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Abstract. In the distributed model Amoebot of programmable matter,
the computational entities, called particles, are anonymous finite-state
machines that operate and move on a hexagonal tessellation of the plane.
In this paper we show how a constant number of such weak particles can
simulate a powerful Turing-complete entity that is able to move on the
plane while computing. We then show an application of our tool to the
classical Shape-Formation problem, providing a new and much more gen-
eral distributed solution. Indeed, while the existing algorithms allow to
form only shapes made of arrangements of segments and triangles, our
algorithm allows the particles to form also more abstract and general con-
nected shapes, including circles and spirals, as well as fractal objects of
non-integer dimension. In lieu of the existing impossibility results based
on the symmetry of the initial configuration of the particles, our result
provides a complete characterization of the connected shapes that can
be formed by an initially simply connected set of particles. Furthermore,
in the case of non-connected target shapes, we give almost-matching
necessary and sufficient conditions for their formability.

Keywords: Distributed algorithms · Programmable matter ·
Amoebot · Shape formation · Turing-computable shapes · RAM
simulation

1 Introduction

Several parallel and distributed computing models have been devoted to for-
malizing computations within the interdisciplinary field of Programmable Mat-
ter (PM): see [8,10,11,13]. The PM field envisions a myriad of very small
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(micro/nano-sized) entities that are nevertheless able to move and coordinate
themselves with the final purpose of solving a specific tasks [15]. Prototypes
that will lead to future hardware platforms for PM are being designed and engi-
neered. Examples are the M-blocks: cubes that are able to rearrange themselves
by rotations [12], and the Kilobots: small robots that move by vibrations [14].
At the same time, the algorithmic community is formalizing abstract and gen-
eral models, enabling the development of provably correct algorithms and the
feasibility analysis of problems.

In this paper, we consider the popular geometric Amoebot model, introduced
in [5]. In the Amoebot model, a set of computationally limited identical entities,
called particles, operate and move on a hexagonal tessellation of the plane (i.e.,
a triangular grid). Each particle has constant-size memory (i.e., constant with
respect to the total number of particles), is anonymous (i.e., it has no ID), is
able to communicate only with its direct neighbors on the grid, and it moves
by repeating an expansion action (in which the particle expands to occupy two
neighboring nodes of the grid) and a contraction action (in which an expanded
particle contracts to a single node of the grid). Research using this model is
being carried out within the parallel, distributed, and natural computing fields
[2–7]; for a recent survey, see [1]. The main goal of these research efforts is to
gain an understanding of the nature and limits of this distributed computational
universe.

In this paper, we move one step forward in this quest by providing a con-
struction that simulates a moving Random-Access Machine (mRAM) using four
particles. Such a construction transforms a set of these weak particles into a
powerful Turing-complete entity, able to move on the grid while computing.

We prove the usefulness of our construction by applying it to the well-studied
Shape-Formation (or Pattern-Formation) problem. In this problem, the particles,
initially arranged in an arbitrary connected shape, have to form a given target
shape. More precisely, each particle starts with a representation of the target
shape in its memory, and coordinates with the other particles to form a suitably
scaled-up copy of the shape that includes all particles in the system (this could
mean that some particles have to be in the expanded state in the final shape).
Usually, the total number of particles n is unknown: as a matter of fact, n cannot
be stored in the constant-size memory of a single particle.

Increasingly refined and complex techniques and algorithms have been
designed [2,3,5,6], each enlarging the class of shapes that can be formed starting
from a simply connected configuration. To date, however, this class includes only
target shapes defined as an arrangement of segments and triangles.

Our second contribution is the development, using our mRAM simulation, of
a general and universal solution for the Shape-Formation problem: starting from
a simply connected shape (i.e., a shape without holes), our algorithm allows the
particles to form any feasible connected shape for which a “drawing algorithm”
exists (i.e., the shape is Turing-computable), including circles and spirals, or
more complex fractal objects of non-integer dimension, such as the Sierpinski
triangle or the Koch snowflake (see Fig. 1).



