
Chapter 6
Thermomechanical Theory

Abstract The objective of this chapter is to present the balance laws for the thermo-
mechanical theory. Specifically, the balances of entropy and energy are presented and
different forms of second law of thermodynamics are discussed. Invariance under
Superposed Rigid Body Motions (SRBM) is considered for the new thermal quanti-
ties and thermal constraints on material response are discussed. In addition, specific
nonlinear constitutive equations are presented for a number of materials model-
ing: thermoelastic, thermoelastic–inelastic and porous responses. Also, constitutive
equations for growth of thermoelastic–inelastic biological tissues are presented.

6.1 Thermomechanical Processes

A thermomechanical process is characterized by its velocity field v and its absolute
temperature field θ

v = v(x, t) , θ = θ(x, t) , (6.1.1)

the position of a material point x is determined by integrating the equation

ẋ = v(x, t) , (6.1.2)

and the velocity gradient L, rate of deformation tensor D and temperature gradient
g are defined by

L = ∂v/∂x , D = 1

2
(L + LT ) , g = ∂θ

∂x
. (6.1.3)

These quantities are defined at every material point in the material region P and on
its closed boundary ∂ P .
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Within the context of the thermomechanical theory proposed byGreen andNaghdi
[7, 8], in addition to the current mass density ρ, the specific (per unit mass) body
force b, the Cauchy stress T, the unit outward normal n to ∂ P and the traction vector
t = Tn per unit current area on ∂ P , it is necessary to introduce the specific entropy
η, the specific external rate of entropy supply s, the specific internal rate of entropy
production ξ , the specific internal energy ε, the specific external rate of energy supply
r on P and the entropy flux p and energy flux q vectors, both per unit present area
on ∂ P .

The external fields
b , s , (6.1.4)

need to be specified and constitutive equations must be provided for the response
functions

T , η , ξ , p , ε , (6.1.5)

with r and q determined by
r = θs , q = θp . (6.1.6)

6.2 Balance Laws for the Thermomechanical Theory

Within the context of the thermomechanical theory proposed by Green and Naghdi
[7, 8] the current mass density ρ, the current position x of a material point and the
absolute temperature θ are determined by the global forms of the conservation of
mass and the balances of linear momentum and entropy

d

dt

∫
P

ρdv = 0

d

dt

∫
P

ρvdv =
∫

P
ρbdv +

∫
∂ P

tda ,

d

dt

∫
P

ρηdv =
∫

P
ρ(s + ξ)dv −

∫
∂ P

p · nda .

(6.2.1)

The minus sign appears before the integral over the entropy flux because p · n is
the rate of entropy expelled by the body through its surface. The global form of the
balance of angular momentum is given by

d

dt

∫
P
(x × ρv)dv =

∫
P
(x × ρb)dv +

∫
∂ P

x × tda , (6.2.2)

and the balance of energy (i.e., the first law of thermodynamics) takes the form

Ė + K̇ = W + H . (6.2.3)
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In words, the first law of thermodynamics states that the rate of change of the total
internal energy E plus the rate of change of the total kinetic energyK is balanced by
the total rate of work W done on the body and total rate of heat H supplied to the
body, which indicates the equivalence of thermal and mechanical supplies of energy.
Specifically, these quantities are defined by

E = ∫
P ρεdv , K = ∫

P
1
2ρv · vdv ,

W = ∫
P ρb · vdv + ∫

∂ P t · vda , H = ∫
P ρθsdv − ∫

∂ P θp · nda .
(6.2.4)

Using standard continuity conditions, the local forms of the conservation of mass
and balances of linear momentum and entropy are given by

ρ̇ + ρD · I = 0 , ρv̇ = ρb + divT , ρη̇ = ρ(s + ξ) − divp . (6.2.5)

Also, using these balance laws, the reduced local form of the balance of angular
momentum requires the Cauchy stress T to be symmetric

TT = T , (6.2.6)

and the reduced local form of the balance of energy requires

ρε̇ = ρθs − div(θp) + T · D . (6.2.7)

Next, multiplying the balance of entropy in (6.2.5) by θ and using the expressions
(6.1.6) it can be shown that

ρθs − div(θp) = ρθη̇ − ρθξ − p · g . (6.2.8)

Also, the internal rate of entropy production is separated into two parts [17]: a thermal
part −p · g due to heat conduction and another part ρθξ ′ due to the rate of material
dissipation

ρθξ = −p · g + ρθξ ′ , (6.2.9)

so that the external rate of energy supply can be written in the form

ρθs − div(θp) = −ρθξ ′ + ρθη̇ . (6.2.10)

In addition, the specific Helmholtz free energy ψ is defined by

ψ = ε − θη , (6.2.11)

and the balance of energy (6.2.7) yields a constitutive equation for the rate of material
dissipation ρθξ ′

ρθξ ′ = T · D − ρ(ψ̇ + ηθ̇) , (6.2.12)
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where use has been made of (6.2.10).
In this formulation of thermomechanics, ρ, x and θ are determined by the con-

servation of mass and the balances of linear momentum and entropy (6.2.5) and
the balances of angular momentum and energy place restrictions on the constitutive
equations which ensure that they are identically satisfied for all thermomechanical
processes. Specifically, the reduced formof the balance of angularmomentum (6.2.6)
requires the Cauchy stress T to be symmetric and the reduced form of the balance of
energy (6.2.12) determines a constitutive equation for the rate of material dissipation
ρθξ ′.

6.3 Second Laws of Thermomechanics

Observations indicate that thermomechanical processes progress is specific direc-
tions. For example, consider a body which is isolated with no rates of external work
and heat supply

b · v = 0 , r = 0 on P ,

t · v = 0 , q · n = 0 on ∂ P .
(6.3.1)

Then, the global form (6.2.3) of the first law of thermodynamics indicates that an
isolated body preserves total energy

E + K = E(0) + K(0) = constant . (6.3.2)

Next, consider a body that is made from a homogeneous material which is in
a zero-stress uniform material state at rest. In the absence of external forces and
with no heat supply through its boundary, the body is heated by an external rate
of energy supply to obtain an inhomogeneous temperature field in the body at rest.
Then, in the absence of external forces and further external heat supply, the total
energy would remain constant even if part of the body became hotter and another
part of it became colder. However, observations indicate that this does not happen
naturally. Instead, the body tends to reach a uniform temperature. Notions of entropy
model the observed directions of thermomechanical processes.

Clausius–Duhem Inequality
In the classical approach to continuum thermomechanics proposed by Coleman and
Noll [5], the conservation of mass and the balances of linear momentum, angular
momentum and energy are supplimented by the Clausius–Duhem inequality

d

dt

∫
P

ρηdv −
∫

P

ρr

θ
dv +

∫
∂ P

q · n
θ

da ≥ 0 , (6.3.3)

which is a statement of the second law of thermodynamics that thermomechanical
processes cause the internal rate of entropy production to have a tendency to increase.
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Using standard continuity conditions, the local form of the conservation of mass and
the definitions (6.1.3) and (6.1.6), the local form of (6.3.3) requires

ρθη̇ − ρθs + θdivp ≥ 0 . (6.3.4)

Moreover, with the help of the balance of energy (6.2.7) and the definition (6.2.11)
of the Helmholtz free energy ψ , the Clausius–Duhem inequality requires

T · D − ρ(ψ̇ + ηθ̇) − p · g ≥ 0 , (6.3.5)

which places restrictions on constitutive equations.

Green–Naghdi Formulation
In the classical approach to thermomechanics, the Clausius–Duhem inequalty (6.3.5)
is a single statement of the second law of thermodynamics that places restrictions
on the constitutive equations. In contrast, the Green and Naghdi formulation places
restrictions on the constitutive equations by requiring the reduced forms of the bal-
ance of angular momentum (6.2.6) and the balance of energy (6.2.7) to be satisfied
identically, without any statement of the second law of thermodynamics.

To compare the two approaches to thermomechanics, use ismade of the separation
(6.2.9) and the constitutive Eq. (6.2.12) to rewrite the Clausius–Duhem inequality
(6.3.4) in the form

ρθξ = −p · g + ρθξ ′ > 0 , (6.3.6)

which requires the total internal rate of entropy production to be non-negative. How-
ever, the Green–Naghdi formulation allows for proposing different statements of the
second law of thermodynmaics, as was discussed in [8].

Heat Flows From Hot to Cold Regions
One statement of the second law of thermodynamics is that heat flows from hot to
cold regions

− p · g > 0 for g �= 0 . (6.3.7)

This indicates that the thermal part of the internal rate of entropy production in the
separation (6.2.9) is non-negative.

Rate of Material Dissipation
To motivate a second statement of the second law of thermodynamics, it is noted
from (6.1.6) and (6.2.10) that the rate of heat expelled by the body is given by

− (ρr − divq) = −[ρθs − div(θp)
] = ρθξ ′ − ρθη̇ . (6.3.8)

For general thermomechanical processes heat can be supplied or expelled. However,
the notions of friction and viscous effects in fluids indicate that the rate of mate-
rial dissipation causes a tendency for heat to be expelled by the body. Noting that
positive values of ρθξ ′ cause a tendency for heat to be expelled by the body, this
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second statement of the second law of thermodynamics requires the rate of material
dissipation to be non-negative

ρθξ ′ = T · D − ρ(ψ̇ + ηθ̇) ≥ 0 . (6.3.9)

Although the two statements (6.3.7) and (6.3.9) combined are consistent with the
Clausius–Duhem inequality (6.3.6), this latter single statement of the second law of
thermodynamics does not demand that (6.3.7) and (6.3.9) be satisfied individually,
as in the Green–Naghdi formulation.

6.4 Invariance Under Superposed Rigid Body Motions
(SRBM)

Although temperature θ is not a kinematic variable, it is an independent variable like
the position vector x which needs to be determined by the balance laws, boundary
and initial conditions. Consequently, in addition to the kinematic conditions (3.8.13)
and (3.8.16)

x+ = c(t) + Q(t)x , QQT = I , detQ = +1 , (6.4.1)

it is proposed that θ remains unaltered under SRBM

θ+ = θ . (6.4.2)

This means that the temperature gradient g transforms to g+, such that

g = ∂θ

∂x
, g+ = ∂θ+

∂x+ = g (∂x/∂x+) = gQT = Qg . (6.4.3)

Section 4.7 introduced the notion of invariance under SRBM which is based on
the two restrictions

(R-1): The balance laws must be form-invariant under SRBM. (6.4.4a)

(R-2): The constitutive response of the material relative to its orientation

is the same for all SRBM. (6.4.4b)

The first restriction (R-1) in (6.4.4a) requires the global forms of the balance laws
to be form-invariant in the superposed configuration P+ with all independent and
kinetic quantities taking their superposed values in P+. Using the transformation
relations (4.7.21)

ρ+ = ρ , T+ = QTQT , b+ = v̇+ + Q(b − v̇) , (6.4.5)
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the conservation of mass, the balance of linear momentum (6.2.1) and the balance of
angular momentum (6.2.2) are already form-invariant under SRBM. Consequently,
within the context of the thermomechanical theory, the physical restriction (R-1) in
(6.4.4a) requires the balance of entropy in (6.2.1) and the balance of energy (6.2.3)
to remain form-invariant under SRBM

d

dt

∫
P+

ρ+η+dv+ =
∫

P+
ρ+(s+ + ξ+)dv+ −

∫
∂ P+

p+ · n+da+ , (6.4.6a)

Ė+ + K̇+ = W+ + H+ , (6.4.6b)

with the specifications

E+ =
∫

P+
ρ+ε+dv+ , K+ =

∫
P+

1

2
ρ+v+ · v+dv+ ,

W+ =
∫

P+
ρ+b+ · v+dv+ +

∫
∂ P+

t+ · v+da+ ,

H+ =
∫

P+
ρ+θ+s+dv+ −

∫
∂ P+

θ+p+ · n+da+ .

(6.4.7)

Using standard continuity arguments the local form the of the balance of entropy
(6.4.6a) requires

(ρ̇+ + ρ+D+ · I) η+ + ρ+η̇+ = ρ+(s+ + ξ+) − div+p+ , (6.4.8)

and the local form of the balance of energy (6.4.6b) requires

(ρ̇+ + ρ+D+ · I)
(

ε+ + 1

2
ρ+v+ · v+

)
+ (ρ+v̇+ − ρ+b+ − div+T+) · v̇+ + ρ+ε̇+

= T+ · L+ + ρ+θ+s+ − div+(θ+p+) .

(6.4.9)
Then, using form-invariance of the local forms of the conservation of mass and the
balances of linear and angular momentum, the local form of the balance of entropy
requires

ρ+η̇+ = ρ+(s+ + ξ+) − div+p+ , (6.4.10)

and the local form of the balance of energy requires

ρ+ε̇+ = T+ · D+ + ρ+θ+s+ − div+(θ+p+) . (6.4.11)

Now, with the help of (2.5.4) and (6.4.1) it can be shown that

div+p+ = (∂p+/∂x+) · I = (∂p+/∂x)(∂x/∂x+) · I = (∂p+/∂x) · Q ,

div+p+ = div(QTp+) .
(6.4.12)
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Next, using the invariance of ρ in (6.4.5), the balance of entropy (6.4.10) can be
solved for s+ to obtain

s+ = η̇+ − ξ+ + 1

ρ
div(QTp+) . (6.4.13)

Moreover, using the local balance of entropy in (6.2.5) it can be shown that

s+ = s + (η̇+ − η̇) − (ξ+ − ξ) + 1

ρ
div(QTp+ − p) . (6.4.14)

In this regard, it is noted that the restriction (R-1) tacitly assumes that the balance of
entropy is valid for any specified external rate of entropy supply. Consequently, it is
also valid for (6.4.14), which enforces SRBM.

