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Rolling Bearing Degradation State
Prediction with Deep Fusion Feature

Hao Chen, Niaoqing Hu, and Lun Zhang

Abstract In industrial manufacturing, the safety and reliability of rolling bearing
play an important role for the normal operation of equipment. Therefore, it is of
great significance to predict the future health state of rolling bearings accurately.
With the increasing complexity of mechanical equipment and its external envi-
ronment, data-driven prognostic methods gain popularity thanks to the advanced
sensor technology and massive computer power. It is critical to find a stable and
monotonous degradation feature for the data-driven prognostic method. However,
the most of traditional degradation features do not fully mine the bearing state
information contained in the sensor data, this paper proposes a data-driven prog-
nostic method based on long-short-term memory network (LSTM) with deep fusion
feature. This method extracts the shallow features from the raw data, then takes the
shallow features as the input of Deep Sparse Auto-encoder (DSAE) to extract deep
degradation features, and finally uses LSTM to predict the bearing future degra-
dation state. In this paper, experiment was performed using the IEEE PHM 2012
Data Challenge Bearing Dataset. The results show that the deep features are more
sensitive to early faults and have better predictability, and LSTM performs well in
terms of short-term health state prediction for bearings.

55.1 Introduction

Rolling bearing is one of the key components of industrial equipment, it mainly
plays a role in supporting and reducing friction. Many studies have shown that the
failure of most rotating machinery are mainly caused by bearing failure [1].
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Therefore, accurately predicting the degradation state and remaining useful life
(RUL) is an important part of Condition Based Maintenance (CBM) for bearing,
which can save economic costs and avoid serious industrial accidents. Up to now,
how to get a good degradation feature is one of the challenges for rolling bearing
prognostics [2].

Degradation feature, also known as health indicator, is the important parameter
reflecting the degradation state of bearings. In general, a good degradation feature
should have the characteristics of uniform monotonicity, obvious trend and low
volatility. Common degradation feature include time-domain statistics feature,
frequency-domain statistics feature, entropy and so on. However, in the process of
bearing degradation, the type of fault may change, moreover, several different fault
types can coexist in the same degradation stage, and these domain statistics features
often sensitive to the only one fault type, which cannot better reflect the whole life
degradation process of the bearing [3]. In order to get the global feature which can
describe the whole life degradation process of the bearing, feature fusion is a
common method.

General feature fusion methods include principal component analysis (PCA),
Self-organizing map (SOM) and so on. Dong and Luo used PCA to merge the raw
features and reduce the dimension, and then get a more sensitive degradation
features [4]. Huang et al. used SOM method to integrate 6 vibration features and
successfully extracted consistent and practical degradation indicators [5]. However,
the above two methods also have the following shortcomings: PCA is a linear
mapping and cannot handle the nonlinear relationship between different variables.
SOM network maintains the topological continuity of data, but the basic SOM
network has the disadvantages of fixed and nonadjustable network structure, and
local information will disappear in the case of data dimensionality reduction.

In recent years, with the development of large-scale storage facilities and sensor
networks, a large number of industrial equipment condition monitoring data can be
obtained. Under the background of massive data, Auto-encoder, as an algorithm of
unsupervised learning, can dig out the hidden information in the data and extract the
abstract feature that accurately reflect the bearing degradation state of bearing [6].
RNNs have achieved good results in dealing with time series problems, and the
condition monitoring data is essentially a time series. RNNs take both the historical
data and the current data as input, and learn the dependence between sequence data
through multiple trainings to predict the future development trend. However, basic
RNNs often have problems of gradient disappearance and gradient explosion in the
process of long sequence data training, and it is difficult to deal with the problem of
long-term dependence. As a variant of RNN, LSTM network effectively solves
these problems [7]. In this paper, a data-driven prognostic method based on LSTM
with deep fusion feature is proposed. Firstly, multiple shallow features are extracted
from the raw vibration data, and then these shallow features are fused using DASE
method, so as to get the deep features that can represent the whole life process of
bearing. Finally, the deep features are taken as the input of the LSTM network to
predict the bearing future degradation state.
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The rest of this paper is organized as follows: Sect. 55.2 introduces the basic
theory of Auto-encoder and LSTM network. Section 55.3 introduces framework of
the proposed method; Sect. 55.4 presents the experimental validations of the pro-
posed method; the conclusion and future work will be given in the Sect. 55.5.