Mobile RAM and Shape Formation by Programmable Particles 345

Scale: 16

Scale: 32

Scale: 64

Scale: 128

Fig. 1. Sierpinski triangle at various scales, approximated by a system of particles

The aforementioned drawing algorithm is a RAM algorithm that takes as
input the number of particles n, and outputs (a representation of) the shape that
has to be formed by the n particles. Note that, since the number of instructions of
such a drawing algorithm is obviously constant with respect to n,1 the algorithm
itself can fit in the constant-size memory of a single particle, regardless of the
number of particles in the system. (By comparison, previous works assumed that
each particle has in memory a representation of the target shape expressed as a
constant number of segments and triangles [2,3,6].)

With our technique, we can form almost all “feasible” non-connected target
shapes, and are excluded from our result only very sparse pathological shapes.
With regards to the feasibility (or not) of a shape, it is known that, depending on
the symmetry of the initial configuration, some shapes are not formable regard-
less of the amount of memory [6]. The negative result of [6] and the positive
results of our paper give an almost complete characterization of shapes that are
formable starting from a simply connected configuration. Interestingly, in the
case of connected shapes, the characterization is complete.

Our distributed algorithm is deterministic, and it works even if the schedule of
activations is fair but adversarial. More precisely, in each stage, upon activation,
a particle exchanges messages with its neighbors, executes some computation,
and possibly moves; there is however no restriction on the number of particles
that can be concurrently active in the same stage. Moreover, our algorithm works
also when the particles do not have chirality (i.e., there is no common notion of
a clockwise direction on the plane among the particles).

For space reasons, some details have been omitted; the full version is available
at https://arxiv.org/abs/2002.03384.

1 By contrast, the running time of the drawing algorithm may be any function of n.

https://arxiv.org/abs/2002.03384
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2 Model and Problem

2.1 Particles

In the Amoebot model, a particle is a computational entity that lives in an infi-
nite regular triangular grid G embedded in the Euclidean plane R

2 (observe that
a regular triangular grid corresponds to a hexagonal tessellation of the plane). A
particle may occupy either one vertex of G or two adjacent vertices: in the first
case, the particle is said to be contracted ; otherwise, it is expanded. When it is
expanded, one of the vertices it occupies is called its head, and the other vertex
is its tail. A particle may move through G by repeatedly expanding toward a
neighboring vertex of G and contracting into its head. (The traditional Amoebot
model also includes a special type of coordinated move called “handover”, but
we will not need it in this paper.)

No vertex of G can ever be occupied by more than one particle at a time.
So, a contracted particle cannot expand into a vertex that is already occupied
by another particle. Also, if two or more particles attempt to expand toward the
same (unoccupied) vertex at the same time, only one of them succeeds, chosen
arbitrarily by an adversary.

At each stage, some particles in the system are active, and they perform
a look-compute-move cycle, and the other particles are inactive. An adversar-
ial scheduler arbitrarily and unpredictably decides which particles are active at
each stage. The only restriction on the scheduler is that it cannot keep a parti-
cle inactive forever, but it must activate every particle infinitely often. When a
particle is activated for a certain stage, it “looks” at the vertices of G adjacent
to its head, discovering if they are currently unoccupied, or if they are head or
tail vertices of some particle. All particles are anonymous (i.e., they are indis-
tinguishable). Each active particle may then decide to expand, contract, or stay
still for that stage. When the next stage starts, a new set of active particles is
selected, which observe their surroundings and move, and so on.

Each particle has an internal state that it can modify every time it is acti-
vated. The internal state of any particle is from a finite set: particles have an
amount of “memory” whose size is constant with respect to the size of the sys-
tem, n.

Two particles can also communicate by sending messages to one another.
Each message is taken from a finite set of predefined messages. An active particle
can send a message to another particle provided that their heads are adjacent
vertices of G. A particle reads the incoming messages from all its neighbors as
soon as it is activated.

Each particle labels its six incident edges with port numbers, going from 0 to
5. Each particle uses a consistent numbering that is invariant under translation
on G. However, different particles may disagree on which of the edges has port
number 0 and whether the numbering should follow the clockwise or counter-
clockwise order: this is called the particles’ handedness. So, the handedness of a
particle does not change as the particle moves, but different particles may have
different handedness.
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At each stage, each active particle determines which neighboring vertices
are occupied, and it reads the incoming messages. Based on these and on its
internal state, the particle executes a deterministic algorithm that computes a
new internal state, the messages to be sent to the neighbors, and whether the
particle should expand to some adjacent vertex, contract, or stay still.

