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Preface

My interest in mechanics was stimulated by my Scout Master Henry Layton when I
was a Boy Scout. Henry was a mechanical engineer and a patent examiner who
helped us build mini-bikes using bicycle parts and lawn mower engines. During my
teenage years I bought a Craftsmen tool set at Sears and Roebuck, which I used to
work on my cars and motorcycles. At the University of Colorado in Boulder, where
I did my undergraduate degree in Mechanical Engineering, I learned that mathe-
matics, vectors and tensors are the tools that I needed to truly understand the
fundamentals of mechanics. Fortunately at Boulder, Prof. Frank Essenburg and
Prof. William Wainwright helped me develop analytical skills and physical thinking
needed to deepen my knowledge. They both encouraged me to continue my studies
for a Ph.D. in applied mechanics after I graduated in December 1972.

I applied to the University of California at Berkeley and was accepted in the
Department of Mechanical Engineering as a graduate student in applied mechanics.
During my last semester at Boulder I took a course in continuum mechanics from a
fluid mechanics professor who, unfortunately, really couldn’t explain the deep
physics of continuum mechanics. This caused me to change my major to bio-
engineering when I arrived at Berkeley for the fall quarter of 1973. However, I
enrolled in a continuum mechanics course taught by Prof. Paul Naghdi who was
clear, rigorous and explained the physical foundations. I thought then that if I
studied bioengineering I would not know enough biology to formulate a problem
and I would not know enough engineering to solve it. Consequently, I returned to
applied mechanics and was truly fortunate to have Paul as a thesis advisor. Through
my research, I have continued my interest in bioengineering. In my opinion, this
interdisciplenary field requires experts from different fields to communicate and
interact to make real progress.

Paul was a critical thinker who had the unique ability to read something that he
had written as if he were an objective expert reading it for the first time. This talent
helped him identify flaws in traditional approaches and create new ideas and for-
mulations. My numerous discussions with Paul, both as a graduate student and as a
colleague, challenged me and helped me develop as an independent researcher. I am
immensely indebted to Paul for investing so much time to inspire and shape me as a
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researcher in continuum mechanics. Later I learned that both Frank Essenburg and
William Wainwright were students of Paul so it is not surprising that I was attracted
to Paul’s lectures at Berkeley.

In August of 1979 I began work as a research engineer at SRI International.
During my job interview I was told that as a theoretician I have to be willing to do
experiments. At SRI, I was aided by a team of excellent technicians who taught me
about many experimental problems as I acted as the supervisor of experiments. This
exposure gave me a great appreciation for the difficulties of doing a good experi-
ment, which has helped put a more physical perspective on my research over the
years.

In October 1982 I moved to Israel with my wife Laurel to join the Faculty of
Mechanical Engineering at Techion—Israel Institute of Technology, where I have
spent my entire academic career, retiring as a Professor Emeritus in October 2019.
I developed a friendship and working relationship with my senior colleague Prof.
Sol Bodner, who was an experienced engineer with interests in both theory and
experiments. My numerous discussions with Sol exposed me to the field of vis-
coplasticity and taught me how to think more physically about material response.
I am also very much indebted to Sol for investing so much time in my development.

I have been teaching the course Introduction to Continuum Mechanics at
Technion since the spring semester of 1983. The course and this book are based on
the lecture notes of Paul Naghdi at Berkeley. Details of the presentation of this
material have changed over the years as my understanding of continuum mechanics
evolved due to my research and interactions with students, graduate students and
colleagues, especially Prof. Eli Altus, with whom I had many discussions. During
the first meeting of this course, I tell the students that continuum mechanics is a
deep subject and that I am still learning after having been an active researcher in
continuum mechanics for over 40 years. In my opinion, continuum mechanics is a
theoretical umbrella for almost all of engineering because the thermomechanical
theory applies to a broad range of solid materials (elastic, elastic–inelastic, elastic–
viscoelastic) and fluid materials (gases, inviscid, viscous and viscoelastic liquids).
Continuum mechanics provides a theoretical framework to ensure that we don’t
make fundamental blunders. However, the true beauty of the field is that we will
always be challenged to use our theoretical expertise and physical intuition to
synthesize experimental data to propose functional forms for constitutive equations
that describe new important features of material response that needs to be modeled.

My experience has also been enriched by having been a regular Visiting Faculty
at Lawrence Livermore National Laboratory (LLNL) since 1985. Dr. Lewis Glenn
and Dr. Willy Moss were my first boss and colleague, respectively, at LLNL. Over
the years I have had the opportunity to work with a number of very talented
researchers at LLNL who have contributed to some of the constitutive equations
presented in this book. At LLNL, I was exposed to the field of shock physics in
geological materials which challenged me to develop specific functional forms for
strongly coupled thermomechanical response that can be used to match experi-
mental data. The exposure to real problems and the ability to work with excellent
computational mechanics people at LLNL has enriched my ability to think

viii Preface



physically. Often I would have a number of ideas why the simulations using the
constitutive equations for a particular material do not match experimental data. In
working with my colleagues at LLNL I realized that it is important to find the
simplest way to “hack” the computer code to test an idea to see if it really makes a
difference. Once the ideal that makes a difference has been identified, then it is
necessary to develop the constitutive equations rigorously. It remains a challenge to
ensure that the “hack” is removed and the rigorous equations have been programed.

In addition, at LLNL I learned the importance of numerical algorithms. This has
particular relevance for the development of constitutive equations. Theoreticians
can often propose different functional forms which model the same limiting cases.
When working with computational mechanics it is important to choose those
functional forms for modeling a specific material response which have the correct
limits but also simplify the numerical algorithm.

I am also indebted to my colleague and friend Prof. Mahmood Jabareen in the
Faculty of Civil and Environmental Engineering at Technion. His computational
mechanics expertise was essential for the transition of the Cosserat Point Element
(CPE) technology from a theoretical concept that I proposed in 1985 to algorithms
that have been implemented in the commercial computer code LS-DYNA. We also
collaborated on a number of papers which have shaped some of the ideas presented
in this book, especially those on physical orthotropic invariants, the formulation of
constitutive equations with a smooth elastic–inelastic transition and growth of
biological materials. My graduate student and Post-Doctoral Fellow Dr. Mahmoud
Safadi learned computational mechanics from Prof. Jabareen which was essential
for his successful implementation of the constitutive equations for growth in the
commercial computer code Abaqus. His expertise was used for simulations in our
joint papers that highlighted the importance of the Eulerian formulation for growth.
In addition, discussions with Dr. Gal Shmuel and Prof. Reuven Segev helped
improve the presentation of the notions of a uniform material, a homogeneous
material and a uniform material state. Prof. Roger Fosdick and Prof. Albrecht
Bertram provided constructive criticism that improved the presentation of invari-
ance under Superposed Rigid Body Motions, especially for constrained materials.
Also, my wife Laurel proofread this book which helped identify and correct a
number of typographical errors.

I am certain that engineers are essential to the future of Israel. Therefore, I am
honored to be a Professor Emeritus from Technion, which is the best engineering
university in Israel. Having taught at Technion makes me feel that I have con-
tributed to the future of Israel through students who have been influenced by my
teaching. In particular, I derive great satisfaction knowing that some of my graduate
students have made significant contributions to the security and economic devel-
opment of Israel. I am sure that I could not attain such personal satisfaction in my
profession having been a professor anywhere else in the world.

I would also like to acknowledge the German Israel Foundation (GIF), the Israel
Science Foundation (ISF) and my Gerard Swope Chair in Mechanics which pro-
vided financial support over the years.
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My research on large deformation inelasticity and on growth of biological
materials has caused me to develop an Eulerian formulation of constitutive equa-
tions for elastic and inelastic response. The important physical feature of the
Eulerian formulation is that it removes arbitrariness of the choice of: a reference
configuration, an intermediate zero-stress configuration, a total deformation mea-
sure and an inelastic deformation measure. The main new features of this book are
the discussion of the importance of the Eulerian formulation and the demonstration
of how it can be used to develop a broad range of specific constitutive equations in
thermomechanics.

Haifa, Israel M. B. Rubin
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Chapter 1
Introduction

Abstract The objective of this introductory chapter is to present an overview of
the contents of this book and to discuss the importance of Eulerian formulations of
constitutive equations. Specifically, simple one-dimensional examples are used to
identify unphysical arbitrariness in the classical Lagrangian formulations of consti-
tutive equations that can and should be removed.

1.1 Content of the Book

Continuum mechanics is concerned with the fundamental equations that describe
the nonlinear thermomechanical response of all deformable media. Throughout this
book, attention is limited to a simple material whose constitutive response does not
depend on higher order gradients of deformation. Although the constitutive equations
are phenomenological and are proposed to model the macroscopic response of mate-
rials, they are reasonably accurate for many studies of micro- and nano-mechanics
where the typical length scales approach, but are still larger than, those of individ-
ual atoms. In this sense, the general thermomechanical theory provides a theoretical
umbrella for most areas of study in mechanical engineering. In particular, continuum
mechanics includes as special cases theories of: solids (elastic, inelastic, viscoelastic,
etc.), fluids (compressible, incompressible, viscous) and the thermodynamics of heat
conduction including dissipation due to inelastic effects.

A number of books have been written which discuss the fundamentals of contin-
uum mechanics [5, 7, 9, 11], the theory of elasticity [1, 12], the theory of plasticity
[2, 3] as well as the thermomechanical theory [18]. The new aspect of this book is its
emphasis on an Eulerian formulation of constitutive equations for elastic materials,
elastic–inelastic materials and growing biological tissues. The standard Lagrangian
formulation of constitutive equations and the need for an Eulerian formulationwill be
discussed in detail from a physical point of view and specific constitutive equations
will be described for different classes of materials.

Apart from this introduction, the material in this book on continuum mechan-
ics is divided into five chapters. Chapter2 develops a basic knowledge of tensor
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2 1 Introduction

analysis using both indicial notation and direct notation. Although tensor opera-
tions in general curvilinear coordinates are needed to express spatial derivatives like
those in the gradient and divergence operators, these special operations required to
translate quantities in direct notation to component forms in special coordinate sys-
tems are merely mathematical in nature. Moreover, details of general curvilinear
tensor analysis unnecessarily complicate the presentation of the fundamental physi-
cal issues in continuum mechanics. Consequently, here attention is mainly restricted
to tensors expressed in terms of constant rectangular Cartesian base vectors to sim-
plify the discussion of spatial derivatives and to concentrate on the main physical
issues. However, an introduction to tensors with respect to curvilinear coordinates is
presented in AppendixF.

Chapter3 develops tools to analyze nonlinear deformation andmotion of continua.
Specifically, measures of deformation and their rates are introduced. Also, the group
of Superposed Rigid Body Motions (SRBM) is introduced for later fundamental
analysis of invariance of constitutive equations under SRBM.

Chapter4 develops the balance laws that are applicable for simple continua, which
are characterized by local measures of deformation. The notion of the stress tensor
and its relationship to the traction vector is developed. Local forms of the equations
of motion are derived from the global forms of the balance laws. Referential forms
of the equations of motion are discussed and the relationships between different
stress measures are developed for completeness, but they are not used in the Eulerian
formulation of constitutive equations. Also, invariance under SRBM of the balance
laws and the kinetic quantities are discussed.

Chapter5 presents an introduction to constitutive theory. Although there is gen-
eral consensus on the kinematics of continua, the notion of constitutive equations for
special materials remains an active area of research in continuummechanics. Specifi-
cally, in these sections the theoretical structure of constitutive equations for nonlinear
anisotropic elastic solids, isotropic elastic solids, viscous and inviscid fluids, viscous
dissipation, elastic–inelastic solids and viscoelastic solids are discussed.

Chapter6 describes thermomechanical processes and the fundamental balance
laws and restrictions of second laws of thermomechanics that control these pro-
cesses. In addition, specific constitutive equations for: thermoelastic materials,
thermoelastic–inelastic materials, orthotropic thermoelastic–inelastic materials,
shock waves, porous materials and growing biological tissues are discussed. Also,
jump conditions for the thermomechanical balance laws are developed.

1.2 Comparison of the Lagrangian and Eulerian
Formulations

Unphysical arbitrariness of the choices of: the reference configuration; a zero-stress
intermediate configuration; a total deformation measure and a plastic deformation
measure has been discussed in a series of papers [15–17]. To simplify the discussion



1.2 Comparison of the Lagrangian and Eulerian Formulations 3

A

B

Fig. 1.1 Response of a homogeneous nonlinear elastic material to homogeneous proportional
loading in shear from a uniform zero-stress material state A to a uniform loaded material state B
with unloading along the same path back to the same uniform zero-stress material state A

= 0

BA = 0

Fig. 1.2 Sketch of the deformation of a homogeneous nonlinear elastic material subjected to
homogenous proportional loading in shear from a uniform zero-stress material state A to a uniform
loaded material state B with unloading along the same path back to the same uniform zero-stress
material state A

of these issues, here attention is limited to the purely mechanical theory at constant
zero-stress reference temperature.

Figure1.1 shows the shear stress τ versus the total shear strain γ for a homo-
geneous nonlinear elastic material subjected to homogeneous proportional loading
from a uniform zero-stress material state A to a uniform loaded material state B
with unloading along the same path to the same uniform zero-stress material state
A. Figure1.2 shows a sketch of the associated deformations.

These figures exhibit the property that a homogeneous nonlinear elastic material
in a uniform zero-stress material state, which is loaded to a deformed state, will
return to its zero-stress shape and volume when unloaded. In this sense the nonlinear
elastic material remembers its zero-stress shape and density. This also suggests that
the response of a homogeneous nonlinear elastic material can be characterized by a
Lagrangian formulation of the constitutive equation in terms of a Lagrangian strain
that measures deformations from a reference configuration with a uniform stress-free
material state and vanishes in this reference configuration.

Figure1.3 shows the shear stress τ versus the total shear strain γ for a homo-
geneous nonlinear elastic–plastic material subjected to homogeneous proportional



4 1 Introduction

Fig. 1.3 Response of a
homogeneous nonlinear
elastic–plastic material to
homogeneous proportional
loading in shear from a
uniform zero-stress material
state A to a uniform loaded
material state B with
unloading along a different
path to a uniform zero-stress
material state C with a
residual total strain γp A

B

C
p

loading from a uniform zero-stress material state A to a uniform loaded material
state B with unloading along a different path to a uniform zero-stress material state
C with a residual total strain γp. Figure1.4 shows a sketch of the associated deforma-
tions. Motivated by the Lagrangian formulation of elastic response, in addition to the
Lagrangian total strain from the reference configuration, it is common to introduce a
plastic deformation (see γp in Fig. 1.3) measured from the reference configuration to
the uniform zero-stress intermediate configuration (see state C in Fig. 1.3). Also, it
is common to define an elastic deformation measure in terms of the total and plastic
deformation measures. In this sense, the plastic deformation measure is a history-
dependent variable that is determined by integrating an evolution equation for its
time rate of change.

Onat [13] discussed physical restrictions on internal state variables. This dis-
cussion proposed that internal state variables, which are determined by integrating
evolution equations over time, are specified to measure properties of the material
response that define the current state of the material. Moreover, since these evolu-
tion equations need initial conditions it is necessary that the values of the internal
state variables be, in principle, measurable directly or indirectly by experiments on
multiple identical samples of the material in its current material state. In this sense,
the material state must be characterized by internal state variables whose values are
measurable in the current state.

From this perspective, it is necessary to ask if the deformation measures that are
used to characterize material response are acceptable internal state variables. For
a homogeneous elastic material, it is common to define the deformation gradient
tensor F from a uniform stress-free reference configuration to the current deformed
configuration to characterize the constitutive equation of the elastic material. For
this elastic material, it follows that since the volume and shape of the material are
unique in any zero-stress material state, F is only known to within an arbitrary proper
orthogonal rotation tensor R in any zero-stress material state. This means that the
zero-stress value of F has arbitrariness due to three orientation angles associated
withR which cannot be determined by experiments on identical samples of the same
material in the current configuration. Consequently, F is not an acceptable internal
state variable in the sense discussed by Onat [13]. For this reason, F should not
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= 0

BA

C

Fig. 1.4 Sketch of the deformation of a homogeneous nonlinear elastic–plasticmaterial subjected to
homogenous proportional loading in shear from a uniform zero-stress material state A to a uniform
loaded material state B with unloading along a different path to a uniform zero-stress material state
C (dashed lines) with a different shape from that in the uniform zero-stress material state A

appear in any constitutive equation for material response, even for nonlinear elastic
materials. However, for the solution of a specific problem it is often convenient
to parameterize the solution using the total deformation gradient F from a known
specified reference configuration. In this sense, it is important to distinguish between
a tensorial measure of elastic deformation from a zero-stress material state and the
total deformation gradient from a specified reference configuration.

The use of F in constitutive equations for elastic–plastic materials is even more
problematic physically. Even if plastic deformations are isochoric, a homogeneous
elastic–plastic material that is loaded from a uniform zero-stress material state has
no unique shape in another uniform zero-stress material state (see the initial state A
and the intermediate state C in Fig. 1.4). This means that only the volumetric part of
F can be determined in a uniform zero-stress material state so there are eight degrees
of arbitrariness in F, three associated with orientation changes and five associated
with distortional deformations. The following statement by Gilman in the discussion
section in [8] refers to this physical arbitrariness.

It seems very unfortunate to me that the theory of plasticity was ever cast into the mold
of stress–strain relations because ‘strain’ in the plastic case has no physical meaning that
is related to the material of the body in question. It is rather like trying to deduce some
properties of a liquid from the shape of the container that holds it. The plastic behavior of
a body depends on its structure (crystalline and defect) and on the system of stresses that
is applied to it. The structure will vary with plastic strain, but not in a unique fashion. The
variation will also depend on the initial structure, the values of whatever stresses are applied,
and on time (some recovery occurs in almost any material at any temperature).

The Eulerian formulation of constitutive equations discussed in this book and
in [15–17] is motivated by the work of Eckart [4] for elastic–inelastic solids, by
Leonov [10] for polymeric liquids and is based on the work in [14]. This Eulerian
formulation uses evolution equations for the material time derivative of internal state
variables. More specifically, the formulation is considered to be Eulerian because
the evolution equations depend only on quantities that can, in principle, be measured
in the current state of the material. It will be shown that this Eulerian formulation
removes arbitrariness of the choice of: the reference configuration; an intermediate
configuration; a total deformation measure and an inelastic deformation measure.
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Table 1.1 Comparison of the Lagrangian (Classical) and Eulerian (Eckart) formulations

Lagrangian
(Classical)

Eulerian
(Eckart)

σ = Eεe σ = Eεe

ε̇ = ∂v/∂x
ε̇p = �

E σ

εe = ε − εp

ε̇e = ∂v/∂x − � εe

ε(0) = ?
εp(0) = ?

εe(0) = σ(0)
E

Table1.1 records the basic equations needed to compare the differences between
the Lagrangian (Classical) formulation and the Eulerian (Eckart) formulation for
inelasticity using a simple one-dimensional model. In this model the strains are
small so the notion of Lagrangian is used for quantities that are referred to a reference
configuration. Specifically, the axial stress σ is determined by the axial elastic strain
εe using Young’s modulus of elasticity E in both formulations. However, in the
Lagrangian formulation, it is necessary to define the total axial strain ε, the plastic
or inelastic axial strain εp, as well as the axial elastic strain εe. Specifically, the total
strain ε is determined by integrating an evolution equation in terms of the velocity
gradient ∂v/∂x . The inelastic strain εp is determined by integrating an evolution
equation in terms of the stress σ and a non-negative function � that controls inelastic
deformation rate, and the elastic strain εe is defined by the difference between the
total strain and the inelastic strain. In contrast, in the Eulerian formulation the elastic
strain εe is determined directly by integrating an evolution equation in terms of the
velocity gradient ∂v/∂x , the elastic strain εe and the function �.

The Eulerian evolution equation for elastic strain εe is consistentwith the equation
in the Lagrangian formulation and can be obtained by taking the time derivative (̇ ) of
the algebraic expression for εe and replacing ε̇ and ε̇p with their evolution equations.
However, the physics of these two formulations are different. In the Lagrangian
formulation it is necessary to specify the initial values ε(0) and εp(0). But these
quantities are both referred to an arbitrary choice of the reference configuration.
This can be made explicit by noting that the same initial value εe(0) of elastic strain
can be obtained by changing the reference configuration using the arbitrary value A,
such that

εe(0) = ε(0) − εp(0) = [ε(0) − A] − [εp(0) − A] , (1.2.1)

where the scalar A in this one-dimensional model characterizes the influence of the
arbitrariness of the reference configuration in a similar manner to the tensor A in the
nonlinear three-dimensional theory discussed in (5.11.24). This arbitrariness means
that the individual initial values ε(0) and εp(0) needed to integrate the evolution
equations for ε and εp cannot be measured independently. Consequently, ε and εp

are not internal state variables in the sense of Onat [13].
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In contrast to the Lagrangian formulation, in the Eulerian formulation the elastic
strain εe is introduced directly through an evolution equation for its rate and the initial
value εe(0) needed to integrate this equation can be determined by the measuring
the initial value σ(0) of stress. Consequently, the elastic strain εe is an internal state
variable in the sense of Onat [13] since it is measurable. Moreover, the arbitrariness
associated with the orientation of the body in a zero-stress intermediate configuration
in the three-dimensional theory discussed in (5.11.25) cannot be analyzed using the
simple one-dimensional model.

Following the work of Eckart [4] and Leonov [10], an Eulerian formulation for
elastically isotropic inelastic materials introduces a symmetric positive-definite elas-
tic deformation tensor Be through an evolution equation for its material time deriva-
tive. Moreover, using the work of Flory [6], Be is expressed in terms of the elas-
tic dilatation Je and the symmetric positive-definite unimodular elastic distortional
deformation tensor B′

e defined by

Je = √
detBe , B′

e = J−2/3
e Be , detB′

e = 1 . (1.2.2)

Then, for elastically isotropic thermoelastic–inelastic materials evolution equations
are proposed directly for Je and B′

e, and the Helmholtz free energy ψ per unit mass
and the Cauchy stress T are specified by constitutive equations which depend on
Je,B′

e and the absolute temperature θ in the forms

ψ = ψ(Je,B′
e, θ) , T = T(Je,B′

e, θ) . (1.2.3)

This constitutive equation for stress is restricted to be invertible with Je and B′
e

admitting the representations

Je = Je(T, θ) , B′
e = B′

e(T, θ) . (1.2.4)

The constitutive equation for stress is further restricted so that a zero-stress material
state at zero-stress reference temperature θz requires

Je(0, θz) = 1 , B′
e(0, θz) = I , (1.2.5)

where I is the second-order identity tensor. These restrictions ensure that Je and B′
e

are internal state variables in the sense of Onat [13] since their initial values required
to integrate their evolution equations can be determined by the measured values of
T and θ in the initial state of the material.

Another specific example where it is clear that it is not sufficient to formulate con-
stitutive equations in terms of a Lagrangian deformation measure is an anisotropic
elastic material with a quadratic strain energy function. Specifically, let E be a
Lagrangian total strain measure from a reference configuration with a uniform
zero-stress material state and consider the quadratic strain energy function 
 per
unit mass specified by
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ρz
 = 1

2
K · E ⊗ E , (1.2.6)

where ρz is a constant zero-stress mass density,K is a constant fourth-order stiffness
tensor, ⊗ is the tensor product operator and ( · ) is the inner product between two
tensors of any order. Referring these tensors to an arbitrary rectangular Cartesian
orthonormal triad of vectors ei in the reference configuration yields the expression

ρz
 = 1

2
Ki jkl Ei j Ekl . (1.2.7)

For a general anisotropic elastic material Ki jkl has the symmetries

K jikl = Ki jlk = Kkli j = Ki jkl , (1.2.8)

so it is characterized by 21 independent material constants. Although this quadratic
strain energy function can model general anisotropic elastic response, the represen-
tation is incomplete since it is necessary to connect the components Ki jkl of the
stiffnesses tensor with identifiable material directions.

Following the work in [14], the elastic deformations and material orientations in
the Eulerian formulation for elastically anisotropic materials discussed in this book
are characterized by a right-handed triad of linearly independent microstructural
vectors mi with the elastic dilatation Je defined by

Je = m1 × m2 · m3 > 0 . (1.2.9)

Also, the elastic metric mi j is defined by

mi j = mi · m j . (1.2.10)

Then, for elastically anisotropic thermoelastic–inelastic materials evolution equa-
tions are proposed directly for mi , and the Helmholtz free energy ψ per unit mass
and the Cauchy stress T are specified by constitutive equations which depend onmi

and the absolute temperature θ in the forms

ψ = ψ(mi j , θ) , T = T(mi , θ) . (1.2.11)

This constitutive equation for stress is restricted to be invertible with mi admitting
the representations

mi = mi (T, θ) . (1.2.12)

The constitutive equation for stress is further restricted so that a zero-stress material
state at zero-stress reference temperature θz requires

mi j (0, θz) = mi (0, θz) · m j (0, θz) = δi j , Je(0, θz) = 1 , (1.2.13)
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where δi j is the Kronecker delta and mi have been defined to be orthonormal in
this zero-stress material state at zero-stress reference temperature. These restrictions
ensure thatmi are internal state variables in the sense of Onat [13] since their initial
values required to integrate their evolution equations can be determined by the mea-
sured values of T and θ in the initial state of the material. Depending on the material
being modeled it may be necessary to consider the response of identical samples
of the material in its current state to different loading paths to determine the values
of mi in the current state. Further in this regard, it is noted that symmetries of the
material response characterized by the Helmholtz free energy ψ make the response
of the material insensitive to any indeterminacy in the inversion (1.2.12) for mi .

This representation has the advantage that the indices i = 1, 2, 3 of these vectors
characterize specific material directions. It will be shown that these microstructural
vectors can be used tomodel elastic deformations for anisotropic elasticmaterials and
for the rate-independent and rate-dependent response of anisotropic elastic–inelastic
materials.

Details of fundamental aspects of the Eulerian formulation of constitutive equa-
tions can be found in Sects. 3.11, 3.14, 5.2, 5.3, 5.4, 5.11, 5.12 and in Chap.6 for
thermomechanical response.
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Chapter 2
Basic Tensor Analysis

Abstract Tensors are mathematical objects which ensure that mathematical equa-
tions characterizing physics are insensitive to arbitrary choices of a coordinate sys-
tem. The objective of this chapter is to present a review of tensor analysis using both
index and direct notations. To simplify the presentation of tensor calculus, attention
is limited to tensors expressed relative to fixed rectangular Cartesian base vectors.
(Some of the content in this chapter has been adapted from Rubin (Cosserat theo-
ries: shells, rods and points. Springer Science & Business Media, Berlin, 2000) with
permission.)

2.1 Vector Algebra

Tensors, tensor algebra and tensor calculus are needed to formulate physical equa-
tions in continuum mechanics which are insensitive to arbitrary choices of coordi-
nates. To understand the mathematics of tensors it is desirable to start with the use
of a language called indicial notation which develops simple rules governing these
tensor manipulations. For the purposes of describing this language it is convenient to
introduce a fixed right-handed triad of orthonormal rectangular Cartesian base vec-
tors denoted by (e1, e2, e3). From the study of linear vector spaces, it is recalled that
vectors satisfy certain laws of addition and multiplication by a scalar. Specifically,
if a and b are vectors then the quantity

c = a + b (2.1.1)

is a vector defined by the parallelogram law of addition. Furthermore, recall that the
operations
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a + b = b + a (commutative law) ,

(a + b) + c = a + (b + c) (associative law) ,

αa = aα (multiplicative law) ,

a · b = b · a (commutative law) ,

a · (b + c) = a · b + a · c (distributive law) ,

α(a · b) = (αa) · b (distributive law) ,

a × b = −b × a (lack of commutativity) ,

a × (b + c) = a × b + a × c (distributive law) ,

α(a × b) = (αa) × b (associative law)

(2.1.2)

are satisfied for all vectors a,b and c and all real numbers α, where a · b denotes
the scalar product (or dot product) and a × b denotes the vector product (or cross
product) between the vectors a and b.

The Scalar Triple Product
The scalar triple product of the vectors a,b and c has the property that the dot and
cross products can be interchanged

a × b · c = a · b × c . (2.1.3)

Moreover, using the results

a × b · c = −b × a · c = −b · a × c = b · c × a = c × a · b , (2.1.4)

it follows that the order of the vectors in the scalar triple product can be permuted

a × b · c = c × a · b = b × c · a . (2.1.5)

The Vector Triple Product
The vector triple product of the vectors a,b and c can be expanded to obtain

a × (b × c) = (a · c)b − (a · b)c . (2.1.6)

To prove this result it is noted that this vector must be perpendicular to both a and
b × c. But b × c is perpendicular to the plane containing b and c so the vector triple
product must be a vector in the plane of b and c. Moreover, the vector triple product is
linear in the vectors a,b and c. The expression (2.1.6) can be checked by considering
the special case of a = e1,b = e3 and c = e1.
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2.2 Indicial Notation

Quantities written in indicial notation have a finite number of indices attached to
them. Since the number of indices can be zero, a quantity with no index can also
be considered to be written in indicial notation. The language of indicial notation is
quite simple because only two types of indices can appear in any term. Either the
index is a free index or it is a repeated index. Also, a simple summation convention
is defined which applies only to repeated indices. These two types of indices and the
summation convention are defined as follows.

Free Indices:
Indices that appear only once in a given term are known as free indices. In this regard,
a term in an equation is a quantity that is separated by a plus, minus or equal sign.
Here, each of these free indices will take the values (1, 2, 3). For example, i is a free
index in each of the following expressions

(x1, x2, x3) = xi (i = 1, 2, 3) , (2.2.1a)

(e1, e2, e3) = ei (i = 1, 2, 3) . (2.2.1b)

Repeated Index:
Indices that appear twice in a given term are known as a repeated index. For example,
i and j are free indices andm and n are repeated indices in the following expressions

aib j cmTmndn , Aimmjnn , Aimn B jmn . (2.2.2)

It is important to emphasize that in the language of indicial notation an index can
never appear more than twice in any term.

Einstein Summation Convention:
When an index appears as a repeated index in a term that index is understood to take
on the values (1, 2, 3) and the resulting terms are summed. Thus, for example,

xiei = x1e1 + x2e2 + x3e3 . (2.2.3)

Because of this summation convention, a repeated index is also known as a dummy
index since its replacement by any other letter not appearing as a free index and also
not appearing as another repeated index does not change the meaning of the term in
which it occurs. For examples,

xiei = x je j , aibmcm = aib j c j . (2.2.4)

It is important to emphasize that the same free indices must appear in each term in
an equation so that for example the free index i in (2.2.4)2 must appear on each side
of the equality.
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Kronecker Delta:
The Kronecker delta δi j is defined by

δi j = ei · e j =
[
1 for i = j
0 for i �= j

]
. (2.2.5)

Since theKronecker delta δi j vanishes unless i = j it exhibits the following exchange
property

δi j x j = (δi1x1, δi2x2, δi3x3) = (x1, x2, x3) = xi . (2.2.6)

Notice that the Kronecker delta can be removed by replacing the repeated index j in
(2.2.6) by the free index i .

Recalling that an arbitrary vector a in Euclidean 3-Space can be expressed as a
linear combination of the base vectors ei it can be expressed in the form

a = aiei . (2.2.7)

Consequently, it follows that the components ai of a can be calculated using the
Kronecker delta

ai = ei · a = ei · (amem) = (ei · em)am = δimam = ai . (2.2.8)

Notice that when the expression (2.2.7) for a is substituted into (2.2.8) it is necessary
to change the repeated index i in (2.2.7) to another letterm because the letter i already
appears in (2.2.8) as a free index. It also follows that the Kronecker delta can be used
to calculate the dot product between two vectors a and b with components ai and bi ,
respectively, by

a · b = (aiei ) · (b je j ) = ai (ei · e j )b j = aiδi j b j = aibi . (2.2.9)

Permutation Symbol:
The permutation symbol εi jk is defined by

εi jk = ei × e j · ek =
⎡
⎣ 1 if (i, j, k) are an even permutation of (1, 2, 3)

− 1 if (i, j, k) are an odd permutation of (1,2,3)
0 if at least two of (i, j, k) have the same value

⎤
⎦ .

(2.2.10)
This definition suggests that the permutation symbol can be used to calculate the
vector product between two vectors. To this end, it will be shown that

ei × e j = εi jkek . (2.2.11)
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Proof Since ei × e j is a vector in Euclidean 3-Space for each choice of the indices i
and j , it follows that it can be represented as a linear combination of the base vectors
ek such that

ei × e j = Ai jkek , (2.2.12)

where the components Ai jk need to be determined. In particular, taking the dot
product of (2.2.12) with ek and using the definition (2.2.10) yields

εi jk = ei × e j · ek = Ai jmem · ek = Ai jmδmk = Ai jk , (2.2.13)

which proves the result (2.2.11).Nowusing (2.2.11), it follows that the vector product
between the vectors a and b can be represented in the form

a × b = (aiei ) × (b je j ) = (ei × e j )aib j = εi jkai b jek . (2.2.14)

Additional Properties of the Permutation Symbol:
Using (2.1.3) and (2.1.6) it can be shown that

εi jkεrsk = (ei × e j ) · (er × es) = ei · [e j × (er × es)] = δirδ js − δisδ jr ,

εi jkεr jk = 2δir , εi jkεi jk = 6 .
(2.2.15)

Also, recall that the determinant of a matrix Mi j can be expressed in the forms

det(Mmn) = εi jkMi1Mj2Mk3 ,

εrst det(Mmn) = εi jkMir M jsMkt ,

det(Mmn) = 1

6
εi jkεrst Mir M jsMkt .

(2.2.16)

Contraction:
Contraction is the process of replacing two free indices in a given expression with
the same index together with the implied summation convention. For example, con-
traction on the free indices i, j in δi j yields

δi i = δ11 + δ22 + δ33 = 3 . (2.2.17)

Note that contraction on the set of 9 = 32 quantities Ti j can be performed by multi-
plying Ti j by δi j to obtain

Ti jδi j = Tii . (2.2.18)
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2.3 Direct Notation (Special Case)

A scalar is sometimes referred to as a zero-order tensor and a vector is sometimes
referred to as a first-order tensor. Higher order tensors are defined inductively starting
with the notion of a first-order tensor or vector. Specifically, since a second-order
tensor is a linear operator whose domain is the space of all vectors and whose range
is the space of all vectors it is possible to define the second-order tensor inductively
using vector spaces.

Tensor of Order M:
The quantity T is called a tensor of order M (M ≥ 2) if it is a linear operator whose
domain is the space of all vectors v and whose range Tv or vT is a tensor of order
M − 1. Since T is a linear operator it satisfies the following rules

T(v + w) = Tv + Tw , (2.3.1a)

α(Tv) = (αT)v = T(αv) , (2.3.1b)

(v + w)T = vT + wT , (2.3.1c)

α(vT) = (αv)T = (vT)α , (2.3.1d)

where v andw are arbitrary vectors and α is an arbitrary real number. Notice that the
tensor T can operate on its right [e.g., (2.3.1a), (2.3.1b)] or on its left [e.g., (2.3.1c),
(2.3.1d)] and that, in general, operation on the right and the left is not commutative

Tv �= vT Lack of commutativity . (2.3.2)

Zero Tensor of Order M :
The zero tensor of orderM is denoted by 0(M) and is a linear operator whose domain
is the space of all vectors v and whose range 0(M − 1) is the zero tensor of order
M − 1

0(M)v = v 0(M) = 0(M − 1) . (2.3.3)

Notice that these tensors are defined inductively starting with the known properties
of the real number 0 which is the zero tensor 0(0) of order 0.

Addition and Subtraction:
The usual rules of addition and subtraction of two tensors A and B apply when the
two tensors have the same order. It is emphasized that tensors of different orders
cannot be added or subtracted.

To define the operations of tensor product, dot product and juxtaposition for gen-
eral tensors it is convenient to first consider the definitions of these properties for the
special case of the tensor product of a string of M (M ≥ 2) vectors (a1, a2, . . . , aM).
Also, it is necessary to define the left transpose and right transpose of the tensor
product of a string of vectors.
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Tensor Product (Special Case):
The tensor product operation is denoted by the symbol ⊗ and it is defined so that the
tensor product of a string of M (M ≥ 1) vectors (a1, a2, . . . , aM) is a tensor of order
M . Before presenting the general expression, consider the following simple cases

(a1 ⊗ a2)v = (a2 · v)a1 , v(a1 ⊗ a2) = (a1 · v)a2 , (2.3.4)

where v is an arbitrary vector and the symbol (·) is the usual dot product between
two vectors. The more general case satisfies the properties

(a1 ⊗ a2 ⊗ · · · ⊗ aM−1 ⊗ aM)v = (aM · v)(a1 ⊗ a2 ⊗ · · · ⊗ aM−1) , (2.3.5a)

v(a1 ⊗ a2 ⊗ · · · ⊗ aM−1 ⊗ aM) = (a1 · v)(a2 ⊗ · · · ⊗ aM) , (2.3.5b)

α(a1 ⊗ a2 ⊗ · · · ⊗ aM) = (αa1 ⊗ a2 ⊗ · · · ⊗ aM)

= · · · = (a1 ⊗ a2 ⊗ · · · ⊗ αaM) = (a1 ⊗ a2 ⊗ · · · ⊗ aM)α , (2.3.5c)

(a1 ⊗ a2 ⊗ · · · ⊗ aK−1⊗{aK + w} · · · ⊗ aM−1 ⊗ aM)

= (a1 ⊗ a2 ⊗ · · · ⊗ aK−1⊗aK · · · ⊗ aM−1 ⊗ aM)

+(a1 ⊗ a2 ⊗ · · · ⊗ aK−1⊗w · · · ⊗ aM−1 ⊗ aM)

for 1 ≤ K ≤ M , (2.3.5d)

where w is another arbitrary vector and α is an arbitrary real number. It is important
to note from (2.3.5a) and (2.3.5b) that, in general, the order of the operation is not
commutative.

Dot Product (Special Case):
The dot product operation between two vectors can be generalized to an operation
between any two tensors (includinghigher order tensors). Specifically, the dot product
of the tensor product of a string ofM vectors (a1, a2, . . . , aM)with the tensor product
of another string of N vectors (b1,b2, . . . ,bN ) is a tensor of order |M − N |. Before
presenting the general expression, consider the following simple cases

(a1 ⊗ a2) · (b1 ⊗ b2) = (a1 · b1)(a2 · b2) ,

(a1 ⊗ a2 ⊗ a3) · (b1 ⊗ b2) = a1(a2 · b1)(a3 · b2) ,

(a1 ⊗ a2) · (b1 ⊗ b2 ⊗ b3) = (a1 · b1)(a2 · b2)b3 .

(2.3.6)

The more general case satisfies the properties

(a1 ⊗ a2 ⊗ · · · ⊗aM) · (b1 ⊗ b2 ⊗ · · · ⊗ bN )

= (a1⊗a2 ⊗ · · · ⊗ aM−N )

[
N∏

K=1

(aM−N+K · bK )

]
forM > N ,

(2.3.7a)
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(a1 ⊗ a2 ⊗ · · · ⊗aM) · (b1 ⊗ b2 ⊗ · · · ⊗ bM) =
M∏

K=1

(aK · bK ) forM = N ,

(2.3.7b)

(a1 ⊗ a2 ⊗ · · · ⊗aM) · (b1 ⊗ b2 ⊗ · · · ⊗ bN )

= [ M∏
K=1

(aK · bK )
]
(bM+1 ⊗ bM+2 ⊗ · · · ⊗ bN ) forM < N , (2.3.7c)

where
∏

is the usual product operator indicating the product of the series of quantities
defined by the values of K

M∏
K=1

(aK · bK ) = (a1 · b1)(a2 · b2) . . . (aN · bM) . (2.3.8)

Note from (2.3.7a) and (2.3.7c) that if the orders of the tensors are not equal (M �= N )

then the order of the dot product operator is important. However, when the orders of
the tensors are equal (M = N ) then the dot product operation yields a scalar (2.3.7b)
and the order of the operation is unimportant (i.e., the operation is commutative).

Cross Product (Special Case):
The cross product of the tensor product of a string of M vectors (a1, a2, . . . , aM)

with the tensor product of another string of N vectors (b1,b2, . . . ,bN ) is a tensor
of order M if M ≥ N and is of order N if N > M . Before presenting the general
expression, consider the following simple cases

(a1 ⊗ a2) × (b1 ⊗ b2) = (a1 × b1) ⊗ (a2 × b2) ,

(a1 ⊗ a2 ⊗ a3) × (b1 ⊗ b2) = a1 ⊗ (a2 × b1) ⊗ (a3 × b2) ,

(a1 ⊗ a2) × (b1 ⊗ b2 ⊗ b3) = (a1 × b1) ⊗ (a2 × b2) ⊗ b3 .

(2.3.9)

The more general case satisfies the properties

(a1 ⊗ a2 ⊗ · · · ⊗aM ) × (b1 ⊗ b2 ⊗ · · · ⊗ bN )

= (a1 ⊗ a2 ⊗ · · · ⊗ aM−N )

[
N∏

K=1

⊗(aM−N+K × bK )

]
for M > N ,

(a1 ⊗ a2 ⊗ · · · ⊗aM ) × (b1 ⊗ b2 ⊗ · · · ⊗ bM )

= (a1 × b1)
M∏

K=2

⊗(aK × bK ) for M = N ,

(a1 ⊗ a2 ⊗ · · · ⊗aM ) × (b1 ⊗ b2 ⊗ · · · ⊗ bN )

=
[

M∏
K=1

(aK × bK )⊗
]

(bM+1 ⊗ bM+2 ⊗ · · · ⊗ bN ) for M < N .

(2.3.10)
Note that the order of the cross product operation is important.
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Juxtaposition (Special Case):
The operation of juxtaposition of the tensor product of a string of M (M ≥ 1) vectors
(a1, a2, . . . , aM) with the tensor product of another string of N (N ≥ 1) vectors
(b1,b2, . . . ,bN ) is a tensor of order M + N − 2. Before presenting the general
expression, consider the following simple cases

a1 b1 = a1 · b1 , (2.3.11a)

(a1 ⊗ a2)(b1 ⊗ b2) = (a2 · b1)(a1 ⊗ b2) . (2.3.11b)

Note from (2.3.11a) that the juxtaposition of a vector with another vector is the same
as the dot product of the two vectors. In spite of this fact, the dot product between two
vectors is usually expressed explicitly. The more general case satisfies the properties

(a1 ⊗ a2 ⊗ · · · ⊗ aM)(b1 ⊗ b2 ⊗ · · · ⊗ bN )

= (aM · b1)(a1 ⊗ a2 ⊗ · · · ⊗ aM−1 ⊗ b2 ⊗ · · · ⊗ bN ) . (2.3.12)

It is obvious that the order of the operation juxtaposition is important.

Transpose (Special Case):
The left transpose of order N of the tensor product of a string of M (M ≥ 2N )

vectors is denoted by a superscript ( )LT (N ) on the left-hand side of the string of
vectors. Similarly, the right transpose of order N of the tensor product of a string of
M (M ≥ 2N ) vectors is denoted by a superscript ( )T (N ) on the right-hand side of the
string of vectors. When, N = 2 this notation is simplified by denoting LT (2) = LT
and T (2) = T . Before presenting the general expression, consider the following
simples cases

LT (a1 ⊗ a2 ⊗ a3) = (a2 ⊗ a1) ⊗ a3 , (2.3.13a)

(a1 ⊗ a2 ⊗ a3)T = a1 ⊗ (a3 ⊗ a2) , (2.3.13b)
LT (2)(a1 ⊗ a2 ⊗ a3 ⊗ a4) = (a3 ⊗ a4) ⊗ (a1 ⊗ a2) , (2.3.13c)

(a1 ⊗ a2 ⊗ a3 ⊗ a4)T (2) = (a3 ⊗ a4) ⊗ (a1 ⊗ a2) . (2.3.13d)

From (2.3.13c) and (2.3.13d) it can be seen that the right and left transposes of order
2 of the tensor product of a string of vectors of order 4 = 2 × 2 are equal. The more
general case satisfies the properties

LT (a1 ⊗ a2 ⊗ · · · ⊗ aM) = (a2 ⊗ a1) ⊗ (a3 ⊗ · · · ⊗ aM) ,

(a1 ⊗ a2 ⊗ · · · aM−1 ⊗ aM)T = (a1 ⊗ a2 ⊗ · · · ⊗ aM−2) ⊗ (aM ⊗ aM−1) .

(2.3.14)
Thus, in general, the right and left transposes of order N of the tensor product of a
string of vectors of order 2N are equal.
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2.4 Direct Notation (General Case)

Using the above definitions, it is possible to define the base tensors and components
of tensors of any order on a Euclidean 3-space. To this end, recall that ei are the
orthonormal base vectors of a right-handed rectangular Cartesian coordinate system.
Thus, ei span the space of vectors.

Base Tensors:
It also follows inductively that the tensor product of the string of M vectors

(ei ⊗ e j ⊗ ek ⊗ · · · ⊗ er ⊗ es ⊗ et ) , (2.4.1)

with M free indices (i, j, k, . . . , r, s, t) are base tensors for all tensors of order M .
This is because when (2.4.1) is in juxtaposition with an arbitrary vector v it yields a
scalar times the base tensors of all tensors of order M − 1, such that

(ei ⊗ e j ⊗ ek ⊗ · · · ⊗ er ⊗ es ⊗ et )v = (et · v)(ei ⊗ e j ⊗ ek ⊗ · · · ⊗ er ⊗ es) ,

v(ei ⊗ e j ⊗ ek ⊗ · · · ⊗ er ⊗ es ⊗ et ) = (ei · v)(e j ⊗ ek ⊗ · · · ⊗ er ⊗ es ⊗ et ) .

(2.4.2)

Components of an Arbitrary Tensor:
By definition the base tensors (2.4.1) span the space of tensors of order M so an
arbitrary tensor T of order M can be expressed as a linear combination of these base
tensors such that

T = Ti jk...rst (ei ⊗ e j ⊗ ek ⊗ · · · ⊗ er ⊗ es ⊗ et ) , (2.4.3)

where the coefficients Ti jk...rst in (2.4.3) are the components of T relative to the
coordinate system defined by the base vectors ei and the summation convention is
used over repeated indices in (2.4.3). The components of T can be calculated by

Ti jk...rst = T · (ei ⊗ e j ⊗ ek ⊗ · · · ⊗ er ⊗ es ⊗ et ) . (2.4.4)

Notice that the components of the tensor T are obtained by taking the dot product of
the tensor with the base tensors of the space defining the order of the tensor, just as
for the case of vectors (tensors of order one). It is important to emphasize that the
matrix Ti j of nine quantities is not a tensor. For the matrix Ti j to be connected to a
second-order tensor T, it is necessary to know that Ti j are components of T relative
to a known set of base vectors ei . Only then is it possible to determine the tensor T

T = Ti jei ⊗ e j , (2.4.5)

with the direct form T of the tensor being independent of the choice of the base
vectors.
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Tensor Product (General Case):
Let A be a tensor of order M with components Ai j...mn and let B be a tensor of order
N with components Brs...vw then the tensor product of A and B

A ⊗ B = Ai j...mn Brs...vw(ei ⊗ e j ⊗ · · · ⊗ em ⊗ en) ⊗ (er ⊗ es ⊗ · · · ⊗ ev ⊗ ew)

(2.4.6)
is a tensor of order (M + N ).

Dot Product (General Case):
The dot product A · B of a tensor A of order M with a tensor B of order N is a
tensor of order |M − N |. As examples let A and B be second-order tensors with
components Ai j and Bi j and let C be a fourth-order tensor with components Ci jkl .
Then

A · B = B · A = Ai j Bi j , A · C = Ai jCi jklek ⊗ el ,

C · A = Ci jkl Aklei ⊗ e j , A · C �= C · A .
(2.4.7)

Cross Product (General Case):
The cross product A × B of a tensor A of order M with a tensor B of order N is a
tensor of order M if M ≥ N and a tensor of order N if N > M . As examples, let v be
a vector with components vi and A and B be second-order tensors with components
Air and Bjs . Then

A × v = Airvsei ⊗ (er × es) = εrst Airvs(ei ⊗ et ) , (2.4.8a)

v × A = vs Air (es × ei ) ⊗ er = εsi tvs Air (et ⊗ er ) , (2.4.8b)

A × B = Air B js(ei × e j ) ⊗ (er × es) = εi jkεrst Air B js(ek ⊗ et ) , (2.4.8c)

B × A = Bjs Air (e j × ei ) ⊗ (es × er ) = εi jkεrst B js Air (ek ⊗ et ) , (2.4.8d)

A × v �= v × A , (2.4.8e)

A × B �= B × A . (2.4.8f)

Note that, in general, the cross product operation is not commutative. However, from
(2.4.8c) and (2.4.8d) it is observed that the cross product of two second-order tensors
is commutative. Also, unlike with vectors, the cross product of two second-order
tensors is not necessarily zero.

Juxtaposition (General Case):
Let A be a tensor of order M with components Ai j...mn and B be a tensor of order
N with components Brs...vw. Then, juxtaposition of A with B is a tensor of order
(M + N − 2) expressed by
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AB = Ai j...mn Brs...vw(ei ⊗ e j ⊗ · · · ⊗ em ⊗ en) (er ⊗ es ⊗ · · · ⊗ ev ⊗ ew) ,

= Ai j...mn Brs...vw(en · er )(ei ⊗ e j ⊗ · · · ⊗ em ⊗ es ⊗ · · · ⊗ ev ⊗ ew) ,

= Ai j...mn Brs...vwδnr (ei ⊗ e j ⊗ · · · ⊗ em ⊗ es ⊗ · · · ⊗ ev ⊗ ew) ,

= Ai j...mn Bns...vw(ei ⊗ e j ⊗ · · · ⊗ em ⊗ es ⊗ · · · ⊗ ev ⊗ ew) .

(2.4.9)
Note that the juxtaposition of a tensor with a vector is the same as the dot product of
the tensor with the vector.

Transpose of a Tensor:
Let T be a tensor of order M with components Ti jkl...rstu relative to the base vectors
ei . Then, using the definitions of the transpose of a string of vectors, the Nth order
(2N ≤ M) left transpose tensor LT (N )T and right transpose tensor TT (N ) of T are
defined, such that

T = Ti jkl...rstu(ei ⊗ e j ⊗ ek ⊗ el ⊗ · · · ⊗ er ⊗ es ⊗ et ⊗ eu) ,

LTT = Ti jkl...rstu(e j ⊗ ei ) ⊗ (ek ⊗ el ⊗ · · · ⊗ er ⊗ es ⊗ et ⊗ eu) ,

TT = Ti jkl...rstu(ei ⊗ e j ⊗ ek ⊗ el ⊗ · · · ⊗ er ⊗ es) ⊗ (eu ⊗ et ) ,

LT (2)T = Ti jkl...rstu(ek ⊗ el) ⊗ (ei ⊗ e j ) ⊗ · · · ⊗ er ⊗ es ⊗ et ⊗ eu) ,

TT (2) = Ti jkl...rstu(ei ⊗ e j ⊗ ek ⊗ el ⊗ · · · ⊗ (et ⊗ eu) ⊗ (er ⊗ es) .

(2.4.10)

In particular, note that the transpose operation does not change the order of the indices
of the components of the tensor but merely changes the order of the base vectors. To
see this more clearly, let T be a second-order tensor with components Ti j so that

T = Ti j (ei ⊗ e j ) , TT = Ti je j ⊗ ei = LTT . (2.4.11)

It follows that for a second-order tensor T and an arbitrary vector v

Tv = vTT , TT v = vT . (2.4.12)

Also, it is noted that the separate notation for the left transpose has been introduced
to avoid confusion in interpreting an expression of the type ATB which is not, in
general, equal to ALTB.

Identity Tensor of Order 2M:
The identity tensor of order 2M (M ≥ 1) is denoted by I(2M) and is a tensor that
has the property that the dot product of I(2M) with an arbitrary tensor A of order M
yields the result A, such that

I(2M) · A = A · I(2M) = A . (2.4.13)
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Letting ei ⊗ e j ⊗ · · · ⊗ es ⊗ et be the base tensors of order M , the 2Mth order unit
tensor I can be represented in the form

I(2M) = (ei ⊗ e j ⊗ · · · ⊗ es ⊗ et ) ⊗ (ei ⊗ e j ⊗ · · · ⊗ es ⊗ et ) , (2.4.14)

where the summation convention over repeated indices is implied. Since the second-
order identity tensor appears often in continuummechanics it is convenient to denote
it by I, which can be expressed in the form

I = ei ⊗ ei . (2.4.15)

It then follows that the components of the second-order identity tensor are represented
by the Kronecker delta

I · (ei ⊗ e j ) = δi j . (2.4.16)

Zero Tensor of Order M:
Since all components of the zero tensor of order M are 0 and since the order of the
tensors in a given equation will usually be obvious from the context, the symbol 0 is
used to denote the zero tensor of any order.

Lack of Commutativity:
Note that, in general, the operations of tensor product, dot product, cross product and
juxtaposition are not commutative so the order of these operationsmust be preserved.
Specifically, it follows that

A ⊗ B �= B ⊗ A , A · B �= B · A ,

A × B �= B × A , AB �= BA ,
(2.4.17)

for general tensors A and B.

Permutation Tensor:
The permutation tensor ε is a third-order tensor that can be defined such that

ε · (ei ⊗ e j ⊗ ek) = εi jk , (2.4.18)

and that for any two vectors a and b

ε · (a ⊗ b) = a × b . (2.4.19)

Hierarchy of Tensor Operations:
To simplify the notation and reduce the need for using parentheses to clarify math-
ematical equations, it is convenient to define the hierarchy of the tensor operations
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Table 2.1 Hierarchy of tensor operations

Level Tensor Operation

1 Left transpose LT ( ) and right transpose ( )T

2 Cross product (×)

3 Juxtaposition and tensor product (⊗)

4 Dot product (·)
5 Addition and subtraction

according to Table2.1 with level 1 operations being performed before level 2 opera-
tions and so forth. Also, as is usual, the order in which operations in the same level are
performed is determined by which operation appears in the most left-hand position
in the equation.

2.5 Tensor Calculus in Rectangular Cartesian Coordinates

For simplicity, attention is limited in this section to tensors that are expressed relative
to fixed rectangularCartesian base vectors ei because derivatives of these base vectors
with respect to x are zero. However, a brief introduction to tensors with respect to
general curvilinear coordinates can be found in AppendixF.

Gradient:
Let xi be the components of the position vector x relative to the rectangular Cartesian
base vectors ei . The gradient of a scalar function f with respect to the position x is
a vector denoted by grad f and represented by

grad f = ∂ f/∂x = ∂ f/∂xm em = f,m em , (2.5.1)

where for convenience a comma is used to denote partial differentiation with respect
to the indicated components of x. Also, the gradient of a tensor function T of order
M (M ≥ 1) is a tensor of order M + 1 denoted by gradT is represented by

gradT = ∂T/∂x = T,m ⊗em . (2.5.2)

For example, if T is a second-order tensor then

gradT = ∂T/∂x = ∂(Ti jei ⊗ e j )/∂xm ⊗ em = Ti j ,m ei ⊗ e j ⊗ em = T,m ⊗em .

(2.5.3)
It should be noted that the gradient operator is defined so that the increment ∂x
operates on the right-hand side of the tensor T. In contrast, some texts define the
gradient operator so that the increment ∂x operates on the left-hand side of the
tensor T.
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Divergence:
The divergence of a tensor T of order M (M ≥ 1) is a tensor of order M − 1 denoted
by divT is represented by

divT = T,m · em = (∂T/∂x) em · em = (∂T/∂x) · (em ⊗ em) = (∂T/∂x) · I .

(2.5.4)
For example, if T is a second-order tensor then

divT = Ti j , j ei . (2.5.5)

Curl:
The curl of a vector v with components vi is a vector denoted by curlv and is
represented by

curlv = −v, j ×e j = −vi , j εi jkek = vi , j ε j ikek . (2.5.6)

Also, the curl of a tensor T of order M (M ≥ 1) is a tensor of order M denoted by
curlT and is represented by

curlT = −T,k ×ek . (2.5.7)

For example, if T is a second-order tensor with components Ti j then

curlT = −Ti j ,k ε jkmei ⊗ em . (2.5.8)

Laplacian:
The Laplacian of a tensor T of order M is a tensor of order M denoted by ∇2T and
is represented by

∇2T = div(gradT) = (T,i ⊗ei ), j · e j = T,mm . (2.5.9)

Divergence Theorem:
Let n be the unit outward normal to a closed surface ∂P of a region P , da be the
element of area of ∂P , dv be the element of volume of P , and let T be an arbitrary
tensor of any order. Then, the divergence theorem states that

∫
∂P

Tnda =
∫

∂P
divTdv . (2.5.10)

General Curvilinear Coordinates:
AppendixF presents an introduction to tensors with respect to general curvilinear
coordinates.
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2.6 Additional Definitions and Results

To better understand the definition of juxtaposition and to connect this definition
with the usual rules for matrix multiplication letA,B andC be second-order tensors
with components Ai j , Bi j and Ci j , respectively, relative to the rectangular Cartesian
base vectors ei , and define C by

C = AB . (2.6.1)

Expressing these tensors in terms of their components yields

C = Ai jei ⊗ e j Bmnem ⊗ en = Ai j Bmn(e j · em)ei ⊗ en = Aim Bmnei ⊗ en ,

Ci j = C · ei ⊗ e j = Arm Bmn(er ⊗ en) · (ei ⊗ e j ) = Aim Bmj .

(2.6.2)
Examination of the result (2.6.2) indicates that the second index of A is summed
with the first index of B, which is consistent with the usual operation of row times
column in the definition of matrix multiplication.

Symmetric:
The second-order tensor A with the 9 = 32 components Ai j referred to the base
vectors ei is said to be symmetric if

A = AT , Ai j = A ji . (2.6.3)

It follows from (2.4.12) that if A is symmetric and v is an arbitrary vector with
components vi then

Av = vA , Ai jv j = v j A ji . (2.6.4)

Moreover, it is noted that since the off-diagonal components of a symmetric second-
order tensor satisfy the restrictions

A21 = A12 , A31 = A13 , A32 = A23 , (2.6.5)

a symmetric second-order tensor has only six independent components.

Skew-symmetric:
The second-order tensor A with the 9 = 32 components Ai j referred to the base
vectors ei is said to be skew-symmetric if

A = −AT , Ai j = −A ji . (2.6.6)

It also follows from (2.4.12) that if A is skew-symmetric and v is an arbitrary vector
with components vi then

Av = −vA , Ai jv j = −v j A ji . (2.6.7)
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Moreover, it is noted that since the diagonal components of a skew-symmetric second-
order tensor vanish

A11 = A22 = A33 = 0 , (2.6.8)

and the off-diagonal components satisfy the restrictions

A21 = −A12 , A31 = −A13 , A32 = −A23 , (2.6.9)

a skew-symmetric second-order tensor has only three independent components.

Symmetric and Skew-symmetric Parts:
Using these definitions it is observed that an arbitrary second-order tensor B, with
components Bi j , can be separated additively and uniquely into its symmetric part
denoted by Bsym, with components B(i j), and its skew-symmetric part denoted by
Bskew, with components B[i j], such that

B = Bsym + Bskew , Bi j = B(i j) + B[i j] ,

Bsym = 1
2 (B + BT ) = BT

sym , B(i j) = 1
2 (Bi j + Bji ) = B( j i) ,

Bskew = 1
2 (B − BT ) = −BT

skew , B[i j] = 1
2 (Bi j − Bji ) = −B[ j i] .

(2.6.10)

Trace:
The trace operation is defined as the dot product of an arbitrary second-order tensor
T with the second-order identity tensor I. Letting Ti j be the components of T yields

T · I = Ti j (ei ⊗ e j ) · I = Ti j (ei · e j ) = Ti jδi j = Tj j . (2.6.11)

Deviatoric Tensor:
The second-order tensor A with the 9 = 32 components Ai j referred to the base
vectors ei is said to be deviatoric if

A · I = 0 , Amm = 0 . (2.6.12)

Unless otherwise stated the deviatoric part of a second-order tensorAwill be denoted
by A′′, which is defined by

A′′ = A − 1

3
(A · I) I . (2.6.13)

Here, a double prime is used to denote a deviatoric tensor instead of themore common
use of a single prime in order not to misinterpret the unimodular elastic deformation
tensor F′ introduced later as a deviatoric tensor.

Spherical and Deviatoric Parts:
Using these definitions it is observed that an arbitrary second-order tensor T , with
components Ti j , can be separated additively and uniquely into its spherical part
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denoted by T I, with components T δi j , and its deviatoric part denoted by T′′, with
components T ′′

i j , such that

T = T I + T′′ , Ti j = T δi j + T ′′
i j , (2.6.14a)

T′′ · I = 0 , T ′′
mm = 0 . (2.6.14b)

Taking the dot product of (2.6.14a) with the second-order identity I it can be shown
that the scalar T is the mean value of the diagonal terms of T

T = 1

3
T · I = 1

3
Tmm . (2.6.15)

When T is the stress tensor, this trace operator can be used to define the pressure
p as minus the average of the diagonal components of T

p = −1

3
T · I , (2.6.16)

where p is positive in compression with T being positive in tension.

Dilatational and Distortional Parts:
Using the work in [1], it follows that a general second-order tensor F with positive
determinant J

J = det F > 0 (2.6.17)

separates multiplicatively into its dilatational part J 1/3I and its distortional part F′

F = (J 1/3I)F′ , F′ = J−1/3F , det F′ = 1 , (2.6.18)

where F′ is a unimodular tensor with determinant equal to unity. When, F is the
deformation gradient, J is a pure measure of dilatational deformation and F′ is a
measure of distortional deformation which includes rotation.

Dot Product Between a String of Tensors:
For later convenience it is useful to consider properties of the dot product between
strings of second-order tensors. To this end, let A,B,C and D be second-order
tensors, with components Ai j , Bi j ,Ci j and Di j , respectively. Then, it can be shown
that

A · (BCD) = Ai j (BimCmnDnj ) , A · (BCD) = (BTA) · (CD) ,

A · (BCD) = (ADT ) · (BC) , A · (BCD) = (BTADT ) · C .
(2.6.19)
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2.7 Transformation Relations

Consider two right-handed orthonormal rectangular Cartesian coordinate systems
with base vectors ei and ẽi , and define the transformation tensor A by

A = em ⊗ ẽm . (2.7.1)

It follows from this definition that A is an orthogonal tensor

AAT = (em ⊗ ẽm)(ẽn ⊗ en) = (ẽm · ẽn)(em ⊗ en) ,

= δmn(em ⊗ en) = (em ⊗ em) = I , (2.7.2a)

ATA = (ẽm ⊗ em)(en ⊗ ẽn) = (em · en)(ẽm ⊗ ẽn) ,

= δmn(ẽm ⊗ ẽn) = (ẽm ⊗ ẽm) = I . (2.7.2b)

It also follows that the base vectors ei and ẽi are related by the expressions

ei = Aẽi = (em ⊗ ẽm)ẽi = em(ẽm · ẽi ) = emδmi , (2.7.3a)

ẽi = AT ei , (2.7.3b)

where in obtaining (2.7.3b) Eq. (2.7.3a) has be multiplied by AT and use has been
made of the fact that A is an orthogonal tensor.

These equations can be written in equivalent component forms by noting that the
components Ai j of A referred to the base vectors ei and the components Ãi j of A
referred to the base vectors ẽi are defined by

Ai j = A · (ei ⊗ e j ) = (em ⊗ ẽm) · (ei ⊗ e j ) = (em · ei )(ẽm · e j ) ,

= δmi (ẽm · e j ) = ẽi · e j , (2.7.4a)

Ãi j = A · (ẽi ⊗ ẽ j ) = (em ⊗ ẽm) · (ẽi ⊗ ẽ j ) = (em · ẽi )(ẽm · ẽ j ) ,

= (em · ẽi )δmj = e j · ẽi = ẽi · e j . (2.7.4b)

It is important to emphasize that these results indicate that the first index of Ai j (or
Ãi j ) is identified with the base vectors ẽi and the second index is identified with
the base vectors ei . This identification is a consequence of the definition (2.7.1)
and is arbitrary in the sense that one could introduce an alternative definition where
the order of the vectors in (2.7.1) is reversed. However, once the definition (2.7.1)
is introduced it is essential to maintain consistency throughout the text. Also, note
from (2.7.4a) and (2.7.4b) that the components of A referred to either of the base
vectors ei or ẽi are equal

Ai j = Ãi j . (2.7.5)

This is because A is a two-point tensor which is defined by both of the triads ei and
ẽi .
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Using these expressions, Eqs. (2.7.3a) and (2.7.3b) can be rewritten in the forms

ei = (Amn ẽm ⊗ ẽn)ẽi = Ami ẽm , (2.7.6a)

ẽi = (Amnen ⊗ em)ei = Ainen . (2.7.6b)

Again, it is noted that the first index of Ai j refers to the base vectors ẽi and the second
index refers to the base vectors ei .

