
White-Box Path Generation in Recursive
Programs

Ricardo Peña(B) and Jaime Sánchez-Hernández

Computer Science School, Complutense University of Madrid, Madrid, Spain
{ricardo,jaime}@sip.ucm.es

Abstract. We present an algorithm for generating paths through a set
of mutually recursive functions. The algorithm is part of a tool for white-
box test-case generation. While in imperative programs there is a well
established notion of path depth, this is not the case in recursive pro-
grams. We define what we mean by path and path depth in these pro-
grams and propose an algorithm which generates all the static paths
up to a given depth. When the algorithm is applied to transformed iter-
ative programs, giving as a result tail-recursive functions, the defined
depth corresponds to the maximum number of times the loop condition
is evaluated. When applied to non-tail recursive functions, the meaning
is their maximum unfolding depth along the path, for each initial call
to the function. It can also be applied to hybrid programs where both
iteration and recursion are present.

Keywords: White-box testing · Static path · Recursion depth

1 Introduction

Testing is very important for increasing program reliability. Thorough testing
ideally exercises all the different situations described in the specification, and
all the instructions and conditions of the program under test, so that it would
have a high probability of finding bugs, if they are present in the code. There
is a general agreement that automatic tools can alleviate most of the tedious
and error prone activities related to testing. One of them is test-case generation
(TCG). Traditionally (see, for instance [1]), there are two TCG variants: black-
box TCG and white-box TCG. In the first one, test-cases are solely based on the
program specification, and in the second one, they are additionally based on a
particular reference implementation. Each one complements each other, so both
are needed if we aim at performing thorough testing.

White-box TCG is concerned with first defining a coverage criterion for the
Unit Under Test (UUT), and then generating a set of test-cases which, when
executed, will implement this criterion. A usual criterion is to require the test

Research paper. Partially funded by the Spanish Ministry of Science, Innovation and
Universities, under the grant TIN2017-86217-R.

c© Springer Nature Switzerland AG 2020
A. Byrski and J. Hughes (Eds.): TFP 2020, LNCS 12222, pp. 121–135, 2020.
https://doi.org/10.1007/978-3-030-57761-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57761-2_6&domain=pdf
http://orcid.org/0000-0001-5387-8931
http://orcid.org/0000-0002-8940-5543
https://doi.org/10.1007/978-3-030-57761-2_6

122 R. Peña and J. Sánchez-Hernández

suite to exercise all the statements or all the condition outcomes of the UUT. A
more complete criterion is to exercise all the execution paths through the UUT.
When there exist loops in the code, the number of paths is potentially infinite,
so a limit on the number of allowed iterations executed in each loop must be
established. This limit is usually referred to as the path depth. For instance,
depth-1 paths will be those that never execute the loop bodies; depth-2 paths
will execute each loop body at most once; and so on. Once the paths are gener-
ated, each one is defined by the sequence of decisions that the UUT takes when
executing that path. By collecting the conditions involved, and the expected
outcome of evaluating each one, a test-case for the path can be synthesised by
using for instance symbolic execution [2].

Functional programs do not contain loops, but use recursion instead. There is
no established criterion on what a path and its path depth mean in a recursive
program. Intuitively, a path should require a complete execution of the UUT
main function and it would involve a sequence of decisions taken by the UUT
along the execution. In a path, the UUT functions may be recursively invoked a
number of times, either directly or indirectly. So, multiple and mutual recursion
should be taken into account when defining the meaning of a path. By analogy
to the iterative case, in recursive programs the path depth should be related to
the number of invocations the UUT, or any of its auxiliary functions, undergo
in the path.

In this work, we define a UUT to be a collection of (potentially) mutually
recursive functions with a main, or top, visible one, which may invoke any of the
other ones. Then, we define a notion of path and of path depth for that UUT,
and present an algorithm for generating an exhaustive set of paths up to a given
depth.