2.2 Shapes

A set S of nodes of G is formable by n particles if there exists a configuration
of exactly n particles (contracted or expanded) that collectively occupy exactly
the nodes in S.

A shape is a function mapping a positive integer n to a set Sn of nodes of G
that is formable by n particles: this set Sn is called the nth level of the shape. If
such a function is Turing-computable, then the shape is said to be computable.
If every level of a shape is a connected set, the shape is said to be connected.

A shape is formable (under condition C) if there exists a distributed algorithm
that, for every n, makes any system of n particles (whose initial configuration
satisfies condition C) eventually form a copy of the nth level of the shape, possibly
translated, rotated by a multiple of 60◦, and reflected. The algorithm should
succeed regardless of the port numbers of each particle and the choices of the
adversarial scheduler, and guarantee that the system remains still after forming
the shape.

2.3 Unbreakable Symmetries

A configuration of particles is said to be unbreakably k-symmetric, for some inte-
ger k > 1, if it has a center of k-fold rotational symmetry that does not coincide
with any node of G [6]. Observe that unbreakably k-symmetric configurations
exist only for k = 2 and k = 3.

We can extend this notion to a level of a shape in a natural way: the nth
level of a shape is k unbreakably symmetric if it is formable by an unbreakably
k-symmetric configuration of n particles. Intuitively, the absence of a central
node (and therefore of a central particle) and the fact that the configuration is
initially symmetric makes it impossible to break the symmetry. Hence, we have
a necessary condition C for the formability of a shape:

Proposition 1. [6] A shape is formable only under the condition that, if its nth
level is not unbreakably k-symmetric, then the initial configuration of a system
of n particles seeking to form the shape should not be unbreakably k-symmetric,
either.

Note that, when k = 1 the shape is not unbreakably k-symmetric in such a
case, as we will show in next sections, the symmetry of the target shape is irrel-
evant. In Sect. 5 we will give a strong sufficient condition for the formability
of a shape, which, together with Proposition 1, almost characterizes the set of
computable shapes that can be formed from a simply connected initial configu-
ration of particles (in the case of connected computable shapes, it yields a full
characterization).
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3 Simulating Random-Access Machines

3.1 Random-Access Machines: Definition

A Random-Access Machine (RAM) is a model of computation consisting of a
finite set of registers, each of which can store a non-negative integer, and a
program consisting of a finite ordered sequence of instructions. Each instruction
is of one of two types:

– Inc(r): increment by 1 the value stored in the register r. Then, proceed to
the next instruction of the program.

– TestDec(r, i): if the register r is holding the value 0, jump to the ith instruc-
tion of the program. Otherwise, decrement r by 1 and proceed to the next
instruction.

The registers initially contain the input of the RAM, and then the program
is executed starting from the first instruction. We can reserve a register rt to
represent a “termination flag”, whose value is initially 0. When rt is incremented,
the value of the other registers is taken as the RAM’s output. Hence, a RAM is
a device that can compute integer functions.

3.2 Simulating Turing Machines by RAMs

In [9, Chapter 11], Minsky shows how RAMs can simulate Turing Machines.
Specifically, there is a (small) constant c such that, given any Turing Machine
T that computes a function fT , there exists a RAM QT with exactly c registers
that computes fT .

Then, in [9, Chapter 14], he shows that any RAM R can be simulated by a
RAM Q′

R having only two registers. This is done by encoding the set of values
stored in R’s registers as a single integer, which is stored in the first register of
Q′

R (the second register of Q′
R is only used for intermediate computations). The

code is based on Gödel numbers: for instance, the sequence (a1, a2, a3, a4, a5) is
encoded as the single integer 2a1 ·3a2 ·5a3 ·7a4 ·11a5 . In general, the ith integer in
the sequence becomes the exponent of the ith prime factor of the code. By the
unique-factorization theorem, this encoding is injective and thus non-ambiguous.

The program of Q′
R can be constructed by locally replacing each instruction

of R with a small program that simulates it. For instance, it is possible to
increment the ith register of R by multiplying the first register of Q′

R by the
ith prime number, which in turn can be done in Q′

R by using the two standard
instructions and the auxiliary register. Testing if the ith register of R is non-0
amounts to testing if the first register of Q′

R holds a multiple of the ith prime
number, etc. In this paradigm, we can stipulate that Q′

R terminates when its
second register holds a 0 and the value of its first register is a multiple of the
prime number corresponding to the termination flag of R.