One of the most fundamental properties of a tensor T is that the tensor is inde-
pendent of the choice of the coordinate system used to express its components.
Specifically, it is noted that all the tensor properties in Sect. 2.3 have been defined
without regard to any particular coordinate system. Furthermore, it is emphasized
that since physical laws cannot depend on an arbitrary choice of a coordinate system
it is essential to express the mathematical representation of these physical laws using
tensors. For this reason tensors are essential in continuum mechanics.

Although an arbitrary tensor T of order M is independent of the choice of a
coordinate system, the components Ti jk...rst of T with respect to the base vectors
ei are defined by (2.4.4) explicitly depend on the choice of the coordinate system
defined by ei . It follows by analogy to (2.4.4) that the components T̃i jk...rst of T
relative to the base vectors ẽi are defined by

T̃i jk...rst = T · (ẽi ⊗ ẽ j ⊗ ẽk ⊗ · · · ⊗ ẽr ⊗ ẽs ⊗ ẽt ) , (2.7.7)

so that T admits the alternative representation

T = T̃i jk...rst (ẽi ⊗ ẽ j ⊗ ẽk ⊗ · · · ⊗ ẽr ⊗ ẽs ⊗ ẽt ) . (2.7.8)

Now, since T admits both of the representations (2.4.3) and (2.7.8), it follows that
the components Ti jk..rst and T̃i jk...rst must be related to each other. To determine this
relation, (2.7.8) is substituted into (2.7.7) and use is made of (2.7.6a) and (2.7.6b) to
obtain

Ti jk..rst = T · (Ali ẽl ⊗ Amj ẽm ⊗ Ank ẽn ⊗ · · · ⊗ Aur ẽu ⊗ Avs ẽv ⊗ Awt ẽw)

= Ali Amj Ank ...Aur Avs AwtT · (ẽl ⊗ ẽm ⊗ ẽn ⊗ · · · ⊗ ẽu ⊗ ẽv ⊗ ẽw)

= Ali Amj Ank ...Aur Avs Awt T̃lmn...uvw ,

T̃i jk..rst = T · (Ailel ⊗ A jmem ⊗ Aknen ⊗ · · · ⊗ Arueu ⊗ Asvev ⊗ Atwew)

= Ail A jm Akn...Aru AsvAtwT · (el ⊗ em ⊗ en ⊗ · · · ⊗ eu ⊗ ev ⊗ ew)

= Ail A jm Akn...Aru AsvAtwTlmn...uvw .

(2.7.9)
For examples, if v is a vector with components vi and ṽi then

v = viei = ṽi ẽi , vi = Ami ṽm , ṽi = Aimvm . (2.7.10)
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and if T is a second-order tensor with components Ti j and T̃i j then

T = Ti jei ⊗ e j = T̃i j ẽi ⊗ ẽ j ,
Ti j = Ami Anj T̃mn , Ti j = AT

im T̃mn Anj ,

T̃i j = Aim A jnTmn , T̃i j = AimTmn AT
nj .

(2.7.11)

Again, in these transformation relations the first component of Ai j remains connected
to ẽi and its second component remains connected to e j . Also, use has been made of
the result AT

im = Aim .
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Chapter 3
Kinematics

Abstract The objective of this chapter is to discuss nonlinear kinematics of
deformable continua. Bodies, configurations and motion of continua are discussed
along with a definition of the material time derivative, which is used to determine
the velocity and acceleration of a material point. Deformation tensors and rate of
deformation tensors are defined and analyzed. The notion of Superposed Rigid Body
Motions (SRBM) is presented and the associated transformation relations of specific
tensors are developed. In addition, an Eulerian formulation of evolution equations for
elastic deformations is proposed and strongly objective, robust numerical integration
algorithms for these evolution equations are developed.

3.1 Bodies, Configurations and Motion

Bodies
In an abstract sense a body B is a set of material particles which are denoted by
Y (see Fig. 3.1). In mechanics a body is assumed to be smooth and can be put into
correspondence with a domain of Euclidean 3-Space. Bodies are often mapped to
their configurations, i.e., the regions of Euclidean 3-Space they occupy at each instant
of time t (−∞ < t < ∞). In the following, all position vectors are referred to a fixed
point inertial in space.

Current Configuration and Motion
The current configuration of the body is the region of Euclidean 3-Space occupied
by the body at the current time t . Let x be the position vector which identifies the
place occupied by the particle Y at the time t . Since it is assumed that the body can
be mapped smoothly into a domain of Euclidean 3-Space, a motion of the body can
be represented as

x = x̄(Y, t) . (3.1.1)

In this expression, Y refers to the material particle, t refers to the current time, x
refers to the value of the function and x̄ characterizes how each particle Y moves
© Springer Nature Switzerland AG 2021
M. B. Rubin, Continuum Mechanics with Eulerian Formulations of Constitutive
Equations, Solid Mechanics and Its Applications 265,
https://doi.org/10.1007/978-3-030-57776-6_3

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57776-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-57776-6_3


34 3 Kinematics

Fig. 3.1 Definition of the
material Y ,
Referential/Lagrangian X
and Current/Eulerian x
configurations

Y

Material configuration

Reference / Lagrangian
configuration

Current / Eulerian
configuration

X x

X(Y)

x̂(X,t)

x(Y,t)

through space as time progresses. It is assumed that this function is invertible so that

Y = x̄−1(x, t) = Ỹ (x, t) . (3.1.2)

Reference Configuration
Sometimes it is convenient to select one particular configuration, called a reference
configuration, and refer everything concerning the body and its motion to this config-
uration. The reference configuration need not necessarily be an actual configuration
occupied by the body and in particular, the reference configuration need not be the
initial configuration.

LetX be the position vector of the particle Y in the reference configuration. Then,
the mapping from Y to the place X in the reference configuration can be written as

X = X̄(Y ) . (3.1.3)

In this expression, X refers to the value of the function X̄ which characterizes the
mapping. It is important to note that this mapping does not depend on time because
the reference configuration is a single constant configuration.Moreover, thismapping
is assumed to be invertible with its inverse given by

Y = X̄−1(X) = Ŷ (X) . (3.1.4)

Motion
It follows that the mapping from the reference configuration to the current configu-
ration can be obtained by substituting (3.1.4) into (3.1.1) to deduce that

x = x̄(Ŷ (X), t) = x̂(X, t) , (3.1.5)
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which characterizes themotion all material points. From this expression, it is obvious
that the functional form of the mapping x̂ depends on the specific choice of the
reference configuration. Further in this regard, it is emphasized that the choice of the
reference configuration is similar to the choice of coordinates in that it is arbitrary to
the extent that a one-to-one correspondence exists between the material particles Y
and their locationsX in the reference configuration. Also, the inverse of this mapping
can be written in the form

X = X̃(x, t) . (3.1.6)

In contrast to the material configuration, which is based on the abstract notion of
a material point Y , the mapping (3.1.5) expresses x as a vector function of X and t
and the inverse mapping (3.1.6) expresses X as a vector function of x and t . These
vector functions are mathematical functions that are assumed to be smooth functions
which can be differentiated with respect to either of their arguments as many times
as necessary.

3.2 Representations

Material, Lagrangian and Eulerian Representations
There are severalmethods of describing properties of a body. The following considers
three possible representations. To this end, let f be an arbitrary scalar or tensor
function characterizing a property of the body which admits the following three
representations

f = f̄ (Y, t) Material representation , (3.2.1a)

f = f̂ (X, t) Lagrangian representation , (3.2.1b)

f = f̃ (x, t) Eulerian representation . (3.2.1c)

For definiteness, a symbol is used to denote different functional forms from the
value of a function. Whenever this is necessary, the functions that depend on Y are
denoted with an overbar ¯( ), functions that depend onX are denoted with a hat ˆ( ) and
functions that depend on x are denoted with a tilde ˜( ). Furthermore, the functional
forms f̄ , f̂ , f̃ are related by the expressions

f̂ (X, t) = f̄ (Ŷ (X), t) , f̃ (x, t) = f̂ (X̃(x, t), t) . (3.2.2)

The representation (3.2.1a) is called material because the material point Y is
used as an independent variable. The representation (3.2.1b) is called referential or
Lagrangian because the positionX of amaterial point in the reference configuration is
an independent variable, and the representation (3.2.1c) is called spatial or Eulerian
because the current position x in space is used as an independent variable. However,
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it is emphasized that in view of the invertibility of these functions, a one-to-one
correspondence can be established between any two of these representations.

In this book, use is made of both the coordinate free forms of equations as well
as their indicial counterparts. To this end, let eA be a fixed right-handed orthonormal
rectangular Cartesian basis associated with the reference configuration and let ei
be a fixed right-handed orthonormal rectangular Cartesian basis associated with the
current configuration. Moreover, these base vectors are specified to coincide so that

ei · eA = δi A , (3.2.3)

where δi A is the usual Kronecker delta. In the following, all tensor quantities are
referred to either of these bases and for clarity use is made of upper case letters to
indicate indices of quantities associated with the reference configuration and with
lower case letters to indicate indices of quantities associated with the current config-
uration. For example,

X = XAeA , x = xiei , (3.2.4)

where XA are the rectangular Cartesian components of the position vector X and
xi are the rectangular Cartesian components of the position vector x and the usual
summation convention over repeated indices is used. It follows that themotion (3.1.5)
can be written in the form

xi = x̂i (XA, t) . (3.2.5)

Velocity and Acceleration
The velocity v of a material point Y is defined as the rate of change with time t of
position of the material point. Since the function x̄(Y, t) characterizes the position of
the material point Y at any time t , it follows that the velocity is defined conceptually
by

v = ẋ = ∂ x̄(Y, t)

∂t
, vi = ẋi = ∂ x̄i (Y, t)

∂t
, (3.2.6)

where a superposed dot ˙( ) is used to denote partial differentiation with respect to
time t holding the material particle Y fixed. Similarly, the acceleration a of a material
point Y is defined by

a = v̇ = ∂ v̄(Y, t)

∂t
, ai = v̇i = ∂ v̄i (Y, t)

∂t
. (3.2.7)

Notice that in view of the mappings (3.1.4) and (3.1.6), the velocity and acceleration
can be expressed as functions of either (X, t) or (x, t).

Material Derivative
The material derivative of an arbitrary function f is defined conceptually by

ḟ ≡ ∂ f̄ (Y, t)

∂t

∣
∣
∣
Y

. (3.2.8)
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It is important to emphasize that the material derivative, which is denoted by a
superposed dot (̇ ) is defined to be the rate of change with time t of the function
holding the material particle Y fixed. In this sense the velocity v is the material
derivative of the position x and the acceleration a is the material derivative of the
velocity v. Recalling that the function f can be expressed in terms of either the
Material (3.2.1a), Lagrangian (3.2.1b) or Eulerian (3.2.1c) representations, it follows
from the chain rule of differentiation that ḟ admits the additional representations

ḟ = ∂ f̂ (X, t)

∂t
ṫ + [∂ f̂ (X, t)/∂X] Ẋ = ∂ f̂ (X, t)

∂t
,

ḟ = ∂ f̂ (X, t)

∂t
ṫ + [∂ f̂ (X, t)/∂XA] Ẋ A = ∂ f̂ (X, t)

∂t
, (3.2.9a)

ḟ = ∂ f̃ (x, t)
∂t

ṫ + [∂ f̃ (x, t)/∂x] ẋ = ∂ f̃ (x, t)
∂t

+ [∂ f̃ (x, t)/∂x] v ,

ḟ = ∂ f̃ (x, t)
∂t

ṫ + [∂ f̃ (x, t)/∂xm] ẋm = ∂ f̃ (x, t)
∂t

+ [∂ f̃ (x, t)/∂xm] vm , (3.2.9b)

where in (3.2.9a) use has been made of the fact that the mapping (3.1.3) from the
material point Y to its location X in the reference configuration is independent of
time so that Ẋ vanishes. It is important to emphasize that the physics of the material
derivative defined by (3.2.8) remains unchanged even though its specific functional
form for the different representations (3.2.9a) and (3.2.9b) changes.

3.3 Deformation Gradient and Deformation Measures

To describe the deformation of the body from the reference configuration to the cur-
rent configuration, it is convenient to think of the body in its reference configuration
as a finite collection of neighboring tetrahedrons. As the number of tetrahedrons
increases it is possible to approximate a body having an arbitrary shape. If the
deformation of each of these tetrahedrons from the reference configuration to the
current configuration can be determined, then the shape (and volume) of the body
in the current configuration can be determined by simply connecting the neighbor-
ing tetrahedrons. Since a tetrahedron is characterized by a triad of three vectors,
the deformation of an arbitrary elemental tetrahedron (infinitesimally small) can be
characterized by determining the deformation of an arbitrary material line element.
This is because the material line element can be identified with each of the base
vectors which represent the edges of the tetrahedron.

Deformation Gradient
For this reason it is sufficient to determine the deformation of a general material
line element dX in the reference configuration to the material line element dx in the
current configuration. Recalling that the mapping x = x̂(X, t) defines the position x
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in the current configuration of any material point X in the reference configuration at
time t , it follows that

dx = (∂ x̂/∂X)dX = FdX , (3.3.1a)

dxi = (∂ x̂i/∂XA)dXA = xi ,A dXA = Fi AdXA , (3.3.1b)

F = (∂ x̂/∂X) = Fi Aei ⊗ eA , Fi A = xi ,A , (3.3.1c)

where F is the deformation gradient with components Fi A. Unless otherwise stated,
throughout the text a comma denotes partial differentiation with respect to XA if the
index is a capital letter and with respect to xi if the index is a lower case letter. Since
the mapping x̂(X, t) is invertible, F must satisfy the restriction

detF �= 0 , det(xi ,A ) �= 0 , (3.3.2)

for all time and all points in the spatial region occupied by the body. To ensure
that the reference configuration has the possibility of coinciding with the current
configuration at any time (i.e., x = X and F = I), the deformation gradient must
satisfy the restriction that

detF > 0 , det(xi ,A ) > 0 . (3.3.3)

Right and Left Cauchy–Green Deformation Tensors and the Cauchy Deformation
Tensor
The magnitude ds of the material line element dx in the current configuration can
be calculated using (3.3.1a), such that

(ds)2 = dx · dx = FdX · FdX = dX · FTFdX = dX · CdX ,

(ds)2 = dxidxi = Fi AdXAFi BdXB = dXA(xi ,A xi ,B )dXB = dXACABdXB ,

(3.3.4a)

C = FTF = CABeA ⊗ eB , CAB = Fi AFi B = xi ,A xi ,B , (3.3.4b)

where C is called the right Cauchy–Green deformation tensor. Similarly, the mag-
nitude dS of the material line element dX in the reference configuration can be
calculated by inverting (3.3.1a) to obtain

dX = F−1dx , dXA = XA,i dxi , (3.3.5)

which yields
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(dS)2 = dX · dX = F−1dx · F−1dx = dx · F−TF−1dx = dx · cdx ,

(dS)2 = dXAdXA = XA,i dxi X A, j dx j = dxi (XA,i X A, j )dx j = dxi ci j dx j ,

(3.3.6a)

c = F−TF−1 = ci jei ⊗ e j , ci j = XA,i X A, j , (3.3.6b)

where F−T is the transpose of F−1 and c is the Cauchy deformation tensor. It is also
convenient to define the left Cauchy–Green deformation tensor B by

B = FFT = Bi jei ⊗ e j , Bi j = Fi AFj A = xi ,A x j ,A , (3.3.7)

and it is noted that
c = B−1 . (3.3.8)

Stretch and Extension
The stretchλ of amaterial line element is defined in terms of the ratio of the lengths ds
and dS of the line element in the present and reference configurations, respectively,
such that

λ = ds

dS
. (3.3.9)

Also, the extension ε of the same material line element is defined by

ε = λ − 1 = ds − dS

dS
. (3.3.10)

It follows from these definitions that the stretch is always positive. Also, the stretch is
greater than one and the extension is greater than zero when the material line element
is extended relative to its reference length.

For convenience let S be the unit vector defining the direction of the material line
element dX in the reference configuration and let s be the unit vector defining the
direction of the associated material line element dx in the current configuration, such
that

dX = SdS , dXA = SAdS , S · S = SASA = 1 , (3.3.11a)

dx = sds , dxi = sids , s · s = si si = 1 . (3.3.11b)

Thus, using (3.3.4a) and (3.3.6a) it can be shown that

λs = FS , λsi = xi ,A SA , (3.3.12a)

λ2 = C · (S ⊗ S) , λ2 = CABSASB , (3.3.12b)

1

λ2
= c · (s ⊗ s) ,

1

λ2
= ci j si s j . (3.3.12c)
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Since the stretch is positive, it follows from (3.3.12b) and (3.3.12c) that C and c are
positive-definite tensors. Similarly, it can be shown thatB in (3.3.7) is also a positive-
definite tensor. In addition, notice from (3.3.12b) that the stretch of a material line
element depends not only on the value of C at the material point X and the time t ,
but it depends also on the orientation S of the material line element in the reference
configuration.

A Pure Measure of Dilatation (Volume Change)
To discuss the relative volume change of a material element, it is convenient to first
prove that for any nonsingular second-order tensor F and any two vectors a and b
that

Fa × Fb = det(F)F−T (a × b) . (3.3.13)

Toprove this result, it is noted that the quantityFT (a × b) is a vector that is orthogonal
to the plane formed by the vectors Fa and Fb since

F−T (a × b) · Fa = (a × b) · (F−T )TFa = (a × b) · F−1Fa = (a × b) · a = 0 ,

F−T (a × b) · Fb = (a × b) · F−1Fb = (a × b) · b = 0 .

(3.3.14)
This means that the quantity Fa × Fbmust be a vector that is parallel to F−T (a × b)

so that
Fa × Fb = α F−T (a × b) . (3.3.15)

Next, the value of the scalar α is determined by noting that both sides of Eq. (3.3.15)
must be linear functions of a and b. This means that α is independent of the vectors
a and b. Moreover, letting c be an arbitrary vector, it follows that

Fa × Fb · Fc = α F−T (a × b) · Fc = α(a × b) · c . (3.3.16)

The proof is finished by recognizing that one definition of the determinant of F is

α = det F = (Fa × Fb) · Fc
(a × b) · c , (3.3.17)

for any set of linearly independent vectors a,b and c. Specifically, using the rect-
angular Cartesian base vectors ei and taking a = e1,b = e2 and c = e3, it follows
that

det F = (Fe1 × Fe2) · Fe3 , (3.3.18)

which can be recognized as the scalar triple product of the columns of F.
Now, it will be shown that the determinant J of the deformation gradient F

J = det F , (3.3.19)



3.3 Deformation Gradient and Deformation Measures 41

is a pure measure of dilatation. To this end, consider an elemental material volume
defined by the linearly independent material line elements dX1, dX2 and dX3 in the
reference configuration and defined by the associated linearly independent material
line elements dx1, dx2 and dx3 in the current configuration. Thus, the elemental
volumes dV in the reference configuration and dv in the current configuration are
given by

dV = dX1 × dX2 · dX3 , (3.3.20a)

dv = dx1 × dx2 · dx3 . (3.3.20b)

Since (3.3.1a) defines the mapping of each material line element from the reference
configuration to the current configuration, it follows that

dv = FdX1 × FdX2 · FdX3 = JF−T (dX1 × dX2) · FdX3 ,

dv = J (dX1 × dX2) · F−1FdX3 = JdX1 × dX2 · dX3 ,

dv = JdV .

(3.3.21)

This means that J is a pure measure of dilatation. It also follows from (3.3.4b) and
(3.3.19) that

J 2 = detC . (3.3.22)

Pure Measures of Distortion (Shape Change)
In general, the deformation gradient F characterizes the dilatation (volume change),
distortion (shape change) and the orientation of a material region. Therefore, when-
ever F is a unimodular tensor (i.e., its determinant J equals unity), F is a measure
of distortion and orientation. Using this idea, which originated with Flory [1], it is
possible to separate F into its dilatational part J 1/3I and its distortional part F′ such
that

F = (J 1/3I)F′ = J 1/3F′ , F′ = J−1/3F , det F′ = 1 . (3.3.23)

Note that since F′ is unimodular (3.3.23), it is a pure measure of distortion and
orientation. Similarly, the deformation tensor C can be separated into its dilatational
part J 2/3I and its distortional part C′ such that

C = (J 2/3I)C′ = J 2/3C′ , C′ = J−2/3C , detC′ = 1 , (3.3.24)

in contrast to F′, C′ is a pure measure of distortional deformation only.

Strain Measures
Using (3.3.4a) and (3.3.6a), it follows that the change in length of a material line
element can be expressed in the following forms
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ds2 − dS2 = dX · (C − I)dX = dX · (2E)dX = 2E · (dX ⊗ dX) ,

ds2 − dS2 = dXA(CAB − δAB)dXB = dXA(2EAB)dXB , (3.3.25a)

ds2 − dS2 = dx · (I − c)dx = dx · (2e)dx = 2e · (dx ⊗ dx) ,

ds2 − dS2 = dxi (δi j − ci j )dx j = dxi (2ei j )dx j , (3.3.25b)

where the Lagrangian strain E and the Almansi strain e are defined by

2E = C − I , (3.3.26a)

2e = I − c . (3.3.26b)

Furthermore, in view of the separation (3.3.24) it is sometimes convenient to define a
scalar measure of dilatational strain Ev and a tensorial measure of distortional strain
E′ by

2Ev = J 2 − 1 , 2E′ = C′ − I . (3.3.27)

Eigenvalues of C and B
The notions of eigenvalues, eigenvectors and the principal invariants of a tensor are
briefly reviewed in Appendix A. Using the definitions (3.3.4b), (3.3.7) and (A.1.3)
it is first shown that the principal invariants of C and B are equal. To this end, use is
made of the properties of the dot product given by (2.6.19) to deduce that

C · I = FTF · I = F · F = FFT · I = B · I ,

C · C = FTF · FTF = F · FFTF = FFT · FFT = B · B ,

detC = det(FTF) = det FT det F = (det F)2 = det(FFT ) = detB .

(3.3.28)

It follows from (A.1.3) that the principal invariants of C and B are equal

I1(C) = I1(B) , I2(C) = I2(B) , I3(C) = I3(B) . (3.3.29)

Furthermore, using (3.3.12b) it can be seen that the eigenvalues of C are also the
squares of the principal values of stretch λ, which are determined by the characteristic
equation

det(C − λ2 I) = −λ6 + λ4 I1(C) − λ2 I2(C) + I3(C) = det(B − λ2 I) = 0 .

(3.3.30)
Displacement Vector
The displacement vector u is the vector that connects the position X of a material
point in the reference configuration to its position x in the current configuration so
that

u = x − X , x = X + u ,

X = x − u , u = uAeA = uiei .
(3.3.31)
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It then follows from the definition (3.3.1c) of the deformation gradient F that

F = ∂x/∂X = ∂(X + u)/∂X = I + ∂û/∂X , (3.3.32a)

F−1 = ∂X/∂x = ∂(x − u)/∂x = I − ∂ũ/∂x , (3.3.32b)

C = FTF = (I + ∂û/∂X)T (I + ∂û/∂X) ,

= I + ∂û/∂X + (∂û/∂X)T + (∂û/∂X)T (∂û/∂X) ,

CAB = δAB + û A,B +û B,A +ûM ,A ûM ,B , (3.3.32c)

c = B−1 = F−TF−1 = (I − ∂ũ/∂x)T (I − ∂ũ/∂x) ,

= I − ∂ũ/∂x − (∂ũ/∂x)T + (∂ũ/∂x)T (∂ũ/∂x) ,

ci j = δi j − ũi , j −ũ j ,i +ũm,i ũm, j . (3.3.32d)

Then, with the help of the definitions (3.3.26a) and (3.3.26b), the strains E and e can
be expressed in terms of the displacement gradients ∂û/∂X and ∂ũ/∂x by

E = 1

2
[∂û/∂X + (∂û/∂X)T + (∂û/∂X)T (∂û/∂X)] = EABeA ⊗ eB ,

EAB = 1

2
(û A,B +û B,A +ûM ,A ûM ,B ) , (3.3.33a)

e = 1

2
[∂ũ/∂x + (∂ũ/∂x)T − (∂ũ/∂x)T (∂ũ/∂x)] = ei jei ⊗ e j ,

ei j = 1

2
(ũi , j +ũ j ,i −ũm,i ũm, j ) . (3.3.33b)

Since these expressions have been obtained without any approximation they are
exact and are sometimes referred to as finite strain measures. Notice the different
signs in front of the quadratic terms in the displacement gradients appearing in the
expressions (3.3.33a) and (3.3.33b).

Material Area Element
The material area element d A formed by the elemental parallelogram associated
with the linearly independent material line elements dX1 and dX2 in the reference
configuration, and thematerial area element da formed by the corresponding linearly
independent material line elements dx1 and dx2 in the current configuration are given
by

Nd A = dX1 ⊗ dX2 , nda = FdX1 ⊗ FdX2 , (3.3.34)

where N and n are the unit vectors normal to the material surfaces defined by
dX1, dX2 and dx1, dx2, respectively. It follows from (3.3.1a) and (3.3.13) that

nda = FdX1 ⊗ FdX2 = JF−T (dX1 ⊗ dX2) = JF−TNd A , (3.3.35)
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which is called Nanson’s formula. It is important to emphasize that a material line
element thatwas normal to thematerial surface in the reference configuration does not
necessarily remain normal to the same material surface in the current configuration.

3.4 Polar Decomposition Theorem

The polar decomposition theorem states that any invertible second-order tensor F
can be uniquely decomposed into its polar form

F = RU = VR , Fi A = RiMUMA = Vim RmA , (3.4.1)

where R is an orthogonal tensor

R = Ri Aei ⊗ eA ,

RTR = I , RmARmB = δAB ,

RRT = I , Ri AR j A = δi j ,

(3.4.2)

U is the right stretch tensor and V is the left stretch tensor. These stretch tensors are
symmetric, positive-definite tensors so that for an arbitrary vector v, it follows that

UT = U = UABeA ⊗ eB , UBA = UAB ,

v · Uv = U · v ⊗ v > 0 , vAUABvB = UABvAvB > 0 for v �= 0 ,

VT = V = Vi jei ⊗ e j , Vji = Vi j ,

v · Vv = V · v ⊗ v > 0 , vi Vi j v j = Vi j v1v j > 0 for v �= 0 .

(3.4.3)

From these expressions and the definitions (3.3.4b) and (3.3.7) it can be deduced that

C = U2 , B = V2 , (3.4.4)

which explains why C is called the right Cauchy–Green deformation tensor and B
is called the left Cauchy–Green deformation tensor.

To prove this theorem it is convenient to first consider the following Lemma.

Lemma If S is an invertible second-order tensor then STS and SST are positive-
definite symmetric tensors.

Proof (i) Consider two vectors v and w defined by

w = Sv , wi = Si j v j . (3.4.5)

Since S is invertible, it follows that

w = 0 if and only if v = 0 ,

w �= 0 if and only if v �= 0 .
(3.4.6)
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Now, consider

w · w = Sv · Sv = v · STSv = STS · (v ⊗ v) ,

wmwm = Smivi Smj v j = vi (S
T
im Smj )v j . (3.4.7)

Since w · w > 0 whenever v �= 0, it follows that STS is positive-definite.
(ii) Alternatively, define the two vectors v and w by

w = ST v , wi = STi j v j = Sji v j . (3.4.8)

Since S is invertible, it follows that

w · w = ST v · ST v = v · SST v = SST · (v ⊗ v) ,

wmwm = Simvi S jmv j = vi (Sim S
T
mj )v j . (3.4.9)

Moreover, since w · w > 0 whenever v �= 0 the tensor STS is positive-definite.

To prove the polar decomposition theorem it is convenient to first prove existence
of the forms F = RU and F = VR and then prove uniqueness of the quantities R,U
and V.

Existence

(i) Since F is invertible the tensor FTF is symmetric and positive-definite so there
exists a unique symmetric positive-definite square root U defined by

U = (FTF)1/2 , U2 = FTF , UAMUMB = FmAFmB . (3.4.10)

Now, let R1 be defined by

R1 = FU−1 , F = R1U . (3.4.11)

To prove that R1 is an orthogonal tensor consider

R1RT
1 = FU−1(FU−1)T = FU−1U−TF−T = F(U2)−1FT ,

= F(FTF)−1FT = F(F−1F−T )FT = I , (3.4.12a)

RT
1 R1 = U−TFTFU−1 = U−1U2U−1 = I . (3.4.12b)

(ii) Similarly, since F is invertible the tensor FFT is symmetric and positive-definite
there exists a unique symmetric, positive-definite square root V

V = (FFT )1/2 , V2 = FFT , VimVmj = FiM FjM . (3.4.13)

Now, let R2 be defined by
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R2 = V−1F , F = VR2 . (3.4.14)

To prove that R2 is an orthogonal tensor consider

R2RT
2 = V−1F(V−1F)T = V−1FFTV−1 = V−1V2V−1 = I ,

RT
2 R2 = FTV−TV−1F = FTV−2F = FT (FFT )−1F = I . (3.4.15a)

Uniqueness

(i) Assume that R1 and U are not unique so that

F = R1U = R∗
1U

∗ . (3.4.16)

Then consider

FTF = U2 = (R∗
1U

∗)T (R∗
1U

∗) = U∗TR∗T
1 R∗

1U
∗ = U∗2 . (3.4.17)

However, since U and U∗ are both symmetric and positive-definite it can be
deduced that U is unique

U∗ = U . (3.4.18)

Next, substituting (3.4.18) into (3.4.16) yields

R1U = R∗
1U . (3.4.19)

Then, multiplication of (3.4.19) on the right by U−1 proves that R1 is unique

R1 = R∗
1 . (3.4.20)

(ii) Similarly, assume that R2 and V are not unique so that

F = VR2 = V∗R∗
2 . (3.4.21)

Then, consider

FFT = V2 = (V∗R∗
2)(V

∗R∗
2)

T = V∗R∗
2R

∗T
2 V∗T = V∗2 . (3.4.22)

However, since V and V∗ are both symmetric and positive-definite it can be
deduced that V is unique

V∗ = V . (3.4.23)

Next, substituting (3.4.23) into (3.4.21) yields
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VR2 = VR∗
2 . (3.4.24)

Then, multiplication of (3.4.24) on the left by V−1 proves that R2 is unique

R2 = R∗
2 . (3.4.25)

(iii) Finally, it is necessary to prove that R1 = R2 = R. To this end, define the aux-
iliary tensor A by

A = R1URT
1 = FRT

1 . (3.4.26)

Clearly, A is symmetric so that

A2 = AAT = FRT
1 (FRT

1 )T = FRT
1 R1FT = FFT = V2 . (3.4.27)

SinceA andV are symmetric and nonsingular, it followswith the help of (3.4.14)
and (3.4.26) that

V = A = FRT
1 = VR2RT

1 . (3.4.28)

Now, multiplying (3.4.28) on the left by V−1 and on the right by R1, it follows
that

R1 = R2 = R , (3.4.29)

which completes the proof.

Example As an example, consider the simple deformation field for which F is given
by

F = F11e1 ⊗ e1 + F12e1 ⊗ e2 + F21e2 ⊗ e1 + F22e2 ⊗ e2 + F33e3 ⊗ e3 . (3.4.30)

For this deformation field the rotation tensor R can be written in the form

R = cos γ (e1 ⊗ e1 + e2 ⊗ e2) + sin γ (e1 ⊗ e2 − e2 ⊗ e1) + e3 ⊗ e3 , (3.4.31)

where the angle γ is determined by requiring U = RTF to be a symmetric tensor

γ = tan−1
( F12 − F21

F11 + F22

)

. (3.4.32)

It then follows that R, U and V for this deformation can be expressed in the forms
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R = 1
√

(F11 + F22)2 + (F12 − F21)2

[

(F11 + F22)(e1 ⊗ e1 + e2 ⊗ e2)

+ (F12 − F21)(e1 ⊗ e2 − e2 ⊗ e1)
]

+ e3 ⊗ e3 ,

U = 1
√

(F11 + F22)2 + (F12 − F21)2

[{

F11(F11 + F22) − F21(F12 − F21)
}

e1 ⊗ e1

+ {

F22(F11 + F22) + F12(F12 − F21)
}

e2 ⊗ e2

+ (F11F12 + F22F21)(e1 ⊗ e2 + e2 ⊗ e1)
]

+ F33e3 ⊗ e3 ,

V = 1
√

(F11 + F22)2 + (F12 − F21)2

[{

F11(F11 + F22) + F12(F12 − F21)
}

e1 ⊗ e1

+ {

F22(F11 + F22) − F21(F12 − F21)
}

e2 ⊗ e2

+ (F11F21 + F22F12)(e1 ⊗ e2 + e2 ⊗ e1)
]

+ F33e3 ⊗ e3 .

(3.4.33)

Physical Interpetation
To explain the physical interpretation of the polar decomposition theorem recall from
(3.3.1a) that a material line element dX in the reference configuration is transformed
by F into the material line element dx in the current configuration and define the
elemental vectors dX′ and dx′ such that

dx = RUdX ⇒ dX′ = UdX , dx = RdX′ ,
dxi = Ri AUABdXB ⇒ dX ′

A = UABdXB , dxi = Ri AdX
′
A , (3.4.34a)

dx = VRdX ⇒ dx′ = RdX , dx = Vdx′ ,
dxi = Vi j R j BdXB ⇒ dx ′

j = R jBdXB , dxi = Vi jdx
′
j . (3.4.34b)

In general, a material line element experiences both stretch and rotation as it deforms
from dX to dx. However, the polar decomposition theorem indicates that part of the
deformation can be described as a pure rotation. To see this, use (3.3.4a) together
with (3.4.34a) and (3.4.34b) and consider

ds2 = dx · dx = RdX′ · RdX′ = dX′ · RTRdX′ = dX′ · dX′ . (3.4.35)

It follows that the magnitude of dX′ is the same as that of dx so that all the
stretching occurs during the transformation from dX to dX′ and that the transfor-
mation from dX′ to dx is a pure rotation. Similarly, with the help of (3.3.6a) and
(3.4.34b) it can be shown that

dx′ · dx′ = RdX · RdX = dX · RTRdX = dX · dX = dS2 . (3.4.36)
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Fig. 3.2 Pure stretching
followed by pure rotation:
F = RU;
dX′ = UdX = λdX;
dx = RdX′

Fig. 3.3 Pure rotation
followed by pure stretching:
F = VR; dx′ = RdX;
dx = Vdx′ = λdx′

Consequently, it follows that the magnitude of dx′ is the same as that of dX so
that all the stretching occurs during the transformation from dx′ to dx and that the
transformation from dX to dx′ is a pure rotation.

Although the transformations from dX to dX′ and from dx′ to dx contain all of the
stretching, they also tend to rotate a general line element. However, the special line
element dX which is parallel to any of the three principal directions of U transforms
dX to dX′ as a pure stretch without rotation (see Fig. 3.2) because

dX′ = UdX = λdX , (3.4.37)

where λ is the stretch defined by (3.3.9). It then follows that for this line element

dx = FdX = RUdX = RλdX = λdx′ ,
dx = FdX = VRdX = Vdx′ = λdx′ ,

(3.4.38)

so that dx′ is also parallel to a principal direction ofV, which means that the transfor-
mation from dx′ to dx is a pure stretchwithout rotation (see Fig. 3.3). This alsomeans
that the rotation tensor R describes the complete rotation of material line elements
which are either parallel to principal directions of U in the reference configuration
or parallel to principal directions of V in the current configuration.

3.5 Velocity Gradient and Rate of Deformation Tensors

The gradient of the velocity v with respect to the present position x is denoted by L
and is defined by

L = ∂v/∂x , Li j = ∂vi
∂x j

= vi , j . (3.5.1)



50 3 Kinematics

The symmetric part D of L is called the rate of deformation tensor, while its skew-
symmetric partW is called the spin tensor, which are defined by

L = D + W , Li j =vi , j = Di j + Wi j , (3.5.2a)

D = 1

2
(L + LT ) = DT , Di j =1

2
(vi , j +v j ,i ) = Dji , (3.5.2b)

W = 1

2
(L − LT ) − WT , Wi j =1

2
(vi , j −v j ,i ) = −Wji . (3.5.2c)

Moreover, using the definition (2.5.4) of the divergence operator it can be shown that

divv = v,m · em = (∂v/∂x) em · em = Lem · em = L · (em ⊗ em) = L · I = D · I .

(3.5.3)
Using the chain rule of differentiation, the continuity of the derivatives and the

definition of the material derivative yields the expressions

Ḟ = ∂

∂t
(∂ x̂/∂X) = ∂2x̂/∂X∂t = ∂(∂ x̂/∂t)/∂X = ∂ v̂/∂X = (∂ ṽ/∂x)(∂ x̂/∂X) = LF ,

˙xi ,A = ∂

∂t
(x̂i ,A ) = ∂2 x̂i

∂XA∂t
= ∂

∂XA
(
∂ x̂i
∂t

) = v̂i ,A = ṽi ,m x̂m ,A .

(3.5.4)

It then follows that the material derivative of C can be expressed in the form

Ċ = ˙FTF = ḞTF + FT Ḟ = (LF)TF + FT (LF) = FT (LT + L)F = 2FTDF ,

ĊAB = ˙xi ,Axi ,B +xi ,A ˙xi ,B = vi ,m xm,A xi ,B +xi ,A vi ,m xm,B ,

= xm,A (vi ,m +vm,i )xi ,B = 2xm,A Dmi xi ,B .

(3.5.5)
Notice that the direct notation avoids the complications of changing repeated indices.

Furthermore, since the spin tensor W is skew-symmetric there exits a unique
vector ω, called the axial vector of W, such that for any vector a

Wa = ω × a , Wi ja j = εik jωka j = −εi jkω j ak . (3.5.6)

Since this equation must be true for any vector a, and W and ω are independent of
a, it follows that

W = εTω = −εω , Wi j = εik jωk = −εi jkωk . (3.5.7)

Multiplying (3.5.7) by εi jm and using the identity

εi jkεi jm = 2δkm , (3.5.8)

it is possible to solve for ωm in terms of Wi j to obtain
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ω = −1

2
ε · W , ωm = −1

2
εi jmWi j = −1

2
εmi jWi j . (3.5.9)

Next, substituting (3.5.2c) into this equation and using (2.5.6) yields

ωm = −1

4
εmi j (vi , j −v j ,i ) = −1

4
(−εmi j v j ,i −εmi j v j ,i ) = 1

2
εmi j v j ,i = 1

2
εmji vi , j ,

ω = 1

2
curlv = 1

2
� ×v ,

(3.5.10)
where the symbol � denotes the gradient operator

� φ = ∂φ/∂x = φ,i ei . (3.5.11)

For later reference, use is made of (3.3.13), (3.3.18) and (3.3.19) to deduce that

J̇ = Fe2 × Fe3 · Ḟe1 + Fe3 × Fe1 · Ḟe2 + Fe1 × Fe2 · Ḟe3 = JF−T · Ḟ . (3.5.12)

Next, thinking of J as a function of F and using the chain rule of differentiation it
can be shown that

J̇ = ∂ J

∂F
· Ḟ , (3.5.13)

so that

(
∂ J

∂F
− JF−T ) · Ḟ = 0 . (3.5.14)

Since this equation must be valid for all values of F and Ḟ, and the coefficient of Ḟ
is independent of the rate Ḟ, it follows that

∂ J

∂F
= JF−T . (3.5.15)

This procedure of using the material derivative of a scalar function to determine its
derivative respect to its tensorial argument is often easier than differentiating the
scalar function directly with respect to its argument. Now, with the help of (3.5.4) it
can be shown that

J̇ = J D · I . (3.5.16)

Derivative of a Unimodular Tensor
With the help of (3.3.23) and (3.5.16), it follows that the unimodular tensorF′ satisfies
the evolution equation

Ḟ′ = L′′ F′ , L′′ = L − 1

3
(L · I) I , (3.5.17)

so that Ḟ′ is orthogonal to F′−T

Ḟ′ · F′−T = 0 . (3.5.18)
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Rates of Stretch and Rotation of a Material Line Element
Using the expression (3.3.1a) and the result (3.5.4) it can be shown that the material
derivative of a material line element dx is given by

ḋx = L dx . (3.5.19)

Next, consider a material line elment which in the current configuration has stretch
λ and unit direction s. Taking the material derivative of (3.3.12a) and using (3.5.4),
it follows that

λ̇s + λṡ = λLs . (3.5.20)

Now, taking the dot product of this equation with s and using the fact that s is a unit
vector so that ṡ is orthogonal to s yields an expression for the rate of stretch

λ̇

λ
= D · s ⊗ s . (3.5.21)

Then, substituting this result into (3.5.20) yields an equation for the rate of rotation
of a material line element

ṡ = [L − (D · s ⊗ s)I] s . (3.5.22)

Rates of Material Area Stretch and Rotation of the Normal to a Material Surface
Consider a material surface with unit normal n and element of area da in the present
configuration. Taking the material derivative of Nanson’s formula (3.3.35) and using
(3.5.4) and (3.5.16) and the result

˙F−1 = −F−1L , (3.5.23)

it follows that
ṅda + nḋa = −LTnda + (D · I)nda . (3.5.24)

Next, taking the dot product of this equation with n and using the fact that n is a unit
vector so that ṅ is orthogonal to n yields an expression for the rate of material area
stretch

ḋa

da
= (I − n ⊗ n) · D . (3.5.25)

Then, substituting this result into (3.5.24) yields an equation for the rate of rotation
of the normal n to the material surface

ṅ = −[LT − (D · n ⊗ n) I]n . (3.5.26)
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3.6 Deformation: Interpretations and Examples

To interpret the various deformation measures, it is recalled from (3.3.9), (3.3.11a)
and (3.3.11b) that

λs = F , λsi =xi ,A SA , λ = ds

dS
,

s = dx
ds

, s · s =1 , S =dX
dS

, S · S =1 ,

(3.6.1)

where S is the unit vector in the direction of the material line element dX of length
dS in the reference configuration, s is the unit vector in the direction of the same
material line element dx of length ds in the current configuration, and λ is the stretch
of the material line element. Now, from (3.3.12b) and the definition (3.3.26a) of
Lagrangian strain E, it follows that

λ2 = C · (S ⊗ S) = 1 + 2E · (S ⊗ S) = 1 + 2EABSASB . (3.6.2)

Also, the extension ε defined in (3.3.10) becomes

ε = ds − dS

dS
= λ − 1 = √

1 + 2E · S ⊗ S − 1 = √

1 + 2EABSASB − 1 . (3.6.3)

For the purpose of interpreting the diagonal components of the strain tensor EAB ,
it is convenient to calculate the extensions ε1, ε2 and ε3 of the material line elements
which were parallel to the coordinate axes with base vectors eA in the reference
configuration

ε = ε1 = √

1 + 2E11 − 1 for S = e1 ,

ε = ε2 = √

1 + 2E22 − 1 for S = e2 ,

ε = ε3 = √

1 + 2E33 − 1 for S = e3 .

(3.6.4)

This clearly shows that the diagonal components of the strain tensor are measures
of the extensions of material line elements which were parallel to the coordinate
directions in the reference configuration.

To interpret the off-diagonal components of the strain tensor EAB as measures of
shear, consider two material line elements dX and dX̄ in the reference configuration
which are deformed, respectively, into dx and dx̄ in the present configuration. Letting
S̄ and d S̄ and s̄ and ds̄ be the directions and lengths of the material line elements dX̄
and dx̄, respectively, it follows from (3.6.1) that

λ̄ s̄ = FS̄ , λ̄ = ds̄

d S̄
. (3.6.5)
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Notice that there is no over bar on F in this equation because (3.6.1) is valid for any
material line element, including the particular material line element dX̄. Moreover,
it follows that the angle 
 between the undeformed material line elements dX and
dX̄ and the angle θ between the deformed material line elements dx and dx̄ can be
calculated by (see Fig. 3.4)

cos
 = dX
dS

· dX̄
d S̄

= S · S̄ , cos θ = dx
ds

· dx̄
ds̄

= s · s̄ . (3.6.6)

Furthermore, using (3.6.1), it follows that

cos θ = C · S ⊗ S̄√
C · S ⊗ S

√

C · S̄ ⊗ S̄
= cos
 + 2E · S ⊗ S̄√

1 + 2E · S ⊗ S
√

1 + 2E · S̄ ⊗ S̄
. (3.6.7)

Defining the reduction angleψ between the twomaterial line elements, this equation
can be rewritten in the form

θ = 
 − ψ ,

cos
 cosψ + sin
 sinψ = cos
 + 2EABSA S̄B√
1 + 2EMN SM SN

√

1 + 2ERS S̄R S̄S
.

(3.6.8)

Notice that, in general, the reduction angle ψ depends on the reference angle 
 and
on all of the components of strain.

As a specific example, consider two material line elements which in the reference
configuration were orthogonal and aligned along the coordinate axes such that (see
Fig. 3.4)

S = e1 , S̄ = e2 , 
 = π

2
. (3.6.9)

Then, (3.6.8) yields

sinψ = 2E12√
1 + 2E11

√
1 + 2E22

. (3.6.10)

This shows that the shear depends on the off-diagonal components of strain as well as
on the normal components of strain. However, if the strain is small (i.e., EAB << 1)
then (3.6.10) can be approximated by

ψ ≈ 2E12 , (3.6.11)

which shows that the off-diagonal components of strain are related to shear defor-
mations.

Using the work in [1], it follows that in the absence of distortional deformation
the unimodular part C′ of the deformation tensor C is the identity

C′ = J−2/3C = I , C = J 2/3I , (3.6.12)
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Fig. 3.4 Shear angle: Points
I, I I in the reference
configuration move to points
1, 2 in the current
configuration. Notice that the
plane of s and s̄ is not
necessarily parallel to the
plane of S and S̄

so the associated deformation gradient F is determined by the total dilatation J and
an arbitrary proper orthogonal rotation tensor R, such that

F = J 1/3R , RTR = I , detR = +1 . (3.6.13)

Using this expression for C in (3.6.7) yields

cos θ = cos
, (3.6.14)

whichmeans that the angle between any twomaterial line elements remains the same
unless there is some distortional deformation (C′ �= I).

3.7 Rate of Deformation: Interpretations and Examples

Recall the expressions (3.5.21) for the rate of stretch λ̇ and (3.5.22) for the rate of
rotation ṡ of a material line element

λ̇

λ
= D · s ⊗ s , (3.7.1a)

ṡ = [L − (D · s ⊗ s)I] s . (3.7.1b)

It follows from (3.7.1a) that the logarithmic derivative of the stretch is determined
by the rate of deformation tensor D for the material line element that is currently in
the s direction. Moreover, substituting (3.5.2a) into (3.7.1b) yields

ṡ = Ws + [D − (D · s ⊗ s)I] s , (3.7.2)

which shows that, in general, the rate of rotation of the material line element which
is currently in the direction s is dependent on both the rate of deformation tensor D
and the spin tensor W. However, if s is parallel to a principal direction of D then

Ds = (D · s ⊗ s)s , ṡ = Ws . (3.7.3)
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Fig. 3.5 Extension and
contraction: Points
I, I I, I I, I V in the
reference configuration move
to points 1, 2, 3, 4 in the
current configuration

This shows that the spin tensor W controls the rate of rotation of the material line
element dx which in the current configuration is parallel to a principal direction of
D. Furthermore, using (3.5.6) it can be seen that for this case the axial vector ω of
theW determines the rate of rotation of s

ṡ = ω × s for Ds = (D · s ⊗ s)s . (3.7.4)

Example: Extension and Contraction (Fig.3.5)
By way of example, let XA be the Cartesian components of X, xi be the Cartesian
components of x and the Cartesian base vectors eA and ei coincide (ei = δi AeA).
Also, consider the motion defined by

x1 = eat X1 , x2 = e−bt X2 , x3 = X3 , (3.7.5)

where a, b are positive numbers. The inverse mapping is given by

X1 = e−at x1 , X2 = ebt x2 , X3 = x3 . (3.7.6)

It then follows that

Fi A =
⎛

⎝

eat 0 0
0 e−bt 0
0 0 1

⎞

⎠ , CAB =
⎛

⎝

e2at 0 0
0 e−2bt 0
0 0 1

⎞

⎠ , (3.7.7)

EAB = 1

2

⎛

⎝

e2at − 1 0 0
0 e−2bt − 1 0
0 0 0

⎞

⎠ . (3.7.8)

To better understand this deformation, it is convenient to calculate the stretch λ and
the extension ε of line elements which were parallel to the coordinate directions in
the reference configuration
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Fig. 3.6 Simple shear:
Points I, I I, I I, I V in the
reference configuration move
to points 1, 2, 3, 4 in the
current configuration

For S = e1 , λ = eat ≥ 1 , ε = eat − 1 ≥ 0 , (extension) ,
For S = e2 , λ = e−bt ≤ 1 , ε = e−bt − 1 ≤ 0 , (contraction) ,
For S = e3 , λ = 1 , ε = 0 , (no deformation) .

(3.7.9)

Next, consider the rate of deformation to deduce that

v1 = ax1 , v2 = −bx2 , v3 = 0 ,

Li j = Di j =
⎛

⎝

a 0 0
0 −b 0
0 0 0

⎞

⎠ , W = 0 , ω = 0 .
(3.7.10)

The principal directions of D are e1, e2 and e3 so since W = 0, it follows that the
material line elements that are parallel to these principal directions in the current
configuration experience pure stretching without rotation

For s = e1 , λ̇
λ

= a > 0 , ṡ = 0 , (rate of extension) ,
For s = e2 , λ̇

λ
= −b > 0 , ṡ = 0 , (rate of contraction) ,

For s = e3 , λ̇
λ

= 0 , ṡ = 0 , (no deformation) .

(3.7.11)

It is emphasized that although W vanishes, other material line elements can rotate
during this motion.

Example: Simple Shear (Fig.3.6)
To clarify the meaning of the spin tensorW consider a simple shearing deformation
which is defined by

x1 = X1 + κ(t)X2 , x2 = X2 , x3 = X3 , (3.7.12)

where κ(t) is a monotonically increasing nonnegative function of time

κ ≥ 0 , κ̇ > 0 . (3.7.13)

The inverse mapping is given by

X1 = x1 − κx2 , X2 = x2 , X3 = x3 , (3.7.14)
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and it follows that

Fi A =
⎛

⎝

1 κ 0
0 1 0
0 0 1

⎞

⎠ , CAB =
⎛

⎝

1 κ 0
κ 1 + κ2 0
0 0 1

⎞

⎠ , EAB = 1

2

⎛

⎝

0 κ 0
κ κ2 0
0 0 0

⎞

⎠ . (3.7.15)

To better understand this deformation, it is convenient to calculate the stretch λ

and the extension ε of material line elements which were parallel to the coordinate
directions in the reference configuration

For S = e1 , λ = 1 , ε = 0 , (no deformation) ,
For S = e2 , λ = √

1 + λ2 , ε = √
1 + λ2 − 1 ≥ 0 , (extension) ,

For S = e3 , λ = 1 , ε = 0 , (no deformation) .
(3.7.16)

Notice that the result for S = e2 could be obtained by direct calculation using ele-
mentary geometry. Next, consider the rate of deformation to deduce that

v1 = κ̇x2 , v2 = 0 , v3 = 0 ,

Li j =
⎛

⎝

0 κ̇ 0
0 0 0
0 0 0

⎞

⎠ , Di j = 1

2

⎛

⎝

0 κ̇ 0
κ̇ 0 0
0 0 0

⎞

⎠ ,

Wi j = 1

2

⎛

⎝

0 κ̇ 0
−κ̇ 0 0
0 0 0

⎞

⎠ , ω = −1

2
κ̇e3 .

(3.7.17)

Since the principal directions of D are 1√
2
(e1 + e2), 1√

2
(−e1 + e2) and e3, with the

help of (3.7.1a), it follows that

For s = 1√
2
(e1 + e2) , λ̇

λ
= 1

2 κ̇ > 0 ,

ṡ = ( 12 κ̇) 1√
2
(e1 − e2) , (rate of extension) ,

For s = 1√
2
(−e1 + e2) , λ̇

λ
= − 1

2 κ̇ < 0 ,

ṡ = ( 12 κ̇) 1√
2
(e1 + e2) , (rate of contraction) ,

For s = e3 , λ̇
λ

= 0 ,

ṡ = 0 , (no deformation) .

(3.7.18)

Thus, from (3.7.17), it follows that these special material line elements in (3.7.18)
are rotating in the clockwise direction about the e3 axis with angular speed 1

2 κ̇ . In
addition, it noted that this motion is isochoric (3.5.16) (no change in volume) with

J = det F = 1 , D · I = 0 . (3.7.19)
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3.8 Superposed Rigid Body Motions (SRBM)

This section develops the kinematics of Superposed Rigid Body Motions (SRBM)
which will be used later to place restrictions on constitutive equations for material
response. Consider a group of motions associated with configurations P+ which
differ from an arbitrary prescribed motion such as (3.1.5)

x = x̂(X, t) , (3.8.1)

by SRBMof the entire body, (i.e., motions which in addition to the prescribedmotion
include purely rigid motions of the body).

To this end, consider a material pointX of the body, which inP at time t occupies
the location x as specified by (3.8.1). Suppose that under a SRBM the material point,
which occupies the location x at time t in the configuration P, moves to the location
x+ at time t+

t+ = t + c , (3.8.2)

in the superposed configuration P+, where c is a constant time shift. Throughout the
text, quantities associated with the superposed configuration P+ are denoted using
the same symbol as associated with the configuration P but with a superscript ( )+. In
particular, the position x+ of the same material point in the superposed configuration
is written in the form

x+ = ˆ̄x+(X, t+) = x̂+(X, t) , (3.8.3)

where the notation x̂+ and x̂+ has been used to distinguish between the function x̂+,
which depends on t+, and the function x̂+, which depends on t and includes the
influence of c .

Similarly, consider another material point Y of the body, which in the current
configuration P at time t occupies the location y specified by

y = x̂(Y, t) . (3.8.4)

It is important to emphasize that the function x̂ in (3.8.4) is the same function as
that in (3.8.1). Furthermore, suppose that under the same SRBM the material point
which occupies the location y at time t in the configuration P moves to the location
y+ at time t+. Then, with the help of (3.8.3), it follows that

y+ = ˆ̄x+(Y, t+) = x̂+(Y, t) . (3.8.5)

Recalling the inverse relationships

X = X̃(x, t) , Y = X̃(y, t) , (3.8.6)
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the function x̂+ on the right-hand sides of (3.8.3) and (3.8.6) can be expressed as
different functions of x and t and y and t , respectively, such that

x+ = x̂+(X̃(x, t), t) = x̃+(x, t) , y+ = x̂+(X̃(y, t), t) = x̃+(y, t) . (3.8.7)

Since the superposed motion of the body is restricted to be rigid, the magnitude of
the relative displacement y+ − x+ must remain equal to the magnitude of the relative
displacement y − x for all pairs of material points X and Y, and for all time. Thus,

[x̃+(y, t) − x̃+(x, t)] · [x̃+(y, t) − x̃+(x, t)] = (y − x) · (y − x) . (3.8.8)

Recognizing that x and y are independent, (3.8.8) can be differentiated first with
respect to x and then with respect to y to obtain

−2[∂ x̃+(x, t)/∂x]T [x̃+(y, t) − x̃+(x, t)] = −2(y − x) ,

[∂ x̃+(x, t)/∂x]T [∂ x̃+(y, t)/∂y] = I .
(3.8.9)

In this equation the transpose has been used to retain the inner product of x̃+(x, t)
with x̃+(y, t). Moreover, it follows that the determinant of the tensor ∂ x̃+(x, t)/∂x
does not vanish so that this tensor is invertible and (3.8.9) can be rewritten in the
alternative form

[∂ x̃+(x, t)/∂x]T = [∂ x̃+(y, t)/∂y]−1 , (3.8.10)

for all x and y in the region and all t . Thus, each side of this equation must be a
tensor function of time only, say QT (t), so that

∂ x̃+(x, t)/∂x = Q(t) , (3.8.11)

for all x in the region and all time t . Using the fact that Q in (3.8.11) is independent
of x, it also follows that

∂ x̃+(y, t)/∂y = Q(t) , (3.8.12)

so that (3.8.9) restricts Q to be an orthogonal tensor

QT (t)Q(t) = I , detQ = ±1 . (3.8.13)

Since (3.8.7) represents a SRBM it must include the trivial motion

x̃+(x, t) = x , Q = I , detQ = +1 . (3.8.14)

Furthermore, since the motions are assumed to be continuous and detQ cannot
vanish, Q must remain a proper orthogonal tensor function of time only

QT (t)Q(t) = Q(t)QT (t) = I , detQ = +1 . (3.8.15)
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Next, integrating (3.8.11) yields the general solution for SRBM

x+ = x̃+(x, t) = c(t) + Q(t)x , (3.8.16)

where c(t) is an arbitrary vector function of time only representing an arbitrary
translation of the body and Q(t) represents an arbitrary rotation of the body.

By definition, the superposed part of the motion defined by (3.8.16) is a rigid body
motion. This means that the lengths of line elements are preserved

|x+ − y+|2 = (x+ − y+) · (x+ − y+) = Q(x − y) · Q(x − y) = (x − y) · QTQ(x − y) ,

= (x − y) · I(x − y) = (x − y) · (x − y) = |x − y|2 ,

(3.8.17)
and the angles between two material line elements are also preserved so that

cos θ+ = (x+ − y+)

|x+ − y+| · (x+ − z+)

|x+ − z+| = Q(x − y)
|(x − y)| · Q(x − z)

|(x − z)| ,

= (x − y)
|(x − y)| · Q

TQ(x − z)
|(x − z)| = (x − y)

|(x − y)| · (x − z)
|(x − z)| = cos θ ,

(3.8.18)

where x, y and z are material points in the body which move to x+, y+ and z+ under
SRBM. Furthermore, this means that material areas, and volumes are preserved
under SRBM. To show this use is made of (3.8.16) with x = x̂(X, t) to calculate
the deformation gradient F+ from the reference configuration to the superposed
configuration

F+ = ∂ x̂+(X, t)/∂X = Q(∂x/∂X) = QF , (3.8.19)

so that from (3.3.21), (3.3.35) and (3.8.19), it follows that

J+ = dv+

dV
= det F+ = det(QF) = detQ det F = J ,

n+da+ = dx1+ × dx2+ = J+(F+)−TNd A = JQF−TNd A = Qnda ,

(da+)2 = n+da+ · n+da+ = Qnda · Qnda = n · QTQ(da)2 = (da)2 ,

n+ = Qn .

(3.8.20)

For later convenience it is desirable to calculate expressions for the velocity and
rate of deformation tensors associated with the superposed configuration. To this
end, take the material derivative of (3.8.13) to deduce that

Q̇TQ + QT Q̇ = 0 ⇒ Q̇ = �Q ⇒ �T = −� , (3.8.21)

where �(t) is a skew-symmetric tensor function of time only. Letting ω be the axial
vector of � it is recalled from (3.5.6) that for an arbitrary vector a

�a = ω × a . (3.8.22)
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Thus, by taking the material derivative of (3.8.16) the velocity v+ of the material
point in the superposed configuration can be expressed in the forms

v+ = ẋ+ = ċ + Q̇x + Qẋ = ċ + �Qx + Qv ,

v+ = ċ + �(x+ − c) + Qv = ċ + ω × (x+ − c) + Qv .
(3.8.23)

It follows that the velocity gradient L+ and rate of deformation D+ and spin W+
tensors associated with the superposed configuration are given by

L+ = ∂v+/∂x+ = Q(∂v/∂x)(∂x/∂x+) + � = QLQT + � ,

D+ = QDQT , W+ = QWQT + � ,
(3.8.24)

where use has beenmadeof the condition (3.8.21) and (3.8.16) has beendifferentiated
to obtain

∂x+/∂x = Q , ∂x/∂x+ = QT . (3.8.25)

In general, SRBM are in addition to the general motion x(X, t) of a deformable
body. However, the kinematics of rigid body motions can be obtained as a special
case by identifying x with its value X in the fixed reference configuration so that
distortion and dilatation of the body are eliminated and (3.8.23) yields

x = X ⇒ ẋ+ = ċ + ω × (x+ − c) . (3.8.26)

In this form, it is easy to recognize that c(t) represents the translation of a point
moving with the rigid body and ω is the absolute angular velocity of the rigid body.

In summary, the most general SRBM is characterized by Eqs. (3.8.16), (3.8.13)
and (3.8.21)

x+ = c(t) + Q(t)x , QTQ = I , detQ = +1 , Q̇ = �Q , �T = −� .

(3.8.27)

3.9 Material Line, Material Surface and Material Volume

Recall that a material point Y is mapped into its location X in the reference config-
uration and that this mapping is independent of time. Consequently, lines, surfaces
and volumes, which remain constant in the reference configuration, always contain
the same material points and therefore are called material.

Material Line
A material line is a fixed curve in the reference configuration that can be parameter-
ized by its archlength S, which is independent of time. It follows that the Lagrangian
representation of a material line becomes
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X = X(S) . (3.9.1)

Alternatively, using the mapping (3.1.5) the current positions of material points on
the same material line are determined by

x = x(S, t) = x̂(X(S), t) . (3.9.2)

Material Surface
Amaterial surface is a fixed surface in the reference configuration that can be param-
eterized by two coordinates S1 and S2 that are independent of time. It follows that
the Lagrangian representation of a material surface becomes

X = X(S1, S2) or f̂ (X) = 0 , (3.9.3)

where f̂ (X) = 0 is a constraint on the three components of X which ensures that X
identifies points in the space of the reference configuration on the material surface.
Alternatively, using the mapping (3.1.5) and its inverse (3.1.6), the current positions
of material points on this surface and the Eulerian representation of the samematerial
surface can be characterized by the expressions

x = x(S1, S2, t) = x̂(X(S1, S2), t) or f̃ (x, t) = f̂ (X̃(x, t)) = 0 , (3.9.4)

where f̃ (x, t) = 0 is a constraint on the three components of x which ensures that x
identifies points in the space of the current configuration on the material surface.

Lagrange’s Criterion for a Material Surface
The surface defined by the constraint f̃ (x, t) = 0 is material if and only if

˙̃f = ∂ f̃

∂t
+ ∂ f̃ /∂x · v = 0 . (3.9.5)

Proof In general, the mapping (3.1.5) can be used to deduce that

f̂ (X, t) = f̃ (x̂(X, t), t) , (3.9.6)

which can be used to rewrite (3.9.5) in the form

˙̂f (X, t) = ∂ f̂

∂t
= ˙̃f = 0 , (3.9.7)

so that f̂ is independent of time and the surface f̂ = 0 is fixed in the reference config-
uration, whichmeans that f̂ = f̃ = 0 characterizes a material surface. Alternatively,

if f̂ is independent of time, then ˙̂f = 0 and ˙̃f = 0.

Material Region
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A material region is a region of space bounded by a closed material surface. For
example, if ∂P0 is a closed material surface in the reference configuration then the
region of space P0 enclosed by ∂P0 is amaterial region that contains the samematerial
points for all time if P0 and ∂P0 are fixed in the reference configuration. Alternatively,
using the mapping (3.1.5) each point of the material surface ∂P0 maps into a point on
the closed material surface ∂P in the current configuration so the region P enclosed
by ∂P is the associated material region in the current configuration.

3.10 Reynolds Transport Theorem

Reynolds transport theorem is used to calculate the time derivative of an integral
over a material region P in the current configuration whose closed boundary ∂P is
changing with time.