This work has been developed in the context of our computer assisted val-
idation platform CAVI-ART [5,6]. The platform uses a functional language as
its Intermediate Representation (IR) to which both imperative and functional
programs are translated. Imperative loops are translated into a set of mutually
tail recursive functions and, if recursion is present in the input program, it is
preserved by the translation. In the end, only recursion remains in the IR. Given
a UUT, the platform automatically generates white-box paths, and synthesises a
test-case for each one, by using an SMT solver [7] which checks the satisfiability
of the conditions required by the path, and assigns appropriate values to the
involved variables.

In Fig. 1 we show a picture of the complete testing system. As the platform
is also intended for formal verification, the UUT visible function is endowed with
a formal precondition and postcondition. These are translated by the tool into
SMT constraints. In this way, the test cases generated by the tool, not only
satisfy the path constraints, but also the precondition ones. By requiring to only
satisfy the precondition constraints, the tool can also generate black-box test
cases. In our approach, the user fixes some sizes for the data types of the UUT
arguments (for instance, the range of the integers, the length of an array, the
cardinal of a tree, etc.), and the tool generates an exhaustive set of cases up to the

White-Box Paths in Recursive Programs 123

Fig. 1. CAVI-ART testing tool

given size. The reason for fixing these sizes is that we seek for exhaustiveness
but also for getting a finite number of cases. Additionally, the validity of the
test cases is automatically checked by the tool, just by checking whether the
result returned by the UUT satisfies the postcondition constraints. So, the user
responsibilities are only to provide a precondition and a postcondition, to fix
sizes for the arguments and to choose a maximum depth for the white-box paths.
After that, the whole testing process—test case generation, test execution and
test validation—is automatically performed by the tool.

In principle, the IR language is not executable. In order to actually run the
tests, the tool provides a translation from the IR to Haskell (see the bottom part
of Fig. 1). The generic test driver is also written in this language. The translation
is straightforward since, as we have already said, the IR is in fact a functional
language.

2 Functional Intermediate Representation

Our intermediate representation is a first-order eager core functional language
which supports mutually recursive function definitions. In Fig. 2 we show its
abstract syntax. Notice that all expressions are flattened in the sense that all the
arguments in function and constructor applications, and also the case discrimi-
nants, are atoms. An additional feature is that IR programs are in let A-normal
form [4], and also in SSA1 form, i.e. all let bound variables in a nested sequence
of let expressions are distinct, and also different to the function arguments.

In Fig. 3 we show a Java version of the quicksort algorithm. This algorithm
is translated by the platform into the IR code shown in Fig. 4. As there is no
mutable state in the IR, the array updates of the Java version are simulated
by passing an array as an argument, both to the partition and qsort functions,

1 Static Single Assignment.

124 R. Peña and J. Sánchez-Hernández

a ::= c { constant }
| x { variable }

be ::= a { atomic expression }
| f ai { function/primitive operator application }
| 〈ai〉 { tuple construction }
| C ai { constructor application }

e ::= be { binding expression }
| let 〈xi :: τi〉 = be in e { sequential let. Left part of the binding can be a tuple }
| letfun defi in e { let for mutually recursive function definitions }
| case a of alt i[; → e] { case distinction with optional default branch }

tldef ::= define {ψ1} def {ψ2} { top level function definition with pre- and post-conditions }
def ::= f (xi :: τi) :: (yj :: τj) = e { function definition. Output results are named }
alt ::= C xi :: τi → e { case branch }
τ ::= α { type variable }

| T τi { type constructor application }

Fig. 2. CAVI-ART IR abstract syntax

public class Quick {
public static void quicksort (int [] v) {

int n = v.length;
qsort (v, 0, n-1);

}
public static int partition (int [] v, int a, int b) {

int i = a+1; int j = b; int piv = v[a];
while (i <= j) {

if (v[i] <= piv) {
i = i+1;

} else if (v[j] >= piv) {
j = j-1;

