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Abstract. Non-Volatile Memory (NVM) is an emerging memory tech-
nology aimed to eliminate the gap between main memory and stable stor-
age. Nevertheless, today’s programs will not readily benefit from NVM
because crash failures may render the program in an unrecoverable and
inconsistent state. In this context, durable transactions have been pro-
posed as a mechanism to ease the adoption of NVM by simplifying the task
of programming NVM systems. Existing systems employ either hardware
(HW) or software (SW) transactions with different performance trade-
offs. Although SW transactions are flexible and unbounded, they may sig-
nificantly hurt the performance of short-lived transactions. On the other
hand, HW transactional memories provide low-overhead but are resource-
constrained. In this paper we present NV-PhTM, a transactional system
for NVM that delivers the best out of both HW and SW transactions by
dynamically selecting the best execution mode according to the applica-
tion’s characteristics. NV-PhTM is comprised of a set of heuristics to guide
online phase transition while retaining persistency in case of crashes dur-
ing migration. To the best of our knowledge, NV-PhTM is the first phase-
based system to provide durable transactions. Experimental results with
the STAMP benchmark show that the proposed heuristics are efficient in
guiding phase transitions with low overhead.

Keywords: Transactions · Transactional memory · Persistent memory

1 Introduction

Recent Non-Volatile Memory (NVM) technologies can provide persistency, fast
access time and a byte-addressable interface. As NVM’s access latency is
approaching those of current DRAM technology, its content can be directly read
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or written by the CPU, thus avoiding the overhead involved in block-oriented
systems. However, it is challenging to write code for NVM because a system
crash may render the program in an unrecoverable state. Durable transactions
have been suggested as an appropriate way of programming these systems given
their consolidated strong semantics and ease-of-use idiom [4,15].

Most of early works focused on providing durable transactions by care-
fully extending software transactional memory (STM) libraries with logging
and recovery mechanisms [9,21,24,25]. Nevertheless, although flexible and
unbounded, software approaches may display a considerable overhead for appli-
cations with short-lived transactions. With the availability of microprocessors
with hardware transaction extensions (HTM) [16,18], researchers have proposed
using this mechanism as a way of speeding up the performance of applications
running on durable transactional systems. The key idea of recent HTM-enabled
solutions [8,14,20] is to separate the execution of a durable transaction into two
parts. In the first one, transactions are executed using the hardware support and
construct a volatile redo log. The second stage consists of a transaction persisting
its log and ensuring that the order is consistent with some serial execution. One
important drawback of hardware-based solutions, however, is that most micro-
processors only provide best-effort transactions, meaning that transactions are
not guaranteed to always commit in hardware.

Although each approach (HW or SW) has distinct virtues, the decision about
which one to use is usually left to programmers. However, making the right choice
requires an intricate understanding of workload and system-specific character-
istics, and is often dynamic (i.e., the optimal approach changes throughout an
application’s execution). This work is motivated by the observation that this
decision is a fundamental gap that affects the effectiveness of the current state
of the art on (SW and HW) durable transactions. In order to fill that gap, we
propose NV-PhTM: a Non-Volatile Phased Transactional Memory system that
delivers the best out of both HW and SW transactions by dynamically selecting
the best execution mode according to the application’s characteristics. A key
decision in designing NV-PhTM concerns how to handle the concurrent execu-
tion of HW/SW transactions.