Leibniz’s Rule
By way of introduction, consider the simpler one-dimensional case of Leibniz’s rule
and recall that

d

dt

∫ β(t)

α(t)
φ(x, t)dx =

∫ β(t)

α(t)

∂φ(x, t)

∂t
dx + φ(β(t), t)β̇ − φ(α(t), t)α̇ , (3.10.1)

where φ(x, t) is an arbitrary function of position x and time t , and α(t) and β(t)
define the changing boundaries of integration. It is important to notice that the rates
of change of the boundaries enter the expression in (3.10.1).
Reynolds Transport Theorem for a Material Region
To develop the generalization of (3.10.1) for a three-dimensional material region, it
is convenient to consider an arbitrary scalar or tensor valued function φ which admits
the representations

φ = φ̃(x, t) = φ̂(X, t) . (3.10.2)

Bymapping thematerial region P from the current configuration back to the reference
configuration P0, it is possible to calculate the derivative of the integral of φ over the
changing region P as follows

d

dt

∫

P
φ̃(x, t)dv = d

dt

∫

P0

φ̂(X, t)JdV ,

=
∫

P0

∂{φ̂(X, t)J }
∂t

∣
∣
XdV =

∫

P0

(
˙̂
φ + φ̂divv)JdV ,

(3.10.3)

which can be transformed back to an integral over the present region P to obtain

d

dt

∫

P
φ(x, t)dv =

∫

P
(φ̇ + φ divv)dv , (3.10.4)
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where φ̇ is the usual material derivative of φ

φ̇ = ∂φ̂(X, t)

∂t
= ∂φ̃(x, t)

∂t
+ (∂φ̃(x, t)/∂x) · v . (3.10.5)

Next, substituting (3.10.5) into (3.10.4) yields

d

dt

∫

P
φ(x, t)dv =

∫

P
[∂φ̃(x, t)

∂t
+ (∂φ̃(x, t)/∂x) · v + φ divv]dv

=
∫

P
[∂φ̃(x, t)

∂t
+ div(φ̃ ⊗ v)]dv ,

(3.10.6)

which with the help of the divergence theorem (2.5.10) can be written in the form

d

dt

∫

P
φ(x, t)dv =

∫

P

∂φ̃(x, t)
∂t

dv +
∫

∂P
φ̃ (v · n)da , (3.10.7)

where n is the unit outward normal to the material surface ∂P . It should be empha-
sized that the time differentiation and the integration over space operations commute
in (3.10.3) because the region P0 is independent of time. In contrast, the time dif-
ferentiation and the integration over space operations in (3.10.7) do not commute
because the region P depends on time. However, sometimes in fluid mechanics the
region P in space at time t is considered to be a control volume and is identified as
a fixed region P̄ with fixed boundary ∂ P̄ which instantaneously coincide with the
material region P and the material boundary ∂P. Then, the time differentiation is
interchanged with the integration over space operation to obtain

d

dt

∫

P
φ(x, t)dv = ∂

∂t

∫

P̄
φ̃(x, t)dv +

∫

∂ P̄
φ̃ (v · n)da , (3.10.8)

where P on the left-hand side of this equation represents a material region that
changes with time. In this regard, it is essential to interpret the partial differentiation
operation in (3.10.8) as differentiation with respect to time holding x fixed. To avoid
possible confusion, it is preferable to use the form (3.10.7) instead of (3.10.8).

Transport Theorem for a Non-material Region
To develop a generalized version of Leibnitz’s rule (3.10.1) consider a general non-
material region V(t) with general non-material closed boundary ∂V(t) for which

d

dt

∫

V(t)
φ̃(x, t)dv =

∫

V(t)

∂φ̃

∂t
dv +

∫

∂V(t)
φ̃ (w · n)da , (3.10.9)

where φ̃(x, t) is a general tensor field and w is the velocity of points on the moving
boundary ∂V(t). Next, using the divergence theorem (2.5.10), it follows that
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Fig. 3.7 A material region with a singular moving surface S(t)

∫

V(t)
div(φ ⊗ v)dv =

∫

∂V(t)
φ̃ (v · n)da , (3.10.10)

where v is the velocity of material points x in the region V(t) or the velocity of
material points which instantaneously lie on the moving surfaceV(t). Thus, (3.10.9)
can be rewritten in the form

d

dt

∫

V(t)
φ̃(x, t)dv =

∫

V(t)

[∂φ̃

∂t
+ div(φ ⊗ v)

]

dv +
∫

∂V(t)
φ̃ [(w − v) · n]da .

(3.10.11)
Moreover, using (2.5.4) and (3.10.5) it can be shown that

div(φ̃ ⊗ v) = (∂φ̃/∂x) · v + φ̃ divv = φ̇ + φ̃ divv − ∂φ̃

∂t
. (3.10.12)

Then, using this expression the generalized transport theorem for a non-material
region becomes

d

dt

∫

V(t)
φ(x, t)dv =

∫

V(t)
(φ̇ + φ divv)dv +

∫

∂V(t)
φ [(w − v) · n]da , (3.10.13)

where the last term in this equation represents the flux of φ entering V(t) through
the moving boundary ∂V(t). When V is a material region P and ∂V is a material
boundary ∂P then (w − v) · n = 0 and (3.10.13) reduces to the simple form (3.10.4).

Transport Theorem for a Material Region with a Singular Moving Surface
Impulsive loading of materials cause shock waves that travel through the material
region. At the front of a shock wave the state of the material can change rapidly.
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Mathematically, it is convenient to approximate the front of the shock wave as a
singular surface S(t) moving through the material at which quantities other than the
positions of material particles can be discontinuous across the surface S(t). Figure
3.7 shows a material region P with closed material boundary ∂P that is divided by
a singular moving surface S(t) into two parts P1 and P2 with closed boundaries ∂P1
and ∂P2, respectively. Furthermore, let the intersection of ∂P1 with ∂P be denoted
by ∂P ′ and the intersection of ∂P2 with ∂P be denoted by ∂P ′′. Mathematically, this
separation is summarized by

P = P1 ∪ P2 , ∂P ′ = ∂P1 ∩ ∂P , ∂P ′′ = ∂P2 ∩ ∂P ,

∂P = ∂P ′ ∪ P ′′ , ∂P1 = ∂P ′ ∪ S , ∂P2 = ∂P ′′ ∪ S .
(3.10.14)

Points on this singular surface move with velocity w and the unit normal to S(t)
outward from the part P1 is denoted by n.

Application of the generalized transport theorem (3.10.13) to each of the parts P1
and P2 yields

d

dt

∫

P1

φ(x, t)dv =
∫

P1

(φ̇ + φ divv)dv +
∫

S(t)
φ1 {(w − v1) · n}da ,

d

dt

∫

P2

φ(x, t)dv =
∫

P2

(φ̇ + φ divv)dv −
∫

S(t)
φ2 {(w − v2) · n}da ,

(3.10.15)

where φ1 and v1 are the values of φ and v in part P1 and φ2 and v2 are the values of
φ and v in part P2, all on the singular surface S(t). Next, adding these expressions
yields

d

dt

∫

P
φ(x, t)dv =

∫

P1

(φ̇ + φ divv)dv +
∫

P2

(φ̇ + φ divv)dv

−
∫

S(t)
[[φ {(w − v) · n}]]da ,

(3.10.16)

where the jump operator [[φ]] is defined by

[[φ]] = φ2 − φ1 . (3.10.17)

In addition, w and n are the same on both sides of S(t)

w1 = w2 = w , n1 = n2 = n . (3.10.18)
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3.11 An Eulerian Formulation of Evolution Equations for
Elastic Deformations

Recall from (3.5.4) that the deformation gradient F from the reference configuration
satisfies the evolution equation

Ḟ = LF , (3.11.1)

where L is the velocity gradient. Also, recall that the total dilatation J and the
unimodular part F′ of F, both from the reference configuration, satisfy the evolution
equations (3.5.16) and (3.5.17), respectively

J̇ = J D · I , Ḟ′ = L′′F′ , (3.11.2)

where L′′ is the deviatoric part of L. To integrate these equations from an arbitrary
time t = t1 it is necessary to know the initial values

F(t1) , J (t1) = det F(t1) > 0 , F′(t1) , (3.11.3)

where the dependence on space has been suppressed for notational convenience.
These initial values depend on an arbitrary choice of the reference configuration,
with F(t1) depending explicitly on the choice of the orientation of the body in the
reference configuration.

Onat [4] discussed physical restrictions on internal state variables. This discus-
sion proposed that internal state variables, which are determined by integrating time
evolution equations, are specified to measure properties of the material response that
define the current state of the material. Moreover, since these evolution equations
need initial conditions, it is necessary that the values of the internal state variables be,
in principle, measurable directly or indirectly by experiments on multiple identical
samples of the material in its current state. Thus, all variables that define the current
material state must be characterized by internal state variables whose values in the
current state are measurable.

In this regard, it is noted that the reference configuration can be chosen to be
an arbitrary configuration which admits a one-to-one mapping between material
points in the reference configuration and the same material points in the current
configuration. This requires F to be nonsingular with det F > 0. For example, let
A be an arbitrary second-order tensor function of X only with positive determinant
detA > 0. It then follows that FA satisfies the evolution equation (3.11.1)

ḞA = L(FA) . (3.11.4)

However, since the choice of the reference configuration is arbitrary, it is not possible
to determine the value of FA in the current state from experiments on identical
samples of the material in its current state. This is true even if it is known that the
the material in the reference configuration is in a uniform stress-free material state,
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since FA in the reference state could have an arbitrary orientation described by three
arbitrary orientation angles of a proper orthogonal rotation tensor. This means that
F is not an internal state variable in the sense of Onat [4] and therefore should not
be used in constitutive equations, even for an elastic material. Similarly, the total
dilatation J = det F and the unimodular tensor F′ from the reference configuration
are also not internal state variables. However,F, J andF′ can be used to parameterize
the solution of a particular problem for which the initial value of F is specified.

The Eulerian formulation for the purely mechanical theory of a compressible
elastic material proposes an evolution equation for the elastic dilatation Je in the
form

J̇e = Je D · I . (3.11.5)

Since the constitutive equation for stress is restricted to be invertible (1.2.12), it
follows from (1.2.9) that Je is an internal state variable in the sense of Onat [4]
since it can be measured by experiments on identical samples of the material in the
current configuration. Moreover, the evolution equation (3.11.5) is considered to be
an Eulerian formulation of an evolution equation for the elastic dilatation Je since it
depends only on the current state of the material characterized by the values of Je
and D, which are measurable in the current state.

Anisotropic Elastic Solids
Following the work in [6] for elastically anisotropic materials, consider a triad of
linearly independentmicrostructural vectorsmi (i = 1, 2, 3) defined by the evolution
equations

ṁi = Lmi . (3.11.6)

From (3.5.19) it is clear thatmi deform like material line elements. Moreover, since
mi are linearly independent they can be defined so that they form a right-handed
triad with the elastic dilatation defined by (1.2.9)

Je = m1 × m2 · m3 > 0 . (3.11.7)

These vectors characterize both elastic deformations and rotations of material line
elements. In particular, the elastic deformations can be defined by the elastic metric

mi j = mi · m j = m ji , (3.11.8)

and the vectors mi can be specified so that they form an orthonormal triad in any
zero-stress material state with

mi j = δi j for any zero-stress material state . (3.11.9)

Moreover, using (3.11.6) it can be shown that the elastic metric satisfies the evolution
equation

ṁi j = 2(mi ⊗ m j ) · D . (3.11.10)



70 3 Kinematics

In contrast to the total deformation gradient F, which is not an internal state
variable, the microstructural vectors mi are internal state variables in the sense of
Onat [4]. Specifically, since the constitutive equation for stress is restricted to be
invertible (1.2.12), it follows that the values ofmi are measurable by experiments on
identical samples of a material in its current state (see the more detailed discussion
in Sect. 5.3).

As the material deforms, mi do not remain orthonormal. However, since mi are
linearly independent, their reciprocal vectors mi can be defined by

m1 = J−1
e m2 × m3 , m2 = J−1

e m3 × m1 , m3 = J−1
e m1 × m2 ,

J−1
e = m1 × m2 · m3 ,

(3.11.11)
which have the properties that

mi ⊗ mi = I . (3.11.12)

Then, taking the material derivative of Je in (3.11.7) and using the evolution equation
(3.11.6), the definitions (3.11.11) and the result (3.11.12), it follows that

J̇e = ṁ1 · m2 × m3 + ṁ2 · m3 × m1 + ṁ3 · m1 × m2 ,

= Jeṁi · mi = JeL · mi ⊗ mi = Je L · I = Je D · I ,
(3.11.13)

which proves that the specification (3.11.7) satisfies the evolution equation (3.11.5)
for elastic dilatation and the condition that Je = 1 in any zero-stress material state.

Next, using the work of Flory [1] it is possible to develop pure measures of elastic
distortional deformation. Specifically, the elastic distortional vectorsm′

i are defined
by

m′
i = J−1/3

e mi , m′
1 × m′

2 · m′
3 = 1 , (3.11.14)

which satisfy the evolution equations

ṁ′
i = L′′ m′

i , (3.11.15)

where L′′ is the deviatoric part of L. Also, the elastic distortional deformation metric
m ′

i j is defined by
m ′

i j = m′
i · m′

j = m ′
j i . (3.11.16)

This metric satisfies the evolution equation

ṁ ′
i j = 2m′

i ⊗ m′
j · D′′ = 2(m′

i ⊗ m′
j − 1

3
m ′

i j I) · D , (3.11.17)

where D′′ is the deviatoric part of D. In addition, the associated reciprocal vectors
mi ′ satisfy equations
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mi ′ = J 1/3
e mi , m1′ × m2′ · m3′ = 1 . (3.11.18)

Isotropic Elastic Solids
For isotropic elastic solids, it is not possible to distinguish between the three
microstructural vectors mi and it is convenient to introduce a symmetric, positive
deformation elastic deformation tensor Be defined by

Be = mi ⊗ mi , (3.11.19)

which with the help of (3.11.6) can be shown to satisfy the evolution equation

Ḃe = LBe + BeLT . (3.11.20)

Since the constitutive equation for stress is restricted to be invertible (1.2.4), it follows
that the value of Be is measurable by experiments on identical samples of a material
in its current state (see the more detailed discussion in Sect. 5.8). Consequently, Be

is an internal state variable in the sense of Onat [4].
Next, using the fact that (3.5.12) is valid for any nonsingular tensor, it follows

that ˙detBe = (detBe)B−1
e · Ḃe = 2(detBe)(D · I) , (3.11.21)

so that Je in (3.11.5) can be identified as

Je = (detBe)
1/2 . (3.11.22)

In addition, using the work of Flory [1] it is convenient to define the symmetric,
positive-definite, elastic distortional deformation tensor B′

e by

B′
e = J−2/3

e Be = m′
i ⊗ m′

i , (3.11.23)

which can be seen to be a unimodular tensor

detB′
e = det(J−2/3

e Be) = (J−2/3
e )3detBe = 1 ,

detB′
e = B′

em
1′ × B′

em
2′ · B′

em
3′

m1′ × m2′ · m3′ = m′
1 × m′

2 · m′
3 = 1 .

(3.11.24)

Moreover, using the evolution equations (3.11.15) it can be shown that B′
e satisfies

the evolution equation
Ḃ′
e = L′′B′

e + B′
eL

′′T , (3.11.25)

which with the help of (3.11.21) ensures that B′
e remains unimodular since

Ḃ′
e · B′

e
−1 = 0 . (3.11.26)
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Summary
For anisotropic response, the elastic deformations can be characterized by a right-
handed triad of linearly independent microstructural vectors mi , which satisfy the
evolution equations

ṁi = Lmi . (3.11.27)

Alternatively, the elastic deformations can be characterized by the elastic dilatation
Je and the elastic distortional deformation vectors m′

i , which satisfy the evolution
equations

J̇e = Je D · I , ṁ′
i = L′′ m′

i , (3.11.28)

where L′′ is the deviatoric part of L.
For isotropic response the elastic deformations can be characterized by the elastic

deformation tensor Be, which satisfies the evolution equation

Ḃe = LBe + BeLT , (3.11.29)

or, alternatively, by the elastic dilatation Je and the elastic distortional deformation
B′
e, which satisfy the evolution equations

J̇e = Je D · I , Ḃ′
e = L′′B′

e + B′
eL

′′T . (3.11.30)

Equations (3.11.27)–(3.11.30) represent Eulerian formulations of evolution equa-
tions because they depend only on quantities that can be determined in the current
state of the material.

Transformations Under SRBM
Under Superposed Rigid Body Motions SRBM the quantities mi ,mi j ,mi , Je,m′

i ,
m ′

i j ,m
i ′,Be and B′

e transform to m+
i ,m+

i j ,m
i+, J+

e ,m′+
i ,m ′+

i j ,m
i ′+,B+

e , and B′+
e ,

such that

m+
i = Qmi , m+

i j = mi j , mi+ = Qmi ,

J+
e = Je , m′+

i = Qm′
i , m ′+

i j = m ′
i j ,

mi ′+ = Qmi ′ , B+
e = QBeQT , B′+

e = QB′
eQ

T .

(3.11.31)

These transformation relations make the evolution equations form-invariant under
SRBM, so for examples (3.11.6) and (3.11.20) are consistent with the evolution
equations

ṁ+
i = L+ m+

i , Ḃ+
e = L+B+

e + B+
e L

+T , (3.11.32)

where under SRBM L transforms to L+.

Additional Eulerian Strain Measures
Using the condition (3.11.9) it is convenient to introduce elastic strains ei j measured
relative to zero-stress material states by
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ei j = 1

2
(mi j − δi j ) , (3.11.33)

which in view of (3.11.10) satisfy the evolution equations

ėi j = (mi ⊗ m j ) · D . (3.11.34)

Similarly, using the elastic distortional deformation (3.11.16), the elastic distortional
strains e′

i j relative to zero-stress material states are defined by

e′
i j = 1

2
(m ′

i j − δi j ) , (3.11.35)

which in view of (3.11.17) satisfy the evolution equations

ė′
i j = (m′

i ⊗ m′
j − 1

3
m ′

i j I) · D . (3.11.36)

In addition, for elastically isotropic response, the elastic distortional strain g′
e and

its deviatoric part g′′
e can be defined by

g′
e = 1

2
(B′

e − I) , g′′
e = 1

2
B′′
e , (3.11.37)

where B′′
e is the deviatoric part of B

′
e

B′′
e = B′

e − 1

3
(B′

e · I) I . (3.11.38)

3.12 Compatibility

Since the velocity gradientL is defined by the gradient of a velocity field v, it follows
that if v is continuously differentiable with respect to x then the total deformations
are compatible in the sense that a motion x̂(X, t) exists and the deformation gradient
F defined in (3.3.1c) is consistent with the value of F obtained by integrating the
evolution equation (3.5.4).

Within the context of the Eulerian formulation for anisotropic elastic solids, the
microstructural vectors mi obtained by integrating the evolution equations (3.11.6)
will also be compatible in the sense that amotion canbe characterizedby the invertible
mapping

x = x(θ i , t) , (3.12.1)

where θ i are convected coordinates. Moreover, since for the elastic case mi can be
identified as material line elements these convected coordinates can be defined so
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that

mi = ∂x
∂θ i

. (3.12.2)

For a continuously differentiable motion

∂2x
∂θ i∂θ j

= ∂2x
∂θ j∂θ i

, (3.12.3)

withmi satisfying the integrability conditions

∂mi

∂θ j
= ∂m j

∂θ i
. (3.12.4)

Now, expressing mi as functions of x, t and using the fact that

∂mi

∂θ j
= (∂mi/∂x)m j , (3.12.5)

it is convenient to define the three vectors ck by

ck = εki j (∂mi/∂x)m j . (3.12.6)

Then, for elastic response the integrability conditions (3.12.4) require

ck = 0 . (3.12.7)

For inelastic material response that will be discussed later, the vectorsmi will be
obtained by integrating evolution equations which include an inelastic deformation
rate, with mi still characterizing elastic deformations. For the general case when
L depends on x the total deformations and the inelastic deformation rate will be
inhomogeneous so the elastic deformations need not be compatible in the sense that
ck in (3.12.6) need not satisfy the compatibility conditions (3.12.7).

3.13 Strongly Objective, Robust Numerical Integration
Algorithms

Since the general equations of continuum mechanics are nonlinear, it is necessary to
use numerical methods to obtain solutions to challenging problems. Computational
mechanics is a field of mechanics that develops computational methods and applies
them to analyze fundamental and practical problems in continuum mechanics.

To this end, a numerical algorithm must be proposed to integrate the Eulerian
formulations of the evolution equations for the internal state variables, discussed in
the previous sections, over a typical time step that begins at time t = tn and ends at
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time t = tn+1, with time increment �t = tn+1 − tn . Specifically, given the values

mi (tn) , Je(tn) , m′
i (tn) , Be(tn) , B′

e(tn) (3.13.1)

of these internal state variables at the beginning of the time step, it is necessary to
develop a numerical algorithm to determine their values

mi (tn+1) , Je(tn+1) , m′
i (tn+1) , Be(tn+1) , B′

e(tn+1) (3.13.2)

at the end of the time step.
Following the work of Simo [12], it is convenient to introduce the relative defor-

mation gradient Fr (t) from the beginning of a time step, which satisfies the evolution
equation and initial condition

Ḟr = LFr , Fr (tn) = I . (3.13.3)

The associated relative dilatation Jr (t) from the beginning of the time step is defined
by

Jr = detFr , (3.13.4)

which with the help of (3.5.12) can be seen to satisfy the evolution equation and
initial condition

J̇r = JrF−T
r · Ḟr = Jr D · I , Jr (tn) = 1 . (3.13.5)

Also, the unimodular part F′
r of Fr is defined by

F′
r = J−1/3

r Fr , det F′
r = 1 , (3.13.6)

which satisfies the evolution equation and initial condition

Ḟ′
r = L′′ F′

r , F′
r (tn) = I , (3.13.7)

where L′′ is the deviatoric part of L.
These relative deformation quantities Jr ,Fr and F′

r are independent of arbitrary
choices of a reference configuration and therefore canused to integrateEulerian forms
of evolution equations for internal state variables that are themselves independent
of arbitrariness of the reference configuration. Also, under SRBM Jr ,Fr and F′

r
transform to J+

r ,F+
r and F′+

r according to the transformation relations

J+
r = Jr , F+

r = QFr F′+
r = QF′

r . (3.13.8)

Specifically, the elastic trial quantities
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m∗
i (t) = Fr (t)mi (tn) , J ∗

e (t) = Jr (t)Je(tn) ,

m′∗
i (t) = F′

r (t)m
′
i (tn) , B∗

e(t) = Fr (t)Be(tn)FT
r (t) ,

B′∗
e (t) = F′

r (t)B
′
e(tn)F

′T
r (t)

(3.13.9)

satisfy the evolution equations and initial conditions

ṁ∗
i = Lm∗

i , m∗
i (tn) = mi (tn) ,

J̇ ∗
e = J ∗

e D · I , J ∗
e (tn) = Je(tn) ,

ṁ′∗
i = L′′ m′∗

i , m′∗
i (tn) = m′

i (tn) .

Ḃ∗
e = LB∗

e + B∗
eL

T , B∗
e(tn) = Be(tn) ,

Ḃ′∗
e = L′′B′∗

e + B′∗
e L

′′T , B′∗
e (tn) = B′

e(tn) .

(3.13.10)

Also, for later reference it is noted that the deviatoric part B′′∗
e

B′′∗
e = B′∗

e − 1

3
(B′∗

e · I) I , (3.13.11)

of the elastic trial B′∗
e satisfies the evolution equation and initial condition

Ḃ′′∗
e = L′′B′∗

e + B′∗
e L

′′T − 2

3
(B′

e · D′′) I , B′′∗
e (tn) = B′′

e (tn) . (3.13.12)

Consequently, the elastic trial values (3.13.9) and (3.13.11) are exact solutions
of the evolution equations (3.11.6), (3.11.5), (3.11.15), (3.11.20), (3.11.25) and
(3.13.12), respectively. A fundamental feature of these elastic trial values is that
they satisfy the same transformation relations under SRBM as the exact values

m∗+
i = Qm∗

i , J ∗+
e = J ∗

e , m′∗+
i = Qm′∗

i ,

B∗+
e (t) = QB∗

eQ
T , B′∗+

e = QB′∗
e Q

T , B′′∗+
e = QB′′∗

e QT .
(3.13.13)

In particular, robust, strongly objective numerical algorithms can be developed using
these elastic trial values (e.g., [2, 3, 5, 7–10]).

Average Total Deformation Rate
Following the work in [11] the average deformation rate D̃ in a time step tn ≤ t ≤
tn+1 is expressed in the form

D̃ = 1

3
(D̃ · I) I + D̃′′ , (3.13.14)

where D̃′′ is the deviatoric part of D̃. Integration of the evolution equation (3.13.5)
for Jr yields an expression for the average total dilatational rate

D̃ · I = 1

�t
ln[Jr (tn+1)] . (3.13.15)
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To develop an expression for the average total distortional deformation rate tensor
D̃′′ it is convenient to define the unimodular relative deformation tensors

C′
r = F′T

r F′
r , B′

r = F′
rF

′T
r . (3.13.16)

Then, with the help of (3.13.7) it can be shown that

Ċ′
r = 2F′T

r D′′F′
r , D′′ = 1

2
F′−T
r Ċ′

rF
′−1
r , (3.13.17)

where D′′ is the deviatoric part of D. Moreover, since C′
r is unimodular, it follows

that
Ċ′

r · C′−1
r = 0 . (3.13.18)

This property is satisfied when the derivative Ċ′
r is approximated by

Ċ′
r ≈ 1

�t
[C′

r (tn+1) − { 3

C′−1
r (tn+1) · I } I] . (3.13.19)

Then, using the fact thatC′−1
r · I = B′−1

r · I, the average total distortional deformation
rate D̃′′ during the time step can be approximated by

D̃′′ = 1

2�t

[

I − { 3

B′−1
r (tn+1) · I }B

′−1
r (tn+1)

]

, (3.13.20)

with D̃ given by

D̃ = 1

3

1

�t
ln[Jr (tn+1)] I + 1

2�t

[

I − { 3

B′−1
r (tn+1) · I }B

′−1
r (tn+1)

]

. (3.13.21)

3.14 The Total Deformation Gradient Used to
Parameterize Specific Solutions

The objective of this section is to discuss differences between an elastic deformation
variable that characterizes material response and a total deformation measure which
is used to parameterize the solution of a particular problem for an elastic material.

Recall from Sect. 3.13 that the deformation gradient Fr (t) relative to the initial
configuration at t = 0 satisfies the evolution equation and initial condition (3.13.3)

Ḟr = LFr , Fr (0) = I , (3.14.1)
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where L is the velocity gradient. Also, the relative dilatation Jr and the unimodular
part F′

r of Fr , defined by (3.13.4) and (3.13.6)

Jr = detFr , F′
r = J−1/3

r Fr , (3.14.2)

satisfy the evolution equations and initial conditions (3.13.5) and (3.13.7)

J̇r = Jr D · I , Jr (0) = 1 ,

Ḟ′
r = L′′ F′

r , F′
r (0) = I ,

(3.14.3)

where L′′ is the deviatoic part of L.
It has been shown in Sect. 3.11 that the microstructural vectorsmi in the Eulerian

formulation are internal state variables in the sense of Onat [4], since their values are
measurable by experiments on identical samples of the material in its current state.
These vectors characterize elastic deformations and orientations of anisotropy and
satisfy the evolution equations (3.11.27)

ṁi = Lmi . (3.14.4)

It then follows that the elastic dilatation Je and the elastic distortional deformation
vectors m′

i , which satisfy the evolution equations (3.11.28)

J̇e = Je D · I , ṁ′
i = L′′ m′

i , (3.14.5)

are also internal state variables. Next, let mi (0), Je(0) and m′
i (0) be the measured

values of mi , Je and m′
i , respectively, in the initial configuration. Then, using Fr in

(3.14.1) and Jr and F′
r in (3.14.3), the evolution equations (3.14.4) and (3.14.5) can

be integrated to obtain

mi (t) = Fr (t)mi (0) , Je(t) = Jr (t)Je(0) , m′
i (t) = F′

r (t)m
′
i (0) . (3.14.6)

Next, recall from (3.5.4) that the total deformation gradient F from the reference
configuration satisfies the evolution equation

Ḟ = LF . (3.14.7)

Consequently, with the help ofFr in (3.14.1) the total deformation gradientF is given
by

F(t) = Fr (t)F(0) , (3.14.8)

where F(0) is the initial value of F. Furthermore, Fr can be written in the form

Fr (t) = F(t)F−1(0) = [F(t)A][F(0)A]−1 , detA > 0 , (3.14.9)



3.14 The Total Deformation Gradient Used to Parameterize Specific Solutions 79

where A is an arbitrary, time independent, second-order tensor with positive deter-
minant which can be a function of the position of material points. This expression
shows that the relative deformation tensor Fr is insensitive to arbitrariness of the
choice of the reference configuration for defining the total deformation gradient F.

For the solution of a particular problem, the initial configuration can be specified
to be the reference configuration with

F(t) = Fr (t) for F(0) = I , (3.14.10)

so that F or Fr can be used to parameterize the solution of a particular problem.
However, neither of these tensors can be used to determine themicrostructural vectors
mi (t), which determine elastic deformations and the orientation of directions of
anisotropy, without measuring mi (0) in the initial configuration.

In summary, although F or Fr can be used to parameterize the solution of a partic-
ular problem, they are not internal state variables and cannot be used by themselves
to characterize the material response of an elastic material.
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Chapter 4
Balance Laws for the Purely Mechanical
Theory

Abstract The objective of this chapter is to discuss the balance laws in the purely
mechanical theory. Specifically, the conservation of mass and the balances of linear
and angular momentum are presented in both global and local forms. The properties
of theCauchy stress tensor are derived and the rate ofmaterial dissipation is proposed.
Invariance under Superposed Rigid Body Motions (SRBM) is discussed along with
the development of the transformation relations for specific tensors. It is shown that
the local forms of the balance laws can be derived by using invariance under SRBMof
the rate of material dissipation and these transformation relations. Also, linearization
of the kinematic quantities and balance laws are discussed.

4.1 Conservation of Mass

The conservation of mass states that mass of a material region remains constant.
Since thematerial region P0 in the reference configuration ismapped into thematerial
region P in the current configuration, it follows that the conservation ofmass requires

∫
P

ρdv =
∫
P0

ρ0dV (4.1.1)

to be valid for every part P (or P0) of the body. In this equation, ρ(x, t) is the mass
density (mass per unit current volume) in the current configuration, ρ0(X) is the
reference value of the mass density (mass per unit reference volume) in the reference
configuration and dv and dV are the elemental volumes in the current and reference
configurations, respectively. Since P0 and ρ0 are independent of time, it follows that
the conservation of mass requires

d

dt

∫
P

ρdv = 0 . (4.1.2)

Equations (4.1.1) and (4.1.2) are called global equations because they are formu-
lated by integrating over a finite region of space. To derive the local form of (4.1.1),

© Springer Nature Switzerland AG 2021
M. B. Rubin, Continuum Mechanics with Eulerian Formulations of Constitutive
Equations, Solid Mechanics and Its Applications 265,
https://doi.org/10.1007/978-3-030-57776-6_4

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57776-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-57776-6_4


82 4 Balance Laws for the Purely Mechanical Theory

use is made of (3.3.21) to convert the integral over P to an integral over P0 to obtain

∫
P0

(ρ J − ρ0)dV = 0 . (4.1.3)

Now, assuming that the integrand in (4.1.3) is a continuous function of space and
assuming that (4.1.3) holds for all arbitrary parts P0 of the body and for all times,
and using the theorem proved in Appendix B, it follows that

ρ J = ρ0 (4.1.4)

must hold at every point of the body and for all time. The form (4.1.4) is the
Lagrangian representation of the local form of conservation of mass. It is considered
a local form because it holds at every point in the body.

Alternatively, use can be made of the transport theorem (3.10.4) to rewrite (4.1.2)
in the form ∫

P
(ρ̇ + ρ divv)dv = 0 . (4.1.5)

Now, assuming that the integrand in (4.1.5) is a continuous function of space and
assuming that (4.1.5) holds for all arbitrary parts P of the body and for all times, and
using the theorem proved in Appendix B, it follows that

ρ̇ + ρ divv = 0 (4.1.6)

must hold at every point of the body and for all time. The form (4.1.6) is the Eulerian
representation of the local form of conservation of mass. Moreover, using (3.5.3) the
conservation of mass can be rewritten in the form

d

dt
[ln ρ] = −divv = −D · I . (4.1.7)

For later convenience the transport theorem (3.10.4) is used with φ = ρ f to deduce
that

d

dt

∫
P

ρ f dv =
∫
P
(ρ̇ f + ρ f divv)dv = 0 =

∫
P
[ρ ḟ + (ρ̇ + ρ divv) f ]dv = 0 .

(4.1.8)
Thus, with the help of the local form of the conservation of mass (4.1.6), it follows
that this equation reduces to

d

dt

∫
P

ρ f dv =
∫
P

ρ ḟ dv = 0 . (4.1.9)

Letting dm = ρdv and using the fact that dm is conserved, this result can be rewritten
in the form
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d

dt

∫
P

ρ f dv = d

dt

∫
f dm =

∫
ḟ dm =

∫
P

ρ ḟ dv = 0 , (4.1.10)

which helps understand the result (4.1.9) that was proved in (4.1.8).
Next, recall the purely kinematical evolution equation (3.5.16) for the total dilata-

tion J
J̇ = J (D · I) , (4.1.11)

and rewrite the conservation of mass (4.1.7) in the form

d

dt
[ln(ρ J )] = 0 . (4.1.12)

This equation can be integrated using the values J = 1 and ρ = ρ0 in the reference
configuration to deduce that

J = ρ0

ρ
. (4.1.13)

Similarly, using the evolution equation (3.11.28) for the elastic dilatation Je

J̇e = Je(D · I) , (4.1.14)

the conservation of mass (4.1.7) can be rewritten in the form

d

dt
[ln(ρ Je)] = 0 , (4.1.15)

which can be integrated using the condition (1.2.5) that Je = 1 in any zero-stress
material state to deduce that

Je = ρz

ρ
, (4.1.16)

where ρz is the constant mass density of the purely mechanical elastic material in
any zero-stress material state.

Although the total dilatation J and the elastic dilatation Je satisfy the same forms
of evolution equations, J is not a state variable since its initial value is notmeasurable.
Specifically, J depends on arbitrariness of the reference configuration through the
associated arbitrariness of the value of ρ0. In contrast, Je is a state variable since
its initial value depends on the current value of the density ρ and on the zero-stress
density ρz , both of which are measurable. Therefore, the elastic dilatation Je will
be used as a state variable in constitutive equations that are discussed in the next
chapter.
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4.2 Balances of Linear and Angular Momentum

In the previous section, the conservation of mass equation was discussed, which
can be thought of as an equation to determine the mass density ρ. For the purely
mechanical theory it is necessary to add two additional balance laws called the
balances of linear and angular momentum.

Balance of Linear Momentum
In words, the balance of linear momentum states that the rate of change of the linear
momentum of an arbitrary part P of a body is equal to the total external force applied
to that part of the body. The total external force is due to two types of forces: body
forces which are applied to each point of the part P and surface tractions which are
applied to each point of the surface ∂P of P . The body force per unit mass is denoted
by the vector b and the surface traction (i.e., force per unit current area da) is denoted
by the traction vector t(n), which depends explicitly on the unit outward normal n
to the surface ∂P . Then, the global form of the balance of linear momentum can be
expressed as

d

dt

∫
P

ρvdv =
∫
P

ρbdv +
∫

∂P
t(n)da , (4.2.1)

where the velocity v is the linear momentum per unit mass.

Balance of Angular Momentum
In words, the balance of angular momentum states that the rate of change of the
angular momentum of an arbitrary part P of a body is equal to the total external
moment applied to that part of the body by the body forces and surface tractions.
In this statement the angular momentum and the moment are referred to the same
arbitrary but fixed (inertial) origin. Letting x be the position vector of an arbitrary
material point in P relative to the fixed origin, the global form of the balance of
angular momentum can be expressed as

d

dt

∫
P
x × ρvdv =

∫
P
x × ρbdv +

∫
∂P

x × t(n)da . (4.2.2)

4.3 Existence of the Stress Tensor

The procedure for proving the existence of theCauchy stress tensor is calledCauchy’s
theorem. For this theorem, consider an arbitrary part P of the body with closed
boundary ∂P and let P be divided by a material surface S into two parts P1 and P2
with closed boundaries ∂P1 and ∂P2, respectively. Furthermore, let the intersection
of ∂P1 with ∂P , be denoted by ∂P ′ and the intersection of ∂P2 with ∂P be denoted
by ∂P ′′ (see Fig. 4.2). Mathematically, this separation is summarized by
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Fig. 4.1 Parts P1 and P2 of
an arbitrary part P of a body

P'

P

S

S
P''

P

n

1

2

P = P1 ∪ P2 , ∂P ′ = ∂P1 ∩ ∂P , ∂P ′′ = ∂P2 ∩ ∂P ,

∂P = ∂P ′ ∪ P ′′ , ∂P1 = ∂P ′ ∪ S , ∂P2 = ∂P ′′ ∪ S .
(4.3.1)

Also, let n be the unit normal to the surface s measured outward from the part P1
(see Fig. 4.1).

Now recall that the balance of linearmomentum is assumed to apply to an arbitrary
material part of the body so its application to the parts P , P1 and P2 yields

d

dt

∫
P

ρvdv −
∫
P

ρbdv −
∫

∂P
t(n)da = 0 ,

d

dt

∫
P1

ρvdv −
∫
P1

ρbdv −
∫

∂P1

t(n)da = 0 ,

d

dt

∫
P2

ρvdv −
∫
P2

ρbdv −
∫

∂P2

t(n)da = 0 ,

(4.3.2)

wheren in these equations is considered to be the unit outward normal to the boundary
of each part and should not be confused with the specific definition of n associated
with the surface S. Since the regions P, P1 and P2 are material and since the local
form (4.1.6) of the conservation of mass is assumed to hold in each of these parts,
the result (4.1.9) can be used to deduce that

d

dt

∫
P

ρvdv =
∫
P

ρv̇dv =
∫
P1

ρv̇dv +
∫
P2

ρv̇dv ,

d

dt

∫
P1

ρvdv =
∫
P1

ρv̇dv ,
d

dt

∫
P2

ρvdv =
∫
P2

ρv̇dv .

(4.3.3)

Also, using (4.3.1), it follows that
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∫
P

ρbdv =
∫
P1

ρbdv +
∫
P2

ρbdv ,

∫
∂P

t(n)da =
∫

∂P ′
t(n)da +

∫
∂P ′′

t(n)da ,

∫
∂P1

t(n)da =
∫

∂P ′
t(n)da +

∫
S
t(n)da ,

∫
∂P2

t(n)da =
∫

∂P ′′
t(n)da +

∫
S
t(−n)da ,

(4.3.4)

where it is noted that the unit outward normal to S associated the boundary of P2 is
(−n). Thus, with the help of (4.3.3) and (4.3.4), Eq. (4.3.2) can be rewritten in the
forms

[ ∫
P1

ρv̇dv −
∫
P1

ρbdv −
∫

∂P ′
t(n)da

]

+
[ ∫

P2

ρv̇dv −
∫
P2

ρbdv −
∫

∂P ′′
t(n)da

]
= 0 , (4.3.5a)

[ ∫
P1

ρv̇dv −
∫
P1

ρbdv −
∫

∂P ′
t(n)da −

∫
S
t(n)da

]
= 0 , (4.3.5b)

[ ∫
P2

ρv̇dv −
∫
P2

ρbdv −
∫

∂P ′′
t(n)da −

∫
S
t(−n)da

]
= 0 . (4.3.5c)

Next, (4.3.5b) and (4.3.5c) can be subtracted from (4.3.5a) to deduce that

∫
S
[t(n) + t(−n)]da = 0 . (4.3.6)

Since (4.3.6) must hold for arbitrary material surfaces S and assuming that the inte-
grand is a continuous function of points on S, it follows by a generalization of the
result developed in Appendix B that

t(−n) = −t(n) (4.3.7)

must hold for all points on S and all times. Note that this result, which is called
Cauchy’s lemma, is the analogue of Newton’s law of action and reaction because it
states that the traction vector applied by part P2 on part P1 is equal in magnitude and
opposite in direction to the traction vector applied by part P1 on part P2 at a material
point on their common boundary S.

In general, the traction vector (or traction vector) t is a function of position x,
time t , and the unit outward normal n to the surface on which it is applied

t = t(x, t;n) . (4.3.8)
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Fig. 4.2 An elemental
tetrahedron

The state of stress at a point x and at time t must be determined by the infinite
number of traction vectors obtained by considering all possible orientations n of
planes passing through x at time t . However, it is not necessary to consider all possible
orientations. To verify this statement, it is noted that the simplest polyhedron is a
tetrahedron with four faces and that any three-dimensional region of space can be
approximated to anyfinite degree of accuracy using a finite collection of tetrahedrons.
Therefore, by analyzing the state of stress in a simple tetrahedron it is possible to
analyze the stress at a point in an arbitrary body.

To this end, consider the tetrahedron with three faces that are perpendicular to
the Cartesian base vectors ei , and whose fourth face is defined by the unit outward
normal vector n (see Fig. 4.2). Specifically, let the vertex D (Fig. 4.2) be located at
an arbitrary material point in the part P of the body, the surfaces perpendicular to
ei have surface areas Si , respectively, and the slanted surface whose normal is n has
surface area S. Denoting xAD, xBD and xCD as the vectors from the vertex D to the
vertices A, B and C , respectively, it follows by vector algebra that

2 Sn = (xBD − xAD) × (xCD − xAD) ,

2 Sn = (xBD × xCD) + (xCD × xAD) + (xAD × xBD) ,

2 Sn = 2 S1e1 + 2 S2e2 + 2 S3e3 ,

(4.3.9)

so the areas Sj are related to S and n by the formula

Sj = e j · Sn = Sn j , (4.3.10)

where n j = n · e j are the Cartesian components of n. Also, the volume of the tetra-
hedron is given by

Vtet = 1

6
(xBD − xAD) × (xCD − xAD) · xCD = 1

6
(2 Sn) · xCD = 1

3
Sh , (4.3.11)
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where use has been made of (4.3.9). In (4.3.11) S is the area of the slanted side ABC
of the tetrahedron and h = xCD · n is the height of the tetrahedron measured normal
to the slanted side.

Now, with the help of the result (4.1.9), the balance of linear momentum (4.2.1)
can be written in the form

∫
P

ρ(v̇ − b)dv =
∫

∂P
t(n)da . (4.3.12)

Then, taking P to be the region of the tetrahedron, this balance of linear momentum
becomes ∫

P
ρ(v̇ − b)dv =

∫
S
t(n)da +

3∑
j=1

∫
Sj

t(−e j )da . (4.3.13)

However, by Cauchy’s lemma (4.3.7) yields

t(−e j ) = −t(e j ) . (4.3.14)

Next, defining the three vectors T j to be the traction vectors applied to the surfaces
whose outward normals are e j

T j = t(e j ) , (4.3.15)

and equation (4.3.13) becomes

∫
P

ρ(v̇ − b)dv =
∫
S
t(n)da −

3∑
j=1

∫
Sj

T j da . (4.3.16)

Assuming that the term ρ(v̇ − b) is bounded and recalling that

∣∣
∫
P
f dv

∣∣ ≤
∫
P

| f |dv , (4.3.17)

it follows that there exists a positive constant K such that

∣∣
∫
P

ρ(v̇ − b)dv
∣∣ ≤

∫
P

|ρ(v̇ − b)|dv ≤
∫
P
Kdv = K

∫
P
dv = K

1

3
Sh . (4.3.18)

Furthermore, assuming that the traction vector is a continuous function of the position
x and the normal n, the mean value theorem for integrals states that there exist points
on the surfaces S, Sj for which the values t∗(n) and T∗

j of the quantities t(n) and T j ,
respectively, evaluated at these points are related to the integrals of the quantities by
the expressions
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∫
S
t(n)da = t∗(n)S ,

3∑
j=1

∫
Sj

T j da = T∗
j S j = T∗

j n j S , (4.3.19)

where use has been made of the result (4.3.10). Then, with the help of (4.3.13) and
(4.3.19), Eq. (4.3.18) yields

∣∣t∗(n) − T∗
j n j

∣∣ ≤ 1

3
Kh , (4.3.20)

where the result has been divided by the positive area S. Now, considering the set
of similar tetrahedrons with the same vertex D and with diminishing heights h, it
follows that in the limit that h approaches zero

t∗(n) = T∗
j n j . (4.3.21)

However, in this limit all functions are evaluated at the same point x so the star
notation can be surpressed to deduce that

t(n) = T j n j . (4.3.22)

Also, since xwas an arbitrary point in the above argument, it follows that this equation
must hold for all points x, all normals n and all times.

In words, the result (4.3.22) states that the traction vector on an arbitrary surface
can be expressed as a linear combination of the traction vectors applied to the surfaces
whose unit normals are in the coordinate directions e j and that the coefficients are
the components of the normal n in the directions e j . Notice that by introducing the
definition

T = T j ⊗ e j , (4.3.23)

equation (4.3.15) and the expression (4.3.22) for the traction vector (or stress vector)
can be written in the alternative forms

T j = Te j , t(n) = Tn . (4.3.24)

It follows from (4.3.24) that since T transforms an arbitrary vector n into a vector
t, T must be a second-order tensor. This tensor T is called the Cauchy stress tensor
and its Cartesian components Ti j are given by

Ti j = T · (e j ⊗ e j ) = ei · T j , (4.3.25)

so the component form of (4.3.24) becomes

ti = Ti j n j , (4.3.26)
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Fig. 4.3 Components of the stress tensor

where ti are the Cartesian components of t. Furthermore, in view of (4.3.15), it
follows that components Ti j of T j are the components of the traction vectors on the
surfaces whose outward normals are e j (see Fig. 4.3) and that the first index i of Ti j
refers to the direction of the component of the traction vector and the second index
j of Ti j refers to the plane on which the traction vector acts.

The existence of the Cauchy stress tensor T and the linear relationship (4.3.24)
between the traction vector t and the unit normal n is called Cauchy’s theorem. It is
important to emphasize that the Cauchy stress tensor T(x, t) is a function of position
x and time t and in particular is independent of the normal n. Therefore the state of
stress at a point is characterized by the stress tensorT. On the other hand, the traction
vector t(x, t;n) includes explicit dependence on the normal n and characterizes the
force per unit present area acting on the particular plane defined by n that passes
through the point x at time t .

The traction vector t on any surface can be separated into a component tn normal
to the surface and a component ts parallel to the surface, such that

t = tn + ts , tn = σn , ts = τ s , (4.3.27)

where the normal stress σ , the magnitude τ of the shearing component and the
shearing direction s are defined by

σ = t · n , τ = |ts | = (t · t − σ 2)1/2 ,

s = ts
τ

= t−σn
τ

, s · s = 1 .
(4.3.28)
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It is important to note that σ and τ are functions of the state of the material through
the value of the stress tensor T at the point of interest and are functions of the normal
n to the plane of interest.

Sometimes a failure criterion for a brittle material is formulated in terms of a
critical value of tensile stress whereas a failure criterion (like the Tresca condition)
for a metal is formulated in terms of a critical value of the shear stress. Consequently,
it is natural to determine the maximum values of the normal stress σ and the shear
stress τ . It will be shown in the next section that the stress tensorTmust be symmetric.
Here, it is convenient to use the symmetry of T to rewrite terms in Eq. (4.3.28) in the
forms

σ = T · (n ⊗ n) , τ 2 = T2 · (n ⊗ n) − σ 2 . (4.3.29)

Then, it is necessary to search for critical values of σ and τ as functions n. However,
it is important to remember that the components of n are not independent because n
must be a unit vector

n · n = 1 . (4.3.30)

Appendix C reviews the method of Lagrange Multipliers, which is used to deter-
mine critical values of functions subject to constraints, and Appendix D determines
the critical values of σ and τ . In particular, it is recalled that the critical values of
σ occur on the planes whose normals are parallel to the principal directions of the
stress tensor T. Also, letting σ1, σ2 and σ3 be the ordered principal values of T and
p1,p2 and p3 be the associated orthonormal vectors in the principal directions of T

Tp1 = σ1p1 , Tp2 = σ2p2 , Tp3 = σ3p3 , σ1 ≥ σ2 ≥ σ3 , (4.3.31)

it can be shown that σ is bounded by the values σ1 and σ3

σ1 ≥ σ ≥ σ3 . (4.3.32)

Therefore, the maximum value of tensile stress σ equals σ1 and it occurs on the
plane whose normal is in the direction p1. Moreover, it can be shown that the traction
vector acting on this critical plane has no shearing component

t = σ1n , σ = σ1 , τ = 0 for n = ±p1 . (4.3.33)

In Appendix D it is also shown that the maximum shear stress τmax occurs on a
plane which bisects the planes defined by the plane of maximum tensile stress σ1

with normal p1 and the plane of minimum tensile stress σ3 with normal p3, such that

σ = 1

2
(σ1 + σ3) , τmax = 1

2
(σ1 − σ3) for n = ± 1√

2
(p1 ± p3) . (4.3.34)

Notice that on this plane the normal stress σ does not necessarily vanish so the
traction vector t does not apply a pure shear stress on the plane where τ is maximum.
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4.4 Local Forms of the Balance Laws

Assuming sufficient continuity and using the local form of conservation of mass
(4.1.6) together with the result (4.1.9), it follows that

d

dt

∫
P

ρvdv =
∫
P

ρv̇dv ,

d

dt

∫
P
x × ρvdv =

∫
P

ρ ˙x × v dv =
∫
P
x × ρv̇dv .

(4.4.1)

Also, using the relationship (4.3.24) between the traction vector t, the stress tensor
T and the unit normal n together with the divergence theorem (2.5.10) yields

∫
∂P

tda =
∫

∂P
Tnda =

∫
P
divTdv ,

∫
∂P

x × tda =
∫

∂P
x × Tnda =

∫
P
div(x × T)dv ,

∫
∂P

x × tda =
∫
P
(e j × T j + x × divT)dv ,

(4.4.2)

where (2.5.4) and (4.3.24) have been used to deduce that

div(x × T) = (x × T), j · e j = (x, j ×T + x × T, j ) · e j ,
div(x × T) = e j × Te j + x × (T, j · e j ) = e j × Te j + x × divT .

(4.4.3)

Now, the balance of linear momentum (4.2.1) can be rewritten in the form

∫
∂P

(ρv̇ − ρb − divT)dv = 0 . (4.4.4)

Assuming that the integrand in (4.4.4) is a continuous function and that (4.4.4) must
hold for arbitrary regions P , it follows from the results of Appendix B that

ρv̇ = ρb + divT (4.4.5)

must hold for each point of P and for all time. Letting vi , bi and Ti j be the Cartesian
components of v,b and T, respectively, the component form of balance of linear
momentum becomes

ρv̇i = ρbi + Ti j , j . (4.4.6)

Similarly, the balance of angular momentum (4.2.2) can be rewritten in the form

∫
∂P

[x × (ρv̇ − ρb − divT) − e j × T j ]dv = 0 . (4.4.7)
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Assuming that the integrand in (4.4.7) is a continuous function, using the local form
(4.4.5) of balance of linear momentum and assuming that (4.4.7) must hold for
arbitrary regions P , it follows from the results of Appendix B that

e j × T j = 0 (4.4.8)

must hold for each point of P and for all time. Then, using (2.4.19) and (4.3.24) this
equation can be rewritten in the form

e j × Te j = ε · (e j ⊗ Te j ) = ε · (e j ⊗ e jTT ) = ε · (I TT ) = ε · TT . (4.4.9)

Since ε is skew-symmetric in any two of its indices, it follows that the local form of
angular momentum requires the stress tensor to be symmetric

TT = T , Tji = Ti j . (4.4.10)

4.5 Rate of Material Dissipation

Within the context of the purely mechanical theory, it is possible to define the rate
of material dissipation D per unit current volume by the equation

∫
P
Ddv = W − K̇ − U̇ ≥ 0 , (4.5.1)

where the rate of work W done on the body, the kinetic energy K , the total strain
energy U are defined by

W =
∫
P

ρb · vdv +
∫

∂P
t · vda , K =

∫
P

1

2
ρv · vdv , U =

∫
P

ρ�dv ,

(4.5.2)
and � is the strain energy function per unit mass. From these expressions it can be
seen thatDmeasures the rate of work done on the body which is not stored in kinetic
or strain energy. When D is positive this excess rate of work is dissipative. Next,
using the divergence theorem (2.5.10) and (4.3.24), the rate of work can be expressed
in the form

W =
∫
P
[(ρb + divT) · v + T · L]dv . (4.5.3)

Also, using (4.1.8) the rates of change of the kinetic and strain energies are given by

K̇ =
∫
P
[ρv̇ · v + 1

2
(ρ̇ + ρ divv)(v · v)]dv , U̇ =

∫
P
[ρ�̇dv + (ρ̇ + ρ divv)�]dv , (4.5.4)
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so that (4.5.1) can be rewritten as

∫
P
[D − (ρb + divT − ρv̇) · v − T · L + ρ�̇ − (ρ̇ + ρ divv)(

1

2
v · v + �)]dv = 0 .

(4.5.5)
Then, assuming that this equation is valid for all parts P of the body and that the
integrand is a continuous function, it follows that

D = T · L − ρ�̇ + (ρb + divT − ρv̇) · v − (ρ̇ + ρ divv)(
1

2
v · v + �) (4.5.6)

must hold at each point in P and for all time. Moreover, using the local forms (4.1.6)
and (4.4.5) and (4.4.10) of the conservation of mass and the balances of linear and
angular momentum, respectively, the rate of material dissipation requires

D = T · D − ρ�̇ ≥ 0 . (4.5.7)

4.6 Referential Forms of the Equations of Motion

In the previous sections the traction vector t has been defined as the force per unit area
in the current configuration. This leads to a definition of stress which is sometimes
referred to as the true stress. Alternatively, since thematerial surface ∂P in the current
configuration maps to the material surface ∂P0 in the reference configuration, it is
possible to define the Piola-Kirchhoff traction vector π as the force acting in the
current configuration but measured per unit area in the reference configuration. This
leads to a definition of stress which is sometimes referred to as engineering stress.

Recalling that the traction vector t depends on position x, time t , and the unit
outward normal n to the surface ∂P , it follows that the traction vector π depends
on position X, time t , and the unit outward normal N to the surface ∂P0. Thus, the
force acting in the current configuration on an arbitrary material part S of the present
surface ∂P or the associated material part S0 of the reference surface ∂P0 of the body
can be expressed in the equivalent forms

∫
S
t(n)da =

∫
S0

π(N)d A , (4.6.1)

where d A is the element of area in the reference configuration. Similarly, the quanti-
ties v,b, x × v and x × b, respectively, represent the linear momentum, body force,
angular momentum and moment of body force per unit mass. Therefore, since ρ0 is
the reference mass density (i.e., mass per unit reference volume), it follows that
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∫
P

ρvdv =
∫
P0

ρ0vdV ,

∫
P

ρbdv =
∫
P0

ρ0bdV ,

∫
P
x × ρvdv =

∫
P0

x × ρ0vdV ,

∫
P
x × ρbdv =

∫
P0

x × ρ0bdV ,

(4.6.2)

where dV is the element of volume in the reference configuration.
Then,with the help of the results (4.6.1) and (4.6.2), the balances of linearmomen-

tum (4.2.1) and angular momentum (4.2.2) can be rewritten in the forms

d

dt

∫
P0

ρvdV =
∫
P0

ρ0bdV +
∫

∂P0

π(N)d A ,

d

dt

∫
P0

x × ρvdV =
∫
P0

x × ρ0bdV +
∫

∂P0

x × π(N)d A .

(4.6.3)

Following similar arguments to those in Sect. 4.3, it can be proved that the traction
vector π(N) is a linear function of N which can be represented in the form

π(X, t;N) = �(X, t)N , πi (X, t; NA) = 	(X, t)NA , � = 	i Aei ⊗ eA ,

(4.6.4)
where πi are the components of π , and �, with components 	i A, is a second-order
tensor called the first Piola-Kirchhoff stress tensor.

With the help of (4.6.4) the local form of balance of linear momentum becomes

ρ0v̇ = ρ0b + Div� , ρ0v̇i = ρ0bi + 	i A,A , (4.6.5)

where Div denotes the divergence with respect to X and (,A ) denotes partial dif-
ferentiation with respect to XA. To obtain the local form of angular momentum,
consider

Div(x × �) = (x × �),A · eA = (x,A ×�) · eA + x × (�,A · eA)
= (FeA) × (�eA) + x × (Div�) .

(4.6.6)

Thus, with the help of (4.6.5) the local form of the balance of angular momentum
yields

(FeA) × (�eA) = 0 . (4.6.7)

Next, using (2.4.19) this equation can be written in the form

0 = (FeA) × (�eA) = ε · (FeA ⊗ �eA) = ε · (FeA ⊗ eA�T ) = ε · (F I�T ) ,
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ε · (F�T ) = 0 . (4.6.8)

Thus, since ε is skew-symmetric in any two of its indices, it follows that the tensor
F�T must be symmetric

F�T = (F�T )T = �FT , Fi A	 j A = 	i AFj A . (4.6.9)

Thismeans that the first Piola-Kirchhoff stress tensor� is not necessarily symmetric.

Since the traction vector t is related to the Cauchy stress T by the formula t(n) =
Tn and since Eq. (4.6.1) relates the force acting on the material part S of the surface
∂P to the force acting on the material part S0 of the surface ∂P0, it should be possible
to relate the Cauchy stress T to the first Piola-Kirchhoff stress �. To this end, use is
made of Nanson’s formula (3.3.35) to deduce that

π(N)d A = �Nd A = J−1�FTnda , (4.6.10)

so that (4.6.1) can be rewritten in the form

∫
S
(T − J−1�FT )nda = 0 . (4.6.11)

Assuming that the integrand is continuous and that S is arbitrary, it follows that

(T − J−1�FT )n = 0 (4.6.12)

at each point on S. However, since the tensor in the brackets is independent of the
normal n, and n is arbitrary, the Cauchy stress tensor T must be related to the first
Piola-Kirchhoff stress tensor � by

T = J−1�FT , Ti j = J−1	i B Fj B . (4.6.13)

Notice that (4.6.9) and (4.6.13) ensure that the Cauchy stress T is symmetric, which
is the same result that was obtained from the balance of angular momentum referred
to the current configuration.

The first Piola-Kirchhoff stress �, with components 	i A, is a two-point tensor
referred to both the current configuration and the reference configuration and it is also
called the nonsymmetric Piola-Kirchhoff stress tensor. Sometimes it is convenient to
introduce the second Piola-Kirchhoff stress tensor S, with components SAB , which
is referred to the reference configuration only and is defined by

� = FS , 	i B = Fi ASAB . (4.6.14)

It then follows from (4.6.9) that S is a symmetric tensor
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ST = S , SBA = SAB . (4.6.15)

For this reasonS is also called the symmetric Piola-Kirchhoff stress tensor.Moreover,
it is noted from (4.6.13) and (4.6.14) that the Cauchy stress T is related to S by the
formula

T = J−1FSFT , Ti j = J−1Fi ASAB Fj B . (4.6.16)

Furthermore, recall that the Cauchy stress T can be separated into its spherical
part −pI and its deviatoric part T′′, such that

T = −p I + T′′ , p = −1

3
T · I , T′′ · I = 0 , (4.6.17)

where p denotes the pressure. It follows from (4.6.16) and (4.6.17) that the symmetric
Piola-Kirchhoff stress S admits an analogous separation

S = JF−1TF−T , S = −pC−1 + S′ ,
p = − 1

3 J
−1S · C , S′ = JF−1T′′F−T , S′ · C = 0 .

(4.6.18)

It is important to emphasize that although T′′ is a deviatoric tensor, the associated
quantity S′ is not a standard deviatoric tensor. Instead, S′ is orthogonal toC and not I.
In addition, using (3.5.5), (4.1.4) and (4.6.16), the rate of material dissipation (4.5.7)
requires

JD = 2S · Ċ − ρ0�̇ ≥ 0 . (4.6.19)

Since the Cauchy stress T is a measure of the force per unit present area it is
referred to as the true stress. Also, since the Piola-Kirchhoff stress� is a measure of
the force per unit reference area it is referred to as the engineering stress. The notion of
true stress somehow infers that it is the correct stress. However, a failure criterion for
some materials might be more physical using the Cauchy stress T whereas a failure
criterion for other materials might be more physical using the Piola-Kirchhoff stress
�.

For example, to determine the value of uniaxial stress when ametal bar breaks it is
reasonable to attempt to determine the force required to break atomic bonds and the
number of atomic bonds that need to be broken to fracture the bar. In this regard, it is
noted that plasticity in metal is characterized by dislocations that move through the
atomic lattice. Since the elastic distortions required for these dislocations tomove are
small, the angles and lengths of the atomic lattice remain relatively constant during
plastic flow. Consequently, the current area of the necked cross section of the bar
when it breaks can be used to estimate the number of atomic bonds that are breaking.
This means that the Cauchy stress, which depends on the current deformed cross-
sectional area of the bar, might be a more physical measure of the stress needed to
break a metal bar.
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Alternatively, consider a bar made of a polymer with long coiled polymer chains.
To estimate the stress when the bar breaks in uniaxial stress it is necessary to deter-
mine the force required to break a polymer chain as well as the number of chains
that are being broken. Since the polymer chains are typically coiled, the effective
cross-sectional area of the chain decreases as it is stretc.hed and the coils straighten.
This means that the deformed cross section of the bar contains about the same num-
ber of polymer chains as it did when the chains were coiled and unstretc.hed in a
zero-stress reference configuration. Consequently, it might be more physical to use
the first Piola-Kirchhoff stress � to formulate a failure criterion for a polymer bar.

4.7 Invariance Under Superposed Rigid Body Motions
(SRBM)

As motivation, consider the simple case of a nonlinear massless elastic spring. Let
one end of the spring be attached to a fixed point in a room and attach a ball withmass
on the other end. When the ball is thrown in the room it can bounce off the walls.
During this motion the force f applied by the spring on the ball remains parallel to the
changing orientation of the spring and its tension depends only on the extension of the
spring relative to its zero-stress length. In particular, this tension does not depend on
the orientation of the spring. This section uses the kinematics of SRBM discussed in
Sect. 3.8 to develop restrictions on constitutive equations which generalize the notion
that the constitutive response of the spring relative to its orientation is insensitive to
SRBM. Specifically, the force f in the spring rotates with the changing orientation
of the spring and the tension in the spring depends only on the deformation of the
spring.

From Sect. 3.8 it is recalled that under SRBM the point x in the current con-
figuration at time t moves to the point x+ in the superposed configuration at time
t+ = t + c such that x+ and x are related by the mapping

x+ = c(t) + Q(t)x , QQT = I , detQ = +1 , (4.7.1)

where c is a vector, andQ is a second-order proper orthogonal tensor, both functions
of time only, and c is a constant time shift. Furthermore, it is recalled from Sect. 3.8
that the mapping (4.7.1) was used to derive a number of expressions for the values
of various kinematic quantities associated with the superposed configuration P+. In
this section, expressions will be developed for the superposed values of a number of
kinetic quantities that include: the mass density ρ, the traction vector t, the Cauchy
stress tensor T, and the body force b. Specifically, expressions will be developed for

( ρ+, t+,T+,b+ ) . (4.7.2)
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Following the work in [1], the notion of invariance under SRBM is based on the
following two restrictions

(R-1): The balance laws must be form-invariant under SRBM, (4.7.3a)

(R-2): The constitutive response of the material relative to its orientation

is the same for all SRBM. (4.7.3b)

The first restriction (R-1) requires the balance laws in the superposed configuration
with a superscript ( )+ added to each variable to be valid for all SRBM and the second
restriction (R-2) states in what sense the constitutive responses of a material under
SRBM are equivalent.

Specifically, (R-1) requires the global forms of the balance laws to be form-
invariant in the superposed configuration P+ with all kinematic and kinetic quanti-
ties taking their superposed values in P+. Therefore, the conservation of mass and
balances of linear and angular momentum can be stated relative to P+ in the forms

d

dt

∫
P+

ρ+dv+ = 0 , (4.7.4a)

d

dt

∫
P+

ρ+v+dv+ =
∫
P+

ρ+b+dv+ +
∫

∂P+
t+da+ , (4.7.4b)

d

dt

∫
P+

x+ × ρ+v+dv+ =
∫
P+

x+ × ρ+b+dv+ +
∫

∂P+
x+ × t+da+ , (4.7.4c)

where ∂P+ is the closed boundary of P+, with unit outward normal n+ and the time
derivative with respect to t+ has been replaced by the time derivative with respect
to t since t+ = t + c and c is constant. Using the arguments in Sect. 4.3 it can be
shown that a Cauchy tensor T+ exists which is a function of position and time only,
such that

t+ = T+n+ . (4.7.5)

Then, with the help of the divergence theorem (2.5.10) and the transport theorem
(4.1.9), the local forms of the conservation of mass (4.7.4a) and the balance laws
(4.7.4b) and (4.7.4c) can be written as

d

dt
[ln ρ+] = −(D+ · I) , ρ+v̇+ = ρ+b+ + div+T+ , T+T = T+ , (4.7.6)

where div+ denotes the divergence operation with respect to x+ and use has been
made of (4.1.7).

Next, with the help of the conservation of mass (4.1.7) and the transformation
relation (3.8.24) for D

d

dt
[ln ρ] = −D · I , D+ = QDQT , (4.7.7)
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it follows that
d

dt

[
ln(

ρ+

ρ
)
] = D · I − D+ · I = 0 . (4.7.8)

Since this equation is valid for all SRBM it can be integrated for the trivial superposed
motion with x+ = x to deduce that

ρ+ = ρ . (4.7.9)

Next, with the help of (2.5.4) and (4.7.1) it can be shown that

div+T+ = (∂T+/∂x+) · I = (∂T+/∂x)(∂x/∂x+) · I = (∂T+/∂x)QT · I ,

div+T+ = div(T+Q) , QdivT = div(QT) .

