
An Equational Modeling of Asynchronous
Concurrent Programming

David Janin(B)

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, Bordeaux, France
janin@labri.fr

Abstract. Asynchronous concurrent programing is a widely spread
technique offering some simple concurrent primitives that are restricted
in such a way that the resulting concurrent programs are deadlock free.
In this paper, we develop, study and extend a formal model of the under-
lying application programmer interface. For such a purpose, we formally
define the extension of a monad by some notion of monad references
uniquely bound to running monad actions together with the associated
asynchronous primitives fork and read. The expected semantics is spec-
ified via two series of equations relating the behavior of these extension
primitives with the underlying monad primitives. Thanks to these equa-
tions, we recover a fairly general notion of promises and prove that they
induce a monad isomorphic to the underlying monad. We also show how
synchronous and asynchronous reactive data flow programming eventu-
ally derive from such a formalization of asynchronous concurrency, uni-
formly lifting fork and read primitives from monadic actions to monadic
streams of actions. Our proposal is illustrated throughout by concrete
extensions of Haskell IO monad that allows for proving the soundness of
the proposed equations and the applicability of the resulting API.

1 Introduction

Asynchronous Programming with Promises. Asynchronous programming
is quite a popular approach for programming lightly concurrent applications
such as, for instance, web services or, as shown recently, realtime signal pro-
cessing and control [5]. Based on promises, a notion introduced in the late 70s
and eventually integrated into concurrent extension of functional programing
languages such as Lisp [3] or ML [12], asynchronous concurrent programming
is nowadays available in most modern programing languages, including modern
typed functional languages such as OCaml [9] and Haskell [8].

One of the reasons of such a success is that asynchronous programing is both
comfortable and safe. Comfort comes from asynchronism, safety comes from
deadlock freedom. Most asynchronous libraries allow for forking programs while
keeping promises of their returned values. Provided no other communication
mechanisms are used, the dependency graph resulting from creating and reading
promises is acyclic therefore deadlock free.
c© Springer Nature Switzerland AG 2020
A. Byrski and J. Hughes (Eds.): TFP 2020, LNCS 12222, pp. 180–203, 2020.
https://doi.org/10.1007/978-3-030-57761-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57761-2_9&domain=pdf
http://orcid.org/0000-0001-7062-7659
https://doi.org/10.1007/978-3-030-57761-2_9


An Equational Modeling of Asynchronous Concurrent Programming 181

Monads of Promises vs Promises of Monads. Quite interestingly, in most
libraries, promises are defined with some flavor of a monad. Discussions about
the true monadic nature of promises are numerous on the web1, with various
and contradictory conclusions depending on the considered host languages and
libraries. Most of the resulting APIs even seem incompatible one with the others.

For instance, in a language like OCaml, where there is only an implicit
IO monad, the monadic flavor of promises is made explicit. In OCaml async
libraries [9], binding the fullfillement of a promise with some callback function
is offered via an explicit bind function, and simple promises can be created by
an explicit return function. In other words, OCaml promises are presented as if
they form a monad.

On the contrary, in Haskell, where there is an explicit IO monad, there is no
specific monad of promises [8]. Instead, the async library extends the IO monad
to asynchronous concurrency with function async :: IO a → IO (Async a) that
allows for forking (in a non blocking way) a IO action together with function
wait ::Async a → IO a that allows for waiting and reading (in a non destructive
way) the value returned by a forked action. Elements of Async a can be seen
as promises: promises of a returned value. However, while Async has a functor
instance, it does not have any monad instance. Haskell promises, when simply
derived from Haskell async library, are not monadic.

Instead, aiming at relating both Haskell and OCaml async APIs, one can
define another kind of promises in Haskell: elements of type IO (Async a). Such
an idea makes a lot of sense. An adequate function return can simply be defined
by:

returnAsync :: a → IO (Async a)
returnAsync a = async (return a)

However, as we shall see, there is only one possible associated bind function,
defined by:

bindAsync :: IO (Async a) → (a → IO (Async b)) → IO (Async b)
bindAsync m f = m >>= λr → async (wait r >>= f >>= wait)

that almost yields a valid monad instance. For such an instance to be valid,
we need to restrict further to those elements of Async (m a) that are, up to
equivalence, of the form async m for some monadic action m (see Theorem 4).
Then, the resulting monad of promises is shown to be isomorphic to the IO
monad itself (see Theorem 5).

In other words, the possibility of a specific monad of promises in Haskell is a
bit lost in the surrounding IO monad even though it can eventually be recovered.

Main Results. In this paper we shall first prove the above claims by under-
standing the properties satisfied by these asynchronous concurrent primitives,
not only as specific instances of the async Haskell library, but from some more

1 See e.g. Why are promises monads on stack overflow.

https://stackoverflow.com/questions/45712106/why-are-promises-monads
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general properties they satisfy as elements of an asynchronous concurrent pro-
graming interface. For such a purpose, we shall define a fairly general notion
of an asynchronous concurrent extension of an arbitrary monad, the current
Haskell async library providing such an extension instance for the IO Monad.

One type function generalizing Async and two primitives generalizing async
and wait are the key features of our proposal, defined as a Haskell type class. The
expected semantics of these primitives is then specified by means of equational
laws relating the behavior of the new primitives with the behavior of return
and bind in the underlying monad. One may wonder why bothering capturing
asynchronous concurrent semantics by means of equational laws. Elements of
an answer are numerous and essentially the same as when asking why defining
monad API semantics by means of monad laws.

These equations allow for defining unambiguously the semantics of the pro-
posed asynchronous primitives which properties can therefore be examined in full
details. We also seek at finding a smallest possible set of such primitives therefore
increasing the safety of our proposal: only a small kernel of primitives needs to
be implemented and proved correct, other needed asynchronous functions uni-
formly deriving from these primitives. The correctness of any instance of these
primitives can also be checked against these equations, either by means of some
derived test suites [1] or by formal proofs. Last, many of the proposed equations
yield rewriting rules that can be used, at compile time, for code optimization,
reducing the number of forked processes.

