
Chapter 3
Kinematics

Abstract The objective of this chapter is to discuss nonlinear kinematics of
deformable continua. Bodies, configurations and motion of continua are discussed
along with a definition of the material time derivative, which is used to determine
the velocity and acceleration of a material point. Deformation tensors and rate of
deformation tensors are defined and analyzed. The notion of Superposed Rigid Body
Motions (SRBM) is presented and the associated transformation relations of specific
tensors are developed. In addition, an Eulerian formulation of evolution equations for
elastic deformations is proposed and strongly objective, robust numerical integration
algorithms for these evolution equations are developed.

3.1 Bodies, Configurations and Motion

Bodies
In an abstract sense a body B is a set of material particles which are denoted by
Y (see Fig. 3.1). In mechanics a body is assumed to be smooth and can be put into
correspondence with a domain of Euclidean 3-Space. Bodies are often mapped to
their configurations, i.e., the regions of Euclidean 3-Space they occupy at each instant
of time t (−∞ < t < ∞). In the following, all position vectors are referred to a fixed
point inertial in space.

Current Configuration and Motion
The current configuration of the body is the region of Euclidean 3-Space occupied
by the body at the current time t . Let x be the position vector which identifies the
place occupied by the particle Y at the time t . Since it is assumed that the body can
be mapped smoothly into a domain of Euclidean 3-Space, a motion of the body can
be represented as

x = x̄(Y, t) . (3.1.1)

In this expression, Y refers to the material particle, t refers to the current time, x
refers to the value of the function and x̄ characterizes how each particle Y moves
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through space as time progresses. It is assumed that this function is invertible so that

Y = x̄−1(x, t) = Ỹ (x, t) . (3.1.2)

Reference Configuration
Sometimes it is convenient to select one particular configuration, called a reference
configuration, and refer everything concerning the body and its motion to this config-
uration. The reference configuration need not necessarily be an actual configuration
occupied by the body and in particular, the reference configuration need not be the
initial configuration.

LetX be the position vector of the particle Y in the reference configuration. Then,
the mapping from Y to the place X in the reference configuration can be written as

X = X̄(Y ) . (3.1.3)

In this expression, X refers to the value of the function X̄ which characterizes the
mapping. It is important to note that this mapping does not depend on time because
the reference configuration is a single constant configuration.Moreover, thismapping
is assumed to be invertible with its inverse given by

Y = X̄−1(X) = Ŷ (X) . (3.1.4)

Motion
It follows that the mapping from the reference configuration to the current configu-
ration can be obtained by substituting (3.1.4) into (3.1.1) to deduce that

x = x̄(Ŷ (X), t) = x̂(X, t) , (3.1.5)
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which characterizes themotion all material points. From this expression, it is obvious
that the functional form of the mapping x̂ depends on the specific choice of the
reference configuration. Further in this regard, it is emphasized that the choice of the
reference configuration is similar to the choice of coordinates in that it is arbitrary to
the extent that a one-to-one correspondence exists between the material particles Y
and their locationsX in the reference configuration. Also, the inverse of this mapping
can be written in the form

X = X̃(x, t) . (3.1.6)

In contrast to the material configuration, which is based on the abstract notion of
a material point Y , the mapping (3.1.5) expresses x as a vector function of X and t
and the inverse mapping (3.1.6) expresses X as a vector function of x and t . These
vector functions are mathematical functions that are assumed to be smooth functions
which can be differentiated with respect to either of their arguments as many times
as necessary.

3.2 Representations

Material, Lagrangian and Eulerian Representations
There are severalmethods of describing properties of a body. The following considers
three possible representations. To this end, let f be an arbitrary scalar or tensor
function characterizing a property of the body which admits the following three
representations

f = f̄ (Y, t) Material representation , (3.2.1a)

f = f̂ (X, t) Lagrangian representation , (3.2.1b)

f = f̃ (x, t) Eulerian representation . (3.2.1c)

For definiteness, a symbol is used to denote different functional forms from the
value of a function. Whenever this is necessary, the functions that depend on Y are
denoted with an overbar ¯( ), functions that depend onX are denoted with a hat ˆ( ) and
functions that depend on x are denoted with a tilde ˜( ). Furthermore, the functional
forms f̄ , f̂ , f̃ are related by the expressions

f̂ (X, t) = f̄ (Ŷ (X), t) , f̃ (x, t) = f̂ (X̃(x, t), t) . (3.2.2)

The representation (3.2.1a) is called material because the material point Y is
used as an independent variable. The representation (3.2.1b) is called referential or
Lagrangian because the positionX of amaterial point in the reference configuration is
an independent variable, and the representation (3.2.1c) is called spatial or Eulerian
because the current position x in space is used as an independent variable. However,
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it is emphasized that in view of the invertibility of these functions, a one-to-one
correspondence can be established between any two of these representations.

In this book, use is made of both the coordinate free forms of equations as well
as their indicial counterparts. To this end, let eA be a fixed right-handed orthonormal
rectangular Cartesian basis associated with the reference configuration and let ei
be a fixed right-handed orthonormal rectangular Cartesian basis associated with the
current configuration. Moreover, these base vectors are specified to coincide so that

ei · eA = δi A , (3.2.3)

where δi A is the usual Kronecker delta. In the following, all tensor quantities are
referred to either of these bases and for clarity use is made of upper case letters to
indicate indices of quantities associated with the reference configuration and with
lower case letters to indicate indices of quantities associated with the current config-
uration. For example,

X = XAeA , x = xiei , (3.2.4)

where XA are the rectangular Cartesian components of the position vector X and
xi are the rectangular Cartesian components of the position vector x and the usual
summation convention over repeated indices is used. It follows that themotion (3.1.5)
can be written in the form

xi = x̂i (XA, t) . (3.2.5)

Velocity and Acceleration
The velocity v of a material point Y is defined as the rate of change with time t of
position of the material point. Since the function x̄(Y, t) characterizes the position of
the material point Y at any time t , it follows that the velocity is defined conceptually
by

v = ẋ = ∂ x̄(Y, t)

∂t
, vi = ẋi = ∂ x̄i (Y, t)

∂t
, (3.2.6)

where a superposed dot ˙( ) is used to denote partial differentiation with respect to
time t holding the material particle Y fixed. Similarly, the acceleration a of a material
point Y is defined by

a = v̇ = ∂ v̄(Y, t)

∂t
, ai = v̇i = ∂ v̄i (Y, t)

∂t
. (3.2.7)

Notice that in view of the mappings (3.1.4) and (3.1.6), the velocity and acceleration
can be expressed as functions of either (X, t) or (x, t).

Material Derivative
The material derivative of an arbitrary function f is defined conceptually by

ḟ ≡ ∂ f̄ (Y, t)

∂t

∣
∣
∣
Y

. (3.2.8)
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It is important to emphasize that the material derivative, which is denoted by a
superposed dot (̇ ) is defined to be the rate of change with time t of the function
holding the material particle Y fixed. In this sense the velocity v is the material
derivative of the position x and the acceleration a is the material derivative of the
velocity v. Recalling that the function f can be expressed in terms of either the
Material (3.2.1a), Lagrangian (3.2.1b) or Eulerian (3.2.1c) representations, it follows
from the chain rule of differentiation that ḟ admits the additional representations

ḟ = ∂ f̂ (X, t)

∂t
ṫ + [∂ f̂ (X, t)/∂X] Ẋ = ∂ f̂ (X, t)

∂t
,

ḟ = ∂ f̂ (X, t)

∂t
ṫ + [∂ f̂ (X, t)/∂XA] Ẋ A = ∂ f̂ (X, t)

∂t
, (3.2.9a)

ḟ = ∂ f̃ (x, t)
∂t

ṫ + [∂ f̃ (x, t)/∂x] ẋ = ∂ f̃ (x, t)
∂t

+ [∂ f̃ (x, t)/∂x] v ,

ḟ = ∂ f̃ (x, t)
∂t

ṫ + [∂ f̃ (x, t)/∂xm] ẋm = ∂ f̃ (x, t)
∂t

+ [∂ f̃ (x, t)/∂xm] vm , (3.2.9b)

where in (3.2.9a) use has been made of the fact that the mapping (3.1.3) from the
material point Y to its location X in the reference configuration is independent of
time so that Ẋ vanishes. It is important to emphasize that the physics of the material
derivative defined by (3.2.8) remains unchanged even though its specific functional
form for the different representations (3.2.9a) and (3.2.9b) changes.

3.3 Deformation Gradient and Deformation Measures

To describe the deformation of the body from the reference configuration to the cur-
rent configuration, it is convenient to think of the body in its reference configuration
as a finite collection of neighboring tetrahedrons. As the number of tetrahedrons
increases it is possible to approximate a body having an arbitrary shape. If the
deformation of each of these tetrahedrons from the reference configuration to the
current configuration can be determined, then the shape (and volume) of the body
in the current configuration can be determined by simply connecting the neighbor-
ing tetrahedrons. Since a tetrahedron is characterized by a triad of three vectors,
the deformation of an arbitrary elemental tetrahedron (infinitesimally small) can be
characterized by determining the deformation of an arbitrary material line element.
This is because the material line element can be identified with each of the base
vectors which represent the edges of the tetrahedron.

Deformation Gradient
For this reason it is sufficient to determine the deformation of a general material
line element dX in the reference configuration to the material line element dx in the
current configuration. Recalling that the mapping x = x̂(X, t) defines the position x



38 3 Kinematics

in the current configuration of any material point X in the reference configuration at
time t , it follows that

dx = (∂ x̂/∂X)dX = FdX , (3.3.1a)

dxi = (∂ x̂i/∂XA)dXA = xi ,A dXA = Fi AdXA , (3.3.1b)

F = (∂ x̂/∂X) = Fi Aei ⊗ eA , Fi A = xi ,A , (3.3.1c)

where F is the deformation gradient with components Fi A. Unless otherwise stated,
throughout the text a comma denotes partial differentiation with respect to XA if the
index is a capital letter and with respect to xi if the index is a lower case letter. Since
the mapping x̂(X, t) is invertible, F must satisfy the restriction

detF �= 0 , det(xi ,A ) �= 0 , (3.3.2)

for all time and all points in the spatial region occupied by the body. To ensure
that the reference configuration has the possibility of coinciding with the current
configuration at any time (i.e., x = X and F = I), the deformation gradient must
satisfy the restriction that

detF > 0 , det(xi ,A ) > 0 . (3.3.3)

Right and Left Cauchy–Green Deformation Tensors and the Cauchy Deformation
Tensor
The magnitude ds of the material line element dx in the current configuration can
be calculated using (3.3.1a), such that

(ds)2 = dx · dx = FdX · FdX = dX · FTFdX = dX · CdX ,

(ds)2 = dxidxi = Fi AdXAFi BdXB = dXA(xi ,A xi ,B )dXB = dXACABdXB ,

(3.3.4a)

C = FTF = CABeA ⊗ eB , CAB = Fi AFi B = xi ,A xi ,B , (3.3.4b)

where C is called the right Cauchy–Green deformation tensor. Similarly, the mag-
nitude dS of the material line element dX in the reference configuration can be
calculated by inverting (3.3.1a) to obtain

dX = F−1dx , dXA = XA,i dxi , (3.3.5)

which yields
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(dS)2 = dX · dX = F−1dx · F−1dx = dx · F−TF−1dx = dx · cdx ,

(dS)2 = dXAdXA = XA,i dxi X A, j dx j = dxi (XA,i X A, j )dx j = dxi ci j dx j ,

(3.3.6a)

c = F−TF−1 = ci jei ⊗ e j , ci j = XA,i X A, j , (3.3.6b)

where F−T is the transpose of F−1 and c is the Cauchy deformation tensor. It is also
convenient to define the left Cauchy–Green deformation tensor B by

B = FFT = Bi jei ⊗ e j , Bi j = Fi AFj A = xi ,A x j ,A , (3.3.7)

and it is noted that
c = B−1 . (3.3.8)

Stretch and Extension
The stretchλ of amaterial line element is defined in terms of the ratio of the lengths ds
and dS of the line element in the present and reference configurations, respectively,
such that

λ = ds

dS
. (3.3.9)

Also, the extension ε of the same material line element is defined by

ε = λ − 1 = ds − dS

dS
. (3.3.10)

It follows from these definitions that the stretch is always positive. Also, the stretch is
greater than one and the extension is greater than zero when the material line element
is extended relative to its reference length.