(4.7.10)
It then follows that the balance of linear momentum in (4.7.6)2 can be solved for the
body force b+ to obtain

b+ = v̇+ − 1

ρ
div(T+Q) . (4.7.11)

Moreover, the balance of linear momentum in the current configuration yields an
expression for the body force given by

b = v̇ − 1

ρ
div(T) . (4.7.12)

Now, taking the juxtaposition of Q on the left-hand side of (4.7.12) and subtracting
the result from (4.7.11) yields

b+ = v̇+ + Q(b − v̇) − 1

ρ
div(T+Q − QT) . (4.7.13)

In this regard, it is noted that the restriction (R-1) tacitly assumes that the balance of
linear momentum is valid for any specified body force. Consequently, it is also valid
for the body force (4.7.13), which enforces SRBM.

Since the traction vector t characterizes the constitutive response of the material
and the unit outward normal vectorn rotateswith thematerial under SRBM, it follows
that the restriction (R-2) in (4.7.3b) requires1

t+ · n+ = t · n (4.7.14)

to be valid for all material points, all unit normals n and all SRBM. Now, using
Cauchy’s theorem (4.3.24) for the current configuration, (4.7.5) for the superposed
configuration and the kinematic result (3.8.20) that n rotates under SRBM

1This proposal was presented in a class that I took from Prof. P.M. Naghdi in the fall of 1973.
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n+ = Qn , (4.7.15)

the expression (4.7.14) can be rewritten in the form

(T+ − QTQT ) · n+ ⊗ n+ = 0 . (4.7.16)

Since the coefficient in the brackets is symmetric and independent of n+ and since
n+ is an arbitrary unit vector, the Cauchy stress tensor must satisfy the restriction
that

T+ = QTQT , (4.7.17)

is valid for all SRBM.This transformation relation automatically satisfies the reduced
form (4.7.6) of the balance of angular momentum when T satisfies the reduced form
(4.4.10) of the balance of angular momentum. Moreover, it follows from (4.7.5),
(4.7.15) and (4.7.17) that under SRBM the traction vector transforms by

t+ = Qt . (4.7.18)

Furthermore, from (4.7.17) and (4.7.18) it can be shown that

t+ · t+ = t · t , T+ · T+ = T · T , (4.7.19)

which means that the magnitudes of the traction vector and the Cauchy stress tensor
remain unchanged by SRBM. Consequently, the traction vector and stress tensor,
which characterize the response of the material, are merely rotated by SRBM.

Also, using (4.7.17) the expression (4.7.13) for the body force b+ reduces to

b+ = v̇+ + Q(b − v̇) . (4.7.20)

This is the body force that must be applied to ensure that the superposed motion
remains rigid. In this regard, consider an isotropic disk of an elastic material which
is spinning about its axis of symmetry at constant angular velocity. In the absence
of body force, this disk expands to balance the centripetal accelerations of material
points but in the presence of material dissipation it eventually spins like a rigid body
with constant angular velocity. This motion should not be confused with a SRBM. If
this disk is subjected to a SRBM which increases or decreases the angular velocity
of the disk, it is necessary to apply a body force of the type (4.7.20) to ensure that the
superposed motion is rigid with the radial position of each material point remaining
constant.

For later convenience, these transformation relations for the kinetic quantities are
summarized

ρ+ = ρ , T+ = QTQT , b+ = v̇+ + Q(b − v̇) . (4.7.21)
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In addition, since the strain energy � also characterizes the constitutive response of
the material and it does not depend on the orientation of the material, the restriction
(R-2) in (4.7.3b) requires � to be unaltered by SRBM

�+ = � , (4.7.22)

so with the help of (3.8.24) and (4.7.21) it can be shown that the rate of material
dissipationD in (4.5.7) is also unaltered by SRBM

D+ = D . (4.7.23)

Also, it is emphasized that the restriction (R-2) applies only to constitutive response.
For example, the kinetic energy 1

2v · v per unit mass is a scalar which is not specified
by a constitutive equation so it need not remain unaltered by SRBM.

Furthermore, with the help of (4.6.4), (4.6.14), (4.6.16) and (4.7.21), it can be
shown that the Piola-Kirchhoff traction vector π , the nonsymmetric Piola-Kirchhoff
stress tensor �, and the symmetric Piola-Kirchhoff stress tensor S transform under
SRBM by

π+ = Qπ , �+ = Q� , S+ = S . (4.7.24)

4.8 An Alternative Derivation of the Local Balance Laws

This section shows that the conservation ofmass (4.1.6), the balance of linearmomen-
tum (4.4.5) and the reduced form (4.4.10) of the balance of angular momentum can
be derived directly from the rate of material dissipation (4.5.1) and the invariance
requirements (4.7.21)–(4.7.23) under SRBM. This interrelationship is an example
of the fundamental nature of invariance requirements under SRBM in the general
theory of a continuum.

Specifically, in view of the restriction (4.7.3a), the rate of material dissipation
(4.5.1) is required to be form-invariant under SRBM so that

∫
P+

D+dv+ = W+ − K̇+ − U̇+ ≥ 0 , (4.8.1)

where the rate of work W+ done on the body, the kinetic energy K+ and the total
strain energy U+ are defined by

W+ =
∫
P+

ρ+b+ · v+dv+ +
∫

∂P+
t+ · v+da+ ,

K+ =
∫
P+

1

2
ρ+v+ · v+dv+ , U+ =

∫
P+

ρ+�+dv+ .

(4.8.2)

Using a development similar to that in Sect. 4.5, the local form of (4.8.1) is given by
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D+ = T+ · L+ − ρ+�̇+ + (ρ+b+ + div+T+ − ρ+v̇+) · v+

− (ρ̇+ + ρ+ div+v+)(
1

2
v+ · v+ + �+) .

(4.8.3)

Now, with the help of the invariance conditions (3.8.24), (4.7.1), (4.7.10) and
(4.7.21)–(4.7.23), as well as the results

div+v+ = L+ · I = (QLQT + �) · I = L · I = divv ,

T+ · L+ = QTQT · (QLQT + �) = T · L + T · QT�Q .
(4.8.4)

Equation (4.8.3) reduces to

D = T · L − ρ�̇ + T · QT�Q + v+ · Q(ρb + divT − ρv̇)

− (ρ̇ + ρ divv)(
1

2
v+ · v+ + �) .

(4.8.5)

Equation (4.8.5) must hold for all motions and all SRBM (3.8.27)

x+ = c(t) + Q(t)x , QTQ = I , Q̇ = �Q , �T = −� . (4.8.6)

To develop the conservation of mass and the balances of linear and angular momen-
tum, consider the following three special cases of SRBM.

Case 1: No SRBM
This case considers no SRBM with

c = 0 , ċ = 0 , Q = I , Q̇ = 0 , v+ = v , v̇+ = v̇ , (4.8.7)

so (4.8.5) requires

D = T · L − ρ�̇ + v · (ρb + divT − ρv̇) − (ρ̇ + ρ divv)(
1

2
v · v + �) , (4.8.8)

for all motions.

Case 2: Superposed Constant Translational Velocity
This case considers superposed constant translational velocity with

c = uu t , ċ = uu , u · u = 1 ,

Q = I , Q̇ = 0 ,

v+ = v + uu , v̇+ = v̇ ,

(4.8.9)

where u is an arbitrary constant scalar and u is an arbitrary constant unit vector, both
characterizing the superposed constant translational velocity. It then follows that for
this case (4.8.5) requires
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D = T · L − ρ�̇ + (v + uu) · (ρb + divT − ρv̇)

− (ρ̇ + ρ divv)[1
2
(u2 + 2uu · v + v · v) + �] .

(4.8.10)

Again, this equationmust hold for allmotions. Thus, subtracting (4.8.8) from (4.8.10)
yields

1

2
(u2 + 2uu · v)(ρ̇ + ρ divv) + uu · (ρv̇ − ρb − divT) = 0 , (4.8.11)

whichmust hold for allmotions and all u,u. Now, dividing this equation by u requires

1

2
(u + 2u · v)(ρ̇ + ρ divv) + u · (ρv̇ − ρb − divT) = 0 . (4.8.12)

Since the coefficient of u in this equation is independent of u, it follows that this
equation can only be satisfied for arbitrary values of u if mass is conserved

ρ̇ + ρ divv = 0 . (4.8.13)

Next, substituting the conservation of mass into (4.8.12) yields

u · (ρv̇ − ρb − divT) = 0 . (4.8.14)

Since the coefficient of u in this equation is independent of the arbitrary unit vector
u it can satisfied only if the balance of linear momentum is satisfied

ρv̇ = ρb + divT . (4.8.15)

Case 3: Superposed Rate of Rotation
Using the conservation of mass and the balance of linear momentum and subtracting
(4.8.8) from (4.8.5) yields the restriction that

T · QT�Q = 0 (4.8.16)

must hold for all motions and all SRBM. Specifically, for superposed rate of rotation
� is a nonzero skew-symmetric tensor and T is independent of the skew-symmetric
tensor QT�Q so the stress tensor must be symmetric

TT = T , (4.8.17)

which is the reduced form of the balance of angular momentum.
In the above analysis, the conservation of mass and the balances of linear and

angularmomentumhave been shown to be necessary consequences of the assumption
that the rate of material dissipation is form-invariant under SRBM (4.8.3). Although
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these results were obtained using special simple SRBM it is easy to see using the
invariance conditions (4.7.1), (4.7.10) and (4.8.4) that these balance laws and the
rate of material dissipation remain form-invariant

ρ̇+ + ρ+div+v+ = 0 , ρ+v̇+ = ρ+b+ + div+T+ ,

T+T = T+ , D+ = T+ · D+ − ρ+�̇+ ,
(4.8.18)

for all motions and all SRBM.
Furthermore, it is noted that not all scalars remain form-invariant under SRBM.

For example, the kinetic energy K+ in (4.8.2) can be written in the form

K+ = K +
∫
P

1

2
ρ
[
2(ċ + Q̇x) · Qv + (ċ + Q̇x) · (ċ + Q̇x)

]
dv , (4.8.19)

which is influenced by superposed translational rate ċ and superposed rotationQ and
rotation rate Q̇.

4.9 Initial and Boundary Conditions

In this section, attention is confined to the discussion of initial and boundary condi-
tions for the purely mechanical theory. In general, the number of initial conditions
required and the type of boundary conditions required will depend on the specific
type of material under consideration. However, it is possible to make some general
observations that apply to all materials.

To this end, it is recalled that the local forms of conservation of mass (4.1.6) and
balance of linear momentum (4.4.5) are partial differential equations which require
both initial and boundary conditions. Specifically, the conservation of mass (4.1.6)
is first order in time with respect to density ρ so it is necessary to specify the initial
value of density at each point of the body

ρ(x, 0) = ρ̄(x) on P for t = 0 . (4.9.1)

Also, the balance of linear momentum (4.4.5) is second order in time with respect to
position x so that it is necessary to specify the initial value of x and the initial value
of the velocity v at each point of the body

x̂(X, 0) = x̄(X) on P for t = 0 ,

v̂(X, 0) = ṽ(x, 0) = v̄(x) on P for t = 0 .
(4.9.2)

Guidance for determining the appropriate form of boundary conditions is usually
obtained by considering the rate of work done by the traction vector. From (4.5.2) it is
observed that t · v is the rate of work per unit current area done by the traction vector.
At each point of the surface ∂P it is possible to define a right-handed orthonormal
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coordinate system with base vectors s1, s2 and n, such that n is the unit outward
normal to ∂P and s1 and s2 are orthogonal vectors tangent to ∂P . Then,with reference
to this coordinate system, it follows that

t · v = (t · s1)(v · s1) + (t · s2)(v · s2) + (t · n)(v · n) on ∂P . (4.9.3)

Using this representation, it is possible to define three types of boundary conditions:
Kinematic
For kinematic boundary conditions all three components of the velocity are specified

(v · s1) , (v · s2) , (v · n) specified on ∂P for all t ≥ 0 . (4.9.4)

Kinetic For kinetic boundary conditions all three components of the traction vector
are specified

(t · s1) , (t · s2) , (t · n) specified on ∂P for all t ≥ 0 . (4.9.5)

Mixed For mixed boundary conditions conjugate components of both the velocity
and the traction vector are specified

(v · s1) or (t · s1) specified on ∂P for all t ≥ 0 ,

(v · s2) or (t · s2) specified on ∂P for all t ≥ 0 ,

(v · n) or (t · n) specified on ∂P for all t ≥ 0 .

(4.9.6)

Essentially, the conjugate components (t · s1), (t · s2) and (t · n) are the responses
to the motions (v · s1), (v · s2) and (v · n), respectively. Therefore, it is important to
emphasize that, for example, both (v · n) and (t · n) cannot be specified at the same
point of ∂P because this would mean that both the motion and the stress response
can be specified independently of the material properties and geometry of the body.
Notice also, that since the initial position of points on the boundary ∂P are specified
by the kinematic initial condition in (4.9.2), the velocity boundary conditions (4.9.4)
can be used to determine the position of the boundary for all time. This means that
the kinematic boundary conditions (4.9.4) can also be characterized by specifying
the position of points on the boundary for all time.

4.10 Linearization

The previous sections have considered the exact formulation of the theory of simple
continua. The resulting equations are nonlinear so they are quite difficult to solve
analytically. However, often it is possible to obtain relevant physical insight about
the solution of a problem by considering a simpler approximate theory. This section
develops the linearized equations associated with this nonlinear theory.
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First it is noted that a tensor u is said to be of order εn [denoted by O(εn)] if there
exists a real finite number C , independent of ε, such that

|u| < Cεn as ε → 0 . (4.10.1)

In what follows various kinematic quantities as well as the conservation of mass
and the balance of linear momentum and boundary conditions are linearized by
considering small deviations from a reference configuration in which the body is in
a zero-stress material state, at rest and free of body force. To this end, it is assumed
that the density ρ is of order O(ε0)

ρ = ρz + O(ε) , (4.10.2)

where ρz is the zero-stress reference density. Also, it is assumed that the displace-
ment u, body force b, Cauchy stress T, nonsymmetric Piola-Kirchhoff stress � and
symmetric Piola-Kirchhoff stress S are of order O(ε)

(u , b , T , � , S ) = O(ε) . (4.10.3)

The resulting theory will be a linear theory if ε is small enough

ε << 1 (4.10.4)

that quadratic and higher order terms in ε can be neglected relative to terms of order
O(ε). It is tacitly assumed that all derivatives with respect to time and space of a
quantity of order O(ε) are also order O(ε).

Kinematics
Recalling from (3.3.31) that the position x of a material point in the current config-
uration can be represented by

x = X + u , (4.10.5)

with deformation gradient F given by

F = ∂x/∂X = I + ∂u/∂X . (4.10.6)

In what follows, use is made of this expression to derive a number of kinematical
results. For this purpose it is convenient to separate the displacement gradient into
its symmetric part ε and its skew-symmetric part ω, such that

∂u/∂X = ε + ω ,

ε = 1

2
[∂u/∂X + (∂u/∂X)T ] = εT , (4.10.7)

ω = 1

2
[∂u/∂X − (∂u/∂X)T ] = ωT ,
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where it is noted that both ε and ω are of order O(ε). Now, with the help of (4.10.6)
and (4.10.7), it follows that

F = I + ∂u/∂X = I + ε + ω ,

F−1 = I − ∂u/∂X + O(ε2) = I − ε − ω + O(ε2)

C = FTF = I + 2ε + O(ε2) ,

E = 1

2
(C − I) = ε + O(ε2) , (4.10.8)

U = C1/2 = I + ε + O(ε2) ,

U−1 = I − ε + O(ε2) ,

R = FU−1 = I + ω + O(ε2) ,

which indicates that ε is the linearized strain measure and ω is the linearized rotation
measure. Furthermore, these approximations can be used to deduce that

∂u/∂x = (∂u/∂X)F−1 = ∂u/∂x + O(ε2) ,

e = 1

2
(I − F−TF−1) = ε + O(ε2) , (4.10.9)

so for the linear theory where terms of order O(ε2) and higher are neglected, there
is no distinction between the Lagrangian strain E and the Almansi strain e.

To determine the linearized expression for the change in volume it is recalled that

J 2 = detC ≈ det[2ε − (−1) I] . (4.10.10)

Now, the characteristic equation of this determinant is given by

det[2ε − (−1) I] = −(−1)3 + (2ε · I)(−1)2

− 1

2
[(2ε · I)2 − (2ε · 2ε)](−1) + det(2ε) . (4.10.11)

However,

(2ε · I)2 = O(ε2) , (2ε · 2ε) = O(ε2) , det(2ε) = O(ε3) , (4.10.12)

so neglecting quadratic terms in ε yields

J 2 = 1 + 2ε · I + O(ε2) , J = 1 + ε · I + O(ε2) . (4.10.13)

Thus, the trace of the linearized strain ε is the relative increase in volume
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dv

dV
− 1 = dv − dV

dV
= ε · I ,

J̇

J
= div v = D · I = ε̇ · I + O(ε2) . (4.10.14)

Kinetics
It follows from (4.10.2) and (4.10.14) that the conservation of mass (4.1.7) for the
linear theory becomes

ρ̇ + ρz(ε̇ · I) = 0 , (4.10.15)

where terms of order O(ε2) and higher have been neglected. Also, since the stresses
T,� and S are related by Eqs. (4.6.13), (4.6.14) and (4.6.16), it follows that

� = FS = S + O(ε2) , T = J−1�FT = S + O(ε2) . (4.10.16)

This means that for the linear theory where terms of order O(ε2) and higher are
neglected, there is no distinction between the three types of stresses

T = � = S . (4.10.17)

This is consistent with the fact that for the linear theory, the geometry of the current
configuration is only slightly different from the geometry of the reference configu-
ration. Further in this regard, it is noted that

divT = T,i ·ei = (∂T/∂X)(∂X/∂x) ei · ei
= (∂T/∂X)I · (ei ⊗ ei ) + O(ε2)

= (∂T/∂X) · I + O(ε2) ,

divT = DivT + O(ε2) .

(4.10.18)

Also, it can be shown that

Div� = DivS + O(ε2) , (4.10.19)

so that the balance of linear momentum (4.4.5) or (4.6.5) yield

ρz ü = ρxb + DivT , (4.10.20)

where again terms of order O(ε2) and higher have been neglected.

Boundary Conditions
The boundary conditions (4.9.4)–(4.9.6) are expressed in terms of values of functions
of order O(ε) that are evaluated at points on the boundary ∂P of the surface in the
current configuration. The linearized forms of these boundary conditions can be
determined by considering an arbitrary function f of order O(ε) and using a Taylor
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series expansion to deduce that

f (x, t) = f (X + u, t) = f (X, t) + ∂ f/∂x · u + O(ε3) = f (X, t) + O(ε2) .

(4.10.21)
This means that for the linear theory the distinction between the Lagrangian and
Eulerian representations of any function of order O(ε) vanishes. Thus, to within the
order of accuracy of the linear theory the boundary conditions can be evaluated at
points on the reference boundary ∂P0 instead of on the present boundary ∂P .

Next, it is emphasized that the linear theory derived from a given nonlinear theory
is unique but not vice versa. This means that an infinite number of nonlinear theories
exist which when linearized yield the same linear theory. Consequently, a linear
theory provides little guidance for developing a physical nonlinear theory.

Linearization of the Kinematics in the Eulerian Formulation
To linearize the Eulerian formulation, it is convenient to consider an initial zero-stress
material state with the vectors mi specified by the orthonormal triad Mi , such that

mi (0) = Mi , Mi · M j = δi j , M1 × M2 · M3 = 1 . (4.10.22)

Now, let X̃i be the position of a material point in this initial configuration and ũ be
the displacement of this material point, such that

x = X̃ + ũ . (4.10.23)

Then, taking tn = 0 in (3.13.3), the relative deformation gradientFr can be expressed
in the form

Fr = ∂x/∂ x̃ = I + ∂ũ/∂ x̃ , (4.10.24)

so the vectors mi in (3.13.9) are given by

mi = (I + ∂ũ/∂ x̃)Mi , (4.10.25)

where the superscirpt ( )∗ has been omitted for notational simplicity.
Furthermore, the displacement gradient ∂ũ/∂ x̃ can be separated into its symmetric

part ẽ and its skew-symmtric part ω̃

∂ũ/∂ x̃ = ẽ + ω̃ ,

ẽ = 1

2
[∂ũ/∂ x̃ + (∂ũ/∂ x̃)T ] = ẽT ,

ω̃ = 1

2
[∂ũ/∂ x̃ − (∂ũ/∂ x̃)T ] = −ω̃T

.

(4.10.26)

Next, expressing these quantities in terms of their components relative to Mi

x̃ = x̃iMi , ũ = ũiMi , ẽ = ẽi jMi ⊗ M j , ω̃ = ω̃i jMi ⊗ M j , (4.10.27)
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it follows that

ẽi j = 1

2
(ũi , j +ũ j ,i ) , ω̃i j = 1

2
(ũi , j −ũ j ,i ) , (4.10.28)

where here a comma denotes partial differentiation with respect to x̃i .
Now, with the help of (4.10.25)–(4.10.27) the vectorsmi can be expressed in the

forms
mi = (I + ẽ + ω̃)Mi , mi = (δi j + ẽi j + ω̃i j )Mi . (4.10.29)

Thus, neglecting quadratic terms in the derivatives of ũi and using the definition
(3.11.33) of the elastic strains ei j it can be shown that

ei j = ẽi j , (4.10.30)

which indicates that ẽi j characterize the linearized strains and ω̃i j characterize the
linearized rotations.

Moreover, using (3.11.7) and neglecting quadratic terms in ẽi j and ω̃i j , the expres-
sion for the elastic dilatation can be approximated by

Je = 1 + ẽmm , (4.10.31)

so the distortional strains e′
i j (3.11.35) can be approximated by

e′
i j = ẽ′′

i j = ẽi j − 1

3
ẽmmδi j , (4.10.32)

where ẽ′′
i j is the deviatoric part of ẽi j .
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Chapter 5
Purely Mechanical Constitutive
Equations

Abstract The objective of this chapter is to discuss purely mechanical constitu-
tive equations. After identifying unphysical arbitrariness of the classical Lagrangian
formulation of constitutive equations, an Eulerian formulation for nonlinear elastic
materials is developed using evolution equations for microstructural vectorsmi . The
influence of kinematic constraints on constitutive equations is discussed and specific
nonlinear constitutive equations are presented for a number of materials including:
elastic solids, viscous fluids and elastic–inelastic materials.

5.1 The Classical Lagrangian Formulation for Nonlinear
Elastic Solids

In general, a constitutive equation is an equation that characterizes the response of
a given material to deformations, deformation rates, thermal, electrical, magnetic or
mechanobiological loads. An elastic material is a very special material because it
exhibits ideal behavior in the sense that it has no material dissipation. One of the
most important features of an elastic material is that it is characterized by a total
strain energy U and a strain energy function � per unit mass defined in (4.5.2)

U =
∫
P

ρ�dv . (5.1.1)

Generalizing the notions of a simple nonlinear elastic spring, an elastic material is
characterized by the following four assumptions:

Assumption 5.1 The material response is ideal in the sense that the rate of material
dissipationD in (4.5.7) vanishes

D = T · D − ρ�̇ = 0 , (5.1.2)
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for all motions. This generalizes the notion that the elastic spring is non-dissipative.

Assumption 5.2 Within the context of the Lagrangian formulation, the strain energy
� is a function of the total deformation gradient F and the reference position X only

� = �̃(F;X) , (5.1.3)

where dependence on the reference position X has been included to allow for the
possibility that the material can be inhomogeneous in the reference configuration.
This generalizes the notion that the elastic energy in an elastic spring depends only
on extension of the spring from its zero-stress length.

Assumption 5.3 The strain energy � is form-invariant under SRBM

�+ = � . (5.1.4)

With regard to a spring, this follows directly from the fact that every member of the
group of SRBM has the same length of the spring at each time.

Assumption 5.4 The Cauchy stress T is independent of the rate of deformation L.
This is consistent with the fact that the force in an elastic spring does not depend on
the rate of extension of the spring.

To explore the physical consequences of Assumption 5.1 (5.1.2), use is made of
global form (4.5.1) of the rate of material dissipation to obtain

W = K̇ + U̇ , (5.1.5)

which states that for an elastic material the rate of work done on the body due to body
forces and contact forces equals the rate of change of kinetic and strain energies. In
particular, the total work W2/1 done on the body during the time interval t1 ≤ t ≤ t2
is given by

W2/1 = ∫ t=t2
t=t1

Wdt = �K + �U ,

�K = K(t2) − K(t1) , �U = U(t2) − U(t1) .
(5.1.6)

In view of Assumption 5.2 (5.1.3), the strain energy� depends on the current config-
uration through the current value of F only. Similarly, the value of the kinetic energy
K depends only on the values of the density ρ and the velocity v at the beginning
and ends of the time interval. Moreover, the values of ρ at the beginning and end of
the time interval are connected by the conservation of mass (4.1.13) which requires
ρ det F = constant. Consequently,�K,�U and thework doneW2/1 during the time
interval depend only on the values of v and F at the beginning and end of the time
interval. In particular, this means that the work W2/1 done on the body between any
two states defined by v(t1) and F(t1) and v(t2) and F(t2) is independent of the path
of the deformation between these two states. This is consistent with the notion that
the work done on an elastic spring between any two states is path independent. Also,
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it follows that the workW2/1 done on the body vanishes for an arbitrary closed cycle
for which the values of v · v and the deformation gradient F are the same at the
beginning and end of the cycle

W2/1 = 0 , �K = 0 , �U = 0 . (5.1.7)

In this regard, it is noted that v and F are functions of position and time so the notion
of a closed cycle implies that each point starts and ends with the same values of v · v
and the same values of F.

Assumption 5.3 (5.1.4) places restrictions on the functional form (5.1.3) of the
strain energy. Using the fact that F+ = QF under SRBM, it follows that

�+ = �̃(F+;X) = �̃(QF;X) = �̃(F;X) (5.1.8)

must hold for arbitrary proper orthogonal tensors Q and all times. Since the defor-
mation can be inhomogeneous, the rotation tensor R can be a function of position
X. However, for an arbitrary but specified value X1 of X, choose Q(t) = RT (X1, t)
so that this equation requires

�̃(F;X) = �̃(RT (X1)RU;X) , (5.1.9)

where the dependence of R(X1, t) on time has been suppressed for notational sim-
plicity. Now, evaluating this expression at X = X1, it follows that locally

�̃(F;X) = �̃(U;X1) = �̂(C;X1) . (5.1.10)

Thus, a necessary condition for the strain energy � to be locally invariant under
SRBM is that the strain energy function� be dependent on the deformation gradient
F only through its dependence on the deformation tensor C. It is easy to see that
this condition is also a sufficient condition for the strain energy function to be form-
invariant under SRBM since C+ = C. Moreover, since X1 is an arbitrary material
point, this restriction on � must hold for each point X so the strain energy � can
depend on F only through its dependence on C for all material points X

� = �̂(C;X) . (5.1.11)

Next, with the help of (5.1.11) Assumption 5.1 (5.1.2) requires

T · D = ρ
∂�

∂C
· Ċ = ρ

∂�

∂C
· 2FTDF = 2ρF

∂�

∂C
FT · D , (5.1.12a)

(
T − 2ρF

∂�

∂C
FT

)
· D = 0 . (5.1.12b)
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However, since the coefficient of D in (5.1.12b) is independent of the rate D and is
symmetric, it follows that for any fixed values of F andX the coefficient ofD is fixed
and yet D can be an arbitrary symmetric tensor. Therefore, the necessary condition
that (5.1.12b) be valid for arbitrary motions is that the Cauchy stress be determined
by a derivative of the strain energy

T = 2ρF
∂�

∂C
FT . (5.1.13)

Using the conservation of mass (4.1.4) and the relationship (4.6.16), the symmetric
Piola-Kirchhoff stress S is also determined by a derivative of the strain energy

S = 2ρ0
∂�

∂C
. (5.1.14)

Notice that the results (5.1.13) and (5.1.14) are automatically properly invariant under
SRBM.Also, it can be seen that the result (5.1.14) is similar to the result for an elastic
spring that the force is equal to the derivative of the potential (strain) energy.

Green Elasticity (Hyperelasticity)
The elastic response of the material described by (5.1.13) is called Green elasticity
or hyperelasticity with all four assumptions satisfied. In particular, the stress T is
independent of velocity gradient L. Also, the stress is an explicit function of the
deformation gradient F which is related to the derivative of a strain energy function
� that depends only on F through the right Cauchy–Green deformation tensor C =
FTF. This means that the stress is determined by the deformation state F and is
independent of the path of deformation. Moreover, the work done between two states
of deformation F1 and F2 is independent of the path.

Cauchy Elasticity
For Cauchy elasticity, only Assumption 5.4 is satisfied with the stress T being a
function of F only

T = T(F) . (5.1.15)

This material has the property that the stress is determined by the deformation state F
and is independent of the velocity gradientL and of the path of deformation.However,
in general, the function in (5.1.15) does not satisfy integrability conditions necessary
for a strain energy function to exist. This means that (5.1.13) is not valid and the work
done between two states of deformation F1 and F2 can be path dependent. Moreover,
since under SRBM the stress T must satisfy the transformation relations (4.7.17), it
follows that the functional form for T(F) must satisfy the restriction that

T+ = T(F+) = T(QF) = QT(F)QT (5.1.16)

is satisfied for all proper orthogonal Q. This restriction requires T to be an isotropic
tensor function of the left Cauchy–Green deformation tensor B = FFT
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T = T(B) , T(QBQT ) = QT(B)QT , (5.1.17)

which can only characterize elastically isotropic response.

Hypoelasticity
For hypoelasticity, only Assumption 5.4 is satisfied and the stress is determined by
integrating an evolution equation of the form

∇
T = K(T) · D , (5.1.18)

where K is a fourth-order tensor function of T having the symmetry properties that

LTK = KT = K . (5.1.19)

Also, the rate of stress
∇
T and the stiffness tensorK transform under SRBM such that

∇
T+ = Q

∇
TQT , K(T+) · D+ = K(QTQT ) · QDQT = Q [K(T) · D]QT ,

(5.1.20)
so that the evolution equation (5.1.18) remains form-invariant under SRBM

∇
T+ = K(T+) · D+ . (5.1.21)

Since this equation is homogeneous of order one in time, the predicted material
response is rate independent. Stress rates which satisfy the restriction (5.1.20)1 for
all SRBM are called objective.

Truesdell Stress Rate
Recalling that

Ḟ = LF , ρ̇ = −ρD · I , (5.1.22)

it is possible to differentiate the hyperelastic constitutive equation (5.1.13) to deduce
that

Ṫ = LT + TLT − (D · I)T + 2ρF
(

∂2�

∂C ⊗ ∂C
· Ċ

)
FT . (5.1.23)

This equation can be rewritten in the form

T
T = 2ρF

(
∂2�

∂C ⊗ ∂C
· Ċ

)
FT , (5.1.24)

where the Truesdell stress rate is defined by

T
T = Ṫ − LT − TLT + (D · I)T . (5.1.25)
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Next, recalling that under SRBM

QQT = I , Q̇ = �Q , �T = −� ,

T+ = QTQT , L+ = D+ + W+ = QLQT + � ,

D+ = QDQT , W+ = QWQT + � ,

(5.1.26)

it can be shown by differentiating the expression forT+ that the Truesdell is objective

T
T+ = Ṫ+ − L+T+ − T+L+T + (D+ · I)T+ = Q

T
TQT . (5.1.27)

Thus, the evolution equation (5.1.24) based on the Truesdell stress rate satisfies the
restriction (5.1.20)1 so it is form-invariant under SRBM and can be used to formulate
hypoelastic constitutive equations of the type (5.1.18).

Jaumann Stress Rate
The Jaumann stress rate defined by

J
T = Ṫ − WT − TWT (5.1.28)

is also objective
J
T+ = Ṫ+ − W+T+ − T+W+T = Q

J
TQT . (5.1.29)

Consequently, it can be used for form-invariant hypoelastic constitutive equations of
the type (5.1.18). Moreover, it follows from (5.1.25) and (5.1.28) that the Truesdell
and Jaumann stress rates are related by

T
T = J

T − DT − TD + (D · I)T , (5.1.30)

for all SRBM.
In this regard, it is noted that there are an infinite number of stress rates that trans-

form like (5.1.20)1 under SRBM. For example, consider a generalized hypoelastic
material specified by the evolution equation

J
T = K(T,D) , (5.1.31)

where K(T,D) is a homogeneous function of order one in D which satisfies the
restrictions

K(T, αD) = αK(T,D) , KT = K , K(T+,D+) = QK(T,D)QT , (5.1.32)

for all scalars α and all proper orthogonal tensor functions Q. Next, let n be an

arbitrary positive integer and consider the stress rate
∇
T in (5.1.18) to be specified by
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the form
∇
T = J

T − β [DTn + TnD − (D · I)Tn] , (5.1.33)

where β is a constant scaling constant having the units [(stress)1−n] so that (5.1.33)
has the units of stress. It can be shown that

− D+T+n − T+nD+ + (D+ · I)T+n = Q[−DTn − TnD + (D · I)Tn]QT ,

(5.1.34)

for all SRBM. Consequently, since the Jaumann rate is objective, it follows that
∇
T in

(5.1.33) is objective
∇
T+ = Q

∇
TQT . (5.1.35)

Next, define the new function K̂(T,D) by

K̂(T,D) = K(T,D) − β [DTn + TnD − (D · I)Tn] , (5.1.36)

which satisfies restrictions similar to the forms (5.1.32)

K̂(T, αD) = αK̂(T,D) , K̂T = K̂ , K̂(T+,D+) = QK̂(T,D)QT . (5.1.37)

It then follows that the stressT, which satisfies the form-invariant evolution equation

∇
T = K̂(T,D) , (5.1.38)

with
∇
T defined by (5.1.33), predicts the same hypoelastic material response as that

predicted by (5.1.31). This means that for this general form of a hypoelastic material
there is no fundamental physical significance of any of the infinite stress rates in
(5.1.33) that satisfy under SRBM.

Summary
Equation (5.1.24) shows that any hyperelastic equation can be formulated in terms
of an evolution equation for stress if the right-hand side of (5.1.18) is appropriately
modified.However, in general, rate equations of the type (5.1.18) produce hypoelastic
response since they do not satisfy integrability conditions necessary for a strain
energy function to exist [3]. Due to the physical deficiencies of both Cauchy elasticity
and hypoelasticity, the term elastic material is used here only for a material that
exhibits Green elasticity (hyperelasticity).
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5.2 Unphysical Arbitrariness of the Lagrangian
Formulation of Constitutive Equations

The classical Lagrangian formulation of constitutive equations for hyperelasticmate-
rials specifies the strain energy function� to be a function of the deformation gradient
F through the right Cauchy–Green deformation tensor C, such that

� = �(C) , C = FTF , (5.2.1)

where F characterizes deformations from an arbitrary, but fixed, reference configu-
ration. The only restriction on this reference configuration is that the mapping

x = x(X, t) (5.2.2)

be invertible, which requires
J = detF > 0 , (5.2.3)

for all material points in the material region under consideration and for all time.
The strain energy function � characterizes the response of a specific material,

which should be independent of arbitrariness of the choice of the reference configu-
ration. This means that � should be a function of internal state variables that can be
measured by experiments on identical samples of the material in its current state. In
this regard, it is recalled from Sect. 3.11 that F is not an internal state variable in the
sense of Onat [31].

To be more specific, consider a homogeneous deformation of a homogeneous
hyperelastic material from a uniform zero-stress material state in its reference con-
figuration with C = I. It is always possible to unload this material to a zero-stress
material state with C = I, which is satisfied whenever F is a proper orthogonal ten-
sor. However, anisotropic response requires characterization of the deformation and
orientation of material fibers relative to observable material orientations. This arbi-
trariness of F makes it impossible to use experiments on the material in its current
configuration to determine the orientations of specific material fibers associated with
the arbitrary choice of the reference configuration used to specify � in (5.2.1).

5.3 An Eulerian Formulation for Nonlinear Elastic Solids

The Eulerian formulation of constitutive equations for nonlinear elastic solids in this
section removes the unphysical arbitrariness of the choice of a reference configuration
and a total strain measure. For this formulation, use is made of the microstructural
vectors mi and the elastic metric mi j introduced in Sect. 3.11, determined by the
equations
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ṁi = Lmi , mi j = mi · m j = m ji , ṁi j = 2(mi ⊗ m j ) · D , (5.3.1)

with the strain energy function � and the stress proposed in the forms

� = �̂(mi j ) , T = T̂(mi ) . (5.3.2)

Using these expressions together with assumption (5.1.2) requires

[
T − 2ρ

∂�̂

∂mi j
(mi ⊗ m j )

]
· D = 0 (5.3.3)

for arbitrary motions and all times. Since mi j is symmetric, it follows that ∂�̃/∂mi j

(mi ⊗ m j ) is a symmetric tensor. Consequently the coefficient of D in (5.3.3) is
symmetric and is independent of D so the necessary condition that (5.3.3) be valid
for arbitrary motions is that the Cauchy stress be determined by a derivative of the
strain energy

T = T̂ = 2ρ
∂�̂

∂mi j
(mi ⊗ m j ) . (5.3.4)

In this formulation, the vectorsmi are defined so that they form an orthonormal triad
in any zero-stress material state (1.2.13) with

mi j = δi j for any zero-stress material state , (5.3.5)

which requires the strain energy function to satisfy the restrictions

∂�̂

∂mi j
= 0 for mi j = δi j . (5.3.6)

Moreover, using the conservation ofmass (4.1.7), thematerial derivative of (5.3.4)
yields the evolution equation

Ṫ = LT + TLT − (D · I)T + 2ρ
∂2�̂

∂mi j∂mmn
(mi ⊗ m j ⊗ mm ⊗ mn) · D . (5.3.7)

The microstructural vectors mi are internal state variables in the sense of Onat [31]
with their values in the current configuration being determined by experiments on
identical samples of the material. Specifically, use is made of measurements of the
current state of stress T and the value of Ṫ for different values of the loading rate L.
Any differences between them1,m2 andm3 directions which cannot be determined
by these experiments should be consistent with material symmetries of the strain
energy function� which ensure that these differences do not influence the prediction
of the material response to an arbitrary loading rate L.
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A Separation of Elastic Dilatation and Distortional Deformations
To introduce separate control over the response of the material to dilatation and
distortional rates of deformation it is convenient to use the elastic dilatation Je defined
in (3.11.7), the distortional deformation vectors m′

i defined in (3.11.14) and the
elastic distortional deformation metric m ′

i j defined in (3.11.16), which satisfy the
Eqs. (3.11.17) and (3.11.28)

Je = m1 × m2 · m3 > 0 , J̇e = JeD · I ,

m′
i = J−1/3

e mi , ṁ′
i = L′′ m′

i ,

m ′
i j = m′

i · m′
j = m ′

j i , ṁ ′
i j = 2

(
m′

i ⊗ m′
j − 1

3m
′
i j I

)
· D .

(5.3.8)

Then, the strain energy function and the stress are proposed in the forms

� = �̃(Je,m
′
i j ) , T = T̃(Je,m′

i ) , (5.3.9)

and the condition (5.1.2) requires

[
T − ρ Je

∂�̃

∂ Je
I − 2ρ

∂�̃

∂m ′
i j

(m′
i ⊗ m′

j − 1

3
m ′

i j I)

]
· D = 0 . (5.3.10)

Since m ′
i j is symmetric, it follows that ∂�̃/∂m ′

i j (mi ⊗ m j ) is a symmetric tensor.
Consequently the coefficient of D in (5.3.10) is symmetric and is independent of
D so the necessary condition that (5.3.10) be valid for arbitrary motions is that the
Cauchy stress be determined by a derivative of the strain energy

T = −p I + T′′ = T̃ , p = p̃ = −ρ Je
∂�̃

∂ Je
,

T′′ = T̃′′ = 2ρ
∂�̃

∂m ′
i j

(
m′

i ⊗ m′
j − 1

3
m ′

i j I
)

,

(5.3.11)

where p is the pressure and T′′ is the deviatoric part of T.
Also, the constitutive equation for stress is assumed to be restricted so that a

zero-stress material state is characterized by

T = 0 ,
∂�̃

∂ Je
= 0 ,

∂�̃

∂m ′
i j

= 1

3

∂�̃

∂m ′
nn

δi j for Je = 1 and m ′
i j = δi j . (5.3.12)

This means that the triad m′
i has been defined so that m′

i are orthonormal vectors in
a zero-stress material state.

This form for the strain energy function makes it easy to separate the effects of
dilatation and distortion. For example, a class of materials can be considered for
which the strain energy function separates into two additive parts
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ρz� = f (Je) + ρz�̃d(m
′
i j ) , (5.3.13)

where ρz is the constant zero-stressmass density, f controls the response to dilatation
and �̃d controls the response to distortional deformations. It then follows that the
Cauchy stress T for this strain energy function is given by

T = −p I + T′′ = T̃ , p = −
(

ρ Je
ρz

)
d f

d Je
,

T′′ = T̃′′(Je,m ′
i j ) = 2ρ

∂�̃d

∂m ′
i j

(
m′

i ⊗ m′
j − 1

3
m ′

i j I
)

,

(5.3.14)

with the restrictions that

d f

d Je
= 0 ,

∂�̃d

∂m ′
i j

= 1

3

∂�̃d

∂m ′
nn

δi j for Je = 1 and m ′
i j = δi j . (5.3.15)

Furthermore, using the conservation of mass in the form (4.1.16)

Je = ρz

ρ
, (5.3.16)

it follows that the pressure

p = p̃(Je) = − d f

d Je
, (5.3.17)

for this class of materials depends on the elastic dilatation Je only.

5.4 Difference Between the Microstructural Vectors mi and
the Deformation Gradient F

Recall that the deformation gradient F satisfies the evolution equation (3.5.4)

Ḟ = LF . (5.4.1)

It has been stated in Sect. 3.11 that F is not an internal state variable in the sense
of Onat [31] since its initial value depends explicitly on an arbitrary choice of the
reference configuration which cannot be measured in the current configuration.

In contrast, the microstructural vectors mi for elastic response satisfy the
Eqs. (3.11.6)

ṁi = Lmi , (5.4.2)
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and Sect. 5.3 explained how their initial conditions can be determined by experiments
on identical samples of material in the current state so they are internal state variables
in the sense of Onat [31].

To further explore the arbitrariness of F, consider an initial zero-stress mate-
rial state (3.11.9) for which the measured values mi (0) of mi form a right-handed
orthonormal triad

mi j (0) = mi (0) · m j (0) = δi j . (5.4.3)

Furthermore, define the elastic deformation tensor Fe by

Fe = mi (t) ⊗ mi (0) . (5.4.4)

By definition, this tensor satisfies the evolution equation and initial condition

Ḟe = LFe , F(0) = I . (5.4.5)

Although mi (0) are measurable in the initial state and mi (t) are measurable in the
current state, the tensor Fe is not a state variable since it is impossible to know the
orientation of mi (0) in the reference state from experiments on the material in its
current state. In this regard, it is emphasized that there is no need for the second-
order tensor Fe because the microstructural vectorsmi with their elastic deformation
metricmi j are sufficient to characterize constitutive equations for general anisotropic
elastic response (5.3.4).

To be more specific, let Mi be an arbitrary right-handed orthonormal triad of
constant vectors Mi and define F by

F = mi ⊗ Mi . (5.4.6)

It follows that F satisfies the evolution equation and initial condition

Ḟ = LF , F(0) = mi (0) ⊗ Mi . (5.4.7)

However, since Mi are arbitrary orthonormal vectors and mi (0) are orthonormal
vectors, it also follows that the initial value of F is an arbitrary proper orthogonal
rotation tensor

F(0)TF(0) = I , (5.4.8)

with arbitrariness of the specification ofMi , which represents an arbitrary orientation
of the body in a reference configuration that cannot be determined by experiments
on the material in its current state.
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5.5 Homogeneity and Uniformity

This section presents a brief discussion of notions of homogeneous deformation, a
body that is materially uniform, a homogeneous body and a uniform material state.
More detailed discussion of these notions can be found in ([47], Sect. 27.3).

Homogeneous Deformation
A body is said to experience a homogenous deformation during the time period
t1 ≤ t ≤ t2 if the velocity gradient L is independent of x during this time period

L = L(t) , ∂L/∂x = 0 , for t1 ≤ t ≤ t2 . (5.5.1)

With the help of (3.13.3), it follows that the relative deformation gradient Fr from
the time t1 depends on time only and satisfies equations

Ḟr = LFr , Fr (t1) = I , Fr = Fr (t) for t1 ≤ t ≤ t2 . (5.5.2)

Moreover, with the help of (3.11.1), it follows that the total deformation gradient F
satisfies the evolution equation and initial condition

Ḟ = LF , F(X, t1) = F̄(X, t1) , (5.5.3)

where the value F̄(X, t1) of F at time t1 can be a function of position X. Using the
relative deformation gradient Fr (t), the exact solution of F during this time period
is given by

F(X, t) = Fr (t)F̄(X, t1) for t1 ≤ t ≤ t2 . (5.5.4)

In particular, it is noted that although the deformation is homogeneous during the time
period t1 ≤ t ≤ t2 the total deformation gradient F is not necessarily independent of
space X.

A Materially Uniform Body
A body is said to be materially uniform if the material functions that characterize
the response of the material are explicitly independent of space. For example, a
body made of an elastic material characterized by the strain energy function (5.2.1)
associated with the Lagrangian formulation

� = �̂(C) , (5.5.5)

is materially uniform if � depends on X only through the dependence of C = FTF
on X

∂�̂/∂X = 0 . (5.5.6)

To be precise, a superposed ˆ( ) has been used to indicate a specific functional depen-
dence of �̂(C) on C only so the dependence of � on X must be evaluated using the
chain rule of differentiation
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∂�/∂X = ∂�̂/∂C · ∂C/∂X . (5.5.7)

Similarly, a body made of an elastic material characterized by the strain energy
function (5.3.2) associated with the Eulerian formulation

� = �̂(mi j ) (5.5.8)

is materially uniform if � depends on x only through the dependence of elastic
deformation metric mi j on x

∂�̂/∂x = 0 , (5.5.9)

so that
∂�/∂x = (∂�̂/∂mi j ) (∂mi j/∂x) . (5.5.10)

For more general material response, like that of elastic–inelastic materials discussed
in Sect. 5.11 or thermoelastic materials and thermoelastic–inelastic materials dis-
cussed in Chap.6, all constitutive functions, including those in evolution equations,
must be explicitly independent of x for a body to be materially uniform.

A Uniform Material State
A body is said to be in a uniform material state if the body is materially uniform and
each response function characterizing the material has a value that is independent of
x for all points in the body. With regard to the Eulerian formulation, it is emphasized
that the notionof a uniformmaterial state neednot be connectedwith any specification
of a configuration of the body which places the body in space at a specified time.

Homogeneous Body
Abody is said to be ahomogeneous body if it ismaterially uniformand a configuration
exits for which it is also in a uniform material state.

Examples
To better understand the difference between a body that is materially uniform and
a homogeneous body, consider a cylindrical region that is materially uniform. Its
solid cylindrical inner core is a homogeneous body that has a zero-stress uniform
material state and its outer cylindrical shell is also a homogeneous body that has a
zero-stress uniformmaterial state. Moreover, consider the case when the outer radius
of the zero-stress inner core is larger than the inner radius of the zero-stress outer
cylindrical shell. By cooling the inner core or heating the outer cylindrical shell,
it is possible to assemble the inner core inside of the outer cylindrical shell. Then,
when the temperature in returned to a uniform value, the resulting body will have
residual stresses in both of its inner and outer regions even if the outer surface of
the cylindrical shell is traction free. The resulting body remains materially uniform
but is not in a uniform material state. Moreover, it is no longer a homogeneous body
since no configuration exists in which it can be in a uniform material state.

To better understand the notion of a uniform material state, consider a homoge-
neous elastic body which is in a uniform zero-stress material state. Then, load the
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body with a body force and traction vectors that cause inhomogeneous deformation.
The body remains homogeneous but the deformed material state is not in a uniform
material state.

Arbitrariness of the Reference Configuration
To examine the influence of arbitrariness of the choice of the reference configuration
in the Lagrangian formulation, consider a homogeneous body made from an elastic
material with the strain energy function

� = �̂(C) , C = FTF . (5.5.11)

In these expressions, the deformation gradient F is measured from a reference con-
figuration where the body is in a zero-stress uniform material state with F = I. Next,
consider an arbitrary change in the reference configuration with F̄measured relative
to the new reference configuration, such that

F = F̄A , detA(X) > 0 , C = AT C̄A , C̄ = F̄T F̄ , (5.5.12)

where A(X) is an arbitrary second-order tensor function of X only with positive
determinant. It then follows that the strain energy function can be expressed in terms
of C̄ and A in the form

� = �̄(C̄,A) = �̂(AT C̄A) . (5.5.13)

Since C̄ is the deformation relative to the new reference configuration and since A
can be an arbitrary function of X, it follows that the strain energy function �̄(C̄,A)

depends on X explicitly through the tensor A. This means that the notions of the
body beingmaterially uniformor homogeneous depend on the variables being used to
describe the response and on arbitrariness of the choice of the reference configuration.

In contrast, the Eulerian formulation for a homogeneous body with the strain
energy function

� = �̃(mi j ) , (5.5.14)

which is deformed from a zero-stress uniform material state is insensitive to changes
in the reference configuration with associated changes in the total deformation from
the reference configuration.

Influence of Inelasticity
Elastic–inelastic response will be discussed in detail in Sect. 5.11 and in Chap.6.
To discuss the influence of inelasticity on the motions of a body that is materially
uniform, a homogeneous body and a uniformmaterial state it is sufficient to consider
a homogeneous body with the strain energy function (5.5.14) which is initially in
a zero-stress uniform material state with mi j = δi j . Loading the body with a body
force and surface tractions can cause inhomogeneous total deformation with nonzero
inhomogeneous inelastic deformation rate.When all external loads are removed, this
inhomogeneous inelastic deformation rate causes the body to attain a nonuniform
material state with nonzero residual stresses. This unloaded body remains materially
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uniform but is no longer homogeneous since a configuration no longer exists for
which it is also in a uniform material state.

5.6 Material Symmetry

Consider a general nonlinear homogeneous elastic material which is initially in a
uniform zero-stress material state with initial orthonormal values Mi of the vectors
mi

mi (0) = Mi , Mi · M j = δi j , M1 × M2 · M3 = 1 . (5.6.1)

Also, consider a set of experiments where tension specimens are machined from
the material with different orientations relative to Mi . The dependence of the mea-
sured nonlinear response for specimens with different orientations characterizes the
material symmetry of the material. If the measured nonlinear response for different
specimens is different, then the material is denoted as anisotropic. Whereas, if the
measured nonlinear response for specimens with all possible orientations is the same
relative to the orientation of the specimen for all deformations, then the material is
denoted as isotropic.

To analyze this notion of material symmetry, consider a tension specimen that has
a fixed orientation relative to another orthonormal triad of vectors M̃i defined by the
orthonormal matrix Hi j , such that

M̃i = Hi jM j , Mi = HjiM̃ j ,

Hi j = M̃i · M j · , HimHjm = Hmi Hmj = δi j .
(5.6.2)

The deformation tensor
mi jMi ⊗ M j (5.6.3)

applies the elastic deformation metric mi j to a specimen which has a specific align-
ment relative to the vectors Mi and the deformation tensor

mi jM̃i ⊗ M̃ j (5.6.4)

applies the same elastic deformation metric mi j to a specimen which has the same
specific alignment relative to the vectors M̃i . These two deformation tensors (5.6.3)
and (5.6.4) are different and the components m̄i j of (5.6.4) relative to Mi are given
by

m̄i j = mmnM̃m ⊗ M̃n · Mi ⊗ M j = Hmi Hnjmmn . (5.6.5)

Consequently, the elastic deformation applied to a specimen taken in, say the M1

direction, will be the same as that applied to a specimen taken in the M̃1 direction
for all values of mi j and all orthogonal matrices Hi j .
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Now, the response of a nonlinear elastic material to arbitrary identical nonlinear
deformations mi j with different material orientations will be the same provided that

�̂(mi j ) = �̂(m̄i j ) = �̂(Hmi Hnjmmn) (5.6.6)

or
�̃(Je,m

′
i j ) = �̃(Je, m̄

′
i j ) = �̃(Je, Hmi Hnjm

′
mn) (5.6.7)

hold for all possible deformations mi j , Je and m ′
i j . In other words, the functional

forms of the strain energies �̂ and �̃ remain form-invariant to a group of orthogonal
transformations Hi j which characterize the material symmetries exhibited by a given
material. For the case of crystalline materials these symmetry groups can be related
to the different crystal structures.

For themost general anisotropic elastic response, thematerial has no symmetry, so
the group of Hi j contains only the identity δi j . Whereas an isotropic elastic material
has complete symmetry, so the group of Hi j is the full orthogonal group. Furthermore,
it is important to emphasize that the notion of material symmetry is necessarily
referred to identifiable material directions which are naturally represented by the
vectors mi .

Moreover, the dependence of the functional forms �̂(mi j ) and �̃(Je,m ′
i j ) on

the material directions mi is explicit and is used to determine the initial values
of mi . In particular, any anisotropic response of the material is measured relative
to the microstructural vectors mi , which causes the characterization of anisotropy
to be independent of arbitrariness of a specification of a reference configuration.
Furthermore, any indeterminacy of mi in the current state must be compensated by
the material symmetry of the strain energy function rendering this indeterminacy
irrelevant for the response of the material.

5.7 Kinematic Constraints

Some materials have special properties that can be exploited to obtain approximate
constitutive equations that simplify analytical solutions to problems. For example,
rubber is a material with its resistance to volumetric deformation being much larger
than its resistance to distortional deformations. This means that large changes in
pressure occur for small changes in volume. From a mathematical point of view, it
is convenient to consider a kinematic condition which constrains the material to be
incompressible.

Using (3.11.5), it follows that an elastically incompressible material can only
experience deformations which satisfy the kinematic constraint

G = Je − 1 = 0 ⇒ I · D = 0 . (5.7.1)
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Another example is a fiber reinforced composite with stiff fibers relative to the
response of its matrix. For such a material it is possible to approximate the fibers
as being inextensible. Using the microstructural vectors mi in (3.11.6), it follows
that a material fiber in the m1 direction will remain inextensible (in tension and
compression) if the material satisfies the kinematic constraint

G = m11 − 1 = 0 ⇒ (m1 ⊗ m1) · D = 0 . (5.7.2)

In general, consider a kinematic constraint of the form

G = G(mi j ) = 0 ⇒ � · D = 0 , � ≡ ∂G

∂mi j
mi ⊗ m j , (5.7.3)

which can be rewritten in the form

∂G

∂mi j
Di j = 0 , Di j = D · mi ⊗ m j . (5.7.4)

In particular, it is noted that � is a symmetric second-order tensor that is independent
of the rate D

�T = � , (5.7.5)

and under SRBM it satisfies the transformation relation

�+ = Q�QT . (5.7.6)

Moreover, consider a general unconstrained material that is characterized by a
constitutive equation T̂ for the Cauchy stress T. Next, consider a model of a con-
strained material for whichT is additively separated into the constitutive part T̂ and a
part T̄, called the constraint response, which enforces the kinematic constraint (5.7.3)

T = T̂ + T̄ . (5.7.7)

Although T̂ characterizes the response to general deformations, its value in (5.7.7) is
determined by evaluating T̂ only for deformations that satisfy the imposed kinematic
constraint. Moreover, T̂ automatically satisfies the restriction

T̂T = T̂ (5.7.8)

due to the balance of angular momentum and it transforms under SRBM, such that

T̂+ = QT̂QT . (5.7.9)

Now, since the reduced form (4.4.10) of the balance of angular momentum requires
T to be a symmetric tensor, the constraint response T̄must also be a symmetric tensor
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T̄T = T̄ . (5.7.10)

In addition, T̄ is assumed to be workless

T̄ · D = 0 , (5.7.11)

and independent of the rate D.
Next, multiplying (5.7.3) by an arbitrary scalar 	 and subtracting the result from

(5.7.11) yields
(T̄ − 	 �) · D = 0 . (5.7.12)

Now, it is noted that the coefficient of D in this equation is a symmetric tensor that
is independent of D and that this equation must hold for arbitrary rates D that satisfy
the constraint (5.7.4). Moreover, since the constraint (5.7.4) is nontrivial, at least one
component of � is nonzero. For example, let ∂G/∂m33 be nonzero. This means that
the component D33 can be used to satisfy the constraint (5.7.4) for arbitrary values
of the other components Di j . By choosing the value of 	 in (5.7.12) so that the
coefficient of D33 vanishes, and choosing the other components of Di j arbitrarily, it
follows that the constraint response T̄ must be given by

T̄ = 	 � , (5.7.13)

with 	 being an arbitrary function of x and t that is determined by the equations
of motion and boundary conditions. Due to (5.7.5) it can be seen that this form
for T̄ automatically satisfies the restriction (5.7.10) due to the balance of angular
momentum. Moreover, since T in (5.7.7) appears in the balance of linear momentum
and characterizes the response of the constrained material, the restriction (R-2) in
(4.7.3b), which defines how the constitutive response of the material relative to its
orientation is the same for all SRBM, requires the constraint response T̄ to satisfy
the transformation relation

T̄+ = 	+ �+ = QT̄QT = 	Q�QT , (5.7.14)

which with the help of (5.7.6) requires the arbitrary function 	 to be unaffected by
SRBM

	+ = 	 . (5.7.15)

In addition, since the constraint response T̄ is workless (5.7.11), it follows that

T · D = T̂ · D , (5.7.16)

so the constraint response does not influence the restriction (4.5.7) characterizing the
rate of material dissipation.

For the special case of an incompressible material, the constraint response is given
by
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T̄ = − p̄ I , (5.7.17)

where p̄ is an arbitrary function of x and t that is determined by the equations of
motion and boundary conditions.

Furthermore, it is noted that up to five independent kinematic constraints of the
type (5.7.3) can be imposed simultaneously without causing T to be totally indeter-
minate.

5.8 Isotropic Nonlinear Elastic Materials

For an isotropic nonlinear elastic material the strain energy function (5.6.7) remains
form-invariant for the full orthogonal group of Hi j . This means that� can depend on
m ′

i j only through its invariants. This alsomeans that experiments on identical samples
of the material in its current state cannot distinguish between the microstructural
vectors m′

1,m
′
2 and m′

3 so the material response functions must be insensitive to
this arbitrariness ofm′

i . Consequently, the symmetric, positive-definite, unimodular
tensor B′

e defined in (3.11.19)
B′
e = m′

i ⊗ m′
i (5.8.1)

can be used to characterize the response of an elastically isotropic material to elastic
distortional deformations.

To discuss the invariants of m ′
i j it is recalled from (3.3.17) and (3.11.24) that the

unimodular elastic distortional deformation tensor B′
e satisfies the equations

detB′
e = B′

em
′
1 × B′

em
′
2 · B′

em
′
3

m′
1 × m′

2 · m′
3

= m ′
i1m

′
i × m ′

j2m
′
j · m ′

k3m
′
k ,

detB′
e = εi jkm

′
i1m

′
j2m

′
k3 ,

detB′
e = 1

6
εi jkεrstm

′
irm

′
jsm

′
kt = det(m ′

i j ) = 1 ,

(5.8.2)

where use has been made of (3.11.14) to conclude that

εi jk = m′
i × m′

j · m′
k . (5.8.3)

Thus, the metric m ′
i j of elastic distortional deformations has only two nontrivial

independent invariants which can be specified by

α1 = m ′
i i = m′

i · m′
i = B′

e · I , α2 = m ′
i jm

′
i j = B′

e · B′
e . (5.8.4)

Consequently, for an isotropic elastic material the strain energy function takes the
form

� = �(Je, α1, α2) . (5.8.5)
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Next, using the evolution equation (3.11.5) for the elastic dilatation Je

J̇e = Je D · I , (5.8.6)

the evolution equations for the scalar measures α1 and α2 of elastic distortional
deformation are given by

α̇1 = 2B′′
e · D , α̇2 = 4

(
B′2
e − 1

3
α2I

)
· D , (5.8.7)

where B′′
e is the deviatoric part of B′

e. Consequently, the material derivative of the
strain energy function (5.8.5) is given by

ρ�̇ =
[
ρ Je

∂�

∂ Je
I + 2ρ

∂�

∂α2
B′′
e + 4ρ

∂�

∂α2

(
B′2
e − 1

3
α2I

)]
· D . (5.8.8)

Then, the condition that thematerial response of an elastic material is non-dissipative
for all motions

T · D = ρ�̇ (5.8.9)

requires the stress to be given in the form

T = −p I + T′′ , p = −ρ Je
∂�

∂ Je
,

T′′ = 2ρ
∂�

∂α2
B′′
e + 4ρ

∂�

∂α2

(
B′2
e − 1

3
α2I

)
.

(5.8.10)

In particular, notice that the deviatoric stress T′′ vanishes whenever B′
e = I so the

condition (5.3.5) characterizing a zero-stress material state requires

∂�

∂ Je
= 0 for Je = 1 and B′

e = I . (5.8.11)

A Compressible Neo-Hookean Material
Significant advances in the theory of finite elasticity were made by Rivlin and co-
workers [2] studying the response of natural rubber, which is a material that can
experience large distortional deformations and is relatively stiff to volumetric defor-
mations. For such a material it is convenient to additively separate the strain energy
function into a part that controls the response to elastic dilatation and depends only
on Je and another part that depends only on elastic distortional deformations through
the invariants α1, α2. For the simplest compressible Neo-Hookean the strain energy
function is specified by

ρz� = f (Je) + 1

2
μ(α1 − 3) , μ > 0 , (5.8.12)
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where μ is the zero-stress shear modulus and f (Je) is a function that satisfies the
conditions

f (1) = 0 ,
d f

d Je
(1) = 0 ,

d2 f

d J 2
e

(1) > 0 . (5.8.13)

It then follows from (4.1.16)

Je = ρz

ρ
, (5.8.14)

and (5.8.10) that the pressure p and deviatoric stress T′′ for this material are given
by

p = − d f

d Je
, T′′ = J−1

e μB′′
e . (5.8.15)

A Compressible Mooney–Rivlin Material
For a compressible Mooney–Rivlin material the strain energy function is specified
by

ρz� = f (Je) + 1

2
μ[(1 − 4C)(α1 − 3) + C(α2 − 3)] , (5.8.16)

where f (Je) satisfies the conditions (5.8.13), μ is the positive zero-stress shear
modulus andC is amaterial constant. Then, using (5.8.14) the associated constitutive
equations for p and T′′ are given by

p = − d f

d Je
, T′′ = J−1

e μ

[
(1 − 4C)B′′

e + 2C

(
B′2
e − 1

3
α2I

)]
. (5.8.17)

A Specific Function for Dilatation
As a special case, consider a polyconvex function f (Je) for the strain energy of
dilatation given by (e.g., [45])

f (Je) = 1

2
k

[
1

2
(J 2

e − 1) − ln(Je)

]
, (5.8.18)

with the positive constant k being the zero-stress bulk modulus. It then follows from
(5.8.15) that the pressure is given by

p = 1

2
k

(
1

Je
− Je

)
. (5.8.19)

This function has the property that the pressure becomes infinite as Je approaches
zero and it approaches negative infinity as Je approaches infinity.

Incompressible Neo-Hookean and Mooney–Rivlin Materials
Most often, Neo-Hookean andMooney–Rivlin materials are considered to be incom-
pressible. Specifically, using the constraint (5.7.1), the separation (5.7.7), the con-
straint response (5.7.17) and the constitutive equations (5.8.15), (5.8.17) and (5.8.19),
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it follows that the stress for an incompressible Neo-Hookean material is given by

T = − p̄ I + μB′′
e , (5.8.20)

and the stress for an incompressible Mooney–Rivlin material is given by

T = − p̄ I +
[
(1 − 4C)B′′

e + 2C

(
B′2
e − 1

3
α2I

)]
, (5.8.21)

where p̄ is an arbitrary function of x and t determined by the equations of motion
and boundary conditions.