Such a general approach also opens the way for the programmer to design
his or her own monad, a kind of a domain specific monad, with its specialized
and safe API, and a specific asynchronous concurrent extension attuned towards
the expected application. As an example, we have recently defined the notion of
timed monads which asynchronous extensions are specific to the timed setting [6].
Indeed, in a timed monad, a timed action not only returns an explicit value but
also an implicit duration. Promises associated to timed monad actions should
also handle these durations.

The proposed formal approach eventually provides a better understanding
of what asynchronous concurrency is, compared to general concurrency. Sim-
ply said, both are defined by means of some notions of processes that can be
forked and, some corresponding (shall we say derived) notion of communication
channels through which forked processes can communicate one with the other.
However, a major difference lays in the way these communication channel are
handled.

In asynchronous concurrency, communication channels are only created when
forking a process, as (one way) broadcast channels from that forked processes.
The resulting communication graphs are acyclic. On the contrary, in general
concurrency, (two way) communication channels are freely created and passed as
parameter of forked processes. The resulting communication graphs are arbitrary
ones. The safety of asynchronous concurrency compared to general concurrency
follows from this simple but crucial difference.
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In this paper, such a difference is also be understood as a general guiding
principle for developing asynchronous concurrency itself, beyond the simplest
kind of processes one can define out of monad actions. As an example, we define
(monadic) streams of values as inductively nested monad actions and we show
that promises of such streams can simply be defined as streams of promises,
that is, inductively nested monad promises. An associated artefact has been
implemented in Haskell and available on the net2. It has been successfully applied
to realtime synchronous processing and asynchronous control of audio streams [5]
therefore illustrating the application scope of the proposed model.

Overview of Paper Content. Our presentation is organized as follows. After
a short review of the basic features of functors and monads in Sect. 2, our
abstraction of the async library is presented, in Sect. 3. There, a generic type
class MonadRef specifies the asynchronous concurrent extension of a monad m,
defined by an abstract type Refm a, whose elements, called monad references
are created by fork ::m a → m (Refm a) and used by read ::Refm a → m a. Sim-
ply said, every monad reference uniquely refers to a forked monad action which
returned value can be read via that monad reference. The expected semantics of
monad references is formalized by means of two series of equational laws describ-
ing the expected interplay between the monad primitives return :: a → m a and
bind ::m a → (a → m b) → m b and the asynchronous primitives fork and read .

In Sect. 3, a first series of laws aim at capturing the basic semantics of monad
references: how monad references are indeed bound to forked actions. These laws
essentially states that fork and read behave in a coherent way with respect to the
underlying monad law. This allows for proving in Sect. 4 that the type function
m ◦ Refm is a functor and, under some adequate restrictions, also a monad
isomorphic to m itself.

In Sect. 5, a second series of laws is more concerned with the asynchronous
and concurrent nature of monad references. One idempotency and two commu-
tation rules are stated for ensuring that actions are indeed executed when forked
and read actions essentially have no side effects but waiting for the referenced
actions to terminate. As an illustration of this second series of laws, a number of
instances of the MonadRef class, visibly not asynchronous nor concurrent but
satisfying the first series of laws, are shown to be eventually ruled out by these
additional rules.

In Sect. 6, we show how the notion of monad references can be lifted to more
complex data types such as monadic streams. In some sense, monad streams can
be forked into promises of monad streams that are simply encoded as streams of
promises. Asynchronous concurrency is then further developed in Sect. 7. Defin-
ing a general notion of monad structure references, we eventually prove by exam-
ples that asynchronous concurrency is a fairly general programing paradigm that
can be extended far beyond the existing libraries.

The general coherence and relevance of our proposal is illustrated through-
out by defining a simple valid extension of Haskell IO monad, a self-contained
simplified version of the existing Haskell async library.
2 See https://github.com/djanin/TimedMonadStream.

https://github.com/djanin/TimedMonadStream


184 D. Janin

Observational Equivalence in Haskell. Although aiming at achieving a for-
mal modeling of asynchronous concurrency, throughout the paper most concepts
are presented by means of Haskell type classes which instances are thus requested
to satisfy some number of equational laws. Compared to a purely theoretical app-
roach, such a presentation comes with some overhead. However, an immediate
benefit is that it is directly applicable as demonstrated by associated libraries
developed both in Haskell and, to a lesser extent, OCaml (see footnote 2).

Throughout the paper, we consider that two elements a1 a2 ::a of a given type
a are (observationally) equal when there are indistinguishable in any context of
use. In other words, denoting by ≡ such an observational equality, we have a1 ≡
a2 when for any function f ::a → IO (), there is no observable difference between
running f a1 and f a2 in the (idealized) IO monad. For instance, when instance
of the class Eq with a defined equality ==, the observational equivalence ≡ in
a type a is generally finer than the defined equality. Whenever a1 ≡ a2 we have
a1 == a2. Indeed, the context function λx → return (a1 == x ) distinguishes a1
and a2 in the case a1 == a2 is false3. In other words, observational equivalence
in a given type depends on the primitives defined on that type.

2 Preliminaries on Monadic Functors and Monad Actions

For our presentation to be reasonably self-contained, we review below the defi-
nition and some properties of functors and monads, following the programmer’s
point of view offered by the pioneering works of Moggi [10] and Wadler [13].

2.1 Functors

A (type) functor is a type function m :: ∗ → ∗ equipped with an fmap function
as specified by the following class type:

class Functor m where
fmap :: (a → b) → m a → m b

such that the following laws are satisfied:

m ≡ fmap id m (1)
fmap (g ◦ f ) m ≡ fmap g (fmap f m) (2)

for every monad action m ::m a and functions f : a → b and g : b → c. In other
words, the function fmap extends to typed functions the function m over types.