To compete the restrictions for invariance under SRBMit is necessary to determine
expressions for

η+ , ξ+ , ε+ ,p+ . (6.4.15)

This requires use of the physical restriction (R-2) (6.4.4b) and recognition that in
addition to the stressT, the quantities η, ξ, ε and p characterize the material response
for thermomechanical processes. This means that η, ξ and ε, which do not depend
on the orientation of the material, must be uninfluenced by SRBM

η+ = η , ξ+ = ξ , ε+ = ε . (6.4.16)

Moreover, the response due to the entropy flux vector relative to the orientation of
the material will be the same if the restriction

p+ · n+ = p · n (6.4.17)

is valid for all material points, all unit normals n and all SRBM. Now, using the
kinematic result (3.8.20) that n rotates under SRBM

n+ = Qn , (6.4.18)

the expression (6.4.17) for the entropy flux vector can be rewritten in the form

(p+ − Qp) · n+ = 0 . (6.4.19)

Then, since the coefficient of n+ in this equation is independent of n+, and n+ is
an arbitrary unit vector, the entropy flux vector p and heat flux vector q defined in
(6.1.6) must satisfy the transformation relations

p+ = Qp , q+ = Qq . (6.4.20)
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This means that with the help of (6.4.16), the restriction (6.4.14) requires the external
rate of entropy supply s and the external rate of heat supply r defined in (6.1.6) to
be unaffected by SRBM

s+ = s , r+ = r . (6.4.21)

In summary, under superposed rigid body motions SRBM the thermomechanical
quantities θ, g, η, ε, ψ, s, r, ξ, ξ ′,p and q transform to θ+, g+, η+, ε+, ψ+, s+, r+,

ξ+, ξ ′+,p+ and q+, such that

θ+ = θ , g+ = Qg , η+ = η ε+ = ε , ψ+ = ψ ,

s+ = s , r+ = r , ξ+ = ξ , ξ ′+ = ξ ′ , p+ = Qp , q+ = Qq .
(6.4.22)

6.5 Thermal Constraints

In general, it is possible to propose coupled thermomechanical constraints but such
coupled constraints make it difficult to satisfy the forms (6.3.7) and (6.3.9) of the
second law of thermodynamics individually. For this reason, this section considers
thermal constraints which are independent of the kinematic constraints considered
in Sect. 5.7. In this regard, it is noted that since the constraint response T̄ in (5.7.13)
is workless (5.7.11)

T · D = T̂ · D , (6.5.1)

so the constraint response makes no contribution to the rate of material dissipation
in the second law of thermodynamics (6.3.9).

As a physical example of a thermal constraint, consider a material that has fibers
in one direction that allow for very rapid heat conduction relative to the surrounding
matrix material. For this case, the temperature gradient g in the direction of the fibers
will be very small relative to the temperature gradient in directions perpendicular
to the fibers due to slow conduction through the matrix material only. Motivated by
this simple example, consider a thermal constraint which constrains the temperature
gradient in the direction γ of the form

γ · g = 0 , (6.5.2)

where γ is a vector that is independent of g and which under SRBM satisfies the
transformation relation

γ + = Qγ . (6.5.3)

Moreover, consider a general unconstrained material that is characterized by a
constitutive equation p̂ for the entropy flux p. Next, consider amodel of a constrained
material for which p is additively separated into the constitutive part p̂ and a part p̄,
called the constraint response, which enforces the thermal constraint (6.5.2)
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p = p̂ + p̄ . (6.5.4)

Although p̂ characterizes the response to general temperature gradients, its value
in (6.5.4) is determined by evaluating p̂ only for temperature gradients that satisfy
the imposed thermal constraint. Moreover, p̂ automatically transforms under SRBM,
such that

p̂+ = Qp̂ . (6.5.5)

Now, p̄ is assumed to satisfy the restriction

p̄ · g = 0 , (6.5.6)

and to be independent of the rate g.
Next, multiplying (6.5.2) by an arbitrary scalar γ and subtracting the result from

(6.5.6) yields
(p̄ − γ γ ) · g = 0 . (6.5.7)

Since γ is nonzero it is possible to specify γ by the equation

γ = p̄ · γ

|γ · γ | . (6.5.8)

Then, the only nonzero components in (6.5.7) are perpendicular to γ . Since this
equation must hold for arbitrary temperature gradients g that satisfy the constraint
(6.5.2) and the coefficient of g is independent of g, it follows that the constraint
response p̄ must be given by

p̄ = γ γ , (6.5.9)

with γ being an arbitrary function of x and t that is determined by the balance laws
and boundary conditions. Since the restriction (R-2) in (4.7.3b), which defines how
the constitutive response of the material relative to its orientation is the same for all
SRBM, requires p to satisfy the transformation relation (6.4.20) and since p̂ satisfies
the transformaton relation (6.5.5), it follows from (6.5.4) that the constraint response
p̄ satisfies the transformation relation

p̄+ = γ + γ + = Qp̄ = γ Qγ (6.5.10)

for all SRBM.Then,with the help of (6.5.3) it can be shown that the arbitrary function
γ must be unaffected by SRBM

γ + = γ . (6.5.11)

In addition, since the constraint response p̄ satisfies the restriction (6.5.6), it follows
that

p · g = p̂ · g , (6.5.12)



6.5 Thermal Constraints 187

so the constraint response does not influence the restriction (6.3.7) of the second law
of thermodynamics which requires heat to flow from hot to cold regions.

Furthermore, it is noted that up to two independent thermal constraints of the type
(6.5.2) can be imposed simultaneously without causing p to be totally indeterminate.

6.6 Thermoelastic Materials

A thermoelastic solid is a special ideal material which is non-dissipative in the sense
that the rate of material dissipation (6.2.12) vanishes

ρθξ ′ = T · D − ρ(ψ̇ + ηθ̇) = 0 (6.6.1)

for all thermomechanical processes.
Within the context of the Eulerian formulation of constitutive equations, the

microstructural vectors mi and elastic metric mi j described in Sect. 3.11 are deter-
mined by the evolution equations

ṁi = Lmi , mi j = mi · m j , ṁi j = 2mi ⊗ m j · D . (6.6.2)

Moreover, for a thermoelastic material, the response functions ψ, η and T are spec-
ified in the forms

ψ = ψ̂(mi j , θ) , η = η̂(mi j , θ) , T = T̂(mi , θ) , (6.6.3)

so the condition (6.6.1) requires

(
T − 2ρ

∂ψ̂

∂mi j
mi ⊗ m j

)
· D − ρ(

∂ψ̂

∂θ
+ η) θ̇ = 0 . (6.6.4)

Since the coefficients of D and θ̇ are independent of these rates, and the coefficient
of D is symmetric, T and η must be determined by the constitutive equations

T = T̂ = 2ρ
∂ψ̂

∂mi j
mi ⊗ m j , η = η̂ = −∂ψ̂

∂θ
. (6.6.5)

This expression for the Cauchy stress T automatically satisfies the restriction (6.2.6)
due to angular momentum. Moreover, the entropy flux p takes the form

p = pimi , pi = p̂i (mi j , θ, gi ) , gi = g · mi , (6.6.6)

which must satisfy the restriction (6.3.7) due to the second law of thermodynamics,
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− p̂ · g = − p̂i gi > 0 for g �= 0 . (6.6.7)

These functional forms are automatically properly invariant under SRBM. Also,
using (6.2.11), it follows that the internal energy ε for a thermoelastic material is
given by

ε = ε̂(mi j , θ) = ψ̂(mi j , θ) + θη̂(mi j , θ) . (6.6.8)

Furthermore, these constitutive equations are restricted so that the material is in a
zero-stress material state whenever the elastic deformation metric mi j = δi j and the
temperature equals the reference zero-stress temperature θ = θz

T = 0 whenever mi j = δi j and θ = θz . (6.6.9)

Rate-Dependent Response
Although the evolution Eq. (6.6.2) formi are homogeneous equations of order one in
time and thus predict rate-independent response, and the response functions (6.6.3)
and (6.6.6) are explicitly independent of the ratesD and θ̇ , the response of a thermoe-
lastic material is rate-dependent. This is because the balance of entropy in (6.2.5)3
predicts time-dependent response of the temperature for transient processes.

Path-Independent Response
Sincemi arematerial line elements, it follows that the values of the response functions
ψ, η,T and p at a specified state characterized by mi and θ are independent of the
path of the thermomechanical process that attains this state. This also means that for
any thermomechanical process that starts at the state

mi (x, t1), θ(x, t1), v(x, t1) , (6.6.10)

and ends at the state
mi (x, t2), θ(x, t2), v(x, t2) , (6.6.11)

the changes in internal and kinetic energies

�E = E(t2) − E(t1) , �K = K(t2) − K(t1) (6.6.12)

are independent of the path of the thermodynamic process. Moreover, with the help
of the first law of thermodynamics (6.2.3), it follows that the total work done on the
body plus the total heat supplied to the body during this process is also independent
of the path of the process

∫ t=t2

t=t1

(W + H)dt = �E + �K . (6.6.13)

In addition, the total work done on the body plus the total heat supplied to the body
vanishes for any cyclic process which starts and ends at the same statemi , θ and v.
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An Irreversible Process
Although a thermoelastic material is an ideal material with no material dissipation, it
can experience an irreversible process. For the present discussion it is assumed that

ε̂ → ∞ whenever η̂ → ∞ . (6.6.14)

Now consider a cantilever beam made from a homogeneous thermoelastic material.
The external body force and external rate of heat supply both vanish b = 0 and r = 0.
Also, the velocity field on the clamped boundary vanishes, all other boundaries are
traction free t = 0 and all boundaries are insulated from heat flow q · n = 0. For this
problem the total rate of workW done on the body vanishes and the total rate of heat
supplyH vanishes. Also, consider the case when the body is initially in a zero-stress
material state at constant density ρz and constant zero-stress reference temperature
θz , but it has an initial velocity field with a non-uniform rate of deformation so that

mi j (x, 0) = δi j , θ(x, 0) = θz , ∂D(x, 0)/∂x �= 0 ,

T(x, 0) = 0 , η(x, 0) = 0 , ε(x, 0) = 0 .
(6.6.15)

Consequently, from (6.2.3) the sum of the total internal and kinetic energies remains
constant

E + K = K(0) , (6.6.16)

where K(0) is the initial value of the total kinetic energy in the beam.
The global form of the balance of entropy in (6.2.1)3 and the restrictions (6.3.1),

(6.3.6), (6.3.7) and (6.6.1) require

d

dt

∫
P

ρηdv = −
∫

P
(
p · g
θ

)dv ≥ 0 . (6.6.17)

Moreover, the restriction (6.3.7) causes the total entropy to increase until the temper-
ature becomes uniform with g = 0. In particular, a non-uniform rate of deformation
causes local temperature changes with a nonzero temperature gradient g. However,
due to assumption (6.6.14) and the result (6.6.16), the entropy cannot continue to
increase without bound. This means that eventually the temperature must become
uniformwithg = 0, the velocity fieldmust go to zero and the elastic deformationmet-
ric mi j must become independent of time, but it can be nonuniform due the clamped
boundary. Since energy is preserved, the final values of E andK are constants given
by

E(∞) = K(0) , K(∞) = 0 . (6.6.18)

This example shows the importance of the entropy in a thermomechanical process.
In particular, since the entropy flux must satisfy the restriction (6.3.7), it follows that
the process is thermodynamically irreversible even though the thermoelastic material
is non-dissipative.
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A Separation of Elastic Dilatation and Distortional Deformations
To introduce separate control over the response of the material to dilatation and
distortional rates of deformation, it is convenient to use the work of Flory [6] and use
the elastic dilatation Je defined in (3.11.7), the elastic distortional deformation vectors
m′

i defined in (3.11.14) and the elastic distortional deformation metric m ′
i j defined

in (3.11.16), which satisfy the evolution Eqs. (3.11.13), (3.11.15) and (3.11.17)

Je = m1 × m2 · m3 > 0 , J̇e = JeD · I ,

m′
i = J−1/3

e mi , ṁ′
i = L′′ m′

i ,

m ′
i j = m′

i · m′
j = m ′

j i , ṁ ′
i j = 2(m′

i ⊗ m′
j − 1

3m ′
i j I) · D ,

(6.6.19)

where L′′ is the deviatoric part of L. Moreover, since there is no inelastic volume
change for a thermoelastic material, the elastic dilatation Je can be expressed in the
form (4.1.16)

Je = ρz

ρ
, (6.6.20)

where ρz is the constant zero-stress mass density at zero-stress reference temperature
θz .

Then, for a thermoelastic material, the response functionsψ, η andT are specified
in the forms

ψ = ψ̃(Je, m ′
i j , θ) , η = η̃(Je, m ′

i j , θ) , T = T̃(Je,m′
i , θ) , (6.6.21)

so the condition (6.6.1) requires

[
T − ρ Je

∂ψ̃

∂ Je
I − 2ρ

∂ψ̃

∂m ′
i j

(m′
i ⊗ m′

j − 1

3
m ′

i j I)

]
· D − ρ(

∂ψ̃

∂θ
+ η) θ̇ = 0 .

(6.6.22)
Since the coefficients of D and θ̇ are independent of these rates, and the coefficient
of D is symmetric, T and η must be determined by the constitutive equations

T = T̃ = −p I + T′′ , p = p̃ = −ρz
∂ψ̃

∂ Je
,

T′′ = T̃′′ = 2J−1
e ρz

∂ψ̃

∂m ′
i j
(m′

i ⊗ m′
j − 1

3m ′
i j I) , η = η̃ = − ∂ψ̃

∂θ
,

(6.6.23)

where use has been made of (6.6.20). Moreover, the entropy flux p takes the form

p = pi ′m′
i , pi ′ = p̃i ′(Je, m ′

i j , θ, g′
i ) , g′

i = g · m′
i , (6.6.24)

which must satisfy the restriction (6.3.7) due to the second law of thermodynamics,

− p · g = − p̃i ′g′
i > 0 for g �= 0 . (6.6.25)
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An Elastically Isotropic Thermoelastic Material
If thematerial is elastically isotropic, then the elastic dilatation Je and the symmetric,
positive-definite, unimodular elastic distortional deformation tensor B′

e defined by
(3.11.19) satisfy the evolution Eq. (3.11.30)

J̇e = Je D · I , Ḃ′
e = Ḃ′

e = L′′B′
e + B′

eL
′′T , (6.6.26)

where L′′ is the deviatoric part of the velocity gradient L. Since B′
e is unimodular, it

has only two independent non-trivial invariants α1 and α2 defined in (5.8.4)

α1 = B′
e · I , α2 = B′

e · B′
e , (6.6.27)

which satisfy the evolution Eq. (5.8.7)

α̇1 = 2B′′
e · D , α̇2 = 4

(
B′2

e − 1

3
α2I
)

· D , (6.6.28)

where B′′
e is the deviatoric part of B′

e. Moreover, the evolution equation for elastic
dilatation can be integrated to obtain (6.6.20).