} else { // v[i] > piv && v[j] < piv
int temp = v[i]; v[i] = v[j]; v[j] = temp;
i = i+1; j = j-1;

}
}
int temp = v[a]; v[a] = v[j]; v[j] = temp;
return j;

}
public static void qsort (int [] v, int a, int b) {

if (a < b) {
int p = partition(v, a, b);
qsort(v, a, p-1);
qsort(v, p+1, b);

}
}

}

Fig. 3. A Java version of quicksort

White-Box Paths in Recursive Programs 125

define quicksort (v::Array Int)::(res::Array Int) =
letfun

qsort (v::Array Int, a::Int, b::Int)::(res::Array Int) =
let b::Bool = a < b in
case b of

True -> f1 v a b
False -> v

f1 (v::Array Int, a::Int, b::Int)::(res::Array Int) =
let (p::Int, v1::Array Int) = partition v a b in
let p1::Int = p - 1 in
let v2::Array Int = qsort v1 a p1 in
let p2::Int = p + 1 in

qsort v2 p2 b
partition (v::Array Int, a::Int, b::Int)::(p::Int, res::Array Int) =

let i::Int = a + 1 in
let j::Int = b in
let piv::Int = get-array v a in

f2 v a piv i j
f2 (v::Array Int, a::Int, piv::Int, i::Int, j::Int)::(res::Array Int) =

let b::Bool = i <= j in
case b of

True -> let ei::Int = get-array v i in
let b2::Bool = ei <= piv in
case b2 of

True -> let i2::Int = i + 1 in
f2 v a piv i2 j

False -> let ej::Int = get-array v j in
let b3::Bool = ej >= piv in
case b3 of

True -> let j2::Int = j - 1 in
f2 v a piv i j2

False -> let temp::Int = get-array v i in
let ej::Int = get-array v j in
let v1::Array Int = set-array v i ej in
let v2::Array Int = set-array v1 j temp in
let i2::Int = i + 1 in
let j2::Int = j - 1 in

f2 v2 a piv i2 j2
False -> let temp::Int = get-array v a in

let ej::Int = get-array v j in
let v1::Array Int = set-array v a ej in
let v2::Array Int = set-array v1 j temp in

(j, v2)
in let n::Int = length v in

let n1::Int = n - 1 in
qsort v 0 n1

Fig. 4. CAVI-ART IR for function quicksort

and returning a different one as a result. The predefined function set-array2

simulates the assignments of the form v[i] = exp. Notice also that the while loop
has been translated into the tail-recursive function f2, and that the conditional
if statements are translated into case expressions. In the IR program, there
is also mutual recursion between the functions qsort and f1, being qsort non-
tail recursive and showing double recursion. The four mentioned functions are

2 set-array v i e builds a new array identical to v, except the i-th component which
is replaced by the value e. An assignment of the form v[i]=e in the source program
is translated to set-array v i e. This translation may have an impact on the exe-
cution time of the (translated to Haskell) IR version with respect to the Java one,
but not on the correctness of the algorithm.

126 R. Peña and J. Sánchez-Hernández

defined in a letfun expression within the top level visible function quicksort.
We will use this IR program as a running example of UUT along the paper,
since it illustrates some features we are interested in: mutual recursion, non-tail
recursion, and dealing with arrays.

We define a static path through a set of mutually recursive functions declared
together in a UUT, as a potential execution path starting at the top level func-
tion, and ending when this function produces a result. Not all the static paths
correspond to actual execution paths, since some static paths may be infeasible.
The detection of infeasible paths will be done in a subsequent phase by checking
the satisfiability of the set of boolean conditions defining the path.

