
Aleksander Byrski
John Hughes (Eds.)

LN
CS

 1
22

22

21st International Symposium, TFP 2020
Krakow, Poland, February 13–14, 2020
Revised Selected Papers

Trends in 
Functional Programming



Lecture Notes in Computer Science 12222

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Aleksander Byrski • John Hughes (Eds.)

Trends in
Functional Programming
21st International Symposium, TFP 2020
Krakow, Poland, February 13–14, 2020
Revised Selected Papers

123



Editors
Aleksander Byrski
AGH University of Science
and Technology
Krakow, Poland

John Hughes
Chalmers University of Technology
Gothenburg, Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-57760-5 ISBN 978-3-030-57761-2 (eBook)
https://doi.org/10.1007/978-3-030-57761-2

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
The chapters “Generating Next Step Hints for Task Oriented Programs Using Symbolic Execution” and
“Flexible Formality Practical Experience with Agile Formal Methods” are licensed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For
further details see license information in the chapters.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-6317-7012
https://orcid.org/0000-0001-8042-0969
https://doi.org/10.1007/978-3-030-57761-2
http://creativecommons.org/licenses/by/4.0/


Preface

This volume contains a selection of papers presented at the 21st International Sym-
posium on Trends in Functional Programming (TFP 2020), held during February
13–14, 2020, in Kraków, Poland.

TFP is an international forum for researchers with interests in all aspects of func-
tional programming, taking a broad view of current and future trends in this area. It
aspires to be a lively environment for presenting the latest research results and other
contributions, with an unconventional reviewing process that allows for full single-
blind peer review either before or after the symposium (or both, if the pre-symposium
reviews ask for changes that need a second review before inclusion in the proceedings).
Each paper receives at least three reviews in each round it participates in. This year 22
papers were submitted in total (12 reviewed before the symposium, and 10 afterwards),
and 18 of them were presented in Kraków, together with a keynote by Carl Seger
(Chalmers University of Technology, Sweden) on “Functional Programming for
Hardware Design: The Good, The Bad, The Ugly.” After the final reviewing round,
revised versions of 11 papers were selected for inclusion in these proceedings. The final
selection spans across domain-specific languages, testing and debugging, reasoning
and effects, and parallelism.

This year TFP moved from early summer to winter dates, to provide a research-
oriented functional programming event separated by around six months from the ACM
SIGPLAN ICFP. We co-located with Lambda Days, an established developer con-
ference in the area, organized by Erlang Solutions, with a strong research element. Joint
registration enabled TFP to attract part of the Lambda Days audience to some of the
sessions, with a peak of around 120 people in the room at times, giving TFP papers
significantly more exposure than usual; co-location was a great success.

All of this was only possible thanks to the hard work of the Program Committee
members, and the help and support of the Lambda Days team. We are deeply grateful
to both.

July 2020 Aleksander Byrski
John Hughes
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PaSe: An Extensible and Inspectable DSL
for Micro-Animations

Ruben P. Pieters(B) and Tom Schrijvers

KU Leuven, 3001 Leuven, Belgium
{ruben.pieters,tom.schrijvers}@cs.kuleuven.be

Abstract. This paper presents PaSe, an extensible and inspectable
DSL embedded in Haskell for expressing micro-animations. PaSe builds
animations in compositional fashion, using parallel and sequential ani-
mations as basic building blocks. This differs from typical animation
libraries which mostly focus on sequential composition and utilize call-
backs and implicit effects for their expressivity. To provide similar flex-
ibility to other animation libraries, PaSe features extensibility of opera-
tions and inspectability of animations. We present the features of PaSe
with a to-do list application, discuss the PaSe implementation, and argue
that the callback style of extensibility is detrimental for correctly inte-
grating inspectability. To illustrate this, we contrast with the GreenSock
Animation Platform, a professional-grade and widely used JavaScript
animation library.

1 Introduction

Because of their ability to structure effectful code in a pure functional codebase,
monads quickly became ubiquitous in functional programming [20]. They have
since seen wide use in Haskell Domain Specific Languages (DSLs). However, the
choice for a monadic DSL implies certain trade-offs. The obvious advantage of
monadic DSLs is their expressivity, but there are also drawbacks. The main loss
is that of inspectability, as monadic computations can only be inspected up to the
next action. Techniques such as applicative functors [16], arrows [9], or selective
applicative functors [18] choose the other side of the trade-off: they increase the
inspection capabilities by reducing the expressivity compared to monads.

This paper develops a DSL embedded in Haskell for defining micro-
animations, called PaSe1. PaSe employs a technique which alleviates some
aspects of the trade-off between expressivity and inspectability. The expressivity
of control flow is restricted by means of type classes, inspired by the MTL style
originally introduced by Liang et al. [14]. The MTL style is an open encoding
which allows extensions to the syntax of the DSL. Instantiating the abstract ani-
mation definitions with, for example, the Const functor provides inspectability.
Expressivity can be increased, while preserving inspectability, by adding new

1 Pronounced pace (peIs), the name is derived from Parallel and Sequential.

c© Springer Nature Switzerland AG 2020
A. Byrski and J. Hughes (Eds.): TFP 2020, LNCS 12222, pp. 3–24, 2020.
https://doi.org/10.1007/978-3-030-57761-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57761-2_1&domain=pdf
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4 R. P. Pieters and T. Schrijvers

control flow constructs to the DSL and providing a corresponding instance for
inspection.

Micro-animations are short animations displayed when users interact with
an application, for example an animated transition between two screens. When
used appropriately, they aid the user in understanding evolving states of the
application [1,7,8]. Examples can be found in almost every software application:
window managers animate window minimization, menus in mobile applications
pop in gradually, browsers highlight newly selected tabs with an animation, etc.

PaSe provides the features expected of animation libraries by building them
with recent ideas from functional programming. Our contributions are as follows:

– We develop PaSe, which supports arbitrary composition of animations
and inspectability. Animation libraries, such as the GreenSock Anima-
tion Platform (GSAP)2, typically use callbacks as a means of extensibil-
ity/expressivity; this is detrimental to inspectability. We show an example
resulting in unexpected behaviour and how PaSe correctly handles it.

– PaSe is an extensible DSL: the syntax can be extended with new operations.
The animations use case is novel for approaches to extensibility.

– PaSe supports inspectability : extracting information from computations
before running it. Inspectability is present in specific computation classes,
such as free applicatives [2]. But, it is novel to combine it with extensibility.

– PaSe supports arbitrary nesting of parallel and sequential animations which
correctly interacts with inspectability. Such parallel components exist already,
see for example Ren’Py3, React Native Animations4 or Qt Animations5. Yet,
general-purpose animation libraries lack them. Also, we correctly support the
interaction with inspectability.

– We implemented various examples6: a to-do list application, a communica-
tion story example, a game-like demo application and a Pac-Man game. We
combined PaSe with both gloss7 and the Haskell SDL bindings8 as graphics
backend. This paper uses the to-do list as motivating application and com-
pares the development of the Pac-Man application, developed in both Haskell
with PaSe and in TypeScript with GSAP.

2 Motivation

We present a to-do list application to showcase the functionality of PaSe.

2 https://greensock.com.
3 https://www.renpy.org/doc/html/atl.html#parallel-statement.
4 https://facebook.github.io/react-native/docs/animated#parallel.
5 https://doc.qt.io/qt-5/animation.html.
6 https://github.com/rubenpieters/PaSe-hs/tree/master/PaSe-examples.
7 https://hackage.haskell.org/package/gloss.
8 https://hackage.haskell.org/package/sdl2.

https://greensock.com
https://www.renpy.org/doc/html/atl.html#parallel-statement
https://facebook.github.io/react-native/docs/animated#parallel
https://doc.qt.io/qt-5/animation.html
https://github.com/rubenpieters/PaSe-hs/tree/master/PaSe-examples
https://hackage.haskell.org/package/gloss
https://hackage.haskell.org/package/sdl2
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2.1 Running Example

Our application has two screens: a main screen and a menu screen. The main
screen contains a navigation bar and three items. An overview of the application
is given in Fig. 1. These screenshots are captured from the application built by
combining PaSe with gloss as graphics backend.

Fig. 1. Overview of the to-do list application.

In this application, various user actions are accompanied with an animation.
We list these actions below. Some animations are shown in Fig. 2.

– The user marks items as (not) done by clicking them. The checkmark icon
changes shape and color to display its status change.

– The user filters items by their status with the navigation bar buttons. The
leftmost shows all items, the middle shows all completed items, and the right-
most shows all unfinished items. The navigation bar underline and to-do items
itself change shape to indicate the new selection.

– The menu screen shows/hides itself after clicking the menu icon (�). The
menu expands inwards from the left, to indicate the application state changes.

2.2 Composing Animations

Animations are built in a compositional fashion. When creating an animation, we
decompose it into smaller elements. For example, the menuIntro animation both
introduces the menu screen and fades out the background. Thus, it is composed
of two basic animations menuSlideIn and appFadeOut in parallel. The next
sections explain how to construct such basic and composed animations.

Basic Animations. Basic animations change the property of an element over
a period of time. The linearTo function has three inputs: a lens targeting the
property, the duration, and the target value for this property. This results in a
linear change from the current value to its target, hence the name. The duration
is specified with For while the target value is specified with To.
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To animate the navigation bar underline, we reduce the width of the leftmost
underline for 0.25 s and increase the width of the middle underline for 0.25 s.
These animations are expressed in respectively line1Out and line2In below,
and visualized in Fig. 3.

line1Out = linearTo (navbar . underline1 . width) (For 0.25) (To 0)

line2In = linearTo (navbar . underline2 . width) (For 0.25) (To 28)

(a) markAsDone: the checkmark changes shape and color.

(b) onlyDone: the to-do items fade out and the navbar underline changes.

(c) menuIntro: the menu appears while the background fades out.

Fig. 2. Micro-Animations in the to-do list application.

Note on Lenses. We use lens notation x . y . z to target z inside a nested
structure { x: { y: { z: T } } }. This type of lenses was conceived by van
Laarhoven [13], and later packaged into various Haskell libraries, such as lens9.

The menuSlideIn and appFadeOut animations are other examples. For the
former, we increase the width of the menu over a duration of 0.5 s, and for the
latter we increase the opacity of the obscuring box, determined by alpha, over
a duration of 0.5 s. These animations are visualized in Fig. 3.

menuSlideIn = linearTo (menu . width) (For 0.5) (To 75)
appFadeOut = linearTo (obscuringBox . alpha) (For 0.5) (To 0.65)

9 https://hackage.haskell.org/package/lens.

https://hackage.haskell.org/package/lens
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(a) The line1Out animation.

(b) The line2In animation.

(c) The menuSlideIn animation.

(d) The appFadeOut animation.

Fig. 3. Basic linearTo animations.

Composed Animations. A composed animation combines several other ani-
mations into a new one. We can do this either in sequence or in parallel.

We create selectBtn2 by combining line1Out and line2In with
sequential. This constructs a new animation which first plays line1Out, and
once it is finished plays line2In.

selectBtn2Anim = line1Out `sequential' line2In

To obtain menuIntro, we combine both menuSlideIn and appFadeOut with
parallel. This constructs a new animation which plays both menuSlideIn and
appFadeOut at the same time.

menuIntro = menuSlideIn `parallel' appFadeOut

Both of these animations are visualized in Fig. 4.
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(a) The selectBtn2 animation.

(b) The menuIntro animation.

Fig. 4. All of the defined composed animations.

3 Extensibility, Inspectability and Expressiveness

The features in Sect. 2 form the basis of PaSe. To provide support for additional
features present in other animation libraries, we design PaSe to be extensible
and inspectable. This means that PaSe can be extended with new operations
and information can be derived from inspecting specified animations. To support
arbitrary expressiveness in combination with those features, we also emphasize
the possibility to extend PaSe with new combinators.

3.1 Extensibility

The linearTo operation and the sequential and parallel combinators form
the basis for expressing a variety of animations. However, there are situations
which require other primitives to express desired animations. For example, GSAP
provides a primitive to morph one shape into another.

An example in the to-do list app is checkIcon, part of markAsDone, where
we want to set the color of the checkmark to a new value. We define a custom
set operation and embed it inside a PaSe animation. In this animation we use
Haskell’s do-notation to specify sequential animations.

checkIcon = do ...; set (checkmark . color) green; ...

3.2 Inspectability

PaSe is inspectable, meaning that we can derive properties of expressed compu-
tations by inspecting them rather than running them. For example, we want to
know the duration of menuIntro without actually running it and keeping track
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of the time. The duration function calculates the duration by inspecting the
animation. Passing it menuIntro gives a duration of 0.5 s, which is indeed the
duration of two 0.5 s animations in parallel.

menuIntroDuration = duration menuIntro -- = 0.5

Of course, it is not possible to inspect every animation. In the following
situation we have a custom operation get, the dual of set in the previous section,
returning a Float. If the result of this value is used as the duration parameter,
then we cannot know upfront how long this animation will last. Requesting to
calculate the duration then results in a type error.

complicatedAnim = do v <- get; linearTo lens (For v) (To 10)
complicatedAnimDuration = duration complicatedAnim -- type error

Calculating a duration is a stepping stone towards other interesting features.
One such example is sequentially composing animations with a relative offset.
For example, to compose a first animation anim1 with a second animation anim2
which starts 0.5 s before the end of anim1.

relSeqAnim = relSequential anim1 anim2 (-0.5)

3.3 Expressiveness

In monadic DSLs the >>= and return combinators provide the needed expressiv-
ity. When creating inspectable animations, >>= is a liability since it has limited
inspectability. PaSe supports extension with custom control flow combinators.

The onlyDone animation shows all done items while hiding all to-do items.
This could be implemented by first showing all items with the showAll anima-
tion, since an item might have been hidden by a previous action, and then hiding
all to-do items with the hideToDo animation. The definition is given below, while
the definitions of showAll and hideToDo are omitted for brevity.

onlyDoneNaive = do showAll; hideToDo

However, we only intend to show completed items if needed. So instead we
first check how many done items there are, if there are more than zero we play
the previous version of onlyDone, otherwise we only hide the unfinished items.

onlyDone = do
cond <- doneItemsGt0 -- check if more than 0 `done' items

if cond then onlyDoneNaive else hideToDo
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However, this formulation uses monadic features and is thus not inspectable.
To make it inspectable, we utilize a custom combinator ifThenElse. We revisit
this example in more detail in Sect. 5.

onlyDone = ifThenElse doneItemsGt0 onlyDoneNaive hideToDo

For this new combinator, we can define custom ways to inspect it. Since each
branch might have a different duration, we do not choose to extract the duration
but rather the maximum duration of the animation.

onlyDoneMaxDuration = maxDuration onlyDone -- = 1

Sections 2 and 3 gave a look and feel of the features of PaSe. In the following
sections, we delve deeper into the internals of the implementation.

4 Implementation of PaSe

This section implements the previously introduced operations and redefines the
animations to show the resulting type signature. We develop PaSe in the style of
the mtl library10 which implements monadic effects using type classes [10]. This
style is also called the finally tagless approach [3]. However, because the PaSe
classes are not subclasses of Monad, they leave room for inspectability.

4.1 Specifying Basic Animations

The mtl library uses type classes to declare the basic operations of an effect.
Similarly, we specify the linearTo operation using the LinearTo type class.

class LinearTo obj f where
linearTo :: Traversal' s Float -> Duration -> Target -> f ()

The traditional mtl style would add a Monad f superclass constraint. As
it hinders inspectability, we defer the addition of this constraint to the user.
This allows the definition of animations which are, for example Applicative, if
inspectability is needed or Monad if it is not.

The linearTo function is used to specify basic animations like line1Out,
line2In, menuSlideIn, and appFadeOut from Sect.2. As an example, we redefine
line1Out with its type signature; the others are similar.

line1Out :: (LinearTo Application f) => f ()

line1Out = linearTo (navbar . underline1 . width) (For 0.25) (To 0)

4.2 Specifying Composed Animations

Section 2 used the combinators sequential and parallel for composing ani-
mations. In this section, we describe these combinators in more detail.
10 http://hackage.haskell.org/package/mtl.

http://hackage.haskell.org/package/mtl
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Sequential Composition. We reuse the Functor-Applicative-Monad hierar-
chy for sequencing animations.

The liftA2 function from the Applicative class, which has type
Applicative f => (a -> b -> c) -> f a -> f b -> f c , takes two anima-
tions f a and f b and returns a new animation which plays them in order. The
final result of the animation is of type c , which is obtained by using the function
a -> b -> c and applying the results of the two played animations to it.

The >>= function from the Monad class, which has type Monad f => f a ->
(a -> f b) , takes an animation f a and then feeds the result of this animation
into the function a -> f b to play the animation f b.

The sequential function is a specialization of the liftA2 function. It only
applies to animations with a () return value, and trivially combines the results.

sequential :: (Applicative f) => f () -> f () -> f ()
sequential f1 f2 = liftA2 (\_ _ -> ()) f1 f2

Hence, the type signature for selectBtn2Anim contains an (Applicative f)
constraint in addition to the (LinearTo Application f) constraint.

selectBtn2Anim :: (LinearTo Application f, Applicative f) => f ()
selectBtn2Anim = line1Out `sequential' line2In

Parallel Composition. We create our own Parallel type class for the
parallel function11. Its liftP2 function has the same signature as liftA2,
but the intended semantics of the liftA2 implementation is parallel rather than
sequential composition. Technically they are interchangeable, but the relation of
Applicative to Monad makes it more sensible for sequential composition seman-
tics. The parallel function is a specialization of liftP2.

class Parallel f where
liftP2 :: (a -> b -> c) -> f a -> f b -> f c

parallel :: (Parallel f) => f () -> f () -> f ()
parallel f1 f2 = liftP2 (\_ _ -> ()) f1 f2

With that in place we can give a type signature for menuIntro.

menuIntro :: (LinearTo Application f, Parallel f) => f ()
menuIntro = menuSlideIn `parallel` appFadeOut

11 The Alternative class (https://en.wikibooks.org/wiki/Haskell/Alternative and
MonadPlus) is not suitable as the laws are not the same.

https://en.wikibooks.org/wiki/Haskell/Alternative_and_MonadPlus
https://en.wikibooks.org/wiki/Haskell/Alternative_and_MonadPlus
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4.3 Running Animations

Now we create a new Animation data type that instantiates the above type
classes to interpret PaSe programs as actual animations. We briefly summarize
this implementation here and refer for more details to our codebase.12

The Animation data type, defined below, models an animation. It takes the
current state s and the time elapsed since the previous frame. It produces a new
state for the next frame, the remaining unused time and either the remainder of
the animation or, if there is no remainder, the result of the animation. Note that
the output is wrapped in a type constructor m to embed custom effects. We need
the unused time when there is more time between frames than the animation
uses. Then, the remaining time can be used to run the rest of the animation.

newtype Animation s m a = Animation { runAnimation ::
s -> -- previous state

Float -> -- time delta

m ( s -- next state

, Either (Animation s m a) a -- remainder / result

, Maybe Float )} -- remaining delta time

LinearTo Instance. The linearTo implementation of Animation constructs
the new state, calculates the remainder of the animation and the remaining
delta time. The difference between the linearTo duration and the frame time
determines whether there is a remaining linearTo animation or remaining time.

Examples. We illustrate the behaviour on a tuple state (Float, Float), of an
x and y value. The right animation transforms the x value to 50 over 1 s.

right :: (LinearTo (Float, Float) f) => f ()
right = linearTo x (For 1) (To 50)

We run it for 0.5 s by applying it to the runAnimation function, together
with the initial state (s0 = (0,0)) and the duration 0.5. We instantiate the m
type constructor inside Animation with Identity as no additional effects are
needed; this means that the result can be unwrapped with runIdentity.

(s1, remAn1, remDel1) = runIdentity (runAnimation right s0 0.5)
-- s1 = (25.0, 0.0) | remAn1 = Left anim2 | remDel1 = Nothing

Running right for 0.5 s uses all available time and yields the new state
(25, 0). The remainder of the animation is the right animation with its dura-
tion reduced by 0.5, or essentially linearTo x (For 0.5) (To 50). Let us run
this remainder for 1 s.

(s2, remAn2, remDel2) = runIdentity (runAnimation anim2 s1 1)
-- s2 = (50.0, 0.0) | remAn2 = Right () | remDel2 = Just 0.5

Now the final state is (50, 0) with result () and remaining time 0.5.
12 https://github.com/rubenpieters/anim eff dsl/tree/master/code.

https://github.com/rubenpieters/anim_eff_dsl/tree/master/code
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Monad Instance. For sequential animations we provide a Monad instance. Its
return embeds the result a inside the Animation data type. The essence of
the f >>= k case is straightforward: first, run the animation f, then pass its
result to the continuation k and run that animation. We return the result of the
animation, or, if there is an animation remainder, because the remaining time
was used up, we return that remainder.

Examples. Let us define an additional animation up which transforms the y value
to 50 over a duration of 1 s. Additionally, we define an animation rightThenUp
which composes the right and up animations in sequence.

up :: (LinearTo (Float, Float) f) => f ()
up = linearTo y (For 1) (To 50)

rightThenUp :: (LinearTo (Float, Float) f, Applicative f) => f ()
rightThenUp = right `sequential' up

Running the rightThenUp animation for 0.5 s gives a similar result to running
right for 0.5 s. We obtain the new state (25, 0), an animation remainder anim2
and there is no remaining time. Now the animation remainder is the rest of
rightThenUp, which is half of right and up. So, when we run this animation
remainder for 1 s, it will run the second half of right and the first half of up. This
results in the state (50, 25), the animation remainder anim3 and no remaining
delta time. This animation remainder is of course the second half of the up
animation. If we continue to run that remainder, for example for 1 s, then we
get the final state (50, 50) and the animation result ().

Parallel Instance. The liftP2 implementation runs the animations f1 and f2
on the starting state. We match on the cases where f1 and f2 finish with a result
or an animation remainder and remaining time. We check which of the anima-
tions have finished and repackage them either into a result or a new remainder,
using the result combination function where appropriate. When the longest of
the two parallel animations is finished while not fully using the remaining delta
time, we continue running the remainder of the animation.

Examples. Let us run the animations right and up in parallel, which means
that both the x and y value will increase simultaneously.

rightAndUp :: (LinearTo (Float, Float) f, Parallel f) => f ()
rightAndUp = right `parallel' up

The result of running this animation for 0.5 s gives the state (25, 25) and
no remaining time. If we continue the animation remainder we get the state
(50, 50) and 0.5 s of remaining time.
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4.4 Inspecting Animations

To inspect animations we instantiate them with Const. It wraps an a value and
has a b phantom type parameter to trivially make it a functor.

newtype Const a b = Const { getConst :: a }

We might wonder why this extra work is necessary. After all, it is possible
to obtain the duration of an animation by running the animation and keeping
track of how long it takes. First, this is not an ideal approach for obtaining the
duration. We might obtain erroneous results when doing this on conditional ani-
mations. Since only one branch of the conditional will be taken, while the other
branch with a different duration might be taken in reality. Also, this approach
is infeasible when there are effects embedded within the animation. Second,
duration is one possible inspection target. Another example is tracking the used
textures within an animation so they can be loaded automatically. For this to
be possible we must run the inspection before the animation runs for the first
time, since the textures must be loaded first.

Inspecting LinearTo. To obtain the duration of a linearTo animation, we
embed the duration in the Const wrapper.

instance LinearTo obj (Const Duration) where
linearTo _ duration _ = Const duration

Inspecting Applicative. It is not possible to inspect animations with a Monad
constraint, but it is possible for animations with an Applicative constraint.
The Const data type is not the culprit here, but rather the >>= method of the
Monad class, which contains the limiting factor: a continuation function a -> m b.

Inspecting Parallel. The duration of two parallel animations is the maximum
of their durations. The Par (Const Duration) instance implements this.

instance Par (Const Duration) where
liftP2 _ (Const x1) (Const x2) = Const (max x1 x2)

Examples. The duration function is a specialization of the unwrapper function
of the Const data type, namely getConst. We can feed our previously defined
animations selectBtn2Anim and menuIntro from Sect. 2 to this function and
obtain their durations as a result.
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duration :: Const Duration a -> Duration
duration = getConst

selectBtn2AnimDuration :: Duration
selectBtn2AnimDuration = duration selectBtn2Anim -- = For 1.0

menuIntroDuration :: Duration
menuIntroDuration = duration menuIntro -- = For 0.5

When we try to retrieve the duration of a monadic animation, there is an
error from the compiler: there is no Monad instance for Const Duration.

complicatedAnimDuration :: Duration
complicatedAnimDuration = duration complicatedAnim
-- No instance for (Monad (Const Duration))

4.5 Adding a Custom Operation

Custom operation are added by defining a corresponding class. For example, if
we want to add a set operation, then we create the corresponding Set class.

class Set obj f where set :: Lens' obj a -> a -> f ()

Now, an animation using the set operation will incur a Set constraint.

checkIcon :: (Set CompleteIcon f, ...) => f ()
checkIcon = do ...; set (checkmark . color) green; ...

To inspect or run such an animation, we also need to provide instances for
the Animation and Const data types. In the Animation instance, we alter the
previous state by setting the value targeted by the lens to a. The duration of a
set animation is 0, which is what is returned in the Duration instance.

instance (Applicative m) => Set obj (Animation obj m) where
set lens a = Animation $ \obj t -> let

newObj = Lens.set lens a obj
in pure (newObj, Right (), Just t)

instance Set obj (Const Duration) where
set _ _ = Const (For 0)

5 Interaction Between Inspectability and Expressivity

Haskell DSLs are typically monadic because the >>= combinator provides great
expressive power. Yet, this power also hinders inspectability. This section shows
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how to balance expressiveness and inspectability with a custom combinator.
This feature is opt-in in the sense that it is only required when inspectability
is required. If that is no concern, then it is no problem to work with the Monad
constraint.

Let us revisit the onlyDone animation from Sect. 3.3. The following definition
imposes a Monad constraint on f, making the animation non-inspectable.

onlyDone :: (LinearTo Application f, Get Application f,
Set Application f, Monad f, Parallel f) => f ()

onlyDone = do
cond <- doneItemsGt0
if cond then onlyDoneNaive else hideNotDone

However, there is duration-related information we can extract. For example,
the maximum duration is the largest duration of the two branches.

To express this idea in PaSe we introduce an explicit combinator to replace
this particular use of >>=, namely an if-then-else construction.

class IfThenElse f where
ifThenElse :: f Bool -> f a -> f a -> f a

This is similar to the handle combinator from the DynamicIdiom class [21]
and the ifS combinator from the Selective class [18].

Now we can reformulate onlyDone in terms of this ifThenElse combinator13.

onlyDone :: (LinearTo Application f, Get Application f,
Set Application f, Applicative f, Parallel f, IfThenElse f)
=> f ()

onlyDone = ifThenElse doneItemsGt0 onlyDoneNaive hideNotDone

We implement an appropriate Animation instance for IfThenElse.

instance (Monad f) => IfThenElse (Animation obj f) where
ifThenElse fBool thenBranch elseBranch = do

bool <- fBool
if bool then thenBranch else elseBranch

Now, we can retrieve the maximum duration, using the newtype
MaxDuration to signify this. The instance for IfThenElse retrieves the dura-
tions of the then and else branches and adds the greater value to the duration
of the preceding animation inside the condition.

instance IfThenElse (Const MaxDuration) where
ifThenElse (Const (MaxDur durCond)) (Const (MaxDur durThen))

(Const (MaxDur durElse)) =
Const (MaxDur (durCond + max durThen durElse))

13 Using GHC’s RebindableSyntax extension, it is possible to use the builtin
if ... then ... else ... syntax.
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This allows us to retrieve the maximum duration of the onlyDone animation.

onlyDoneMaxDuration :: MaxDuration
onlyDoneMaxDuration = maxDuration onlyDone -- = MaxDur 1.0

6 Interaction Between Callbacks and Inspectability

Many JavaScript animation libraries14 exist, most of which allow the user to add
custom behavior (which the library has not foreseen) through callbacks. A good
example is the GreenSock Animation Platform (GSAP), a widely recommended
and mature JavaScript animation library with a variety of features.

6.1 Working with GSAP

TweenMax objects are the GSAP counterpart of the linearTo operation. Their
arguments are similar: the object to change, the duration, and the target value
for the property. For example, animation right moves box1 to the right:

const right = new TweenMax("#box1", 1, { x: 50 });

We can add animations to a TimeLineMax to create a sequential animation.
Below, we create rightThenDown which moves box1 to the right and then down.

const rightThenDown = new TimelineMax({ paused: true })
.add(new TweenMax("#box1", 1, { x: 50 }))
.add(new TweenMax("#box1", 1, { y: 50 }));

The add method takes the position on the timeline as an optional paramter.
If we position both animations at point 0 on the timeline, they run in parallel.
For example, the both animation below moves both box1 and box2 in parallel.

const both = new TimelineMax({ paused: true })
.add(new TweenMax("#box1", 1, { x: 50 }), 0)
.add(new TweenMax("#box2", 1, { x: 50 }), 0);

Timelines can also be embedded within other timelines.

const embedded = new TimelineMax({ paused: true })
.add(both.play())
.add(new TweenMax("#box1", 1, { y: 50 }), 0);

14 Examples: https://greensock.com, https://animejs.com, and https://popmotion.io.

https://greensock.com
https://animejs.com
https://popmotion.io
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6.2 Callbacks and Inspectability

GSAP provides features related to inspectability. For example, we can use the
totalDuration method to return the total duration of an animation. Ordinary
animations correctly give their total duration when queried. For example, query-
ing the duration of embedded correctly returns 2.

const embeddedDuration = embedded.totalDuration(); // = 2

However, if we want to provide animations similar to onlyDone, which con-
tains an if-then-else, then the duration returned is not what we expect. The
add method is overloaded and can also take a callback as parameter. Using the
callback parameter we can embed arbitrary effects and control flow. For exam-
ple, we can create a conditional animation condAnim, for which a duration of
1 is returned. This is because any callbacks that are added to the timeline are
considered to have duration 0, even if an animation is played in that callback.

The resulting duration of 1 is different from the expected total duration of
the animation, which is 2. Of course, in general the duration of the animations in
both branches could differ, which is what makes it difficult to provide a procedure
for calculating the duration of an animation in this form.

const condAnim = new TimelineMax({ paused: true })
.add(both.play())
.add(() => { if (cond) { new TweenMax("#box1", 1, { x: 50 }) }

else { new TweenMax("#box2", 1, { x: 50 }) } });
const condAnimDuration = condAnim.totalDuration() // = 1

6.3 Relevance of Duration in Other Features

A wrongly calculated duration becomes more problematic when another feature
relies on this calculation. The relative sequencing feature needs the duration
of the first animation, so the second animation can be added with the correct
offset. For example, we can specify the position parameter -=0.5 to specify that
it should start 0.5 s before the end of the previous animation.

const bothDelayed = new TimelineMax({ paused: true })
.add(new TweenMax("#box1", 1, { x: 50 }), 0)
.add(new TweenMax("#box2", 1, { x: 50 }), "-=0.5");

This feature differs from ordinary sequencing such as with sequential. When
we state that animation B must play 0.5 s before the end of animation A, then it is
not possible to wait until animation A has finished to start running animation B.
This is because animation B should have started playing for 0.5 s already. When
we have the duration of animation A available, animation B can be appropriately
scheduled.
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This feature behaves somewhat unexpectedly when combined with a con-
ditional animation. In the relativeCond animation below we add a basic ani-
mation followed by a conditional animation. Then we add an animation with
a relative position. The result is that the relative position is calculated with
respect to the duration of the animations before it, which was a duration of 1.

const relativeCond = new TimelineMax({ paused: true })
.add(new TweenMax("#box1", 1, { x: 50 }), 0)
.add(() => { if (cond) { new TweenMax("#box1", 1, { x: 100 });

} else { new TweenMax("#box1", 1, { x: 0 }); } })
.add(new TweenMax("#box2", 1, { x: 50 }), "-=0.5");

Predicting the resulting behavior becomes much more complicated when
conditional animations are embedded deep inside complex timelines and cause
erroneous duration calculations. Clearly, being more explicit about control flow
structures and their impact on inspectability like in PaSe helps providing a more
predictable interaction between these features.

6.4 Relative Sequencing in PaSe

While not yet ideal from a usability perspective,15 PaSe does enable correctly
specifying relative sequential compositions by means of relSequential.

relSequential :: forall c g.
(c (Const Duration), c g, Applicative g, Delay g) =>
(forall f. c f => f ()) -> g () -> Float -> g ()

relSequential anim1 anim2 offset = let
dur = getDuration (duration anim1)
in anim1 `sequential' (delay (dur + offset) *> anim2)

Because this definition requires instances instantiated with Const Duration,
it only works for animations whose duration can be analyzed. Now, we can
correctly compose conditional animations sequentially using relative positioning.
We use the relMaxSequential function to sequence animations with a maximum
duration.

-- create synonym for multiple constraints

class (LinearTo Float f, IfThenElse f) => Combined f where
instance (LinearTo Float f, IfThenElse f) => Combined f where

relCond :: (LinearTo Float f, IfThenElse f, Applicative f) => f ()
relCond = relMaxSequential @Combined anim1 anim2 (-0.5)

15 It requires AllowAmbiguousTypes (among other extensions) and explicitly instanti-
ating the constraint c at the call-site.
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7 Use Case

This section compares an implementation of a simplified Pac-Man game (Fig. 5)
in Haskell with PaSe16 and TypeScript with GSAP17 both quantitatively and
qualitatively. The quantitative evaluation compares development time and lines
of code. The qualitative one compares different aspects of the libraries.

Fig. 5. Screenshot of the Pac-Man application.

7.1 Quantitative Evaluation

This section compares the PaSe and GSAP implementations on quantitative
criteria. We consider the development time and lines of code for each module.

– Development Time. The Haskell application was developed in ∼ 1.5 work-
ing days, while the TypeScript application took ∼ 1 working day. We consider
this approximately the same development time as the Haskell application was
developed first, and thus contains design work shared by both applications.
The developer is proficient in both languages.

– Lines of Code (LOC). Table 1 contains the LOC data (including whites-
pace) for both applications. Their total LOCs are roughly the same. However,
the Haskell code implements its own functionality for sprites and textures
while we used the existing Sprite class of the PixiJS library in TypeScript.

– Relative LOC. Table 1 also contains the relative LOCs. The GSAP ani-
mation definitions (AnimDefs) are slightly bigger because we had to embed
effects in the animations due to differences in the used graphics library,
and because of TypeScript’s relative verbosity. Using the timeline feature
of GSAP, the code for simple animations is comparable to PaSe. However
for more complex animations and those requiring embedded effects, there are
some differences which we discuss in more detail in the qualitative evaluation.

16 https://github.com/rubenpieters/PaSe-hs/tree/master/PaSe-examples/Pacman.
17 https://github.com/rubenpieters/pacman-ts.

https://github.com/rubenpieters/PaSe-hs/tree/master/PaSe-examples/Pacman
https://github.com/rubenpieters/pacman-ts
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Table 1. Lines of code comparison (including whitespace)

Module Haskell/PaSe (LOC) % TypeScript/GSAP (LOC) %

AnimDefs 127 21% 197 32%

Anims 43 7% 39 6%

Field 48 8% 77 12%

Game 130 21% 113 18%

Main 36 6% 23 4%

Sprite 45 7% / /

Textures 34 6% 13 2%

Types 10 2% 3 0%

View 139 23% 158 25%

Total 612 100% 623 100%

7.2 Qualitative Evaluation

This section compares PaSe and GSAP on five qualitative criteria.

– Eco-system. Animations are not created in isolation; they need to be coupled
to a graphical backend to display them on the screen. GSAP’s maturity makes
it a clear winner here. It is well integrated with the browser and supports a
rich set of features such as a variety of plugins, compatibility across browsers
and support for animating a large range of DOM elements. Yet, for Pac-Man
we only needed lenses for our own user-defined state.

– Workflow. It is important that animations can be specified easily and con-
cisely. Creating pure animations, without any embedded effects, are equally
convenient in GSAP and in PaSe. However, more complex interactions with
effects and control flow are simpler in PaSe. We saw this in the Pac-Man
use case when implementing particle animations. A particle animation is an
animation that creates an object, animates it and then destroys it again. We
implemented a general wrapper for such animations which takes as input a
function Int -> Animation, where the Int is the unique particle identifier,
and a creation and deletion function for the particle. In the GSAP library
we have to add the function to the timeline as a callback, which means its
duration is considered to be 0. This is problematic because the deletion of
the particle should occur after its animation. This means that we are forced
to manually calculate and provide the duration for the particle animation.

– Performance. Both libraries perform equally acceptable on Pac-Man: no
visible glitches or lag at 60 frames per second (FPS) on an Intel core i7-6600U
at 2.60 GHz with 8 GB memory. We have also implemented a benchmark
similar to GSAP’s speed test18, which tests a large parallel animations. GSAP
is slightly more optimized currently as it handles 500 parallel animations at

18 https://greensock.com/js/speed.html.

https://greensock.com/js/speed.html
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60 FPS instead of PaSe’s 400. This could be remedied by further performance
improvements of PaSe, like fusing multiple parallel animations or improving
the Animation data structure, which are future work.

– Extensibility & Inspectability. Extensibility and inspectability are key
features of PaSe. Both were useful for Pac-Man. Inspectability allowed
extracting all used textures in the animations to automate their loading.
Extensibility enabled the definition of the particle effect mentioned earlier. We
created a new WithParticle type class and implemented both an Animation
instance and a Const instance for the texture inspection. GSAP does not
support inspectability, and thus we did not implement the automatic loading
of textures. The particle animation function was implemented with callbacks
and implicit side-effects, which TypeScript allows anywhere.

8 Future Work

Some general improvements can be made regarding supporting new backends,
more features and improving performance.

We chose the MTL style for this paper, as we believe it is simpler
presentation-wise. However, an initial encoding, which is more typical for alge-
braic effects and handlers, can provide benefits in areas such as the implemen-
tation of the relative sequencing. This comparison is another avenue for future
work.

An aspect not touched in this paper is conflict management. A conflict
appears when the same property is targeted by different animations in parallel.
For example, if we want to change a value both to 0 and 100 in parallel, what
should this animation look like? PaSe does no conflict management, and the ani-
mation might look stuttery. GSAP, for example, resolves this by only enabling
the most recently added animation. However this strategy is not straightfor-
wardly mapped to the context of PaSe. Inspectability could provide a solution
for this problem by providing the possibility to detect conflicts.

9 Related Work

Functional Reactive Programming. The origins of functional reactive program-
ming (FRP) lie in the creation of animations [4], and many later developments
use FRP as the basis for purely functional GUIs.

PaSe focuses on easily describing micro-animations, which differ from general
animations as considered by FRP. The latter can typically be described by
a time-paramterized picture function Time -> Picture. While a subset of all
possible animations, micro-animations are not easily described by such a function
because many small micro-animations can be active at the same time and their
timing depends on user interaction.

We have supplied an implementation of PaSe on top of a traditional event-
based framework, but it is interesting future work to investigate an implemen-
tation of the linearTo, sequential and parallel operations in terms of FRP
behaviours and events.



PaSe: An Extensible and Inspectable DSL for Micro-Animations 23

Animation Frameworks. Typical micro-animation libraries for web applications
(with CSS or JavaScript) and animation constructions in game engines provide a
variety of configurable pre-made operations while composing complex animations
or integrating new types of operations is difficult. PaSe focuses on the creation
of complex sequences of events while still providing the ability to embed new
animation primitives. We have looked at GSAP as an example of such libraries
and some of the limits in combining extensibility with callbacks and inspectabil-
ity. PaSe is an exercise in improving this combination of features forward in a
direction which is more predictable for the user.

Planning-Based Animations. PaSe shares similarities with approaches which
specify an animation as a plan which needs to be executed [12,17]. An animation
is specified by a series of steps to be executed, the plan of the animation. The
coordinator, which manages and advances the animations, is implemented as part
of the hosting application. PaSe realizes these plan-based animations with only
a few core principles and features the possibility of adding custom operations
and inspection. A detailed comparison with these approaches is difficult, since
their works are very light on details of the actual implementation aspect.

Inspectable DSLs. Some DSLs for parsing [2,9,15], non-determinism [11], remote
execution [5,6] and build systems [19] focus on inspectability aspects, yet none
of them provide extensibility and expressiveness in addition to inspection.

10 Conclusion

We have presented PaSe, an extensible and inspectable DSL for micro-
animations. PaSe focuses on compositional animations using sequential and par-
allel animations as basic building blocks. This is in contrast with other animation
libraries typically focused on sequential composition and callbacks with implicit
effects.

We utilized a to-do list application use case to explain the features of PaSe. In
this use case we showed the additional features of PaSe: extensiblity, inspectabil-
ity and expressivity. We argue that the callback style of providing extensibility
hurts the inspectability aspect of animations, which is found in for example
the GreenSock Animation Platform. An implementation of the Pac-Man game
confirms that this can be a problem even in simple applications.
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Abstract. Embedded Domain-Specific Languages (EDSLs) are an
alternative to quickly implement specialized languages without the need
to write compilers or interpreters from scratch. In this territory, Haskell
is a prime choice as the host language. EDSLs in Haskell, however, are
often incapable of reifying useful static information from the source code,
namely variable binding names and source locations. Not having access
to variable names directly affects EDSLs designed to generate low-level
code, where the variables names in the generated code do not match
those found in the source code—thus broadening the semantic gap among
source and target code. Similarly, many existing EDSLs produce poor
error messages due to the lack of knowledge of source locations where
errors are generated.

In this work, we propose a simple technique for enhancing monadic
EDSLs expressed using do notation. This technique employs source-
to-source plugins, a relatively new feature of GHC, to annotate every
do statement of our EDSLs with relevant information extracted from
the source code at compile time. We show how these annotations can
be incorporated into EDSL designs either directly inside values or as
monadic effects. We provide BinderAnn, a GHC source plugin imple-
menting our ideas, and evaluate it by enhancing existing real-world
EDSLs with relatively minor modification efforts to contemplate the
source-level static information related to variables names and source
locations.

Keywords: Embedded domain-specific languages · Haskell

1 Introduction

Embedded Domain-Specific Languages (EDSLs) are ubiquitous in Haskell. Its
powerful type system and extensible syntax are among the reasons making it a
very suitable programming language for implementing EDSLs [14]. Especially,
monads [25] and monadic do notation [17] are part of programmers’ toolbox
to implement all sorts of EDSLs. Monadic do notation enables users to write
domain-specific code in a sequential-like manner that it is easy to adopt by
programmers not familiar to Haskell’s syntax or even to functional programming
languages.
c© Springer Nature Switzerland AG 2020
A. Byrski and J. Hughes (Eds.): TFP 2020, LNCS 12222, pp. 25–46, 2020.
https://doi.org/10.1007/978-3-030-57761-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57761-2_2&domain=pdf
http://orcid.org/0000-0002-1153-2999
http://orcid.org/0000-0002-4338-6316
https://doi.org/10.1007/978-3-030-57761-2_2


26 A. Mista and A. Russo

Fig. 1. Enhancing the dotgen code generating EDSL with source information.

As a result of being embedded, Haskell EDSLs often lack the ability of reflect-
ing some of the static source information that is intrinsic and available to the
host language (Haskell) but not in guest (the embedded DSL), namely bound
names and source locations. These limitations are especially known by designers
of EDSLs which generate low-level code, e.g., FeldSpar [3], Ivory [8], or Copilot
[22]. In these EDSLs, developers adopted, as the best-case scenario, ad-hoc mea-
sures to enforce that variables names in the generated code match those in the
host language. In this paper, we instead propose a systematic solution to such
problems as a source-to-source plugin [21] called BinderAnn. We will illustrate
the aforementioned limitations of Haskell EDSLs using a series of real-world
examples of code generation, while we will show in tandem how our approach
can be used to overcome it.

1.1 Motivating Examples

We consider as motivating example the monadic EDSL from the dotgen package
for generating DOT code1 from inside Haskell [10]. This EDSL creates new graph
nodes and connects them using do notation. A simple example of this is shown in
Fig. 1a, where we create a graph of the alternating colors of a street semaphore.

Internally, this EDSL sequentially creates a fresh node name for each invo-
cation of the node combinator, i.e, n0, n1, and so on. Then, the corresponding
DOT code is generated referring to these generated names, as it is shown in
Fig. 1b. Sadly, the generated code does not quite reflect the nature of our par-
ticular graph: sequential names are of little help for interpreting the semantics
of the generated code. To make things worse, this is not a just limitation of this
particular EDSL. The variable names to the left of binds (←) do not belong to
an EDSL itself, but to the host language in which it is embedded—thus, such
EDSL cannot make use of this useful source information directly.

Common Practices. To address this recurrent limitation, some EDSLs
resolve in using redundant strings to indicate variable names when synthesizing

1 DOT is a graph description language used by many open source applications.
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Fig. 2. Avoiding redundant string names in the sbv EDSL via source annotations.

code [2,9,22]. For instance, consider the EDSL for synthesizing C programs via
SMT solvers in the sbv package [9]. This EDSL enables to express relationships
between the inputs and outputs of a function, and based on that, it generates
its C body accordingly. Figure 2a presents a very simple example of this, where
we use the cgInput combinator to bind the function inputs "x" and "y" to the
Haskell variables x and y, respectively, and then we specify how the outputs are
calculated based on them. In this example, the function will simply return the
sum of both inputs (line 5), while storing their difference in the output pointer
"diff" (line 4). Then, the EDSL will generate the following C code:

SInt32 AddSub(SInt32 x, SInt32 y, SInt32 *diff){
...
*diff = x - y;
return (x + y);

}

where ... simply indicates the rest of the generated code which is not relevant
to the point being made here. Notice how the EDSL expects the users to give
strings denoting variable names to the expressions they already bind with the
same variable name but using do notation. While this common technique works
in practice, this added redundancy requires maintenance and might be hard to
keep in sync with the concrete Haskell bind variable names they replicate.

1.2 BinderAnn

In this paper, we present a novel technique to enhance existing (and future)
EDSLs with the static information that is missing to generate faithful code,
and without relying on redundant string names. In essence, our approach con-
sists of automatically transforming the syntactic representation of our Haskell
code to make the static information related to bound names explicitly available
to EDSLs. This is now possible due to the recent addition of source-to-source
plugins [21] to the GHC Haskell compiler.

Recalling our dotgen example, our approach can be used to generate DOT
code that accurately reflects the one written by the user of the EDSL—see Fig. 1c
Furthermore, Fig. 2b shows how our approach can simplify the sbv EDSL by not
requiring string names to be passed around while generating the same C code.
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1.3 Beyond Bindings

In practice, bound names are not the only kind of useful static information that
can be extracted from EDSL code. Many EDSLs lack descriptive error messages
which could be improved by having access to the source locations. To illustrate
this point, we consider the EDSL provided by the shellmate package for execut-
ing shell scripts from Haskell [7]. With this EDSL, we can create computations
capturing the output of existing shell commands:

cpuinfo = capture (run "cat" ["/proc/cpuinfo"])
meminfo = capture (run "cat" ["/proc/meminfo"])

And use them to build complex shell-like scripts:

1 saveInfo = do
2 cpu ← cpuinfo
3 mem ← meminfo
4 output "info.txt" (cpu++ mem)

Let us suppose that we mistype the "/proc/meminfo" path. If we run our
saveInfo script, the mangled path given to the command cat will produce
a runtime exception that will be captured by the EDSL and printed to the user
simply as:

Command "cat" failed with error code 1

This error message is hardly helpful for debugging the problem of our shell script,
especially considering that many functions may be defined in terms of capturing
the output of the cat command.

By using BinderAnn, it is also possible to extract the exact position in the
user code where the error is triggered. In this light, we can enhance this EDSL to
support more precise and useful error messages. For instance, the error message
above can be improved to:

Exception raised at src/MyScript.hs:(3,3):
The value "mem" produced the following error:
Command "cat" failed with error code 1

Note how this error message now includes not only the name bound to the
problematic command (mem), but also its position in the code.

The examples presented so far have motivated the development of BinderAnn
to improve the capabilities of monadic EDSLs considerably. To summarize, the
contributions of this paper are:

• We propose a simple yet powerful syntactic transformation technique for
annotating monadic computations expressed using do notation with useful
source information (Sect. 2).
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• We propose two different annotation styles depending on how EDSLs can
consume the static information provided to them, i.e., binding names and
source locations (Sect. 3).

• We extend our simple transformation technique with support for annotating
monadic computations returning and pattern matching against tuples, as well
as a mechanism for controlling the transformation scope (Sect. 4).

• We provide an implementation of our ideas, in the shape of a GHC source-to-
source plugin called BinderAnn.2 With our plugin in mind from the beginning,
we develop a complete case study from scratch, demonstrating how the abil-
ity of reifying source information automatically might unlock attractive new
features in future EDSLs (Sect. 5).

• We discuss other possible approaches to fill the static information gap between
hosts and guests embedded languages and their implications. Additionally, we
reflect on the limitations of BinderAnn, as well as possible extensions to make
it applicable to a larger space of EDSL (Sect. 6).

2 Generating Source Annotations Using Source Plugins

This section briefly describes source-to-source plugins (or source plugins for
short), a new mechanism included in the GHC compiler for inspecting and
transforming the parsed representation of the compiled code before any other
transformation is performed. Moreover, we show how it is possible to take advan-
tage of this mechanism to transparently enhance monadic code written using do
notation with useful source information.

Essentially, a GHC plugin is a Haskell function that can be inserted into the
compilation pipeline to transform the output of the compiled code in different
ways [20,21]. These transformations can alter the compiled code at different
stages, where each stage defines a different interface for its corresponding kind of
plugin, dependent on the representation of the code used by the compiler at that
point. Historically, this mechanism only allowed plugins to be inserted during
type-checking, and after the code was transformed to GHC’s Core intermediate
representation [15]. Recently, GHC 8.6.1 also added support for plugins to be
inserted after parsing and after renaming, and this work focuses on the former
kind.

In GHC, the plugin interface is condensed in a record data type Plugin,
containing a field for each of the transformation stages available. In particular,
source-to-source plugins are given by the record field parsedResultAction of
this data type:

data Plugin = Plugin {
parsedResultAction :: [CommandLineOption] → ModSummary

→ HsParsedModule → Hsc HsParsedModule
· · ·

}
2 Available at https://github.com/OctopiChalmers/BinderAnn.

https://github.com/OctopiChalmers/BinderAnn
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This field exposes the interface of a transformation function over the abstract
syntax tree of the module under compilation (of type HsParsedModule). This
abstract syntax tree includes relevant static information not available to the
programmer, such as the variable name of every binding, as well as the source
location of every syntactic object in the module—two valuable resources that
one might want to have access to when implementing EDSLs in Haskell.

Using this interface, we can implement our source plugin by providing a mod-
ule exporting a value plugin :: Plugin, which executes our code transformation:

module BinderAnn (plugin) where

import GhcPlugins

plugin :: Plugin
plugin = defaultPlugin {parsedResultAction = <our code here>}

Later, our plugin can be enabled by passing the name of its module as a
flag to the GHC compiler (-fplugin=BinderAnn), or using a compiler-options
pragma in the module we want our plugin to transform:

{-# OPTIONS_GHC -fplugin BinderAnn #-}

Next subsection introduces a simple syntactic transformation procedure
based on source plugins for transposing useful static information from the source
code representation into the internal state of our EDSLs automatically.

2.1 Enhancing EDSLs with Source Information

We have seen that it is possible to expose static source information from our code
using source plugins. However, for our EDSLs to take advantage of this infor-
mation, we need to transform the user code so that it explicitly communicates
this information to the EDSL after our plugin runs at compile time.

In this work, we propose a simple transformation over do statements: we
will annotate each statement with the static information that can be extracted
from the parsed representation of the code, which we will simply refer to as a
source annotation. To achieve this, the first step consists of defining a concrete
representation for source annotations, which will be used both by our plugin and
by the target EDSLs it annotates. For this purpose, we will rely on a new data
type SrcInfo to hold the static information relative to a do statement:

data SrcInfo = Info (Maybe String) (Maybe Loc)

This data type stores the name bound to the statement (if any), and the location
in the source code where it is defined, being the latter a conjunction of a file
path, and a row and column within such file:

type Loc = (FilePath, Int, Int)
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The option type used for the location information in the definition of SrcInfo is
required to represent the fact that the GHC compiler might not know the specific
source location of a statement. A situation that might occur, for instance, if such
statement was automatically generated by another source plugin.

Later, our source plugin can easily populate a source annotation (of type
SrcInfo) for each do statement it finds. However, we still need to insert each
annotation into our EDSL in a predictable way. For this purpose, we will define
a function annotateM, taking a monadic computation and a source annotation,
and returning a new monadic computation which internalizes such annotation:

annotateM :: Monad m ⇒ m a → SrcInfo → m a

Note how this function refers neither to a specific monadic type (m) nor to a
specific return type of the monadic computation (a). This generality lets our
plugin blindly transform every do statement it finds in the user code in a type-
safe manner. To do so, it simply wraps every statement with its static information
using our generic annotation function. For instance, our plugin will transform
the semaphore example from Sect. 1 to the following concrete code:

1 semaphore = do
2 green ← node `annotateM̀ Info (Just "green") (Just ("Main.hs", 2, 3))
3 yellow ← node `annotateM̀ Info (Just "yellow") (Just ("Main.hs", 3, 3))
4 red ← node `annotateM̀ Info (Just "red") (Just ("Main.hs", 4, 3))
5 green .->. yellow`annotateM̀ Info Nothing (Just ("Main.hs", 5, 3))
6 yellow .->. red `annotateM̀ Info Nothing (Just ("Main.hs", 6, 3))
7 red .->. green `annotateM̀ Info Nothing (Just ("Main.hs", 7, 3))

Notice, for instance, how the bound name red is reflected in the source anno-
tation for the red ← node statement with the value Just "red", whereas the
green .->. yellow statement in the next line is not given any name, which gets
represented by the Nothing constructor on its corresponding source annotation.