Before the emergence of NVM, the goal of combining SW and HW transac-
tions had already received plenty of attention in the context of non-durable trans-
actional memory [15]. Historically, the first approaches allowed both HW and SW
transactions to concurrently execute in the same application, which is commonly
designated as Hybrid Transactional Memory (HyTM). More recently, different
studies have shown that HyTM has inherent scalability issues [1,7]. In parallel,
the alternative approach of Phase-based Transactional Memory (PTM) was pro-
posed as a pragmatic way of avoiding the fundamental pitfalls of HyTM [6,19]
through a simplistic design where SW and HW transactions no longer run con-
currently; instead, the execution is split into all-SW and all-HW phases. PTM
systems have to deal with challenges such as when to transition the execution to
different phases, accomplished through heuristics, and how to efficiently perform
the transition.
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To the best of our knowledge, NV-PhTM is the first system to apply the
principles of PTM in the context of durable transactions. As we discuss later
on, directly applying existing non-durable PTM systems to this new context is
sub-optimal as it neglects new phenomena and trade-offs that durability brings
about. NV-PhTM provides insights regarding the construction of new heuristics
and phase transition in a NVM context. In particular, this paper makes the
following contributions:

– It proposes NV-PhTM and new heuristics with the aim of allowing phase-
based execution of durable transactions (see Sects. 3.1 and 3.2);

– It devises a new strategy to allow the migration between HW and SW trans-
actions while maintaining consistency and persistency (see Sect. 3.3);

– It provides experimental results, based on the STAMP benchmark [22], show-
ing that NV-PhTM is efficient and can provide the best of both HW and SW
transactions (see Sect. 4).

The rest of the paper is organized as follows. Section 2 presents the main
concepts used in this work. Section 3 gives a detailed description of the NV-
PhTM design, whereas Sect. 4 presents its evaluation, comparing it against other
state-of-the-art approaches. Section 5 provides an overview of related works and,
finally, Sect. 6 concludes the work.

2 Background

This section briefly describes two representative HW and SW systems which
provide durable transactions, namely NV-HTM and PSTM. These systems serve
as the base in which NV-PhTM is built upon.

NV-HTM [8] is one of the first systems to provide durable transactions over
commodity transaction-enabled hardware. Its commit stage is split into non-
durable and durable stages. When a hardware transaction executes, it also stores
its updates into a redo log (a per-thread structure). Upon a commit, the hard-
ware makes the updates visible to other concurrent threads but does not nec-
essarily persist them. This is the so-called non-durable commit. After that, the
transaction’s redo log is persisted via software (it might have to wait for the logs
of transactions it depends on to be persisted as well), completing the durable
commit stage. NV-HTM requires instrumenting the procedures to start/commit
a transaction and the write operation (to construct the redo log), but read oper-
ations can proceed without any instrumentation overhead. A timestamp mech-
anism is used to enforce consistency: when a transaction is durably committed,
all transactions serialized before it by the HTM system are already durably com-
mitted. A concurrent checkpointing process is used to persist the snapshot in
NVM of all durably committed transactions, as well as pruning the redo logs. In
case transactions cannot proceed in hardware, NV-HTM acquires a single global
lock and serializes the execution (software transactions are not provided).

The acronym PSTM (Persistent Software Transactional Memory) usually
refers to a class of implementations based on the mechanism that Mnemosyne [25]
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originally introduced to support durable memory transactions. It is composed
of a transaction system and a transaction log. The original proposal described
by Mnemosyne is based on TinySTM [13], providing lazy versioning with redo
logging and eager conflict detection with encounter-time locking. With lazy ver-
sioning, data written by a transaction is stored locally in a buffer (volatile mem-
ory) and also added to a log (along with the corresponding addresses). During
commit, the log is flushed to NVM and the data is persisted. Notice that lazy
versioning requires, for each read operation, checking whether the required data
is already present in the local buffer, in which case it contains the most recent
value. In order to avoid that, some PSTM systems prefer to adopt undo logs
and in-place updates instead [3,8]. Upon each write, the corresponding log entry
is flushed to NVM before the data is modified in-place. During commit, the
changes are flushed to NVM and a commit marker is added to the log. The cost
of durable transactions is two writes to NVM with every update: one for the log
entry and another for the data itself.

3 NV-PhTM Design

NV-PhTM allows the execution of HW/SW transactions in phases. It provides
the following features in the context of NVM: i) new heuristics to guide tran-
sitions among hardware (HW), software (SW) and serialized (GLOCK) phases;
ii) a consolidation strategy to enforce system consistency and persistency when
transitioning between different phases. This section discusses NV-PhTM general
system architecture, transition heuristics and state consolidation strategies.