We define the depth of a static path, as the maximum unfolding depth
of the UUT recursive functions when performing the actions implied by the
path. When all the UUT functions are tail recursive, this definition corresponds
to the number of times the loop condition is evaluated in imperative loops.
When there is at least one non-tail recursive function in the UUT, the depth
path is the depth of the call tree deployed during the path execution, considering
only the calls to the non-tail recursive function. A depth-1 path is one in which
each non-tail recursive function executes one of its base cases, i.e. an invocation
to them immediately returns without triggering further recursive invocations;
depth-2 ones correspond to executions in which at least one recursive function
has executed a recursive case, by generating one or more recursive calls, and
then these recursive calls have executed a base case; and so on.

For instance, there is one depth-1 path in function f2 of Fig. 4, namely the one
in which the condition of the first case expression is evaluated to false, i.e. the
condition i > j holds. This corresponds to an execution of the partition function
in the Java program of Fig. 3 in which the while body is not entered. There are
also three depth-2 paths in function f2, each one ending in a tail recursive call
to itself. These recursive calls then execute the depth-1 path.

In the mutually recursive set formed by qsort and f1, there is one depth-1
path, namely the one in which the case condition of qsort is evaluated to false.
There are also four depth-2 paths. In all of them, the case condition of qsort is
evaluated to true, and the path continues by calling to partition, then to qsort,
and then to qsort a second time. The two latter calls execute the only qsort
depth-1 path, and the call to partition may execute either its depth-1 path, or
one of its three depth-2 paths. However, only the qsort depth-1 path, and the
qsort depth-2 path in which f2 executes any of its depth-2 paths, are feasible.
The first one corresponds to an empty array segment as input, and the other
three correspond to an array segment having 2 or 3 elements. The infeasible path
(the depth-2 path in qsort combined with the depth-1 path in f2) forces the array
segment to have at least two elements in qsort (i.e. a < b), and to have at most
one element in partition (i.e. i = a + 1, j = b, i > j), which is contradictory.

Given a UUT written in the IR language, and a maximum depth fixed by
the user, our tool generates all the static paths having a depth smaller than or
equal to this maximum depth.

White-Box Paths in Recursive Programs 127

3 Two-Level Representation and Assumed Properties

Generating paths in recursive programs cannot be regarded as just a graph prob-
lem, as it is the case in iterative programs. In the latter, the control flow graph
(CFG) can be depicted as a directed planar graph. Loops become the strongly
connected components (SCC) of those graphs. Computing paths is then a com-
bination of computing the graph SCCs, then collapsing them into single nodes,
and then computing paths in the resulting DAG (directed acyclic graph), which
is an easy problem. The path depth corresponds to the number of iterations the
path undergoes in each SCC.

Recursive programs cannot be depicted as planar graphs, unless recursive
calls are represented as non-expanded nodes in those graphs. But, as soon as
recursive calls are unfolded and replaced by their bodies, the graph representa-
tion is not possible anymore. A different number of unfoldings would result in
different graphs. When iterative programs are translated into recursive ones, all
the resulting functions are tail recursive, as we have seen in the partition exam-
ple above. But, as long as there are non-tail recursive functions in the source
program, analyzing the CFG in order to extract the paths is not enough. One
may wonder why not to translate non-tail recursive programs into tail-recursive
ones by using the well-known continuation passing style translation of functional
programs (see, for example [4]). By doing that, the non-tail recursive functions
are somehow ‘hidden’ in the continuation and will be unfolded when the contin-
uation is applied. So, it seems rather difficult to extract the paths from a static
code which may undergo a variable number of unfoldings. Also, the resulting
program is higher-order, which makes the approach more difficult.

We follow here a different strategy: to propose a graph representation of
recursive programs at two different levels:

– One level consists of the CFG of each function body. These are DAGs in
which the internal calls are represented as non-expanded nodes.

– The other level is the call-graph (CG) of the whole function collection. An
edge (f, g) here represents one or more calls from function f to function g.
An SCC in this graph represents a loop of functions calling each other in a
mutually recursive way.