For convenience let S be the unit vector defining the direction of the material line
element dX in the reference configuration and let s be the unit vector defining the
direction of the associated material line element dx in the current configuration, such
that

dX = SdS , dXA = SAdS , S · S = SASA = 1 , (3.3.11a)

dx = sds , dxi = sids , s · s = si si = 1 . (3.3.11b)

Thus, using (3.3.4a) and (3.3.6a) it can be shown that

λs = FS , λsi = xi ,A SA , (3.3.12a)

λ2 = C · (S ⊗ S) , λ2 = CABSASB , (3.3.12b)

1

λ2
= c · (s ⊗ s) ,

1

λ2
= ci j si s j . (3.3.12c)
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Since the stretch is positive, it follows from (3.3.12b) and (3.3.12c) that C and c are
positive-definite tensors. Similarly, it can be shown thatB in (3.3.7) is also a positive-
definite tensor. In addition, notice from (3.3.12b) that the stretch of a material line
element depends not only on the value of C at the material point X and the time t ,
but it depends also on the orientation S of the material line element in the reference
configuration.

A Pure Measure of Dilatation (Volume Change)
To discuss the relative volume change of a material element, it is convenient to first
prove that for any nonsingular second-order tensor F and any two vectors a and b
that

Fa × Fb = det(F)F−T (a × b) . (3.3.13)

Toprove this result, it is noted that the quantityFT (a × b) is a vector that is orthogonal
to the plane formed by the vectors Fa and Fb since

F−T (a × b) · Fa = (a × b) · (F−T )TFa = (a × b) · F−1Fa = (a × b) · a = 0 ,

F−T (a × b) · Fb = (a × b) · F−1Fb = (a × b) · b = 0 .

(3.3.14)
This means that the quantity Fa × Fbmust be a vector that is parallel to F−T (a × b)

so that
Fa × Fb = α F−T (a × b) . (3.3.15)

Next, the value of the scalar α is determined by noting that both sides of Eq. (3.3.15)
must be linear functions of a and b. This means that α is independent of the vectors
a and b. Moreover, letting c be an arbitrary vector, it follows that

Fa × Fb · Fc = α F−T (a × b) · Fc = α(a × b) · c . (3.3.16)

The proof is finished by recognizing that one definition of the determinant of F is

α = det F = (Fa × Fb) · Fc
(a × b) · c , (3.3.17)

for any set of linearly independent vectors a,b and c. Specifically, using the rect-
angular Cartesian base vectors ei and taking a = e1,b = e2 and c = e3, it follows
that

det F = (Fe1 × Fe2) · Fe3 , (3.3.18)

which can be recognized as the scalar triple product of the columns of F.
Now, it will be shown that the determinant J of the deformation gradient F

J = det F , (3.3.19)
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is a pure measure of dilatation. To this end, consider an elemental material volume
defined by the linearly independent material line elements dX1, dX2 and dX3 in the
reference configuration and defined by the associated linearly independent material
line elements dx1, dx2 and dx3 in the current configuration. Thus, the elemental
volumes dV in the reference configuration and dv in the current configuration are
given by

dV = dX1 × dX2 · dX3 , (3.3.20a)

dv = dx1 × dx2 · dx3 . (3.3.20b)

Since (3.3.1a) defines the mapping of each material line element from the reference
configuration to the current configuration, it follows that

dv = FdX1 × FdX2 · FdX3 = JF−T (dX1 × dX2) · FdX3 ,

dv = J (dX1 × dX2) · F−1FdX3 = JdX1 × dX2 · dX3 ,

dv = JdV .

(3.3.21)

This means that J is a pure measure of dilatation. It also follows from (3.3.4b) and
(3.3.19) that

J 2 = detC . (3.3.22)

Pure Measures of Distortion (Shape Change)
In general, the deformation gradient F characterizes the dilatation (volume change),
distortion (shape change) and the orientation of a material region. Therefore, when-
ever F is a unimodular tensor (i.e., its determinant J equals unity), F is a measure
of distortion and orientation. Using this idea, which originated with Flory [1], it is
possible to separate F into its dilatational part J 1/3I and its distortional part F′ such
that

F = (J 1/3I)F′ = J 1/3F′ , F′ = J−1/3F , det F′ = 1 . (3.3.23)

Note that since F′ is unimodular (3.3.23), it is a pure measure of distortion and
orientation. Similarly, the deformation tensor C can be separated into its dilatational
part J 2/3I and its distortional part C′ such that

C = (J 2/3I)C′ = J 2/3C′ , C′ = J−2/3C , detC′ = 1 , (3.3.24)

in contrast to F′, C′ is a pure measure of distortional deformation only.

Strain Measures
Using (3.3.4a) and (3.3.6a), it follows that the change in length of a material line
element can be expressed in the following forms



42 3 Kinematics

ds2 − dS2 = dX · (C − I)dX = dX · (2E)dX = 2E · (dX ⊗ dX) ,

ds2 − dS2 = dXA(CAB − δAB)dXB = dXA(2EAB)dXB , (3.3.25a)

ds2 − dS2 = dx · (I − c)dx = dx · (2e)dx = 2e · (dx ⊗ dx) ,

ds2 − dS2 = dxi (δi j − ci j )dx j = dxi (2ei j )dx j , (3.3.25b)

where the Lagrangian strain E and the Almansi strain e are defined by

2E = C − I , (3.3.26a)

2e = I − c . (3.3.26b)

Furthermore, in view of the separation (3.3.24) it is sometimes convenient to define a
scalar measure of dilatational strain Ev and a tensorial measure of distortional strain
E′ by

2Ev = J 2 − 1 , 2E′ = C′ − I . (3.3.27)

Eigenvalues of C and B
The notions of eigenvalues, eigenvectors and the principal invariants of a tensor are
briefly reviewed in Appendix A. Using the definitions (3.3.4b), (3.3.7) and (A.1.3)
it is first shown that the principal invariants of C and B are equal. To this end, use is
made of the properties of the dot product given by (2.6.19) to deduce that

C · I = FTF · I = F · F = FFT · I = B · I ,

C · C = FTF · FTF = F · FFTF = FFT · FFT = B · B ,

detC = det(FTF) = det FT det F = (det F)2 = det(FFT ) = detB .

(3.3.28)

It follows from (A.1.3) that the principal invariants of C and B are equal

I1(C) = I1(B) , I2(C) = I2(B) , I3(C) = I3(B) . (3.3.29)

Furthermore, using (3.3.12b) it can be seen that the eigenvalues of C are also the
squares of the principal values of stretch λ, which are determined by the characteristic
equation

det(C − λ2 I) = −λ6 + λ4 I1(C) − λ2 I2(C) + I3(C) = det(B − λ2 I) = 0 .

(3.3.30)
Displacement Vector
The displacement vector u is the vector that connects the position X of a material
point in the reference configuration to its position x in the current configuration so
that

u = x − X , x = X + u ,

X = x − u , u = uAeA = uiei .
(3.3.31)
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It then follows from the definition (3.3.1c) of the deformation gradient F that

F = ∂x/∂X = ∂(X + u)/∂X = I + ∂û/∂X , (3.3.32a)

F−1 = ∂X/∂x = ∂(x − u)/∂x = I − ∂ũ/∂x , (3.3.32b)

C = FTF = (I + ∂û/∂X)T (I + ∂û/∂X) ,

= I + ∂û/∂X + (∂û/∂X)T + (∂û/∂X)T (∂û/∂X) ,

CAB = δAB + û A,B +û B,A +ûM ,A ûM ,B , (3.3.32c)

c = B−1 = F−TF−1 = (I − ∂ũ/∂x)T (I − ∂ũ/∂x) ,

= I − ∂ũ/∂x − (∂ũ/∂x)T + (∂ũ/∂x)T (∂ũ/∂x) ,

ci j = δi j − ũi , j −ũ j ,i +ũm,i ũm, j . (3.3.32d)

Then, with the help of the definitions (3.3.26a) and (3.3.26b), the strains E and e can
be expressed in terms of the displacement gradients ∂û/∂X and ∂ũ/∂x by

E = 1

2
[∂û/∂X + (∂û/∂X)T + (∂û/∂X)T (∂û/∂X)] = EABeA ⊗ eB ,

EAB = 1

2
(û A,B +û B,A +ûM ,A ûM ,B ) , (3.3.33a)

e = 1

2
[∂ũ/∂x + (∂ũ/∂x)T − (∂ũ/∂x)T (∂ũ/∂x)] = ei jei ⊗ e j ,

ei j = 1

2
(ũi , j +ũ j ,i −ũm,i ũm, j ) . (3.3.33b)

Since these expressions have been obtained without any approximation they are
exact and are sometimes referred to as finite strain measures. Notice the different
signs in front of the quadratic terms in the displacement gradients appearing in the
expressions (3.3.33a) and (3.3.33b).

Material Area Element
The material area element d A formed by the elemental parallelogram associated
with the linearly independent material line elements dX1 and dX2 in the reference
configuration, and thematerial area element da formed by the corresponding linearly
independent material line elements dx1 and dx2 in the current configuration are given
by

Nd A = dX1 ⊗ dX2 , nda = FdX1 ⊗ FdX2 , (3.3.34)

where N and n are the unit vectors normal to the material surfaces defined by
dX1, dX2 and dx1, dx2, respectively. It follows from (3.3.1a) and (3.3.13) that

nda = FdX1 ⊗ FdX2 = JF−T (dX1 ⊗ dX2) = JF−TNd A , (3.3.35)
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which is called Nanson’s formula. It is important to emphasize that a material line
element thatwas normal to thematerial surface in the reference configuration does not
necessarily remain normal to the same material surface in the current configuration.

3.4 Polar Decomposition Theorem

The polar decomposition theorem states that any invertible second-order tensor F
can be uniquely decomposed into its polar form

F = RU = VR , Fi A = RiMUMA = Vim RmA , (3.4.1)

where R is an orthogonal tensor

R = Ri Aei ⊗ eA ,

RTR = I , RmARmB = δAB ,

RRT = I , Ri AR j A = δi j ,

(3.4.2)

U is the right stretch tensor and V is the left stretch tensor. These stretch tensors are
symmetric, positive-definite tensors so that for an arbitrary vector v, it follows that

UT = U = UABeA ⊗ eB , UBA = UAB ,

v · Uv = U · v ⊗ v > 0 , vAUABvB = UABvAvB > 0 for v �= 0 ,

VT = V = Vi jei ⊗ e j , Vji = Vi j ,

v · Vv = V · v ⊗ v > 0 , vi Vi j v j = Vi j v1v j > 0 for v �= 0 .

