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Abstract. Type error messages of compilers of statically typed func-
tional languages are often inaccurate, making type error debugging hard.
Many solutions to the problem have been proposed, but most have been
evaluated only with short programs, that is, of fewer than 30 lines. In
this paper we note that our own tool for delta debugging type errors
scales poorly for large programs. In response we present a new tool that
applies a new algorithm for segmenting a large program before the delta
debugging algorithm is applied. We propose a framework for quantify-
ing the quality of type error debuggers and apply it to our new tool
demonstrating substantial improvement.

Keywords: Type error · Error diagnosis · Blackbox · Delta
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1 Introduction

Type errors in statically typed functional languages such as Haskell, ML and
OCaml are difficult to understand and repair. The type error message of a com-
piler gives a location in the ill-typed program, but this location is often far from
the defect that needs to be repaired. In over 30 years numerous solutions have
been proposed, but none has been widely adopted.

In our opinion the major reason for this non-adoption is the effort required for
implementing proposed solutions for full programming languages and maintain-
ing them in the face of evolving languages and compilers. Proposed solutions
usually require new compiler front-ends, including new type inference imple-
mentations, or substantial modifications of existing compilers. We believe that
a small improvement that requires little implementation and maintenance effort
is much better than a big improvement that requires substantial effort. Hence it
has been our goal to develop a type error debugger that uses the compiler as a
true black box, that is, it calls the compiler as an external program.

In an earlier paper we presented and evaluated such a type error debugger
[18]. Our debugger implements the isolating delta debugging algorithm [28] to
locate the defective line in an ill-typed program. Our debugger works solely on
a line-based principle, directly adding and removing the lines of the source code
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to generate configurations. These configurations, that is variants of the ill-typed
program, are tested by calling the compiler. Our debugger does not duplicate
compiler work such as parsing, instead it uses minimal information from the
outcome of the compiler call; in particular, the only information the debugger
uses is whether compilation succeeded (passed), failed with a type error (fail),
or failed with some other error (unresolved). As a consequence such a debugger
is mostly programming language agnostic.

We showed that our debugger yields good locations in reasonable time for
a data-set sample of 121 ill-typed programs, named the CE benchmarks, that
had been taken from papers on type error debugging [3]. However, unlike delta
debugging of run-time failures, which was evaluated with large programs, suc-
cessfully finding a fault in a 178,000 line program, all these programs are short;
the longest has 23 lines [27]. So for many type error debugging methods proposed
in the literature that use this and other data-sets, including our own debugger,
it is unknown from their evaluations whether they scale for larger programs. To
counter this we introduce a new data-set, named the scalability benchmarks, of
80 type errors that we introduced into the large program Pandoc. This data-set
provides a starting point for evaluating the scalability of type error solutions.

1.1 Brief Example of the Line-Based Problem

As our debugger is line-based it is affected by where the isolating delta debugging
algorithm chooses to split the source code. The isolating delta debugging algo-
rithm tests a logarithmic1 number of configurations if no outcome is unresolved.
For example, an ill-typed program containing just one line will immediately
locate the fault on that line from the first configuration whereas an ill-typed
program containing 6 lines of code can take three configurations to locate the
type error. However, as we have previously said we do not replicate parsing and
so every line combination can be a possible configuration. This has the detrimen-
tal effect of causing many ill-formed variants; producing a significant number of
unresolved results.

Take as a brief example this Haskell program from Stuckey et al. [21] that
we used in our previous paper[18]:

1 insert x [] = x

2 insert x (y:ys) | x > y = y : insert x ys

3 | otherwise = x : y : ys

The program is ill-typed. The first line is incorrect the x should be a list of
x. The Glasgow Haskell compiler2 gives us line 2 as the incorrect line, whereas
our previous debugger correctly points out line 1. However, even in this three
line program we still receive unresolved results from the isolating delta debugging
algorithm. For example the following configuration returns a parse error:

1 With respect to the number of lines of the original ill-typed program.
2 https://www.haskell.org/ghc, version 8.4.3.

https://www.haskell.org/ghc
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1

2

3 | otherwise = x : y : ys

The more outcomes are unresolved, the less efficient isolating delta debugging
becomes, up to a quadratic number of configurations. “When using . . . [isolating
delta debugging], it is thus wise to keep unresolved test outcomes to a minimum,
as this keeps down the number of tests required” [28]. All applications imple-
menting isolating delta debugging try to minimise the number of configurations
with unresolved test outcomes. In our application the root cause of most unre-
solved outcomes are parse errors. Building some kind of parser for our debugger
would contradict our goals. Hence here we present an algorithm, Moiety, that
calls the compiler as a black box. Moiety detects the lines within an ill-typed
program that are valid splitting points. A moiety is a configuration of the original
program that consists of consecutive lines that should not be split. If a moiety
is split, then compilation will produce a parse error. In summary, the moiety
information guides the isolating delta debugging algorithm to reduce unresolved
test outcomes and thus reduce the time taken for the algorithm to run.

We implemented the new type error debugger, Elucidate20. It combines the
new moiety algorithm with an isolating delta debugging algorithm that uses
moiety information. The debugger locates a defective line of an ill-typed Haskell
program, using the Glasgow Haskell compiler as black box. To debug large pro-
grams, Elucidate20, unlike our previous debugger, also supports multi-module
programs and a standard project build tool.

