way, we obtain background phase images
from the reference scan, and velocity sensitivity with the second flow-sensitive scan.
In practice, this means that in addition to (10), the following two measurements are
taken:

f noflow+
j (t) =

∫
R3

u(xj ) e
−iγ ϕnoflow+

j (xj ,t)
e−iγxj ·ξj (t) dxj , (11a)

f noflow−
j (t) =

∫
R3

u(xj ) e
−iγ ϕnoflow−

j (xj ,t)
e−iγxj ·ξj (t) dxj , (11b)

so that the actual velocity information can be recovered via

ϕ(xj ) · ζj (t) = 1

2

((
ϕ+

j
(xj , t)− ϕ−

j
(xj , t)

)
−

(
ϕnoflow+

j (xj , t)− ϕnoflow−
j (xj , t)

))
.

(12)

The inverse problem is to recover u and ϕ from (10) and (11) via (12). More details
on phase-encoded MR velocity imaging can be found in [15].

In other words, for a given direction of the velocity to be measured (x, y

or z), the corresponding component velocity map (ϕx , ϕy or ϕz) is acquired by
applying repeatedly a pulse sequence with the velocity-encoding gradient in the
respective direction (x, y or z) and with alternating polarity between consecutive
pulse sequences. The difference between the phase of the MRI image reconstructed
from the acquired measurements of consecutive pulse sequences, and the reference
to a zero flow experiment, yields the component velocity map.

2.5 Sampling

The discrete MRI signal is acquired by sampling the continuous signals of f+j , f−j ,

f noflow+
j and f noflow−

j at m discrete points in time. Based on the previous model
assumptions, the acquisition of an individual sample reads
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(fj )l :=
∫ tj+1

tj

�(t, t
j
l )

[∫
R3

u(xj ) e−iγ ϕj (xj ,t) e−iγxj ·ξj (t) dxj

]
dt , (13)

for tj ≤ t
j

1 < t
j

2 < . . . < t
j
m ≤ tj+1, between two consecutive times tj

and tj+1 with 0 < tj < tj+1, fj ∈ {f+j , f−j , f
noflow+j , f

noflow−j } and ϕj ∈
{ϕ+j , ϕ−j , ϕnoflow+

j , ϕnoflow−
j }. Here � denotes the sampling function or distribution.

If we for example assume �(t, t
j
l ) = δ(t − t

j
l ), where δ denotes the Dirac delta

distribution, then (13) simplifies to

(fj )l =
∫
R3

u(xj ) e−iγ (ϕj (xj ))l e−iγxj ·(ξj )l dxj , l ∈ {1, . . . , m} , (14)

for

(ξj )l :=
∫ t

j
l

tj

g(τ + tj ) dτ and
(
ϕj (xj )

)
l
:= ϕj (xj , t

j
l ) .

This, together with the relation

ϕ(xj ) · (ζj

)
l
= 1

2

(((
ϕ+j (xj )

)
l
−

(
ϕ−j (xj )

)
l

)
−

((
ϕnoflow+

j (xj )
)

l
−

(
ϕnoflow−

j (xj )
)

l

))

for

(ζj )l :=
∫ t

j
l

tj

g(τ + tj ) τ dτ

is our final acquisition model. We record and store all m measurements in vectors
fj ∈ C

m. For the remainder of this work, we rewrite (14) (in vectorial form) as

fj = SF
(
uj eiϕj

)
, (15)

where SF denotes the (sub-sampled) Fourier transform, fj ∈ C
m denotes the

vector of Fourier-samples, and the space of Fourier samples is commonly referred
to as k-space. Please note that we have fixed γ = 1 to simplify notation, but
different choices of γ can certainly be used. Sampling strategies are very important
to reduce the acquisition times and therefore to be able to image dynamic systems
using velocity-encoded MRI through fast imaging techniques. The main idea is to
exploit redundancy in some specific domain of the measured data. This approach is
strongly related to the theory of compressed sensing (CS) [16–18] and many image
reconstruction techniques have been proposed [11, 13, 19–22].
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Depending on whether γ ξ is sampled on a uniform or non-uniform grid, SF can
be realised via the Fast Fourier Transform (FFT) [23] or via a non-uniform Fourier
Transform such as NUFFT [24].

2.6 Dynamic Inverse Problem

We want to highlight that the index j in (15) suggests that the spin-proton density
u and the velocity ϕ in (15) can be studied over time. To do so, one could take a
sequence of s measurements each, at (initial) times {tj }s−1j=0, for 0 < t1 < t2 <

. . . < ts , so that we have a sequence of measurements {fj }s−1j=0. This way, we
would easily introduce a discrete temporal dimension to our inverse problem that
potentially allows us to exploit any temporal correlation between frames {uj }s−1j=0
and {ϕj }s−1j=0. In this work, however, we will only consider the reconstruction of
individual frames for reasons that we are going to address later.

In the following, we will only consider an individual frame of the dynamic
inverse problem for velocity-encoded MRI in the discrete setting and under the
presence of noise, making use of the notation of the discrete Fourier transform
operator SF .

3 Mathematical Modelling

In this section we first present the velocity-encoded MRI reconstruction inverse
problem in the presence of noise and discuss a sequential variational regularisation
scheme to approximate the solution. Secondly, we introduce our joint reconstruction
and segmentation approach in a Bregman iteration framework to jointly estimate
phase, magnitude and segmentation.

3.1 Indirect Phase-Encoded MR Velocity Imaging

The velocity-encoded MRI image reconstruction problem is described as follows.
Let u, ϕ ∈ R

n be the proton density or magnitude image and correspondent phase
image, respectively, in a discretised image domain 
 := {1, . . . , n1} × {1, . . . , n2},
with n = n1n2. The vector f = (fl)

m
l=1 ∈ C

m with m� n are the measured Fourier
coefficients obtained from (15). Based on (15) the forward model for noisy data is
given by

f = SF
(
ueiϕ

)
+ η , (16)
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where η is Gaussian noise with zero mean and standard deviation σ . For brevity
we will follow the notation A = SF . As explained in the previous section, velocity
information is encoded in the phase image. However, during the acquisition the
phase is perturbed by an error due to field inhomogeneity and chemical shift. To
account for this error, usually different measurements corresponding to different
polarities of encoding flow gradients are acquired. Then the velocity (in one
direction) at one particular time will be estimated as in (12), where ζ is a constant
known from the acquisition setting.

Given the presence of noise and partial observation of the data due to under-
sampling, the problem described in (16) is ill-posed. A simple strategy to obtain an
approximated solution is to replace with zero the missing Fourier coefficients and
compute the so-called zero-filling solution

rz = A∗f (17)

where r = ueiϕ . However, these reconstructed images will contain aliasing artefacts
because of the undersampling. A classical approach to solve this problem is to
compute approximate solutions of (16) using a variational regularisation approach.
We consider a Tikhonov-type regularisation approach that reads

rj ∈ arg min
r

{1
2
‖Ajr − fj‖22 + αJ (r)

}
, (18)

for j ∈ {1, . . . , 4} being the different measurements, where the first term is the
data fidelity that imposes consistency between the reconstruction and the given
measurements f , the second term is the regularisation, which incorporates some
prior knowledge of the solution. The parameter α > 0 is a regularisation parameter
that balances the two terms in the variational scheme. In this setting, the survey
proposed in [25] describes different choices for the regularisation functional J ,
including wavelets and higher-order total variation (TV) schemes. Subsequently,
the phases can be extracted from these complex images rj = uj eiϕj as

ϕj = arg(rj ). (19)

More recently, other reconstruction approaches have been proposed to regularise
the phase of the image [26–30]. All these methods rely on modelling separately prior
knowledge on the magnitude and on phase images and differ on the optimisation
schemes involved in the non-convex and non-linear problem. However, while it
is possible to exploit information about the velocity from fluid mechanics, it
is in general hard to assume specific knowledge on the individual phases. As
explained in the previous section and described in (12), velocities are computed
as phase differences of different MR measurements and therefore the regularisation
needs to be imposed on the phase difference rather than individual phases. In this
work, we step away from the approach of only regularising individual phases and
propose instead to regularise the velocity as difference of phases. In the following
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we describe our choice of regularisation and algorithmic framework for velocity-
encoded MRI.

3.2 Joint Variational Model

In many industrial applications, velocity-encoded MRI is used to estimate flow of
different chemical species in different physical status, such as gas-liquid systems
[31]. In this case, one aims at recovering a piecewise constant image or an image
with sharp edges to facilitate further analysis such as identification of regions
of interest. It was proposed in [14] to use a segmentation task as additional
regularisation on the reconstruction to impose regularity in terms of sharp edges.
It was shown there that this is highly beneficial for very low undersampling rates in
MRI. In this work, we expand this idea to the phase-encoded MR velocity imaging
data, where the idea is to jointly solve for magnitude, segmentation and phase
improving performances on the three tasks.

Following the work in [14], we are interested in the joint model to recover
magnitude uj and velocity ϕ components through the measured phases ϕj from
undersampled MRI data fj and to estimate a segmentation vj on the magnitude
images. As described in the previous section, we are dealing with four MRI
measurements to obtain one component velocity image. Defining the shorthand
notations u := {uj }4j=1, v := {vj }4j=1 and ϕ := {ϕj }4j=1, this joint model reads
as

E(u, v, ϕ) =
4∑

j=1

{
1

2
‖A(uj eiϕj )− fj‖22︸ ︷︷ ︸

reconstruction

+ δ
∑

n

vnj (c1 − unj )2 + (1− vnj )(c2 − unj )2
}

︸ ︷︷ ︸
segmentation

.

(20)

The first term in (20) describes the reconstruction fidelity term for the magnitudes u

and phases ϕ for the given data f := {fj }4j=1. Note that we now write 1, . . . , 4,
instead of +, −, noflow+, noflow− for simplicity in the notation. The second
term represents the segmentation problem to find partitions v, with vnj ∈ [0, 1],
of the images u in two disjoint regions that have mean intensity values close to the
constants c1 and c2 [32, 33]. Note that in our experiments we solve the problems
for fixed constants leveraging on the prior knowledge that air appears dark and
water bright. However, it is also possible to minimise over c1 and c2, fixing the
other variables, yielding to a simple update as the average intensity of the image
inside the segmented region. The parameter δ weighs the effect of the segmentation
onto the reconstruction. The underlying idea is to exploit structure and redundancy
in the data, estimating edges simultaneously from the data, ultimately improving
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the reconstruction. By incorporating prior knowledge of the regions of interest we
impose additional regularity of the solution.

The joint cost function (20) is non-convex. While sub-problems in u and v

(leaving the other parameters fixed) are convex, the sub-problems in ϕ are non-
linear and non-convex. In the next section we present a unified framework based on
non-convex Bregman iterations to solve the joint model.

4 Optimisation

There are many ways of minimising (20). We want to pursue a strategy that
guarantees smooth velocity-components, piecewise-constant segmentations and
magnitude images with sharp transitions in an inverse scale-space fashion. In
order to achieve those features, we aim to approximate minimisers of (20) via an
alternating Bregman proximal method or Bregman iteration of the form

uk+1
l ∈ arg min

u

{
E(uk+1

1 , . . . , uk+1
l−1 , u, uk

l+1, . . . , uk
d , vk, ϕk)+D

pk
l

Ju
(u, uk

l )

}
,

(21a)

pk+1
l = pk

l −
∂

∂ul

E(uk+1
1 , . . . , uk+1

l−1 , uk+1
l , uk

l+1, . . . , uk
d , vk, ϕk) , (21b)

vk+1
l ∈ arg min

v

{
E(uk+1, vk+1

1 , . . . , vk+1
l−1 , v, vk

l+1, . . . , vk
d , ϕk)+D

qk
l

Jv
(v, vk

l )

}
,

(21c)

qk+1
l = qk

l −
∂

∂vl

E(uk+1, vk+1
1 , . . . , vk+1

l−1 , vk+1
l , vk

l+1, . . . , vk
d , ϕk) , (21d)

ϕk+1 ∈ arg min
ϕ

{
〈∂ϕE(uk+1, vk+1, ϕk), ϕ〉 +Dwk

Jϕ
(ϕ, ϕk)

}
, (21e)

wk+1 = wk − ∂

∂ϕ
E(uk+1, vk+1, ϕk+1) . (21f)

for l = 1, . . . , d := 4, u := (ul)
d
l=1, v := (vl)

d
l=1 and ϕ := (ϕl)

d
l=1.

Here Ju, Jv and Jϕ are proper, lower semi-continuous and convex functions and

D
pk

l

Ju
(u, uk

l ),D
qk
l

Jv
(v, vk

l ) andDwk

Jϕ
(ϕ, ϕk) are the corresponding generalised Bregman

distances [34, 35] with arguments and corresponding subgradients pk
l , qk

l and wk .
A generalised Bregman distance is the distance between a function J evaluated at
argument u and its linearisation around argument v, i.e.

D
q
J (u, v) = J (u)− J (v)− 〈q, u− v〉 ,
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for a subgradient q ∈ ∂J (v). Note that algorithm (21) has update rules for the
subgradients, as Ju, Jv and Jϕ are allowed to be non-smooth, which makes the
selection of particular subgradients necessary. Note that the chosen update formulas
guarantee that pk+1

l , qk+1
l and wk+1 are valid subgradients again.

The algorithm is a hybrid of the algorithms proposed in [36] and [14]. For both
algorithms global convergence results, motivated by Xu and Yin [37] and Bolte et
al. [38], have been established. Convergence for (21) is out of the scope of this
paper as we focus on the application of velocity-encoded MRI, and thus has not
been proven here. However, we are confident that convergence can be derived under
suitable assumptions following the analysis in [36] and [14].

Since we deal with imperfect data potentially corrupted by measurement noise
and numerical errors, we will use (21) in combination with an early-stopping
criterion in order not to converge to a minimiser of (20) but to approximate the
solution of (16) via iterative regularisation.

The crucial part for the application of (21) are the choices of the underlying
functions Ju, Jv and Jϕ of the corresponding Bregman distances. We want both
the magnitude images and the segmentations to maintain sharp discontinuities and
therefore want to penalise their discretised, isotropic, total variation. On the other
hand, we want to guarantee smooth components of our velocity field, which is why
we penalise them with the two-norm of a discretised gradient. In particular, we
choose

Ju(u) = α TV(u) := α‖|∇u|‖1 , Jv(v) := β TV(v), (22)

to be the isotropic total variation with weights α > 0 and β > 0, where ∇ :
R

n → R
2n denotes a forward finite-difference approximation of the gradient, | · |

the Euclidean vector norm and ‖ · ‖1 the pixel-wise one-norm. Further, we choose
Jϕ in a way that allows to enable an H 1-norm-type smoothing on the difference of
the phases, i.e.

Jϕk + 1(ϕ) = 1

2τ

(
η‖|∇ ((ϕ1 − ϕ2)− (ϕ3 − ϕ4)) |‖2 +

d∑
l=1
‖ϕl‖2

)
,

where η > 0 and τ > 0 denote some weights. In the first term, we penalise the
difference of the 4 measurements introduced in Sects. 2.3 and 2.4 to impose that
our actual velocity component is smooth. The additional 2-norm penalisation is
introduced to ensure that problem (21e) is coercive and therefore a solution to (21e)
exists. Note that all convex sub-optimisation-problems in (21) are solved numeri-
cally with a primal-dual hybrid gradient (PDHG) method [39–42]. Once we have
approximated the magnitudes, labels and phases with this iterative regularisation
strategy, we can compute the velocity components via (12).
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5 Numerical Results

In this section we present numerical results of our method for the specific applica-
tion of bubble burst hydrodynamics using MR velocimetry. The hydrodynamics of
bursting bubbles is important in many different areas such as geophysical processes
and bioreactor design. We refer to [43] for an overview on the field and the
description of results on the first experimental measurement of the liquid velocity
field map during the burst of a bubble at the liquid surface interface.

5.1 Case-Study on Simulated Dataset

To quantitatively evaluate our method, we consider the simulated k-space data of a
rising spherical bubble in an infinite fluid during Stokes flow regime. The simulated
data consists of 32 time frames, but for the sake of compactness we will show some
visual outputs for one time step t = 19.

We assess the performance of our approach for velocity and magnitude estima-
tion by comparing our solutions with respect to the groundtruth and using the mean
squared error (MSE) defined as ‖xgroundtruth − x‖22/n, where n is the number of
pixels in the image.

We also present a comparison with a sequential approach, where the magnitude
is obtained with a classic CS TV-regularised approach and the phase is subsequently
estimated using the method proposed in [36] and presented in [43] for the evaluation
of bubbly flow estimation.

In Fig. 1 we can see the results for the sequential approach compared to the joint
approach when sampling only 11% of the k-space data. Although visually there is
not significant change, the MSE shows a big improvement for the joint approach.
This confirms that using our joint model is relevant for the problem of velocity-
encoded MRI. For the 32 frames, we report the average MSE for magnitude and
phase in Table 1 where can see a drastic improvement compared to the sequential
approach.

The parameters used in these experiments were set as follows: α = 1, β = 0.1,
δ = 1, c1 = 0.9, c2 = 0.1, τ = 1.9, and η = 0.5.

5.2 Real Dataset

In this section we present our model performance on real data acquired with the
following protocol described in [43] and briefly reported here.

Acquisition Protocol
The experiments were conducted on an AV-400 Bruker magnet, operating at a
resonant frequency of 400.25MHz for 1H observation with an RF coil of 25mm
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1 Phase reconstructions for the sequential approach and our joint approach compared to the
ground truth. Top row: x direction, middle row: z direction, bottom row: velocity plots. We sampled
11% of the k-space data. (a) Groundtruth. (b) Sequential MSE = 0.0030. (c) Joint MSE = 0.0020.
(d) Groundtruth. (e) Sequential MSE = 0.0046. (f) Joint MSE = 0.0035. (g) Groundtruth. (h)
Sequential. (i) Joint

Table 1 MSE for phase (ϕ1 and ϕ2) and magnitude (u1 and u2) images for the sequential and
joint approaches. The error is significantly decreased using our proposed joint approach

u1 u2 ϕ1 ϕ2

Sequential 0.0019 0.0028 0.0032 0.0059

Joint 0.0011 0.0012 0.0018 0.0051

diameter. The maximum magnetic field gradient amplitude available in each spatial
direction is 146Gcm−1. The velocity images were acquired with a 2D MR spiral
imaging technique developed and published in [44]. Images were acquired with
64 × 64 pixels over a field of view of 17× 17mm resulting in an image resolution
of 265 × 265mm, over a slice thickness of 150µm. Data in k-space were acquired
along a spiral trajectory at a sampling rate corresponding to 25% of full Nyquist
sampling over a time of 2.05ms for the entire image.
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Fig. 2 (a) Schematic of experimental setup. (b) Pulse sequence used for MR velocimetry
acquisitions and the corresponding k-space traversal. Taken from [43]

We acquire the three velocity components for a transverse slice (perpendicular
to the axis of the pipe) and a longitudinal slice (parallel to the axis of the pipe),
cutting through approximately the centre of the bubble. For a given slice direction
(transverse or longitudinal) and a given direction of the velocity, four measurements
corresponding to the application of the velocity-encoding gradient with alternating
polarity and to the flow compensation, are taken, as discussed in Sect. 2 (see
Fig. 2b). The final velocity for each component is then obtained as the difference
between the phase of the MRI images reconstructed from the acquired k-space data
of consecutive pulse sequences with flow on, and the reference to the zero flow
experiment (see Sects. 2.3 and 2.4, respectively).

Experimental Results on Real Data
We now present the results for our joint model in comparison with the zero-filling
solution and the corresponding sequential approach for real data acquired with the
protocol described above. In Fig. 3 we show the result for a specific time frame for
a bubble in a transversal and longitudinal view. At this specific time, the bubble
is bursting which corresponds to an upward jet being ejected. As we can see, the
zero-filling solution gives an indication of the flow velocity but it is very noisy and
imprecise. In contrast, the joint approach removes noise and successfully estimates
the velocity flow. The sequential approach on the other hand, although it produces a
smoother reconstruction, results in small errors (see e.g. Fig. 3e on the left). In Fig. 6
we observe similar results for a different time frame. We refer to the Appendix for
the full dynamic sequence result.

We also present the results for the magnitude and segmentation for the zero-
filling solution, sequential approach and joint approach. We can see in Figs. 4 and 5
that the joint approach exploits the structure in the data and presents more accurate
magnitude reconstructions and segmentations. It is clear that, even in this rather
simple segmentation problem, the joint approach is able to improve the results of
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Phase reconstructions for the sequential approach and our joint approach compared to
the zero-filling solution. Results for a bursting bubble from a transversal view (top row) and
longitudinal view (bottom row). (a) Zero-filled. (b) Sequential. (c) Joint. (d) Zero-filled. (e)
Sequential. (f) Joint

both tasks. This gain is significant in Fig. 5f. Additionally, the joint magnitudes
present very sharp edges distinguishing air and fluid thanks to the segmentation
coupling term in the model, which acts as additional prior to reconstruct images
exploiting prior knowledge on the region of interest. The parameters used in these
experiments were set as follows: α = 0.08, β = 0.1, δ = 3, c1 = 0.9, c2 = 0.1,
τ = 1.9, η = 1 (Fig. 6).

6 Conclusion and Outlook

In this work we have presented a joint framework for flow estimation, magnitude
reconstruction and segmentation from undersampled velocity-encoded MRI data.
After having described the corresponding dynamic inverse problem, we have
presented a joint variational model based on a non-convex Bregman iteration. We
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Fig. 4 Magnitude reconstructions (top row) and corresponding segmentations (bottom row) for
the sequential approach and our joint approach compared to the zero-filling solution. Transversal
view. (a) Zero-filled. (b) Sequential. (c) Joint. (d) Zero-filled. (e) Sequential. (f) Joint

have demonstrated that by imposing regularity on the individual components (in
contrast to the sequential approach), our joint method achieves accurate estimations
of the velocities, as well as an enhanced magnitude reconstruction with sharp edges,
thanks to the joint segmentation. Furthermore, we assessed the performance of our
joint approach on synthetic and real data. In this context, we have shown that the
joint model improves the performances of the different imaging tasks compared to
the classical sequential approaches.

Future work includes the investigation of the full joint temporal and spatial opti-
misation. By extending the model to the full 4D setting, we believe the performance
will be enhanced further, as temporal correlation e.g. in the segmentation can be
exploited. The current limitation is the lack of such 4D dataset. Indeed, as described
in the acquisition protocol, the velocity data was acquired separately for each spatial
component to speed up the acquisition.
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Fig. 5 Magnitude reconstructions (top row) and corresponding segmentations (bottom row) for
the sequential approach and our joint approach compared to the zero-filling solution. Longitudinal
view. (a) Zero-filled. (b) Sequential. (c) Joint. (d) Zero-filled. (e) Sequential. (f) Joint
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Appendix 1: Details of Our Algorithm for Velocity-Encoded
MRI

In this section, we write our proposed general algorithm (21) for the specific
problem of joint velocity-encodedMRI reconstruction and magnitude segmentation.
The algorithm for one measurement reads as



20 V. Corona et al.

(a) (b) (c)

(d) (e) (f)

Fig. 6 Phase reconstructions for the sequential approach and our joint approach compared to the
zero-filling solution. Top row: transversal view. Bottom row: longitudinal view. (a) Zero-filled. (b)
Sequential. (c) Joint. (d) Zero-filled. (e) Sequential. (f) Joint

uk+1 = arg min
u

{
1

2
‖A(ueiϕk

)− f ‖22 +D
pk

Ju
(u, uk)

+δ
∑

n

vk
n(c1 − un)2 + (1− vk

n)(c2 − un)2

}

pk+1 = pk −
(
Re

(
eiϕk

(A∗(A(uk+1eiϕk

)− f ))
)

+2δ
(
vk

n(uk+1
n − c1)+ (1− vk

n)(uk+1
n − c2)

))

vk+1 = arg min
v

{
δ
∑

n

vn(c1 − uk+1
n )2 + (1− vn)(c2 − uk+1

n )2 +D
qk

Jv
(v, vk)

}

qk+1 = qk − δ
(
(c1 − uk+1

n )2 − (c2 − uk+1
n )2

)

ϕk+1 = arg min
ϕ

{
τ

〈
ϕ − ϕk,Re

(
eiϕk

A∗(A(uk+1eiϕk

)− f )
)〉
+Drk

Jϕ
(ϕ, ϕk)

}

rk+1 = rk − Re
(
eiϕk+1

A∗(A(uk+1eiϕk+1
)− f )

)



Joint Phase Reconstruction and Magnitude Segmentation 21

The individual subproblems are solved in an alternating fashion by fixing the
remaining variables. The optimisation for subproblems in u and in v is described
in [14], with the minor modification of the phase ϕ, which remains fixed. The
subproblem in ϕ is solved using the code in [45], again with minor modifications to
include our regularisation functions and 4 raw measurements instead of 2.

Appendix 2: Further Numerical Results

In this section we show the full dynamic sequence of a bubble burst event. At time
t = 1 the bubble resting at the air-liquid interface. When the thin liquid film breaks,
the bubble burst, causing the formation of an upward and downward jet. The upward
jet moves in the empty space left by the bubble and reached its maximum at t = 4.
After that, the jet falls down into the liquid pool, causing a downward jet and some
oscillation. At around t = 8 the liquid motion stops (Figs. 7 and 8).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7 Full time sequence. Longitudinal view. The bubble burst event sees the bubble resting at the
interface between liquid and air, before this film is finally broken. The bursting causes an upward
jet that moves the liquid at its highest position at t = 4. Subsequently, the jet drops into a downward
jet, causing oscillation in the liquid, until it finally dies out at t = 8. (a) t = 1. (b) t = 2. (c) t = 3.
(d) t = 4. (e) t = 5. (f) t = 6. (g) t = 7. (h) t = 8
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8 Full time sequence. Transversal view through the middle of the bubble. We can see the
bubble burst event and the upward/inward jet caused by the empty space left by the bubble.
Subsequently, the jet falls down into the liquid pool causing a downward/outward jet, until it dies
out at t = 8. (a) t = 1. (b) t = 2. (c) t = 3. (d) t = 4. (e) t = 5. (f) t = 6. (g) t = 7. (h) t = 8
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Dynamic Inverse Problems for the
Acoustic Wave Equation

Thies Gerken

Abstract We consider the identification of a time- and space dependent wave speed
and mass density based on the knowledge of the wave field. The wave propagation
is modeled by the acoustic wave equation. By making use of an abstract framework
for parameter reconstruction in hyperbolic partial differential equations, we are
able to obtain a well-defined forward operator. Furthermore, we prove the Fréchet-
differentiability of this forward operator and the local ill-posedness of the inverse
problems. In order to facilitate the application of regularization schemes, we also
calculate the necessary adjoint operators. The theoretical considerations are com-
plemented by a numerical demonstration of the inversion using the regularization
method CG-REGINN in two- and three-dimensional settings. There we present the
numerically obtained convergence rates and show that even in this time-dependent
setting one can obtain good reconstructions with reasonable computational effort.

1 Introduction

In this article we will consider dynamic inverse-coefficient problems for the acoustic
wave equation. For a wave speed c and mass density ρ that do not depend on time,
a variant of this equation reads

1

c(x)2ρ(x)
u′′(t, x)− div

∇u(t, x)

ρ(x)
= f (t, x) (1)

and serves (together with suitable initial—and boundary conditions) as a simple
model for the propagation of acoustic waves in fluids [4, 7–9] and also seismic
waves [10, 13]. In these cases the unknown u in the equation above is called the
acoustic pressure.
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The identification of time- and space dependent coefficients in hyperbolic
equations is a new topic of research. It poses several new difficulties compared to
the static case, which can be analyzed using the frameworks [3, 11]. On the one
hand, the dynamic case involves a more complicated theory to even obtain a well-
defined forward model. On the other hand, one has to deal with a lot more degrees
of freedom in numerical simulations. From a modeling point of view it is not even
clear, whether it is advisable to also employ the partial differential equation (1) for
dynamic wave speed and mass density. The position of static parameters c, ρ in
relation to the time derivatives can be changed without changing the equation, but
for time-dependent parameters this is obviously not the case. The variant we chose
for this work is the equation

1

ρ(t, x)

d

dt

(
1

c(t, x)2
u′(t, x)

)
− div

∇u(t, x)

ρ(t, x)
= f (t, x). (2)

which gives rise to the dynamic inverse problems of finding the time- and space-
dependent coefficients c or ρ from the solution of this equation. Note that other
positions of c and ρ in the equation in relation to the time derivatives yield almost
the same theoretical results. The same holds if one wants to include additional zero-
and first-order terms qu, νu′ with functions q, ν that are also to be identified.

Our theoretical analysis is based on the framework presented in [5], which deals
with the inverse problem of finding the operators A, B and C from the solution u of
the evolution equation

d

dt
C(t)u′(t)+ B(t)u′(t)+ A(t)u(t) = f (t),

to be solved for almost all t that belong to some bounded time domain I . In
particular, it deals with the well-posedness and Fréchet-differentiability of the
forward operator that maps these operators onto u. Note that we do not assume
that the reader is familiar with the abstract theory of [5]. We will briefly present the
required results (omitting the proofs) before using them.

In order to apply the abstract framework we first have to restate the acoustic wave
equation as an evolution equation, which we carry out in Sect. 2 and also have to set
up a value operator that maps the two unknown parameters onto the operators A,
B and C. This operator can then be composed with the forward operator from the
general theory. This also allows showing Fréchet-differentiability of the parameter-
to-solution map in the subsequent Sect. 3, where we further give a characterization
of the adjoint of this derivative. We conclude the theoretical analysis by proving
the ill-posedness of the corresponding inverse problems in Sect. 4. The theoretical
considerations will then be put to practical use in Sect. 5, where we discretize (2)
and tackle the numerical reconstruction of the parameters c and ρ using a Newton-
approach.
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2 Construction of the Forward Operator

Let n ∈ N, 
 ⊂ R
n a bounded domain and I = [0, T ] for some T > 0. We

concentrate on the initial boundary value problem

1

ρ

(
1

c2
u′

)′
− div

∇u

ρ
= f in I ×
, (3a)

u(0) = (
c−2ρ−1u′

)
(0) = 0 in 
, (3b)

u = 0 on I × ∂
. (3c)

The wave field u, the right-hand side f and the two unknown coefficients c and ρ

are assumed to be real functions on I × 
. The formulation of the second initial
condition in (3b) keeps in mind that the weak solution to (3) might not yield a well-
defined u′(0). However, if the solution u and the coefficients are regular enough,
then the solution will of course equivalently satisfy u′(0) = 0.

Due to the presence of ρ−1 outside of the time derivatives in the leading term
this problem does not immediately yield an evolution equation of the form (Cu′)′ +
Bu′ +Au = f . We can reformulate the equation by observing that

1

ρ

(
1

c2
u′

)′
=

(
1

ρc2
u′

)′
− ρ′

ρ2c2
u′,

at least as long as c−2u′ is weakly differentiable in time. Hence, we simply
replace (3) by

(
1

ρc2
u′

)′
+

(
ρ′

ρ2c2

)
u′ − div

∇u

ρ
= f in I ×
, (4a)

u(0) = (
c−2ρ−1u′

)
(0) = 0 in 
, (4b)

u = 0 on I × ∂
 (4c)

and base our analysis on this restated problem. The regularity results of [6] can then
be used a-posteriori to conclude that a weak solution of (4) also weakly solves the
original problem (3a).

Due to the boundary conditions, the suitable function space for u(t) is H 1
0 (
).

By identifying the dual space of L2(
) with itself, we obtain the Gelfand triple

H 1
0 (
) ⊂ L2(
) ⊂ H−1(
).

This relation implies that we regard every function belonging to H 1
0 (
) as an

element of H−1(
) through the inner product of L2(
). To ease notation, we will
sometimes omit the “(
)” part for Lebesgue- or Sobolev spaces connected to the
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domain 
 whenever the expressions tend to become unwieldy, for example when
they appear in Bochner spaces.

The weak formulation of (4) is immediately obtained by integrating over the
domain and then formally integrating by parts and reads

d

dt

(
Cc,ρ(t)u′(t), ϕ

)+ (
Bc,ρ(t)u′(t), ϕ

)+ 〈
Aρ(t)u(t), ϕ

〉 = 〈f (t), ϕ〉 (5)

for all ϕ ∈ H 1
0 (
), which in turn should be fulfilled for almost all t ∈ I . We seek a

solution u ∈ L2(I ;H 1
0 (
)) ∩ H 1(I ;L2(
)) that additionally adheres to the initial

conditions u(0) = 0 (as an equality in L2(
)) and
(
Cc,ρu′

)
(0) = 0 (holding in

H−1(
)). We denote with (·, ·) the inner product of L2(
) and with 〈·, ·〉 the dual
pairing of H−1(
) and H 1

0 (
). The operators that appear in the weak formulation
are defined for t ∈ I , ϕ, ψ ∈ H 1

0 (
) and v ∈ L2(
) by

〈
Aρ(t)ψ, ϕ

〉
:=

∫



∇ψ(x) · ∇ϕ(x)

ρ(t, x)
dx, Cc,ρ(t)v := 1

ρ(t)c(t)2
v,

and Bc,ρ(t)v := ρ′(t)
ρ(t)2c(t)2

v.

With “·” we denote the usual inner product of Rn. By making use of distributional
derivatives we can also write Aρ(t)ψ = − div

(
ρ(t)−1∇ψ

) ∈ H 1
0 (
), which avoids

the appearance of the test function ϕ. Furthermore, we make use of calligraphic font
for the pointwise application of the operators to a time-dependent function, e.g.Aρ

is defined as

Aρ ∈ L
(
L2(I ;H 1

0 (
)), L∞(I ;H−1(
))
)
, (Aρv)(t) := Aρ(t)v(t).

With this notation, the weak formulation (5), joined with the homogeneous initial
conditions (4b), is equivalent to the evolution problem

(Cc,ρu′)′ + Bc,ρu′ +Aρu = f in L2(I ;H−1(
)), (6a)

u(0) = 0 and (Cc,ρu′)(0) = 0. (6b)

The forward operator to our inverse problems reads

F(c, ρ) := u,

where u solves (6). It can be decomposed into F = S ◦P , with the “value operator”

P(c, ρ) := (Aρ, Bc,ρ, Cc,ρ), (7)
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which maps the two parameters to the operators that appear in (6), and the solution
operator S, which then maps these operators to the solution u of (6).

The operator S has already been thoroughly analyzed in [5]. We will now
briefly present the relevant well-posedness result, adapted to the setting at hand.
Unsurprisingly, the operators A and C need to be self-adjoint and coercive. These
restrictions are captured in the sets

Lsa(Z, Z∗) := {
G ∈ L(Z, Z∗)

∣∣ G∗ = G
}
,

Lsa
α (Z, Z∗) := {

G ∈ Lsa(Z, Z∗)
∣∣ 〈Gz, z〉 ≥ α‖z‖2Z for all z ∈ Z

}
,

which make sense for α ≥ 0 and any Hilbert space Z. In these definitions we
identify Z∗∗ with Z, i.e. both G and G∗ belong to L(Z, Z∗). Because we also
identify the dual space of L2(
) with the space itself, this also gives rise to
Lsa(L2(
)).

For every “degree of regularity” k ∈ N0 := N∪ {0}, we would like to regard S as
an operator between the two Banach spaces

X(k) := Wk+1,∞(
I ; Lsa(H 1

0 (
), H−1(
)
))×Wk1,∞(

I ; L(
L2(
)

))

×Wk+1,∞(
I ; Lsa(L2(
)

))

and Y (k) := Wk,∞(
I ; H 1

0 (
)
) ∩Wk+1,∞(

I ; L2(
)
)

with k1 := max{k, 1}. In order to ensure the coercivity, we define the domain of
definition of S to be

D(S) :=
{

(A, B, C) ∈ X(0)
∣∣∣ A(t) ∈ Lsa

A0+ε

(
H 1

0 (
), H−1(
)
)
and

C(t) ∈ Lsa
C0+ε

(
L2(
)

)
for almost all t ∈ I for some ε > 0

}
.

Indeed, if the right-hand side f belongs to

F(k) :=
{

f ∈ Hk(I ;L2(
)) ∪Hk+1(I ;H−1(
))

∣∣∣ f (k−1)(0) ∈ L2(
) if k ≥ 1

and f (j)(0) = 0 for all j = 0, . . . , k − 2 if k ≥ 2
}
,

then the abstract framework proves that

S : D(S) ∩X(k) → Y (k), (A, B, C) �→ u

is well-defined. Note that D(S) ∩X(k) is an open subset of X(k).
In order to formally set up our forward operator F , we are left to find a

domain of definition for P as defined in (7) such that its image is a subset of
D(S) ∩ X(k). Clearly, differentiability of the parameters (c, ρ) directly translates
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to differentiability of P(c, ρ) with respect to time. To ensure that Aρ(t) and Cc,ρ(t)

are well-defined we assume that ρ(t, x) ≥ ρ0 > 0 and c(t, x) ≥ c0 > 0 hold for
almost all (t, x) ∈ I ×
. Both operators are self-adjoint; regarding their coercivity
we observe that if ρ(t, x) ≤ ρ1 < ∞ and c(t, x) ≤ c1 < ∞ for almost all
(t, x) ∈ I ×
, then

(
Cc,ρ(t)v, v

) =
∫




v(x)2

ρ(t, x)c(t, x)2
dx ≥ ρ−11 c−21 ‖v‖2L2(
)

holds for all v ∈ L2(
). Since 
 is bounded, it provides a Poincaré inequality of
the form ‖ψ‖H 1

0 (
) ≤ Cp‖∇ψ‖L2(
;Rn) with a constant Cp > 0. Hence,

〈
Aρ(t)ψ, ψ

〉 =
∫




|∇ψ(x)|2
ρ(t, x)

dx ≥ ρ−11 C−2p ‖ψ‖2H 1
0 (
)

is valid for all ψ ∈ H 1
0 (
). Let the constants ρ0, ρ1, c0 and c1 be fixed in the sequel.

The previous considerations motivate the definitions

W(k) := Wk+1,∞ (
I ;L∞(
)

)×Wk+1,∞ (
I ;L∞(
)

)
(8)

D(P ) :=
{

(c, ρ) ∈ W(0)
∣∣∣ ρ0 + ε ≤ ρ ≤ ρ1 − ε and

c0 + ε ≤ c ≤ c1 − ε a.e. in I ×
 for a ε > 0
}
,

(9)

because in this way we obtain a well-defined

P : D(P ) ∩W(k) → D(S) ∩X(k), (c, ρ) �→ (Aρ, Bc,ρ, Cc,ρ).

For this we set the constants in D(S) to be C0 := ρ−11 c−21 and A0 := ρ−11 C−2p .

Moreover, D(P ) ∩W(k) forms an open subset of W(k) for all k ∈ N0.
The forward operator F = S ◦ P can then be viewed as

F : D(F) ∩W(k) → Y (k),

(c, ρ) �→ u

with k ∈ N0, D(F) := D(P ), and the weak solution u of the “re-stated”
problem (4).
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3 Fréchet-Differentiability

We depend on differentiability of F for its numerical inversion using Newton-based
methods. The forward operator is comprised of the operators P and S, and the
differentiability of S has already been discussed in [5]. Thus, we mainly need to
establish differentiability of the value operator P .

The parameters c and ρ enter into P only by their reciprocal values. Knowing
that these are also differentiable is enough to define P , but to prove that P is Fréchet-
differentiable (or just continuous) with respect to the norm of X(k), we depend on
norm estimates for derivatives of such reciprocal functions. Estimates for derivatives
of arbitrary order are given by the following formula.

Lemma 1 Let m ∈ N, g0 > 0 and g ∈ Wm,∞(I ) with g(t) ≥ g0 > 0 almost
everywhere. Then

∥∥∥∥
1

g

∥∥∥∥
Wm,∞(I )

≤ M
(
1+ g−10

)m+1(
1+ ‖g‖Wm,∞(I )

)m

holds, where M > 0 is a constant that only depends on m.

Keeping this lemma in mind, we can turn to proving differentiability of P .

Theorem 1 Let k ∈ N0. The map P : D(P ) ∩ W(k) → X(k) is Fréchet-
differentiable, and its derivative ∂P : D(P )∩W(k) → L

(
W(k), X(k)

)
, evaluated at

(c, ρ) ∈ D(P ) ∩W(k) and (c̄, ρ̄) ∈ W(k) is given by

∂P (c, ρ)[c̄, ρ̄] =
⎛
⎝

∂Aρ[ρ̄]
∂Bc,ρ[c̄, ρ̄]
∂Cc,ρ[c̄, ρ̄]

⎞
⎠

= t �→

⎛
⎜⎜⎜⎜⎜⎜⎝

ϕ ∈ H 1
0 �→ div

(
ρ̄(t)

ρ(t)2
∇ϕ

)

v ∈ L2 �→
(

ρ̄′(t)
ρ(t)2c(t)2

− 2ρ′(t)ρ̄(t)

ρ(t)3c(t)2
− 2ρ′(t)c̄(t)

ρ(t)2c(t)3

)
v

v ∈ L2 �→ −
(

ρ̄(t)

ρ(t)2c(t)2
+ 2c̄(t)

ρ(t)c(t)3

)
v

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Moreover, ∂P : D(P ) ∩W(k) → L
(
W(k), X(k)

)
is continuous.

Proof The image of P consists of finitely many components, therefore it is enough
to look at each component on its own. The proposed candidates for the derivatives
of each of the operators A, B, and C with respect to the parameters can be obtained
by formally treating them as if they were ordinary rational functions with scalar
arguments c and ρ; for B we only have to note that differentiation in time is a linear
operator. The linearity of the resulting operators is obvious, and their boundedness
is also easy to see: For instance, time derivatives of ∂Aρ[ρ̄] of order i = 0, . . . , k+1
can be bounded by
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∣∣∣
〈(

∂Aρ[ρ̄]
)(i)

(t)ϕ, ψ
〉∣∣∣ ≤

∫



∣∣∣∣
(
ρ̄/ρ2

)(i)

(t)

∣∣∣∣ |∇ϕ · ∇ψ | dx

≤
∥∥∥∥
(
ρ̄/ρ2

)(i)

(t)

∥∥∥∥
L∞(
)

‖ϕ‖H 1
0 (
)‖ψ‖H 1

0 (
)

≤ 2i‖ρ̄‖Wi,∞(I,L∞(
))

∥∥∥ρ−2
∥∥∥

Wi,∞(I,L∞(
))
‖ϕ‖H 1

0 (
)‖ψ‖H 1
0 (
)

by making use of the Leibniz rule. To conclude boundedness of the linear map

∂Aρ : Wk+1,∞(I ;L∞(
))→ Wk+1,∞(
I ;L(

H 1
0 (
), H−1(
)

))

we can leave the norm of ρ−2 as-is, because we only need it to be finite. However,
applying Lemma 1 to it yields the continuity of ∂Aρ in ρ, and therefore also in the
tuple (c, ρ) in the norm of W(k).

We demonstrate the estimation of the linearization error in the context of the third
component of ∂P , the operator C. For this we need to assume that c̄ and ρ̄ are small
enough such that (c + c̄, ρ + ρ̄) belongs to the open set D(P ) ∩ X(k). Then we
calculate

e := ∥∥Cc+c̄,ρ+ρ̄ − Cc,ρ − ∂Cc,ρ[c̄, ρ̄]∥∥
Wk+1,∞(I ;L(L2(
)))

=
∥∥∥∥

1

(ρ + ρ̄)(c + c̄)2
− 1

ρc2
+ ρ̄

ρ2c2
+ 2c̄

ρc3

∥∥∥∥
Wk+1,∞(I ;L∞(
))

=
∥∥∥∥

ρ̄2

c2ρ2(ρ + ρ̄)
+ 3c̄2c + 2c̄3

c3(c + c̄)2(ρ + ρ̄)
+ 2c̄ρ̄

c3ρ(ρ + ρ̄)

∥∥∥∥
Wk+1,∞(I ;L∞(
))

.

Again, we are required to bound not only this difference with respect to
L∞(I ;L∞(
)), but also its time derivatives. On each fraction we can invoke
the product rule, and Lemma 1 shows the norms of the denominators to remain
bounded when (c̄, ρ̄) → 0. We observe that the Wk+1,∞(I ;L∞(
))-norms of the
numerators are of order O

(‖(c̄, ρ̄)‖2), thus the linearization error e has to be as
well. ��

Obtaining differentiability of F is now simply a matter of applying the chain
rule.

Theorem 2 Let k ≥ 2 and f ∈ F(k). Then F : D(P ) ∩W(k) → Y (k−2) is Fréchet-
differentiable. For every x = (c, ρ) ∈ D(P ) ∩ W(k) and h = (c̄, ρ̄) ∈ W(k), the
value ∂F (x)[h] is the unique weak solution uh ∈ Y (k−1) of the partial differential
equation

1

ρ

(
u′h
c2

)′
− div

(∇uh

ρ

)
= ρ̄

ρ2

(
u′

c2

)′
− div

(
ρ̄

ρ2∇u

)
+ 2

ρ

(
c̄

c3
u′

)′
(10)
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together with homogeneous initial values uh(0) = u′h(0) = 0. As always, u = F(x)

denotes the solution of the forward problem.

Proof Since F = S ◦ P , we have

∂F (x) = ∂S(P (x)) ◦ ∂P (x),

and from [5] we know that ∂S(A, B, C)[Ā, B̄, C̄] = uh ∈ Y (k−1), where uh has
homogeneous initial values and solves

(Cu′h)′ + Bu′h +Auh = gA(u)[Ā] + gB(u)[B̄] + gC(u)[C̄]
= −(Ā(·))[u(·)] − B̄(·)[u′(·)] − (C̄(·)[u′(·)])′.

To evaluate ∂F (x) at h ∈ W(k), we simply need to substitute (A, B, C) = P(x) and
(Ā, B̄, C̄) = ∂P (x)[h], which results in the PDE

(
u′

h

ρc2

)′
+ ρ′

ρ2c2
u′h − div

(∇uh

ρ

)
+ quh = − div

(
ρ̄

ρ2
∇u

)
+

((
ρ̄

ρ2c2
+ 2c̄

ρc3

)
u′

)′

−
(

ρ̄′
ρ2c2

− 2ρ′ρ̄
ρ3c2

− 2ρ′c̄
ρ2c3

)
u′.

Both sides of this equation can be simplified since both u and uh belong to Y (1) =
W 2,∞(I ;L2(
)) ∩ W 1,∞(I ;H 1

0 (
)) ⊂ C1(I ;L2(
)). Through the product rule
we obtain the PDE in the assertion. The same holds for the homogeneous initial
values of uh: Because u′h is continuous (with values in L2(
)), the second initial
condition (u′h/(ρc2))(0) = 0 is equivalent to u′h(0) = 0. ��

We would like to remark that the PDE for ∂F is exactly what one would expect,
and that it can also be deduced through formal linearization of the wave equation (4).
The significance of our result consists of showing that (especially in the context
of time-dependent parameters) this linearized equation is well-posed and that it
actually is the Fréchet-derivative of the operator F , at least for k ≥ 2.

3.1 Adjoint of the Derivative

Most regularization methods will need access to the adjoint of ∂F (x) to solve the
inverse problem, and our approach in Sect. 5 (based on conjugate gradients) will be
no exception. However, since Y (k) is too regular to contain measurement noise, we
will replace the image space with L2(I ;L2(
)). This means that we should look
at the adjoint of ∂F (x) ∈ L(W(k), L2(I ;L2(
))). Naturally, since F = S ◦ P , we
have
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∂F (x)∗ = ∂P (x)∗ ◦ ∂S(P (x))∗ ∈ L
(
L2(I ;H),

(
W(k)

)∗)
. (11)

The adjoint of ∂S(P (x)) can be characterized as follows.

Theorem 3 Let k ≥ 2, p = (A, B, C) ∈ D(S) ∩ X(k), f ∈ F(k) and u = S(p).
For v ∈ L2(I ;L2(
)), there exists a unique solution wv ∈ Y (0) of

(Cw′v)
′ − B∗w′v + (A− (B∗)′)wv = v in L2(I ;H−1(
)) (12)

with homogeneous end conditions wv(T ) = (Cw′v)(T ) = 0. Furthermore, the
adjoint

(∂S(p))∗ ∈ L
(
L2(I ;H),

(
X(k)

)∗)
of ∂S(p) ∈ L

(
X(k), L2(I ;H)

)

can be evaluated at v ∈ L2(I ;H), h = (Ā, B̄, C̄) ∈ X(k) using

〈
(∂S(p))∗[v], h

〉
(X(k))

∗×X(k) =
∫ T

0

(
C̄(t)u′(t), w′v(t)

)− (
B̄(t)u′(t), wv(t)

)

− 〈
Ā(t)u(t), wv(t)

〉
dt .

Proof See [5]. ��
For the derivative itself we have analyzed ∂S and ∂P independently of each other,

and only then used the chain rule to combine the two. However, even with the simple
structure of P , a characterization of ∂P (x)∗ ∈ L

((
X(k)

)∗
,
(
W(k)

)∗)
is not possible

because of insufficient knowledge about the dual space of X(k), i.e. how a general
v ∈ (X(k))

∗
could act on ∂P (x)[h]. Fortunately, as seen on (11), we do not need

to evaluate P ∗(z) for arbitrary z, but only for z ∈ R(∂S(P (x))∗). This way, we can
directly obtain a characterization of the adjoint of ∂F .

Theorem 4 Let k ≥ 2, f ∈ F(k) and x = (c, ρ) ∈ D(P ) ∩W(k). The application
of the adjoint of ∂F (x) ∈ L(W(k), L2(I ;L2(
))) on v ∈ L2(I ;L2(
)) can be
written as

∂F (x)∗[v] =

⎛
⎜⎜⎝

2u′

c3

(
wv

ρ

)′

∇u · ∇wv

ρ2
+ wv

ρ2

(
u′

c2

)′

⎞
⎟⎟⎠ ∈ L∞(I ;L1(
))

2
, (13)

where the embedding of L∞(I ;L1(
)) into
(
W(k)

)∗
has to be understood using the

inner product of L2(I ;L2(
)), u = F(x) ∈ Y (2) and wv ∈ Y denotes the solution
of the adjoint equation

(
1

c2

(
wv

ρ

)′)′
− div

(∇wv

ρ

)
= v (14a)
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in L2(I ;H−1(
)), together with homogeneous end conditions

wv(T ) =
(

wv

ρc2

)′
(T ) = 0. (14b)

Proof Let h = (c̄, ρ̄) ∈ W(k). To calculate
〈
∂F (x)∗[v], h

〉
, we substitute ∂P using

Theorem 2 and ∂S(P (x))∗ using Theorem 3 and obtain

〈
∂F (x)∗[v], h

〉
(W(k))

∗×W(k) =
〈
∂S(P (x))∗[v], ∂P (x)[h]〉

(X(k))
∗×X(k)

=
∫

T

0

(
∂Cc,ρ[c̄, ρ̄](t)u′(t), w′v(t)

)− (
∂Bc,ρ[c̄, ρ̄](t)u′(t), wv(t)

)

− 〈
∂Aρ[ρ̄](t)u(t), wv(t)

〉
dt

=
∫

T

0

((
ρ̄(t)

ρ(t)2c(t)2
+ 2c̄(t)

ρ(t)c(t)3

)
u′(t), w′v(t)

)

−
((

ρ̄′(t)
ρ(t)2c(t)2

− 2ρ′(t)ρ̄(t)

ρ(t)3c(t)2
− 2ρ′(t)c̄(t)

ρ(t)2c(t)3

)
u′(t), wv(t)

)

−
〈
div

(
ρ̄(t)

ρ(t)2
∇u(t)

)
, wv(t)

〉
dt .

Here, wv denotes the solution of the adjoint Eq. (12). Our goal is to reshape this
expression into some kind of dual product that has h on one side. Inside all of
the L2(
) inner products we can shift from one side to the other as we wish, as
long as both sides of the inner product belong to L2(
). In general, neither the
product u(t)wv(t) of twoH 1

0 (
)-functions, nor the multiplication of u′(t) ∈ H 1
0 (
)

and w′v(t) ∈ L2(
) will belong to L2(
). However, they do lie in L1(
). Thus,
we resort to regarding the resulting integrals as dual products between L∞(
) and
L1(
). This and some further reorganizing yields

〈
∂F (x)∗[v], h

〉 =
∫

T

0

〈
2u′(t)
c(t)3

d

dt

(
wv(t)

ρ(t)

)
, c̄(t)

〉

L∞×L1

+
〈∇u(t) · ∇wv(t)

ρ(t)2
+ wv(t)

ρ(t)2

d

dt

(
u′(t)
c(t)2

)
, ρ̄(t)

〉

L∞×L1
dt .

This proves that the adjoint has the asserted form, but we still need to show that wv

solves (14). Since Bc,ρ is self-adjoint, Eq. (12) reads

(Cc,ρw′v)
′ − Bc,ρw′v + (Aρ − B′c,ρ)wv = v, (15)
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to be solved in the L2(I ;H−1(
))-sense and is joined by the end conditions
wv(T ) = (Cc,ρw′v)(T ) = 0, which directly translate to those given in the assertion.
Substituting the operators with their definitions, Eq. (15) becomes

(
w′v
ρc2

)′
− ρ′

ρ2c2
w′v −

(
ρ′

ρ2c2

)′
wv − div

(∇wv

ρ

)
= v.

Two applications of the product rule prove that this equation is equivalent to the
more compact differential equation (14a). ��

Note that ∂F (x)∗[v] (as in (13)) will not only belong to L∞(I ;L1(
))
2
: For k ≥

2 we have u ∈ W 2,∞(I ;H 1
0 (
)), wv ∈ L∞(I ;H 1

0 (
)) and w′v ∈ L∞(I ;L2(
)),
and the embedding theorems for Sobolev spaces (cf. [1]) yield H 1

0 (
) ⊂ Lp(
) for
p > 2, but this depends on the space dimension n. Combining this with the Hölder-
inequality, we see that in the case of a one- two- or three-dimensional problem the
following holds:

• If n = 1, then
(
∂F (x)∗[v]) (t) ∈ L2(
)× L1(
).

• If n = 2, then
(
∂F (x)∗[v]) (t) ∈ Lq(
)× L1(
) for all 1 ≤ q < 2.

• If n = 3, then
(
∂F (x)∗[v]) (t) ∈ Lq(
)× L1(
) for all 1 ≤ q < 3/2.

Note that we cannot use regularity results for wv because this would require more
than just v ∈ L2(I ;L2(
)) which means we would have to change the space of the
measurements. We see that for the parameter c we can obtain a setting for the adjoint
that only involves reflexive Banach spaces. However, for the second component of
∂F (x)∗[v] (which contains ∇u · ∇wv) to belong to something else than L1(
) we
would first need to prove better spatial regularity results for u or wv .

4 Ill-posedness

The operator S is locally ill-posed, but this does not automatically imply that
F = S ◦ P is ill-posed as well. For example, all sequences in D(S) ∩ X(k) that
do not converge, but have convergent images under S, might not belong to the range
of P . However, in [5] it was analyzed under which circumstances sequences of
images under S converge. We can then construct sequences for P that fulfill these
properties. Precisely, the result we need is the following.

Theorem 5 Let k ∈ N0 and f ∈ F(k). Further, let p = (A, B, C) ∈ D(S) ∩ X(k)

and u = S(p).

(i) If (Rj )
j∈N ⊂ Wk1,∞(I ;L(L2)) satisfies

∥∥Rj

∥∥ ≤ � and Rj v′ → 0 in

Hk(I ;L2) for all v ∈ Y (k), then S(A, B +Rj , C)→ u in Y (k) when j →∞.
(ii) Let k > 0 and (Rj )

j∈N ⊂ Wk+1,∞(I ;L(H 1
0 , H−1)) with

∥∥Rj

∥∥ ≤ �, with �

small enough to guarantee (A + Rj , B, C) ∈ D(S) for all j , and Rj v → 0
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in Hk(I ;H−1) for all v ∈ Y (k). Then S(A + Rj , B, C) → u in Y (k−1) when
j →∞.

(iii) Let k > 0 and (Rj )
j∈N ⊂ Wk+1,∞(I ;L(L2)) with

∥∥Rj

∥∥ ≤ �, with � small
enough to guarantee (A, B, C + Rj) ∈ D(S) for all j , and (Rj v′)′ → 0 in
Hk−1(I ;L2) for all v ∈ Y (k). Then S(A, B, C + Rj ) → u in Y (k−1) when
j →∞.

In each case the convergence is uniform in (A, B, C) on every bounded subset of
D(S) ∩X(k).

Our main focus is the time-dependence of the parameters c and ρ, hence we
will also make use of time-dependent disturbances Rj . Working in the time variable
is more difficult, because the parameters have to be differentiable. The following
lemma provides suitable smooth auxiliary functions.

Lemma 2 Let r ∈ N0. There exists (αj )
j∈N ⊂ C∞c (I ) which satisfies

0 < γ ≤ ∥∥αj

∥∥
Wr,∞(I )

≤ 1 for all j ∈ N

and αjϕ → 0 in Hm(I) as j → ∞ for all fixed ϕ ∈ Hm(I) with m = 0, . . . , r .
Moreover, if r > 0 then

∥∥αj

∥∥
Wr−1,∞(I )

→ 0 when j →∞.

Proof These are the same sequences that were used in [5] to show ill-posedness in
a setting based on the elastic wave equation. ��

Finally, we can employ these sequences to show the local ill-posedness of F .

Theorem 6 Let k ∈ N, f ∈ F(k) and p = (c, ρ) ∈ D(P ) ∩ W(k). The tasks of
finding c or ρ such that F(p) = y ∈ Y (k−1) holds are locally ill-posed.

Proof Let p = (c, ρ) ∈ D(P )∩W(k) and (A, B, C) := P(p). Since D(P )∩W(k)

forms an open subset of W(k) there exists δ0 > 0 such that B(p, δ0) ⊂ D(P )∩W(k).
Let 0 < δ ≤ δ0.

(i) Reconstruction of ρ: The parameter ρ is involved in three operators, making
this part of the proof more complicated. Moreover, we have to take care that
the perturbations still satisfy the coercivity constraints. Let (αj )

j∈N denote the
sequence from Lemma 2 for r = k + 1. We define

ρj (t, x) := 1

εαj (t)+ ρ(t, x)−1

and pj := (c, ρj ), where we would like to set ε > 0 in such a way that
ρj ∈ B(ρ, δ) for all j ∈ N. To make ρj well-defined, we require ε <

1/‖ρ‖L∞(I ;L∞(
)) and to secure some wiggle room we further restrict this to
ε ≤ 1/(2ρ1). This implies that εαj + ρ−1 ≥ 1/(2ρ1). Denoting with M the
positive constant from Lemma 1 for m = k + 1, we see that
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∥∥ρj − ρ
∥∥

Wk+1,∞(I ;L∞(
))
=

∥∥∥∥
εαj

εαj + ρ−1

∥∥∥∥
Wk+1,∞(I ;L∞(
))

≤ 2k+1ε
∥∥αj

∥∥
Wk+1,∞(I ;L∞)

∥∥∥(εαj + ρ−1)−1
∥∥∥

Wk+1,∞(I ;L∞)

≤ 2k+1εM(1+ 2ρ1)
k+2

(
1+

∥∥∥εαj + ρ−1
∥∥∥

Wk+1,∞(I ;L∞)

)k+1

≤ 2k+1εM(1+ 2ρ1)
k+2

(
1+ (2ρ1)

−1 +
∥∥∥ρ−1

∥∥∥
Wk+1,∞(I ;L∞)

)k+1
=: ε�,

with a constant � that only depends on ρ and k. Thus, by ε :=
min{δ/�, 1/(2ρ1)} we obtain ρj ∈ B(ρ, δ) for all j ∈ N and thus
also pj ∈ B(p, δ) ⊂ D(P ). We will now verify that ρj �→ ρ in
Wk+1,∞(I ;L∞(
)) by showing that the derivatives of order k + 1 do not
converge with respect to L∞(I ;L∞(
)). Expanding (ρj − ρ)(k+1) using the
product rule leads to

(
ρj − ρ

)(k+1) =
(

εαj

εαj + ρ−1

)(k+1)
= ε

k+1∑
i=0

(
k + 1

i

)
α

(i)
j

(
1

εαj + ρ−1

)(k+1−i)

.

Derivatives of 1/(εαj + ρ−1) remain bounded when j →∞, and α
(i)
j → 0 in

L∞(I ) for all i = 0, . . . , k. Hence all except for the last summand converge to
zero. It is therefore enough to show that the last summand does not converge to
zero in order to conclude this for the whole sum. Indeed, α(k+1)

j does not vanish

in the limit, and we observe 1/(εαj + ρ−1) > 1/(ε+ρ−10 ) almost everywhere.
The only thing left to show is the convergence F(pj ) → F(p) in Y (k−1). We
see that P(pj ) = (A+ RA

j , B + RB
j , C + RC

j ) with

RA
j (t)v = div

((
1

ρj (t)
− 1

ρ(t)

)
∇v

)
= div

(
εαj (t)∇v

)

RB
j (t)u =

(
ρ′j (t)

ρj (t)2c(t)2
− ρ′(t)

ρ(t)2c(t)2

)
u

= d

dt

(
1

ρ(t)
− 1

ρj (t)

)
1

c(t)2
u = −εα′(t)

c(t)2
u

RC
j (t)u =

(
1

ρj (t)c(t)2
− 1

ρ(t)c(t)2

)
u = εαj (t)

c(t)2
u

for all v ∈ H 1
0 (
), u ∈ L2(
) and almost all t ∈ I . Since P is continuous, the

norms of RA
j , RB

j and RC
j have to remain bounded when j → ∞. Moreover,
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for every u ∈ Hk+1(I ;L2(
)) we see

∥∥∥∥
(
RC

j u′
)′∥∥∥∥

Hk−1(I ;L2)

≤
∥∥∥RC

j u′
∥∥∥

Hk(I ;L2)
= ε

∥∥∥αju′/c2
∥∥∥

Hk(I ;L2)
→ 0

as j → ∞ due to the design of the αj . Likewise ‖RA
j v‖Hk(I ;H−1) =

ε
∥∥αj�v

∥∥
Hk(I ;H−1) has to vanish in the limit, and for all fixed u ∈ Hk(I ;L2)

holds
∥∥∥RB

j u′
∥∥∥

Hk−1(I ;L2)
= ε

∥∥∥α′j u′/c2
∥∥∥

Hk−1(I ;L2)
≤ ε

∥∥∥αju′/c2
∥∥∥

Hk(I ;L2)
→ 0.

Due to the uniform convergences in Theorem 5, we can apply it simultaneously
to multiple components of S and thus finally conclude this part of the proof
with

S(A+ RA
j , B + RB

j , C + RC
j )→ S(A, B, C) = F(p),

holding in Y (k−1) as j →∞.
(ii) Reconstruction of c: Similar to ρ, but with squared reciprocals: We define for

(t, x) ∈ I ×


cj (t, x) :=
(
εαj (t)+ c(t, x)−2

)−1/2

and again see that ε > 0 can be chosen in such a way that cj ∈ B(c, δ) for all
j ∈ N. Moreover, cj �→ c in Wk+1,∞(I ;L∞(
)) and P(cj , ρ) = (A, B +
RB

j , C + RC
j ) with

RB
j (t)u =

(
ρ′(t)

ρ(t)2cj (t)2
− ρ′(t)

ρ(t)2c(t)2

)
u = εα(t)ρ′(t)

ρ(t)
u

RC
j (t)u =

(
1

ρ(t)cj (t)2
− 1

ρ(t)c(t)2

)
u = εαj (t)

ρ(t)
u.

By design, these operators possess the same properties as those that appeared
in the proof for ρ.

��
A direct consequence of the theorem is the ill-posedness of F(p) = y ∈ Y (k−1)

in all c or ρ such that p = (c, ρ) ∈ D(P ) ∩ W(k) with k ≥ 1. Note that this is
a stronger result than the local ill-posedness of F(p) = y ∈ Y (k−1) in all tuples
p ∈ D(P ) ∩W(k), because the latter problem would already be ill-posed if finding
either one of the parameters yielded an ill-posed problem.
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When applying a Newton solver to the nonlinear inverse problem, knowing about
the ill-posedness of ∂F is even more crucial than the ill-posedness of F .

Corollary 1 Let k ≥ 2 and f ∈ F(k). We consider F : D(P ) ∩ W(k) → Z with
Z = Wj,p(I ;H) or Z = Cj (I ;H) for 0 ≤ j ≤ k and 1 ≤ p < ∞. For every
p = (c, ρ) ∈ D(P ) ∩ W(k) its linearization ∂F (p) ∈ L(W(k), Z) is a compact
operator.

Proof ∂F (p) = ∂S(P (p)) ◦ ∂P (p) with linear and continuous ∂P (p), and it was
shown in [5] that ∂S(P (p)) is compact for the image spaces as in the assertion. ��

It could be that ∂F (p) is compact because it has finite dimensional range,
which would make the resulting problems well-posed in the sense of linear inverse
problems (ill-posed in the sense of Hadamard, but with a continuous generalized
inverse). Like in the abstract framework for S, this is not the case here.

Lemma 3 Let k ≥ 2 and f ∈ F(k) \ {0}. The ranges of

∂cF (x) ∈ L
(
Wk+1,∞ (

I ;L∞(
)
)
, Y (k−1)) , and

∂ρF (x) ∈ L
(
Wk+1,∞ (

I ;L∞(
)
)
, Y (k−1))

are infinite-dimensional at every x = (c, ρ) ∈ D(P ) ∩W(k).

Proof If for example ∂cF (x) had finite-dimensional range, i.e. the set of all uh =
∂cF (x)[h] with h ∈ W(k) was finite-dimensional, then this would imply that the set
of all right-hand sides to the linearized equation (10) was finite-dimensional as well.
We prove that the latter is not the case for both of our parameters, starting with ρ.

(i) From f �= 0 follows u := F(x) �= 0. Let (βi)i∈N ⊂ C∞(I ). We
define hi(t, x) := βi(t) for (t, x) ∈ I × 
, and in doing so obtain hi ∈
Wk+1,∞(I ;L∞(
)). The right-hand side of the partial differential equation
that is solved by ∂ρF (c, ρ)[hi] reads

βi

(
1

ρ2

(
u′

c2

)′
− div

(∇u

ρ2

))
=: βiw.

Clearly, w ∈ C1(I ;H−1(
)) because k ≥ 2. Moreover, if w = 0 then u would
solve the wave equation

1

ρ2

(
u′

c2

)′
− div

(∇u

ρ2

)
= 0

with homogeneous initial- and boundary conditions, which would contradict
u �= 0. Since w is continuous in time and does not vanish everywhere we can
choose the βi in such a way that {βiw}i∈N is linearly independent.
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(ii) In the derivative with respect to c we choose βi ∈ C∞(I ) such that {βiu
′}i∈N

is linearly independent. Then the right-hand sides (βiu
′/c3)′ = β ′iu′/c3 +

βi(u
′/c3)′ have pointwise disjoint supports inside spt u′ (which is the same as

spt u′/c3), thus they must be linearly independent as long as they do not vanish
everywhere. However, it could be that (βiu

′/c3)′ = 0 for some i ∈ N. We show
how this can be remedied. Suppose this is the case and fix some t0 ∈ I and
ε > 0 such that βi(t0) �= 0, β ′i (t0) �= 0 and sptβi ⊂ (t0 − ε, t0 + ε) ⊂ I . We
replace βi with its mirrored version

β̄i (t) :=
{

βi(2t0 − t), if t ∈ (t0 − ε, t0 + ε),

0, otherwise

and conclude the proof by observing that

(
β̄i

u′

c3

)′
(t0) = −β ′i (t0)

u′(t0)
c(t0)

3 + βi(t0)

(
u′

c3

)′
(t0)

=
(

βi

u′

c3

)′
(t0)− 2β ′i (t0)

u′(t0)
c(t0)

3 = −2β ′i (t0)
u′(t0)
c(t0)

3 �= 0.

��

5 Numerical Experiments

Before we turn to the numerical treatment of the inverse problems we give a brief
overview of the discretization. The acoustic wave equation (2) is discretized in time
using Crank-Nicholson, and then in space using piecewise linear finite elements
on a rectangular mesh. For this we made use of the C++ library deal.II [2]. The
parameters c and ρ are discretized on the same grid. To ease the presentation we
use the hypercube 
 := [−1, 1]n as the space domain. The time interval is given by
I := [0, 2π ], and partitioned into N equally sized sub-intervals.

We will only consider the reconstruction of either c or ρ, i.e. assume the
other parameter is known. Furthermore, for the numerical experiments it is more
convenient to write the searched-for parameter as the sum of a known, smooth
“background” function cb, ρb : I ×
→ R (most likely a constant function) and a
perturbation, and only reconstruct this perturbation. For the inversion, this has the
same effect as using the background parameter as the initial guess, but it has the
advantage that reconstruction errors will not be tainted by the a-priori information
about the background medium.

Obviously we can write D(F) as the Cartesian product D(F) = D(Fc)×D(Fρ)

that separates the constraints on c and ρ into the two sets
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D(Fc) :=
{
c ∈ W 1,∞(I ;L∞(
))

∣∣∣ c0 + δ ≤ cb + c ≤ c1 − δ

a.e. in I ×
 for a δ > 0
}
,

D(Fρ) :=
{
ρ ∈ W 1,∞(I ;L∞(
))

∣∣∣ ρ0 + δ ≤ ρb + ρ ≤ ρ1 − δ

a.e. in I ×
 for a δ > 0
}
.

This allows to define the forward operators

Fc : D(Fc) ∩W 3,∞(I ;L∞(
))→ L2(I ;L2(
)), Fc := F(cb + ·, ρb),

Fρ : D(Fρ) ∩W 3,∞(I ;L∞(
))→ L2(I ;L2(
)), Fρ := F(cb, ρb + ·)

that are well-defined and differentiable as long as ρb, cb ∈ W 3,∞(I ;L∞(
)). In
our experiments we employ ρb(t, x) := 1 and cb(t, x) := 0.3 for all (t, x) ∈ I ×
.

We will now present the function that we wish to use to build exact parameters
for the two inverse problems. We know from our theoretical results that we must use
essentially bounded functions, that also have to possess some smoothness in time.
To ensure that this also holds after discretization we will use a product ansatz. In
space, we want the function to consist of both discontinuities and smooth parts. Let

L(α, β) ⊂ 
 denote an L-shape with distance α > 0 from the coordinate axes and
width β > 0. While for n = 2 this description should be sufficient, it is not clear
at all what it means in three dimensions. In an attempt to make the area/volume of
these sets approximately equal, we define it to be the union of three thin plates, each
aligned with one coordinate plane. In both cases, it can be described by


L(α, β) =
{
x ∈ 


∣∣∣ there is i0 ∈ {1, . . . , n} s.t. xi0 ∈ [α − 1, α + β − 1]

and xi ∈ [α − 1, 1− α] for i �= i0

}
.

For the continuous part we define for ω ∈ [−1, 1]

λω,r (x) :=
{
1− r−2‖x − (ω, . . . , ω)‖2 if ‖x − (ω, . . . , ω)‖ ≤ r,

0 otherwise.

We combine 
L and λ by defining the test parameter to be

�LDot(t, x) :=
(
0.2+ 0.8 · sin(t)2

) (
χ
L(0.2,0.3)(x)− λ0.35,0.45(x)

)
.

Its discretization is depicted in Fig. 1. Note that the 3D presentation only shows
isosurfaces at half the maximal- and half the minimal values of the function. The
meshes we employed here are the same meshes we will be using for the inverse
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Fig. 1 Test parameter �LDot, evaluated at t = π/2. (a) n = 2. (b) n = 3

problems. They consist of N = 256 discretization points in time and M = 4225 (if
n = 2) or M = 35937 (if n = 3) nodes in the finite element space.

We continue by discussing our regularization approach. Conforming to the
theoretical setting of Fc and Fρ is very difficult because they are defined onL∞-type
spaces (which are not reflexive), thus even Banach-space reconstruction methods are
not applicable. Furthermore, due to the large number of degrees of freedom (over
one million in 2D and about ten million in 3D) we have to pick a fast reconstruction
method. Therefore we choose to stay in the classical Hilbert space framework by
treating Fc, Fρ as being well-defined on open subsets of H 1(I ;L2(
)). However,
this L2-approach will not enforce the boundedness constraints on c and ρ. We
remedy this by composing the forward operators with the pointwise application of
the transform γ : R→ (a, b) given for s ∈ R by

γ (s) := a + b

2
+ a − b

2
tanh(s)

for s ∈ R. The values for a and b depend on the problem at hand; for ρ we
use (a, b) := (−0.1, 100), whereas for c we set (a, b) := (−0.27, 30). This
modification causes ρ + ρb and c + cb to remain uniformly positive throughout
the inversion.

Note that the data, which we denote by uε, is generated using the same discretized
operators and subsequently perturbed using uniformly distributed white noise that
is scaled to the appropriate relative noise level ε. To make sure that the data actually
contains all of the information about the unknown parameters, we set the right-hand
side f to be active almost everywhere by f (t, x) := cos(2t). Note that this is not
required for the successful termination of the reconstruction. However, in order to
showcase the regularization properties of our implementation we want the error to
be able to converge to zero, which simply might not be possible if we use a very
localized right-hand side.
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The inversion of the transformed forward operators is handled by the regulariza-
tion method CG-REGINN [12]. It is started using zero as an initial guess and stopped
via the discrepancy principle, i.e. as soon as the iterates produce a discrepancy that
is smaller than τε‖uε‖ with τ := 2.

In order to keep the presentation brief we will show results for two cases:
reconstruction of c in 2D and ρ in 3D.

5.1 Reconstruction of the Wave Speed in 2D

We start with the reconstruction of c in a two-dimensional setting and 0.15�LDot
as the ground truth. For a noise level of 1% we obtain a reconstruction cε as shown
in Fig. 2. For the presentation we chose to evaluate the reconstructed parameter at
two time instances: t = 1

2π is near the start of the simulation, and t = 4
3π is

closer to T = 2π . Although both images are blurry, we can clearly recognize the
resemblance to the ground truth. We also note that there is a small “shadow” around
the L-shape in both pictures, and that the approximation near the ball is better for
the lower value of t . The fact that the reconstruction quality degrades in t makes
sense, since changing the parameter near t = T has almost no effect on the data.

If we go to a very low noise level of ε = 10−4, as seen in Fig. 3, then the shadow
around the L is gone. It is noteworthy how well the L-shape is approximated; in its
vicinity the reconstruction seems to be piecewise constant, although we are using
L2-based norms that do not enforce sparsity of ∇c at all. However, we should also
note that the fact that the edges of the ground truth are perfectly aligned with the
mesh, which can be seen as a-priori information. Again, the approximation of the
ball-shaped part of �LDot seems to be better for t = 1

2π , because for t = 4
3π some

artifacts begin to develop.
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Fig. 2 Reconstruction of c = 0.15�LDot in 2D with ε = 10−2. (a) Evaluated at t = 1
2π . (b)

Evaluated at t = 4
3π
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Fig. 3 Reconstruction of c = 0.15�LDot in 2D with ε = 10−4. (a) Evaluated at t = 1
2π . (b)

Evaluated at t = 4
3π
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Fig. 4 Errors for c = 0.15�LDot in 2D depending on ε

The relative H 1(I ;L2)-errors for ε = 10−2 and ε = 10−4 are 46% and 12%,
respectively. These values are also depicted in Fig. 4, along with the errors for
nine other values for ε. In the figure we have also included the corresponding
L2(I ;L2)—andH 2(I ;L2) errors. Regardless of the norm we use to gauge the error,
on a logarithmic scale they describe straight lines. If we assume this behavior to hold
for ε→ 0, then we are able to conclude the rates

∥∥c − cε
∥∥

L2(I ;L2)
≈ O

(
ε0.31

)
,

∥∥c − cε
∥∥

H 1(I ;L2)
≈ O

(
ε0.27

)
,

and
∥∥c − cε

∥∥
H 2(I ;L2)

≈ O
(
ε0.06

)
.

The slope for the H 2-error is so small that we cannot really speak of “convergence”;
the error seems to be almost unaffected by the noise level. The most important rate is
the one for theH 1-norm, because this is the norm we used to obtain cε. Convergence
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(a) (b)

Fig. 5 Reconstruction of ρ = 0.75�LDot in 3D with ε = 4.6 · 10−2. (a) Evaluated at t = 1
2π . (b)

Evaluated at t = 4
3π

rates provided by the theory for REGINN of course depend on source conditions for
the ground truth, which we are not able to verify in practice. However, considering
that the highest possible guaranteed rate of convergence for REGINN is 0.5, a rate of
0.27 seems reasonable. The fact that the convergence rate in the L2(I ;L2)-norm is
only slightly higher implies that the H 1-error is not dominated by

∥∥c′ − (cε)′
∥∥.

5.2 Reconstruction of the Mass Density in 3D

Due to the increased computation times in 3D we present results for slightly higher
noise levels, the lowest being ε = 10−3. We scale �LDot by 0.75 and use it as
the ground truth for ρ. Isosurfaces of the reconstruction for ε = 4.6 · 10−2 can be
found in Fig. 5. Even for this relatively high level of noise the qualitative behavior
of the exact parameter is already apparent in the reconstruction. As in the 2D case,
the reconstruction is better for smaller t ∈ I . The relative H 1(I ;L2(
))-error of
this reconstructed ρε to the ground truth is about 70%, which is reduced to 40%
for ε = 10−3. Plots of the latter reconstruction are presented as Fig. 6, and exhibit
much sharper edges in the L-shape than for the high ε. Further, for t = π/2 the
isosurfaces close to the ball-shaped part of �LDot have become smoother.

Reconstruction errors for more values for ε are shown in Fig. 7. We see the same
behavior as for c in the 2D setting, albeit with higher reconstruction errors. By
examining the respective slopes, we are led to the rates
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(a) (b)

Fig. 6 Reconstruction of ρ = 0.75�LDot in 3D with ε = 10−3. (a) Evaluated at t = 1
2π . (b)

Evaluated at t = 4
3π
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Fig. 7 Errors for ρ = 0.75�LDot in 3D depending on ε

∥∥ρ − ρε
∥∥

L2(I ;L2)
≈ O

(
ε0.23

)
,

∥∥ρ − ρε
∥∥

H 1(I ;L2)
≈ O

(
ε0.16

)
,

and
∥∥ρ − ρε

∥∥
H 2(I ;L2)

≈ O
(
ε0.02

)
.

Again, the rates for H 2 do not decrease, but we also do not expect them to. The H 1-
and L2-rates are smaller than the their counterparts for c, which might indicate that
�LDot satisfies a worse source condition with respect to Fρ than it does for Fc.

5.3 Computational Effort

We would like to conclude the numerical examples with an analysis of how the
required computational effort increases as ε→ 0. Obviously, the time that is needed
to run REGINN until the discrepancy principe is satisfied is highly dependent on the
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Fig. 8 PDE solutions required for c = 0.15�LDot in 2D depending on ε

system and the implementation. Instead, we will measure the effort by how many
solutions of the acoustic wave equation were needed in the whole reconstruction
process.

Figure 8 shows the behavior of this quantity for the different noise levels in the
setting we used for c. From it we deduce that this effort is of order O

(
ε−0.8

)
. This

behavior is similar to the reconstruction of ρ, where we observed the rate ε−0.9 in
the three-dimensional setting. These rates are consistent with the expected effort of
CG-regularization applied to a linear inverse problem.
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Motion Compensation Strategies
in Tomography

Bernadette N. Hahn

Abstract Imaging modalities have been developed and established as important
and powerful tools to recover characteristics of the interior structure of a studied
specimen from induced measurements. The reconstruction process constitutes a
well-known application of the theory of inverse problems and is well understood
if the investigated object is stationary.

However, in many medical and industrial applications, the studied quantity shows
a time-dependency, for instance due to patient or organ motion. Most imaging
modalities record the data sequentially, i.e. temporal changes of the object during the
measuring process lead to inconsistent data sets. Therefore, standard reconstruction
techniques which solve the underlying inverse problem in the static case lead to
motion artefacts in the computed image and hence to a degraded image quality.

Consequently, suitable models and algorithms with a specific treatment of the
dynamics have to be developed in order to solve such time-dependent imaging
problems. This article provides a respective theoretical framework as well as
numerical results from different imaging applications, including a study of 3D cone-
beam CT.

1 Motivation and State-of-the-Art

Over the past decades, tomographic techniques have been developed and established
as powerful and important tools for non-invasive imaging with various applications
from clinical diagnosis to non-destructive testing. Exploiting the properties of an
imaging agent, e.g. propagation of electromagnetic waves, the induced response
from a studied medium is measured. The reconstruction of the searched-for
function, characteristic of the medium, from the collected data thus matches with
solving an associated inverse problem. If the object under investigation is stationary
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reconstruction

Static
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Fig. 1 Temporal changes of a specimen during the data acquisition in computerized tomography
(left) and standard reconstruction applied to dynamic data (right)

during the time-dependent scanning, the reconstruction process is well known for
most of the imaging systems, see [37].

However, the stationary-assumption is often not satisfied. Prominent examples
arise in medical imaging due to respiratory and cardiac motion, gastrointestinal
motility, blood flow or body movement of Parkinson patients or infants. Besides
clinical applications, investigating dynamic objects arouses the interest in non-
destructive testing such as imaging driven liquid fronts for oil recovery studies [2],
performing elasticity experiments during the scan to determine material parameters
[22], or imaging objects in working stage, e.g. aircraft engines [5].

The dynamic behaviour of the investigated object during the data collection leads
to an inconsistent data set. Therefore, standard reconstruction techniques which
solve the underlying inverse problem in the static case lead to motion artefacts in
the computed image (e.g. blurring, ghosting, distortions) which can significantly
degrade the image quality and hence misleads the diagnosis [12, 27, 47], see also
Fig. 1. For hybrid imaging methods, these artefacts lead to spatial misalignments
of the reconstructions which significantly reduce the diagnostic accuracy and hence
affect the success of the treatment [36].

Dynamic Inverse Problems
Following [44], we refer to an inverse problem, where the investigated object
is allowed to change during the measuring process, as dynamic inverse
problem.
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1.1 Hardware-Based Artefact Reduction Strategies

In medical imaging, the periodic nature of physiologic motion can be exploited
to reduce motion artefacts by hardware-based gating methods. External devices,
e.g. electrocardiographs and thoracic belts, detect respiratory expansion and/or
cardiovascular motion, and are then used to collect and assort the measured data
to specific phases in the motion cycle [9, 13]. A main drawback of the described
artefact reduction procedures is their restriction to periodic (patient) motion and
hence, it cannot be extended e.g. to applications in non-destructive testing.

Another, intuitive approach is to reduce the required data acquisition time for
individual imaging modalities by faster scanners or reduced sampling in data
space. In [42], and recently in [38], a multi-source computerized tomography set-
up is proposed to avoid the time-consuming rotation of a single radiation source.
However, this decreases the signal-to-noise-ratio and hence the quality of the
reconstructed image.

1.2 Reconstruction Techniques for Motion Compensation

A more general approach is provided by motion compensation methods, where the
dynamical information is incorporated in the reconstruction step.

For individual imaging modalities like CT, MRI or PET, several methods of this
type have been proposed in the literature, see below for an overview.

Gating methods in general neglect the strong temporal correlation between the
single phases. By taking temporal redundancies into account, the reconstruction step
can be formulated as a variational problem [10, 39]. If explicit deformation models
are incorporated, e.g. in terms of an optimal flow constraint or shape information,
this approach leads to non-convex optimization problems [3–5, 28, 29].

For special deformations which preserve the underlying data acquisition geom-
etry, exact analytic reconstruction methods have been derived, especially in com-
puterized tomography, where this type of motion includes affine deformations,
[7, 8, 14, 43]. In this case, techniques for rebinning the measured data to make them
feasible for standard reconstruction methods are proposed as well, [5, 34]. Besides
iterative methods, e.g. [1, 21], approximate inversion formulas have been derived
in computerized tomography to compensate for general, non-affine deformations
[23, 24].

So far, only a few regularization techniques have been developed in the general
context of dynamic linear inverse problems [25, 44, 45], which have been applied in
computerized and impedance tomography, respectively. The more recent article [6]
proposes a computational method in a Bayesian framework along with an approach
to quantify uncertainties of the obtained solution. However, especially the method
in [44, 45], suffers from high computational costs and the motion artefacts are not
entirely eliminated.
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1.3 Outline of the Article

This article is devoted to the study of regularization methods for dynamic inverse
problems, summarizing the theoretical framework provided in [14–16] and present-
ing novel numerical results from various imaging applications. More precisely, we
study the application of our theory in the context of photoacoustic tomography and
3D cone-beam CT, whereas the mentioned previous articles evaluated the respective
theory at the example of 2D computerized tomography with parallel scanning
geometry.

In Sect. 2, we incorporate the time-dependency of the investigated object in
the inverse problem associated to the static case by means of diffeomorphic
motion models. We then provide an overview of strategies to estimate the motion
information from the measured data, which allows to assume the motion to be
known prior to the actual reconstruction step.

The resulting mathematical model of dynamic inverse problems gives then rise to
a classification scheme distinguishing two cases depending on the object’s motion.
Section 3 summarizes a general regularization theory for the first category of
moderate deformations, a subclass of affine deformations, which was developed in
detail in [16]. The theoretical results are evaluated at an example from photoacoustic
tomography.

For the more general second category of strong deformations, a regularization
strategy is developed in Sect. 4 by extending the method of the approximate
inverse to the time-dependent setting as initially proposed in [15]. The design of
efficient algorithms is discussed and evaluated at the example of 3D cone-beam
computerized tomography.

2 The Mathematical Model of Dynamic Inverse Problems

This section is devoted to the derivation of suitable mathematical models for
dynamic inverse problems with a specific treatment of the dynamics.

First, we derive a motion model based on the physical observation that the
particles forming the material body change their position in space over time. An
object which is changing in time is described by a sequence of functions ft : Rn →
R, t ∈ [0, T ] ⊂ R, representing the different configurations over time. Thus,
the motion can be described by a sequence of displacements which correlate the
different states of the body to one reference configuration. In particular, this motion
model corresponds to the Lagrangian description which gives the trajectory of each
material particle starting from the initial position [48].

Finally, the model describing the dynamic inverse problem is obtained by
combining the motion model with the forward operator from the underlying static
scenario.
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Φt(z)
z

Φt

time instance tinitial time

x

Γt(x)

Γt = Φ−1
t

time instance tinitial time

Fig. 2 Illustration of the motion model in terms of �t (left) and �t (right)

2.1 Diffeomorphic Motion Models

Throughout the article, let [0, T ] ⊂ R denote an interval covering the time period
required for the measurement process. Without loss of generality, we consider the
initial state of the object, denoted by f0, as the reference configuration represented
in the cartesian coordinate system of Rn. The motion of the particles can then be
expressed by a sequence of mappings �t : Rn → R

n, t ∈ [0, T ] with �0(x) =
x. Considering the particle initially located at position x ∈ R

n, the vector �t(x)

denotes its position at time t , see Fig. 2 (left).
Motivated by medical applications and elastic deformations in non-destructive

testing, �t is assumed to be a diffeomorphism for all t ∈ [0, T ] and we denote
�t := �−1t . The descriptive interpretation of the mapping �t is the following: The
particle located at x at time t was at the initial time at position �tx, see Fig. 2 (right).

Using the motion functions �t , t ∈ [0, T ] and the initial state function f0, we
find the state of the object at time instance t to be

f (t, x) = f0(�t (x)). (1)

To simplify the notation, we write �tx instead of �t(x).

Remark 1 This motion model is intensity preserving, i.e. each particle keeps its
initial intensity over time. Analogously, a mass preserving model of type

f (t, x) = f0(�tx) | detD�tx|

could be considered. Please note that this simply results in different weights within
the mathematical model of dynamic inverse problems. In particular, this does not
alter the nature of our reconstruction algorithms, as explained in [18].

Support Condition
In applications, the studied specimen, more precisely f0 and all its trans-
formed versions ft , t ∈ [0, T ] typically have compact support. In particular,

(continued)
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we assume

supp(f0(�t ·)) ⊂ 
X for all t ∈ [0, T ] (2)

with a bounded subset 
X ⊂ R
n. Further, throughout the article, we make

use of the continuous extension f0(x) := 0 for x /∈ 
X.

We next address how such motion information can be extracted from measured
data.

Extraction of Motion Information
In applications, the exact motion, i.e. the motion functions �t : Rn → R

n, t ∈
[0, T ] are in general unknown. If modelled by suitable basis functions bk , e.g.
B-splines [50] with coefficients wk(t) ∈ R,

�t(x) =
N∑

k=1
wk(t)bk(t, x),

this requires to estimate the paramters wk(t) prior to or within the reconstruc-
tion step.

Recovering both the unknown parameters and the reference image of
the object simultaneously leads to non-convex optimization problems of
extremely large size, [3]. This complexity however can be reduced by
decoupling the two tasks.

For instance, the calibration of the deformation parameters is proposed
to be performed via additional measurements with external devices or
via additional images, eventually obtained from another imaging modality
[1, 7, 35, 40, 41]. In [34], linear scaling and translation parameters are
estimated directly from dynamic, two-dimensional CT-data without any prior
knowledge about the object or any additional measurement. This approach
is extended in [17] to general parametrized deformation maps. The authors
in [24] propose an iterative procedure: If edges look cluttered in an initial
reconstruction, the reconstruction step is repeated with an updated motion
model.

In the following, we want to focus on the aspect of motion compensation.
Therefore, throughout the article, we assume the deformation maps �t , t ∈ [0, T ],
to be known.
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2.2 Model Operators for Dynamic Linear Inverse Problems

We now turn to the derivation of forward operators modelling dynamic inverse
problems. To this end, we combine our motion model with the mathematical model
that characterizes the underlying static case.

Many imaging modalities can be modelled mathematically by a linear integral
operator represented by a kernel k : [0, T ] × R

m × R
n → R (or C) via

A : L2(
X) −→ L2([0, T ] ×
Y )

Ah(t, y) =
∫
Rn

h(x) k(t, y, x) dx, (3)

where 
X and 
Y denote bounded subsets of Rn and R
m, respectively. In this

model, the codomain of A is already given in the time-resolved form (i.e. the
time instance t arises explicitly as one of the data variables) accounting for a
time-dependent data acquisition. However, the investigated object described by h

is assumed to be static. Therefore, we refer to the problem

“ Find h from Ah(t, y) = g(t, y), t ∈ [0, T ], y ∈ 
Y ” (4)

as static inverse problem.

Example (Static CT)
The mathematical model for 2D computerized tomography (CT) is given by
the 2D Radon transform

R : L2(V1(0)) −→ L2([0, 2π ] × R)

Rh(ϕ, s) =
∫
R2

h(x) δ(s − xT θ(ϕ)) dx

with θ(ϕ) = (cos(ϕ), sin(ϕ))T , the delta-distribution δ and the unit circle
V1(0). This model corresponds to the integration of the searched-for static
quantity h, which is compactly supported in V1(0), along the straight lines

L(ϕ, s) := {x ∈ R
2 : xT θ(ϕ) = s}. (5)

In modern CT scanners, all detector points record simultaneously. Thus,
the time consuming step of the data acquisition protocol is the rotation
of the radiation source around the specimen. Since the source position is

(continued)
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characterized by the angle ϕ, this is the data variable that can be uniquely
identified by a time instance t and vice versa. Thus, the mapping

R : L2(V1(0)) −→ L2([0, 2π ] × R)

Rh(t, s) =
∫
R2

h(x) δ(s − xT θ(t)) dx

matches the time-resolved representation (3).

We now derive the mathematical model for the associated time-dependent inverse
problem. Let the sequence of functions (ft )t∈[0,T ], ft : Rn → R, characterize the
time-dependent object with compact support in 
X ⊂ R

n. Then, at time instance t ,
the measurement g(t, ·) encodes the state ft . Thus, the associated dynamic inverse
problem is given by

Adynf (t, y) = g(t, y) (6)

with the dynamic operator

Adynf (t, y) := Aft (t, y)

and f ∈ L2([0, T ] × 
X), f (t, x) := ft (x). Thus, Adyn can be considered as
mapping from L2([0, T ] ×
X) into L2([0, T ] ×
Y ). If the static operatorA is of
type (3), then

Adynf (t, y) =
∫
Rn

f (t, x) k(t, y, x) dx.

From this representation, it becomes clear that additional information are required in
order to extract the time-dependent quantity f from the dynamic data g = Adynf .

Additional Information Required
The added time dimension regarding the searched-for quantity results in an
incomplete data problem: In the static case, all measured data, i.e. g(t, ·) ∀ t ∈
[0, T ], encode the information about one single object state. For instance
in CT, this corresponds to recovering a function from all its line integrals.
In contrast, in the dynamic scenario, only a very small portion of the data,
namely g(t, ·) for one single time instance t , encode each individual state. In

(continued)
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CT, this corresponds to the task of recovering each state ft from a subset of
its line integrals (namely only from line integrals in direction θ(t)⊥).

Thus, solving dynamic inverse problems typically requires the incorpora-
tion of some additional information. Hence, we now incorporate temporal
correlations of the individual object states in terms of a motion model as
described in Sect. 2.1.

Incorporating correlation (1), i.e. f (t, x) = f0(�tx), in the definition of the
dynamic forward operatorAdyn, we obtain the following operatorA� for the initial
state function

A�f0(t, y) :=
∫
Rn

f0(�tx) k(t, y, x) dx,

which depends on the motion functions �t , t ∈ [0, T ]. In particular, the substitution
x �→ �tx yields the equivalent representation

A�f0(t, y) =
∫
Rn

| detD�−1t (x)| f0(x) k(t, y, �−1t x) dx. (7)

The support condition (2) ensures that the range R(A�) is a subset of L2([0, T ] ×

Y ). Thus, A� can be considered as mapping from L2(
X)→ L2([0, T ] ×
Y ).

If the deformation fields �t are known, the dynamic inverse problem (6) reduces
to determining f0 from the equation

A�f0 = g. (8)

Example (Dynamic CT)
In dynamic 2D CT, the inverse problem

R�f0 = g

has to be solved with the dynamic forward operator

R�f0(t, s) =
∫
| detD�−1t x| f0(x) δ(s − (�−1t x)T θ(t)) dx.

This operator integrates a weighted version of the reference state f0 along the
curved lines

(continued)
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Fig. 3 Integration curves in
the static case (left) and in
case of a non-affine
deformation (right)

C�(t, s) = {x ∈ R
2 | (�−1t x)T θ(t) = s},

see also Fig. 3.
If the dynamic behaviour is described by affine deformations, i.e. �tx :=

Atx + bt with At ∈ R
2×2 and bt ∈ R

2 for all t ∈ [0, T ], then the integration
curves simplify to

CAt ,bt (t, s) = {x ∈ R
2 | xT (AT

t θ(t)) = s + AT
t bt }.

Thus, in this particular case, they correspond to shifted and rotated versions of
the original straight lines L(t, s) from the static case, see (5), and the dynamic
operator R� can be related to the underlying static operator R by a change of
coordinates in data space. This means

R� = VR

with suitable transformation V.
In general, however, it is not possible to express a curved line as rigid

transformation of a straight line. In this case, the dynamic model R� cannot
be related to R by modifying the data acquisition scheme, so we can say they
differ strongly.

This observation from dynamic CT motivates the following classification scheme
for dynamic inverse problems.

Classification Scheme [16]
Let A be a static operator and let (�t )t∈[0,T ] be a motion model. If there
exists a diffeomorphism M : [0, T ] × R

m → [0, T ] × R
m and a continuous

function α : [0, T ] × R
m → [0, T ] × R

m \ {0} such that

(continued)
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A� = VA

with an operator

Vg(y) = α(t, y) g(M(t, y)), (9)

then the motion model (�t )t∈[0,T ] is called moderate with respect to A.
Otherwise, we speak of a strong motion model with respect toA.

The operator V as in (9) is studied in more detail in Theorem 1.

Inverse problems, including (6) and (8), are in general ill-posed and thus, a
regularization method is required to solve these problems. In the following sections,
we address the derivation of suitable dynamic regularizations for both types of
deformations.

We conclude this section by stating the representation of the adjoint operators
A∗� and Adyn∗, since they play an important role throughout the article. For the
time-resolved operator Adyn∗, we calculate

Adyn∗g(t, x) =
∫


Y

k(t, y, x) g(t, y) dy.

A change of coordinates in the integral 〈A�f, g〉L2 leads to the representation

A∗�g(x) =
∫
[0,T ]×
Y

k(t, y, �−1t x) g(t, y) dt dy. (10)

If we denote

At : L2(
X) −→ L2(R
m)

f �→ At f (y) := Af (t, y)

for fixed t ∈ [0, T ], then, with

A∗g(x) =
∫
[0,T ]

A∗t gt (x) dt,

it holds

Adyn∗g(x) = A∗t gt (x), (11)

and
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A∗�g(x) =
∫
[0,T ]
| detD�−1t x|A∗t gt (�

−1
t x) dt (12)

for g ∈ L2([0, T ] × R
m) with gt (y) := g(t, y).

With the mathematical model at hand, we now develop suitable regularization
methods within the subsequent sections.

3 Compensating Moderate Deformations

In this section, we study regularization strategies for dynamic inverse problems with
moderate motion. To this purpose, we consider the more general setting of A being
a mapping into a weighted L2-space, i.e.

A : L2(
X)→ L2([0, T ] ×
Y , w)

with a measurable weight w. Considering such weighted L2-spaces has several
advantages, for instance with respect to mapping properties or the derivation of a
singular value decomposition. Regarding the Radon transform R for instance, the
singular value decomposition is known if R is considered as mapping L2(V1(0))→
L2([0, 2π ] × [−1, 1], w) with weight w(s) := (1− s2)−1/2.

In case of a moderate deformation, the dynamic forward operatorA� is given by
A� = VA with an operatorV as stated in (9). We start by summarizing properties
of this mapping V from [16].

Theorem 1 The operator

V : L2([0, T ] ×
Y , w) −→ L2(M([0, T ] × R
m), w�)

Vg(t, y) = α(t, y) g(M(t, y))

with weight w�(t, y) = | detDM(t, y)|α(t, y)−2 w(M(t, y)) is linear and bijective
with inverse

V−1 = V∗.

Proof According to its Definition, V is linear. We first compute its adjoint

V∗ : L2(M([0, T ] ×
Y ), w�) −→ L2([0, T ] ×
Y , w).

It holds

〈Vg, h〉L2([0,T ]×
Y ,w�) =
∫
[0,T ]×
Y

Vg(t, y) h(t, y) w�(t, y) dtdy
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=
∫
[0,T ]×
Y

α(t, y)−1 g(M(t, y)) h(t, y) | detDM(t, y)|w(M(t, y)) dtdy

=
∫

M([0,T ]×
Y )

g(t, y) m
(
M−1(t, y)

)−1
h(M−1(t, y)) w(t, y) dtdy

= 〈g,V∗h〉L2(M([0,T ]×
Y ),w)

with V∗h(t, y) = m
(
M−1(t, y)

)−1
h(M−1(t, y)). For g ∈ L2([0, T ] × 
Y , w),

we further obtain

V∗Vg(t, y) = m
(
M−1(t, y)

)−1
Vg(M−1(t, y))

= m
(
M−1(t, y)

)−1
m

(
M−1(t, y)

)
g(M(M−1(t, y)))

= g(t, y),

and respectively for g ∈ L2(M([0, T ] ×
Y ), w�)

VV∗g(t, y) = g(t, y),

i.e. V−1 = V∗. ��
Due to the properties of V verified in Theorem 1, many properties of the static

operator A transfer directly to its dynamic counterpart A� . A detailed overview
is given in [16]. The following Lemma states some of these properties which are
relevant regarding the formulation of suitable dynamic regularization methods.

Lemma 1

(i) IfA : L2(
X)→ L2([0, T ] ×
Y , w) is continuous, then

A� : L2(
X)→ L2(M([0, T ] ×
Y ), w�)

is continuous.
(ii) Regarding the nullspace, noted N, it holds

N(A�) = N(A). (13)

(iii) LetA† be the generalized inverse ofA. Then, the pseudoinverse ofA� is given
by

A†
� = A†V−1.
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Proof

(i) Since V is a unitary transformation, it holds

‖A�‖L2(M([0,T ]×
Y ),w�) = ‖A‖L2([0,T ]×
Y ,w).

(ii) The nullspace property follows from the bijectivity of V.
(iii) Let f = A†

�g, i.e. f ∈ N(A�)⊥ and A∗�A�f = A∗�g. Since V is a unitary
operator, it holds

A∗�A� = A∗V∗VA = A∗A,

and further

A∗Af = A∗V−1g.

Due to the nullspace property (13), f ∈ N(A�)⊥ implies f ∈ N(A)⊥. Thus,
f = A†V−1g.

��
From the proof of Lemma 1 iii), it follows directly for the domain D(A†

�) =
R(A�)⊕ R(A�)⊥, where R(A�) denotes the range of A�:

Corollary 1 For g ∈ D(A†
�), it holds V−1g ∈ D(A†).

With these properties, we can show the following regularization property.

Theorem 2 Let the family (Tγ )γ∈(0,∞) be a regularization forA†. Then, the family
(Sγ )γ∈(0,∞) with

Sγ := TγV−1

is a regularization for A†
� .

Proof Let g ∈ D(A†
�) and ‖g − gε‖ ≤ ε. With Corollary 1, it follows V−1g ∈

D(A†) and due to the unitary property of V, it holds ‖V−1g −V−1gε‖ = ‖g −
gε‖ ≤ ε. Since (Tγ )γ∈(0,∞) is a regularization forA†, we obtain with the parameter
choice rule γ = γ (ε, gε) and the regularizing property of (Tγ )γ∈(0,∞)

lim
ε→0

gε→g

Sγ (ε,gε)g
ε = lim

ε→0
gε→g

Tγ (ε,gε)V−1gε = A†V−1g = A†
�g.

This concludes the proof. ��
Thus, for moderate deformations, we obtain a dynamic regularization method

for solving A�f0 = g by adapting any static regularization for A according to the
transformV.
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Further properties, including a singular value decomposition and a characteri-
zation of the ill-posedness of the dynamic forward operator A� under moderate
deformation � can be found in [16].

Example: Photoacoustic Tomography
To illustrate the theoretical results of this section, we consider the static
inverse problem Af = g with the circular Radon transform

Af (θ(t), r) = 1

2πr

∫
V1(0)

f (x) δ(r − ‖θ(t)− x‖) dx, (14)

which integrates a measurable function f supported inside the unit disk
V1(0) ⊂ R

2 along circles

C(t, r) = {x ∈ R
2 : ‖x − θ(t)‖ = r}

with θ(t) = (cos(t), sin(t))T and (t, r) ∈ [0, 2π ] × (0,∞). This operator
represents for instance a simplified mathematical model in 2D photoacoustic
tomography (PAT), see for instance [26].

Theorem 3 Let (�t )t∈[0,T ] describe a rotational movement of the initial state
f0, i.e. �tx := Atx with unitary matrix

At =
(
cos(ωt ) − sin(ωt )

sin(ωt ) cos(ωt )

)
∈ R

2×2

for all t ∈ [0, 2π ] with ωt ∈ R such that {θ(t + ωt) : t ∈ [0, 2π ]} = S1.
Then, the dynamic operator A� is related to the static transform A via

A� = VA

withVg(θt , r) = g(θωt+t , r).

Thus, rotations as stated in the Theorem are moderate deformations with
respect to the spherical Radon transform.