For an elastically isotropic thermoelastic material, the response functions ψ, η

and T are specified in the forms

ψ = ψ̂(Je, α1, α2, θ) , η = η̂(Je, α1, α2, θ) , T = T̂(B′
e, θ) , (6.6.29)

so the condition (6.6.1) requires

[
T − ρz

∂ψ̂

∂ Je
I − 2ρz J−1

e

∂ψ̂

∂α1
B′′

e − 4ρz J−1
e

∂ψ̂

∂α2

(
B′2

e − 1

3
α2 I

)]
· D

− ρ

(
∂ψ̂

∂θ
+ η

)
θ̇ = 0 ,

(6.6.30)

for all thermomechanical processes. Since the coefficients ofD and θ̇ are independent
of these rates, and the coefficient of D is symmetric, T and η must be determined by
the constitutive equations

T = −p I + T′′ , p = p̂ = −ρz
∂ψ̂

∂ Je
,

T′′ = T̂′′ = 2ρz J−1
e

∂ψ̂

∂α1
B′′

e + 4ρz J−1
e

∂ψ̂

∂α1

(
B′2

e − 1

3
α2 I

)
,

η = η̂ = −∂ψ̂

∂θ
.

(6.6.31)
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Also, for isotropic response the entropy flux vector can be specified by a generalized
Fourier form

p = − κ̄

θ
g , κ̄ = κ̄(Je, α1, α2, θ) ≥ 0 , (6.6.32)

where the heat conduction coefficient κ̄ should not be confused with the hardening
variable κ defined for inelastic response.

6.7 Thermoelastic–Inelastic Materials

For elastically anisotropic thermoelastic–inelastic materials, themicrostructural vec-
torsmi are determined by integrating the evolution Eq. (5.11.30)

ṁi = (L − Lp)mi , Lp = �L̄p , � ≥ 0 , (6.7.1)

where L̄p controls the direction of the inelastic rate Lp and � is a non-negative
function that controls its magnitude. In general, L̄p has a symmetric part D̄p that
controls the direction of inelastic deformation rate and a skew-symmetric part W̄p

that controls the direction of inelastic spin defined by

L̄p = D̄p + W̄p , D̄p = 1

2
(L̄p + L̄T

p ) , W̄p = 1

2
(L̄p − L̄T

p ) , (6.7.2)

both of which require constitutive equations. Also, for isotropic hardening, the hard-
ening κ is determined by the evolution Eq. (5.11.31)

κ̇ = �H , (6.7.3)

where H is a function that controls the rate of hardening. More general directional
hardening can be modeled by introducing directional hardening variables βi j = β j i

which satisfy the evolution Eq. (5.11.32)

β̇i j = �Hi j , (6.7.4)

where Hi j = Hji are functions that control the relative magnitudes of βi j . In addi-
tion, the elastic deformation metric mi j defined in (5.11.34) satisfies the evolution
equations

mi j = mi · m j , ṁi j = 2(D − �D̄p) · (mi ⊗ m j ) . (6.7.5)

Now, for an anisotropic thermoelastic–inelastic material, the response functions
ψ, η and T are specified in the forms
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ψ = ψ̂(mi j , θ, κ, βi j ) , η = η̂(mi j , θ, κ, βi j ) , T = T̂(mi , θ, κ, βi j ) , (6.7.6)

so the rate of material dissipation (6.3.9) requires

ρθξ ′ =
(
T − 2ρ

∂ψ̂

∂mi j
mi ⊗ m j

)
· D − ρ

(
∂ψ̂

∂θ
+ η

)
θ̇ ,

+ �
[
2ρ

∂ψ̂

∂mi j
mi ⊗ m j · D̄p − ρ

∂ψ̂

∂κ
H − ρ

∂ψ̂

∂βi j
Hi j

]
≥ 0 .

(6.7.7)

In general, without specifying details of the functional forms for �, D̄p, H and Hi j ,
it is not possible to determine necessary restrictions on the constitutive equations
for T and η. However, motivated by necessary restrictions for a rate-independent
elastic–inelastic material with a yield function, the constitutive equations for T and
η are specified by

T = T̂ = 2ρ
∂ψ̂

∂mi j
mi ⊗ m j , η = η̂ = −∂ψ̂

∂θ
, (6.7.8)

so the rate of material dissipation imposes the restriction

ρθξ ′ = �
[
T · D̄p − ρ

∂ψ̂

∂κ
H − ρ

∂ψ̂

∂βi j
Hi j

]
≥ 0 . (6.7.9)

Also, the constitutive equation for stress is assumed to be restricted so that a zero-
stress material state at zero-stress reference temperature θz [also called a Reference
Lattice State (RL S)] is characterized by

T = 0 ,
∂ψ̂

∂mi j
= 0 for mi j = δi j , θ = θz , (6.7.10)

where δi j is the Kronecker delta. This means that the triad mi has been defined so
thatmi are orthonormal vectors in a zero-stress material state at zero-stress reference
temperature θ = θz . In addition, the entropy flux p can be specified in the form

p = pimi , pi = p̂i (mi j , θ, κ, gi ) , gi = g · mi , (6.7.11)

which must satisfy the restriction (6.3.7) due to the second law of thermodynamics,

− p̂ · g = − p̂i gi > 0 for g �= 0 . (6.7.12)

The evolution Eq. (6.7.1) for mi , (6.7.29) for κ and (6.7.4) for βi j require initial
conditions

mi (0), κ(0), βi j (0) . (6.7.13)
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A Separation of Elastic Dilatation and Distortional Deformations
To introduce separate control over the response of the material to dilatation and
distortional rates of deformation, it is convenient to use the elastic dilatation Je, the
distortional deformation vectors m′

i and the elastic distortional deformation metric
m ′

i j , which satisfy the Eq. (5.11.45)

Je = m1 × m2 · m3 > 0 , J̇e = Je(D − �D̄p) · I ,

m′
i = J−1/3

e mi , ṁ′
i = (L′′ − �L̄′′

p)m
′
i ,

m ′
i j = m′

i · m′
j = m ′

j i , ṁ ′
i j = 2

(
m′

i ⊗ m′
j − 1

3m ′
i j I
)

· (D − �D̄p) ,

(6.7.14)

where L′′ is the deviatoric part of the velocity gradient L and L̄′′
p is the deviatoric

part of L̄p. Then, for an anisotropic thermoelastic–inelastic material, the response
functions ψ, η and T are specified in the forms

ψ = ψ̃(Je, m ′
i j , θ, κ, βi j ) , η = η̃(Je, m ′

i j , θ, κ, βi j ) ,

T = T̃(Je,m′
i , θ, κ, βi j ) ,

(6.7.15)

so the rate of material dissipation (6.3.9) requires

ρθξ ′ =
[
T − ρ Je

∂ψ̃

∂ Je
I − 2ρ

∂ψ̃

∂m ′
i j

(
m′

i ⊗ m′
j − 1

3
m ′

i j I
)]

· D − ρ

(
∂ψ̂

∂θ
+ η

)
θ̇ ,

+ �

[
ρ Je

∂ψ̃

∂ Je
D̄p · I + 2ρ

∂ψ̃

∂m ′
i j

(
m′

i ⊗ m′
j − 1

3
m ′

i j I
)

· D̄p

− ρ
∂ψ̂

∂κ
H − ρ

∂ψ̂

∂βi j
Hi j

]
≥ 0 ,

(6.7.16)
where use has been made of (6.6.20). Again, without specifying details of the rate of
inelasticity and the hardening functions �, D̄p, H and Hi j , it is not possible to obtain
necessary restrictions on the constitutive equation for stress and entropy. However,
motivated by the constitutive Eq. (6.6.23) for a thermoelastic–inelastic material, the
constitutive equations for stress and entropy in a thermomelastic–inelastic material
are specified by

T = −p I + T′′ = T̃ , p = p̃ = −ρ Je
∂ψ̃

∂ Je
,

T′′ = T̃′′ = 2ρ
∂ψ̃

∂m ′
i j

(
m′

i ⊗ m′
j − 1

3
m ′

i j I
)

,

η = η̃ = −∂ψ̃

∂θ
,

(6.7.17)
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so the rate of material dissipation imposes the restriction

ρθξ ′ = �
[

− p̃ (I · D̄p) + T̃′′ · D̄p − ρ
∂ψ̃

∂κ
H − ρ

∂ψ̃

∂βi j
Hi j

]
≥ 0 . (6.7.18)

Also, the constitutive equation for stress is assumed to be restricted so that a
zero-stress material state at zero-stress reference temperature θz is characterized by

T = 0 ,
∂ψ̃

∂ Je
= 0 ,

∂ψ̃

∂m ′
i j

= 1

3

∂ψ̃

∂m ′
nn

δi j

for Je = 1 , m ′
i j = δi j , θ = θz ,

(6.7.19)

where δi j is the Kronecker delta. This means that the triad m′
i has been defined so

thatm′
i are orthonormal vectors in a zero-stress material state at zero-stress reference

temperature θ = θz . In addition, the entropy flux p can be specified in the form
(6.6.24)

p = pi ′m′
i , pi ′ = p̃i ′(Je, m ′

i j , θ, g′
i ) , g′

i = g · m′
i , (6.7.20)

which must satisfy the restriction (6.3.7) due to the second law of thermodynamics,

− p · g = − p̃i ′g′
i > 0 for g �= 0 . (6.7.21)

The evolution Eq. (6.7.14) for Je and m′
i , (6.7.29) for κ and (6.7.4) for βi j require

initial conditions
Je(0),m′

i (0), κ(0), βi j (0) . (6.7.22)

Examples where this formulation has been used to model elastic and inelastic
anisotropy in geological materials with joints can be found in [25, 35]. Also, notice
that inelastic dilatation rate D̄p · I �= 0 in (6.7.14) prevents the elastic dilatation Je

from being written in a simple form like (6.6.20) since the zero-stress density of the
material at zero-stress reference temperature need not be constant.

Elastically Isotropic Thermoelastic–Inelastic Response
For elastically isotropic thermoelastic–inelastic response, the Helmholtz free energy
depends on the invariants of the metric mi j . Then, following the definitions of pure
dilatation and pure distortion proposed by Flory [6], the elastic dilatation Je is defined
by (3.11.7)

Je = m1 × m2 · m3 > 0 , (6.7.23)

and the symmetric, positive-definite, unimodular elastic distortional deformation
tensor B′

e is defined by (5.8.1)

B′
e = m′

i ⊗ m′
i . (6.7.24)
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Then, the evolution equation for Je is given by (6.7.14)

J̇e = Je(D − �D̄p) · I , (6.7.25)

and B′
e satisfies the evolution Eq. (5.11.66) with the specification

Ḃ′
e = L′′B′

e + B′
eL

′′T − �Ap , Ap = B′
e −

(
3

B′−1
e · I

)
I . (6.7.26)

Also, the non-trivial invariants α1 and α2 of B′
e are given by (5.11.58)

α1 = B′
e · I , α2 = B′

e · B′
e , (6.7.27)

which satisfy the evolution Eq. (5.11.59)

α̇1 = 2B′′
e · D − �Ap · I ,

α̇2 = 4

(
B′2

e − 1

3
α2I
)

· D − 2�Ap · B′
e ,

(6.7.28)

where B′′
e is the deviatoric part of B′

e. In addition, attention is limited to isotropic
hardening κ , which satisfies the evolution Eq. (6.7.29)

κ̇ = �H . (6.7.29)

For an elastically isotropic thermoelastic–inelastic material, the response func-
tions ψ, η and T are specified in the forms

ψ = ψ(Je, α1, α2, θ, κ) , η = η(Je, α1, α2, θ, κ) , T = T(Je,B′
e, θ, κ) ,

(6.7.30)
so the rate of material dissipation (6.3.9) requires

ρθξ ′ =
[
T − ρ Je

∂ψ

∂ Je
I − 2ρ

∂ψ

∂α1
B′′

e − 4ρ
∂ψ

∂α2

(
B

′2
e − 1

3
α2I
)]

· D − ρ

(
∂ψ

∂θ
+ η

)
θ̇ ,

+ �
[
ρ Je

∂ψ

∂ Je
D̄p · I + 2ρ

∂ψ

∂α1
Ap · I + 4ρ

∂ψ

∂α2
Ap · B′

e − ρ
∂ψ

∂κ
H
]

≥ 0 .

(6.7.31)
In general, without specifying details of the functional forms for �, D̄p and H , it is
not possible to determine necessary restrictions on the constitutive equations for T
and η. However, motivated by necessary restrictions for a rate-independent elastic–
inelastic material with a yield function, the constitutive equations for T and η are
specified by
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T = −p I + T′′ , p = −ρ Je
∂ψ

∂ Je
,

T′′ = 2ρ
∂ψ

∂α1
B′′

e + 4ρ
∂ψ

∂α2

(
B

′2
e − 1

3
α2I
)

,

η = −∂ψ

∂θ
,

(6.7.32)

so the rate of material dissipation imposes the restriction

ρθξ ′ = �
[

− p (D̄p · I) + 2ρ
∂ψ

∂α1
Ap · I + 4ρ

∂ψ

∂α2
Ap · B′

e − ρ
∂ψ

∂κ
H
]

≥ 0 .

(6.7.33)
Also, the constitutive equation for stress is assumed to be restricted so that a zero-
stress material state at zero-stress reference temperature θz is characterized by

T = 0 ,
∂ψ

∂ Je
= 0 , for Je = 1 , B′

e = I , θ = θz . (6.7.34)

In addition, for isotropic response the entropy flux can be specified by a generalized
Fourier form (6.6.32)

p = − κ̄

θ
g , κ̄ = κ̄(Je, α1, α2, θ, κ) ≥ 0 , (6.7.35)

where the heat conduction coefficient κ̄ should not be confused with the hardening
variable κ .

6.8 Orthotropic Thermoelastic–Inelastic Materials

Ahomogeneous, isotropic elasticmaterial deformed fromauniformzero-stressmate-
rial state to a Hydrostatic State of Stress (H SS)

T = −p I , T′′ = 0 (6.8.1)

is compressed but it experiences no distortional deformation. This means that a
cube of a homogeneous, isotropic elastic material in a zero-stress material state will
deform to a smaller cube when it is compressed by water causing a H SS. In contrast,
a homogeneous, orthotropic elastic material deformed from a uniform zero-stress
material state to a compressed H SS is distorted as well as being compressed. This
means that a cube of a homogeneous, orthotropic elastic material in a zero-stress
material state will deform to a rectangular parallelepiped when it is compressed by
water causing a H SS. This also means that additional distortional deformation is
required to produce deviatoric stress.
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Rubin and Jabareen [20, 21] considered this problem for the purely mechanical
theory of orthotropic elastic materials and developed physically based orthotropic
invariants which characterize the added distortional deformations that cause devia-
toric stress.