(3.4.3)

From these expressions and the definitions (3.3.4b) and (3.3.7) it can be deduced that

C = U2 , B = V2 , (3.4.4)

which explains why C is called the right Cauchy–Green deformation tensor and B
is called the left Cauchy–Green deformation tensor.

To prove this theorem it is convenient to first consider the following Lemma.

Lemma If S is an invertible second-order tensor then STS and SST are positive-
definite symmetric tensors.

Proof (i) Consider two vectors v and w defined by

w = Sv , wi = Si j v j . (3.4.5)

Since S is invertible, it follows that

w = 0 if and only if v = 0 ,

w �= 0 if and only if v �= 0 .
(3.4.6)
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Now, consider

w · w = Sv · Sv = v · STSv = STS · (v ⊗ v) ,

wmwm = Smivi Smj v j = vi (S
T
im Smj )v j . (3.4.7)

Since w · w > 0 whenever v �= 0, it follows that STS is positive-definite.
(ii) Alternatively, define the two vectors v and w by

w = ST v , wi = STi j v j = Sji v j . (3.4.8)

Since S is invertible, it follows that

w · w = ST v · ST v = v · SST v = SST · (v ⊗ v) ,

wmwm = Simvi S jmv j = vi (Sim S
T
mj )v j . (3.4.9)

Moreover, since w · w > 0 whenever v �= 0 the tensor STS is positive-definite.

To prove the polar decomposition theorem it is convenient to first prove existence
of the forms F = RU and F = VR and then prove uniqueness of the quantities R,U
and V.

Existence

(i) Since F is invertible the tensor FTF is symmetric and positive-definite so there
exists a unique symmetric positive-definite square root U defined by

U = (FTF)1/2 , U2 = FTF , UAMUMB = FmAFmB . (3.4.10)

Now, let R1 be defined by

R1 = FU−1 , F = R1U . (3.4.11)

To prove that R1 is an orthogonal tensor consider

R1RT
1 = FU−1(FU−1)T = FU−1U−TF−T = F(U2)−1FT ,

= F(FTF)−1FT = F(F−1F−T )FT = I , (3.4.12a)

RT
1 R1 = U−TFTFU−1 = U−1U2U−1 = I . (3.4.12b)

(ii) Similarly, since F is invertible the tensor FFT is symmetric and positive-definite
there exists a unique symmetric, positive-definite square root V

V = (FFT )1/2 , V2 = FFT , VimVmj = FiM FjM . (3.4.13)

Now, let R2 be defined by
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R2 = V−1F , F = VR2 . (3.4.14)

To prove that R2 is an orthogonal tensor consider

R2RT
2 = V−1F(V−1F)T = V−1FFTV−1 = V−1V2V−1 = I ,

RT
2 R2 = FTV−TV−1F = FTV−2F = FT (FFT )−1F = I . (3.4.15a)

Uniqueness

(i) Assume that R1 and U are not unique so that

F = R1U = R∗
1U

∗ . (3.4.16)

Then consider

FTF = U2 = (R∗
1U

∗)T (R∗
1U

∗) = U∗TR∗T
1 R∗

1U
∗ = U∗2 . (3.4.17)

However, since U and U∗ are both symmetric and positive-definite it can be
deduced that U is unique

U∗ = U . (3.4.18)

Next, substituting (3.4.18) into (3.4.16) yields

R1U = R∗
1U . (3.4.19)

Then, multiplication of (3.4.19) on the right by U−1 proves that R1 is unique

R1 = R∗
1 . (3.4.20)

(ii) Similarly, assume that R2 and V are not unique so that

F = VR2 = V∗R∗
2 . (3.4.21)

Then, consider

FFT = V2 = (V∗R∗
2)(V

∗R∗
2)

T = V∗R∗
2R

∗T
2 V∗T = V∗2 . (3.4.22)

However, since V and V∗ are both symmetric and positive-definite it can be
deduced that V is unique

V∗ = V . (3.4.23)

Next, substituting (3.4.23) into (3.4.21) yields



3.4 Polar Decomposition Theorem 47

VR2 = VR∗
2 . (3.4.24)

Then, multiplication of (3.4.24) on the left by V−1 proves that R2 is unique

R2 = R∗
2 . (3.4.25)

(iii) Finally, it is necessary to prove that R1 = R2 = R. To this end, define the aux-
iliary tensor A by

A = R1URT
1 = FRT

1 . (3.4.26)

Clearly, A is symmetric so that

A2 = AAT = FRT
1 (FRT

1 )T = FRT
1 R1FT = FFT = V2 . (3.4.27)

SinceA andV are symmetric and nonsingular, it followswith the help of (3.4.14)
and (3.4.26) that

V = A = FRT
1 = VR2RT

1 . (3.4.28)

Now, multiplying (3.4.28) on the left by V−1 and on the right by R1, it follows
that

R1 = R2 = R , (3.4.29)

which completes the proof.

Example As an example, consider the simple deformation field for which F is given
by

F = F11e1 ⊗ e1 + F12e1 ⊗ e2 + F21e2 ⊗ e1 + F22e2 ⊗ e2 + F33e3 ⊗ e3 . (3.4.30)

For this deformation field the rotation tensor R can be written in the form

R = cos γ (e1 ⊗ e1 + e2 ⊗ e2) + sin γ (e1 ⊗ e2 − e2 ⊗ e1) + e3 ⊗ e3 , (3.4.31)

where the angle γ is determined by requiring U = RTF to be a symmetric tensor

γ = tan−1
( F12 − F21

F11 + F22

)

. (3.4.32)

It then follows that R, U and V for this deformation can be expressed in the forms
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R = 1
√

(F11 + F22)2 + (F12 − F21)2

[

(F11 + F22)(e1 ⊗ e1 + e2 ⊗ e2)

+ (F12 − F21)(e1 ⊗ e2 − e2 ⊗ e1)
]

+ e3 ⊗ e3 ,

U = 1
√

(F11 + F22)2 + (F12 − F21)2

[{

F11(F11 + F22) − F21(F12 − F21)
}

e1 ⊗ e1

+ {

F22(F11 + F22) + F12(F12 − F21)
}

e2 ⊗ e2

+ (F11F12 + F22F21)(e1 ⊗ e2 + e2 ⊗ e1)
]

+ F33e3 ⊗ e3 ,

V = 1
√

(F11 + F22)2 + (F12 − F21)2

[{

F11(F11 + F22) + F12(F12 − F21)
}

e1 ⊗ e1

+ {

F22(F11 + F22) − F21(F12 − F21)
}

e2 ⊗ e2

+ (F11F21 + F22F12)(e1 ⊗ e2 + e2 ⊗ e1)
]

+ F33e3 ⊗ e3 .

(3.4.33)

Physical Interpetation
To explain the physical interpretation of the polar decomposition theorem recall from
(3.3.1a) that a material line element dX in the reference configuration is transformed
by F into the material line element dx in the current configuration and define the
elemental vectors dX′ and dx′ such that

dx = RUdX ⇒ dX′ = UdX , dx = RdX′ ,
dxi = Ri AUABdXB ⇒ dX ′

A = UABdXB , dxi = Ri AdX
′
A , (3.4.34a)

dx = VRdX ⇒ dx′ = RdX , dx = Vdx′ ,
dxi = Vi j R j BdXB ⇒ dx ′

j = R jBdXB , dxi = Vi jdx
′
j . (3.4.34b)

In general, a material line element experiences both stretch and rotation as it deforms
from dX to dx. However, the polar decomposition theorem indicates that part of the
deformation can be described as a pure rotation. To see this, use (3.3.4a) together
with (3.4.34a) and (3.4.34b) and consider

ds2 = dx · dx = RdX′ · RdX′ = dX′ · RTRdX′ = dX′ · dX′ . (3.4.35)

It follows that the magnitude of dX′ is the same as that of dx so that all the
stretching occurs during the transformation from dX to dX′ and that the transfor-
mation from dX′ to dx is a pure rotation. Similarly, with the help of (3.3.6a) and
(3.4.34b) it can be shown that

dx′ · dx′ = RdX · RdX = dX · RTRdX = dX · dX = dS2 . (3.4.36)
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Fig. 3.2 Pure stretching
followed by pure rotation:
F = RU;
dX′ = UdX = λdX;
dx = RdX′

Fig. 3.3 Pure rotation
followed by pure stretching:
F = VR; dx′ = RdX;
dx = Vdx′ = λdx′

Consequently, it follows that the magnitude of dx′ is the same as that of dX so
that all the stretching occurs during the transformation from dx′ to dx and that the
transformation from dX to dx′ is a pure rotation.

Although the transformations from dX to dX′ and from dx′ to dx contain all of the
stretching, they also tend to rotate a general line element. However, the special line
element dX which is parallel to any of the three principal directions of U transforms
dX to dX′ as a pure stretch without rotation (see Fig. 3.2) because

dX′ = UdX = λdX , (3.4.37)

where λ is the stretch defined by (3.3.9). It then follows that for this line element

dx = FdX = RUdX = RλdX = λdx′ ,
dx = FdX = VRdX = Vdx′ = λdx′ ,

(3.4.38)

so that dx′ is also parallel to a principal direction ofV, which means that the transfor-
mation from dx′ to dx is a pure stretchwithout rotation (see Fig. 3.3). This alsomeans
that the rotation tensor R describes the complete rotation of material line elements
which are either parallel to principal directions of U in the reference configuration
or parallel to principal directions of V in the current configuration.

3.5 Velocity Gradient and Rate of Deformation Tensors

The gradient of the velocity v with respect to the present position x is denoted by L
and is defined by

L = ∂v/∂x , Li j = ∂vi
∂x j

= vi , j . (3.5.1)
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The symmetric part D of L is called the rate of deformation tensor, while its skew-
symmetric partW is called the spin tensor, which are defined by

L = D + W , Li j =vi , j = Di j + Wi j , (3.5.2a)

D = 1

2
(L + LT ) = DT , Di j =1

2
(vi , j +v j ,i ) = Dji , (3.5.2b)

W = 1

2
(L − LT ) − WT , Wi j =1

2
(vi , j −v j ,i ) = −Wji . (3.5.2c)

Moreover, using the definition (2.5.4) of the divergence operator it can be shown that

divv = v,m · em = (∂v/∂x) em · em = Lem · em = L · (em ⊗ em) = L · I = D · I .

(3.5.3)
Using the chain rule of differentiation, the continuity of the derivatives and the

definition of the material derivative yields the expressions

Ḟ = ∂

∂t
(∂ x̂/∂X) = ∂2x̂/∂X∂t = ∂(∂ x̂/∂t)/∂X = ∂ v̂/∂X = (∂ ṽ/∂x)(∂ x̂/∂X) = LF ,

˙xi ,A = ∂

∂t
(x̂i ,A ) = ∂2 x̂i

∂XA∂t
= ∂

∂XA
(
∂ x̂i
∂t

) = v̂i ,A = ṽi ,m x̂m ,A .