Proof According to (7), the dynamic operator A� with the stated motion
model is given by

A�f (t, r) = 1

2πr

∫
V1(0)
| detA−1t | f (x) δ(r − ‖θ(t)− A−1t x‖) dx.

(continued)
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For each t ∈ [0, 2π ], At represents a rotation with angle ωt , i.e. it holds
| detA−1t | = 1, and we further obtain

A�f (θ(t), r) = 1

2πr

∫
V1(0)

f (x) δ(r − ‖Atθ(t)− x‖) dx

= VA�(θ(t), r)

withVg(θ(t), r) = g(θ(ωt + t), r). ��
Remark 2

(i) Please note that the property {θ(t + ωt) : t ∈ [0, 2π ]} = S1

guarantees the required diffeomorphism property of the transform T :
S1 × (0,∞) −→ S1 × (0,∞). Descriptively, this condition ensures that
all information about the object f are actually encoded in the dynamic
data g = A�f . This is studied in more detail in the subsequent book
chapter Microlocal properties of dynamic Fourier integral operators.

(ii) Theorem 3 states, that in the presence of an object rotation, the dynamic
operator A� still integrates along circles. The additional constraint on
the rotation sequence (At )t∈[0,2π ] ensures, that all these modified circles
cover the complete unit disk (i.e. the support of the object).

Theorem 4 A suitable reconstruction method SDFBP : L2(S
1 × (0, 2)) →

L2(V1(0)) for dynamic photoacoustic tomography with rotational movement
as stated above is given by

SDFBPg(x) = 1

2π

∫ 2π

0

∫ 2

0
(∂rr∂rg)(θ(t), r) log

∣∣∣r2 − ‖x − �tθ(t)‖2
∣∣∣ dr dt.

Proof Since rotational deformations as stated above are moderate defor-
mations with respect to the circular Radon transform, we obtain a suitable
dynamic reconstruction method by adapting an established regularization
strategy from the static case. The circular Radon transform as given in (14) is
well known in the literature and various inversion formulae were worked out,
for instance in the 2D case as

f (x) = 1

2π

∫ 2π

0

∫ 2

0
(∂rr∂rAf )(θ(t), r) log

∣∣∣r2 − ‖x − θ(t)‖2
∣∣∣ drdt

=: TFBP f (x),

(continued)
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see [11], providing a static reconstruction method denoted TFBP . Thus,
SDFBP := TFBPV−1 is a dynamic reconstruction method according to
Theorem 2 and with the representation of V, it holds

SDFBP g(x) = 1

2π

∫ 2π

0

∫ 2

0
(∂r r∂rV−1g)(θ(t), r) log

∣∣∣r2 − ‖x − θ(t)‖2
∣∣∣ drdt

= 1

2π

∫ 2π

0

∫ 2

0
V−1(∂r r∂rg)(θ(t), r) log

∣∣∣r2 − ‖x − θ(t)‖2
∣∣∣ drdt

= 1

2π

∫ 2π

0

∫ 2

0
(∂r r∂rg)(θ(t), r) log

∣∣∣r2 − ‖x − Atθ(t)‖2
∣∣∣ drdt.

This concludes the proof. ��
For the numerical evaluation, we consider the phantom depicted in Fig. 4

(left). In this example, the phantom performs on the time interval [0, π ] a
rotational movement given by the angles ωt = t/10, t ∈ [0, π ] and during
[π, 2π ] returns to its initial state. The state of the object at the end of the
scanning is shown in Fig. 4 (right).

The respective PAT data are simulated by discretizing the forward operator
A� with the trapezoidal rule with 1400 samples. More precisely, we hereby
obtain the discrete data

gj,k := (A�tj
f )(tj , rk), j = 1, . . . , N and k = 1, . . . , M,

where tj are uniformly distributed angles in [0, 2π), rk uniformly distributed
in [0, 2] with N = 300, M = 300. Furthermore, in order to test stability, we
add a sample of White Noise to the data set, corresponding to a noise level of
2.5%.

The result of the above stated reconstruction method is illustrated in Fig. 5
(left), which shows the reconstructed initial state of the object on a 512× 512
grid. Figure 5 (right) illustrates the result of the static filtered backprojection
algorithm applied to the dynamic data. The comparison with the exact initial
state shows that the dynamic reconstruction technique in fact compensates for
the motion while the static algorithm causes strong distortion artefacts.

Further examples, including a detailed evaluation regarding computerized
tomography can be found in [16].
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Fig. 4 Phantom at the initial
time t = 0 (left) and at half
time of the scanning, i.e. at
time t = π (right)

Fig. 5 Dynamic
reconstruction at the initial
time (left) and static
reconstruction (right) from
noisy data

4 Compensating General Deformations via the Method of
the Approximate Inverse

After working out a regularization theory for moderate deformations, we now turn
towards the more general scenario of strong deformations. To this purpose, we focus
on (8) and apply the method of the approximate inverse which calculates linear
functionals of the sought-for solution, see [30, 32]. To simplify the notation, we
consider in the following

A : L2(
X)→ L2([0, T ] ×
Y ),

i.e. as mapping between classical L2-spaces. Nevertheless, the presented theory can
be easily extended to weighted L2-spaces as well.

4.1 The Method of the Approximate Inverse

In order to obtain a stable approximation of the solution f0, we calculate the
smoothed version f

γ

0 ,

f0(x) ≈ f
γ

0 (x) = 〈f0, δ
γ
x 〉L2(
X)
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with a prescribed mollifier δ
γ
x . The precise definition of a mollifier is given in the

following, see also [46].

Definition 1 For all x ∈ 
X, let δ
γ
x ∈ L2(
X) with

∫

X

δ
γ
x (z) dz = 1, γ > 0.

Let further

f γ (x) =
∫


X

f (z) δ
γ
x (z) dz

converge to f in L2(
X) as γ → 0. Then, δγ
x is called a mollifier.

A mollified version f
γ

0 can be reconstructed by evaluating linear functionals on
the measured dynamic data g = A�f0.

Theorem 5 Let δ
γ
x ∈ L2(
X) be a mollifier and let ψ

γ
x be the solution of

A∗�ψ
γ
x = δ

γ
x . (15)

Then,

f
γ

0 (x) = 〈g, ψ
γ
x 〉L2([0,T ]×
Y ).

Equation (15) is called auxiliary problem, its solution ψ
γ
x called reconstruction

kernel. SinceA� depends on the dynamic behavior, we speak of Eq. (15) as dynamic
auxiliary problem, and of ψ

γ
x as dynamic reconstruction kernel.

As a further specification, we call ψ
γ
x a special reconstruction kernel since it

depends on the specific reconstruction point x.

The Approximate Inverse
Theorem 5 introduces an operator Sγ : L2([0, T ] × 
Y ) → L2(
X) with
Sγ g(x) = 〈g, ψ

γ
x 〉L2 , which is called approximate inverse of A� . The

regularization property of the method is ensured by imposing conditions on
the mollifier and on the choice of parameter γ [30, 31]. The effect of the
dynamic behavior on the smoothing properties of the forward operator is
analyzed in the chapter Microlocal properties of dynamic Fourier integral
operators [19].

Since the auxiliary problem (15) is independent of the data, the reconstruction
kernel ψ

γ
x can be precomputed. In principle, mollifiers for different reconstruction

points x can be chosen independently. In this case, however, the auxiliary problem
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(15) has to be solved for distinct right-hand sides leading to high computational
costs and storage needs. This effort can be reduced by considering invariances of
A∗� .

Theorem 6 Let

T x
1 : L2(
X)→ L2(R

n), T x
2 : L2([0, T ] ×
Y )→ L2([0, T ] × R

m)

be linear operators with

T x
1 A
∗
� = A∗�T x

2 , (16)

and let ψγ be a solution of the auxiliary problem

A∗�ψγ = δγ (17)

with δγ ∈ L2(
X). Then a solution of

A∗�ψ
γ
x = δ

γ
x

with the special mollifier

δ
γ
x = T x

1 δγ (18)

is given by

ψ
γ
x = T x

2 ψγ .

Proof According to the relations (16), (17), and (18), it holds

A∗�T x
2 ψγ = T x

1 A
∗
�ψγ = T x

1 δγ = δ
γ
x ,

and thus, T x
2 ψγ solves the auxiliary problem A∗�ψ

γ
x = δ

γ
x . ��

Consequently, only a single auxiliary problem has to be solved while the special
mollifiers and corresponding reconstruction kernels are generated by applying the
operators T x

1 and T x
2 , respectively.

Remark 3 The method of the approximate inverse can be extended to enable the so-
called feature reconstruction, where a featureLf0 with a linear feature operatorL is
determined directly from the measured data, see [20, 31]. In this case, the respective
reconstruction kernel can be computed by solving the auxiliary problem

A∗�ψ
γ
x = L∗δγ

x ,
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and efficient algorithms are obtained by considering linear invariance properties for
A∗� as well as L∗.

4.2 Computing the Dynamic Reconstruction Kernel

We now address the solution of the auxiliary problem (15). In static CT, for instance,
an explicit representation of the kernel ψγ can be derived using the inversion
formula for the Radon transform [31]. For dynamic forward operators A� , no
general inversion formula is known so far. Thus, we present an alternative strategy
to compute suitable dynamic reconstruction kernels. The idea consists in exploiting
the relation with the time-resolved forward operator Adyn and its adjoint operator.

Adyn∗g(t, x) =
∫
Rm

k(x, t, y) g(t, y) dy.

Theorem 7 Let δ
γ
x be a mollifier for the initial state function f0 and denote

e
γ

0,x(t, z) =
(∫
[0,T ]
| detD�−1v (�tz)| dv

)−1
δ
γ
x (�tz). (19)

Further assume there exists ψ
γ

0,x with

A∗ψγ

0,x = e
γ

0,x . (20)

Then, it holds

(i)

〈f, e
γ

0,x〉L2([0,T ]×
X) = 〈f0, δ
γ

0,x〉L2(
X),

in particular, e
γ

0,x is a time-dependent mollifier incorporating the motion
information,

(ii)

Adyn∗
�ψ

γ

0,x = δ
γ
x ,

i.e. ψγ

0,x is our searched-for reconstruction kernel.

Proof

(i) From the definition of e
γ

0,x , it follows
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∫
[0,T ]
| detD�−1t z| eγ

0,x(t, �−1t z) dt

=
∫
[0,T ]
| detD�−1t z| δγ

x (z)

(∫
[0,T ]
| detD�−1v (z)| dv

)−1
dt = δ

γ
x (z).

Together with the temporal correlation (1), namely f (t, x) = f0(�tx), the
support property (2) and the substitution z := �t(z), we then obtain

〈f, e
γ

0,x〉L2([0,T ]×
X) =
∫
[0,T ]×
X

f (t, z) e
γ

0,x(t, z) dt dz

=
∫
[0,T ]×Rn

f0(�tz) e
γ

0,x(t, z) dt dz

=
∫
[0,T ]×Rn

f0(z) | detD�−1t z| eγ

0,x(t, �−1t z) dt dz

=
∫
Rn

f0(z) δ
γ
x (z) dt dz

= 〈f0, δ
γ
x 〉L2(
X).

A simple calculation further shows

∫
[0,T ]×Rn

e
γ

0,x(v, z) dv dz =
∫
Rn

δ
γ
x (z) dz = 1,

i.e. e
γ

0,x is in fact a time-dependent mollifier for f (0, x) according to Defini-
tion 1.

(ii) The correlation between δ
γ
x and e

γ

0,x from the proof of i) along with the equation

Adyn∗ψγ

0,x = e
γ

0,x and the representations ofAdyn∗ andA∗� , see (11) and (12),
yields

δ
γ
x (z) =

∫
[0,T ]
| detD�−1t z| eγ

0,x(t, �−1t z) dt

=
∫
[0,T ]
| detD�−1t z|Adyn∗ψγ

0,x(t, �−1t z) dt

=
∫
[0,T ]
| detD�−1t z|A∗t ψγ

0,x(t, �−1t z) dt

= A∗�ψ
γ

0,x(z).

Thus, ψγ

0,x is the searched-for dynamic reconstruction kernel.
��
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Exploiting invariances, it is sufficient to solve the auxiliary problem for x = 0,
i.e. Adyn∗ψγ = eγ with eγ := e

γ

0,0.

What if eγ Is Not in the Range ofA∗?
If eγ is not in the range of A∗, then the auxiliary problem A∗ψγ = eγ has
no solution in the classical sense and instead, the generalized solution via the
Moore-Penrose inverse has to be computed. However, an analysis provided
in [15] turns out, that in the static setting, the generalized solution of (20)
does not represent an adequate approximation to the exact kernel. Thus, [15]
proposed instead to approximate ψγ by minimizing the penalized defect

∥∥∥Adyn∗ψγ − eγ
∥∥∥2 + α

∥∥ψγ − ψγ,stat
∥∥2 , α > 0,

or equivalently by solving the normal equation

(AdynAdyn∗ + αI)ψγ = Adyneγ + αψγ,stat

with the identity operator I , incorporating the exact static reconstruction
kernel in the penalty term. The numerical examples in [15] as well as our
results in Sect. 4.3 will illustrate that reconstruction kernels of this kind
provide in fact a good motion compensation. Besides, the normal equation
is an integral equation of the second kind, so it can be solved numerically
without the severe problems arising for equations of the first kind.

We now address suitable invariance operators for the dynamic scenario. This is
studied in detail in [15].

For affine deformations, we can adapt invariances holding in the static case to
invariance properties in the dynamic case.

Theorem 8 Let T x
1 : L2(
X) −→ L2(R

n) and T
x,t
2 : L2(
Y ) −→ L2(R

m) be
invariance operators for the static problem with fixed time instance t , i.e.

T x
1 A
∗
t = A∗t T

x,t
2 ∀ x, t.

Then, for affine motion functions �t , t ∈ [0, T ], it holds

T x
1 A
∗
� = A∗�T

dyn

2

with

T
dyn

2 : L2([0, T ] × R
m) −→ L2([0, T ] × R

m)
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T
dyn

2 g(t, y) := T
�−1t x−�−1t 0,t
2 gt (y).

Proof Since �t is an affine mapping, it holds in particular

�−1t (z− x) = �−1t z− (�−1t x − �−1t (0)).

With the definition of the involved operators, we obtain

A∗�T
dyn

2 g(z) =
∫
[0,T ]
| detD�−1t z|A∗t T �−1t x−�−1t 0,t

2 gt (�
−1
t x) dt

=
∫
[0,T ]
| detD�−1t z| T �−1t x−�−1t 0

1 A∗t gt (�
−1
t z) dt

=
∫
[0,T ]
| detD�−1t z|A∗t gt (�

−1
t z− (�−1t x − �−1t 0)) dt

=
∫
[0,T ]
| detD�−1t z|A∗t gt (�

−1
t (z− x)) dt

= A∗�g(z− x)

= T x
1 A
∗
�g(z).

This concludes the proof. ��
Remark 4 As discussed in [15], deriving linear invariances in the presence of non-
linear object motion might in general not be possible. Hence, the use of approximate
invariances is suggested instead and an error analysis has been provided. For our
numerical examples, we are going to use approximate invariance which are exact for
affine deformations, namely by using the operators T x

1 and T
dyn

2 as defined above.

4.3 Applications

We want to illustrate our general dynamic reconstruction technique at the example
of 3D X-ray tomography. An evaluation regarding 2D computerized tomography
with parallel scanning geometry can be found in [15].

Example: 3D X-Ray Tomography
We consider an X-ray source emitting a cone of X-rays through the studied
specimen to a 2D detector. The movement of the combination source-detector
determines different geometries. Let M ⊂ R

3 describe the curve of the X-ray

(continued)
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source. Then, the mathematical model of 3D-CT for a static object h is given
by the cone-beam transform

Dh(a, θ) =
∫ ∞
0

h(a + βθ) dβ

with a ∈ M ⊂ R
3 denoting the position of the source and θ ∈ S2

characterizing the direction of the ray.
One simple realization consists in rotating the radiation source on

a circle around the specimen with radius R > 0, i.e. M =
{R (cos(ϕ), sin(ϕ), 0)T |ϕ ∈ [0, 2π ]}. Despite some drawbacks from a
mathematical point of view (for instance the Tuy–Kirillov condition is not
satisfied resulting in incomplete data), this geometry is used in many real-
world applications. Thus, we consider this setting in the following.

As in the 2D case, see the example of the Radon transform on page 7, the
rotation of the radiation source represents the time-dependent step of the data
acquisition, i.e. we identify the angle ϕ which characterizes the current source
position as time variable. Thus, we obtain the dynamic operator

Ddynf (t, θ) =
∫ ∞
0

f (a(t)+ βθ, t) dβ

for a time-dependent function f ∈ L2([0, T ]×
X). If we further incorporate
the motion information, we obtain

D�f0(t, θ) =
∫ ∞
0

f0(�t (a(t)+ βθ)) dβ

as dynamic operator for the initial state f0, respectively.
In order to derive a reconstruction algorithm which compensates for the

motion, we apply the method proposed in Sect. 4.2. Following Theorem 7, we
determine the reconstruction kernel ψγ by considering the auxiliary problem

Ddyn∗ψγ = eγ , (21)

with the time-dependent mollifier eγ (19) stemming from the static mollifier
δγ .

Lemma 2 The adjoint operatorDdyn∗ as mapping from L2([0, 2π ] × S2) to
L2([0, 2π ] × R

3) is given by

Ddyn∗g(t, x) = ‖x − a(t)‖−2 g

(
a(t),

x − a(t)

‖x − a(t)‖
)

.

(continued)
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Proof Since the investigated object has compact support (and is surrounded
by source and detector), there is a minimal radius L such that suppf ⊂ VL(0)
and L < R. Therefore, in the definition of the cone beam transform, we can
restrict ourselves to the integration over a compact interval [L1, L2] ⊂ R,
where 0 < L1 < R − L and L2 > L + R. This results in the following
representation for the dynamic operator

Ddynf (t, θ) =
∫ L2

L1

f (a(t)+ βθ, t) dβ.

With the substitution x := a(t)+ βθ , we obtain

〈Ddynf, g〉L2([0,2π ]×S2) =
∫
[0,2π ]

∫
S2

∫ L2

L1

f (a(t)+ βθ, t) g(t, θ) dβ dθ dt

=
∫
[0,2π ]

∫
VL(0)

f (x, t) ‖x − a(t)‖−2

g

(
t,

x − a(t)

‖x − a(t)‖
)

dx dt,

and thus the stated representation for Ddyn∗. ��
A generalized solution of (21) is computed via the penalized normal

equation

(DdynDdyn∗ + αI)ψγ = Ddyneγ + αψγ,stat .

Due to the property

DdynDdyn∗g(t, θ) =
∫ L2

L1

Ddyn∗g(a(t)+ βθ, t) dβ

=
∫ L2

L1

‖βθ‖−2 g

(
t,

βθ

‖βθ‖
)

dβ

=
(

1

L1
− 1

L2

)
g(t, θ),

with appropriately selected L1, L2 ∈ R (see proof of Lemma 2), we obtain

ψγ =
(

1

L1
− 1

L2
+ α

)−1 (
Ddyneγ + αψγ,stat

)
.

(continued)
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Thus, the reconstruction kernel for dynamic cone-beam tomography results
from averaging the generalized solution of the dynamic auxiliary problem
and the static reconstruction kernel. In the static case, suitable reconstruction
kernels have been derived for the circular cone beam transform. For instance,
the static reconstruction kernel associated to the Gaussian mollifier

δγ (z) = (2π)−3/2 1

γ 3
e
−‖z‖2

2γ 2

has been computed by Weber in his PhD-thesis [49] and in [33]. Further, he
and his co-authors derived the special reconstruction kernels ψ

γ,stat
x by

ψ
γ,stat
x (a(t), θ) = T

x,t
2 ψγ (a(t), θ)

with (approximate) invariance operator

T
x,t
2 ψ(a(t), θ) = R2

‖a − x‖2ψ(a, UT
x θ),

where UT
x corresponds to the unitary matrix that rotates a−x

‖a−x‖ onto a/R, i.e.

UT
x

a − x

‖a − x‖ =
a

R
.

We adapt this invariance operator according to Theorem 8 and Remark 4 to
the dynamic setting with motion model �.

Numerical Results

The algorithm is tested for the three-dimensional phantom with compact
support in V1(0) whose initial state is shown in Fig. 6 (first row) for three
different cross sections throughout the object. The dynamic behavior is
described by the nonlinear scaling

�tx =

⎛
⎜⎜⎝

(s1(t) x1+1)5−1
5s1(t)

(s2(t) x2+1)5−1
5s2(t)

x3
s3(t)

⎞
⎟⎟⎠

with

(continued)
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Fig. 6 Initial state (first row) and final state (second row) of our 3D phantom with nonaffine
deformation. The three columns correspond to different crossections of the phantom (first column:
fixed component x3 = 0, second column: fixed component x2 = −0.27, third column: fixed
component x1 = 0)

s1(t) = 4
√
sin(0.0375 · t/π), s2(t) = 4

√
sin(0.045 · t/π),

s3(t) = 1+ 25

128
(s1(t)+ s2(t)), t ∈ [0, 2π ].

To illustrate this dynamic behavior, the final state of the three cross sections
is shown in Fig. 6 (last row). The respective dynamic cone-beam data are
simulated for 360 source positions rotating on a circle with radius R = 8 and
801× 801 planar detector points. In order to account for the statistical nature
of photon emission, we further add noise to the simulated data characterized
by the Poisson distribution resulting in an overall peak-signal-to-noise-ratio
of 16 dB (corresponding to a noise level of approximately 6%).

We then apply the proposed dynamic algorithm with regularization param-
eters γ = 0.0025 and α = 1. We further choose L1 = R−1

2 and L2 = 2R.

(continued)
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Fig. 7 Dynamic reconstruction (first row) and static reconstruction (second row) from noisy
dynamic data. The three columns correspond to different crossections of the phantom (first column:
fixed component x3 = 0, second column: fixed component x2 = −0.27, third column: fixed
component x1 = 0)

The respective reconstruction result is shown in Fig. 7 (first row) for the three
cross sections of the object. As a comparison, the second row of Fig. 7 depicts
the respective result when the algorithm with the static filter from [33] with
regularization parameter γ = 0.0025 is applied to the dynamic data. Compar-
ing the results highlights the motion compensation property of the proposed
dynamic reconstruction approach. Despite the severe non-affine displacement
during the data collection, the initial state is reconstructed without distortions
or motion artefacts. With a static algorithm however, severe distortions arise.
In particular, the small inclusion in the right ellipse (see first and second
column) is not visible in the static reconstruction for x2 = −0.27 (since it
moved out from this cross section in the course of the data acquisition). In
practical applications, the motion parameters have to be extracted beforehand,
see our discussion in Sect. 2.1. Thus, we further want to evaluate how

(continued)
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our dynamic reconstruction strategy performs in combination with a potential
motion estimation procedure. For this purpose, we apply the dynamic recon-
struction algorithm with approximate motion parameters, which are obtained
by adding noise samples uniformly distributed in [−0.09, 0.09] to the exact
parameters. These noise samples correspond to a relative estimation error
of 12, 5%. Figure 8 provides a visual comparison between the exact motion
parameter s1 and the noisy version used for the reconstruction step.

The result of the dynamic algorithm with approximate motion parameters
is displayed in Fig. 9. This experiment shows that the dynamic regularization
technique compensates well for the motion even if its parameters are not
exactly known.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

0

0.2

0.4

0.6

exact motion paramter s1(t)
noisy motion parameter

Fig. 8 Motion parameter s1(t) for t ∈ [0, 2π ] (solid line) and its noisy version (dashed line)

Fig. 9 Dynamic reconstruction with noisy motion parameters with nonaffine deformation from
noisy dynamic data. The three columns correspond to different crossections of the phantom (first
column: fixed component x3 = 0, second column: fixed component x2 = −0.27, third column:
fixed component x1 = 0)
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5 Conclusion

In this chapter, we presented regularization strategies to solve general linear
dynamic inverse problems with known object motion. In particular, our method
based on the approximate inverse is not restricted to affine deformations. The numer-
ical results from 3D cone-beam tomography illustrate its capability to compensate
for strong, non-affine motion. The subsequent chapter provides a complementary
study on the effect of the motion on the overall information content in dynamic
data.
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Microlocal Properties of Dynamic
Fourier Integral Operators

Bernadette N. Hahn, Melina-L. Kienle Garrido, and Eric Todd Quinto

Abstract Following from the previous chapter Motion compensation strategies in
tomography, this article provides a complementary study on the overall information
content in dynamic tomographic data using the framework of microlocal analysis
and Fourier integral operators. Based on this study, we further analyze which
characteristic features of the studied specimen can be reliably reconstructed from
dynamic tomographic data and which additional artifacts have to be expected in
a dynamic image reconstruction. Our theoretical results, in particular the affect of
the dynamic behavior on the measured data and the reconstruction result, is then
illustrated in detail at various numerical examples from dynamic photoacoustic
tomography.

1 On Singularities and Artifacts

In the previous chapter Motion compensation strategies in tomography [16], we
studied regularization strategies for solving time-dependent inverse problems in
tomography, which arise when the investigated specimen changes during the data
acquisition process. In this article, we now provide a complementary study on the
overall information content of such dynamic tomography data. In particular, we
show how the respective information content affects the reconstruction quality.

Typically, the searched-for quantity f in tomographic applications can be
considered as a piecewise constant function, where each value represents a specific
material (e.g. bone, brain, air, etc.). In this case, the gradient ∇f –or more precisely
the singularities of f –contain much of the information about f . A rigorous
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mathematical definition of singularity is given in Sect. 2 along with an intuitive
example.

The task “finding f from measured data g = Af ” then corresponds to
“extracting the singular features of f from g”. Thus, a thorough analysis on how
an operator A encodes singular features has to be developed in order to fully
understand the reconstruction process. This in turn can provide important insights
regarding the design of reconstruction operators in order to avoid the formation of
unwanted artifacts in the resulting reconstruction.

The most prominent example is limited-angle computerized tomography. In
various applications, the radiation source cannot perform a complete 180- or
360◦ rotation around the specimen, such as for instance in dental diagnostics.
If data are only measured for a subinterval of this angular range, the standard
CT-reconstruction algorithm causes additional features, namely streak artifacts, to
appear in the reconstruction results, see Figs. 2 and 3. Furthermore, certain singular
features are missing in the reconstructed image.

An analysis of singularities and artifacts requires deep mathematics, namely the
theory of microlocal analysis which goes back to techniques developed by Hör-
mander and others based on Fourier transforms. Over the last decades, microlocal
analysis has been employed to understand image formation in static tomographic
problems such as classical X-ray CT [9, 27, 31], seismics [5, 11, 29], sonar [10, 25],
radar [1, 6, 28, 36], electron microscope tomography [32], Compton CT [34, 39],
and geodesic transforms [8, 19].

In this article, we extend these classic results to dynamic tomography problems.
In particular, we tackle the following questions:

• How does the dynamic behavior of the object affect the information content of
the data g?

• Which singular features can be reliably reconstructed from dynamic tomography
data?

• Which additional artifacts have to be expected in a dynamic image reconstruc-
tion?

Such a rigorous mathematical characterization can have great benefits in appli-
cations. For instance, it allows radiologists to determine whether a singularity in the
reconstructed image belongs to the object or represents an artifacts, thereby making
more reliable medical diagnoses. It could further serve as a basis for developing
an adaptive data sampling protocol depending on the motion of the patient so
that the measurements encode all relevant information. The analysis based on the
model operator A could also be combined with data driven methods for image
reconstruction or image post-processing in order to guarantee reliable results.

Microlocal analysis has begun to be used in motion-compensated CT [18, 22, 23]
with extensions to generalized dynamic Radon transforms [17, 33]. The aim of this
article is to provide a general framework for dynamic Fourier integral operators
along with a characterization of visible singularities and added artifacts.

With this aim in mind, the article is organized as follows. In Sect. 2, we provide
the basic concepts from microlocal analysis, including the concepts of singularities,
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Fourier integral operators and artifacts. Next, in Sect. 3, we derive the concept of
dynamic Fourier integral operators based on an underlying motion model, and we
study how these operators encode the singularities of the searched-for quantity in
the measured data. Due to their practical relevance in tomography, we provide, in
particular, a detailed analysis for the special case of generalized dynamic Radon
transforms. Section 4 addresses the reconstruction problem assuming the motion
is known exactly. In particular, we characterize visible and added singularities
in dynamic reconstructions using methods of filtered backprojection type. Our
theoretical results are then illustrated in Sect. 5 for various numerical examples from
dynamic photoacoustic tomography (PAT).

2 Basic Concepts of Microlocal Analysis

In this section we will outline the basic microlocal principles used in the article. We
refer to [20, 21, 24, 37, 38] for more details.

First, we introduce some basic notation. Let x = (x1, x2) be in R
2 and let h be

a real-valued function of variables including x. Let G = (g1, g2)
T be an R

2-valued
function of variables including x. Then we define

Dxh =
(

∂h

∂x1
,

∂h

∂x2

)
, DxG =

(
∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

)
=

(
Dxg1

Dxg2

)

and other derivatives are defined in a similar way; for example, if h depends on t ,
then we define Dth = ∂h

∂t
.

We now introduce notation for higher derivatives. Let n ∈ N, then the point
α = (α1, α2, . . . , αn) ∈ {0, 1, 2, . . . }n is called a multi-index. Let 
 be an open
subset of Rn and let h : 
→ R be smooth. Then we define

Dαh = ∂α1

∂x
α1
1

∂α2

∂x
α2
2

. . .
∂αn

∂x
αn
n

h and

|α| = α1 + α2 + · · ·αn.

(1)

Now, we introduce some basic function classes. The set D(Rn) consists of all
C∞ smooth functions of compact support in R

n and fk → f in D(Rn) if for
some fixed compact set K , all fk are supported in K and fk → f uniformly along
with all derivatives. The set E(Rn) is the set of all C∞ smooth functions on R

n

with convergence in E being uniform convergence on compact sets along with all
derivatives.

The dual space toD(Rn) is denotedD′(Rn) and called the space of distributions.
Its topology is defined by weak convergence (i.e., uk → u in D′(Rn) if for every
f ∈ D(Rn), uk(f ) → u(f )). The dual space to E(Rn) is the set E′(Rn) of all
distributions of compact support with the topology defined by weak convergence on
functions in E(Rn). More details on these function spaces can be found, e.g., in [35].
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2.1 A Rigorous Theory of Singularities

Wavefront sets are a precise classification of singularities of functions and the key
to understanding them is the relation between smoothness of f and rapid decay at
infinity of its Fourier transform, Ff (y) = 1

2π

∫
x∈R2 e−iy·xf (x)dx.

Smoothness and Rapid Decay
A distribution f ∈ E′(Rn) is smooth if and only if Ff is rapidly decaying at
infinity (i.e., Ff (ξ) decays at infinity faster than any power of 1/ ‖ξ‖).

The proof of this statement uses the Fourier inversion formula [35], boundedness
of F : L1(Rn)→ L∞(Rn), and that, under the Fourier transform, a derivative of f

becomes the product of a polynomial with Ff .

Definition 1 Let u ∈ D′(Rn) and let (x0, ξ0) ∈ R
n × (Rn \ {0}). Then u is smooth

at x0 in direction ξ0 if there is a smooth cutoff function at x0, ψ ∈ D(Rn) (i.e.,
ψ(x0) �= 0) and an open cone V containing ξ0 such that F(ψu)(ξ) is rapidly
decaying at infinity for all ξ ∈ V .

On the other hand, if u is not smooth at x0 in direction ξ0, then (x0, ξ0) ∈WF(u),
the C∞ wavefront set of u.

This definition generalizes the relation between rapid decay of Ff and smooth-
ness of f by considering decay near individual directions rather than in all
directions. Generally, the wavefront set is defined as a subset of a cotangent
bundle, but we will not use that abstraction since there is a natural identification
of Rn × (Rn \ {0}) with T ∗(Rn) \ {0}.

In particular, according to its definition, the vectors (x0, ξ0) ∈ WF(u) charac-
terize simultaneously the location, x0 ∈ R

n, and the direction, ξ0 ∈ R
n \ {0} of

singularities of f .

Example
The wavefront sets of characteristic functions can be understood intuitively.

First, let D be the unit disk in R2 and let χD , be its characteristic function.
Note that χD is smooth (either identically zero or identically one) away from
the boundary of D, namely the unit sphere S1. Therefore, the wavefront set
WF(χD) should involve only points x in this boundary. In fact, WF(χD) is
the set of normals to the boundary of the disk,

{
(x, tx)

∣∣ x ∈ S1, t �= 0
}

(continued)
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Fig. 1 An illustration of WF(u) when u = χD is the characteristic function of the unit disk D

(left) and when u = χR is the characteristic function of a rectangle R (right)

as illustrated in Fig. 1 (left). Intuitively, these normal vectors point in the
direction of greatest “non-smoothness.”

If S is an arbitrary set with smooth boundary, then the wavefront set of χS

consists of all normals to the boundary of S.
If the set S has a corner, then the wavefront set of χS will include all vectors

at the corner. For example, the wavefront set of the characteristic function
χR of a rectangle R will include all normal vectors along the edges of the
rectangle and all vectors at the vertices of the rectangle, see Fig. 1 (right).

In general, if u is not smooth at a point x, then u has wavefront set above
x; that is, for some ξ ∈ R

2 \ {0}, (x, ξ) ∈WF(u).

The following theorem will be important to analyze added artifacts.

Theorem 1 ([21, Theorem 8.2.10]) Let 
1 be an open set in R
n and let u ∈

E′(
1). If the following non-cancellation condition holds

∀(z, ξ) ∈WF(u) : (z,−ξ) /∈WF(χB), (2)

then the product χBu can be defined as a distribution. In this case,

WF(χBu) ⊂ Q(B,WF(u)),

where for W ⊂ 
1 × R
n \ {0}

Q(B, W) := {(z, ξ+η)
∣∣ z ∈ B, [(z, ξ) ∈ W∨ξ = 0]∧[(z, η) ∈WF(χB)∨η = 0]}.
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2.2 Fourier Integral Operators

In this section, we define the fundamental classes of operators on which our analysis
is based. Note that we do not give the general definitions but ones that are sufficient
for our purposes. In particular, we consider two-dimensional imaging problems
in this article, i.e. we set the dimension to n = 2 in the following. For other
applications, one would use the definition for general spaces in [38, Chapter VI.2]
or [20]. These operators are defined in terms of amplitudes and we start with this
definition.

Definition 2 (Amplitude of Order k) Let 
1 and 
2 be open sets in R
2 and let

m ∈ {1, 2}. Now let a(z, x, τ ) be a smooth function on 
1×
2×R
m. Then a is an

amplitude of order k if it satisfies the following condition. For each compact subset
K in 
1 ×
2 and each M ∈ N, there exists a positive constant CK,M such that

∣∣∣Dα
z D

β
x Dγ

τ a(z, x, τ )

∣∣∣ ≤ CK,M(1+ ‖τ‖)k−|γ | (3)

for all (z, x, τ ) ∈ K × R
m whenever |α| +

∣∣∣β
∣∣∣+ |γ | ≤ M .

We now define the general class of operators we consider in this article.

Definition 3 (Fourier Integral Operator (FIO)) Let m ∈ {1, 2} and let 
1
and 
2 be open subsets of R

2. The real-valued function � = �(z, x, τ ) ∈
C∞ (
1 ×
2 × (Rm \ {0})) is called a phase function if � is positive homoge-
neous of degree 1 in the phase variable τ . We define

�� =
{
(z, x, τ ) ∈ 
1 ×
2 × R

m \ {0} ∣∣ Dτ � = 0
}

(4)

and we call the phase function � non-degenerate if

Dz� and Dx� are both nonzero for all (z, x, τ ) ∈ ��. (5)

Now let a(z, x, τ ) be an amplitude (see Definition 2) of order k and let � be a
non-degenerate phase function.

The operator T defined for u ∈ E′(
2) by

Tu(z) =
∫

ei�(z,x,τ )a(z, x, τ )u(x)dx dτ (6)

is a Fourier Integral Operator (FIO) of order k + (m− 2)/2.
The canonical relation for T is

C := {
(z, Dz�(z, x, τ ); x,−Dx�(z, x, τ ))

∣∣ (z, x, τ ) ∈ ��

}
. (7)

Since the phase function � satisfies (5), the sets �� and C are smooth manifolds.
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Example (Radon Transform)
The mathematical model of computerized tomography is given by the classi-
cal Radon transform

Ru(ϕ, s) =
∫

u(x)δ(s − xT θ(ϕ)) dx,

which integrates u along the straight lines

{
x ∈ R

2
∣∣ xT θ(ϕ) = s

}

with θ(ϕ) = (cosϕ, sinϕ)T and δ the delta-distribution. Note that 
1 =
[0, 2π ] × R with 0 and 2π identified in this case; therefore the data variable
z ∈ 
1 has been replaced by (ϕ, s) ∈ [0, 2π ] ×R. This operator is an FIO of
order −1/2 with phase variable τ ∈ R \ {0} and representation

Ru(ϕ, s) =
∫

eiτ(s−xT θ(ϕ)) 1

2π
u(x) dx dτ,

where the phase function is �(ϕ, s, x, τ ) = τ(s−xT θ(ϕ)) and the amplitude
is a(ϕ, s, x, τ ) = 1

2π , which is a symbol of order zero. Note that this Fourier
representation of R is valid by the Fourier Slice Theorem (e.g., [26, Theorem
1.1]).

Example (Pseudodifferential Operators (PSIDOs))
We now define a special type of FIO. In this case, m = 2 and the phase
variable will be denoted ξ ∈ R

2. Let 
 be an open subset of R2.
Let the function a(z, x, ξ) for (z, x, ξ) ∈ 
 × 
 × R

2 be an amplitude
satisfying Definition 2. Define

�(z, x, ξ) = ξ · (z− x),

then � is a phase function satisfying the non-degeneracy condition (5).
Under these conditions the pseudodifferential operator (PSIDO)

Pu(z) =
∫

ei�(z,x,ξ)a(z, x, ξ)u(x) dx dξ

is an FIO satisfying Definition 3.

(continued)
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Note that, if the amplitude a has order k, then P is an FIO of order k

associated to the canonical relation

� =
{
(x, ξ, x, ξ)

∣∣ (x, ξ) ∈ 
×
(
R
2 \ {0}

)
.
}

Every smooth differential operator is a PSIDO, and its order as a PSIDO is
the same as its order as a differential operator.

2.3 FIO and Wavefront Sets

To state the theorems that describe how operators change wavefront sets, we need
the following definitions. Let X and Y be sets and let B ⊂ X× Y , C ⊂ Y ×X, and
D ⊂ X. Then, we define

Ct := {
(x, y)

∣∣ (y, x) ∈ C
}

C ◦D := {
y ∈ Y

∣∣ ∃x ∈ D, (y, x) ∈ C
}

B ◦ C := {
(x′, x) ∈ X ×X

∣∣ ∃y ∈ Y, (x′, y) ∈ B, (y, x) ∈ C
}

,

(8)

and

�L : C → Y, �L(y, x) = y

�R : C → X, �R(y, x) = x

are the natural projections from C.
Next, we note that the formal dual of an FIO is an FIO.

Theorem 2 ([20, Theorem 4.2.1]) Let T be an FIO of order k with canonical
relation C. Then the formal dual operator, T∗ to T is an FIO of order k with
canonical relation Ct .

The next definition is helpful to determine which singularities are visible, as we
will discuss in the next section.

Definition 4 Let T be an FIO given by (6) with amplitude a of order k. Then T
is elliptic if its amplitude a satisfies the following condition. For each compact set
K ⊂ 
1 ×
2 there are constants CK > 0 and SK > 0 such that for all (z, x) ∈ K

and for all τ ∈ R
m such that ‖τ‖ > SK ,

|a(z, x, τ )| ≥ CK(1+ ‖τ‖)k.
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Our next definition is fundamental for our results.

Definition 5 Let T be an FIO with canonical relation C. Then, T satisfies the semi-
global Bolker Assumption if the natural projection �L : C → 
1 × R

2 \ {0} is an
embedding–a smooth injective map with injective derivative.

Victor Guillemin [12, 14] called Definition 5 plus additional geometric condi-
tions (including that T is a Radon transform defined by a double fibration for which
the projection to X is proper, and �R is surjective) the Bolker Assumption. His
extra conditions assure that one can compose T∗ and T and that the composition
is an elliptic pseudodifferential operator. This is not true in general without extra
assumptions.

A straightforward calculation shows that PSIDOs satisfy the semi-global Bolker
Assumption.

FIOs transform wavefront sets in precise ways, and our next theorem, a special
case of the Hörmander-Sato Lemma, is a key to our analysis.

Theorem 3 ([20, Theorems 2.5.7 and 2.5.14], [38, Section 6.3, (6.22)]) Let T be
an FIO (Definition 3) with canonical relation C. Let f ∈ E′(
2). Then

WF(Tf ) ⊂ C ◦WF(f ). (9)

If T is elliptic and satisfies the semi-global Bolker Assumption, then equality holds
in (9).

For PSIDOs, this theorem implies that WF(P(f )) ⊂ WF(f ) and equality holds
if P is elliptic since the canonical relation of PSIDOs is �.

We will need several continuity results for FIOs.

Theorem 4 ([21, Theorem 8.2.13]) Let T be an FIO satisfying Definition 3. Then
T : E′(
2)→ D′(
1) is weakly continuous.

Therefore, if P is a PSIDO satisfying the conditions in the Example on
Pseudodifferential Operators , then P : E′(
)→ D′(
) is weakly continuous.

Theorem 4 is valid because we assume (5) in the definition of FIO, and this
condition holds for the phase function for PSIDO. In general, FIOs are continuous
in Sobolev scale. Before stating our theorem, we provide some definitions.

Definition 6 Let 
 be an open subset of R
2. The set Hs

c (
) is the set of all
distributions u with compact support in 
 such that the Sobolev norm

‖u‖s =
√∫

ξ∈R2
Fu(ξ)

(
1+ ‖ξ‖2)s

dξ

is finite.
The set Hs

loc(
) is the set of all distributions u supported in 
 such that for all
cutoff functions ϕ ∈ D(
), ϕu ∈ Hs

c (
).
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We say a linear operator A : Hs
c (
2) → Hs−k

loc (
1) is continuous if for each
fixed compact set K ⊂ 
2 and each ϕ ∈ D(
1), there is a constant CK,ϕ > 0 such
that for all u ∈ E′(
2) supported in K ,

‖ϕAu‖s−k ≤ CK,ϕ ‖u‖s .

Theorem 5 ([20, Theorem 4.3.1]) Let T be an FIO of order k ∈ R and assume
the projection �L : C → 
1 × R

2 is an immersion (i.e. the derivative of �L is
injective). Then

T : Hs
c (
2)→ Hs−k

loc (
1)

is continuous.

Therefore, if A is a PSIDO of order k then A : Hs
c (
) → Hs−k

loc (
) is
continuous.

Note that the condition in this theorem about�L will be true wheneverT satisfies
the semi-global Bolker Assumption.

2.4 Visible Singularities and Artifacts

In the rest of the article, the reconstruction operators we consider will be either
regular PSIDOs or PSIDO-like operators that have discontinuous symbols, and we
will use the theory of singularities and FIOs developed in this section to describe
what these operators can do to singularities of the object in the reconstruction step.
We now provide the basic terminology to describe this.

Definition 7 Let L be a reconstruction operator, f ∈ E′(R2), and (x, ξ) ∈WF(f ).
Then, (x, ξ) will be a singularity of f that is visible in the reconstruction or

visible singularity if (x, ξ) ∈WF(Lf ).
On the other hand, (x, ξ) will be an invisible singularity of f if (x, ξ) /∈

WF(Lf ).
Any singularity (y, η) ∈WF(Lf ) that is not in WF(f ) will be called an artefact.

This terminology is illustrated using two examples from static 2D-CT. According
to the inversion formula of the Radon transform, all singularities of f can be
recovered via a filtered backprojection algorithm, if data are collected for ϕ ∈ [0, π ],
[26]. However, if a only a smaller angular range can be covered, certain singularities
will be invisible in the reconstruction and streak artifacts arise instead [31]. This
is illustrated in Fig. 2 for the Shepp-Logan phantom with ϕ ∈ [0, 3

4π ] and in
Fig. 3 for a circular phantom with ϕ ∈ [0, π

2 ] (left). For this circular phantom, the
visible/invisible singularities and the added artifacts are highlighted in Fig. 3 (right).

A detailed analysis of visible and invisible singularities as well as added artifacts
in dynamic image reconstruction is provided in Sect. 4.
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Fig. 2 Shepp-Logan
Phantom reconstructed from
2D CT-data with limited
angular range [0, 3

4π ]

Fig. 3 Left: Circular phantom reconstructed from "D-CT data with limited angular range [0, π
2 ].

Right: Visible singularities (solid line), invisible singularities (dotted line) and added artifacts
(dashed line) for a circular phantom

3 Encoding Object Singularities in Dynamic Imaging Data

In this section, we analyze how singularities of a moving object get encoded in
dynamic imaging data. Therefore, we first recall the motion model developed in the
chapter Motion compensation strategies in tomography [16] and the mathematical
characterization for our moving object.

Let [0, T ], T ∈ R>0 = (0,∞) denote the time interval required for the data
acquisition process and let RT be an open interval containing [0, T ].

A two-dimensional specimen that changes in time can be described by a time-
dependent function h : RT × R

2 → R, where h(t, ·) corresponds to the state of the
searched-for quantity at a fixed time instance t ∈ RT . We define f (x) := h(0, x)

to be the initial state of the specimen. In tomographic applications, the object under
investigation typically has compact support at all time instances. Thus, without loss
of generality, we assume f (and all object states h(t, ·), t ∈ RT ) to be compactly
supported in a fixed open set 
2 ⊂ R

2.
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Let � : RT × 
2 → 
2 be the mapping which relates the state of the object at
time t to its reference configuration f , more precisely

h(t, x) = f (�tx).

Thus, � describes the motion of the object particles over time. More precisely, the
vector �(t, x) denotes which particle is at position x at time t .

Throughout the article, we make the following assumption on �.

Smooth Diffeomorphic Motion Model
We call a mapping � : RT × 
2 → 
2 a smooth diffeomorphic motion
model with motion functions �t : 
2 → 
2, �t := �(t, ·), if the following
conditions are satisfied:

• � : RT ×
2→ 
2 is smooth,
• �t : 
2→ 
2 is a diffeomorphism for all t ∈ RT .

Remark 1 The diffeomorphism condition guarantees that two particles cannot move
into the same position, no particle gets lost (or added) and their relocation is smooth.

In practical applications, only discrete data sets are measured, i.e. the dynamic
behavior is only ascertained for finitely many time instances, and the body does
move continuously. This justifies the assumption that � is smooth with respect to
time

3.1 Dynamic FIOs

Let T be a FIO according to Definition 3 for a static quantity f ∈ E′(
2), where we
identify one of the data variables (without loss of generality z1) as time instance t .
Thus, we replace the data variable z by (t, y) ∈ RT ×� where � is an open subset
of R. This results in the representation

Tf (t, y) =
∫

ei�(t,y,x,τ )a(t, y, x, τ )f (x)dx dτ, (t, y) ∈ RT ×�.

In the dynamic setting, at time t , the state of the object f (�t ·) is encoded by T,
resulting (after a change of variables) in the associated dynamic forward operator

T�f (t, y) =
∫

ei�(t,y,�−1t x,τ )a(t, y, �−1t x, τ ) | detDx�−1t x| f (x)dx dτ.
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We denote

a�(t, y, x, τ ) := | detDx�−1t x| a(t, y, �−1t x, τ )

and

��(t, y, x, τ ) := �(t, y, �−1t x, τ )

for (t, y) ∈ RT ×�, x ∈ 
2, τ ∈ R
m \ {0}.

Theorem 6 Let � be a smooth diffeomorphic motion model. Assume the static
operator T is a FIO of order k + (m − 2)/2 (see Definition 3) with amplitude a

of order k and non-degenerate phase function �. Further, assume

if (t, y, �−1t x, τ ) ∈ �� and Dy� = 0, then

Dt�(t, y, �−1t x, τ )+Dx�(t, y, �−1t x, τ ) ·Dt�
−1
t x �= 0.

(10)

Then, T� is a FIO of order k + (m− 2)/2 with amplitude a� of order k and phase
function �� . If, in addition, T is elliptic, then T� is elliptic.

Remark 2 Note that the condition (10) is satisfied if Dy� is never equal to zero on
��. We will see in Sect. 3.2 that this is the case for generalized Radon transforms.

Proof Since a is an amplitude of order k, this property transfers to a� due to the
smoothness of the motion functions �t and their inverse �−1t .

By the same argument, �� inherits the smoothness property from �. Since � is
positive homogeneous of degree 1 in τ , the same holds for �� . Thus, �� is a phase
function.

Using the chain rule, we compute

D(t,y)��(t, y, x, τ ) = D(t,y)�(t, y, �−1t x, τ )+Dx�(t, y, �−1t x, τ ) ·D(t,y)�
−1
t x,

Dx��(t, y, x, τ ) = Dx�(t, y, �−1t x, τ ) ·Dx�−1t x,

and

Dτ ��(t, y, x, τ ) = Dτ �(t, y, �−1t x, τ ).

From the last property, it follows

��� =
{
(t, y, x, τ ) ∈ RT ×�×
2 × R

m \ {0}
∣∣∣ Dτ �(t, y, �−1t x, τ ) = 0

}

=
{
(t, y, x, τ )

∣∣∣ (t, y, �−1t x, τ ) ∈ ��

}
.
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Since � is non-degenerate, Dx� is nonzero on ��. Further, �−1t is a diffeomor-
phism for all t and therefore, Dx�−1t x has nonzero determinant, i.e. the matrix is
regular. Thus, on ���, the derivative Dx��(t, y, x, τ ) is nonzero. Since �−1t x is
independent of y, it follows together with condition (10) that �� is non-degenerate,
and thus, according to Definition 3, T� is a FIO.

The ellipticity of the static FIO T transfers to its dynamic counterpart T� due
to the smoothness of the motion functions �t and inverse �−1t and that �t is a
diffeomorphism. ��

The next statement follows directly from Theorem 3,

Theorem 7 Let T� be a FIO (according to Definition 3) with canonical relation
C� . Then, for f ∈ E′(
2),

WF(T�f ) ⊂ C� ◦WF(f ).

Equality holds if Tγ is elliptic and satisfies the semi-global Bolker Assumption.

Thus, each singularity in the dynamic data stems from a singularity of the object.

Warning
Without additional assumptions on the motion model, the dynamic FIO T�

does not, in general, satisfy the semi-global Bolker condition, even if the
static FIO T does. An example corresponds to T being the classical Radon
transform and � describing a smooth rotational movement of the same speed
than the radiation source, see [18].

In the next section, we state additional assumptions on �, under which the
semi-global Bolker condition holds at least for dynamic generalized Radon
transforms.

3.2 Dynamic Generalized Radon Transforms

The measurement process in many imaging modalities (such as CT, PAT, sonar, etc.)
can be modelled by a generalized Radon transform, i.e. an operator that integrates
over smooth curves in the plane. We assume the curves are defined as level sets in
x of a smooth function � : RT × 
2 → R. Specifically, we assume the following
hypothesis.

Hypothesis 1 Let � : RT × 
2 → R. If � satisfies the following properties, then
� will be called a defining function.

1. � is smooth and for all (t, x) ∈ RT ×
2, Dx�(t, x) �= 0.
2. There is an open interval � such that for each (t, y) ∈ Rt ×�
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S(t, y) = {
x ∈ 
2

∣∣ y = �(t, x)
}

defines a nontrivial smooth curve.
3. For each t ∈ RT , 
2 ⊂ ∪y∈�S�(t, y) (so the curves S(t, ·) cover 
2).
4. For each compact set K ⊂ 
2, there is a compact subset L of � such that

K ∩ S(t, y) = ∅ for all (t, y) ∈ RT × (� \ L).

Each part of Hypothesis 1 puts more structure on the set of curves S(t, y). Part 1
ensures that each curve is a smooth regular curve. Part 2 means that the curve S(t, y)

is defined for all y ∈ �. Part 3 means that, for each t , the curves S(t, ·) cover 
2,
and part 4 will allow us to compose operators in Sect. 4.2 by assuming that S(t, y)

is “near” the boundary of 
2 if y is “near” the boundary of �.
With this notation, the generalized Radon transform can be written

Af (t, y) =
∫

a(t, y, x)f (x)δ(y −�(t, x)) dx, (t, y) ∈ RT ×� (11)

which integrates the quantity f weighted with the C∞ function a on the curve in
R
2 defined by y = �(t, x). Because Dx� is never zero, A can be written

Af (t, y) =
∫

eiσ(y−�(t,x))a(t, y, x)f (x)dx dσ (12)

with phase variable σ in R and phase �(t, y, x, σ ) = σ(y − �(t, x)) and
amplitude a. These statements follow from basic facts about the Fourier transform
and arguments in [2, 13] and the calculation starting at (10) in [30]. By Theorem 8
below, A is an FIO.

Due to their practical relevance, we now study this type of operators in more
detail.

With a smooth diffeomorphic motion model �, the associated dynamic forward
operator becomes

A�f (t, y) =
∫

a(t, y, �−1t x)f (x)δ(y −�(t, �−1t x))| detDx�−1t x| dx (13)

for all (t, y) ∈ RT ×�. Then, the FIO version is

A�f (t, y) =
∫

eiσ(y−�(t,�−1t x))a(t, y, �−1t x)| detDx�−1t x|f (x) dx dσ. (14)

These are justified using a change of variable in (11) and in (12). To simplify the
subsequent expressions, we set

��(t, x) := �(t, �−1t x), (t, x) ∈ RT ×
2. (15)

The operator A� integrates the weighted initial state f along the curves
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S�(t, y) := {
x ∈ 
2

∣∣ y = ��(t, x)
}

. (16)

Our next theorem shows that A� is an elliptic FIO under reasonable conditions.

Theorem 8 Let � be a defining function, and let A be the generalized Radon
transform defined by (11) where a in (11) is smooth. Then A is an elliptic FIO
of order −1/2.

Let � be a smooth diffeomorphic motion model. Then, the dynamic operatorA�

in (14) is an elliptic FIO of order −1/2 with amplitude

a�(t, y, s, σ ) = | detDx�−1t x| a(t, y, �−1t x),

phase function

��(t, y, x, σ ) = σ(y −�(t, �−1t x)),

defining function �� and canonical relation

C� =
{((

t, ��(t, x)
)
,
(− σ Dt��(t, x), σ

); x, σDx��(t, x)
)

∣∣ t ∈ RT , x ∈ 
2, σ ∈ R \ {0}
}
.

Proof To show that A is an FIO, we first note that the phase is

�(t, y, x, σ ) = σ(y −�(t, x)).

Since Dx� is never zero, Dx� is nowhere zero, and Dy�(t, y, x, σ ) = σ is
nonzero for all σ ∈ R \ {0}, so � is a nondegenerate phase function. Therefore, A
satisfies Definition 3 and A is an FIO. Since a is smooth, positive and independent
of σ , a is an amplitude of order zero and so A is an elliptic FIO of order −1/2.

Now, we explain why A� is an elliptic FIO. Since

Dy��� = σ and Dσ ��(t, y, x, σ ) = y −��(t, x),

the set ��� is characterized by

��� =
{
(t, ��(t, x), x, σ )

∣∣ (t, x, σ ) ∈ RT ×�×
2 × R \ {0}}.

Further, we obtain the derivatives

Dx�� = −σDx��,

D(t,y)�� = (−σDt��, σ ).
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In particular Dy��� is never equal to zero on ��� . Thus, A� is an elliptic FIO
of order −1/2 according to Theorem 6. The stated representation for the canonical
relation C� follows directly from the representation of the above derivatives.

The property that �� is a defining function follows from the respective property
of �. First, Dx(��) = DxφDx�−1t is nowhere zero by part 1 for �. This proves
part 1 for �� . The other parts of the proposition follow from the fact that, for all
t ∈ RT , �t : 
2→ 
2 is a bijective diffeomorphism. ��

We now state conditions on the motion model and the phase function such that
the dynamic operator A� satisfies the semi-global Bolker assumption.

Theorem 9 Let � be a defining function, and let A be the generalized Radon
transform defined by (11) where a in (12) is smooth.

Let � be a smooth diffeomorphic motion model and let A� be the dynamic FIO
(13) with �� given by (15).

We further assume, that �� satisfies the following additional conditions:

• The map

x �→
(

��(t, x)

Dt��(t, x)

)
(17)

is one-to-one for each t .
• For all x ∈ 
2 and all t ∈ RT ,

det

(
Dx��(t, x)

DxDt��(t, x)

)
�= 0. (18)

Then, A� satisfies the semi-global Bolker Assumption.

Condition (17) implies the injectivity of �L, and this ensures that the data,
respectively the integration curves, can distinguish different points in the object.
Condition (18) implies that �L : C� → RT × � × R

2 \ {0} is an immersion
(i.e. its derivative is injective), and this guarantees that the integration curves vary
sufficiently to detect the object singularities. For a more detailed interpretation, we
refer to [18].

The proof has been stated in the literature, for instance in [33] for generic
integration curves, in [18] for dynamic CT or in [4] for dynamic PAT. The argument
applies by analogy to our case and is therefore omitted here.

Theorem 10 Let � be a defining function, and let A be the generalized Radon
transform defined by (11) where a in (11) is smooth. Let � be a smooth diffeomor-
phic motion model. Then, for our dynamic imaging operatorA� in (13),

WF(A�f ) ⊂ C� ◦WF(f ).
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IfA is, in addition, elliptic (a is nowhere zero) and if the motion model satisfies the
stronger conditions (17) and (18), then

WF(A�f ) = C� ◦WF(f ).

This theorem is a direct consequence of Theorems 7 and 8.
Using the representation of the canonical relation C� from Theorem 8, we obtain

the following explicit correspondence between wavefront ofA�f and that of f . Let
(t, y) ∈ RT ×� and σ �= 0, ν ∈ R. If

(
(t, y), (−σν, σ )

) ∈ WF(A�f ), then there
exists an element x ∈ S�(t, y) such that

(x, σDx��(t, x)) ∈WF(f ),

where S�(t, y) is the integration curve given by (16).
If A� is in addition elliptic and satisfies the semi-global Bolker Assumption,

then, for t ∈ RT ,
(
(t, y), (−σν, σ )

) ∈ WF(A�f ) if and only if there exists an
x ∈ S�(t, y) such that Dt��(t, x) = ν and (x, σDx��(t, x)) ∈ WF(f ). In case
such a point x exists, it is unique.

We conclude this section by stating smoothing properties ofA� between Sobolev
spaces. Note that RT ×� is an open subset of R2 so one can use our definitions for
Sobolev spaces on RT ×�.

Theorem 11 Let � be a defining function, and let A be the generalized Radon
transform defined by (11) where a in (12) is smooth. Assume � is a smooth
diffeomorphic motion model, and assume the dynamic operatorA� in (13) satisfies
the additional condition (18). Then,

A� : Hs
c (
2)→ Hs+1/2

loc
(RT ×�)

is continuous.

Proof According to Theorem 8, A� is a FIO of order k = −1/2. Additionally,
condition (18) yields that the projection �L : C� → T ∗(RT × �) \ {0} is an
immersion. Hence, we can apply Theorem 5 and obtain that A� : Hs

c (
2) →
H

s+1/2
loc (RT ×�) is continuous. ��
According to the above theorem, the data A�f are smoother than f by 1/2 in

Sobolev scale. In particular, for a smooth diffeomorphic motion model satisfying
(17) and (18), A� has the same smoothing property as the static operator A.

After analyzing the overall information content of dynamic data, we now study
which object singularities can be reliably reconstructed and which additional
artifacts have to be expected.
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4 Reconstruction Operators and Artefact Study

In this section, we apply the theory of microlocal analysis to define and analyze
reconstruction operators to solve dynamic inverse problemsT�f = g. From Sect. 2,
we know that Fourier integral operators encode singularities of f in specific ways.
The idea now is to construct reconstruction operators which recover the visible
singularities from the measured data g = T�f .

4.1 An Ideal Scenario: Smoothly Periodic Motion

In practical applications, data can only be measured for t in a closed interval
[0, T ] ⊂ RT . From a theoretical point of view, this is troublesome since smooth
function (and hence distributions) are defined on open sets in order for derivatives
to be well defined.

For a specific type of functions, namely smoothly T -periodic functions, this does
not impose a restriction. A function of t (and perhaps other variables) will be called
smoothly T−periodic if it extends to t ∈ R as a smooth function that is T−periodic.
This allows us to define E([0, T ] × �) to be the set of functions on [0, T ] × �

which extend to functions on R ×� that are smooth and T−periodic in t . The set
D([0, T ] ×�) then denotes the set of those functions with compact support.

We start our study of reconstruction operators within this idealized framework
by assuming that the motion model �, the amplitude a and the phase function �

(and � in case of a generalized Radon transform) are all smoothly T−periodic. So,
for example, � can be extended in t to a function on R and �(t, ·) = �(t + T , ·) for
all t ∈ R.

The dual operator plays a crucial role, and it is defined by

Tt
�g(x) =

∫
[0,T ]

∫
�

∫
R2

ei�(t,y,�−1t x,τ )a(t, y, �−1t x, τ ) | detDx�−1t x| g(t, y) dτ dy dt.

In particular, the operator Tt
� then corresponds to the formal dual of T� for g ∈

D([0, T ] ×�).
For dynamic generalized Radon transforms as in (13), this corresponds to the

backprojection operator At
� defined by

At
�g(x) =

∫
t∈[0,T ]

a�(t, ��(t, x), x)g(t, ��(t, x))dt, (19)

for g ∈ E(RT × �). This is true by taking the expression (13) and calculating its
dual and integrating the δ function with respect to y.
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Our next theorem provides conditions under which T� is an FIO in the
T−periodic case, and this includes dynamic generalized Radon transforms satis-
fying Hypothesis 1.

Theorem 12 Let � be a smooth diffeomorphic T−periodic motion model such that
T� is a dynamic FIO that satisfies the semi-global Bolker Assumption. In addition,
assume that T� and T�

t are both strongly continuous as mappings

T� : D(
2)→ D([0, T ] ×�), Tt
� : E([0, T ] ×�)→ E(
2). (20)

Let P be a PSIDO. Then, the operator

L� := Tt
�PT�

is well defined for f ∈ E′(
2) and

WF(L�f ) ⊂WF(f ). (21)

Now, assume that P and T� are elliptic with positive symbols and the natural
projection �R : C� → 
2 × R

2 \ {0} is surjective. Then

WF(L�f ) =WF(f ). (22)

Let � be smoothly T−periodic and satisfy Hypothesis 1 and let A be a
generalized Radon transform with defining function �. Then (20) holds for A� .
Therefore, (21) and (22) hold under the appropriate hypotheses above.

Proof Let C� denote the canonical relation of the FIO T� . Since, the operator Tt
� is

the formal dual of T� , it is a FIO as well with canonical relation Ct
� . As T� satisfies

the semi-global Bolker Assumption,

Ct
� ◦ C� ⊂ � := {

(x, ξ ; x, ξ)
∣∣ (x, ξ) ∈ 
2 × R

2 \ {0}}.

According to Theorem 4, the PSIDO P : E′([0, T ] × �) → D′([0, T ] × �) is
weakly continuous. By duality with their adjoints and the continuity assumptions
(20), T� : E′(R2) → E′([0, T ] ×�) is weakly continuous as is Tt

� : D′([0, T ] ×
�) → D′(
2). Therefore, the composition L� := Tt

�PT� is well-defined and
weakly continuous for f ∈ E′(
2).

Using Theorem 3, we obtain

WF(L�f ) ⊂ Ct
� ◦ C� ◦WF(f ) ⊂WF(f ).

Next we explain why equality holds in (21) if all operators are elliptic, T�

satisfies the semi-global Bolker Assumption and �R is surjective from C� to

2×R2\{0}. SinceP is a PSIDO, its canonical relation is�. Since�R is surjective,
Ct

� ◦ � ◦ C� = �. By the semi-global Bolker Assumption, the operators can be
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composed as FIO, and since they are all elliptic the symbol of the composition, L� ,
is the product symbol on the product canonical relations pulled back to � (see the
symbol calculation in [30]). In this case, L� is an elliptic PSIDO and equality holds
in (21).

Now letA be a T−periodic generalized Radon transform with defining function,
�. Since � satisfies Hypothesis 1, the dynamic generalized Radon transformA� is
a T−periodic FIO with defining function �� .

We now outline the proof of (20) for A� . Let K be a compact subset of 
2
and let L ⊂ � be the compact set in Hypothesis 1 part 4 for K . Then, A� maps
functions supported in K to functions supported in [0, T ] × L. One proves that
this map is continuous from DK to D[0,T ]×L (see [35, sections 6.1-6.6]) using the
explicit expression (13) (or that A� is a generalized Radon transform, e.g., [30]).
To prove that At

� : E([0, T ] ×�)→ E(
2), one uses the expression (19) for At
�

and the fact that [0, T ] is compact and all functions are smoothly T−periodic. This
allows us to apply the statements for T� for A� . ��

Theorem 12 provides a strategy to design suitable reconstruction operators. If we
choose a PSIDO as above, then the operator

S� := Tt
�P

applied to the data g = T�f provides an image L�f whose singularities coincide
with singularities of the searched-for quantity f . In particular, L�f displays the
object singularities that it reconstructs at their correct location with the correct
direction, i.e. the motion is compensated for. If the operators are elliptic and the
other assumptions of Theorem 12 hold, then L�f reproduces all singularities of f .
Therefore,L�f = Tt

�PT�f = S�g can be interpreted as an approximate inversion
formula for the purpose of motion compensation.

4.2 The Realistic Case: Non-periodic Motion

The T -periodicity assumption on � in the last section imposes a severe restriction
regarding practical applications. This assumption implies that the data have to
encode the same state of the object at beginning and end of the scanning–a condition
which, in general, will not be met.

Therefore, we want to analyze this more realistic setting in the following. More
generally, we consider the scenario that data g(t, y) = T�f (t, y) are measured
for (t, y) ∈ [α, β] ⊂ RT with 0 ≤ α < β ≤ T . This framework covers, for
instance, also data acquisition protocols with limited angular range. Then, formally,
the forward operator T� needs to be restricted to the data set. This can be achieved
by multiplying with the characteristic function χ[α,β]×� of [α, β] ×�.
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In order to study the effect on the singularities in the data and under reconstruc-
tion, we can apply the paradigm given in [10] which characterizes a broad range of
incomplete data problems. In particular, the study divides into the following steps:

Verify that the multiplication of χ[α,β ]×Π and Γ

is well defined for distributions f (Ω2).

Check that Γ,[α,β ] := χ [α,β ]×Π f
has compact support for (Ω2).

Construct a reconstruction operator in anal-

ogy to Section 4.1 by introducing a smooth

cut-off function such that the composition

Γ,[α,β ] := *
Γ (ρ

ρ

Γ,[α,β ]) : (Ω2) → (Ω2)

with PSIDO is well defined.

Characterize the wavefront set WF( Γ,[α,β ] f ).

f
Γ

Note if T�
∗ : D′ → D′ then the cutoff ρ is not necessary.

With this general outline, we now perform the artefact study for operator A�

from Sect. 3.2 (13), i.e. for a dynamic generalized Radon transform with smooth
diffeomorphic motion model �.

First, we verify that the multiplication with the characteristic function χ[α,β]×�

is well-defined.

Proposition 1 Assume � satisfies Hypothesis 1 and � is a smooth motion model.
Then, the operator A�,[α,β]f := χ[α,β]×�A�f is well-defined for distributions
f ∈ E′(
2).

Proof Let f ∈ E′(
2). We apply Theorem 1 with the data set B := [α, β] × �.
Using the representation of the canonical relation C� of A� (see Theorem 8), it
follows that

C� ◦WF(f ) ⊂ {
(t, y, ξ) ∈ RT ×�× R

2 \ {0} ∣∣ ξ2 �= 0
}
. (23)

However, WF(χ[α,β]) =
{
(t, y, ξ1, 0)

∣∣ t ∈ {α, β} , y ∈ �, ξ1 �= 0
}
. Therefore

sums of such points are of the form (t, y, η1, ξ2) where ξ2 �= 0. Therefore, the
non-cancellation condition (2) holds, and Theorem 1 can be used to conclude that
A�,[α,β]f is well-defined for f ∈ E′(
2). ��
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Proposition 2 Assume � satisfies Hypothesis 1 and � is a smooth motion model.
Then, A�,[α,β]f has compact support for all f ∈ E′(
2), i.e. A�,[α,β] : E′(
2)→
E′(RT ×�).

Proof Let f ∈ E′(
2). By Theorem 8,�� is a defining function. Thus, according to
Hypothesis 1 part 4, there is a compact set L ⊂ � such thatA�f (t, y) is supported
on RT × L.

Because χ[α,β] is zero for t /∈ [α, β] and all y and A�,[α,β]f is zero for all y

outside a compact set, the product, A�,[α,β]f has compact support in [α, β] × L.
��

The formal dual toA� on RT ×� is given by

A∗�g(x) =
∫
RT

a�(t, ��(t, x), x) g(t, ��(t, x))dt. (24)

Since the domain ofA∗� is not, in general,D′(RT ×�), we multiply by a smooth
cutoff function. Therefore, let ρ : RT → R be smooth and equal to one on [α, β]
and be supported in RT . The corresponding restricted backprojection operator is
then given by

At
�,ρg := A∗�(ρg). (25)

In analogy to Sect. 4.1, we would like to consider

L�,[α,β] := At
�,ρPA�,[α,β], (26)

with a PSIDO P to build a reconstruction operator for the non-periodic case.
Therefore, we have to prove that this composition is well-defined.

Proposition 3 Let P be a pseudodifferential operator, then At
�,ρ , P, and A�,[α,β]

can be composed and L�,[α,β] : E′(
2)→ D′(
2) is well-defined.

Proof From Propositions 1 and 2, we know that A�,[α,β]f ∈ E′(RT × �) for
f ∈ E′(
2). Therefore, PA�,[α,β]f is defined as a distribution in D′(RT ×�).

Since Mρ : g �→ Mρ := ρg is a trivial pseudodifferential operator, which is
continuous onD(RT ×�), the operatorMρA� = ρA� is continuous fromD(
2)

to D(RT ×�). Here we use Hypothesis 1 and the fact that ρ has compact support
in t .

This implies, that the dual (MρA�)∗ = (ρA�)∗ = A∗�ρ = At
�,ρ is weakly

continuous from D′(RT ×�) toD′(
2). Therefore, L�,[α,β] is well-defined. ��
We now state the main result of this section, which provides a characterization

of the visible singularities and the possible added artifacts from data above [α, β].
Theorem 13 Let f ∈ E′(
2) and � be a smooth diffeomorphic motion which
satisfies the additional conditions (17) and (18). Further, let P be a PSIDO and



108 B. N. Hahn et al.

L�,[α,β] be given by (26) where � satisfies Hypothesis 1. Then,

WF(L�,[α,β]f ) ⊂ (WF(f ) ∩V[α,β]) ∪Z{α,β}(f ),

where

V[α,β] :=
{
(x, σ∂x��(t, x))

∣∣ x ∈ 
2, t ∈ [α, β], σ ∈ R \ {0}}

is the set of all (potentially) visible singularities from data above [α, β], and

Z{α,β}(f ) := {
(x, σDx��(t, x))

∣∣ t ∈ {α, β}, y ∈ �, x ∈ S�(t, y), σ ∈ R \ {0},
∃x̃ ∈ S�(t, y) : (x̃, σDx��(t, x̃)) ∈WF(f )

}

denotes the set of (possible) added artifacts.

Proof Since ρ is a smooth cutoff, At
�,ρ is a FIO with the same canonical relation

as A∗� . Thus, we have

WF(L�,[α,β]f ) =WF(At
�,�PA�,[α,β]f ) ⊂ Ct

� ◦WF(PA�,[α,β]f ). (27)

Further, P is a pseudodifferential operator, i.e. its canonical relation is � and
therefore

WF(PA�,[α,β]f ) ⊂WF(A�,[α,β]f ).

Following Proposition 1 and Theorem 1, we obtain

WF(A�,[α,β]f ) ⊂ Q([α, β] ×�,WF(A�f )) (28)

with Q defined in Theorem 1. From Theorem 10, we know WF(A�f ) ⊂ C� ◦
WF(f ) and hence

WF(L�,[α,β]f ) ⊂ Ct
� ◦ Q([α, β] ×�,C� ◦WF(f )). (29)

From the definition, we get

Q([α, β] ×�,C� ◦WF(f ))

= {
(z, ξ + η)

∣∣ z ∈ [α, β] ×�,[(z, ξ) ∈ C� ◦WF(f ) ∨ ξ = 0]
∧ [(z, η) ∈WF(χ[α,β]×�) ∨ η = 0]}.

This set can be written as a union of three sets

Q([α, β] ×�,C� ◦WF(f )) =(C� ◦WF(f )) ∩ ([α, β] ×�× R
2 \ {0})
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∪WF(χ[α,β]×�)

∪W{α,β}(f ),

where W{α,β}(f ) summarizes the case ξ �= 0 ∧ η �= 0, i.e. the set is defined by

W{α,β}(f ) := {
(z, ξ + η)

∣∣
z ∈ [α, β] ×�, (z, ξ) ∈ C� ◦WF(f ), (z, η) ∈WF(χ[α,β]×�))

}

= {
((t, y), (ν, σ )

∣∣ t ∈ {α, β}, ν ∈ R, y ∈ �, σ ∈ R \ {0},
∃x ∈ S�(t, y) : (x, σDx��(t, x)) ∈WF(f )

}
.

Hence, we obtain

WF(L�,[α,β]f ) ⊂Ct
� ◦

[
(C� ◦WF(f )) ∩ ([α, β] ×�× R

2 \ {0})] (30)

∪ Ct
� ◦WF(χ[α,β]×�) (31)

∪ Ct
� ◦W{α,β}(f ). (32)

Under the additional conditions (17) and (18) on the motion �, A� satisfies the
semi-global Bolker Assumption (see Theorem 9). Thus, Ct

� ◦ C� ⊂ � and Ct
� ◦

C� ◦WF(f ) ⊂WF(f ).
Therefore, the first component (30) yields

Ct
� ◦

[
(C� ◦WF(f ))∩([α, β] ×�× R

2 \ {0})]

⊂WF(f ) ∩ (Ct
� ◦ ([α, β] ×�× R

2 \ {0})).

Since

Ct
� =

{
(x, σDx��(t, x); (t, ��(t, x)),(−σ∂t��(t, x), σ ))

∣∣
t ∈ [α, β], x ∈ 
2, σ ∈ R \ {0}}

we obtain

Ct
� ◦ ([α, β]×�×R2 \ {0})={

(x, σDx��(t, x))
∣∣ t ∈ [α, β], x ∈ 
2, σ ∈ R \{0}}

= V[α,β].

For the second component (31), we have Ct
� ◦WF(χ[α,β]×�) = ∅, since for any

(x, ξ) ∈WF(χ[α,β]×�) it is ξ2 = 0, but for all vectors ((z, η), (x̃, ξ̃ )) ∈ Ct
� we have

ξ̃2 = σ �= 0.
Now, we consider the third set (32): Ct

� ◦W{α,β}(f ).
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Let ρ = ((t, y), (ν, σ )) ∈W{α,β}(f ). Then, we obtain from the definition of the
set W{α,β}(f ), that t ∈ {α, β}, ν ∈ R, y ∈ �, σ ∈ R \ {0} and that there exists an
element x ∈ S�(t, y) with (x, σDx��(t, x)) ∈WF(f ). So any element of the set

Ct
� ◦ {ρ} =

{
(x̃, σDx��(t, x̃))

∣∣ (x̃, σDx��(t, x̃), ρ) ∈ Ct
�

}
(33)

has to fulfill s = ��(t, x̃) (by definition of Ct
�) and

ν = −σDt��(t, x̃) ⇔ − ν

σ
= Dt��(t, x̃).

Since ν is arbitrary, the set (33) is nonempty. Hence, for any x̃ ∈ S�(t, y), we have
(x̃, σDx��(t, x̃)) ∈ Ct

� ◦W{α,β}(f ) and

Ct
� ◦W{α,β}(f )={

(x̃, σDx��(t, x̃))
∣∣ t∈{α, β}, y ∈ �, x̃ ∈ S�(t, y), σ ∈ R \ {0},

∃x ∈ S�(t, y) : (x, σDx��(t, x)) ∈WF(f )
}

= Z{α,β}(f ).

This concludes the proof. ��
The above theorem shows that only singularities, which are in the visibility range

(i.e., in V[α,β]) can be reconstructed from the dynamic data, whereas singularities
outside of this range are smoothed. According to the computations within the
proof, the singularities arising in a reconstruction L�f can be divided into three
categories:

• Visible singularities of f from data above [α, β]
(corresponding to the set WF[α,β](f )),

• Added artefacts that stem from the scanning geometry and that are independent
of the object f

(corresponding to the set Ct
� ◦WF(χ[α,β]×�)),

• Added artefacts that stem from the object
(corresponding to the setZ�,[α,β]).

The proof further reveals that the artefact set Ct
� ◦WF(χ[α,β]×�) is empty in our

case of generalized Radon transforms. However, for different cutoff functions than
χ[α,β]×�, this might no longer be the case, see [3].

The added artefacts stemming from the object can be descriptively characterized
as follows. If (x, σ∂x��(t0, x)) ∈ WF(f ), where t0 ∈ {α, β}, then this singularity
of f can generate artifacts along the curve S�(t0, ��(t0, x)).

In the next section we illustrate this theoretical characterization by numerical
examples.
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5 Numerical Results

In this section, we want to illustrate our theoretical results at numerical examples
from Photoacoustic tomography (PAT).

In this imaging modality, an organism is subjected to non-ionizing laser pulses.
The biological tissue absorbs a part of the delivered energy and converts it into
heat generating ultrasonic pressure waves (photoacoustic effect). The emitted waves
propagate through the medium and are measured by transducers located outside the
organism on an observation surface. The goal is to recover the initial pressure f (x)

from the measured response g since it encodes characteristic information about the
biological tissue.

In practical PAT applications, the object is not entirely surrounded by trans-
ducers. We consider the case where the transducer rotates around the object, thus
acquiring the data g sequentially in time [4, 17].

Under simplifying assumptions, the measured data g match in the two-dimen-
sional setting with the circular Radon transform of the initial pressure f (x), i.e.

g(t, y) = 1

2πy

∫
f (x) δ(y − ‖θ(t)− x‖) dx =: Af (t, y),

for f ∈ E′(V1(0)), V1(0) being the open unit disk and where (t, y) ∈ [0, 2π ] ×
(0, 2) and θ(t) = (cos t, sin t)T . In particular A represents a FIO with amplitude
a(y) = (2πy)−1 and phase function �(t, y, x, σ ) = σ(y − �(t, y, x)), where
�(t, y, x) = ‖θ(t)− x‖ is a defining function according to our Hypothesis 1.

If the searched-for quantity changes during the sequential data acquisition
according to a smooth diffeomorphic motion model �, the corresponding dynamic
forward operator

A�f (t, y) = 1

2πy

∫
f (x) | detD�−1t x| δ(y − ‖θ(t)− �−1t x‖) dx (34)

is a FIO according to Theorem 8 which integrates the reference configuration f (x)

along the curves

S�(t, y) := {x ∈ V1(0)
∣∣ y = ��(t, x)}

with

��(t, x) = ‖θ(t)− �−1t x‖. (35)

If the motion model fulfills the additional conditions (17) and (18), thenA� satisfies
the semi-global Bolker Assumption.

In particular, we want to illustrate the reconstruction results obtained by applying
an operator of type
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S� := At
�,[0,2π ]P

to the dynamic data g(t, y) = A�f (t, y), (t, y) ∈ [0, 2π ] × (0, 2) with

Pg(t, y) =
∫

∂rr∂rg(t, r) log |r2 − y2| dr

stemming from the inversion formula for A in the static case, see [7, 17]. In the
following examples, we simulate (dynamic) PAT data by discretizingA�f with the
trapezoidal rule with 1400 samples, where f is the respective phantom. The discrete
dynamic data is then given by

gi,j := (A�ti
f )(ti , yj ), i = 1, . . . , N and j = 1, . . . , M,

with N = 300 uniformly distributed angles ti in [0, 2π ] and M = 300 uniformly
distributed radii yj in (0, 2]. The reconstructed images are computed on a 600×600
grid.

5.1 2π-Periodic Motion

For our first numerical example, we consider the ideal scenario (from Sect. 4.1),
where we have a smooth and 2π -periodic motion model. More precisely, we
consider the rotation matrix

Bt =
(

cos (2t) sin (2t)
− sin (2t) cos (2t)

)
,

which defines a 2π -periodic motion �tx = Btx for x ∈ R
2 and t ∈ [0, 2π ].

The dynamic behavior of the object–namely a rotation in the same direction as the
transducer but twice as fast–is illustrated in Fig. 4. In particular, with � describing
such a rotational movement, the representation (34) of the dynamic FIO A�

simplifies to

A�f (t, y) = 1

2πy

∫
f (x) δ(y − ‖Btθ(t)− x‖) dx,

i.e. the dynamic behavior of f can be equivalently expressed by adapting the
rotation of the transducer, see [16] for more details.

From our theory (in particular Theorem 12), we expect to see no additional
artefacts and, since all singularities are encoded in the data according to the theory
developed in Sect. 3, we anticipate to see all singularities correctly reconstructed.
These theoretical results are indeed confirmed by our numerical reconstruction
result in Fig. 5.
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Fig. 4 Movement of phantom in [0, π ] for t = 0, π
2 , 3π

2 , π . This movement is repeated in
[π, 2π ]

Fig. 5 Left: Ground-truth phantom. Right: Dynamic reconstruction under the 2π -periodic rota-
tional motion model �t = Bt

5.2 Non-periodic Motion

In our next examples, we consider the more realistic case of a non-periodic motion.
In order to make clearly observable the visible (and invisible) singularities and the
additional artifacts, which we expect from our theory (Sect. 4), we first consider a
less complex phantom, namely a circle (see Fig. 6 (left)).

We start with an example that illustrates the following: Even in case of a full data,
i.e. when all object singularities are encoded in the measured data, added artifacts
can appear if the object is not in the same state at the beginning and the end of the
scanning. As example, we consider the rotation matrix

Gt =
⎛
⎝ cos

(
− 2

3 t
)

sin
(
− 2

3 t
)

− sin
(
− 2

3 t
)
cos

(
− 2

3 t
)
⎞
⎠

and the associated motion model �tx = Gtx, for x ∈ R
2 and t ∈ [0, 2π ]. In this

example, the investigated object rotates in the opposite direction than the transducer.
Thus, the transducer in relation to the object can perform at least one complete turn
(even more) around the object, i.e. all object singularities are encoded in the dynamic
data.
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Fig. 6 Ground-truth phantom (left) and dynamic reconstruction (right)

Since �0x = x, the transducer position at t = 0 is θ(0) = (1, 0)T . Further, we
have

��(t, x) = ‖θ(t)−G−1t x‖ = ‖Gtθ(t)− x‖,

since Gt is an isometry. Hence, the transducer position at t = 2π with respect

to the initial state of the object is given by Gtθ(t) = θ
(
5t
3

)
= θ

(
10
3 π

)
=

θ
(
4
3π

)
=

(
− 1

2 ,−
√
3
2

)T

. In the interval [0, 4
3π ] the object is scanned twice and

thus, all singularities of the object are visible in the reconstruction, see Fig. 6, where
the contour of the circle is clearly visible.

However, we notice in the dynamic reconstruction Fig. 6 (right) the appearance
of additional artifacts which occur because the motion is not 2π -periodic. We have

Dx��(t, x) =
x − θ

(
5t
3

)

‖θ
(
5t
3

)
− x‖

,

so any singularity (x, ξ) of f with

ξ = σDx��(t, x) = σ
x − θ

(
5t
3

)

‖θ
(
5t
3

)
− x‖

= σ̃
(
x − θ

(
5t
3

))
,

for σ̃ ∈ R \ {0} and t ∈ {0, 2π} can create artifacts along the curve

S�(t, ��(t, x)) =
{
x̃ ∈ R

2 : ��(t, x̃) = ��(t, x)
}

=
{
x̃ ∈ R

2 : ‖θ
(
5t
3

)
− x̃‖ = ‖θ

(
5t
3

)
− x‖

}
.
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Fig. 7 Dynamic reconstruction with the visible singularities (left) and added artifacts (right)
predicted by our theory highlighted in red

Hence, the artifacts appear along circle lines with centers θ(0) = (1, 0)T and

θ
(
4
3π

)
=

(
− 1

2 ,−
√
3
2

)T

, when a singularity of f is conormal to the circle. Figure 7

confirms that the additional artifacts predicted by our theory match the artifacts
arising in our numerical reconstruction result.

Our next example shows that the dynamic behaviour of the investigated object
can cause a limited-data problem. Here, we consider the rotation matrix

Rt =
⎛
⎝ cos

(
3
4 t

)
sin

(
3
4 t

)

− sin
(
3
4 t

)
cos

(
3
4 t

)
⎞
⎠

and the respective motion model �tx = Rtx, for x ∈ R
2 and t ∈ [0, 2π ]. In this

example, the object performs a rotational movement in the same direction as the
rotation of the transducer.

The transducer position at t = 0 is θ(0) = (1, 0)T as in the example before and
the source position at t = 2π is now given by Rtθ(t) = θ

(
t
4

) = θ
(

π
2

) = (0, 1)T .
This scenario corresponds to the static limited angle case, where the object is only
scanned for transducer locations associated to the interval [0, 3

2π ] � [0, 2π ].
To validate our theory, we again compare the observed artifacts with their

analytic characterization from Sect. 4.2. We have

Dx��(t, x) = x − θ
(

t
4

)

‖θ (
t
4

)− x‖ ,

so any singularity (x, ξ) of f with

ξ = σDx��(t, x) = σ
x − θ

(
t
4

)

‖θ (
t
4

)− x‖ = σ̃
(
x − θ

(
t
4

))
,

for σ̃ ∈ R \ {0} and t ∈ {0, 2π} can create artifacts along the curve
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Fig. 8 Ground-truth phantom (left) and dynamic reconstruction (right)

Fig. 9 Left: Visible (red solid line) and invisible (red dashed line) singularities. Right: Added
artifacts (red)

S�(t, ��(t, x)) =
{
x̃ ∈ R

2 : ��(t, x̃) = ��(t, x)
}

=
{
x̃ ∈ R

2 : ‖θ (
t
4

)− x̃‖ = ‖θ (
t
4

)− x‖
}

.

I.e. here, the artifacts appear along circle lines with centers θ(0) = (1, 0)T and
θ

(
π
2

) = (0, 1)T , when a singularity of f is conormal to the circle, see Fig. 9 (right).

Since the visible singularities are given by

V[0,2π ] =
{(

x, σ̃
(
x − θ

(
t
4

))
dx

) : t ∈ [0, 2π ], x ∈ R
2, σ̃ ∈ R \ {0}

}

=
{
(x, σ̃ (x − θ(tv)) dx) : tv ∈ [0, π

2 ] ∪ [ 3π2 , 2π ], x∈R2, σ̃∈R \ {0}
}

,

singularities (x, ξ) of f with direction ξ = σ(x − θ(tξ )), tξ ∈ (π
2 , 3π

2 ), cannot be
reconstructed from the dynamic data, see Figs. 8 and 9 (left).

As we can see in Fig. 9 visible singularities and added artifacts appear as
predicted from our theory.
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Fig. 10 Movement of phantom in [0, 2π ] for t = 0, 2π
3 , 4π

3 , 2π

This example shows, that the dynamic behavior can result in limited data
problems (even though in the static case, the measured data would have been
sufficient to recover all singularities).

After this detailed study, we finally want to provide one last example with the
phantom from Sect. 5.1 and a more complex motion model, namely the non-affine
(and non-periodic) deformation illustrated in Fig. 10.

Regarding the dynamic behavior, we consider

�tx = ZtAtx,

with the rotation matrix

At =
⎛
⎝ cos

(
1
2 t

)
sin

(
1
2 t

)

− sin
(
1
2 t

)
cos

(
1
2 t

)
⎞
⎠

and the non-affine motion described by Z0x = x and

(Ztx)i = ( 4
√
5mi(t)xi + 1)5 − 1

5 4
√
5mi(t)

,

for t ∈ (0, 2π ] and i = 1, 2 with

m1(t) = sin

(
0.005

(
t
N + 1

2π
− 1

)
3

N

)
,

m2(t) = sin

(
0.007

(
t
N + 1

2π
− 1

)
3

N

)
.

Applying our reconstruction method to the corresponding dynamic data set
provides an image showing the visible singularities of the initial object state as
well as additional artifacts, see Fig. 11 (right), which are caused by the object
singularities encoded at beginning and end of the scanning and which spread along
the respective integration curves. In particular, we observe that the artifacts spread
along deformed circle lines due to the non-affine motion model.
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Fig. 11 Ground-truth phantom (left) and dynamic reconstruction (right)

6 Conclusion

In this chapter, we analysed the overall information content of dynamic tomography
data using the framework of Fourier integral operators and microlocal analysis. In
particular, we extended our previous results in [18] and [17] to a larger class of
operators. Based on this analysis, we further provided a detailed characterization
on what is visible in a respective reconstruction result assuming the motion is
exactly known, which we illustrated with various numerical examples from dynamic
photoacoustic tomography.

The developed theory can further be utilized to study the scenario where only
incorrect motion information are available (accounting for instance for modelling
or estimation errors). So far, this has been studied for instance in [15] for the
specific example of dynamic computerized tomography. The gained insights could
then serve as a guiding principle for the design of motion estimation protocols or
additional artifact reduction strategies.
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The Tangential Cone Condition for Some
Coefficient Identification Model
Problems in Parabolic PDEs

Barbara Kaltenbacher, Tram Thi Ngoc Nguyen, and Otmar Scherzer

Abstract The tangential condition was introduced in Hanke et al. (Numer Math
72:21–37 1995) as a sufficient condition for convergence of the Landweber iteration
for solving ill–posed problems.

In this paper we present a series of time dependent benchmark inverse problems
for which we can verify this condition.

1 Introduction

We consider the problem of recovering a parameter θ in the evolution equation

u̇(t) = f (t, θ, u(t)) t ∈ (0, T ) (1)

u(0) = u0, (2)

where for each t ∈ (0, T ) we consider u(t) as a function on a bounded C1,1 domain

 ⊂ R

d . In (1), u̇ denotes the first order time derivative of u and f is a nonlinear
function. We here focus on the setting of θ not being time dependent. Problems with
state equations of the form u̇(t) = f (t, θ(t), u(t)) could be treated analogously
but this would lead to different requirements on the underlying function spaces.
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These model equations are equipped with additional data obtained from continuous
observations over time

y(t) = C(t, u(t)), (3)

with an observation operator C, which will be assumed to be linear; in particular,
in most of what follows C is the continuous embedding V ↪→ Y , with V and Y

introduced below.
While formulating the requirements and results first of all in this general

framework, we will also apply it to a number of examples as follows.

1.1 Identification of a Potential

We study the problem of identifying the space-dependent parameter c from obser-
vation of the state u in 
× (0, T ) in

u̇−�u+ cu = ϕ (t, x) ∈ (0, T )×
 (4)

u|∂
 = 0 t ∈ (0, T ) (5)

u(0) = u0 x ∈ 
, (6)

where ϕ ∈ L2(0, T ;H−1(
)) and u0 ∈ L2(
) are known. Here, −� could be
replaced by any linear elliptic differential operator with smooth coefficients.

With this equation, known, among others, as diffusive Malthus equation [31],
one can model the evolution of a population u with diffusion and with exponential
growth as time progresses. The latter phenomenon is quantified by the growth rate
c, which, in this particular case, depends only on the environment.

1.2 Identification of a Diffusion Coefficient

We further consider the problem of recovering the space-dependent parameter a

from measurements of u in 
× (0, T ), governed by the diffusion equation

u̇−∇ ·
(
a∇u

)
= ϕ (t, x) ∈ (0, T )×
 (7)

u|∂
 = 0 t ∈ (0, T ) (8)

u(0) = u0 x ∈ 
, (9)

where ϕ ∈ L2(0, T ;H−1(
)) and u0 ∈ L2(
) are known. This is, for instance,
a simple model of groundwater flow, whose temporal evolution is driven by the
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divergence of the flux−a∇u and the source term ϕ. The coefficient a represents the
diffusivity of the sediment and u is the piezometric head [14].

Banks and Kunisch [3, Chapter I.2] discussed the more general model: u̇ + ∇ ·(
−a∇u + bu

)
+ cu, describing the sediment formation in lakes and deep seas, in

particular, the mixture of organisms near the sediment-water interface.

1.3 An Inverse Source Problem with a Quadratic First Order
Nonlinearity

Here we are interested in the problem of identifying the space-dependent source
term θ from observation of the state u in 
× (0, T )

u̇−�u− |∇u|2 = θ (t, x) ∈ (0, T )×
 (10)

u|∂
 = 0 t ∈ (0, T ) (11)

u(0) = u0 x ∈ 
 . (12)

This sort of PDE with a quadratic nonlinearity in ∇u arises, e.g., in stochastic
optimal control theory [10, Chapter 3.8].

1.4 An Inverse Source Problem with a Cubic Zero Order
Nonlinearity

The following nonlinear reaction-diffusion equation involves determining the space-
dependent source term θ from observation of the state u in 
×(0, T ), in a semiliear
parabolic equation

u̇−�u+�(u) = ϕ − θ (t, x) ∈ (0, T )×
 (13)

u|∂
 = 0 t ∈ (0, T ) (14)

u(0) = u0 x ∈ 
, (15)

where the possibly space and time dependent source term ϕ ∈ L2(0, T ;H−1(
))

and the initial data u0 ∈ H 1
0 (
) are known.

Here we selectively mention some applications for PDEs with cubic nonlinearity
�(u):

• �(u) = u(1− u2): Ginzburg-Landau equations of superconductivity [4], Allen-
Cahn equation for the phase separation process in a binary metallic alloy [1, 33],
Newell-Whitehead equation for convection of fluid heated from below [11].
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• �(u) = u2(1− u): Zel’dovich equation in combustion theory [11].
• �(u) = u(1 − u)(u − α), 0 < α < 1: Fisher’s model for population genetics

[36], Nagumo equation for bistable transmission lines in electric circuit theory
[32].

In part of the analysis we will also consider an additional gradient nonlinearity
�(∇u) in the PDE, cf. (44) below.

Coming back to the general setting (1)–(3) we will make the following assump-
tions, where all the considered examples fit into. The operators defining the model
and observation equations above are supposed to map between the function spaces

f : (0, T )× X× V → W ∗ (16)

C : (0, T )× V → Y, (17)

where X, Y, W, V ⊆ Y are Banach spaces. More precisely, X is the parameter
space, Y the data space, W ∗ the space in which the equations is supposed to hold
and V the state space. The latter three are first of all the spaces for the respective
values at fixed time instances and will also be assigned a version for time-dependent
functions, denoted by calligraphic letters. So X, Y, W∗ will denote the parameter,
data and equation spaces, respectively, and U or Ũ (to distinguish between the
different versions in the reduced and all-at-once setting below) the state space. The
initial condition u0 ∈ H , where H is a Banach space as well, will in most of what
follows be supposed to be independent of the coefficient θ here. Dependence of
the initial data and also of the observation operator on θ can be relevant in some
applications but leads to further technicalities, thus for clarity of exposition we shift
consideration of these dependencies to future work.

For fixed θ , we assume that the Caratheodory mappings f and C as defined
above induce Nemytskii operators [42, Section 4.3] (for which we will use the same
notation f and C) on the function space

U = L2(0, T ;V ) ∩H 1(0, T ;W ∗) or Ũ = L∞(0, T ;V ) ∩H 1(0, T ;W ∗) ,

cf. (34) and (48) respectively, in which the state u will be contained, and map into
the image space W∗ and observation space Y, respectively, where

W∗ = L2(0, T ;W ∗), Y = L2(0, T ;Y ). (18)

Moreover, Ũ or U, respectively, will be assumed to continuously embed into
C(0, T ;H) in order to make sense out of (2).

We will consider formulation of the inverse problem on one hand in a classical
way, as a nonlinear operator equation

F(θ) = y (19)
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with a forward operator F mapping between Banach spaces X and Y, and on the
other hand also, alternatively, as a system of model and observation equation

A(θ, u) = 0; (20)

C(u) = y. (21)

Here,

A : X×U→W∗ ×H, (θ, u) �→ A(θ, u) = (u̇− f (θ, u), u(0)− u0)

C : U→ Y
(22)

are the model and observation operators, so that with the parameter-to-state map
S : X→ U defined by

A(θ, S(θ)) = 0 (23)

and

F = C ◦ S, (24)

Equation (19) is equivalent to the all-at-once formulation (20) and (21). Defining

F : X×U→W∗ ×H ×Y

by

F(θ, u) = (A(θ, u),C(u)),

and setting y = (0, y), we can rewrite (20) and (21) analogously to (19), as

F(θ, u) = y . (25)

All-at-once approaches have been studied for PDE constrained optimization in, e.g.,
[24, 25, 29, 35, 40, 41, 43] and more recently, for ill-posed inverse problems in, e.g.,
[5, 6, 13, 18, 22, 43], particularly for time dependent models in [19, 34]. The fact
that we are actually using different state spaces U, Ũ in these two settings is on
one hand due to the requirements arising from the need for well-definedness and
differentiability of the parameter-to-state map in the reduced setting. On the other
hand, while these constraints are not present in the all-at-once setting and a quite
general choice of the state space is possible there, whenever a Hilbert space setting
is required—e.g., for reasons of easier implementation—this does not only apply
to the parameter and data space but also to the state and equation spaces in the all-
at-once setting, whereas in a reduced setting these spaces are “hidden” inside the
forward operator.
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Convergence proofs of iterative regularization methods for solving (19) (and
likewise (25)) such as the Landweber iteration [15, 21] or the iteratively regularized
Gauss-Newton method [2, 20, 21] require structural assumptions on the nonlinear
forward operator F such as the tangential cone condition [39]

‖F(θ)−F(θ̃)−F ′(θ)(θ−θ̃ )‖Y ≤ ctc‖F(θ)−F(θ̃)‖Y ∀θ, θ̃ ∈ BX
ρ (θ0) , (26)

for some sufficiently small constant ctc. Here F ′(θ) does not necessarily need to
be the Fréchet or Gâteaux derivative of F , but it is just required to be some linear
operator that is uniformly bounded in a neighborhood of the initial guess θ0, i.e.,
F ′(θ) ∈ L(X,Y) such that

‖F ′(θ)‖L(X,Y) ≤ CF ∀θ, θ̃ ∈ BX
ρ (θ0) , (27)

for some CF > 0.
The conditions (26) and (27) enforce certain local convexity conditions of the

residual θ �→ ‖F(θ) − y‖2, cf.[23]. In this sense, the conditions are structurally
similar to conditions used in the analysis of Tikhonov regularization, such as those in
[7]. The tangential cone condition eventually guarantees convergence to the solution
of (19) by a gradient descent method for the residual (and also for the Tikhonov
functional). Therefore it ensures that the iterates are not trapped in local minima.

The key contribution of this chapter is therefore to establish (26) and (27) in
the reduced setting (19) as well as its counterpart in the all-at-once setting (25)
for the above examples (as well as somewhat more general classes of examples)
of parameter identification in initial boundary value problems for parabolic PDEs
represented by (1) and (2). In the reduced setting this also involves the proof of
well-definedness and differentiability of the parameter-to-state map S, whereas in
the all-at-once setting this is not needed, thus leaving more freedom in the choice
of function spaces. Correspondingly, the examples classes considered in Sect. 2 will
be more general than those in Sect. 3.

Some non-trivial static benchmark problems where the tangential condition has
been verified can be found e.g., in [8, 17, 28].

We mention in passing that in view of existing convergence analysis for such
iterative regularization methods for (19) or (25) in rather general Banach spaces
we will formulate our results in general Lebesgue and Sobolev spaces. Still, we
particularly strive for a full Hilbert space setting as preimage and image spaces X

and Y , since derivation and implementation of adjoints is much easier then, and
also the use of general Banach spaces often introduces additional nonlinearity or
nonsmoothness. Moreover we point out that while in the reduced setting, we will
focus on examples of parabolic problems in order to employ a common framework
for establishing well-definedness of the parameter-to-state map, the all-at-once
version of the tangential condition trivially carries over to the wave equation (or also
fractional sub- or superdiffusion) context by just replacing the first time derivative
by a second (or fractional) one.
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The remainder of this paper is organized as follows. Section 2 provides results
for the all-at-once setting, that are also made use of in the subsequent Sect. 3 for the
reduced setting. The proofs of the propositions in Sect. 2 and the notation can be
found in the Appendix.

2 All-at-Once Setting

The tangential cone condition and boundedness of the derivative in the all-at-once
setting F(θ, u) = y (25) with

F : X×U→W∗ ×H ×Y , F(θ, u) =
⎛
⎝

u̇− f (θ, u)

u(0)− u0

C(u)

⎞
⎠ (28)

and the norms

‖(θ, u)‖X×U :=
(
‖θ‖2X + ‖u‖2X

)1/2
,

‖(w, h, y)‖W∗×H×Y :=
(
‖w‖2W∗ + ‖h‖2 + ‖y‖2Y

)1/2
,

on the product spaces read as

‖f (θ, u)− f (θ̃, ũ)− f ′θ (θ, u)(θ − θ̃ )− f ′u(θ, u)(u− ũ)‖W∗

≤ cAAO
tcc

(
‖u̇− ˙̃u− f (θ, u)+ f (θ̃, ũ)‖2W∗+‖u(0)− ũ(0)‖2H +‖C(u− ũ)‖2Y

)1/2
,

∀(θ, u), (θ̃ , ũ) ∈ BX×U
ρ (θ0, u0) ,

(29)
and

(
‖v̇ − f ′θ (θ, u)χ − f ′u(θ, u)v‖2W∗ + ‖v(0)‖2H + ‖Cv‖2Y

)1/2

≤ CF

(
‖χ‖2X + ‖v‖2U

)1/2
,

∀(θ, u) ∈ BX×U
ρ (θ0, u0) , χ ∈ X , v ∈ U

(30)

where we have assumed linearity of C.
Since the right hand side terms ‖u(0) − ũ(0)‖H and ‖f (θ, u) − f (θ̃, ũ)‖W∗ in

(29) are usually too weak to help for verification of this condition, we will just skip
it in the following and consider

‖f (θ, u)− f (θ̃, ũ)− f ′θ (θ, u)(θ − θ̃ )− f ′u(θ, u)(u− ũ)‖W∗

≤ cAAO
tcc ‖C(u− ũ)‖Y , ∀(θ, u), (θ̃ , ũ) ∈ BX×U

ρ (θ0, u0)
(31)
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which under these conditions is obviously sufficient for (29). Moreover, in order for
the remaining right hand side term to be sufficiently strong in order to be able to
dominate the left hand side, we will need to have full observations in the sense that

R(C(t)) = Y . (32)

In the next section, it will be shown that under certain stability conditions on the
generalized ODE in (1), together with (32), the version (31) of the all-at-once
tangential cone condition is sufficient for its reduced counterpart (26).