3.1 System Architecture

The two main building blocks of NV-PhTM are NV-HTM (for HW transactions)
and PSTM (for SW transactions), described previously. A general overview of
the architecture is presented in Fig. 1. The first step performed by the system
is to map the memory region (e.g., by using mmap) to the application address
space, creating a Working Snapshot (WS) 1©. As soon as the transaction performs
the first access to a page mapped on the PS, the operating system automatically
uses copy-on-write (CoW) to create a volatile copy in DRAM. Hence, during
execution, the load and store instructions emitted by transactions operate on
DRAM-mapped pages of the WS 2©. When a hardware transaction completes,
two actions take place. First, the HTM system non-durably commits the transac-
tion data (volatile memory). Second, the system flushes the redo log to NVM 3©,
in which case the transaction is durably committed. A Checkpoint Process (CP)
is responsible for applying the updates stored in the logs 4© into a consistent
Persistent Snapshot (PS) 5©, as well as pruning the redo logs so that they do
not grow beyond a given threshold. The application can also invoke the CP 6©
to perform memory consolidation, an operation that drains all the durable logs
to the PS and discards every page that has been cloned in DRAM. It is used to
consolidate the updates to the PS before migrating to SW mode.
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Fig. 1. NV-PhTM system architecture.

For the software part (PSTM), NV-PhTM extends the NOrec transactional
system [10] with non-volatile semantics. Differently from the HW component,
each transaction here is responsible for persisting its log as well as flushing the
updates to PS. During transaction processing, values are initially accessed from
the PS 7© and stored locally (DRAM) in the transaction’s write set. For each
memory update performed during the execution of a transaction, its correspond-
ing log entry is flushed to NVM 8©; when a transaction finally commits, it appends
a commit marker to the log and persist all updates to PS 9©. The sequence lock
of NOrec is used to order the commit events in the log. Notice that the CP
component is not used while in SW mode, since the transactions themselves are
responsible for consolidating the updates to PS. Another design option would
be to use the idea of splitting the commit operation into stages and let the CP
module perform consolidation, similarly to what is done in DudeTM [20]. How-
ever, in this initial investigation on phase-based durable transactions we opted
for a more traditional design, leaving commit splitting for future work.

3.2 Transition Heuristics

Transition heuristics specify in what conditions and to which phase the sys-
tem should migrate. NV-PhTM behavior is better understood by its transi-
tion automaton, showed in Fig. 2a. The system initially starts in HW mode.
A HW→SW transition is triggered when two consecutive aborts occur due to
capacity issues and the abort rate is above a given threshold A©. These condi-
tions represent situations where transactions are very unlikely to make the most
out of current HW transactions, thus execution falls back to SW mode. How-
ever, when the length of transactions (measured in cycles) is relatively small,
the system may return to HW mode since short-running transactions tend to
cause high overhead in SW mode. The SW→HW transition only completes once
all deferred transactions (those that caused the HW→SW migration) are com-
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Fig. 2. Design of the NV-PhTM heuristics. (Color figure online)

mitted and no other transaction is active. Internally, this is identified by the
two variables, deferredCount and undeferredCount, being equal to zero B©.
The variable deferredCount keeps track of how many transactions invoked the
HW→SW transition. These are the transactions that should complete in SW
before the system considers returning to HW. As for undeferredCount, it counts
the transactions that are actively running in SW, but are only doing so because
other transaction(s) invoked the switch.

The execution is serialized C© if: i) most of the aborts are not caused by capac-
ity issues (therefore they are very likely caused by conflicts among transactions),
ii) the abort rate is not high enough, and iii) the number of retries reached a
given threshold, In this situation it is pointless to migrate to SW mode and thus
serializing the execution may be more beneficial – as entering and leaving the
GLOCK mode is much faster compared to the SW mode. When the serialized
transaction is completed, the system returns to HW mode D©.