(3.5.4)

It then follows that the material derivative of C can be expressed in the form

Ċ = ˙FTF = ḞTF + FT Ḟ = (LF)TF + FT (LF) = FT (LT + L)F = 2FTDF ,

ĊAB = ˙xi ,Axi ,B +xi ,A ˙xi ,B = vi ,m xm,A xi ,B +xi ,A vi ,m xm,B ,

= xm,A (vi ,m +vm,i )xi ,B = 2xm,A Dmi xi ,B .

(3.5.5)
Notice that the direct notation avoids the complications of changing repeated indices.

Furthermore, since the spin tensor W is skew-symmetric there exits a unique
vector ω, called the axial vector of W, such that for any vector a

Wa = ω × a , Wi ja j = εik jωka j = −εi jkω j ak . (3.5.6)

Since this equation must be true for any vector a, and W and ω are independent of
a, it follows that

W = εTω = −εω , Wi j = εik jωk = −εi jkωk . (3.5.7)

Multiplying (3.5.7) by εi jm and using the identity

εi jkεi jm = 2δkm , (3.5.8)

it is possible to solve for ωm in terms of Wi j to obtain
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ω = −1

2
ε · W , ωm = −1

2
εi jmWi j = −1

2
εmi jWi j . (3.5.9)

Next, substituting (3.5.2c) into this equation and using (2.5.6) yields

ωm = −1

4
εmi j (vi , j −v j ,i ) = −1

4
(−εmi j v j ,i −εmi j v j ,i ) = 1

2
εmi j v j ,i = 1

2
εmji vi , j ,

ω = 1

2
curlv = 1

2
� ×v ,

(3.5.10)
where the symbol � denotes the gradient operator

� φ = ∂φ/∂x = φ,i ei . (3.5.11)

For later reference, use is made of (3.3.13), (3.3.18) and (3.3.19) to deduce that

J̇ = Fe2 × Fe3 · Ḟe1 + Fe3 × Fe1 · Ḟe2 + Fe1 × Fe2 · Ḟe3 = JF−T · Ḟ . (3.5.12)

Next, thinking of J as a function of F and using the chain rule of differentiation it
can be shown that

J̇ = ∂ J

∂F
· Ḟ , (3.5.13)

so that

(
∂ J

∂F
− JF−T ) · Ḟ = 0 . (3.5.14)

Since this equation must be valid for all values of F and Ḟ, and the coefficient of Ḟ
is independent of the rate Ḟ, it follows that

∂ J

∂F
= JF−T . (3.5.15)

This procedure of using the material derivative of a scalar function to determine its
derivative respect to its tensorial argument is often easier than differentiating the
scalar function directly with respect to its argument. Now, with the help of (3.5.4) it
can be shown that

J̇ = J D · I . (3.5.16)

Derivative of a Unimodular Tensor
With the help of (3.3.23) and (3.5.16), it follows that the unimodular tensorF′ satisfies
the evolution equation

Ḟ′ = L′′ F′ , L′′ = L − 1

3
(L · I) I , (3.5.17)

so that Ḟ′ is orthogonal to F′−T

Ḟ′ · F′−T = 0 . (3.5.18)
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Rates of Stretch and Rotation of a Material Line Element
Using the expression (3.3.1a) and the result (3.5.4) it can be shown that the material
derivative of a material line element dx is given by

ḋx = L dx . (3.5.19)

Next, consider a material line elment which in the current configuration has stretch
λ and unit direction s. Taking the material derivative of (3.3.12a) and using (3.5.4),
it follows that

λ̇s + λṡ = λLs . (3.5.20)

Now, taking the dot product of this equation with s and using the fact that s is a unit
vector so that ṡ is orthogonal to s yields an expression for the rate of stretch

λ̇

λ
= D · s ⊗ s . (3.5.21)

Then, substituting this result into (3.5.20) yields an equation for the rate of rotation
of a material line element

ṡ = [L − (D · s ⊗ s)I] s . (3.5.22)

Rates of Material Area Stretch and Rotation of the Normal to a Material Surface
Consider a material surface with unit normal n and element of area da in the present
configuration. Taking the material derivative of Nanson’s formula (3.3.35) and using
(3.5.4) and (3.5.16) and the result

˙F−1 = −F−1L , (3.5.23)

it follows that
ṅda + nḋa = −LTnda + (D · I)nda . (3.5.24)

Next, taking the dot product of this equation with n and using the fact that n is a unit
vector so that ṅ is orthogonal to n yields an expression for the rate of material area
stretch

ḋa

da
= (I − n ⊗ n) · D . (3.5.25)

Then, substituting this result into (3.5.24) yields an equation for the rate of rotation
of the normal n to the material surface

ṅ = −[LT − (D · n ⊗ n) I]n . (3.5.26)
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3.6 Deformation: Interpretations and Examples

To interpret the various deformation measures, it is recalled from (3.3.9), (3.3.11a)
and (3.3.11b) that

λs = F , λsi =xi ,A SA , λ = ds

dS
,

s = dx
ds

, s · s =1 , S =dX
dS

, S · S =1 ,

(3.6.1)

where S is the unit vector in the direction of the material line element dX of length
dS in the reference configuration, s is the unit vector in the direction of the same
material line element dx of length ds in the current configuration, and λ is the stretch
of the material line element. Now, from (3.3.12b) and the definition (3.3.26a) of
Lagrangian strain E, it follows that

λ2 = C · (S ⊗ S) = 1 + 2E · (S ⊗ S) = 1 + 2EABSASB . (3.6.2)

Also, the extension ε defined in (3.3.10) becomes

ε = ds − dS

dS
= λ − 1 = √

1 + 2E · S ⊗ S − 1 = √

1 + 2EABSASB − 1 . (3.6.3)

For the purpose of interpreting the diagonal components of the strain tensor EAB ,
it is convenient to calculate the extensions ε1, ε2 and ε3 of the material line elements
which were parallel to the coordinate axes with base vectors eA in the reference
configuration

ε = ε1 = √

1 + 2E11 − 1 for S = e1 ,

ε = ε2 = √

1 + 2E22 − 1 for S = e2 ,

ε = ε3 = √

1 + 2E33 − 1 for S = e3 .

(3.6.4)

This clearly shows that the diagonal components of the strain tensor are measures
of the extensions of material line elements which were parallel to the coordinate
directions in the reference configuration.

To interpret the off-diagonal components of the strain tensor EAB as measures of
shear, consider two material line elements dX and dX̄ in the reference configuration
which are deformed, respectively, into dx and dx̄ in the present configuration. Letting
S̄ and d S̄ and s̄ and ds̄ be the directions and lengths of the material line elements dX̄
and dx̄, respectively, it follows from (3.6.1) that

λ̄ s̄ = FS̄ , λ̄ = ds̄

d S̄
. (3.6.5)
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Notice that there is no over bar on F in this equation because (3.6.1) is valid for any
material line element, including the particular material line element dX̄. Moreover,
it follows that the angle 
 between the undeformed material line elements dX and
dX̄ and the angle θ between the deformed material line elements dx and dx̄ can be
calculated by (see Fig. 3.4)

cos
 = dX
dS

· dX̄
d S̄

= S · S̄ , cos θ = dx
ds

· dx̄
ds̄

= s · s̄ . (3.6.6)

Furthermore, using (3.6.1), it follows that

cos θ = C · S ⊗ S̄√
C · S ⊗ S

√

C · S̄ ⊗ S̄
= cos
 + 2E · S ⊗ S̄√

1 + 2E · S ⊗ S
√

1 + 2E · S̄ ⊗ S̄
. (3.6.7)

Defining the reduction angleψ between the twomaterial line elements, this equation
can be rewritten in the form

θ = 
 − ψ ,

cos
 cosψ + sin
 sinψ = cos
 + 2EABSA S̄B√
1 + 2EMN SM SN

√

1 + 2ERS S̄R S̄S
.

(3.6.8)

Notice that, in general, the reduction angle ψ depends on the reference angle 
 and
on all of the components of strain.

As a specific example, consider two material line elements which in the reference
configuration were orthogonal and aligned along the coordinate axes such that (see
Fig. 3.4)

S = e1 , S̄ = e2 , 
 = π

2
. (3.6.9)

Then, (3.6.8) yields

sinψ = 2E12√
1 + 2E11

√
1 + 2E22

. (3.6.10)

This shows that the shear depends on the off-diagonal components of strain as well as
on the normal components of strain. However, if the strain is small (i.e., EAB << 1)
then (3.6.10) can be approximated by

ψ ≈ 2E12 , (3.6.11)

which shows that the off-diagonal components of strain are related to shear defor-
mations.

Using the work in [1], it follows that in the absence of distortional deformation
the unimodular part C′ of the deformation tensor C is the identity

C′ = J−2/3C = I , C = J 2/3I , (3.6.12)
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Fig. 3.4 Shear angle: Points
I, I I in the reference
configuration move to points
1, 2 in the current
configuration. Notice that the
plane of s and s̄ is not
necessarily parallel to the
plane of S and S̄

so the associated deformation gradient F is determined by the total dilatation J and
an arbitrary proper orthogonal rotation tensor R, such that

F = J 1/3R , RTR = I , detR = +1 . (3.6.13)

Using this expression for C in (3.6.7) yields

cos θ = cos
, (3.6.14)

whichmeans that the angle between any twomaterial line elements remains the same
unless there is some distortional deformation (C′ �= I).

3.7 Rate of Deformation: Interpretations and Examples

Recall the expressions (3.5.21) for the rate of stretch λ̇ and (3.5.22) for the rate of
rotation ṡ of a material line element

λ̇

λ
= D · s ⊗ s , (3.7.1a)

ṡ = [L − (D · s ⊗ s)I] s . (3.7.1b)

It follows from (3.7.1a) that the logarithmic derivative of the stretch is determined
by the rate of deformation tensor D for the material line element that is currently in
the s direction. Moreover, substituting (3.5.2a) into (3.7.1b) yields

ṡ = Ws + [D − (D · s ⊗ s)I] s , (3.7.2)

which shows that, in general, the rate of rotation of the material line element which
is currently in the direction s is dependent on both the rate of deformation tensor D
and the spin tensor W. However, if s is parallel to a principal direction of D then

Ds = (D · s ⊗ s)s , ṡ = Ws . (3.7.3)
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Fig. 3.5 Extension and
contraction: Points
I, I I, I I, I V in the
reference configuration move
to points 1, 2, 3, 4 in the
current configuration

This shows that the spin tensor W controls the rate of rotation of the material line
element dx which in the current configuration is parallel to a principal direction of
D. Furthermore, using (3.5.6) it can be seen that for this case the axial vector ω of
theW determines the rate of rotation of s

ṡ = ω × s for Ds = (D · s ⊗ s)s . (3.7.4)

Example: Extension and Contraction (Fig.3.5)
By way of example, let XA be the Cartesian components of X, xi be the Cartesian
components of x and the Cartesian base vectors eA and ei coincide (ei = δi AeA).
Also, consider the motion defined by

x1 = eat X1 , x2 = e−bt X2 , x3 = X3 , (3.7.5)

where a, b are positive numbers. The inverse mapping is given by

X1 = e−at x1 , X2 = ebt x2 , X3 = x3 . (3.7.6)

It then follows that

Fi A =
⎛

⎝

eat 0 0
0 e−bt 0
0 0 1

⎞

⎠ , CAB =
⎛

⎝

e2at 0 0
0 e−2bt 0
0 0 1

⎞

⎠ , (3.7.7)

EAB = 1

2

⎛

⎝

e2at − 1 0 0
0 e−2bt − 1 0
0 0 0

⎞

⎠ . (3.7.8)

To better understand this deformation, it is convenient to calculate the stretch λ and
the extension ε of line elements which were parallel to the coordinate directions in
the reference configuration
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Fig. 3.6 Simple shear:
Points I, I I, I I, I V in the
reference configuration move
to points 1, 2, 3, 4 in the
current configuration

For S = e1 , λ = eat ≥ 1 , ε = eat − 1 ≥ 0 , (extension) ,
For S = e2 , λ = e−bt ≤ 1 , ε = e−bt − 1 ≤ 0 , (contraction) ,
For S = e3 , λ = 1 , ε = 0 , (no deformation) .