Likewise, we will further consider the following sufficient conditions for bound-
edness of the derivative,

‖f ′θ (θ, u)‖L(X,W∗) ≤ CF,1 , ‖f ′u(θ, u)‖L(U,W∗) ≤ CF,2 ,

‖∂t‖L(U,W∗) ≤ CF,0 , ‖C‖L(U,Y) ≤ CF,3

∀(θ, u) ∈ BX×U
ρ (θ0, u0) .

(33)

The function space setting considered here will be

U = {u ∈ L2(0, T ;V ) : u̇ ∈ L2(0, T ;W ∗)} ↪→ C(0, T ;H) ,

W = L2(0, T ;W) , Y = L2(0, T ;Y ) ,
(34)

so that the third bound in (33) is automatically satisfied with CF,0 = 1. We focus on
Lebesgue and Sobolev spaces1

V = Ws,m(
) , W = Wt,n(
) , Y = Lq(
) , (35)

with s, t ∈ [0,∞), m, n ∈ [1,∞], q ∈ [1, q̂], and q̂ the maximal index such that V

continuously embeds into Lq̂(
), i.e. such that

s − d

m
% −d

q̂
, (36)

so that with C defined by the embedding operatorU→ Y, the last bound in (33) is
automatically satisfied.2 For the notation % we refer to the Appendix.

1In place of V , its intersection with H 1
0 (
) might be considered in order to take into account

homogeneous Dirichlet boundary conditions. For the estimates themselves, this does not change
anything.
2One could possibly think of also extending to more general Lebesgue spaces instead of L2 with
respect to time. As long as the summability index is the same for W and Y this would not change
anything in Sect. 2.1. As soon as the summability indices differ, one has to think of continuity of
the embedding U = Lr1 (0, T ;V ) ∩W 1,r2 (0, T ;W ∗) ↪→ Y = Lr3 (0, T ;Y ) as a whole, possibly
taking advantage of some interpolation between Lr1 (0, T ;V ) and W 1,r2 (0, T ;W ∗). This could
become very technical but might pay off in specific applications.
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The parameter space X may be very general at the beginning of Sect. 2.1 and in
Sect. 2.4. We will only specify it in the particular examples of Sect. 2.1.

We will now verify the conditions (31) and (33) for some (classes of) examples.

2.1 Bilinear Problems

Many coefficient identification problems in linear PDEs, such as the identification
of a potential or of a diffusion coefficient, as mentioned above, can be treated in a
general bilinear context.

Consider an evolution driven by a bilinear operator, i.e.,

f (θ, u)(t) = L(t)u(t)+ ((Bθ)(t))u(t)− g(t) , (37)

where for almost all t ∈ (0, T ), and all θ ∈ X, v ∈ V we have L(t), (Bθ)(t) ∈
L(V , W ∗), θ �→ (Bθ)(t)v ∈ L(X, W ∗), and g(t) ∈ W ∗, with

sup
t∈[0,T ]

‖L(t)‖L(V ,W ∗) ≤ CL , sup
t∈[0,T ]

‖(Bθ)(t)‖L(V ,W ∗) ≤ CB‖θ‖X (38)

so that the first and second bounds in (33) are satisfied, due to the estimates

‖f ′θ (θ, u)χ‖W∗ =
(∫ T

0
‖((Bχ)(t))u(t)‖2W ∗

)1/2

≤ CB‖χ‖X
(∫ T

0
‖u(t)‖2V

)1/2

‖f ′u(θ, u)v‖W∗ =
(∫ T

0
‖L(t)v(t)+ ((Bθ)(t))v(t)‖2W ∗

)1/2

≤ (CL + CB‖θ‖X)

(∫ T

0
‖v(t)‖2V

)1/2

.

For the left hand side in (31), we have

(
f (θ, u)− f (θ̃, ũ)− f ′u(θ, u)(u− ũ)− f ′θ (θ, u)(θ − θ̃ )

)
(t) = −((B(θ − θ̃ )(t))(u− ũ)(t) ,

and (31) is satisfied if and only if

‖(B(θ − θ̃ ))(u− ũ)‖W∗ ≤ cAAO
tcc ‖C(u− ũ)‖Y , ∀(θ, u), (θ̃ , ũ) ∈ BX×U

ρ (θ0, u0) ,

hold. A sufficient condition for this to hold is

‖(B(θ − θ̃ ))(t)(v − ṽ)‖W ∗ ≤ cAAO
tcc ‖C(t)(v − ṽ)‖Y ,

∀(θ, v), (θ̃ , ṽ) ∈ BX×V
ρ (θ0, u0(t)) , t ∈ (0, T )

(39)
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The proofs of the propositions for the following examples can be found in the
Appendix. Likewise, the conditions on the summability and smoothness indices
s, t, p, q, m, n of the used spaces, (A.108), (A.110), (A.113), (A.114), (A.116) and
(A.120)–(A.124) as appearing in the formulation of the propositions, are derived
there.

2.2 Identification of a Potential c

Problem (4)–(6) can be cast into the form (37) by setting θ = c and

L(t) = � , (Bc)(t)v = −cv, (40)

(i.e., (Bc)(t) is a multiplication operator with the multiplier c). We set

X = Lp(
) . (41)

Proposition 1 For U, W, Y according to (34) with (35) and (A.108), −� ∈
L(V , W ∗), the operator F defined by (28), (37) and (40), C = id : U→ Y satisfies
the tangential cone condition (31) with a uniformly bounded operator F′(c), i.e., the
family of linear operators (F′(c))c∈M is uniformly bounded in the operator norm,
for c in a bounded subset M of X.

Remark 1 A full Hilbert space setting can be achieved by setting p = q = m =
n = 2 and choosing s ≥ 0, t > d

2 .

2.3 Identification of a Diffusion Coefficient a

The a problem (7)–(9) is defined by setting

L(t) ≡ 0 , (Ba)(t)v = ∇ · (a∇v), (42)

so that

‖(B(â)(t))v̂‖W ∗

= sup
w∈W , ‖w‖W≤1

∫



â∇v̂ · ∇w dx = sup
w∈W , ‖w‖W≤1

∫



v̂
(
∇â · ∇w + â�w

)
dx

≤ ‖v̂‖Lq

(
‖∇â‖Lp sup

w∈W , ‖w‖W≤1
‖∇w‖

L

p∗q
q−p∗
+‖â‖Lr sup

w∈W , ‖w‖W≤1
‖�w‖

L

r∗q
q−r∗

)
.
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Note that since Y = Lq(
) we had to move all derivatives away from v̂ by means of
integration by parts, which forces us to use spaces of differentiability order at least
two in W and at least one in X. Thus we here consider

X = W 1,p(
) . (43)

Proposition 2 ForU,W,Y according to (34) with (35) and (A.110), the operator
F defined by (28), (37) and (42), C = id : U → Y satisfies the tangential cone
condition (31) with a uniformly bounded operator F′(a).

Remark 2 A full Hilbert space setting p = q = m = n = 2 requires to choose

s ≥ 0 and t

⎧⎪⎪⎨
⎪⎪⎩

≥ 2 if d = 1

> 2 if d = 2

> 1+ d
2 if d ≥ 3

.

2.4 Nonlinear Inverse Source Problems

Consider nonlinear evolutions that are linear with respect to the parameter θ , i.e.

f (θ, u)(t) = L(t)u(t)+�(u(t))+�(∇u(t))− B(t)θ (44)

where for almost all t ∈ (0, T ), L(t) ∈ L(V , W ∗), B(t) ∈ L(X, W ∗) and �, � ∈
C2(R) satisfy the Hölder continuity and growth conditions

|�′(λ)−�′(λ̃)| ≤ C�′′(1+ |λ|γ + |λ̃|γ )|λ̃− λ|κ (45)

for all λ̃, λ ∈ R

|� ′(λ)−� ′(λ̃)| ≤ C� ′′(1+ |λ|γ̂ + |λ̃|γ̂ )|λ̃− λ|κ̂ (46)

for all λ̃, λ ∈ R
d , where γ, γ̂ , κ, κ̂ ≥ 0. We will show that the exponents γ, γ̂

may actually be arbitrary as long as the smoothness s, t of V and W is chosen
appropriately.

Proposition 3 The operator F defined by (28), (37) and (42), C = id : U→ Y in
either of the four following cases

(a) Equation (45) and � affinely linear andU,W,Y as in (34) with (35), (A.113)
and (A.114);

(b) Equations (45) and (46) and U, W, Y as in (34) with (35), (A.113), (A.114),
(A.116) and (A.120);

(c) Equation (45) and � affinely linear, W, Y as in (34), U as in (A.121) with
(35), (36) and (A.123);
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(d) Equations (45) and (46), W, Y as in (34), U as in (A.122) with (35), (36),
(A.123) and (A.124);

satisfies the tangential cone condition (31) with a uniformly bounded operator
F′(θ).

Remark 3 A Hilbert space setting p = q = m = n = 2 is therefore possible
for arbitrary γ, κ, γ̂ , provided t and s are chosen sufficiently large, cf. (A.113) and
(A.114) in case C� ′′ = 0, and additionally (A.116) and (A.120) otherwise.

3 Reduced Setting

In this section, we formulate the system (1)–(3) by one operator mapping from the
parameter space to the observation space. To this end, we introduce the parameter-
to-state map

S : D ⊆ X→ Ũ, where u = S(θ)solves

(1)-(2) then, with D(F ) = D the forward operator for the reduced setting can be
expressed as

F : D(F ) ⊆ X→ Y, θ �→ C(S(θ)) (47)

and the inverse problem of recovering θ from y can be written as

F(θ) = y.

Here, differently from the state space U in the all-at-once setting, cf., (34), we use
a non Hilbert state space

Ũ = {u ∈ L∞(0, T ;V ) : u̇ ∈ L2(0, T ;W ∗)} (48)

as this appears to be more appropriate for applying parabolic theory.
We now establish a framework for verifying the tangential cone condition as well

as boundedness of the derivative in this general setting.
For this purpose, we make the following assumptions.

Assumption 3.1

(R1) Local Lipschitz continuity of f

∀M ≥ 0,∃L(M) ≥ 0,∀a.e.t ∈ (0, T ) :
‖f (t, θ1, v1)− f (t, θ2, v2)‖W ∗ ≤ L(M)(‖v1 − v2‖V + ‖θ1 − θ2‖X),

∀vi ∈ V, θi ∈ X : ‖vi‖V , ‖θi‖X ≤ M, i = 1, 2.
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(R2) Well-definedness of the parameter-to-state map

S : D(F ) ⊆ X→ Ũ

with Ũ as in (48) as well as its boundedness in the sense that there exists
CS > 0 such that for all θ ∈ BX

ρ (θ0) the estimate

‖S(θ)‖L∞(0,T ;V ) ≤ CS

holds.
(R3) Continuous dependence on data of the solution to the linearized problem with

zero initial data, i.e., there exists a constant Clin such that for all θ ∈ BX
ρ (θ0),

b ∈W∗, and any z solving

ż(t) = f ′u(θ, S(θ))(t)z(t)+ b(t) t ∈ (0, T ) (49)

z(0) = 0, (50)

the estimate

‖z‖Y ≤ Clin‖b‖W∗ . (51)

holds.
(R4) Tangential cone condition of the all-at-once setting (31)

∃ρ > 0,∀(θ, u),(θ̃ , ũ) ∈ BX,U
ρ (θ0, u0) :

‖f (θ̃, ũ)− f (θ, u)− f ′u(θ, u)(ũ− u)− f ′θ (θ, u)(θ̃ − θ)‖W∗

≤ cAAO
tcc ‖Cũ− Cu‖Y.

The main result of this section is as follows.

Theorem 3.2 Suppose Assumption 3.1 holds and C is the embedding V ↪→ Y .
Then there exists a constant ρ > 0 such that for all θ, θ̃ ∈ BX

ρ (θ0) ⊂ D(F ),

(i) F ′(θ) is uniformly bounded:

‖F ′(θ)‖L(X,Y) ≤ M

for some constant M , and

(ii) The tangential cone condition is satisfied:

‖F(θ̃)− F(θ)− F ′(θ)(θ̃ − θ)‖Y ≤ cRe
tcc‖F(θ̃)− F(θ)‖Y (52)

for some small constant cRe
tcc.
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This is a consequence of the following two propositions, in which we combine
the all-at-once versions of the tangential cone and boundedness conditions, respec-
tively, with the assumed stability of S and its linearization.

Proposition 4 Given C is the embedding V ↪→ Y and u0 is independent of θ , the
tangential cone condition in the reduced setting (52) follows from the one in the
all-at-once setting (R4) if the linearized forward operator is boundedly invertible as
in (R3) and S is well defined according to (R2).

Proof We begin by observing that the functions

v := S(θ)− S(θ̃)

w := S′(θ)h

z := S(θ)− S(θ̃)− S′(θ)(θ − θ̃ )

solve the corresponding equations

v̇(t) = f (θ, S(θ))(t)− f (θ̃, S(θ̃))(t) t ∈ (0, T ), v(0) = 0 (53)

ẇ(t) = f ′u(θ, S(θ))w(t)+ f ′θ (θ, S(θ))h(t) t ∈ (0, T ), w(0) = 0
(54)

ż(t) = f ′u(θ, S(θ))z(t)

+ (− f ′u(θ, S(θ))v(t)− f ′θ (θ, S(θ))(θ − θ̃ )(t) (55)

+ f (θ, S(θ))(t)− f (θ̃, S(θ̃))(t)
)

=: f ′u(θ, S(θ))z(t)+ r(t) t ∈ (0, T ), z(0) = 0. (56)

Hence we end up with the following estimate, using the assumed bounded invert-
ibility of the linearized problem (56) and the fact that C is the embedding V ↪→ Y ,

‖F(θ)− F(θ̃)− F ′(θ)(θ − θ̃ )‖Y = ‖S(θ)− S(θ̃)− S′(θ)(θ − θ̃ )‖Y
≤ Clin‖r‖W∗ (57)

≤ ClincAAO
tcc ‖F(θ)− F(θ̃)‖Y, (58)

where ‖r‖W∗ and cAAO
tcc are respectively the left hand side and the constant in the

all-at-once tangential cone estimate, applied to u = S(θ) and ũ = S(θ̃). ��
Remark 4 The inverse problem (19) with (22), (23) and (24) can be written as a
composition of the linear observation operator C and the nonlinear parameter-to-
state map S. Such problems have been considered and analyzed in [16], but as
opposed to that the inversion of our observation operator is ill-posed so the theory
of [16] does not apply here.
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Note that in (58), cAAO
tcc must be sufficiently small such that the tangential cone

constant in the reduced setting cRe
tcc := ClincAAO

tcc fulfills the smallness condition
required in convergence proofs as well. Moreover we wish to emphasize that for the
Proof of Proposition 4, the constant Clin does not need to be uniform but could as
well depend on θ . Also the uniform boundedness condition on S from (R2) is not
yet needed here.

Under further assumptions on the defining functions f , we also get existence and
uniform boundedness of the linear operator F ′(θ) as follows.

Proposition 5 Let S be well defined and bounded according to (R2), and
let (R1), (R3) be satisfied.

Then F ′(θ) is Gâteaux differentiable and its derivative given by

F ′(θ) : X→ Y, where F ′(θ)h = w solves (59)

(54) is uniformly bounded in BX
ρ (θ0).

Proof For differentiability of F relying on conditions (R1)–(R3), we refer to [34,
Proposition 4.2]. Moreover again using (R1)–(R3), for any θ ∈ BX

ρ (θ0) we get

‖F ′(θ)h‖Y = ‖S′(θ)h‖Y ≤ Clin‖f ′θ (θ, S(θ))h‖L2(0,T ;W ∗)

≤ Clin

√
T ‖f ′θ (θ, S(θ))‖X→W ∗‖h‖X

≤ Clin

√
T L(M)‖h‖X

for M = CS +‖θ0‖X+ ρ, where L(M) is the Lipschitz constant in (R1) and Clin is
as in (R3). Above, we employ boundedness of S by CS as assumed in (R2).

This proves uniform boundedness of F ′(θ).
We now discuss Assumption 3.1 in more detail. ��

Remark 5 For the case V = W .
We rely on the setting of a Gelfand triple V ⊆ H ⊆ V ∗ for the general

framework of nonlinear evolution equations. By this, (R2) can be fulfilled under
the conditions suggested by Roubíček [38, Theorems 8.27, 8.31]:

For every θ ∈ D(F )

(S1) and for almost t ∈ (0, T ), the mapping −f (t, θ, ·) is pseudomonotone, i.e.,
−f (t, θ, ·) is bounded and

lim inf
k→∞ 〈f (t, θ, uk), uk − u〉 ≥ 0

uk ⇀ u

⎫⎬
⎭⇒

⎧⎨
⎩
〈f (t, θ, u), u− v〉 ≥ lim sup

k→∞
〈f (t, θ, uk), uk − v〉

∀v ∈ V.

(S2) −f (·, θ, ·) is semi-coercive, i.e.,

∀v ∈ V,∀a.e.t ∈ (0, T ) : 〈−f (t, θ, v), v〉V ∗,V ≥ Cθ
0 |v|2V − Cθ

1 (t)|v|V − Cθ
2 (t)‖v‖2H
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for some Cθ
0 > 0, Cθ

1 ∈ L2(0, T ), Cθ
2 ∈ L1(0, T ) and some seminorm |.|V

satisfying
∀v ∈ V : ‖v‖V ≤ c|.|(|v|V + ‖v‖H ) for some c|.| > 0.

(S3) f satisfies the growth condition

∃γ θ ∈ L2(0, T ), h̄θ : R→ R increasing : ‖f (t, θ, v)‖V ∗ ≤ h̄θ (‖v‖H )(γ θ (t)+ ‖v‖V )

and a condition for uniqueness of the solution, e.g.,

∀u, v ∈ V,∀a.e.t ∈ (0, T ) : 〈f (t, θ, u)− f (t, θ, v), u− v〉V ∗,V ≤ ρθ (t)‖u− v‖2H

for some ρθ ∈ L1(0, T )

and further conditions for S(θ) ∈ L∞(0, T ;V ), e.g., [38, Theorem 8.16, 8.18].
In case of linear f (t, θ, ·), (S1)–(S3) boil down to boundedness and semi-

coercivity (S2) of −f (·, θ, ·) according to [38, Theorem 8.27, 8.31, 8.28]. Alter-
natively, one can observe that linear boundedness implies the growth condition
in (S3) with γ θ = 0, h̄θ = ‖f (·, θ)‖, and (S2) implies the rest of (S3) with
ρθ = Cθ

2 if Cθ
1 ≤ 0 as Cθ

0 < 0. The pseudomonotonicity assumption (S1), which
guarantees week convergence of f (·, θ, uk) to f (·, θ, u) when the approximation
solution sequence uk converges weakly to u, can be replaced by weak continuity of
f (·, θ, ·) which holds in this linear bounded case.

Treating the linearized problem (49)–(50) as an independent problem, we can
impose on f ′u(θ, S(θ)) the boundedness and semi-coercivity properties, then (R3)
follows.

Remark 6 For general spaces V, W.

Some examples even in case V �= W allow to use the results quoted in Remark 5
with an appropriately chosen Gelfand triple, see, e.g., Sect. 3.1 below.

When dealing with linear and quasilinear parabolic problems, detailed discus-
sions for unique existence of the solution are exposed in the books, e.g., of Evans
[9], Ladyzhenskaya et al. [26], Pao [36]. If constructing the solution to the initial
value problem through the semigroup approach, one can find several results, e.g.,
from Evans [9], Pazy [37] combined with the elliptic results from Ladyzhenskaya et
al. [27].

Addressing (R3), a possible strategy is using the following dual argument.
Suppose W is reflexive and z is a solution to the problem (49)–(50), then by the

Hahn-Banach Theorem

‖z‖L2(0,T ;V ) = sup
‖φ‖

L2(0,T ;V ∗)≤1

∫ T

0
〈z, φ〉V,V ∗dt

= sup
‖φ‖

L2(0,T ;V ∗)≤1

∫ T

0
〈z,−ṗ − f ′u(θ, S(θ))∗p〉V,V ∗dt
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= sup
‖φ‖

L2(0,T ;V ∗)≤1

∫ T

0
〈ż− f ′u(θ, S(θ))z, p〉W ∗,W dt

= sup
‖φ‖

L2(0,T ;V ∗)≤1

∫ T

0
〈b, p〉W ∗,W dt

≤ sup
‖φ‖

L2(0,T ;V ∗)≤1
‖b‖L2(0,T ;W ∗)‖p‖L2(0,T ;W),

where

f ′u(θ, S(θ))(t) : V → W ∗, f ′u(θ, S(θ))(t)∗ : W ∗∗ = W → V ∗,

and p solves the adjoint equation

−ṗ(t) = f ′u(θ, S(θ))∗p(t)+ φ(t) t ∈ (0, T ) (60)

p(T ) = 0. (61)

If in the adjoint problem the estimate

‖p‖L2(0,T ;W) ≤ C̃lin‖φ‖L2(0,T ;V ∗) (62)

holds for some uniform constant C̃lin, then we obtain

‖z‖Y ≤ ‖C‖V→Y ‖z‖L2(0,T ;V ) ≤ ‖C‖V→Y C̃lin‖b‖W∗ . (63)

Thus (R3) is fulfilled.
So we can replace (R3) by

(R3-dual) Continuous dependence on data of the solution to the adjoint linearized
problem associated with zero final condition, i.e., there exists a constant
C̃lin such that for all θ ∈ BX

ρ (θ0), φ ∈ L2(0, T , V ∗), and any p solving
(60) and (61), the estimate (62) holds.

In the following sections, we examine the specific examples introduced in the
introduction, in the relevant function space setting

X = Lp(
) or X = W 1,p(
) p ∈ [1,∞] (64)

Y = Lq(
) q ∈ [1, q̄] (65)

Ũ = {u ∈ L∞(0, T ;V ) : u̇ ∈ L2(0, T ;W ∗)}, (66)

where V, W will be chosen subject to the particular example, where q̂ is the
maximum power allowing V ↪→ Lq̂(
) and q̄ ≤ q̂ is the maximum power such
that (51) in (R3) holds.
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3.1 Identification of a Potential

We investigate this problem in the function spaces

D(F ) = X = Lp(
), Y = Lq(
), V = L2(
), W = H 2(
) ∩H 1
0 (
).

Now we verify the conditions proposed in Assumption 3.1.

(R1) Local Lipschitz continuity of f :
Applying Hölder’s inequality, we have

‖f (c̃, ũ)− f (c, u)‖W ∗ = ‖c̃ũ− cu‖W ∗ = sup
‖w‖W≤1

∫



(c̃ũ− cu)wdx

≤ sup
‖w‖W≤1

‖w‖W CW→Lp̄

(∫



|c̃(ũ− u)+ (c̃ − c)u|p̄∗dx

) 1
p̄∗

≤ CW→Lp̄ (‖c̃‖Lp‖ũ− u‖Lr + ‖c̃ − c‖Lp‖u‖Lr )

≤ L(M)(‖ũ− u‖V + ‖c̃ − c‖X)

with the dual index p̄∗ = p̄
p̄−1 and r = p̄p

p̄p−p−p̄
, L(M) = CW→Lp̄CV→Lr

(‖u‖V + ‖ũ‖V + ‖c‖X + ‖c̃‖X) + 1. Above, we invoke the continuous
embeddings through the constants CW→Lp̄ , CV→Lr , where p̄ denotes the
maximum power allowing W ⊆ Lp̄. Thus we are supposing

p ≥ max

{
2p̄

p̄ − 2
,

p̄

p̄ − 1

}
= 2p̄

p̄ − 2
and 2− d

2
% − d

p̄
(67)

in order to guarantee V = L2(
) ↪→ Lr(
) and W = H 2(
) ∩ H 1
0 (
) ↪→

Lp̄(
)

(R2) Well-definedness and boundedness of the parameter-to-state map:
Verifying boundedness and semi-coercivity conditions with the Gelfand triple
H 1

0 (
) ↪→ L2(
) ↪→ H−1(
) (while remaining with V = L2(
) in the def-
inition of the space Ũ) shows that, for u0 ∈ L2(
), ϕ ∈ L2(0, T ;H−1(
))

the initial value problem (4)–(6) admits a unique solution u ∈ W(0, T ) :=
{u ∈ L2(0, T ;H 1

0 (
)) : u̇ ∈ L2(0, T ;H−1(
)} ⊂ {u ∈ L∞(0, T ;L2(
)) :
u̇ ∈ L2(0, T ;H−2(
))} = Ũ.

Indeed, coercivity is deduced as follows. For

p ≥ 2, d ≤ 3, (68)

we see
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∫



cu2dx ≤ ‖c‖L2(
)

(∫



u4dx

) 1
2 ≤ ‖c‖L2(
)

(∫



u2dx

) 1
4
(∫




u6dx

) 1
4

≤ ‖c‖L2(
)‖u‖
1
2
L2(
)

‖u‖
3
2
L6(
)

≤ CH 1
0→L6‖c‖L2(
)‖u‖

1
2
L2(
)

‖u‖
3
2

H 1
0 (
)

(69)

≤ CH 1
0→L6‖c‖L2(
)

(
1

4ε
‖u‖L2(
)‖u‖H 1

0 (
) + ε‖u‖2
H 1
0 (
)

)

≤ CH 1
0→L6‖c‖L2(
)

(
1

16εε1
‖u‖2

L2(
)
+ ε1

4ε
‖u‖2

H 1
0 (
)
+ ε‖u‖2

H 1
0 (
)

)
,

which yields semi-coercivity

〈−f (t, c, u), u〉H−1,H 1
0
=

∫



(−�u+ cu)udx

≥
(
1− CH 1

0→L6‖c‖L2(
)

( ε1

4ε
+ ε

))
‖u‖2

H 1
0 (
)
−

CH 1
0→L6

16εε1
‖c‖L2(
)‖u‖2L2(
)

,

=: Cc
0‖u‖2H 1

0 (
)
+ Cc

2‖u‖2L2(
)
,

where the constant Cc
0 is positive if choosing ε1 < ε and ε, ε1 sufficiently

small.
Boundedness of f can be concluded from

‖ − f (t, c, u)‖H−1(
) = sup
‖v‖

H1
0
≤1

∫



(−�u+ cu)vdx

≤ sup
‖v‖

H1
0
≤1

(
‖u‖H 1(
)‖v‖H 1(
) + CH 1

0→L6CH 1
0→L3‖c‖L2(
)‖u‖H 1(
)‖v‖H 1(
)

)

≤ C‖c‖L2(
)‖u‖H 1(
).

Moreover, by the triangle inequality: ‖c‖L2(
) ≤ ‖c0‖L2(
) + ‖c −
c0‖L2(
) ≤ ‖c0‖L2(
)+ρ, semi-coercivity of f is satisfied with the constants
C0, C1 now depending only on the point c0. This hence gives us uniform
boundedness of S on the ball BX

ρ (c0).
(R3) Continuous dependence on data of the solution to the linearized problem with

zero initial data:
We use the duality argument mentioned in Remark 6. To do so, we need
to prove existence of the adjoint state p ∈ L2(0, T ;W) and the associated
estimate 6.
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Initially, by the transformation v = e−λtp and putting τ = T − t , the
adjoint problem (60)–(61) is equivalent to

v̇(t)−�v(t)+ (λ+ c)v(t) = e−λtφ(t) t ∈ (0, T )

(70)

v(0) = 0. (71)

We note that this problem with c = ĉ ∈ L∞(
), λ+ ĉ > −CPF , the constant
in the Poincaré-Friedrichs inequality, φ ∈ L2(0, T ;L2(
)), ∂
 ∈ C2, admits
a unique solution in L2(0, T ;H 2(
) ∩ H 1

0 (
)) [9, Section 7.1.3, Theorem
5]3 and the operator d

dt
− � + (λ + ĉ) : L2(0, T ;H 2(
) ∩ H 1

0 (
)) →
L2(0, T ;L2(
))×H 1(
), p �→ (φ, p0) is boundedly invertible.

Suppose u solves (70)–(71), by the identity

u̇−�u+ (λ+ c)u = e−λtφ ⇔ u̇−�u+ (λ+ ĉ)u = e−λtφ + (ĉ − c)u

u =
(

d

dt
−�+ (λ+ ĉ)

)−1 [
e−λtφ + (ĉ − c)u

]

=: Tu,

we observe that T : L2(0, T ;H 2(
) ∩ H 1
0 (
)) → L2(0, T ;H 2(
) ∩

H 1
0 (
)) is a contraction

‖T(u− v)‖L2(0,T ;H 2∩H 1
0 )

≤
∥∥∥∥∥
(

d

dt
−�+ (λ+ ĉ)

)−1∥∥∥∥∥
L2(0,T ;L2(
))→L2(0,T ;H 2∩H 1

0 )

‖(ĉ − c)(u− v)‖L2(0,T ;L2(
))

≤ Cĉ‖ĉ − c‖Lp‖u− v‖
L2(0,T ;L

2p
p−2 (
))

≤ Cε‖u− v‖L2(0,T ;H 2∩H 1
0 ), (72)

where Cε < 1 if we assume ĉ = c0 ∈ L∞(
) and ρ is sufficiently small.
In some case, smallness of ρ can be omitted (discussed at the end of (R3)).
Estimate (72) holds provided

W = H 2(
) ∩H 1
0 (
) ↪→ L

2p
p−2 (
) i.e., p ≥ 2p̄

p̄ − 2
.

(73)

3Where smoothness of the domain can be slightly relaxed to C1,1 as assumed here, see, e.g., [12].
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Thus, for φ ∈ L2(0, T ;L2(
)) there exists a unique solution v ∈
L2(0, T ;H 2(
) ∩ H 1

0 (
)) to the problem (70)–(71), which implies
p = eλtv ∈ L2(0, T ;H 2(
) ∩H 1

0 (
)) is the solution to the adjoint problem
(60)–(61).

Observing that p solves

ṗ(t)−�p(t)+ ĉp(t) = (ĉ − c)p(t)+ φ(t) t ∈ (0, T )

p(0) = 0,

employing again [9, Section 7.1.3 , Theorem 5] and smallness of ρ yields

‖p‖L2(0,T ;W) ≤ C(‖(ĉ − c)p‖L2(0,T ;L2(
)) + ‖φ‖L2(0,T ;L2(
)))

≤ C(2ρ‖p‖L2(0,T ;H 2∩H 1
0 ) + ‖φ‖L2(0,T ;L2(
))) (74)

≤ C‖φ‖L2(0,T ;V ∗)

with some constant C independent of θ ∈ BX
ρ (c0). This yields (R3-dual) with

q̄ = 2.
If d = 1, p = 2 or d = 2, p > 2 or d = 3, p ≥ 12

5 , the smallness
condition on ρ can be omitted. Indeed, for d = 3, p ≥ 12

5 testing the adjoint
equation by −�p yields

∫


−ṗ�p + (�p)2dx =

∫



(cp − φ)�pdx

1

2

d

dt
‖∇p‖2

L2(
)
+ ‖�p‖2

L2(
)
≤ 1

2
‖�p‖2

L2(
)
+ ‖φ‖2

L2(
)
+ ‖cp‖2

L2(
)
(75)

1

2

d

dt
‖∇p‖2

L2(
)
+ 1

2
‖�p‖2

L2(
)
≤ ‖φ‖2

L2(
)
+ ‖c‖2Lp(
)

(∫



p
p

p−2+ p
p−2 dx

) p−2
p

≤ ‖φ‖2
L2(
)

+ ‖c‖2Lp(
)‖p‖L6(
)‖p‖L∞(
)|
|
5p−12
6p

≤ ‖φ‖2
L2(
)

+ (‖c0‖2X + ρ2)|
|
5p−12
6p

(C2
H 1
0→L6

4ε
‖∇p‖2

L2(
)

+ εC2
H 2∩H 1

0→L∞
(
‖�p‖2

L2(
)
+ ‖∇p‖2

L2(
)

))
,

where in the last estimate we apply Young’s inequality. Choosing ε suf-
ficiently small allows us to subtract the term involving ‖�p‖2

L2(
)
on the

right hand side from the one on the left hand side and get a positive
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coefficient in front. Here, the choice of ε depends only on the constants
c0, ρ, 
, CH 2∩H 1

0→L∞ .
It is also obvious that, if d < 3, in the second line of the above calculation,

we can directly estimate as follow

d = 1, p = 2 : ‖cp‖2
L2(
)

≤ ‖c‖2
L2(
)

‖p‖2L∞(
) ≤ C2
H 1
0→L∞‖c‖

2
L2(
)

‖∇p‖2
L2(
)

d = 2, p > 2 : ‖cp‖2
L2(
)

≤ ‖c‖2Lp(
)‖p‖2
L

2p
p−2 (
)

≤ C2

H 1
0→L

2p
p−2
‖c‖2Lp(
)‖∇p‖2

L2(
)
.

(76)
Employing firstly Gronwall-Bellman inequality with initial data ∇p(0) = 0,
then taking the integral on [0, T ], we obtain

‖p‖L∞(0,T ;H 1(
)) + ‖�p‖L2(0,T ;L2(
)) ≤ C‖φ‖L2(0,T ;L2(
)) (77)

with the constant C depending only on c0, ρ. This estimate is valid for all
c ∈ BX

ρ (c0). Since the adjoint problem has the same form as the original
problem, applying (77) in (72) we can relax ĉ, by means of without fixing
ĉ = c0 but chossing it sufficiently close to c sinceL∞(
) = Lp(
), |
| <∞
to have Cĉε ≤ Cε arbitrarily small with constant C as in (77). Therefore the
constraint on smallness of ρ can be omitted in these cases.

(R4) All-at-once tangential cone condition:
According to (36) and (A.108) with s = 0, t = 2, m = n = 2, this follows if

p

p − 1
≤ q ≤ q̂ ≥ 2 and 2− d

2
% −d(p − 1)

p
+ d

q
.

Corollary 1 Assume u0 ∈ L2(
), ϕ ∈ L2(0, T ;H−1(
)), and

D(F ) = X = Lp(
), Y = Lq(
), V = L2(
), W = H 2(
) ∩H 1
0 (
)

p ≥ 2, q ∈
[
q, 2

]
, d ≤ 3 (78)

with q = max

{
p

p−1 , min
q∈[1,∞]

{
2− d

2 % − d(pq−p−q)
pq

}}
.

Then F defined by F(c) = u solving (4)–(6) satisfies the tangential cone
condition (52) with a uniformly bounded operator F ′(c) defined by (59), see also
[15] for the static case.

Remark 7 This allows a full Hilbert space setting of X and Y by choosing p = q =
2 as long as d ≤ 3.
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3.2 Identification of a Diffusion Coefficient

We pose this problem in the function spaces

X = W 1,p(
), Y = Lq(
), V = L2(
), W = H 2(
) ∩H 1
0 (
) p > d

(79)

so that X ↪→ L∞(
) and define the domain of F by

D(F ) = {a ∈ X : a ≥ a > 0 a.e. on 
}. (80)

Now we examine the conditions (R1)–(R3).

(R1) Local Lipschitz continuity of f :

‖ − ∇·
(
ã∇ũ

)
+∇ ·

(
a∇u

)
‖W ∗

= sup
‖w‖W≤1

∫



(ã∇ũ− a∇u)∇wdx

= sup
‖w‖W≤1

∫



(a∇(ũ− u)+ (ã − a)∇ũ)∇wdx

= sup
‖w‖W≤1

∫



(ũ− u)(∇a∇w + a�w)+ ũ(∇(ã − a)∇w + (ã − a)�w)dx

≤ sup
‖w‖W≤1

∫



(‖ũ− u‖L2‖∇a‖Lp + ‖ũ‖L2‖∇(a − a)‖Lp )‖∇w‖
L

2p
p−2

+ (‖ũ− u‖L2‖a‖L∞ + ‖ũ‖L2‖a − a‖L∞)‖�w‖L2dx

≤ L(M)(‖ũ− u‖V + ‖ã − a‖X)

with M =
(

C
W→W

1, 2p
p−2
+ CX→L∞

)
(‖u‖V +‖ũ‖V +‖c‖X+‖c̃‖X), subject

to the constraint

W = H 2(
) ∩H 1
0 (
) ↪→ L

2p
p−2 (
) i.e., p ≥ 2p̄

p̄ − 2
.

(81)

(R2) Well-definedness and boundedness of the parameter-to-state map:
A straightforward verification of boundedness and coercivity gives unique
existence of the solution u ∈ W(0, T ) ⊂ Ũ for a ∈ D(F ) ⊂
X ↪→ L∞(
), ϕ ∈ L2(0, T ;H−1(
)), u0 ∈ L2(
).

Similarly to the c-problem, the fact that the coercivity property of f holds
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〈−f (t, a, u), u〉H−1,H 1
0
=

∫



−∇ · (a∇u)udx ≥ a‖u‖H 1
0 (
)

with the coefficient a being independent of a shows uniform boundedness of
S.

(R3) Continuous dependence on data of the solution to the linearized problem with
zero initial data:
We employ the result in [9, Section 7.1.3, Theorem 5] with noting that
the actual smoothness condition needed for the coefficient is that, a is
differentiable a.e on 
 and a ∈ W 1,∞(
) rather than a ∈ C1(
). From the
observation a ∈ D(F ) = W 1,p(
), p > d is differentiable a.e and the fact
that W 1,∞(
) is dense in W 1,p(
), it enables us to imitate the contraction
scenario and the dual argument as in the c-problem.

Taking u, v solving (7)–(9), we see

T : L2(0, T ;H 2(
) ∩H 1
0 (
))→ L2(0, T ;H 2(
) ∩H 1

0 (
))

T =
(

d

dt
−∇ ·

(
â∇

))−1
∇ ·

(
(a − â)∇

)

is a contraction

‖T(u− v)‖
L2(0,T ;H 2∩H 1

0 )

≤
∥∥∥∥∥
(

d

dt
−∇ ·

(
â∇

))−1∥∥∥∥∥
L2(0,T ;L2(
))→L2(0,T ;H 2∩H 1

0 )

‖∇ ·
(
(a − â)∇(u− v)

)
‖L2(0,T ;L2(
))

≤ Câ‖â − a‖X‖u− v‖
L2(0,T ;H 2∩H 1

0 )

≤ Cε‖u− v‖
L2(0,T ;H 2∩H 1

0 )
, (82)

where Cε < 1 if we assume â = a0 ∈ W 1,∞(
) and ρ is sufficiently small.
If the index p is large enough, smallness of ρ can be omitted (discussed at
the end of (R3)). Therefore, given φ ∈ L2(0, T ;L2(
)), the adjoint state
p ∈ L2(0, T ;H 2 ∩H 1

0 ) uniquely exists.
We also have the estimate

‖p‖L2(0,T ;W) ≤ C‖∇ ·
(
(a − â)∇p

)
‖L2(0,T ;L2(
)) + ‖φ‖L2(0,T ;L2(
)))

≤ C(2ρ‖p‖L2(0,T ;H 2∩H 1
0 ) + ‖φ‖L2(0,T ;L2(
)))

≤ C‖φ‖L2(0,T ;V ∗),
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which proves continuous dependence of p on φ ∈ L2(0, T ;V ∗), conse-
quently, continuous dependence of the solution z ∈ L2(0, T ;V ) on the data
b ∈ L2(0, T ;W ∗) in (49) and (50). Here smallness of ρ is assumed.

If p ≥ 4, smallness of ρ is not required. To verify this, we test the adjoint
equation by −�p

∫


−ṗ�p + a(�p)2dx =

∫



(−∇a∇p − φ)�pdx

1

2

d

dt
‖∇p‖2

L2(
)
+ a‖�p‖2

L2(
)
≤ a

2
‖�p‖2

L2(
)
+ 1

a
‖φ‖2

L2(
)
+ 1

a
‖∇a∇p‖2

L2(
)

1

2

d

dt
‖∇p‖2

L2(
)
+ a

2
‖�p‖2

L2(
)
≤ 1

a
‖φ‖2

L2(
)
+ 1

a
‖∇a∇p‖2

L2(
)
, (83)

where the last term on the right hand side can be estimated as in (69) of
the c-problem with (∇a)2 in place of c, ∇p in place of u and the assumption
X ↪→ W 1,4(
)

1

a
‖∇a∇p‖2

L2(
)

≤
CH 1

0→L6

a
‖∇a‖2

L4(
)

(
1

16εε1
‖∇p‖2

L2(
)
+

( ε1

4ε
+ ε

)
‖∇p‖2

H 1
0 (
)

)

≤
2CH 1

0→L6

a
(‖a0‖2X + ρ2)

(
1

16εε1
‖∇p‖2

L2(
)
+

( ε1

4ε
+ ε

)
‖�p‖2

L2(
)

)
.

(84)

Choosing ε1 < ε, and ε1, ε sufficiently small such that we can move the term
involving ‖�p‖2

L2(
)
from the right hand side to the left hand side of (83).

Note that, this choice of ε1, ε is just subject to a0 and ρ.
Proceeding similarly to the c-problem, meaning applying Gronwall-

Bellman inequality then taking the integral on [0, T ], we obtain

‖p‖L∞(0,T ;H 1(
)) + ‖�p‖L2(0,T ;L2(
)) ≤ C‖φ‖2
L2(0,T ;L2(
))

(85)

with a constant C depending only on a0, ρ.
Observing the similarity in the form of the adjoint problem and the original

problem, invoking the uniform bound (85) w.r.t parameter a and the fact
W 1,∞(
) = W 1,p(
) one can eliminate the need of smallness of ρ.

(R4) All-at-once tangential cone condition:
According to (36) and (A.110) with s = 0, t = 2, m = n = 2, we require

p

p − 1
≤ q ≤ q̂ ≥ 2 and 1− d

2
% −d(p − 1)

p
+ d

q
and − d

2
≥ −d+ d

p
−1 .
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Corollary 2 Assume u0 ∈ L2(
), ϕ ∈ L2(0, T ;H−1(
)), and

X = W 1,p(
), Y = Lq(
), V = L2(
), W = H 2(
) ∩H 1
0 (
)

p ≥ 2, q ∈
[
q, 2

]
, d < p,

(86)

where q = max

{
p

p−1 , min
q∈[1,∞]

{
1− d

2 % − d(p−1)
p
+ d

q
∧ − d

2 ≥ −d + d
p
− 1

}}
.

Then F defined by F(a) = u solving (7)–(9) satisfies the tangential cone
condition (52) with a uniformly bounded operator F ′(a) defined by (59).

Remark 8 This yields the possibility of a full Hilbert space setting p = q = 2 of X

and Y in case d = 1, see also [14] and, for the static case, [15].

3.3 An Inverse Source Problem with a Quadratic First Order
Nonlinearity

By the transformationU := eu, the initial-value problem (10)–(12) can be converted
into an inverse potential problem as considered in Sect. 3.1

U̇ −�U + θU = 0 (t, x) ∈ (0, T )×
 (87)

U|∂
 = 1 t ∈ (0, T ) (88)

U(0) = U0 x ∈ 
 (89)

with U0 = eu0 . Thus, in principle it is covered by the analysis from the previous
section, as long as additionally positivity of U can be established. So the purpose
of this section is to investigate whether we can allow for different function spaces
X, Y by directly considering (10)–(12) instead of (87)–(89).

We show that f verifies the hypothesis proposed for the tangential cone condition
in the reduced setting on the function spaces

X = Lp(
), Y = Lq(
), V = W = H 2(
) ∩H 1
0 (
). (90)

(R1) Local Lipschitz continuity of f :

‖ − |∇ũ|2 + |∇u|2 − θ̃ + θ‖W ∗ = sup
‖w‖W≤1

∫



(
∇(u− ũ) · ∇(u+ ũ)− θ̃ + θ

)
wdx

≤ CW→Lp̄

(
‖(∇(u− ũ) · ∇(u+ ũ)‖

L
p̄

p̄−1
+ ‖θ − θ̃‖

L
p̄

p̄−1

)
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≤ CW→Lp̄

(
‖∇(u− ũ)‖

L
2p̄

p̄−1
‖∇(u+ ũ)‖

L
2p̄

p̄−1
+ ‖θ − θ̃‖

L
p̄

p̄−1

)

≤ CW→Lp̄

(
C2

V→W
1, 2p̄

p̄−1
‖u− ũ‖V ‖u+ ũ‖V + C

X→L
p̄

p̄−1
‖θ − θ̃‖X

)
.

We can choseL(M)=CW→Lp̄

(
C2

V→W
1, 2p̄

p̄−1
(‖u‖V + ‖ũ‖V )+ C

X→L
p̄

p̄−1

)
+

1, under the conditions

V = H 2(
) ∩H 1
0 (
) ↪→ W

1, 2p̄
p̄−1 (
) i.e., 1− d

2
≥ −d(p̄ − 1)

2p̄

X = Lp(
) ↪→ L
p̄

p̄−1 (
) i.e., p ≥ p̄

p̄ − 1
.

(91)

(R2) Well-definedness and boundedness of parameter-to-state map:
We argue unique existence of the solution to (10)–(12) via the transformed
problem (87)–(89) for U = eu.

To begin, by a similar argument to (72) with the elliptic operator A =
−� + θ, θ ∈ Lp(
) in place of the parabolic operator, we show that the
corresponding elliptic problem admits a unique solution in H 2(
) ∩ H 1

0 (
)

if the index p satisfies (73). Employing next the semigroup theory in [9,
Section 7.4.3, Theorem 5] or [37, Chapter 7, Corollary 2.6] with assuming
that U0 ∈ D(A) = H 2(
) ∩ H 1

0 (
) implies unique existence of a solution
U ∈ C1(0, T ;H 2(
)) to (87)–(89).

Let U, Û respectively solve (87)–(89) associated with the coefficients
θ ∈ X, θ̂ ∈ L∞(
) with the same boundary and initial data, then v = U − Û

solves

v̇(t)−�v(t)+ θ̂v(t) = (θ̂ − θ)U(t) t ∈ (0, T )

v(0) = 0.

Owing to the regularity from [9, Section 7.1.3, Theorem 5] and estimating
similarly to (72), we obtain

‖U − Û‖L∞(0,T ;H 2(
)) ≤ Cθ̂‖(θ̂ − θ)U‖H 1(0,T ;L2(
))

≤ C‖θ̂ − θ‖X‖U‖H 1(0,T ;H 2(
)) (92)

with positive Û since θ̂ ∈ L∞(
) and the constant C depending only on
θ0, ρ. Here we assume θ̂ = θ0 ∈ L∞(
) and ρ is sufficiently small such
that the right hand side is sufficiently small. Then U ∈ L∞(0, T ;H 2(
)) ⊆
L∞((0, T ) × 
) is close to Û and therefore positive as well. This assertion
is valid if 0 < U0 = eu0 ∈ H 2(
) ∩ H 1

0 (
), 0 < U |δ
, which is chosen as
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U |δ
 = 1 in this case (such that log(U |δ
) = 0) and

H 2(
) ↪→ L
2p

p−2 (
) i.e., p ≥ 2p̄

p̄ − 2

V = H 2(
) ↪→ L∞(
) i.e., d ≤ 3.

(93)

This leads to unique existence of the solution u := log(U) to the problem
(10)–(12), moreover 0 < c ≤ U ∈ C1(0, T ;H 2(
)) allows u = log(U) ∈
C1(0, T ;H 2(
) ∩H 1

0 (
)).
If d = 1, p ≥ 2, no assumption on smallness of ρ is required since

‖U − Û‖L∞(0,T ;H 1(
)) ≤ Cθ‖(θ̂ − θ)Û‖L2(0,T ;L2(
))

≤ C‖θ̂ − θ‖X‖Û‖L2(0,T ;H 2(
)) (94)

due to the estimates (75)–(77) in Sect. 3.1. Here the constant C depends only
on θ0, ρ as claimed in (77). This and the fact L∞(
) = Lp(
) allow us to
chose θ̂ ∈ L∞(
) being sufficiently close to θ ∈ Lp(
) to make the right
hand side of (94) arbitrarily small without the need of smallness of ρ.

We have observed that, with the same positive boundary and initial data,
the solution U = U(θ) to (87)–(89) is bounded away from zero for all θ ∈
BX

ρ (θ0). Besides, S : θ �→ U is a bounded operator as proven in (R2) of

Sect. 3.1. Consequently, u = log(U) with �u = −|∇U |2
U2 + �U

U
is uniformly

bounded in L2(0, T ;H 2(
) ∩H 1
0 (
)) for all θ ∈ BX

ρ (θ0), thus S : θ �→ u is

a bounded operator on BX
ρ (θ0).

Moreover, we can derive a uniform bound for U in H 1(0, T ;H 2(
)) with
respect to θ . From

(U̇ − ˙̂U)−�(U − Û )+ (θ − θ̂ )(U − Û ) = −θ̂ (U − Û )− (θ − θ̂ )Û ,

by taking the time derivative of both sides then test them with −�(U̇ − ˙̂U)
we have

1

2

d

dt
‖∇(U̇ − ˙̂U)‖2

L2(
)
+ ‖�(U̇ − ˙̂U)‖2

L2(
)

≤ CH 2↪→L∞‖θ − θ̂‖L2(
)‖�(U̇ − ˙̂U)‖2
L2(
)

+ ‖θ̂‖L∞(
)‖U̇ − ˙̂U‖L2(
)‖�(U̇ − ˙̂U)‖L2(
)

+ CH 2↪→L∞‖θ − θ̂‖L2(
)‖� ˙̂U‖L2(
)‖�(U̇ − ˙̂U)‖L2(
))
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1

2

d

dt
‖∇(U̇ − ˙̂U)‖2

L2(
)
+ (1− ρCH 2↪→L∞ − ε)‖�(U̇ − ˙̂U)‖2

L2(
)

≤ 1

2ε

(
‖θ̂‖2L∞(
)‖U̇ − ˙̂U‖2L2(
)

+ C2
H 2↪→L∞ρ2‖� ˙̂U‖2

L2(
)

)
,

where ‖� ˙̂U‖L2(
) is attained by estimating with the same technique for (87)–

(89) with the coefficient θ̂ ∈ L∞(
). Since ε is arbitrarily small, if ρ is
sufficiently small and the following condition holds

X = Lp(
) ↪→ L2(
) i.e., p ≥ 2, (95)

applying Gronwall’s inequality then integrating on [0, T ] yields

‖U − Û‖H 1(0,T ;H 2(
)) ≤ C‖θ̂ − θ‖X‖Û‖H 1(0,T ;H 2(
)) (96)

for fixed Û = S(θ̂) = S(θ0). So, S(BX
ρ (θ0)) is bounded in H 1(0, T ;H 2(
))

and its diameter can be controlled by ρ. In case d = 1, smallness of ρ can be
omitted if one uses the estimate (94).

(R3) Continuity of the inverse of the linearized model:
Now we consider the linearized problem

ż(t)−�z(t)+ 2∇u(t) · ∇z(t) = r(t) t ∈ (0, T )

(97)

z(0) = 0, (98)

whose adjoint problem after transforming t = T − τ is

ṗ(t)−�p(t)− 2∇ · (∇u(t)p(t)) = φ(t) t ∈ (0, T )

(99)

p(0) = 0. (100)

Since u ∈ C1(0, T ;H 2(
) ∩ H 1
0 (
)) as proven in (R2), this equation

with the coefficients m := −2∇u ∈ C1(0, T ;H 1(
)), n := −2�u ∈
C1(0, T ;L2(
)) is feasible to attain the estimate (R3) by the contraction
argument.

Indeed, let us take p solving (99)–(100), then

ṗ −�p + m̂ · ∇p + n̂p = φ + (m̂−m) · ∇p + (n̂− n)p

p =
(

d

dt
−�+ m̂ · ∇ + n̂

)−1 [
φ + (m̂−m) · ∇p + (n̂− n)p

]

=: Tp
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with some m̂ ∈ L∞((0, T ) × 
) and some n̂ ∈ L∞((0, T ) × 
) approx-
imating m and n. Then for d ≤ 3, T : L2(0, T ;H 2(
) ∩ H 1

0 (
)) →
L2(0, T ;H 2(
) ∩H 1

0 (
)) is a contraction

‖T(p − q)‖L2(0,T ;H 2∩H 1
0 )

≤
∥∥∥∥∥
(

d

dt
−�+ m̂ · ∇ + n̂

)−1∥∥∥∥∥
L2(0,T ;L2(
))→L2(0,T ;H 2∩H 1

0 )

.
(‖(m̂−m) · ∇(p − q)‖L2(0,T ;L2(
)) + ‖(n̂− n)(p − q)‖L2(0,T ;L2(
))

)

≤ Cθ̂
(
‖m̂−m‖L∞(0,T ;H 1(
))‖∇(p − q)‖L2(0,T ;H 1(
))

+ ‖n̂− n‖L∞(0,T ;L2(
))‖p − q‖L2(0,T ;L∞(
))

)

≤ Cε‖p − q‖L2(0,T ;H 2∩H 1
0 ), (101)

where H 1
0 (
) ↪→ L6(
), H 2(
) ∩ H 1

0 (
) ↪→ L∞(
) for d ≤ 3.
Above, we apply from [9, Section 7.1.3 , Theorem 5] the continuity of(

d
dt
−�+ m̂ · ∇ + n̂

)−1
with noting that, although the theorem is stated

for time-independent coefficients, the proof reveals it is still applicable for
m̂ = m̂(t, x), n̂ = n̂(t, x) being bounded in time and space.

The above constant Cθ̂ , which depends on m̂ ∈ ∇ · S(BX
ρ (θ0)) ∩

L∞(0, T ;L∞(
)), n̂ ∈ �S(BX
ρ (θ0)) ∩ L∞(0, T ;L∞(
)) can be bounded

by some constant C depending only on S(θ0) and the diameter of S(BX
ρ (θ0))

similarly to Sects. 3.1 and 3.2 if choosing θ̂ = θ0. In order to make Cε less
than one, we require ‖m̂ − m‖L∞(0,T ;H 1(
)) and ‖n̂ − n‖L∞(0,T ;L2(
)) to
be sufficiently small. Those conditions turn out to be uniform boundedness
of ‖Û − U‖L∞(0,T ;H 2(
)) (or the diameter of S(BX

ρ (θ0)), which can be
seen as smallness of ρ as in (96) since H 1(0, T ) ↪→ L∞(0, T ). From
that, existence of the dual state p ∈ L2(0, T ;H 2(
) ∩ H 1

0 (
)) for given
φ ∈ L2(0, T ;L2(
)) is shown.

Then (R3-dual) follows without adding further constraints on p

‖p‖L2(0,T ;H 2(
))

≤ C(‖(m̂−m) · ∇p‖L2(0,T ;L2(
)) + ‖(n̂− n)p‖L2(0,T ;L2(
)) + ‖φ‖L2(0,T ;L2(
)))

≤ C‖φ‖L2(0,T ;L2(
))

with constant C depending only on some fixed m̂, n̂ and the assumption on
smallness of ρ. Here with the L2-norm on the right hand side, the maximum
q is limited by q̄ = 2.
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Observing that the problem (99)–(100) has the form of the a-problem
written in (83), with a = 1,∇a = −2∇u(t) ∈ L6(
) and the additional
term in the last line of the right hand side, namely,

1

a
‖np‖2

L2(
)
= ‖�up‖2

L2(
)
≤ ‖�u‖2

L2(
)
‖p‖2L∞(
)

≤ C2
H 1
0→L∞‖�u‖2

L2(
)
‖∇p‖2

L2(
)
(102)

if the dimension d = 1.
The solution u = S(θ) also lies in some ball in C1(0, T ;H 2(
)∩H 1

0 (
))

for all θ ∈ BX
ρ (θ0), as in (R2) we have shown boundedness of the operator S.

It allows us to evaluate analogously to (83)–(84) with taking into account
the additional term (102) to eventually get

‖�p‖L2(0,T ;L2(
)) ≤ C‖φ‖2
L2(0,T ;L2(
))

with the constant C depending only on θ0, ρ. Hence, if d = 1, ρ is not
required to be small.

(R4) All-at-once tangential cone condition:
According to (36) and (A.124) with s = t = 2, m = n = 2, γ̂ = 0, ρ = 2
this follows if

2− d

2
% 1− d

q∗
+ d

R
and

1 ≤ R

q∗
and q ≤ q̂ and 2− d

2
% max

{
−d

q̂
, 1− d

R

}
,

where the latter conditions come from the requirements V = H 2(
) ∩
H 1

0 (
) ↪→ W 1,R(
).

Corollary 3 Assume u0 ∈ V and

D(F ) = X = Lp(
), Y = Lq(
), V = W = H 2(
) ∩H 1
0 (
)

p ≥ 2, q ∈
[
q, 2

]
, d ≤ 3

(103)

with q = min
q

{
2− d

2 % 1− d + d
q
+ d

p̌
∧ q ≥ 1+ 1

p̌−1
}
.

Then F defined by F(θ) = u solving (10)–(12) satisfies the tangential cone
condition (52) with a uniformly bounded operator F ′(θ) defined by (59).

Remark 9 To achieve a Hilbert space setting for X and Y , one can choose p = q =
2 if d ≤ 3, see also [34].
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3.4 An Inverse Source Problem with a Cubic Zero Order
Nonlinearity

We investigate this problem in the function spaces

X = Lp(
), Y = Lq(
), V = W = H 1
0 (
).

In the following we examine the conditions required for deriving the tangential
cone condition and boundedness of the derivative of the forward operator.

(R1) Local Lipschitz continuity of f :

‖ũ3 − u3 + θ̃ − θ‖W ∗ = sup
‖w‖W≤1

∫



(ũ− u)(ũ2 + ũu+ u2)w + (θ̃ − θ)wdx

≤ CW→Lp̄

(
‖(ũ− u)(ũ2 + ũu+ u2)‖

L
p̄

p̄−1
+ ‖θ̃ − θ‖

L
p̄

p̄−1

)

≤ CW→Lp̄

(
2‖ũ− u‖Lp̄ (‖ũ‖2

L
2p̄

p̄−2
+ ‖u‖2

L
2p̄

p̄−2
)+ ‖θ̃ − θ‖

L
p̄

p̄−1

)

≤ CW→Lp̄

(
2CV→Lp̄ C2

V→L
2p̄

p̄−2
‖ũ− u‖V (‖ũ‖2V + ‖u‖2V )+ ‖θ̃ − θ‖XC

X→L
p̄

p̄−1

)
.

We choseL(M)=CW→Lp̄

(
2CV→Lp̄C2

V→L
2p̄

p̄−2
(‖ũ‖2V + ‖u‖2V )+C

X→L
p̄

p̄−1

)

+1, subject to the conditions

V = W = H 1
0 (
) ↪→ Lp̄(
) i.e., 1− d

2
% − d

p̄

V = H 1
0 (
) ↪→ L

2p̄
p̄−2 (
) i.e., d ≤ 4

X = Lp(
) ↪→ L
p̄

p̄−1 (
) i.e., p ≥ p̄

p̄ − 1
.

(104)
(R2) Well-definedness and boundedness of the parameter-to-state map:

Verifying the conditions (S1)–(S3) with the Gelfand triple H 1
0 (
) ↪→

L2(
) ↪→ H−1(
) shows that the problem (13)–(15) admits a unique
solution in the space W(0, T ). Subsequently, [38, Theorem 8.16] strengthens
the solution to belong to L∞(0, T ;V ). To validate this regularity result, the
following additional assumptions are made

X = Lp(
) ↪→ L2(
) i.e., p ≥ 2, (105)

the initial data u0 ∈ V and the known source term ϕ ∈ L2(0, T ;L2(
)).
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From [34, Proposition 4.2, Section 6.1], we have

‖S(θ)‖L∞(0,T ;V ) ≤ N

(
‖θ + ϕ‖L2(0,T ;L2(
)) +

√∫



1

2
|∇u0|2 + 1

4
u40dx

)

≤ N

(√
T (‖θ0‖L2(
) + ρ)+ ‖ϕ‖L2(0,T ;L2(
)) +

√∫



1

2
|∇u0|2 + 1

4
u40dx

)

for some N depending only on cθ
0 = c0 = 1

2 . This thus implies uniform
boundedness of S on BX

ρ (θ0).
(R3) Continuous dependence on data of the solution to the linearized problem with

zero initial data:
For this purpose, semi-coercivity of the linearized forward operator is obvious

〈−f ′u(t, θ, v), v
〉
V ∗,V =

∫



(−�v + 3u2v)vdx

≥ ‖∇v‖2
L2(
)

= ‖v‖2V .

(R4) All-at-once tangential cone condition:
According to (36) and (A.123), with s = t = 1, m = n = 2, γ = κ = 1, r =
q̂ = p̄ this follows if

2 ≤ p̄

q∗
and 1− d

2
% − d

q∗
+ 2d

p̄
and q ≤ p̄ and 1− d

2
% − d

p̄
,

where the latter condition comes from the requirement V = H 1
0 (
) ↪→

Lp̄(
).

Corollary 4 Assume u0 ∈ H 1
0 (
), ϕ ∈ L2(0, T ;L2(
)), and

D(F ) = X = Lp(
), Y = Lq(
), V = W = H 1
0 (
)

p ≥ 2, q ∈
[
q, q̄

]
, d ≤ 4,

(106)

where q = min
q

{
1− d

2 % −d + d
q
+ 2d

p̄
∧ q ≥ 1+ 2

p̄−2
}
with

d = 1 and q̄ = ∞, d = 2 and q̄ <∞, d ≥ 3 and q̄ = 2d

d − 2
. (107)

Then F defined by F(θ) = u solving (13)–(15) satisfies the tangential cone
condition (52) with a uniformly bounded operator F ′(θ) defined by (59).

Remark 10 Here X and Y can be chosen as Hilbert spaces with p = q = 2 and
d ≤ 3.
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Appendix

Notation

• For a, b ∈ R, the notation a % b means: a ≥ b with strict inequality if b = 0.
• For normed spaces A, B, the notation A ↪→ B means: A is continuously

embedded in B.
• For a normed space A, an element a ∈ A and ρ > 0, we denote by BA

ρ (a) the
closed ball of radius ρ around a in A.

• For vectors a,b ∈ R
n, a · b denotes the Euclidean inner product. Likewise, ∇ · v

denotes the divergence of the vector field v.
• C denotes a generic constant that may take different values whenever it appears.
• For p ∈ [1,∞], we denote by p∗ = p

p−1 the dual index.

• The norm of some embedding Hs(
)→ Lp(
) will be denoted by C

Hs→Lp .4

Proof of Proposition 1

On (41) for some p ∈ [1,∞], we can estimate by applying Hölder’s inequality, once
with exponent p and once with exponent q

p∗ (where p∗ = p
p−1 is the dual index)

‖(Bĉ)(t)v̂‖W ∗= sup
w∈W , ‖w‖W≤1

∫



ĉ v̂ w dx ≤ ‖ĉ‖Lp‖v̂‖Lq sup
w∈W , ‖w‖W≤1

‖w‖
L

p∗q
q−p∗

,

where we need to impose q ≥ p∗ and in case of equality formally set p∗q
q−p∗ = ∞.

In order to guarantee continuity of the embedding W ↪→ L
p∗q

q−p∗ (
) as needed here,
we therefore, together with (36), require the conditions

s − d

m
% −d

q̂
and q̂ ≥ q ≥ p∗ and t − d

n
% −d(q − p∗)

p∗q
. (A.108)

Proof of Proposition 2

WithX as in (43), in order to guarantee the required boundedness of the embeddings

X ↪→ Lr(
) , W ↪→ W
1, p∗q

q−p∗ (
) , W ↪→ W
2, r∗q

q−r∗ (
) ,

for some r ∈ [1,∞] such that r∗ ≤ q

4Note that the assumed C1,1 smoothness of 
 suffices for all embeddings used here, see, e.g., [30].
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we impose, additionally to (36), the conditions

(a) q̂ ≥ q ≥ max{p∗, r∗} and (b) t − 1− d

n
% −d(q − p∗)

p∗q
and

(c) t − 2− d

n
% −d(q − r∗)

r∗q
and (d) 1− d

p
% −d

r

for some r ∈ [1,∞]. To eliminate r , observe that the requirement (c), i.e., t−2− d
n
%

− d
r∗ + d

q
gets weakest when r∗ is chosen minimal, which, subject to requirement

(d) is

r

⎧⎪⎪⎨
⎪⎪⎩

= ∞ if p > d

<∞ if p = d

= dp
d−p

if p < d

, i.e., r∗

⎧⎪⎪⎨
⎪⎪⎩

= 1 if p > d

> 1 if p = d

= dp
dp−d+p

if p < d

. (A.109)

Inserting this into (c) and taking into account (36), we end up with the following
requirements on s, t, p, q, m, n (using the fact that q ≥ p∗ implies q ≥ dp

dp−d+p
):

s − d

m
% −d

q̂
and q̂ ≥ q ≥ p∗ and

t − 1− d

n
% −d(q − p∗)

p∗q
and t − 2− d

n

⎧⎪⎪⎨
⎪⎪⎩

% −d + d
q
if p > d

> −d + d
q
and q > 1 if p = d

% − dp−d+p
p
+ d

q
if p < d .

(A.110)

Proof of Proposition 3

Here we have
(
f (θ, u)− f (θ̃, ũ)− f ′u(θ, u)(u− ũ)− f ′θ (θ, u)(θ − θ̃ )

)
(t)

=
∫ 1

0

(
�′(u(t))+ σ(ũ(t)− u(t))−�′(u(t))

)
dσ (ũ(t)− u(t))

+
∫ 1

0

(
� ′(∇u(t)+ σ(∇ũ(t)−∇u(t))−� ′(∇u(t))

)
dσ ∇(ũ(t)− u(t)) .

This shows that the only condition which has to be taken into account when choosing
the space X is that B(t) ∈ L(X, W ∗). Again we assume C(t) to be the embedding
operator V ↪→ Y .
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As opposed to Sect. 2.1, where we could do the estimates pointwise in time, we
will now also have to use Hölder estimates with respect to time. To this end, we
dispose over the following continuous embeddings

U ↪→ L2(0, T ;Ws,m(
))

U ↪→ L∞(0, T ;Hs̃(
)) provided Ws−s̃,m(
) ↪→ Wt+s̃,n(
) ,

where the first holds just by definition ofU and the second follows from [38, Lemma
7.3]5 with W̃ = Wt+s̃,n(
), using the fact that

u ∈ L2(0, T ;Ws,m(
)) ∩H 1(0, T ; (W t,n(
))∗)

⇔ Ds̃u ∈ L2(0, T ;Ws−s̃,m(
)) ∩H 1(0, T ; (W t+s̃,n(
))∗),

where Ds̃v =∑
|α|≤s̃ Dαv.

We first consider the case of an affinely linear (or just vanishing) function �,
which still comprises, e.g., models with linear drift and diffusion, so that C� ′′ can
be set to zero. We can then estimate

‖f (θ, u)− f (θ̃, ũ)− f ′u(θ, u)(u− ũ)− f ′θ (θ, u)(θ − θ̃ )‖L2(0,T ;W ∗)

≤ C�′′

(∫ T

0

(
sup

w∈W , ‖w‖W≤1

∫



(1+ |u(t)|γ + |ũ(t)|γ ) |ũ(t)− u(t)|1+κ w dx
)2

dt

)1/2

,

where, using Hölder’s inequality three times (P = q, P = r
q∗(γ+κ)

, P = γ+κ
γ

) and

continuity of the embedding Hs̃(
) ↪→ Lr(
) provided s̃ − d
2 % − d

r

(∫ T

0

(
sup

w∈W , ‖w‖W≤1

∫


|u(t)|γ |ũ(t)− u(t)|1+κ w dx

)2
dt

)1/2

≤ ‖ũ− u‖L2(0,T ;Lq(
)) sup
w∈W , ‖w‖W≤1

∥∥∥|u|γ |ũ− u|κw

∥∥∥
L∞(0,T ;Lq∗ (
))

≤ ‖ũ− u‖Y
∥∥∥
(
|u|γ |ũ− u|κ

) 1
γ+κ

∥∥∥γ+κ

L∞(0,T ;Lr(
))
sup

w∈W , ‖w‖W≤1
‖w‖

L

rq∗
r−q∗(γ+κ) (
)

≤ ‖ũ− u‖Y‖u‖γL∞(0,T ;Lr(
))
‖ũ− u‖κL∞(0,T ;Lr(
)) sup

w∈W , ‖w‖W≤1
‖w‖

L

rq∗
r−q∗(γ+κ) (
)

≤ (C

Hs̃→Lr )

γ+κ‖u‖γ
L∞(0,T ;Hs̃(
))

‖ũ− u‖κ
L∞(0,T ;Hs̃(
))

‖ũ− u‖Y sup
w∈W , ‖w‖W≤1

‖w‖
L

rq∗
r−q∗(γ+κ) (
)

(A.111)

5L2(0, T ; W̃ ) ∩H 1(0, T ; W̃ ∗) ↪→ L∞(0, T ;L2(
)).
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(and likewise for the term containing |ũ(t)|γ ) for some r ∈ [1,∞] with r
q∗ ≥ γ +κ .

In order to get finiteness of the L∞(0, T ;Hs̃(
)) norms appearing here by means
of [38, Lemma 7.3], we assume the embedding Ws−s̃,m(
) ↪→ Wt+s̃,n(
) to be
continuous, which leads to the condition

s − s̃ − d

m
% t + s̃ − d

n
and s − s̃ ≥ t + s̃ .

Moreover, in order to guarantee continuity of the embedding W ↪→ L
rq∗

r−q∗(γ+κ) (
)

and for the above Hölder estimate to make sense we impose

γ + κ ≤ r

q∗
and t − d

n
% −d(r − q∗(γ + κ))

rq∗

for some r ∈ [1,∞]. Summarizing, we have the following conditions

s̃ − d

2
% −d

r
and s − s̃ − d

m
% t + s̃ − d

n
and s − s̃ ≥ t + s̃ and

γ + κ ≤ r

q∗
and t − d

n
% −d(r − q∗(γ + κ))

rq∗
= − d

q∗
+ d(γ + κ)

r
,

(A.112)

which imply

s ≥ d

m
+ d − d

q∗
+ d

γ + κ − 2

r
.

This lower bound on s gets weakest for maximal r , if γ + κ > 2 and for minimal r

if γ + κ < 2. We therefore make the following case distinction.
If γ + κ > 2 or γ + κ = 2 and q = 1 we set r = ∞, which leads to s̃ > d

2 ,
hence, according to (A.112), we can choose

case γ + κ > 2 or (γ + κ = 2 and q = 1):

t >
d

n
− d

q∗
, q ≤ q̂ ,

s > max

{
t + d +max

{
0,

d

m
− d

n

}
,

d

m
− d

q̂

}
.

(A.113)

If γ + κ < 2 or γ + κ = 2 and q > 1 we set r = max{1, q∗(γ + κ)} < ∞,
s̃ := max{0, d

2 − d
r
} and, according to (A.112), can therefore choose
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case γ + κ < 2 or (γ + κ = 2 and q > 1):

t >
d

n
+min

{
0,− d

q∗
+ d(γ + κ)

}
, q ≤ q̂ ,

s > max

{
t +max

{
0, d − 2d

max{1, q∗(γ + κ)}
}

,
d

m
− d

q̂

}
.

(A.114)

Now we consider the situation of nonvanishing gradient nonlinearities C� ′′ > 0
where we additionally need to estimate terms of the form

(∫ T

0

(
sup

w∈W , ‖w‖W≤1

∫



|∇u(t)|γ̂ |∇ũ(t)−∇u(t)|1+κ̂ w dx
)2

dt

)1/2

,

which, in order to end up with an estimate in terms of ‖ũ− u‖L2(0,T ;Lq(
)) requires
us to move the gradient by means of integration by parts. Assuming for simplicity
that κ̂ = 1 we get

(∫ T

0

(
sup

w∈W , ‖w‖W≤1

∫



|∇u(t)|γ̂ |∇ũ(t)−∇u(t)|2 w dx
)2

dt

)1/2

=
(∫ T

0

(
sup

w∈W , ‖w‖W≤1

∫



(ũ(t)− u(t)) gw(t) dx
)2

dt

)1/2

≤ ‖ũ− u‖L2(0,T ;Lq(
)) sup
w∈W , ‖w‖W≤1

‖gw‖L∞(0,T ;Lq∗ (
)),

where

gw(t) = ∇ ·
(
|∇u(t)|γ̂ ∇(ũ(t)− u(t)) w

)

= γ̂ |∇u(t)|γ̂−2(∇2u(t)∇u(t)) · ∇(ũ(t)− u(t)) w

+ |∇u(t)|γ̂ �(ũ(t)− u(t)) w + |∇u(t)|γ̂ ∇(ũ(t)− u(t)) · ∇w

=: g1(t)+ g2(t)+ g3(t),

where ∇2 denotes the Hessian. For the last term we proceed analogously to above
(basically replacing u by ∇u and w by ∇w) to obtain

‖g3‖L∞(0,T ;Lq∗ (
)) = ‖ |∇u(t)|γ̂ ∇(ũ(t)− u(t)) · ∇w‖L∞(0,T ;Lq∗ (
))

≤ ‖∇u‖γ̂
L∞(0,T ;LR(
))

‖∇(ũ− u)‖L∞(0,T ;LR(
)) sup
w∈W , ‖w‖W≤1

‖∇w‖
L

Rq∗
R−q∗(γ̂+1) (
)

(A.115)
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and use [38, Lemma 7.3] with ∇u ∈ L2(0, T ;Ws−1,m(
)) ∩ H 1(0, T ; (W t+1,n
(
))∗), which under the conditions

t − d

n
% 1− d(R − q∗(γ̂ + 1))

Rq∗
,

s − 1− s̃ − d

m
% t + 1+ s̃ − d

n
, s − 1− s̃ ≥ t + 1+ s̃ , s̃ − d

2
% − d

R

(A.116)

yields ∇u ∈ L∞(0, T ;Hs̃(
)) ⊆ L∞(0, T ;LR(
)) and W ↪→ W
1, Rq∗

R−q∗(γ̂+1) (
).
The other two terms can be bounded by

|g1(t)+ g2(t)| ≤
(
γ̂ |∇2u(t)| |∇u(t)|γ̂−1 |∇(ũ(t)− u(t))|

+ |∇2(ũ(t)− u(t))| |∇u(t)|γ̂
)
|w|

(note that here | · | denotes the Frobenius norm of a matrix) so that it suffices to find
an estimate on expressions of the form

‖|∇2z| |∇v|γ̂−1 |∇y| |w|‖L∞(0,T ;L2(
))

for z, v, y ∈ U, w ∈ W . To this end, we will again employ [38, Lemma 7.3],
making use of the fact that for any #, R ∈ [1,∞), due to Hölder’s inequality with
P = #

2 and with P = R(#−2)
2#γ̂

, the estimate

‖ |∇2z| |∇v|γ̂−1|∇y| |w|‖L2(
)

≤ ‖ |∇2z| ‖L#(
)‖
(
|∇v|γ̂−1|∇y|

) 1
γ̂ ‖γ̂

LR(
)
‖w‖

L

2R#
R(#−2)−2#γ̂ (
)

≤ C


Hŝ→L#(C



Hš→L#)
γ̂ ‖ |∇2z|‖Hŝ(
)‖

(
|∇v|γ̂−1|∇y|

) 1
γ̂ ‖γ̂

H š (
)
‖w‖

L

2R#
R(#−2)−2#γ̂ (
)

(A.117)
holds. To make sense of these Hölder estimates and to guarantee continuity of the

embedding W ↪→ L
2R#

R(#−2)−2#γ̂ (
) we impose

# ≥ 2 and R ≥ 2#γ̂

# − 2
and t − d

n
% −d(R(# − 2)− 2#γ̂ )

2R#
= −d

2
+ d

#
+ dγ̂

R

(A.118)
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Taking into account the fact that here ∇2z contains second and
(
|∇v|γ̂−1|∇y|

) 1
γ̂

first derivatives of elements ofU, we therefore aim at continuity of the embeddings

L2(0, T ;Ws−2,m(
)) ∩H 1(0, T ;Wt+2,n(
)) ↪→ L∞(0, T ;Hŝ(
)) ↪→ L∞(0, T ;L#(
))

L2(0, T ;Ws−1,m(
)) ∩H 1(0, T ;Wt+1,n(
)) ↪→ L∞(0, T ;Hš(
)) ↪→ L∞(0, T ;LR(
)) ,

which can be achieved by means of [38, Lemma 7.3] under the conditions

s − 2− ŝ − d

m
% t + 2+ ŝ − d

n
and s − 2− ŝ ≥ t + 2+ ŝ and ŝ − d

2
% −d

#

s − 1− š − d

m
% t + 1+ š − d

n
and s − 1− š ≥ t + 1+ š and š − d

2
% − d

R
.

(A.119)
For instance, we may set # = 2,R = ∞ to obtain, inserting into (A.116), (A.118)

and (A.119), that ŝ ≥ 0, š > d
2 hence

t >
d

n
, t − d

n
% 1− d

q∗
, s % t + 2+max{2, d}

+ d

m
− d

n
, s ≥ t + 2+max{2, d} ,

s − d

m
% −d

q̂
, q ≤ q̂ .

(A.120)

In order to avoid the use of too high values of s and t , we can alternatively skip
the use of [38, Lemma 7.3] and instead set

U = {u ∈ L∞(0, T ;Lr(
)) ∩ L2(0, T ;V ) : u̇ ∈ L2(0, T ;W ∗)} (A.121)

in case C� ′′ = 0, or

U = {u ∈ L∞(0, T ;Lr(
) ∩W1,R(
) ∩W2,#(
)) ∩ L2(0, T ;V ) : u̇ ∈ L2(0, T ;W∗)}
(A.122)

otherwise. This can also be embedded in a Hilbert space setting by replacing
L∞(0, T ) with Hσ (0, T ) for some σ > 1

2 . Going back to estimate (A.111) in case
C�′′ = 0 we end up with the conditions

γ + κ ≤ r

q∗
and t − d

n
% − d

q∗
+ d(γ + κ)

r
, (A.123)
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cf. (A.112), and in case C� ′′ > 0, considering estimates (A.115) and (A.117)
otherwise, we require

t − d

n
% max

{
1− d

q∗
+ d(γ̂ + 1)

R
,−d

2
+ d

#
+ dγ̂

R

}
and

γ̂ + 1 ≤ R

q∗
and # ≥ 2 and γ̂ ≤ R(# − 2)

2#
,

(A.124)

cf. (A.116) and (A.118), and in both cases we additionally need to impose (36).
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Sequential Subspace Optimization for
Recovering Stored Energy Functions in
Hyperelastic Materials from
Time-Dependent Data

Rebecca Klein, Thomas Schuster, and Anne Wald

Abstract Monitoring structures of elastic materials for defect detection by means
of ultrasound waves (Structural Health Monitoring, SHM) demands for an efficient
computation of parameters which characterize their mechanical behavior. Hyper-
elasticity describes a nonlinear elastic behavior where the second Piola-Kirchhoff
stress tensor is given as a derivative of a scalar function representing the stored
(strain) energy. Since the stored energy encodes all mechanical properties of the
underlying material, the inverse problem of computing this energy from measure-
ments of the displacement field is very important regarding SHM. The mathematical
model is represented by a high-dimensional parameter identification problem for
a nonlinear, hyperbolic system with given initial and boundary values. Iterative
methods for solving this problem, such as the Landweber iteration, are very time-
consuming. The reason is the fact that such methods demand for several numerical
solutions of the hyperbolic system in each iteration step. In this contribution we
present an iterative method based on sequential subspace optimization (SESOP)
which in general uses more than only one search direction per iteration and explicitly
determines the step size. This leads to a significant acceleration compared to the
Landweber method, even with only one search direction and an optimized step size.
This is demonstrated by means of several numerical tests.

1 Introduction

Monitoring structures consisting of materials like fiber-reinforced plastics or metal
laminates is of utmost importance regarding the early detection of defects such as
cracks and delaminations or to estimate the structure’s lifetime. Such materials
play an important role in the construction of wind power stations, aircrafts and
automobiles. A Structural Health Monitoring (SHM) system consists of a number of
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actuators and sensors that are applied to the structure. We refer to the seminal book
of Giurgiutiu [9] for a comprehensive outline of piezoelectric sensor based SHM
systems and their mechanics. A comprehensive monograph on Lamb wave based
SHM in polymer composites is given by Gabbert et al. [7]. The mechanical waves
that are generated by the actuators propagate through the structure, interact with a
possible damage and are measured at the sensors. The inverse problem then consists
in recovering the damage from the given sensor measurements. The mathematical
model of wave propagation in solids is represented by Cauchy’s equation of motion

ρü−∇ · P = f,

where ρ denotes the mass density, P the first Piola-Kirchhoff stress tensor, f

an external volume force vector, u is the displacement field of the wave and
ü the acceleration vector. Materials such as fiber-reinforced plastics or metal
laminates are elastic and, depending on the respective response function for P ,
we obtain a corresponding system of hyperbolic partial differential equations for
the displacement field u. The response function for P in turn encodes macroscopic
mechanical properties of the material, such as, e.g., the Poisson number or Young’s
modulus, yielding pointers to hidden damages. There is a vast amount of literature
concerning inverse problems connected to Cauchy’s equation of motion in elasticity
and we refer here only to recent works that have a close relation to the topic
of this contribution. Inverse problems in linear elasticity are, e.g., considered
in [2, 4, 13, 16]. A nice overview on inverse problems in elasticity is [3]. An
important material class in elasticity is given by hyperelastic materials, which are
characterized by the fact that the stress tensor is given as a derivative of a scalar
function with respect to the strain tensor. This scalar function is the stored (strain)
energy function and its integral equals the total strain energy which is necessary
to deform the body. Since all relevant material properties can be deduced from the
stored energy function, its computation should reveal valuable pointers to damages
in the structure. The corresponding Cauchy equation then is nonlinear. In [21]
the authors investigate higher harmonics of Lamb waves in hyperelastic isotropic
materials. Inverse problems in nonlinear elasticity are, e.g., considered in [6, 25, 27–
29]. Nonlinear elastic inversion especially in seismics is considered in [8, 30, 31]. In
the present contribution we consider the nonlinear inverse problem of reconstructing
the stored energy function from the knowledge of the full displacement field u. The
stable solution of nonlinear, dynamic inverse problems is currently counted among
the most demanding mathematical challenges.

Nonlinear inverse problems are usually solved by iterative regularization tech-
niques. Standard methods such as the Landweber iteration scheme prove to be
tremendously slow when applied to such a high-dimensional nonlinear inverse prob-
lem. To increase numerical efficiency Sequential Subspace Optimization (SESOP)
techniques have been developed and analyzed for various settings, see [19, 23, 24,
33, 35]. The general idea is to reduce the number of iterations until the stopping
criterion is fulfilled. To this end, the classical Landweber method is extended by
two features. First, a finite number of search directions is used in each iteration.
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Second, the length of each search direction is explicitly calculated. This is done
in such a way that the method admits a very intuitive interpretation: The iterate
is sequentially projected onto subsets that contain the solution set of the inverse
problem. These subsets are intersections of stripes that correspond to the respective
search directions. The calculation of the projection yields a regulation of the step
widths.

This technique has been successfully applied, for example in parameter identi-
fication [26, 34, 35], demonstrating a significant increase in efficiency. In addition,
they have been used and analyzed in combination with, e.g., sparsity constraints,
total variation or Nesterov methods [10, 17, 32].

This contribution delivers a proof-of-concept by demonstrating that RESESOP
applied to a high-dimensional nonlinear and dynamic inverse problem leads to a
significantly faster convergence as well as less computation time with at the same
time higher accuracy compared to Landweber’s method.

Outline In Sect. 2 we briefly summarize essential concepts of continuummechanics
for elastic solids and deduce the exact mathematical setting for identifying the stored
energy function of a hyperelastic material from measurements of the displacement
field. In order to guarantee that the reconstructed energy is physically meaningful
we use a dictionary of finitely many elements. The inverse problem subsequently
reduces to the computation of the corresponding coefficients with respect to the
given dictionary. Section 3 outlines the introduction and analysis of the Landweber
method and RESESOP. In Sect. 4 we finally present several numerical experiments
using three different damage scenarios for a structure consisting of a Neo-Hookean
material showing the superiority of RESESOP compared to the Landweber method.

2 Hyperelastic Materials

In this chapter we briefly discuss some basic facts from continuum mechanics and
especially on Cauchy’s equation of motion and hyperelastic constitutive equations.
For deeper insights we refer to the standard literature [5, 12, 18].

The considered elastic structure is described by a bounded, open, connected
subset 
 ⊂ R

3 with a sufficiently smooth boundary. We start with the mathematical
definition of a deformation of 
.

Definition 1 A deformation of a body 
 is an invertible, continuously differen-
tiable mapping ϕ : [0, T ] ×
→ R

3, which is orientation-preserving such that

det (∇ϕ(t, x)) > 0 ∀(t, x) ∈ [0, T ] ×
,

where
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∇ϕ(t, x) =
(

∂ϕi

∂xj

(t, x)

)

i,j=1,2,3
= (

∂xj
ϕi(t, x)

)
i,j=1,2,3 ∈ R

3×3.

Definition 1 implies that the body will not be torn apart or penetrate itself during
the deformation. Since ∇ϕ is invertible, any two points in 
 can be separated at any
time t ∈ [0, T ]. If 
 undergoes a deformation, then a fixed point x is shifted to a
point ϕ(t, x). Their difference defines the displacement field.

Definition 2 Let ϕ : [0, T ] × 
 → R
3 be a deformation. Then the displacement

field u : [0, T ] ×
→ R
3 is given by

u(t, x) = ϕ(t, x)− x.

The set 
 is also called the reference configuration whereas 
(t) := ϕ(t, 
) ⊂
R
3 is called the deformed configuration and represents the body after deformation

at time t . A guided wave that is generated by actuators and propagates through the
structure 
 will cause a displacement field u which subsequently can be measured
by applied sensors. This is the key idea of an SHM system (c.f. [9]).

Definition 3 Let ϕ : [0, T ]×
→ R
3 be a deformation and u be the corresponding

displacement field. The displacement gradient is given by

∇u(t, x) = ∇ϕ(t, x)− I

with the identity matrix I ∈ R
3×3. The gradient ∇ refers to the spatial coordinates.

The propagation of ultrasound waves in 
 is mathematically described by
Cauchy’s equation of motion, which follows from the stress principle of Euler and
Cauchy and the axioms of force and moment balance. For all (t, x) ∈ [0, T ] × 


we have

ρ(x)ü(t, x)−∇ · P(t, x) = f (t, x). (1)

Here ρ : 
 → R
+ denotes the mass density, f : [0, T ] × 
 → R

3 the external
body force and P : [0, T ] × 
 → R

3×3 the first Piola-Kirchhoff stress tensor.
This is a differential equation for the unknowns u and P and obviously not uniquely
solvable in its present form. But by now we did not include the phenomenon of
elasticity to
 and Eq. (1). Elasticity means that there is a stress-strain relation which
is implied by the existence of a so called response function for the Cauchy stress
tensor. To be short: a deformation of the body 
 causes strain which again causes
stress. Postulating the existence of a response function will furthermore reduce the
degrees of freedom in (1).

Before we formulate the principle of elasticity we introduce by σ : [0, T ] ×

(t) → R

3×3 the Cauchy stress tensor. This is a continuously differentiable,
symmetric tensor field whose existence follows from Cauchy’s theorem. In some
sense this is the counterpart to the first Piola-Kirchhoff stress tensor P : The Cauchy
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stress tensor σ is defined on the deformed configuration 
(t) whereas P is defined
on the reference configuration 
. Of course, each of these can be transformed into
the respective other one, and the specific relation between σ and P is given by
Eq. (3).

Definition 4 A material is called elastic, if a mapping

σ̃ : 
× GL+(3)→ Sym(3), (x, Y ) �→ σ̃ (x, Y )

exists, such that the Cauchy stress tensor satisfies

σ(t, ϕ(t, x)) = σ̃ (x,∇ϕ(t, x)) (2)

for every deformation ϕ, where

GL+(3) := {Y ∈ R
3×3| det(Y ) > 0}

denotes the set of 3 × 3 matrices with a positive determinant and Sym(3) is the set
of symmetric 3 × 3 matrices. The function σ̃ is called the response function for σ .
Equation (2) is called a constitutive equation of the material.

The first Piola-Kirchhoff stress tensor can be computed from σ by applying the
Piola transform

P(t, x) = det(∇ϕ(t, x))σ (t, x)∇ϕ(t, x)−). (3)

So, if there exists a response function σ̃ for σ , then we easily obtain a response
function P̃ for P from (3) via

P̃ (x, Y ) := det Y σ̃ (x, Y )Y−), x ∈ 
, Y ∈ GL+(3).

Remark 1 The Cauchy-Green strain tensor B is defined as B = ∇ϕ)∇ϕ and we
have B = I if and only if the deformation is rigid. Thus, B measures the ‘deviation’
between a deformation ϕ and a rigid motion. It is quite obvious from (2), that the
existence of a response function σ̃ implies the existence of a function σ̂ with

σ(t, x) = σ̃ (x, ϕ(t, x)) = σ̂ (x, B(t, x)).

In this way (2) can be interpreted as a relation between stress and strain which is the
reason why (2) is also called stress-strain relation. Hence, elasticity in fact means
that a material replies to strain with stress.

A large class of physically very important elastic materials is represented by the
hyperelastic materials. For this class the response functions have a very specific
form.
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Definition 5 An elastic body is called hyperelastic if the response function of the
first Piola-Kirchhoff stress tensor is given by

P̃ (x, Y ) = ∇Y Ĉ(x, Y ), x ∈ 
, Y ∈ M,

and a scalar function Ĉ : 
×GL+(3)→ R. This function Ĉ is called stored (strain)
energy function.

The derivative ∇Y used in Definition 5 is to be understood as

∇Y g(x, Y ) = [
∂Yi,j

g(x, Y )
]
1≤i,j≤3 ∈ R

3×3, x ∈ 
, Y ∈ GL+(3),

for a differentiable function g : 
×M → R and M ⊂ R
3×3.

Remark 2

(a) If ϕ is a deformation and the body 
 consists of a hyperelastic material, then
the integral

E(t) =
∫




Ĉ
(
x,∇ϕ(t, x)

)
dx

denotes the strain energy E(t) which is necessary to perform the deformation
at time t . This explains the term stored (strain) energy function for Ĉ.

(b) The fourth order elasticity tensor C can directly be computed from Ĉ by

C(x) = ∇Y∇Y Ĉ(x, I ), x ∈ 
.

It plays a crucial role in linear elasticity and its entries are important functions
describing material properties such as Young’s modulus and the Poisson
number. In this sense Ĉ encodes all important material properties and yields
pointers for defects in hyperelastic structures.

(c) We consider hyperelastic materials since on the one hand linear elastic models
do often not accurately enough describe the stress-strain behavior of the consid-
ered structure and on the other hand the derived methodology is appropriate for
a broader range of applications (composites, rubber, biological tissues).

Let 
 be hyperelastic. Then Cauchy’s equation of motion reads

ρ(x)ü(t, x)−∇ · ∇Y Ĉ(x,∇u(t, x)) = f (t, x), (t, x) ∈ [0, T ] ×
. (4)

Note that in (4) we silently used the identity ∇u = ∇ϕ − I to write, in
slight misuse of notation, Ĉ(x,∇u(t, x)). This means that, by assuming 
 to be
hyperelastic and Ĉ to be known explicitly, Cauchy’s equation of motion is no longer
underdetermined since we have three equations and three unknowns, i.e., the three
components of the displacement vector u. To ensure uniqueness one furthermore
has to postulate initial and boundary values for u (c.f. [36]).
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The inverse problem which is numerically solved in this contribution consists in
computing the stored energy function Ĉ from measurements of the displacement
field u. To specify this we follow the idea of computing Ĉ as a conical combination
with respect to a given dictionary consisting of physically reasonable stored energy
functions CK , K = 1, . . . , N ., c.f. [14, 25]. Let {CK : 
 × R

3×3 → R : K =
1, . . . , N} be such a dictionary. Then we write

Ĉ(x, Y ) =
N∑

K=1
αKCK(x, Y ), x ∈ 
, Y ∈ R

3×3,

for certain coefficients αK ≥ 0. Equipped with appropriate initial and boundary
values we obtain Cauchy’s equation of motion in its final form: The balance equation
reads

ρü(t, x)−
N∑

K=1
αK∇ · ∇Y CK(x,∇u(t, x)) = f (t, x), (t, x) ∈ [0, T ] ×
.

(5)
We furthermore assume initial values

u(0, ·) = u0 ∈ H 2(
,R3), (6)

u̇(0, ·) = u1 ∈ H 1(
,R3) (7)

as well as homogeneous boundary values

u(t, ξ) = 0, ξ ∈ ∂
. (8)

The respective inverse problem is formulated as follows:
(IP) Given (f, u0, u1) and the displacement field u(t, x) for t ∈ [0, T ] and x ∈


, determine the coefficients α = (α1, . . . , αN) ∈ R
N+ , such that u satisfies the

initial boundary value problem (5)–(8).
If we define by F : D(F ) ⊂ R

N+ → X the forward operator which maps, for
fixed given (f, u0, u1), a vector α ∈ R

N+ to the unique solution u ∈ X, then the
inverse problem demands for solving the nonlinear operator equation

F(α) = u.

HereD(F ) denotes the domain of F consisting of those α ∈ R
N+ admitting a unique

solution and X = L2
(
0, T ;H 1

0 (
,R3)
) ∩H 1

(
0, T ;L2(
,R3)

)
denotes the image

space of F containing all admissible solutions. For more details regarding existence
and uniqueness of solutions for the IBVP (5)–(8) we refer the reader to [27, 36].

In Sect. 4 we will see that a convenient approach to define the dictionary elements
CK is to use tensor products
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CK(x, Y ) = vK(x)Ĉ(Y ), K = 1, . . . , N,

with B-splines vK that are also used for the Finite Element solution of (5) and
physically reasonable stored energy functions Ĉ depending only on Y . This idea
is taken from [28].

3 Sequential Subspace Optimization

In this contribution we present numerical results that are obtained with both
the attenuated Landweber as well as the RESESOP method as a solver for the
inverse problem (IP). In [28] some results using the attenuated Landweber method,
implemented in C++ together with the finite element library deal.II [1], have
already been presented. For the reader’s convenience, we will introduce some
notation and briefly summarize the attenuated Landweber method.

Consider a (nonlinear) problem

F(x) = y, F : D(F ) ⊂ X→ Y,

with Hilbert spaces X and Y . Then the respective attenuated Landweber iteration
reads

xδ
k+1 = xδ

k + ωF ′(xδ
k )∗(yδ − F(xδ

k )), k = 0, 1, . . . (9)

where the parameter ω > 0 is called a relaxation or damping parameter. Since ω

is fixed, there is no strategy to adapt the step width in each individual iteration. It
is assumed that we only have disturbed data yδ with ‖yδ − y‖ < δ and noise level
δ > 0 at our disposal. The convergence of the Landweber method is guaranteed by
selecting

ω ∈
(
0,

1

C2
ρ

)

with the constant

Cρ := sup{‖F ′(x)‖ : x ∈ Bρ(x0)}.

In case of noisy data, the iteration is stopped by the discrepancy principle, which
turns it into a regularization method [11, 15, 22].

However, the Landweber method is known to be very slowly converging, and it
often takes a lot of iterations to obtain a suitable regularized solution. Particularly
in view of an application in parameter identification, where the calculation of each
gradient involves the numerical evaluation of the forward operator as well as the
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adjoint of its linearization, a reconstruction via the Landweber method is too time-
consuming and hardly practicable, see, e.g., [28, 34].

In contrast to the attenuated Landweber method, the SESOP method not only
involves a regulation of the step width, it also potentially uses multiple search
directions per iteration. This of course requires additional (but numerically cheap)
calculations in each iteration step, such that a SESOP step will take slightly longer.
However, we anticipate that the SESOP and RESESOP methods will need far less
iterations and thus lead to a faster convergence of the iteration.

In this section we will give a short introduction to sequential subspace optimiza-
tion (SESOP) and regularizing sequential subspace optimization (RESESOP). From
the RESESOP method we derive the algorithm which we will use for our later
experiments, where we solve (IP) numerically from simulated noisy data.

The idea behind the SESOP method and its regularizing version RESESOP is to
reduce the number of iteration steps by sequentially projecting the current iterate
onto suitable subsets of the source space X that are hyperplanes or stripes in X and
contain the solution set of the respective inverse problem F(x) = y. This approach
is inspired by the fact that in the case of linear problems, the solution set itself is
an affine subspace. More detailed information about the SESOP method for linear
problems can be found in [19, 23, 24]. Results concerning the SESOP method as a
solution technique for nonlinear problems are presented in [10, 32, 33, 35].

3.1 Basics

Wewill first state some basics for the RESESOPmethod, in particular the definitions
of hyperplanes, half-spaces and stripes, as well as the metric projection.

Definition 6 (Hyperplanes, Half-Spaces and Stripes) Let u ∈ X \ {0} and α, ξ ∈
R, ξ ≥ 0. For these parameters, we define the hyperplane

H(u, α) := {x ∈ X : 〈u, x〉 = α} ,

the half-space

H≤(u, α) := {x ∈ X : 〈u, x〉 ≤ α} ,

and the stripe

H(u, α, ξ) := {x ∈ X : |〈u, x〉 − α| ≤ ξ} .

The half-spaces H≥(u, α), H<(u, α) and H>(u, α) are defined analogously. We see
that the half space H<(u, α) is simply the space beneath the hyperplane H(u, α).
The stripe H(u, α, ξ) emerges from the hyperplane H(u, α) by admitting a width
that is determined by ξ . Hyperplanes, half-spaces as well as stripes are convex, non-
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empty sets according to their definition. In addition, the sets H(u, α), H≤(u, α),
H≥(u, α) and H(u, α, ξ) are closed.

The solution set MFx=y of a linear operator equation Fx = y can be described
by

MFx=y := {x ∈ X : Fx = y} = x0 +N(F )

for some x0 ∈ N(F )⊥.
Another tool that plays an important role is the metric projection.

Definition 7 The metric projection of x ∈ X onto a non-empty closed convex set
C ⊂ X is the unique element PC(x) ∈ C, such that

‖x − PC(x)‖2 = min
z∈C‖x − z‖2.

The metric projection PC onto a convex set fulfills the descent property of the
form

‖z− PC(x)‖2 ≤ ‖z− x‖2 − ‖PC(x)− x‖2 (10)

for all z ∈ C.
Since hyperplanes and stripes are, by definition, closed and convex non-empty

sets, the metric projection of x ∈ X onto these specific subsets is well-defined. For
example, if C := H(u, α) is a hyperplane of X, then the metric projection of x ∈ X

onto C corresponds to the orthogonal projection, i.e., we have

PH(u,α)(x) = x − 〈u, x〉 − α

‖u‖2 u (11)

and (10) turns into an equation, see, e.g., [24, 26].
By the following theorem we want to provide some tools that will later be

essential to define the sequential subspace optimization techniques we use to obtain
faster reconstructions of the stored energy function. Essentially, these techniques
consist of sequential metric projections onto (intersections of) hyperplanes or
stripes. By Definition 7 we already know that a metric projection onto a non-empty,
closed convex set can be formulated as a minimization problem. The special case of
metric projections onto intersections of hyperplanes is summarized in the following
theorem. A proof can be found in [26] for the more general setting of Bregman
projections in (convex and uniformly smooth) Banach spaces X and Y .

Theorem 1

(a) Let H(ui, αi) be hyperplanes for i = 1, . . . , N with non-empty intersection
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H :=
N⋂

i=1
H(ui, αi).

The projection of x onto H is given by

PH (x) = x −
N∑

i=1
t̃iui ,

where t̃ := (
t̃1, . . . , t̃N

) ∈ R
N minimizes the convex function

h(t) = 1

2

∥∥∥x −
N∑

i=1
tiui

∥∥∥2 +
N∑

i=1
tiαi, t = (t1, . . . , tN ) ∈ R

N.

The partial derivatives of the function h(t) are given by

∂

∂tj
h(t) = −

〈
uj , x −

N∑
i=1

tiui

〉
+ αj . (12)

If the vectors ui , i = 1, . . . , N , are linearly independent, h is strictly convex
and t̃ is unique.

(b) Let Hi := H≤(ui, αi), i = 1, 2, be two half-spaces with linear independent
vectors u1 and u2. Then x̃ is the projection of x onto H1 ∩ H2 if x̃ satisfies the
Karush-Kuhn-Tucker conditions for

min
z∈H1∩H2

‖z− x‖2.

The Karush-Kuhn-Tucker conditions are given by

x̃ = x − t1u1 − t2u2 for any t1, t2 ≥ 0,

αi ≥ 〈ui, x̃〉, i = 1, 2,

0 ≥ ti (αi − 〈ui, x̃〉) , i = 1, 2.

(c) For x ∈ H>(u, α) the projection of x onto H≤(u, α) is given by

PH≤(u,α)(x) = PH(u,α)(x) = x − t+u

with

t+ = 〈u, x〉 − α

‖u‖2 > 0.
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(d) The projection of x ∈ X onto the stripe H(u, α, ξ) is given by

PH(u,α,ξ)(x) =

⎧⎪⎪⎨
⎪⎪⎩

PH≤(u,α+ξ)(x) if x ∈ H>(u, α + ξ),

x, if x ∈ H(u, α, ξ),

PH≥(u,α−ξ)(x) if x ∈ H<(u, α − ξ).

Part (a) of Theorem 1 allows us to use tools from optimization (see also, e.g.,
[20]) to determine the parameters t = (t1, . . . , tN ). The fact that the minimization
of the function h(t) corresponds to the projection onto the intersection of the
hyperplanes H(ui, αi) for i = 1, . . . , N can be seen by taking a look at the partial
derivatives (12) of h(t). Let us assume that the parameters t̃ = (

t̃1, . . . , t̃N
)
represent

the local minimum of the function h(t). Then,

∂

∂tj
h(t̃) = −

〈
uj , x −

N∑
i=1

t̃iui

〉
+ αj = 0.

Since by definition we have

PH (x) = x −
N∑

i=1
t̃iui ,

we obtain

〈
uj , PH (x)

〉 = αj

for all j = 1, . . . N , which shows that PH (x) = x −
N∑

i=1
t̃iui is an element of each

hyperplane H(ui, αi), i = 1, . . . , N and, as a direct consequence, we have

PH (x) ∈ H.

Remark 3 If F is a linear operator and the given data yδ are noisy with noise level
0 ≤ ‖yδ − y‖ ≤ δ, then the solution set MFx=y of the linear operator equation
Fx = y is contained in the stripes H(u, α, ξ), where

u := F ∗w

α := 〈
w, yδ

〉

ξ := δ‖w‖

with arbitrary w ∈ Y , since for each x ∈MFx=y we have
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|〈u, x〉 − α| = ∣∣〈F ∗w, x
〉− 〈

w, yδ
〉∣∣

= ∣∣〈w, Fx − yδ
〉∣∣ = ∣∣〈w, y − yδ

〉∣∣
≤ δ‖w‖ = ξ.

This observation is the basis to derive an iteration of the form

xδ
n+1 = PHδ

n

(
xδ

n

)
, n ∈ N,

where Hδ
n :=

⋂
i∈In

H(uδ
n, αδ

n, ξ δ
n) is the intersection of stripes containing the

solutions of Fx = y. For each solution x, a reasonable choice of the parameters
that define the stripes yields the descent property

∥∥x − xδ
n+1

∥∥2 ≤ ∥∥x − xδ
n

∥∥2 − C
∥∥Fxδ

n − yδ
∥∥2.

This property is used to show convergence and regularization properties of the
method, see [26].

