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Abstract In scheduling problems with fixed routing, usually the transportation of
jobs among the machines is not considered (i.e., the transportation time between
two stages is negligible, and the number of transportation resources is unlimited).
However, in real contexts, this assumption can be unrealistic, especially when human
supervision is needed for transportation, and hence not considering transportation
can lead to low quality scheduling solutions. This paper considers a job shop inwhich
transportation resources are limited and free to move among all the machines (no
fixed routes). The aim is the integration of machine scheduling and transportation
resource allocation, i.e., to decide for each machine the job sequence, and for each
free transportation resource the routing. Due to the complexity of the problem, a
Discrete Event Simulation approach is used to compare different scheduling and
transportation resource allocation policies through scenario analysis.

Keywords Job shop · Machine scheduling · Transportation resource allocation ·
Discrete event simulation

1 Introduction

In manufacturing systems, different layouts are used to organize machines. Among
them, the job shop allows to achieve the maximum flexibility in the production
process. The job shop can handle a varying mix of products (that can be the result
of the increasing variability in customer orders) to be produced in small batches and
with different production cycles. Every product manufactured in a job shop has its
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own operation sequence and, therefore, its own routing in the system.Moreover, since
transports between machines are hardly automatized in the job shop, the position of
the machines on the shop floor is chosen to limit the time wasted to move a batch
from an operation to the following one. However, due to the variety of production
cycles, many products might have to travel through the entire shop floor to fulfil all
the required operations. For this reason, the job transportation between machines is
a critical issue in the job shop management.

Although the relevance of the transportation issue, few research works have
addressed the job shop scheduling with transportation resources, with respect to the
amount of job shop scheduling literature in which transportation has been neglected
(the standard assumption is that number of transportation resources is unlimited and
the transportation time is negligible).

Even without transportation resources, the job shop scheduling problem is a very
complex optimization problem and it belongs to the class of non-deterministic poly-
nomial time (NP hard) problems [1]. Due to this reason, many of the approaches
proposed in the literature are heuristic, as exact approaches (e.g., branch and bound
or dynamic programming) can solve only small-scale problems. Just to cite few, not
exhaustive, examples, the most common algorithms are genetic algorithms [2, 3],
tabu search [4], and particle swarm [5, 6].

When transportation is included, the complexity of the scheduling problem
increases, as the complete problem can be seen as the integration of two sub-
problems: a classical job shop scheduling problem and a vehicle routing problem. As
previouslymentioned, fewer papers have addressed it [7]. To illustrate some example,
the flexible job shop scheduling problem in a cellular manufacturing environment
has been considered in [8], including intercellular transportation times but omitting
empty transportation times (i.e., the time the available transportation resource takes
to arrive to the machine where there is a job needing to be moved). Also, the problem
of simultaneous scheduling machines and AGVs in a flexible manufacturing system
has been addressed in [9]. The automated guided vehicles do not have to return to
the load/unload station after each delivery, and the problem is solved by an itera-
tive procedure in which admissible time windows for the trip are constructed by
solving the machine scheduling problem, which generates the completion times of
each operation with a heuristic procedure. The flexible job shop scheduling problem
with transportation constraints has been addressed in [10], where a set of identical
transportation resources and empty transportation are considered, and a tabu search
procedure is proposed for its solution. The classical job shop scheduling problem
with transportation resources able to carry more than one task at a time has also been
studied in [11].

From the examples discussed above, it clearly emerges that most of the literature
focuses on the flexible job shop, in which each operation is not associated to a fixed
machine but to a set of machines among which one has to be chosen. Although this
problem can be harder to model and to solve than the job shop with fixed association
among operations and machines (especially with exact solution approaches), the
possibility to choose the machine can simplify the problem from the transportation
resource standpoint. Moreover, to the authors’ knowledge, no work focuses on the
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optimal schedule for the transportation resources, rather they are treated as additional
time to be considered (thus, the objective function includes only the completion time).