In this paper we make the following contributions:

– We present the moiety algorithm, which generates, using the compiler as a
black box, a set of moieties of the ill-typed program. That set determines the
configurations for the isolating delta debugging (Sect. 3).

– We propose a framework for quantifying the quality of type error debuggers
(Sect. 4).

– We introduce a new data-set of 80 ill-typed variants of the program Pandoc
(Sect. 5)

– We evaluate Elucidate20 to see whether the moiety algorithm reduces unre-
solved results and thus the run-time of the isolating delta debugging algorithm.
We use our new framework and scalability data-set (Sect. 5).

2 The Problem

2.1 Delta Debugging Type Errors

Let us briefly review what delta debugging is and how we applied it to type error
debugging [18].

To locate the defect in an ill-typed program, many programmers simply
remove (or comment out) some parts of the program and compile the smaller
program. If the smaller program is also ill-typed, the procedure is repeated.



74 J. Sharrad and O. Chitil

If the smaller program is not ill-typed, a different part of the previous program
is removed. This shrinking by trial and error repeats until the program cannot
shrink further, that is, no smaller program is ill-typed.

Simplifying delta debugging [27,28] is a greedy algorithm that automates this
method. Simplifying delta debugging divides the program into two halves and
tests each one. If one half is ill-typed, the algorithm calls itself recursively for
that half. If neither half is ill-typed, it divides the program into four parts and
tests each one. Again the algorithm calls itself recursively for any ill-typed part,
but if none is ill-typed, it tries again by dividing the program into eight parts.
When the program cannot be divided further, the algorithm stops with the last
ill-typed program as result.

Recall that testing a program yields one of three outcomes: fail (ill-typed),
pass (well-typed) or unresolved (any other error such as parse error or unbound
identifier). For the simplifying delta debugging algorithm it does not matter
whether an outcome is pass or unresolved, but for the isolating delta debugging
algorithm, which we actually use, the difference is essential.

A program variant that may be tested is called a configuration. For type error
debugging we made the same choice of configurations as many other implemen-
tations of delta debugging: we chose to always remove whole lines of the ill-typed
program3. Hence a configuration is the original ill-typed program with some lines
replaced by empty lines4. A configuration being a subconfiguration of another
configuration is a natural partial order on configurations, with the empty con-
figuration, consisting of many empty lines, being the minimum and the original
ill-typed program being the maximum.

A minimal ill-typed program is often still big, because for every function or
type that it uses it has to includes its definition, which is usually well-typed. To
isolate a cause of the type error we want to exclude these well-typed definitions.
Therefore we decided to use the isolating delta debugging algorithm for type
error debugging.

The isolating delta debugging algorithm [6,28,29] works with a pair of config-
urations, a passing and a failing configuration, the former being a subconfigura-
tion of the latter. The algorithm starts with the empty configuration as passing
configuration and the ill-typed program as failing configuration. The algorithm
divides the difference between the two configurations into two parts and tests the
passing configuration with each of these parts added and the failing configuration
with each of these parts removed. If any tested configuration yields a passing
outcome, it can become the new passing configuration, if any tested configura-
tion yields a failing outcome, it can become the new failing configuration; then
the algorithm calls itself recursively with a new pair of configurations. If all of the
tested configurations yield unresolved outcomes, the difference is divided instead
into four, eight, etc. parts, similar to the simplifying delta debugging algorithm,
until eventually a passing or failing configuration is found; if no further division

3 Removing single characters is another choice presented by Zeller [28].
4 Instead of removing the lines completely we still keep the empty lines to avoid
undesirable changes of program layout.
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is possible, the algorithm terminates. The algorithm does not specify how the dif-
ference between two configurations is divided into parts and there may be several
passing and failing outcomes; thus the algorithm is non-deterministic; however,
like any other implementation, ours makes a choice and thus is deterministic
[1,12]. In every recursive call the passing configuration is a subconfiguration of
the failing configuration (and both are subconfigurations of the original ill-typed
program). Every recursive call reduces the difference between the two configu-
rations, until the difference cannot be reduced any further.

The final result of isolating delta debugging is a pair of configurations, where
the first configuration is a passing subconfiguration of the second failing configu-
ration, such that there exists no passing or failing configuration between the two
configurations. The algorithm is greedy to limit run-time and it is not guaranteed
to return a pair of configurations with minimal difference.

The final pair of configurations is the result of the isolating delta debugging
algorithm. The difference between the two configurations, which may be neither
a passing nor a failing configuration, isolates a failure cause. This difference is
the result of our type error debugger.

2.2 The Effect of Unresolved Outcomes

Because our definition of configuration is based on program lines, all complexity
measures of type error debugging are with respect to the number of lines of
the ill-typed program. For a given ill-typed program there exists an exponential
number of configurations. Already finding a failing configuration of minimal size
is known to be NP-complete [11].

In type error debugging nearly all run-time is spent in the tests made by
the compiler. In general, the run-time of delta debugging is proportional to the
number of tests made.5

We see from the description of delta debugging that if no test outcome is unre-
solved, it is basically a binary search. In contrast, frequent unresolved outcomes
cause the algorithm to repeatedly divide (differences of) configurations into four,
eight, etc. parts and make more tests. If every configuration is unresolved the
algorithm starts to generate configurations that contain a single line until all lines
of the program have been checked6. So as we already stated in the introduction,
the isolating delta debugging algorithm has logarithmic time complexity if no
outcome is unresolved and becomes less efficient, up to a quadratic time com-
plexity, with many unresolved outcomes. Therefore any successful application of
delta debugging makes some effort to avoid unresolved outcomes.