3.2 RESESOP for Nonlinear Problems

We turn to the regularizing sequential subspace optimization (RESESOP) technique
for nonlinear inverse problems

F(x) = y, F : D(F ) ⊂ X→ Y. (13)

in Hilbert spaces X, Y and noisy data yδ with known noise level δ > 0. The
respective SESOP method that is applicable to unperturbed data can easily be
derived by setting δ = 0, see also [33].

In order to adapt the methods for linear operators to the nonlinear case, we must
ensure that we project sequentially onto subsets of X that contain the solution set

MF(x)=y := {x ∈ D(F ) : F(x) = y}

of the operator equation (13). In contrast to linear problems, we have to take into
account the local character of nonlinear operators, i.e., we have to incorporate
information on the local nonlinear behaviour of the forward operator into the
definition of the stripes onto which we project in each iteration. To do this
appropriately, we need the following assumptions on the operator F .

Let F : D(F ) ⊂ X → Y be continuous and Fréchet differentiable in an open
ball

Bρ(x0) := {x ∈ X : ‖x − x0‖ < ρ} ⊂ D(F )
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around the starting value x0 ∈ D(F ) with radius ρ > 0 and let the mapping

Bρ(x0) * x �→ F ′(x)

from Bρ(x0) into the space L(X, Y ) of linear and continuous mappings be continu-
ous.

We assume there exists a solution x+ ∈ X of (13) that satisfies x+ ∈ Bρ(x0).
This ensures that we start the iteration close to a solution, which is a mandatory
requirement for nonlinear problems.

Furthermore, we assume that the forward operator F satisfies the tangential cone
condition

∥∥F(x)− F(x̃)− F ′(x)(x − x̃)
∥∥ ≤ ctc ‖F(x)− F(x̃)‖ (14)

with a positive constant

0 < ctc < 1

and the estimate (continuity of the Fréchet derivative)

∥∥F ′(x)
∥∥ < cF

with cF > 0 for all x, x̃ ∈ Bρ(x0).
We also assume that the operator F is weakly sequentially closed. That is, for a

weakly convergent sequence {xn}n∈N with xn ⇀ x and F(xn)→ y holds

x ∈ D(F ) and F(x) = y.

If all these properties are fulfilled, we can formulate the RESESOP method as
proposed in [33] and obtain a regularization technique.

Remark 4 The goal of general SESOP methods is to use multiple search directions
uδ

n,i , i ∈ In, |IN | < ∞, in each step n ∈ N of the iteration in combination with a

regulation of the step width. We have MF(x)=y ⊂ H(uδ
n,i , αδ

n,i , ξ δ
n,i) if we set

uδ
n,i := F ′(xδ

i )∗wδ
n,i

αδ
n,i :=

〈
wδ

n,i , F (xδ
i )− yδ

〉− 〈
F ′(xδ

i )∗wδ
n,i , xδ

i

〉

ξδ
n,i := ‖wδ

n,i‖
(
ctc

(‖Rδ
i ‖ + δ

)+ δ
)
,

see also [33].
These definitions show that each hyperplane is related to the properties of F

close to the respective iterate. In particular, the noise level δ and the constant ctc
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F (x )

xn

H (un , α n , ξ n )

Fig. 1 Illustration of a nonlinear function F with stripe H(un, αn, ξn)

from (14) determine the width of the stripe: the higher the noise level and the larger
the opening angle of the cone, the larger we have to choose the width of the stripe.

Figure 1 illustrates the tangential cone condition (14) and its relevance for the
choice of the stripes in the case In := {n} for a function F in two dimensions and
exact data y. The graph of F is plotted in red and for the point xn the linearization
F ′(xn) of F in xn is represented by the red dotted line. The graph is contained
in the cone, determined by the tangential cone condition, highlighted in gray. The
size of ctc directly corresponds to the opening angle of the cone: The better F is
approximated by its linearization, the smaller is ctc and thus also the opening angle
of the grey cone. Figure 1 also shows that the cone condition can be used to define a
stripe H(un, αn, ξn) (marked in blue), such that the graph of F is locally contained
in H(un, αn, ξn), i.e., in a neighborhood of xn.

In the following we formulate the regularizing SESOP iteration for the special
case of a single search direction per iteration, i.e., we set In := {n} for all n ∈ N.
Furthermore, we define the n-th search direction as

uδ
n := F ′

(
xδ

n

)∗ (
F

(
xδ

n

)− yδ
)
,

such that we essentially obtain a Landweber-type method with an adaptation of
the step size. In comparison to the attenuated Landweber method, we thus have a
dynamic relaxation parameter that adapts to the projection in each iteration step.
Together with the discrepancy principle, we obtain a regularization method for
which several convergence results could be shown (see [33]).

Algorithm (RESESOP with One Search Direction)We choose a starting value xδ
0 =

x0 ∈ D(F ). For all n ≥ 0 we select the search direction uδ
n such that
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uδ
n := F ′

(
xδ

n

)∗
wδ

n,

wδ
n := Rδ

n := F
(
xδ

n

)− yδ.

We define the stripe Hδ
n by

Hδ
n := H(uδ

n, αδ
n, ξ δ

n)

with

αδ
n := 〈uδ

n, xδ
n〉 − ‖Rδ

n‖2,
ξ δ
n := ‖Rδ

n‖
(
δ + ctc

(‖Rδ
n‖ + δ

))
.

As tolerance parameter for the discrepancy principle we choose

τ >
1+ ctc

1− ctc
> 1. (15)

As long as
∥∥Rδ

n

∥∥ > τδ is valid, we have

xδ
n ∈ H>(uδ

n, αδ
n + ξδ

n) (16)

and we calculate the new iterate xδ
n+1 by

xδ
n+1 := PH(uδ

n,αδ
n,ξδ

n )(x
δ
n) = PH(uδ

n,αδ
n+ξδ

n )(x
δ
n) (17)

= xδ
n −
〈uδ

n, xδ
n〉 −

(
αδ

n + ξδ
n

)

‖uδ
n‖2

uδ
n. (18)

Remark 5 Note that due to (16), the iterate xδ
n lies above the stripe Hδ

n and,
according to Theorem 1 (d), we obtain the identity (17). This projection is explicitly
formulated in (18).

The choice of τ in (15) depends strongly on the constant ctc of the cone condition.
The smaller ctc, the better the approximation of F by its linearization. However, if
ctc is large, this also means that τ is large and the algorithm is usually stopped for
larger residuals ‖Rδ

n‖.
Remark 6 We want to state some observations for the RESESOP method in
comparison to the Landweber iteration from previous research [23, 24, 34, 35].

(a) For RESESOP, good estimates of the noise level δ and the constant ctc
are required. This is because both of these constants directly influence the
calculation of the optimization parameters tn,i , whereas in the Landweber
iteration they only influence the parameter τ in the discrepancy principle.
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Hence, Landweber is more robust to errors in these constants than RESESOP.
This is, however, a small price to pay in order to obtain a faster regularization
method.

(b) Previous research has shown that the use of multiple search directions per
iteration yields faster convergence. However, if the noise level δ is high or if
the forward operator is not well approximated by its linearization, i.e., ctc is
not close to 0, the stripes have to be chosen with a large width ξ(δ, ctc). In this
case, the RESESOP algorithm often automatically skips using multiple search
directions since the projection of the current iterate onto the first stripe is often
already contained in the other stripes due to their large width.

This is precisely what we observed for the parameter identification problem
that is addressed in this work, which is why we put the emphasis on RESESOP
with a single search direction.

For an analysis and a detailed discussion of general SESOP methods with
multiple search directions in Hilbert and Banach space settings, we refer to the
literature [23, 24, 26, 33, 35].

4 Numerical Results

In this section we present some numerical results to solve the inverse problem
(IP) from Sect. 2. In all tests we use data that are simulated by solving the initial
boundary value problem (5)–(8) using the θ -method with respect to time and the
Finite Element method in space. The resulting system of nonlinear equations is then
solved by Newton’s method. A detailed outline of the numerical forward solver for
(5) is contained in [28].

The experimental setup for the numerical tests consists of a plate with measures
1 m×1 m and a thickness of 6.7 mm. These measures can be numerically transferred
to values of 
 = [−0.1, 0.1]×[−15, 15]2. The plate is discretized using 5×31×31
knots with respect to x and trilinear Finite Elements that are given by tensor
products of linear B-splines. The time interval is given by [0 µs, 133 µs], which
we numerically represent as [0, T ] = [0, 4], and is discretized by tj = j�t ,
j = 0, . . . , 15, and step size �t = 0.25. We assume that the plate is at rest at t = 0
yielding u0 = u1 = 0. The excitation signal f (t, x) is compactly supported with
respect to t and hence not band limited. It is emitted at the center of the plate acting
in x3-direction. The reason for using a broad band signal is the fact that different
defects are sensitive to different frequencies. In this way we avoid a frequency
dependent selectivity of the defect-wave interaction. The chosen sampling in t

corresponds to a sampling frequency of 120 kHz.We refer to [2, 28] for more details.
Actuators and sensors of SHM systems in real world applications generate signals
that have an essential frequency range in 100–600 kHz, see [7, Ch. 17].

As already mentioned in Sect. 2 the dictionary of stored energy functions {CK :
K = 1, . . . , N} is defined as tensor products
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CK(x, Y ) = vK(x)Ĉ(Y ).

For our simulations we use the stored energy of a Neo-Hookean material model

Ĉ(Y ) = c(I1 − 3)+ c

β
(D−2β − 1),

where I1 = ‖∇ϕ‖2F , D = det(∇ϕ) and the constants are given by β = 3ν−2μ
6μ > 0

and c = μ
2 > 0 with specific values ν = 68.6 GPa and μ = 26.32 GPa taken

from [21]. The functions vK are exactly the linear tensor product B-splines that are
used for the Finite Element discretization of the forward solver. Since linear tensor
product B-splines have small compact support and represent a partition of unity, i.e.

N∑
K=1

vK(x) = 1, x ∈ 
, (19)

any defects can be appropriately modeled by coefficients αK �= 1 whereas for the
undamaged plate we set αK = 1, K = 1, . . . , N .

If we denote by bi , bj the linear B-splines corresponding to the given discretiza-
tions in the (x2, x3)-plane, then we can simulate a delamination at the upper surface
of the plate by defining the stored energy as

C(x, Y ) :=
30∑

i=0

30∑
j=0

αij bi(x2)bj (x3)Ĉ(Y ) at x1 = 0.05 (20)

and setting αij �= 1 for locations of the delamination. Due to (19), αij = 1
corresponds to regions of the (x2, x3)-plane that are unaffected by the damage.
Setting αij = 1 for all i, j yields C(x, Y ) = Ĉ(Y ) for all x ∈ 
 and thus models a
homogeneous material. Note, that in (20) we use double indices in αij according to
the tensor product structure of the Finite Elements bi ⊗ bj , i.e., we have αK = αij

with K = 31 · i + j .
An implementation of the RESESOP method needs the adjoint of the Fréchet

derivative F ′(α)∗ : X∗ → R
N . For completeness we state the representation, a

deduction is found in [27]. For α ∈ R
N+ we have

[
F ′(α)∗w

]
K
= −

T∫

0

∫



∇Y CK

(
x,∇u(t, x)

) : ∇p(t, x) dx dt, K = 1, . . . , N,

where p ∈ L2(0, T ;L2(
,R3)) is the weak solution of the hyperbolic backward
IBVP

ρp̈(t, x)− ∇ · [∇Y∇Y Cα

(
x,∇u(t, x)

) : ∇p(t, x)
] = w(t, x)
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p(T , x) = ṗ(T , x) = 0, x ∈ 


p(t, ξ) = 0, (t, ξ) ∈ [0, T ] × ∂


with A : B =∑
ij AijBij and

Cα(x, Y ) =
N∑

K=1
αKCK(x, Y ).

Remark 7 It should be mentioned that we use simulated noise-free data in our
experiments. However, we assume a small noise level, which is necessary for
applying the discrepancy principle, for both methods in order to guarantee the
robustness of the algorithms and thus convergence. In addition, the noise level in
the RESESOP method determines the width of the stripes. Using a noise level for
simulated exact data is justified by disturbances in the data due to discretization and
potential inaccuracies in the model. The appropriate value was determined by trial
and error.

The first series of experiments examines a plate with a delamination whose center
is located at (x2, x3) = (−1.5,−1.5), see Fig. 2. The corresponding coefficients αij ,
i, j ∈ {0, . . . , 30} in (20) are given by

α13,13 = 2, α13,14 = 3, α14,13 = 4, α14,14 = 2,

and αi,j = 1 elsewhere (Experiment 1). This setting for αij in fact corresponds
to the damage in Fig. 2 (left picture), which is emphasized in the right picture of
Fig. 2 where the coefficient matrix α = (αi,j )i,j=0,...30 is plotted. There as well as
in all reconstruction plots we apply linear interpolation to α to obtain a picture of
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Fig. 2 Left picture: plate with damage at (−1.5,−1.5) (Experiment 1). Right picture: exact
coefficient matrix α for experiment 1
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Fig. 3 Result of experiment 1 after 200 iterations with the Landweber method (left) and after 9
iterations with the RESESOP method (right)

higher resolution. The inverse problem consists of computing the coefficient matrix
α ∈ R

31×31 from full field data u(tj , xm) where the discrete points xm correspond
to the knots of the Finite Element solver.

In the tests we compare different solution methods regarding the residual, the
number of necessary iteration steps and computation time. We implemented the
Landweber iteration (9) as well as RESESOP (18) with the Landweber descent as
single search direction and optimized step size in each iteration. Figure 3 illustrates
the results that are obtained after 9 iterations of RESESOP and 200 iterations of
Landweber’s method. The RESESOP iteration was stopped by the discrepancy
principle, whereas the Landweber iteration was stopped before the discrepancy
principle was fulfilled. In both cases the defect is detected at the correct location, but
the coefficients αij are underestimated. We conclude that the same reconstruction
quality is achieved with both methods but that RESESOP needs a significantly
smaller number of iterations compared to the Landweber scheme. That means that
RESESOP with only one search direction and optimized step size converges much
faster than Landweber’s method.

Next we compare the computing time that is needed for each iteration. One
Landweber iteration needs 2.8 h, resulting in a total computation time of 23 days
until the discrepancy principle is fulfilled. A RESESOP iteration takes 3 h and thus
a bit more than a Landweber step. But, since only 9 iterations are necessary to satisfy
the discrepancy principle, the entire reconstruction process only needs 27 h in total.
This means an acceleration by a factor of ∼51. We emphasize that (IP) is a high-
dimensional parameter identification problem for a nonlinear hyperbolic system in
time and space and thus belongs to the currently most challenging class of inverse
problems at all.

Figure 4 compares the residuals of the RESESOP technique and the Landweber
method for Experiment 1. The red curve shows a typical behavior of the Landweber
method. We see a strong decrease in the residual ‖Rδ

n‖ until iteration 15, followed by
a very slow decrease afterwards. This phenomenon is the reason why Landweber’s
method needs so much time until the discrepancy criterion is fulfilled. We note also
that the residual ‖Rδ

n‖ is not monotonically decreasing for RESESOP, in contrast to



RESESOP for Recovering Stored Energy Functions in Hyperelastic Materials 185

0 10 20 30 40 50

Iteration index n

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
R

es
id

u
al

||
R
δ n

||

RESESOP

Landweber

1 2 3 4 5 6 7 8 9

Iteration index n

3.74

3.76

3.78

3.8

3.82

3.84

3.86

3.88

||
x

−
xδ n

||

Fig. 4 Behavior of the respective residuals ‖Rδ
n‖ (left) and errors ‖x − xδ

n‖ of the RESESOP
method (right)

-15

-10

-5

0

5

10

15

x2

-15 -10 -5 0 5 10 15

x3

Fig. 5 Plate with damages A (−1.5,−10.5) and B (5.5, 5.5) (Experiment 2)

the Landweber iteration. The reason is that RESESOP is constructed such that the
sequence ‖x − xδ

n‖ is monotonically decreasing, but not the sequence of residuals
‖Rδ

n‖, where x denotes the exact solution of the underlying inverse problem and xδ
n

the n-th iterate for noisy data. This is also shown in the right-hand plot of Fig. 4 and
is in accordance with the analysis of the method outlined in [33].

In the second experiment we consider a setting consisting of two damages that
are not located at the plate’s center. Note that the center is also the region of wave
excitation by f (t, x). We assume that the damage which is closer to the center is
the first to interact with the wave and thus is more pronounced in the reconstruction.
The experimental setup is illustrated in Fig. 5 (Experiment 2).

Figure 6 depicts the reconstruction from 50 iterations of the Landweber pro-
cedure (left picture). Then we terminated the iteration process because of its
outrageous computation time. The values of the coefficient matrix α are contained in
the very small interval [1.0072, 1.0088]. The situation is different for the RESESOP
technique. RESESOP stopped after iteration 17 according to the discrepancy
principle. The result is visualized in Fig. 6 (right picture). The entries αi,j of
the coefficient matrix are contained in [0.94, 1.12] making it easier to distinguish
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Fig. 6 Result of Experiment 2 after 50 iterations using the Landweber method (left) and after 17
iterations with the RESESOP method (right)
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Fig. 7 Residuals ‖Rδ
n‖ from the RESESOP and Landweber method from Experiment 2 (left

picture) and a re-scaling of the y-axis (right picture)

defects from undamaged parts of the structure. As expected the damage which is
located closer to the center is more pronounced due to the excitation in the middle
of the plate in both reconstructions.

In Fig. 7 we compare the residuals ‖Rδ
n‖ of the two methods applied to

Experiment 2. The RESESOP iteration stops after iteration 17 according to the
discrepancy principle, whereas the residual for the Landweber method seems to
be almost constant. The right-hand plot in Fig. 7 shows a re-scaling to emphasize
the oscillations of ‖Rδ

n‖ for RESESOP in the first few iterations as well as the
monotonic decrease of ‖Rδ

n‖ for Landweber’s method. Furthermore both figures
demonstrate again a faster convergence of RESESOP compared to the Landweber
procedure.

We consider a further numerical experiment where damage A is moved closer
to the center of the plate compared to Experiment 2 and damage B remains fixed
(Experiment 3). This scenario is illustrated in Fig. 8. The corresponding coefficient
matrix α remains unchanged, only the locations of the entries αi,j are adjusted to
the damages A and B.
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Fig. 9 Result of experiment 3 using the Landweber method after 50 iterations (left) and the
RESESOP method after 14 iterations (right)

Figure 9 shows the reconstructed coefficient matrix α using Landweber and
RESESOP. In both cases the locations of the defects are accurately detected, while
again the damage that is located closer to the center is highlighted stronger. The
Landweber iteration has been stopped after 50 iterations (yielding 140 h com-
putation time) without having fulfilled the discrepancy principle. The RESESOP
method, however, satisfied the discrepancy principle after 14 iterations (42 h
computation time) only, showing that it is significantly more efficient in spite of
the additional computation time due to the step size optimization in each iteration.

The RESESOP technique outperforms the Landweber method in other respects
as well. Considering the reconstructed values αi,j , we observe that the contrast in
the Landweber reconstructions is very low, whereas an application of RESESOP
results in larger differences of the absolute values.

Figure 10 shows the residuals of the two methods when applied to Experiment
3. Similarly to Experiment 2, the figures clearly demonstrate the superiority of
RESESOP compared to Landweber.
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Fig. 10 Residuals in experiment 3 of the Landweber and the RESESOP method (left) and adapted
scaling of the y-axis (right)

5 Conclusion

We presented the performance of two different iterative regularization methods
when applied to a high-dimensional inverse problem from the class of parameter
identification problems that is based on a system of nonlinear, hyperbolic differential
equations equipped with initial and boundary values. The system describes the
propagation of elastic waves in a three-dimensional structure whose constitutive
law is appropriately represented by a hyperelastic material model, i.e. where
the first Piola-Kirchhoff stress tensor is given as the derivative of the stored
energy with respect to strain. The nonlinearity allows also for large deformations.
The considered inverse problem is the computation of the stored energy from
measurements of the full displacement field depending on space and time. Since
the stored strain energy encodes virtually all essential mechanical properties of the
structure on a macro-scale, it might yield useful pointers for possible damages and
thus might be important for simulations in the area of Structural Health Monitoring
(SHM). Moreover, since hyperelasticity describes the elastic behavior accurately
for a large class of materials such as composites, rubber or biological tissues, the
concepts that have been developed in this chapter are appropriate for a broad range
of applications and not only for SHM systems.

To solve this inverse problem we implemented the well-known Landweber
method and Regularized Sequential Subspace Optimization (RESESOP) technique.
The latter consists of iterative metric projections on hyperplanes that are determined
by the used search directions, the nonlinearity of the forward mapping (via the
constant in the tangential cone condition) and the noise level. RESESOP uses
in each iteration step a finite number of search directions where the Landweber
direction, i.e. the negative gradient of the current residual, is included. Using only
one search direction, RESESOP coincides with Landweber where the step size is
optimized to minimize the norm-distance of the current iterate to a (locally unique)
exact solution. Both numerical methods have been evaluated by means of three
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different damage scenarios for a Neo-Hookean material model and the usage of
simulated measurement data. In all three cases RESESOP outperforms Landweber
with respect to a faster convergence, a significant decrease of computation time and
higher contrasts.

Future research could include model reduction techniques or the application of
methods from Machine Learning. Both concepts could help to achieve a further
significant improvement with respect to computation time that is necessary for an
implementation of the method in real-world SHM scenarios.
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Abstract We propose a variational method for joint motion estimation and source
identification in one-dimensional image sequences. The problem is motivated by
fluorescence microscopy data of laser nanoablations of cell membranes in live
Drosophila embryos, which can be conveniently—and without loss of significant
information—represented in space-time plots, so called kymographs. Based on
mechanical models of tissue formation, we propose a variational formulation that
is based on the nonhomogenous continuity equation and investigate the solution of
this ill-posed inverse problem using convective regularisation. We show existence
of a minimiser of the minimisation problem, derive the associated Euler–Lagrange
equations, and numerically solve them using a finite element discretisation together
with Newton’s method. Based on synthetic data, we demonstrate that source
estimation can be crucial whenever signal variations can not be explained by
advection alone. Furthermore, we perform an extensive evaluation and comparison
of various models, including standard optical flow, based on manually annotated
kymographs that measure velocities of visible features. Finally, we present results
for data generated by a mechanical model of tissue formation and demonstrate that
our approach reliably estimates both a velocity and a source.
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1 Introduction

1.1 Motivation

Motion estimation is a ubiquitous and fundamental problem in image analysis, see
e.g. [5]. It is concerned with the efficient and accurate estimation of displacement
fields in spatio-temporal data and has a wide range of applications, not necessarily
limited to natural images. Optical flow [30] is one popular example of motion esti-
mation, which designates the apparent motion of brightness patterns in a sequence of
images and is based on the assumption of constant brightness. Recently, optical flow
methods have been used for the quantitative analysis of biological image sequences
on cellular and subcellular level. See, for instance, [2, 9, 10, 21, 31, 34, 39, 44, 50].
While the concept is in practice well-suited for natural scenes, the use of the less
restrictive continuity equation, which arises from mass conservation, can be more
favourable in certain scenarios. For instance, in [15, 16] it is used for fluid flow
estimation.

In developmental biology, the study of the morphogenesis of model organisms
is specifically calling for image analysis methods that are able to extract time-
dependent deformations and flow velocities from microscopy image sequences.
Morphogenesis is the process that leads to an organism developing its shape as a
result of the implementation of a genetic programme [28] and includes, among other
mechanisms, tissue deformations. These deformations can be observed through
video microscopy by fluorescently labelling molecules that are associated with
compounds of mechanical relevance within an embryo [32].

In many cases, these molecules are organised spatially in discrete structures,
such as cell membranes. To compute deformations on the level of these molecular
structures, segmentation or detection, and subsequent tracking are the methods of
choice [22]. As a result, detailed knowledge of the mechanics of morphogenetic
processes can be gained [7]. In case the recorded tissue lacks structure, particle
image velocimetry (PIV) is generally used to compute (sparse) displacement fields
in image sequences. See, for example, [37, 47].

One difficulty in abovementioned approaches is that the observed structures
often have a short life time and are being degraded during the observation, while
new structures of the same type are being created [47]. Indeed, these molecular
structures, and thus their fluorescent signal response, can be described by an
advection–reaction equation rather than pure advection [42]. The signal variations
due to reaction are a source of error in the estimation of motion that we propose to
address in this paper.

Beyond the need of measurements of dense velocities of moving fluorescently-
labelled molecular structures that prove robust with respect to the reaction term, it is
of general interest to quantify the reaction term itself [42], and of general interest to
extract information about all the physical quantities and processes, such as diffusion,
that govern the observed tissue flow. For this, an accurate estimation of the velocity
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Fig. 1 Depicted are frames no. 4, 6, 10, 20, 40, 60, 80, and 90 (left to right, top to bottom)
of a 2D image sequence of fluorescently labelled cell membranes of Drosophila during a laser
nanoablation. The entire sequence contains 100 frames recorded over roughly 6.5 s, and the imaged
section spans approximately 42.2× 42.2µm2. The laser ablation is applied at frame number five,
i.e. between the first and the second image shown. Its location is indicated with a magenta arrow.
Observe the instantaneous recoiling and tissue loss of the cut membrane, and the subsequent growth
of tissue in the cut region. Moreover, note the changes in contrast over time and the line artefacts

field corresponding to the time evolution of the distribution of fluorescent molecules
is crucial [42, 47].

In this article, we argue that utilising variational motion estimation can help to
identify physical quantities by estimating velocities in real data. For simplicity,
we choose to demonstrate this method in a case where the biophysical data can
be reduced to one space dimension. This allows to create convenient space-time
representations, so-called kymographs.

One-dimensional data are indeed relevant in tissue dynamics when the cell-
cell junctions are found to be aligned along a straight line called a supracellular
actomyosin cable [8, 40]. A common experiment to investigate the function of these
cables is to cut them locally using intense laser illumination [25] and to observe
the dynamics that follow. Figure 1 illustrates a prototypical two-dimensional (time-
lapse) fluorescence microscopy image sequence where a cable is being severed by
such a laser ablation.

Most of the relevant dynamics occur along the cable itself, thus projecting
the recorded signal in a narrow stripe of less than two micrometers along its
average direction preserves most of the information. See Fig. 2 for an example
of a kymograph obtained from the image sequence shown in Fig. 1. Variations in
fluorescence intensity are clearly visible and displacements of features can easily be
measured, e.g. with existing (tracking) tools [12, 13, 38, 41]. See also Fig. 8 for an
example of manually created tracks.

Analysing such data is challenging for many reasons. First, simultaneous estima-
tion of velocity and decay or increase of the signal renders the problem ill-posed, as
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Fig. 2 The left image shows one frame of the image sequence in Fig. 1. A supracellular cable is
indicated with a magenta rectangle. To reduce the problem to one dimension, the data is summed
along the transverse direction within the rectangular zone. The right image depicts the kymograph
obtained from this dimension reduction. Time runs from top to bottom and the horizontal black
line at frame five indicates the time of the laser ablation, during which the signal acquisition was
paused

we will illustrate below, and suitable (qualitative) assumptions on favoured solutions
are required. Second, the obtained kymographs are very noisy, contain artefacts due
to the acquisition technique, and sometimes suffer from off-plane motion of the
cables. Third, the velocity field potentially contains discontinuities at the time of the
laser ablation. Fourth, data is missing during the application of the laser cut and only
a limited field of view is available due to the nature of the kymograph. Moreover,
bleaching of tissue leads to a decrease in contrast when being exposed over long
periods of time. See Figs. 1 and 2 for illustration of these issues. In this work we
address mainly issues one and two.

Motivated by the laser nanoablation problem we restrict ourselves to the one-
dimensional case and denote by 
 ⊂ R the spatial domain. For T > 0, we model
the actomyosin concentration as a function f : (0, T )×
→ R that is proportional
to the observed fluorescence response. In the following, we assume that it solves the
Cauchy problem for the non-homogeneous continuity equation, i.e. the right-hand
side is a source (or sink), in one dimension:

∂tf + ∂x(f v) = k in (0, T )×
,

f (0, ·) = f0 in 
.
(1)

Here, v : (0, T ) × 
 → R is a given velocity field, k : (0, T ) × 
 → R a given
source, and f0 : 
→ R a given initial condition.

Solution theory for problem (1) is closely related to solutions of the initial value
problem

∂tφ(t, x0) = v(t, φ(t, x0)), in (0, T ),

φ(0, x0) = x0, in 
,
(2)
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via the method of characteristics, see e.g. [24, Chap. 3.2]. Here, the map φ : [0, T )×

→ 
 denotes a so-called flow of v. Existence and uniqueness of problem (1) can
be established by application of the Picard–Lindelöf theorem to (2), provided that
both v and k are sufficiently regular. In particular, it can be shown that (2) has a
unique (global) solution and, moreover, that this solution is a diffeomorphism. For
an introduction and for details we refer, for instance, to [18, 60].

In this work we are concerned with the solution of the inverse problem associated
with (1), which is to estimate a pair (v, k)) from (potentially noisy) observations f .
Its ill-posedness is immediate because the problem is underdetermined and, given
a solution (v1, k1)

), the pair (v2, k1 − ∂x(f v1) + ∂x(f v2))
) for differentiable

v2 denotes a solution as well. In addition, it is easy to see that—without further
assumptions on v and on k—the pair (0, ∂tf )) is always a solution, albeit not a
desired one.

In view of this ill-posedness and this ambiguity we consider the variational form

min
(v,k))

‖∂tf + ∂x(f v)− k‖2
L2 + αR(v, k), (3)

where the data term is the squared L2 norm of the first equation in (1), R(v, k)

a suitable regularisation functional, and α > 0 is a regularisation parameter. In
this article we consider different choices of R. While source identification has been
treated before in the literature, e.g. in [4], the main goal of this article is to recover
a source (or sink) k which is constant along characteristics of the flow (2). In other
words, we are interested in utilising the convective derivative

d

dt
k(t, φ(t, x0)), (4)

for regularisation. Here, the flow φ is a solution to (2).
Its use is inspired by the work in [33], where the convective derivative of the

velocity along itself was used. From a physical perspective this choice seems natural
as, in comparison to using, for instance, the L2 norm or the H 1 seminorm for
regularisation of k, it is consistent with the movement of the tracked cell tissue,
which can be assumed to be the main origin of changes in the observed fluorescence
intensity. However, from a numerical point of view this choice comes at the expense
of having to solve nonlinear optimality conditions.

1.2 Contributions

The main contributions of this article are as follows. First, we propose a variational
model based on the non-homogeneous continuity equation for joint motion esti-
mation and source identification in kymographs. Second, we study the variational
properties of utilising the convective derivative (4) for regularisation. Following
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[33], we establish existence of minimisers of the nonconvex functional. Third, for
the numerical solution of the corresponding nonlinear Euler–Lagrange equations
we propose to use Newton’s method and a finite element discretisation. Fourth, we
present numerical results based on kymographs of laser nanoablation experiments
conducted in live Drosophila embryos. Moreover, we provide an extensive experi-
mental evaluation of different data fidelity and regularisation functionals based on
manually created tracks, and evaluate our approach using synthetic data generated
by solving a mechanical model of tissue formation.

1.3 Related Work

In [30], Horn and Schunck were the first to pursue a variational approach for dense
motion estimation between a pair of images. They considered a quadratic Tikhonov-
type functional that relies on conservation of brightness and used (squared) H 1

Sobolev seminorm regularisation. This isotropic regularisation incorporates a pref-
erence for spatially regular vector fields. Well-posedness of the functional was
proved in [51] and the problemwas solved numerically with a finite element method.
For a general introduction to variational optical flow see, for instance, [5].

In [56], the problem was treated on the space-time domain and extended to
incorporate both spatial as well as temporal isotropic regularisation. In [55], a
unifying framework for a family of convex functionals was established, and both
isotropic and anisotropic variants were considered. We refer to [54] for more details
on nonlinear diffusion filtering, and to [57] for an overview of numerous optical
flow models and a taxonomy of isotropic and anisotropic regularisation functionals.

The convective derivative has already been used in several works. For instance,
in [14] for simultaneous image inpainting and motion estimation. In [43], an optical
flow term was incorporated in a Mumford–Shah-type functional for joint image
denoising and edge detection in image sequences. Moreover, in [11] it was used
for joint motion estimation and image reconstruction in a more general inverse
problems setting. In [33] the convective acceleration was used for regularisation
together with a contrast invariant Horn–Schunck-type functional. The correspond-
ing nonlinear Euler–Lagrange equations were solved using a finite element method
and alternating minimisation.

According to [15], the article [52] is credited for being the first to propose the
use of the less restrictive continuity equation for motion estimation. Later it was
used, for instance, to find 3D deformations in medical images [20, 53], to analyse
meteorological satellite images [6, 15, 61], and to estimate fluid [16, 59] and blood
flow [3] in image sequences. For a general survey on variational methods for fluid
flow estimation see [29].

Whenever mass conservation is not satisfied exactly, e.g. due to illumination
changes, it can be beneficial to account for these violations. For instance, in [27] they
incorporated physical models. In [4] they simultaneously estimated image intensity,
flux, and a potential source. In contrast to our work, only L2 integrability of the
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source was assumed and the constraint was enforced exactly, leading to an optimal
control formulation, which was solved with a finite element method.

2 Problem Formulation

2.1 Preliminaries

2.1.1 Notation

For T > 0 and 
 ⊂ R a bounded, connected, and open set we denote by
E = (0, T )×
 the spatio-temporal domain and by ∂E its boundary. For a smooth
function f : E → R we denote by ∂tf , respectively, ∂xf the partial derivatives
with respect to time and with respect to space, and by ∇f = (∂tf, ∂xf )) its spatio-
temporal gradient. The space-time Laplacian of f is denoted by �f . Analogously,
for a smooth vector field w : E → R

2 with w = (w1, w2)), its gradient is
denoted by ∇w = (∇w1,∇w2)) and its spatio-temporal divergence is given by
∇ · w = ∂tw

1 + ∂xw2. Moreover, we will write A � B whenever there exists a
constant c > 0 such that A ≤ cB holds. Finally, by the Cauchy–Schwarz inequality
and application of Young’s inequality, we have

‖a + b‖2
L2 � ‖a‖2L2 + ‖b‖2L2 . (5)

Here, and in the following, we use ‖·‖L2 instead of ‖·‖L2(E,R) and ‖·‖L2(E,R2) for
simplicity.

2.1.2 Convective Derivative

Let φ : E → 
 be a flow through the domain 
, i.e. for every t ∈ (0, T ) the map
φ(t, ·) : 
 → 
 is a diffeomorphism and, for a fixed starting point x0 ∈ 
, the
trajectory φ(·, x0) is smooth.

With every trajectory φ(·, x0) that originates at x0 ∈ 
 we can associate a
velocity at every time t ∈ (0, T ) via (2). Thus, a flow φ gives rise to a scalar
(velocity) field v : E→ R by means of

v(t, x) = ∂tφ(t, x0)

∣∣∣∣
x0=φ−1(t,x)

, (6)

where φ−1(t, x) denotes the inverse of φ(t, ·) at x ∈ 
, which is the starting point
of the curve that passes through x at time t .

For a scalar quantity k : E → R, we define the convective derivative of k along
a flow φ, denoted by Dvk, as
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Dvk(t, x) := d

dt
k(t, φ(t, x0))

∣∣∣∣
x0=φ−1(t,x)

= ∂tk(t, x)+ ∂xk(t, x)v(t, x).

For convenience we adopt the notation v̄ = (1, v)). Clearly, Dvk = ∇k · v̄
vanishes for pairs (v, k)) such that v̄ ⊥ ∇k inR2. Moreover, from a straightforward
calculation we obtain

|Dvk|2 = ∇k)v̄v̄)∇k, (7)

where v̄v̄) is the matrix

v̄v̄) =
(
1 v

v vv

)
.

As noted in [33], the action of Dvk becomes more clear by writing (7) as

|Dvk|2 = |v̄|2
(
∇k · v̄

|v̄|
)2

= |∇k|2
(

v̄ · ∇k

|∇k|
)2

.

The first identity states that, for fixed v̄, minimisation of the functional

F : (v, k)) �→ ‖Dvk‖2L2 (8)

promotes functions k that vary little in the direction of v̄. In addition, the weighting
factor gives importance to regions of large v̄. On the other hand, the second identity
states that, for fixed k, minimisation of (8) favours functions v̄ that are tangent to
the level lines of k. This time, importance is given to regions where ∇k is large. See
Fig. 3 for illustration.

Fig. 3 Illustration of a pair
(v, k)) minimising (8) where
the velocity v is constant

x

t

x

∇

φ

0

( , x. 0)

v

k



Joint Motion Estimation and Source Identification 199

The connection to anisotropic diffusion [54] is immediate when considering the
Euler–Lagrange equations associated with (8). They read

∂xkDvk = 0,

∇ · (v̄v̄)∇k) = 0.
(9)

Note that the system (9) is nonlinear.

2.2 Variational Model and Existence of a Minimiser

In this section we formulate the joint motion estimation and source identification
problem and study the use of (8) as regularisation functional. For simplicity, we
will denote a velocity-source pair by w = (v, k)). In the following, we intend to
minimise a variational formulation of the form

E(w) := ‖∂tf + ∂x(f v)− k‖2
L2 + αR(w), (10)

where R is yet to be defined and α > 0 is a regularisation parameter.
In order to fix a concrete choice of R let us discuss two issues. First, it should be

selected such that the functional is well-defined for an appropriate function space.
In particular, we require the weak derivative of v in the data term in (10) to exist and
to be bounded with respect to an appropriate norm. Second, ∂x(f v) and k need to
differ qualitatively in order to obtain a meaningful decomposition of the signal ∂tf .

Before we state the model, let us follow the ideas in [33, Chap. 5.2.2] and discuss
some issues arising with the choice

αR(w) := α‖Dvk‖2L2 .

To ensure well-definedness of the functional (10) we derive, by application of (5)
and Hölder’s inequality, the estimates

‖∂tf + ∂x(f v)− k‖2
L2 � ‖∂tf ‖2L2 + ‖f ‖2L∞‖∂xv‖2

L2 + ‖∂xf ‖2L∞‖v‖2L2 + ‖k‖2L2 ,

and

‖Dvk‖2L2 � ‖∂tk‖2L2 + ‖v‖2L∞‖∂xk‖2
L2 .

As a consequence, minimisation over the space

X = {(v, k)) : v ∈ L∞(E), ∂xv ∈ L2(E), k ∈ H 1(E)}, (11)
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seems appropriate for data f ∈ W 1,∞(E) in the space of functions with essentially
bounded weak derivatives up to first order.

However, in order to show existence of minimisers of (10) by application of the
direct method [19], one requires a coercivity estimate of the form

‖w‖2X − b � E(w), (12)

where b ≥ 0 is some constant and the norm of the space X is defined via

‖w‖2X = ‖v‖2L∞ + ‖∂xv‖2
L2 + ‖k‖2H 1 .

Without further restriction of the data f , the above functional is not coercive with
respect to this space as the following example shows.

Example
Let f = ax for some 0 < a < +∞ and, consequently, we have that ∂xf = a.
Let {wn} be the sequence with wn = (n, an)), for n ∈ N, and observe that
‖wn‖X →∞ as n→+∞, while the value of the functional E stays bounded.
In fact, E(wn) = 0, since all non-zero terms in the data fidelity functional
cancel and all terms in the regularisation functional vanish.

Moreover, it is clear that, for pairs w = (0, k)), the inequality (12) cannot hold
in general. As a remedy, we consider minimising over all pairs w = (v, k)) arising
from the Sobolev space H 1(E,R2). Its norm is defined via

‖w‖2
H 1 = ‖w‖2L2 + ‖∇w‖2

L2 .

In further consequence, our goal is to find a minimiser w ∈ H 1(E,R2) of the
functional E in (10) with

αRCR(w) := α‖∇w‖2
L2 + β‖Dvk‖2L2 ,

and regularisation parameters α, β > 0. Our final model thus reads

E(w) := ‖∂tf + ∂x(f v)− k‖2
L2 + α‖∇w‖2

L2 + β‖Dvk‖2L2 . (13)

Let us establish the existence of a minimiser to the problemminw∈H 1(E,R2) E(w).
The following lemma will be used to show coercivity of E and is along the lines of
[51, p. 29].

Lemma 1 Let w ∈ L2(E,R2) be constant. Then, for ∇−1f := (∂xf,−1)) with
∂xf �≡ const. the inequality
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‖w‖2
L2 � ‖∇−1f · w‖2L2 (14)

holds.

Proof First, observe that, by the Cauchy–Schwarz inequality, the assumption
∂xf �≡ const. is equivalent to

|〈∂xf, 1〉L2 | < |E|‖∂xf ‖L2 , (15)

where |E| denotes the measure of E. Here, the assumption ∂xf �≡ const. is required
to obtain a strict inequality.

Next, suppose to the contrary that there is no C > 0 such that (14) holds. Then,
for all n ∈ N there exists wn ∈ L2(E,R2) such that

‖∇−1f · wn‖2L2 <
1

n
‖wn‖2L2 .

Let w̃n := wn/‖wn‖L2 with w̃n = (ṽn, k̃n)) and obtain ‖∇−1f · w̃n‖2L2 < 1/n. But
then,

1

n
> ‖∇−1f · w̃n‖2L2

=
∫

E

(∂xf ṽn − k̃n)2 dE

=
∫

E

(∂xf 2ṽ2n + k̃2n − 2∂xf ṽnk̃n) dE

≥
∫

E

(∂xf 2ṽ2n + k̃2n) dE − 2|〈∂xf ṽn, k̃n〉L2 |

=
∫

E

(∂xf 2ṽ2n + k̃2n) dE − 2‖∂xf ṽn‖L2‖k̃n‖L2
|〈∂xf ṽn, k̃n〉L2 |
‖∂xf ṽn‖L2‖k̃n‖L2

≥
(
‖∂xf ṽn‖2L2 + ‖k̃n‖2L2

)(
1− |〈∂xf ṽn, k̃n〉L2 |
‖∂xf ṽn‖L2‖k̃n‖L2

)
,

implies that ṽn, k̃n → 0 as n→+∞, since (15) allows us to conclude that

1− |〈∂xf ṽn, k̃n〉L2 |
‖∂xf ṽn‖L2‖k̃n‖L2

= 1− |〈∂xf, 1〉L2 |
|E|‖∂xf ‖L2

> 0.

This contradicts the assumption and, therefore, (14) holds. ��
In particular, Lemma 1 holds for the (componentwise) average wE of w, defined as
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wE = 1

|E|
∫

E

w dE.

The following proposition is a straightforward adaptation of [33, Prop. 1] and
utilises the direct method in the calculus of variations [19].

Proposition 1 For f ∈ W 1,∞(E) satisfying (15), the functional E admits a
minimiser in H 1(E,R2).

Proof The functional is proper and bounded from below since all terms are
nonnegative and, for w identically zero,

E(w) = ‖∂tf ‖2L2 � ‖∂tf ‖2L∞ < +∞,

since f ∈ W 1,∞(E).
Next, we show coercivity of (13) with respect to H 1(E,R2). Observe that

‖w‖2
L2 � ‖wE‖2L2 + ‖w − wE‖2L2

� ‖∇−1f · wE‖2L2 + ‖∇w‖2
L2

� ‖∇−1f · w‖2L2 + ‖∇−1f · (w − wE)‖2
L2 + ‖∇w‖2

L2

� ‖v∂xf − k‖2
L2 + ‖∇w‖2

L2

� ‖∂x(f v)− k‖2
L2 + ‖∇w‖2

L2

� E(w)+ ‖∂tf ‖2L2 .

The chain of inequalities follows from (5) and (14), the Poincaré–Wirtinger
inequality [24, Chap. 5.8],

‖w − wE‖L2 � ‖∇w‖L2 ,

and the assumption f ∈ W 1,∞(E). Coercivity of E with respect to H 1(E,R2) then
follows since ‖∇w‖2

L2 � E(w).
Next, we discuss sequential weak lower-semicontinuity of E. Let {wn} ⊂

H 1(E,R2) such that wn ⇀ ŵ in H 1(E,R2). In particular, we have that ∇wn ⇀

∇ŵ in L2(E,R4). For 1 < p < 2, the compact embedding H 1(E,R2) ⊂
W 1,p(E,R2) ⊂⊂ L2(E,R2) holds, see [24, Chap. 5.7]. As a consequence, there
exists a subsequence, also denoted by wn, such that wn → ŵ in L2(E,R2). Then,
weak lower-semicontinuity of E follows by application of [19, Thm. 3.23] since,
for fixed w, we have that all terms are convex in ∇w. In particular, |Dvk|2 is a
quadratic form and therefore convex in ∇w, since v̄v̄) in (7) is symmetric positive
semidefinite.

Finally, by application of [19, Thm. 3.30], the functional E admits a minimiser.
��
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Let us add, however, that the convective regularisation functionalF is nonconvex,
as the following example shows. We pick w1 = (0, x)) and w2 = (1, 0)), and
obtain

0 = F(w1) = F(w2) < F((w1 + w2)/2) = |E|
16

.

Therefore, E is nonconvex in general and several minima might exist. However, for
β = 0 a unique minimiser exists.

3 Numerical Solution

In this section we derive necessary conditions for minimisers of (13) and discuss the
numerical solution of a weak formulation by means of Newton’s method.

3.1 Euler–Lagrange Equations

For convenience let us abbreviate F := ∂tf + ∂x(f v) − k. The Euler–Lagrange
equations [17, Chap. IV] associated with minimisation of the functional E in (13)
then read

f ∂xF + α�v − β∂xkDvk = 0,

F + ∇ · ((αId+ βv̄v̄))∇k) = 0,
(16)

where Id denotes the identity matrix of size two. Recall from Sect. 2.1 that � and ∇
are spatio-temporal operators. Moreover, the natural boundary conditions at ∂E are
given by

n ·
((

0
f F

)
+ α∇v

)
= 0,

n · ((αId+ βv̄v̄))∇k) = 0,

(17)

where n ∈ R
2 is the outward unit normal to the space-time domain E.

Let us highlight two aspects of (16). First, note that the system is nonlinear in
the unknown w = (v, k)) due to the convective regularisation. Second, as already
mentioned in Sect. 2.1, there is a connection of the second set of equations in
(16) with anisotropic diffusion with the diffusion tensor given by αId + βv̄v̄).
The investigation of existence and regularity of solutions of (16) is left for future
research.
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3.2 Weak Formulation and Newton’s Method

We minimise E by applying Newton’s method to the weak formulation associated
with (16) together with boundary conditions (17). It is derived as follows.

Multiplying with a test function ϕ = (ϕ1, ϕ2)) ∈ H 1(E,R2), integrating by
parts under consideration of (17), and adding both equations leads to the following
variational problem: Find w ∈ H 1(E,R2) such that

G(w;ϕ) := (G1 + G2)(w;ϕ) = 0, ∀ϕ ∈ H 1(E,R2), (18)

with

G1(w;ϕ) = −
∫

E

F∂x(f ϕ1) dx − α

∫
E

∇v · ∇ϕ1 dx − β

∫
E

∂xkDvkϕ1 dx,

G2(w;ϕ) =
∫

E

Fϕ2 dx − α

∫
E

∇k · ∇ϕ2 dx − β

∫
E

(v̄v̄)∇k) · ∇ϕ2 dx.

The Gâteaux derivative DG(w; δw, ϕ) of G at w ∈ H 1(E,R2) in the direction
of δw = (δv, δk)) ∈ H 1(E,R2) is given by (DG1 +DG2)(w; δw, ϕ) with

DG1(w; δw, ϕ) =−
∫

E

(∂x(f δv)− δk) ∂x(f ϕ1) dx − α

∫
E

∇δv · ∇ϕ1 dx

− β

∫
E

(
∂xkDvδk + (∂xk)2δv + ∂xδkDvk

)
ϕ1 dx,

DG2(w; δw, ϕ) =
∫

E

(∂x(f δv)− δk) ϕ2 dx − α

∫
E

∇δk · ∇ϕ2 dx

− β

∫
E

(V∇k + v̄v̄)∇δk) · ∇ϕ2 dx.

(19)
Here, V is the Gâteaux derivative of v̄v̄) at v in the direction δv and reads

V =
(
0 δv

δv 2vδv

)
.

We solve the nonlinear problem (18) with Newton’s method, which proceeds as
follows. Starting from an initial solution w(0) := (0, 0)) we update the solution
according to the rule

w(n+1) = w(n) + δw, (20)

where δw is the update and n ∈ N0. Computing δw in each step requires to solve a
linear variational problem: Find δw ∈ H 1(E,R2) such that
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a(δw, ϕ) = $(ϕ), ∀ϕ ∈ H 1(E,R2), (21)

with

a(δw, ϕ) = DG(w(n); δw, ϕ),

$(ϕ) = −G(w(n);ϕ).

Note that the dependence on the current iterate w(n) is through G and DG, defined
in (18) and (19), respectively. In our experiments we observed that (20) typically
converges within only a few iterations.

3.3 Discretisation

We have implemented the weak formulation in FEniCS [1], which can also handle
Newton’s method automatically. The formulation (18) was discretised using multi-
linear finite elements and the linear variational problem (21) was solved accordingly
using FEniCS. Since kymographs serve as input data we have discretised the
rectangular space-time domain E with a triangular mesh based on the regular grid
so that every vertex of the mesh corresponds to one pixel of the image f and to one
pair of values of the unknown w.

Moreover, in the implementation we penalise weak derivatives differently in
space and time. This results in four regularisation parameters αi

j , with i ∈ {v, k}
and j ∈ {t, x}, for the H 1 seminorm in (13) and one additional parameter β for the
convective regularisation. Due to the equivalence of norms the existence result in
Prop. 1 still holds true.

Integrals are computed exactly with an appropriate Gauss quadrature, which is
automatically selected by FEniCS. Similarly, since the image f is represented by a
piecewise multilinear function, products of partial derivatives of f that appear on
the right-hand side of (21) are automatically projected onto the correct space.

As termination criterion for Newton’s method we used the default criteria of
FEniCS with both the absolute and the relative residual of (18) set to 10−10. The
maximum number of iterations was set to 15. Convergence was typically achieved
within only a few iterations, which usually amounted to just a few seconds of
computing time on a standard consumer laptop. It needs to be mentioned that, in
our experiments we found that, the method fails to converge when the parameters
αk

t and αk
x are chosen too small in comparison to β. This is, however, in line with

the theoretical results in Sect. 2.2, which require H 1 regularity of k.
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Both the source code1 of our Python implementation and the microscopy data2

used in the experiments are available online.

4 Experimental Results

In this section we present numerical results. In the first part, we demonstrate the
importance of estimating a source based on synthetic data. Then, in the second
part we show results for nonsynthetic microscopy data. After briefly discussing the
data, we investigate the effects of varying the regularisation parameter β, which
controls the amount of convective regularisation. We then qualitatively compare
the (standard) 1D variational optical flow model with our continuity equation-
based formulation for several choices of the regularisation functional αR in (10).
In addition, we present a quantitative evaluation of the considered models based on
recoil velocities obtained from manual tracking of features in kymographs. Finally,
in the last part, we evaluate our approach based on data coming from the solution of
a mechanical model of tissue formation.

In all results, the computed velocity fields are presented visually with the help
of streamlines, see e.g. [58]. These are integral curves computed by numerically
solving the ordinary differential equation (2) for the estimated velocity v and
a selected number of initial points. The resulting curves are then colour coded
according to their velocities and shown superimposed with the kymograph data.
This representation is more comprehensible and allows to visually check whether
the estimated velocities are approximately correct.

4.1 Analytical Example

In order to demonstrate the necessity of estimating a source when the changes in the
signal cannot be explained using mass conservation we conducted experiments for
synthetic data. To this end, we generated a signal f , given as

f (t, x) = e−
t
τ cos

(
x − v0t

λ

)
,

on a periodic domain 
 = (0, 1) and for the time interval [0, 1]. The parameters
were set to τ = 1 and to λ = 1/(4π). This signal shifts to the right with constant
velocity v0 = 0.1 and decays exponentially over time in its magnitude. It can easily
be verified that the source is given by k(t, x) = −f (t, x)/τ .

1https://doi.org/10.5281/zenodo.3740696.
2https://doi.org/10.5281/zenodo.3257654.

https://doi.org/10.5281/zenodo.3740696
https://doi.org/10.5281/zenodo.3257654
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Fig. 4 In this example, we demonstrate the necessity of source estimation for decaying data.
Here, we have generated a signal that shifts to the right with constant velocity v0 = 0.1 and
simultaneously decays exponentially (in magnitude). Shown are the signal f and streamlines
computed from the estimated velocities using the homogenous (left) and the non-homogenous
(right) continuity equation

We then solved the variational problem using in one case the homogenous, i.e.
k = 0, and in one case the non-homogenous continuity equation. Periodic boundary
conditions in space were enforced, and regularisation parameters were set to αv

j =
10−3, αk

j = 10−4, for j ∈ {t, x}, and to β = 10−3. Since k is not constant along
characteristics in this example we haven chosen β quite small.

Figure 4 illustrates the results of this experiment. It can clearly be seen that not
accounting for the decay of the signal leads to a velocity that is significantly different
to v0 in this example, whereas using the non-homogenous continuity equation
estimates both the velocity and the source (not shown) very well.

4.2 Microscopy Data and Acquisition of Kymographs

The data at hand are 2D image sequences of living Drosophila embryos recorded
with two-photon laser-scanning microscopy. We refer to [48] for the used
microscopy technique and for the preparation of flies, as well as for the details
of the laser ablation method. For this study we recorded 15 image sequences, all of
which feature cell membranes that have been fluorescently labelled with Myosin II-
GFP, see [48]. The image sequences feature a square region of approximately
42.2 × 42.2µm2 at a spatial resolution of 250 × 250 pixels. A typical sequence
contains between 60 and 100 frames that were recorded at a temporal interval of
727.67ms, and the recorded image intensities f 2D+T are in the range {0, . . . , 255}.

Each of the sequence shows a single plasma-induced laser nanoablation, which
led to the controlled destruction of tissue in a linear region of 2µm length that is
approximately orthogonal to the cable. This ablation is expected to have a width
of the order of the size of one pixel. Recall that in Fig. 1 we show such a typical
dataset.

In order to obtain a kymograph from each microscopy sequence, we first labelled
the location of the intersection between the ablation line and the actomyosin cable
with a point c ∈ R

2. Then, we visually determined an approximate orientation,
given by a unit vector e ∈ R

2, of the selected cable by defining a straight line of
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length 2L+ 1 pixels which passes through c. Typically, L = 100 pixels is sufficient
for the considered datasets.

To create a one-dimensional image sequence we used standard nearest neighbour
sampling along the abovementioned line. A nearest neighbour in terms of the pixel
locations P of f 2D+T is given by

N(x) ∈ {
xp ∈ P : |x − xp| ≤ |x − xq |, ∀p �= q

}
.

Then, the sampling points that are separated by distance one and lie along the
abovementioned straight line are given by pi = c+ie, for i = −L, . . . , L. A nearest
neighbour interpolation of f 2D+T along this line is given by f 2D+T(t, N(pi)).

However, due to noise, the spatial extent, and minor displacements of the cable
in orthogonal direction, we also considered sampling points that lie on the parallel
line of distance j = −h, . . . , h. These points are given by

pi,j = c + ie + je⊥.

Then, at i = 1, . . . , 2L+ 1, we define the intensity of a kymograph f δ(t, i) as

f δ(t, i) =
∑

j=−h,...,h

f 2D+T(t, N(c + (i − L− 1)e + je⊥)).

In other words, the intensity at i is given as the sum of nearest neighbour
interpolations at points that lie on an orthogonal straight line. The superscript δ

indicates noise in the created kymograph. We found that h = 5 pixels generates
satisfactory kymographs.

For this process, we used the reslice tool in Fiji [49] with a slice count of 2h and
no interpolation selected, after manually placing a straight segment along a selected
actomyosin cable, see Fig. 2 for illustration. Subsequently, a projection with the SUM
option selected creates the final kymograph.

Since the image acquisition is paused during the laser ablation, see Fig. 2, we
simply replaced the missing frame with the previous one. Moreover, we applied
a Gaussian filter to the kymograph f δ to guarantee the requirements specified in
Sect. 2.2 and scaled the image intensities to the interval [0, 1]. The kernel size of the
Gaussian filter was chosen as 10×10 pixels and the standard deviation set to σ = 1.
The filtered and normalised kymograph is denoted in the following by f .

4.3 Qualitative Comparison

In the first experiment, we investigated the effect of the convective regularisation
for one chosen kymograph. To this end, we solved the necessary conditions (16)
as outlined in Sect. 3 for varying regularisation parameter β. Figure 5 shows
streamlines for the estimated velocities together with the computed sources. Since
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(a)

(b)

(d)

(c)

Fig. 5 Visualisation of the effect of the convective regularisation. Shown in Fig. 5a–c are
kymographs f δ (left) with streamlines superimposed and the estimated source k (right) for
increasing regularisation parameter β (from top to bottom). The other parameters were fixed and
set to αv

j = 5 · 10−3 and αk
j = 10−4, for j ∈ {t, x}. (a) β = 10−4. (b) β = 10−3. (c) β = 10−2.

(d) Shown is a magnified view of the cut region of the above results (ordered left to right)

we did not find any significant difference between the results for β = 10−4 and for
β = 0, we simply omit the latter.

The two main findings of this experiment are as follows. First, for the chosen
dataset, the convective regularisation can help to estimate more accurate velocities
shortly after the ablation was applied. As can be seen in Fig. 5c (left) and 5d (right),
this leads to a more accurate estimation of the recoil velocities at the cut ends. In
Fig. 5d we display a magnified view of the results in the cut region.

Second, as expected, with increasing β the estimated source gets more regular in
the direction of the flow, see Fig. 5a–c (right). In particular, the oscillations in space
and time in the estimated source, which can be most likely attributed to noise and
to artefacts created during the acquisition, decrease significantly. This certainly can
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lead to better interpretability and help to get a better understanding of the estimated
reaction term k. Observe also the decrease in the magnitude of k as β increases. This
is made apparent by the colour coding.

In the next experiment, we qualitatively compare the standard variational optical
flow model with H 1 seminorm regularisation and the continuity equation-based
model in (10) paired with different regularisation functionals. The first model we
consider is based on the optical flow equation [30] in one space dimension, which
reads

∂tf + ∂xf v = 0, (22)

and assumes that f is constant along characteristics of the flow (2). Even though
no source k is estimated in this model, the main motivation for its inclusion in the
evaluation is that it can serve as a baseline method. The quantitative evaluation in
Sect. 4.4 is based on manually created tracks that follow highly visible features in
the kymographs and, in many cases, roughly preserve their intensity as the tissue
deforms. See Fig. 8 for illustration.

We highlight that, given ∂xf �= 0, Eq. (22) admits a unique solution, namely
v = −∂tf/∂xf . However, due to noise degradation and aforementioned artefacts
it is beneficial to solve (22) in a variational framework. Therefore, we consider
minimising the functional

‖∂tf + ∂xf v‖2
L2 + α‖∇v‖2

L2 , (23)

analogously to the solution method outlined in Sect. 3. In contrast to the functional
(13), the corresponding Euler–Lagrange equations are linear and the weak formula-
tion can be solved directly.

All other functionals we investigate are based on (10) and read

‖∂tf + ∂x(f v)− k‖2
L2 + αRi (w).

Here, αRi represent different choices in the regularisation and, consequentially, also
in the function space we minimise over. Since the above functional doesn’t require
any Sobolev regularity of the source k, we investigate the setting where v ∈ H 1(E)

and k ∈ L2(E), that is

αRH 1-L2(w) := α‖∇v‖2
L2 + γ ‖k‖2

L2 , (24)

with γ > 0. Moreover, we also consider the choice v ∈ H 1(E) and k ∈ H 1(E).
The regularisation functional then reads

αRH 1(w) := α‖∇w‖2
L2 . (25)
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Finally, we will present results for the setting v ∈ H 1(E) and k ∈ H 1(E) together
with the convective regularisation. This is the main model investigated in Sect. 2.2
and is given by

αRCR(w) := α‖∇w‖2
L2 + β‖Dvk‖2L2 . (26)

In Fig. 6 we show minimising functions for models (23)–(26) and in Fig. 7 we
display a magnified view of the cut region. For all models, the regularisation param-

(a)

(b)

(c)

(d)

Fig. 6 Qualitative comparison of different models based on one chosen dataset. Regularisation
parameters were chosen manually so that the recovered streamlines best matched the cut ends.
(a) Streamline representation of the velocity obtained by solving the variational optical flow
problem (23) with spatio-temporal H 1 seminorm regularisation. Parameters were set to αv

j =
5 ·10−3, for j ∈ {t, x}. (b) Result obtained using αRH 1-L2 with parameters set to αv

j = 5 ·10−3 and
γ = 10−1. (c) Result obtained using αRH 1 with parameters set to αv

j = 5·10−3 and αk
j = 10−4. (d)

Result obtained using αRCR with parameters set to αv
j = 5 · 10−3, αk

j = 10−4, and β = 2.5 · 10−3
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eters were chosen manually so that the streamlines obtained from the computed
velocities best matched the cut ends which resulted from the laser ablation. For
comparison, we also refer the reader to Fig. 8, which shows manually tracked cut
ends. The four main observations from this experiment were as follows.

First, in Fig. 6a, which shows a minimising function of the optical flow model
(23), it is clearly visible that many characteristics follow paths of constant fluores-
cence intensity. See also the two outermost markers in Fig. 7 (top, left). However,
this model underestimate the recoil velocity shortly after the cut and may lead to
wrong characteristics, see the middle marker in Fig. 7 (top, left).

Second, in Fig. 6b we illustrate a minimising pair (v, k)) of the continuity
equation-based model using αRH 1−L2 . It is apparent that k captures both noise
and artefacts, and leads to an undesirable underestimation of the velocities in the
cut region. See also Fig. 7 (top, right). While this model unsurprisingly results in
the smallest residual error (in norm) of the non-homogenous continuity equation,
cf. also Table 1, it is insufficient for a meaningful quantification of tissue loss and
growth.

Third, in Fig. 6c we depict a minimising pair for the model using αRH 1 as
regularisation functional. Less noise is picked up by the source k and the recovered

Fig. 7 Shown is a magnified
view of the cut region of the
results shown in Fig. 6
(ordered left to right, top to
bottom). In the first image,
the magenta arrows point at
streamlines following paths of
constant intensities. In the last
image, the top-most markers
indicate more accurately
estimated velocities right
after the laser cut



Joint Motion Estimation and Source Identification 213

Table 1 Residual error for
every dataset and every model
investigated. For each dataset
boldface values show the
smallest residual in L1 norm
that is obtained during the
parameter search

Dataset OF αRH 1−L2 αRH 1 αRCR

1 0.45 0.16 0.34 0.34

2 0.65 0.27 0.52 0.53

3 0.44 0.17 0.36 0.36

4 0.36 0.13 0.26 0.26

5 0.62 0.26 0.49 0.49

6 0.49 0.17 0.36 0.37

7 0.56 0.20 0.42 0.43

8 0.50 0.16 0.38 0.40

9 0.29 0.12 0.24 0.25

10 0.43 0.17 0.33 0.34

11 0.42 0.16 0.30 0.31

12 0.32 0.12 0.23 0.23

13 0.52 0.20 0.37 0.38

14 0.64 0.26 0.51 0.52

15 0.33 0.11 0.22 0.23

Average 0.47 0.18 0.36 0.36

velocities v are closer to what one would expect in the cut region, see also Fig. 7
(bottom, left). However, undesired oscillatory patterns are present in the source k.

Finally, in Fig. 6d we show a minimiser of the model using convective regulari-
sation, that is αRCR. This particular choice leads to significant visual improvement
both in the recovered velocity and the estimated source. Specifically, as the
streamlines in the cut region right after the laser ablation in Fig. 7 (bottom, right)
show (see top two markers), the movement of the tissue is captured very well. In
addition, bright features such as the left cut end, cf. the bottom marker in Fig. 7
(bottom, right), are followed accurately. Moreover, the changes in the fluorescence
intensities are indicated nicely in the visualisation of the source k, see Fig. 6d (right).
In particular, the significant increase between the cut ends towards the end of the
sequence, possibly due to wound healing, is indicated adequately.

In summary, it can be said that our variational model based on the non-
homogenous continuity equation together with convective regularisation can lead
to improved results compared to existing models when parameters are selected by
hand and comparison is performed visually.

4.4 Quantitative Comparison Based on Measured Recoil
Velocities

In this section, we compare the models (23)–(26) presented in the previous section
from a quantitative point of view. Our evaluation is based on manually measured
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Fig. 8 Visualisation of manually created tracks of features (left) used for the evaluation superim-
posed with the corresponding kymograph and their corresponding third-order spline representation
(right). Colour in the spline representation indicates velocity

recoil velocities of clearly visible features in the kymographs, and include the cut
ends resulting from the laser nanoablation.

For this comparison, we have annotated 15 kymographs in Fiji [49] to obtain
discrete trajectories to compare to. See Fig. 8 (left) for an example. These tracks
can then be used to compare to either the estimated velocities or to the computed
characteristics that solve (2) numerically. Observe in Fig. 8 that all trajectories start
only after the ablation, which is the main region of interest from a tissue mechanics
point of view.

Before presenting the comparison, let us briefly discuss the methodology and
the used evaluation criteria. Since some created tracks do not feature a coordinate
for each time instant we interpolated each track i with a third-order spline φi . As a
result, velocities ∂tφi can be computed conveniently and used for comparison to the
velocities estimated by the variational approach. See Fig. 8 for an example of tracks
(left) and their corresponding spline interpolations (right), which are colour coded
according to their velocities.

In our experiments we found that each kymograph requires the regularisation
parameters to be adjusted individually. Therefore, in the experimental comparison,
we performed a search over all parameter combinations

αi
j , γ, β ∈ {10−3, 5 · 10−3, 10−2, 5 · 10−2, 10−1}, with i ∈ {v, k} and j ∈ {t, x},

(27)
for whichever parameters are applicable to the respective model. In the case of the
most complex model, i.e. the one that includes the convective regularisation (26),
this amounted to probing 55 parameter combinations per dataset. For each of the
criteria listed below, we recorded the best result that was obtained with each model
and for each kymograph during the parameter search.

4.4.1 Error in Residual

In the first comparison, the goal was to see which model best fits the recorded data.
In Table 1 we report the L1 norm of the smallest observed residual of the underlying
model equation, that is
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Fig. 9 Plotted is the mean
error (28) (vertical axis) for
the model αRH 1 for each of
the 15 datasets (in different
colours) and all probed
parameter combinations
(horizontal axis). It can be
seen that no single tested
parameter settings led to a
small error for all datasets

‖∂tf + ∂xf v‖L1 and ‖∂tf + ∂x(f v)− k‖L1 .

As expected, the model αRH 1-L2 results on average and for every single dataset
in the smallest residual. However, as already mentioned in Sect. 4.3, due to the
high noise level it is only of limited use for quantifying the reaction term as k

captures a significant amount of noise. The main finding of this experiment is that
the optical flow model is by far not capturing the entire essence of the dataset,
which is indicated by the high residual in comparison to the continuity equation-
based models. Moreover, let us also highlight that the residual is on average not
significantly increased in comparison to the αRH 1 model when the convective
regularisation is used in addition.

4.4.2 Error in Velocity

In the second comparison, we looked at the absolute error between the velocity of
each manually created track and the velocities estimated with our models. For a
particular track φi of a dataset, we define this error at time t ∈ [0, Ti] as

|∂tφi(t)− v(t, φi(t))|.

Here, Ti > 0 is the length of the track and we have assumed for simplicity that all
trajectories start at t = 0. The velocity v needs to be interpolated, since φi is a spline
representation.

In further consequence we computed, for each dataset and for each parameter
configuration, the mean squared L2 norm of the error in velocity along all its N

tracks. It is given by

E(v) := 1

N

N∑
i=1

1

|Ti | ‖∂tφi − v(·, φi)‖2L2([0,Ti ]). (28)

In our experiments, in none of the tested models we could find a single parameter
combination that worked well for most datasets in terms of the mean error E(v).
This can be seen, for example, in Fig. 9, where we have plotted exemplary for each
dataset and for each parameter setting in (27) the error E(v) for the model αRH 1 .
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Table 2 Tables depict the average error E(v) in the L2 norm (left), as in (28), and the maximum
error (right) for every dataset and every model investigated. For each dataset boldface values show
the smallest error that is obtained during the parameter search

Dataset OF αRH 1−L2 αRH 1 αRCR

1 0.33 0.45 0.40 0.38

2 0.16 0.17 0.17 0.17

3 0.30 0.35 0.29 0.29
4 0.39 0.44 0.44 0.43

5 0.26 0.31 0.25 0.25
6 0.41 0.50 0.45 0.41
7 0.28 0.34 0.31 0.31

8 0.29 0.33 0.24 0.22
9 0.21 0.22 0.18 0.18
10 0.18 0.24 0.18 0.18
11 0.17 0.21 0.19 0.19

12 0.25 0.31 0.24 0.23
13 0.20 0.31 0.25 0.25

14 0.55 0.53 0.49 0.49
15 0.24 0.30 0.28 0.28

Average 0.28 0.33 0.29 0.28

Dataset OF αRH 1−L2 αRH 1 αRCR

1 0.20 0.25 0.23 0.23

2 0.16 0.16 0.21 0.21

3 0.22 0.31 0.22 0.22
4 0.16 0.18 0.17 0.17

5 0.20 0.23 0.15 0.15
6 0.24 0.46 0.41 0.39

7 0.19 0.29 0.23 0.22

8 0.20 0.19 0.15 0.14
9 0.10 0.10 0.08 0.09

10 0.18 0.16 0.09 0.09
11 0.17 0.29 0.14 0.14
12 0.13 0.18 0.14 0.14

13 0.19 0.27 0.19 0.19
14 0.39 0.45 0.38 0.38
15 0.28 0.44 0.30 0.30

Maximum 0.39 0.46 0.41 0.39

As a consequence, we report in Table 2 (left) the best mean error E(v) that we
obtained for each dataset by the grid search. The main findings are as follows.
First, and most importantly, the continuity equation-based model with convective
regularisation performed on average as well as the optical flow-based model when
using E(v) as evaluation criterion, with the advantage of simultaneously yielding
an estimate of the source.

A possible explanation for the comparably good performance of the optical flow-
based model is that the manually created tracks approximately constitute trajectories
of constant intensities rather than the characteristics associated with (1). However,
in combination with the findings presented in Table 1, which show that the average
residual is much smaller when using a continuity equation-based model with H 1

seminorm or convective regularisation, we are confident to state that these models
are capable of estimating a meaningful source that can explain significantly more
details of the observed signal.

In addition, we also evaluated (28) with ‖·‖2
L2 replaced by ‖·‖L∞ , see Table 2

(right). Qualitatively, this leads to slightly different results for some datasets but
still supports our main findings.

Let us illustrate the advantage of the convective regularisation on the basis of one
particular dataset. In Fig. 10 we show the best result obtained for dataset number
eight for three models. For this particular dataset, the model αRCR outperforms all
other models according to Table 2.

Figure 10a (left) shows the best result for the optical flow model and Fig. 10a
(right) the manually created tracks for this kymograph used to evaluate the computed
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(a)

(b)

(c)

Fig. 10 Best results obtained for dataset number eight in terms of the mean error (28) in the
estimated velocity, see Table 2 (left). (a) Streamline representation of the velocity obtained by
solving the variational optical flow problem (23) with spatio-temporal H 1 seminorm regularisation
with parameters αv

t = 10−1 and αv
x = 5 · 10−2. (b) Result obtained using αRH 1 with parameters

αv
t = 10−1, αv

x = 5 · 10−2, αk
t = 10−1, and αk

x = ·10−1. (c) Result obtained using αRCR with
parameters αv

t = 10−1, αv
x = 5 · 10−2, αk

t = 10−1, αk
x = ·10−1, and β = 10−1

velocities. Notice the inaccurate velocity between the cut ends shortly after the laser
ablation. Moreover, towards the end of the sequence, where the both cut ends meet
again, the characteristics seem inappropriate.

In Fig. 10b we display the result for the model αRH 1 . As can be seen in Fig. 10b
(left), the estimated velocity is improved significantly in the cut region and in the
problematic region towards the end of the sequence.

In Fig. 10c (left) we show the result for the model including the convective
regularisation. i.e. for αRCR. The estimated velocity appears visually as good
as in the previous model with the additional advantage that it allows a larger
magnitude shortly after the laser ablation. Observe that in both cases the estimated
source is both spatially and temporally very regular, and apart from beta the
same parameters αi

j were selected. However, in Fig. 10c (right) the effect of the
anisotropic regularisation is clearly visible in the cut region.

Moreover, in Fig. 11 we show the best obtained results for two other datasets. For
comparison, the top row shows the same dataset as in Figs. 5 and 6.
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Fig. 11 Best results obtained for dataset number three and five in terms of the mean error (28) in
the estimated velocity, see Table 2 (left)

Finally, let us mention that, for the model αRCR, which we solve via Newton’s
method, in total only 53 computations did not converge out of the 3125 parameter
combinations tested on 15 different datasets.

4.5 Comparison Based on a Mechanical Model of Tissue
Formation

In Sect. 1 we have motivated the use of the non-homogenous continuity equation
(1) mainly through mechanical models that are known to describe tissue formation,
for example, in Drosophila. In order to see whether our variational formulation can
reliably estimate velocity and source that both stem from such a process, we have
implemented the partial differential equation-based model proposed in [26] to create
synthetic data. In this model, the triplet (m, v, σ ) solves the system

∂tm+ ∂x(mv) = kon − koffm, (29)

∂xσ = ξv, (30)

σ = η∂xv + χm, (31)

for (t, x) ∈ (0, T )× (0, 1), subject to the initial and boundary conditions

m(0, x) = m0, in (0, 1),

v(0, x) = 0, in (0, 1),

v(t, x) = 0, in (0, 1)× {0, 1}.
(32)

We refer to [45] for a derivation of this model.
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Briefly, (29) is an advection–reaction equation modelling mass conservation
of myosin molecules m, subject to rates of adsorption kon > 0 and desorbtion
koff > 0, which we assume to be constants. The advection is determined by a
mechanical problem, where mechanical balance (30) involves the stress σ(t, x) in
the actin at the cell-cell junction and a friction force ξv exerted by the surrounding
material, which we assume to be proportional to the velocity. Here, ξ > 0 is the
coefficient of viscous drag. Finally, a constitutive model (31) of the junctional actin
is proposed following e.g. [23, 26, 35] and involves viscous stresses and a pre-stress
χm generated by myosin molecules. Again, η, χ > 0 are constants. In addition,
(32) enforces zero flux at the spatial boundaries, and m0 is an initial concentration.
In our experiments we set it to

m0(x) := 20− sin(40x + cos(40x))

5
.

While such a model captures the essential features of actomyosin behaviour [23,
35, 47], its mean field approach means that away from the perturbation caused by
the laser cut, the concentration m will equilibrate to the trivial solution (m, v, σ ) =
(kon/koff, 0, χkon/koff), which means that these parameters are uniform in space,
and there will be no feature to track for an image analysis technique. This is also in
contradiction with the experimental observations, where some material points along
the cell-cell junctions exhibit accumulations of myosin that persist over time. One
possible biophysical explanation for these accumulations is a locally larger density
of actin binding sites.

This can be incorporated in the above model by introducing an additional variable
ρ(t, x) and a constant k0off > 0 that modulates the off rate of myosin

koff(t, x) = k0offρ(t, x).

In addition, the density ρ obeys the conservation equation

∂tρ + ∂x(ρv) = 0, (33)

and satisfies an initial condition. In our experiments we set the initial ρ at t = 0 as

ρ0(x) := 1+ 1+ sin(40x + cos(40x))

10
. (34)

We solve the system (29)–(31) numerically, under additional consideration of
(29), with a standard upwind finite volume discretisation paired with the forward
Euler method. See, for instance, [46, Appx. B] for a brief description. For
completeness, we briefly outline our implementation here.

We discretise the space-time domain [0, T ] × [0, 1] using Nt and Nx equally
spaced discretisation points in time and in space, respectively. For the discretisation
of the unknowns we make use of a centred and a staggered grid, denoted by Gc and
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Gs , respectively. They are defined as

Gc = {(i�t, (j − 1/2)�x) : 0 ≤ i ≤ Nt, 1 ≤ j ≤ Nx} ,

and as

Gs = {(i�t, (j − 1)�x) : 0 ≤ i ≤ Nt, 1 ≤ j ≤ Nx + 1} ,

where �t = T/Nt and �x = 1/Nx . The concentrations and the stress are then
discretised on the centred grid and the velocity on the staggered grid, leading to

(m, ρ, v, σ ) ∈ R
|Gc| × R

|Gc| × R
|Gs | × R

|Gc|.

In further consequence, the finite volume discretisation, see e.g. [36, Chap. 4], of
(29) reads

d

dt
mj + 1

�x

(
F(m)|

j+ 1
2
− F(m)|

j− 1
2

)
= kon − k0offρjmj ,

where F(m)|
j± 1

2
is the flux at the cell boundaries, that is, at the nodes of the

staggered grid. Assuming that m is constant on each cell and using the upstream
value of m, the flux F(m)(t)|

j± 1
2
:= F

(i)

j± 1
2
at time t = i�t at the boundaries can be

written as

F
(i)

j+ 1
2
= 1

2
v

(i)

j+ 1
2

(
m

(i)
j+1 +m

(i)
j

)
− 1

2
|v(i)

j+ 1
2
|
(
m

(i)
j+1 −m

(i)
j

)
.

Similarly, we obtain F
(i)

j− 1
2
and, moreover, (17) results in zero flux at the boundaries.

Then, approximating d/dt with forward finite differences yields

m
(i+1)
j = m

(i)
j −

�t

�x

(
F

(i)

j+ 1
2
− F

(i)

j− 1
2

)
+�t

(
kon − koffρ

(i)
j m

(i)
j

)
. (35)

Analogously, an update equation for ρ is obtained.
The velocity at the current time step (i) is determined as follows. Using (30) to

obtain v = ∂xσ/ξ and substituting it into (31) yields the second-order elliptic partial
differential equation

σ − η

ξ
∂xxσ = χm, in (0, 1),

∂xσ = 0, in {0, 1},
(36)

for the stress σ . Here, the zero Neumann boundary conditions follow from (32).
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In each time step we solve (36), given the concentration m(i) from the previous
time instant, with a standard finite-difference scheme using centred differences on
Gc. Then, with the help of (30) the velocity at nodes j + 1/2 can be approximated
with

v
(i)
j+1/2 ≈

1

ξ�x

(
σ

(i)
j+1 − σ

(i)
j

)
,

where we also use the fact that v is zero outside the spatial domain.
Finally, the concentration m

(t+1)
i is updated according to (35) and ρ to its

corresponding equation, and the procedure is repeated for the next time instant. The
time interval is adjusted in each step so that the Courant–Friedrichs–Lewy condition
is satisfied. This typically leads to intermediate results that are not recorded.

In our experiments we set Nt = 300 and Nx = 300, and the parameters
controlling the time stepping were set to T = 0.1 and to �t = 2.5 · 10−6. The
mechanical parameters in (30) and (31) were chosen as η = 1, ξ = 0.1, and as
χ = 1. The parameters in (31) related to the source were set to kon = 200 and to
k0off = 10.

In order to evaluate our approach described in Sect. 2.2, we conducted two
experiments based on this mechanical model. In the first experiment, we used the
solution method outlined above to generate a concentration m, which was then used
as input to our variational formulation defined in (13). In the second experiment, we
generated a concentration by solving (29) for a set velocity v, effectively removing
the mechanical part of the model.

4.5.1 Unknown Velocities

In this experiment, we solved the mechanical model (29)–(31) together with
(33) numerically as outlined above. In order to simulate a laser ablation, the
concentration m0 is set to zero at nodes within the interval [0.495, 0.505]. In this
way, a disruption (or loss) of concentration is simulated. Figure 12 (top) shows the
solution (m, v) and the resulting source k = kon − k0offρm.

We then solved (13) with αRCR numerically based on the generated concentra-
tion. This is achieved by setting f := m. However, in order to match the boundary
conditions in (32) we also used zero Dirichlet boundary conditions for v in (18) at
x ∈ {0, 1} and at t = 0. In Fig. 12 (bottom), we depict an approximate minimiser.
The parameters were set to av

j = 10−4, ak
j = 5 · 10−5, and to β = 10−6.

Observe that both the velocity and the source are estimated approximately and are
within the correct order of magnitude. However, let us add that the estimated source
appears quite regular in comparison to the simulation, even though the regularisation
parameters αk

j were set comparably small.
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Fig. 12 Shown is in the top row the solution (m, v, k) of the extended mechanical model (29)–
(31). For simplicity, ρ and σ are omitted. The bottom images depict an approximate minimiser
w = (v, k)) obtained using (10) with αRCR. The left column shows the myosin concentration m

together with streamlines obtained from the velocities, the middle column depicts the velocity v,
and the right column illustrates the source k

4.5.2 Predefined Velocities

In the next experiment, we removed the mechanical part and solved just (29)
and (33) with a predefined velocity field v that could potentially resemble a laser
nanoablation in cell membranes as pictured, for example, in Fig. 2.

We generated a velocity profile as follows. First, we define a characteristic
φ : [0, T ] → R that is supposed to follow a cut end via the ordinary differential
equation

∂tφ(t) = v0e
− t

τ ,

where the constant v0 > 0 is the initial velocity at time zero. Integrating with respect
to time yields the integral curve

φ(t) = c0 + v0τ(1− e−
t
τ )

where c0 ≥ 0 is a constant defining the starting point of the curve. We then define a
velocity field

v̄(t, x) := ∂tφ(t)

{
x

φ(t)
, if x ≤ φ(t),

e−
|x−φ(t)|

$ , if x > φ(t),
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Fig. 13 The top row shows functions (m, k) obtained by solving (29) and (33) given a set velocity
v. The bottom images depict an approximate minimiser w = (v, k)) obtained using (10) with
αRCR. The left column shows the myosin concentration m together with streamlines obtained
from the velocities, the middle column depicts the velocity v, and the right column illustrates the
source k

so that v̄(t, ·) is linear in the interval [0, φ(t)] and decays exponentially in
(φ(t),+∞). Here, τ, $ > 0 are constants and control the decay. Finally, we shift
the origin to 1/2, reflect v̄, and obtain

v(t, x) :=
{

v̄(t, x − 1
2 ) if x − 1

2 ≥ 0,

−v̄(t,−(x − 1
2 )) if x − 1

2 < 0.
(37)

In Fig. 13 (top) we illustrate the solution (m, v, k) for this scenario, where v is set
as in (37). The parameter c0 was set to c0 = 0.05 to match the width of the simulated
laser ablation. The other parameters were set to v0 = 1, τ = 0.075, and to $ = 0.05.
All other settings and parameters were kept as in the previous experiment.

Then, we minimised (13) together with convective regularisation numerically
based on the resulting concentration m. Figure 13 (bottom) shows the estimated
velocity and source pair for the synthetic data. A similar behaviour as in the previous
experiment can be observed.

5 Conclusions

In this article, we have investigated a variational model for joint velocity estimation
and source identification in challenging fluorescence microscopy data of live
Drosophila embryos that show the controlled destruction of tissue. We exploited the
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fact that a large proportion of tissue deformation occurs along one space dimension
and allows to create kymographs. Our formulation is grounded on one-dimensional
mechanical models of tissue formation and is based on the non-homogenous
continuity equation. We have discussed the ill-posedness of this problem and
devised a well-posed variational formulation using convective regularisation of the
source. Moreover, we have shown the connection of convective regularisation of
the source to anisotropic diffusion. In a thorough experimental evaluation, we have
demonstrated that motion estimation can benefit from simultaneously estimating
a source and that convective regularisation may help to estimate velocities more
accurately. Our numerical results show that this method could potentially help to
quantify the reaction term in biological models of tissue formation. The extension
of our models to more than one space dimension is left for future research.
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Quantitative OCT Reconstructions for
Dispersive Media

Peter Elbau, Leonidas Mindrinos, and Leopold Veselka

Abstract We consider the problem of reconstructing the position and the time-
dependent optical properties of a linear dispersive medium from OCT measure-
ments. The medium is multi-layered described by a piecewise inhomogeneous
refractive index. The measurement data are from a frequency-domain OCT system
and we address also the phase retrieval problem. The parameter identification
problem can be formulated as an one-dimensional inverse problem. Initially, we
deal with a non-dispersive medium and we derive an iterative scheme that is the
core of the algorithm for the frequency-dependent parameter. The case of absorbing
medium is also addressed.

1 Introduction

Optical Coherence Tomography (OCT) is nowadays considered as a well-
established imaging modality producing high-resolution images of biological
tissues. Since it first appeared in the beginning of the 1990s [11, 17, 30], OCT
has gained increasing acceptance because of its non-invasive nature and the
use of non-harmful radiation. Main applications remain tissue diagnostics and
ophthalmology. It operates at the visible and near-infrared spectrum and the
measurements consist mainly of the backscattered light from the sample. OCT
is analogous to Ultrasound Tomography where acoustic waves are used and differs
from Computed Tomography (where electromagnetic waves are also used) because
of its limited penetration depth (few millimeters) due to the lower energy radiation.
As OCT data we consider the measured intensity of the backscattered light at some
detector area usually far from the medium.
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However, the intensity of light, undergoing few scattering events, is not measured
directly, but the OCT setup is based on low coherence interferometry. The incoming
broadband and continuous wave light passes through a beam-splitter and it is
split into two identical beams. One part travels in a reference path and is totally
back-reflected by a mirror and the second part is incident on the sample. The
backscattered from the sample and the back-reflected light are recombined and
their superposition is then measured at a detector. The maximum observed intensity
refers to constructive interference, and this happens when the two beams travel equal
lengths. For a detailed explanation of the experimental setup we refer to [10, 33] and
to the book [4].

The way the measurements are performed characterizes and differentiates an
OCT system. We summarize here the different setups considered in this work:

Time-domain OCT: The reference mirror is moving and for each position a
measurement is performed. By scanning the reference arm, different depth
information from the sample is obtained.

Frequency-domain OCT: The mirror is placed at a fixed position and the detector
is replaced by a spectrometer, which captures the whole spectrum of the
interference pattern.

State-of-the-art OCT: The incoming light is focused, through objective lenses,
to a specific region at a certain depth in the sample. The backscattered light is
measured at a point detector.

Standard OCT: The vector nature of light is ignored and the electromagnetic wave
is treated as a scalar quantity. Then, only the total intensity is measured.

Time- and Frequency-domain OCT provide equivalent measurements that are
connected through a Fourier transform. The advantage of the later is that no
mechanical movement of the mirror is required, improving the acquisition time. The
last two cases simplify the following mathematical analysis since we can consider
scalar quantities and depth-dependent optical parameters. For an overview of the
different mathematical models that can be used in OCT we refer to the book chapter
[5].

We consider Maxwell’s equations to model the light propagation in the sample,
which is assumed to be a linear isotropic dielectric medium. We deal with dispersive
and non-dispersive media. Firstly, using a general representation for the initial
illumination, we present the direct problem of computing the OCT data, given the
optical properties of the sample. Then, we derive reconstruction methods for solving
the inverse problem of recovering the refractive index, real or complex valued.
Motivated by the layer stripping algorithms [28, 31], we present a layer-by-layer
reconstruction method that alternates between time and frequency domain and holds
for dispersive media.

Without loss of generality, the OCT system can be simplified by placing the
beam-splitter and the detector at the same position. The medium is contained in a
bounded domain 
 ⊂ R3, such that suppχ(t, ·) ⊂ 
, for all t ∈ R, where χ is the
electric susceptibility, a scalar quantity describing the optical properties of a linear
dielectric medium. We set χ to zero for negative times. Also, the medium for t ≤ 0
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is assumed to be in a stationary state with zero stationary fields. Then, the electric
field E ∈ C∞(R × R3;R3) and the magnetic field H ∈ C∞(R × R3;R3), in the
absence of charges and currents, satisfy the Maxwell’s equations

∇ × E(t, x)+ 1

c

∂H

∂t
(t, x) = 0, ∇ ×H(t, x)− 1

c

∂D

∂t
(t, x) = 0, (1)

where c is the speed of light and D is the electric displacement, given by

D(t, x) = E(t, x)+ 4π
∫
R

χ(τ, x)E(t − τ, x)dτ. (2)

This relation models a linear dielectric, dispersive medium with inhomogeneous,
isotropic and non-stationary parameter.

The two identical laser pulses, one incident on the sample and the other on the
mirror, are described initially, before the time t = 0, as vacuum solutions of the
Maxwell’s equations, meaning (1) for D ≡ E, defined by E0, H0 ∈ C∞(R ×
R3;R3). In practice, the medium is illuminated by a Gaussian light, however at the
scale of the sample the laser pulse can be approximated by a linearly polarized plane
wave [9]. We assume that the incident wave does not interact with the medium until
t = 0, resulting in the condition

E(t, x) = E0(t, x), H(t, x) = H0(t, x), t < 0, x ∈ R3. (3)

The mirror is modeled as a medium with (infinitely) large constant electric
susceptibility, with surface given by the hyperplane placed at distance r ∈ R from
the source. Given the form of the incident wave, the reference field (back-reflected
field), denoted by Er, can be explicitly calculated.

The sample wave (backscattered wave) is given as a solution of the system (1)–
(3). Then, the two backward traveling waves are recombined at the beam splitter,
assumed to be at the detector position. In time-domain OCT, the sum of these two
fields, integrated over all times, is measured at each point of the two-dimensional
detector array D ⊂ R2. Thus, as observed quantity we consider

∫
R

|(E − E0)(t, x)+ (Er − E0)(t, x)|2dt, r ∈ R, x ∈ D. (4)

Under some assumptions on the incident field [5], we may recover from the above
measurements, the quantity

(Ê − Ê0)(ω, x), ω ∈ R, x ∈ D, (5)

where f̂ = F(f ) denotes the Fourier transform of f with respect to time
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F(f )(ω) =
∫
R

f (t)eiωtdt.

In frequency-domain OCT, the detecting scheme is different. The mirror is
not moving (r is fixed) and the detector is replaced by a spectrometer. Then, the
intensity of the sum of the Fourier transformed fields at every available frequency
(corresponding to different pixels at the CCD camera) is measured

m̂(ω, x) = |(Ê − Ê0)(ω, x)+ (Êr − Ê0)(ω, x)|2, ω ∈ R, x ∈ D. (6)

In practice, we obtain data only for few frequencies restricted by the limited
bandwidth of the spectrometer. The OCT system allows also for measurements of
the intensities of the two fields independently, by blocking one arm at a time. Thus,
we assume that the quantity

m̂s(ω, x) = |(Ê − Ê0)(ω, x)|2, ω ∈ R, x ∈ D, (7)

is also available. The main difference between the two setups is that (5) provides us
with the full information of the backscattered field, amplitude and phase, which is
not the case in (7), where we get phase-less data. We address later the problem of
phase retrieval, meaning how to obtain (5) from (7).

Up to now, what we have modeled is known as full-field OCT where the whole
sample is illuminated by an extended field. The main problem is that we want to
reconstruct a (1+3)-dimensional function χ from OCT data, either (4) or (6), which
are (1+2)-dimensional. Thus, we have to impose additional assumptions in order to
compensate for the lack of dimension. To solve this problem, we consider a medium
which admits a multi-layer structure. This assumption is not far from reality since
OCT is mainly used in ophthalmology (imaging the retina) and human skin imaging.
In both cases the imaging object consists of multiple layers with varying properties
and thicknesses [14, 20].

If the medium is non-dispersive, meaning that the optical parameter is stationary,
the function χ can be modeled as a δ−distribution in time, so that its Fourier
transform (temporal) does not depend on frequency. Then, even if we have enough
information (theoretically), in OCT, as in any tomographic imaging technique, we
deal with the problem of inverting partial and limited-angle data. This is the result of
measuring only the back-scattered light for a limited frequency spectrum. In OCT,
a narrow beam is used, resulting to an almost monochromatic illumination centered
around a frequency.

In the following, we focus on data provided from a state-of-the-art and standard
OCT system, where point-like illumination is used. In this case, only a small region
inside the object is illuminated so that the function χ can be assumed depth-
dependent and constant in the other two directions. Again we assume that locally
the illumination is still properly described by a plane wave.

Let x = (x, y, z), where the z-direction denotes the depth direction. We model
the light as a transverse electric polarized electromagnetic wave of the form
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E(t, x) =
⎛
⎝

0
u(t, z)

0

⎞
⎠ , H(t, x) =

⎛
⎝

v(t, z)

0
0

⎞
⎠ .

Then, the Maxwell’s equations (1) together with (2) are simplified to

�u(t, z)− 1

c2

∂2

∂t2

∫
R

ε(τ, z)u(t − τ, z)dτ = 0, (8)

for the scalar valued function u, where � = ∂2/∂z2. Here, we define the time-
dependent electric permittivity ε(t, z) = δ(t) + 4πχ(t, z), which varies also with
respect to depth. The condition (3) is replaced by

u(t, z) = u0(t, z), t < 0, z ∈ R. (9)

The medium admits a multi-layered structure with N layers orthogonal to the
z−direction, having spatial-independent but frequency-dependent refractive index
n̂ = √ε̂, and varying lengths. We define L = ∪N

j=1Lj and we set

n̂(ω, z) =
{

n0, z ∈ R \ L,

n̂j (ω), z ∈ Lj .
(10)

This setup is commonly used for modeling the problem of parameter identifica-
tion from OCT data. The volumetric OCT data consist of multiple A-scans, which
are one-dimensional cross-sections of the medium across the z-direction. Under the
assumption of a layered medium, the multiple A-scans are averaged over the x- and
y-directions producing a profile of the measured intensity with respect to frequency
or depth (post-processed image).

In Fig. 1, we see the experimental data for a three-layer medium with total length
0.7mm, having two layers (top and bottom) filled with Noa61 (n1 = n3 ≈ 1.55)
and a middle one filled with DragonSkin (n2 ≈ 1.405). The spectrometer uses a
grating with central wavelength 840 nm, going from 700 to 960 nm. On top right,
we see an A-scan of the “raw” data (depth information), meaning the intensity of
the combined sample and reference fields at a given point on the surface plane.
The left picture is the post-processed B-scan (two-dimensional cross-sectional of
the volumetric data). The bottom right picture presents the averaged (over lateral
dimension) post-processed version of the data on the left. We could say that the post-
processed data correspond to the time-domain data and are of interest since there we
can see that the form of the intensity pattern is related to the interference happening
because of the reflections at the different layer interfaces. The n-th “peak” appears
at the position of the n-th interface. We will address later the nature and importance
of the other “peaks”. All x-axes are in pixel units.
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Fig. 1 Experimental data obtained from a frequency-domain OCT system of a three-layer medium
with piecewise constant refractive index. Courtesy of Ryan Sentosa and Lisa Krainz, Medical
University of Vienna

We refer to [2, 25, 32, 34] for recent works using similar setup and assumptions.
Our work differs from previous methods in that we consider a dispersive medium.
We deal also with absorbing media, a property that is usually neglected. We address
three different cases for the layered medium:

• n̂j (ω) ≡ nj , j = 1, . . . , N (non-dispersive),
• n̂j (ω) ∈ R, j = 1, . . . , N (dispersive),
• n̂j (ω) ∈ C, j = 1, . . . , N (dispersive with absorption).

The paper is organized as follows. In Sect. 2 we present the forward problem,
meaning given the medium (location and properties) find the measurement data. We
derive formulas that are also needed for the corresponding inverse problem, which
we address in Sect. 3. Iterative schemes are presented for dispersive media and a
mathematical model is given for the case of absorbing media. In Sect. 4 we give
numerical results for simulated data, and we show that the parameter identification
problem can be solved under few assumptions.



Quantitative OCT Reconstructions for Dispersive Media 235

2 The Forward Problem

We derive mathematical models for the direct problem in OCT for multi-layer
media with piecewise inhomogeneous refractive index. We start with a single-layer
medium and then we generalize to more layers. The multiple reflections are also
taken into account. Most of the formulas presented in this section, like the solutions
of the initial value problems or the reflection and transmission operators (analogue
to the Fresnel equations) can be found in classic books on partial differential
equations [8, 29] and optics [1, 3, 13], respectively. However, we summarize them
here, on one hand because we want to derive a rigorous mathematical model in
both time and frequency domains and on the other hand because they are needed
for the corresponding inverse problems. The easier but essential time-independent
case is treated first. Then, we consider the time-dependent case by moving to the
frequency-domain for real and complex valued parameters.

2.1 Non-dispersive Medium

Here, we simplify (10), and we consider the following form for the refractive index

n̂(z) =
{

n0, z ∈ R \ L,

nj , z ∈ Lj ,
(11)

for j = 1, . . . , N. We describe the light propagation using (8) together with (9).
Under the above assumption, we obtain

∂ttu(t, z) = c2

n̂2(z)
�u(t, z), t ∈ R, z ∈ R, (12)

the one-dimensional wave equation. In the following, we use cj = c/nj , j =
0, . . . , N. Let us assume that the initial field is given by

u0(t, z) = f0(z− c0t), (13)

together with the assumption that suppf0 ⊂ (−∞, z1), where z1 represents the
surface (first boundary point) of the medium L. This assumption on the support
of the function reflects the condition that the laser beam does not interact with the
probe until time t = 0.

We model the single-layer medium as L = (z1, z2), for z1 < z2, but initially we
consider the case

n̂(z) =
{

n0, z < z1,

n1, z > z1.
(14)



236 P. Elbau et al.

zz1

n1n0

f0

R[f0 ]

T [f0 ]

zz1

n1n0

g1

R − [g1 ]

T− [g1 ]

Fig. 2 Wave propagation. The reflection and transmission operators for the sub-problem (15) (left)
and the sub-problem (18) (right)

Then, we obtain the system

∂ttu(t, z) = c2

n̂2(z)
�u(t, z), t ∈ R, z ∈ R,

u(t, z) = f0(z− c0t), t < 0, z ∈ R.

(15)

The above system of equations describes a wave traveling from the left incident
on the interface at z1 ∈ R, see the left picture of Fig. 2. It is easy to derive the
solution, which is given by

u(t, z) =
⎧⎨
⎩

u−(t, z) = f0(z− c0t)+ g0(z+ c0t), t ≥ 0, z < z1,

u+(t, z) = f1(z− c1t), t ≥ 0, z > z1.

(16)

Here, the function g0 and f1 describes the reflected and transmitted field, respec-
tively. Given the continuity condition at z = z1, meaning

lim
z↑z1

u−(t, z) = lim
z↓z1

u+(t, z), lim
z↑z1

∂zu−(t, z) = lim
z↓z1

∂zu+(t, z),

we find a representation of g0 and f1 via operators. We denote the reflection operator
by R and the transmission operator by T , defined by

R : f0 �→ g0, R[f0](z+ c0t) = c1 − c0

c1 + c0
f0 (2z1 − (z+ c0t)) , (17)

and

T : f0 �→ f1, T [f0](z− c1t) = 2c1
c1 + c0

f0

(
z1 + c0

c1
((z− c1t)− z1)

)
.

The fact that suppf0 ⊂ (−∞, z1) implies that for every t < 0, R[f0](z+ c0t) =
0, in (−∞, z1), and T [f0](z − c1t) = 0, in (z1,∞). This is true, since neither the
reflected nor the transmitted wave exists before the interaction of the initial wave
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with the boundary. Finally, we define the operator U1 : f0 �→ u, mapping the initial
function f0 to the solution u, given by (16), of the problem (15).

Now we consider the following problem

∂ttu(t, z) = c2

n̂2(z)
�u(t, z), t ∈ R, z ∈ R,

u(t, z) = g1(z+ c1t), t < 0, z ∈ R,

(18)

for an initial wave g1 with suppg1 ⊂ (z1,∞), for n̂ as in (14).
This problem refers to the case of a wave incident from the right on the boundary

z = z1, see the right picture in Fig. 2. Again, we obtain a reflected and a transmitted
part of the wave. The solution of this problem is given by

u(t, z) =
⎧⎨
⎩

u−(t, z) = g0(z+ c0t), t ≥ 0, z < z1,

u+(t, z) = f1(z− c1t)+ g1(z+ c1t), t ≥ 0, z > z1.

As previously, we find a representation of the reflected and transmitted waves using
operators acting on the initial wave. Here, we denote the reflection operator by R−
and the transmission operator by T−, having the forms

R− : g1 �→ f1, R−[g1](z− c1t) = c0 − c1

c1 + c0
g1 (2z1 − (z− c1t)) ,

and

T− : g1 �→ g0, T−[g1](z+ c0t) = 2c0
c1 + c0

g1

(
z1 + c1

c0
((z+ c0t)− z1)

)
.

We define the solution operator U2 : g1 �→ u, mapping the initial g1 to the solution
of the problem (18).

It is trivial to model an operator U3 : f1 �→ u, where f1 satisfies suppf1 ⊂
(−∞, z2), for an interface at z = z2, with n̂(z) = n2, for z > z2. This setup models
how a transmitted, from the boundary at z = z1, wave propagates for t ≥ 0. We
know that on (−∞, z2), U3[f1] is of the form

U3[f1](t, z) = f1(z− c1t)+ g1(z+ c1t).

We define in addition the operator R+ : f1 �→ g1. These three different cases are
combined to produce the following result.

Proposition 1 Let L = (z1, z2) be a single-layer medium, and let the refractive
index be given by
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n̂(z) =

⎧⎪⎪⎨
⎪⎪⎩

n0, z < z1,

n1, z ∈ (z1, z2),

n2, z > z2.

If the initial wave f0, given by (13), satisfies suppf0 ⊂ (−∞, z1), then for a fixed
y ∈ (z1, z2) the solution of (12), together with u(t < 0, z) = f0, is given by

u(t, z) = 1(−∞,y)(z)

⎛
⎝U1[f0](t, z)+

∞∑
j=0

U2

[
(R+R−)jR+Tf0

]
(t, z)

⎞
⎠

+ 1(y,∞)(z)

∞∑
j=0

U3

[
(R−R+)j Tf0

]
(t, z), t ≥ 0,

(19)

with U1, U2, and U3 defined as before.

Proof The function u, given by (19), is by construction a solution to the wave
equation problem in both (−∞, y) and (y,∞). Thus, we have only to check if
both parts coincide in the interval (z1, z2). To do so, we recall the definitions

U1[f ](t, z) = T [f ](z− c1t),

U2[g](t, z) = R−[g](z− c1t)+ g(z+ c1t),

U3[f ](t, z) = f (z− c1t)+ R+[f ](z+ c1t),

for t ≥ 0, and z ∈ (z1, z2). By plugging these formulas in (19) we get for (−∞, y)

the term

T [f0](z− c1t)+
∞∑

j=0
R−

[
(R+R−)j R+Tf0

]
(z− c1t)+

∞∑
j=0

(R+R−)j R+T [f0](z+ c1t),

and for (y,∞) the term

∞∑
j=0

(R−R+)j T [f0](z− c1t)+
∞∑

j=0
R+

[
(R−R+)j Tf0

]
(z+ c1t).

