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Abstract. Building efficient algorithms for data-intensive problems
requires deep analysis of data access patterns. Random data access pat-
terns exacerbate this process. In this paper, we discuss accelerating a
randomized data-intensive machine learning algorithm using multi-core
CPUs and several types of GPUs. A thorough analysis of the algorithm’s
data dependencies enabled a 75% reduction in its memory footprint. We
created custom compute kernels via code generation to identify the opti-
mal set of data placement and computational optimizations per compute
device. An empirical evaluation shows up to 245x speedup compared to
an optimized sequential version. Another result from this evaluation is
that achieving peak performance does not always match intuition: e.g.,
depending on the GPU architecture, vectorization may increase or ham-
per performance.

Keywords: Algorithms for accelerators and heterogeneous systems ·
Performance analysis · Combinatorial and data intensive application

1 Introduction

The past decade has witnessed a tremendous increase in the applicability and
usefulness of artificial intelligence in our daily lives. Much of this activity was
fueled by the mainstream adoption of machine learning approaches as they pro-
vide tools to solve inherently difficult problems. However, many of these tech-
niques require a massive amount of computation which severely limits the scale
of problems that can be tackled.

In this paper, we present the methodology followed in designing and imple-
menting a high-performance version of an existing Stochastic Gradient Markov
Chain Monte Carlo (SG-MCMC) machine learning algorithm that detects over-
lapping communities in graphs. The algorithm analyzes pair-wise interactions
between entities in order to discover hidden attributes. For instance, consider
a social network represented as an undirected graph where the vertices repre-
sent individuals and edges represent relations between them. Given the relation
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information, the algorithm can identify latent groups of individuals that rep-
resent shared interests. This problem structure differs from graph partitioning
or clustering as there is a many-to-many relationship between individuals and
interests. For example, each individual can have multiple interests. Simultane-
ously, each interest group can span multiple individuals. Formally, this problem
domain is known as Mixed-Membership Stochastic Blockmodels (MMSB). The
theory behind the algorithm is discussed in more detail in [10].

The focus of this work is on the computational efficiency and parallel per-
formance of the SG-MCMC algorithm. More specifically, we discuss the process
of accelerating the algorithm by developing aggressive optimizations targeting
multi-core CPUs and GPUs. The parallel algorithm achieves speedup factors
up to 245, compared to a well-tuned sequential C++ program which itself is
a factor 1000–1500 faster than the Python/Numpy program developed by the
algorithm’s original authors. From a computational point of view, this algorithm
differs from widespread machine learning algorithms in several ways. First, it is
highly data-intensive which makes GPU acceleration particularly challenging.
Second, owing to the algorithm’s stochastic nature, the majority of its mem-
ory access patterns and data dependencies are non-deterministic. As a result,
straightforward optimization attempts of the memory access patterns either fail
or lead to non-intuitive results.

Through careful analysis of the computation and data structures we show
that the algorithm’s full state can be reduced by roughly 75%. Compressing the
state significantly reduces the data intensity and allows for tackling larger prob-
lems while maintaining all state in memory. Further, by cataloguing and account-
ing for the various load and store operations, we identified the highest priority
locations of data reuse. In order to navigate the unclear optimization landscape,
we developed an effective kernel code generation mechanism that explores all
permutations of the available optimization opportunities. These optimizations
include caching in shared memory, caching in the register file, loop unrolling and
explicit vectorization.

In summary, the contributions of this work are:

– decrease the algorithm’s data intensity by eliminating 75% of its memory
footprint;

– tune the algorithm’s performance by maximizing data reuse and identify the
fastest combination of optimizations through dynamic kernel code generation;

– perform a comparative performance analysis of the accelerated algorithm ver-
sions on a multi-core CPU and a number of GPUs, highlighting the particular
optimization combinations that were successful per device;

– achieve speedup factors of 21 and 245 over an optimized sequential program
using a multi-core CPU and a GPU respectively.