The issue with many unresolved outcomes can be shown more clearly within
our earlier results [18]. These 900 programs were generated by concatenating
pairs of some of the original small CE benchmark programs. For space reasons,
we have ordered the 900 programs by number of lines and put them into 4
groups: the shortest 225 in the first group, the next 225 in the second group, etc.

5 This assumes similar run-time for every test, which may not be the case.
6 A proof is available on page 408 of ‘Why Programs Fail’ [28].
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Table 1 on the left shows the average outcomes and indicates that the number
of unresolved results grows substantially with program size which can be seen
more clearly with the a graphically representation on the right.

Table 1. Average number of unresolved outcomes compared to number of lines of code.

# lines # unresolveds

10 2
17 4
22 7
25 14

However, we noted in the introduction that ill-typed programs that have
been used to evaluate type error debuggers are short. The longest program in
the CE benchmark suite [3] of 121 programs has just 23 lines. Such programs are
good for studying how a type error debugger works and many of these programs
are representative for the first programs written by novices learning a functional
programming language. But they do not show us how a type error debugger will
scale as not just novices need help with type error debugging, but also more
experienced functional programmers who build useful, real-world programs.

In October 2019 we measured the top 100 Haskell programs on the popular
public repository GitHub7. On average each program has 31872 lines of code,
138 modules, and 229 lines of code per module, far from the 23 lines mentioned
above. Even though our type error debugger processes small programs in a few
seconds, when applied to programs such as these that contain on average a
few hundred lines, due to a hefty number of unresolved results, it could take
substantially longer, which is unacceptable [18].

As already stated there is an obvious suspect for the high number of unre-
solved outcomes in larger programs: although splitting multiple equations of a
single function definition yields well-formed definitions in Haskell, splitting a
multi-line equation into half usually yields ill-formed programs; the same holds
for multi-line type declarations, which often appear in larger programs, and case
expressions with a branch per line. Many configurations are simply unparsable!

7 https://github.com/search?l=Haskell&q=Haskell&s=stars&type=Repositories.

https://github.com/search?l=Haskell&q=Haskell&s=stars&type=Repositories
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Table 2. Number of error messages giving unresolved outcome.

Error message #

The last statement in a ‘do’ block must be an expression 4

Variable not in scope 4

Not in scope: 5

Empty ‘do’ block 5

Parse error (incorrect indentation or mismatched brackets) 7

Empty list of alternatives in case expression 8

The type signature...lacks an accompanying binding 16

Parse error on input 77

Total 126

To test our suspicion, we chose the most popular software from our Github
results Pandoc, to initiate our scalability data-set. As a initial test we introduced
a single type error in a single module. The ill-typed module has 87 lines and our
debugger had 126 unresolved outcomes, which we categorise by error message
of the Glasgow Haskell compiler in Table 2. Most error messages are related to
parsing and “parse error on input” is by far the most frequent one.

3 The Moiety Algorithm and Delta Debugging

We always obtain a configuration that does not parse, if we split the original
ill-typed program at certain consecutive lines. Given its dominance, we solely
focus on the “parse error on input” error message. These indicate that pars-
ing failed somewhere inside the configuration, whereas for example “parse error
(incorrect indentation or mismatched brackets)” indicates that parsing fails at
the end of the configuration. Concentrating on the former means our algorithm
has the ability to distinguish between the two. So we use this information to
first determine which lines that should never be separated as they will cause a
“parse error on input” and then apply the delta debugging algorithm such that
it never splits in these places.

We name our pre-processing algorithm Moiety ; according to the Merriam-
Webster dictionary a moiety is “one of the portions into which something is
divided”.8 Moiety divides the ill-typed program into moieties, that is, what posi-
tion in the source code we can split the lines. This is represented as a tuple, with
the starting and ending points of the splits.

8 https://www.merriam-webster.com/dictionary/moiety.

https://www.merriam-webster.com/dictionary/moiety
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3.1 Illustration of the Algorithm

The moiety algorithm is designed to reduce unresolved, “parse error on input”,
results from large programs. However, to present how moiety works concisely we
have to consider the following small ill-typed program9:

1 f x = case x of

2 0 -> [0]

3 1 -> 1

4 plus :: Int -> Int -> Int

5 plus = (+)

6 fib x = case x of

7 0 -> f x

8 1 -> f x

9 n -> fib (n-1) plus fib (n-2)

To limit runtime, the algorithm may only traverse the program once from
beginning to end to produce its set of moieties; no line in the program is submit-
ted to the compiler duplicate times. Moiety calls the compiler to test a program
for whether it yields “parse error on input” or not. We show the tested program
on the left and the test outcome and resulting moiety set on the right. We note
that line 1 never yields “parse error on input” so start with line 2.