55.2 Theory

55.2.1 Auto-Encoder

Auto-encoder is an unsupervised learning neural network model, which minimizes
the error between the reconstructed data and the raw data as learning goal, the error
also called as loss function. The abstract representation of the raw data can be
obtained by encoding. Auto-encoder can be divided into two parts: encoder and
decoder. The basic auto-encoder is a two-layer neural network, and the simplified
network structure of auto-encoder is shown in Fig. 55.1.

For the given input data x ¼ x1; x2; x3; . . .; xn½ �, the middle hidden layer output
effective encoding feature, then the mapping relationship between the input layer
and the k th neuron in the hidden layer is as follows:

yk ¼ r Wk
1xþ bk

� � ð55:1Þ

Output reconstructed data are as follows:

x̂k ¼ r Wk
2yþ ck

� � ð55:2Þ

x1

x2

x3

x4

y1

y2

2x̂

3x̂

4x̂

1x̂

encoder decoder
Fig. 55.1 The structure of
basic auto-encoder
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After the output is obtained, the loss function can be calculated as follows:

L ¼
Xn
k¼1

xk � x̂k
�� ��2 þ k Wk k2F ð55:3Þ

where W represents the weight matrix, b; c all represent the bias term, k is the
regularization coefficient and r denote the activation function.

In most cases, the auto-encoder with only two layers of neural network cannot
achieve better data encoding feature. In order to obtain better data encoding, the
deep network model is usually used. Stacked auto-encoder stack multiple
auto-encoder together and extract feature layer by layer, it can get low dimensional,
more representative deep features. Moreover, in order to obtain more abstract and
representative compressed features, we can add a regularization item based on AE,
also known as SAE, which can remain and extract as much as more information of
the inputs. In this paper, L1–regularization is applied.

55.2.2 LSTM Network

The problem of gradient disappearance and gradient explosion often occurs in the
training of long sequences with ordinary RNNs. LSTM network avoids the above
problems by introducing a special structure named memory unit. As shown in the
Fig. 55.2, an LSTM memory unit mainly includes: cell state and three gates (forget
gate, input gate and output gate).

The LSTM memory unit have the ability to remove or add information to the cell
state, it is regulated by the three gates. Forget gate determine what information is
thrown away from the cell state, input gate determine what new information is input
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ft it ot

Fig. 55.2 The basic structure
of LSTM memory unit
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to the cell state, and output gate determine what will be output based on updated cell
state.

At each time step t, the output of the three gates and the cell state are as follows:

ft ¼ r Wf � ht�1; yt½ � þ bf
� �

it ¼ r Wi � ht�1; yt½ � þ bið Þ
Ct ¼ ft � Ct�1 þ it � tanh Wc � ht�1; yt½ � þ bcð Þ
ot ¼ r Wo � ht�1; yt½ � þ boð Þ
ht ¼ ot � tanh Ctð Þ

ð55:4Þ

where ft; it; ot;Ct respectively represent the value of forget gate, input gate, output
gate and cell state at t time step, ht�1 is the output values from the hidden layer at
the previous time, Wf ;Wi;Wc;Wo denote weight matrix between the input layers
and hidden layers, bf ; bi; bc; bo are the bias values of gate and cell state., and �
donates the product of two matrices, ;½ � means that two vectors are concatenated to
generate a new vector.

55.3 Methodology

The main work of this paper can be divided into three parts: shallow feature
extraction, feature fusion and prognosis. Figure 55.3 summarize the flow of pro-
posed method, some details described as follows:

• Vibration data preprocessing. General data preprocessing includes removal of
outliers, noise reduction and so on. Considering that the vibration amplitude
increases every moment in the degradation process, only noise reduction is
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Fig. 55.3 The framework of the proposed method
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carried out for the raw vibration data. In this paper, moving average smoothing
method is used to eliminate the noise of the raw signal.