(3.7.9)

Next, consider the rate of deformation to deduce that

v1 = ax1 , v2 = −bx2 , v3 = 0 ,

Li j = Di j =
⎛

⎝

a 0 0
0 −b 0
0 0 0

⎞

⎠ , W = 0 , ω = 0 .
(3.7.10)

The principal directions of D are e1, e2 and e3 so since W = 0, it follows that the
material line elements that are parallel to these principal directions in the current
configuration experience pure stretching without rotation

For s = e1 , λ̇
λ

= a > 0 , ṡ = 0 , (rate of extension) ,
For s = e2 , λ̇

λ
= −b > 0 , ṡ = 0 , (rate of contraction) ,

For s = e3 , λ̇
λ

= 0 , ṡ = 0 , (no deformation) .

(3.7.11)

It is emphasized that although W vanishes, other material line elements can rotate
during this motion.

Example: Simple Shear (Fig.3.6)
To clarify the meaning of the spin tensorW consider a simple shearing deformation
which is defined by

x1 = X1 + κ(t)X2 , x2 = X2 , x3 = X3 , (3.7.12)

where κ(t) is a monotonically increasing nonnegative function of time

κ ≥ 0 , κ̇ > 0 . (3.7.13)

The inverse mapping is given by

X1 = x1 − κx2 , X2 = x2 , X3 = x3 , (3.7.14)
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and it follows that

Fi A =
⎛

⎝

1 κ 0
0 1 0
0 0 1

⎞

⎠ , CAB =
⎛

⎝

1 κ 0
κ 1 + κ2 0
0 0 1

⎞

⎠ , EAB = 1

2

⎛

⎝

0 κ 0
κ κ2 0
0 0 0

⎞

⎠ . (3.7.15)

To better understand this deformation, it is convenient to calculate the stretch λ

and the extension ε of material line elements which were parallel to the coordinate
directions in the reference configuration

For S = e1 , λ = 1 , ε = 0 , (no deformation) ,
For S = e2 , λ = √

1 + λ2 , ε = √
1 + λ2 − 1 ≥ 0 , (extension) ,

For S = e3 , λ = 1 , ε = 0 , (no deformation) .
(3.7.16)

Notice that the result for S = e2 could be obtained by direct calculation using ele-
mentary geometry. Next, consider the rate of deformation to deduce that

v1 = κ̇x2 , v2 = 0 , v3 = 0 ,

Li j =
⎛

⎝

0 κ̇ 0
0 0 0
0 0 0

⎞

⎠ , Di j = 1

2

⎛

⎝

0 κ̇ 0
κ̇ 0 0
0 0 0

⎞

⎠ ,

Wi j = 1

2

⎛

⎝

0 κ̇ 0
−κ̇ 0 0
0 0 0

⎞

⎠ , ω = −1

2
κ̇e3 .

(3.7.17)

Since the principal directions of D are 1√
2
(e1 + e2), 1√

2
(−e1 + e2) and e3, with the

help of (3.7.1a), it follows that

For s = 1√
2
(e1 + e2) , λ̇

λ
= 1

2 κ̇ > 0 ,

ṡ = ( 12 κ̇) 1√
2
(e1 − e2) , (rate of extension) ,

For s = 1√
2
(−e1 + e2) , λ̇

λ
= − 1

2 κ̇ < 0 ,

ṡ = ( 12 κ̇) 1√
2
(e1 + e2) , (rate of contraction) ,

For s = e3 , λ̇
λ

= 0 ,

ṡ = 0 , (no deformation) .

(3.7.18)

Thus, from (3.7.17), it follows that these special material line elements in (3.7.18)
are rotating in the clockwise direction about the e3 axis with angular speed 1

2 κ̇ . In
addition, it noted that this motion is isochoric (3.5.16) (no change in volume) with

J = det F = 1 , D · I = 0 . (3.7.19)
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3.8 Superposed Rigid Body Motions (SRBM)

This section develops the kinematics of Superposed Rigid Body Motions (SRBM)
which will be used later to place restrictions on constitutive equations for material
response. Consider a group of motions associated with configurations P+ which
differ from an arbitrary prescribed motion such as (3.1.5)

x = x̂(X, t) , (3.8.1)

by SRBMof the entire body, (i.e., motions which in addition to the prescribedmotion
include purely rigid motions of the body).

To this end, consider a material pointX of the body, which inP at time t occupies
the location x as specified by (3.8.1). Suppose that under a SRBM the material point,
which occupies the location x at time t in the configuration P, moves to the location
x+ at time t+

t+ = t + c , (3.8.2)

in the superposed configuration P+, where c is a constant time shift. Throughout the
text, quantities associated with the superposed configuration P+ are denoted using
the same symbol as associated with the configuration P but with a superscript ( )+. In
particular, the position x+ of the same material point in the superposed configuration
is written in the form

x+ = ˆ̄x+(X, t+) = x̂+(X, t) , (3.8.3)

where the notation x̂+ and x̂+ has been used to distinguish between the function x̂+,
which depends on t+, and the function x̂+, which depends on t and includes the
influence of c .

Similarly, consider another material point Y of the body, which in the current
configuration P at time t occupies the location y specified by

y = x̂(Y, t) . (3.8.4)

It is important to emphasize that the function x̂ in (3.8.4) is the same function as
that in (3.8.1). Furthermore, suppose that under the same SRBM the material point
which occupies the location y at time t in the configuration P moves to the location
y+ at time t+. Then, with the help of (3.8.3), it follows that

y+ = ˆ̄x+(Y, t+) = x̂+(Y, t) . (3.8.5)

Recalling the inverse relationships

X = X̃(x, t) , Y = X̃(y, t) , (3.8.6)
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the function x̂+ on the right-hand sides of (3.8.3) and (3.8.6) can be expressed as
different functions of x and t and y and t , respectively, such that

x+ = x̂+(X̃(x, t), t) = x̃+(x, t) , y+ = x̂+(X̃(y, t), t) = x̃+(y, t) . (3.8.7)

Since the superposed motion of the body is restricted to be rigid, the magnitude of
the relative displacement y+ − x+ must remain equal to the magnitude of the relative
displacement y − x for all pairs of material points X and Y, and for all time. Thus,

[x̃+(y, t) − x̃+(x, t)] · [x̃+(y, t) − x̃+(x, t)] = (y − x) · (y − x) . (3.8.8)

Recognizing that x and y are independent, (3.8.8) can be differentiated first with
respect to x and then with respect to y to obtain

−2[∂ x̃+(x, t)/∂x]T [x̃+(y, t) − x̃+(x, t)] = −2(y − x) ,

[∂ x̃+(x, t)/∂x]T [∂ x̃+(y, t)/∂y] = I .
(3.8.9)

In this equation the transpose has been used to retain the inner product of x̃+(x, t)
with x̃+(y, t). Moreover, it follows that the determinant of the tensor ∂ x̃+(x, t)/∂x
does not vanish so that this tensor is invertible and (3.8.9) can be rewritten in the
alternative form

[∂ x̃+(x, t)/∂x]T = [∂ x̃+(y, t)/∂y]−1 , (3.8.10)

for all x and y in the region and all t . Thus, each side of this equation must be a
tensor function of time only, say QT (t), so that

∂ x̃+(x, t)/∂x = Q(t) , (3.8.11)

for all x in the region and all time t . Using the fact that Q in (3.8.11) is independent
of x, it also follows that

∂ x̃+(y, t)/∂y = Q(t) , (3.8.12)

so that (3.8.9) restricts Q to be an orthogonal tensor

QT (t)Q(t) = I , detQ = ±1 . (3.8.13)

Since (3.8.7) represents a SRBM it must include the trivial motion

x̃+(x, t) = x , Q = I , detQ = +1 . (3.8.14)

Furthermore, since the motions are assumed to be continuous and detQ cannot
vanish, Q must remain a proper orthogonal tensor function of time only

QT (t)Q(t) = Q(t)QT (t) = I , detQ = +1 . (3.8.15)
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Next, integrating (3.8.11) yields the general solution for SRBM

x+ = x̃+(x, t) = c(t) + Q(t)x , (3.8.16)

where c(t) is an arbitrary vector function of time only representing an arbitrary
translation of the body and Q(t) represents an arbitrary rotation of the body.

By definition, the superposed part of the motion defined by (3.8.16) is a rigid body
motion. This means that the lengths of line elements are preserved

|x+ − y+|2 = (x+ − y+) · (x+ − y+) = Q(x − y) · Q(x − y) = (x − y) · QTQ(x − y) ,

= (x − y) · I(x − y) = (x − y) · (x − y) = |x − y|2 ,

(3.8.17)
and the angles between two material line elements are also preserved so that

cos θ+ = (x+ − y+)

|x+ − y+| · (x+ − z+)

|x+ − z+| = Q(x − y)
|(x − y)| · Q(x − z)

|(x − z)| ,

= (x − y)
|(x − y)| · Q

TQ(x − z)
|(x − z)| = (x − y)

|(x − y)| · (x − z)
|(x − z)| = cos θ ,

(3.8.18)

where x, y and z are material points in the body which move to x+, y+ and z+ under
SRBM. Furthermore, this means that material areas, and volumes are preserved
under SRBM. To show this use is made of (3.8.16) with x = x̂(X, t) to calculate
the deformation gradient F+ from the reference configuration to the superposed
configuration

F+ = ∂ x̂+(X, t)/∂X = Q(∂x/∂X) = QF , (3.8.19)

so that from (3.3.21), (3.3.35) and (3.8.19), it follows that

J+ = dv+

dV
= det F+ = det(QF) = detQ det F = J ,

n+da+ = dx1+ × dx2+ = J+(F+)−TNd A = JQF−TNd A = Qnda ,

(da+)2 = n+da+ · n+da+ = Qnda · Qnda = n · QTQ(da)2 = (da)2 ,

n+ = Qn .