3 This is a bit over simplified for one could also require such a distinguishing context
to be itself definable in Haskell.
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2.2 Monads

A monad is a (type) functor m :: ∗ → ∗ equipped with two additional primitives
return and bind as specified by the class type:

class Functor m ⇒ Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

The infix operator (>>=) is called bind when used as a function. Elements of type
(m a) are called monad actions.

Every instance of the Monad class shall satisfies the following laws:

return a >>= f ≡ f a (3)

m >>= return ≡ m (4)

(m >>= f ) >>= g ≡ m >>= (λx → f x >>= g) (5)

for every monad action m :: m a and functions f :: a → m b and g :: b → m c.
The first and second equations state that, in some sense, return acts as a

neutral element for the bind, both on the left (3) and on the right (4). The third
equation states that the bind operator is associative (5) in some sense.

2.3 Coherence Property

Under such a presentation of monads, every monad instance shall also satisfy
the following coherence property :

fmap f m ≡ m >>= (return ◦ f ) (6)

for every monad action m :: m a and function f :: a → b. This equation states
that the mapping function induced by the monad primitives equals the mapping
function defined in the parent Functor class instance. Indeed, one can check
that if m is a monad then the function λf m → m >>= (return ◦ f ) satisfies both
functor laws, i.e. any monad is indeed a functor.

2.4 Alternative Syntax for Binds

Haskell do-notation allows writing simpler composition of monad actions.
Indeed, we may write:

do {x1 ← m1; x2 ← m2; ...;xn−1 ← mn−1;mn}

the variables x1, x2, . . . , xn−1 possibly omitted when not used, in place for the
bind series m1 >>= λx1 → m2 >>= λx2 → ...mn−1 >>= λxn−1 → mn with m1,
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m2, . . . , mn some monadic actions possibly depending on variables with strictly
lower indices.

Such a notation has a clear flavor of imperative programing. Moreover, since
action mi possibly depends on the values returned by all actions mj with j < i,
it even seems that such a composition of actions is necessarily evaluated from
left to right. However, this is not true in general unless the considered monad is
strict as the IO Monad reviewed below.

2.5 The IO Monad

For the reader not much familiar with monad programing, we review here some
basic features of Haskell IO monad; a monad that allows pure functions to be
used in communication with the real world.

The archetypal functions in the IO monad are getChar :: IO Char and
putChar :: Char → IO () that respectively allows for getting the next char-
acter typed on the keyboard (getChar), or printing on the screen the character
passed as argument (putChar). As a usage example, one can define the function:

echo :: IO ()
echo = getChar >>= putChar >>= echo

that, when ran, repeatedly waits for a character to be typed on the standard
input and prints it out on the standard output.

An important feature of monadic IO actions, as monad actions, is that they
are not executed unless passed to the top level. This illustrates the fact that,
especially in a concurrent setting, monads, with return and bind functions, can
be used for dynamically defining actions that can later be run or even forked.

Another important aspect of the IO monad in Haskell is that it is a strict
monad in the sense that, when executing bind m f , the monadic action m
is executed for its argument to be given to function f before evaluating f . This
contrasts significantly with Haskell principle of lazy evaluation but clearly allows
a better control, or even any control at all, on IO scheduling.

In other words, asynchronous extension of the IO monad offers a way to
reintroduce (controlled) laziness and, therefore, parallelism into such a strictness.

3 Elementary Monad References

We describe here the first half of our formalization of promises by defining the
notion of monad references with a first series of equations that suffices for analyz-
ing the monadic nature of (the derived notion of) promises in Sect. 4. Analyzing
the concurrent nature of these monad references is postponed to Sect. 5.
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3.1 Monad Reference

Simply said, a monad reference is a reference to a “running” monad action,
created by forking such an action. Such a monad reference can then be read for
accessing the value returned by that referenced action. In terms of Haskell type
classes, this yields:

class Monad m ⇒ MonadRef m where
type Refm ::∗ → ∗
fork :: m a → m (Refm a)
read :: Refm a → m a

where:

(a) Refm a is a type of monad references bound to running actions of type m a,
(b) fork m is an action that launches the execution of the monadic action m

and (immediately) return a monad reference bound to that action,
(c) read r is an action that (possibly) waits for and returns the value returned

by the running action bound by the monad reference r ,

respectively generalizing Async a, async and wait in the async library defined
over Haskell IO monad.

3.2 Basic Semantics Laws

Every instance of the MonadRef class must first satisfy the following laws:

(fork m) >>= read ≡ m (7)

fork ◦ read ≡ return (8)

fork (m >>= f ) ≡ (fork m) >>= λr → fork (read r >>= f ) (9)

for every monad action m :: m a and function f :: a → m b.
Intuitively, Law (7) states the basic semantics of forks and reads: reading

a just forked action essentially behaves like that executing action, side effects
included! Law (8) states that forking a read essentially amounts to returning an
equivalent reference. In other words, reads followed by forks essentially behaves
like kind of identities.

Last, Law (9) states that forking a bind can be decomposed into two succes-
sive forks, provided the reference returned by the first fork is passed through as
argument of the second one. To some extent, binds distribute over forks.

In other words, these three laws essentially ensure that fork and read behave
in a way compatible with the structure of the monad m. This will be formally
stated in Sect. 4.
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3.3 Default IO Monad References

The simplest and truly concurrent instance of IO references one can define,
thanks to mutable variables MVar and the native thread provided by forkIO in
concurrent Haskell [7], is described by the following instance:

newtype MRef a = MRef (MVar a)
instance MonadRef (IO) where

type RefIO = MRef
fork m = do {v ← newEmptyMVar ; forkIO (m >>= putMVar v);

return (MRef v)}
read (MRef v) = readMVar v

With this definition, one can review all expected rules and check to which extent
they are satisfied. Law (7) is satisfied thanks to the fact that the side effects
happening when executing m are the same as the side effects happening when
executing forkIO m.