The remainder of this paper is organized as follows. A description of the
sequential version of the algorithm and its data structures is provided in Sect. 2.
Sect. 3 discusses the design of the parallel algorithm. Section 4 provides an empir-
ical evaluation of the contributions of this work. Sect. 5 presents an overview of
related works. Finally, Sect. 6 concludes.



512 I. El-Helw et al.

2 SG-MCMC Algorithm Overview

In this section we describe the computational aspects of the SG-MCMC MMSB
algorithm. Moreover, we will introduce the data structures and notation that
will be used throughout this paper. A detailed explanation of the algorithm is
provided in [4,10].

The network graph G consists of the undirected edges E and has N vertices.
The algorithm starts by partitioning G into the training set, the validation set
Eh and the test set (the latter is not used in our implementations). Eh and the
test set are much smaller than G, typically between 1% and 10% of the edges
in G. The number of communities K is specified as a model parameter to the
algorithm.

The algorithm progresses by iteratively improving the global state of the
learning problem, using the training set. There are two pairs of data structures
that hold the global state. θ, a K×2 matrix, is used for calculating the community
strength β, i.e. the probability that two members in a community share an edge.
β is a vector of length K; it is the normalized version of θk,2. The matrix π of
dimensions N×K represents the probability for each vertex in G to be a member
of each community. It is the normalized equivalent of the matrix φ of dimensions
N×K, on which the calculations occur. The definitions of β and π are:

βk =
θk,2
θsumk

where θsumk =
2∑

j=1

θk,j (1)

πi,k =
φi,k

φsum
i

where φsum
i =

K∑

j=1

φi,j (2)

The symbols used throughout this paper are given in Table 1.

Table 1. Definition of most important symbols

Symbol Type Size Description

G Graph

K K Set of communities

V {vertex} N Vertices in G

E {edge} Linked edges in G

E {edge} V × V: linked and nonlinked edges

Eh {edge} Held-out subset of the graph

En {edge} Sampled mini-batch of edges in E

m Number of vertices in En

Vn {vertex} Sampled neighbor set for a vertex in En

θ float vector 2-D K × 2 Reparameterization of β. βk = θk,2/
∑

j θk,j

β float vector K Community strength

φ float vector 2-D N × K Reparameterization of π. πi,k = φi,k/
∑

j φi,j

π float vector 2-D N × K πi,k is probability that vertex i is in community k
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Algorithm 1. Sequential version of SG-MCMC for a-MMSB
1: while sampling do
2: sample a mini-batch En

3: // En may be a subset of G, or disjoint with G
4: for each vertex i in En do
5: sample n random ’neighbors’ (not from G)
6: for each edge (i, neighbor) do
7: calculate its contribution to the gradient in φ

8: update φi using stepsize s

9: for each vertex i in En do
10: update πi according to changed φi

11: for the edges in En do
12: calculate gradients in θ and update θ

13: for the edges in En do
14: update β accordingly

15: every so many iterations: // metric is perplexity
16: verify the quality of π and β against the validation set

Pseudo-code for the algorithm is presented in Algorithm1 which is based on
the description in [4,10].

An iteration in the algorithm consists of 6 compute stages. We will high-
light the data accessed in the stages as this determines the opportunities for
parallelism.

The first stage (line 2 in the Algorithm) randomly draws a mini-batch En,
using the “stratified random node” strategy [10]. In this strategy, a coin toss
is used to decide between two sample types. The first sample type chooses one
random vertex i and selects all of its edges to constitute the mini-batch En. This
sample type is referred to as link edges. The second sample type randomly draws
a vertex i and generates random edges of the form (i, j) such that the edges are
not in G. This sample type is referred to as nonlink edges. The set of vertices
that constitute the edges of the mini-batch En is denoted m.

In the second stage (line 5), for each vertex i in m, a neighbor set Vn of size
n is randomly sampled with edges of the form (i, j).

Stage 3, update phi (line 6–10), calculates a gradient vector ∇φi for each
vertex i in the mini-batch, by iterating over the edges (i, j) in i’s neighbor set;
the data that is used is πi, πj , and β. The gradient ∇φi is used to update φi.
Stage 4 (line 9–10), update pi, updates πi so it remains the normalized version
of φi.