An Elastic Material with a Quadratic Strain Energy Function
For an elastic material with a quadratic strain energy function, use is made of the
elastic strains ei j defined in (3.11.33)

ei j = 1

2
(mi j − δi j ) , (5.8.22)

relative to zero-stress material states defined in (3.11.9)

mi j = δi j for any zero-stress material state , (5.8.23)

to express � in the form

ρz� = 1

2
Ki jklei j ekl , (5.8.24)

where Ki jkl are constant components of a fourth-order stiffness tensor having the
symmetries

K jikl = Ki jlk = Kkli j = Ki jkl . (5.8.25)

It then follows from (5.3.4) that the Cauchy stress for this material is given by

T = J−1
e Ki jklekl mi ⊗ m j . (5.8.26)

To analyze the material symmetry of the strain energy function (5.8.24), use is
made of the condition (5.6.6) to deduce that

[Ki jkl − HimHjnHkr Hls Kmnrs]ei j ekl = 0 , (5.8.27)

for all strains ei j which requires Ki jkl to satisfy the condition that

Ki jkl = HimHjnHkr Hls Kmnrs , (5.8.28)
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where Hi j is an orthogonal tensor which characterizes the symmetry of the material
defined in its zero-stress material state with microstructural vectors mi forming a
right-handed orthonormal triad.

The following considers four cases of materials:

Case I: General Anisotropic
If the material posseses no symmetry then the symmetry group of Hi j consists only
of Hi j = δi j and the 34 = 81 constants Ki jkl are restricted only by the symmetries
(5.8.25) which reduce the number of independent constants to the 21 constants given
by

Ki jkl =
⎛
⎝ K1111 K1112 K1113 K1122 K1123 K1133 K1212

K1213 K1222 K1223 K1233 K1313 K1322 K1323

K1333 K2222 K2223 K2233 K2323 K2333 K3333

⎞
⎠ . (5.8.29)

Case II: Symmetry About One Plane
If the material possesses symmetry about the plane normal to m3 in a zero-stress
material state then the restrictions (5.8.28) must hold for the group Hi j that includes

Hi j =
⎛
⎝ 1 0 0

0 1 0
0 0 −1

⎞
⎠ , (5.8.30)

so that from (5.8.29) and (5.8.30), it follows that any component in which the index
3 appears an odd number of times must vanish

K1113 = K1123 = K1213 = K1223 = K1322 = K1333 = K2223 = K2333 = 0 .

(5.8.31)
Thus, the remaining 13 independent constants are given by

Ki jkl =
(

K1111 K1112 K1122 K1133 K1212 K1222 K1233

K1313 K1323 K2222 K2233 K2323 K3333

)
. (5.8.32)

Case III: Symmetry About Two Orthogonal Planes
If the material possesses symmetry about both planes with normals the m3 and m2

in a zero-stress material state, then the restrictions (5.8.28) must hold for the group
Hi j that includes (5.8.30) and

Hi j =
⎛
⎝ 1 0 0

0 −1 0
0 0 1

⎞
⎠ , (5.8.33)

so that from (5.8.32) and (5.8.33), it follows that any component in which the index
2 appears an odd number of times must vanish

K1112 = K1222 = K1233 = K1323 = 0 . (5.8.34)
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Thus, the remaining 9 independent constants are given by

Ki jkl =
(

K1111 K1122 K1133 K1212 K1313 K2222 K2233

K2323 K3333

)
. (5.8.35)

Notice from (5.8.35) that the index 1 only appears an even number of times so that
the material also possesses symmetry about the plane normal to m1 in a zero-stress
material state. This stiffness characterizes an orthotropic elastic material.

Case IV: Isotropic Elastic Material
If the material possesses symmetry with respect to the full orthogonal group then the
material is called isotropic with a center of symmetry. Using the results in Appendix
E, it follows that the material is characterized by only two independent constants λ

and μ, called Lame’s constants, such that

K1111 = K2222 = K3333 = λ + 2μ , K1122 = K1133 = K2233 = λ ,

K1212 = K1313 = K2323 = μ ,
(5.8.36)

and the fourth-order tensor Ki jkl can be expressed in the form

Ki jkl = λδi jδkl + μ(δikδ jl + δilδ jk) . (5.8.37)

It also follows that the strain energy (5.8.24) and the stress (5.8.26) can be written
in the forms

ρz� = 1

2
λ eii e j j + μ ei j ei j ,

T = J−1
e (λemmδi j + 2μei j )(mi ⊗ m j ) .

(5.8.38)

Notice that this strain energy is a function of the invariants of ei j , as it should be for
an isotropic material.

Linearized Constitutive Equations
To obtain the fully linearized constitutive equation, it is convenient to consider the
initial state of the material to be at zero stress with the vectors mi specified by the
orthonormal triadMi , such that

mi (0) = Mi , Mi · M j = δi j , M1 × M2 · M3 = 1 . (5.8.39)

Recalling that the displacement u relative to this initial state is given by

u = x − X , X = x(0) , (5.8.40)

and taking tn = 0 in (3.13.3), the relative deformation gradient Fr is given by

Fr = I + ∂u/∂X . (5.8.41)
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Then, neglecting quadratic terms in the displacement u and its derivatives, it follows
from (3.13.9) that mi can be approximated by

mi = (I + ∂u/∂X)Mi . (5.8.42)

Next, separating the displacement gradient into its symmetric and skew-symmetric
parts like in (4.10.7) yields

∂u/∂X = (εi j + ωi j )Mi ⊗ M j ,

εi j = 1

2
[∂u/∂X + (∂u/∂X)T ] · Mi ⊗ M j ,

ωi j = 1

2
[∂u/∂X − (∂u/∂X)T ] · Mi ⊗ M j ,

(5.8.43)

so the vectors mi can be approximated by

mi = (δi j + εi j + ωi j )Mi . (5.8.44)

It then follows that the metric mi j and the strains ei j are approximated by

mi j = δi j + 2εi j , ei j = εi j , (5.8.45)

and the stress is approximated by

T = (λεmmδi j + 2μεi j )(Mi ⊗ M j ) . (5.8.46)

Restrictions on the Material Constants
From physical considerations it is expected that any strain from a zero-stress material
state should cause an increase in strain energy. Mathematically this means that the
strain energy function is positive-definite

� > 0 for any ei j �= 0 . (5.8.47)

Recalling that the strain ei j can be separated into its spherical and deviatoric parts

ei j = 1

3
emmδi j + e′′

i j , e′′
mm = 0 , (5.8.48)

the isotropic strain energy function (5.8.38) can be rewritten in the form

ρz� = 1

2

(
3λ + 2μ

3

)
(eii e j j ) + μe′′

i j e
′′
i j . (5.8.49)

Since the terms eii and e′′
i j e

′′
i j are independent quantities, this strain energy will be

positive-definite whenever
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Table 5.1 Relationships between the material constants for an isotropic linear elastic material

λ μ E ν k

λ , μ
μ(3λ+2μ)

λ+μ
λ

2(λ+μ)
3λ+2μ

3

λ , ν
λ(1−2ν)

2ν
λ(1+ν)(1−2ν)

ν
λ(1+ν)

3ν

λ , k 3(k−λ)
2

9k(k−λ)
3k−λ

λ
3k−λ

μ , E μ(2μ−E)
E−3μ

E−2μ
2μ

μE
3(3μ−E)

μ , ν
2μν
1−2ν 2μ(1 + ν)

2μ(1+ν)
3(1−2ν)

μ , k 3k−2μ
3

9kμ
3k+μ

3k−2μ
2(3k+μ)

E , ν Eν
(1+ν)(1−2ν)

E
2(1+ν)

E
3(1−2ν)

E , k 3k(3k−E)
9k−E

3Ek
9k−E

3k−E
6k

ν , k 3kν
1+ν

3k(1−2ν)
2(1+ν)

3k(1 − 2ν)

μ = (E−3λ)+
√

(E−3λ)2+8λE
4 , ν = −(E+λ)+

√
(E+λ)2+8λ2

4λ

k = (3λ+E)+
√

(3λ+E)2−4λE
6

3λ + 2μ

3
> 0 , μ > 0 . (5.8.50)

For the linearized theory, eii characterizes dilatational deformations and e′′
i j charac-

terizes distortional deformations.
Moreover, it is noted that this isotropic elastic material with a quadratic strain

energy function can be characterized by any two of the following material constants:
λ (Lame’s constant); μ (shear modulus); E (Young’s modulus); ν (Poisson’s ratio);
or k (bulk modulus), which are interrelated by the expressions in Table 5.1. Using
these expressions it can be shown that the restrictions (5.8.50) also require

k > 0 , E > 0 , −1 < ν <
1

2
> 0 . (5.8.51)

Limitations of a Quadratic Strain Energy Function
The anisotropic elastic material characterized by (5.8.24) and (5.8.26), and the
isotropic elastic material characterized by (5.8.38) both have a strain energy function
that is quadratic in the strains ei j , with the Cauchy stress T depending nonlinearly
on Je and ei j since the vectors mi also depend on the strains ei j . These constitutive
equations are valid for large rotations and moderate strains ei j .

To see that these quadratic strain energy functions are limited to moderate strains
consider the simple case of an isotropic elasticmaterial (5.8.38) experiencing uniaxial
stress in the m1 direction for which

m1 = ae1 , m2 = be2 , m3 = be3 , Je = ab2 ,

e11 = 1

2
(a2 − 1) , e22 = 1

2
(b2 − 1) ,

(5.8.52)
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where ei are fixed rectangular Cartesian base vectors. In these expressions, a is the
axial stretch and b is the lateral stretch, both measured from a zero-stress material
state. For uniaxial stress

T = T11e1 ⊗ e1 , (5.8.53)

and the constitutive equations yield the restrictions

T = T11e1 ⊗ e1 ,

T11 = T · e1 ⊗ e1 = a

b2
[(λ + 2μ)e11 + 2λe22]

= 2μ

(1 − 2ν)

( a

b2

)
[(1 − ν)e11 + 2νe22] ,

T · e2 ⊗ e2 = T · e3 ⊗ e3 = 1

a
[λe11 + 2(λ + μ)e22]

= 2μ

(1 − 2ν)

(
1

a

)
(νe11 + e22) = 0 ,

(5.8.54)

where use has been made of Table 5.1 to write λ in terms of the zero-stress shear
modulus μ and Poisson’s ratio ν. Then, the solution of these equations is given by

e22 = −νe11 , T11 = 2μ(1 + ν)
( a

b2

)
e11 , (5.8.55)

and the restrictions on the strains can be solved to obtain

b =
√
1 + ν(1 − a2) . (5.8.56)

For Poisson’s ratio in the range

0 < ν ≤ 1

2
, (5.8.57)

it can be seen that the maximum axial stretch amax occurs when b vanishes and that
the maximum lateral stretch bmax occurs when a vanishes, for which

amax =
√

1+ν
ν

, b = 0 , Je = 0 , T11 = ∞ ,

bmax = √
1 + ν , a = 0 , Je = 0 , T11 = 0 .

(5.8.58)

These results are unphysical because they indicate that infinite tension causes a finite
axial stress with zero volume and that the material can be compressed to zero length
with a finite cross section, zero volume and zero stress.

In contrast, the stressT for the compressible Neo-Hookean material characterized
by (5.8.1), (5.8.12), (5.8.15), (5.8.18) and (5.8.19) is given by

T = −1

2
k

(
1

Je
− Je

)
I + J−1

e μB′′
e , k = 2μ(1 + ν)

3(1 − 2ν)
, (5.8.59)
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Fig. 5.1 Uniaxial tension: comparison of the responses predicted by the quadratic strain energy
function (Q) and the Neo-Hookean strain energy function (NH) for ν = 1/3

which for uniaxial stress (5.8.53) yields the restrictions

T11 = T · (e1 ⊗ e1 − e2 ⊗ e2) = J−5/3
e μ(a2 − b2) , (5.8.60a)

p = −T11
3

= k

2

(
Je − 1

Je

)
. (5.8.60b)

The solution of these equations can be parameterized by the axial stress T11.
Specifically, (5.8.60b) can be solved for Je to obtain
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Je = T11
3k

+
√
1 +

(
T11
3k

)2

. (5.8.61)

Then, using the expression (5.8.52) for Je, the lateral stretch b is determined by

b =
√

Je
a

, (5.8.62)

so Eq. (5.8.60a) can be rewritten as a cubic equation for the axial stretch a of the
form

a3 −
(
J 5/3
e T11
μ

)
a − Je = 0 , (5.8.63)

which can be solved analytically choosing the root for which a = 1 when T11 = 0.
Figure 5.1 shows the responses predicted for uniaxial tension by the quadratic

strain energy function (Q) and the Neo-Hookean strain energy function (NH) for
ν = 1/3. Figure5.1a, b plot the normalized axial stress T11 for different axial stretch
regions, Fig. 5.1c plots the lateral stretch b, Fig. 5.1d plots the dilatation Je and
Fig. 5.1e plots the nominal Poisson ratio ν̄ defined by

ν̄ = −e22
e11

. (5.8.64)

From these figures it can be seen that the twomodels predict nearly identical response
only for a small axial stretch range about zero stress. Most importantly it can be seen
that the Neo-Hookean model predicts physically reasonable results for the full range
of stretch. Orthotropic invariants for thermoelastic–inelastic soft materials which can
experience large thermoelastic deformations are discussed in Sect. 6.6.

5.9 Viscous and Inviscid Fluids

This section discusses purely mechanical constitutive equations for compressible
viscous and inviscid fluids. From a physical point of view it is clear that the stress T
in a compressible fluid must depend on the elastic dilatation Je, which is a measure
of the fluid’s density. Moreover, experience with stirring honey indicates that it is
harder to stir the honey faster. This suggests that T will also depend on the velocity
gradient L. In addition, the pressure required to pump a viscous fluid through a pipe
depends on the flow rate. Therefore, T might also depend on the velocity v. Based
on these observations, as a first attempt to propose a constitutive equation for fluids,
it is assumed that the stress can be expressed in the form

T = T̃(Je, v,D,W) , (5.9.1)
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where for convenience L has been separated into its symmetric part D and its skew-
symmetric partW.

In the following, use will be made of invariance under SRBM to develop restric-
tions on the functional form (5.9.1). Since (5.9.1) must hold for all motions it must
also hold for SRBM so that

T+ = T̃(J+
e , v+,D+,W+) . (5.9.2)

However, under SRBM the Cauchy stress T transforms by

T+ = QTQT , (5.9.3)

where Q is a proper orthogonal tensor function of time only. Thus, the functional
form (5.9.1) must satisfy the restrictions

T̃(J+
e , v+,D+,W+) = QT̃(Je, v,D,W)QT . (5.9.4)

Recalling that under SRBM

Q̇ = �Q , �T = −� ,

J+
e = Je , v+ = ċ + �Qx + Qv ,

D+ = QDQT , W+ = QWQT + � ,

(5.9.5)

equation (5.9.4) requires

T̃(Je, ċ + �Qx + Qv,QDQT ,QWQT + �) = QT̃(Je, v,D,W)QT . (5.9.6)

Since (5.9.6) must hold for all motions and all SRMB, necessary restrictions on the
functional form T̃ can be obtained by considering special SRBMs.

Superposed Translational Velocity
This case considers superposed translational velocity with

ċ �= 0 , Q = I , Q̇ = 0 . (5.9.7)

Substituting (5.9.7) into (5.9.6) yields

T̃(Je, ċ + v,D,W) = T̃(Je, v,D,W) . (5.9.8)

Since this equation must hold for arbitrary values of ċ and the right-hand side is
independent of ċ, it follows that the Cauchy stress cannot depend on the velocity v.
Thus, T must be expressed as another function T̄ of Je,D and W only

T = T̄(Je,D,W) , (5.9.9)
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and the restriction (5.9.6) requires

T̄(Je,QDQT ,QWQT + �) = QT̄(Je,D,W)QT . (5.9.10)

Superposed Rate of Rotation
This case considers superposed rate of rotation. Since (5.9.10) must hold for all
skew-symmetric tensors � and the right-hand side of this equation is independent
of �, it follows that the Cauchy stress T cannot depend on the spin tensorW. Thus,
the most general viscous fluid is characterized by the constitutive equation

T = T̂(Je) + v
T(Je,D) ,

v
T(Je, 0) = 0 , (5.9.11)

where T̂(Je) characterizes the elastic response due to dilatation and
v
T(Je,D) char-

acterizes the viscous response. Also, these constitutive equations must satisfy the
restrictions that under SRBM

T̂(Je) = QT̂(Je)QT ,
v
T(Je,QDQT ) = Q

v
T(Je,D)QT , (5.9.12)

which require T̂ to be an isotropic tensor and
v
T to be an isotropic tensor function of

D.

Reiner-Rivlin Fluid

Since the restrictions (5.9.12) must hold for all proper orthogonal Q the function
v
T

is called an isotropic tensor function of its argument D. This notion of an isotropic
tensor function should not be confused with the notion of an isotropic tensor as
discussed in Appendix E. Furthermore, since the restriction (5.9.12) is unaltered

by the interchange of Q with −Q, it follows that
v
T is a hemotropic function of

D (isotropic with a center of symmetry). Now, using a result from the theory of

invariants, it follows that the most general form of T̂ and
v
T can be expressed as

T̂(Je) = − p̂(Je) I ,
v
T = d0 I + d1 D + d2 D2 , (5.9.13)

where p̂(Je) is a function of Je only, d0, d1 and d2 are scalar functions of Je and the
three independent invariants ofD. Alternatively, using the separation of deformation

rate into dilatational and distortional deformation rates,
v
T can be written in the form

v
T = d̄0 (D · I) I + d̄1 D′′ + d̄2 Sign(D′′3 · I)

[
D′′2 − 1

3
(D′′ · I) I

]
, (5.9.14)

where D′′ is the deviatoric part of D, d̄0, d̄1 and d̄2 are scalar functions of Je,D · I,
the two independent invariants of D′′ and the function Sign(x) is defined by
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Sig(x) = 1 for x ≥ 0 , Sig(x) = −1 for x < 0 . (5.9.15)

The constitutive equation characterized by (5.9.11) with the expressions (5.9.13) for
the stressT described a Reiner-Rivlin fluid. An alternative form of this Reiner-Rivlin
fluid is characterized by (5.9.11) for the total stress T, (5.9.13) for the elastic stress

T̂ and (5.9.14) for the viscous stress
v
T. Moreover, the strain energy is taken to be a

function of the dilatation
� = �̂(Je) , (5.9.16)

so the rate material dissipation (4.5.7) requires

D =
[
− p̂(Je) − ρz

∂�̂

∂ Je

]
D · I + v

T · D ≥ 0 , (5.9.17)

where use has been made of the expression (5.8.14) for the elastic dilatation Je.

Inviscid Fluid
For an inviscid fluid the Cauchy stress is independent of the rate of deformation D

so that
v
T vanishes in (5.9.13) and (5.9.14) and (5.9.17) requires

D =
[
− p̂(Je) − ρz

∂�̂

∂ Je

]
D · I ≥ 0 . (5.9.18)

Since the coefficient ofD · I is independent of rate, it can be shown that for an inviscid
fluid

T = T̂ = − p̂(Je) I , p̂(Je) = −ρz
∂�̂

∂ Je
. (5.9.19)

This means for an inviscid fluid the traction vector t always acts normal to the surface
on which it is applied

t = Tn = − p̂ n , (5.9.20)

and the pressure p̂ is a function of the elastic dilatation Je only.

Restrictions on a Reiner-Rivlin Fluid

Without specifying the functional form of
v
T it is not possible to obtain further restric-

tions using the dissipation equation (5.9.17). However, it is reasonable to assume that
the elastic part of the stress is the same as that for an inviscid fluid which is given
by (5.9.19) so the stress and the rate of material dissipation (5.9.17) associated with
the viscous stress (5.9.14) become

T = − p̂(Je) I + v
T(Je,D) , p̂(Je) = −ρz

∂�̂

∂ Je
,

D = v
T(Je,D) · D = d̄0 (D · I)2 + d̄1 D′′ · D′′ + d̄2 |D′′3 · I| ≥ 0 ,

(5.9.21)
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with the rate of material dissipation restricting the functional form for the viscous

stress
v
T. Sufficient but not necessary conditions forD ≥ 0 are given by

d̄0 ≥ 0 , d̄1 ≥ 0 , d̄2 ≥ 0 . (5.9.22)

Newtonian Viscous Fluid
A Newtonian viscous fluid is a special case of a Reiner-Rivlin fluid in which the

viscous stress
v
T is a linear function of the rate of deformation D. For this case,

v
T

reduces to
v
T = λ(D · I) I + 2μD′′ , (5.9.23)

where λ and μ are scalar functions of Je only. Moreover, it follows that
v
T can be

rewritten in the alternative form

T = − p̂(Je) I + v
T ,

v
T = − v

p I + 2μD′′ ,

p = − 1
3T · I = p̂ + v

p ,
v
p = − 1

3

v
T · I = −λD · I ,

(5.9.24)

which shows that the total pressure p has an elastic part p̂ and a viscous part
v
p that

depends on the rate of volume expansionD · I with λ being the dilatational viscosity
coefficient. Also, the rate of material dissipation (4.5.7) is satisfied provided that

D = v
T · D = λ (D · I)2 + 2μD′′ · D′′ ≥ 0 ,

λ ≥ 0 , μ ≥ 0 .
(5.9.25)

5.10 Viscous Dissipation

A simple generalized nonlinear Kelvin–Voigt model (see Fig. 5.2) for viscous dissi-
pation can be proposed by adding the response of the viscous part of a Newtonian
viscous fluid to that of a general elastic material. Specifically, for this model the
Cauchy stress T is proposed in the form

T = T̂ + v
T ,

v
T = λ (D · I) I + 2μD′′ , λ ≥ 0 μ ≥ 0 , (5.10.1)

where T̂ is the response of a general nonlinear elastic material with strain energy �

that satisfies equation
T̂ · D = ρ�̇ , (5.10.2)

for all motions and λ,μ are non-negative functions of Je that control the viscosity to
dilatational deformation rate and to distortional deformation rate, respectively. Also,
for this material the rate of material dissipation (4.5.7) requires
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Fig. 5.2 Sketch of a
nonlinear Kelvin–Voigt
model with an elastic
component in parallel with a
viscous component

Viscous component

Elastic component

D = v
T · D = λ (D · I)2 + 2μ (D′′ · D′′) ≥ 0 , (5.10.3)

which is automatically satisfied. Moreover, it follows that when λ and μ are both
positive, dissipation continues until the rate of deformation vanishes D = 0 with
T = T̂.

If the elastic part of the response is isotropic then the strain energy is given by
(5.8.5) and the stress T̂ is given by (5.8.10). Alternatively, if the elastic part of the
response is anisotropic then the strain energy is given by (5.3.9) and the stress T̂ is
given by (5.3.11). For either case, this model proposes isotropic viscous dissipation.

5.11 Elastic–Inelastic Materials

Figure5.3a shows a sketch of the stress–strain response of a typical metal to uniaxial
stress loading. The quantity T11 is the total axial component of the Cauchy stress
T and the quantity E1 is the total axial extension. The material is loaded in tension
along the path OABCD, unloaded along DE , reloaded along EFGH , unloaded
along H I and reloaded in compression along I J K L . Inspection of the points C, E
and L in Fig. 5.3a reveals that the stress in an elastic–plastic material can have
significantly different values for the same value of axial extension E1. Thismeans that
the response of an elastic–plastic material depends on the past history of deformation
(i.e., the responses to the deformation histories OABC , OAB − E and OAB − L
are different).

The points A, F, J in Fig. 5.3a represent points on the loading paths beyondwhich
the stress–strain relationship becomes nonlinear. Although the curve OABCD is
nonlinear it is not possible to determine whether the response is elastic or elastic–
inelastic until unloading is considered. Since the response shown in Fig. 5.3a does
not unload along the same loading path, it is clear that the response is not elastic,
but rather is elastic–inelastic. Moreover, B,G and K represent the points on the
loading paths beyond which some detectable value of strain relative to the peak
strain (normally taken to be 0.2%) remains when the material is unloaded to zero
stress. These points are called the yield points and deformation beyond them causes
permanent changes in the response of thematerial. It is also important tomention that
the paths BCD, GH and K L represent strain hardening paths where the magnitude
of the stress increases with increasing effective inelastic deformation.
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Fig. 5.3 a A sketch of the stress–strain response of a typical metal to uniaxial stress; b idealization
of the stress–strain response of a metal to uniaxial stress

To model the material response shown in Fig. 5.3a it is common to separate the
response into two parts: elastic response which is reversible and inelastic response
which is irreversible. Also, the material response is idealized as shown in Fig. 5.3b
by making the following assumptions:

(a) There are distinct yield points (A, B), (D, F,G) and (J, K ) that form the bound-
ary between elastic and inelastic responses.

(b) Unloading along DE and reloading along EF follow the same path.

Lagrangian Formulations
Lagrangian formulations of plasticity (inelasticity) enrich the theory of hyperelastic
solids with a plastic deformation measure that captures observed effects of history
and rate dependence of material response. A summary of the small deformation
theory within the context of thermodynamics can be found in the classical paper by
Naghdi [28]. Unfortunately, the large deformation theory of plasticity still is plagued
with controversies, some of which have been discussed in the critical review [29].
This section discusses three prominent formulations of large deformation theory:
one by Green and Naghdi [16], another attributed to Bilby et al. [6], Kröner [21] and
Lee [23], and another attributed to Besseling [4].

Green–Naghdi Formulation
Green and Naghdi [16] developed a large deformation thermomechanical theory
of plasticity. Confining attention to the purely mechanical response and using the
notation in this book, this theory introduces the total deformation gradient F and the
right Cauchy–Green deformation tensor C, which satisfy equations

Ḟ = LF , C = FTF , Ċ = 2FTDF . (5.11.1)
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The theory of hyperelasticity is enriched by introducing a symmetric plastic defor-
mation tensorCp (similar toC) and a scalar measure of isotropic hardening κ by the
evolution equations

Ċp = Ap , Ap = 	Āp , κ̇ = 	H , 	 ≥ 0 , (5.11.2)

where Āp controls the direction of plastic deformation rate, 	 is a non-negative
function that controls the magnitude of plastic deformation rate Ap and H controls
the rate of hardening. For metals, plastic deformation rate is isochoric soCp remains
unimodular, which requires

det(Cp) = 1 , Āp · C−1
p = 0 . (5.11.3)

Under SRBM the total deformation tensor F, the right Cauchy–Green tensor C, the
plastic deformation Cp and the hardening variable κ transform to F+,C+,C+

p and
κ+, such that

F+ = QF , C+ = C , C+
p = Cp , κ+ = κ , (5.11.4)

which place restrictions on the functional forms of 	, Āp, H .
In this theory, the strain energy � is assumed to be a function of F,Cp and κ but

since� is uninfluenced by SRBM, it must depend on F only through the deformation
tensor C so that

� = �(C,Cp, κ) . (5.11.5)

For both rate-independent and rate-dependent material response, the constitutive
equation for stress is taken in the form

T = 2ρF
∂�

∂C
FT . (5.11.6)

Moreover, the rate of material dissipation (4.5.7) requires

D = −	ρ

(
∂�

∂Cp
· Āp + ∂�

∂κ
H

)
≥ 0 , (5.11.7)

which places restrictions on the functional forms of �, Āp and H .
In addition to solving the balance of linear momentum (4.4.5), this theory requires

solution of the evolution equations (5.11.1) and (5.11.2) with initial conditions

F(0) ,Cp(0) , κ(0) . (5.11.8)

Bilby, Kröner, Lee Formulation
Bilby et al. [6], Kröner [21] and Lee [23] introduced a formulation that depends on a
second-order non-symmetric plastic deformation tensorFp (similar toF) determined
by an evolution equation of the form
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Ḟp = �pFp , �p = 	�̄p , (5.11.9)

where �̄p controls the direction of plastic deformation rate and 	 is a non-negative
function that controls the magnitude of plastic deformation rate Ḟp. Again, for metal
plasticity the plastic deformation rate is isochoric so Fp is unimodular and �̄p is
restricted, such that

det(Fp) = 1 , �̄p · I = 0 . (5.11.10)

Moreover, an elastic deformation tensor Fe is defined by the multiplicative form

Fe ≡ FF−1
p , (5.11.11)

and a hardening variable κ is introduced which satisfies the evolution equation in
(5.11.2). Usually this equation is written in the form F = FeFp, which suggests that
Fp transforms the reference configuration into an intermediate zero-stress configura-
tion and Fe transforms an intermediate configuration into the current configuration.
For general inhomogeneous deformations, F describes a compatible field with the
position x of a material point in the current configuration being a differentiable
function of the position X of the same material point in the reference configura-
tion. However, in general, both Fp and Fe are incompatible tensors which are not
determined by differentiation of deformation fields so unloading thematerial yields a
configuration which has residual stresses. In other words, in general, it is not possible
to unload the material to a zero-stress intermediate configuration.

The constitutive equations are restricted so that under SRBM, 	, �̄p and Fp

transform to 	+, �̄
+
p and F+

p , such that

	+ = 	 , �̄
+
p = �̄p , F+

p = Fp . (5.11.12)

It then follows from (5.11.4), (5.11.11) and (5.11.12) that under SRBM the elastic
deformation tensors Fe and Ce transform to F+

e and C+
e , such that

F+
e = QFe , Ce = FT

e Fe , C+
e = Ce . (5.11.13)

Using the fact that
˙

F−1
p = −	F−1

p �̄p , (5.11.14)

it follows that Fe and Ce satisfy the evolution equations

Ḟe = (L − 	Fe�̄pF−1
e )Fe ,

Ċe = FT
e [2D − 	(F−T

e �̄
T
pF

T
e + Fe�̄pF−1

e )]Fe .
(5.11.15)

In this theory, the strain energy� is assumed to be a function of Fe and κ but since
� is uninfluenced by SRBM, it must depend on Fe only through the deformation
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tensor Ce so that
� = �(Ce, κ) . (5.11.16)

For both rate-independent and rate-dependentmaterial response the stress is specified
by

T = 2ρFe
∂�

∂Ce
FT
e , (5.11.17)

and the rate of material dissipation (4.5.7) requires

D = 	ρ

(
2Ce

∂�

∂Ce
· �̄p − ∂�

∂κ
H

)
≥ 0 , (5.11.18)

which places restrictions on the functional forms of �, �̄p and H .
In addition to solving the balance of linear momentum (4.4.5), this theory requires

solution of the evolution equations (5.11.1) for F, (5.11.2) for κ and (5.11.9) for Fp

with initial conditions
F(0),Fp(0), κ(0) . (5.11.19)

Besseling Formulation
The formulation discussed by Besseling [4] (see also Besseling and van der Giessen
[5]) wasmotivated by the work of Eckart [12] andMandel [26] and can be interpreted
as proposing an evolution equation for a second-order non-symmetric tensor Fe with
positive determinant directly by the evolution equation

Ḟe = LeFe , Le = L − Lp , Lp = 	L̄p , (5.11.20)

where Le is the elastic deformation rate, L̄p controls the direction of inelastic rate
Lp, 	 is a non-negative function that controls the magnitude of inelastic rate and Fe

measures elastic deformations from a zero-stress intermediate configuration.
Moreover, the evolution equation (5.11.20) will be identical to the evolution equa-

tion for Fe in (5.11.15) if L̄p is specified by

L̄p = Fe�̄pF−1
e , (5.11.21)

which under SRBM satisfies the transformation relation

L̄+
p = QL̄pQT . (5.11.22)

For this theory, the strain energy function � is specified by (5.11.16), the stress
T is specified by (5.11.17) and the rate of material dissipationD requires (5.11.18).
In addition to solving the balance of linear momentum (4.4.5), this theory requires
solution of the evolution equations (5.11.20) for Fe and (5.11.2) for κ with initial
conditions

Fe(0), κ(0) . (5.11.23)
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Unphysical Arbitrariness of the Lagrangian Formulation
Unphysical arbitrariness of the Lagrangian formulation has been discussed in a series
of papers [36–38]. Specifically, for a fixed value of elastic deformation Fe and an
arbitrary nonsingular tensor A with detA > 0, it follows from (5.11.11) that

Fe = (FA)(FpA)−1 . (5.11.24)

This means that the reference configuration associated with F and Fp is arbitrary. In
particular, A can be used to set the initial value of F = I or to set the initial value
of Fp = I so the choice of total deformation measure F or the plastic deformation
measure Fp is arbitrary.

In addition, the elastic deformation tensor Fe and the plastic deformation tensor
Fp in (5.11.11) are usually presented as a separation of the total deformation gradient
F into elastic and plastic parts

F = FeFp . (5.11.25)

Using the expression (3.3.1a) which shows that F transforms a material line element
dX in the reference configuration to its deformed line element dx in the current
configuration, the separation (5.11.25) is often interpreted as Fp transforming the
line element dX to dy in an intermediate configuration and Fe transforming dy to dx

dx = FdX , dy = FpdX , dx = Fedy . (5.11.26)

Letting O be a proper orthogonal tensor

OOT = I , det(O) = +1 , (5.11.27)

the separation (5.11.25) can be rewritten in the form

F = (FeOT )(OFp) , (5.11.28)

which shows that both the plastic deformation tensor Fp and the elastic deformation
tensor Fe contain arbitrariness to rotations of the intermediate configuration.

Eulerian Formulation of Elastically Anisotropic Elastic–Inelastic Materials
The Eulerian formulation for nonlinear elastic solids in Sect. 5.3 can be general-
ized for elastically anisotropic elastic–inelastic materials by modifying the evolution
equation for the microstructural vectorsmi to include a second-order tensor Lp that
characterizes the inelastic rate. Specifically, an Eulerian formulation for elastically
anisotropic inelastic material response, which was motivated by the work of Eckart
[12] and Leonov [24], was developed in [35]. Themain idea is tomodel the following
physical features of inelastic flow in metals:

• elastic deformations of the atomic lattice cause stress.
• elastic deformations of the atomic lattice remain small after dislocations have
moved through the lattice.
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• the atoms in a specific lattice change with time as dislocations move through the
lattice.

• edges of the parallelepiped formed by the atomic lattice do not rotate as material
line elements.

In this model, the elastic deformations and orientation of the atomic lattice are mod-
eled by the parallelepiped formed by the triadmi (i = 1, 2, 3) of linearly independent
microstructural vectors

Je = m1 × m2 · m3 ≥ 0 , (5.11.29)

where the elastic dilatation Je is an internal state variable that can be determined by
the current state of stress in thematerial. Thesemicrostructural vectors are determined
by the evolution equations

ṁi = (L − Lp)mi , Lp = 	L̄p , 	 ≥ 0 , (5.11.30)

where 	 controls the magnitude and L̄p controls the direction of the inelastic rate
tensorLp, both ofwhich require a constitutive equation. IfLp vanishes, then the solu-
tion of (5.11.30) causes mi to evolve as material line elements so these equations
characterize an Eulerian formulation of a general anisotropic hyperelastic solid. Oth-
erwise,mi characterize elastic deformations and the orientation of the atomic lattice,
which is not directly connected to material line elements.

In addition, an isotropic hardening variable κ is determined by the evolution
equation

κ̇ = 	H , (5.11.31)

where H is a function that controls the rate of hardening. More general directional
hardening can be modeled by introducing directional hardening variables βi j = β j i

which satisfy the evolution equations

β̇i j = 	Hi j , (5.11.32)

where Hi j = Hji are functions that control the relative magnitudes of βi j . These
functions should not be confused with the components Hi j of the proper orthogonal
matrix used to discuss material symmetry in Sect. 5.6.

Under SRBM the microstructural vectorsmi , the inelastic deformation rate 	, its
direction L̄p, the hardening variables κ and βi j and the hardening functions H and
Hi j transform tom+

i , 	+, L̄+
p , κ+, β+

i j , H
+ and H+

i j , such that

m+
i = Qmi , 	+ = 	 , L̄+

p = QL̄pQT ,

κ+ = κ , β+
i j = βi j , H+ = H , H+

i j = Hi j .
(5.11.33)

The strain energy � is assumed to be a function of mi , κ and βi j , but since �

must be unaffected by SRBM it can depend on mi only through the metric mi j of
elastic deformation, which satisfies equations
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mi j = mi · m j , m+
i j = mi j . (5.11.34)

Moreover, using (5.11.30) and (5.11.34), it follows that the elastic metric satisfies
the evolution equation

ṁi j = 2(D − Dp) · (mi ⊗ m j ) , (5.11.35)

where the inelastic deformation rate Dp is defined by

Dp = 1

2
(Lp + LT

p ) = 	D̄p , D̄p = 1

2
(L̄p + L̄T

p ) . (5.11.36)

For this model the strain energy function and the stress are proposed in the forms

� = �(mi j , κ, βi j ) , T = T(mi , κ, βi j ) . (5.11.37)

It then follows that the rate of material dissipation (4.5.7) requires

D =
[
T − 2ρ

∂�

∂mi j
(mi ⊗ m j )

]
· D

+ 	

[
2ρ

∂�

∂mi j
(mi ⊗ m j ) · D̄p − ρ

∂�

∂κ
H − ρ

∂�

∂βi j
Hi j

]
≥ 0 .

(5.11.38)

Without specifying details of inelastic deformation rate and the hardening functions
	, D̄p, H and Hi j it is not possible to obtain necessary restrictions on the consti-
tutive equation for stress. However, motivated by the constitutive equation (5.3.4)
for a hyperelastic material and by the requirement that the constitutive equation for
elastic–inelastic response contain that for a hyperelastic material as a special case,
the constitutive equation for stress in an elastic–inelastic material is specified by

T = 2ρ
∂�

∂mi j
(mi ⊗ m j ) . (5.11.39)

Then, the rate of material dissipation (4.5.7) requires the total dissipation due to the
inelastic rate and the rate of hardening to be non-negative

D = 	

(
T · D̄p − ρ

∂�

∂κ
H − ρ

∂�

∂βi j
Hi j

)
≥ 0 . (5.11.40)

Also, the constitutive equation for stress is assumed to be restricted so that a zero-
stress material state is characterized by

T = 0 ,
∂�

∂mi j
= 0 for mi j = δi j , (5.11.41)
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where δi j is the Kronecker delta. This means that the triadmi has been defined so that
mi are orthonormal vectors in a zero-stress material state. In particular, it is noted
that the vectors mi in any zero-stress material state are usually not parallel to the
lattice vectors in that state.

Sincemi are linearly independent and not necessarily orthonormal in the current
configuration, it is convenient to introduce their reciprocal vectors mi by

m1 = J−1
e (m2 × m3) , m2 = J−1

e (m3 × m1) , m3 = J−1
e (m1 × m2) ,

(5.11.42)
so that

J̇e = Je(D − Dp) · I . (5.11.43)

Moreover, the evolution equations (5.11.30) formi , (5.11.31) for κ and (5.11.32) for
βi j require initial conditions

mi (0), κ(0), βi j (0) . (5.11.44)

Separation of Elastic Dilatation and Distortional Deformations
To introduce separate control over the response of the material to dilatation and
distortional rates of deformation, it is convenient to use the elastic dilatation Je, the
distortional deformation vectors m′

i and the elastic distortional deformation metric
m ′

i j , which satisfy the Eqs. (5.11.43), (3.11.14), (5.11.30) and (3.11.16),

Je = m1 × m2 · m3 > 0 , J̇e = Je(D · I − 	D̄p) ,

m′
i = J−1/3

e mi , ṁ′
i = (L′′ − 	L̄′′

p)m
′
i ,

m ′
i j = m′

i · m′
j = m ′

j i , ṁ ′
i j = 2

(
m′

i ⊗ m′
j − 1

3m
′
i j I

)
· (D − 	D̄p) ,

(5.11.45)
where L′′ is the deviatoric part of the velocity gradient L and L̄′′

p is the deviatoric
part of L̄p. Then, the strain energy function and stress are proposed in the forms

� = �̃(Je,m
′
i j , κ, βi j ) , T = T̃(Je,m′

i , κ, βi j ) , (5.11.46)

and the rate of material dissipation (4.5.7) requires

D =
[
T − ρ Je

∂�̃

∂ Je
I − 2ρ

∂�̃

∂m ′
i j

(
m′

i ⊗ m′
j − 1

3
m ′

i j I
)]

· D

+ 	

[
ρ Je

∂�̃

∂ Je
D̄p · I + 2ρ

∂�̃

∂m ′
i j

(
m′

i ⊗ m′
j − 1

3
m ′

i j I
)

· D̄p

−ρ
∂�̃

∂κ
H − ρ

∂�̃

∂βi j
Hi j

]
≥ 0 .

(5.11.47)
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Again, without specifying details of the inelastic rate and the hardening functions
	, D̄p, H and Hi j it is not possible to obtain necessary restrictions on the constitutive
equation for stress. However, motivated by the constitutive equation (5.3.11) for
a hyperelastic material and by the requirement that the constitutive equation for
elastic–inelastic response contain that for a hyperelastic material as a special case,
the constitutive equation for stress in an elastic–inelastic material is specified by

T = −p I + T′′ = T̃ , p = p̃ = −ρ Je
∂�̃

∂ Je
,

T′′ = T̃′′ = 2ρ
∂�̃

∂m ′
i j

(
m′

i ⊗ m′
j − 1

3
m ′

i j I
)

.

(5.11.48)

Then, the rate of material dissipation requires the total dissipation due to the inelastic
rate and the rate of hardening to be non-negative

D = 	

[
− p̃ (D̄p · I) + T̃′′ · D̄p − ρ

∂�̃

∂κ
H − ρ

∂�̃

∂βi j
Hi j

]
≥ 0 . (5.11.49)

Also, the constitutive equation for stress is assumed to be restricted so that a
zero-stress material state is characterized by

T = 0 ,
∂�̃

∂ Je
= 0 ,

∂�̃

∂m ′
i j

= 1

3

∂�̃

∂m ′
nn

δi j for Je = 1 and m ′
i j = δi j . (5.11.50)

This means that the triad m′
i has been defined so that m′

i are orthonormal vectors in
a zero-stress material state.

Moreover, the evolution equations (5.11.43) for Je, (5.11.45) form′
i , (5.11.31) for

κ and (5.11.32) for βi j require initial conditions

Je(0),m′
i (0), κ(0), βi j (0) . (5.11.51)

Eulerian Formulation of Elastically Isotropic Elastic–Inelastic Materials
For elastically isotropic elastic–inelastic materials experiments on identical samples
of the material in its current state cannot distinguish between the microstructural
vectorsm′

1,m
′
2 andm

′
3 so the material response functions must be insensitive to this

arbitrariness ofm′
i . Consequently, Je in (5.11.29) characterizes the elastic dilatation

and satisfies the evolution equation (5.11.43). Also, the symmetric, positive-definite,
unimodular tensor B′

e defined in (5.8.1)

B′
e = m′

i ⊗ m′
i , (5.11.52)

characterizes elastic distortional deformations. Using (5.11.45), it can be shown that
B′
e satisfies the evolution equation
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Ḃ′
e = L′′B′

e + B′
eL

′′T − 	Āp , Āp = L̄′′
pB

′
e + B′

eL̄
′′T
p , (5.11.53)

where L̄′′
p is the deviatoric part of L̄p. This evolution equation automatically satisfies

the condition (3.11.26) that B′
e remains unimodular [detB′

e = 1] since

Ḃ′
e · B′−1

e = 0 , Āp · B′−1
e = 0 . (5.11.54)

Following theworkofEckart [12] andLeonov [24] for elastically isotropic elastic–
inelastic materials, an evolution equation for the elastic distortional deformation
tensor B′

e can be proposed directly and independently of the microstructural vectors
m′

i . This means that instead of specifying a constitutive equation for L̄p, it is possible
to propose an evolution equation for B′

e directly in the form

Ḃ′
e = L′′B′

e + B′
eL

′′T − 	Ap , (5.11.55)

where Ap is a symmetric tensor that controls the direction of inelastic distortional
deformation rate. This tensor must satisfy the restriction

Ap · B′−1
e = 0 , (5.11.56)

which ensures that B′
e remains unimodular.

In this model, the strain energy function for elastically isotropic response is taken
to be a function of the elastic dilatation Je, the elastic distortional deformation B′

e
and the hardening κ . However, under SRBM Je,B′

e andAp transform to J+
e ,B′+

e and
A+

p , such that

J+
e = Je , B′+

e = QB′
eQ

T , A+
p = QApQT , (5.11.57)

so the strain energy function can depend on B′
e only through its two independent

invariants α1 and α2, defined by

α1 = B′
e · I , α1 = B′

e · B′
e , (5.11.58)

which satisfy the evolution equations

α̇1 = 2B′′
e · D − 	Ap · I ,

α̇2 = 4

(
B′2
e − 1

3
α2I

)
· D − 2	Ap · B′

e .
(5.11.59)

Thus, the strain energy function � and the stress are proposed in the forms

� = �(Je, α1, α2, κ) , T = T(Je,B′
e, κ) , (5.11.60)

and for both rate-independent and rate-dependent response the stress is specified by
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T = −p I + T′′ , p = −ρ Je
∂�

∂ Je
,

T′′ = 2ρ

[
∂�

∂α1
B′′
e + 2

∂�

∂α2

(
B′2
e − 1

3
α2I

)]
,

(5.11.61)

whereT′′ is the deviatoric part ofT. Also, the rate of material dissipationD in (4.5.7)
requires

D = 	

[
−p (D̄p · I) + ρ

(
∂�

∂α1
Ap · I + 2

∂�

∂α2
Ap · B′

e − ∂�

∂κ
H

)]
≥ 0 .

(5.11.62)
In addition, the constitutive equation for stress is assumed to be restricted so that a
zero-stress material state is characterized by

T = 0 ,
∂�

∂ Je
= 0 for Je = 1 and B′

e = I . (5.11.63)

The evolution equations (5.11.43) for Je, (5.11.55) for B′
e and (5.11.31) for κ

require initial conditions
Je(0),B′

e(0), κ(0) . (5.11.64)

In this regard, it is assumed that the constitutive equation (5.11.61) for stress is
invertible and that experiments can be performed to determine the values of hardening
variable κ at any state of the material. In particular, the values of Je and B′

e in any
zero-stress material state are given by (5.11.63). Also, when 	 vanishes, the theory
represents an Eulerian formulation of a general elastically isotropic hyperelastic
material.

Since the inelastic deformation rate causes a tendency for the deviatoric stress T′′
to approach zero, Rubin and Attia [42] proposed Ap in the form

Ap = B′
e −

(
3

B′−1
e · I

)
I , (5.11.65)

so the evolution equation (5.11.55) is given by

Ḃ′
e = L′′B′

e + B′
eL

′′T − 	Ap , Ap = B′
e −

(
3

B′−1
e · I

)
I . (5.11.66)

As discussed in [42], since B′
e is a unimodular positive-definite tensor, the spectral

form of B′
e can be used to show that

Ap · I ≥ 0 , Ap · B′
e ≥ 0 . (5.11.67)

As a special case, the strain energy function is given by a compressible Neo-
Hookean form
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ρz� = f (Je) + 1

2
μ(α1 − 3) , (5.11.68)

where ρz is a constant that is not necessarily the zero-stress density, f (Je) controls
the response to elastic dilatation and μ is the positive zero-stress shear modulus.
Moreover, from (5.11.61) the stress is specified by

T = −p I + T′′ , p = −
(

ρ Je
ρz

)
d f

d Je
, T′′ =

(
ρ

ρz

)
μB′′

e , (5.11.69)

with the function f (Je) satisfying the restrictions

f (1) = 0 ,
d f

d Je
(1) = 0 ,

d2 f

d J 2
e

(1) > 0 , (5.11.70)

imposed by the condition (5.11.63) for a zero-stress material state and the condition
that the bulk modulus is positive. Also, the rate of material dissipation (5.11.62)
requires

D = 	

[
−p (D̄p · I) + 1

2

(
ρ

ρz

)
μAp · I

]
≥ 0 . (5.11.71)

In Sect. 6.8 the volumetric inelastic rate D̄p · Iwill be related to the rate of change
of porosity in a porous material. However, for nonporous metals plastic deformation
rate is considered to be isochoric, which requires

D̄p · I = 0 , (5.11.72)

and the rate of material dissipation (5.11.71) requires

D = 1

2

(
ρ

ρz

)
μ	(Ap · I) ≥ 0 , (5.11.73)

which in view of (5.11.67), is automatically satisfied. In this expression, use has
been made of the evolution equation (5.11.45) for Je, the expressions (4.1.16) and
(5.11.69)–(5.11.73) to deduce that

Je = ρ

ρz
, T = −p I + T′′ , p = − d f

d Je
,

T′′ = μB′′
e , D = 1

2
μ	(Ap · I) ≥ 0 ,

(5.11.74)

where ρz is the mass density in any zero-stress state.

Additional Comments on Arbitrariness
From the perspective of the definition of internal state variables by Onat [31], the
total deformation tensor F, the plastic deformation tensorsCp and Fp and the elastic
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deformation tensors Fe and Ce are not internal state variables since they cannot be
measured, in principle, by experiments on identical samples of the material in its
current state. In particular, they are affected by arbitrariness of the choices of: the
reference configuration; an intermediate configuration; a total deformation measure
and a plastic deformation measure, which have been discussed in [36–38].

In [38] it was proved that when this arbitrariness is removed from the Lagrangian
multiplicative formulation associated with (5.11.11), that formulationmust reduce to
the Eulerian formulation based on themicrostructural vectorsmi . Moreover in [38] it
was shown thatmi are internal state variables in the sense of Onat [31] because their
initial values can be measured, in principle, by experiments on identical samples of
the material in its current state.

Elastic anisotropy of a material with the strain energy function specified by
(5.11.37) is characterized by the dependence of the strain energy on the vectorsmi .
It is important to emphasize that the index (i) in mi refers to distinct directions of
the atomic lattice. If any of these directions cannot be distinguished by experiments,
then the strain energy function must satisfy symmetry conditions which ensure that
the material response is also insensitive to these indistinguishable directions.

Comparison of the evolution equation (5.11.20) for Fe and (5.11.30) formi sug-
gests that these formulations may be identical. The discussion in Sect. 5.4, which
describes the difference between Fe and mi for an elastic material, is similar for an
elastic–inelastic material. Specifically, consider an arbitrary right-handed orthonor-
mal set of constant base vectors Mi and define the elastic deformation tensor Fe

by
Fe = mi ⊗ Mi , (5.11.75)

which satisfies the evolution equation and initial condition

Ḟe = (L − Lp)Fe , Fe(0) = mi (0) ⊗ Mi . (5.11.76)

However, in [38] it was shown that the elastic response of the material depends
on mi through the evolution equation (5.11.30) and on their initial values mi (0).
Although mi (0) are measurable, the tensor Fe contains unphysical arbitrariness of
the orientation ofMi which can be removed by considering the Eulerian formulation
based on mi .

Rate-Independent Inelasticity with a Yield Function
For rate-independent inelasticity a yield function g is introduced which characterizes
elastic response for g < 0 and the elastic–inelastic boundary for g = 0. For states
at the elastic–inelastic boundary, it is necessary to specify unloading, neutral load-
ing and loading conditions which have zero inelastic rate for unloading and neutral
loading, and nonzero inelastic rate for loading. Differences in the loading conditions
for stress-space and strain-space formulations have been discussed in [30]. In partic-
ular, the strain-space formulation can model strain softening with decrease in stress
that occurs due to damage mechanisms. Moss [27] pointed out that the numerical
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algorithm developed by Wilkins [48] is consistent with the loading conditions in the
strain-space formulation developed by Naghdi and Trapp [30].

Here, use is made of the strain-space loading conditions and the yield function
for elastically anisotropic response is specified by

g = g(mi j , κ, βi j ) ≤ 0 . (5.11.77)

With the help of the evolution equations (5.11.35) for mi j , (5.11.31) for κ and
(5.11.32) for βi j , it follows that

ġ = ĝ − 	 ḡ ,

ĝ = 2

(
∂g

∂mi j

)
(mi ⊗ m j ) · D ,

ḡ = 2

(
∂g

∂mi j

)
(mi ⊗ m j ) · D̄p −

(
∂g

∂κ

)
H −

(
∂g

∂βi j

)
Hi j > 0 ,

(5.11.78)

where the functional form of g has been restricted so that ḡ remains positive. Then,
the values of 	 for elastic response, unloading from the elastic–inelastic boundary,
neutral loading on the elastic–inelastic boundary and inelastic loading on the elastic–
inelastic boundary are specified by

	 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for elastic response g < 0 ,

0 for unloading g = 0 and ĝ < 0 ,

0 for neutral loading g = 0 and ĝ = 0 ,

ĝ

ḡ
> 0 for inelastic loading g = 0 and ĝ > 0 ,

(5.11.79)

where the value of 	 for loading has been determined by the consistency condition
which ensures that g remains zero (ġ = 0) during inelastic loading. From these
conditions it can be seen that for elastic response with 	 = 0, the rate of change
of the yield function ġ = ĝ so that ĝ > 0 on the elastic–inelastic boundary requires
nonzero inelastic deformation rate (	 > 0) to satisfy the consistency condition.

Also, since during loading 	 is linear in the rate D, it follows that the evolution
equations (5.11.31), (5.11.32) and (5.11.35) are homogeneous of order one in time
when H and Hi j are independent of D, so the material response is rate independent.

Rate-Dependent Response
For the rate-independent theory, the rate of inelastic deformation	 is a homogeneous
function of order one in the total rate of deformation D. In contrast, if 	 is not is a
homogeneous function of order one inD, then thematerial response is rate dependent.
Examples of rate-dependent response can be found in [7–11, 25, 33, 34].

Amodel exhibiting a smooth elastic–inelastic transition for both rate-independent
and rate-dependent response can be found in [18, 19]. In this model the function 	 in
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(5.11.30) for elastically anisotropic response or in (5.11.55) for elastically isotropic
response, which controls the magnitude of inelastic deformation rate, is specified in
the form

	 = 	0 + 	1〈g〉 , 	0 = a0 + b0ε̇ , 	1 = a1 + b1ε̇ ,

a0 ≥ 0 , b0 ≥ 0 , a1 ≥ 0 , b1 ≥ 0 ,

ε̇ =
√
2

3
D′′ · D′′ ,

(5.11.80)

where ε̇ is the effective total distortional deformation rate, g is a yield function and
the Macaulay brackets 〈g〉 are defined by

〈g〉 = max(g, 0) . (5.11.81)

When a0 = b0 = b1 = 0 this form yields a rate-dependent overstress model like
that developed in [25, 33]. Also, when a0 = b0 = a1 = 0 the model yields a rate-
independent overstressmodel, which approximates a standard rate-independent yield
functionwhenb1 is large enough to ensure that g remains a small positive value during
inelastic loading. In addition, the constants a0 and b0 control the inelastic rate that is
active for all nonzero values of L̄p in (5.11.30) or Ap in (5.11.55), which can model
the response observed in soils. It is also noted that this smooth-transition model has
been generalized and numerical algorithms have been developed in [20].

Strongly Objective, Robust Numerical Integration Algorithms

Elastically Isotropic Response
Strongly objective, robust numerical algorithms for integrating the evolution equa-
tions for elastic–inelastic response have been discussed in [18, 19, 32, 40, 43, 44].
In this section, attention is limited to elastically isotropic elastic–inelastic material
response of metals for which the elastic dilatation Je and the symmetric, positive-
definite, unimodular elastic distortional deformation tensor B′

e satisfy the evolution
equation (3.11.30) for Je and (5.11.66) for B′

e

J̇e = Je D · I ,

Ḃ′
e = L′′B′

e + B′
eL

′′T − 	

[
B′
e −

(
3

B′−1
e · I

)
I
]

.
(5.11.82)

Moreover, the deviatoric part of the evolution equation for B′
e can be written in the

form

Ḃ′′
e = L′′B′

e + B′
eL

′′T − 2

3
(B′′

e · D′′) I − 	B′′
e , (5.11.83)

where L′′ and D′′ are the deviatoric parts of L and D, respectively, and B′′
e is the

deviatoric part of B′
e (3.11.38).
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Following the discussion in Sect. 3.13 and the work in [14, 46] and considering a
typical time step which begins at t = tn , ends at t = tn+1, with time increment �t =
tn+1 − tn , the relative dilatation Jr and unimodular partF′

r of the relative deformation
gradient during the time step satisfy the evolution equations and initial conditions
(3.13.5) and (3.13.7)

J̇r = Jr D · I , Jr (tn) = 1 ,

Ḟ′
r = L′′ F′

r , F′
r (tn) = I .

(5.11.84)

Then, the exact solution of the evolution equation for Je is given by

Je(tn+1) = Jr (tn+1)Je(tn) . (5.11.85)

Also, the elastic trial value B′′∗
e (t) defined by (3.13.9) and (3.13.11)

B′′∗
e = B′∗

e − 1

3
(B′∗

e · I) I , B′∗
e (t) = F′

r (t)B
′
e(tn)F

′T
r (t) (5.11.86)

satisfies the evolution equation and initial condition

Ḃ′′∗
e = L′′B′∗

e + B′∗
e L

′′T − 2

3
(B′′∗

e · D′′) I , B′′∗
e (tn) = B′′

e (tn) . (5.11.87)

Consequently,B′′∗
e (tn+1) is the exact solution of (5.11.83)when inelastic deformation

rate vanishes (i.e., 	 = 0).
Next, the evolution equation (5.11.83) is approximated by

Ḃ′′
e = Ḃ′′∗

e − 	B′′
e , (5.11.88)

which with the help of a backward Euler approximation of the derivative can be
solved to obtain

B′′
e (tn+1) =

(
1

1 + �	

)
B′′∗
e (tn+1) , (5.11.89a)

�	 = �t	(tn+1) , (5.11.89b)

where	(tn+1) is an approximation of	 at the end of the time step that is uninfluenced
by SRBM. This expression is similar to the radial-return numerical algorithm devel-
oped by Wilkins [48] which scales the trial deviatoric stress to obtain the solution at
the end of the time step.

For a general functional form of 	 it is necessary to iterate on the guess for �	

and integrate the other evolution equations for the values of the history-dependent
variables at the end of the time step. This procedure continues until (5.11.89b) is
consistent with the guess for �	 and the functional form for 	 evaluated using the
predicted values of the history-dependent variables at the end of the time step. It is
important to emphasize that each iteration step must start with the initial values of
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the history-dependent variables equal to their accepted values at the beginning of the
step to not accumulate history dependence of inaccurate trial solutions.

As described in [42], once the value of B′′
e has been determined at the end of the

time step, the value of B′
e at the end of the time step is determined by solving the

cubic equation

detB′
e = det

(
1

3
α1 + B′′

e

)
= 1 , (5.11.90)

for the associated value of the invariant α1. In this regard, it was noted in [18] that
the solution (49a) in [42] is more accurate than the solution (54) there.

As a simple example, the strain energy function is specified by (5.11.68) and the
von Mises effective stress σe is determined by

σe =
√
3

2
T′′ · T′′ = J−1

e μ

√
3

2
B′′
e · B′′

e = 2J−1
e μγe ,

γe =
√
3

2
g′′
e · g′′

e = 1

2

√
3

2
B′′
e · B′′

e , g′′
e = 1

2
B′′
e ,

(5.11.91)

where g′′
e is the elastic distortional strain tensor defined in (3.11.37) and γe is a scalar

measure of elastic distortional strain. Motivated by these expressions a simple form
for the yield function g is specified by

g = 1 − κ

γe
, (5.11.92)

which indicates that the onset of yield occurs when γe = κ .
Next, the elastic trial value γ ∗

e (tn+1) and the value γe(tn+1) at the end of the time
step are defined by

γ ∗
e (tn+1) = 1

2

√
3

2
B′′∗
e (tn+1) · B′′∗

e (tn+1) ,

γe(tn+1) = 1

2

√
3

2
B′′
e (tn+1) · B′′

e (tn+1) .

(5.11.93)

It then follows from (5.11.89a) that

γe(tn+1) =
(

1

1 + �	

)
γ ∗
e (tn+1) . (5.11.94)

Moreover, the elastic trial value g∗(tn+1) of the yield function (5.11.92) at the end
of the time step is given by

g∗(tn+1) = 1 − κ(tn)

γ ∗
e (tn+1)

. (5.11.95)
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If g∗(tn+1) ≤ 0, then the response during the time step is elastic with

�	 = 0 , κ(tn+1) = κ(tn) for g∗(tn+1) ≤ 0 . (5.11.96)

On the other hand, if g∗(tn+1) > 0, then the response during the time step is inelastic
and the value of �	 is determined by requiring the yield function at the end of the
time step to vanish

g(tn+1) = 1 − κ(tn+1)

γe(tn+1)
= 1 − (1 + �	)κ(tn+1)

γ ∗
e (tn+1)

= 0 , (5.11.97)

where κ(tn+1) is an estimate of the value of κ at the end of the time step that must
satisfy the restriction

κ(tn+1) < γ ∗
e (tn+1) . (5.11.98)

Then, for inelastic response the solution of (5.11.97) yields

�	 = γ ∗
e (tn+1)

κ(tn+1)
− 1 > 0 for g∗(tn+1) > 0 . (5.11.99)

Although the Eulerian formulations does not introduce a measure of inelastic
strain, many evolution equations for hardening are formulated in terms of an effective
inelastic strain rate ε̇p. To help translate these evolution equations into an Eulerian
formulation,with the help of (3.11.37) and (5.11.91), the evolution equation (5.11.83)
suggests that the effective inelastic strain rate ε̇p be defined by

ε̇p = 	

√
2

3
g′′
e · g′′

e = 2

3
	 γe , (5.11.100)

which can be integrated by the expression

εp(tn+1) = εp(tn) + 2

3
�	 γe(tn+1) = εp(tn) + 2

3

(
�	

1 + �	

)
γ ∗
e (tn+1) ,

(5.11.101)
where use has been made of (5.11.94).

Elastically Anisotropic Response
Recently Kroon and Rubin [22] developed a strongly objective, robust numerical
algorithm for integrating the evolution equations (5.11.45) for the elastic dilatation Je
and for the elastic distortional deformation vectorsm′

i as well as evolution equations
for isotropic κ in (5.11.31) and directional hardening βi j in (5.11.32).

J̇e = Je(D · I − 	D̄p) , ṁ′
i = (L′′ − 	L̄′′

p)m
′
i ,

κ̇ = 	H , β̇i j = 	Hi j .
(5.11.102)
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To present the main idea of this algorithm, consider a fully anisotropic elastic–
inelastic material with a strain energy function � of the form

� = �(Je,m
′
i j , κ, βi j ) , (5.11.103)

for which the Cauchy stress is given by (5.11.48)

T = Jeρ
∂�

∂ Je
I + 2ρ

∂�

∂m ′
i j

(
m′

i ⊗ m′
j − 1

3
m ′

i j I
)

. (5.11.104)

Also, for definiteness the function 	 in the evolution equations (5.11.45) is speci-
fied by the form (5.11.80) proposed for the model with a smooth elastic–inelastic
transition. Specifically, 	 is specified by

	 = 	(Je,m
′
i j , κ, βi j , ε̇) , (5.11.105)

where the effective total distortional deformation rate ε̇ is defined in (5.11.80).
For the numerical algorithm, �	I represents the I th estimate of �t	(tn+1) eval-

uated at the end of the time step. The evolution equations (5.11.102) are solved for
the values Je(tn+1) andm′

i (tn+1) at the end of the time step, which together with esti-
mates of the hardening variables κ(tn+1) and βi j (tn+1) are used to obtain the value
	(tn+1) of 	 at the end of the time step. Convergence of the algorithm is obtained
by iterating on the value �	I until the function

f (�	I ) = �	I − �t	(tn+1) , �	I ≥ 0 (5.11.106)

is sufficiently small.
Using the relative dilatation Jr in (5.11.84), the elastic trial J ∗

e of the elastic
dilatation Je satisfies equations

J ∗
e (t) = Jr (t)Je(tn) , J̇ ∗

e = J ∗
e D · I , J ∗

e (tn) = Je(tn) , (5.11.107)

so the evolution equation (5.11.102) for Je can be rewritten in the form

d

dt

(
Je
J ∗
e

)
= −	D̄p · I , (5.11.108)

which can be integrated approximately to obtain

Je(tn+1) = J ∗
e (tn+1) exp[−�	I D̄p(tn+1) · I] , �	I = �t	(tn+1) . (5.11.109)

In this equation, D̄p(tn+1) is an estimate of the value of D̄p at the end of the time step
and �	I is the I th estimate of �t	(tn+1) evaluated at the end of the time step.
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Next, using (5.11.84) the elastic trial values m′∗
i of the elastic distortional defor-

mation vectors m′
i satisfy equations

m′∗
i = F′

r m
′
i (tn) , ṁ′∗

i = L′′ m′∗
i , m′∗

i (tn) = m′
i (tn) . (5.11.110)

Then, the evolution equation (5.11.102) form′
i is approximated by

ṁ′
i = ṁ′∗

i − 	L̄′′
p m

′
i . (5.11.111)

Using a backward Euler approximation of the derivative, this equation integrates to
obtain

m′
i (tn+1, I ) = A∗−1(I )m′∗

i (tn+1) , A∗(I ) = I + �	I L̄′′∗
p

[det(I + �	I L̄′′∗
p )]1/3 , (5.11.112)

where A∗ has been normalized to be unimodular [i.e., detA∗ = 1] which ensures
that the vectors m′

i (tn+1, I ) satisfy the condition

m′
1(tn+1, I ) × m′

2(tn+1, I ) · m′
3(tn+1, I ) = 1 . (5.11.113)

The tensor L̄′′∗
p in (5.11.112) is an estimate of L̄′′

p defined by

L̄′′∗
p = �p − 1

3
(�p · I) I . (5.11.114)

For an arbitrary time step t = tn with n > 1, �p is specified by

�p = L̄ ′′i j
p [m′∗

i (tn+1) ⊗ m′∗
j (tn+1)] ,

L̄ ′′i j
p = [L̄′′

p(tn) · mi ′(tn) ⊗ m j ′(tn)] for n > 1 ,
(5.11.115)

where L̄′′
p(tn) and mi ′(tn) are the converged values of L̄′′

p and mi ′ from the previous
time step with the reciprocal vectorsmi ′ defined in (3.11.18). The value of �p at the
beginning of the integration process t = t1 is specified to be a fraction of its elastic
trial value

�p = αL̄′′∗
p (tn+1) , 0 < α < 1 , for n = 1 , (5.11.116)

where L̄′′∗
p (tn+1) is the value of L̄′′

p evaluated using the elastic trial values J
∗
e (tn+1) and

m∗
i (tn+1) and estimates of the hardening variables κ(tn+1) and βi j (tn+1) at the end of

the time step. Also, the strongly objective average total distortional deformation rate
D̃′′ developed in [41] and recorded in (3.13.20) can be used for a strongly objective
approximation of ε̇ at the end of the time step
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ε̇ =
√
2

3
D̃′′ · D̃′′ , D̃′′ = 1

2�t

[
I −

{
3

B′−1
r (tn+1) · I

}
B′−1
r (tn+1)

]
, (5.11.117)

where the relative deformation B′
r is defined by

B′
r = F′

rF
′T
r . (5.11.118)

Since under SRBM the quantities Je,m′
i , Jr and F

′
r transform to J+

e ,m′+
i , J+

r and
F′+
r according to the transformation relations (3.11.31) and (3.13.8)

J+
e = Je , mi ′+ = Qmi ′ , J+

r = Jr , F′+
r = QF′

r , (5.11.119)

it follows that the numerical estimates Je(tn+1) and m′
i (tn+1) transform to J+

e (tn+1)

and m′+
i (tn+1) under SRBM, such that

J+
e (tn+1) = Je(tn+1) , mi ′+(tn+1) = Qmi ′(tn+1) , (5.11.120)

when the estimates κ(tn+1) and βi j (tn+1) are insensitive to SRBM. This means that
these numerical estimates are strongly objective since the vector and tensor estimates
satisfy the same invariance transformation relations under SRBM as the exact values.