Additionally, each annotation carries the source location within the user code
of its corresponding statement—assuming here that the first do statement is
defined in line number 2 of the file Main.hs.

After this transformation is automatically applied, the user will be able to
make use of this useful source information, which is now explicit in the source
code—and without the burden of maintaining manually written annotations.

Even though this transformation is rather mechanical, the behavior of the
annotating function annotateM is not trivial, and is subject to which types of our
EDSLs are expected to be annotated, and how the source annotations should be
consumed by them. The next section addresses the challenges of implementing
this function in depth.

3 Consuming Source Annotations

In the previous section, we demonstrated how it is possible to annotate expres-
sions written using do notation with source information via source plugins. Such
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annotations rely on a generic function annotateM to produce the annotation
effect. This section explores the details of this function in two possible variants.

Haskell gives the programmer the freedom to implement EDSLs in many
ways, depending on the nature of the embedded language. As a consequence, a
concrete solution for annotating EDSLs would likely not fit many use cases. In
this light, our approach supports two different annotation styles that the pro-
grammer can use depending on the particular implementations of their EDSLs:

• Effect-free annotations: the annotations are stored directly on the values they
refer to, e.g, using a specialized data constructor, or an option type.

• Effect-full annotations: the annotations are kept in a monadic context as a
side effect, e.g., using a mapping from values to annotations inside a state
monad.

On one hand, the effect-free style lets us annotate values in place, regardless of
the monadic context producing them, which might come in handy if our EDSL
defines several monadic types to be used by the end-user. On the other hand,
the effect-full style lets us insert the source annotations in the monadic context
without having to modify the return value of each computation. This style might
be useful if our EDSL already carries an internal monadic state, or if the source
annotations should not be available to the end-user.

Both annotation styles are independent of each other and provide different
interfaces to interact with BinderAnn. Programmers will then have to choose
the most suitable one depending on the nature of their EDSLs, and adapt their
code to be able to consume the annotations generated by our plugin.

The rest of this section addresses each annotation style in detail.

3.1 Effect-Free Annotations

The simplest way to annotate a value with source information is given when
its type already supports annotations. For instance, suppose that the graph-
building EDSL from Sect. 1 defines graph nodes as having an identifier, and an
associative list of attributes as payload:

data Node = Node Id [(Attr, Value)]

With this in place, the rest of the EDSL combinators can be implemented in
terms of nodes as inputs and outputs:

node :: Dot Node
(.->.) :: Node → Node → Dot ()

where Dot is the main monad defined by this EDSL, whose details are not
very relevant for this annotation style. To support generating faithful code, we
can extend the definition of the Node data type to also carry an optional field
representing the name of each node:
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data Node = Node Id (Maybe String) [(Attr, Value)]

Then, we need to somehow specify that every monadic computation returning
a Node should (potentially) be annotated with its bound name. To encode this,
we can define a new type class [13] Annotated, representing types (of type a)
that can be annotated directly:

class Annotated a where
annotate :: a → SrcInfo → a

The function annotate simply takes a value and an annotation and returns an
annotated value of the same type. Then, we can specify how the source bound
names can be inserted into nodes by giving an appropriate Annotated instance:

instance Annotated Node where
annotate (Node id attrs) (SrcInfo name loc) = Node id name attrs

where we simply extract the bind name from the source annotation and use it
as the node name—for simplicity, we discard the location information here.

Using this type class, we can finally implement our desired annotateM func-
tion which transforms do statements by unwrapping the return value from the
monadic computation and returning the corresponding annotated one:

annotateM :: (Monad m, Annotated a) ⇒ m a → SrcInfo → m a
annotateM ma ann = do

a ← ma
return (annotate a ann)

This is an extensible mechanism that lets us support automatic annotations
over the return types of our interest. We simply need to provide an instance of
the Annotated type class for every return type of a do statement we want to
annotate using our plugin.

While simple, this transformation is not safe (yet). Recalling from Sect. 2,
our plugin knows nothing about the return type of a do statement. Hence, it
transforms every statement it finds under the assumption that this transforma-
tion will not produce a type error—as annotateM universally quantifies over any
possible return type of the monadic computation it transforms. However, our
annotateM function now carries an additional Annotated constraint! In prac-
tice, this means that our plugin will break the well-typedness of our EDSL if
it happens to find a monadic computation returning a value of a type with-
out an Annotated instance. And even though we could potentially provide an
Annotated instance for every type used by our EDSL, a user could always write
a statement returning a value of a type not known by our EDSL:

x ← return False
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Here, the lack of an instance for Annotated Bool will break the module during
type checking.

To attenuate this problem, we can make every type trivially annotatable by
simply discarding the annotation altogether:

instance {-# INCOHERENT #-} Annotated a where
annotate a = a

This generic instance works as a default trivial annotation method, where any
concrete Annotated instance written by the programmer will take precedence
against this one [16]. Furthermore, note how this default instance requires to be
declared as incoherent. This ensures that the type checker will pick a concrete
instance written by the user whenever possible, but it will conservatively use the
default one in case of an overlapping arising from annotating fully-polymorphic
functions—we discuss this in detail in Sect. 6.4.

3.2 Effect-Full Annotations

EDSLs might also be implemented in a fully stateful manner, where the impor-
tant data is kept in the monadic context, and the user only gets a reference to
handle it. For instance, suppose that our graph-building EDSL from Sect. 1 does
not return nodes directly, but references to them instead:

data NodeRef = NodeRef Id

node :: Dot NodeRef
(.->.) :: NodeRef → NodeRef → Dot ()

Here, the node payload will be kept in an internal state of the Dot monad defined
by the EDSL, which could be defined on terms of a state monad:

newtype Dot a = Dot (State DotState a)

data DotState = DotState {
node_attrs :: Map NodeRef [(Attr, Value)]

}

In this case, we might as well want our annotation mechanism to follow the same
pattern, inserting the annotations in the monadic context instead of directly in
the value they refer to. For this purpose, we can extend our DotState type to
also carry the source names given to the bound nodes (if any) using a partial
mapping:

data DotState = DotState {
node_attrs :: Map NodeRef [(Attr, Value)],
node_names :: Map NodeRef String

}
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Similarly as before, we can define a new type class to specify how to annotate
values of different types, except that this time we also need to quantify over the
specific monadic context in which the annotation takes place:

class Monad m ⇒ AnnotatedM m a where
annotateM :: m a → SrcInfo → m a

Notice that this new type class defines our desired annotateM function directly.
In contrast to the previously seen Annotated type class from the previous subsec-
tion, this type class let us specify how do statements can be annotated depending
not only on their result type but also on their specific monadic type. In this light,
computations returning new node references can be annotated within the Dot
monad by inserting the bound names in the extended internal state:

instance AnnotatedM Dot NodeRef where
annotateM mref (Info name loc) = do

ref ← mref
when (isJust name) $ modify $ λs →

s {node_names = Map.insert ref (fromJust name) (node_names s)}
return ref

As before, we also need to provide a default instance for our new type class, to
ensure that our plugin will not break the well-typedness of the user code:

instance {-# INCOHERENT #-} Monad m ⇒ AnnotatedM m a where
annotateM ma = ma

All in all, the two annotation styles presented in this section cover a wide
variety of EDSL implementation patterns.

4 Extensions

This section describes two useful extensions to our annotation approach that are
currently supported by our plugin.

4.1 Annotating Computations Returning Tuples

The syntactic transformation described so far contemplates monadic computa-
tions with and without bound names. However, in principle we could only use it
to extract the names bound to complete resulting values, i.e, when the pattern at
the left hand side of (←) is a plain variable pattern. In practice, a computation
could produce multiple values and return them in a tuple. For instance, sup-
pose that our graph-building EDSL example from Sect. 1 provides a combinator
nodes returning multiple new nodes at once:
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(green, yellow, red) ← nodes

For this common programming practice, we would want to insert an annotation
for each element of this tuple, following the same pattern as we did before.
However, our source annotations can only associate a single name bound to a
complete result value of a monadic computation.

Fortunately, we can extend our plugin to support tuple results by inserting
a function that lifts our annotation mechanism to each element of the resulting
tuple:

(green, yellow, red) ← nodes
`annotateM3̀

(Info (Just "green") (Just ("Main.hs", 2, 4)),
Info (Just "yellow") (Just ("Main.hs", 2, 10)),
Info (Just "red") (Just ("Main.hs", 2, 18))

where annotateM3 simply extracts each tuple element from the monadic compu-
tation, annotates it using the ordinary annotation function, and returns a new
tuple containing each annotated value:

annotateM3 :: Monad m ⇒ m (a, b, c) → (SrcInfo, SrcInfo, SrcInfo) → m (a, b, c)
annotateM3 mabc (ia, ib, ic) = do

(a, b, c) ← mabc
a’ ← return a`annotateM̀ ia
b’ ← return b`annotateM̀ ib
c’ ← return c`annotateM̀ ic
return (a’, b’, c’)

It is easy to see how this lifting primitive can be trivially generalized to tuples
of any fixed size.

4.2 Specifying the Annotation Scope

By default, our annotation plugin will transform every do expression present on
the module it runs over. Even though a module can contain do expressions of
different monadic types, we have shown in Sect. 3 how this transformation can
effectively affect only those expressions of the types the user is interested in.

Nonetheless, for a given type to be annotated with source information, a user
might still want to limit the scope of the annotations to a certain subset of do
expressions. To support this, our plugin can also be set to work in a selective
mode, where the user specifies which do expressions should be transformed.

On one hand, if the target expression is bound to a top-level name, we can
use a GHC annotation pragma to specify that we are interested in annotating it:

{-# ANN semaphore SrcInfo #-}
semaphore = do

<annotated do statements>
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This way, BinderAnn will begin by reifying all the annotation pragmas defined
in the module, and will proceed to transform only those do expression for which
a corresponding annotation pragma exists.

However, annotation pragmas can only refer to top-level bindings, limiting
the applicability of this technique. In practice, writing do expressions at the
right hand side of the ($) infix function application operator is quite common.
For instance, a user might define a graph and render its DOT code right away:

semaphoreCode = showDot $ do
<do statements>

There is no top-level name we can use to specify our plugin to annotate this
nested do expression. To solve this, we can introduce an infix annotation oper-
ator. This is, we can replace the infix function application operator ($) with a
new syntactic operator, e.g., (|$|), that can be sought within the user’s code in
order to transform nested do expressions:

semaphoreCode = showDot |$| do
<annotated do statements>

Then, our plugin will transform every do expression at the right hand side of a
(|$|) operator to include the appropriate source annotations, replacing it with
normal function application in the process. In practice, the programmer can
specify the annotation operator to be any valid infix operator name using a
plugin option in BinderAnn (-fplugin-opt BinderAnn:infix=|$|).

This gives us the freedom to choose the most appropriate operator according
to the nature of the embedded language. Additionally, the infix annotation oper-
ator can be defined as a synonym to the actual function application operator:

(|$|) :: (a → b) → a → b
(|$|) = ($)

This way, the behavior of our code does not change when the plugin is disabled.
Next section develops a complete case study, exploring some interesting fea-

tures that our plugin enables and can aid in implementing in future EDSLs.

5 Case Study: Theorem Proving EDSL

So far we have seen how source annotations can be automatically extracted from
the source code using a GHC source plugin (Sect. 2), as well as consumed to our
EDSLs in different ways depending on how they are implemented (Sect. 3).

Using this approach, we enhanced several existing EDSLs [1,7,9,10] (includ-
ing the ones presented in Sect. 1) to support source annotations, obtaining attrac-
tive results3 with relatively small effort.
3 Available at http://github.com/OctopiChalmers/BinderAnn-examples.

http://github.com/OctopiChalmers/BinderAnn-examples
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To demonstrate the full potential of our automated transformation technique,
this section introduces a novel case study we designed from scratch having source
annotations in mind. In this light, we implemented a simple proof assistant EDSL
for propositional logic formulas,4 based on Coq’s [4] tactic style, i.e., our proofs
will consist of a series of monadic commands (the tactics) which will manipulate
our goals and hypotheses to construct a proof for a given target formula.

Despite not being academically enlightening, this EDSL uses the effect-full
annotation style to take advantage of the source information present in the user
code, in order to provide useful interactive (modulo recompilation time) proof-
state reports—an attractive feature that was not possible to achieve before using
monadic EDSLs. To give an example of this, Fig. 3a shows a proof of Modus
ponens discharged using our EDSL. Firstly, we use the combinator variables
to create two new propositional variables p and q (line 3). These variables are
used immediately in line 4, where the proof combinator establishes the current
proof goal (p ∧ (p ⇒ q) ⇒ q) and we can proceed to prove it using the do
expression starting after the ($) operator.

Fig. 3. User interface of our Coq-like, tactics-based proof assistant EDSL.

The proof itself uses a series of tactic combinators to progressively manipulate
our goal and hypotheses in order to prove our goal. In the first place, we introduce
the left hand side of the top-level implication goal as a new hypothesis named
hand using the intro combinator (line 5), leaving us with the responsibility of
proving its consequence, i.e., q. From here, we use the destruct combinator to
split our conjunction hypothesis hand into two new hypotheses named hp and
hpq, representing each side of the conjunction (line 6). Having the hypotheses p
and p ⇒ q now in scope, we use the apply tactic to eliminate the latter applying
it the former, obtaining a new hypothesis hq which represents our goal (line 7).
Our proof concludes in line 8 by telling the EDSL to use the specific hypothesis
hq as a proof of our goal, using the exact combinator. The final qed command at
line 9 simply asserts that the proof given matches the current goal, and returns
the proven proposition.
4 Available at http://github.com/OctopiChalmers/PropProver.

http://github.com/OctopiChalmers/PropProver
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While writing this proof, our EDSL assists the user with a report of the
current proof state on each step. For instance, by removing the last tactic we
apply (line 8), the corresponding proof state given to the user is the one shown in
Fig. 3b. Notice how this report reflects the same variable and hypothesis names
introduced by the user in the proof code, i.e., p, q, hand, and so on. Additionally,
it indicates the current proof position within our file, which is also used to emit
a precise error message whenever some tactic is applied incorrectly—all these
features being now possible thanks to our plugin.

To illustrate how helpful this information is for our EDSL, Fig. 3c illustrates
the same proof state report we would obtain without reified source annotations
(by disabling our plugin for instance). There, both variable and hypothesis names
are just printed out using their internal names. Moreover, the current proof-state
source position is not available either. Together, these two compromises limit the
attractiveness of implementing elegant embedded proof assistants in Haskell.

Implementation. To implement our EDSL, we will start by defining our main
monadic data type Proof by stacking two monads: a StateT transformer to
keep an implicit proof state, on top of an Except monad to raise and catch
proof-related errors:

newtype Proof a = Proof (StateT ProofState (Except ProofError a))

The most interesting bit here is how we define our proof state. In essence, we
will keep a set of propositional variables in scope, along with a stack of subgoals
(propositional formulas to construct) and their corresponding context:

data ProofState = ProofState {
ps_vars :: Set Var,
ps_subgoals :: [(Prop, Context)]

}

Here, variables are represented simply as numbers, whereas contexts are map-
pings from hypotheses (also represented as numbers) to propositions:

newtype Var = Var Int
newtype Hyp = Hyp Int
type Context = Map Hyp Prop

Finally, propositions are represented using a simple recursive data type encoding
each logical connective:

data Prop = Var Var | Prop ∧ Prop | Prop ⇒ Prop | · · ·

The machinery introduced so far is enough to implement the core logic of our
EDSL and its proof tactics. However, to take advantage of the source information
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extracted by our plugin using the effect-full annotation style, we will further
extend our proof state with three additional fields to keep track of the source
information relevant to our proofs:

data ProofState = ProofState {
· · ·
ps_var_names :: Map Var String,
ps_hyp_names :: Map Hyp String,
ps_curr_pos :: Maybe Loc

}

These new fields will help us keeping track of: the source name given to each
propositional variable (introduced by the variables combinator); the source
name given to each new hypothesis (introduced by our different tactics); and
the location in the source code of the last command evaluated by the EDSL (if
any).

Then, to connect this internal state to the source annotations generated by
our plugin, we need to consider the different result types that each combinator
of our EDSL produces. In first place, our variables combinator is used to
instantiate new propositional variables (of type Var). In this light, we can create
an annotation rule (using an AnnotatedM instance) to store the source name
each variable is given by the user (if any) into the internal names mapping of
our proof state:

1 instance AnnotatedM Proof Var where
2 annotateM mvar (Info name loc) = do
3 updateCurrentPosition loc
4 var ← mvar
5 when (isJust name) (recordVarName var (fromJust name))
6 return var

where recordVarName (line 5) inserts the bind name (if any) coming from the
source annotation into the internal variable names mapping:

recordVarName :: Var → String → Proof ()
recordVarName var name = modify $ λs →

s {ps_var_names = Map.insert var name (ps_var_names s)}

Additionally, the function updateCurrentPosition (line 3) simply updates the
location in the code of the last command executed by the EDSL (if any):

updateCurrentPosition :: Maybe Loc → Proof ()
updateCurrentPosition loc = modify $ λs → s {ps_curr_pos = loc}

The next thing we need to consider is how the result of each tactic affects
the source information collected in the internal proof state. In principle, proof
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tactics can return either a new hypothesis (or a tuple of them), when they
cause new hypotheses to appear in the proof state, e.g., intro or apply tactics;
or a unit value, when they transform the proof state without introducing any
new hypothesis, e.g., the exact tactic. With this in mind, we will provide two
additional annotation rules to be executed whenever a proof tactic returns either
a new hypothesis (of type Hyp) or nothing (of type ()):

1 instance AnnotatedM Proof Hyp where
2 annotateM mhyp (Info name loc) = do
3 updateCurrentPosition loc
4 hyp ← mhyp
5 when (isJust name) (recordHypName hyp (fromJust name))
6 return hyp

7 instance AnnotatedM Proof () where
8 annotateM munit (Info name loc) = do
9 updateCurrentPosition loc

10 munit

The first AnnotatedM instance (line 1) will store the source name each hypoth-
esis is given by the user (if any) into the internal proof state—the function
recordHypName from line 5 works analogously as recordVarName. As before, we
keep track of the last command evaluated by the EDSL in case of a proof error.

For the case of the second AnnotatedM instance (line 7), tactics not producing
new hypotheses will not bring new source names to store into the internal proof
state. However, this instance makes sure that if such a tactic fails, we have its
position logged into our internal proof state in order to report a precise error
message (line 9).

With these AnnotatedM instances in place, our plugin will seamlessly interact
with them, keeping track automatically of source names introduced by the users
in their code, as well as the location of each tactic invocation in case of having
to report a proof-related error.

6 Discussion

We have presented a simple mechanism based on source plugins for enhancing
Haskell EDSLs with source information. This section reflects on other approaches
for supporting the extraction of source information without relying on source plu-
gins. Moreover, we discuss limitations and possible extensions to our approach.

6.1 Preprocessing Haskell Code

Our approach is based on transforming the user code adding explicitly some of
the useful information that gets lost during compilation. The main advantage
of source plugins is that they provide a simple way of doing so without rely-
ing on external machinery. Before their existence, achieving the same kind of
functionality would have required a substantial amount of effort.
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For an overview of other possible (and arguably less pleasant) solutions of this
problem, we refer the reader to the work of Dévai et al. [5]. There, the authors
propose different indirect techniques for enhancing Haskell EDSLs with static
information, e.g., using cpphs, the Haskell implementation of the C preprocessor;
as well as transforming the Haskell source AST using existing parsers and pretty
printers before feeeding it to the actual compiler.

6.2 Implementing EDSLs Using QuasiQuotation

In contrast to preprocessing our Haskell code to include static information, it is
also somewhat possible achieve the same goal using meta-programming.

Template Haskell [23] is the Haskell meta-programming framework bundled
in the GHC compiler. This tool can be used to inspect the typing informa-
tion present in the user’s codebase and synthesize new code depending on it
but, for technical reasons, inspecting term definitions or modifying existing
Haskell code is not possible, making this framework unsuitable for implement-
ing a transformation-based approach. Nonetheless, a useful feature of Template
Haskell used by many existing EDSLs [8,11,12,19,24] is the support for quasiquo-
tation [18]. Essentially, quasiquotation allows to embed code written using arbi-
trary, domain-specific syntax into our Haskell code. To do so, this approach
relies on implementing quasi quoters, i.e., interpretations from arbitrary strings
to their corresponding Haskell expressions:

data QuasiQuoter = QuasiQuoter {
quoteExp :: String → Q Exp,
· · ·

}

where Q is the quasiquotation monad defined by Template Haskell.
Using this approach, it would be possible to implement our Coq-like EDSL

from Sect. 5 as a quasi quoter coq :: QuasiQuoter accepting concrete Coq syn-
tax. Then, we could use it to embed Coq proofs into our Haskell EDSL using
quasiquotation brackets syntax ([| · · · |]):

1 modus_ponens :: Proof Prop
2 modus_ponens = [coq|
3 Variables P Q.
4 Theorem (P ∧ (P → Q) → Q).
5 Proof.
6 intro hand.
7 destruct hand as [hp hpq].
8 apply hp hpq as hq.
9 exact hq.

10 Qed.
11 |]



Automated Reification of Source Annotations for Monadic EDSLs 43

An advantage of this approach is that the arbitrary code written inside of
the quasiquotation brackets has (almost) no syntactic restrictions. Hence, it can
be used to embed domain-specific code written using the syntax that fits best
the nature of a given EDSL, as opposed to the syntactic restrictions imposed by
the use of Haskell syntax and do notation—which are exploited by BinderAnn.

However, all this flexibility does not come for free. Implementing a quasi
quoter for a language with a novel syntax implies writing a lexer and a parser
from a plain string to a Haskell expression—a task that might overcome the
benefits of having a new specialized syntax. Moreover, the interaction between
quasiquoters and native Haskell code tends to be intricate. In particular, enabling
quasiquoters to support embedding native Haskell code inside quasiquotation
brackets (something known as antiquotation) requires a considerable amount of
work and knowledge [18]—without this feature, our quasiquoters can only accept
constant EDSL expressions inside the quasiquotation brackets.

Extracting bound names becomes possible using quasi quoters, since, as we
mention above, we have access to the literal string written by the user. Source
locations, on the other hand, are more tricky to infer. By default, quasi quoters
will only be able to recognize source locations relative to where the quasiquota-
tion brackets are interpolated in our Haskell code (line 2 in our example above),
difficulting the task of giving the end-user error messages referring to absolute
locations within their code.

6.3 Source Annotations for Non-monadic EDSLs

In this work, we decided to focus only on automatically annotating monadic
EDSLs expressed using do notation. Although it may seem arbitrary, the reason
behind this decision is simple: do notation gives us a good level of granularity.
Our plugin perform statement-wise transformations, matching the natural notion
of having one domain-specific command or instruction per do statement. This
symmetry lets us annotate EDSL very transparently for the end-user.

On the other hand, there exists many remarkable non-monadic EDSLs writ-
ten in Haskell and not supporting them by default constitutes a noticeable lim-
itation of our current approach. In principle, we could use the pure annotation
style introduced in Sect. 3 to insert annotations into pure values. However, it is
the lack of a well-defined statement structure what complicates deciding where
to insert source annotations. On one hand, annotating only top-level bindings
might be too sporadic for practical purposes, while doing so for every subexpres-
sion within a value might blow up the size of our transformed code exponentially,
so an acceptable annotation granularity would seem to lay somewhere in between
of these two extremes—an intriguing problem to drive our future work.

6.4 Use of Incoherent Instances

As mentioned in Sect. 3, our approach let us inject source annotations into the
values of certain types of interest, and relies on default instances to provide
trivial implementations of the annotation functions for any other possible value.
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Instead of having to provide concrete annotation instances for each possible
type present in the user code, these default instances are a convenient feature
that allows doing so on a per-case basis while preserving the type-correctness of
the user code after it is transformed by our plugin. Sadly, this convenience has
as a limitation that annotations inserted into fully-polymorphic functions will
be systematically discarded. To illustrate this, consider for example the following
function that duplicates the output of a monadic computation:

twice :: Monad m ⇒ m a → m (a, a)
twice ma = do

x ← ma
return (x, x)

If written by the user of the EDSL, and then annotated by our plugin, this
function will trigger a type error when there exists at least a single more concrete
Annotated or AnnotatedM instance. The reason behind this is simple: while type
checking the annotated statement x ← ma, only the default annotation instance
is polymorphic enough to match the type of ma, however, it cannot be chosen
directly, as the existence of other more concrete ones would make this choice
inconsistent, e.g, using the default instance even when twice is instantiated in
the user code with a type that has a more concrete one. Then, declaring our
default instances as incoherent loosens this constraint, allowing the compiler to
choose the default instance whenever it has to solve an overlap while compiling
fully-polymorphic functions like twice, but leaving us with the aforementioned
limitation as a result of this conservative behavior.

The complexity around the use of overlapping instances is well known by the
Haskell community. In this light, this problem has been solved using more sophis-
ticated approaches relying on type-level programming, e.g., using closed type
families [6]. Adopting them in our plugin without sacrificing its transparency
and ease of use is an ambitious problem that we keep as future work.

7 Conclusions

We developed a simple mechanism to facilitate the automatic extraction of useful
source code information that is otherwise lost during compilation. Having access
to such information when implementing embedded domain-specific languages is
extremely valuable, making possible to implement attractive features such as
faithful code generation and precise error messages. In the past, such features
were more complicated if not impossible to achieve without involving undesirable
trade-offs like repeated code or quasiquotations.

In the future, we aim to investigate how to extend our approach to a wider
set of EDSL programming patterns, especially to those implemented using non-
monadic combinators, and for which the use of do notation is not available.
Additionally, we intend to evaluate how our annotation framework could be
extended using generic programming techniques, so programmers should not
need to adapt their existing EDSL data type definitions to work with it.
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Abstract. Software that models business workflows is omnipresent in today’s
society. These systems coordinate collaboration in hospitals, companies, and mil-
itary institutions. Unfortunately, workflow systems may obfuscate the influence
of current user actions on the desired end result. In order to make the right deci-
sion, users need to oversee the full process and all information available, both of
which are usually buried in the system. We have developed a way to automati-
cally generate next step hints for task oriented programs. Task oriented program-
ming provides programmers with an abstraction over workflow software, while
still being expressive enough to describe real world collaboration. By leverag-
ing symbolic execution, we can calculate these hints without modification of the
original program. To our knowledge, this is the first time that symbolic execution
is used to automatically generate next step hints for end users. We prove the gen-
erated hints to be sound and complete, and also demonstrate that the symbolic
execution semantics we employ is correct for sequential input. In addition, we
have developed a Haskell implementation of our automatic next step hint gener-
ation system. By providing next step hints, the chance of human error is reduced,
while still allowing end users to intervene if required. The overall performance is
raised, since the quality of decisions will improve.

Keywords: Task-oriented programming · Next step hint generation · Symbolic
execution

1 Introduction

Software that supports people working together is used in most workplaces nowadays.
Its aim is to automate business workflows, in order to simplify processes, to improve
service, or to contain cost. In settings like hospitals, first responders and military oper-
ations, these systems could even prevent the loss of lives.

Automation and digitalisation of workflows and business processes comes at a cost.
For end users it can be hard to see how an action influences their desired goal. They are
unable to oversee the complete flow of the process and there might be an abundance of
data that they are not fully aware of. End users might wonder if checking a box may
prevent them, or someone else, from reaching their goal, or ask themselves if they have
taken all information into consideration before making a decision.
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To overcome these difficulties, we propose to integrate a next step hint system into
workflow software. By combining previous research on symbolic execution for Task-
Oriented Programming [16] and end-user feedback systems for rule based problems [15],
we develop a next step hint end-user feedback system for the Task-Oriented Program-
ming language TopHat (̂TOP) [20]. Our solution, which we call Assistive ̂TOP, generates
next step hints from existing code, and does not require extra work by the programmer.
To our knowledge, this is the first work employing symbolic execution to automatically
generate next-step hints for end users.

Providing next step hints to end users will provide them with a quick insight in to
their situation. It reduces the chance of human error, while still allowing the user to
intervene if required. The quality of decisions will improve, raising the overall perfor-
mance.

In this paperwewill introduce Task-Oriented Programming and the ̂TOP language for
readers unfamiliar with either of them, followed by some illustrative examples. Build-
ing further on this foundation we show how we use symbolic execution to automatically
generate next step hints for end users. It is crucial that these hints are valid, meaning they
allow users to reach the desired goal. Therefore we prove correctness of the automatic
hint generation system. Our hint generation system relies on symbolic execution as pre-
sented in earlier work [16]. There, we proved correctness for the symbolic semantics
for single user inputs. Here, we prove the entire symbolic system to be correct, for any
sequence of user inputs.

1.1 Contributions

This paper makes the following contributions.

– We describe an automatic end user next step feedback system for ̂TOP, called Assis-
tive ̂TOP , based on a previously presented symbolic semantics.

– We prove the symbolic execution semantics of ̂TOP to be correct for sequential
inputs.

– We change the definition of simulation of ̂TOP programs to accommodate above
proof.

– We prove soundness and completeness of next step hints generated by this system.
– We present an implementation of the end user feedback system in Haskell.

1.2 Structure

Section 2 first introduces the Task-Oriented Programming (TOP) paradigm and the Task-
Oriented Programming language ̂TOP. Section 3 lists three example programs to illus-
trate how ̂TOP works and to show what we like to achieve with Assistive ̂TOP . In Sect. 4
we briefly introduce the symbolic execution semantics for ̂TOP, followed by a descrip-
tion of Assistive ̂TOP . In Sect. 5 soundness and completeness of the assistive system
are shown. Section 6 gives an overview of related work, and finally Sect. 7 concludes.
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2 The TopHat Language

The Task-Oriented Programming (TOP) paradigm was first introduced by Plasmeijer
et al. [19]. It is created to improve the development and quality of software that coor-
dinates collaboration between users. TOP provides programmers with a high level of
programming abstraction, while still being expressive enough to describe real world
collaborations. It does so by using features from higher-order functional programming
languages, combined with the notion of tasks. Tasks model units of work, which can be
performed by a human or by a computer. From a task specification, a TOP implementa-
tion generates a distributive multi-user (web) application.

Tasks have a couple of properties, listed below.

– Tasks model collaboration.
Programmers describe what work needs to be done, by who and in what way.

– Tasks are interactive.
Users can enter or update information into the system by using editors. They can
progress to the next task, or choose between tasks.

– Tasks can be observed.
Therefore, other users or the system itself can make decisions based on the observed
progress of the task.

– Tasks are modular.
They can be combined into bigger tasks by using combinators. The basic combina-
tors are chosen in such a way, that they represent basic collaboration patterns. New
combinators can be created by making use of basic combinators and the (higher
order) facilities of the host language.

– Tasks share information.
Information is passed along control flow, or, in order for tasks to exchange informa-
tion, across control flow via references. In particular to share data between parallel
tasks.

– Tasks are typed.
This is not just to ensure safety at runtime, but also to automatically derive common
program elements. TOP systems automatically generate user interfaces and manage
persistent storage of information.

Currently, there are three systems implementing the TOP paradigm. The reference
implementation is the iTasks framework [19], which is an embedded domain specific
language in the non-strict functional programming language Clean [18]. mTasks [13]
is a TOP implementation specifically designed for embedded systems. A formalisation
of TOP, called ̂TOP (TopHat), has been created by Steenvoorden, Naus, and Klinik [20].
Assistive ̂TOP builds on ̂TOP and its symbolic counterpart Symbolic ̂TOP [16].

̂TOP implements TOP by embedding a task language in the simply typed lambda
calculus with references, conditionals, and pairs. Note the omission of any fixed point
language constructs, which make ̂TOP a total language. Symbolic ̂TOP extends this
with built in operators, lists, and most importantly symbols. References are used to
model the shared data component of TOP. The complete syntax and semantics can be
found in previous work [20]. An overview can be found in the appendix1. In the next

1 https://github.com/timjs/assistive-tophat/raw/master/appendix.pdf.

https://github.com/timjs/assistive-tophat/raw/master/appendix.pdf
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subsections we describe the basic constructs of the ̂TOP language. Section 4.1 details
Symbolic ̂TOP .

2.1 Editors

Editors form the entry points for interaction and communication with the outside world.
They are the most basic tasks and can be seen as an abstraction over widgets in a GUI

library or forms on a webpage. Users can change the value held by an editor, in the
same way they can manipulate widgets in a GUI.

When a TOP implementation generates an application from a task specification, it
derives user interfaces for the editors. The appearance of an editor depends on its type.
For example, editors of type string can be represented by simple input fields, dates by
calendars, and locations by pins on a map.

There are three different editors in ̂TOP.

� v Valued editor.
This editor holds a value v of a certain type. The user can replace the value by new
values of the same type.

� τ Unvalued editor.
This editor holds no value, and can receive a value of type τ . When that happens, it
turns into a valued editor.

� l Shared editor.
This editor refers to a store location l. Its observable value is the value stored at that
location. When it receives a new value, this value will be stored at location l.

2.2 Combinators

Editors can be combined into larger tasks using combinators. The order in which edi-
tors and tasks are executed is specified with combinators. Tasks can be performed in
sequence, in parallel or a choice can be made between tasks. These combinators origi-
nate from basic collaboration patterns.

The following combinators are available in ̂TOP. Here, t stands for tasks and e for
expressions.

t � e Step.
Users can work on task t. As soon as t has an observable value, as defined in the
next section, that value is passed on to the right hand side e. The expression e is a
function, taking the value as an argument, resulting in a new task.

t � e User Step.
Users can work on task t. When t has an observable value, the step becomes enabled.
Then, users can send a continue event to the combinator. When that happens, the
value of t is applied to the right hand side function e, with which it continues in the
same way as normal steps do.

t1 �� t2 Pair.
Users can work on tasks t1 and t2 in at the same time.
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t1 � t2 Choice.
The system chooses between t1 or t2, based on which task first has an observable
value. If both tasks have a value, the system chooses the left one. When neither of
the two tasks has an observable value, users can continue to work on both tasks until
one of them does.

e1 ♦ e2 User choice.
A user has to make a choice between either the left or the right hand side. After
picking a side, the user can work on that task.

In addition to editors and combinators, ̂TOP also contains the fail task (�). Program-
mers can use this task to indicate that a task is not reachable or viable. When the right
hand side of a step combinator evaluates to �, the step will not proceed to that task.

2.3 Observations

Several observations can be made on tasks. These observations are used by the system
to determine the progress of combinators, and to draw the user interface. They will also
be used by Assistive ̂TOP to provide next step hints.

Using the value function V , the current value of a task can be determined. The
value function is a partial function, since not all tasks have a value. For example empty
editors do not have a value. The value of tasks composed of parallel and internal choice
combinators, depends on the value of the subtasks. Parallel only has a value if both
tasks have an observable value. Internal choice has a value if either of the two tasks has
an observable value.

One can also observe whether or not a task is failing, by means of the failing func-
tion F . A task is considered to be failing if, after normalisation, a user cannot interact
with it. For example, the valued editor is not failing, since the user can update it with a
new value. The task � is failing, as is a parallel combination of failing tasks � �� �, since
both the left and the right task cannot be interacted with. Both observation definitions
can be found in Fig. 1.

The step combinators make use of both functions in order to determine if they can
step to the right hand side. First, V determines if the left hand side produces a value. If
that is the case, F checks if stepping to the right hand side is successful.

2.4 Input

Input events drive the evaluation of tasks. Because tasks are typed, input is typed as
well. Editors only accept input of the correct type. For example, an editor can only be
updated with a new value, if it has the same type as the old value. When the system
receives a valid event, it applies this event to the current task, which evaluates to a
new task. Everything in between two events is evaluated atomically with respect to
inputs. This means that tasks are normalised up to the point where they await new user
interactions.

Input events are synchronous, which means that the order of execution is completely
determined by the order of the events. In particular, the order of input events determine
the progression of parallel branches.
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Fig. 1. Observations on task t. V gets the value of t, F observes if it is unsafe to step to t. Note
that V is a partial function.

Fig. 2. Semantic functions defined in this report and their relation.

2.5 Semantics

The semantics of ̂TOP are defined in three layers. Figure 2 contains an overview of these
semantics and their relations. The first layer consists of the standard big step semantics
for the simply typed λ-calculus. We call this semantics evaluation ( ↓ ). All task specific
language constructs, as described previously in Sects. 2.1 and 2.2, are normalised using
a dedicated big step semantics ( ⇓ ) in the second layer. Normalisation can be regarded
as preparing tasks for user input. It makes use of a helper small step semantics called
striding ( �→ ).

The above semantics are internal to the system and do not take any user interaction
into account. On the third level, the small step interaction semantics ( =⇒ ) first handles
any user input i using the handle semantics ( −→ ) and then normalises the resulting task
so it is ready to handle the next user input.

The semantic rules can be found in the appendix2. For a thorough explanation of all
rules, we refer to previous work [20].

3 Examples

This section introduces three example ̂TOP programs. Each example illustrate differ-
ent functionality of the ̂TOP language. Section 3.1 demonstrates the step combinator,

2 https://github.com/timjs/assistive-tophat/raw/master/appendix.pdf.

https://github.com/timjs/assistive-tophat/raw/master/appendix.pdf


Generating Next Step Hints for Task Oriented Programs 53

Sect. 3.2 includes the parallel and choice combinators, and finally Sect. 3.3 demon-
strates the use of shares in order for tasks to communicate with each other. The exam-
ples will be used in Sect. 4 to demonstrate how Assistive ̂TOP works, and are included
in the implementation.

3.1 Vending Machine

Using the editors and combinators described in Sect. 2, we can create a vending machine
that dispenses a biscuit for one coin and a chocolate bar for two coins as follows:

1let vend : TASK SNACK = �0 � λn.
2if n ≡ 1 then �Biscuit
3else if n ≡ 2 then �ChocolateBar
4else �

Listing 1.1. Vending machine dispensing biscuits or chocolate.

This example demonstrates the usage of a user step guarded by a branching expres-
sion (Line 2) using the failure task (Line 4). The editor � 0 asks the user to enter an
amount of money. It simulates a coin slot in a real machine that freely accepts and
returns coins. There is a continue button, generated by the user step combinator �.
Only when the user has inserted exactly 1 or 2 coins will the continue button become
enabled. Other cases will result in the failure task �, and stepping to it is prohibited
by definition. When the user presses the continue button, the machine dispenses either
a biscuit or a chocolate bar, depending on the amount of money. Snacks are modelled
using a custom type.

3.2 Tax Subsidy Request

The example program listed in this section is taken from our previous work on sym-
bolic execution for ̂TOP [20]. It models a simplified tax subsidy application process for
citizens who have installed solar panels. This was first described by Stutterheim et al.
[21], who worked on modelling a fictional but realistic law about solar panel subsidies.

A subsidy is only given under the following conditions.

– The roofing company has confirmed that they installed solar panels for the citizen.
– The tax officer has approved the request.
– The tax officer can only approve the request if the roofing company has confirmed,
and the request is filed within one year of the invoice date.

– The amount of the granted subsidy is at most e600.

Listing 1.2 gives the ̂TOP code for this example. To enhance readability of the exam-
ple, we omit type annotations and make use of pattern matching on tuples. The program
works as follows.

In parallel, the citizen has to provide the invoice documents of the installed solar
panels, while the roofing company has to confirm that they have actually installed solar
panels at the citizen’s address (Line 6). Once the invoice and the confirmation are there,
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1let today = 13 Feb 2020 in
2let provideDocuments = �Amount �� �Date in
3let companyConfirm = �True ♦ �False in
4let officerApprove = λinvoiceDate. λtoday. λconfirmed.
5�False ♦ if (today - invoiceDate < 365 days ∧ confirmed) then �True else � in
6provideDocuments �� companyConfirm � λ〈〈invoiceAmount, invoiceDate〉 , confirmed〉 .
7officerApprove invoiceDate today confirmed � λapproved.
8let subsidyAmount = if approved then min 600 (invoiceAmount / 10) else 0 in
9�〈subsidyAmount, approved, confirmed, invoiceDate, today〉

Listing 1.2. Subsidy request and approval workflow at the Dutch tax office.

the tax officer has to approve the request (Line 7). The officer can always decline the
request, but they can only approve it if the roofing company has confirmed and the
application date is within one year of the invoice date (Line 5). The result of the program
is the amount of the subsidy, together with all information needed to prove the required
properties (Line 9).

In previous work, we have shown that this code indeed adheres to the requirements
listed above. There we focussed on assisting the developer by proving the program
correct. In this work we focus on supporting the end user that is requesting a subsidy.
The end user wants the outcome of this program to be a subsidy amount larger than
zero. In Sect. 4.4 we will show how to generate hints for the end user to reach this goal.

3.3 Dining Computer Scientists Problem

The dining philosophers problem is a classic concurrency problem in computer science.
A number of philosophers sit at a round table with a meal in front of them. In between
the plates lies a fork. In order to eat their meal, each philosopher has to acquire two
forks. Only after eating his or her meal, is a philosopher allowed to place the two forks
back on the table. This, of course, means that the philosophers cannot eat at the same
time, since there are not enough forks. Deadlock can occur when all philosophers pick
up the fork to their right (or left). Then, everybody has one fork. This means that each
philosopher cannot start his or her meal. Next to that, is also not allowed to put his fork
back on the table.

We look at dining computer scientists instead. Figure 3 shows a visual representa-
tion of the problem. Listing 1.3 lists an implementation in ̂TOP for this problem, with
three computer scientists. The forks are represented by references containing Booleans
(Lines 1 to 3). Using references allows tasks to communicate with each other across
control flow. The value True indicates that the fork is available, False indicates that the
fork is being used.

Picking up a fork is only possible when the fork is available, i.e. reading the refer-
ence results in True (Line 5). This fork is then marked as being used (Line 6). Reading a
reference l is denoted as !l, assigning a new value v to a reference l is written as l := v.

The use of references ensures that the neighbouring scientist cannot pick up this
fork: this choice will be disabled. After that, one can press continue if the second fork
is also available (Line 7). For the sake of simplicity, one returns the first fork, rather
than setting the second fork to False, and then setting both to True again.
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1let fork0 = ref True in
2let fork1 = ref True in
3let fork2 = ref True in
4let pickup = λthis. λthat.
5if !this
6then �(this := False) � λ .
7if !that then �(this := True) else �

8else � in
9let scientist = λname. λleft. λright.
10pickup left right ♦ pickup right left in
11scientist "Alan Turing" fork0 fork1 ��

12scientist "Grace Hopper" fork1 fork2 ��

13scientist "Ada Lovelace" fork2 fork0 � λ .
14�"Full bellies"

Listing 1.3. Dining philosophers problem with three
computer scientists.

Fig. 3. Rendering with three philoso-
phers.

Each computer scientist takes as arguments a name and references to the two forks
that he or she can reach (Line 9). They have a choice to take either the left or the right
fork. This is represented with an user choice (♦, Line 10).). The last lines instantiate
three computer scientists sitting next to each other (Lines 11 to 13). In TOP terms, this
means they collaborate in parallel (��) while eating their dinner, sharing some resources,
in this case fork0, fork1, and fork2.

By design of ̂TOP, the events of picking up a fork are performed sequentially. That
is, when one computer scientist decides to pick up his right fork, we will handle that
event first. After that, we will handle the choices from the other scientists. So, the order
of the events is explicitly determined by the scientists themselves.

In Sect. 4.5 we will analyse this example. Our goal is to provide each scientist with
a hint on which choice to make, in order to reach the common goal of full bellies. When
the scientists follow these hints, no deadlock will occur.

4 Generating Next Step Hints

This section introduces our Assistive ̂TOP system. The aim of Assistive ̂TOP is to
automatically provide next step hints. When users follow these hints, they can be sure
that they will reach the goal they described beforehand. Users can, however, still decide
to deviate from the given hints.

During the execution of ̂TOP programs, users are presented with input fields, choices
and continue buttons. The way in which tasks progress and the resulting task value
depend on these inputs. At any point during execution, we would like to present users
with all possible inputs that leads users to the goal they have selected. These inputs are
either concrete actions, like continue, pick the left task, pick the right task; or a restricted
set of values to be entered into an editor. This set is restricted, since concrete values poten-
tially influence the flow of the program. To give a concrete example, the user should enter
an integer, but this integer must be larger than zero to reach the end goal.
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To come to these concrete actions and restricted values, we make use of symbolic
execution. In the next two sections, we briefly describe how symbolic execution for
̂TOP works and recap its symbolic semantics presented in earlier work [16]. Thereafter,
we show how to turn symbolic execution results into next step hints. In Sects. 4.4 and
4.5, we study what these automatically generated hints look like for the examples from
Sect. 3.

All examples have been tested in our implementation. We added Assistive ̂TOP to
our existing implementation of Symbolic ̂TOP , which is written in Haskell.3 It uses
the Z3 SMT solver under the hood. By defining the formal hints function directly on
top of the symbolic execution semantics, we can leverage the already existing symbolic
execution for Symbolic ̂TOP in the practical implementation.

4.1 Symbolic Execution

A symbolic execution semantics [4,12] aims to execute a program without knowing its
input. Instead, symbols are fed into the program. During evaluation, the influence of
values is recorded in the path condition. The resulting symbolic value together with the
path conditions can be used to prove properties of the program.

�INT �� �INT � λ〈x,y〉 . if x > y then �〈y, x〉 else �〈x, y〉
Listing 1.4. Ordering of tuple elements.

Consider the tiny example in Listing 1.4. This program asks for two integer values.
After the user has entered this information, the function to the right of the step combi-
nator makes sure the result will be an editor containing a pair, where the second element
is larger then the first. When we run this program symbolically, we have to create fresh
symbols to be entered in either of the two editors, say s0 and s1. After entering both
symbolic values and then normalising the task, there are two possible outcomes, namely

– 〈s1, s0〉, provided that the path condition ϕ1 = s0 > s1 holds; or
– 〈s0, s1〉, with path condition ϕ2 = ¬(s0 > s1).

Now, the property that we want to prove for this program is that no matter what
the input is, the second element should always be larger than the first. We write this
property as ψ(〈a, b〉) = a ≤ b. Looking at the two symbolic runs, we first need to
verify that the symbolic runs are indeed viable. This is done by checking that both ϕ1

and ϕ2 are satisfiable, written S(ϕ1) and S(ϕ2). Symbolic runs with a path condition
that is not satisfiable are discarded. Finally, we check that both path conditions conform
to the goal property ψ, which is the case. Therefore, we can conclude that the property
holds. When applying this technique to larger programs, it is a powerful tool to show
that a program behaves as expected.

3 https://github.com/timjs/symbolic-tophat-haskell.

https://github.com/timjs/symbolic-tophat-haskell
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4.2 Symbolic Semantics

To support symbolic execution in ̂TOP, we extend our host language with symbols. In
addition, we also need to modify the semantics described in Sect. 2.5, to accommodate
symbolic execution. The observation functions from Sect. 2.3 are extended in a similar
way. These new semantic relations operate on expressions which may contain sym-
bols. Instead of stepping to one result, they lead to a set of possible symbolic results,
accompanied with a path condition ϕ.

Table 1. Overview of meta variables and semantic relations for concrete and symbolic evalua-
tions.

Concrete Symbolic

Expressions e ẽ

Tasks t t̃

States σ σ̃

Inputs i ı̃

Evaluation e, σ ↓ v, σ′ ẽ, σ̃

	

ṽ, σ̃′, ϕ

Normalisation e, σ ⇓ t, σ′ ẽ, σ̃

	 	

t̃, σ̃′, ϕ

Striding t, σ �→ t′, σ′ t̃, σ̃ �	 t̃′, σ̃′, ϕ

Handling t, σ
i−→ t′, σ′ t̃, σ̃ 	 t̃′, σ̃′, ı̃, ϕ

Interacting t, σ
i
=⇒ t′, σ′ t̃, σ̃ 		 t̃′, σ̃′, ı̃, ϕ

We denote entities containing symbols with an additional tilde, and symbolic
semantic relations with squiggly arrows instead of straight ones. So t̃, σ̃, and ı̃ are
respectively tasks, states, and inputs containing symbols. Table 1 gives an overview of
the entities in the concrete world, and their symbolic counterparts. Concrete expres-
sions are a subset of symbolic expressions. Therefore, symbolic semantic relations can
be applied on concrete expressions, as well as symbolic expressions.

The symbolic interaction semantics ( 		 ) results in a set of symbolic runs, each
of them just containing one symbolic input. In other words, the symbolic interaction
semantics just looks ahead one symbolic interaction. To be able to reason about an
end state after multiple symbolic interactions, we introduce the notion of simulation.
Informally, simulation performs multiple symbolic interactions after each other, until
the rewritten task has an observable value. I.e. if n is the number of interactions needed
to be done, V (t′i, σ

′
i) has a result for i = n but is undefined for all i < n. Apart from

this restriction, we want to permit only viable executions. This is enforced by validating
the satisfiability (S) of the conjunction of all sequential path conditions. More formally,
simulating a task for multiple user inputs is defined as follows.

Definition 1 (Simulation ( 		∗ )). Let t and σ be a concrete task and concrete state.
We define the simulation relation

t, σ 		∗ ṽ, Ĩ ,Φ
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to be the set of results after performing symbolic interaction n times:

t, σ 		 t̃1, σ̃1, ı̃1, ϕ1 		 · · · 		 t̃n, σ̃n, ı̃n, ϕn

where:

– the nth task has a value: V (t̃n, σ̃n) = ṽ;
– all tasks before do not have a value: V (t̃i<n, σ̃i<n) = ⊥;
– Ĩ = ı̃1 · · · ı̃n is the concatenation of all symbolic inputs generated along the way;
– Φ = ϕ1 ∧ · · · ∧ ϕn, is the conjunction of all path conditions encountered.

Furthermore we require that:

– the resulting predicate is satisfiable: S(Φ).

The simulation definition used in this paper differs from the one in previous
work [16]. Previously, infinite symbolic executions were filtered out by allowing two
steps look-ahead in case of idempotent executions. The definition above only allows
finite executions by definition.

4.3 Next Step Hints Observation

As we have seen in Definition 1, a symbolic task t̃ is considered done as soon as it has
an observable value ṽ. In order to calculate next step hints, one needs to formulate a
goal over this resulting value. Only then, we can calculate next step hints for end users.

Fig. 4. Definition of next step hint function.

Hints are calculated by means of the H function listed in Fig. 4. As input, it receives
a concrete task t and concrete state σ together with a goal predicate g. The hints obser-
vation simulates t starting in σ. This results in a set of symbolic values ṽ, together with
a list of symbolic inputs ĩ · Ĩ and a condition Φ to reach this path. We only want to
use the symbolic executions that satisfy the goal g when applied to ṽ. Since ṽ could
contain symbols, it might be the case that g(ṽ) is symbolic and would clash with the
path condition Φ. Therefore, we require that the conjunction of the path condition with
the goal is satisfiable (S(Φ ∧ g(ṽ))). From the executions that fulfill this requirement,
we return the first symbolic input ı̃ from the complete list of inputs ı̃ · Ĩ , together with
the full condition that must hold (Φ∧g(ṽ)). The resulting set contains pairs of symbolic
inputs guarded by this condition.

To get a better understanding how H works, we study it more concretely in the next
subsections. Section 4.4 demonstrates on the basis of the tax example listed in Sect.
3.2, how the results of the symbolic execution are used to construct automatic next step
hints. Section 4.5 shows how hints can be generated during the execution of the example
̂TOP program listed in Sect. 3.3.
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4.4 Tax Subsidy Request

Recall the Tax example program in ̂TOP from Sect. 3.2, which models the application
for a solar panel tax refund. The user enters the invoice date and invoice amount, the
installation company confirms, and finally the tax officer either approves or denies the
request.

Table 2. The results of simulating the program from Listing 1.2.