Law (8) is less obviously satisfied. Indeed, two distinct mutable variables are
created and we need them to be observationally equivalent, at least when used
as monad references therefore encapsulated under MRef . It occurs that, they
refer to two forked monad actions that both return the same value, essentially
at the same time. Since they can only be read in a non destructive way (via
readMVar), these two encapsulated mutable variables can thus be replaced one
with the other without observable differences.

Law (9) validity essentially follows from the same reason, forkIO being non
blocking and readMVar returning, in a non destructive way, the expected value
essentially as soon as it is available.

Again, encapsulating mutable variables with MRef is crucial for hiding all
the other primitives usually defined over MVars such as, for instance, takeMVar
that performs a destructive read on a mutable variable.

3.4 Comparison with async Library

Our definition of monad references is inspired and looks like a generalization of
the async library of Haskell. As such, one could define instead another default
IO instance of monad references by taking RefIO = Async, fork = async and
read = wait . Would such an instance be valid? It occurs that Async a just as
MVar a is an instance of the class Eq therefore, as discussed in the introduction,
this seems to prevent Laws (8) and (9) to be satisfied. However, encapsulating
Asyncs just as done above for MVars also solves such an issue. Then, one could
prefer such a Async based instance for it offers a better support for interruption
handling [8].

3.5 Counter Examples for Other Possible Laws

We have stated some equational properties that should be satisfied by instances
of monad references, and we shall even state some more. Still, one may wonder
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how to check that an equality is not satisfied. The above instance of IO references
is our main source of counter-examples for examining other possible laws or bad
instances. The reason for this is that the IO monad conveys an implicit but
rather strong notion of time based on IO events.

More precisely, we have already mentioned that its bind is strict and some
actions in the IO monad are blocking, such as getChar , while some others are
not, such as printChar c. Two complex actions can thus be distinguished by the
visible side effects they may performed before being eventually blocked.

For instance, with IO references, one can observe that fork m is non blocking,
regardless of the forked action m. This provides the following provable example
of inequality that we use several times in the text. With m0 :: m (RefIO Char)
defined by m0 = getChar >>= (fork ◦ return), we have

fork (m0 >>= read) �≡ m0

even though both actions essentially return equivalent monad references.
Indeed, the action m0 returns a reference towards the next typed character.

But its blocks until that character is typed. The action fork (m0>>=read) returns
a similar reference since, by (7) and (4), it is equivalent to fork (getChar).
However, it is non blocking since fork is non blocking.

In other words, it is false that fork (m >>= read) ≡ m in general. However,
in the next section, we shall use the fact that, provided m = fork m ′ for some
m ′ :: m a, then such an equation does hold.

4 Elementary Properties of Monad References

In this section, we study the properties deriving from our equational definition
of elementary monad references. Readers more interested in using asynchronous
extensions of a monad may directly jump to Sect. 5 for a discussion about the
concurrent nature of monad references.

In this section, we assume a type function m ::∗ → ∗ with its functor instance
Functor m, its monad instance Monad m, and its extension with monad refer-
ences as a MonadRef m instance. This means that we assume there are the
function fmap, return, bind , fork and read typed as described above and satis-
fying (1)–(6) for monad primitives, and laws (7)–(9) for monad references primi-
tives. As a matter of fact, the categorical property we examine here only depends
on the above laws.

4.1 Induced Functor

Observe that, although Refm ::∗ → ∗ is a type function, it cannot be a functor
since there is no function that allows for creating or reading a monad reference
without entering into the monad m. As well known by Haskell programmers,
there is no general no way to go outside a monad. However, one can prove:
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Theorem 1. The type function m ◦ Refm equipped with fmapRef defined by

fmapRef :: MonaRef m ⇒ (a → b) → m (Refm a) → m (Refm b)
fmapRef f m = m >>= λr → fork (read r >>= (return ◦ f ))

yields a valid functor instance.

Proof (sketch of). The fact that fmapRef satisfies law (1) follows from (8) and
standard monad laws. The fact that fmapRef satisfies law (2) follows from (9)
and standard monad laws. 	

In other words, we have proved that the composition m ◦Refm, that maps every
type a to the type m (Refm a) of monad actions returning monad references, is
itself a functor. The reader may find surprising that law (7), though describing
the basic semantics of forks and reads, is not mentioned here. It turns out that
it has already been used in order to simplify the definition of function fmapRef
given here as shown in Lemma 3.

Remark. We could have put fmapRef f m = fork (m >>= read >>= return ◦ f )
instead. But then, we would have fmapRef id m = fork (m >>= read) which, as
shown at the end of Sect. 3, is distinct from m in the IO monad as soon as m is
blocking. In other words, such an alternative definition fails to satisfy law (1).

4.2 Induced Natural Transformations

Functors m and m ◦ Refm are tightly related. Indeed, slightly abusing Haskell
notations, we define the monad transformations:

Fork :: m .−→ m ◦ Refm
Forka = fork :: m a → m (Refm a)
Read :: m ◦ Refm

.−→ m
Reada = λm → m >>= read :: m (Refm a) → m a

defined for every type a, where .−→ denotes the (non Haskell) natural transfor-
mation type constructor, and we have:

Theorem 2. Both Fork and Read are natural transformation, that is, for every
function f :: a → b we have:

fmapRef f (fork m) ≡ fork (fmap f m) (10)

for every action m :: m a, and we have:

fmap f (m >>= read) ≡ fmapRef f m >>= read (11)

for every action m ::m (Refm a). Moreover, functor m turns out to be a retract
of functor m ◦ Refm, that is, Read ◦ Fork is the identity transformation.

Proof (sketch of). Equation (10) follows from Law (9), and Eq. (11) follows from
Law (7). The fact Read ◦ Fork ≡ Id follows from Law (7). 	
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The reverse composition Fork ◦ Read is not the identity as shown in the IO
monad by fork (m >>= read) �≡ m whenever m is a a blocking monad action. In
other words, there may be more behaviors definable with monad references than
behaviors definable without.

