
Chapter 5
Purely Mechanical Constitutive
Equations

Abstract The objective of this chapter is to discuss purely mechanical constitu-
tive equations. After identifying unphysical arbitrariness of the classical Lagrangian
formulation of constitutive equations, an Eulerian formulation for nonlinear elastic
materials is developed using evolution equations for microstructural vectorsmi . The
influence of kinematic constraints on constitutive equations is discussed and specific
nonlinear constitutive equations are presented for a number of materials including:
elastic solids, viscous fluids and elastic–inelastic materials.

5.1 The Classical Lagrangian Formulation for Nonlinear
Elastic Solids

In general, a constitutive equation is an equation that characterizes the response of
a given material to deformations, deformation rates, thermal, electrical, magnetic or
mechanobiological loads. An elastic material is a very special material because it
exhibits ideal behavior in the sense that it has no material dissipation. One of the
most important features of an elastic material is that it is characterized by a total
strain energy U and a strain energy function � per unit mass defined in (4.5.2)

U =
∫
P

ρ�dv . (5.1.1)

Generalizing the notions of a simple nonlinear elastic spring, an elastic material is
characterized by the following four assumptions:

Assumption 5.1 The material response is ideal in the sense that the rate of material
dissipationD in (4.5.7) vanishes

D = T · D − ρ�̇ = 0 , (5.1.2)
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for all motions. This generalizes the notion that the elastic spring is non-dissipative.

Assumption 5.2 Within the context of the Lagrangian formulation, the strain energy
� is a function of the total deformation gradient F and the reference position X only

� = �̃(F;X) , (5.1.3)

where dependence on the reference position X has been included to allow for the
possibility that the material can be inhomogeneous in the reference configuration.
This generalizes the notion that the elastic energy in an elastic spring depends only
on extension of the spring from its zero-stress length.

Assumption 5.3 The strain energy � is form-invariant under SRBM

�+ = � . (5.1.4)

With regard to a spring, this follows directly from the fact that every member of the
group of SRBM has the same length of the spring at each time.

Assumption 5.4 The Cauchy stress T is independent of the rate of deformation L.
This is consistent with the fact that the force in an elastic spring does not depend on
the rate of extension of the spring.

To explore the physical consequences of Assumption 5.1 (5.1.2), use is made of
global form (4.5.1) of the rate of material dissipation to obtain

W = K̇ + U̇ , (5.1.5)

which states that for an elastic material the rate of work done on the body due to body
forces and contact forces equals the rate of change of kinetic and strain energies. In
particular, the total work W2/1 done on the body during the time interval t1 ≤ t ≤ t2
is given by

W2/1 = ∫ t=t2
t=t1

Wdt = �K + �U ,

�K = K(t2) − K(t1) , �U = U(t2) − U(t1) .
(5.1.6)

In view of Assumption 5.2 (5.1.3), the strain energy� depends on the current config-
uration through the current value of F only. Similarly, the value of the kinetic energy
K depends only on the values of the density ρ and the velocity v at the beginning
and ends of the time interval. Moreover, the values of ρ at the beginning and end of
the time interval are connected by the conservation of mass (4.1.13) which requires
ρ det F = constant. Consequently,�K,�U and thework doneW2/1 during the time
interval depend only on the values of v and F at the beginning and end of the time
interval. In particular, this means that the work W2/1 done on the body between any
two states defined by v(t1) and F(t1) and v(t2) and F(t2) is independent of the path
of the deformation between these two states. This is consistent with the notion that
the work done on an elastic spring between any two states is path independent. Also,
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it follows that the workW2/1 done on the body vanishes for an arbitrary closed cycle
for which the values of v · v and the deformation gradient F are the same at the
beginning and end of the cycle

W2/1 = 0 , �K = 0 , �U = 0 . (5.1.7)

In this regard, it is noted that v and F are functions of position and time so the notion
of a closed cycle implies that each point starts and ends with the same values of v · v
and the same values of F.

Assumption 5.3 (5.1.4) places restrictions on the functional form (5.1.3) of the
strain energy. Using the fact that F+ = QF under SRBM, it follows that

�+ = �̃(F+;X) = �̃(QF;X) = �̃(F;X) (5.1.8)

must hold for arbitrary proper orthogonal tensors Q and all times. Since the defor-
mation can be inhomogeneous, the rotation tensor R can be a function of position
X. However, for an arbitrary but specified value X1 of X, choose Q(t) = RT (X1, t)
so that this equation requires

�̃(F;X) = �̃(RT (X1)RU;X) , (5.1.9)

where the dependence of R(X1, t) on time has been suppressed for notational sim-
plicity. Now, evaluating this expression at X = X1, it follows that locally

�̃(F;X) = �̃(U;X1) = �̂(C;X1) . (5.1.10)

Thus, a necessary condition for the strain energy � to be locally invariant under
SRBM is that the strain energy function� be dependent on the deformation gradient
F only through its dependence on the deformation tensor C. It is easy to see that
this condition is also a sufficient condition for the strain energy function to be form-
invariant under SRBM since C+ = C. Moreover, since X1 is an arbitrary material
point, this restriction on � must hold for each point X so the strain energy � can
depend on F only through its dependence on C for all material points X

� = �̂(C;X) . (5.1.11)

Next, with the help of (5.1.11) Assumption 5.1 (5.1.2) requires

T · D = ρ
∂�

∂C
· Ċ = ρ

∂�

∂C
· 2FTDF = 2ρF

∂�

∂C
FT · D , (5.1.12a)

(
T − 2ρF

∂�

∂C
FT

)
· D = 0 . (5.1.12b)
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However, since the coefficient of D in (5.1.12b) is independent of the rate D and is
symmetric, it follows that for any fixed values of F andX the coefficient ofD is fixed
and yet D can be an arbitrary symmetric tensor. Therefore, the necessary condition
that (5.1.12b) be valid for arbitrary motions is that the Cauchy stress be determined
by a derivative of the strain energy

T = 2ρF
∂�

∂C
FT . (5.1.13)

Using the conservation of mass (4.1.4) and the relationship (4.6.16), the symmetric
Piola-Kirchhoff stress S is also determined by a derivative of the strain energy

S = 2ρ0
∂�

∂C
. (5.1.14)

Notice that the results (5.1.13) and (5.1.14) are automatically properly invariant under
SRBM.Also, it can be seen that the result (5.1.14) is similar to the result for an elastic
spring that the force is equal to the derivative of the potential (strain) energy.

Green Elasticity (Hyperelasticity)
The elastic response of the material described by (5.1.13) is called Green elasticity
or hyperelasticity with all four assumptions satisfied. In particular, the stress T is
independent of velocity gradient L. Also, the stress is an explicit function of the
deformation gradient F which is related to the derivative of a strain energy function
� that depends only on F through the right Cauchy–Green deformation tensor C =
FTF. This means that the stress is determined by the deformation state F and is
independent of the path of deformation. Moreover, the work done between two states
of deformation F1 and F2 is independent of the path.

Cauchy Elasticity
For Cauchy elasticity, only Assumption 5.4 is satisfied with the stress T being a
function of F only

T = T(F) . (5.1.15)

This material has the property that the stress is determined by the deformation state F
and is independent of the velocity gradientL and of the path of deformation.However,
in general, the function in (5.1.15) does not satisfy integrability conditions necessary
for a strain energy function to exist. This means that (5.1.13) is not valid and the work
done between two states of deformation F1 and F2 can be path dependent. Moreover,
since under SRBM the stress T must satisfy the transformation relations (4.7.17), it
follows that the functional form for T(F) must satisfy the restriction that

T+ = T(F+) = T(QF) = QT(F)QT (5.1.16)

is satisfied for all proper orthogonal Q. This restriction requires T to be an isotropic
tensor function of the left Cauchy–Green deformation tensor B = FFT
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T = T(B) , T(QBQT ) = QT(B)QT , (5.1.17)

which can only characterize elastically isotropic response.

Hypoelasticity
For hypoelasticity, only Assumption 5.4 is satisfied and the stress is determined by
integrating an evolution equation of the form

∇
T = K(T) · D , (5.1.18)

where K is a fourth-order tensor function of T having the symmetry properties that

LTK = KT = K . (5.1.19)

Also, the rate of stress
∇
T and the stiffness tensorK transform under SRBM such that

∇
T+ = Q

∇
TQT , K(T+) · D+ = K(QTQT ) · QDQT = Q [K(T) · D]QT ,

(5.1.20)
so that the evolution equation (5.1.18) remains form-invariant under SRBM

∇
T+ = K(T+) · D+ . (5.1.21)

Since this equation is homogeneous of order one in time, the predicted material
response is rate independent. Stress rates which satisfy the restriction (5.1.20)1 for
all SRBM are called objective.

Truesdell Stress Rate
Recalling that

Ḟ = LF , ρ̇ = −ρD · I , (5.1.22)

it is possible to differentiate the hyperelastic constitutive equation (5.1.13) to deduce
that

Ṫ = LT + TLT − (D · I)T + 2ρF
(

∂2�

∂C ⊗ ∂C
· Ċ

)
FT . (5.1.23)

This equation can be rewritten in the form

T
T = 2ρF

(
∂2�

∂C ⊗ ∂C
· Ċ

)
FT , (5.1.24)

where the Truesdell stress rate is defined by

T
T = Ṫ − LT − TLT + (D · I)T . (5.1.25)
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Next, recalling that under SRBM

QQT = I , Q̇ = �Q , �T = −� ,

T+ = QTQT , L+ = D+ + W+ = QLQT + � ,

D+ = QDQT , W+ = QWQT + � ,

(5.1.26)

it can be shown by differentiating the expression forT+ that the Truesdell is objective

T
T+ = Ṫ+ − L+T+ − T+L+T + (D+ · I)T+ = Q

T
TQT . (5.1.27)

Thus, the evolution equation (5.1.24) based on the Truesdell stress rate satisfies the
restriction (5.1.20)1 so it is form-invariant under SRBM and can be used to formulate
hypoelastic constitutive equations of the type (5.1.18).

Jaumann Stress Rate
The Jaumann stress rate defined by

J
T = Ṫ − WT − TWT (5.1.28)

is also objective
J
T+ = Ṫ+ − W+T+ − T+W+T = Q

J
TQT . (5.1.29)

Consequently, it can be used for form-invariant hypoelastic constitutive equations of
the type (5.1.18). Moreover, it follows from (5.1.25) and (5.1.28) that the Truesdell
and Jaumann stress rates are related by

T
T = J

T − DT − TD + (D · I)T , (5.1.30)

for all SRBM.
In this regard, it is noted that there are an infinite number of stress rates that trans-

form like (5.1.20)1 under SRBM. For example, consider a generalized hypoelastic
material specified by the evolution equation

J
T = K(T,D) , (5.1.31)

where K(T,D) is a homogeneous function of order one in D which satisfies the
restrictions

K(T, αD) = αK(T,D) , KT = K , K(T+,D+) = QK(T,D)QT , (5.1.32)

for all scalars α and all proper orthogonal tensor functions Q. Next, let n be an

arbitrary positive integer and consider the stress rate
∇
T in (5.1.18) to be specified by
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the form
∇
T = J

T − β [DTn + TnD − (D · I)Tn] , (5.1.33)

where β is a constant scaling constant having the units [(stress)1−n] so that (5.1.33)
has the units of stress. It can be shown that

− D+T+n − T+nD+ + (D+ · I)T+n = Q[−DTn − TnD + (D · I)Tn]QT ,

(5.1.34)

for all SRBM. Consequently, since the Jaumann rate is objective, it follows that
∇
T in

(5.1.33) is objective
∇
T+ = Q

∇
TQT . (5.1.35)

Next, define the new function K̂(T,D) by

K̂(T,D) = K(T,D) − β [DTn + TnD − (D · I)Tn] , (5.1.36)

which satisfies restrictions similar to the forms (5.1.32)

K̂(T, αD) = αK̂(T,D) , K̂T = K̂ , K̂(T+,D+) = QK̂(T,D)QT . (5.1.37)

It then follows that the stressT, which satisfies the form-invariant evolution equation

∇
T = K̂(T,D) , (5.1.38)

with
∇
T defined by (5.1.33), predicts the same hypoelastic material response as that

predicted by (5.1.31). This means that for this general form of a hypoelastic material
there is no fundamental physical significance of any of the infinite stress rates in
(5.1.33) that satisfy under SRBM.

Summary
Equation (5.1.24) shows that any hyperelastic equation can be formulated in terms
of an evolution equation for stress if the right-hand side of (5.1.18) is appropriately
modified.However, in general, rate equations of the type (5.1.18) produce hypoelastic
response since they do not satisfy integrability conditions necessary for a strain
energy function to exist [3]. Due to the physical deficiencies of both Cauchy elasticity
and hypoelasticity, the term elastic material is used here only for a material that
exhibits Green elasticity (hyperelasticity).
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5.2 Unphysical Arbitrariness of the Lagrangian
Formulation of Constitutive Equations

The classical Lagrangian formulation of constitutive equations for hyperelasticmate-
rials specifies the strain energy function� to be a function of the deformation gradient
F through the right Cauchy–Green deformation tensor C, such that

� = �(C) , C = FTF , (5.2.1)

where F characterizes deformations from an arbitrary, but fixed, reference configu-
ration. The only restriction on this reference configuration is that the mapping

x = x(X, t) (5.2.2)

be invertible, which requires
J = detF > 0 , (5.2.3)

for all material points in the material region under consideration and for all time.
The strain energy function � characterizes the response of a specific material,

which should be independent of arbitrariness of the choice of the reference configu-
ration. This means that � should be a function of internal state variables that can be
measured by experiments on identical samples of the material in its current state. In
this regard, it is recalled from Sect. 3.11 that F is not an internal state variable in the
sense of Onat [31].

To be more specific, consider a homogeneous deformation of a homogeneous
hyperelastic material from a uniform zero-stress material state in its reference con-
figuration with C = I. It is always possible to unload this material to a zero-stress
material state with C = I, which is satisfied whenever F is a proper orthogonal ten-
sor. However, anisotropic response requires characterization of the deformation and
orientation of material fibers relative to observable material orientations. This arbi-
trariness of F makes it impossible to use experiments on the material in its current
configuration to determine the orientations of specific material fibers associated with
the arbitrary choice of the reference configuration used to specify � in (5.2.1).