Symbolic value (ṽ) Symbolic input (Ĩ) Path condition (Φ)

〈min(600, sa/10), True, True, si, 13 Feb 2020〉 F F sa · F S si · S L ·S (13 Feb 2020 − si) < 365 days

〈min(600, sa/10), True, True, si, 13 Feb 2020〉 F S si · F F sa · S L ·S (13 Feb 2020 − si) < 365 days
〈min(600, sa/10), True, True, si, 13 Feb 2020〉 S L · F F sa · F S si · S (13 Feb 2020 − si) < 365 days
〈min(600, sa/10), True, True, si, 13 Feb 2020〉 S L · F S si · F F sa · S (13 Feb 2020 − si) < 365 days

〈min(600, sa/10), True, True, si, 13 Feb 2020〉 F S si · S L · F F sa · S (13 Feb 2020 − si) < 365 days
〈min(600, sa/10), True, True, si, 13 Feb 2020〉 F F sa · S L · F S si · S (13 Feb 2020 − si) < 365 days

〈0, False, True, si, 13 Feb 2020〉 F F sa · F S si · S L · F True
〈0, False, True, si, 13 Feb 2020〉 F S si · F F sa · S L · F True
〈0, False, True, si, 13 Feb 2020〉 S L · F F sa · F S si · F True
〈0, False, True, si, 13 Feb 2020〉 S L · F S si · F F sa · F True
〈0, False, True, si, 13 Feb 2020〉 F S si · S L · F F sa · F True
〈0, False, True, si, 13 Feb 2020〉 F F sa · S L · F S si · F True
〈0, False, False, si, 13 Feb 2020〉 F F sa · F S si · S · F True
〈0, False, False, si, 13 Feb 2020〉 F S si · F F sa · S · F True
〈0, False, False, si, 13 Feb 2020〉 SS · F F sa · F S si · F True
〈0, False, False, si, 13 Feb 2020〉 S · F S si · F F sa · F True
〈0, False, False, si, 13 Feb 2020〉 F S si · S · F F sa · F True
〈0, False, False, si, 13 Feb 2020〉 F F sa · S · F S si · F True

In this section, we will demonstrate what symbolic execution looks like for this
example, and how we generate next step hints from the symbolic execution results.
First, we call the simulate function 		∗ on the program, with an empty state. The
resulting set of symbolic executions is listed in Table 2. Each line represents one sym-
bolic execution. In the first column, the resulting symbolic value ṽ is listed. The second
column lists the symbolic input Ĩ that was produced to arrive at that value, followed by
the path condition Φ in the third column. The symbolic values that are produced are si
for the invoice date and sa for the invoice amount.

The definition of H describes how these results should be used in order to calculate
next step hints. First of all, we need a goal g to select the symbolic runs that we are
interested in. The most straight forward goal would be that we want to end up in a
situation where we get a subsidy amount larger than zero. This goal can be formulated
as g(〈v, , , , 〉) = v > 0.

The first six symbolic runs listed in Table 2 fulfill this goal condition. From those
runs, we then take the first symbolic input, together with the path condition conjugated
with the goal. After removing duplicates and redundant information, the result of H is
as follows.
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〈FF sa , min(600, sa/10) > 0〉
〈FS si , (13 Feb 2020 − si) < 365 days〉
〈SL , True〉

This means that, at this stage, users have three possible options.4

1. The applicant may enter an amount sa for which min(600, sa/10) > 0 should hold.
2. The applicant may enter an invoice date si for which (13 Feb 2020−si) < 365 days

should hold.
3. The company should take the left choice (L) to confirm they installed the solar pan-

els.

4.5 Dining Computer Scientists

Recall the example program Dining Computer Scientists from Sect. 3.3. Three com-
puter scientist sit at a table and have to coordinate their eating. We want to calcu-
late all possible next steps that lead to the goal. The goal in this example is for
all computer scientists to finish their meal. In terms of the resulting task value, this
means that we want to reach the value “Full bellies”. Witten as a predicate, we get
g(v) = v ≡ “Full bellies”.

Let us assume that both Grace Hopper and Ada Lovelace have already picked up the
forks to their left (fork2 and fork0 respectively). We then find ourselves in the situation
shown in Fig. 5.

Fig. 5. Task, state and visual representation of dining computer scientists after two moves.

Calling H (t, σ, g) will result in just one hint, namely

〈SFC,True〉
This means that the only step towards goal g is for the second scientist,5 which is Grace
Hopper, to pick up the right fork. Although it is also possible for Alan Turing to pick
up the fork to his left, this step is not a valid hint and performing this action will result
in deadlock.
4 Note that the first branch, entering an amount, is denoted by FF; the second branch, entering
the invoice date, is denoted by FS; and the third branch, making a left/right choice, is denoted
by S.

5 The second branch is denoted by SF. The action C means pushing the continue button.
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5 Properties

In this section, we want to validate our approach by proving correctness. For the hints
function, which forms the heart of Assistive ̂TOP , we want to prove that its results are
both sound and complete. Since the hints function relies on Symbolic ̂TOP , and more
specifically, the updated definition of the simulate relation, we first prove correctness of
simulate.

5.1 Correctness of Simulate

The symbolic execution semantics is correct when all symbolic runs relate to a concrete
run, and the other way around, when all concrete runs are contained in the set of all
symbolic executions. These properties are, respectively, soundness and completeness.

The simulation applies symbolic interaction multiple times. In order to prove cer-
tain properties with respect to the concrete semantics, we need a concrete analog of
simulation. Therefore, we define execution, which applies concrete interaction multiple
times.

Definition 2 (Execution ( =⇒∗ )). Let t be a concrete task, σ a concrete state, and
I = i1 · · · in a list of n concrete inputs. We define the execution relation

t, σ
I=⇒∗ v

to be the value of task t after performing concrete interaction for each input i in I:

t, σ
i1=⇒ t1, σ1

i2=⇒ · · · in=⇒ tn, σn

where

– v is the value of tn: V (tn, σn) = v; and
– all tasks before tn do not have a value: V (ti<n, σi<n) = ⊥.

Using execution, we can state soundness and completeness for simulation as fol-
lows.

Lemma 1 (Soundness of simulate). For all tasks t and states σ such that t, σ 		∗

ṽ, Ĩ ,Φ where Ĩ = ı̃0 · · · ı̃n, for each triple of results 〈ṽ, Ĩ ,Φ〉 there exists a concrete

input I with the same length as the symbolic input Ĩ such that t, σ
I=⇒∗ v with [si �→

ci]ṽ = v and [si �→ ci]Φ where SymOf (̃ıi) = si and ValOf (ii) = ci.

Lemma 2 (Completeness of simulate). For all tasks t, states σ, and lists of input I

such that t, σ
I=⇒∗ v, there exists a symbolic value ṽ and a symbolic input Ĩ with the

same length as I , such that (ṽ, Ĩ ,Φ) ∈ t, σ 		∗ , with ĩi ∼ ii, [si �→ ci]ṽ = v and
[si �→ ci]Φ, where SymOf (̃ıi) = si and ValOf (ii) = ci.

Where ı̃ ∼ i is defined as follows.
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Definition 3 (Input simulation). A symbolic input ı̃ simulates a concrete input i
denoted as ı̃ ∼ i in the following cases.
s ∼ a, where s is a symbol and a a concrete action.
ı̃ ∼ i ⊃ F ı̃ ∼ F i
ı̃ ∼ i ⊃ S ı̃ ∼ S i

And SymOf (̃ı) = s and ValOf (i) = c are defined as follows.

Definition 3 (Value from input).
ValOf : Inputs → Values
ValOf (F i) = ValOf (i)
ValOf (S i) = ValOf (i)
ValOf (c) = c
ValOf ( ) = ⊥

Definition 4 (Symbol from input).
SymOf : Symbolic Inputs → Symbolic Values
SymOf (F i) = SymOf (i)
SymOf (S i) = SymOf (i)
SymOf (s) = s
SymOf ( ) = ⊥

Fig. 6. Proof structure

Our strategy to prove these two lemma’s is outlined in Fig. 6. At the top, we start out
with any task t and state σ. The left side of the diagram is an overview of the evaluate
function. Inputs i1 until in are sequentially applied, until the task has an observable
value.

On the right side, symbolic execution is performed. One step of the symbolic inter-
action semantics is taken, which results in a symbolic task, state, input and a path con-
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dition. Provided that the path condition holds, interaction is executed sequentially until
the symbolic task has an observable symbolic value.

Proving soundness and completeness of simulation now comes down to relating the
left and right side of the diagram. From symbolic to concrete (right to left) is soundness,
as stated in Lemma 1. From concrete to symbolic (left to right) is completeness, as
stated in Lemma 2.

Since simulation and execution rely on the (symbolic) handling semantics, we prove
soundness and completeness of those semantics first. Looking at Fig. 6, there are two
different settings in which the (symbolic) handling semantics are applied. At the top,
both symbolic and concrete execution start out with the same task and state. But fur-
ther down, the task and state differ for both semantics. The task and state are related to
each other however. The symbolic semantics introduces symbols, the concrete seman-
tics handles concrete values. This relation is expressed by the consistence relation listed
in Definition 5.

Definition 5 (Consistence relation 
). A concrete task t and concrete state σ are
considered to be consistent with a symbolic task t̃, symbolic state σ̃ and path condition
Φ under a certain mapping M = [s1 �→ c1, · · · , sn, �→ cn], denoted as t, σ 
M t̃, σ̃,Φ
if and only if Mt̃ = t, Mσ̃ = σ and MΦ.

Now Lemma 3 and Lemma 4 express soundness and completeness of interacting
respectively.

Lemma 3 (Soundness of interacting). For all concrete tasks t, concrete states σ,
symbolic tasks t̃, symbolic states σ̃ path conditions Φ and mappings M , we have that
t, σ 
M t̃, σ̃,Φ implies that for all pairs (t̃′, σ̃′, ı̃, ϕ) in t̃, σ̃ 		 t̃′, σ̃′, ı̃, ϕ, S(Φ ∧ ϕ)
implies that there exists an input i such that ı̃ ∼ i, t, σ

i=⇒ t′, σ′ and t′, σ′ 
M.[s �→c]

t̃′, σ̃′,Φ ∧ ϕ where SymOf (̃ı) = s and ValOf (i) = c.

Lemma 4 (Completeness of interacting). For all concrete tasks t, concrete states σ,
symbolic tasks t̃, symbolic states σ̃ path conditions Φ and mappings M , we have that

t, σ 
M t̃, σ̃,Φ implies that for all inputs i such that t, σ
i=⇒ t′, σ′, there exists a

symbolic input ı̃, ı̃ ∼ i such that t̃, σ̃ 		 t̃′, σ̃′, ı̃, ϕ, S(Φ ∧ ϕ) and t′, σ′ 
M.[s �→c]

t̃′, σ̃′,Φ ∧ ϕ where SymOf (̃ı) = s and ValOf (i) = c.

In other words, if a symbolic and concrete task and state are related, they will still be
related after (symbolic) handling. The top case, where both the symbolic and concrete
semantics start out with the same task and state, can be seen as a special case of the
consistence relation. Obviously a task and state are consistent with themselves, using
the empty mapping and the path condition True.

The full proof of all four lemma’s is listed in the appendix online6.

6 https://github.com/timjs/assistive-tophat/raw/master/appendix.pdf.

https://github.com/timjs/assistive-tophat/raw/master/appendix.pdf
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5.2 Correctness of Hints

Now that soundness and completeness of simulate have been proven, we can prove that
our hints function produces correct hints. Intuitively, for a next step hint to be correct,
it should adhere to the following requirements:

– it leads to concrete input users can actually insert; and
– when users follow the hint, the end goal is still reachable.

Moreover, a set of next step hints is correct when:

– each hint it contains is correct; and
– it covers all possible inputs that lead to the end goal.

We separate these requirements into two lemma’s, namely soundness and complete-
ness.

Theorem 1 (Soundness of hints). For all tasks t, states σ, and goals g, for every next
step hint 〈̃ı,Φ〉 in H (t, σ, g), there exists a sequence of concrete inputs I and a concrete

input i such that ı̃ ∼ i, S([s �→ c]Φ), t, σ i=⇒ t′, σ′ I=⇒∗ v and g(v).

Theorem 2 (Completeness of hints). For all tasks t, states σ, lists of input i · I , and

goals g, if t, σ,
i·I=⇒∗ v and g(v), then there exists a symbolic input ı̃ and path condition

Φ such that 〈̃ı,Φ〉 ∈ H (t, σ, g) with ı̃ ∼ i and S
(

[s �→ c]Φ
)

with ValOf (i) = c and
SymOf (̃ı) = s.

The proofs of these two threorems are quite straight forward.

Proof (Theorem 1). Theorem 1 follows from the definition of H and Lemma 1 as fol-
lows.

The definition of H gives us that for every pair 〈̃ı,Φ〉 produced by H , there exists
a triple 〈ṽ, ı̃ : ĩs,Φ〉 with S

(

Φ ∧ g(ṽ)
)

. Then by Lemma 1 we have that there exists a

sequence of concrete inputs I such that t, σ
I=⇒∗ v and g(v).

Proof (Theorem 2). In order to prove that i is contained in H (t, σ, g), we need to show
that t, σ 		∗ 〈ṽ, ı̃ · Ĩ ,Φ〉, with ı̃ ∼ i and S

(

[s0 �→ c0, · · · , sn �→ cn] ∧ g(ṽ)
)

,
where ValOf (i0) = c0, · · · ,ValOf (in) = cn and [c0, · · · , cn] ∈ i · I and
SymOf (̃ı0) = s0, · · · ,SymOf (̃ın) = sn.

By Lemma 2, we directly obtain that this indeed exists. Therefore we know that ı̃
and Φ exist.

6 Related Work

In previous work, we have attempted to provide end users with next step hints by view-
ing workflows as rule based problems [15]. By abstracting over workflows, reasoning
about them becomes simpler. A standard search algorithm can be run to find a path to
the desired goal state. Two drawbacks of this approach however are that only very gen-
eral hints can be given, that range over multiple steps, and that a programmer needs to
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augment existing workflows with extra information in order to convert it to a rule-based
problem.

Stutterheim et al. [22] have developed Tonic, a task visualiser for iTasks with limited
path prediction capabilities. The main goal is not to provide hints to end users, but the
system is able to handle the complete task language, and visualise the effects of user
input on the progression of tasks.

In order to overcome the problems of our own previous research and the limited use
of Tonic for end user hints, we have combined symbolic execution, together with work-
flow modelling and next step hint generation. To our knowledge, this is the first work
describing the combination of these techniques in this way. The different components
coming together in this paper have been studied extensively. The following sections
give an overview of the work done in those areas.

6.1 Symbolic Execution

Symbolic execution [4,12] is typically being applied to imperative programming lan-
guages, but in recent years it has been used for functional programming languages as
well. Ongoing work by Hallahan et al. [8,9] aims to implement a symbolic execution
engine for Haskell. Giantsios et al. [7] use symbolic execution for a mix of concrete and
symbolic testing of Erlang programs. Their goal is to explore all execution paths up to a
certain depth. Chang et al. [5] present a symbolic execution engine for a typed lambda
calculus with mutable state where only some language constructs recognise symbolic
values. They claim that their approach is easier to implement than full symbolic execu-
tion and simplifies the burden on the solver, while still considering all execution paths.

6.2 Workflow Modelling

Workflow modelling has been studied extensively from different viewpoints. Since
many software exists that automates workflows, it is a research topic that potentially
has a huge impact on society.

Workflow patterns are regarded as special design patterns in software engineering.
Similar to the combinators in TOP, they describe recurring patterns in workflow systems.
Van der Aalst et al. [3] identifies common patterns, and examines their availability in
industry workflow frameworks.

Workflow nets allow for the modelling an analysis of business processes [2]. Wor-
flow Nets are a subclass of Petri nets, and are therefore graphical in nature. Research
on workflow nets includes verification of models [1] and complexity analysis [14], just
to name a few.

iTasks [19] is an implementation of TOP in the programming language Clean. It dif-
fers from the above mentioned modelling techniques, since it is not graphical in nature.
iTasks supports higher order workflows, and leverages techniques from functional and
generic programming.

6.3 Automatic Hint Generation in Intelligent Tutoring Systems

The intelligent tutoring systems (ITS) research community is very elaborate. Work that
is most relevant to our own is the research into automatic hint generation. More tradi-
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tional ITSs rely heavily on experts to write dedicated hints for every specific case of an
exercise. Automatic hint generation attempts to overcome this burden by calculating a
hint rather than having every case specified.

Heeren et al. [10] develop a framework for so called domain reasoners that allow
for automatic hint generation. Feedback is calculated automatically from a high-level
description of an exercise class. Their approach is applicable to domains like logic,
mathematics and linear algebra. Paquette et al. [17] present a different automatic next
step hint ITS, that is used to provide hints to students in a programming exercise.

Based on the work mentioned above by Heeren et al., an ITS for Haskell exercises
has been developed by Gerdes et al. [6]. It tuns out that programming exercises is a
popular area for automatic hint generation. Keuning et al. [11] have written an excellent
literature study of this research area.

7 Conclusion

In this paper, we have demonstrated how to apply symbolic execution to automatically
generate next step hints for ̂TOP programs. We have proven the symbolic execution to
be sound and complete with regards to sequential inputs. Based on this property, we
have also shown that the generated next step hints are correct. Furthermore, we have
presented an implementation of the end user feedback system in Haskell.

7.1 Future Work

As future work, we are very interested in bringing the theory presented in this paper
into practice. We feel that there are three possible angles to pursue this interest.

Presenting Hint Information. The information calculated by the current hints func-
tion cannot directly be presented to the end user. The set of calculated hints contains
duplicates. This is due to the fact that there might be several different paths to the goal,
that start out with the same symbolic input. Another source of redundant information
is the path conditions. The path conditions contained in the hint tuple contains infor-
mation about the complete execution, while the symbolic input is only concerned with
the immediate next step. Therefore, the path condition may contain references to future
inputs and constraints, which offer no information for the end user. In a future imple-
mentation of Assistive ̂TOP , we would like to filter out both sources of redundancy, in
order to present the user with more concise information.

Hint Generation in iTasks. Since iTasks is currently the biggest TOP framework, it
would be the next logical step to integrate automatic hint generation into the framework.
This would allow a wide range of applications to immediately benefit from automatic
next step hint generation. The iTasks framework is shallowly embedded in the purely
functional programming language Clean, which means that programmers can leverage
the full power of the host language. This makes implementing symbolic execution non-
trivial.
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Measuring Impact of Hints. Finally, we would like to test the impact of next step hints
in workflow systems in an empirical study. TOP research has been applied and studied
in the field at the Royal Netherlands Sea Rescue Institution and the Royal Netherlands
Navy, which would be ideal testing grounds for Assistive ̂TOP .
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Abstract. Type error messages of compilers of statically typed func-
tional languages are often inaccurate, making type error debugging hard.
Many solutions to the problem have been proposed, but most have been
evaluated only with short programs, that is, of fewer than 30 lines. In
this paper we note that our own tool for delta debugging type errors
scales poorly for large programs. In response we present a new tool that
applies a new algorithm for segmenting a large program before the delta
debugging algorithm is applied. We propose a framework for quantify-
ing the quality of type error debuggers and apply it to our new tool
demonstrating substantial improvement.

Keywords: Type error · Error diagnosis · Blackbox · Delta
debugging · Haskell

1 Introduction

Type errors in statically typed functional languages such as Haskell, ML and
OCaml are difficult to understand and repair. The type error message of a com-
piler gives a location in the ill-typed program, but this location is often far from
the defect that needs to be repaired. In over 30 years numerous solutions have
been proposed, but none has been widely adopted.

In our opinion the major reason for this non-adoption is the effort required for
implementing proposed solutions for full programming languages and maintain-
ing them in the face of evolving languages and compilers. Proposed solutions
usually require new compiler front-ends, including new type inference imple-
mentations, or substantial modifications of existing compilers. We believe that
a small improvement that requires little implementation and maintenance effort
is much better than a big improvement that requires substantial effort. Hence it
has been our goal to develop a type error debugger that uses the compiler as a
true black box, that is, it calls the compiler as an external program.

In an earlier paper we presented and evaluated such a type error debugger
[18]. Our debugger implements the isolating delta debugging algorithm [28] to
locate the defective line in an ill-typed program. Our debugger works solely on
a line-based principle, directly adding and removing the lines of the source code
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to generate configurations. These configurations, that is variants of the ill-typed
program, are tested by calling the compiler. Our debugger does not duplicate
compiler work such as parsing, instead it uses minimal information from the
outcome of the compiler call; in particular, the only information the debugger
uses is whether compilation succeeded (passed), failed with a type error (fail),
or failed with some other error (unresolved). As a consequence such a debugger
is mostly programming language agnostic.

We showed that our debugger yields good locations in reasonable time for
a data-set sample of 121 ill-typed programs, named the CE benchmarks, that
had been taken from papers on type error debugging [3]. However, unlike delta
debugging of run-time failures, which was evaluated with large programs, suc-
cessfully finding a fault in a 178,000 line program, all these programs are short;
the longest has 23 lines [27]. So for many type error debugging methods proposed
in the literature that use this and other data-sets, including our own debugger,
it is unknown from their evaluations whether they scale for larger programs. To
counter this we introduce a new data-set, named the scalability benchmarks, of
80 type errors that we introduced into the large program Pandoc. This data-set
provides a starting point for evaluating the scalability of type error solutions.

1.1 Brief Example of the Line-Based Problem

As our debugger is line-based it is affected by where the isolating delta debugging
algorithm chooses to split the source code. The isolating delta debugging algo-
rithm tests a logarithmic1 number of configurations if no outcome is unresolved.
For example, an ill-typed program containing just one line will immediately
locate the fault on that line from the first configuration whereas an ill-typed
program containing 6 lines of code can take three configurations to locate the
type error. However, as we have previously said we do not replicate parsing and
so every line combination can be a possible configuration. This has the detrimen-
tal effect of causing many ill-formed variants; producing a significant number of
unresolved results.

Take as a brief example this Haskell program from Stuckey et al. [21] that
we used in our previous paper[18]:

1 insert x [] = x

2 insert x (y:ys) | x > y = y : insert x ys

3 | otherwise = x : y : ys

The program is ill-typed. The first line is incorrect the x should be a list of
x. The Glasgow Haskell compiler2 gives us line 2 as the incorrect line, whereas
our previous debugger correctly points out line 1. However, even in this three
line program we still receive unresolved results from the isolating delta debugging
algorithm. For example the following configuration returns a parse error:

1 With respect to the number of lines of the original ill-typed program.
2 https://www.haskell.org/ghc, version 8.4.3.

https://www.haskell.org/ghc
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1

2

3 | otherwise = x : y : ys

The more outcomes are unresolved, the less efficient isolating delta debugging
becomes, up to a quadratic number of configurations. “When using . . . [isolating
delta debugging], it is thus wise to keep unresolved test outcomes to a minimum,
as this keeps down the number of tests required” [28]. All applications imple-
menting isolating delta debugging try to minimise the number of configurations
with unresolved test outcomes. In our application the root cause of most unre-
solved outcomes are parse errors. Building some kind of parser for our debugger
would contradict our goals. Hence here we present an algorithm, Moiety, that
calls the compiler as a black box. Moiety detects the lines within an ill-typed
program that are valid splitting points. A moiety is a configuration of the original
program that consists of consecutive lines that should not be split. If a moiety
is split, then compilation will produce a parse error. In summary, the moiety
information guides the isolating delta debugging algorithm to reduce unresolved
test outcomes and thus reduce the time taken for the algorithm to run.

We implemented the new type error debugger, Elucidate20. It combines the
new moiety algorithm with an isolating delta debugging algorithm that uses
moiety information. The debugger locates a defective line of an ill-typed Haskell
program, using the Glasgow Haskell compiler as black box. To debug large pro-
grams, Elucidate20, unlike our previous debugger, also supports multi-module
programs and a standard project build tool.

In this paper we make the following contributions:

– We present the moiety algorithm, which generates, using the compiler as a
black box, a set of moieties of the ill-typed program. That set determines the
configurations for the isolating delta debugging (Sect. 3).

– We propose a framework for quantifying the quality of type error debuggers
(Sect. 4).

– We introduce a new data-set of 80 ill-typed variants of the program Pandoc
(Sect. 5)

– We evaluate Elucidate20 to see whether the moiety algorithm reduces unre-
solved results and thus the run-time of the isolating delta debugging algorithm.
We use our new framework and scalability data-set (Sect. 5).

2 The Problem

2.1 Delta Debugging Type Errors

Let us briefly review what delta debugging is and how we applied it to type error
debugging [18].

To locate the defect in an ill-typed program, many programmers simply
remove (or comment out) some parts of the program and compile the smaller
program. If the smaller program is also ill-typed, the procedure is repeated.
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If the smaller program is not ill-typed, a different part of the previous program
is removed. This shrinking by trial and error repeats until the program cannot
shrink further, that is, no smaller program is ill-typed.

Simplifying delta debugging [27,28] is a greedy algorithm that automates this
method. Simplifying delta debugging divides the program into two halves and
tests each one. If one half is ill-typed, the algorithm calls itself recursively for
that half. If neither half is ill-typed, it divides the program into four parts and
tests each one. Again the algorithm calls itself recursively for any ill-typed part,
but if none is ill-typed, it tries again by dividing the program into eight parts.
When the program cannot be divided further, the algorithm stops with the last
ill-typed program as result.

Recall that testing a program yields one of three outcomes: fail (ill-typed),
pass (well-typed) or unresolved (any other error such as parse error or unbound
identifier). For the simplifying delta debugging algorithm it does not matter
whether an outcome is pass or unresolved, but for the isolating delta debugging
algorithm, which we actually use, the difference is essential.

A program variant that may be tested is called a configuration. For type error
debugging we made the same choice of configurations as many other implemen-
tations of delta debugging: we chose to always remove whole lines of the ill-typed
program3. Hence a configuration is the original ill-typed program with some lines
replaced by empty lines4. A configuration being a subconfiguration of another
configuration is a natural partial order on configurations, with the empty con-
figuration, consisting of many empty lines, being the minimum and the original
ill-typed program being the maximum.

A minimal ill-typed program is often still big, because for every function or
type that it uses it has to includes its definition, which is usually well-typed. To
isolate a cause of the type error we want to exclude these well-typed definitions.
Therefore we decided to use the isolating delta debugging algorithm for type
error debugging.

The isolating delta debugging algorithm [6,28,29] works with a pair of config-
urations, a passing and a failing configuration, the former being a subconfigura-
tion of the latter. The algorithm starts with the empty configuration as passing
configuration and the ill-typed program as failing configuration. The algorithm
divides the difference between the two configurations into two parts and tests the
passing configuration with each of these parts added and the failing configuration
with each of these parts removed. If any tested configuration yields a passing
outcome, it can become the new passing configuration, if any tested configura-
tion yields a failing outcome, it can become the new failing configuration; then
the algorithm calls itself recursively with a new pair of configurations. If all of the
tested configurations yield unresolved outcomes, the difference is divided instead
into four, eight, etc. parts, similar to the simplifying delta debugging algorithm,
until eventually a passing or failing configuration is found; if no further division

3 Removing single characters is another choice presented by Zeller [28].
4 Instead of removing the lines completely we still keep the empty lines to avoid
undesirable changes of program layout.
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is possible, the algorithm terminates. The algorithm does not specify how the dif-
ference between two configurations is divided into parts and there may be several
passing and failing outcomes; thus the algorithm is non-deterministic; however,
like any other implementation, ours makes a choice and thus is deterministic
[1,12]. In every recursive call the passing configuration is a subconfiguration of
the failing configuration (and both are subconfigurations of the original ill-typed
program). Every recursive call reduces the difference between the two configu-
rations, until the difference cannot be reduced any further.

The final result of isolating delta debugging is a pair of configurations, where
the first configuration is a passing subconfiguration of the second failing configu-
ration, such that there exists no passing or failing configuration between the two
configurations. The algorithm is greedy to limit run-time and it is not guaranteed
to return a pair of configurations with minimal difference.

The final pair of configurations is the result of the isolating delta debugging
algorithm. The difference between the two configurations, which may be neither
a passing nor a failing configuration, isolates a failure cause. This difference is
the result of our type error debugger.

2.2 The Effect of Unresolved Outcomes

Because our definition of configuration is based on program lines, all complexity
measures of type error debugging are with respect to the number of lines of
the ill-typed program. For a given ill-typed program there exists an exponential
number of configurations. Already finding a failing configuration of minimal size
is known to be NP-complete [11].

In type error debugging nearly all run-time is spent in the tests made by
the compiler. In general, the run-time of delta debugging is proportional to the
number of tests made.5

We see from the description of delta debugging that if no test outcome is unre-
solved, it is basically a binary search. In contrast, frequent unresolved outcomes
cause the algorithm to repeatedly divide (differences of) configurations into four,
eight, etc. parts and make more tests. If every configuration is unresolved the
algorithm starts to generate configurations that contain a single line until all lines
of the program have been checked6. So as we already stated in the introduction,
the isolating delta debugging algorithm has logarithmic time complexity if no
outcome is unresolved and becomes less efficient, up to a quadratic time com-
plexity, with many unresolved outcomes. Therefore any successful application of
delta debugging makes some effort to avoid unresolved outcomes.

The issue with many unresolved outcomes can be shown more clearly within
our earlier results [18]. These 900 programs were generated by concatenating
pairs of some of the original small CE benchmark programs. For space reasons,
we have ordered the 900 programs by number of lines and put them into 4
groups: the shortest 225 in the first group, the next 225 in the second group, etc.

5 This assumes similar run-time for every test, which may not be the case.
6 A proof is available on page 408 of ‘Why Programs Fail’ [28].
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Table 1 on the left shows the average outcomes and indicates that the number
of unresolved results grows substantially with program size which can be seen
more clearly with the a graphically representation on the right.

Table 1. Average number of unresolved outcomes compared to number of lines of code.

# lines # unresolveds

10 2
17 4
22 7
25 14

However, we noted in the introduction that ill-typed programs that have
been used to evaluate type error debuggers are short. The longest program in
the CE benchmark suite [3] of 121 programs has just 23 lines. Such programs are
good for studying how a type error debugger works and many of these programs
are representative for the first programs written by novices learning a functional
programming language. But they do not show us how a type error debugger will
scale as not just novices need help with type error debugging, but also more
experienced functional programmers who build useful, real-world programs.

In October 2019 we measured the top 100 Haskell programs on the popular
public repository GitHub7. On average each program has 31872 lines of code,
138 modules, and 229 lines of code per module, far from the 23 lines mentioned
above. Even though our type error debugger processes small programs in a few
seconds, when applied to programs such as these that contain on average a
few hundred lines, due to a hefty number of unresolved results, it could take
substantially longer, which is unacceptable [18].

As already stated there is an obvious suspect for the high number of unre-
solved outcomes in larger programs: although splitting multiple equations of a
single function definition yields well-formed definitions in Haskell, splitting a
multi-line equation into half usually yields ill-formed programs; the same holds
for multi-line type declarations, which often appear in larger programs, and case
expressions with a branch per line. Many configurations are simply unparsable!

7 https://github.com/search?l=Haskell&q=Haskell&s=stars&type=Repositories.

https://github.com/search?l=Haskell&q=Haskell&s=stars&type=Repositories
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Table 2. Number of error messages giving unresolved outcome.

Error message #

The last statement in a ‘do’ block must be an expression 4

Variable not in scope 4

Not in scope: 5

Empty ‘do’ block 5

Parse error (incorrect indentation or mismatched brackets) 7

Empty list of alternatives in case expression 8

The type signature...lacks an accompanying binding 16

Parse error on input 77

Total 126

To test our suspicion, we chose the most popular software from our Github
results Pandoc, to initiate our scalability data-set. As a initial test we introduced
a single type error in a single module. The ill-typed module has 87 lines and our
debugger had 126 unresolved outcomes, which we categorise by error message
of the Glasgow Haskell compiler in Table 2. Most error messages are related to
parsing and “parse error on input” is by far the most frequent one.

3 The Moiety Algorithm and Delta Debugging

We always obtain a configuration that does not parse, if we split the original
ill-typed program at certain consecutive lines. Given its dominance, we solely
focus on the “parse error on input” error message. These indicate that pars-
ing failed somewhere inside the configuration, whereas for example “parse error
(incorrect indentation or mismatched brackets)” indicates that parsing fails at
the end of the configuration. Concentrating on the former means our algorithm
has the ability to distinguish between the two. So we use this information to
first determine which lines that should never be separated as they will cause a
“parse error on input” and then apply the delta debugging algorithm such that
it never splits in these places.

We name our pre-processing algorithm Moiety ; according to the Merriam-
Webster dictionary a moiety is “one of the portions into which something is
divided”.8 Moiety divides the ill-typed program into moieties, that is, what posi-
tion in the source code we can split the lines. This is represented as a tuple, with
the starting and ending points of the splits.

8 https://www.merriam-webster.com/dictionary/moiety.

https://www.merriam-webster.com/dictionary/moiety


78 J. Sharrad and O. Chitil

3.1 Illustration of the Algorithm

The moiety algorithm is designed to reduce unresolved, “parse error on input”,
results from large programs. However, to present how moiety works concisely we
have to consider the following small ill-typed program9:

1 f x = case x of

2 0 -> [0]

3 1 -> 1

4 plus :: Int -> Int -> Int

5 plus = (+)

6 fib x = case x of

7 0 -> f x

8 1 -> f x

9 n -> fib (n-1) plus fib (n-2)

To limit runtime, the algorithm may only traverse the program once from
beginning to end to produce its set of moieties; no line in the program is submit-
ted to the compiler duplicate times. Moiety calls the compiler to test a program
for whether it yields “parse error on input” or not. We show the tested program
on the left and the test outcome and resulting moiety set on the right. We note
that line 1 never yields “parse error on input” so start with line 2.

1

2 0 -> [0]

3

4

5

6

7

8

9

“parse error on input”

moieties:()

As line 2 produces a “parse error on input” it cannot be the starting line for
a plausible split; and so we continue with line 3:

1

2

3 1 -> 1

4

5

6

7

8

9

“parse error on input”

moieties:()

9 It should be noted when we talk about small programs in type error debugging we
are discussing those that are used for evaluation and not those used for examples.
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Like line 2, line 3 also cannot start a new moiety; we continue with line 4:

1

2

3

4 plus :: Int -> Int -> Int

5

6

7

8

9

not “parse error on input”

moieties:(3,4)

Line 4 is not a “parse error on input” so we can create a new moiety. We can
successfully split line 4 from line 3; and so line 3 is our starting point and line 4
is our finishing points of our first moiety. Next line 5:

1

2

3

4

5 plus = (+)

6

7

8

9

not “parse error on input”

moieties:(3,4) (4,5)

Likewise, line 5 starts a new moiety as it can be split from line 4. We move
on to line 6:

1

2

3

4

5

6 fib x = case x of

7

8

9

not “parse error on input”

moieties:(3,4) (4,5) (5,6)

So line 6 starts a new moiety too. We continue with line 7:
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1

2

3

4

5

6

7 0 -> f x

8

9

“parse error on input”

moieties:(3,4) (4,5) (5,6)

At this point it is hopefully obvious that lines 8 and 9 each also gives the
outcome “parse error on input” and so the algorithm finishes with the moieties
(3,4) (4,5) (5,6).

Working through the example shows how simple the moiety algorithm is:
The algorithm tests every single line of the original ill-typed program whether
it yields “parse error on input” or not. In case of the former, the line cannot be
split from the preceding lines so no moiety can be generated. Otherwise it does
start a new moiety. The result is an ordered set of moieties, two lines that can
be successfully split.

3.2 Example of Isolating Delta Debugging with Moieties

In the subsequent isolating delta debugging algorithm moieties are never split,
simply by redefining a configuration as a subset of moieties.

So in our example we have the moiety list (3,4) (4,5) (5,6).
We start isolating delta debugging with the passing configuration {} and the

failing configuration {[1,2,3],[4],[5], [6,7,8,9]}. As we can see our failing
configuration, of source code line numbers, is now split using the moieties.10 We
divide the difference between the two configurations by two and hence test the
configurations {[1,2,3],[4]} and {[5],[6,7,8,9]}. Both configurations give
the outcome unresolved. Hence we have to divide the difference between our
passing and failing configuration by four and test the configurations {[1,2,3]},
{[4]}, {[5]}, {[6,7,8,9]} and the configurations {[4],[5],[6,7,8,9]},
{[1,2,3],[5],[6,7,8,9]}, {[1,2,3],[4],[6,7,8,9]}, {[1,2,3],[4],[5]}.
Our implementation happens to test {[5]} first and the test gives outcome
pass.

Next, isolating delta debugging calls itself recursively with the new passing con-
figuration {[5]} and the failing configuration {[1,2,3],[4],[5],[6,7,8,9]}.
We divide the difference, which is 3 moieties, by two and hence test the configu-
rations {[1,2,3],[4],[5]} and {[5],[6,7,8,9]}. The first configuration gives
outcome fail.

Next, isolating delta debugging calls itself recursively with the old pass-
ing configuration {[5]} and the new failing configuration {[1,2,3],[4],[5]}.
10 {[1],[2], [3],[4],[5],[6],[7],[8],[9]} represents the non-moiety failing con-

figuration. Every line is an acceptable splitting location.
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We divide the difference by two and hence test the configurations {[1,2,3],[5]}
and {[4],[5]}. The first configuration gives outcome fail.

Finally, isolating delta debugging calls itself recursively with the old passing
configuration {[5]} and the new failing configuration {[1,2,3],[5]}. Because
the difference between the two configurations is only one moiety, the algorithm
terminates with the these two configurations as result. Our type debugger returns
the difference between these two configurations as the location of the defect:
{1, 2, 3}. The actual type error is in line 2, but our type debugger can return at
best a single moiety and its preceding lines.

3.3 Time Complexity

We designed the moiety algorithm to return a list of moieties in the shortest
time possible, that is linear in the number of lines of the ill-typed program. We
know that isolating delta debugging takes between logarithmic and quadratic
time, now in the number of moieties. Because moieties avoid the most common
type of unresolved outcome, we hope that overall the time complexity of type
error debugging is close to linear.

4 A Framework for Type Error Debugging

In data science using model metrics such as Accuracy, Precision, and Recall are
an accepted standard [19,26]. Yet within type error debugging evaluations only
recall, whether a type error has been located correctly or not, run-time, and
the authors personal goals are deemed important [4,16]. We disagree with using
only one metric as it can bias results, and in later works authors seem to agree
[17,30]. However, even though we are slowly seeing other metrics joining recall
in type error debugging evaluations they are not representing the same formulas,
and so we are proposing the following as a framework for future evaluations to
allow for ease of solution comparison (Table 3).

Table 3. Terminology

Shorthand Longhand Equivalents

Data science

TP True Positive

TN True Negative

FP False Positive

FN False Negative

Our terms

RL Reported lines (number of lines returned) TP + FP

RE Reported errors (number of correct errors) TP

UR Unreported lines (number of correct unreported lines) TN

L Lines of code (total source code) TN + TP + FN + FP

E Errors (number of errors in the code) TP + FN
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4.1 The Metrics

Accuracy tells us the typical distance from a measure to the optimum value.
For our domain, number of lines correctly excluded plus correctly reported lines
containing a type error. However, this is problematic as we receive a high number
of True Negative answers, number of correct lines ignored, and so this is generally
ignored in the type error debugging domain in favour of recall.

Accuracy =
TN + TP

TN + TP + FN + FP
=

UR + RE

L
(1)

Recall, aka sensitivity, is the measure of the quantity of elements correctly
returned.

Recall =
TP

TP + FN
=

RE

E
(2)

For type errors this measures the number of errors that are reported correctly
compared to the number of errors within the source code. As already noted, this
metric is most used in type error debugging evaluations. It shows if a debugger
can successfully discover the correct number of type errors within an ill-typed
program. However, like Accuracy, it is not without fault as the following example
will show.

Lets us assume we have an ill-typed program containing 8 lines (L = 8)
and 1 type error (E = 1). We run a debugger and it returns all 8 lines of code
as containing the type error (RL = 8) and, obviously, returns the correct line
location within this (RE = 1). Most type error debugging evaluations do not
mention the amount of lines returned, only if their debugger located the line
correctly. If recall is used as the only metric in evaluations we end up being able
to state that this example shows our debugger is 100% correct.

Recall =
RE

E
=

1
1

= 100% (3)

This, to us, is obviously incorrect, yet the metric proves it to be true. To
counter this issue Data Science employs another metric.

Precision, also known as positive predictive value, is the number of elements
within the entire returned set of results.

Precision =
TP

TP + FP
=

RE

RL
(4)

Mapped to our domain it is the number of correct lines of code reported by
the debugger compared to the total number of lines returned. Precision allows us
to see if we have returned the correct location as one single line versus returning
a correct location within several lines.

Applying precision to our ongoing example we receive:

Precision =
RE

RL
=

1
8

= 12.5% (5)
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As can be seen this is a significant difference from our results from recall,
however it is also not practical to use Precision as a singular metric either due
its reliance on False Positives, some of the lines returned do not contain a type
error. This is where the Data Science domain employs the F1 Score.

F1 Score is calculated from the harmony mean of the two metrics Recall and
Precision. This produces an accuracy measure that accounts for the imbalance
of data within type error debugging, meaning the F1 score is crucial in showing
the true results of evaluations.

F1 = 2
Precision ·Recall

Precision + Recall
= 2

RE

E + RL
(6)

Now with our example we can see meaningful feedback for evaluation.

F1 = 2
RE

E + RL
= 2

1
1 + 8

= 22% (7)

With this framework we can now generate easily comparable evaluations for
future work in the type error debugging domain.

5 Evaluating Our Method

We now apply our method on a single real-world program to test scalability;
Pandoc is a Haskell library for markup conversion, it has a total of 64,467 lines
of code with an average of 430 lines of code per module in 150 modules. We
place within Pandoc 80 individual type errors into 40 of its modules (using each
module twice) of which each contain between 32 and 2305 lines of code (Table 4).

Table 4. Lines of code per module with associated errors

Errors LoC Errors LoC Errors LoC Errors LoC

{1, 2} 32 {21, 22} 73 {41, 42} 156 {61, 62} 238

{3, 4} 37 {23, 24} 77 {43, 44} 167 {63, 64} 240

{5, 6} 45 {25, 26} 79 {45, 46} 187 {65, 66} 258

{7, 8} 48 {27, 28} 83 {47, 48} 192 {67, 68} 261

{9, 10} 48 {29, 30} 86 {49, 50} 204 {69, 70} 266

{11, 12} 52 {31, 32} 86 {51, 52} 205 {71, 72} 271

{13, 14} 58 {33, 34} 91 {53, 54} 212 {73, 74} 275

{15, 16} 58 {35, 36} 94 {55, 56} 213 {75, 76} 278

{17, 18} 65 {37, 38} 140 {57, 58} 214 {77, 78} 287

{19, 20} 68 {39, 40} 155 {59, 60} 227 {79, 80} 2305

The modules chosen were the first 39 in size order that contained code that
could be made ill-typed. The last module was the largest module Pandoc con-
tained at 2305 lines. The placement of the error was decided upon by a random
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Table 5. Type error categories

Category Errors total

Couldn’t match... 79

Rigid type variable bound by the type signature .. 5

In the ? field of a record ..In the expression .. 3

...In the expression:?... 22

In an equation ? .. 7

In a stmt of a ‘do’ block ? .. 3

In a case alternative ? .. 7

In the expression: ? .. 5

...In the ? argument of ?... 20

In the expression ? In an equation for ? ... 7

In a stmt of a ‘do’ block ? .. 11

In the ? argument of ?.. 2

...In the pattern: ?... 3

In a case alternative ? In the expression ? .. 2

In equation ? .. 1

...is applied to...arguments ... 26

Possible cause ? is applied to too many arguments .. 3

Probable cause ? is applied to too few arguments .. 11

The function ? is applied to ? argument/s .. 12

Couldn’t deduce... 1

Arising from a use of ? from the context ? bound by the type signature 1

number generator. If the line suggested was unsuitable for type error placement
the generator was re-run. The type errors were inserted manually with no prior
planning on the category of type error. The categories, listed by the individual
error message presented by GHC, can be seen in Table 5. To note, all of the type
errors inserted are Equality Errors as according to TcErrors11.

We compare our debugger, Elucidate20, with Gramarye19. Gramarye19 is a
modified version of our previous debugger Gramarye; and like Elucidate20 now
supports the following features:

Modular Programs. The type error location of a compiler is unreliable, but our
type error debugger assumes that the first module identified by the compiler as
ill-typed does contain the type error location; our type error debugger works
solely on that module. If a module causes the first compiler type error, then all
modules directly or indirectly imported are well-typed. An identifier defined in
an imported module may have a type that contradicts with how the identifier
is used in the ill-typed module. However, even when both definition and use are
11 TcErrors is part of the Glasgow Haskell Compiler and states that type errors fall

into one of 4 groups; more information about this can be found in: https://github.
com/JoannaSharrad/ghcErrorsDoc/blob/master/RoughGuidetoGHCTcErrors.pdf.

https://github.com/JoannaSharrad/ghcErrorsDoc/blob/master/RoughGuidetoGHCTcErrors.pdf
https://github.com/JoannaSharrad/ghcErrorsDoc/blob/master/RoughGuidetoGHCTcErrors.pdf
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in the same module and the definition is typable, delta debugging will always
identify the use of the identifier as the cause of the error, not the definition. So
our treatment of modules is consistent with our general treatment of definition
vs. use.

Haskell Specific Language. There are some language declarations that should be
ignored when removing lines as they will always lead to an unresolved result.
Hence our type error debugger leaves these declarations in all configurations
tested by the delta debugging algorithm. The following are never the location
of a type error; import declarations, single line comments, multi-line comments,
and module declaration. Unfortunately, recognising lines with these declarations
is specific to the programming language Haskell, and thus removes the agnostic
status from the delta debugging algorithm.

The Build Tool. When measuring the top 100 Haskell programs on GitHub, we
found that they all use Cabal12 for packaging and building. Therefore our type
error debugger has a flag to call the build tool cabal instead of the Glasgow
Haskell compiler for testing. When cabal is used, the user has to state the target
program instead of the ill-typed module.

Though the above have been added as features to both Gramarye19 and Elu-
cidate20, the latter still keeps delta debugging free of the moiety pre-processing
[18].

For this evaluation we ran our benchmarks on an AMD Phenom X4, 32 GB
RAM, Samsung SSD 850, PC running Ubuntu 18.04LTS to answer the following
questions:

1. Does the Moiety algorithm reduce the number of unresolved results?
2. Does the pre-processing affect the time taken by Isolating Delta Debugging?
3. Does applying the new framework quantify the quality of the debugger?

5.1 Reduction of Unresolved Results

Question: Does the Moiety algorithm reduce the number of Unresolved results?
The moiety algorithm produces a set of splitting locations in the source code.

Our scalability benchmark contained a total of 16264 lines of code of which
16184 were places that the isolating delta debugging algorithm was allowed to
split. Pre-processing the source code using the moiety algorithm we see that out
of these 7953 (68%) were plausible splitting points. On average 39% of a single
benchmark could not be split without causing a “parse error on input”.

In Fig. 1 we can see the number of unresolved outcomes, on the y axis, for
each of the 80 type errors in the scalability benchmark listed on the x axis. For
the desired outcome we want the bar to be close to zero. For ease of reading we
have capped Fig. 1 at a maximum of 170 unresolved results, however it is worth
noting that Gramarye19 returned seven results higher than this with modules

12 https://www.haskell.org/cabal/.

https://www.haskell.org/cabal/
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Fig. 1. Unresolved results per introduced type error

51, 60, 63, 64, 75, 76 and 80 returning 265, 395, 1436, 1436, 221, 221, and
504 unresolved results respectively. The highest outcome of unresolveds from
Elucidate20 was 165, with its lowest being 0 compared to Gramarye19 with 2.

On average there are 16 unresolved outcomes per type error from Elucidate20
compared to Gramarye19 at 88; meaning a reduction of 72 calls to the blackbox
compiler. The importance of reducing calls is seen in benchmark 64 a module
with 240 lines of code; here Gramarye19 has 1436 unresolved outcomes and
takes just over an hour to run the isolating delta debugging algorithm whereas
Elucidate20 receives only 7 unresolved results and the time taken drops to just
36 s, a difference of around 52 min.

Elucidate20 has an significant impact, totalling a removal of 5743 unresolved
outcomes from the entire benchmark, over Gramarye19. However, though we
have seen, with benchmark 64, that the delta debugging Run-Time can be
reduced does the Moiety algorithm make a reduction to all of our benchmarks?

5.2 The Run-Time Speeds

Question: Does the pre-processing effect the time taken by Isolating Delta
Debugging?

With the unresolved results minimised we hypotheses that the time taken
by delta debugging should reduce. In Fig. 2 we show the outcome of just the
run-time of delta debugging (excluding pre-processing) in seconds on the y axis,
and again each type error on the x axis. As in Sect. 5.1 we have again modified
the figure so that we can see the data more clearly by dropping off the most
extreme results of Gramarye19 in type errors 60, 63, 64, and 80 who returned
run-time results of 1295 s (21 m 35 s), 4299 s (1 h 11 m 39 s), 4201 s (1 h 10 m 1 s),
and 1482 s (24 m 42 s) each. The highest result from Elucidate20 is 436 s (7 m
16 s), with the lowest being recorded at 16 s compared to Gramarye19 at 21 s.
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Fig. 2. Delta debugging run-time

On average Gramarye19 took 285 s (4 m 45 s) to run the isolating delta debug-
ging algorithm, 219 (3 m 39 s) more than Elucidate20 at 66 (1 m 6 s) showing
a clear link between total unresolved outcomes received and the time taken to
locate a type error. In total Elucidate20 reduced the time taken by isolating
delta debugging algorithm for the entire benchmark by 4 h 52 m 8 s.

However, when running a debugger the user experiences the entire process
not just the algorithm locating the type errors. Our pre-processing is linear,
based on lines of code in the program, and the length equals the amount of calls
we need to make to the blackbox compiler. Gramarye19 with its lack of moiety
algorithm takes on average 303 (5 m 3 s) compared to Elucidate20 at 419 (6 m
59 s). It is clear to see that when using our moiety algorithm we are around
a minute slower than our previous debugger. This issue with pre-processing is
down to the calling of the compiler as a blackbox. In the case of the scalability
benchmark we are calling the build tool Cabal. As an example, if we take our
worst case result, benchmark 79, we can see that we reduce the run-time of
the isolating delta debugging algorithm from 327 s (5 m 27 s) to 85 s (1 m 25 s),
however the user-time is increased from 330 s (5 m 30) to the awful 4888 s (1 h
21 m 28 s). If we look at this benchmark it is 2306 lines of code and every call to
Cabal takes around 2 s. If we apply 2 s exactly to every line of code we can see
that we get a result of 4612 s (1 h 16 m 52 s) close to our worst case benchmark.
However, the pre-processing method does have occasional successes in improving
overall debugging time, with Elucidate20 reducing the user-time for some of our
benchmarks by over an hour.
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Fig. 3. Recall

5.3 Applying the Framework

In Fig. 3 and Table 6 we present the data from applying the framework to our
results. We display the outcome of recall in more depth as to mimic other type
error debugging evaluations. The two graphs show all 80 modules on the x axis
and if the type error they contained were either correctly located (100%) or not
(0%) or the y axis.

The framework results table shows the average outcome for all four of our
metrics. The higher the percentage the more desirable.

Table 6. Framework results - average

Metric Gramarye19 Elucidate20

Accuracy 94% 88%
Recall 38% 59%

Precision 16% 14%
F1 Score 20% 19%

Question: Does applying the new framework quantify the quality of the debugger?
Recall shows us if the debugger has returned the correct type error specified. As
we only have a single type error per benchmark our result is binary. Elucidate20
correctly locates 59% (47/80) of the type errors compared to Gramarye19 which
returns fewer correct type errors at 38% (30/80). This rise in correct results
from Elucidate20 is directly linked to the pre-processing of the source code.
Firstly, as we are passing a new configuration to delta debugging, setting out
how to split our lines, we have the chance to generate an alternative pathway
of modifications leading to different results from our Blackbox compiler; as the
path that the debugger takes relies on these outcomes an alternative result can
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happen. Secondly as our method does not allow the splitting of lines outside the
moieties we gain the bias of returning a greater set of locations and so increasing
our chances of success. As described in Sect. 4 this bias can allow us to return
100 results as suggested locations with an ill-typed program of only 100 lines;
we can say that this would not make a suitable solution and so is countered with
the precision metric.

In the Table 6 we see that indeed Gramarye19 is more precise than Eluci-
date20; however overall this only accounts for a difference of 2% points meaning
we need to invoke the F1 score for an accurate reading.

The F1 score blends our metric results, Recall and Precision, to form a true
overview of the results, as already mentioned this is the harmony mean of the
two metrics. With this set of benchmarks we receive a 1% difference between the
presented debugger Elucidate20 and the previous Gramarye19, with the latter
providing a higher F1 score. This outcome is not surprising; the precision of
Elucidate20 is hampered by the moiety algorithm. However, we do not see this
as a negative; it was our aim to avoid causing unresolveds and as such these
are the most precise result we can currently return for the specific benchmarks
utilised in this evaluation. This outcome was also positive evidence that shows
the importance of using more than one metric when evaluation debugging solu-
tions, and works well to indicate that many metrics are needed to present the
true quality of a type error debugger.

5.4 Summary

Applying the moiety algorithm successfully reduced the number of unresolved
outcomes significantly. This in turn reduced the time taken for the isolating
delta debugging algorithm to run by an average of around 3 min. However, for
the actual time the user experiences we must include the pre-processing that
moiety provides. In doing so we found that calling the build tool Cabal as our
blackbox compiler clearly gave unsatisfying results and that work is needed to
reduce the time of each blackbox compiler call. When applying the framework
we found that using the de facto recall metric did show improved results for
Elucidate20. However, when we added the metrics precision and F1 score from
the framework a more accurate picture was presented with Elucidate20’s results
being slightly lower than Gramarye19.

In all, we have improved the time taken by isolating delta debugging, we
have detected further work for reducing the time-taken by calling a Blackbox
Compiler, and have shown the need for the framework to quantify the quality of
type error debuggers in the future.

