
Chapter 31
Multiple-Model Fault Diagnosis Method
for Gas Turbine Based on Soft Switch

Yunpeng Cao, Kehui Zeng, Shuying Li, Fengshou Gu, Yuandong Xu,
and Bo He

Abstract Fault diagnosis based on a multiple-model (MM) approach is an ana-
lytical redundancy method. In this paper, we mainly focus on the model switch
optimizing problem of the MM method. First, a MM method for gas turbine gas
path fault diagnosis was proposed, and the gas turbine state space models are
established based on analytical linearization which can simulate the nonlinear
dynamic characteristics at the operating points. Then model soft switch method was
proposed based on recursive Bayesian to solve the problem that the established state
space model is accurate merely in the vicinity of the operating points, and generates
the combined generic model for the full operating condition and make it smoother.
Finally, the fault simulation was carried out on a marine gas turbine which shows
that the proposed method can diagnose both single gas path fault and multiple gas
path faults.

31.1 Introduction

Multiple-model (MM) provides the architecture for a bank of estimators or filters
for isolation and identification of faults. It was first proposed by Magil [1] in the
study of the optimal adaptive estimation of random processing of samples. In gas
turbine related applications, Maybeck [2] were the first to apply MM methods based
on the extended Kalman filter (EKF) to detect gas turbine actuator failure and
sensor failure, then applied it on gas path fault diagnosis. In order to detect, isolate,
and estimate gas turbine gas path fault, an IMM-GLR approach based on interacting
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MM and generalized likelihood ratio estimation were developed [3]. To overcome
the coupling effect between the gas path fault and the sensor fault, an MM-based
detection and estimation scheme for gas turbine sensor and gas path fault diagnosis
is proposed [4]. In order to suitable for systems with significant gain variation due
to nonlinearity, Strutzel FAM [5] introduces a new multi-model state-space for-
mulation called simultaneous multi-linear prediction (SMLP), this method presents
more accurate results than the use of single linear models while keeping much of
their numerical advantages and their relative ease of development.

The MM based fault diagnosis method mainly needs to solve three problems,
including the determination of the model set, the design of the filter and the esti-
mation fusion. The determination of the model set is the main difficulty and key
point, and it is also the basis for ensuring the accuracy of diagnosis. It is divided
into two parts, firstly the establishment of the model set, followed by the selection
and switching of multiple models in the running process. It is well known that one
of the main difficulties in the modelling of gas turbine systems is the determination
of the mathematical laws that describe these systems. However, obtaining a linear
model simplifies the analysis of their dynamic behaviours, as well as the design of
their control and surveillance strategies. Hadji [6] deals with a linearization strategy
of the non-linear model, developed a novel method for modelling nonlinear
dynamic variables of a gas turbine, the effective and equivalent linear approxima-
tion of its nonlinear model is realized, and the nonlinear dynamic model identifi-
cation around the operating point obtained from the actual data is proposed. Qingcai
Yang [7] proposed a nonlinear mode set automatic generation method that enables
automatic generation of the modes of each level in the MM model. Pourbabaee [8]
extended the MM method based on multiple hybrid Kalman filters which represent
an integration of a nonlinear mathematical model of the system with a number of
piecewise linear models.

In this paper, the MM gas path fault diagnosis method for gas turbine based on
the soft switch method is studied. In Sect. 31.2, the MM method is briefly intro-
duced, including the principle of Kalman filter and the flow chart of gas path
diagnosis based on the MM method. In Sect. 31.3, a method for establishing a
general linear model of gas turbine based on piecewise linearization is studied. In
Sect. 31.4, the soft switch method is proposed to generates the combined generic
model at the full operating process and makes it smoother. Section 31.5 is the single
fault and multiple faults simulation testing, and the conclusion is presented in
Sect. 31.6.

31.2 Multiple-Model Gas Path Diagnosis Method

Figure 31.1 shows the gas turbine gas path diagnosis based on the MM method [9].
The basic idea of the MM method is to solve a current stochastic system [10, 11]. In
order to estimate its current operating state, a set of models is constructed by
establishing a hypothetical model of the current possible operating state of the
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system, and the corresponding filtering is designed for each hypothetical model. By
comparing the size of the filtered residuals, the degree of approximation of each
hypothesis model in the model set with the actual operating state is characterized,
and the filtering residuals are transformed into probability density by probability
density function and the conditional probability of each hypothesis model is cal-
culated by the recursive solution. The state estimate of each hypothesis model is
fused as the current actual state estimate by the obtained conditional probability.