• Extract shallow features. Time-domain features and frequency-domain features
are extracted from the preprocessed data.

• Feature fusion. Taking the extracted shallow features as the input of DSAE, the
deep features with better monotonicity and obvious trend can be obtained.

• Prognosis. Detecting the early fault and taking the smoothed deep features as the
input of the LSTM network to predict the bearing future degradation state.

55.4 Experiment and Analysis

55.4.1 Dataset Description

The PHM 2012 Data Challenge Bearing Prognostic Dataset used in this paper is
provided by France FEMTO-ST Institute, which was obtained on PRONOSTIA
platform for bearings accelerated life test [8].The experiment was divided into three
working conditions. The horizontal and vertical vibration signal were collected by
two acceleration sensors with the sampling frequency at 25.6 kHz, and 2560
samples (i.e. 1/10 s) are recorded each 10 s. When the amplitude of the vibration
signal overpassed 20 g, it is defined as the bearing failure.

55.4.2 Results and Analysis

After the raw vibration signal is denoised, some features such as RMS are extracted
from the pre-processed vibration signal. Figure 55.4 show RMS and kurtosis
respectively.

(a) RMS                                                       (b) kurtosis

Fig. 55.4 RMS and kurtosis of bearing1_1
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As can be seen from Fig. 55.4, RMS can better reflect the degradation process of
the bearing. This is because RMS represents the energy of vibration signal. When
the bearing has a serious fault, the value of RMS will increase, but RMS is not
sensitive to early fault. Kurtosis is sensitive to bearing fault, with the continuous
degradation of the bearing, the impact component in the signal increases obviously,
but the monotonicity is not good due to the influence of fault impact signal, so it
cannot well track the degradation process of bearing. A good degradation feature
should have the characteristics of good monotonicity, obvious trend, and strong
robustness. Therefore, some bad degraded features should be removed before
feature fusion. In this paper, we select Root mean square (RMS), variance, square
mean root and mean frequency of horizontal and vertical signals total 8 features, as
shown in Table 55.1.

Before the shallow features are input into DSAE to extract the deep features, the
shallow features are normalized with Min-max normalization. In this paper, the
DSAE model consists of three auto-encoders. The first layer is the input layer, and
the number of neuron nodes is 8 as well as the input dimension. The number of
neuron nodes in per layer is 8; 40; 10; 1; 10; 40; 8½ �. L1 regularization is adopted in
the input layer, where the number of nodes in the second layer is more than that in
the first layer to extract more sparse features. The activation function of the last
layer is Tanh function, and the other layers’ activation function is the ReLU
function. The bath size is 100 and the epoch of network iterations is 200. Adam
optimization algorithm is used in the training. The loss function is defined as the
root mean square error (RMSE), and the formula of the RMSE is as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

yi � ŷið Þ2
s

ð55:5Þ

where yi the denotes real value, ŷi denotes the predicted value, and n denotes the
length of data sequence.

Figure 55.5 show the bearing1_1 deep features under working condition 1 and
bearing2_1 deep feature under working condition 2. It can be seen from Fig. 55.5

Table 55.1 Candidate shallow degradation features

Feature Equation

Root mean square
Xrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Pn
i¼1

x2i

s

Variance
Xvar ¼ 1

N

Pn
i¼1

ðxi � �xÞ2

Square mean root
Xsmr ¼ 1

N

Pn
i¼1

ffiffiffiffiffiffi
xij jp� �2

Mean frequency
Xfm ¼ 1

N

Pn
i¼1

yi ðyi is the Frequency amplitude sequenceÞ
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that the deep bearing features extracted by DSAE are less fluctuation than shallow
features such as RMS and have obvious trend, besides, it is more sensitive to early
fault. However, the deep feature extracted by DSAE is not very sensitive to the
early fault as well as RMS under working condition 3, because the working con-
dition 3 of heavy load and high speed, the process time from bearing early fault to
failure is relatively short.

