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A New Approach of Manufacturing
Tolerance Allocation Based
on NSGA-III Algorithm
for the In-Process Monitoring of Sheet
Metal Parts
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Abstract As the process of products is developing, the contradiction between
dimension quality and manufacturing cost should be balanced carefully. Excessive
demands for higher quality would cause increase the production cost. Therefore,
this paper will propose a new method of tolerance allocation based on NSGA-III.
At the beginning, the assembly precedence diagram and subassembly identification
are used to obtain feasible assembly sequences. The assembly variation analysis
model of the conceptual design stage was established. Afterwards, the assembly
tolerance function was used to analyze the quality of the assembly, and the
exponential function was selected as the cost model. Based on the above functions,
a multi-objective optimization model was established. The NSGA-III algorithm
occurred, which can be used to optimize the tolerance allocation of the selected
sequence, the optimal assembly sequence and the Pareto solution set of the
multi-objective function. Finally, the auto-body floor can be used to illustrate the
flowchart of tolerance allocation. The optimal solution is selected from the Pareto
solution by the TOPSIS method. The results verify the feasibility and effectiveness
of the proposed algorithm.
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101.1 Introduction

Assembly sequence planning plays an important role in computer aided design and
is the core of sheet metal parts assembly process optimization [22]. An auto-body is
usually composed of hundreds of sheet metal parts with complex curved surfaces.
The assembly process is complicated, and the assembly variation is unavoidable.
Auto-body is a mass production which has a complex manufacturing system. The
assembly variation of the product has a significant impact both on the performance
and manufacturing cost. How to reduce assembly variation is one of the main
problems in the auto-body design and manufacture.

The reasonable and feasible assembly sequences can improve the assembly
quality, reduce assembly costs and shorten assembly time. Assembly is of the vital
importance the production time and the cost of the product (Shoval et al. 2017).
Homen et al. (1990) evaluated assembly sequences based on assembly flexibility,
assembly parallelism and assembly time cost. Jone et al. (1998) evaluated the
assembly sequence by summarizing multiple assembly constraints. Xing et al. [22]
applied the hybrid algorithm of genetic algorithm and particle swarm optimization
to generate auto-body assembly sequences. Navaei and ElMaraghy [16] developed
a mixed integer programming (MIP) algorithm, which can quickly find the optimal
solution and the optimal sequence. The quality of the assembly in the actual
assembly will directly lead to the difference in the performance of the product.
Because different assembly sequences use different assembly features as assembly
references in assembly operations, the assembly sequence reflects the process of
variation accumulation. For example, Lu et al. (2006) used tolerances to predict
deviations and evaluated assembly sequences. Tian et al. (2007) established the
state space model of variations stream propagation in a multi-station assembly
process of sheet metal.

The tolerance analysis, also known as the variation analysis, calculates the tol-
erance design process of assembly variation based on the assembly process rela-
tionship between known parts and fixtures. Tolerance analysis can be used to
predict, evaluate and check the quality of assembly. Based on the analysis of the
assembly variation of single position flexible sheet parts, the multistation assembly
variation model is established by using the finite element method (Hsieh et al.
1977), the influence coefficient method (Liu et al. 1997), and the state space method
in modern control theory (Jin and Shi 1999). Marziale et al. [15] introduced two
main models for tolerance analysis, the Jacobian and the torsor. Qu et al.
(2016) developed a more accurate variation propagation model in multistation
assembly processes using a discrete time nonlinear state-space model to provide a
mathematical representation for process-oriented locating datum system design.
Hafezipour et al. [11] introduced uncertainty analysis for estimate deviations. Yin
et al. (2017) applied Rcckwitz-Fiessler (R-F) reliability analysis method for
assembly tolerance design of complex engineering problems. Tolerance analysis
requires more efficient methods to calculate rates.
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Tolerance allocation, also known as tolerance synthesis, is the reasonable allo-
cation of key dimensional tolerances in assembly according to the assembly rela-
tions and process conditions of parts under the condition of known final product
tolerance requirements. It is necessary to establish a reasonable tolerance distri-
bution model. The tolerance allocation is optimized. The quality and other aspects
of the assembly system are considered synthetically. Manufacturing cost is often
used as the main criteria for evaluating the rationality of design tolerance allocation
[3]. Dupinet et al. [10] used the method of fuzzy comprehensive evaluation to
determine the tolerances of the parts of the special environment assembly. The
sensitivity factor of the assembly function is required to establish the mathematical
model of tolerance allocation. The tolerance allocation plays an important role in
the analysis of tolerance. For different tolerance allocation models, scholars use
various analytic methods or direct methods to solve them. In the early days,
Lagrange multiplication and linear programming method were used to solve the
problem. With the development of nonlinear algorithms, some intelligent algo-
rithms were gradually applied in tolerance allocation, including simulated annealing
algorithm [1], genetic algorithm [5], Monte Carlo simulation [21], neural network
[12] and evolutionary algorithm [13]. The problem of tolerance allocation of single
objective cannot meet the need of solving practical problems, so the development of
objective optimization algorithm is introduced. For multi-objective optimization, it
is required that some of the goals of contradictions and conflicts are optimized at the
same time, and Pareto optimal solutions are widely used. Xing et al. [23] studied the
assembly technology and introduced NSGA-II algorithm to optimize the assembly
tolerance allocation and manufacturing cost. Balamurugan et al. [2] proposed a
model for optimal tolerance allocation by considering both tolerance cost and the
present worth of quality loss. Xu et al. [25] studied the application of improved
NSGA-II algorithm in tolerance allocation.