Robustness of the numerical algorithm developed in [22] was tested by taking
large time steps which in one time step load the material from zero stress to a point
in the inelastic range. It was found that the algorithm worked well for the constant α
in (5.11.116) specified by

α = 0.18 . (5.11.121)

It is emphasized that if the first time step causes elastic response, then there is no
influence of the parameter α since �	1 = 0.

Elastically Isotropic Response to Simple Shear
With reference to fixed rectangular Cartesian base vectors ei , the velocity gradient
L for simple shear can be specified by

L = L12e1 ⊗ e2 . (5.11.122)

Using the zero-stress initial conditions (5.11.63), the solution of the evolution equa-
tion (5.11.43) for Je requires for a metal with isochoric inelasticity (5.11.72) that

Je = 1 , (5.11.123)

and the evolution equation (5.11.66) admits a solution for the elastic distortional
deformation B′

e of the form
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B′
e = ae1 ⊗ e1 + be2 ⊗ e2 + ce3 ⊗ e3 + d(e1 ⊗ e2 + e2 ⊗ e1) ,

c = 1√
ab − d2

,
(5.11.124)

where a, b and d are functions of time determined by solving the three nontrivial
scalar evolution equations associated with (5.11.66). Moreover, it was shown in [44]
that for monotonic loading with

L12 = γs	 > 0 , (5.11.125)

and constant γs , that these evolution equations admit a steady-state solution forwhich

a = 1 + 2γ 2
s

(1 + γ 2
s )1/3

, b = c = 1

(1 + γ 2
s )1/3

, d = γs

(1 + γ 2
s )1/3

. (5.11.126)

Also, the steady-state values of ε̇ in (5.11.80) and γe in (5.11.91) are given by

ε̇ = γs	√
3

, γe = γs
√
3 + 4γ 2

s

2(1 + γ 2
s )1/3

. (5.11.127)

For simplicity, consider the case when the yield function is specified by (5.11.92)

g = 1 − κ

γe
, (5.11.128)

with the hardening variable κ being constant. It then follows that for standard rate-
independent inelasticity, the loading conditions (5.11.79) require g = 0during inelas-
tic loading, which determines the steady-state value of γs by the solution of equation

κ = γs
√
3 + 4γ 2

s

2(1 + γ 2
s )1/3

. (5.11.129)

Alternatively, for the simple rate-independent smooth elastic–inelastic transition
model (5.11.80) characterized by

	 = b1ε̇〈g〉 , (5.11.130)

the steady-state value of γs is determined by equation

κ = (b1γs − √
3)

√
3 + 4γ 2

s

2b1(1 + γ 2
s )1/3

for b1γs >
√
3 . (5.11.131)

Using the Neo-Hookean model, the pressure vanishes and deviatoric stress is
given by (5.11.69). To examine the influence of the constant b1 on the solution of



170 5 Purely Mechanical Constitutive Equations

Fig. 5.4 Cyclic loading of the smooth-transition model in simple shear. Plots of the shear stress
T ′′
12 versus the total shear strain γ for different material constants: a b1 = 100, κ = 0.019670 and b

b1 = 300, κ = 0.029675, which produce the same steady-state value of shear stress. The symbols
indicate the locations of the elastic–inelastic transitions

the smooth model, it is convenient to determine values of the pair of constants b1, κ
which yield the same steady-state value of the shear stress. Specifically, as a special
case, the steady-state value of γs is determined by solving equation

T ′′
12

μ
= γs

(1 + γ 2
s )1/3

= 0.04 , (5.11.132)

and (5.11.131) is used to determine the values

κ = 0.019670 for b1 = 100 ,

κ = 0.029675 for b1 = 300 .
(5.11.133)

Figure5.4 shows the transient solution of shear stress T ′′
12 versus total shear strain γ

determined by integrating the evolution equation

γ̇ = L12 , (5.11.134)

subject to the initial condition γ (0) = 0. The symbols in Fig. 5.4a, b indicate the loca-
tions of the elastic–inelastic transitions for cyclic simple shear loading. Figure5.4a
shows that for b1 = 100, the response exhibits significant overstress with inelasticity
continuing to occur during the onset of unloading. Even though the hardening param-
eter κ is constant, the model exhibits effective hardening due to the overstress. Figure
5.4b shows that for b1 = 300 the effects of the overstress are significantly reduced.
In this regard, it is noted that in the limit that b1 → ∞, the smooth model yields
standard rate-independent response with the yield function g = 0 during inelastic
loading.
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Fig. 5.5 Sketch of a
nonlinear Maxwell model
with an elastic component in
parallel with a viscoplastic
component

Viscoplastic component

Elastic component

5.12 Viscoelastic Response

Asimple generalizednonlinearMaxwellmodel (seeFig. 5.5) for viscoelastic response
can be proposed by adding the response of a viscoplastic material to that of a general
elastic material. To model dilatational dissipation of viscoplastic component, it is
necessary to enhance the model described in Sect. 5.11. To this end, the viscoplastic
component is modeled by the elastic dilatation Jv > 0 and the unimodular elastic
distortional deformation tensor B′

e which satisfy the evolution equations

J̇v
Jv

= D · I − 	v ln(Jv) ,

Ḃ′
e = LB′

e + B′
eL

T − 2

3
(D · I)B′

e − 	Ap , Ap = B′
e −

(
3

B′−1
e · I

)
I ,

	v > 0 , 	 > 0 ,

(5.12.1)
where 	v and 	 are positive constants that, respectively, control the time-dependent
relaxation of Jv toward unity and B′

e toward the unity tensor I. The functional form
of the evolution equation for Jv is motivated by the work in [39] which introduced
a modified evolution equation for a cardiac muscle that simplified the numerical
integration algorithm. Also, the first invariant of B′

e satisfies equations

α1 = B′
e · I , α̇1 = 2B′′

e · D − 	Ap , (5.12.2)

where B′′
e is the deviatoric part of B

′
e.

Now, the strain energy function of the viscoelastic material is specified in the form

� = �̂ + v
�(Jv, α1) , ρz

v
� = Kv[Jv − 1 − ln(Jv)] + 1

2
μv(α1 − 3) , (5.12.3)

where ρz is a constant density not necessarily equal to a zero-stress density, �̂ char-

acterizes the strain energy of a general nonlinear elastic material and
v
� characterizes

the strain energy of the viscoplastic component, with Kv being the positive elastic
bulkmodulus andμv being the positive shearmodulus of the viscoplastic component.

For this model the Cauchy stress T is proposed in the form
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T = T̂ + v
T , (5.12.4)

where the response T̂ of a general nonlinear elastic material satisfies equation

T̂ · D = ρ
˙̂
� , (5.12.5)

for all motions. Then, for thismaterial, the rate ofmaterial dissipation (4.5.7) requires

D = v
T · D − ρ

v̇
� ≥ 0 . (5.12.6)

Specifying
v
T by

v
T = − v

pI + v
T′′ ,

v
p = −ρ Jv

∂
v
�

∂ Jv
=

(
ρ

ρz

)
Kv(1 − Jv) ,

v
T′′ = 2ρ

∂
v
�

∂α1
B′′
e =

(
ρ

ρz

)
μvB′′

e ,

(5.12.7)

the rate of material dissipation requires

D = −	v
v
p ln(Jv) + 1

2
	

(
ρ

ρz

)
μvAp · I ≥ 0 , (5.12.8)

which in view of the constitutive equation (5.12.7) for the pressure
v
p and (5.11.67) is

automatically satisfied. Since 	v and 	 are both positive, dissipation continues until
Jv = 1 and B′

e = I with T = T̂.
If the elastic part of the response is isotropic, then the strain energy is given

by (5.8.5) and the stress T̂ is given by (5.8.10). Alternatively, if the elastic part of
the response is anisotropic, then the strain energy is given by (5.3.9) and the stress
T̂ is given by (5.3.11). For either case, this model proposes elastically isotropic
viscoplastic dissipation.

A robust, strongly objective numerical integration algorithm for the evolution
equation for B′

e was discussed in Sect. 5.11. To develop a robust, strongly objective
numerical integration algorithm for the evolution equation (5.12.1) for the elastic
dilatation Jv, consider the time interval tn ≤ t ≤ tn+1 with time increment �t =
tn+1 − tn and recall that the relative dilatation Jr satisfies the evolution equation
(5.11.84) and initial condition

J̇r = Jr D · I , Jr (tn) = 1 . (5.12.9)

Thus, (5.12.1)1 can be rewritten in the form
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d

dt
ln

[
Jv

Jr Jv(tn)

]
= −	v ln(Jv) . (5.12.10)

Next, using a backward Euler approximation of the derivative yields equation

ln

[
Jv

Jr Jv(tn)

]
= −�t	 ln(Jv) , (5.12.11)

which can be solved to obtain

Jv(tn+1) = [Jr (tn+1)Jv(tn)]1/(1+�t 	v) . (5.12.12)

5.13 Crystal Plasticity

Crystal plasticitymodels (e.g., [1, 17]) identify a finite number N of slip planes in the
crystal with unit normals In and unit slip directions I s in the slip planes. In addition,
a constitutive equation for the inelastic rate Lp is proposed in the form

Lp =
N∑
I=1

I	 I s ⊗I n , I s ·I n = 0 , (5.13.1)

where I	 characterizes the inelastic rate on the I th slip plane, which typically is a
function of history-dependent variables. This form for Lp includes all slip rates on
all of the slip planes and is applicable to metal plasticity with no inelastic dilatation
rate

Lp · I = Dp · I = 0 . (5.13.2)

Within the context of the Eulerian formulation with evolution equations (5.11.30)
for the microstructural vectors

ṁi = (L − Lp)mi , (5.13.3)

the microstructural vectors can be used to characterize the deformation and orien-
tation of the average crystal lattice. Moreover, the elastic distortional deformation
microstructural vectors m′

i satisfy the evolution equations (5.11.45)

ṁ′
i = (L′′ − L′′

p)m
′
i , (5.13.4)

whereL′′ is the deviatoric part of the velocity gradient andL′′
p is the deviatoric part of

the inelastic rate Lp. Since the elastic distortional microstructural vectorsm′
i can be

used to model the crystal, the values of I ni of the unit normals In to slip systems and
I si of the unit vectors I s in the slip directions in a zero-stress state (with m′

i = mi ′
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being orthonormal vectors) can be constants for general stress states with

In = I nimi ′

|I n jm j ′ | , I s = I sim′
i

|I s jm′
j |

,

I ni I ni = 1 , I s
i
I s

i = 1 , I ni I s
i = 0 ,

(5.13.5)

where there is no sum on the repeated capital index I .
This formulationwill be properly invariant under SuperposedRigidBodyMotions

SRBM if I	 are uninfluenced by SRBM

I	
+ = I	 . (5.13.6)

If I	 are determined by consistency conditions for standard rate-independent yield
functions, then the active slip systems may not be determined uniquely. How-
ever, if I	 are determined by functions similar to those (5.11.80) of the smooth
elastic–inelastic transition model developed in [18, 19], then loading and unloading
conditions are not needed and all slip systems are simultaneously active even for
rate-independent response. Examples for standard small strain formulations of crys-
tal plasticity which has been modified to use the smooth elastic–inelastic transition
model can be found in [13, 15].
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Chapter 6
Thermomechanical Theory

Abstract The objective of this chapter is to present the balance laws for the thermo-
mechanical theory. Specifically, the balances of entropy and energy are presented and
different forms of second law of thermodynamics are discussed. Invariance under
Superposed Rigid Body Motions (SRBM) is considered for the new thermal quanti-
ties and thermal constraints on material response are discussed. In addition, specific
nonlinear constitutive equations are presented for a number of materials model-
ing: thermoelastic, thermoelastic–inelastic and porous responses. Also, constitutive
equations for growth of thermoelastic–inelastic biological tissues are presented.

6.1 Thermomechanical Processes

A thermomechanical process is characterized by its velocity field v and its absolute
temperature field θ

v = v(x, t) , θ = θ(x, t) , (6.1.1)

the position of a material point x is determined by integrating the equation

ẋ = v(x, t) , (6.1.2)

and the velocity gradient L, rate of deformation tensor D and temperature gradient
g are defined by

L = ∂v/∂x , D = 1

2
(L + LT ) , g = ∂θ

∂x
. (6.1.3)

These quantities are defined at every material point in the material region P and on
its closed boundary ∂ P .
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Within the context of the thermomechanical theory proposed byGreen andNaghdi
[7, 8], in addition to the current mass density ρ, the specific (per unit mass) body
force b, the Cauchy stress T, the unit outward normal n to ∂ P and the traction vector
t = Tn per unit current area on ∂ P , it is necessary to introduce the specific entropy
η, the specific external rate of entropy supply s, the specific internal rate of entropy
production ξ , the specific internal energy ε, the specific external rate of energy supply
r on P and the entropy flux p and energy flux q vectors, both per unit present area
on ∂ P .

The external fields
b , s , (6.1.4)

need to be specified and constitutive equations must be provided for the response
functions

T , η , ξ , p , ε , (6.1.5)

with r and q determined by
r = θs , q = θp . (6.1.6)

6.2 Balance Laws for the Thermomechanical Theory

Within the context of the thermomechanical theory proposed by Green and Naghdi
[7, 8] the current mass density ρ, the current position x of a material point and the
absolute temperature θ are determined by the global forms of the conservation of
mass and the balances of linear momentum and entropy

d

dt

∫
P

ρdv = 0

d

dt

∫
P

ρvdv =
∫

P
ρbdv +

∫
∂ P

tda ,

d

dt

∫
P

ρηdv =
∫

P
ρ(s + ξ)dv −

∫
∂ P

p · nda .

(6.2.1)

The minus sign appears before the integral over the entropy flux because p · n is
the rate of entropy expelled by the body through its surface. The global form of the
balance of angular momentum is given by

d

dt

∫
P
(x × ρv)dv =

∫
P
(x × ρb)dv +

∫
∂ P

x × tda , (6.2.2)

and the balance of energy (i.e., the first law of thermodynamics) takes the form

Ė + K̇ = W + H . (6.2.3)
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In words, the first law of thermodynamics states that the rate of change of the total
internal energy E plus the rate of change of the total kinetic energyK is balanced by
the total rate of work W done on the body and total rate of heat H supplied to the
body, which indicates the equivalence of thermal and mechanical supplies of energy.
Specifically, these quantities are defined by

E = ∫
P ρεdv , K = ∫

P
1
2ρv · vdv ,

W = ∫
P ρb · vdv + ∫

∂ P t · vda , H = ∫
P ρθsdv − ∫

∂ P θp · nda .
(6.2.4)

Using standard continuity conditions, the local forms of the conservation of mass
and balances of linear momentum and entropy are given by

ρ̇ + ρD · I = 0 , ρv̇ = ρb + divT , ρη̇ = ρ(s + ξ) − divp . (6.2.5)

Also, using these balance laws, the reduced local form of the balance of angular
momentum requires the Cauchy stress T to be symmetric

TT = T , (6.2.6)

and the reduced local form of the balance of energy requires

ρε̇ = ρθs − div(θp) + T · D . (6.2.7)

Next, multiplying the balance of entropy in (6.2.5) by θ and using the expressions
(6.1.6) it can be shown that

ρθs − div(θp) = ρθη̇ − ρθξ − p · g . (6.2.8)

Also, the internal rate of entropy production is separated into two parts [17]: a thermal
part −p · g due to heat conduction and another part ρθξ ′ due to the rate of material
dissipation

ρθξ = −p · g + ρθξ ′ , (6.2.9)

so that the external rate of energy supply can be written in the form

ρθs − div(θp) = −ρθξ ′ + ρθη̇ . (6.2.10)

In addition, the specific Helmholtz free energy ψ is defined by

ψ = ε − θη , (6.2.11)

and the balance of energy (6.2.7) yields a constitutive equation for the rate of material
dissipation ρθξ ′

ρθξ ′ = T · D − ρ(ψ̇ + ηθ̇) , (6.2.12)
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where use has been made of (6.2.10).
In this formulation of thermomechanics, ρ, x and θ are determined by the con-

servation of mass and the balances of linear momentum and entropy (6.2.5) and
the balances of angular momentum and energy place restrictions on the constitutive
equations which ensure that they are identically satisfied for all thermomechanical
processes. Specifically, the reduced formof the balance of angularmomentum (6.2.6)
requires the Cauchy stress T to be symmetric and the reduced form of the balance of
energy (6.2.12) determines a constitutive equation for the rate of material dissipation
ρθξ ′.

6.3 Second Laws of Thermomechanics

Observations indicate that thermomechanical processes progress is specific direc-
tions. For example, consider a body which is isolated with no rates of external work
and heat supply

b · v = 0 , r = 0 on P ,

t · v = 0 , q · n = 0 on ∂ P .
(6.3.1)

Then, the global form (6.2.3) of the first law of thermodynamics indicates that an
isolated body preserves total energy

E + K = E(0) + K(0) = constant . (6.3.2)

Next, consider a body that is made from a homogeneous material which is in
a zero-stress uniform material state at rest. In the absence of external forces and
with no heat supply through its boundary, the body is heated by an external rate
of energy supply to obtain an inhomogeneous temperature field in the body at rest.
Then, in the absence of external forces and further external heat supply, the total
energy would remain constant even if part of the body became hotter and another
part of it became colder. However, observations indicate that this does not happen
naturally. Instead, the body tends to reach a uniform temperature. Notions of entropy
model the observed directions of thermomechanical processes.

Clausius–Duhem Inequality
In the classical approach to continuum thermomechanics proposed by Coleman and
Noll [5], the conservation of mass and the balances of linear momentum, angular
momentum and energy are supplimented by the Clausius–Duhem inequality

d

dt

∫
P

ρηdv −
∫

P

ρr

θ
dv +

∫
∂ P

q · n
θ

da ≥ 0 , (6.3.3)

which is a statement of the second law of thermodynamics that thermomechanical
processes cause the internal rate of entropy production to have a tendency to increase.



6.3 Second Laws of Thermomechanics 181

Using standard continuity conditions, the local form of the conservation of mass and
the definitions (6.1.3) and (6.1.6), the local form of (6.3.3) requires

ρθη̇ − ρθs + θdivp ≥ 0 . (6.3.4)

Moreover, with the help of the balance of energy (6.2.7) and the definition (6.2.11)
of the Helmholtz free energy ψ , the Clausius–Duhem inequality requires

T · D − ρ(ψ̇ + ηθ̇) − p · g ≥ 0 , (6.3.5)

which places restrictions on constitutive equations.

Green–Naghdi Formulation
In the classical approach to thermomechanics, the Clausius–Duhem inequalty (6.3.5)
is a single statement of the second law of thermodynamics that places restrictions
on the constitutive equations. In contrast, the Green and Naghdi formulation places
restrictions on the constitutive equations by requiring the reduced forms of the bal-
ance of angular momentum (6.2.6) and the balance of energy (6.2.7) to be satisfied
identically, without any statement of the second law of thermodynamics.

To compare the two approaches to thermomechanics, use ismade of the separation
(6.2.9) and the constitutive Eq. (6.2.12) to rewrite the Clausius–Duhem inequality
(6.3.4) in the form

ρθξ = −p · g + ρθξ ′ > 0 , (6.3.6)

which requires the total internal rate of entropy production to be non-negative. How-
ever, the Green–Naghdi formulation allows for proposing different statements of the
second law of thermodynmaics, as was discussed in [8].

Heat Flows From Hot to Cold Regions
One statement of the second law of thermodynamics is that heat flows from hot to
cold regions

− p · g > 0 for g �= 0 . (6.3.7)

This indicates that the thermal part of the internal rate of entropy production in the
separation (6.2.9) is non-negative.

Rate of Material Dissipation
To motivate a second statement of the second law of thermodynamics, it is noted
from (6.1.6) and (6.2.10) that the rate of heat expelled by the body is given by

− (ρr − divq) = −[ρθs − div(θp)
] = ρθξ ′ − ρθη̇ . (6.3.8)

For general thermomechanical processes heat can be supplied or expelled. However,
the notions of friction and viscous effects in fluids indicate that the rate of mate-
rial dissipation causes a tendency for heat to be expelled by the body. Noting that
positive values of ρθξ ′ cause a tendency for heat to be expelled by the body, this
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second statement of the second law of thermodynamics requires the rate of material
dissipation to be non-negative

ρθξ ′ = T · D − ρ(ψ̇ + ηθ̇) ≥ 0 . (6.3.9)

Although the two statements (6.3.7) and (6.3.9) combined are consistent with the
Clausius–Duhem inequality (6.3.6), this latter single statement of the second law of
thermodynamics does not demand that (6.3.7) and (6.3.9) be satisfied individually,
as in the Green–Naghdi formulation.

6.4 Invariance Under Superposed Rigid Body Motions
(SRBM)

Although temperature θ is not a kinematic variable, it is an independent variable like
the position vector x which needs to be determined by the balance laws, boundary
and initial conditions. Consequently, in addition to the kinematic conditions (3.8.13)
and (3.8.16)

x+ = c(t) + Q(t)x , QQT = I , detQ = +1 , (6.4.1)

it is proposed that θ remains unaltered under SRBM

θ+ = θ . (6.4.2)

This means that the temperature gradient g transforms to g+, such that

g = ∂θ

∂x
, g+ = ∂θ+

∂x+ = g (∂x/∂x+) = gQT = Qg . (6.4.3)

Section 4.7 introduced the notion of invariance under SRBM which is based on
the two restrictions

(R-1): The balance laws must be form-invariant under SRBM. (6.4.4a)

(R-2): The constitutive response of the material relative to its orientation

is the same for all SRBM. (6.4.4b)

The first restriction (R-1) in (6.4.4a) requires the global forms of the balance laws
to be form-invariant in the superposed configuration P+ with all independent and
kinetic quantities taking their superposed values in P+. Using the transformation
relations (4.7.21)

ρ+ = ρ , T+ = QTQT , b+ = v̇+ + Q(b − v̇) , (6.4.5)



6.4 Invariance Under Superposed Rigid Body Motions (SRBM) 183

the conservation of mass, the balance of linear momentum (6.2.1) and the balance of
angular momentum (6.2.2) are already form-invariant under SRBM. Consequently,
within the context of the thermomechanical theory, the physical restriction (R-1) in
(6.4.4a) requires the balance of entropy in (6.2.1) and the balance of energy (6.2.3)
to remain form-invariant under SRBM

d

dt

∫
P+

ρ+η+dv+ =
∫

P+
ρ+(s+ + ξ+)dv+ −

∫
∂ P+

p+ · n+da+ , (6.4.6a)

Ė+ + K̇+ = W+ + H+ , (6.4.6b)

with the specifications

E+ =
∫

P+
ρ+ε+dv+ , K+ =

∫
P+

1

2
ρ+v+ · v+dv+ ,

W+ =
∫

P+
ρ+b+ · v+dv+ +

∫
∂ P+

t+ · v+da+ ,

H+ =
∫

P+
ρ+θ+s+dv+ −

∫
∂ P+

θ+p+ · n+da+ .

(6.4.7)

Using standard continuity arguments the local form the of the balance of entropy
(6.4.6a) requires

(ρ̇+ + ρ+D+ · I) η+ + ρ+η̇+ = ρ+(s+ + ξ+) − div+p+ , (6.4.8)

and the local form of the balance of energy (6.4.6b) requires

(ρ̇+ + ρ+D+ · I)
(

ε+ + 1

2
ρ+v+ · v+

)
+ (ρ+v̇+ − ρ+b+ − div+T+) · v̇+ + ρ+ε̇+

= T+ · L+ + ρ+θ+s+ − div+(θ+p+) .

(6.4.9)
Then, using form-invariance of the local forms of the conservation of mass and the
balances of linear and angular momentum, the local form of the balance of entropy
requires

ρ+η̇+ = ρ+(s+ + ξ+) − div+p+ , (6.4.10)

and the local form of the balance of energy requires

ρ+ε̇+ = T+ · D+ + ρ+θ+s+ − div+(θ+p+) . (6.4.11)

Now, with the help of (2.5.4) and (6.4.1) it can be shown that

div+p+ = (∂p+/∂x+) · I = (∂p+/∂x)(∂x/∂x+) · I = (∂p+/∂x) · Q ,

div+p+ = div(QTp+) .
(6.4.12)
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Next, using the invariance of ρ in (6.4.5), the balance of entropy (6.4.10) can be
solved for s+ to obtain

s+ = η̇+ − ξ+ + 1

ρ
div(QTp+) . (6.4.13)

Moreover, using the local balance of entropy in (6.2.5) it can be shown that

s+ = s + (η̇+ − η̇) − (ξ+ − ξ) + 1

ρ
div(QTp+ − p) . (6.4.14)

In this regard, it is noted that the restriction (R-1) tacitly assumes that the balance of
entropy is valid for any specified external rate of entropy supply. Consequently, it is
also valid for (6.4.14), which enforces SRBM.

To compete the restrictions for invariance under SRBMit is necessary to determine
expressions for

η+ , ξ+ , ε+ ,p+ . (6.4.15)

This requires use of the physical restriction (R-2) (6.4.4b) and recognition that in
addition to the stressT, the quantities η, ξ, ε and p characterize the material response
for thermomechanical processes. This means that η, ξ and ε, which do not depend
on the orientation of the material, must be uninfluenced by SRBM

η+ = η , ξ+ = ξ , ε+ = ε . (6.4.16)

Moreover, the response due to the entropy flux vector relative to the orientation of
the material will be the same if the restriction

p+ · n+ = p · n (6.4.17)

is valid for all material points, all unit normals n and all SRBM. Now, using the
kinematic result (3.8.20) that n rotates under SRBM

n+ = Qn , (6.4.18)

the expression (6.4.17) for the entropy flux vector can be rewritten in the form

(p+ − Qp) · n+ = 0 . (6.4.19)

Then, since the coefficient of n+ in this equation is independent of n+, and n+ is
an arbitrary unit vector, the entropy flux vector p and heat flux vector q defined in
(6.1.6) must satisfy the transformation relations

p+ = Qp , q+ = Qq . (6.4.20)
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This means that with the help of (6.4.16), the restriction (6.4.14) requires the external
rate of entropy supply s and the external rate of heat supply r defined in (6.1.6) to
be unaffected by SRBM

s+ = s , r+ = r . (6.4.21)

In summary, under superposed rigid body motions SRBM the thermomechanical
quantities θ, g, η, ε, ψ, s, r, ξ, ξ ′,p and q transform to θ+, g+, η+, ε+, ψ+, s+, r+,

ξ+, ξ ′+,p+ and q+, such that

θ+ = θ , g+ = Qg , η+ = η ε+ = ε , ψ+ = ψ ,

s+ = s , r+ = r , ξ+ = ξ , ξ ′+ = ξ ′ , p+ = Qp , q+ = Qq .
(6.4.22)

6.5 Thermal Constraints

In general, it is possible to propose coupled thermomechanical constraints but such
coupled constraints make it difficult to satisfy the forms (6.3.7) and (6.3.9) of the
second law of thermodynamics individually. For this reason, this section considers
thermal constraints which are independent of the kinematic constraints considered
in Sect. 5.7. In this regard, it is noted that since the constraint response T̄ in (5.7.13)
is workless (5.7.11)

T · D = T̂ · D , (6.5.1)

so the constraint response makes no contribution to the rate of material dissipation
in the second law of thermodynamics (6.3.9).

As a physical example of a thermal constraint, consider a material that has fibers
in one direction that allow for very rapid heat conduction relative to the surrounding
matrix material. For this case, the temperature gradient g in the direction of the fibers
will be very small relative to the temperature gradient in directions perpendicular
to the fibers due to slow conduction through the matrix material only. Motivated by
this simple example, consider a thermal constraint which constrains the temperature
gradient in the direction γ of the form

γ · g = 0 , (6.5.2)

where γ is a vector that is independent of g and which under SRBM satisfies the
transformation relation

γ + = Qγ . (6.5.3)

Moreover, consider a general unconstrained material that is characterized by a
constitutive equation p̂ for the entropy flux p. Next, consider amodel of a constrained
material for which p is additively separated into the constitutive part p̂ and a part p̄,
called the constraint response, which enforces the thermal constraint (6.5.2)
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p = p̂ + p̄ . (6.5.4)

Although p̂ characterizes the response to general temperature gradients, its value
in (6.5.4) is determined by evaluating p̂ only for temperature gradients that satisfy
the imposed thermal constraint. Moreover, p̂ automatically transforms under SRBM,
such that

p̂+ = Qp̂ . (6.5.5)

Now, p̄ is assumed to satisfy the restriction

p̄ · g = 0 , (6.5.6)

and to be independent of the rate g.
Next, multiplying (6.5.2) by an arbitrary scalar γ and subtracting the result from

(6.5.6) yields
(p̄ − γ γ ) · g = 0 . (6.5.7)

Since γ is nonzero it is possible to specify γ by the equation

γ = p̄ · γ

|γ · γ | . (6.5.8)

Then, the only nonzero components in (6.5.7) are perpendicular to γ . Since this
equation must hold for arbitrary temperature gradients g that satisfy the constraint
(6.5.2) and the coefficient of g is independent of g, it follows that the constraint
response p̄ must be given by

p̄ = γ γ , (6.5.9)

with γ being an arbitrary function of x and t that is determined by the balance laws
and boundary conditions. Since the restriction (R-2) in (4.7.3b), which defines how
the constitutive response of the material relative to its orientation is the same for all
SRBM, requires p to satisfy the transformation relation (6.4.20) and since p̂ satisfies
the transformaton relation (6.5.5), it follows from (6.5.4) that the constraint response
p̄ satisfies the transformation relation

p̄+ = γ + γ + = Qp̄ = γ Qγ (6.5.10)

for all SRBM.Then,with the help of (6.5.3) it can be shown that the arbitrary function
γ must be unaffected by SRBM

γ + = γ . (6.5.11)

In addition, since the constraint response p̄ satisfies the restriction (6.5.6), it follows
that

p · g = p̂ · g , (6.5.12)
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so the constraint response does not influence the restriction (6.3.7) of the second law
of thermodynamics which requires heat to flow from hot to cold regions.

Furthermore, it is noted that up to two independent thermal constraints of the type
(6.5.2) can be imposed simultaneously without causing p to be totally indeterminate.

6.6 Thermoelastic Materials

A thermoelastic solid is a special ideal material which is non-dissipative in the sense
that the rate of material dissipation (6.2.12) vanishes

ρθξ ′ = T · D − ρ(ψ̇ + ηθ̇) = 0 (6.6.1)

for all thermomechanical processes.
Within the context of the Eulerian formulation of constitutive equations, the

microstructural vectors mi and elastic metric mi j described in Sect. 3.11 are deter-
mined by the evolution equations

ṁi = Lmi , mi j = mi · m j , ṁi j = 2mi ⊗ m j · D . (6.6.2)

Moreover, for a thermoelastic material, the response functions ψ, η and T are spec-
ified in the forms

ψ = ψ̂(mi j , θ) , η = η̂(mi j , θ) , T = T̂(mi , θ) , (6.6.3)

so the condition (6.6.1) requires

(
T − 2ρ

∂ψ̂

∂mi j
mi ⊗ m j

)
· D − ρ(

∂ψ̂

∂θ
+ η) θ̇ = 0 . (6.6.4)

Since the coefficients of D and θ̇ are independent of these rates, and the coefficient
of D is symmetric, T and η must be determined by the constitutive equations

T = T̂ = 2ρ
∂ψ̂

∂mi j
mi ⊗ m j , η = η̂ = −∂ψ̂

∂θ
. (6.6.5)

This expression for the Cauchy stress T automatically satisfies the restriction (6.2.6)
due to angular momentum. Moreover, the entropy flux p takes the form

p = pimi , pi = p̂i (mi j , θ, gi ) , gi = g · mi , (6.6.6)

which must satisfy the restriction (6.3.7) due to the second law of thermodynamics,
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− p̂ · g = − p̂i gi > 0 for g �= 0 . (6.6.7)

These functional forms are automatically properly invariant under SRBM. Also,
using (6.2.11), it follows that the internal energy ε for a thermoelastic material is
given by

ε = ε̂(mi j , θ) = ψ̂(mi j , θ) + θη̂(mi j , θ) . (6.6.8)

Furthermore, these constitutive equations are restricted so that the material is in a
zero-stress material state whenever the elastic deformation metric mi j = δi j and the
temperature equals the reference zero-stress temperature θ = θz

T = 0 whenever mi j = δi j and θ = θz . (6.6.9)

Rate-Dependent Response
Although the evolution Eq. (6.6.2) formi are homogeneous equations of order one in
time and thus predict rate-independent response, and the response functions (6.6.3)
and (6.6.6) are explicitly independent of the ratesD and θ̇ , the response of a thermoe-
lastic material is rate-dependent. This is because the balance of entropy in (6.2.5)3
predicts time-dependent response of the temperature for transient processes.

Path-Independent Response
Sincemi arematerial line elements, it follows that the values of the response functions
ψ, η,T and p at a specified state characterized by mi and θ are independent of the
path of the thermomechanical process that attains this state. This also means that for
any thermomechanical process that starts at the state

mi (x, t1), θ(x, t1), v(x, t1) , (6.6.10)

and ends at the state
mi (x, t2), θ(x, t2), v(x, t2) , (6.6.11)

the changes in internal and kinetic energies

�E = E(t2) − E(t1) , �K = K(t2) − K(t1) (6.6.12)

are independent of the path of the thermodynamic process. Moreover, with the help
of the first law of thermodynamics (6.2.3), it follows that the total work done on the
body plus the total heat supplied to the body during this process is also independent
of the path of the process

∫ t=t2

t=t1

(W + H)dt = �E + �K . (6.6.13)

In addition, the total work done on the body plus the total heat supplied to the body
vanishes for any cyclic process which starts and ends at the same statemi , θ and v.
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An Irreversible Process
Although a thermoelastic material is an ideal material with no material dissipation, it
can experience an irreversible process. For the present discussion it is assumed that

ε̂ → ∞ whenever η̂ → ∞ . (6.6.14)

Now consider a cantilever beam made from a homogeneous thermoelastic material.
The external body force and external rate of heat supply both vanish b = 0 and r = 0.
Also, the velocity field on the clamped boundary vanishes, all other boundaries are
traction free t = 0 and all boundaries are insulated from heat flow q · n = 0. For this
problem the total rate of workW done on the body vanishes and the total rate of heat
supplyH vanishes. Also, consider the case when the body is initially in a zero-stress
material state at constant density ρz and constant zero-stress reference temperature
θz , but it has an initial velocity field with a non-uniform rate of deformation so that

mi j (x, 0) = δi j , θ(x, 0) = θz , ∂D(x, 0)/∂x �= 0 ,

T(x, 0) = 0 , η(x, 0) = 0 , ε(x, 0) = 0 .
(6.6.15)

Consequently, from (6.2.3) the sum of the total internal and kinetic energies remains
constant

E + K = K(0) , (6.6.16)

where K(0) is the initial value of the total kinetic energy in the beam.
The global form of the balance of entropy in (6.2.1)3 and the restrictions (6.3.1),

(6.3.6), (6.3.7) and (6.6.1) require

d

dt

∫
P

ρηdv = −
∫

P
(
p · g
θ

)dv ≥ 0 . (6.6.17)

Moreover, the restriction (6.3.7) causes the total entropy to increase until the temper-
ature becomes uniform with g = 0. In particular, a non-uniform rate of deformation
causes local temperature changes with a nonzero temperature gradient g. However,
due to assumption (6.6.14) and the result (6.6.16), the entropy cannot continue to
increase without bound. This means that eventually the temperature must become
uniformwithg = 0, the velocity fieldmust go to zero and the elastic deformationmet-
ric mi j must become independent of time, but it can be nonuniform due the clamped
boundary. Since energy is preserved, the final values of E andK are constants given
by

E(∞) = K(0) , K(∞) = 0 . (6.6.18)

This example shows the importance of the entropy in a thermomechanical process.
In particular, since the entropy flux must satisfy the restriction (6.3.7), it follows that
the process is thermodynamically irreversible even though the thermoelastic material
is non-dissipative.
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A Separation of Elastic Dilatation and Distortional Deformations
To introduce separate control over the response of the material to dilatation and
distortional rates of deformation, it is convenient to use the work of Flory [6] and use
the elastic dilatation Je defined in (3.11.7), the elastic distortional deformation vectors
m′

i defined in (3.11.14) and the elastic distortional deformation metric m ′
i j defined

in (3.11.16), which satisfy the evolution Eqs. (3.11.13), (3.11.15) and (3.11.17)

Je = m1 × m2 · m3 > 0 , J̇e = JeD · I ,

m′
i = J−1/3

e mi , ṁ′
i = L′′ m′

i ,

m ′
i j = m′

i · m′
j = m ′

j i , ṁ ′
i j = 2(m′

i ⊗ m′
j − 1

3m ′
i j I) · D ,

(6.6.19)

where L′′ is the deviatoric part of L. Moreover, since there is no inelastic volume
change for a thermoelastic material, the elastic dilatation Je can be expressed in the
form (4.1.16)

Je = ρz

ρ
, (6.6.20)

where ρz is the constant zero-stress mass density at zero-stress reference temperature
θz .

Then, for a thermoelastic material, the response functionsψ, η andT are specified
in the forms

ψ = ψ̃(Je, m ′
i j , θ) , η = η̃(Je, m ′

i j , θ) , T = T̃(Je,m′
i , θ) , (6.6.21)

so the condition (6.6.1) requires

[
T − ρ Je

∂ψ̃

∂ Je
I − 2ρ

∂ψ̃

∂m ′
i j

(m′
i ⊗ m′

j − 1

3
m ′

i j I)

]
· D − ρ(

∂ψ̃

∂θ
+ η) θ̇ = 0 .

(6.6.22)
Since the coefficients of D and θ̇ are independent of these rates, and the coefficient
of D is symmetric, T and η must be determined by the constitutive equations

T = T̃ = −p I + T′′ , p = p̃ = −ρz
∂ψ̃

∂ Je
,

T′′ = T̃′′ = 2J−1
e ρz

∂ψ̃

∂m ′
i j
(m′

i ⊗ m′
j − 1

3m ′
i j I) , η = η̃ = − ∂ψ̃

∂θ
,

(6.6.23)

where use has been made of (6.6.20). Moreover, the entropy flux p takes the form

p = pi ′m′
i , pi ′ = p̃i ′(Je, m ′

i j , θ, g′
i ) , g′

i = g · m′
i , (6.6.24)

which must satisfy the restriction (6.3.7) due to the second law of thermodynamics,

− p · g = − p̃i ′g′
i > 0 for g �= 0 . (6.6.25)
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An Elastically Isotropic Thermoelastic Material
If thematerial is elastically isotropic, then the elastic dilatation Je and the symmetric,
positive-definite, unimodular elastic distortional deformation tensor B′

e defined by
(3.11.19) satisfy the evolution Eq. (3.11.30)

J̇e = Je D · I , Ḃ′
e = Ḃ′

e = L′′B′
e + B′

eL
′′T , (6.6.26)

where L′′ is the deviatoric part of the velocity gradient L. Since B′
e is unimodular, it

has only two independent non-trivial invariants α1 and α2 defined in (5.8.4)

α1 = B′
e · I , α2 = B′

e · B′
e , (6.6.27)

which satisfy the evolution Eq. (5.8.7)

α̇1 = 2B′′
e · D , α̇2 = 4

(
B′2

e − 1

3
α2I
)

· D , (6.6.28)

where B′′
e is the deviatoric part of B′

e. Moreover, the evolution equation for elastic
dilatation can be integrated to obtain (6.6.20).

For an elastically isotropic thermoelastic material, the response functions ψ, η

and T are specified in the forms

ψ = ψ̂(Je, α1, α2, θ) , η = η̂(Je, α1, α2, θ) , T = T̂(B′
e, θ) , (6.6.29)

so the condition (6.6.1) requires

[
T − ρz

∂ψ̂

∂ Je
I − 2ρz J−1

e

∂ψ̂

∂α1
B′′

e − 4ρz J−1
e

∂ψ̂

∂α2

(
B′2

e − 1

3
α2 I

)]
· D

− ρ

(
∂ψ̂

∂θ
+ η

)
θ̇ = 0 ,

(6.6.30)

for all thermomechanical processes. Since the coefficients ofD and θ̇ are independent
of these rates, and the coefficient of D is symmetric, T and η must be determined by
the constitutive equations

T = −p I + T′′ , p = p̂ = −ρz
∂ψ̂

∂ Je
,

T′′ = T̂′′ = 2ρz J−1
e

∂ψ̂

∂α1
B′′

e + 4ρz J−1
e

∂ψ̂

∂α1

(
B′2

e − 1

3
α2 I

)
,

η = η̂ = −∂ψ̂

∂θ
.

(6.6.31)
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Also, for isotropic response the entropy flux vector can be specified by a generalized
Fourier form

p = − κ̄

θ
g , κ̄ = κ̄(Je, α1, α2, θ) ≥ 0 , (6.6.32)

where the heat conduction coefficient κ̄ should not be confused with the hardening
variable κ defined for inelastic response.

6.7 Thermoelastic–Inelastic Materials

For elastically anisotropic thermoelastic–inelastic materials, themicrostructural vec-
torsmi are determined by integrating the evolution Eq. (5.11.30)

ṁi = (L − Lp)mi , Lp = �L̄p , � ≥ 0 , (6.7.1)

where L̄p controls the direction of the inelastic rate Lp and � is a non-negative
function that controls its magnitude. In general, L̄p has a symmetric part D̄p that
controls the direction of inelastic deformation rate and a skew-symmetric part W̄p

that controls the direction of inelastic spin defined by

L̄p = D̄p + W̄p , D̄p = 1

2
(L̄p + L̄T

p ) , W̄p = 1

2
(L̄p − L̄T

p ) , (6.7.2)

both of which require constitutive equations. Also, for isotropic hardening, the hard-
ening κ is determined by the evolution Eq. (5.11.31)

κ̇ = �H , (6.7.3)

where H is a function that controls the rate of hardening. More general directional
hardening can be modeled by introducing directional hardening variables βi j = β j i

which satisfy the evolution Eq. (5.11.32)

β̇i j = �Hi j , (6.7.4)

where Hi j = Hji are functions that control the relative magnitudes of βi j . In addi-
tion, the elastic deformation metric mi j defined in (5.11.34) satisfies the evolution
equations

mi j = mi · m j , ṁi j = 2(D − �D̄p) · (mi ⊗ m j ) . (6.7.5)

Now, for an anisotropic thermoelastic–inelastic material, the response functions
ψ, η and T are specified in the forms
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ψ = ψ̂(mi j , θ, κ, βi j ) , η = η̂(mi j , θ, κ, βi j ) , T = T̂(mi , θ, κ, βi j ) , (6.7.6)

so the rate of material dissipation (6.3.9) requires

ρθξ ′ =
(
T − 2ρ

∂ψ̂

∂mi j
mi ⊗ m j

)
· D − ρ

(
∂ψ̂

∂θ
+ η

)
θ̇ ,

+ �
[
2ρ

∂ψ̂

∂mi j
mi ⊗ m j · D̄p − ρ

∂ψ̂

∂κ
H − ρ

∂ψ̂

∂βi j
Hi j

]
≥ 0 .

(6.7.7)

In general, without specifying details of the functional forms for �, D̄p, H and Hi j ,
it is not possible to determine necessary restrictions on the constitutive equations
for T and η. However, motivated by necessary restrictions for a rate-independent
elastic–inelastic material with a yield function, the constitutive equations for T and
η are specified by

T = T̂ = 2ρ
∂ψ̂

∂mi j
mi ⊗ m j , η = η̂ = −∂ψ̂

∂θ
, (6.7.8)

so the rate of material dissipation imposes the restriction

ρθξ ′ = �
[
T · D̄p − ρ

∂ψ̂

∂κ
H − ρ

∂ψ̂

∂βi j
Hi j

]
≥ 0 . (6.7.9)

Also, the constitutive equation for stress is assumed to be restricted so that a zero-
stress material state at zero-stress reference temperature θz [also called a Reference
Lattice State (RL S)] is characterized by

T = 0 ,
∂ψ̂

∂mi j
= 0 for mi j = δi j , θ = θz , (6.7.10)

where δi j is the Kronecker delta. This means that the triad mi has been defined so
thatmi are orthonormal vectors in a zero-stress material state at zero-stress reference
temperature θ = θz . In addition, the entropy flux p can be specified in the form

p = pimi , pi = p̂i (mi j , θ, κ, gi ) , gi = g · mi , (6.7.11)

which must satisfy the restriction (6.3.7) due to the second law of thermodynamics,

− p̂ · g = − p̂i gi > 0 for g �= 0 . (6.7.12)

The evolution Eq. (6.7.1) for mi , (6.7.29) for κ and (6.7.4) for βi j require initial
conditions

mi (0), κ(0), βi j (0) . (6.7.13)
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A Separation of Elastic Dilatation and Distortional Deformations
To introduce separate control over the response of the material to dilatation and
distortional rates of deformation, it is convenient to use the elastic dilatation Je, the
distortional deformation vectors m′

i and the elastic distortional deformation metric
m ′

i j , which satisfy the Eq. (5.11.45)

Je = m1 × m2 · m3 > 0 , J̇e = Je(D − �D̄p) · I ,

m′
i = J−1/3

e mi , ṁ′
i = (L′′ − �L̄′′

p)m
′
i ,

m ′
i j = m′

i · m′
j = m ′

j i , ṁ ′
i j = 2

(
m′

i ⊗ m′
j − 1

3m ′
i j I
)

· (D − �D̄p) ,

(6.7.14)

where L′′ is the deviatoric part of the velocity gradient L and L̄′′
p is the deviatoric

part of L̄p. Then, for an anisotropic thermoelastic–inelastic material, the response
functions ψ, η and T are specified in the forms

ψ = ψ̃(Je, m ′
i j , θ, κ, βi j ) , η = η̃(Je, m ′

i j , θ, κ, βi j ) ,

T = T̃(Je,m′
i , θ, κ, βi j ) ,

(6.7.15)

so the rate of material dissipation (6.3.9) requires

ρθξ ′ =
[
T − ρ Je

∂ψ̃

∂ Je
I − 2ρ

∂ψ̃

∂m ′
i j

(
m′

i ⊗ m′
j − 1

3
m ′

i j I
)]

· D − ρ

(
∂ψ̂

∂θ
+ η

)
θ̇ ,

+ �

[
ρ Je

∂ψ̃

∂ Je
D̄p · I + 2ρ

∂ψ̃

∂m ′
i j

(
m′

i ⊗ m′
j − 1

3
m ′

i j I
)

· D̄p

− ρ
∂ψ̂

∂κ
H − ρ

∂ψ̂

∂βi j
Hi j

]
≥ 0 ,

(6.7.16)
where use has been made of (6.6.20). Again, without specifying details of the rate of
inelasticity and the hardening functions �, D̄p, H and Hi j , it is not possible to obtain
necessary restrictions on the constitutive equation for stress and entropy. However,
motivated by the constitutive Eq. (6.6.23) for a thermoelastic–inelastic material, the
constitutive equations for stress and entropy in a thermomelastic–inelastic material
are specified by

T = −p I + T′′ = T̃ , p = p̃ = −ρ Je
∂ψ̃

∂ Je
,

T′′ = T̃′′ = 2ρ
∂ψ̃

∂m ′
i j

(
m′

i ⊗ m′
j − 1

3
m ′

i j I
)

,

η = η̃ = −∂ψ̃

∂θ
,

(6.7.17)
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so the rate of material dissipation imposes the restriction

ρθξ ′ = �
[

− p̃ (I · D̄p) + T̃′′ · D̄p − ρ
∂ψ̃

∂κ
H − ρ

∂ψ̃

∂βi j
Hi j

]
≥ 0 . (6.7.18)

Also, the constitutive equation for stress is assumed to be restricted so that a
zero-stress material state at zero-stress reference temperature θz is characterized by

T = 0 ,
∂ψ̃

∂ Je
= 0 ,

∂ψ̃

∂m ′
i j

= 1

3

∂ψ̃

∂m ′
nn

δi j

for Je = 1 , m ′
i j = δi j , θ = θz ,

(6.7.19)

where δi j is the Kronecker delta. This means that the triad m′
i has been defined so

thatm′
i are orthonormal vectors in a zero-stress material state at zero-stress reference

temperature θ = θz . In addition, the entropy flux p can be specified in the form
(6.6.24)

p = pi ′m′
i , pi ′ = p̃i ′(Je, m ′

i j , θ, g′
i ) , g′

i = g · m′
i , (6.7.20)

which must satisfy the restriction (6.3.7) due to the second law of thermodynamics,

− p · g = − p̃i ′g′
i > 0 for g �= 0 . (6.7.21)

The evolution Eq. (6.7.14) for Je and m′
i , (6.7.29) for κ and (6.7.4) for βi j require

initial conditions
Je(0),m′

i (0), κ(0), βi j (0) . (6.7.22)

Examples where this formulation has been used to model elastic and inelastic
anisotropy in geological materials with joints can be found in [25, 35]. Also, notice
that inelastic dilatation rate D̄p · I �= 0 in (6.7.14) prevents the elastic dilatation Je

from being written in a simple form like (6.6.20) since the zero-stress density of the
material at zero-stress reference temperature need not be constant.

Elastically Isotropic Thermoelastic–Inelastic Response
For elastically isotropic thermoelastic–inelastic response, the Helmholtz free energy
depends on the invariants of the metric mi j . Then, following the definitions of pure
dilatation and pure distortion proposed by Flory [6], the elastic dilatation Je is defined
by (3.11.7)

Je = m1 × m2 · m3 > 0 , (6.7.23)

and the symmetric, positive-definite, unimodular elastic distortional deformation
tensor B′

e is defined by (5.8.1)

B′
e = m′

i ⊗ m′
i . (6.7.24)
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Then, the evolution equation for Je is given by (6.7.14)

J̇e = Je(D − �D̄p) · I , (6.7.25)

and B′
e satisfies the evolution Eq. (5.11.66) with the specification

Ḃ′
e = L′′B′

e + B′
eL

′′T − �Ap , Ap = B′
e −

(
3

B′−1
e · I

)
I . (6.7.26)

Also, the non-trivial invariants α1 and α2 of B′
e are given by (5.11.58)

α1 = B′
e · I , α2 = B′

e · B′
e , (6.7.27)

which satisfy the evolution Eq. (5.11.59)

α̇1 = 2B′′
e · D − �Ap · I ,

α̇2 = 4

(
B′2

e − 1

3
α2I
)

· D − 2�Ap · B′
e ,

(6.7.28)

where B′′
e is the deviatoric part of B′

e. In addition, attention is limited to isotropic
hardening κ , which satisfies the evolution Eq. (6.7.29)

κ̇ = �H . (6.7.29)

For an elastically isotropic thermoelastic–inelastic material, the response func-
tions ψ, η and T are specified in the forms

ψ = ψ(Je, α1, α2, θ, κ) , η = η(Je, α1, α2, θ, κ) , T = T(Je,B′
e, θ, κ) ,

(6.7.30)
so the rate of material dissipation (6.3.9) requires

ρθξ ′ =
[
T − ρ Je

∂ψ

∂ Je
I − 2ρ

∂ψ

∂α1
B′′

e − 4ρ
∂ψ

∂α2

(
B

′2
e − 1

3
α2I
)]

· D − ρ

(
∂ψ

∂θ
+ η

)
θ̇ ,

+ �
[
ρ Je

∂ψ

∂ Je
D̄p · I + 2ρ

∂ψ

∂α1
Ap · I + 4ρ

∂ψ

∂α2
Ap · B′

e − ρ
∂ψ

∂κ
H
]

≥ 0 .

(6.7.31)
In general, without specifying details of the functional forms for �, D̄p and H , it is
not possible to determine necessary restrictions on the constitutive equations for T
and η. However, motivated by necessary restrictions for a rate-independent elastic–
inelastic material with a yield function, the constitutive equations for T and η are
specified by
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T = −p I + T′′ , p = −ρ Je
∂ψ

∂ Je
,

T′′ = 2ρ
∂ψ

∂α1
B′′

e + 4ρ
∂ψ

∂α2

(
B

′2
e − 1

3
α2I
)

,

η = −∂ψ

∂θ
,

(6.7.32)

so the rate of material dissipation imposes the restriction

ρθξ ′ = �
[

− p (D̄p · I) + 2ρ
∂ψ

∂α1
Ap · I + 4ρ

∂ψ

∂α2
Ap · B′

e − ρ
∂ψ

∂κ
H
]

≥ 0 .

(6.7.33)
Also, the constitutive equation for stress is assumed to be restricted so that a zero-
stress material state at zero-stress reference temperature θz is characterized by

T = 0 ,
∂ψ

∂ Je
= 0 , for Je = 1 , B′

e = I , θ = θz . (6.7.34)

In addition, for isotropic response the entropy flux can be specified by a generalized
Fourier form (6.6.32)

p = − κ̄

θ
g , κ̄ = κ̄(Je, α1, α2, θ, κ) ≥ 0 , (6.7.35)

where the heat conduction coefficient κ̄ should not be confused with the hardening
variable κ .

6.8 Orthotropic Thermoelastic–Inelastic Materials

Ahomogeneous, isotropic elasticmaterial deformed fromauniformzero-stressmate-
rial state to a Hydrostatic State of Stress (H SS)

T = −p I , T′′ = 0 (6.8.1)

is compressed but it experiences no distortional deformation. This means that a
cube of a homogeneous, isotropic elastic material in a zero-stress material state will
deform to a smaller cube when it is compressed by water causing a H SS. In contrast,
a homogeneous, orthotropic elastic material deformed from a uniform zero-stress
material state to a compressed H SS is distorted as well as being compressed. This
means that a cube of a homogeneous, orthotropic elastic material in a zero-stress
material state will deform to a rectangular parallelepiped when it is compressed by
water causing a H SS. This also means that additional distortional deformation is
required to produce deviatoric stress.
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Rubin and Jabareen [20, 21] considered this problem for the purely mechanical
theory of orthotropic elastic materials and developed physically based orthotropic
invariants which characterize the added distortional deformations that cause devia-
toric stress.

Recently, this approach was generalized to model an orthotropic thermoelastic–
inelastic material [27] where additional details can be found. Motivated by the work
in [14], the equations for this theory are slightly modified relative to those reported
in [27]. For this theory use is made of the elastic dilatation Je, the elastic distortional
deformation vectors m′

i and the elastic distortional deformation metric m ′
i j which

satisfy the evolution Eq. (6.7.14)

J̇e = Je(D − �D̄p) · I , ṁ′
i = (L′′ − �L̄′′

p)m
′
i ,

m ′
i j = m′

i · m′
j = m ′

j i , ṁ ′
i j = 2(m′

i ⊗ m′
j − 1

3m ′
i j I) · (D − �D̄p) ,

(6.8.2)

where L′′ is the deviatoric part of the velocity gradient L, L̄′′
p is the deviatoric part

of the direction L̄p of inelastic rate and the non-negative function � controls the
magnitude of the inelastic deformation rate. Using (6.7.2), the direction of inelastic
deformation rate D̄p and the direction of inelastic spin W̄p are defined by

D̄p = 1

2

(
L̄p + L̄T

p

)
, W̄p = 1

2

(
L̄p − L̄T

p

)
. (6.8.3)

In addition, the isotropic hardening variable κ is determined by the evolution
Eq. (6.7.29)

κ̇ = �H , (6.8.4)

where H is a function that controls the rate of hardening and the directional hardening
variables βi j = β j i are determined by the evolution Eq. (6.7.4)

β̇i j = �Hi j , (6.8.5)

where Hi j = Hji are functions that control the relative magnitudes of βi j .
A thermoelastic orthotropic material in any H SS experiences mechanical distor-

tion and can also experience distortion due to thermal effects. Specifically, in any
H SS the elastic distortional vectorsm′

i , their reciprocal vectorsm
i ′ and the metrics

m ′
i j and mi j ′ take the forms

1
η1
m′

1 = η1m1′ , 1
η2
m′

2 = η2m2′ , 1
η3
m′

3 = η3m3′ ,
m ′

11 = η2
1 , m ′

22 = η2
2 , m ′

33 = η2
3 ,

m ′
12 = 0 , m ′

13 = 0 , m ′
23 = 0 ,

m11′ = 1
η2
1
, m22′ = 1

η2
2
, m33′ = 1

η2
3
,

m12′ = 0 , m13′ = 0 , m23′ = 0 ,

(6.8.6)
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which indicate thatm′
i andm

i ′ are orthogonal triads of vectors parallel to the principal
directions of orthotropy of the material. Moreover, ηi are dependent positive consti-
tutive distortional deformation functions of the elastic dilatation Je and temperature
θ satisfying the restrictions

ηi = ηi (Je, θ) > 0 , η1η2η3 = 1 , ηi (1, θz) = 1 , (6.8.7)

with ηi being unity in any Reference Lattice State (RL S) at reference zero-stress
temperature θz .

Since any H SS causes a cube of the orthotropic material to deform into a rect-
angular parallelepiped, in principle, it is possible to use a triaxial testing machine to
measure the two independent functions η1 and η2 for different values of Je and θ . Of
course, experimental challenges related to friction on the sides of the specimen and
difficulties with applying tension while letting the sides of the specimen slide freely,
currently limit the range of Je and θ that can be explored experimentally.

The Helmholtz free energy for an orthotropic thermoelastic–inelastic material can
be expressed in the form

ψ = ψ(Je, m ′
i j , θ) . (6.8.8)

Specific functional forms forψ must be proposed whichmatch the distortions (6.8.6)
in any H SS that are characterized by the measured values of the functions ηi as well
as match additional experimental data for the added distortions that cause deviatoric
stress.

Themain idea in [27] is to rewrite the six generalized physically based orthotropic
invariants βi developed in [21] in terms of the elastic distortional deformation metric
m ′

i j and its inverse mi j ′, which are influenced by inelastic deformation rate, and to
generalize the characterization of any H SS to include thermoelastic response. Then,
the Helmholtz free energy ψ is specified in the form

ψ = ψ(Je, βi , θ) . (6.8.9)

Since the invariants βi are based on the distortional deformation functions ηi , it
follows that this representation of ψ automatically reproduces the distortions ηi

and the results (6.8.6) in any H SS. This simplifies the constitutive modeling of an
orthotropic thermoelastic–inelastic material because a specific form ψ in (6.8.9)
need only consider the pressure in any H SS and experimental data for distortional
deformations that cause deviatoric stress.

Specifically, using the functional forms for the distortions ηi , the physically based
orthotropic invariants βi are defined by

β1 = m ′
11

η2
1

+ η2
1 m11′ , β2 = m ′

22

η2
2

+ η2
2 m22′ ,

β3 = m ′
33

η2
3

+ η2
3 m33′ , βi ≥ 2 for i = 1, 2, 3 ,

β4 = m ′2
12

m ′
11m ′

22
, β5 = m ′2

13
m ′

11m ′
33

, β6 = m ′2
23

m ′
22m ′

33
,

(6.8.10)
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which by definition attain the values

β1 = β2 = β3 = 2 , β4 = β5 = β6 = 0 for any H SS . (6.8.11)

Moreover, with the help of (6.8.7) it can be shown that

η̇i = Je
∂ηi

∂ Je
I · (D − �D̄p) + ∂ηi

∂θ
θ̇ ,

β̇i = 2(−Ni I + B′′
i ) · (D − �D̄p) + 2Ai θ̇ ,

(6.8.12)

where the functions Ni and Ai are defined by

N1 = Je
η1

(
m ′

11

η2
1

− η2
1 m11′

)
∂η1
∂ Je

, N2 = Je
η2

(
m ′

22

η2
2

− η2
2 m22′

)
∂η2
∂ Je

,

N3 = Je
η3

(
m ′

33

η2
3

− η2
3 m33′

)
∂η3
∂ Je

, N4 = N5 = N6 = 0 ,

A1 = − 1
η1

(
m ′

11

η2
1

− η2
1 m11′

)
∂η1
∂θ

, A2 = − 1
η2

(
m ′

22

η2
2

− η2
2 m22′

)
∂η2
∂θ

,

A3 = − 1
η3

(
m ′

33

η2
3

− η2
3 m33′

)
∂η3
∂θ

, A4 = A5 = A6 = 0 .

(6.8.13)

Also, the deviatoric tensors B′′
i are defined by

B′′
1 = 1

η2
1

m′
1 ⊗ m′

1 − η2
1m

1′ ⊗ m1′ − 1

3

(
m ′

11

η2
1

− η2
1 m11′

)
I ,

B′′
2 = 1

η2
2

m′
2 ⊗ m′

2 − η2
2m

2′ ⊗ m2′ − 1

3

(
m ′

22

η2
2

− η2
2 m22′

)
I ,

B′′
3 = 1

η2
3

m′
3 ⊗ m′

3 − η2
3m

3′ ⊗ m3′ − 1

3

(
m ′

33

η2
3

− η2
3 m33′

)
I ,

B′′
4 = m ′

12

m ′
11m ′

22

[
(m′

1 ⊗ m′
2 + m′

2 ⊗ m′
1) − m ′

12

m ′
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(m′
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1) − m ′
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]
,

B′′
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13
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11m ′

33

[
(m′

1 ⊗ m′
3 + m′

3 ⊗ m′
1) − m ′

13

m ′
11

(m′
1 ⊗ m′

1) − m ′
13

m ′
33

(m′
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]
,

B′′
6 = m ′
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m ′
22m ′

33

[
(m′

2 ⊗ m′
3 + m′
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2) − m ′

23

m ′
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(m′
2 ⊗ m′
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23

m ′
33

(m′
3 ⊗ m′

3)

]
.

(6.8.14)
In particular, using (6.8.6), it follows that

Ni = 0 , Ai = 0 , B′′
i = 0 for any H SS . (6.8.15)

Now, with the help of (6.8.9) and (6.8.12), the rate of material dissipation (6.3.9)
requires
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ρθξ ′ =
[
T · D −

{
ρ Je

∂ψ

∂ Je
− 2

3∑
i=1

ρ
∂ψ

∂βi
Ni

}
I − 2

6∑
i=1

ρ
∂ψ

∂βi
B′′

i

]
· (D − �D̄p)

− ρ

[
∂ψ

∂θ
+ 2

6∑
i=1

(
∂ψ

∂βi
Ai

)
+ η

]
θ̇ ≥ 0 .