So far, the described heuristics take care of avoiding capacity and contention
issues, but they do not address problems caused by NVM. For instance, a par-
ticular source of efficiency loss when running in HW mode is the persistent log
structure that is used to store the updates of the transactions. Recall that the
CP is responsible for pruning this log and consolidating the changes into the PS
(steps 4© and 5© in Fig. 1). If the number of writes to the log is high, the log will
probably fill up before the CP is able to free some space, stalling the execution.
We named this scenario as log-induced stagnation, since transactions are unable
to proceed until there is enough space in the log. Therefore, a new heuristic was
added to NV-PhTM in order to force a HW→SW transition when stagnation is
problematic (above an empirically determined threshold) E©. Recall that PSTM
does not use the CP and, as a consequence, the log-induced scenario cannot
happen while in SW mode.

We observed that, for some applications running solely in HW mode, the
stagnation issue tends to dissipate over time. If that happens, then running in
HW mode might yield better performance. But if the system migrated to SW due
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to heuristic E©, it has no direct way of knowing if the stagnation level would be
low and whether returning to HW is a good idea. In order to have an insight into
the new SW→HW heuristic that addresses this point, please refer to Fig. 2b.
It shows the average transaction length (left Y axis), for both HW (red) and
SW (blue) transactions, as well as the average write-set size (right Y axis, green
dots), as time goes on (X axis). The plot is for the Intruder application from
the STAMP benchmark running with 12 threads (see Sect. 4 for details on the
experimental settings). The key point here is to notice that there is a relationship
between the reduction in the write-set size (green dots) and SW transaction
length (blue dots) with the stagnation level, as it is possible to observe that
HW transactions become faster (red dots) when that happens (around 2 million
cycles in the figure). The new SW→HW heuristic developed for NV-PhTM uses
this reduction in the write-set size and length of SW transactions to force a
transition when the threshold RD THRSD is met F©.

3.3 Consolidation Strategies

If a crash occurs while executing in either HW or SW mode it is possible to
recover the state by replaying the logs. However, inconsistencies might occur
due to the transitions between modes. Phase transitions are handled by a shared
modeIndicator variable, which is always read by HW transactions when they
start. When the condition for HW→SW is met, the transaction that triggers
the transition atomically changes modeIndicator to SW, which aborts all run-
ning hardware transitions. Upon restart, these transactions will notice the mode
change and will run in SW mode. Notice that this behavior would allow SW
transactions to start executing (and change the logs) while the CP might still be
executing. Therefore, NV-PhTM requires a barrier when switching modes. An
extra bit of modeIndicator is used to act as a permission flag. When the mode
is changed, the flag is atomically set (using a CAS operation); the transactions
that detect the HW→SW transition wait for the permission flag before entering
SW mode. Meanwhile, the transaction that triggered the migration invokes and
waits for the CP to perform a system consolidation procedure before resetting
the permission flag. At this point all transactions will start in SW mode and the
PS will be correctly updated. Handling SW→HW transition is similar, but does
not require waiting for the CP since it is not used in SW mode.

4 Experimental Evaluation

This section presents a thorough quantitative evaluation of NV-PhTM by show-
ing the effectiveness of the new heuristics and speedup numbers against state-
of-the-art systems.

4.1 Setup

The experimental evaluation considers the following systems:
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NV-HTM: an implementation of the work in Castro et al. [8] using a
threshold of 9 consecutive retries for serialization, 10000 log entries per thread,
and a log occupancy threshold of 50% (used to activate log pruning);

PSTM: based on NOrec STM [10] with redo log and lazy versioning similar
to Mnemosyne [25]. As in NV-HTM, a log of 10000 entries is also used for each
thread;

PhTM*: an implementation of NV-PhTM without heuristics E© and F©. It
is considered here so that the effectiveness of the new NVM-aware heuristics can
be assessed;