Since all involved operators are bounded, both series converge and we see that the
two terms coincide. The last thing to show is that (19) also satisfies the initial
condition u(t, z) = f0(z − c0t), for all t < 0 and z ∈ R. This can be seen
by considering the supports of the operators U1, U2 and U3, as they are defined
previously. ��
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Fig. 3 A graphic representation of (19) for j = 0. The fields described by the operator U1 are in
black, the fields in blue are involved in U3 for f1 = T [f0], and in red we see the fields of U2,

where g1 = R+T [f0]

The formula (19) consists of three terms and accounts also for the multiple
reflections occurring in the single-layer medium. Each term neglects either the
boundary at z1, or the one at z2. The operator U1 maps the initial wave f0 to the
solution u, in the real line. Then, the transmitted wave T [f0] is traveling back and
forth between z1 and z2, describing the multiple reflections, given by the field

(R−R+)j T [f0] . (20)

The operator U2 now uses for every j ∈ N the reflection of (20) at z2 as initial
and gives back a solution of the sub-problem (18). The last term models the wave
interacting with the boundary at z = z2, by application of U3, which uses (20) as
an initial function. In Fig. 3 we see the fields described by each operator in different
colors for j = 0.

In the following example, we present the forms of the single- and double-
reflected wave from the boundary at z = z2, measured in (−∞, z1).

Example 1 We know already that the reflected wave from the boundary z = z1, is
given by (17). We present now the reflected waves #ηr , ηr = 1, 2 in the interval
(−∞, z1), where ηr counts for the numbers of the undergoing reflections, meaning

#1(t, z) = T−R+T [f0], and #2(t, z) = T−R+R−R+T [f0].

For ηr = 1, using the definition of the operator T applied to f0 we get

#1(t, z) = 2c1
c1 + c0

T−R+f0

(
z1 + c0

c1
((z− c1t)− z1)

)
.
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The argument of f0 is now a function of z− c1t , and we can apply R+, resulting in

#1(t, z) = c2 − c1

c2 + c1

2c1
c1 + c0

T−f0

(
z1 + c0

c1
(2z2 − (z+ c1t)− z1)

)
.

Thus, we have

R+T [f0](z− c0t) = g(z+ c1t),

a function of z+ c1t, where the operator T− can be to applied to give

#1(t, z) = 2c0
c1 + c0

c2 − c1

c2 + c1

2c1
c1 + c0

f0

(
z1 + c0

c1
(2(z2 − z1)− c1

c0
((z+ c0t)− z1))

)
.

Following the same procedure for ηr = 2 now, we end up with the following form

#2(t, z) = 2c0
c1 + c0

c0 − c1

c1 + c0

(
c2 − c1

c2 + c1

)2 2c1
c1 + c0

× f0

(
z1 + c0

c1
(4(z2 − z1)− c1

c0
((z+ c0t)− z1))

)
.

Now, we move to the case of a multi-layer medium. The solution will be derived
using the above formulas and consider the problem layer-by-layer. We define Lj =
(zj , zj+1), for j = 1, . . . , N. The refractive index is given by (11) and we define

n̂−(z) =
{

n0, z < z1,

n1, z > z1,
, n̂+(z) =

{
n1, z < z2,

˜̂n+(z), z > z2.
(21)

The parameter ˜̂n+ represents the refractive index in the remaining N − 1 layers.
Next we want to find a solution of (12) for

n̂(z) =
{

n̂−(z), z < y,

n̂+(z), z > y,

and y ∈ (z1, z2). The first case is exactly the same as the problem already
discussed for the single-layer case, meaning that the application of the operators
U1 and U2 is still valid. For the later case, we consider an initial wave f with
suppf ⊂ (−∞, z2) and by U3[f ] we denote the solution of this sub-problem. We
know that in (−∞, z2), U3[f ] gives

u(t, z) = f (z− c1t)+ g(z+ c1t).

We define an operator R+ with R+[f ] = g, corresponding to the multi-reflected
light from the boundaries z2, . . . , zN+1, if we illuminate by f . Then, we get the
following result.
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Proposition 2 Let n̂ be defined by (11), and n̂−, n̂+ as in (21). Then for y ∈ (z1, z2)

the solution of (12), together with u(t < 0, z) = f0, is given by

u(t, z) = 1(−∞,y)(z)

⎛
⎝U1[f0](t, z)+

∞∑
j=0

U2

[
(R+R−)j R+Tf0

]
(t, z)

⎞
⎠

+ 1(y,∞)(z)

∞∑
j=0

U3

[
(R−R+)j Tf0

]
(t, z), t ≥ 0.

(22)

Remark 1 The formula (22) is analogous to (19), see also Fig. 3. The main and
most important difference from the single-layer case is that now we cannot have an
explicit representation of the operator U3.

We know that the solution of (12) in (−∞, z1) admits the form

u(t, z) = f0(z− c0t)+ g(z+ c0t),

and we define an operator R̃, through R̃[f0] = g.

Proposition 3 Let the operators R, R− and T be defined as previously and R̃[f0]
be given. We define I [f0](t, x) = f0(z− c0t). Then, the following holds

R+[f̃ ] = g̃, (23)

where

f̃ = (T +R−U−12 (R̃−U1+ I ))[f0], and g̃ = U−12 (R̃−U1+ I )[f0]. (24)

Proof From Proposition 2 we know that

u(t, z) = U1[f0](t, z)+
∞∑

j=0
U2

[
(R+R−)jR+Tf0

]
(t, z), t ≥ 0, z < z1,

describes a solution. It also holds that

u(t, z) = f0(z− c0t)+ R̃[f0](z+ c0t), t ≥ 0, z < z1.

Then, using the definition of I [f0], we get
U−12 (R̃ − U1 + I )[f0] = (1− R+R−)−1R+T [f0],

which admits the equivalent form

U−12 (R̃ − U1 + I )[f0] − R+R−U−12 (R̃ − U1 + I )[f0] = R+T [f0].
This results in (23) for f̃ and g̃, as in (24). ��
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Remark 2 The function g̃ describes the total amount of light which travels back
from the remaining N − 1 layers, meaning it considers all multiple reflections.

Lemma 1 Let L be a multi-layer medium consisting of N ∈ N layers, and let the
refractive index be given by (11). Then, the solution of (12), together with u(t <

0, z) = f0, can be computed layer-by-layer.

Proof Starting with the first layer, we use n̂ defined in (11) and (21) and we apply
Proposition 2. We thus obtain f̃ and g̃, presented in Proposition 3. Then, the
function f̃ is the initial wave for the corresponding problem with parameter now
given by

n̂(z) =

⎧⎪⎪⎨
⎪⎪⎩

n1, z < z2,

n2, z ∈ (z2, z3),

˜̂n(z), z > z3,

where ˜̂n represents the refractive index of the next N − 2 layers. Repeating the
same argument, we use (22), with f0 replaced by f̃ , for the updated operators. We
continue this procedure for the new parameters and operators and we end up with
the solution for n̂ given by (11). ��

After some lengthy but straightforward calculations, we can generalize the
formulas of Example 1 for the k-th layer of the medium and ηr ∈ N, resulting
in the field

#ηr (t, z) =
ηr∑

q=1

(
ck−1 − ck

ck + ck−1

)q−1 (
ck+1 − ck

ck+1 + ck

)q k∏
j=1

4cj−1cj

(cj + cj−1)2

×f0

⎛
⎝
⎛
⎝

k−1∑
j=1

2zj (1− cj−1
cj

)

j−1∏
l=1

cl−1
cl

+zk(2−(2+2(q−1))ck−1
ck

)

k−1∏
l=1

cl−1
cl

⎞
⎠

+ zk+1
c0

ck

(2+ 2(q − 1))− (z+ c0t)

)
, t ≥ 0, z < z1,

(25)
valid for an initial function f0, with suppf0 ⊂ (−∞, z1).

2.2 Dispersive Medium

In this section, we consider the form (10) for the refractive index and we set n̂0(ω) =
n̂0 > 0. We assume 0{n̂(ω)} > 0, and 1{n̂(ω)} ≥ 0, for all ω ∈ R. Unfortunately,
an explicit solution, as in Sect. 2.1, cannot be derived here for a time dependent
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parameter. However, applying the Fourier transform, with respect to time, to (8), we
get the Helmholtz equation

�û(ω, z)+ ω2

c2
n̂2(ω, z)û(ω, z) = 0, ω ∈ R, z ∈ R, (26)

together with an appropriate radiation condition (equivalent to the initial condition
in the time domain) that guarantees uniqueness. For y ∈ (z1, z2), we define

n̂(ω, z) =
{

n̂−(ω, z), z < y,

n̂+(ω, z), z > y,

with

n̂−(ω, z) =
{

n̂0, z < z1,

n̂1(ω), z > z1,
and n̂+(ω, z) =

{
n̂1(ω), z < z2,

ñ(ω, z), z > z2.

The refractive index ñ accounts for the parameter of the remaining N − 1 layers,
meaning ñ− n̂0 is compactly supported.

Initially, we consider the problem of a right-going incident wave of the form

û0(ω, z) = α0(ω)ei ω
c
n̂0z, (27)

incident at the interface z = z1. Then, the corresponding problem reads

�û(ω, z)+ ω2

c2
n̂2−(ω)û(ω, z) = 0, ω ∈ R, z ∈ R,

∂zû− i
ω

c
n̂1(ω)û = 0, ω ∈ R, z = z+1 ,

for an artificial boundary point z+1 > z1. The boundary radiation condition is such
that there is no left-going wave at the region (z1,+∞).

The solution admits the form

û(ω, z) =
⎧⎨
⎩

û0 + R[α0](ω)e−i ω
c
n̂0z, z < z1,

T [α0](ω)ei ω
c
n̂1(ω)z, z > z1,

where we define the reflection and transmission operators R and T , respectively, by
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R : α0(ω) �→ n̂0 − n̂1(ω)

n̂0 + n̂1(ω)
α0(ω)e2i

ω
c
n̂0z1,

T : α0(ω) �→ 2n̂0
n̂0 + n̂1(ω)

α0(ω)ei ω
c
(n̂0−n̂1(ω))z1 .

(28)

The solution operator is then given by V1 : û0 �→ û. The next sub-problem is
described by

�û(ω, z)+ ω2

c2
n̂2−(ω)û(ω, z) = 0, ω ∈ R, z ∈ R,

∂zû+ i
ω

c
n̂0û = 0, ω ∈ R, z = z−1 .

for an incident left-going wave of the form û0(ω, z) = β1(ω)e−i ω
c
n̂1(ω)z, and an

artificial boundary point at z−1 < z1. The boundary radiation condition is that the
left-going wave in (−∞, z1) is zero. The solution now is given by

û(ω, z) =
⎧⎨
⎩

T−[β1](ω)e−i ω
c
n̂0z, z < z1,

û0 + R−[β1](ω)ei ω
c
n̂1(ω)z, z > z1,

where R− and T− are defined by

R− : β1(ω) �→ n̂1(ω)− n̂0

n̂1(ω)+ n̂0
β1(ω)e2i

ω
c
n̂1(ω)z1,

T− : β1(ω) �→ 2n̂1(ω)

n̂1(ω)+ n̂0
β1(ω)ei ω

c
(n̂0−n̂1)(ω)z1 .

Let again V2 : û0 �→ û denote the corresponding solution operator.
The final sub-problem deals with the scattering of a right-going wave of the form

û0(ω, z) = α1(ω)ei ω
c
n̂1(ω)z by a medium supported in (z2, +∞) with refractive

index ñ. The governing equations are

�û(ω, z)+ ω2

c2
n̂2+(ω)û(ω, z) = 0, ω ∈ R, z ∈ R,

lim
z→+∞

(
∂zû− i

ω

c
n̂0û

)
= 0, ω ∈ R.

The radiation condition now ensures that at infinity exist only right-going waves.
The solution is given by

û(ω, z) = α1(ω)ei ω
c
n̂1(ω)z + β1(ω)e−i ω

c
n̂1(ω)z, z < z2.
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We define R+ : α1(ω) �→ β1(ω) and the relevant operator V3 : û0 �→ û mapping the
incident field to the solution of this specific problem. We remark that the operator
R+ cannot be computed explicitly because it contains also the information from the
remaining N − 1 layers.

Proposition 4 Let the incident wave be of the form (27). We define

û
j

0,−(ω, z) = [(R+R−)jR+T α0](ω)e−i ω
c
n̂1(ω)z,

û
j

0,+(ω, z) = [(R−R+)j T α0](ω)ei ω
c
n̂1(ω)z.

Then, the field

û(ω, z) = 1(−∞,y)(z)

⎛
⎝V1[û0] +

∞∑
j=0

V2[ûj

0,−]
⎞
⎠ (ω, z)

+ 1(y,∞)(z)

⎛
⎝
∞∑

j=0
V3[ûj

0,+]
⎞
⎠ (ω, z), (29)

for fixed y ∈ (z1, z2), is the solution of the Helmholtz equation (26), for the
refractive index defined as above, and satisfies the radiation condition.

Proof By construction, û fulfills (26) in (−∞, y) and (y,∞), and the radiation
condition. Thus, it remains to show that the two parts coincide in (z1, z2). Recalling
the definitions of V1, V2, and V3, restricted in (z1, z2), we get

V1[û0](ω, z)+
∞∑

j=0
V2[ûj

0,−](ω, z) = T [α0](ω)ei ω
c
n̂1(ω)z

+
∞∑

j=0
R−[(R+R−)jR+T α0](ω)ei ω

c
n̂1(ω)z+

∞∑
j=0

(R+R−)jR+T [α0](ω)e−i ω
c
n̂1(ω)z

and

∞∑
j=0

V3[ûj

0,+](ω, z) =
∞∑

j=0
(R−R+)jT [α0](ω)ei ω

c
n̂1(ω)z

+
∞∑

j=0
R+[(R−R+)j T α0](ω)e−i ω

c
n̂1(ω)z.

We reorder the terms and we observe that they coincide in (z1, z2). ��
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Remark 3 If L = (z1, z2) denotes a single-layer medium, with material parameter
n̂, given by

n̂(ω, z) =

⎧⎪⎪⎨
⎪⎪⎩

n̂0, z < z1,

n̂1(ω), z ∈ (z1, z2),

n̂2(ω), z > z2,

then we can compute R+ explicitly, and also the operator V3.

Example 2 The amplitude of the j -th reflection in a certain layer is described by
the term

(R+R−)jR+T [α0](ω).

The single reflected wave from the most left boundary of L is given by (28). For the
k-th layer of the medium, we obtain the back-reflected field

#̂(ω, z) =
ηr∑

q=1

( n̂k(ω)− n̂k+1(ω)

n̂k+1(ω)+ n̂k(ω)

)q( n̂k(ω)− n̂k−1(ω)

n̂k−1(ω)+ n̂k(ω)

)q−1 k∏
j=1

4n̂j−1(ω)n̂j (ω)

(n̂j−1(ω)+ n̂j (ω))2

× α0(ω)e
i ω

c

(
n̂k(ω)(2qzk+1−2(q−1)zk)+∑k

l=1 2(n̂l−1−n̂l )(ω)zl

)
e−i ω

c
n̂0z, z < z1,

(30)
where α0 is the amplitude of the incident wave û0.

The solution of (26) in (−∞, z1) admits the form

û(ω, z) = α0(ω)ei ω
c
n̂0z + β̃(ω)e−i ω

c
n̂0z,

and we define R̃(ω) : α0(ω) �→ β̃(ω).

Lemma 2 Let the incident wave be of the form (27), and let R̃[α0] be known. Then,
the following relation holds

R+[α̃0](ω) = β̃0(ω),

for

α̃0 = T [α0]+R−
(
T −1−

(
R̃[α0] − R[α0]

))
, and β̃0 = T −1−

(
R̃[α0] − R[α0]

)
,

(31)
calculated from the previously defined operators R−, T and T−.
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Proof We know that in (−∞, z1),

α0(ω)ei ω
c
n̂0z + R̃[α0](ω)e−i ω

c
n̂0z = V1[û0](ω, z)+

∞∑
j=0

V2[ûj

0,−](ω, z),

for û
j

0,−, defined as in Proposition 4. Using the definitions of V1 and V2, we get

R̃[α0](ω)e−i ω
c
n̂0z−R[α0](ω)e−i ω

c
n̂0z = T−

⎛
⎝
∞∑

j=0
(R+R−)jR+T [α0]

⎞
⎠ (ω)e−i ω

c
n̂0z.

This results in

T −1−
(
R̃[α0] − R[α0]

)
=
∞∑

j=0
(R+R−)jR+T [α0],

which is equivalent to

(1− R+R−)
(
T −1−

(
R̃[α0] − R[α0]

))
= R+T [α0].

This completes the proof. ��
The amplitudes α̃0 and β̃0, defined in (31), correspond to the amplitudes of the

Fourier transforms of f̃ and g̃, given in Proposition 3. Furthermore, one can derive
an analogue of Lemma 1 also for a dispersive medium.

3 The Inverse Problem

We address the inverse problem of recovering the position, the size and the optical
properties of a multi-layer medium with piecewise inhomogeneous refractive index.
We identify the position by the distance from the detector to the most left boundary
of the medium, and the size by reconstructing the constant refractive index n0 of
the background medium. Initially, we discuss the problem of phase retrieval and
possible directions to overcome it and then we present reconstruction methods
for non-dispersive and dispersive media. We end this section by giving a method,
which with the use of the Kramers–Kronig relations, makes the reconstruction of a
complex-valued refractive index (absorbing medium) possible. Let z = zd denote
the position of the point detector.
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3.1 Phase Retrieval and OCT

The phase retrieval problem, meaning the reconstruction of a function from the
magnitude of its Fourier transform, has attracted much attention in the optical
imaging community, see [27] for an overview. When dealing with experimental
data, additional problems arise, like different types of noise and incomplete data.
Mathematically speaking, the problem corresponds to a least squares minimization
problem for a non-convex functional. In our case, where we are given one-
dimensional data of the form (6) or (7), unique reconstruction of the phase is not
possible [15]. However, there exist convergent algorithms that produce satisfactory
results under some assumptions on the signal, like bounded support and non-
negativity constraints. These algorithms are alternating between time and frequency
domains, using usually less coefficients than samples, which makes the exact
recovery almost impossible.

In OCT, this problem has been also well studied, see for example [21, 23, 26].
The main idea is either to consider a phase-shifting device in the reference arm or
to combine OCT with holographic techniques. The first case, the one we consider
here, produces different measurements by placing the mirror at different positions,
meaning by changing the path-length difference between the two arms.

As already discussed in Sect. 1, we have measurements of the form

m̂(r;ω) = |(û− û0)(ω, zd)+ (ûr − û0)(ω, zd)|, ω ∈ R,

for r fixed, where ur denotes the y-component of the reference field Er, and we
also acquire the data

m̂s(ω) = |(û− û0)(ω, zd)|, ω ∈ R.

Since we know the incident field û0 explicitly, we can also compute the reference
field ûr − û0 at the point detector. Then, the problem of phase retrieval we address
here is to recover û− û0 from the knowledge of m̂ and m̂s for all ω ∈ R. We know,
from [18, 19], that if ur − u0 is compactly supported, then there exist at most two
solutions u − u0. See the left picture of Fig. 4, where we visualize graphically the
two solutions by plotting in the complex plane the two above equations at specific
frequency for the setup of the third example presented later in Sect. 4.

If in addition, there exist a constant γ ∈ [0, 1), such that

|0{ûr − û0}| ≤ γ |1{ûr − û0}|,

then, there exists at most one solution in L2(R) with compact support in [0,∞).

However, it is hard to verify that the reference field fulfills this condition and
we observed that, in all numerical examples, this inequality does not hold, for an
incident plane wave. Thus, in order to decide which solution of the two is correct,
extra information is needed. Motivated by the phase-shifting procedure, we consider
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Fig. 4 Left: The intersection points of the circles m̂(r1;ω1) ∈ C (red) and m̂s(ω1) ∈ C (blue).
Right: The intersection points of the circles m̂(r1;ω2) ∈ C (red), m̂(r2;ω2) ∈ C (green) and
m̂s(ω2) ∈ C (blue). The red asterisk indicates the unique solution. The setup is the same as the one
in the third example in Sect. 4

data for two different positions of the mirror, let us say r = r1, r2. Then, we get the
data

m̂(r1;ω), m̂(r2;ω), and m̂s(ω).

Using m̂(r1; ·) and m̂s, we get two possible solutions, and from m̂(r2; ·) and m̂s,

other two. But since m̂s is the same in both cases, we find the unique solution as the
common solution of the two pairs. This is illustrated at the right picture of Fig. 4,
where we plot the three above relations at two different frequencies. This way, we
get unique solutions at every available frequency.

Thus, having measurements for two different positions of the reference mirror,
we may consider that frequency-domain OCT provide us with the quantity

(û− û0)(ω, zd), ω ∈ R, (32)

the equivalent measurements of a time-domain OCT system, see (5).

3.2 Reconstructions in Time Domain

We consider initially a non-dispersive medium. Then, the refractive index is given
by (11) and the time-dependent OCT data admit the form

m(t, zd) = u(t, zd)− f0(zd − c0t), t ∈ [0, T ], (33)
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for T > 0. Here, we assume that the initial wave (known explicitly) does not
contribute to the measurements. The following presented algorithms are based on a
layer-by-layer procedure. At the first step, we reconstruct the parameters for a given
layer and then we update the data, to be used for the next layer. Thus, we assume that
we have already recovered the boundary point zk−1 and the coefficient ck−1 of the
layer Lk−1. We denote by m(k)(t, zd), the data corresponding to a (N−k+1)−layer
medium, with the most left layer being the Lk.

As we see in Fig. 1, the (time-dependent) data consist mainly of N + 1 major
“peaks”, for a N−layer medium, and some minor “peaks”, related to the light
undergoing multiple-reflections in the medium. The experimental data are, of
course, also noisy and may show some small “peaks” because of the OCT system.
The first two “peaks” correspond, for sure, to the single-reflected light from the first
two boundaries. We propose a scheme to neglect minor “peaks” due to multiple
reflected light. Then, the first major “peak” in m(k), corresponds to the back-
reflected light from the interface at zk .

Step 1: We isolate the first “peak” by cutting off around a certain time interval
[T1, T2], meaning we consider

m̃(k)(t, zd) = 1[T1,T2](t)m(k)(t, zd).

The time interval can be fixed for all layers and depends on the time support of
the initial wave. On the other hand, this wave can be described by (25), if we use
ηr = 1 and replace k by k − 1. Therefore, we obtain the equation

m̃(k)(t, zd) = ck − ck−1
ck + ck−1

f̃0

(
2zk

c0

ck−1
− (zd + c0t)

)
, t ∈ R, (34)

with f̃0 given by

f̃0(z) =
k−1∏
j=1

4cj−1cj

(cj + cj−1)2
f0

⎛
⎝

⎛
⎝

k−2∑
j=1

2zj (1− cj−1
cj

)

j−1∏
l=1

cl−1
cl

+zk−1(2− 2
ck−2
ck−1

)

k−2∏
l=1

cl−1
cl

)
+ z

)
.

The supremum of (34), using its shift-invariance property, gives the value of ck .
The position of the interface zk can then be recovered from (34), by solving the
minimization problem

min
z∈R

∣∣∣m̃(k)(t, zd)− ck − ck−1
ck + ck−1

f̃0(2z
c0

ck−1
− (zd + c0t))

∣∣∣, for all t ∈ R.
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Since both parameters are time-independent, there exist also other variants for
solving this overdetermined problem.

Step 2: Before moving to the layer Lk+1, we have to update the data function. We
could just remove the contribution of the current layer, meaning m̃(k). However,
the first “peak” might not correspond to the reflection from zk, for k > 1, but
to contributions of multiple reflected wave from previous layers, arriving at the
detector before the major wave. Since, we have recovered the properties of Lk,

we can compute all future multiple reflections from this layer using (25), let us
call them R[ck, zk].
Then, we update the data as

m(k+1) = m(k) − m̃(k) − R[ck, zk].

Repeating these steps, we end up with the following result.

Lemma 3 Let L be a multi-layer medium, with N ∈ N layers, characterized by
n̂, given by (11). Then from the knowledge of n0, the initial wave f0, and the
measurement data (33), following the above iterative scheme, we can uniquely
reconstruct nj and zj for j = 1, . . . , N + 1.

The above scheme can be written in an operator form, by the application of
Propositions 2 and 3. For the sake of presentation, we consider the case of the first
layer in order to avoid redefining all operators.

Step 1: Recall the definition of the operator R̃, applied to the initial wave f0,

which describes the total amount of the reflected light. Considering the data (33),
we get

m(t, zd) = R̃[f0](zd + c0t), t ∈ [0, T ].

Following the same procedure, using (17), we can recover c1 and z1, from the
reduced data equation

m(1)(t, zd) = R[f0](zd + c0t).

Step 2: We update all operators and from Proposition 3, we obtain f̃ and g̃, given
by (24). From the definition of g̃, we see that we obtain the function

m(2)(t, zd) = m(t, zd)−m(1)(t, zd),

describing the updated data. The advantage here is that we do not need to subtract
the multiple reflections term, since they are already included in the updated
version of g̃.
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3.3 Reconstructions in Frequency Domain

We consider the case of a dispersive medium, with a piecewise inhomogeneous
refractive index n̂(ω), for ω ∈ R. Initially, we assume n̂ ∈ R. The derived
iterative scheme can be applied also to the simpler non-dispersive case, giving a
reconstruction method in the frequency domain for a time-independent parameter.

3.3.1 Dispersive Medium

The refractive index is given by (10) and initially, we restrict ourselves to the case of
real-valued n̂. The data m̂ are given by (32). As before, we present a layer-by-layer
scheme. We assume that the boundary point zk−1 and the coefficient n̂k−1 of the
layer Lk−1 are already recovered. We denote by m̂(k)(ω, zd), the data corresponding
to the (N − k+ 1)−layer medium. We choose the time interval 1[T1,T2] similarly to
Sect. 3.2 but here we have to take into account dispersion. However, this results only
to slightly longer time interval, since in the wavelength range, where OCT operates,
scattering dominates absorption.

Step 1: As we have seen in Fig. 1, for example, from the data m̂(k) we cannot
distinguish the different “peaks”. Thus, we have to switch back to the time
domain in order to isolate the first “peak”. We apply

˜̂m(k)(ω) = F
(
1[T1,T2]F−1(m̂(k))

)
(ω), ω ∈ R.

We use (30) for k := k − 1 and ηr = 1 to get

˜̂m(k)(ω) = n̂k−1(ω)− n̂k(ω)

n̂k−1(ω)+ n̂k(ω)
α̃0(ω)ei ω

c
n̂k−1(ω)2zk e−i ω

c
n̂0zd , (35)

with

α̃0(ω) =
k−1∏
j=1

4n̂j−1(ω)n̂j (ω)

(n̂j−1(ω)+ n̂j (ω))2
α0(ω)ei ω

c

∑k−1
l=1 2(n̂l−1−n̂l )(ω)zl ,

describing an already known quantity. The absolute value of (35) gives

n̂k(ω) = n̂k−1(ω)

(
1+ | ˜̂m(k)(ω)/α̃0(ω)|
1− | ˜̂m(k)(ω)/α̃0(ω)|

)±1
,

which together with a suitable condition on n̂k allow us to recover the refractive
index. To reconstruct the position zk we define the function
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fk(ω) =
˜̂m(k)(ω)/α̃0(ω)

| ˜̂m(k)(ω)/α̃0(ω)| sign(n̂k−1(ω)− n̂k(ω)),

and we observe that the absolute value of its derivative, together with (35), results
in

c|f ′k(ω)| = |2zk(n̂k−1(ω)+ ωn̂′k−1(ω))− n̂0zd |.

Together with a non-negativity constrain, we obtain zk.

Step 2: As in the time domain case, we update the data by subtracting (35) and
the terms representing the multiple reflections from the already recovered layers,
called R[n̂k, zk]. We define

m̂(k+1) = m̂(k) − ˜̂m(k) − R[n̂k, zk].

Repeating the steps, a reconstruction of the properties and the lengths of all the
remaining layers is obtained.

Lemma 4 Let L be a multi-layer medium, with N ∈ N layers, characterized by n̂,
given by the Fourier transform of (10). If we restrict ourselves to the case n̂(ω) ∈ R,

for all ω ∈ R, then the above iterative scheme, allows us to uniquely reconstruct n̂j

and zj for j = 1, . . . , N + 1, given n̂0, the incident wave û0 and the measurement
data (32).

3.3.2 Absorbing Medium

Here, we consider the case of a complex-valued material parameter, n̂(ω) ∈ C,

for every ω ∈ R. The real part describes how the medium reflects the light and
the imaginary part (wavelength dependent) determines how the light absorbs in the
medium. In [6, 7] we considered the multi-modal PAT/OCT system, meaning that we
had additional internal data from PAT, in order to recover both parts of the refractive
index. Here, the multi-layer structure allows us to derive an iterative method that
requires only OCT data. We decompose n̂ as

n̂(ω) = ν(ω)+ iκ(ω), ν, κ ∈ R.

The measurements are again given by (32). The above presented iterative scheme,
fails in this case. Indeed, recall the formula (35), which we considered for recovering
the parameters of the k−th layer. Taking the absolute value, for n̂k−1(ω), n̂k(ω) ∈
C, gives

| ˜̂m(k)(ω)| = |n̂k−1(ω)− n̂k(ω)|
|n̂k−1(ω)+ n̂k(ω)| |α̃0(ω)|e− ω

c
κk−1(ω)2zk .
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The last term in the above expression describes how the amplitude of the wave
decreases, i.e. attenuation, and prevents us from a step-by-step solution, since zk

still appears. Thus, we propose a different scheme that takes into account also the
relations between the parts ν and κ, meaning the Kramers–Kronig relations. We
stress here that n̂ is holomorphic in the upper complex plane, satisfying n̂(ω) =
n̂(−ω)∗. The parts of the complex-valued refractive index are connected through

ν(ω)− 1 = 2

π

∫ ∞
0

ω′κ(ω′)
ω′2 − ω2 dω′,

κ(ω) = −2ω

π

∫ ∞
0

ν(ω′)− 1

ω′2 − ω2
dω′.

(36)

In addition, defining the reflection coefficient,

ρk(ω) = n̂k−1(ω)− n̂k(ω)

n̂k−1(ω)+ n̂k(ω)
∈ C, (37)

and using its expression in polar coordinates ρk = |ρk|eiθk , we obtain

ln(ρk(ω)) = ln(|ρk(ω)|)+ iθk(ω),

a function that diverges logarithmically as ω → ∞, and is not square-integrable
[22]. However, the following relation holds for the phase of the complex-valued
reflectivity

θk(ω) = −2ω

π

∫ ∞
0

ln(|ρk(ω
′)|)

ω′2 − ω2 dω′. (38)

We define the operator

H(ω) : f �→ −2ω

π

∫ ∞
0

f (ω′)
ω′2 − ω2 dω′,

and we get the relations in compact form

κk(ω) = H(νk − 1)(ω), and θk(ω) = H(ln |ρk|)(ω).

Of course, when working with the Kramers–Kronig relations (36) and (38), one
has to deal with the problem that they assume that information is available for the
whole spectrum, something that is not true for experimental data. Another problem
could be the existence of zero’s of the reflection coefficient in the half plane. There
exist generalizations of those formulas that can overcome these problems, like the
subtractive relations which require few additional data. We refer to [12, 16, 24, 35]
for works dealing with the applicability and variants of the Kramers–Kronig
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relations. This practical problem is out of the scope of this paper and will be
considered in future work, where we will examine numerically, with simulated and
real data, the validity of the proposed scheme.

Step 1: At first, we consider the reconstruction of the interface zk. We apply once
the logarithm to the absolute value of (35) and then we take imaginary part of the
logarithm of (35). Using the definition (37), we obtain the system of equations

ln(| ˜̂m(k)(ω)|) = ln(|ρk(ω)|)+ ln(α̃0(ω))− 2ω
c
κk−1(ω)zk,

1{ln( ˜̂m(k)(ω))} = θk(ω)− ω
c
n̂0zd + 2ω

c
νk−1(ω)zk.

(39)

We define the data functions

m̂
(k)
1 (ω) := ln(| ˜̂m(k)(ω)|)− ln(α̃0(ω)),

m̂
(k)
2 (ω) := 1{ln( ˜̂m(k)(ω))} + ω

c
n̂0zd,

and the system (39) takes the form

ln(|ρk(ω)|)− 2ω
c
κk−1(ω)zk = m̂

(k)
1 (ω),

θk(ω)+ 2ω
c
(νk−1(ω)− 1)zk + 2ω

c
zk = m̂

(k)
2 (ω),

to be solved for zk. We rewrite the last equation using the formulas (36) and (38)
and the first equation, to obtain

m̂
(k)
2 (ω) = 2ω

c
zk − 2ω

π

∫ ∞
0

ln(|ρk(ω
′)|)

ω′2 − ω2 dω′ + 4ωzk

πc

∫ ∞
0

ω′κk−1(ω′)
ω′2 − ω2 dω′

= 2ω
c
zk − 2ω

π

∫ ∞
0

ln(|ρk(ω
′)|)− 2ω′

c
κk−1(ω′)zk

ω′2 − ω2 dω′

= 2ω
c
zk +H(m̂

(k)
1 )(ω).

The last equation is solved at given frequency ω∗ �= 0, in order to obtain the
location of the interface

zk = c

2ω∗
(
m̂

(k)
2 (ω∗)−H(m̂

(k)
1 )(ω∗)

)
.

We can now recover n̂k from (35) which admits the from

n̂k(ω) = n̂k−1(ω)
α̃0(ω)ei ω

c (n̂k−1(ω)2zk−n̂0zd) − ˜̂m(k)(ω)

α̃0(ω)ei ω
c (n̂k−1(ω)2zk−n̂0zd) + ˜̂m(k)(ω)

,

by equating the real and imaginary parts.
Step 2: We update the data as in the non-absorbing case.
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4 Numerical Implementation

We solve the direct problem considering two different schemes depending on the
properties of the refractive index, see (10) and (11). First, we consider the time-
independent refractive index and data from a time-domain OCT system.

4.1 Reconstructions in Time Domain

We model the incident field as a gaussian wave centered around a frequency ω0
moving in the z-direction of the form

u0(t, z) = e
− (z−z0−ct)2

2σ2 cos
(ω0

c
(z− z0 − ct)

)
, (40)

with width σ, where z0 denotes the source position and c ≈ 3× 108m/s is the speed
of light.

The simulated data are created by solving (12) using a finite difference scheme.
We restrict z ∈ [0, 1.5]mm and we set T > 0, the final time. We consider absorbing
boundary conditions at the end points and we set u(0, z) = u0(0, z) and ∂tu(0, z) =
0 as initial conditions. The left-going wave is ignored. We consider equidistant grid
points with step size �z = λ0/100, where λ0 = 2πc/ω0, is the central wavelength,
and time step �t such that the CFL condition is satisfied.

The measurement data are given by

m(t) = |(u− u0)(t, zd)|, t ∈ (0, T ], (41)

where zd denotes the position of the point detector. We add noise with respect to the
L2 norm

mδ = m+ δ
‖m‖2
‖v‖2 v,

where v is a vector with components normally distributed random variables and δ

denotes the noise level. We have to stress that the total time is such that the data
contain also information from the multiple reflections inside the medium. We define
the length of the k-th layer

$k = zk+1 − zk, for k = 1, . . . , N,

and we set $−1 = |zd − z0|, and $0 = z0 − zd . We denote by

ρk = nk−1 − nk

nk−1 + nk

, for k = 1, . . . , N,
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the reflection coefficient at the interface z = zk.

Here, we assume that we know only n0 = 1, and the positions of the source
and the detector. Thus, we aim for recovering the position, the size and the optical
properties of the medium.

The proposed iterative scheme for aN -layer medium is presented in Algorithm 1,
where the output is the reconstructed refractive indices and lengths of the layers.
First, we order the observed “peaks” at the image with respect to time, producing
the set of data (tl, pl), for l = 1, 2, . . . , �. The number � ≥ N describes the
number of single and multiple reflections arrived at the detector before the final
time T . In order to obtain a physically compatible solution we impose some bounds
[n, n] on the refractive index. This condition is not necessary for data with phase
information. We update the data by neglecting the multiple reflections. To do so,
once we have recovered the length and the refractive index of a layer, we neglect the
“peaks” appearing later referring to multiple reflections inside this layer. Of course,
because of numerical error and noisy data, we give a tolerance depending on the
time duration of the wave.

We define the error function

ε =
(

N∑
k=1

(nk$k − ñk$̃k)
2

)1/2

,

where (nk, $k) and (ñk, $̃k), for k = 1, . . . , N are the exact and the reconstructed
values, respectively.

In the first example, we consider a three-layer medium positioned at $0 =
0.5mm, with $−1 = 0. We set (n1, n2, n3) = (1.55, 1.41, 1.48) and lengths
($1, $2, $3) = (0.2, 0.3, 0.1)mm. The obtained data (41) for this example are given
at the left picture in Fig. 5.

The results are presented in Table 1 for [n, n] = [1.345, 2] and tol = 0.1ps. We
obtain accurate and stable reconstructions, with ε = 3.34 × 10−7. This algorithm
can be easily applied to multi-layer media and it is presented here since it will be
the core of the more complicated algorithm in the Fourier domain.

4.2 Reconstructions Having Phase Information in Frequency
Domain

We aim to reconstruct the time-dependent refractive index, meaning its frequency-
dependent Fourier transform. As discussed already in Sect. 3.1, it is possible from
the phase-less OCT data to recover the full information, implying that we consider
as measurement data the function

m̂(ω) = (û− û0)(ω, zd), ω ∈ [ω, ω]. (42)
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Result: ñk and $̃k−1, for k = 1, . . . , N.

Input: k = 0, ρ0 = 0, n0 = 1, $−1, tol and (tl , pl), for l = 1, . . . , �;
while k ≤ N do

/* Step 1: Reconstruction of the refractive index. */

ρk+1 = pk+1∏k
j=1(1−ρ2

j )
, ñk+1 = ñk

1−ρk+1
1+ρk+1 ;

if ñk+1 �∈ [n, n] then
ρk+1 = −ρk+1, ñk+1 = ñk

1−ρk+1
1+ρk+1 ;

end
/* Step 2: Reconstruction of the length. */

$̃k = 1
2

(
c
(

tk+2−tk+1
nk

)
− $̃k−1

)
;

/* Step 3: Update the data. */
for j = 1 : 2�/N3 do

τk+1 = tk+1 + j
2ñk $̃k

c
;

for κ = k : � do
if |tκ − τk+1| < tol then

pκ = 0;
end

end
end
k = k +1;

end
Algorithm 1: Iterative scheme (in time) using time-domain data

Here, the frequency interval [ω, ω], with ω > ω > 0, models the OCT data,
recorded by a CCD camera placed after a spectrometer with wavelength range
[2πc/ω, 2πc/ω], in a frequency-domain OCT system.

Fig. 5 The simulated data (absolute value) in the time-domain for the first example (left) and in
the frequency-domain for the second example (right)
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Table 1 Reconstructed values using Algorithm 1 for a three-layer medium

Length (mm) �0 �1 �2 �3

Exact 0.50000 0.20000 0.30000 0.10000

Reconstructed (noise free) 0.50000 0.20004 0.29990 0.10006

reconstructed (5% noise) 0.49960 0.20021 0.30030 0.09976

Refractive index n1 n2 n3 n4

Exact 1.55000 1.41000 1.48000 1.00000

Reconstructed (noise free) 1.55107 1.41070 1.48087 1.00014

Reconstructed (5% noise) 1.55272 1.40740 1.48170 0.99851

Fig. 6 The function φ(ω), for ω ∈ [ω, ω], at the first (left) and the last (right) iteration step of
Algorithm 2

4.2.1 Non-dispersive Medium

In order to construct the data (42), we consider the time-dependent back-reflected
field derived in the previous section, we add noise and we take its Fourier transform
with respect to time. Then, we truncate the signal at the interval [ω, ω], see the right
picture in Fig. 5.

In Algorithm 2 we present the main steps of the iterative scheme as described
in Sect. 3.3. In Step 1, we take advantage of the causality property of the time-
dependent signal and we zero-pad m̂(ω), for all ω ∈ R \ [ω, ω], and then we
recover the signal as two times the real part of the inverse Fourier transformed
field. In the second step, we initially approximated the derivative with respect
to frequency using finite differences but it did not produce nice reconstructions
due to the highly oscillating signal. We replace the derivative with a high-order
differentiator filter taking into account the sampling rate of the signal. In Fig. 6,
we plot the function φ(ω), ω ∈ [ω, ω], and we see that it is constant in a central
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Table 2 Reconstructed values using Algorithm 2 for a three-layer medium

Length (mm) �0 �1 �2 �3

Exact 0.70000 0.15000 0.40000 0.13000

Reconstructed (noise free) 0.69885 0.15210 0.39628 0.13451

Reconstructed (5% noise) 0.70340 0.15387 0.39337 0.13669

Refractive index n1 n2 n3 n4

Exact 1.55000 1.40500 1.55000 1.00000

Reconstructed (noise free) 1.55107 1.40568 1.55107 0.99782

Reconstructed (5% noise) 1.55164 1.40599 1.55139 0.99695

Fig. 7 The step 3 of the Algorithm 2, where we update the data. The (color) curve (right) is the
signal in the frequency domain if we neglect the (color) and all the previous “peaks” in the time-
domain signal (left)

interval (called trusted) and oscillates close to the end points. Thus, we denote by
ω∗ either a chosen frequency in the trusted interval or the mean of the frequencies
in this trusted interval. We address here that one could also average over the whole
spectrum and still get reasonable results.

In the second example, we consider again a three-layer medium with parameters
(n1, n2, n3) = (1.55, 1.405, 1.55) and lengths ($1, $2, $3) = (0.15, 0.5,
0.13)mm. Here, $0 = 0.7 and $−1 = 0.2mm. The central frequency is given
by ω0 = 2πc/λ0, with λ0 = 800 nm. The sampling rate is fs = 100c/λ0. The
recovered parameters for noise-free and noisy data are presented in Table 2. The
relative error is ε = 2.164 × 10−5. In Fig. 7, we see how the data change as
the Algorithm 2 progresses. The picture on the right shows the data in frequency
domain with respect to the “peaks” presented in the left picture where we see the
time-domain data. The yellow curve (right) represents the full data, the red curve
(right) the data if we neglect the red “peak” (left), the blue curve shows the data if
we neglect also the blue “peak”, and so on. The green curve (right) represents the
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Result: ñk and $̃k−1, for k = 1, . . . , N.

Input: k = 0, ρ0 = 0, n0 = 1, $−1, and m̂(ω), for ω ∈ [ω, ω];
while k ≤ N do

/* Step 1: Reconstruction of the refractive index. */
zero-padding and IFFT of the signal m̂;
Isolate the first peak and FFT the signal to obtain m̂(k);

ρk+1 = max |m̂(k)|
max(α)

, ñk+1 = ñk
1−ρk+1
1+ρk+1 ;

if ñk+1 �∈ [n, n] then
ρk+1 = −ρk+1, ñk+1 = ñk

1−ρk+1
1+ρk+1 ;

end
/* Step 2: Reconstruction of the length. */

define fk(ω) = m̂(k)

α
/| m̂(k)

α
|;

if k = 0 then
dk = n0$−1;
else

dk = n0$−1 − 2ñk−1$̃k−1;
end

end

φ(ω) = c|∂ωfk(ω)|, $̃k = −−φ(ω∗)−dk

2ñk
;

if $̃k < 0 then
$̃k = − φ(ω∗)−dk

2ñk
;

end
/* Step 3: Update the data. */

m̂(ω) = (m̂(ω)− m̂(k)(ω))/(1− ρ2
k+1);

k = k +1;
end

Algorithm 2: Iterative scheme (in frequency) using phase information for non-
dispersive medium

signal from the multiple reflections. We observe that the OCT signal maintains the
Gaussian form of the incident wave, centered around the central frequency, and the
different reflections result in the oscillations of the field.

4.2.2 Dispersive Medium

The incident field in the frequency domain takes the form

û0(ω, z) = √2π σ

2c
e
− σ2(ω−ω0)2

2c2 e
i
ω
c

(z−z0), ω > 0, z ∈ R,

which is the Fourier transform with respect to time of u0, given by (40), restricted
to positive frequencies. This field describes a plane wave moving in the z-direction
having a Gaussian profile perpendicular to the incident direction, centered around
ω0. We generate the data considering the formula (30) and then we add noise. The
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Algorithm 3 summarizes the steps of the iterative scheme, which for a frequency-
independent refractive index simplifies to Algorithm 2.

We model the wavelength-dependent refractive index of the medium using the
standard formula, known as Cauchy’s equation,

n(λ) = β1 + β2

λ2
+ β3

λ4
,

for some fitting coefficients βj , j = 1, 2, 3. In Fig. 8, we see the exact refractive
index of the first (left) and the third (right) layer for the medium used in the third
example. Afterwards, we consider the refractive index as a function of frequency.

The medium lengths are given by ($1, $2, $3) = (0.2, 0.3, 0.1)mm, and we set
$0 = 0.7mm and $−1 = 0. The second layer has constant refractive index given
by n2(ω) = 1.41. The reconstructions of n1(ω) and n3(ω) are presented in Fig. 9
for data with 2% noise. In Table 3, we see the recovered lengths and the refractive
indices at specific frequencies.

As already discussed, the calculations close to the end points were not stable and
since here we are interested in reconstructing the frequency-dependent refractive
index, we restrict the computational domain and then we extrapolate the recovered
functions in order to update the data. The effect of the frequency domain on
the reconstructions is presented in Fig. 10 where we plot the L2-norm (in semi-
logarithmic scale) of the difference between the exact and the computed refractive
indices n1 (blue and green curves) and n3 (red and purple curves) for seven different
computational domains. We start from the most left domain (left top picture) and we
move to the most right domain (left bottom picture). The blue and red curves are for
δ = 1% noise and the green and purple for δ = 2% noise. We clearly see that as we

Fig. 8 The behavior of the medium with respect to wavelength (dispersion). The refractive index
of the first (left) and the third (right) layer for the third example in the range [700, 900] nm of the
spectrometer
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Fig. 9 The exact (dashed blue line) and the reconstructed (red solid line) refractive index of the
first (left) and the third (right) layer. These are the results of the Algorithm 3 for noisy data

Fig. 10 The performance of the Algorithm 3 for different frequency sub-domains. On the right, we
see the L2−norm (in semi-logarithmic scale) of the difference between the exact and the computed
n1 and n3 for different noise levels. The case 1 corresponds to the most left (left top) domain and
the case 7 to the most right (left bottom) domain

move to the end points and the error increases the calculations become unstable. We
chose the domain ω ∈ [2.316, 2.387] × 1015s−1, corresponding to the fourth case,
for our reconstructions.
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Result: ñk(ω) and $̃k−1, for k = 1, . . . , N.

Input: k = 0, ρ0 = 0, n0 = 1, $−1, W ⊂ [ω, ω] and m̂(ω), for ω ∈ [ω, ω];
while k ≤ N do

/* Step 1: Reconstruction of the refractive index. */

zero-padding and IFFT of the signal m̂;
Isolate the first peak and FFT the signal to obtain m̂(k);

ρk+1(ω) = |m̂(k)(ω)|
α(ω)

, ñk+1(ω) = ñk(ω)
1−ρk+1(ω)

1+ρk+1(ω)
, ω ∈W;

if max{ñk+1(ω)} > n or min{ñk+1(ω)} < n then
ρk+1(ω) = −ρk+1(ω), ñk+1(ω) = ñk(ω)

1−ρk+1(ω)

1+ρk+1(ω)
;

end
/* Step 2: Reconstruction of the length. */

define fk(ω) = m̂(k)

α
/| m̂(k)

α
|, ω ∈W;

if k = 0 then
dk(ω) = n0$−1;
else

dk(ω) = n0$−1 − 2(ñk−1(ω)+ ω∂ωñk−1(ω))$̃k−1;
end

end

φ(ω) = c|∂ωfk(ω)|, ψk(ω) = −−φ(ω∗)−dk(ω)
2(ñk+ω∂ωñk)

;
if max{ψk} < 0 then

ψk(ω) = − φ(ω∗)−dk(ω)
2(ñk+ω∂ωñk)

;
end
$̃k = ψk(ω

∗);
/* Step 3: Update the data. */

extrapolate ρk+1(ω) fromW to [ω, ω];
m̂(ω) = (m̂(ω)− m̂(k)(ω))/(1− ρ2

k+1(ω));
k = k +1;

end

Algorithm 3: Iterative scheme (in frequency) using phase information for disper-
sive medium.

Table 3 Reconstructed values using Algorithm 3 for a three-layer medium. The values of the
refractive indices are given at ω∗ = 2.351× 1015

Length (mm) �0 �1 �2 �3

Exact 0.70000 0.20000 0.30000 0.10000

Reconstructed (2% noise) 0.69790 0.20139 0.29569 0.10329

Refractive index n1(ω
∗) n2(ω

∗) n3(ω
∗) n4

Exact 1.54488 1.41000 1.49675 1.00000

Reconstructed (2% noise) 1.54499 1.41094 1.49884 1.00484
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5 Conclusions

In this work we addressed the inverse problem of recovering the optical properties
of a multi-layer medium from simulated data modelling a frequency-domain OCT
system. We considered the cases of non-dispersive, dispersive and absorbing
media. We proposed reconstruction methods and we presented numerical examples
justifying the feasibility of the derived schemes. Stable reconstruction with respect
to noise were presented. The methods are based on standard equations, equivalent to
the Fresnel equations, and to ideas from stripping algorithms. The originality of this
work lies in the combination of them into a new iterative method that addresses also
the frequency-dependent case, which needs special treatment. As a future work, we
plan to examine the applicability of the iterative schemes for experimental data and
test numerically the method for absorbing media.
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Review of Image Similarity Measures for
Joint Image Reconstruction from
Multiple Measurements

Ming Jiang

Abstract It is fundamental in image processing how to measure image similarity
quantitatively for tasks such as image quality assessment, image registration,
image reconstruction from multiple measurements, etc.. An image similarity mea-
sure (ISM) is both task-dependent and feature-dependent, and must be designed
according to the characteristics of specific tasks and features. Simply applying
distances from the mathematical metric theory or general divergences to spaces
of images or spaces of image features usually does not provide appropriate ISMs.
In this chapter, we review several ISMs for image reconstruction problems from
multiple measurements of various types in recent work. The multiple measure-
ments considered here include multi-modality, multi-spectral, and multi-temporal
measurements, with multi-modality tomography, multi-spectral XCT, and dynamic
tomography, as the imaging applications, respectively. We focus on motivations
and constructions of the ISMs and avoid their general rigorous mathematical
presentations to simplify notations for the readability for a general audience. ISMs
under review are proposed for image structural similarity and have been successfully
applied to image reconstruction from multiple measurements.

1 Introduction

Image similarity measure (ISM) is fundamental for imaging science. It is funda-
mental in image processing how to measure image similarity quantitatively for
image quality assessment, image registration, etc., and recently for joint image
reconstruction from multiple measurements. In the common sense, it provides
a measure of the similarity of two images. It seems that there a number of
mathematical theories that can be applied, such as the various distances from the
theory of metric spaces.
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However, a further thinking indicates that ISM is intricate, both task-dependent
and feature-dependent. Therefore, simple measures such as the mean absolute error
(MAE) or root mean squared error (RMSE) are inappropriate for measuring image
similarity because of lacking locational and structural information. Hence, such
simple measures do not perform well for specific image processing tasks, such
as image retrieval [66], image quality assessment (IQA) [53], image registration
[8, 28, 60, 74], colour image processing [56], video processing [26, 41, 54, 85],
dynamic tomography [34, 50, 76], and joint multi-modality image reconstruction
[13, 25, 35, 39, 40, 44, 51, 63].

Generically, similarity is directional and should not be treated as a symmetric
relation[77]. The predicates that A is similar to B and that A and B are similar
to each other are logically inequivalent, where A and B are stimuli or features of
objects under studying. “ The variant is more similar to the prototype than vice
versa” [77]. Please refer to [77] for more discussions and examples. Symmetric
ISMs could be appropriate for some image processing tasks such as for IQA.
However, symmetric ISMs are vulnerable to ill-transferring of distinct features in
joint image reconstruction (JIR) for multi-modality tomography [44]. Nevertheless,
the performance of a JIR method depends on other factors in addition to its ISM, no
matter it is symmetric or not. Please refer to the discussions in Sect. 2.2.

Similarity is of non-transitive nature in general. The similarity of A to B and B

to C does not imply a similarity of A to C, where A, B and C are stimuli or features
of objects under studying. This is because they can be similar at different feature
components when there are multiple feature components. For example, A could be
similar to B by one feature x and B to C by another different feature y, but A is not
similar to C either by feature x or by feature y. The following example is from [77].
Jamaica is similar to Cuba because of geographical proximity; Cuba is similar to
Russia because of their political affinity; but Jamaica is not similar to Russia at all.
With the same idea, it is not difficulty to find instances for the transitivity of image
similarity to fail for image processing tasks [45]. A kid shares similar facial looking
with his/her father and also with his/her mother; but his/her father and mother can
have no similar facial looking at all. Please refer to [78] for another convincing
example.

The structure of this chapter is as follows. In Sect. 2, the JIR problem from
multi-measuement is introduced with a general discussion on lessons for ISMs
and JIR in Sect. 2.2. In Sect. 3, a review of ISMs in recent work is reviewed.
We focus on motivations and constructions of the ISMs and avoid their general
rigorous mathematical presentations to simplify notations for the readability of
general readers. In Sect. 4, relevant issues and possible problems for future study
are discussed. We conclude this manuscript in Sect. 5.
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2 A Framework for Joint Image Reconstruction from
Multiple Measurements with Image Similarity Measures

The rapid development of sensing technology in multi-modality, multi-temporal
and multi-spectral measurements has enabled a number of new imaging techniques
such as multi-modality, dynamic tomography, and multi-spectral XCT. Joint image
reconstruction (JIR) from multiple measurements is to estimate jointly images
from all measured data, so that data from different modality, different instance and
different spectrum can be used to complement each other.

Biomedical imaging is one of the fields where tomographic techniques from
multiple measurements are actively under development to provide the visualizing of
fused anatomical and/or functional information for biological and pharmaceutical
study or clinical diagnosis. In one hand, the physical challenge is how to integrate
multiple imaging modalities into one hybrid imaging system, such as PET/XCT,
PET/MRI, SPECT/XCT, SPECT/MRI, DOT/MRI and DOT/XCT systems.1 On the
other hand, the mathematical challenge is how to jointly reconstruct images from all
the data measured.

For multi-modality tomography, the multi-modality measurement for imaging
modalities involved is conducted simultaneously for static objects and functional
distributions, and the JIR is to reconstruct jointly images for all the modalities
with appropriate cross-modality priors, rather than separately for each modality
or sequentially one image reconstruction followed by another [25, 35, 71, 79].
For dynamic tomography, the multi-temporal measurement for certain imaging
modalities is conducted sequentially for dynamic object and functional distributions
changing during the data acquisition process, and the JIR is to reconstruct images
with appropriate cross-temporal priors, with unknown motion [69, 70], or estimated
motion from data [67] or from physical motion models [10], or known motion
[19, 37]. For multi-spectral XCT, the multi-spectral measurement is conducted by
energy-discriminating detectors for predetermined energy channels, and the JIR is
to reconstruct jointly multi-channel images with appropriate cross-channel priors
[33, 49, 64].

It can be foreseen that there will be imaging systems by combining the multi-
modality, multi-temporal and multi-spectral measurements. The aforementioned
cross-modality, cross-temporal and cross-channel priors will be necessary for the
JIR of such systems. These priors characterize the structural similarity for images
from different modalities, instances, and channels, and are in fact kinds of image
similarity measures (ISMs). However, it is subtle in choosing or designing ISMs for
different applications.

1These abbreviations are DOT for diffuse optical tomography, MRI for magnetic resonance
imaging, PET for positron emission tomography, SPECT for single-photon emission computerized
tomography, XCT for x-ray computerized tomography.
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In Sect. 2.1 we will present a conceptual framework for the JIR from multiple
measurements with ISMs. In Sect. 2.2, we will discuss general lessons in designing
ISMs for different imaging applications.

2.1 Joint Image Reconstruction with Image Similarity
Measures

A conceptual framework for the JIR from multiple measurements is as follows [35].
For m = 1, · · · , M , let

Am(um) = gm, (1)

be the m-th measurement for the m-th forward process Am, respectively. Depending
on the imaging applications, the forward process Am, image um and measurement
gm are interpreted differently. For multi-modality tomography, for the m-th modal-
ity, Am is the forward process for the modality, and um is the image of the modality,
and gm is the corresponding measurement. For dynamic tomography, for the m-th
instance, Am is the forward process for an imaging modality, which is the same
for m = 1, · · · , M though subject to the different imaging geometry only, and um

is the image at the m-th instance, and gm is the corresponding measurement. For
multi-spectral XCT, for the m-th channel, Am is the energy-dependent attenuated
Radon transform in predetermined energy window, um is the linear combination of
the channel images, gm is the corresponding measurement. For different channels,
the measurement gm is subject to the energy-dependent intensity flux and detector
efficiency for each energy window [49].

For each image reconstruction from one single measurement (1), the conven-
tional regularization approach is to minimize the following penalized reconstruction
functional,

Em(um) = ‖Am(um)− gm‖2 + αmRm(um) (2)

where Rm(um) is the regularization for um and αm > 0 the regularization parameter,
respectively, for m = 1, · · · , M .

The JIR from multiple measurements is based on the observation that images
of the same object possess partially similar structural features from different
modalities, or from different instances if the motion is well sampled by the data
acquisition process, or from different channels if the energy windows are well
predetermined to capture the K-edge jumps, respectively for multi-modality, or
multi-temporal, or multi-spectral measurement. Such similar structural features
could be pursued for enhancing image quality by introducing an extra penalty into
the reconstruction functional in (2). Assume that T is an image feature operator and
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D is an image similarity measure for this image feature. Then we can incorporate the
feature similarity into the reconstruction functional as follows, for m = 1, · · · , M ,

Fm(um) = ‖Am(um)− gm‖2 + αmRm(um)+
∑
m̃

γm̃D [T (um), T (um̃)] , (3)

where m̃ indicates possible similar images um̃ other than um, i.e., m̃ �= m and γm̃ >

0 the corresponding regularization parameter for this similarity, the sum is over
possible m̃ ∈ {1, · · · , M} \ {m}. For multi-modality tomography, m̃ can be any
image modality involved. For dynamic tomography and multi-spectral XCT, m̃ can
be nearby instances or channels, such as m − 1 or m + 1. The JIR from multiple
measurements is then to obtain reconstructed images by minimizing the following
joint functional

F
[
{um}Mm=1

]
=

M∑
m=1

τmFm(um), (4)

where the weights τm > 0, for m = 1, · · · , M .
One popular approach is to perform alternative minimization over each Fm(um),

i.e.,

uk+1
m = argmin

um

Fm(um), (5)

in certain order over m ∈ {1, · · · , M}, for k = 1, · · · , until some stopping
criteria are reached. Please note that the effect of the weights τm is combined into
the parameters αm and γm̃ after re-parametrization, and hence can be ignored in
implementation in this alternative minimization approach.

The above alternative minimization approach is only one of the possible methods
for minimizing the joint functional F in (4) for the JIR frommultiple measurements.
When the objective functional F is not jointly convex with respect to all its
arguments {um}Mm=1, the above alternative minimization process will be trapped
at local minimizers, and global minimization methods should be explored. The
above formulations use the least-squares functional as the data fidelity under the
assumption that data noise in the measurement is Gaussian. When the data noise is
not Gaussian, other data fidelity functional should be used which will change the
joint convexity of the JIR objective functional F . Moreover, the penalty functional
Rm(um) and especially the ISM D also can change the joint convexity of the JIR
objective functional F . In this regard, it should be remarked that a simultaneous
minimization algorithm for the JIR of PET/MRI is established in [40], where the
objective functional for the JIR is jointly convex. Please refer to [40] for details.

The above formulation for the JIR from multiple measurements can
be obtained from a Bayesian approach [5, 35] under the conditions that
measurements in (1) are independent. The penalty functional Rm(um) and the
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sum
∑

m̃ γm̃D [T (um), T (um̃)] of ISM penalties in (3) are equivalent to the prior
and conditional priors for um in the joint probability distribution. The JIR from
multiple measurements by minimizing the joint functional F in (4) is the maximum
a posterior (MAP) estimate [2, 3, 82]. For the perspective of Bayesian statistical
inference, the MAP estimate is the estimator for the simple 0–1 loss function
[82]. Although the MAP estimate has been dominant in image reconstruction, other
estimators with different loss functions, such as the minimummean squares estimate
(MMSE) with the squared-error Loss function [2, 82], can be pursued. When sizes
of images are big, the computing load for MMSE is increased significantly [80].

2.2 Lessons on Image Similarity Measures for Joint Image
Reconstruction

Unlike the image reconstruction for single measurement in (2), the ISM D in (3)
is necessary for the cross communication of complementary feature information
during a JIR process, and is one of the significant factors for the performance of
its corresponding JIR method. Nevertheless, the role of the ISM should not be
emphasized to an excessive degree, because the performance of a JIR method is
not dominated by its ISM only. The actual performance of a JIR method depends
on other factors such as how much similar and dissimilar features contribute to the
total ISM in terms of feature strength, how regularization parameters and iteration
numbers, and other algorithmic parameters are tuned, and also on its implementation
techniques.

In general, ISM is task-dependent and feature-dependent and should be designed
according to the characteristics of specific tasks and features accordingly. For multi-
modality tomography, difficulties are due to different ranges, different contrasts, and
different structural information of different modality images because of different
underlying physics. There are features in one modality but not available in others.
Hence, images of the same object from different modalities share similar features
only partially in some regions. ISM must encourage the reconstruction of features
when there is sufficient evidence from measured data and avoid the non-existent
features to be reconstructed. The phenomenon of inappropriately reconstruction of
non-existent features due to inappropriate ISMs is called ‘ill-transfer of features’,
and should be addressed in designing ISMs [44]. For dynamic tomography, although
the ranges and contrasts are the same among images of all instances, there are
new image features due to emerging motion that are in some instances but not
available in others. For multi-spectral XCT, although the ranges and contrasts are
fixed and about the same among images of all instances, there are new image
features due to K-edge jumps that are in some instances but not available in others
[49, 65, 68]. Therefore, the ill-transfer of features could happen in a JIR process for
dynamic tomography or multi-spectral XCT with an inappropriate ISM. However,
the issue of ill-transfer of features with dynamic tomography or multi-spectral XCT
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is different from that with multi-modality tomography, because it can be resolved
by increasing the sampling rate during the data acquisition process and with proper
configurations for the reconstruction process as aforementioned at the end of the
previous paragraph. On the other side, recent progresses have demonstrated that JIR
for multi-modality tomography can obtain images with quality better than single
modality image reconstruction [24, 25, 39, 49, 51, 63, 64].

One convenient approach is to apply distances from metric spaces as ISMs.
Features are elements of the underlying metric spaces. Usually a function is applied
to the distance. It was demonstrated that the function is generically an exponential
decay function [72] . However, such an approach will induce similarities with
symmetry and transitivity. Symmetry is a conventional assumption for metrics.
Transitivity follows from the triangle inequality. Both symmetry and transitivity
could be appropriate for certain image processing tasks but inappropriate for other
tasks, especially for JIR from multiple measurements, for reasons in the following
paragraphs. Hence, this approach is not reported in recent work for JIR from
multiple measurements.

From the mathematical perspective of metric spaces, symmetric ISMs, such that
D(p, q) = D(q, p), are vulnerable to ill-transfer of features. For symmetric ISMs,
features in both images um and um̃ must match each other, and then ill-transfer of
features is unavoidable without further data evidence, deliberate algorithmic and
implementation configurations. It should be remarked that this symmetric issue of
ISM should not be over-emphasized because permissible feature transfers during a
JIR process is eventually determined by the quality and evidence from the measured
data.

As discussed in Sect. 1, ISMs satisfying the triangle inequality are transitive.
This will make it vulnerable to ill-transfer of features in a JIR process from
multiple measurements. For example, a joint 3-modality image reconstruction for
MRI/DOT/XCT. Features in MRI images could be transferred to XCT images
via DOT, even though such features does not exist in XCT images. Nevertheless,
the discussions on the symmetric vulnerability and practical behaviour of the JIR
methods in the first paragraph of this subsection are applicable to the current
vulnerability discussion with the triangle inequality. Moreover, it can be proved that
if D is a distance, then

|D(x, z)−D(y, z)| ≤ D(x, y), (6)

for any x, y and z. This will induce a uniform similarity structure in the feature
space. However, whether this uniform structure is reasonable or inappropriate for
a JIR task is unclear to the author at the time of writing this chapter. The triangle
inequality and the symmetry of D are independent. But if D satisfies a strong form
of the triangle inequality,

D(x, y) ≤ D(x, z)+D(y, z), (7)

and D(x, x) = 0, for any x, y and z, then D is symmetric.
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Another approach is to use the entropy-like ISMs such as the mutual information
(MI) and joint entropy (JE), Kullback–Leibler divergence or more general f -
divergences [35, 60–62, 74]. Although MI has been generally applied to image
registration, “It is not an easy measure to understand: the underlying process of
how misregistration influences the probability distribution is difficult to envisage.
How it influences the relation between joint and marginal distributions is even more
mystifying” [60]. “The information theoretic functionals are not easily predictable
in their behavior.” [58]. Applying both MI and JE simply to pixel values loses the
locational, or spatial, or structural information because shuffling pixels randomly
will provide the same MI or JE. Nevertheless, spatial information can be introduced
by using structural features at a number of scales [73, 74]. However, the objective
functionals will be non-convex and difficult to optimize in implementation [73].
Both MI and JE are symmetric, and hence are prone to the ill-transfer of features.
It was found that MI enforces the ill-transferring more than JE does [58], though
their effect of ill-transferring depends on the features used. Another issue is how
to estimate the joint probability distributions efficiently and effectively. “Various
problems can emerge, like sensitivity to sample size, number of histogram bins or
interpolation.” [48].

It was found that there are f -measures that are able to perform better than MI at
the cost of more difficult inference [61, 74]. This kind of ISMs does not in general
satisfy the symmetry and triangle inequality [14–18, 38]. However, although several
topologies can be induced by them [38], none of the topologies is both numerically
stable and computationally tractable because of lacking triangle inequality and
efficient computable representation. The topological effect on algorithmic stability
due to floating errors cannot be ignored [47].

3 Existing Examples of Image Similarity Measures

In this section, we are to present several ISMs for JIR from multiple measurements
in recent works. All the ISMs are designed to capture the structural similarity in
terms of image gradients or edges. In the following, both image functions u1 and u2
are defined on the same image domain 
 ⊂ RN , for N = 2 or 3 unless explicitly
indicated otherwise. For notational simplicity and the readability of general readers,
we focus on the motivations and constructions of the ISMs and avoid their general
rigorous mathematical presentations. Interested readers can refer to the references
for further details.

3.1 Vectorial Norms

The vectorial total variation (VTV) was proposed in [4] for colour image denoising
and later extended to a number of colour image processing applications in [9], and
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later for the JIR of multi-modality tomography in [13, 35], and 4D cone-beam CT
[55]. It was called joint total variation in [35]. For smooth image functions u1 and
u2, it is defined as the following

VTV[u1, u2] =
∫




√
|∇u1|2 + |∇u2|2, (8)

i.e., the integral of the L2,1 norm of the matrix ∇u = [∇u1,∇u2] where ∇ui is a
column vector with components ∂ui

∂xj
for j = 1, · · · , N , for i = 1 and 2. For the

Lp,q -norm for matrix, we use the convention as in [81].2

The intuition of the VTV can be understood with the following example from
[13]. Let the image functions u1 and u2 are two 1-dimensional step functions with
jumps at x1 and x2, respectively. If x1 = x2, then

VTV[u1, u2] =
√
2. (10)

If x1 �= x2, then

VTV[u1, u2] = 2. (11)

Hence, by minimizing the VTV will enforce the alignment of image edges of u1 and
u2. In other words, the VTV will encourage image edges to be of the same sparse
structures with the L2,1 norm of the matrix ∇u in terms of the L1 norm of each
column of it [1, 12]. However, when edges become complicated and artificial edges
emerges due to the stair-casing effect of the TV regularization [11], the behaviour of
the VTV cannot be as simple as in the above intuitive simple example. Please refer
to [25] for another explanation in terms of the diffusion process of modalities.

In addition to the L2,1 norm in (8), other matrix norms can also be used to
formulate vectorial norms. Among them, the nuclear norm, or the Schatten 1-norm,
i.e., the sum of the singular values of the Jacobian matrix ∇u, was proposed to
promote rank sparsity instead of L1 sparsity from the VTV [42], because the nuclear
norm is the convex envelope of matrix rank [27, Section 5.1.4]. The resultant vector
norm is called the total nuclear variation (TNV). It has been proved that the VTN
prefers u1 and u2 to share parallel gradient directions [42]. The TNV was proposed
for colour image processing in [42, 52]. It has been applied to multi-spectral XCT in
[33, 49, 64], a registration problem for a dynamic contrast enhanced MRI sequence

2For an S × T matrix A = [
ai,j

]
1≤i≤S,1≤j≤T

,

‖A‖p,q =
⎡
⎢⎣

T∑
j=1

⎛
⎝ ∑

1≤i≤S

∣∣ai,j

∣∣p
⎞
⎠

q
p

⎤
⎥⎦

1
q

. (9)
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and histological serial sectioning [8]. For smooth image functions u1 and u2, the
TNV is equal to

TNV[u1, u2] =
∫




trace
[
(∇u)tr ∇u

]
. (12)

The total generalized variation (TGV) [6, 7], or the higher-order total variation
(HOT) [83, 84], was independently proposed as image models of piece-wise
polynomials to overcome the stair-casing effect from the TV due to the piece-wise
constant model of the TV. Both can be applied as vectorial norms for the joint vector
u = [u1, u2]. The vectorial TGV has been applied to PET/MRI in [40, 51] and multi-
modal electron tomography in [43] by promoting joint sparsity of the edge sets of
all channels. For smooth image functions u = [u1, u2] the vectorial second order
TGV is equal to

TGV2
α[u] = inf

w∈C∞(
,RN )2
α1

∥∥|∇u− w|2,2
∥∥
1 + α0

∥∥|E[w]|2,2
∥∥
1 (13)

where α1 and α0 are positive constants, | · |2,2 is the L2,2 norm or Frobenius
norm of matrices, E[w] = 1

2

[∇w + (∇w)tr
]
is the deformation tensor [75] or the

symmetrized gradient of w, ‖ · ‖ is the L1 norm. As in the case of the TNV, the
nuclear norm can also be used to replace the first L2,2 norm in (13) to enforce rank
sparsity. For smooth image functions u = [u1, u2] the nuclear second order TGV is
equal to

NTGV2
α[u] = inf

w∈C∞(
,RN )2
α1 ‖|∇u− w|nuc‖1 + α0

∥∥|E[w]|2,2
∥∥
1 . (14)

For the nuclear second order TGV, it was reported in [51] that “Overall, the nuclear
norm yielded the best results” and in that “the performance was comparable to a
Frobenius-norm based penalization”.

The ISMs in this subsection are defined as vectorial norms for the joint gradient
vector ∇u = [∇u1,∇u2] in certain function spaces. They are both convex and
symmetric in its joint arguments [∇u1,∇u2], and satisfy the triangle inequality.

3.2 Parallel Level Sets

Structural similarity can also be pursued by investigating the parallelism of the level
sets of u1 and u2 [35, 36]. The parallelism of the level sets was defined as structural
similarity in [35]. Because the gradients of u1 and u2 are the normals to their level
sets, the parallelism of the level sets is equivalent to the parallelism of the gradients
of u1 and u2, and can be analytically formulated by the cross-product and inner-
product of vectors [21, 29–32, 36]
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a× b = |a| · |b| · sin � (a,b), (15)

〈a,b〉 = |a| · |b| · cos � (a,b), (16)

for two vectors a and b ∈ R3, where � (a,b) is the angle between a and b, × and
〈·, ·〉 are the canonical cross product and inner product inR3, and | · | is the canonical
Euclidean norm. The following ISMs, were proposed in [36] for image registration,

Dc [u1, u2] =
∫




∥∥∥∥
∇u1

‖∇u1‖ ×
∇u2

‖∇u2‖
∥∥∥∥
2

, (17)

Dd [u1, u2] = −
∫




〈 ∇u1

‖∇u1‖ ,
∇u2

‖∇u2‖
〉2

, (18)

and the following ISM was applied to the multi-modality JIR in [13, 35]

S [u1, u2] =
∫




‖∇u1 ×∇u2‖2 . (19)

S is separately convex in each of its argument but not convex in its joint argument
[22, Example 7.4.3, p.98]. In (17) and (18), we assume that the gradients are not
zero at each point of 
 for notational simplicity. One typical numerical technique to
replace gradients norms by

√‖∇u1‖2 + ε, for example. The integrand of (19), i.e.,
the cross product term for structural similarity, was used as a constraint for structural
similarity in [29–32]. The parallelism of gradients as in (18) has been used for image
registration in addition to mutual information in [59]. The structural similarity by
the inner product was proposed for colour image processing in [23]. The following
ISM by parallel level sets (PLS) was proposed

PLS [u1, u2] =
∫




ϕ [ψ (|∇u1(x)| · |∇u2(x)|)− ψ (|〈∇u1(x),∇u2(x)〉|)] ,
(20)

with strictly increasing functions ϕ and ψ : [0,∞] → [0,∞]. PLS has been
applied to PET/MRI in [25, 71]. Please refer to [25] for the theoretical study on
its properties in terms of the diffusion process of modalities. When ϕ and ψ are
both equal to the identity function, it follows that

PLS [u1, u2] =
∫




|∇u1(x)| · |∇u2(x)| − |〈∇u1(x),∇u2(x)〉| , (21)

which is referred to as the linear parallel level sets in [25]. The joint convexity of
the general PLS has been studied in details in [22]. It has been proved that even
the special case in (21) is not jointly convex in its joint argument and that it is not
separately convex in each argument if another argument is non-zero.
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3.3 Infimal Convolution

For multi-modality tomography, it can happen that the gradients ∇u1 and ∇u2 are
of different orders of magnitude due to different ranges, different contrasts, and
different structural information of different modality images because of different
underlying physics. For the VTV in (8), if gradients with unbalanced orders of
magnitude appear, the gradient with the high magnitude will dominate the vectorial
norm, lead to a regularization by itself and ignorance of the gradient with the small
magnitude, rather than alignment of both gradient directions. The same remark is
applicable to some ISMs in previous subsections.

To resolve this issue, the infimal convolution of Bregman divergence of the TV
is proposed [56, 63]. The Bregman divergence induced by the TV at u is equal to,
for smooth image functions u and v,

DTV [v; u] =
∫




‖∇v‖
(
1−

〈 ∇v

‖∇v‖ ,
∇u

‖∇u‖
〉)

. (22)

Again, in (22) and the following of this subsection, we assume that the gradients are
not zero at each point of 
 for notational simplicity. DTV [·, ·] is asymmetric and
convex. Although DTV [v, u] is free of the issue of gradient magnitude, it does not
encourage parallel gradients aligned at opposite directions. The infimal convolution
of DTV [·, ·] is introduced to allow the alignment of gradients with both same and
opposite directions,

ICBTV [v; u] = inf
w∈C∞(
)

DTV [v − w; u]+DTV [w;−u] . (23)

Because

DTV [w;−u] =
∫




‖∇w‖
(
1−

〈 ∇w

‖∇w‖ ,
−∇u

‖∇u‖
〉)

, (24)

minimizing the infimal convolution in (23) is to decompose the gradient∇v into two
parts intuitively: one is to match the direction of∇u, another is to match the opposite
direction of ∇u. The infimal convolution in (23) has been applied to PET/MRI in
[63] and dynamic SPECT in [20]. The infimal convolution of the TGV has been
proposed and applied to video decompression in [41] and dynamic MRI in [67].

The Bregman divergence DTV [·; ·] induced by the TV in (22) is only separately
convex in its first argument with the second argument being fixed. Hence, although
the infimal convolution maintains convexity, ICBTV [·; ·] is only separately convex
in its first argument with the second argument being fixed, and is not jointly convex
in both arguments. Please refer to [56, 63] for further theoretical analysis.
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3.4 Application of Tversky’s Feature Contrast Model

In his prominent paper [77], Tversky proposed his ‘ feature contrast model’ for the
similarity of binary features. Features are binary in the sense that a given feature of
an object either is or is not in its set of features A. These features can also be seen
as the set of predicates that are true. An example of such binary feature is the edge
set of an image. With convincing and entertaining arguments, Tversky demonstrated
why the requirements of symmetry and triangle inequality for similarity measures
are inappropriate to explain a number of psychological experiments. Tversky
proposed a set of axioms about similarity measures of binary features, which
includes the axioms of matching, independence, solvability, invariance, and proved
mathematically that feature similarity measures must of the following form [77],

S(a, b) = p(A ∩ B)− γ1p(A \ B)− γ2p(B \ A), (25)

where A and B denote the sets of binary features associated with the objects a and
b, respectively, γ1 and γ2 are non-negative constants. p is an additive function such
that p(A∪B) = p(A)+p(B)wheneverA∩B = ∅. Please note there the convention
in [77] is that the more similar a to b, the bigger the similarity S(a, b) is. Similarity
measures thus obtained increase with addition of common features and/or deletion
of distinctive features (i.e., features that belong to one object but not to the other)
[77], and meets well the demand of ISM for avoiding ill-transfer of features in a
JIR process from multiple measurements.

For 2D images, a natural choice for p with respect to image edge sets is the 1-
dimensional Hausdorff measure H, i.e., the length of image edges. Therefore, we
obtain,

S(u1, u2) = H(K1 ∩K2)− γ1H(K1 \K2)− γ2H(K2 \K1), (26)

where K1 and K2 are the image edge sets of images u1 and u2, respectively. Higher-
dimensional Hausdorff measures can also be used in (26) for higher-dimensional
images [46]. To simplify notations, let us consider the case with 2-measurement
in (1), i.e., M = 2. By using Mumford-Shah regularization functional for each
modality in (2),

Rm(um) =
∫


\Km

|∇um|2 + βmH(Km), (27)

and D = −S as the ISM, we arrive at the following extended Mumford–Shah
functionals E1 and E2 for JIR from 2-measurement, after re-parametrization with
the same notations,
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E1(u1, K1) = ‖A1(u1)− g1‖2+α1

∫

\K1

|∇u1|2+β1
[
H(K1 ∩K2)+γ1H(K1 \K2)

]
,

(28)

E2(u2, K2) = ‖A2(u2)− g2‖2+α2

∫

\K2

|∇u2|2+β2
[
H(K2 ∩K1)+γ2H(K2 \K1)

]
.

(29)

The above extended Mumford–Shah regularization has been proposed in [57] and
applied for DOT/XCT in [39]. The ISM D is non-convex, asymmetric if γ1 �= γ2
and does not satisfy the triangle inequality because of the complexity of the edge
space.

4 Discussions

The ISMs reviewed and their corresponding JIR methods are reported to be
successfully in improving the image quality compared to image reconstruction from
single measurement. As discussed in the beginning of Sect. 2.2, the performance of
an ISM and its JIR method depends on many factors. As for image registration [60],
the evaluation and comparison of IIR methods is complicated and difficult. The
complexities and difficulties in evaluating image registration methods are the same
for JIR methods, because of the variants of imaging modalities, datasets, parameter
selection methods, implementation techniques, runtime environments, software
settings and hardware configurations, etc., and also the lacking of implementation
details. Hence, the current author does not try to provide a comparison of the ISMs
reviewed their corresponding JIR methods in this manuscript.

Many ISMs reviewed are gradient based, and hence are vulnerable to data noise.
However, as discussed in the beginning of Sect. 2.2, the actual performance of a JIR
method depends on many other factors. Hence, the performance of a JIR method
with a gradient-based ISM is pending to how regularization is enforced to suppress
data noise during the reconstruction process. ISMs satisfying the triangle inequality
should be of numerical stability because of their uniform continuity property (6), in
spite of their shortcoming due to transitivity from the triangle inequality as discussed
in the second last paragraph in Sect. 1.

Many ISMs reviewed have its origin in colour image processing by cross-channel
structural similarity such as the VTV in [4, 9] and the TNT in [42] or geometry of
level sets of image functions by the parallelism or alignments of image gradient
such as PLS in [23] and the infimal convolution of Bregman divergence of the TV
[56]. It is still unknown how the underlying imaging physics could be exploited for
designing ISMs for JIR, in spite of that JIR involves generally different imaging
physics. The different imaging physics principles could be cues to pursue for
features, feature structures, and formulating new ISMs.
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Although the VTV and its variants in Sect. 3.1 could suffer from the issue of
gradients with unbalanced orders of magnitude as discussed at the beginning of
Sect. 3.3, and the extended Mumford-Shah regularization are free from it, it will
be interesting to design ISMs that, in addition to the sole use of edges, could take
account of the edge strength, for example, in terms of the gradient magnitude. In
this regard, an extension of the Tversky’s feature contrast model for non-binary
features will be of guidance for constructing such ISMs. There was an extension
of the Tversky’s feature contrast model for non-binary features in [66]. However,
this extension only utilizes the image gradient magnitudes but not their directions.
Because of the role of image gradient directions for the image structural similarity
as revealed in this review, it is necessary to investigate ISMs taking account of
both strength and direction of edges. A more challenging problem is how to
formulate image similarity measures when there are multiple features involved. This
is necessary because more features will help characterize image similarity. Although
an ISM can be formulated for each feature, the difficulty is how to combine them
into an ISM when the similarities of independent features are inconsistent. For
example, in the cases of two features A and B, for one image pairs, it could happen
that the image similarity from feature A is bigger than that from feature B, while the
image similarity from feature B is smaller than that from feature B.

Images from different modalities usually have different spatial resolutions.
Hence, it is a problem how to measure image similarity at multiple-resolutions.
When there are more than two imaging modalities, it is naturally that a certain
iteration over the pairs of imaging modalities could be selected, and then the JIR
of each pair of them can be performed, so that the JIR could be performed. A
question raises also naturally: are there other approaches for JIR in addition to the
iteration-over-pair process? When the joint JIR functional is jointly convex, global
minimization algorithms could be established as in [40]. Moreover, if the joint JIR
functional is jointly convex, the alternative iteration-over-pair process will not be
trapped at local minimizers. Hence, ISMs that will induce the joint convexity of the
joint JIR functional is highly desired, though they are difficult to design.

5 Conclusions

The quantitative measurement of image similarity is fundamental for tasks such as
image quality assessment, image registration, image reconstruction from multiple
measurements, and more. An ISM is both task-dependent and feature-dependent
and must be designed according to the characteristics of specific tasks and features.
Simply applying distances from the mathematical metric theory or general diver-
gences to spaces of images or spaces of image features usually does not provide
applicable appropriate ISMs. In this chapter, we have reviewed several ISMs for
image reconstruction problems from multiple measurements of various types in
recent work.. The multiple measurements considered here include multi-modality,
multi-spectral, and multi-temporal measurements, with multi-modality tomography,
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multi-spectral XCT, and dynamic tomography, as the imaging applications, respec-
tively. We have focused on motivations and constructions of the ISMs, avoided their
general rigorous mathematical presentations to simplify notations for the readability
for a general audience, and discussed relevant issues and possible problems for
future study. The ISMs reviewed and their corresponding JIR methods have been
successfully applied to tomographic imaging applications.
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Holmgren-John Unique Continuation
Theorem for Viscoelastic Systems

Maarten V. de Hoop, Ching-Lung Lin, and Gen Nakamura

Abstract We consider Holmgren-John’s uniqueness theorem for a partial differ-
ential equation with a memory term when the coefficients of the equation are
analytic. This is a special case of the general unique continuation property (UCP)
for the equation if its coefficients are analytic. As in the case in the absence of a
memory term, the Cauchy-Kowalevski theorem is the key to prove this. The UCP
is an important tool in the analysis of related inverse problems. A typical partial
differential equation with memory term is the equation describing viscoelastic
behavior. Here, we prove the UCP for the viscoelastic equation when the relaxation
tensor is analytic and allowed to be fully anisotropic.

1 Introduction

Many solids, such as earth materials, are viscoelastic. Viscoelasticity is a manifes-
tation of rheology. The deformation of such solids are described by a viscoelastic
equation with memory. In terms of displacement vector u(x, t), t ∈ (0, T ), x ∈ 
 ⊂
R

n with n = 1, 2, 3, this equation is given as

ρ(x)∂2t u(x, t)−∇ · (C(x)∇u(x, t))+∇ ·
∫ t

0
G(x, t − τ)∇u(x, τ )dτ = 0, (1)
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where 
 is the reference domain for the deformation, ρ(x) > 0 is the density,
C(x) is the elasticity tensor, −G(x, t) is the t-derivative of the relaxation tensor
H(x, t) and the C(x) can be identified as C(x) = H(x, 0). The original viscoelastic
equation with memory is given as

ρ(x)∂2t u(x, t)−∇ ·
∫ t

0
H(x, t − τ)∇∂τ u(x, τ )dτ = 0. (2)

To derive (1) from (2), we need to invoke the assumption that u(x, 0) = 0, x ∈ 
.
Physically it is natural to assume that C(x) satisfies the strong ellipticity condition:

n∑
i,j,k,l=1

Cijkl(x)ξj ξ$ηiηk ≥ δ(

n∑
j=1

ξ2j )(

n∑
l=1

η2l ), ξj , ηl ∈ R, x ∈ 
 (3)

for some constant δ > 0.
To describe long-time behavior of viscoelastic relaxation, such as in the study

of postseismic relaxation [4], the inertia term, ρ(x)∂2t u(x, t), plays no role and is
omitted yielding the quasi-static counterpart of (1).

By assuming that the coefficients of (1) are analytic, we will show that the unique
continuation property (UCP) of solutions in the x-direction holds for this equation
and also holds for its dual equation. More precisely we have the following

Theorem 1 If the Cauchy data of a C2-class solution u(x, t) of (1) is zero on a
regular surface in 
 over a large enough time interval (0, T ), then u(x, t) is zero in

 over some sub-time interval (0, T1) ⊂ (0, T ).

Remark 1 For the quasi-static case, the proof of the UCP can be made somewhat
more concise. More precisely, the Holmgren transformation (9) given in Sect. 2 does
not have to include the term ct2 for zn which makes the duality argument in Sect. 5
more straighforward.

The UCP plays an important role in the analysis of inverse problems. For example
it is used for showing the uniqueness of identifying an unknown obstacle inside
an acoustic medium (see [2]). It remains challenging to relax the condition of
analyticity also in the case of elastic systems without memory terms. With analytic
coefficients (components of the stiffness tensor) and without memory terms, the
UCP is proved as a byproduct of the Cauchy-Kowalevski theorem and the Holmgren
transformation via a duality argument. In the same spirit, we aim to prove the
UCP as a byproduct of the Cauchy-Kowalevski theorem. The condition of causality,
u(x, 0) = 0 for x ∈ 
, seems bothersome in the context of the Cauchy-Kowalevski
theorem for (1) as it gives the unique analytic solution for the Cauchy problem
only. However, by assuming this condition for the solution u(t, x) of the original
viscoelastic equation, we can still obtain the UCP by using analytic solutions to the
dual of (1).

The memory term is a very special non-local term.Wemention a result pertaining
to the Cauchy-Kowalevski theorem for a generalized Camassa-Holm equation
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with a non-local operator [1]. The Camassa-Holm equation describes a wave in
shallow water. One of the pioneers who contributed to an abstract extension of
the Cauchy-Kowalevski theorem was Ovsjannikov [7] who was an expert in the
theory of shallow water waves. Earlier than Ovsjannikov’s work, there was work by
Yamanaka [8] who first gave the framework of an abstract version of the Cauchy-
Kowalevski theorem. Further progress was made by Nirenberg [5]; his work was
completed concisely by Nishida [6] who was again an expert in the theory of shallow
water waves. This is a very brief literature overview about the abstract version of the
Cauchy-Kowalevski theorem which by no means is complete. Concerning the UCP
for the viscoelastic equations, as far as we know, we are unaware of any result on
the Cauchy-Kowalewski theorem which is the key to prove the UCP for (1).

We will adopt the argument given in [5] to prove the Cauchy-Kowalewski
theorem by using a particular norm which is natural to prove the uniqueness of
solution to the Cauchy problem. Then, as we mentioned before, we will show the
UCP by the Holmgren transformation and a duality argument. We note that we will
hereafter restrict our analysis to the cases n = 2, 3 while the analysis of the case
n = 1 is straightforward.

The remainder of this paper is organized as follows. In the next section we will
give some preliminaries. At the end of Sect. 3 we will state the Cauchy-Kowalevski
theorem. The proof of this theorem will be given in the succeeding two sections. In
Sect. 3, we prove the existence of a solution to the Cauchy problem and in Sect. 4,
we establish the uniqueness of the solution to this Cauchy problem. In the final
section, we show the duality relation between the solution of the Cauchy problem
of (1) and any solution of its dual equation. After that, the UCP follows in a standard
fashion.

2 Preliminaries and Cauchy-Kowalevski’s Theorem

We subject (1) to a coordinate transformation and then transform it to a first-order
system. We let xn = φ(x′) with x = (x1, · · · , xn−1, xn) = (x′, xn) and φ(x′) be an
analytic function in a neighborhood of x′ = 0 such that φ(0) = 0. We consider a
coordinate transformation, �,

x �→ y = �(x), x′ = y′ = (y1, · · · , yn−1), yn = xn − φ(x′), (4)

denote � = �−1, J (x) = det ∇�(x), and assume that J (x) > 0 near x = 0. Then
(1) becomes

ρ̃(y)∂2t ũ(y, t) = J(y)−1
{∇y ·(C̃(y)∇yũ(y, t))−∇y ·

∫ t

0
G̃(y, t−τ)∇yũ(y, τ )

}
dτ,

(5)
where we have introduced the following notation,
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J(y) := J (�(y))−1, � := �−1 (6)

and ρ̃(y), ũ(y, t), C̃(y) and so on are given by

ρ̃(y) := ρ(�(y)), ũ(y, t) := u(�(y), t) (7)

and C̃(y) = (C̃iqkr (y)) with

C̃iqkr (y) := J(y)

n∑
q,r=1

∂xj
yq(�(y))∂xl

yr (�(y))Cijkl(�(y)), C(x) = (Cijkl(x)).

(8)
We further consider the Holmgren transformation given as

(y, t) �→ (z, t) = (Ht (y), t), y′ = z′ := (z1, · · · , zn−1), zn = yn + c|y′|2 + ct2,

(9)
with some constant c > 0. Note, here, that Ht is invertible near the origin, and that
∂yj

, 1 ≤ j ≤ n, ∂t in the (y, t)-space takes the form

∂yj
= ∂zj

+ 2czj ∂zn, j �= n, ∂yn = ∂zn, ∂t = 2ct∂zn + ∂t (10)

in the (z, t)-space. Then, ignoring the lower order terms, (5) becomes

ρ̃′(4c2t2∂2zn
+ 4ct∂zn∂t + ∂2t )ũ′ − (J′)−1

{
C̃′ : ∇2

z ũ′

−
∫ t

0
G̃′(·, t − τ) : ∇2

z ũ′(·, τ ) dτ
} = 0, (11)

where we have used the notation C̃′ := C̃′(z, t) = (C̃′ijkl(z, t)) with

C̃′ijkl := C̃ijkl(H
−1
t (z)), 1 ≤ j, l ≤ n− 1,

C̃′ijkn := 2c
n−1∑
l=1

zlC̃ijkl(H
−1
t (x))+ C̃ijkn(H−1t (z)), 1 ≤ j ≤ n− 1,

C̃′inkl := 2c
n−1∑
j=1

zj C̃ijkl(H
−1
t (z))+ C̃inkl(H

−1
t (z)), 1 ≤ l ≤ n− 1,

C̃′inkn := 4c2
n−1∑
j,l=1

zj zlC̃ijkl + 2c
n−1∑
l=1

zlC̃inkl + 2c
n−1∑
j=1

zj C̃ijkn

and
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(ρ̃′,J′) := (ρ̃,J)(H−1t (z)),

ũ′ = (ũ′1, · · · , ũ′n) := ũ(H−1t (z), t),

G̃′(z, t) := G̃(Ht (z), t),

(12)

while

C̃′ : ∇2
z ũ′ =

n∑
j,k.l=1

C̃′ijkl∂zj
∂zl

ũ′k.

Hence, G̃′(z, t) in (12) gives G̃′(z, t − τ) = G̃(Ht−τ (z), t − τ). We will find later
that the memory term of (11) is, in fact, a lower order term. Thus, recalling (3), it
follows that (11) is non-characteristic with respect to the hyperplane zn = 0 near
(z, t) = (0, 0). This means that we can solve the equation with respect to ∂2zn

ũ′. It
should be remarked here that we ignored the lower order terms to have (11) from
(5) only for the sake of simplifying the description and this will not change the
argument at all even for the case including the lower order terms.

Next, we transform (11) to a first-order system with memory in terms of extended
unknowns

U = (U ′, U ′′, U ′′′), U ′ = ũ′, U ′′ = ∇z′,t ũ
′, U ′′′ = ∂zn ũ

′,

where z = (z1, · · · , zn−1, zn) = (z′, zn). Noting that ∂znU
′ = U ′′, ∂znU

′′ =
∇z′,tU ′′′, we find that (11) is equivalent to

∂znU = A(z, t, D1
z′,t )U+

∫ t

0

{
B(z, t−τ)∂zn+D(z, t−τ, D1

z′)
}
U(·, τ ) dτ, (13)

where D(z, t, D1
z′,t ) is a linear differential operator with derivatives

D1
z′,t := (∂α

z′,t : |α| ≤ 1), α ∈ Zn+, Z+ := N ∪ {0}

and coefficients analytic in (z, t).
By abuse of notation, we write x = z and define Banach spaces Xs, 0 ≤ s < 1

as follows. Each Xs is the set of vector functions F(x, t) which are holomorphic in
polydiscs

Ds := {(x′, t) = (x1, · · · , xn−1, t) ∈ C
n : |xj | < sR, 1 ≤ j ≤ n− 1, |t | < sR}

(14)
for a fixed R > 0 with norm

‖F‖s := sup{|F(x′, t)| : (x′, t) ∈ Ds}. (15)
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Clearly, we have

Xs ⊂ Xs′ , ‖ · ‖s′ ≤ ‖ · ‖s , 0 ≤ s′ < s. (16)

Hence, Xs, 0 ≤ s < 1 is a Banach scale. By the Cauchy integral formula for
holomorphic functions, we have

‖∂xj
F‖s′ ≤ R−1‖F‖s(s − s′)−1, 1 ≤ j ≤ n− 1,

‖∂tF‖s′ ≤ R−1‖F‖s(s − s′)−1
(17)

for 0 ≤ s′ < s.
We finally write (13) in the form

∂u

∂xn

(xn, t) = Ã(xn, t)u(xn, t)+
∫ t

0
B̃(xn, t − η)u(xn, η)dη with B̃ = B∂xn + D̃,

u(0, t) = u0(t),

(18)
where xn, u, Ã, B, D̃ correspond to zn, U , A, B, D in (13). We have suppressed the
other independent variables in the notation. Now we are ready to state the Cauchy-
Kowalevski theorem.

Theorem 2 Assume that the coefficients of the equation in (18) are D2- holomor-
phic valued continuous functions in an open interval (−δ0, δ0). Then there exist
0 < δ < δ0 depending only on the coefficients and a unique solution u(x, t)

of the Cauchy problem (18) which is a D1-holomorphic valued C1 function in
xn ∈ I := (−δ, δ) for any given holomorphic function u0(t) in D1. Here, for
example, a D1-holomorphic valued function means that it is a real analytic function
in D1∩Rn and it can be extended to a holomorphic function in D1, where D1 = Ds

in (14) with s = 1.

Remark 2

(i) We note that we took the region for (x′, t) in which the coefficients of equation
(18) are holomorphic twice as large as that for the solution u(x, t), to handle
the memory term of the equation.

(ii) Note the form (26) of solution u(x, t) given in Sect. 3 to show the existence of
a solution for Theorem 2 and take into account of the analyticity of coefficients
of (18) with respect to xn. Then, the same argument to prove Theorem 2 gives
that the solution u(x, t) of (18) is holomorphic with respect to xn in a complex
neighborhood I of the real open interval I given in the above theorem. Then
by Hartog’s theorem (see page 70, [3]), we can say that u(x, t) is holomorphic
in {(x, t) = (x′, xn, t) : xn ∈ I, (x′, t) ∈ D1}.
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3 Existence: Contraction Property

In this section, we prove the existence of a solution of the Cauchy problem (18). To
this end, we consider the solution u(xn, t) of the integral equation

u(xn, t) = u0(t)+
∫ xn

0

(
Ã(ξ, t)u(ξ, t)dξ +

∫ t

0
B̃(ξ, t − η)u(ξ, η)dη

)
dξ

= u0(t)+
∫ xn

0
A(ξ, t)u(ξ, t)dξ +

∫ xn

0

∫ t

0
B(ξ, t − η)∂ξu(ξ, η)dηdξ

= u0(t)+
∫ xn

0
A(ξ, t)u(ξ, t)dξ +

∫ t

0
B(xn, t − η)u(xn, η)dη

−
∫ t

0
B(0, t − η)u(0, η)dη, (19)

where

A(ξ, t)u(ξ, t) = Ã(ξ, t)u(ξ, t)+
∫ t

0

(
D̃(ξ, t−η)−∂ξB(ξ, t−η)

)
u(ξ, η)dη (20)

and the integrations with respect to ξ and η are taken along
−→
0 xn and

−→
0 t , respectively.

We let E be a vector space defined as

E = {u(xn, t) : u(xn, ·) ∈ C0(−a(1− s), a(1− s)) for 0 ≤ s < 1, M[u] <∞}
(21)

with

M[u] := sup
{|xn|<a(1−s),0≤s<1}

‖u(xn, ·)‖s
(
1− |xn|

a(1− s)

)
, (22)

where, for each 0 ≤ s < 1, u(xn, t) is a Xs valued continuous function in |xn| <

a(1− s). We suppress the variables x′ = (x1, ·, xn−1), that is, for each fixed |xn| <
a(1 − s) we consider u(xn, t) = u(xn, t; x′) ∈ Xs as a function of (x′, t). We also
note that the definition of M[u] is different from the one given in [5]. This is to
make the proof of the uniqueness of solution u to (18) more straightforward.

By (16) and observing that

(
1− |xn|

a(1− s′)

)−1
≤

(
1− |xn|

a(1− s)

)−1
in |xn| < a(1− s) (23)

for s′ < s, it is not difficult to prove thatE is complete with respect to the normM[·]
by using the well-known diagonal sequence trick argument in analysis considering
a monotonically increasing sequence 0 ≤ sn → 1, n → ∞ for the parameter s of
Xs . Hence, E is a Banach space.
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We define

T u(xn, t) := u0(t)+
∫ xn

0
A(ξ, t)u(ξ, t)dξ

+
∫ t

0
(Btu)(xn, η)dη −

∫ t

0
(Btu)(0, η)dη (24)

and

w(xn, t) = Su(xn, t) :=
∫ xn

0
A(ξ, t)u(ξ, t)dξ

+
∫ t

0
(Btu)(xn, η)dη −

∫ t

0
(Btu)(0, η)dη, (25)

where we have used the abbreviation (Btu)(xn, η) = B(xn, t − η)u(xn, η). We first
show that there exists a solution u ∈ E such that T u = u in this section, and then
show that this solution, u, is unique in the next section.

The solution u above, which is a fixed point of T , will be obtained as

u =
∞∑
l=0

Slu0. (26)

Hence it is sufficient to prove

M[w] ≤ 1

2
M[u]. (27)

For |xn| < a(1− s),

‖w(xn, ·)‖s ≤
∫ |xn|

0
‖Au(ξ, ·)‖sd|ξ | + cR‖u(xn, ·)‖s + cR‖u(0, ·)‖s , (28)

where d|ξ | denotes the length element along the straight line
−→
0 xn and R > 0 was

used to define the polydisc Ds given by (14). Also a direct computation gives

∫ |xn|

0
‖Ãu(ξ, ·)‖sd|ξ | ≤ c

∫ |xn|

0
‖u(ξ, ·)‖s(|ξ |)(s(|ξ |)− s)−1d|ξ |

≤ cM[u]
∫ |xn|

0
(s(|ξ |)− s)−1

(
1− ξ

a − as(|ξ |)
)−1

d|ξ |. (29)

Here and hereafter c is a positive constant depending only on Ã, B, D̃ of (15) in
Sect. 2.
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We let s(|ξ |) = 1
2

(
1+ s − |ξ |

a

)
, then

s(|ξ |)− s = 1

2

(
1− s − |ξ |

a

)
, a − as(|ξ |)− |ξ | = a

2

(
1− s − |ξ |

a

)
. (30)

By (30), we have

(s(|ξ |)− s)−1
(
1− |ξ |

a − as(|ξ |)
)−1
= 2(1− s)

(
1− s − |ξ |

a

)−2
+ 2|ξ |a−1

(
1− s − |ξ |

a

)−2

≤ 2a2(1− s)(a − as − |ξ |)−2 + 2a|xn|(a − as − |ξ |)−2. (31)

Combining (29) and (31), we obtain

∫ |xn|

0
‖Ãu( ξ, · )‖sd|ξ |

≤ cM[u]2a2(1− s)(1+ |xn|/a(1− s))

∫ |xn|

0
(a − as − |ξ |)−2d|ξ |

≤ cM[u]2a2(1− s)(1+ |xn|/a(1− s))(a − as − |ξ |)−1

≤ cM[u]4a2(1− s)(a − as − |ξ |)−1

= 4acM[u]
(
1− |xn|

a(1− s)

)−1
. (32)

The other term in A satisfies the estimate,

∫ |xn|

0

∥∥∥∥
∫ t

0

(
D̃(ξ, t − η)− ∂ξB(ξ, t − η)

)
u(ξ, η)dη

∥∥∥∥
s

d|ξ |

≤ 4acRM[u]
(
1− |xn|

a(1− s)

)−1
. (33)

Similar estimates hold for the last two terms of (25). Combining these with (28),
(32) and (33), we find that

(
1− |xn|

a(1− s)

)
‖w(xn, ·)‖s ≤ 4acM[u] + 4acRM[u] + cRM[u] + cRM[u].

(34)
Thus, we derive from (34) that

M[w] ≤ 4acM[u] + 4acRM[u] + cRM[u] + cRM[u] ≤ 1

2
M[u], (35)
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where we have chosen a and R such that ac < 1/32 and cR < min(1/8, c),
respectively.

4 Uniqueness

In this section, we prove the uniqueness of solution u to (18). To begin with, we let
v(xn, t) be a solution to (18). Then w(xn, t) = u(xn, t)− v(xn, t) satisfies

w(xn, t) =
∫ xn

0
A(ξ, t)w(ξ, t)dξ +

∫ t

0
(Btw)(xn, η)dη −

∫ t

0
(Btw)(0, η)dη.

(36)
Hence, by repeating the argument given in Sect. 3, we obtain (27). We recall that

M[w] := sup
{|xn|<a(1−s),0≤s<1}

‖w(xn, ·)‖s (1− |xn|
a(1− s)

).

Since |xn| < a(1− s) implies 0 < 1− |xn|
a(1−s)

≤ 1, we have

M[w] ≤ sup
{|xn|<a(1−s),0≤s<1}

‖w(xn, ·)‖s . (37)

If the right-hand side of (37) is finite, then we have the uniqueness from (27).
However, letting 1 > s → 1, we have xn → 0 and yet we may have ‖w(xn, ·)‖s →
∞. To avoid this difficulty we will modify the definition of M[w] so that we can
have M[w] <∞.