5.3 An Eulerian Formulation for Nonlinear Elastic Solids

The Eulerian formulation of constitutive equations for nonlinear elastic solids in this
section removes the unphysical arbitrariness of the choice of a reference configuration
and a total strain measure. For this formulation, use is made of the microstructural
vectors mi and the elastic metric mi j introduced in Sect. 3.11, determined by the
equations
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ṁi = Lmi , mi j = mi · m j = m ji , ṁi j = 2(mi ⊗ m j ) · D , (5.3.1)

with the strain energy function � and the stress proposed in the forms

� = �̂(mi j ) , T = T̂(mi ) . (5.3.2)

Using these expressions together with assumption (5.1.2) requires

[
T − 2ρ

∂�̂

∂mi j
(mi ⊗ m j )

]
· D = 0 (5.3.3)

for arbitrary motions and all times. Since mi j is symmetric, it follows that ∂�̃/∂mi j

(mi ⊗ m j ) is a symmetric tensor. Consequently the coefficient of D in (5.3.3) is
symmetric and is independent of D so the necessary condition that (5.3.3) be valid
for arbitrary motions is that the Cauchy stress be determined by a derivative of the
strain energy

T = T̂ = 2ρ
∂�̂

∂mi j
(mi ⊗ m j ) . (5.3.4)

In this formulation, the vectorsmi are defined so that they form an orthonormal triad
in any zero-stress material state (1.2.13) with

mi j = δi j for any zero-stress material state , (5.3.5)

which requires the strain energy function to satisfy the restrictions

∂�̂

∂mi j
= 0 for mi j = δi j . (5.3.6)

Moreover, using the conservation ofmass (4.1.7), thematerial derivative of (5.3.4)
yields the evolution equation

Ṫ = LT + TLT − (D · I)T + 2ρ
∂2�̂

∂mi j∂mmn
(mi ⊗ m j ⊗ mm ⊗ mn) · D . (5.3.7)

The microstructural vectors mi are internal state variables in the sense of Onat [31]
with their values in the current configuration being determined by experiments on
identical samples of the material. Specifically, use is made of measurements of the
current state of stress T and the value of Ṫ for different values of the loading rate L.
Any differences between them1,m2 andm3 directions which cannot be determined
by these experiments should be consistent with material symmetries of the strain
energy function� which ensure that these differences do not influence the prediction
of the material response to an arbitrary loading rate L.
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A Separation of Elastic Dilatation and Distortional Deformations
To introduce separate control over the response of the material to dilatation and
distortional rates of deformation it is convenient to use the elastic dilatation Je defined
in (3.11.7), the distortional deformation vectors m′

i defined in (3.11.14) and the
elastic distortional deformation metric m ′

i j defined in (3.11.16), which satisfy the
Eqs. (3.11.17) and (3.11.28)

Je = m1 × m2 · m3 > 0 , J̇e = JeD · I ,

m′
i = J−1/3

e mi , ṁ′
i = L′′ m′

i ,

m ′
i j = m′

i · m′
j = m ′

j i , ṁ ′
i j = 2

(
m′

i ⊗ m′
j − 1

3m
′
i j I

)
· D .

(5.3.8)

Then, the strain energy function and the stress are proposed in the forms

� = �̃(Je,m
′
i j ) , T = T̃(Je,m′

i ) , (5.3.9)

and the condition (5.1.2) requires

[
T − ρ Je

∂�̃

∂ Je
I − 2ρ

∂�̃

∂m ′
i j

(m′
i ⊗ m′

j − 1

3
m ′

i j I)

]
· D = 0 . (5.3.10)

Since m ′
i j is symmetric, it follows that ∂�̃/∂m ′

i j (mi ⊗ m j ) is a symmetric tensor.
Consequently the coefficient of D in (5.3.10) is symmetric and is independent of
D so the necessary condition that (5.3.10) be valid for arbitrary motions is that the
Cauchy stress be determined by a derivative of the strain energy

T = −p I + T′′ = T̃ , p = p̃ = −ρ Je
∂�̃

∂ Je
,

T′′ = T̃′′ = 2ρ
∂�̃

∂m ′
i j

(
m′

i ⊗ m′
j − 1

3
m ′

i j I
)

,

(5.3.11)

where p is the pressure and T′′ is the deviatoric part of T.
Also, the constitutive equation for stress is assumed to be restricted so that a

zero-stress material state is characterized by

T = 0 ,
∂�̃

∂ Je
= 0 ,

∂�̃

∂m ′
i j

= 1

3

∂�̃

∂m ′
nn

δi j for Je = 1 and m ′
i j = δi j . (5.3.12)

This means that the triad m′
i has been defined so that m′

i are orthonormal vectors in
a zero-stress material state.

This form for the strain energy function makes it easy to separate the effects of
dilatation and distortion. For example, a class of materials can be considered for
which the strain energy function separates into two additive parts
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ρz� = f (Je) + ρz�̃d(m
′
i j ) , (5.3.13)

where ρz is the constant zero-stressmass density, f controls the response to dilatation
and �̃d controls the response to distortional deformations. It then follows that the
Cauchy stress T for this strain energy function is given by

T = −p I + T′′ = T̃ , p = −
(

ρ Je
ρz

)
d f

d Je
,

T′′ = T̃′′(Je,m ′
i j ) = 2ρ

∂�̃d

∂m ′
i j

(
m′

i ⊗ m′
j − 1

3
m ′

i j I
)

,

(5.3.14)

with the restrictions that

d f

d Je
= 0 ,

∂�̃d

∂m ′
i j

= 1

3

∂�̃d

∂m ′
nn

δi j for Je = 1 and m ′
i j = δi j . (5.3.15)

Furthermore, using the conservation of mass in the form (4.1.16)

Je = ρz

ρ
, (5.3.16)

it follows that the pressure

p = p̃(Je) = − d f

d Je
, (5.3.17)

for this class of materials depends on the elastic dilatation Je only.

5.4 Difference Between the Microstructural Vectors mi and
the Deformation Gradient F

Recall that the deformation gradient F satisfies the evolution equation (3.5.4)

Ḟ = LF . (5.4.1)

It has been stated in Sect. 3.11 that F is not an internal state variable in the sense
of Onat [31] since its initial value depends explicitly on an arbitrary choice of the
reference configuration which cannot be measured in the current configuration.

In contrast, the microstructural vectors mi for elastic response satisfy the
Eqs. (3.11.6)

ṁi = Lmi , (5.4.2)
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and Sect. 5.3 explained how their initial conditions can be determined by experiments
on identical samples of material in the current state so they are internal state variables
in the sense of Onat [31].

To further explore the arbitrariness of F, consider an initial zero-stress mate-
rial state (3.11.9) for which the measured values mi (0) of mi form a right-handed
orthonormal triad

mi j (0) = mi (0) · m j (0) = δi j . (5.4.3)

Furthermore, define the elastic deformation tensor Fe by

Fe = mi (t) ⊗ mi (0) . (5.4.4)

By definition, this tensor satisfies the evolution equation and initial condition

Ḟe = LFe , F(0) = I . (5.4.5)

Although mi (0) are measurable in the initial state and mi (t) are measurable in the
current state, the tensor Fe is not a state variable since it is impossible to know the
orientation of mi (0) in the reference state from experiments on the material in its
current state. In this regard, it is emphasized that there is no need for the second-
order tensor Fe because the microstructural vectorsmi with their elastic deformation
metricmi j are sufficient to characterize constitutive equations for general anisotropic
elastic response (5.3.4).

To be more specific, let Mi be an arbitrary right-handed orthonormal triad of
constant vectors Mi and define F by

F = mi ⊗ Mi . (5.4.6)

It follows that F satisfies the evolution equation and initial condition

Ḟ = LF , F(0) = mi (0) ⊗ Mi . (5.4.7)

However, since Mi are arbitrary orthonormal vectors and mi (0) are orthonormal
vectors, it also follows that the initial value of F is an arbitrary proper orthogonal
rotation tensor

F(0)TF(0) = I , (5.4.8)

with arbitrariness of the specification ofMi , which represents an arbitrary orientation
of the body in a reference configuration that cannot be determined by experiments
on the material in its current state.
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5.5 Homogeneity and Uniformity

This section presents a brief discussion of notions of homogeneous deformation, a
body that is materially uniform, a homogeneous body and a uniform material state.
More detailed discussion of these notions can be found in ([47], Sect. 27.3).

Homogeneous Deformation
A body is said to experience a homogenous deformation during the time period
t1 ≤ t ≤ t2 if the velocity gradient L is independent of x during this time period

L = L(t) , ∂L/∂x = 0 , for t1 ≤ t ≤ t2 . (5.5.1)

With the help of (3.13.3), it follows that the relative deformation gradient Fr from
the time t1 depends on time only and satisfies equations

Ḟr = LFr , Fr (t1) = I , Fr = Fr (t) for t1 ≤ t ≤ t2 . (5.5.2)

Moreover, with the help of (3.11.1), it follows that the total deformation gradient F
satisfies the evolution equation and initial condition

Ḟ = LF , F(X, t1) = F̄(X, t1) , (5.5.3)

where the value F̄(X, t1) of F at time t1 can be a function of position X. Using the
relative deformation gradient Fr (t), the exact solution of F during this time period
is given by

F(X, t) = Fr (t)F̄(X, t1) for t1 ≤ t ≤ t2 . (5.5.4)

In particular, it is noted that although the deformation is homogeneous during the time
period t1 ≤ t ≤ t2 the total deformation gradient F is not necessarily independent of
space X.

A Materially Uniform Body
A body is said to be materially uniform if the material functions that characterize
the response of the material are explicitly independent of space. For example, a
body made of an elastic material characterized by the strain energy function (5.2.1)
associated with the Lagrangian formulation

� = �̂(C) , (5.5.5)

is materially uniform if � depends on X only through the dependence of C = FTF
on X

∂�̂/∂X = 0 . (5.5.6)

To be precise, a superposed ˆ( ) has been used to indicate a specific functional depen-
dence of �̂(C) on C only so the dependence of � on X must be evaluated using the
chain rule of differentiation
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∂�/∂X = ∂�̂/∂C · ∂C/∂X . (5.5.7)

Similarly, a body made of an elastic material characterized by the strain energy
function (5.3.2) associated with the Eulerian formulation

� = �̂(mi j ) (5.5.8)

is materially uniform if � depends on x only through the dependence of elastic
deformation metric mi j on x

∂�̂/∂x = 0 , (5.5.9)

so that
∂�/∂x = (∂�̂/∂mi j ) (∂mi j/∂x) . (5.5.10)

For more general material response, like that of elastic–inelastic materials discussed
in Sect. 5.11 or thermoelastic materials and thermoelastic–inelastic materials dis-
cussed in Chap.6, all constitutive functions, including those in evolution equations,
must be explicitly independent of x for a body to be materially uniform.

A Uniform Material State
A body is said to be in a uniform material state if the body is materially uniform and
each response function characterizing the material has a value that is independent of
x for all points in the body. With regard to the Eulerian formulation, it is emphasized
that the notionof a uniformmaterial state neednot be connectedwith any specification
of a configuration of the body which places the body in space at a specified time.

Homogeneous Body
Abody is said to be ahomogeneous body if it ismaterially uniformand a configuration
exits for which it is also in a uniform material state.

Examples
To better understand the difference between a body that is materially uniform and
a homogeneous body, consider a cylindrical region that is materially uniform. Its
solid cylindrical inner core is a homogeneous body that has a zero-stress uniform
material state and its outer cylindrical shell is also a homogeneous body that has a
zero-stress uniformmaterial state. Moreover, consider the case when the outer radius
of the zero-stress inner core is larger than the inner radius of the zero-stress outer
cylindrical shell. By cooling the inner core or heating the outer cylindrical shell,
it is possible to assemble the inner core inside of the outer cylindrical shell. Then,
when the temperature in returned to a uniform value, the resulting body will have
residual stresses in both of its inner and outer regions even if the outer surface of
the cylindrical shell is traction free. The resulting body remains materially uniform
but is not in a uniform material state. Moreover, it is no longer a homogeneous body
since no configuration exists in which it can be in a uniform material state.

To better understand the notion of a uniform material state, consider a homoge-
neous elastic body which is in a uniform zero-stress material state. Then, load the
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body with a body force and traction vectors that cause inhomogeneous deformation.
The body remains homogeneous but the deformed material state is not in a uniform
material state.

Arbitrariness of the Reference Configuration
To examine the influence of arbitrariness of the choice of the reference configuration
in the Lagrangian formulation, consider a homogeneous body made from an elastic
material with the strain energy function

� = �̂(C) , C = FTF . (5.5.11)

In these expressions, the deformation gradient F is measured from a reference con-
figuration where the body is in a zero-stress uniform material state with F = I. Next,
consider an arbitrary change in the reference configuration with F̄measured relative
to the new reference configuration, such that

F = F̄A , detA(X) > 0 , C = AT C̄A , C̄ = F̄T F̄ , (5.5.12)

where A(X) is an arbitrary second-order tensor function of X only with positive
determinant. It then follows that the strain energy function can be expressed in terms
of C̄ and A in the form

� = �̄(C̄,A) = �̂(AT C̄A) . (5.5.13)

Since C̄ is the deformation relative to the new reference configuration and since A
can be an arbitrary function of X, it follows that the strain energy function �̄(C̄,A)

depends on X explicitly through the tensor A. This means that the notions of the
body beingmaterially uniformor homogeneous depend on the variables being used to
describe the response and on arbitrariness of the choice of the reference configuration.

In contrast, the Eulerian formulation for a homogeneous body with the strain
energy function

� = �̃(mi j ) , (5.5.14)

which is deformed from a zero-stress uniform material state is insensitive to changes
in the reference configuration with associated changes in the total deformation from
the reference configuration.

Influence of Inelasticity
Elastic–inelastic response will be discussed in detail in Sect. 5.11 and in Chap.6.
To discuss the influence of inelasticity on the motions of a body that is materially
uniform, a homogeneous body and a uniformmaterial state it is sufficient to consider
a homogeneous body with the strain energy function (5.5.14) which is initially in
a zero-stress uniform material state with mi j = δi j . Loading the body with a body
force and surface tractions can cause inhomogeneous total deformation with nonzero
inhomogeneous inelastic deformation rate.When all external loads are removed, this
inhomogeneous inelastic deformation rate causes the body to attain a nonuniform
material state with nonzero residual stresses. This unloaded body remains materially
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uniform but is no longer homogeneous since a configuration no longer exists for
which it is also in a uniform material state.

5.6 Material Symmetry

Consider a general nonlinear homogeneous elastic material which is initially in a
uniform zero-stress material state with initial orthonormal values Mi of the vectors
mi

mi (0) = Mi , Mi · M j = δi j , M1 × M2 · M3 = 1 . (5.6.1)

Also, consider a set of experiments where tension specimens are machined from
the material with different orientations relative to Mi . The dependence of the mea-
sured nonlinear response for specimens with different orientations characterizes the
material symmetry of the material. If the measured nonlinear response for different
specimens is different, then the material is denoted as anisotropic. Whereas, if the
measured nonlinear response for specimens with all possible orientations is the same
relative to the orientation of the specimen for all deformations, then the material is
denoted as isotropic.

To analyze this notion of material symmetry, consider a tension specimen that has
a fixed orientation relative to another orthonormal triad of vectors M̃i defined by the
orthonormal matrix Hi j , such that

M̃i = Hi jM j , Mi = HjiM̃ j ,

Hi j = M̃i · M j · , HimHjm = Hmi Hmj = δi j .
(5.6.2)

The deformation tensor
mi jMi ⊗ M j (5.6.3)

applies the elastic deformation metric mi j to a specimen which has a specific align-
ment relative to the vectors Mi and the deformation tensor

mi jM̃i ⊗ M̃ j (5.6.4)

applies the same elastic deformation metric mi j to a specimen which has the same
specific alignment relative to the vectors M̃i . These two deformation tensors (5.6.3)
and (5.6.4) are different and the components m̄i j of (5.6.4) relative to Mi are given
by

m̄i j = mmnM̃m ⊗ M̃n · Mi ⊗ M j = Hmi Hnjmmn . (5.6.5)

Consequently, the elastic deformation applied to a specimen taken in, say the M1

direction, will be the same as that applied to a specimen taken in the M̃1 direction
for all values of mi j and all orthogonal matrices Hi j .
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Now, the response of a nonlinear elastic material to arbitrary identical nonlinear
deformations mi j with different material orientations will be the same provided that

�̂(mi j ) = �̂(m̄i j ) = �̂(Hmi Hnjmmn) (5.6.6)

or
�̃(Je,m

′
i j ) = �̃(Je, m̄

′
i j ) = �̃(Je, Hmi Hnjm

′
mn) (5.6.7)

hold for all possible deformations mi j , Je and m ′
i j . In other words, the functional

forms of the strain energies �̂ and �̃ remain form-invariant to a group of orthogonal
transformations Hi j which characterize the material symmetries exhibited by a given
material. For the case of crystalline materials these symmetry groups can be related
to the different crystal structures.