NV-PhTM: the newly proposed phase-based transactional system with
durable transactions described in this paper. It uses the same core parameters
of PSTM and NV-HTM, an abort threshold (ABORT THRSD) of 75%, transac-
tion length threshold (SIZE THRSD) of 30000 cycles, and stagnation threshold
(STAG THRSD) of 45%. The implementation is very lightweight and based on
the rdtscp instruction for collecting timing information. The time spent by
transactions waiting for the log (stagnation time) and total time are measured
and the ratio is computed. The SW→HW transition is triggered when a 15%
reduction (RD THRSD) over time of the write-set size and transaction length
is detected. Measurements are collected every 1000 committed transactions. See
Sect. 4.4 for a brief discussion on how these parameters were selected.

The systems are evaluated using the STAMP (Stanford Transactional Appli-
cations for Multi-Processing) benchmark suite [22]. Speedup is calculated by
using a NVM-aware sequential version of the applications without any concur-
rency control as the baseline. The experiments are performed on an 18-core
Intel Xeon Gold 5220 machine (with TSX support) clocked at 2.20 GHz, 192 GB
physical DRAM, and x86-64 Linux kernel 3.10. The applications were compiled
using GCC 7.3.1. The reported results represent the average of 30 runs; a 95%
confidence interval bar is also shown. In order to avoid some performance issues
induced by the memory allocator [5,11], the TCMalloc allocator with the changes
suggested by Nakaike et al. [23] is used. Finally, like previous works [8,9,20],
NVM is emulated using DRAM. In particular, slow writes to NVM are modeled
by adding a delay of 500ns.

4.2 SSCA2 and Intruder

This section provides a detailed discussion for two of the most representative
applications of STAMP: SSCA2 and Intruder. The speedup (Y axis) as the
number of threads increases (X axis) is shown in Fig. 3. In order to better
understand the behavior of the systems, Table 1 presents the percentage of
time spent in the different modes for NV-HTM, PhTM*, and NV-PhTM: HW
for hardware, SW for software, and GL for GLOCK (their sum should add to
100% of the total execution time). Table 1 also shows the average percentage of
the total time consumed by log-induced stagnation (LIS), that is, the fraction
of the total time that threads need to wait for enough log space.
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Fig. 3. Speedup numbers evaluating the effectiveness of the proposed heuristics.

Table 1. Fraction of time (%) spent in each mode (HW, SW, GL) and Log-Induced
Stagnation (LIS).