The MM method is characterized by the (M + 1) sets of filters running in par-
allel, and M is the number of faults to be detected. The fault parameters ai (i = 1, 2,
…, M + 1) represent the mode of the system, and a1 is the healthy mode. Assuming
that the conditional probability Pi(k) is the probability that the corresponding gas
turbine operating state is ai when the measurement parameter is Yk at time k, that is:

Pj kð Þ ¼ Pr a ¼ aj Y kð Þ ¼ Ykj� � ð1Þ

The corresponding conditional hypothesis probability can be recursive by the
Bayesian method using the value of the previous time and the conditional proba-
bility density function of the current measurement as shown in Eq. (2).

Pj kð Þ ¼ fy kð Þ a;Y k�1ð Þj yi aj; Yk�1
��� �

Pj k � 1ð ÞPM
h¼1

fy kð Þ a;Y k�1ð Þj yh ah; Yk�1jð ÞPh k � 1ð Þ
ð2Þ
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Fig. 31.1 Gas path diagnosis based on MM method

31 Multiple-Model Fault Diagnosis Method for Gas Turbine … 365



where fy kð Þ a;Y k�1ð Þj yi aj; Yk�1

��� �
Pj k � 1ð Þ is the currently measured Gaussian density

function, and it is given by the following equation:

fy kð Þ a;Y k�1ð Þj yi aj; Yk�1

��� �
Pj k � 1ð Þ

¼ 1

2pð Þq=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S j
c kð Þ�� ��q exp

�1
2

c j
c kð Þ� �T

S j
c kð Þ� � �1ð Þ

c j
c kð Þ� �� 	

ð3Þ

where j = 1, 2,…… (M + 1), c j
c kð Þ and S j

c kð Þ is the residual and covariance matrix
of the (M + 1) combination models associated with the fault parameter. The state of
the system can be detected and isolated based on the maximum value of Pj(k),
whether it is healthy or faulty, and then we can locate the specific failure.

The selection of the filter is also very important. For the linear model used in this
paper, the Kalman filter is selected for the calculation of multiple models.
Equation (4) shows the general form of the state equation of linear discrete system:

xkþ 1 ¼ Akxk þBkuk þwk

yk ¼ Ckxk þDkuk þ vk

(
ð4Þ

where xk is the state vector, yk is the output vector, and uk is the control vector.
There are specific definitions for the x, y, u, respectively, as described in Sect. 31.3.
w and v are independent of the Gaussian white noise vector. While w denote the
process noise and v denote the measurement noise, assuming they are Gaussian
white noise and the covariances are Q and R, respectively.

The Kalman filter is applied to the analytical linearization model of the two-shaft
gas turbine, as shown in the equation:

x̂k ¼ Ak � �xk�1 þBk � uk
ŷk ¼ Ck � x̂k þDk � uk

(
ð5Þ

where x̂ is the “predicted value”, �x is the “update value”.

�xk ¼ x̂k þKk y� ŷkð Þ
Kk ¼ P�

k C
T CP�

k C
T þR

� ��1

Pk ¼ P�
k � KkCP

�
k

P�
k ¼ APk�1A

T þQ

8>>>><
>>>>:

ð6Þ

where Kk is the Kalman gain. A, B, C, and D are the linear model matrix coeffi-
cients. P is the error covariance matrix.
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31.3 Gas Turbine State Space Model

Since the two-shaft gas turbine is a complex nonlinear system, and its parameters
have a strict dynamic relationship, so we can use the analytical method to obtain a
linear model at operating points, then build the overall state space model [12].

The main components of the two-shaft gas turbine studied in this paper are
shown in Fig. 31.2. The module is divided into six modules [13], namely, com-
pressor, combustion chamber, turbine, compressor turbine and power turbine
between the volume module (volume module 1), power turbine, the power turbine
volume module (volume module 2), these modules have clear physical meanings
and the corresponding entities, making the system module more intuitive.