For themost general anisotropic elastic response, thematerial has no symmetry, so
the group of Hi j contains only the identity δi j . Whereas an isotropic elastic material
has complete symmetry, so the group of Hi j is the full orthogonal group. Furthermore,
it is important to emphasize that the notion of material symmetry is necessarily
referred to identifiable material directions which are naturally represented by the
vectors mi .

Moreover, the dependence of the functional forms �̂(mi j ) and �̃(Je,m ′
i j ) on

the material directions mi is explicit and is used to determine the initial values
of mi . In particular, any anisotropic response of the material is measured relative
to the microstructural vectors mi , which causes the characterization of anisotropy
to be independent of arbitrariness of a specification of a reference configuration.
Furthermore, any indeterminacy of mi in the current state must be compensated by
the material symmetry of the strain energy function rendering this indeterminacy
irrelevant for the response of the material.

5.7 Kinematic Constraints

Some materials have special properties that can be exploited to obtain approximate
constitutive equations that simplify analytical solutions to problems. For example,
rubber is a material with its resistance to volumetric deformation being much larger
than its resistance to distortional deformations. This means that large changes in
pressure occur for small changes in volume. From a mathematical point of view, it
is convenient to consider a kinematic condition which constrains the material to be
incompressible.

Using (3.11.5), it follows that an elastically incompressible material can only
experience deformations which satisfy the kinematic constraint

G = Je − 1 = 0 ⇒ I · D = 0 . (5.7.1)
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Another example is a fiber reinforced composite with stiff fibers relative to the
response of its matrix. For such a material it is possible to approximate the fibers
as being inextensible. Using the microstructural vectors mi in (3.11.6), it follows
that a material fiber in the m1 direction will remain inextensible (in tension and
compression) if the material satisfies the kinematic constraint

G = m11 − 1 = 0 ⇒ (m1 ⊗ m1) · D = 0 . (5.7.2)

In general, consider a kinematic constraint of the form

G = G(mi j ) = 0 ⇒ � · D = 0 , � ≡ ∂G

∂mi j
mi ⊗ m j , (5.7.3)

which can be rewritten in the form

∂G

∂mi j
Di j = 0 , Di j = D · mi ⊗ m j . (5.7.4)

In particular, it is noted that � is a symmetric second-order tensor that is independent
of the rate D

�T = � , (5.7.5)

and under SRBM it satisfies the transformation relation

�+ = Q�QT . (5.7.6)

Moreover, consider a general unconstrained material that is characterized by a
constitutive equation T̂ for the Cauchy stress T. Next, consider a model of a con-
strained material for whichT is additively separated into the constitutive part T̂ and a
part T̄, called the constraint response, which enforces the kinematic constraint (5.7.3)

T = T̂ + T̄ . (5.7.7)

Although T̂ characterizes the response to general deformations, its value in (5.7.7) is
determined by evaluating T̂ only for deformations that satisfy the imposed kinematic
constraint. Moreover, T̂ automatically satisfies the restriction

T̂T = T̂ (5.7.8)

due to the balance of angular momentum and it transforms under SRBM, such that

T̂+ = QT̂QT . (5.7.9)

Now, since the reduced form (4.4.10) of the balance of angular momentum requires
T to be a symmetric tensor, the constraint response T̄must also be a symmetric tensor
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T̄T = T̄ . (5.7.10)

In addition, T̄ is assumed to be workless

T̄ · D = 0 , (5.7.11)

and independent of the rate D.
Next, multiplying (5.7.3) by an arbitrary scalar 	 and subtracting the result from

(5.7.11) yields
(T̄ − 	 �) · D = 0 . (5.7.12)

Now, it is noted that the coefficient of D in this equation is a symmetric tensor that
is independent of D and that this equation must hold for arbitrary rates D that satisfy
the constraint (5.7.4). Moreover, since the constraint (5.7.4) is nontrivial, at least one
component of � is nonzero. For example, let ∂G/∂m33 be nonzero. This means that
the component D33 can be used to satisfy the constraint (5.7.4) for arbitrary values
of the other components Di j . By choosing the value of 	 in (5.7.12) so that the
coefficient of D33 vanishes, and choosing the other components of Di j arbitrarily, it
follows that the constraint response T̄ must be given by

T̄ = 	 � , (5.7.13)

with 	 being an arbitrary function of x and t that is determined by the equations
of motion and boundary conditions. Due to (5.7.5) it can be seen that this form
for T̄ automatically satisfies the restriction (5.7.10) due to the balance of angular
momentum. Moreover, since T in (5.7.7) appears in the balance of linear momentum
and characterizes the response of the constrained material, the restriction (R-2) in
(4.7.3b), which defines how the constitutive response of the material relative to its
orientation is the same for all SRBM, requires the constraint response T̄ to satisfy
the transformation relation

T̄+ = 	+ �+ = QT̄QT = 	Q�QT , (5.7.14)

which with the help of (5.7.6) requires the arbitrary function 	 to be unaffected by
SRBM

	+ = 	 . (5.7.15)

In addition, since the constraint response T̄ is workless (5.7.11), it follows that

T · D = T̂ · D , (5.7.16)

so the constraint response does not influence the restriction (4.5.7) characterizing the
rate of material dissipation.

For the special case of an incompressible material, the constraint response is given
by
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T̄ = − p̄ I , (5.7.17)

where p̄ is an arbitrary function of x and t that is determined by the equations of
motion and boundary conditions.

Furthermore, it is noted that up to five independent kinematic constraints of the
type (5.7.3) can be imposed simultaneously without causing T to be totally indeter-
minate.

5.8 Isotropic Nonlinear Elastic Materials

For an isotropic nonlinear elastic material the strain energy function (5.6.7) remains
form-invariant for the full orthogonal group of Hi j . This means that� can depend on
m ′

i j only through its invariants. This alsomeans that experiments on identical samples
of the material in its current state cannot distinguish between the microstructural
vectors m′

1,m
′
2 and m′

3 so the material response functions must be insensitive to
this arbitrariness ofm′

i . Consequently, the symmetric, positive-definite, unimodular
tensor B′

e defined in (3.11.19)
B′
e = m′

i ⊗ m′
i (5.8.1)

can be used to characterize the response of an elastically isotropic material to elastic
distortional deformations.

To discuss the invariants of m ′
i j it is recalled from (3.3.17) and (3.11.24) that the

unimodular elastic distortional deformation tensor B′
e satisfies the equations

detB′
e = B′

em
′
1 × B′

em
′
2 · B′

em
′
3

m′
1 × m′

2 · m′
3

= m ′
i1m

′
i × m ′

j2m
′
j · m ′

k3m
′
k ,

detB′
e = εi jkm

′
i1m

′
j2m

′
k3 ,

detB′
e = 1

6
εi jkεrstm

′
irm

′
jsm

′
kt = det(m ′

i j ) = 1 ,

(5.8.2)

where use has been made of (3.11.14) to conclude that

εi jk = m′
i × m′

j · m′
k . (5.8.3)

Thus, the metric m ′
i j of elastic distortional deformations has only two nontrivial

independent invariants which can be specified by

α1 = m ′
i i = m′

i · m′
i = B′

e · I , α2 = m ′
i jm

′
i j = B′

e · B′
e . (5.8.4)

Consequently, for an isotropic elastic material the strain energy function takes the
form

� = �(Je, α1, α2) . (5.8.5)
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Next, using the evolution equation (3.11.5) for the elastic dilatation Je

J̇e = Je D · I , (5.8.6)

the evolution equations for the scalar measures α1 and α2 of elastic distortional
deformation are given by

α̇1 = 2B′′
e · D , α̇2 = 4

(
B′2
e − 1

3
α2I

)
· D , (5.8.7)

where B′′
e is the deviatoric part of B′

e. Consequently, the material derivative of the
strain energy function (5.8.5) is given by

ρ�̇ =
[
ρ Je

∂�

∂ Je
I + 2ρ

∂�

∂α2
B′′
e + 4ρ

∂�

∂α2

(
B′2
e − 1

3
α2I

)]
· D . (5.8.8)

Then, the condition that thematerial response of an elastic material is non-dissipative
for all motions

T · D = ρ�̇ (5.8.9)

requires the stress to be given in the form

T = −p I + T′′ , p = −ρ Je
∂�

∂ Je
,

T′′ = 2ρ
∂�

∂α2
B′′
e + 4ρ

∂�

∂α2

(
B′2
e − 1

3
α2I

)
.

(5.8.10)

In particular, notice that the deviatoric stress T′′ vanishes whenever B′
e = I so the

condition (5.3.5) characterizing a zero-stress material state requires

∂�

∂ Je
= 0 for Je = 1 and B′

e = I . (5.8.11)

A Compressible Neo-Hookean Material
Significant advances in the theory of finite elasticity were made by Rivlin and co-
workers [2] studying the response of natural rubber, which is a material that can
experience large distortional deformations and is relatively stiff to volumetric defor-
mations. For such a material it is convenient to additively separate the strain energy
function into a part that controls the response to elastic dilatation and depends only
on Je and another part that depends only on elastic distortional deformations through
the invariants α1, α2. For the simplest compressible Neo-Hookean the strain energy
function is specified by

ρz� = f (Je) + 1

2
μ(α1 − 3) , μ > 0 , (5.8.12)
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where μ is the zero-stress shear modulus and f (Je) is a function that satisfies the
conditions

f (1) = 0 ,
d f

d Je
(1) = 0 ,

d2 f

d J 2
e

(1) > 0 . (5.8.13)

It then follows from (4.1.16)

Je = ρz

ρ
, (5.8.14)

and (5.8.10) that the pressure p and deviatoric stress T′′ for this material are given
by

p = − d f

d Je
, T′′ = J−1

e μB′′
e . (5.8.15)

A Compressible Mooney–Rivlin Material
For a compressible Mooney–Rivlin material the strain energy function is specified
by

ρz� = f (Je) + 1

2
μ[(1 − 4C)(α1 − 3) + C(α2 − 3)] , (5.8.16)

where f (Je) satisfies the conditions (5.8.13), μ is the positive zero-stress shear
modulus andC is amaterial constant. Then, using (5.8.14) the associated constitutive
equations for p and T′′ are given by

p = − d f

d Je
, T′′ = J−1

e μ

[
(1 − 4C)B′′

e + 2C

(
B′2
e − 1

3
α2I

)]
. (5.8.17)

A Specific Function for Dilatation
As a special case, consider a polyconvex function f (Je) for the strain energy of
dilatation given by (e.g., [45])

f (Je) = 1

2
k

[
1

2
(J 2

e − 1) − ln(Je)

]
, (5.8.18)

with the positive constant k being the zero-stress bulk modulus. It then follows from
(5.8.15) that the pressure is given by

p = 1

2
k

(
1

Je
− Je

)
. (5.8.19)

This function has the property that the pressure becomes infinite as Je approaches
zero and it approaches negative infinity as Je approaches infinity.

Incompressible Neo-Hookean and Mooney–Rivlin Materials
Most often, Neo-Hookean andMooney–Rivlin materials are considered to be incom-
pressible. Specifically, using the constraint (5.7.1), the separation (5.7.7), the con-
straint response (5.7.17) and the constitutive equations (5.8.15), (5.8.17) and (5.8.19),
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it follows that the stress for an incompressible Neo-Hookean material is given by

T = − p̄ I + μB′′
e , (5.8.20)

and the stress for an incompressible Mooney–Rivlin material is given by

T = − p̄ I +
[
(1 − 4C)B′′

e + 2C

(
B′2
e − 1

3
α2I

)]
, (5.8.21)

where p̄ is an arbitrary function of x and t determined by the equations of motion
and boundary conditions.

An Elastic Material with a Quadratic Strain Energy Function
For an elastic material with a quadratic strain energy function, use is made of the
elastic strains ei j defined in (3.11.33)

ei j = 1

2
(mi j − δi j ) , (5.8.22)

relative to zero-stress material states defined in (3.11.9)

mi j = δi j for any zero-stress material state , (5.8.23)

to express � in the form

ρz� = 1

2
Ki jklei j ekl , (5.8.24)

where Ki jkl are constant components of a fourth-order stiffness tensor having the
symmetries

K jikl = Ki jlk = Kkli j = Ki jkl . (5.8.25)

It then follows from (5.3.4) that the Cauchy stress for this material is given by

T = J−1
e Ki jklekl mi ⊗ m j . (5.8.26)

To analyze the material symmetry of the strain energy function (5.8.24), use is
made of the condition (5.6.6) to deduce that

[Ki jkl − HimHjnHkr Hls Kmnrs]ei j ekl = 0 , (5.8.27)

for all strains ei j which requires Ki jkl to satisfy the condition that

Ki jkl = HimHjnHkr Hls Kmnrs , (5.8.28)
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where Hi j is an orthogonal tensor which characterizes the symmetry of the material
defined in its zero-stress material state with microstructural vectors mi forming a
right-handed orthonormal triad.

The following considers four cases of materials:

Case I: General Anisotropic
If the material posseses no symmetry then the symmetry group of Hi j consists only
of Hi j = δi j and the 34 = 81 constants Ki jkl are restricted only by the symmetries
(5.8.25) which reduce the number of independent constants to the 21 constants given
by

Ki jkl =
⎛
⎝ K1111 K1112 K1113 K1122 K1123 K1133 K1212

K1213 K1222 K1223 K1233 K1313 K1322 K1323

K1333 K2222 K2223 K2233 K2323 K2333 K3333

⎞
⎠ . (5.8.29)

Case II: Symmetry About One Plane
If the material possesses symmetry about the plane normal to m3 in a zero-stress
material state then the restrictions (5.8.28) must hold for the group Hi j that includes

Hi j =
⎛
⎝ 1 0 0

0 1 0
0 0 −1

⎞
⎠ , (5.8.30)

so that from (5.8.29) and (5.8.30), it follows that any component in which the index
3 appears an odd number of times must vanish

K1113 = K1123 = K1213 = K1223 = K1322 = K1333 = K2223 = K2333 = 0 .

(5.8.31)
Thus, the remaining 13 independent constants are given by

Ki jkl =
(

K1111 K1112 K1122 K1133 K1212 K1222 K1233

K1313 K1323 K2222 K2233 K2323 K3333

)
. (5.8.32)

Case III: Symmetry About Two Orthogonal Planes
If the material possesses symmetry about both planes with normals the m3 and m2

in a zero-stress material state, then the restrictions (5.8.28) must hold for the group
Hi j that includes (5.8.30) and

Hi j =
⎛
⎝ 1 0 0

0 −1 0
0 0 1

⎞
⎠ , (5.8.33)

so that from (5.8.32) and (5.8.33), it follows that any component in which the index
2 appears an odd number of times must vanish

K1112 = K1222 = K1233 = K1323 = 0 . (5.8.34)
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Thus, the remaining 9 independent constants are given by

Ki jkl =
(

K1111 K1122 K1133 K1212 K1313 K2222 K2233

K2323 K3333

)
. (5.8.35)

Notice from (5.8.35) that the index 1 only appears an even number of times so that
the material also possesses symmetry about the plane normal to m1 in a zero-stress
material state. This stiffness characterizes an orthotropic elastic material.

