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The Application of Statistical Quality
Control Methods in Predictive
Maintenance 4.0: An Unconventional
Use of Statistical Process Control
(SPC) Charts in Health Monitoring
and Predictive Analytics
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Abstract Statistical Process Control (SPC) is a technique of gauging and moni-
toring quality by closely observing a given manufacturing process. Appropriate
quality data is collected in the form of product measurements or readings from
various machines. This data is used in evaluating, monitoring and controlling the
variability of the considered manufacturing process. This paper proposes the
expansion of SPC methods to predictive maintenance. Applications of SPC tech-
niques in various fields outside of basic production systems have been increasing in
popularity. This paper investigates the practicality and viability of using Control
Charts in predictive maintenance and health monitoring. Moreover, this study
discusses numerous enabling technologies, such as Industrial Internet of Things
(IIOT), that help to advance real-time monitoring of industrial processes. This study
also expands on the use of Naïve-Bayes and other Machine Learning methods to
identify strong (naïve) dependencies between specific faults and special patterns in
monitored measurements. Despite its idealistic independence assumption, the naïve
Bayes classifier is effective in practice since its classification decision may often be
correct even if its probability estimates are inaccurate. Optimal conditions of naïve
Bayes will be also identified, and a deeper understanding of data characteristics that
affect the performance of naïve Bayes is analyzed.
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87.1 Introduction

Control charts are used to detect special cause variation but other tools such as
Pareto diagrams or fish-bone diagrams are sometimes needed to address root cau-
ses. If the data is normally distributed, standard Shewhart control charts are used. If
the data is non-normally distributed with correlation, conventional control charts
give too many false alarms. Selecting an appropriate control chart depends on the
characteristic and attributes of data and economic factors such as sampling, testing,
investigation costs [4].

The modelling of the explicit relationship between maintenance and quality of the
final product has not been adequately addressed. Ben-Daya and Duffuaa’s study on
maintenance and quality highlights the missing link between the two and proposes a
broad framework for modelling the maintenance-quality relationship. A common
feature of the existing models to determine economic production quantity (EPQ) and
maintenance schedules jointly does not account for the optimization of maintenance
amount. The new dimension brought to the modelling of this problem includes the
maintenance effort as a decision variable to be optimized. In many PM models,
system is assumed to be in new quality after maintenance, but a more realistic
approach is when the failure of a system changes by assuming the system quality is
between before failure and after maintenance states. However, there is no attempt in
these models to optimize the PM effort to change the failure pattern in order to
achieve given quality goals. One of the two proposed approaches is based on the idea
that maintenance affects the failure pattern of the equipment and that it should be
modelled using the concept of imperfect maintenance. The second approach is based
on Taguchi’s approach to quality [1].

MacCarthy and Wasusri’s paper expands on the lack of connection between the
failure detection patterns and maintenance processes identified in Ben-Daya’s
paper. It reviews and highlights the critical issues of the non-standard applications
of SPC charts in articles from 1989 to 2000, classified in five categories: monitoring
of non-manufacturing processes using Shewhart charts, monitoring of non-manu-
facturing processes using more advanced charts, deriving appropriate plans and
schedules, evaluating customer satisfaction, and developing forecasting models.
The articles reviewed are broken down in layered categories as below:

• Application Domain:

– Engineering, industrial, and environmental applications
– Healthcare applications
– General service sector application
– Statistical application

• Data Sources Used
• Types of Control Chart Technique Employed

It is shown that application boundaries of SPC charts reach beyond manufactur-
ing. In non-manufacturing applications, the nature and scope of the process and
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relevant quality characteristics must be clearly defined, as well as the concepts and
interpretation of statistical control states. If the assumptions underlying the Shewhart
Theory are violated, more advanced control charts are needed. A step-by-step,
holistic guide for selecting the best type of control chart for the objective is given. It is
necessary to experiment with many types of control charts because of various data
characteristics [4].