1

2 0 -> [0]

3

4

5

6

7

8

9

“parse error on input”

moieties:()

As line 2 produces a “parse error on input” it cannot be the starting line for
a plausible split; and so we continue with line 3:

1

2

3 1 -> 1

4

5

6

7

8

9

“parse error on input”

moieties:()

9 It should be noted when we talk about small programs in type error debugging we
are discussing those that are used for evaluation and not those used for examples.
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Like line 2, line 3 also cannot start a new moiety; we continue with line 4:

1

2

3

4 plus :: Int -> Int -> Int

5

6

7

8

9

not “parse error on input”

moieties:(3,4)

Line 4 is not a “parse error on input” so we can create a new moiety. We can
successfully split line 4 from line 3; and so line 3 is our starting point and line 4
is our finishing points of our first moiety. Next line 5:

1

2

3

4

5 plus = (+)

6

7

8

9

not “parse error on input”

moieties:(3,4) (4,5)

Likewise, line 5 starts a new moiety as it can be split from line 4. We move
on to line 6:

1

2

3

4

5

6 fib x = case x of

7

8

9

not “parse error on input”

moieties:(3,4) (4,5) (5,6)

So line 6 starts a new moiety too. We continue with line 7:
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1

2

3

4

5

6

7 0 -> f x

8

9

“parse error on input”

moieties:(3,4) (4,5) (5,6)

At this point it is hopefully obvious that lines 8 and 9 each also gives the
outcome “parse error on input” and so the algorithm finishes with the moieties
(3,4) (4,5) (5,6).

Working through the example shows how simple the moiety algorithm is:
The algorithm tests every single line of the original ill-typed program whether
it yields “parse error on input” or not. In case of the former, the line cannot be
split from the preceding lines so no moiety can be generated. Otherwise it does
start a new moiety. The result is an ordered set of moieties, two lines that can
be successfully split.

3.2 Example of Isolating Delta Debugging with Moieties

In the subsequent isolating delta debugging algorithm moieties are never split,
simply by redefining a configuration as a subset of moieties.

So in our example we have the moiety list (3,4) (4,5) (5,6).
We start isolating delta debugging with the passing configuration {} and the

failing configuration {[1,2,3],[4],[5], [6,7,8,9]}. As we can see our failing
configuration, of source code line numbers, is now split using the moieties.10 We
divide the difference between the two configurations by two and hence test the
configurations {[1,2,3],[4]} and {[5],[6,7,8,9]}. Both configurations give
the outcome unresolved. Hence we have to divide the difference between our
passing and failing configuration by four and test the configurations {[1,2,3]},
{[4]}, {[5]}, {[6,7,8,9]} and the configurations {[4],[5],[6,7,8,9]},
{[1,2,3],[5],[6,7,8,9]}, {[1,2,3],[4],[6,7,8,9]}, {[1,2,3],[4],[5]}.
Our implementation happens to test {[5]} first and the test gives outcome
pass.

Next, isolating delta debugging calls itself recursively with the new passing con-
figuration {[5]} and the failing configuration {[1,2,3],[4],[5],[6,7,8,9]}.
We divide the difference, which is 3 moieties, by two and hence test the configu-
rations {[1,2,3],[4],[5]} and {[5],[6,7,8,9]}. The first configuration gives
outcome fail.

Next, isolating delta debugging calls itself recursively with the old pass-
ing configuration {[5]} and the new failing configuration {[1,2,3],[4],[5]}.
10 {[1],[2], [3],[4],[5],[6],[7],[8],[9]} represents the non-moiety failing con-

figuration. Every line is an acceptable splitting location.
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We divide the difference by two and hence test the configurations {[1,2,3],[5]}
and {[4],[5]}. The first configuration gives outcome fail.

Finally, isolating delta debugging calls itself recursively with the old passing
configuration {[5]} and the new failing configuration {[1,2,3],[5]}. Because
the difference between the two configurations is only one moiety, the algorithm
terminates with the these two configurations as result. Our type debugger returns
the difference between these two configurations as the location of the defect:
{1, 2, 3}. The actual type error is in line 2, but our type debugger can return at
best a single moiety and its preceding lines.

3.3 Time Complexity

We designed the moiety algorithm to return a list of moieties in the shortest
time possible, that is linear in the number of lines of the ill-typed program. We
know that isolating delta debugging takes between logarithmic and quadratic
time, now in the number of moieties. Because moieties avoid the most common
type of unresolved outcome, we hope that overall the time complexity of type
error debugging is close to linear.

4 A Framework for Type Error Debugging

In data science using model metrics such as Accuracy, Precision, and Recall are
an accepted standard [19,26]. Yet within type error debugging evaluations only
recall, whether a type error has been located correctly or not, run-time, and
the authors personal goals are deemed important [4,16]. We disagree with using
only one metric as it can bias results, and in later works authors seem to agree
[17,30]. However, even though we are slowly seeing other metrics joining recall
in type error debugging evaluations they are not representing the same formulas,
and so we are proposing the following as a framework for future evaluations to
allow for ease of solution comparison (Table 3).

Table 3. Terminology

Shorthand Longhand Equivalents

Data science

TP True Positive

TN True Negative

FP False Positive

FN False Negative

Our terms

RL Reported lines (number of lines returned) TP + FP

RE Reported errors (number of correct errors) TP

UR Unreported lines (number of correct unreported lines) TN

L Lines of code (total source code) TN + TP + FN + FP

E Errors (number of errors in the code) TP + FN
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4.1 The Metrics

Accuracy tells us the typical distance from a measure to the optimum value.
For our domain, number of lines correctly excluded plus correctly reported lines
containing a type error. However, this is problematic as we receive a high number
of True Negative answers, number of correct lines ignored, and so this is generally
ignored in the type error debugging domain in favour of recall.