In this paper, we consider the integrated job shop scheduling problem with trans-
portation resources, in which the job shop is characterized by fixed routing and fixed
association between operations and machines, and the transportation includes the
empty transportation time. Differently from most of the papers in the literature, the
objective function includes penalties for tardy jobs and transportation resource costs,
with the aim of finding the optimal (from the economic standpoint) number of trans-
portation resources, together with the optimal schedule of jobs on machines and on
transporters.

The integrated job shop machine and transportation resource scheduling is
modeled by a mixed-linear programming model. Due to the complexity of the
problem, a simulation-optimization solution approach is proposed, and a case study
from the textile industry is used to test its applicability in a real context.

The reminder of the paper is organized as follows. In Sect. 2 the problem is mathe-
matically represented as a MILPmodel and its solution complexity is discussed. The
simulation-optimization approach and its application to the case study are presented
in Sect. 3. Section 4 concludes the paper discussing the limitations of the approach
and future research directions.

2 Problem Description

As discussed in the previous section, the integrated job shop scheduling problemwith
transportation resources can be seen as a classical job shop, in which job operations
have to be sequenced on machines, with the additional requirement of scheduling the
transportation activities on the transporters. In the considered problem, the additional
request of finding the optimal number of transportation resources is considered.

Specifically, let N be the jobs to process. Each job i has a set ℵi of consecutive
operations to be performed. To simplify the notation, it is assumed that operation j
of job i is exactly the jth operation of the job in ℵi . The route of each job in the shop
floor (i.e., the sequence of machines associated to the operations of the job) could
be partially or entirely different from that of the other jobs.

Job i has a release date rdi and a due date ddi . If the job is not completed before
ddi , a tardiness penalty is paid. The processing time pi j of operation j of job i is
known and fixed, and so is the machine ki j on which it has to be processed. Due to the
limited number of transportation resources and to the not negligible transportation
time between machines, for each job, each operation cannot start immediately after
the end of the previous one, but the job has to be transported to themachine associated
to the next operation. When a transporter becomes available, the next job to be
transported must be decided considering both the completion time of jobs at their
machines and the distance between the current position of the available transporter
and the jobs waiting to be moved.
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The objective is to select the appropriate number of transportation resources (also
referred to as transporters, in the following), and to sequence all the jobs on the
machines and on the transportation resources, in order to minimize the total cost of
the tardiness and of the transportation resources.

Using the parameters and the variables summarized in Table 1, the integrated job
shop machine and transportation resource scheduling problem can be modelled as
follows.

min
N∑

i=1

cTA · TAi +
T∑

t=1

gTRδt (1)

s.t. Ci1 ≥ rdi + pi1 + di1i2 ∀i (2)

Cij ≥ Ci(j−1) + pij + diji(j+1) ∀ i, j = 2, . . . , ni (3)

Table 1 Parameters and decision variables of the mathematical model

Parameters

cT A Unit cost of tardiness

gT R Unit cost of transportation resources

rdi Release date of job i

pi j Processing time of operation j of job i

ki j Machine associated to operation j of job i

ni Number of operations of job i

di ji ′ j ′ Distance (expressed in time units) between machines ki j and ki ′ j ′

ddi Due date of job i

T Upper bound on the number of transportation resources

M Large positive number (the so-called big-M)

Decision variables

Cij Completion time of operation j of job i

TCi Total completion time of job i

WTi′j′ijt Time at which transporter t is available to transport job i at operation j if it
had previously transported job i′ at operation j′

TAi Tardiness of job i

βiji′j′ Binary variable equal to 1, if operation j of job i is scheduled before
operation j′ of job i′; 0, otherwise

αijt Binary variable equal to 1 if, if operation j of job i is assigned to transporter
t; 0, otherwise

γiji′j′t Binary variable equal to 1, if operation j of job i is assigned to transporter t
before operation j′ of job i′; 0, otherwise