4.3 The Possibility of a Monad

We have shown that m ◦ Refm is a functor. Is this functor monadic? Strictly
speaking, this is not true as we shall see here by enumerating all possible defini-
tions for returns and binds.

First, up to equivalent definitions, the unique possibility of a function return
is defined by:

returnRef :: MonadRef a ⇒ a → m (Refm a)
returnRef = fork ◦ return

for it is the unique uniformly defined function inhabiting its type. For a function
bind there are four possible candidates:

bindRef :: m (Refm a) → (a → m (Refm b)) → m (Refm b)
(a) bindRef m f = fork (m >>= read >>= f >>= read)
(b) bindRef m f = m >>= λr → fork (read r >>= f >>= read)
(c) bindRef m f = m >>= read >>= λa → fork (f a >>= read)
(d) bindRef m f = m >>= read >>= f

Of course, the fact that such a list is, up to equivalence, complete necessitates a
proof. One can observe that we have at least enumerated all possible insertions
of a fork into the possible series of binds. In some sense, the IO monad instance
forces to respect functional dependencies in sequence. Then it seems that adding
additional forks and reads would essentially yield equivalent bind candidates
thanks to rules (7)–(9).

Lemma 3. Bind candidates (a), (c) and (d) fail to satisfy the right unit monad
law (4) in the IO monad instance.

In any instance, the bind candidate (b) satisfies the right monad unit law (4),
the monad associativity law (5), as well as the coherence law (6) with respect to
fmapRef , that is, with candidate (b), we have:

fmapRef f m ≡ bindRef m (returnRef ◦ f ) (12)

for every m :: m (Refm a) and f :: a → b.
Moreover, while the bind candidate (b) fails to satisfy the left unit monad

law (3) in the IO monad instance, if we restrict to functions of the form fork ◦ f
some f :: a → m b, then the bind candidate (b) also satisfies law (3) in arbitrary
monad instances.

In other words, Lemma 3 states that the bind candidate (b) is a good candi-
date for us to prove that m ◦ Refm is our expected monad of promises provided
we restrict ourselves to the subtype of m (Refm a) defined by elements of the
form fork ◦ m for some monad action m :: m a.



192 D. Janin

4.4 The Expected Monad of Promises

In Haskell, such an expected subset4 of m (Refm a) is defined by the type:

newtype Promise m a = Promise {thePromise :: m (Refm a)}

only equipped with the two primitives:

forkP :: MonadRef m ⇒ m a → Promise m a
forkP = Promise ◦ fork
readP :: MonadRef m ⇒ Promise m a → m a
readP p = (thePromise p) >>= read

Theorem 4. The following definitions are valid instances of the Functor and
Monad type classes:

instance MonadRef m ⇒ Functor (Promise m) where
fmap f (Promise m) = Promise (fmapRef f m)

and

instance MonadRef m ⇒ Monad (Promise m) where
return = Promise ◦ returnRef
(>>=) (Promise m) f

= Promise (bindRef m (thePromise ◦ f ))

with bind candidate (b) for bindRef .

Proof (sketch of). The fact Promise m is a functor follows from Theorem 1.
The fact it is also a monad follows from Lemma 3 proving additionally, by
induction on the complexity of their definition, that every definable inhabitant
of Promise m a, that is, defined only with ForkP , fmap, return and bind , is
equivalent with an element of the form Promise (fork m) for some m :: m a. 	

Theorem 5. Categorical functors m and Promise m are isomorphic.

Proof (sketch of). Follows from Theorem 2 and the proof argument of Theorem 4,
since, restricted to monad action of the form fork m with m :: m a, we indeed
have fork (fork m >>= read) ≡ fork m, by law (7), therefore Promise ◦ Fork is
the inverse of Read ◦ thePromise. 	

As a special case within the explicit Haskell IO monad, we thus have defined a
monad of promises quite smilar to the one defined in the implicit IO monad of
OCaml [9].

4 We could call it a subtype for it has fewer inhabitants. However, since it also supports
fewer operations, such a name for type Promise m a would be confusing.
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Of course, the purpose of such a definition of promises in Haskell is merely
for stating and proving the above theorems. Programmers are not advised to
use such a definition of promises for this would result in having to combine two
distinct monads. Instead, from now on, we simply use monad references and the
associated primitives, therefore staying within the underlying monad m, much
in the same way one would use the async library staying within the IO monad.

5 Concurrent Monad References

We aim at capturing asynchronous concurrent behaviors by means of the notion
of monad references. However, as we shall soon see, Laws (7)–(9) fail to achieve
by themselves such a goal.

5.1 Pathological Instances

Each of the following instances, though satisfying Laws (7)–(9), violates (at least)
one of the intuitive properties we expect asynchronous concurrent primitives to
satisfy.

Read Effect-Freedom (A). As a first example, the following instance violates
the intention that a monad reference should be freely readable, essentially with
no side effects but waiting for the termination of the forked action.

instance MonadRef IO where
type RefIO = IO
fork = return :: IO a → IO (IO a)
read = id :: IO a → IO a

Such an instance, that could be generalized to an arbitrary monad, is valid.
Indeed, law (7) follows from (3), law (8) is immediate, and law (9) follows
from (5). However, reading such a kind of reference just amounts to performing
the referenced action. Read actions therefore have arbitrary side effects.

Non-blocking Fork (B). As another example, despite the fact we said fork
should be instantaneous, or at least non blocking, the following valid instance
provides a counter example to that claim.

instance MonadRef IO where
type RefIO = MRef
fork m = m >>= (MRef ◦ newMVar)
read (MRef v) = readMVar v

where newMVar :: a → m (MVar a) creates a new mutable variable filled with
its argument. Compared to the instance of IO references given in Sect. 3, we just
have changed the definition of fork . In this new instance, forking an action waits
for that action to be completed before returning a reference. As a consequence,
with m = getChar , the action fork m is now blocking.
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Read Independence (C). With a bit more of coding, the following instance,
although with non blocking forks, violates our requirement that forking an action
amounts to executing it.

instance MonadRef IO where
type RefIO a = MRef (Either (IO a) a)
fork m = MRef (newMVar (Left m))
read (MRef v) = do {c ← takeMVar v ;
a ← case c of {Left m → m;Right a → return a };
putMVar v (Right a); return a }

In this instance, a forked action is indeed executed only when its associated
reference is read for the first time.