Jennings and Drake further examine the non-manufacturing use of control charts
and propose the development of an original method of normalizing the interde-
pendent measurement parameters in machine tool monitoring. Since some machine
tool sub-systems operate continuously, intermittently, and at various torques and
speeds, the measured data during steady-state and transient tests must be normal-
ized during pre-processing before the construction of control charts. This value will
often be in error due to the error between the mean value of the group and the true
value. Three-variable chart is created in a very similar fashion to the two-variable
chart by using the residual values calculated from the deviation from means. The
authors present these three examples of measurement normalization as a verification
of their performance parameter inter-dependence compensation method [3].

The assumption of a steady state process presents an issue for the implemen-
tation of control charts in dynamic and unstable non-manufacturing applications
such as predictive maintenance. Since the conventional Shewhart average level
chart is not applicable when the variation is not purely random, adaptive moving
charts are studied. Wang and Zhang’s objective in their study is to use adaptive SPC
methods based on an autoregressive model to create an adaptive control chart that
does not readily assume constant steady state and normal distribution of variables.
Two-stage failure criteria are used as the basis for the SPC charts. This article
attempts to analyze processes where no previous knowledge is present and the
process is non-stationary and most likely non-Gaussian. The autoregression model
used is basically a one-step ahead prediction based on the output values before
being regressed on to the function itself. The coefficients and the error term of a
linear, parametric autoregression model can be determined to levels of accuracy
using published algorithms, such as the forwards least-squares algorithm. The
adaptive moving average is also considered for the same vibrations data where it is
found to be more conservative than the adaptive moving range method. The
adaptive Shewhart average level chart is used simultaneously for all the variables
and is found to be ideal because it does not need a subjective threshold level;
however, it is very insensitive to small changes in measurements [2].

Yin and Makis take a Bayesian approach due to the inconclusiveness of the
steady state information about process control in their 2009 publication. In this
paper, design of a multivariate Bayesian control chart for condition-based main-
tenance (CBM) applications is considered using the control limit policy structure
and including an observable failure state. In addition to the Bayesian chart to
optimize the probability of true alarms and to find the best sample size, sampling
rate, and control limits, optimization models for economic and economic-statistical
design of the Bayesian chart are developed to determine the optimal control chart
parameters to minimize the expected average maintenance cost. The proposed
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multivariate Bayesian control chart performs better and compromises its economic
performance much less than the traditional chi-square chart when probability of
failure prevention increases [8].

Applications of SPC techniques in various fields outside of basic production
systems have been increasing in popularity. This paper investigates the practicality
and viability of using Control Charts in predictive maintenance and health moni-
toring. This study also expands on the use of Naïve-Bayes and other Machine
Learning methods to identify strong (naïve) dependencies between specific faults
and special patterns in monitored measurements.

87.2 The Application of Statistical Process Control
(SPC) Charts in Health Monitoring and Predictive
Maintenance

In the process of determining which SPC method is more fit to our application,
many aspects of the model development were assessed. Shewhart control charts
(mainly x and R chart or x and s chart) are particularly useful in the first phase of an
SPC application: the process is to be expected to be out of control and undergoing
assignable causes that are reflected in big changes in the observed parameters.
However, a main drawback of the Shewhart control chart is its use only of process
data contained in the last sample observation and its unawareness of any indication
given by the full sequence of collected data. This feature renders Shewhart control
chart unresponsive to slight process shifts (around 1.5 * s or less). In cases where
the process inclines to function in control, consistent estimates of process param-
eters (for instance, mean and standard deviation) are obtainable, but assignable
causes do not normally result in great process upsets or disturbances. This issue can
be addressed by introducing other criteria, such as warning limits and other sen-
sitizing rules, which can be applied to Shewhart control charts to improve their
performance against small shifts. Nonetheless, using such measures reduces the
practicality and simplicity of understanding a Shewhart control chart, and intensely
decreases the average run length (ARL) of the chart when the process is actually in
control.