These two kinds of representations are not arbitrary directed graphs. By knowing
that they come from code written in a programming language, we can assume
them to satisfy the following properties:

1. Each SCC in the CG has at least one entry node. This is because we assume
each function in the CG to be reachable from the top one. Otherwise, it would
represent dead code. When the UUT is the result of transforming an iterative
program, each SCC has a unique entry node. This holds because iterative
loops in conventional programming languages have a unique entry point.

128 R. Peña and J. Sánchez-Hernández

v

w

s

u

v

SCC {w, s}

v′

u

original SCC after collapsing internal SCCs

Fig. 5. Illustration of Proposition 1.

2. On the other hand, a SCC in the CG may have more than one exit to nodes
external to it. This is because a loop or a function may abruptly terminate by
sentences such as break, continue, return, or an exception, which interrupt
the normal flow. Also, a function belonging to an SCC may issue a call to a
function external to it.

3. In a SCC, all paths starting at an entry node, not exiting the SCC, and not
infinitely iterating inside a nested SCC, must eventually reach again that
entry node. We justify this statement by Propositon 1 below.

4. Each function CFG has a single source node and a single sink node. Each
internal node is reachable from the source and the sink is reachable from
each internal node. This is because we assume no dead code, (statically)
terminating loops, and also that recursive functions have at least a base case.

A SCC may contain nested SCCs. Our path generation algorithm will not
infinitely loop inside any SCC. In order to control the number of iterations inside
a SCC, we will count the number of visits the path pays to a single node per
SCC. This will be one of its entry nodes. So, it is important to prove that, after
visiting all the internal SCCs, a path will reach again the entry node of the
external SCC.

Proposition 1. Given a SCC G = (V,E), subgraph of a directed graph, and
an entry vertex v ∈ V , all paths starting at v, not exiting V , and not infinitely
looping inside any nested SCC, must go again through v.

Proof. By definition of SCC, V is a maximal set of vertices such that ∀v, w ∈ V
there exist paths v � w and w � v not leaving V . G may contain proper
subgraphs which are themselves SCCs. Let us assume that we remove v from
V and all its incoming and outgoing edges. In the resulting graph, we compute
its internal SCCs, and collapse them to single vertices. Let G′ = (V ′, E′) be the
resulting DAG. Then, we build the following graph G′′ = (V ′′, E′′), as follows:

– V ′′ = V ∪ {v′}, where v′ is a fresh vertex aiming at being a duplicate of v.

White-Box Paths in Recursive Programs 129

– E′′ is built from E′, by adding all the outgoing edges (v, u) ∈ E from v to
vertices u ∈ V ′ but, for each incoming edge (u, v) ∈ E, we add instead an
edge (u, v′) to the duplicate v′ of v.

It is clear the G′′ is a DAG. Moreover, all paths in G′′ starting at v can be
extended to paths ending up in v′. This is because G is a SCC and so there exist
paths from every vertex of V ′ to v. The only paths not reaching v′ are those
exiting G′′ or iterating infinitely often in one internal SCC of G. In Fig 5, we
illustrate the above construction with an example. ��

4 Path Generation Algorithm

As said above, a UUT consists of a top function—we will call it top—and a set
of internal functions defined in a letfun expression within it. Function top may
call any of them, but not the other way around. The path generation algorithm
consists of the following phases:

1. Generating the CFG of each function.
2. Generating the template paths (TP) of each function. These are all the paths

from its source to its sink.
3. Generating the UUT CG.
4. Computing the CG SCCs.
5. Computing the paths by expanding the TP.

The essential idea of phase 5 is to continuously replace nodes representing
calls to functions by all the paths across the bodies of those functions. In order
to guarantee termination, an additional control is needed on the unfolding level
of some particular functions.

4.1 Generating the CFGs and the TP

We assume a fresh name supplier so that every node of any graph is given an
identifying key which is unique in the whole set of graphs. The CFG of each
function is a DAG having five types of nodes:

Source. This is the unique entry point of the function. It may have some code
associated to it.