We start by fixing 0 < s0 < 1 and define

M0[w] := sup
{|xn|<a(s0−s), 0≤s<s0}

‖w(xn, ·)‖s
(
1− |xn|

a(s0 − s)

)
. (38)

Since w ∈ E and M0[w] is monotonically non-decreasing as s0 increases, we have

M0[w] ≤ sup
{|xn|<a(s0−s)}

‖w(xn, ·)‖s0 <∞. (39)

The uniqueness follows upon proving that

M0[w] ≤ 1

2
M0[w]. (40)

We will repeat the argument in Sect. 3 to prove (40). We only show the estimate
corresponding to Ã. For |xn| < a(s0 − s), we find that
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∫ |xn|

0
‖Aw(ξ, ·)‖sd|ξ | ≤

∫ |xn|

0
‖w(ξ, ·)‖s(ξ)(s(ξ)− s)−1d|ξ |

≤ cM0[w]
∫ |xn|

0
(s(|ξ |)− s)−1

(
1− |ξ |

as0 − as(|ξ |)
)−1

d|ξ |. (41)

We let s(|ξ |) = 1
2

(
s0 + s − |ξ |

a

)
, then

s(|ξ |)− s = 1

2

(
s0 − s − |ξ |

a

)
, as0 − as(|ξ |)− |ξ | = a

2

(
s0 − s − |ξ |

a

)
.

(42)
By (42), we have that

(s(|ξ |)− s)−1
(
1− |ξ |

as0 − as(|ξ |)
)−1

= 2(s0 − s)

(
s0 − s − |ξ |

a

)−2
+ 2ξa−1

(
s0 − s − |ξ |

a

)−2

≤ 2a2(s0 − s)(as0 − as − |ξ |)−2 + 2a|xn|(as0 − as − |ξ |)−2. (43)

Combining (41) and (43), we obtain that

∫ |xn|

0
‖Ãw(ξ, t)‖sd|ξ |

≤ cM0[w]2a2(s0 − s)

(
1+ |xn|

a(s0 − s)

)∫ |xn|

0
(as0 − as − |ξ |)−2d|ξ |

≤ cM0[w]2a2(s0 − s)

(
1+ xn

a(s0 − s)

)
(as0 − as − |ξ |)−1

≤ cM0[w]4a2(s0 − s)(as0 − as − |ξ |)−1

= 4acM0[w]
(
1− |xn|

a(s0 − s)

)−1
. (44)

Then handling the other terms in similar ways, we have

M0[w] ≤ 4acM0[w] + 4acRM0[w] + cRM0[w] + cRM0[w] ≤ 1
2M0[w],

(45)
where we have chosen a and R such that ac < 1/32 and cR < min(1/8, c),
respectively. Therefore, M0[w] = 0 which implies w = 0.

Combining the results in Sects. 3 and 4, by restricting the solution to the real
space, we obtain the Cauchy-Kowalevski theorem for the Cauchy problem to
equation (1) with Cauchy data on xn = φ(x′).
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Before closing this section, we note that our Cauchy-Kowlevseki theorem is valid
in a neighborhood of any point where the coefficients of the equation are analytic
and setting up the Cauchy problem as we did before in a neighborhood of this point.

5 Duality Argument

In this section, we present the duality argument which gives the UCP for the
equation given in (18). We let L be the operator defined by

Lv(xn, t) = ∂xnv(xn, t)− Ãv(xn, t)−
∫ t

0
(Bt∂xn + D̃t )v(xn, η)dη, (46)

where we have again suppressed the variables other than (xn, t). For a more detailed
form of L, see (18).

We let H > 0 be small and define W by

W := {(x, t) = (x′, xn, t) ∈ R
n+1 : xn ∈ (0, H), t > 0, xn > c(|x′|2 + t2)}.

(47)
Suppose that u ∈ C1(W) is a solution of (18), that is, Lu = 0 in W , and assume
that

u = 0 for {t ≤ 0} ∪ {xn ≤ c(|x′|2 + t2)}. (48)

Then we will show that u = 0 in W . This is the key step in proving the UCP. The
remaining steps or arguments showing the UCP are quite standard. For details, see,
for instance, [3]. The definition of W is coming from the Holmgren transformation
(9), and u = 0 in xn ≤ c(|x′|2 + t2) corresponds to u = 0 on yn = 0 (see (4) and
(9)) together with extending u = 0 to yn < 0, which is possible due to the fact that
(5) is non-characteristic with respect to yn = 0 for small t . Furthermore, u = 0 for
t ≤ 0 is coming from the physical assumption that was already explained just after
(2). Hence, u also satisfies

Lu = 0 in {0 < xn < H } \W. (49)

We introduce some further notation. For 0 < h < H , we let

Wh := W ∩ {xn < h}, Th := sup{t > 0 : (x, t) ∈ W(h)},
Ph := the projection of Wh to the x-space,

Qh := Ph × (0, Th).

(50)

From (48) and (49), we have
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u = 0 in (Qh \Wh) ∪ {t < 0} (51)

and

Lu = 0 in Qh, (52)

respectively. For w ∈ C1(Qh) we evaluate

∫
Qh

Lu(x, t) · w(x, t)dxdt

=
∫

Qh

∂xnu(x, t) · w(x, t)dxdt −
∫

Qh

Ãu(x, t) · w(x, t)dxdt

−
∫

Qh

(∫ t

0
(Bt∂xn + D̃t )u(x, s)ds

)
· w(x, t)dxdt. (53)

We observe that by using (51), we have

∫
Qh

(∫ t

0
B(x, t − s)∂xnu(x, s)ds

)
· w(x, t)dxdt

=
∫

Ph

∫ Th

0

∫ t

0
B(x, t − s)∂xnu(x, s) · w(x, t)dsdtdx

=
∫

Ph

∫ Th

0

∫ Th

s

B(x, t − s)∂xnu(x, s) · w(x, t)dtdsdx

=
∫

Ph

∫ Th

0

∫ Th

t

B(x, s − t)∂xnu(x, t) · w(x, s)dsdtdx

= −
∫

Qh

u(x, t) ·
(∫ Th

t

∂xn(B
∗(x, s − t)w(x, s))ds

)
dtdx

+
∫

Qh∩{xn=h}
u((x′, h), t) ·

(∫ Th

t

B∗((x′, h), s − t)w((x′, h), s)ds

)
dtdx′

(54)

and
∫

Qh

M(x, t)∂u(x, t) · w(x, t)dxdt = −
∫

Qh

u(x, t) · ∂(
M∗(x, t)w(x, t)

)
dxdt

(55)
for any matrix M(x, t) ∈ C∞(Qh), where ∂ is either ∂ = ∂xj

with 1 ≤ j ≤ n−1 or
∂ = ∂t , and the notation ∗ is used to denote the action taking the dual of an operator.

The dual operator, L∗, of L is given by
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L∗w(x, t) := −∂xnw(x, t)− Ã∗w(x, t)

+
∫ Th

t

∂xn(B
∗(x, s − t)w(x, s))ds −

∫ Th

t

D̃∗(x, s − t)w(x, s)ds. (56)

We write

z(x′, t) := w((x′, h), t)−
∫ Th

t

B∗((x′, h), s − t)w((x′, h), s)ds. (57)

Then from (52)–(55), we find that

0 =
∫

Qh

Lu(x, t) · w(x, t)dxdt

=
∫

Qh∩{xn=h}
u · zdx′dt +

∫
Qh

u(x, t) · L∗w(x, t)dxdt

=
∫

Qh∩{xn=h}
u · zdx′dt (58)

if L∗w = 0 in Qh.
For any given function z(x′, t) analytic in a neighborhood of Qh ∩ {xn = h},

consider the integral equation (57) with respect to w((x′, h), t). Then we can
show that by an argument that is similar, and is an easier version of the proof of
Theorem 2, that there exists a unique solution w((x′, h), t) to this integral equation
which is analytic in a neighborhood of Qh ∩ {xn = h}.

Finally, we consider the Cauchy problem,

L∗w = 0 in Qh, w = w((x′, h), t) at xn = h. (59)

By Theorem 2, this problem admits a unique solution w ∈ C1(Qh). Then due to the
denseness of such Cauchy data in L2(Qh ∩ {xn = h}), we have u = 0 at xn = h for
each h ∈ (0, H). This immediately implies u = 0 in W .
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Tomographic Reconstruction for Single
Conjugate Adaptive Optics

Jenny Niebsch and Ronny Ramlau

Abstract Single Conjugate Adaptive Optic systems use the light of one bright
guide star and a deformable mirror to correct for the loss of image quality of
earthbound astronomical telescopes caused by turbulences in the atmosphere. The
system achieves best correction in guide star direction. The imaging quality of the
scientific object, which is usually separated from the guide star, can further be
improved if the turbulence distribution is known. We propose to use wavefront
sensor measurements from the past to recover the turbulence in the atmosphere.
Mathematically, a limited angle tomography problem has to be solved. We present a
model for the related tomography equations and discuss solvability and uniqueness
of the solutions. Based on our analysis we develop an algorithm for the inversion
and obtain a first numerical reconstruction.

1 Introduction

The image quality of modern earthbound astronomical telescopes suffers heavily
from turbulences in the atmosphere. Patches of warm or cold air, located in
layers of the atmosphere, distort the light coming from the scientific objects of
interest, resulting in blurred images. This effect is in particular pronounced for the
new generation of Extremely Large Telescopes (ELT) which are currently under
construction. A remedy is the use of Adaptive Optics (AO): These systems correct
the aberrations of the incoming wavefronts of the scientific object by means of
one or more deformable mirrors (DM). Based on measurements of the incoming
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Fig. 1 Sketch of SCAO system, taken from [4]

wavefronts from one or several guide stars, the mirror shape is chosen such that the
distortions from the incoming wavefront are corrected in the reflected wavefront. For
a detailed description of the principles of Adaptive Optics we refer to [6, 26, 27].

There are different modes of operation for AO. The first—and simplest—is
Single Conjugate Adaptive Optics (SCAO), see Fig. 1. It is used if the scientific
object is close to a bright star that acts as a Natural Guide Star (NGS). As a point
source that is far away, the incoming light from the NGS resembles a plane wave
that is distorted by the turbulences in different layers of the atmosphere. A wavefront
sensor (WFS) measures the incoming wavefront, and an Real Time Computing
(RTC) system determines a shape of the DM that flattens the wavefront of the NGS,
see Fig. 2, which is now recorded as a sharp image. As the light from the nearby
scientific object passes through nearly the same part of the atmosphere the DM also
corrects its image.

For objects that have no NGS nearby, tomography based AO systems are
suitable. These systems use multiple guide stars—both natural and artificial—
each equipped with a wavefront sensor, and deformable mirrors for correction.
Artificial guide stars are created by laser beams and therefore are called Laser
Guide Stars (LGS). They are used whenever no suitable NGS is close by. Modern
AO systems, e.g. for the ELT, will be equipped with up to 6 LGS. The incoming



Tomographic Reconstruction for Single Conjugate Adaptive Optics 305

Fig. 2 Correction of a
wavefront by a deformable
mirror [2]

Fig. 3 Different operating
modes of AO systems. Light
blue marks the area of
corrected imaging quality [2]

wavefronts from the different Guide Stars are used for a tomography of the
atmosphere, i.e., the turbulence distribution of the atmosphere above the telescope is
reconstructed. The underlying mathematical problem is a limited angle tomography
and therefore severely ill-posed [3, 17]. However, as we only strive to reconstruct a
layered atmosphere composed of a finite number of layers, the ill-posedness of the
problem is somewhat mitigated, see [18]. Three different AO systems are based
on atmospheric tomography: Multi Conjugated Adaptive Optics (MCAO), Laser
Tomography (LTAO) and Multi Object Adaptive Object (MOAO). LTAO uses the
reconstructed atmosphere and one DM which is deformed s.t. the scientific object
of interest is optimally sharpened. MOAO is based on the same concept, but uses
several mirrors that are optimized to sharpen separated objects at the same time. In
contrast, MCAO uses up to three different mirrors, conjugated to different heights, to
achieve a high imaging quality on a large connected patch of the sky, thus allowing
to observe larger structures. See also Fig. 3 for the different systems. Let us finally
remark that all computations required for the control of the DMs need to be done in
real time, and have to be repeated about every 2 ms for the full observation process.
For further information on the systems we refer to [1, 5, 14, 20, 24] and for the
mathematics of atmospheric tomography we refer to [7–12, 15, 21–23, 25, 29–34].

As mentioned above, the imaging quality for a SCAO system decreases the
further the scientific object is away from the Guide Star. A knowledge of the
turbulence distribution of the atmospheric layers would therefore also be useful in
the SCAO case, as it would allow for a better estimate of the wavefront aberration



306 J. Niebsch and R. Ramlau

in the direction of the observed object. Of course, a tomography of the atmosphere
based on measurements from one direction is impossible. Our idea of a tomography-
like reconstruction of the atmosphere for SCAO is based on the fact that the layers
are blown over the telescope by a—at least on small time scales—constant wind
velocity while the layers themselves are not changing (frozen flow assumption, see,
e.g., [27]). Please note that wind speed and direction might be different for each
layer. Basically, the measurements from the wavefront sensor at different time steps
are created by shifted turbulent layers. As we will see, the connection of the data for
a certain number of time steps and the turbulence of the layers can be described by
a system of equations that is very similar to the atmospheric tomography. We may
add that frozen flow assumption has been used previously for a better estimate of
the measured wavefront [19].

The paper is organized as follows: In Sect. 2.1 we give a short overview
about wavefront reconstruction from sensor measurements in SCAO. In Sect. 2.2
the tomography operator for SCAO will be derived, whereas Sect. 2.3 focuses
on solvability and uniqueness of the resulting operator equation. Section 2.4
decomposes the tomography operator on a rectangular domain using the Fourier
basis of L2([−R, R]2). Section 3 contains the description of the reconstruction
algorithm, the test setting and numerical results of a simulation to test the feasibility
of our approach. We close with a short summary and an outlook to future work.

2 A Mathematical Approach for Tomography for SCAO

In this section we will present the general idea of SCAO—Tomography as well as
the related tomography equations. The Fourier representation of this operator on a
rectangular domain allows to derive conditions for the (unique) solvability of the
problem. As a consequence, conditions on the model of the atmosphere and the
number of time steps used for the reconstruction can be derived.

2.1 Wavefront Reconstruction for SCAO

As already mentioned in the introduction, SCAO is the simplest AO system, utilising
one deformable mirror, optically conjugated to the ground layer of the atmosphere,
and one wavefront sensor. The telescope is positioned such that the NGS is located
in the centre of the field of view and the light emitted from the NGS approximately
propagates in direction of the zenith to the telescope aperture. The WFS measures
the incoming wavefront of the NGS, i.e., it sees summed turbulence contributions
of the layers in that direction. Based on the sensed incoming wavefront, the
deformable mirror is adapted in such a way that it compensates for this wavefront.
Unfortunately, the sensor cannot measure the wavefronts directly. E.g., a Shack-
Hartmann sensor, Fig. 4, measures averaged gradients in x- and y-direction over
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Fig. 4 Sketch of a Shack-Hartmann Sensor with 16 subapertures. The deviation of the center of the
recorded spots from the center of each subaperture 
i in x and y direction are the measurements
(si

x , si
y) [2]

sub-apertures of the sensor. Measurements s and the related WF ϕ are connected via
the WFS operator �. For the Shack-Hartmann sensor, the WFS operator is given by

s = (si
x, si

y)i∈I = �ϕ, (1)

si
x :=

∫


i

∂

∂x
ϕ(x, y) dx, (2)

si
y :=

∫


i

∂

∂y
ϕ(x, y) dy. (3)

The shape of the mirror can be derived directly from the wavefront. However, in
order to determine the wavefront ϕ from wavefront measurements, Eq. (1) has
to be solved about every 1–2 ms due to the fast changing atmosphere. Several
methods were developed to compute ϕ from the data s. MVM methods connect
the correction commands for the DM and the sensor data via a single control matrix
which requires matrix-vector-multiplication (MVM) to solve the problem, leading
to a numerical complexity of O(N2). As the number of measurements grows with
the size of the telescopes, faster algorithms have been developed to guarantee real
time reconstruction. A matrix free approach for the reconstruction of wavefronts
from sensor data in real time is the CuReD algorithm (Cumulated Reconstructor
with Domain decomposition) [28, 35].

Our approach is based on the wavefronts instead of the measurements, thus
we assume that the wavefronts have already been reconstructed by a suitable
reconstruction method.
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2.2 Derivation of the Tomography Equations

In classical SCAO as described in Sect. 2.1, the best correction is in direction
of the NGS. The quality of the image of the observed scientific object decreases
rapidly with increasing angular distance from the NGS, as the WF emitted by that
object takes a different path through the atmosphere than the NGS and therefore
is not optimally compensated by the DM. Incorporating a reconstruction of the
atmosphere in the SCAO mode would enable us to correct the incoming WF from
the scientific object. The observation quality, i.e., the Strehl ratio (which is closely
related to the L2 error of the reconstruction) of the object is expected to improve
while the Strehl ratio in direction of the NGS will probably decrease.

In modelling the effect of the turbulence we will use the assumption that the
atmosphere has a layered structure, and that the effect of the layered turbulence
distribution on a planar wavefront can be expressed by the summation of the
turbulent layers in the appropriate directions, see, e.g., [8]. More specific, the
incoming wavefront ϕ(r, t) at the telescope aperture 
A can be written as the sum
of the turbulence contributions of the layer functions �(l), i.e.,

ϕ(r, t) =
L∑

l=1
�(l)(r, t), (4)

where rrr ∈ 
A represents the 2D spatial coordinates in the telescope pupil and t

indicates the time. Based on the Taylor frozen flow assumption, which states that
each layer propagates with its own speed and direction, represented by the wind
shift vector vl ∈ R

2, the temporal evolution of the single layers from time t − τ to t

can be attributed to a spatial shift with displacement τvl , i.e.,

�(l)(r, t − τ) = �(l)(r+ τvl , t). (5)

Assuming equidistant time steps �T and choosing τ = k�T we have

�(l)(r, t − k�T ) = �(l)(r+ k�T vl , t), (6)

see also [19]. We can use (6) to compute the layers �(l) at the actual time t from data
of the previous time steps (t − k�T ), k = 0, · · · , K . Using (4), (6), the incoming
wavefronts at different time steps can be computed as

ϕk := ϕ(r, t − k�T ) =
L∑

l=1
�(l)(r+ k�T vl , t), (7)

see Fig. 5 for an illustration.
Please note that we assume that the wind vectors vl are explicitly known. We

wish, however, to remark that techniques are available to either estimate the wind
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Fig. 5 Illustration of the turbulence contributions of the layers �(1) and �(2) to the incoming
wavefronts ϕ3, ϕ2, ϕ1. The telescope aperture is restricted by the red circles. The dark blue areas
on the turbulent layers belongs to those atmospheric cutouts which contribute to the incoming
wavefronts of the evolution equations. The picture below shows the support of the layer functions

vectors from the wavefront sensor measurements or to measure them directly with
an additional instrument [19].

Equation (7) forms the basis for our tomography equation. We define by

A(k�T vl ) = {r ∈ R

2 : r − k�T vl ∈ 
A} the area of layer l seen by the
telescope at time step k and
l =⋃K

k=0 
A(kΔT vl ). Since we also want to consider
the Fourier transform of the tomography equation we define the rectangular area


̄ = [−R, R]2 where R is the smallest number such that
L⋃

l=1

l ⊂ [−R, R]2.

Setting X = L2(
̄), and, for a fixed time t , �(l)(r, t) = �(l)(r) ∈ X for

l = 1, · · · , L, we define the operator Ak :
L∏

l=1
X→ X as

(Ak�)(r) :=
L∑

l=1
�(l)(r+ vlk�T ), r ∈ 
̄, (8)

where � = (�(1), · · · , �(L)) represents the full layered atmosphere. With defini-
tion (8) and (7) the tomography-like operator equation at time t is then given as
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A� :=

⎛
⎜⎜⎜⎝

A0�

A1�
...

AK�

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

ϕ0

ϕ1
...

ϕK

⎞
⎟⎟⎟⎠ =: ϕ, (9)

with A :
L∏

l=1
X→

K+1∏
j=1

X.

Now the computation of the turbulence profile reduces to the solution of Eq. (9).

2.3 Solvability and Uniqueness

In this section we focus on the existence of solutions of our tomography equation as
well as on the uniqueness. As a shift in a function is nicely represented by the Fourier
transform, the shift in the layers in (8) suggests to consider the tomography equation
in the Fourier space in order to derive necessary conditions for the solvability and
uniqueness of the tomography equation (9).

In the following, we use the 2-D Fourier transform on R
2 defined as

(Ff )(s) =
∫

R2

f (r)e−2πi〈r,s〉dr,

where 〈·, ·〉 is the usual inner product on R
2.

For our theoretical analysis we assume that the atmosphere layer functions and
the wavefronts are defined on R

2. Specifically, we require that

Assumption 1 For the layers � = (
�(1), . . . , �(L)

)
holds �(l) ∈ L1(R2) ∩

L2(R2).

Remark 1 Turbulences in the atmosphere can be modelled either by a Kolmogrov
or a van Karman statistics [27]. Thus, in average, the turbulent layers belong to the
Sobolev space H 11/6(R2) and thus also to L2(R2). As there is anyway no hope to
reconstruct the atmosphere outside the area where there are measurements available,
we can extend the layers outside this area by zero or simply assume that the layers
are compactly supported. In this case the layer will also belong to L1(R2).

Equation (9) in the Fourier domain is given by
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(FA�)(s) =

⎛
⎜⎜⎜⎝

(FA0�)(s)
(FA1�)(s)

...

(FAK�)(s)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

(Fϕ0)(s)
(Fϕ1)(s)

...

(FϕK)(s)

⎞
⎟⎟⎟⎠ ,

where the Fourier transform is applied componentwise. Because of the linearity and
the time shifting property of the Fourier transform,

(Ff (r− r0))(s) = e−2πi〈r0,s〉(Ff (r))(s),

we have for each k = 0, · · · , K,

(FAk�)(s) =
L∑

l=1
e2πi〈vl k�T ,s〉(F�(l)(r))(s) = (Fϕk)(s).

Hence the Fourier transform of (9) can be expressed in matrix form as

⎛
⎜⎜⎜⎝

(Fϕ0)(s)
(Fϕ1)(s)

...

(FϕK)(s)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 · · · 1
e�T 2πi〈v1,s〉 · · · e�T 2πi〈vL,s〉

...
. . .

...

eK�T 2πi〈v1,s〉 · · · eKΔT 2πi〈vL,s〉

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
=:F(s)

⎛
⎜⎜⎜⎝

(F�(1))(s)
(F�(2))(s)

...

(F�(L))(s)

⎞
⎟⎟⎟⎠ . (10)

Representation (10) allows to link the solvability of the tomography equation to
the invertibility of the matrix F(s).

Proposition 1 Assume that for l, m = 1, · · · , L and l �= m holds vl �= vm.

(1) The matrix F(0) has rank 1.
(2) Assume that for s �= 0 holds for all n ∈ Z

〈vl − vm, s〉 �= n

�T

. (11)

Then the columns of F(s) in (10) are linearly independent if L ≤ K + 1 and
linearly dependent if L > K + 1.

Proof

(1) If s = 0, then all entries in F(0) are equal to 1, and therefore F(0) has rank 1.
(2) Let xl := e�T 2πi〈vl ,s〉, l = 1, · · · , L. Because of (28), xl �= xm holds for all

l �= m, l, m = 1, · · · , L. With ek�T 2πi〈vl ,s〉 =: xk
l for k = 1, · · · , K , the matrix

F(s) is a Vandermonde matrix
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F =

⎛
⎜⎜⎜⎜⎜⎝

1 · · · 1
x1 · · · xL

x2
1 · · · x2

L
...

. . .
...

xK
1 · · · xK

L

⎞
⎟⎟⎟⎟⎟⎠

. (12)

In case L = K + 1, its determinant can be computed as
∏L

l=2
∏l−1

m=1(xl −
xm), [16], and it is nonzero under our assumptions and therefore F has linearly
independent columns.

In case L < K + 1, the matrix (12) can be expanded with N = K + 1− L

columns (1, xL+j , x2
L+j , · · · , xK

L+j )T for j = 1, · · · , N , where the xL+j are
chosen distinct from all xl and from each other. The expanded matrix is a square
Vandermonde matrix hence all columns are linearly independent which implies
that the first L columns are as well.

In case L > K + 1, the first K + 1 columns are linearly independent with the
same argument as in above and form a basis of CK+1. It follows that the remaining
column vectors are linearly dependent on the first K + 1 column vectors. ��

Whenever vl �= vm and condition (28) hold, then F(s) is invertible, and thus the
Fourier transform of the turbulent layers is uniquely reconstructable for those s. For
the remaining s we have the following result:

Proposition 2 Assume that for l, m = 1, · · · , L and l �= m holds vl �= vm. Further,
assume that either s = 0 or

〈vl − vm, s〉 = n

�T

. (13)

holds for some l �= m, l, m = 1, . . . , L, n ∈ Z and s �= 0. Then there exists a
sequence sk → s as k→∞, and F(sk) is invertible.

Proof We start with the case s �= 0. If (13) holds for some (l, m) and n �= 0, we set
sk := (1− 1

k
)s �= 0 for k ∈ N and k > 1. Clearly, sk → s as k→∞, and

〈vl − vm, sk〉 = (1− 1

k
)

n

�T

→ n

�T

.

As of course also 〈vl − vm, sk〉 �= n
�T

, F(sk) is invertible at least for large k.
Now assume that

〈vl − vm, s〉 = 0

for some (l, m). We set sk := (1− 1
k
)s + 1

k
(vl − vm) and obtain
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〈v
l̃
− vm̃, sk〉 = 〈vl̃

− vm̃, s〉 + 1

k
〈v

l̃
− vm̃, vl − vm〉 (14)

=

⎧⎪⎨
⎪⎩

c
l̃,m̃

k
‖vl − vm‖2 if (vl − vm) ‖ (v

l̃
− vm̃)

(1− 1
k
)〈v

l̃
− vm̃, s〉 + 1

k
〈v

l̃
− vm̃, vl − vm〉

(15)

�= n

�T

, (16)

n ∈ Z, at least for a subsequence of a sk, and thus F is invertible on the subsequence.
Please note that the above argument only holds as the wind vectors are elements in
R
2. It remains to consider the case s = 0. Now we choose a vector v ∈ R

2 such that
〈vl − vm, v〉 �= 0 for all (l, m) and set sk := 1

k
v. It follows again that there exists at

least a subsequence of sk such that

〈vl − vm, sk〉 �= n

�T

,

and F(sk) is again invertible, which concludes the proof. ��
Now we are able to give a result on the unique solvability.

Proposition 3 Assume that �(l) ∈ L1(R2) ∩ L2(R2), l = 1, . . . , L and that the
wind speed vectors vl fulfill the condition vl − vm �= 0 for m �= l and l, m =
1, . . . , L. Then Φ = (Φ(1), . . . , Φ(L)) is uniquely reconstructable if L ≤ K + 1.

Proof If L ≤ K+1 then F(s) is invertible as long as (28) holds. According to (10),
F (

�(l)
)
is thus well defined by the measurements. Now assume (28) is violated,

i.e., (13) holds. According to Proposition 2 for those s there exists a sequence
sk → swhere F(sk) is invertible and therefore the related values ofF

(
�(l)

)
(sk) are

uniquely defined by the measurements. As �(l) ∈ L1, its Fourier transformF (
�(l)

)
is continuous and therefore F (

�(l)
)
(s) := limk→∞ F (

�(l)
)
(sk) is uniquely

determined. ��
From Proposition 1 it follows that the assumption that the wind shifts of the layers

are distinct is vital. It is also quite natural: Assume that we are given an atmosphere
composed of two layers that move with the same speed and in the same direction.
It follows immediately from (8) that the wavefront ϕk at time step k�T is just the
shifted version of ϕ0 and thus contains no additional information of the layered
atmosphere. More general, all layers that move with the same wind vector behave
in the data like a single layer that contains the sum of the turbulence contributions
from those layers and can therefore not be reconstructed uniquely.

The matrix F is invertible if the number of time steps K is chosen as L − 1,
i.e., including the data from time frame i the number of data equals the number
of layers. If the wind shifts are not distinct or if L > K + 1, then a least squares
solution can be obtained by applying the generalized inverse F† = (F∗F)−1F∗ [13].
This is summarised in
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Corollary 1 Under the assumptions of Proposition 1 the solution of the tomogra-
phy equation on L2(R2) is given by

1.

�(r) = F−1(F−1(s)(Fϕ)(s))(r), if K = L− 1,

2.

�(r) = F−1(F+(s)(Fϕ)(s))(r) otherwise

with F† = (F∗F)−1F∗.

Assuming a certain number of layers in the atmosphere, the time steps taken
into consideration must be at least of the same number or more. This is confirmed
by numerical test computations. The assumption that the wind shift vectors of the
layers are not equal (although they can be parallel) is reasonable. In case the vector
(〈v1, s〉, · · · , 〈vL, s〉) is zero or close to it the matrix F is rank deficient.

2.4 A Fourier Series Representation of the Tomography
Operator

In a real life situation wavefronts can only be determined on the telescope aperture.
In a first approximation of the real data situation we assume that the layer functions
as well as the wavefronts are defined on 
̄ = [−R, R]2. As in (9), it makes now
sense to use the Fourier series representation of the layer and wavefront functions
instead of the Fourier transform on R

2. We assume that the functions in L2(
̄) are
complex (complex unit i) valued and define an orthonormal basis of L2(
̄) by

ωjm(x, y) := 1

2R
ei π

R
(jx+my), j, m ∈ Z. (17)

Next, we decompose the projection operators Ak in (8) with respect to this basis.
Each �(l)(x, y) ∈ L2(
̄), l = 1, · · · , L, has the representation

�(l)(x, y) =
∑

j,m∈Z
�

(l)
jm ωjm(x, y) with

�
(l)
jm = 〈�(l), ωjm〉L2(
̄).

With the notation

�jm = (�
(1)
jm, · · · , �

(L)
jm )T ,
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we can represent the full atmosphere as

� =
∑

j,m∈Z
�jm ωjm, (18)

where the summation of a vector has to be understood componentwise. Now (8) can
be written as

(A�)k(x, y) =
L∑

l=1

∑
j,m∈Z

�
(l)
jm ωjm(x + v(l)

x k�T , y + v(l)
y k�T )

=
∑

j,m∈Z

⎛
⎜⎜⎝

L∑
l=1

�
(l)
jm 2R · ωjm(j v(l)

x k�T , m v(l)
y k�T )︸ ︷︷ ︸

=:(Ajm)k,l

⎞
⎟⎟⎠ ωjm(x, y).

Denoting by ϕk
jm, k = 0, · · · , K, the Fourier coefficients of ϕk and by

ϕjm = (ϕ0
jm, · · · , ϕK

jm)T , (19)

we have

(A�)(x, y) =
∑

j,m∈Z
(Ajm�jm) ωjm(x, y) =

∑
j,m∈Z

ϕjm ωjm(x, y), (20)

and therefore the Fourier coefficients ϕjm of the wavefront can be computed from
the Fourier coefficients of the atmosphere layers �jm for each j and m by

ϕjm = Ajm�jm, (21)

i.e., the computation of the wavefronts (and therefore also the inverse operation)
decouples for each (j, m). This is also reflected in

Proposition 4 Let Ajm, ϕjm and �jm be defined as above. Then operator A can
be described in terms of its action on the Fourier coefficients of the turbulent layers
and the wavefronts as

⎛
⎜⎜⎝

...

ϕjm

...

⎞
⎟⎟⎠ = diag(Ajm)

⎛
⎜⎜⎝

...

�jm

...

⎞
⎟⎟⎠ (22)

where diag(Ajm) denotes a block diagonal matrix with the matrices Ajm on the
diagonal and zeros outside.
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Proof Follows directly from (21). ��
Please note that we are now in a similar situation as in [18], where the authors
consider a singular value decomposition of the standard atmospheric tomography
operator. Specifically, the operator A relates directly to the matrix diag(Ajm) and

ϕjm ∈ R
K ↔ ϕjm · ωjm(x, y) ∈ L2(
̄)K

�jm ∈ R
L ↔ Φjm · ωjm(x, y) ∈ L2(
̄)L.

For each of the matrices Ajm there exists a singular system, i.e., vectors vjm,n ∈
C

L, ujm,n ∈ C
K , and numbers σjm,n, n = 1, . . . , rjm ≤ min{L, K} that satisfy

Ajm�jm =
rjm∑
n=1

σjm,n〈vjm,n, �jm〉ujm,n (23)

〈vjm,l, vjm,n〉 = δln, 〈ujm,l, ujm,n〉 = δln

σjm,1 ≥ . . . ≥ σjm,rjm
> 0.

Here, rjm is the rank of the matrix Ajm and the σ 2
jm,n are the positive eigenvalues

of the matrices AH
jmAjm and AjmAH

jm, respectively. We obtain

Proposition 5 The operator A admits a singular value type decomposition

A� =
∑

j,m∈Z

( rjm∑
n=1

σjm,n〈vjm,n, �jm〉ujm,n

)
ωjm (24)

and the sequence {σjm,n : j, m ∈ Z, n = 1, . . . , rjm} are the singular values of A.
Further on,

A†ϕ =
∑

j,m∈Z

( rjm∑
n=1

〈ujm,n, ϕjm〉
σjm,n

vjm,n

)
ωjm (25)

and

N (A)⊥ = span{vjm,n · ωjm | j, m ∈ Z, 1 ≤ n ≤ rjk}. (26)

If the vectors v̂jm,n ∈ C
L, 1 ≤ n ≤ L − rjk , are a basis of N (Ajm), then the

nullspace of A is given as

N (A) = span{v̂jm,nωjm | j, m ∈ Z, 1 ≤ n ≤ L− rjk}. (27)

For a proof we refer to [18, pp. 844].
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Proposition 5 links the nullspace of the operator A to the nullspaces of the
matrices Ajm. Specifically, each rank deficient matrix Ajm contributes to the
nullspace of A. Please note that the matrices Ajm are closely related to the matrices
F (s) defined in (10). Specifically, replacing in F (s) in each matrix element s by
(j, m) and 2π by π

R
gives the matrix Ajm. In particular, Ajm also is a Vandermonde

matrix, and Proposition 1 holds accordingly for Ajm if s is replaced by (j, m) and
the right hand side of (28) is replaced by n · 2R

�T
. Additionally, (28) immediately

yields that all matrices Ajm are rank deficient if vl = vm for some m �= l, i.e., if at
least two of the layers move with the same speed and direction. We also conclude
from Proposition 1 that the matrix A00 has always rank 1, i.e., constant functions
on the layers cannot be reconstructed. Figure 7, plotting the rank of the Ajm, shows
that A has a nontrivial nullspace in the considered setting. In such a case, it is only
possible to reconstruct the atmosphere in a least squares sense. Please note that this
is not in contradiction to Proposition 3, as we are now in a periodic setting. We
summarize these results in

Proposition 6 Assume that for l, m = 1, · · · , L and l �= m holds vl �= vm.

(1) The matrix A00 has rank 1.
(2) Assume that for (j, m) �= (0, 0) holds for all n ∈ Z

〈vl − vm, (j, m)〉 �= n · 2R
�T

. (28)

Then the columns of Ajm are linearly independent if L ≤ K + 1 and linearly
dependent if L > K + 1.

If vl = vm holds for some l �= m, then all matrices Ajm are rank deficient.

3 Numerical Realization

3.1 Algorithm

In this paper we are only concerned with the reconstruction of the atmosphere,
and neglect the reconstruction of the wavefronts from sensor data as well as the
computation of the commands for the deformable mirrors.

We assume therefore that the wavefronts ϕk for times t0, t0 − 1�T , t0 −
2�T , · · · , t0 − K�T are given. The reconstruction algorithm is based on the
Fourier coefficients ϕk

jm of the wavefront (19) and its shifted versions, solving the
subsystems (21) and computing the atmosphere via (18). We recall the definition of
the matrices Ajm ∈ R

K+1,L as

(Ajm)k,l := 2R · ωjm(j v(l)
x k�T , m v(l)

y k�T ) (29)
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Clearly, the (Ajm) can be computed in advance for each j, m ∈ {−N0, · · · , N0−1}
where N0 is a cut-off index for the Fourier series. As mentioned above, the
reconstruction process reduces to the solution of a sequence of small matrix vector
systems, which can be done efficiently with standard solvers. For our numerical
tests, we used either the generalized inverse ofAjm or the conjugate gradient method
to compute a solution of each equation (21). Please note that whenever a matrix
Ajm is rank deficient, there is no hope to recover the original solution. Instead, we
compute a least squares solution.

Algorithm 1 Reconstruction algorithm for the atmosphere � at time t0
Choose cut-off index N0
Precompute Ajm for j, m ∈ {−N0, · · · , N0 − 1}
Compute ϕk

jm and cut off according to j, m ∈ {−N0, · · · , N0 − 1}
for j, m = −N0 . . . N0 − 1 do

�jm = solve(Aj,m, ϕjm)

end for

Compute � =
N0∑

j,m=−N0

�jm ωjm.

3.2 Test Setting

For our test computations we used the in-house developed software package MOST
to create an atmosphere, which produces a realistic atmosphere using a viable C2

n

profile modeling the strength of turbulence. For a first reconstruction, we use a 3-
layers atmosphere, see Table 1 for specifications. The telescope models the ELT of
the European Southern Observatory with radius R = 21m, whereas the atmosphere
is created on the square [−23.5; 23.5]2.

Proposition 3 suggests that we need at least K = L + 1 wavefronts as input
in order to reconstruct L layers. Thus we have chosen K = 4, i.e. 5 time steps of
length �T = 0.002 s as input data. The wavefronts ϕk , i.e., the data, are computed
by summation of the shifted atmosphere layers at time (t − k�T ), k = 0, · · · , K,

on the larger area. The quality of the reconstructed atmosphere will be estimated on
[−21; 21]2. Thus we avoid errors at the edges that arise from the periodic boundary

Table 1 Characteristics of the turbulent layers of the simulated 3-layers atmosphere. The C2
n

profile is a measure characterizing the amount of turbulence located on a specific layer

Height Speed Direction (x, y) C2
n-profile

1-Layer 0 m 40 m/s (−1,0) 50%

2-Layer 8000 m 15 m/s (1,−1) 25%

3-Layer 12,000 m 30 m/s (1,0) 25%
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Fig. 6 Reconstruction of the 3-layers atmosphere from exact data: the upper row shows the
original layer function, the lower row shows the reconstructed layer functions

conditions of wavefronts and layers. The cut-off index for the Fourier series for all
test cases was chosen as N0 = 80, which also resembles the physical fact that the
currently available wavefront sensors cannot resolve higher frequencies.

3.3 Reconstruction of a 3-Layers Atmosphere from Exact Data

As a proof of concept we only aim at the reconstruction of the 3-layers atmosphere
from undisturbed data ϕ0, · · · , ϕ4 according to Algorithm 1. Figure 6 displays
the reconstructed atmosphere as well as the original atmosphere. A first visual
inspection suggests a good reconstruction quality. However, please note that there
is an almost constant offset between the two reconstructions. The relative errors
between the original layers �(l) and the reconstructed layers Φ

(l)
rec on [−21; 21]2

are (8.8%, 2.1%, 12.9%) for l = 1, 2, 3, which is large given that we used exact
data. Again, the errors are largely due to the offset. A close inspection shows that
all the errors are created at indices (j, m) where the matrix Ajm is rank deficient:
in these cases, the method computes solutions that are perpendicular to N (Ajm),
a property that is in general not shared by the coefficients from the underlying
original atmosphere. Figure 7 displays the coefficients where Ajm is (numerically)
rank deficient.

To verify that the reconstruction of all the coefficients which are related to
matrices Ajm with full rank is correct we compared the reconstruction quality only
on the related set of Fourier coefficients: If we drop all coefficients (j, m) where
Ajm is rank deficient both in the original and the reconstructed layers, we obtain
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Fig. 7 Plot of the rank of the matrices Ajm vs indices (j, m). Yellow shows full rank (3), other
colors indicate rank deficiencies of the associated matrix

100

layer 1

200

200

300

400

400

500

600

600

700

800
800

100

layer 2

200

200

300

400

400

500

600

600

700

800

800

2

×10–6 ×10–6

1

1

0 0

0.5

–1

–1

–1.5

–0.5

1

0

0.5

–1

–1.5

–0.5

1

0

0.5

1.5

–1

–1.5

–0.5

–2

layer 3

200 400 600 800

×10–6

1

0

–1

200

200

400

400

600

600

800

800

200

400

400

600

600

800

800

200

200200

400

400

600

600

800

200

400

600

800

800

2

×10–6 ×10–6

×10–6

1

0

–1

–2

Fig. 8 Three-layers atmosphere from exact data restricted to Fourier coefficients for full rank
Ajm: The upper row shows the restricted original layer function, the lower row shows the restricted
reconstructed layer functions

a perfect reconstruction, see Fig. 8. In this case, the relative error between original
and reconstructed atmosphere is ≈ 10−23 and thus within the numerical accuracy.
This confirms that our proposed method is able to reconstruct a solution to the
atmospheric tomography problem at least on N (A)⊥.
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4 Summary and Future Work

In the previous sections we have developed and analyzed a method that recon-
structs the turbulence in the atmosphere above an earthbound telescope based on
measurements of incoming wavefronts at different time steps from a Natural Guide
Star. The underlying mathematical problem has been analyzed and a reconstruction
method has been developed. In future work, several important questions have to
be answered: First, appropriate regularization strategies for the inversion of our
tomography operator have to be developed. An option is, e.g., to regularize each
subsystem with matrix Ajm separately. In a second step, the reconstructions have to
be carried out using wavefront sensor measurements instead of wavefronts. Finally,
the whole algorithm has to be included into a more realistic simulation environment
like OCTOPUS from ESO in order to quantify the gain in imaging quality.
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and Roger Telschow

Abstract Single molecule localization microscopy is a recently developed super-
resolution imaging technique to visualize structural properties of single cells. The
basic principle consists in chemically attaching fluorescent dyes to the molecules,
which after excitation with a strong laser may emit light. To achieve superresolution,
signals of individual fluorophores are separated in time. In this paper we follow
the physical and chemical literature and derive mathematical models describing the
propagation of light emitted from dyes in single molecule localization microscopy
experiments via Maxwell’s equations. This forms the basis of formulating inverse
problems related to single molecule localization microscopy. We also show that the
current status of reconstruction methods is a simplification of more general inverse
problems for Maxwell’s equations as discussed here.
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1 Introduction

The structure and organization of proteins in cells relate directly to their biological
function. Many proteins associate with each other and form functional supramolec-
ular arrangements known as oligomers. Protein oligomers appear in a wide range of
crucial biological processes, such as signal transduction, ion transport or immune
reactions. The accurate characterization of the supramolecular organization of pro-
teins, including oligomer stoichiometry and its spatial distribution, is fundamental
to fully understand these biological processes.

Several tools address the study of the structure of small biological units,
most popular ones being x-ray crystallography and, most recently, cryo-electron
microscopy, which have been used to characterize the structure of individual
isolated proteins with a high level of detail [27, 31]. However, currently these tools
cannot be applied for studying quaternary protein assemblies in their native cellular
environment, due to a lack in chemical contrast: it is impossible to single out the
molecular structures of interest within the plethora of other molecular species. A
solution is provided by fluorescence microscopy, where a single protein species is
addressed by specific fluorescence labelling directly in the cell. While fluorescence
microscopy allows for imaging these labelled structures at a high signal to noise
ratio, its resolution is limited to around 200 nm due to the diffraction of light.
This prohibits a characterization of oligomeric arrangements with conventional light
microscopy, since these structures are smaller than the resolution limit. In summary,
the current life sciences are limited by a resolution gap, the upper limit of which
is set by the diffraction limit of fluorescence microscopy, the lower limit by the
difficulty to interpret crystallography experiments of oligomeric protein complexes.

In principle, the arrival of superresolution microscopy techniques allows to over-
come this gap. Virtually all superresolution techniques are based on fluorescence
microscopy, and as such have to overcome or circumvent the problem of optical
diffraction. A fluorescent label emits light that is imaged by the microscopy system
as a blurry dot. This dot of diffracted light is known as the point spread function
(PSF). Its size d (the diameter of the essential support of the PSF) is determined
by the light wavelength λ and by the numerical aperture (NA) of the objective. The
angle θmax is one half of the angular aperture (A). Neglecting lens aberrations, it
can be described analytically by an Airy function, where the distance between the
maximum and its first minimum is given by (see Eq. (96))

d = λ

2n sin(θmax)
= λ

2NA
with n the refractive index of the medium. (1)

The size of the PSF determines the limit of resolution of conventional light
microscopy. It was first described by Abbe [1], and it is known as Abbe’s limit
of diffraction: If two fluorescent labels are closer than the distance d, their
PSFs overlap, and they cannot be distinguished from each other. For fluorescence
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a b c

Fig. 1 Illustration of the limit of light diffraction. (a) Crystallographic structure of the human NPC
(pdb: 5A9Q) [34] viewed with NGL viewer [28]. (b) Simplification of the NPC structure showing
its eight symmetric units. (c) Representation of an ideal, diffraction-limited image of the structure
in (b)

microscopy, with wavelengths in the visible spectrum and objectives with numerical
apertures generally lower than 1.3, this resolution limit is in the order of 200 nm.

For oligomeric protein structures, the distance between their subunits is typically
in the range of a few nanometers, far smaller than the diffraction limit. The signals
from the individual subunits overlap, and cannot be resolved by conventional light
microscopy. A prominent example for such a structure is the nuclear pore complex
(NPC), which is a large protein complex located in the nuclear membrane of
eukaryotic cells. Its structure is well characterized through electron microscopy
[34]. NPCs are composed of around 30 proteins arranged in an 8-fold symmetry
forming a pore that regulates the transport across the nuclear membrane. The overall
size ranges approximately between 80 to 120 nm depending on the species [22]. As
we see in Fig. 1, even if only one protein in each symmetrical subunit is labelled,
diffraction leads to one blurry dot as the image of the complex, where we can neither
identify the number of subunits nor their spatial arrangement.

Great efforts have been made to overcome this barrier, but it was not until
the advent of superresolution microscopy that images with a resolution below the
diffraction limit could be obtained. As a key asset, superresolution microscopy tech-
niques circumvent Abbe’s limit of diffraction by utilizing photophysical properties
of the fluorescent labels: they keep adjacent molecules at different fluorescence
states, making it possible to differentiate them from each other. This is achieved
using different techniques that can be combined into two general approaches:

1. Techniques that use patterned illumination to control the fluorescence state of the
labels, selecting which of them emit at a given moment. This approach includes,
among others, Stimulated Emission Depletion (STED) [23, 24, 35], Reversible
Saturable Optical Fluorescence Transitions (RESOLFT) [18], Minimal Photon
Fluxes (MINFLUX) [4] or Saturated Structured IlluminationMicroscopy (SSIM)
[16] methods.

2. Techniques that use properties of the fluorescent labels to stochastically switch
their fluorescent state, so that neighbouring labels do not emit at the same
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time. These techniques are commonly termed Single Molecule Localization
Microscopy (SMLM) and include, among others, Stochastic Optical Recon-
struction Microscopy (STORM) [29], Photoactivated Localization Microscopy
(PALM) [6], and DNA- Points Accumulation for Imaging in Nanoscale Topog-
raphy (DNA-PAINT) [21]. In SMLM, the signals of the individual fluorophores
are sequentially localized and used to reconstruct an image with subdiffraction
resolution.

In this work, we focus on SMLM techniques, where the working principle is
described in Sect. 2. The objective of this paper is to derive mathematical models
of light propagation through the imaging device and to formulate associated inverse
problems. This sets the base for the formulation of the inverse problems of SMLM,
which concerns the localization of the fluorescent labels with high localization
precision and the reliable reconstruction of the imaged structures. We show that the
currently used imaging workflow in SMLM can be viewed as solving an inverse
problem for Maxwell’s equations (see Sect. 7). The inverse problem of SMLM
has been previously investigated. In [9], a model for light propagation based on
Maxwell’s equations is proposed and used to localize the positions and strengths of
fluorescent dipoles. The model also accounts for the effects of the detection optics
and employed a maximum likelihood reconstruction method. The inverse scattering
problem with internal sources was investigated in [13], as a means of achieving sub
wavelength resolution in SMLM. A local inversion formula was derived and the
inverse problem was shown to be well-posed.

2 Single Molecule Localization Microscopy (SMLM)

Principle of SMLM

An SMLM experiment starts with the labelling of the proteins of interest with a
fluorophore. There are different strategies for labelling, depending on the type of
fluorescent probe, the molecule of interest, and its location in the cell. It should be
taken into account that no labelling strategy is perfect, and labelling efficiency will
likely be below 100%. In addition, the size of the probe or of the attachment of
the linker molecule, in the cases were an intermediate is necessary, can affect the
accuracy of the measurement. The influence of these aspects will be addressed in
later sections in more detail.

During an SMLM measurement, the experimental conditions are tuned such
that most of the fluorophores are in their dark state, and in each frame, a small
subset of them is stochastically activated. The active fluorophores are sufficiently
isolated from each other so that their PSFs do not overlap. After some time
these fluorophores switch to a dark state, and a new subset of fluorophores is
stochastically activated. This is repeated thousands of times, to ensure the collection
of signals from enough fluorophores. We can see a scheme of an ideal experiment
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t=1 t=2 t=3

Time

Diffraction limited Recording of SMLM frames Reconstructed image

Fig. 2 Scheme of an ideal SMLM experiment. In a classical diffraction-limited image, all the
fluorophores are active, and the structure underneath—in this example an NPC—is unresolvable.
In contrast, in an SMLM experiment only a sparse subset of fluorophores is active per image. In the
first frame (t = 1) of this exemplary SMLMmovie, only one fluorophore is active, while the others
remain in their dark state. The PSF of this fluorophore, can be fitted mathematically, which yields
the fluorophore localization. In t = 2, the first fluorophore returns to its dark state, and another
fluorophore is activated and can now be localized. This is repeated until all fluorophores have been
localized. All localizations are collected in a final reconstructed image, which corresponds to the
structure shown in Fig. 1b

in Fig. 2. The necessity for sparse labels per image and for enough localizations
to reconstruct the structure results in movies with tens of thousands of frames.
After data collection, all signals in all frames are fitted individually to obtain the
coordinates of the fluorescent probes. All localizations are then collected and used
to reconstruct a superresolution image.

The fluorophores used in SMLM are able to spontaneously change their fluo-
rescence state. This property is commonly known as photoswitching or blinking.
One dark-bright-dark cycle is usually called a blink. Photoswitching mechanisms
are different for different kinds of probes and can be the result of conformational
changes in the dye molecule, chemical changes, or binding events. Typically, a
combination of light illumination and the choice of special chemical conditions is
used for deactivation, i.e. the transitions to a long-lived dark state. The activation,
i.e. the transition back from this state, is usually light-induced, although other
phenomena may apply (for example, binding events in the case of DNA-PAINT
microscopy). An extensive review of available SMLM fluorophores and their
properties can be found in [26].

In an ideal experiment, each fluorophore undergoes exactly one blink, in which
it emits a high number of photons, and it remains in a dark state for the rest of the
measurement. Commonly, however, fluorophores undergo multiple blinking events,
or remain inactive during the whole imaging procedure. These non-ideal behaviours
directly influence the quality of the final image, and they should be considered when
analysing the data, as will be detailed in the next sections. The emission behaviour
of a fluorescent label, and therefore the quality of the collected data, will depend
largely on the kind of fluorophore used, the labelling strategy followed, and the
environmental conditions of the fluorophore [25].
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Fitting of Localizations

In an SMLM experiment, thousands of individual frames are recorded. Obtaining
the final image requires post-processing of the recorded raw data. All blinking
events are analyzed and the positions of the molecules are determined by fitting
their signals. A variety of algorithms and software packages exist that can be
applied to analyze the data [30]. Often, a Gaussian function is fitted to the detected
intensity data using a maximum likelihood or least squares method. The coordinates
of the center of the Gaussian peak are then taken as the position of the molecule.
Finally, the localizations obtained from all recorded frames are combined to yield
the reconstructed image.

Localization Error and Bias

The achievable resolution in SMLM depends on how well the position of a molecule
can be estimated by fitting its PSF. The fitting procedure is influenced by various
factors of signal quality, including brightness, background noise and the pixel size
of the detector. The error in the estimation of the molecule position follows a normal
distribution. Its standard deviation is referred to as localization precision σloc. The
mean of the error distribution is the localization accuracy μloc. In the optimal case, it
holds that μloc = 0, i.e. the estimation is unbiased. However, in practice a bias in the
localization procedure may be present, e.g. due to distortions of the PSF. A bias may
also arise from the labeling procedure. The size of some labels itself can be rather
large, which displaces the position of the fluorophore from the actual molecule of
interest by up to tens of nanometers. Various formulas for the estimation of the
localization precision σloc have been proposed in the literature [10]. The theoretical
limit for the best achievable localization precision is given by the Cramér-Rao lower
bound (CRLB), which is critically dependent on the collected number of photons
[32].

Blinking and Overcounting

In SMLM, fluorophores switch between a fluorescent on-state and a non-fluorescent
off-state. The transitions between the two states occur stochastically. Ideally, each
fluorophore is detected exactly once during the whole imaging procedure, i.e. it is
in the on-state in exactly one frame.

However, this is unlikely in a real experimental situation. Due to the stochastic
nature of transitions between the states, fluorescent dyes can stay in the on-
state for several consecutive frames and, moreover, repeatedly switch between the
on- and the off-state. Thus, a single molecule may be detected multiple times.
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Fig. 3 Exemplary time trace for a fluorophore. The fluorophore can switch between a dark off-
state and a bright on-state. Indicated are the on- and off-time (ton, toff), representing the number
of consecutive frames the molecule is in its bright or dark state, respectively, and the number of
detections N

However, the position coordinates assigned to each detection slightly differ due
to localization errors. Hence, it is not possible to distinguish whether localizations
belong to one blinking molecule or to different molecules. Overcounting of single
protein molecules may also occur as a consequence of non-stoichiometric labeling:
Depending on the labeling procedure, a single molecule of interest does not
necessarily carry one fluorescent dye only, but may be linked to multiple dyes.

The problem of overcounting is depicted in Fig. 5. Here, individual molecules of
the NPC are assumed to be detected multiple times during the imaging procedure,
leading to a misrepresentation of the actual structure.

Blinking statistics can be determined experimentally by labeling at sufficiently
low concentrations of the dye, so that localizations from individual molecules of
interest can be well separated. Analysis of the acquired localization data allows to
determine statistics for the number of detections of individual molecules of interest,
the duration of emission bursts (ton) and the duration of dark times (toff). In Fig. 3, a
schematic of a time trace of occupied states for an individual molecule is shown. An
exemplary result for the blinking statistics of a fluorescent dye is depicted in Fig. 4.

A simple approach to account for multiple detections of the same molecule is to
merge localizations that occur in close spatial and temporal proximity [2]. However,
the results of this method highly depend on the chosen thresholds. Moreover, it
cannot account for long-lived dark states. Other post-processing algorithms rely
on experimentally derived blinking statistics in order to correct for overcounting.
However, care must be taken here, because photophysics of fluorophores, in
particular blinking, depends on the local environment of the dye and may likely vary
under different experimental conditions [25]. An overview over different methods
for correcting overcounting artifacts is given in [5].
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Fig. 4 Experimentally derived blinking statistics for Alexa Fluor 647, a commonly used fluo-
rophore for SMLM. Shown are histograms for the number of detections N of a single fluorophore
(a), the on-time ton (b), and the off-time toff (c)

Forward Simulation of SMLM Localization Maps

In the following, we describe the main steps in the simulation of localization maps
obtained by a 2D SMLM experiment. Figure 5 shows simulation results of the
spatial arrangement for the example of NPCs.

The actual question of interest is the structural arrangement of molecules in a
cell membrane. The first step in the simulation is therefore to spread the position
of molecules on the region of interest according to the desired distribution. For
example, the molecules can be spread randomly, in clusters, or as oligomers of a
certain shape. The assigned positions represent ground truth.

As a second step, the simulated molecules are fluorescently labeled. In real
experimental conditions, not all molecules of interest are detected: some proteins
are not bound to a dye, or the dye is never detected during the imaging time. In
the simulations this is accounted for by adjusting the mean labeling efficiency,
a parameter in the interval [0, 1] that determines the mean fraction of molecules
observed in the experiment. Labeled molecules are selected randomly from all
simulated molecules according to the chosen distribution.
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a Molecules b Labels c Localizations

Fig. 5 Simulation of a SMLM experiment for the nuclear pore complex (NPC). (a) True spatial
arrangement of molecules. The distance between two neighboring molecules of the NPC was set
to 40 nm. The molecules are labeled with fluorescent probes. (b) with a labeling efficiency of 80%.
The SMLM experiment was simulated with a localization precision of σloc=5 nm, and the blinking
statistics from Fig. 4. (c) Obtained localization map. Due to overcounting and the finite localization
precision, individual molecules are observed multiple times

Next, overcounting has to be included in the simulation. As described above,
a protein molecule can be detected multiple times during the whole imaging
procedure. To account for this in the simulations, the number of detections of each
molecule of interest, the frame of its first appearance and the duration of on- and off-
times are included. For each labeled molecule, these variables are drawn randomly
either from experimentally acquired blinking statistics or from specified theoretical
distributions. This allows to assign to each molecule a list of those frames, in which
it is detected.

The last step in the simulation is to account for measurement errors. For each
detection of a molecule, its true simulated position is displaced by adding a
localization error, which is drawn randomly from a normal distribution. The mean
and the standard deviation of the error distribution correspond to the localization
accuracy and localization precision, respectively. Ideally, the mean value is zero,
i.e. the localization is accurate. However, inaccuracy may occur, e.g. due to certain
properties of the labeling procedure [10]. Localization precision depends mainly
on the collected number of photons and background noise. Typical values that are
achieved in SMLM experiments are commonly around 10 nm, but precisions of 1 nm
have been claimed.

The final result of the simulation is the localization map, i.e. a list of localization
coordinates with the according frame numbers of detection. An exemplary simulated
localization map for the NPC is shown in Fig. 5. The obtained localizations are the
basis for further analysis.

In the next section we model the experiment mathematically. In order to do so
we summarize essential notation first in Table 1.
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Table 1 Physical parameters used in the paper and dimensions

Symbol Description Reference Relations Units

d0 Maximum thickness of lens m

d Thickness of lens (function
of height)

Fig. 8 m

fL Focal length of the tube lens Fig. 8 m

fobj Focal length of the objective Fig. 8 m

λ Wavelength Eq. (1) m

n = 1 Refractive index in vacuum Eq. (1) −
nl Refractive index of lens Eq. (88) −
d Resolution limit Eq. (1) m

NA Numerical aperture Eq. (1) d = λ
2NA −

θmax ∈ [0, π/2) Angle of aperture Eq. (1) NA = n sin(θmax) −
ε0 Electric permittivity (vac.) Eq. (12) F/m

μ0 Magnetic permeability
(vac.)

Eq. (13) H/m Henries per m

ω Wave frequency Hz = 1/s

c Light speed (vac.) Eq. (22) m/s

κ , κε Wave number Eq. (22) κ = ω
c
= 2π

λ
1/m

χ Susceptibility Eq. (21) −
� Dipole Eq. (36)

�p , �s Dipole components Eq. (58)

3 Mathematical Prerequisites

In what follows we summarize some basic mathematical framework:

3.1 Distributions

In order to define distributions (generalized functions) we need to introduce
appropriate function spaces first:

Definition 1 The Schwartz-space of functions from Rn to C is defined as

S(Rn;C) :=
{
φ ∈ C∞(Rn;C) : for all α, β ∈ Nn

0, ‖φ‖α,β := sup
x∈Rn

∣∣xα∂βφ(x)
∣∣ <∞

}
.

(2)
Accordingly the Schwartz-space of vector valued functions is defined by

S(Rn;Cm) := {
� ∈ C∞(Rn;Cm) : �i ∈ S(Rn;C), i = 1, . . . , m

}
. (3)
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The space of linear functionals T : S(Rn;Cm)→ C for which there exist k, l ∈ N0
and some C > 0 such that for all � ∈ S(Rn;Cm) the following inequality holds

|〈T , �〉| := |T �| ≤ C

m∑
i=1

∑
|α|≤k,|β|≤l

‖�i‖α,β (4)

is called space of tempered distributions and is denoted by S′(Rn;Cm).

Definition 2 (Causal Distribution) A tempered distribution T ∈ S′(Rn−1×R;C)

is called causal if its support in time is included in [0,+∞). That is T is causal if
and only if for all test functions φ ∈ S(R×Rn−1;C) which satisfy

φ(x, t) = 0 for all t � 0, x ∈ Rn−1,

we have

〈T , φ〉 = 0.

For causal distributions, the quantity | 〈T , φ〉 | can be estimated as follows.

Lemma 1 Let T ∈ S′(Rn−1×R;C) be causal. Then, there exists a constant C > 0
(which depends only on l) such that for all test functions φ ∈ S(Rn−1 ×R;C) the
following estimate holds:

|〈T , φ〉| � C sup
|α|≤k,|β|≤l

sup
t�−1
x∈Rn−1

|(x, t)α∂βφ(x, t)|. (5)

Proof Let ' be a C∞(R;R) cut-off function, that satisfies '(t) = 1 for t � 0 and
'(t) = 0 for t � −1. Then, for all test functions φ ∈ S(Rn−1 × R;C), we define
ψ = 'φ. For t � 0, we have ψ − φ = 0, which means, since T is causal, that
〈T , ψ − φ〉 = 0, or in other words,

〈T , φ〉 = 〈T , ψ〉 . (6)

Now, let us use the definition of tempered distribution for T : there exist k, l ∈ N0
and C̃ > 0 such that

| 〈T , ψ〉 | � C̃ sup
|α|�k,|β|�l

sup
(x,t)∈Rn−1×R

|(x, t)α∂βψ(x, t)|. (7)

Now, the function ψ has support in Rn−1 × [−1,+∞), which means that the last
inequality can be rewritten as

| 〈T , ψ〉 | � C sup
|α|�k,|β|�l

sup
(x,t)∈Rn−1×[−1,+∞)

|(x, t)α∂βψ(x, t)|.
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Finally, denoting β = (βt , βx1 , · · · , βxn−1), one can expand

∂βψ =
βt∑

i=0

(
βt

i

)
'(i)(t)∂

(βt−i,βx1 ,··· ,βxn−1 )
φ(x, t).

Since the function ' is fixed (independent of φ), the quantity

Cl = sup
i�l

sup
t∈R
|'(i)(t)|

is finite and independent of φ and we have

|∂βψ(x, t)| � 2lCl sup
|β|≤l

|∂βφ(x, t)|

and we can finally conclude, taking the supremum on t � −1, that

sup
|α|�k,|β|�l

sup
(x,t)∈Rn−1×[−1,+∞)

|(x, t)α∂βψ(x, t)|

� 2lCl sup
|α|�k,|β|�l

sup
(x,t)∈Rn−1×[−1,+∞)

|(x, t)α∂βφ(x, t)|.

Since ψ has a support included in [−1,+∞), one can in the left-hand side of the
inequality take the supremum over t ∈ R. Plugging this inequality into Eq. (7) and
recalling Eq. (6), we get Eq. (5). ��

We need to notationally differ between δ-distributions in different dimensions:

Definition 3 (δ-Distributions) δ : R3 → R denotes the three-dimensional δ-
distribution. δ̃ : R → R denotes the one-dimensional δ-distribution. For r0 ∈ R,
δ̃r0 : R → R is defined by δ̃r0(r) = δ̃(r − r0) for all r ∈ R. δ̃′ : R → R denotes
the derivative of the one-dimensional δ-distribution.

3.2 Fourier- and k-Transform

The most important mathematical tool in this paper is the Fourier-transform:

Definition 4 (Temporal Fourier-Transform) Let T ∈ S′(R × Rn−1,C). We
define its Fourier-transform T̂ by its action on a test function φ ∈ S(R×Rn−1,C)

〈
T̂ , φ

〉 :=
〈
T , φ̌

〉
(8)

where
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φ̌(t) := 1√
2π

∫ ∞
ξ=−∞

eiξ tφ(ξ) dξ.

As defined, the operator T �→ T̂ is well defined and continuous from S′(R ×
Rn−1,C) into itself [15] with inverse T �→ Ť with for all test functions φ,

〈
Ť , φ

〉
:= 〈

T , φ̂
〉

where

φ̂(ξ) := 1√
2π

∫ ∞
t=−∞

e−iξ tφ(t) dt

is the Fourier-transform on the Schwartz space (it coincides with the one given in
Eq. (8)).

The Fourier-transform in spatial variables is called the k-transform:

Definition 5 (k-Transform) Let r =
⎛
⎝

r1

r2

r3

⎞
⎠ ∈ R3, and k =

⎛
⎝

k1

k2

k3

⎞
⎠ ∈ R3.

• For i ∈ {1, 2, 3}, let us denote k̃(i) =
⎛
⎝

k̃1

k̃2

k̃3

⎞
⎠ ∈ R3, where k̃j =

{
rj if j �= i

ki if j = i
, for j ∈ {1, 2, 3} .

The k-transform of the Fourier-transform of V : R3 → C3 in direction xi , is
defined by

Fi[V](k̃(i)) := 1√
2π

∫
R

e−iki riV(r)dri .

• For i, î ∈ {1, 2, 3}, let k̃(i,î)=
⎛
⎝

k̃1

k̃2

k̃3

⎞
⎠ ∈ R3, where k̃j =

{
rj if j �= i and j �= î

ki if j = i or j = î
,

for j ∈ {1, 2, 3} .
The k-transform of the Fourier-transform of V : R3 → C3 in direction (xi, xj )

is defined by

Fij [V](k̃(i,j)) := 1

2π

∫
R

∫
R

e−i(ki ri+kj rj )V(r)dridrj .
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• The k-transform of the Fourier-transform of V : R3 → C3 in all three directions
is defined by

F[V](k) := F1[F2[F3[V]]](k) = 1

(2π)
3
2

∫
R3

e−ik·rV(r)dr.

Remark 1 From Definition 3 it follows that for r0 ∈ R3 fixed

F[r→ δ(r− r0)](k) = 1

(2π)
3
2

e−ik·r0 . (9)

3.3 Coordinate Systems

Definition 6 (Spherical Coordinates) Associated to r =
⎛
⎝

r1

r2

r3

⎞
⎠ ∈ R3 is the polar

coordinate representation (r = |r| , θ, ϕ) ∈ [0,∞)× [0, π ] × [0, 2π) such that

r = r

⎛
⎝
sin(θ) cos(ϕ)

sin(θ) sin(ϕ)

cos(θ)

⎞
⎠ . (10)

4 Mathematical Modeling of Light Propagation

We consider an optical single molecule localization microscopy experiment. There-
fore a mathematical modeling of the light propagation via Maxwell’s equations is
appropriate: We consider macroscopic Maxwell’s equations (in SI units), in order
to model the interaction of the incoming light with the sample. These equations
describe the time evolution of the electric field E : R3×R→ R3 and the magnetic
field B : R3×R→ R3 for a given charge density ρ : R3×R→ R and an electric
current J : R3 ×R→ R3:

∇r·D(r; t) = ρ(r, t), r ∈ R3, t ∈ R, (11a)

∇r·B(r; t) = 0, r ∈ R3, t ∈ R, (11b)

∇r×E(r, t) = −∂tB(r; t), r ∈ R3, t ∈ R (11c)

∇r×H(r; t) = ∂tD(r; t)+ J(r; t), r ∈ R3, t ∈ R. (11d)
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Here

D ≡ ε0E+ P (12)

denotes the electric displacement and

H ≡ 1

μ0
B−M (13)

denotes the effective magnetic field, related to the electric andmagnetic polarization
fields P and M, respectively. All along this paper the differential operators ∇r, ∇r·,
∇r×, � are meant with respect to the variables r. More background on modeling of
electromagnetic wave propagation can be found in [20].

In the following we make a series of assumptions for simplifying Maxwell’s
equations:

4.1 Material Properties

Biological specimens as we are considering in single molecule localization
microscopy experiments can be assumed to be non-magnetizable:

Assumption (Non-Magnetizeable Medium) A medium is non-magnetizable if

M(r; t) = 0 for all r ∈ R3, t ∈ R. (14)

��
Remark 2 In single molecule localization microscopy experiments, fluorescent
dyes are attached to molecules of interest and upon excitation of the probe with
a strong laser impulse they emit light. The mathematical modeling of this process is
omitted and we are considering only the influence on a macroscopic level, meaning
that charge density and currents are induced. A detailed mathematical modeling
of the chemical processes would require a modeling with microsopic Maxwell’s
equations, which is omitted here for the sake of simplicity. In a similar context
microscopic Maxwell’s equations have been considered in Optical Coherence
Imaging in [11].

On a macroscopic level, from Eqs. (11a)–(11d) it follows from Assumption 4.1
that

∂tρ(r; t) = −∇r· J(r; t) for all r ∈ R3, t ∈ R. (15)

Taking into account Assumption 4.1 and combining Eqs. (11c) and (11d) we
obtain the vector Helmholtz equation for the electric field E:



338 M. Lopez-Martinez et al.

∇r×∇r×E(r; t)+ 1

c2
∂ttE(r; t) = − 1

ε0c2
∂ttP(r; t)− 1

ε0c2
∂tJ(r; t) for all r ∈ R3, t ∈ R

(16)

where μ0ε0 = 1/c2, with c being the speed of light in vacuum.

Remark 3 If the right-hand side of Eq. (16) vanishes then E describes the propaga-
tion of the electric field in vacuum. The right-hand side models the interaction of
light and matter and the effect of the external charges.

Equation (16) is understood in a distributional sense. That means that for every
� ∈ S(R3;R3) and � ∈ S(R;R3), and with � ⊗ � ∈ S(R3 × R;R3) denoting
the vector valued function consisting of componentwise multiplication,

〈E, (∇r×∇r×�)⊗�〉 +
〈
E,

1

c2
�⊗ ∂tt�

〉
= −

〈
P,

1

ε0c2
�⊗ ∂tt�

〉
+

〈
J,

1

ε0c2
�⊗ ∂t�

〉
.

(17)

4.2 Linear Optics

In linear optics one assumes a linear relation between the electric polarization P and
the electric field E.

Assumption (Polarization Response Function in Linear Optics) P and E satisfy
the linear relation,

P(r; t) = ε0

∫ ∞
τ=−∞

T(r; t, τ )E(r, τ )dτ, (18)

where (t; τ) → T(r; t, τ ) ∈ R3×3 is a matrix valued function that averages the
electric field over time. T is called the (linear) polarization response function. For
fixed r the matrix valued function (t; τ) ∈ R2 → T(r; t, τ ) ∈ R3×3 is supposed to
satisfy the following assumptions:

Causality No polarization is observed before the field is induced, i.e.

T(r; t, τ ) = 0, for all t ≤ τ.

Time invariance means that (t; τ)→ T(r; t, τ ) is just a function of t − τ . That
is, we can write

T(r; t − τ) = T(r; t, τ ), for all t, τ ∈ R.
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Here we use a slight abuse of notation and identify notationally the two functions
T on the left-hand side and right-hand side.

��
Remark 4 Let Assumption 4.2 hold, then T(r; t − τ) = 0 for t ≤ τ .

We now move on to the Fourier-Laplace domain. In order to do so we postulate
causality assumptions, which we assume to hold all along the remaining paper:

Assumption (Causality) The functions J,P,E (and thus in turn ρ, D, H) are
meaning that

J(t; r) = P(t; r) = E(t; r) = 0 for all t < 0, r ∈ R3. (19)
��

Let Assumption 4.2 hold (in particular we assume that T is time invariant and
causal), and assume that J,P,E are causal, then from the Fourier convolution
theorem it follows that

P̂(r;ω) = ε0χ(r;ω)Ê(r;ω), for all r ∈ R3, ω ∈ R, (20)

where

χ(r;ω)=
∫ ∞

τ=−∞
T(r; τ)e−iωτ dτ =√2πT̂(r;ω)∈C3×3 for all r∈R3, ω∈R,

(21)

is called the linear electric dipolar susceptibility.
We denote the wave number by

κ(ω) := ω

c
and more general κε := κε(ω) = ω + iε

c
for all ε > 0. (22)

The application of the Fourier-transform to the vector Helmholtz Equation (16)
gives the following equation for the Fourier-transform Ê : R3 × R → C3 of the
electric field:

∇r×∇r× Ê(r;ω)− κ2(ω)Ê(r;ω) = 1

ε0
κ2(ω)̂P(r;ω)− iω

ε0c2
Ĵ(r;ω), for all r ∈ R3, ω ∈ R

and consequently by using Eq. (20) we get

∇r×∇r× Ê(r;ω)− κ2(ω)(I+ χ(r;ω))Ê(r;ω) = − iω

ε0c2
Ĵ(r;ω) for all r ∈ R3, ω ∈ R,

(23)

where I ∈ R3×3 is the identity matrix.
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4.3 Isotropic Media

Additional simplifications of Maxwell’s equations can be made when the medium
is assumed to be isotropic:

Assumption (Isotropic Medium) Let Assumptions 4.1 and 4.2 hold. The medium
is isotropic if the susceptibility is a multiple of the identity, that is it can be written
as χ(r; t)I ∈ C3×3 with χ(r; t) ∈ C. With a slight abuse of notation, we identify
the diagonal matrix and the diagonal entry. ��

4.4 Homogeneous Material

We consider an isotropic, non magnetizable material with a linear polarization
response (that is, Assumptions 4.1, 4.2, and 4.3 are satisfied), which in addition is
homogeneous:

Assumption (Homogeneous Material) An isotropic, non magnetizable material
with a linear polarization response is homogeneous if χ ≡ 0. ��
For a homogeneous material (that is χ ≡ 0) it follows from Eq. (23) that

− iω

ε0c2
Ĵ(r;ω) = ∇r×∇r× Ê(r;ω)− κ2(ω)Ê(r;ω). (24)

Thus, by using the vector identity

∇r×∇r× Ê = ∇r ∇r· Ê−�rÊ,

we get from Eq. (24)

− iω

ε0c2
Ĵ(r;ω) = ∇r ∇r· Ê(r;ω)−�rÊ(r;ω)− κ2(ω)Ê(r;ω). (25)

Now, by using Eq. (12) and the assumption on homogeneity, χ ≡ 0, which together
with Eq. (20) implies that P ≡ 0, we get

D = ε0E+ P = ε0E.

This, together with Eq. (25) shows that

− iω

ε0c2
Ĵ(r;ω) = 1

ε0
∇r ∇r· D̂(r;ω)−�rÊ(r;ω)− κ2(ω)Ê(r;ω). (26)

Now, by using Eq. (11a) in Fourier domain we get from Eq. (26)
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− iω

ε0c2
Ĵ(r;ω) = 1

ε0
∇r ρ̂(r;ω)−�rÊ(r;ω)− κ2(ω)Ê(r;ω). (27)

Finally, by using Eq. (15) in Fourier domain,

iωρ̂ = −∇r· Ĵ(r;ω) (28)

in Eq. (27) we get

− iω

ε0c2
Ĵ(r;ω) = − 1

iωε0
∇r ∇r· Ĵ(r;ω)−�rÊ(r;ω)− κ2(ω)Ê(r;ω).

In other words, we have for every r ∈ R3, ω ∈ R

�rÊ(r;ω)+ κ2(ω)Ê(r;ω) = i

ε0

(
ω

c2
+ 1

ω
∇r ∇r·

)
Ĵ(r;ω)

= iω

ε0c2
Ĵ(r;ω)+ 1

ε0
∇r ρ̂(r;ω).

(29)

For any τ ∈ R, a solution of the nonhomogeneous Eq. (29) is given by (see [33]):

Ê(r;ω) = τ Ê+(r;ω)+ (1− τ)Ê−(r;ω) for all r ∈ R3, ω ∈ R, where

Ê±(r;ω) := −
∫
R3

G±ω (r, r′)
(

iω

ε0c2
Ĵ(r′;ω)+ 1

ε0
∇r ρ̂(r′;ω)

)
dr′

(30)
with Green’s functions:

G±ω (r, r′) = e±iκ(ω)|r−r′|
4π |r− r′| . (31)

The physically meaningful solution is, as we motivate below, a convolution with
the retarded Green’s function G+ω : That is, the retarded solution of the Helmholtz
Equation (23) is given by Eq. (30) with τ = 1 (see [33]):

Ê(r;ω) = −
∫
R3

G+ω (r, r′)
(

iω

ε0c2
Ĵ(r′;ω)+ 1

ε0
∇r ρ̂(r′;ω)

)
dr′. (32)

Remark 5 With a slight abuse of notation we identify G+ω with Gω and Ê+ω with Êω,
since we are only interested in the retarded solutions.
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5 Attenuating Solution and Initial Conditions

Definition 7 (Attenuating and Causal Solution of Eq. (23)) Let ε > 0 and
κε(ω) = ω+iε

c
as defined in Eq. (22).

• Then, we call Êε the approximate attenuating solution of Eq. (23) if it satisfies
the equation

∇r×∇r× Êε(r;ω)− κ2
ε (ω)(I+ χ(r;ω))Êε(r;ω) = − iω − ε

ε0c2
Ĵε(r;ω),

(33)

where non-attenuating solution and attenuating solution is related by Eq. (35).
• We call Êε a causal attenuating solution of Eq. (23) if Eε (the inverse Fourier-

transform of Êε) is a causal distribution.

In the following we show that Êε approximates the retarded solution of the vector-
Helmholtz Equation (32) in a distributional sense:

Theorem 1 For every ε > 0, let Êε be the solution of Eq. (33), the causal
attenuating wave equation, and let Ê be the retarded solution of Eq. (23), which
is given by Eq. (32), then

Êε
S′−−→

ε→0
Ê. (34)

Proof We define for all t ∈ R, r ∈ R3,

Eε(r; t) = αε(t)E(r; t) where αε(t) := e−εt . (35)

Because E is causal, Eε is a tempered distribution and since Ê is a solution of
Eq. (23), it follows that for all ε > 0, Êε is a solution of Eq. (33) and in particular

it is also causal. We show that Eε
S′−−→

ε→0
E and because the Fourier transform (see

Eq. (8)) is a bounded operator on S′(R3 × R;R3) (see [15, Theorem 5.17]), the
assertion, Eq. (34), then follows.

To prove that Eε
S′−−→

ε→0
E, we need to show that for all � ∈ S(R3 × R;R3),

〈Eε, �〉 → 〈E, �〉 . Noting that 〈Eε, �〉 = 〈E, αε�〉, we therefore need to show
that 〈E, �− αε�〉 → 0. Lemma 1 shows that, because E is causal, one can write

|〈E, �− αε�〉| � C sup
α�k,β�l

sup
t�−1

|tα∂
β
t (�− αε�)(t)|.

Now, note that for all β ∈ N0 and all t ∈ R,
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∂
β
t

[
(e−εt − 1)�(t)

] = −∂
β
t �(t)+

β∑
i=0

(
β

i

)
(−ε)ie−εt ∂

β−i
t �(t)

= (e−εt − 1)∂β
t �(t)+ εAε(t)e

−εt .

where Aε is a polynomial (with coefficients uniformly bounded with ε) in the
derivatives of � up to the order β − 1. Since the derivatives of � are Schwartz
functions, supt�−1 |tαAε(t)| is then uniformly bounded in ε, which implies

lim
ε→0

sup
t�−1

∣∣tαεAε(t)e
−εt

∣∣ = 0.

Now, B(t) := ∂
β
t � is also a Schwartz function, which means that for every k ∈ N0

there exists Ck such that supt |(tk+2 + 1)B(t)| � Ck . It then follows that for all
t � −1,

∣∣tα(e−εt − 1)B(t)
∣∣

=
∣∣∣∣

tα

tα+2 + 1
(e−εt − 1)(tα+2 + 1)B(t)

∣∣∣∣ � Cα sup
t�−1

∣∣∣∣
tα(e−εt − 1)

tα+2 + 1

∣∣∣∣ ,

where the last supremum converges to zero with ε→ 0. Therefore we conclude that

lim
ε→0

sup
t�−1

∣∣∣tα∂
β
t ((e−εt − 1)�(t))

∣∣∣ = 0,

which means 〈E, �− αε�〉 → 0. ��

5.1 Dipoles

The emission of fluorescent dyes will be modeled as dipoles.

Definition 8 (Emitting Dipole) An emitting dipole is a vector � = (
�1 �2 �3

)T
,

which is associated to a point r� in space; |�| is called charge intensity and �
|�|

can be represented in spherical coordinates (θm, ϕm) ∈ S
2. Both notations are used

synonymously and called the orientation of the emitting dipole. That is

� =
⎛
⎝

�1

�2

�3

⎞
⎠ =

⎛
⎝
|�| sin(θm) cos(ϕm)

|�| sin(θm) sin(ϕm)

|�| cos(θm)

⎞
⎠ . (36)
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The limiting density of a dipole at position r� =
⎛
⎝

0
0
r�3

⎞
⎠ ∈ R3 is defined as a

generalized function in space

ρ̂(r) := |�| lim
s→0+

δr�−s �
|�|

(r)− δr�+s �
|�|

(r)

2s
for all r ∈ R3. (37)

That is, in mathematical terms, the dipole charge is the directional derivative of a
three-dimensional δ-distribution in direction − �

|�| . Moreover, we denote by

Ĵ(r;ω) := iω�δ(r−r�) (38)

the dipole current (which is frequency dependent).
In what follows we assume that the emitting dipole is a unit-vector (that is |�| =

1), which simplifies the considerations and the notation.

Lemma 2 Let Ĵ and ρ̂ be as defined in Eqs. (38) and (37), respectively and satisfy
Eq. (28). Then

R̂(r;ω) := iω

c2
Ĵ(r;ω)+ ∇r ρ̂(r;ω) (39)

satisfies

R̂(r;ω) = −ω2�

c2
δ(r−r�)

−
⎛
⎝

�1δ̃
′′(x1)δ̃(x2)δ̃(x3)+�2δ̃

′(x1)δ̃′(x2)δ̃(x3)+�3δ̃
′(x1)δ̃(x2)δ̃′(x3)

�1δ̃
′(x1)δ̃′(x2)δ̃(x3)+�2δ̃(x1)δ̃

′′(x2)δ̃(x3)+�3δ̃(x1)δ̃
′(x2)δ̃′(x3)

�1δ̃
′(x1)δ̃(x2)δ̃′(x3)+�2δ̃(x1)δ̃

′(x2)δ̃′(x3)+�3δ̃(x1)δ̃(x2)δ̃
′′(x3)

⎞
⎠ ,

(40)
where (x, x3)

T := r−r� , wherer� denotes the dipole position.

Proof Taking into account that the three-dimensional δ-distribution can be written
as

δr�±s�(r) =
3∏

j=1
δ̃(r� )j±s�j

(rj ) =
3∏

j=1
δ̃(rj − (r�)j ∓ s�j )

we find

ρ̂(r;ω)=−
3∑

i=1
�i(δ̃(r� )i

)′(ri )
∏
j �=i

δ̃(r� )j
(rj ) = −

3∑
i=1

�iδ̃
′((r−r�)i)

∏
j �=i

δ̃((r−r�)j )
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and we get

−∇rρ̂(r;ω)

=
⎛
⎝

�1δ̃
′′(x1)δ̃(x2)δ̃(x3)+�2δ̃

′(x1)δ̃′(x2)δ̃(x3)+�3δ̃
′(x1)δ̃(x2)δ̃′(x3)

�1δ̃
′(x1)δ̃′(x2)δ̃(x3)+�2δ̃(x1)δ̃

′′(x2)δ̃(x3)+�3δ̃(x1)δ̃
′(x2)δ̃′(x3)

�1δ̃
′(x1)δ̃(x2)δ̃′(x3)+�2δ̃(x1)δ̃

′(x2)δ̃′(x3)+�3δ̃(x1)δ̃(x2)δ̃
′′(x3)

⎞
⎠ .

(41)
On the other hand

−∇ · Ĵ(r;ω) = −iω∇ · (�δ(r−r�))

= −iω
3∑

i=1
�iδ̃
′((r−r�)i)

∏
j �=i

δ̃((r−r�)j ) = iωρ̂(r),

and thus Eq. (28) is satisfied.
Moreover, using Eq. (41) in Eq. (28) gives Eq. (40). ��

In the following we calculate the solution Ê of Eq. (30), similar as in [12].
The following lemma and its proof are based on [12].

Lemma 3 Let Ê as in Eq. (32) be the retarded solution of Eq. (33) at fixed frequency
ω. In what follows we omit therefore the dependency ofω and write Ê(r) := Ê(r;ω).

Moreover, let the medium be isotropic, non magnetizable, homogeneous and have
a linear polarization response (that is, χ ≡ 0).

As above we assume that a dipole� ∈ R3 is located at positionr� = (0, 0, r�3 )T .
Moreover, for all ε > 0 let κε be as in Eq. (22) and we define for fixed k1, k2 ∈ R

q := lim
ε→0+

qε where qε := aε + ibε :=
√

κ2
ε − k21 − k22 with bε > 0 (42)

(that is qε is the complex root with positive imaginary part). Let now r ∈ R3 be such
that r3 − r�3 ≥ 0, then

Ê(r) = − 1

2π

1

ε0
F−112

[
(k1, k2) �→ �3e3δ̃(r3 − r�3 )+ ieiq(r3−r�3 )

2q
(� × kq)× kq

]
(r1, r2),

(43)
where kq = (k1, k2, q)T .

Proof First let ε > 0, and we prove an identity of the form Eq. (43) for Êε. We note
that

F[∇r×∇r×Êε](k) = −(F[Êε](k)× k)× k for all k ∈ R3.

Thus from Eq. (23) with χ ≡ 0 it follows by applying the k-transform, and by using
Eqs. (38), (22) and (9) that
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− (F[Êε](k)× k)× k− κ2
εF[Êε](k) = − iω − ε

ε0c2
F[̂Jε](k) = κ2

ε

(2π)
3
2 ε0

�e−ik3r�3 .

(44)
Elementary calculation rules for × provide that

(v× k)× k = (k · v)k− |k|2 v for all v,k ∈ R3, (45)

which, by application to v = F[Êε](k) and v = �, respectively, shows that

|k|2 F[Êε](k) = −(F[Êε](k)× k)× k+ (k · F[Êε](k))k and

|k|2 � = −(� × k)× k+ (k ·�)k.
(46)

Therefore, by multiplying Eq. (44) with |k|2 and using Eq. (46), it follows that

(κ2
ε − |k|2)(F[Êε](k)× k)× k− κ2

ε (k · F[Êε](k))k

= κ2
ε

(2π)
3
2 ε0

e−ik3r�3 [−(� × k)× k+ (k ·�)k] .
(47)

Since k and (v× k)× k are orthogonal, it follows from Eq. (47) that:

(F[Êε](k) · k)k = − 1

(2π)
3
2

1

ε0
e−ik3r�3 (� · k)k

− 1

(2π)
3
2

1

ε0
e−ik3r�3

(
|k|2 � + (� × k)× k

)
,

(|k|2 − κ2
ε )(F[Êε](k)× k)× k = κ2

ε

(2π)
3
2 ε0

e−ik3r�3 (� × k)× k.

Inserting these two identities into Eq. (46) and noting that since κε is not real, one
can divide by |k|2 − κ2

ε , yields

|k|2 F[Êε](k) = − 1

(2π)
3
2

1

ε0
e−ik3r�3

(
|k|2 � + (� × k)× k+ κ2

ε

|k|2 − κ2
ε

(� × k)× k

)

= − 1

(2π)
3
2

1

ε0
e−ik3r�3

(
|k|2 � + |k|2

|k|2 − κ2
ε

(� × k)× k

)
,

such that

F[Êε](k) = − 1

(2π)
3
2

1

ε0
e−ik3r�3

(
� + (� × k)× k

|k|2 − κ2
ε

)
.
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Therefore

Êε(r) = − 1

(2π)
3
2

1

ε0
F−112

[
F−13

[(
� + (� × k)× k

|k|2 − κ2
ε

)
e−ik3r�3

]
(r3)

]
(r1, r2).

In order to prove Eq. (43) for Êε, it remains to show that

1√
2π

F−13

[
k3→

(
� + (� × k)× k

|k|2 − κ2
ε

)
e−ik3r�3

]
(r3) = �3e3δ̃(r3 − r�3 )

+ ieiqε(r3−r�3 )

2qε

(� × kqε )× kqε ,

which is done by standard, but quite lengthy computations, which are presented in
Appendix 1.

Now, we consider ε→ 0. Theorem 1 combined with the continuity of the inverse
Fourier transform F−112 in S′(R2,R2) which implies that

Ê(r) = − 1

2π

1

ε0
F−112

[
(k1, k2)→ �3e3δ̃(r3 − r�3 )+ lim

ε→0

ieiqε(r3−r�3 )

2qε

(� × kqε )× kqε

]
(r1, r2).

To prove the assertion, we simply need to check that, in S′

lim
ε→0

ieiqε(r3−r�3 )

2qε

(� × kqε )× kqε =
ieiq(r3−r�3 )

2q
(� × kq)× kq .

These two quantities being L1
loc functions, it is enough to show that the limit holds

in L1
loc(R× (R2 ×R)). The L1

loc convergence is then obtained noticing that

eiqε(r3−r�3 )(� × kqε )× kqε − eiq(r3−r�3 )(� × kq)× kq
L∞−−→ 0

and that

1

qε

− 1

q
= κ2

ε − κ2

(κ2
ε − k21 − k22)

√
κ2 − k21 − k22 + (κ2 − k21 − k22)

√
κ2

ε − k21 − k22

converges to zero in L1
loc. Note that this would imply only a convergence in D′, but

the two functions are actually uniformly L∞ outside the compact set {k21 + k22 �
|κ|2 + 1}, so the convergence holds in S′ as well. ��

Moreover, we make the assumption that the dipole can be rotating.
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Fig. 6 The axis of cone has
angular coordinates θm and
ϕm in the coordinate system.
A general orientation within
the cone has coordinates θ

and ϕ in the coordinate
system, and axial coordinate
β, and azimuthal coordinate η

with respect to the cone axis.
The outer limit of motion in
the cone is given by β = αm

Definition 9 (Rotating Dipole) The emitting dipole is considered wobbling uni-
formly distributed around the dipole orientation �m|�m| = (θm, ϕm) ∈ S

2 in a cone of
semi-angle αm (see Fig. 6). Assuming a dipole-emission from an oscillating source
we get after averaging, a source represented as the indicator function

1m = 1

|C(�m, αm)|1C(�m,αm), (48)

where

C(�m, αm) =
{
τ� ∈ S

2 : |���m| ≤ αm, 0 ≤ τ ≤ |�m|
}

. (49)

Note that |C(�m, αm)| = 1
3π |�m|3 tan2(αm). Taking into account Eqs. (38)

and (37) the according charge density and current of dye m are given by

Ĵm(r;ω) = iω1m, ρ̂m(r;ω) = i

ω
∇r· Ĵm(r;ω) and

R̂m(r;ω) := iω

c2
Ĵm(r;ω)+∇r ρ̂m(r;ω).

(50)
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6 The Forward Problem

In the following we present mathematical models describing the emission and
propagation of light caused by dyes, which are exposed to strong laser light
illumination. See Fig. 7 for a schematic representation of the experiment. In
single molecule localization microscopy two-dimensional images are recorded after
exposing the probe subsequently to strong laser illuminations, such that the dyes
appear in dark (“off”) and light (“on”) state. This allows to separate the fluorescent
emission of individual dyes in time, allowing for high resolution images. In order to
minimize the notational effort we consider recording of a single image frame first.
The mathematical model of consecutive recordings of multiple frames is analogous
and requires one additional parameter representing numbering of frames (a virtual
time).

In the following we state a series of assumptions, which are used throughout the
remainder of the paper:

Assumption (Medium, Monochromatic Source and Response) In the following
we assume that

• The incident light is a monochromatic plane wave of frequency ωinc and
orientation v.

• The medium is assumed to be isotropic, non magnetizable, homogeneous and has
a linear polarization response.

• Moreover, we assume that a dye can be modeled as an absorbing dipole �a ,
which emits monochromatic waves of frequency ω �= ωinc resulting in an
emitting dipole

� = (v ·�a)v. (51)

Indeed what we will measure is the electric field at frequency ω, which is not
affected by the incident field at frequency ωinc. As a consequence we only have
to consider the electric field at the frequency ω ∈ R.

Illumination

Fig. 7 Illustration of the experiment: Biomolecular structures are placed on the glass surface at
position r�

3 � 0 and illuminated from the bottom. The glass plate has a thickness r�
3
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• In what follows we assume that the considered dipole � =
⎛
⎝

�1

�2

�3

⎞
⎠ is located

at position r� = (
0 0 r�3

)T
with r�3 � 0. Unless stated otherwise r ∈ R3 with

r3 > 0. The sign assumptions on r3 and r�3 are in accordance with the experiment:
the object is assumed left of the lens system (see Fig. 8) and r is a point of the
measurement system.

• The dyes absorb light, which can result in fluoresence emission. We describe the
states of an absorbing dye with index m via a time indicator function: The on-off
indicator

Im ∈ {0, 1} , (52)

tells us whether the m-th dye is an emitting state or not.
��

The complete experimental setup of the optical experiment of single molecule
localization microscopy is represented in Fig. 8. For the mathematical modeling we
are considering the propagation of light at different locations of the optical system.
The dyes are considered at positions r�m with r

�m

3 � 0 and the focal plane (which
contains the focal point of the objective) corresponds to the bottom of the glass plate,
which is not mathematically modeled, that is the focal plane is at position r3 = 0.
Note that in particular the dipole is not located at the focal plane, unless if r

�m

3 = 0.
For the sake of simplicity of presentation we consider only a single dye, and leave
the subscript m whenever appropriate.

The mathematical modeling of the experimental setup follows [3], however it is
adapted to our notation:

• In Sect. 6.1 we describe the propagation of the electric field in the medium, that
is from the bottom of the cell (the assumption is that only molecules labeled with
a dye at the bottom of the cell emit light) up to the objective (see Fig. 8). This
domain will be denoted by 
. Since the objective is far away from the molecule
(relative to the size of the molecule) the electric field can be approximated well
by its far field, which is calculated below. The three-dimensional k-transformed
coordinate system is denoted by k ∈ R3 (see Sect. 6.1).

• In Sect. 6.2 we present in mathematical terms the propagation of the emitted light
when it passes through the objective; that is after passing through the medium.
In fact the light rays are aligned parallel by the objective in r3 direction. The
objective has a focal length fobj and it is positioned orthogonal to the r3 axis
with left distance to the focal plane (glass plate) r

obj
3 = fobj (see Fig. 10).

Indeed the lens system is complicated and a detailed mathematical modeling is
not possible. A simplified model assumes that the objective is big compared to the
wavelength, such that the intensity law of Geometric Optics applies (see Fig. 9
and [7]), and phase shifts due to the curvature of the lenses can be neglected.
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• In Sect. 6.3 we calculate the propagation of the light after passing through the
back focal plane of the objective, that is in between r

bfp
3 and r

tli

3 (see Fig. 8),

from knowledge of the field at the plane with third coordinate r
bfp
3 . This is

achieved by solving the Helmholtz equation in air between the back focal plane
of the objective and the incident plane of the tube lens.

• We assume that the lens is a circular plano-convex tube lens with maximal
thickness d0. The thickness is described as a function d. Moreover, we assume
that the lens has a focal length fL and that its pupil function is given by
PL : R2→ R,

PL(x) =
{
1 for |x| ≤ R

0 for |x| > R
, (53)

in the plane r3 = rtl3 (see Fig. 8). The lens is assumed to be converging, such
that the paraxial approximation holds, that is we can assume that the wave vector
of the wave is almost aligned with the optical axis [14, Sec. 4.2.3]. The adequate
formulas are derived in Sect. 6.4.

• Finally the light is bundled to the image plane, which provides an image
described by coordinates xf ∈ R2 (see Sect. 6.5).

We summarize the different coordinate systems used below in a table:

r = |r |

Focal Plane Objective Back focal plane Tube Lens Image Plane

subsection 6.1 subsection 6.2 subsection 6.3 subsection 6.4 subsection 6.5

Ω

θ

e

r
3

s

0

ep

φ
| |

e3 r
3

r i
3
r

3 r o
3

0

r
3

Fig. 8 The plane of observation is defined as the plane containing the dipole �, the e3-axis, and
the path of a particular ray through the objective, the back focal plane and the tube lens (with focal
length fobj)
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Table 2 Some abbreviation used in Lemma 3 and its proof, as well as in Appendix 1 and 2

Position Coordinates Fourier

Medium 
 r ∈ R3, (r, θ, ϕ) ∈
R+ × S

2
k ∈ R3

Back focal plane (BFP) x ∈ R2, (ρ, ϕ) ∈ R+ ×
[0, 2π)

u ∈ R2, (ξ, ν) ∈ R+ × [0, 2π)

Tube Lens y ∈ R2, (#, σ ) ∈ R+ ×
[0, 2π)

v ∈ R2, (', ϑ) ∈ R+ × [0, 2π)

Image plane (IP) I xf ∈ R2 uf ∈ R2

Between BFP and IP (x, r3) ∈ R3

General notation k12 = (k1, k2)
T ∈ R2, k = (k1, k2, k3)

T ∈ R3

kz = (k1, k2, z)T z ∈ C, k1, k2 ∈ R

6.1 Far Field Approximation in the Medium

In this subsection we derive the far field approximation of the Fourier-transform of
the electric field, Ê, in the medium. The derivation expands [12].

First, we give the definition of the far field:

Definition 10 The far field F∞ : S2 → C3 of a function F : R3 → C3 satisfies:
There exists Ĉ > 0 and a function C : [0,∞)→ [0,∞) such that

lim
r→∞ |F(r, θ, ϕ)− C(r)F∞(θ, ϕ)| = 0 with |rC(r)| ≤ Ĉ for all r ∈ [0,∞).

(54)

Lemma 4 Let the medium be isotropic, non magnetizable, homogeneous and have
a linear polarization response. We assume that the considered dipole � is located

at position r� =
⎛
⎝

0
0
r�3

⎞
⎠ with r�3 < 0. Moreover, let r =

⎛
⎝

r1

r2

r3

⎞
⎠ ∈ R3 with r3 >

r�3 ; The later assumption means that we are considering only light rays, which are
propagating into the lens system (see Fig. 8).

Then the far field of Ê in the medium is given by

eiκr�3 cos(θ)Ê∞(θ, ϕ) = cos(θ)

(
−�p cos(θ)+�3 sin(θ)

)
ep −�ses

+ sin(θ)

(
�p cos(θ)−�3 sin(θ)

)
e3

(55)

and

C(r) = κ2

4πε0

eiκr

r
. (56)
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where �j =
〈
�, ej

〉
, j = p, s, 3 are the coefficients of � with respect to the

orthonormal basis

ep :=
(
cos(ϕ) sin(ϕ) 0

)T
, es :=

(− sin(ϕ) cos(ϕ) 0
)T

, e3, (57)

that is

� = �pep +�ses +�3e3. (58)

Proof Taking into account the assumption that r3 − r�3 > 0, and by representing
the vector r ∈ R3 as

r = r3e3 + r3
(
v 0

)T = r3
(
v1 v2 1

)T
, (59)

with a (non-unit) vector
(
v1 v2

)T = v ∈ R2 in the plane spanned by e1 and e2, it
follows from Eq. (43) that

Ê(r) = − 1

8π2

1

ε0

∫
k12∈R2

eir3v·k12
(
ieiq(r3−r�3 )

q
(� × kq)× kq

)
dk12, (60)

where q and kq are as defined in Eq. (42). Note that in Eq. (60) q = q(k12) is
defined as in Eq. (115), and therefore the integral on the right-hand side is of the
form (neglecting the factor − i

8π2
1
ε0
)

∫
k12∈R2

eir3ζ(k12)β(k12) dk12

with

ζ(k12) = k12 · v+ q and β(k12) = e−ir�3 q

q
(� × kq)× kq . (61)

The stationary phase method, [19, Th. 7.7.5], states that if k̂ is a critical point of ζ ,
which has been calculated in Eq. (114), then

∫
k12∈R2

eir3ζ(k12)β(k12) dk12 = eir3ζ(k̂)
(
det

(
r3H(ζ)(k̂)/(2π i)

))−1/2
β(k̂)+ o

(
1

r3

)
.

Taking into account Eq. (113) in Lemma 11, and k̂12 of ζ as defined in Eq. (114),
and being aware that q = q(k12) (that is q is a function of k12), we apply Eqs. (116),
and (115) and get
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∫
k12∈R2

eir3(k12·v+q)

q
e−iqr�3 (� × kq)× kq dk12

=2iπκ2 e
ir3κ
√

1+|v|2

r3
e
−i κr�3√

1+|v|2
(

� × r
|r|

)
× r
|r| + o

(
1

r3

)
for r3→∞.

Now, we recall Eqs. (10) and (59), which imply that

√
1+ |v|2 = 1

cos(θ)
,

r
|r| =

⎛
⎝
sin(θ) cos(φ)

sin(θ) sin(φ)

cos(θ)

⎞
⎠ = sin(θ)ep + cos(θ)e3

and |r| cos(θ) = r3,

such that we get

∫
k12∈R2

eir3(k12·v+q)

q
e−iqr�3 (� × kq)× kq dk12

= 2iπκ2e−iκr�3 cos(θ) e
iκ|r|

|r|
(

� × r
|r|

)
× r
|r| + o

(
1

r3

)
.

This shows that

Ê(r) = e−iκr�3 cos(θ) κ2

4πε0

eiκ|r|
|r|

(
� × r

|r|
)
× r
|r| + o

(
1

r3

)
= C(r)Ê∞(r)+ o

(
1

r3

)
.

(62)

It remains to compute the second identity of Eq. (55). Expressing
r
|r| and � in terms

of the associated basis ep, es , e3 from Definition 6, and using Eq. (45), we get from
Eq. (58)

(
� × r

|r|
)
× r
|r| =

(
� · r
|r|

)
r
|r| −�

=
(

(sin(θ)ep + cos(θ)e3) · (�pep +�ses +�3e3)
)

(sin(θ)ep + cos(θ)e3)−�pep −�ses −�3e3

=
(
sin(θ)�p + cos(θ)�3

)
(sin(θ)ep + cos(θ)e3)−�pep

−�ses −�3e3,

which after rearrangement proves the second identity. ��



Inverse Problems of Single Molecule Localization Microscopy 355

In the imaging system the calculation of the electric field is not done at once but
in different sections (Sects. 6.1, 6.2, 6.3, 6.4, and 6.5). In each of these sections the
electric field is calculated by transmission from the electric field computed at the
previous section. In addition, we assume that the light which hits the objective from

 can be approximated by its far field expansion C(fobj)Ê∞, which we will use
instead of Ê.

6.2 Propagation of the Electric Field through the Objective

In the following we calculate the electric field in the objective. Assuming that the
electric field (light) emitted from the dipoles travels along straight lines in the
medium to the objective, the objective aligns the emitted rays from the dipole
parallel to the r3-axis in such a way that the electric field between the incidence
surface of the objective and the back focal plane undergoes a phase shift that does
not depend on the distance to the optical axis. In the ideal situation, where the
wavelength is assumed to be infinitely small compared to the length parameters
of the optical system, the electric field can be computed via the intensity law of
geometrical optics (see Fig. 9 and [7, Sec. 3.1.2] for a derivation).