δt Binary variable equal to 1 if transporter t is used; 0 otherwise
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Cij ≥ WTi′j′ijt + diji(j+1) ∀ t, i �= i′, j = 1, . . . , ni, j
′ = 1, . . . , ni′ (4)

Cij ≥ Ci′j′ + pij − Mβiji′j′ ∀i �= i′, j ∈ ℵi, j
′ ∈ ℵi′ , kij = ki′j′ (5)

Ci′j′ ≥ Cij + pi′j′ −
(
1 − βiji′j′

)
M ∀i �= i′, j ∈ ℵi, j

′ ∈ ℵi′ , kij = ki′j′ (6)

WTi′j′ijt ≥ Ci′j′ − pi′j′ + di′j′ij − M
(
2 − αijt − αi′j′t + γiji′j′t

)

∀t, i �= i′, j = 1, . . . , ni, j
′ = 1, . . . , ni′ (7)

WTiji′j′t ≥ Cij − pij + diji′j′ − M
(
3 − αijt − αi′j′t − γiji′j′t

)

∀t, i �= i′, j = 1, . . . , ni, j
′ = 1, . . . , ni′ (8)

T∑

t=1

αijt = 1 ∀i, j = 1, . . . , ni (9)

TCi ≥ Cij ∀i, j = 1 . . . ni (10)

TAi ≥ TCi − ddi ∀i (11)

γiji′j′t ≤ αijt + αi′j′t

2
∀t, i �= i′, j = 1, . . . , ni, j

′ = 1, . . . , ni′ (12)

δt ≥
∑N

i=1

∑ni
j=1 αijt

T
∀t (13)

Cij ≥ 0 ∀i, j = 1 . . . ni (14)

TCi ≥ 0 ∀i (15)

WTiji′j′t ≥ 0 ∀t, i �= i′, j = 1, . . . , ni, j
′ = 1, . . . , ni′ (16)

TAi ≥ 0 ∀i (17)

βiji′j′ ∈ {0, 1} ∀i, i′, j = 1, . . . , ni, j
′ = 1, . . . , ni′ (18)

αijt ∈ {0, 1} ∀t, i, j = 1, . . . , ni (19)
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γiji′j′t ∈ {0, 1} ∀t, i, i′, j = 1, . . . , ni, j
′ = 1, . . . , ni′ (20)

δt ∈ {0, 1} ∀t (21)

The objective function (1)minimizes the total tardiness penalty and the transporta-
tion resource cost. Constraints (2) state that the first operation of each job cannot be
completed before its release date rdi plus the first operation processing time and the
time needed to move the job to the next machine. Constraints (3) and (4) ensure the
precedence between consecutive operations of the same job. Specifically, constraints
(3) represent the technological precedence while constraints (4) are needed as jobs
are not always transferred to the next operation as soon as they are ready to be trans-
ported, as the transporters could be already busy in other transports. Constraints (5)
and (6) guarantee that at most one part is processed by each machine at the same
time. They are the classical disjunctive constraints and are used to sequence opera-
tions of different jobs requiring the same machine. Constraints (7) and (8) schedule
the transporters and set their availability time. These constraints are only relevant
when operation j of job i and operation j′ of job i′ are both assigned to the same
transporter t (i.e., αi j t = αi ′ j ′t = 1). Constraints (9) assure that each transport is
performed by a single transporter. Constraints (10) and (11) define the completion
time of the last operation of job i and its tardiness, respectively. Constraints (12)
link the binary variable used to assign each job to a transporter with the one used
to schedule the transports assigned to every transporter. Constraints (13) are used to
assess if a transporter is used. The number of used transportation resources is then
given by

∑T
t=1 δt . Finally, variable domains are set by constraints (14)–(21).

Due to the huge number of binary values and big-M constraints, the proposed
model is hard to solve with standard approaches or commercial solvers (e.g., ILOG
Cplex). In such a case, two alternatives are usually available: (1) to develop exact ad-
hoc methods, mainly based on decomposition into sub-problems, which, however,
can hardly address very large instances; (2) to use heuristic or meta-heuristic
approaches, which can easily treat very large problems, but without any guarantee
on the solution quality. In both cases, however, it is difficult to address the variability
of processing times and of due dates (i.e., customers’ orders).