App #t
NV-HTM PhTM* NV-PhTM

HW GL LIS HW SW GL LIS HW SW GL LIS

SSCA2

1 100.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00

2 99.99 0.01 0.26 99.99 0.00 0.01 0.21 99.99 0.00 0.01 0.20

4 99.99 0.01 19.80 99.99 0.00 0.01 19.78 96.71 3.28 0.01 18.76

6 99.99 0.01 31.30 99.99 0.00 0.01 30.98 22.83 77.17 0.00 7.83

8 99.99 0.01 36.68 99.99 0.00 0.01 36.99 14.76 85.23 0.00 6.79

10 99.98 0.02 37.09 99.99 0.00 0.01 36.97 8.62 91.37 0.00 3.38

12 99.98 0.02 39.66 99.98 0.00 0.01 39.64 7.65 92.35 0.00 2.55

14 99.98 0.02 41.60 99.99 0.00 0.01 41.66 9.39 90.61 0.01 3.37

16 99.99 0.01 43.25 99.98 0.00 0.02 43.45 11.34 88.66 0.01 4.36

18 99.99 0.01 46.03 99.97 0.01 0.01 46.02 23.67 76.33 0.00 10.59

Intruder

1 99.81 0.19 0.02 99.77 0.02 0.21 0.02 99.80 0.00 0.20 0.02

2 99.02 0.98 0.44 96.62 2.56 0.81 0.30 99.04 0.02 0.94 0.35

4 96.17 3.83 2.19 89.15 8.61 2.24 2.20 96.37 0.16 3.47 2.11

6 92.74 7.26 4.77 81.06 16.07 2.87 4.88 93.46 0.77 5.77 4.67

8 97.39 2.61 14.79 77.10 19.43 3.47 10.85 90.91 1.12 7.96 11.82

10 97.31 2.69 21.88 75.37 21.11 3.51 16.10 88.33 2.62 9.05 17.89

12 95.22 4.78 26.98 71.94 23.05 5.02 19.23 83.10 4.98 11.93 20.89

14 87.26 12.74 26.99 71.24 23.09 5.68 21.87 77.76 9.48 12.76 22.60

16 96.70 3.30 35.26 75.22 23.91 0.86 27.75 75.83 18.51 5.66 27.64

18 83.47 16.53 35.07 61.25 35.14 3.61 25.64 67.62 20.29 12.09 27.47

For SSCA2, it is possible to see that NV-HTM performs well up to 4 threads,
but PSTM then starts to display a better performance. This is mostly due to
the stagnation problem occurring in NV-HTM as showed by the column LIS in
Table 1. Since PhTM* does not have the new heuristic that takes into account
the stagnation time E©, it does not transition to SW and therefore performs sim-
ilarly to NV-HTM, spending most of its time in HW mode. On the other hand,
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NV-PhTM is able to switch to the SW mode and follows PSTM’s performance
closely after 4 threads. Notice also that the LIS column (highlighted) confirms
the reduction of stagnation time due to the migration to SW mode. This result
highlights the main feature of phase-based systems: its ability to automatically
identify the best performing system (NV-HTM up until 4 threads, and PSTM
after that). Because PhTM* is not aware of the stagnation issue, it continues fol-
lowing NV-HTM and therefore does not perform well with more than 4 threads.

Intruder is a case in which HW performs better throughout all thread con-
figurations and therefore NV-HTM exhibits the best performance numbers. For
this application, stagnation is not as severe as with SSCA2 (LIS column). Con-
trary to other applications, the stagnation levels in Intruder varies during its
execution, with peaks at the beginning and end, when the number of writes is
more accentuated (see Fig. 2b). Although PhTM* performs better than PSTM,
its performance numbers are not as good as NV-PhTM from 6 threads onwards.
PhTM* is still able to transition to SW because of the high overall abort rate.
However, as Table 1 reveals (highlighted), it spends more time in SW than neces-
sary because it does not have the new SW→HW heuristic based on the reduction
of number of writes and transaction length F©. Overall, the results obtained with
NV-PhTM show the effectiveness of the new heuristics for HW→SW (SSCA2)
and SW→HW (Intruder) transitions.

4.3 Remaining STAMP Applications

The performance results for the remaining STAMP applications are shown
in Fig. 4. Due to space reasons we only consider a subset of the threads.
For Genome, Labyrinth and Vacation there are small performance differences
between PhTM* and NV-PhTM, implying that the new heuristics do not play a
major role with these applications. Stagnation is not a major issue in Genome and,
for Vacation, there is a large number of capacity aborts that force HW→SW
transitions. Indeed, 99% of the total execution time is spent in SW mode in
Vacation starting from 8 threads. On the other hand, Genome spends about
90% of the total execution time in HW mode. Labyrinth has very long trans-
actions, forcing HW transactions to abort almost all time. In fact, 99% of the
time is serialized with NV-HTM because it employs a global lock as the fallback
mechanism in case of high contention. Both PhTM* and NV-PhTM can detect
the serialization issue very early and switch to SW mode.