Assumption The objective consists of a set of optical elements (lenses and mirrors)
which are not modelled here (see some examples in [7, Sec. 6.6]). Its aim is to
transform spherical waves originated at its focal point into waves which propagate
along the optical axis. In what follows, the computations are made ignoring a
constant (independent on the point in the back focal plane) phase shift which is
underwent by the wave through the objective. ��

Lemma 5 Let r be a point at the back focal plane of the objective, that is with r3
coordinate r

bfp
3 and with spherical coordinates (r, θ, ϕ). We define the radial length

on the propagation plane (planes with constant r3 coordinate) (see Fig. 10), by

Fig. 9 Intensity law of
Geometrical optics: the
energy carried along a ray
must remain constant. The
power transported by a ray is
proportional to |E|2 dA,
where dA is an infinitesimal
cross-section perpendicular to
the ray propagation. Thus, the
fields must satisfy
|E2| = |E1| 1√

cos(θ)

O e3

dA2

E2

dA 1

E1

dA1 cos θ = dA 2

θ
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Fig. 10 Approximation used:
We assume that the cell is
fixed to the glass, and the
distance of the dipole

∣∣r�
3

∣∣
from the focal plane is
sufficiently smaller than
r = |r|, such that fobj ≈ r ,
and θ ′ ≈ θ

r
3

e3

ρ

0

Focal Plane Objective

θ θ

ρ := ρ(θ) := fobj sin(θ). (63)

Then

Êbfp(ρ, ϕ) :=
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C(fobj)√
cos(θ)

e−iκr�3 cos(θ)

⎛
⎜⎜⎝
cos(ϕ)

(−�p cos(θ)+�3 sin(θ)
)− sin(ϕ)�s

sin(ϕ)
(−�p cos(θ)+�3 sin(θ)

)+ cos(ϕ)�s

0

⎞
⎟⎟⎠ θ � θmax

0 θ > θmax
(64)

where C(fobj) is as defined in Eq. (56), and

θmax := arcsin(NA)

is the maximal angle θ for rays to enter the objective (the other rays simply do not
enter the optical system). Note that the refractive index in air is assumed one.

Proof The electric field is transmitted according to the law of geometrical optics [3,
Eq. 16] into the objective at the points

r =
⎛
⎝

0
0
r�3

⎞
⎠+ fobjS

2, (65)
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that is the electric field simply undergoes a rotation of axis es and angle θ as well as
a magnification of 1√

cos θ
(see Assumption 6.2).

The rotation with angle θ around the axis es changes the unit vectors as follows:

ep → sin(θ)e3 + cos(θ)ep

e3 → cos(θ)e3 − sin(θ)ep

es → es .

(66)

Now, Eq. (66) shows that the expression of the electric field in the back focal
plane will be simpler using coordinates (ep, es , e3). Equation (55) leads to

Êbfp(ρ, ϕ) = C(fobj)√
cos(θ)

e−iκr�3 cos(θ)

{(
−�p cos(θ)+�3 sin(θ)

)
ep −�ses

}
,

where C(fobj) is as defined in Eq. (56). Writing the unit vectors ep and es in the
fixed system of coordinates (x1, x2, x3) gives Eq. (64). ��

6.3 Between the Objective and the Lens

Behind the objective, the light propagates through air until it reaches the tube lens.
Denoting by κ2 the wave number in air (see Eq. (22)) the electric field satisfies the
homogeneous Helmholtz equation in the tube lens:

�Ê(r)+ κ2Ê(r) = 0 in H :=
{
r ∈ R3 : rbfp3 < r3 < r

tli

3

}
(67)

together with the boundary condition

Ê(r1, r2, r
bfp
3 ) = Êbfp(r1, r2) for all (r1, r2) ∈ R2. (68)

The solution of Eq. (67) can actually be calculated by applying a phase shift to Êbfp

as the following lemma shows.

Lemma 6 Representing x = (fobj sin(θ) cos(ϕ),fobj sin(θ) sin(ϕ)) ∈ R2, then
the Fourier transforms of Ê in the transverse plane of (x, r3) can be calculated from
Ê(x, r

bfp
3 ) in the following way

F12(Ê)(k1, k2, r3) = F12[Êbfp](k1, k2)e
(r3−r

bfp
3 )

√
−κ2+k21+k22 . (69)

where the square root can denote both of the complex square roots.
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Proof First, we notice that since Êbfp is bounded with compact support, it is a
L2 function in the plane {r3 = r

bfp
3 }. Taking the Fourier transform in these two

variables, Eqs. (67) and (68) are equivalent to

∂2r3F12(Ê)(k1, k2, r3)+ (κ2 − k21 − k22)F12(Ê)(k1, k2, r3)

= 0 for all r ∈ R3, r
bfp
3 < r3 < r

tli

3 (70)

with the boundary condition

F12(Ê)(k1, k2, r
bfp
3 ) = F12[Êbfp](k1, k2) for all (k1, k2) ∈ R2. (71)

Now, Eq. (70) is a simple ODE whose solution writes (for κ2 − k21 − k22 �= 0)

F12(Ê)(k1, k2, r3) = F12[Êbfp](k1, k2)e
(r3−r

bfp
3 )

√
−κ2+k21+k22 .

��
Among the fields computed in Eq. (69), several are not physical or will not be
observed:

• Having κ2 < k21+k22 leads to either a real positive square root which corresponds
to a wave exploding as r3 increases and is therefore not physical or a real negative
root, which yields an exponentially decreasing wave (evanescent) which exist
but, since (r3− r

bfp
3 ) is several orders of magnitude bigger than the wave length,

will be damped by the time it hits the tube lens. Therefore we also do not consider
it.

• When, κ2 > k21 + k22, we get two imaginary roots, namely ±i
√

κ2 − k21 − k22,
which corresponds to the two Green functions Eq. (31). For the same reason as
above, we will only consider the positive sign.

This can be summerized in the following assumption, that will hold in what follows.

Assumption We only consider κ2 � k21 + k22 and we obtain

F12(Ê)(k1, k2, r3) = F12[Êbfp](k1, k2)e
i(r3−r

bfp
3 )

√
κ2−k21−k22 . (72)

��
In the following we calculate F12[Êtli ], where Êtli = Ê(x, r

tli

3 ).

Lemma 7 Let Êtli (x) = Ê(x, r
tli

3 ) be the electric field at the indicent plane of the

tube thin lens (at r
tli

3 ) as defined in Eq. (69), then the Fourier transform of Êtli in
this plane in polar coordinates (ξ, ν) of (k1, k2) is given, for ξ2 � κ2, by
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F12[Êtli ](ξ, ν) = F12[Êbfp](ξ, ν)ei(r
tli
3 −r

bfp
3 )
√

κ2−ξ2

= 1

2
(fobj)2C(fobj)ei(r

tli
3 −r

bfp
3 )
√

κ2−ξ2 ·

·
(
−�1[I1,0(ξ)+ I2,0(ξ)] +�1 cos(2ν)[I1,2(ξ)+ I2,2(ξ)] +�2 sin(2ν)[I1,2(ξ)+ I2,2(ξ)] − 2i�3 cos(ν)I2,1(ξ)

−�2[I1,0(ξ)+ I2,0(ξ)] +�2 cos(2ν)[I1,2(ξ)+ I2,2(ξ)] +�1 sin(2ν)[I1,2(ξ)+ I2,2(ξ)] − 2i�3 sin(ν)I2,1(ξ)

0

)
,

(73)
where

I1,0(ξ) =
∫ θmax

0

√
cos(θ) sin(θ) e−iκr�3 cos(θ)J0

(
fobjξ sin(θ)

)
dθ

I1,2(ξ) =
∫ θmax

0

√
cos(θ) sin(θ) e−iκr�3 cos(θ)J2

(
fobjξ sin(θ)

)
dθ

I2,1(ξ) =
∫ θmax

0
(cos(θ))3/2

1− cos(2θ)

2
e−iκr�3 cos(θ)J1

(
fobjξ sin(θ)

)
dθ

I2,0(ξ) =
∫ θmax

0

√
cos(θ)

sin(2θ)

2
e−iκr�3 cos(θ)J0

(
fobjξ sin(θ)

)
dθ

I2,2(ξ) =
∫ θmax

0

√
cos(θ)

sin(2θ)

2
e−iκr�3 cos(θ)J2

(
fobjξ sin(θ)

)
dθ,

(74)

Jm denotes the Bessel function of the first kind of order m, and θmax is the angle of
aperture as defined in Eq. (1).

Proof We use the following notation

u =
(

u1

u2

)
= ξ

(
cos(ν)

sin(ν)

)
and x =

(
x1

x2

)
= ρ

(
cos(ϕ)

sin(ϕ)

)
,

where ρ = ρ(θ) (see Eq. (63)) is the radial length on the back focal plane.
The two-dimensional Fourier transform of the Êobj (defined in Eq. (64)) reads

as follows:

F12[Êobj](u) = 1

2π

∫
x∈R2

Êobj(x)e−iu·xdx

= 1

2π
(fobj)2

∫ θmax

0

∫ 2π

0
Êobj(ρ(θ), ϕ)e−iξρ(θ) cos(ϕ−ν) cos(θ) sin(θ)dϕdθ

= (fobj)2

2π
C(fobj)

∫ θmax

0

∫ 2π

0

{(
−�p cos(θ)+�3 sin(θ)

)
ep −�ses

}

· e−iκr�3 cos(θ)e−iξρ(θ) cos(ϕ−ν)
√
cos(θ) sin(θ)dϕdθ.

(75)
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Next we calculate the integral on the right-hand side of Eq. (75):

∫ θmax

0

∫ 2π

0

{(
−�p cos(θ)+�3 sin(θ)

)
ep −�ses

}
·

· e−iκr�3 cos(θ)e−iξρ(θ) cos(ϕ−ν)
√
cos(θ) sin(θ)dϕdθ

= −
∫ θmax

0
e−iκr�3 cos(θ)

√
cos(θ)

sin(2θ)

2

(∫ 2π

0
�pepe

−iξρ(θ) cos(ϕ−ν)dϕ

)
dθ

−
∫ θmax

0
e−iκr�3 cos(θ)

√
cos(θ) sin(θ)

(∫ 2π

0
�sese

−iξρ(θ) cos(ϕ−ν)dϕ

)
dθ

+
∫ θmax

0
e−iκr�3 cos(θ)(cos(θ))3/2

1− cos(2θ)

2

(∫ 2π

0
�3epe

−iξρ(θ) cos(ϕ−ν)dϕ

)
dθ,

(76)
where we use sin and cos summation formulas.

We proceed by first evaluating the inner integrals (involving the ϕ variable) on the
right-hand side of Eq. (76), by transforming the (ep, es , e3) system to the (e1, e2, e3)
system, and then using the Bessel identities Eq. (117), to evaluate the integrals.

Using Eq. (57) it follows from Eq. (36) that

�p = |�| sin(θm) cos(ϕm − ϕ), �s = |�| sin(θm) sin(ϕm − ϕ). (77)

Again by application of Eq. (36) and sin and cos summation formulas we get

�p cos(ϕ) = �1
1+ cos(2ϕ)

2
+�2

sin(2ϕ)

2
, �p sin(ϕ)

= �1
sin(2ϕ)

2
+�2

1− cos(2ϕ)

2
,

�s cos(ϕ) = −�1
sin(2ϕ)

2
+�2

1+ cos(2ϕ)

2
, �s sin(ϕ)

= −�1
1− cos(2ϕ)

2
+�2

sin(2ϕ)

2
.

(78)

Using Eq. (57), we express the first inner integral on the right-hand side of Eq. (76):

∫ 2π

0
�pe

−iξρ(θ) cos(ϕ−ν)dϕep =
∫ 2π

0
�p cos(ϕ)e−iξρ(θ) cos(ϕ−ν)dϕe1

+
∫ 2π

0
�p sin(ϕ)e−iξρ(θ) cos(ϕ−ν)dϕe2,

(79)

and to evalute the integral we use the Bessel identities Eqs. (117), and (78).
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We use Eq. (117) for m = 0 and m = 2, and Eq. (63) to evaluate the first integral
in Eq. (79):

∫ 2π

0
�p cos(ϕ)e−iη cos(ϕ−ν)dϕ = �1

∫ 2π

0

1+ cos(2ϕ)

2
e−iη cos(ϕ−ν)dϕ

+�2

∫ 2π

0

sin(2ϕ)

2
e−iη cos(ϕ−ν)dϕ

= �1

2

∫ 2π

0
e−iη cos(ϕ−ν)dϕ + �1

2

∫ 2π

0
cos(2ϕ)e−iη cos(ϕ−ν)dϕ

+ �2

2

∫ 2π

0
sin(2ϕ)e−iη cos(ϕ−ν)dϕ

= π�1J0(η)− π�1 cos(2ν)J2(η)− π�2 sin(2ν)J2(η),

(80)

where η = fobjξ sin(θ), and a calculation similar to Eq. (80) yields

1

π

∫ 2π

0
�p sin(ϕ)e−iη cos(ϕ−ν)dϕ = �2J0(η)−�2 cos(2ν)J2(η)−�1 sin(2ν)J2(η).

(81)
Thus, using Eqs. (80) and (81), in Eq. (79), the first integral expression on the

right-hand side of Eq. (76), becomes

− 1

π

∫ θmax

0
e−iκr�3 cos(θ)

√
cos(θ)

sin(2θ)

2

(∫ 2π

0
�pepe−iξρ(θ) cos(ϕ−ν)dϕ

)
dθ

= −(�1e1 +�2e2)
∫ θmax

0

√
cos(θ)

sin(2θ)

2
e−iκr�3 cos(θ)J0

(
fobjξ sin(θ)

)
dθ

+ (�1e1 +�2e2) cos(2ν)

∫ θmax

0

√
cos(θ)

sin(2θ)

2
e−iκr�3 cos(θ)J2

(
fobjξ sin(θ)

)
dθ

+ (�2e1 +�1e2) sin(2ν)

∫ θmax

0

√
cos(θ)

sin(2θ)

2
e−iκr�3 cos(θ)J2

(
fobjξ sin(θ)

)
dθ

= −(�1e1 +�2e2)I2,0(ξ, r�3 )+ (�1e1 +�2e2) cos(2ν)I2,2(ξ, r�3 )

+ (�2e1 +�1e2) sin(2ν)I2,2(ξ, r�3 ),

(82)
where integrals Ip,q(ξ, r�3 ) are as in Eq. (74).

Similar calculation to Eq. (80) yields

1

π

∫ 2π

0
�s sin(ϕ)e−iη cos(ϕ−ν)dϕ = −�1J0(η)−�1 cos(2ν)J2(η)−�2 sin(2ν)J2(η),

1

π

∫ 2π

0
�s cos(ϕ)e−iη cos(ϕ−ν)dϕ = �2J0(η)+�2 cos(2ν)J2(η)+�1 sin(2ν)J2(η).

(83)
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Next, using Eqs. (57) and (83), we compute the second integral term on the
right-hand side of Eq. (76):

− 1

π

∫ θmax

0
e−iκr�3 cos(θ)

√
cos(θ) sin(θ)

(∫ 2π

0
�sese−iξρ(θ) cos(ϕ−ν)dϕ

)
dθ

= −(�1e1 +�2e2)
∫ θmax

0

√
cos(θ) sin(θ)e−iκr�3 cos(θ)J0

(
fobjξ sin(θ)

)
dθ

+ (�1e1 +�2e2) cos(2ν)

∫ θmax

0

√
cos(θ) sin(θ)e−iκr�3 cos(θ)J2

(
fobjξ sin(θ)

)
dθ

+ (�2e1 +�1e2) sin(2ν)

∫ θmax

0

√
cos(θ) sin(θ)e−iκr�3 cos(θ)J2

(
fobjξ sin(θ)

)
dθ

= −(�1e1 +�2e2)I1,0(ξ, r�3 )+ (�1e1 +�2e2) cos(2ν)I1,2(ξ, r�3 )

+ (�2e1 +�1e2) sin(2ν)I1,2(ξ, r�3 ),

(84)
where integrals Ip,q(ξ, r�3 ) are as in Eq. (74).

Next, we compute the last integral term on the right-hand side of Eq. (76):

1

π

∫ θmax

0
e−iκr�3 cos(θ)(cos(θ))3/2

1− cos(2θ)

2

(∫ 2π

0
�3epe

−iξρ(θ) cos(ϕ−ν)dϕ

)
dθ

= 1

π
�3

∫ θmax

0
e−iκr�3 cos(θ)(cos(θ))3/2

1− cos(2θ)

2
(
e1

∫ 2π

0
cos(ϕ)e−iξρ(θ) cos(ϕ−ν)dϕ

)
dθ

+ 1

π
�3

∫ θmax

0
e−iκr�3 cos(θ)(cos(θ))3/2

1− cos(2θ)

2
(
e2

∫ 2π

0
sin(ϕ)e−iξρ(θ) cos(ϕ−ν)dϕ

)
dθ

= −2i�3 (cos(ν)e1 + sin(ν)e2)
∫ θmax

0
(cos(θ))3/2

1− cos(2θ)

2
e−iκr�3 cos(θ)J1

(
fobjξ sin(θ)

)
dθ

= −2i�3 (cos(ν)e1 + sin(ν)e2) I2,1(ξ, r�3 ),

(85)
where in the second equality we use Eq. (117) for m = 1, and in the last equality we
use the integral Ip,q(ξ, r�3 ) as in Eq. (74).
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Using Eqs. (82), (84), and (85), the expression of Eq. (76) becomes

1

π

∫ θmax

0

∫ 2π

0

{(
−�p cos(θ)+�3 sin(θ)

)
ep −�ses

}
·

· e−iκr�3 cos(θ)e−iξρ(θ) cos(ϕ−ν)
√
cos(θ) sin(θ)dϕdθ

=− (�1e1 +�2e2)[I1,0(ξ, r�3 )+ I2,0(ξ, r�3 )]
+ (�1e1 +�2e2) cos(2ν)[I1,2(ξ, r�3 )+ I2,2(ξ, r�3 )]
+ (�2e1 +�1e2) sin(2ν)[I1,2(ξ, r�3 )+ I2,2(ξ, r�3 )]
− 2i�3(cos(ν)e1 + sin e2)I2,1(ξ),

(86)

where the integrals Ip,q(ξ) are defined in Eq. (74). ��

6.4 Electric Field Approximation in the Lens

After the light ray has passed through the objective and the back focal plane, a tube
lens is placed to focus the light rays onto the image plane.

Definition 11 (Tube Lens Parameters) For the tube lens, we assume that it is a
plano-convex converging lens with focal length fL > 0, placed with one side at
r
tli

3 and the other side at rtlo

3 (see Fig. 8). Moreover the lens has a thickness which
is measured orthogonal to e3 by the function d.

The incoming field at the tube lens Êtli (as defined in Eq. (69)) and the outgoing
wave field Êtlo immediately after the lens aperture are related by (we use the same
polar coordinates (ρ, ϕ) in both planes {r3 = r

tli

3 } and {r3 = r
tlo

3 } )

Êtlo (ρ, ϕ) = eiμ(ρ)PL(ρ)Êtli (ρ, ϕ), (87)

where PL is the pupil function associated with the tube lens as in Eq. (53), μ is
the phase shift experienced by the field through the tube lens (note that it does not
depend on ϕ):

μ(ρ) = κnld(ρ)︸ ︷︷ ︸
phase delay by lens

+ κ(d0 − d(ρ))︸ ︷︷ ︸
phase delay by vacuum

, (88)

where d0 is the maximum thickness of the lens, d(ρ) is the thickness of the lens at
distance ρ from the optical axis, nl is the refractive index of the lens material, and
κ as defined in Eq. (22). The phase delay induced by the lens, under the assumption
of a paraxial approximation reads as follows (see Table 1 for the summary of all
physical parameters below):
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μ(ρ) ≈ κnld0 − κ

2fL
ρ2 for all ρ ∈ R. (89)

6.5 Electric Field Approximation in the Image Plane

Definition 12 The electric field at the focal plane,

I :=
{
(xf, rf3 ) : xf ∈ R2

}
, (90)

is denoted by Êf(xf) := Ê(xf, rf3 ), where Ê solves the boundary value problem

�Ê(x, r3)+ κ2(x, r3)Ê(x, r3) = 0 for all x ∈ R2, r
tlo

3 < r3 < rf3 (91)

with boundary data

Ê(x, r
tlo

3 ) = Êtlo (x) for all x ∈ R2. (92)

Note that Êtlo as defined in Eq. (64) is already an approximation of the electric field
outside of the lens system.

Following [14, Eqs 5-14], we can calculate the field Ê in the image plane.

Lemma 8 At a point xf in the image plane,

Êf(xf) = 1

iλfL
ei

2π
λ

(fL+nld0)e
i π

λfL|xf|2
∫
x∈R2

PL(x)Êtli (x)e
−i 2π

λfL
〈xf,x〉

dx for all xf ∈ R2.

(93)

Proof We apply the Huygens-Fresnel principle (see [14, Eqs 4-17]) to compute the
field in the image plane:

Êf(xf) = 1

iλd
eiκde

iκ
2d |xf|2

∫
x∈R2

Êtlo (x)ei
κ
2d |x|2e−i κ

d 〈xf,x〉dx

= 1

iλd
eiκde

iκ
2d |xf|2

∫
x∈R2

PL(x)Êtli (x)eiμ(x)ei
κ
2d |x|2e− iκ

d 〈xf,x〉dx

= 1

iλd
eiκde

iκ
2d |xf|2

∫
x∈R2

PL(x)Êtli (x)eiκnld0e−i
κ

2fL
|x|2ei κ

2d |x|2e−i κ
d 〈xf,x〉dx

= 1

iλd
ei

2π
λ

(d+nld0)ei
π
λd |xf|2

∫
x∈R2

PL(x)Êtli (x)e−i
π

λfL
(1− fL

d )|x|2e−i 2πλd 〈xf,x〉dx,

where in the second equality we use Eq. (87), in the third equality we use the paraxial
approximation Eq. (89), and in the last equality we use κ = 2π

λ
. Now, if the image
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plane is at the distance d = fL, the quadratic phase factor terms within the integrand
exactly cancel, leaving

Êf(xf) = 1

iλfL
ei

2π
λ

(fL+nld0)ei
π

λfL
|xf|2

∫
x∈R2

PL(x)Êtli (x)e−i
2π
λfL
〈xf,x〉

dx,

where the term ei
2π
λ

(fL+nld0) is a constant amplitude, and the term ei
π

λfL
|xf|2

describes a spherical phase curvature in the focal plane. ��
Remark 6 From Eq. (93) it follows by the convolution theorem for the Fourier
transform that

Êf(xf) = 2π

λfL
e
iπ

(
− 1

2+ 2
λ
(fL+nld0)+ 1

λfL
|xf|2

)
F12[PLÊtli ]

(
2π

xf
λfL

)

= Cf�f
(
F12[PL] ∗ F12[Êtli ])

(
2π

λfL
xf

)
for all xf ∈ R2,

(94)

where

Cf = 1

λfL
and �f = e

iπ
(
− 1

2+ 2
λ
(fL+nld0)+ 1

λfL
|xf|2

)
. (95)

In the next step we calculate the Fourier-transform of a circular pupil function:

Lemma 9 Let P : R2→ R be the circular pupil function with radius R, as defined
in Eq. (53), then

F12[P ](v) = R2 J1(R |v|)
R |v| for all v ∈ R2. (96)

Proof We use the following polar coordinates:

v = '

(
cos(ϑ)

sin(ϑ)

)
and y = #

(
cos(σ )

sin(σ )

)
,

then the Fourier transform of the pupil function

F12[P ](v) = 1

2π

∫
y∈R2

P(y)e−iy·vdy = 1

2π

∫ R

0
#

∫ 2π

0
e−i'# cos(σ−ϑ)dσd#

=
∫ R

0
#J0('#)d# = R

'
J1(R') = R2 J1(R |v|)

R |v| ,

(97)
where we use Eq. (117) for m = 0 in the third equality. ��

Now, we calculate the k-transform of Êbfp in this approximation.
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6.6 Small Aperature

In what follows, we are interested in a small aperture. Of course small apertures
have the problem that only little light of the emitted dipoles passes through the lens
and thus these considerations are more of theoretical nature.

In case the numerical aperture NA is small, that is if θmax is small, it follows from
Eq. (64) that

Êbfp
small(ρ, ϕ) = C(fobj)

⎛
⎝

�1

�2

0

⎞
⎠ χρ�NA. (98)

In what follows, we denote by PNA the pupil function χρ�NA. We emphasize that
the left-hand side of Eq. (98) is actually an approximation of the right-hand side
of Eq. (64). Next we calculate the k-transform of Êbfp in this approximation.
Noting that the objective acts again as a pupil function with disc radius NA we get
analogously to Lemma 9 and by using Eq. (73)

F12[Êtli

small](ξ, ν) = C(fobj)ei(r
tli
3 −r

bfp
3 )
√

κ2−ξ2

⎛
⎝

�1

�2

0

⎞
⎠F12[PNA](ξ, ν), ξ2 ≤ κ2, ν ∈ [0, 2π).

(99)

7 Single Molecule Localization Microscopy Experiments and
Inverse Problems

We consider two experiments in two different settings:

Experiment

For setting 1 we assume n static emitting dipoles: Several monochromatic
plane waves of the same frequency ωinc but with different orientations v(j),
j = 1, 2, . . . , M with M > 1 are used to illuminate the cell. Every emitting
dipole emits light in an orientation �(j)(k), k = 1, 2, . . . , n, j = 1, 2, . . . , M

(depending on the incident field according to Eq. (51)).
Therefore, for each experiment j = 1, 2, . . . , M the current

Ĵ(j)(r) = iω
n∑

k=1
�(j)(k)δ(r− r�(k))

and the density
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ρ̂(j)(r) = −
n∑

k=1

∣∣∣�(j)(k)

∣∣∣ δ′(r− r�(k)) = −
n∑

k=1
δ′(r− r�(k))

are given via Eqs. (38) and (37) as the superposition of all dipoles. Note, that we
assume that all dipoles are unit vectors.

Consequently, the electric field Ê := Ê(j) solves Eq. (29),

�rÊ(r;ω)+ κ2(ω)Ê(r;ω) = iω

ε0c2
Ĵ(j)(r)+ 1

ε0
∇rρ̂(j)(r) for all r ∈ 
.

1. The measurements recorded in a static experiment are the energies of the
electric field in the image plane, after the light has passed through the imaging
system. That is, for each experiment j = 1, 2, . . . , M the data

m
(j)
i (xf; t) =

∣∣∣(Ef
i )(j)

∣∣∣2 (xf; t) for all xf ∈ R2, t > 0 and for i = 1, 2

(100)

are recorded.
2. In the dynamic experiment setting the static experiment is repeated. We denote

the experiment repetitions with the parameter s: This experimental setup is
used in practice because it makes use of blinking dyes, which allows for better
localization of the dyes, and thus molecules. That is, the measurements are

m(j)(xf; t; s) =
∣∣∣(Ef

i )(j)
∣∣∣2 (xf; t; s) for all xf ∈ R2, t, s > 0 for i = 1, 2.

(101)

For setting 2 we assume rotating dipoles, which are modelled via Eq. (50)—here
in particular we assume that the cone becomes the ball. That is, θ = π . Note
that in this case several monochromatic excitations do not provide an asset, so
we can constrain ourselves to the case M = 1. As a consequence of Eq. (50),
the emitted currents of all rotating dipoles of a single molecule localization
microscopy experiment are given by

Ĵ(r;ω) = iω
n∑

k=1
Ik1k(r), (102)

and according to Eq. (29) the electric field satisfies the equation
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�rÊ(r;ω)+ κ2(ω)Ê(r;ω) = 1

ε0

∑
m

ImR̂m(r;ω) for all r ∈ 
. (103)

1. The measurements recorded in a single molecule localization microscopy are
the energies of the electric field in the focal plane (see Eq. (93)), after the light
has passed through the imaging system. That is, the data

m(xf; t) =
∣∣Ef

∣∣2 (xf; t) for all xf ∈ R2, t > 0 (104)

are recorded.
2. In the dynamic experiment setting the static experiment is repeated, and

we denote every repetition experiment with the parameter s: That is the
measurements are

m(xf; t; s) =
∣∣Ef

∣∣2 (xf; t; s) for all xf ∈ R2, t, s > 0. (105)

Note the difference between setting 1 and 2. In the former it is much easier to
identify dipoles because the orientation can be resolved and is not changing over
time.

7.1 The Limit

Using the small aperture limit of Sect. 6.6 in combination with the formula for the
electric field on the image plane Eq. (94), we can compute the electric field in the
image plane from Eq. (99). We first make use of a linear approximation of the
function [0, κ] * ρ → √

κ2 − ρ2 6 κ , that is we assume that between the back
focal plane of the objective and the lens, the electric field only undergoes a phase
shift which does not depend on the distance to the optical axis. It follows then from
Eq. (99) that

F12[Êtli

small](ξ, ν) 6 C(fobj)ei(r
tli
3 −r

bfp
3 )κ

⎛
⎝

�1

�2

0

⎞
⎠F12[PNA](ξ, ν). (106)

Applying Eq. (94) where we replace F12[Êtli ] by F12[Êtli

small] and inserting
Eq. (106), we obtain
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Êf
small(xf) = Cf�f

(
F12[PL] ∗ F12[Êtli

small]
)(

2π

λfL
xf

)

=
⎛
⎝

�1

�2

0

⎞
⎠ (F12[PL] ∗ F12[PNA]) (ξ, ν)

=
⎛
⎝

�1

�2

0

⎞
⎠F12[PLPNA](ξ, ν),

where we use the following polar coordinates: 2π
λfL

xf = ξ

(
cos(ν)

sin(ν)

)
.

Now, assuming that R � NA (the lens is bigger than the objective), we have
PLPNA = PNA and Eq. (97) provides,

Êf
small(xf) = C(fobj)Cf�fei(r

tli
3 −r

bfp
3 )κ

⎛
⎝

�1

�2

0

⎞
⎠NA2 J1(NA

2π
λfL
|xf|)

NA 2π
λfL
|xf| =: �(ω)

⎛
⎝

�1

�2

0

⎞
⎠NA2 J1(NA

2π
λfL
|xf|)

NA 2π
λfL
|xf| .

Finally, what is actually measured in experiments is the intensity m(xf, t) =
|Ef(xf, t)|2 averaged in time. If we assume that the signal E is compactly supported
in time and that what is measured by the detector contains this whole support, we
can use that the time Fourier transform is a unitary operator and write

m̄(xf) =
∫

t∈R
|Ef(xf)|2 dt

=
∫

ω∈R
|Êf(xf)|2 dω

=
∫

ω∈R
|�(ω)|2

(
NA2

J1(NA
2π
λfL
|xf|)

NA 2π
λfL
|xf|

)2 (
�2

1 +�2
2

)
dω.

(107)

So, under these approximations (small aperture), what is observed by the detector
is an Airy pattern (see Fig. 11) whose intensity depends on the optical system but
is also proportional to the squared norm of the component of the dipole which lies
orthogonally to the optical axis. Making use of the notation introduced before for
the dipole orientation, we obtain that the measured intensity m is proportional to
cos2(θm). Since the Airy function can be well approximated by a Gaussian function,
the measured signals of the emitted dyes very much looks like a superposition of
Gaussian functions.
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Fig. 11 Airy pattern

Now, having summarized the mathematical modeling of single molecule local-
ization microscopy we can state the associated inverse problems:

Definition 13 (Inverse Problem) The inverse problem of single molecule local-
ization microscopy in the two different settings for the two experiments consists in
calculating

(�m, rm, χm(s))m=1,...,M, from the measurements m.

Indeed the inverse problem could also be generalized to reconstruct Eq. (103) in
addition, which would result in an inverse scattering problem [8]. However, this
complex problem is not considered here further.

In current practice of single molecule localization microscopy the simplified
formulas Eq. (107) are used for reconstruction of the center of gravities (r1m, r2m)

in the measurement data m induced by the point spread function PSFω.

8 Conclusion

The main objective of this work was to model mathematically the propagation of
light emitted from dyes in a superresolution imaging experiment. We formulated
basic inverse problems related to single molecule superresolution microscopy,
with the goal to have a basis for computational and quantitative single molecule
superresolution imaging. The derivation of the according equations follows the
physical and chemical literature of superresolution microscopy, in particular [3, 17],
which are combined with the mathematical theory of distributions to translate
physical and chemical terminologies into a mathematical framework.
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Appendix 1: Derivation of Particular Fourier Transforms

Before reading through the appendix it might be useful to recall the notation of
Table 2. The derivation in Lemma 3 uses the residual theorem.

Theorem 2 (Residual Theorem) Let the function z ∈ C→ f̃ (z) := f (z)eiaz with
a > 0 satisfy the following properties:

1. f is analytic with at most finitely many poles pi , i = 1, . . . , m, which do not lie
on the real axis.

2. There exists M, R > 0 such that for every z ∈ C satisfying 1(z) ≥ 0 and |z| ≥ R

|f (z)| ≤ M

|z| . (108)

Then

∫
R

f̃ (x)dx = 2π i
m∑

i=1
Res(f̃ ;pi).

Using this lemma we are able to prove the following result used in Lemma 3:

Lemma 10 Let the assumptions and notation of Lemma 3 hold (in particular this
means that r3, r�

3 ∈ R satisfy r3 − r�
3 > 0), then

1√
2π

F−13

[
k3 →

(
� + (�×k)×k

|k|2−κ2ε

)
e−ik3r�

3

]
(r3)

= �3e3δ̃(r3 − r�
3 )+ ieiqε(r3−r�3 )

2qε
(� × kqε )× kqε . (109)

First, we note that

� + (� × k)× k

k23 − q2
ε

=
(

� −�3e3 + (� × k)× k

k23 − q2
ε

)
+�3e3.

Now, we calculate the Fourier-transform of each of the two terms on the right-hand
side. The second term can be calculated from Eq. (9) and is given by

F−13 [k3 �→ e−ik3r�
3 ](r3) =

√
2πδ̃(r3 − r�

3 ). (110)

For the calculation of the first term, let

z ∈ C→ f (z) := 1

z2 − q2
ε

⎛
⎝� ×

⎛
⎝

k1

k2

z

⎞
⎠

⎞
⎠×

⎛
⎝

k1

k2

z

⎞
⎠+� −�3e3, (111)
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and we use the residual theorem:

• Clearly f is analytic with potential poles at k3 = ±qε.
• To verify Eq. (108) we use the elementary calculation rules for ∇r×, summarized

in Eq. (45) and get

(� × k)× k

k23 − q2
ε

= − 1

k23 − q2
ε

⎛
⎝k23(� −�3e3)− k3

⎛
⎝

�3k1

�3k2

�1k1+�2k2

⎞
⎠+(k21 + k22)�−

⎛
⎝

(�1k1 +�2k2)k1

(�1k1 +�2k2)k2

0

⎞
⎠
⎞
⎠

=− 1

k23 − q2
ε

⎛
⎝k23 (� −�3e3)− k3

⎛
⎝

�3k1

�3k2

�1k1 +�2k2

⎞
⎠

+(k21 + k22) (� −�3e3)+
⎛
⎝
−�1k

2
1 −�2k2k1

−�2k
2
2 −�1k1k2

(k21 + k22)�3

⎞
⎠
⎞
⎠

=− 1

k23 − q2
ε

⎛
⎝(k23 − q2

ε ) (� −�3e3)− k3

⎛
⎝

�3k1

�3k2

�1k1 +�2k2

⎞
⎠+ κ2 (� −�3e3)

+
⎛
⎝
−�1k

2
1 −�2k2k1

−�2k
2
2 −�1k1k2

(k21 + k22)�3

⎞
⎠

⎞
⎠ = −� +�3e3 + k3

k23 − q2
ε

a− 1

k23 − q2
ε

b

where

a =
⎛
⎝

�3k1

�3k2

�1k1 +�2k2

⎞
⎠ and b =

⎛
⎝

(κ2 − k21)�1 −�2k1k2

(κ2 − k22)�2 −�1k1k2

(k21 + k22)�3

⎞
⎠ .

Using that

k3

k23 − q2
ε

= 1

2

(
1

k3 − qε

+ 1

k3 + qε

)
and

1

k23 − q2
ε

= 1

2qε

(
1

k3 − qε

− 1

k3 + qε

)

we get

(� × k)× k

k23 − q2
ε

+�−�3e3 = 1

k3 − qε

(
1

2
a− 1

2qε

b
)
+ 1

k3 + qε

(
1

2
a+ 1

2qε

b
)

.

(112)
This shows Eq. (108).
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Therefore we can apply the residual Theorem 2 for f defined in (111). Then, since
qε is complex with positive imaginary part, f has only one pole in the upper half
plane, and we get

∫
R

f (k3)e
ik3(r3−r�

3 )dk3 = 2π iRes
(
f (z)eiz(r3−r�

3 ); z = qε

)

= 2π i

⎛
⎝ 1

2qε

⎛
⎝� ×

⎛
⎝

k1

k2

qε

⎞
⎠

⎞
⎠×

⎛
⎝

k1

k2

qε

⎞
⎠ eiqε(r3−r�

3 )

⎞
⎠ .

This implies

1√
2π

F−13

[
k3→

(
� + (� × k)× k

|k|2 − κ2
ε

)
e−ik3r�

3

]
(r3)

= �3e3δ̃(r3 − r�
3 )+ ieiqε(r3−r�

3 )

2qε

(� × kqε )× kqε .

Appendix 2: Derivation of the Far Field Approximation for the
Electric Field

Lemma 11 Let ζ be the function defined in Eq. (61). That is, for all k12 ∈ R2

ζ(k12) = k12 · v+ q(k12), with q =
√

κ2 − k21 − k22; note the formal definition of q
in Eq. (42) is via the limit ε→ 0. Then the gradient of ζ is given by

∇ζ(k12) = v− k12√
κ2 − |k12|2

, (113)

which vanishes for

k̂12 := κ√
1+ |v|2

v. (114)

Consequently r = r3e3 + r3
(
v 1

)T
as in Eq. (59) satisfies

r
|r| =

1√
1+ |v|2

(
v
1

)
. (115)

Moreover, with q as defined in Eq. (42), we get the following identities
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ζ(k̂) = k̂12 · v+ q = κ

√
1+ |v|2 and

q = q(k̂) =
√

κ2 − k̂21 − k̂22 =
κ√

1+ |v|2
.

(116)

The Hessian of ζ is given by

H(ζ)(k12) =
⎛
⎜⎝
− 1√

κ2−|k12|2
− k21

(κ2−|k12|2)3/2 − k1k2
(κ2−|k12|2)3/2

− k1k2
(κ2−|k12|2)3/2 − 1√

κ2−|k12|2
− k22

(κ2−|k12|2)3/2

⎞
⎟⎠ ,

which evaluated at k̂ gives

H(ζ)(k̂) =
⎛
⎝−

c
ω

√
1+ |v|2 − c3

ω3 (1+ |v|2)3/2 · v21ω2

c2(1+|v|2) − c3

ω3 (1+ |v|2)3/2 · v1v2ω
2

c2(1+|v|2)
− c3

ω3 (1+ |v|2)3/2 · v1v2ω
2

c2(1+|v|2) − c
ω

√
1+ |v|2 − c3

ω3 (1+ |v|2)3/2 · v22ω2

c2(1+|v|2)

⎞
⎠ ,

= − c

ω

√
1+ |v|2

(
1+ v21 v1v2

v1v2 1+ v22

)
,

and the determinant satisfies

= c2(1+ |v|2)2
ω2

> 0.

Appendix 3: Bessel Identities

For x ∈ R and ϕ0 ∈ [0, 2π) the Bessel-identities hold:

2π(−1)mimJm(x) cos(mϕ0) =
∫ 2π

0
e−ix cos(ϕ−ϕ0) cos(mϕ)dϕ,

2π(−1)mimJm(x) sin(mϕ0) =
∫ 2π

0
e−ix cos(ϕ−ϕ0) sin(mϕ)dϕ,

(117)

where Jm is the Bessel function of the first kind of order m.
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Parameter Identification for the
Landau–Lifshitz–Gilbert Equation in
Magnetic Particle Imaging

Barbara Kaltenbacher, Tram Thi Ngoc Nguyen, Anne Wald,
and Thomas Schuster

Abstract Magnetic particle imaging (MPI) is a tracer-based technique for medical
imaging where the tracer consists of ironoxide nanoparticles. The key idea is to
measure the particle response to a temporally changing external magnetic field to
compute the spatial concentration of the tracer inside the object. A decent mathe-
matical model demands for a data-driven computation of the system function which
does not only describe the measurement geometry but also encodes the interaction of
the particles with the external magnetic field. The physical model of this interaction
is given by the Landau–Lifshitz–Gilbert (LLG) equation. The determination of
the system function can be seen as an inverse problem of its own which can be
interpreted as a calibration problem for MPI. In this contribution the calibration
problem is formulated as an inverse parameter identification problem for the LLG
equation. We give a detailed analysis of the direct as well as the inverse problem in
an all-at-once as well as in a reduced setting. The analytical results yield a deeper
understanding of inverse problems connected to the LLG equation and provide a
starting point for the development of robust numerical solution methods in MPI.

1 Introduction

Magnetic particle imaging (MPI) is a dynamic imaging modality for medical appli-
cations that has first been introduced in 2005 by B. Gleich and J. Weizenecker [10].
Magnetic nanoparticles, consisting of a magnetic iron oxide core and a nonmagnetic

B. Kaltenbacher
Department of Mathematics, Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria
e-mail: barbara.kaltenbacher@aau.at

T. T. N. Nguyen
Institute of Mathematics and Scientific Computing, University of Graz, Graz, Austria
e-mail: tram.nguyen@uni-graz.at

A. Wald (�) · T. Schuster
Department of Mathematics, Saarland University, Saarbrücken, Saarland, Germany
e-mail: anne.wald@num.uni-sb.de; thomas.schuster@num.uni-sb.de

© Springer Nature Switzerland AG 2021
B. Kaltenbacher et al. (eds.), Time-dependent Problems in Imaging and Parameter
Identification, https://doi.org/10.1007/978-3-030-57784-1_13

377

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57784-1_13&domain=pdf
mailto:barbara.kaltenbacher@aau.at
mailto:tram.nguyen@uni-graz.at
mailto:anne.wald@num.uni-sb.de
mailto:thomas.schuster@num.uni-sb.de
https://doi.org/10.1007/978-3-030-57784-1_13


378 B. Kaltenbacher et al.

coating, are inserted into the body to serve as a tracer. The key idea is to measure the
nonlinear response of the nanoparticles to a temporally changing external magnetic
field in order to draw conclusions on the spatial concentration of the particles inside
the body. Since the particles are distributed along the bloodstream of a patient, the
particle concentration yields information on the blood flow and is thus suitable for
cardiovascular diagnosis or cancer detection [23, 24]. An overview of MPI basics
is given in [23]. Since MPI requires the nanoparticles as a tracer, it mostly yields
quantitative information on their distribution, but does not image the morphology of
the body, such as the tissue density. The latter can be visualized using computerized
tomography (CT) [29] or magnetic resonance imaging (MRI) [15]. These do not
require a tracer, but involve ionizing radiation in the case of CT or, in the case of
MRI, a strong magnetic field and a potentially high acquisition time. Other tracer-
based methods are, e.g., single photon emission computerized tomography (SPECT)
and positron emission tomography (PET) [8, 30, 36], which both involve radioactive
radiation. The magnetic nanoparticles that are used in MPI, on the other hand, are
not harmful for organisms. For a more detailed comparison of these methods, we
would like to refer the reader to [23].

At this point there have been promising preclinical studies on the performance of
MPI, showing that this imaging modality has a great potential for medical diagnosis
since it is highly sensitive with a good spatial and temporal resolution, and the
data acquisition is very fast [24]. However, particularly in view of an application
to image the human body, there remain some obstacles. One obstacle is the time-
consuming calibration process. In this work, we assume that the concentration of the
nanoparticles inside the body remains static throughout both the calibration process
and the actual image acquisition. Mathematically, the forward problem of MPI then
can essentially be formulated as an integral equation of the first kind for the particle
concentration (or distribution) c,

u(t) =
∫




c(x)s(x, t) dx,

where the integration kernel s is called the system function. The system function
encodes some geometrical aspects of the MPI scanner, such as the coil sensitivities
of the receive coils in which the particle signal u is measured, but mostly it is
determined by the particle behavior in response to the applied external magnetic
field.

The actual inverse problem in MPI is to reconstruct the concentration c under
the knowledge of the system function s from the measured data u. To this end,
the system function has to be determined prior to the scanning procedure. This is
usually done by evaluating a series of full scans of the field of view, where in each
scan a delta sample is placed in a different pixel until the entire field of view is
covered [23]. Another option is a model-based approach for s (see for example
[22, 28]), which basically involves a model for the particle magnetization. Since
this model often depends on unknown parameters, the model-based determination
of the system function itself can again be formulated as an inverse problem. This



Parameter Identification for the Landau–Lifshitz–Gilbert Equation in MPI 379

article now addresses this latter type of inverse problem, i.e., the identification of the
system function for a known set of concentrations from calibration measurements.
More precisely, our goal is to find a decent model for the time-derivative of the
particle magnetization m, which is proportional to s.

So far, in model-based approaches for the system function, the particle magne-
tization m is not modeled directly. Instead, one describes the mean magnetization
m of the particles via the Langevin function, i.e., the response of the particles is
modeled on the mesoscopic scale [21, 23]. This approach is based on the assumption
that the particles are in thermodynamic equilibrium and respond directly to the
external field. For this reason, the mean magnetization is assumed to be a function
of the external field, such that the mean magnetization is always aligned with the
external field. The momentum of the mean magnetization is calculated via the
Langevin function. This model, however, neglects some properties of the particle
behavior. In particular, the magnetic moments of the particles do not align instantly
with the external field [4].

In this work, we thus address an approach from micromagnetics, which models
the time-dependent behavior of the magnetic material inside the particles’ cores on
the micro scale and allows to take into account various additional physical properties
such as particle-particle interaction. For an overview, see for example [25]. Since the
core material is iron oxide, which is a ferrimagnetic material that shows a similar
behavior as ferromagnets [5, 6], we use the Landau–Lifshitz–Gilbert (LLG) equation

∂

∂t
m = −α̃1m× (m×Heff)+ α̃2m×Heff,

see also [9, 26], for the evolution of the magnetization m of the core material.
The field Heff incorporates the external magnetic field together with other relevant
physical effects. According to the LLG equation, the magnetization m performs a
damped precession around the field vector of the external field, which leads to a
relaxation effect. The LLG equation has been widely applied to describe the time
evolution in micromagnetics [2, 7, 11].

In contrast to the imaging problem of MPI, the inverse problem of determining
the magnetization m along with the constants α̃1, α̃2 turns out to be a nonlinear
inverse problem, which is typical for parameter identification problems for partial
differential equations, for example electrical impedance tomography [1], terahertz
tomography [38], ultrasound imaging [3] and other applications from imaging and
nondestructive testing [20].

We use the all-at-once as well as the reduced formulation of this inverse problem
in a Hilbert space setting, see also [16, 17, 31], and analyze both cases including
well-definedness of the forward mapping, continuity, and Fréchet differentiability
and calculate the adjoint mappings for the Fréchet derivatives. By consequence,
iterative methods such as the Landweber method [14, 27], also in combination
with Kaczmarz’ method [12, 13], Newton methods (see, e.g., [33]), or subspace
techniques [37] can be applied for the numerical solution. An overview of suitable
regularization techniques is given in [18, 19].
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We begin with a detailed introduction to the modelling in MPI. In particular, we
describe the full forward problem and present the initial boundary value problem for
the LLG equation that we use to describe the magnetization evolution. In Sect. 3,
we formulate the inverse problem of calibration both in the all-at-once and in
the reduced setting to obtain the final operator equation that is analyzed in the
subsequent section. First, in Sect. 4.1, we present an analysis for the all-at-once
setting. The inverse problem in the reduced setting is then addressed in Sect. 4.2.
Finally, we conclude our findings in Sect. 5 and give an outlook on further research.

Throughout the article, we make use of the following notation: The differential
operators −� and ∇ are applied by components to a vector field. In particular this
means that by ∇u we denote the transpose of the Jacobian of u. Moreover, 〈a,b〉
or a · b denotes the Euclidean inner product between two vectors and A : B the
Frobenius inner product between two matrices.

2 The Underlying Physical Model for MPI

The basic physical principle that is exploited in MPI is Faraday’s law of induction,
which states that whenever the magnetic flux density B through a coil changes in
time, this change induces an electric current in the coil. This current, or rather the
respective voltage, can be measured. In MPI, the magnetic flux density B consists
of the external applied magnetic field Hext and the particle magnetization MP, i.e.,

B = μ0

(
Hext +MP

)
,

where μ0 is the magnetic permeability in vacuum. The particle magnetization
MP(x, t) in x ∈ 
 ⊆ R

3 depends linearly on the concentration c(x) of magnetic
material, which corresponds to the particle concentration, in x ∈ 
 and on the
magnetization m(x, t) of the magnetic material. We thus have

MP(x, t) = c(x)m(x, t),

where |m| = mS > 0, i.e., the vectorm has the fixed length mS that depends on the
magnetic core material inside the particles. At this point it is important to remark
that we use a slightly different approach to separate the particle concentration, which
carries the spatial information on the particles, from the magnetization behavior of
the magnetic material and the measuring process. In our approach, the concentration
is a dimensionless quantity, whereas in most models, it is defined as the number of
particles per unit volume (see, e.g. [23]).

A detailed derivation of the forward model in MPI, based on the equilibrium
model for the magnetization, can be found in [23]. The steps that are related to the
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measuring process can be adapted to our approach. For the reader’s convenience, we
want to give a short overview and introduce the parameters related to the scanner
setup.

If the receive coil is a simple conductor loop, which encloses a surface S, the
voltage that is induced can be expressed by

u(t) = − d

dt

∫
S

B(x, t) · dA = −μ0
d

dt

∫
S

(
Hext +MP

)
· dA. (1)

The signal that is recorded in the receive coil thus originates from temporal changes
of the external magnetic field H as well as of the particle magnetization MP,

u(t) = −μ0

(∫



pR(x) · ∂

∂t
Hext(x, t) dx +

∫



pR(x) · ∂

∂t
MP(x, t) dx

)
(2)

=: uE(t)+ uP(t) (3)

For the signal that is caused by the change in the particle magnetization we obtain

uP(t) = −μ0
d

dt

∫



pR(x) ·MP(x, t) dx

= −μ0

∫



pR(x) · ∂

∂t
MP(x, t) dx

= −μ0

∫



c(x)pR(x) · ∂

∂t
m(x, t) dx

= −μ0

∫



c(x)s(x, t) dx.

The function

s(x, t) := pR(x) · ∂

∂t
m(x, t) =

〈
pR(x),

∂

∂t
m(x, t)

〉

R3
(4)

is called the system function and can be interpreted as a potential to induce a signal
in the receive coil. The function pR is called the coil sensitivity and is determined
by the architecture of the respective receive coil. For our purposes, we assume that
pR is known. The measured signal that originates from the magnetic particles can
thus essentially be calculated via an integral equation of the first kind with a time-
dependent integration kernel s.

The particle magnetization, however, changes in time in response to changes
of the external field. It is thus an important objective to encode the interplay of
the external field and the particles in a sufficiently accurate physical model. The
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magnetization of the magnetic particles that are used in MPI can be considered on
different scales. The following characterization from ferromagnetism has been taken
from [25]:

On the atomic level, one can describe the behavior of a magnetic material as a
spin system and take into account stochastic effects that arise, for example, from
Brownian motion.

In themicroscopic scale, continuum physics is applied to work with deterministic
equations describing the magnetization of the magnetic material.

In the mesoscopic scale, we can describe the magnetization behavior via a mean
magnetization, which is an average particle magnetic moment.

Finally, on a macroscopic scale, all aspects that arise from the microstructure
are neglected and the magnetization is described by phenomenological constitutive
laws.

In this work, we intend to use a model frommicromagnetism, allowing us to work
with a deterministic equation to describe the magnetization of the magnetic material.
The core material of the nanoparticles consists of iron-oxide or magnetite, which
is a ferrimagnetic material. The magnetization curve of ferrimagnetic materials is
similar to the curve that is observed for ferromagnets, but with a lower saturation
magnetization (see, e.g., [5, 6]). This approach has also been suggested in [32]. The
evolution of the magnetization in time is described by the Landau–Lifshitz–Gilbert
(LLG) equation

mt := ∂

∂t
m = −α̃1m× (m×Heff)+ α̃2m×Heff, (5)

see [9, 25] and the therein cited literature. The coefficients

α̃1 := γ αD

mS(1+ α2
D)

> 0, α̃2 := γ

(1+ α2
D)

> 0

are material parameters that contain the gyromagnetic constant γ , the saturation
magnetization mS of the core material and a damping parameter αD. The vector
field Heff is called the effective magnetic field. It is defined as the negative gradient
−DE(m) of the Landau energy E(m) of a ferromagnet, see, e.g., [25]. Taking into
account only the interaction with the external magnetic field H and particle-particle
interactions, this energy is given by

EA(m) = A

∫



|∇m|2 dx − μ0mS

∫



〈H,m〉R3 dx,

where A ≥ 0 is a scalar parameter (the exchange stiffness constant [9]). We thus
have

Heff = 2A�m+ μ0mSHext. (6)
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Together with Neumann boundary conditions and a suitable initial condition our
model for the magnetization thus reads

mt = −α1m× (m× (�m+ hext))+ α2m× (�m+ hext) in [0, T ] ×
,

(7)

0 = ∂νm on [0, T ] × ∂
,

(8)

m0 = m(t = 0), |m0| = mS in 
, (9)

where hext = μ0mS
2A Hext and α1 := 2Aα̃1, α2 := 2Aα̃2 > 0. The initial value

m0 = m(t = 0) corresponds to the magnetization of the magnetic material in the
beginning of the measurement. To obtain a reasonable value for m0, we take into
account that the external magnetic field is switched on before the measuring process
starts, i.e., m0 is the state of the magnetization that is acquired when the external
field is static. This allows us to precompute m0 as the solution of the stationary
problem

α1m0 × (m0 × (�m0 + hext(t = 0))) = α2m0 × (�m0 + hext(t = 0)) (10)

with Neumann boundary conditions.

Remark 1 In the stationary case, damping does not play a role, and if we addition-
ally neglect particle-particle interactions, we obtain the approximative equation

m̂0 ×
(
m̂0 × hext(t = 0)

) = 0

with an approximation m̂0 to m̂, since α2 ≈ 0 and Heff ≈ μ0mSHext. The above
equation yields m̂0 ‖ hext(t = 0). Together with |m̂0| = mS this yields

m̂0 = mS
hext(t = 0)

|hext(t = 0)| .

This represents a good approximation to m0 where hext is strong at the time point
t = 0:

m0 ≈ m̂0 = mS
hext(t = 0)

|hext(t = 0)| .

2.1 The Observation Operator in MPI

Faraday’s law states that a temporally changing magnetic field induces an electric
current in a conductor loop or coil, which yields the relation (1). By consequence,
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not only the change in the particle magnetization contributes to the induced current,
but also the dynamic external magnetic field Hext. Since we need the particle
signal for the determination of the particle magnetization, we need to separate the
particle signal from the excitation signal due to the external field. This is realized by
processing the signal in a suitable way using filters.

MPI scanners usually use multiple receive coils to measure the induced particle
signal at different positions in the scanner. We assume that we have L ∈ N receive
coils with coil sensitivities pR$ , $ = 1, . . . , L, and the measured signal is given by

ṽ$(t) = −μ0

∫ T

0
ã$(t − τ)

∫



c(x)pR$ (x) · ∂

∂τ
m(x, τ ) dx dτ, (11)

where T is the repetition time of the acquisition process, i.e., the time that is needed
for one full scan of the object, and a$ : [0, T ] → R is the transfer function
with periodic continuation ã$ : R → R. The transfer function serves as a filter
to separate particle and excitation signal, i.e., it is chosen such that

ṽE$ (t) := (̃
a$ ∗ uE$

)
(t) = −μ0

∫ T

0
ã$(t − τ)

∫



pR$ (x) · ∂

∂t
Hext(x, t) dx dt ≈ 0.

In practice, ã$ is often a band pass filter. For a more detailed discussion of
the transfer function, see also [23]. In this work, the transfer function is known
analytically.

We define

K$(t, τ, x) := −μ0ã$(t − τ)c(x)pR$ (x),

such that the measured particle signals are given by

v$(t) =
∫ T

0

∫



K$(t, τ, x) · ∂

∂τ
m(x, τ ) dτ dx, (12)

where m fulfills (7), (8), (9).
To determine m in 
 × (0, T ), we use the data vk$(t), k = 1, . . . , K , $ =

1, . . . , L, from the scans that we obtain for different particle concentrations ck , k =
1, . . . , K , K ∈ N. The forward operator thus reads

vk$(t) =
∫ T

0

∫



Kk$(t, τ, x) · ∂

∂τ
m(x, τ ) dx dτ ,

Kk$(t, τ, x) := −μ0ã$(t − τ)ck(x)pR$ (x).

(13)
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2.2 Equivalent Formulations of the LLG Equation

In this section, we derive additional formulations of (7)–(9) that are suitable for the
analysis. The approach is motivated by Kruzík and Prohl [25], where only particle-
particle interactions are taken into account.

First of all, we observe that multiplying (7) with m on both sides yields

1

2
· d
dt
|m(x, t)|2 = m(x, t) ·mt (x, t) = 0, (14)

which shows that the absolute value ofm does not change in time. Since |m0| = mS,
we have m(x, t) ∈ mS · S2, where S2 := {v ∈ R

3 : |v| = 1} is the unit sphere in
R
3. As a consequence, we have 0 = ∇|m|2 = 2∇m ·m in 
, so that, by taking the

divergence we get

〈m, �m〉 = −〈∇m,∇m〉. (15)

Now we make use of the identity

a× (b× c) = 〈a, c〉b− 〈a,b〉c

for a,b, c ∈ R
3 to derive

m× (m×�m) = 〈m, �m〉m− |m|2�m = −|∇m|2m−m2
S�m, (16)

m× (m× hext) = 〈m,hext〉m− |m|2hext = 〈m,hext〉m−m2
Shext. (17)

Using (15) together with (16), (17) and |m| = mS, we obtain from (7)–(9)

mt − α1 m2
S �m = α1|∇m|2m+ α2m×�m

− α1〈m,hext〉m+ α1 m2
S hext + α2m× hext

in [0, T ] ×Ω,

(18)

0 = ∂νm on [0, T ] × ∂Ω,

(19)

m0 = m(t = 0), |m0| = mS in Ω, (20)

Taking the cross product of m with (18) and multiplying with −α̂2, where α̂1 =
α1

m2
Sα2

1+α2
2
, α̂2 = α2

m2
Sα2

1+α2
2
, by (16), (17) and cancellation of the first and third term on

the right hand side we get
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− α̂2m×mt + α1α̂2m
2
Sm×�m

= α2
2

m2
Sα

2
1 + α2

2

(
|∇m|2m+m2

S�m
)

− α1α̂2m
2
Sm× hext + α2

2

m2
Sα

2
1 + α2

2

(
m2

Shext − 〈m,hext〉m
)

,

where the second term on the left hand side can be expressed via (18) as

α1α̂2m×�m = α̂1mt + α2
1

m2
Sα

2
1 + α2

2

(
−m2

S�m− |∇m|2m

+〈m,hext〉m−m2
Shext

)
− α1α̂2m× hext .

This yields the alternative formulation

α̂1m
2
Smt − α̂2m×mt −m2

S�m = |∇m|2m+m2
Shext − 〈m, hext〉m in [0, T ] ×
, (21)

0 = ∂νm on [0, T ] × ∂
, (22)

m0 = m(t = 0), |m0| = mS in 
 . (23)

3 An Inverse Problem for the Calibration Process in MPI

Apart from the obvious inverse problem of determining the concentration c of
magnetic particles inside a body from the measurements v$, $ = 1, . . . , L, MPI
gives rise to a range of further parameter identification problems of entirely different
nature. In this work, we are not addressing the imaging process itself, but consider
an inverse problem that is essential for the calibration process. Here, calibration
refers to determining the system function s$, which serves as an integral kernel in
the imaging process. The system function includes all system parameters of the
tomograph and encodes the physical behaviour of the magnetic material in the
cores of the magnetic particles inside a temporally changing external magnetic
field. Experiments show that a simple model for the magnetization, based on the
assumption that the particles are in their equilibrium state at all times, is insufficient
for the imaging, see, e.g., [22]. A model-based approach with an enhanced physical
model has so far been omitted due to the complexity of the involved physics and
the system function is usually measured in a time-consuming calibration process
[23, 24].

In this work, we address the inverse problem of calibrating an MPI system for
a given set of standard calibration concentrations ck , k = 1, . . . , K , for which we
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measure the corresponding signals and obtain the data vk$(t), k = 1, . . . , K , $ =
1, . . . , L. Here we assume that the coil sensitivity pR$ as well as the transfer function
ã$ are known.

This, together with the fact thatm is supposed to satisfy the LLG equation (21)–
(23), is used to determine the system function (4). Actually, since pR is known, the
inverse problem under consideration here consists of reconstructing m from (13),
(21)–(23). As the initial boundary value problem (21)–(23) has a unique solution
m for given α̂1, α̂2, it actually suffices to determine these two parameters. This is
the point of view that we take when using a classical reduced formulation of the
calibration problem

F(α̂) = y (24)

with the data yk$ = vk$ and the forward operator

F : D(F )(⊆ X)→ Y, α̂ = (α̂1, α̂2) �→ K
∂

∂t
S(α̂) (25)

containing the parameter-to-state map

S : X→ Ũ (26)

that maps the parameters α̂ into the solutionm := S(α̂) of the LLG initial boundary
value problem (21)–(23). The linear operator K is the integral operator defined by
the kernels Kk$, k = 1, . . . , K , $ = 1, . . . , L, i.e.,

Kk$u =
∫ T

0

∫



Kk$(t, τ, x) · u(x, τ ) dτ dx . (27)

Here, the preimage and image spaces are defined by

X = R
2, Y = L2(0, T )KL (28)

and the state space Ũ will be chosen appropriately below, see Sect. 4.2.
Alternatively, we also consider the all-at-once formulation of the inverse problem

as a simultaneous system

F(m, α̂) = y := (0, y)T (29)

for the state m and the parameters α̂, with the forward operator

F(m, α̂) =
(
F0(m, α̂)(
Fk$(m, α̂)

)
k=1,...,K , $=1,...,L

)
,
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where

F0(m, α̂1, α̂2) =: α̂1mt −�m− α̂2m×mt − |∇m|2m− hext + (m · hext)m

and

Fk$(m, α̂1, α̂2) = Kk,$mt

withKk,$ as in (27). Here Fmaps betweenU×X andW×Y with X,Y as in (28),
and U, W appropriately chosen function spaces, see Sect. 4.1.

Iterative methods for solving inverse problems usually require the linearization
F ′(α̂) of the forward operator F and its adjoint F ′(α̂)∗ (and likewise for F) in the
given Hilbert space setting.

For example, consider Landweber’s iteration cf., e.g., [14, 27] defined by a
gradient decent method for the least squares functional ‖F(α̂)− y‖2Y as

α̂n+1 = α̂n − μnF ′(α̂n)∗(F (α̂n)− y)

with an appropriately chosen step size μn. Alternatively, one can split the forward
operator into a system by considering it row wise Fk(α̂) = yk with Fk = (Fkl)$=1...L
or column wise F$(α̂) = y$ with F$ = (Fkl)k=1,...,K , or even element wise Fkl(α̂) =
ykl , and cyclically iterating over these equations with gradient descent steps in a
Kaczmarz version of the Landweber iteration cf., e.g., [12, 13]. The same can be
done with the respective all-at-once versions [16]. These methods extend to Banach
spaces as well by using duality mappings, cf., e.g., [35], however, for the sake of
simplicity of exposition and implementation, we will concentrate on a Hilbert space
setting here; in particular, all adjoints will be Hilbert space adjoints.

4 Derivatives and Adjoints

Motivated by their need in iterative reconstruction methods, we now derive and
rigorously justify derivatives of the forward operators as well as their adjoints, both
in an all-at-once and in a reduced setting.

To simplify notation for the following analysis sections, the subscript “ext” in the
external magnetic field will be skipped. Moreover, to avoid confusion with the dual
pairing, we will use the dot notation for the Euclidean inner product.

4.1 All-at-Once Formulation

We split the magnetization additively into its given initial valuem0 and the unknown
rest m̂, so that the forward operator reads
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F(m̂, α̂1, α̂2) =
⎛
⎜⎝
F0(m̂, α̂1, α̂2)

(
Fk$(m̂, α̂1, α̂2)

)
k=1,...,K , $=1,...,L

⎞
⎟⎠

:=

⎛
⎜⎜⎜⎝

α̂1m̂t −�N(m0 + m̂)− α̂2(m0 + m̂)× m̂t

−|∇(m0 + m̂)|2(m0 + m̂)− h+ ((m0 + m̂) · h)(m0 + m̂)

( ∫ T

0

∫


Kk$(t, τ, x) ·mt (x, τ ) dx dτ

)
k=1,...,K , $=1,...,L

⎞
⎟⎟⎟⎠ ,

for given h ∈ L2(0, T ;Lp(
;R3)), p ≥ 2, where �N : H 1(
) → H 1(
)∗ and,
using the same notation, �N : H 2

N(
)→ L2(
)(⊆ H 1(
)∗) with H 2
N(
) = {u ∈

H 2(
) : ∂νu = 0 on ∂
}1 is equipped with homogeneous Neumann boundary
conditions, i.e, it is defined by

〈−�Nu, v〉H 1(
)∗,H 1(
) = (∇u,∇v)L2(
) ∀u, v ∈ H 1(
)

and thus satisfies

(−�Nu, v)L2(
) =
∫




∇u · ∇v dx ∀u ∈ H 2
N(
) , v ∈ H 1(
) . (30)

The forward operator is supposed to act between Hilbert spaces

F : U× R
2→W× L2(0, T )KL

with the linear space

U = {u ∈ L2(0, T ;H 2
N(
;R3)) ∩H 1(0, T ;L2(
;R3)) : u(0) = 0}

⊆ C(0, T ;H 1(
)) ∩Hs(0, T ;H 2−2s(
)) ,
(31)

for s ∈ [0, 1], where the latter embedding is continuous by, e.g., [34, Lemma 7.3],
applied to ∂ui

∂xj
, and interpolation, as well as

W = H 1(0, T ;H 1(
;R3))∗ or, in case p > 2,W = H 1(0, T ;L2(
;R3))∗ .

(32)
We equip U with the inner product

(u1,u2)U :=
∫ T

0

∫



(
(−�Nu1) · (−�Nu2)+ u1t · u2t

)
dx dt

+
∫




∇u1(T ) : ∇u2(T ) dx ,

1Note that as opposed to H 1(
) functions, H 2(
) functions do have a Neumann boundary trace.
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which, in spite of the nontrivial nullspace of the Neumann Laplacian−�N , defines a
norm equivalent to the usual norm on L2(0, T ;H 2(
;R3))∩H 1(0, T ;L2(
;R3)),
due to the estimates

‖u‖2
L2(0,T ;L2(
))

= −
∫ T

0

∫



∫ t

0
u(s) ds ut (t) dx dt +

∫



∫ t

0
u(s) ds u(T ) dx

≤
(
T ‖ut‖L2(0,T ;L2(
)) +

√
T ‖u(T )‖L2(
)

)
‖u‖L2(0,T ;L2(
))

‖u(T )‖L2(
) = ‖
∫ T

0
ut (t) dt‖L2(
) ≤

√
T ‖ut‖L2(0,T ;L2(
)) .

This, together with the definition of the Neumann Laplacian (30), and the use of
solutions z, v to the auxiliary problems

⎧⎨
⎩
zt −�z = v in (0, T )×


∂νz = 0 on (0, T )× ∂


z(0) = 0 in 


,

⎧⎨
⎩
−vt −�v = f in (0, T )×


∂νv = 0 on (0, T )× ∂


v(T ) = g in 


, (33)

allows to derive the identity

(u, z)U =
∫ T

0

∫



(
∇u : ∇(−�N z)− u · zt t

)
dx dt +

∫


u(T ) ·

(
zt (T )−�N z(T )

)
dx

=
∫ T

0

∫



(
∇u : ∇(v− zt )− u · (vt +�N zt )

)
dx dt +

∫


u(T ) · v(T ) dx

=
∫ T

0

∫


u ·

(
−�Nv− vt

)
dx dt +

∫


u(T ) · v(T ) dx

=
∫ T

0

∫


u · f dx dt +

∫


u(T ) · g dx ,

(34)
which will be needed later on for deriving the adjoint.

OnW = H 1(0, T ;H 1(
;R3))∗ we use the inner product

(w1,w2)W :=
∫ T

0

∫



(
I1[∇(−�N + id)−1w1](t) : I1[∇(−�N + id)−1w2](t)

+ I1[(−�N + id)−1w1](t) · I1[(−�N + id)−1w2](t) dx dt ,

with the isomorphism −�N + id : H 1(
) → (H 1(
))∗ and the time integral
operators
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I1[w](t) :=
∫ t

0
w(s) ds − 1

T

∫ T

0
(T − s)w(s) ds ,

I2[w](t) := −
∫ t

0
(t − s)w(s) ds + t

T

∫ T

0
(T − s)w(s) ds ,

so that I2[w]t (t) = −I1[w](t), I1[w]t (t) = −I2[w]t t (t) = w(t) and I2[w](0) =
I2[w](T ) = 0, hence

∫ T

0
I1[w1](t) I1[w2](t) dt =

∫ T

0
I2[w1](t) w2(t) dt,

so that in case w2 ∈ L2(0, T ;L2(
;R3)),

(w1,w2)W =
∫ T

0

∫



(
I2[∇(−�N + id)−1w1](t) : [∇(−�N + id)−1w2](t)

+ I2[(−�N + id)−1w1](t) · [(−�N + id)−1w2](t) dx dt

=
∫ T

0

∫



I2[(−�N + id)−1w1](t) · w2(t) dx dt .

(35)
In case p > 2 in the assumption on h, we can set W = H 1(0, T ;L2(
;R3))∗ and
use the simpler inner product

(w1,w2)W :=
∫ T

0

∫



I1[w1](t) · I1[w2](t) dx dt ,

which in case w2 ∈ L2(0, T ;L2(
;R3)) satisfies

(w1,w2)W =
∫ T

0

∫



I2[w1](t) · w2(t) dx dt .

4.1.1 Well-Definedness of the Forward Operator

Indeed it can be verified that F maps between the function spaces introduced
above, cf. (31), (32). For the linear (with respect to m̂) parts α̂1m̂t , −�N m̂, and∫ T

0

∫


Kk$(t, τ, x) ·mt (x, τ ) dx dτ of F, this is obvious and for the nonlinear terms

α̂2(m0 + m̂) × m̂t , |∇(m0 + m̂)|2(m0 + m̂), ((m0 + m̂) · h)(m0 + m̂) we use the
following estimates (36), (37), (38), (39), (40), (41), holding for any u,w, z ∈ U.
For the term α̂2(m0 + m̂)× m̂t , we estimate
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‖u× wt‖H 1(0,T ;H 1(
;R3))∗

≤ ‖u× wt‖L2(0,T ;(H 1(
;R3))∗)

≤ C

H 1→L3‖u× wt‖L2(0,T ;L3/2(
;R3))

≤ C

H 1→L3‖u‖C(0,T ;L6(
;R3))‖wt‖L2(0,T ;L2(
;R3))

≤ C

H 1→L3C



H 1→L6‖u‖C(0,T ;H 1(
;R3))‖wt‖L2(0,T ;L2(
;R3)) ,

(36)

where we have used duality and continuity of the embeddingsH 1(0, T ;H 1(
;R3))

↪→ L2(0, T ;H 1(
;R3)) ↪→ L2(0, T ;L3(
)) in the first and second estimate, and
Hölder’s inequality with exponent 4 in the third estimate; For the term |∇(m0 +
m̂)|2(m0 + m̂), we use

‖(∇u : ∇w)z‖H 1(0,T ;H 1(
;R3))∗

≤ C
(0,T )

H 1→L∞‖(∇u : ∇w)z‖L1(0,T ;(H 1(
;R3))∗)

≤ C
(0,T )

H 1→L∞C

H 1→L6‖(∇u : ∇w)z‖L1(0,T ;L6/5(
;R3))

≤ C
(0,T )

H 1→L∞C

H 1→L6

‖∇u‖L2(0,T ;L6(
;R3))‖∇w‖L2(0,T ;L6(
;R3))‖z‖C(0,T ;L2(
;R3))

≤ C
(0,T )

H 1→L∞C

H 1→L6

‖u‖L2(0,T ;H 2(
;R3))‖w‖L2(0,T ;H 2(
;R3))‖z‖C(0,T ;H 1(
;R3)) ,

(37)

again using duality and the embeddings H 1(0, T ;H 1(
;R3))

↪→ L∞(0, T ;H 1(
)) ↪→ L∞(0, T ;L6(
));
For the term ((m0 + m̂) · h)(m0 + m̂), we estimate

‖(u · h)z‖H 1(0,T ;H 1(
;R3))∗

≤ C

H 1→L6‖(u · h)z‖L2(0,T ;L6/5(
;R3))

≤ C

H 1→L6‖u‖C(0,T ;L6(
;R3))‖z‖C(0,T ;L6(
;R3))‖h‖L2(0,T ;L2(
;R3))

≤ (C

H 1→L6;R3)‖u‖C(0,T ;H 1(
;R3))‖z‖C(0,T ;H 1(
;R3))‖h‖L2(0,T ;L2(
;R3))

(38)
by duality and the embedding H 1(0, T ;H 1(
;R3)) ↪→ L2(0, T ;L6(
)), as well
as Hölder’s inequality.
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In case p > 2, F maps into the somewhat stronger space W =
H 1(0, T ;L2(
;R3))∗, due to the estimates

‖u× wt‖H 1(0,T ;L2(
;R3))∗

≤ C
(0,T )

H 1→L∞‖u× wt‖L1(0,T ;L2(
;R3))

≤ C
(0,T )

H 1→L∞‖u‖L2(0,T ;L∞(
;R3))‖wt‖L2(0,T ;L2(
;R3))

≤ C
(0,T )

H 1→L∞C

H 2→L∞‖u‖L2(0,T ;H 2(
;R3))‖wt‖L2(0,T ;L2(
;R3)) ,

(39)

as well as

‖(∇u : ∇w)z‖H 1(0,T ;L2(
;R3))∗

≤ C
(0,T )

H 1→L∞‖(∇u : ∇w)z‖L1(0,T ;L2(
;R3))

≤ C
(0,T )

H 1→L∞‖∇u‖L2(0,T ;L6(
;R3))‖∇w‖L2(0,T ;L6(
;R3))‖z‖C(0,T ;L6(
;R3))

≤ C
(0,T )

H 1→L∞(C

H 1→L6;R3)‖u‖L2(0,T ;H 2(
;R3))

‖w‖L2(0,T ;H 2(
;R3))‖z‖C(0,T ;H 1(
;R3)) ,

(40)
and

‖(u · h)z‖H 1(0,T ;L2(
;R3))∗

≤ C
(0,T )

H 1→L∞‖(u · h)z‖L1(0,T ;L2(
;R3))

≤ C
(0,T )

H 1→L∞‖u‖L4(0,T ;Lp∗∗ (
;R3))‖z‖L4(0,T ;Lp∗∗ (
;R3))‖h‖L2(0,T ;Lp(
;R3))

≤ C
(0,T )

H 1→L∞(C
(0,T )

H 1/4,L4)
2(C


H 3/2,Lp∗∗ )
2

‖u‖H 1/4(0,T ;H 3/2(
;R3))‖z‖H 1/4(0,T ;H 3/2(
;R3))‖h‖L2(0,T ;Lp(
;R3)) ,

(41)
for p∗∗ = 2p

p−2 < ∞, which can be bounded by the U norm of u and z, using

interpolation with s = 1
4 in (31).

4.1.2 Differentiability of the Forward Operator

Formally, the derivative of F is given by
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F
′(m̂, α̂1, α̂2)(u, β1, β2)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

β1m̂t − β2(m0 + m̂)× m̂t

+α̂1ut −�Nu− α̂2u× m̂t − α̂2(m0 + m̂)× ut

−2(∇(m0 + m̂) : ∇u)(m0 + m̂)− |∇(m0 + m̂)|2u
+((m0 + m̂) · h)u+ (u · h)(m0 + m̂)

( ∫ T

0

∫


Kk$(t, τ, x) · ut (x, τ ) dx dτ

)
k=1,...,K , $=1,...,L

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
(

∂F0
∂m̂ (m̂, α̂)

∂F0
∂α̂1

(m̂, α̂)
∂F0
∂α̂2

(m̂, α̂)

(
∂Fk$

∂m̂ (m̂, α̂))k=1,...,K,$=1,...,L 0 0

)⎛
⎝

u
β1

β2

⎞
⎠

where ∂F0
∂m̂ (m̂, α̂) : U → W, ∂F0

∂α̂1
(m̂, α̂) : R → W, ∂F0

∂α̂2
(m̂, α̂) : R → W,

(
∂Fk$

∂m̂ (m̂, α̂))k=1,...,K,$=1,...,L : U→ L2(0, T )KL. Fréchet differentiability follows
from the fact that in

F(m̂+ u, α̂1 + β1, α̂2 + β2)− F(m̂, α̂1, α̂2)− F
′(m̂, α̂1, α̂2)(u, β1, β2)

all linear terms cancel out and the nonlinear ones are given by (abbreviating m =
m0 + m̂)

(α̂1 + β1)(mt + ut )− α̂1mt − α̂1ut − β1mt

= β1ut

(α̂2 + β2)(m+ u)× (mt + ut )− α̂2m×mt−β2m×mt−α̂2u×mt−α̂2m× ut

= α̂2u× ut + β2m× ut + β2u×mt + β2u× ut

|∇m+ ∇u|2(m+ u)− |∇m|2m− 2(∇m : ∇u)m− |∇m|2u
= |∇u|2(m+ u)+ 2(∇m : ∇u)u

((m+ u) · h)(m+ u)− (m · h)m− (u · h)m− (m · h)u

= (u · h)u ,

hence, using again (36)–(38), they can be estimated by some constant multiplied by
‖u‖2U + β2

1 + β2
2 .

4.1.3 Adjoints

We start with the adjoint of ∂F0
∂m̂ (m̂, α̂). For any u ∈ U, y ∈ L2(0, T ;L2(
)), we

have, using the definition of −�N , i.e., (30),
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∫ T

0

∫



(
∂F0

∂m̂
(m̂, α̂)u) · y dx dt

=
∫ T

0

∫



(
α̂1ut · y+∇u : ∇y− α̂2(u× m̂t ) · y− α̂2((m0 + m̂)× ut ) · y

− 2(∇(m0 + m̂) : ∇u) ((m0 + m̂) · y)− |∇(m0 + m̂)|2 (u · y)
+ ((m0 + m̂) · h) (u · y)+ (u · h) ((m0 + m̂) · y)

)
dx dt

=
∫ T

0

∫


u ·

(
− α̂1yt + (−�y)− α̂2m̂t × y+ α̂2yt × (m0 + m̂)+ α̂2y× m̂t

− 2((m0 + m̂) · y) (−�N(m0 + m̂))+ 2((∇(m0 + m̂)T (∇y)) (m0 + m̂)

+ 2((∇(m0 + m̂)T (∇(m0 + m̂))) y− |∇(m0 + m̂)|2y
+ ((m0 + m̂) · h) y+ ((m0 + m̂) · y) h

)
dx dt

+
∫


u(T ) ·

(
α̂1y(T )− α̂2y(T )× (m0 + m̂(T ))

)
dx

=:
∫ T

0

∫


u · fy dx dt +

∫


u(T ) · gy

T
dx ,

where we have integrated by parts with respect to time and used the vector identities

a · (b× c) = b · (c× a) = c · (a× b) .

Matching the integrals over 
 × (0, T ) and 
 × {T }, respectively, and tak-
ing into account the homogeneous Neumann boundary conditions implied by
the definition of −�N , (30), as well as the identities (34), (35), we find that
∂F0
∂m̂ (m̂, α̂)∗y =: z is the solution of (33) with f = fy, g = gyT , where in case
W = H 1(0, T ;H 1(
;R3))∗, y = I2 [̃y], with ỹ(t) solving

{−�ỹ(t)+ ỹ(t) = w(t) in 


∂νỹ = 0 on ∂


for each t ∈ (0, T ), or in caseW = H 1(0, T ;L2(
;R3))∗, just y = I2[w].
With the same y, after pointwise projection onto the mutually orthogonal vectors

m̂t (x, t) and (m0(x)+ m̂(x, t))× m̂t (x, t) and integration over space and time, we
also get the adjoints of ∂F0

∂α̂1
(m̂, α̂), ∂F0

∂α̂2
(m̂, α̂)

∂F0

∂α̂1
(m̂, α̂)∗w =

∫ T

0

∫



m̂t · y dx dt ,

∂F0

∂α̂2
(m̂, α̂)∗w = −

∫ T

0

∫



((m0 + m̂)× m̂t ) · y dx dt .
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Finally, the fact that for u ∈ U, y ∈ L2(0, T )KL

((∂Fk$

∂m̂
(m̂, α̂)

)
k=1,...,K,$=1,...,Lu, y

)

L2(0,T )KL

=
K∑

k=1

L∑
$=1

∫ T

0

((∂Fk$

∂m̂
(m̂, α̂)

)
k=1,...,K,$=1,...,Lu

)

k$

(t)yk$(t) dt

=
K∑

k=1

L∑
$=1

∫ T

0

∫ T

0

∫



Kk$(t, τ, x) · ut (x, τ ) dx dτyk$(t) dt

=
K∑

k=1

L∑
$=1

∫ T

0

(
−

∫ T

0

∫



∂

∂τ
Kk$(t, τ, x) · u(x, τ ) dx dτ

+
∫




Kk$(t, T , x) · u(x, T ) dx
)
yk$(t) dt ,

(42)

where we have integrated by parts with respect to time, implies that due to (34),
(

∂Fk$

∂m̂ (m̂, α̂))∗k=1,...,K,$=1,...,Ly = z is obtained by solving another auxiliary problem
(33) with

f(x, τ ) = −
∫ T

0

K∑
k=1

L∑
$=1

∂

∂τ
Kk$(t, τ, x)yk$(t) dt,

g(x) =
∫ T

0

K∑
k=1

L∑
$=1

Kk$(t, T , x)yk$(t) dt .

(43)

Remark 2 In case of a Landweber-Kaczmarz method iterating cyclically over the
equations defined by F0,Fk$, k = 1, . . . , K , $ = 1, . . . , L, adjoints of derivatives
of F0 remain unchanged while adjoints of ∂Fk$

∂m̂ (m̂, α̂))k=1,...,K,$=1,...,L are defined
as in (42), (43) by just skipping the sums over k and $ there.

4.2 Reduced Formulation

We now consider the formulation (24) with F defined by (25), (26), and (27). Due
to the estimate

‖Kk$mt‖2L2(0,T )
≤ T ‖̃a$‖2L2(0,T )

‖ckpR
$ ‖2L2(
,R3)

‖m‖2
H 1(0,T ;L2(
,R3))

,

if ã$ ∈ L2(0, T ), ckpR
$ ∈ L2(
,R3) we can choose the state space in the reduced

setting as
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Ũ = H 1(0, T ;L2(
,R3)), (44)

which is different from the one in the all-at-once setting.

4.2.1 Adjoint Equation

From (25) the derivative of the forward operation takes the form

F ′(α̂)β = Kut , (45)

where u solves the linearized LLG equation

α̂1ut − α̂2m× ut − α̂2u×mt −�u− 2(∇u : ∇m)m

+ u(−|∇m|2 + (m · h))+ (u · h)m

= −β1mt + β2m×mt in (0, T )×


∂νu = 0 on (0, T )× ∂


u(0) = 0 in 
,

andm is the solution to (21)–(23). This equation can be obtained by formally taking
directional derivatives (in the direction of u) in all terms of the LLG equation (21)–
(23), or alternatively by subtracting the defining boundary value problems for S(m+
εu) and S(m), dividing by ε and then letting ε tend to zero.

The Hilbert space adjoint

F ′(α̂)∗ : L2(0, T )KL → R
2

of F ′(α̂) satisfies, for each z ∈ L2(0, T )KL,

(F ′(α̂)∗z, β)R2

= (z, F ′(α̂)β)L2(0,T )KL

=
K∑

k=1

L∑
$=1

∫ T

0
zk$(t)

∫ T

0

∫



(−μ0)̃a$(t − τ)ck(x)pR
$ (x) · uτ (τ, x)dx dτ dt

=
K∑

k=1

L∑
$=1

∫ T

0
zk$(t)

(
−

∫ T

0

∫



(−μ0) · (−1)̃a$ t (t−τ)ck(x)pR
$ (x) · u(τ, x) dx dτ

+
∫




(−μ0)̃a$(t − T )ck(x)pR
$ (x) · u(T , x) dx

)
dt
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=
∫ T

0

∫



u(τ, x) ·
K∑

k=1

L∑
$=1

(∫ T

0
(−μ0)̃a$ t (t − τ)zk$(t) dt

)
ck(x)pR

$ (x) dx dτ

+
∫




u(T , x) ·
K∑

k=1

L∑
$=1

(∫ T

0
(−μ0)̃a$(t)zk$(t) dt

)
ck(x)pR

$ (x) dx

=: (u, K̃z)L2(0,T ;L2(
,R3)) + (u(T ), K̃T z)L2(
,R3) (46)

as the transfer function ã is periodic with period T , and the continuous embedding
H(0, T ) ↪→ C[0, T ] allows us to evaluate u(t = T ).

Observing

∫ T

0

∫



−α̂1qz
t · u dx dt

=
∫ T

0

∫



α̂1ut · qz dx −
∫




α̂1qz(T ) · u(T ) dx ,

∫ T

0

∫



−α̂2(m× qz)t · u dx dt

=
∫ T

0

∫



−α̂2(m× ut ) · qz dx dt −
∫




α̂2(m× qz)(T ) · u(T ) dx ,

∫ T

0

∫



α̂2(qz ×mt ) · u dx dt

=
∫ T

0

∫



−α̂2(u×mt ) · qz dx dt ,

∫ T

0

∫



−�qz · u dx dt

=
∫ T

0

∫



−qz ·�u dx dt −
∫ T

0

∫
∂


∂νqz · u dx dt ,

∫ T

0

∫



qz(−|∇m|2 + (m · h)) · u dx dt

=
∫ T

0

∫



(
u(−|∇m|2 + (m · h))

)
· qz dx dt ,

∫ T

0

∫



(
qz ·m)

h · u dx dt

=
∫ T

0

∫



(u · h)m · qz dx dt ,
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∫ T

0

∫



2(m · qz)�m · u dx dt

= −
∫ T

0

∫



2(∇m : ∇u)(m · qz) dx dt

+ 2
∫ T

0

∫



−u · ((∇m))∇m)qz − u · ((∇m))∇qz)m dx dt ,

we see that, if qz solves the adjoint equation

− α̂1qz
t − α̂2m× qz

t − 2α̂2mt × qz −�qz

+ 2
(
(∇m))∇m

)
qz + 2

(
(∇m))∇qz

)
m

+ (−|∇m|2 + (m · h))qz + (m · qz)(h+ 2�m) = K̃z in (0, T )×


(47)

∂νqz = 0 on (0, T )× ∂


(48)

α̂1qz(T )+ α̂2(m× qz)(T ) = K̃T z in 
 (49)

then with (46), we have

(F ′(α̂)∗z, β)R2 = (u, K̃z)L2(0,T ;L2(
,R3)) + (u(T ), K̃T z)L(
,R3)

=
∫ T

0

∫



(−β1mt + β2m×mt ) · qz dx dt

= (β1, β2) ·
(∫ T

0

∫



−mt · qz dx dt,

∫ T

0

∫



(m×mt ) · qz dx dt

)
,

which implies the Hilbert space adjoint F ′(α̂)∗ : Y→ R
2

F ′(α̂)∗z =
(∫ T

0

∫



−mt · qz dx dt,

∫ T

0

∫



(m×mt ) · qz dx dt

)
, (50)

provided that the adjoint state qz exists and belongs to a sufficiently smooth space
(see Sect. 4.2.2 below).

The final condition (49) is equivalent to

⎛
⎝

α̂1 −α̂2m3(T ) α̂2m2(T )

α̂2m3(T ) α̂1 −α̂2m1(T )

−α̂2m2(T ) α̂2m1(T ) α̂1

⎞
⎠qz(T ) =: Mα̂

T q
z(T ) = K̃T z,
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where mi (T ), i = 1, 2, 3, denotes the i-th component of m(T ). The matrix Mα̂
T

with det(Mα̂
T ) = |α̂1(α̂

2
1 + α̂2

2)| is invertible if α̂1 > 0, which matches the condition
for existence of the solution to the LLG equation. Hence, we are able to rewrite the
adjoint equation in the form

− α̂1qz
t − α̂2m× qz

t − 2α̂2mt × qz −�qz

+ 2
(
(∇m))∇m

)
qz + 2

(
(∇m))∇qz

)
m

+ (−|∇m|2 + (m · h))qz + (m · qz)(h+ 2�m) = K̃z in (0, T )×


(51)

∂νqz = 0 on (0, T )× ∂


(52)

qz(T ) = (Mα̂
T )−1K̃T z in 
. (53)

Remark 3 Formula (50) inspires a Kaczmarz scheme relying on restricting the
observation operator to time subintervals for every fixed k, $, namely, we segment
(0, T ) into several subintervals (tj , tj+1) with the break points 0 = t0 < . . . <

tn−1 = T and

F
j
k$ : D(F )(⊆ X)→ Yj , α̂ �→ yj := Kk$

∂

∂t
S(α̂)|(tj ,tj+1) (54)

with

Yj = L2(tj , tj+1)KL j = 0 . . . n− 1, (55)

hence

y
j
k$(t) =

∫ tj+1

tj

∫



−μ0ã$(t − τ)ck(x)pR
$ (x) ·mτ (x, τ )dxdτ. (56)

Here we distinguish between the superscript j for the time subinterval index and
subscripts k, $ for the index of different receive coils and concentrations.

For zj ∈ Yj ,

(K̃zj )(x, t) =
K∑

k=1

L∑
$=1
−μ0ck(x)pR

$ (x)

∫ tj+1

tj
ã$ τ (τ − t)z

j
k$(τ ) dτ t ∈ (0, T ) ,

(K̃T zj )(x) =
K∑

k=1

L∑
$=1
−μ0ck(x)pR

$ (x)

∫ tj+1

tj
ã$(τ )z

j
k$(τ ) dτ
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yield the same Hilbert space adjoint Fj ′(α̂)∗ : Yj → R
2 as in (50), and the adjoint

state qzj
still needs to be solved on the whole time line [0, T ] with

− α̂1qzj

t − α̂2m× qzj

t − 2α̂2mt × qzj −�qzj

+ 2
(
(∇m))∇m

)
qzj + 2

(
(∇m))∇qzj

)
m

+ (−|∇m|2 + (m · h))qzj + (m · qzj

)(h+ 2�m) = K̃zj in (0, T )×


(57)

∂νqzj = 0 on (0, T )× ∂


(58)

qzj

(T ) = (Mα̂
T )−1K̃T zj in 
. (59)

Besides this, the conventional Kaczmarz method resulting from the collection
of observation operators Kk$ with k = 1 . . . K, $ = 1 . . . L as in (13) is always
applicable, where

Fk$ : D(F )(⊆ X)→ Yk$, α̂ �→ yk$ := Kk$

∂

∂t
(S(α̂)) (60)

with

Yk$ = L2(0, T ) k = 1 . . . K, $ = 1 . . . L (61)

Thus F ′k$(α̂)
∗ can be seen as (50), where the adjoint state qz

k$ solves (51)–(53) with
corresponding data

K̃k$z(x, t) = −μ0ck(x)pR
$ (x)

∫ T

0
ã$ τ (τ − t)z(τ ) dτ t ∈ (0, T ) ,

K̃T k$z(x) = −μ0ck(x)pR
$ (x)

∫ T

0
ã$(τ )z(τ ) dτ

for each z ∈ Yk$.

4.2.2 Solvability of the Adjoint Equation

First of all, we derive a bound for qz. To begin with, we set τ = T − t to convert
(51)–(53) into an initial boundary value problem. Then we test (51) with qz

t and
obtain the identities and estimates
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∫



α̂1qz
t (t) · qz

t (t) dx

= α̂1‖qz
t (t)‖2L2(
,R3)

,

∫



α̂2(m(t)× qz
t (t)) · qz

t (t) dx

= 0 ,
∫




α̂2(mt (t)× qz(t)) · qz
t (t) dx

≤ |α̂2|‖mt (t)‖L3(
,R3)‖qz(t)‖L6(
,R3)‖qz
t (t)‖L2(
,R3) ,

∫



−�qz(t) · qz
t (t) dx

= 1

2

d

dt
‖∇qz(t)‖2

L2(
,R3)
,

∫



(
((∇m(t)))∇m(t))qz(t)

)
· qz

t (t) dx

≤ (C

H 1→L6)

2‖∇m‖2
L∞(0,T ;H 1(
,R3))

‖qz(t)‖L6(
,R3)‖qz
t (t)‖L2(
,R3) ,

∫



(
((∇m(t)))∇qz(t))m(t)

)
· qz

t (t) dx

≤ C

H 2→L∞‖∇m(t)‖H 2(
,R3)‖∇qz(t)‖L2(
,R3)‖qz

t (t)‖L2(
,R3) ,
∫




(−|∇m(t)|2 + (m(t) · h))qz(t) · qz
t (t) dx

≤
(
(C


H 1→L6)
2‖∇m‖2

L∞(0,T ;H 1(
,R3))
+ ‖h(t)‖L3(
,R3)

)

‖qz(t)‖L6(
,R3)‖qz
t (t)‖L2(
,R3) ,

∫



(
m(t) · qz(t)

)
h(t) · qz

t (t) dx

≤ ‖h(t)‖L3(
,R3)‖qz(t)‖L6(
,R3)‖qz
t (t)‖L2(
,R3) ,

∫



(m(t) · qz(t))�m(t) · qz
t (t) dx

≤ C

H 1→L3‖�m(t)‖H 1(
,R3))‖qz(t)‖L6(
,R3)‖vqz

t (t)‖L2(
,R3) ,
∫




K̃z(t) · qz
t (t) dx

≤ ‖K̃z(t)‖L2(
,R3)‖qz
t (t)‖L2(
,R3) .
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Above, we employ the fact that the solution m to the LLG equation has
|m| = 1 and the continuity of the embeddings H 1(
,R3) ↪→ L6(
,R3) ↪→
L3(
,R3), H 2(
,R3) ↪→ L∞(
,R3) through the constants C


H 1→L6 , C

H 1→L3

and C

H 2→L∞ , respectively.

Employing Young’s inequality we deduce, for each t ≤ T and ε > 0 sufficiently
small,

1

2

d

dt
‖∇qz(t)‖2

L2(
,R3)
+ (α̂1 − ε)‖qz

t (t)‖2L2(
,R3)

≤
[ (
‖∇m‖4

L∞(0,T ;H 1(
,R3))
+‖∇m(t)‖2

H 2(
,R3)
+‖mt (t)‖2L3(
,R3)

+‖h(t)‖2
L3(
,R3)

)

.‖qz(t)‖2
H 1(
,R3)

+ ‖K̃z(t)‖2
L2(
,R3)

]
C

4ε
. (62)

The generic constant C might take different values whenever it appears.
To have the full H 1−norm on the left hand side of this estimate, we apply

the transformation q̃z(t) = etqz(t), which yields q̃z
t (t) = et (qz(t) + qz

t (t)).
After testing by qz

t , the term
∫


qz(t) · qz

t (t) dx = 1
2

d
dt
‖qz(t)‖2

L2(
,R3)
will

contribute to 1
2

d
dt
‖∇qz(t)‖2

L2(
,R3)
forming the full H 1−norm on the left hand side.

Alternatively, one can add qz to both sides of (51) and evaluate the right hand side
with

∫


qz(t) · qz

t (t) dx ≤ 1
4ε ‖qz(t)‖2

H 1(
,R3)
+ ε‖qz

t (t)‖2L2(
,R3)
.

Integrating over (0, t), we get

1

2
‖qz(t)‖2

H 1(
,R3)
+ (α̂1 − ε)‖qz

t ‖2L2(0,t;L2(
,R3))

≤ C

4ε

[ ∫ t

0

(
‖∇m‖4

L∞(0,T ;H 1(
,R3))
+ ‖∇m(τ )‖2

H 2(
,R3)
+ ‖mt (τ )‖2

L3(
,R3)

+ ‖h(τ )‖2
L3(
,R3)

)
.‖qz(τ )‖2

H 1(
,R3)
dτ

+ ‖K̃z‖2
L2(0,T ;L2(
,R3))

+ ‖(Mα̂
T )−1K̃T z‖2

H 1(
,R3)

]

with the evaluation for the terms ‖K̃z‖L2(0,T ;L2(
,R3)) and ‖(Mα̂
T )−1K̃T z‖2

H 1(
,R3)

(not causing any misunderstanding, we omit here the subscripts k, $ for indices of
concentrations and coil sensitivities)

‖K̃z(t)‖2
L2(
,R3)

≤ C‖cpR‖2
L2(
,R3)

‖ã‖2
H 1(0,T )

‖z‖2
L2(0,T )

≤ Cã,c,pR‖z‖2
L2(0,T )

,

|(Mα̂
T )−1K̃T z‖2

H 1(
,R3)

≤ Cα̂‖z‖2
L2(0,T )

‖ã‖2
L2(0,T )
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.
(
‖cpR‖2

H 1(
,R3)
+ ‖cpmi (T )‖2

H 1(
,R3)
+ ‖cpRmj (T )mk(T )‖2

H 1(
,R3)

)

≤ Cα̂0,ρ,ã‖z‖2
L2(0,T )

(
‖cpR‖2

H 1(
,R3)
+ ‖cpR‖2

L6(
,R3)
‖∇m(T )‖2

L3(
,R3)

)

≤ Cã‖z‖2
L2(0,T )

.
(
‖cpR‖2

H 1(
,R3)
+ (C


H 1→L6C


H 1→L3)

2‖cpR‖2
H 1(
,R3)

‖∇m‖2
L∞(0,T ;H 1(
,R3))

)

≤ Cã,c,pR‖z‖2
L2(0,T )

‖∇m‖2
L∞(0,T ;H 1(
,R3))

with some i, j, k = 1, 2, 3. This estimate holds for cpR ∈ H 1(
,R3) and thus
requires some smoothness of the concentration c, while the coil sensitivity pR is
usually smooth in practice.

Then applying Grönwall’s inequality yields

‖qz‖L∞(0,T ;H 1(
,R3))

≤ C exp
(
‖∇m‖2

L∞(0,T ;H 1(
,R3))
+ ‖∇m‖L2(0,T ;H 2(
,R3)) + ‖mt‖L2(0,T ;L3(
,R3))

+ ‖h‖L2(0,T ;L3(
,R3))

)
.
(‖K̃z‖L2(0,T ;L2(
,R3)) + ‖(Mα̂

T )−1K̃T z‖H 1(
,R3)

)

≤ Cã,c,pR
(
‖∇m‖L∞(0,T ;H 1(
,R3))∩L2(0,T ;H 2(
,R3)), ‖mt‖L2(0,T ;L3(
,R3))

, ‖h‖L2(0,T ;L3(
,R3))

)
.‖z‖L2(0,T ).

Integrating (62) on (0, T ), we also get

‖qz
t ‖L2(0,T ;L2(
,R3))

≤ Cã,c,pR
(
‖∇m‖L∞(0,T ;H 1(
,R3))∩L2(0,T ;H 2(
,R3)), ‖mt‖L2(0,T ;L3(
,R3)))

, ‖h‖L2(0,T ;L3(
,R3))

)
.‖z‖L2(0,T ).

Altogether, we obtain

‖qz‖L∞(0,T ;H 1(
,R3)) + ‖qz
t ‖L2(0,T ;L2(
,R3))

≤ Cã,c,pR
(
‖∇m‖L∞(0,T ;H 1(
,R3))∩L2(0,T ;H 2(
,R3)), ‖mt‖L2(0,T ;L3(
,R3))

, ‖h‖L2(0,T ;L3(
,R3))

)
.‖z‖L2(0,T ). (63)

This result applied to the Galerkin approximation implies existence of the solution
to the adjoint equation. Uniqueness also follows from (63).
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4.2.3 Regularity of the Solution to the LLG Equation

In (63), first of all we need the solution m ∈ L∞(0, T ;H 2(
,R3))

∩L2(0, T ;H 3(
,R3)) to the LLG equation. This can be obtained from
the regularity result in [11, Lemma 2.3] for m0 ∈ H 2(
,R3) with small
‖∇m0‖L2(
,R3). The remaining task is verifying that the estimate still holds in
case the external field h is present, i.e., the right hand side of (21) contains the
additional term Projm⊥h.

Following the lines of the proof in [11, Lemma 2.3], we take the second spatial
derivative of Projm⊥h, then test it by �m such that
∫




�h(t) ·�m(t) dx

≤
{
‖�h(t)‖L2(
,R3)‖�m(t)‖L2(
,R3) if h ∈ L2(0, T ;H 2(
,R3))

‖∇h(t)‖L2(
,R3)‖∇3m(t)‖L2(
,R3) if h ∈ L2(0, T ;H 1(
,R3)), ∂νh = 0 on ∂

,

∫



�((m(t) · h(t))m(t)) ·�m(t) dx

≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C‖h(t)‖H 2(
,R3)

(
1+ 6‖∇m(t)‖H 1(
,R3) + 2‖∇m(t)‖H 2(
,R3)‖∇m‖L∞(0,T ;L2(
,R3))

)

.‖�m(t)‖L2(
,R3) if h ∈ L2(0, T ;H 2(
,R3))

C‖h(t)‖H 1(
,R3)

(
1+ 2‖∇m(t)‖L3(
,R3)

) ‖∇3m(t)‖L2(
,R3)

if h ∈ L2(0, T ;H 1(
,R3)), ∂νh = 0 on ∂


with C just depending on the constants in the embeddings H 1(
,R3) ↪→
L6(
,R3) ↪→ L3(
,R3). Then we can proceed similarly to the proof of [11,
Lemma 2.3] by applying Young’s inequality, Gronwall’s inequality and time
integration to arrive at

‖∇m‖L∞(0,T ;H 1(
,R3))∩L2(0,T ;H 2(
,R3))

≤ (‖∇m0‖H 1(
,R3) + ‖h‖
)
C(‖∇m0‖H 1(
,R3), ‖h‖),

(64)

where ‖h‖ is evaluated in L2(0, T ;H 1(
,R3)) or L2(0, T ;H 2(
,R3)) as in the
two cases mentioned above.