(3.8.20)

For later convenience it is desirable to calculate expressions for the velocity and
rate of deformation tensors associated with the superposed configuration. To this
end, take the material derivative of (3.8.13) to deduce that

Q̇TQ + QT Q̇ = 0 ⇒ Q̇ = �Q ⇒ �T = −� , (3.8.21)

where �(t) is a skew-symmetric tensor function of time only. Letting ω be the axial
vector of � it is recalled from (3.5.6) that for an arbitrary vector a

�a = ω × a . (3.8.22)
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Thus, by taking the material derivative of (3.8.16) the velocity v+ of the material
point in the superposed configuration can be expressed in the forms

v+ = ẋ+ = ċ + Q̇x + Qẋ = ċ + �Qx + Qv ,

v+ = ċ + �(x+ − c) + Qv = ċ + ω × (x+ − c) + Qv .
(3.8.23)

It follows that the velocity gradient L+ and rate of deformation D+ and spin W+
tensors associated with the superposed configuration are given by

L+ = ∂v+/∂x+ = Q(∂v/∂x)(∂x/∂x+) + � = QLQT + � ,

D+ = QDQT , W+ = QWQT + � ,
(3.8.24)

where use has beenmadeof the condition (3.8.21) and (3.8.16) has beendifferentiated
to obtain

∂x+/∂x = Q , ∂x/∂x+ = QT . (3.8.25)

In general, SRBM are in addition to the general motion x(X, t) of a deformable
body. However, the kinematics of rigid body motions can be obtained as a special
case by identifying x with its value X in the fixed reference configuration so that
distortion and dilatation of the body are eliminated and (3.8.23) yields

x = X ⇒ ẋ+ = ċ + ω × (x+ − c) . (3.8.26)

In this form, it is easy to recognize that c(t) represents the translation of a point
moving with the rigid body and ω is the absolute angular velocity of the rigid body.

In summary, the most general SRBM is characterized by Eqs. (3.8.16), (3.8.13)
and (3.8.21)

x+ = c(t) + Q(t)x , QTQ = I , detQ = +1 , Q̇ = �Q , �T = −� .

(3.8.27)

3.9 Material Line, Material Surface and Material Volume

Recall that a material point Y is mapped into its location X in the reference config-
uration and that this mapping is independent of time. Consequently, lines, surfaces
and volumes, which remain constant in the reference configuration, always contain
the same material points and therefore are called material.

Material Line
A material line is a fixed curve in the reference configuration that can be parameter-
ized by its archlength S, which is independent of time. It follows that the Lagrangian
representation of a material line becomes
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X = X(S) . (3.9.1)

Alternatively, using the mapping (3.1.5) the current positions of material points on
the same material line are determined by

x = x(S, t) = x̂(X(S), t) . (3.9.2)

Material Surface
Amaterial surface is a fixed surface in the reference configuration that can be param-
eterized by two coordinates S1 and S2 that are independent of time. It follows that
the Lagrangian representation of a material surface becomes

X = X(S1, S2) or f̂ (X) = 0 , (3.9.3)

where f̂ (X) = 0 is a constraint on the three components of X which ensures that X
identifies points in the space of the reference configuration on the material surface.
Alternatively, using the mapping (3.1.5) and its inverse (3.1.6), the current positions
of material points on this surface and the Eulerian representation of the samematerial
surface can be characterized by the expressions

x = x(S1, S2, t) = x̂(X(S1, S2), t) or f̃ (x, t) = f̂ (X̃(x, t)) = 0 , (3.9.4)

where f̃ (x, t) = 0 is a constraint on the three components of x which ensures that x
identifies points in the space of the current configuration on the material surface.

Lagrange’s Criterion for a Material Surface
The surface defined by the constraint f̃ (x, t) = 0 is material if and only if

˙̃f = ∂ f̃

∂t
+ ∂ f̃ /∂x · v = 0 . (3.9.5)

Proof In general, the mapping (3.1.5) can be used to deduce that

f̂ (X, t) = f̃ (x̂(X, t), t) , (3.9.6)

which can be used to rewrite (3.9.5) in the form

˙̂f (X, t) = ∂ f̂

∂t
= ˙̃f = 0 , (3.9.7)

so that f̂ is independent of time and the surface f̂ = 0 is fixed in the reference config-
uration, whichmeans that f̂ = f̃ = 0 characterizes a material surface. Alternatively,

if f̂ is independent of time, then ˙̂f = 0 and ˙̃f = 0.

Material Region



64 3 Kinematics

A material region is a region of space bounded by a closed material surface. For
example, if ∂P0 is a closed material surface in the reference configuration then the
region of space P0 enclosed by ∂P0 is amaterial region that contains the samematerial
points for all time if P0 and ∂P0 are fixed in the reference configuration. Alternatively,
using the mapping (3.1.5) each point of the material surface ∂P0 maps into a point on
the closed material surface ∂P in the current configuration so the region P enclosed
by ∂P is the associated material region in the current configuration.

3.10 Reynolds Transport Theorem

Reynolds transport theorem is used to calculate the time derivative of an integral
over a material region P in the current configuration whose closed boundary ∂P is
changing with time.

Leibniz’s Rule
By way of introduction, consider the simpler one-dimensional case of Leibniz’s rule
and recall that

d

dt

∫ β(t)

α(t)
φ(x, t)dx =

∫ β(t)

α(t)

∂φ(x, t)

∂t
dx + φ(β(t), t)β̇ − φ(α(t), t)α̇ , (3.10.1)

where φ(x, t) is an arbitrary function of position x and time t , and α(t) and β(t)
define the changing boundaries of integration. It is important to notice that the rates
of change of the boundaries enter the expression in (3.10.1).
Reynolds Transport Theorem for a Material Region
To develop the generalization of (3.10.1) for a three-dimensional material region, it
is convenient to consider an arbitrary scalar or tensor valued function φ which admits
the representations

φ = φ̃(x, t) = φ̂(X, t) . (3.10.2)

Bymapping thematerial region P from the current configuration back to the reference
configuration P0, it is possible to calculate the derivative of the integral of φ over the
changing region P as follows

d

dt

∫

P
φ̃(x, t)dv = d

dt

∫

P0

φ̂(X, t)JdV ,

=
∫

P0

∂{φ̂(X, t)J }
∂t

∣
∣
XdV =

∫

P0

(
˙̂
φ + φ̂divv)JdV ,

(3.10.3)

which can be transformed back to an integral over the present region P to obtain

d

dt

∫

P
φ(x, t)dv =

∫

P
(φ̇ + φ divv)dv , (3.10.4)
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where φ̇ is the usual material derivative of φ

φ̇ = ∂φ̂(X, t)

∂t
= ∂φ̃(x, t)

∂t
+ (∂φ̃(x, t)/∂x) · v . (3.10.5)

Next, substituting (3.10.5) into (3.10.4) yields

d

dt

∫

P
φ(x, t)dv =

∫

P
[∂φ̃(x, t)

∂t
+ (∂φ̃(x, t)/∂x) · v + φ divv]dv

=
∫

P
[∂φ̃(x, t)

∂t
+ div(φ̃ ⊗ v)]dv ,

(3.10.6)

which with the help of the divergence theorem (2.5.10) can be written in the form

d

dt

∫

P
φ(x, t)dv =

∫

P

∂φ̃(x, t)
∂t

dv +
∫

∂P
φ̃ (v · n)da , (3.10.7)

where n is the unit outward normal to the material surface ∂P . It should be empha-
sized that the time differentiation and the integration over space operations commute
in (3.10.3) because the region P0 is independent of time. In contrast, the time dif-
ferentiation and the integration over space operations in (3.10.7) do not commute
because the region P depends on time. However, sometimes in fluid mechanics the
region P in space at time t is considered to be a control volume and is identified as
a fixed region P̄ with fixed boundary ∂ P̄ which instantaneously coincide with the
material region P and the material boundary ∂P. Then, the time differentiation is
interchanged with the integration over space operation to obtain

d

dt

∫

P
φ(x, t)dv = ∂

∂t

∫

P̄
φ̃(x, t)dv +

∫

∂ P̄
φ̃ (v · n)da , (3.10.8)

where P on the left-hand side of this equation represents a material region that
changes with time. In this regard, it is essential to interpret the partial differentiation
operation in (3.10.8) as differentiation with respect to time holding x fixed. To avoid
possible confusion, it is preferable to use the form (3.10.7) instead of (3.10.8).

Transport Theorem for a Non-material Region
To develop a generalized version of Leibnitz’s rule (3.10.1) consider a general non-
material region V(t) with general non-material closed boundary ∂V(t) for which

d

dt

∫

V(t)
φ̃(x, t)dv =

∫

V(t)

∂φ̃

∂t
dv +

∫

∂V(t)
φ̃ (w · n)da , (3.10.9)

where φ̃(x, t) is a general tensor field and w is the velocity of points on the moving
boundary ∂V(t). Next, using the divergence theorem (2.5.10), it follows that
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Fig. 3.7 A material region with a singular moving surface S(t)

∫

V(t)
div(φ ⊗ v)dv =

∫

∂V(t)
φ̃ (v · n)da , (3.10.10)

where v is the velocity of material points x in the region V(t) or the velocity of
material points which instantaneously lie on the moving surfaceV(t). Thus, (3.10.9)
can be rewritten in the form

d

dt

∫

V(t)
φ̃(x, t)dv =

∫

V(t)

[∂φ̃

∂t
+ div(φ ⊗ v)

]

dv +
∫

∂V(t)
φ̃ [(w − v) · n]da .

(3.10.11)
Moreover, using (2.5.4) and (3.10.5) it can be shown that

div(φ̃ ⊗ v) = (∂φ̃/∂x) · v + φ̃ divv = φ̇ + φ̃ divv − ∂φ̃

∂t
. (3.10.12)

Then, using this expression the generalized transport theorem for a non-material
region becomes

d

dt

∫

V(t)
φ(x, t)dv =

∫

V(t)
(φ̇ + φ divv)dv +

∫

∂V(t)
φ [(w − v) · n]da , (3.10.13)

where the last term in this equation represents the flux of φ entering V(t) through
the moving boundary ∂V(t). When V is a material region P and ∂V is a material
boundary ∂P then (w − v) · n = 0 and (3.10.13) reduces to the simple form (3.10.4).

Transport Theorem for a Material Region with a Singular Moving Surface
Impulsive loading of materials cause shock waves that travel through the material
region. At the front of a shock wave the state of the material can change rapidly.
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Mathematically, it is convenient to approximate the front of the shock wave as a
singular surface S(t) moving through the material at which quantities other than the
positions of material particles can be discontinuous across the surface S(t). Figure
3.7 shows a material region P with closed material boundary ∂P that is divided by
a singular moving surface S(t) into two parts P1 and P2 with closed boundaries ∂P1
and ∂P2, respectively. Furthermore, let the intersection of ∂P1 with ∂P be denoted
by ∂P ′ and the intersection of ∂P2 with ∂P be denoted by ∂P ′′. Mathematically, this
separation is summarized by

P = P1 ∪ P2 , ∂P ′ = ∂P1 ∩ ∂P , ∂P ′′ = ∂P2 ∩ ∂P ,

∂P = ∂P ′ ∪ P ′′ , ∂P1 = ∂P ′ ∪ S , ∂P2 = ∂P ′′ ∪ S .
(3.10.14)

Points on this singular surface move with velocity w and the unit normal to S(t)
outward from the part P1 is denoted by n.