Kmeans is an application with a high variability in execution time. Even then,
it is possible to see that NV-PhTM follows the best system, NV-HTM, more
closely than PhTM* up to 4 cores (the maximum speedup achieved with this
application). After that, NV-HTM tends to get worse because stagnation time
starts to become an issue and, eventually, at 10 threads, PSTM takes over. At
this point NV-PhTM starts following PSTM whereas PhTM* does not, as seen
in the configuration with 16 threads. There is a small inaccuracy with NV-PhTM
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Fig. 4. Speedups for the STAMP applications.

at 8 threads as the stagnation threshold is reached and the system migrates to
SW mode. Yada is an application in which stagnation is not a major concern.
Capacity and conflict aborts are the major cause of its inefficiency, particularly
after 4 threads, when the majority of the execution time of NV-HTM is serialized.
Here, NV-PhTM correctly starts following NV-HTM but switches to PSTM as
serialization starts to dominate the execution time of the HW mode. PhTM* is
always using the SW mode because its heuristics force a HW→SW very early
given the capacity aborts. It also cannot return to HW because the length of
the transactions is way above the minimum threshold. NV-PhTM, on the other
hand, can perform a SW→HW transition since Yada has a behavior similar to
Intruder, in which the transaction length decreases rapidly.

The last plot in Fig. 4 shows the geometric mean of the speedups for all the
applications considered. It is clear from this plot that NV-HTM tends to be faster
than PSTM up until 4 threads when stagnation is still not a serious issue, but
after that PSTM starts to dominate. Since the phased systems are very likely
to follow the best performing system, they also display good overall results.
In particular, the improved heuristics provided by NV-PhTM in the context
of NVM makes it a superior option when compared to PhTM*. The reason is
clear: when stagnation is not a problem, it performs similarly to PhTM*; but
PhTM* heuristics cannot deal with log-induced stagnation and therefore NV-
PhTM performs better overall.
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Table 2. Percentage of total time spent during phase migrations and the average
number of transitions (ANoT).

Application Transition Threads

1 2 4 6 8 10 12 14 16 18

Genome HW→SW 0.00 0.01 0.03 0.03 0.03 0.04 0.05 0.06 0.11 0.10

SW→HW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

ANoT 1.80 2.07 1.70 2.03 1.27 1.47 3.73 5.70 17.20 13.97

Intruder HW→SW 0.00 0.00 0.00 0.01 0.07 0.22 0.56 0.56 0.06 1.02

SW→HW 0.00 0.00 0.00 0.01 0.01 0.03 0.06 0.06 0.02 0.07

ANoT 0.67 6.07 7.37 63.33 106.40 198.00 465.57 475.93 125.40 658.70

Kmeans HW→SW 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02

SW→HW 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01

ANoT 1.13 1.83 43.17 39.67 48.00 47.27 48.77 47.60 49.17 65.77

Labyrinth HW→SW 0.00 0.01 0.17 0.24 0.23 0.09 0.21 0.01 0.40 0.13

SW→HW 0.00 0.21 0.02 0.01 0.01 0.02 0.25 0.26 0.34 0.70

ANoT 1.00 1.50 1.03 1.00 1.00 1.00 1.00 1.00 1.07 1.00

SSCA2 HW→SW 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.06

SW→HW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

ANoT 0.47 0.23 1.47 3.80 8.77 8.60 16.40 21.27 25.33 119.07

Vacation HW→SW 0.00 0.01 0.04 0.16 0.03 0.03 0.03 0.03 0.03 0.03

SW→HW 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

ANoT 2.57 3.27 31.33 167.10 5.17 5.13 5.30 5.03 5.57 6.07

Yada HW→SW 0.00 0.01 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03

SW→HW 0.00 0.00 0.01 0.01 0.02 0.03 0.03 0.04 0.03 0.04

ANoT 2.13 3.40 5.10 12.40 15.87 15.20 16.47 13.13 12.40 12.07

Fig. 5. Results with a Xeon E5-2648L @1.80 GHz using the same thresholds.