Block. This is either a basic block node—having associated sequential code
consisting of a sequence of let bindings not containing calls, and ending in an
edge to another node—, or it is a conditional block node having as associated
code a case expression. In this case, the node has outgoing edges to more
than one node.

Call g. Node exactly containing a call to a function, where g is the key of the
called function source node.

130 R. Peña and J. Sánchez-Hernández

Fig. 6. Control flow graphs for functions top, qsort, f1, partition, and f2.

Return. In our tool, there is one such a node at the end of each execution path.
Their next node is always the sink. We associate some code to these nodes
related to returning to the caller the result of the function. For the purpose
of this paper, it will be dealt with as a block node.

Sink. Node with no associated code representing the unique sink of the function.

From the UUT IR, the algorithm computes the CFG of each function by using
conventional techniques such as those one can find in compilers. The resulting
graphs are DAGs. In Fig. 6 we show the CFGs computed for all the functions
of the quicksort UUT. Uncircled nodes are source, block or return nodes; circled
nodes are calls; and the diamond node is the sink. For convenience, we only show
the keys associated to the nodes.

White-Box Paths in Recursive Programs 131

Fig. 7. Call graph and SCCs for function quicksort.

Then, a simple recursive algorithm computes all the paths from the source
to the sink in each DAG. By convention, the sink node is not included in any
path. These are called template paths (TP). The algorithm will return a list of
TP associated to each function. We call them template because they may contain
call nodes which should be later expanded in order to compute the final paths.
A final path does contain neither call nodes, nor sink ones. It just consists of a
sequence of source, block and return nodes.

4.2 Generating the CG and Computing the SCCs

From the TP, the next phase of the algorithm generates the CG. This one consists
only of call nodes. An edge (f, g) represents one or more calls from function f
to function g. We include in the graph a node with an initial call to the top
function. In Fig. 7 we show the CG computed by this algorithm for our running
example.

Now, all the SCCs of the CG are computed, included the nested ones. This
phase uses standard algorithms. Thanks to the restrictions assumed in Sect. 3,
each SCC has at least an entry point. Moreover, by Proposition 1, all the paths
not exiting the SCC must pass again through that entry point. So, these entry
points provide us a convenient way for controlling the depth of the paths: each
time we unfold an entry point corresponding to a call to a function f , the sub-
sequent calls to f in the unfolded path represent a depth one unit smaller than
the depth of the unfolded f .

Consequently, our algorithm computes an entry point for each SCC and
returns the set of them. In Fig. 7 we show the SCCs computed for quicksort
and the entry points computed.

132 R. Peña and J. Sánchez-Hernández

expand ds tp [] = [[]]

expand ds tp ((Source,k): pth) = map ((Source,k):) $ expand ds tp pth

expand ds tp ((Block,k): pth) = map ((Block,k):) $ expand ds tp pth

expand ds tp ((RetNode,k): pth) = map ((RetNode,k):) $ expand ds tp pth

expand ds tp ((CallNode k,_):pth) = concatMap (expand ds tp)

[p1 ++ pth | p1 <- kPaths]

where kPaths = map (map $ annotate ds) (tp ! k)

expand ds tp ((EntryCall k d,_):pth)

htapsihtevomer--][=0==d|

| otherwise = [p1 ++ p2 | p1 <- concatMap (expand ds’ tp) kPaths,

p2 <- expand ds tp pth]

where kPaths = map (map $ annotate ds’) (tp ! k)

ds’ = insert k (d - 1) ds -- decrease k’s recursion depth

annotate :: Map Key Int -> (Node,Key) -> (Node,Key)

annotate ds (CallNode f,i)

| member f ds = (EntryCall f (ds ! f),i)

annotate ds other = other

Fig. 8. The expand algorithm.