As an immediate consequence of the above, we have that the RAMs with
only two registers can simulate all Turing Machines, and can therefore compute
any computable function.
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3.3 Simulating RAMs by Particles

Our goal in this section is to simulate a RAM with two registers by a set of four
particles. The layout of our simulator is shown in Fig. 2: the four particles always
remain collinear throughout the simulation, and they always maintain their order
along the line: first the pivot P , then the marker of the second register M2, then
the leader L, and finally the marker or the first register M1. The number of
empty locations between P and M2 (i.e., their distance minus 1) represents
the value stored in the second register of the RAM, and the number of empty
locations between M2 and M1 (i.e., their distance minus 2) represents the value
stored in the first register of the RAM.

At all times during the simulation of the RAM’s program, L will remember
the index of the instruction that is currently being simulated: since the program
of a RAM is constant L only needs a constant amount of memory to do so. Now
we have to show that such a system can simulate every possible instruction of
the RAM. This is done by letting L move between M2 and M1: we assume that
L knows in which direction it has to move to find each of these two particles,
and for convenience we call these directions “left” and “right”, respectively, to
match Fig. 2.

L
Register 2 Register 1

3 7
P M2 M1

Fig. 2. A RAM simulator with the first register holding the value 7 and the second
register holding the value 3

When L reaches the relevant particle, it communicates with it and causes it
to move according to the current instruction of the program. P , on the other
hand, always remains still. Each instruction is simulated as follows:

– Inc(Register 1): L moves toward M1 until it finds it. Then it gives M1 the
order to move one step to the right, and waits until M1 has moved.

– TestDec(Register 1, i): if L neighbors both M2 and M1, it does nothing (and
updates the index of the current instruction to i). Otherwise, it reaches M1

and orders it to move one step to the left. Then L itself moves one step to
the left and waits until M1 has moved.

– Inc(Register 2): L reaches M1 and orders it to move one step to the right.
When M1 has moved, L reaches M2 and orders it to move one step to the
right. Then L itself moves one step to the right and waits for M2.

– TestDec(Register 2, i): L reaches M2 and asks it if it has a neighbor on the
opposite side (i.e., P ). If M2 answers affirmatively, L does nothing (and
updates the index of the current instruction to i). Otherwise, it orders M2 to
move one step to the left and waits until it has moved; then it reaches M1

and orders it to move one step to the left; finally, L itself moves one step to
the left and waits until M1 has moved.
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3.4 Adding Control Registers for Mobility

In our Shape-Formation algorithm, we need the RAM simulator to be able to
move and to perform actions depending on the shape to be formed. In this section
we outline the mechanism that our RAM we will use to move, and the specific
actions needed for the Shape-Formation algorithm.

Recall that, in order to simulate a generic Turing Machine T , the RAM QT

needs only a constant number c of registers. We can augment QT by adding a
fixed number c′ of “flag registers”, which are set to 1 when the system has to
perform certain special operations. Specifically, assume that T is an algorith-
mic description of a shape, whose output is a sequence of plotting operations of
the form “move forward”, “move right”, “draw a point”, etc. Our mobile RAM
(mRAM) UT simulates T exactly like QT , with one exception: whenever T out-
puts a plotting operation, UT sets and then immediately resets the flag register
corresponding to that type of operation (the reason will be explained shortly).

Now, we let the mRAM Q′
UT

simulate UT using only two registers. In Q′
UT

,
the state of each of the c′ flag registers of UT can be checked by verifying, at
the end of a simulated instruction, if the value stored in the first register is a
multiple of the prime number associated with the flag register.

As our four-particle system simulates Q′
UT

, it can also test the c′ flag registers
of UT at the end of every simulated instruction. Indeed, the leader particle L
can test if the value stored in the first register is a multiple of a given prime p. It
can do so by first moving next to M1, and then counting modulo p the number
of steps it takes to move all the way to M2 (counting modulo p requires only p
states). Since c + c′ is a finite constant, L only ever needs to test a constant set
of primes to determine the states of all the flag registers, which in turn takes a
finite amount of memory and time.