Stage 5, update theta (line 11–12), uses β and πa, πb for the edges (a, b) in the
minibatch En to calculate a gradient vector ∇θ. θ is updated using ∇θ. Stage 6,
update beta (line 13–14), recalculates β as the normalized version of θk,2.

At regular intervals, the algorithm’s global state is assessed by evaluating
the perplexity over the edges in the validation set Eh. Perplexity is a metric that
represents the quality of the algorithm solution at a given point in time. It is used
to detect the algorithm’s convergence. The perplexity, as elaborated in [4,10], is
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the exponential of the average over time of the negative log-likelihood of meeting
a link edge. In this calculate perplexity stage (lines 15–16), β is used, as are πa

and πb for each edge (a, b) in Eh.
The graph G is queried for membership in the stages update phi, update beta,

and calculate perplexity. The validation set Eh is traversed in the calcu-
late perplexity stage.

3 System Design and Implementation

The process of designing an accelerated version of the SG-MCMC MMSB algo-
rithm involved multiple transformations. First, we describe how an efficient C++
baseline was created. Further, changes to the algorithm and the data structures
were carried out, for both efficient resource utilization and parallelization. This
section provides an overview of the system’s evolution in incremental phases,
identifying the key contributions and differences between consecutive states.

3.1 An Efficient Sequential Baseline Version

The original implementation was done in Python, as is common in the machine-
learning community. It relied on Numpy [16] to perform numerical computations
efficiently. However, the algorithm made heavy use of Python sets and dictio-
naries which have no Numpy equivalent. We ported the Python code to C++,
maintaining the same program structure. This transformation yielded a speedup
factor of 171.

The next step was to remove a number of inefficiencies. E.g., one recurring
idiom in the Python implementation was a choice expression of the form ayb1−y

where y is either 0 or 1. We transformed such expressions into conditional expres-
sions which compute either a or b, and avoid floating-point exponentiation. Other
optimizations were loop strength reduction and common subexpression lifting.
These optimizations yielded another speedup factor of 6.

Finally, we investigated the performance effect of reducing the floating-point
precision from 64-bit to 32-bit. This reduces both the computation and data
intensity leading to a lower memory footprint which frees registers and enables
more effective data reuse. It has been previously shown that stochastic learning
algorithms do not require high precision in the presence of statistical approxima-
tions and the addition of random noise [7]. This reduction increased the speedup
by a factor of 1.5.

In conclusion, porting from Python to efficient 64-bit C++ gave a speedup
factor of ∼ 1000, and reducing the precision to 32-bit increased that to a factor
of ∼ 1500. We use the resulting sequential C++ version as baseline for our
performance comparisons.

3.2 Restructuring for Parallelism

The design of an accelerated version of the algorithm necessitated several crucial
modifications to allow for efficient parallelization. We chose OpenCL [17] as it
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provides a common abstraction for a variety of compute devices which fulfilled
our requirements of employing CPUs or GPUs. However, Nvidia’s OpenCL SDK
limits the total memory allocations within a context to 4GB which severely limits
the problem sizes that can be tackled on GPUs. Therefore, we migrated the sys-
tem to use the abstraction layer CLCudaAPI [15] to support both OpenCL and
CUDA [14] as back-ends. We considered using OpenMP for the CPU implemen-
tation but decided against it. OpenCL offers a common platform for CPU and
GPU, and hence makes performance comparison straightforward, and OpenCL
allows control of the multicore vector units.

This section discusses the key contributions to attain two optimized parallel
versions, catering for multi-core CPUs and GPUs. First, we present structural
changes that provide compute device specific optimizations. Next, we provide an
in-depth description of the optimized CPU and GPU versions respectively.