Recently, this approach was generalized to model an orthotropic thermoelastic–
inelastic material [27] where additional details can be found. Motivated by the work
in [14], the equations for this theory are slightly modified relative to those reported
in [27]. For this theory use is made of the elastic dilatation Je, the elastic distortional
deformation vectors m′

i and the elastic distortional deformation metric m ′
i j which

satisfy the evolution Eq. (6.7.14)

J̇e = Je(D − �D̄p) · I , ṁ′
i = (L′′ − �L̄′′

p)m
′
i ,

m ′
i j = m′

i · m′
j = m ′

j i , ṁ ′
i j = 2(m′

i ⊗ m′
j − 1

3m ′
i j I) · (D − �D̄p) ,

(6.8.2)

where L′′ is the deviatoric part of the velocity gradient L, L̄′′
p is the deviatoric part

of the direction L̄p of inelastic rate and the non-negative function � controls the
magnitude of the inelastic deformation rate. Using (6.7.2), the direction of inelastic
deformation rate D̄p and the direction of inelastic spin W̄p are defined by

D̄p = 1

2

(
L̄p + L̄T

p

)
, W̄p = 1

2

(
L̄p − L̄T

p

)
. (6.8.3)

In addition, the isotropic hardening variable κ is determined by the evolution
Eq. (6.7.29)

κ̇ = �H , (6.8.4)

where H is a function that controls the rate of hardening and the directional hardening
variables βi j = β j i are determined by the evolution Eq. (6.7.4)

β̇i j = �Hi j , (6.8.5)

where Hi j = Hji are functions that control the relative magnitudes of βi j .
A thermoelastic orthotropic material in any H SS experiences mechanical distor-

tion and can also experience distortion due to thermal effects. Specifically, in any
H SS the elastic distortional vectorsm′

i , their reciprocal vectorsm
i ′ and the metrics

m ′
i j and mi j ′ take the forms

1
η1
m′

1 = η1m1′ , 1
η2
m′

2 = η2m2′ , 1
η3
m′

3 = η3m3′ ,
m ′

11 = η2
1 , m ′

22 = η2
2 , m ′

33 = η2
3 ,

m ′
12 = 0 , m ′

13 = 0 , m ′
23 = 0 ,

m11′ = 1
η2
1
, m22′ = 1

η2
2
, m33′ = 1

η2
3
,

m12′ = 0 , m13′ = 0 , m23′ = 0 ,

(6.8.6)
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which indicate thatm′
i andm

i ′ are orthogonal triads of vectors parallel to the principal
directions of orthotropy of the material. Moreover, ηi are dependent positive consti-
tutive distortional deformation functions of the elastic dilatation Je and temperature
θ satisfying the restrictions

ηi = ηi (Je, θ) > 0 , η1η2η3 = 1 , ηi (1, θz) = 1 , (6.8.7)

with ηi being unity in any Reference Lattice State (RL S) at reference zero-stress
temperature θz .

Since any H SS causes a cube of the orthotropic material to deform into a rect-
angular parallelepiped, in principle, it is possible to use a triaxial testing machine to
measure the two independent functions η1 and η2 for different values of Je and θ . Of
course, experimental challenges related to friction on the sides of the specimen and
difficulties with applying tension while letting the sides of the specimen slide freely,
currently limit the range of Je and θ that can be explored experimentally.

The Helmholtz free energy for an orthotropic thermoelastic–inelastic material can
be expressed in the form

ψ = ψ(Je, m ′
i j , θ) . (6.8.8)

Specific functional forms forψ must be proposed whichmatch the distortions (6.8.6)
in any H SS that are characterized by the measured values of the functions ηi as well
as match additional experimental data for the added distortions that cause deviatoric
stress.

Themain idea in [27] is to rewrite the six generalized physically based orthotropic
invariants βi developed in [21] in terms of the elastic distortional deformation metric
m ′

i j and its inverse mi j ′, which are influenced by inelastic deformation rate, and to
generalize the characterization of any H SS to include thermoelastic response. Then,
the Helmholtz free energy ψ is specified in the form

ψ = ψ(Je, βi , θ) . (6.8.9)

Since the invariants βi are based on the distortional deformation functions ηi , it
follows that this representation of ψ automatically reproduces the distortions ηi

and the results (6.8.6) in any H SS. This simplifies the constitutive modeling of an
orthotropic thermoelastic–inelastic material because a specific form ψ in (6.8.9)
need only consider the pressure in any H SS and experimental data for distortional
deformations that cause deviatoric stress.

Specifically, using the functional forms for the distortions ηi , the physically based
orthotropic invariants βi are defined by

β1 = m ′
11

η2
1

+ η2
1 m11′ , β2 = m ′

22

η2
2

+ η2
2 m22′ ,

β3 = m ′
33

η2
3

+ η2
3 m33′ , βi ≥ 2 for i = 1, 2, 3 ,

β4 = m ′2
12

m ′
11m ′

22
, β5 = m ′2

13
m ′

11m ′
33

, β6 = m ′2
23

m ′
22m ′

33
,

(6.8.10)
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which by definition attain the values

β1 = β2 = β3 = 2 , β4 = β5 = β6 = 0 for any H SS . (6.8.11)

Moreover, with the help of (6.8.7) it can be shown that

η̇i = Je
∂ηi

∂ Je
I · (D − �D̄p) + ∂ηi

∂θ
θ̇ ,

β̇i = 2(−Ni I + B′′
i ) · (D − �D̄p) + 2Ai θ̇ ,

(6.8.12)

where the functions Ni and Ai are defined by

N1 = Je
η1

(
m ′

11

η2
1

− η2
1 m11′

)
∂η1
∂ Je

, N2 = Je
η2

(
m ′

22

η2
2

− η2
2 m22′

)
∂η2
∂ Je

,

N3 = Je
η3

(
m ′

33

η2
3

− η2
3 m33′

)
∂η3
∂ Je

, N4 = N5 = N6 = 0 ,

A1 = − 1
η1

(
m ′

11

η2
1

− η2
1 m11′

)
∂η1
∂θ

, A2 = − 1
η2

(
m ′

22

η2
2

− η2
2 m22′

)
∂η2
∂θ

,

A3 = − 1
η3

(
m ′

33

η2
3

− η2
3 m33′

)
∂η3
∂θ

, A4 = A5 = A6 = 0 .

(6.8.13)

Also, the deviatoric tensors B′′
i are defined by

B′′
1 = 1

η2
1

m′
1 ⊗ m′

1 − η2
1m

1′ ⊗ m1′ − 1

3

(
m ′

11

η2
1

− η2
1 m11′

)
I ,

B′′
2 = 1

η2
2

m′
2 ⊗ m′

2 − η2
2m

2′ ⊗ m2′ − 1

3

(
m ′

22

η2
2

− η2
2 m22′

)
I ,

B′′
3 = 1

η2
3

m′
3 ⊗ m′

3 − η2
3m

3′ ⊗ m3′ − 1

3

(
m ′

33

η2
3

− η2
3 m33′

)
I ,

B′′
4 = m ′

12

m ′
11m ′

22

[
(m′

1 ⊗ m′
2 + m′

2 ⊗ m′
1) − m ′

12

m ′
11

(m′
1 ⊗ m′

1) − m ′
12

m ′
22

(m′
2 ⊗ m′

2)

]
,

B′′
5 = m ′

13

m ′
11m ′

33

[
(m′

1 ⊗ m′
3 + m′

3 ⊗ m′
1) − m ′

13

m ′
11

(m′
1 ⊗ m′

1) − m ′
13

m ′
33

(m′
3 ⊗ m′

3)

]
,

B′′
6 = m ′

23

m ′
22m ′

33

[
(m′

2 ⊗ m′
3 + m′

3 ⊗ m′
2) − m ′

23

m ′
22

(m′
2 ⊗ m′

2) − m ′
23

m ′
33

(m′
3 ⊗ m′

3)

]
.

(6.8.14)
In particular, using (6.8.6), it follows that

Ni = 0 , Ai = 0 , B′′
i = 0 for any H SS . (6.8.15)

Now, with the help of (6.8.9) and (6.8.12), the rate of material dissipation (6.3.9)
requires
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ρθξ ′ =
[
T · D −

{
ρ Je

∂ψ

∂ Je
− 2

3∑
i=1

ρ
∂ψ

∂βi
Ni

}
I − 2

6∑
i=1

ρ
∂ψ

∂βi
B′′

i

]
· (D − �D̄p)

− ρ

[
∂ψ

∂θ
+ 2

6∑
i=1

(
∂ψ

∂βi
Ai

)
+ η

]
θ̇ ≥ 0 .

(6.8.16)
Motivated by this expression, the constitutive equations for the Cauchy stress T and
the entropy η are specified by

T = −p I + T′′ , T′′ = 2
∑6

i=1 ρ
∂ψ

∂βi
B′′

i ,

p = −ρ Je
∂ψ

∂ Je
+ 2

∑3
i=1 ρ

∂ψ

∂βi
Ni , η = − ∂ψ

∂θ
− 2

∑6
i=1

∂ψ

∂βi
Ai ,

(6.8.17)

where p is the pressure and T′′ is the deviatoric stress. It then follows that the rate
of material dissipation requires

ρθξ ′ = −p (�D̄p · I) + T′′ · �D̄p ≥ 0 . (6.8.18)

Also, the entropy flux vector can be specified by

p = −K
θ
g , g = ∂θ

∂x
, K = KT = K i jm′

i ⊗ m′
j , K ji = K i j , (6.8.19)

where K i j is a positive-definite symmetric matrix that characterizes anisotropic heat
conduction coefficients. Since K i j is a positive-definite, it follows that the restriction
of the second law of thermodynamics which requires heat to flow from hot to cold
(6.3.7)

− p · g > 0 for g �= 0 , (6.8.20)

is automatically satisfied.
Also, notice that inelastic dilatation rate D̄p · I �= 0 in (6.8.2) prevents the elastic

dilatation Je from being written in a simple form like (6.6.20) since the zero-stress
density of the material at zero-stress reference temperature θz need not be constant.

Specific Constitutive Equations
To simplify the discussion, consider the case of metal plasticity for which inelastic
deformation rate is isochoric so that

D̄p · I = 0 , (6.8.21)

and the elastic dilatation Je can be expressed in the form (4.1.16).

Je = ρz

ρ
, (6.8.22)



202 6 Thermomechanical Theory

where ρz is the constant zero-stress mass density at zero-stress reference temperature
θz .

Next, motivated by the work in [16, 26] for a material with a constant specific
heat Cv, the Helmholtz free energy is specified by

ψ = ψ1(Je, θ) + ψ2(Je, θ, βi ) ,

ρzψ1 = ρzCv

[
θ − θz − θ ln

(
θ

θz

)]
− (θ − θz) f1(Je) + f2(Je) ,

ρzψ2 = 1

2

3∑
i=1

Ki (βi − 2) + 1

2

6∑
i=4

Kiβi , Ki ≥ 0 ,

(6.8.23)

where ψ1 controls the isotropic thermomechanical response and ψ2 controls the
orthotropic response in any H SS as well as the influence of additional distortional
deformation that causes deviatoric stress. In these expressions, f1 controls strong
thermomechanical coupling and f2 controls the isotropic response to nonlinear com-
pression that can be determined by plate impact experiments for shock waves as
discussed in Sect. 6.9. In addition, Ki control the influences of the orthotropic invari-
ants βi . It then follows from (6.8.17) that the associated constitutive equations are
given by

p = p1(Je, θ) + p2(Je, θ, βi ) , T′′ = J−1
e

6∑
i=1

KiB′′
i ,

p1 = (θ − θz)
d f1
d Je

− d f2
d Je

, p2 = J−1
e

3∑
i=1

Ki Ni ,

η = η̂1(Je, θ) + η̂2(Je, θ, βi ) ,

ρz η̂1 = ρzCv ln

(
θ

θz

)
+ f1(Je) , ρz η̂2 = −

3∑
i=1

Ki Ai .

(6.8.24)

In these expressions, p1 and η̂1 control the isotropic thermomechanical response and
p2 and η̂2 control the orthotropic response in any H SS as well as the influence of
additional distortional deformation that causes deviatoric stress. Although this form
for ψ automatically predicts the correct distortions ηi in any H SS, the functions f1
and f2 need to be determined to match experimental data for the pressure in each
H SS. Also, the functions η̂1 and η̂2 should not be confused with the function η1 and
η2 in (6.8.6) which characterize distortional deformations in any H SS. Furthermore,
using (6.2.11) the internal energy ε can be expressed in the form
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ε = ψ + θη = ε1(Je, θ) + ε2(Je, θ, βi ) ,

ρzε1 = ρzCv(θ − θz) + θz f1(Je) + f2(Je) ,

ρzε2 = 1

2

3∑
i=1

Ki (βi − 2) + 1

2

6∑
i=4

Kiβi −
3∑

i=1

Kiθ Ai .

(6.8.25)

Now, following the work in [27] the distortions ηi in (6.8.6) for any H SS are
specified by the forms

ηi = J ni /3
e (

θ

θz
)(αi θz/3) , ni = ni (Je, θ) ,

αi = αi (Je, θ) ,

(6.8.26)

where in view of (6.8.7) the functions ni , αi must satisfy the restrictions

n1 + n2 + n3 = 0 , α1 + α2 + α3 = 0 . (6.8.27)

Since the inelastic deformation rate is isochoric (6.8.21), the rate of material
dissipation (6.8.18) requires

ρθξ ′ = T′′ · �D̄p ≥ 0 . (6.8.28)

Then, following the work in [27] the direction of inelastic deformation rate D̄p is
specified by

D̄p =
6∑

i=1

diSign(T′′ · B′′
i ) , di ≥ 0 ,

Sign(x) = −1 for x < 0 , Sign(x) = 1 for x ≥ 0 ,

(6.8.29)

where di are non-negative constants so that the rate of material dissipation (6.8.28)
is automatically satisfied. These restrictions on di are sufficient but not necessary
conditions for (6.8.28) to be satisfied. For example, the work on metal forming with
inelastic orthotropic deformation rate in [14] developed more relaxed restrictions on
di which allow some of the di to be negative but which satisfy (6.8.28) for small
elastic distortional deformations. Also, in [14] the direction of inelastic spin W̄p was
specified by

W̄p = �12
[
D̄p · (m′

1 ⊗ m′
2)
]
(m1′ ⊗ m2′ − m2′ ⊗ m1′)

+ �13
[
D̄p · (m′

1 ⊗ m′
3)
]
(m3′ ⊗ m1′ − m1′ ⊗ m3′)

+ �23
[
D̄p · (m′

2 ⊗ m′
3)
]
(m2′ ⊗ m3′ − m3′ ⊗ m2′) ,

(6.8.30)

where�12,�13 and�23 are constants that control the magnitude of the inelastic spin
which influences the rate of rotation of the distortional microstructural vectorsm′

i .
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Furthermore, in [14] an orthotropic yield function g for purely mechanical
response was proposed in the form

g = g(Ti j , κ) , (6.8.31)

where Ti j are the components of T relative to the elastic distortional deformation
base vectors m′

i defined by

Ti j = −p m ′
i j + T ′′

i j = Tji , T ′′
i j mi j ′ = 0 ,

T ′′
i j = T′′ · (m′

i ⊗ m′
j ) , T′′ = T ′′

i j (mi ′ ⊗ m j ′) .
(6.8.32)

In this regard, it is important to emphasize that the components Ti j of T are unin-
fluenced by SRBM since their values T +

i j in the superposed configuration are given
by

T +
i j = Ti j . (6.8.33)

Next, the function �, which controls the magnitude of inelastic deformation rate, can
be determined by the loading conditions (5.11.79) for rate-independent response or
by (5.11.80) which models a smooth elastic–inelastic transition for rate-independent
response and rate-dependent response.