The gas turbine continuous-time nonlinear model is:

_x ¼ f ðx; uÞ
y ¼ hðx; uÞ

(
ð7Þ

where x is the state variable, y is the output variable, u is the control variable.
control variable u:

u ¼ wf Hmc Hgc Hmh Hgh Hmp Hgp½ �T ð8Þ

output variable y:

y ¼ nl np t2 p2 t4 p4 t5 p5½ �T ð9Þ

state variable x:

x ¼ nl np t3 p3 p4 p5½ �T ð10Þ

Where f ð�Þ and hð�Þ are system nonlinear functions. nl is turbine speed, np is power
turbine speed, t2 is compressor outlet temperature, t3 is combustion chamber outlet
temperature, p2 is compressor outlet pressure, p3 is combustion chamber outlet

Combustion 
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LoadCompressor
High

pressure 
turbine

Power 
turbine

Gas Exhaust
High pressure and 

high temperature gas

Fig. 31.2 Basic compositions of the two-shaft gas turbine

31 Multiple-Model Fault Diagnosis Method for Gas Turbine … 367



pressure, t4 is turbine outlet temperature, p4 is turbine outlet pressure, t5 is the
power turbine outlet temperature, and p5 is the power turbine outlet pressure. Hmc,
Hηc, Hmh, Hηh, Hmp and Hηp are the fault parameters of the control variables. The
corresponding types of faults are compressor mass flow reduction, compressor
efficiency reduction, turbine mass flow reduction, turbine efficiency reduction,
power turbine mass flow reduction, Turbine efficiency reduction.

The piecewise linearization is considered in this paper [14], so the steady-state
deviation can be defined near the steady-state operating point. Linearizing the
above-mentioned nonlinear model at a steady-state operating point Sp : xp; yp; up


 �
:

D _x ¼ ADxþBDu

Dy ¼ CDxþDDu
ð11Þ

Where A, B, C, D are the Jacobian matrices, and The matrix coefficients of each
module are solved by using the partial derivative method, replacing the intermediate
variable and extracting common factor method.

A ¼ @f ðx; uÞ
@x

; B ¼ @f ðx; uÞ
@u

; C ¼ @hðx; uÞ
@x

; D ¼ @hðx; uÞ
@u

31.4 Model Soft Switch Method

In order to smoothen the general model of the combined run-wide generation, we
use soft switch between piecewise linear models. Each linear model is only valid
around its associated operating point. Although the range of work has been
increased by using a non-linear model rather than a steady-state variable, none of
the piecewise linearization models is valid throughout the input variable range.
Thus, each piecewise linearization model can obtain the validity function based on
its normalized weight obtained by the Bayesian formula.

In this paper, the Bayesian method is used to calculate the weight. For this
reason, the likelihood sequence and the covariance matrix generated by the Kalman
filter bank are used to calculate the likelihood function of the jth sensor pattern of
the ith operating region as follows:

cði;jÞðkÞ ¼ YðkÞ � Ŷ ði;jÞðkÞ
Sði;jÞðkÞ ¼ covðcði;jÞðkÞÞ

ð12Þ

f ði;jÞðcði;jÞðkÞÞ ¼ 1

ð2pÞq=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sði;jÞðkÞj j

p � exp
�1
2

ðcði;jÞðkÞÞTðSði;jÞðkÞÞð�1Þðcði;jÞðkÞÞ
� 	

ð13Þ
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Where i ¼ 1; . . .; L, j ¼ 1; . . .; ðMþ 1Þ; and L denotes the number of operating
points, M denotes the number of faults to be detected, and q denotes the dimension
of the measurement parameter. The message sequence cði;jÞðkÞ is generated by the
Kalman filter bank, whose mean is zero and is a Gaussian white noise process, and
the covariance matrix Sði;jÞðkÞ is calculated numerically. The normalized weight for
the jth sensor is updated recursively using the Bayes formula as follows:

wði;jÞðkÞ ¼ f ði;jÞ½ðcði;jÞðkÞÞ�wði;jÞðk � 1ÞPL
i¼1

f ði;jÞ½ðcði;jÞðkÞÞ�wði;jÞðk � 1Þ
ð14Þ

The weights calculated above should be kept bounded to avoid them close to
zero using the following formula:

if wði;jÞðkÞ[ a; then wði;jÞðkÞ ¼ wði;jÞðkÞ
if wði;jÞðkÞ� a; then wði;jÞðkÞ ¼ a

ð15Þ

Where a is the design parameter, which is obtained by experiment, and its size has
an effect on the speed of the model switch. The larger values of a result in the faster
switch, while smaller values will result in slower conversion between piecewise
linearization models. Here, take a ¼ 0:001 to switch the model. After calculating
the normalized weight, the weighted new message sequence and the weighted
covariance matrix of the general combinatorial model are designed by its piecewise
linearization model and the associated normalized weights as follows:

cjc kð Þ =
XL
i¼1

w i;jð Þ kð Þc i;jð Þ kð Þ

Sjc kð Þ =
XL
i¼1

w i;jð Þ
h i2

S i;jð Þ kð Þ
ð16Þ

The process above is called the soft switch between piecewise linearization

models. Where cðjÞc ðkÞ and SðjÞc ðkÞ represent the weighted new message sequence
and the covariance matrix for the healthy and faulty sensor modes. Thus, (M + 1)
Kalman filters run in parallel to form a multiple Kalman filter structure for diagnose.

At this point, the problem of determining the model set has been solved.
The MM diagnose method based on the soft switch is applied to the two-shaft gas
turbine. The Bayesian algorithm is used to design the soft switch, and the fault or
health model of each operation mode is obtained. The probability density of each
Kalman filter is obtained by using the hypothesis test algorithm, and the diagnose is
realized by finding the maximum value.
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Based on the design of Kalman filter banks and the application of soft switch in
the MM approach, the flow chart based on the MM method and soft switch is
showed in Fig. 31.3.

In practical applications, there are often more than one failure. The MM based
fault diagnosis method established in the previous article is not suitable for multiple
fault situations. To overcome this problem, we apply a layered structure to multiple
fault diagnosis method. In this approach, a set of Kalman filters operate in parallel
to detect and isolate the first fault and then activate the corresponding second-order
Kalman filter, and the data-model it records is also updated to detect and isolate the
second fault. Compared with the method of running all the models in parallel
(single failure model and multiple failure models), this method can reduce costs and
save time.

31.5 Case Study

The fault types that are simulated in this paper are all summarized as follows. The
simulation tests of 3 different cases with a single fault and multiple faults were
carried out respectively. And the single fault cases are divided into noiseless and
noisy effects. Hmc = 0.01 in the table indicates the compressor mass flow fault with
an amplitude of 0.01 and so on, and Hv indicates the noise fault parameter.
Table 31.1

In this paper, p1 to p7 represent the probability of health status and the proba-
bility of fault types corresponding to Hmc, Hηc, Hmh, Hηh, Hmp and Hηp respectively.
The definition of those fault parameters are shown in Sect. 31.3.

r(1),S(1)

r(2),S(2)

r(i),S(i)

r(L),S(L)

p1

p2

pL

pi

Combi-
nation 

of j 
linear 

models

rc(1),Sc(1)

rc(2),Sc(2)

rc(j),Sc(j)

rc(M+1),Sc(M+1)

Conditional 
hypothesis 
probability 
calculation

M
A
X

FDI

Bayesian weight 
estimation

( ) ( ) ( ) ( ), ,

1

L
i j i j

i
w k k

=

γ∑

( ) ( ) ( )
2L

i, j i, j

i=1
w S k⎡ ⎤⎣ ⎦∑

Fig. 31.3 Flow chart based on MM method and soft switch
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31.5.1 Single Fault

(1) Single fault case without noise

In this section, we discuss the diagnosis result in the case of fault amplitude was
0.02, and the relative fuel flow = 0.95 (select the transition conditions here, so that
the soft switch can detect and isolate the faults more stable). Figure 31.4 shows the
fault amplitude of 0.02, and at t = 20 s, a failure occurred. Figure 31.4 (a) for the
compressor mass flow (p2), Fig. 31.4 (b) for the compressor efficiency (p3) (other
failures are similar, not enumerated).