5.2 Concurrency Laws

We aim now at designing a second series of equational laws, called concurrency
laws, that enforce the properties detailled above. From now on, these additional
laws must also be satisfied by any monad instance of the class MonadRef .

Following a typical approach of concurrency theory, these additional laws
simply state that certain idempotency and commutation properties are satisfied:

read r ≡ read r >> read r (13)

fork m1 >>= λr1 → (fork m2 >>= λr2 → return (r1, r2))
≡ fork m2 >>= λr2 → (fork m1 >>= λr1 → return (r1, r2)) (14)

read r1 >>= λx1 → (read r2 >>= λx2 → return (x1, x2))
≡ read r2 >>= λx2 → (read r1 >>= λx1 → return (x1, x2)) (15)

for every monad reference r r1 r2 ::Refm a and monad action m1 m2 ::m a, with
m1 >> m2 denoting the composition m1 >>= λ → m2.

5.3 Discussion on Concurrency Laws

The intuitive meaning of these laws is detailed below.
By stating that reading actions are idempotent, Law (13) implies that values

returned by read actions only depends on their parameter reference, i.e. reads
are non destructive, and that side effects associated to readings a given reference
occurs during the execution of the first (terminated) occurrence of such a read.
After the return of a first read, any further reading of the its reference is side
effect free and essentially instantaneous. The pathological instance (A) is ruled
out by such a law. Indeed, there, monad references are arbitrary monad actions
and reading amounts to executing them. Still, both pathological instances (B)
and (C) satisfy such a law.
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By stating that fork actions commute, Law (14) enforces the instantaneity of
fork actions. This law rules out the pathological instance (B). Indeed, a block-
ing action such as getChar visibly does not commute with a non blocking but
observable action such as printChar c. With instance (B) the forks of these two
actions will surely not commute. However, the pathological instance (C) still
satisfy such a law.

Last, by stating that read actions commute, Law (15) enforces the fact that
the execution of a forked actions cannot depend on the associated readings.
Monad references must truly refer to running monad actions, and read action
cannot have other side effect but waiting for the these running action to termi-
nate. Our last pathological instance (C) is eventually ruled out by such a rule
as shown by forking both a blocking IO action and an observable non blocking
one. The resulting reads do not commute.

In other words, these three additional rules have ruled out all pathological
instances we could think of. This increase our confidence in the fact that they
eventually form a complete axiomatization of asynchronous concurrent behav-
iors.

5.4 Validity in the Asynchronous Concurrent Extension of the IO
Monad

In the IO instance of monad references defined in Sect. 3, law (13) follows from
the fact that the action readMVar is non destructive.

Law (14) is perhaps the most debatable one. It may wrongly suggest that the
side effects of action m1 and m2 commute. This is not true. In the concurrent
framework of Haskell, these side effects are executed in parallel therefore, up to
the possible non determinism induced by that parallelism, forking m1 right before
m2 or forking m2 right before m1 essentially produces the same side effects.

Law (15) is easily accepted as valid since reads essentially wait for termination
of (parallel) forked actions. Waiting for the termination of one action and then
another just amounts to waiting for the termination of both.

5.5 Commutation Rules and Induced Non Determinism

Of course, concurrency yields non determinism as made explicit by the commu-
tations of forks. An example of non determinism on outputs is given by any of
the following equivalent programs:

fork (putChar ’a’) >> fork (putChar ’b’)
fork (putChar ’b’) >> fork (putChar ’a’)

that print non deterministically either "ab" or "ba". An example of non deter-
minism on inputs is given by any of the following equivalent programs:

fork (getChar) >>= λr1 → fork (getChar) >>= λr2 → read r1 >>= printChar
fork (getChar) >>= λr2 → fork (getChar) >>= λr1 → read r1 >>= printChar
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that both non deterministically print either ’a’ or ’b’ when reading the string
"ab" from the standard input.

6 Asynchronous Concurrency and Data Flow Programing

So far, we have only defined references to running monad actions. We aim now
at extending monad references to generalized monad actions, that is, structures
of nested monad actions. Even though this can easily be generalized to more
complex structure, we simply review here the case of monadic streams as they
can be used for data flow programing in Haskell [5].

6.1 Monad Streams

Monad streams are defined by the following inductive data type:

data Stream m a = Stream {next :: m (Maybe (a,Stream m a))}

In other words, a monad stream is essentially defined as a monad action that
either returns nothing when the stream terminates, or just a value and the action
defining the continuation of that stream otherwise. As an example of a monad
stream, there is the standard input stream defined by:

stdinStream :: Stream IO Char
stdinStream = Stream $ do {a ← getChar ; return $ Just (a, stdinStream)}

that, when executed, eventually returns all the characters typed from the stan-
dard input (stdin) one after the other.

A function printing a stream of characters to the standard output (stdout)
can also be defined by:

streamStdout :: Stream IO Char → IO ()
streamStdout (Stream m) = do {c ← m; case c of

{Nothing → return (); Just (a, s) → do {putChar a; streamStdout s }}}

Then, the function echo described above as an example of function in the IO
monad can then be recoded by:

echo = streamStdout stdinStream

Such an example illustrates fairly well the power of monad streams for data
flow programing, a kind of monad programing technique fairly popular among
Haskell programmers.
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6.2 Derived Functor Instance

As a typical example of monad stream programing, there is the following functor
instance.

instance Monad m ⇒ Functor (Stream m) where
fmap f (Stream m) = Stream $ do {c ← m;

case c of {Nothing → return Nothing ;
Just (a, sc) → return $ Just (f a, fmap f sc)}}

Every function fmap f ::Monad m ⇒ Stream m a → Stream m b is an archetypal
example of a synchronous (or isochronous) function over monadic streams.