Since the orthotropic invariants βi are valid for large deformations, this formu-
lation generalizes more standard formulations based on a quadratic strain energy
function like (5.8.24) which are only accurate for moderate strains [see the end of
Sect. 5.8]. Consequently, this formulation based on βi can be used for soft materials
which experience large deformations [27].

6.9 Thermoelastic–Inelastic Materials for Shock Waves

Plate impact experiments have been used for decades to study the dynamic response
of materials, especially to strong shocks. Specifically, in the simplest form of a
plate impact experiment, a circular cylindrical flyer plate of a known material is
accelerated in a gas gun toward a circular cylindrical target plate of the material that
is being studied, which has a circular cylindrical backup plate of a known transparent
material. A laser is used to measure the axial velocity of a material point at the center
of the back of the target plate. Since the wave propagation speed in each material
is finite, there is a finite time window in which reflections from free surfaces do
not reach material points on the centerline of the target plate. Moreover, since the
material is shock loaded very rapidly, it is assumed that there is no time for heat
conduction so the heat flux vector q is taken to be zero. Within this time window the
deformation of the target is uniaxial strain and the equations of mass conservation
and the balances of linear momentum and energy can be solved to obtain Rankine–
Hugoniot jump conditions between the density, axial stress and internal energy as
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functions of the particle velocity and the shock velocity. The system of equations
is closed by proposing a relationship between the shock velocity and the particle
velocity, which are measured experimentally.

Since inelastic effects limit themagnitude of the deviatoric stress, the axial stress in
strong shocks can be approximated by the pressure. The plate impact experimental
data can be used to determine the Hugoniot curve for the target material which
connects the pressure to the density for the equilibrium state after the shock has passed
thematerial point of interest. For strong shocks, this creates strong thermomechanical
coupling which must be modeled accurately to analyze the influence of the shock on
material response.

The developments in this section are limited to an elastically isotropic
thermoelastic–inelastic material. Use is made of the work in [3, 16] to propose a
specific form for the Helmholtz free energy that is consistent with a Mie–Gruneisen
equation of state (constitutive equation) for the pressure in shocked states. Also,
for simplicity attention is limited to materials which have no inelastic dilatational
deformation rate

D̄p · I = 0 , (6.9.1)

so the elastic dilatation Je is determined by the evolution equation

J̇e

Je
= D · I , (6.9.2)

which can be integrated and expressed in the form (4.1.16)

Je = ρz

ρ
, (6.9.3)

where ρz is the constant zero-stress mass density at zero-stress reference temperature
θz .

Also, the unimodular elastic distortional deformation tensor B′
e is determined by

the evolution Eq. (5.11.55) with (5.11.65)

Ḃ′
e = L′′B′

e + B′
eL

′′T − �Ap , Ap = B′
e −

(
3

B′−1
e · I

)
I , (6.9.4)

with the elastic distortional deformation invariant α1 satisfying the equations

α1 = B′
e · I , α̇1 = 2

(
B′

e − 1

3
α1I
)

· D − �Ap · I , (6.9.5)

and the evolution equation for the isotropic hardening variable κ is given by (6.7.29)

κ̇ = �H . (6.9.6)
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Motivated by the work in [3, 16, 26] for a material with a constant specific heat
Cv, the Helmholtz free energy ψ is specified by

ψ = ψ1(Je, θ) + ψ2(Je, α1, θ) ,

ψ1 = Cv[θ − θz − θ ln

(
θ

θz

)
] + (θ − θz) f1(Je) + f2(Je) ,

ρzψ2 = 1

2
μ(Je, θ)(α1 − 3) ,

(6.9.7)

where ψ1 controls the thermomechanical response to dilatation and μ is the shear
modulus which is allowed to be a function of Je and θ . The function f1 controls
strong thermomechanical coupling and f2 controls nonlinear response to dilatation.
These functions f1 and f2 need to be determined from plate impact experimental
data.

Next, assuming that η and T are functions of the forms

η = η(Je, α1, θ) , T = T(Je,B′
e, θ) , (6.9.8)

it follows from (6.7.32) that

T = −p I + T′′ , p = p1(Je, θ) + p2(Je, θ, α1) ,

p1 = −ρz[(θ − θz)
d f1
d Je

+ d f2
d Je ] , p2 = − 1

2
∂μ

∂ Je
(α1 − 3) ,

T′′ = J−1
e μ

(
B′

e − 1
3α1I

)
, η = η1(Je, θ) + η2(Je, θ, α1) ,

η1 = Cv ln
(

θ
θz

)
− f1 , ρzη2 = − 1

2
∂μ

∂θ
(α1 − 3) ,

(6.9.9)

and from (6.7.33) that the inelastic distortional deformation rate must satisfy the
restriction

ρzθξ ′ = 1

2
�μAp · I ≥ 0 . (6.9.10)

However, since � is non-negative, the shear modulus μ is positive and in [18] it was
shown that Ap · I ≥ 0 (5.11.67), it follows that nonzero inelastic deformation rate
satisfies the condition (6.9.10) and is dissipative.

Then, with the help of (6.2.11) the specific internal energy ε takes the form

ε = ε1(Je, θ) + ε2(Je, α, θ) ,

ε1 = Cv(θ − θz) − θz f1 + f2 ,

ρzε2 = 1

2

(
μ − θ

∂μ

∂θ

)
(α1 − 3) .

(6.9.11)
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In these expressions, the terms ψ1, p1, η1 and ε1 depend only on Je and θ and
represent the main thermomechanical response and the terms ψ2, p2, η2 and ε2 also
depend on the elastic distortional deformation α1.

For later reference it is noted that the expression ε1 can be solved for θ and result
can be substituted into the expression for p1 to obtain

p1 = −ρz

[(
θz f1 − f2

Cv

)
d f1
d Je

+ d f2
d Je

+
(

1

Cv

)
d f1
d Je

ε1

]
, (6.9.12)

which expresses p1 as a linear function of the energy ε1.
Next, neglecting body force, deviatoric stress, radiation and heat conduction and

restricting attention to uniaxial strain in the e1 direction, the local equations of the
conservation of mass, balance of linear momentum and balance of energy can be
written in the forms

ρ Je = ρz , ρu̇ = −∂p

∂x
, ρε̇ = −p

∂u

∂x
, (6.9.13)

where x is the current position of a material point which was located at the posi-
tion X in the reference configuration and u is the current velocity of the material
point. Moreover, consider a steady-wave moving at the shock velocity U relative to
the reference configuration into a zero-stress material state at zero-stress reference
temperature and at rest with

Je = 1 , θ = θz , ρ = ρz , u = 0 , p = 0 , ε = 0 . (6.9.14)

For this steady-wave it is convenient to introduce the auxiliary variable χ , such that

χ = X − Ut . (6.9.15)

Then, the position x and dilatation Je are given by

x = X + δ(χ) , Je = ∂x

∂ X
= 1 + dδ

d X
, (6.9.16)

where δ(χ) is the displacement of the material point relative to its reference position.
Also, the particle velocity u, pressure p and internal energy ε are expressed in the
forms

u = u(χ) , p = pH (χ) , ε = εH (χ) , (6.9.17)

where pH is the pressure and εH is the internal energy on the Hugoniot curve.
Differentiating the expression for x yields an expression for u given by

u = u(χ) = ẋ = −U
dδ

dχ
= U (1 − Je) . (6.9.18)
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Moreover, the balance of linear momentum and the balance of energy are expressed
in the forms

− Uρ
du

dχ
= −dpH

dχ
J−1

e , −Uρ
dεH

dχ
= −pH

du

dχ
J−1

e , (6.9.19)

which with the help of the conservation of mass (6.9.13) and the conditions (6.9.14)
can be integrated to obtain

u = U (1 − Je) , pH = ρzU
2(1 − Je) , εH = 1

2
U 2(1 − Je)

2 , (6.9.20)

which are theRankine–Hugoniot jump conditions. These equations connect the states
of the material on both sides of a uniaxial strain shock wave moving into a zero-
stress material at rest. They are used to plot Hugoniot curves of the state variables as
functions of the dilatation Je or density ρ = ρz J−1

e for a specified shock velocity.
For a complete constitutive equation for pressure it is necessary to propose an

expression for values of p off the Hugoniot curve p = pH . In shock physics it is
common to use aMie–Gruneisen equation of state to determine the pressure for states
off of the Hugoniot curve. This Mie–Gruneisen equation expresses the pressure as
a function of dilatation and energy. Motivated by the work in [3, 16], this Mie–
Gruneisen equation is written in terms of the main thermomechanical parts p1, ε1 of
the pressure and energy in the form

p1 = pH (Je) + ργ (Je)[ε1 − εH (Je)] , (6.9.21)

where the Gruneisen gamma γ is taken in the form

ργ = ρzγz , (6.9.22)

with γz being the unshocked zero-stress value of γ .
Then, comparison of (6.9.12) with (6.9.21) shows that the constitutive Eq. (6.9.7)

for the Helmholtz free energy will be consistent with the Mie–Gruneisen equation
(6.9.21) provided that f1 and f2 satisfy the differential equations

d f1
d Je

= −γzCv ,

d f2
d Je

+ γz f2 = − pH

ρz
+ γzεH + γzθz f1 ,

(6.9.23)

which can be integrated subject to the conditions

f1(1) = 0 , f2(1) = 0 , (6.9.24)

to deduce that
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f1(Je) = γzCv(1 − Je) ,

f2(Je) = Cvθz
[
1 + γz(1 − Je) − exp{γz(1 − Je)}

]+ f3 ,

f3(Je) = exp(−γz Je)

∫ 1

Je

[
pH (x)

ρz
− γzεH (x)

]
exp(γz x) dx .

(6.9.25)

Experimental data for shock waves in compression is used to determine the con-
stant coefficients Si in the approximation

U = Uz + S1u + S2(
u

U
)u + S3(

u

U
)2u , (6.9.26)

withUz being the zero-stress shock velocity. Substituting (6.9.20) into this expression
yields

U = Uz

1 − S1(1 − Je) − S2(1 − Je)2 − S3(1 − Je)3
for Je ≤ 1 , (6.9.27)

for compression. This function is extended to the expansion regime using the form

U = Uz√
1 + γz

2 (Je − 1)
for Je > 1 . (6.9.28)

Then, with the help of these expressions for the shock velocityU , it can be shown
that the function f3 in (6.9.25) can be determined in closed form for expansion
with U given by (6.9.28), but it is necessary to integrate the function f3 in (6.9.25)
numerically with U given by (6.9.27) for compression. Recently, it was shown in
[26] that by modifying the approximation (6.9.27) for compression to take the form

U = Uz exp[ 12γz(1 − Je)]
1 − S̃1(1 − Je) − S̃2(1 − Je)2

for Je ≤ 1 , (6.9.29)

it is possible to develop a closed form expression for f3 for compression for general
values of the constants S̃1 and S̃2. Numerous experiments have been conducted at
great expense to obtain values of S1, S2, S3 and γz for a large number of materials.
Fortunately, it was shown in [26] that these values can be used without conduct-
ing additional experiments to determine values of S̃1 and S̃2 which yield excellent
agreement with experimental data for most materials.

To complete the constitutive equations, it is necessary to specify functional forms
for � in (6.9.4) and H in (6.9.6) for rate-independent or rate-dependent response as
discussed in Sect. 5.8. Also, the entropy flux vector pmust be specified, which could
be taken in form (6.7.35).
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6.10 Thermoelastic–Inelastic Porous Materials

Porosity appears naturally in a number of materials like rocks, soils, ceramics, metals
and biological tissues. The p − α model developed in [11] and the modification in
[4] have been used tomodel important dissipation due to porous compaction in shock
wave problems. For these problems, the shock compaction occurs so quickly that
even if the pores are partially or fully saturated with fluid, there is no time for the
fluid to move, so fluid diffusion through the porous material can be neglected. Porous
compaction, dilation and/or “bulking” (i.e., porous dilation under positive pressure)
have been modeled in Nevada Tuff [19], granular media [22], sand [10] and ceramics
[3]. Also, nucleation and growth of pores in metals have been modeled in [9].

Porosity in biological tissues is necessary for fluid flow that supplies essential
nutrients for cell function. In contrast with shock loading, deformation of biological
tissues is typically a slow process which can be significantly influenced by diffusion
of fluid. An example of constitutive equations for slow deformation of biological
tissues with fluid diffusion along with references to previous work can be found in
[32]. In addition, prediction of the long-term quantity of production of an oil well that
has been stimulated by hydrofracturing requires proper treatment of poroelasticity
and inelasticity which characterizes porous compaction and the associated reduced
permeability.

