
Chapter 46
Spectral Element Methods for Damage
Detection and Condition Monitoring

Magdalena Palacz , Marek Krawczuk , and Arkadiusz Żak

Abstract Modelling may be considered as one of the most important aspects of
Structural Health Monitoring (SHM) providing reliable tools capable of acquisition,
validation and analysis of technical data. Numerous literature examples acknowl-
edge that different physical parameters and their changes play an important role in
damage detection based on modal analysis, wave propagation, impedance changes,
ultrasonic inspection and many others. Their appropriate and precise computer
modelling has become a key factor in the assessment of potential capabilities of
novel SHM systems. Therefore it is extremely important to operate with validated
numerical tools. Numerical models of typical engineering structures are based on
certain differential equations defining problems under consideration. Various
numerical techniques have been used and developed to solve such problems. The
key aspect of the presented paper is to provide and present systematised information
about various aspects of two most often used numerical modelling techniques used
for SHM purposes, their abilities, limits and other properties, that as a consequence
may even lead to inadequate numerical solutions, especially in the case of damage
detection techniques based on wave propagation phenomena.

46.1 Introduction

Modelling may be considered as one of the most important aspects of structural
condition monitoring providing reliable tools capable of acquisition, validation and
analysis of technical data [1]. Various techniques have become the subjects of
extensive scientific interest and analysis [2]. Numerous literature examples
acknowledge that different physical parameters and their changes [3] play an
important role in damage detection based on modal analysis [4, 5], wave propa-
gation [6, 7], impedance changes [8, 9], ultrasonic inspection [10, 11] and many
others [12, 13]. Their appropriate and precise computer modelling has become a
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key factor in the assessment of potential capabilities of novel SHM systems. As one
of the most important aspects of damage detection procedures is the capability of
localising a damage in its very early stage of growth therefore one can observe
growing interest in global detection methods based on high frequencies analysis. In
other words the methods based on the analysis of the influence of the propagation of
surface wave signals on a structure (Figs. 46.1 and 46.2). For this reason it is
extremely important to operate with validated numerical tools. The greatest chal-
lenge of the SHM system is to know what physical parameters observe and how to
identify ‘changes’ of them.

Numerical models of typical engineering structures are based on certain differ-
ential equations defining problems under consideration. Various numerical tech-
niques have been used and developed to solve such problems. Usually, the Finite
Element Method (FEM) has been successfully applied for this purpose, but special
cases, especially when higher operational frequencies are considered, spectral
methods have been employed and reported as more efficient. Several typically used
numerical methods to solve partial differential equations have been gathered in
Table 46.1.

A key aspect in the process of numerical modelling of structures is the proper
proportion between the time of calculation and the type of complication of the
numerical method chosen for solution of the analysed problem. For several decades
constantly grows the number of application of spectral methods for solution of
structural health monitoring problems. According to an overall definition known
from the literature the spectral methods involve representing the solution to a
problem as a truncated series of known functions of the independent variables [15].
The choice of an appropriate spectral method should be defined by the two main

Fig. 46.1 The geometry of the analysed L-shape Al panel
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considerations: the accuracy and the efficiency. In order to be useful a spectral
method should be designed to give results of greater accuracy than can be obtained
by more conventional difference methods using similar spatial resolution or degrees
of freedom. The choice of appropriate spectral representation depends on the kind
of boundary conditions involved in the problem. The spectral element method
should also be as efficient as difference methods with comparable numbers of
degrees of freedom. For similar work, spectral methods should produce more
accurate results than conventional methods [15].