Application of the generalized transport theorem (3.10.13) to each of the parts P1
and P2 yields

d

dt

∫

P1

φ(x, t)dv =
∫

P1

(φ̇ + φ divv)dv +
∫

S(t)
φ1 {(w − v1) · n}da ,

d

dt

∫

P2

φ(x, t)dv =
∫

P2

(φ̇ + φ divv)dv −
∫

S(t)
φ2 {(w − v2) · n}da ,

(3.10.15)

where φ1 and v1 are the values of φ and v in part P1 and φ2 and v2 are the values of
φ and v in part P2, all on the singular surface S(t). Next, adding these expressions
yields

d

dt

∫

P
φ(x, t)dv =

∫

P1

(φ̇ + φ divv)dv +
∫

P2

(φ̇ + φ divv)dv

−
∫

S(t)
[[φ {(w − v) · n}]]da ,

(3.10.16)

where the jump operator [[φ]] is defined by

[[φ]] = φ2 − φ1 . (3.10.17)

In addition, w and n are the same on both sides of S(t)

w1 = w2 = w , n1 = n2 = n . (3.10.18)
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3.11 An Eulerian Formulation of Evolution Equations for
Elastic Deformations

Recall from (3.5.4) that the deformation gradient F from the reference configuration
satisfies the evolution equation

Ḟ = LF , (3.11.1)

where L is the velocity gradient. Also, recall that the total dilatation J and the
unimodular part F′ of F, both from the reference configuration, satisfy the evolution
equations (3.5.16) and (3.5.17), respectively

J̇ = J D · I , Ḟ′ = L′′F′ , (3.11.2)

where L′′ is the deviatoric part of L. To integrate these equations from an arbitrary
time t = t1 it is necessary to know the initial values

F(t1) , J (t1) = det F(t1) > 0 , F′(t1) , (3.11.3)

where the dependence on space has been suppressed for notational convenience.
These initial values depend on an arbitrary choice of the reference configuration,
with F(t1) depending explicitly on the choice of the orientation of the body in the
reference configuration.

Onat [4] discussed physical restrictions on internal state variables. This discus-
sion proposed that internal state variables, which are determined by integrating time
evolution equations, are specified to measure properties of the material response that
define the current state of the material. Moreover, since these evolution equations
need initial conditions, it is necessary that the values of the internal state variables be,
in principle, measurable directly or indirectly by experiments on multiple identical
samples of the material in its current state. Thus, all variables that define the current
material state must be characterized by internal state variables whose values in the
current state are measurable.

In this regard, it is noted that the reference configuration can be chosen to be
an arbitrary configuration which admits a one-to-one mapping between material
points in the reference configuration and the same material points in the current
configuration. This requires F to be nonsingular with det F > 0. For example, let
A be an arbitrary second-order tensor function of X only with positive determinant
detA > 0. It then follows that FA satisfies the evolution equation (3.11.1)

ḞA = L(FA) . (3.11.4)

However, since the choice of the reference configuration is arbitrary, it is not possible
to determine the value of FA in the current state from experiments on identical
samples of the material in its current state. This is true even if it is known that the
the material in the reference configuration is in a uniform stress-free material state,
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since FA in the reference state could have an arbitrary orientation described by three
arbitrary orientation angles of a proper orthogonal rotation tensor. This means that
F is not an internal state variable in the sense of Onat [4] and therefore should not
be used in constitutive equations, even for an elastic material. Similarly, the total
dilatation J = det F and the unimodular tensor F′ from the reference configuration
are also not internal state variables. However,F, J andF′ can be used to parameterize
the solution of a particular problem for which the initial value of F is specified.

The Eulerian formulation for the purely mechanical theory of a compressible
elastic material proposes an evolution equation for the elastic dilatation Je in the
form

J̇e = Je D · I . (3.11.5)

Since the constitutive equation for stress is restricted to be invertible (1.2.12), it
follows from (1.2.9) that Je is an internal state variable in the sense of Onat [4]
since it can be measured by experiments on identical samples of the material in the
current configuration. Moreover, the evolution equation (3.11.5) is considered to be
an Eulerian formulation of an evolution equation for the elastic dilatation Je since it
depends only on the current state of the material characterized by the values of Je
and D, which are measurable in the current state.

Anisotropic Elastic Solids
Following the work in [6] for elastically anisotropic materials, consider a triad of
linearly independentmicrostructural vectorsmi (i = 1, 2, 3) defined by the evolution
equations

ṁi = Lmi . (3.11.6)

From (3.5.19) it is clear thatmi deform like material line elements. Moreover, since
mi are linearly independent they can be defined so that they form a right-handed
triad with the elastic dilatation defined by (1.2.9)

Je = m1 × m2 · m3 > 0 . (3.11.7)

These vectors characterize both elastic deformations and rotations of material line
elements. In particular, the elastic deformations can be defined by the elastic metric

mi j = mi · m j = m ji , (3.11.8)

and the vectors mi can be specified so that they form an orthonormal triad in any
zero-stress material state with

mi j = δi j for any zero-stress material state . (3.11.9)

Moreover, using (3.11.6) it can be shown that the elastic metric satisfies the evolution
equation

ṁi j = 2(mi ⊗ m j ) · D . (3.11.10)
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In contrast to the total deformation gradient F, which is not an internal state
variable, the microstructural vectors mi are internal state variables in the sense of
Onat [4]. Specifically, since the constitutive equation for stress is restricted to be
invertible (1.2.12), it follows that the values ofmi are measurable by experiments on
identical samples of a material in its current state (see the more detailed discussion
in Sect. 5.3).

As the material deforms, mi do not remain orthonormal. However, since mi are
linearly independent, their reciprocal vectors mi can be defined by

m1 = J−1
e m2 × m3 , m2 = J−1

e m3 × m1 , m3 = J−1
e m1 × m2 ,

J−1
e = m1 × m2 · m3 ,

(3.11.11)
which have the properties that

mi ⊗ mi = I . (3.11.12)

Then, taking the material derivative of Je in (3.11.7) and using the evolution equation
(3.11.6), the definitions (3.11.11) and the result (3.11.12), it follows that

J̇e = ṁ1 · m2 × m3 + ṁ2 · m3 × m1 + ṁ3 · m1 × m2 ,

= Jeṁi · mi = JeL · mi ⊗ mi = Je L · I = Je D · I ,
(3.11.13)

which proves that the specification (3.11.7) satisfies the evolution equation (3.11.5)
for elastic dilatation and the condition that Je = 1 in any zero-stress material state.

Next, using the work of Flory [1] it is possible to develop pure measures of elastic
distortional deformation. Specifically, the elastic distortional vectorsm′

i are defined
by

m′
i = J−1/3

e mi , m′
1 × m′

2 · m′
3 = 1 , (3.11.14)

which satisfy the evolution equations

ṁ′
i = L′′ m′

i , (3.11.15)

where L′′ is the deviatoric part of L. Also, the elastic distortional deformation metric
m ′

i j is defined by
m ′

i j = m′
i · m′

j = m ′
j i . (3.11.16)

This metric satisfies the evolution equation

ṁ ′
i j = 2m′

i ⊗ m′
j · D′′ = 2(m′

i ⊗ m′
j − 1

3
m ′

i j I) · D , (3.11.17)

where D′′ is the deviatoric part of D. In addition, the associated reciprocal vectors
mi ′ satisfy equations
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mi ′ = J 1/3
e mi , m1′ × m2′ · m3′ = 1 . (3.11.18)

Isotropic Elastic Solids
For isotropic elastic solids, it is not possible to distinguish between the three
microstructural vectors mi and it is convenient to introduce a symmetric, positive
deformation elastic deformation tensor Be defined by

Be = mi ⊗ mi , (3.11.19)

which with the help of (3.11.6) can be shown to satisfy the evolution equation

Ḃe = LBe + BeLT . (3.11.20)

Since the constitutive equation for stress is restricted to be invertible (1.2.4), it follows
that the value of Be is measurable by experiments on identical samples of a material
in its current state (see the more detailed discussion in Sect. 5.8). Consequently, Be

is an internal state variable in the sense of Onat [4].
Next, using the fact that (3.5.12) is valid for any nonsingular tensor, it follows

that ˙detBe = (detBe)B−1
e · Ḃe = 2(detBe)(D · I) , (3.11.21)

so that Je in (3.11.5) can be identified as

Je = (detBe)
1/2 . (3.11.22)

In addition, using the work of Flory [1] it is convenient to define the symmetric,
positive-definite, elastic distortional deformation tensor B′

e by

B′
e = J−2/3

e Be = m′
i ⊗ m′

i , (3.11.23)

which can be seen to be a unimodular tensor

detB′
e = det(J−2/3

e Be) = (J−2/3
e )3detBe = 1 ,

detB′
e = B′

em
1′ × B′

em
2′ · B′

em
3′

m1′ × m2′ · m3′ = m′
1 × m′

2 · m′
3 = 1 .

(3.11.24)

Moreover, using the evolution equations (3.11.15) it can be shown that B′
e satisfies

the evolution equation
Ḃ′
e = L′′B′

e + B′
eL

′′T , (3.11.25)

which with the help of (3.11.21) ensures that B′
e remains unimodular since

Ḃ′
e · B′

e
−1 = 0 . (3.11.26)
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Summary
For anisotropic response, the elastic deformations can be characterized by a right-
handed triad of linearly independent microstructural vectors mi , which satisfy the
evolution equations

ṁi = Lmi . (3.11.27)

Alternatively, the elastic deformations can be characterized by the elastic dilatation
Je and the elastic distortional deformation vectors m′

i , which satisfy the evolution
equations

J̇e = Je D · I , ṁ′
i = L′′ m′

i , (3.11.28)

where L′′ is the deviatoric part of L.
For isotropic response the elastic deformations can be characterized by the elastic

deformation tensor Be, which satisfies the evolution equation

Ḃe = LBe + BeLT , (3.11.29)

or, alternatively, by the elastic dilatation Je and the elastic distortional deformation
B′
e, which satisfy the evolution equations

J̇e = Je D · I , Ḃ′
e = L′′B′

e + B′
eL

′′T . (3.11.30)

Equations (3.11.27)–(3.11.30) represent Eulerian formulations of evolution equa-
tions because they depend only on quantities that can be determined in the current
state of the material.

Transformations Under SRBM
Under Superposed Rigid Body Motions SRBM the quantities mi ,mi j ,mi , Je,m′

i ,
m ′

i j ,m
i ′,Be and B′

e transform to m+
i ,m+

i j ,m
i+, J+

e ,m′+
i ,m ′+

i j ,m
i ′+,B+

e , and B′+
e ,

such that

m+
i = Qmi , m+

i j = mi j , mi+ = Qmi ,

J+
e = Je , m′+

i = Qm′
i , m ′+

i j = m ′
i j ,

mi ′+ = Qmi ′ , B+
e = QBeQT , B′+

e = QB′
eQ

T .

(3.11.31)

These transformation relations make the evolution equations form-invariant under
SRBM, so for examples (3.11.6) and (3.11.20) are consistent with the evolution
equations

ṁ+
i = L+ m+

i , Ḃ+
e = L+B+

e + B+
e L

+T , (3.11.32)

where under SRBM L transforms to L+.

Additional Eulerian Strain Measures
Using the condition (3.11.9) it is convenient to introduce elastic strains ei j measured
relative to zero-stress material states by
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ei j = 1

2
(mi j − δi j ) , (3.11.33)

which in view of (3.11.10) satisfy the evolution equations

ėi j = (mi ⊗ m j ) · D . (3.11.34)

Similarly, using the elastic distortional deformation (3.11.16), the elastic distortional
strains e′

i j relative to zero-stress material states are defined by

e′
i j = 1

2
(m ′

i j − δi j ) , (3.11.35)

which in view of (3.11.17) satisfy the evolution equations

ė′
i j = (m′

i ⊗ m′
j − 1

3
m ′

i j I) · D . (3.11.36)

In addition, for elastically isotropic response, the elastic distortional strain g′
e and

its deviatoric part g′′
e can be defined by

g′
e = 1

2
(B′

e − I) , g′′
e = 1

2
B′′
e , (3.11.37)

where B′′
e is the deviatoric part of B

′
e

B′′
e = B′

e − 1

3
(B′

e · I) I . (3.11.38)

3.12 Compatibility

Since the velocity gradientL is defined by the gradient of a velocity field v, it follows
that if v is continuously differentiable with respect to x then the total deformations
are compatible in the sense that a motion x̂(X, t) exists and the deformation gradient
F defined in (3.3.1c) is consistent with the value of F obtained by integrating the
evolution equation (3.5.4).