This section discusses the structure of constitutive equations for a porous material
subjected to loading rapid enough to neglect fluid diffusion. Following the work in
[10, 19, 22] an element of volume dv of the porous material is separated into an
element of volume dvs of the solid material and an element of volume dvp of the
pores

dv = dvs + dvp , (6.10.1)

and the current porosity φ is defined by

φ = dvp

dv
. (6.10.2)

For simplicity, the pores are assumed so be evacuated so the element of mass dm of
the porous material is due solely to the element of mass dms of the solid

dm = ρdv = dms = ρsdvs , (6.10.3)

where ρ is the current mass density of the porous material and ρs is the current mass
density of the solid matrix. Then, using (6.10.1)–(6.10.3) the mass density ρ can be
expressed in the form

ρ = (1 − φ)ρs . (6.10.4)

Now, for an elastically isotropic, thermoelastic–inelastic porous material the elas-
tic dilatation Je satisfies the evolution equation
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J̇e

Je
= D · I − (

φ̇

1 − φ
) , (6.10.5)

where an evolution equation for φ must be specified. This equation can be rewritten
in the form

d

dt

[
ln
{ Je

1 − φ

}]
= D · I , (6.10.6)

which with the help of the conservation of mass (6.2.5)

ρ̇ + ρ D · I = 0 , (6.10.7)

and the expression (6.10.4) for ρ can be expressed in the form

d

dt

[
ln
{ ρ Je

1 − φ

}]
= d

dt

[
ln(ρs Je)

]
= 0 . (6.10.8)

This equation integrates to obtain

Je = ρsz

ρs
, (6.10.9)

where ρsz is the zero-stress mass density of the solid material. This shows that Je is
the solid elastic dilatation.

Also, the elastic distortional deformation tensor is characterized by the symmetric,
positive-definite, unimodular tensor B′

e which satisfies the evolution Eq. (5.11.66)

Ḃ′
e = L′′B′

e + B′
eL

′′T − �Ap , Ap = B′
e −

(
3

B′−1
e · I

)
I , (6.10.10)

where � is a non-negative function that controls the rate of distortional inelasticity.
Also, for simplicity, attention is limited to the first invariant α1 of elastic distortional
deformation defined by (6.7.27) and the evolution Eq. (6.7.28)

α1 = B′
e · I , α̇1 = 2B′′

e · D − �Ap · I , (6.10.11)

where B′′
e is the deviatoric part of B′

e. In addition, attention is limited to isotropic
hardening κ , which satisfies the evolution Eq. (6.7.29)

κ̇ = �H , (6.10.12)

where H controls the hardening rate.
For an elastically isotropic thermoelastic–inelastic porous material, the response

functions ψ, η and T are specified in the forms

ψ = ψs(Je, α1, θ) , η = ηs(Je, α1, θ) , T = T(Je,B′
e, θ, φ) , (6.10.13)
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where ψs and ηs are the Helmholtz free energy and entropy of the solid material,
both per unit mass. Then, with the help of (6.10.5)–(6.10.13), the rate of material
dissipation (6.3.9) requires

ρθξ ′ =
[
T − ρ Je

∂ψs

∂ Je
I − 2ρ

∂ψs

∂α1
B′′

e

]
· D − ρ

(
∂ψs

∂θ
+ ηs

)
θ̇ ,

+
[
ρ Je

∂ψs

∂ Je

(
φ̇

1 − φ

)
+ �ρ

∂ψs

∂α1
Ap · I

]
≥ 0 .

(6.10.14)

In general, without specifying details of the functional forms for �, φ̇ and H it is
not possible to determine necessary restrictions on the constitutive equations for
T and ηs . Specifically, in [19] the added compressibility of porosity was modeled
with both elastic and inelastic rates of porosity. Here, for simplicity, changes in φ

are assumed to be inelastic only. Moreover, motivated by necessary restrictions for
a rate-independent elastic–inelastic material with a yield function, the constitutive
equations for T and η are specified by

T = −p I + T′′ , p = (1 − φ)ps , ps = −ρsz
∂ψs

∂ Je
,

T′′ = (1 − φ)T′′
s , T′′

s = 2J−1
e ρsz

∂ψs

∂α1
B′′

e ,

η = ηs = − ∂ψs

∂θ
,

(6.10.15)

where ps and T′′
s are the pressure and deviatoric stress in the solid. It then follows

that the rate of material dissipation imposes the restriction

ρθξ ′ = ρθξ ′
φ + ρθξ ′

d ≥ 0 , ρθξ ′
φ = −p

(
φ̇

1 − φ

)
, ρθξ ′

d = �ρ
∂ψ

∂α1
Ap · I ,

(6.10.16)
where ρθξ ′

φ is the material dissipation rate due to porosity changes and ρθξ ′
d is the

material dissipation rate due to inelastic distortional deformations. Assuming that
the effective shear modulus is positive

∂ψ

∂α1
> 0 , (6.10.17)

and using the fact thatAp · I ≥ 0, it follows that the inelastic distortional deformation
is dissipative

ρθξ ′
d ≥ 0 . (6.10.18)

Also, the constitutive equation for stress is assumed to be restricted so that a
zero-stress material state at zero-stress reference temperature θz is characterized by

T = 0 ,
∂ψ

∂ Je
= 0 , for Je = 1 , B′

e = I , θ = θz . (6.10.19)
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In addition, for isotropic response the entropy flux vector is specified by a generalized
Fourier form (6.6.32)

p = − κ̄

θ
g , g = ∂θ

∂x
, κ̄ = κ̄(Je, α1, θ, κ) ≥ 0 , (6.10.20)

where the heat conduction coefficient κ̄ should not be confused with the isotropic
hardening variable κ .

From the definition of ρθξ ′
φ in (6.10.16), it follows that porous compaction (φ̇ <

0) at positive pressure and porous dilation (φ̇ > 0) at negative pressure are both
dissipative processes, but “bulking” (i.e., porous dilation at positive pressure) is a
non-dissipative process. These three processes aremodeled in the nonlinear breakage
model developed in [22]. Also, the work in [10] discusses functional forms that
include these effects in a thermomechanical theory.

As a special case, the Helmholtz free energy ψs of the solid material is specified
in the form

ρszψs = ρszCv

[
θ − θz − θ ln

(
θ

θz

)]
+ fs(Je, θ) + 1

2
μz(α1 − 3) ,

fs = ρszC2
z

[
1

S2 ln

{
1

1 − S(1 − Je)

}
−
(
1 − Je

S

)
+ α(1 − Je)(θ − θz)

]
for S > 0 ,

fs = ρszC2
z

[
1

2
(1 − Je)

2 + α(1 − Je)(θ − θz)

]
for S = 0 ,

(6.10.21)
where Cv is the constant specific heat, Cz is the zero-stress shock wave speed, S is a
positive constant controlling the slope of the shock velocity versus particle velocity
curve, α is the constant coefficient of linear expansion and μz is the zero-stress shear
modulus. It then follows from (6.10.15) that

ps = ρszC
2
z

[
(1 − Je)

1 − S(1 − Je)
+ α(θ − θz)

]
, T′′

s = J−1
e μzB′′

e ,

ηs = Cv ln

(
θ

θz

)
− C2

z α(1 − Je) .

(6.10.22)

Next, for simplicity, attention is further limited to isothermal responsewith θ = θz

for which

p = (1 − φ)ps , ps = ps(Je) = ρszC
2
z

[ (1 − Je)

1 − S(1 − Je)

]
. (6.10.23)

To motivate a form for the evolution equation for porosity consider the expression

ṗ = (1 − φ)Je
dps

d Je

[
D · I − 1

�φ

φ̇

1 − φ

]
, �φ = Je

dps

d Je

Je
dps

d Je
+ ps

, (6.10.24)
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which with the help of (6.10.23) yields

Je
dps

d Je
= −ρszC

2
z

[
Je{

1 − S(1 − Je)
}2
]

< 0 ,

�φ = Je

2Je − 1 + S(1 − Je)2
> 0 for Je > max

(
0, 1 − 1

S

)
,

(6.10.25)

where Je is restricted so that the denominators in these expressions do not vanish.
Also, for later convenience it can be shown that the constitutive equation (6.10.23)
for the pressure p can be solved for Je to deduce that

Je(P, φ) = 1 − φ + (S − 1) P

1 − φ + S P
for S ≥ 0 , P = p

ρszC2
z

, (6.10.26)

where P is the normalized pressure.
Next, it is convenient to introduce the constant pressures pT < 0, pc > 0 and the

maximum pressure pmax and the minimum porosity φmin attained. Then, motivated
by the work in [32] the evolution equation for φ is specified by

φ̇

1 − φ
= �T D · I for p = pT and D · I ≥ 0 , (6.10.27a)

φ̇ = 0 for pT < p < pc , (6.10.27b)

φ̇

1 − φ
= �c D · I for p = pc , D · I < 0 and φ > φmin , (6.10.27c)

φ̇ = 0 for pc < p < pmax , (6.10.27d)

φ̇

1 − φ
= �φ

(
φ

m + φ

)
D · I + βd(ρθzξd)

1 + βd p
for p = pmax and D · I ≤ 0 ,

(6.10.27e)

where m and βd are non-negative constants. These equations define five regions of
response: porous dilatation (φ̇ ≥ 0)with p = pT < 0 for (6.10.27a); elastic response
for (6.10.27b); porous compaction (φ̇ ≤ 0) with p = pc > 0 for (6.10.27c); elastic
response with pc < p < pmax for (6.10.27d) and porous compaction (φ̇ ≤ 0) with
p = pmax for (6.10.27e). The non-negative functions �T , �c and �φ are determined
by the conditions p = pT , p = pc and (6.10.24), respectively. Also, it follows from
(6.10.27e) that for compaction at positive pressure, the rate of compaction, which
is controlled by the constant m, competes with the rate of dilation due to bulking,
which is controlled by the constant βd . Moreover, from this evolution equation it can
be seen that φ is automatically limited to its physical range

0 < φ < 1 . (6.10.28)
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Furthermore, for compaction at maximum pressure (6.10.27e), it can be shown
that (6.10.24) reduces to

ṗ = (1 − φ)Je
dps

d Je

[(
m

m + φ

)
D · I − βd(ρθzξd)

�φ(1 + βd p)

]
. (6.10.29)

In view of the restrictions (6.10.25), it follows that small values ofm cause a tendency
for a slow increase in pressure for φ >> m, and nonzero values of βd , with nonzero
rate of dissipation due to inelastic distortional deformation ρθzξd > 0 causing addi-
tional increase in pressure due to bulking. Also, when φ → 0 and the pressure is
large, the response asymptotically approaches that of the nonporous solid matrix.

Moreover, for these evolution equations, it follows that porosity changes are dis-
sipative

ρθzξ
′
φ = −p

φ̇

1 − φ
≥ 0 , (6.10.30)

for the response regions without bulking (6.10.27a), (6.10.27b), (6.10.27c) and
(6.10.27d). Also, for compaction with bulking (6.10.27e), it can be shown with the
help of (6.10.18) that the rate of material dissipation (6.10.16) for θ = θz requires

ρθzξ
′ = −p

(
φ

m + φ

)
�φ D · I + ρθzξ

′
d

1 + βd p
≥ 0 . (6.10.31)

Consequently, the rate of material dissipation (6.10.16) is satisfied for all processes

ρθzξ
′ ≥ 0 . (6.10.32)

Numerical Integration Algorithm
Consider a time step which begins at t = tn , ends at tn+1 with time increment �t =
tn+1 − tn . A strongly objective numerical integration algorithm (5.11.89a) forB′

e was
discussed in Sect. 5.11. Here, a strongly objective numerical integration algorithm is
developed for the evolution equation for Je. To this end, it is recalled that the relative
dilatation Jr satisfies the Eq. (5.11.84)

J̇r = Jr D · I , Jr (tn) = 1 . (6.10.33)

Then, the evolution Eq. (6.10.6) for Je can be expressed in the form

d

dt

[
ln
{ Je

(1 − φ)Jr

}]
= 0 , (6.10.34)

which can be integrated to deduce that

Je(tn+1) =
[1 − φ(tn+1)

1 − φ(tn)

]
Jr (tn+1) Je(tn) . (6.10.35)
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Equating Je(tn+1) in (6.10.35) with Je in (6.10.26) yields the result

φ(tn+1, P) = A(P) −√
A2(P) − B(P)

2Je(tn)Jr (tn+1)
,

A(P) = (2 + S P)Je(tn)Jr (tn+1) + φ(tn) − 1 ,

B(P) = 4Je(tn)Jr (tn+1)
[{

(S − 1)φ(tn) + S Je(tn)Jr (tn+1) − S + 1
}

P

+ Je(tn)Jr (tn+1) + φ(tn) − 1
]
,

(6.10.36)

which can be used to determine

φ(tn+1) = φ(tn+1, PT ) for PT = pT

ρszC2
z

,

φ(tn+1) = φ(tn+1, Pc) for Pc = pc

ρszC2
z

.
(6.10.37)

This means that the values of φ(tn+1) and Je(tn+1) for the solutions of (6.10.27a),
(6.10.27c) and (6.10.27d) at the end of the time step are determined by (6.10.35) and
(6.10.37).

To obtain a solution for (6.10.27e), this equation is rewritten in the form

d

dt

[
ln

{
(1 − φ)1+m

φm

}]
= −�φ D · I −

(
m + φ

φ

) [
βd(ρθzξd)

1 + βd p

]

for p = pmax and D · I ≤ 0 .

(6.10.38)

Assuming that �φ can be approximated as constant over the time step, this equation
is rewritten in the form

d

dt

[
ln

{
(1 − φ)1+m J

�φ(tn+1)
r

φm

}]
≈ −

(
m + φ

φ

) [
βd(ρθzξd)

1 + βd p

]
. (6.10.39)

The solution of this equation is further approximated by the solution of the implicit
expression

[1 − φ(tn+1)]1+m

φ(tn+1)m
= [1 − φ(tn)]1+m

φ(tn)m Jr (tn+1)
�φ(tn+1)

exp

[
−
{

m + φ(tn+1)

φ(tn+1)

}
�tβd (ρθzξd )(tn+1)

1 + βd p(tn+1)

]

for Jr (tn+1) ≤ 1 ,

(6.10.40)
where (ρθξd)(tn+1) is an estimate of ρθξd at the end of the time step, and p(tn+1)

and �φ(tn+1) are determined by replacing Je in (6.10.23) and (6.10.25), respectively,
with (6.10.35) to obtain a nonlinear equation for φ(tn+1) to be solved numerically.
Once the values φ(tn+1) and Je(tn+1) have been determined, the pressure p at the
end of the time step is determined by (6.10.23).



6.10 Thermoelastic–Inelastic Porous Materials 217

Fig. 6.1 Pure dilatation
cyclic loading. Compression
a−b; expansion b−c;
compression c−d;
compression d−e and
expansion e− f for
S = 1.3, Pc = 0.005, PT =
−0.002 and m = 0.01

To display the compaction response, it is convenient to use the total dilatation J
from the initial state determined by the evolution equation and initial condition

J̇ = J D · I , J (0) = 1 . (6.10.41)

The exact integration of this equation over a time step is given by the expression

J (tn+1) = Jr (tn+1)J (tn) . (6.10.42)

The following examples consider the case of no bulking with βd = 0.