To efficiently take the variability into account, in this paper the problem is solved
by a simulation-based optimization procedure, implemented within a commercially
available software. Specifically, Rockwell Arena simulation software is used to
develop a Discrete Event Simulation model to replicate the job shop scheduling with
transportation resources and to evaluate the performance of different scheduling and
transportation policies with a fixed number of transporters; the commercial opti-
mization tool OptQuest is used to vary the number of transporters to find the optimal
one.

This approach is heuristic, as OptQuest adopts heuristic algorithms to solve the
optimization problem, and the machine and transportation scheduling are both based
on “rules” (e.g., maximum priority, minimum distance, etc.). However, it has the
flexibility to easily address very different scenarios and, hence, to find bounds that



Integrating Machine Scheduling and Transportation Resource … 19

could be further used in optimization approaches. For this reason, various operational
problems are usually evaluated through simulation-optimization using commercially
available softwares [12–14].

As the proposed approach is based on a simulation model, which is case-
dependent, the case study will be presented before the discussion of the simulation-
optimization model.

3 Case Study

As an example of integrated job shop machine and transportation scheduling,
the finishing department of a textile company (that will remain anonymous for
confidentiality reasons) has been considered.

The finishing department is the last phase, and one of the more complex depart-
ments, of the textile production. It includes very different processes made on many
different product types, to assure that every manufacturing process can be properly
completed. More than one thousand different items need to be finished in this depart-
ment. They can be divided in two main families, worsted (used to make coats) and
woollen fabrics (used to produce suits). The pieces of fabrics are often grouped in
small lot sizes due to the large demand variety. Although all the final products are
pieces of fabric, the sequence of the operations varies from item to item. For instance,
at the beginning of the production process, worsted fabrics must be singed, to obtain
an even surface by burning off projecting fibers, while woollen fabrics have to be
carbonized, to remove vegetable fibers from wool in an acidic treatment. Moreover,
within the same operation, a lot of differences can arise, as every piece of fabric can
be washed and fulled in many ways (depending on the final aspect the product must
have), thus resulting in very different processing times.

The fabric production cycles are often very long, as they include both wet and
dry finishing operations, and a lot of transports are necessary to move every batch
from a machine to the next one, especially when operations of the wet and dry
finishing are done alternatively, and this usually takes a long time. The transportation
issue becomes very critical in high demand periods, as the shop floor is almost
100% saturated and buffers are full. Currently, when the machine operator finishes
processing a batch, she has to stop the machine and to transport the fabrics to the
machine where the successive operation has to be done. Therefore, some machines
risk being idle even if there are jobs to work, thus risking inefficiency in the system
(e.g., lower service level). For this reason, the Company is evaluating the possibility
of introducing some new operators to manage the fabric transportation, thus avoiding
that the machine workers stop their processes.

In this context, the proposed simulation-optimization approach has been applied
to quantify the impact of shop floor transportation on the global performance of the
shop floor. Specifically, a simulation-based optimization model has been created to
solve the cost optimization problem modeled in Sect. 2, and, hence, to identify the
optimal number of transportation resources the Company should have.
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3.1 The Simulation-Based Optimization Model

Simulation-based optimization procedures are usually exploited to solve complex
optimization problems. They are traditionally composed of two detached modules
that work iteratively until the optimal solution is found, or a defined stopping condi-
tion is met [15]. The optimization module gives as output a system configuration that
is given as input to the simulator. The system performance of the proposed configu-
ration is evaluated with the simulation, whose performance measures are given back
to the optimization module [16].