When L determines that one of the c′ flags is set, it executes the correspond-
ing plotting operation of T . This translates into a “movement operation”, which
moves the whole system in some direction or orders a specific particle to remain
still forever, marking a point of the shape. The exact nature of these movement
operations and the details of their implementation will be described in next
sections.

4 Basic Shape-Formation Algorithm

The first part of our Shape-Formation algorithm is taken from the “basic algo-
rithm” of [6], while the second part is entirely different, and will be described in
Sect. 5.

An assumption of the basic algorithm, is that the initial configuration of the
particles is simply connected ; another assumption is that the initial configuration
and the shape to be formed satisfy the necessary condition of Proposition 1.

As we pointed out in Sect. 2, the basic algorithm only deals with shapes that
are made of full triangles and segments, but this assumption is not used in the
parts of the basic algorithm that we are going to borrow here. The relevant
“phases” of the basic algorithm are as follows:
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– Handedness agreement : all the particles assume the same handedness (by sim-
ply setting an internal flag whose meaning is either “my original handedness
is correct” or “my original handedness is incorrect”).

– Leader election: the particles attempt to elect a single leader. If the initial
configuration is unbreakably k-symmetric, they may fail to do so, and elect
exactly k leaders instead.

– Straightening : the particles arrange themselves in k straight line segments,
each with a leader located at an endpoint. If k > 1, all the leaders are pairwise
adjacent (recall that the only possibilities are k = 2 and k = 3), and the
configuration is unbreakably k-symmetric (hence the k line segments have
the same length and form angles of 2π/k).

In the next section we are going to show how to proceed from here: we have
a configuration consisting of k straight lines and k leaders, where all particles
have the same handedness, and we want to reach an arbitrary configuration (i.e.,
a level of a computable shape) that is unbreakably k-symmetric if k > 1.

5 Forming Turing-Computable Shapes

5.1 Starting Configuration

Recall from Sect. 4 that, starting from a simply connected configuration, all
the particles in the system can agree on a common handedness and rearrange
themselves to form a configuration C0 consisting of k equal line segments (with
k ∈ {1, 2, 3}) each containing a leader particle. Moreover, if k > 1, then C0 is
unbreakably k-symmetric, and we may assume that also the shape’s level to be
formed is unbreakably k-symmetric. In this case, each leader is assigned an equal
portion of the shape, corresponding to a sector of plane spanned by an angle of
2π/k. These k sectors are called principal sectors of the plane, and the k rays
separating them are the principal rays: Fig. 3 shows an example for k = 3.

As a preliminary move, each leader will reach the far end of the line segment
on which it is located. This is done by repeatedly “transferring the leadership”
to a neighboring particle. In turn, this amounts to sending a special message to
that neighbor, whose meaning is “you are now the leader, and I am a regular
particle”. So, no particle will actually move in this phase.

When a leader has reached the far end of the segment, it starts the next
phase, which consists in building and initializing a mRAM simulator that will
eventually form the portion of shape that falls into that principal sector. From
this time on, the k leaders will act independently of each other, never meeting
again and never interacting.

5.2 From a Shape-Generation Algorithm to a Tracing mRAM

As stated in Sect. 2, we assume that the shape to be formed is computable, i.e.,
there exists an algorithm A that generates its nth level Sn given the number
n as input. By this we mean that A outputs the coordinates of all the points
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L

L L

Fig. 3. The final configuration of the basic algorithm, which is the starting point C0

of our new algorithm. Each leader is assigned a trail of followers, and will guide them
in the formation of the part of shape that falls into its principal sector.

of Sn, in an arbitrary order and in some arbitrary coordinate system, and then
terminates. Recall that, by definition of shape, there exists a configuration Cf

of n particles, expanded or contracted, which collectively form Sn. Additionally,
due to Proposition 1, if k > 1, then Sn must be unbreakably k-symmetric,
and therefore we may take Cf to be an unbreakably k-symmetric configuration
of particles. As such, Cf can be translated and rearranged so that its center
coincides with the center of C0. Also, Cf can be decomposed into k equal subsets,
called principal subsets, each of which entirely lies in a principal sector of C0,
with one exception: some expanded particles of Cf may be crossing a principal
ray, and therefore have the head in a principal sector and the tail in another.
These will be called trespassing particles. Now, from A we can easily produce a
modified algorithm A′ that only outputs the points that are occupied by one of
the principal subsets of Cf , say, C ′

f .
Furthermore, given A′, we can construct another algorithm A′′ that “traces”