Cyclic Dilatational Loading
Next, to understand the influence of the parameter m in the evolution Eq. (6.10.27e)
for φ, consider the case when the material is initially at zero stress with

Je(0) = 1 , B′
e(0) = I , (6.10.43)

and confine attention to pure dilatational loading for which

D = 1

3
(D · I) I . (6.10.44)

For these conditions, the deviatoric stress remains zero T′′ = 0 and the pressure is
determined by (6.10.23). Moreover, the initial value of porosity φ and the material
constants S, PT and Pc for this example are specified by

φ(0) = 0.3 , S = 1.3 , PT = −0.002 , Pc = 0.005 . (6.10.45)

Figure 6.1 shows the response to cyclic loading with compression a−b; expan-
sion b−c; compression c−d; compression d−e and expansion e− f for m = 0.01.
During the compression cycle a−b the response is elastic with constant porosity φ

until P = Pc and then compaction occurs with decrease in porosity. The expansion
cycle b−c is elastic with constant porosity until P = PT and then dilation occurs at
constant pressure P = PT with increase in porosity. The recompression cycle c−d is
elastic with constant porosity until P = Pc and then compaction occurs at constant
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Fig. 6.2 Influence of m on pure dilatational compression followed by expansion for S = 1.3 and
Pc = 0.005

pressure P = Pc with decrease in porosity until φ = φmin . The compression cycle
d−e is elastic with constant porosity until P = Pmax = pmax/(ρszC2

z ) and contin-
ued compaction occurs with decrease in porosity. The expansion e− f is elastic with
constant porosity.

Figure 6.2 shows the influence of m on the compaction curve. Specifically, Fig.
6.2a shows the pressure response and Fig. 6.2b shows the porosity response. From
these figures, it can be seen that m has a strong effect on the pressure during com-
paction with only small differences in the functional form of φ required for the range
of values of m. It can also be seen that as the porosity approaches zero the response
asymptotically approaches that of the nonporous solid material.

As mentioned before, more complicated evolution equations for φ which deal
thermomechanical unloading can be found in [10, 22]. Also, to complete the con-
stitutive equations, it is necessary to specify a functional form for � in (6.10.10)
and H in (6.10.12) for rate-independent or rate-dependent response as discussed in
Sect. 5.8.

6.11 Thermoelastic–Inelastic Theory for Growth of
Biological Tissues

Biological tissues are complicatedmaterials which aremixtures ofmany components
that can flow relative to each other and interact mechanically, chemically and electri-
cally (e.g., [1, 2, 12, 31]). A simplified constrained theory of mixtures with only one
velocity field was developed by Humphrey and Rajagopal [12]. Also, review articles
on growth and remodeling of tissues can be found in (e.g., [1, 13, 33]).

When the tissue is considered to be a homogenized solid, the standard approach
to modeling growth for finite deformations is the Lagrangian formulation of growth
proposed by Rodriguez et al. [15]. This formulation is based on the multiplicative
form (5.11.11) by replacing the plastic deformation tensor Fp with a growth tensor
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Fg , such that
Fe = FF−1

g , Ḟg = �gFg , (6.11.1)

with the rate of growth �g specified by a constitutive equation. However, this mul-
tiplicative formulation has the same arbitrariness as discussed previously for the
Lagrangian formulation of plasticity, which can be removed by the Eulerian formu-
lation discussed below.

Rubin et al. [23] developed an Eulerian unified theoretical structure for modeling
interstitial growth and muscle activation in soft tissues. This Eulerian formulation of
growth was used: in [30] to study significant differences in the mechanical modeling
of confined growth predicted by the Lagrangian and Eulerian formulations; in [28]
to analyze stresses in arteries and in [29] to model early cardiac morphogenesis
during c-looping. This section reviews this Eulerian thermomechanical formulation
of growth.

Growth requires an influx of nutrients to the tissue. Consequently, the theory
developed in [23] treats the tissue as an open system with an external rate of mass
supply. Specifically, the current mass density ρ of the tissue is determined by the
balance of mass

ρ̇ + ρ(D · I) = rmρ , (6.11.2)

where rm is the external rate of mass supply per unit mass. This simplifies the for-
mulation by neglecting diffusion of fluid and allowing for a single velocity field to
describe deformation of the tissue.

The balances of linear momentum and entropy in this theory are given by (6.2.5)

ρv̇ = ρb + divT , ρη̇ = ρ(s + ξ) − divp . (6.11.3)

The balance of angular momentum (6.2.6) again requires the Cauchy stress to be
symmetric

TT = T , (6.11.4)

but the balance of energy (6.2.7) is modified to include an external rate of energy
supply b per unit mass due to mechanobiological processes

ρε̇ = ρr − divq + T · D + ρb . (6.11.5)

The Helmholtz free energy ψ is defined by (6.2.11)

ψ = ε − θη , (6.11.6)

and the internal rate of entropy production ρξ in [17] is separated into a thermal part
(−p · g) and a rate of material dissipation ρθξ ′ (6.2.9)

ρθξ = −p · g + ρθξ ′ , (6.11.7)
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with g = ∂θ/∂x being the temperature gradient and

ρθξ ′ = T · D − ρ(ψ̇ + ηθ̇) + ρb . (6.11.8)

In these equations, the superposed (̇ ) denotes the standard material derivative with
respect to the single velocity field.

The second law of thermodynamics for heat conduction requires the entropy flux
p to satisfy the restriction (6.3.7) that heat flows from hot to cold regions

− p · g > 0 for g �= 0 , (6.11.9)

and the second law for the rate of material dissipation requires (6.3.9)

ρθξ ′ ≥ 0 . (6.11.10)

This model can be used for growth of biological tissues as well as for muscle acti-
vation, both of which require an external supply of energy, which is characterized
by term b in the balance of energy (6.11.5). Here, the mechanobiological processes
which control growth and muscle activation are not modeled explicitly and it is
assumed that b is large enough to ensure that (6.11.10) is satisfied for all thermome-
chanical processes with growth.

The elastic dilatation Je for the growing tissue is determined by integrating the
evolution equation

J̇e

Je
= D · I − rm , (6.11.11)

which includes the external rate of mass supply rm . Following the work in [23] and
using the modification in [24], rm is specified by

rm = �m ln

(
Je

Jh

)
, (6.11.12)

so the evolution equation for the elastic dilatation Je becomes

J̇e

Je
= D · I − �m ln

(
Je

Jh

)
, �m ≥ 0 , Jh > 0 . (6.11.13)

Also, the symmetric, positive-definite, unimodular tensorB′
e that characterizes elastic

distortional deformations is determined by the evolution equation

Ḃ′
e = L′′B′

e + B′
eL

′′T − �Ag ,

Ag = B′
e −

(
3

B′−1
e · H

)
H , � ≥ 0 , H′ = det(H)−1/3H ,

(6.11.14)
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whereH is a positive-definite, symmetric tensor andH′ is its unimodular part. These
evolution equations model homeostasis, which is the process that causes a tendency
for Je to approach its homeostatic value Jh and for B′

e to approach its homeostatic
valueH′. In particular, it can be seen that in the absence of loading (L = 0) the rates
at which Je and B′

e approach their homeostatic values Jh and H′ are controlled by
the functions �m and �, respectively. Moreover, it is noted that the modified form
(6.11.12) simplifies the numerical algorithm for solving the evolution Eq. (6.11.13).
Also, the two nontrivial invariants of B′

e satisfy the equations

α1 = B′
e · I , α̇1 = 2B′′

e · D − �Ag · I ,

α2 = B′
e · B′

e , α̇2 = 4(B′
e
2 − 1

3α2I) · D − 2�Ag · B′
e ,

(6.11.15)

where B′′
e is the deviatoric part of B′

e.
In this model, the Cauchy stress T is a function of the elastic deformations Je,B′

e
and the temperature θ

T = T(Je,B′
e, θ) . (6.11.16)

This constitutive equation is restricted so that zero-stress material states occur when-
ever the elastic deformations are given by Je = 1 and B′

e = I and the temperature
equals the zero-stress reference temperature θ = θz ,

T = 0 whenever Je = 1 , B′
e = I , θ = θz . (6.11.17)

It is well known that the homeostatic state of the skin on the human body is
not in a zero-stress material state. For this reason, surgeons cut the skin parallel to
tension lines to minimize scarring. Within the context of this model, the stress in the
homeostatic state of the tissue can be nonzero

T(Jh,H′, θz) �= 0 . (6.11.18)

In particular, constitutive equations can be proposed for the homeostatic values Jh and
H′ of Je and B′

e, respectively, to ensure that the stress field in the homeostatic state of
the tissue matches measured nonzero values. Additional constitutive equations need
to be proposed for the homeostasis rates �m and �.

Zero-Stress Growth:
To understand the influence of the homeostatic values Jh of Je and H′ of B′

e, it is
convenient to consider zero-stress growth (6.11.17) for which the evolution Eqs.
(6.11.13) and (6.11.14) require

Dz · I + �m ln(Jh) = 0 ,

2D′′
z − �

[
I −

(
3

I · H
)

H
]

= 0 ,
(6.11.19)
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where D′′
z denotes the deviatoric part of the zero-stress rate of deformation value Dz

of D for zero-stress growth. As a special case, specify H in the form

H = I + H′′ , H′′ · I = 0 , H′′ · H′′ <
2

3
, (6.11.20)

where H′′ is the deviatoric part of H and its magnitude is bounded to ensure that H
remains positive-definite. It then follows that (6.11.19) can be solved for the zero-
stress growth rate Dz to obtain

Dz = −1

3
�m ln(Jh) I + D′′

z , D′′
z = −1

2
�H′′ . (6.11.21)

Since �m is non-negative, it follows that Jh > 1 causes a volumetric rate of contrac-
tion and Jh < 1 causes a volumetric rate of expansion. Moreover, the deviatoric part
D′′

z of Dz is in the opposite direction to H′′. Furthermore, the limited magnitude of
H′′ does not limit the magnitude of D′′

z , which is determined by the value of �.
In a review of growth in living systems, Kuhl [13] presented evolution equations

which model volumetric, area and fiber growth. Elastic deformation measures Je, λn

and λs associated with these growth processes and used in elastically anisotropic
constitutive equations were developed in [23]. In addition, expressions for the home-
ostatic values Jh and H′ and the homeostasis rates �m and � associated with these
growth processes were discussed in [23].

Elastic Volumetric Growth:
The elastic dilatation Je associated with this growth process satisfies the evolution
Eq. (6.11.13).

Elastic Area Growth:
The elastic area stretch λn associated with growth of an area element on a material
surface with unit normal vector n in the current configuration is motivated by expres-
sions for the material area element da and the unit normal n to a material surface.
To develop these expressions, it is convenient to define the second-order tensorN by

N = n ⊗ n , (6.11.22)

which should not be confused with the unit normal vector N in Nanson’s formula
(3.3.35). Moreover, using the result (3.5.26)

ṅ = −[LT − (D · n ⊗ n) I]n , (6.11.23)

it can be shown that N satisfies the evolution equation

Ṅ = 2(D · N)N − LTN − NL . (6.11.24)

Also, using (3.3.35) is can be shown that
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da

d A
= (J−4/3B′ · N)−1/2 , B′ = J−2/3FFT . (6.11.25)

Motivated by this expression, the elastic area stretch λn is defined by

λn = (J−4/3
e B′

e · N)−1/2 . (6.11.26)

Then,with the help of the evolutionEqs. (6.11.13), (6.11.14) and (6.11.24), the elastic
area stretch λn satisfies the evolution equation

λ̇n

λn
= (I − N) · D − 2

3
�m ln

(
Je

Jh

)
+ 1

2
�(B′

e · N)−1(Ag · N) . (6.11.27)

Elastic Fiber Growth:
The elastic fiber stretch λs associated with growth of a fiber in the direction of the
unit vector s in the current configuration is motivated by expressions for the stretch λ

and unit direction s of a material fiber. To develop these expressions, it is convenient
to define the second-order tensor S by

S = s ⊗ s , (6.11.28)

which should not be confused with the unit vector S in (3.3.12a) or the symmetric
Piola-Kirchhoff stress in (4.6.14). Moreover, using the result (3.5.22)

ṡ = [L − (D · s ⊗ s) I] s , (6.11.29)

it can be shown that S satisfies the evolution equation

Ṡ = LS + SLT − 2(D · S)S . (6.11.30)

Also, using (3.3.8) and (3.3.12c) it can be shown that

λ = (J−2/3B′−1 · S)−1/2 . (6.11.31)

Motivated by this expression, the elastic fiber stretch λs is defined by

λs = (J−2/3
e B′−1

e · S)−1/2 . (6.11.32)

Then,with the help of the evolutionEqs. (6.11.13), (6.11.14) and (6.11.30), the elastic
fiber stretch λs satisfies the evolution equation

λ̇s

λs
= S · D − 1

3
�m ln

(
Je

Jh

)
− 1

2
�(B′−1

e · S)−1(B′−1
e AgB′−1

e · S) . (6.11.33)
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Constitutive Equations:
Following the work in [23], the constitutive equations for an elastically anisotropic
thermoelastic material with growth are proposed in the forms

ψ = ψ(Je, θ,V) , η = η(Je, θ,V) , T = T(Je, θ,B′
e,V) ,

p = − κ̄(Je,θ,V)

θ
g , V = (α1, α2, λn, λs) , g = ∂θ

∂x ,
(6.11.34)

where the non-negative function κ̄ that represents the heat conduction coefficient
should not be confused with an isotropic hardening variable κ . Then, using the
evolution Eqs. (6.11.13), (6.11.15), (6.11.27) and (6.11.33), the stress T and entropy
η are specified by

T = ρ

[
Je

∂ψ

∂ Je
I + 2

∂ψ

∂α1
B′′

e + 4
∂ψ

∂α2

(
B′

e
2 − 1

3
α2I
)

+ ∂ψ

∂λn
λn(I − N) + ∂ψ

∂λs
λsS

]
,

η = −∂ψ

∂θ
.