Case IV: Isotropic Elastic Material
If the material possesses symmetry with respect to the full orthogonal group then the
material is called isotropic with a center of symmetry. Using the results in Appendix
E, it follows that the material is characterized by only two independent constants λ

and μ, called Lame’s constants, such that

K1111 = K2222 = K3333 = λ + 2μ , K1122 = K1133 = K2233 = λ ,

K1212 = K1313 = K2323 = μ ,
(5.8.36)

and the fourth-order tensor Ki jkl can be expressed in the form

Ki jkl = λδi jδkl + μ(δikδ jl + δilδ jk) . (5.8.37)

It also follows that the strain energy (5.8.24) and the stress (5.8.26) can be written
in the forms

ρz� = 1

2
λ eii e j j + μ ei j ei j ,

T = J−1
e (λemmδi j + 2μei j )(mi ⊗ m j ) .

(5.8.38)

Notice that this strain energy is a function of the invariants of ei j , as it should be for
an isotropic material.

Linearized Constitutive Equations
To obtain the fully linearized constitutive equation, it is convenient to consider the
initial state of the material to be at zero stress with the vectors mi specified by the
orthonormal triadMi , such that

mi (0) = Mi , Mi · M j = δi j , M1 × M2 · M3 = 1 . (5.8.39)

Recalling that the displacement u relative to this initial state is given by

u = x − X , X = x(0) , (5.8.40)

and taking tn = 0 in (3.13.3), the relative deformation gradient Fr is given by

Fr = I + ∂u/∂X . (5.8.41)
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Then, neglecting quadratic terms in the displacement u and its derivatives, it follows
from (3.13.9) that mi can be approximated by

mi = (I + ∂u/∂X)Mi . (5.8.42)

Next, separating the displacement gradient into its symmetric and skew-symmetric
parts like in (4.10.7) yields

∂u/∂X = (εi j + ωi j )Mi ⊗ M j ,

εi j = 1

2
[∂u/∂X + (∂u/∂X)T ] · Mi ⊗ M j ,

ωi j = 1

2
[∂u/∂X − (∂u/∂X)T ] · Mi ⊗ M j ,

(5.8.43)

so the vectors mi can be approximated by

mi = (δi j + εi j + ωi j )Mi . (5.8.44)

It then follows that the metric mi j and the strains ei j are approximated by

mi j = δi j + 2εi j , ei j = εi j , (5.8.45)

and the stress is approximated by

T = (λεmmδi j + 2μεi j )(Mi ⊗ M j ) . (5.8.46)

Restrictions on the Material Constants
From physical considerations it is expected that any strain from a zero-stress material
state should cause an increase in strain energy. Mathematically this means that the
strain energy function is positive-definite

� > 0 for any ei j �= 0 . (5.8.47)

Recalling that the strain ei j can be separated into its spherical and deviatoric parts

ei j = 1

3
emmδi j + e′′

i j , e′′
mm = 0 , (5.8.48)

the isotropic strain energy function (5.8.38) can be rewritten in the form

ρz� = 1

2

(
3λ + 2μ

3

)
(eii e j j ) + μe′′

i j e
′′
i j . (5.8.49)

Since the terms eii and e′′
i j e

′′
i j are independent quantities, this strain energy will be

positive-definite whenever
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Table 5.1 Relationships between the material constants for an isotropic linear elastic material

λ μ E ν k

λ , μ
μ(3λ+2μ)

λ+μ
λ

2(λ+μ)
3λ+2μ

3

λ , ν
λ(1−2ν)

2ν
λ(1+ν)(1−2ν)

ν
λ(1+ν)

3ν

λ , k 3(k−λ)
2

9k(k−λ)
3k−λ

λ
3k−λ

μ , E μ(2μ−E)
E−3μ

E−2μ
2μ

μE
3(3μ−E)

μ , ν
2μν
1−2ν 2μ(1 + ν)

2μ(1+ν)
3(1−2ν)

μ , k 3k−2μ
3

9kμ
3k+μ

3k−2μ
2(3k+μ)

E , ν Eν
(1+ν)(1−2ν)

E
2(1+ν)

E
3(1−2ν)

E , k 3k(3k−E)
9k−E

3Ek
9k−E

3k−E
6k

ν , k 3kν
1+ν

3k(1−2ν)
2(1+ν)

3k(1 − 2ν)

μ = (E−3λ)+
√

(E−3λ)2+8λE
4 , ν = −(E+λ)+

√
(E+λ)2+8λ2

4λ

k = (3λ+E)+
√

(3λ+E)2−4λE
6

3λ + 2μ

3
> 0 , μ > 0 . (5.8.50)

For the linearized theory, eii characterizes dilatational deformations and e′′
i j charac-

terizes distortional deformations.
Moreover, it is noted that this isotropic elastic material with a quadratic strain

energy function can be characterized by any two of the following material constants:
λ (Lame’s constant); μ (shear modulus); E (Young’s modulus); ν (Poisson’s ratio);
or k (bulk modulus), which are interrelated by the expressions in Table 5.1. Using
these expressions it can be shown that the restrictions (5.8.50) also require

k > 0 , E > 0 , −1 < ν <
1

2
> 0 . (5.8.51)

Limitations of a Quadratic Strain Energy Function
The anisotropic elastic material characterized by (5.8.24) and (5.8.26), and the
isotropic elastic material characterized by (5.8.38) both have a strain energy function
that is quadratic in the strains ei j , with the Cauchy stress T depending nonlinearly
on Je and ei j since the vectors mi also depend on the strains ei j . These constitutive
equations are valid for large rotations and moderate strains ei j .

To see that these quadratic strain energy functions are limited to moderate strains
consider the simple case of an isotropic elasticmaterial (5.8.38) experiencing uniaxial
stress in the m1 direction for which

m1 = ae1 , m2 = be2 , m3 = be3 , Je = ab2 ,

e11 = 1

2
(a2 − 1) , e22 = 1

2
(b2 − 1) ,

(5.8.52)
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where ei are fixed rectangular Cartesian base vectors. In these expressions, a is the
axial stretch and b is the lateral stretch, both measured from a zero-stress material
state. For uniaxial stress

T = T11e1 ⊗ e1 , (5.8.53)

and the constitutive equations yield the restrictions

T = T11e1 ⊗ e1 ,

T11 = T · e1 ⊗ e1 = a

b2
[(λ + 2μ)e11 + 2λe22]

= 2μ

(1 − 2ν)

( a

b2

)
[(1 − ν)e11 + 2νe22] ,

T · e2 ⊗ e2 = T · e3 ⊗ e3 = 1

a
[λe11 + 2(λ + μ)e22]

= 2μ

(1 − 2ν)

(
1

a

)
(νe11 + e22) = 0 ,

(5.8.54)

where use has been made of Table 5.1 to write λ in terms of the zero-stress shear
modulus μ and Poisson’s ratio ν. Then, the solution of these equations is given by

e22 = −νe11 , T11 = 2μ(1 + ν)
( a

b2

)
e11 , (5.8.55)

and the restrictions on the strains can be solved to obtain

b =
√
1 + ν(1 − a2) . (5.8.56)

For Poisson’s ratio in the range

0 < ν ≤ 1

2
, (5.8.57)

it can be seen that the maximum axial stretch amax occurs when b vanishes and that
the maximum lateral stretch bmax occurs when a vanishes, for which

amax =
√

1+ν
ν

, b = 0 , Je = 0 , T11 = ∞ ,

bmax = √
1 + ν , a = 0 , Je = 0 , T11 = 0 .

(5.8.58)

These results are unphysical because they indicate that infinite tension causes a finite
axial stress with zero volume and that the material can be compressed to zero length
with a finite cross section, zero volume and zero stress.

In contrast, the stressT for the compressible Neo-Hookean material characterized
by (5.8.1), (5.8.12), (5.8.15), (5.8.18) and (5.8.19) is given by

T = −1

2
k

(
1

Je
− Je

)
I + J−1

e μB′′
e , k = 2μ(1 + ν)

3(1 − 2ν)
, (5.8.59)
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Fig. 5.1 Uniaxial tension: comparison of the responses predicted by the quadratic strain energy
function (Q) and the Neo-Hookean strain energy function (NH) for ν = 1/3

which for uniaxial stress (5.8.53) yields the restrictions

T11 = T · (e1 ⊗ e1 − e2 ⊗ e2) = J−5/3
e μ(a2 − b2) , (5.8.60a)

p = −T11
3

= k

2

(
Je − 1

Je

)
. (5.8.60b)

The solution of these equations can be parameterized by the axial stress T11.
Specifically, (5.8.60b) can be solved for Je to obtain
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Je = T11
3k

+
√
1 +

(
T11
3k

)2

. (5.8.61)

Then, using the expression (5.8.52) for Je, the lateral stretch b is determined by

b =
√

Je
a

, (5.8.62)

so Eq. (5.8.60a) can be rewritten as a cubic equation for the axial stretch a of the
form

a3 −
(
J 5/3
e T11
μ

)
a − Je = 0 , (5.8.63)

which can be solved analytically choosing the root for which a = 1 when T11 = 0.
Figure 5.1 shows the responses predicted for uniaxial tension by the quadratic

strain energy function (Q) and the Neo-Hookean strain energy function (NH) for
ν = 1/3. Figure5.1a, b plot the normalized axial stress T11 for different axial stretch
regions, Fig. 5.1c plots the lateral stretch b, Fig. 5.1d plots the dilatation Je and
Fig. 5.1e plots the nominal Poisson ratio ν̄ defined by

ν̄ = −e22
e11

. (5.8.64)

From these figures it can be seen that the twomodels predict nearly identical response
only for a small axial stretch range about zero stress. Most importantly it can be seen
that the Neo-Hookean model predicts physically reasonable results for the full range
of stretch. Orthotropic invariants for thermoelastic–inelastic soft materials which can
experience large thermoelastic deformations are discussed in Sect. 6.6.

5.9 Viscous and Inviscid Fluids

This section discusses purely mechanical constitutive equations for compressible
viscous and inviscid fluids. From a physical point of view it is clear that the stress T
in a compressible fluid must depend on the elastic dilatation Je, which is a measure
of the fluid’s density. Moreover, experience with stirring honey indicates that it is
harder to stir the honey faster. This suggests that T will also depend on the velocity
gradient L. In addition, the pressure required to pump a viscous fluid through a pipe
depends on the flow rate. Therefore, T might also depend on the velocity v. Based
on these observations, as a first attempt to propose a constitutive equation for fluids,
it is assumed that the stress can be expressed in the form

T = T̃(Je, v,D,W) , (5.9.1)
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where for convenience L has been separated into its symmetric part D and its skew-
symmetric partW.

In the following, use will be made of invariance under SRBM to develop restric-
tions on the functional form (5.9.1). Since (5.9.1) must hold for all motions it must
also hold for SRBM so that

T+ = T̃(J+
e , v+,D+,W+) . (5.9.2)

However, under SRBM the Cauchy stress T transforms by

T+ = QTQT , (5.9.3)

where Q is a proper orthogonal tensor function of time only. Thus, the functional
form (5.9.1) must satisfy the restrictions

T̃(J+
e , v+,D+,W+) = QT̃(Je, v,D,W)QT . (5.9.4)

Recalling that under SRBM

Q̇ = �Q , �T = −� ,

J+
e = Je , v+ = ċ + �Qx + Qv ,

D+ = QDQT , W+ = QWQT + � ,

(5.9.5)

equation (5.9.4) requires

T̃(Je, ċ + �Qx + Qv,QDQT ,QWQT + �) = QT̃(Je, v,D,W)QT . (5.9.6)

Since (5.9.6) must hold for all motions and all SRMB, necessary restrictions on the
functional form T̃ can be obtained by considering special SRBMs.

Superposed Translational Velocity
This case considers superposed translational velocity with

ċ �= 0 , Q = I , Q̇ = 0 . (5.9.7)

Substituting (5.9.7) into (5.9.6) yields

T̃(Je, ċ + v,D,W) = T̃(Je, v,D,W) . (5.9.8)

Since this equation must hold for arbitrary values of ċ and the right-hand side is
independent of ċ, it follows that the Cauchy stress cannot depend on the velocity v.
Thus, T must be expressed as another function T̄ of Je,D and W only

T = T̄(Je,D,W) , (5.9.9)
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and the restriction (5.9.6) requires

T̄(Je,QDQT ,QWQT + �) = QT̄(Je,D,W)QT . (5.9.10)

Superposed Rate of Rotation
This case considers superposed rate of rotation. Since (5.9.10) must hold for all
skew-symmetric tensors � and the right-hand side of this equation is independent
of �, it follows that the Cauchy stress T cannot depend on the spin tensorW. Thus,
the most general viscous fluid is characterized by the constitutive equation

T = T̂(Je) + v
T(Je,D) ,

v
T(Je, 0) = 0 , (5.9.11)

where T̂(Je) characterizes the elastic response due to dilatation and
v
T(Je,D) char-

acterizes the viscous response. Also, these constitutive equations must satisfy the
restrictions that under SRBM

T̂(Je) = QT̂(Je)QT ,
v
T(Je,QDQT ) = Q

v
T(Je,D)QT , (5.9.12)

which require T̂ to be an isotropic tensor and
v
T to be an isotropic tensor function of

D.

Reiner-Rivlin Fluid

Since the restrictions (5.9.12) must hold for all proper orthogonal Q the function
v
T

is called an isotropic tensor function of its argument D. This notion of an isotropic
tensor function should not be confused with the notion of an isotropic tensor as
discussed in Appendix E. Furthermore, since the restriction (5.9.12) is unaltered

by the interchange of Q with −Q, it follows that
v
T is a hemotropic function of

D (isotropic with a center of symmetry). Now, using a result from the theory of

invariants, it follows that the most general form of T̂ and
v
T can be expressed as

T̂(Je) = − p̂(Je) I ,
v
T = d0 I + d1 D + d2 D2 , (5.9.13)

where p̂(Je) is a function of Je only, d0, d1 and d2 are scalar functions of Je and the
three independent invariants ofD. Alternatively, using the separation of deformation

rate into dilatational and distortional deformation rates,
v
T can be written in the form

v
T = d̄0 (D · I) I + d̄1 D′′ + d̄2 Sign(D′′3 · I)

[
D′′2 − 1

3
(D′′ · I) I

]
, (5.9.14)

where D′′ is the deviatoric part of D, d̄0, d̄1 and d̄2 are scalar functions of Je,D · I,
the two independent invariants of D′′ and the function Sign(x) is defined by
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Sig(x) = 1 for x ≥ 0 , Sig(x) = −1 for x < 0 . (5.9.15)

The constitutive equation characterized by (5.9.11) with the expressions (5.9.13) for
the stressT described a Reiner-Rivlin fluid. An alternative form of this Reiner-Rivlin
fluid is characterized by (5.9.11) for the total stress T, (5.9.13) for the elastic stress

T̂ and (5.9.14) for the viscous stress
v
T. Moreover, the strain energy is taken to be a

function of the dilatation
� = �̂(Je) , (5.9.16)

so the rate material dissipation (4.5.7) requires

D =
[
− p̂(Je) − ρz

∂�̂

∂ Je

]
D · I + v

T · D ≥ 0 , (5.9.17)

where use has been made of the expression (5.8.14) for the elastic dilatation Je.