C ′
f . That is, A′′ output the points of C ′

f in a specific order: it starts generating
the points of C ′

f that lie next to a principal ray, from the closest to the principal
ray’s endpoint to the farthest, and then proceeds to the next ray parallel to
the principal ray, and so on (each of these rays is called a scanline). This is
done by taking every point p on every scanline, in order, and executing A′. If
A′ generates p, then p is generated by A′′. If A′ generates points that appear
on the same scanline but after p, then A′′ proceeds along the scanline by one
step and executes A′ again, etc. Otherwise, A′′ moves to the first point of the
next scanline, etc. As soon as A′ generates only points that lie on already-visited
scanlines, A′′ terminates. Hence, A′′ is a procedure that terminates in a finite
amount of time.
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As A′′ executes A′, it can also detect if each location p it generates should be
occupied by a single particle or by an expanded particle (indeed, this information
is part of the description of C ′

f ). If it is an expanded particle, and the other
location p′ occupied by the same particle is on the next scanline, A′′ does not
generate p: it will generate only p′ as soon as it scans it. Along with p′, A′′ will
also generate a “direction of expansion”, which goes from p′ to p. This is called
the delayed-deployment rule, and its purpose will be explained later.

An improvement we can make on A′′ is that it not only generates the locations
of the particles of C ′

f , but it also generates the “movements” it makes through
the plane to generate them (we introduced these movement operations in Sect. 3).
Specifically, the possible movement operations are: (1) advance by one step along
the current scanline; (2) move to the next scanline; (3) go back by one step along
the current scanline; (4) deploy a contracted particle; (5) deploy a particle that
will expand in direction d; (6) terminate.

The third type of operation is repeatedly used right after moving to the next
scanline, in order to reach its endpoint e and then resume scanning. The only
caveat is that, if e should be occupied by a trespassing particle belonging to
Cf \ C ′

f , it is skipped by A′′, and the scan will not be resumed from e but from
the location right before it. This type of behavior is called trespasser-avoidance
rule, and is illustrated in Fig. 4.

Since we have an algorithm A′′, there exists a Turing Machine T that com-
putes the same function: it takes an integer n as input, and it outputs a sequence
of movement operations that trace (a sector of) Sn. From Sect. 3 we know that
there is a RAM QT with c registers that produces the same output when the
number n is initially stored in its first register. We can then construct the mobile
mRAM UT , with c′ = 6 flag registers, each of which corresponds to one of the
movement operations above, and is set and reset whenever the corresponding
operation has to be performed.

Finally, we can construct the mRAM Q′
UT

, which simulates UT using only two
registers, provided that the value 2n is initially stored in its first register. This
mRAM will be simulated by each leader in the system and its trail of particles.
In the rest of this section we will show how the RAM simulator of Sect. 3 can
be expanded to implement the movement operations above and therefore yield
a Shape-Formation algorithm.

5.3 Initializing the Machine

Let us focus on a single leader particle L and its trail of n/k particles. Recall that
the leader L is now located at the endpoint of its trail of particles that is farthest
from the center of C0. We want the last four particles on the trail, including L,
to start executing the simulator of Q′

UT
as described in Sect. 3. First, however, it

is necessary to initialize the simulator by storing the value 2n in its first register,
which amounts to placing particle M1 at a distance of 2n + 2 steps away from
particle M2 (refer to Fig. 2).
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Fig. 4. A configuration forming the nth level of a shape, subdivided into its three
principal subsets, each having two trespassing particles. The dashed lines represent the
order in which the principal subsets are traced by the algorithm A′′. The dark particles
represent the last dots of their respective principal subsets.

At first L switches states with its only neighbor, which now becomes the new
leader L. The two neighbors of L become M1 and M2, and then M2 sends a
message to its other neighbor, which becomes the pivot P .

Then, L has to “push” M1 exactly 2n times in order to create the input to
the simulator. By “push” we mean that L reaches M1, orders it to move forward
by one step, and waits until M1 has expanded and then contracted again.