Fast Lookup of Graph Edges
The algorithm relies on a set data structure to store the edges of the graph.
This set is queried frequently with randomly generated edges to check for their
membership. To improve the performance of such lookups, we developed a cus-
tom set implementation that restricts its features based on its usage patterns.
For example, the set is used as a container for the graph edges which are known
in advance. Therefore, the set can be made immutable and does not require
thread-safety.

We designed the edge set as a variant of a cuckoo hash [18]. The hash is
indexed by a tuple of two 32-bit vertices that represent an edge. It uses two hash
functions to address two corresponding storage spaces. Additionally, it stores 4
different 64-bit edge values per bucket as shown in Fig. 1. This set implemen-
tation allowed us to obtain a loading factor upwards of 90% which reduces the
space overhead significantly.

Fig. 1. Structure of a single cuckoo hash bucket containing 4 edges.

Parallelization and Data Dependencies
The original algorithm was structurally reorganized into 4 main sections with
one or more kernels in each depending on data dependencies and synchronization
requirements. First, the sampling of a mini-batch of edges is done on the host
as it is a cheap operation. The mini-batch sampling is followed by the neighbor
sampling kernel which generates uniformly random neighbors for each vertex in
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the mini-batch. Second, the predominant kernel, update phi is invoked to calcu-
late the gradients for each vertex i in the mini-batch En and updates the value of
φi | i ∈ En. Third, the update pi kernel is invoked to normalize the individual φi

and store the result in the corresponding πi. Fourth, the kernels update theta and
update beta are invoked to modify the global parameters. Finally, a dedicated
kernel calculates perplexity.

Memory Footprint Reduction
A key structural change applied to the algorithm is the lossless compression of its
state. This enabled the algorithm to process larger data sets while maintaining
all state in memory. Moreover, as the algorithm is data-intensive, a reduction of
the state is accompanied by a decrease in its data-intensity. The data structures
that occupy most memory are the matrices π and φ of dimensions N × K.
However, the storage of both matrices is redundant as π is a row-normalized
copy of φ, see Sect. 2. The storage for φ is discarded; φik values are recalculated
each time as πik/φsum

i , which requires maintenance of a vector φsum of size N .
Moreover, the calculation for φik can be cached. The matrix φ is required in two
kernels only, namely, update phi and update pi. Both kernels access φi only for
vertices i in the mini-batch En, so for each iteration, the calculated values for φ
are cached in a smaller temporary matrix of size |En| × K. This transformation
trades memory storage and bandwidth for a minimal computation overhead.

Thus, the memory requirement for φ is reduced from N ×K to a vector φsum

of length N and a much smaller |En| × K matrix. For sufficiently large K, this
transformation roughly halves the memory footprint of the algorithm.

CPU-Specific Optimization
The multi-core CPU version of the algorithm uses OpenCL to perform its com-
putations. The work decomposition of the CPU kernels ensures that each thread
performs independent computation to avoid expensive synchronization. Edge-
centric kernels that operate over mini-batch edges perform computations over
every edge in parallel while vertex-centric kernels exploit parallelism across the
selected vertices. Additionally, the kernels were vectorized to decrease instruction
overhead and utilize the SSE capabilities of the CPU cores.

GPU-Specific Optimization
The GPU implementation builds on top of the CPU work decomposition scheme.
However, instead of having every thread perform independent computations,
each block of threads shares the work associated with the single edge or vertex
for edge-centric and vertex-centric kernels.

Similar to the CPU optimization, we investigated the use of vector data
types to decrease the instruction overhead and increase memory bandwidth for
all strategies.

Since all kernels are data-bound, we investigated several memory organization
strategies to exploit the GPU’s memory hierarchy. As a case study, a discussion
of the update phi kernel is provided as it is the predominant component of the
algorithm.
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The update phi kernel operates over every vertex i in the mini-batch and
requires two temporary vectors of length K to perform its computation. For
each vertex, it iterates over the randomly generated neighbors and computes
a vector of probabilities Probsi of length K. The individual Probsi vectors of
each (i, neighbor) tuple are used to update the gradients vector Gradsi for
each vertex i. Finally, the φi row is updated to reflect the changes that were
accumulated in Gradsi for each vertex i in the mini-batch En.