Inviscid Fluid
For an inviscid fluid the Cauchy stress is independent of the rate of deformation D

so that
v
T vanishes in (5.9.13) and (5.9.14) and (5.9.17) requires

D =
[
− p̂(Je) − ρz

∂�̂

∂ Je

]
D · I ≥ 0 . (5.9.18)

Since the coefficient ofD · I is independent of rate, it can be shown that for an inviscid
fluid

T = T̂ = − p̂(Je) I , p̂(Je) = −ρz
∂�̂

∂ Je
. (5.9.19)

This means for an inviscid fluid the traction vector t always acts normal to the surface
on which it is applied

t = Tn = − p̂ n , (5.9.20)

and the pressure p̂ is a function of the elastic dilatation Je only.

Restrictions on a Reiner-Rivlin Fluid

Without specifying the functional form of
v
T it is not possible to obtain further restric-

tions using the dissipation equation (5.9.17). However, it is reasonable to assume that
the elastic part of the stress is the same as that for an inviscid fluid which is given
by (5.9.19) so the stress and the rate of material dissipation (5.9.17) associated with
the viscous stress (5.9.14) become

T = − p̂(Je) I + v
T(Je,D) , p̂(Je) = −ρz

∂�̂

∂ Je
,

D = v
T(Je,D) · D = d̄0 (D · I)2 + d̄1 D′′ · D′′ + d̄2 |D′′3 · I| ≥ 0 ,

(5.9.21)
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with the rate of material dissipation restricting the functional form for the viscous

stress
v
T. Sufficient but not necessary conditions forD ≥ 0 are given by

d̄0 ≥ 0 , d̄1 ≥ 0 , d̄2 ≥ 0 . (5.9.22)

Newtonian Viscous Fluid
A Newtonian viscous fluid is a special case of a Reiner-Rivlin fluid in which the

viscous stress
v
T is a linear function of the rate of deformation D. For this case,

v
T

reduces to
v
T = λ(D · I) I + 2μD′′ , (5.9.23)

where λ and μ are scalar functions of Je only. Moreover, it follows that
v
T can be

rewritten in the alternative form

T = − p̂(Je) I + v
T ,

v
T = − v

p I + 2μD′′ ,

p = − 1
3T · I = p̂ + v

p ,
v
p = − 1

3

v
T · I = −λD · I ,

(5.9.24)

which shows that the total pressure p has an elastic part p̂ and a viscous part
v
p that

depends on the rate of volume expansionD · I with λ being the dilatational viscosity
coefficient. Also, the rate of material dissipation (4.5.7) is satisfied provided that

D = v
T · D = λ (D · I)2 + 2μD′′ · D′′ ≥ 0 ,

λ ≥ 0 , μ ≥ 0 .
(5.9.25)

5.10 Viscous Dissipation

A simple generalized nonlinear Kelvin–Voigt model (see Fig. 5.2) for viscous dissi-
pation can be proposed by adding the response of the viscous part of a Newtonian
viscous fluid to that of a general elastic material. Specifically, for this model the
Cauchy stress T is proposed in the form

T = T̂ + v
T ,

v
T = λ (D · I) I + 2μD′′ , λ ≥ 0 μ ≥ 0 , (5.10.1)

where T̂ is the response of a general nonlinear elastic material with strain energy �

that satisfies equation
T̂ · D = ρ�̇ , (5.10.2)

for all motions and λ,μ are non-negative functions of Je that control the viscosity to
dilatational deformation rate and to distortional deformation rate, respectively. Also,
for this material the rate of material dissipation (4.5.7) requires
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Fig. 5.2 Sketch of a
nonlinear Kelvin–Voigt
model with an elastic
component in parallel with a
viscous component

Viscous component

Elastic component

D = v
T · D = λ (D · I)2 + 2μ (D′′ · D′′) ≥ 0 , (5.10.3)

which is automatically satisfied. Moreover, it follows that when λ and μ are both
positive, dissipation continues until the rate of deformation vanishes D = 0 with
T = T̂.

If the elastic part of the response is isotropic then the strain energy is given by
(5.8.5) and the stress T̂ is given by (5.8.10). Alternatively, if the elastic part of the
response is anisotropic then the strain energy is given by (5.3.9) and the stress T̂ is
given by (5.3.11). For either case, this model proposes isotropic viscous dissipation.

5.11 Elastic–Inelastic Materials

Figure5.3a shows a sketch of the stress–strain response of a typical metal to uniaxial
stress loading. The quantity T11 is the total axial component of the Cauchy stress
T and the quantity E1 is the total axial extension. The material is loaded in tension
along the path OABCD, unloaded along DE , reloaded along EFGH , unloaded
along H I and reloaded in compression along I J K L . Inspection of the points C, E
and L in Fig. 5.3a reveals that the stress in an elastic–plastic material can have
significantly different values for the same value of axial extension E1. Thismeans that
the response of an elastic–plastic material depends on the past history of deformation
(i.e., the responses to the deformation histories OABC , OAB − E and OAB − L
are different).

The points A, F, J in Fig. 5.3a represent points on the loading paths beyondwhich
the stress–strain relationship becomes nonlinear. Although the curve OABCD is
nonlinear it is not possible to determine whether the response is elastic or elastic–
inelastic until unloading is considered. Since the response shown in Fig. 5.3a does
not unload along the same loading path, it is clear that the response is not elastic,
but rather is elastic–inelastic. Moreover, B,G and K represent the points on the
loading paths beyond which some detectable value of strain relative to the peak
strain (normally taken to be 0.2%) remains when the material is unloaded to zero
stress. These points are called the yield points and deformation beyond them causes
permanent changes in the response of thematerial. It is also important tomention that
the paths BCD, GH and K L represent strain hardening paths where the magnitude
of the stress increases with increasing effective inelastic deformation.
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Fig. 5.3 a A sketch of the stress–strain response of a typical metal to uniaxial stress; b idealization
of the stress–strain response of a metal to uniaxial stress

To model the material response shown in Fig. 5.3a it is common to separate the
response into two parts: elastic response which is reversible and inelastic response
which is irreversible. Also, the material response is idealized as shown in Fig. 5.3b
by making the following assumptions:

(a) There are distinct yield points (A, B), (D, F,G) and (J, K ) that form the bound-
ary between elastic and inelastic responses.

(b) Unloading along DE and reloading along EF follow the same path.

Lagrangian Formulations
Lagrangian formulations of plasticity (inelasticity) enrich the theory of hyperelastic
solids with a plastic deformation measure that captures observed effects of history
and rate dependence of material response. A summary of the small deformation
theory within the context of thermodynamics can be found in the classical paper by
Naghdi [28]. Unfortunately, the large deformation theory of plasticity still is plagued
with controversies, some of which have been discussed in the critical review [29].
This section discusses three prominent formulations of large deformation theory:
one by Green and Naghdi [16], another attributed to Bilby et al. [6], Kröner [21] and
Lee [23], and another attributed to Besseling [4].

Green–Naghdi Formulation
Green and Naghdi [16] developed a large deformation thermomechanical theory
of plasticity. Confining attention to the purely mechanical response and using the
notation in this book, this theory introduces the total deformation gradient F and the
right Cauchy–Green deformation tensor C, which satisfy equations

Ḟ = LF , C = FTF , Ċ = 2FTDF . (5.11.1)
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The theory of hyperelasticity is enriched by introducing a symmetric plastic defor-
mation tensorCp (similar toC) and a scalar measure of isotropic hardening κ by the
evolution equations

Ċp = Ap , Ap = 	Āp , κ̇ = 	H , 	 ≥ 0 , (5.11.2)

where Āp controls the direction of plastic deformation rate, 	 is a non-negative
function that controls the magnitude of plastic deformation rate Ap and H controls
the rate of hardening. For metals, plastic deformation rate is isochoric soCp remains
unimodular, which requires

det(Cp) = 1 , Āp · C−1
p = 0 . (5.11.3)

Under SRBM the total deformation tensor F, the right Cauchy–Green tensor C, the
plastic deformation Cp and the hardening variable κ transform to F+,C+,C+

p and
κ+, such that

F+ = QF , C+ = C , C+
p = Cp , κ+ = κ , (5.11.4)

which place restrictions on the functional forms of 	, Āp, H .
In this theory, the strain energy � is assumed to be a function of F,Cp and κ but

since� is uninfluenced by SRBM, it must depend on F only through the deformation
tensor C so that

� = �(C,Cp, κ) . (5.11.5)

For both rate-independent and rate-dependent material response, the constitutive
equation for stress is taken in the form

T = 2ρF
∂�

∂C
FT . (5.11.6)

Moreover, the rate of material dissipation (4.5.7) requires

D = −	ρ

(
∂�

∂Cp
· Āp + ∂�

∂κ
H

)
≥ 0 , (5.11.7)

which places restrictions on the functional forms of �, Āp and H .
In addition to solving the balance of linear momentum (4.4.5), this theory requires

solution of the evolution equations (5.11.1) and (5.11.2) with initial conditions

F(0) ,Cp(0) , κ(0) . (5.11.8)

Bilby, Kröner, Lee Formulation
Bilby et al. [6], Kröner [21] and Lee [23] introduced a formulation that depends on a
second-order non-symmetric plastic deformation tensorFp (similar toF) determined
by an evolution equation of the form
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Ḟp = �pFp , �p = 	�̄p , (5.11.9)

where �̄p controls the direction of plastic deformation rate and 	 is a non-negative
function that controls the magnitude of plastic deformation rate Ḟp. Again, for metal
plasticity the plastic deformation rate is isochoric so Fp is unimodular and �̄p is
restricted, such that

det(Fp) = 1 , �̄p · I = 0 . (5.11.10)

Moreover, an elastic deformation tensor Fe is defined by the multiplicative form

Fe ≡ FF−1
p , (5.11.11)

and a hardening variable κ is introduced which satisfies the evolution equation in
(5.11.2). Usually this equation is written in the form F = FeFp, which suggests that
Fp transforms the reference configuration into an intermediate zero-stress configura-
tion and Fe transforms an intermediate configuration into the current configuration.
For general inhomogeneous deformations, F describes a compatible field with the
position x of a material point in the current configuration being a differentiable
function of the position X of the same material point in the reference configura-
tion. However, in general, both Fp and Fe are incompatible tensors which are not
determined by differentiation of deformation fields so unloading thematerial yields a
configuration which has residual stresses. In other words, in general, it is not possible
to unload the material to a zero-stress intermediate configuration.

The constitutive equations are restricted so that under SRBM, 	, �̄p and Fp

transform to 	+, �̄
+
p and F+

p , such that

	+ = 	 , �̄
+
p = �̄p , F+

p = Fp . (5.11.12)

It then follows from (5.11.4), (5.11.11) and (5.11.12) that under SRBM the elastic
deformation tensors Fe and Ce transform to F+

e and C+
e , such that

F+
e = QFe , Ce = FT

e Fe , C+
e = Ce . (5.11.13)

Using the fact that
˙

F−1
p = −	F−1

p �̄p , (5.11.14)

it follows that Fe and Ce satisfy the evolution equations

Ḟe = (L − 	Fe�̄pF−1
e )Fe ,

Ċe = FT
e [2D − 	(F−T

e �̄
T
pF

T
e + Fe�̄pF−1

e )]Fe .
(5.11.15)

In this theory, the strain energy� is assumed to be a function of Fe and κ but since
� is uninfluenced by SRBM, it must depend on Fe only through the deformation
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tensor Ce so that
� = �(Ce, κ) . (5.11.16)

For both rate-independent and rate-dependentmaterial response the stress is specified
by

T = 2ρFe
∂�

∂Ce
FT
e , (5.11.17)

and the rate of material dissipation (4.5.7) requires

D = 	ρ

(
2Ce

∂�

∂Ce
· �̄p − ∂�

∂κ
H

)
≥ 0 , (5.11.18)

which places restrictions on the functional forms of �, �̄p and H .
In addition to solving the balance of linear momentum (4.4.5), this theory requires

solution of the evolution equations (5.11.1) for F, (5.11.2) for κ and (5.11.9) for Fp

with initial conditions
F(0),Fp(0), κ(0) . (5.11.19)

Besseling Formulation
The formulation discussed by Besseling [4] (see also Besseling and van der Giessen
[5]) wasmotivated by the work of Eckart [12] andMandel [26] and can be interpreted
as proposing an evolution equation for a second-order non-symmetric tensor Fe with
positive determinant directly by the evolution equation

Ḟe = LeFe , Le = L − Lp , Lp = 	L̄p , (5.11.20)

where Le is the elastic deformation rate, L̄p controls the direction of inelastic rate
Lp, 	 is a non-negative function that controls the magnitude of inelastic rate and Fe

measures elastic deformations from a zero-stress intermediate configuration.
Moreover, the evolution equation (5.11.20) will be identical to the evolution equa-

tion for Fe in (5.11.15) if L̄p is specified by

L̄p = Fe�̄pF−1
e , (5.11.21)

which under SRBM satisfies the transformation relation

L̄+
p = QL̄pQT . (5.11.22)

For this theory, the strain energy function � is specified by (5.11.16), the stress
T is specified by (5.11.17) and the rate of material dissipationD requires (5.11.18).
In addition to solving the balance of linear momentum (4.4.5), this theory requires
solution of the evolution equations (5.11.20) for Fe and (5.11.2) for κ with initial
conditions

Fe(0), κ(0) . (5.11.23)
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Unphysical Arbitrariness of the Lagrangian Formulation
Unphysical arbitrariness of the Lagrangian formulation has been discussed in a series
of papers [36–38]. Specifically, for a fixed value of elastic deformation Fe and an
arbitrary nonsingular tensor A with detA > 0, it follows from (5.11.11) that

Fe = (FA)(FpA)−1 . (5.11.24)

This means that the reference configuration associated with F and Fp is arbitrary. In
particular, A can be used to set the initial value of F = I or to set the initial value
of Fp = I so the choice of total deformation measure F or the plastic deformation
measure Fp is arbitrary.

In addition, the elastic deformation tensor Fe and the plastic deformation tensor
Fp in (5.11.11) are usually presented as a separation of the total deformation gradient
F into elastic and plastic parts

F = FeFp . (5.11.25)

Using the expression (3.3.1a) which shows that F transforms a material line element
dX in the reference configuration to its deformed line element dx in the current
configuration, the separation (5.11.25) is often interpreted as Fp transforming the
line element dX to dy in an intermediate configuration and Fe transforming dy to dx

dx = FdX , dy = FpdX , dx = Fedy . (5.11.26)

Letting O be a proper orthogonal tensor

OOT = I , det(O) = +1 , (5.11.27)

the separation (5.11.25) can be rewritten in the form

F = (FeOT )(OFp) , (5.11.28)

which shows that both the plastic deformation tensor Fp and the elastic deformation
tensor Fe contain arbitrariness to rotations of the intermediate configuration.