Accuracy =
TN + TP

TN + TP + FN + FP
=

UR + RE

L
(1)

Recall, aka sensitivity, is the measure of the quantity of elements correctly
returned.

Recall =
TP

TP + FN
=

RE

E
(2)

For type errors this measures the number of errors that are reported correctly
compared to the number of errors within the source code. As already noted, this
metric is most used in type error debugging evaluations. It shows if a debugger
can successfully discover the correct number of type errors within an ill-typed
program. However, like Accuracy, it is not without fault as the following example
will show.

Lets us assume we have an ill-typed program containing 8 lines (L = 8)
and 1 type error (E = 1). We run a debugger and it returns all 8 lines of code
as containing the type error (RL = 8) and, obviously, returns the correct line
location within this (RE = 1). Most type error debugging evaluations do not
mention the amount of lines returned, only if their debugger located the line
correctly. If recall is used as the only metric in evaluations we end up being able
to state that this example shows our debugger is 100% correct.

Recall =
RE

E
=

1
1

= 100% (3)

This, to us, is obviously incorrect, yet the metric proves it to be true. To
counter this issue Data Science employs another metric.

Precision, also known as positive predictive value, is the number of elements
within the entire returned set of results.

Precision =
TP

TP + FP
=

RE

RL
(4)

Mapped to our domain it is the number of correct lines of code reported by
the debugger compared to the total number of lines returned. Precision allows us
to see if we have returned the correct location as one single line versus returning
a correct location within several lines.

Applying precision to our ongoing example we receive:

Precision =
RE

RL
=

1
8

= 12.5% (5)
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As can be seen this is a significant difference from our results from recall,
however it is also not practical to use Precision as a singular metric either due
its reliance on False Positives, some of the lines returned do not contain a type
error. This is where the Data Science domain employs the F1 Score.

F1 Score is calculated from the harmony mean of the two metrics Recall and
Precision. This produces an accuracy measure that accounts for the imbalance
of data within type error debugging, meaning the F1 score is crucial in showing
the true results of evaluations.

F1 = 2
Precision ·Recall

Precision + Recall
= 2

RE

E + RL
(6)

Now with our example we can see meaningful feedback for evaluation.

F1 = 2
RE

E + RL
= 2

1
1 + 8

= 22% (7)

With this framework we can now generate easily comparable evaluations for
future work in the type error debugging domain.

5 Evaluating Our Method

We now apply our method on a single real-world program to test scalability;
Pandoc is a Haskell library for markup conversion, it has a total of 64,467 lines
of code with an average of 430 lines of code per module in 150 modules. We
place within Pandoc 80 individual type errors into 40 of its modules (using each
module twice) of which each contain between 32 and 2305 lines of code (Table 4).

Table 4. Lines of code per module with associated errors

Errors LoC Errors LoC Errors LoC Errors LoC

{1, 2} 32 {21, 22} 73 {41, 42} 156 {61, 62} 238

{3, 4} 37 {23, 24} 77 {43, 44} 167 {63, 64} 240

{5, 6} 45 {25, 26} 79 {45, 46} 187 {65, 66} 258

{7, 8} 48 {27, 28} 83 {47, 48} 192 {67, 68} 261

{9, 10} 48 {29, 30} 86 {49, 50} 204 {69, 70} 266

{11, 12} 52 {31, 32} 86 {51, 52} 205 {71, 72} 271

{13, 14} 58 {33, 34} 91 {53, 54} 212 {73, 74} 275

{15, 16} 58 {35, 36} 94 {55, 56} 213 {75, 76} 278

{17, 18} 65 {37, 38} 140 {57, 58} 214 {77, 78} 287

{19, 20} 68 {39, 40} 155 {59, 60} 227 {79, 80} 2305

The modules chosen were the first 39 in size order that contained code that
could be made ill-typed. The last module was the largest module Pandoc con-
tained at 2305 lines. The placement of the error was decided upon by a random
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Table 5. Type error categories

Category Errors total

Couldn’t match... 79

Rigid type variable bound by the type signature .. 5

In the ? field of a record ..In the expression .. 3

...In the expression:?... 22

In an equation ? .. 7

In a stmt of a ‘do’ block ? .. 3

In a case alternative ? .. 7

In the expression: ? .. 5

...In the ? argument of ?... 20

In the expression ? In an equation for ? ... 7

In a stmt of a ‘do’ block ? .. 11

In the ? argument of ?.. 2

...In the pattern: ?... 3

In a case alternative ? In the expression ? .. 2

In equation ? .. 1

...is applied to...arguments ... 26

Possible cause ? is applied to too many arguments .. 3

Probable cause ? is applied to too few arguments .. 11

The function ? is applied to ? argument/s .. 12

Couldn’t deduce... 1

Arising from a use of ? from the context ? bound by the type signature 1

number generator. If the line suggested was unsuitable for type error placement
the generator was re-run. The type errors were inserted manually with no prior
planning on the category of type error. The categories, listed by the individual
error message presented by GHC, can be seen in Table 5. To note, all of the type
errors inserted are Equality Errors as according to TcErrors11.