6 Related Work

Type Error Debugging research has a long and fruitful history starting in the
eighties[25]. It spans many solutions in a variety of categories each specialising on
their own core ideas [2,4,5,7,10,13,15,16,20,22,24,30]. However, these solutions
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rarely contain a through evaluation and when they do it does not attempt to
directly evaluate on large programs with type errors. Instead the evaluations aim
for success on small programs, typically of the size that first-time programmers
would produce. For example from a recent paper ‘Learning to blame: localizing
novice type errors with data-driven diagnosis’ though the evaluation mentions
the usage of both accuracy and recall the authors state; “We acknowledge, of
course, that students are not industrial programmers and our results may not
translate to large-scale software development...” [17] and in a well-known type
error debugging paper Counter-Factual Typing for Debugging Type Errors the
authors say “...the numbers do not tell much about how the systems would per-
form in everyday practice.” [4]. One general method of debugging that has been
applied to a 178,000 line program is Delta Debugging. Defined by Zeller in 1999,
delta debugging comes in two forms Simplifying and Isolating and is applied to
a general debugging domain rather than specific categories of errors [6,27–29].
In our previous paper we applied Zeller’s work specifically to type errors in func-
tional languages employing the compiler as a blackbox [18]. A Blackbox Com-
piler differs from other Blackbox solutions mentioned in prior literature(Blackbox
Type Checkers, Blackbox Type Inference [9,15,23]) as it treats the entire com-
piler as an external entity rather than a component of it. This method of only
taking external cues, such as whether a program is ill or well-typed, avoids users
having to patch or download a specific compiler to explicitly improve type error
discovery. Though combining a Blackbox Compiler and isolating delta debugging
to the domain of type errors returned positive results reducing unresolveds was
seen to be beneficial future work. One option for reducing the unresolveds was
the modification of the delta debugging configuration. Generating Configurations
to avoid invalid inputs for delta debugging is not new [11,14]. The closest to our
work observes that modifying lines of source code can and will generate broken
code that will still need to be sent to the test function causing debugging times
to increase [8]. In Binary Reduction of Dependency Graphs the authors aim to
reduce these invalid inputs by using dependency graphs to map the smallest set
of classes that are invalid without each other, reference’s to other classes, in Java
bytecode. Their dependency analysis is specific for Java and they only use the
simplifying delta debugging algorithm.

7 Conclusion and Future Work

We presented a method of combining Isolating Delta Debugging and a blackbox
compiler to locate type errors. Most solutions in type error debugging do not
evaluate on large programs, those that have more than 30 lines of code, and so
we aimed to target these. However, when applying isolating delta debugging to
locate type errors in these large programs we can receive outcomes that are unre-
solved, it can split source code in a way that causes parse errors, that reduce
the efficiency. We introduce an algorithm that pre-processes an ill-typed pro-
gram to eliminate these parse error; in particular ’parse errors on input’. Our
pre-processing algorithm, Moiety, presents where in the source code the lines can
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be split to avoid causing a parse errors. These moieties are then used as a con-
figuration for delta debugging to reduce the unresolveds caused by parse errors,
which in turn is linked to the time taken in delta debugging large programs.

To test the success of our solution on locating type errors in large programs
we introduced the scalability benchmarks, a set of 80 ill-typed large programs
within the real-world program Pandoc, and a framework based on Data Science
standards. The evaluation comprised of comparing our original debugger, Gra-
marye19, that used isolating delta debugging to locate type errors and our new
debugger, Elucidate20, that also include the pre-processing algorithm moiety. In
the first part of the evaluation we saw if a reduction of unresolved results and a
decrease in the isolating delta debugging algorithms run-time could be achieved.
Elucidate20 on average returned 72 fewer unresolveds per benchmark reducing
the time taken for isolating delta debugging to run by an average of 216 s (3 m
36 s). The best case reduction of time was from over an hour to 7 s, however, the
overall time the user experiences was a priority too. Here, with the combination
of moiety and isolating delta debugging, Elucidate20 did take longer than our
previous debugger to locate type errors on average with an increase of 100 s (1 m
40 s), however, when looking at individual benchmarks Elucidate20 did reduce
some user-times by more than an hour. In the second part of our evaluation we
employed our new suggested framework. We noted that one metric within the
framework, recall, is the most commonly used in our domain and showed a pos-
itive result for Elucidate20 with a 21% points increase in locating a type error
compared to Gramarye19. However, the reason for the framework is to improve
the ability to quantify the quality of type error debuggers and when the entire
framework is applied it shows that the difference between Elucidate20 and Gra-
marye19 drops to just 1% point. This significant difference in results shows that
just applying the traditional recall metric is not satisfactory for evaluations in
this field and the application of the framework on future type error debugging
solutions is needed to be able to report clearer results, and comparisons between
solutions.

For future work an increase of the categories of parse errors we treat with the
pre-processing along with adding other errors such as Variables not in Scope is a
concrete direction; as the moiety algorithm already works though individual lines
adding these will not increase the overheads and has the possibility of reducing
the time delta debugging takes further down. It is also clear that though pre-
processing speeds up delta debugging it also, on average, slows the overall run-
time of the debugger. Reducing the time it takes to generate a list of moieties
would be extremely beneficial. We would also want to increase our scalability
benchmarks to include more than one core program as this will remove any bias
away from how a programmer may specifically layout out their source code.
Lastly, though we applied our method to Haskell programs, our debugger is
nearly language agnostic. Delta Debugging and the Moiety algorithm are not
specific for the programming language, allowing for a reasonable modification
towards an agnostic debugger in the future.
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Javier Dı́az1,6 , Matthias Güdemann1,5 , Wolfgang Jeltsch1,2 ,
Marcin Szamotulski1 , and Polina Vinogradova1

1 IOHK, Wan Chai, Hong Kong
{philipp.kant,kevin.hammond,duncan.coutts,james.chapman,nicholas.clarke,
jared.corduan,neil.davies,javier.diaz,matthias.gudemann,wolfgang.jeltsch,

marcin.szamotulski,polina.vinogradova}@iohk.io
2 Well-Typed, London, UK

{duncan,wolfgang}@well-typed.com
3 PNSol, Stonehouse, UK
neil.davies@pnsol.com
4 Tweag, Cambridge, UK
nicholas.clarke@tweag.io

5 University of Applied Sciences Munich, Munich, Germany
matthias.guedemann@hm.edu

6 Atix Labs, Buenos Aires, Argentina
jdiaz@atixlabs.com

Abstract. Agile software development and Formal Methods are tradi-
tionally seen as being in conflict. From an Agile perspective, there is
pressure to deliver quickly, building vertical prototypes and doing many
iterations/sprints, refining the requirements; from a Formal Methods per-
spective, there is pressure to deliver correctly and any change in require-
ments often necessitates changes in the formal specification and might
even impact all arguments of correctness.

Over the years, the need to “be agile” has become a kind of mantra
in software development management, and there is a prevalent prejudice
that using formal methods was an impediment to being agile. In this
paper, we contribute to the refutation of this stereotype, by providing a
real-world example of using good practices from formal methods and agile
software engineering to deliver software that is simultaneously reliable,
effective, testable, and that can also be iterated and delivered rapidly.
We thus present how a lightweight software engineering methodology,
drawing from appropriate formal methods techniques and providing the
benefits of agile software development, can look like. Our methodology
is informed and motivated by practical experience. We have devised and
adapted it in the light of experience in delivering a large-scale software
system that needs to meet complex real-world requirements: the Cardano
blockchain and its cryptocurrency ada.

The cryptocurrency domain is a rather new application area for which
no clear engineering habit exists, so it is fitting well for agile methods.
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At the same time, there is a lot of real monetary value at stake, making
it a good fit for using formal methods to ensure high quality and correct-
ness. This paper reports on the issues that have been faced and overcome,
and provides a number of real-world lessons that can be used to leverage
the benefits of both agile and formal methods in other situations.

1 Introduction

There has long been a tension between Software Engineering and Formal Meth-
ods. From a software engineer’s perspective, there is pressure to deliver quickly ;
from a formal methods perspective, it is essential to deliver correctly. In this
paper, we argue that rather than fueling this tension, formal methods not only
can, but should, be fused with agile software engineering methods. The goal is
to promote a flexible software engineering methodology that aims to combine
the best aspects of both agile and formal methods to deliver properly engineered
and correct software solutions quickly and effectively. We illustrate how such a
methodology can look like by referring to our experience at IOHK, a company
that is using strongly typed and functional programming (specifically Haskell)
to deliver a new cryptocurrency.

1.1 Formality Versus Agility

Agile software development [BBvB+01] has, since its inception at the turn of
the century, risen to become one of the most prevalent software development
methodologies. Agile methodologies are attractive because they promise rapid
delivery, and fit normal development approaches. When done well, with a focus
on what needs to be delivered, rather than what is easily delivered, agile tech-
niques allow effort to be focused towards the most important goals, and away
from unimportant goals. However, if they are to be used successfully, discipline
is essential and management must exercise strong control.

Agile techniques can appeal to undisciplined developers precisely because
they can deflect attention from what needs to be done (which is often hard)
towards what can quickly be done. This allows an illusion of progress to be
maintained. Management is then happy because they can apparently observe
progress, and the software is close to product, or only needs a few more small
adaptations; and software developers feel valued because they are producing code
that is apparently appreciated, and there are continual exciting challenges that
they must overcome. Unfortunately, the software may have little real utility, may
be hard to maintain, and may also be unreliable. When this happens, “agile”
methods are both costly and ineffective: the precise opposite of the motivation
for adopting them.

In contrast, classical formal methods require careful thought and design. It
is necessary to first carefully specify a system, then to laboriously translate this
into an implementation, and finally to verify the result against some complex
and often hard-to-understand semantics. Since a large fraction of the overall
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time and work is spent on writing specifications, it can be hard to demonstrate
progress unless the specifications are accessible to management. Furthermore,
changes to the software product require changes in the specification, code, and
verification, which can act as a barrier to accepting changes in requirements.

For this reason, commercial product teams can be very wary of adapting for-
mal methods, and startups can feel that they cannot afford the costs. This is a
pity, since modern formal methods do not have to suffer from these drawbacks.
For example, using executable specifications are a great tool to demonstrate
progress, and automated tools like QuickCheck can be used to check correctness
of software in a way that is stable against local changes. We hope that by pro-
viding our own positive experience, we can help reducing the bad reputation of
formal methods being too slow and inflexible for practical things, and ultimately
encourage more practitioners to consider using some formal techniques.

1.2 Our Contribution

In this paper, we argue from our own experience that the perceived dichotomy
between “being agile” and “being formal” is mostly a consequence of an out-
dated view on the landscape of formal methods1, and that using modern formal
techniques not only does not contradict the goals of quickly delivering software in
the presence of changing requirements, but that they are indeed rather helpful.
This paper makes the following contributions:

– We describe the motivation that led to the real-world adoption of for-
mal methods techniques and functional programming technologies within an
advanced technology company (IOHK);

– We provide examples of the real-world use of lightweight formal methods and
functional programming as part of a large software development process;

– We consider the positive and negative aspects of both formal and agile tech-
niques in the light of experience with both approaches, as well as the gap in
left between the methodologies;

– Based on this analysis we outline a flexible formal software engineering
methodology that provides the most significant benefits of both agile and
formal software development;

– We discuss the advantages of functional programming for flexible formal soft-
ware development.

Moreover, there are relatively few reports of real-world experiences of using
functional programming technologies as an intrinsic part of large-scale, dis-
tributed software development (exceptions include e.g. reports on Erlang). This
paper provides another addition to this corpus.
1 In fact, we would go even further and say that the the picture of a waterfall-style

development, with a strictly linear succession of gathering requirements, writing
specifications, writing code, and proving correctness against the specification, was
always more of a caricature of a bad approach than an accurate description of how
people were using formal techniques in practice.
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2 Cardano: A Proof-of-Stake Cryptocurrency

Cardano (https://www.cardano.org) is a novel decentralised blockchain and
cryptocurrency that is being developed by IOHK. cryptocurrencies are dis-
tributed systems that contain a public shared transaction ledger, which allows
participants to track and send funds in a virtual currency. The striking feature is
that these systems are permissionless and decentralised, in the sense that anyone
can run a node and take part in maintaining the ledger without needing to be
registered with a central authority.

This poses an immediate problem: since there is no central authority, it is nec-
essary to reach consensus on how to progress the construction of the blockchain.
The consensus algorithm has to be resistant to a malicious actor setting up any
number of nodes with the aim of taking over the decision finding process (a so-
called Sybil attack [Dou02]). Bitcoin [Nak09], the first cryptocurrency, achieves
this using a Proof-of-Work (PoW) mechanism, where taking part in the consen-
sus requires computational resources that are proportional to the total amount
of computational resources in the system. This renders a Sybil attack highly
expensive. The cost is in making the whole system ridiculously inefficient: Bit-
coin is now at a stage where it consumes as much electrical power as a mid-sized
nation state, but can only enter a handful of transactions into its ledger per
second. Were it not for the computational cost of the PoW Sybil protection, this
could be easily achieved using a single commodity laptop or other small device.

In contrast, Cardano uses an alternative Proof-of-Stake mechanism (PoS).
Under PoS, the price of participating in the consensus algorithm is not paid in
computational power, but instead by having to own some of the virtual currency
in the system. The larger your share of the total funds (the higher your stake),
the greater is the probability of your being elected as the leader in the next
consensus round.

While PoS has many advantages over PoW – it is ecologically sustainable,
and automatically incentivises powerful parties in the consensus to behave hon-
estly (since large stakeholders have a lot to lose if the system is found to be
manipulated) – it is hard to get right. For this reason, IOHK committed itself
to base Cardano on a solid foundation of original peer-reviewed research, and to
using formal methods in the development process.

There are already a lot of moving parts to the Cardano cryptocurrency sys-
tem. In time, it will additionally become a smart contracts platform, running the
languages Plutus2 and Marlowe [LST18], which have been specifically designed
to be used on Cardano.

3 Formal and Agile Development of Cardano

While IOHK has always been devoted to getting things right, building upon
sound academic research and robust, reliable engineering, the company is also
aware of commercial realities, such as the importance of time-to-market in a
2 https://github.com/input-output-hk/plutus.

https://www.cardano.org
https://github.com/input-output-hk/plutus
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relatively young and quickly evolving sector. For this reason, it set out on a two-
pronged approach for Cardano: a team A of energetic developers would quickly
develop, in an Agile manner, a Minimal Viable Product (MVP) to release to
market. Meanwhile, a second team B would aim for a high-assurance version,
using formal methods, that would, once ready, replace the first implementation.
Team A would deliver swiftly, and Team B would use the experience from having
a working system in production to guide their design and development. Both
implementations were done in Haskell.

Some time after releasing the MVP, it became clear that maintaining it and
adding new features was much harder than anticipated. The organically grown
code, which had been developed under time pressure in an agile style, lacked a
proper separation of concerns or good documentation of the design. This resulted
in poor testability and extensibility for the codebase. Crucially, the implemen-
tation of some key features (namely, a proper system for stake delegation) had
been delayed until the very end, and by that time, design choices that had been
made while implementing other, simpler, functionality, had made that task more
complicated than it would have needed to be. As a consequence, estimated devel-
opment times for the missing features, as well as for future features, were much
longer than they needed to be.

At the same time, team B had achieved a first success, in successfully imple-
menting a wallet3 for Cardano based on a semi-formal specification. A decision
was thus made to pivot, cutting back development effort on the existing imple-
mentation to a bare minimum. Team B would scale up and accelerate their
efforts, and the next features on the roadmap would be implemented exclusively
in the follow-on to the MVP. At this point, Team B faced a number of challenges:

– Since team A was no longer adding new features, they had to accelerate their
pace in order to quickly get to a point where the new implementation could
be used to deliver new features.

– Compromising on the quality and robustness, or future maintenance costs,
was not an option; Cardano has to safely manage and secure large-scale finan-
cial transactions, and needs to be fit for that purpose.

– They had to ensure backwards compatibility with the already released code.
The lack of good documentation meant that they had to write a specification
based on the existing code. Writing specifications and code adhering to them
is like time travel, in that one direction is significantly easier than the other.

– As the research and design for the new features were still somewhat in flux,
they would need to be flexible to adjust to changing requirements.

To overcome those challenges, the team chose a pragmatic approach – with a
well-dosed, non-dogmatic use of lightweight formal methods, and a focus on rapid
delivery – that we will describe in this paper.

3 A cryptocurrency wallet is a piece of software that allows users to track their balance
in the system and submit transactions.
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4 “Flexible Formal Development”: A Fusion of Formal
Methods and Agile Software Engineering

Both agile software development and formal methods aim at helping their prac-
titioners to become “better” at producing software, but they focus on different
aspects: agile is all about speed and flexibility; formal methods is all about cor-
rectness and method. This is not helped by the number of books, papers and
experts that promote specific methods (whether formal or agile) as a complete
solution. Examples include Agile Scrum Methodology [SB01]; Lean Software
Development [PP03]; Kanban [Bre15]; Extreme Programming (XP) [Bec00]; Fea-
ture Driven Development (FDD) [PF01]; Model Checking [CGP99]; Abstract
Interpretation [CC77]; Type-Driven Development [Bra16] etc. In this section, we
will explore the broad differences, similarities, and potential synergies between
formal and agile approaches and aim to understand how their fusion can ensure
software that is both high-assurance and reasonably time- and cost-effective to
produce.

4.1 What Do We Need?

Fundamentally, software development needs are quite simple. In general, we need
to produce software that does what it is supposed to do; is produced quickly;
costs no more to produce than is necessary; can be easily maintained, at rea-
sonable cost; and doesn’t require expensive support. Other issues are generally
secondary or specific to particular domains (e.g. telecommunications applica-
tions may have real-time constraints, aerospace applications may have overriding
safety concerns, autonomous vehicles may have regulatory concerns, etc). The
basic criteria for a successful methodology which is shared by many software
development domains is presented in Table 1.

Table 1. Criteria for software engineering methodologies, along with stereotypical
expectations of whether agile or formal methodologies satisfy them. This is to be taken
with a grain of salt, as there is a large variety of both agile and formal techniques.

Issue Agile Formal

Identify the requirements for the software Y? Y

Ensure that the software meets these requirements Y? Y

Provide usable prototypes rapidly Y Y?

Minimise the costs of development Y? N?

Ensure that code is high quality N Y

Ensure that software is easy to use N N

Ensure that changes can be made easily Y N

Be easily applied without extensive training N N
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The details of this table can be argued, of course, mainly because there are
many different agile techniques and many different formal methods. Different
development teams may also have different levels of experience and be more
or less familiar with specific techniques and technologies. They will also have
different competencies in terms of e.g. mathematical backgrounds or training
in specific development techniques. Effective deployment of either technology,
however, needs extensive specific training and practice. We will consider each of
the issues from the table in detail, considering how well they are met by agile
and formal development techniques.

Identify Requirements. Here, the key issue is to have a strong product vision.
Ideally, there should be a dialogue between the product manager and the software
developers. Agile developers should then interact with the product manager to
deliver the capabilities in the software that is needed, and the product manager
should adapt the capability requirements of the product to make it easier to
implement/maintain, without compromising on essential features. In practice,
there may be no distinct product manager, meaning that the development team
acts as the designers. This can create a number of problems, including failure to
deliver a successful product, repeated non-converging iterations, missing essen-
tial features, and included non-essential features. Requirements gathering and
design is done on the fly. Because it is easy to change requirements, the software
design and implementation will frequently change direction. The final solution
will then have no clear design pathway. Formal methods techniques on the
other hand often require detailed and careful analysis of alternatives, followed
by months of painstaking work to laboriously craft out possible solutions, prove
that they are sound with respect to some formal model or semantics, and then
to verify that the software matches those requirements. Even small changes may
require major alterations to the formal specification, and significant effort to
re-prove, re-verify and then re-implement the software. In this approach, it is
therefore essential for the product owner to be involved in the requirements
analysis and problem specification. Unfortunately, they will often lack the tech-
nical/mathematical knowledge to be able to understand the implications of the
design decision.

Meet Requirements. Since formal methods use mathematical techniques to
specify requirements, provided that they are properly captured and the process
is followed correctly, then the software will always meet these requirements. This
is a major strength of a formal approach. When using agile methods, on the
other hand, the product owner – and also users, where early delivery is used
– can easily see the current version of the software, identify any mistakes or
misunderstandings and feed corrections into the development process.

Provide Prototypes. Good agile methods will always ensure that a prototype is
available. By using continuous integration and continuous testing, a non-breaking
version will always be available for deployment. Non-breaking means, of course,
that the code will compile and that none of the tests have failed, not that the code
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works perfectly. However, it is easy to observe change, and therefore to measure
(real or apparent) progress. Some formal methods also allow the production
of prototypes. For example, where a modelling approach is used, an executable
specification might be produced, or where a refinement process is used, then
successive refinements will produce gradually more detailed prototypes. However,
this is not a feature of all formal methods techniques. Because it is usually
necessary to formally prove software correctness, there may be long periods when
no new software versions are produced. Since there is no observable change, it
is difficult to measure progress during such periods.

Minimise Development Cost. A key goal of agile (especially lean) software devel-
opment is to minimise software costs by producing precisely the minimal product
that is required, and by focusing attention on the most important features. By
avoiding implementing unnecessary features or by delaying less useful features,
the software can be brought to market more quickly, and at an adequate cost.
In practice, achieving this requires strong discipline. It is easy to focus atten-
tion instead on short-term, but less important bug fixes, on easy-to-implement
features, or on features that are nice-to-have. While daily “stand-up” meetings
allow good team communication, they need to be properly organised if a priority
task list is to be produced and followed. By using continuous testing, software
is not accepted that does not pass regression tests, so fewer bugs will enter the
code base. However, this same process can also act as a barrier to major change
– completely new tests will then be necessary. In contrast, reducing development
cost is not usually a major goal of formal methods development. If correctness
is paramount, then spending effort to ensure correctness is always the right thing
to do. Although there has been major progress in e.g. automated proof assistants
and model checking, most formal methods tooling is not well integrated into the
usual software development process.

Ensure High Quality. The primary aim of formal methods is to produce very
high quality, high reliability, high assurance software. This is, however, rarely an
explicit goal of agile methods.

Maximise Ease of Use. Ease of use is not a primary goal for either agile software
development or when using formal methods. Rather, it must be layered as an
additional concern.

Enable Change. Software is notoriously hard to change. While agile meth-
ods allow design changes to be incorporated during development, as discussed
above, they do not encourage major design changes: any significant change will
break not only the existing code, but also testing, documentation, etc. Similarly,
traditional formal methods do not provide any assistance with major design
changes. While small changes can usually be incorporated without major work,
large changes will often require significant and laborious specification, verifica-
tion, proof or other work. In both cases, it is often easier to start with a blank
canvas and produce a completely new design. This can also be cheaper and
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quicker than adapting an existing design. However, it means that significant
effort has been wasted.

Do Not Require Extensive Training. There is a major software skills shortage.
As evidenced by e.g. salary levels, good software developers are rare and in high
demand. It is not cost effective to require them to learn to use new tools and
techniques on a regular basis. While they may be highly effective once mastered,
mathematical techniques may also require extensive study and practice, which is
also costly. Unfortunately, much of the available tooling to support both agile
software development and formal methods is special-purpose and requires
extensive time to learn to use effectively. This creates stickiness: better tooling
is not used because it takes time to learn to use (or sometimes, especially in
smaller companies, because it costs money). It also means that few people have
experience with both kinds of tools or the expertise to move easily between them.

Our Goal: Flexible Formal Software Engineering. Based on the analysis
above, we argue for a flexible formal approach. Our goal is to combine the best
elements of agile and formal software engineering so that we can produce software
that meets all of the criteria above. In particular, it should be high quality, quick
and cost effective to produce, easy to change, clearly meet the requirements and
not require extensive training to develop. This is naturally highly ambitious,
and in this paper we will only be able to report on the initial steps that we have
taken. However, it is important that the software development community does
not simply settle for the status quo but strives to achieve these goals. In this
way, we will be able to deliver software that is better, less costly, and easier to
adapt both by design and by construction. Modern functional programming is
key to helping us achieve this.

5 Key Messages and Lessons

5.1 Approach(es) Taken at IOHK

When rebuilding Cardano, we separated concerns into layers, as is common when
dealing with larger projects. This allowed us to parallelise work, test things in
isolation, and will allow us to swap out individual components when needed, to
produce customised variants. It turns out that there is sufficient difference in
nature between the components to make each amenable to a different approach
in designing and implementing them. In the following, we will briefly describe
each layer, and explain the methodology chosen for each, and why.

Ledger Layer. The ledger layer contains the main logic of the cryptocurrency.
It is where all the data is kept, and has to ensure that users’ balances are recorded
correctly, that money can not be arbitrarily created or destroyed, that no one
can spend funds they do not own (or spend their funds twice), etc. Correctness
of the ledger is thus of utmost importance to the integrity of the system.
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The Cardano ledger is of moderate complexity. It does not have to deal with
any concurrency issues – those are contained in the consensus and networking
layers – but it is more than just a simple book-keeping device. In addition to
listing and ordering transactions, and keeping balances, it has to also keep track
of state that is important for the operation of the system itself. Parameters
of operation (such as the frequency with which new blocks4 are created) can be
adjusted during operation, by announcing the new value on the ledger. Similarly,
new versions of the software itself can be announced via an update mechanism.
Another aspect of the ledger is delegation: while every stakeholder has the right
to participate in the consensus algorithm, it is unlikely that each and every
user of the system would want to continuously run and maintain a node in the
system. In Cardano, users can chose to delegate their stake to people who do run
a node, forming a stake pool. Rewards that the system pays out for maintaining
consensus are automatically shared between operators and participants of such
pools.

All of this lead to a rather voluminous design; the informal document describ-
ing the mechanisms of delegation and incentives alone [SL-D1] runs at roughly
60 pages, and builds upon two papers of original research conducted for Car-
dano [KKL18,BKKS18]. While none of the individual parts are rocket science,
they can interact in subtle ways. Since the ledger is where the value is being
held, correctness has to be on the top of the list of priorities of the development
methodology chosen. However, we also needed a flexible approach: commercial
reality required us to start work on the implementation before the design and
research of the whole ledger was truly finished, so choosing an approach where
small changes in the design would require massive amounts of work to be done
had to be ruled out.

We decided to simplify the ledger design by defering all stateful operations
– in particular data storage and issues related to eventual consistency – to the
consensus layer. This allows us to express the whole ledger logic in a purely
functional way, in terms of a set of valid state transitions and transition rules.
The approach we followed in defining operational semantics is called small-step
semantics (see [FM-TR-2018-01]). We can use these operational semantics to
define valid state transitions in a deterministic way, e.g. what sequences of trans-
actions forms a valid ledger. We will not discuss here the language and rules itself,
but instead summarize the principles we follow in constructing rules and types
with this approach:

– There should always be a unique way to represent every state transition as
a sequence of these “small steps”. E.g., to apply a block, the sequence of
intermediate states must contain each of the states resulting from applying
every transaction in the block individually to the ledger ledger state resulting
from preceding.

4 Cryptocurrencies are built on a data structure called blockchain, which are essentially
linked lists, where each block contains a page of a transaction ledger.
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– There should not be any partial state transition rules or unnecessary data
dependencies between state transitions. E.g., we do not want to make
separate state transition rules for processing the inputs and the outputs of a
transaction.

The first principle requires us to define rules with high granularity, so that
we don’t miss any intermediate steps. The second principle discourages us from
having unnecessary intermediate steps, during which some invariants we expect
from the system may not hold.

We call the transition types, together with the transition rules we defined
in this way, a semi-formal specification, since it is formal, but not machine
checked. Translating this specification into valid Haskell code is straightforward
and mostly mechanical: every transition rule corresponds to a pure Haskell func-
tion, with some pre- and postconditions. This gives us an executable specification.

This is a very powerful tool: the typechecker is very good at finding subtle
self-consistency errors. Since it is executable, this specification can serve as a
prototype and demonstrate tangible progress to stakeholders. You can also start
running tests with the executable specification. Lastly, it can either serve as a
basis for developing a production implementation through a series of refinement
steps, or as a testing oracle for the production implementation (we chose the
former here).

We did not, initially, produce any proofs about the emergent properties of the
ledger (such as conservation of value, delegating stake properly modifying the
stake of a pool, etc.). Instead, we got reasonable confidence by having the exe-
cutable specification pass the type checker (we got the plumbing right), and by
writing the desired properties as QuickCheck properties. Not performing proofs
at this stage allowed us to move quickly, and react to changes in the design.
Having the type checker and QuickCheck properties allowed us to do so with
confidence that the changes were not breaking parts of the system. In that way,
the approach combines elements from formal methods and agile practices like
test-driven development. As things became more stable, we also started proving
a subset of the properties, most of them in a traditional, pen and paper style,
and some also formally in Isabelle.

This approach requires two techniques that are not stock items in the reper-
toire of software engineers: formal specifications, and efficient use of property
based testing5. We organised a one-week intensive on-site training course in those
techniques for our engineers to make up for that, run by Well-Typed, QuviQ,
and the IOHK education department. The course was very well-received, and
our engineers report that programming from executable specifications was a very
pleasant experience.

5 While the use of property based testing has surged in recent years, with QuickCheck
clones available in most languages, experience in efficient use, including writing good
generators and shrinkers, is not common.
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Here is a list of the things that we found worked well, or not so well:

+ The language of transition rules in a small-step operational semantics formed a
lingua franca to talk about the ledger within the company. While it might look
intimidating when unfamiliar, we found that after a little bit of introduction
to the framework, we could use it to communicate not only with engineers,
but also other stakeholders within the company (researchers, product man-
agement, and the CEO). Subtle questions from the researchers were easier
to answer by looking at the formal spec than by looking at code. Addition-
ally, we received a lot of very helpful feedback from our auditors, concerning
details in the specification.

+ The simple mathematical style of the small-step operational semantics trans-
lated extremely well to Haskell. Comparing the two specs side-by-side is very
easy to do, therefore strengthening our trust in the translation from paper to
machine.

+ In most cases, small-step semantics combined nicely with agile methodology.
Adhering to the two principles we stated above encouraged us to maintain
the right granularity in our rule definitions. That is, in response to a require-
ment change, the scope of the type-level changes and associated semantic rule
changes was often contained to a single transition type and an (often singu-
lar) relevant rule, or at least easily traceable over several rules. Because of
this, implementing incremental local changes could be done in a rather a non-
disruptive and tractable way. Note, however, that even with this approach,
not all small local changes can be made to be non-breaking.

+ Flexibility with confidence, through the type-checker and QuickCheck.
+ Extensibility: even before the first version of the ledger was finished, we had

one team member work on integrating the next feature, integration of the
smart contract language Plutus, on the level of the specification. This required
adding some new types, some new transition rules, and modifications to a few
existing rules. We expect a massive reduction in lead times for future features.

+ The formal spec made the job of estimating the work required to implement
new features much easier than it would have been with code alone: the spec
provided a view on the system that had enough detail to see which parts
would have to be changed in order to implement a new feature, while still
being concise enough to quickly analyse the impact on the whole system.
Similarly, when integration issues made us consider the impact of refactoring,
the formal spec was valuable for choosing the path forward.

− We had to keep two versions of essentially the same document – the semi-
formal and executable specification – in sync. Performing formal proofs
in Isabelle required yet another version of the same specification. Ideally,
we would like to derive all of those documents from one single source.
While there are some tools available (such as lhs2tex6, Ott [SZNO+10], and
Lem [OBZNS11,MOG+14]), we chose to do this manually on the first project,
for pragmatic reasons: we did not have enough time to research the existing
tools sufficiently to convince ourselves that we would not run into limitations

6 http://hackage.haskell.org/package/lhs2tex.

http://hackage.haskell.org/package/lhs2tex
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along the way. We intend to improve this, by evaluating existing tools, and
possibly modifying one, or even writing our own.

Consensus Layer. The consensus layer determines who is allowed to pro-
duce a block at which point in time. It is based upon Ouroboros [KRDO17], the
first provably secure PoS protocol, and variants [DGKR17,BGK+18]. Ouroboros
guarantees – as long as more than half of the participants (weighted by their
stake) behave according to the protocol – that transactions submitted to the
network will be included in the ledger, and that the ledger stabilises, so that
transactions can not be dropped after they have been in the ledger for a cer-
tain amount of time. Having those guarantees for Cardano requires a faithful
implementation of the consensus protocol.

Unavoidably, the consensus protocol inherently involves concurrency, which
is notoriously hard to get correctness guarantees about. While we do want to
ultimately get a high-assurance implementation of Ouroboros, we decided that
going for that right away was too risky in terms of development time.

So again, we chose an approach of two development streams, with different
speeds and levels of formality. But we took a lesson from the past, and asked
very experienced and disciplined engineers to do the initial implementation. They
would produce code that was well documented, designed with testability in mind,
modular, and solid. They would use prototyping to make informed design deci-
sions. Rigorous code review, direct communication with the Ouroboros authors,
and extensive property based testing would ensure that the resulting code was
of high quality. Extensive use of polymorphism and Haskell type classes was
essential in achieving a flexible and testable design (more on that in Integration
below).

To eventually get the extra bit of assurance that comes with a formal model
and proofs, a second group of people is following their traces, and is modelling
the resulting design formally in Isabelle, using a process calculus. They should
then be able to provide machine-checked proofs about the correctness of aspects
of the implementation, or providing a basis for re-implementing parts of the
consensus to build on the fully formal core. As a first step towards this goal,
we have developed a custom process calculus [Jel19] and proved some properties
relating message relaying and broadcast based on it.

The advantage of our approach is that we do not have to make an up-front
decision about the final level of formality, but can defer this decision to a point
where we have a better understanding of the complexity of the endeavour. The
code that we do have is robust enough stay in production for the lifetime of the
system. Every step that we go on the formal side increases our confidence in the
design, and thus is not wasted, regardless of whether we will go to an actual
implementation derived from the formal model. We achieve this incremental
confidence by first performing proofs about the design that we followed in the
implementation. Those are relevant for the implementation even if the code
is not derived from the formal model underlying the proofs. The next step is
modelling the actual implementation formally and proving more elaborate global
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properties. This is still much less work than an implementation based on a formal
model, since we can abstract over many details (in particular, interactions with
other layers). The option of ultimately replacing the implementation with code
that builds upon the formal model is still open, but even if we decide not to do
that, the confidence we gained during the previous steps is not lost.

For instance, one of the proofs that we did concerns the way that chains of
blocks are distributed amongst nodes in the system. In the research paper, there
is an abstract and perfect notion of a network where every node can broadcast
their chain to every other node, and then each node will pick the “best” one
according to certain rules. The proofs of the security of the protocol assume this
perfect broadcast, but it is not feasible to directly implement this in a real world
system; for one, nodes will already agree on a long prefix of the correct chain,
so they should only interchange the latest blocks. Also, in a large network, the
abstract broadcast will be implemented in terms of communications of each node
with a limited number of peers. We have been able to prove that our design for
relaying blocks through the network is a refinement of the abstract whole chain
broadcast functionality in the paper.

Networking Layer. A PoS blockchain cryptocurrency like Cardano is very
demanding on the networking side. Ouroboros divides time into discrete slots,
and elects slot leaders for the consensus in a pseudorandom manner. For this
to work, the next block in the blockchain has to traverse the network from
one elected leader to the next leader within the available time, and it must
do so successfully in the vast majority of cases. This places a hard real-time
constraint on the networking layer. At the same time, the network should be
decentralised and permissionless, allowing anyone to join the network. Not only
is this in tension with ensuring performance, it also increases the attack surface.
Nodes in the system must interact with other potentially adversarial nodes, and
the design of this interaction has to enable honest nodes to avoid asymmetric
resource attacks, which is not simple in PoS designs7.

The networking design for Cardano consists of nodes engaging in one-to-
one protocols. To reduce complexity, this communication is divided into sepa-
rate concurrent “mini-protocols”, each with a narrow focus8. The protocols are
designed to ensure that honest nodes can work in bounded resources; they all
use consumer-driven control flow for example. The construction of the peer-to-
peer network aims to ensure rapid dispersion of information across the network,

7 In PoW systems, there is a distinct computational cost advantage for the honest
nodes, in that validating a block is very cheap (just hashing the block) but producing
a block requires an enormous amount of computational work by an adversary. In PoS,
the computational costs are much more finely balanced and the validation checks
require the full ledger state, and thus a closer coupling of the networking layer with
the rest of the application.

8 For efficiency and to aid with network resource management complexity, we use
multiplexing to just use one network connection for all protocols between a pair of
nodes.
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and limiting an attacker’s ability to spam the network, or slow down the net-
work by intentionally delaying replies. We used simulations to verify that our
peer selection algorithm, which takes decisions locally, leads to suitable network
topologies globally. The peer selection takes into account both the number of
hops to disperse information and the network distance of each hop, relying on
local measurements of the network distance to available peers in the ΔQ frame-
work [Ree03,DHT99b,LGPC+16,DHT99a,DHST99].

Networking protocols are hard to get right. Reducing complexity by having
dedicated mini-protocols for specific tasks was already very helpful, but we also
wanted to reason formally about those protocols. To do that, we used session
types, modeling the communication between two nodes as state machines. We
intentionally restricted the admissible communication patterns, so that in each
state, one of the nodes could send a message, and the other had to expect and
handle any message by the other node. That restriction ensures that there can
be no deadlocks (since it there is no state in which both nodes are expecting a
message), and also no race conditions (since there is no state where two nodes
send messages at the same time). And those powerful guarantees do not have to
be proven manually, but are enforced by the Haskell type checker!

Both the network and consensus layers make significant use of concurrency
which is notoriously hard to get right and to test. We use Software Transactional
Memory (STM) to manage the internal state of a node. While STM makes it
much easier to write correct concurrent code, it is of course still possible to
get wrong, which leads to intermittent failures that are hard to reproduce and
debug.

In order to reliably test our code for such concurrency bugs, we wrote a
simulator that can execute the concurrent code with both timing determinism
and giving global observability, producing execution traces. This enables us to
write property tests that can use the execution traces, and to run the tests in a
deterministic way so that any failures are always reproducible.

The use of the mini-protocol design pattern, the encoding of protocol inter-
actions in session types, and the use of a timing reproducible simulation, has
yielded several advantages:

+ Adding new protocols (for new functionality) with strong assurance that they
will not interact adversly with existing functionality and/or performance con-
sistency.

+ Consistent approaches (re-usable design approaches) to issues of latency hid-
ing, intra mini-protocol flow control and timeouts/progress criteria.

+ Performance consistent protocol layer abstraction/substitution: construct real
world realistic timing for operation without complexity of simulating all
the underlying layer protocol complexity. This helps designs/development to
maintain performance target awareness during development.

+ Consistent error propagation and mitigation (mini protocols to a peer live/die
together) removing issues of resource lifetime management away from mini-
protocol designers/implementors.
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Integration. Having broken the design into components allowed us to paral-
lelise work, which was crucial to reduce development time. Unless done carefully,
however, this can lead to a situation where after each component is finished
and working in isolation, integration of the components becomes unexpectedly
painful and time intensive.

A common way to avoid that situation is to fix, up front, the interfaces
between the components, and ensure that every team works against those
unyielding interfaces. But this goes against our goal of flexibility: during the
design and development process, we might discover that the interfaces we put in
place were not ideal, forcing one or more team to work around those imperfec-
tions, making their component(s) clunkier, and the whole system more brittle
and inefficient than necessary. Conversely, a laissez-faire attitude to the inter-
faces is asking for trouble during the integration phase. But we can find a middle
ground.

For us, the key to avoiding problems with late integration was to perform
large parts of the integration at a very early stage, before any of the components
was actually finished.

For the consensus/ledger integration, our design puts the consensus in con-
trol. It will access functions provided by the ledger layer for things like transac-
tion validation, evolving the ledger state, or querying the distribution of stake
between actors in the system (which is relevant for the consensus itself in a PoS
system). To achieve an early integration, the consensus layer is developed against
a Haskell type class representing an arbitrary ledger, that provides exactly the
functions that consensus needs. The result is a consensus implementation that
is polymorphic in the ledger.

When we noticed during development that we needed to change that type
class, the team was free to do so – after talking to the ledger team to ensure that
there would be nothing preventing writing an instance of the new type class for
the real ledger.

The benefits of this approach go well beyond avoiding integration pains,
though. Being able to swap components proved to be very useful for running
demos, and for testing. The ability to demonstrate continuous progress to stake-
holders is a key goal emphasised by agile techniques. Performing demo sessions
where we could show working code in different stages of readiness – from a mock
implementation, to an executable specification/prototype, through refinements
of these, up to the final production code – let us achieve this goal.

We used the same technique to improve the testability of our code. Not only
could we run tests for the consensus layer before the ledger was ready, by using a
mock ledger. We also wrote a mock implementation for the cryptography layer,
that would not perform cryptographic signatures, for testing purposes. Not only
are tests using the mock cryptographic layer faster and produce test output that
is easier to analyse; it also simplified the process of generating and shrinking test
cases in property based testing.

To test resilience of the storage layer against file corruption, we wrote a mock
implementation that would simulate a file system. Not only did that allow us
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to run those tests consistently and reproducibly, it also allowed us to increase
the frequency of file system errors during tests, to find bugs during testing that
would occur only after years of running in production otherwise.

Finally, being polymorphic in the ledger allows IOHK to reuse the codebase
for other blockchain-based products.

+ Avoids both late integration pains and the inflexibility that comes with setting
interfaces in stone up front.

+ Better testability: tests can be performed independently of other components.
That allows us to run them before those components are ready, can make
tests run faster, and test output easier to understand.

+ Continuously assessing progress: we could run an early demo session using
mock components, use an executable specification (that would already have
the real logic, but might not be efficient, not feature persistence, etc) in
another demo, and plug in the production implementation when ready.

+ Facilitates code reuse in other projects.

Upcoming Features: Smart Contracts Languages Plutus and Marlowe.
In IOHKs forthcoming smart contract offering Plutus, formal methods have
been involved from the outset. Aspects of the design have been prototyped
first in Agda before implementation in Haskell [PJGK+19]. This is because
the Agda type system and its interactive programming environment provide
greater assistance to the programmer that help speed up development on cer-
tain tasks. Building on the methodology described in this paper, Plutus Core
(the compilation target for the Plutus language) has an executable specification
written in Agda [CKNW19]. Plutus is a general purpose language for designing
smart contracts that is closely related to Haskell. It is complemented by the
Marlowe [LST18] language, a domain specific language specifically targetted at
financial smart contracts. In Marlowe, formal methods also play a crucial role;
Marlowe programmers can use builtin support for static analysis when program-
ming [IOH]. This functionality makes use of the Z3 SMT solver [DMB08].

5.2 Lessons

We have learned several lessons from our experience.

Lesson 1: Flexibility. One key lesson is about flexibility. By adopting an agile
mentality and by using suitably lightweight formal methods – most notably,
executable specifications in a functional language with a strong type system,
and property based testing via QuickCheck, we have been able to quickly and
effectively incorporate design changes, even at a late stage in the implementation
process, without either breaking code or restarting the development process.
Using the type system to bank the consensus between teams - type classes being
especially useful in this respect - proved to be an efficient technique for retaining
flexibility in a large scale project.
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Lesson 2: Communication. A second major lesson that we have learned is about
communication. Agile methods are effective partly because they are designed to
ensure good internal communication within a team (this may break down in prac-
tice, of course), but also, less obviously, because they naturally improve external
communication. Agile methods are effective precisely because the results of the
development process are visible externally: there should always be a workable
fallback once the MVP is produced, and it is easy to evaluate the differences
between the current status of the product and what is wanted/needed (the fea-
ture list).

In contrast, not all formal methods are suitable for continuously communi-
cating progress. Formal methods development may suffer from a lack of trans-
parency for several reasons. The dense and difficult to parse (for a human) proofs
and specifications result, internally, in uncertainty about the amount of effort
required to bring them to completion. This is reflected in external communi-
cation as well, as it is more difficult to communicate the current state of the
formalization to those without a formal methods background.

By enforcing better communication (both internal and external), including by
providing regular measurable results, it is possible to bring software projects to a
quicker, more successful conclusion, without compromising on software quality.
We found prototypes and demonstrations, based on executable specifications,
and a refinement approach to development, to be very helpful here.

Lesson 3: No “Big Bang”. A third, related, lesson is about iteration. Rather
than saving results until a formal process is finished, it is important to share
intermediate results, even if they are not fully worked out. This has the key ben-
efit of demonstrating progress, but also has the advantage that it is possible to
obtain constructive feedback, that can then be incorporated into new designs and
implementations. Sometimes, this reveals that some planned work is not actually
necessary, or that some part of the design or implementation can be eliminated,
because it is no longer required, or of reduced interest. This is, of course, part of
a good agile approach. Refinement-based or gradual approaches, where abstrac-
tions are made increasingly concrete, can be highly effective. An advantage is
that refinement can be stopped and restarted at any point. By connecting the
formal refinement process with software equivalents, high assurance prototypes
or demonstrators can be produced, with details left to be implemented at a later
date.

Lesson 4: Ensure Consistency. A fourth lesson relates to testing and verification.
By using a formal approach, it is easy to demonstrate consistency between the
design and the implementation. Formal properties can be derived, either manu-
ally or directly from a specification, that can then be used as part of a methodical
property-based testing approach, e.g. QuickCheck [CH00] or Hedgehog (https://
hackage.haskell.org/package/hedgehog). At IOHK, we manually translated the
required formal properties into property-based tests. The same properties can
be used to support formal proofs, to drive a model checker or some other formal
verification technique. It is not necessary to use multiple techniques to verify the

https://hackage.haskell.org/package/hedgehog
https://hackage.haskell.org/package/hedgehog
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same property, but this can give higher assurance. For example, a property can
be manually proved to be sound, an automated proof can be produced based
on this, and assertions can be introduced into the code. Since properties are
derived systematically from the specification, effort can be focused on the most
important issues.

Lesson 5: Maintain Progress. A final lesson relates to diversion of effort. By
maintaining focus on the end goal of the software development process, as
required by good agile development methodologies, we can avoid diverting effort
to short-term fixes that have no long-term benefit. For example, by prioritising
the properties that need to be proved or tested, we can avoid wasting effort and
so maintain progress towards the most important goals.

5.3 Flexible Formal Software Engineering

Our flexible software engineering methodology is made of up the following essen-
tial activities which together comprise a full development cycle. These may apply
at different levels of the classical software lifecycle (requirements, design, imple-
mentation, testing, deployment etc.).

Gather Informal Requirements. Start with a good understanding of the
problem, and describe the solution in an informal but unambiguous way.
Note however, that it is not always the case that all requirements can be
captured beforehand. It is permissible to add requirements iteratively (see
Iterate and Redesign below).

Isolate and Abstract. Consider how the functionality can be made modular.
Divide the problem into non-overlapping but interacting parts, figure out
what is required from each of them.

Generate Semi-Formal Specification. For each component, develop the
informal requirements into a semi-formal specification with an appropriate
choice of denotational or operational semantics.

Identify Properties. Identify important properties that the software should
have. State these precisely and formally. Prove the most important properties.
Other properties can be used either as the basis for formal verification, for
property-based testing, or for normal unit testing etc.

Build the Executable Specification. Produce an executable specification.
By writing our implementation in Haskell, it was possible to maintain a high
degree of consistency between the design and implementation.

Iterate. Work iteratively. Refine the system design to add more detail, veri-
fying that these details do not violate the required properties. By using an
executable specification approach, it is possible to ensure that a working pro-
totype is always available.

Redesign. Maintain design flexibility. Use suitable levels of abstraction (e.g. in
Haskell, type classes or polymorphic types), so that alternative implementa-
tions can be produced. Feed new or changing requirements into the design
and implementation process.
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Prove, Test and Verify. Apply the right technology (manual and automated
proof, automated testing, etc.) to obtain the required assurances in the correct
operation of the software.

Communicate. Hold regular meetings to discuss progress, focus design and
implementation effort, discuss technical issues, and ensure that the team is
aware of each other’s activities. Encourage all team members to express con-
cerns, suggest ideas, or to ask for technical help. Hold regular detailed tech-
nical seminars to discuss new techniques or to investigate specific issues in
detail. Make sure that results are communicated throughout the organisation
(it may be necessary to use different techniques for this – senior management
is unlikely to read detailed soundness proofs, for example) and that input is
taken.

By combining the best features of both agile and formal software development,
we can obtain significant advantages over either approach used independently.
Functional programming technology is, of course, critical to achieving this.
Functional programming naturally supports many lightweight formal methods,
including advanced type mechanisms such as dependent types, session types etc.
Higher-order functions provide excellent abstraction mechanisms, and enable
flexible design and implementation. Formal proofs are much easier to relate to
implementations in a functional style. High levels of abstraction mean that it
is easy to maintain consistency between the design and implementation. Prop-
erties are easy to relate to software, and there are good property-based testing
systems. Software is concise, can often be executed interactively, prototypes can
easily be produced and demonstrated. Effects can be isolated and contained
using well-understood structuring mechanisms. The semantic gap between spec-
ification and implementation languages is typically much smaller when using
functional languages.

Issue Agile Formal Flexible

Identify the requirements for the software Y? Y Y

Ensure that the software meets these requirements Y? Y Y

Provide usable prototypes rapidly Y Y? Y

Minimise the costs of development Y? N? Y

Ensure that code is high quality N Y Y

Ensure that software is easy to use N N N

Ensure that changes can be made easily Y N Y

Be easily applied without extensive training N N ?

In short, we have found that we can obtain major practical benefits from our
approach in terms of both the speed of development and the quality of code that
is produced.
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6 Related Work

There is a vast literature on software development, and an equally vast liter-
ature on formal methods. The potential for interaction between the two has
not gone unnoticed: the annual Formal Methods for Software Engineering con-
ference publishes a regular collection of the latest formal methods techniques
and suggests how they might be deployed in practice. Software engineering has
moved away from classical “Waterfall” development towards “Agile” develop-
ment. This means a move away from a rigid specification-design-implement-test-
debug-deploy cycle towards a more flexible approach where phases are intermin-
gled and a software development team can work in a less hierarchical way.

In many ways, combining the best of both approaches is more of a philoso-
phy. It reflects how actual software engineering has always been practiced, but
encourages better internal and external communication, earlier product release,
and ideally responsiveness. Continuous testing [AD14] using automated frame-
works is a key part of the corpus: no software should be committed without being
tested against the recognised test suite. Continuous integration, where changes
are continually applied to a master version, is also key to the success of an agile
approach, ensuring that fixes and improvements can quickly be made available
to end-users. In the most ambitious projects, this can result in daily, or even
more frequent, software releases.

“Lean” software development [PP03] is one of the more extreme forms of
agile development. Here, the focus is on strong product design and minimising
wasted effort. The goal is to produce a “Minimal Viable Product” as quickly
as possible. This requires very high levels of discipline: it is necessary to avoid
deviating from the most important goals, to avoid adding unnecessary features,
to test adequately but not excessively, and to quickly adapt to changing goals.

A noteworthy body of research is the work on Cleanroom Software Engineer-
ing [HLT94] from the 80–90s, an incremental engineering approach, which makes
use of specifications and refinements, and a sophisticated statistical model-based
testing approach.

What is less common is the recognition that functional programming tech-
niques can play a key part in agile software engineering. They are the glue
that holds together the flexible software engineering methodology that we
have described above, and that enables us to quickly incorporate appropriate
lightweight formal methods, while maintaining high levels of flexibility. By build-
ing on well-understood, malleable and abstract functional components, we can
quickly and easily refine designs, use existing components as part of a new design,
and the discipline that is imposed by strong type systems means that we can have
a high degree of confidence in the correctness of any software that is released.

Safety critical systems are the more traditional application area of formal
methods, as errors in software for these systems can have grave impact, poten-
tially causing accidents and hurting or even killing people. At the same time
there is a strong pressure to realize more and more functionality in software
which makes agile development approaches attractive for critical systems.
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One research project in critical systems was the openETCS9 project from
the rail domain. The project developed a toolchain for ETCS (European train
control system) which supports agile development combined with formal meth-
ods [openetcs-miv07]. Another research project which investigated this was the
Open-DO10 project from the avionics domain. In the hi-lite11 subproject, there
was considerable tool development for making the use of formal methods eas-
ier [hilite-L5.3], in particular by automating large parts of the formal proof effort.
Increased automation allows for more frequent changes by reducing the required
work on the formal model and proof part.

Even for interactive theorem provers, this now allows for proof-replay,
automated proof-finding [CK18] and counterexample detection [BN10]. There
have also been considerable formal verification efforts at the operating system
level [KEH+09]. The microkernel seL4 is both high-performance and extremely
thorough in the depth of its formal verification, which includes the compiler,
assembly code, and hardware. Moreover, it follows a similar iterative cycle of
prototyping, formal specification, verification, requirements adjustment, all the
while reflecting the changes in the actual implementation. The actual implemen-
tation, however, is manually derived from the prototype and specifications. This
is potentially a source of incongruety between the specification and implementa-
tion, which is different from our approach of the specification and implementation
being one in the same. These examples of formal specification approaches are
quite specific to their application domains.