A deeper analysis of the memory access patterns of the update phi kernel
revealed the frequency and modality of access to the data structures. The read-
only accesses of πj of the randomly generated neighbors are unique with a high
probability. More precisely, each vertexi in the mini-batch randomly samples
a neighbor set from the uniform distribution. Given that the total number of
sampled neighbors is much smaller than N , there is a low likelihood of dupli-
cate samples, so there is only limited potential for data reuse. Therefore, these
accesses provide limited opportunities for optimization without interfering with
the algorithm’s entropy. The data structure usage patterns that are deterministic
and most frequently accessed in read/write mode are Probs and Grads. Simi-
larly, πi for each vertex in the mini-batch is read repeatedly for the calculation
of Probs per neighbor and again to update Grads.

The following strategies present alternative methods of handling the deter-
ministic memory usage patterns of Probsi, Gradsi and πi.

The naive strategy simply allocates temporary vectors in thread local
memory for Probs and Grads which physically resides in device memory. Mem-
ory accesses are coalesced to achieve the highest possible device memory band-
width.

The shared memory strategy allocates the temporary vectors Probsi
and Gradsi in shared memory. Furthermore, it copies the πi of the selected
mini-batch vertex to shared memory to avoid repeated reads of device memory.

The code generation strategy dynamically generates the code of the
kernel to custom tailor its properties. It controls whether a vector is placed
or cached in shared memory. Additionally, it controls which vectors explicitly
reside in registers by allocating space on the stack frame, unrolling all inner
loops of the kernel and substituting all vector addressing with static values. The
code generation strategy allows this flexibility for the vectors of concern, namely,
Probsi, Gradsi and πi. Hence, this strategy allows for 8 possible configurations
denoted by three letters each of which is a choice between Register (R) or
Shared (S). For example, SSR denotes that Probsi, Gradsi and πi were placed
in Shared, Shared and Register respectively.

3.3 Kernel Code Generation

To support our various configuration needs, we implemented a code genera-
tor as part of the host program. It receives the model and performance tuning
parameters, and produces compute kernels honoring the supplied constraints.
The generated code is then compiled on the fly using the CLCudaAPI before
driving the different phases of the algorithm’s execution.
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The code generator uses a template that defines the static structure of the
kernels. Further, it employs custom syntax of placeholders that determine where
dynamic content will be inserted. The code generator supports 2 forms of tem-
plate substitution: type definitions and loop unrolling.

Type definitions are used to control SIMD vector widths for both CPU and
GPU kernels. For example, ‘Floatn‘ can be replaced with ‘float4‘ when using 4-
wide CUDA SIMD. Further, macros and inline functions override the standard
arithmetic operations for each vector width. For example, ‘ADDn(x, y)‘ will
be replaced with ‘ADD4(x, y)‘. It is important to note that this substitution
method influences loop lengths. For example, using a 4-wide vector instead of
simple instructions reduces loop iterations by a factor of 4.

In the case of GPU kernels, type definitions also specify whether a buffer is
allocated in shared or global memory.

Loop unrolling is used to force variables to be stored in registers. The
kernel’s static template contains placeholders that specify the type of a statement
to be performed. The code generator looks for these placeholders and replaces
them with one or more statements in an independent activation record.

4 Evaluation

This section discusses the performance evaluation of the various optimizations
for resource utilization and parallelization from Sect. 3. First, we explore the per-
formance benefits of parallelizing the computations on a multi-core CPU using
OpenCL. Then we assess the trade-offs associated with the GPU optimization
strategies and their performance effects on different types of GPUs, spanning
four chip architecture generations.