We compare our debugger, Elucidate20, with Gramarye19. Gramarye19 is a
modified version of our previous debugger Gramarye; and like Elucidate20 now
supports the following features:

Modular Programs. The type error location of a compiler is unreliable, but our
type error debugger assumes that the first module identified by the compiler as
ill-typed does contain the type error location; our type error debugger works
solely on that module. If a module causes the first compiler type error, then all
modules directly or indirectly imported are well-typed. An identifier defined in
an imported module may have a type that contradicts with how the identifier
is used in the ill-typed module. However, even when both definition and use are
11 TcErrors is part of the Glasgow Haskell Compiler and states that type errors fall

into one of 4 groups; more information about this can be found in: https://github.
com/JoannaSharrad/ghcErrorsDoc/blob/master/RoughGuidetoGHCTcErrors.pdf.

https://github.com/JoannaSharrad/ghcErrorsDoc/blob/master/RoughGuidetoGHCTcErrors.pdf
https://github.com/JoannaSharrad/ghcErrorsDoc/blob/master/RoughGuidetoGHCTcErrors.pdf
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in the same module and the definition is typable, delta debugging will always
identify the use of the identifier as the cause of the error, not the definition. So
our treatment of modules is consistent with our general treatment of definition
vs. use.

Haskell Specific Language. There are some language declarations that should be
ignored when removing lines as they will always lead to an unresolved result.
Hence our type error debugger leaves these declarations in all configurations
tested by the delta debugging algorithm. The following are never the location
of a type error; import declarations, single line comments, multi-line comments,
and module declaration. Unfortunately, recognising lines with these declarations
is specific to the programming language Haskell, and thus removes the agnostic
status from the delta debugging algorithm.

The Build Tool. When measuring the top 100 Haskell programs on GitHub, we
found that they all use Cabal12 for packaging and building. Therefore our type
error debugger has a flag to call the build tool cabal instead of the Glasgow
Haskell compiler for testing. When cabal is used, the user has to state the target
program instead of the ill-typed module.

Though the above have been added as features to both Gramarye19 and Elu-
cidate20, the latter still keeps delta debugging free of the moiety pre-processing
[18].

For this evaluation we ran our benchmarks on an AMD Phenom X4, 32 GB
RAM, Samsung SSD 850, PC running Ubuntu 18.04LTS to answer the following
questions:

1. Does the Moiety algorithm reduce the number of unresolved results?
2. Does the pre-processing affect the time taken by Isolating Delta Debugging?
3. Does applying the new framework quantify the quality of the debugger?

5.1 Reduction of Unresolved Results

Question: Does the Moiety algorithm reduce the number of Unresolved results?
The moiety algorithm produces a set of splitting locations in the source code.

Our scalability benchmark contained a total of 16264 lines of code of which
16184 were places that the isolating delta debugging algorithm was allowed to
split. Pre-processing the source code using the moiety algorithm we see that out
of these 7953 (68%) were plausible splitting points. On average 39% of a single
benchmark could not be split without causing a “parse error on input”.

In Fig. 1 we can see the number of unresolved outcomes, on the y axis, for
each of the 80 type errors in the scalability benchmark listed on the x axis. For
the desired outcome we want the bar to be close to zero. For ease of reading we
have capped Fig. 1 at a maximum of 170 unresolved results, however it is worth
noting that Gramarye19 returned seven results higher than this with modules

12 https://www.haskell.org/cabal/.

https://www.haskell.org/cabal/
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Fig. 1. Unresolved results per introduced type error

51, 60, 63, 64, 75, 76 and 80 returning 265, 395, 1436, 1436, 221, 221, and
504 unresolved results respectively. The highest outcome of unresolveds from
Elucidate20 was 165, with its lowest being 0 compared to Gramarye19 with 2.

On average there are 16 unresolved outcomes per type error from Elucidate20
compared to Gramarye19 at 88; meaning a reduction of 72 calls to the blackbox
compiler. The importance of reducing calls is seen in benchmark 64 a module
with 240 lines of code; here Gramarye19 has 1436 unresolved outcomes and
takes just over an hour to run the isolating delta debugging algorithm whereas
Elucidate20 receives only 7 unresolved results and the time taken drops to just
36 s, a difference of around 52 min.

Elucidate20 has an significant impact, totalling a removal of 5743 unresolved
outcomes from the entire benchmark, over Gramarye19. However, though we
have seen, with benchmark 64, that the delta debugging Run-Time can be
reduced does the Moiety algorithm make a reduction to all of our benchmarks?

5.2 The Run-Time Speeds

Question: Does the pre-processing effect the time taken by Isolating Delta
Debugging?

With the unresolved results minimised we hypotheses that the time taken
by delta debugging should reduce. In Fig. 2 we show the outcome of just the
run-time of delta debugging (excluding pre-processing) in seconds on the y axis,
and again each type error on the x axis. As in Sect. 5.1 we have again modified
the figure so that we can see the data more clearly by dropping off the most
extreme results of Gramarye19 in type errors 60, 63, 64, and 80 who returned
run-time results of 1295 s (21 m 35 s), 4299 s (1 h 11 m 39 s), 4201 s (1 h 10 m 1 s),
and 1482 s (24 m 42 s) each. The highest result from Elucidate20 is 436 s (7 m
16 s), with the lowest being recorded at 16 s compared to Gramarye19 at 21 s.
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Fig. 2. Delta debugging run-time

On average Gramarye19 took 285 s (4 m 45 s) to run the isolating delta debug-
ging algorithm, 219 (3 m 39 s) more than Elucidate20 at 66 (1 m 6 s) showing
a clear link between total unresolved outcomes received and the time taken to
locate a type error. In total Elucidate20 reduced the time taken by isolating
delta debugging algorithm for the entire benchmark by 4 h 52 m 8 s.