In order to repeat this action the right number of times, the entire trail counts
in binary from 0 to 2n − 1: this is done by letting each particle hold k binary
digits, initially all set to 0. After each push, M1 adds 1 to the binary number
formed by its k digits. L reaches M1 and takes the carry bit of the addition from
M1. If the carry bit is 1, L adds 1 to its own k digits. If the carry bit of this
addition is 1, L moves all the way to M2 and orders it to increment its k bits
by 1, etc. As soon as a carry bit is 0, a message is sent back to L and forwarded
by the trail’s particles. When the message reaches L, it proceeds with the next
push operation, etc.

When the last particle in the trail gets a carry bit of 1, it knows that M1

has been pushed exactly 2n times, and it forwards this information to L, which
therefore stops pushing and proceeds with the simulation.

5.4 Tracing the Shape

Let the last particle in the trail be called the rear particle. The leader will
coordinate the simulation of the mRAM that traces the shape pretending that
the “pen” is held by the rear particle. That is, the simulator will go on with the
computation until a movement operation is reached. If such operation is of type 4
or 5 (i.e., the deployment of a particle), then the rear particle is “dropped”, which
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corresponds to drawing a point of the shape.As explained in Sect. 3, L knows
if a movement operation has to be performed by checking, at the end of every
simulated instruction of the mRAM, if the value of the first register is a multiple
of some prime number and the value of the second register is 0. This implies,
in particular, that when a movement operation is executed, the particles P and
M2 are next to each other.

In the following we will explain in greater detail how the system behaves to
implement the six possible movement operations.

1. Advancing by one step means that the four-particle mRAM simulator, as
well as the whole trail of particles up to the rear particle, has to move by
one step along the current scanline. First, L moves next to M1 and orders
it to advance by one step, waiting until it has moved. Then it goes next to
M2 and gives it the same order. L then moves away from M2 by one step
and waits for it. In the meantime, M2 gives the same order to P and then
advances toward L. P does the same as M2, and so on. When the rear particle
is reached by the message, it advances and sends an “all done” message to
its predecessor, which forwards it to L. Then, L knows that it may proceed
with the simulation.

2. Moving to the next scanline means that the entire trail and four-particle
mRAM simulator must move “sideways” by one step, in order to relocate
themselves on the next scanline s. The structure of this operation is similar
to the previous one. L moves to M1 and orders it to move sideways onto s.
There can be no misunderstanding on the direction of movement, since we are
assuming that all particles have already reached an agreement on a common
handedness. L waits until M1 has moved, and then goes to M2 and gives it
the same order. M2 forwards the order to P , which forwards it to the next
particles, etc. When the message reaches the rear particle, it forwards an “all
done” message to L, and then moves onto s. When any particle receives the
“all done” message, it waits until its predecessor has moved onto s, then it
forwards it to its successor and moves onto s. When L has finally moved onto
s, the procedure is over.

3. To go back along the current scanline, the operations of item 1 are executed
in reverse order. That is, L moves to M2 and forwards a message to the rear
particle, which then moves backwards, and all other particles up to L follow
one by one. Then L goes to M1 and orders it to move backwards.

4. Deploying a contracted particle means that the rear particle has to stop where
it is and remain there forever. This is simple to accomplish: L goes to M2

and forwards a message to the rear particle. When the rear particle gets the
message, it orders its predecessor to become the new rear particle and forward
an “all done” message to L. From this point on, the old rear particle will stop
following the trail, and no other particle will ever communicate with it again.

5. The deployment of a particle that will expand in direction d is similar to
the previous item. The only difference is that, after the rear particle has
transferred its role to its predecessor, it also expands in direction d. The
direction is encoded by taking the forward direction of the trail as 0 and
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numbering all other directions from 1 to 5 in clockwise order. There can be
no misunderstanding, since we are assuming that all particles have already
reached an agreement on a common handedness.

6. When the termination operation is reached, the simulation is over, and a
dismantling procedure has to be executed, which will be described next.

5.5 Dismantling the Machine

There is one last problem to solve: when the pivot P has been deployed, only
three particles are left to deploy: L, M1, and M2. Since three particles are too
few to simulate a tracing RAM, they have no way to reach their final locations
without “losing the way”. It is impossible to adapt our algorithm without making
an extra assumption on the shape to be formed.