All experiments were conducted on the VU Amsterdam DAS5 cluster [1].
The cluster consists of 68 compute nodes each equipped with a dual 8-core
Intel Xeon E5-2630v3 CPU clocked at 2.40 GHz, 64 GB of memory and 8 TB
of storage. Additionally, the cluster is fitted with a number of Nvidia GPUs
including RTX 2080 Ti, GTX TitanX, GTX980, K40c and K20m; see Table 3
for an overview of their properties. The network graph used for evaluation of the
algorithm’s performance is com-DBLP from the SNAP collection [9]. It has 317 K
vertices and a million edges. The focus of our paper is the effect of parallelizing
the algorithm; our findings are representative for any dataset since the behavior
of the calculation kernels does not depend on the dataset.

4.1 Analysis of CPU Parallelism

This section discusses the use of the multi-core CPU available on the DAS5 clus-
ter. The parallel OpenCL version divides the work across the cores and performs
independent calculations concurrently. As shown in Table 2, the dominant kernel
in the computation is update phi, which accounts for 66.5% of the computation
time. Without exploiting the dual 8-core processor’s vectorization capabilities,
the speedup relative to the baseline sequential C++ version is 9.8. The model
parameters for these experiments: K = 1024, m = 4096, |Vn| = 32.
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In addition to applying computations in parallel, we investigated the use
of the SIMD instructions to maximize resource utilization. Figure 2 presents
the performance of vectorizing the kernels with varying vector widths. A key
aspect in this figure is the diminishing performance benefit for higher vector
widths. As the computational performance increases, the memory throughput
becomes the leading performance bottleneck. Moreover, using 16-wide SIMD
gave a slight performance penalty compared to 8-wide SIMD. The 8-wide vector
version improves the speedup relative to the baseline version from 9.8 to 20.9.

Table 2. Multi-core CPU performance
breakdown without vectorization.

Kernel Time (seconds)

PPX CALC 0.0364737

PPX ACCUM 0.083

SAMPLING 0.535599

UPDATE PHI 25.6598

UPDATE PI 0.645875

THETA SUM 0.0483902

GRADS PAR 1.92919

GRADS SUM 9.31122

UPDATE THETA 0.0548013

NORM THETA 0.001

TOTAL 38.5858
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Fig. 2. Performance of CPU for varying
vector widths.

4.2 Analysis of GPU Parallelism

As discussed in Sect. 3.2, we employed multiple memory organization strategies:
NAIVE, SHARED and 8 variations of code generation. This section investigates
the effectiveness of each on the available GPUs.

Comparison of Memory Management Strategies. Figure 3(a) presents the
performance of the RTX2080 Ti GPU with an explicit vector width of 4 across
the strategies. The x-axis represents update phi thread block sizes while the y-
axis presents the total execution time of 1000 update phi invocations. The naive
and shared strategies are labeled NAIVE and SHARED respectively. Further,
each code generation strategy is labeled by GEN followed by the 3 choices that
identify it. A zoomed-in version of Fig. 3(a) is provided as the bottom row to
focus on the optimal range.

As would be expected, the naive strategy exhibits the worst performance
over all thread block sizes, as it does not explicitly cache repeated device read
operations.
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Fig. 3. Execution time of 1K update phi invocations (En = 4096,|Vn|= 32) on the
RTX2080 Ti across a sweep of update phi thread block sizes. The lower figures are
a zoom-in into the optimal block range of the figures above.

The SHARED and GEN-SSS strategies come next in terms of performance.
Both strategies cache Gradsi, Probsi and πi in shared memory but differ in one
aspect: GEN-SSS explicitly unrolls the internal loops of the kernel. However,
loop unrolling incurred additional overhead and made GEN-SSS slower than
the simple SHARED strategy.

The other flavors of the code generation strategy attain higher performance
as they unroll internal loops as well as cache data in registers. The RTX2080 Ti in
Fig. 3(a) obtains the best performance with the GEN-RRS strategy. The optimal
thread block size is 64 and vector width is 4. The results for other vector widths
are omitted as they obtain lower performance.