However, when running a debugger the user experiences the entire process
not just the algorithm locating the type errors. Our pre-processing is linear,
based on lines of code in the program, and the length equals the amount of calls
we need to make to the blackbox compiler. Gramarye19 with its lack of moiety
algorithm takes on average 303 (5 m 3 s) compared to Elucidate20 at 419 (6 m
59 s). It is clear to see that when using our moiety algorithm we are around
a minute slower than our previous debugger. This issue with pre-processing is
down to the calling of the compiler as a blackbox. In the case of the scalability
benchmark we are calling the build tool Cabal. As an example, if we take our
worst case result, benchmark 79, we can see that we reduce the run-time of
the isolating delta debugging algorithm from 327 s (5 m 27 s) to 85 s (1 m 25 s),
however the user-time is increased from 330 s (5 m 30) to the awful 4888 s (1 h
21 m 28 s). If we look at this benchmark it is 2306 lines of code and every call to
Cabal takes around 2 s. If we apply 2 s exactly to every line of code we can see
that we get a result of 4612 s (1 h 16 m 52 s) close to our worst case benchmark.
However, the pre-processing method does have occasional successes in improving
overall debugging time, with Elucidate20 reducing the user-time for some of our
benchmarks by over an hour.
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Fig. 3. Recall

5.3 Applying the Framework

In Fig. 3 and Table 6 we present the data from applying the framework to our
results. We display the outcome of recall in more depth as to mimic other type
error debugging evaluations. The two graphs show all 80 modules on the x axis
and if the type error they contained were either correctly located (100%) or not
(0%) or the y axis.

The framework results table shows the average outcome for all four of our
metrics. The higher the percentage the more desirable.

Table 6. Framework results - average

Metric Gramarye19 Elucidate20

Accuracy 94% 88%
Recall 38% 59%

Precision 16% 14%
F1 Score 20% 19%

Question: Does applying the new framework quantify the quality of the debugger?
Recall shows us if the debugger has returned the correct type error specified. As
we only have a single type error per benchmark our result is binary. Elucidate20
correctly locates 59% (47/80) of the type errors compared to Gramarye19 which
returns fewer correct type errors at 38% (30/80). This rise in correct results
from Elucidate20 is directly linked to the pre-processing of the source code.
Firstly, as we are passing a new configuration to delta debugging, setting out
how to split our lines, we have the chance to generate an alternative pathway
of modifications leading to different results from our Blackbox compiler; as the
path that the debugger takes relies on these outcomes an alternative result can
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happen. Secondly as our method does not allow the splitting of lines outside the
moieties we gain the bias of returning a greater set of locations and so increasing
our chances of success. As described in Sect. 4 this bias can allow us to return
100 results as suggested locations with an ill-typed program of only 100 lines;
we can say that this would not make a suitable solution and so is countered with
the precision metric.

In the Table 6 we see that indeed Gramarye19 is more precise than Eluci-
date20; however overall this only accounts for a difference of 2% points meaning
we need to invoke the F1 score for an accurate reading.

The F1 score blends our metric results, Recall and Precision, to form a true
overview of the results, as already mentioned this is the harmony mean of the
two metrics. With this set of benchmarks we receive a 1% difference between the
presented debugger Elucidate20 and the previous Gramarye19, with the latter
providing a higher F1 score. This outcome is not surprising; the precision of
Elucidate20 is hampered by the moiety algorithm. However, we do not see this
as a negative; it was our aim to avoid causing unresolveds and as such these
are the most precise result we can currently return for the specific benchmarks
utilised in this evaluation. This outcome was also positive evidence that shows
the importance of using more than one metric when evaluation debugging solu-
tions, and works well to indicate that many metrics are needed to present the
true quality of a type error debugger.

5.4 Summary

Applying the moiety algorithm successfully reduced the number of unresolved
outcomes significantly. This in turn reduced the time taken for the isolating
delta debugging algorithm to run by an average of around 3 min. However, for
the actual time the user experiences we must include the pre-processing that
moiety provides. In doing so we found that calling the build tool Cabal as our
blackbox compiler clearly gave unsatisfying results and that work is needed to
reduce the time of each blackbox compiler call. When applying the framework
we found that using the de facto recall metric did show improved results for
Elucidate20. However, when we added the metrics precision and F1 score from
the framework a more accurate picture was presented with Elucidate20’s results
being slightly lower than Gramarye19.

In all, we have improved the time taken by isolating delta debugging, we
have detected further work for reducing the time-taken by calling a Blackbox
Compiler, and have shown the need for the framework to quantify the quality of
type error debuggers in the future.