Within the context of the Eulerian formulation for anisotropic elastic solids, the
microstructural vectors mi obtained by integrating the evolution equations (3.11.6)
will also be compatible in the sense that amotion canbe characterizedby the invertible
mapping

x = x(θ i , t) , (3.12.1)

where θ i are convected coordinates. Moreover, since for the elastic case mi can be
identified as material line elements these convected coordinates can be defined so
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that

mi = ∂x
∂θ i

. (3.12.2)

For a continuously differentiable motion

∂2x
∂θ i∂θ j

= ∂2x
∂θ j∂θ i

, (3.12.3)

withmi satisfying the integrability conditions

∂mi

∂θ j
= ∂m j

∂θ i
. (3.12.4)

Now, expressing mi as functions of x, t and using the fact that

∂mi

∂θ j
= (∂mi/∂x)m j , (3.12.5)

it is convenient to define the three vectors ck by

ck = εki j (∂mi/∂x)m j . (3.12.6)

Then, for elastic response the integrability conditions (3.12.4) require

ck = 0 . (3.12.7)

For inelastic material response that will be discussed later, the vectorsmi will be
obtained by integrating evolution equations which include an inelastic deformation
rate, with mi still characterizing elastic deformations. For the general case when
L depends on x the total deformations and the inelastic deformation rate will be
inhomogeneous so the elastic deformations need not be compatible in the sense that
ck in (3.12.6) need not satisfy the compatibility conditions (3.12.7).

3.13 Strongly Objective, Robust Numerical Integration
Algorithms

Since the general equations of continuum mechanics are nonlinear, it is necessary to
use numerical methods to obtain solutions to challenging problems. Computational
mechanics is a field of mechanics that develops computational methods and applies
them to analyze fundamental and practical problems in continuum mechanics.

To this end, a numerical algorithm must be proposed to integrate the Eulerian
formulations of the evolution equations for the internal state variables, discussed in
the previous sections, over a typical time step that begins at time t = tn and ends at
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time t = tn+1, with time increment �t = tn+1 − tn . Specifically, given the values

mi (tn) , Je(tn) , m′
i (tn) , Be(tn) , B′

e(tn) (3.13.1)

of these internal state variables at the beginning of the time step, it is necessary to
develop a numerical algorithm to determine their values

mi (tn+1) , Je(tn+1) , m′
i (tn+1) , Be(tn+1) , B′

e(tn+1) (3.13.2)

at the end of the time step.
Following the work of Simo [12], it is convenient to introduce the relative defor-

mation gradient Fr (t) from the beginning of a time step, which satisfies the evolution
equation and initial condition

Ḟr = LFr , Fr (tn) = I . (3.13.3)

The associated relative dilatation Jr (t) from the beginning of the time step is defined
by

Jr = detFr , (3.13.4)

which with the help of (3.5.12) can be seen to satisfy the evolution equation and
initial condition

J̇r = JrF−T
r · Ḟr = Jr D · I , Jr (tn) = 1 . (3.13.5)

Also, the unimodular part F′
r of Fr is defined by

F′
r = J−1/3

r Fr , det F′
r = 1 , (3.13.6)

which satisfies the evolution equation and initial condition

Ḟ′
r = L′′ F′

r , F′
r (tn) = I , (3.13.7)

where L′′ is the deviatoric part of L.
These relative deformation quantities Jr ,Fr and F′

r are independent of arbitrary
choices of a reference configuration and therefore canused to integrateEulerian forms
of evolution equations for internal state variables that are themselves independent
of arbitrariness of the reference configuration. Also, under SRBM Jr ,Fr and F′

r
transform to J+

r ,F+
r and F′+

r according to the transformation relations

J+
r = Jr , F+

r = QFr F′+
r = QF′

r . (3.13.8)

Specifically, the elastic trial quantities
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m∗
i (t) = Fr (t)mi (tn) , J ∗

e (t) = Jr (t)Je(tn) ,

m′∗
i (t) = F′

r (t)m
′
i (tn) , B∗

e(t) = Fr (t)Be(tn)FT
r (t) ,

B′∗
e (t) = F′

r (t)B
′
e(tn)F

′T
r (t)

(3.13.9)

satisfy the evolution equations and initial conditions

ṁ∗
i = Lm∗

i , m∗
i (tn) = mi (tn) ,

J̇ ∗
e = J ∗

e D · I , J ∗
e (tn) = Je(tn) ,

ṁ′∗
i = L′′ m′∗

i , m′∗
i (tn) = m′

i (tn) .

Ḃ∗
e = LB∗

e + B∗
eL

T , B∗
e(tn) = Be(tn) ,

Ḃ′∗
e = L′′B′∗

e + B′∗
e L

′′T , B′∗
e (tn) = B′

e(tn) .

(3.13.10)

Also, for later reference it is noted that the deviatoric part B′′∗
e

B′′∗
e = B′∗

e − 1

3
(B′∗

e · I) I , (3.13.11)

of the elastic trial B′∗
e satisfies the evolution equation and initial condition

Ḃ′′∗
e = L′′B′∗

e + B′∗
e L

′′T − 2

3
(B′

e · D′′) I , B′′∗
e (tn) = B′′

e (tn) . (3.13.12)

Consequently, the elastic trial values (3.13.9) and (3.13.11) are exact solutions
of the evolution equations (3.11.6), (3.11.5), (3.11.15), (3.11.20), (3.11.25) and
(3.13.12), respectively. A fundamental feature of these elastic trial values is that
they satisfy the same transformation relations under SRBM as the exact values

m∗+
i = Qm∗

i , J ∗+
e = J ∗

e , m′∗+
i = Qm′∗

i ,

B∗+
e (t) = QB∗

eQ
T , B′∗+

e = QB′∗
e Q

T , B′′∗+
e = QB′′∗

e QT .
(3.13.13)

In particular, robust, strongly objective numerical algorithms can be developed using
these elastic trial values (e.g., [2, 3, 5, 7–10]).

Average Total Deformation Rate
Following the work in [11] the average deformation rate D̃ in a time step tn ≤ t ≤
tn+1 is expressed in the form

D̃ = 1

3
(D̃ · I) I + D̃′′ , (3.13.14)

where D̃′′ is the deviatoric part of D̃. Integration of the evolution equation (3.13.5)
for Jr yields an expression for the average total dilatational rate

D̃ · I = 1

�t
ln[Jr (tn+1)] . (3.13.15)
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To develop an expression for the average total distortional deformation rate tensor
D̃′′ it is convenient to define the unimodular relative deformation tensors

C′
r = F′T

r F′
r , B′

r = F′
rF

′T
r . (3.13.16)

Then, with the help of (3.13.7) it can be shown that

Ċ′
r = 2F′T

r D′′F′
r , D′′ = 1

2
F′−T
r Ċ′

rF
′−1
r , (3.13.17)

where D′′ is the deviatoric part of D. Moreover, since C′
r is unimodular, it follows

that
Ċ′

r · C′−1
r = 0 . (3.13.18)

This property is satisfied when the derivative Ċ′
r is approximated by

Ċ′
r ≈ 1

�t
[C′

r (tn+1) − { 3

C′−1
r (tn+1) · I } I] . (3.13.19)

Then, using the fact thatC′−1
r · I = B′−1

r · I, the average total distortional deformation
rate D̃′′ during the time step can be approximated by

D̃′′ = 1

2�t

[

I − { 3

B′−1
r (tn+1) · I }B

′−1
r (tn+1)

]

, (3.13.20)

with D̃ given by

D̃ = 1

3

1

�t
ln[Jr (tn+1)] I + 1

2�t

[

I − { 3

B′−1
r (tn+1) · I }B

′−1
r (tn+1)

]

. (3.13.21)

3.14 The Total Deformation Gradient Used to
Parameterize Specific Solutions

The objective of this section is to discuss differences between an elastic deformation
variable that characterizes material response and a total deformation measure which
is used to parameterize the solution of a particular problem for an elastic material.

Recall from Sect. 3.13 that the deformation gradient Fr (t) relative to the initial
configuration at t = 0 satisfies the evolution equation and initial condition (3.13.3)

Ḟr = LFr , Fr (0) = I , (3.14.1)
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where L is the velocity gradient. Also, the relative dilatation Jr and the unimodular
part F′

r of Fr , defined by (3.13.4) and (3.13.6)

Jr = detFr , F′
r = J−1/3

r Fr , (3.14.2)

satisfy the evolution equations and initial conditions (3.13.5) and (3.13.7)

J̇r = Jr D · I , Jr (0) = 1 ,

Ḟ′
r = L′′ F′

r , F′
r (0) = I ,

(3.14.3)

where L′′ is the deviatoic part of L.
It has been shown in Sect. 3.11 that the microstructural vectorsmi in the Eulerian

formulation are internal state variables in the sense of Onat [4], since their values are
measurable by experiments on identical samples of the material in its current state.
These vectors characterize elastic deformations and orientations of anisotropy and
satisfy the evolution equations (3.11.27)

ṁi = Lmi . (3.14.4)

It then follows that the elastic dilatation Je and the elastic distortional deformation
vectors m′

i , which satisfy the evolution equations (3.11.28)

J̇e = Je D · I , ṁ′
i = L′′ m′

i , (3.14.5)

are also internal state variables. Next, let mi (0), Je(0) and m′
i (0) be the measured

values of mi , Je and m′
i , respectively, in the initial configuration. Then, using Fr in

(3.14.1) and Jr and F′
r in (3.14.3), the evolution equations (3.14.4) and (3.14.5) can

be integrated to obtain

mi (t) = Fr (t)mi (0) , Je(t) = Jr (t)Je(0) , m′
i (t) = F′

r (t)m
′
i (0) . (3.14.6)

Next, recall from (3.5.4) that the total deformation gradient F from the reference
configuration satisfies the evolution equation

Ḟ = LF . (3.14.7)

Consequently, with the help ofFr in (3.14.1) the total deformation gradientF is given
by

F(t) = Fr (t)F(0) , (3.14.8)

where F(0) is the initial value of F. Furthermore, Fr can be written in the form

Fr (t) = F(t)F−1(0) = [F(t)A][F(0)A]−1 , detA > 0 , (3.14.9)
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where A is an arbitrary, time independent, second-order tensor with positive deter-
minant which can be a function of the position of material points. This expression
shows that the relative deformation tensor Fr is insensitive to arbitrariness of the
choice of the reference configuration for defining the total deformation gradient F.

For the solution of a particular problem, the initial configuration can be specified
to be the reference configuration with

F(t) = Fr (t) for F(0) = I , (3.14.10)

so that F or Fr can be used to parameterize the solution of a particular problem.
However, neither of these tensors can be used to determine themicrostructural vectors
mi (t), which determine elastic deformations and the orientation of directions of
anisotropy, without measuring mi (0) in the initial configuration.

In summary, although F or Fr can be used to parameterize the solution of a partic-
ular problem, they are not internal state variables and cannot be used by themselves
to characterize the material response of an elastic material.
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