Eulerian Formulation of Elastically Anisotropic Elastic–Inelastic Materials
The Eulerian formulation for nonlinear elastic solids in Sect. 5.3 can be general-
ized for elastically anisotropic elastic–inelastic materials by modifying the evolution
equation for the microstructural vectorsmi to include a second-order tensor Lp that
characterizes the inelastic rate. Specifically, an Eulerian formulation for elastically
anisotropic inelastic material response, which was motivated by the work of Eckart
[12] and Leonov [24], was developed in [35]. Themain idea is tomodel the following
physical features of inelastic flow in metals:

• elastic deformations of the atomic lattice cause stress.
• elastic deformations of the atomic lattice remain small after dislocations have
moved through the lattice.
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• the atoms in a specific lattice change with time as dislocations move through the
lattice.

• edges of the parallelepiped formed by the atomic lattice do not rotate as material
line elements.

In this model, the elastic deformations and orientation of the atomic lattice are mod-
eled by the parallelepiped formed by the triadmi (i = 1, 2, 3) of linearly independent
microstructural vectors

Je = m1 × m2 · m3 ≥ 0 , (5.11.29)

where the elastic dilatation Je is an internal state variable that can be determined by
the current state of stress in thematerial. Thesemicrostructural vectors are determined
by the evolution equations

ṁi = (L − Lp)mi , Lp = 	L̄p , 	 ≥ 0 , (5.11.30)

where 	 controls the magnitude and L̄p controls the direction of the inelastic rate
tensorLp, both ofwhich require a constitutive equation. IfLp vanishes, then the solu-
tion of (5.11.30) causes mi to evolve as material line elements so these equations
characterize an Eulerian formulation of a general anisotropic hyperelastic solid. Oth-
erwise,mi characterize elastic deformations and the orientation of the atomic lattice,
which is not directly connected to material line elements.

In addition, an isotropic hardening variable κ is determined by the evolution
equation

κ̇ = 	H , (5.11.31)

where H is a function that controls the rate of hardening. More general directional
hardening can be modeled by introducing directional hardening variables βi j = β j i

which satisfy the evolution equations

β̇i j = 	Hi j , (5.11.32)

where Hi j = Hji are functions that control the relative magnitudes of βi j . These
functions should not be confused with the components Hi j of the proper orthogonal
matrix used to discuss material symmetry in Sect. 5.6.

Under SRBM the microstructural vectorsmi , the inelastic deformation rate 	, its
direction L̄p, the hardening variables κ and βi j and the hardening functions H and
Hi j transform tom+

i , 	+, L̄+
p , κ+, β+

i j , H
+ and H+

i j , such that

m+
i = Qmi , 	+ = 	 , L̄+

p = QL̄pQT ,

κ+ = κ , β+
i j = βi j , H+ = H , H+

i j = Hi j .
(5.11.33)

The strain energy � is assumed to be a function of mi , κ and βi j , but since �

must be unaffected by SRBM it can depend on mi only through the metric mi j of
elastic deformation, which satisfies equations
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mi j = mi · m j , m+
i j = mi j . (5.11.34)

Moreover, using (5.11.30) and (5.11.34), it follows that the elastic metric satisfies
the evolution equation

ṁi j = 2(D − Dp) · (mi ⊗ m j ) , (5.11.35)

where the inelastic deformation rate Dp is defined by

Dp = 1

2
(Lp + LT

p ) = 	D̄p , D̄p = 1

2
(L̄p + L̄T

p ) . (5.11.36)

For this model the strain energy function and the stress are proposed in the forms

� = �(mi j , κ, βi j ) , T = T(mi , κ, βi j ) . (5.11.37)

It then follows that the rate of material dissipation (4.5.7) requires

D =
[
T − 2ρ

∂�

∂mi j
(mi ⊗ m j )

]
· D

+ 	

[
2ρ

∂�

∂mi j
(mi ⊗ m j ) · D̄p − ρ

∂�

∂κ
H − ρ

∂�

∂βi j
Hi j

]
≥ 0 .

(5.11.38)

Without specifying details of inelastic deformation rate and the hardening functions
	, D̄p, H and Hi j it is not possible to obtain necessary restrictions on the consti-
tutive equation for stress. However, motivated by the constitutive equation (5.3.4)
for a hyperelastic material and by the requirement that the constitutive equation for
elastic–inelastic response contain that for a hyperelastic material as a special case,
the constitutive equation for stress in an elastic–inelastic material is specified by

T = 2ρ
∂�

∂mi j
(mi ⊗ m j ) . (5.11.39)

Then, the rate of material dissipation (4.5.7) requires the total dissipation due to the
inelastic rate and the rate of hardening to be non-negative

D = 	

(
T · D̄p − ρ

∂�

∂κ
H − ρ

∂�

∂βi j
Hi j

)
≥ 0 . (5.11.40)

Also, the constitutive equation for stress is assumed to be restricted so that a zero-
stress material state is characterized by

T = 0 ,
∂�

∂mi j
= 0 for mi j = δi j , (5.11.41)
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where δi j is the Kronecker delta. This means that the triadmi has been defined so that
mi are orthonormal vectors in a zero-stress material state. In particular, it is noted
that the vectors mi in any zero-stress material state are usually not parallel to the
lattice vectors in that state.

Sincemi are linearly independent and not necessarily orthonormal in the current
configuration, it is convenient to introduce their reciprocal vectors mi by

m1 = J−1
e (m2 × m3) , m2 = J−1

e (m3 × m1) , m3 = J−1
e (m1 × m2) ,

(5.11.42)
so that

J̇e = Je(D − Dp) · I . (5.11.43)

Moreover, the evolution equations (5.11.30) formi , (5.11.31) for κ and (5.11.32) for
βi j require initial conditions

mi (0), κ(0), βi j (0) . (5.11.44)

Separation of Elastic Dilatation and Distortional Deformations
To introduce separate control over the response of the material to dilatation and
distortional rates of deformation, it is convenient to use the elastic dilatation Je, the
distortional deformation vectors m′

i and the elastic distortional deformation metric
m ′

i j , which satisfy the Eqs. (5.11.43), (3.11.14), (5.11.30) and (3.11.16),

Je = m1 × m2 · m3 > 0 , J̇e = Je(D · I − 	D̄p) ,

m′
i = J−1/3

e mi , ṁ′
i = (L′′ − 	L̄′′

p)m
′
i ,

m ′
i j = m′

i · m′
j = m ′

j i , ṁ ′
i j = 2

(
m′

i ⊗ m′
j − 1

3m
′
i j I

)
· (D − 	D̄p) ,

(5.11.45)
where L′′ is the deviatoric part of the velocity gradient L and L̄′′

p is the deviatoric
part of L̄p. Then, the strain energy function and stress are proposed in the forms

� = �̃(Je,m
′
i j , κ, βi j ) , T = T̃(Je,m′

i , κ, βi j ) , (5.11.46)

and the rate of material dissipation (4.5.7) requires

D =
[
T − ρ Je

∂�̃

∂ Je
I − 2ρ

∂�̃

∂m ′
i j

(
m′

i ⊗ m′
j − 1

3
m ′

i j I
)]

· D

+ 	

[
ρ Je

∂�̃

∂ Je
D̄p · I + 2ρ

∂�̃

∂m ′
i j

(
m′

i ⊗ m′
j − 1

3
m ′

i j I
)

· D̄p

−ρ
∂�̃

∂κ
H − ρ

∂�̃

∂βi j
Hi j

]
≥ 0 .

(5.11.47)
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Again, without specifying details of the inelastic rate and the hardening functions
	, D̄p, H and Hi j it is not possible to obtain necessary restrictions on the constitutive
equation for stress. However, motivated by the constitutive equation (5.3.11) for
a hyperelastic material and by the requirement that the constitutive equation for
elastic–inelastic response contain that for a hyperelastic material as a special case,
the constitutive equation for stress in an elastic–inelastic material is specified by

T = −p I + T′′ = T̃ , p = p̃ = −ρ Je
∂�̃

∂ Je
,

T′′ = T̃′′ = 2ρ
∂�̃

∂m ′
i j

(
m′

i ⊗ m′
j − 1

3
m ′

i j I
)

.

(5.11.48)

Then, the rate of material dissipation requires the total dissipation due to the inelastic
rate and the rate of hardening to be non-negative

D = 	

[
− p̃ (D̄p · I) + T̃′′ · D̄p − ρ

∂�̃

∂κ
H − ρ

∂�̃

∂βi j
Hi j

]
≥ 0 . (5.11.49)

Also, the constitutive equation for stress is assumed to be restricted so that a
zero-stress material state is characterized by

T = 0 ,
∂�̃

∂ Je
= 0 ,

∂�̃

∂m ′
i j

= 1

3

∂�̃

∂m ′
nn

δi j for Je = 1 and m ′
i j = δi j . (5.11.50)

This means that the triad m′
i has been defined so that m′

i are orthonormal vectors in
a zero-stress material state.

Moreover, the evolution equations (5.11.43) for Je, (5.11.45) form′
i , (5.11.31) for

κ and (5.11.32) for βi j require initial conditions

Je(0),m′
i (0), κ(0), βi j (0) . (5.11.51)

Eulerian Formulation of Elastically Isotropic Elastic–Inelastic Materials
For elastically isotropic elastic–inelastic materials experiments on identical samples
of the material in its current state cannot distinguish between the microstructural
vectorsm′

1,m
′
2 andm

′
3 so the material response functions must be insensitive to this

arbitrariness ofm′
i . Consequently, Je in (5.11.29) characterizes the elastic dilatation

and satisfies the evolution equation (5.11.43). Also, the symmetric, positive-definite,
unimodular tensor B′

e defined in (5.8.1)

B′
e = m′

i ⊗ m′
i , (5.11.52)

characterizes elastic distortional deformations. Using (5.11.45), it can be shown that
B′
e satisfies the evolution equation



5.11 Elastic–Inelastic Materials 157

Ḃ′
e = L′′B′

e + B′
eL

′′T − 	Āp , Āp = L̄′′
pB

′
e + B′

eL̄
′′T
p , (5.11.53)

where L̄′′
p is the deviatoric part of L̄p. This evolution equation automatically satisfies

the condition (3.11.26) that B′
e remains unimodular [detB′

e = 1] since

Ḃ′
e · B′−1

e = 0 , Āp · B′−1
e = 0 . (5.11.54)

Following theworkofEckart [12] andLeonov [24] for elastically isotropic elastic–
inelastic materials, an evolution equation for the elastic distortional deformation
tensor B′

e can be proposed directly and independently of the microstructural vectors
m′

i . This means that instead of specifying a constitutive equation for L̄p, it is possible
to propose an evolution equation for B′

e directly in the form

Ḃ′
e = L′′B′

e + B′
eL

′′T − 	Ap , (5.11.55)

where Ap is a symmetric tensor that controls the direction of inelastic distortional
deformation rate. This tensor must satisfy the restriction

Ap · B′−1
e = 0 , (5.11.56)

which ensures that B′
e remains unimodular.

In this model, the strain energy function for elastically isotropic response is taken
to be a function of the elastic dilatation Je, the elastic distortional deformation B′

e
and the hardening κ . However, under SRBM Je,B′

e andAp transform to J+
e ,B′+

e and
A+

p , such that

J+
e = Je , B′+

e = QB′
eQ

T , A+
p = QApQT , (5.11.57)

so the strain energy function can depend on B′
e only through its two independent

invariants α1 and α2, defined by

α1 = B′
e · I , α1 = B′

e · B′
e , (5.11.58)

which satisfy the evolution equations

α̇1 = 2B′′
e · D − 	Ap · I ,

α̇2 = 4

(
B′2
e − 1

3
α2I

)
· D − 2	Ap · B′

e .
(5.11.59)

Thus, the strain energy function � and the stress are proposed in the forms

� = �(Je, α1, α2, κ) , T = T(Je,B′
e, κ) , (5.11.60)

and for both rate-independent and rate-dependent response the stress is specified by
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T = −p I + T′′ , p = −ρ Je
∂�

∂ Je
,

T′′ = 2ρ

[
∂�

∂α1
B′′
e + 2

∂�

∂α2

(
B′2
e − 1

3
α2I

)]
,

(5.11.61)

whereT′′ is the deviatoric part ofT. Also, the rate of material dissipationD in (4.5.7)
requires

D = 	

[
−p (D̄p · I) + ρ

(
∂�

∂α1
Ap · I + 2

∂�

∂α2
Ap · B′

e − ∂�

∂κ
H

)]
≥ 0 .

(5.11.62)
In addition, the constitutive equation for stress is assumed to be restricted so that a
zero-stress material state is characterized by

T = 0 ,
∂�

∂ Je
= 0 for Je = 1 and B′

e = I . (5.11.63)

The evolution equations (5.11.43) for Je, (5.11.55) for B′
e and (5.11.31) for κ

require initial conditions
Je(0),B′

e(0), κ(0) . (5.11.64)

In this regard, it is assumed that the constitutive equation (5.11.61) for stress is
invertible and that experiments can be performed to determine the values of hardening
variable κ at any state of the material. In particular, the values of Je and B′

e in any
zero-stress material state are given by (5.11.63). Also, when 	 vanishes, the theory
represents an Eulerian formulation of a general elastically isotropic hyperelastic
material.

Since the inelastic deformation rate causes a tendency for the deviatoric stress T′′
to approach zero, Rubin and Attia [42] proposed Ap in the form

Ap = B′
e −

(
3

B′−1
e · I

)
I , (5.11.65)

so the evolution equation (5.11.55) is given by

Ḃ′
e = L′′B′

e + B′
eL

′′T − 	Ap , Ap = B′
e −

(
3

B′−1
e · I

)
I . (5.11.66)

As discussed in [42], since B′
e is a unimodular positive-definite tensor, the spectral

form of B′
e can be used to show that

Ap · I ≥ 0 , Ap · B′
e ≥ 0 . (5.11.67)

As a special case, the strain energy function is given by a compressible Neo-
Hookean form
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ρz� = f (Je) + 1

2
μ(α1 − 3) , (5.11.68)

where ρz is a constant that is not necessarily the zero-stress density, f (Je) controls
the response to elastic dilatation and μ is the positive zero-stress shear modulus.
Moreover, from (5.11.61) the stress is specified by

T = −p I + T′′ , p = −
(

ρ Je
ρz

)
d f

d Je
, T′′ =

(
ρ

ρz

)
μB′′

e , (5.11.69)

with the function f (Je) satisfying the restrictions

f (1) = 0 ,
d f

d Je
(1) = 0 ,

d2 f

d J 2
e

(1) > 0 , (5.11.70)

imposed by the condition (5.11.63) for a zero-stress material state and the condition
that the bulk modulus is positive. Also, the rate of material dissipation (5.11.62)
requires

D = 	

[
−p (D̄p · I) + 1

2

(
ρ

ρz

)
μAp · I

]
≥ 0 . (5.11.71)

In Sect. 6.8 the volumetric inelastic rate D̄p · Iwill be related to the rate of change
of porosity in a porous material. However, for nonporous metals plastic deformation
rate is considered to be isochoric, which requires

D̄p · I = 0 , (5.11.72)

and the rate of material dissipation (5.11.71) requires

D = 1

2

(
ρ

ρz

)
μ	(Ap · I) ≥ 0 , (5.11.73)

which in view of (5.11.67), is automatically satisfied. In this expression, use has
been made of the evolution equation (5.11.45) for Je, the expressions (4.1.16) and
(5.11.69)–(5.11.73) to deduce that

Je = ρ

ρz
, T = −p I + T′′ , p = − d f

d Je
,

T′′ = μB′′
e , D = 1

2
μ	(Ap · I) ≥ 0 ,

(5.11.74)

where ρz is the mass density in any zero-stress state.