A key model parameter that affects the behavior of the optimization strate-
gies is the number of communities K. Figure 3(b) presents the same model con-
figuration as in Fig. 3(a) but K = 2048 instead of K = 1024. The most important
difference in performance between the two figures is the optimal thread block
size, which grows from 64 to 128 when K is doubled. An increase in K comes with
a proportional increase in the size of shared memory required by each thread
block for the strategies that employ it explicitly. Similarly, GEN strategies that
use the register file will require additional space. Therefore, the number of con-
current thread blocks that can execute on a single streaming multiprocessor will
decrease, minimizing the GPU’s occupancy and utilization. This limitation can
be counteracted by selecting a larger thread block size which in turn increases
the computation concurrency and occupancy. However, increasing the block sizes
has diminishing returns and eventually leads to worse performance that matches
the NAIVE strategy.
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(c) K40c K=1024 vector width=2
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Fig. 4. Execution time of 1000 update phi invocations on a Titan-X (Pascal and
Maxwell) and a K40 across a sweep of update phi thread block sizes. The lower figures
are a zoom-in into the optimal block range of the upper figures. Other relevant model
parameters: En = 4096, |Vn|= 32.

In contrast to the other GPUs, the Titan-X Pascal shows good performance
with the SHARED strategy as shown in Fig. 4(a). This can be explained by its
high bandwidth to computational power ratio compared to the other devices.
The Pascal performs best with the GEN-RSR strategy, a block size of 96 and
a vector width of 2. On the other hand, Fig. 4(b) shows the Titan-X Maxwell
performed best with a thread block size of 64 and no vectorization.

Figure 4(c) presents the performance of the K40c GPU for the same exper-
imental configuration as before, with a vector width of 2. The results for the
versions with vector width 4 and no vectorization are omitted as they exhibit
lower performance. Surprisingly, Fig. 4(c) shows that the NAIVE strategy out-
performs SHARED and some of the GEN strategies. This can be explained by
the unique properties of the Kepler Super Computing line of products to which
the K40c belongs. These GPUs include enhanced L2 caching mechanisms that
accelerate repeated and sparse memory accesses. This is especially advantageous
as it caches repeated reads across streaming multiprocessors. However, the high-
est performance is attained by GEN-RRS which explicitly employs registers for
both Probsi and Gradsi.

These performance results for a range of GPUs reinforce the importance of
customizing compute kernels to each GPU’s specific architecture and capabili-
ties. For instance, each GPU achieved its highest performance by employing a
different strategy. Moreover, each GPU displayed different strategy-performance
orderings.
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Comparison of Compute Devices. Figure 5 compares the highest speedup
achieved by the RTX2080 Ti, GTX Titan-X Maxwell and Pascal, GTX980, K40c
and K20m relative to the single-threaded baseline C++ version. These results
are consistent with the relative capabilities of each device as listed in Table 3.
For instance, the RTX2080 achieves the highest speedup of 245 relative to the
baseline.

Table 3. Properties of the GPUs used in the evaluation

Device RTX 2080 Ti GTX Titan-X GTX 980 K40c K20m

Architecture Turing Pascal Maxwell Maxwell Kepler Kepler

Number of Cores 4352 3584 3072 2048 2880 2496

Clock (MHz) 1350 1417 1000 1126 745 706

GFlops (single) 13450 10157 6144 4612 4290 3520

GFlops (double) 420 317 192 144 1430 1170

Memory (GB) 11 12 12 4 12 5

Bandwidth (GB/s) 616 480 336.5 224 288 208

Figure 6 presents the execution time of the best-performing strategy for each
GPU. In this figure, the performance is normalized over the non-vectorized kernel
version for each GPU. Conforming to intuition, execution time of the RTX2080
improves with vector width. In contrast, it is notable that the Maxwell Titan-X
and GTX980 achieve their highest performance with non-vectorized kernels, and
the Pascal Titan-X and Kepler GPUs obtain the best performance with a vector
width of 2. At one extreme, the Maxwell Titan-X exhibits an overhead factor of
nearly 1.8 when using a vector width of 4. On the other hand, the RTX2080 Ti
improves its performance by roughly 35% when it uses a vector width of 4
compared to the non-vectorized kernel. Therefore, explicit vectorization of the
kernels can be either useful or harmful depending on the GPU architecture and
the specific problem it is applied to.
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tor width, normalized over the non-vectorized kernel. Relevant model parameters:
K = 1024, En = 4096, |Vn|= 32.