4.3 Computing the Paths

The algorithm starts by creating a map from the SCC’s entry points to their
initial depth. This is the maximum depth established by the user for the intended
white-box paths. Then, the recursive algorithm expand is invoked. It is written
in Haskell, and its signature is the following:

expand :: Map Key Int -> TemplatePaths -> [(Node,Key)] -> [[(Node,Key)]]

It receives as arguments the depth map, the template paths, and a single
path to be expanded. It traverses the path from left to right and expands it
by systematically replacing call nodes by their template paths. So, in general,
the expansion of a path produces a list of paths as a result. Initially, expand is
invoked with a path consisting of a single call node Call top. It processes a path
node at a time and invokes itself recursively on the rest of the path.

Its complete code is shown in Fig. 8. Nodes of type Source, Block, and Return
are simply bypassed, and the expansion continues on the remaining path. Call
nodes are replaced by their template paths but, prior to that, the possible calls
to the SCC’s entry points are annotated with their current remaining depth
registered in the depth map. When a node corresponding to an entry node calling
to function f is expanded, the expansion of its template paths is done with a
depth for f one unit smaller than the current depth for that entry. However, the
expansion of the remaining path is done with the original path depth, as they
may occur new calls to f in that path, and these should be expanded by starting
at the initial path depth. If an entry node is found with its current depth being
zero, then the complete path is removed.

White-Box Paths in Recursive Programs 133

path 1 = [0,12,18,14,30,31]

path 2 = [0,12,18,13,9,1,2,15,8,29,32,10,12,18,
14,30,11,12,18,14,30,36,37,31]

path 3 = [0,12,18,13,9,1,2,15,3,16,4,2,15,8,29,33,32,
10,12,18,14,30,11,12,18,14,30,36,37,31]

path 4 = [0,12,18,13,9,1,2,15,3,16,5,17,6,2,15,8,29,34,
32,10,12,18,14,30,11,12,18,14,30,36,37,31]

path 5 = [0,12,18,13,9,1,2,15,3,16,5,17,7,2,15,8,29,35,
32,10,12,18,14,30,11,12,18,14,30,36,37,31]

Fig. 9. The 5 paths of quicksort up to depth 2.

In Fig. 9 we show the 5 paths generated by the algorithm for the quicksort
UUT when the initial depth is set to 2. We have depicted them graphically
on the left part of the figure as the call tree deployed by each path. Notice
that, by setting the depth to 2, also the paths of depth 1 are generated (in this
example, there is only one such path). Moreover, all the combinatorics arising
when varying the depths of the different SCCs from 1 to the maximum depth,
and building the cartesian product of the corresponding paths, are also achieved
by our expansion algorithm. For that reason, setting the maximum depth to 3
in this example results in a combinatorial explosion and produces 2 549 paths
(see Fig. 10).

5 Experiments

We have applied the above algorithm to a collection of UUTs including purely
functional algorithms such as the insertion of a key in an AVL tree, or computing

134 R. Peña and J. Sánchez-Hernández

the union of two leftist heaps; purely iterative ones, such as inserting and search-
ing a value in a sorted array, or the Dutch National Flag problem [3]; and to
hybrid ones, such as our quicksort running example, which includes an iterative
version of partition.

In Fig. 10 we show the results of these experiments. The number of static
white box paths computed by our algorithm at several depths is shown in the
first three columns. The column T/NT specifies whether all functions in the
UUT are tail-recursive (T), or there exists some non-tail recursive (NT) ones.
The column S/D tells us whether all functions are simple recursive or at least
one is double recursive. The last column shows the number of functions included
in the UUT, excluding the top visible one. We make note that the number of
paths grows very quickly for units having more than one function.