Recall that the algorithm A′′ generates all the movement operations that are
necessary to draw the principal subset C ′

f of the configuration Cf , by tracing it
one scanline at a time. The last point plotted by A′′ on the last scanline visited
is said to be the last dot of C ′

f (see Fig. 4). A subset of the grid graph G is called
a neighborhood of point p with radius r if it contains precisely all the vertices of
G that have distance at most r from p.

Assumption 1. For each level Sn of the shape, there exists a configuration Cf

of n particles that forms Sn (such that Cf is unbreakably k-symmetric if Sn has
to be formed from an unbreakably k-symmetric initial configuration, cf. Proposi-
tion 1) and, for each principal subset C ′

f , there exists a neighborhood of the last
dot, with radius independent of n, that contains at least four particles of C ′

f .

If we make Assumption 1 on the shape to be formed, we can complete our
algorithm with a dismantling procedure, which makes L, M1, M2, and P reach
their final positions without getting lost in the attempt. To this end, we must
first modify the tracing algorithm A′′ that we previously designed, and produce
a new tracing algorithm A′′′. Let p1 be the particle occupying the last dot of
C ′

f , and let p2, p3, p4 be the three particles of C ′
f closest to p1 (other than p1

itself). Ties are broken arbitrarily. The new algorithm A′′′ proceeds exactly like
A′′, except that it skips the deployment operations (i.e., the operations of type 4
or 5) for p1, p2, p3, p4, and terminates when the “pen” reaches p1.

Then we construct another algorithm F that, with input n, generates the
paths that three particles have to take from p1 to reach the locations of p2, p3,
p4, making sure to avoid the locations of the other particles of Cf (this is possible
because we chose p2, p3, p4 to be closest to p1). Additionally, if some of the pis
are expanded, F outputs this information, as well as the direction of expansion.
It is clear that F is computable and terminates in a finite amount of time.

As before, we observe that there is a Turing machine T that executes A′′′,
and a RAM QT that simulates T . However, this time we add an extra register
to QT , which will store the input value n and will never erase it: this value will
be passed as input to F . Again, the mobile mRAM UT is constructed, which is
simulated by a 2-register RAM Q′

UT
, which in turn is simulated by particles L,
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M1, M2, and P . When these four particles are done executing A′′′, they erase all
registers except the one containing n, and execute a simulation of F (again, by
simulating a 2-register RAM that executes F ). Whenever F outputs a step in a
path from p1 to p2, p3, or p4, this step is memorized by the leader L. At the end
of the simulation, L has the three complete paths stored in its memory. Note
that this is possible even if the memory of L is of constant size: by Assumption 1,
the three paths are contained in a neighborhood of p1 with radius independent
of n, and therefore their length is bounded by a constant.

When the simulation of F is terminated, L starts moving toward P , and
orders M1 and M2 to do the same. When M1, L, M2, and P are in four con-
secutive locations, L communicates the three paths to the others. At this point,
each of the four particles knows what to do to reach its final position, and they
all do so in an orderly fashion.

5.6 Conclusion

Our Shape-Formation algorithm demonstrates the following:

Theorem 2. Under Assumption 1, any computable shape is formable from any
simply connected initial configuration.

The proof of correctness is straightforward, and it relies on two basic facts:

– A four-particle simulator and its trail of particles will never get in the way of
other four-particle simulators. This is because each of them stays in its own
principal sector; the only exceptions are the trespassers, which are actually
not an obstacle due to the trespasser-avoidance rule.

– The particles that have already been deployed will not get in the way of the
four-particle simulator that deployed them. This is because the movement
operations always make the simulator travel through locations where no par-
ticle has been deployed, yet. In particular, the delayed-deployment rule serves
this purpose: a deployed particle will always expand toward a location that
will never be traversed by the simulator again.

Note that Assumption 1 only excludes shapes whose levels are very sparse
around the last dots of their principal subsets. In particular, connected shapes
abundantly satisfy the assumption, which in this case reduces to the necessary
condition of Proposition 1. Therefore, we have the following characterization of
formable connected computable shapes:

Corollary 1. A necessary and sufficient condition for a connected computable
shape to be formable from a simply connected initial configuration is that, if
the initial configuration is unbreakably k-symmetric, then also the corresponding
level of the shape is unbreakably k-symmetric.

Our results open several interesting questions. In particular: what happens
when the starting configuration is not simply connected? To what other problems
can our mobile RAM be applied?
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