Within the last few years, there have been calls to action to devise a method-
ology that combines agile and formal methods approaches in a general way
(see [Ghe18]), but the specifics of the methodology of producing such a piece
of software are not well-documented. The approach we present is universal. As
there is currently no standard or regulation for development of cryptocurren-
cies, there is more freedom in our domain. Regardless, the approaches do share
automation as a common topic.

7 Conclusions

This paper has described the approach to complex software engineering that has
been successfully deployed at IOHK for the construction of a new distributed
blockchain. The Cardano system is designed to support large-scale, verifiable
transactions in a decentralised way, without requiring the inefficient PoW con-
sensus mechanism that is used by e.g. BitCoin. The flexible formal software
development approach that we describe in this paper combines the speed and vis-
ibility advantages of agile software development with the correctness advantages
of formal methods development, while also delivering additional new advantages
in terms of the ease of design change. This approach codifies our own experience,

9 www.openetcs.org.
10 www.open-do.org.
11 http://www.open-do.org/projects/hi-lite/.

www.openetcs.org
http://www.open-do.org
http://www.open-do.org/projects/hi-lite/
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as well as that of others at the many companies that are using functional pro-
gramming and formal methods as part of an integrated software development
approach.

The key take-aways from our experience honing a software development
methodology that fuses formal and agile approaches in a flexible way are:

(i) it is imperative to maintain a disciplined and structured approach to pro-
totyping, implementation, verification, and testing, as the foundation of the
development (no ad-hoc solutions!)

(ii) maintaining transparecy (e.g. decision tracking), explainability (both exter-
nal and internal), clarity of requirements, and good communication during
the development process as well as the deployment cycle are key to the
success of our approach

(iii) if we faithfully adhere to these principles, we will be rewarded with the ben-
efits of both formal methods and the agile approach to engineering, which
means high-assurance software that is fast to deliver and amenable to chang-
ing requirements

7.1 Possible Improvements

We will continue to evolve our methodology, based on our experience in develop-
ing Cardano and future projects. Below, we list some concrete improvements we
will be pursuing. Firstly, in certain places, we failed to use the right abstractions
in our code. Refactoring the code to change properties on Haskell type classes
was time-consuming, for example. In hindsight, greater abstraction would have
allowed more flexibility and saved overall development time. Secondly, we could
and should have produced more prototypes and demonstrators. There was a
tendency for the team to hold back until software was correct rather than when
it was working, which could be perceived as a lack of progress. We could also
have achieved better visibility of our results both internally and externally (for
example, some documents could be hard to find, more blog posts could have
been written, more interviews given, etc.).

Thirdly, we produced our executable specification and tests manually from
the formal specification. It would have been more efficient and provided greater
confidence in their consistency if we had instead produced the executable speci-
fication and property-based tests directly from the formal specification. We are
not aware of suitably robust tooling that would allow us to do this, unfortunately,
but we would welcome any suggestions and future developments.
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Abstract. We present an algorithm for generating paths through a set
of mutually recursive functions. The algorithm is part of a tool for white-
box test-case generation. While in imperative programs there is a well
established notion of path depth, this is not the case in recursive pro-
grams. We define what we mean by path and path depth in these pro-
grams and propose an algorithm which generates all the static paths
up to a given depth. When the algorithm is applied to transformed iter-
ative programs, giving as a result tail-recursive functions, the defined
depth corresponds to the maximum number of times the loop condition
is evaluated. When applied to non-tail recursive functions, the meaning
is their maximum unfolding depth along the path, for each initial call
to the function. It can also be applied to hybrid programs where both
iteration and recursion are present.

Keywords: White-box testing · Static path · Recursion depth

1 Introduction

Testing is very important for increasing program reliability. Thorough testing
ideally exercises all the different situations described in the specification, and
all the instructions and conditions of the program under test, so that it would
have a high probability of finding bugs, if they are present in the code. There
is a general agreement that automatic tools can alleviate most of the tedious
and error prone activities related to testing. One of them is test-case generation
(TCG). Traditionally (see, for instance [1]), there are two TCG variants: black-
box TCG and white-box TCG. In the first one, test-cases are solely based on the
program specification, and in the second one, they are additionally based on a
particular reference implementation. Each one complements each other, so both
are needed if we aim at performing thorough testing.

White-box TCG is concerned with first defining a coverage criterion for the
Unit Under Test (UUT), and then generating a set of test-cases which, when
executed, will implement this criterion. A usual criterion is to require the test

Research paper. Partially funded by the Spanish Ministry of Science, Innovation and
Universities, under the grant TIN2017-86217-R.

c© Springer Nature Switzerland AG 2020
A. Byrski and J. Hughes (Eds.): TFP 2020, LNCS 12222, pp. 121–135, 2020.
https://doi.org/10.1007/978-3-030-57761-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57761-2_6&domain=pdf
http://orcid.org/0000-0001-5387-8931
http://orcid.org/0000-0002-8940-5543
https://doi.org/10.1007/978-3-030-57761-2_6


122 R. Peña and J. Sánchez-Hernández

suite to exercise all the statements or all the condition outcomes of the UUT. A
more complete criterion is to exercise all the execution paths through the UUT.
When there exist loops in the code, the number of paths is potentially infinite,
so a limit on the number of allowed iterations executed in each loop must be
established. This limit is usually referred to as the path depth. For instance,
depth-1 paths will be those that never execute the loop bodies; depth-2 paths
will execute each loop body at most once; and so on. Once the paths are gener-
ated, each one is defined by the sequence of decisions that the UUT takes when
executing that path. By collecting the conditions involved, and the expected
outcome of evaluating each one, a test-case for the path can be synthesised by
using for instance symbolic execution [2].

Functional programs do not contain loops, but use recursion instead. There is
no established criterion on what a path and its path depth mean in a recursive
program. Intuitively, a path should require a complete execution of the UUT
main function and it would involve a sequence of decisions taken by the UUT
along the execution. In a path, the UUT functions may be recursively invoked a
number of times, either directly or indirectly. So, multiple and mutual recursion
should be taken into account when defining the meaning of a path. By analogy
to the iterative case, in recursive programs the path depth should be related to
the number of invocations the UUT, or any of its auxiliary functions, undergo
in the path.

In this work, we define a UUT to be a collection of (potentially) mutually
recursive functions with a main, or top, visible one, which may invoke any of the
other ones. Then, we define a notion of path and of path depth for that UUT,
and present an algorithm for generating an exhaustive set of paths up to a given
depth.

This work has been developed in the context of our computer assisted val-
idation platform CAVI-ART [5,6]. The platform uses a functional language as
its Intermediate Representation (IR) to which both imperative and functional
programs are translated. Imperative loops are translated into a set of mutually
tail recursive functions and, if recursion is present in the input program, it is
preserved by the translation. In the end, only recursion remains in the IR. Given
a UUT, the platform automatically generates white-box paths, and synthesises a
test-case for each one, by using an SMT solver [7] which checks the satisfiability
of the conditions required by the path, and assigns appropriate values to the
involved variables.

In Fig. 1 we show a picture of the complete testing system. As the platform
is also intended for formal verification, the UUT visible function is endowed with
a formal precondition and postcondition. These are translated by the tool into
SMT constraints. In this way, the test cases generated by the tool, not only
satisfy the path constraints, but also the precondition ones. By requiring to only
satisfy the precondition constraints, the tool can also generate black-box test
cases. In our approach, the user fixes some sizes for the data types of the UUT
arguments (for instance, the range of the integers, the length of an array, the
cardinal of a tree, etc.), and the tool generates an exhaustive set of cases up to the
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Fig. 1. CAVI-ART testing tool

given size. The reason for fixing these sizes is that we seek for exhaustiveness
but also for getting a finite number of cases. Additionally, the validity of the
test cases is automatically checked by the tool, just by checking whether the
result returned by the UUT satisfies the postcondition constraints. So, the user
responsibilities are only to provide a precondition and a postcondition, to fix
sizes for the arguments and to choose a maximum depth for the white-box paths.
After that, the whole testing process—test case generation, test execution and
test validation—is automatically performed by the tool.

In principle, the IR language is not executable. In order to actually run the
tests, the tool provides a translation from the IR to Haskell (see the bottom part
of Fig. 1). The generic test driver is also written in this language. The translation
is straightforward since, as we have already said, the IR is in fact a functional
language.

2 Functional Intermediate Representation

Our intermediate representation is a first-order eager core functional language
which supports mutually recursive function definitions. In Fig. 2 we show its
abstract syntax. Notice that all expressions are flattened in the sense that all the
arguments in function and constructor applications, and also the case discrimi-
nants, are atoms. An additional feature is that IR programs are in let A-normal
form [4], and also in SSA1 form, i.e. all let bound variables in a nested sequence
of let expressions are distinct, and also different to the function arguments.

In Fig. 3 we show a Java version of the quicksort algorithm. This algorithm
is translated by the platform into the IR code shown in Fig. 4. As there is no
mutable state in the IR, the array updates of the Java version are simulated
by passing an array as an argument, both to the partition and qsort functions,

1 Static Single Assignment.
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a ::= c { constant }
| x { variable }

be ::= a { atomic expression }
| f ai { function/primitive operator application }
| 〈ai〉 { tuple construction }
| C ai { constructor application }

e ::= be { binding expression }
| let 〈xi :: τi〉 = be in e { sequential let. Left part of the binding can be a tuple }
| letfun defi in e { let for mutually recursive function definitions }
| case a of alt i[; → e] { case distinction with optional default branch }

tldef ::= define {ψ1} def {ψ2} { top level function definition with pre- and post-conditions }
def ::= f (xi :: τi) :: (yj :: τj) = e { function definition. Output results are named }
alt ::= C xi :: τi → e { case branch }
τ ::= α { type variable }

| T τi { type constructor application }

Fig. 2. CAVI-ART IR abstract syntax

public class Quick {
public static void quicksort (int [] v) {

int n = v.length;
qsort (v, 0, n-1);

}
public static int partition (int [] v, int a, int b) {

int i = a+1; int j = b; int piv = v[a];
while (i <= j) {

if (v[i] <= piv) {
i = i+1;

} else if (v[j] >= piv) {
j = j-1;

} else { // v[i] > piv && v[j] < piv
int temp = v[i]; v[i] = v[j]; v[j] = temp;
i = i+1; j = j-1;

}
}
int temp = v[a]; v[a] = v[j]; v[j] = temp;
return j;

}
public static void qsort (int [] v, int a, int b) {

if (a < b) {
int p = partition(v, a, b);
qsort(v, a, p-1);
qsort(v, p+1, b);

}
}

}

Fig. 3. A Java version of quicksort
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define quicksort (v::Array Int)::(res::Array Int) =
letfun

qsort (v::Array Int, a::Int, b::Int)::(res::Array Int) =
let b::Bool = a < b in
case b of

True -> f1 v a b
False -> v

f1 (v::Array Int, a::Int, b::Int)::(res::Array Int) =
let (p::Int, v1::Array Int) = partition v a b in
let p1::Int = p - 1 in
let v2::Array Int = qsort v1 a p1 in
let p2::Int = p + 1 in

qsort v2 p2 b
partition (v::Array Int, a::Int, b::Int)::(p::Int, res::Array Int) =

let i::Int = a + 1 in
let j::Int = b in
let piv::Int = get-array v a in

f2 v a piv i j
f2 (v::Array Int, a::Int, piv::Int, i::Int, j::Int)::(res::Array Int) =

let b::Bool = i <= j in
case b of

True -> let ei::Int = get-array v i in
let b2::Bool = ei <= piv in
case b2 of

True -> let i2::Int = i + 1 in
f2 v a piv i2 j

False -> let ej::Int = get-array v j in
let b3::Bool = ej >= piv in
case b3 of

True -> let j2::Int = j - 1 in
f2 v a piv i j2

False -> let temp::Int = get-array v i in
let ej::Int = get-array v j in
let v1::Array Int = set-array v i ej in
let v2::Array Int = set-array v1 j temp in
let i2::Int = i + 1 in
let j2::Int = j - 1 in

f2 v2 a piv i2 j2
False -> let temp::Int = get-array v a in

let ej::Int = get-array v j in
let v1::Array Int = set-array v a ej in
let v2::Array Int = set-array v1 j temp in

(j, v2)
in let n::Int = length v in

let n1::Int = n - 1 in
qsort v 0 n1

Fig. 4. CAVI-ART IR for function quicksort

and returning a different one as a result. The predefined function set-array2

simulates the assignments of the form v[i] = exp. Notice also that the while loop
has been translated into the tail-recursive function f2, and that the conditional
if statements are translated into case expressions. In the IR program, there
is also mutual recursion between the functions qsort and f1, being qsort non-
tail recursive and showing double recursion. The four mentioned functions are

2 set-array v i e builds a new array identical to v, except the i-th component which
is replaced by the value e. An assignment of the form v[i]=e in the source program
is translated to set-array v i e. This translation may have an impact on the exe-
cution time of the (translated to Haskell) IR version with respect to the Java one,
but not on the correctness of the algorithm.
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defined in a letfun expression within the top level visible function quicksort.
We will use this IR program as a running example of UUT along the paper,
since it illustrates some features we are interested in: mutual recursion, non-tail
recursion, and dealing with arrays.

We define a static path through a set of mutually recursive functions declared
together in a UUT, as a potential execution path starting at the top level func-
tion, and ending when this function produces a result. Not all the static paths
correspond to actual execution paths, since some static paths may be infeasible.
The detection of infeasible paths will be done in a subsequent phase by checking
the satisfiability of the set of boolean conditions defining the path.

We define the depth of a static path, as the maximum unfolding depth
of the UUT recursive functions when performing the actions implied by the
path. When all the UUT functions are tail recursive, this definition corresponds
to the number of times the loop condition is evaluated in imperative loops.
When there is at least one non-tail recursive function in the UUT, the depth
path is the depth of the call tree deployed during the path execution, considering
only the calls to the non-tail recursive function. A depth-1 path is one in which
each non-tail recursive function executes one of its base cases, i.e. an invocation
to them immediately returns without triggering further recursive invocations;
depth-2 ones correspond to executions in which at least one recursive function
has executed a recursive case, by generating one or more recursive calls, and
then these recursive calls have executed a base case; and so on.

For instance, there is one depth-1 path in function f2 of Fig. 4, namely the one
in which the condition of the first case expression is evaluated to false, i.e. the
condition i > j holds. This corresponds to an execution of the partition function
in the Java program of Fig. 3 in which the while body is not entered. There are
also three depth-2 paths in function f2, each one ending in a tail recursive call
to itself. These recursive calls then execute the depth-1 path.

In the mutually recursive set formed by qsort and f1, there is one depth-1
path, namely the one in which the case condition of qsort is evaluated to false.
There are also four depth-2 paths. In all of them, the case condition of qsort is
evaluated to true, and the path continues by calling to partition, then to qsort,
and then to qsort a second time. The two latter calls execute the only qsort
depth-1 path, and the call to partition may execute either its depth-1 path, or
one of its three depth-2 paths. However, only the qsort depth-1 path, and the
qsort depth-2 path in which f2 executes any of its depth-2 paths, are feasible.
The first one corresponds to an empty array segment as input, and the other
three correspond to an array segment having 2 or 3 elements. The infeasible path
(the depth-2 path in qsort combined with the depth-1 path in f2) forces the array
segment to have at least two elements in qsort (i.e. a < b), and to have at most
one element in partition (i.e. i = a + 1, j = b, i > j), which is contradictory.

Given a UUT written in the IR language, and a maximum depth fixed by
the user, our tool generates all the static paths having a depth smaller than or
equal to this maximum depth.
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3 Two-Level Representation and Assumed Properties

Generating paths in recursive programs cannot be regarded as just a graph prob-
lem, as it is the case in iterative programs. In the latter, the control flow graph
(CFG) can be depicted as a directed planar graph. Loops become the strongly
connected components (SCC) of those graphs. Computing paths is then a com-
bination of computing the graph SCCs, then collapsing them into single nodes,
and then computing paths in the resulting DAG (directed acyclic graph), which
is an easy problem. The path depth corresponds to the number of iterations the
path undergoes in each SCC.

Recursive programs cannot be depicted as planar graphs, unless recursive
calls are represented as non-expanded nodes in those graphs. But, as soon as
recursive calls are unfolded and replaced by their bodies, the graph representa-
tion is not possible anymore. A different number of unfoldings would result in
different graphs. When iterative programs are translated into recursive ones, all
the resulting functions are tail recursive, as we have seen in the partition exam-
ple above. But, as long as there are non-tail recursive functions in the source
program, analyzing the CFG in order to extract the paths is not enough. One
may wonder why not to translate non-tail recursive programs into tail-recursive
ones by using the well-known continuation passing style translation of functional
programs (see, for example [4]). By doing that, the non-tail recursive functions
are somehow ‘hidden’ in the continuation and will be unfolded when the contin-
uation is applied. So, it seems rather difficult to extract the paths from a static
code which may undergo a variable number of unfoldings. Also, the resulting
program is higher-order, which makes the approach more difficult.

We follow here a different strategy: to propose a graph representation of
recursive programs at two different levels:

– One level consists of the CFG of each function body. These are DAGs in
which the internal calls are represented as non-expanded nodes.

– The other level is the call-graph (CG) of the whole function collection. An
edge (f, g) here represents one or more calls from function f to function g.
An SCC in this graph represents a loop of functions calling each other in a
mutually recursive way.

These two kinds of representations are not arbitrary directed graphs. By knowing
that they come from code written in a programming language, we can assume
them to satisfy the following properties:

1. Each SCC in the CG has at least one entry node. This is because we assume
each function in the CG to be reachable from the top one. Otherwise, it would
represent dead code. When the UUT is the result of transforming an iterative
program, each SCC has a unique entry node. This holds because iterative
loops in conventional programming languages have a unique entry point.
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Fig. 5. Illustration of Proposition 1.

2. On the other hand, a SCC in the CG may have more than one exit to nodes
external to it. This is because a loop or a function may abruptly terminate by
sentences such as break, continue, return, or an exception, which interrupt
the normal flow. Also, a function belonging to an SCC may issue a call to a
function external to it.

3. In a SCC, all paths starting at an entry node, not exiting the SCC, and not
infinitely iterating inside a nested SCC, must eventually reach again that
entry node. We justify this statement by Propositon 1 below.

4. Each function CFG has a single source node and a single sink node. Each
internal node is reachable from the source and the sink is reachable from
each internal node. This is because we assume no dead code, (statically)
terminating loops, and also that recursive functions have at least a base case.

A SCC may contain nested SCCs. Our path generation algorithm will not
infinitely loop inside any SCC. In order to control the number of iterations inside
a SCC, we will count the number of visits the path pays to a single node per
SCC. This will be one of its entry nodes. So, it is important to prove that, after
visiting all the internal SCCs, a path will reach again the entry node of the
external SCC.

Proposition 1. Given a SCC G = (V,E), subgraph of a directed graph, and
an entry vertex v ∈ V , all paths starting at v, not exiting V , and not infinitely
looping inside any nested SCC, must go again through v.

Proof. By definition of SCC, V is a maximal set of vertices such that ∀v, w ∈ V
there exist paths v � w and w � v not leaving V . G may contain proper
subgraphs which are themselves SCCs. Let us assume that we remove v from
V and all its incoming and outgoing edges. In the resulting graph, we compute
its internal SCCs, and collapse them to single vertices. Let G′ = (V ′, E′) be the
resulting DAG. Then, we build the following graph G′′ = (V ′′, E′′), as follows:

– V ′′ = V ∪ {v′}, where v′ is a fresh vertex aiming at being a duplicate of v.
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– E′′ is built from E′, by adding all the outgoing edges (v, u) ∈ E from v to
vertices u ∈ V ′ but, for each incoming edge (u, v) ∈ E, we add instead an
edge (u, v′) to the duplicate v′ of v.

It is clear the G′′ is a DAG. Moreover, all paths in G′′ starting at v can be
extended to paths ending up in v′. This is because G is a SCC and so there exist
paths from every vertex of V ′ to v. The only paths not reaching v′ are those
exiting G′′ or iterating infinitely often in one internal SCC of G. In Fig 5, we
illustrate the above construction with an example. ��

4 Path Generation Algorithm

As said above, a UUT consists of a top function—we will call it top—and a set
of internal functions defined in a letfun expression within it. Function top may
call any of them, but not the other way around. The path generation algorithm
consists of the following phases:

1. Generating the CFG of each function.
2. Generating the template paths (TP) of each function. These are all the paths

from its source to its sink.
3. Generating the UUT CG.
4. Computing the CG SCCs.
5. Computing the paths by expanding the TP.

The essential idea of phase 5 is to continuously replace nodes representing
calls to functions by all the paths across the bodies of those functions. In order
to guarantee termination, an additional control is needed on the unfolding level
of some particular functions.

4.1 Generating the CFGs and the TP

We assume a fresh name supplier so that every node of any graph is given an
identifying key which is unique in the whole set of graphs. The CFG of each
function is a DAG having five types of nodes:

Source. This is the unique entry point of the function. It may have some code
associated to it.

Block. This is either a basic block node—having associated sequential code
consisting of a sequence of let bindings not containing calls, and ending in an
edge to another node—, or it is a conditional block node having as associated
code a case expression. In this case, the node has outgoing edges to more
than one node.

Call g. Node exactly containing a call to a function, where g is the key of the
called function source node.
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Fig. 6. Control flow graphs for functions top, qsort, f1, partition, and f2.

Return. In our tool, there is one such a node at the end of each execution path.
Their next node is always the sink. We associate some code to these nodes
related to returning to the caller the result of the function. For the purpose
of this paper, it will be dealt with as a block node.

Sink. Node with no associated code representing the unique sink of the function.

From the UUT IR, the algorithm computes the CFG of each function by using
conventional techniques such as those one can find in compilers. The resulting
graphs are DAGs. In Fig. 6 we show the CFGs computed for all the functions
of the quicksort UUT. Uncircled nodes are source, block or return nodes; circled
nodes are calls; and the diamond node is the sink. For convenience, we only show
the keys associated to the nodes.
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Fig. 7. Call graph and SCCs for function quicksort.

Then, a simple recursive algorithm computes all the paths from the source
to the sink in each DAG. By convention, the sink node is not included in any
path. These are called template paths (TP). The algorithm will return a list of
TP associated to each function. We call them template because they may contain
call nodes which should be later expanded in order to compute the final paths.
A final path does contain neither call nodes, nor sink ones. It just consists of a
sequence of source, block and return nodes.

4.2 Generating the CG and Computing the SCCs

From the TP, the next phase of the algorithm generates the CG. This one consists
only of call nodes. An edge (f, g) represents one or more calls from function f
to function g. We include in the graph a node with an initial call to the top
function. In Fig. 7 we show the CG computed by this algorithm for our running
example.

Now, all the SCCs of the CG are computed, included the nested ones. This
phase uses standard algorithms. Thanks to the restrictions assumed in Sect. 3,
each SCC has at least an entry point. Moreover, by Proposition 1, all the paths
not exiting the SCC must pass again through that entry point. So, these entry
points provide us a convenient way for controlling the depth of the paths: each
time we unfold an entry point corresponding to a call to a function f , the sub-
sequent calls to f in the unfolded path represent a depth one unit smaller than
the depth of the unfolded f .

Consequently, our algorithm computes an entry point for each SCC and
returns the set of them. In Fig. 7 we show the SCCs computed for quicksort
and the entry points computed.
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expand ds tp [] = [[]]

expand ds tp ((Source,k): pth) = map ((Source,k):) $ expand ds tp pth

expand ds tp ((Block,k): pth) = map ((Block,k):) $ expand ds tp pth

expand ds tp ((RetNode,k): pth) = map ((RetNode,k):) $ expand ds tp pth

expand ds tp ((CallNode k,_):pth) = concatMap (expand ds tp)

[p1 ++ pth | p1 <- kPaths]

where kPaths = map (map $ annotate ds) (tp ! k)

expand ds tp ((EntryCall k d,_):pth)

htapsihtevomer--][=0==d|

| otherwise = [p1 ++ p2 | p1 <- concatMap (expand ds’ tp) kPaths,

p2 <- expand ds tp pth]

where kPaths = map (map $ annotate ds’) (tp ! k)

ds’ = insert k (d - 1) ds -- decrease k’s recursion depth

annotate :: Map Key Int -> (Node,Key) -> (Node,Key)

annotate ds (CallNode f,i)

| member f ds = (EntryCall f (ds ! f),i)

annotate ds other = other

Fig. 8. The expand algorithm.

4.3 Computing the Paths

The algorithm starts by creating a map from the SCC’s entry points to their
initial depth. This is the maximum depth established by the user for the intended
white-box paths. Then, the recursive algorithm expand is invoked. It is written
in Haskell, and its signature is the following:

expand :: Map Key Int -> TemplatePaths -> [(Node,Key)] -> [[(Node,Key)]]

It receives as arguments the depth map, the template paths, and a single
path to be expanded. It traverses the path from left to right and expands it
by systematically replacing call nodes by their template paths. So, in general,
the expansion of a path produces a list of paths as a result. Initially, expand is
invoked with a path consisting of a single call node Call top. It processes a path
node at a time and invokes itself recursively on the rest of the path.

Its complete code is shown in Fig. 8. Nodes of type Source, Block, and Return
are simply bypassed, and the expansion continues on the remaining path. Call
nodes are replaced by their template paths but, prior to that, the possible calls
to the SCC’s entry points are annotated with their current remaining depth
registered in the depth map. When a node corresponding to an entry node calling
to function f is expanded, the expansion of its template paths is done with a
depth for f one unit smaller than the current depth for that entry. However, the
expansion of the remaining path is done with the original path depth, as they
may occur new calls to f in that path, and these should be expanded by starting
at the initial path depth. If an entry node is found with its current depth being
zero, then the complete path is removed.
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path 1 = [0,12,18,14,30,31]

path 2 = [0,12,18,13,9,1,2,15,8,29,32,10,12,18,
14,30,11,12,18,14,30,36,37,31]

path 3 = [0,12,18,13,9,1,2,15,3,16,4,2,15,8,29,33,32,
10,12,18,14,30,11,12,18,14,30,36,37,31]

path 4 = [0,12,18,13,9,1,2,15,3,16,5,17,6,2,15,8,29,34,
32,10,12,18,14,30,11,12,18,14,30,36,37,31]

path 5 = [0,12,18,13,9,1,2,15,3,16,5,17,7,2,15,8,29,35,
32,10,12,18,14,30,11,12,18,14,30,36,37,31]

Fig. 9. The 5 paths of quicksort up to depth 2.

In Fig. 9 we show the 5 paths generated by the algorithm for the quicksort
UUT when the initial depth is set to 2. We have depicted them graphically
on the left part of the figure as the call tree deployed by each path. Notice
that, by setting the depth to 2, also the paths of depth 1 are generated (in this
example, there is only one such path). Moreover, all the combinatorics arising
when varying the depths of the different SCCs from 1 to the maximum depth,
and building the cartesian product of the corresponding paths, are also achieved
by our expansion algorithm. For that reason, setting the maximum depth to 3
in this example results in a combinatorial explosion and produces 2 549 paths
(see Fig. 10).

5 Experiments

We have applied the above algorithm to a collection of UUTs including purely
functional algorithms such as the insertion of a key in an AVL tree, or computing
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the union of two leftist heaps; purely iterative ones, such as inserting and search-
ing a value in a sorted array, or the Dutch National Flag problem [3]; and to
hybrid ones, such as our quicksort running example, which includes an iterative
version of partition.

In Fig. 10 we show the results of these experiments. The number of static
white box paths computed by our algorithm at several depths is shown in the
first three columns. The column T/NT specifies whether all functions in the
UUT are tail-recursive (T), or there exists some non-tail recursive (NT) ones.
The column S/D tells us whether all functions are simple recursive or at least
one is double recursive. The last column shows the number of functions included
in the UUT, excluding the top visible one. We make note that the number of
paths grows very quickly for units having more than one function.

UUT depth=1 depth=2 depth=3 T/NT S/D #f
quicksort 1 5 2 549 NT D 4
binSearch 1 3 7 T S 1
DutchNationalFlag 1 4 13 T S 1
linearSearchArray 2 4 6 T S 1
insertArray 2 4 6 T S 1
insertList 2 4 6 NT S 1
deleteList 3 6 9 NT S 1
searchBST 2 6 14 T S 1
insertBST 2 6 14 NT S 1
searchAVL 2 6 14 T S 1
insertAVL 2 10 306 (*) NT S 6
searchRedBlack 2 6 14 T S 1
unionLeftist 2 34 20 202 NT D 3
insertLeftist 2 34 20 202 NT D 4

(*) It runs out of memory after 40 minutes running.

Fig. 10. White-box paths in a suit of UUTs

We have confirmed in the experiments that the notion of path depth defined
here coincides both with the number of iterations in loops incremented by 1, and
with the unfolding depth of the call tree in recursive functions. A single algorithm
suffices, then, to generate exhaustive white-box paths in iterative, recursive, and
hybrid programs.

6 Conclusions

We have not found papers in the literature on the specific subject of white-
box path generation in recursive programs. In a comprehensive study conducted
in 2014 [8] on white-box and black-box test-case generation, and surveying 85
papers published in journals between 2004 and 2013, there is no mention to this
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problem. The papers on white-box paths are mainly devoted to how to generate
concrete values satisfying a particular path, or to compare the path coverage of
a suit of test-cases generated by using a variety of techniques. But, consistently,
all of them assume that paths are directly obtained from the program control
flow graph. That is, they assume an iterative unit under test.

We believe that the approach presented here is simple enough to be imple-
mented in a practical tool and it can deal with all kinds of recursive programs:
simple and multiple recursive, tail and non-tail recursive, and directly and mutu-
ally recursive. It is appropriate for unit white-box testing, and could be easily
adapted to bottom-up integration testing. For that purpose, the UUT must dis-
tinguish between the externally called functions and the ones belonging to the
UUT (for instance, by declaring the former in an import clause). Then, the
external functions would simply not be expanded by the algorithm.
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Abstract. We present a proof-assistant-based formalisation of a subset
of Erlang, intended to serve as a base for proving refactorings correct.
After discussing how we reused concepts from related work, we show the
syntax and semantics of our formal description, including the abstrac-
tions involved (e.g. the concept of a closure). We also present essential
properties of the formalisation (e.g. determinism) along with the sum-
mary of their machine-checked proofs. Finally, we prove expression pat-
tern equivalences which can be interpreted as simple local refactorings.

Keywords: Erlang formalisation · Formal semantics ·
Machine-checked formalisation · Operational semantics · Term rewrite
system · Coq

1 Introduction

There are a number of language processors, development and refactoring tools for
mainstream languages, but most of these tools are not theoretically well-founded:
they lack a mathematically precise description of what they do to the source
code. In particular, refactoring tools are expected to change programs without
affecting their behaviour, but in practice, this property is typically verified by
regression testing alone. Higher assurance can be achieved by making a formal
argument – a proof – about this property, but neither programming languages
nor program transformations are easily formalised.

When arguing about behaviour-preservation of program refactoring, we argue
about program semantics. To be able to do this in a precise manner, we need
a formal, mathematical definition of the semantics in question, on which to
base formal verification. Unfortunately, most programming languages lack fully
formal definitions, which makes it challenging to deal with them in formal ways.

Erlang, similarly to its younger siblings like Elixir and LFE, is having its
renaissance in implementing instant messaging, e-commerce and fintech. Exten-
sive code bases therefore need to be developed and maintained in these lan-
guages, which in turn requires refactoring support. Our work aims to improve
trustworthiness of Erlang refactorings via formal verification, and in particular
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we formalise Core Erlang, which is not only a subset of Erlang, but also the target
for translation of Erlang and Elixir in the compiler front-end. The formalisation
of Core Erlang can also be seen as a stepping stone toward a definition for the
entire Erlang language.

This paper presents the Coq [19] formalisation of a big-step semantics for a
subset of sequential Core Erlang. In building this we rely not only on the language
specification and the reference implementation, but also on some earlier work on
semantics. Using this we made a definition of a semantics that can be properly
embedded in Coq, and, on the basis of this, we also proved some basic properties
of the semantics and some simple program equivalences. The main contributions
of this paper are:

1. The definition of a formal semantics for a sequential subset of Erlang (Core
Erlang), based partly on existing formalisations.

2. An implementation for this semantics in the Coq Proof Assistant.
3. Theorems that formalise a number of properties of this formalisation, e.g.

determinism, with their machine-checked proofs.
4. Results on program evaluation and equivalence verification using the seman-

tics definition, all formalised in Coq.

The rest of the paper is structured as follows. In Sect. 2 we review the exist-
ing formalisations of Core Erlang and Erlang, and compare them in order to
help understand the construction of our formal semantics. In Sect. 3 we describe
the proposed formal description, including abstractions, syntax, and semantics,
while in Sect. 4 we describe a number of applications of the semantics. Section 5
discusses future work and concludes.

2 Related Work

Although there have already been a number of attempts to build a fully-featured
formal definition of the Erlang programming language, the existing definitions
show varying language coverage, and only some of them, covering mostly the
concurrent part of Core Erlang or Erlang, are implemented in a machine-checked
proof system. This alone would provide a solid motivation for the work presented
in this paper, but our ultimate goal is to prove refactoring-related theorems, such
as program equivalences, in the Coq Proof Assistant, based on this semantics.

We have reviewed the extensive related work on formalisations of both
Erlang [6,7,9,18] and Core Erlang [5,8,11–13,15,16], incorporating ideas from
these sources as appropriate.

The vast majority of related work on Erlang formalisations presents small-
step operational semantics. In particular, one of our former project members
has already defined most elements of sequential Erlang in the K specification
language [9]. We could reformalise this small-step semantics in Coq, but for the
proofs to be carried out in the proof assistant, it is too fine-grained. As Owens
and others point out, (functional) big-step semantics is a good compromise in
terms of amount of detail and ease of use [17]; furthermore, our definition of
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equivalence does not rely on intermediate execution steps. Thus, our current
approach is to define an inductive relational big-step semantics for the language,
and down the road we may derive its computable function.

Most papers addressing the formal definition of Erlang focus on the concur-
rent part of the language, including process management and communication
primitives, which is not relevant to our current formalisation goals. Harrison’s
formalisation of CoErl [8] concentrates on how communication works, and in
particular how mailboxes are processed.

Although the papers dealing with the sequential parts tend to present differ-
ent approaches to defining the semantics, the elements of the language covered
and the syntax used to describe them are very similar; there are, however, some
minor differences. Some definitions model the language very closely, whilst oth-
ers abstract away particular aspects; for instance, unlike the work of Neuhäußer
et al. [15], the semantics of Lanese et al. [11] describes function applications
only for named functions. There is another notable difference in the existing
formalisations from the syntactic point of view: some define values as a subclass
of expressions by representing them as a distinct syntactic category [6,7,15,18],
while others define values as “ground patterns” [11–13,16], that is as a subset
of patterns. Both approaches have their advantages and disadvantages, and we
discuss this question in more detail in Sect. 3.

We principally used the work by Lanese et al. on defining reversible seman-
tics for Erlang [11–13,16], by defining a language “basically equivalent to a
subset of Core Erlang” [16]. Although they do not take Core Erlang functions
and their closures into consideration (except for top-level functions), which we
needed to define from scratch, their work proved to be a good starting point for
defining a big-step operational semantics. In addition, we took the Core Erlang
language specification [4] and the Erlang/OTP compiler for Core Erlang as ref-
erence points for understanding the basic abstractions of the language in more
detail. When defining function applications, we took some ideas from a paper
embedding Core Erlang into Prolog [5], and when tackling match expressions,
the big-step semantics for FMON [3] proved to be useful. Fredlund’s fundamen-
tal work [6] was very influential, but his treatment of Erlang formal semantics
mainly discusses concurrency.

There were some abstractions missing in almost all papers (e.g. the let
binding with multiple variables, letrec, map expressions), for which we had to
rely on the informal definitions described in the language specification [4] and
the Erlang/OTP compiler. Also, in most of the papers, the global environment is
modified at step of the execution; in contrast, our semantics is less fine-grained as
side-effects have not been implemented yet. Unfortunately, the official language
specification document was written in 2004, and there were some new features
(e.g. the map data type) introduced to Core Erlang since then. These features
do not have an informal description either; however, we took the Erlang/OTP
compiler as the reference implementation and build the formalisation on that.

There is a considerable body of work on formalisations of other sequential
languages, both functional, as is the case of CakeML [10], and imperative, as
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in CompCert [14], and indeed the trend to formalising programming language
metatheory has been systematised in the POPLmark challenge [2].

3 Formal Semantics of Core Erlang

Here we present our formal definition of Core Erlang formalised in Coq. Through-
out this section, we will frequently quote the Coq definition; in some cases, we use
the Coq syntax and quote literally, but in case of the semantic rules, we turned
the consecutive implications into inference rule notation for better readability.
The Coq formalisation is available on Github [1].

3.1 Syntax

This section gives a brief overview of the syntax in our formalisation.

Fig. 1. Syntax of literals Fig. 2. Syntax of patterns

The syntax of literals and patterns (Figs. 1 and 2) is based on the papers
mentioned in Sect. 2.

For the definition of the syntax of expressions, we need an auxiliary type,
which represents function identifiers. In Core Erlang these are pairs of function
names and arities (number of arguments). Note that the language allows the
overloading of function names as long as it is done with different arities.

Definition FunctionIdentifier : Type := string × nat.

With the help of this type alias and the previous definitions, we can describe
the syntax of expressions (Fig. 3).

As it can be seen, we only include atoms and integers as base type literals
in the formalisation. These are representatives of built in data types in the
language, and other types (such as floats and binaries) can be added in the
future. As mentioned in Sect. 2, our expression syntax is very similar to the
existing definitions found in the related work. The main abstractions are based
on Fredlund and Vidal’s work [6,7,18] and the additional expressions (e.g. let,
letrec, apply, call) on the Core Erlang specification [4] as well as work by
Lanese, Neäuhußer, Nishida and their co-authors [11–13,15,16].

Moreover, in our formalisation, we included the map type, primitive opera-
tions and function calls are handled alike, and in addition, the ELet and ELetrec
statements handle multiple simultaneous bindings.
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Fig. 3. Syntax of expressions

Values. In Core Erlang, literals, lists, tuples, maps, and closures can be values,
i.e. results of the evaluation of other expressions. We define values as a separate
syntactic category and also include function closures in the definition. Values
should be seen as a semantic domain, to which expressions are evaluated (see
Fig. 4). This distinction of values allows the semantics to be defined as a big-step
relation with a codomain of semantic objects. This approach creates duplication
in the syntax, since expression syntax is not reused, but it substantially simplifies
building proofs of theorems about values.

Fig. 4. Syntax of values

In the upcoming sections, we will use the following syntax abbreviations:
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tt := VLiteral (Atom “true”)
ff := VLiteral (Atom “false”)

We now discuss why we this particular approach. As noted in Sect. 2, other
approaches are possible: either they are related to patterns (in the work of Lanese
et al. [11–13,16]) or to expressions, as in the Erlang formalisations and in the
work of Neuhäußer et al. [6,7,15,18]. Moreover, there are two main approach to
define the aforementioned relation of values and expressions or patterns:

– Values are not a distinct syntactic category, so they are defined with an
explicit subset relation;

– Values are syntactically distinct, and there is no explicit subset relation
between values and expressions or patterns [6,7,15,18].

When values are not defined as a distinct syntactic set (or as a semantic
domain), a subset relation has to be defined that tells whether an expression
represents a value. In Coq, this subset relation is defined by a judgment on
expressions, but this would require a proof every time an expression is handled
as a value: the elements of a subset are defined by a pair, i.e. the expression itself
and a proof that the expression is a value. While this is a feasible approach, it
generates lots of unnecessary trivial statements to prove in the dynamic seman-
tics: instead of using a list of values, a list of expressions has to be used, for which
proofs must be given about the head and tail being values (see the example in
Sect. 3.2 for more details about list evaluation). In addition, the main issue with
these approaches is that values do not always form a proper subset of either
patterns or expressions [4]: when lambda functions and function identifiers (sig-
natures) are considered, values must include closures (i.e. the normal form of
function expressions), which are not included in the expression syntax.

We chose to relate values to expressions, because semantically expressions
are evaluated to values and not patterns. In particular, we reused the constructs
in the expression syntax in our value definition, and we also included closures,
rather than functions as in the work of Neuhäußer et al. [15].

3.2 Semantics

We define a big-step operational semantics for the Core Erlang syntax described
in the previous section. In order to do so, we need to define environment types to
be included in the evaluation configuration. In particular, we define environments
which hold values of variable symbols and function identifiers, and separately we
define closure environments to store closure-local context.

Environment. The variable environment stores the bindings made with pat-
tern matching in parameter passing as well as in let, letrec, case (and
try) expressions. Note that the bindings may include both variable names and
function identifiers, with the latter being associated with function expressions in
normal form (closures). In addition, there are top-level functions in the language,
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and they too are stored in this environment, similarly to those defined with the
letrec statement.

Top-level, global definitions could be stored in a separate environment in a
separate configuration cell, but we decided to handle all bindings in one environ-
ment, because this separation would cause a lot of duplication in the semantic
rules and in the actual Coq implementation. Therefore, there is one union type to
construct a single environment for function identifiers and variables, both local
and global. It is worth mentioning that in our case the environment always stores
values since Core Erlang evaluation is strict, i.e. an expression first evaluates to
some value, then a variable can be bound to this value.

We define the environment in the following way:

Definition Environment : Type := list ((Var + FunctionIdentifier) × Value).

We denote this mapping by Γ in what follows, whilst ∅ is used to denote
the empty environment. We also define a number of helper functions to manage
environments, which will be used in formal proofs below. For the sake of simplic-
ity, we omit the actual Coq definitions of these operations and rather provide a
short summary of their effect.

– get value Γ key : Returns the value associated with key in Γ . In the following
sections it will be denoted by Γ (key).

– insert value Γ key value: Inserts the (key,value) pair into Γ . If this key is
already included, it will replace the original binding with the new one (accord-
ing to the Core Erlang specification [4], Sect. 6). The next three function is
implemented with this replacing insertion.

– add bindings bindings Γ : Appends to Γ the variable-value pairs given in
bindings.

– append vars to env varlist valuelist Γ : It is used for let statements and
adds the bindings (variables in varlist to values in valuelist) to Γ .

– append funs to env funsiglist param-bodylist Γ : Appends function identifier-
closure pairs to Γ . These closure values are assembled from param-bodylist
which contains the parameter lists and body expressions.

Closure Environment. In Core Erlang, function expressions evaluate to clo-
sures. Closures have to be modeled in the semantics carefully in order to capture
the bindings in the context of the closure properly. The following Core Erlang
program shows an example where we need to explicitly store a binding context
to closures:

let X = 42 in
let Y = fun() -> X in

let X = 5 in
apply Y()
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The semantics needs to make sure that we apply static binding here: the
function Y has to return 42 rather than 5. This requires the Y ’s context to
be stored along with its body, which is done by coupling them into a function
closure.

When evaluating a function expression a closure is created. This value is
a copy of the current environment, an expression (the function body), and a
variable list (the parameters of the function). The mentioned environment could
be encoded with the VClosure constructor in the Value inductive type using the
actual environment (see Fig. 4), however, this cannot be used when the function
is recursive. Here is an example:

In Core Erlang, letrec allows definition of recursive functions, so the body
of the ′x′/0 must be evaluated in an environment which stores ′x′/0 mapped to a
closure. But this closure contains the environment in which the body expression
must be evaluated and that is the same environment we are trying to define. So
the this is a recursively defined structure in embedded closures in the environ-
ment where the recursion has no base case. Here is the problem visualized (we
denote apply ′x′/0() with body):

{′x′/0 : VClosure {′x′/0 : VClosure {′x′/0 : ...} [] body} [] body}
In Coq such constructs or functions cannot be computed without using a

clock or fuel [17] which ensures termination. Instead of this we can use the step-
by-step unfolding of the environment. This means that, while using the big-step
semantics, the environment of the next proving step will be constructed by the
current step.

We could use a simple additional attribute in the closure values which marks
that the closure is recursive, then it is enough to store the non-recursive part of
the environment in the closure. However, if multiple functions are defined at a
time and they can potentially apply one another, they do not store information
(parameter lists and body expressions) about the other functions. Therefore, we
need another approach.

We do not make any syntactic changes to the function body, but we solve
this issue by introducing the concept of closure environments. The idea is that
the name of the function (variable name or function identifier) is mapped to the
application environment (this way, it can be used as a reference). It is enough
to encode the function’s name with the VClosure constructor. This closure envi-
ronment can only be used together with the use of the environment and items
cannot be deleted from it.

Definition Closures : Type := list (FunctionIdentifier × Environment).

All in all, closures will ensure that the functions will be evaluated in the right
environments. We also describe the formal evaluation proofs of the examples
above in Sect. 4.2. There are two ways of using their evaluation environment (ref
attribute of Environment + FunctionIdentifier type):
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– Either using the concrete environment from the closure value directly if ref
is from the type Environment ;

– Or using the reference and the closure environment to get the evaluation
environment when the type of ref is FunctionIdentifier.

In the next sections, we denote this function-environment mapping with Δ,
and ∅ denotes the empty closure environment. Similarly to ordinary environ-
ments, closure environments are managed with a number of simple helper func-
tions; like before, we omit the formal definition of these and provide an informa-
tive summary instead.

– get env key Δ: Returns the environment associated with key in Δ if key is a
FunctionIdentifier. If key is an Environment, the function simply returns it.
This function is implemented with the help of the next function.

– get env from closure key Δ: Returns the environment associated with key.
If the key is not present in the Δ, it returns ∅.

– set closure Δ key Γ : Adds (key, Γ ) pair to Δ. If key exists in Δ, its value
will be replaced. Used in the next function.

– append funs to closure fnames Δ Γ : Inserts a (funidi, Γ ) binding into Δ for
every funidi function identifier in fnames.

Dynamic Semantics. The presented semantics, theorems, tests and proofs are
available in Coq on the project’s Github repository [1].

With the language syntax and the execution environment defined, we are
ready to define a big-step semantics for Core Erlang. The operational semantics
is denoted by

|Γ,Δ, e| e−→ v ::= eval expr Γ Δ e v

where eval expr is the semantic relation in Fig. 5. This means that e Expression
evaluates to v Value in the environment Γ and closure environment Δ. We reused
length, combine, nth and In from Coq’s built-ins [19] in the following definitions.

Prior to presenting the rules of the operational semantics, we define a helper
for pointwise evaluation of multiple independent expressions: eval all states that
a list of expressions evaluates to a list of values.

eval all Γ Δ exps vals :=
length exps = length vals =⇒
(∀ (exp : Expression), (val : Value),

In (exp, val) (combine exps vals) =⇒
|Γ,Δ, exp| e−→ val)

With the help of this proposition, we will be able to define the semantics of
function calls, tuples, and expressions of other kinds in a more readable way.

There are two other auxiliary definition which will simplify the main defini-
tion:
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– match clause (v : Value) (cs : list Clause) (i : nat) tries to match the ith
pattern given in the list of clauses (cs) with the value v. The result is optional;
if the ith clause does not match the value, it returns Coq’s built-in None
value while the matching has been successful, it returns the guard and body
expressions with the pattern variable-value bindings from the ith clause.

– The no previous match property states that the clause selection cannot be
successful up to the ith clause:

no previous match i Δ Γ cs v :=
∀j : nat, j < i =⇒ (∀ (gg, ee : Expression), (bb : list (Var × Value)),

match clause v cs j = Some (gg, ee, bb) =⇒
(|add bindings bb Γ,Δ, gg | e−→ ff))

The formal definition of the proposed operational semantics for Core Erlang
is presented in Fig. 5. This figure presents the actual Coq definition, but the
inductive cases are formatted as inference rules. In the next paragraphs, we
provide short explanations of the less trivial rules.

– Rule 3.7: At first, the case expression e must be evaluated to some v value.
Then this v must match to the pattern (match clause function) of the spec-
ified ith clause. This match provides the guard, the body expressions of the
clause and also the pattern variable binding list. The guard must be evaluated
to tt in the extended environment with the result of the pattern matching (the
binding list mentioned before). The no previous match states, that for every
clause before the ith one the pattern matching cannot succeed or the guard
expression evaluates in the extended environment to ff. Thereafter the eval-
uation of the body expression can continue in the above mentioned extended
environment.

– Rule 3.8: At first, the parameters must be evaluated to values. Then these val-
ues are passed to the auxiliary eval function which simulates the behaviour of
inter-module function calls (e.g. the addition inter-module call is represented
in Coq with the addition of numbers). This results in a value which will be
the result of the ECall evaluation.

– Rule 3.9: This rule works in similar way that given by de Angelis and co-
authors in [5] with the addition of closures. To use this rule, first exp has to
be evaluated to a closure. Moreover, every parameter must be evaluated to
a value. Finally, the closure’s body expression evaluates to the result in an
extended environment which is constructed from the parameter variable-value
bindings and the evaluation environment of the closure. This environment
can be acquired from the closure environment indirectly or it is present in
the closure value itself (Sect. 3.2).

– Rule 3.10: At first, every expression given must be evaluated to a value. Then
the body of the let expression must be evaluated in the original environment
extended with the variable-value bindings.

– Rule 3.11: From the functions described (a list of variable list and body
expressions), closures will be created and appended to the environment and
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Fig. 5. The big-step operational semantics of Core Erlang

closure environment associated with the given function identifiers (fnames).
In these modified contexts the evaluation continues.

– Rule 3.12: Introduces the evaluation for maps. This rule states that every key
in the map’s key list and value list must be evaluated to values resulting in
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two lists of values (for the map keys and their associated values) from which
the value map is constructed1.

We also note that this big-step definition has been partly based on the small-
step definition introduced by Lanese [11,13], Nishida [16], and Neuhasser[15]
and in some aspects on the big-step semantics in Focaltest [3] and de Angelis’
symbolic evaluation [5]. In addition, for most of the language elements discussed,
an informal definition is available in the language specification [4].

After discussing these rules, we show an example where the approach in which
values are defined as a subset of expressions is more difficult to work with. Let
us consider a unary operator (val) on expressions which marks the values of the
expressions. With the help of this operator, the type of values can be defined:

Value ::= {e : Expression | e val}.

Let us consider the key ways in which this would modify our semantics.

– Environment → Closures → Expression → Expression → Prop would be the
type of eval expr. This way we need an additional proposition which states
that values are expressions in normal form, i.e. they cannot be used on the
left side of the rewriting rules.

– The expressions which are in normal form could not be rewritten.
– Function definitions have to be handled as values
– Because of the strictness of Core Erlang, the derivation rules change, addi-

tional checks are needed in the preconditions, e.g. in the Rule 3.6:

tlv val
hdv val

|Γ,Δ, hd| e−→ hdv ∨ hd = hdv
|Γ,Δ, tl| e−→ tlv ∨ tl = tlv

|Γ,Δ,EList hd tl| e−→ EList hdv tlv

This approach has the same expressive power as the presented one, but it
has more preconditions to prove while using it. For reason, argue that our for-
malisation is easier to use.

Proofs of Properties of the Semantics. We have formalised and proved
theorems about the attributes of the operations, auxiliary functions and the
semantics. We present two examples here, together with sketches of their proofs.

Theorem 1 (Determinism)
∀ (Γ : Environment), (Δ : Closures), (e : Expression), (v1 : Value),
|Γ,Δ, e| e−→ v1 =⇒ (∀v2 : Value, |Γ,Δ, e| e−→ v2 =⇒ v1 = v2).

Proof. Induction by the construction of the semantics.

1 In the future, this evaluation has to be modified, because the normal form of maps
cannot contain duplicate keys, moreover it is ordered based on these keys.
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– Rules 3.1, 3.2, 3.3 and 3.4 are trivial: e.g. a value literal can only be derivated
from its expression counterpart.

– Rules 3.5 and 3.12 are similar, a map is basically a double tuple in the current
semantics. According to the induction hypothesis each element in the expres-
sion tuple can be evaluated to a single value, so the tuple itself evaluates to
the tuple which contains these values. The proof for maps is similar.

– Rule 3.6 The head and the tail expression of the list can be evaluated to a
single head and tail value according to the induction hypotheses. So the list
constructed from the head and tail expressions can only be evaluated to the
value list constructed from the head and tail values.

– Rule 3.7 The induction hypothesis states that the base and the clause body
and guard expressions evaluate deterministically. The clause selector functions
are also deterministic, so there is only one possible way to select a body
expression to evaluate.

– The other cases are similar to those presented above.

��
Theorem 2 (Commutativity). ∀ (v, v’ : Value),
eval “plus”[v; v′ ] = eval “plus”[v′; v ].

Proof. First we separate cases based on the all possible construction of values (5
constructors, v and v’ values, that is 25 cases). In every case where either of the
values is not an integer literal, the eval function results in the same error value
(in this version we can not distinguish errors) on both side of the equality.

One case is remaining, when both v and v’ are integer literals. In this case
the definition of eval is the addition of these numbers, and the commutativity
of this addition has already been proven in the Coq standard library [19]. ��

It is important to note that if exceptions are included in the formalisation,
then this theorem probably would not be correct as it stands, and would need
to be adjusted.

4 Application and Testing the Semantics

In this section we present some use cases. First, we elaborate on the verification
of the semantics definition by testing it against the Erlang/OTP compiler, then
we show some examples on how we used the formalisation for deriving program
behaviour and for proving program equivalence.