It remains to prove mt ∈ L2(0, T ;H 1(
,R3)) ↪→ L2(0, T ;L3(
,R3)) to
validate (63). For this purpose, instead of working with (21) we test (18) by −�mt

and obtain
∫




mt (t) · (−�mt (t)) dx

= ‖∇mt (t)‖2L2(
,R3)
,
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∫



−α1�m(t) · (−�mt (t)) dx

= α1

2

d

dt
‖�m(t)‖2

L2(
,R3)
,

∫



−α1|∇m(t)|2m(t) · (−�mt (t)) dx

= −α1

∫



∇
(
|∇m(t)|2m(t)

)
: ∇mt (t) dx

≤ α1

(
2C


H 1→L6C


H 1→L3‖∇m‖L∞(0,T ;H 1(
,R3))‖�m(t)‖H 1(
,R3)

+ (C

H 1→L6)

3‖∇m‖3
L∞(0,T ;H 1(
,R3))

)
.‖∇mt (t)‖L2(
,R3) ,

∫



−α1(h(t)− (m(t) · h(t))m(t)) · (−�mt (t)) dx

= −α1

∫



∇(h(t)− (m(t) · h(t))m(t)) : ∇mt (t) dx

≤ 2α1

(
‖∇h(t)‖L2(
,R3)

+ C

H 1→L6‖h(t)‖L3(
,R3)‖∇m‖L∞(0,T ;H 1(
,R3))

)
.‖∇mt (t)‖L2(
,R3) ,

∫



−α2(m(t)×�m(t)) · (−�mt (t)) dx

=
∫




−α2∇(m(t)×�m(t)) : ∇mt (t) dx

≤ |α2|
(
C


H 1→L6C


H 1→L3‖∇m‖L∞(0,T ;H 1(
,R3))‖�m(t)‖H 1(
,R3)

+ ‖∇3m(t)‖L2(
,R3)

)
.‖∇mt (t)‖L2(
,R3) ,

∫



−α2(m(t)× h(t)) · (−�mt (t)) dx

=
∫




−α2∇(m(t)× h(t)) : (∇mt (t)) dx

≤ |α2|
(
C


H 1→L6‖h(t)‖L3(
,R3)‖∇m‖L∞(0,T ;H 1(
,R3))

+ ‖∇h(t)‖L2(
,R3)

)
.‖∇mt (t)‖L2(
,R3) .

Integrating over (0, T ) then employing Hölder’s inequality, Young’s inequality and
(64), it follows that
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(1− ε)‖∇mt‖L2(0,T ;L2(
,R3))

≤ C

4ε

(
‖∇m‖L∞(0,T ;H 1(
,R3))‖∇m‖L2(0,T ;H 2(
,R3)) + ‖∇m‖3L∞(0,T ;H 1(
,R3))

+ ‖∇m‖L2(0,T ;H 2(
,R3)) + ‖h‖L2(0,T ;H 1(
,R3))‖∇m‖L∞(0,T ;H 1(
,R3))

+ ‖h‖L2(0,T ;H 1(
,R3))

)

≤ (‖∇m0‖H 1(
,R3) + ‖h‖
)
C(‖∇m0‖H 1(
,R3), ‖h‖). (65)

Also ‖mt‖L2(0,T ;L2(
,R3)) < C
(‖∇m0‖L2(
,R3) + ‖h‖L2(0,T ;L2(
,R3))

)
according

to [25] with taking into account the presence of h, we arrive at

‖mt‖L2(0,T ;H 1(
,R3)) ≤
(‖∇m0‖H 1(
,R3) + ‖h‖

)
C(‖∇m0‖H 1(
,R3), ‖h‖),

(66)

where ‖h‖ is evaluated in L2(0, T ;H 1(
,R3)) or L2(0, T ;H 2(
,R3)).
In conclusion, the fact thatm ∈ L∞(0, T ;H 2(
,R3))∩L2(0, T ;H 3(
,R3))∩

H 1(0, T ;H 1(
,R3)) for m0 ∈ H 2(
,R3) with small ‖∇m0‖L2(
,R3), and
h ∈ L2(0, T ;H 1(
,R3)), ∂νh = 0 on ∂
 or h ∈ L2(0, T ;H 2(
,R3))

guarantee unique existence of the adjoint state qz ∈ L∞(0, T ;H 1(
,R3)) ∩
H 1(0, T ;L2(
,R3)). And this regularity of qz ensures the adjoint F ′(α̂)∗ in (50)
to be well-defined.

Remark 4

• The LLG equation (21)–(23) is uniquely solvable for α̂1 > 0 and arbitrary α̂2.
Therefore, the regularization problem should be locally solved within the ball
Bρ(α̂0) of center α̂0 with α̂0

1 > 0 and radius ρ < α̂0
1.

• [11, Lemma 2.3] requires smallness ‖∇m0‖L2(
,R3) ≤ λ, and this smallness

depends on α̂ through the relation CI
(
λ2 + 2λ+ α̂2

α̂1
λ
)

< 1 with CI depending

on the constants in the interpolation inequalities.

Altogether, we arrive at

D(F ) =
{
α̂ = (α̂1, α̂2) ∈ Bρ(α̂0) : 0 < α̂0

1, ρ < α̂0
1, CI

(
λ2 + 2λ+ α̂2

α̂1
λ

)
< 1

}
.

(67)

4.2.4 Differentiability of the Forward Operator

Since the observation operator K is linear, differentiability of F is just the question
of differentiability of S.
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Let us rewrite the LLG equation (21) in the following form

g̃(α̂,m)−�m = f̃ (m)

and denote

ṽε := S(α̂ + εβ)− S(α̂)

ε
− u =: n−m

ε
− u =: vε − u.

Considering the system of equations

g̃(α̂ + εβ,n) −�n = f̃ (n),

g̃(α̂,m) −�m = f̃ (m),

g̃′m(α̂,m)u+ g̃′
α̂
(α̂,m)β −�u = f̃ ′m(m)u,

with the same boundary and initial data for each, we see that ṽε solves

g̃′m(α̂,m)ṽε −�ṽε − f̃ ′m(m)ṽε

= f̃ (n)− f̃ (m)

ε
− f̃ ′m(m)vε − g̃(α̂ + εβ,n)− g̃(α̂,m)

ε
(68)

+ g̃′m(α̂,m)vε + g̃′
α̂
(α̂,m)β in (0, T )×


∂ν ṽε = 0 on [0, T ] × ∂
 (69)

ṽε(0) = 0 in 
, (70)

explicitly

α̂1ṽε
t − α̂2m× ṽε

t − α̂2ṽε ×mt −�ṽε

− 2(∇ṽε : ∇m)m+ ṽε(−|∇m|2 + (m · h))+ (ṽε · h)m

= 1

ε

(
|∇n|2n+ Projn⊥h− |∇m|2m− Projm⊥h

)
(71)

− 2(∇vε : ∇m)m+ vε(−|∇m|2 + (m · h))+ (vε · h)m

− 1

ε

(
(α̂1 + εβ1)nt − (α̂2 + εβ2)n× nt − α̂1mt + α̂2m×mt

)

+ α̂1vε
t − α̂2m× vε

t − α̂2vε ×mt

+ β1mt − β2m×mt in (0, T )×


∂ν ṽε = 0 on [0, T ] × ∂


(72)

ṽε(0) = 0 in 
. (73)
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Observing the similarity of (71)–(73) to the adjoint equation (51)–(53) with ṽε in
place of qz and denoting by bε the right-hand side of (68) or (71), one can evaluate
‖ṽε‖ using the same technique as in Sect. 4.2.2. By this way, one achieves, for each
ε ∈ [0, ε̄],

‖ṽε‖L∞(0,T ;H 1(
,R3))∩H 1(0,T ;L2(
,R3)) ≤ C‖bε‖L2(0,T ;L2(
,R3))

with bε ∈ L2(0, T ;L2(
,R3)) also by analogously estimating and employing
m,n ∈ L∞(0, T ;H 2(
,R3)) ∩ L2(0, T ;H 3(
,R3)) ∩ H 1(0, T ;H 1(
,R3)).
We note that the constant C here is independent of ε.

Next letting V := L∞(0, T ;H 1(
,R3)) ∩H 1(0, T ;L2(
,R3)), we have

‖bε‖L2(0,T ;L2(
,R3)) =
∥∥∥∥

f̃ (n)− f̃ (m)

ε
− f̃ ′m(m)vε − g̃(α̂ + εβ,n)− g̃(α̂,m)

ε

+ g̃′m(α̂,m)vε + g̃′
α̂
(α̂,m)β

∥∥∥∥
L2(0,T ;L2(
,R3))

≤
∥∥∥∥

∫ 1

0

((
f̃ ′m(m+ λεvε)− f̃ ′m(m)

)
vε − (

g̃′m(α̂ + λεβ,m+ λεvε)− g̃′m(α̂,m)
)
vε

− (
g̃′
α̂
(α̂ + λεβ,m+ λεvε)− g̃′

α̂
(α̂,m)

)
β
)

dλ

∥∥∥∥
L2(0,T ;L2(
,R3))

≤ 2 sup
λ∈[0,1]
ε∈[0,ε̄]

(
‖f̃ ′m(m+ λεvε)‖V→L2(0,T ;L2(
,R3))‖vε‖V

+ ‖g̃′m(α̂ + λεβ,m+ λεvε)‖V→L2(0,T ;L2(
,R3))‖vε‖V
+ ‖g̃′

α̂
(α̂ + λεβ,m+ λεvε)‖

R2→L2(0,T ;L2(
,R3))|β|
)
.

In order to prove uniform boundedness of the derivatives of f̃ , g̃ w.r.t λ, ε in the
above estimate, we again proceed in a similar manner as in Sect. 4.2.2 since the
space for qz in Sect. 4.2.2 (c.f. (64)) coincides withV here and by the fact that

max{‖m‖, ‖n‖} ≤ max
{ 1

α̂1
,

1

α̂1 + εβ1

}
C

(‖m0‖H 2(
,R3)), ‖h‖L2(0,T ;H 2(
,R3))

)

≤ C

α̂0
1 − ρ

(74)

form,n ∈ L∞(0, T ;H 2(
,R3))∩L2(0, T ;H 3(
,R3))∩H 1(0, T ;H 1(
,R3)).
If ∂νh = 0 on ∂
, we just need the ‖.‖L2(0,T ;H 1(
,R3))-norm for h as claimed in
(64). This estimate holds for any ε ∈ [0, ε̄], and the constant C is independent of ε.
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To accomplish uniform boundedness for ‖bε‖L2(0,T ;L2(
,R3)), we need to show
that ‖vε‖V is also uniformly bounded w.r.t ε. It is seen from

g̃(α̂ + εβ,n)−�n = f̃ (n),

g̃(α̂,m) −�m = f̃ (m)

that vε solves

∫ 1

0
g̃′m(α̂ + λεβ,m+ λεvε)vε + g̃′

α̂
(α̂ + λεβ,m+ λεvε)β dλ−�vε

=
∫ 1

0
f̃ ′m(m+ λεvε)vε dλ in (0, T )×


(75)

∂νvε = 0 on [0, T ] × ∂


(76)

vε(0) = 0 in 
. (77)

Noting that M := m+ λεvε = λn+ (1− λ)m has ‖M‖ ≤ C

α̂0
1−ρ

for all λ ∈ [0, 1]
with C being independent of ε, and g̃ is first order in α̂, we can rewrite (75) into the
linear equation

G̃(α̂ + λεβ,M)vε −�vε + F̃ (M)vε = B̃(M)β. (78)

Following the lines of the proof in Sect. 4.2.2, boundedness of the terms−�, F̃ (M),
B̃(M) are straightforward, while the main term in G̃(α̂ + λεβ,M) producing the
single square norm of vε

t , after being tested by vε
t is

∫ 1

0
(α̂1 + λεβ1)

∫



vε
t (t) · vε

t (t) dx dλ = ‖vε
t (t)‖2L2(
,R3)

(
α̂1 + εβ1

2

)

≥ ‖vε
t (t)‖2L2(
,R3)

(α̂0
1 − ρ).

According to this, one gets, for all ε ∈ [0, ε̄],

‖vε‖V ≤ C|β|‖B̃(M)‖R2→L2(0,T ;L(
,R3)) ≤ |β|C (79)

with C depending only on m0,h, α̂0, ρ.

Since bε → 0 pointwise and ‖bε‖L2(0,T ;L2(
,R3)) ≤ C for all ε ∈ [0, ε̄],
applying Lebesgue’s Dominated Convergence Theorem yields convergence of
‖bε‖L2(0,T ;L2(
,R3)), thus of ‖ṽε‖V, to zero. Fréchet differentiability of the forward
operator in the reduced setting is therefore proved.
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5 Conclusion

In this contribution we outlined a mathematical model of MPI taking into account
relaxation effects, which led us to the LLG equation describing the behavior of
the magnetic material inside the particles on a microscale level. For calibrating the
MPI device it is necessary to compute the system function, which mathematically
can be interpreted as an inverse parameter identification problem for an initial
boundary value problem based on the LLG equation. To this end we deduced a
detailed analysis of the forward model, i.e., the operator mapping the coefficients
to the solution of the PDE as well as of the underlying inverse problem. The
inverse problem itself was investigated in an all-at-once and a reduced approach.
The analysis includes representations of the respective adjoint operators and Fréchet
derivatives. These results are necessary for a subsequent numerical computation of
the system function in a robust manner, which will be subject of future research.
Even beyond this, the analysis might be useful for the development of solution
methods for other inverse problems that are connected to the LLG equation.
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An Inverse Source Problem Related to
Acoustic Nonlinearity Parameter
Imaging

Masahiro Yamamoto and Barbara Kaltenbacher

Abstract In this article, we discuss an inverse source problem of determining a
spatially varying factor of a source term in a linearized higher order model of
nonlinear acoustics, which is a partial differential equation of the third order in
time and the fourth order in space. We establish two kinds of stability for the
inverse source problems: (1) space-local stability of Hölder type and (2) space-
global stability of Lipschitz type. Our key is two types of Carleman estimates with
a regular and a singular weight functions.

1 Introduction and Main Results

We consider the general higher order model of nonlinear acoustics proposed
by Brunnhuber and Jordan [5, Equation (4)] and see also Kaltenbacher [25],
Kaltenbacher and Thalhammer [26]:

∂3t ψ(x, t)+ A1�
2ψ(x, t)+ A2�

2∂tψ(x, t)− A3�∂2t ψ(x, t)− A4�∂tψ(x, t)

(1)
= −∂2t (κ(x)(∂tψ(x, t))2 + |∇ψ(x, t)|2) x ∈ 
, 0 < t < T .

Here 
 ⊂ R
n denotes a bounded domain with sufficiently smooth boundary ∂


and x = (x1, . . . , xn) ∈ R
n, ∂j = ∂

∂xj
, ∂i∂j = ∂2

∂xi∂xj
, ∂2j = ∂2

∂x2j
, 1 ≤ i, j ≤ n,
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∂0 = ∂t , � =∑n
j=1 ∂2j , ∇ = (∂1, . . . , ∂n), ∇x,t = (∇, ∂t ). Throughout this article,

we further use the following notations: ∂
γ
x = ∂

γ1
1 · · · ∂γn

n for γ = (γ1, . . . ., γn) ∈
(N ∪ {0})n, where we set |γ | =∑n

i=1 γj . We set

Q = 
× (0, T ).

Recently the field of nonlinear acoustics received great attention not only from
the physical but also from the mathematical viewpoint and we refer to, e.g.,
Kaltenbacher [24] for a recent review and further references on the mathematical
analysis such as the well-posedness for initial boundary value problems, qualitative
properties of solutions such as long time behavior, and some optimization problems.
However, to the best knowledge of the authors, there are no works on the
mathematical analysis of inverse problems for (1), although results on quantitative
identification of parameters in (1) are crucial, e.g., for the below mentioned
application of nonlinearity imaging.

We describe more physical backgrounds for (1). In (1), ψ is the acoustic velocity
potential,

A1 = νc20

Pr
, A2 = b(1+ B/A)ν2

Pr
, A3 = ν(b + 1+ B/A

Pr
), A4 = c20, κ = B/A

2c20

and the quantities have the physical meaning indicated in Table 1. It has been
observed that during ultrasound propagation through biological tissue, the parameter
of nonlinearity B/A exhibits a dependence on the type of tissue and therefore
determining κ as a spatially variable coefficient allows to image such media
[4, 7, 8, 15, 31, 34, 35]. Therefore we will consider κ as a function of x, whereas
(neglecting the mild dependence of A2, A3 on B/A as it is also done in the above
references), we assume that A1, A2, A3, A4 in (1) are all positive constants.

We assume that all the coefficients are sufficiently smooth, and we do not pursue
the optimal regularity conditions for the concise exposition.

We discuss an inverse source problem for a linearization of Eq. (1):

∂3t u+ A1�
2u+ A2�

2∂tu− A3�∂2t u (2)

Table 1 Physical parameters b = 4
3 + μB

μ
. . . viscosity number

μB . . . bulk viscosity

μ . . . shear viscosity

ν . . . kinematic viscosity

Pr . . . Prandtl number

c0 . . . speed of sound

B/A . . . nonlinearity parameter
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=− p0∂
3
t u− p1∂tu− p2∂

2
t u− p3 · ∇∂tu

−p4 · ∇∂2t u− p5 · ∇u+ R(x, t)f (x), (x, t) ∈ Q.

Indeed (2) follows from the linearization of the right-hand side of (1): for two
coefficients κ1 and κ2 and corresponding solutions ψ1 and ψ2, setting f = κ1 − κ2,
u = ψ1 − ψ2, we have

− ∂2t

[
κ1(∂tψ1)

2 − κ2(∂tψ2)
2 + (|∇ψ1|2 − |∇ψ2|2)

]

=− f ∂2t ((∂tψ1)
2)− κ2∂

2
t ((∂tψ1 + ∂tψ2)∂tu)− ∂2t

⎛
⎝

n∑
j=1

(∂jψ1 + ∂jψ2)∂ju

⎞
⎠

=− f ∂2t ((∂tψ1)
2)− κ2(∂tψ1 + ∂tψ2)∂

3
t u− 2κ2∂t ((∂tψ1 + ∂tψ2))∂

2
t u

−κ2(∂
2
t (∂tψ1+∂tψ2))∂tu−

n∑
j=1

(∂jψ1+∂jψ2)∂
2
t ∂j u)−2

n∑
j=1

(∂t (∂jψ1+∂jψ2))∂t ∂ju

−∂2t

⎛
⎝

n∑
j=1

(∂jψ1 + ∂jψ2)

⎞
⎠ ∂ju.

Therefore, setting p0, p1, p2, p3, p4, p5 suitably and R(x, t) = −∂2t (∂tψ1)
2(x, t),

we reach Eq. (2).

Our main purpose here is to discuss the inverse source problem arising from this
linearization of (1) and establish the uniqueness and the conditional stability for
our inverse problem. Uniqueness and stability are the primary theoretical issues
for the inverse problem, and we expect that the current work should provide a
theoretical basement for further related research, such as numerical reconstruction
of the source term, and, via a differential approach, also approximation of the
nonlinearity parameter. Moreover our method here for (1) can be widely applied
to other types of model equations of nonlinear acoustics.

Our main subject is

Inverse Source Problem
Let � ⊂ ∂
 be a non-empty relatively open subset of ∂
 and ω be a non-empty
subdomain of 
, and let t0 ∈ (0, T ) be arbitrarily given. Then determine f (x) in 


or on some subdomain of 
 by u(·, t0) and data of u on � × (0, T ) or ω × (0, T ).

Since we can consider f (x) = κ1(x) − κ2(x) in the reduced Eq. (2), we see
that the inverse source problem is a linearization of the parameter identification of
determining κ(x).
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From the above definition of A1–A4 and realistic values of the physical parame-
ters in Table 1, we can conclude that the positive constants A3 and A4 satisfy

A2
3 − 4A2 ≥ 0.

Moreover we assume that pj , 0 ≤ j ≤ 5 are sufficiently smooth, and

{
1+ p0(x, t) > 0, (x, t) ∈ Q,

A2
3 − 4A2(1+ p0(x, t)) > 0, (x, t) ∈ Q.

(3)

Condition (3) is satisfied if

−1 < p0(x, t) <
A2
3 − 4A2

4A2
, (x, t) ∈ Q.

We rewrite (2) as

(1+p0)∂
3
t u−A3�∂2t u+A1�

2u+A2�
2∂tu+G(u) = R(x, t)f (x), (x, t) ∈ Q.

(4)
Here we set

G(u) =
2∑

k=1

1∑
$=0

qk$(x, t) · ∂k
t ∇$u+ q01(x, t) · ∇u, (5)

where qk$ ∈ L∞(Q) are some sufficiently smooth functions.
We set

H 2,1(Q) =
⎧⎨
⎩u = u(x, t); u, ∂tu,

∑
|γ |≤2

∂
γ
x u ∈ L2(Q)

⎫⎬
⎭ .

For simplicity, we always assume that solutions u to (4) under consideration is
sufficiently smooth, for example,

∂
j
t u ∈ H 2,1(Q), j = 0, 1, 2, 3, ∂k

t �u ∈ H 2,1(Q), k = 0, 1, 2.

Also for the coefficients, we can discuss under more relaxed regularity conditions
for u, but we omit.

We will establish two kinds of stability results.
To state the first result, we assume that � ⊂ ∂
 is an arbitrarily fixed non-

empty relatively open subset. We arbitrarily choose a subdomain 
0 ⊂ 
 such
that 
0 ⊂ 
 ∪ �, ∂
0 ∩ ∂
 is a non-empty relatively open subset of ∂
 and
∂
0 ∩ ∂
 ⊂ �. We note that the intersection of ∂
 and some small neighborhood
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of ∂
0 ∩ ∂
 is included in �. Moreover, we fix t0 ∈ (0, T ) and δ > 0 such that
0 < t0 − δ < t0 + δ < T and set I = (t0 − δ, t0 + δ).

Theorem 1 (Local Hölder Stability) We assume (3) and the existence of a con-
stant r0 > 0 such that

R ∈ H 1(0, T ;L∞(
)), |R(x, t0)| ≥ r0 > 0, x ∈ 
 (6)

and an a priori bound

∑
j+k≤5,j,k∈N∪{0}

(‖u‖
Hj (I ;Hk+ 1

2+ε0 (
))
+ ‖u‖

H
j+ 1

2+ε0 (I ;Hk(
))
) ≤ M (7)

with some constant M > 0 and ε0 > 0. Then there exist constants C > 0 and
χ ∈ (0, 1) depending on M, �, 
0 such that

‖f ‖L2(
0)
≤ C

( ∑
j+|γ |≤5

‖∂j
t ∂

γ
x u‖L2(I ;L2(�))

+‖u(·, t0)‖H 4(
) + ‖∂tu(·, t0)‖H 4(
) + ‖∂2t u(·, t0)‖H 2(
)

)χ

for each f ∈ L2(
).

The conclusion is a stability estimate in determining f under the a priori bound
condition (7), and is called conditional stability. We note that Eq. (4) is essentially
of parabolic type as is seen in the proof in Sects. 2–3, and for the determination of
f , we can choose any small T > 0. We do not know the stability in the cases of
t0 = 0 and t0 = T .

Since 
0 ⊂ 
 is arbitrary such that 
0 ⊂ 
 ∪ �, as the proof in Sect. 3 shows,
the uniqueness in the inverse problem holds:

Corollary 1 In Theorem 1, if

∂
γ
x u = 0 on � × I with |γ | ≤ 5 and ∂

j
t u(·, t0) = 0 in 
 with j = 0, 1, 2,

then f = 0 in 
.

Next we state the second stability result. Assuming the boundary condition on
the whole ∂
× (0, T ), we derive the Lipschitz stability which is global over 
.

Here we choose interior measurements. More precisely, let ω ⊂ 
 be an
arbitrarily fixed subdomain such that ω ⊂ 
 and let I := (t0 − δ, t0 + δ) ⊂ (0, T ).

Theorem 2 (Global Lipschitz Stability) Let u ∈ H 4(0, T ;L2(
)) ∩ H 2(0, T ;
H 4(
)) satisfy (4) and

u = �u = 0 on ∂
× (0, T ). (8)
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We assume (3) and (6). Then there exists a constant C > 0 such that

‖f ‖L2(
) ≤ C(‖u(·, t0)‖H 4(
) + ‖∂tu(·, t0)‖H 4(
) + ‖∂2t u(·, t0)‖H 2(
)

+‖u‖H 2(I ;H 2(ω)) + ‖u‖H 3(I ;L2(ω)))

for each f ∈ L2(
).

Theorem 2 immediately produces the uniqueness in determining f in 
: u = 0
in ω × I and ∂

j
t u(·, t0) = 0 in 
 with j = 0, 1, 2, yield f = 0 in 
.

In Theorems 1 and 2, we can weaken the norms of data of u, but we omit the
details. Correspondingly to Theorems 1 and 2, we can similarly prove the local
stability with data on � × I and the global stability with data in ω× I respectively,
but we omit the details.

Our results assert stability estimates for the inverse source problem by a single
measurement of data of solution to an initial boundary value problem, and in
Theorem 1, the stability is conditional under a priori bound assumption (7). For
this kind of inverse problems for initial boundary value problems, a method by
Carleman estimates is very effective and Bukhgeim and Klibanov [6] first proved the
uniqueness for partial differential equations of the second order. Also see Klibanov
[27, 28]. After [6], the works Imanuvilov and Yamamoto [17–20] established the
stability mainly for the hyperbolic and parabolic equations by modifying the method
by Bukhgeim and Klibanov [6]. There have been many publications and here as very
limited articles, we refer to Beilina et al. [2], Cannarsa et al. [9, 10], Gölgeleyen and
Yamamoto [13], and also to monographs Beilina and Klibanov [1], Bellassoued and
Yamamoto [3], Klibanov and Timonov [29], and to a survey article Yamamoto [33].

This paper is composed of five sections. In Sect. 2, we establish two key
Carleman estimates. Sections 3 and 4 are devoted to the proofs of Theorems 1 and 2
respectively. In Sect. 5 we give remarks on the necessity of spatial data for the
uniqueness.

2 Key Carleman Estimates

The proofs of Theorems 1 and 2 originate from Bukhgeim and Klibanov [6] and
we will use a method from Huang et al. [14] and Imanuvilov and Yamamoto [17].
The key is Carleman estimates and we need to establish Carleman estimates for our
Eq. (4). Equation (4) is of higher order and it is more feasible to factorize into two
partial differential operators of lower orders. In this section, we first carry out such
a reduction.

Henceforth C > 0 denotes generic constants which are independent of the
parameters s, λ > 0 later introduced, and C0(λ) > 0 means generic constants which
are dependent on λ but independent of s.
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2.1 Reduction of (4)

Let

P0u := ∂3t u− A3

1+ p0
�∂2t u+ A2

1+ p0
�2∂tu+ A1

1+ p0
�2u.

For R and qk$ in (4) and (5), we set

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R̃(x, t) = R(x,t)
1+p0(x,t)

, q̃k$(x, t) = qk$(x,t)
1+p0(x,t)

,

u0(x) = u(x, t0), u1(x) = ∂tu(x, t0), u2(x) = ∂2t u(x, t0),

D1 = ‖u0‖H 3(
),

D2 = ‖u0‖H 4(
) + ‖u1‖H 4(
) + ‖u2‖H 2(
).

(9)

We set
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a1(x, t) = 1
2(1+p0(x,t))

(A3 −
√

A2
3 − 4A2(1+ p0(x, t))),

a2(x, t) = 1
2(1+p0(x,t))

(A3 +
√

A2
3 − 4A2(1+ p0(x, t))),

a3(x, t) = A1
a1(1+p0)

.

(10)

By (3) we note that a1, a2 are real-valued and and by the assumed smoothness of
p0, the derivatives of a1, a2, a3 appearing below exist and are bounded, and we note
that a2(x, t) > 0 for (x, t) ∈ Q.

Then

P0u = ∂3t u− A3

1+ p0
�∂2t u+ A2

1+ p0
�2∂tu+ A1

1+ p0
�2u

=(∂t − a1�)(∂2t u− a3�u− a2�∂tu)

+(∂ta3)�u+ (∂ta2)�∂tu− 2a1∇a3 · ∇(�u)− a1(�a3)�u

−2a1∇a2 · ∇(�∂tu)− (a1�a2 − a3)�∂tu

=∂3t u− (a1 + a2)�∂2t u+ a1a3�
2u+ a1a2�

2∂tu

+(∂ta3)�u+ (∂ta2)�∂tu− 2a1∇a3 · ∇(�u)− a1(�a3)�u

−2a1∇a2 · ∇(�∂tu)− (a1�a2 − a3)�∂tu.
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Hence we can rewrite (4) as

(∂t − a1�)(∂2t u− a3�u− a2�∂tu)

+
1∑

j,k=0
ajk(x, t)∂

j
t ∇k�u+

1∑
k=0

2∑
j=0

bjk(x, t)∂
j
t ∇ku = R̃(x, t)f (x) in Q,

(11)
where ajk and bjk are also sufficiently smooth.

Moreover we introduce a function by

w = ∂2t u− a2�∂tu− a3�u. (12)

Therefore each of (4) and (11) is equivalent to

{
v = ∂tu,

∂tv − a2(x, t)�v = a3(x, t)
∫ t

t0
�v(x, ξ)dξ − a3(x, t)�u0(x)+ w(x, t).

(13)
Since

u(x, t) =
∫ t

t0

v(x, ξ)dξ + u0(x), (x, t) ∈ Q,

we can represent

−
1∑

j,k=0
ajk(x, t)∂

j
t ∇k�u−

1∑
k=0

2∑
j=0

bjk(x, t)∂
j
t ∇ku

in terms of v = ∂tu, we have

∂tw − a1�w = −
1∑

k=0
a1k∇k�v −

1∑
k=0

1∑
j=0

bj+1,k∂j
t ∇kv

−
1∑

k=0
a0k

∫ t

t0

∇k�v(x, ξ)dξ−
1∑

k=0
b0k

∫ t

t0

∇kv(x, ξ)dξ+b0(x, t)+R̃(x, t)f (x) in Q,

(14)
where

b0(x, t) =
1∑

k=0
(a0k(x, t)∇k�u0 + b0k(x, t)∇ku0).
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In particular,

|b0(x, t)| ≤ C
∑
|γ |≤3
|∂γ

x u0(x)|, (x, t) ∈ Q. (15)

Henceforth we mainly discuss Carleman estimates for system (14).

2.2 The First Carleman Estimate: Proposition 1

Let d ∈ C2(
) and |∇d| �= 0 on 
. We arbitrarily fix t0 ∈ (0, T ) and δ > 0 such
that 0 < t0 − δ < t0 + δ < T . In addition to Q := 
× (0, T ), we further set

I = (t0 − δ, t0 + δ), QI = 
× I,

and

ϕ(x, t) = eλψ(x,t), ψ(x, t) = d(x)− β|t − t0|2,

where λ, β > 0 are parameters chosen later. Moreover for convenience, we set

�(v) :=
∫

∂
×I

s3λ3ϕ3(|v|2 + |∇x,t v|2 + |∇2v|2)e2sϕdSdt

+
∫




s5λ6ϕ5(|v(x, t0 − δ)|2 + |∇v(x, t0 − δ)|2 + |v(x, t0 + δ)|2

+|∇v(x, t0 + δ)|2)e2sϕ(x,t0+δ)dx. (16)

Here we notice that ϕ(x, t0 − δ) = ϕ(x, t0 + δ) for x ∈ 
.
Now we are ready to state our first Carleman estimate for system (14) with the

weight function ϕ(x, t).

Proposition 1 There exists a constant λ0 > 0 such that for each λ ≥ λ0, we can
choose constants s0 = s0(λ) > 0,C = C(λ) > 0, andC0 = C0(λ) > 0 satisfying

(i)

∫
QI

(s−1ϕ−1|∂2t w|2 + s3λ4ϕ3|∂tw|2)e2sϕdxdt

≤ C

∫
QI

sϕ(|∂t R̃|2 + |R̃|2)|f (x)|2e2sϕdxdt

+CeC0(λ)sD2
1 + C(�(v)+�(∇x,t v)+�(∂t∇v)+�(w)+�(∂tw))

for all s ≥ s0.
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(ii)

∫
QI

(s−1ϕ−1(|∂tw|2 + |�w|2)+ sλ2ϕ|∇w|2 + s3λ4ϕ3|w|2)e2sϕdxdt

≤C

∫
QI

|R̃f |2e2sϕdxdt + CeC0(λ)sD2
1 + C(�(∇v)+�(v)+�(w)).

for all s ≥ s0.

Here w solves (14), � is defined in (16) and D1 in (9).

We can further estimate
∫

QI

(s−1ϕ−1(|∂2t w|2 + |∂t�w|2)+ sλ2ϕ|∇∂tw|2 + s2λ2ϕ2|∇w|2

+s3λ4ϕ3|∂tw|2 + s4λ4ϕ4|w|2)e2sϕdxdt,

but for the proof of Theorem 1, the estimates of |∂2t w|2 and |∂tw|2 in (i) are
sufficient.

We can describe an estimate in terms of the original solution u to (4), but for the
proof, the estimate of w is convenient. Proposition 1 asserts a weighted L2-estimate
which is uniform in all large s > 0: more precisely, the constants C > 0 and
C0(λ) > 0 are uniform for all large s > 0. As for the general theory for Carleman
estimates, see Isakov [23], but the general theory does not work for our equation.
Moreover in Carleman estimates proved in [23], it is assumed that boundary data of
w should vanish especially at the final and the initial times t0±δ. Such an assumption
makes the application of the Carleman estimate to the inverse problem more com-
plicated. A recent work [14] simplifies the argument, which we follow in Sect. 3.

Proof of Proposition 1

First Step
The proof is based on the Carleman estimate for a parabolic equation.

Lemma 1 Let m = 0, 1, 2 and κ ∈ C1(QI ), > 0 on QI . There exists a constant
λ0 > 0 such that for each λ ≥ λ0, we can choose constants s0 = s0(λ) > 0 and
C = C(λ) > 0 such that

∫
QI

{
sm−1λmϕm−1

(
|∂t z|2 +∑

|γ |≤2 |∂γ
x z|2

)

+sm+1λm+2ϕm+1|∇z|2 + sm+3λm+4ϕm+3|z|2
}
e2sϕdxdt

≤ C

∫
QI

smλmϕm|∂t z(x, t)− κ(x, t)�z(x, t)|2e2sϕdxdt + C�(z) (17)
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for all s ≥ s0 and all z ∈ H 1(0, T ;L2(
)) ∩ L2(0, T ;H 3(
)) satisfying ∂t z ∈
L2(∂
× (0, T )), z(·, t0 ± δ) ∈ H 1(
).

Lemma 1 is a classical Carleman estimate for m = 0 especially in the case of
u(·, t0 ± δ) = 0 in 
 (e.g., Bellassoued and Yamamoto [3], Yamamoto [33]). We
note that without such a vanishing assumption, the proof is the same as in [33] by
keeping all the boundary terms in
×{t0±δ}which are created by the integration by
parts during the proof. We can prove similar Carleman estimates for general m > 0.
Indeed, for m �= 0, setting v1 = ϕ

m
2 v and applying (17) with m = 0 to v1, we can

directly complete the proof (e.g., Lemma 7.2 (p. 195) in [3]).
Furthermore we need a weighted integral inequality.

Lemma 2 Let $ ∈ N∪{0}. Then there exists a constant C > 0 depending on $ such
that ∫

QI

s$λ$ϕ$

∣∣∣∣
∫ t

t0

|g(x, ξ)|dξ

∣∣∣∣
2

e2sϕ(x,t)dxdt

≤ C

∫
QI

s$−1λ$−1ϕ$−1|g(x, t)|2e2sϕ(x,t)dxdt

for all s > 0 and all g ∈ L2(QI ).

The lemma relies on the fact that that ϕ gains the maximum at t = t0 where
the definite integral of |v(x, ξ)| on the left-hand side is considered. This type of
inequality is essential for the application of Carleman estimates to inverse problems
(Bukhgeim and Klibanov [6], Klibanov [27]) especially in the case of $ = 0. For
general $, we can prove it in the same way (e.g., Loreti et al. [30]), and so the proof
is omitted. An inequality of the type of Lemma 2 is essential for Carleman estimates
and inverse problems for integro-differential equations (e.g., Cavaterra et al. [11],
Imanuvilov and Yamamoto [21, 22], and Loreti et al. [30]).

The proof of Proposition 1 is done by applications of Lemma 1. It is an essence
in the proof that we absorb integrating terms with lower powers of s and λ into the
terms with the highest powers. In particular, thanks to Lemma 2 with g = v, we can

regard a term
∣∣∣∫ t

t0
|v(x, ξ)|dξ

∣∣∣2, etc., as a term |v(x, t)|2 with lower power which

is reduced by s−1λ−1ϕ−1. For such reduction of the integral terms, we have to be
given data u(·, t0) in 
.

Remark: Main Idea of the Proofs of the Key Carleman Estimates for Our System
(11) The proof is based on Carleman estimates Lemmata 1 and 3 below and these
Carleman estimates can estimate derivatives of at most first order but in our system
(11) we have to estimate derivatives of higher orders. Therefore we will apply the
basic Carleman estimates for v := ∂tu and its derivatives by Eq. (13), and then for
w := ∂2t u − a2�∂tu − a3�u by Eq. (14). For raising the orders of the derivatives
to be estimated for v, we take t- and x-derivatives of (13) at the expense of extra
higher-order derivatives of w, while for w we can take only t-derivatives of (14)
because (14) is attached with R̃f , and so the x-derivatives would produce ∇f ,
which cannot be controlled by ‖f ‖L2(
). For completing the proofs, we finally
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synthesize the gained Carleman estimates for v and w, and we absorb minor terms
on the right-hand sides into the left-hand sides by choosing s, λ > 0 sufficiently
large. The proof of the second key Carleman estimate Proposition 2 stated below is
based on the same strategy. However the underlying Lemma 3 below requires the
zero Dirichlet boundary condition, so that we cannot take arbitrary x-derivatives of
v while keeping this boundary condition. Hence we will only do so by taking � for
gaining estimates of higher spatial derivatives.

Second Step
We recall v = ∂tu from (13). Setting

w0 = ∂tw,

by the equation in w given by (14), we have

∂tw0 − a1�w0 = (∂t R̃)f (x)+ ∂tb0

−
1∑

k=0
a1k∇k�∂tv −

1∑
k=0

1∑
j=0

bj+1,k∂j+1
t ∇kv −

1∑
k=0

a0k∇k�v −
1∑

k=0
b0k∇kv

+(∂ta1)�w −
1∑

k=0

1∑
j=0

(∂tbj+1,k)∂j
t ∇kv −

1∑
k=0

∂ta0k

∫ t

t0

∇k�v(x, ξ)dξ

−
1∑

k=0
∂tb0k

∫ t

t0

∇kv(x, ξ)dξ in Q,

and so

|∂tw0 − a1�w0| ≤ C|(∂t R̃)f (x)| + C
∑
|γ |≤3
|∂γ

x u0|

+C

1∑
j=0

(|∂j
t v| + |∂j

t ∇v| + |∂j
t �v| + |∂j

t ∇�v|)+ C(|∂2t v| + |∂2t ∇v|)+ C|�w|

+ C

∫ t

t0

(|�v| + |∇�v| + |∇v| + |v|)(x, ξ)dξ in Q. (18)

We set

v0 = ∂tv, vj = ∂j v, v0j = ∂t∂j v, 1 ≤ j ≤ n.

Then (13) yields

∂tv0−a2�v0 = ∂tw+(∂ta2+a3)�v+(∂ta3)

∫ t

t0

�v(x, ξ)dξ−(∂ta3)�u0, (19)
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∂tvj − a2�vj = ∂jw − ∂j (a3�u0)+ (∂j a2)�v

+ a3

∫ t

t0

�vj (x, ξ)dξ + (∂j a3)

∫ t

t0

�v(x, ξ)dξ (20)

and

∂tv0j − a2�v0j = ∂t∂jw + (∂j a2)�v0 + (∂ta2 + a3)�vj + (∂j ∂ta2 + ∂j a3)�v

+ (∂ta3)

∫ t

t0

�vj (x, ξ)dξ + (∂t ∂j a3)

∫ t

t0

�vdξ − ∂j ∂t (a3�u0) (21)

for (x, t) ∈ Q. First we will derive a Carleman estimate for v and its derivatives.
Now by applying Lemma 2, we see

∫
QI

smλmϕm

∣∣∣∣
∫ t

t0

|�v(x, ξ)|dξ

∣∣∣∣
2

e2sϕ(x,t)dxdt

≤ C

∫
QI

sm−1λm−1ϕm−1|�v(x, t)|2e2sϕ(x,t)dxdt (22)

for all s > 0. Applying Lemma 1 to (13), we have

∫
QI

(sm−1λmϕm−1(|∂tv|2 + |�v|2)+ sm+1λm+2ϕm+1|∇v|2

+sm+3λm+4ϕm+3|v|2)e2sϕdxdt

≤C

∫
QI

smλmϕm

∣∣∣∣
∫ t

t0

|�v(x, ξ)|dξ

∣∣∣∣
2

e2sϕdxdt + C

∫
QI

smλmϕm|w|2e2sϕdxdt

+CeC0(λ)sD2
1 + C�(v)

≤C

∫
QI

sm−1λm−1ϕm−1|�v|2e2sϕdxdt + C

∫
QI

smλmϕm|w|2e2sϕdxdt

+CeC0(λ)sD2
1 + C�(v).

Therefore, choosing λ > 0 large, we can absorb the first term on the right-hand side
into the first term on the left-hand side, and we have

∫
QI

(sm−1λmϕm−1(|∂t v|2 + |�v|2)+ sm+1λm+2ϕm+1|∇v|2 + sm+3λm+4ϕm+3|v|2)e2sϕdxdt

≤ C

∫
QI

smλmϕm|w|2e2sϕdxdt + CeC0(λ)sD2
1 + C�(v). (23)



426 M. Yamamoto and B. Kaltenbacher

Next we apply Lemma 1 to (19):

∫
QI

(sm−1λmϕm−1(|∂2t v|2 + |�∂tv|2)+ sm+1λm+2ϕm+1|∂t∇v|2

+ sm+3λm+4ϕm+3|∂tv|2)e2sϕdxdt ≤ C

∫
QI

smλmϕm|∂tw|2e2sϕdxdt

+ C

∫
QI

smλmϕm

(
|�v|2 +

∣∣∣∣
∫ t

t0

|�v(x, ξ)|dξ

∣∣∣∣
2
)

e2sϕdxdt

+ CeC0(λ)sD2
1 + C�(∂tv). (24)

Replacing m by m+ 1 in (23), we have

∫
QI

smλmϕm|�v|2e2sϕdxdt

≤ C

∫
QI

sm+1λmϕm+1|w|2e2sϕdxdt + CeC0(λ)sD2
1 + C�(v).

(25)

Hence Lemma 2 yields

∫
QI

smλmϕm

(
|�v|2 +

∣∣∣∣
∫ t

t0

|�v(x, ξ)|dξ

∣∣∣∣
2
)

e2sϕdxdt

≤C

∫
QI

(smλmϕm|�v|2 + sm−1λm−1ϕm−1|�v|2)e2sϕdxdt

≤C

∫
QI

smλmϕm|�v|2e2sϕdxdt

≤C

∫
QI

sm+1λmϕm+1|w|2e2sϕdxdt + CeC0(λ)sD2
1 + C�(v).

Therefore with (24) we reach

∫
QI

(sm−1λmϕm−1(|∂2t v|2 + |�∂tv|2)+ sm+3λm+4ϕm+3|∂tv|2)e2sϕdxdt

≤ C

∫
QI

(smλmϕm|∂tw|2 + sm+1λmϕm+1|w|2)e2sϕdxdt

+ CeC0(λ)sD2
1 + C(�(v)+�(∂tv)).

(26)
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Similarly from (20), applying Lemma 1 and (25), we can obtain

∫
QI

{
sm−1λmϕm−1

⎛
⎝|∂t∇v|2 +

∑
|γ |≤3
|∂γ

x v|2
⎞
⎠

+ sm+1λm+2ϕm+1
n∑

i,j=1
|∂i∂j v|2 + sm+3λm+4ϕm+3|∇v|2

}
e2sϕdxdt

≤ C

∫
QI

(smλmϕm|∇w|2 + sm+1λmϕm+1|w|2)e2sϕdxdt

+ CeC0(λ)sD2
1 + C(�(∇v)+�(v)).

(27)

Here we used an estimate

∫
QI

sλϕ

∣∣∣∣
∫ t

t0

|�v(x, ξ)|dξ

∣∣∣∣
2

e2sϕdxdt ≤ C

∫
QI

|�v(x, t)|2e2sϕdxdt

by Lemma 2.

Finally from (21), applying Lemma 2 to the integral terms
∣∣∣∫ t

t0
· · · dξ

∣∣∣2, by (25)

we can argue in the same way to have

n∑
j=1

∫
QI

{
sm−1λmϕm−1

⎛
⎝|∂tv0j |2 +

n∑
i,k=1
|∂i∂kv0j |2

⎞
⎠

+sm+1λm+2ϕm+1|∇v0j |2 + sm+3λm+4ϕm+3|v0j |2
}
e2sϕdxdt

≤C

∫
QI

smλmϕm|∇∂tw|2e2sϕdxdt

+C

∫
QI

smλmϕm

(
|�v0|2 + |�v|2 + |�(∂jv)|2

+
∣∣∣∣
∫ t

t0

|�v(x, ξ)|dξ

∣∣∣∣
2

+
∣∣∣∣
∫ t

t0

|�(∂jv)(x, ξ)|dξ

∣∣∣∣
2 )

e2sϕdxdt

+CeC0(λ)sD2
1 + C�(∂t∇v)

≤C

∫
QI

(smλmϕm|∇∂tw|2 + sm+1λmϕm+1|w|2)e2sϕdxdt

+C

∫
QI

smλmϕm

⎛
⎝|�v0|2 +

∑
|γ |≤3
|∂γ

x v|2
⎞
⎠ e2sϕdxdt

+ CeC0(λ)sD2
1 + C(�(∂t∇v)+�(v)). (28)



428 M. Yamamoto and B. Kaltenbacher

Applying (26)–(27) where m is replaced by m+ 1, we have

[the second term on the right-hand side of (28)]

≤C

∫
QI

(sm+1λmϕm+1|∇x,tw|2 + sm+2λmϕm+2|w|2)e2sϕdxdt

+CeC0(λ)sD2
1 + C(�(∇x,t v)+�(v)).

Therefore (28) yields

∫
QI

{
sm−1λmϕm−1

⎛
⎝|∇∂2t v|2 +

∑
|γ |≤3
|∂t∂

γ
x v|2

⎞
⎠

+ sm+1λm+2ϕm+1 ∑
|γ |≤2
|∂γ

x ∂tv|2 + sm+3λm+4ϕm+3|∇∂tv|2
}
e2sϕdxdt

≤C

∫
QI

(smλmϕm|∂t∇w|2 + sm+1λmϕm+1|∇x,tw|2 + sm+2λmϕm+2|w|2)e2sϕdxdt

+ CeC0(λ)sD2
1 + C(�(v)+�(∇x,t v)+�(∂t∇v)).

(29)

Third Step
We will derive a Carleman estimate for w. Applying Lemma 1 to (14) by using
Lemma 2 for estimating

∫ t

t0

|∇k�v(x, ξ)|dξ,

∫ t

t0

|∇kv(x, ξ)|dξ, k = 0, 1,

we obtain
∫

QI

(sm−1λmϕm−1(|∂tw|2 + |�w|2)+ sm+1λm+2ϕm+1|∇w|2

+ sm+3λm+4ϕm+3|w|2)e2sϕdxdt ≤ C

∫
QI

smλmϕm|R̃f |2e2sϕdxdt

+ C

∫
QI

smλmϕm

⎛
⎝ ∑
|γ |≤3
|∂γ

x v|2 +
1∑

k=0
|∂t∇kv|2

⎞
⎠ e2sϕdxdt

+ CeC0(λ)sD2
1 + C�(w).

Replacing m by m+ 1 in (27) and substituting it into the second term on the right-
hand side, we have
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∫
QI

(sm−1λmϕm−1(|∂tw|2 + |�w|2)+ sm+1λm+2ϕm+1|∇w|2

+ sm+3λm+4ϕm+3|w|2)e2sϕdxdt ≤ C

∫
QI

smλmϕm|R̃f |2e2sϕdxdt

+C

∫
QI

(sm+1λmϕm+1|∇w|2 + sm+2λmϕm+2|w|2)e2sϕdxdt

+CeC0(λ)sD2
1 + C(�(∇v)+�(v)+�(w)).

Choosing s, λ > 0 sufficiently large, we can absorb the second term on the right-
hand side into the left-hand side, so that

∫
QI

(sm−1λmϕm−1(|∂tw|2 + |�w|2)

+ sm+1λm+2ϕm+1|∇w|2 + sm+3λm+4ϕm+3|w|2)e2sϕdxdt

≤ C

∫
QI

smλmϕm|R̃f |2e2sϕdxdt + CeC0(λ)sD2
1 + C(�(∇v)+�(v)+�(w)).

(30)

Thus by setting m = 0, this proves Proposition 1 (ii). Finally, applying Lemma 1 to
(18), we obtain

∫
QI

(sm−1λmϕm−1(|∂2t w|2 + |∂t�w|2)+ sm+1λm+2ϕm+1|∇∂tw|2)e2sϕdxdt

≤C

∫
QI

smλmϕm|(∂t R̃)f |2e2sϕdxdt + C

∫
QI

smλmϕm|�w|2e2sϕdxdt

+
∫

QI

smλmϕm

⎛
⎝ ∑
|γ |≤3

(|∂γ
x ∂tv|2 + |∂γ

x v|2)+
∑
|γ |≤1
|∂γ

x ∂2t v|2
⎞
⎠ e2sϕdxdt

+C

∫
QI

smλmϕm
∑
|γ |≤3

∣∣∣∣
∫ t

t0

|∂γ
x v(x, ξ)|dξ

∣∣∣∣
2

e2sϕdxdt + CeC0(λ)sD2
1 + C�(∂tw).

In (29) and (30), we replace m by m + 1. Then, applying Lemma 2 to the fourth
term on the right-hand side and (30) and (29) respectively to the second and the
third terms on the right-hand side, we can obtain
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∫
QI

(sm−1λmϕm−1(|∂2t w|2 + |∂t�w|2)

+sm+1λm+2ϕm+1|∇∂tw|2 + sm+3λm+4ϕm+3|∂tw|2)e2sϕdxdt

≤C

∫
QI

smλmϕm|∂t R̃|2|f |2e2sϕdxdt

+
[
C

∫
QI

sm+1λmϕm+1|R̃|2|f |2e2sϕdxdt + C(eC0(λ)sD2
1 +�(v)+�(∇v)+�(w))

]

+
[
C

∫
QI

(sm+1λmϕm+1|∂t∇w|2 + sm+2λmϕm+2|∇x,tw|2 + sm+3λmϕm+3|w|2)e2sϕdxdt

+C(eC0(λ)sD2
1 +�(v)+�(∇x,t v)+�(∇∂t v))

]
+ [C(eC0(λ)sD2

1 +�(∂tw))].

Choosing s, λ > 0 large, we can absorb the terms sm+1λmϕm+1|∂t∇w|2 and
sm+2λmϕm+2|∂tw|2 into the left-hand side, and so we have

∫
QI

(sm−1λmϕm−1(|∂2t w|2 + |∂t�w|2)

+sm+1λm+2ϕm+1|∇∂tw|2 + sm+3λm+4ϕm+3|∂tw|2)e2sϕdxdt

≤C

∫
QI

sm+1λmϕm+1(|∂t R̃|2 + |R̃|2)|f |2e2sϕdxdt

+C

∫
QI

(sm+2λmϕm+2|∇w|2 + sm+3λmϕm+3|w|2)e2sϕdxdt

+ C(eC0(λ)sD2
1 +�(v)+�(∇x,t v)+�(∇∂tv)+�(w)+�(∂tw)). (31)

Again replacing m by m+ 1 in (30), we have

∫
QI

(sm+2λmϕm+2|∇w|2 + sm+4λm+2ϕm+4|w|2)e2sϕdxdt

≤ C

∫
QI

sm+1λm−2ϕm+1|R̃|2|f |2e2sϕdxdt

+ C(eC0(λ)sD2
1 +�(v)+�(∇v)+�(w)).

Substituting this into the second term on the right-hand side of (31), we reach

∫
QI

(sm−1λmϕm−1(|∂2t w|2 + |∂t�w|2)+ sm+1λm+2ϕm+1|∇∂tw|2

+sm+3λm+4ϕm+3|∂tw|2)e2sϕdxdt
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≤ C

∫
QI

sm+1λmϕm+1(|∂t R̃|2 + |R̃|2)|f |2e2sϕdxdt

+C(eC0(λ)sD2
1 +�(v)+�(∇x,t v)+�(∇∂tv)+�(w)+�(∂tw)).

Setting m = 0, we complete the proof of Proposition 1.

2.3 The Second Carleman Estimate: Proposition 2

We will establish another underlying Carleman estimate. For ω ⊂ 
, we arbitrarily
choose a subdomain ω0 such that ω0 ⊂ ω. Then, it is known (e.g., Imanuvilov [16])
that there exists d0 ∈ C2(
) such that

d0 > 0 in 
, d0 = 0 on ∂
, |∇d0| > 0 on 
 \ ω0. (32)

Later we fix a constant λ > 0 sufficiently large. We set

{
η(x) = eλd0(x) − e

2λ‖d0‖C(
) < 0,

α(x, t) = η(x)
t (T−t)

, θ(x, t) = eλd0(x)

t (T−t)
, t0 = T

2 .
(33)

We note

t (T − t) = eλd0(x)θ−1(x, t), ∂t θ(x, t) = 2t − T

t2(T − t)2
eλd0(x), t − t0 = t2(T − t)2

2η(x)
∂tα,

(34)
and

⎧⎪⎨
⎪⎩

1
t2(T−t)2

= e−2λd0(x)θ(x, t)2 ≤ θ(x, t)2,

|∂t θ(x, t)| = |2t−T |
t2(T−t)2

eλd0(x) = |2t − T |e−λd0(x)θ(x, t)2 ≤ Cθ(x, t)2

in 
× (0, T ).

(35)

Here C > 0 is independent of λ > 0.
We recall (9):

D1 := ‖u0‖H 3(
), D2 = ‖u0‖H 4(
) + ‖u1‖H 4(
) + ‖u2‖H 2(
),

and that v, w are defined by (12) and (13) for a solution u to (4).
We state our second key Carleman estimate for a solution w to (14).

Proposition 2 There exists a constant λ0 > 0 such that for each λ ≥ λ0 we can
choose constants s0 = s0(λ) > 0, C = C(λ) > 0, and C0 = C0(λ) > 0 such that
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∫
Q

(s−1θ−1|∂2t w|2 + s3λ4θ3|∂tw|2)e2sαdxdt

≤C

∫
Q

|∂t R̃|2|f |2e2sαdxdt + C0(λ)(D2
2 + ‖u‖2H 3(0,T ;L2(ω))

+ ‖u‖2
H 2(0,T ;H 2(ω))

)

for all s > s0.

Proof of Proposition 2 We set

E(v) =
∫

ω×(0,T )

s4λ5θ4|v|2e2sαdxdt.

First Step
The proof is similar to Proposition 1, but we need some other estimation. First we
show

Lemma 3 Let m = −1, 0, 1. There exists a constant λ0 > 0 such that for each
λ ≥ λ0 we can choose constants s0 = s0(λ) > 0 and C = C(λ) > 0 such that

∫
Q

{
sm−1λmθm−1

⎛
⎝|∂t z|2 +

∑
|γ |≤2
|∂γ

x z|2
⎞
⎠

+ sm+1λm+2θm+1|∇z|2 + sm+3λm+4θm+3|z|2
}
e2sαdxdt

≤C

∫
Q

smλmθm|F |2e2sαdxdt + CE(z)

for all s ≥ s0 and all z satisfying

∂t z− κ(x, t)�z = F in Q, z|∂
 = 0

with κ ∈ C1(Q), > 0 on Q.

This is a Carleman estimate with the singular weight function α(x, t) and the
proof can be found for example in Fursikov and Imanuvilov [12], Imanuvilov [16].

Second we show an inequality on a definite integral starting at t0 where
the weight function α(x, t) gains the maximum value for each x. This lemma
corresponds to Lemma 2.

Lemma 4 There exist constants C > 0 and δ0 > 0 such that

∫
Q

s$θ$

∣∣∣∣
∫ t

t0

|g(x, ξ)|dξ

∣∣∣∣
2

e2sα(x,t)dxdt ≤ C

∫
Q

s$−1θ$−1e−λδ0 |g|2e2sα(x,t)dxdt

for all s ≥ 0, $ ∈ N and all g ∈ L2(Q).
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Proof The proof is similar to Lemma 2 and we provide it for completeness. We can

estimate
∫



∫ T

t0
s$θ$

∣∣∣∫ t

t0
|g(x, ξ)|dξ

∣∣∣2 e2sα(x,t)dxdt because we can estimate for the

integral over 
×(0, t0) in the same way. Noting (34), α(x, T ) = −∞ and ∂t e
2sα =

2s(∂tα)e2sα , we apply the Cauchy-Schwarz inequality and the integration by parts,
so that

∫



∫ T

t0

(sθ)$
∣∣∣∣
∫ t

t0

|g(x, ξ)|dξ

∣∣∣∣
2

e2sα(x,t)dtdx

≤
∫




∫ T

t0

(sθ)$(t − t0)

(∫ t

t0

|g(x, ξ)|2dξ

)
e2sα(x,t)dtdx

=
∫




∫ T

t0

(sθ)$
t2(T − t)2

2η(x)
(∂tα)e2sα(x,t)

(∫ t

t0

|g(x, ξ)|2dξ

)
dtdx

=
∫




∫ T

t0

s$−1θ$ t2(T − t)2

4η(x)
∂t (e

2sα(x,t))

(∫ t

t0

|g(x, ξ)|2dξ

)
dtdx

=
∫




[
s$−1θ$ t2(T − t)2

4η(x)
e2sα(x,t)

(∫ t

t0

|g(x, ξ)|2dξ

)]t=T

t=t0

−
∫




∫ T

t0

s$−1∂t (θ
$t2(T − t)2)

1

4η(x)

(∫ t

t0

|g(x, ξ)|2dξ

)
e2sα(x,t)dtdx

−
∫




∫ T

t0

s$−1θ$ t2(T − t)2

4η(x)
|g(x, t)|2e2sα(x,t)dtdx

=−
∫




∫ T

t0

(
$θ$−1(∂t θ)t2(T − t)2 + θ$2t (T − t)(T − 2t)

)

s$−1

4η(x)

(∫ t

t0

|g(x, ξ)|2dξ

)
e2sα(x,t)dtdx

+
∫




∫ T

t0

s$−1θ$

(
eλd0(x)θ−1t (T − t)

−4η(x)

)
|g(x, t)|2e2sα(x,t)dtdx. (36)

For the last term, we used t2(T − t)2 = t (T − t)(eλd0(x)θ−1) by (34).
On the other hand, we set δ0 = minx∈
(2‖d0‖C(
) − d0(x)) > 0. There exists a

constant C1 = C1(δ0) > 0 such that

θ−1 eλd0(x)t (T − t)

−4η(x)
= θ−1t (T − t)

eλd0(x)

4(e2λ‖d0‖C(
) − eλd0(x))

=θ−1t (T − t)

4

e
−λ(2‖d0‖C(
)−d0(x))

1− e
−λ(2‖d0‖C(
)−d0(x))

≤ θ−1t (T − t)

4

e−λδ0

1− e−λδ0
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≤C1
θ−1t (T − t)

4
e−λδ0 ≤ C2θ

−1e−λδ0 , (x, t) ∈ Q

for all λ ≥ 1. Indeed, by setting h(ζ ) = ζ
1−ζ

, the function h(ζ ) is monotone
increasing for 0 < ζ < 1, and

e
−λ(2‖d0‖C(
)−d0(x))

1− e
−λ(2‖d0‖C(
)−d0(x))

= h(e
−λ(2‖d0‖C(
)−d0(x))

) ≤ h(e−λδ0)

by λ(2‖d0‖C(
) − d0(x)) ≥ λδ0.
Therefore

∫



∫ T

t0

s$−1θ$

(
eλd0(x)θ−1t (T − t)

−4η(x)

)
|g(x, t)|2e2sα(x,t)dtdx

≤C

∫



∫ T

t0

s$−1θ$−1e−λδ0 |g(x, t)|2e2sα(x,t)dtdx.

On the other hand, by (34) we see

|$θ$−1(∂t θ)t2(T − t)2| =
∣∣∣∣$θ$−1 2t − T

t2(T − t)2
eλd0(x)t2(T − t)2

∣∣∣∣
=|2$θ$−1(t − t0)e

λd0(x)| = |2$θ$−1(t − t0)(θ(x, t)t (T − t))| ≤ Cθ$|t − t0|

and

− η(x) = e
2λ‖d0‖C(
) − eλd0(x) ≥ e

2λ‖d0‖C(
) − e
λ‖d0‖C(
)

=e
λ‖d0‖C(
)(e

λ‖d0‖C(
) − 1) ≥ e
‖d0‖C(
)(e

‖d0‖C(
) − 1) > 0,

that is,

∣∣∣∣−
1

η(x)

∣∣∣∣ ≤
1

e
‖d0‖C(
)(e

‖d0‖C(
) − 1)

if λ ≥ 1. Applying these to the first term on the right-side of (36), we can obtain

∫



∫ T

t0

(sθ)$(t − t0)

∣∣∣∣
∫ t

t0

|g(x, ξ)|dξ

∣∣∣∣
2

e2sα(x,t)dtdx

≤C

∫



∫ T

t0

s$−1θ$|t − t0|
(∫ t

t0

|g|2dξ

)
e2sα(x,t)dtdx

+
∫




∫ T

t0

(sθ)$−1e−λδ0 |g|e2sα(x,t)dtdx.
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The first term on the right-hand side can be absorbed into the left-hand side by
choosing s > 0 large, and the proof of Lemma 4 is complete.

In particular, Lemma 4 implies

Lemma 5
∫

Q

(sθ)$eλδ0 |w|2e2sαdxdt ≤ C

∫
Q

(sθ)$−1|∂tw|2e2sαdxdt +Ceλδ0‖w(·, t0)‖2L2(
)
.

Proof We have

w(x, t) =
∫ t

t0

∂tw(x, ξ)dξ + w(x, t0), (x, t) ∈ Q.

Therefore Lemma 4 yields

∫
Q

eλδ0s$θ$|w|2e2sαdxdt

≤C

∫
Q

s$θ$eλδ0

∣∣∣∣
∫ t

t0

|∂tw(x, ξ)|dξ

∣∣∣∣
2

e2sαtdxdt+C

∫
Q

|w(x, t0)|2eλδ0s$θ$e2sαdxdt

≤C

∫
Q

s$−1θ$−1|∂tw|2e2sαdxdt + C

∫
Q

|w(x, t0)|2eλδ0s$θ$e2sαdxdt.

Here

s$θ$e2sα =
(

s
eλd0(x)

t (T − t)

)$

exp

(
−2s e

2λ‖d0‖C(
) − eλd0(x)

t (T − t)

)

≤
(

s
eλd0(x)

t (T − t)

)$

exp

(
−2s e

2λ‖d0‖C(
) − e
λ‖d0‖C(
)

t (T − t)

)
.

We choose λ > 0 large such that e
λ‖d0‖C(
) ≥ 2. Therefore

e
2λ‖d0‖C(
) − e

λ‖d0‖C(
) = e
λ‖d0‖C(
)(e

λ‖d0‖C(
) − 1) ≥ e
λ‖d0‖C(
) .

Hence

s$θ$e2sα ≤
(

s
e
λ‖d0‖C(
)

t (T − t)

)$

exp

(
−2s e

λ‖d0‖C(
)

t (T − t)

)
≤ sup

η≥0
η$e−2η =

(
$

2

)$

e−$.

(37)
Thus the proof of Lemma 5 is complete.
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Second Step
The main idea for the proof of Proposition 2 is similar to Proposition 1, and addi-
tionally, in terms of Lemma 5, we regard the terms ∂

γ
x v(x, t) as a term with lower

powers in s, λ and θ than ∂t∂
γ
x v(x, t), not only by comparing

∣∣∣∫ t

t0
|v(x, ξ)|dξ

∣∣∣2 with
|v(x, t)|2. For this, we further have to assume data ∂tu(·, t0) and ∂2t u(·, t0) as well
as u(·, t0) in 
. We can remove data ∂tu(·, t0) and ∂2t u(·, t0) but the proof is more
complicated.

In this step, we complete the proof of Proposition 2. We apply Lemma 3 to (19):

∫
Q

sm+3λm+4θm+3|∂tv|2e2sαdxdt +
∫

Q

sm+1λm+2θm+1|∂t∇v|2e2sαdxdt

+
∫

Q

sm−1λmθm−1(|∂t�v|2 + |∂2t v|2)e2sαdxdt

≤C

∫
Q

smλmθm|∂tw|2e2sαdxdt

+C

∫
Q

smλmθm

(
|�v|2 +

∣∣∣∣
∫ t

t0

|�v(x, ξ)|dξ

∣∣∣∣
2
)

e2sαdxdt + C0(λ)D2
2 + CE(∂tv)

for all s ≥ s0. Here we used (37) for estimating
∫
Q

smλmθm|∂t (a3�u0)|2e2sαdxdt .

Lemmata 4 and 5 yield

∫
Q

smλmθm|�v|2e2sαdxdt ≤ C

∫
Q

sm−1λmθm−1e−λδ0 |∂t�v|2e2sαdxdt+C0(λ)D2
2

and

∫
Q

smλmθm

∣∣∣∣
∫ t

t0

|�v|dξ

∣∣∣∣
2

e2sαdxdt ≤ C

∫
Q

sm−1λmθm−1e−λδ0 |�v|2e2sαdxdt

≤C

∫
Q

sm−2λmθm−2e−λδ0 |∂t�v|2e2sαdxdt + C0(λ)D2
2 .

Consequently

∫
Q

smλmθm

(
|�v|2 +

∣∣∣∣
∫ t

t0

|�v(x, ξ)|dξ

∣∣∣∣
2
)

e2sαdxdt

≤C

∫
Q

sm−1λmθm−1e−λδ0 |∂t�v|2e2sαdxdt + C0(λ)D2
2 .
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Hence
∫

Q

sm+3λm+4θm+3|∂tv|2e2sαdxdt +
∫

Q

sm+1λm+2θm+1|∂t∇v|2e2sαdxdt

+
∫

Q

sm−1λmθm−1(|∂t�v|2 + |∂2t v|2)e2sαdxdt

≤C

∫
Q

smλmθm|∂tw|2e2sαdxdt + C

∫
Q

sm−1λmθm−1e−λδ0 |∂t�v|2e2sαdxdt

+C0(λ)D2
2 + CE(∂tv).

Choosing λ > 0 in e−λδ0 sufficiently large, we can absorb the second term on the
right-hand side into the second term on the left-hand side, we have

∫
Q

(sm+3λm+4θm+3|∂tv|2 + sm+1λm+2θm+1|∂t∇v|2

+sm−1λmθm−1(|∂t�v|2 + |∂2t v|2)e2sαdxdt

≤C

∫
Q

smλmθm|∂tw|2e2sαdxdt + C0(λ)D2
2 + CE(∂tv).

We apply Lemma 5 to the left-hand side and estimate |v|2 and |�v|2 respectively
by |∂tv|2 and |∂t�v|2, so that we obtain

∫
Q

(sm+4λm+4θm+4|v|2 + sm+3λm+4θm+3|∂tv|2

+sm+1λm+2θm+1|∂t∇v|2 + smλmθm|�v|2 + sm−1λmθm−1(|∂t�v|2

+ |∂2t v|)e2sαdxdt ≤ C

∫
Q

smλmθm|∂tw|2e2sαdxdt + C0(λ)D2
2 + CE(∂2t u).

(38)
We recall v0 = ∂tv and set V := ∂t�v = ∂2t �u. We further take � in (19) to

have

∂tV − a2�V

=(∂ta2 + a3)�
2v + (∂ta3)

∫ t

t0

�2v(x, ξ)dξ

+2∇a2 · ∇(�v0)+ (�a2)�v0 + ∂t�w + 2∇(∂ta2 + a3) · ∇(�v)

+�(∂ta2 + a3)�v + 2∇(∂ta2)

∫ t

t0

∇(�v)(x, ξ)dξ

+�(∂ta3)

∫ t

t0

�v(x, ξ)dξ −�((∂ta3)�u0).



438 M. Yamamoto and B. Kaltenbacher

By (8), we note that V = ∂2t �u = 0 on ∂
 × (0, T ). Consequently we can apply
Lemma 3 to V and obtain

∫
Q

(sm−1λmθm−1(|∂2t �v|2 + |∂t�
2v|2)+ sm+1λm+2θm+1|∂t∇�v|2

+sm+3λm+4θm+3|∂t�v|2)e2sαdxdt

=
∫

Q

(sm−1λmθm−1(|∂tV |2 + |�V |2)+ sm+1λm+2θm+1|∇V |2

+ sm+3λm+4θm+3|V |2)e2sαdxdt

≤C

∫
Q

smλmθm

{
|�2v|2 +

∣∣∣∣
∫ t

t0

|�2v(x, ξ)|dξ

∣∣∣∣
2

+ |∇�v|2 +
∣∣∣∣
∫ t

t0

|∇�v(x, ξ)|dξ

∣∣∣∣
2

+|�v|2 +
∣∣∣∣
∫ t

t0

|�v(x, ξ)|dξ

∣∣∣∣
2 }

e2sαdxdt

+C

∫
Q

smλmθm(|∂t∇�v|2 + |∂t�v|2)e2sαdxdt + C

∫
Q

smλmθm|∂t�w|2e2sαdxdt

+ C

∫
Q

smλmθm|�((∂ta3)�u0)|2e2sαdxdt + CE(V ). (39)

By Lemma 4 and (37), choosing large λ and s > 0 in the first term on the right-hand

side, we can absorb the integral terms
∣∣∣∫ t

t0
· · · dξ

∣∣∣ into the terms which are the same

as the integrands, and so

[the right-hand side of (39)]

≤C

∫
Q

smλmθm(|�2v|2 + |∇�v|2 + |�v|2)e2sαdxdt

+C

∫
Q

smλmθm(|∂t∇�v|2 + |∂t�v|2)e2sαdxdt

+C

∫
Q

smλmθm|∂t�w|2e2sαdxdt + C0(λ)D2
2 + CE(∂2t �u).

Applying Lemma 5 to the first term here, we have
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[the right-hand side of (39)]

≤
[
C

∫
Q

sm−1λmθm−1e−λδ0(|∂t�
2v|2 + |∂t∇�v|2 + |∂t�v|2)e2sαdxdt + C0(λ)D2

2

]

+C

∫
Q

smλmθm(|∂t∇�v|2 + |∂t�v|2)e2sαdxdt

+C

∫
Q

smλmθm|∂t�w|2e2sαdxdt + C0(λ)D2
2 + CE(∂2t �u).

We note that in applying Lemma 5, we need the norm ‖u1‖H 4(
). Therefore

∫
Q

(sm−1λmθm−1(|∂2t �v|2 + |∂t�
2v|2)+ sm+1λm+2θm+1|∂t∇�v|2

+sm+3λm+4θm+3|∂t�v|2)e2sαdxdt

≤C

∫
Q

sm−1λmθm−1e−λδ0(|∂t�
2v|2 + |∂t∇�v|2 + |∂t�v|2)e2sαdxdt

+C

∫
Q

smλmθm(|∂t∇�v|2 + |∂t�v|2)e2sαdxdt

+C

∫
Q

smλmθm|∂t�w|2e2sαdxdt + C0(λ)D2
2 + CE(∂2t �u).

Thanks to the factor e−λδ0 , choosing s > 0 and λ > 0 sufficiently large, we can
absorb the first and the second terms on the right-hand side into the left-hand side,
so that

∫
Q

(sm−1λmθm−1(|∂2t �v|2 + |∂t�
2v|2)+ sm+1λm+2θm+1|∂t∇�v|2

+sm+3λm+4θm+3|∂t�v|2)e2sαdxdt

≤ C

∫
Q

smλmθm|∂t�w|2e2sαdxdt + C0(λ)D2
2 + CE(∂2t �u). (40)

Next, differentiating (19) with respect to t and setting v00 := ∂tv0 = ∂2t v, we
have

∂tv00 − a2�v00 = ∂2t w + (∂ta2 + a3)�∂tv

+(∂ta3)�v − (∂2t a3)�u0 + (∂ta2)�∂tv + ∂t (∂ta2 + a3)�v + ∂2t a3

∫ t

t0

�v(x, ξ)dξ
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in Q. Since v00 = ∂3t u = 0 on ∂
 × (0, T ) by (8), we can apply Lemma 3 to v00
and use (37) to obtain

∫
Q

smλm+1θm|∇v00|2e2sαdxdt =
∫

Q

smλm+1θm|∇∂2t v|2e2sαdxdt

≤C

∫
Q

sm−1λm−1θm−1|∂2t w|2e2sαdxdt

+C

∫
Q

sm−1λm−1θm−1|∂t�v|2e2sαdxdt

+ C

∫
Q

sm−1λm−1θm−1
(
|�v|2 +

∣∣∣∣
∫ t

t0

|�v(x, ξ)|dξ

∣∣∣∣
2
)

e2sαdxdt

+C0(λ)D2
2 + CE(∂3t u).

Then, in terms of Lemmata 4 and 5 to the third term on the right-hand side, we
absorb it into the second term, and we reach

∫
Q

smλm+1θm|∂2t ∇v|2e2sαdxdt

≤C

∫
Q

sm−1λm−1θm−1|∂2t w|2e2sαdxdt

+ C

∫
Q

sm−1λm−1θm−1|∂t�v|2e2sαdxdt

+ C0(λ)D2
2 + CE(∂3t u).

(41)

On the other hand, we see

w0 = ∂t (∂
2
t u− a2�∂tu− a3�u)

=∂3t u− (∂ta2)∂t (�u)− a2∂
2
t (�u)− (∂ta3)�u− a3∂t (�u) = 0 on ∂


by u = �u = 0 on ∂
. Therefore we can apply Lemma 3 with m = 0 to (18), and
in terms of Lemma 4, we have

∫
Q

(s−1θ−1(|∂2t w|2 + |�∂tw|2)+ sλ2θ |∂t∇w|2 + s3λ4θ3|∂tw|2)e2sαdxdt

≤C

∫
Q

|∂t R̃|2|f (x)|2e2sαdxdt + C

∫
Q

|�w|2e2sαdxdt

+C

∫
Q

{ 1∑
j=0

(|∂j
t v|2 + |∂j

t ∇v|2 + |∂j
t �v|2 + |∂j

t ∇�v|2)+ |∂2t v|2 + |∂2t ∇v|2
}

e2sαdxdt + C0(λ)D2
2 + CE(∂tw).
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Applying Lemma 5 to the third term on the right-hand side, similarly to (41), we
obtain

∫
Q

(s−1θ−1(|∂2t w|2 + |�∂tw|2)+ sλ2θ |∂t∇w|2 + s3λ4θ3|∂tw|2)e2sαdxdt

≤C

∫
Q

|∂t R̃|2|f (x)|2e2sαdxdt + C

∫
Q

|�w|2e2sαdxdt

+C

∫
Q

(|∂t�v|2 + |∂t∇�v|2 + |∂2t v|2 + |∂2t ∇v|2)e2sαdxdt

+ C0(λ)D2
2 + CE(∂tw). (42)

Moreover (38) with m = 1 yields

∫
Q

(|∂t�v|2+|∂2t v|2)e2sαdxdt ≤ C

∫
Q

sθ |∂tw|2e2sαdxdt+C0(λ)D2
2+CE(∂2t u).

(43)

We apply (41) with m = 0 and (38) with m = 0 successively, and we can reach

∫
Q

|∂2t ∇v|2e2sαdxdt ≤ C

∫
Q

s−1λ−2θ−1|∂2t w|2e2sαdxdt

+ C

∫
Q

s−1λ−2θ−1|∂t�v|2e2sαdxdt + C(D2
2 + E(∂3t u))

≤ C

∫
Q

s−1λ−2θ−1|∂2t w|2e2sαdxdt

+ C

∫
Q

λ−2|∂tw|2e2sαdxdt + C0(λ)D2
2 + CE(∂3t u).

(44)

Next (40) with m = −1 yields

∫
Q

|∂t∇�v|2e2sαdxdt

≤ C

∫
Q

s−1λ−2θ−1|∂t�w|2e2sαdxdt

+ C0(λ)D2
2 + CE(∂2t �u).

(45)
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Now we will improve (42). First, applying Lemma 5 to the second term on
the right-hand side of (42), we can absorb it into the left-hand side. Moreover,
substituting (43)–(45) into the third term on the right-hand side of (42), we obtain

∫
Q

(s−1θ−1(|∂2t w|2 + |�∂tw|2)+ s3λ4θ3|∂tw|2)e2sαdxdt

≤C

∫
Q

|∂t R̃|2|f (x)|2e2sαdxdt

+C

∫
Q

(sθ |∂tw|2 + λ−2|∂tw|2 + s−1λ−2θ−1(|∂2t w|2 + |∂t�w|2)e2sαdxdt

+C0(λ)D2
2 + C(E(∂2t u)+ E(∂3t u)+ E(∂2t �u)+ E(∂tw)).

Choosing s > 0 and λ > 0 sufficiently large and comparing the powers s, λ, θ , we
can absorb the second integral term on the right-hand side into the left-hand side,
and we finally reach

∫
Q

(s−1θ−1(|∂2t w|2 + |�∂tw|2)+ s3λ4θ3|∂tw|2)e2sαdxdt

≤C

∫
Q

|∂t R̃|2|f (x)|2e2sαdxdt

+C0(λ)D2
2 + C(E(∂2t u)+ E(∂3t u)+ E(∂2t �u)+ E(∂tw)).

By the definition of E(v), (12) and (37), we estimate

E(∂2t u)+E(∂3t u)+E(∂2t �u)+E(∂tw) ≤ C0(λ)(‖u‖2
H 3(0,T ;L2(ω))

+‖u‖2
H 2(0,T ;H 2(ω))

).

Thus the proof of Proposition 2 is complete.

3 Proof of Theorem 1

The proof of the local stability in 
 for the inverse source problem is based on the
method by Bukhgeim and Klibanov [6] using a cut-off argument. Except for a recent
work by Huang et al. [14], all the existing works use a cut-off argument. However,
the cut-off argument makes the proof lengthy and untransparent. Huang et al. [14]
provides a simpler proof without any cut-off arguments. Here we follow the way in
[14].

First Step
We choose d(x) in the weight function in Proposition 1 in Sect. 2. First we construct
some domain 
1. For given � ⊂ ∂
, we choose a bounded domain 
1 with smooth
boundary such that
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 � 
1, � = ∂
 ∩
1, ∂
 \ � ⊂ ∂
1. (46)

In particular, 
1 \
 contains some non-empty open subset. We note that 
1 can be
constructed as the interior of a union of 
 and the closure of a non-empty domain

̂ satisfying 
̂ ⊂ R3 \
 and ∂
̂ ∩ ∂
 = �.

We choose a domain ω such that ω ⊂ 
1 \ 
. Then, by Imanuvilov [16] for
example, we can find d ∈ C2(
1) such that

d > 0 in 
1, |∇d| > 0 on 
1 \ ω, d = 0 on ∂
1.

In particular,

d ≥ 0 on 
, d > 0 on 
0, d = 0 on ∂
 \ �, |∇d| > 0 on 
.

(47)

We recall that for relatively open subset � of ∂
, we choose a domain 
0 ⊂ 


satisfying ∂
0 ∩ ∂
 ⊂ � and 
0 ⊂ 
 ∪ �.
In the weight function ϕ(x, t) = eλ(d(x)−β|t−t0|2) of the Carleman estimate, we

choose a constant β > 0 sufficiently large such that

‖d‖C(
) ≤ βδ2. (48)

We fix λ > 0 sufficiently large, and we recall I = (t0 − δ, t0 + δ). Then we can
neglect the dependency on λ and ϕ in Proposition 1. Before applying Proposition 1,
we estimate

1

s

(
�(v)+�(∇x,t v)+�(∂t∇v)+�(w)+�(∂tw)

)
,

where we recall (16). First representing v and w in terms of u, by v = ∂tu and (12)
we have

J1 :=
∫

∂
×I

s2(|v|2 + |∇x,t v|2 + |∇x,t∇x,t v|2 + |∇x,t ∂t∇v|2

+|w|2 + |∇x,tw|2 + |∇x,t ∂tw|2 + |∇3v|2 + |∇2∂tv|2 + |∇3∂tv|2

+|∇2w|2 + |∇2∂tw|2)e2sϕdSdt

≤Cs2
∫

∂
×I

∑
|γ |+j≤5

|∂γ
x ∂

j
t u|2e2sϕdSdt

=Cs2
(∫

�×I

+
∫

(∂
\�)×I

) ∑
|γ |+j≤5

|∂γ
x ∂

j
t u|2e2sϕdSdt

=:J11 + J12.
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We set

D3 :=
∑
|γ |+j≤5

‖∂γ
x ∂

j
t u‖L2(I ;L2(�)). (49)

We recall that D1 and D2 are defined by (9). Then

|J11| ≤ Cs2D2
3 exp(2s max

x∈�,t∈I
ϕ(x, t)). (50)

By the trace theorem and (7), we see

|J12| ≤ Cs2
∑
|γ |+j≤5

‖∂γ
x ∂

j
t u‖2

L2(I ;L2(∂
\�))
exp(2s max

x∈∂
\�,t∈I
ϕ(x, t))

≤Cs2M2 exp(2s max
x∈∂
\�,t∈I

ϕ(x, t)).

Hence, with (50), we see

|J | ≤ Cs2D2
3 exp(2s max

x∈�,t∈I
ϕ(x, t))+Cs2M2 exp(2s max

x∈∂
\�,t∈I
ϕ(x, t)). (51)

Next by (7) and the Sobolev embedding, we have

s4
∫




{|v(x, t0 − δ)|2 + |∇x,t v(x, t0 − δ)|2 + |∇(∇x,t v)(x, t0 − δ)|2

+|∇(∇∂tv)(x, t0 − δ)|2 + |w(x, t0 − δ)|2

+|∇w(x, t0 − δ)|2 + |∂tw(x, t0 − δ)|2 + |∇∂tw(x, t0 − δ)|2

+|v(x, t0 + δ)|2 + |∇x,t v(x, t0 + δ)|2 + |∇(∇x,t v)(x, t0 + δ)|2

+|∇(∇∂tv)(x, t0 + δ)|2 + |w(x, t0 + δ)|2

+|∇w(x, t0 + δ)|2 + |∂tw(x, t0 + δ)|2 + |∇∂tw(x, t0 + δ)|2}e2sϕ(x,t0+δ)dx

≤ Cs4M2 exp(2s max
x∈


ϕ(x, t0 + δ)). (52)

In terms of (51) and (52), we reach

1

s

(
�(v)+�(∇x,t v)+�(∂t∇v)+�(w)+�(∂tw)

)

≤Cs2D2
3e

Cs + Cs2M2 exp(2s max
x∈∂
\�,t∈I

ϕ(x, t))

+Cs4M2 exp(2s max
x∈


ϕ(x, t0 + δ)).
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On the other hand, since d = 0 on ∂
 \ � by (47), we have

max
x∈∂
\�,t∈I

ϕ(x, t) = exp(λ max
x∈∂
\�,t∈I

(d(x)− β(t − t0)
2)) ≤ 1.

Moreover, by (48) we can see that ‖d‖C(
) − βδ2 ≤ 0, and so

max
x∈


ϕ(x, t0 + δ) = exp(λ(max
x∈


(d(x)− βδ2))) = exp(λ(‖d‖C(
) − βδ2)) ≤ 1.

(53)
Hence

1

s
(�(v)+�(∇x,t v)+�(∂t∇v)+�(w)+�(∂tw))

≤Cs2D2
3e

Cs + Cs4M2e2s .

Therefore by Proposition 1, we obtain

∫
QI

(s−2|∂2t w|2 + s2|∂tw|2)e2sϕdxdt

≤ C

∫
QI

(|∂t R̃|2+|R̃|2)|f (x)|2e2sϕdxdt+Cs2eCs(D2
1+D2

3)+Cs4M2e2s (54)

for all large s > 0.
Furthermore (47) implies

δ1 := min
x∈
0

d(x) > 0. (55)

Therefore

min
x∈
0

ϕ(x, t0) = exp(λ min
x∈
0

d(x)) = eλδ1 . (56)

Second Step
We recall u0 = u(·, t0), u1 = ∂tu(·, t0), u2 = ∂2t u(·, t0), and set

H(u)(x) = −
1∑

k=0
a1k(x, t0)∇k�u1(x, t0)

−
1∑

k=0

1∑
j=0

bk+1,j (x, t0)∇kuj+1(x, t0), x ∈ 
.
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Then we see

|H(u)(x)| ≤ C

⎛
⎝ ∑
|γ |≤3
|∂γ

x u1(x)| +
∑
|γ |≤1
|∂γ

x u2(x)|
⎞
⎠ , x ∈ 
.

It follows from (14) that

R̃(x, t0)f (x) = ∂tw(x, t0)− a1(x, t0)�w(x, t0)+H(u)(x)+ b0(x, t0), x ∈ 
.

Since

�w(x, t0) = �(∂2t u(x, t0)− a2(x, t0)�∂tu(x, t0)− a3(x, t0)�u(x, t0))

by (12), noting the second condition of (6) and ∂tu(·, t0) = u1 and ∂2t u(·, t0) = u2,
we obtain

|f (x)|2 ≤ C

(
|∂tw(x, t0)|2 +

∑
|γ |≤4

(|∂γ
x u0(x)|2 + |∂γ

x u1(x)|2)+
∑
|γ |≤2

|∂γ
x u2(x)|2

)
,

x ∈ 
0.

(57)

Now we estimate
∫




|∂tw(x, t0)|2e2sϕ(x,t0)dx

as follows:
∫




|∂tw(x, t0)|e2sϕ(x,t0)dx

=
∫ t0

t0−δ

∂t

(∫



|∂tw(x, t)|2e2sϕ(x,t)dx

)
dt +

∫



|∂tw(x, t0 − δ)|2e2sϕ(x,t0−δ)dx

=
∫ t0

t0−δ

∫



(2∂tw(x, t)∂2t w(x, t)+ 2s(∂tϕ)|∂tw(x, t)|2)e2sϕ(x,t)dxdt

+
∫




|∂tw(x, t0 − δ)|2e2sϕ(x,t0−δ)dx

and so (53) yields

∫



|∂tw(x, t0)|e2sϕ(x,t0)dx ≤ C

∫
QI

(|∂tw||∂2t w|+s|∂tw|2)e2sϕ(x,t)dxdt+CM2e2s .

For the last inequality, by the Sobolev embedding, (7) and (12), we used
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‖∂tw(·, t0 − δ)‖L2(
) ≤ C‖w‖H 2(I ;L2(
)) ≤ CM.

We estimate the first term on the right-hand side:

|∂tw||∂2t w| = (s−1|∂2t w|)(s|∂tw|) ≤ 1

2
(s−2|∂2t w|2 + s2|∂tw|2),

and so Proposition 1 yields

∫
QI

(|∂tw||∂2t w| + s|∂tw|2)e2sϕdxdt ≤ C

∫
QI

(s−2|∂2t w|2 + s2|∂tw|2)e2sϕdxdt

≤C

∫
QI

(|∂t R̃|2 + |R̃|2)|f (x)|2e2sϕdxdt + Cs2eCsD2
1 + Cs2eCsD2

3 + Cs4M2e2s

for s ≥ 1. Here we applied also (54) and recall that D1, D2 and D3 are defined by
(9) and (49). Consequently

∫



|∂tw(x, t0)|2e2sϕ(x,t0)dx

≤C

∫
QI

(|∂t R̃|2 + |R̃|2)|f (x)|2e2sϕdxdt + CeCss2(D2
1 +D2

3)+ Cs4M2e2s .

Therefore with (57), we obtain

∫



|f (x)|2e2sϕ(x,t0)dx ≤ C

∫
QI

(|∂t R̃|2 + |R̃|2)|f (x)|2e2sϕdxdt

+ Cs2eCs(D2
2 +D2

3)+ Cs4M2e2s . (58)

Since ∂t R̃, R̃ ∈ L2(I ;L∞(
)) by (6) and d ≥ 0 on 
 by (47), we have

∫
QI

(|∂t R̃|2 + |R̃|2)|f (x)|2e2sϕdxdt

=
∫




|f (x)|2e2sϕ(x,t0)

(∫ t0+δ

t0−δ

(|∂t R̃(x, t)|2 + |R̃(x, t)|2)e−2s(ϕ(x,t0)−ϕ(x,t))dt

)
dx

≤
∫




|f (x)|2e2sϕ(x,t0)

(∫ t0+δ

t0−δ

(‖∂t R̃(·, t)‖2L∞(
) + ‖R̃(·, t)‖2L∞(
))

× exp(−2s min
x∈


eλd(x)(1− e−βλ(t−t0)
2)))dt

)
dx

≤
∫




|f (x)|2e2sϕ(x,t0)
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×
(∫ t0+δ

t0−δ

(‖∂t R̃(·, t)‖2L∞(
) + ‖R̃(·, t)‖2L∞(
)) exp(−2s(1− e−βλ(t−t0)
2)))dt

)
dx.

Since

lim
s→∞ exp(−2s(1− e−βλ(t−t0)

2))) = 0

if t �= t0 and

‖∂t R̃(·, t)‖2L∞(
) + ‖R̃(·, t)‖2L∞(
) ∈ L1(t0 − δ, t0 + δ),

we apply the Lebesgue convergence theorem, so that

∫
QI

(|∂t R̃|2 + |R̃|2)|f (x)|2e2sϕdxdt ≤ o(1)
∫




|f (x)|2e2sϕ(x,t0)dx

as s → ∞. Substituting this into the first term on the right-hand side of (58) and
choosing s > 0 sufficiently large to absorb it into the left-hand side, we can reach

∫



|f (x)|2e2sϕ(x,t0)dx ≤ Cs2eCs(D2
2 +D2

3)+ Cs4M2e2s

for all s ≥ s1, where the constant s1 > 0 is sufficiently large. Shrinking the
integration domain 
 on the left-hand side to 
0, by (55), we have

e2se
λδ1

∫

0

|f (x)|2dx ≤ Cs2eCs(D2
2 +D2

3)+ Cs4M2e2s ,

that is,

‖f ‖2
L2(
0)

≤ Cs2eCs(D2
2 +D2

3)+ Cs4M2e−2sμ.

Here we have

μ := eλδ1 − 1 > 0

by δ1 > 0. Since s2eCs ≤ C1e
C1s for all s > 0 and sups>0 s4e−sμ <∞, we obtain

‖f ‖2
L2(
0)

≤ C1M
2e−sμ + C1e

C1s(D2
2 +D2

3)

for s ≥ s1. Replacing C1 > 0 by C1e
C1s1 and changing s into s + s1 with s ≥ 0, we

obtain

‖f ‖2
L2(
0)

≤ C1M
2e−sμ + C1e

C1s(D2
2 +D2

3) (59)
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for each s ≥ 0. We minimize the right-hand side by choosing an appropriate value
of parameter s ≥ 0.

Case 1: M2 > D2
2 +D2

3 Then we can solve

M2e−sμ = eC1s(D2
2 +D2

3), that is, s = 1

C1 + μ
log

M2

D2
2 +D2

3

> 0,

so that

‖f ‖2
L2(
0)

≤ 2C1M
2(1−χ)(D2

2 +D2
3)

χ ,

where χ = μ
C1+μ

∈ (0, 1).

Case 2: M2 ≤ D2
2 +D2

3 Then ‖f ‖2
L2(
0)

≤ C1(1+ eC1s)(D2
2 +D2

3). By the trace
theorem and the Sobolev embedding, we readily see that D2 +D3 ≤ CM , and

D2
2 +D2

3 = (D2
2 +D2

3)
χ (D2

2 +D2
3)

1−χ ≤ (CM)2(1−χ)(D2
2 +D2

3)
χ .

Therefore, in both Cases 1 and 2, we can obtain

‖f ‖2
L2(
0)

≤ C(M)(D2
2 +D2

3)
χ .

Thus the proof of Theorem 1 is completed. �

4 Proof of Theorem 2

Now in Proposition 2, we fix sufficiently large λ > 0. Then (35) yields |∂tα| ≤ Cθ2

in Q. By Eq. (14) and R̃(x, t0) �= 0 for x ∈ 
, noting that v(·, t0) = ∂tu(·, t0) =
u1(x) and ∂tv(·, t0) = ∂2t u(·, t0) = u2(x), we have (57). Therefore, since w =
∂2t u− a2�∂tu− a3�u by (12), we see

∫



|f (x)|2e2sα(x,t0)dx ≤ C

∫



|∂tw(x, t0)|2e2sα(x,t0)dx + CD2
2 . (60)

Now we estimate
∫


|∂tw(x, t0)|2e2sα(x,t0)dx as follows. Since limt↓0 e2sα(x,t) = 0

by (33), using (35), we see

∫



|∂tw(x, t0)|2e2sα(x,t0)dx =
∫ t0

0
∂t

(∫



|∂tw(x, t)|2e2sα(x,t)dx

)
dt

=
∫ t0

0

∫



(2(∂2t w)∂tw + 2s(∂tα)|∂tw|2)e2sαdxdt

≤C

∫
Q

(|∂2t w||∂tw| + sθ2|∂tw|2)e2sαdxdt.
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Since

|∂tw||∂2t w| = s−1θ−
1
2 |∂2t w|sθ 1

2 |∂tw| ≤ 1

2
(s−2θ−1|∂2t w|2 + s2θ |∂tw|2),

by Proposition 2 we obtain

∫



|∂tw(x, t0)|2e2sα(x,t0)dx ≤ Cs−1
∫

Q

|∂t R̃|2|f (x)|2e2sαdxdt

+CD2
2 + C(‖u‖2

H 3(I ;L2(ω))
+ ‖u‖2

H 2(I ;H 2(ω))
).

Hence with (60) we see

∫



|f (x)|2e2sα(x,t0)dx ≤ Cs−1
∫

Q

|∂t R̃|2|f (x)|2e2sαdxdt

+CD2
2 + C(‖u‖2

H 3(I ;L2(ω))
+ ‖u‖2

H 2(I ;H 2(ω))
).

for all s ≥ s0.
Since α(x, t0) ≥ α(x, t) for (x, t) ∈ Q, we have

s−1
∫

Q

|∂t R̃|2|f (x)|2e2sαdxdt

≤s−1
∫




|f (x)|2e2sα(x,t0)

(∫ T

0
|∂t R̃(x, t)|2dt

)
dx

≤s−1
∫




|f (x)|2e2sα(x,t0)

(∫ T

0
‖∂t R̃(·, t)‖2L∞(
)dt

)
dx

≤s−1‖∂t R̃‖2L2(0,T ;L∞(
))

∫



|f (x)|2e2sα(x,t0)dx.

Therefore

(1− Cs−1‖∂t R̃‖2L2(0,T ;L∞(
))
)

∫



|f (x)|2e2sα(x,t0)dx

≤C(D2
2 + ‖u‖2H 3(I ;L2(ω))

+ ‖u‖2
H 2(I ;H 2(ω))

)

for all s ≥ s0. Thus we complete the proof of Theorem 2.



An Inverse Source Problem Related to Acoustic Nonlinearity Parameter Imaging 451

5 Concluding Remarks

5.1 Unique Continuation with Initial Condition

We have established Carleman estimates for our system (4) by the factorization in
(11). In the first Carleman estimate Proposition 1, we have to be given u(·, t0) in

. In the second one, we assume that u(·, t0), ∂tu(·, t0), and ∂2t u(·, t0) in 
 are
given as data, although we can prove a Carleman estimate only with additional data
u(·, t0). For the inverse problem, we need spatial data such as u(·, t0) in 
. We note
that for the inverse problem, we do not assume to know initial values, but we need
such spatial data at t = t0 ∈ (0, T ). On the other hand, the unique continuation for
partial differential equations should not require such spatial data. More precisely,
the unique continuation for our system means that if u satisfies (4) with Rf ≡ 0 and
suitable boundary values on a subboundary of ∂
× (0, T ) vanish, then u vanishes
in some subdomain in 
×(0, T ) without further spatial data. It is well-known that a
relevant Carleman estimate yields such a unique continuation property (e.g., Isakov
[23]). However our Carleman estimate Proposition 1 cannot produce the unique
continuation without extra spatial data owing to the extra term containing u(·, t0) on
the right-hand side. However Proposition 1 implies

Proposition 3 Let � ⊂ ∂
 be an arbitrarily fixed subboundary. Let smooth u

satisfy

(1+p0(x, t))∂3t u(x, t)−A3�∂2t u+A1�
2u+A2�

2∂tu+G(u) = 0 in Q. (61)

If ∂
γ
x u = 0 on � × (0, T ) for all |γ | ≤ 3, and

u(·, t0) = 0 in 
,

then u(x, t) = 0 for (x, t) ∈ Q.

We can also prove a conditional stability estimate similarly to Theorem 1, and
here we discuss only the uniqueness.

Proof We fix λ > 0 sufficiently large and in Proposition 1, we can neglect the
dependency on λ and ϕ. We recall that the constant M > 0 satisfies (7). We choose
t0 ∈ (0, T ) arbitrarily. Then choose ε > 0 sufficiently small such that 0 < t0 − ε <

t0 + ε < T . We set Qε = 
 × (t0 − ε, t0 + ε). We choose the same d ∈ C2(
1)

satisfying (47). In Qε, we apply Proposition 1 (ii). We choose N > 1 large such that

N min
x∈
0

d(x) > ‖d‖C(
).
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This is possible because minx∈
0
d(x) > 0 by (47). Since

‖d‖C(
)

ε2
<

N minx∈
0
d(x)

ε2
,

we can choose β > 0 such that

‖d‖C(
)

ε2
< β <

N minx∈
0
d(x)

ε2
.

Then we see

‖d‖C(
) − βε2 < 0, min
x∈
0

d(x)− β

N
ε2 > 0,

which imply

max
x∈


ϕ(x, t0 + ε) = max
x∈


exp(λ(d(x)− βε2)) < 1 (62)

and

min

{
ϕ(x, t); x ∈ 
0, t0 − ε√

N
≤ t ≤ t0 + ε√

N

}

= exp

(
λ

(
min
x∈
0

d(x)− β
ε2

N

))
=: μ0 > 1. (63)

By (47), we have d|∂
\� = 0, so that

max{ϕ(x, t); x ∈ ∂
 \ �, t0 − ε ≤ t ≤ t0 + ε}

= max{exp(λ(d(x)−β(t− t0)
2)); x ∈ ∂
 \ �, t0−ε ≤ t ≤ t0+ε} ≤ 1. (64)

Hence, since ∂
γ
x u = 0 on � × (0, T ) for all |γ | ≤ 3, and

‖∂tu(·, t)‖H 1(
)+‖∇∂tu(·, t)‖H 1(
)+‖(∂2t u− a2�∂tu− a3�u)(·, t)‖H 1(
) ≤ M

by the Sobolev embedding, recalling (7), (12) and (16), we have

�(v)+�(∇v)+�(w)

=s3
(∫

(∂
\�)×(t0−ε,t0+ε)
+

∫
�×(t0−ε,t0+ε)

)
(|∂tu|2 + |∇x,t ∂t u|2 + |∇x,t∇∂tu|2

+|∂2t u− a2�∂tu− a3�u|2 + |(∇x,t +∇2)(∂2t u− a2�∂tu− a3�u)|2 + |∇3∂tu|2)e2sϕdSdt
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+s5
∫


{(|∂tu|2 + |∇∂tu|2 + |∇2∂tu|2

+|∂2t u− a2�∂tu− a3�u|2 + |∇(∂2t u− a2�∂tu− a3�u)|2)(x, t0 − ε)

+(|∂tu|2 + |∇∂tu|2 + |∇2∂tu|2

+|∂2t u− a2�∂tu− a3�u|2 + |∇(∂2t u− a2�∂tu− a3�u)|2)(x, t0 + ε)}e2sϕ(x,t0+ε)dx

≤Cs3M2 exp(2s max
x∈∂
\�,t0−ε≤t≤t0+ε

ϕ(x, t))+ Cs5M2 exp(2s max
x∈


ϕ(x, t0 + ε)).

Applying (62) and (64), we obtain

�(v)+�(∇v)+�(w) ≤ Cs3M2e2s + Cs5M2e2s (65)

for all s ≥ s0.

Applying Proposition 1 (ii) and using D1 := ‖u(·, t0)‖H 3(
) = 0, we see

∫

×(t0−ε,t0+ε)

s3|w|2e2sϕdxdt ≤ Cs5M2e2s

for all s ≥ s0. Shrinking 
 × (t0 − ε, t0 + ε) to 
0 ×
(
t0 − ε√

N
, t0 + ε√

N

)
on the

left-hand side, we have

e2sμ0

∫ t0+ ε√
N

t0− ε√
N

∫

0

|w|2dxdt ≤ Cs2M2e2s

for all s ≥ s0. Dividing by e2sμ0 and using μ0 > 1 by (63), we let s →∞ to obtain
w(x, t) = 0 for x ∈ 
0 and t0 − ε√

N
< t < t0 + ε√

N
.

Since 
0 ⊂ 
 can be arbitrary provided that 
0 ⊂ 
∪� and ∂
0∩∂
 is a non-
empty relatively open subset of ∂
 and ∂
0 ∩ ∂
 ⊂ �, changing all the possible
t0, ε, we reach

w = 0 in 
× (0, T ). (66)

Therefore in terms of D1 = 0 and (65), estimate (23) with m = 0 yields

∫

×(t0−ε,t0+ε)

s3|∂tu|2e2sϕdxdt ≤ Cs5M2e2s

for s ≥ s0. Similarly to (66), we can obtain ∂tu = 0 in 
 × (0, T ). Applying
u(·, t0) = 0 in 
, we reach u = 0 in 
× (0, T ). Thus the proof of Proposition 3 is
complete.
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5.2 Unique Continuation without Initial Condition

If in Proposition 3 we want to remove the condition u(·, t0) = 0 in 
, then in terms
of the factorization (11), we should discuss at least the following:
if u ∈ C∞0 (Q) satisfies

∂2t u− a2(x, t)�∂tu(x, t)− a3(x, t)�u = 0 in Q, (67)

then u = 0 in Q holds?
In a special case of a3 = 0, we see that u(x, t) := u0(x) with arbitrary u0 ∈

C∞0 (
) satisfies (67), then we cannot expect that u ∈ C∞0 (Q) and (67) yield u ≡ 0
in Q. On the other hand, this counter-example does not work for the presence of the
lower-order term a3�, and so for (67) with a3 �≡ 0, we do not know whether the
unique continuation holds or not. Since any lower-order terms do not matter for a
Carleman estimate and there is a possibility that the lower-order term may recover
the unique continuation, we are suggested to have to prepare a different method not
based on the Carleman estimate in discussing the unique continuation for system
(67). As a similar problem, we refer to Yamamoto [32] who considers a linearized
Benjamin-Bona-Mahony equation:

∂tu(x, t)− ∂2

∂x2 ∂tu(x, t) = p(x, t)
∂u

∂x
(x, t)+ q(x, t)u(x, t)

for x ∈ (0, $) and t > 0.
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