6.3 Horizontal Monoid Structure

There is the following monoid instance that essentially lifts to monadic stream
the (free) monoid encoded by the list data type.

instance Monad m ⇒ Monoid (Stream m a) where
mempty = Stream (return Nothing)
(♦) (Stream m) s = Stream $ do

{c ← m; case c of {Nothing → next s;
Just (a, sc) → return $ Just (a, sc ♦ s)}}

where the neutral element mempty is the (immediately) empty streams and (♦)
is function that concatenates two monad streams one after the other.

In a concurrent and reactive context, the horizontal concatenation is of little
use unless its first argument is a constant and thus acts as a delay/buffering. We
shall see below, in link with monad references, a much more interesting monoid
instance for monad streams (called vertical) and the monad instance it induces.

6.4 Monad Stream References

Observe that sharing a monad stream such as stdinStream among several pro-
cesses would result in distributing the standard inputs among these processes.
The notion of monad references can be extended to monad streams and allows
for duplicating monad streams. More precisely, there is a generalized notion of
references applicable to monad streams defined by:

type StreamRefm = Stream Refm

i.e. a reference to a monad stream is simply a stream of nested monad references.
Then, forking a monad stream and reading the resulting monad stream ref-

erence can simply be defined by:

forkStream :: MonadRef m ⇒ Stream m a → m (StreamRefm a)
forkStream = fork (evalAndFork s) >>= return ◦ Stream



198 D. Janin

where
evalAndFork (Stream m) = m >>= mapM

(λ(a, sc) → do {rc ← fork (evalAndFork sc); return (a,Stream rc)})
readStream :: MonadRef m ⇒ StreamRefm a → m (Stream m a)
readStream (Stream r) = return ◦ Stream $ read r >>=

mapM (λ(a, rc) → return (a, readStream rc))

A major application of forkStream and readStream is the possibility to share
the content of a stream without duplicating its side effects. Such a possibility is
especially useful in reactive on-the-fly data flow programming [5]. More formally,
one can prove that:

Lemma 6. For every s :: Stream m we have:

forkStream s >>= readStream ≡ return s
forkStream ◦ readStream ≡ return

In other words, with monadic stream references defined as above, the first two
laws (7)–(8) lift to the case of monadic stream references. For Eq. (9) to be
satisfied by streams and stream references, we eventually need to equip monad
streams with an adequate monad structure.

7 More Asynchronous Concurrency

In order to equip monad streams with an adequate monad instance, we eventually
define additional (asynchronous) concurrent primitives that cannot be derived
from the read and fork primitives defined so far.

7.1 More Concurrent Primitives

These primitives are specified by the following type class refinement of the type
class MonadRef :

class MonadRef m ⇒ MonadRefPlus m where
tryRead :: Refm a → m (Maybe a)
parRead :: Refm a → Refm b → m (Either a b)

where:

(a) tryRead r is the action that immediately returns nothing if the referenced
action is not terminated or just its returned value otherwise,

(b) parReadRef r1 r2 is the action that returns the value of the earliest termi-
nated referenced actions or, in the case both actions are already terminated
or are terminating at the same time, either of the returned values.



An Equational Modeling of Asynchronous Concurrent Programming 199

In the IO monad, such additional monad reference primitives can be defined by:

instance MonadRefPlus IO where
tryRead (MRef v) = tryReadMVar v
parRead r1 r2 = do

{v ← newEmptyMVar ;
forkIO (read r1 >>= (tryPutMVar v) ◦ Left >> return ());
forkIO (read r2 >>= (tryPutMVar v) ◦ Right >> return ());
readMVar v }

We may aim at axiomatizing the behavior of these newly introduced primitives.
For instance, one may expect to have:

fork m >>= tryRead ≡ m >>= return when m is instantaneous,
fork m >>= tryRead ≡ return Nothing when m is not instantaneous.

However, these laws seem to be difficult to be enforced at runtime and, at compile
time, they require some typing of action duration, a typing that is not (yet)
available.

7.2 Vertical Monoid Structure

Thanks to parRead one can define the merge of two monadic streams by:

merge :: MonadRefPlus m ⇒ Stream m a → Stream m a → Stream m a
merge s1 s2 = Stream $ do

{r1 ← forkStream s1; r2 ← forkStream s2; return (next $ mergeRef r1 r2)}

with

mergeRef :: MonadRefPlus m ⇒
Stream Refm a → Stream Refm a → Stream m a

mergeRef (Stream r1) (Stream r2) = Stream $ do
{c ← parRead r1 r2; case c of {

Left Nothing → next $ readT (Stream r2);
Right Nothing → next $ readT (Stream r1);
Left (Just (a, src1 )) → return $ Just (a,mergeRef src1 sr2);
Right (Just (a, src2 )) → return $ Just (a,mergeRef sr1 src2 )}}

Then, up to the possible non determinism yields by parRead , the type
stream m a of monadic streams equipped with merge is essentially a commuta-
tive monoid with the empty stream mempty as neutral element.

7.3 Derived Stream Monad

Thanks to such a vertical monoid structure, we have the following valid monad
instance:
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instance MonadRef m ⇒ Monad (Stream m) where
return a = (Stream ◦ return ◦ Just) (a,mempty)
(>>=) (Stream m) f = Stream $ do

{c ← m; case c of
{Nothing → return Nothing ;
Just (a,mc) → next $ merge (f a) (mc >>= f )}}

There, the flattening operation essentially amounts to merge monadic substreams
from the moment they appear. This feature is especially useful when handling
asynchronous control flows [5].