In this paper, the simulator (implemented in Arena) evaluates the performance of
different scheduling and transportation policies, given a fixed number of transporters
(and fixed transportation and tardiness costs) as input. Referring to the mathematical
model in Sect. 2, the simulator addresses all the constraints related to the scheduling
and transportation dynamics, i.e., Eqs. (2)–(12). The optimization tool (OptQuest),
instead, let the model vary the number of transportation resources. More generally,
the optimization is used to define the scenarios to evaluate with the simulator, and to
choose the optimal one. The objective function in Eq. (1) is evaluated, and various
values of transportation resources are identified and given as input to the simulator.
Figure 1 summarizes the simulation-optimization iterations, and the information
given as input to the two modules.

The simulation module replicates the operations of the finishing department of
the Company. As more than 1000 items are processed in the finishing department,
to reduce the complexity of the simulation, they are grouped in 12 fabric categories,
each one including items characterized by similar production cycles, and the finishing
processes of these categories have been simulated (i = {1, . . . , 12}). For each cate-
gory, the due date distributions have been fitted from historical data (provided by the
Company), and the same holds for the processing times of each operation. For each
category, the set ℵi of consecutive operations to be performed is given as input, and
all the machines that perform the operations are modelled in the simulation envi-
ronment. The set ℵi contains from 8 to 20 operations for each fabric category. Each
machine picks a job from its queue and processes it. To assure theminimization of the
tardiness, the machines always pick the job with the closest due date. The machines
process the fabrics in batches, whose size varies according to the specific fabric

Fig. 1 Simulation-based
optimization scheme
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category. When a job finishes to be processed in a machine, it waits for an available
transporter to be delivered to the next operation. When a transporter becomes idle,
it moves to the closest machine with a job waiting to be moved. The total number of
transporters per working shift is given as input from OptQuest.

Using as input the tardiness of the jobs given by the simulator, the optimization
module finds the optimal number of transporters (i.e., the one that minimizes the
objective function), and so on until no new solution is found by the optimization
module.

3.2 Experimental Design

The simulation-optimization experiment has beendesigned as follows.The simulator,
for each given number of transporters, performs 15 replicates of one year (i.e., the
length of each replicate is 1 year of simulated time). This number of replicates has
been chosen through the two-step method [15], and it leads to a reliable confidence
interval of the throughput of the bottleneckmachines (which is a critical performance
measure for the considered production system).

To compute the objective function in (1), the unit cost of transporters and the unit
cost of tardiness are needed (they are given as input to the optimization tool). The cost
of the transporter gT R has been estimated by the Company and it includes, in addition
to the salary, all the training courses constantly done, the medical assurance provided
by the Company, the subsidy for the meal in the canteen, the medical examinations
each worker has to do periodically and their necessary equipment. The estimated
transporter cost is not reported in the paper for confidentiality reasons. The cost of
the tardiness, instead, is more complex to estimate. For some fabrics it is negligible,
for others it might depend on the length of the delay, and sometimes tardiness might
even cause the cancellation of the order andmight contribute to the loss of a customer.
For this reason, different levels of cost were considered. Thus, the daily unit cost of
tardiness has been varied from 0 to 1000 e/(pcs * day) with a step of 5. Moreover,
two different speed values have been considered for the transporter movements: 40
and 60 m/min.

3.3 Numerical Results

Figure 2 shows how the optimal number of transporters varies with different values
of tardiness cost and transporter speed. With low speed (40 m/min), one trans-
porter per working shift is the optimal solution if the daily unit tardiness is below
30 e/(pcs * day); two transporters per working shift are needed when the cost of
tardiness increases above 30e/(pcs * day). In this case, even increasing the tardiness
penalty to unrealistic values, more than two transporters per working shift are never
necessary. This is explained by the high cost of transportation resources together
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Fig. 2 Optimal number of
transporters with varying
cost of tardiness
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with the small reduction in the total tardiness that an additional transporter would
allow to reach. In other words, the saving in tardiness cost does not offset the cost of
additional transporters.