The assembly process should not only analyze the cumulative dimensional
variation of the closed-loop joint structure in the assembly, but also analyze the
cumulative dimensional variation of the whole assembly. The tolerance of each
constituent ring in the dimension chain is distributed reasonably if the assembly
target is met. It is of great theoretical and practical significance to study the method
of tolerance allocation. The allocation of tolerance focuses on reducing the pro-
cessing cost and ignores the impact of quality loss. The analytic method usually
requires the objective function to have definite gradient information, and it is dif-
ficult to solve the non-linear model. Sometimes intelligent algorithms are ineffi-
cient, and the evaluation function is difficult to construct.

Based on the assembly features of flexible thin-walled parts of the auto-body, the
multi-objective optimization of the tolerance distribution of parts and fixtures of the
flexible thin-walled auto-body was studied. To establish a reasonable tolerance
distribution model, the efficient algorithms are selected for optimization of
assembly tolerance allocation.
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101.2 Assembly Tolerance Allocation Based on NSGA-III
Algorithm

101.2.1 Application Analysis of Dimension Chain Model

In the S1 sequence, part a is first assembled on the fixture, then part b is assembled
on part a. Finally, part c is assembled on the fixture. Part a and b have cumulative
but misalignment due to the presence of butt joints, but the overlapped joints
between part b and c absorb variation, the final assembly variation of the key
product features is 0 (Fig. 101.1).

X1 ¼ Xa þXb ¼ Xa þVað Þþ Xa þVbð Þ; ð101:1Þ

VX1 ¼ e2 Va þVbð Þ; e2 ¼ 1; ð101:2Þ

X ¼ X1 þXc ¼ X1 þ Xc þVcð Þ � Vt; ð101:3Þ

VX2 ¼ e3 Vc þVX1ð Þ; e3 ¼ 0: ð101:4Þ

In the S2 sequence, part b and part c are assembled on the fixture. Part a is
assembled on the part b. There is no cumulative assembly variation between part b
and part c because of the lap joint, but part a and part b are butt joints. The assembly
deviation of the key product feature is the variation of part a (Fig. 101.2).

Fig. 101.1 S1 dimensional chain model

Fig. 101.2 S2 dimensional chain model
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X1 ¼ Xb þXc ¼ Xb þVbð Þþ Xc þVcð Þ � Vt; ð101:5Þ

VX1 ¼ e2 Vb þVcð Þ; e2 ¼ 0; ð101:6Þ

X 0 ¼ X1 þXa ¼ X1 þ Xa þ e3Vað Þ; ð101:7Þ

VX2 ¼ e3 Vc þVX1ð Þ; e3 ¼ 1: ð101:8Þ

101.2.2 Tolerance Allocation Objective Function

By taking the manufacturing tolerance of each part as the design variable and
setting the constraint conditions according to the stamping standard requirements, a
multi-objective optimization of part tolerance was implemented with the objective
functions of assembly tolerance and manufacturing cost. The tolerance analysis
model adopts the Eqs. (101.1–101.8) for the assembly error modeling of sheet
metal parts in the conceptual design stage. The root mean square method is adopted
for the calculation method, and Eq. (101.9) is adopted for the tolerance-cost model.

min f1 ¼
Pn

i¼1
ei Vi þVi�1ð Þ½ �2

min f2 ¼
Pn

i¼1
k1i exp �k2iVið Þð Þ

8
>><

>>:
ð101:9Þ

101.2.3 Case of Auto-body Floor Subassembly

Suppose the tolerance-cost coefficient K1i of parts are 10, 20, 30, 40 and 50, the
tolerance-cost coefficient K2i of parts are 1, 2, 3, 4 and 5 respectively.