An effective unconventional approach to the Shewhart Theory that may be used
when small process shifts are of interest is the cumulative sum (CUSUM) control
chart. In this section, we focus on the cumulative sum chart for the process mean.
First, if the process is in control at a target value µ0 (determined by training data
from in-control process), the cumulative sum defined is a random walk with mean
zero (check Figs. 87.2, 87.4, and 87.6). On the other hand, if the mean shifts
upward (µ1 > µ0), an ascendant shift will develop in the cumulative sum. On the
contrary, if the mean swings downward (µ1 < µ0), then a descending shift will
progress. Consequently, if a trend develops upward or downward, we should
consider this as evidence that the process mean has shifted and a search for some
assignable cause should be performed.
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87.2.1 Application 1: High Pressure Pump and Water
Desalination

Cavitation Detection. The testing kit parts are installed and mounted on a
moveable steel frame. The motor is fixed by bolts on the steel frame. Pump is
connected with Tank by 1 in. PVC pipe, with a manual valve installed between them
to control the flow entering the pump. A pressure gauge is installed on the discharge
pipe of the pump and the discharge line passes through a magnetic Flow meter, then
a manual valve to control the system head, and finally connected with the tank again
(Fig. 87.1).

Vibration sensors (Accelerometer) are fitted on the pump casing and motor
sensing the pump casing vibration and shaft bearing movement. The three
accelerometers are connected by Low Noise Coaxial Cables to the NI 9232 series
card. Two pressure transducers at the pump inlet and outlet pipes are connected to
the NI 9207 card. The two NI cards are fitted on the Compact DAQ Chassis
(cDAQ-9174) slots. DAQ Chassis is connected by USB cable to the computer.

In Fig. 87.2, the graphs are divided into 2 sections. The non-grayed section
represents the training of the data (not reflected in upcoming graphs). The model
was trained using normal condition data. The CUSUM calculations used to develop
the graphs in Fig. 87.2 show the system is in control (all points are grey and in
control between H+ and H−). Once cavitation is detected, the graph shows that the
system goes out of control, showing that cavitation likely happed around the 34–
35th second.

Fig. 87.1 Centrifugal pump demo used for cavitation detection
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Leak Detection. The digital transformation in the chemical and petrochemical
industries has progressed at a rather slow pace due to reliance on more traditional
methods. The process control demonstration is used to show how sensors can be
used and how digital transformation can help optimize the usefulness of the system.
Currently the process control demonstration simulates a leak by opening an EPS
valve, and the sensor readings will then change based on the severity of the leak
(Fig. 87.3).

Two pressure sensors, one flow sensor and one temperature sensor, are located
on the first row of piping in the system. The EPS valve is located in the middle
section. The other pressure and flowrate sensors are located on the last row of
piping. The demonstration has water pumped in one way and flowing out the other
two. The solenoid valve is used initially to allow water into the system. The water
then flows to the EPS valve that can be opened to a specific position to induce a
leak.

a b

Fig. 87.2 Cavitation detection. a Motor DE, b casing

Fig. 87.3 Demo setup used for leak detection
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In the case of leak detection (Fig. 87.4), a longer scenario was simulated where a
leak was induced twice: the first induced leak was a full leak, as for the second one,
it was a 2-stage induced leak. Observing the CUSUM graphs monitoring several
parameters of the system, we see that we have 3 separate phases of out-of-control:
(a) the first out-of-control phase (0–40 s): this where the pump is reaching its
steady-state after launching the system, (b) the second OOC phase (380–500 s): the
CUSUM method was able to detect the leak and its fix, (c) the third OOC phase
(640 s-end): this phase shows how the program was to detect different levels of the
leak. Furthermore, the behavior of the CUSUM on the data collected from the flow
sensor F1 compared to the other data behavior, shows that the sensor is malfunc-
tioning and needs calibration.

87.2.2 Application 2: Apache Gearbox

The intermediate gearbox is a critical component of the aircraft that requires fre-
quent maintenance actions. Sensors are used to monitor the health of the compo-
nent, and data is collected and models built to detect faults and develop trends based
on the health and usage. Predictive modeling is used to assess the health of the
component to diagnose if a fault is occurring (Fig. 87.5).

Fig. 87.4 Leak detection simulation: a F1 (malfunctioning), b F2, c P1, d P2
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Data for the gearbox demo was also used to validate the CUSUM model
developed for fault detection. Figure 87.6 shows how the fault induced was
detected leading an out of control chart.