UUT depth=1 depth=2 depth=3 T/NT S/D #f
quicksort 1 5 2 549 NT D 4
binSearch 1 3 7 T S 1
DutchNationalFlag 1 4 13 T S 1
linearSearchArray 2 4 6 T S 1
insertArray 2 4 6 T S 1
insertList 2 4 6 NT S 1
deleteList 3 6 9 NT S 1
searchBST 2 6 14 T S 1
insertBST 2 6 14 NT S 1
searchAVL 2 6 14 T S 1
insertAVL 2 10 306 (*) NT S 6
searchRedBlack 2 6 14 T S 1
unionLeftist 2 34 20 202 NT D 3
insertLeftist 2 34 20 202 NT D 4

(*) It runs out of memory after 40 minutes running.

Fig. 10. White-box paths in a suit of UUTs

We have confirmed in the experiments that the notion of path depth defined
here coincides both with the number of iterations in loops incremented by 1, and
with the unfolding depth of the call tree in recursive functions. A single algorithm
suffices, then, to generate exhaustive white-box paths in iterative, recursive, and
hybrid programs.

6 Conclusions

We have not found papers in the literature on the specific subject of white-
box path generation in recursive programs. In a comprehensive study conducted
in 2014 [8] on white-box and black-box test-case generation, and surveying 85
papers published in journals between 2004 and 2013, there is no mention to this

White-Box Paths in Recursive Programs 135

problem. The papers on white-box paths are mainly devoted to how to generate
concrete values satisfying a particular path, or to compare the path coverage of
a suit of test-cases generated by using a variety of techniques. But, consistently,
all of them assume that paths are directly obtained from the program control
flow graph. That is, they assume an iterative unit under test.

We believe that the approach presented here is simple enough to be imple-
mented in a practical tool and it can deal with all kinds of recursive programs:
simple and multiple recursive, tail and non-tail recursive, and directly and mutu-
ally recursive. It is appropriate for unit white-box testing, and could be easily
adapted to bottom-up integration testing. For that purpose, the UUT must dis-
tinguish between the externally called functions and the ones belonging to the
UUT (for instance, by declaring the former in an import clause). Then, the
external functions would simply not be expanded by the algorithm.

References

1. Anand, S., et al.: An orchestrated survey of methodologies for automated software
test case generation. J. Syst. Softw. 86(8), 1978–2001 (2013). https://doi.org/10.
1016/j.jss.2013.02.061

2. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (2013). https://doi.org/10.1145/2408776.2408795

3. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Upper Saddle River
(1976)

4. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: Cartwright, R. (ed.) Proceedings of the Conference on Program-
ming Language Design and Implementation (PLDI 1993), pp. 237–247. ACM (1993).
https://doi.org/10.1145/155090.155113

5. Montenegro, M., Nieva, S., Peña, R., Segura, C.: Liquid types for array invariant
synthesis. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482,
pp. 289–306. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 20

6. Montenegro, M., Peña, R., Sánchez-Hernández, J.: A generic intermediate represen-
tation for verification condition generation. In: Falaschi, M. (ed.) LOPSTR 2015.
LNCS, vol. 9527, pp. 227–243. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-27436-2 14

7. de Moura, Leonardo, Bjørner, Nikolaj: Z3: an efficient SMT solver. In: Ramakr-
ishnan, C.R., Rehof, Jakob (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3 24

8. Mustafa, S., Deris, S., Mohamad, R.: Systematic Mapping Study in Automatic Test
Case Generation, pp. 703–720. IOS Press, Amsterdam (2014)

https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/155090.155113
https://doi.org/10.1007/978-3-319-68167-2_20
https://doi.org/10.1007/978-3-319-27436-2_14
https://doi.org/10.1007/978-3-319-27436-2_14
https://doi.org/10.1007/978-3-540-78800-3_24

	White-Box Path Generation in Recursive Programs
	1 Introduction
	2 Functional Intermediate Representation
	3 Two-Level Representation and Assumed Properties
	4 Path Generation Algorithm
	4.1 Generating the CFGs and the TP
	4.2 Generating the CG and Computing the SCCs
	4.3 Computing the Paths

	5 Experiments
	6 Conclusions
	References