Lemma 7. For every stream s :: Stream m a and function f :: a → Stream m b,
we have:

forkStream (s >>= f ) ≡ forkStream s >>= λr → forkStream (readStream r >>= f )

In other words, the monad reference Law (9) also lifts to monad stream refer-
ences.

7.4 Stream Monad as a Monad Extension

The above monad instance of Stream m is also an extension of the monad m in
the sense that, with:

liftStream :: m a → Stream m a
liftStream m = Stream $ do {a ← m; return $ Just (a, emptyStream)}

we have:

Lemma 8. Function liftStream is a natural embedding of m into Stream m
with:

liftStream ◦ return ≡ return
liftStream (m >>= f ) ≡ liftStream m >>= liftStream ◦ f

for every action m :: m a and function f :: a → m b.

7.5 Generalization Monad References to Monadic Structures

The above treatment of monadic streams seems to fit a fairly general notion of
references to monadic structures. More precisely, we can define the type class:

class (MonadRefPlus m,Monad (t m)) ⇒ MonadDataRef t m where
forkT :: t m a → m (t Refm a)
readT :: t Refm a → m (t m a)

where, in any instance, primitives forkT and readT are required to satisfy the
following laws:

(forkT s) >>= readT ≡ return s (16)
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forkT ◦ readT ≡ return (17)

forkT (s >>= f ) ≡ (forkT s) >>= λr → forkT (readT r >>= f ) (18)

for every monad structure s :: t m a and function f :: a → t m b.
Then, thanks to Lemmas 6 and 7 there is the following valid instance for

monad stream references:

instance MonadRefPlus m ⇒ MonadDataRef Stream m where
forkT = forkStream
readT = readStream

It is probably the case that such a construction can be generalized to arbitrary
monadic versions of inductive types. However, such a study goes out of the scope
of the present paper.

7.6 More Parallelism

So far, we can fork one monad action, or a stream of nested monad actions. One
may wonder if such an asynchronous fork can be generalized to other structures
such as lists, or, more generally, traversable structures. Actually, this can easily
be done by defining:

forkAll :: (Traversable t ,MonadRef m) ⇒ t (m a) → m (t (Refm a))
forkAll = mapM fork

The question then becomes, how to handle the resulting structure of monad
references. One possibility is to uniformly define:

sortRefs :: (Traversable t ,MonadRefPlus m) ⇒ t (Refm a) → Stream m a
sortRefs = foldMap (liftStream ◦ read)

that turns a traversable structure of monad references into the monad stream
of values returned by the referenced actions ordered by termination time. In
other words, sortRefs generalizes parRead to arbitrary traversable structures.
Moreover, using functions forkAll and sortRefs, much like using primitives fork
and read , is safe for it yields no deadlock.

7.7 Asynchronous vs General Concurrency

The above generic definition of sortRef suffers from a rather severe drawback:
its complexity in terms of call to parRead , therefore in number of fork , is likely
to be quadratic in the size of the traversable structure.

With (fully) concurrent Haskell, this is not a necessity as shown by the fol-
lowing direct implementation of sortRefs in the IO monad:
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sortRefsIO ::Traversable t ⇒ t (RefIO a) → IO (Stream IO a)
sortRefsIO t = do {v ← newEmptyMVar ;

mapM (λr → forkIO (read r >>= putMVar v)) t ;
return $ mvarToStream v (length t)}

where
mvarToStream 0 = mempty
mvarToStream v n = Stream $ do

{a ← takeMVar v ; return $ Just (a,mvarToStream v (n − 1))}

with a linear number of forks.
In other words, despite the many and somewhat unexpected programming

possibilities offered by asynchronous concurrency, illustrated among other things
by monad stream references, asynchronous concurrency does not offer as many
programming possibilities as a more general concurrent programming framework.
This is no surprise. This is the price to pay for the increase of robustness and
safety offered by asynchronous concurrency compared to general concurrency.

8 Related Works and Conclusion

The study proposed here started as an attempt to clarify the properties of an
existing and somewhat ad hoc but succesfull experiment of realtime audio pro-
cessing and control in Haskell [5]. As such, it was first designed as a stand alone
approach that was a priori not much related with former theoretical investiga-
tions. A posteriori, our proposal offers an equational formalization of the seman-
tics of (a kernel of) the existing async library. To the best of our knowledge, no
such an axiomatization has yet been proposed.

We present a fairly generic notion of a monad extension. A first series of
laws describes how to go back and forth between the underlying monad m and
its extension m ◦ Refm via a retraction pair of natural transformations. The
underlying general category theoretic schema seems rather orthogonal to more
classical existing techniques for combining monads [2,10]. Such a notion of a
monad extension is probably worth being studied more in the depth.

A second series of laws enforces concurrency as shown by ruling out patho-
logical instances. However, there is no guarantee our proposal is complete. There
could well be other pathological instances violating our intuition on what asyn-
chronous concurrency should be. Moreover, all our examples are based on extend-
ing the strict IO monad. The underlying intuition is somewhat biased. What is
the asynchronous concurrent extension of a non strict monad is yet not that clear.
The successful extensions of the notion of monad references to more complex
structures, such as monad streams or traversable structures of monad actions,
only constitute partial answers to that question.

As already observed, the possibility of defining an equational theory for the
additional primitives such as tryRead bumped into the lack of a denotional
semantics that describes action durations. For instance, we cannot describe the
property that between to monadic actions, one is finishing before the other unless
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they both block endlessly. A pure denotational approach might still be possible
following the recent proposal of a timed extension of Scott domains [4]. However,
investigating such a possibility goes out of the scope of the present paper.

Last, one could also examine the possibility of defining asynchronous con-
currency as an algebraic effect [11]. The termination of a forked action indeed
sounds like raising an effect that is eventually passed to all the readers of the
monad reference bound to that action. The resulting API would be different than
the current one. How the proposed axiomatization could be adapted to such a
distinct modeling approach is an open problem.
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