(1) From assembly sequence {4-(2,7)-(3,6)-1-5}, it can be considered as sequence
{4-2-3-1-5}. The dimensional chain diagram of the auto-body floor of is shown
as Fig. 101.3. The horizontal dimension chain consists of eight size loops from
L0 to L7, the i

th part corresponds to the ith dimension loop, and the ith dimension
loop corresponds to Li

L0

L4 L2

L3 L1 L5

Fig. 101.3 Dimensional
chain model
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According to this assembly sequence. The joint coefficient of this sequence is 1,
1, 0, 1, 1 and Eq. (101.9) into data, and get the tolerance allocation optimization
model of this assembly sequence.

The evaluation function is non-linear, and the NSGA-III algorithm is used to
solve the three-objective tolerance allocation optimization model. The maximum
evolution algebra of this algorithm is represented by maxGen, the maxGen is 60.
The population N is 200, the mutation rate xm is 0.5, and the crossover rate xc is
0.5. Manufacturing cost function, and quality loss function were applied to cal-
culate the fitness value of the chromosome. Get the result is shown in Fig. 101.4.

I. When the sequence is {4-(2,7)-1-(3,6)-5}, the dimensional chain diagram is
shown in Fig. 101.5.

The optimization algorithm parameters remain the same, and get the result is
shown in Fig. 101.6.

II. When the sequence is {4-1-(2,7)-(3,6)-5}, the dimensional chain diagram is
shown in Fig. 101.7.

According to this assembly sequence, the joint coefficient of this sequence is 1,
0, 1, 0, 1. The model is as follows.
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The optimization algorithm parameters remain the same, and get the result is
shown in Fig. 101.8.

Comparing the results of tolerance allocation for the above three assembly
sequences, the optimal sequence is the third sequence, and the tolerance range is the
smallest. And Figures 101.4, 101.6 and 101.8 shows the comparison of the Pareto
solution set of the NSGA-III algorithm, the NSGA-II algorithm, the MOEA algo-
rithm, MOPSO algorithm, and MOGA algorithm. The Pareto solution set of the
NSGA-III algorithm is closer to the non-dominated front, the results show that the
NSGA-III algorithm can get better Pareto solution set.

Through the above algorithm calculation, we get third sequence tolerance
allocation Pareto solution set optimization results of NSGA-III algorithm, as shown
in Table 101.1.
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Fig. 101.5 Dimensional
chain model
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According to the Table 101.1, when the sort value is 0.068, we can achieve the
most suitable tolerance allocation. The assembly tolerance is 0.324 and the cost is at
39.272.

101.3 Conclusions

In this paper, the three constraint conditions of assembly accumulation variation
and manufacturing cost are presented. The application of the three constraints is
more comprehensive than the previous two constraints. The tolerances are assigned
using the NSGA-III algorithm to obtain the Pareto solution set for tolerance
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Table 101.1 Optimization
results of thir

Number Tolerance Cost Sort value

1 0.084 7.440 0.000

2 0.352 38.143 0.002

3 0.260 42.780 0.003

4 0.120 58.250 0.006

…

28 0.184 48.988 0.035

29 0.152 53.141 0.035

30 0.456 33.867 0.036

…

58 0.370 36.859 0.066

59 0.109 61.410 0.067

60 0.324 39.272 0.068

1240 Y. Xing et al.



assignment. Comparing with the Pareto solution objective function values of the
three sequences, different assembly sequences result in different tolerance alloca-
tion. As a result, a reasonable assembly sequence can improve product quality.

For the contradiction between assembly accumulation variation, manufacturing
cost and quality loss in the process of sheet metal assembly design, multi-objective
optimization of parts tolerance based on NSGA-III algorithm is proposed. Taking
component tolerance as the design variable, the multi-objective optimization model
is constructed based on the assembly variation analysis model, tolerance-cost model
and quality loss model. An effective method to solve the tolerance allocation is
proposed based on NSGA-III algorithm. Finally, the auto-body floor case is applied
to illustrate the tolerance allocation process and obtain the Pareto solution set. The
optimization results show that this method is effective on the optimization of the
tolerance allocation strategy. It also provides the engineering staff with a flexible
tolerance design selection scheme.
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