5 Related Work

Several studies looked into the problem of tuning compute kernels [11,19]. Ker-
nel Tuner [19] is a tool that facilicates the exploration of the available tuning
parameters by appling multiple strategies to arrive at optimized configurations.
The main focus of this work was overcoming discontinuous search spaces of
established optimization techniques such as tiling and loop unrolling. On the
other hand, Lim et al. [11] leveraged static code analysis to suggest tuning
parameters without the need for experimentation. In contrast, our study focuses
on application-specific data structures, memory and caching optimizations that
required fundamental data representation changes. For example, we deduplicated
matrices and re-encoded a graph as a cuckoo hash.

Recent work focused on the applicability of graph algorithms on GPUs. The
common pattern is representing vertices and edges such that GPU memory hier-
archies can be effectively utilized. WolfGraph [22] tackles graph processing in
an edge-centric manner which prevents load imbalances associated with vertex-
centric traversals. We incorporated a similar technique to avoid nondeterministic
edge indirections when processing mini-batches. XBFS [5] laid out a methodol-
ogy to perform breadth-first search on GPUs.

Mei et al. [13] provided a micro-benchmark that assessed the memory hierar-
chies of different GPU models. Similar to our evaluation results, they show how
the seemingly similar memory hierarchies of different GPU models can produce
non-intuitive performance outcomes.

Whereas acceleration of deep learning algorithms on GPUs is an ongoing
success story, approximative Baysian algorithms (where our MCMC algorithm
belongs) are not natural candidates for acceleration. Nevertheless, a number
of projects explore this terrain. Medlar et al. [12] use GPUs with their MCMC
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approach to analyze parental linkage patterns in a biology context and White and
Porter [20] do the same to model terrorist activity. Latent Dirichlet Allocation,
another variety of Bayesian Approximation, is used on GPUs by Yan et al. [21].
There is also related work on MCMC algorithms that use the gradient to speed
up convergence. Langevin and Hamiltonian dynamics are representatives of these
varieties [6]. Our algorithm uses Riemann Manifold Langevin dynamics. Beam
et al. [2] use GPUs to perform Hamiltonian descent using Python interfaces to
access the cuBLAS library [3]. They limit GPU optimizations to reducing data
transfers between host and device memory.

Another MMSB algorithm with stochastic gradient descent on the GPU
is the Online Tensor approach [8]. Their implementation uses the cuBLAS
library. Unlike our work, there is no attempt to hand-optimize the GPU ker-
nels. Since they target GPUs only, the datasets they can handle are limited by
the device memory of the GPU. Our implementation can also be used, with
reduced speedup, on a multicore CPU which allows much larger datasets.

6 Conclusion

Identifying optimization strategies of parallel data-intensive algorithms is a com-
plex task. The SG-MCMC algorithm discussed in this paper posed additional
challenges due to its unique stochastic nature and nondeterministic memory
access patterns. We presented a methodology of improving performance by fun-
damentally restructuring the algorithm to cater for concurrency.

A deep analysis showed the algorithm’s state can be reduced by 75%. We nav-
igated the complex optimization landscape by dynamically generating compute
kernels and testing different combinations of optimizations. This effort culmi-
nated in significant speedup factors of 21 and 245 using a multi-core CPU and
a GPU respectively, compared to an optimized sequential program. Finally, we
contrasted the performance of several GPUs highlighting the difference between
their optimal configurations.

The outcome of this work reinforces the significance of avoiding premature
optimization as it can lead to unexpected results. In particular, the success of
common GPU optimizations depends on the particular device in use and the
problem it is applied to. Although GPU architectures and their memory hierar-
chies can be leveraged to obtain significant speedups, they introduce significant
complexity which hinders our ability to predict their benefits.
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