After obtaining the smoothed deep features, LSTM network is used to predict the
future degradation of bearings. In this paper, Tensorflow framework is used to build
the LSTM network model. The LSTM model has 2 hidden layers, the numbers of
1st hidden layer nodes are 160 and 2nd hidden layer nodes are 100. Input time step
is set to 50. Adam optimization algorithm is used in the training, the number of
network iterations is 100 and learning rate is 0.006. At the same time, in order to
prevent overfitting during the training process, the dropout layer is added to the
model, the dropout rate is set to 0.4. The loss function is also the RMSE.

Figure 55.6 show the prediction of bearing1_3 degradation state with prediction
step of 10 and 20. In this paper, the LSTM model is trained with the data of
bearing1_1 to predict the degradation state of bearing1_3. As can be seen from
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Fig. 55.5 The deep fusion feature: a bearing 1_1; b bearing2_1
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Fig. 55.6, the LSTM model can predict the degradation state of bearing well, it’s
worth noting that the prediction accuracy will decrease with the increase of the
prediction step.

55.5 Conclusion

A data-driven bearing prognostic method based on LSTM with deep feature is
proposed in this paper. Considering that a shallow degradation feature cannot make
full use of the hidden state information in the data, this method integrates multiple
shallow degradation features such as RMS through DSAE, so as to obtain more
effective deep degradation features which can better characterize the whole life
degradation process of bearings. Finally, LSTM network can be used to realize the
short-term prediction of bearing degradation state. And it is still a tedious task to
extract multiple features manually. Next, we will consider using the auto-coder to
extract features directly from the raw data. And in this work, we have tried to use

(a) The prediction step is 10

(b) The prediction step is 20
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Fig. 55.6 The prediction of bearing1_3 degradation state
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LSTM for long-term prediction of bearing, but the result is not good, how to realize
accurate long-term prediction of bearing is our focus work in the future.

Acknowledgements This work is supported in part by the Defence Industrial Technology
Development Program (Grant No. WDZC20195500305).

References

1. Williams, T., Ribadeneira, X., Billington, S., Kurfess, T.: Rolling element bearing diagnostics
ın run-to-failure lifetime testing. Mech. Syst. Signal Process. 15, 979–993 (2001)

2. de Azevedo, H.D.M., Araújo, A.M., Bouchonneau, N.: A review of wind turbine bearing
condition monitoring: State of the art and challenges. Renew. Sustain. Energy Rev. 56, 368–
379 (2016)

3. Zhao, L., Wang, X.: A deep feature optimization fusion method for extracting bearing
degradation features. IEEE Access 6, 19640–19653 (2018)

4. Dong, S., Luo, T.: Bearing degradation process prediction based on the PCA and optimized
LS-SVM model. Measurement 46, 3143–3152 (2013)

5. Huang, R., Xi, L., Li, X., Richard Liu, C., Qiu, H., Lee, J.: Residual life predictions for ball
bearings based on self-organizing map and back propagation neural network methods. Mech.
Syst. Signal Process. 21, 193–207 (2007)

6. Ren, L., Sun, Y., Cui, J., Zhang, L.: Bearing remaining useful life prediction based on deep
autoencoder and deep neural networks. J. Manuf. Syst. 48, 71–77 (2018)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780
(1997)

8. Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-Morello, B., Zerhouni, N.,
Varnier, C.: PRONOSTIA: An experimental platform for bearings accelerated degradation tests
(2012)

670 H. Chen et al.


	55 Rolling Bearing Degradation State Prediction with Deep Fusion Feature
	Abstract
	55.1 Introduction
	55.2 Theory
	55.2.1 Auto-Encoder
	55.2.2 LSTM Network

	55.3 Methodology
	55.4 Experiment and Analysis
	55.4.1 Dataset Description
	55.4.2 Results and Analysis

	55.5 Conclusion
	Acknowledgements
	References