4.1 Testing the Semantics

Due to a lack of an up-to-date language specification, we validated the correct-
ness of our semantics definition by comparing it to the behaviour of the code
emitted by the Erlang/OTP compiler.
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To test our formal semantics, we first used equivalence partitioning. We have
written tests both in Coq (v 8.11.0) and in Core Erlang (OTP 22.0) for every
type of expression defined in our formalisation (i.e. for every possible inference
rule application). There are also some special complex expressions that require
separate test cases (e.g. using bound variables in let expressions, application of
recursive functions, returned functions etc.). In the future, we plan to automate
the evaluation of both Coq and Core Erlang code and comparison of the results.

Apart from the formal expression evaluation examples, the proofs about the
properties of the semantics (e.g. determinism) and the expression equivalences
also provided an additional layer of assurance about complying to the behaviour
of the Erlang/OTP compiler.

4.2 Formal Expression Evaluation

Here we demonstrate how Core Erlang expressions are evaluated in the formal
semantics. For readability, we use concrete Core Erlang syntax in the proofs,
and trivial statements (e.g. the use of Rule 3.9) are omitted from the proof tree.
The first example shows how to evaluate a simple expression with binding:

{X : 5}(X) = 5
3.3

|{X : 5}, ∅,X| e−→ 5
3.10

|∅, ∅,let X = 5 in X| e−→ 5

The next example is the first one mentioned in Sect. 3.2 and intends to demon-
strate the purpose of the closure values. Here at the application of 3.9 it is shown
that the body of the application is evaluated in the environment given by the clo-
sure. For readability, we denote the inner let X = 5 in apply Y () expression
with exp.

{X : 42}(X) = 42
3.3

|{X : 42}, ∅,X| e−→ 42
3.9

|{X : 5, Y : VClosure (inl {X : 42}) [] X}, ∅,apply Y ()| e−→ 42
3.10

|{X : 42, Y : VClosure (inl {X : 42}) [] X}, ∅, exp| e−→ 42
3.10

|{X : 42}, ∅,let Y = fun() → X in exp| e−→ 42
3.10

|∅, ∅,let X = 42 in let Y = fun() → X in exp| e−→ 42

Next we show the previous example, but now using a recursive function
between the two let expressions in order to demonstrate the use of the closure
environment. For readability we denote VClosure (inr ′f ′/0) [] X with clos and
the inner let X = 5 in apply ′f ′/0() with exp, just like before.
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{X : 42, ′f ′/0 : clos}(X) = 42
3.3

|{X : 42, ′f ′/0 : clos}, {′f ′/0 : {X : 42, ′f ′/0 : clos}},X| e−→ 42
3.9

|{X : 5, ′f ′/0 : clos}, {′f ′/0 : {X : 42, ′f ′/0 : clos}},apply Y ()| e−→ 42
3.10

|{X : 42, ′f ′/0 : clos}, {′f ′/0 : {X : 42, ′f ′/0 : clos}}, exp| e−→ 42
3.11

|{X : 42}, ∅,letrec ′f ′/0 = fun() → X in exp| e−→ 42
3.10

|∅, ∅,let X = 42 in letrec ′f ′/0 = fun() → X in exp| e−→ 42

At the point of the use of Rule 3.11 we save in the closure environment the
current local environment extended with the closure value of the function bound
to this function’s identifier. This way, later in the evaluation, this environment
can be used (e.g. when using Rule 3.3).

The last example is the second one mentioned in Sect. 3.2 and cannot be eval-
uated in our formalisation, because of divergence. For readability we introduce
Γ := {′x′/0 : VClosure (inr ′x′/0) [] (apply ′x′/0())} (the environment after
the binding is added).

... 3.9
|Γ, {′x′/0 : Γ},apply ′x′/0()| e−→ ??

3.9
|Γ, {′x′/0 : Γ},apply ′x′/0()| e−→ ??

3.11
|∅, ∅,letrec ′x′/0 = fun() → apply ′x′/0() in apply ′x′/0()| e−→ ??

4.3 Expression Equivalence Proofs

Last but not least, let us present some expression equivalence proofs demon-
strating the usability of this semantics definition implemented in Coq. This is a
significant result of the paper since our ultimate goal with the formalisation is
to prove refactorings correct.

For the simplicity, we use + to refer to the append vars to env function
and also for the addition inter-module call (i.e. e1+e2 will denote the expression
ECall “plus” [e1, e2] in the following proofs) both in proofs and quoted code.

First, we present a rather simple example of expression equivalence.

Example 1 (Swapping variable values).

let X = 5 in let Y = 6 in X + Y

is equivalent to

let X = 6 in let Y = 5 in X + Y



154 P. Bereczky et al.

Proof. This example can be proved by specialising Example 2 with concrete
values. ��

Also a more abstract local refactoring also can be proved correct in our
system.

Example 2 (Swapping variable expressions). If we make the following assump-
tions:

|Γ,Δ, e1| e−→ v1 |Γ + {A : v2},Δ, e1| e−→ v1

|Γ,Δ, e2| e−→ v2 |Γ + {A : v1},Δ, e2| e−→ v2

A �= B

then

let A = e1 in let B = e2 in A + B

is equivalent to

let A = e2 in let B = e1 in A + B

Proof. First, we present the problem formalised.

∀ (Γ : Environment), (Δ : Closures), (t : Value), (A,B : Var)

|Γ,Δ, e1| e−→ v1 =⇒ |Γ + {A : v2},Δ, e1| e−→ v1 =⇒
|Γ,Δ, e2| e−→ v2 =⇒ |Γ + {A : v1},Δ, e2| e−→ v2 =⇒ A �= B =⇒

|Γ,Δ,ELet [A] [e1] (ELet [B] [e2]

(ECall “plus” [EVar A;EVar B]))| e−→ t ⇐⇒
|Γ,Δ,ELet [A] [e2] (ELet [B] [e1]

(ECall “plus” [EVar A;EVar B]))| e−→ t

The two directions of this equivalence are proved in exactly the same way,
so only the forward (=⇒) direction is presented here.

Now the main hypothesis has two let statements in itself. These statements
could have only been evaluated with Rule 3.10, i.e. there are two values (v1
and v2 because of the determinism and the assumptions) to which e1 and e2
evaluates:

|Γ,Δ, e1| e−→ v1 and |Γ + {A : v1},Δ, e2| e−→ v2

It is important to note, that during the evaluation of the inner let, A has
already been bound to v1. Moreover a new hypothesis also appeared:

|Γ + {A : v1, B : v2},Δ,A + B| e−→ t

This hypothesis implies that t = eval “plus” [v1, v2] because of the evaluation
with Rule 3.8 and 3.3, also when we add variables to the environment, the
existing binding will be replaced.
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Now, the goal can be solved with the construction of a derivation tree. We
denote Γ + {A : v2, B : v1} with Γv.

|Γ,Δ, e2| e−→ v2

|Γv,Δ,A + B| e−→ t |Γ + {A : v2},Δ, e1| e−→ v1
3.10

|Γ + {A : v2},Δ,let B = e1 in A + B| e−→ t
3.10

|Γ,Δ,let A = e2 in let B = e1 in A + B| e−→ t

According to our assumptions, e1 and e2 evaluates to v1 and v2 in Γ and
also in its extensions which contains bindings to A. Now for the addition, the
following derivation tree can be used.

Γv(B) = v1
3.3

|Γv,Δ,B| e−→ v1

Γv(A) = v2
3.3

|Γv,Δ,A| e−→ v2 eval “plus” [v2, v1] = t
3.8

|Γv,Δ,A + B| e−→ t

We can use the Rule 3.8 to evaluate the addition. The parameter variables
will evaluate to v2 and v1 because of the replacing insertion mentioned before.
With this knowledge, we get: eval “plus” [v2, v1] = t. As mentioned before t =
eval “plus” [v1, v2]. So it is sufficient to prove, that:

eval “plus” [v2, v1] = eval “plus” [v1, v2] (4.1)

The commutativity of eval (Theorem 2) can be used to solve this equality. ��
Is it possible to replace the assumptions of Example 2 with statements about

e1 and e2 not containing the variables A and B? Not directly; it it would require a
theorem stating the evaluation of an expression that does not contain the variable
A does not change in the extended environment which contains a binding of the
variable A. This statement is not true for closure values, because they potentially
save their evaluation environment which would differ in this case.

Now, we prove a similar simple local refactoring (this example is also gener-
alised over the A, B variables).

Example 3 (Swapping variables in simultaneous let). If we assume that A �= B
then

let <A, B> = <e1, e2> in A + B

is equivalent to

let <A, B> = <e2, e1> in A + B

Proof. The proof for this example is very similar to the proof for Example 2.
The only difference is that one step is enough to evaluate the let expression.
Inside it both e1 and e2 expressions evaluate in the same environment and that
is the reason why no assumptions are needed. ��
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Finally, we show another simple local refactoring about moving an expression to
a function.

Example 4 (Moving an expression to a function).

e

is equivalent to

let A = fun() -> e in
apply A()

Proof. In this case, both directions should be proved. At first, we formalise the
problem:

∀ (Γ : Environment), (Δ : Closures), (t : Value), (A : Var)

|Γ,Δ, e| e−→ t ⇐⇒
|Γ,Δ,ELet [A] [EFun [] e] (EApply (EV ar A) []| e−→ t

=⇒ direction:
This can be proved by the construction of a derivation tree. We denote Γ +

{A : VClosure (inl Γ ) [] e} with ΓA and the value VClosure (inl Γ ) [] e with cl
in the tree.

3.3
|Γ,Δ,fun() → e| e−→ cl

3.4
|ΓA,Δ,A| e−→ cl

Hypo.
|Γ,Δ, e| e−→ t

3.9
|ΓA,Δ,apply A()| e−→ t

3.10
|Γ,Δ,let A = fun() → e in apply A()| e−→ t

⇐= direction:
This can be proved by the deconstruction of the hypothesis for the let

expression. First only the 3.10 could have been used for the evaluation.
This means that the function evaluates to some value, i.e. to the closure
VClosure (inl Γ ) [] e, because of Rule 3.4. We get a new hypothesis:

|Γ + {A : VClosure (inl Γ ) [] e},Δ,apply A()| e−→ t

Then the evaluation continued with the application of Rule 3.9. This means,
that the A variable evaluates to the above mentioned closure (because Rule 3.3
and the replacing insertion into the environment) and the body of this closure
evaluates to t in the closure’s stored environment extended with the parameter-
value bindings (in this case there is none). This means we get the following
hypothesis: |Γ,Δ, e| e−→ t which is exactly what we want to prove. ��

To prove these examples in Coq, a significant number of lemmas were needed,
such as the expansion of lists, the commutativity of eval, and so forth. However,
the proofs mostly consist of the combination of hypotheses similar to the proofs in
this paper. Although sometimes additional case analyses were needed, resulting
in lots of sub-goals, these were solved similarly. In the future, these proofs should
be simplified with the introduction of smart tactics and additional lemmas.
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5 Future Work and Conclusion

Using Coq we have formalised a substantial subset of (Core) Erlang together with
its semantics, and proved results on the formalisation itself as well as establishing
a number of program equivalences in that semantics. Use of this formalisation is
demanding in practice, partly because the Coq Proof Assistant makes its users
write down proofs explicitly step by step. Of course this is a necessity of the
correctness, however, this property results in lengthy proofs. This work is a first
step in our project to establish a platform on which we can build and prove
correct a range of refactorings for an existing programming language: Erlang.

There are several ways to enhance our formalisation. We intend to focus
first on extending the semantics with additional expressions (e.g. binaries); for-
malising exceptions and exception handling, so that we can distinguish between
different errors and also divergence; and handling and logging side-effects. To
improve the formalisation we will create new lemmas, theorems and tactics to
shorten the Coq implementation of the proofs; formalise and prove more refactor-
ing strategies; and move to automate the testing process, running and comparing
the results of the Core Erlang code and the theorems automatically.

Our longer-term goals include extending the work to Erlang (semantics
and syntax), including concurrency, and distinguishing primitive operations and
inter-module calls. The ultimate goal of the project is to change the core of a
scheme-based refactoring system to a formally verified core.
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Abstract. This paper presents a translation from algebraic effects and
handlers to asymmetric coroutines, which provides a simple, efficient
and widely applicable implementation for the former. Algebraic effects
and handlers are emerging as main-stream language technology to model
effectful computations and attract attention not only from researchers
but also from programmers. They are implemented in various ways as
part of compilers, interpreters, or as libraries. We present a direct embed-
ding of one-shot algebraic effects and handlers in a language which has
asymmetric coroutines. The key observation is that, by restricting the use
of continuations to be one-shot, we obtain a simple and sufficiently gen-
eral implementation via coroutines, which are available in many modern
programming languages. Our translation is a macro-expressible transla-
tion, and we have implemented its embedding as a library in Lua and
Ruby, which allows one to write effectful programs in a modular way
using algebraic effects and handlers.

Keywords: Algebraic effect and handler · Coroutine · Continuation ·
Control operator · Macro expressibility

1 Introduction

Algebraic effects [21] and handlers [22] (AEH for short) are emerging as main-
stream language technology to model effectful computations in a modular way.
They are gaining more and more attention not only from researchers but also
from practitioners. There are a few dedicated programming languages such as
Eff [1], Multicore OCaml [7] and Koka [17] which have AEH as language primi-
tives, and several main-stream programming languages such as Haskell, OCaml,
Scala, JVM bytecode and C have library implementations for AEH. However,
AEH is not yet available in many other main-stream programming languages,
which is a big obstacle to utilize theoretical results on AEH in real-world soft-
ware. We, therefore, think that it is an important and timely issue to develop a
systematic and efficient implementation method for AEH which is available in
many existing programming languages.

AEH have been so far implemented in several ways such as the one based
on stack manipulation, delimited-control operators [6], or free monad. Unfortu-
nately, none of them are fully satisfactory; The implementation method based
on stack manipulation is used for JVM bytecode and C [4,18], however, an
c© Springer Nature Switzerland AG 2020
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implementer needs deep insight on the internal structure of run-time systems. It
then follows that the implementation cost is rather high, which prevents the fea-
ture from being implemented in various language systems. The implementation
method via delimited-control operators is used for OCaml and Scala [3,16]. It is
a systematic way to implement AEH, since it needs no knowledge on low-level
features, however, only few languages have delimited-control operators as built-
in primitives. The implementation method based on free monads is yet another
systematic way, and used in Haskell and Scala [14,15]. While elegant, it enforces
a programmer to use the monadic style, and it is often inefficient.

This paper presents a new systematic method of implementing algebraic
effects and handlers which is simple, efficient, and available in many languages.
compared to the existing implementations based on free monads. The key of our
method is to use coroutines to embed them in programming languages. Today
we see a number of programming languages which have coroutines as a built-in
feature.1 which makes it possible to apply our implementation method in var-
ious languages with no or little cost. While coroutines are less expressive than
general delimited-control operators, they are as expressive as one-shot delim-
ited control-operators, a restricted control operator that is allowed to invoke a
delimited continuation at most once [20]. One-shot delimited-control operators
are known to be implemented more efficiently than general, multi-shot ones,
thanks to the fact that no copying of continuations is necessary [5]. Hence, we
face the trade-off between expressiveness and efficiency. This paper studies the
one-shot variant which gives less expressive, but more performant primitives for
AEH. In fact, various control effects are expressible by the one-shot variant.

We translate one-shot AEH to asymmetric coroutines. The salient feature
of our translation is that it is a macro-expressible translation in the sense of
Felleisen [8]. Thanks to this property, we can implement AEH as a simple library,
and we have built AEH libraries for Lua and Ruby which have been published
via GitHub2,3. Our libraries have been used by several users, and interested
users have ported our libraries to other languages such as JavaScript and Rust
using generators4,5.

Our main contributions in this paper are the following.

– We show an embedding of one-shot algebraic effects and handlers. We use
standard asymmetric coroutines only, and no special control features are
needed. Hence our embedding is applicable to various languages as long as
they have asymmetric coroutines.

– Comparing to the embedding based on free monads, our method does not
force programmers to use monadic style, and our embedding is more perfor-
mant in many cases than the one based on free monads.

1 The Wikipedia article on coroutine (access date: June 1, 2020) lists fifty programming
languages which have native support for coroutines.

2 https://github.com/nymphium/eff.lua.
3 https://github.com/nymphium/ruff.
4 https://github.com/MakeNowJust/eff.js.
5 https://github.com/pandaman64/effective-rust.

https://github.com/nymphium/eff.lua
https://github.com/nymphium/ruff
https://github.com/MakeNowJust/eff.js
https://github.com/pandaman64/effective-rust
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– Our embedding is defined as a local and compositional translation from alge-
braic effects and handlers. Thanks to this property, we can implement the
embedding as a library, and in fact we have done it for Lua and Ruby, which
is available on GitHub. Implementing AEH is a complicated task which is
often error prone, and our simplistic approach based on a formal translation
is desirable.

This paper is organized as follows. Section 2 shows typical examples using
AEH and demonstrates our algebraic-effect library for Lua. Section 3 describes
the embedding method by defining the translation from λeff , a language with
algebraic effect handlers, to λac , a language with asymmetric coroutines. We also
show that our translation is macro expressible in the sense of Felleisen. Section 4
discusses the extension of our model definitions for implementing our libraries
in Lua and Ruby, and problems in actual use. Section 5 shows the performance
evaluation of our embedding by comparing ours with the embedding based on
free monads. Section 6 describes related work, and Sect. 7 concludes.

2 Examples of One-Shot Algebraic Effects

This section illustrates programming with AEH by examples. To express them,
we use the programming language Lua extended with our library, which is imple-
mented using our embedding explained in the subsequent sections.

2.1 Exception

In our view, AEH is a generalization of exceptions, which is justified by the
following examples.

The function inst provided by our library creates, when called with zero
argument, a new label for an algebraic effect, and returns it.

1 local DivideByZero = inst()

We can invoke the labeled effect by calling the function perform in our library.

1 local div = function(x, y)
2 if y == 0 then
3 return perform(DivideByZero, nil)
4 else
5 return x / y
6 end
7 end

This code snippet is Lua’s definition for the function div, which takes two argu-
ments x and y. It returns the result of dividing x by y unless y is 0. If y is 0,
it performs the effect labeled by DivideByZero, which means that an effect is
raised and the control of the program is brought to the nearest effect handler
(which is not shown in the above code) similarly to exception handling.
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Our library has the function handler which creates a new effect handler.

1 local with_nil = handler {
2 val = function(_) return nil end,
3 [DivideByZero] = function(_, _)
4 return nil
5 end
6 }

The function handler receives a table, Lua’s data structure for an associative
array6, as its sole argument. On Line 2, e1 = e2 represents the key-value pair
["e1"] = e2, which has the key val and whose value is a value handler which
is used when no effect occurs. The second key-value pair (Lines 3 and 4) defines
how the effect DivideByZero is processed. The value part of the key-value pair is
a function in both cases. While the value handler receives one argument (which
corresponds to the result of the handled expression), the effect handler receives
two arguments, the first of which is the argument of the effect invocation and
the second is a delimited continuation when the effect has been invoked (up to
the handler invocation). In the above snippet, the arguments are ignored, and
the whole computation returns nil in both cases, representing simple exception
capturing. By evaluating with_nil(function() return div(3, 0) end), we
get nil as the result.

We can turn the above simple exception to a resumable exception by changing
the effect handler as follows.

1 local with_default_zero = handler {
2 val = function(v) return v end,
3 [DivideByZero] = function(_, k)
4 return k(0)
5 end
6 }

Here we changed the second case of the handler (Lines 3 and 4) so that a param-
eter k is bound to the second argument (a delimited continuation), which is
invoked with the argument 0, and its value becomes the final result.

We can test the handler with_default_zero as follows.

1 with_default_zero(function()
2 local v = div(3, 0)
3 return v + 20
4 end)

6 https://www.lua.org/manual/5.3/manual.html#3.4.9.

https://www.lua.org/manual/5.3/manual.html#3.4.9
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When we execute Line 2 of this code, the effect DivideByZero is performed
(raised) as before. Then the handler with_default_zero catches it, and cap-
tures the delimited continuation local v = �; return v + 20, to which the
variable k is bound. (Strictly speaking, the delimited continuation should be
surrounded by the handler with_default_zero, but we omit it here since there
is no effect in the continuation and its value handler is the identity function.)
Then we execute k(0), which is equivalent to local v = 0; return v + 20.
The net effect is the same as the case when div(3,0) returns 0, and the entire
computation results in 0 + 20 = 20.

2.2 State

AEH can express not only exceptions, but also many other effects. Here, we show
how state can be expressed in terms of these operations using the state-passing
technique.

We first create two effect labels.

1 local Get = inst()
2 local Put = inst()

We then define the function run which executes stateful computations.

1 local run = function(init, task)
2 local step = handler {
3 val = function(_) return function() end end,
4 [Get] = function(_, k)
5 return function(s)
6 return k(s)(s)
7 end
8 end,
9 [Put] = function(s, k)

10 return function(_)
11 return k()(s)
12 end
13 end
14 }
15

16 return step(task)(init)
17 end

The function takes two arguments init for the initial state and a thunk task for
the stateful computation. It first defines the handler step, which manipulates
the normal-return case and the two effects labeled by Get and Put. Following
the state-passing scheme, the value handler returns a function which ignores
its argument (for state). In the stateful computation, when the effect Get is
invoked, then the handler returns the function that retrieves the current state
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s and supplies it to the current continuation (k(s) on Line 6) with the same
state s. When the effect Put with an parameter s is invoked, the handler returns
a thunk in which a meaningless value () is passed to the continuation, but a
new state s is installed (Line 11). After defining the handler, the function run
executes the computation task with the initial state init (Line 16).

It is important to note that the captured continuation is surrounded by
the same handler step. In fact, the algebraic effects and handler are similar to
the control operators shift0 and reset0 [19]; when an effect invoked by shift0 is
captured by reset0, the captured delimited continuation is surrounded by the
delimiter reset0.

2.3 Expressing Other Computational Effects

We can express other control effects using one-shot algebraic effects and handlers.
Examples include generators and iterators, let-insertion in partial evaluation,
and Go language’s defer7, We have already implemented by our library more
advanced examples such as async/await, shift/reset, fetching the current time (a
sort of dependency injection) and measuring the execution time. See our GitHub
repository (see Footnote 2 and 3).

3 Embedding Algebraic Effects into Coroutines

This section explains our translation from one-shot algebraic effects and handlers
to asymmetric coroutines. For this purpose, we define λeff , a language which has
one-shot AEH, and λac , a language which has asymmetric coroutines [20]. We
then translate λeff to λac , and show that it is a macro-expressible translation.

3.1 λeff

λeff is an untyped language with one-shot AEH based on Effy [23]. For simplicity,
we omit dynamic creation of effect lablels.

Figure 1 defines the syntax of λeff . The set Effects is a finite set of effect
lables, and we use eff as a meta variable for it. The syntactic categories v,
e, and h, resp. represent values, expressions and handler expressions, resp.
The expression perform eff v invokes the effect eff with the argument v, and
with v handle e evaluates e under the handler. A let binding is written as
let x = c1 in c2.

The handler expression handler eff (val x → e1) ((y, k) → e2) creates a
handler which catches the effect eff and returns the value of e2 where y is bound
to the argument of the effect-performing operation, and k is bound to the delim-
ited continuation when the effect is invoked. The expression val x → e1 gives
a value handler, namely, a handler which is used when the body of a handler
returns normally (no invocation of effects). For simplicity, λeff can handle only

7 https://golang.org/ref/spec#Defer statements.

https://golang.org/ref/spec#Defer_statements
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Fig. 1. Syntax and runtime representation of λeff

one effect per handler, whereas handlers in Effy can cope with multiple effects.
But the latter can be simulated by our single-effect handlers, and our library
actually provides the multi-effect variant; see Sect. 4.

The syntactic category w and the subsequent lines are used to define the
semantics of λeff . The class w represents runtime values for function closures
(clos (λx.e, E)) and handlers (closh (h,E)) where E is a runtime environment,
and F represents a frame, or a singular context, which means a ‘one-step’ frag-
ment of a continuation. A (delimited) continuation K is a list of frames.

The call-by-value operational semantics of λeff is defined in the CEK-
machine style [9]. Here we informally explain the semantics of effect primitives.
Its details can be found in the full version of this paper; see our GitHub reposi-
tory.

The handler expression handler eff (val x → ev) ((x, k) → eef ) creates a
handler which consists of a value handler and an effect handler, and associates
the effect label eff to it. The expression with h handle e (called a handling
expression) evaluates the expression e under the handler h. The expression
perform eff v invokes the effect eff with an argument v. Note that handling
expressions may be nested, and an effect invocation is handled by the nearest
(innermost) handler which can handle the effect. When the handled expression
is evaluated to a value, the value handler is used.
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3.2 λac

The seminal work by de Moura and Ierusalimschy [20] classified various forms of
coroutines found in programming languages, and formalized calculi for symmet-
ric coroutines and asymmetric coroutines. The former represents classic corou-
tines which can call (resume) other coroutines, but coroutines cannot return
to their callers. The latter represents modern coroutines where the caller-callee
relation exists, hence, coroutines may return to their callers.

The language λac is based on asymmetric coroutines8. For the purpose of
translation and practical programming, we have added to this language several
constructs such as data constructors, let with recursion, pattern matching, and
comparison operators.

Figure 2 defines the syntax of λac . The syntactic categories K and l, resp.,
represent data constructors and labels for coroutines, resp. The set eff corre-
sponds to the set of effect labels in λeff , and we assume that its elements are
constants in λac . Values v are either constants, expressions formed by applying
a data constructor to values K −→v �, labels, variables, or lambda expressions.
Expressions e are those in lambda calculus extended with pattern matching and
mutual recursion, plus those for asymmetric coroutines: l : e for a labeled expres-
sion which represents the “return point” of resuming a coroutine, create e for
creating a coroutine and returning its label, resume e1 e2 for resuming a corou-
tine, and yield e for yielding a value and returning to the caller of the cur-
rent coroutine. f −→x is an abbreviation of f x1 · · · xn and

−−−−−−−−−→
and g −→y = e is of

and g1
−→y = e1 · · · and gn

−→y = en. Similar abbreviation is used for constructors
and pattern matching. The expression match e with cases is for pattern match-
ing. We allow (restricted) guards in pattern matching so that cases

−−−−−→
pat → e may

have a guard when x = x.
The call-by-value operational semantics of λac is defined in the same way

as de Moura and Ierusalimschy, which is given in the full version of this paper.
Here we briefly explain the semantics of the primitives for coroutines. create e
creates a fresh label and a coroutine with its body being the value of e, and
returns the label. The expression resume l v resumes the coroutine labeled with
l with the argument v. It is an error if a coroutine whose label is l does not
exist, or has already been called. A resumed coroutine must return to the caller,
so we create an expression l : e′ where e′ is the body of the resumed coroutine.
When an expression yield v is called during the evaluation of a coroutine, the
coroutine is suspended and stored for future use, and v is returned to the caller
of the current coroutine. It is an error if there is no caller of the current coroutine
when yield is invoked.

3.3 Translation from λeff to λac

This section presents a program translation from λeff to λac , which is syntax-
directed and compositional. The translation essentially does two things: to emu-
8 Strictly speaking, our calculus is the one for stackful asymmetric coroutines accord-

ing to de Moura and Ierusalimschy’s classification.
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Fig. 2. Syntax of λac

late multiple-effects AEH by a single-effect AEH, and then to emulate a single-
effect AEH by an asymmetric coroutine. The first one is done by adding tags to
distinguish different effects and by forwarding (resending) the raised effect if its
tag does not match the tag of the handler. The second one is done by emulating
a (one-shot) delimited continuation by an asymmetric coroutine. To save space,
we give the whole translation as a single translation.

The whole translation is defined in Fig. 3 where a λeff -term e is translated to
a λac-term �e�. The translation is homomorphic for a variable, a λ-abstraction,
an application, and the let expression. An effect label eff is translated to a
constant with the same name.

We translate perform to yield based on the following observation. In the
calculus for AEH, when an effect is invoked, the control is transferred to a
handler corresponding to the effect, while in the calculus for coroutines, when a
yield is called, the control is transferred to its parent coroutine. Hence we can
emulate the behavior of perform by yield. The translation wraps the arguments
of perform with the tag Eff. This tag is used to determine whether the effect
has been yielded from the handled expression itself, or it has been resent by
the handler. The handling expression with h handle e is translated to a simple
application as the handler is translated to a function.

The translation for a handler (the last case in Fig. 3) is intricate, and we shall
explain it by an example.

Consider the program M with the effects C1, C2, and C3 in Fig. 4. Here
we assume that our calculus is extended to have natural numbers arithmetic
operations. Then M is translated to the program in Fig. 5 where some variables
and let-bindings are renamed or inlined for readability.
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Fig. 3. Translation from λeff to λac

The term after translation �M� contains the function handler defined in
Fig. 3, which works as follows: handler makes a coroutine from a thunk, defines
three functions continue, rehandle and handle, and then evaluates continue nil.
continue passes arg to co, resumes it, and passes the return value to handle.
handle dispatches the process by the return value of resume according to the
equivalence of tags and effect labels.

Let us evaluate �M�. It first binds h1, h2, and h3 to the values of apply-
ing handler to three arguments. Since the function handler needs four argu-
ments (see Fig. 3), the values of hi are still closures. After setting hi, we evaluate
h3(λ . · · · ), which triggers the actual computation of the body of handler . It then
creates a new coroutine for the argument of h3, defines several functions and
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Fig. 4. Example program in λeff Fig. 5. Example after translation

evaluates continue nil , which in effect applies the argument of h3 (the thunk
λ . · · · ) to nil . Similarly, h2(λ . · · · ) and then h1(λ . · · · ) are evaluated, and
finally the subterm yield (Eff C1 10) is evaluated, and a value is yielded. It is
caught by the innermost handler h1. Since it has the tag Eff and h1 can handle
C1, the first out of five patterns in handle matches it, and effh 10 continue is
evaluated. By passing continue as the continuation, the computation of a han-
dled expression can be resumed, which is suspended at the yielded position.
Since continue passes the return value of resume to handle, the effect can be
handled by the same handler again. Hence a is bound to 10.

The above case uses only the first pattern in the function handle which
corresponds to a single effect. The handler needs to treat more involved cases
when AEH allows multiple effects, which we shall explain shortly.

Continuing the evaluation of �M�, we encounter the term yield (Eff C3 17).
When it is executed, the handler h1 catches it, but h1 cannot handle C3. Hence
the second pattern of handle matches, and another yield term with the tag
Resend is evaluated which is caught by the next outside handler, namely, h2.
Since it has the tag Resend and h2 cannot handle C3, the fourth pattern of handle
matches, which again yields the value with the tag Resend . A difference from the
previous case is that the function rehandle is applied to k, where rehandle creates
a handler that handles the thunk of the application of two given arguments. By
setting continue to the value handler, the computation of the current handling
expression can be resumed when the computation of the rehandle passed as a
continuation is finished. rehandle has another role which adjusts the layers of
the coroutines. In the second clause of handle, yield is called, so the execution
exits from the coroutine.
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The resent effect is captured by h3 again. Now it matches the third pattern
of handle, and similarly to the above case, rehandle k is passed to effh as a
continuation. Then it returns 17, to which b is bound, and the value of the
handled expression is 27. Then h1 receives it, and the fifth wildcard pattern of
handle matches, and the value of the entire expression is 27.

Although our translation looks complicated, we emphasize that our transla-
tion is compositional and local, syntax-directed, and needs only basic functional-
ity of asymmetric coroutines. We also note that it does not rely on higher-order
stores or other fancy features unlike de Moura and Ierusalimschy’s work.9 With
this simplicity, several programmers have already ported our translation to other
languages than Ruby and Lua.

3.4 Macro-expressible Translation

We will claim that the translation from λeff to λac in the previous section is
simple and efficient. To support the former claim, this subsection shows that it
is a macro-expressible translation in the sense of Felleisen. The latter claim will
be discussed in the subsequent section.

Felleisen studied the notion of macro expressivity, which is a more fine-
grained notion than most others to measure the expressive power of language
primitives [8]. For instance, call/cc (call-with-current-continuation) can be trans-
lated away by a CPS translation to a pure lambda calculus, yet, it is not macro-
expressible in pure lambda calculus since the translation is global and not macro
expressible. On the other hand, a simple let expression let x = e1 in e2 can be
locally translated by (λx.e2) e1, therefore, it is macro-expressible in the pure
lambda calculus.

While Felleisen defined the notion for the setting where a language L1 is a
proper extension of another language L2, we want to compare the expressive
power of two languages L1 and L2 where L1 and L2 are extensions of a common
language L0. To deal with this setting, we use Forster et al.’s definition for the
macro-expressible translation [10], and we give its slightly simplified version here.

Definition 1 (Macro-expressible translation). Let L0 be a language, and
L1 and L2, resp., be the language L0 augmented with a set of primitives
X1, · · · ,Xn and Y1, · · · , Ym, resp. A translation φ from L1 to L2 is a macro-
expressible translation if and only if all of the following conditions hold.

– φ is homomorphic for the primitives in L0. For instance, if a binary infix
operator ⊕ is in L0, then φ (e1 ⊕ e2) is φ (e1) ⊕ φ (e2).

– φ maps each Xi of arity n to a syntactic expression Mi in L2 which has n
free variables x1, · · · , xn such that the following holds:

φ (Xi(e1, · · · , en)) = Mi [φ (e1) /x1, · · · , φ (en) /xn]

The expression in the right-hand side represents simultaneous substitution for
the variables x1, · · · , xn in Mi.

9 See Sect. 5.3 in [20].
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To state the above definition we have made two simplifications. First, the
equality in this definition should be, in general, semantic equality where we
assume that each language is equipped with a certain semantics, but in this
paper, we can regard it as syntactic equality. Second, we do not consider the
case when Xi works as a binder such as the let expression10, but we do not
need to consider such cases.

It is easy to show that our translation in the previous subsection conforms
the conditions for a macro-expressible translation.

Theorem 1. Our translation in Fig. 3 is a macro-expressible translation.

Proof Sketch. It is easy to check that our translation �·� is homomorphic for the
variable, lambda abstraction, application, let, the effect expression.

For the primitives of algebraic effects and handlers, we need to check each
case. For the primitive perform, let M be yield (Eff x1 x2), then we have
�perform e1 e2� = M [�e1�/x1, �e2�/x2], and we are done. Other cases are
similar. �

As we wrote above, a macro-expressible translation is rather discriminating,
or sensitive to small differences between language primitives. Only local transla-
tions are macro-expressible translation. Since global translations such as a CPS
translation and a state-passing translation do not qualify as macro-expressible,
state and first-class continuations are not macro-expressible in pure lambda cal-
culus.

Put differently, if we have a macro-expressible translation for a primitive X in
a language L0, then we can implement X using the translation without changing
any other primitives in L0 This is a simple, but rather important property for
our work, as it is a necessary condition to implement X as a simple library in
L0, unless we have an access to language’s run-time, or reification is allowed.

4 Implementation

We have implemented AEH in Lua and Ruby based on the translation in Sect. 3.
Since the translation is macro-expressible, we can realize our implementation as
a simple library. Our implementations are compact. The Lua library is imple-
mented in 160 lines and the core of the Ruby library is in 340 lines, even including
comments for documentation generation. All our code is available via GitHub.

Several issues have arisen in the process of implementation which we will
explain below.

Multiple Effect Handlers: Our calculus λeff has the restriction that a handler
can catch only one effect. However, this restriction is only for the presentation
purpose, and in our actual implementation, one handler may catch multiple
effects, All examples including the examples in this paper that use multiple
effects per handler run without problems using our library. We also note that
there is no critical performance downgrade of having multiple effects per handler.
10 Felleisen considers the case where each argument may be bound by the construct.
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Dynamic Effect Creation: In the language λeff , we have no way to create new
effect labels dynamically. Again this is due to simplicity, and we have eliminated
this restriction in our implementation. The merit of allowing dynamic creation of
effect instances is that a certain kind of effectful programs require effect instances
to be mutually distinct, for instance, higher-order effects [16].

Conflict with Other Effects: An assumption on our translation is that all effects
are written via AEH. If our source program uses other effects than AEH, it will
cause a problem as they may interfere with the internally used coroutines. For
instance, if we use our library in Lua, and simultaneously use Lua’s native corou-
tine directly, yielding a value in the source program may be accidentally caught
by an internal coroutine. As consequence, we must not use native coroutines
with our library for AEH.

However, this problem can be solved in the following way, thanks to the
expressivity of AEH. See the following code.

1 local Yield = inst()
2

3 local yield = function(v)
4 return perform(Yield, v)
5 end
6

7 local create = function(f)
8 return { it = f, handled = false }
9 end

10

11 local resume = function(co, v)
12 if co.handled then
13 return co.it(v)
14 else
15 co.handled = true
16 return handler({
17 val = function(x) return x end,
18 [Yield] = function(u, k)
19 co.it = k
20 return u
21 end
22 })(function() return co.it(v) end)
23 end
24 end

The code implements asymmetric coroutines by algebraic effects and handlers
in Lua. The function yield should throw a value to resume, so yield should
be an effect invocation and resume should be a handler. This correspondence is
the inverse of the translation in Fig. 3. So we define the effect Yield (Line 1)
and the function yield (Line 3) as a wrapper for the invocation of the effect.
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The function create (Line 7) creates a reference cell by a table. We represent
a coroutine as a reference cell, which is initialized to the function f and the
flag handled explained later. The handler resume (Line 11) catches the effect
Yield with an argument and a continuation. This continuation is the rest of
computation of the coroutine, so the handler stores the continuation to the cell
and returns the value u (Lines 19 and 20). Since we provide a deep handler, it
is not necessary to set the handler multiple times. The flag handled asserts if
the function is handled by the handler (Line 12). The function resume checks
the flag; if the flag is not set, it turns on the flag and runs the function with the
handler. Otherwise, it runs the function alone.

Although we believe that the above technique may be used for other compu-
tational effects, it is left for future work to combine them with algebraic effect
and handlers to obtain an efficient implementation.

5 Evaluation

We have conducted experiments on microbenchmark using our library in Lua,
and implementation in Lua based on free monads [23], and compared their per-
formance. All the code for the benchmark is publicly available in the GitHub
repository11. In the following figures, the symbol � represents the result of our
library, and � the free-monad based implementation. One of the benchmarks
compares to native coroutines of Lua and indicates the result as the symbol � in
a graph. The experiments have been conducted on the environment in Table 1.

Table 1. Environment for benchmark

OS Arch Linux

CPU Intel Core i7-8565U

Main memory 16GB DDR4

Lua processor LuaJIT 2.05

Figure 6 is the result of the benchmark for emulating a state monad. The
benchmark uses the function count, cited from [14], adjusted for our library and
free monad, which recursively runs a simple computation consisting of single-
layer, single-effect handlers for the number of times as the input parameter. The
result shows that our library is approx. 10 times faster than the free-monad
based implementation for this simple case. The reason why free monads are
rather slow is that the bind operator requires a continuation as the next action,
but the cost for creating function closures is rather high for imperative languages
such as Lua. Also, functional languages such as Haskell may offer optimization
for free monads, while the benchmark uses naive implementation. Nevertheless,
the results are encouraging for our embedding.
11 https://github.com/nymphium/effs-benchmark.

https://github.com/nymphium/effs-benchmark
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2 3 4 5
·105

0.5

1

1.5

2

param

time(sec)

param (105×) 1 2 3 4 5
free 0.3560 0.7199 1.1741 1.5449 2.0303
ours 0.0273 0.0521 0.0939 0.1811 0.2090

Fig. 6. Result of onestate benchmark

In the experiments in Fig. 7, the benchmark program runs the function count
3,000 times in deeply nested handlers. The parameter in the table corresponds
to the number of nested handlers/coroutines, hence 50 (the right-most column)
is an extreme case. As expected, our library runs three times slower than the free
monad does for this case. The reason is that rehandle creates a new coroutine,
which is called every time an effect is caught from the other handler shown in
Fig. 3, so it degrades the performance.

20 30 40 50

0.2

0.4

param

time(sec)

param (10×) 1 2 3 4 5
free 0.0174 0.0303 0.0508 0.1374 0.1594
ours 0.0572 0.1722 0.3181 0.4064 0.5041

Fig. 7. Result of multistate benchmark

The next experiment executed a for-loop, where the number of iteration
is given as a parameter in the table of Fig. 8. The benchmark program sets a
handler outside of the loop, and invokes an effect in the for-loop. Our library
runs 9 times as fast as the free-monad based implementation. Note that free
monads need the forM-operator which has large overhead. Again an advanced
compiler may reduce the overhead.

Figure 9 shows the result of the benchmark, which solves the same-fringe
problem [11] by using algebraic effects and coroutines. The problem is to deter-
mine whether given two trees have the same “fringe”, an enumeration of leaves
of the tree in a certain order. The benchmark is given the number of leaves as a
parameter. We implemented it by algebraic effects and handlers via free monad,
and via our library, and the result is shown in Sect. 4. We also implemented the
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2 3 4 5
·105

0.2

0.4

0.6

0.8

param

time(sec)

param (105×) 1 2 3 4 5
free 0.1650 0.3455 0.5304 0.7204 0.9319
ours 0.0215 0.0416 0.0630 0.0844 0.1064

Fig. 8. Result of looper benchmark

solver with native coroutines of Lua. Our library yields 18 times performance
gain compared to the free-monad method. Remarkably, our library is only 1.6
times slower than native coroutines, despite the overhead caused by the double
translations.

2 3 4 5
·104

0.2

0.4

param

time(sec)

param (104×) 1 2 3 4 5
free 0.0507 0.1837 0.3522 0.4761 0.5886
ours 0.0067 0.0127 0.0186 0.0252 0.0296

coroutines 0.0042 0.0082 0.0119 0.0158 0.0190

Fig. 9. Result of same_fringe benchmark

In summary, our way of implementing AEH is advantageous in several pro-
gramming languages from the performance viewpoint. We also emphasize that
writing effectful programs using coroutines is harder than writing the same pro-
grams using AEH, which provide high-level abstraction.

6 Related Work and Discussion

In this section, we discuss closely related work which has not been mentioned in
this paper and picks up a few important issues for discussion.

Shallow Handler: We have shown the embedding with deep handlers, which
inserts the handler to the topmost position of captured delimited continuations.
In the literature, there has been discussion on the merits and demerits between
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deep handlers and shallow handlers [12], which do not insert the handler to
captured delimited continuations, hence an effect invocation during the execution
of a delimited continuation is not captured by the same handler. We have also
implemented the shallow handler with coroutines shown in Fig. 10. The idea is
simple; after a handler catches an effect, it resends any effects to an outer handler.
We have already explained the role of rehandle in Fig. 3, namely, it adjusts the
layer of coroutines, and handles the effect invocation in the continuation. For
the shallow handlers, the former is necessary but the latter is not, hence we have
prepared simplified functions continue0 and rehandle0.

Fig. 10. Translation from shallow handlers to coroutines

One-Shot Continuations: We are not the first to study the one-shot variant of
control operators. Bruggeman et al. gave a one-shot control operator call/1cc
under the observation that most continuations are run at most once [5]. They
showed that, by replacing call/cc by call/1cc, programs can be executed with
less memory consumption and higher performance. Berdine et al. introduced
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a linear type system as static approximation of one-shotness, and showed that
many control abstractions may be typed by their type system [2].

James and Sabry studied the yield operator for generators, and proved that
it is as expressive as one-shot delimited continuations [13]. They also introduced
a generalized yield operator for multi-shot continuations and showed the con-
nection between it and delimited-control operators.

Multicore OCaml is a dialect of OCaml which natively supports algebraic
effects by runtime stack manipulation. Its motivation is to write concurrent
programming in direct style [7]. It provides one-shot continuations, and if multi-
shot continuations are needed, they allow explicit copying of continuations.

Free Monad: We have already compared our work with free-monad based imple-
mentations of algebraic effects and handlers. On the positive side, it gives a
systematic and elegant implementation for various effects. Its downside is signif-
icant overhead in performance. Note that our embedding-based implementation
does not interfere with surface languages, while free-monad based implementa-
tions force a programmer to use the monadic style. With our implementation,
the surface language with algebraic effects and handlers can be presented in
direct style and monadic style.

7 Conclusion

We have presented a novel embedding technique for algebraic effects and handlers
into asymmetric coroutines, and shown a translation from the former to the latter
as a simple, direct, syntax-directed compositional translation. Compared with
other implementation methods, our technique is applicable to many languages
which have asymmetric coroutines. We have demonstrated the applicability of
our embedding by implementing the libraries in Lua and Ruby. Our technique
seems to be attractive for other researchers, and some of them have implemented
our translation for other languages such as JavaScript and Rust. We expect that
the simplicity of our implementation is advantageous to be used by more people,
more languages, and more applications.

The key of our development is the one-shotness restriction of continuations.
Our embedding relies on the fact that, many applications with computational
effects use continuations at most once, and they allow more efficient implemen-
tation than the general, multi-shot continuations. One-shotness is a dynamic
property, and its static approximation, linearly used (delimited) continuations,
or linear continuation-passing style, are studied in the literature. We hope that
the formal foundation of this paper’s result is studied more deeply, and corou-
tines and their connection with other control operators find a solid theoretical
foundation.

We briefly mention future work. There are many directions to extend our
work. Of particular interest is to prove the semantics preservation of our trans-
lation. Introducing an appropriate type system is also an interesting next step.
Another exciting issue is to relate and compare various control abstractions in
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the literature and in the practical programming languages. For instance, React,
a popular web framework for JavaScript, has a utility software Hooks12, which
allows programmers to build components with side-effects modularly. Abramov
pointed out the relevance between Hooks and algebraic effects in his blog post13,
and we think that investigating this relationship based on our work is promising.
Finally embedding algebraic effects and handlers in modern languages such as
Rust (via generators) may lead to a composable, efficient and safe implementa-
tion of controlful programs.

Acknowledgement. We are grateful for the reviewers of earlier versions of this paper
for constructive comments and numerous suggestions. The second author is supported
in part by JSPS Grants-in-Aid (B) 18H03218.
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Abstract. Asynchronous concurrent programing is a widely spread
technique offering some simple concurrent primitives that are restricted
in such a way that the resulting concurrent programs are deadlock free.
In this paper, we develop, study and extend a formal model of the under-
lying application programmer interface. For such a purpose, we formally
define the extension of a monad by some notion of monad references
uniquely bound to running monad actions together with the associated
asynchronous primitives fork and read. The expected semantics is spec-
ified via two series of equations relating the behavior of these extension
primitives with the underlying monad primitives. Thanks to these equa-
tions, we recover a fairly general notion of promises and prove that they
induce a monad isomorphic to the underlying monad. We also show how
synchronous and asynchronous reactive data flow programming eventu-
ally derive from such a formalization of asynchronous concurrency, uni-
formly lifting fork and read primitives from monadic actions to monadic
streams of actions. Our proposal is illustrated throughout by concrete
extensions of Haskell IO monad that allows for proving the soundness of
the proposed equations and the applicability of the resulting API.

1 Introduction

Asynchronous Programming with Promises. Asynchronous programming
is quite a popular approach for programming lightly concurrent applications
such as, for instance, web services or, as shown recently, realtime signal pro-
cessing and control [5]. Based on promises, a notion introduced in the late 70s
and eventually integrated into concurrent extension of functional programing
languages such as Lisp [3] or ML [12], asynchronous concurrent programming
is nowadays available in most modern programing languages, including modern
typed functional languages such as OCaml [9] and Haskell [8].

One of the reasons of such a success is that asynchronous programing is both
comfortable and safe. Comfort comes from asynchronism, safety comes from
deadlock freedom. Most asynchronous libraries allow for forking programs while
keeping promises of their returned values. Provided no other communication
mechanisms are used, the dependency graph resulting from creating and reading
promises is acyclic therefore deadlock free.
c© Springer Nature Switzerland AG 2020
A. Byrski and J. Hughes (Eds.): TFP 2020, LNCS 12222, pp. 180–203, 2020.
https://doi.org/10.1007/978-3-030-57761-2_9
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Monads of Promises vs Promises of Monads. Quite interestingly, in most
libraries, promises are defined with some flavor of a monad. Discussions about
the true monadic nature of promises are numerous on the web1, with various
and contradictory conclusions depending on the considered host languages and
libraries. Most of the resulting APIs even seem incompatible one with the others.

For instance, in a language like OCaml, where there is only an implicit
IO monad, the monadic flavor of promises is made explicit. In OCaml async
libraries [9], binding the fullfillement of a promise with some callback function
is offered via an explicit bind function, and simple promises can be created by
an explicit return function. In other words, OCaml promises are presented as if
they form a monad.

On the contrary, in Haskell, where there is an explicit IO monad, there is no
specific monad of promises [8]. Instead, the async library extends the IO monad
to asynchronous concurrency with function async :: IO a → IO (Async a) that
allows for forking (in a non blocking way) a IO action together with function
wait ::Async a → IO a that allows for waiting and reading (in a non destructive
way) the value returned by a forked action. Elements of Async a can be seen
as promises: promises of a returned value. However, while Async has a functor
instance, it does not have any monad instance. Haskell promises, when simply
derived from Haskell async library, are not monadic.

Instead, aiming at relating both Haskell and OCaml async APIs, one can
define another kind of promises in Haskell: elements of type IO (Async a). Such
an idea makes a lot of sense. An adequate function return can simply be defined
by:

returnAsync :: a → IO (Async a)
returnAsync a = async (return a)

However, as we shall see, there is only one possible associated bind function,
defined by:

bindAsync :: IO (Async a) → (a → IO (Async b)) → IO (Async b)
bindAsync m f = m >>= λr → async (wait r >>= f >>= wait)

that almost yields a valid monad instance. For such an instance to be valid,
we need to restrict further to those elements of Async (m a) that are, up to
equivalence, of the form async m for some monadic action m (see Theorem 4).
Then, the resulting monad of promises is shown to be isomorphic to the IO
monad itself (see Theorem 5).

In other words, the possibility of a specific monad of promises in Haskell is a
bit lost in the surrounding IO monad even though it can eventually be recovered.

Main Results. In this paper we shall first prove the above claims by under-
standing the properties satisfied by these asynchronous concurrent primitives,
not only as specific instances of the async Haskell library, but from some more

1 See e.g. Why are promises monads on stack overflow.

https://stackoverflow.com/questions/45712106/why-are-promises-monads
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general properties they satisfy as elements of an asynchronous concurrent pro-
graming interface. For such a purpose, we shall define a fairly general notion
of an asynchronous concurrent extension of an arbitrary monad, the current
Haskell async library providing such an extension instance for the IO Monad.

One type function generalizing Async and two primitives generalizing async
and wait are the key features of our proposal, defined as a Haskell type class. The
expected semantics of these primitives is then specified by means of equational
laws relating the behavior of the new primitives with the behavior of return
and bind in the underlying monad. One may wonder why bothering capturing
asynchronous concurrent semantics by means of equational laws. Elements of
an answer are numerous and essentially the same as when asking why defining
monad API semantics by means of monad laws.

These equations allow for defining unambiguously the semantics of the pro-
posed asynchronous primitives which properties can therefore be examined in full
details. We also seek at finding a smallest possible set of such primitives therefore
increasing the safety of our proposal: only a small kernel of primitives needs to
be implemented and proved correct, other needed asynchronous functions uni-
formly deriving from these primitives. The correctness of any instance of these
primitives can also be checked against these equations, either by means of some
derived test suites [1] or by formal proofs. Last, many of the proposed equations
yield rewriting rules that can be used, at compile time, for code optimization,
reducing the number of forked processes.

Such a general approach also opens the way for the programmer to design
his or her own monad, a kind of a domain specific monad, with its specialized
and safe API, and a specific asynchronous concurrent extension attuned towards
the expected application. As an example, we have recently defined the notion of
timed monads which asynchronous extensions are specific to the timed setting [6].
Indeed, in a timed monad, a timed action not only returns an explicit value but
also an implicit duration. Promises associated to timed monad actions should
also handle these durations.

The proposed formal approach eventually provides a better understanding
of what asynchronous concurrency is, compared to general concurrency. Sim-
ply said, both are defined by means of some notions of processes that can be
forked and, some corresponding (shall we say derived) notion of communication
channels through which forked processes can communicate one with the other.
However, a major difference lays in the way these communication channel are
handled.

In asynchronous concurrency, communication channels are only created when
forking a process, as (one way) broadcast channels from that forked processes.
The resulting communication graphs are acyclic. On the contrary, in general
concurrency, (two way) communication channels are freely created and passed as
parameter of forked processes. The resulting communication graphs are arbitrary
ones. The safety of asynchronous concurrency compared to general concurrency
follows from this simple but crucial difference.
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In this paper, such a difference is also be understood as a general guiding
principle for developing asynchronous concurrency itself, beyond the simplest
kind of processes one can define out of monad actions. As an example, we define
(monadic) streams of values as inductively nested monad actions and we show
that promises of such streams can simply be defined as streams of promises,
that is, inductively nested monad promises. An associated artefact has been
implemented in Haskell and available on the net2. It has been successfully applied
to realtime synchronous processing and asynchronous control of audio streams [5]
therefore illustrating the application scope of the proposed model.