4.4 Discussion

The results show that NV-PhTM is able to follow the best performing mode,
either HW or SW, but usually does not outperform the best of the two modes for
a given configuration. The reason for this, as discussed in details by Carvalho
et al. [7], is due to the lack of phases in the STAMP applications. However,
the ability of dynamically adapting its behavior to exploit the best execution
mode makes it a valuable option. A criticism of phased systems is that transi-
tion between modes can take a large fraction of the time because of the possible
barriers. In case of NV-PhTM, this has to be analyzed since it does require
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a barrier when transitioning from HW to SW because of the NVM consistency
requirements. In order to show that this is not a problem, Table 2 shows the per-
centage of the total time (averaged over 30 runs) consumed by transitions (both
HW→SW and SW→HW) and The Average Number of Transitions (ANoT) for
each application. As can be noticed, the largest overhead happens with Intruder
(18 threads) and it only consumes about 1% of the total execution time. The
reason for such low overhead is that the heuristics cause very few transitions, as
can also be observed in the table.

Finally, the heuristics require some thresholds to be tuned in order to get
a good performance. These values were set after a performance analysis with
the STAMP benchmark, similarly to previous work [7]. To show that the results
presented here are consistent, we repeated the experiments in another machine,
a 14-core Intel Xeon E5-2648L running at 1.80 GHz and 32GB of RAM, without
changing any of the thresholds. Notice that this machine is slightly slower and
has smaller L2 and L3 caches. The main results are shown in Fig. 5 for the SSCA2,
Intruder and the overall geometric mean. As can be seen, the main conclusions
carried over.

5 Related Work

The works of Avni et al. with PHTM [3] (Persistent Hardware Transactional
Memory) and Wang et al. with PTM [26] (Persistent Transactional Memory)
were the first to explore HTM in the context of durable transactions. In both
cases, the proposed solutions require changes to existing HTM designs which, in
practice, limit their usage. DHTM [17] (Durable Hardware Transactional Mem-
ory) is a more recent hardware approach that also requires minor changes to
the coherence protocol. HTM-enabled systems that use current microprocessors
were developed recently [8,14,20]. These systems use the same idea of splitting
the execution of a transaction into two parts: one that operates on volatile mem-
ory (using HTM support) and a decoupled phase responsible for persisting the
changes into NVM. They differ on how this is achieved. In particular, the app-
roach taken by Castro et al. with NV-HTM [8] avoids the use of a shared logical
clock to serialize hardware transactions as in DudeTM [20]. Also, NV-HTM does
not require instrumenting load operations as proposed in the work developed by
Gilles et al. [14].

The closest work to ours is PHyTM [2] (Persistent Hybrid Transactional
Memory), which allows the concurrent execution of both hardware and software
transactions. However, PHyTM is based on PHTM [3] and, as such, cannot use
current hardware support. NV-PhTM, on the other hand, does not have that
limitation since it uses the decoupled HW mechanism of recent works. More-
over, recent studies have showed that hybrid systems have an inherent scalability
limitation [1,7]. There are works on phase-based systems [6,7,19] but they tar-
get architectures with volatile memory. ProteusTM [12] automatically identifies
the best TM implementation based on a multi-dimensional online optimization
mechanism but, as with previous phase-based systems, it was design for volatile
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memory. Using phase-based systems with NVM, though, raises new problems
concerning both the switching policies (which need to take into account specific
performance issues, e.g., log stagnation, affecting NVM-related solutions) and
the logic used to regulate the switching between the various execution phases
(e.g., ensuring that logs are consolidated prior to switching to SW). In Section 4
we have compared the effectiveness of the switching policies used in prior phase-
based systems [7] that considered volatile memory and demonstrated experimen-
tally their inadequacy in the context of NVM.

6 Conclusion

In this paper we presented NV-PhTM: an efficient phase-based transactional
system for persistent memory. NV-PhTM solves the performance issues of both
hardware-only and software-only approaches by dynamically selecting the best
operation mode. The key novel contributions of NV-PhTM consist of: i) new
lightweight policies that allow for automatically identifying the best performing
execution mode (STM or HTM) for arbitrary workloads in a NVM context, and
ii) defining an architecture and phase transitioning mechanisms that allow for
the safe alternation between the phased execution modes. Experimental results
show that NV-PhTM can efficiently select the best execution mode and has low
transition overhead.
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