The diagnose results under 0.02 fault amplitudes are shown in Table 31.2. td
represents the detection time, and ti represents the isolation time. It can be seen from
the table that the detection and isolation can be completed in a short time, and there
is no misdiagnosis of the situation. Therefore, the MM diagnose method based on
the soft switch is of great accuracy.

(2) Single fault case with noise

In this section, we discuss the accuracy of the MM diagnose method based on the
soft switch under the noise effect of the actual nonlinear model of the two-shaft gas
turbine. The transition condition (w = 0.95) is also selected. In this section, the
change in the size of the noise is achieved by adding an exceptional value, adding
an exception to the output of the noise, with exception amplitude of 0.01. The
partial measurement parameters after the injection of abnormal noise shown in
Fig. 31.5, here the turbine speed (nl) and power turbine speed (np)are presented.

Table 31.1 Simulation cases Hmc Hηc Hmh Hηh Hmp Hηp Hv

Case 1 0.02 0.02 0.02 0.02 0.02 0.02 0

Case 2 0.05 0.05 0.05 0.05 0.05 0.05 0.01

Case 3 0.01 0.01 0 0 0 0 0

(a) p2 (b) p3
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Fig. 31.4 Probability of each fault model under case 3
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The diagnose result figures are similar to those in case1, and Table 31.3 is a list
of the diagnose results for the presence of abnormal noise. After analysis, we can
see that the MM diagnose method based on the soft switch can adapt to the
condition of noise, and detect and isolate faults in a short time under the influence
of noise.

31.5.2 Multiple Faults

This section verifies the accuracy of the MM diagnose method in the case of
multiple faults, as well as the transition condition (w = 0.95). The first failure is the
compressor mass flow failure. And the second failure occurs in the compressor
efficiency. And both of the amplitude of the fault is 0.01 occurred at t = 15 s and
t = 20 s, respectively. The results are shown in Fig. 31.6.

Table 31.2 Case 1
simulation results

Time p2 p3 p4 p5 p6 p7
td (s) 0.86 0.34 0.14 1.28 0.20 0.32

ti (s) 3.12 1.04 0.52 3.66 0.66 1.32

(a) turbine speed nl (b) power turbine speed np
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Fig. 31.5 Partial measurement parameters when Hv = 0.01

Table 31.3 Case 2
simulation results

Time p2 p3 p4 p5 p6 p7
td (s) 3.08 1.14 0.48 3.54 0.64 1.22

ti (s) 11.44 3.60 1.94 11.98 2.34 5.18
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It can be seen from Fig. 31.6 that Fig. 31.6. (a) is the first diagnose result, (b) is
the second diagnose result. The diagnose method detected the first fault at t = 15 s,
that is p2, and it was isolated successfully. After isolated the first fault, the first
Kalman filter group was expired, and the diagnose method transfer to the second
one, which detected the second fault near t = 20 s, and rose to the main failure(p3)
to complete the isolation of the second fault. Table 31.4 shows the diagnose results
for multiple faults.

From the analysis of Fig. 31.6 and Table 31.4, the MM diagnose method based
on the soft switch can detect multiple faults accurately and isolate faults in a short
period.

31.6 Conclusions

In this paper, a MM gas path fault diagnosis method for a two-shaft gas turbine is
established and the model switching problems are optimized. Considering the
nonlinear dynamic characteristics of gas turbines, a general state space model based
on analytical linearization was established, which can directly calculate the linear
model of the full operating process, and the nonlinear dynamic characteristics of the
gas turbine are well simulated. The MM diagnosis method with a layered structure
is proposed to detect and isolate gas turbines with a single fault and multiple faults.
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Fig. 31.6 Probability of each fault model under case 3

Table 31.4 Case 3
simulation result

Fault detect result td (s) ti (s)

First p2 0.34 0.80

Second p3 0.48 1.72

31 Multiple-Model Fault Diagnosis Method for Gas Turbine … 373



According to the problem of switching the linear model between different operating
points, the probability-based soft switch technique is used to determine the model
according to the different proportion occupied by different piecewise linearized
models to make the running area smoother. Finally, the fault simulation of the
marine gas turbine is carried out. Through the fault simulation of the marine gas
turbine, the verification results show that the MM diagnosis method based on the
soft switch can diagnose single gas path faults and multiple gas path faults at
different operating conditions.
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