6 Related Work

Type Error Debugging research has a long and fruitful history starting in the
eighties[25]. It spans many solutions in a variety of categories each specialising on
their own core ideas [2,4,5,7,10,13,15,16,20,22,24,30]. However, these solutions
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rarely contain a through evaluation and when they do it does not attempt to
directly evaluate on large programs with type errors. Instead the evaluations aim
for success on small programs, typically of the size that first-time programmers
would produce. For example from a recent paper ‘Learning to blame: localizing
novice type errors with data-driven diagnosis’ though the evaluation mentions
the usage of both accuracy and recall the authors state; “We acknowledge, of
course, that students are not industrial programmers and our results may not
translate to large-scale software development...” [17] and in a well-known type
error debugging paper Counter-Factual Typing for Debugging Type Errors the
authors say “...the numbers do not tell much about how the systems would per-
form in everyday practice.” [4]. One general method of debugging that has been
applied to a 178,000 line program is Delta Debugging. Defined by Zeller in 1999,
delta debugging comes in two forms Simplifying and Isolating and is applied to
a general debugging domain rather than specific categories of errors [6,27–29].
In our previous paper we applied Zeller’s work specifically to type errors in func-
tional languages employing the compiler as a blackbox [18]. A Blackbox Com-
piler differs from other Blackbox solutions mentioned in prior literature(Blackbox
Type Checkers, Blackbox Type Inference [9,15,23]) as it treats the entire com-
piler as an external entity rather than a component of it. This method of only
taking external cues, such as whether a program is ill or well-typed, avoids users
having to patch or download a specific compiler to explicitly improve type error
discovery. Though combining a Blackbox Compiler and isolating delta debugging
to the domain of type errors returned positive results reducing unresolveds was
seen to be beneficial future work. One option for reducing the unresolveds was
the modification of the delta debugging configuration. Generating Configurations
to avoid invalid inputs for delta debugging is not new [11,14]. The closest to our
work observes that modifying lines of source code can and will generate broken
code that will still need to be sent to the test function causing debugging times
to increase [8]. In Binary Reduction of Dependency Graphs the authors aim to
reduce these invalid inputs by using dependency graphs to map the smallest set
of classes that are invalid without each other, reference’s to other classes, in Java
bytecode. Their dependency analysis is specific for Java and they only use the
simplifying delta debugging algorithm.

7 Conclusion and Future Work

We presented a method of combining Isolating Delta Debugging and a blackbox
compiler to locate type errors. Most solutions in type error debugging do not
evaluate on large programs, those that have more than 30 lines of code, and so
we aimed to target these. However, when applying isolating delta debugging to
locate type errors in these large programs we can receive outcomes that are unre-
solved, it can split source code in a way that causes parse errors, that reduce
the efficiency. We introduce an algorithm that pre-processes an ill-typed pro-
gram to eliminate these parse error; in particular ’parse errors on input’. Our
pre-processing algorithm, Moiety, presents where in the source code the lines can
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be split to avoid causing a parse errors. These moieties are then used as a con-
figuration for delta debugging to reduce the unresolveds caused by parse errors,
which in turn is linked to the time taken in delta debugging large programs.

To test the success of our solution on locating type errors in large programs
we introduced the scalability benchmarks, a set of 80 ill-typed large programs
within the real-world program Pandoc, and a framework based on Data Science
standards. The evaluation comprised of comparing our original debugger, Gra-
marye19, that used isolating delta debugging to locate type errors and our new
debugger, Elucidate20, that also include the pre-processing algorithm moiety. In
the first part of the evaluation we saw if a reduction of unresolved results and a
decrease in the isolating delta debugging algorithms run-time could be achieved.
Elucidate20 on average returned 72 fewer unresolveds per benchmark reducing
the time taken for isolating delta debugging to run by an average of 216 s (3 m
36 s). The best case reduction of time was from over an hour to 7 s, however, the
overall time the user experiences was a priority too. Here, with the combination
of moiety and isolating delta debugging, Elucidate20 did take longer than our
previous debugger to locate type errors on average with an increase of 100 s (1 m
40 s), however, when looking at individual benchmarks Elucidate20 did reduce
some user-times by more than an hour. In the second part of our evaluation we
employed our new suggested framework. We noted that one metric within the
framework, recall, is the most commonly used in our domain and showed a pos-
itive result for Elucidate20 with a 21% points increase in locating a type error
compared to Gramarye19. However, the reason for the framework is to improve
the ability to quantify the quality of type error debuggers and when the entire
framework is applied it shows that the difference between Elucidate20 and Gra-
marye19 drops to just 1% point. This significant difference in results shows that
just applying the traditional recall metric is not satisfactory for evaluations in
this field and the application of the framework on future type error debugging
solutions is needed to be able to report clearer results, and comparisons between
solutions.

For future work an increase of the categories of parse errors we treat with the
pre-processing along with adding other errors such as Variables not in Scope is a
concrete direction; as the moiety algorithm already works though individual lines
adding these will not increase the overheads and has the possibility of reducing
the time delta debugging takes further down. It is also clear that though pre-
processing speeds up delta debugging it also, on average, slows the overall run-
time of the debugger. Reducing the time it takes to generate a list of moieties
would be extremely beneficial. We would also want to increase our scalability
benchmarks to include more than one core program as this will remove any bias
away from how a programmer may specifically layout out their source code.
Lastly, though we applied our method to Haskell programs, our debugger is
nearly language agnostic. Delta Debugging and the Moiety algorithm are not
specific for the programming language, allowing for a reasonable modification
towards an agnostic debugger in the future.
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