Despite the fact that there is a wide variety of computational techniques
employed to solve different types of problems arising when dealing with SHM

t=62.5 s t=125 s

t=187.5 s t=250 s
Fig. 46.2 Propagation of guided elastic waves in an isotropic L-shaped panel

Table 46.1 Typical solution methods of numerical partial differential equations [14]

Method Example

Finite difference e.g., parabolic, hyperbolic, finite-difference time-domain

Finite volume e.g., high-resolution

Finite element e.g., finite element, spectral element

Meshless (meshfree) e.g., material point

Domain decompositions e.g., fictitious domain

Others e.g., methods of lines, boundary element, wavelet method
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applications [17], it is very difficult to provide a general statement that can answer
the question concerning the most powerful numerical method. In this context the
terms suitable and efficient are only used according to the problem under consid-
eration. For modelling of wave propagation phenomena the most popular have been
recently spectral methods. Two different approaches may be distinguished [16]. The
first one, popularised by Doyle [18], is named Frequency Domain Spectral Element
Method (FDSEM or in shorter version FDM only). This method is a widely used
semi-analytical technique for simulation of guided wave propagation in 1-D and
2-D wave-guides [19]. The governing partial differential wave equations are
transformed to frequency domain through FFT (Fast Fourier Transformation) of the
displacement variables. Such an operation converts the partial differential equations
(PDEs) to a set of ordinary differential equations (ODEs) for each discretised
frequency. The solutions obtained from such a mathematical operation are utilised
as shape functions to formulate the elemental dynamic stiffness matrix. This pro-
cedure enables the relation of the Fourier transformed nodal forces to the corre-
sponding transformed nodal displacements.

As the formalism is similar to Finite Element Method (FEM), FDM can be used
to model structures with higher complexities, like by the use of FEM. FDM,
however, leads to substantial computational efficiency as compared to FE. The
method has been shown to be efficient in modelling anisotropic and inhomogeneous
structures or damages [20]. The main limitation of FDM is the difficulty of mod-
elling finite length structures due to certain numerical properties of finite domain
Fourier transform.

The second approach is named Time Domain Spectral Finite Element Method
(TDSFEM or TDM) along with its extensive use in computational solid and fluid
mechanics, has been found to be efficient in simulating guided wave propagation.
This scheme alleviates the disadvantage of FE in terms of large computational time
resulting from fine spatial and temporal discretization. The primary difference
between TDM and FEM is the use of higher order polynomials as shape functions
in the former method. Additionally, in TDM, the integration points are usually
collocated with the nodes, therefore such a formulation of the consistent diagonal
mass matrix helps in faster convergence [21]. TDM has been successfully imple-
mented for simulation of wave propagation in 1D, 2-D and 3-D waveguides
[22–24] which includes modelling of PZT induced wave propagation [24] wave
interaction with damages [25]. The most significant differences between two
aforementioned spectral methods have been addressed in the Table 46.2.

The choice of the method of solution is equally important as the choice of the
appropriate stress-strain relation based on the assumed displacement field, which
will allow for the correct description of the dedicated mechanical problem. The next
figure (Fig. 46.3) illustrate the propagation of Lamb wave in an isotropic rod ele-
ment with a single rod theory and a Timoshenko theory. As it can be noticed from
the figure—the wave propagating in a simple straight rod element after certain time
may give a response of a complicated character. Therefore the user needs to pay a
careful attention while considering the choice of numerical method applied as well
as the background theory to define the problem.
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46.2 Some Selected Aspects of Wave Propagation
Modelling

This paragraph will be focused on some numerical aspects resulting from the
differences in the selected numerical methods, in particular FEM, FDM and SEM.

In order to illustrate the differences between different modelling methods, an
exemplary graph has been prepared (Fig. 46.4). In this figure several exemplary

Table 46.2 Frequency-domain vs. time-domain spectral finite element method [16]

Fig. 46.3 Propagation of elastic waves in an isotropic rod
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shape functions have been gathered. The waveforms on the left hand side have been
the shape functions for a FEM rod element with five nodes and with 10 nodes
respectively. The figure clearly shows the Rungge effect—an increase in the
amplitude of the approximation polynomial at the points of discontinuity of the
shape function derivative—a typical effect in FEM application. This problem has
been already widely reported in the literature. The two figures from the middle part
of the Fig. 46.4 show two exemplary shape functions that have been calculated for
a rod element formulated by the use of TDSFEM with 10 and 20 nodes respec-
tively. It is also possible to notice the non-uniform location of nodes in the element
as well as the curve of the shape functions suitable for modelling the wave prop-
agation phenomenon. The graphs visible on the right hand side of the Fig. 46.4
illustrate the form of the shape functions used in the FDSFEM method. Two wave
numbers have been randomly selected, for which the shape function waveform has
been determined. As it may be clearly concluded from the figure this method
without difficulties also allows to properly model the phenomenon of propagating
mechanical wave in case of simple rod element.