Additional Comments on Arbitrariness
From the perspective of the definition of internal state variables by Onat [31], the
total deformation tensor F, the plastic deformation tensorsCp and Fp and the elastic
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deformation tensors Fe and Ce are not internal state variables since they cannot be
measured, in principle, by experiments on identical samples of the material in its
current state. In particular, they are affected by arbitrariness of the choices of: the
reference configuration; an intermediate configuration; a total deformation measure
and a plastic deformation measure, which have been discussed in [36–38].

In [38] it was proved that when this arbitrariness is removed from the Lagrangian
multiplicative formulation associated with (5.11.11), that formulationmust reduce to
the Eulerian formulation based on themicrostructural vectorsmi . Moreover in [38] it
was shown thatmi are internal state variables in the sense of Onat [31] because their
initial values can be measured, in principle, by experiments on identical samples of
the material in its current state.

Elastic anisotropy of a material with the strain energy function specified by
(5.11.37) is characterized by the dependence of the strain energy on the vectorsmi .
It is important to emphasize that the index (i) in mi refers to distinct directions of
the atomic lattice. If any of these directions cannot be distinguished by experiments,
then the strain energy function must satisfy symmetry conditions which ensure that
the material response is also insensitive to these indistinguishable directions.

Comparison of the evolution equation (5.11.20) for Fe and (5.11.30) formi sug-
gests that these formulations may be identical. The discussion in Sect. 5.4, which
describes the difference between Fe and mi for an elastic material, is similar for an
elastic–inelastic material. Specifically, consider an arbitrary right-handed orthonor-
mal set of constant base vectors Mi and define the elastic deformation tensor Fe

by
Fe = mi ⊗ Mi , (5.11.75)

which satisfies the evolution equation and initial condition

Ḟe = (L − Lp)Fe , Fe(0) = mi (0) ⊗ Mi . (5.11.76)

However, in [38] it was shown that the elastic response of the material depends
on mi through the evolution equation (5.11.30) and on their initial values mi (0).
Although mi (0) are measurable, the tensor Fe contains unphysical arbitrariness of
the orientation ofMi which can be removed by considering the Eulerian formulation
based on mi .

Rate-Independent Inelasticity with a Yield Function
For rate-independent inelasticity a yield function g is introduced which characterizes
elastic response for g < 0 and the elastic–inelastic boundary for g = 0. For states
at the elastic–inelastic boundary, it is necessary to specify unloading, neutral load-
ing and loading conditions which have zero inelastic rate for unloading and neutral
loading, and nonzero inelastic rate for loading. Differences in the loading conditions
for stress-space and strain-space formulations have been discussed in [30]. In partic-
ular, the strain-space formulation can model strain softening with decrease in stress
that occurs due to damage mechanisms. Moss [27] pointed out that the numerical
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algorithm developed by Wilkins [48] is consistent with the loading conditions in the
strain-space formulation developed by Naghdi and Trapp [30].

Here, use is made of the strain-space loading conditions and the yield function
for elastically anisotropic response is specified by

g = g(mi j , κ, βi j ) ≤ 0 . (5.11.77)

With the help of the evolution equations (5.11.35) for mi j , (5.11.31) for κ and
(5.11.32) for βi j , it follows that

ġ = ĝ − 	 ḡ ,

ĝ = 2

(
∂g

∂mi j

)
(mi ⊗ m j ) · D ,

ḡ = 2

(
∂g

∂mi j

)
(mi ⊗ m j ) · D̄p −

(
∂g

∂κ

)
H −

(
∂g

∂βi j

)
Hi j > 0 ,

(5.11.78)

where the functional form of g has been restricted so that ḡ remains positive. Then,
the values of 	 for elastic response, unloading from the elastic–inelastic boundary,
neutral loading on the elastic–inelastic boundary and inelastic loading on the elastic–
inelastic boundary are specified by

	 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for elastic response g < 0 ,

0 for unloading g = 0 and ĝ < 0 ,

0 for neutral loading g = 0 and ĝ = 0 ,

ĝ

ḡ
> 0 for inelastic loading g = 0 and ĝ > 0 ,

(5.11.79)

where the value of 	 for loading has been determined by the consistency condition
which ensures that g remains zero (ġ = 0) during inelastic loading. From these
conditions it can be seen that for elastic response with 	 = 0, the rate of change
of the yield function ġ = ĝ so that ĝ > 0 on the elastic–inelastic boundary requires
nonzero inelastic deformation rate (	 > 0) to satisfy the consistency condition.

Also, since during loading 	 is linear in the rate D, it follows that the evolution
equations (5.11.31), (5.11.32) and (5.11.35) are homogeneous of order one in time
when H and Hi j are independent of D, so the material response is rate independent.

Rate-Dependent Response
For the rate-independent theory, the rate of inelastic deformation	 is a homogeneous
function of order one in the total rate of deformation D. In contrast, if 	 is not is a
homogeneous function of order one inD, then thematerial response is rate dependent.
Examples of rate-dependent response can be found in [7–11, 25, 33, 34].

Amodel exhibiting a smooth elastic–inelastic transition for both rate-independent
and rate-dependent response can be found in [18, 19]. In this model the function 	 in
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(5.11.30) for elastically anisotropic response or in (5.11.55) for elastically isotropic
response, which controls the magnitude of inelastic deformation rate, is specified in
the form

	 = 	0 + 	1〈g〉 , 	0 = a0 + b0ε̇ , 	1 = a1 + b1ε̇ ,

a0 ≥ 0 , b0 ≥ 0 , a1 ≥ 0 , b1 ≥ 0 ,

ε̇ =
√
2

3
D′′ · D′′ ,

(5.11.80)

where ε̇ is the effective total distortional deformation rate, g is a yield function and
the Macaulay brackets 〈g〉 are defined by

〈g〉 = max(g, 0) . (5.11.81)

When a0 = b0 = b1 = 0 this form yields a rate-dependent overstress model like
that developed in [25, 33]. Also, when a0 = b0 = a1 = 0 the model yields a rate-
independent overstressmodel, which approximates a standard rate-independent yield
functionwhenb1 is large enough to ensure that g remains a small positive value during
inelastic loading. In addition, the constants a0 and b0 control the inelastic rate that is
active for all nonzero values of L̄p in (5.11.30) or Ap in (5.11.55), which can model
the response observed in soils. It is also noted that this smooth-transition model has
been generalized and numerical algorithms have been developed in [20].

Strongly Objective, Robust Numerical Integration Algorithms

Elastically Isotropic Response
Strongly objective, robust numerical algorithms for integrating the evolution equa-
tions for elastic–inelastic response have been discussed in [18, 19, 32, 40, 43, 44].
In this section, attention is limited to elastically isotropic elastic–inelastic material
response of metals for which the elastic dilatation Je and the symmetric, positive-
definite, unimodular elastic distortional deformation tensor B′

e satisfy the evolution
equation (3.11.30) for Je and (5.11.66) for B′

e

J̇e = Je D · I ,

Ḃ′
e = L′′B′

e + B′
eL

′′T − 	

[
B′
e −

(
3

B′−1
e · I

)
I
]

.
(5.11.82)

Moreover, the deviatoric part of the evolution equation for B′
e can be written in the

form

Ḃ′′
e = L′′B′

e + B′
eL

′′T − 2

3
(B′′

e · D′′) I − 	B′′
e , (5.11.83)

where L′′ and D′′ are the deviatoric parts of L and D, respectively, and B′′
e is the

deviatoric part of B′
e (3.11.38).
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Following the discussion in Sect. 3.13 and the work in [14, 46] and considering a
typical time step which begins at t = tn , ends at t = tn+1, with time increment �t =
tn+1 − tn , the relative dilatation Jr and unimodular partF′

r of the relative deformation
gradient during the time step satisfy the evolution equations and initial conditions
(3.13.5) and (3.13.7)

J̇r = Jr D · I , Jr (tn) = 1 ,

Ḟ′
r = L′′ F′

r , F′
r (tn) = I .

(5.11.84)

Then, the exact solution of the evolution equation for Je is given by

Je(tn+1) = Jr (tn+1)Je(tn) . (5.11.85)

Also, the elastic trial value B′′∗
e (t) defined by (3.13.9) and (3.13.11)

B′′∗
e = B′∗

e − 1

3
(B′∗

e · I) I , B′∗
e (t) = F′

r (t)B
′
e(tn)F

′T
r (t) (5.11.86)

satisfies the evolution equation and initial condition

Ḃ′′∗
e = L′′B′∗

e + B′∗
e L

′′T − 2

3
(B′′∗

e · D′′) I , B′′∗
e (tn) = B′′

e (tn) . (5.11.87)

Consequently,B′′∗
e (tn+1) is the exact solution of (5.11.83)when inelastic deformation

rate vanishes (i.e., 	 = 0).
Next, the evolution equation (5.11.83) is approximated by

Ḃ′′
e = Ḃ′′∗

e − 	B′′
e , (5.11.88)

which with the help of a backward Euler approximation of the derivative can be
solved to obtain

B′′
e (tn+1) =

(
1

1 + �	

)
B′′∗
e (tn+1) , (5.11.89a)

�	 = �t	(tn+1) , (5.11.89b)

where	(tn+1) is an approximation of	 at the end of the time step that is uninfluenced
by SRBM. This expression is similar to the radial-return numerical algorithm devel-
oped by Wilkins [48] which scales the trial deviatoric stress to obtain the solution at
the end of the time step.

For a general functional form of 	 it is necessary to iterate on the guess for �	

and integrate the other evolution equations for the values of the history-dependent
variables at the end of the time step. This procedure continues until (5.11.89b) is
consistent with the guess for �	 and the functional form for 	 evaluated using the
predicted values of the history-dependent variables at the end of the time step. It is
important to emphasize that each iteration step must start with the initial values of
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the history-dependent variables equal to their accepted values at the beginning of the
step to not accumulate history dependence of inaccurate trial solutions.

As described in [42], once the value of B′′
e has been determined at the end of the

time step, the value of B′
e at the end of the time step is determined by solving the

cubic equation

detB′
e = det

(
1

3
α1 + B′′

e

)
= 1 , (5.11.90)

for the associated value of the invariant α1. In this regard, it was noted in [18] that
the solution (49a) in [42] is more accurate than the solution (54) there.

As a simple example, the strain energy function is specified by (5.11.68) and the
von Mises effective stress σe is determined by

σe =
√
3

2
T′′ · T′′ = J−1

e μ

√
3

2
B′′
e · B′′

e = 2J−1
e μγe ,

γe =
√
3

2
g′′
e · g′′

e = 1

2

√
3

2
B′′
e · B′′

e , g′′
e = 1

2
B′′
e ,

(5.11.91)

where g′′
e is the elastic distortional strain tensor defined in (3.11.37) and γe is a scalar

measure of elastic distortional strain. Motivated by these expressions a simple form
for the yield function g is specified by

g = 1 − κ

γe
, (5.11.92)

which indicates that the onset of yield occurs when γe = κ .
Next, the elastic trial value γ ∗

e (tn+1) and the value γe(tn+1) at the end of the time
step are defined by

γ ∗
e (tn+1) = 1

2

√
3

2
B′′∗
e (tn+1) · B′′∗

e (tn+1) ,

γe(tn+1) = 1

2

√
3

2
B′′
e (tn+1) · B′′

e (tn+1) .

(5.11.93)

It then follows from (5.11.89a) that

γe(tn+1) =
(

1

1 + �	

)
γ ∗
e (tn+1) . (5.11.94)

Moreover, the elastic trial value g∗(tn+1) of the yield function (5.11.92) at the end
of the time step is given by

g∗(tn+1) = 1 − κ(tn)

γ ∗
e (tn+1)

. (5.11.95)
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If g∗(tn+1) ≤ 0, then the response during the time step is elastic with

�	 = 0 , κ(tn+1) = κ(tn) for g∗(tn+1) ≤ 0 . (5.11.96)

On the other hand, if g∗(tn+1) > 0, then the response during the time step is inelastic
and the value of �	 is determined by requiring the yield function at the end of the
time step to vanish

g(tn+1) = 1 − κ(tn+1)

γe(tn+1)
= 1 − (1 + �	)κ(tn+1)

γ ∗
e (tn+1)

= 0 , (5.11.97)

where κ(tn+1) is an estimate of the value of κ at the end of the time step that must
satisfy the restriction

κ(tn+1) < γ ∗
e (tn+1) . (5.11.98)

Then, for inelastic response the solution of (5.11.97) yields

�	 = γ ∗
e (tn+1)

κ(tn+1)
− 1 > 0 for g∗(tn+1) > 0 . (5.11.99)

Although the Eulerian formulations does not introduce a measure of inelastic
strain, many evolution equations for hardening are formulated in terms of an effective
inelastic strain rate ε̇p. To help translate these evolution equations into an Eulerian
formulation,with the help of (3.11.37) and (5.11.91), the evolution equation (5.11.83)
suggests that the effective inelastic strain rate ε̇p be defined by

ε̇p = 	

√
2

3
g′′
e · g′′

e = 2

3
	 γe , (5.11.100)

which can be integrated by the expression

εp(tn+1) = εp(tn) + 2

3
�	 γe(tn+1) = εp(tn) + 2

3

(
�	

1 + �	

)
γ ∗
e (tn+1) ,

(5.11.101)
where use has been made of (5.11.94).

Elastically Anisotropic Response
Recently Kroon and Rubin [22] developed a strongly objective, robust numerical
algorithm for integrating the evolution equations (5.11.45) for the elastic dilatation Je
and for the elastic distortional deformation vectorsm′

i as well as evolution equations
for isotropic κ in (5.11.31) and directional hardening βi j in (5.11.32).