Overview of Paper Content. Our presentation is organized as follows. After
a short review of the basic features of functors and monads in Sect. 2, our
abstraction of the async library is presented, in Sect. 3. There, a generic type
class MonadRef specifies the asynchronous concurrent extension of a monad m,
defined by an abstract type Refm a, whose elements, called monad references
are created by fork ::m a → m (Refm a) and used by read ::Refm a → m a. Sim-
ply said, every monad reference uniquely refers to a forked monad action which
returned value can be read via that monad reference. The expected semantics of
monad references is formalized by means of two series of equational laws describ-
ing the expected interplay between the monad primitives return :: a → m a and
bind ::m a → (a → m b) → m b and the asynchronous primitives fork and read .

In Sect. 3, a first series of laws aim at capturing the basic semantics of monad
references: how monad references are indeed bound to forked actions. These laws
essentially states that fork and read behave in a coherent way with respect to the
underlying monad law. This allows for proving in Sect. 4 that the type function
m ◦ Refm is a functor and, under some adequate restrictions, also a monad
isomorphic to m itself.

In Sect. 5, a second series of laws is more concerned with the asynchronous
and concurrent nature of monad references. One idempotency and two commu-
tation rules are stated for ensuring that actions are indeed executed when forked
and read actions essentially have no side effects but waiting for the referenced
actions to terminate. As an illustration of this second series of laws, a number of
instances of the MonadRef class, visibly not asynchronous nor concurrent but
satisfying the first series of laws, are shown to be eventually ruled out by these
additional rules.

In Sect. 6, we show how the notion of monad references can be lifted to more
complex data types such as monadic streams. In some sense, monad streams can
be forked into promises of monad streams that are simply encoded as streams of
promises. Asynchronous concurrency is then further developed in Sect. 7. Defin-
ing a general notion of monad structure references, we eventually prove by exam-
ples that asynchronous concurrency is a fairly general programing paradigm that
can be extended far beyond the existing libraries.

The general coherence and relevance of our proposal is illustrated through-
out by defining a simple valid extension of Haskell IO monad, a self-contained
simplified version of the existing Haskell async library.
2 See https://github.com/djanin/TimedMonadStream.

https://github.com/djanin/TimedMonadStream
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Observational Equivalence in Haskell. Although aiming at achieving a for-
mal modeling of asynchronous concurrency, throughout the paper most concepts
are presented by means of Haskell type classes which instances are thus requested
to satisfy some number of equational laws. Compared to a purely theoretical app-
roach, such a presentation comes with some overhead. However, an immediate
benefit is that it is directly applicable as demonstrated by associated libraries
developed both in Haskell and, to a lesser extent, OCaml (see footnote 2).

Throughout the paper, we consider that two elements a1 a2 ::a of a given type
a are (observationally) equal when there are indistinguishable in any context of
use. In other words, denoting by ≡ such an observational equality, we have a1 ≡
a2 when for any function f ::a → IO (), there is no observable difference between
running f a1 and f a2 in the (idealized) IO monad. For instance, when instance
of the class Eq with a defined equality ==, the observational equivalence ≡ in
a type a is generally finer than the defined equality. Whenever a1 ≡ a2 we have
a1 == a2. Indeed, the context function λx → return (a1 == x ) distinguishes a1
and a2 in the case a1 == a2 is false3. In other words, observational equivalence
in a given type depends on the primitives defined on that type.

2 Preliminaries on Monadic Functors and Monad Actions

For our presentation to be reasonably self-contained, we review below the defi-
nition and some properties of functors and monads, following the programmer’s
point of view offered by the pioneering works of Moggi [10] and Wadler [13].

2.1 Functors

A (type) functor is a type function m :: ∗ → ∗ equipped with an fmap function
as specified by the following class type:

class Functor m where
fmap :: (a → b) → m a → m b

such that the following laws are satisfied:

m ≡ fmap id m (1)
fmap (g ◦ f ) m ≡ fmap g (fmap f m) (2)

for every monad action m ::m a and functions f : a → b and g : b → c. In other
words, the function fmap extends to typed functions the function m over types.

3 This is a bit over simplified for one could also require such a distinguishing context
to be itself definable in Haskell.
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2.2 Monads

A monad is a (type) functor m :: ∗ → ∗ equipped with two additional primitives
return and bind as specified by the class type:

class Functor m ⇒ Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

The infix operator (>>=) is called bind when used as a function. Elements of type
(m a) are called monad actions.

Every instance of the Monad class shall satisfies the following laws:

return a >>= f ≡ f a (3)

m >>= return ≡ m (4)

(m >>= f ) >>= g ≡ m >>= (λx → f x >>= g) (5)

for every monad action m :: m a and functions f :: a → m b and g :: b → m c.
The first and second equations state that, in some sense, return acts as a

neutral element for the bind, both on the left (3) and on the right (4). The third
equation states that the bind operator is associative (5) in some sense.

2.3 Coherence Property

Under such a presentation of monads, every monad instance shall also satisfy
the following coherence property :

fmap f m ≡ m >>= (return ◦ f ) (6)

for every monad action m :: m a and function f :: a → b. This equation states
that the mapping function induced by the monad primitives equals the mapping
function defined in the parent Functor class instance. Indeed, one can check
that if m is a monad then the function λf m → m >>= (return ◦ f ) satisfies both
functor laws, i.e. any monad is indeed a functor.

2.4 Alternative Syntax for Binds

Haskell do-notation allows writing simpler composition of monad actions.
Indeed, we may write:

do {x1 ← m1; x2 ← m2; ...;xn−1 ← mn−1;mn}

the variables x1, x2, . . . , xn−1 possibly omitted when not used, in place for the
bind series m1 >>= λx1 → m2 >>= λx2 → ...mn−1 >>= λxn−1 → mn with m1,
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m2, . . . , mn some monadic actions possibly depending on variables with strictly
lower indices.

Such a notation has a clear flavor of imperative programing. Moreover, since
action mi possibly depends on the values returned by all actions mj with j < i,
it even seems that such a composition of actions is necessarily evaluated from
left to right. However, this is not true in general unless the considered monad is
strict as the IO Monad reviewed below.

2.5 The IO Monad

For the reader not much familiar with monad programing, we review here some
basic features of Haskell IO monad; a monad that allows pure functions to be
used in communication with the real world.

The archetypal functions in the IO monad are getChar :: IO Char and
putChar :: Char → IO () that respectively allows for getting the next char-
acter typed on the keyboard (getChar), or printing on the screen the character
passed as argument (putChar). As a usage example, one can define the function:

echo :: IO ()
echo = getChar >>= putChar >>= echo

that, when ran, repeatedly waits for a character to be typed on the standard
input and prints it out on the standard output.

An important feature of monadic IO actions, as monad actions, is that they
are not executed unless passed to the top level. This illustrates the fact that,
especially in a concurrent setting, monads, with return and bind functions, can
be used for dynamically defining actions that can later be run or even forked.

Another important aspect of the IO monad in Haskell is that it is a strict
monad in the sense that, when executing bind m f , the monadic action m
is executed for its argument to be given to function f before evaluating f . This
contrasts significantly with Haskell principle of lazy evaluation but clearly allows
a better control, or even any control at all, on IO scheduling.

In other words, asynchronous extension of the IO monad offers a way to
reintroduce (controlled) laziness and, therefore, parallelism into such a strictness.

3 Elementary Monad References

We describe here the first half of our formalization of promises by defining the
notion of monad references with a first series of equations that suffices for analyz-
ing the monadic nature of (the derived notion of) promises in Sect. 4. Analyzing
the concurrent nature of these monad references is postponed to Sect. 5.
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3.1 Monad Reference

Simply said, a monad reference is a reference to a “running” monad action,
created by forking such an action. Such a monad reference can then be read for
accessing the value returned by that referenced action. In terms of Haskell type
classes, this yields:

class Monad m ⇒ MonadRef m where
type Refm ::∗ → ∗
fork :: m a → m (Refm a)
read :: Refm a → m a

where:

(a) Refm a is a type of monad references bound to running actions of type m a,
(b) fork m is an action that launches the execution of the monadic action m

and (immediately) return a monad reference bound to that action,
(c) read r is an action that (possibly) waits for and returns the value returned

by the running action bound by the monad reference r ,

respectively generalizing Async a, async and wait in the async library defined
over Haskell IO monad.

3.2 Basic Semantics Laws

Every instance of the MonadRef class must first satisfy the following laws:

(fork m) >>= read ≡ m (7)

fork ◦ read ≡ return (8)

fork (m >>= f ) ≡ (fork m) >>= λr → fork (read r >>= f ) (9)

for every monad action m :: m a and function f :: a → m b.
Intuitively, Law (7) states the basic semantics of forks and reads: reading

a just forked action essentially behaves like that executing action, side effects
included! Law (8) states that forking a read essentially amounts to returning an
equivalent reference. In other words, reads followed by forks essentially behaves
like kind of identities.

Last, Law (9) states that forking a bind can be decomposed into two succes-
sive forks, provided the reference returned by the first fork is passed through as
argument of the second one. To some extent, binds distribute over forks.

In other words, these three laws essentially ensure that fork and read behave
in a way compatible with the structure of the monad m. This will be formally
stated in Sect. 4.
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3.3 Default IO Monad References

The simplest and truly concurrent instance of IO references one can define,
thanks to mutable variables MVar and the native thread provided by forkIO in
concurrent Haskell [7], is described by the following instance:

newtype MRef a = MRef (MVar a)
instance MonadRef (IO) where

type RefIO = MRef
fork m = do {v ← newEmptyMVar ; forkIO (m >>= putMVar v);

return (MRef v)}
read (MRef v) = readMVar v

With this definition, one can review all expected rules and check to which extent
they are satisfied. Law (7) is satisfied thanks to the fact that the side effects
happening when executing m are the same as the side effects happening when
executing forkIO m.

Law (8) is less obviously satisfied. Indeed, two distinct mutable variables are
created and we need them to be observationally equivalent, at least when used
as monad references therefore encapsulated under MRef . It occurs that, they
refer to two forked monad actions that both return the same value, essentially
at the same time. Since they can only be read in a non destructive way (via
readMVar), these two encapsulated mutable variables can thus be replaced one
with the other without observable differences.

Law (9) validity essentially follows from the same reason, forkIO being non
blocking and readMVar returning, in a non destructive way, the expected value
essentially as soon as it is available.

Again, encapsulating mutable variables with MRef is crucial for hiding all
the other primitives usually defined over MVars such as, for instance, takeMVar
that performs a destructive read on a mutable variable.

3.4 Comparison with async Library

Our definition of monad references is inspired and looks like a generalization of
the async library of Haskell. As such, one could define instead another default
IO instance of monad references by taking RefIO = Async, fork = async and
read = wait . Would such an instance be valid? It occurs that Async a just as
MVar a is an instance of the class Eq therefore, as discussed in the introduction,
this seems to prevent Laws (8) and (9) to be satisfied. However, encapsulating
Asyncs just as done above for MVars also solves such an issue. Then, one could
prefer such a Async based instance for it offers a better support for interruption
handling [8].

3.5 Counter Examples for Other Possible Laws

We have stated some equational properties that should be satisfied by instances
of monad references, and we shall even state some more. Still, one may wonder
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how to check that an equality is not satisfied. The above instance of IO references
is our main source of counter-examples for examining other possible laws or bad
instances. The reason for this is that the IO monad conveys an implicit but
rather strong notion of time based on IO events.

More precisely, we have already mentioned that its bind is strict and some
actions in the IO monad are blocking, such as getChar , while some others are
not, such as printChar c. Two complex actions can thus be distinguished by the
visible side effects they may performed before being eventually blocked.

For instance, with IO references, one can observe that fork m is non blocking,
regardless of the forked action m. This provides the following provable example
of inequality that we use several times in the text. With m0 :: m (RefIO Char)
defined by m0 = getChar >>= (fork ◦ return), we have

fork (m0 >>= read) �≡ m0

even though both actions essentially return equivalent monad references.
Indeed, the action m0 returns a reference towards the next typed character.

But its blocks until that character is typed. The action fork (m0>>=read) returns
a similar reference since, by (7) and (4), it is equivalent to fork (getChar).
However, it is non blocking since fork is non blocking.

In other words, it is false that fork (m >>= read) ≡ m in general. However,
in the next section, we shall use the fact that, provided m = fork m ′ for some
m ′ :: m a, then such an equation does hold.

4 Elementary Properties of Monad References

In this section, we study the properties deriving from our equational definition
of elementary monad references. Readers more interested in using asynchronous
extensions of a monad may directly jump to Sect. 5 for a discussion about the
concurrent nature of monad references.

In this section, we assume a type function m ::∗ → ∗ with its functor instance
Functor m, its monad instance Monad m, and its extension with monad refer-
ences as a MonadRef m instance. This means that we assume there are the
function fmap, return, bind , fork and read typed as described above and satis-
fying (1)–(6) for monad primitives, and laws (7)–(9) for monad references primi-
tives. As a matter of fact, the categorical property we examine here only depends
on the above laws.

4.1 Induced Functor

Observe that, although Refm ::∗ → ∗ is a type function, it cannot be a functor
since there is no function that allows for creating or reading a monad reference
without entering into the monad m. As well known by Haskell programmers,
there is no general no way to go outside a monad. However, one can prove:
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Theorem 1. The type function m ◦ Refm equipped with fmapRef defined by

fmapRef :: MonaRef m ⇒ (a → b) → m (Refm a) → m (Refm b)
fmapRef f m = m >>= λr → fork (read r >>= (return ◦ f ))

yields a valid functor instance.

Proof (sketch of). The fact that fmapRef satisfies law (1) follows from (8) and
standard monad laws. The fact that fmapRef satisfies law (2) follows from (9)
and standard monad laws. 	

In other words, we have proved that the composition m ◦Refm, that maps every
type a to the type m (Refm a) of monad actions returning monad references, is
itself a functor. The reader may find surprising that law (7), though describing
the basic semantics of forks and reads, is not mentioned here. It turns out that
it has already been used in order to simplify the definition of function fmapRef
given here as shown in Lemma 3.

Remark. We could have put fmapRef f m = fork (m >>= read >>= return ◦ f )
instead. But then, we would have fmapRef id m = fork (m >>= read) which, as
shown at the end of Sect. 3, is distinct from m in the IO monad as soon as m is
blocking. In other words, such an alternative definition fails to satisfy law (1).

4.2 Induced Natural Transformations

Functors m and m ◦ Refm are tightly related. Indeed, slightly abusing Haskell
notations, we define the monad transformations:

Fork :: m .−→ m ◦ Refm
Forka = fork :: m a → m (Refm a)
Read :: m ◦ Refm

.−→ m
Reada = λm → m >>= read :: m (Refm a) → m a

defined for every type a, where .−→ denotes the (non Haskell) natural transfor-
mation type constructor, and we have:

Theorem 2. Both Fork and Read are natural transformation, that is, for every
function f :: a → b we have:

fmapRef f (fork m) ≡ fork (fmap f m) (10)

for every action m :: m a, and we have:

fmap f (m >>= read) ≡ fmapRef f m >>= read (11)

for every action m ::m (Refm a). Moreover, functor m turns out to be a retract
of functor m ◦ Refm, that is, Read ◦ Fork is the identity transformation.

Proof (sketch of). Equation (10) follows from Law (9), and Eq. (11) follows from
Law (7). The fact Read ◦ Fork ≡ Id follows from Law (7). 	
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The reverse composition Fork ◦ Read is not the identity as shown in the IO
monad by fork (m >>= read) �≡ m whenever m is a a blocking monad action. In
other words, there may be more behaviors definable with monad references than
behaviors definable without.

4.3 The Possibility of a Monad

We have shown that m ◦ Refm is a functor. Is this functor monadic? Strictly
speaking, this is not true as we shall see here by enumerating all possible defini-
tions for returns and binds.

First, up to equivalent definitions, the unique possibility of a function return
is defined by:

returnRef :: MonadRef a ⇒ a → m (Refm a)
returnRef = fork ◦ return

for it is the unique uniformly defined function inhabiting its type. For a function
bind there are four possible candidates:

bindRef :: m (Refm a) → (a → m (Refm b)) → m (Refm b)
(a) bindRef m f = fork (m >>= read >>= f >>= read)
(b) bindRef m f = m >>= λr → fork (read r >>= f >>= read)
(c) bindRef m f = m >>= read >>= λa → fork (f a >>= read)
(d) bindRef m f = m >>= read >>= f

Of course, the fact that such a list is, up to equivalence, complete necessitates a
proof. One can observe that we have at least enumerated all possible insertions
of a fork into the possible series of binds. In some sense, the IO monad instance
forces to respect functional dependencies in sequence. Then it seems that adding
additional forks and reads would essentially yield equivalent bind candidates
thanks to rules (7)–(9).

Lemma 3. Bind candidates (a), (c) and (d) fail to satisfy the right unit monad
law (4) in the IO monad instance.

In any instance, the bind candidate (b) satisfies the right monad unit law (4),
the monad associativity law (5), as well as the coherence law (6) with respect to
fmapRef , that is, with candidate (b), we have:

fmapRef f m ≡ bindRef m (returnRef ◦ f ) (12)

for every m :: m (Refm a) and f :: a → b.
Moreover, while the bind candidate (b) fails to satisfy the left unit monad

law (3) in the IO monad instance, if we restrict to functions of the form fork ◦ f
some f :: a → m b, then the bind candidate (b) also satisfies law (3) in arbitrary
monad instances.

In other words, Lemma 3 states that the bind candidate (b) is a good candi-
date for us to prove that m ◦ Refm is our expected monad of promises provided
we restrict ourselves to the subtype of m (Refm a) defined by elements of the
form fork ◦ m for some monad action m :: m a.



192 D. Janin

4.4 The Expected Monad of Promises

In Haskell, such an expected subset4 of m (Refm a) is defined by the type:

newtype Promise m a = Promise {thePromise :: m (Refm a)}

only equipped with the two primitives:

forkP :: MonadRef m ⇒ m a → Promise m a
forkP = Promise ◦ fork
readP :: MonadRef m ⇒ Promise m a → m a
readP p = (thePromise p) >>= read

Theorem 4. The following definitions are valid instances of the Functor and
Monad type classes:

instance MonadRef m ⇒ Functor (Promise m) where
fmap f (Promise m) = Promise (fmapRef f m)

and

instance MonadRef m ⇒ Monad (Promise m) where
return = Promise ◦ returnRef
(>>=) (Promise m) f

= Promise (bindRef m (thePromise ◦ f ))

with bind candidate (b) for bindRef .

Proof (sketch of). The fact Promise m is a functor follows from Theorem 1.
The fact it is also a monad follows from Lemma 3 proving additionally, by
induction on the complexity of their definition, that every definable inhabitant
of Promise m a, that is, defined only with ForkP , fmap, return and bind , is
equivalent with an element of the form Promise (fork m) for some m :: m a. 	

Theorem 5. Categorical functors m and Promise m are isomorphic.

Proof (sketch of). Follows from Theorem 2 and the proof argument of Theorem 4,
since, restricted to monad action of the form fork m with m :: m a, we indeed
have fork (fork m >>= read) ≡ fork m, by law (7), therefore Promise ◦ Fork is
the inverse of Read ◦ thePromise. 	

As a special case within the explicit Haskell IO monad, we thus have defined a
monad of promises quite smilar to the one defined in the implicit IO monad of
OCaml [9].

4 We could call it a subtype for it has fewer inhabitants. However, since it also supports
fewer operations, such a name for type Promise m a would be confusing.
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Of course, the purpose of such a definition of promises in Haskell is merely
for stating and proving the above theorems. Programmers are not advised to
use such a definition of promises for this would result in having to combine two
distinct monads. Instead, from now on, we simply use monad references and the
associated primitives, therefore staying within the underlying monad m, much
in the same way one would use the async library staying within the IO monad.

5 Concurrent Monad References

We aim at capturing asynchronous concurrent behaviors by means of the notion
of monad references. However, as we shall soon see, Laws (7)–(9) fail to achieve
by themselves such a goal.

5.1 Pathological Instances

Each of the following instances, though satisfying Laws (7)–(9), violates (at least)
one of the intuitive properties we expect asynchronous concurrent primitives to
satisfy.

Read Effect-Freedom (A). As a first example, the following instance violates
the intention that a monad reference should be freely readable, essentially with
no side effects but waiting for the termination of the forked action.

instance MonadRef IO where
type RefIO = IO
fork = return :: IO a → IO (IO a)
read = id :: IO a → IO a

Such an instance, that could be generalized to an arbitrary monad, is valid.
Indeed, law (7) follows from (3), law (8) is immediate, and law (9) follows
from (5). However, reading such a kind of reference just amounts to performing
the referenced action. Read actions therefore have arbitrary side effects.

Non-blocking Fork (B). As another example, despite the fact we said fork
should be instantaneous, or at least non blocking, the following valid instance
provides a counter example to that claim.

instance MonadRef IO where
type RefIO = MRef
fork m = m >>= (MRef ◦ newMVar)
read (MRef v) = readMVar v

where newMVar :: a → m (MVar a) creates a new mutable variable filled with
its argument. Compared to the instance of IO references given in Sect. 3, we just
have changed the definition of fork . In this new instance, forking an action waits
for that action to be completed before returning a reference. As a consequence,
with m = getChar , the action fork m is now blocking.
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Read Independence (C). With a bit more of coding, the following instance,
although with non blocking forks, violates our requirement that forking an action
amounts to executing it.

instance MonadRef IO where
type RefIO a = MRef (Either (IO a) a)
fork m = MRef (newMVar (Left m))
read (MRef v) = do {c ← takeMVar v ;
a ← case c of {Left m → m;Right a → return a };
putMVar v (Right a); return a }

In this instance, a forked action is indeed executed only when its associated
reference is read for the first time.

5.2 Concurrency Laws

We aim now at designing a second series of equational laws, called concurrency
laws, that enforce the properties detailled above. From now on, these additional
laws must also be satisfied by any monad instance of the class MonadRef .

Following a typical approach of concurrency theory, these additional laws
simply state that certain idempotency and commutation properties are satisfied:

read r ≡ read r >> read r (13)

fork m1 >>= λr1 → (fork m2 >>= λr2 → return (r1, r2))
≡ fork m2 >>= λr2 → (fork m1 >>= λr1 → return (r1, r2)) (14)

read r1 >>= λx1 → (read r2 >>= λx2 → return (x1, x2))
≡ read r2 >>= λx2 → (read r1 >>= λx1 → return (x1, x2)) (15)

for every monad reference r r1 r2 ::Refm a and monad action m1 m2 ::m a, with
m1 >> m2 denoting the composition m1 >>= λ → m2.

5.3 Discussion on Concurrency Laws

The intuitive meaning of these laws is detailed below.
By stating that reading actions are idempotent, Law (13) implies that values

returned by read actions only depends on their parameter reference, i.e. reads
are non destructive, and that side effects associated to readings a given reference
occurs during the execution of the first (terminated) occurrence of such a read.
After the return of a first read, any further reading of the its reference is side
effect free and essentially instantaneous. The pathological instance (A) is ruled
out by such a law. Indeed, there, monad references are arbitrary monad actions
and reading amounts to executing them. Still, both pathological instances (B)
and (C) satisfy such a law.
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By stating that fork actions commute, Law (14) enforces the instantaneity of
fork actions. This law rules out the pathological instance (B). Indeed, a block-
ing action such as getChar visibly does not commute with a non blocking but
observable action such as printChar c. With instance (B) the forks of these two
actions will surely not commute. However, the pathological instance (C) still
satisfy such a law.

Last, by stating that read actions commute, Law (15) enforces the fact that
the execution of a forked actions cannot depend on the associated readings.
Monad references must truly refer to running monad actions, and read action
cannot have other side effect but waiting for the these running action to termi-
nate. Our last pathological instance (C) is eventually ruled out by such a rule
as shown by forking both a blocking IO action and an observable non blocking
one. The resulting reads do not commute.

In other words, these three additional rules have ruled out all pathological
instances we could think of. This increase our confidence in the fact that they
eventually form a complete axiomatization of asynchronous concurrent behav-
iors.

5.4 Validity in the Asynchronous Concurrent Extension of the IO
Monad

In the IO instance of monad references defined in Sect. 3, law (13) follows from
the fact that the action readMVar is non destructive.

Law (14) is perhaps the most debatable one. It may wrongly suggest that the
side effects of action m1 and m2 commute. This is not true. In the concurrent
framework of Haskell, these side effects are executed in parallel therefore, up to
the possible non determinism induced by that parallelism, forking m1 right before
m2 or forking m2 right before m1 essentially produces the same side effects.

Law (15) is easily accepted as valid since reads essentially wait for termination
of (parallel) forked actions. Waiting for the termination of one action and then
another just amounts to waiting for the termination of both.

5.5 Commutation Rules and Induced Non Determinism

Of course, concurrency yields non determinism as made explicit by the commu-
tations of forks. An example of non determinism on outputs is given by any of
the following equivalent programs:

fork (putChar ’a’) >> fork (putChar ’b’)
fork (putChar ’b’) >> fork (putChar ’a’)

that print non deterministically either "ab" or "ba". An example of non deter-
minism on inputs is given by any of the following equivalent programs:

fork (getChar) >>= λr1 → fork (getChar) >>= λr2 → read r1 >>= printChar
fork (getChar) >>= λr2 → fork (getChar) >>= λr1 → read r1 >>= printChar
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that both non deterministically print either ’a’ or ’b’ when reading the string
"ab" from the standard input.

6 Asynchronous Concurrency and Data Flow Programing

So far, we have only defined references to running monad actions. We aim now
at extending monad references to generalized monad actions, that is, structures
of nested monad actions. Even though this can easily be generalized to more
complex structure, we simply review here the case of monadic streams as they
can be used for data flow programing in Haskell [5].

6.1 Monad Streams

Monad streams are defined by the following inductive data type:

data Stream m a = Stream {next :: m (Maybe (a,Stream m a))}

In other words, a monad stream is essentially defined as a monad action that
either returns nothing when the stream terminates, or just a value and the action
defining the continuation of that stream otherwise. As an example of a monad
stream, there is the standard input stream defined by:

stdinStream :: Stream IO Char
stdinStream = Stream $ do {a ← getChar ; return $ Just (a, stdinStream)}

that, when executed, eventually returns all the characters typed from the stan-
dard input (stdin) one after the other.

A function printing a stream of characters to the standard output (stdout)
can also be defined by:

streamStdout :: Stream IO Char → IO ()
streamStdout (Stream m) = do {c ← m; case c of

{Nothing → return (); Just (a, s) → do {putChar a; streamStdout s }}}

Then, the function echo described above as an example of function in the IO
monad can then be recoded by:

echo = streamStdout stdinStream

Such an example illustrates fairly well the power of monad streams for data
flow programing, a kind of monad programing technique fairly popular among
Haskell programmers.
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6.2 Derived Functor Instance

As a typical example of monad stream programing, there is the following functor
instance.

instance Monad m ⇒ Functor (Stream m) where
fmap f (Stream m) = Stream $ do {c ← m;

case c of {Nothing → return Nothing ;
Just (a, sc) → return $ Just (f a, fmap f sc)}}

Every function fmap f ::Monad m ⇒ Stream m a → Stream m b is an archetypal
example of a synchronous (or isochronous) function over monadic streams.

6.3 Horizontal Monoid Structure

There is the following monoid instance that essentially lifts to monadic stream
the (free) monoid encoded by the list data type.

instance Monad m ⇒ Monoid (Stream m a) where
mempty = Stream (return Nothing)
(♦) (Stream m) s = Stream $ do

{c ← m; case c of {Nothing → next s;
Just (a, sc) → return $ Just (a, sc ♦ s)}}

where the neutral element mempty is the (immediately) empty streams and (♦)
is function that concatenates two monad streams one after the other.

In a concurrent and reactive context, the horizontal concatenation is of little
use unless its first argument is a constant and thus acts as a delay/buffering. We
shall see below, in link with monad references, a much more interesting monoid
instance for monad streams (called vertical) and the monad instance it induces.

6.4 Monad Stream References

Observe that sharing a monad stream such as stdinStream among several pro-
cesses would result in distributing the standard inputs among these processes.
The notion of monad references can be extended to monad streams and allows
for duplicating monad streams. More precisely, there is a generalized notion of
references applicable to monad streams defined by:

type StreamRefm = Stream Refm

i.e. a reference to a monad stream is simply a stream of nested monad references.
Then, forking a monad stream and reading the resulting monad stream ref-

erence can simply be defined by:

forkStream :: MonadRef m ⇒ Stream m a → m (StreamRefm a)
forkStream = fork (evalAndFork s) >>= return ◦ Stream
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where
evalAndFork (Stream m) = m >>= mapM

(λ(a, sc) → do {rc ← fork (evalAndFork sc); return (a,Stream rc)})
readStream :: MonadRef m ⇒ StreamRefm a → m (Stream m a)
readStream (Stream r) = return ◦ Stream $ read r >>=

mapM (λ(a, rc) → return (a, readStream rc))

A major application of forkStream and readStream is the possibility to share
the content of a stream without duplicating its side effects. Such a possibility is
especially useful in reactive on-the-fly data flow programming [5]. More formally,
one can prove that:

Lemma 6. For every s :: Stream m we have:

forkStream s >>= readStream ≡ return s
forkStream ◦ readStream ≡ return

In other words, with monadic stream references defined as above, the first two
laws (7)–(8) lift to the case of monadic stream references. For Eq. (9) to be
satisfied by streams and stream references, we eventually need to equip monad
streams with an adequate monad structure.

7 More Asynchronous Concurrency

In order to equip monad streams with an adequate monad instance, we eventually
define additional (asynchronous) concurrent primitives that cannot be derived
from the read and fork primitives defined so far.

7.1 More Concurrent Primitives

These primitives are specified by the following type class refinement of the type
class MonadRef :

class MonadRef m ⇒ MonadRefPlus m where
tryRead :: Refm a → m (Maybe a)
parRead :: Refm a → Refm b → m (Either a b)

where:

(a) tryRead r is the action that immediately returns nothing if the referenced
action is not terminated or just its returned value otherwise,

(b) parReadRef r1 r2 is the action that returns the value of the earliest termi-
nated referenced actions or, in the case both actions are already terminated
or are terminating at the same time, either of the returned values.
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In the IO monad, such additional monad reference primitives can be defined by:

instance MonadRefPlus IO where
tryRead (MRef v) = tryReadMVar v
parRead r1 r2 = do

{v ← newEmptyMVar ;
forkIO (read r1 >>= (tryPutMVar v) ◦ Left >> return ());
forkIO (read r2 >>= (tryPutMVar v) ◦ Right >> return ());
readMVar v }

We may aim at axiomatizing the behavior of these newly introduced primitives.
For instance, one may expect to have:

fork m >>= tryRead ≡ m >>= return when m is instantaneous,
fork m >>= tryRead ≡ return Nothing when m is not instantaneous.

However, these laws seem to be difficult to be enforced at runtime and, at compile
time, they require some typing of action duration, a typing that is not (yet)
available.

7.2 Vertical Monoid Structure

Thanks to parRead one can define the merge of two monadic streams by:

merge :: MonadRefPlus m ⇒ Stream m a → Stream m a → Stream m a
merge s1 s2 = Stream $ do

{r1 ← forkStream s1; r2 ← forkStream s2; return (next $ mergeRef r1 r2)}

with

mergeRef :: MonadRefPlus m ⇒
Stream Refm a → Stream Refm a → Stream m a

mergeRef (Stream r1) (Stream r2) = Stream $ do
{c ← parRead r1 r2; case c of {

Left Nothing → next $ readT (Stream r2);
Right Nothing → next $ readT (Stream r1);
Left (Just (a, src1 )) → return $ Just (a,mergeRef src1 sr2);
Right (Just (a, src2 )) → return $ Just (a,mergeRef sr1 src2 )}}

Then, up to the possible non determinism yields by parRead , the type
stream m a of monadic streams equipped with merge is essentially a commuta-
tive monoid with the empty stream mempty as neutral element.

7.3 Derived Stream Monad

Thanks to such a vertical monoid structure, we have the following valid monad
instance:
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instance MonadRef m ⇒ Monad (Stream m) where
return a = (Stream ◦ return ◦ Just) (a,mempty)
(>>=) (Stream m) f = Stream $ do

{c ← m; case c of
{Nothing → return Nothing ;
Just (a,mc) → next $ merge (f a) (mc >>= f )}}

There, the flattening operation essentially amounts to merge monadic substreams
from the moment they appear. This feature is especially useful when handling
asynchronous control flows [5].

Lemma 7. For every stream s :: Stream m a and function f :: a → Stream m b,
we have:

forkStream (s >>= f ) ≡ forkStream s >>= λr → forkStream (readStream r >>= f )

In other words, the monad reference Law (9) also lifts to monad stream refer-
ences.

7.4 Stream Monad as a Monad Extension

The above monad instance of Stream m is also an extension of the monad m in
the sense that, with:

liftStream :: m a → Stream m a
liftStream m = Stream $ do {a ← m; return $ Just (a, emptyStream)}

we have:

Lemma 8. Function liftStream is a natural embedding of m into Stream m
with:

liftStream ◦ return ≡ return
liftStream (m >>= f ) ≡ liftStream m >>= liftStream ◦ f

for every action m :: m a and function f :: a → m b.

7.5 Generalization Monad References to Monadic Structures

The above treatment of monadic streams seems to fit a fairly general notion of
references to monadic structures. More precisely, we can define the type class:

class (MonadRefPlus m,Monad (t m)) ⇒ MonadDataRef t m where
forkT :: t m a → m (t Refm a)
readT :: t Refm a → m (t m a)

where, in any instance, primitives forkT and readT are required to satisfy the
following laws:

(forkT s) >>= readT ≡ return s (16)
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forkT ◦ readT ≡ return (17)

forkT (s >>= f ) ≡ (forkT s) >>= λr → forkT (readT r >>= f ) (18)

for every monad structure s :: t m a and function f :: a → t m b.
Then, thanks to Lemmas 6 and 7 there is the following valid instance for

monad stream references:

instance MonadRefPlus m ⇒ MonadDataRef Stream m where
forkT = forkStream
readT = readStream

It is probably the case that such a construction can be generalized to arbitrary
monadic versions of inductive types. However, such a study goes out of the scope
of the present paper.

7.6 More Parallelism

So far, we can fork one monad action, or a stream of nested monad actions. One
may wonder if such an asynchronous fork can be generalized to other structures
such as lists, or, more generally, traversable structures. Actually, this can easily
be done by defining:

forkAll :: (Traversable t ,MonadRef m) ⇒ t (m a) → m (t (Refm a))
forkAll = mapM fork

The question then becomes, how to handle the resulting structure of monad
references. One possibility is to uniformly define:

sortRefs :: (Traversable t ,MonadRefPlus m) ⇒ t (Refm a) → Stream m a
sortRefs = foldMap (liftStream ◦ read)

that turns a traversable structure of monad references into the monad stream
of values returned by the referenced actions ordered by termination time. In
other words, sortRefs generalizes parRead to arbitrary traversable structures.
Moreover, using functions forkAll and sortRefs, much like using primitives fork
and read , is safe for it yields no deadlock.

7.7 Asynchronous vs General Concurrency

The above generic definition of sortRef suffers from a rather severe drawback:
its complexity in terms of call to parRead , therefore in number of fork , is likely
to be quadratic in the size of the traversable structure.

With (fully) concurrent Haskell, this is not a necessity as shown by the fol-
lowing direct implementation of sortRefs in the IO monad:
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sortRefsIO ::Traversable t ⇒ t (RefIO a) → IO (Stream IO a)
sortRefsIO t = do {v ← newEmptyMVar ;

mapM (λr → forkIO (read r >>= putMVar v)) t ;
return $ mvarToStream v (length t)}

where
mvarToStream 0 = mempty
mvarToStream v n = Stream $ do

{a ← takeMVar v ; return $ Just (a,mvarToStream v (n − 1))}

with a linear number of forks.
In other words, despite the many and somewhat unexpected programming

possibilities offered by asynchronous concurrency, illustrated among other things
by monad stream references, asynchronous concurrency does not offer as many
programming possibilities as a more general concurrent programming framework.
This is no surprise. This is the price to pay for the increase of robustness and
safety offered by asynchronous concurrency compared to general concurrency.

8 Related Works and Conclusion

The study proposed here started as an attempt to clarify the properties of an
existing and somewhat ad hoc but succesfull experiment of realtime audio pro-
cessing and control in Haskell [5]. As such, it was first designed as a stand alone
approach that was a priori not much related with former theoretical investiga-
tions. A posteriori, our proposal offers an equational formalization of the seman-
tics of (a kernel of) the existing async library. To the best of our knowledge, no
such an axiomatization has yet been proposed.

We present a fairly generic notion of a monad extension. A first series of
laws describes how to go back and forth between the underlying monad m and
its extension m ◦ Refm via a retraction pair of natural transformations. The
underlying general category theoretic schema seems rather orthogonal to more
classical existing techniques for combining monads [2,10]. Such a notion of a
monad extension is probably worth being studied more in the depth.

A second series of laws enforces concurrency as shown by ruling out patho-
logical instances. However, there is no guarantee our proposal is complete. There
could well be other pathological instances violating our intuition on what asyn-
chronous concurrency should be. Moreover, all our examples are based on extend-
ing the strict IO monad. The underlying intuition is somewhat biased. What is
the asynchronous concurrent extension of a non strict monad is yet not that clear.
The successful extensions of the notion of monad references to more complex
structures, such as monad streams or traversable structures of monad actions,
only constitute partial answers to that question.

As already observed, the possibility of defining an equational theory for the
additional primitives such as tryRead bumped into the lack of a denotional
semantics that describes action durations. For instance, we cannot describe the
property that between to monadic actions, one is finishing before the other unless
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they both block endlessly. A pure denotational approach might still be possible
following the recent proposal of a timed extension of Scott domains [4]. However,
investigating such a possibility goes out of the scope of the present paper.

Last, one could also examine the possibility of defining asynchronous con-
currency as an algebraic effect [11]. The termination of a forked action indeed
sounds like raising an effect that is eventually passed to all the readers of the
monad reference bound to that action. The resulting API would be different than
the current one. How the proposed axiomatization could be adapted to such a
distinct modeling approach is an open problem.
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Abstract. The main strength of purely functional languages like Haskell
is that they make reasoning about programs easy with a technique called
equational reasoning. This ease of reasoning also extends to effectful
programs provided the side-effects are modelled in a purely functional
manner, for instance with monads.

This paper uses equational reasoning to reason about the modelling of
the side-effects themselves. In particular, we consider non-determinism,
which is a key side-effect in Prolog and other logic-programming systems.
Non-determinism is typically modelled by the list monad, but efficient
implementations of Prolog and other non-deterministic systems use a
much more low-level approach based on mutable state. In this way we
model those lower-level implementations with the state monad and use
equational reasoning to show its correctness with respect to the high-level
list-based model. We also show how this result can be further generalized
to other models of non-determinism.

Keywords: Monads · Equational reasoning · Non-determinism · State

1 Introduction

One of the appeals of purely functional programs is that they possess the prop-
erty that equals may always be substituted for equals [12], which makes reasoning
about these programs more straightforward. This power comes at a disadvan-
tage: our functions must be free of side effects, which makes some programs (for
example, stateful or nondeterministic programs) harder to express. Wadler [14]
shows how such effects can be encapsulated using the Monad interface. In Haskell
the monad interface is captured in the following type class:

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

This class is accompanied by three laws, which are rules we want any implemen-
tation of the monad interface to obey.
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--Left identity:

return a >>= f = f a
--Right identity:

m >>= return = m
--Associativity:

(m >>= f) >>= g = m >>= (\x -> f x >>= g)

With monads to implement side effects, functions are still pure and so we can
still use equational reasoning on our effectful programs.

One method of equational reasoning about effectful programs, shown by Hut-
ton and Fulger [8], is to unfold the definitions of the effectful operations and to
prove the properties directly in terms of the underlying code. Unfortunately, this
breaches the abstraction boundaries and is a rather tedious task.

Gibbons and Hinze [4] address this problem. Instead of reasoning about a
concrete implementation of an effect, they present an axiomatic approach: by
exploiting algebraic properties of a monadic interface, they show that one can
write equational proofs which preserve the monadic abstraction. In other words,
the proof is entirely independent from the concrete implementation of an effect.

Of course, concrete implementations of effects have to make sure that they
satisfy the expected algebraic properties. Pauwels et al. [9] investigate a layered
approach, where a higher-level effect is implemented in terms of a lower-level
effect. This way the axioms of the lower-level effect can be used to prove the
algebraic properties of the higher-level one. Specifically, they investigate this
for an implementation of non-determinism with backtrackable state in terms of
non-determinism with non-backtrackable state. Unfortunately, because of the
complex invariants involved in this implementation, the axiomatic reasoning
approach of Pauwels et al. is rather involved.

In this paper, we investigate an alternative approach for establishing the
correctness of a high-level effect’s implementation in terms of a low-level effect.
Instead of reasoning in terms of axiomatic specifications of the effects, we reason
directly in terms of actual effect implementations. Seemingly this is a step back,
but for our case study—the implementation of non-determinism in terms of
state—it turns out that the proofs are very manageable. Moreover, because we
are using initial implementations of the effects involved, we can generalize our
result to other implementations.

Our main contribution is a technique for proving re-interpretations of a high-
level effect in terms of a lower-level effect correct, which to the best of our
knowledge is novel.

2 Overview

This section situates and motivates the problem we tackle, namely to simulate
the non-determinism effect with a lower level implementation that uses state,
and, more importantly, to prove the correctness of this approach.



206 W. Seynaeve et al.

2.1 Non-determinism

Non-determinism is a powerful high-level side-effect, often used in relational and
logic programming, to enable concise and declarative programs.

As an example of non-determinism, consider the following Prolog program:

parent(lily, harry). parent(harry, albus).
parent(james, harry). parent(harry, lily2).
parent(arthur, ginny). parent(ginny, james2).
parent(molly, ginny). parent(ginny, albus).
parent(harry, james2). parent(ginny, lily2).

grandChildren(X, Y) :- parent(X, Z), parent(Z, Y).

This program defines the parent relation extensionally, i.e., by enumerating
all the parent–child pairs. In contrast, it defines the grandChildren relation
intentionally, by means of a rule that refers twice to the parent relation.

When this program is loaded into a Prolog interpreter, we can ask it who the
grandchild of james is with the query ?- grandChildren(james,GC). Because
the result is not uniquely determined, the Prolog interpreter will backtrack over
multiple solutions.

?- grandChildren(james,GC).
GC = albus ;
GC = lily2 ;
GC = james2.

Here, the semicolon is a prompt asking the user whether they want to see the
next answer.

We can model the above Prolog program and query in Haskell by using lists,
and the list monad structure.

type Person = String

parent :: Person -> [Person]
parent "Lily" = ["Harry"]
parent "James" = ["Harry"]
parent "Arthur" = ["Ginny"]
parent "Molly" = ["Ginny"]
parent "Harry" = ["James II", "Albus", "Lily II"]
parent "Ginny" = ["James II", "Albus", "Lily II"]
parent _ = []

grandChildren :: Person -> [Person]
grandChildren gp = do p <- parent gp

parent p

The Prolog query ?- grandChildren(james,GC). can then be emulated as fol-
lows:
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> grandChildren "James"
["James II", "Albus", "Lily II"]

Thanks to Haskell’s laziness, computations in the list monad execute in
very much the same order as Prolog’s backtracking. However, actual Prolog
implementations—such as those based on the Warren Abstarct Machine (WAM)
[1,15]—do not implement non-determinism in terms of lists and the list monad
(lazy or otherwise). Instead, they make use of a much more low-level side effect to
simulate non-determinism, namely mutable state, as is typical for Prolog imple-
mentations in imperative, lower-level languages (like C and assembly) that are
more careful about heap allocations.

2.2 Challenge and Approach

In this work we investigate the folklore technique, used by Prolog implemen-
tations among others, to simulate non-determinism by means of mutable state.
We provide a functional model that abstracts from implementation details and
focuses on the monadic renditions of both side-effects. Our main challenge, and
the main novelty of this work, is to formally establish the correctness of this
approach by means of equational reasoning.

The rest of this paper is structured as follows. First, Sect. 3 provides our
functional model for the simulation of non-determinism in terms of state. Next,
Sect. 4 formally proves the correctness of this simulation. Then Sect.5 generalizes
that result from the list monad to other non-determinism monads. Finally, Sect.
6 dicusses related work and Sect. 7 concludes.

3 Simulating Nondeterminism with State

This section shows how to simulate non-determinism with mutable state.

3.1 Non-deterministic Programs

As the starting point of our simultation we capture the syntactic structure of
non-deterministic computations in a datatype:

data Nondet a = Ret a
| Fail
| Nondet a :| Nondet a

Here, Ret x denotes a computation that returns a single result x, Fail denotes
a computation without results, and p :| q denotes a non-deterministic choice
between the computations p and q.

This Nondet datatype is a free monad (also known as term monad):

instance Monad (Nondet a) where
return x = Ret x
Ret a >>= f = Ret (f a)
Fail >>= f = Fail
a :| b >>= f = (a >>= f) :| (b >>= f)
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The monadic bind operator (>>=) implements the composition of syntax trees.
We can use the Nondet type to express the example of Sect. 2 as a syntax

tree:

parent :: Person -> Nondet Person

parent "Lily" = Ret "Harry"

parent "James" = Ret "Harry"

parent "Arthur" = Ret "Ginny"

parent "Molly" = Ret "Ginny"

parent "Harry" = Ret "James II" :| (Ret "Albus" :| Ret "Lily II")

parent "Ginny" = Ret "James II" :| (Ret "Albus" :| Ret "Lily II")

parent _ = Fail

grandChildren :: Person -> Nondet Person

grandChildren gp = do p <- parent gp

gc <- parent p

For a more compact example, consider the expression (Ret 1 :| Fail) :|
(Ret 2 :| Ret 3) of type Nondet Int which can be depicted as a tree

:|

:|

Ret 1 Fail

:|

Ret 2 Ret 3

3.2 List Semantics

We can interpret Nondet programs in terms of lists.

runNondet :: Nondet a -> [a]
runNondet (Ret x) = [x]
runNondet Fail = []
runNondet (a :| b) = (runNondet a) ++ (runNondet b)

This implementation serves as an executable specification for the semantics of
non-deterministic programs; this specification should also be respected by our
future state-based implementation.

Here is a graphical illustration showing what runNondet does to the example
program tree shown above:

:|

:|

Ret 1 Fail

:|

Ret 2 Ret 3

��

++

++

[1] [ ]

++

[2] [3]

�� [1, 2, 3]
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newtype State s a = State { runState :: s -> (s, a) }

instance Monad (State s) where

return x = State (\s -> (s, x))

m >>= f = State (\s -> let (s',x) = runState m s

in runState (f x) s')

get :: State s s

get = State (\s -> (s,s))

put :: s -> State s ()

put s' = State (\s -> (s',()))

Fig. 1. Definition of the State monad

Also, with runNondet we can compute the grandchildren of James as follows:

> runNondet (grandChildren "James")
["James II", "Albus", "Lily II"]

3.3 State-Based Implementation

Now we turn to the state-based implementation of non-determinism. This imple-
mentation uses the well-known state monad State s, which is given in Fig. 1.

The main computation type for the simulation is Prog a, which is a newtype
wrapper around the state monad:

newtype Prog a = Prog (State ([a],[Prog a]) ())

runProg :: Prog a -> (([a],[Prog a]) -> (([a],[Prog a]), ()))
runProg (Prog x) = runState x

The Prog type fixes the type of mutable state to a tuple with two components: 1)
a list with the results obtained so far, and 2) a stack with the branches still to be
explored. Those branches are themselves represented by Prog a computations.
This makes the type recursive and explains the need for the Prog newtype.

We also provide a few helper functions to modify the state: emit adds a
result to the end of the result list, push adds a branch to the the stack, and pop
removes and executes the branch at the top of the stack—or does nothing if the
stack is empty.

emit :: a -> Prog a -> Prog a
emit x (Prog k) = Prog $

do { (xs,stack) <- get; put (xs++[x],stack); k }

push :: Prog a -> Prog a -> Prog a
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push p (Prog k) = Prog $
do { (xs,stack) <- get; put (xs,p:stack); k }

pop :: Prog a
pop = Prog $ do (xs,stack) <- get

case stack of
[] -> return ()
((Prog p):ps) -> do { put (xs,ps); p }

With these auxiliary functions we define the core simulation of non-
determinism:

simulate :: Nondet a -> Prog a
simulate Fail = pop
simulate (Ret x) = emit x pop
simulate (p :| q) = push (simulate q) (simulate p)

The wrapper function runNondet’ serves as a drop-in replacement for
runNondet. It initializes the mutable state to an empty result list and an empty
stack, and afterwards extracts the final result list.

runNondet' nd = fst (fst (runProg (simulate nd) ([], [])))

Figure 2 illustrates how the state-based simulation of non-determinism works on
our running toy example. We push right subtrees of (:|) on the stack. When
we reach a Ret leaf, we add its value to the list of results and pop the next
branch from the stack. The latter also happens when we reach a Fail leaf. The
execution stops when there is no more branch to pop.

4 Correctness Proof

This section provides a correctness proof of the state based simulation
runNondet’. The proof combines induction with equational reasoning based on
the definitions of the functions involved and the properties of list concatenation
(++).

Theorem 1. For all p of type Nondet a it holds that:

runNondet' p

=

runNondet p
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Active Program Stack Results

:|

:|

Ret 1 Fail

:|

Ret 2 Ret 3

[]

−→
:|

Ret 1 Fail

:|

Ret 2 Ret 3

[]

−→
Ret 1

Fail

:|

Ret 2 Ret 3

[]

−→
Fail

:|

Ret 2 Ret 3

[1]

−→
:|

Ret 2 Ret 3

[1]

−→
Ret 2 Ret 3 [1]

−→
Ret 3 [1, 2]

−→ [1, 2, 3]

Fig. 2. The simulation with State
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Proof. The theorem follows from setting both xs and qs to [] in Lemma 1. ��

Lemma 1.

runProg (simulate p) (xs, map simulate qs)

=

((xs ++ runNondet p ++ concatMap runNondet qs, []), ())

Proof. The proof proceeds by structural induction on p and qs. We perform the
case analysis on p here, and encapsulate that on qs in Lemma 2.

– Case: p = Fail

runProg (simulate Fail) (xs, map simulate qs)

= -- definition of simulate

runProg pop (xs, map simulate qs)

= -- Lemma 2

(xs ++ [] ++ concatMap runNondet qs, [])

= --definition of runNondet

(xs ++ runNondet Fail ++ concatMap runNondet qs, [])

– Case: p = Ret x
runProg (simulate (Ret x)) (xs, map simulate qs)

= -- definition of simulate

runProg (emit x pop) (xs, map simulate qs)

= -- evaluation

runProg pop (xs ++ [x], map simulate qs)

= -- Lemma 2

(xs ++ [x] ++ concatMap runNondet qs, [])

= -- definition of runNondet

(xs ++ runNondet (Ret x) ++ concatMap runNondet qs, [])

– Case: p = (r :| q)
runProg (simulate (r :| q)) (xs, map simulate qs)

= -- definition of simulate

runProg (push (simulate q) (simulate r)) (xs, map simulate qs)

= -- evaluation

runProg (simulate r) (xs, simulate q : map simulate qs)

= -- definition of map

runProg (simulate r) (xs, map simulate (q:qs))

= -- induction hypothesis

(xs ++ runNondet r ++ concatMap runNondet (q:qs), [])

= -- definition of concatMap

(xs ++ runNondet r ++ runNondet q ++ concatMap runNondet qs, [])

= -- definition of runNondet

(xs ++ runNondet (r :| q) ++ concatMap runNondet qs, [])

��
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Lemma 2.

runProg pop (xs, map simulate qs)

= --

((xs ++ concatMap runNondet qs, []),())

Proof. The proof proceeds by case analysis on qs.

– Case: qs = []:
runProg pop (xs, map simulate [])
= -- evaluation

((xs, []), ())
= -- neutral element of ++

((xs ++ [], []), ())
= -- definition of concatMap

((xs ++ concatMap runNondet [], []),())
– Case: qs = (r:rs):

runProg pop (xs, concatMap simulate (r:rs))
= -- evaluation

runProg (simulate r) (xs, concatMap simulate rs)
= -- Lemma 1

((xs ++ runNondet r ++ concatMap runNondet rs, []), ())
= -- definition of concatMap

((xs ++ concatMap runNondet (r:rs), []), ())

��

5 Generalized Simulation of Non-determinism Monads

The state-based simulation we have created is specific for the list monad. How-
ever, we can generalize it to other non-determinism monads. Note: In this
section we use some category-theoretical concepts such as initiality, which we
define in Appendix A.

5.1 Non-determinism Monads

To express that generalization we create a type class for non-deterministic com-
putations:1

1 We avoid the standard MonadPlus type class because its intended purpose is over-
loaded and underspecified.
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class Monad m => MonadNondet m where
fail :: m a
(||) :: m a -> m a -> m a

With this type class we can express non-deterministic computations in a way
that is independent from the particular non-determinism monad. For instance,

p :: MonadNondet m => Int -> m Int
p n | n < 1 = fail

| otherwise = return (n-1) || return (n+1)

Both the Nondet and list monad are possible instances of this type class:

class MonadNondet Nondet where
fail = Fail
(||) = (:|)

class MonadNondet [] where
fail = []
(||) = (++)

We can run the example program with a particular non-determinism monad
by adding a corresponding type annotation. For instance, to use the list monad
we may write:

> p 5 :: [Int]
[4,6]

For the sake of conciseness, we may use subscripts to denote the instantiating
monad; e.g., we may write p[] 5.