(6.11.35)

Notice that the component of stress due to the elastic area stretch λn is isotropic in the
plane normal to n and the stress due to the elastic fiber stretch λs is in the S direction.
Also, the stress T can be written in terms of the pressure p and its deviatoric part T′′,
such that

T = −p I + T′′ , p = −ρ

(
Je

∂ψ

∂ Je
+ 2

3

∂ψ

∂λn
λn + 1

3

∂ψ

∂λs
λs

)
,

T′′ = ρ

[
2

∂ψ

∂α1
B′′

e + 4
∂ψ

∂α2

(
B′

e
2 − 1

3
α2I
)

+ 1

3

∂ψ

∂λn
λn(I − 3N)

+ 1

3

∂ψ

∂λs
λs(3S − I)

]
.

(6.11.36)

Modeling Area Growth:
To model area growth, it is assumed that the growth is isotropic in a material surface
that has unit normal n in the current configuration and H′ is specified by

H′ = 1

h
(I − N) + h2N , h > 0 , (6.11.37)

where N is defined by (6.11.22), n is defined by the evolution Eq. (6.11.23) and h is
a positive scalar that controls the rate of area growth which needs to be specified by
an evolution equation for ḣ.

To understand the implications of the constitutive form (6.11.37), consider the
special case when the velocity gradient L is specified by



6.11 Thermoelastic–Inelastic Theory for Growth of Biological Tissues 225

L = D = 1

2

(
ȧ

a

)
(I − N) + λ̇

λ
N , D · I = ȧ

a
+ λ̇

λ
, (6.11.38)

with a and λ being arbitrary functions of time. For this velocity field, it follows from
(6.11.23) and (6.11.24) that n andN remain constant. Using (6.11.27) and [(6.11.33)
with S replaced by N], it can be shown that a represents the area stretch of the
material surface that is normal to n and λ represents the stretch of a material fiber
that is normal to this material surface.

Next, B′
e and its inverse are specified by

B′
e = 1

be
(I − N) + b2

eN , B′−1
e = be(I − N) + 1

b2
e

N , be > 0 , (6.11.39)

where be is a positive scalar to be determined. Using this expression, it follows that
h is the homeostatic value of the elastic stretch be of the fiber normal to the material
surface. Moreover, the distortional invariant α1 in (6.11.15), the elastic area stretch
λn in (6.11.26) and the elastic fiber stretch λs in (6.11.32) with S replaced by N,
become

α1 = 2 + b3
e

be
, λn = J 2/3

e

be
, λs = J 1/3

e be . (6.11.40)

In addition, the evolution Eqs. (6.11.13) and (6.11.14) yield two scalar equations to
determine Je and be of the forms

J̇e

Je
= ȧ

a
+ λ̇

λ
− �m ln

(
Je

Jh

)
,

ḃe

be
= −1

3

(
ȧ

a

)
+ 2

3

(
λ̇

λ

)
− �

⎡
⎢⎣
1 −

(
h
be

)3

2 +
(

h
be

)3
⎤
⎥⎦ .

(6.11.41)
Therefore, steady-state solutions of these equations exist with

{ Je , Jh , �m ,
ȧ

a
,
λ̇

λ
, be ,B′

e , h , � } , (6.11.42)

being constants, such that

ȧ

a
= 2

3
�m ln

(
Je

Jh

)
− �

⎡
⎢⎣
1 −

(
h
be

)3

2 +
(

h
be

)3
⎤
⎥⎦ ,

λ̇

λ
= 1

3
�m ln

(
Je

Jh

)
+ �

⎡
⎢⎣
1 −

(
h
be

)3

2 +
(

h
be

)3
⎤
⎥⎦ .

(6.11.43)
In particular, area growth can occur without extension in the n direction with

ȧ

a
= �m ln

(
Je

Jh

)
,

λ̇

λ
= 0 , D · I = ȧ

a
for

1

3
�m ln

(
Je

Jh

)
= −�

⎡
⎢⎣
1 −

(
h
be

)3

2 +
(

h
be

)3
⎤
⎥⎦ ,

(6.11.44)
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and area growth can occur without volume change with

ȧ

a
= −�

⎡
⎢⎣
1 −

(
h
be

)3

2 +
(

h
be

)3
⎤
⎥⎦ ,

λ̇

λ
= − ȧ

a
, D · I = 0 for �m ln

(
Je

Jh

)
= 0 . (6.11.45)

Modeling Fiber Growth:
To model fiber growth, it is assumed that the growth is isotropic in a surface normal
to the unit direction s of the fiber in the current configuration and H′ is specified by

H′ = 1

h
(I − S) + h2S , h > 0 , (6.11.46)

where S is defined by (6.11.28), s is defined by the evolution Eq. (6.11.29) and h is
a positive scalar that controls the rate of fiber growth which needs to be specified by
an evolution equation for ḣ.

To understand the implications of the constitutive form (6.11.46), consider the
special case when the velocity gradient L is specified by

L = D = 1

2

(
ȧ

a

)
(I − S) + λ̇

λ
S , D · I = ȧ

a
+ λ̇

λ
, (6.11.47)

with a and λ being arbitrary functions of time. For this velocity field, it follows
from (6.11.29) and (6.11.30) that s and S remain constant. Using [(6.11.27) with N
replaced by S] and (6.11.33), it can be shown that a represents the area stretch of the
material surface that is normal to s and λ represents the stretch of the material fiber
that is in the direction s.

Next, B′
e and its inverse are specified in the forms (6.11.39) with N replaced by S

B′
e = 1

be
(I − S) + b2

eS , B′−1
e = be(I − S) + 1

b2
e

S , be > 0 , (6.11.48)

where be is a positive scalar to be determined. Using this expression, it follows that h
is the homeostatic value of the elastic stretch be of the fiber in the direction s normal
to thematerial surface.Moreover, the distortional invariant α1 in (6.11.15), the elastic
area stretch λn in [(6.11.26) with N replaced by S] and the elastic fiber stretch λs

in (6.11.32) are given by (6.11.40). In addition, the evolution Eqs. (6.11.13) and
(6.11.14) yield two scalar Eq. (6.11.41) to determine Je and be. Therefore, steady-
state solutions of these equations exist with

Je , Jh , �m ,
ȧ

a
,
λ̇

λ
, be ,B′

e , h , � , (6.11.49)

being constants, such that
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ȧ

a
= 2

3
�m ln

(
Je

Jh

)
− �

⎡
⎢⎣
1 −

(
h
be

)3

2 +
(

h
be

)3
⎤
⎥⎦ ,

λ̇

λ
= 1

3
�m ln

(
Je

Jh

)
+ �

⎡
⎢⎣
1 −

(
h
be

)3

2 +
(

h
be

)3
⎤
⎥⎦ .

(6.11.50)
In particular, fiber growth can occur without area change normal to the fiber with

ȧ

a
= 0 ,

λ̇

λ
= �m ln

(
Je

Jh

)
, D · I = λ̇

λ
,

2

3
�m ln

(
Je

Jh

)
= �

⎡
⎢⎣
1 −

(
h
be

)3

2 +
(

h
be

)3
⎤
⎥⎦ ,

(6.11.51)
and fiber growth can occur without volume change with

ȧ

a
= − λ̇

λ
,

λ̇

λ
= �

⎡
⎢⎣
1 −

(
h
be

)3

2 +
(

h
be

)3
⎤
⎥⎦ , D · I = 0 , �m ln

(
Je

Jh

)
= 0 , (6.11.52)

which is the same as the solution (6.11.45).

Modeling Muscle Activation:
These equations have also been used to model muscle activation and details can be
found in [23].

6.12 Jump Conditions for the Thermomechanical Balance
Laws

The purpose of this section is to develop jump conditions for the global thermo-
mechanical balance laws. Specifically, it is recalled from Sect. 6.2 that within the
context of the thermomechanical theory proposed by Green and Naghdi [7, 8], the
current mass density ρ, the current position x of a material point and the absolute
temperature θ are determined by the global forms of the conservation of mass and
the balances of linear momentum and entropy (6.2.1)

d

dt

∫
P

ρdv = 0 , (6.12.1a)

d

dt

∫
P

ρvdv =
∫

P
ρbdv +

∫
∂ P

tda , (6.12.1b)

d

dt

∫
P

ρηdv =
∫

P
ρ(s + ξ)dv −

∫
∂ P

p · nda . (6.12.1c)

Moreover, the balance of angularmomentum (6.2.2) and the balance of energy (6.2.3)
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P'

P

S(t)

S(t)
P''

P

n

w

1

2

Fig. 6.3 A material region with a singular moving surface S(t)

d

dt

∫
P
(x × ρv)dv =

∫
P
(x × ρb)dv +

∫
∂ P

x × tda , (6.12.2a)

d

dt

∫
P
(ρε + 1

2
ρv · v)dv =

∫
P
(ρb · v)dv +

∫
∂ P

t · vda

+
∫

P
ρθsdv −

∫
∂ P

θp · nda (6.12.2b)

are identically satisfied for all thermomechanical processes.
The discussion in Sect. 3.10 considered thematerial region P with closedmaterial

boundary ∂ P to be divided into two parts P1 and P2 by the singular S(t) that moves
through the material (see Fig. 6.3). Furthermore, the intersection of ∂ P1 with ∂ P
was denoted by ∂ P ′ and the intersection of ∂ P2 with ∂ P was denoted by ∂ P ′′.
Mathematically, this separation is summarized by (3.10.14)

P = P1 ∪ P2 , ∂ P ′ = ∂ P1 ∩ ∂ P , ∂ P ′′ = ∂ P2 ∩ ∂ P ,

∂ P = ∂ P ′ ∪ P ′′ , ∂ P1 = ∂ P ′ ∪ S , ∂ P2 = ∂ P ′′ ∪ S .
(6.12.3)

A discussion of the motion of singular surfaces in fluid mechanics can be found in
[34].

Next, the generalized transport theorem (3.10.16) is given by

d

dt

∫
P

φ(x, t)dv =
∫

P1

(φ̇ + φ divv)dv +
∫

P2

(φ̇ + φ divv)dv

−
∫

S(t)
[[φ {(w − v) · n}]]da ,

(6.12.4)
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where points on this singular surface move with velocity w and the unit normal to
S(t) outward from the part P1 is denoted by n. Also, the jump operator [[φ]] is
defined by (3.10.17)

[[φ {(w − v) · n}]] = φ2{(w − v2) · n} − φ1{(w − v1) · n} , (6.12.5)

where φ1 and v1 are the values of φ and v in part P1 and φ2 and v2 are the values of
φ and v in part P2, all evaluated on the singular surface S(t). In addition, w and n
are the same on both sides of S(t) (3.10.18)

w1 = w2 = w , n1 = n2 = n . (6.12.6)

Now, it is assumed that the local forms of the balance laws (6.12.1)

ρ̇ + ρdivv = 0 , (6.12.7a)

ρv̇ = ρb + divT , (6.12.7b)

ρη̇ = ρ(s + ξ) − divp , (6.12.7c)

and the local forms of the balance laws (6.12.2)

x × ρv̇ = x × ρb + div(x × T) , (6.12.8a)

ρε̇ + ρv̇ · v = ρb · v + ρθs + div(v · T − θp) (6.12.8b)

are valid in each part P1 and P2 where use has been made of the expression for
(4.3.24) for the traction vector t

t = Tn . (6.12.9)

Applying the generalized tranport theorem (6.12.4) to the global form (6.12.1a)
of the conservation of mass and using the local Eq. (6.12.7a) in each of the parts P1

and P2 yields ∫
S(t)

[[ρ {(w − v) · n}]]da = 0 . (6.12.10)

Assuming continuity of the integrand along S(t) requires the jump condition onmass

[[m]] = 0 , m = ρ [(w − v) · n] , (6.12.11)

to be valid for all points on S(t).
Since the internal rate of entropy production ξ in the balance of entropy can be

singular at the singular surface, this balance law needs special attention so it will be
used as an example for the other balance laws. Specifically, due to this singularity, it
follows that
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∫
P

ρξdv =
∫

P1

ρξdv +
∫

P2

ρξdv +
∫

S(t)
m�da , (6.12.12)

where it is assumed that the singularity in ξ is integrable across S(t) to yield the finite
value �. In contrast, the external rate of entropy supply s is assumed to be bounded
across S(t) so that ∫

P
ρsdv =

∫
P1

ρsdv +
∫

P2

ρsdv . (6.12.13)

Now, applying the generalized transport theorem (6.12.4) to the rate of change of
entropy and using (6.12.11) and the local Eqs. (6.12.7a) and (6.12.7c) yields

d

dt

∫
P

ρηdv =
∫

P1

[ρ(s + ξ) − divp]dv +
∫

P2

[ρ(s + ξ) − divp]dv

−
∫

S(t)
[[m η]]da . (6.12.14)

However, application of the divergence theorem yields

∫
P1

divpdv =
∫

∂ P ′
p · nda +

∫
S(t)

p1 · nda

∫
P2

divpdv =
∫

∂ P ′′
p · nda −

∫
S(t)

p2 · nda ,

(6.12.15)

so that
∫

P1

divpdv +
∫

P2

divpdv =
∫

∂ P
p · nda −

∫
S(t)

[[p · n]]da . (6.12.16)

Thus, with the help of (6.12.12) and (6.12.13), (6.12.14) can be rewritten in the form

d

dt

∫
P

ρηdv =
∫

P
ρ(s + ξ)dv −

∫
∂ P

p · nda −
∫

S(t)

(
m � + [[m η − p · n]]

)
da .

(6.12.17)
Now, using the global balance laws (6.12.1c) and assuming continuity of the integrand
over S(t) requires the jump condition on entropy

m � + [[m η − p · n]] = 0 , (6.12.18)

to be valid for all points on S(t).
Following this same procedure for the other balance laws and assuming that ρb

and θ are bounded across S(t), the jump conditions for balance laws (6.12.1) can be
summarized as
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[[m]] = 0 , (6.12.19a)

[[mv + Tn]] = 0 , (6.12.19b)

m � + [[m η − p · n]] = 0 , (6.12.19c)

and the jump conditions for the balance laws (6.12.2) can be summarized as

x × [[mv + Tn]] = 0 , (6.12.20a)

[[m(ε + 1

2
v · v) + v · Tn − θp · n]] = 0 , (6.12.20b)

where m is defined by (6.12.11) and x is continuous across S(t).
Notice that the jump in angular momentum (6.12.20a) is automatically satisfied

when the jump in linear momentum (6.12.19b) is satisfied. In contrast with the local
Eq. (6.12.7), the jump condition (6.12.19c) is used to determine the internal rate of
entropy production � due to the jump in entropy across S(t) and the jump condition
(6.12.20b) on energy is used to determine the jump in temperature θ .
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