J̇e = Je(D · I − 	D̄p) , ṁ′
i = (L′′ − 	L̄′′

p)m
′
i ,

κ̇ = 	H , β̇i j = 	Hi j .
(5.11.102)
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To present the main idea of this algorithm, consider a fully anisotropic elastic–
inelastic material with a strain energy function � of the form

� = �(Je,m
′
i j , κ, βi j ) , (5.11.103)

for which the Cauchy stress is given by (5.11.48)

T = Jeρ
∂�

∂ Je
I + 2ρ

∂�

∂m ′
i j

(
m′

i ⊗ m′
j − 1

3
m ′

i j I
)

. (5.11.104)

Also, for definiteness the function 	 in the evolution equations (5.11.45) is speci-
fied by the form (5.11.80) proposed for the model with a smooth elastic–inelastic
transition. Specifically, 	 is specified by

	 = 	(Je,m
′
i j , κ, βi j , ε̇) , (5.11.105)

where the effective total distortional deformation rate ε̇ is defined in (5.11.80).
For the numerical algorithm, �	I represents the I th estimate of �t	(tn+1) eval-

uated at the end of the time step. The evolution equations (5.11.102) are solved for
the values Je(tn+1) andm′

i (tn+1) at the end of the time step, which together with esti-
mates of the hardening variables κ(tn+1) and βi j (tn+1) are used to obtain the value
	(tn+1) of 	 at the end of the time step. Convergence of the algorithm is obtained
by iterating on the value �	I until the function

f (�	I ) = �	I − �t	(tn+1) , �	I ≥ 0 (5.11.106)

is sufficiently small.
Using the relative dilatation Jr in (5.11.84), the elastic trial J ∗

e of the elastic
dilatation Je satisfies equations

J ∗
e (t) = Jr (t)Je(tn) , J̇ ∗

e = J ∗
e D · I , J ∗

e (tn) = Je(tn) , (5.11.107)

so the evolution equation (5.11.102) for Je can be rewritten in the form

d

dt

(
Je
J ∗
e

)
= −	D̄p · I , (5.11.108)

which can be integrated approximately to obtain

Je(tn+1) = J ∗
e (tn+1) exp[−�	I D̄p(tn+1) · I] , �	I = �t	(tn+1) . (5.11.109)

In this equation, D̄p(tn+1) is an estimate of the value of D̄p at the end of the time step
and �	I is the I th estimate of �t	(tn+1) evaluated at the end of the time step.
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Next, using (5.11.84) the elastic trial values m′∗
i of the elastic distortional defor-

mation vectors m′
i satisfy equations

m′∗
i = F′

r m
′
i (tn) , ṁ′∗

i = L′′ m′∗
i , m′∗

i (tn) = m′
i (tn) . (5.11.110)

Then, the evolution equation (5.11.102) form′
i is approximated by

ṁ′
i = ṁ′∗

i − 	L̄′′
p m

′
i . (5.11.111)

Using a backward Euler approximation of the derivative, this equation integrates to
obtain

m′
i (tn+1, I ) = A∗−1(I )m′∗

i (tn+1) , A∗(I ) = I + �	I L̄′′∗
p

[det(I + �	I L̄′′∗
p )]1/3 , (5.11.112)

where A∗ has been normalized to be unimodular [i.e., detA∗ = 1] which ensures
that the vectors m′

i (tn+1, I ) satisfy the condition

m′
1(tn+1, I ) × m′

2(tn+1, I ) · m′
3(tn+1, I ) = 1 . (5.11.113)

The tensor L̄′′∗
p in (5.11.112) is an estimate of L̄′′

p defined by

L̄′′∗
p = �p − 1

3
(�p · I) I . (5.11.114)

For an arbitrary time step t = tn with n > 1, �p is specified by

�p = L̄ ′′i j
p [m′∗

i (tn+1) ⊗ m′∗
j (tn+1)] ,

L̄ ′′i j
p = [L̄′′

p(tn) · mi ′(tn) ⊗ m j ′(tn)] for n > 1 ,
(5.11.115)

where L̄′′
p(tn) and mi ′(tn) are the converged values of L̄′′

p and mi ′ from the previous
time step with the reciprocal vectorsmi ′ defined in (3.11.18). The value of �p at the
beginning of the integration process t = t1 is specified to be a fraction of its elastic
trial value

�p = αL̄′′∗
p (tn+1) , 0 < α < 1 , for n = 1 , (5.11.116)

where L̄′′∗
p (tn+1) is the value of L̄′′

p evaluated using the elastic trial values J
∗
e (tn+1) and

m∗
i (tn+1) and estimates of the hardening variables κ(tn+1) and βi j (tn+1) at the end of

the time step. Also, the strongly objective average total distortional deformation rate
D̃′′ developed in [41] and recorded in (3.13.20) can be used for a strongly objective
approximation of ε̇ at the end of the time step
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ε̇ =
√
2

3
D̃′′ · D̃′′ , D̃′′ = 1

2�t

[
I −

{
3

B′−1
r (tn+1) · I

}
B′−1
r (tn+1)

]
, (5.11.117)

where the relative deformation B′
r is defined by

B′
r = F′

rF
′T
r . (5.11.118)

Since under SRBM the quantities Je,m′
i , Jr and F

′
r transform to J+

e ,m′+
i , J+

r and
F′+
r according to the transformation relations (3.11.31) and (3.13.8)

J+
e = Je , mi ′+ = Qmi ′ , J+

r = Jr , F′+
r = QF′

r , (5.11.119)

it follows that the numerical estimates Je(tn+1) and m′
i (tn+1) transform to J+

e (tn+1)

and m′+
i (tn+1) under SRBM, such that

J+
e (tn+1) = Je(tn+1) , mi ′+(tn+1) = Qmi ′(tn+1) , (5.11.120)

when the estimates κ(tn+1) and βi j (tn+1) are insensitive to SRBM. This means that
these numerical estimates are strongly objective since the vector and tensor estimates
satisfy the same invariance transformation relations under SRBM as the exact values.

Robustness of the numerical algorithm developed in [22] was tested by taking
large time steps which in one time step load the material from zero stress to a point
in the inelastic range. It was found that the algorithm worked well for the constant α
in (5.11.116) specified by

α = 0.18 . (5.11.121)

It is emphasized that if the first time step causes elastic response, then there is no
influence of the parameter α since �	1 = 0.

Elastically Isotropic Response to Simple Shear
With reference to fixed rectangular Cartesian base vectors ei , the velocity gradient
L for simple shear can be specified by

L = L12e1 ⊗ e2 . (5.11.122)

Using the zero-stress initial conditions (5.11.63), the solution of the evolution equa-
tion (5.11.43) for Je requires for a metal with isochoric inelasticity (5.11.72) that

Je = 1 , (5.11.123)

and the evolution equation (5.11.66) admits a solution for the elastic distortional
deformation B′

e of the form
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B′
e = ae1 ⊗ e1 + be2 ⊗ e2 + ce3 ⊗ e3 + d(e1 ⊗ e2 + e2 ⊗ e1) ,

c = 1√
ab − d2

,
(5.11.124)

where a, b and d are functions of time determined by solving the three nontrivial
scalar evolution equations associated with (5.11.66). Moreover, it was shown in [44]
that for monotonic loading with

L12 = γs	 > 0 , (5.11.125)

and constant γs , that these evolution equations admit a steady-state solution forwhich

a = 1 + 2γ 2
s

(1 + γ 2
s )1/3

, b = c = 1

(1 + γ 2
s )1/3

, d = γs

(1 + γ 2
s )1/3

. (5.11.126)

Also, the steady-state values of ε̇ in (5.11.80) and γe in (5.11.91) are given by

ε̇ = γs	√
3

, γe = γs
√
3 + 4γ 2

s

2(1 + γ 2
s )1/3

. (5.11.127)

For simplicity, consider the case when the yield function is specified by (5.11.92)

g = 1 − κ

γe
, (5.11.128)

with the hardening variable κ being constant. It then follows that for standard rate-
independent inelasticity, the loading conditions (5.11.79) require g = 0during inelas-
tic loading, which determines the steady-state value of γs by the solution of equation

κ = γs
√
3 + 4γ 2

s

2(1 + γ 2
s )1/3

. (5.11.129)

Alternatively, for the simple rate-independent smooth elastic–inelastic transition
model (5.11.80) characterized by

	 = b1ε̇〈g〉 , (5.11.130)

the steady-state value of γs is determined by equation

κ = (b1γs − √
3)

√
3 + 4γ 2

s

2b1(1 + γ 2
s )1/3

for b1γs >
√
3 . (5.11.131)

Using the Neo-Hookean model, the pressure vanishes and deviatoric stress is
given by (5.11.69). To examine the influence of the constant b1 on the solution of
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Fig. 5.4 Cyclic loading of the smooth-transition model in simple shear. Plots of the shear stress
T ′′
12 versus the total shear strain γ for different material constants: a b1 = 100, κ = 0.019670 and b

b1 = 300, κ = 0.029675, which produce the same steady-state value of shear stress. The symbols
indicate the locations of the elastic–inelastic transitions

the smooth model, it is convenient to determine values of the pair of constants b1, κ
which yield the same steady-state value of the shear stress. Specifically, as a special
case, the steady-state value of γs is determined by solving equation

T ′′
12

μ
= γs

(1 + γ 2
s )1/3

= 0.04 , (5.11.132)

and (5.11.131) is used to determine the values

κ = 0.019670 for b1 = 100 ,

κ = 0.029675 for b1 = 300 .
(5.11.133)

Figure5.4 shows the transient solution of shear stress T ′′
12 versus total shear strain γ

determined by integrating the evolution equation

γ̇ = L12 , (5.11.134)

subject to the initial condition γ (0) = 0. The symbols in Fig. 5.4a, b indicate the loca-
tions of the elastic–inelastic transitions for cyclic simple shear loading. Figure5.4a
shows that for b1 = 100, the response exhibits significant overstress with inelasticity
continuing to occur during the onset of unloading. Even though the hardening param-
eter κ is constant, the model exhibits effective hardening due to the overstress. Figure
5.4b shows that for b1 = 300 the effects of the overstress are significantly reduced.
In this regard, it is noted that in the limit that b1 → ∞, the smooth model yields
standard rate-independent response with the yield function g = 0 during inelastic
loading.
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Fig. 5.5 Sketch of a
nonlinear Maxwell model
with an elastic component in
parallel with a viscoplastic
component

Viscoplastic component

Elastic component

5.12 Viscoelastic Response

Asimple generalizednonlinearMaxwellmodel (seeFig. 5.5) for viscoelastic response
can be proposed by adding the response of a viscoplastic material to that of a general
elastic material. To model dilatational dissipation of viscoplastic component, it is
necessary to enhance the model described in Sect. 5.11. To this end, the viscoplastic
component is modeled by the elastic dilatation Jv > 0 and the unimodular elastic
distortional deformation tensor B′

e which satisfy the evolution equations

J̇v
Jv

= D · I − 	v ln(Jv) ,

Ḃ′
e = LB′

e + B′
eL

T − 2

3
(D · I)B′

e − 	Ap , Ap = B′
e −

(
3

B′−1
e · I

)
I ,

	v > 0 , 	 > 0 ,

(5.12.1)
where 	v and 	 are positive constants that, respectively, control the time-dependent
relaxation of Jv toward unity and B′

e toward the unity tensor I. The functional form
of the evolution equation for Jv is motivated by the work in [39] which introduced
a modified evolution equation for a cardiac muscle that simplified the numerical
integration algorithm. Also, the first invariant of B′

e satisfies equations

α1 = B′
e · I , α̇1 = 2B′′

e · D − 	Ap , (5.12.2)

where B′′
e is the deviatoric part of B

′
e.

Now, the strain energy function of the viscoelastic material is specified in the form

� = �̂ + v
�(Jv, α1) , ρz

v
� = Kv[Jv − 1 − ln(Jv)] + 1

2
μv(α1 − 3) , (5.12.3)

where ρz is a constant density not necessarily equal to a zero-stress density, �̂ char-

acterizes the strain energy of a general nonlinear elastic material and
v
� characterizes

the strain energy of the viscoplastic component, with Kv being the positive elastic
bulkmodulus andμv being the positive shearmodulus of the viscoplastic component.

For this model the Cauchy stress T is proposed in the form



172 5 Purely Mechanical Constitutive Equations

T = T̂ + v
T , (5.12.4)

where the response T̂ of a general nonlinear elastic material satisfies equation

T̂ · D = ρ
˙̂
� , (5.12.5)

for all motions. Then, for thismaterial, the rate ofmaterial dissipation (4.5.7) requires

D = v
T · D − ρ

v̇
� ≥ 0 . (5.12.6)

Specifying
v
T by

v
T = − v

pI + v
T′′ ,

v
p = −ρ Jv

∂
v
�

∂ Jv
=

(
ρ

ρz

)
Kv(1 − Jv) ,

v
T′′ = 2ρ

∂
v
�

∂α1
B′′
e =

(
ρ

ρz

)
μvB′′

e ,

(5.12.7)

the rate of material dissipation requires

D = −	v
v
p ln(Jv) + 1

2
	

(
ρ

ρz

)
μvAp · I ≥ 0 , (5.12.8)

which in view of the constitutive equation (5.12.7) for the pressure
v
p and (5.11.67) is

automatically satisfied. Since 	v and 	 are both positive, dissipation continues until
Jv = 1 and B′

e = I with T = T̂.
If the elastic part of the response is isotropic, then the strain energy is given

by (5.8.5) and the stress T̂ is given by (5.8.10). Alternatively, if the elastic part of
the response is anisotropic, then the strain energy is given by (5.3.9) and the stress
T̂ is given by (5.3.11). For either case, this model proposes elastically isotropic
viscoplastic dissipation.

A robust, strongly objective numerical integration algorithm for the evolution
equation for B′

e was discussed in Sect. 5.11. To develop a robust, strongly objective
numerical integration algorithm for the evolution equation (5.12.1) for the elastic
dilatation Jv, consider the time interval tn ≤ t ≤ tn+1 with time increment �t =
tn+1 − tn and recall that the relative dilatation Jr satisfies the evolution equation
(5.11.84) and initial condition

J̇r = Jr D · I , Jr (tn) = 1 . (5.12.9)

Thus, (5.12.1)1 can be rewritten in the form
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d

dt
ln

[
Jv

Jr Jv(tn)

]
= −	v ln(Jv) . (5.12.10)

Next, using a backward Euler approximation of the derivative yields equation

ln

[
Jv

Jr Jv(tn)

]
= −�t	 ln(Jv) , (5.12.11)

which can be solved to obtain

Jv(tn+1) = [Jr (tn+1)Jv(tn)]1/(1+�t 	v) . (5.12.12)

5.13 Crystal Plasticity

Crystal plasticitymodels (e.g., [1, 17]) identify a finite number N of slip planes in the
crystal with unit normals In and unit slip directions I s in the slip planes. In addition,
a constitutive equation for the inelastic rate Lp is proposed in the form

Lp =
N∑
I=1

I	 I s ⊗I n , I s ·I n = 0 , (5.13.1)

where I	 characterizes the inelastic rate on the I th slip plane, which typically is a
function of history-dependent variables. This form for Lp includes all slip rates on
all of the slip planes and is applicable to metal plasticity with no inelastic dilatation
rate

Lp · I = Dp · I = 0 . (5.13.2)

Within the context of the Eulerian formulation with evolution equations (5.11.30)
for the microstructural vectors

ṁi = (L − Lp)mi , (5.13.3)

the microstructural vectors can be used to characterize the deformation and orien-
tation of the average crystal lattice. Moreover, the elastic distortional deformation
microstructural vectors m′

i satisfy the evolution equations (5.11.45)

ṁ′
i = (L′′ − L′′

p)m
′
i , (5.13.4)

whereL′′ is the deviatoric part of the velocity gradient andL′′
p is the deviatoric part of

the inelastic rate Lp. Since the elastic distortional microstructural vectorsm′
i can be

used to model the crystal, the values of I ni of the unit normals In to slip systems and
I si of the unit vectors I s in the slip directions in a zero-stress state (with m′

i = mi ′
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being orthonormal vectors) can be constants for general stress states with

In = I nimi ′

|I n jm j ′ | , I s = I sim′
i

|I s jm′
j |

,

I ni I ni = 1 , I s
i
I s

i = 1 , I ni I s
i = 0 ,

(5.13.5)

where there is no sum on the repeated capital index I .
This formulationwill be properly invariant under SuperposedRigidBodyMotions

SRBM if I	 are uninfluenced by SRBM

I	
+ = I	 . (5.13.6)

If I	 are determined by consistency conditions for standard rate-independent yield
functions, then the active slip systems may not be determined uniquely. How-
ever, if I	 are determined by functions similar to those (5.11.80) of the smooth
elastic–inelastic transition model developed in [18, 19], then loading and unloading
conditions are not needed and all slip systems are simultaneously active even for
rate-independent response. Examples for standard small strain formulations of crys-
tal plasticity which has been modified to use the smooth elastic–inelastic transition
model can be found in [13, 15].
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