Fig. 87.5 Gearbox demo used for fault detection

Fig. 87.6 Gearbox fault detection. a Output duplex bearing. b Output roller bearing. c Input roller
bearing
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87.3 Machine Learning Approach for Condition/Fault
Dependency

In our future work, Machine Learning approaches will be pursued in condition-based
fault detection problems given their capability to handle data-intensive processes,
signal cognitive complexities, and extrapolation/prediction analysis. Moreover,
Machine Intelligence will also become our interest to assist manual decision-making
for condition-based predictive maintenance.

87.3.1 Fault Type Predictions with Naïve-Bayes

In our application, the process data are usually high-dimensional with multi-cate-
gorical variables, as the processes are beingmonitoredwithmultiple sensor signals. In
such cases, one classic fault classifier to correlate categorical features with a labeled
fault will be Naïve-Bayes classifier. The prediction formula is:

PðFjS1;S2;S3...Þ ¼
P S1;S2;S3...ð ÞPðS1;S2;S3...jFÞ

P Fð Þ
ð1Þ

In Eq. (1), Posterior PðFjS1;S2;S3...Þ represents the possibility of the system having
fault F when signal sequence ðS1; S2; S3. . .Þ is being observed, which could be
temperature fault Ft, pressure fault Fp, vibration fault Fv, or leaking fault Fl. More
specifically, the faults at different components can be singled out and predicted.
Prior to P S1;S2;S3...ð Þ, Likelihood PðS1;S2;S3...jFÞ and Evidence P Fð Þ can be calculated
based on the fault occurrence possibilities from experimental results (Table 87.1).
Note that the Bayes rule can only handle categorical data, which requires sensor
signals to be categorized using above SPC Charts to decide whether each signal is
located within a safe range at the current monitor time.

Table 87.1 Fault occurrences and signal indicators form experimental data

Time
stamp

Sensor signals in safe range Temperature
fault

Vibration
fault

Leaking
fault

T1 S1 ¼ True; S2 ¼ True; S3 ¼ True. . .

T2 S1 ¼ False; S2 ¼ True; S3 ¼ True. . . Detected

T3 S1 ¼ True; S2 ¼ True; S3 ¼ False. . . Detected

… … … … …

Tn S1 ¼ False; S2 ¼ True; S3 ¼ False. . . Detected Detected
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The superiority of Naïve-Bayes lies in that it can robustly handle missing values
irrelevant feature signals. It is also a relatively fast algorithm dealing with big
datasets, which is particularly important for online decision-making process.

87.3.2 Online Decision-Making

Machine Intelligence has also been investigated under the scope of online auton-
omous systems. The outlined system that is able to make predictions based on
signal data and make remedy actions accordingly will be suited in the context of
Predictive Maintenance.

A digital transformation philosophy named Virtual Commissioning [7] has been
investigated and implemented towards an intelligent robotic actuation system that
adopted Machine Learning Techniques such as Reinforcement Learning and Deep
Neural Network in dynamic operation scheduling problems (Fig. 87.7). Deep
Reinforcement Learning algorithm trained on both virtual and physical platforms
will serve as the baseline for the autonomous actions taken upon condition-based
fault detections.

Fig. 87.7 Deep reinforcement learning based operation scheduler training (Top) and testing
(Bottom) procedures
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87.4 Conclusion

We have observed in this paper how the CUSUM control chart was effective in
sensing shifts in processes when faults were induced. In order to enhance
detectability (especially for large alterations in the system), our team is currently
implementing other sensitizing rules. These rules help in the understanding of
patterns in the process and in the prediction and detection of faults/out-of-control
phases [5]. In short, this paper describes the rationale behind the fault detection
algorithm used in the development of a predictive maintenance dashboard for water
desalination industry [6]. This final platform will help monitor data collected from
desalination plants across Egypt in order to maximize plant availability and smart
monitoring of features incorporated in these plants to ensure reliable operation at
optimal efficiency, and minimize maintenance burdens for the water desalination
industry.
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