Type classes are typically most useful when they come with some laws that
restrict the possible behavior of the instances and thus enable reasoning. We
assume that instances of MonadNondet satisfy the following five laws:

fail || m = m

m || fail = m

m1 || (m2 || m3) = (m1 || m2) || m3

fail >>= f = fail

(m1 || m2) >>= f = (m1 >>= f) || (m2 >>= f)

The first three laws express that 〈m a, (||), fail〉 forms a monoid, and the last
two laws state that (>>=) is right-distributive over fail and (||).2

It is easy to see that the Nondet instance is lawless, while the [] instance is
lawful. Both of these two instances play a special role among respectively all (law-
ful and lawless) and just the lawful instances: they are initial (see Appendix A).
2 Some settings require additional laws, like commutativity of (||) or left-

distributivity of (>>=), but we will use a more minimal set of laws.
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newtype Prog m a = Prog (State (m a,[Prog m a]) ())

runProg :: Prog m a -> ((m a,[Prog a]) -> ((m a,[Prog a]), ()))

runProg (Prog x) = runState x

emit :: MonadNondet m => a -> Prog m a -> Prog m a

emit x (Prog k) = Prog $ Get $

\(xs,stack) -> Put (xs || return x,stack) k

push :: MonadNondet m => Prog m a -> Prog m a -> Prog m a

push p (Prog k) = Prog $ Get $ \(xs,stack) -> Put (xs,p:stack) k

pop :: MonadNondet m => Prog m a

pop = Prog $ Get $ \(xs,stack) -> case stack of

[] -> Return ()

((Prog p):ps) -> Put (xs,ps) p

simulate :: MonadNondet m => Nondet a -> Prog m a

simulate Fail = pop

simulate (Ret x) = emit x pop

simulate (p :| q) = push (simulate q) (simulate p)

runNondet' :: MonadNondet m => Nondet a -> m a

runNondet' nd = fst $ fst $ runProg (simulate nd) $ (fail, [])

Fig. 3. Simulation parametric in the non-determinism monad.

This means that there is a unique structure-preserving mapping from Nondet to
any other instance, and from [] to any lawful instance. The former mapping is
a generalization of the runNondet function form Sect. 3.2:

runNondet :: MonadNondet m => Nondet a -> m a
runNondet (Ret x) = return x
runNondet Fail = fail
runNondet (p :| q) = runNondet p || runNondet q

The latter mapping can be defined as follows:

choose :: MonadNondet m => [a] -> m a
choose [] = fail
choose (x:xs) = return x || choose xs

5.2 Generalized Simulation

Based on naturality—which can be shown using free theorems [13], in particular
for type constructor class [11]—it holds for any non-determinism monad N that

pN = runNondet . pNondet
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Simlarly, it holds for any lawful non-determinism monad M that

pM = choose . p[]

We can combine the above two, with N = [], to get for lawful instances M :

pM = choose . runNondet . pNondet

Now we can exchange runNondet for runNondet' to get a state-based, rather
than a list-based interpretation.

pM = choose . runNondet' . pNondet

This achieves the goal of simulating other lawful non-determinism monads
with state. Yet, it is unsatisfactory in that the state-based simulation first builds
an intermediate list and then converts that into the target monad. In the follow-
ing, we deforest the above approach, i.e., we avoid the creation of this interme-
diate list.

Deforestation – Step 1: To enable deforestation of the intermediate list, Fig. 3
parameterizes the state-based simulation to generalize from a list-based result
to an arbitrary non-determinism monad. The original implementation for lists
is recovered as runNondet'[], yet we now also have a naturality property:

choose . runNondet'[] = runNondet'M

We can use this to avoid the intermediate list in the above computation:

pM = runNondet'M . pNondet

Deforestation – Step 2: Another intermediate datastructure we would like to
eliminate is the Nondet structure built by pNondet. It might seem like we could
appeal to naturality again and directly work with pProg M . However, upon closer
inspection, that turns out to be invalid as Prog m a is not actually a monad in
a. Indeed, in the underlying State monad the a parameter appears in the type
of the state, but not in the result type, which is fixed to ().

To solve this problem we use the technique described by Schrijvers et al. [10]
to turn a non-monadic interpretation (like Prog m a) of a free monad (like
Nondet) into a monadic interpretation using the continuation monad.

Figure 4 shows the definition of a specialized monad CProg m a that
wraps a continuation-layer around Prog m a. The continuation layer pro-
vides the monadic structure, while the non-determinism support is adopted
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newtype CProg m a b

= CProg { runCProg :: (b -> Prog m a) -> Prog m a) }

instance Monad (CProg m a) where

return x = CProg (\k -> k x)

m >>= f = CProg

(\k -> runCProg m (\x -> runCProg (f x) k))

instance MonadNondet m => MonadNondet (CProg m a) where

fail = CProg (\k -> pop)

p || q = CProg

(\k -> push (runCProg p k) (runCProg q k)

runNondetC :: MonadNondet m => CProg m a a -> m a

runNondetC p = fst $ fst $

runProg (runCProg p (\x -> emit x pop)) (fail, [])

Fig. 4. Simulation into a continuation monad.

from Prog m a. Finally, the runNondetC function peels away the continuation
layer and uses the underlying state-based representation to simulate a non-
determinism monad.

As a consequence, we can write our final state-based simulation as follows,
without unnecessary intermediate datastructures:

pM = runNondetCM . pCProg M Int

This is also relevant if M is the list monad, because it avoids the intermediate
Nondet structure.

6 Related Work

We were inspired by reading Hutton and Fulger’s work on reasoning about effects
[8]. We used their style of proofs to prove the correctness of the simulation of
[] with the State effect. A different approach, proposed by Gibbons and Hinze
[4] is to use axiomatic characterisations of effects to reason at a more general
level. This work inspired us to give an axiomatic characterisation of the non-
determinism effect and generalise our proof to hold for any effect that obeys
these axioms.

Like Pauwels et al. [9] we simulate a high level effect with a more low level
effect. For this they use Free Monads to separate between syntax and semantics.
We used this technique in the state-based simulation.

We have directly modelled the folklore approach of simulating non-
determinism with state and proven it correct with respect to a list-based seman-
tics. An alternative route would be to tie together two different approaches in
the literature:
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– Firstly, Hinze [6] shows how to use Kan extensions and the Cayley represen-
tation to systematically derive a two-continuation representation from the list
monad. This representation with two continuations (for success and failure)
was already known much longer as a basis for implementating backtrack-
ing [3], and even derived before by Hinze [5] as a context-passing representa-
tion.

– Secondly, Biernacki and Danvy [2] show how to derive a so-called abstract
machine for a continuation-passing interpreter of a propositional version of
Prolog, which is related to our Nondet type.
The obtained abstract machine comes with a program state that is related to
ours. The derivation involves defunctionalization of the continuations which
naturally gives rise to stacks. Their machine state does contain more infor-
mation regarding execution control, namely the Prolog program to execute,
which is external to our state. Also, it features three continuation stacks rather
than one. The third continuation supports pruning (or cutting) branches. This
cut continuation does not show up in our setting, and the success continuation
is fixed and built-in (push). Hence, our state only keeps track of the failure
continuation, i.e., the stack of unexplored branches. However, their machine
does not compute any results; it only reports success or failure of the search.
Hence, their state does not keep track of a result list.

7 Conclusion

This paper has shown how to model a folklore implementation of non-
determinism in terms of mutable state in a purely functional fashion using the
state monad. It has also demonstrated that this purely functional model makes it
easy to establish its correctness with respect to a high-level model using the list
monad. Indeed our proof uses basic equational reasoning and structural induc-
tion.

In a further step we have shown how to generalize these results from the list
monad to other monadic models of non-determinism using reasoning techniques
from the functional programming literature like free theorems and continuation
monads.

7.1 Application and Future Work

We motivated our transformation with the example of modeling a Prolog pro-
gram in Haskell. There we noted that the typical way of modeling the Prolog
program, by making use of the list monad, is quite far removed from the app-
roach followed by real Prolog implementations, such as those based on the WAM.
Our mutable state modeling of non-determinism reflects the state-based WAM
implementations more closely.

In short, we have shown that we can take an “obviously correct” implementa-
tion of a non-deterministic algorithm, and through a relatively simple sequence
of reasoning steps, bring it closer to a real-world implementation. But just with
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the work of this paper, we aren’t “there yet”. In particular, non-determinism
is not the only effect needed to model a WAM implementation. Prolog inter-
preters also need backtrackable state to keep track of unifications. They also
implement more complex control flow constructs such as cuts, and they offer
explicitly non-backtrackable state operations as well.

Practical implementations usually model all these effects on top of mutable
state, which has the distinct advantage of offering a single framework in which
the implementer can optimize their code. However, such an optimized interpreter
is usually not obviously correct. As such, this work offers a first step in prov-
ing such a full system correct by starting from an obviously correct (but slow)
implementation in terms of a complex, high-level effect set, and re-interpreting
it in terms of a lower level effect set (in this case, just state), and subsequently
applying optimizations through equational reasoning on the low level algorithm.

Furthermore, we believe our proof technique to be of more general interest
than specifically the case of state and nondeterminism. Reasoning about pro-
grams with multiple effects is not new. But work around re-interpreting effect
sets in terms of “lower-level” effect sets seems to be quite scarce, and we believe
the established proof techniques have room for improvement. Compared to the
work of Pauwels et al. [9], our proofs are considerably simpler and shorter.

A Simulating Any Nondet Effect

In Sect. 5 we rely on the initiality of the []-implementation in the class of lawful
instances of the MonadNondet class. In this section we formally define what
the category theoretical concept of initiality means and provide proof that the
[]-implementation is initial.

A.1 Definition of Initiality

We consider the well-known category of Haskell types:

The category Type:

– The objects ob(Type) of this category are the Haskell types.
– The morphism from a type A to a type B, denoted Type(A, B), are the

collection of all functions m : : a-> b.
– The composition of morphisms is Haskell’s function composition (f .
g)

We also define the category of monads over the base category Type:

The category Monad:
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– The objects ob(Monad) of this category are the Haskell monads M .
– The morphisms from monads M to N, Monad(M, N), are the collection

of all polymorphic functions m : : ∀ a: M a -> N a that satisfy two
properties:

• m (returnM a) = returnN a
• m (x >>=M f ) = (m x) >>=N (m . f)

– The composition of two monad morphisms is the composition of poly-
morphic functions.

We now define the concept of an algebra:

Definition: Given en endofunctor F over a category A, and an a ∈ ob(A),
an algebra is defined as a function: alg : : F a -> a

We are interested in a concrete algebra, the Nondet algebra. Lets begin by defin-
ing the endofunctor ND:

data ND a = Fail | Comb a a

fmap :: (a -> b) -> ND a -> ND b
fmap f Fail = Fail
fmap f (Comb x y) = Comb (f x) (f y)

This is an endofunctor over the category of types and functions Type. We use
this to define the category of ND-algebras over Monads:

Definition: NDA, the category of ND-algebras:

– ob(NDA) are all algebras algM : : ∀ a. ND (M a) -> M a, such that M ∈ ob(Monad)
for which:

• Fail is right and left zero:
algM (Comb (algM Fail) x)

= algM x

= algM (Comb x (algM Fail))

• Comb is associative:
algM (Comb x (algM (Comb y z)))

= algM (Comb (algM (Comb x y)) z)

• left-distributivity:
(algM (Comb x y)) >>= f = algM (Comb (x >>= f) (y >>= f))

• left-zero:
(algM Fail) >>= f = algM Fail

W call these the Nondet-laws
– NDA(algM, algN) =

{m ∈ Monad(M,N) | algM . m = (fmap m) . algN}
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The [] monad is an element of this category with:

alg[] :: ND [a] -> [a]
alg[] Fail = []
alg[] Comb x y = x ++ y

Since [] is a monad, we know [] ∈ ob(Monad). Thus we know alg[] ∈ ob(NDA).
Now that we have defined the relevant categories and algebras, we can define
and prove the initiality of alg[] in the category NDA.

We say that an object is initial if there is exactly one unique morphism from
it to any other object in the category. More formally:

Defnition Let C be a category and init ∈ ob(C). init is an intial object in
the algebra iff: ∀o ∈ ob(C) : |C(init, o)| = 1

A.2 Proof of Initiality

In this section we prove alg[] is the initial algebra. To prove this, we need to
show two things:

1. There is an morphism from alg[] to any other
2. There cannot be any more than 1

The first is proven by giving such a function, the second by showing that this
function is unique.

Existence. Take any other element algM in the category NDA, associated with
the monad M. We define the function:

f :: [a] -> M a
f = foldr (\x xs -> (algM (Comb (returnM x) (f xs))))

(algM Fail)

To show there is a morphism from alg[] to algM, we show this is a Monad
morphism and that it satisfies all the requirements to be a morpfism in the
category NDA.

Theorem 2. f ∈ Monad([], M)

Proof. Follows immediately from Lemma 3 and 4 ��

Lemma 3. f (return[] x) = returnM x
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Proof.

f (return[] x)
= --def of return[]

f [x]
= --def of f

foldr (\x xs -> (algM (Comb (returnM x) (f xs)))) (algM Fail)
= --def of fold

algM (Comb (returnM x) (algM Fail))
= --ND-law

returnM x

��

Lemma 4. f (x >> = [] g) = (f x) >>= M (f . g)

Proof. The proof proceeds by induction on x.

– Case: x = []
f ([] >>=[] g)
= --def of >>=[]

f []
= --def of f

algM Fail
= --ND-law

f (alg[] Fail) >>=M (f . g)
– Case: x = x:xs

f ((x:xs) >>=[] g)
= --def of >>=[]

f ((g x) ++ (xs >>=[] g))
= --def of alg[]

(f . alg[]) (Comb (g x) (xs >>=[] g)))
= --Monad law

(f . alg[]) (Comb (g >>=[] ([x])) (xs >>=[] g)))
= --property of algebra

algM . (fmap f) (Comb (g >>=[] ([x])) (xs >>=[] g)))
= --def of fmap

algM (Comb (f (g >>=[] ([x]))) (f (xs >>=[] g)))
= --Induction Hypothesis

algM (Comb ((f [x]) >>=M (f.g)) ((f xs) >>=M (f.g)))
= --ND-law

algM ((Comb (f [x]) (f xs)) >>=M (f.g))
= --definition of fmap

algM (fmap f (Comb [x] xs)) >>=M (f.g)
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= --property of algebra

(f (alg[] (Comb [a] xs))) >>=M (f.g)
= --def of alg[]

(f (x:xs)) >>=M (f . g)

��
Now we can prove that the function f is an element of the category NDA.

Theorem 3. f ∈ NDA([], M))

Proof. From Theorem 2 all that is left to prove is (f . alg[]) x = (algM .
(fmap f)) x. The prove proceeds by structural induction on x.

– case: x = Fail
f (alg[] Fail)
= --definition of alg[]

f []
= --definition of f

algM Fail
= --definition of f and fmap

(algM . (fmap f)) Fail
– case: x = Comb a b

This case is proven by structural induction on the list a.
• case: a = []

(f . alg[]) (Comb [] b)
= --def of alg[]

f b
= --ND-Law

algM (Comb Fail (f b))
= --definition of (fmap f)

(algM . (fmap f)) (Comb [] b)
• case: a = r:rs

f (alg[] (Comb r:rs b))
= --definition of alg[]

f (r:(rs++b))
= --definition of f

algM $ Comb (returnM r) ((f . alg[]) (Comb rs b))
= --Induction Hypothesis

algM $ Comb (returnM r) (algM (Comb (f rs) (f b)))
= --ND law

algM $ (Comb (algM $ Comb (f [r]) (f rs)) (f b))
= --Induction Hypothesis

algM $ Comb (f (r:rs)) (f b)
= --definition of fmap

(algM . (fmap f)) (Comb r:rs b) ��
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Uniqueness. To prove the uniqueness of this f we use a property called uni-
versality of fold [7].

Theorem 4. Universality of fold:
Say g : : [a] -> b then :
g [] = v

g (x:xs) = f x (g xs)
⇔ g = foldr f v

Using this property we will now prove that any morphism g : : [a] -> M a
that has the same properties as f is equal to f

Theorem 5. Say g : : [a] -> M a is a morphism in NDA, then

g = foldr (\x xs -> (algM (Comb (returnM x) (g xs))))

(algM Fail)

Proof. To prove this theorem we use Theorem 4. We need to prove two things:

1. g [] = algM Fail:
g []
= --definition of alg[]

g (alg[] Fail)
= --definition of algebra

algM ((fmap g) Fail)
= --defintion of fmap

algM Fail
2. g (x:xs) = algM (Comb (returnM x) (g xs)):

g (x:xs)
= --definition of alg[]

(g . alg[]) (Comb [x] xs)
= --definition of algebra

(algM . (fmap g)) (Comb [x] xs)
= --definition of fmap

algM (Comb (q [x]) (g xs))
= --Monad law

algM (Comb (returnM x) (g xs))

��
Since we have proven that f and g only differ in name, we conclude that f is
unique.
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Abstract. In this paper, we will extend algorithmic skeletons with the
concept of Placement Strategies: a functional, structured mechanism to
organize coordination of parallel computation placement. These Place-
ment Strategies allow access to explicit and semi-explicit placement in
a functional style. By doing so, we increase the flexibility and clarity
of algorithmic skeletons. Example skeletons are implemented using an
extension of Eden’s Remote Data that allows for simple skeleton compo-
sition and drop-in parallelization of sequential programs. The scheme of
Placement Strategies is transferable to other functional languages that
allow for explicit placement. Preliminary experimental evaluations show
the effectiveness of the extended skeletons and an mostly marginal over-
head caused by the additional location information.

Keywords: Parallel · Functional · Language design · Process
placement · Algorithmic skeleton composition

1 Introduction

The additional layer of complexity that parallelism adds to a computation can
be reduced to the questions “What should be computed where?” and “How
are the necessary communications organized?”. When designing a programming
language, we have to address these questions from different perspectives. The
first perspective tackles the question:

“Where and by whom should be decided where a parallel computation is placed?”
The question where a parallel computation should be placed is often subordi-
nated to the question of what should be computed in parallel. However, at some
point the decision where a certain computation is actually placed has to be made.
The mechanisms to do so are as numerous as parallel systems are. The decision
depends on the target hardware, concepts of the programming language used, as
well as options of the operating system and of the program itself. It is made by
the compiler (Futhark [12]), the OS (POSIX threads [13]), a VM (JVM threads
[11]), the RTS (GpH [24]), a library (PFunc [15]), the programmer (MPI [10])

c© Springer Nature Switzerland AG 2020
A. Byrski and J. Hughes (Eds.): TFP 2020, LNCS 12222, pp. 229–248, 2020.
https://doi.org/10.1007/978-3-030-57761-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57761-2_11&domain=pdf
http://orcid.org/0000-0001-9136-0930
https://doi.org/10.1007/978-3-030-57761-2_11


230 L. I. Schiller

or various combinations of the above. From the programmer’s point of view,
the different approaches can be categorized into three groups: no influence on
the placement is possible, the programmer needs to provide different hints to
assist in the decision-making process, or the programmer needs to make explicit
decisions on the placement of the computation. The question that sets apart the
first two groups is:

Should the programmer be able to manipulate the placement of parallel processes?
Some concepts try to hide as much as possible of the additional complexity paral-
lelism adds to a program. This is, for example, often the case in exclusively data-
parallel languages as it is most practicable for restricted classes of problems. There
are situations in which the class of problems the programming language aims at is
clear-cut. In this case, a highly optimized compiler yields more efficient code than a
manual optimization of the program. Whenever the parallel task and the targeted
hardwarematchwell enough or the knowledge about a specific class of similar prob-
lems is sufficient, an adequate placement can often be chosen without any inter-
ference by the programmer. Good examples for this can be found in the advanced
mechanisms used in various systems for data-parallel programming or GPGPU
programming (e.g. Futhark [12], Accelerate [5]). However, with a wider range of
targeted hardware or more complex problems, a prespecified analysis is often not
sufficient and additional information about the specific problem needs to be passed
to the decision-making mechanism (compare for example Repa’s fine tuning [16],
where, even in the quite specific domain of data-parallel programming, consider-
able improvements can be achieved by hints from the programmer). In general, the
programmer’s knowledge about the characteristics of a particular program is often
a necessary ingredient for successful parallelization. This is especially the case if
the programming language does not aim at a clearly restricted class of problems.
Our goal is a programming language that offers a good balance between simplic-
ity and the opportunity to address a wide range of programming problems. In the
Chapel [6] community, a programming language aiming at different kinds of par-
allelism (data and task parallelism) and levels of parallel hardware (co-processors,
multi-core processors, distributed computing, etc.) is sometimes called a “multi-
functional” programming language. To avoid confusion with the term “functional”
we will call such a programming language “multifaceted”. In our opinion – with
a good multifaceted programming language – the programmer should be able to
manipulate the placement.

Should the programmer be able to determine a specific parallel process place-
ment? The lack of possibilities to express an explicit placement may itself be
considered a limitation. Not only in terms of fine-tuning: because for some algo-
rithms placement is an essential component of the algorithm itself. On the other
hand, the possibilities to express explicit placement are often kept basic or they
struggle with functional paradigms.

A multifaceted parallel programming language should provide high-level con-
structs to express parallel problems regardless of the specific hardware while it
should also allow for (hardware or problem specific) fine-tuning. This fine-tuning
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is – if the programming language is directed at a wide field of application – sub-
stantially made easier by the possibility to express an explicit placement, at best
in a well-structured manner.

Where should the placement decision mechanism be placed and how can the pro-
grammer influence it? With the balance between simplicity and expressiveness
in mind our goal should be a programming language where default implemen-
tation of parallel constructs exist but the possibility to influence the placement
(up to explicit placement) is given. For this, it is crucial where to place the differ-
ent parts of the placement mechanism and which possibilities of communication
these parts have amongst each other. In existing languages, hints provided by the
programmer can, for instance, express related tasks, either directly (e.g. archi-
tecture aware GpH [1], where boundaries for placements distances in a virtual
architecture are hinted by the programmer) or through the data the tasks work
on (e.g. HPF’s alignment [22], where data fields in different arrays are linked
with hints and then placed on the same processor element). But most of these
approaches are motivated by a specific hardware setup or again by a specific
class of problems. Therefore, their expressiveness is limited.

Algorithmic Skeletons. The complexity of dividing parallelizable programs into
parallel parts and mapping these parts onto available processors requires a struc-
tured solution. Functional programming seems like an auspicious approach to
control the complexity and numerous functional high-level approaches exist. Of
all the different approaches to parallel programming the concept of algorithmic
skeletons [7] is one of the most promising. Not least because skeletons are a known
technique to achieve modularity. In this paper, we will use algorithmic skeletons
for our structured approach of providing the precise computational control of
explicit placement on a high level of abstraction. Algorithmic skeletons imple-
ment common computation or communication patterns of parallel algorithms
and are both suitable for data and task parallelism. Many parallel algorithms
can be expressed as an instance of an algorithmic skeleton. By doing so, the
programmer can focus on the algorithm itself, leaving the details of the parallel
implementation to the skeleton. The possibility to compose different skeletons
enhances the capabilities of this high-level approach.

Separating the algorithm from its coordination of parallel communication
has a long tradition in functional programming, evaluation strategies [20] being
a prime example. Yet, the majority of functional parallel algorithmic skeleton
concepts use a combination of semi-explicit parallelism and a scheduler for the
placement of the parallel computations. But when it comes to parallel fine-
tuning, this can be a limitation. In some cases, this can be solved by using
different schedulers (e.g. the ParMonad) combining explicit placement with a
scheduler [14]. But sometimes good hints for the scheduler result in essentially
restricted schedulers [1]. Especially in the case of high communication costs
between processor elements (e.g. if some of the processor elements are located
on different computers connected by a relatively slow connection like Ethernet), a
good placement is often obvious to the programmer but seldom to the scheduler.
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We develop our approach in the context of the Eden programming language
[17,18], a parallel Haskell [19] dialect, which comes with an algorithmic skeleton
library. These skeletons provide different options to improve performance. One
distinguishes between procedural improvements of communication (for example
controling the granularity of the parallelism by chunking) and the possibility
to specify an explicit placement. Yet, the options to manipulate placement are
limited. In this paper, we will explore various problems for which the possibility
of intervention are either insufficient or clumsy.

Placement Strategies. Placement Strategies are functions that determine explicit
placement in a flexible and elegant way and are passed to algorithmic skeletons
as arguments. A specialized data type is used, that carries information about the
current location of the contained data, called “Location-Aware Remote Data”. It
is fundamental, because it allows Placement Strategies to build a bridge between
a user-friendly high-level approach and the possibility of expressive fine-tuning.
It becomes possible to manipulate the placement systematically even when skele-
tons with different strategic profiles are combined. These simple ingredients
break new grounds: by placing predefined structures of parallelism into a library
or by allowing for more complex functions to be passed as arguments.

A Placement Strategy has more information to determine a placement than
many other systems that merely use hinting. Our approach allows for struc-
tured composition, the nesting of algorithmic skeletons and the separation of the
communication inside an algorithmic skeleton from the structure of the skele-
ton. Applying this approach, it is possible to combine work-pulling algorithmic
skeletons (like a workpool) with work-pushing ones (like a map). Moreover it
is possible to catch non-determinism in the placement of work-pulling skeletons
and continue with the actual placement in a subsequent skeleton.

In the next section we will motivate the approach with an example. In Sect. 3
we will give a short introduction to the Eden programming language in which the
realization of the concept is done. However, the conceptual idea itself is indepen-
dent of any specific programming language. Section 4 introduces the Location-
Aware Remote Data type and in Sect. 5 we will present different illustrative
map and divide-and-conquer skeletons with Placement Strategies. The evalu-
ation Sect. 6 shows the usefulness of this approach. In Sect. 7 related work is
discussed and Sect. 8 concludes.

2 Running Example

In a first example we will adjust algorithmic skeletons in order to compose them
in difficult situations. An implementation of a merger based on the bitonic sorting
network [2,23] will be parallelized. The structure of the network can be found in
Fig. 1. Arrow boxes depict comparison elements and lines depict the data flow. It
is obvious that this algorithm can be parallelized as every comparison element in
the same column is working on independent data. In the given implementation
a map function is applied several times. In every stage some permutations are
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Fig. 1. Bitonic sorter of order 8

performed on the input list and then a comparator element is mapped over the
permuted list. For this example, it is neither relevant which permutations are
behind the different functions nor it is necessary to completely understand the
structure of the sorting network. It is sufficient to know that the comparison
element, a function with type [[a]] → [[a]] is mapped several times. The
implementation is given as follows:

res = merger map cElem inp
[...]
merger mapSkel cElem = s4 ◦ s4 ◦ s3 ◦ s2 ◦ s2 ◦ s1 where

ac = mapSkel cElem
s1 = perm1out ◦ ac ◦ perm1in
s2 = perm2out ◦ ac ◦ perm2in
s3 = perm3out ◦ ac ◦ perm3in
s4 = perm4out ◦ ac ◦ perm4in

For a sequential version of the merger, Haskell’s map function for lists can be
used. Ideally, the parallelization is done by simply exchanging the map in the call
of the merger function for a parallel map. But which requirements would this
parallel map have to fulfill?

The map function is one of the most basic algorithmic skeletons. Conse-
quently, parallel variants of map exist in almost all parallel Haskell variants.
There are several ways to parallelize map f [a1,..,an]. Even in the most sim-
ple case if we want to create a process for each computation f a1,..,f an the
strategies to place these processes are numerous. The best strategy to do so
depends heavily on context:

– Where are the elements a1,.., an located?
– Where do we need them and/or the computational results next?
– How expensive is the communication between (different) processor elements?

With this in mind, we can decide which strategy is the most suitable:

1. In some cases, we want to distribute the computations among all available
processor elements (e.g. all elements are on the same processor element and
we want the computation to be distributed equally).
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2. In some cases, we know exactly where we want the computation to take place
(e.g. if communication of the computational results is more expensive than the
communication of the elements itself or a follow-up computation is supposed
to be co-located on specific processor elements).

3. In some cases, we want the computations to be placed where the data is
located (e.g. every element ai is already on a different processor element and
we do not want to move them because of high communication costs).

4. In some cases, a more complex strategy is needed (e.g. “minimize the com-
munication between processor elements but do not place more than three
computations on the same processor element”).

The first two methods of parallelizing the map function are already feasible
in Eden. In this paper, we will present a safe (in terms of functional pureness)
way to realize the latter two using Placement Strategies. Especially in the fourth
case, when an arbitrary complex strategy is needed, a good interface to express
and change the strategy is essential.

We will see that, in the merger example above, a naive parallel map does not
co-locate processes and an explicit placement requires a complete understanding
of the different permutations. This can result in an inflexible solution or the
program might require deeper changes while a placement guided by data and
strategy is possible, solving the parallelization problem with ease.

A row-wise placement would be possible. Although this seems like a good
solution, it is not an optimal one. If the location of the results is not relevant
(as is usual in distributed computing) and if we assume that communication
between different processors is more expensive than communication on one sin-
gle processor, a better placement is possible. The placement in Fig. 2 needs
less communication between Processor Elements than a row-wise placement by
keeping more data on consistent Processor Elements. For this, it is necessary to
separate the placement from the given structure of the computation. This raises
the question of how this placement can be communicated most suitably with the
least intervention in the original definition of the algorithm and how this can be
integrated into Eden’s algorithmic skeleton approach.

PE 1 PE 1

PE 2 PE 3

PE 3 PE 2

PE 4 PE 4
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↑

↓
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↑↑
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Fig. 2. Bitonic sorter with communication-minimized placement
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3 Eden in a Nutshell

Eden1 extends Haskell with explicit parallel function application via parallel
processes with implicit communication. A parallel process can be instantiated
with explicit or implicit placement. A parallel process abstraction can be created
and instantiated with explicit placement by the function instantiateFAt (read
“instantiate function at”) where the first argument contains a processor element
(PE) on which the process is instantiated. Processor elements are also called
(logical) machines and they are numbered from 1 to the number of PEs. They
usually correspond to the number of CPUs in the system. The process output is
contained in the parallel action monad PA, thus it can be combined to a larger
parallel action.

instantiateFAt :: (Trans a, Trans b)
Place -- ^PE number
(a b) -- ^function for process
a -- ^process input
PA b -- ^process output

The class Trans is composed of transmissible values. Place is a type synonym
for Int. If the first argument of instantiateFAt is 0, the processes are placed
in a round robin fashion on all available processor elements.

runPA $ instantiateFAt 0 f expr with some function f : : a → b will cre-
ate a (remote) child process. The expression expr will be evaluated (concurrently
by a new thread) in the parent process and the result val will be sent to the
child process. The child process will evaluate f $ val (cf. Fig. 3).

Fig. 3. The scheme of process instantiation [17].

With these basic constructs it is possible to build simple algorithmic skele-
tons and combine them into more complex ones. One form of a basic skeleton
is a parallel map. We structure the class of parallel map functions with our
ParFunctor class which is a parallel version of the Functor class. Instances of
ParFunctor should satisfy the same laws as the fmap function from Functor:

1 Url: http://www.mathematik.uni-marburg.de/∼eden.

http://www.mathematik.uni-marburg.de/~eden
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class ParFunctor f where
-- | parallel version of @’fmap ’@.
pmap :: (Trans a, Trans b) (a b) f a f b

Additionally, we define a pmap with explicit placement:

pmapAt :: (Traversable t, Trans a, Trans b)
t Place -- ^places for instantiation
(a b) -- ^worker function
f a -- ^tasks
f b -- ^results

When composing skeletons an efficient connection between output and input
is often essential for performance. The Eden programming language provides
a sophisticated yet simple and effective concept for a division of computational
and coordinational communication which is called Remote Data [9]. The Remote
Data concept uses data handles to lighten the data volume of intermediate com-
munication steps by enabling direct communication between both ends of a com-
munication chain, thereby allowing for efficient skeleton composition. Between
the skeletons, the smaller handle is transmitted instead of the computational
data. The actual data is transmitted directly without the detour. The functions
involved in converting local data into corresponding Remote Data and back
again, are as follows:

release :: Trans a a RD a
fetch :: Trans a RD a a

-- list variants
releaseAll :: Trans a [a] [RD a]
fetchAll :: Trans a [RD a] [a]

Figure 4 demonstrates the communication scheme of a Remote Data connec-
tion. Two functions, f and g, are instantiated in succession by the same parent
process. Without Remote Data the intermediate result is communicated through
the PE on which the parent process is located.

PE0

f

PE1

g

PE2

inp

(a) Indirect connection.

PE0

release ◦ f

PE1

g ◦ fetch

PE2

inp

(b) Direct connection.

Fig. 4. Remote Data scheme [17]. With RD, a handle is generated on PE1 and trans-
ferred via PE0 to PE2, the actual result is transferred directly.
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The separation of computational and coordinational communication results
in a largely intuitive coordination of communication while the algorithm remains
unchanged. This adaptation is often particularly simple. For our running example
we solely need to wrap the mapped function into fetchAll and releaseAll
(cf. Fig. 5). If we use this modified version of a parallel map, all comparison
elements on the same row are placed on the same PE.

Fig. 5. Running example with and without Remote Data.

Using this, it is easy to get a row-wise placement as it is predefined by the
computational structure. Even though Remote Data solves the accumulation
problem when composing algorithmic skeletons, there is no easy way to manipu-
late the placement. In some cases the improved placement can be achieved with
the explicit placement version of algorithmic skeletons, but, in some instances, at
the cost of deep changes to the program. Hence, we want to emphasize the use-
fulness of the disengagement of the different layers of communication. While the
Remote Data concept decouples computational communication and data com-
munication, a third layer of (independent) placement communication is needed.
This is the case whenever placement is not provided by the data structure.

In this paper, we will address this problem by placing the location of the data
alongside the Remote Data handle and using specialized algorithmic skeletons
which benefit from this additional information.

4 Location-Aware Remote Data

Dieterle [8] introduced the idea of tagging Remote Data with location. The
previous definition

type RD a = ChanName (ChanName a)

is, therefore, replaced by a definition where an additional data field place is
added. This data field contains the current position of the Remote Data:
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data RD a = RD {place :: Place ,
rd :: ChanName (ChanName a) }

The location stored in the place data field is identical with the location where
the Remote Data is created. We must ensure that the data selector place is not
misused since it is not purely functional. A simple solution to achieve this is to
use a hidden data field which is not exported and, therefore, to restrict its use
to skeletons only. The new field can be used for co-located function application
in a natural way.

As an example, we will define an instance of ParFunctor for Remote Data:

instance ParFunctor RD where
pmap f rd = runPA $

instantiateFAt (place rd) (liftRD f) rd
pmapAt places f rd = runPA $

instantiateFAt (head (toList places )) (liftRD f) rd

liftRD : : (Trans b, Trans a) ⇒ (a → b) → RD a → RD b lifts a function to work
on Remote Data.

Let rdd = release d for some data d. Then pmap f rdd computes f $ d
on the PE where the Remote Data handle was created. Based on this, we can
define a parallel map for functors containing Remote Data with a co-locational
placement.

rdmap :: (Trans a, Trans b, Functor t, ParFunctor t)
(a b) -- ^map function
t (RD a) -- ^inputs
t (RD b) -- ^outputs

rdmap f = fmap (pmap f)

The mapped function is placed where the inputs are located. Therefore the inputs
need to have been distributed already. A possible solution to this is the following
function:

releaseAt :: (Trans a, Traversable f, ParFunctor t)
f Place -- ^target locations
t a -- ^input data
t (RD a) -- ^Remote Data handle output

releaseAt places inp = pmapAt places release inp

With this function the data can be distributed first and the computation can
follow the data. As an example rdmap (+5) ◦ releaseAt [2,7] [3,6] will
compute ((+5) 3) on PE 2 and ((+5) 6) on PE 7.

Even though this function is extremely useful, it is not sufficient for the
problem introduced by the running example. In that example, the input for the
map function is a list of lists containing two elements each. So, the optimal
placement depends on a nested data structure and it is more complex than the
simple mapping used by rdmap.
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5 Example Skeletons and Placement Strategies

In this section we will explore the possibilities of skeletons equipped with Place-
ment Strategies. The Placement Strategy passed to the skeleton is a function
with three arguments:

(ParFunctor f, Traversable t, Trans a)
((RD a1 Place) -- place selector

t Place -- valid target places
f a -- data input
t Place) -- placement output

The third argument is the data structure containing the Location-Aware Remote
Data. The location of the data can be extracted by the Placement Strategy with
the help of RD’s data selector place. The place function itself is a hidden field.
Thus, it needs to be passed to the Placement Strategy (as the first argument) by
the skeleton. It is visible to the skeleton but not to the programmer. Note that the
data has type ‘a’ which can also be a nested data structure (containing elements
of type RD a1 inside a deeper level). The second argument is a Traversable
containing the places (“valid target places”) from which the Placement Strategy
selects a subset and returns it to the skeleton as the placement. This is necessary
for nested parallelism. Based on this, we can define skeletons with a semi-explicit
placement that can be used as drop-in replacements in sequential programs.
Many useful strategies are possible and they can become arbitrarily complex.

5.1 Parallel (Nested) Map Skeletons

A parallel map with Placement Strategy support is given by the definition:

rdmapPStrat :: (ParFunctor f, Traversable t, Trans a, Trans b)
((RD a1 Place)

t Place
f a
t Place) -- placement strategy

t Place -- valid target places
(a b) -- map function
f a f b -- input / output

rdmapPStrat pstrat targets f xs = pmapAt places f xs where
places = pstrat place targets xs

With rdmap we introduced a map in which the computation is co-located
with the data. If we have a list l = [a1, .., a4] : : [RD a] and a1,..,a4 are, for
example, located on PEs 1, 3, 5 and 7, then rdmap f l results in four processes
being located on PEs 1, 3, 5 and 7. But if we have a list l2 = [b1,..,b4],
which is located on PEs 1, 1, 2 and 2 again, we may consider locating the four
processes of the parallel map on four different PEs. Each one can be achieved
using explicit relocation with the function:
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moveTo :: (Trans a, Traversable f, ParFunctor t)
f Place -- ^target locations
t (RD a) t (RD a) -- ^input / relocated RD

moveTo places inp = pmapAt places (release ◦ fetch) inp

The same can be achieved in a more elegant and universal fashion using a
Placement Strategy. At the same time, this will motivate the programmer to
define the placement in a declarative style, usually resulting in a solution that
can be more easily adapted to changes. A function that returns a balanced list
of places (e.g. placing the processes on the PEs 1, 3, 2 and 4 if the data is
located on 1, 1, 2 and 2) is easily defined. Indeed, a linear time solution to
this task can be found in [3]. While the cited source is not connected to parallel
process placement, the problem to be solved is sufficiently universal for a reusable
solution to exist. This is a regular phenomenon.

A strategic solution to the problem posed in the running example is now
easy to find. A suitable strategy takes the smallest non-colliding index for every
sublist. If, e.g., the Remote Data is located at [[1,2], [3,4], [1,2], [3,4]],
then the chosen placement is [1, 3, 2, 4]. For sorting networks, this strategy
results in exact placement. This means that in each stage of the algorithm not
more than one process is placed on the same PE (if the number of PEs is at
least the width of the sorting network) and communication is minimized. Nec-
essary changes to the sequential program are limited to replacing the map in the
function call with an instance of rdmapPStrat. With the original pmap only a
row-wise placement is possible and with pmapAt an efficient placement would
only be possible with a complete restructuring of the original algorithm. The
Placement Strategy can be defined separately and the original algorithm can
stay untouched.

5.2 Divide-and-Conquer Skeletons

The idea of Placement Strategies is transferable to other skeletons. All skeletons
from Eden’s skeleton library can be updated. The necessary adjustments can be
easily done and usually previous skeletons are an instance of derived skeletons.

As an example, a distributed divide-and-conquer skeleton with placement
strategies has the following type signature:

rdPStratDC :: (Traversable f, Traversable t, Trans a, Trans b)
((RD a1 Place)

f Place
t a
t Place) -- placement strategy

f Place -- tickets
(a Bool) -- trivial?
(a b) -- solve
(f Place a t a) -- split
(f Place a t b b) -- combine
a b -- input / output
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6 Examples and Preliminary Experimental Evaluation

With Placement Strategies the algorithmic skeletons become more modular.
They allow for a communication structure that is independent of the one pre-
determined by the structure of the algorithmic skeleton. If skeletons are com-
posed or nested, a better coordination of communication is possible. They extend
Eden’s algorithmic skeletons with an interface that can also manage a non-
deterministic distributed input.

In this section we will see examples, taken from different categories of prob-
lems, in which Placement Strategies prove beneficial.

6.1 Nesting Skeletons and Algorithms with Diverging
Communication

The bitonic merger in the running example can also be expressed through divide-
and-conquer skeletons, describing it as a nested divide-and-conquer algorithm
[23]. The algorithm consists of two parts: a bitonic merger and a bitonic sorter,
both of which are divide-and-conquer schemes intertwined with one another.
Describing the algorithm with this scheme yields the advantage of simplified
proof of correctness and scalability. Conveniently, the same Placement Strat-
egy suitable for the parallel map implementation can be used for both divide-
and-conquer instances. The algorithm is an example of nesting skeletons with
dependent placement and a communication scheme that is not guided by the
computation. This results in nonideal performance, when the original algorith-
mic skeletons from Eden’s skeleton library are used.

We will compare the new Placement Strategy skeleton with a manually tuned
version of the bitonic merger and an implementation which builds upon the orig-
inal skeleton from Eden’s skeleton library. In the manually tuned version – called
placed – all optimizations regarding communication used in the skeletons are
included. Furthermore, the placement is ideal. Compared to the algorithmic
skeleton using a Placement Strategy, this version does not need to store the
location of Remote Data and the explicit placement is precalculated. These two
factors is what we will call the additional overhead of Placement Strategies. On
the basis of said optimizations, we expect it to be the fastest implementation and
therefore an upper bound for the speedup of these skeleton implementations. Of
course, this solution comes with disadvantages: compared to algorithmic skele-
tons, this monolithic solution not only requires the programmer to know all the
complexity hidden in the skeleton, it requires more code to be written, which is
less modular and less flexible.

We tested the algorithms on our multi-core computer hex, equipped with
an AMD Opteron CPU 6378 (64 cores) and 64 GB memory. In our test, a list
containing 5 · 107 elements of pseudo-random Int numbers has to be sorted. For
each test, a list is generated with the same initial seed to ensure comparability.

As Fig. 6 demonstrates, the manually tuned version has approximately the
same parallel speedup as the new algorithmic skeleton equipped with the fitting
Placement Strategy (called RDDC). The difference of speedup is within the usual
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dispersion – indicating that the additional overhead of the Placement Strat-
egy is marginal. On the other hand, the distributed divide-and-conquer skeleton
from the Eden skeleton library (called disDC) does choose a different placement,
which is hard-coded into the skeleton and cannot be changed without defining a
new skeleton. This placement is, in general, a good placement for many differ-
ent divide-and-conquer algorithms. But for our example, the fine-tuning of the
Placement Strategy has proven clearly superior.

Fig. 6. Speedup of the different implementations of the bitonic merger

6.2 Combination of Non-deterministic with Deterministic
Placement

In the second example we will see another major advantage of Placement Strate-
gies. Some of the algorithmic skeletons in Eden’s skeleton library, for example
workpool skeletons, have a non-deterministic placement of parallel processes.
The decisive advantage of these algorithmic skeletons lies in deciding on the
placement in a dynamic fashion. Since process placement does not affect the com-
putational result, a non-deterministic placement is compatible with functional
programming concepts. But this means that subsequent algorithmic skeletons
get non-deterministic distributed input, which they have to handle adequately.
The switch from an algorithmic skeleton with non-deterministic placement back
to (semi-)explicit placement can be coordinated using a Placement Strategy.

In the following example, a mandelbrot set is computed, including second
stage coloring and other post-processing. We will compare three different imple-
mentations: in the first one both stages use a parallel map, in the second one the
first step is handled by a workpool and the second step uses a parallel map. In
the third implementation, the first step is handled by a workpool skeleton and
the second step is based on a parallel map using a Placement Strategy.

As we will see, that the workpool skeleton represents a significant improve-
ment. But ignoring the actual location of the data from the output of the
workpool skeleton results in speed reduction.

We tested the algorithms on a multi-core computer, equipped with an Intel
Core i7-3770 CPU (8 cores) and 8 GB memory. In the test a picture of the



Structured Skeleton Composition with Location-Aware Remote Data 243

mandelbrot set with approximately 106 pixels is computed. The implementation
using a Placement Strategy organizes the communication between two skeletons
employing a heuristic that chooses the placement with the help of a cost func-
tion based on a discrete metric. With this, we achieve a decent trade-off between
coordination cost and optimized placement (Table 1).

Table 1. Runtimes of different skeleton instances, averaged over 10 runs.

Skeleton Avg. runtime

pmap ◦ pmap 45.1 s

pmap ◦ workpool 40.9 s

rdmapPStrat ◦ workpool 30.4 s

The example demonstrates that Placement Strategies are a suitable solution
to connect algorithmic skeletons with distributed input and output in general,
and with non-deterministic distributed input and output in particular. In addi-
tion, specifying the placement functionally dependent upon the actual location
of the input has the advantage that placement specifications are easily adapt-
able to program changes as redundancies are avoided. The connection between
different placement specifications can be made re-usable and transparent.

6.3 Architecture Awareness

It is possible to define a Placement Strategy based upon a metric. This has
the advantage that the metric can reflect the underlying structure such as the
hardware used. A change of hardware can be accounted for by the used met-
ric without needing to redefine the whole Placement Strategy. While in most
cases a discrete metric might represent the communication costs adequately,
more complex situations can be represented by it just as well. For example, on
heterogeneous hardware like clusters, the communication costs between different
processor elements may vary significantly due to different types of connection
(e.g. communication between PEs on the same computer and different computers
in the same cluster).

In the following example, we will use a scattering placement on the previously
used multi-core computer hex, in order to make additional use of AMD’s Turbo
Core feature. In contrast to common situations where a high locality is most
suitable, in this setup, a dispersed placement is beneficial if not all cores are
being used. The 64 cores of the CPU are grouped into 8 groups with 8 cores
each. Distributing parallel computing among groups is sometimes beneficial as
cores are clocked dynamically, depending on power consumption.

A list with 107 elements is sorted with a distributed merge sort on eight pro-
cessor elements, first of all using a default round robin placement (resulting in a
placement on the first 8 cores) and then moving on to a sparse placement. Chang-
ing the placement yields an implementation which is 6.5% faster (Table 2).
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Table 2. Runtime of different skeleton instances, averaged over 10 runs.

Skeleton Avg. runtime

pmap 73.7 s

rdmapPStrat sparse 68.9 s

Yet, the most important feature of Placement Strategies is the option to
define complex placement methods that are far more adjustable than common
static placement methods like blockwise or cyclic placement. With Placement
Strategies it is possible to consider additional information (e.g. estimated com-
munication costs depending on the actual location of the distributed data) when
making a placement decision. Depending on our requirements, explicit, semi-
explicit or dynamic placements are possible and can be combined.

7 Related Work

This section discusses different forms of placement organization and their rela-
tion to Placement Strategies as well as other concepts structurally connected to
the idea of Placement Strategies. Apart from the different functional placement
concepts, some non-functional concepts use sophisticated forms of placement
organization.

Not only is the explicitness of expressing placement treated differently, even
the location of the decision-making mechanism is very different in various parallel
systems. The type as well as the amount of information accessible to the decision-
making mechanism also differ.

7.1 Implicit Placement

Implicit placement is superior whenever the benefits of the compiler’s knowl-
edge about specific hardware outweighs the programmer’s knowledge about the
program. In that case, explicit placement becomes uneconomic. This has led to
a well-justified coexistence of both concepts. While explicit placement is espe-
cially popular in distributed computing (with heterogeneous hardware), implicit
placement is, for example, very popular in functional data-parallel languages.
It is not unusual for modern parallel systems to use a mixture of distributed
computing and hardware acceleration. While explicit and implicit placement are
fundamentally opposed concepts, some data-parallel languages organize their
parallel expressiveness in specialized functions that are close to the conceptual
idea of algorithmic skeletons (e.g. Futhark’s Second-Order Array Combinators
[12]). Thus, a good connection between concepts using a closely related syn-
tax is possible wherever parallelism (and parallel placement) is coordinated by
separate, higher-order functions.
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7.2 Annotation-Based Semi-explicit Placement

Within the realm of annotation-based parallelism attempts to affect placement
exist as well. Approaches, closely related to Placement Strategies, are charac-
terized by a structured influence on the placement as a goal of annotation. A
common way to influence placement is through the expression of co-location. For
example, in High Performance Fortran [22], the keyword “align” can be used to
align the data distribution of a data structure to another already distributed
data structure. Similar effects can be achieved by using Location-Aware Remote
Data and Placement Strategies. It is possible to adapt a placement to the dis-
tribution of one or more distributed data structures. Often the alignment is the
immediate result of the Remote Data concept and no additional efforts must be
made to achieve co-location.

Another interesting idea is to express (relative) locality, which is very useful
if the hardware used is inhomogeneous. In an architecture aware variant of GpH
[1] the (maximal) relative distance between two computations can be expressed.
The explicit equivalent would be a Placement Strategy with a representation of
hardware structure as a function argument. Thereby, all kinds of cost-functions
and metrics can be used.

7.3 Explicit Placement

Functional Explicit Placement. There is a variety of functional languages sup-
porting explicit placement. Common constructs are the option to specify a place
for a specific computation (Clean’s “@”, Eden’s “instantiateFAt”, Erlang’s
“spawn/4”) and a function that returns the current location (Clean’s “self”,
Eden’s “selfPE”, Erlang’s “self/1”). The use of algorithmic skeletons to orga-
nize more complex parallel patterns is popular [4,18]. Yet, the placement is
usually decided exclusively by the skeleton and the only way to manipulate the
placement is to choose a different skeleton or reorganize the data input.

Non-functional Explicit High-Level Placement. Explicit placement is very com-
mon in non-functional languages. Apart from a direct placement similar to the
explicit placement discussed in the previous paragraph, some concepts for struc-
tured placement exist.

MPI [10] provides a rich set of options for process selection and therefore
placement determination. However, it is focused on communication models and
differs fundamentally from the function-based communication model used in
Eden and other functional languages.

Designed for high performance computing, Chapel [6] provides a so-called
“multifunctional” programming approach. While we agree with almost all of the
conceptual ideas presented as the basis of the Chapel programming language,
chosen implementations differ. Domain Maps are used to express data distribu-
tion in a wide-ranging and compositional fashion.



246 L. I. Schiller

7.4 Evaluation Strategies

Different functional approaches that intervene in the parallel evaluation exists.
Evaluation strategies [20,24] are a well-known technique to control parallel
behaviour by controlling the evaluation degree of an expression. The placement
is handed over to the runtime system. Halide [21] uses separated schedules which
define the partitioning and evaluation of a parallel algorithm. The goal of both
is therefore to answer the question of “how?” and not “where?”. Conceptually,
these both are related to Placement Strategies in the way their goals are pur-
sued. All of them are written in the same language as the algorithm and therefore
extensible by the user. Amongst all these concepts, the goal is to separate the
algorithm from the organization of parallel behaviour.

8 Conclusion and Future Work

The vast majority of parallel functional concepts use either a scheduler (in the
runtime system) or parallel data structures. This paper has tried to offer a mid-
dle ground to change the parallel strategy depending on the skeleton used. In
combination with improved connection opportunities, the composing and nesting
of algorithmic skeletons is enhanced. A precise parallelism control is made possi-
ble through the expressiveness of explicit placement, offering improved elegance.
Whenever a strategy requiring a data location is appropriate, this approach is
well suited. The solution fulfills many different goals at once:

1. Functional programming style: In our opinion Placement Strategies fit per-
fectly into a functional programming style. They encourage the programmer
to express a placement as a function. The use of auxiliary constructs like the
selfPe function becomes unnecessary.

2. High level of abstraction: The combination of algorithmic skeletons and Place-
ment Strategies divide an algorithm into a computational and an organiza-
tional part.

3. High level of manipulation possible: Placement Strategies combined with
Location-Aware Remote Data can determine a parallel placement relative to
the actual position, thus facilitating co-locating tasks and even more sophis-
ticated placement.

4. Nesting algorithmic skeletons: It is possible to nest algorithmic skeletons in
any way.

5. Skeleton composition with (non-deterministic) distributed input: By locating
the organisation of the parallelism into algorithmic skeletons it is possible
to combine work-pulling skeletons with work-pushing skeletons. A Place-
ment Strategy can cope with non-deterministic placement by applying a
(semi-)explicit placement.

The advantages of algorithmic skeletons can only be harnessed if the algo-
rithm that is parallelized can be expressed adequately. We have shown that
Placement Strategies can be an improvement to algorithmic skeletons in several
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different situations. They generalize the definition of algorithmic skeletons while
the additional overhead of coordination remains manageable.

Future work should focus on a library of Placement Strategies that comple-
ments Eden’s algorithm skeleton library. Moreover a more detailed (experimen-
tal) evaluation is necessary.

Acknowledgments. The author thanks Rita Loogen and the anonymous reviewers
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