Similar results are obtained for the case of transporters moving with high speed
(60 m/min). In this case, two transporters are needed when the cost of tardiness
is greater than 120 e/(pcs * day). The boundary unit tardiness cost increases with
respect to the previous case because, as the transporters are faster in their movements,
the total tardiness is smaller (being transported in a short time, the jobs will have
a smaller completion time and hence a smaller tardiness, all the rest being equal)
and one more transporter per working shift becomes necessary for larger costs of
tardiness. Also in this case, however, three transporters are never necessary.

As no more than two transporters are required for each value of the tardiness cost,
for readability reasons, Fig. 2 shows only values lower than 200 e/(pcs * day).

The above discussed system behavior can bemore deeply analyzed by considering
the low-speed case (as it is the most critical one). As reported in Table 2, with low
speed, Cta = 40 e/(pcs * day) and two transporters per working shift, 8.87% of the
total fabrics produced in one year are delivered to customers with a delay, whereas
the 9.33% of produced fabrics are late if only one transporter per working shift is
used. With three transporters per working shift, no improvement can be appreciated,
meaning that, when three transporters are available, the transporters are no longer
the bottleneck of the process. Moreover, it appears that transporters can reduce the
number of late jobs but not the average delay. This can be related to the naive priority
rule approach in the management of machine and transporter queues; however, it
gives an indication on the severity of the bottleneck and how it can move from
transporters to machines, depending on the system conditions. This is also confirmed

Table 2 System performance
with different transporters,
speed = 40 m/min

Number of
transporters

Percentage of fabrics
with a delay (%)

Mean days of delay

0 9.37 13

1 9.33 13

2 8.87 13

3 8.87 13
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by the comparison with the current situation with no transporter: the introduction
of transporters is able to reduce the late jobs but not the average delay. Notice that,
although the variation of the percentage of fabrics with delay is small, the savings of
adding one more transporter can be relevant depending on the total yearly number
of orders. For instance, in the case of 20,000 orders per year, switching from 0 to
1 transporter would decrease the number of fabrics with delay from 1874 to 1866
delayed fabrics. If the cost of tardiness is 40e/day * pcs, then 4160e/year are saved.
If the tardiness is a relevant penalty (for instance, 125 e/pcs * day), then moving
to 0–1 transporter would let the Company save 13,000 e/year. The yearly savings
should be considered as part of a trade-off with the cost of hiring onemore transporter
andwith the target customer service level the Company aims at achieving. The results
for higher speed are similar, and for this reason, they are not reported in the paper.

The results discussed above depend on the numbers of jobs (i.e., of customer
orders) that have to be processed and, since the fabrics produced and sold by the
Company are affected by seasonality, the possibility of hiring a second seasonal
transporter only for the months with larger demand must be evaluated. With larger
demand, the machines are highly saturated, possibly causing some delivery delays.
In this case, having more transportation resources available can assure a continuous
and fast supply of every machine to prevent additional delay. To study this situation,
the mean percentage of fabrics with delay and the mean delays have been considered
separately for each month. The case of transporter speed = 40 m/min is reported in
the following, but similar results hold for the case of higher speed.

As shown in Table 3, the months with larger production volumes correspond
to the months with larger mean days of delay and percentage of delayed fabrics.

Table 3 Monthly system performance measures (speed = 40 m/min)

Month One transporter Two transporters

Mean days of delay % of entities with a
delay

Mean days of delay % of entities with a
delay

January 12 0.51 12 0.49

February 13 0.67 13 0.63

March 14 0.86 14 0.85

April 14 0.97 14 0.91

May 14 1.13 14 1.01

June 13 0.93 13 0.84

July 13 0.75 13 0.70

August 13 0.70 13 0.68

September 12 0.58 12 0.58

October 12 0.72 12 0.70

November 12 0.73 12 0.71

December 12 0.78 12 0.77

Total 9.33 8.87
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During May, which is the month with the most critical delay (i.e., 1.13% of the
annual produced fabrics are delayed in May), 0.12% of the annual produced fabrics
on average are delivered on time by adding one transporter (i.e., an improvement of
10.5%). However, no improvement in themean days of delay can be appreciated. The
investment in hiring another transportation resource would be justified only if the
cost of tardiness was very high compared to the cost of the transportation resource.