(6.8.16)
Motivated by this expression, the constitutive equations for the Cauchy stress T and
the entropy η are specified by

T = −p I + T′′ , T′′ = 2
∑6

i=1 ρ
∂ψ

∂βi
B′′

i ,

p = −ρ Je
∂ψ

∂ Je
+ 2

∑3
i=1 ρ

∂ψ

∂βi
Ni , η = − ∂ψ

∂θ
− 2

∑6
i=1

∂ψ

∂βi
Ai ,

(6.8.17)

where p is the pressure and T′′ is the deviatoric stress. It then follows that the rate
of material dissipation requires

ρθξ ′ = −p (�D̄p · I) + T′′ · �D̄p ≥ 0 . (6.8.18)

Also, the entropy flux vector can be specified by

p = −K
θ
g , g = ∂θ

∂x
, K = KT = K i jm′

i ⊗ m′
j , K ji = K i j , (6.8.19)

where K i j is a positive-definite symmetric matrix that characterizes anisotropic heat
conduction coefficients. Since K i j is a positive-definite, it follows that the restriction
of the second law of thermodynamics which requires heat to flow from hot to cold
(6.3.7)

− p · g > 0 for g �= 0 , (6.8.20)

is automatically satisfied.
Also, notice that inelastic dilatation rate D̄p · I �= 0 in (6.8.2) prevents the elastic

dilatation Je from being written in a simple form like (6.6.20) since the zero-stress
density of the material at zero-stress reference temperature θz need not be constant.

Specific Constitutive Equations
To simplify the discussion, consider the case of metal plasticity for which inelastic
deformation rate is isochoric so that

D̄p · I = 0 , (6.8.21)

and the elastic dilatation Je can be expressed in the form (4.1.16).

Je = ρz

ρ
, (6.8.22)
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where ρz is the constant zero-stress mass density at zero-stress reference temperature
θz .

Next, motivated by the work in [16, 26] for a material with a constant specific
heat Cv, the Helmholtz free energy is specified by

ψ = ψ1(Je, θ) + ψ2(Je, θ, βi ) ,

ρzψ1 = ρzCv

[
θ − θz − θ ln

(
θ

θz

)]
− (θ − θz) f1(Je) + f2(Je) ,

ρzψ2 = 1

2

3∑
i=1

Ki (βi − 2) + 1

2

6∑
i=4

Kiβi , Ki ≥ 0 ,

(6.8.23)

where ψ1 controls the isotropic thermomechanical response and ψ2 controls the
orthotropic response in any H SS as well as the influence of additional distortional
deformation that causes deviatoric stress. In these expressions, f1 controls strong
thermomechanical coupling and f2 controls the isotropic response to nonlinear com-
pression that can be determined by plate impact experiments for shock waves as
discussed in Sect. 6.9. In addition, Ki control the influences of the orthotropic invari-
ants βi . It then follows from (6.8.17) that the associated constitutive equations are
given by

p = p1(Je, θ) + p2(Je, θ, βi ) , T′′ = J−1
e

6∑
i=1

KiB′′
i ,

p1 = (θ − θz)
d f1
d Je

− d f2
d Je

, p2 = J−1
e

3∑
i=1

Ki Ni ,

η = η̂1(Je, θ) + η̂2(Je, θ, βi ) ,

ρz η̂1 = ρzCv ln

(
θ

θz

)
+ f1(Je) , ρz η̂2 = −

3∑
i=1

Ki Ai .

(6.8.24)

In these expressions, p1 and η̂1 control the isotropic thermomechanical response and
p2 and η̂2 control the orthotropic response in any H SS as well as the influence of
additional distortional deformation that causes deviatoric stress. Although this form
for ψ automatically predicts the correct distortions ηi in any H SS, the functions f1
and f2 need to be determined to match experimental data for the pressure in each
H SS. Also, the functions η̂1 and η̂2 should not be confused with the function η1 and
η2 in (6.8.6) which characterize distortional deformations in any H SS. Furthermore,
using (6.2.11) the internal energy ε can be expressed in the form
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ε = ψ + θη = ε1(Je, θ) + ε2(Je, θ, βi ) ,

ρzε1 = ρzCv(θ − θz) + θz f1(Je) + f2(Je) ,

ρzε2 = 1

2

3∑
i=1

Ki (βi − 2) + 1

2

6∑
i=4

Kiβi −
3∑

i=1

Kiθ Ai .

(6.8.25)

Now, following the work in [27] the distortions ηi in (6.8.6) for any H SS are
specified by the forms

ηi = J ni /3
e (

θ

θz
)(αi θz/3) , ni = ni (Je, θ) ,

αi = αi (Je, θ) ,

(6.8.26)

where in view of (6.8.7) the functions ni , αi must satisfy the restrictions

n1 + n2 + n3 = 0 , α1 + α2 + α3 = 0 . (6.8.27)

Since the inelastic deformation rate is isochoric (6.8.21), the rate of material
dissipation (6.8.18) requires

ρθξ ′ = T′′ · �D̄p ≥ 0 . (6.8.28)

Then, following the work in [27] the direction of inelastic deformation rate D̄p is
specified by

D̄p =
6∑

i=1

diSign(T′′ · B′′
i ) , di ≥ 0 ,

Sign(x) = −1 for x < 0 , Sign(x) = 1 for x ≥ 0 ,

(6.8.29)

where di are non-negative constants so that the rate of material dissipation (6.8.28)
is automatically satisfied. These restrictions on di are sufficient but not necessary
conditions for (6.8.28) to be satisfied. For example, the work on metal forming with
inelastic orthotropic deformation rate in [14] developed more relaxed restrictions on
di which allow some of the di to be negative but which satisfy (6.8.28) for small
elastic distortional deformations. Also, in [14] the direction of inelastic spin W̄p was
specified by

W̄p = �12
[
D̄p · (m′

1 ⊗ m′
2)
]
(m1′ ⊗ m2′ − m2′ ⊗ m1′)

+ �13
[
D̄p · (m′

1 ⊗ m′
3)
]
(m3′ ⊗ m1′ − m1′ ⊗ m3′)

+ �23
[
D̄p · (m′

2 ⊗ m′
3)
]
(m2′ ⊗ m3′ − m3′ ⊗ m2′) ,

(6.8.30)

where�12,�13 and�23 are constants that control the magnitude of the inelastic spin
which influences the rate of rotation of the distortional microstructural vectorsm′

i .
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Furthermore, in [14] an orthotropic yield function g for purely mechanical
response was proposed in the form

g = g(Ti j , κ) , (6.8.31)

where Ti j are the components of T relative to the elastic distortional deformation
base vectors m′

i defined by

Ti j = −p m ′
i j + T ′′

i j = Tji , T ′′
i j mi j ′ = 0 ,

T ′′
i j = T′′ · (m′

i ⊗ m′
j ) , T′′ = T ′′

i j (mi ′ ⊗ m j ′) .
(6.8.32)

In this regard, it is important to emphasize that the components Ti j of T are unin-
fluenced by SRBM since their values T +

i j in the superposed configuration are given
by

T +
i j = Ti j . (6.8.33)

Next, the function �, which controls the magnitude of inelastic deformation rate, can
be determined by the loading conditions (5.11.79) for rate-independent response or
by (5.11.80) which models a smooth elastic–inelastic transition for rate-independent
response and rate-dependent response.

Since the orthotropic invariants βi are valid for large deformations, this formu-
lation generalizes more standard formulations based on a quadratic strain energy
function like (5.8.24) which are only accurate for moderate strains [see the end of
Sect. 5.8]. Consequently, this formulation based on βi can be used for soft materials
which experience large deformations [27].

6.9 Thermoelastic–Inelastic Materials for Shock Waves

Plate impact experiments have been used for decades to study the dynamic response
of materials, especially to strong shocks. Specifically, in the simplest form of a
plate impact experiment, a circular cylindrical flyer plate of a known material is
accelerated in a gas gun toward a circular cylindrical target plate of the material that
is being studied, which has a circular cylindrical backup plate of a known transparent
material. A laser is used to measure the axial velocity of a material point at the center
of the back of the target plate. Since the wave propagation speed in each material
is finite, there is a finite time window in which reflections from free surfaces do
not reach material points on the centerline of the target plate. Moreover, since the
material is shock loaded very rapidly, it is assumed that there is no time for heat
conduction so the heat flux vector q is taken to be zero. Within this time window the
deformation of the target is uniaxial strain and the equations of mass conservation
and the balances of linear momentum and energy can be solved to obtain Rankine–
Hugoniot jump conditions between the density, axial stress and internal energy as
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functions of the particle velocity and the shock velocity. The system of equations
is closed by proposing a relationship between the shock velocity and the particle
velocity, which are measured experimentally.

Since inelastic effects limit themagnitude of the deviatoric stress, the axial stress in
strong shocks can be approximated by the pressure. The plate impact experimental
data can be used to determine the Hugoniot curve for the target material which
connects the pressure to the density for the equilibrium state after the shock has passed
thematerial point of interest. For strong shocks, this creates strong thermomechanical
coupling which must be modeled accurately to analyze the influence of the shock on
material response.

The developments in this section are limited to an elastically isotropic
thermoelastic–inelastic material. Use is made of the work in [3, 16] to propose a
specific form for the Helmholtz free energy that is consistent with a Mie–Gruneisen
equation of state (constitutive equation) for the pressure in shocked states. Also,
for simplicity attention is limited to materials which have no inelastic dilatational
deformation rate

D̄p · I = 0 , (6.9.1)

so the elastic dilatation Je is determined by the evolution equation

J̇e

Je
= D · I , (6.9.2)

which can be integrated and expressed in the form (4.1.16)

Je = ρz

ρ
, (6.9.3)

where ρz is the constant zero-stress mass density at zero-stress reference temperature
θz .

Also, the unimodular elastic distortional deformation tensor B′
e is determined by

the evolution Eq. (5.11.55) with (5.11.65)

Ḃ′
e = L′′B′

e + B′
eL

′′T − �Ap , Ap = B′
e −

(
3

B′−1
e · I

)
I , (6.9.4)

with the elastic distortional deformation invariant α1 satisfying the equations

α1 = B′
e · I , α̇1 = 2

(
B′

e − 1

3
α1I
)

· D − �Ap · I , (6.9.5)

and the evolution equation for the isotropic hardening variable κ is given by (6.7.29)

κ̇ = �H . (6.9.6)
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Motivated by the work in [3, 16, 26] for a material with a constant specific heat
Cv, the Helmholtz free energy ψ is specified by

ψ = ψ1(Je, θ) + ψ2(Je, α1, θ) ,

ψ1 = Cv[θ − θz − θ ln

(
θ

θz

)
] + (θ − θz) f1(Je) + f2(Je) ,

ρzψ2 = 1

2
μ(Je, θ)(α1 − 3) ,

(6.9.7)

where ψ1 controls the thermomechanical response to dilatation and μ is the shear
modulus which is allowed to be a function of Je and θ . The function f1 controls
strong thermomechanical coupling and f2 controls nonlinear response to dilatation.
These functions f1 and f2 need to be determined from plate impact experimental
data.

Next, assuming that η and T are functions of the forms

η = η(Je, α1, θ) , T = T(Je,B′
e, θ) , (6.9.8)

it follows from (6.7.32) that

T = −p I + T′′ , p = p1(Je, θ) + p2(Je, θ, α1) ,

p1 = −ρz[(θ − θz)
d f1
d Je

+ d f2
d Je ] , p2 = − 1

2
∂μ

∂ Je
(α1 − 3) ,

T′′ = J−1
e μ

(
B′

e − 1
3α1I

)
, η = η1(Je, θ) + η2(Je, θ, α1) ,

η1 = Cv ln
(

θ
θz

)
− f1 , ρzη2 = − 1

2
∂μ

∂θ
(α1 − 3) ,

(6.9.9)

and from (6.7.33) that the inelastic distortional deformation rate must satisfy the
restriction

ρzθξ ′ = 1

2
�μAp · I ≥ 0 . (6.9.10)

However, since � is non-negative, the shear modulus μ is positive and in [18] it was
shown that Ap · I ≥ 0 (5.11.67), it follows that nonzero inelastic deformation rate
satisfies the condition (6.9.10) and is dissipative.

Then, with the help of (6.2.11) the specific internal energy ε takes the form

ε = ε1(Je, θ) + ε2(Je, α, θ) ,

ε1 = Cv(θ − θz) − θz f1 + f2 ,

ρzε2 = 1

2

(
μ − θ

∂μ

∂θ

)
(α1 − 3) .

(6.9.11)
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In these expressions, the terms ψ1, p1, η1 and ε1 depend only on Je and θ and
represent the main thermomechanical response and the terms ψ2, p2, η2 and ε2 also
depend on the elastic distortional deformation α1.

For later reference it is noted that the expression ε1 can be solved for θ and result
can be substituted into the expression for p1 to obtain

p1 = −ρz

[(
θz f1 − f2

Cv

)
d f1
d Je

+ d f2
d Je

+
(

1

Cv

)
d f1
d Je

ε1

]
, (6.9.12)

which expresses p1 as a linear function of the energy ε1.
Next, neglecting body force, deviatoric stress, radiation and heat conduction and

restricting attention to uniaxial strain in the e1 direction, the local equations of the
conservation of mass, balance of linear momentum and balance of energy can be
written in the forms

ρ Je = ρz , ρu̇ = −∂p

∂x
, ρε̇ = −p

∂u

∂x
, (6.9.13)

where x is the current position of a material point which was located at the posi-
tion X in the reference configuration and u is the current velocity of the material
point. Moreover, consider a steady-wave moving at the shock velocity U relative to
the reference configuration into a zero-stress material state at zero-stress reference
temperature and at rest with

Je = 1 , θ = θz , ρ = ρz , u = 0 , p = 0 , ε = 0 . (6.9.14)

For this steady-wave it is convenient to introduce the auxiliary variable χ , such that

χ = X − Ut . (6.9.15)

Then, the position x and dilatation Je are given by

x = X + δ(χ) , Je = ∂x

∂ X
= 1 + dδ

d X
, (6.9.16)

where δ(χ) is the displacement of the material point relative to its reference position.
Also, the particle velocity u, pressure p and internal energy ε are expressed in the
forms

u = u(χ) , p = pH (χ) , ε = εH (χ) , (6.9.17)

where pH is the pressure and εH is the internal energy on the Hugoniot curve.
Differentiating the expression for x yields an expression for u given by

u = u(χ) = ẋ = −U
dδ

dχ
= U (1 − Je) . (6.9.18)
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Moreover, the balance of linear momentum and the balance of energy are expressed
in the forms

− Uρ
du

dχ
= −dpH

dχ
J−1

e , −Uρ
dεH

dχ
= −pH

du

dχ
J−1

e , (6.9.19)

which with the help of the conservation of mass (6.9.13) and the conditions (6.9.14)
can be integrated to obtain

u = U (1 − Je) , pH = ρzU
2(1 − Je) , εH = 1

2
U 2(1 − Je)

2 , (6.9.20)

which are theRankine–Hugoniot jump conditions. These equations connect the states
of the material on both sides of a uniaxial strain shock wave moving into a zero-
stress material at rest. They are used to plot Hugoniot curves of the state variables as
functions of the dilatation Je or density ρ = ρz J−1

e for a specified shock velocity.
For a complete constitutive equation for pressure it is necessary to propose an

expression for values of p off the Hugoniot curve p = pH . In shock physics it is
common to use aMie–Gruneisen equation of state to determine the pressure for states
off of the Hugoniot curve. This Mie–Gruneisen equation expresses the pressure as
a function of dilatation and energy. Motivated by the work in [3, 16], this Mie–
Gruneisen equation is written in terms of the main thermomechanical parts p1, ε1 of
the pressure and energy in the form

p1 = pH (Je) + ργ (Je)[ε1 − εH (Je)] , (6.9.21)

where the Gruneisen gamma γ is taken in the form

ργ = ρzγz , (6.9.22)

with γz being the unshocked zero-stress value of γ .
Then, comparison of (6.9.12) with (6.9.21) shows that the constitutive Eq. (6.9.7)

for the Helmholtz free energy will be consistent with the Mie–Gruneisen equation
(6.9.21) provided that f1 and f2 satisfy the differential equations

d f1
d Je

= −γzCv ,

d f2
d Je

+ γz f2 = − pH

ρz
+ γzεH + γzθz f1 ,

(6.9.23)

which can be integrated subject to the conditions

f1(1) = 0 , f2(1) = 0 , (6.9.24)

to deduce that
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f1(Je) = γzCv(1 − Je) ,

f2(Je) = Cvθz
[
1 + γz(1 − Je) − exp{γz(1 − Je)}

]+ f3 ,

f3(Je) = exp(−γz Je)

∫ 1

Je

[
pH (x)

ρz
− γzεH (x)

]
exp(γz x) dx .

(6.9.25)

Experimental data for shock waves in compression is used to determine the con-
stant coefficients Si in the approximation

U = Uz + S1u + S2(
u

U
)u + S3(

u

U
)2u , (6.9.26)

withUz being the zero-stress shock velocity. Substituting (6.9.20) into this expression
yields

U = Uz

1 − S1(1 − Je) − S2(1 − Je)2 − S3(1 − Je)3
for Je ≤ 1 , (6.9.27)

for compression. This function is extended to the expansion regime using the form

U = Uz√
1 + γz

2 (Je − 1)
for Je > 1 . (6.9.28)

Then, with the help of these expressions for the shock velocityU , it can be shown
that the function f3 in (6.9.25) can be determined in closed form for expansion
with U given by (6.9.28), but it is necessary to integrate the function f3 in (6.9.25)
numerically with U given by (6.9.27) for compression. Recently, it was shown in
[26] that by modifying the approximation (6.9.27) for compression to take the form

U = Uz exp[ 12γz(1 − Je)]
1 − S̃1(1 − Je) − S̃2(1 − Je)2

for Je ≤ 1 , (6.9.29)

it is possible to develop a closed form expression for f3 for compression for general
values of the constants S̃1 and S̃2. Numerous experiments have been conducted at
great expense to obtain values of S1, S2, S3 and γz for a large number of materials.
Fortunately, it was shown in [26] that these values can be used without conduct-
ing additional experiments to determine values of S̃1 and S̃2 which yield excellent
agreement with experimental data for most materials.

To complete the constitutive equations, it is necessary to specify functional forms
for � in (6.9.4) and H in (6.9.6) for rate-independent or rate-dependent response as
discussed in Sect. 5.8. Also, the entropy flux vector pmust be specified, which could
be taken in form (6.7.35).
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6.10 Thermoelastic–Inelastic Porous Materials

Porosity appears naturally in a number of materials like rocks, soils, ceramics, metals
and biological tissues. The p − α model developed in [11] and the modification in
[4] have been used tomodel important dissipation due to porous compaction in shock
wave problems. For these problems, the shock compaction occurs so quickly that
even if the pores are partially or fully saturated with fluid, there is no time for the
fluid to move, so fluid diffusion through the porous material can be neglected. Porous
compaction, dilation and/or “bulking” (i.e., porous dilation under positive pressure)
have been modeled in Nevada Tuff [19], granular media [22], sand [10] and ceramics
[3]. Also, nucleation and growth of pores in metals have been modeled in [9].

Porosity in biological tissues is necessary for fluid flow that supplies essential
nutrients for cell function. In contrast with shock loading, deformation of biological
tissues is typically a slow process which can be significantly influenced by diffusion
of fluid. An example of constitutive equations for slow deformation of biological
tissues with fluid diffusion along with references to previous work can be found in
[32]. In addition, prediction of the long-term quantity of production of an oil well that
has been stimulated by hydrofracturing requires proper treatment of poroelasticity
and inelasticity which characterizes porous compaction and the associated reduced
permeability.

This section discusses the structure of constitutive equations for a porous material
subjected to loading rapid enough to neglect fluid diffusion. Following the work in
[10, 19, 22] an element of volume dv of the porous material is separated into an
element of volume dvs of the solid material and an element of volume dvp of the
pores

dv = dvs + dvp , (6.10.1)

and the current porosity φ is defined by

φ = dvp

dv
. (6.10.2)

For simplicity, the pores are assumed so be evacuated so the element of mass dm of
the porous material is due solely to the element of mass dms of the solid

dm = ρdv = dms = ρsdvs , (6.10.3)

where ρ is the current mass density of the porous material and ρs is the current mass
density of the solid matrix. Then, using (6.10.1)–(6.10.3) the mass density ρ can be
expressed in the form

ρ = (1 − φ)ρs . (6.10.4)

Now, for an elastically isotropic, thermoelastic–inelastic porous material the elas-
tic dilatation Je satisfies the evolution equation
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J̇e

Je
= D · I − (

φ̇

1 − φ
) , (6.10.5)

where an evolution equation for φ must be specified. This equation can be rewritten
in the form

d

dt

[
ln
{ Je

1 − φ

}]
= D · I , (6.10.6)

which with the help of the conservation of mass (6.2.5)

ρ̇ + ρ D · I = 0 , (6.10.7)

and the expression (6.10.4) for ρ can be expressed in the form

d

dt

[
ln
{ ρ Je

1 − φ

}]
= d

dt

[
ln(ρs Je)

]
= 0 . (6.10.8)

This equation integrates to obtain

Je = ρsz

ρs
, (6.10.9)

where ρsz is the zero-stress mass density of the solid material. This shows that Je is
the solid elastic dilatation.

Also, the elastic distortional deformation tensor is characterized by the symmetric,
positive-definite, unimodular tensor B′

e which satisfies the evolution Eq. (5.11.66)

Ḃ′
e = L′′B′

e + B′
eL

′′T − �Ap , Ap = B′
e −

(
3

B′−1
e · I

)
I , (6.10.10)

where � is a non-negative function that controls the rate of distortional inelasticity.
Also, for simplicity, attention is limited to the first invariant α1 of elastic distortional
deformation defined by (6.7.27) and the evolution Eq. (6.7.28)

α1 = B′
e · I , α̇1 = 2B′′

e · D − �Ap · I , (6.10.11)

where B′′
e is the deviatoric part of B′

e. In addition, attention is limited to isotropic
hardening κ , which satisfies the evolution Eq. (6.7.29)

κ̇ = �H , (6.10.12)

where H controls the hardening rate.
For an elastically isotropic thermoelastic–inelastic porous material, the response

functions ψ, η and T are specified in the forms

ψ = ψs(Je, α1, θ) , η = ηs(Je, α1, θ) , T = T(Je,B′
e, θ, φ) , (6.10.13)
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where ψs and ηs are the Helmholtz free energy and entropy of the solid material,
both per unit mass. Then, with the help of (6.10.5)–(6.10.13), the rate of material
dissipation (6.3.9) requires

ρθξ ′ =
[
T − ρ Je

∂ψs

∂ Je
I − 2ρ

∂ψs

∂α1
B′′

e

]
· D − ρ

(
∂ψs

∂θ
+ ηs

)
θ̇ ,

+
[
ρ Je

∂ψs

∂ Je

(
φ̇

1 − φ

)
+ �ρ

∂ψs

∂α1
Ap · I

]
≥ 0 .

(6.10.14)

In general, without specifying details of the functional forms for �, φ̇ and H it is
not possible to determine necessary restrictions on the constitutive equations for
T and ηs . Specifically, in [19] the added compressibility of porosity was modeled
with both elastic and inelastic rates of porosity. Here, for simplicity, changes in φ

are assumed to be inelastic only. Moreover, motivated by necessary restrictions for
a rate-independent elastic–inelastic material with a yield function, the constitutive
equations for T and η are specified by

T = −p I + T′′ , p = (1 − φ)ps , ps = −ρsz
∂ψs

∂ Je
,

T′′ = (1 − φ)T′′
s , T′′

s = 2J−1
e ρsz

∂ψs

∂α1
B′′

e ,

η = ηs = − ∂ψs

∂θ
,

(6.10.15)

where ps and T′′
s are the pressure and deviatoric stress in the solid. It then follows

that the rate of material dissipation imposes the restriction

ρθξ ′ = ρθξ ′
φ + ρθξ ′

d ≥ 0 , ρθξ ′
φ = −p

(
φ̇

1 − φ

)
, ρθξ ′

d = �ρ
∂ψ

∂α1
Ap · I ,

(6.10.16)
where ρθξ ′

φ is the material dissipation rate due to porosity changes and ρθξ ′
d is the

material dissipation rate due to inelastic distortional deformations. Assuming that
the effective shear modulus is positive

∂ψ

∂α1
> 0 , (6.10.17)

and using the fact thatAp · I ≥ 0, it follows that the inelastic distortional deformation
is dissipative

ρθξ ′
d ≥ 0 . (6.10.18)

Also, the constitutive equation for stress is assumed to be restricted so that a
zero-stress material state at zero-stress reference temperature θz is characterized by

T = 0 ,
∂ψ

∂ Je
= 0 , for Je = 1 , B′

e = I , θ = θz . (6.10.19)
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In addition, for isotropic response the entropy flux vector is specified by a generalized
Fourier form (6.6.32)

p = − κ̄

θ
g , g = ∂θ

∂x
, κ̄ = κ̄(Je, α1, θ, κ) ≥ 0 , (6.10.20)

where the heat conduction coefficient κ̄ should not be confused with the isotropic
hardening variable κ .

From the definition of ρθξ ′
φ in (6.10.16), it follows that porous compaction (φ̇ <

0) at positive pressure and porous dilation (φ̇ > 0) at negative pressure are both
dissipative processes, but “bulking” (i.e., porous dilation at positive pressure) is a
non-dissipative process. These three processes aremodeled in the nonlinear breakage
model developed in [22]. Also, the work in [10] discusses functional forms that
include these effects in a thermomechanical theory.

As a special case, the Helmholtz free energy ψs of the solid material is specified
in the form

ρszψs = ρszCv

[
θ − θz − θ ln

(
θ

θz

)]
+ fs(Je, θ) + 1

2
μz(α1 − 3) ,

fs = ρszC2
z

[
1

S2 ln

{
1

1 − S(1 − Je)

}
−
(
1 − Je

S

)
+ α(1 − Je)(θ − θz)

]
for S > 0 ,

fs = ρszC2
z

[
1

2
(1 − Je)

2 + α(1 − Je)(θ − θz)

]
for S = 0 ,

(6.10.21)
where Cv is the constant specific heat, Cz is the zero-stress shock wave speed, S is a
positive constant controlling the slope of the shock velocity versus particle velocity
curve, α is the constant coefficient of linear expansion and μz is the zero-stress shear
modulus. It then follows from (6.10.15) that

ps = ρszC
2
z

[
(1 − Je)

1 − S(1 − Je)
+ α(θ − θz)

]
, T′′

s = J−1
e μzB′′

e ,

ηs = Cv ln

(
θ

θz

)
− C2

z α(1 − Je) .

(6.10.22)

Next, for simplicity, attention is further limited to isothermal responsewith θ = θz

for which

p = (1 − φ)ps , ps = ps(Je) = ρszC
2
z

[ (1 − Je)

1 − S(1 − Je)

]
. (6.10.23)

To motivate a form for the evolution equation for porosity consider the expression

ṗ = (1 − φ)Je
dps

d Je

[
D · I − 1

�φ

φ̇

1 − φ

]
, �φ = Je

dps

d Je

Je
dps

d Je
+ ps

, (6.10.24)
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which with the help of (6.10.23) yields

Je
dps

d Je
= −ρszC

2
z

[
Je{

1 − S(1 − Je)
}2
]

< 0 ,

�φ = Je

2Je − 1 + S(1 − Je)2
> 0 for Je > max

(
0, 1 − 1

S

)
,

(6.10.25)

where Je is restricted so that the denominators in these expressions do not vanish.
Also, for later convenience it can be shown that the constitutive equation (6.10.23)
for the pressure p can be solved for Je to deduce that

Je(P, φ) = 1 − φ + (S − 1) P

1 − φ + S P
for S ≥ 0 , P = p

ρszC2
z

, (6.10.26)

where P is the normalized pressure.
Next, it is convenient to introduce the constant pressures pT < 0, pc > 0 and the

maximum pressure pmax and the minimum porosity φmin attained. Then, motivated
by the work in [32] the evolution equation for φ is specified by

φ̇

1 − φ
= �T D · I for p = pT and D · I ≥ 0 , (6.10.27a)

φ̇ = 0 for pT < p < pc , (6.10.27b)

φ̇

1 − φ
= �c D · I for p = pc , D · I < 0 and φ > φmin , (6.10.27c)

φ̇ = 0 for pc < p < pmax , (6.10.27d)

φ̇

1 − φ
= �φ

(
φ

m + φ

)
D · I + βd(ρθzξd)

1 + βd p
for p = pmax and D · I ≤ 0 ,

(6.10.27e)

where m and βd are non-negative constants. These equations define five regions of
response: porous dilatation (φ̇ ≥ 0)with p = pT < 0 for (6.10.27a); elastic response
for (6.10.27b); porous compaction (φ̇ ≤ 0) with p = pc > 0 for (6.10.27c); elastic
response with pc < p < pmax for (6.10.27d) and porous compaction (φ̇ ≤ 0) with
p = pmax for (6.10.27e). The non-negative functions �T , �c and �φ are determined
by the conditions p = pT , p = pc and (6.10.24), respectively. Also, it follows from
(6.10.27e) that for compaction at positive pressure, the rate of compaction, which
is controlled by the constant m, competes with the rate of dilation due to bulking,
which is controlled by the constant βd . Moreover, from this evolution equation it can
be seen that φ is automatically limited to its physical range

0 < φ < 1 . (6.10.28)
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Furthermore, for compaction at maximum pressure (6.10.27e), it can be shown
that (6.10.24) reduces to

ṗ = (1 − φ)Je
dps

d Je

[(
m

m + φ

)
D · I − βd(ρθzξd)

�φ(1 + βd p)

]
. (6.10.29)

In view of the restrictions (6.10.25), it follows that small values ofm cause a tendency
for a slow increase in pressure for φ >> m, and nonzero values of βd , with nonzero
rate of dissipation due to inelastic distortional deformation ρθzξd > 0 causing addi-
tional increase in pressure due to bulking. Also, when φ → 0 and the pressure is
large, the response asymptotically approaches that of the nonporous solid matrix.

Moreover, for these evolution equations, it follows that porosity changes are dis-
sipative

ρθzξ
′
φ = −p

φ̇

1 − φ
≥ 0 , (6.10.30)

for the response regions without bulking (6.10.27a), (6.10.27b), (6.10.27c) and
(6.10.27d). Also, for compaction with bulking (6.10.27e), it can be shown with the
help of (6.10.18) that the rate of material dissipation (6.10.16) for θ = θz requires

ρθzξ
′ = −p

(
φ

m + φ

)
�φ D · I + ρθzξ

′
d

1 + βd p
≥ 0 . (6.10.31)

Consequently, the rate of material dissipation (6.10.16) is satisfied for all processes

ρθzξ
′ ≥ 0 . (6.10.32)

Numerical Integration Algorithm
Consider a time step which begins at t = tn , ends at tn+1 with time increment �t =
tn+1 − tn . A strongly objective numerical integration algorithm (5.11.89a) forB′

e was
discussed in Sect. 5.11. Here, a strongly objective numerical integration algorithm is
developed for the evolution equation for Je. To this end, it is recalled that the relative
dilatation Jr satisfies the Eq. (5.11.84)

J̇r = Jr D · I , Jr (tn) = 1 . (6.10.33)

Then, the evolution Eq. (6.10.6) for Je can be expressed in the form

d

dt

[
ln
{ Je

(1 − φ)Jr

}]
= 0 , (6.10.34)

which can be integrated to deduce that

Je(tn+1) =
[1 − φ(tn+1)

1 − φ(tn)

]
Jr (tn+1) Je(tn) . (6.10.35)
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Equating Je(tn+1) in (6.10.35) with Je in (6.10.26) yields the result

φ(tn+1, P) = A(P) −√
A2(P) − B(P)

2Je(tn)Jr (tn+1)
,

A(P) = (2 + S P)Je(tn)Jr (tn+1) + φ(tn) − 1 ,

B(P) = 4Je(tn)Jr (tn+1)
[{

(S − 1)φ(tn) + S Je(tn)Jr (tn+1) − S + 1
}

P

+ Je(tn)Jr (tn+1) + φ(tn) − 1
]
,

(6.10.36)

which can be used to determine

φ(tn+1) = φ(tn+1, PT ) for PT = pT

ρszC2
z

,

φ(tn+1) = φ(tn+1, Pc) for Pc = pc

ρszC2
z

.
(6.10.37)

This means that the values of φ(tn+1) and Je(tn+1) for the solutions of (6.10.27a),
(6.10.27c) and (6.10.27d) at the end of the time step are determined by (6.10.35) and
(6.10.37).

To obtain a solution for (6.10.27e), this equation is rewritten in the form

d

dt

[
ln

{
(1 − φ)1+m

φm

}]
= −�φ D · I −

(
m + φ

φ

) [
βd(ρθzξd)

1 + βd p

]

for p = pmax and D · I ≤ 0 .

(6.10.38)

Assuming that �φ can be approximated as constant over the time step, this equation
is rewritten in the form

d

dt

[
ln

{
(1 − φ)1+m J

�φ(tn+1)
r

φm

}]
≈ −

(
m + φ

φ

) [
βd(ρθzξd)

1 + βd p

]
. (6.10.39)

The solution of this equation is further approximated by the solution of the implicit
expression

[1 − φ(tn+1)]1+m

φ(tn+1)m
= [1 − φ(tn)]1+m

φ(tn)m Jr (tn+1)
�φ(tn+1)

exp

[
−
{

m + φ(tn+1)

φ(tn+1)

}
�tβd (ρθzξd )(tn+1)

1 + βd p(tn+1)

]

for Jr (tn+1) ≤ 1 ,

(6.10.40)
where (ρθξd)(tn+1) is an estimate of ρθξd at the end of the time step, and p(tn+1)

and �φ(tn+1) are determined by replacing Je in (6.10.23) and (6.10.25), respectively,
with (6.10.35) to obtain a nonlinear equation for φ(tn+1) to be solved numerically.
Once the values φ(tn+1) and Je(tn+1) have been determined, the pressure p at the
end of the time step is determined by (6.10.23).
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Fig. 6.1 Pure dilatation
cyclic loading. Compression
a−b; expansion b−c;
compression c−d;
compression d−e and
expansion e− f for
S = 1.3, Pc = 0.005, PT =
−0.002 and m = 0.01

To display the compaction response, it is convenient to use the total dilatation J
from the initial state determined by the evolution equation and initial condition

J̇ = J D · I , J (0) = 1 . (6.10.41)

The exact integration of this equation over a time step is given by the expression

J (tn+1) = Jr (tn+1)J (tn) . (6.10.42)

The following examples consider the case of no bulking with βd = 0.

Cyclic Dilatational Loading
Next, to understand the influence of the parameter m in the evolution Eq. (6.10.27e)
for φ, consider the case when the material is initially at zero stress with

Je(0) = 1 , B′
e(0) = I , (6.10.43)

and confine attention to pure dilatational loading for which

D = 1

3
(D · I) I . (6.10.44)

For these conditions, the deviatoric stress remains zero T′′ = 0 and the pressure is
determined by (6.10.23). Moreover, the initial value of porosity φ and the material
constants S, PT and Pc for this example are specified by

φ(0) = 0.3 , S = 1.3 , PT = −0.002 , Pc = 0.005 . (6.10.45)

Figure 6.1 shows the response to cyclic loading with compression a−b; expan-
sion b−c; compression c−d; compression d−e and expansion e− f for m = 0.01.
During the compression cycle a−b the response is elastic with constant porosity φ

until P = Pc and then compaction occurs with decrease in porosity. The expansion
cycle b−c is elastic with constant porosity until P = PT and then dilation occurs at
constant pressure P = PT with increase in porosity. The recompression cycle c−d is
elastic with constant porosity until P = Pc and then compaction occurs at constant
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Fig. 6.2 Influence of m on pure dilatational compression followed by expansion for S = 1.3 and
Pc = 0.005

pressure P = Pc with decrease in porosity until φ = φmin . The compression cycle
d−e is elastic with constant porosity until P = Pmax = pmax/(ρszC2

z ) and contin-
ued compaction occurs with decrease in porosity. The expansion e− f is elastic with
constant porosity.

Figure 6.2 shows the influence of m on the compaction curve. Specifically, Fig.
6.2a shows the pressure response and Fig. 6.2b shows the porosity response. From
these figures, it can be seen that m has a strong effect on the pressure during com-
paction with only small differences in the functional form of φ required for the range
of values of m. It can also be seen that as the porosity approaches zero the response
asymptotically approaches that of the nonporous solid material.

As mentioned before, more complicated evolution equations for φ which deal
thermomechanical unloading can be found in [10, 22]. Also, to complete the con-
stitutive equations, it is necessary to specify a functional form for � in (6.10.10)
and H in (6.10.12) for rate-independent or rate-dependent response as discussed in
Sect. 5.8.

6.11 Thermoelastic–Inelastic Theory for Growth of
Biological Tissues

Biological tissues are complicatedmaterials which aremixtures ofmany components
that can flow relative to each other and interact mechanically, chemically and electri-
cally (e.g., [1, 2, 12, 31]). A simplified constrained theory of mixtures with only one
velocity field was developed by Humphrey and Rajagopal [12]. Also, review articles
on growth and remodeling of tissues can be found in (e.g., [1, 13, 33]).

When the tissue is considered to be a homogenized solid, the standard approach
to modeling growth for finite deformations is the Lagrangian formulation of growth
proposed by Rodriguez et al. [15]. This formulation is based on the multiplicative
form (5.11.11) by replacing the plastic deformation tensor Fp with a growth tensor



6.11 Thermoelastic–Inelastic Theory for Growth of Biological Tissues 219

Fg , such that
Fe = FF−1

g , Ḟg = �gFg , (6.11.1)

with the rate of growth �g specified by a constitutive equation. However, this mul-
tiplicative formulation has the same arbitrariness as discussed previously for the
Lagrangian formulation of plasticity, which can be removed by the Eulerian formu-
lation discussed below.

Rubin et al. [23] developed an Eulerian unified theoretical structure for modeling
interstitial growth and muscle activation in soft tissues. This Eulerian formulation of
growth was used: in [30] to study significant differences in the mechanical modeling
of confined growth predicted by the Lagrangian and Eulerian formulations; in [28]
to analyze stresses in arteries and in [29] to model early cardiac morphogenesis
during c-looping. This section reviews this Eulerian thermomechanical formulation
of growth.

Growth requires an influx of nutrients to the tissue. Consequently, the theory
developed in [23] treats the tissue as an open system with an external rate of mass
supply. Specifically, the current mass density ρ of the tissue is determined by the
balance of mass

ρ̇ + ρ(D · I) = rmρ , (6.11.2)

where rm is the external rate of mass supply per unit mass. This simplifies the for-
mulation by neglecting diffusion of fluid and allowing for a single velocity field to
describe deformation of the tissue.

The balances of linear momentum and entropy in this theory are given by (6.2.5)

ρv̇ = ρb + divT , ρη̇ = ρ(s + ξ) − divp . (6.11.3)

The balance of angular momentum (6.2.6) again requires the Cauchy stress to be
symmetric

TT = T , (6.11.4)

but the balance of energy (6.2.7) is modified to include an external rate of energy
supply b per unit mass due to mechanobiological processes

ρε̇ = ρr − divq + T · D + ρb . (6.11.5)

The Helmholtz free energy ψ is defined by (6.2.11)

ψ = ε − θη , (6.11.6)

and the internal rate of entropy production ρξ in [17] is separated into a thermal part
(−p · g) and a rate of material dissipation ρθξ ′ (6.2.9)

ρθξ = −p · g + ρθξ ′ , (6.11.7)
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with g = ∂θ/∂x being the temperature gradient and

ρθξ ′ = T · D − ρ(ψ̇ + ηθ̇) + ρb . (6.11.8)

In these equations, the superposed (̇ ) denotes the standard material derivative with
respect to the single velocity field.

The second law of thermodynamics for heat conduction requires the entropy flux
p to satisfy the restriction (6.3.7) that heat flows from hot to cold regions

− p · g > 0 for g �= 0 , (6.11.9)

and the second law for the rate of material dissipation requires (6.3.9)

ρθξ ′ ≥ 0 . (6.11.10)

This model can be used for growth of biological tissues as well as for muscle acti-
vation, both of which require an external supply of energy, which is characterized
by term b in the balance of energy (6.11.5). Here, the mechanobiological processes
which control growth and muscle activation are not modeled explicitly and it is
assumed that b is large enough to ensure that (6.11.10) is satisfied for all thermome-
chanical processes with growth.

The elastic dilatation Je for the growing tissue is determined by integrating the
evolution equation

J̇e

Je
= D · I − rm , (6.11.11)

which includes the external rate of mass supply rm . Following the work in [23] and
using the modification in [24], rm is specified by

rm = �m ln

(
Je

Jh

)
, (6.11.12)

so the evolution equation for the elastic dilatation Je becomes

J̇e

Je
= D · I − �m ln

(
Je

Jh

)
, �m ≥ 0 , Jh > 0 . (6.11.13)

Also, the symmetric, positive-definite, unimodular tensorB′
e that characterizes elastic

distortional deformations is determined by the evolution equation

Ḃ′
e = L′′B′

e + B′
eL

′′T − �Ag ,

Ag = B′
e −

(
3

B′−1
e · H

)
H , � ≥ 0 , H′ = det(H)−1/3H ,

(6.11.14)
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whereH is a positive-definite, symmetric tensor andH′ is its unimodular part. These
evolution equations model homeostasis, which is the process that causes a tendency
for Je to approach its homeostatic value Jh and for B′

e to approach its homeostatic
valueH′. In particular, it can be seen that in the absence of loading (L = 0) the rates
at which Je and B′

e approach their homeostatic values Jh and H′ are controlled by
the functions �m and �, respectively. Moreover, it is noted that the modified form
(6.11.12) simplifies the numerical algorithm for solving the evolution Eq. (6.11.13).
Also, the two nontrivial invariants of B′

e satisfy the equations

α1 = B′
e · I , α̇1 = 2B′′

e · D − �Ag · I ,

α2 = B′
e · B′

e , α̇2 = 4(B′
e
2 − 1

3α2I) · D − 2�Ag · B′
e ,

(6.11.15)

where B′′
e is the deviatoric part of B′

e.
In this model, the Cauchy stress T is a function of the elastic deformations Je,B′

e
and the temperature θ

T = T(Je,B′
e, θ) . (6.11.16)

This constitutive equation is restricted so that zero-stress material states occur when-
ever the elastic deformations are given by Je = 1 and B′

e = I and the temperature
equals the zero-stress reference temperature θ = θz ,

T = 0 whenever Je = 1 , B′
e = I , θ = θz . (6.11.17)

It is well known that the homeostatic state of the skin on the human body is
not in a zero-stress material state. For this reason, surgeons cut the skin parallel to
tension lines to minimize scarring. Within the context of this model, the stress in the
homeostatic state of the tissue can be nonzero

T(Jh,H′, θz) �= 0 . (6.11.18)

In particular, constitutive equations can be proposed for the homeostatic values Jh and
H′ of Je and B′

e, respectively, to ensure that the stress field in the homeostatic state of
the tissue matches measured nonzero values. Additional constitutive equations need
to be proposed for the homeostasis rates �m and �.

Zero-Stress Growth:
To understand the influence of the homeostatic values Jh of Je and H′ of B′

e, it is
convenient to consider zero-stress growth (6.11.17) for which the evolution Eqs.
(6.11.13) and (6.11.14) require

Dz · I + �m ln(Jh) = 0 ,

2D′′
z − �

[
I −

(
3

I · H
)

H
]

= 0 ,
(6.11.19)
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where D′′
z denotes the deviatoric part of the zero-stress rate of deformation value Dz

of D for zero-stress growth. As a special case, specify H in the form

H = I + H′′ , H′′ · I = 0 , H′′ · H′′ <
2

3
, (6.11.20)

where H′′ is the deviatoric part of H and its magnitude is bounded to ensure that H
remains positive-definite. It then follows that (6.11.19) can be solved for the zero-
stress growth rate Dz to obtain

Dz = −1

3
�m ln(Jh) I + D′′

z , D′′
z = −1

2
�H′′ . (6.11.21)

Since �m is non-negative, it follows that Jh > 1 causes a volumetric rate of contrac-
tion and Jh < 1 causes a volumetric rate of expansion. Moreover, the deviatoric part
D′′

z of Dz is in the opposite direction to H′′. Furthermore, the limited magnitude of
H′′ does not limit the magnitude of D′′

z , which is determined by the value of �.
In a review of growth in living systems, Kuhl [13] presented evolution equations

which model volumetric, area and fiber growth. Elastic deformation measures Je, λn

and λs associated with these growth processes and used in elastically anisotropic
constitutive equations were developed in [23]. In addition, expressions for the home-
ostatic values Jh and H′ and the homeostasis rates �m and � associated with these
growth processes were discussed in [23].

Elastic Volumetric Growth:
The elastic dilatation Je associated with this growth process satisfies the evolution
Eq. (6.11.13).

Elastic Area Growth:
The elastic area stretch λn associated with growth of an area element on a material
surface with unit normal vector n in the current configuration is motivated by expres-
sions for the material area element da and the unit normal n to a material surface.
To develop these expressions, it is convenient to define the second-order tensorN by

N = n ⊗ n , (6.11.22)

which should not be confused with the unit normal vector N in Nanson’s formula
(3.3.35). Moreover, using the result (3.5.26)

ṅ = −[LT − (D · n ⊗ n) I]n , (6.11.23)

it can be shown that N satisfies the evolution equation

Ṅ = 2(D · N)N − LTN − NL . (6.11.24)

Also, using (3.3.35) is can be shown that



6.11 Thermoelastic–Inelastic Theory for Growth of Biological Tissues 223

da

d A
= (J−4/3B′ · N)−1/2 , B′ = J−2/3FFT . (6.11.25)

Motivated by this expression, the elastic area stretch λn is defined by

λn = (J−4/3
e B′

e · N)−1/2 . (6.11.26)

Then,with the help of the evolutionEqs. (6.11.13), (6.11.14) and (6.11.24), the elastic
area stretch λn satisfies the evolution equation

λ̇n

λn
= (I − N) · D − 2

3
�m ln

(
Je

Jh

)
+ 1

2
�(B′

e · N)−1(Ag · N) . (6.11.27)

Elastic Fiber Growth:
The elastic fiber stretch λs associated with growth of a fiber in the direction of the
unit vector s in the current configuration is motivated by expressions for the stretch λ

and unit direction s of a material fiber. To develop these expressions, it is convenient
to define the second-order tensor S by

S = s ⊗ s , (6.11.28)

which should not be confused with the unit vector S in (3.3.12a) or the symmetric
Piola-Kirchhoff stress in (4.6.14). Moreover, using the result (3.5.22)

ṡ = [L − (D · s ⊗ s) I] s , (6.11.29)

it can be shown that S satisfies the evolution equation

Ṡ = LS + SLT − 2(D · S)S . (6.11.30)

Also, using (3.3.8) and (3.3.12c) it can be shown that

λ = (J−2/3B′−1 · S)−1/2 . (6.11.31)

Motivated by this expression, the elastic fiber stretch λs is defined by

λs = (J−2/3
e B′−1

e · S)−1/2 . (6.11.32)

Then,with the help of the evolutionEqs. (6.11.13), (6.11.14) and (6.11.30), the elastic
fiber stretch λs satisfies the evolution equation

λ̇s

λs
= S · D − 1

3
�m ln

(
Je

Jh

)
− 1

2
�(B′−1

e · S)−1(B′−1
e AgB′−1

e · S) . (6.11.33)
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Constitutive Equations:
Following the work in [23], the constitutive equations for an elastically anisotropic
thermoelastic material with growth are proposed in the forms

ψ = ψ(Je, θ,V) , η = η(Je, θ,V) , T = T(Je, θ,B′
e,V) ,

p = − κ̄(Je,θ,V)

θ
g , V = (α1, α2, λn, λs) , g = ∂θ

∂x ,
(6.11.34)

where the non-negative function κ̄ that represents the heat conduction coefficient
should not be confused with an isotropic hardening variable κ . Then, using the
evolution Eqs. (6.11.13), (6.11.15), (6.11.27) and (6.11.33), the stress T and entropy
η are specified by

T = ρ

[
Je

∂ψ

∂ Je
I + 2

∂ψ

∂α1
B′′

e + 4
∂ψ

∂α2

(
B′

e
2 − 1

3
α2I
)

+ ∂ψ

∂λn
λn(I − N) + ∂ψ

∂λs
λsS

]
,

η = −∂ψ

∂θ
.

(6.11.35)

Notice that the component of stress due to the elastic area stretch λn is isotropic in the
plane normal to n and the stress due to the elastic fiber stretch λs is in the S direction.
Also, the stress T can be written in terms of the pressure p and its deviatoric part T′′,
such that

T = −p I + T′′ , p = −ρ

(
Je

∂ψ

∂ Je
+ 2

3

∂ψ

∂λn
λn + 1

3

∂ψ

∂λs
λs

)
,

T′′ = ρ

[
2

∂ψ

∂α1
B′′

e + 4
∂ψ

∂α2

(
B′

e
2 − 1

3
α2I
)

+ 1

3

∂ψ

∂λn
λn(I − 3N)

+ 1

3

∂ψ

∂λs
λs(3S − I)

]
.

(6.11.36)

Modeling Area Growth:
To model area growth, it is assumed that the growth is isotropic in a material surface
that has unit normal n in the current configuration and H′ is specified by

H′ = 1

h
(I − N) + h2N , h > 0 , (6.11.37)

where N is defined by (6.11.22), n is defined by the evolution Eq. (6.11.23) and h is
a positive scalar that controls the rate of area growth which needs to be specified by
an evolution equation for ḣ.

To understand the implications of the constitutive form (6.11.37), consider the
special case when the velocity gradient L is specified by
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L = D = 1

2

(
ȧ

a

)
(I − N) + λ̇

λ
N , D · I = ȧ

a
+ λ̇

λ
, (6.11.38)

with a and λ being arbitrary functions of time. For this velocity field, it follows from
(6.11.23) and (6.11.24) that n andN remain constant. Using (6.11.27) and [(6.11.33)
with S replaced by N], it can be shown that a represents the area stretch of the
material surface that is normal to n and λ represents the stretch of a material fiber
that is normal to this material surface.

Next, B′
e and its inverse are specified by

B′
e = 1

be
(I − N) + b2

eN , B′−1
e = be(I − N) + 1

b2
e

N , be > 0 , (6.11.39)

where be is a positive scalar to be determined. Using this expression, it follows that
h is the homeostatic value of the elastic stretch be of the fiber normal to the material
surface. Moreover, the distortional invariant α1 in (6.11.15), the elastic area stretch
λn in (6.11.26) and the elastic fiber stretch λs in (6.11.32) with S replaced by N,
become

α1 = 2 + b3
e

be
, λn = J 2/3

e

be
, λs = J 1/3

e be . (6.11.40)

In addition, the evolution Eqs. (6.11.13) and (6.11.14) yield two scalar equations to
determine Je and be of the forms

J̇e

Je
= ȧ

a
+ λ̇

λ
− �m ln

(
Je

Jh

)
,

ḃe

be
= −1

3

(
ȧ

a

)
+ 2

3

(
λ̇

λ

)
− �

⎡
⎢⎣
1 −

(
h
be

)3

2 +
(

h
be

)3
⎤
⎥⎦ .

(6.11.41)
Therefore, steady-state solutions of these equations exist with

{ Je , Jh , �m ,
ȧ

a
,
λ̇

λ
, be ,B′

e , h , � } , (6.11.42)

being constants, such that

ȧ

a
= 2

3
�m ln

(
Je

Jh

)
− �

⎡
⎢⎣
1 −

(
h
be

)3

2 +
(

h
be

)3
⎤
⎥⎦ ,

λ̇

λ
= 1

3
�m ln

(
Je

Jh

)
+ �

⎡
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1 −

(
h
be

)3

2 +
(

h
be

)3
⎤
⎥⎦ .

(6.11.43)
In particular, area growth can occur without extension in the n direction with

ȧ

a
= �m ln

(
Je

Jh

)
,

λ̇

λ
= 0 , D · I = ȧ

a
for

1

3
�m ln

(
Je

Jh

)
= −�

⎡
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1 −

(
h
be

)3

2 +
(

h
be

)3
⎤
⎥⎦ ,

(6.11.44)
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and area growth can occur without volume change with

ȧ

a
= −�

⎡
⎢⎣
1 −

(
h
be

)3

2 +
(

h
be

)3
⎤
⎥⎦ ,

λ̇

λ
= − ȧ

a
, D · I = 0 for �m ln

(
Je

Jh

)
= 0 . (6.11.45)

Modeling Fiber Growth:
To model fiber growth, it is assumed that the growth is isotropic in a surface normal
to the unit direction s of the fiber in the current configuration and H′ is specified by

H′ = 1

h
(I − S) + h2S , h > 0 , (6.11.46)

where S is defined by (6.11.28), s is defined by the evolution Eq. (6.11.29) and h is
a positive scalar that controls the rate of fiber growth which needs to be specified by
an evolution equation for ḣ.

To understand the implications of the constitutive form (6.11.46), consider the
special case when the velocity gradient L is specified by

L = D = 1

2

(
ȧ

a

)
(I − S) + λ̇

λ
S , D · I = ȧ

a
+ λ̇

λ
, (6.11.47)

with a and λ being arbitrary functions of time. For this velocity field, it follows
from (6.11.29) and (6.11.30) that s and S remain constant. Using [(6.11.27) with N
replaced by S] and (6.11.33), it can be shown that a represents the area stretch of the
material surface that is normal to s and λ represents the stretch of the material fiber
that is in the direction s.

Next, B′
e and its inverse are specified in the forms (6.11.39) with N replaced by S

B′
e = 1

be
(I − S) + b2

eS , B′−1
e = be(I − S) + 1

b2
e

S , be > 0 , (6.11.48)

where be is a positive scalar to be determined. Using this expression, it follows that h
is the homeostatic value of the elastic stretch be of the fiber in the direction s normal
to thematerial surface.Moreover, the distortional invariant α1 in (6.11.15), the elastic
area stretch λn in [(6.11.26) with N replaced by S] and the elastic fiber stretch λs

in (6.11.32) are given by (6.11.40). In addition, the evolution Eqs. (6.11.13) and
(6.11.14) yield two scalar Eq. (6.11.41) to determine Je and be. Therefore, steady-
state solutions of these equations exist with

Je , Jh , �m ,
ȧ

a
,
λ̇

λ
, be ,B′

e , h , � , (6.11.49)

being constants, such that
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(6.11.50)
In particular, fiber growth can occur without area change normal to the fiber with

ȧ

a
= 0 ,
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λ
= �m ln
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Je

Jh

)
, D · I = λ̇

λ
,

2

3
�m ln

(
Je

Jh
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⎡
⎢⎣
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(
h
be

)3

2 +
(

h
be

)3
⎤
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(6.11.51)
and fiber growth can occur without volume change with

ȧ

a
= − λ̇

λ
,

λ̇

λ
= �

⎡
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1 −

(
h
be

)3

2 +
(

h
be

)3
⎤
⎥⎦ , D · I = 0 , �m ln

(
Je

Jh

)
= 0 , (6.11.52)

which is the same as the solution (6.11.45).

Modeling Muscle Activation:
These equations have also been used to model muscle activation and details can be
found in [23].

6.12 Jump Conditions for the Thermomechanical Balance
Laws

The purpose of this section is to develop jump conditions for the global thermo-
mechanical balance laws. Specifically, it is recalled from Sect. 6.2 that within the
context of the thermomechanical theory proposed by Green and Naghdi [7, 8], the
current mass density ρ, the current position x of a material point and the absolute
temperature θ are determined by the global forms of the conservation of mass and
the balances of linear momentum and entropy (6.2.1)

d

dt

∫
P

ρdv = 0 , (6.12.1a)

d

dt

∫
P

ρvdv =
∫

P
ρbdv +

∫
∂ P

tda , (6.12.1b)

d

dt

∫
P

ρηdv =
∫

P
ρ(s + ξ)dv −

∫
∂ P

p · nda . (6.12.1c)

Moreover, the balance of angularmomentum (6.2.2) and the balance of energy (6.2.3)
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P'
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S(t)

S(t)
P''

P

n

w

1

2

Fig. 6.3 A material region with a singular moving surface S(t)

d

dt

∫
P
(x × ρv)dv =

∫
P
(x × ρb)dv +

∫
∂ P

x × tda , (6.12.2a)

d

dt

∫
P
(ρε + 1

2
ρv · v)dv =

∫
P
(ρb · v)dv +

∫
∂ P

t · vda

+
∫

P
ρθsdv −

∫
∂ P

θp · nda (6.12.2b)

are identically satisfied for all thermomechanical processes.
The discussion in Sect. 3.10 considered thematerial region P with closedmaterial

boundary ∂ P to be divided into two parts P1 and P2 by the singular S(t) that moves
through the material (see Fig. 6.3). Furthermore, the intersection of ∂ P1 with ∂ P
was denoted by ∂ P ′ and the intersection of ∂ P2 with ∂ P was denoted by ∂ P ′′.
Mathematically, this separation is summarized by (3.10.14)

P = P1 ∪ P2 , ∂ P ′ = ∂ P1 ∩ ∂ P , ∂ P ′′ = ∂ P2 ∩ ∂ P ,

∂ P = ∂ P ′ ∪ P ′′ , ∂ P1 = ∂ P ′ ∪ S , ∂ P2 = ∂ P ′′ ∪ S .
(6.12.3)

A discussion of the motion of singular surfaces in fluid mechanics can be found in
[34].

Next, the generalized transport theorem (3.10.16) is given by

d

dt

∫
P

φ(x, t)dv =
∫

P1

(φ̇ + φ divv)dv +
∫

P2

(φ̇ + φ divv)dv

−
∫

S(t)
[[φ {(w − v) · n}]]da ,

(6.12.4)
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where points on this singular surface move with velocity w and the unit normal to
S(t) outward from the part P1 is denoted by n. Also, the jump operator [[φ]] is
defined by (3.10.17)

[[φ {(w − v) · n}]] = φ2{(w − v2) · n} − φ1{(w − v1) · n} , (6.12.5)

where φ1 and v1 are the values of φ and v in part P1 and φ2 and v2 are the values of
φ and v in part P2, all evaluated on the singular surface S(t). In addition, w and n
are the same on both sides of S(t) (3.10.18)

w1 = w2 = w , n1 = n2 = n . (6.12.6)

Now, it is assumed that the local forms of the balance laws (6.12.1)

ρ̇ + ρdivv = 0 , (6.12.7a)

ρv̇ = ρb + divT , (6.12.7b)

ρη̇ = ρ(s + ξ) − divp , (6.12.7c)

and the local forms of the balance laws (6.12.2)

x × ρv̇ = x × ρb + div(x × T) , (6.12.8a)

ρε̇ + ρv̇ · v = ρb · v + ρθs + div(v · T − θp) (6.12.8b)

are valid in each part P1 and P2 where use has been made of the expression for
(4.3.24) for the traction vector t

t = Tn . (6.12.9)

Applying the generalized tranport theorem (6.12.4) to the global form (6.12.1a)
of the conservation of mass and using the local Eq. (6.12.7a) in each of the parts P1

and P2 yields ∫
S(t)

[[ρ {(w − v) · n}]]da = 0 . (6.12.10)

Assuming continuity of the integrand along S(t) requires the jump condition onmass

[[m]] = 0 , m = ρ [(w − v) · n] , (6.12.11)

to be valid for all points on S(t).
Since the internal rate of entropy production ξ in the balance of entropy can be

singular at the singular surface, this balance law needs special attention so it will be
used as an example for the other balance laws. Specifically, due to this singularity, it
follows that
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∫
P

ρξdv =
∫

P1

ρξdv +
∫

P2

ρξdv +
∫

S(t)
m�da , (6.12.12)

where it is assumed that the singularity in ξ is integrable across S(t) to yield the finite
value �. In contrast, the external rate of entropy supply s is assumed to be bounded
across S(t) so that ∫

P
ρsdv =

∫
P1

ρsdv +
∫

P2

ρsdv . (6.12.13)

Now, applying the generalized transport theorem (6.12.4) to the rate of change of
entropy and using (6.12.11) and the local Eqs. (6.12.7a) and (6.12.7c) yields

d

dt

∫
P

ρηdv =
∫

P1

[ρ(s + ξ) − divp]dv +
∫

P2

[ρ(s + ξ) − divp]dv

−
∫

S(t)
[[m η]]da . (6.12.14)

However, application of the divergence theorem yields

∫
P1

divpdv =
∫

∂ P ′
p · nda +

∫
S(t)

p1 · nda

∫
P2

divpdv =
∫

∂ P ′′
p · nda −

∫
S(t)

p2 · nda ,

(6.12.15)

so that
∫

P1

divpdv +
∫

P2

divpdv =
∫

∂ P
p · nda −

∫
S(t)

[[p · n]]da . (6.12.16)

Thus, with the help of (6.12.12) and (6.12.13), (6.12.14) can be rewritten in the form

d

dt

∫
P

ρηdv =
∫

P
ρ(s + ξ)dv −

∫
∂ P

p · nda −
∫

S(t)

(
m � + [[m η − p · n]]

)
da .

(6.12.17)
Now, using the global balance laws (6.12.1c) and assuming continuity of the integrand
over S(t) requires the jump condition on entropy

m � + [[m η − p · n]] = 0 , (6.12.18)

to be valid for all points on S(t).
Following this same procedure for the other balance laws and assuming that ρb

and θ are bounded across S(t), the jump conditions for balance laws (6.12.1) can be
summarized as
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[[m]] = 0 , (6.12.19a)

[[mv + Tn]] = 0 , (6.12.19b)

m � + [[m η − p · n]] = 0 , (6.12.19c)

and the jump conditions for the balance laws (6.12.2) can be summarized as

x × [[mv + Tn]] = 0 , (6.12.20a)

[[m(ε + 1

2
v · v) + v · Tn − θp · n]] = 0 , (6.12.20b)

where m is defined by (6.12.11) and x is continuous across S(t).
Notice that the jump in angular momentum (6.12.20a) is automatically satisfied

when the jump in linear momentum (6.12.19b) is satisfied. In contrast with the local
Eq. (6.12.7), the jump condition (6.12.19c) is used to determine the internal rate of
entropy production � due to the jump in entropy across S(t) and the jump condition
(6.12.20b) on energy is used to determine the jump in temperature θ .
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Appendix A
Eigenvalues, Eigenvectors and Principal
Invariants of a Tensor

The objective of this appendix is to briefly review some basic properties of eigenval-
ues and eigenvectors.

A.1 Eigenvalues and Eigenvectors

The vector v is said to be an eigenvector of a real second-order tensor T with the
associated eigenvalue σ if

Tv = σv , Ti j v j = σvi . (A.1.1)

It follows that the characteristic equation for determining the three values of the
eigenvalue σ is given by

det(T − σ I) = −σ 3 + σ 2 I1(T) + σ I2(T) + I3(T) = 0 , (A.1.2)

where I1(T), I2(T) and I3(T) are the principal invariants of T defined by

I1(T) = T · I = tr(T) = Tmm ,

I2(T) = 1

2
[(T · I)2 − T · TT ] = 1

2
[TmmTnn − TmnTnm] ,

I3(T) = detT = 1

6
εi jkεrst Tir TjsTkt .