Multi-mode nature of wave propagation phenomena is the key aspect while
planning to study the effects of damage on propagating mechanical wave and a
special attention should be payed to it. This issue is crucial for the selection of the
carrier frequency of the excitation signal. The so-called dispersion curves [26],
which result from the solution of the solution of the equations of motion assumed as
an infinite sums of harmonics for each displacement component for an element of
interest, are helpful here. The mentioned dispersion curves describe the dependence
of wave propagation velocity on the product of the frequency of forcing and the
thickness of the plate. Knowing these dependencies is important, for example, when
choosing the time of analysis of the problem. An exemplary set of dispersion curves
obtained for the six-mode shell theory has been presented in Fig. 46.5. As it can be
seen from Fig. 46.5 at least ten dispersion curves of the modes propagating in the
element of interest may be distinguished. These are six Lamb wave (three sym-
metric modes S0, S1and S2, three anti-symmetric modes A0, A1 and A2) as well as

Fig. 46.4 Exemplary shape functions for different numerical methods
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three modes associated with horizontal shear waves SH0, SH1 and SH2 propagating
in the element of interest. It should be emphasised that the presented dispersion
curves have been also calculated for an analytical formulation of the problem. As it
may be noticed from the Fig. 46.5 in the frequency range of interest there is a
satisfactory degree of convergence between the analytical and spectral formulation.

Errors resulting from numerical model properties. In the case of mechanical wave
propagation analysis, the accuracy of the results may be determined by the choice
of the numerical method used to solve the analysed problem. A simple comparative
example of propagation of elastic waves in an isotropic rod—elementary single
mode theory (no model dispersion, 161 d.o.f.) has been given to show possible

Fig. 46.5 Dispersion curves for the six-mode shell theory applied

Fig. 46.6 Isotropic rod—elementary single-mode theory (no model dispersion, 161 d.o.f.)
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errors. The material properties have been given in the Fig. 46.6. In the following
Fig. 46.7 the propagation of elastic waves in the aforementioned isotropic rod has
been shown.

The first result from Fig. 46.7 presented concerns the application of TDM. In
this case, as shape function the Chebyshew polynomial of 6th order has been
applied. As it can be seen from the diagram the time of occurrence in Fig. 46.7,
even in the simplest case, the signal at the rod end is recorded without any dis-
persion and appears exactly in the appropriate time window (grey background
behind the signal on every signal).

In the case of FEM (Finite Element Method), two options have been explored: a
full inertia matrix and a diagonal one. As it can be noticed the careless use of FEM
(the simplest two-node element) leads to significant errors resulting from a
numerical dispersion of the signal. In the recorded response the wave propagates
slower (in case of full inertia matrix) or faster (in case of diagonal inertia matrix).
Naturally, these errors could be avoided by improving the mesh density or by using
more advanced finite elements, or by using higher-order approximation functions.
An interested reader is encouraged to follow the literature resources clarifying this
problem in more details [23, 27].

The third of the results discussed concerns the FDM (Frequency Domain
Method) model. In this case, errors resulting from the specificity of the numerical
model make it impossible to accurately reproduce even the excitation signal itself,
and consequently the correct analysis of wave propagation in the element.

Fig. 46.7 Propagation of elastic waves in an isotropic rod
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46.3 Conclusions

Several systematised conclusion about various aspects of numerical modelling
techniques used for SHM purposes may be identified as:

– the spectral methods utilised for modelling the structural wave propagation
phenomena allow for a reduction in the calculation time compared to the
analysis of the same complex geometries modelled with classical finite element
methods,

– the FDM modelling algorithm requires a simple and reverse Fourier transforms,
which can lead to significant numerical errors in two-dimensional geometry,

– the versatile nature of the TDM has been confirmed by the rapidly growing
number of publications on the various examples of its use. This fact originates
from the mathematical background of the method, i.e. non-uniform nodes dis-
tribution in the element modelled.
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