From the results, it clearly appears that the transportation is not always the bottle-
neckprocess of thefinishingdepartment.Byanalyzing theutilizationof themachines,
some of them can reach 100% utilization, especially in the peak-periods, and this is
the main cause (in the current configuration of the finishing department and for the
number of jobs causing these saturation levels) of the delays in the deliveries. If these
bottlenecks were eliminated, by varying the number or speed of the machines, the
schedule of every operation on each machine would surely change, and this change
would possibly impact on the need for transportation resources of hiring more than
one transporter per working shift.

4 Conclusions

Nowadays, customers demand a large variety of products in very short times, thus
companies need to be flexible to respond as fast as possible to customers’ orders.
Managing thousands of different articles (characterized by different production
cycles) and avoiding delays in product delivery to the customers (maintaining a
high service level) are crucial issues for firms.

When the large variety of final products corresponds to a low production volume
of each of them, to achieve themaximumflexibility, manufacturers usually design the
shop floor as a job shop. However, due to the variety of production cycles, products
travel all around the shop floor to fulfil their operations. As a consequence, managing
together the job shop scheduling and the transportation among machines is a very
relevant and critical issue.

This paper dealt with the integrated job shop machine and transportation resource
scheduling problem in which also the optimal number of transporters to be included
has to be chosen. Amathematical model that includes the job shop scheduling and the
transportation routing was developed. By minimizing the cost of late deliveries (i.e.,
the cost of the total tardiness) and the cost of the transportation resources, the model
optimizes both the scheduling of jobs on machines, the number of transportation
resources needed in the shop floor per working shift, and the scheduling of jobs on
transporters.

The solution procedure for the resulting mathematical model is highly complex
and time consuming, thus a simulation-based optimization procedure was developed.
The simulation module is used to evaluate the performance of naive scheduling
and transportation policies, given a fixed number of transporters. The optimization
module finds the optimal number of transporters, given the unit tardiness cost and the
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unit transportation resource cost. The two modules iterate exchanging the respective
output until no new solution is found.

The simulation-based optimization procedure was tested in a real case study of the
finishing department of a textile company. More than one thousand different prod-
ucts need to be finished in the department, each of them with a specific sequence of
operations, performed in tens of different machines within the shop floor. Currently,
the machine operators move the jobs from one machine to the other, causing ineffi-
ciency and large delays. The model developed in the paper and the simulation-based
optimization solution procedure were used to find the optimal number of transporters
per working shift to be hired by the Company.

The solution procedure was implemented using Rockwell Arena and OptQuest
softwares, and various scenarios of tardiness cost and transporter speed were eval-
uated, whereas the cost of the transporter was considered as fixed. Results showed
that two transporters are enough to minimize the delays related to the transporta-
tion. In fact, when the number of transportation resources is larger than 2, some of
the machines become the bottleneck of the department, which are 100% saturated
independently from the number of transporters in the job shop.

Although the interesting results, which highlight the importance of correctly
and efficiently managing transportation in complex shop floors as job shops, due
to the interaction between transportation and machine utilization, the simulation-
optimization approach developed in the paper is a heuristic approach, and, hence,
give no assurance about the quality of the solution. Future research will address
the development of an exact algorithm able to solve the job shop scheduling with
transportation model, which has been formalized in the paper. Due to the complexity
of the complete model, the exact algorithm should exploit some properties of the
system. For instance, as the problem includes both a job shop scheduling and trans-
portation issues, approaches based on a decomposition of the problem in these two
aspects could be considered. In this case, attention must be paid to the coordination
between the two sub-problems. Possible schemes are Bender [17] or Dantzig-Wolfe
[18] decompositions.
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