(A.1.3)

For the remainder of this appendix, T is restricted to be a symmetric tensor. Then, it
can be shown that the three roots of the cubic equation (A.1.2) are real. Also, it can
be shown that the three independent eigenvectors v obtained by solving (A.1.1) can
be chosen to form an orthonormal set of vectors.
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Recalling that T can be separated into its spherical part T I and its deviatoric part
T′′ such that

T = T I + T′′ , Ti j = T δi j + T ′′
i j ,

T = 1
3 (T · I) = 1

3Tmm , T′′ · I = T ′′
mm = 0 ,

(A.1.4)

it follows that when v is an eigenvector of T, it is also an eigenvector of T′′

T′′v = (T − T I)v = (σ − T )v = σ ′′v , (A.1.5)

with the associated eigenvalue σ related to σ ′′ by

σ = T + σ ′′ . (A.1.6)

A.2 Closed form Solution of the Characteristic Equation

Since the first principal invariant of the symmetric, deviatoric tensor T′′ vanishes,
the characteristic equation for σ ′′ is given by

det(T′′ − σ ′′I) = −σ ′′3 + σ ′′
(

σ 3
e

3

)
+ J3 = 0 , (A.2.1)

where the alternative invariants σe and J3 have been defined by

σe =
√
3

2
T′′ · T′′ = √−3I2(T′′) , J3 = detT′′ = I3(T′′) . (A.2.2)

Note that if σe vanishes, then T′′ vanishes so that from (A.2.1) σ ′′ vanishes, and from
(A.1.6) it follows that all three eigenvalues are equal

σ = T for σe = 0 . (A.2.3)

If σe does not vanish, then (A.2.1) can be divided by (σe/3)3 to obtain

(
3σ ′′

σe

)3

− 3

(
3σ ′′

σe

)
− 2 Ĵ3 = 0 , (A.2.4)

where the invariant Ĵ3 is defined by

− 1 ≤ Ĵ3 = 27J3
2σ 3

e

≤ 1 . (A.2.5)
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Since (A.2.4) is in the standard form of a cubic equation, the solution can be
obtained easily using the trigonometric form

σ ′′
1 = 2σe

3
cos

(π

6
+ β

)
,

σ ′′
2 = 2σe

3
sin(β) ,

σ ′′
3 = −2σe

3
cos

(π

6
− β

)
,

(A.2.6)

where the Lode angle [1–4] β is defined by

sin(3β) = − Ĵ3 , −π

6
≤ β ≤ π

6
, (A.2.7)

and the eigenvalues σ ′′
1 , σ ′′

2 and σ ′′
3 are ordered so that

σ ′′
1 ≥ σ ′′

2 ≥ σ ′′
3 . (A.2.8)

Once these values have been determined, the three solutions of (A.1.2) can be cal-
culated using (A.1.6).

A.3 Triaxial States of Stress

Determining failure surfaces for soils, which cannot support tension, often requires
triaxial tests which place an impermeable flexible membrane around the lateral sur-
face of a circular cylindrical specimen. Then, the specimen is placed in a testing
machine to apply axial contraction and extension. By applying axial contraction in
conjunction with fluid pressure on the outside of the membrane, it is possible to
load the specimen in a hydrostatic state of stress. Then, by maintaining the value
of the pressure on the lateral surface of the cylindrical specimen and applying axial
extension or contraction, it is possible to create states of Triaxial Extension (TXE) or
Triaxial Compression (TXC), respectively. By applying appropriate values of axial
compression and lateral pressure, it is possible to maintain the hoop stress zero,
which creates a state of pure Torsion (TOR).

IfT in the above equations represents the Cauchy stress, then these states of stress
can be characterized by the Lode angle β or the invariant Ĵ3 by

β = π
6 , Ĵ3 = −1 for T XC ,

β = 0 , Ĵ3 = 0 for T OR ,

β = −π
6 , Ĵ3 = 1 for T XE .

(A.3.1)
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Appendix B
Consequences of Continuity

The objective of this appendix is to discuss the continuity of a function and some
consequences of continuity.

B.1 Continuity of a Function

A function φ(x, t) is said to be continuous with respect to the position x in a region
R if for every position y in R and every ε > 0 there exists a δ > 0, such that

|φ(x, t) − φ(y, t)| < ε whenever |x − y| < δ . (B.1.1)

In words, this means that by reducing the radius δ of a spherical region, it is possible
to reduce the maximum difference between two values of a continuous function
φ(x, t) in the spherical region to any positive finite value ε.

B.2 Application to the Local Form of a Global Equation

Theorem: If φ(x, t) is continuous in R and the global equation

∫
P

φdv = 0 (B.2.1)

is valid for every part P in R, then the necessary and sufficient condition for the
validity of (B.2.1) is that φ vanishes at every point in R

φ(x, t) = 0 on R , (B.2.2)

which is considered to be the local form of the global equation (B.2.1).
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Proof of Sufficiency:

If φ = 0 on R, then (B.2.1) is trivially satisfied.
Proof of Necessity:

Necessity is proved by contradiction. Suppose that a point y on R exists for which
φ(y, t) > 0. Then, by continuity of φ, there exists a finite region Pδ defined by the
delta sphere such that

|φ(x, t) − φ(y, t)| <
1

2
φ(y, t) whenever |x − y| < δ ,

− 1

2
φ(y, t) < φ(x, t) − φ(y, t) <

1

2
φ(y, t) whenever |x − y| < δ .

(B.2.3)

This equation can be rewritten in the form

1

2
φ(y, t) < φ(x, t) <

3

2
φ(y, t) whenever |x − y| < δ . (B.2.4)

Since Pδ is a finite region, its volume Vδ is positive

Vδ =
∫
Pδ

dv > 0 . (B.2.5)

Then, taking the integral of (B.2.4) over Pδ and using (B.2.5) yields

∫
Pδ

φdv >

∫
Pδ

1

2
φ(y, t)dv = 1

2
φ(y, t)Vδ > 0 , (B.2.6)

which contradicts the condition (B.2.1) so φ on R cannot be positive.
Similarly, suppose that a point y on R exits for which φ(y, t) < 0. Then, by

continuity of φ, there exists a finite region Pδ defined by the delta sphere such that

|φ(x, t) − φ(y, t)| < −1

2
φ(y, t) whenever |x − y| < δ ,

1

2
φ(y, t) < φ(x, t) − φ(y, t) < −1

2
φ(y, t) whenever |x − y| < δ .

(B.2.7)

This equation can be rewritten in the form

3

2
φ(y, t) < φ(x, t) <

1

2
φ(y, t) whenever |x − y| < δ . (B.2.8)

Since Pδ is a finite region, its volume Vδ is positive. Then, taking the integral of
(B.2.8) over Pδ and using (B.2.5) yields

∫
Pδ

φdv <

∫
Pδ

1

2
φ(y, t)dv = 1

2
φ(y, t)Vδ < 0 , (B.2.9)
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which contradicts the condition (B.2.1) so φ on R cannot be negative.
Combining the results (B.2.6) and (B.2.9) yields the result that φ must vanish at

every point on R, which proves the necessity of the local Eq. (B.2.2).



Appendix C
Lagrange Multipliers

The objective of this appendix is to discuss the use of Lagrange multipliers to find
stationary values of a function subject to constraints.

C.1 Special Case

As a special case, let f = f (x1, x2, x3) be a real valued function of the three real
valued variables xi and assume that f is continuously differentiable. The function f
has a stationary value (extremum) at the point x = x0 if

d f = ∂ f

∂x1
dx1 + ∂ f

∂x2
dx2 + ∂ f

∂x3
dx3 = 0 at x = x0 . (C.1.1)

If the variables xi are independent, the condition (C.1.1) requires

∂ f

∂x1
= ∂ f

∂x2
= ∂ f

∂x3
= 0 at x = x0 . (C.1.2)

Next, consider the problem of finding the points x = x0 which make f stationary
and also satisfy the kinematic constraint condition

φ(x1, x2, x3) = 0 . (C.1.3)

In other words, from the set of all points which satisfy the constraint (C.1.3), it is
necessary to search for those points x = x0 which also make f stationary. To this
end, (C.1.3) is differentiated to obtain paths on the constraint surface

dφ = ∂φ

∂x1
dx1 + ∂φ

∂x2
dx2 + ∂φ

∂x3
dx3 = 0 . (C.1.4)
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The condition for f to be stationary is again given by (C.1.1) but now the results
(C.1.2) are not necessary conditions since xi are dependent and must satisfy the
constraint (C.1.3).

Themethod of Lagrange multipliers suggests that constraint (C.1.4) be multiplied
by an arbitrary scalar λ. Then, the result is subtracted from the condition (C.1.1) that
f be stationary to obtain

(
∂ f

∂x1
− λ

∂φ

∂x1

)
dx1 +

(
∂ f

∂x2
− λ

∂φ

∂x2

)
dx2 +

(
∂ f

∂x3
− λ

∂φ

∂x3

)
dx3 = 0 at x = x0 .

(C.1.5)
For the constraint (C.1.3) to be active, it is necessary that at each point at least one
of the partial derivatives be nonzero ∂φ/∂xi �= 0. For definiteness, it is assumed that

∂φ

∂x3
�= 0 at x = x0 . (C.1.6)

Next, the value of λ can be specified so that the coefficient of dx3 in (C.1.5) vanishes

∂ f

∂x3
= λ

∂φ

∂x3
at x = x0 , (C.1.7)

with (C.1.5) reducing to

(
∂ f

∂x1
− λ

∂φ

∂x1

)
dx1 +

(
∂ f

∂x2
− λ

∂φ

∂x2

)
dx2 = 0 at x = x0 . (C.1.8)

Now since ∂φ/∂x3 �= 0, the value of dx3 can be chosen so that the constraint
Eq. (C.1.4) is satisfied for arbitrary values of dx1 and dx2. This means that dx1
and dx2 can be specified independently in (C.1.8) so it can be concluded that

∂ f

∂xi
= λ

∂φ

∂xi
at x = x0 . (C.1.9)

In summary, of all the points satisfying the constraint (C.1.3), the ones that correspond
to stationary values of f are the ones for which x0 and λ are determined by the four
Eqs. (C.1.3) and (C.1.9). The result (C.1.9) also means that at the stationary value of
f , the gradient of f is parallel to gradient of the constraint φ.

An Alternative Perspective
Another way of examining the same problem is to write the function f and the
constraint φ in the forms

f = f (xα, x3) , φ = φ(xα, x3) = 0 , (C.1.10)

where a Greek index is defined to take only the values α = 1, 2. Since ∂φ/∂x3 �= 0,
the implicit function theorem states that a function g(xα) exists such that when
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x3 = g(xα) the constraint (C.1.10)2 is automatically satisfied

φ = φ(xα, g(xα)) = 0 (C.1.11)

for all xα for which ∂φ/∂x3 �= 0. By substituting x3 = g(xα) into the function f

f = f (xα, g(xα)) , (C.1.12)

it is possible to limit attention only to pointswhich automatically satisfy the constraint
(C.1.11). Since xα are independent variables in (C.1.12), it follows that the stationary
values are determined by equation

d f =
[

∂ f

∂xα

+
(

∂ f

∂x3

)
∂g

∂xα

]
dxα = 0 , (C.1.13)

so for stationary points

∂ f

∂xα

= −
(

∂ f

∂x3

)
∂g

∂xα

at x = x0 . (C.1.14)

However, since the constraint (C.1.11) is satisfied with xα being independent vari-
ables, it follows that

dφ =
[

∂φ

∂xα

+
(

∂φ

∂x3

)
∂g

∂xα

]
dxα = 0 , − ∂g

∂xα

=
∂φ

∂xα

∂φ

∂x3

. (C.1.15)

Thus, (C.1.14) can be written in the form

∂ f

∂xα

= λ
∂φ

∂xα

, λ =
∂ f
∂x3
∂φ

∂x3

. (C.1.16)

These conditions can be simplified to obtain

∂ f

∂xi
= λ

∂φ

∂xi
, φ = 0 at x = x0 , (C.1.17)

which are the same equations as (C.1.9).

Another Approach
Another approach suggests defining an auxiliary function h and aLagrangemultiplier
λ, such that

h = h(x1, x2, x3, λ) = f (x1, x2, x3) − λφ(x1, x2, x3) . (C.1.18)
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Thinking of x1, x2, x3 and λ as independent variables, the auxiliary function h will
have a stationary value when

∂h

∂x1
= ∂ f

∂x1
− λ

∂φ

∂x1
= 0 ,

∂h

∂x2
= ∂ f

∂x2
− λ

∂φ

∂x2
= 0 ,

∂h

∂x3
= ∂ f

∂x3
− λ

∂φ

∂x3
= 0 ,

∂h

∂λ
= −φ = 0 at x = x0 .

(C.1.19)

These equations can be rewritten in the compact forms

∂ f

∂xi
= λ

∂φ

∂xi
, φ = 0 at x = x0 , (C.1.20)

which again requires the gradient of f to be parallel to the gradient of the constraint
φ.

C.2 A More General Case

For a more general case, let f be a real valued function of m + n variables

f = f (xi , y j ) for i = 1, 2, . . . ,m and j = 1, 2, . . . , n , (C.2.1)

and consider n constraint equations of the forms

φr = φr (xi , y j ) for r = 1, 2, . . . , n . (C.2.2)

Furthermore, assume that f and φr are continuously differentiable and that all the
constraints φr are active so that

det(∂φr/∂y j ) �= 0 for r, j = 1, 2, . . . , n . (C.2.3)

Now form the auxiliary function h defined by

h = f −
n∑

r=1

λrφr , (C.2.4)

where λr are scalars called Lagrange multipliers that are independent of xi and y j .
The method of Lagrange multipliers suggests that the points which satisfy the n
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constraints (C.2.2) and which cause the function f to be stationary are determined
by solving the m + 2n equations

∂h

∂xi
= ∂ f

∂xi
−

n∑
r=1

λr
∂φr

∂xi
= 0 for i = 1, 2, . . . ,m ,

∂h

∂y j
= ∂ f

∂y j
−

n∑
r=1

λr
∂φr

∂y j
= 0 for j = 1, 2, . . . , n ,

∂h

∂λr
= −φr = 0 for r = 1, 2, . . . , n ,

(C.2.5)

for them + 2n unknowns xi , y j and λr . This method produces a necessary condition
for f to have a stationary value. However, each stationary point must be checked
individually to determine if it is a maximum, minimum or a point of inflection.



Appendix D
Stationary Values of the Normal and Shear
Stresses

The objective of this appendix is to develop expressions for the stationary values of
the normal and shear components of the traction vector and the associated planes.

D.1 Stationary Values of the Normal Component of Stress
Vector

Letting Ti j be the components of the Cauchy stress T relative to a fixed rectangular
Cartesian coordinate system with base vectors ei , the normal component σ of stress
vector acting on the plane defined by the unit outward normal n j is given by

σ(n) = t · n = T · (n ⊗ n) = Ti j nin j . (D.1.1)

For a given value of stress T at a point, it is of interest to find the planes n for which
σ is stationary. Since n is a unit vector, its components n j satisfy the constraint
equation

φ = n jn j − 1 . (D.1.2)

Using the method of Lagrange multipliers described in Appendix C the auxilliary
function h takes the form

h(n j , λ) = σ − λφ = Ti j nin j − λ(n jn j − 1) , (D.1.3)

which is used to determine the values of n j and λ for σ to be stationary by solving
equations

∂h

∂nk
= 2(Tkj − λδk j )n j = 0 ,

∂h

∂λ
= −(n jn j − 1) = 0 . (D.1.4)

It follows from these equations that the stationary values of σ occur when
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Tn = λn , n · n = 1 . (D.1.5)

This means that σ attains its stationary values on the three planes that are defined by
n parallel to the principal directions of the stress tensor T. The associated stationary
values of σ are the principal values of the stress tensor T. Since T is a real and
symmetric tensor, these principal values and directions are real so the principal
values σi can be ordered, such that

σ1 ≥ σ2 ≥ σ3 . (D.1.6)

For convenience, the base vectors ei of the Cartesian coordinate system are taken
to be parallel to the principal directions pi of T so that T can be represented in is
spectral form

T = σ1p1 ⊗ p1 + σ2p2 ⊗ p2 + σ3p3 ⊗ p3 ,

Ti j = T · pi ⊗ p j =
⎛
⎝ σ1 0 0

0 σ2 0
0 0 σ3

⎞
⎠ .

(D.1.7)

Using this choice of base vectors, it follows that

t = Tn = σ1n1p1 + σ2n2p2 + σ3n3p3 ,

σ (n) = σ1n
2
1 + σ2n

2
2 + σ3n

2
3 .

(D.1.8)

Next, with the help of the ordering (D.1.6), it follows that

σ1 = σ1(n
2
1 + n22 + n23) ≥ σ1n

2
1 + σ2n

2
2 + σ3n

2
3 = σ(n) ,

σ (n) = σ1n
2
1 + σ2n

2
2 + σ3n

2
3 ≥ σ3(n

2
1 + n22 + n23) ≥ σ3 ,

(D.1.9)

so σ(n) is bounded above by the largest eigenvalue σ1 and is bounded below by the
smallest eigenvalue σ3

σ1 ≥ σ(n) ≥ σ3 . (D.1.10)

This means that the maximum value σ1 of the normal stress σ occurs on the plane
normal to the principal direction p1 and the minimum value σ3 of normal stress σ

occurs on the plane normal to the principal direction p3. The value σ2 is called a
minimax and is the value of σ on the plane normal to p2.

D.2 Stationary Values of the Shear Component of Stress

The shearing component ts with magnitude τ of the traction vector t on a surface
with unit normal n can be defined by
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ts = t − (t · n)n , τ 2 = ts · ts = t · t − σ 2 . (D.2.1)

Thus, with the help of the spectral form of the stress T (D.1.7), it follows that

τ 2 = σ 2
1 n

2
1 + σ 2

2 n
2
2 + σ 2

3 n
2
3 − (σ1n

2
1 + σ2n

2
2 + σ3n

2
3)

2 . (D.2.2)

Since τ and τ 2 both are stationary on the same plane, the stationary value of τ can
be determined by using the method of Lagrange multiplier and taking the auxilliary
function h in the form

h = h(n j , λ) = τ 2 − λ(n jn j − 1) , (D.2.3)

which is used to determine the values of n j and λ for τ to be stationary by solving
equations

∂h

∂n1
= 2n1

[
σ 2
1 − 2σ1(σ1n

2
1 + σ2n

2
2 + σ3n

2
3) − λ

] = 0 ,

∂h

∂n2
= 2n2

[
σ 2
2 − 2σ2(σ1n

2
1 + σ2n

2
2 + σ3n

2
3) − λ

] = 0 ,

∂h

∂n3
= 2n3

[
σ 2
3 − 2σ3(σ1n

2
1 + σ2n

2
2 + σ3n

2
3) − λ

] = 0 ,

∂h

∂λ
= −(n jn j − 1) = 0 .

(D.2.4)

One solution of the Eq. (D.2.4) is given by

n = ±p1 , τ = 0 , σ = σ1 ,

n = ±p2 , τ = 0 , σ = σ2 ,

n = ±p3 , τ = 0 , σ = σ3 .

(D.2.5)

Thus, the magnitude τ of the shear stress assumes its absolute minimum value of
zero on the planes whose normals are in the principal directions of the stress tensor
T. Furthermore, it is noted that on these same planes the normal stress σ assumes its
stationary values.

A second solution of the Eq. (D.2.4) is given by

n = ± 1√
2
(p1 ± p3) , τ = σ1 − σ3

2
, σ = σ1 + σ3

2
,

n = ± 1√
2
(p1 ± p2) , τ = σ1 − σ2

2
, σ = σ1 + σ2

2
,

n = ± 1√
2
(p2 ± p3) , τ = σ2 − σ3

2
, σ = σ2 + σ3

2
.

(D.2.6)
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Note that the maximum value of the magnitude τ of the shear stress is equal to one
half of the difference between the maximum and minimum values of normal stress
and it occurs on the plane whose normal bisects the angle between the normals to the
planes of maximum and minimum normal stress. Also, note that the normal stress σ

does not necessarily vanish on these planes.



Appendix E
Isotropic Tensors

The objective of this appendix is to develop expressions for isotropic tensors up to
fourth order.

E.1 Definition of Isotropic Tensors

Let ei and ẽi be two sets of orthonormal base vectors that are connected by the
orthogonal transformation A

A = ei ⊗ ẽi , ATA = I ,

Ai j = A · ei ⊗ e j = ẽi · e j ,
Ãi j = A · ẽi ⊗ ẽ j = ẽi · e j ,

(E.1.1)

which shows that since A is a two-point tensor defined by the base vectors ei and ẽ j ,
its components Ai j relative to the basis ei are the same as its components Ãi j relative
to the basis ẽi .

Furthermore, let T be a tensor of any order with components Ti j ...m relative to
the basis ei and components T̃i j ...m relative to the basis ẽi . Since T is a tensor, its
components Ti j ...m and T̃i j ...m are connected by the transformation relations

T̃i j ...m = Air A js . . . AmtTrs...t . (E.1.2)

An Isotropic Tensor
A tensor is said to be isotropic if its components relative to any two right-handed
orthonormal coordinate systems are equal. Mathematically, this means that

T̃i j ...m = Ti j ...m (E.1.3)
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holds for all proper orthogonal transformations A [detA = +1]. If (E.1.3) holds
for all orthogonal transformations [i.e., including those with detA = −1], then the
tensor is said to be isotropic with a center of symmetry.

E.2 Results for Specific Tensors

The Most General Zero-Order Isotropic tensors
By definition, scalar invariants satisfy the restriction (E.1.3) so they are zero-order
isotropic tensors.

First-Order Isotropic Tensors
The most general first-order isotropic tensor is the zero vector

Ti = 0 . (E.2.1)

To prove this result, (E.1.2) and (E.1.3) for a first-order tensor require

Ti = Ai j Tj . (E.2.2)

Taking Ai j to be

Ai j =
⎛
⎝ −1 0 0

0 −1 0
0 0 1

⎞
⎠ (E.2.3)

yields the restrictions

T1 = −T1 = 0 , T2 = −T2 = 0 , (E.2.4)

and then taking

Ai j =
⎛
⎝ 1 0 0

0 −1 0
0 0 −1

⎞
⎠ (E.2.5)

yields the additional restriction

T3 = −T3 = 0 , (E.2.6)

so the first-order isotropic tensor must be the zero vector (E.2.1).

Second-Order Isotropic Tensors
The most general second-order isotropic tensor has the form

Ti j = λδi j , (E.2.7)
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where λ is a scalar invariant. To prove this result, (E.1.2) and (E.1.3) for a second-
order tensor require

Ti j = Aim A jnTmn . (E.2.8)

Taking Ai j to be

Ai j =
⎛
⎝ 0 0 1

1 0 0
0 1 0

⎞
⎠ (E.2.9)

yields the restrictions

⎛
⎝ T11 T12 T13

T21 T22 T23
T31 T32 T33

⎞
⎠ =

⎛
⎝ T33 T31 T32

T13 T11 T12
T23 T21 T22

⎞
⎠ . (E.2.10)

Also, taking Ai j to be

Ai j =
⎛
⎝ 0 0 −1

−1 0 0
0 1 0

⎞
⎠ (E.2.11)

yields the additional restrictions

⎛
⎝ T11 T12 T13

T21 T22 T23
T31 T32 T33

⎞
⎠ =

⎛
⎝ T33 T31 −T32

T13 T11 −T12
T23 −T21 T22

⎞
⎠ . (E.2.12)

Thus, from (E.2.10) and (E.2.12), it follows that

T11 = T22 = T33 = λ with all other Ti j = 0 , (E.2.13)

so the second-order isotropic tensor must have the form (E.2.7).

Third-Order Isotropic Tensors
The most general third-order isotropic tensor has the form

Ti jk = λεi jk , (E.2.14)

where λ is a scalar invariant. To prove this result, (E.1.2) and (E.1.3) for a third-order
tensor require

Ti jk = Aim A jn Akr Tmnr . (E.2.15)

Denoting Ti jk by



254 Appendix E: Isotropic Tensors

Ti jk =
⎛
⎝ T111 T112 T113 T121 T122 T123 T131 T132 T133

T211 T212 T213 T221 T222 T223 T231 T232 T233
T311 T312 T313 T321 T322 T323 T331 T332 T333

⎞
⎠ , (E.2.16)

and specifying Ai j by (E.2.9) yields the restrictions

Ti jk =
⎛
⎝ T333 T331 T332 T313 T311 T312 T323 T321 T322

T133 T131 T132 T113 T111 T112 T123 T121 T122
T233 T231 T232 T213 T211 T212 T223 T221 T222

⎞
⎠ . (E.2.17)

Also, specifying Ai j by (E.2.11) yields the restrictions

Ti jk =
⎛
⎝ −T333 −T331 T332 −T313 −T311 T312 T323 T321 −T322

−T133 −T131 T132 −T113 −T111 T112 T123 T121 −T122
T233 T231 −T232 T213 T211 −T212 −T223 −T221 −T222

⎞
⎠ .

(E.2.18)
Then, using (E.2.16)–(E.2.18), it follows that

Ti jk =
⎛
⎝ 0 0 0 0 0 T123 0 T132 0

0 0 T213 0 0 0 T231 0 0
0 T312 0 T321 0 0 0 0 0

⎞
⎠ ,

T123 = T312 = T231 , T132 = T213 = T321 .

(E.2.19)

Next, specifying Ai j by

Ai j =
⎛
⎝ 0 0 1

0 1 0
−1 0 0

⎞
⎠ (E.2.20)

yields the additional restriction

T123 = −T321, (E.2.21)

so the third-order isotropic tensor must have the form (E.2.14).

Fourth-Order Isotropic Tensors
The most general fourth-order isotropic tensor has the form

Ti jkl = λδi jδkl + μδikδ jl + γ δilδ jk , (E.2.22)

where λ,μ and γ are scalar invariants. To prove this result, (E.1.2) and (E.1.3) for a
fourth-order tensor require

Ti jkl = Aim A jn Akr AlsTmnrs . (E.2.23)
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By specifying Ai j in the forms (E.2.3) and (E.2.5), it can be shown that the 81
components of Ti jkl reduce to only 21 nonzero components which are denoted by
T̄i jkl with

T̄i jkl =
⎛
⎝ T1111 T1122 T1133 T1212 T1221 T1313 T1331

T2112 T2121 T2211 T2222 T2233 T2323 T2332
T3113 T3131 T3223 T3232 T3311 T3322 T3333

⎞
⎠ . (E.2.24)

Specifying Ai j by (E.2.9) yields the restrictions

T̄i jkl =
⎛
⎝ T3333 T3311 T3322 T3131 T3113 T3232 T3223

T1331 T1313 T1133 T1111 T1122 T1212 T1221
T2332 T2323 T2112 T2121 T2233 T2211 T2222

⎞
⎠ . (E.2.25)

Also, specifying Ai j by

Ai j =
⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠ (E.2.26)

yields the additional restrictions

T̄i jkl =
⎛
⎝ T3333 T3322 T3311 T3232 T3223 T3131 T3113

T2332 T2323 T2233 T2222 T2211 T2121 T2112
T1331 T1313 T1221 T1212 T1133 T1122 T1111

⎞
⎠ . (E.2.27)

Thus, from (E.2.24), (E.2.25) and (E.2.27), it follows that

T1111 = T2222 = T3333 ,

T1122 = T3311 = T2233 = T3322 = T2211 = T1133 = λ ,

T1212 = T3131 = T2323 = T3232 = T2121 = T1313 = μ ,

T1331 = T3223 = T2112 = T3113 = T2332 = T1221 = γ .

(E.2.28)

Next, specifying Ai j by

Ai j =
⎛
⎜⎝

1√
2

1√
2
0

− 1√
2

1√
2
0

0 0 1

⎞
⎟⎠ (E.2.29)

yields the additional restriction

T1111 = A1m A1n A1r A1sTmnrs ,

T1111 = 1

4
(T1111 + T1122 + T1212 + T1221 + T2112 + T2121 + T2211 + T2222) ,

(E.2.30)
so with the help of (E.2.28) and (E.2.30), it follows that
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T1111 = T2222 = T3333 = λ + μ + γ . (E.2.31)

Thus, combining the results (E.2.28) and (E.2.31) shows that themost general fourth-
order isotropic tensor must have the form (E.2.22).

Notice that Ti jkl in (E.2.22) automatically has the symmetries

Ti jkl = Tkli j , TT (2) = T . (E.2.32)

An Additional Restriction
If the fourth-order isotropic tensor is further restricted to be symmetric in its first two
indices

Ti jkl = Tjikl ,
LTT = T , (E.2.33)

then it can be shown that
γ = μ , (E.2.34)

so that Ti jkl reduces to

Ti jkl = λδi jδkl + μ(δikδ jl + δilδ jk) , (E.2.35)

which is a doubly symmetric tensor satisfying the symmetries

Ti jkl = Tkli j = Tjikl = Ti jlk , T = TT (2) = LTT = TT . (E.2.36)



Appendix F
An Introduction to Tensors with Respect to
Curvilinear Coordinates

The objective of this appendix is to provide a brief introduction to covariant and
contravariant base vectors in general curvilinear coordinates as well as components
of tensors relative to these base vectors. Also, the gradient, divergence, curl and
Laplacian operators are introduced for general curvilinear coordinates.1

F.1 Covariant and Contravariant Base Vectors

The base vectors ei in rectangular Cartesian coordinates are special in the sense
that they are constant orthonormal vectors that specifically are independent of the
rectangular Cartesian coordinates xi . This means that the position vector x when
expressed with respect to ei can be represented in the form

x = xiei . (F.1.1)

Using this representation, it follows that the base vectors ei can be obtained by
differentiating the position vector with respect to the coordinates xi , such that

ei = ∂x
∂xi

. (F.1.2)

For general curvilinear coordinates, the notion of base vectors similar to (F.1.2)
generalizes directly, but the position vector no longer admits the simple form (F.1.1)
as a summation of coordinates times base vectors. For this case, the position vector
x is expressed as a function of three independent coordinates θ i and time t , such that

1Much of the content in this appendix has been adapted from [1] with permission.
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x = x(θ i , t) . (F.1.3)

For example, x can be expressed in terms of the rectangular Cartesian base vectors
ei

x = xm(θ i , t)em , (F.1.4)

with the rectangular Cartesian coordinates xm being functions of θ i and t .
Covariant Base Vectors
The covariant base vectors gi associated with the position vector x in (F.1.3) are
defined by

gi = ∂x
∂θ i

= x,i , (F.1.5)

where a comma is used to denote partial differentiationwith respect to the coordinates
θ i . Geometrically, these base vectors gi represent tangent vectors to the three curves
defined by varying one of the coordinates θ i while holding the other two coordinates
constant.

It is important to note that since θ i are general coordinates, they need not have the
dimensions of length. Consequently, the base vectors gi need not be dimensionless.
Moreover, gi are functions of θ i and t and in general are not orthonormal vectors.
However, since θ i are independent coordinates, the vectorsgi are linearly independent
vectors and the coordinates θ i can be arranged so that gi form a right-handed triad
of vectors

g1/2 = g1 × g2 · g3 > 0 . (F.1.6)

Using the chain rule of differentiation, the length squared of a line element dx at
a fixed time t can be related to the elemental changes in the coordinates dθ i by the
expression

dx · dx = x,i dθ i · x, j dθ j = (gi · g j )dθ i dθ j = gi j dθ i dθ j , (F.1.7)

where gi j is called the metric of the space and is defined by

gi j = gi · g j = g ji . (F.1.8)

Also, it can be shown that the quantity g defined in (F.1.6) is equal to the determinant
of the metric gi j

g = det gi j . (F.1.9)

Notice in the above definitions that the coordinates θ i have superscripts for indices
and the base vectors gi have subscripts for indices. This is because for analysis in
curvilinear coordinates, it is necessary to distinguish between two types of bases:
covariant bases which are formed using the covariant base vectors gi , and con-
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travariant bases which are formed using reciprocal vectors gi called contravariant
base vectors. Specifically, the vectors gi are defined by the cross-product operator
such that

g1/2g1 = g2 × g3 , g1/2g2 = g3 × g1 , g1/2g3 = g1 × g2 . (F.1.10)

Due to the properties of the cross product, the covariant vectors gi and the contravari-
ant vectors gi are biorthogonal triads of vectors satisfying equations

gi · g j = δ
j
i , (F.1.11)

where δ
j
i is the Kronecker delta taking the value 1 for (i = j) and 0 for (i �= j).

Using the definitions (F.1.10) and the expansion of the vector triple product

a × (b × c) = (a · c)b − (a · b)c , (F.1.12)

it can be shown that
g−1/2 = g1 × g2 · g3 > 0 , (F.1.13)

so that gi form a triad of right-handed linearly independent vectors. Also, the recip-
rocal metric gi j is defined such that

gi j = gi · g j = g ji . (F.1.14)

Since gi and gi are both individually linearly independent triads of vectors, each
of these triads spans the three-dimensional space so that both the triads gi and gi can
be used as bases for vectors in three dimensions. In particular, the covariant vectors
gi can be represented in terms of the contravariant vectors and vice versa, such that

gi = gi jg j , gi = gi jg j . (F.1.15)

Using the definitions (F.1.10) and the expansion of the vector triple product
(F.1.12), it can be shown that the covariant vectors gi are related to cross products of
the contravariant vectors gi by the expressions

g−1/2g1 = g2 × g3 , g−1/2g2 = g3 × g1 , g−1/2g3 = g1 × g2 . (F.1.16)

F.2 Tensor Bases and Components of Tensors

The covariant components vi and contravariant components vi of an arbitrary vector
v are defined in the usual way by taking the inner product of v with the appropriate
base vectors
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vi = v · gi , vi = v · gi . (F.2.1)

Moreover, in view of the biorthogonality of the covariant and contravariant base
vectors, it follows that v can be represented in the equivalent forms

v = vigi = vigi . (F.2.2)

These equations express the fundamental property of a tensor that the tensor is
independent of the basis with respect to which the components are evaluated. Also,
it is emphasized that the components of a tensor depend explicitly on the choice of
the basis.

Here, it is important to note that the covariant components are multiplied by the
contravariant base vectors and vice versa. The summation convention applies when
an index is repeated. For the special case of rectangular Cartesian coordinates and
base vectors (F.1.1) and (F.1.2), the repeated indices are subscripts. However, for
general curvilinear coordinates, the repeated indices are subscripts associated with
covariant quantities and superscripts associated with contravariant quantities.

A general second-order tensor T has nine independent components which can be
referred to a basis of nine tensors spanning the space of all second-order tensors.
Using tensor products of covariant and contravariant vectors, it is possible to form
four different sets of base tensors of the forms

gi ⊗ g j , gi ⊗ g j , gi ⊗ g j , gi ⊗ g j . (F.2.3)

It then follows that the covariant components Ti j , the contravariant components T i j

and the mixed components T j
i and T i

j of T are defined by

Ti j = T · (gi ⊗ g j ) , T i j = T · (gi ⊗ g j ) ,

T j
i = T · (gi ⊗ g j ) , T i

j = T · (gi ⊗ g j ) .
(F.2.4)

Thus, the tensor T can be represented in the equivalent forms

T = Ti j (gi ⊗ g j ) = T i j (gi ⊗ g j ) = T j
i (gi ⊗ g j ) = T i

j (gi ⊗ g j ) . (F.2.5)

Furthermore, because of the nature of the mixed components, it is necessary to dis-
tinguish between the locations of the first and second indices when writing subscripts
or superscripts.

As an example, it is of interest to consider the second-order identity tensor Iwhich
has the properties that for an arbitrary vector v

Iv = v , vI = v . (F.2.6)

In view of the properties of the covariant and contravariant vectors, it can be shown
that I can be written in the equivalent forms
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I = gi ⊗ gi = gi ⊗ gi . (F.2.7)

Thus, the components of I are given by

gi j = I · (gi ⊗ g j ) , gi j = I · (gi ⊗ g j ) ,

δ
j
i = I · (gi ⊗ g j ) , δij = I · (gi ⊗ g j ) .

(F.2.8)

Moreover, with the help of (F.2.7) and (F.2.8), it can be shown that

δ
j
i = (gm ⊗ gm) · (gi ⊗ g j ) = gimg

mj . (F.2.9)

Consequently, taking the determinant of this expression and using (F.1.9) yields the
result

g−1 = det gi j . (F.2.10)

Obviously, it is possible to generalize the definitions of tensor bases (F.2.3), the
components (F.2.4) and the representations (F.2.5) for tensors of general order M by
taking a string of tensor products of M covariant or contravariant base vectors. For
example, the covariant and contravariant bases for third-order tensors are given by

gi ⊗ g j ⊗ gk , gi ⊗ g j ⊗ gk , (F.2.11)

and the covariant components Ti jk and contravariant components T i jk of a third-order
tensor T are given by

Ti jk = T · (gi ⊗ g j ⊗ gk) , T i jk = T · (gi ⊗ g j ⊗ gk) . (F.2.12)

Then, T admits the representations

T = Ti jk(gi ⊗ g j ⊗ gk) = T i jk(gi ⊗ g j ⊗ gk) . (F.2.13)

Mixed components ofT and representations ofT in terms of thesemixed components
are determined in an obvious manner.

Using the previous definitions, it can be shown that the metrics gi j and gi j can
be used to shift between covariant and contravariant components of a tensor. For
example, with the help of the various representations of the second-order tensor T
defined in (F.2.5), the result (F.1.11) and the definitions (F.1.8) and (F.1.14), it follows
that

Ti j = T · (gi ⊗ g j ) = Tmn(gm ⊗ gn) · (gi ⊗ g j ) = Tmngmi gnj ,

Ti j = T n
m (gm ⊗ gn) · (gi ⊗ g j ) = T n

m δmi gnj = T n
i gnj ,

Ti j = Tm
n(gm ⊗ gn) · (gi ⊗ g j ) = Tm

ngmiδ
n
j = Tm

j gmi .

(F.2.14)
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Since the coordinates θ i need not have the dimensions of length, the vectors gi and
gi are not necessarily dimensionless. Therefore, the components of an arbitrary tensor
T relative to the base tensors associated with the vectors gi or gi will not necessarily
have the same units as the physical tensor T. However, it is always possible to
refer T to an orthogonal tensor basis which is associated with a right-handed set of
orthonormal base vectors ei . Then, the components T<i j ...rs> of T relative to these
base tensors

T<i j ...rs> = T · (ei ⊗ e j ⊗ · · · ⊗ er ⊗ es) (F.2.15)

are called the physical components because they have the same dimensions as the
physical quantity T.

F.3 Basic Tensor Operations

In continuum mechanics it sometimes is desirable to refer to a material point Y
by either its location x in the current configuration at time t or its location X in an
arbitrary fixed reference configuration. For general coordinates θ i , the mapping from
θ i to X remains a function of time

X = X(θ i , t) . (F.3.1)

However, for the special case when θ i are convected Lagrangian coordinates, the
mapping from θ i to X is independent of time

X = X(θ i ) . (F.3.2)

For either case, it is possible to define covariant vectorsGi and contravariant vectors
Gi associated with the reference position vector X by the expressions

Gi = ∂X
∂θ i , G1/2 = G1 × G2 · G3 , Gi · G j = δ

j
i ,

G1/2G1 = G2 × G3 , G1/2G2 = G3 × G1 , G1/2G3 = G1 × G2 .
(F.3.3)

In the following, a number of tensor operations will be defined in terms of deriva-
tives with respect to the present position x and the reference position X of a material
point. To this end, the gradient of a scalar function f with respect to the present
position x is a vector denoted by grad f , and the gradient of f with respect to the
reference positionX is a vector denoted byGrad f . These vectors can be conveniently
expressed in terms of the contravariant base vectors in the forms

grad f = ∂ f/∂x = ∂ f

∂θ i
gi = f,i gi ,

Grad f = ∂ f/∂X = ∂ f

∂θ i
Gi = f,i Gi .

(F.3.4)
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Furthermore, the gradients gradT and GradT of an arbitrary tensor of order M (M ≥
1) are tensors of order M + 1 that can be expressed in the forms

gradT = ∂T/∂x = ∂T
∂θ i

⊗ gi = T,i ⊗gi ,

GradT = ∂T/∂X = ∂T
∂θ i

⊗ Gi = T,i ⊗Gi .

(F.3.5)

Next, using these definitions, it follows that

∂θ i/∂x = gi , ∂θ i/∂X = Gi , (F.3.6)

since the second-order identity tensor I can be expressed using the chain rule of
differentiation in the forms

I = ∂x/∂x = ∂x
∂θ i

⊗ ∂θ i/∂x = gi ⊗ gi ,

I = ∂X/∂X = ∂X
∂θ i

⊗ ∂θ i/∂X = Gi ⊗ Gi .

(F.3.7)

Also, it is noted for clarity that the gradient of a tensor function is written as a
derivative with respect of x or X on a single line instead of as a fraction. This helps
indicate that the gradient operator adds a tensor product on the right-hand side of
the tensor being differentiated.

As a special case, it is possible to write the deformation gradient F from the
reference configuration to the current configuration in the form

F = ∂x/∂X = ∂x
∂θ i

⊗ ∂θ i/∂X = gi ⊗ Gi . (F.3.8)

Then, the inverse F−1, the transpose FT and the inverse transpose F−T of F can be
expressed in the forms

F−1 = Gi ⊗ gi , FT = Gi ⊗ gi , F−T = gi ⊗ Gi . (F.3.9)

Moreover, it can be shown that the determinant of F is given by

det F = (g1 × g2 · g3)(G1 × G2 · G3) = g1/2G−1/2 . (F.3.10)

The divergence of a tensor function T of order M (M ≥ 1) with respect to the
present position x is a tensor of order M − 1 denoted by divT, and the divergence
of T with respect to the reference position X is a tensor of order M − 1 denoted by
DivT. These tensors can be conveniently expressed in the forms

divT = T, j ·g j , DivT = T, j ·G j . (F.3.11)
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Notice that since T is a tensor of order M it is necessary to differentiate the compo-
nents of T and the M base tensors to evaluate the expression T, j .

To simplify this operation, it is convenient to differentiate (F.1.10) to obtain

(g1/2g j ), j = g1 × (g2,3 −g3,2 ) + g2 × (g3,1 −g1,3 ) + g3 × (g1,2 −g2,1 ) .

(F.3.12)
Next, assuming that the position vector x is sufficiently continuous, it follows that

gi , j = ∂gi
∂θ j

= ∂2x
∂θ i∂θ j

= ∂2x
∂θ j∂θ i

= g j ,i , (F.3.13)

which can be used to deduce that

(g1/2g j ), j = 0 , (F.3.14)

with a similar result for Gi

(G1/2G j ), j = 0 . (F.3.15)

Then, using these results, it follows that (F.3.11) can be written in the simplified
forms

divT = g−1/2(g1/2Tg j ), j , DivT = G−1/2(G1/2TG j ), j . (F.3.16)

For example, if T is a second-order tensor, then the expressions (F.3.16) require
differentiation of only three vectors as opposed to differentiation of the complete
second-order tensor.

The curl of a tensorT of order M (M ≥ 1)with respect to the present position x is
a tensor of order M denoted by curlT, and the curl of T with respect to the reference
position X is a tensor of order M denoted by CurlT. These tensors can be expressed
in the forms

curlT = −T, j ×g j , CurlT = −T, j ×G j . (F.3.17)

The Laplacian of a tensor T of order M is a tensor of order M defined by

∇2T = div(gradT) = (T,i ⊗gi ), j ·g j . (F.3.18)

F.4 Covariant Differentiation and Christoffel Symbols

Since the base vectors gi and gi depend on the coordinates θ i , it is necessary to
differentiate these base vectors when deriving expressions for partial derivatives of
tensors with respect to θ i . In particular, using (F.2.2) the derivative of the vector v
can be written in the forms
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v,i = (vmgm),i = vm,i gm + vmgm,i ,

v,i = (vmgm),i = vm,i gm + vmgm,i .
(F.4.1)

Using the fact that the nine vectors gm,i can be expressed in terms of the covariant
base vectors gk , it is convenient to define the Christoffel symbol �k

mi of the second
kind, such that

�k
mi = gm,i ·gk = �k

im , gm,i = �k
mi gk . (F.4.2)

Also, differentiating gm · gk = δmk by θ i yields the result that

gm,i = −�m
ik g

k . (F.4.3)

These expressions allow (F.4.1) to be rewritten in the simplified forms

v,i = (vk|i ) gk , vk|i = v,i ·gk ,

v,i = (vk|i ) gk , vk|i = v,i ·gk ,
(F.4.4)

where the covariant derivative vk|i of the contravariant components vk of v and the
covariant derivative vk|i of the covariant components vk of v are defined by

vk|i = vk,i +vm �k
mi , vk|i = vk,i −vm �m

ki . (F.4.5)

Recalling the definition (F.3.5) for the gradient of a tensor, it follows that the gradient
of v with respect to x can be expressed in the forms

L = gradv = v,i ⊗gi = vk|i (gk ⊗ gi ) = vk|i (gk ⊗ gi ) . (F.4.6)

In these formulas, it can be seen that vk|i are the covariant components and vk|i are
mixed components of the second-order tensor L.

The covariant derivatives of components of higher order tensors can be defined
in a similar manner. In particular, if T is a second-order tensor with components
Ti j , T i j , T j

i and T i
j , then

T,m = Ti j |m(gi ⊗ g j ) = T i j
|m(gi ⊗ g j ) = T j

i |m(gi ⊗ g j ) = T i
j |m(gi ⊗ g j ) ,

Ti j |m = Ti j ,m −Tkj �
k
im − Tik �k

jm ,

T i j
|m = T i j ,m +T kj �i

km + T ik �
j
km ,

T j
i |m = T j

i ,m −T j
k �k

im + T k
i �

j
km ,

T i
j |m = T i

j ,m +T k
j �

i
km − T i

k �k
jm .

(F.4.7)
Similarly, it can be shown that Ti j |m are the covariant components and T i j

|m, T j
i |m and

T i
j |m are the mixed components of the third-order tensor gradT.



Appendix G
Summary of Tensor Operations in Specific
Coordinate Systems

The objective of this appendix is to record various tensor operations in cylindrical
polar and spherical polar coordinates.2

G.1 Cylindrical Polar Coordinates

The right-handed orthonormal base vectors er , eθ and ez associated with the cylin-
drical polar coordinates r, θ and z are defined in terms of the fixed base vectors ei of
a rectangular Cartesian coordinate system by equations

er = er (θ) = cos θe1 + sin θe2 ,

eθ = eθ (θ) = − sin θe1 + cos θe2 ,

ez = e3 ,

(G.1.1)

where er and eθ lie in the e1, e2 plane and the angle θ is measured counterclockwise
from the e1 direction about the e3 axis (see Fig. G.1). Also, the position vector x of
a point in the three-dimensional space can be represented in the form

x = rer (θ) + zez . (G.1.2)

In particular, notice that there is no θeθ term in this expression for the position vector
x since er (θ) contains the dependence of x on θ .

To present formulas for derivatives of tensors expressed in terms of these coordi-
nates, it is convenient to first record the derivatives of the base vectors

2Much of the content in this appendix has been adapted from [1] with permission.
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Fig. G.1 Definition of
cylindrical polar coordinates

der
dθ

= eθ ,
deθ

dθ
= −er ,

dez
dθ

= 0 . (G.1.3)

Also, by taking θ i to be general curvilinear coordinates (not necessarily convected
coordinates) and setting

θ i = (r, θ, z) , (G.1.4)

it follows that the covariant base vectors gi , the contravariant vectors gi and the scalar
g1/2 are given by

g1 = ∂x
∂r = er , g2 = ∂x

∂θ
= reθ , g3 = ∂x

∂z = ez ,

g1 = er , g2 = 1
r eθ , g3 = ez ,

g1/2 = r .

(G.1.5)

Next, let f, v and T be, respectively, scalar, vector and second-order tensor func-
tions of r, θ and z. Furthermore, let v and T be expressed in terms of their physical
components by

v = vrer + vθeθ + vzez ,

T = Trr (er ⊗ er ) + Trθ (er ⊗ eθ ) + Trz(er ⊗ ez)

+ Tθr (eθ ⊗ er ) + Tθθ (eθ ⊗ eθ ) + Tθ z(eθ ⊗ ez)

+ Tzr (ez ⊗ er ) + Tzθ (ez ⊗ eθ ) + Tzz(ez ⊗ ez) .

(G.1.6)

Then, the gradient operator applied to f and v can be expressed in the forms
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grad f = ∂ f

∂r
er + 1

r

∂ f

∂θ
eθ + ∂ f

∂z
ez ,

grad v = ∂vr
∂r

(er ⊗ er ) + 1

r
(
∂vr
∂θ

− vθ ) (er ⊗ eθ ) + ∂vr
∂z

(er ⊗ ez)

+ ∂vθ

∂r
(eθ ⊗ er ) + 1

r

(
∂vθ

∂θ
+ vr ) (eθ ⊗ eθ

)
+ ∂vθ

∂z
(eθ ⊗ ez)

+ ∂vz
∂r

(ez ⊗ er ) + 1

r

∂vz
∂θ

(ez ⊗ eθ ) + ∂vz
∂z

(ez ⊗ ez) ,

(G.1.7)

the divergence operator applied to v and T can be expressed in the forms

div v = ∂vr
∂r

+ 1

r

(
∂vθ

∂θ
+ vr

)
+ ∂vz

∂z
,

divT =
(

∂Trr
∂r

+ 1

r

∂Trθ
∂θ

+ ∂Trz
∂z

+ Trr − Tθθ

r

)
er

+
(

∂Tθr

∂r
+ 1

r

∂Tθθ

∂θ
+ ∂Tθ z

∂z
+ Tθr + Trθ

r

)
eθ

+
(

∂Tzr
∂r

+ 1

r

∂Tzθ
∂θ

+ ∂Tzz
∂z

+ Tzr
r

)
ez ,

(G.1.8)

the curl operator applied to v can be expressed as

curl v =
(
1

r

∂vz
∂θ

− ∂vθ

∂z

)
er +

(
∂vr
∂z

− ∂vz
∂r

)
eθ +

(
∂vθ

∂r
+ vθ

r
− 1

r

∂vr
∂θ

)
ez ,

(G.1.9)
and the Laplacian operator applied to f can be expressed as

∇2 f = div(grad f ) = ∂2 f

∂r2
+ 1

r

∂ f

∂r
+ 1

r2
∂2 f

∂θ2
+ ∂2 f

∂z2
. (G.1.10)

G.2 Spherical Polar Coordinates

The right-handed orthonormal base vectors er , eθ and eφ associatedwith the spher-
ical polar coordinates r, θ and φ are defined in terms of the fixed base vectors ei of
a rectangular Cartesian coordinate system by the equations

er = er (θ, φ) = sin θ (cosφe1 + sin φe2) + cos θe3 ,

eθ = eθ (θ, φ) = cos θ (cosφe1 + sin φe2) − sin θe3 ,

eφ = eφ(φ) = − sin φe1 + cosφe2 ,

(G.2.1)
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Fig. G.2 Definition of
spherical polar coordinates

where the angle φ is measured in the horizontal plane counterclockwise from the
e1 direction about the vertical direction e3 to the vertical plane which includes the
position vector x (see Fig. G.2), and θ is the acute angle measured from the vertical
direction e3 to the position vector. Also, the position vector x of a point in the three-
dimensional space can be represented in the form

x = rer (θ, φ) . (G.2.2)

In particular, notice that there are no terms like θeθ and φeφ in this expression for
the position vector x since er (θ, φ) contains the dependence of x on θ and φ.

To present formulas for derivatives of tensors expressed in terms of these coordi-
nates it is convenient to first record the derivatives of the base vectors

∂er
∂θ

= eθ , ∂er
∂φ

= sin θ eφ ,
∂eθ

∂θ
= −er , ∂eθ

∂φ
= cos θ eφ ,

∂eφ

∂θ
= 0 ,

∂eφ

∂φ
= − sin θ er − cos θ eθ .

(G.2.3)

Also, by taking θ i to be general curvilinear coordinates (not necessarily convected
coordinates) and setting

θ i = (r, θ, φ) , (G.2.4)

it follows that the covariant base vectors gi , the contravariant vectors gi and the scalar
g1/2 are given by

g1 = ∂x
∂r = er , g2 = ∂x

∂θ
= r eθ , g3 = ∂x

∂φ
= r sin θ eφ ,

g1 = er , g2 = 1
r eθ , g3 = 1

r sin θ
eφ ,

g1/2 = r2 sin θ .

(G.2.5)
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Next, let f, v and T be, respectively, scalar, vector and second-order tensor func-
tions of r, θ and φ. Furthermore, let v and T be expressed in terms of their physical
components by

v = vrer + vθeθ + vφeφ ,

T = Trr (er ⊗ er ) + Trθ (er ⊗ eθ ) + Trφ(er ⊗ eφ)

+ Tθr (eθ ⊗ er ) + Tθθ (eθ ⊗ eθ ) + Tθφ(eθ ⊗ eφ)

+ Tφr (eφ ⊗ er ) + Tφθ (eφ ⊗ eθ ) + Tφφ(eφ ⊗ eφ) .

(G.2.6)

Then, the gradient operator applied to f and v can be expressed in the forms

grad f = ∂ f

∂r
er + 1

r

∂ f

∂θ
eθ + 1

r sin θ

∂ f

∂φ
eφ ,

grad v = ∂vr
∂r

(er ⊗ er ) + 1

r

(
∂vr
∂θ

− vθ

)
(er ⊗ eθ )

+ 1

r sin θ

(
∂vr
∂φ

− vφ sin θ

)
(er ⊗ eφ)

+ ∂vθ

∂r
(eθ ⊗ er ) + 1

r

(
∂vθ

∂θ
+ vr

)
(eθ ⊗ eθ )

+ 1

r sin θ

(
∂vθ

∂φ
− vφ cos θ

)
(eθ ⊗ eφ)

+ ∂vφ

∂r
(eφ ⊗ er ) + 1

r

∂vφ

∂θ
(eφ ⊗ eθ )

+ 1

r sin θ

(
∂vφ

∂φ
+ vr sin θ + vθ cos θ

)
(eφ ⊗ eφ) ,

(G.2.7)

the divergence operator applied to v and T can be expressed in the forms

div v = ∂vr
∂r

+ 2vr
r

+ 1

r

∂vθ

∂θ
+ vθ cot θ

r
+ 1

r sin θ

∂vφ

∂φ
,

divT =
[
∂Trr
∂r

+ 1

r

∂Trθ
∂θ

+ 1

r sin θ

∂Trφ
∂φ

+ 2Trr − Tθθ − Tφφ + Trθ cot θ

r

]
er

+
[
∂Tθr

∂r
+ 1

r

∂Tθθ

∂θ
+ 1

r sin θ

∂Tθφ

∂φ
+ 2Tθr + Trθ + (Tθθ − Tφφ) cot θ

r

]
eθ

+
(

∂Tφr

∂r
+ 1

r

∂Tφθ

∂θ
+ 1

r sin θ

∂Tφφ

∂φ
+ 2Tφr + Trφ + (Tφθ + Tθφ) cot θ

r

]
eφ ,

(G.2.8)
the curl operator applied to v can be expressed as
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curl v =
(
1

r

∂vφ

∂θ
+ vφ cot θ

r
− 1

r sin θ

∂vθ

∂φ

)
er

+
(

1

r sin θ

∂vr
∂φ

− ∂vφ

∂r
− vφ

r

)
eθ

+
(

∂vθ

∂r
+ vθ

r
− 1

r

∂vr
∂θ

)
ez ,

(G.2.9)

and the Laplacian operator applied to f can be expressed as

∇2 f = div(grad f ) = ∂2 f

∂r2
+ 2

r

∂ f

∂r
+ 1

r2
∂2 f

∂θ2
+ cot θ

r2
∂ f

∂θ
+ 1

r2 sin2 θ

∂2 f

∂φ2
.

(G.2.10)
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Almansi strain, 42, 108
Anisotropic, 166
Anisotropic elastic material, 7, 129
Arbitrary rotation, 61
Arbitrary translation, 61
Average total deformation rate, 77
Axial vector, 50

B
Balance of angular momentum, 84, 93, 96
Balance of linear momentum, 84, 92, 95
Base tensors, 20
Besseling formulation, 151
Bilby, Kröner, Lee formulation, 149
Biorthogonal sets of vectors, 259
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Bulking, 214
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Cartesian components, 36
Cauchy deformation tensor, 39
Cauchy elasticity, 116
Cauchy’s lemma, 86
Cauchy’s theorem, 84, 90
Cauchy stress tensor, 7, 8, 89, 90, 96
Characteristic equation, 42, 233
Christoffel symbol, 265
Clausius–Duhem inequality, 180
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Components of tensors, 20

Compressible viscous fluid, 144
Conservation of mass, 82
Consistency condition, 161
Constraint response, 130, 185
Continuity of a function, 237
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Contravariant base vectors, 259
Contravariant components, 260
Control volume, 65
Covariant base vectors, 258
Covariant components, 260
Covariant derivative, 265
Cross product, 18, 21
Crystal plasticity, 173
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Current configuration, 33
Curvilinear coordinates, 25, 257
Cylindrical polar coordinates, 267
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Deformation gradient, 38
Deviatoric part, 27, 234
Dilatation, 41
Dilatational part, 28
Dilatational strain, 42
Directional hardening, 153, 165, 198
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Divergence theorem, 25
Dot product, 17, 21
Doubly symmetric tensor, 256
Dummy index, 13

E
Eigenvalue, 233
Eigenvector, 233
Elastically anisotropic materials, 69
Elastically isotropic thermoelastic material,
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Elastic area growth, 222
Elastic area stretch, 223
Elastic deformation tensor, 72, 150
Elastic dilatation, 7, 8, 69, 70, 72, 78, 133,
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Elastic distortional deformation tensor, 7, 71,
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Elastic distortional deformation vectors, 70,

72, 78, 155, 190, 198
Elastic distortional strain, 73
Elastic fiber growth, 223
Elastic fiber stretch, 223
Elastic material, 119
Elastic metric, 8, 69, 120, 187
Elastic strain, 72
Elastic trial quantities, 75
Elastic volumetric growth, 222
Energy flux vector, 178
Engineering stress, 94, 97
Entropy, 178
Entropy flux vector, 178, 192, 201, 209, 213
Eulerian (Eckart) formulation, 6
Eulerian formulation of growth, 219
Eulerian representation, 35
Extension, 39
External rate of energy supply, 178
External rate of entropy supply, 178
Extremum, 241

F
First-order isotropic tensors, 252
First-order tensor, 16
First Piola-Kirchhoff stress tensor, 95, 96
Form-invariant, 129
Fourth-order isotropic tensors, 254
Free indices, 13
Full orthogonal group, 129

G
General anisotropic, 136
Gradient, 24, 262, 268, 271
Green elasticity, 116, 119
Green–Naghdi formulation, 148, 181
Gruneisen gamma, 208

H
Heat conduction coefficient, 192
Heat flows from hot to cold, 181
Helmholtz free energy, 7, 8, 179, 206, 219
Hierarchy, 23
Higher order tensors, 16
Homeostasis, 221
Homeostatic value, 221
Homogeneous body, 126
Homogeneous deformation, 125
Hugoniot curve, 207
Hydrostatic State of Stress (HSS), 197
Hyperelasticity, 116, 119
Hypoelasticity, 117, 119

I
Identity tensor, 22, 260
Implicit function theorem, 243
Incompressible, 129, 135
Indicial notation, 13
Inextensible, 130
Initial conditions on density, 105
Initial conditions on position, 105
Initial configuration, 34
Intermediate zero-stress configuration, 150
Internal energy, 178, 206
Internal rate of entropy production, 178, 219
Internal state variables, 4, 68, 124
Inviscid fluid, 145
Irreversible process, 189
Isotropic elasticmaterial, 129, 132, 137, 139,

197
Isotropic elastic solids, 71
Isotropic hardening, 153, 165, 198, 205, 211
Isotropic tensor, 144, 251
Isotropic tensor function, 116, 144

J
Jaumann stress rate, 118
Jump conditions, 227, 230
Juxtaposition, 19, 21
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Kelvin–Voigt model, 146
Kinematic boundary conditions, 106
Kinematic constraint, 130, 241
Kinetic boundary conditions, 106
Kinetic energy, 93
Kronecker delta, 14

L
Lagrange multipliers, 241
Lagrange’s criterion, 63
Lagrangian (Classical) formulation, 6
Lagrangian formulation of growth, 219
Lagrangian representation, 35
Lagrangian strain, 42, 108
Lame’s constants, 137, 139
Laplacian, 25, 269, 272
Left Cauchy–Green deformation tensor, 39,

44
Left stretch tensor, 44
Left transpose, 19, 22
Leibniz’s rule, 64
Linearization, 106
Linearized boundary conditions, 110
Linearized stresses, 109
Loading conditions, 161
Lode angle, 235

M
Macaulay brackets, 162
Material area element, 43
Material configuration, 35
Material derivative, 36
Material line, 62
Material line element, 39
Materially uniform body, 125
Material point, 62
Material region, 64
Material representation, 35
Material surface, 63
Material symmetry, 121, 128
Matrix multiplication, 26
Matrix versus tensor, 20
Maximum value of shear stress, 250
Maximum value of the normal stress, 248
Maxwell model, 171
Measurable, 68
Metric of the space, 258
Microstructural vectors, 8, 9, 78, 120, 123,

152, 187
Mie–Gruneisen equation of state, 205
Minimum value of normal stress, 248

Mixed boundary conditions, 106
Mixed components, 260
Mooney–Rivlin material, 134
Motion, 33, 35
Muscle activation, 227

N
Nanson’s formula, 44, 222
Neo-Hookean material, 133
Newtonian viscous fluid, 146
Newton’s law of action and reaction, 86
Nonsymmetric Piola-Kirchhoff stress ten-

sor, 96, 102
Numerical integration algorithms, 162, 173
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Objective rate, 117
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Orthogonal transformation, 251
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rial, 198
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P
Parallelogram law, 11
Partial differentiation, 24
Path-independent response, 188
Permutation symbol, 14
Permutation tensor, 23
Physical arbitrariness, 5
Physical components, 262
Physically based orthotropic invariants, 199
Piola-Kirchhoff traction vector, 94, 102
Plate impact experiment, 205
Poisson’s ratio, 139
Polar decomposition theorem, 44
Polyconvex function, 134
Porosity, 210
Porous compaction, 214
Porous dilation, 214
Positive-definite strain energy, 138
Positive-definite tensors, 44
Pressure, 97, 122
Principal directions of orthotropy, 199
Principal invariants, 42, 233
Pure rotation, 48
Pure Torsion (TOR), 235
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Q
Quadratic strain energy function, 7, 135, 204

R
Radial-return, 163
Rankine–Hugoniot jump conditions, 205,

208
Rate-dependent response, 9, 162, 188, 204
Rate-independent plasticity, 160
Rate-independent response, 9, 204
Rate of deformation tensor, 50
Rate of energy supply, 219
Rate of heat supplied, 179
Rate of mass supply, 219, 220
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Rate of material dissipation, 93, 149, 151,

154, 156, 159, 179, 181, 212, 219
Rate of rotation, 55
Rate of rotation of a material line element,

52
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surface, 52
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55
Rate of work done, 93
Rectangular Cartesian base vectors, 11
Rectangular parallelepiped, 199
Reference configuration, 34
Reference Lattice State (RLS), 193, 199
Referential representation, 36
Reiner-Rivlin fluid, 144, 145
Relative deformation gradient, 75
Relative dilatation, 75
Repeated index, 13
Representations, 35
Restrictions on material constants, 138
Reynolds transport theorem, 64
Right Cauchy–Green deformation tensor,

38, 44
Right stretch tensor, 44
Right transpose, 19, 22
Robust, 76, 162, 165, 173

S
Scalar triple product, 12
Second laws of thermomechanics, 180
Second-order isotropic tensors, 252
Second Piola-Kirchhoff stress tensor, 96
Shear modulus, 139
Shock velocity, 207, 209
Shock waves, 204
Simple material, 1

Simple shear, 57
Skew-symmetric, 26
Smooth elastic–inelastic transition, 162, 204
Soft materials, 204
Solid dilatation, 211
Spatial representation, 36
Specific heat, 202, 206
Spectral form, 248
Spherical part, 27, 234
Spherical polar coordinates, 269
Spin tensor, 50, 56
Standard form of a cubic equation, 235
Stationary value, 241, 248, 249
Steady-wave, 207
Stiffness tensor, 135
Strain energy, 93, 113
Strain-space formulation, 161
Stress vector, 89
Stretch, 39, 48
Strongly objective, 76, 162, 165, 168, 173
Summation convention, 13
Superposed Rigid Body Motions (SRBM),

59, 72, 182, 185
Symmetric, 26
Symmetric Piola-Kirchhoff stress tensor, 97,

102
Symmetry about one plane, 136
Symmetry about two orthogonal planes, 136
Symmetry groups, 129

T
Temperature gradient, 177, 220
Tensor product, 17, 21
Tensors, 11
Tensor versus matrix, 20
Thermal constraint, 185
Thermal entropy production, 179
Thermoelastic materials, 187
Thermomechanical process, 177
Third-order isotropic tensors, 253
Trace, 27
Traction vector, 86, 89, 90
Transformation tensor, 29
Transport theorem for a non-material region,

65
Triaxial Compression (TXC), 235
Triaxial Extension (TXE), 235
Truesdell stress rate, 117
True stress, 94, 97

U
Uniform material state, 126
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Unimodular tensor, 28, 54, 71
Unphysical arbitrariness, 2, 120, 152, 160

V
Vector triple product, 12, 259
Velocity, 36
Velocity gradient, 49
Viscoelastic, 171
Viscoplastic, 171
Viscous dissipation, 146

Y
Yield function, 161, 162
Young’s modulus, 139

Z
Zero-order isotropic tensors, 252
Zero-order tensor, 16
Zero-stress density, 8, 195, 201, 206
Zero-stress growth, 221
Zero-stress material state, 5, 7, 8, 69, 121,

122, 154, 156, 158
Zero-stress reference temperature, 206, 221
Zero tensor, 16, 23
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